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Biological control of plant parasitic nematodes with antagonistic bacteria on different host plants 
 
Root-knot nematodes, Meloidogyne spp., are recognized as the most economically important genus of plant 
parasitic nematodes worldwide. The nematode causes severe damage and yield loss to a large number of 
cultivated plants and especially on vegetable crops in the tropics and subtropics. In the investigations conducted 
in this study, the potential control of plant parasitic nematodes using different antagonistic bacteria was studied 
with particular reference to the control of species of Meloidogyne on tomato.  
 
The results obtained from the research are presented in four chapters. The first chapter gives a: comprehensive 
introduction to the problems associated with root-knot nematode attack, outlines the major control methods 
being used and and gives an insite into integrated pest management now as well as the potential use of biological 
control in future integrated strategies for nematode management.  
 
In the second chapter the results of experiments on the biological control activity of the plant health promoting 
rhizobacterium Bacillus cereus strain S18 for biocontrol of the three major species of Meloidogyne are 
discussed. The results showed that B. cereus introduced either as a soil drench or as a root dip, reduced the 
number of galls and egg masses of M. incognita on tomato significantly. B. cereus applied 10 days before 
nematode inoculation caused significant reductions in root galling and number of galls. No differences, however, 
were detected between the different application times in the number of egg masses produced. It was also shown 
that B. cereus does not control all three major species of Meloidogyne to the same degree. B. cereus had little to 
no biological control activity toward M. arenaria, but gave significant control of M. incognita and M. javanica. 
Furthermore, the results demonstrated that B. cereus is an effective biological control agent of M. incognita on a 
broad spectrum of host plants.  
 
In the third chapter the plant health promoting rhizobacterium Rhizobium etli strain G12 was tested for control of 
different genera of plant parasitic nematodes on a broad spectrum of crops. R. etli exhibited strong biocontrol 
activity towards M. incognita on different host plants. The reduction rates varied however between crops. 
Results showed that R. etli had the ability to control three economically important species of Meloidogyne. The 
highest reduction was against M. incognita and M. javanica, whereas it had little effect on M. arenaria. It was 
also demonstrated that increasing inoculum densities of R. etli caused increased reductions in nematode 
infection. Reduction in the number of galls occurred at 1010 cfu/ml whereas reductions in egg mass number were 
detected at 106 to 1010 cfu/ml. R. etli also caused significant reductions in sugar beet cyst nematode, Heterodera 
schachtii infection. R. etli reduced significantly the number of cysts/plant and number of eggs and 
juveniles/plant. The bacteria, however, did not affect the number of eggs and juveniles/cyst. The experimental 
data also showed that R. etli can reduce infection of the cyst nematode Globodera pallida on potato, but had no 
activity towards the migratory endoparasitic root-lesion nematode Pratylenchus zeae on maize. 
 
In the fourth chapter the spore-forming endoparasitic bacterium Pasteuria penetrans (Pp3) was used as a 
biocontrol agent for the biological control of M. javanica on tomato. The results revealed abiotic factors affect 
attachment. Culture filtrates of the two antagonistic rhizobacteria B. cereus S18 and R. etli G12 reduced 
attachment of Pp3 spores to the cuticle of M. javanica juveniles at 100 strength and dilutions of 10 percent of the 
original fermentation broth. The experiments also demonstrated that percolates of chicken manure compost 
treated soil had a strong negative effect on the attachment of Pp3 spores to M. javanica juveniles. In greenhouse 
tests P. penetrans multiplied quickly and within 6 months and gave good biological control of M. javanica when 
initially introduce into the planting soil during seedling production. The seedlings with P. penetrans in the 
potting soil were then grown for two additional tomato cropping cycles in a sand substrate previously infested 
with root-knot nematodes, at temperatures above 25 C. The overall results of these studies demonstrated the 
importance of three different bacterial antagonists for root-knot nematode control and supplied new information 
on how to improve activity of the bioloigcal control agents as well as ideas on their use in integrated 
management under field conditions.  
 
 
 
 
 
 
 
 
 



 
 
Biologische Bekämpfung pflanzenparasitärer Nematoden mit antagonistischen Bakterien an 
verschiedenen Wirtspflanzen  
 
Wurzelgallennematoden der Gattung Meloidogyne zählen weltweit zu den wirtschaftlich wichtigsten 
pflanzenparasitären Nematoden. Nematoden dieser Gattung verursachen hohe Schäden und Ertragsausfälle an 
den meisten landwirtschaftlichen Kulturpflanzen, vor allem aber an Gemüse in tropischen/subtropischen 
Regionen. In der vorliegenden Arbeit wurden Möglichkeiten zur biologischen Bekämpfung von Meloidogyne 
mit antagonistischen Bakterien an verschiedenen Kulturpflanzen untersucht.  
 
Die Ergebnisse der Arbeit wurden in vier Kapiteln dargestellt. Im ersten Kapitel wurde eine kritische Darstellung 
der schädigende Wirkung von Wurzelgallennematoden und deren Bekämpfungsmöglichkeiten vorgenommen, 
sowie die Bedeutung eines integrierten Pflanzenschutzes dargestellt und mögliche Strategien zum Einsatz 
biologischer Bekämpfungsverfahren für die Zukunft entwickelt.  
 
Im zweiten Kapitel sind die Ergebnisse zur biologischen Bekämpfung der drei wichtigsten Meloidogyne-Arten 
mit dem pflanzengesundheitsfördernden Bakterium Bacillus cereus S18 dargestellt. Die Ergebnisse zeigen, dass 
eine Gieß- oder Tauchbehandlung von Tomaten mit B. cereus S18 zu einer signifikanten Reduzierung der 
Anzahl Gallen und Eiermassen von Meloidogyne spp. führt. Eine besonders gute Wirkung wurde erzielt, wenn B. 
cereus S18 10 Tage vor den Nematoden appliziert wurde. Keine Unterschiede zeigten sich im 
Applikationszeitpunkt auf die Anzahl gebildeter Eiermassen. Die antagonistische Wirkung von B. cereus S18 
war nicht gegen alle drei Meloidogyne–Arten gleich gut ausgeprägt. Im Gegensatz zu M. incognita und M. 
javanica, zeigte B. cereus S18 nur eine geringe Wirkung gegen M. arenaria. Weiterhin zeigten die Ergebnisse 
eine gute Bekämpfung von M. incognita mit B. cereus S18 an einem breiten Spektrum von Wirtspflanzen.  
 
Im dritten Kapitel wurde die antagonistische Wirkung des Rhizsophärebakteriums Rhizobium etli Isolat G12 
gegen verschiedene Nematodenarten an unterschiedlichen Wirtspflanzen untersucht. R. etli G12 zeigt eine hohe 
Wirksamkeit gegen M. incognita an verschiedenen Wirtspflanzen, wobei die Wirkung in Abhängigkeit der 
Wirtspflanze variierte. R. etli G12 zeigte eine sehr gute Wirkung gegen M. incognita und M. javanica und eine 
geringer Wirkung gegen M. arenaria. Mit Erhöhung der Inokulumdichte von R. etli G12 bis auf 1010 cfu/m war 
eine Steigerung der Wirksamkeit verbunden. R. etli G12 zeigte weiterhin eine gute Wirkung gegen Heterodera 
schachtii an Zuckerrübe. Die Anzahl Zysten/Pflanze und Anzahl Eier + Larven/Pflanze war signifikant reduziert. 
R. etli G12 hatte jedoch keine Wirkung auf die Anzahl Eier + Larven pro Zyste. An Kartoffeln führte R. etli G12 
zu einer Reduzierung des Befalls mit Globodera pallida. Demgegenüber zeigte das Bakterium keine Wirkung 
gegen den wandernden Endoparasiten Pratylenchus zeae an Mais. 
 
Im vierten Kapitel wurde der obligate Endoparasit Pasteuria penetrans (Pp3) zur biologischen Bekämpfung von 
M. javanica an Tomate eingesetzt. Die Ergebnisse zeigten, dass die Anhaftung der P. penetrans-Sporen an die 
Nematodenlarven durch abiotische Faktoren beeinflusst wird. Eine Behandlung der P. penetrans-Sporen mit 
Kulturfiltraten der beiden antagonistischen Bakterien B. cereus S18 und R. etli G12 führte zu einer verringerten 
Anhaftung. Auch das Perkolat eines mit 5 % und 20 % Hühnermistkompost behandelten Bodens führte zu einer 
Verringerung der Sporenanhaftung an M. javanica. In Gewächshausversuchen mit Tomaten konnte sich P. 
penetrans gut vermehren. Bei Behandlung der Sämlinge mit P. penetrans war nach 6 Monaten eine gute 
Bekämpfung von M. javanica gegeben.  
 
Die Ergebnisse der vorliegenden Arbeit zeigen die Bedeutung von drei verschiedenen bakteriellen Antagonisten 
für die Bekämpfung von Wurzelgallennematoden an Gemüse. Weiterhin wurden Strategien entwickelt, wie eine 
Verbesserung der Wirksamkeit zu erzielen ist und wie sich die biologischen Bekämpfungsverfahren in ein 
integriertes Pflanzenschutzverfahren integrieren lassen, um eine nachhaltige Bekämpfung der Nematoden im 
Freiland zu erzielen.  
 
 



I 

I- Table of Contents                   

 

Chapter I. General Introduction                                

 

1. Life cycle of Meloidogyne spp.                         2                      

2. Abiotic factors and development         2                     

3. Root-knot nematode population development           4                      

4. Root-knot nematode races             4                      

5. Root-knot damage             6                      

6. Integrated pest management (IPM)                       7                     

6.1 Physical Methods                                                   7                     

6.1.1 Heating                                                              7                      

6.1.1.1 Steam sterilization                                 7                      

6.1.1.2 Soil solarization                                 8 

6.1.2 Flooding                                      9  

6.2 Rotations                  9 

6.3 Chemical Control              12 

6.4 Resistance                 14 

6.5 Soil Amendments                15 

6.6 Biological Control                  16 

6.6.1 Fungi                            17 

6.6.1.1 Nematode-trapping fungi                17 

6.6.1.2 Female and egg parasitic fungi and pathogens            18 

6.6.1.3 Mycorrhizal fungi                  20 

6.6.1.4 Endophytic fungi               23         

6.6.2 Bacteria                   23 

6.6.2.1 Endophytic bacteria                23 

6.6.2.2 Rhizobacteria                    24 

6.6.2.3 Obligate bacterial parasite, Pasteuria penetrans              25 

7. Integrated pest management in the future              26 

8. References                      30 

 

 



II 

I- Table of Contents                   

 

Chapter II. Effect of the plant health-promoting rhizobacterium Bacillus cereus strain 

S18 on root-knot nematodes, Meloidogyne spp. on different host plants            

 

1. General Introduction                  55 

2. General Materials and Methods           56 

2.1 Host Plants                           56 

2.2 Bacillus cereus strain S18                       56 

2.3 Root-knot nematodes, Meloidogyne spp.           57 

2.4 Statistical Analysis                    58 

3. Experimental Program               58 

3.1 Effect of application method on biocontrol efficacy         58 

3.1.1 Introduction               58 

3.1.2 Materials and Methods             59 

3.1.3 Results and Discussion             60 

3.2 Effect of application time on biocontrol efficacy          65 

3.2.1 Introduction               65 

3.2.2 Materials and Methods               65 

3.2.3 Results and Discussion             66 

3.3 Biological control potential towards different species of Meloidogyne         71 

3.3.1 Introduction                 71 

3.3.2 Materials and Methods               71 

3.3.3 Results and Discussion               72 

3.4 Biological control potential towards M. incognita on different host plants         77 

3.4.1 Introduction                   77 

3.4.2 Materials and Methods              77 

3.4.3 Results and Discussion                78 

3.5 General Conclusions                 81 

4. References                   82 

 

 

 



III 

I- Table of Contents                   

 

Chapter III. Antagonistic activity of the rhizobacterium Rhizobium etli strain G12 

towards different plant parasitic nematodes on different host plants  

 

1. General Introduction                88 

2. General Materials and Methods              89 

2.1 Host Plants                   89 

2.2 Rhizobium etli strain G12                  90 

2.3 Plant Parasitic Nematodes                  90 

2.4 Statistical Analysis                            92 

3. Experimental Program 

3.1 Influence of plant species on the biological control activity of the antagonistic 

rhizobacterium R. etli G12 towards the root-knot nematode M. incognita                      93  

3.1.1 Introduction                  93 

3.1.2 Materials and Methods                93 

3.1.3 Results and Discussion                 94 

3.2 Biocontrol activity of R. etli G12 towards different species of Meloidogyne on    

        tomato                                                  102 

3.2.1 Introduction                                          102 

3.2.2 Materials and Methods                        102 

3.2.3 Results and Discussion                       103 

3.3 Effect of R. etli G12 inoculum density on biocontrol activity towards M. incognita    

        on tomato                                               108 

3.3.1 Introduction                                           108 

3.3.2 Materials and Methods                          109 

3.3.3 Results and Discussion                          110    

3.4  Biocontrol activity of R. etli G12 towards sugar beet cyst nematode, H. schachtii 114 

3.4.1 Introduction                                              114 

3.4.2 Materials and Methods                             115 

3.4.3 Results and Discussion                            115 

 

     



IV 

Table of Contents 

 

3.5 Biocontrol activity of R. etli G12 on potato cyst nematode, G. pallida   

      reproduction                                   118 

3.5.1 Introduction                                  118 

3.5.2 Materials and Methods                 118 

3.5.3 Results and Discussion                119   

3.6 Biocontrol activity of R. etli G12 towards root-lesion nematode, P. zeae on maize 121 

3.6.1 Introduction                                   121 

3.6.2 Materials and Methods                  121 

3.6.3 Results and Discussion                 122 

3.7 General Conclusions                      124    

4. References                                         125 

 

Chapter IV. Biological control potential of Pasteuria penetrans as a biocontrol agent 

against root-knot nematodes, Meloidogyne spp.                

 

1. General Introduction                                                    132 

2. General Materials and Methods                                 135 

2.1 Root-knot nematodes, Meloidogyne spp.                     135 

2.2 Pasteuria penetrans                                                     135            

2.2.1 P. penetrans Isolates                                                135 

2.2.2 P. penetrans Spore Suspension                                 136 

2.2.3 P. penetrans Multiplication                                      136 

2.3 Statistical Analysis                                                      137 

3. Experimental Program 

3.1 Attachment rate of seven P. penetrans isolates at different spore concentrations to   

      M. incognita juveniles using two passive exposure methods                      138  

3.1.1 Introduction                                                                                                    138 

3.1.2 Experimental Design                                                                                       139 

3.1.2.1. Test to determine optimum method to stimulate attachment              139 

3.1.2.2. Influence of the origin of P. penetrans spores on attachment rate       141 

3.1.2.3. Influence of spore concentration on rate of attachment                         143 



  V 

Table of Contents 

 

3.1.3 General Discussion                                    144        

3.2 Effect of the nematode antagonistic rhizobacteria B. cereus S18 and R. etli G12   

      culture filtrates on the attachment of P. penetrans  (Pp3) to M. javanica  

      juveniles             147  

3.2.1 Introduction                                              147 

3.2.2 Materials and Methods                             147 

3.2.3 Results and Discussion                            148 

3.3 Effect of chicken manure compost on the attachment of P. penetrans (Pp3)            

        spores  to M. javanica juveniles                     150 

3.3.1 Introduction                                                      150 

3.3.2 Materials and Methods                                   150 

3.3.3 Results and Discussion                                    151 

3.4 Biological control of M. javanica with P. penetrans (Pp3) on tomato          153 

3.4.1 Introduction                                                     153 

3.4.2 Materials and Methods                                   153 

3.4.3 Results and Discussion                                    155 

3.4.3.1 After two months                                        155 

3.4.3.2 After four months                                       155 

3.4.3.3 After six months                                          155 

 

3.5 General Conclusions                                       158 

4. References                                                         160 

 

Summary and Future Strategies         167                       

       

 

 

 

 

 

 



1 

Chapter I: General Introduction 

 

The soil around plant roots that forms the rhizosphere is a dynamic, complex zone. All plant 

parasitic nematodes are obligate parasities and must enter this zone to reach their host and 

cause damage (Kerry and Hominick, 2000). Root-knot nematodes, Meloidogyne spp., 

recognized as among the most economically important and complex group of plant parasitic 

nematodes, cause damage and high yield losses on most cultivated plants throughout the 

world especially in developing countries (Sasser, 1979b; Sasser and Carter, 1985; Sasser and 

Freckmann, 1987; Netscher and Sikora, 1990). 

 

Fifty one species have been described for the genus Meloidogyne by Jepson (1987) and four 

species are of high economic importance to vegetable production, M. incognita, M. javanica, 

M. arenaria and M. hapla. The most dominant species worldwide was shown to be M. 

incognita in 53% of all field samples followed by M. javanica 30% and M. arenaria and M. 

hapla 8% (Johnson and Fassuliotis, 1984). 

 

M. incognita (Kofoid and White, 1919) Chitwood 1949, M. javanica (Treub, 1885) Chitwood 

1949 and M. arenaria (Neal, 1889) Chitwood 1949, are cosmopolitan in distribution being 

found in most of the warmer regions of the world. The optimum temperature for M. hapla is 

5°C lower than the other three species. M. incognita, M. javanica and M. arenaria occur in 

tropical areas with an average temperature of 25°C, whereas M. hapla is found at high 

altitudes in the tropics (Netscher and Sikora, 1990). 

 

Although nematode problems occur in all areas of the world where crops are grown, Mai 

(1985) revealed that  the most evident damage occurs in warm areas because: 

* higher temperatures and longer growing seasons result in more generations per year 

resulting in higher nematode populations and more crop damage. 

* the greater number of susceptible crops per year in warm areas results in higher nematode 

build-up.  

* some of the more damaging species such as M.  incognita, occur in warmer areas and 

* more severe diseases complexes occur in warmer areas. 
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1. Life cycle of Meloidogyne spp.     

 

The life cycle of root-knot nematodes, Meloidogyne spp. is shown in figure and is briefly 

described below: 

Adult females embedded in host roots produce eggs which may be free in the soil or together 

in a gelatinous matrix which may still adhere to old root tissue segments of the plant host. The 

nematode develops to the second stage juvenile in the egg. The infective second stage juvenile 

then hatches and moves into the soil to search for the host root. When a suitable host root is 

reached the juveniles invade near the root tip. They penetrate the cortex until the juvenile 

makes contact with the vascular cylinder. Here it forms giant cells upon which the developing  

nematode feeds. The juvenile grows slightly in length and much in width. As development 

increases the juveniles become flask shaped and undergo three further moults (Taylor and 

Sasser, 1978). After the last moult either a true male, which appears as a long filiform 

nematode inside the cuticle of the fourth larval stage is produced or an adult female evolves 

which is pyriform in shape. The females secrete a gelatinous matrix into which they lay up to 

500 eggs (Tyler1933). Most juveniles develop into females and only under adverse conditions 

are high numbers of males observed.   

 

2. Abiotic factors and development  

 

There are many abiotic factors affecting the development and distribution of Meloidogyne 

spp. such as temperature, soil moisture, soil texture and soil pH. The optimum temperature for 

the different Meloidogyne species can vary greatly, but for tropical species like M. incognita it 

ranges from 25 to 30 °C. Thomason and Lear (1961) suggested that the nematode reproduced 

well on tomato at 20, 25 and 30°C. However M. incognita and M. javanica reproduced even 

at 35°C, although very few galls and egg masses appeared above 32°C. Walker (1960) also 

found that the juveniles of M. arenaria have greater tolerance to heat than the three other 

species.  
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Figure 1: Life cycle of root-knot nematodes, Meloidogyne spp. (A) embryo developed within 

eggs; (B) second stage juvenile within egg; (C) hatched second stage (D)developed second 

stage; (E) third stage for female(&) and male (%); (F) fourth stage female and male and (G) 

mature female (periform) and male (vermiform) (Taylor and Sasser, 1978).   
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Soil type and soil pH have been shown to influence nematode distribution (Taylor et al., 

1982). Soil type may also influence the types of crops grown, thereby affecting nematode 

distribution, population build-up and damage intensity. Migration of nematode juveniles 

decreased with increasing clay content more than 30% (Prot and Van Gundy, 1981). In sandy 

soils the juveniles were able to move over distances of up to 75 cm in 9 days horizontally and 

vertically (Prot, 1977). 

 

Soil pH from 4-8 affects root-knot nematode survive and reproduction greatly (Ferris and Van 

Gundy, 1979). M. javanica emergence in vitro was greatest between 6.4 and 7.0 and inhibited 

below pH 5.2 (Wallace, 1966). However, many tropical soils are very acid with pH levels of 

4.5 and this does not prevent high density build-up of Meloidogyne populations (Netscher and 

Sikora, 1990).  

 

3. Root-knot nematode population development 

 

The number of Meloidogyne generations per year varies according to species. Usually there 

are multiple generations, but in some species there is only one, e.g. M. nassi which attacks 

cereals under temperate climatic conditions (De Guiran and Ritter, 1979). The rate of 

development increases for most species with temperature up to 28°C. The minimum time 

required for the life cycle of M. incognita was 87 days at 16°C and 25 days at 27°C (De 

Guiran and Ritter, 1979). The mean number of generations of tropical species of Meloidogyne 

range between 7-10 generations. M. arenaria for example has 9 generations per year and the 

duration of the life cycle can vary from 18 days in summer to 54 days in winter as reported by 

Scotto la Massese (1961).  

 

4. Root-knot nematode races 

 

There are four dominant species of Meloidogyne, that cause severe damage to crops especially 

vegetable crops (Netscher and Sikora, 1990) and these species are M. incognita, M. javanica  

M. arenaria and M. hapla. The differential host test that depends on the reaction of specific  

hosts to infection is considered one of the most important methods for identifying races of  
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these four major species  (Sasser, 1954). The use of host differentials allows determination of 

the four main species and many important races of Meloidogyne. Taylor and Sasser (1978) 

added tobacco with resistance to many M. incognita populations and discovered physiological 

races within Meloidogyne species (Table 1). Four races of M. incognita have now been 

recorded Taylor et al., (1982). Race 1 is the commonest race and does not reproduce on cotton 

nor tobacco which are the marker hosts for this race. 

 

Table 1: Identification of the most common species and races of Meloidogyne using the 

differential host test (Sasser and Carter, 1985; Hartman and Sasser 1985). 

 

Nematode 

species and 

races 

Cotton 

cv. 

Deltapine 

 

Tobbaco 

cv. 

NC95 

Pepper 

cv. 

California

Wonder 

Watermelon

cv. 

Charleston 

Gray 

Peanut 

cv. 

Florunner 

Tomato 

cv. 

Rutgers 

M. incognita       

Race 1 - - + + - + 

Race 2 - + + + - + 

Race 3 + - + + - + 

Race 4 + + + + - + 

M. arenaria       

Race 1 - + + + + + 

Race 2 - + + + - + 

M. javanica - + - + - + 

M. hapla - + + - + + 

(+) indicates a susceptible host     (-) indicates a resistant host. 

 

Sasser (1972); Taylor and Sasser (1978) and Eisenbeack et al., (1981) separated M. arenaria 

into two races, race 1 reproduces on peanut, but race 2 does not. Host races of M. arenaria are 

distributed throughout the world and are morphologically indistinguishable (Sasser, 1979a; 

Osman et al., 1985). Race 2 of M. arenaria is the commoner race (Taylor et al., 1982).  
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5. Root-knot damage 

 

The presence of galls on the root system is the most evident diagnostic symptom caused by 

root-knot nematodes. Root-knot nematodes limit vegetable production worldwide and cause 

high losses especially in vegetable crops (Netscher and Sikora, 1990). Most vegetable crops 

have been recorded as a host for at least one of the most frequently occurring species of root-

knot nematodes, M. incognita, M. javanica and M. arenaria. 

 

The losses in vegetable crops ranged from 17-20% on eggplant, 18-33% on melon and 24-

38% on tomato as reported by Netscher and Sikora (1990). It is very difficult to grow 

important vegetables such as tomato in tropical or semi-tropical soil infested with root-knot 

nematodes, particularly M. incognia. Root-knot nematodes cause serious economic losses also 

to tuber crops like carrot and potato by direct damage to the plant through reduced tuber 

quality Brodie et al., (1993). 

 

Another important problem is the involvement of root-knot in disease complexes. On 

vegetables for example complexes of M. incognita with the wilt fungi Fusarium oxysporum 

on tomato cause plant death (Jenkins and Coursen, 1957). Root-knot also interacts with 

Fusarium oxysporum f. sp. conglutinans on cabbage (Fassuliotis and Rau, 1969); Fusarium 

oxysporum f. sp. lycopersici on okra (Khan and Saxena, 1969); Sclerotium rolfsii on eggplant 

(Goswami et al., 1970) and with Rhizoctonia solani on okra and tomato (Golden and Van 

Gundy, 1975). 

 

The second most important root-knot species, M. javanica, also interacts with Fusarium and 

reduces growth of tomato (Bergeson et al., 1970). It also increased Verticillium wilt of tomato 

(Valdez, 1978). M. arenaria has been reported to interact with F. oxysporum on watermelon 

(Sumner and Johnson, 1972).  

 

Bacterial canker caused by Corynebacterium michiganense (Moura et al., 1975) and bacterial 

wilt caused by Ralstonia solanacearum (Valdez, 1978) was increased when root-knot 

nematode is present.   
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6- Integrated Pest Management (IPM)  
 

Integrated pest management is a socially acceptable, environmentally responsible and 

economically practical method of controlling pest populations. IPM incorporates a variety of 

cultural, biological and chemical methods to efficiently manage pest populations, while 

lowering dependence on chemical means of control.  

 

Development of IPM can be divided into seven components: biological monitoring, 

environmental monitoring, the decision maker, decision support systems, the decision, 

procedure implementation and the system (Bird, 1987). Many different control methods have 

been used in the past to reduce root-knot nematode damage. 

 

The use of the following control methods varies with crop, country, economics, availability 

and environmental laws. 

 

6.1 Physical Methods  

Different methods of physical control are used to control root-knot nematodes in IPM. 

 

6.1.1 Heating: Heat is the physical factor most widely used in nematode population reduction 

(Bird, 1987). This method is considered to be a very effective method to control plant 

parasitic nematodes. Heat treatment is more effective in moist rather than dry soil, due to the 

increased thermal conductivity and metabolic activity of target organisms (Barker, 1962). 

Two types of heating are used:  

 

6.1.1.1 Steam sterilization of nurseries and greenhouse soil is done by heating to 82-93°C at a 

15 cm depth for 30 minutes. This temperature is sufficient to kill the nematode and gives 

better results against root-knot nematodes than those obtainable with applications of systemic 

nematicides which do not kill root-knot (Lamberti et al., 1976).  
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6.1.1.2 Soil solarization is a rather recently developed technique, which has shown promise 

for the control of several soil-borne pathogens (Katan et al., 1976; Katan, 1987). Solarization 

also is a unique method of mulching that integrates pest control, soil and water conservation 

and increased growth response of crops (Stapleton and DeVay, 1986). The efficacy of soil 

solarization is based on the sensitivity of nematodes to relatively high temperature > 40-50°C. 

Soil solarization with clear plastic has been attempted as a means of raising soil temperatures 

to these lethal levels to control soil-borne diseases (Katan, 1981). This technique however, is 

only adaptable to regions, for example the Middle East, where sufficient solar energy is 

available for long periods of time. Solarization also has been shown to have a potential in the 

subtropical climate of Florida where it reduced root-knot, Verticillium wilt and weeds 

(Overman and Jones, 1986). 

 

In some solarization experiments control of these nematodes was inconsistent (Greco et al., 

1985; Barbercheck and Van Broembsen, 1986), in other investigations excellent control was 

achieved by soil solarization under greenhouse conditions (Cenis, 1984; Cartia et al., 1988; 

1989). 

 

Soil solarization reduced significantly important genera of phytoparasitic nematodes: 

Meloidogyne, Heterodera, Globodera, Pratylenchus, Rotylenchulus, Rotylenchus, 

Tylenchulus,, Tylenchorhynchus, Xiphinema, Belonolaimus, Criconemella, Ditylenchus, 

Criconemella and Dolichodorus (Davis and Sorensen, 1976; Siti et al., 1982; Stapleton and 

DeVay, 1983; Porter and Merriman, 1983; Greco et al., 1985; McSorley and Parrado, 1986; 

Heald and Robinson, 1987; Stapleton, 1990). 

 

However, phytoparasitic nematodes are more resistant to the effects of solarization than most 

other plant pests and pathogens. Also, populations of root-knot nematodes must be effectively 

controlled to a greater soil depth than other targeted organisms. Although soil depths to which 

phytoparasitic nematodes were controlled by solarization varied, only a few reports examined 

effects below 30 cm (Stapleton and DeVay, 1983; Stapleton et al., 1987). Porter and 

Merriman (1983) demonstrated significant reductions of Meloidogyne javanica, Tylenchulus 

semipenetrans and Criconemella xenoplax to a 26 cm depth in microplot in Victoria. 
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Heald and Robinson (1987) showed that Rotylenchulus reniformis was effectively controlled 

only to a 15 cm depth in Texas.  Stapleton and DeVay (1983) however reported more than 

95% reduction of Meloidogyne hapla juveniles and males at 90 cm soil depth in Australia. 

 

Abu-Gharbieh et al., (1987) found that hot season solarization with black polyethylene film, 

which was then perforated and left in place as a cool season mulch for vegetable crops, was 

an effective and economic practice for root-knot control (Fig. 2). 

 

6.1.2 Flooding: Thames and Stoner (1953) reported effective root-knot nematode control on 

two vegetable crops produced after flooding previous rice fields for three months. Sikora 

(1989) also observed less severe root-knot nematode damage in Philippine vegetable cropping 

systems based on paddy rice-vegetable rotations when flooding was maintained for at least 4 

months than in rotations without paddy rice. IFAS (1989) recommend alternating flooding 

with drying during the summer vegetable season in Florida for root-knot nematode control.  

 

6.2 Rotations 

 

Because root-knot nematodes are obligate parasites on plants, freshly hatched juveniles must 

find suitable hosts to parasite and reproduce. When rotations are used to control Meloidogyne 

species, such rotations must be designed with susceptible hosts and with non-hosts or resistant 

hosts to Meloidogyne. Because the most widespread and pathogenic species of root-knot 

nematodes are polyphagous and can have hunderds of host plants it is very difficult to design 

rotation schemes which are effective in controlling the nematode and that are at the same time 

economical (Lamberti, 1979b).  

 

Lamberti (1979b) mentioned that M. nassi which has non-host plants among the cereals and 

other species of root-knot with few hosts may be easily controlled by crop rotation. Crops 

sequences he tested in a three year rotational system in soil infested with M. incognita in Italy, 

led to slight increases in yields of tomato when grown in the winter season .   
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A number of rotations exist in the tropics, especially in Asia, which are predominantly 

composed of cruciferous crops moderately resistant or tolerant to Meloidogyne spp.,  together 

with a small number of highly susceptible crops. Rotations of this design can be effectively 

used to reduce Meloidogyne densities (Page, 1979; Sikora et al., 1988) 

 

However, Netscher and Sikora (1990) stated that the root-knot nematodes are extremely 

polyphagous, therefore relatively few non-host plants are available for Meloidogyne control 

through crop rotation in most countries or in intensive greenhouse production cropping 

systems.  
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Figure 2: Soil solarization by using black polyethylene (above photo) and then planting the 

transplants into the plastic holes after 6-8 weeks of the solarization (below photo) (Abu-

Gharbieh, 1988)  
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6.3 Chemical Control 

 

During the last few decades, root-knot nematode control has been based on the use of 

chemical pesticides applied to the soil or the plant ( Duponnois et al., 2001). There are two 

types of nematicides used in control of root-knot nematodes, fumigants and non-fumigants. 

Soil fumigation is the most common measure used to achieve economical control in 

agricultural land (Lamberti, 1979a). The polyphagous nature of the more important species of 

root-knot nematodes means that the use of chemicals is likely to be the main method of 

control.  

 

Minton and Baujard (1990) also reported that chemicals are the major means of controlling 

nematodes including M. arenaria, M. hapla, Pratylenchus brachyurus, Belonolaimus 

longicaudatus and other nematodes in peanut. 

 

Fumigant nematicides are used to treat soil as drenches, root dips, foliar applications or seed 

treatments. They can be formulated as gases, volatile liquids, gels, flowables, spray 

concentrates or granules (Bird, 1987). The gaseous nature of fumigants makes them extremely 

useful as nematicides. When fumigants are released in the soil, they volatilize and move 

effectively  through soil pore spaces and into soil moisture films containing nematodes. In 

most cases they are broad spectrum contact nematicides effective against nematode eggs and 

juveniles and adults (Bird, 1987; Netscher and Sikora, 1990). The fumigants are phytotoxic 

(Bird, 1987) and must be applied weeks before planting. 

 

Fumigants are generally more effective in controlling root-knot nematodes and in increasing 

crop yield than the non-fumigant nematicides, because fumigants have a broader spectrum of 

activity, controlling soil insects, fungal diseases and weeds as well as other plant parasitic 

nematodes as reported by Netscher and Sikora (1990). 
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Lamberti (1979b) and Johnson (1985) reported that the fumigant nematicides were highly 

effective in control of Meloidogyne in vegetables. In the past the most commonly used 

fumigant nematicides were: methyl bromide, chloropicrin, ethylene dibromide, 1,2-dibromo-

3-chloropropan and metham sodium. The efficacy of these fumigants is affected by abiotic 

factors such as soil texture, moisture, temperature and organic matter (Bird, 1987).  

 

Methyl bromide is generally very effective against most plant parasitic nematodes (Abdalla 

and Lear, 1975). Excellent control of all root-knot nematode species has been obtained with 

methyl bromide, which penetrates soil and intact root fragments readily (Khatoom, 1981; 

Noling, 1989; Abou-Jawadah et al., 2000; Oka et al., 2000). This highly effective fumigant 

has been removed from the market due to side-effects on the atmosphere and good 

alternatives have not yet been found for the tropics and subtropics. 

 

The fumigant nematicide metham sodium was effective in controlling root-knot nematodes 

and soil fungi when applied through drip irrigation (Roberts, 1988). On the other hand 

Lamberti (1979b) found that metham sodium does not give good results against root-knot 

nematodes even when applied in very high dosages. It is also not as effective at higher soil 

temperature. The fumigant ethylene dibromide gives very efficient control to root-knot 

nematodes (Lamberti, 1979b). It is not as effective against other pest problems like weeds and 

fungi.  

 

Hodges and Lear (1973) found that root-knot nematodes are killed by short exposure to 1,2-

dibromo-3-chloropropan (DBCP). DBCP was frequently used to control nematodes in 

established orchards, vine-yards or rose plantings (Raski and Schmitt, 1964; Lownsbery et al., 

1968; Johnson et al., 1969). It is no longer on the market. 

 

The non-fumigant granular or liquid nematicide compounds are water soluble (Netscher and 

Sikora, 1990). The nematicides are not effective against nematode eggs and in most cases do 

not kill the juveniles or adults at the recommended concentrations used as reported by 

Netscher and Sikora (1990). 
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These granular or liquid non-fumigant systemic nematicides are effective in delaying 

infection for some weeks. Non-fumigant systemic nematicides are non-phytotoxic and they 

can be applied effectively by surface and drip irrigation (Overman, 1974; Johnson, 1985; 

IFAS, 1989). However, they are not as effective as fumigants in increasing yield because they 

do not have broad spectrum activity (Netscher and Sikora, 1990).  

 

The most common non-fumigant systemic nematicides used to control nematode were: 

oxamyl, fenamiphos, carbofuran and aldicarb (Lamberti, 1979b). The systemic action of 

aldicarb inhibit root invasion by M. incognita juveniles under greenhouse conditions and 

inhibits egg hatch and juvenile migration and host invasion (Hough and Thomason, 1975; 

Vovlas and Lamberti, 1976). Vovlas and Lamberti (1976) reported that carbofuran and 

oxamyl prevented root invasion of tomato by M. incognita and was very effective against 

root-knot nematodes for 12 and 25 days. Phenamiphos is a systemic non-fumigant sold in a 

granular and a liquid formulation. Bunt (1975) and Roca et al., (1975) revealed that the 

granular formulation is more effective than the liquid against root-knot nematodes, because of 

its longer persistence. 

 

6.4 Resistance 

 

Resistance can be defined as the character, or characters of a plant that inhibit nematode 

reproduction (Taylor and Sasser, 1978). The use of resistant cultivars is a preferred, 

important, economical and environmentally safe method to managing root-knot nematode 

damage (Netscher and Mauboussin, 1973; Roberts, 1992; 1995; Trudgill, 1995). 

 

However, Netscher and Sikora (1990) mentioned that resistant cultivars of crops susceptible 

to one species of Meloidogyne do not necessarily protect the crop against all other species of 

Meloidogyne. The evaluation of resistance to various species showed that some crops were 

resistant to two or more species whereas others carried resistance to only one species (Marks 

et al., 1968; Southards and Priest, 1973). For example, tomato with the Mi gene was found to 

carry resistance to M. incognita and M. javanica, but not M. arenaria. Resistance is also  
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known in common bean to M. incognita, sweet potato to M. incognita and M. javanica and 

pepper to M. incognita, M. arenaria and M. javanica, but not M. hapla as reported by 

Fassuliotis (1985). 

 

Hendy et al., (1985) reported the presence of five dominant genes which when present in one 

genotype protect against M. incognita, M. javanica and M. arenaria. Also root-knot 

populations which were capable of attacking resistant cultivars have been detected (Sikora et 

al., 1973; Netscher, 1977; Prot, 1984; Fargette, 1987; Berthou et al., 1989). 

 

6.5 Soil Amendments 

 

Reductions in plant parasitic nematode populations in response to applications of organic 

amendments has been reported (Muller and Gooch, 1982). The incorporation of organic 

material into the soil has been shown repeatedly to reduce root-knot nematode densities 

(Stirling, 1991). He suggested that the mechanism of action may be due to: improvement of 

soil structure and aggregation resulting in increased aertion and water-holding capacity; to 

improvement in plant nutrition; to the release of toxic by-products to nematodes of microbial 

basis or to the enhancement of the growth of organisms able to compete with or destroy 

nematodes. 

 

Baby and Manibhushanrao (1993) found that organic amendments were associated with 

suppression of nematode populations through stimulation of antagonistic soil microflora 

during their decomposition. 

 

A number of organic amendments have been used to manage root-knot nematodes. Their use 

is associated with reduced infection, or survival of nematodes and increased numbers of 

microbial antagonists of nematodes (Linford et al., 1938; Watson, 1945; Mankau and 

Minteer, 1962; Mankau, 1968; Sitaramaiah and Singh, 1978). 

 

Plant based soil amendments such as castor, sesame, sorghum-sudangrass, velvet bean and 

zinnia incorporated into soil or applied as mulch were chosen to control nematodes under 
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greenhouse conditions, because they have been previously used as organic amendments to 

suppress root-knot nematodes when used in crop rotation (Watson, 1922; 1936; 1945; Watson 

and Goff, 1937; Lear, 1959; Mankau and Minteer, 1962; Mankau, 1968; Mian and Rodrigeuz-

Kabana, 1982b; Hung, 1984; Rodrigeuz-Kabana et al., 1988; Rich et al., 1989; McSorley and 

Gallaher, 1993; McSorley et al., 1994). 

 

The use of nitrogenous organic matter as a soil amendment is a successful strategy for the 

management of Meloidogyne spp. and other plant parasitic nematodes in vegetables and other 

root-knot susceptible crops (Mian and Rodrigeuz-Kabana, 1982a; Rodrigeuz-Kabana et al., 

1990). 

 

Oil cakes, sawdust, urea and bagasse also have been used in managing root-knot nematodes 

with some success (Singh and Sitaramaiah, 1966; 1967; Sikora et al., 1973). Culbreath et al., 

(1985) suggested that when chitin was combined with waste products from the paper industry, 

root-knot nematodes were reduced.   

 

6.6 Biological Control 

 

Biological control of soil-borne pathogens by introduced microorganisms has been studied for 

over 65 years (Cook and Barker, 1983; Barker, 1987), but during most of that time it has not 

been considered commercially feasible. Biocontrol of nematodes was first studied by 

Duddington (1951). 

 

The development of biological control agents is also considered an effective alternative for 

nematode control on vegetables (Van Gundy, 1985; Kerry, 1987; Sikora, 1992). Biological 

control is considered to encompass control that results from the action of soil microorganisms 

and the soil microfauna and is mediated through mechanisms such as parasitism, predation, 

competition and antibiosis (Stirling, 1991). 

 

There are three major types of organisms that are antagonistic to nematodes. Each group 

differs in its mode of action (a) predators are organisms which actively seek out nematodes  
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and then consume them, (b) parasites are organisms which grow within their host and obtain 

their nutrition from the host and if they are capable of causing disease in the host they are 

known as pathogens, (c) the third group of antagonists influence nematode abundance through 

mechanisms other than predation and parasitism (Stirling, 1991). 

 

Sikora (1992) suggested the term antagonistic potential for all parasites, predators, pathogens, 

competitors and other organisms in soil that work together to repel, inhibit, or kill plant 

parasitic nematodes. Antagonists most likely to be receptive to management for the biological 

control of nematodes are: predacious or trapping fungi; endoparasitic fungi; fungal 

pathogen/parasites of females, endomycorrhizal and mutualistic fungi; plant-health promoting 

rhizobacteria and obligate bacterial parasites. 

 

6.6.1 Fungi: A number of different fungi were studied as biocontrol agents against plant 

parasitic nematodes especially root-knot nematodes. 

 

6.6.1.1 Nematode-trapping fungi  

 

These fungi known as predatory fungi, consist of a sparse mycelium which has been modified 

to form organs capable of capturing nematodes (Stirling, 1991). 

 

Duddington (1962); Barron (1977) and Gray (1987; 1988) described six different types of 

traps that have been found in the nematode trapping fungi (Fig. 3). A few species of 

hyphomycetes and two genera in zygomycetes (Stylopage and Cystopage) capture nematodes 

by means of an adhesive that is produced directly on their hyphae. Another trapping structure 

is the adhesive branch which is produced by a few species of nematode-trapping fungi such as 

Monacrosporium cionopagum. 

 

Some predacious fungi produce erect branches of one to three cells on the hyphae (Fig. 3f) 

and these may anastomose to form single loops or two-dimensional networks (Fig. 3e). A thin 

film of adhesive material is secreted over the entire surface of each branch. Adhesive network 

traps are a further development from adhesive branches. Further loops are produced on this 
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loop or on the parent hyphae, until a complex three-dimensional, adhesive-covered network of 

anastomosed loops exists (Fig. 3b). The adhesive nets are the most common type of trap 

found in the nematode-trapping fungi and they are found in almost all soils. Arthrobotrys 

oligospora the most frequently found predatory fungus in soil, uses this trapping mechanism. 

The fourth type of adhesive trapping device is the adhesive knob (Fig. 3c,d). Adhesive knobs 

are one of the most common trapping mechanisms among the hyphomycetes and are also 

found in basidiomycetes. Non-constricting rings are the most infrequent trapping device in the 

nematophagous fungi (Fig. 3g). Constricting rings are formed in a similar manner to non-

constricting rings, but they are attached to the hyphae by a shorter stalk (Fig. 3h,i) and close 

when a nematode passes through the ring. 

 

 6.6.1.2 Female and egg parasitic fungi and pathogens 

 

This group of fungi parasitize nematode females and/or eggs. 

 

The zoosporic pathogens of females are closely related to the zoosporic species which attack 

vermiform nematodes. Catenaria auxiliaries is a widespread fungus in Heterodera schachtii 

in Europe (Tribe, 1977a,b) and has been found in H. glycines and H. avenae (Crump et al., 

1983; Stirling and Kerry, 1983). Nematophthora gynophila was found in H. avenae infested 

soils (Kerry and Crump, 1980).  

 

In addition to the zoosporic fungi, a wide range of other fungi have been found in association 

with nematode females, cysts and eggs. These fungi are facultative parasites such as, 

Verticillium spp., one of the most important pathogens of root-knot and cyst nematodes. Most 

species in this genus have been recorded as occurring in cysts and/or eggs of Globodera, 

Heterodera and Meloidogyne (Morgan-Jones and Rodriguez-Kabana, 1988). V. 

chlamydosporium is the most widely studied species. These fungi form branched mycelial 

networks which when in close contact with the egg shell, penetrated the egg wall and destroy 

its contents (Lysek, 1978; Morgan-Jones et al., 1983; Lysek and Krajci, 1987; Lopez-Llorca 

and Duncan, 1988).  Morgan-Jones et al., (1983) and Meyer et al., (1990) suggested that V. 

chlamydosporium itself might produce a toxin that affects egg hatch. 
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Figure 3: Trapping organs of predatory nematophagous fungi: (a) adhesive nets simple and; 

(b) complex; (c) adhesive spore sessile and; (d) stalked, (e) simple two-dimensional adhesive 

networks; (f) adhesive knobs and branches; (g) non-constricting rings, (h) constricting rings, 

open and; (i) closed (Gray, 1988).   
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Paecilomyces has been one of the principal genera in biological control in recent years. Lysek 

(1976) was the first to observed it in association with nematode eggs. Jatala et al., (1979) 

found it parasitizing eggs of M. incognita and in 1985 and 1986 Jatala revealed that P. 

lilacinus showed promise as a biological control agent against several nematode species. This 

fungus penetrates the nematode eggs directly by individual hyphae (Morgan-Jones et al., 

1984). 

 

Dactylella oviparasitica was the first parasite found in Meloidogyne eggs (Stirling and 

Mankau, 1978a,b). This fungus produces appressoria on the egg surface and then penetrates 

the eggs through these specialized structures and through enzymatic penetration especially by 

chitinase production (Stirling and Mankau, 1979).  

 

6.6.1.3 Mycorrhizal fungi  

 

The mycorrhizas are symbiotic associations between plant roots and certain species of fungi. 

In practical agricultural terms, mycorrhizas are traditionally ectomycorrhizas  and vesicular-

arbuscular mycorrhizas  as reported by Ikram (1990) (Fig. 4). 

 

The ectomycorrhizas grows around the root surface and are easily seen with the naked eye 

while endomycorrhizas grow inside roots. The ectomycorrhizas are common to many 

temperate forest tree species and this group is characterized by a sheath of visibly-swollen 

fungal tissue (mantle) which encloses the ultimate rootlets of the root system, together with 

intercellular infection of the epidermis and cortex (Fig. 4a). Some species of ectomycorrhizas 

have been shown to reduce ectoparasitic nematode damage of forest tree roots, but are not 

effective against root-knot.  

 

Endomycorrhizae are the most spectacular and widespread type of mycorrhizas present in 

nearly all major agronomic crops (vegetables, fruit crops, flowers, forest tree and plantation 

crops). The invading hyphae of endomycorrhizae grow to the root surface, forms an 

appressorium and penetrates into the cortex. Hyphal growth in root cortical cells are both 

inter-and intracellular where they form the two diagonstic structures, vesicles and arbuscules 
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(Fig. 4b). Many species do not form vesicles, therefore, the new name arbuscular mycorrhizal 

fungi.  

A plant with a well-established symbiont density is stronger because it has:  

a) increased resistance to nematode parasities and root pathogens 

b) increased tolerance to drought, salt and other abiotic stress factors  

c) improved phosphate uptake  

d) less root injury following transplanting  

 

 

The colonization of plants with endomycorrhizal fungi apart from providing plants with 

nutrients also has a depressive effect on root-knot nematodes. The obligate symbiotic 

endomycorrhizal fungi protect their host against root-knot nematode attack by competition as 

reported by Sikora (1978) and Hussey and Roncadori (1982). Sikora (1978) found that 

penetration and development of M. incognita in tomato was significantly reduced by the 

endomycorrhizal fungus, Glomus mosseae under glasshouse conditions. Because these fungi 

occur commonly together with plant parasitic nematodes in the roots or rhizosphere of the 

same plants, they interact with both host plant and nematodes (Stirling, 1991). 

 

Smith (1987) explained possible hypotheses for the beneficial effects of endomycorrhizal 

fungi on plants parasitized by nematodes. He postulated that the symbiotic mycorrhizae:  

(1) reduce or alter root exudates consequently affecting egg hatch or nematode attraction  

(2) retard nematode development or reproduction within root tissue  

(3) parasitize female nematodes and their eggs.  
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Figure 4: Diagrammatic representation (a) ecto- and (b) endomycorrhizae (Ikram, 1990) 
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6.6.1.4 Endophytic fungi 

 

Another group of fungi that has been recently used as a biocontrol agent against plant 

parasitic nematodes especially root-knot nematodes, are endophytic fungi (Hallmann et al., 

1997). These saprophytic fungi colonize healthy plant tissue without causing symptoms. 

When the colonization is successful it leads to protection of the plant against biotic and/or 

abiotic stress, these fungi are called mutualistic endophytic fungi (Carroll, 1990). 

 

Mousa and Hague (1988) found that in the soybean disease complex between Fusarium  

oxysporum f. sp. glycines and M. incognita active colonization of the giant cells by the fungus 

resulted in reduced development of juveniles and an increased proportion of males. 

 

Hallmann and Sikora (1993) evaluated 200 isolates of endophytic fungi, representing different 

genera, isolated from tomato roots. Forty isolates were screened for their ability to control M. 

incognita in pot experiments. Hallmann and Sikora (1994, 1995) found a reduction in gall 

formation by M. incognita between 52 and 75% after application of four endophytic strains of 

the fungus Fusarium oxysporum. They also found that M. incognita attraction and penetration 

of tomato seedlings was significantly reduced following treatment with the culture filtrate of 

Fusarium  oxysporum.  

 

6.6.2 Bacteria 

 

6.6.2.1 Endophytic bacteria 

 

Endophytic bacteria have recently been found internally in the root tissue and in the 

rhizosphere where they persist in most plant species and plant tissues. They have been found 

in fruits and vegetables and in both stems and roots without doing harm to the plant (McInory 

and Kloepper, 1995; Hallmann et al., 1997, 1999; Hallmann, 2001).  

 

Recent research has demonstrated that bacterial endophytes can improve plant growth and 

reduce disease symptoms caused by several plant pathogens such as Fusarium oxysporum f.  
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sp. vasinfectum on cotton (Chen et al., 1995), Verticillium albo-atrum and Rhizoctonia solani 

on potato and on cotton (Kloepper et al., 1992; Pleban et al., 1995). 

 

Hallmann et al., (1995) found some evidence that endophytic bacteria may contribute to 

control of plant parasitic nematodes. They evaluated 7 isolates of endophytic bacteria isolated 

from cucumber and cotton roots against the root-knot nematode, M. incognita and they found 

a significant reduction of 50% in the number of galls on cucumber. 

 

Munif et al., (2000) screened the endophytic bacteria isolated from tomato roots towards M. 

incognita on tomato under greenhouse conditions. They showed antagonistic properties in the 

screening of 21 out of 181 endophytic bacteria towards M. incognita.  

 

6.6.2.2 Rhizobacteria 

 

Another strategy used for the biological control of nematodes is based on the introduction of 

bacteria colonizing the rhizosphere of the host plant or so called rhizobacteria.  

 

These microorganisms that can grow in the rhizosphere also provide front line defence for 

roots against pathogen attack and are considered ideal for use as biocontrol agent (Weller, 

1988). Rhizosphere bacteria have the ability to colonize plant roots (Schroth and Hancock, 

1982) and they also have positive effects on plant growth. They have been named plant 

growth promoting rhizobacteria (PGPR) by Kloepper et al., (1991) or plant health promoting 

rhizobacteria (PHPR) by Sikora  (1988). 

 

Application of these rhizobacteria to sugar beet seed and potato seed pieces caused significant 

decreases in early root infection of the sugar beet cyst nematode Heterodera schachtii and 

potato cyst nematode Globodera pallida (Racke and Sikora, 1985; Oostendorp and Sikora, 

1986).           

 

Several rhizosphere bacteria with antagonistic activity against plant parasitic nematodes have 

been identified. Their potential as biocontrol agents is consider great. 
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Zavaleta-Meija and Van Gundy (1982) found that rhizobacteria have biocontrol activity 

towards root-knot nematode and they showed that more than 12% of the rhizobacteria tested 

reduced the number of galls of M. incognita on cucumber and tomato. Sikora (1992) reported 

that 7-10% of the rhizosphere bacteria isolated from potato, sugar beet or tomato root systems 

have antagonistic activity against cyst and root-knot nematodes. Sikora and Hoffmann-

Hergarten (1993) revealed that PHPR influence the intimate relationship between the plant 

parasitic nematode and its host by regulation of nematode behaviour during the early root 

penetration phase of parasitism which is extremly important for crop yield. 

 

Sikora (1988) found that Bacillus subtilis was effective in controlling M. incognita on cotton 

and sugar beet, M. arenaria on peanut and Rotylenchulus reniformis on cotton. Strains of 

Pseudomonas chitinolytica also were shown to reduce M. javanica on tomato as reported by 

Spiegel et al., (1991).  Smith (1994) reported that Bacillus sp. strain 23a reduced M. javanica 

densities on tomato and Pseudomonas fluorescens strain Pf1 reduced the number of galls and 

egg masses of M. incognita on tomato roots (Santhi and Sivakumar, 1995). B. cereus strain 

S18 also decreased M. incognita on tomato as reported by Keuken (1996).  

 

6.6.2.3 Obligate bacterial parasite, Pasteuria penetrans  

 

The name P. penetrans (Thorne) Sayre and Starr is given to a group of spore forming bacteria 

which are parasitic to a number of important plant parasitic nematodes (Birchfield and 

Antonpoulos, 1976; Starr and Sayre, 1988). It is one of the most efficient natural enemies of 

root-knot nematodes (Mankau, 1975; Stirling, 1984; Gowen and Ahmed, 1990).  The bacteria 

have been reported from nearly 200 nematode species from a wide range of environments 

(Spull, 1981; Sayre and Starr, 1985; Sturhan, 1985), but its occurrence and abundance seems 

to be variable. This variability is thought to be due to several factors, including differences in 

the specificity of isolates of P. penetrans to populations and species of Meloidogyne (Stirling, 

1985; Channer and Gowen, 1992; Davies and Danks, 1993). 
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P. penetrans is a very common parasite of Meloidogyne and is often observed attached to 

nematode juveniles. The spore form can resist drought, exposure to fumigant nematicides 

(Mankau and Prasad, 1972) and extreme temperature (Chen and Dickson, 1998). 

 

The inability to produce mass cultures of P. penetrans in quantities sufficient for lange scale 

use is the major factor limiting practical work with these bacteria (Birchfield and 

Antonpoulos, 1976; Gowen and Ahmed, 1990). Stirling and Wachtel (1980) were able to 

produce large numbers of spores by inoculating tomato with infected Meloidogyne juveniles. 

Dried tomato roots were then milled into a powder containing Pasteuria spores. 

 

The populations of P. penetrans which parasitize Meloidogyne not only prevent nematode 

reproduction, but also reduce infectivity of spore-encumbered juveniles. A reduction in 

infectivity may be evident when nematodes have as few as 15 spores attached (Davies et al., 

1988). Juveniles are prevented from invading roots when large enough numbers of spores are 

present in soil (Stirling, 1984; Stirling et al., 1990). 

 

7- Integrated Pest Management (IPM) In The Future  
 

The different control methods available for use against plant parasitic nematodes, especially 

root-knot nematodes have been outlined above. However, there are problems associated with 

the use of some of these methods. Problems can be related to costs, availability, positioning in 

the cropping system, extension needs or lack of farmer acceptance. 

 

During the last few decades, nematode control has been based on the use of chemical 

pesticides applied to soil or the plant. New efforts are being made to develop management 

strategies that do not rely on nematicides, or are aimed at reducing the use of pesticides 

materials (Rodriguez-Kabana and Morgan-Jones, 1987). These pesticides are very expensive 

(Duponnois et al., 2001) and toxic to humans and the environment especially when used in an  

inappropriate manner by farmers.  
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Using resistant cultivars and/or rotations with non-host crops are effective for root-knot 

nematode control. However, the wide host range of species of Meloidogyne (Jepson, 1987) 

make them difficult to control by rotation. Resistant cultivars are only available for a few 

crops. Their use is also limited by the occurrence of virulent races and species mixtures able 

to breakdown the resistance (Triantaphyllou and Sasser, 1960; Roberts, 1992).  

 

Triantaphyllou and Sasser (1960) and Netscher (1977) found that resistance breaking races 

were also selected from single egg mass populations of M. incognita and M. javanica under 

laboratory conditions. Resistance breakdown due to high soil temperatures also has been 

observed with the Mi gene in tomato (Berthou et al., 1989). Dropkin (1969) showed that the 

resistant tomato cultivar Nematex was highly resistant at 28°C to M. incognita, whereas it was 

susceptible at 32°C.  

 

Solarization is limited to only a few countries where sun light intensity and temperature are 

sufficient e.g North Africa and Middle East and where farmers can afford the plastic mulch. 

 

New effective IPM strategies to control root-knot nematodes on vegetables and on other crops 

must be developed using a mixture of the following technologies: 

(1) Use of nematode free transplants. 

(2) Planting green manure crops as non hosts in rotation. 

(3) Using trap crops or toxic plants like, Tagetes or Crotolaria 

(4) Adding organic soil amendments and amendments which contain chitinous materials  

(5) Rotating resistant and susceptible cultivars to prevent resistant breaking races. 

(6) Selective use of nematicides by professionals. 

(7) Incorporation of flooding and steam sterilization of soil where economical. 

(8) Solarization with plastic mulches where solar radiation permits.   

(9) Increased use of biofumigation following incorporation of organic matter into soil coupled 

with solarization.  

(10) Selecting good biocontrol agents to reduce infection.     
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Using biological control agents in IPM must be advanced particularly for vegetable 

production. IPM plus biocontrol is more environmentally safe and economical than some 

pesticides. The loss of methyl bromide fumigation warrents even more research efforts to 

develop IPM in vegetable production.  

 

Enhancement or application of biocontrol agents to IPM must be promoted and researched. 

Biocontrol agents need to be studied like: female and egg parasites fungi V. chlamydosporum 

(Kerry et al., 1984); mycorrhizal fungi Glomus spp (Sikora, 1978); mutualistic fungal 

(Hallmann et al., 1997)  and bacterial endophytes (Munif et al., 2000); plant-health promoting 

rhizobacteria (Becker et al., 1988; Racke, 1988; Oostendorp and Sikora 1989, 1990) and the 

endospore forming bacterium P. penetrans (Mankau, 1975; Stirling and Wachtel, 1980; 

Davies et al., 1988; Gowen and Ahmed, 1990; Dickson et al., 1994) . All these agents are 

considered potential tools in future IPM to suppress root-knot nematodes and must be 

researched in more detail.   

   

A promosing group are the plant-health promoting rhizobacteria that are effective in reducing 

early root infection damage (Sikora, 1988; Oostendorp and Sikora, 1989) especially of root-

knot nematodes (Becker et al., 1988; Hoffmann-Hergarten et al., 1998). Rhizobacteria 

Bacillus cereus strain S18 and Rhizobium etli strain G12 have been shown to be successful 

towards root-knot nematodes and must be considered prime candidates for inclusion in IPM 

strategies. 

 

Important characteristics of these bacteria are: 

(1) they present in the rhizosphere and also may grow endophytically in the plant tissue 

(2) both rhizobacteria will control M. incognita on different host plants 

(3) they can be easily produced in industrial fermentors 

(4) they are very easy to applied as a soil drench, seed treatment or root dipping 

(5) economically low levels of inoculum for targeted application make them attractive 
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Another very important group is the obligate parasite Pasteuria penetrans. These bacteria can 

be applied economically as a spore suspension to the transplants as a root powder and can be 

passively spread to produce natural suppressive soils.  

 

Important characteristics of this bacterium are: 

(1) Safty to users and environment 

(2) Mass production is very easy on root-knot infested living plants 

(3) Resistant against extreme biotic and abiotic factors 

(4) Spores can be stored many years without lossing viability  

(5) Very easy to apply as a spore suspension or as a root powder to seedlings   

 

The objectives of this work were 

(1)-  Evaluate the effect of the plant health-promoting rhizobacterium Bacillus cereus strain  

S18 on root-knot nematodes, Meloidogyne spp. on different host plants  

 

(2)- Evaluate the antagonistic activity of the rhizobacterium, Rhizobium etli strain G12 

towards  different genera and species of plant parasitic nematodes especially root-knot on 

different host plants.  

 

(3)- Evaluate the attachment of the obligate endoparasitic bacteria Pasteuria penetrans 

towards different populations of root-knot nematodes. 

 

(4)- To develop a strategy for incorporating these biocontrol agents into IPM programs for 

reducing the impact of root-knot on vegetables.  

 

 

 

 

 

 

 



30 

Chapter I: General Introduction 

 

8- References 

     

    Abdalla, N., and B. Lear. 1975. Lethal dosages of methyl bromide for four plant-parasitic 

nematodes and the effect of soil temperature on its nematicidal activity. Plant Disease 

Reporter 59:224-228. 

 

    Abu-Gharbieh, W. I. 1988. Root-knot nematodes, Meloidogyne spp., in Jordan: Biology 

and Control. Pp. 1-68, eds. University of Jordan, Amman.  

     

    Abu-Gharbieh, W. I., H. M. Saleh, and H. A. Abu-Blan. 1987. Effect of solarization using 

different thicknesses of black plastic tarping on soil-borne pathogens. Workshop, Advances in 

agriculture through plastic house technology. Amman, Jordan:25. 

 

    Abou-Jawdah, Y., K. Melki, S. L. Hafez, H. Sobh, Y. El-Masri, and P. Sundararj. 2000. 

Alternatives to methyl bromide for root-knot nematode management on cucumber in 

Lebanon. Nematropica 30:41-45. 

     

    Baby, U. I., and K. Manibhushanrao. 1993. Control of rice sheath blight through the 

integration of fungal antagonists and organic amendments. Tropical Agriculture (Trinidad) 

70:224-244. 

 

    Barbercheck, M. E., and S. L. Von Broembsen. 1986. Effects of soil solarization on plant 

parasitic nematodes and Phytophthora cinnamomi in South Africa. Plant Disease 70:945. 

     

    Barker, K. F. 1962. Principles of disinfestations of heat-treated soil and planting material. 

Journal of Austeralian Inst. Agicultural Science 28:118. 

 

    Barker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annual 

Review of Phytopathology 25:67-85.  

     

     



31 

Chapter I: General Introduction 

 

    Barron, G. L. 1977. The nematode destroying fungi. Canadian Biological Publications Ltd, 

Guelph. 

     

    Becker, J. O., E. Zavaleta-Mejia, S. F. Colbert, M. N. Schroth, A. Weinhold, J. G. 

Hancock, and S. D. Van Gundy. 1988. Effects of rhizobacteria on root-knot nematodes and 

gall formation. Phytopathology 78: 1466-1469.    

 

    Bergeson, G. B., S. D. Van Gundy, and I. J. Thomason. 1970. Effect of Meloidogyne 

javanica on rhizosphere microflora and Fusarium wilt of tomato. Phytopathology 69:1245-

1249.  

     

    Berthou, F., A. Ba-Diallo, and G. De Guiran. 1989. Caracterisation chez les nematodes 

Meloidogyne Goeldi (Tylenchida) de types virulents viv a vis du gene Mi de la tomate dans 

deux zones maraicheres au Senegal. Agronomie 9 :877-885. 

     

    Birchfield, W., and A. A. Antonpoulos. 1976. Scanning electron microscope observations 

of Duboscquia penetrans parasitizing root-knot larvae. Journal of Nematology 8:272-283. 

 

    Bird, G. W. 1987. Role of nematology in integrated pest management programs. Pp. 114-

130 in J. A. Veech, and D. W. Dickson, eds. Vistas on nematology. Hyatlsville, Maryland. 

     

    Brodie, B. B., K. Evans, and J. Franco. 1993. Nematode parasites of potatoes. Pp. 87-132 in 

K. Evans, D. L. Trudgill, and J. M. Webster, eds. Plant parasitic nematodes in temperate 

agriculture. CAB International, Wallingford, Oxon, UK. 

    

    Bunt, J. A. 1975. Effect and mode of action of some systemic nematicides. Mededelingen 

van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, Belgium 75:1-127. 

     

    Carroll, G. C. 1990. Fungal endophytes in vascular plants: Mycological research 

opportunities in Japan. Transactions Mycological Society Japan 31:103-116. 

     



32 

Chapter I: General Introduction 

 

    Cartia, G., N. Greco, and G. Cirvilleri. 1988. Solarizzaztione e bromuro di metile nella 

difesa dai parassiti del pomodoro in ambiente protetto. Proceedings Giornate Fitopatologiche, 

Lecce, 16-20 May, Italy 1:437-488.  

 

    Cartia, G., N. Greco, and T. Cipriano. 1989. Effect of solarization and fumigants on soil-

borne pathogens of pepper in greenhouse. Acta Horticulture 255:111.     

 

    Cenis, J. L. 1984. Control of the nematode Meloidogyne javanica by soil solarization.Pp. 

132 in  Proceedings of the sixth Congress Union Phytopathological Mediterranea, 1-6 

October, Cairo, Egypt. 

     

    Channer, A. G., and S. R. Gowen. 1992. Selection for increased host resistance and 

increased pathogen specificity in the Meloidogyne-Pasteuria penetrans interaction. 

Fundamental and Applied Nematology 15:331-339.   

     

    Chen, C., E. M. Bauske, G. Musson, R. Rodriguez-Kabana, and J. W. Kloepper. 1995. 

Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological 

Control 5:83-91. 

     

    Chen, Z. X., and D. W. Dickson. 1998. Review of Pasteuria penetrans: biology, ecology, 

and biological control potential. Journal of Nematology 30:313-340.  

     

    Chitwood, B. G. 1949. Root-knot nematodes. Proceedings of Helminthological Society of 

Washington 16:90-104. 

 

    Cook, R. J., and K. F. Barker. 1983. The nature and practice of biological control of plant 

pathogens. American Phytopathological Society, St. Paul. 

    

    Crump, D. H., R. M. Sayre, and L. D. Young. 1983. Occurrence of nematophagous fungi in 

cyst nematode populations. Plant Disease 67:63-64. 

    



33 

Chapter I: General Introduction 

 

    Culbreath, A. K., R. Rodriguez-Kabana, and J. Morgan-Jones. 1985. The use of 

hemicellulosic waste matter for reduction of the phytotoxic effect of chitin and control of 

root-knot nematodes. Nematropica 15:49-75. 

 

    Davies, K. G., B. R. Kerry, and C. A. Flynn. 1988. Observations on the pathogencity of 

Pasteuria penetrans, a parasite of root-knot nematodes. Annals of Applied Biology 112:491-

501.  

    

     Davies, K. G., and C. Danks. 1993. Interspecific differences in the nematode surface coat 

between Meloidogyne incognita and M. arenaria related to the adhesion of the bacterium 

Pasteruria penetrans. Parasitology 105:475-480. 

     

    Davis, J. R., and L. H. Sorensen. 1976. Influence of soil solarization at moderate 

temperatures on potato genotypes with differeing resistance to Verticillium dahliae. 

Phytopatholoy 76:1021.  

 

    Dickson, D. W., M. Oostendorp, R. Giblin-Davis, and D. J. Mitchell. 1994. Control of 

plant-parasitic nematodes by biological antagonists. Pp. 575-601 in D. Rosen, F. D. Bennett, 

and J. L. Capinera, eds. Pest management in the subtropics. Biological control-a Florida 

Perspective. Andover, UK: Intercept. 

 

    Dropkin, V. 1969. The necrotic reaction of tomatoes and other hosts resistant to 

Meloidogyne: Reversal by temperature. Phytopathology 59:1632-1637. 

     

    Duddington, C. L. 1951. Two new predacious hyphomycetes. Transactions of the British 

Mycological Society 34:598-603. 

 

    Duddington, C. L. 1962. Predacious fungi and the control of eelworms. Pp. 151-200 in C. 

L.  Duddington, and Carthy, J. D., eds. Viewpoints in biology, Vol. I, Butterworths, London. 

     

 



34 

Chapter I: General Introduction 

 

    Duponnois, R., J. L. Chotte, and S. Sall. 2001. The effect of organic amendments on the 

interactions between a nematophagous fungus Arthrobotrys oligospora and the root-knot 

nematode, Meloidogyne mayaguensis parasitizing tomato plants. Biological Fertlization Soils 

34:1-6.  

 

    Eisenback, J. D., H. Hirschmann, J. N. Sasser, and A. C. Triantaphyllou. 1981. A guide to 

the four most common species of root-knot nematodes, Meloidogyne species with pictorial 

keys. Pp. 47 in The Department of Plant Pathology and Gentics, North Carolina State 

University and USAID, Raleigh, NC, USA. 

    

    Fargette, M. 1987. Use of the esterase phenotype in taxonomy of the genus Meloidogyne. 2. 

Esterase phenotypes in West African populations and their characterization. Revue de 

Nematologie 10:45-55. 

 

    Fassuliotis, G. 1985. The role of the nematologist in the development of resistant cultivars. 

Pp. 233-240 in J. N. Sasser, and C. C. Carter, eds. An advanced treatise on Meloidogyne, Vol. 

I Biology and Control, Raleigh: North Carolina State University Graphics. 

    

    Fassuliotis, G., and G. J. Rau. 1969. The relationship of Meloidogyne incognita acrita to 

the incidence of cabbage yellows. Journal of Nematology 1:219-222. 

     

    Ferris, H., and S. D. Van Gundy. 1979. Meloidogyne ecology and host interrelationships. 

Pp. 205-230 in Lamberti, F., and Taylor, C. E., eds. Root-knot nematodes, Meloidogyne 

species: systematics, biology and control. Academic Press, London.          

     

   Golden, J. K., and S. D. Van Gundy. 1975. A disease complex of okra and tomato involving 

the nematode, Meloidogyne incognita and the soil-inhabiting fungus, Rhizoctonia solani. 

Phytopathology 65:265-273. 

    

 

 



35 

Chapter I: General Introduction 

 

    Goswami, B. K., D. V. Singh, C. L. Sethi, and J. N. Gupta. 1970. Studies on association of 

root-knot nematodes, Meloidogyne incognita (Kofoid and White) Chitwood and Sclerotium 

rolfsii Sacc. In brinjal (Solanum melongena L.). Indian Phytopathology 23:587-589. 

 

    Gowen, S. R., and R. Ahmed. 1990. Pasteuria penetrans for control of pathogenic 

nematodes. Aspects of Applied Biology 24:25-32.  

 

    Gray, N. F. 1987. Nematophagous fungi with particular reference to their ecology. 

Biological Reviews 62:245-304. 

     

    Gray, N. F. 1988. Fungi attacking vermiform nematodes. Pp. 3-38 in Poinar, G. O., and 

Jansson, H. B., eds. Diseases of nematodes, Vol. II, CRC Press Inc., Boca Raton. 

 

    Greco, N., A. Brandonisio, and F. Elia. 1985. Control of Ditylenchus dipsaci, Heterodera 

carotae and Meloidogyne javanica by solarization. Nematologia Mediterranea 13:191. 

     

    Guiran, G. De., and M. Ritter. 1979. Life cycle of Meloidogyne species and factors 

influencing their development. Pp. 173-191 in Lamberti, F., and Taylor, C. E., eds. Root-knot 

nematodes, Meloidogyne species: systematics, biology and control. Academic Press, London. 

     

    Hallmann, J. 2001. Plant interactions with endophytic bacteria. Pp. 87-119 in M. J. Jeger, 

and N. J. Spence, eds. Biotic interactions in plant-pathogen interactions. CAB International, 

Wallingford, UK. 

     

    Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Bacterial 

endophytes in agricultural crops. Canadian Journal of Microbiology 43:895-914. 

     

    Hallmann, J., J. W. Kloepper, R. Rodriguez-Kabana, and R. A. Sikora. 1995. Endophytic 

rhizobacteria as antagonists of Melodogyne incognita on cucumber. Phytopathology 85:1136. 

     

 



36 

Chapter I: General Introduction 

 

    Hallmann, J., and R. A. Sikora. 1993. Fungal endophytes and their potential for biological 

control of root-knot nematodes. Proceedings of 6th International Congress of Plant Pathology, 

Montreal, Canada. 

 

    Hallmann, J., and R. A. Sikora. 1994. Influence of Fusarium oxysporium, a mutualistic 

fungal endophyte on Meloidogyne incognita infection of tomato. Journal of Plant Diseases 

and Protection 101:475-481.  

 

    Hallmann, J., and R. A. Sikora. 1995. Occurrence of plant parasitic nematodes and non-

pathogenic species of Fusarium in tomato plants in Kenya and their role as mutualistic 

synergists for biological control of root-knot nematodes. International Journal of Pest 

Management 40:321-325. 

     

    Hallmann, J., R. Rodriguez-Kabana, and J. W. Kloepper. 1999. Chitin-mediated changes in 

bacterial communities of the soil, rhizosphere and within roots of cotton in relation to 

nematode control. Soil Biology and Biochemistry 31:551-560. 

      

    Hartman, K. M., and J. N. Sasser. 1985. Identification of Meloidogyne species on the basis 

of differential host test and perineal pattern morphology. Pp. 69-78 in Barker, K. R., C. C. 

Carter, and J. N. Sasser, eds. An advanced treatise on Meloidogyne. Vol. II Methodology, 

Raleigh:North Carolina State University Graphics. 

     

    Heald, C. M., and A. F. Robinson. 1987. Effects of soil solarization on Rotylenchulus 

reniformis in the lower Rio Grande Valley of Texas. Journal of Nematology 19:93.  

     

    Hendy, H., E. Pochard, and A. Dalmasso. 1985. Transmission heriditaire de deux nouvelles 

sources de resistance aux nematodes du genre Meloidogyne chez le piment Capsicum annum 

L. comptes rendus de l’Academie d’Agriculture:817-822.    

     

    Hodges, L. R., and B. Lear. 1973. Effect of time of irrigation on the distribution of 1,2-

Dibromo-3-chloropropane in soil after shallow injection. Pesticides Science 4:795-799. 



37 

Chapter I: General Introduction 

 

    Hoffmann-Hergarten, S., M. K. Gulati, and R. A. Sikora. 1998. Yield response and 

biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. Journal 

of  Plant Diseases and Protection 105:349-358.   

 

    Hough, A., and I. J. Thomason. 1975. Effect of aldicarb on the behaviour of Heterodera 

schachtii and Meloidogyne javanica. Journal of  Nematology 7:221-229.  

 

    Huang, S. P. 1984. Cropping effects of marigolds, corn and okra on population levels of 

Meloidogyne javanica and on carrot yields. Journal of  Nematology 16:396-398. 

 

    Hussey, R. S., and R. W. Roncadori. 1982. Vesicular-arbuscular mycorrhizae may limit 

nematode activity and improve plant growth. Plant Disease 66:9-14. 

     

    IFAS, Institute of Food and Agricultural Sciences. 1989. Florida nematode control guide. 

Pp. 138 in Entomology and Nematology Department and Cooperative Extension Service, 

University of Florida, Gainesville, USA.  

 

    Ikram, A. 1990. Beneficial soil microbes and crop productivity. The Planter 66:640-648. 

     

    Jatala, P. 1985. Biological control of nematodes. Pp. 303-308 in Sasser, J. N.  and C. C. 

Carter, eds. An advanced treatise in Meloidogyne, Vol. I. Biology and control, Raleigh: North 

Carolina State University Graphics. 

     

    Jatala, P. 1986. Biological control of plant parasitic nematodes. Annual Review of 

Phytopathology 24:453-489. 

     

    Jatala, P., R. Kaltenbach, and M. Bocangel. 1979. Biological control of Meloidogyne 

incognita acrita and Globodera pallida on potatoes. Journal of  Nematology 11:303. 

     

 

 



38 

Chapter I: General Introduction 

 

    Jenkins, W. R., and B. W. Coursen. 1957. The effect of root-knot nematodes, Meloidogyne 

incognita acrita and M. hapla on Fusarium wilt of tomatoes. Plant Disease Reporter 41:182-

186. 

     

    Jepson, S. B. 1987. Identification of root-knot nematodes Meloidogyne spp. Pp. 265, eds. 

CAB International, Wallingford, Oxon, UK. 

 

    Johnson, A. W. 1985. The role of nematicides in nematode management. Pp. 249-267 in J. 

N. Sasser, and C. C. Carter, eds. An advanced treatise in Meloidogyne, Vol. I Biology and 

Control, Raleigh: North Carolina State University Graphics. 

     

   Johnson, A. W., and G. Fassuliotis. 1984. Nematode parasites of vegetable crops. Pp. 323-

372 in W. R. Nickle, eds. Plant and insect nematodes. Marcel Dekker Inc., New York and 

Basel. 

 

    Johnson, D. E., B. Lear, S. T. Miyagawa, and R. H. Sciaroni. 1969. Multiple application of 

1,2-Dibromo-3-chloropropane for control of nematodes in established rose plantings. Plant 

Disease Reporter 53:34-37.  

 

    Katan, J. 1981. Solar heating (solarization) of soil for control of soil-borne pests. 

Phytopathology 19:211-236. 

     

    Katan, J. 1987. Soil solarization. Pp. 77-105 in J. Wiley and Sons, eds. Innovative 

approaches to plant disease control, Ilan Chet, New York, USA. 

     

    Katan, J., A. Greenberger, H. Alon, and A. Grinstein. 1976. Solar heating by polyethylene 

mulching for the control of diseases caused by soil-borne pathogens. Phytopathology 66:683-

688. 

     

    Kerry, B. R. 1987. Biological control. Pp. 233-263 in Brown, R. H., and Kerry, B. R., eds. 

Principles and practice of nematode control in crops. Academic Press, New York, USA. 



39 

Chapter I: General Introduction 

 

    Kerry, B. R., and D. H. Crump. 1980. Two fungi parasitic on females of cyst nematodes 

Heterodera spp. Transactions of the British Mycological Society 74:119-125.  

     

    Kerry, B. R., A. Simon, and A. D. Rovira. 1984. Observations on the introduction of 

Verticillium chlamydosporuim and other parasitic fungi into soil for control of the cereal cyst-

nematode Heterodera avenae. Annals of Applied Biology 105:509-516. 

 

    Kerry, B. R., and W. B. Hominick. 2000. Biological control. In Biology of Nematodes, eds. 

Dl Lee. Reading, UK: Harwood Academic. In Press. 

     

    Keuken, O. 1996. Interaktionen zwischen dem Rhizosphärebakterium Bacillus cereus, dem 

Wurzelgallennematoden Meloidogyne incognita und tomate. Ph.D. disseratation, Bonn 

University, Bonn, Germany.   

     

    Khan, A. M., and S. K. Saxena. 1969. Relationship of root-knot to wilt of okra caused by 

Fusarium oxysporium var. lycopersici. Pp. 9 in All India Nematology Symposium, New 

Delhi. 

     

    Khatoom, M. 1981. Effect of methyl bromide soil fumigation and black plastic mulching 

on cucumber grown under plastic tunnels. M. Sc Thesis, Faculty of Agriculture, University of 

Jordan.  

 

    Kloepper, J. W., G. Wei, and S. Tuzun. 1992. Rhizosphere population dynamics and 

internal colonization of cucumber by plant growth-promoting rhizobacteria which induce 

systemic resistance to Colletotricum orbiculare. Pp. 185-191 in E. S. tjamos, eds. Biological 

control of plant diseases. Plenum Press, New York.  

 

    Kloepper, J. W., R. Rodriguez-Kabana, J. A. McInory, and D. J. Collins. 1991. Analysis of 

populations and physiological characterization of microorganisms in rhizosphere of plants 

with antagonistic properties to phytopathogenic nematodes. Plant and Soil 136:95-102. 

 



40 

Chapter I: General Introduction 

 

    Kofoid, C. A., and W. A. White. 1919. A new nematode infection in man. Journal of 

American Medicin Association 72:567-569. 

 

    Lamberti, F. 1979a. Economic importance of Meloidogyne spp. in subtropical and 

Mediterranean climates. Pp. 341-357 in Lamberti, F., and Taylor, C. E., eds. Root-knot 

nematodes, Meloidogyne species: systematics, biology and control. Academic Press, London. 

     

    Lamberti, F. 1979b. Chemical and cultural control. Pp. 403-423 in Lamberti, F., and 

Taylor, C. E., eds. Root-knot nematodes, Meloidogyne species: systematics, biology and 

control. Academic Press, London. 

     

    Lamberti, F., D. Dandria, N. Vovlas, and J. Aquuilina. 1976. Prove di lotta contro i 

nematodi galligeni del pomodoro da mensa in serra a Malta. Colture Protette 5:27-30. 

     

    Lear, B. 1959. Application of castor pomace and cropping of castor beans to soil to reduce 

nematode populations. Plant Disease Reporter 63:459-460.  

     

    Linford, M. B., F. Yap, and J. M. Oliveira. 1938. Reductions of soil populations of the root-

knot nematode during decomposition of the organic matter. Soil Science 45:127-141. 

      

    Lopez-Llorca, L. V., and G. H. Duncan. 1988. A study of fungal endoparasitism of the 

cereal cyst nematode Heterodera avenae by scanning electron microscopy. Canadian Journal 

of  Microbiology 34:613-619. 

 

    Lownsbery, B. F., J. T. Mitchell, W. H. Hart, F. M. Charles, M. H. Gerdts, and A. S. 

Greathead. 1968. Responses to post-planting and pre-planting soil fumigation in California 

peach, walnut and prune orchards. Plant Disease Reporter 52:890-894. 

     

    Lysek, H. 1976. Autodehelminthization of soil in lowland deciduous forests. Universitatis 

Palackianae Olomucensis Facultatis Medicae 41:73-106. 

    



41 

Chapter I: General Introduction 

 

    Lysek, H. 1978. A scanning electron microscope study of the effect of an ovicidal fungus 

on the eggs of Ascaris lumbricoides. Parasitology 77:139-141. 

     

    Lysek, H., and D. Krajci. 1987. Penetration of ovicidal fungus Verticillium 

chlamydosporium through the Ascaris lumbricoides egg shells. Folia Parasitologia 34:57-60.  

 

    Mai, W. F. 1985. Plant-parasitic nematodes: Their threat to agriculture. Pp. 11-18 in K. R. 

Barker, C. C. Carter, and J. N. Sasser, eds. An advanced treatise in Meloidogyne, Vol. II 

Methodology, Raleigh: North Carolina State University Graphics. 

     

    Mankau, R. 1968. Reduction of root-knot disease with organic amendment under semifield 

conditions. Plant Disease Reporter 52:315-319. 

     

    Mankau, R. 1975. Bacillus penetrans n. comb. causing a virulent disease of plant-parasitic 

nematodes. Journal of Invertebrate Pathology 26:333-339. 

     

    Mankau, R., and N. Prasad. 1972. Possibilities and problems in the use of sporozoan 

endoparasite for biological control of plant parasitic nematodes. Nematropica 2:7-8. 

     

    Mankau, R., and R. J. Minteer. 1962. Reduction of soil population of citrus nematode by 

the addition of organic matter. Plant Disease Reporter 46:375-378.  

 

   Marks, C. F., I. J. Thomason, and C. E. Castro. 1968. Dynamics of the permeation of 

nematodes by water, nematicides and other substances. Experimental Parasitology 22:321-

337. 

     

    McInory, J. A., and J. W. Kloepper. 1995. Survey of indeginous bacterial endophytes from 

cotton and sweet corn. Plant and Soil 173:337-342. 

     

 

 



   42 

Chapter I: General Introduction 

 

    McSorley, R., D. W. Dickson, J. A. De Brito, T. E. Hewlett, and J. J. Frederick. 1994. 

Effects of tropical rotation crops on Meloidogyne arenaria population densities and vegetable 

yields in microplots. Journal of Nematology 26:175-181.  

     

    McSorley, R., and J. L. Parrado. 1986. Application of soil solarization to Rockdale soils in 

a subtropical environment. Nematropica 16:125. 

 

    McSorley, R., and R. N. Gallaher. 1993. Population dynamics of plant parasitic nematodes 

on cover crops of corn and sorghum. Journal of Nematology 25:446-453.  

     

    Meyer, S. L. F., R. N. Huettel, and R. M. Sayre. 1990. Isolation of fungi from Heterodera 

glycines and in vitro bioassays for their antagonism to eggs. Journal of Nematology 22:532-

537. 

     

    Mian, I. H., and R. Rodriguez-Kabana. 1982a. Soil amendments with oil cakes and chicken 

litter for control of Meloidogyne arenaria. Nematropica 12:205-220. 

     

    Mian, I. H., and R. Rodriguez-Kabana. 1982b. Survey of the nematicidal properties of 

some organic materials available in Alabama as amendments to soil for control of 

Meloidogyne arenaria. Nematropica 12:235-246. 

     

    Minton, N. A., and P. Baujard. 1990. Nematode parasites of peanut. Pp. 285-320 in M. Luc, 

R. A. Sikora, and J. Bridge, eds. Plant parasitic nematodes in subtropical and tropical 

agriculture, CAB International, Wallingford, Oxon, UK.  

 

    Morgan-Jones, G., J. F. White, and R. Rodriguez-Kabana. 1983. Phytonematode 

pathology:ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium 

chlamydosporium. Nematropica 13:245-260. 

     

 

 



43 

Chapter I: General Introduction 

 

    Morgan-Jones, G., J. F. White, and R. Rodriguez-Kabana. 1984. Phytonematode 

pathology:ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs and larvae by 

Paecilomyces lilacinus. Nematropica 14:57-71. 

 

    Morgan-Jones, G., and R. Rodriguez-Kabana. 1988.  Fungi colonizing cysts and eggs. Pp. 

39-58 in Poinar, G. O., and Jansson, H. B., eds. Diseases of nematodes, Vol. II, CRC Press 

Inc., Boca Raton. 

 

    Moura, R. M. De., E. Echandi, and N. T. Powell. 1975. Interaction of Corynebacterium 

michiganense and Meloidogyne incognita on tomato. Phytopathology 65:1332-1335.            

     

    Mousa, E. M., and N. G. M. Hague. 1988. Influence of Fusarium oxysporium f. sp. glycines 

on the invasion and development of Meloidogyne incognita on soybean. Reveu de 

Nematologie 11:437-439. 

     

    Muller, R., and P. S. Gooch. 1982. Organic amendments in nematode control: An 

examination of the literature. Nematropica 12:319-326.   

     

    Munif, A., J. Hallmann, and R. A. Sikora. 2000. Evaluation of the biocontrol activity of 

endophytic bacteria from tomato against Meloidogyne incognita.  Mededelingen Faculteit 

Landbouwkundige, Universiteit Gent 65: 471-480. 

 

    Neal, J. C. 1889. The root-knot disease of the peach, orange and other plants in Florida, due 

to the work of the Anguillula. Bulletin of U. S Bur. Ent. 20:1-31. 

 

    Netscher, C. 1977. Observations and preliminary studies on the occurrence of resistance 

breaking biotypes of Meloidogyne spp. on tomato. Cahiers O. R. S. T. O. M. Serie Biologie 

11:173-178. 

     

 

 



44 

Chapter I: General Introduction 

 

    Netscher, C., and J. C. Mauboussin. 1973. Resultats d’un essai concernant l’efficacite 

comparee d’une variete resistance et de certains nematicides contre Meloidogyne javanica. 

Cahiers O. R. S. T. O. M. Serie Biologie 21:97-102.  

 

    Netscher, C., and R. A. Sikora. 1990. Nematode parasites of vegetables. Pp. 237-283 in M. 

Luc, R. A. Sikora, and J. Bridge, eds. Plant parasitic nematodes in subtropical and tropical 

agriculture, CAB International, Wallingford, Oxon, UK.        

 

    Noling, J. 1989. Nematode management in vegetable crops. Florida Nematode Control 

Guide.     

 

    Oka, Y., S. Nacar, E. Putievsky, U. Ravid, Z. Yaniv, and Y. Spiegel. 2000. Nematicidal 

activity of essential oils and their components against the root-knot nematode. 

Phytopathology 90:710-715. 

     

    Oostendorp, M., and R. A. Sikora. 1986. Utilization of antagonistic rhizobacteria as a seed 

treatment for the biological control of Heterodera schachtii in sugar beet. Revue de 

Nematologie 9:304 (Abstr.).   

     

    Oostendorp, M., and R. A. Sikora. 1989. Seed treatment with antagonistic  rhizobacteria for 

the suppression of Heterodera schachtii early root infection of sugar beet. Revue de 

Nematologie 12:77-83. 

     

    Oostendorp, M., and R. A. Sikora. 1990. In vitro interrelationships between rhizosphere 

bacteria and Heterodera schachtii. Revue de Nematologie 13:269-274. 

     

    Osman, H. A., D. W. Dickson, and G. C. Jr. Smart. 1985. Morphological comparisons of 

host races 1 and 2 of Meloidogyne arenaria from Florida. Journal of Nematology 17:279-285. 

     

    Overman, A. J. 1974. Nematicides in linear drip irrigation for full-bed mulch of tomato. 

Proceedings of the Soil and Crop Science Society of Florida 34:197-200. 



45 

Chapter I: General Introduction 

 

    Overman, A. J., and J. P. Jones. 1986. Soil solarization, reaction and fumigation effects on 

double-cropped tomato under full-bed mulch. Proceedings Florida State Horticultural Society 

99:315-318.  

 

    Page, S. L. J. 1979. An assesment of the importance and control of plant parasitic 

nematodes of vegetable crops in Bangladesh. Pp. 36 in O. D. M. Report of visit to 

Bangladesh. Ascot, Berks., UK. Ministry of Overseas Development.  

 

    Pleban, S., F. Ingel, and I. Chet. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii 

in the greenhouse using endophytic Bacillus spp. Europa Journal of Plant Pathology 101:665-

672. 

     

    Porter, I. J., and P. R. Merriman. 1983. Effect of solarization of soil on nematode and 

fungal pathogens at two sites in Victoria. Soil Biology and Biochemistry 15:39. 

     

    Prot, J. C. 1977. Amplitude et cinetique des migrations de nematode Meloidogyne javanica 

sous l’influence d’un plant de tomate. Cahiers O. R. S. T. O. M. Serie Biologie 11:157-166. 

     

    Prot, J. C. 1984. A naturally occurring resistance breaking biotype of Meloidogyne 

incognita on tomato : Reproduction and pathogenicity on tomato cultivars Roma and Rossol. 

Revue de Nematologie 7: 23-28.     

     

    Prot, J. C., and S. D. Van Gundy. 1981. Effect of soil texture and the clay component on 

migration of Meloidogyne incognita second stage juveniles. Journal of Nematology 13:213-

219.  

     

    Racke, J. 1988. Untersuchungen zur biologischen Bekämpfung von Globodera pallida 

(Stone) an Kartoffeln durch Pflanzgutbehandlung mit antagonistisch wirkenden 

Rhizobakterien. Ph.D. dissertation, Universität Bonn, Bonn, Germany. 

 

 



46 

Chapter I: General Introduction 

 

    Racke, J., and R. A. Sikora. 1985. Einfluss von Rhizosphärenbakterin auf Rhizoctonia 

solani und den Befall der kartoffelsorte Hansa mit Globodera pallida. Biotechnologische 

Vorträge zur Resistenzselektion, Vorträge für Pflanzenzüchtung Statusseminar Grünbach, 9: 

21-28.  

 

    Raski, D. J., and R. V. Schmitt. 1964. Grapevine responses to chemical control of 

nematodes. Am. J. En. Vitic. 15:199-203. 

 

    Rich, J. R., G. S. Rahi, C. H. Opperman, and E. L. Davis. 1989. Influence of the castor 

bean (Ricinus communis) lectin (ricin) on motility of Meloidogyne incognita. Nematropica 

19:90-103.  

 

    Roberts, P. A. 1988. Effects of metam-sodium applied by drip irrigation on root-knot 

nematodes, Pythium ultimum and Fusarium sp. in soil and on carrot and tomato roots. Plant 

Disease 72:213-217. 

     

    Roberts, P. A. 1992. Current status of the availability, development and use of host plant 

resistance to nematodes. Journal of Nematology 24:213-227. 

 

    Roberts, P. A. 1995. Conceptual and practical aspects of variability in root-knot nematodes 

related to host plantresistance. Annual Review of Phytopathology 33:199-221. 

     

   Roca, F., F. Lamberti, and A. Siniscalco. 1975. Studi sulla persistenza di alcuni nematocidi 

granulari nella lotta contro i nematodi galligeni, Meloidogyne spp. Proceedings Giornate 

Fitopatologiche:265-269.  

     

   Rodriguez-Kabana, R., D. Boube, and R. W. Young. 1990. Chitinous materials from blue 

crab for control of root-knot nematode. II. Effect of soybean meal. Nematropica 20:153-168. 

     

   Rodriguez-Kabana, R., and G. Morgan-Jones. 1987. Biological control of nematodes: Soil 

amendments and microbial antagonists. Plant and Soil 100:237-247. 



47 

Chapter I: General Introduction 

 

     Rodriguez-Kabana, R., P. S. King, D. G. Robertson, and C. F. Weaver. 1988. Potential of 

crops uncommon to Alabama for management of root-knot and soybean cyst nematodes. 

Annals of Applied Nematology 2:116-120.  

 

    Santhi, A., and V. Sivakumar. 1995. Biocontrol potential of Pseudomonas fluorescens 

(Migula) against root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, 

1949 on tomato. Journal of Biological Control 9:113-115. 

 

    Sasser, J. N. 1954. Identification and host-parasite relationships of certain root-knot 

nematodes, Meloidogyne spp. Pp. 31 in Bulletin of the Maryland Agricultural Experiment 

Station A-77. 

     

    Sasser, J. N. 1972. Physiological variations in the genus Meloidogyne as determined by 

differential hosts. OEPP/EPPO Bulletin 6:41-48. 

     

    Sasser, J. N. 1979a. Pathogenicity and host ranges in Meloidogyne species. Pp. 256-268 in 

Lamberti, F., and Taylor, C. E., eds. Root-knot nematodes, Meloidogyne species: systematics, 

biology and control. Academic Press, London. 

     

    Sasser, J. N. 1979b. Economic importance of Meloidogyne in tropical countries. Pp. 359-

374 in Lamberti, F., and Taylor, C. E., eds. Root-knot nematodes, Meloidogyne species: 

systematics, biology and control. Academic Press, London. 

      

    Sasser, J. N., and C. C. Carter. 1985. Overview of the international Meloidogyne project 

1975-1984. Pp. 19-24 in K. R. Barker, C. C. Carter, and J. N. Sasser, eds. An advanced 

treatise in Meloidogyne, Vol. II Methodology, Raleigh: North Carolina State University 

Graphics. 

     

    Sasser, J. N., and D. W. Freckmann. 1987. A world perspective on nematology: The role of 

the society. Pp. 7-14 in J. A. Veech, and D. W. Dickson, eds. Vistas on nematology. 

Hyatlsville, Maryland, USA. 



48 

Chapter I: General Introduction 

 

    Sayre, R. M., and M. P. Starr. 1985. Pasteuria penetrans (ex Thorne, 1940) nom. Rev., 

comb. n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic 

nematodes. Proceedings of the Helminthological Society of Washington 52:149-165.   

 

    Scotto la Massese, C. 1961. In: Les Nematodes. C. N. R. A. Versailles, 16-17 November.      

 

    Schroth, M. N., and J. G. Hancock. 1982. disease-suppressive soil and root colonizing 

bacteria. Science 216:1376-1381.  

     

    Sikora, R. A. 1978. Einfluß der endotrophen Mykorrhiza Glomus mosseae auf das Wirt-

Parasit-Verhältnis von Meloidogyne incognita an Tomaten. Journal of Plant Disease and 

Protection 85:197-202. 

     

    Sikora, R. A. 1988. Interrelationship between plant health-promoting rhizobacteria, plant 

parasitic nematodes and soil microorganisms. Mededelingen Faculteit Landbouwkundige 

Rijksuniversiteit Gent 53: 867-878. 

     

    Sikora, R. A. 1989. Importance of plant parasitic and entomopathogenic nematodes to 

vegetable production in the Philippines. Pp. 37 in GTZ Report, Eschborn. 

     

    Sikora, R. A. 1992. Management of the antagonistic potential in agricultural ecosystems for 

the biological of plant parasitic nematodes. Annual Review of Phytopathology 30:245-270. 

     

    Sikora, R. A., K. Sitaramaiah, and R. S. Singh.1973. Reaction of root-knot nematode 

resistant tomato cultivars to Meloidogyne javanica in India. Plant Disease Reporter 57:141-

143. 

     

    Sikora, R. A., P. Reckhaus, and I. adamou. 1988. Presence, distribution and importance of 

plant parasitic nematodes in irrigated agricultural crops in Niger. Mededelingen van de 

Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, Belgium 53:821-834. 

 



49 

Chapter I: General Introduction 

 

    Sikora, R. A., R. S. Singh, and K. Sitaramaiah. 1973. Control of root-knot through organic 

and inorganic soil amendments.3. Effect of rice husk and sugarcane bagasse. Haryana Journal 

of Horticultural Science 2:123-127. 

 

    Sikora, R. A., and S. Hoffmann-Hergarten. 1993. Biological control of plant parasitic 

nematodes with plant-health promoting rhizobacteria. Pp. 166-172  in Lumsden, R. D., and J. 

L. Vaughn, eds. Pest Management: Biologically Based Technologies. American Chemical 

Society, Washington, DC. 

     

    Singh, R. S., and K. Sitaramaiah. 1966. Incidence of root-knot of okra and tomatoes in oil-

cake amended soil. Plant Disease Reporter 50:668-672. 

     

    Singh, R. S., and K. Sitaramaiah. 1967. Effect of decomposing green leaves, sawdust and 

urea on the incidence of root-knot in okra and tomato. Indian Phytopathology 20:349-355. 

     

     Sitaramaiah, K., and R. S. Singh. 1978. Effect of organic amendments on phenolic content 

of soil and plant and response of Meloidogyne javanica and its host to release compounds. 

Plant and Soil 50:671-679. 

     

    Siti, E., E. Cohn, J. Katan, and M. Mordechai. 1982. Control of Ditylenchus dipsaci in 

garlic by bulb and soil treatments. Phytoparasitica 10:93. 

     

    Smith, G. S. 1987. Interactions of nematodes with mycorrhizal fungi. Pp. 292-300 in J. A. 

Veech, and D. W. Dickson, eds. Vistas on nematology. Hyatlsville, Maryland. 

 

    Smith, L. J. 1994. The potential of rhizobacteria as biological control agents of root-knot 

nematode. Thesis, University of Queenland, Australia. 

     

    Southards, C. J., and M. F. Priest. 1973. Variation in pathogenicity of seventeen isolates of 

Meloidogyne incognita. Journal of Nematology 5:63.67. 

     



50 

Chapter I: General Introduction 

 

    Spiegel, Y., E. Cohn, S. Galper, E. Sharon, and I. Chet. 1991. Evaluation of a newly 

isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot 

nematode Meloidogyne javanica. Biocontrol Science and Technology 1: 115-125. 

 

    Spull, V. W. 1981. Bacillus penetrans in South African plant-parasitic nematodes. 

Nematologica 27:244-245.  

     

    Stapleton, J. J. 1990. Feasiability of sprayable polymer mulches for soil solarization and 

soil sealing applications. Phytopathology 80:892. 

 

    Stapleton, J. J., and J. E. DeVay. 1983. Response of phytoparasitic and free-living 

nematodes to soil solarization and 1,3-dichloropropene in California. Phytopathology 

73:1429-1983. 

     

    Stapleton, J. J., and J. E. DeVay. 1986. Soil solarization: a non-chemical approach for 

management of plant pathogens and pests. Crop Protection 5:190. 

 

    Stapleton, J. J., B. Lear, and J. E. De Vay. 1987. Effect of combining soil solarization with 

certain nematicides on target and nontarget organisms and plant growth. Annals and Applied 

of  Nematology 1:107. 

 

    Starr, M. P., and R. M. Sayre. 1988. Pasteuria thornei sp. nov. and Pasteuria penetrans 

sensu stricto emend., mycelial and endospore-forming bacterium parasitic, respectively, on 

plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. Annals de l’Institut 

Pasteur, Microbiologie 139:11-31. 

     

    Stirling, G. R. 1984. Biological control of Meloidogyne javanica with Bacillus penetrans. 

Phytopathology 74:55-60. 

     

    Stirling, G. R. 1985. Host specificity of Pasteuria penetrans within the genus Meloidogyne. 

Nematologica 31:203-209. 



       51 

Chapter I: General Introduction 

 

    Stirling, G. R. 1991. Antagonists of nematodes. Pp. 50-98 in G. R. Stirling, eds. Biological 

control of plant parasitic nematodes. CAB International, Wallingford, Oxoid, UK.  

 

    Stirling, G. R., and B. R. Kerry. 1983. Antagonists of the cereal cyst nematode Heterodera 

avenae Woll. In Australian soils. Australian Journal of Experimental Agriculture and Animal 

Husbandry 23:318-324. 

     

    Stirling, G. R., and M. F. Wachtel. 1980. Mass production of Bacillus penetrans for the 

biological control of root-knot nematodes. Nematologica 26:308-312. 

     

    Stirling, G. R., and R. Mankau. 1978a. Dactylella oviparasitica, a new fungal parasite of 

Meloidogyne eggs. Mycologia 70:774-783. 

     

    Stirling, G. R., and R. Mankau. 1978b. Parasitism of Meloidogyne eggs by a new fungal 

parasite. Journal of  Nematology 10:236-240. 

     

    Stirling, G. R., and R. Mankau. 1979. Mode of parasitism of Meloidogyne and other 

nematode eggs by Dactylella oviparasitica. Journal of  Nematology 11:282-288. 

 

    Stirling, G. R., R. D. Sharma, and J. Perry. 1990. Attachment of Pasteuria penetrans spores 

to Meloidogyne javanica and its effects on infectivity of the nematode. Nematologica 36:246-

252. 

 

    Sturhan, D. 1985. Untersuchungen über Verbreitung und wirte des Nematodenparasiten 

Bacillus penetrans. Mitteleilungen aus der Biologischen Bundesanstalt für Land und 

Forstwirtschaft, Berlin 226.  

     

    Sumner, D. R., and A. W. Johnson. 1972. The effect of nematodes and crop sequence on 

Fusarium wilt of watermelon. Phytopathology 62:791 (Abstr.). 

     

 



52 

Chapter I: General Introduction 

 

    Taylor, A. L., and J. N. Sasser. 1978. Biology, identification and control of root-knot 

nematodes, Meloidogyne spp. Pp. 111 in Cooperative Publication Department of Plant 

Pathology, North Carolina State University and U. S. Agency International Development, 

Washington D. C., North Carolina State University Graphics, USA.  

 

    Taylor, A. L., J. N. Sasser, and L. A. Nelson. 1982. Relationship of climate and soil 

characteristics to geographical distribution of Meloidogyne species in agricultural soils. Pp. 65 

in Cooperative Publication Department of Plant Pathology, North Carolina State University 

and U. S. Agency International Development, Washington D. C., North Carolina State 

University Graphics, USA. 

     

    Thames, W. H., and W. N. Stoner. 1953. A preliminary trial of lowland culture rice in 

rotation with vegetable crops as a means of reducing root-knot nematode infestations in the 

Everglades. Plant Disease Reporter 37:187-192. 

     

    Thomason, I. J., and B. Lear. 1961. Rate of production of Meloidogyne spp. as influenced 

by soil temperature. Phytopathology 51:520-524. 

     

    Triantaphyllou, A. C., and J. N. Sasser. 1960. Variation in perineal patterns and host 

specifity of Meloidogyne incognita. Phytopathology 50:724-735. 

     

    Tribe, H. T. 1977a. Pathology of cyst nematodes. Biological Reviews 52:477-507. 

     

    Tribe, H. T. 1977b. A parasite of white cysts of Heterodera; Catenaria auxiliaris. 

Transactions of the British Mycological Society 69:367-376. 

     

    Treub, M. 1885. Onderzoekingen over Sereh-Ziek Suikkeriet gedaan in s’Lands Plantentuin 

te Buitenzorg. Medad. PlTuin., Batavia:1-39. 

 

    Trudigill, D. L. 1995. Seminar: host and plant temperature effects on nematode 

development rates and nematode ecology. Nematologica 41:398-404. 



53 

Chapter I: General Introduction 

 

    Tyler, J. 1933. Reproduction without males in aseptic root cultures of the root-knot 

nematode. Hilgardia 7: 373-388.  

 

    Valdez, R. B. 1978. Nematodes attacking tomato and their control. Pp. 136-152 in First 

International Symposium on Tropical Tomato, AVRDC Publications 78-59.   

 

    Van Gundy, S. D. 1985. Biological control of nematodes: status and prospect in 

agricultural IPM systems. Pp. 467-477 in Biological Control in Agricultural IPM Systems. 

Academic Press, London.      

     

    Vovlas, N., and F. Lamberti. 1976. Studies on the systemic action of some chemicals in the 

control of root-knot nematodes. Nematologie Mediterranea 4:111-113.   

     

    Walker, J. T. 1960. The effect of hot water at different temperatures on larvae of various 

species of Meloidogyne. Phytopathology 50:658(Abstr.). 

     

    Wallace, H. R. 1966. Factors influencing the infectivity of plant parasitic nematodes. 

Proceedings of the Royal Society, B, 164:592-614. 

 

    Watson, J. R. 1922. Bunch velvet bean to control root-knot. Bulletin 163. University of 

Florida Agricultural Experiment Station, Gainesville, FL, USA. 

     

    Watson, J. R. 1936. Plants susceptible to root-knot field and truck crop. Bulletin 483. 

University of Florida Agricultural Experiment Station, Gainesville, FL, USA. 

     

    Watson, J. R. 1945. Mulches to control root-knot. Proceedings of the Florida Academy of 

Science 7:151-153. 

     

    Watson, J. R., and C. C. Goff. 1937. Control of root-knot in Florida. Bulletin 311. 

University of Florida Agricultural Experiment Station, Gainesville, FL, USA. 

 



54 

Chapter I: General Introduction 

 

    Weller, D. M. 1988. Biological control of soil-borne plant pathogens in the rhizosphere 

with bacteria. Annual Review of Phytopathology 26: 379-407.  

 

    Zavaleta-Meija, E., and S. D. Van Gundy. 1982. Effects of rhizobacteria on Meloidogyne 

infection. Journal of Nematology 14: 475A-475B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

Chapter II: Bacillus cereus strain S18 

 

1. General Introduction 

 

Plant parasitic nematodes are important factors affecting crop growth and yield in all 

agricultural production zones (Webster, 1985). Root-knot nematodes, Meloidogyne spp. are 

the most important throughout the world, especially in the tropics and subtropics where they 

cause a high reduction in the yield of economic crops especially vegetables (Luc et al., 1990). 

Severe attack by root-knot nematodes  can prevent successful cultivation of many species of 

vegetables (Mai, 1985; Netscher and Sikora, 1990). Vegetable crops are important for 

balanced nutrition and also are very susceptible to soil-borne pathogens that leads to 

interactions with the root-knot nematodes and causes disease syndromes (Sikora and Carter, 

1987 ). 

 

Biological control activity of plant health-promoting rhizobacteria (PHPR) against plant 

parasitic nematodes has been demonstrated for the sedentary endoparasitic species of the root-

knot nematodes, Meloidogyne spp. (Becker et al., 1988; Sikora, 1988; Spiegel et al., 1991; 

Hallmann et al., 1997).  

 

PHPR are at present a promising non-chemical alternative for controlling a number of plant 

parasitic nematodes and diseases. PHPR also are important to crop management because in 

addition to the biological control of nematodes and diseases they often have the ability to 

improve plant growth and are not phytotoxic (Suslow and Schroth, 1982, Sikora, 1988, 

Hallmann et al., 1994). 

 

The PHPR Bacillus cereus strain S18  is a well studied biocontrol agent against plant parasitic 

nematodes in particular cyst and root-knot species (Oostendorp and Sikora, 1989; Racke and 

Sikora, 1992; Sikora and Hoffmann-Hergarten, 1993). Insunza et al., (2000) also reported that 

B. cereus was associated with nematode biocontrol and plant growth promotion under 

greenhouse conditions. They found that nematicidal activity towards nematodes in naturally 

infested field soil reduced nematode densities by 50-100%. 
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2. General Materials and Methods   

 

2.1 Host Plants  

 

Three different host plants susceptible to root-knot nematodes, Meloidogyne spp. were tested: 

A) Tomato (Lycopersicon esculentum cv. Hellfrucht Frühstamm) 

B) Cucumber (Cucumis sativus cv. Vorgebirgs Trauben)  

C) Pepper (Capsicum annuum cv. Yolo Wonder B)  

Seedlings of each host plant were prepared as follows: 

Tomato seedlings were first raised in seed beds in sand under greenhouse conditions. Two 

weeks old tomato seedlings were then transplanted (one plant/pot) into experimental plastic 

pots filled with 500 cm3 of a soil/sand (1:2, v/v) mixture. The soil substrate was not sterilized. 

Cucumber and pepper seedlings were sown into the plastic pots (3 seeds/pot) filled with the 

same soil. After two weeks plants were thinned to one plant per pot. 

 

2.2 Bacillus cereus strain S18  

 

The rhizobacterium, B. cereus strain S18 originated from the Soil-Ecosystem Phytopathology 

and Nematology Lab., Plant Pathology Institute, Bonn University and was first isolated from 

unsterile dry tomato seeds cv. Rheinlands Rhum. The bacterium was initially identified as 

Bacillus subtilis and in 1996 was reidentified as Bacillus cereus. B. cereus was grown on 

tryptic soy agar (TSA) (Oxoid). Long term storage was carried out in tryptic soy broth (TSB) 

amended with 20% glycerol at –80°C. Bacterial inoculum was produced by fermentation in 

100 ml of TSB in 250 ml flasks on a rotary shaker at 100 rpm for 24 hours at 28°C after 

transfer of starter inoculum from the TSA. The bacterial suspension was centrifugated at 8000 

rpm for 10 minutes, the supernatant was discarded and the pellet was resuspended in a sterile 

¼ strength Ringer-solution (Merck). Bacterial density was adjusted with a spectral photometer 

to an optical density of OD560nm= 2.0 representing approximately 109 colony-forming units 

(cfu)/ml. 
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A soil drench method was used in all the experiments. The bacteria in Ringer-solution was 

inoculate in a 5 ml bacterial suspension (109 cfu/ml) per plant in three or four holes made 

around the plants to a depth of 4 cm. The controls were treated with 5 ml of Ringer-solution.  

 

2.3 Root-knot nematodes, Meloidogyne spp.  

 

All three root-knot species M. incognita race 3 (Kofoid and White 1919) Chitwood 1949, M. 

javanica (Treub, 1885) Chitwood 1949 and M. arenaria (Neal, 1889) Chitwood 1949 race 1 

used in the tests were supplied by Dr. D. W. Dickson from the University of Florida, 

Gainesville, USA. The nematodes were multiplied on tomato plants grown in plastic pots 

filled with sterilized soil-sand mix (1:2, v/v) at 25°C under greenhouse conditions.  

 

To obtain inoculum tomato roots infested with M. incognita, M. javanica or M. arenaria were 

removed from the pots and gently washed with tap water to remove the soil particles from the 

roots. Roots were cut in small pieces and then were macerated for two periods of 10 seconds 

each at high speed by using a Waring blender. This method released the highest number of 

nematodes from roots. The macerated root solution was then placed in a Duran bottle 

containing sodium hypochlorite (NaOCl). Water was added to adjust the final concentration 

of NaOCl to 1.05% as described by (Hussey and Barker, 1973). The solution in the Duran 

bottle was vigioursly shaken for 3 minutes to release the eggs from the egg matrix as NaOCl 

removes the gelatin matrix of egg masses. The solution was then poured through different size 

sieves to remove the root tissue. Eggs were collected on the 20 micrometer (µm) sieve and 

washed several times with tap water to remove residual  NaOCl. Eggs were then transferred to 

a counting slide and counted. 

 

Egg Masses Staining: Egg masses of Meloidogyne were stained by dipping the roots in 

0.015% Phloxine B solution for 20 minutes as described by (Daykin and Hussey, 1985) and 

then washing the stained roots with tap water to remove the residual Phloxine B. 

Gall Index Measuring: The gall index of Meloidogyne infested roots was measured as 

described by (Zeck, 1971) on a scale from 0-10. 
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2.4 Statistical Analysis 

 

Data were analysed according to standard analysis of variance by a one way ANOVA with the 

software statgraphics (Statistical Graphics Crop., Rockville, MD). Variance homogeneity for 

all treatments was confirmed by the Bartlett test. The comparison between means was carried 

out either  with Duncan’s Multiple Range Test or by using T-Test at P<0.05 as given in the 

tables and/or figures. 

 

3. Experimental Program 

 

3.1 Effect of application method on biocontrol efficacy 

 

3.1.1 Introduction 

 

The study of methods of application of PHPR is important, because it can play a major role in 

the level of antagonistic activity of B. cereus S18 against  root-knot nematodes. Several 

studies dealt with the subject of rhizobacteria against several plant parasitic nematodes. For 

example, when tomato, cucumber and clover were treated with rhizobacteria as soil drenches 

or root dip treatments they suppressed significantly the penetration of nematodes in the roots 

and reduced the root galling of the root-knot nematode, M. incognita under greenhouse 

conditions as reported by Zavaleta-Meija and Van Gundy (1982) and Becker et al., (1988). 

The same results were obtained by Sikora (1988) on cotton, tomato, peanut and sugar beet 

when treated with Bacillus subtilis to control M. incognita, M. arenaria and Rotylenchulus 

reniformis under greenhouse conditions. He revealed that B. subtilis reduced M. incognita 

43% to 66% on cotton when applied as a powder and 38% to 62% when applied as a liquid 

seed dressing. Oka et al., (1993) found that when the tomato roots were dipped in the bacterial 

suspension of B. cereus it did not reduce the galling index or the number of juveniles (J2) 

invading the roots. However, they also found that fewer juveniles invaded tomato roots when 

B. cereus was mixed with soil or when juveniles were pre-exposed to the bacteria suspended 

in the soil. Keuken (1996) reported that a soil drench of  tomato plants with B. cereus S18  
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under greenhouse conditions led to significant increases in root length compared with the 

control. He also reported that a soil drench application of B. cereus S18 led to significant 

increases in plant growth e.g fresh shoot and root weight as well as root length in the absence 

of the nematode. Similar results were noted by Sadlers (1996) who confirmed that application 

of B. cereus led to high increases in tomato plant growth. He also noted that the increase in 

plant growth was not affect by B. cereus application method. He demonstrated that treatment 

by root dipping had no effect on plant growth.  

 

Treatment of cucumber seedlings with the fluorescent Pseudomonas stains BS8651 and BS8661 

as a soil drench or as a seed treatment reduced damping-off caused by Pythium ultimum under 

greenhouse conditions as reported by Vogt and Buchenauer (1997). They also found that 

when the fluorescent Pseudomonas strain BS8651 was applied as a soil drench or as a seed 

treatment it resulted in reductions of the foliar disease of cucumber seedlings caused by the 

powdery mildew fungus Sphaerotheca fuliginea. Similar results were obtained by Sikora et 

al., (1990a) who found that treatment of sugar beet seeds with fluorescent pseudomonad 

rhizosphere bacteria can protect sugar beet seedlings from damping-off caused by species of 

Pythium. Hoffmann-Hergarten et al., (1998) revealed that root penetration as well as gall 

formation of root-knot nematode, M. incognita was significantly reduced after bacterial 

application to the seed or as a soil drench.  

 

This experiment was carried out to evaluate the best application method of the PHPR B. 

cereus S18 towards M. incognita on tomato plants. 

 

3.1.2 Materials and Methods 

 

Sixteen 3 week old tomato plants “Hellfrucht Frühstamm“ were treated by dipping their roots 

in bacterial suspensions of B. cereus S18 (109 cfu/ml) prepared as described before (see 2.2) 

for 30 minutes. Another sixteen plants were soil drenched and received 5 ml of the same 

bacterial suspension per plant by pipetting the solution into three or four holes in the soil 

around the shoot. Eight plants from each treatment were then inoculated with 2000 eggs of M.  
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incognita /plant by pipetting in three holes in the root zone three days after treating the plants 

with the bacterial suspensions. Each treatment was replicated 8 times and plants were 

arranged in a completely randomised design in the greenhouse at approximately 25°C with 

artificial light 12 hours/day. Plants were watered every day and fertilized weekly with 10 ml 

per plant of Poly Crescol (14+10+14, 2g/liter water).  

 

Plants were harvested for evaluation of fresh shoot and root weight, root length, gall index, 

number of galls and egg masses, 8 weeks after nematode inoculation. Root length was 

measured by using the Comiar Root Length Scanner (Hawker  De Havilland, AUS). Gall 

index was measured as described by Zeck (1971) on a scale from 0-10. Egg masses of M. 

incognita were stained and recorded as described before (see 2.3).  

 

3.1.3 Results and Discussion 

 

Using B. cereus S18 either as a soil drench or as a root dip reduced the gall index by 59% and 

54% respectively compared to the bacteria untreated plants (Fig. 1). No significant differences 

in the level of M. incognita control between the two B. cereus S18 application methods was 

detected. 

Control Dipping Drench
0

1

2

3

4

5

6
Gall index

A

B B

Figure 1: Effect of application method of Bacillus cereus strain S18 on the gall index of 

Meloidogyne incognita on tomato eight weeks after nematode inoculation. Columns followed 

by different letters are significantly different from another according to Duncan’s Multiple 

Range Test (P< 0.05) n=8. 
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The number of galls (Fig. 2a) and egg masses (Fig. 2b) were reduced by 60% and 72% in the 

plants treated with B. cereus S18 as a soil drench, while the reduction was 60% and 75% in 

the bacteria plants treated by root dipping. No significant differences were found between the 

two application methods in the number of galls or egg masses of M. incognita compared with 

the plants treated with M. incognita alone. 

 

These results agree with those of Oka et al., (1993) who found that fewer second stage 

juveniles invaded tomato roots when B. cereus was mixed with soil. The results differ, 

however, in that they found that dipping the roots in a suspension of the bacterium did not 

change juvenile infectivity. This is the opposite of the present findings.  

 

The B. cereus S18 plants treated as a soil drench in the present study showed no significant 

differences in fresh shoot (Fig. 3a), root weight (Fig. 3b) or root length (Fig. 4).  

 

However, root weight and length (Fig. 3b, 4) increased in the root dipping treatment when 

compared to the bacteria untreated plants.  

 

Results also showed that fresh shoot and root weight as well as root length were significantly 

enhanced when the plants were treated with B. cereus S18 combined with M. incognita when 

compared with the treated plants with M. incognita alone. Fresh shoot and root weight 

increased 28 % and 69 %  in the bacteria plants treated as a soil drench, while the rate of 

increase was 20 % and 59% when the plants were treated by root dipping. 
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Figure 2: Effect of Bacillus cereus S18 application method on the number of galls (A) and 

egg masses (B) of Meloidogyne incognita on tomato eight weeks after nematode inoculation. 

Columns followed by different letters are significantly different from another according to 

Duncan’s Multiple Range Test (P< 0.05) n=8. 

 

 



63 

Chapter II: Bacillus cereus strain S18 

 

(A) 

Control S18-dipping S18- drench Mi Mi+S18 dipping Mi+S18 drench
0

2

4

6

8

10

12
Fresh shoot weight (g) 

B
A

A A A A

 
 

(B) 

Control S18-dipping S18- drench Mi Mi+S18 dipping Mi+S18 drench
0

1

2

3

4

5
Fresh root weight (g)

B

A
AB

C

AB B

 
 

Figure 3: Effect of Bacillus cereus S18 application method on fresh shoot (A) and root weight 

(B) of tomato plants infected with Meloidogyne incognita (Mi) eight weeks after nematode 

inoculation. Columns followed by different letters are significantly different from another 

according to Duncan’s Multiple Range Test (P< 0.05) n=8. 
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Figure 4: Effect of Bacillus cereus S18 application method on root length of tomato plants 

infected with Meloidogyne incognita (Mi) eight weeks after nematode inoculation. Columns 

followed by different letters are significantly different from another according to Duncan’s 

Multiple Range Test (P< 0.05) n=8. 

 

The B. cereus S18 plants treated with both application methods with M. incognita showed a 

twofold increase in root length when compared to the bacteria untreated plants with the 

nematode. Keuken (1996) reported that the application form of B. cereus S18 has a direct 

effect on the quality of rhizosphere or/and rhizoplane colonization and shoot and root growth. 

Treatment of potato tubers or the introduction of antagonistic fluorescent pseudomonads to 

soil has resulted in increases in crop yield as reported by Kloepper et al., (1980) and Geels 

and Schippers (1983). Similar results were obtained by Hoffmann-Hergarten et al., (1998) 

who found that treatment of tomato and lettuce with B. cereus S18 resulted in enhanced 

seedling biomass. 
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3.2 Effect of application time on biocontrol efficacy 

 

3.2.1 Introduction 

 

Time of application of the biocontrol agent is one of the most essential factors influencing the 

effectiveness of bacterial antagonists against many types of plant pathogens. This experiment 

was carried out to evaluate the best timing of PHPR B. cereus S18 application to control M. 

incognita on tomato. 

 

3.2.2 Materials and Methods 

 

In this experiment three application times were tested: 

1-  simultaneously with nematode inoculation  

2- 10 days before nematode inoculation 

3- 10 days after nematode inoculation 

 

Three week old tomato plants cultivar “Hellfrucht Frühstamm” were inoculated with B. 

cereus S18 as a soil drench (see 2.2) by adding a 5 ml bacterial suspension (109 cfu/ml) per 

plant at the times mentioned above. Plants were inoculated with 2000 eggs of M. incognita 

per plant by pipetting in three holes around the roots. Ringer-solution treated plants as well as 

plants  inoculated with B. cereus S18 alone served as controls. Each treatment was replicated 

8 times in a completely randomised design under greenhouse conditions at 25°C with  

artificial light 12 hours/day.  

 

Plants were watered daily and fertilized weekly with 10 ml per plant of Poly Crescol 

(14+10+14, 2g/liter water). Eight weeks after nematode inoculation the plants were removed 

and evaluated for fresh shoot and root weight, root length, gall index and total number of galls 

and egg masses. 
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3.2.3 Results and Discussion 

 

Significant differences in gall index, total number of galls and egg masses between plants 

treated with B. cereus S18 at different times were observed. When B. cereus S18 was applied 

10 days before M. incognita inoculation gall index decreased significantly when compared 

with the other application times (Fig. 1).     
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Figure 1: Effect of Bacillus cereus S18 application time on the galling of Meloidogyne 

incognita on tomato plants eight weeks after nematode inoculation. Columns followed by 

different letters are significantly different from another according to Duncan’s Multiple Range 

Test (P< 0.05) n=8. 

 

The highest reduction in the total number of galls also was obtained when B. cereus S18 was 

applied 10 days before nematode inoculation (Fig. 2a). Egg mass numbers were greatly 

reduced in all treatments over the control. However, there were no differences between the 

different times of application of B. cereus S18 against M. incognita when compared with the 
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plants treated with the nematode alone (Fig. 2b). 

 

In the present study the introduction of B. cereus S18 ten days before nematode inoculation 

was the most effective application technique reducing significantly root galling, number of 

galls and number of egg masses of M. incognita. When B. cereus S18 was applied ten days 

before the nematode time was available for bacterial colonization of the rhizosphere or/and 

rhizoplane.  

 

Bacteria colonization is important for nematode penetration reduction as reported by Sikora 

(1992). This 10 days period of time was sufficient for the rhizobacteria to establish and to 

possibly produce metabolites such as Zwittermicin A and Kansoamin that affect nematode 

juvenile infectivity (Silo-Suh et al., 1994, Milner et al., 1996).   

 

When B. cereus S18 was applied alone or combined with M. incognita it enhanced plant 

growth over the controls. The highest fresh shoot (Fig. 3a) and root weight (Fig. 3b) 

enhancement was obtained when B. cereus S18 was applied 10 days before or simultaneously 

with the nematode. The rate of increase was 26% and 17% over the nematode alone. B. cereus 

S18 alone also caused a slight increase in fresh shoot weight, but not root weight. 

 

Results also showed no significant effect on fresh shoot or root weight when B. cereus S18 

was applied 10 days after nematode inoculation when compared with the nematode alone.  
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Figure 2: Effect of Bacillus cereus S18 application time on the number of galls (A) and egg 

masses (B) of Meloidogyne incognita on tomato eight weeks after nematode inoculation. 

Columns followed by different letters are significantly different from another according to 

Duncan’s Multiple Range Test (P< 0.05) n=8. 
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Figure 3: Effect of Bacillus cereus S18 application time on fresh shoot (A) and root weight 

(B) of tomato plants infected with Meloidogyne incognita eight weeks after nematode 

inoculation. Columns followed by different letters are significantly different from another 

according to Duncan’s Multiple Range Test (P< 0.05) n=8. 
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The greatest increase in root length was obtained when B. cereus S18 was applied 10 days 

before nematode inoculation followed by simultaneous application (Fig. 4). A non-significant 

increase in root length was obtained when B. cereus S18 was applied 10 days after nematode 

inoculation when compared with the plants treated with the nematode alone. A slight root 

length enhancement was also obtained when the plants were treated with PHPR B. cereus S18 

alone over the control. 

 

Similar results were obtained by Keuken (1996) who found that the rhizobacterium B. cereus 

S18 enhanced the yield of tomato in the absence of the nematode under field conditions. 

Hoffmann-Hergarten et al., (1998) also revealed that B. cereus S18 has positive effects on 

seedling development as it enhanced plant establishment at the seedling stage. 
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Figure 4: Effect of Bacillus cereus S18 application time on root length of tomato plants 

infected with Meloidogyne incognita eight weeks after nematode inoculation. Columns 

followed by different letters are significantly different from another according to Duncan’s 

Multiple Range Test (P< 0.05) n=8. 

 



71 

Chapter II: Bacillus cereus strain S18 

 

3.3 Biological control potential towards different species of Meloidogyne      

 

3.3.1 Introduction 

 

In the past most studies on PHPR focused on one bacterium controlling one pest or pathogen. 

For example up to now B. cereus S18 was only used to control M. incognita on tomato 

(Keuken, 1996). Very little is known about the control potential of single PHPR strains 

against a broad spectrum of species within the same nematode genus. This experiment was 

performed to evaluate the biocontrol activity of B. cereus S18 towards different species of 

Meloidogyne on tomato. 

 

3.3.2 Materials and Methods 

 

Plants in this experiment were inoculated with three different species of Meloidogyne  that 

were cultured and extracted as mentioned previously (see 2.3). Three week old tomato plants, 

cv. “Hellfrucht Frühstamm” were inoculated with 5 ml of a bacterial suspension (109 cfu/ml) 

per plant as a soil drench by pipetting the solution in three or four holes in the root zone. The 

controls received 5 ml Ringer-solution. Three days later the plants were inoculated with 2000 

eggs/plant of M. incognita, M. javanica or M. arenaria by pipetting the juveniles in three 

holes made in the root zone. Non-bacterized plants as well as plants inoculated with B. cereus 

S18 alone served as controls. Each treatment was replicated 10 times in a completely 

randomised design in the greenhouse at 25°C with 12 hours/day of artificial light. Plants were 

watered daily and fertilized weekly with 10 ml per plant of Poly Crescol (14+10+14, 2g/liter 

water).  

 

Eight weeks after nematode inoculation the experiment was terminated and shoot and root 

fresh weight, root length and total number of galls and egg masses were recorded. 
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3.3.3 Results and Discussion 

 

The number of galls and egg masses of all 3 Meloidogyne species were reduced on plants 

treated with B. cereus S18. The rate of reduction however varied between the different species 

of Meloidogyne. A significant reduction of approximately 50% and 33% in the number of 

galls was observed for M. incognita and M. javanica, while it had no effect on the number of 

galls of M. arenaria when compared with the non-bacterized control (Fig. 1a).  For M. 

incognita, M. javanica and M. arenaria the reduction in the number of egg masses was 

significant when compared with the non-bacterized control (Fig. 1b).  

 

The results on the biological control of B. cereus S18 towards different species of 

Meloidogyne demonstrated that different levels of biological control activity are expressed 

according to the root-knot nematode species being tested.  

 

The data demonstrated that some species of root-knot may not be controlled as effectively by 

this antagonistic bacterium as others. B. cereus S18 caused significant reductions in the 

number of galls and egg masses of M. incognita and M. javanica, but only reduced the 

number of egg masses of M. arenaria. A reduction in gall number usually indicates biocontrol 

activity during the infection process whereas a reduction in the number of egg masses 

indicates possible effects on nematode development after penetration or delayed penetration. 

Both mechanisms seem to apply for B. cereus S18, but to different degrees depending on 

species of Meloidogyne. More study of mechanisms of action are needed. 
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Figure 1: Effect of Bacillus cereus S18 on the number of galls (A) and egg masses (B) of 

Meloidogyne incognita, M. javanica or M. arenaria on tomato 8 weeks after nematode 

inoculation. Columns followed by * are significantly different compared with the bacteria 

untreated plants of the same nematode species according to T- Test (P< 0.05) n=10. 
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Plant shoot (Fig. 2a)  and root weight (Fig. 2b) as well as root length (Fig. 3) were 

significantly greater in the nematode infested plants treated with B. cereus S18 when 

compared to nematode treated plants without B. cereus S18.  

 

The fact that B. cereus S18 by its own only improves plant growth marginally indicates that 

the observed growth enhancement of bacterized and nematode-infested plants is probably 

mainly due to the biocontrol effect and not caused by plant growth promoting activity as 

reported for other rhizobacteria (Kloepper et al., 1989). 
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Figure 2: Effect of Bacillus cereus S18 on fresh shoot (A) and root weight (B) of tomato 

infected with Meloidogyne incognita, M. javanica or M. arenaria on tomato 8 weeks after 

nematode inoculation. Columns followed by * are significantly different compared with the 

nematode alone treated plants of the same nematode species according to T- Test (P< 0.05) 

n=10. 
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Figure 3: Effect of Bacillus cereus S18 on root length of tomato infected with Meloidogyne 

incognita, M. javanica and M. arenaria on tomato 8 weeks after nematode inoculation. 

Columns followed by * are significantly different compared with the nematode alone treated 

plants of the same nematode species according to T- Test (P< 0.05) n=10. 
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3.4 Biological control potential towards M. incognita on different host plants 

 

3.4.1 Introduction 

 

Few past studies dealt with the influence of the host plant on the biocontrol activity of PHPR 

towards the plant pathogens and parasites. Atkinson et al., (1975) and Azad et al., (1985) 

found that plant genotype influences the quantity and composition of the rhizosphere 

microflora, through differences in root exudates. Aström and Gerhardson (1988) and Aström 

(1991) also found that rhizobacteria isolates react differently on different plant species and to 

different genotypes within a species. Similar results were obtained by Sikora et al., (1990a, 

1990b). They reported that rhizobacteria isolated from the rhizosphere had different levels of 

plant health-promoting activity towards Pythium. The level of biological control was 

influenced to various degree by microbial competitors, plant species, cultivar and 

environmental factors. Sikora (1992) suggested that the influence of plant species and cultivar 

on establishment and antagonistic activity of rhizobacteria must be defined to optimize 

nematode control with PHPR. This experiment was carried out to evaluate the influence of 

different host plants on the biocontrol activity of B. cereus S18 against M. incognita.  

 

3.4.2 Materials and Methods 

 

In this experiment three different host plants were used as mentioned before (see 2.1). Three 

week old plants were inoculated with 5 ml of a B. cereus S18 bacterial suspension (109 

cfu/ml) per plant as a soil drench by pipetting in three holes around the roots. Two thousand 

M. incognita eggs were inoculated 3 days after bacteria inoculation by pipetting into three 

holes in the root zone. Plants were watered daily and fertilized weekly with 10 ml per plant of 

Poly Crescol (14+10+14, 2g/liter water). Each treatment was replicated 10 times in a 

completely randomised design in the greenhouse at 25°C with 12 hours per day of artificial 

light.  

 

Sixty days after nematode inoculation shoot and root fresh weight, root length and number of 

galls and egg masses were measured.  
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3.4.3 Results and Discussion 

 

Results revealed that when the three host plants were treated with B. cereus S18 a significant 

reduction in the percentage of galls and egg masses produced when compared with the 

bacteria untreated plants of the same crop species was obtained. The percentage reduction 

varied only slightly between the different host plants. 

 

Cucumber showed the highest reductions in both the number of galls and egg masses 

followed by pepper and then tomato. The reduction in the number of galls on cucumber was 

(75%) followed by pepper (72%) and tomato (63%) (Fig. 1). The significant reduction in 

number of galls was similar on all crops. However, a higher reduction in egg masses was 

shown with cucumber (76%), followed by pepper (72%) and tomato (55%) (Fig. 1).  
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Figure 1: Effect of Bacillus cereus S18 on the number of galls and egg masses of 

Meloidogyne incognita on different host plants 8 weeks after nematode inoculation in percent 

of the control. Each plant reflects the results of a separate experiment. Columns under one 

plant species with * indicate significant differences when compared with the controls of the 

same crop plant treated with Meloidogyne incognita alone (P<0.05, n=10). 
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The results on the biological control of B. cereus S18 towards M. incognita on different host 

plants revealed that these bacteria reduced the number of galls and egg masses of M. 

incognita significantly on all tested host plants.  

 

The rate of reduction varied only slightly between the different host plants. Somewhat similar 

results were obtained by Hackenberg and Sikora (1992). They revealed that cultivar 

influenced the level of biological control by Agrobacterium radiobacter towards potato cyst 

nematode, Globodera pallida.  

 

The results demonstrate that B. cereus S18 has strong biocontrol activity against M. incognita 

on a broad spectrum of plant hosts. The reduction in the number of galls and egg masses 

indicates that B. cereus S18 probably affects nematode penetration.  

 

Delayed juvenile penetration also slowed nematode development and egg laying in roots. B. 

cereus S18 may interfere with the host-finding process by receptor blockage on roots or by 

modifying root exudates of the host plant, thus hindering the attraction, hatching or 

penetration behaviour of nematodes. These types of mechanisms of action were suggested by 

others (Becker et al., 1988; Oostendorp and Sikora, 1990; Spiegel et al., 1991). 

 

The results also showed that B. cereus S18 enhanced significantly plant growth of all tested 

crops when compared with the plants treated with M. incognita alone. The highest level of 

enhancement for fresh shoot weight were obtained on pepper (179%) followed by cucumber 

(58%) and tomato (36%) (Fig. 2). Significant enhancement of fresh root weight were detected 

on tomato (106%) followed by pepper (81%) and cucumber (53%) (Fig. 2).  

 

Root length of all tested plants treated with B. cereus S18 were significantly increased when 

compared with the bacteria untreated plants (Fig. 3). The levels of increased root length were 

very high for pepper (144%) followed by tomato (70%) and cucumber (58%). 
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Figure 2: Effect of Bacillus cereus S18 on the shoot and root weight of different host plants 

infected with Meloidogyne incognita measured 8 weeks after nematode inoculation in percent 

of the control. Each plant reflects the results of a separate experiment. Columns under one 

species with * indicate significant differences when compared with the same crop plant 

treated with Meloidogyne incognita alone (P<0.05, n=10).  
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Figure 3: Effect of Bacillus cereus S18 on root length of different host plants infected with 

Meloidogyne incognita measured 8 weeks after nematode inoculation in percent of the 

control. Each column reflects the results of a separate experiment. Columns under one species 

with * indicate significant differences when compared with the same crop plant treated with 

Meloidogyne incognita alone (P<0.05, n=10). 
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3.5 General Conclusions 

 

A) Results revealed that the form of application of B. cereus S18 to plants either as a soil 

drench or as a root dipping does not affect the biocontrol efficacy of B. cereus S18 towards 

root-knot nematode, M. incognita. 

 

B) When the PHPR B. cereus S18 was applied 10 days before nematode inoculation it led to 

significant reductions in gall index and number of galls. Results showed no differences 

between the different application times of  B. cereus S18 in the number of egg masses. 

Application of the bacteria after nematode penetration did not affect nematode development. 

 

C) Results revealed that B. cereus S18 does not control all three different species of root-knot 

nematodes to the same level. B. cereus S18 had little to no biocontrol activity on M. arenaria. 

B. cereus S18 showed significant effects towards all aspects of M. incognita and M. javanica.  

 

D) The results confirmed that B. cereus S18 is an effective biocontrol agent towards M. 

incognita on a broad spectrum of hosts plant. Results also demonstrated that all three crops 

treated with B. cereus S18 combined with M. incognita showed plant growth enhancement 

when compared with the bacteria untreated crops.  
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1. General Introduction 

 

Crop loss caused by sedentary endoparasitic root-knot nematodes, Meloidogyne spp. are of 

major concern to agriculture (see chapter 2). However, other important sedentary plant 

parasitic nematodes, for example, the cyst nematodes, Globodera spp. and Heterodera spp. as 

well as root-lesion nematodes, Pratylenchus spp. also cause serious injury to crop plants. 

 

Potato cyst nematodes G. pallida (Stone, 1973) Behren, 1975 and G. rostochiensis 

(Wollenweber, 1923) Behren, 1975 are major parasities of Solanaceae particularly potato, 

tomato and also egg plant. The sugar beet cyst nematode, Heterodera schachtii Schmidt, 1871 

is another important cyst nematode. It has a wide host range on many plants especially 

Chenopodiaceae where it infects sugar beet, cabbages, canola, mustard and most other 

brassicas. The beet cyst nematode is present in most sugar beet growing areas and causes 

serious yield losses when sugar beet is grown intensively (Schmidt, 1992). All three cyst 

nematodes are widespread and are found in almost all important potato and sugar beet 

growing regions in the world (Whitehead, 1972).  

 

The migratory endoparasitic root-lesion nematodes, Pratylenchus spp. are important plant 

parasites and are widely distributed worldwide on many crops. Species in this genus cause 

damage to the root cortex. Pratylenchus zeae Graham, 1951, for example, is considered a 

serious pest of maize, tobacco, cotton, sweet corn, sugarcane and rice (Fortuner, 1976). It is 

extremely difficult to control (Luc and Reversat, 1985) since nematicides are too expensive 

and resistance is not available in important hosts. P. zeae has been reported to cause up to 

50% yield losses on maize (Hollis, 1962; Adeniji et al., 1979; Bridge, 1994). 

 

Since the rhizosphere provides the first line of defence for roots against nematode attack, it is 

generally considered that rhizosphere bacteria are ideal biocontrol agents for use in 

controlling parasitic nematodes.  
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This chapter focus on one of the better studied antagonistic rhizobacteria and its activity 

against a broad spectrum of plant parasitic nematodes. The objectives of the following studies 

were to evaluate the biocontrol activity of R. etli strain G12 towards four different 

endoparasitic genera of plant parasitic nematodes. In addition, different host plants were 

studied to check for their effects on the antagonistic activity of R. etli G12.  

 

2. General Materials and Methods 

 

2.1 Host Plants 

 

Different host plants susceptible to different plant parasitic nematodes were tested: 

 

Tomato seedlings (Lycopersicon esculentum cv. Hellfrucht Frühstamm) were first raised in 

seed beds in sand under greenhouse conditions at 25°C. Two weeks old tomato seedlings 

were then transplanted (one plant/pot) into plastic pots filled with 500 cm3 of a mixture of 

soil/sand (1:2, v/v). The substrate was not sterilized and was used for all the plants tested. 

 

Cucumber (Cucumis sativus cv. Vorgebirgs Trauben) and pepper seedlings (Capsicum 

annuum cv. Yolo Wonder B) were sowed into the plastic pots (3 seeds/pot) filled with the 

same soil. After two weeks plants were thinned to one plant per pot. 

 

Cotton (Gossypium hirsutum cv. Carolina Queen), soybean (Glycin max cv. Young Soybean) 

and maize (Zea mays cv. Hybridmais Liberal) were grown first by sowing 3 seeds directly in 

plastic pots filled with 500 cm3 of the unsterilized soil-sand mixture under greenhouse 

conditions. Seedlings of approximately the same age of each host plant tested were thinned to 

one plant per pot 2 or 3 weeks after planting. 

 

Seedlings of sugar beet (Beta vulgaris cv. Ariana) were raised in seed beds in sand under 

greenhouse conditions at 22°C. Three weeks old sugar beet seedlings were then transplanted, 

one plant/pot, into plastic pots filled with 500 cm3  of the unsterilized soil-sand mixture. 
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Potato tubers were pregerminated at room temperature in the dark for two to three weeks. 

Sprouts approximately 2 cm in length with adjacent tuber tissue were cut and sowed two 

pieces/pot in plastic pots filled with the soil mixture. After two weeks the plants were thinned 

to one plant/pot. 

 

2.2 Rhizobium etli strain G12   

 

The rhizobacterium R. etli strain G12 was originally isolated from the rhizosphere of potatoes 

(Racke and Sikora 1992). The bacterium was initially identified as Agrobacterium 

radiobacter and in 1998 was renamed Rhizobium etli. This rhizobacterium has been shown to 

reduce early root infection by G. pallida (Hasky-Günther et al., 1998) and the root-knot 

nematode, M. incognita (Hallmann, 2001). R. etli was grown on King’s B agar (King et al., 

1954) for 48 hours at 25°C. Storage of the bacteria for long periods was made in King’s B 

nutrient solution (pH 5.8) amended with 20% glycerol at –80°C. Bacterial inoculum was 

produced by transferring one loop of bacteria from the agar into 100 ml flasks containing 50 

ml of King’s B nutrient solution for fermentation. The flasks were placed on a rotary shaker at 

100 rpm and the bacterial suspension was incubated at 28°C for 24 hours. The bacterial 

suspension was then centrifugated at 8000 rpm for 10 minutes and the pelleted bacterial cells 

were resuspended in sterile ¼ strength Ringer-solution (Merck). The bacterial density of R. 

etli G12 was adjusted to optimal density OD560nm= 2.0 which equalled approximately 1010 

colony forming units cfu/ml.  

The bacterial suspensions used were applied as a soil drench in all experiments. The bacteria 

in Ringer-solution was inoculate in 5 ml of the bacterial suspension (1010cfu/ml) per plant by 

pipetting the solution in three or four holes made in the root zone to a depth 4 cm. The control 

was treated with 5 ml of Ringer-solution. 

 

2.3 Plant Parasitic Nematodes        

 

The three root-knot species of Meloidogyne, M. incognita race 3 (Kofoid and White, 1919) 

Chitwood 1949, M. javanica (Treub, 1885) Chitwood 1949 and M. arenaria (Neal, 1889) 

Chitwood 1949 race 1 used in this chapter were discussed in chapter 2 (see 2.3). 
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The potato cyst nematode, Globodera pallida was originally isolated from an infested potato 

field in Wegberg, district Heinsberg and multiplied on the potato cv. Hansa by sowing one 

germinated potato pieces/pot (16 cm in diameter) filled with G. pallida infected soil under 

greenhouse conditions (20°C). Pots were watered daily and fertilized every week with 10 

ml/plant of Poly Crescol (14+10+14, 2g/liter water). After three months the watering was 

stopped, the potato tuber and the potato shoot were discarded. The soil was then added to a 

container and stored dry at 15°C in the dark. 

  

The sugar beet cyst nematode, Heterodera schachtii, originated from a culture maintained on 

sugar beet cv. Ariana in plastic pots filled with a sterilized mixture of sand/soil (2:1, v/v) in a 

greenhouse at 22°C. Two weeks after transplanting of sugar beet seedlings into these pots, 

each plant was inoculated with 2000 H. schachtii juveniles. These pots were used as a stock 

culture for the experiments. Cysts were extracted 8 weeks after  nematode inoculation. 

 

Cysts of Globodera and Heterodera were extracted by a wet sieve technique (modified after 

Ayoub, 1980) using a 800µm and 250µm sieves. Cysts were separated from the organic 

material by washing the residue on 250µm sieve, containing the cysts and organic material, 

with MgSo4-solution (1.28 g/ml, Merck) into 100 ml glass tubes containing additional MgSo4-

solution. The test  tubes were left for 5 minutes during which the cysts float and the organic 

material sinks. The upper 1/3 of the solution which contains the cysts was poured through a 

250µm sieve to collect the cysts. The cysts  were then washed immediately with tap water to 

remove the Mg So4-solution and to prevent damage to the eggs.  

 

Eggs and juveniles were separated from the cyst wall in a tissue homogenizer by putting the 

extracted cysts with a little tap water into the homogenizer. The cysts were carefully squashed 

and then the homogenizer  contents were poured through two combined 45µm and 25µm 

sieves to separate the eggs and juveniles from the cyst wall. Eggs and juveniles were collected 

on the bottom of the 25µm sieve and washed with tap water and then the number of eggs and 

juveniles/ml were counted under microscope.     
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The root-lesion nematode, Pratylenchus zeae, was cultured in vitro on Murashige medium 

(Sigma) using excised maize roots as a food source. The culture was supplied by Dr. John 

Bridge, CABI, UK. The medium was prepared as follow: 

10 g            Murashige medium (Sigma) 

15 g           Agar agar  

1000 ml     Dist. Water 

The media was autoclaved for 20 minutes at 121°C. Media and was poured into Petri dishes 

when cooled down to 40°C. Maize seeds cv. Hybridmais Liberal were surface sterilized first 

by soaking in ethanol (95%) for 40 seconds and then in a sodium hypochlorite solution 

containing 2.5% active chlorine. After sterilization, the grains were washed 4-5 times with 

sterile water and placed on Murashige medium in Petri dishes and incubated at 24°C for 5-7 

days in the dark. After 7 days the seed was severed from the roots and removed from Petri 

dishes. The remaining roots were then inoculated with a disc of old Murashige media having a 

high number of P. zeae. The newly inoculated nematode Petri dishes were incubated under 

dark conditions at 24°C. The nematodes were extracted after 12 weeks for experimental 

purpose on Oostenbrink dishes.   

 

2.4 Statistical Analysis   

 

Data were analysed according to standard analysis of variance by a one way ANOVA with the 

software statgraphics (Statistical Graphics Crop., Rockville, MD). Variance of homogeneity 

for all treatments was confirmed by the Bartlett test. The comparison between means was 

carried out either  with Duncan’s Multiple Range Test or by using the T-Test at P<0.05 as 

given in the tables and/or figures. 
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3. Experimental Program 

 

3.1 Influence of plant species on the biological control activity of the antagonistic 

rhizobacterium R. etli G12 toward the root-knot nematode M. incognita 

       

3.1.1 Introduction 

 

Several rhizosphere bacteria with antagonistic activity against plant parasitic nematodes have 

been identified. Becker et al., (1988) reported that rhizosphere bacteria were effective against 

M. incognita and caused a reduction of root galling on tomato and cucumber in greenhouse 

tests. Sikora (1988) found that Bacillus subtilis was also effective in controlling M. incognita 

on cotton and sugar beet, M. arenaria on peanut and Rotylenchulus reniformis on cotton. 

Strains of Pseudomonas chitinolytica also were shown to reduce M. javanica on tomato as 

reported by Spiegel et al., (1991).  Racke and Sikora (1992) found that the rhizobacteria 

Agrobacterium radiobacter and Bacillus sphaericus caused significant reduction in potato 

root infection by Globodera pallida. Smith (1994) reported that Bacillus sp. strain 23a 

reduced M. javanica densities on tomato. B. cereus strain S18 decreased M. incognita on 

tomato as reported by Keuken (1996). Hallmann (2001) reported that Rhizobium etli strain 

G12 has been shown to control species of Meloidogyne on tomato. 

 

Little is known, however, about the influence of plant species on the antagonistic activity of a 

specific rhizosphere bacteria strain (Sikora, 1988; Keel et al., 1991). The aim of this work was 

to evaluate the influence of host plant species on the antagonistic activity of the rhizosphere 

bacterium R. etli strain G12 towards M. incognita.     

 

3.1.2 Materials and Methods 

 

In this experiment five different host plants were used. The tested crops were tomato cv. 

Hellfrucht Frühstamm, cucumber cv. Vorgebirgs Trauben, pepper cv. Yolo Wonder B, cotton 

cv. Carolina Queen and soybean cv. Young Soybean. Three week old plants were inoculated 

with 5 ml of R. etli G12 bacterial suspension (1010 cfu/ml) applied as a soil drench as  
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mentioned before (see 2.2). Controls were treated with 5 ml Ringer-solution. The soil 

substrate used was a non-sterilized soil-sand mixture (1:2, v/v). Three days after bacteria 

inoculation each plant was inoculated with M. incognita by pipetting 2000 eggs in three holes 

in the root zone as described in chapter 2 (see 2.3). Plants inoculated with R. etli G12 or M. 

incognita alone also served as controls. Each treatment was replicated 8 times and plants were 

arranged in a completely randomised design in the greenhouse at a mean temperature of 25°C. 

Plants were fertilized every week with 10 ml/plant of Poly Crescol (14+10+14, 2g/liter 

water). Each crop plant was tested separately because of the size of the overall experiment. 

Experiments were terminated 8 weeks after nematode inoculation. The following plant growth  

parameters were recorded: shoot and root fresh weight and root length. Root length was 

measured using a Comair Root Scanner (Hawker De Havilland, AUS). Gall index, number of 

galls and egg masses also were recorded. Gall index was measured as described by Zeck 

(1971) on a scale from 0-10. Egg masses of M. incognita were recorded by dipping the roots 

in 0.015% Phloxine B staining-solution for 20 minutes as described by Daykin and Hussey 

(1985) and then washing the stained roots with tap water to remove the residual Phloxine B.       

 

3.1.3 Results and Discussion 

 

The R. etli G12 treated vegetable plants (tomato, cucumber and pepper) showed a significant 

reduction in gall index when compared with the bacterial untreated plants of the same crop 

species (Fig. 1). A mean reduction in the gall index of approximately 45% over all three 

vegetable crops was measured. The bacteria, however, only reduced galling to a level of 

approximately 20% on the field crops cotton and soybean. The reduction in the galling index 

for all crops ranged from 17% for cotton to 50% for tomato. 

 

Important was the fact that efficacy as measured by counting the actual number of galls per 

root system, did not show a strong influence of crop species on the level of biocontrol (Fig. 

2a). Even though the level of control varied between the tested crops when efficacy was 

measured as a reduction in galling index. The reduction in the number of galls per root system 

was equally high for both the vegetable and the field crops with reductions on tomato of  
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(47%) followed by cotton (41%), pepper (39%), soybean (38%) and (34%) on cucumber (Fig. 

2a).  

 

When the differences in biocontrol efficacy on the different crops was compared using galls 

per gram root, however, there was an increase in biocontrol on pepper, cucumber and cotton 

over tomato and soybean (Fig. 2b). 

 

Results also revealed that an even higher significant reduction in the number of galls per gram 

root was obtained on the vegetable crops pepper and cucumber on a per gram root basis (Fig. 

2b). The significant reduction in the number of galls/gram root was (57%) for pepper; (54%) 

for cucumber and (53%) for cotton. 
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Figure 1: Effect of Rhizobium etli G12 on the gall index of Meloidogyne incognita on 

different host plants 8 weeks after nematode inoculation in percent of the control. Each plant 

reflect the results of a separate experiment. Columns under one species with * indicate 

significant differences when compared with the same crop plant treated with Meloidogyne 

incognita alone (P<0.05, n=8, T-Test). 
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Figure 2: Effect of Rhizobium etli G12 on the number of galls per root system (A) and per 

gram root (B) of Meloidogyne incognita on different host plants 8 weeks after nematode 

inoculation in percent of the control. The columns for each plant reflect the results of a 

separate experiment. Columns under one species with * indicate significant differences when 

compared with the same crop plant treated with Meloidogyne incognita alone (P<0.05, n=8, 

T-Test). 
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Plant species did affect efficacy when the number of egg masses per root system  was taken 

into consideration (Fig. 3a). Egg mass number is a measure of the level of nematode 

development and an indication that the adult egg laying stage has been reached. The reduction 

in number of egg masses/root system was extremely high for pepper (70%) and tomato (62%)  

and lower for cucumber (47% ), cotton (47%) and lowest for soybean (37%) on a per root 

system basis (Fig. 3a ).  

 

The higher reduction in number of egg masses/gram root was shown with the same crops 

(80%) for pepper; (63%) for cucumber and (57%) for cotton (Fig. 3b).  

 

The results, verified earlier findings that showed that R etli G12 has a direct effect on 

nematode root penetration leading to a reduction in the number of females developing in the 

root and therefore overall galling levels. Slight differences, especially those associated with 

high levels of variation as seen in these tests envolving plant species interactions with a 

biocontrol agent,  require more exact criteria of measurement such as number of galls or 

number of females per gram root since some antagonistic agents can directly increase root 

growth.  

 

A new finding was the detection of a significant reduction in the number of egg masses 

produced per root system  as affected R. etli and by crop species. These results indicate that 

either (1) nematode penetration is delayed or (2) bacteria influences the speed of juvenile 

development to the adult stage after the nematode penetration the roots. 

 

Results obtained also revealed that the rate of reduction in the number of galls and egg masses 

varied when the efficacy was counted per gram root compared with efficacy counted per root 

system. This variation in efficacy may be due to the growing rate of each root crop, as the 

roots of tomato, cucumber and soybean grow faster than the other crops. 

 

The results demonstrated that a subjective root galling index is not exact enough for 

determining differences in efficacy of interactions between the different plant species.  
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Standard galling indexes are often used for nematicide studies where differences in galling 

between the control and the chemical treatment are often extremely high.    

 

The results obtained indicated that:  

(1) R. etli can significantly reduce root-knot on a wide range of host plants 

(2) host plant species has an influence on the level of biocontrol activity of R etli G12, but not   

as strong as initally detected using galling indexes  

(3) biocontrol of the nematode by this bacteria on field crops is slightly poorer than control on   

vegetable crops  

(4) the bacteria reduces nematode infection on all crops over non-bacterial controls 

(5) speed of penetration or rate of juvenile development after nematode penetration of the root 

tissue seems to be adversely affected by the bacteria.   

 

The mode of action envolved in the biocontrol of root-knot nematode may be: (1) systemic 

induced resistance (2) alteration in root exudates of the crop plants that affect attraction and/or 

penetration of the nematode thereby delaying development and (3) bacterial production of 

toxic metabolites that affect nematode behaviour.  

 

The broad effectivity of R. etli G12 on different plant species can probably be best explained 

by its known ability to induced resistance. Induced systemic resistance is defined as an 

enhancement of plant defense mechanisms in a broad spectrum of plants against several 

pathogens (Schönbeck et al., 1993). R. etli G12 induced resistance to nematodes was first 

described for cyst nematodes by Hasky-Günther et al., (1998) and studied in detail by Reitz et 

al. (2000, 2001).   
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Figure 3: Effect of Rhizobium etli G12 on the number of egg masses per root system (A) and 

per gram root (B) of Meloidogyne incognita on different host plants 8 weeks after nematode 

inoculation in percent of the control. The columns for each plant reflect the results of a 

separate experiment. Columns under one species with * indicate significant differences when 

compared with the same crop plant treated with Meloidogyne incognita alone (P<0.05, n=8, 

T-Test). 
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Figure 4: Effect of Rhizobium etli G12 on the shoot (A) and root (B) fresh weight of different 

host plants infected with Meloidogyne incognita measured 8 weeks after nematode 

inoculation in percent of the control. The columns for each plant reflect the results of a 

separate experiment. Columns under one species of plant with * indicate significant 

differences when compared with the same crop plant treated with Meloidogyne incognita 

alone (P<0.05, n=8, T-Test). 
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R. etli G12 biocontrol of root-knot led to increased plant growth of all crops tested, but the 

differences were  not always significant when compared to the bacteria free controls. Data 

showed increases in shoot weight for pepper when treated with R. etli G12 compared with the 

bacteria untreated plants of the same crop (Fig. 4a). A non-significant stimulation of shoot 

fresh weight was observed for plants treated with R. etli G12 combined with M. incognita 

ranging from 11% for soybean to 31% for pepper (Fig. 4a). 

 

Results also showed no significant increases in root weight for cucumber, cotton or soybean. 

Tomato and pepper showed significant enhancement in fresh root weight when treated with R. 

etli G12 compared with the control (Fig. 4b). The increase in root fresh weight was (39%) for 

tomato and (37%) for pepper.  

 

There were no significant differences in root length between nematode infested plants treated 

and non-treated with R. etli, even though, root length increases ranged from 11% for 

cucumber to 24% for pepper (Fig. 5). 
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Figure 5: Effect of Rhizobium etli G12 on root length of different host plants infected with 

Meloidogyne incognita measured 8 weeks after nematode inoculation in percent of the 

control. The columns for each plant reflect the results of a separate experiment. The 

differences between treatments were not significant when compared with the same crop plant 

treated with Meloidogyne incognita alone (P<0.05, n=8, T-Test). 
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The results revealed that the significant increases in fresh root weight for tomato and pepper 

was the result of significant antagonistic activity of R. etli G12 against M. incognita.  

 

3.2 Biocontrol activity of R. etli G12 towards different species of Meloidogyne on tomato 

 

3.2.1 Introduction 

 

Different studies have dealt with the role of rhizobacteria in controlling plant parasitic 

nematodes. All of these studies concentrated on the effects on a specific plant parasitic 

nematode such as: M. incognita (Becker et al., 1988, 1989, Kloepper et al., 1992); M. hapla 

(Honglin et al., 1995); M. javanica (Spiegel et al., 1991); Criconemella xenoplax (Kluepfel et 

al., 1993); Heterodera glycines (Kloepper et al., 1992); H. schachtii (Oostendorp and Sikora, 

1989, 1990); G. pallida (Racke and Sikora, 1992); M. incognita (Keuken, 1996) and G. 

rostochiensis (Cronin et al., 1997). The control potential of one antagonistic rhizobacterium 

toward a broad spectrum of species within the same nematode genus has not been studied. 

The objective of this study was to evaluate the biocontrol activity of R. etli G12 towards 

different species of Meloidogyne on one host plant. This was important due to the fact that (1) 

tomato is infested by many species of root-knot world wide and (2) in some fields multiple 

species complexes can exist (Sasser and Freckman, 1987). 

 

3.2.2 Materials and Methods 

 

Egg extraction of the three different species of root-knot nematodes, M. incognita, M. 

javanica and M. arenaria was outlined in chapter 2 (see 2.3). Three week old tomato plants 

cv. Hellfrucht Frühstamm were inoculated with 5 ml of the bacterial suspension (1010 cfu/ml) 

per plant as a soil drench. Controls received 5 ml Ringer-solution. The soil substrate used was 

a non-sterilized mixture of soil-sand (1:2, v/v). Plants were inoculated after three days with 

2000 eggs per plant of either M. incognita, M. javanica or M. arenaria by pipetting the 

solution in three holes in the root zone. Nontreated plants as well as plants treated with R. etli 

G12 or the nematodes alone served as controls. Each treatment was replicated 8 times within 

a completely randomised design under greenhouse conditions with a mean temperature of  
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25°C and 12 hours of artificial light per day.  

 

Plants were watered every day and fertilized weekly with 10 ml/plant of Poly Crescol 

(14+10+14, 2g/liter water). The experiment was terminated 8 weeks after nematode 

inoculation and fresh shoot and root weight as well as root length, gall index, total number of 

galls and egg masses were determined. 

 

3.2.3 Results and Discussion 

 

All plants treated with R. etli G12 had a reduced degree of root galling for all three species of 

Meloidogyne. This reduction varied between the different species of Meloidogyne. A 

significant reduction in gall index was observed for all the tested three species M. incognita, 

M. javanica and M. arenaria. For M. incognita and M. javanica the reduction in gall index 

was approximately 50% and for M. arenaria it was 27% compared with the bacteria untreated 

plants (Fig. 1). 
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Figure 1: Effect of Rhizobium etli G12 applied as a drench on the gall index of Meloidogyne 

incognita (Mi), M. javanica (Mj) and M. arenaria (Ma) on tomato eight weeks after nematode 

inoculation. Columns followed by * are significantly different compared with the plants 

treated with the same nematode species alone according to T-Test (P< 0.05) n=8. 
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Significant reductions in the number of galls was detected for  M. incognita (52%), M. 

javanica (50%). The non-significant reduction in number of galls was shown for M. arenaria 

when compared to the treated plants with nematode alone (Fig. 2a).  

 

Results also showed significant reductions in the number of egg masses. The reduction was 

(64%) for M. incognita and for M. javanica (46%). M. arenaria showed a non-significant 

reduction in number of egg masses when compared to the bacteria untreated plants (Fig. 2b).  

 

The results of this study demonstrated that R. etli G12 can reduce root-knot nematode 

infestation of multiple species on tomato plants. The level of biocontrol varied between the 

three species of Meloidogyne. The highest reduction in root galling, number of galls and egg 

masses was shown for M. incognita and M. javanica, with the lowest reduction seen for M. 

arenaria. These results also demonstrated that R. etli G12 reduced or delayed the penetration 

of both M. incognita and M. javanica. The antagonistic bacteria may also delay the process of  

development of the juveniles which succeeded in penetrating the roots as seen through the 

significant reduction in the number of egg masses.  

 

R. etli G12 only had a minor effect toward M. arenaria. This may be based on a need for a 

different mode of action of bacterial antagonists in relation to different nematode species 

(Hoffmann-Hergarten et al., 1998). M. arenaria is known to have a different host range than 

M.incognita and M. javanica. The fact that M. arenaria does not infect horticultural crops as 

effectively as M. incognita and M. javanica may also be a reason for poorer biocontrol.  

  

 

 

 

 

 

 

 

 



105 

Chapter III: Rhizobium etli strain G12 

 

(A) 

Mi Mi+G12 Mj Mj+G12 Ma Ma+G12
0

50

100

150

200

250

300
Number of galls 

* *

 

(B) 

Mi Mi+G12 Mj Mj+G12 Ma Ma+G12
0

20

40

60

80

100

120

140
Number of egg masses

*
*

 
 

Figure 2: Effect of Rhizobium etli G12 on the number of galls (A) and egg masses (B) of 

Meloidogyne incognita (Mi), M. javanica (Mj) and M. arenaria (Ma) on tomato eight weeks 

after nematode inoculation. Columns followed by * are significantly different compared with 

the plants treated with the same nematode species alone according to T-Test (P< 0.05) n=8. 
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A significant increase in fresh shoot weight was only seen with the plants treated with M. 

incognita alone (Fig. 3a). The other two species of Meloidogyne treated plants combined with 

R. etli G12 showed no significant enhancement in shoot weight when compared with the 

plants treated with each species alone. Results also showed non-significant enhancement in 

shoot weight for the plants treated with R. etli G12 alone compared with the non-treated 

control (Data not shown).   

  

Results showed significant increases in fresh root weight for the plants treated with R. etli 

G12 combined with M. incognita when compared with the plants treated with M. incognita 

alone (Fig. 3b). No significant increases in root weight was detected for the others species. 

Results also showed that non-significant enhancement in root weight for the treated plants 

with R. etli G12 alone compared with the non-treated control (Data not shown).   

 

Results showed significant increases in root length only for the plants treated with R. etli G12 

combined with M. incognita when compared with the plants treated with M. incognita alone 

(Fig. 4). 

 

In the treatments absolute control and  tomato treated with only R. etli G12 there was no 

enhancement of root length (control, 13 cm and R. etli, 12.5 cm) (Data not shown).  

 

The increase in root weight and length of R. etli G12 treated plants infested with the species 

of M. incognita indicates that R. etli G12 have ability to reduce nematode root injury by this 

species. This biocontrol leads to improved root weight and length. This means that 

enhancement refers to the antagonistic activity of R. etli G12 towards the different species of 

root-knot nematodes and not to direct plant growth promotion. 
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Figure 3: Effect of Rhizobium etli G12 on fresh shoot (A) and root (B) weight of tomato 

infected with Meloidogyne incognita (Mi), M. javanica (Mj) and M. arenaria (Ma) on tomato 

eight weeks after nematode inoculation. Columns followed by * are significantly different 

compared with the plants treated with the same nematode species alone according to T-Test 

(P< 0.05) n=8. 
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Figure 4: Effect of Rhizobium etli G12 on the root length of tomato infected with 

Meloidogyne incognita (Mi), M. javanica (Mj) and M. arenaria (Ma) on tomato eight weeks 

after nematode inoculation. Columns followed by * are significantly different compared with 

the plants treated with the same nematode species alone according to T-Test (P< 0.05) n=8. 

 

3.3 Effect of R. etli G12 inoculum density on biocontrol activity toward M.  incognita on   

      tomato 

 

 3.3.1 Introduction 

 

There are many different factors influencing the antagonistic activity of rhizobacteria towards 

plant pathogens and parasities. Some of them are biotic and others abiotic in nature. In 

addition, control can be influenced by fermentation systems and inoculum form. For example, 

different rhizobacteria inoculum densities have been shown to influence the antagonistic 

ability of the biocontrol agent Bacillus subtilis against different soil-borne potato diseases 

under greenhouse condition (Schmiedeknecht et al., 1998). Oostendorp and Sikora (1989) 

demonstrated that inoculum density was an important factor influencing the efficacy of 

Pseudomonas fluorescens toward Heterodera schachtii. Racke and Sikora (1992) revealed 

that the number of colony forming units (cfu) in the inoculum applied to the seed pieces of 

potato was important in determining the level of antagonistic activity toward Globodera 

pallida. The objective of this study was to determine the optimum R. etli G12 inoculum 

density for effective biocontrol of M. incognita on tomato. 
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3.3.2 Materials and Methods 

 

A non-sterilized sand-soil mixture (2:1, v/v) was prepared and 500 cm3 of soil added 

seperately to each experimental pot. The soil was first placed in plastic bags and each bag 

inoculated with 3000 M. incognita eggs. The bag was shaken vigorously to distribute the eggs 

homogeneously into the soil. The soil of each bag was then put into 500 cm3 experimental 

plastic pots. The nematode untreated soil served as controls. Three week old tomato plants cv. 

Hellfrucht Frühstamm were dipped for 30 minutes in different bacterial suspensions of R. etli 

G12 produced as described before (see 2.2). The tested bacterial concentrations were: 104, 

106, 108 and 1010 cfu/ml. The different bacterial suspensions were prepared in 500 ml glass 

beaker containing 500 ml sterilized ¼ strength Ringer-solution as follow: 

a) 1010 cfu/ml 

b) 108 cfu/ml: 5 ml of 1010  +  495 ml Ringer-solution 

c) 106 cfu/ml: 5 ml of 108  +  495 ml Ringer-solution  

d) 104 cfu/ml: 5 ml of 106  +  495 ml Ringer-solution 

From each concentration two serial dilution replicates were prepared to calculate the actual 

number of cfu/ml. The nematode treated soil alone or the roots dipped in Ringer-solution 

served as controls. After dipping the tomato roots in the different bacterial suspensions each 

plant from each treatment was transplanted into pots. Each treatment was replicated 8 times in 

a completely randomised design under greenhouse conditions at approximately 25°C with 12 

hours/day of artificial light. Plants were watered daily and fertilized every week with 10 ml 

per plant of Poly Crescol (14+10+14, 2g/liter water).  

 

The experiment was terminated 8 weeks after nematode inoculation. The  plants were 

removed and the roots were washed carefully with tap water. The fresh shoot and root weight, 

root length, gall index, total number of galls and egg masses was evaluated. 
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3.3.3 Results and Discussion 

 

The results revealed that all the tested R. etli G12 densities reduced the degree of nematode 

galling. This reduction increased with increasing inoculum densities. A significant reduction 

in gall index was obtained with 108 and 1010 cfu/ml (32% and 40%) (Fig. 1).  

 

Similar results were obtained when number of galls was counted. Plants treated with 108 and 

1010 cfu/ml of R. etli G12 showed significant reductions in the number of galls (33% and 

36%) respectively compared with the plants treated with M. incognita alone (Fig. 2a). 

 

A significant reduction in number of egg masses was observed at densities 106, 108 and 1010 

cfu/ml of R. etli compared with the nonbacterized plants (Fig. 2b).       
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Figure 1: Effect of different inoculum densities of Rhizobium etli G12 applied as a drench on 

the gall index of Meloidogyne incognita on tomato 8 weeks after nematode inoculation. 

Columns followed by different letters are significantly different from another according to 

Duncan’s Multiple Range Test (P< 0.05) n=8. 
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Figure 2: Effect of different inoculum densities of Rhizobium etli G12 applied as a drench on 

the number of galls (A) and egg masses (B) of Meloidogyne incognita on tomato 8 weeks 

after nematode inoculation. Columns followed by different letters are significantly different 

from another according to Duncan’s Multiple Range Test (P< 0.05) n=8. 
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Results found significant reductions either in root galling and in the number of galls and egg 

masses of M. incognita observed at inoculum densities of 106 to 1010 cfu/ml of R. etli G12. 

These results are similar to those obtained by Oostendorp and Sikora (1989) who found that 

the antagonistic activity of Pseudomonas fluorescens against H. schachtii increased when the 

inoculum density was increased. When the bacterial inoculum density was high it led to less 

effective nematode penetration that could be due to lowered oxygen levels at the root or to the 

interspecific competition caused by nutritional deficiency effects (Trolldenier, 1979; 

Oostendorp and Sikora 1989). 

 

Results showed that no significant differences between all the tested R. etli G12 inoculum 

densities combined with M. incognita in plant growth parameters either fresh shoot (Fig. 3a) 

and root (Fig. 3b)weight as well as root length (Fig. 4) compared with the treated plants with 

M. incognita alone. Plants treated with R. etli G12 alone were not used, because this bacteria 

alone had no effects on the plant growth enhancement in previous experiments (Data not 

shown).   
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Figure 3: Effect of different inoculum densities of Rhizobium etli G12 on the fresh shoot (A) 

and root (B) weight of tomato infected with Meloidogyne incognita 8 weeks after nematode 

inoculation. The differences between treatment were not significant according to Duncan’s 

Multiple Range Test (P< 0.05) n=8. 
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Figure 4: Effect of different inoculum densities of Rhizobium etli G12 on the root length of 

tomato infected with Meloidogyne incognita 8 weeks after nematode inoculation. The 

differences between treatment were not significant  according to Duncan’s Multiple Range 

Test (P< 0.05) n=8. 

 
 

3.4 Biocontrol activity of R. etli G12 towards sugar beet cyst nematode, H. schachtii  

 

3.4.1 Introduction 

 

Oostendorp and Sikora (1989) showed that when sugar beet seeds were treated with 

rhizobacteria, the early root penetration of H. schachtii in sugar beet was reduced under 

greenhouse and field conditions. Neipp and Becker (1999) also found that rhizobacteria 

treated sugar beet reduced H. schachtii numbers in roots. This nematode can occur with M. 

incognita together and causes significant economic losses in sugar beet production in 

subtropic regions. The objective of this study was to evaluate the possible antagonistic effects 

of R. etli G12 towards H. schachtii.   
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3.4.2 Materials and Methods 

 

Five millilitres of R. etli G12 bacterial suspension (1010cfu/ml) were inoculated into the soil 

by pipetting it in three holes around the roots of three weeks old sugar beet plants cv. Ariana 

grown as described before (see 2.1). Three days later 1000 juveniles of H. schachtii were 

inoculated per plant by pipetting them into holes around the root zone. The soil substrate used 

was a non-sterilized soil-sand mixture (1:2, v/v). Plants receiving 5 ml Ringer-solution or 

treated with R. etli G12 or H. schachtii alone served as controls. Treatments were replicated 8 

times in a completely randomised design under greenhouse conditions at 22°C with a 12 

hours/day of artificial light. Plants were watered every day and fertilized every week with 10 

ml per plant of Poly Crescol (14+10+14, 2g/liter water).  

 

Eight weeks after nematode inoculation the plants were removed to determine fresh shoot and 

root weight, number of cysts per plant and number of eggs and juveniles per cyst and per 

plant.   

 

3.4.3 Results and Discussion 

 

Results of this study showed a significant reduction in H. schachtii infection when plants 

were treated with R. etli G12 compared with the bacteria untreated plants. The number of 

cysts per plant was reduced significantly by 63% when H. schachtii infested plants were 

treated with R. etli G12 compared with the bacteria untreated plants (Fig. 1a). Results also 

showed that R. etli G12 reduced significantly the number of eggs and juveniles per plant by 

65% (Fig. 1b). These results indicate that the rhizobacterium R. etli G12 may inhibit the early 

root penetration of H. schachtii into sugar beet. Similar results with other bacteria were 

obtained by Oostendorp and Sikora (1989). R. etli G12 is a gram-negative bacteria and it may 

have lectin binding structures. The reduction in nematode penetration may be related to the 

ability of this bacteria to bind to root surface lectins, thereby interacting with normal host 

recognition ( Lotan et al., 1975).  
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A non-significant reduction was detected for the number of eggs and juveniles per cyst 

compared with the plants treated with H. schachtii alone (Fig. 1b). The non-significant 

reduction in number of eggs and juveniles per cyst may indicate that R. etli G12 does not have 

the ability to affect the developmental process as shown by Kluepfel et al., (1993). 

 

Results also revealed that R. etli G12 treated plants showed significant enhancement in both 

fresh shoot and root weight when compared with bacteria untreated plants (Fig. 1c). Data also 

showed  no significant differences in fresh shoot and root weight in plants treated  with R. etli 

G12 alone compared with the control (Data not shown). Although R. etli did not enhance root 

and shoot growth alone, the antagonistic activity of R. etli G12 toward H. schachtii did 

compensate for root loss due to H. schachtii.  
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Figure 1: Effect of Rhizobium etli G12 on the number of Heterodera schachtii cysts/plant (A); 

number of eggs and juveniles/cyst and per plant (B) and on fresh shoot and root weight (C) of 

sugar beet. Columns followed by different letters are significantly different from another 

according to Duncan’s Multiple Range Test (P< 0.05) n=8. 
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3.5 Biocontrol activity of R. etli G12 on potato cyst nematode, G. pallida             

      reproduction 

 

3.5.1 Introduction 

 

A number of studies dealt the biological control of G. pallida on potato using rhizobacteria. 

Racke and Sikora (1985) found that when the potato tuber was treated with R. etli G12 it 

inhibited early root penetration of G. pallida in potato under greenhouse and field conditions. 

These bacteria were isolated from the potato rhizosphere. They also reduced the reproductive 

capability of G. pallida in one field trial. The objective of the following test was to re-

confirmed the influence of R. etli G12 on the reproduction capacity of G. pallida under 

control conditions .   

 

3.5.2 Materials and Methods 

 

Three week old potato cv. Hansa grown as described before (see 2.1) were inoculated with a 5 

ml R. etli G12 bacterial suspension (1010cfu/ml) prepared as described before (see 2.2) and 

applied as a soil drench by pipetting into 3-4 holes around the root zone. Three days later the 

plants were inoculated with 1000 juveniles of G. pallida per plant by pipetting into 4 holes 

made around the root zone. The soil substrate was a soil-sand mix.(1:2, v/v). The soil used 

was a nonsterilized soil. Plants receiving 5 ml of Ringer-solution or treated with R. etli G12 or 

G. pallida alone served as controls. Each treatment was replicated 8 times in a completely 

randomised design under greenhouse conditions. Plants were watered daily and fertilized 

weekly with 10 ml per plant of Poly Crescol (14+10+14, 2g/liter water).  

 

Plants were removed 8 weeks after nematode inoculation to evaluate the fresh shoot and root 

weight as well as number of cysts per plant, number of eggs and juveniles per cyst and per 

plant. 
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3.5.3 Results and Discussion 

 

Results of this study revealed that all R. etli treated plants showed a significant reduction in 

nematode infection compared with the treated plants with G. pallida alone. Plants treated with 

R. etli G12 showed a significant reduction of 28% in the number of cysts per plant when 

compared with the plants treated with G. pallida alone (Fig. 1a). Results also showed that the  

number of eggs and juveniles per cyst and per plant were reduced significantly by 24 and 49% 

respectively for the plants treated with R. etli G12 combined with G. pallida compared with 

the G. pallida treated plants alone (Fig. 1b). 

   

These results revealed that when potato plants were treated with the rhizobacterium R. etli 

G12, the number of cysts/plant, the number of eggs and juveniles per cyst and per plant were 

significantly reduced compared with the plants treated with G. pallida alone. Similar results 

were obtained by Racke and Sikora (1985; 1986). They found that when the rhizobacteria 

were applied to potato seed pieces it caused significant decreases in early root infection of the 

potato cyst nematode. Hackenberg and Sikora (1990) and Racke and Sikora (1992) confirmed 

that the antagonistic rhizobacterium Agrobacterium radiobacter (now R. etli) suppressed G. 

pallida early root penetration by 20 to 40% in greenhouse and field experiments. The 

reduction in G. pallida root penetration may be due to the heavily colonized root tips that may 

cause alteration of root exudates that affects nematode attraction to the root (Racke and Sikora 

1992). Induced systemic resistance may also play a major role against G. pallida (Hallmann et 

al., 1998; Hasky-Günther et al.; 1998; Reitz et al., 2000)  

 

Results also showed that there was no significant effect of R. etli G12 on plant shoot growth 

enhancement when compared with the plants treated with G. pallida alone. R. etli G12 treated 

plants combined with G. pallida showed non-significant enhancement in shoot weight (Fig. 

1c). However plants treated with R. etli G12 combined with G. pallida showed significant 

enhancement in root weight compared with the plants treated with G. pallida alone (Fig. 1c). 

The significant enhancement in root weight for the bacteria treated plants combined with G. 

pallida may be due to colonization of R. etli G12 on or in the roots. This colonization may 

protect the root against nematode penetration and allows the roots to grow strongly. 
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Figure 1: Effect of Rhizobium etli G12 on the number of Globodera pallida cysts/plant (A); 

number of eggs and juveniles/cyst and per plant (B) and on fresh shoot and root weight (C) of 

potato. Columns followed by different letters are significantly different from another 

according to Duncan’s Multiple Range Test (P< 0.05) n=8. 



121 

Chapter III: Rhizobium etli strain G12 

 

3.6 Biocontrol activity of R. etli G12 towards root-lesion nematode, P. zeae on maize 

 

3.6.1 Introduction 

 

Several plant species are hosts for the migratory endoparasitic root-lesion nematode, P. zeae 

Graham. These nematodes cause high losses in important agricultural crops. Very little is 

known about the activity of rhizobacteria on migratory endoparasitic plant nematodes. 

Kluepfel et al., (1993) found that rhizobacteria seem to have the potential to reduce plant 

damage due to the ectoparasitic nematode Criconemella xenoplax. The objective of this study 

was to evaluate the ability of the rhizobacterium, R. etli G12 to control the root-lesion 

nematode, P. zeae on maize. 

 

3.6.2 Materials and Methods 

 

Three weeks old maize plants cv. Hybridmais Liberal grown as mentioned before (see 2.1) 

were inoculated with 5 ml of R. etli G12 bacterial suspension (1010cfu/ml) as a soil drench. 

Three days after bacteria inoculation, 600 juveniles of P. zeae produced as described before 

(see 2.3) were pipetted into 3-4 holes around the roots. Plants treated only with Ringer-

solution or inoculated with R. etli G12 or P. zeae plants served as controls. Treatments were 

replicated 8 times in a completely randomised design in the  greenhouse at 25°C with a 12 

hours/day of artificial light. Plants were watered daily and fertilized weekly with 10 ml per 

plant of Poly Crescol (14+10+14, 2g/liter water).  

 

Fresh shoot and root weight as well as number of nematodes per root system were measured 8 

weeks after nematode inoculation. The number of nematodes per root system were determined 

by dipping the roots of treated plants either with P. zeae alone or combined with R. etli G12 

separately into glass tubes containing lactic acid/fuchsin acid (0.1%) staining solution. Roots 

were left for 30 minutes in the staining solution and then heated in a microwave for 10-20 

seconds to stain the nematode inside the roots (Ferris, 1985). The roots were washed to 

remove the residual staining solution and then were macerated in water using an Ultra-Turrax 

(20,000 rpm). Stained nematodes were then counted using a binocular and a counting dish. 
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3.6.3 Results and Discussion 

 

Results of this study revealed that plants treated  with R. etli G12 showed non-significant 

reduction in the number of P. zeae nematodes per root system compared with the bacteria 

untreated plants (Fig. 1). 

 

Results also showed that there was no significant difference in the number of  nematode per 

gram root compared with the bacteria untreated plants (Fig. 1).  

 

The results demonstrated that R. etli G12 does not have an antagonistic potential toward P. 

zeae on maize. The findings were not in agreement with those obtained by Kluepfel and 

McInnis (unpublished data) who found that some strains of rhizobacteria stimulated nematode 

population increase. These results infer that the mode of action of bacteria differed between 

nematodes of different genera of plant parasitic nematodes (Sikora and Hoffmann-

Hergarten,1993; Hasky-Günther, 1996;  Hoffmann-Hergarten et al., 1998).   
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Figure 1: Effect of Rhizobium etli G12 on the number of Pratylenchus zeae on maize eight 

weeks after nematode inoculation. Results not significantly different according to Duncan’s 

Multiple Range Test (P< 0.05) n=8. 
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Figure 2: Effect of Rhizobium etli G12 on the fresh shoot (A) and root (B) weight of maize 

infected with Pratylenchus zeae eight weeks after nematode inoculation. Results were not 

significantly different according to Duncan’s Multiple Range Test (P< 0.05) n=8. 
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R. etli treated plants showed no significant enhancement in either fresh shoot (Fig. 2a) or root 

(Fig. 2b) weight compared with non-bacterized plants. These results may show that maize 

roots are not supportive of R. etli G12 establishment which also resulted in the lack of 

antagonistic activity of R. etli G12 against P. zeae. 

 

3.7 General Conclusions  

A) Rhizobium etli strain G12 exhibited strong biocontrol activity towards the root-knot 

nematode, Meloidogyne incognita on different host plants. The reduction rates, however, 

varied between the different crops.  

 

B) R. etli G12 had the ability to control three economically important species within the genus 

Meloidogyne. However, the reduction varied greatly between the different species. The 

highest reduction was against M. incognita and M. javanica, whereas R. etli had little effect 

on M. arenaria.  

 

C) Increasing inoculum densities of R. etli G12 caused increased reductions in nematode 

infection. Biocontrol required a minimum density of 108 cfu/ml for root galling reduction 

whereas a reduction in  number of galls occurred at 1010 cfu/ml. Significant reductions in egg 

masses was detected at  bacterial densities of 106 to 1010 cfu/ml.  

 

D) R. etli G12 treated plants caused significant reductions in sugar beet cyst nematode, 

Heterodera schachtii infection. R. etli reduced significantly the number of cysts/plant and the 

number of eggs and juveniles/plant. The bacteria did not affect  the number of eggs and 

juveniles per cyst and therefore the reproduction activity of the individual female. 

 

E) R. etli G12 reduced infection by the potato cyst nematode, Globodera pallida. The number 

of cysts/plant, number of eggs and juveniles per cyst and per plant were reduced significantly 

when plants were treated with R. etli G12 combined with G. pallida. 

 

F) R. etli G12 had no effect towards the migratory endoparasitic root-lesion nematode, 

Pratylenchus zeae on maize. 
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1. General Introduction 

 

Pasteuria penetrans (Thorne) Sayre and Starr is a gram positive bacterium and one of the 

most promising biological control agents of root-knot nematodes, Meloidogyne spp. This 

bacterium is a widespread obligate spore-forming parasite with a mycelial-like vegetative 

stage (Brown et al., 1985; Stirling 1991; Dickson et al., 1994; Chen et al., 1996). P. penetrans 

prevents Meloidogyne spp. reproduction (Sayre and Werign, 1977) and reduces the ability of 

juveniles to penetrate roots. The attachment of the endospores to the cuticle of the nematodes 

is the first step in the life cycle of the bacterium and is essential for its reproduction (Freitas et 

al., 1997). Pasteuria spp. have been associated with more than 200 different nematode species 

belonging to 100 nematode genera (Sayre and Starr, 1988; Sturhan, 1989). More recently P. 

penetrans has shown great potential in suppressing field populations of several plant parasitic 

nematodes throughout the world (Fulton, 1998), especially root-knot nematodes, Meloidogyne 

spp.( Dickson et al., 1994; Chen and Dickson, 1998). 

 

Life cycle of P. penetrans  

 

The non-motile endospores of Pasteuria attach to the cuticle of second stage juveniles when 

juveniles migrate through the soil. Nematodes with 10-15 attached spores are less capable of 

invading roots (Davies et al., 1988). Nematodes that carry fewer than 5 spores may escape 

parasitism because the spores become detached before or during root invasion (Ratnasoma et 

al., 1991) or because the spores fail to germinate. However, when the juveniles have an  

optimum number of 5-10 spores/juveniles of P. penetrans spores attached to their cuticle, the 

spores begin to germinate after the juveniles penetrate into roots. The germ tube from the 

spores penetrates the nematode cuticle and microcolonies are formed that proliferate through 

the body. These colonies develop into a vegetative spherical colony consisting of 

dichotomously branched, septate mycelium (Sayre and Starr, 1988). The cub-shaped 

sporangia develops to endospores that completely fill the nematode body (Fig. 1). Infected 

females of Meloidogyne spp. can contain up to 2.5 million non-motile endospores (Hewlett 

and Dickson, 1993) that are released into the soil environment upon degradation of the 

nematode carcass.     
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Figure 1: Life cycle of  Meloidogyne spp. with and without Pasteuria penetrans (Fulton, 

1998) 
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Outer cycle 

 

1) juveniles penetrate root tip, 2) migrating intercellularly in cortex, 3) juveniles establishing 

feeding sites in the vascular system, P. penetrans endospores germinate, 4) third-stage 

juveniles, 5) fourth-stage juveniles, and 6,7) young females, 8) female infected with P. 

penetrans lays no eggs, whereas a healthy female forms an egg mass, and 9) infected female 

body degrades and releases mature endospores into soil.  

 

Inner cycle 

 

The inner cycle illustrates the life cycle of P. penetrans and its various developmental stages. 

a) mature endospores, b) endospore attached to cuticle of Meloidogyne, c) germinating 

endospore, d) microcolonies formed, e) septations in rapidly growing thallus, f) 

dichotomously branched hyphae with elongated terminal cells, g) fragmented thalli separated 

from the thallus and visible forespore, h) cell wall separates forespore from parasporium of 

the egg-shaped sporangium, i) differentiation of spore core and perisporal fibers, j) mature 

endospores surrounded by exosporium and sporangium, and k) endospores released into soil. 
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2. General Materials and Methods 

 

2.1 Root-knot nematodes, Meloidogyne spp. 

 

The cultures of the different root-knot nematode species of Meloidogyne were discussed in 

chapter II (see 2.3). Eggs of Meloidogyne spp. were extracted from infected tomato roots by 

using 1.05% sodium hypochlorite according to the modified method of Hussey and Barker 

(1973) as described in chapter II (see 2.3). The eggs collected  on a 20µm sieve were poured 

into a Duran bottle filled with 500 ml tap water and aerated continuously for 10 days at room 

temperature. The hatched juveniles were separated from the unhatched eggs using the method 

of Oostenbrink (1960) and the number of juveniles/ml was counted. Gall index was measured 

as described by Zeck (1971) on a scale from 0-10.  

 

2.2 Pasteuria penetrans 

 

2.2.1 P. penetrans Isolates 

 

Seven P. penetrans isolates were evaluated for their ability to attach to M. incognita juveniles 

in the first experiment. The seven P. penetrans  isolates tested were: 

 

Country Abbreviation Country Abbreviation 

Barbados Pp Bar South Africa Pp3 

Great Britain Pp GB Papua New Guinea Pp PNG 

Malawi Pp Mal Australia Pp1 

Ivory Coast Pp IvC   

 

 

These isolates were obtained from Prof. Dr. Simon R. Gowen, Department of Agriculture, 

Reading University, Early Gate Reading, RG6 2AT, United Kingdom. 
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2.2.2 P. penetrans Spore Suspension  

 

Spore suspensions of the different P. penetrans isolates were prepared by adding 0.1 gram of 

Pasteuria root powder to a small amount of tap water in a pestle and morter. After mixing 

thoroughly the root debris was removed by pouring the suspension through a 25µm sieve 

(Stirling and Wachtel, 1980). The concentration of the spore suspension passing through the 

sieve was measured with a Fuchs Rosenthal slide. 

 

2.2.3 P. penetrans Multiplication 

 

The multiplication of P. penetrans was carried out in two phases: 

 

In vitro: One thousand second stage juveniles of Meloidogyne javanica were added to 1 ml of 

a P. penetrans spore suspension adjusted to 105 spores/ml and 4ml distilled water in 5 cm 

diameter Petri dishes and incubated for 24 hours at a room temperature of approximately 

20°C. After 24 hours the number of attached spores per juvenile was counted. Then the 

juveniles with attached spores were separated by pouring the suspension through a 20µm 

sieve to collect the juveniles with attached spores on the sieve. One thousand juveniles 

encumbered with Pp spores were then inoculated per plant by pipetting the solution around 

the roots of tomato cv. Hellfrucht Frühstamm in plastic pots filled with a non-sterilized sand-

soil mixture (2:1, v/v). The tomatoes were maintained at 30°C with 16 hours (light) and 8 

hours (dark) in a climatic chamber. After 750 degree days (approximately 40 days at the base 

temperature 10°C) the root systems were removed, washed and air-dried. The dried roots 

were then ground in a grinder until it became powder like. Alternatively, the root systems 

were soaked in tap water in glass beakers for 4 days or until the root softened. P. penetrans 

infected females were then removed with a twisser and collected in distilled water in small 

Petri dishes and stored in a refrigerator at 9°C. The Pasteuria root powder (Stirling and 

Wachtel, 1980) and the Pasteuria infected females served as a source of P. penetrans 

inoculum. 
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2.3 Statistical Analysis 

 

Data were analysed according to standard analysis of variance by a one way ANOVA with the 

software statgraphics (Statistical Graphics Crop., Rockville, MD). Variance homogeneity for 

all treatments was confirmed by the Bartlett test. The comparison between means was carried 

out either  with the Duncan’s Multiple Range Test or by using the T-Test at P<0.05 as given 

in the tables and/or figures.     
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3. Experimental Program 

 

3.1 Attachment rate of seven P. penetrans isolates at different spore concentrations to M. 

incognita juveniles using two passive exposure methods 

 

3.1.1 Introduction 

 

Hewlett and Dickson (1993) suggested that rapid endospore attachment to nematodes can be 

achieved using a centrifuge technique. The most common method of stimulating attachment 

of P. penetrans endospores to nematode juveniles, however, is by making a nematode-

endospore water suspension that is left stationary or agitated at room temperature for 24 hours 

as reported by Hewlett and Serracin (1996). 

 

P. penetrans have a high degree of specificity among populations of the parasite. For 

example, spores of populations from M. incognita and Pratylenchus brachyurus attached only 

to Meloidogyne spp. and P. brachyurus respectively and not to the range of other nematode 

tested (Dutky and Sayre, 1978). Davies et al., (1988) suggested that among P. penetrans 

isolates the greatest spore attachment occurred when spores were exposed to the species of 

Meloidogyne from which they were originally isolated. On the other hand tests by Stirling 

(1985) with P. penetrans isolates from M. javanica and M. incognita showed that spore 

attachment was not always related to the species of the recipient nematode. Stirling (1991) 

also found that even within isolates parasitic in the same nematode there is considerable 

variation in the attachment capacity of P. penetrans infecting nematodes in that genus. He 

also found that spores collected from root-knot nematode in one location do not always attach 

to and infect populations from other locations. Sharma and Davies, (1996) found that certain 

populations of Pasteuria can attach to a wide range of nematodes, even attach to nematodes 

from different genera, whereas other populations show a restricted host range (Stirling, 1985).  

 

In some studies high attachment of P. penetrans spores to nematode juveniles was found with 

increasing spore concentrations ( Sharma and Davies, 1996).  
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The objectives of the following investigations were to evaluate whether exposure method, P. 

penetrans isolate or spore concentration affects attachment of P. penetrans endospores to the 

cuticle of M. incognita juveniles.  

 

3.1.2 Experimental Design      

 

3.1.2.1 Test to determine optimum method to stimulate attachment  

 

Materials and Methods 

 

This test was carried out for the seven P. penetrans isolates. The P. penetrans spore 

suspensions of the seven isolates were prepared as described before (see 2.2.2). M. incognita 

juveniles were extracted as mentioned before (see 2.1). Approximately 1000 juveniles in 1 ml 

water were added to 10 glass centrifuge tubes. A 1 ml P. penetrans spore suspension (5.0 x 

105 spores/ml) was then added to the tubes with 4 ml distilled water. 

 

Two methods to stimulate attachment were compared for the seven P. penetrans isolates.  

 

A) Centrifugation: the centrifuge tubes were incubated for 30 minutes at room temperature 

20°C and then centrifugated at 3000 rpm (Hettich Universal II Centrifuge) for 10 minutes. 

After 10 minutes the number of spores attached to the nematode cuticle were counted on 50 

juveniles of M. incognita randomly selected under a microscope (X400).   

 

B) Incubation: the other centrifuge tubes were incubated for 24 hours at room temperature 

20°C without centrifugation. After 24 hours the number of attached spores per juvenile were 

counted on 50 juveniles of M. incognita randomly selected under a microscope (X400).   

 

Results and Discussion  

The results revealed that 20% less spores attached to the juveniles with the centrifuge method 

than when incubated in water. There were, however, no statistically significant differences  
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between the two methods used to stimulate attachment efficacy of the seven tested isolates of 

P. penetrans. The mean number of attached spores ranged between 0.2-1.2 spore/juvenile and 

was very low (Fig. 1).  

 

Centrifugation Incubation 
0
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1

1,2
Attached spores/juvenile

 
 

Figure 1: Effect of different exposure methods on the attachment of Pasteuria penetrans 

spores to Meloidogyne incognita juveniles. The differences between methods was not 

significant according to T-Test (P<0.05). 

 

Although there were no significant differences between the two attachment methods, the 

centrifugation method was selected for all further tests as it is a rapid technique for attaching 

spores to the nematode. Hewlett and Dickson (1993) found that when using the centrifugation 

method to attach endospores to nematode juveniles most of the attached endospores were 

without sporangial walls. When the endospores descend on the nematode surface, the 

centrifugal force ruptures the sporangial wall and allows the endospore to contact the surface 

of the juvenile cuticle. This process also may result in the sloughing off of the sporangial wall 

and exosporium because these layers are not connected to the endospore and then the 

peripheral fibers conform with the juvenile cuticle to establish the attachment as described by 

Chen et al., (1997).    
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3.1.2.2 Influence of the origin of P. penetrans spores on attachment rate 

 

Materials and Methods 

 

The seven isolates of P. penetrans used in this study were: Barbados (Pp Bar), Great Britain 

(Pp GB), Malawi (Pp Mal), Ivory Coast (Pp IvC), South Africa (Pp3), Papua New Guinea (Pp 

PNG) and Australia (Pp1).  

 

Spore suspensions of the different P. penetrans isolates were prepared as described before 

(see 2.2.2) and the centrifugation method was used in this test (see 3.1.2.1). 

 

Results and Discussion 

 

Results showed that three of the seven P. penetrans isolates attained a 50% higher and  

significantly different attachment rate to M. incognita juveniles. These three isolates 

originated from Great Britain, Ivory Coast and Papua New Guinea (Fig. 2). The other four 

isolates had a lower attachment rate. Pp Barbados isolate showed absolutely no attachment to 

M. incognita juveniles.   

 

 

The isolates which attached to nematode juveniles had been originally isolated from the same 

Meloidogyne species. This effect is known, because isolates of Pasteuria are highly specific 

and the greatest attachment of spores occurred when they were exposed to the species of 

Meloidogyne from which they were originally isolated as suggested by Davies et al., (1988); 

Espanol et al., (1997) and Regina et al., (1999). Channer and Gowen (1992) also found that 

different populations of M. incognita varied in their susceptibility to spore attachment. In Fig. 

3 a juvenile with a high level of spore attachment is seen.  
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Figure 2: Attachment of different Pasteuria penetrans isolates to Meloidogyne incognita 

juveniles using the centrifuge method. Columns followed by different letters are significantly 

different from another according to Duncan’s Multiple Range Test (P< 0.05).  
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Figure 3: Second stage juvenile of Meloidogyne javanica with extensive spores of Pasteuria 

penetrans isolate Pp3 attached to cuticle. 
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3.1.2.3 Influence of spore concentration on rate of attachment 

 

Materials and Methods 

 

The spore suspensions of the seven P. penetrans isolates were prepared by using the method 

of Stirling and Wachtel (1980). The macerate of root material containing bacteria spores in 

water (see 2.2.2) was washed through a 25µm sieve into flasks and adjusted to  final spore 

concentrations of (3.3 x 103; 1.67 x 104; 3.3 x 104; 5.0 x 104; 8.3 x 104; 1.67 x 105 and 5.0 x 

105 spores/ml).  

 

The attachment rate of the seven P. penetrans isolates was evaluated by counting the number 

of attached spores on 50 juveniles of M. incognita after centrifugation (see 3.1.2.1). 

 

Results and Discussion 

 

The results of this test confirmed that the attachment rate of the different isolates of P. 

penetrans to M. incognita juveniles increased with increasing concentrations of spores in the 

suspension from 3.3 x 103 to 5.0 x 105 spore/ml (Fig. 4). The highest rate of attachment was 

obtained with the isolates Pp Great Britain (Pp GB), Pp Papua New Guinea (Pp PNG), Pp 

Ivory Coast (Pp IvC) and Pp3 South Africa (Pp3) respectively with spore concentration of 8.3 

x 104 to 1.67 x 105 spore/ml. Pp Mal had low levels of attachment. The P. penetrans isolate 

from Barbados (Pp Bar) again showed no attachment at all spore concentrations.    

 

In general the overall level of attachment was lower than expected in this test even though the 

level of attachment was similar to that obtained in the previous two studies. 
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Figure 4: Effect of increasing spore concentrations of seven Pasteuria penetrans isolates on 

the rate of attachment to Meloidogyne incognita in spores per juvenile using the centrifugation 

technique.  

 

These results agree with Davies et al., (1988), Stubbs (1998) and Sharma and Davies (1996) 

who found that the attachment of spores to each juvenile increased when the spore density 

was increased from 103 to 105 spore/ml.  Davies et al., (1988) found that the number of spores 

that attached to the cuticles of juveniles of M. incognita was greatly affected by the 

concentration of spores in the suspension and few spores attached at concentrations below 103 

spore/ml, whereas more spores attached as concentrations increased.    

 

3.1.3 General Discussion 

 

All tests showed low levels of attachment 0.2-1.2 spores/juvenile that was not expected when 

compared to an expected optimum attchment of between 5-10 spores/juvenile in the literature. 

The lack of attchment was even more confusing in that multiple spore types and different 

concentrations were used. Some earlier studies dealt the reasons for poor attachment. For 

example, Stirling (1981) revealed an increase in the number of spores attached  as temperature 
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increased and this is probably the result of  increased nematode mobility with temperature. 

However, temperature may also have affected the chemical interaction between spores and the 

nematode cuticle (Stirling et al., 1990). In the present tests the temperature was 20°C and this 

temperature was too low for good attachment when compared with the optimum temperature 

> 25°C for good attachment. Ahmed (1990) and Stirling et al., (1990) found that endospore 

attachment to juveniles increased with increasing temperature to ca. 30°C. The rate of 

endospore attachment at 27°C was approximately double that at 18°C (Stirling et al., 1990). 

The maximum number of P. penetrans endospores attaching to Meloidogyne juveniles was 

observed at 30°C (Ahmed, 1990; Hatz and Dickson, 1992; Orui, 1997). Hatz and Dickson 

(1992) found that low numbers of endospores attached per juvenile above 30°C. The low 

levels of attachment in the present study was clearly due to low temperatures at incubation.  

 

Pembroke et al., (1998) confirmed that many factors affect results obtained during attachment 

studies such as: nematode density, spore density, maturity and age of spores, age of juveniles, 

temperature, time of exposure and pH. Stubbs (1998) reported that levels of attachment might 

vary even when using dishes of different size. 

 

The attachment of P. penetrans spores to the nematode cuticle was not affected by pH 

between 4.5 and 8.5 ( O’Brien, 1980). He found in other studies that optimum pH levels are 

between 4.5 and 5.5. Davies et al., (1988) observed that attachment was higher at pH 7 than at 

4 or 9 in tap water, but lower at pH 7 than at pH 4 or 9 in distilled water. They also found that 

changes in pH and the use of tap water which was rich in salts compared with distilled water 

both affected attachment. However, Ahmed (1990) found that attachment was highest at pH 9 

and decreased at low pH values. The previous tests were carried out in distilled water and the 

pH 7.3 might have had slight effects on attachment.   

 

The variability of P. penetrans attachment to Meloidogyne species is thought to be due to 

several factors including differences in the specificity of isolates of P. penetrans to 

populations and species of Meloidogyne (Stirling, 1985; Channer and Gowen, 1992; Davies 

and Danks, 1993). Stirling (1985) reported differences between four isolates of P. penetrans 

in the ability of their spores to attach to juveniles from 15 single egg mass populations of  



146 

Chapter IV: Pasteuria penetrans 

 

root-knot nematodes. Spores of P. penetrans from six populations of Meloidogyne only 

adhered to species of Meloidogyne and they adhered in greatest number to the species from 

which they had been originally isolated (Davies et al., 1988). Several studies suggest that host 

specificity is caused by differences in the amount and nature of surface proteins of the 

endospores (Davies et al., 1992; 1994). Variations in endospore attachments may be 

attributed to differences in the surface composition of nematode species, races and 

populations as well as the heterogeneity of the endospore surfaces (Chen and Dickson, 1998). 

 

The length of time taken for second stage juveniles to become encumbered with spores in a 

water suspension of spores was dependent on juvenile age (Davies et al., 1991). They 

suggested also that the younger juveniles are more active and became encumbered with spores 

more rapidly than older ones or as the cuticle became less conducive for the adhesion of 

Pasteuria spores. They reported decreased spore attachment on older second stage juveniles 

of root-knot nematodes. The second stage juveniles used in the tests conducted in this study 

were less than 7 days old and therefore did not affect attachment greatly.  

 

Pasteuria penetrans endospores can survive prolonged periods under dry conditions (Stirling 

and Wachtel, 1980; Oostendorp et al., 1990). Storage of P. penetrans spores for a long time 

does not affect the attachment viability. Spores were viable for a period of more than one year 

(Mani, 1988). Suspensions of spores can be stored frozen or in a desiccated root powder for 

long periods apparently without loss of binding ability to juveniles (Giannakou et al., 1997). 

Endospore suspensions either in distilled or tap water can be refrigerated (4°C) for several 

months. Endospore suspensions have been stored frozen and remained viable and able to 

attach to root-knot nematode juveniles (Hewlett and Serracin, 1996). The attachment of P. 

penetrans spores also was not affected by their age (Giannakou et al., 1997). They reported 

that a much higher proportion of females escaped infection when juveniles were treated with 

spores from 11 year old rather than from fresh root/spore preparations. The spores used in the 

present study were not more than one year old. Therefore poor attachment was not caused by 

spore aging 
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3.2 Effect of the nematode antagonistic rhizobacteria B. cereus S18 and R. etli G12 

culture filtrates on the attachment of P.  penetrans (Pp3) to M.  javanica juveniles 

 

3.2.1 Introduction  

 

A number of biotic and abiotic factors can influence the attachment of P. penetrans spores to 

juveniles of species of Meloidogyne. Investigations have dealt with  the effect of soil abiotic 

factors, for example, soil type, soil moisture (Stirling and Wachtel, 1980; Oostendorp et al., 

1991) and soil temperature (Stirling, 1981; Hatz and Dickson, 1992) on P. penetrans spore 

attachment to plant parasitic nematodes. 

 

However, little is known about the effect of biotic factors which also may influence the 

attachment of P. penetrans spores to nematode cuticles (Duponnois et al., 1997). Duponnois 

et al., (1999) showed that the soil microflora stimulated the attachment of P. penetrans spores 

on nematode juveniles and thereby reduced M. incognita juvenile penetration into tomato 

roots. They found that the rhizosphere bacteria Enterobacter cloacae and Pseudomonas 

mendocina stimulated plant growth, inhibited the reproduction of the root-knot nematode M. 

incognita and increased the attachment of the endospores of P. penetrans on the nematodes in 

vitro. They found also that E. cloacae increased the reproduction of P. penetrans in nematode 

infested plant roots. They reported also that both bacteria could modify the structure of 

spores. In particular, the sporangial wall and the exosporium could be changed exposing the 

parasporal fibers and allowing them to make better contact with the nematode cuticle. 

 

The objective of the following experiment was to evaluate the effect of different 

concentrations of culture filtrates of the rhizobacteria B. cereus strain S18 and R. etli strain 

G12 on the attachment of P. penetrans spores to M. javanica juveniles in vitro.  

 

3.2.2 Materials and Methods   

 

The culture of the rhizobacteria B. cereus S18 was discussed in chapter II (see 2.2) and R. etli 

G12 in chapter III (see 2.2). The cell free culture filtrates of both rhizobacteria were prepared  
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by centrifugation of the tryptic soy broth and King’s B nutrient solution used for fermentation 

at 8000 rpm for 10 minutes. The supernatants were poured through a sterile 0.2µm filter paper 

and collected in sterile 250 ml Erlenmeyer flasks. The culture filtrate concentrations used 

were 100, 50, 25 and 10%. M. javanica juveniles were extracted as described before (see 2.1). 

The P. penetrans isolate from South Africa (Pp3) was used in this study. The spore 

suspension of P. penetrans was prepared as described before (see 2.2.2) and number of spores 

was adjusted to 105 spores/ml. Four mililitres from each concentration of the cell free 

fermentation broth was added to 1 ml distilled water containing 1000 juveniles of M. javanica 

and 1 ml spore suspension (105 spore/ml) in Petri dishes (5 cm in diameter). Each treatment 

was replicated 3 times. Petri dishes with water served as controls. Petri dishes were incubated 

24 hours at room temperature (approximately 20°C). After 24 hours the number of attached 

spores per juvenile were counted on 50 juveniles randomly selected under a microscope 

(X400). 

 

3.2.3 Results and Discussion            

  

Results of this study revealed that the highest rate of attachment of P. penetrans spores to M. 

javanica juveniles was obtained in the control treatment. A significant reduction in attachment 

was seen at all filtrate concentrations and for both B. cereus S18 and R. etli G12 (Fig. 1). The 

lowest level of attachment to M. javanica juveniles was attained with the 100% culture filtrate 

of both rhizobacteria when compared with the control. Ten fold dilutions of the culture filtrate 

still led to significant reductions in attachment but to a lesser degree. 

 

These results showed for the first time that culture filtrates of rhizobacteria can reduce 

attachment of P. penetrans spores to nematode juveniles. The negative effect of the culture 

filtrates on the mobility of juveniles probably reduced the degree of juvenile contact with 

spores because the attachment process depends on the movement of juveniles (Stirling, 1984; 

Pembroke et al, 1998). For this reason at low concentrations of both culture filtrates higher 

levels of attachment were detected. 
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 Figure 1: Effect of different concentrations of Bacillus cereus S18 and Rhizobium etli G12 

culture filtrates on the in vitro attachment of Pasteuria penetrans spores to Meloidogyne 

javanica juveniles after 24 hours. Columns followed by different letters are significantly 

different from another according to Duncan’s Multiple Range Test (P< 0.05).  

 

These results do not agree with those obtained by Duponnois et al., (1999) who found that 

rhizosphere bacteria increased attachment of P. penetrans spores to M. incognita. They found 

that the rhizosphere bacteria Enterobacter cloacae and Pseudomonas mendocina stimulated 

plant growth, inhibited the reproduction of the root-knot nematode M. incognita and increased 

the attachment of the endospores of P. penetrans on the nematodes. They also reported that 

both bacteria could modified the structure of spores and allowing them to make improved 

contact with the nematode cuticle.  

 

The differences in results could be related to bacteria species. The bacteria used in the other 

studies may have stimulated nematode movement. Hasky-Günther (1996) showed higher 

numbers of G. pallida were attracted to the root surface when PHPR were present. It should 

be noted that concentrations of PHPR filtrates at this level will never occur in field 

applications for biocontrol. 
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3.3 Effect of chicken manure compost on the attachment of P. penetrans (Pp3)  spores  to  

     M. javanica juveniles 

 

3.3.1 Introduction  

 

Adding organic amendments to soil for controlling plant diseases has received considerable 

attention. Organic amendments also have been used to manage plant-parasitic nematodes. The 

mechanism of action has been attributed to the improvement of soil structure and aggregation 

resulting in increased aeration and water-holding capacity to improvement in plant nutition to 

release of toxic products to nematodes or to the enhancement of antagonistic organisms able 

to compete with or destroy nematodes (Stirling, 1991). Studies demonstrated that pre-plant 

treatment with chicken manure 1kg/m2 reduced Meloidogyne population levels in the soil by 

50%, over three tomato cropping periods (Anonymous, 1976). Chicken manure and oil cakes 

have been the most popular type of organic amendments used and have shown promise in 

reducing nematode populations (Muller and Gooch, 1982). Chicken manure is effective for 

control of M. incognita on several hosts plant (Derrico and Maio, 1980) and Tylenchulus 

semipenetrans on citrus (Mankau and Minteer, 1962). 

 

Organic matter can influence also the spore attachment of P. penetrans to the nematode 

cuticle (Ratnasoma and Gowen, 1996). The attachment of the spores on the nematode cuticle 

are considered one of two important phases for P. penetrans reproduction (Sayre and Werign, 

1977).  

 

The objective of this study was to evaluate the effect of chicken manure compost on the 

attachment of Pp3 spores on M. javanica juveniles.  

 

3.3.2 Materials and Methods 

 

In this experiment a commercial dry chicken manure compost (Fehnland Naturdünger, 

Naturdünger Backhus GmbH, Bösel) was used to determine the effect of percolate of chicken  
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manure treated pots on P. penetrans attachment on the cuticle of M. javanica juveniles.  

Chicken manure contents 

Organic substance                     45% 

pH  level                                   9.4% 

Nitrogen (N)                             1.8% 

Phosphate (P2O5)                     3.9% 

Botassium Oxide (K2O)           3.2% 

Calcium Oxide (CaO)               4.5% 

Plastic pots (10 cm in diameter) were filled with 300 ml of a non-sterilized sand-soil mixture 

(1:1, v/v). The compost was mixed with the soil at two concentration 5 and 20% (v/v). Pots 

untreated with compost served as controls. Each treatment was replicated 6 times. Pots were 

left under greenhouse conditions at 25°C for one week. The pots were then flooded daily with 

100 ml tap water 7 days in a row and the soil percolate from each treatment collected every 

day in a glass beaker and stored in a refrigerator at 4°C . The collected soil percolates were 

centrifugated and the three supernatants were used for the attachment test. 

 

The attachment test was carried out in Petri dishes 5 cm in diameter. A suspension of 1000 

freshly hatched juveniles of M. javanica (see 2.1) in 1 ml distilled water was added to a 1 ml 

Pp3 spore suspension (105 spores/ml). To this solution an additional 4 ml of the soil percolate 

was added from each treatment. The Petri dishes were incubated for 24 hours at room 

temperature approximately 20°C. The number of attached spores per juvenile were recorded 

on 20 nematode juveniles randomly chosen under a microscope (X400). 

 

3.3.3 Results and Discussion 

 

Results of this study showed that chicken manure percolate drastically reduced Pp spore 

attachment (Fig. 1). A significant reduction in attachment of P. penetrans spores to the cuticle 

of M. javanica juveniles occurred in the soil percolate from the compost 5 and 20% treatment 

when compared with the compost-free treated soil (Fig. 1). The results revealed that the soil 

percolate of chicken manure compost treated pots at either 5% or 20% caused a 80% 

reduction in attachment of P. penetrans spores to the nematode cuticle. Also, there were no       
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significant differences between the two compost concentrations used in attachment of P. 

penetrans spores to the nematode cuticle. 

 

It is known that spore attachment is affected by pH (Davies et al., 1988; Ahmed, 1990; Orui, 

1997). The highest attachment in their studies was at pH 9 and decreased at lower pH levels 

(Ahmed, 1990). The results obtained in the present study may be due to the pH of the chicken 

manure compost treated pots. The compost has a pH 9.4 and it probably drops greatly after 

mixed with soil at both concentrations compared with the compost untreated pots. Rodriguez-

Kabana (1986) suggested that there is also evidence that some phytotoxic effects caused by 

organic amendments may be related to changes in soil pH (Walker, 1971; Brown, 1987).     
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Figure 1: Effect of soil percolates from chicken manure compost treated soil on the 

attachment of Pasteuria penetrans  spores  to Meloidogyne javanica juveniles. Columns 

followed by different letters are significantly different from another according to Duncan’s 

Multiple Range Test (P< 0.05).  
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3.4 Biological control of M. javanica with P. penetrans (Pp3) on tomato  

 

3.4.1 Introduction 

 

The endospore-forming bacteria P. penetrans is known as an obligate parasite of root-knot 

nematodes, Meloidogyne spp. It has been tested for control of M. javanica (Stirling, 1984) and 

M. incognita (Nishizawa, 1984; Sayre, 1984; Dickson et al., 1994). Studies with this bacteria 

confirmed that it has a high potential as a biological control agent (Mankau, 1975). Although 

attachment was obtained in previous experiments is not always correlated with good levels of 

control. This study aimed to evaluate the biological control of P. penetrans toward root-knot 

nematode, M. javanica on tomato over 6 months from the first inoculation and measure 

population development of P. penetrans over time under monoculture with a good root-knot 

host. 

        

3.4.2 Materials and Methods 

 

The experiment was carried out in a growth chamber at 30°C with 16/8 hours day/night of 

artificial light. A non-sterilized pure sand substrate was used. The sand of each pot (20 pots) 

was added to plastic bags separately and each bag inoculated with 10,000 eggs of M. javanica 

extracted as outlined before (see 2.1). Each bag was shaken vigorously to distribute the eggs 

homogeneously into the sand. The sand of each bag was then put into seperate plastic pots (14 

cm in diameter). 

Two treatments were used in this experiment: 

A) M. javanica alone 

B) M. javanica + P. penetrans (Pp3) 

Three week old tomato plants cv. Hellfrucht Frühstamm were inoculated with a 10 ml Pp3 

spore suspension (105 spore/ml) prepared as described before (see 2.2.2) in three holes in the 

root zone. Plants were then transplanted into pots in a growth chamber. Each treatment was 

replicated 10 times. The plants were watered daily and fertilized every week with 10 ml/plant 

of Poly Crescol (14+10+14, 2g/liter water). Plants were removed when 750 degree days 

(10°C base temperature) was reached approximately 2 months after nematode inoculation. 
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Roots were removed carefully to leave as much sand in the pots as possible. The roots were 

then washed with tap water and the gall index (Zeck, 1971) and number of galls determined.  

 

The number of Pp3 infected females was evaluated. Females of M. javanica were collected by 

cutting the root system of each plant in 2 cm pieces and submerging the roots in a beaker full 

of tap water for 4 days at room temperature (20°C) until they became soft (Ratnasoma and 

Gowen, 1996). The roots were then washed through stacked 500µm and 250µm sieves to 

separate the females from the root debris. 

 

The Pasteuria infected females (Fig. 4)  were distinguished by their opaque dull creamy white 

to amber colour compared to white, glistening females (Mankau and Imbriani, 1975; Mankau 

and Prasad, 1977). All collected females were crushed under a cover slip (three females on a 

slide) in a drop water and the presence of Pasteuria spores verified (Fig. 3) using the 

microscope (X400). 

  

After evaluation the chopped roots from each treatment were re-incorporated into the same 

pot. Three week old tomato plants were again transplanted into these pots but without adding 

additional nematode eggs or Pp3 spore suspensions.  

 

After another 2 months the plants were again harvested and the roots examined as above. New 

tomato plants were again transplanted into the pots after incorporation of the roots. Then 6 

months after the first inoculation the last tomato rotation was evaluated according to the gall 

index, number of galls and number of Pp3 infected females. 
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3.4.3 Results and Discussion 

 

3.4.3.1 After two months 

 

Results revealed that the root-knot nematode, M. javanica was not affected by P. penetrans 

(Pp3) after 2 months. Results showed no significant differences in gall index or number of 

galls compared with the Pp3 untreated plants (Fig. 1). The results also showed that the mean 

number of females infected with P. penetrans spores was very low after 2 months or 6.25% of 

the females (Fig. 2). 

 

3.4.3.2 After four months 

 

P. penetrans reduced the number of galls significantly compared with the P. penetrans 

untreated plants. The reduction in the number of galls was 53% (Fig. 1). The mean number of 

infected females increased from 6.25% after 2 months to 27.8% after 4 months (Fig. 2).  

 

3.4.3.3 After six months 

 

The results obtained after 6 months showed that biocontrol of M. javanica by P. penetrans 

increased further over the results obtained after 2 and 4 months. The number of galls was 

reduced significantly when compared with the plants treated with the nematode alone. The 

rate of reduction in number of galls was as high after 6 months as compared to 4 months (Fig. 

1). The mean number of Pp3 infected females increased 6-fold to 37.9% when compared with 

the results obtained after 2 months (Fig. 2).        
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Figure 1: Effect of Pasteuria penetrans (Pp3) on the number of galls of Meloidogyne javanica 

on tomato after two, four and six months. Columns followed by * are significantly different 

when compared with the bacteria treated plants according to T-Test (P< 0.05) n=10.  
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Figure 2: Biological control of Meloidogyne javanica with Pasteuria penetrans (Pp3) on 

tomato after two, four and six months measured as the number of Pp3 infected females in 

percent. The columns were not significantly different when compared with the bacteria treated 

plants according to T-Test (P< 0.05) n=10. 
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Figure 3: Endospores of Pasteuria penetrans isolate Pp3 originated from South Africa. 

 

 
Figure 4: Pasteuria penetrans infected females of Meloidogyne javanica . 
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These results showed that the obligate endoparasitic bacteria P. penetrans when applied at 1.0 

x 105 spore/ml to transplants quickly established in pure sand culture under tomato. Three life 

cycles of root-knot were needed in order to induce significant reduction in galling. These 

results suggested that the concentration of spores in soil increased quickly and led to an 

improvement in nematode control over a short period of time. This was accomplished by 

ensuring that the root systems containing spore filled cadavers of female root-knot nematodes 

are retained in the soil after crop harvested (Gowen and Tzortzakakis, 1994). Similar success 

in increasing Pp was also achieved by (Daudi et al., 1990) who re-incorporated the root 

systems. The use of pure sand in these tests eliminated the negative effects of introduced 

organic matter and subsequent effects of microbial metabolites in such material that were 

shown to negatively affect attachment (see 3.2 and 3.3). The use of higher temperatures 30°C 

verses 20°C also increased effectiveness by promoting attachment. 

 

The results demonstrate that Pp when introduced on seedlings could be effective in vegetable 

production systems in short periods of time where near pure sand exists as in most of North 

Africa and West Asia. 

 

3.5 General Concolusions 

 

A) Results suggested that there are no significant differences between the two methods used 

to stimulate of P. penetrans spore attachment to root-knot juveniles either the centrifugation 

or the incubation method. 

 

B) Attachment differed between different P. penetrans isolates and showed the high 

specificity of P. penetrans spores to distinct species of Meloidogyne. 

 

C) As spores concentration of P. penetrans increased, rate of attachment increased.  

 

D) Culture filtrates of two nematode antagonistic rhizobacteria B. cereus S18 and R. etli G12 

reduced attachment of P. penetrans spores to the cuticle of M. javanica juveniles regardless of 

concentration. 
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E) The percolate of chicken manure compost treated soil had a drastic negative effect on the 

attachment of P. penetrans spores to M. javanica juveniles.  

 

F) P. penetrans demonstrated quick build-up over 6 months and good biocontrol toward root-

knot nematode, M. javanica when introduce to sand cultured tomato at high temperatures on 

seedlings.  

 

G) Temperature below 25°C has a strong negative effect on attachment. 
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Summary and Future Strategies 

 

Plant-parasitic nematodes especially root-knot nematodes, Meloidogyne spp. are consider the 

most economically important group worldwide. They attack a wide range of crops, especially 

vegetable crops, and cause severe damage and high yield losses. Root-knot nematodes are a 

major pest problem in crop production in most Mediterranean countries and especially in 

newly reclaimed desert areas e.g. in Egypt, Jordan and Morroco. Many books and 

publications have dealt with the different methods used to control of root-knot nematodes. 

The methods used include: cultural, physical, and chemical appraches. However, in most 

cases soil fumigation with nematicides is used. Nematologists now tend to improve integrated 

pest management (IPM) of phytonematodes using biological control by the introduction of 

nematode antagonistic microorganisms to the soil as a safe alternative. 

 

Root-knot nematodes, Meloidogyne can be reduced to below economic levels without 

fumigation by using integrated pest management systems (IPM). This management system is 

socially acceptable, environmentally responsible and an economically practical method of 

controlling root-knot nematode populations. In IPM systems a variety of cultural, physical, 

resistant cultivars and biological control agents are incorporated into the production system 

(Fig. 1). The use of chemical control of nematodes is now limited, because nematicides are 

expensive, unsafe for humans and toxic to the environment. The loss of nematicides can be 

offset with biocontrol agents. Biologicals used in pest management of nematodes in 

integration such as crop rotation, resistant varieties, solarization and adding soil amendments 

to increase natural antagonists must be propagated at the grower level and with extension 

agencies. 

 

There are many promising biocontrol agents against root-knot nematodes such as: vesicular-

arbuscular mycorrhizal fungi (AMF), mutualistic fungal and bacterial endophytes, egg 

pathogenic fungi, obligate parasites and antagonistic plant health promoting rhizobacteria 

(PHPR).  
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PHPR used in the present study are very important, because they can be applied as a soil 

drench to seedlings or as a seed treatment in seed beds containing sterile soil or potting 

mixtures. The PHPR like Bacillus cereus S18 colonize the rhizosphere. Some PHPR can also  

colonize the plant tissue endophytically such as Rhizobium etli G12. The mode of action of 

PHPR leads to reduced nematode penetration into roots. They can also delay nematode 

development in roots and thereby reduce total population densities. The use of PHPR to 

reduce root-knot early root penetration will produce overall yield increase. However, PHPR 

must be used in combination with other IPM methods, because they do not give 100 percent 

control of the nematode. They only reduce early root penetration which leads to yield 

increase.  

 

The results of the present studies also showed that management of the root-knot nematode, 

can be accomplished by the inoculation of seedlings with the obligate endospore-forming 

bacterium, Pasteuria penetrans as a spore suspension at high spore concentration (105 

spores/ml) or by mixing the Pasteuria root powder into the seed beds. This will not protect 

the first growing crop in the field, but over time will lead to development of a suppressive 

soil. The P. penetrans isolate must be tested first to determine if it attaches well to root-knot 

populations existing in the fields.  

 

After growing seedlings inoculated with PHPR and Pasteuria penetrans they can be 

transplanted to the field.  The field soil can also be treated first with solarization before 

transplanting the seedlings to reduce root-knot population densities further and thereby 

supporting the biocontrol agents being used. The seedlings also can be planted in a planting 

hole containing compost which favors the buildup of naturally occurring antagonists and 

simultaneously promotes root growth. Solarization and organic matter reduce root-knot 

densities and add support to the biocontrol systems which normally do not work well at high 

root-knot threshold levels.  
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Figure 1: Diagrammatic representation of IPM methods that can be used to manage species of  

root-knot nematodes, Meloidogyne, on vegetable crops in tropical and Mediterranean climatic 

growing zones. 
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Below is a list containing acceptable IPM methods that can be combined as needed for root-

knot control. 

 

(1) Soil treatment before planting or between crops 

* Soil drying 

* Soil solarization in hot season 

* Rotation with non-host crops 

 

(2) Biological enhancement during seedling production  

* Arbuscular mycorrhizal fungi 

* Mutualistic fungal or bacterial endophytes 

* Pasteuria penetrans 

* Resistant cultivars 

 

(3) Biological enhancement of seedlings prior to transplanting 

* Plant health-promoting rhizobacteria e.g. B. cereus S18 and R. etli G12 

* Grafting resistant/tolerant root stocks 

 

(4) Stimulation of natural antagonistic potential 

* Incorporation of organic composts e.g. chicken manure 

* Planting and incorporation of green manure e.g. caster, sesame 

 

(5) Management methods during crop growth 

* Systemic nematicides 

* Optimum plant fertilization and irrigation 

 

(6) Control methods at harvest 

* Trap cropping using hosts and degree day monitoring 

* Antagonistic cropping with e.g. Tagetes or Crotolaria  

* Removal or composting roots to kill nematodes (not with P. penetrans) 

* Biofumigation with plant residues or green manure crops 
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In conclusion, the logical use of the methods listed above can lead to effective IPM of root-

knot over time in the field. However research, both basic and applied is still needed to make 

such approaches available to the farmer under practical conditions. Government support for 

small scale industry may be needed in order to produce biocontrol agents on a large scale for 

market use by resource poor farmers. In addition, training of extension experts is required to 

teach them how to optimize IPM combined with biological control for root-knot nematodes 

mangement.  
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