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Abstract

In this work we give a theoretical description of the elastic vector meson production in diffrac-
tive DIS developed within the k;-factorization formalism. Since the k;-factorization scheme
does not require large values of Q?+mj},, we conduct an analysis that is applicable to all values
of @* from photo- up to highly virtual production of vector mesons. The basic quantity in
this approach — the unintegrated gluon structure function — was for the first time extracted
from the experimental data on F,, thoroughly investigated, and consistently used in the vec-
tor meson production calculation. Moreover, by limiting ourselves to the lowest Fock state
of the vector meson, we were able to construct in a closed form the theory of spin-angular
coupling in the vector meson. This allowed us for the first time to address the production of a
vector meson in a given spin-angular state. We performed an extensive analytical and numer-
ical investigation of the properties of 15, 25, and D-wave vector meson production reactions.
Treating the physical ground state vector mesons as purely 15 states, we observed a good
overall agreement with all available experimental data on vector meson production. For the
excited states, our analysis predicts a picture which is remarkably different from 15-state, so
that such reactions can be regarded as potential sources of new information on the structure
of excited states in vector mesons.
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Chapter 1

Introduction

In the past 30 years particle physics theory has proved numerous times to provide a good,
consistent, unified description of the great variety of nuclear, low and high energy particle
physics experiments. Being based on the ideas of quantum field theory, gauge approach to
fundamental interactions, symmetry and naturalness considerations, the Standard Model has
managed to explain virtually all phenomena in electromagnetic, weak and strong interactions,
and to predict new particles and effects. Although questions of fundamental origin lie beyond
the scope of the Standard Model, its precision in description, for example, electromagnetic
phenomena, reaches the magnitude of 107'°.

However, the current situation is not that optimistic in the domain of strong interactions.
The gauge-based formulation — Quantum Chromodynamics (QCD) — seems to offer a rea-
sonably good description only of sufficiently energetic processes (more accurately, only when
every vertex involves at least one highly virtual particle), thanks to asymptotic freedom. The
major difficulty lies in the behavior of the QCD coupling constant as(Q?), which exhibits
infrared growth and becomes comparable to unity at Q* ~ 1 GeV?. The net result is that
perturbation theory — the most successful treatment of various high-energy processes — fails
to give even qualitative description of low-energy, essentially non-perturbative phenomena.
Additional difficulties arise from the non-abelian nature of QCD, chiral symmetry breaking,
non-trivial QCD vacuum, instantons etc.

On the other hand, many separate concepts have been developed that do not rely on
perturbative QCD (pQCD) and provide reasonably good description of phenomena in their
applicability regions. The fundamental problem of the theory of strong interactions is that
these heterogeneous approaches do not match!. They do not comprise a unified picture of
strong interactions. Given such a lack of universal, rigorously derived results, one must admit
that the subject of our investigation belongs to the realm of phenomenology rather than
rigorous theory.

! Just one example of poor accordance among various approaches: the quark generated ladder diagrams do
not appear to correspond uniquely to any of the experimentally observed Regge trajectories. Another example
is the vague status of a; = const Balitskii-Fadin-Kuraev-Lipatov equation (BFKL) results in true QCD.



1.1 Diffractive processes and pomeron

In the light of these problems, the careful examination of regions where two or more approaches
overlap (or conversely, where none of the concepts exhausts the interaction) are of great
interest. Diffractive Deep Inelastic Scattering (DIS) is exactly one of these fields.
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Figure 1.1: Examples of deep inelastic scattering process: (a) hard DIS and (b) diffractive
DIS. In the latter case M, < s and the process proceeds via pomeron ¢-channel exchange.

A typical hard DIS process (Fig.1.1a) occurs when a virtual photon? strikes a proton to
produce a hard system X with large invariant mass squared® s and large enough multiplicity,
final state hadrons being distributed over whole rapidity range approximately smoothly.

However, as was noted long ago, sometimes the proton survives, being only slightly de-
flected, and a virtual photon turns into a so-called diffractive system Xg;¢s. with invariant
mass jWi-ffT & s. In this process the proton and the diffractive system are naturally sepa-
rated by a large rapidity gap. A condition necessary for the rapidity gap formation is Q? < s,

:s:%<<1. (1.1)

or in terms of Bjorken x

This is one of the most common cases of diffractive DIS (DDIS) processes. In fact, the
class of diffractive processes is not confined to DIS; it is much broader. There are many other
reactions which possess the generic features — the rapidity gap and smallness of M7, —
and therefore can be classified as diffractive processes (for a recent review see [1]).

How can a typical diffractive process occur? Certainly, it must be a kind of peripheral in-
teraction: if the photon struck directly one of the valence quarks, the proton would ’explode’,
providing no way for the large rapidity gap formation. What remains is the possibility of
the {—channel exchange by a not-too-energetic 'particle’ (Fig.1.1b), which would be a natural
mechanism of the experimentally observed weak proton deflection and small M. Further
experimental features suggest that this 'particle’ should be chargeless and colorless, its in-
teraction with other particles should be of strong (not electromagnetic or weak) nature, its
"propagation’ should be independent of the specific process (yp, vy, pp, pp, etc), and it should

2We will always imply that the virtual photon is emitted by an electron, which means the photon is always
space-like: if ¢ is the photon momentum, then Q% = —¢? > 0.

3In hard DIS phenomenology this quantity is usually labeled W2. However, for simplicity, we will use
notation s.



be of spin 1, due to the approximately s-independent pp cross section. In the early 60s this
'particle’ was dubbed pomeron (symbol IP).

Further properties come from combining the Regge picture and BFKL results with ex-
perimental observations (for a detailed review of Regge theory see [2]). They include, first
of all, the asymptotic equality of total pp and pp cross sections (the Pomeranchuk theorem).
Formulated long ago, it was experimentally verified only recently. Then, the Regge theory
predicts the power-like s-dependence of the total pp cross section o o s2@®=1_ which has also
been experimentally observed, with intercept dpp = app — 1 & 0.08. On the other hand, the
BFKL equation [3, 4] succeeded in reproducing such power-like dependence in QCD, but in
the simple case a; = const. In this approach the hard pomeron is treated as two reggeized
gluons — an ansatz used currently in diffraction phenomenology with great success. However,
the predictive power of the BFKIL approach for the numerical value of the pomeron intercept
is still limited and not all issues concerning the sensitivity of the result to the infrared region
have been understood. For further reading on pomerons, a topic very intriguing by itself, we
refer to [5].

1.2 Vector meson production in diffractive DIS

There are several possible final states X in a typical diffractive DIS (DDIS) process v*p — Xp:
system X can be a real photon, a ¢g continuum pair forming two jets, or a ¢g bound state, for
example, a vector meson. Let us now focus specifically on exclusive vector meson production
in diffractive DIS. This reaction has been studied extensively in fixed target DIS experiments
at CERN and FNAL and more recently by the H1 and ZEUS collaborations at HERA.

Despite the great deal of theoretical work on vector meson production in diffractive DIS
[6, 7, 8, 9], there is a number of issues that have not yet been carefully analyzed and still
need closer investigation. One of them concerns the vector meson production in a seeming
soft region, namely at small values of @* and m3, (or, to put it short, at small values of
Q* 4+ my). Indeed, the majority of early calculations treated the vector meson productions
in the DGLAP-inspired approach, the production amplitudes being expressed in terms of the
integrated gluon density G(z, Q?*). Certainly, this line of calculation is not applicable at small
enough values of Q? + m}, say at Q* + m} < 1 GeV2 However it is necessary to understand
that the DGLAP-based approach not only can be avoided but also should be avoided when
one studies diffractive scattering. Indeed, at high energies and small-to-moderate values of
@?*, the dynamics of the amplitudes is governed by large logarithms of log(1/z) rather than
log(Q?*), and the correct and the most natural method to treat processes in this kinematical
region is the ki-factorization approach. This approach does not place any restriction on the
value of Q* as long as one works at large enough energies.

Although the strategy of the evaluation of the vector meson production amplitudes within
the ki-factorization approach is essentially clear, making reliable numerical prediction is not a
straghtforward task. The impediment consists in the presence of purely soft, non-perturbative
quantities in the calculation, namely the gluon content of the proton and the wave function
of the vector meson.

The presence of the former quantity is a specific feature of the particular final state we
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investigate, however the unintegrated gluon density

_ 0G(z,Q%)
~ OlogQ?

is the basic quantity in all k;-factorization calculations. Unfortunately, no reliable Ansatz or
parametrization has been developed, and this gap needs to be filled.

Fla,QY) (1.2)

Another issue that has never been brought under scrutiny is the spin-angular coupling
inside the vector meson. In an off-forward scattering 73— Vi, the s-channel helicity flip
amplitudes can be non-vanishing. Because of the well-known quark helicity conservation in
high energy QCD scattering, such a helicity flip is possible only due to the internal motion
and spin—angular momentum coupling of quarks in a vector meson. This issue was accurately
analyzed only in very recent papers [6, 7], where it was shown that helicity non-conserving
amplitudes are not negligible, as had been thought before. Thus, the helicity flip amplitudes
would offer a great deal of unique information on internal constituent motion and spin—angular
momentum structure of vector mesons, inaccessible in other experiments. In addition, the
vector meson decays are self-analyzing and the full set of helicity amplitudes can be measured
experimentally. For unpolarized incident leptons, the angular distribution of decay products
is parameterized in terms of 15 spin-density matrix elements, which can be calculated via five
— two helicity conserving plus three helicity violating — basic helicity amplitudes [10].

Certainly, the helicity structure of the vector meson production amplitudes must be ana-
lyzed only along with a careful treatment of the spinorial structure of the ¢g — V' transition.
It is thus rather surprising that the above issue of sensitivity of the production amplitudes to
the spin-angular momentum coupling has not been addressed before. Namely in a typical vec-
tor meson production calculation, a vector meson has been implicitly taken as a 1.5 state and
at the same time an unjustified ansatz was used for the g¢ — V' transition spinorial structure,
namely of u'y,u -V, type. Being a mere analogy of ¢gy vertex, this ansatz in fact corresponds
neither to a pure S- nor to a pure D-wave state, but to a superposition. Only in [11] were
the cases of 1.5 and 25 vector mesons compared and the necessity of similar calculations for
D wave states was stressed. Such calculations, however, have been missing in the literature
until now.

In addition to purely theoretical needs, there are more issues that call upon a thorough
analysis of the D-wave effects. For instance, different spin properties of the S- and D-wave
production may resolve the long standing problem of the D-wave vs. 2S5-wave assignment
for the p'(1480) and p’(1700) mesons (as well as the w’ and ¢’ mesons). Furthermore, the
deuteron, which is a spin-1 ground state in the pn system, is known to have a substantial
D-wave admixture, which mostly derives from the tensor forces induced by pion exchange
between nucleons. Recently, there has been much discussion [12] of the non-perturbative long-
range pion exchange between light quarks and antiquarks in a vector meson, which is a natural
source of the S-D mixing in the ground state p and w mesons.

In the present work we addressed both issues. We performed an accurate determination
of the unintegrated gluon density from the experimental data on the structure function Fy,
and gave its convenient and ready-to-use parametrizations. In addition, we constructed a
consistent description of the vector mesons with spin-angular coupling taken into account,
which enabled us to calculate diffractive production amplitudes for pure S-wave and D-wave
states as well as for an arbitrary S/D wave mixture. This resulted in a complete theory of

12



the vector meson production in diffractive DIS within the k;-factorization approach.

1.3 The strategy of the thesis

The main text of this thesis is comprised of three parts. Part I is an introduction to the k-
factorization approach. Here we calculate some basic scattering processes, such as the virtual
Compton scattering, and introduce the concept of the differential densities of partons. The
discussion on the similarities and distinctions between the DGLAP-motivated description and
ki-factorization description of diffractive processes can also be found here.

In Part 1T we turn to the vector meson production amplitudes. These are preceeded by
the theory of vector meson structure within the truncated Fock space, that is, when the
vector meson 1is assumed to be a bound state only of a ¢g pair. Upon obtaining the closed
analytical expessions for vector meson production amplitudes, we perform the twist expansion
and 1illustrate some of the most salient properties of the S-wave and D-wave vector meson
amplitudes.

Part III contains the numerical analysis of the expressions obtained and the concrete pre-
diction of various experimentally observed quantities. At first we perform an extraction of
the differential gluon density of the proton and thoroughly investigate its properties. Having
brought the differential glue under control, we turn to the vector meson production ampli-
tudes and give a large number of predictions for 15-, 25-; and D-wave states. Whenever
the experimental results are avaliable, we confront our predictions with the data. This Part
concludes with a detailed consideration of the effect of the Coulomb tail of the vector meson
wave function and of the S/D-wave mixing.

Finally, we summarize our main findings in Conclusions. Some lengthy calculations can be
found in Appendices.

The results presented in this thesis were derived by the author. The text is based on pub-
lications [13] and [14], and on works in progress [15]. Preliminary results have been presented
as talks at workshops [16, 17].

13



Part 1

Basics of k;-factorization scheme
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Chapter 2

Virtual Compton scattering

We start our introduction to the k;-factorization scheme with a calculation of the imaginary
part of the forward virtual Compton scattering amplitude. By means of the optical theorem,
it i1s related to the total photoabsorption cross section and to the structre functions of the
proton.

There three purposes to begin with this quantity. First, during this calculation we will
follow all steps and discuss all major feature of the k;-factorization scheme of calculations.
Being rather simple, the Compton scattering amplitude will keep us from being distracted by
inessential technical complications that would arise in other diffractive reactions.

The second purpose is to derive the well-known expression for the structure function £y, in
terms of the unintegrated gluon density of the proton, the basic quantity in any k;-factorization
calculation. These expressions will be used later, when we discuss the determination of the
unintegrated glue from the experimental data.

The third aim is to use the simplicity of this amplitude to gain as much insight into the
dynamics of photon-proton peripheral interactions. This information will be used later in
deriving the vector meson production amplitudes thanks to a remarkable similarity between
the virtual Compton scattering and the vector meson electroproduction processes. Indeed,
in the proton rest frame, both can be viewed as follows: a photon dissociates into a gq pair,
which interacts with gluon content of the proton and then is projected onto the final state.
The hard dynamics in both cases are the same, the only difference lying in the final state
projection.

2.1 Modeling virtual photoabsorption in QCD

The quantity that is measured in deep inelastic leptoproduction is the total cross section of
photoabsorption v;p — X, summed over all hadronic final states X, where p,v = £1,0 are
helicities of (T') transverse and (L) longitudinal virtual photons. One usually starts with the
imaginary part of the amplitude A, of forward Compton scattering v;p — 7, p’, which by the
optical theorem gives the total cross cross section of photoabsorption of virtual photons:

1
\/(W2 + Q2 — m;)Q + 4Q2m§

U%*p(xbjaQQ) = ImAL,, (2.1)

15
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where W is the total energy in the y*p c.m. system, m,, is the proton mass, Q* is the virtuality
of the photon and z; = Q*/(Q*+W?*— 'mg) is the Bjorken variable. Hereafter we will suppress
the subscript by and use z = ;.

o

ImAOO s (22)

SO

p

Figure 2.1: The pQCD modeling of DIS in terms of multiproduction of parton final states.

In perturbative QCD (pQCD) one models virtual photoabsorption in terms of the multiple
production of gluons, quarks and antiquarks (Fig. 2.1). The experimental integration over the
full phase space of hadronic states X is substituted in the pQCD calculation by integration
over the whole phase space of QCD partons

1
[ 1M = S 1M TT [
where the integration over the transverse momenta of partons goes over the whole allowed

Q*(1 — =)
4x ’

The core of the so-called DGLAP approximation [18] is an observation that at finite = the
dominant contribution to the multiparton production cross sections comes from a tiny part of

dxz-

Ty

d*R; (2.3)

region

1
0 <k < ZW2 = (2.4)

the phase space,

1>z 220200 22, 20
<A<, <R_ <kR<@r (2.5)

in which the upper limit of integration over transverse momenta of partons is much smaller
than the kinematical limit (2.4). At very small z this limitation of the transverse phase space
becomes much too restrictive and the DGLAP approximation is doomed to failure.

Hereafter we focus on how lifting the restrictions on the transverse phase space changes our
understanding of the gluon structure function of the nucleon at very small z; that is, at very

16



large L. In this kinematical region the gluon density g(z, @?) is much higher than the density
of charged partons ¢(z,@%),q(z,@*). As Fadin, Kuraev and Lipatov [19] have shown, to the
leading log% (LL%) approximation the dominant contribution to photoabsorption comes, in
this regime, from multigluon final states of Fig. 2.1. Alternatively, in the LL%, splitting of
gluons into gluons dominates over the splitting of gluons into ¢g pairs. As a matter of fact,
for the purposes of the present analysis, we do not need the full BFKIL dynamics. In the k;-
factorization only the ¢g loop is treated explicitly to the LL% approximation. In this regime
the Compton scattering can be viewed as an interaction of the nucleon with the light cone gg
Fock states of the photon via the exchange by gluons (Fig. 2.2), and the Compton scattering
amplitude takes the form

A = V30 A @ W3 (2.6)

Here W, 5 is the Q* and ¢, g helicity A, A dependent light cone wave function of the photon.
The qg-proton scattering kernel 4,7, arising from the pomeron exchange, does not depend on,
and conserves exactly, the ¢, g helicities.

' v
W%/\/W W%/
' v
W%/ K%/

Figure 2.2: The k;-factorization representation for DIS al small x.

The resummation of diagrams of Fig. 2.1 defines the unintegrated gluon structure function
of the target, which is represented in diagrams of Fig. 2.2 as the flited ellipse.

2.2 Details of the calculation

Suppose that there were no interaction between the gluons exchanged in ¢-channel, so that
the full calculation of the Compton scattering amplitude would amount only to summing the
Born diagrams. Consider one of such diagrams, e.g., Fig.2.2a, but without the ellipse. A
virtual photon turns into a ¢g pair, which interacts with a proton via two-gluon exchange.
The general expression for this amplitude is:

d4]€ d4li ' ' D ' '
"A:/ / i B i
' (2m)* S (2m)* w(—igy )i (p— k)2 —m?+ ZE]( 9 Ju
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.(_i>9##7“ . (_i)gi 2

K% — p? + e K* — p? + e i
Sp{(—ie)é i(k -+ m) (—ie)e™ i(k +m) (—igyt?) ik + i+ m) (=igy"tA) ik +m)}
[k?2 —m? + 1(] [(k + K) —m? + i€ [(k —q)? —m? + i€l
(2.7)
Let’s first calculate the numerator.
Color factor
If we consider photon scattering off a Single quark, we have
Y 1 1 1 2
L B', A S o1 L 2 _ o2 '

However7 we should take into account that quarks are sitting inside a colorless proton, whose
color structure 1s

1
’(bcolor — _éabcqaqch . (29)

V6

In this case there are two ways a pair of gluons can couple three quark lines. In the first,
both gluons couple to the same quark. Since the quark momentum does not change after
these two interactions, the nucleon stays in the same state: (N|N) = 1. In the second case,
gluon legs are attached to different quark lines, so that extra momentum « circulates between
quarks, which gives rise to the factor (N|exp(ikr; —ikry)|N), i.e. to the two-body form factor.
Therefore, for the lower line, instead of

—S p{tP1} = F§5AB (2.10)

one has

] [ NN
¢ et (35aa/5bb/t tE s 68,arti B (N exp(inry — z'm“g)|N>) e

= Sp{t*PYy — Sp{tMP}(N|exp(irr, — irry)|N)
= %5“;(1 — (N|exp(ikry —ikry)|N)). (2.11)

Note also that a similar calculation for N, number of colors would yeild the same result. Thus,
the overall color factor is

2V (k) = 2(1 — (N|exp(icr; — ikry)|N)). (2.12)

As is known, the highest power s contribution comes from so—called nonsense components
, p p
of gluon propagator (density matrix) decomposition:

20,q,  2p,4q., 2p,q,,
G = “g“ b gt o T (2.13)

S S

Therefore, the lower trace is calculated trivially:
1
S} = 5" (2.14)
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Combining all factors, one has for the numerator of Eq.(2.7),
4 A A A A
(47T0é5)2 AT Qo e?c . 25—232 . Sp{é (k—g+m)e (k+m) ¢ (k+i4+m)q (K+ m)}
= (4may)’ dmaem ef, -8-257- ](“)(7* — ). (2.15)

Note that we factored out 2s? because it will appear later in all trace calculations. The
resulting expression for amplitude (2.7) is then

Py Ak 1
A = (41a,)? dma, 1662 2_/ / . (916
(4ma,)” dmaem 16y s 2m)t) (2m) [(p— k)2 — m2 +i€] [k? — p? +ic]” )

| (v =) |
(k2 —m?2 +ie* [(k + k)2 — m? +ie] [(k — q)? — m? + i¢]

One can now immediately write similar expressions for three other diagrams (Fig. 2.2
b,c,d). Indeed, they will differ from Eq.(2.16) only by the last line. Aside from different

expressions for traces, the quark line propagator structures will read:

(b) (k% —m* +ie][(k — q)* — m* +ie][(k + k)? — m* +ie][(k + & — q)* — m* + i¢]
© K =t ik ) — m 4 (k= ) -4 [~ — q)f —m? 4 id
(d) [k2 —m?4+ ie][(k — q)2 —m? 4 ie][(k — 11)2 —m*+ 'Le][(k ) —m?+ i€l (2.17)

2.3 Denominator and trace evaluation

We now turn to calculation of denominators. As usual, we implement Sudakov’s decomposition
and

ko= yp 424 +k
Kk = ap + B¢ +E
g = ¢ —ap, (2.18)

and make use of relation

Ak = %sdy dz d°F . (2.19)

The complete analysis of denominator hierarchy and their integrals is performed in Appendix
A. We show there that, for example, for diagram A, the imaginary part of the desired integral
is given by

dy dz do d An? 1 1 — 1 1
Im /—y cdadfl _Amm ot 1== _ . (2:20)
propagators s3 Jo z [k24+m?2+ z(1 — 2)Q¥)? [R? + p?)?

The results for the other three diagrams differ only by replacements k—k+7in quark prop-
agators wherever appropriate. The whole expression for the imaginary part of the amplitude

d
5 aen [ d= (J?k/ f;v
( +1?)
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is then

ImA = s




1—=2 I(a) z 7(d)
— + —
R m e o(1= Q1= 2 [(F+ R+ m? o+ 2(1 - 2) QT
710) 4 1()

X

+— - (2.21)
[(E+K)24+m?24 2(1 —2)Q?][k2 + m? + z(1 — 2)Q)?]
The short-hand notation a? should be in fact understood as
as(lower) - as(upper) = ozs(EfQ) . ozs(q2) . (2.22)
with .
¢ = max[k’ +m® + z(1 — 2)Q* F?]. (2.23)

We now calculate the integrands I which enter Eq.(2.21) Sp{...} = 2s* - I. We will do
this via light cone helicity amplitude technique. In the subsequent discussion we will use the
following convention:

q" = qenly
i.e., the light cone direction + is taken along the photon propagation.

A crutial point that justifies the usage of the helicity amplitude technique for all quarks
lines inside the loop is that in the trace calculation all fermions can be treated as on-mass shell,
thanks to the presence of ni_ vertices. This property comes from the following arguments.

Note that every intermediate quark line in any diagram couples to at least one of the
t-channel gluons. Algebraically, it means that every k + m stands near the factor 7_. Let us
apply the Sudakov decomposition to the v matrix:

= qenh +y-nl 97
= — (70 +73) = ( )
= n_ = - =Ny = — .
T+ \/5 o 7)), 7 + \/5 o 73

Now decompose the propagator numerator of the constituent, to which this n_ leg couples,
+m=koy +k vy — k7 +m, (2.24)

and rewrite it using notation of (4.9) and (4.11) as

tm=kpy + kv — kT +m4 (be — kS )y =k +m+ L%. (2.25)
In other words, we expressed the virtual quark propagator as the sum of an on shell quark
propagator and an additional ”instantaneous interaction” term. However, since n_ is inserted
between two (ic + m) factors, this item drops out due to the identity v4v4 = 0. The net
result is that wherever ni_ appears, both constituents can be treated on-mass-shell in the
trace calculation, which completes the proof.

Having established that the fermion lines in the trace calculation can indeed be taken as
if the quarks were real, we can now decompose the numerator of each ofthe quark lines as

k—l—m—)»k*—l—m:za/\u/\, (2.26)
A
where spinors u) are for an on-mass shell fermion.
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In the case of antiquark line the property derived above is valid as well. The only thing to
remember here is that antiquark propagates upstream to the fermion arrow, so that

(=k)+m= ZU/\U,\, (2.27)

1.e., each antiquark propagator gives rise to factor —1.
The derivation is given in Appendix B in full detail and yields
dQ&V
T 2
ImAT = 271_226 - [ dz dk/

) 1 - 1 ’
X{m l(];:‘—{—/%')?—{—m?—{—z(l—z)QQ E2+m2+z(1—z)Q2]

(2.28)

- e

Fir i 2}
(E+E)2+m2—|—z(1 — 2)Q? EQ+m2+z(1 —2)Q?

2
ImAl = s Zez-aem-/ddek ﬂ

1 1 2
(E + /?3)2 +m?2 + z(l — Z>Q2 B k2 +m? + 2(1 — Z)QQ]

x4z5(1 — 2)*Q* [ (2.29)

2.4 Gluon density

It is obvious that Eqs.(2.28) and (2.29) are not directly related to the real experimental
situation, for up to now, we assumed that the two exchanged gluons do not interact. Such
interaction will definitely change the properties of the entire {-channel exchange, and in fact,
as predicted by the BFKL equation, the resultant pomeron has rather little in common with
the initial two perturbative gluons.

Since the BFKL evolution necessarily involves soft gluons (see below more on soft-to-hard
diffusion), it does not allow for accurate perturbative calculations. It must be understood,
however, that although we do not know what happens “inside the pomeron” on the way from
proton to the quark-antiquark pair, we nevertheless know — and the knowlegde is based on
the leading order BFKIL analysis — that eventually the gg pair will interact with nothing else
but two gluons. We underline that this conclusion does not require the gluons to be hard/
Rather, it relies on the fact that higher Fock states of the {-channel can be, to the leading
log% approximation, absorbed in the two gluon state [20].

Thus, the only thing we need to know is the momentum distribution of the uppermost
gluons, or, to put it exactly, the probability distribution to find a gluon with given light cone
momentum fraction z, and the transverse momentum &,

di? (]Tg

Lg

(2.30)

This distribution is called the unintegrated (or differential) gluon structure function, DGSF,
or simply the unintegrated gluon density.
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Since the differential gluon density is not calculable with pQCD, a reasonable way to
proceed in our computation of the compton scattering amplitude further consists of finding the
correspondence V (k) > F(K, z,). Namely we will calculate the unintegrated gluon density at
the Born level, Fporn, in terms of V(k), and then postulate that the BFKL dynamics amounts
to replacement Fpgyry — F. This procedure will give us a unique prescription for how to
correctly incorporate the unintegrated gluon density into the k;-factorization calculations.

In order to provide a gentle introduction into the concept of the unintegarated parton
densities, we start with the Fermi-Weizsacker-Williams approximation in QED. We will find
the expression for the unintegrated photon densities in the case of a single charged particle
and charge neutral positronium and then translate the results to the case of color forces.

2.4.1 Differential density of gauge bosons: the QED primer

Figure 2.3: The Fermi-Weizsacker-Williams diagram for calculation of the flux of equivalent
photons

For this pedagogical introduction we recall the Fermi-Weizsacker-Williams approximation
in QED, which is the well-known precursor of the parton model (for the review see [21]).
Here high energy reactions in the Coulomb field of a charged particle are treated as collisions
with equivalent transversely polarized photons — partons of the charged particle, Fig.2.3.
The familiar flux of comoving equivalent transverse soft photons carrying a light cone fraction
z, < 1 of the momentum of a relativistic particle, let it be the electron, reads

=9 139 - —9
dn — Oer,  K°dR®  dx, _ Qem dr* dx.,
e =22 232 ~ =22 )

T (R?+k2)? z, T R? x,

(2.31)

Here £ is photon transverse momentum and &, = m.z, is the photon longitudinal momentum
in the electron Breit frame. The origin of #? in the numerator is in the current conservation,
i.e., gauge invariance. Then the unintegrated photon structure function of the electron is by

definition ,
dn? em ]2
F (a8 = =00 e :a“( i ) . (2.32)

- dlog K2 o dz.dlog K? T \RK?+ k2

2.4.2 Differential density of photons in a positronium

If the relativistic particle is a positronium, Fig. 2.4, destructive interference of electromagnetic
fields of the electron and positron must be taken into account. Specifically, for soft photons
with the wavelength A = % > ap, where ap is the positronium Bohr radius, the electromagnetic
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fields of an electron and positron cancel each other and the flux of photons vanishes, whereas
for A < ap the flux of photons will be twice that for a single electron. The above properties
are quantified by the formula

a K? ’
P =2 em
F, (4, K7) = N, - (/%'2 T 112> Vi(k), (2.33)
where N, = 2 is the number of charged particles in the positronium and corresponds to the
Feynman diagrams of Figs. 2.4a and 2.4b. The vertex function V() is expressed in terms of
the two-body form factor of the positronium,

V(k)=1— Fy(R,—R) = 1 — (P|exp(iR(r_ — r,))|P), (2.34)

where »_ — v is the spatial separation of e* and e~ in the positronium. The two-body form
factor F5(K, —K) describes the destructive interference of electromagnetic fields of the electron
and positron and corresponds to the Feynman diagrams of Figs. 2.4¢ and2.4d. Tt vanishes for
large enough x > ap', leaving us with V(x) = 1, whereas for soft gluons one has

V(k) x Bap . (2.35)

One can say that the law (2.35) is driven by electromagnetic gauge invariance, which guarantees
that long-wave photons decouple from the charge neutral system.

K 3 K K 3 K

3 Ay 3

i a) 3 b)
K K K K

| ) | @

Figure 2.4: The Fermi-Weizsdcker-Williams diagrams for calculation of the flux of equivalent
photons in positronium.

Finally, recall that the derivation of the differential flux of transverse polarized photons
would also hold if the photons were massive vector bosons interacting with the conserved
current, the only change being in the propagator. For instance, for the charge neutral source
one finds

fVP(xV,,z;?):Nca"'m( ~ )QV(K). (2.36)

T \RK2+mi
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Recall that the massive vector fields are Yukawa-Debye screened, with the screening radius

To lowest order in QED perturbation theory the two exchanged photons in figs.2.3, 2.4 do not
interact and we shall often refer to (2.36) as the Born approximation for the differential vector
boson structure function. One can regard (2.36) as a minimal model for soft £ behavior of the
differential structure function for Yukawa-Debye screened vector bosons.

2.4.3 Differential gluon density in a proton

The expression for the Born level unintegrated gluon density in a color neutral proton can be
obtained immediately by generalization of (2.33) and (2.36). The only extra thing one has to
do is some color algebra, which leads to

g

=2
Forn Z o 2 (2.38)
m

Therefore, a prescription for how to include unintegrated gluon density is:

=2
OFNCOéS(K/ )V(/f> = F(Born) - F. (239)
m

Note that in this prescription one of the two strong coupling constants in (2.21) (the lower
one) is absorbed into the definition of F.

2.5 Final expressions

Bringing all pieces together, we obtain the answer for the total photoabsorption cross section:

or(r,Q*) = Gem Z / dz/ko/—oz9

xf(xg, %) [mi0d + [+ (1 — 2)793] ; (2.40)

on(z,Q%) = “emz /dz/ko/—as Fla,, RAQ?H(1 — )22, (2.41)

where . .
Pom ot ; Gy k=R (2.42)
k?+e?  (k—R)? 4 e? k?+e? (k—R)?24¢e?
Here
=z(1-2)Q*+ m?, (2.43)

and the density of gluons enters at

O + My _ ( M2> : (2.44)
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Here M; is the transverse mass of the produced gg pair in the photon-gluon fusion y*g — ¢g:

2_mf:+l;:‘2+mf,+(];—ﬁ)2.

M? = (2.45)

1—=2 z

No restrictions on the transverse momentum in the ¢g loop, E, and gluon momentum,
K, are imposed in the above representations. The above-used BFKL scheme defines DGSF
uniquely in terms of physical observables.

We note that equations obtained are for forward diagonal Compton scattering, but a similar
representation in terms of the unintegrated gluons structure function holds also for the off-
forward Compton scattering at finite momentum transfer A, and for off-diagonal Compton
scattering when the virtualities of the initial and final state photons are different, Qfl + Q7
including the timelike photons and vector mesons, Qfl = —mji,, in the final state.

The photoabsorption cross sections define the dimensionless structure functions

FT,L(-Ia QQ) = El

- 2
4mé g,

oT,L (2.46)

and Fy = Fr + F, which admit the familiar pQCD parton model interpretation

FT<1" QQ) = Z ef‘[qf(l" QQ) + qf<x’ QQ)] ) (2'47)

f=u,d,s,c,b,..

where qf(z,Q?), qs(x,Q?) are the integrated densities of quarks and antiquarks carrying the
fraction z of the light cone momentum of the target and transverse momenta < ).

2.6 The virtual Compton amplitude in the impact pa-
rameter space

A further deep insight into the Compton amplitude — and into the diffractive processes in
general — can be gained by switching to the impact parameter (the transverse coordinate)
representation. We will see that the answer will allow for a simple probabilistic form.

A= /dz/dQFo(F)N/W(Z,F)P. (2.48)

The quantity o(r) has the meaning of the dipole cross section, while the W, (z, ) represents
the photon wave function.

In order to switch to the impact parameter space, we perform the 2-dimensional Fourier
transform. We use the following equalities:

1 1 s B
T gfd%«ek folr); = folr) = /d?k
k

1 BTN . a . —ikF
= —/dQT'eZkal(T'); = f1(7'> = (_lﬁ) /koe—»

o—ik?
P = Ko(er);

k24e2 27 [

7 LT
= (- ﬁ‘) Ko(er) = —ze:;[xl(er). (2.49)
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This leads to the representation

1 > k7 p o iR
o, = %/d%ek Ky(er) (1—6 ) ;

2 1 R iRF
o, = %/d%ek (—ie)—Ki(er) (1 —e ) . (2.50)

r

Let us now make the approximation that there is no other E—dependence in the photoab-
sorption cross section. Then one immediately has

. -1 o . -
/fk%%::/fh-/f@ﬁﬂwﬂmm@mmmmMLwWQ@—aWﬂ
42
- /d%? K2(er) 2[1 — cos(R7)) . (2.51)
Substituting these expressions into photoproduction cross sections, one gets

1
or(z,Q%) = a% Z e?/o dz / dZF[m?Kg(a‘T) + [+ (1 - 2)2]62[(12(67")}

2—»
x / DR o Flay, ) 2[1 = cos(7F):

24
1
on(z,Q%) = a;m Ze?/o dz/dzf'- 4Q%2*(1 — 2)* - K¢(er)
d*R » s
X /E—‘las]:(:cg,/{z) 2[1 — cos(Rr)] . (2.52)

2.6.1 Dipole cross section

The above results can put into the form (2.48) by breaking Eqs. (2.52) into some positively de-
fined cross section and the square of the photon wave function. This is done in an unambiguous
way by defining the dipole cross section.
Let us first consider the total quark-proton cross section,
2 =
o= TR (@) F (7). (2.53)
R
Note that this expression does not depend on the quark transverse momentum k. This means
that this cross section precisely corresponds not only to the plane wave, but also to any
transverse wave packet. In particular, a localized state in the impact parameter space (that is,
a quark with a fixed separation p,, from the proton) would be described by the same formula.
Given this cross section, we can now ask for the interaction of a color dipole with the
proton. In this, each extra gluon that is attached to the antiquark rather than to the quark
gives rise to an extra phase factor exp(+i£r), as well as extra minus sign. These factors for
the four diagrams then sum up to produce

1 — e — ™ 41 = 91 — cos(RF)].

The result for the dipole cross section is then

2 =
oap(r) = 2n d—ﬂas <max [/%'2, é]) F(z,#*)2[1 — cos(RT)]

3] R r2
4m? 1 dR* A )
T3 T (max [”"27 T—QD Fa, B)[1 = Jo(kr)]. (2.54)
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Note that, in contrast to (2.53), the argument of o, contains now the effect of a possible
screening from the complementary charge. Indeed, even when £? is small, the strong cou-
pling constant does not rise rapidly, for such a rise requires the presence of soft gluon vertex
correction loops, which are strongly suppressed by the color anti-charge of the antiquark.
Having defined the dipole color cross section, we can now return to the photoabsorption

cross section and cast it into the form

O'T—/ dz/dradzp |\I/T| (z,7), O'L—/ dz/dradzp |\I/L| (z,7);

W72, 7 = 30‘“”2 [m2 K (er) + [ + (1 — 222 K3 (er)]

3aem .
|\IJ,€(Z,F)|2 = Zef 4Q%2%(1 — 2)* Kl (er). (2.55)

Note that this representation literally represents the probabilistic form (2.6) of the forward

scattering amplitude.
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Chapter 3
DGLAP vs. k; factorization

The calculation of the forward Compton scattering amplitude conducted in the previous chap-
ter within the framework of the k;-factoriation approach can be used now to investigate the
major similarities and the gross differences in comparison with the widely used DGLAP ap-
proach to the calculation of high energy reactions.

It turns out that in the double logarithmic regime — that is, when both log < and log Q?
are large, we might expect that both approaches are applicable and their predictions would
asymptotically converge. We shall now demostrate that this is indeed the case, and we will
also show what sort of phase space restrictions the DGLAP approach contains and what it
leads to.

3.1 How DGLAP and £, factorization approaches meet,
at high ()?

Recall the familiar DGLAP equation [18] for scaling violations at small z,

dFy(z,Q°) = 2as(@%) 1 2 2 T 2 NQS(QQ) 2 2
TdlogQ? & o /xdy[y +(1—y) ]G(Q,Q)fv - G(zm,mzf:ef, (3.1)

where, for the sake of simplicity, we consider only light flavors. Upon integration we find

~ 3 /de@ @) a0,), (32)

with p? being the proper cut-off. In order to see the correspondence between the ki-factorization
and DGLAP factorization it is instructive to follow the derivation of (3.2) from the &-
representation.

First, separate the £%-integration into the DGLAP part of the gluon phase space, £* <

@2 =+ ];2, and the beyond-DGLAP region, &* 2@2. One readily finds

- - 2 222(1—2)2Q* 22(1-2)Q? 1) =2 ¢ =2 —=2

k kE—R < —= - —% + —_4> K if P Q

k24?2 (k—R)?+4¢e? <_L2 _ 20=2)Q ) it 20
Q Q ’ ~



Consider first the contribution from the DGLAP part of the phase space, K2 < @2. Notice
that because of the factor £? in (3.3), the straightforward £? integration of the DGLAP

component yields G(z,, @2) and @2 is precisely the pQCD hard scale for the gluonic transverse
momentum scale:

Q" dr? ) " k k— K
—a Flz,, R = - —=
/0 4 s(q°)F (x, )(k2—|—62 (k—k')2—|—52)

(22 (1-— ~ Q2 (16562)622 N __4) (@Gl T) (3.4)

The contribution from the beyond-DGLAP region of the phase space can be evaluated in terms
of f(xg,QQ) and the rescaling factor Cl:

oo di? ) o 1 (1 —z)Qz) B ( 1 (1 —z)QQ) — — —9
— () (2, F) | o — ———= | = | = — = | as(@ ) F (2, Q@ ) (zy,
[; st Fen ) (- 1 L) @70 @12, T)

22%(1 — 2)*°Q*  2z(1 —2)@Q* 1 ) 9 —2 —2
= — — — + = | (@) F (2,4, Q") log Cy(xy,Q", 2) . 3.5
( - - =) (@) F2, 0o ot 0 ) (3.5)

The latter form of (3.5) allows for convenient combination of (3.4) and (3.5) by rescaling the
hard scale in the GSF

2

G5, Q") + Fl29,Q ) log Ca(5, Q" 2) & Gy, Co(2, Q" 2)Q ). (3.6)

Here the exact value of I(z,, Q ) depends on the rate of the g*-rise of F(z,,£*). At small z,
and small-to-moderate @2 one finds I(z,, @ ) substantlally larger than 1 and Cy(z,, Q z) > 1.
Now change from dk? 1ntegrat10n to dQ and again split the 2 Q* 1nteg1dt10n into the

DGLAP part of the phase space, Q < 1Q2 where either z < 82 or 1l —z < 82, and the
beyond-DGLAP region, Q 2Q*, where 0 < z < 1. One finds
22%(1 — 2)2Q*  22(1 — 2 1
/dz[22+(1 —2)2]< 2( _82) Q _ 2( _62>Q +__4)
Q Q Q
i it Q< 1Q?
268 166 064 , 1 ~ 1
where )
A, = / dez% 4 (1 — )%™ (1 — 2)™. (3.8)
0

Let Cy be Cg(mg,QZ,Z) at a mean point. Notice also that M} ~ @Q?, so that z, ~ 2z. Then
the contribution from the DGLAP phase space of @2 can be cast in precisely the form (3.2):

20”40 as(Q” =2
Py, QQ)‘DGLAP ~ 2);63(/0 @QQ 53(7i2 )G(QI’ Q). (3:9)
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The beyond-DGLAP region of the phase space gives the extra contribution of the form

,as(Q?) I Q" Q"

non—DGLAP - s I 02 @2 @2

~ Ze?as(fQ)G(Q:L‘,QQ) . (3.10)
f

AFy(z, Q%) (22,Q")

3

Eqgs.(3.9) and (3.10) immediately reveal the phenomenological consequences of lifting the
DGLAP restrictions in the transverse momenta integration. Indeed, the DGLAP approach
respects the following strict inequalities

<k and k< Q. (3.11)
As we just saw, removing the first limitation effectively shifted the upper limit in the @2
integral to %QZ # @Q?, while lifting the second constraint led to an additional, purely non-
DGLAP contribution. Although both of these corrections lack one leading log-Q* factor, they
are numerically substantial.

The above analysis suggests that the DGLAP and k;-factorization schemes converge loga-
rithmically at large Q*. However, in order to reproduce the result (3.9) and (3.10) for the full
phase space by the conventional DGLAP contribution (3.2) from the restricted phase space,
(2.5) one has to ask for DGLAP gluon density Gp(z,Q?) larger than the integrated GSF
in the ki-factorization scheme. The difference between the two gluon densities can be quite
substantial in the domain of strong scaling violations.

3.2 The different evolution paths: soft-to-hard diffusion
and vice versa

The above discussion of the contributions to the total cross section from the DGLAP and
non-DGLAP parts of the phase space can conveniently be cast in the form of the Huygens
principle. To the standard DGLAP leading logQ? (LLQ?) approximation, one only considers
the contribution from the restricted part of the available transverse phase space (2.5). The
familiar Huygens principle for the homogeneous DGLAP LLQ? evaluation of parton densities
in the z-Q? plane is illustrated in Fig. 3.1a. One starts with the boundary condition p(z, Q2)
as a function of z at fixed Q3. The evolution paths (2,@2) for the calculation of p(z,Q?)
shown in Fig. 3.1a are confined to a rectangle » < z < 1, Q2 < Q?* < Q% This evolution
is unidirectional in the sense that there is no feedback on the z-dependence of p(z,Q7) from
the z-dependence of p(z,Q3) at Q5 > Q7. In Fig. 3.1a we show some examples of evolution
paths that are kinematically allowed but neglected in the DGLAP approximation. Starting
with nearly flat or slowly rising G(z, Q2), one finds that the larger Q?, the steeper the small-z
rise of G(z,Q?).

At z <« 1 the DGLAP contribution from the restricted transverse phase space (2.5) no
longer dominates the multiparton production cross sections, the restriction (2.5) must be
lifted and the contribution to the cross section from small £2 and large £ > Q* can no longer
be neglected. The Huygens principle for the homogeneous BFKIL evolution is illustrated in
Fig. 3.1b. One starts with the boundary condition F(z¢,@?%) as a function of Q* at fixed

30



| Kz
i o
| 3
I o
(XQ) @gm===c---------h 1" (xQ) ST~ Q
X 10" 1

a) b)

Figure 3.1: The Huygens principle for Q* x evolution of DIS structure functions with (a)
DGLAP restricted transverse phase space and (b) for the BFKL x evolulion withoul restric-
tions on the transverse phase space and hard-to-soft & soft-to-hard diffusion.

zg < 1. The evolution paths (z,Q?) for the calculation of p(x,@?) are confined to a stripe
r < z < xg. In contrast to the unidirectional DGLAP evolution, one can say that under BFKI.
evolution the small-z behaviour of p(z, Q?) at large Q? is fed partly by the z-dependence of soft
p(z,Q*) at larger z and vice-versa. The most dramatic consequence of this soft-to-hard and
hard-to-soft diffusion, which can not be eliminated, is that at very small x the z-dependence
of the gluon structure in the soft and hard regions will eventually be the same. The rate of
such a hard-to-soft diffusion is evidently sensitive to the infrared regularization of pQCD; the
model estimates show that in the HERA range of z it is very slow [22, 23].
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Part 11

Derivation of vector meson production
amplitudes
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Chapter 4

Description of a vector meson

In this chapter we first introduce the vector meson light cone wave function (LCWF) and show
how it emerges in diagrammatic calculations. Then, describing S and D wave type vector
particles, we give expressions for S and D wave vector meson spinorial structures, which
we then prove by calculating the normalization condition for LCWF. Finally, we calculate
V — ete™ decay constants to be used afterwards.

4.1 Bound states in QFT

While describing particle motion in non-relativistic Quantum Mechanics, one usually deals
with a configuration space particle wave function, which is a good description because the
number of particles is conserved. When one has a system of particles and shows that the wave
function corresponding to their relative motion descreases at large relative distances at least
exponentially, one can speak of a bound state.

In Quantum Field Theory (QFT) this approach needs an update, since the field function
becomes an operator in Fock space. Besides, since a bound state always implies the presence
of interaction, the projection of a physical bound state onto the Fock space of free, non—
interacting, plane-wave state vectors has a rather complicated structure:

Vonys) = colq@) + c1lq@q) + c2|qdgg) + eslaqqd) + ... (4.1)

We emphasize that in this decomposition, quarks and gluons are assumed free, i.e., on-mass-
shell. The coefficients ¢; can be called “wave functions” of the given projection of a physical
vector meson, with |¢;|* being the probability of finding a vector meson in a given state.

The exact treatment of any reaction involving the vector meson must account for all terms
in the above expansion. Demonstration of a method that would account for all these terms is,
however, still an unresolved task, and currently one is limited to the term-by-term analysis of
the vector meson reactions.

Given large number of papers devoted to the high-energy reactions involving vector mesons,
and in particular, to the process of diffractive vector meson production in DIS, one might
expect that the lowest Fock state in the above decomposition has already been thoroughly
studied. It turns out, however, that it is not so, for in all early calculations the importance of
the spin-angular coupling inside the vector meson and dramatic effects it entails were largely
overlooked.
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In this Chapter we fill this gap. We construct a full and exact theory of the vector meson
stucture, provided the vector meson Fock space is saturated by the lowest ¢q state. Being only
an approximation, this approach still is of vital importance to the whole field, for it results
in a complete, self-consistent and self-contained spin-angular description of the vector meson.
To our best knowlegde, our work represent the only satisfactory theory of spin structure of
the vector meson.

4.2 LCWPF and vertex factor

Let us now outline how a wave function of a bound state appears in the diagrammatic language.

In non-relativistic quantum mechanics, the two-particle bound state problem can be imme-
diately reformulated as a problem for one particle of reduced mass p, moving in the external
potential. This reformulation allows one to split the wave function into two factors: the wave
function of the motion of the composite particle as whole and the wave function corresponding
to the internal motion of constituents. The former part factors out trivially, while the latter
wave function obeys the following Schodinger equation

[g_u + v<r->] ¥(r) = B(r) (42)

Since the wave function ¢ (r) and the interaction operator V(r) exhibit good behavior at
infinity, one can rewrite this equation in the momentum representation

1
(2m)?

L)+ o [ RV~ K) = B ()

(2= 2) ) = - s [ WV IRAP— 1. (4.3

m

In this notation, this equation can be viewed as a homogeneous non-relativistic Bethe-Salpeter
equation for the wave function ¢ (p) that describes the relative motion of constituents inside
a composite particle.

Let us now introduce

) = (2~ ) vt (44)
Then Eq.(4.3) can be rewritten as

') =~y

/d,SkV(k)WF(p k) (4.5)
=8 g

m
This equation has an absolutely straightforward diagrammatic interpretation (Fig.4.1). One
sees that I'(p) stands for a bound-state — constituents transition vertex, with p being the
relative momentum of the constituents. The actor 1/[% — FE] describes propagation of
the constituents and V(k) stands for the interaction between constituents. Of course, the
kinetic energy p*/2u # E, the total energy, which is in fact negative, so no pole arises in the

propagator.
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I
—_—
=

I'(p) I'(p-k)

Figure 4.1: The diagrammatic interpretation of the integral equation for vertex function I'(p)
(p is the relative constituents momentum).

In the relativistic case, 1.e., in QFT, it is not clear a priori whether the whole picture that
involves the wave function and the representation of the vector meson as free non-interacting
constituents would work at all. Therefore, in our approach we will be aiming at introducing
an appropriately defined wave function and demonstrating that hard processes involving vec-
tor mesons can be expressed in terms of expectation values of ¢g amplitudes between wave
functions, i.e., we intend to treat a hard process in a probabilistic, quantum mechanics-like
manner.

In the following we will show that this program succeeds. Namely we will introduce the
radial wave function of the gq state of a vector meson as

I'(q)

vl9) = 55 (4.6)

_ m%/ ’
The angular dependence of the wave function will be treated separately, see Sect.4.4. Here
I'(g) is the vertex factor, M?* is the eigenvalue of the relativistic kinetic operator of the on-
mass-shell ¢G state, and m3i, is the eigenvalue of the total relativisitic Hamiltonian, which is
equal to the mass of the vector meson squared. Then, during an accurate and consistent
analysis of a hard process Feynman diagrams, we will always make sure that wave function
(4.6) automatically appears in calculations and the rest looks the same as if both fermions
were on-mass-shell. If we see that fermion virtualities modify the results, or if different Fock
states mix during hard interactions of the vector meson, it would signal the invalidity of the
free particle parton language and consequenly the breakdown of the whole approach. This
restriction must always be taken into account when obtaining and interpreting the parton
model-based results.

4.3 Light cone formalism

The term “light cone approach” to high—energy process calculations can have different mean-
ings. Some prefer to re-formulate the whole of QFT using light cone dynamics, introduce light
cone quantization and derive light cone Feynman rules. For Light Cone Field Theory, see
[24, 25]. Ome should keep in mind, however, that even within the usual QFT the light cone
formalism can be freely used as a means to greatly simplify intermediate calculations. This is
exactly the way we will use it.

It was noted long ago [26] that the calculation of a high-energy collision is simplied if one
decomposes all momenta in terms of light cone n/y,n” and transverse components, which we
will always mark with the vector sign over a letter (so-called the Sudakov decomposition):

(1,0,1); n* = \/%(1,6,—1); (ngn_) =1, (nyny) = (n_n_) =0

o
n+_
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P =penf +pont +p*; pP =2pip- — P (4.7)

Indeed, imagine two high energy particles colliding with momenta p* and ¢*, respectively,
and equal masses m. Then one can choose such a frame of reference that in the Sudakov
decomposition,

P = pynk + p_nl +p*,
¢" = qunly +q-nl + ",

quantities p_ and ¢4 are large (p—, g+ > m), while py = (p* + m?)/(2p-) and ¢ = (@* +
m?)/(2qy) are small. The total energy squared of these two particles is, approximately,

s =2q4p— . (4.8)

Note that our definition of s is somewhat different from the more familiar one (p+¢)* by terms
x m?, p?. However, it is not of any importance for us, since in the course of the calculations
we will keep track only of the highest power s contributions, i.e., everything will be calculated
in the leading power of s approximation.

ki

 —

k>

—

Figure 4.2: Kinematics of V' — ¢q vertex on the light cone. Vector meson momentum qy is
taken as incoming; constituents momenta are outgoing.

Let us now go further and examine the kinematics of a typical ¢ggV" vertex (Fig.4.2). The
Sudakov decomposition of all momenta reads:

gy = quny + qv_n’;
k' = k1+ni + k_n® + Er = qu_|_'rLi + yqy_n” + E“;
k= kypn!t 4 ka_n” —F* = (1 — 2)quyn’s + (1 — y)qv_n” — k* (4.9)

so that
G =2qvequ- =my; kAR =g K #m?, (4.10)

1.e., quarks can be off mass shell. Now let us introduce momenta £ that would correspond
to on-mass-shell fermions. The only component in k; subject to modification is k;_, or equiv-
alently, the energy. Large k;y components are insensitive to (reasonable) quark virtuality
variations. So, to obtain the on-mass-shell momenta, one has to replace

k% + k2 m? + E2
ki = - — kIl = —. 4.11
2k;y 2kiy ( )
Then the 4-vector
q" = k" + k" (4.12)
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squared is equal to

_ E2+m2

2 _ 2 o * *
M* =q" =2q1q- =2qv4 (k1_+k2_) =2

(4.13)

Once again we emphasize that the Feynman invariant mass (i.e., the total 4-momentum
squared) of the virtual quark-antiquark pair is m$.. The quantity M? is the invariant mass
of the free, non-interacting qq state (see 4.6). However it is precisely M, not my, that will
govern the hard interaction of gg pair with gluons.

Finally, it is useful to introduce the relative momentum of free ¢q system:
2py = (ki — k3) - (4.14)
Trivial algebra then leads to
M? =4m* +4p*; p’=-p*; (pg) =0, (4.15)

where p is the relative 3-momentum in the g pair rest frame. Its components are

. L 1
p=(pp); P=Fk; pz:§(22_1>M- (4.16)

4.4 Spin structure of a vector particle

Let us start with a well-known example of a deuteron, which is a non-relativistic analogy of
a vector meson: they are both vector particles built up of two fermions. To have the correct
(P-) parity, the proton and neutron must sit in the spin-triplet state, thus leaving us with
two possible values of their angular momenta: I = 0 and 2.

In the conventional non-relativistic language one describes the spin-angular coupling by
the Clebsh-Gordan technique. The non-relativistic Feynman diagram calculations can be best
performed using an alternate approach. Here a deuteron, being a vector particle, is described
by a 3-dimensional polarization vector V. So, while calculating high energy processes involving
d — pn transitions, one can use the following spin structure of deuteron-nucleon-nucleon
vertex:

¢y Ty V. (4.17)

Since both nucleons can be treated on-mass-shell, only two terms enter I';, which can be
written as:

oF [u(p)ai +w(p)(3p'p — 5ijp2)aj} by V" (4.18)

Here o' are Pauli matrices and p is the relative proton—neutron momentum. One immedi-
ately recognizes here spin structures corresponding to the pn pair sitting in S and D waves,
respectively. In particular, squaring the above expression gives

(VV*) for |S|?
3(pV)(pV*) — (VV*)p? for SD interference
3p?(pV)(pV*) + (VV*)p* for |DJ*. (4.19)
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Now let us go relativistic and turn to vector mesons. The polarization state of a vector
particle is described by a four-vector V. Therefore, a general form of a gqV" vertex has the
form

aTu“ V- F(P) )

where I'(p) is the familiar vertex factor. Up to now, it has been customary in the literature
to choose the simplest form of the spinorial structure I',:

w'y,u-V,-T(p). (4.20)

One must admit, however, that (4.20) is simply an analogy of ¢y vertex and does not reflect
the true internal structure of a vector meson. It is known [27] that the correct spinorial
structure corresponding to pure the S wave ¢q state is

2p, _ ( 2pupy

v s o W = Ow Y 4.21
= ), = S (4.21)

It is implied here that spinorial structures are inserted between on-mass-shell spinors in ac-
cordance with our principal guideline (see discussion in Sect.4.2).

Once S wave spinorial structure is established, the expression for D wave can be obtained
by contracting S wave with the symmetric traceless tensor of rank two 3p;p; — §;;p*, rewritten
in the Lorenz notation. To do so, one should replace

quqv
M2

Pi = Pus O = —Gu +

(in the gq pair rest frame of reference ¢, = (M, 0, 0, 0)). However, since ¢, inserted between
on-mass-shell spinors gives zero due to the Ward identity, one obtains the required tensor in
the form 3p,p, + ¢, p?. Tts contraction with S, yields

+m

Pupu> Y = Dy -

(4.22)
We will prove below that structures (4.21), (4.22) after being squared indeed reproduce (4.19);
i.e., they correspond to pure S and D waves.

M
D, = (3pup, + _(JWPQ) “Supp = pQ'Yu + (M +m)p, = <p2.9uv +

The quantities S, and D, used in (4.21), (4.22) have the meaning of S/ D wave projectors,
which will be used in all subsequent calculations. Namely all calculations will be at first
performed for the naive ¢gV" vertex (4.20) and then we will apply the projector technique to
obtain expressions for S and D states.

4.5 Vector meson LCWF normalization

Before tackling the diffractive vector meson production process, we must first have a prescrip-
tion for normalization of the vector meson wave function.
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Figure 4.3: Diagram used for normalizing the vector meson LCWF. The amplitude of this
diagram is set equal to 2¢41.

4.5.1 The naive ¢¢V vertex

A natural way to normalize the wave function of a composite system is to set the amplitude
given by the diagram in Fig.4.3 equal to 2g4i. Here the extra leg carries zero momentum
but couples to the fermion line as vy,n”. Note that for a charged composite particle (e.g., a
deuteron) this is precisely setting the electric form factor equal to unity in the soft photon limit.

As described above, we first treat the ¢gV" vertex as w'y,u - I'(p). In this case the general
expression for this amplitude is

A=

(=1 v . /d%sp{mr il — Gy +m) - VT ik 4 m) i - i(k + m)}
(27r)4 ¢ (k2 —m? +ie] - [k2 —m? + €] - [(k — qv)2 —m? + i€

N IT|2Sp{...}
= oo [ P s R U

where N. = 3 is a trivial color factor originating from the quark loop. We deliberately
recognized Vi and V; as distinct entities, just to make sure later that such a loop is diagonal
in polarization states.

The first step is to rewrite this expression in terms of Sudakov’s variables. As usual, one
implements decomposition

k' = zquank + yqu_n’ + k' ¢ = 2qviquo = my,
and transforms |
d'k = §m%,d212dydz.

Now we observe that the vertex functions I' do not depend on y (and neither does the trace,
as will be shown later), so we can immediately perform the integrations over y by means of
the Cauchy theorem. Indeed, since the integral

(4.24)

/ dy = , = —
-0 [yzm%, — (k2 + m2) + i¢]? [(1 — y)(l — z)m%, — (k2 + m2) + €]

is convergent and has good asymptotic behavior, one can close the integration contour in the
most convenient way. To do so, one must find the position of all poles on the complex y plane:

-, -,
k% 4+ m? 1€ k? 4+ m? 1€

- - 1— .
yL.2 zmi, zmi,’ Y3 (1 —2)ymi{ (1 —2)mi
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One sees that if z < 0 or z > 1, all poles lie on the same side of the real axis in the complex
y plane, which leads to zero contribution. The contribution that survives comes from region
0 < z < 1, which has, in fact, a simple physical meaning: all constituents must move in the
same direction. In this region we close the integration contour in the upper half-plane and
take the residue at y = y3. Physically, this corresponds to putting the antiquark on-mass-shell.
After this procedure, one gets for (4.24)

21 1 B 2m (1 — 2)2
(L= 2)m¥ [yzm — (k2 +m2) + i b= (1= 2)mb (2 4 m? — 2(1 — 2)m} ]’
2m1 1 1

_WZJ(I —z) [M? — m{)?

One immediately recognizes here the same two-particle propagator as in (4.6). Therefore, the
equation for the amplitude reads

A:z'(%g-/d%% o (—%Sp{...}) . (4.25)

We now turn to the trace calculations. As we found during the calculation of the forward
Compton scattering amplitude, all the fermions can be treated in the trace calculations as if
they were on-mass-shell. We will use this property in all subsequent calculations.

The easiest way to calculate the traces in our case is to do it covariantly, without involving
further the Sudakov technique. Since quarks in the numerator can be as treated on-mass-shell,
we first note that

A ~ A

(k+m)n_(k+m)=2(k"n_)(k"+m),
so that

1 A A . P . .
—55p(} = —2ae Sp{Vi(k" — G+ m)Vy (b 4 m)} = —2zq, [MP(VIVY) + 4(Vip)(Vyp)]

where p is the relative quark-antiquark momentum [see (4.15)]. Note that in the antiquark
propagator we replaced l%—qAV .y —q, since the antiquark is now put on-mass-shell. Besides,
we explicitly used here gauge condition (¢V') = 0, which means that polarization vectors
must be written for the on-mass-shell qq pair, not the vector meson, — another important
consequence of our approach. Substituting this into (4.25), one gets

2y /d2 |¢|2[ M*(VV5) = 4(Vip)(Vp)| - (4.26)

A prominent feature of this equatlon is the orthogonality of V7, and Vr polarization states —
the necessary condition for any normalization prescription.
The next step is to realize that the integral can be cast in the form of d*p integration by
means of p A A
z -
—— I’k = —dp.d*p = —d’p.
z(1 —2) M MmeP

Thus, the final expression for the normalization condition is

|¢| [=M*(ViV7) = A(Vip)(Vy'p)] - (4.27)

We see that the expression bemg integrated is explicitly spherically non-symmetric, which is
a manifestation of a certain D wave admixture. We now apply the projector technique to
obtain results for S and D wave states.

40



4.5.2 Normalization for S wave vector meson

The correct expressions for pure S/D-type vertices can be readily obtained with the aid of
the projector technique. Namely to obtain an expression for S wave, replace

Vi = VoSuu. (4.28)

Such a replacement for V; leads to

AM

—M*(ViVy) — 4(Vip)(Vy'p) = —M*(ViVy) — M rom

(Vip)(V'p)

One then applies the same replacement to V,* to obtain

—M*(ViVy) — m(%p)(% p) = —M*(ViVy).
The result for S wave states is
L= v [ dp M (Y] (4.20)
(27)°

which is manifestly spherically symmetric.

4.5.3 Normalization for D wave vector meson

Results for D states are derived in the same way. The replacements Vﬂ(i) — VoD, , i=1,2
lead to

—M*p*(ViVy) + 3M*p*(Vip) (Vy'p) . (4.30)
After angular averaging,

1
(pipi) = 3P70,
and one gets the normalization formula for D wave state:
1= o [ sMp* (o) (4.31)
(2m)°

Several remarks are in order. First, S — D state transitions are forbidden. Indeed, such
an amplitude will be proportional to

—M*[p*(ViVy) + 3(Vip) (Vi'p)l (4.32)

which vanishes after angular integration. We emphasize that the structure of results (4.29),
(4.30), (4.32) is absolutely identical to Eq.(4.19). This fact can be viewed as the proof that
spinorial structures (4.21), (4.22) indeed correspond to pure S and D wave states.
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Figure 4.4: Normalizing LCWF to the I'(V — ete™) decay width: (a) the diagram for V. — +*
transition; (b) the diagram for V' — ete™ decay.

4.6 Decay constant

An additional normalization condition consists in relating the vector meson wave function to
the experimentally measurable physical quantity — V' — ete™ decay width (Fig.4.4). The
loop in Fig.4.4a describes transition V' — ~* and enters the amplitude of the decay V — ete”
(Fig.4.4b). Let us define the decay constant via

A =10[J"|V) = —ifvevViraV, . (4.33)

So defined, fy has dimension m?. The quantity cy reflects the flavor content of a vector meson
(in the previous calculations it simply gave unity) and is equal to

1 1 12
cy = —, L ——y = 4.34
Y TVR3V2 373 (4.34)
for p,w, ¢, J/¢b mesons, respectively.
Knowing that such a loop does not mix polarization states, we can multiply both sides of
eq.(4.33) by V* and get the expression

(=1 o SpVE ik 4+ m) - iVT - i(k — v +m)}
(2m)* (k2 —m24ic) - ((k— qv)? —m?2 + ie)

Calculations similar to the above normalization condition derivation yield, for the naive

ifv =

(4.35)

type of vertex,

(QZZC)B '/Z(ldi Z)‘FE Yy[=MA(VV*) —4(Vp)(V7p)]. (4.36)

Applying now the projector technique, one gets in the case of S states, after proper angular

Jv =

averaging,

N, 8
<S):—C-/d3 (M 4.37
and, in the case of D states,

N, 32 pt
(D) — A [ Y I S 4.38
= e L TP (4.38)

Finally, one can write down the expression for the decay width in terms of fy:
1 my Ao

NV sete )= ——— —A4n|AP = —— - foch . 4.39

This formula can be used to extract the numerical value of fy from experimental data.

42



4.7 Ansatze for LCWF

Later on we will be presenting numerical analyses of vector meson production cross sections,
for which we will need some wave function Ansatz. Here we describe two forms of the wave
function that will be exploited there. By no means should they be expected to accurately
represent the true radial wave functions in a vector meson. Our Ansatze are pure guesses,
based on non-relativistic quantum mechanical experience, of what the wave function might look
like. Undoubtedly, such an approach involves a certain degree of ambiguity in the numerical
results, and in our subsequent analysis we will study this ambiguity in detail.

4.7.1 Suppressed Coulomb wave functions

A first guess for the vector meson wave function, especially in the case of a heavy, non-
relativistic meson, would be a Coulomb-like form, similar to the wave function of a positronium:

1

¢(P)“m,

(4.40)

where a is a typical size of the meson.

However, such a hard wave function will not fit our course of calculations, since the expres-
sion for the decay constant will be ultra violet divergent. Furthermore, as we will see later,
this hard wave function will lead to vector meson production amplitudes that do not saturate
at scale p? < 1/a?, but that extend to 1/a* < p* < Q>

Thus, it appears that the hard wave function Ansatz leads to complications that do not
seem to be resolvable within the lowest Fock state only. Therefore, starting from now, we will
limit ourselves to the soft wave function Ansatz only, “soft wave function”, meaning that all
integrals of physically relevant amplitudes involving the wave function will be saturated by
p? < 1/d%.

If we still prefer to have a Coulomb-like wave function, we can consider its slightly regular-
ized form, which we will call the “suppressed Coulomb” wave function. In addition, in order
to be able to conduct simple estimates, we will take as simple form as possible. So, in this
ansatz the normalized wave functions read

2 _ (8] 1 .
P = A e
(2 o C2 (énode - G§p2> .
B = U ae
ep(p?) = 2 ! (4.41)

VM (1 +app?)”

with normalization constants to be determined from Eqs.(4.29) and (4.31). Here parameters a;
are connected to the size of a bound system: in the coordinate representation ¢; o exp(—r/a;).
For strict Coulomb functions one would have ap = 3ay/2 = 3a; = Rponr, where Rp,p, is the
Bohr radius. However, this relation should be treated with care in the cases of ¢q quarkonia,
where the quark-antiquark potential is quite complicated and therefore the a; should rather
be considered as free parameters. Value of £,,4. pinpoints the position of the node in the 2.5
radial wave function. For the pure Coulombic system £,,4. = 1, but in our case the exact
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value of &,,4. should be obtained from the requirement of the orthogognality between 1.5 and
25 states, with a; and a; fixed from other requirements.

4.7.2 Oscillator type LCWF

By an oscillator-type wave function we mean

p2a2
¢(p) X exp (_ 9 ) ’

with a again being a typical size of the wave function. This wave function Ansatz corresponds
to the case of a strong confinement. Although the approximately quadratic potential that
leads to such a rapid descrease for p? > 1/a? is not exactly what is suspected about the color-
singlet static quark-antiquark potential (in the quenched approximation), these wave function
still possess the main confinement-like properties.

In this ansatz one has
o ( pza?),
Pis = crexp | — ;

9
2(],2
?7/)25 = Cy (fnode - p2a§) €xXp <_p2 2) ;
2.2
p = cpexp|—L D) 4.49
P 9

Note again that for a purely oscillator potential one also has relation ap = ay = ay, which
might not hold in our case, since the oscillator type potential is also a crude approximation of
the true quark-antiquark interaction. The position of node &,,4. would be equal to 3/2 for a
pure oscillator model but, again in our case, its value could very well turn out to be different.
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Chapter 5

Vector meson production amplitudes

5.1 Preliminary notes

%WV
lA \\‘ II/

1 2 v
"
! 2R
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::i](_

K+4A 1

Figure 5.1: The QCD-inspired diagrams for v*p — Vp process with two gluon t—channel.
Only Diagr.(a) contributes to the imaginary part of amplitudes.

Having set up the notation and defined and described a vector meson by itself, we are now
ready to evaluate the full set of amplitudes of its off-forward virtual diffractive photoproduc-
tion.

In the pQCD-motivated approach to this process the pomeron exchange is viewed as a
two-gluon exchange, as shown in Fig.5.1a. Using the scalarization procedure, we will split the
diagram into two pieces and will treat each of them separately. The upper blob describes the
pomeron-assisted transition of the virtual photon into a vector meson. In the perturbative
QCD approach, which is legitimate here due to the presence of the relevant hard scale @2 =
mg + z(1 — 2)Q?, the gq fluctuation of the virtual photon interacts with two hard gluons and
then fuses to produce a vector meson. This interaction is described by four diagrams, given in
Fig.5.2, with all possible two-gluons attachments to ¢g pair taken into account. All of them
are equally important and needed for maintaining gauge—invariance and color transparency.
The latter property means that in the case of very soft gluons the upper blob must yield zero,
as the ¢g pair is colorless.

The lower part of the general diagram Fig.5.1a is, of course, not calculable in pQCD.
The physically meaningful procedure is to relate it to the experimentally measurable gluon
density. To do so, we will first calculate this lower blob in the Born approximation and then
give a prescription for how to introduce the unintegrated gluon density. In the course of this
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procedure we will neglect proton off-forwardness in the intermediate calculations and take it
into account only at the very end, as a certain factor to the unintegrated gluon density.

i S SR e =
gi q Eg 8, ‘-I:g b)
| | a) . !

q q

g :: 1% v ::: 1%
gi q g :.
A s

Figure 5.2: The content of the upper blob in Fig.5.1a in the pQCD approach. The true vector
meson internal structure is approximated by the ¢g Fock state.
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Figure 5.3: (a): A particularly useful convention of the loop momenta (only transverse com-
ponents of quark momenta are shown). (b): the propagator notation used while calculating
denominators. The crosses denote on-mass-shell particles.

5.2 Notation and helicity amplitudes

In our calculation we will use the following Sudakov decomposition (see also Fig.5.3a):
k, = ypn, + ZQ#, + ky;
Ky = apul + ﬁqul + ’Zu )
AW :5p#'+aq#'+A#. (5.1)
Here k and k are momenta that circulate in the quark and gluon loops, respectively, and A is

the momentum transfer. Vectors p,’ and ¢,” denote the light-cone momenta: they are related
to the proton and virtual photon momenta by

m, _ %
pe=pd 0l qu=al —apls C =P =00 v =< s=200d). (52)
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As it was mentioned in the Introduction, the condition z <« 1 is necessary in order to speak
about diffractive processes. The longitudinal momentum transfer can be readily found from
kinematics (see Fig.5.1). In the higher power s terms it reads

—

Az
my =9 = (p = A =my = 2pA) + A% 5 o= ——;
2 AQ
mh = (g4 AV = ~Q* +2(qA) + A = s=ut T (5.3)
The final vector meson momentum is given by
m2 + A2 o
e =a'+ ———p+ A (5.4)

Finally, throughout the text, transverse momenta will be marked by the vector sign as k and
3-vectors will be written in bold characters.

There are several possible helicity amplitudes in the transition 7i, = Vi, First of all,
both photon and vector meson can be transversely polarized. The polarization vectors are

2(AV)

ery =€y Vrp =V, + B

(=) (5.5)

Note that we took into account the fact that the vector meson momentum has finite transverse
component A. The virtual photon can then have scalar polarization (which is often called
longitudinal; we will use both terms) with polarization vector

1 / /
€op = @(q +ap)u- (5.6)

Finally, the longitudinal polarization state of a vector meson is given by

1 A? — M2 -
VLM - M (qu + fpu, + AM) : (57>

Note that, as we have already mentioned, in the self-consistent approach we must take the
running polarization vector for the longitudinal polarization state. It depends on M, not my,
which reflects the fact that in our approach we first calculate the production of an on-shell ¢q
pair with (whose dynamics is governed by M) and then projects it onto the physical vector
meson. We stress that this projection will automatically arise in the course of usual Feynman
diagram evaluation.

Thus, there are 5 different amplitudes:

L — L

T—T (A=)

T— L

L—T

T—-T (M =-\v) (5.8)
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The first two are helicity-conserving amplitudes. They are dominant and almost insensitive
to the momentum transfer A. The next two are single helicity flipping amplitudes. They are
unavoidably proportional to |5| in the combination (é’&) or (‘7*5) and would be vanishing
for strictly forward scattering. Finally, the last amplitude corresponds to double helicity flip

and will be proportional to (5&)(‘7*5)

5.3 The general amplitude

We will take the diagram of Fig.5.2¢ (also shown in Fig.5.3) as a generic diagram and perform
a thorough analysis of it. It turns out that the other diagrams can — and will be — calculated
in the same fashion.

The general expression for the amplitude given by Fig.5.2c reads:

. d4k d4li s 1 . ﬁ—/%l—l—m s 1 1
zA:/—/—a' —igy" 1P))i L — gyt
Gyt ) oyt B {(p—/i)Q—m%-l—ie}( g

Va QWI(SAA' o G OBB _ R

( Z>/~f%—,u2+ie ( Z>/~f§—,u2—|—z'e cv-l

Sp{ieé z'(ic4 + m) (—'ig’y”tB) 'i(ffg, + m)iV* z'(icg + m) (—ig’y“tA) 'i(ffl + m)}
. [k2 —m? +ie] [k2 — m? + ie] [k3 — m? +ie] [k — m? + i€]

(5.9)

Here cy is the same as in (4.34) and I' is the familiar q¢ — V' vertex function. Note that we
introduced “gluon mass” p in gluon propagators to account for confinement at a phenomeno-
logical level.

Let’s first calculate the numerator.

5.4 The color factor

If we consider strictly forward gluon scattering off a single quark, we have

1 B, Al Boa, 11 1. IN:—1 1
NCSp{t t }-(SAA/(SBB/Sp{t t }— NCQ(SABQ(SAB— 5 QNC = QCF_ 3 (510)

However, we should take into account that quarks are sitting inside a colorless proton, whose

2

color structure is

1
/coor = —=¢ 5.11
Yeotor = "0 (5.11)

In this case there are two ways a pair of gluons can couple 3 quark lines (see Fig.5.4). In the
first way, both gluons couple to the same quark. Since the quark momentum does not change
after these two interactions, the nucleon stays in the same state: (N|N) = 1. In the second
case gluon legs are attached to different quark lines, so that extra momentum k circulates
between quarks, which gives rise to the factor (N|exp(ikry — ikre)|N), i.e. to the two-body
form factor. Therefore, for the lower line, instead of

IR I
— 171 = ——4 12
NCSP{ } N 2048 (5.12)
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one has

] . . a/ /C/
ge“bc (35aa/5bb/t‘iut5,c; + 65aa/tﬁ,,ti,<N| exp(ikr; — mrz)|N>) vt
= Sp{t*PYy — Sp{tMP}(N|exp(irry — irry)|N)

= %5,48(1 — (N|exp(ikry —ikry)|N)). (5.13)

Note also that a similar calculation for N, number of colors would yield the same result. Thus,

the overall color factor is

%CFNCV(R> =2V(k) = %CFNC(I — (Nlexp(ikr; — ikry)|N)). (5.14)
K‘\*‘ *'I K Kl‘*‘ ;;'K
NE=——=v NE=—=V
x N, X N (No-1)

Figure 5.4: The ways two gluons can couple a colorless nucleon.

5.5 Scalarization of upper and lower parts

As is known, the highest power s contribution comes from so-called nonsense components of
the gluon propagator (density matrix) decomposition:

2}7' q'/ 2p' q'/ 2}7/ q'/
Guu! = Z“ + Z“ —{—gi‘ﬂ, N AR (5.15)

The lower (proton) line gives then
#(p) - 5 — i1 + my)il - ulp — A) (5.16)
To the highest power s order, it can be rewritten as

—1 Al Al A

1 At A AT A
uq'p' g uy = 35P{P' 9} = 5. (5.17)

forward

As we already mentioned, the effect of off-forwardness (skewedness) will be taken into account
later. Combining all factors, one has for the numerator of Eq.(5.9)

1 4 A A A A A
(47Ta'5)2 VAT Qe €V §CFNCV(/<:)S—232 . Sp{é (ka +m) ¢ (ks +m) V™ (ks +m) § (ki + m)}
= (47ras)2 VAT, ¢y - 2Cp NV (k) - 2s% . ](C)(’y* — V). (5.18)
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Note that we factored out 2s% from the trace because it will appear later in all trace calcula-
tions. The resulting expression for amplitude (5.9) is then

d*k d* Ara)?
A = Vrag ANt e [ S [ 25 _ (ra)Wis) —
(2m)* ) (27) [(p —r1)? —m2 + zc} (k2 — pu? +ie] [k2 — p? + ie]
[ki —m? 4 i€|[k3 — m? + ie] [k — m? + ie] [k — m? + i€]

(5.19)

One can immediately write similar expressions for the other three diagrams (Fig.5.2 a,b.d).
Indeed, they will differ from Eq.(5.19) only by the last line: they will have different expressions
for traces and propagator structures.

5.6 Denominator evaluation

We now turn to the calculation of denominators. As usual, we implement the Sudakov de-
composition (5.1) and make use of the relation

1 -
d*k = §sdy dz d°k .

Our procedure for evaluating the resulting integrals is motivated by the following arguments.
We are interested only in the imaginary part of these diagrams. In fact, it can be shown that
at the level of accuracy used here, the diagram in Fig.5.1a gives rise only to the imaginary part
of the amplitude. The real part is given by Fig.5.1b and can be readily found from analyticity,
so that here is no need for additional calculations. However it turns out small due to the
smallness of the pomeron intercept, so we will neglect it in our subsequent calculations.

The imaginary part is calculated by setting three particles in the s-channel cut on-mass-
shell, as is illustrated in Fig.5.3b. One way to do so is to apply the Cutkosky rules to modify our
expression. Another, more straightforward way is to calculate three of the integrals (namely
over a, 3,y) via residues, which we do here.

The details of this calculations are given in Appendix A. Here we cite the result:

I
[all propagators]

N (‘9 (‘2%7:)2 '/%‘/’V(z’y)' k2 + m? +1z(1 —2)Q?] (E“:/ﬂ)2 (520)

-
Here Ky is the transverse momentum flowing through photon vertex along the fermion line.
— =

]m/dy dz do d

Particularly, for diagram Fig.5.2c¢ it is equal to ky = k— (1 — z)& — Ky (with the specific quark
loop momentum choice given at Fig.(5.3a)).
Thus, the amplitude for this diagram has the form

’. . 2
A = VArae, 4CrpN.s* ey - %5 %3- <—ﬂ> <—@> . !

S s (2m)8
: L 2eihy (2, k2 M ro)? 1)
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After bringing all coefficients together, one gets

2—i
Al = isCFNCcV AT Qe / dz dQE?/)V(Z,EQ)/id EVLe)
647> Z(l — z)

J()
X = .
k? 4+ m? + 2’(] — 2’)@2

(5.22)

The other diagrams are calculated in the same way. The most important difference is that
for each diagram we will have a propagator 1/[kj + m?® + z(1 — 2)Q?] with its own definition
of k1, the transverse momentum in photon vertex:

a gla:E—(l—Z)z&:F—%z&

b Ew=l§—(1—z)i+/z+%&=?+ﬁ

¢ EM:E_(l_Z)A—m%&:F_z

d E1d=1§+z£=7?+%& (5.23)

Here 7 = k — (1- 22)5/2. Thus, the whole expression for the imaginary part of the amplitude
is

d’KV (k)

. CrN.cvA4Amae, dz - -
A = / P k2/7492
T 6 A= kv k) | Gy (me)
ll — J(a) J(®)
X = + =
z kfa—l—mQ—l—z(] —Z>Q2 kfb—l—m?—l—z(] —2)Q?
1) 7@
+o + = ] . (5.24)
k%c—l—mQ—l—z(l —Z>Q2 1 —Zkfd—l—mQ—l—z(l —Z)Q2

5.7 Off-forward gluon density

In Sect. 2.4 we discussed the forward unintegrated gluon density F(z,, &) and developed a
prescription (see Eq.(2.39)) for how to introduce it into the k-factorization calculations. Being
devised for forward scattering processes only, this gluon density bears a clear probabilistic
sense, which is reflected in the word “density”.

In the present case of vector meson production, the initial and final states are kinematically
distinct, therefore the forward unintegrated gluon density in its pure form is not the relevant
quantity; instead, the off-forward (or skewed) gluon structure function [28]

Flzy, 10,7, A) (5.25)

should be used. It depends on the light cone momenta z; and x, carried by the first and
the second gluon, on the transverse momentum £ inside the gluon loop, and on the total
transverse momentum transfer A. At 1 = x4 and A = 0, the forward gluon structure
function is recovered, which means that even the strictly forward vector meson production
should be described by the off-forward gluon structure function.
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The experimental determination of the off-forward gluon density might, in principle, be
possible from accurate measurements of the off-forward virtual Compton scattering process,
but the lack of such measurements makes this analysis infeasible in the nearest future. Thus,
the original idea to involve in the vector meson calculations as little ambiguity as possible by
determining the gluon content of the proton from other reactions does not work. One might,
of course, expect that replacement

Flonan i, 8) = F (222 57) (5.26)

should be quite legitimate in kinematical regimes when z; ~ z,, A< K, however such a
regime obtains only in the photoproduction of light mesons and is severely violated as we go
to higher @Q? or higher my, so that such a replacement would be a poor option for most of the
cases we study.

There is, however, way around, which allows us to reduce the unknown off-forward gluon
distributions to the forward ones. As shown in [29], if the energy behavior of the gluon densities
is describable by a simple Regge-type behavior

F (%)A , (5.27)

then in the case x4 > w4 the off-forward unintegrated gluon structure functions can be related
to the forward unintegrated gluon density according to

_ 2T+ 3)
T T(A+4)°

Bearing this exact result in mind, one can hope that a similar relation will hold for gluon

Flx1,29 = 0,R,A = 0) = R, - F(x1,R); R, (5.28)

densities with a somewhat more complicated energy behavior — if the effective exponent X is
calculated in the vicinity of the kinematical point z, K.

Note that for the purposes of approximate numerical calculation correspondence (5.28) can
be further simplified. Introduce an agrument shift ¢(A) such that

F(21,0,7,0) ox 23: ?Eiii . (%)A _ (C(;)xl)A (5.29)

holds for all z;. Simple arithmetics shows that ¢(A) changes from ~ 0.435 at A = 0 to 0.4 at
A = 1. Given this very flat dependence, we can approximate ¢(A) by a constant value 0.41 so
that

F(2,,0,7,0) ~ F(0.41zy, 7). (5.30)

This form will be used in our numerical calculations.

The effect of non-zero A comes both from the pomeron-exchange and from the proton
impact factor. Since pomeron singularity moves in complex j plane as [t| = A? changes, the
value of the effective pomeron intercept will be affected by 52, a customary representation of
this effect (in the linear Regge trajectory approximation) being

ap(A?) = ap(0) — bpAZ. (5.31)
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Although in our case the effective intercept of the gluon density is not an input number, but is
generated dynamically, we still account for the above effect by multiplying the gluon density
by the factor

exp —bpAZ log(mo/x)} , (5.32)

with o = 0.03 and trajectory slope bp taken to be different for hard (253" = 0.07) and soft
(J:flgft = 0.15) parts of the gluon density. Since the resulting contribution to the slope increases
with energy growth, this effect is called the diffractive cone shrinkage.

The second — and the most significant effect of non-zero A — comes from the proton
impact factor. Effectively, it amounts to introduction of a proton form factor F'(A?), which
would be equal to 1 at A? = 0 and would start significantly decreasing when A? grows larger
than a certain scale 1/A2. In our numerical calculations we used the dipole form factor

T 1 ?
F(A%) = (71 +52/A§) (5.33)

with A; =1 GeV~2

5.8 Final results for the naive vertex

Now, with the off-forward gluon structure function properly defined, the only things left to
be calculated are integrands I'(y — V). For convenience, their calculation is also given in
Appendix B. Tt turns out that the results can be written in the same way for all four diagrams
via given by (5.23); i.e., all quantities:

11—z

QN (N (C B (O

z 11—z
can be written in a similar way:
T—T  [(@V)(m? + kky) + (VE)(&ki)(1 — 22)* — (&k)(VFy)]
L— L —42°(1 —2)°QM
T =1 2201 —2)M(&k)(1 —22)
L—T =201 —-2)Q(1 —22)(V*E)

We can, therefore, cast amplitude (5.24) in a compact form with the aid of functions 3,

and &,:

1 1 1 1
(F+ 8?2+ Q (Fr—R)?*+Q (F+A/2)2+@Q (Fr—A/2)2+Q
R 74 R 7R +A/2 7 — AJ2
o, = — 7 — — + 5 (5.35)
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With these functions, for the naive gqV’ vertex the whole expression in square brackets in
(5.24) with sign minus (which we denote here as I, _y, ) has the form:

I, = —4QM22(1 — Z)ZCI)Q;

Frr = (@090, + (FB))] 4 (1 22 (F77)(@,) — (F)(V°8,);

I, = 2Mz(1 —z)(1 — 22)(5 1)

I = —2Qz(1 — 2)(1 — 22)(VEk)®, (5.36)
Replacing V(x) by the unintegrated gluon density according to (2.39) and using the ap-

proximation for the off-forward gluon density (5.30), we obtain the final expressions for a
general amplitude of reaction 73 — V), in the naive vertex:

Az, Q% A) = —is “VVA‘”O‘”“/ =5 /d%p 2, k)
d*R ,
—ozsf SR A) Iy = V), (5.37)

5.9 Final results for S and D wave amplitudes

Now we can use projector technique to obtain results for S/ D wave states.

QP;LPU S Q(Vp)
v~y ; v — v [‘ = [ _— ; i
Vo= V.S S, 9u (M + 2m) = +m(M—|—2 )pu®7u (5.38)
M PuPy M \%
V,u N ‘/;/,Du,u : D,uy — pQQMU + % = ]’D — ]'p2 ( + Z)( p) Py ® Yo

Note that (Vp) is 3D scalar product. While contracting, we encounter terms proportional to
pu @ 7, which should be understood as

1

pu®7M:[VT{‘7_>];}+IVL{1E‘/Z_)pZE5(22_1)]\4}' (5.39)
The result of this substitution reads:
for er:
. 1
[T—>T{V — ﬁ} + [T—>L{1 =V, — P = 5(22 — 1)M}
= m? (k) By — (€81)(1 — 22)7 (5.40)
for eq:
. 1
[L—>T{V — ﬁ} + [L—>L{1 =V, = P = §(QZ — 1)M}
= —2Qz(1 — 2)(22 — 1)m*®, (5.41)

Thus, the resulting integrands for S wave type mesons are
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5 - 201 N2 (1—22)2 2m )
I, = 4QM= (1 z) [1 + 42(1 — z) M + 2m ®z;

o —;* e —»—'* =g /W
Ifor = (@V)m 0y + (k80)] + (1= 22)* (RV) (681)
-7 TF 4 2m 7 _:_'*
@)V 80) 4 5 (R (V)0

(1 — 22)2 2m ] Mm

(1 —22)(&k) P, ;

S f— JE— R e J—
I7, = 2Mz(1 —2)(1 — 22)(€d,) ll + (=) M+ m M om
- M
IFor = —2Qz(1—2)(1— 22)(V*k)M n 5 P2 (5.42)
and for D wave type mesons are
D 7y 4m o,
I7., = —QMz(1-2z2) <k - —pz> b, ;
M
I = (V)R + (F6)] 4+ (1 = 220207 + m? + M) (F7°)(6)
—p(Ek)(V*®y) — m(M + m)(ke)(kV*)®y ;
D 1 e =y 4mo, o
W = M1 —22) [(@80) (2 = T2 ) 4 m(M + m)(@))]
P = —2Qz(1—2)(1 —22)(V*k)(p® + m? + Mm)®, . 5.43)

Equations (5.42) and (5.43), together with expression (5.37), constitute the ultimate sets
of all helicity amplitudes. They give explicit forms for the vector meson production amplitudes

within the leading-log-approximation used in this work.
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Chapter 6

Analysis for heavy quarkonia

The general answers (5.42), (5.43) are, of course, incomprehensible at a quick glance. There-
fore, a further analysis is needed to grasp the most vivid features of the results and to disen-
tangle s-channel helicity-conserving and double helicity-flip amplitudes.

Since in the heavy vector mesons quarks can be treated non-relativistically, further simpli-
fications in analytical formulas (5.42), (5.43) are possible due to the presence of an additional
small parameter p?/m?.

In what follows we will first perform the twist expansion and then relate simplified am-
plitudes to the decay constants (4.37), (4.38). We will then analyze twist hierarchy of the
amplitudes and compare results for S vs. D states. Although we perform this analysis for
heavy mesons, we wish to stress that all qualitative features (S vs. D difference, Q* depen-
dence, etc.) will hold for light quarkonia as well.

6.1 Twist expansion

Here we shall expand the amplitudes (or, to be more exact, the quantities ®, and ¥, (5.34),
(5.35)) in inverse powers of the hard scale @2 — the twist — and then perform azimuthal
angular averaging over ¢.

Expanding @5 in twists in the main logarithmic region
WAL << Q (6.1)
one observes that twist—1 terms cancel, so one has to retain twist—2 and twist-3 terms pro-

portional &%
28?  8R*?

QQ - —a T T —=% (62)
Q Q
The analogous decomposition for &, reads
- ATRYO127R™2 A(FA)
Oy = — - 6 1 (6.3)

Q Q Q
Note that the last term does not contain £%. However, one must track it because it will be
important in double helicity-flip amplitudes.
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6.2 Twist expansion for S wave type mesons

With the aid of this decomposition one obtains for amplitude . — L

92K (1—22)? 2m
I}, = —4QMz*(1 — z)> = |1 ; .
A R R I e ek (6.4
for amplitude 7" — T
. 52 4% 2m 1oy, o 287
o = @) [ 5+ 0| 4 e R o (©5)
=y o 2R k* oo 65%(1 — 22)?
0 —2ep ] [k?(gv 15 e @BI7 A)( S )]
This amplitude is naturally split into s—channel helicity-conserving and double helicity-flip
parts:
s S 2R0 T 72,2 2 mo 2

B =—\v) = 42(1 _z)(a«”)(V*A)ﬁ (1 + M) [1 L =2 2m ] .

Finally, single spin flip amplitudes are

o 2R? 1—-22)2 2m
Fror = 22N =)0 = 2e) o (@ )l” izu —i)M—I—Qm] |
S _ 2/32 - o 1; M

6.3 Twist expansion for D-type vector mesons

Here we will need to track higher—twist terms. It will turn out later that leading contributions
vanish, so that twist-3 terms will be crucial for our results. For amplitude L. — L one has

Cdmo,\ 2R 4k’
K M=t @
For amplitude 7" — T, one obtains

) 92 A\ om? .
2., = (eV*)p? {mZ_% (1 _ ?2) n ?2#]

Q Q
, W2y o k2 o 672(1 — 2z)
+ |—4z(1 — 2 + (1 =22)"m(M +m — k(€ - —le V*A [1 —;
[—42(1 = 2)p? + ( )2m( >}{Q (eV™) 2Q< )(V*A)
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Note that we kept track of all terms o |p|*. Again, one can separate out s-channel helicity-
conserving and double helicity-flip parts:

=2 2 7
12 (0 =Xy) = (5&*)% [QpZ (m2 +2k2 — 4k2%) — m(M + m)E? (1 . ?2)

Ly Am N\ e K 672(1 — 22
oty = =2 = (I = 50) @078 s (14 S22

M 20 Q
(6.9)
Finally, single helicity-flip amplitudes are
= Lt -y [_2(1 — 2:)(EA)R (7 - 4_mpz> e ) TR zz)(e’)]
2 0 M Q°
= —g—i(l 22)"M(EA) [1??2 - %mpﬁ —m(M + m)%ij} ;
P70 = —8Qz(1 —2)(1 — 22)*(p* + m? + mM)c;—ZkQ(V A). (6.10)

6.4 Final results for S wave mesons

In order to grasp the major features of various S and D wave amplitudes, further simplifications
can be achieved if one neglects spherically non-symmetric arguments of o and gluon density.
First we rewrite the general expression (5.37) in the more convenient form:

e 4 em
Az, Q% R) = —js VYT em \/sza/d?’p /—aq}- I(v* > V). (6.11)
T

In this expression everything except for integrands I(y* — V') is spherically symmetric, thus
making it possible to perform angular averaging over (), in these integrands.

6.4.1 S wave: (1, averaging

Here all the calculations are fairly straightforward. In the non-relativistic case one can every-
where put z — 1/2; M = 2m = my. The resultant integrands are:
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(L= L) = —%#
(T =T\, =X\y) = %/zz
(T =T\, =—Xv) = 2—6% 1+ %M, (Sjli )
IS(T—=1) = 64%% i
IS(LsT) = 22 (QQZ(X*MZ))Z MZ(QE’: TELE (6.12)

Note several things: since the accurate 15 wave differs from the naive 7, spinorial structure
only by relativistic corrections, one would obtain the same results in the case of naive ¢qgV’
vertex. The only difference would be an extra factor 2 for the L — T amplitude, which is a
higher-twist amplitude, anyway.

Thus, the only thing left is integration over |p|. Note that these amplitudes are natu-
rally expressed in terms of decay constants. Indeed, in the extreme non-relativistic case the
expression (4.37) becomes

273

) (6.13)
my

1) = 3mv/d3p by = /d?’p ¢s—

6.4.2 S wave: the differential cross section for . — L

Here we would like to digress and, for the sake of logical completeness, show how one obtains
the final result for the differential cross section using the example of the L. — L amplitude. If
needed, the same can be done for the other amplitudes.

One has:

4 —8Qmy @ dR? 9G(x, 7
Po the— 2TV / T (R ——B A?
/ Pvs (@Q? 4+ mi)? i g2 dlog k2 s (R”) exp( e A7)
9 — — 1 N
= — o Gl Q)as (@) exp(— 5 Bap &%) / &p s
327Q) 1 m

=G PRl Qe @

Using this result, we transform (6.11) into

A _ fVCX/ V 47raem 64’/T G . O[S
- 4gr? 3 my (Q2 + mi)?
. 1672 Q G- as eXp(_%B'g)]P/&Q)

- —cvfv-V4 em
is— o cv fv - ViAra Q% 1)’
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The expression for the differential cross section reads (t = 52):

do 1 9
dr 167r52|A|
3 2 2 2 _
_ 167 Q—-(cva)247raem G* o exp(— Bspt)

9 mi (@t mp)
Finally, one can express this cross section through I'(V — ete™) (see (4.39)):

do  167° G*a? exp(—Bspt)
49 _ T -). s
dt 3aemQ my DV = e7e7) (Q% + mi)*

(6.14)

6.4.3 S wave: the other amplitudes
T =T\ = Ay

In the non-relativistic case, this amplitude is readily obtained from the above formulas after
() — my replacement in the numerator of the amplitude [see (6.12)]. This means in particular

that in this limit A 9 0Q?
o LL

T — T,/\,y = —/\V:

This amplitude is very interesting because of the competition of two very different terms —
soft and hard scale contributions. Indeed, integration over the gluon loop gives
Gz, %) 96 G(x,Q")p’
A (T2“)+— (z.@)p" (6.16)
7 5 M?(Q?*+ M?)
We see that the soft contribution turns out to be of leading twist, while the pQCD contribution
is of higher twist. This observation was first made in [6] for the naive type of ¢gV vertex; here

we see that it also holds for more accurate S and D wave vector mesons.

T—wsLand L - T

In the case of heavy quarkonia these single spin-flip amplitudes are suppressed by non-
relativistic factors. Besides, the amplitude I, — T is of twist 3, which is another source
of suppression. Their ratios to A(T' — T) = A(T — T; A, = X}) read

AT = L)  8(EA) A(L—=T) 64 Q(V*A)
— "LUQ; 7:——72 s Wyq . (617)
AT —T) 3 my AT - T) 15 Q% + my,
The model-dependent quantities wy and w4 are defined via
wzifd?’p p’ vs w4zifd3p p* s (6.15)
my  [d'p s my [ d’p ¢s .
Within the oscillator Ansatz (4.42) their values are
3 1 15 1
2 . = ¢
2 2 (mv R)? o 4 (my R)* (6.19)
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6.5 Final results for the D wave

This case is much subtler. It turns out that the leading terms in integrands IP), proportional
to m?*|p|?, cancel out after angular averaging, so that many new terms, including higher twist
terms come into play. This cancellation is, in fact, quite understandable. Indeed, in the
very beginning we showed that vertex u’y,u contains both S and D waves, with D wave
probability being suppressed for heavy quarks due to their non-relativistic motion. This means
in particular that the photon couples to ¢g pairs sitting either in the S or D state. However,
at the other end of the quark loop, we have a vector meson in pure D wave. Therefore, the
largest items in (ys4p|...|Vp) cancel out due to S—D orthogonality.

6.5.1 D wave: (), averaging for the L — L amplitude

If we limited ourselves only to the leading p*/m? terms, we would get

- 4m 2 1
[t (= o) = am- (o7 =2 37) = 0,

which is the manifestation of S—D orthogonality. Thus, we see that p?/m? terms vanish after
angular averaging. Therefore, one has to be extremely careful here and must take into account
all possible sources of p*/m* terms. To do so, one has to perform the following averaging:

<4z(1 —z)- é : <EQ - 4ﬁmp§> : (1 - %ij)> . (6.20)

Before performing the averaging, let us make a list of useful formulas :

- 2 1

B2y = Zp2  (p?) — _p2
(k%) =3p° (p2) =3P

- 8 - 2 3

(KR) = 2Pt (K°p2) = 2Pt (hipi) = 2P’ (6.21)

Finally, remember that p? = i(l —22)°M?*.

One has to perform the following averaging

<4z(1 —z)- % : <122 - %pi) : (1 — §)> (6.22)

Note that all factors should be carefully examined; all four contribute to the final answer.

Decomposing @2

iQQ, (6.23)

—=2 2 2 _ 2 1 2 1 202 =2
Q =m —I—Z(l—z)Q =m +ZQ —1(1_27’)@ :QO_MQ

with @(2) = m? + Q?%/4, one gets

1 1 pﬁQQ)
== (11225 6.24
A 629

o
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Omitting @(;4, one has

17 QY ([ dm 4F?
(52) (182) (o) () oo

With the aid of (6.11), one obtains

<732 - @p§> — — (B*p? — 2p2p?) + 2 Q2_2 (k*p2 —2p2p2) — = (R°F* = 2p2k*)
M M M2Q, Qo

_ <2 2 Am )_i4<3_£>+2 Q" (2 E>_i4<§_i>

- BP T TP\ T s TP \s s TP U5 1
2 , dp> | 16p*  8Q’p*  16p*

_ 2 4 6P Qp*  16p (6.26)

37 M 42m  15M* (5020 150,

apti( 48 @2 16 M
5 5Q2+ M2 5 Q2+ M?

B 4p4 | < M2
~ 15M2 Q?* + M?
One can now — again — express the integral over quark loop through the decay constant

(see (4.38)):

3

. wom
[dpptvp = ) (6.27)
to give
4 ey _1 A 2 2
Gt Q Grocexp(Zy Bael) ) (g _mv ) (6.28)
15 my (Q* 4+ mi)? Q%+ mi
Comparison with I — L amplitude reveals that
AR (o omb ) ™
ag, s\ gy ) e
(6.29)

6.5.2 D wave: the other amplitudes

For the helicity-conserving amplitude one has to repeat the same averaging procedure. The
calculation proceeds as follows:

pﬁ Q* 2 2 72 —»2m2 79 4k 72 (12 4m’2
<<1+2M2©—§)'[2p (m + 2k* — 4k §>—m(M+m)k (1_62—) -2k (k ﬁpz>]>

2 2 2 2 .1
:2m2p2_§m<M+m)p2+2sz (MQ——?)M >+8p_§ 4+m 6

wrg?\2 3 15) 3P TP TP
2 8 8 , 16 M2 8
=3P P TP g Q?p T Lo? Q?p
:2p4( +i M ) (6.30)
15 M2 1 Q?
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The result can be written as

Ap 1 g (6.31)
ARy T a '
BQ* +mi

In the case of the double helicity-flip amplitude we again have contributions from soft and
hard scales with the same hierarchy of twists, namely

Gz, p?) 96 G(z,Q°)p?

A 12 - 7M2(Q2 + M2)

(6.32)

so we again see the soft domination in the double helicity-flip amplitude.

In the case of single spin-flip amplitudes, no dangerous calcellations among leading terms
arise. Before giving a list of amplitudes, we wish to emphasize that in the case of D wave
mesons there are no non-relativistic suppression factors like wy and w, defined in (6.18). This
means that, for moderate momentum transfers, helicity non-conserving amplitudes are crutial
in the case of D wave mesons.

6.6 S wave vs. D wave comparison

We would like to present our final results in a form that stresses the remarkable differences
between S wave and D wave amplitudes. Below we give a table of the ratios

I ) B
P9= A5 ) TO)

(6.33)

for helicity-conserving and single spin-flip amplitudes. Double spin-flip amplitudes are not
given due to the presence of incalculable non-perturbative contributions.

1 1_3 mi
T s Tt

4 2
prIT = 3(1+—&>

15 Q2+m%/
31 m%/
= 2 (143—YV _
PTL 5w2< +3Q2+m%r)
91

Here we note several things: First, the abnormally large higher twist contributions to D
wave amplitudes are seen here as terms o« mi,/(Q* + m},). They even force the opposite sign
of the I = L amplitude in the moderate Q? domain. Second, we see highly non-trivial —
and even non-monotonic — Q? dependence of the (ALL/ATT)2 ratio, which will lead to the
presence of a dip in experimentally measured oy, /or for D wave meson production. Finally,
we must stress that in the case of DD wave mesons there is no non-relativistic suppression for
single spin-flip amplitudes, as there was in S wave mesons. This leads us to the conclusion
that s-channel helicity is strongly violated in the case of D wave meson production.
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Chapter 7

Determination of the unintegrated
gluon structure function of the proton:

DGD2000 analysis

The familiar objects from the Gribov-Lipatov-Dokshitzer-Altarelli-Parisi (DGLAP) evolution
description of deep inelastic scattering are quark, antiquark and gluon distribution functions
q(z,Q%),G(z,Q%), and g(x,Q?). (Hereafter x,Q? are the standard DIS variables.) At small
x they describe the integral flux of partons with the light cone momentum z in units of the
target momentum and transverse momentum squared < Q? and form the basis of the highly
sophisticated description of hard scattering processes in terms of collinear partons [18]. On
the other hand, at very small z, the object of the Balitskii-Fadin-Kuraev-Lipatov evolution
equation is the differential gluon structure function (DGSF) of the target [19, 30],

9 0G(z, Q*
Fla, @) = al(ogg?)’

with G(z,Q?) = zg(z,Q?*). (Evidently the related unintegrated distributions can be defined
also for charged partons.) For instance, it is precisely DGSF of the target proton that emerges
in the familiar color dipole picture of inclusive DIS at small  [31, 32, 33] and diffractive DIS
into dijets [34]. Another familiar example is the QCD calculation of helicity amplitudes of
diffractive DIS into continuum [35, 36] and production of vector mesons [37, 38]. DGSF’s
are custom-tailored for QCD treatment of hard processes, where one needs to keep track

(7.1)

of the transverse momentum of gluons neglected in the standard collinear approximation
(39, 40, 41, 42].

In the past two decades, DGLAP phenomenology of DIS has become a big industry and
several groups — notably GRV [43], CTEQ [44] & MRS [45] and others [46] — keep contin-
uously incorporating new experimental data and providing the high energy community with
updates of the parton distribution functions supplemented with the interpolation routines that
facilitate practical applications. On the other hand, there are several pertinent issues — the
onset of the purely perturbative QCD treatment of DIS and the impact of soft mechanisms of
photoabsorption on the proton structure function in the region of large Q? standing highest
on the list — that cannot be answered within the DGLAP approach because DGLAP evo-
lution is obviously hampered at moderate to small Q2. The related issue is to what extent
the soft mechanisms of photoabsorption can bias the Q? dependence of the proton structure
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function and, consequently, the determination of the gluon density from scaling violations. We
recall here the recent dispute [47] over the applicability of the DGLAP analysis at Q* < 2-4
GeV? triggered by the so-called Caldwell’s plot [48]. Arguably, the £-factorization formalism
of DGSF, in which the interesting observables are expanded in interactions of gluons of trans-
verse momentum £ changing from soft to hard, is better suited to explore the issue of soft-hard
interface. Last but not least, neglecting the transverse momentum £ of gluons is a questionable
approximation in evaluation of production cross sections of jets or hadrons with large trans-
verse momentum. It is distressing, then, that convenient, ready-to-use, parameterizations of
DGSF are not yet available in the literature.

Here we perform a simple phenomenological determination of the DGSF at small x based
on the 1978 Baltskii-Lipatov (BL) scheme [30], in which the DGSF is directly related to the
physical observable — the proton structure function Fy,(z,@*). In the early 1990’s the BL
scheme was extended to other observables and dubbed F-factorization [49]; it is also closely
related to the color dipole factorization in the color dipole BFKL approach [31, 32, 33]. Our
interest is in producing a ready-to-use Ansatz for F(x,R?) so that we take advantage of
large body of the early work on color dipole BFKL factorization [32, 50, 51] and follow a very
pragmatic strategy first applied in [35, 36]: (i) for hard gluons with large & we make as much use
as possible of the existing DGLAP parameterizations of G(z,£%); (ii) for the extrapolation of
hard gluon densities to small £ we use an Ansatz [34] which correctly describes the color gauge
invariance constraints on radiation of soft gluons by color singlet targets; (iii) as suggested
by color dipole phenomenology, we supplement the density of gluons with small £% with a
non-perturbative soft component; (iv) as suggested by the soft-hard diffusion inherent in
the BFKL evolution, we allow for propagation of the predominantly hard-interaction driven
small-z rise of DGSF into the soft region, invoking plausible soft-to-hard interpolations. The
last two components of DGSF are parameterized following modern wisdom on the infrared
freezing of the QCD coupling and short propagation radius of perturbative gluons. Having
specified the infrared regularization, we can apply the resulting F(z, #*) to evaluation of the
photoabsorption cross section in the whole range of small to large Q?.

7.1 The Ansatz for the differential gluon structure func-
tion

The major insight into parameterization of the DGSF comes from early experience with color
dipole phenomenology of small-z DIS. In the color dipole approach, which is closely related
to K-factorization, the principal quantity is the total interaction cross section of the ¢g color
dipole » with the proton target [32, 52, 53],

2 di? A — Jo(k o A .
o(z,r) = WST g—z%ag (maX{liQ, r_2}> F(z, &%), (7.2)
which, for very small color dipoles, can be approximated by
mip? A A
o(z,r) = 5 0s <T—2> G <:c, 7“_2> , (7.3)

where A &~ 10 comes from properties of the Bessel function Jy(z). The phenomenological
properties of the dipole cross section are well understood; for extraction of o(z,r) from the
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experimental data see [20, 54]. The known dipole size dependence of o(z,r) serves as a
constraint on the possible £* dependence of F(z, £?).

As we argued in section 3.2, DGLAP fits are likely to overestimate Fpyrq(x, £?) at moderate
£2. Still, approximation (7.3) does a good job when the hardness A/r* is very large, and at
large Q? we can arguably approximate the DGSF by the direct differentiation of available fits
(e.g., GRV, CTEQ, MRS) to the integrated gluon structure function G (x,Q?):

. T, R

For(w,5?) ~ % (7.4)
Hereafter the subscript pt serves as a reminder that these gluon distributions were obtained
from the pQCD evolution analyses of the proton structure function and cross sections of related
hard processes.

The available DGLAP fits are only applicable at £* > @, (see table 1 for the values of
@?); in the extrapolation to soft region £* < @Q? we are bound to an educated guess. To
this end, recall that perturbative gluons are confined and do not propagate to large distances;
recent fits [55] to the lattice QCD data suggest Yukawa-Debye screening of perturbative color
fields with propagation/screening radius R, ~ 0.27 fm. Incidentally, precisely this value of R.
for Yukawa-screened color fields has been used since 1994 in the very successful color dipole
phenomenology of small-z DIS [50, 51]. Furthermore, an important finding of [51] is a good
quantitative description of the rising component of the proton structure function starting with
the Yukawa-screened perturbative two-gluon exchange as a boundary condition for the color
dipole BFKI evolution.

The above suggests that the % dependence of perturbative hard Fjqpq(z, £%) in the soft
region £ < Q% is similar to the Yukawa-screened flux of photons in the positron, cf. eq. (2.33),
with ., replaced by the running strong coupling of quarks CFas(/%'Q) and with factor N,
instead of 2 for leptons in the positronium, (for the early discussion see [34]),

f(f)(f%Q):OFNCO‘SfQ)( & )QVN(/%‘). (7.5)

P =92 2
K + lupt

Here p1r = R% = 0.75 GeV is the inverse Yukawa screening radius and must not be interpreted
as a gluon mass; more sophisticated forms of screening can well be considered. Following
[50, 51, 56, 22], we impose also the infrared freezing of strong coupling: as(£?) < 0.82.
Recently the concept of freezing coupling has become very popular; for a review see [57].

The vertex function V(&) describes the decoupling of soft gluons, £ <« R%p, from the color
neutral proton and has the same structure as in eq. (2.34). In the nonrelativistic oscillator
model for the nucleon one can relate the two-quark form factor of the nucleon to the single-
quark form factor,

(7.6)

IN,
Fy(R,—) = F, ( *2> .

N.—1"
To the extent that R? < R; the detailed functional form of Fy(£,—K) is not crucial. The

simple relation (7.6) will be used also for a more realistic dipole approximation,

a1
Fi(R2) = e (7.7)
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The gluon probed radius of the proton and the charge radius of the proton can be somewhat
different and A ~ 1 GeV must be regarded as a free parameter. Anticipating the forthcoming
discussion of the diffraction slope in vector meson production we put A =1 GeV.

As discussed above, the hard-to-soft diffusion makes the DGSF rise at small z even in the
soft region. We model this hard-to-soft diffusion by matching the #* dependence (7.5) to the
DGLAP fit Fyi(z,Q?) at the soft-hard interface Q? and by assigning to Fpura(z,£?) in the
region of K% < Q? the £? dependence of the Born term (7.5) and the z-dependence as shown

by the DGLAP fit Fp(x, Q?), i.e.,

— — F bl 2 — — —
Fhrara(z, %) = Téf)(mz)ing Q2 >0(Qf — B+ Fu(z, RDO(R® — Q2. (7.8)
‘7:2075 (Qc>
Because the accepted propagation radius — R. ~ 0.3 fm — for perturbative gluons is

short compared to a typical range of the strong interaction, the dipole cross section (7.2)
evaluated with the DGSF (7.8) would miss an interaction strength in the soft region for large
color dipoles. In Refs. [50, 51] this missing strength for large dipoles has been modeled by the
non-perturbative, soft mechanism with energy-independent dipole cross section, whose specific
form [50, 38] has been driven by early analysis [56] of the non-perturbative two-gluon exchange
and tested against the diffractive vector meson production data [38]. More recently, several
closely related models for ogof:(r) have appeared in the literature. (See, for example, models for
dipole-dipole scattering via polarization of non-perturbative QCD vacuum [58] and the model
of soft-hard two-component pomeron [59]). In the spirit of eq. (7.4) one can parameterize
interaction of large color dipoles in terms of the genuinely soft, non-perturbative component
of DGSF. The principal point about this non-perturbative component of DGSF is that it must
not be subjected to pQCD evolution. Thus, the arguments about the hard-to-soft diffusion-
driven rise of perturbative DGSF even at small £ do not apply to the non-perturbative DGSF
and we take it to be energy-independent,

:‘%2

K? + /’Lzoft

2 2
FE (2, 72) = asoﬁcFNc“SSf ) ( ) Va (), (7.9)

where ,u?oﬁ < ,u;t. Furthermore, it is natural that the soft component of DGSF decreases in
the perturbative domain of #* > ,u;t faster than the perturbative Born term (7.5), which is
achieved by the extrapolation of the form suggested in [35, 36],

2 =2
. R2) = (B) (., =2 K =2 K 1
f(”L’K: ) Fsoft(']“aﬂ )IZQ +K‘§ +fhard(-r7/i )E2 +K?L ) (7 0)

with kg ~ fipe.

The described Ansatz for DGSF must be regarded as a poor man’s approximation. The
separation of small-x? DGSF into the genuine non-perturbative component and small-£? tail
of the hard perturbative DGSF is not unique. Specifically, we attributed to the latter the
same small-z rise as in the DGLAP fits at Q?, although one cannot exclude the possibility
that the hard DGSF has a small z-independent component. The issues of soft-hard separation
and whether or not the non-perturbative component of DGSF enters different observables
in a universal manner must be addressed in dynamical models for infrared regularization
of perturbative QCD and the non-perturbative QCD vacuum, and only can be answered by
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confronting such models with experiment. We recall that in the conventional DGLAP analysis
the effect of soft gluons is reabsorbed into the input gluon distributions.

The R-factorization formulas (2.40) and (2.41) correspond to the full phase space extension
of the leading-order (LO) DGLAP approach at small z. For this reason our Ansatze for
Frara(z, Q%) will be based on LO DGLAP fits to the gluon structure function of the proton
Gpi(z,Q*). We consider the GRVISLO [43], CTEQA4L, version 4.6 [44] and MRS LO 1998 [45]
parameterizations. We refer to our Anzatze for DGSF based on those LO DGLAP input as
D-GRV, D-CTEQ and D-MRS parameterizations, respectively.

Our formulas (2.40), (2.41) describe the sea component of the proton structure function.
Arguably these LL% formulas are applicable at = < o = 1 +3-107%. At large Q? the
experimentally attainable values of  are not so small. In order to give a crude idea of finite-
energy effects at moderately small z, we stretch our fits to x > xg, multiplying the above
Ansatz for DGSF by the purely phenomenological factor (1 — #)°, motivated by the familiar
large-x behaviour of DGLAP parameterizations of the gluon structure function of the proton.
We also add to the sea components (2.40), (2.41) the contribution from DIS on valence quarks,
borrowing the parameterizations from the respective GRV, CTEQ and MRS fits. The latter
are only available for Q? > Q2. At « < 1072 this valence contribution is small and fades away
rapidly with decreasing x[51].

7.2 The parameters of DGSF for different DGLAP in-
puts

Our goal is to obtain a small-# DGSF in the whole range of #% by adjusting the relevant
parameters to the experimental data on small-z Fy,(z, @Q*) in the whole available region of
Q?, as well as the real photoabsorption cross section. The theoretical calculation of these
observables is based on Egs. (2.40), (2.41), (7.10).

The parameters that we did not adjust but borrowed from early work in the color dipole
picture are R. = 0.27 fm (i.e., upr = 0.75 GeV), and the frozen value of the LO QCD coupling
with Agep = 0.2 GeV:

as(Q?) = min { 0.82, LQQ . (7.11)

0 log —+—
& X%0s

We recall that the GRV, MRS and CTEQ fits to GSF start the DGLAP evolution at quite a
different soft-to-hard interface @? and diverge markedly, especially at moderate and small &2
The value of Q? is also borrowed from these fits and is not a free parameter.

The adjustable parameters are s, s, @sort, My, K2 and £7. (For the heavier quark masses
we take my = my 4 + 0.15GeV and m. = 1.5 GeV.) Both my, 4 and pgs then have clear
physical meaning and we have certain insight into their variation range from the early work
on color dipole phenomenology of DIS.

The r6le of these parameters is as follows. The quark mass m, 4 defines the transverse
size of the q§ = uu,dd Fock state of the real photon, whose natural scale is the size of the
p-meson. Evidently, roughly equal values of Fy,(z,Q?) can be obtained for somewhat smaller
F(z,Q?) at the expense of taking smaller m, 4, i.e., larger size of the photon, and vise versa.
Therefore, although the quark mass does not explicitly enter the parameterization for F(z, £2),
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the preferred value of m, 4 could have been correlated with the DGLAP input. We find that
it is sufficient to take the universal m, 4 = 0.22 GeV.

The u;fﬁ defines the soft scale in which the non-perturbative glue is confined, and controls
the r-dependence of, and in conjunction with a,, s sets the scale for, the dipole cross section for
large size ¢g dipoles in the photon. We find that it is sufficient to take the universal as,7 = 2
and k2 = 3 GeV? for the parameter of suppression of the hard tale of non-perturturbative soft
glue.

The magnitude of the dipole cross section at large and moderately small dipole size de-
pends also on the soft-to-hard interpolation of DGSF, which is sensitive to DGLAP inputs
for perturbative component G(z,Q*). This difference of DGLAP inputs can be corrected
for by adjusting p?,;, and the hard-to-soft interface parameter }. The slight rise of £} helps
to suppress somewhat too strong z-dependence of the soft tale of the perturbative glue. The
specific parameterizations for £; depend on the DGLAP input and are presented in table 1.
Only R; and pisp varied from one DGLAP input to another. The soft components of the
D-GRV and D-CTEQ parameterizations turn out identical. The eye-ball fits are sufficient for
the purposes of the present exploratory study. The parameters found are similar to those used
in [35, 36] where the focus has been on the description of diffractive DIS.

Table 1. The parameters of differential gluon structure function for different DGLAP inputs.

| | D-GRV | D-MRS | D-CTEQ |
LLO DGLAP input GRVISLO [43] MRS-LO-1998 [45] | CTEQ4L(v.4.6) [44]
2, GeV? 0.895 1.37 3.26
2 2 a1\/? 2 1\1/? 2 1\1/2
k2, GeV? | (140.0018log* L) " | (1+0.0381og? L) " | (1 +0.047log? L)
Usoft, GeV 0.1 0.07 0.1

One minor problem encountered in numerical differentiation of all three parameterizations
for Gpi(z, Q*) was the seesaw £2-behavior of the resulting DGSF (7.4), which was an artifact of
the grid interpolation routines. Although this seesaw behavior of DGSF would be smoothed
out in integral observables such as G(z,Q?%) or Fy,(z,Q?), we still preferred to remove the
unphysical seesaw cusps and have a smooth DGSF. This was achieved by calculating DGSF
from (7.4) at the center of each interval of the Q*-grid and further interpolating the results
between these points. By integrating the Fp;(x,Q?*) smoothed in this way one recovers the
input Gp(z,Q*). The values of Q? cited in Table 1 corresponds to centers of the first bin of
the corresponding Q*-grid.

7.3 The description of the proton structure function
F2p($7Q2>

We focus on the sea-dominated leading logl region of 2 < 1072, The practical calculation
of the proton structure function involves the two running arguments of DGSF: z, and &%
We recall that in the standard collinear DGLAP approximation one has 2 < k2 < Q% and
z, & 2z, [see eq. (3.1)]. Within the £-factorization approach one finds that the dominant
contribution to Fyy(x, Q%) comes from M? ~ @Q? with little contribution from M? > Q2.
Because at small z, the z, dependence of F(z,,@Q?) is rather steep, we take into account the
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Figure 7.1: The R-factorization description of the experimental data on Fyp(x,Q?) in the low
Q* region; black circles are ZEUS BPC data [62], open triangles denote H1 shifted vertex (SV)
data [64], open squares are E665 data [65]. Solid line represents R-factorization resulls for the
D-GRV parameterization of the differential gluon structure function F(z,R?).

z, — x relationship (2.44). Anticipating the results on effective intercepts, we notice that for
all practical purposes one can neglect the impact of £ on the relation (2.44), which simplifies
greatly the numerical analysis. Indeed, the x, dependence of F(x,, £2) is important only at
large £?, that is, in the region that can contribute to Fy,(z,Q?) only at large Q. But the
larger Q2, the better holds the DGLAP ordering #* < k%, Q% On the other side, at small-to-
moderate Q?, the DGLAP the ordering breaks down, however the z, dependence of F(z,, £*)
is weak here.

Obviously, achieving a good agreement from small-to-moderate to large @Q? is a nontrivial

71



F,, — moderate and high @

1| s 1 %

05| 05| 05 [

0.25 |- 0.25 |- Q= 2.5 GeV? 025 [ Q%= 3.5 GeV?
0 :-5\ \HHH‘ -4\ \HHH‘ -3\ LI ’ 0 :-5\ \HHH‘ -4\ \HHH‘ -3\ L L] - 0 :-5\ \HHH‘ -4\ \HHH‘ -3\ L LI ’
10° 10* 107 107 107 107 107 10° 107 10* 107 10

05 05| 05|
- Q*= 5 GeV? - Q%= 6.5 GeV? - Q%= 10 GeV?
0 TH\‘ | \HHH‘ | \HHH‘ L 11 0 TH\‘ | \HHH‘ | \HHH‘ L1 o B | \HHH‘ | \HHH‘ Lo L
- - 2 - - 2 - - 2 -
10% 1072 10 0% 10° 10 10% 102 10? 10
1.5 |- 1.5 |- 1.5 Q’= 800 GeV?
10 10 10
B B ¢¢Oo B
0.5 — @’= 35 GeV? 0.5 — Q%= 90 GeV? 0.5 [
: | \HHH‘ | \HHH‘ | \\HH']H : | \HHH‘ | \HHH‘ [N O:HH | | \\HH‘ | L
-4 -3 -2 -1 -4 -3 -2 -1 -2 -1
10 10 10 10~ 10 10 10 10 10 10
X X X

® A ZEUS O A H1 O E665 % NMC

Figure 7.2: The R-faclorizalion description of the experimental data on Fa,(x,Q?*) in the
moderate and high Q* region; black circles and triangles are ZEUS dala [60], [61], open circles
and triangles show H1 data [63], [64], open squares are E665 data [65], stars refer to NMC
results [66]. Solid line represents R-factorization results for the D-GRV parameterization of
the differential gluon structure function F(x,R?).

task, because strong modification of the soft contribution to F(z, %) is unavoidably echoed in
the integrated gluon SF throughout the whole range of @? and affects the calculated structure
function from small-to-moderate to large Q*.

The quality of description of the experimental data on the small-x proton structure function
achieved is illustrated by figs. 7.1, 7.2. The data shown include recent HERA data (ZEUS
[60], ZEUS shifted vertex [61], ZEUS BPC [62], H1 [63], H1 shifted vertex [64]), FNAL E665
experiment [65] and the CERN NMC experiment [66]. When plotting the E665 and NMC
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Figure 7.3: A comparison of the R-factorization descripltion of the experimental data on
Fyp(z, Q%) for several values of Q* with the D-GRV, D-CTEQ and D-MRS parameterizations
of the differential gluon structure function F(x,R*). The contribution to Fy,(x,Q*) from DIS

off valence quarks is shown separately for larger Q2.

data, we took the liberty of shifting the data points from the reported values of Q* to the
closest Q% boxes for which the HERA data were available. For Q? < Q% = 0.9 GeV? the
parameterizations for valence distributions are not available and our curves show only the sea
component of Fy,(z,Q*); at larger Q* the valence component is included.

For z < 1072 the accuracy of our D-GRV description of the proton structure function is
commensurate with that of the accuracy of standard LO GRV fits. In order not to cram the
figures with nearly overlapping curves, we show the results for the D-GRV parameterization.
The situation with D-CTEQ and D-MRS is very similar, as is seen in Fig. 7.3, where we show
on a larger scale simultaneously the results based on the D-GRV, D-CTE(Q and D-MRS DGSFs
for several selected values of Q*. Here, at large Q*, we show separately the contribution from
valence quarks. The difference between the results for Fy,(z, Q?) for different DGLAP inputs
is marginal for all practical purposes, see also a comparison of the results for o for different

DGLAP inputs in Fig. 7.4.
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Figure 7.4: A comparison of the K-factorization description of the experimental data on real
photoabsorption cross section based on the D-GRV, D-CTEQ and D-MRS parameterizations
of the differential gluon structure function F(x,R*). The squares show the experimental dala
from 1992-93 direct measurements, the bullels are the results of extrapolation of virtual pho-
toabsorption to Q* = 0 ([62] and references therein). The soft component of photoabsorption
cross section is shown separately.

7.4 Real photoabsorption cross section ¢”

In the limiting case of Q? = 0, the relevant observable is the real photoabsorption cross sec-
tion 077, Although the Bjorken variable is meaningless at very small Q) the gluon variable z,
remains well defined at Q? = 0, [see Eq. (2.44)]. In Fig. 7.4 we present our results alongside
the results of the direct measurements of 677 and the results of extrapolation of virtual pho-
toabsorption cross sections to Q% = 0. For a summary of the experimental data see Ref. [62].
The soft contribution to the cross section is shown separately. We recall that our parameter-
izations for F(z,£?) give identical soft cross sections for the GRV and CTEQ inputs (Table
1). The barely visible decrease of O'fot towards small W is a manifestation of oc (1 — z)°
large-z behaviour of gluon densities. The extension to lower energies requires introduction of
the secondary reggeon exchanges which goes beyond the subject of this study.

We emphasize that we reproduce well the observed magnitude and pattern of the energy
dependence of ¢”? in an approach with a manifestly energy-independent soft contribution to
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the total cross section. In this scenario the energy dependence of o7 is entirely due to the
z,-dependent hard component Fp,,q(z,, @*) and, as such, this rise of the total cross section
for a soft reaction can be regarded as driven entirely by very substantial hard-to-soft diffusion.
Such a scenario has repeatedly been discussed earlier [50, 51, 67]. Time and time again we shall
see similar effects of hard-to-soft diffusion and vice-versa. Notice that hard-to-soft diffusion
is a straightforward consequence of the full phase space calculation of partonic cross sections
and we do not see any possibility for decoupling of the hard gluon contribution from the total
cross sections of any soft interaction, whose generic example is the real photoabsorption.
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Chapter 8

Properties of differential gluon
structure function

8.1 DGSF in the momentum space

8.1.1 Soft/hard decomposition of DGSF

We now focus on the x and £ behavior of the so-determined DGSF starting for reference
with the D-GRV parameterization. The same pattern holds for DGSF based on CTEQ and
MRS DGLAP inputs (see below). In Figs. 8.1 and 8.2 we plot the differential gluon density
F(zg4,Q?), while in Fig. 8.3 we show the integrated gluon density

Q% dR*

Gple, Q%) = /0 & F,®). (8.1)

Here the subscript D is a reminder that the integrated Gp(z,Q?) is derived from DGSF. As
such, it must not be confused with the DGLAP parameterizations G (z, Q*) denoted with
the subscript pt.

Figs. 8.1 and 8.2 illustrate the interplay at various x of the non-perturbative soft component
of DGSF and perturbative hard contribution supplemented with the continuation into #* < ()?
described above. The soft and hard contributions are shown by dashed and dotted lines,
respectively; their sum is given by solid line.

Apart from the large-z suppression factor (1 — z)°, our non-perturbative soft component
does not depend on z. At moderate x (~ 107%), it dominates the soft region of £* < 1 +2
GeV?; the hard component takes over at higher £2. The soft-hard crossover point is close to
(12;, but because of the hard-to-soft diffusion it moves with decreasing = to a gradually smaller
R2.

In this determination of DGSF we focus on the ready-to-use parameterizations; the dynam-
ical evolution properties of the this DGSF will be addressed elsewhere. Concerning the relation
between DGSF and the observable proton structure function, the early work by Kwiecinski et
al. [68] is close in spirit to ours, the difference being in a treatment of the non-perturbative
soft component and subjecting DGSF to unified BFKL/DGLAP evolution. In Fig. 8.2 we
present DGSF taken from the plots in [68]; the agreement with our results is good, which in-
dicates a consistency of our purely phenomenological parameterizations of DGSF with general
expectations from the BFKI, dynamics.
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Figure 8.1: D-GRV differential gluon structure function F(x,R*) as a function of §* at sev-
eral values of x. Dashed and dotled lines represent the soft and hard components; the total
unintegrated gluon density is shown by the solid line

8.1.2 Soft/hard decomposition of the integrated gluon structure
function

The réle of the soft component is further illustrated by Fig. 8.3, where we show the inte-
grated gluon density (8.1) and its soft and hard components Gy, (7, Q%) and Ghara(z, Q?),
respectively. The soft contribution Gy, f¢(7, Q%) is a dominant feature of the integrated gluon
density Gp(z,Q?%) for @* < 1 GeVZ Tt builds up rapidly with Q? and receives the major
contribution from the region £ ~ 0.3 = 0.5 GeV% Our Ansatz for Fy,p(x, £?) is such that
it starts decreasing already at K* ~ 0.2 GeV* and vanishes rapidly beyond £? > /-cgoft. The
residual rise of the soft gluon density beyond Q?* ~ 0.5 GeV? is still substantial: Gy, (2, Q%)
rises by about the factor two before it flattens at large Q*. We emphasize that G,z (Q?) being
finite at large Q? is quite natural — a decrease of Gy, ;(Q*) at large Q* is only possible if

Fisopt(@*) becomes negative at large @Q*, which does not seem to be a viable option.
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Figure 8.2: The same as in Fig. 8.1 but overlaid onto one graph for illustration of the x-
dependence of F(x,Rk*). The dashed lines shows the soft component Fyopi(x, R?) and its slight
variation with x due to the finite-x factor (1 —x)°. The dot-dashed curves show the Kwiecinski
et al. [68] results for DGSF from a K-factorization phenomenology of Fy,(z, Q%) based on the
solution of the unified BFKL/DGLAP equation.

At moderately small z (~ 107%) the scaling violations are still weak and the soft contribu-
tion G,z (2, Q?) remains a substantial part — about one half — of integrated GSF Gp(z, Q?)
at all Q*. At very small z (£ 107%) the scaling violations in the gluon structure function are
strong and Grara(z, Q%) > Gsopi(x, Q?) starting from Q* ~ 1-2 GeV?.

8.1.3 Soft/hard decomposition of the proton structure function
F2<x7 QQ)

Eqgs. (2.40), (2.41) define the soft/hard decomposition of the proton structure function. In
Fig. 8.4 we show FQ};“rd(:c,QQ) and F;;ft(w,Qz) as a function of Q? for two representative
values of z. Notice how the significance of the soft component as a function of Q? rises as one
moves from fully differential F(z,Q?) to the integrated Gp(z,Q?*) to the doubly integrated
F;;ft(x, @*). At a moderately small z (~ 107?), the soft contribution is a dominant part of
Fy(2,Q?), although the rapidly rising hard component FQ};“”I(J:, Q?*) gradually takes over at
smaller z.

Notice that not only does F;;ﬁ(x, @?) not vanish at large Q?, but it rises slowly with Q?
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Figure 8.3: The same as Fig. 8.1 but for the integrated gluon structure function Gp(z,Q?) as
given by the D-GRV paramelerization of the differential gluon structure function F(z,R*) (for
discussion see Section 6.2.

as

1Gup(QY), 1
Feft z, Q%) ~ ) € soft lo . 8.2
2p ( Q ) Z f 3@0 gOéS(QQ) ( )
Again, the decrease of F;;ft(x, @Q*) with Q? would only be possible at the expense of unphysical
negative-valued Gsoft(QQ) at large Q2.

8.2 DGSF in the z-space: effective intercepts and hard-
to-soft diffusion

It is instructive to look at the change of the z-dependence from the differential gluon structure
function F(z,£?) to the integrated gluon structure function Gp(z,@?*) and, further, to the
proton structure function Fy,(z,@?). Tt is customary to parameterize the z-dependence of
various structure functions by the effective intercept. For instance, the effective intercept 7.5 ¢
for differential gluon structure function is defined by the parameterization

1\ Ters (%)
) . (8.3)

F(z,R?) <—

x

One can define the related intercepts x4 for the hard component Fyypq(z, #%). Notice that
in our Ansatz 75,5 = 0.

79



10

T T T T T
X
3,
—
Q
&

10" j{.-'-"' ............... hard 10" = - ® HERA/EG6S dato
C ol el el S R
10” 1 10 102 10° 10™ 1 10 10°
Q? (GeVz) Q? (GeVz)

Figure 8.4: The soft-hard decomposition of K-factorization results for the proton structure func-
tion Fyp(x,Q?) evaluated with the D-GRV parameterization of the differential gluon structure
function F(xz,R?).

The power law (8.3) is only a crude approximation to the actual z-dependence of DGSF
and the effective intercept 7,55 will evidently depend on the range of z fitted. To be more
definitive, for the purposes of the present discussion we define the effective intercept as

oy = B TIF o

taking x5 = 107° and z; = 1072, The effective intercept Thard(/%'Q) is defined by (8.4) in terms
of Frara(z, /%'2).
One can define the related intercepts A5, Aporq for the integrated gluon structure function
GD(.TC, Q2>Z
) 1\ Aerr(@%)
Gp(z, Q%) x (;) .

In the case of Fy,(z,Q*) we define the intercept A(Q?) in terms of the variable T defined

(8.5)

as
Q? + M
wirgr e

where My is the mass of the ground state vector meson in the flavor channel considered. Such

(3.6)

T =

a replacement allows one to treat the range Q* < 1 GeV? on equal footing, where the formally
defined Bjorken variable x can no longer be interpreted as a light cone momentum carried
by charged partons. For the purposes of the direct comparison with 7(Q?*) and A(@Q?), and

80



Effective intercepts D—CGRV

08 F ~06
1S C C
cosE (a) \g/o.s = (b)
04 | 04 |
03 b 03 b ,
0.2 ; hard ot 0.2 ; hcu:c’i," tot
01 ET 01 BT
E 0 Eoerfld vl vl v
3 10-1 02 X 3
Q* (GeV?)
06
05 [ (d) T
F A
04 |
03 [ A
02 [
E tot
01 7
0 il vl il 0 bl il il
10" 4 10 2102 2103 T 10, 2102 ) 8
Q* (GeV?) «%, Q% (GeV?)

Figure 8.5: Effective intercepts for total and hard components of (a) the differential gluon
structure function F(z,Q?), (b) the inlegrated gluon structure function Gp(z,Q?*) and (c)
the proton structure function Fy,(x,Q?) evaluated with the D-GRV parameterization of the
differential gluon structure function F(x,£?). In graph (d) we compare the effective intercepts

Ter (@), Aes £ (Q7) and Acss(Q?) for Flx,Q?), Gp(x,Q?) and Fyp(x,Q?), respectively.

in order to avoid biases caused by the valence structure function, here we focus on intercepts
Acpsy Anard for the sea component of the proton structure function Fyr*(z, Q?):

1Y Derr(@%)
) . (8.7)

sea 2
F2p (z,Q%) x <%
The results for the effective intercepts are shown in figs. 8.5, 8.6 and 8.7.
In our simplified hard-to-soft extrapolation of Fyurqa(z, Q?) we attribute to Frara(z, Q%)

at Q* < Q? the same z-dependence as at Q? = @Q? modulo to slight modifications for the

2

2, 1.e., the first derivative of

z-dependence of £7. This gives the cusp in 74,.4(Q?%) at Q* =
Thard(@?) 1s discontinuous at Q* = Q2.

A comparison of Fig. 8.2 with Fig. 8.3 and further with Fig. 8.4 shows clearly that only
in DGSF F(z,Q?) is the effect of the soft component concentrated at small Q2. In integrated
Gp(z,Q?), and especially in the proton structure function Fy,(z,@?), the impact of the soft
component extends to much larger Q2. The larger the soft contribution, the stronger is the
reduction of 7.¢; from 74,4 and so forth, as evident from Fig. 8.5a to 8.5b to 8.5c. See also
Figs. 8.6 and 8.7.

The change of effective intercepts from differential F(z, Q%) to integrated Gp(z,Q?) is
straightforward; the principal effect is that Apuq(Q?) < Thara(Q?) and Aess(Q?) < Tepp(Q?),

(z,@Q%). The change of effective

which reflects the growing importance of soft component in Gp
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Figure 8.6: Effective intercepts for total and hard components of (a)the differential gluon
structure function F(z,Q?), (b) the inlegrated gluon structure function Gp(z,Q?*) and (c)
the proton structure function Fy,(x,Q?) evaluated with the D-MRS parameterization of the
differential gluon structure function F(x,£?). In graph (d) we compare the effective intercepts

Ter (@), Aes £ (Q?) and Acss(Q?) for Flx,Q?), Gp(x,Q?) and Fyp(x,Q?), respectively.

intercepts from F(z,Q?) and Gp(z, Q?) to Fyy(x, Q?) is less trivial and exhibits two dramatic
consequences of the hard-to-soft and soft-to-hard diffusion. If the standard DGLAP contri-
bution (3.2) were all, then the change from the intercept A(Q?) for integrated gluon density
to the intercept A(Q?) for the proton structure function Fy,(z, Q?*) would be similar to the
change from 7(Q?*) to A(Q?); i.e., the effective intercept A.;¢(Q?) would have been close to
zero for Q* < 1 GeV2 However, by virtue of the hard-to-soft diffusion phenomenon inherent
to the R-factorization, Fy,(z, Q%) receives a contribution from gluons with £* > @Q?*, which
enhances substantially Ap,.4(Q?) and A.;;(Q?). The net result is that at small to moderately
large @Q? we find Apura(Q?) > Mpara(Q?) and A pf(Q%) > Aeps(Q?). As we emphasized above,
the rise of the real photoabsorption cross section is precisely of the same origin.

The second effect is a dramatic flattening of the effective hard intercept Ahwd(QQ) over
the whole range of Q2. For all three DGLAP inputs Ap.-q(Q?) flattens at approximately the
same Apgrq (R 0.4).

The set of Figs. 8.5-8.7 also shows that the systematics of intercepts in the hard re-
gion of Q* > @Q? is nearly identical for all the three DGLAP inputs. In the soft region
we have a slight inequality Thard(’zi2>|D—MRs > Tha?‘d(’%2>|D—GRV’ which can be readily at-
tributed to a slight inequality Q*(MRS) > Q(GRV). In the case of CTEQ4L(v.4.6) input
the value of Q*(CTEQ) is substantially larger than QZ(MRS), QX(GRV). In the range
QA(MRS), QXGRV) < #? < Q*(CTEQ), the effective intercept Thq,4(K*) rises steeply with
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Figure 8.7: Effective intercepts for total and hard components of (a) the differential gluon
structure function F(z,Q?), (b) the inlegrated gluon structure function Gp(z,Q?*) and (c)
the proton structure function Fyy(x,Q*) evaluated with the D-CTEQ parameterization of the
differential gluon structure function F(x,£?). In graph (d) we compare the effective intercepts

Ter (@), Aes (@) and Acys(Q?) for Flx,Q?), Gp(x,Q?) and Fyp(x,Q?), respectively.

£?. This explains why in the soft region Thard(/52>|gTEQ is significantly larger than for the

D-GRV and D-MRS parameterizations. The difference among intercepts for the three pa-
rameterizations decreases gradually from differential F(z, #?) to integrated Gp(z,@*) gluon
density to the proton structure function Fy,(z, Q?).

Finally, in Fig. 8.8 we compare our results for A.;;(Q?) with the recent experimental data
from the ZEUS collaboration [61]. Since in the experimental fit the range of z = [Z,42, Tmin)
varies from point to point, we mimicked the experimental procedure in our evaluation of
A.ss from Eq. (8.11) by taking Ty = %4 and Ty = z,,,. This explains the somewhat
irregular Q*-dependence. The experimental data include both sea and valence components.
At @Q* > Q*(GRV) = 0.9 GeV? we included the valence component of the structure function,
taking the GRVI8LO parameterization. For CTEQ4L(v.4.6) and MRS-L.O-1998, the values of
()? are substantially larger. The valence component is, however, a small correction and we took
the liberty of extracting the valence contribution F;;l(x, Q?*) from GRYV fits for Q*(GRV) <
Q* < Q3 (MRS),Q*(CTEQ). The overall agreement with experiment is good. Differences
among the three parameterizations is marginal and can, of course, be traced back to Figs. 8.5-

8.7.
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Figure 8.8: Effective intercepts A(Q?) of the proton structure function Fap(x,Q?) in the HERA
domain evaluated for the D-GRV, D-MRS and D-CTEQ parameterizalions for the differential
gluon structure function F(x,R?); the experimental data points are from ZEUS [61]

8.3 How the gluon densities of K-factorization differ from
DGLAP gluon densities

It is instructive also to compare our results for the integrated GSF (8.1) with the conventional
DGLAP fit Gp(z,Q*). In Fig. 8.9 we present such a comparison between our integrated D-
GRYV distribution (the solid curves) and the GRV9SLO distribution (the dashed curves). As
was anticipated in section 3.2, at very large Q* the two gluon distributions converge. We also
anticipated that at small z and moderate Q* the DGLAP gluon structure functions G(z, Q%)
are substantially larger than the result of integration of DGSF (see Eq. (8.1)). At z = 107"
they differ by as much as a factor 3 over a broad range of Q* < 100 GeV?%. The difference
between the integrated DGSF and the DGLAP fit decreases gradually at large z, and is
marginal at z = 1072,

Recall the substantial divergence of the GRV, MRS and CTEQ gluons structure functions
of the DGLAP approximation Gp(z,Q?) at small and moderate @Q*. Contrary to that, the
R-factorization D-GRV, D-CTEQ and D-MRS gluon structure functions Gp(z, Q?) are nearly
identical. We demonstrate this property in Fig. 8.10 where we show integrated Gp(z, Q*) and
their DGLAP counterparts Gp(x, Q*) for the three parameterizations at two typical values of
x. Because of an essentially unified treatment of the region £ < Q? and strong constraint on
DGSF in this region from the experimental data at small Q*, such a convergence of D-GRV,
D-CTEQ and D-MRS DGSFs is not unexpected.

One can also compare the effective intercepts for our integrated GSF Gp(z, @?) with those
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Figure 8.9: Comparison of our resulls for integrated gluon density Gp(z,Q?) evaluated with
the D-GRV parameterization of the differential gluon structure function F(x,R?*) with the
GRVISLO DGLAP input parameterization Gp(x,Q?).
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Figure 8.10: Comparison of the divergence of GRVISLO, CTEQ4L(v.4.6) and MRS-LO-1998
gluon structure functions Gy(x,Q?) in the left box with the divergence of our integrated gluon
structure functions Gp(z,Q?) evaluated for the D-GRV, D-CTEQ and D-MRS parameteriza-

tions for differential gluon structure function F(x,Q*) at two typical values of x
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Figure 8.11: Comparison of the intercepl /\((f}t}(Q'Z) of the x-dependence of the GRVISLO,
CTEQ/L(v.4.6) and MRS-LO-1998 gluon structure functions Gp(x,Q*) with their counter-
part Aes;(Q?) for integrated Gp(z,Q?*) evaluated with D-GRV, D-CTEQ and D-MRS param-

eterizations for differential gluon structure function F(xz,Q?).

obtained from DGLAP gluon distributions Gp(x,@%). Fig. 8.11 shows large differences of

/\8}?(@2) from one DGLAP input to another. At the same time, this divergence of differ-
ent DGLAP input parameterizations is washed out to a large extent in the F-factorization
description of physical observables (see also (8.8)).

8.4 How different observables probe the DGSF

The issue we address in this section is how different observables map the #%-dependence of
F(z,4,£*). We expand on the qualitative discussion in section 3.2 and corroborate it with nu-
merical analysis following the discussion in [52]. We start with the two closely related quantities
— the longitudinal structure function Fr,(z,Q?) and scaling violations dFy(z,Q?*)/0log Q* —
and proceed to Fy,(z,Q?%) and the charm structure function of the proton Fyf(z,Q?%). This

mapping is best studied if in (2.40) and (2.41) we integrate first over k and z. In order to
focus on the #? dependence we prefer presenting different observables in terms of F(2z, #*)

and Gp(2z,K?),

Foe,@?) = @) 5 / oY Q% 7 F(2e, /), (8.8)

OFy(x,Q?) » .
8logQ2 B Z / D@ 7 F (20, 7). (8.9)
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Figure 8.12: The weight function O, for mapping of the differential gluon structure function
F(z,R8*) as a function of §* for several values of Q*. We show separately the results for light
flavors, u,d, and c.

In the numerical calculation of Fr(x, Q?) starting from Eq. (2.41) we have z, and £* as the
two running arguments of F(x,,£?). As discussed above, the mean value of z, is close to 2z,
but the exact relation depends on &2, The k, z integration amounts to averaging of F(z,, K*)
over certain range of x,. The result of this averaging is for the most part controlled by the
effective intercept 7.;;(£*):

x

(F(x,, k%)) = <.7:(2x,/%'2) (2—:”) TSH(EQ)> = (R F(2z,R). (8.10)

9
Because the derivative of 7.7 ;(£?) changes rapidly around #* = Q?Z, the rescaling factor r(#?)
also has a rapid variation of the derivative at £2 = Q?, which in due turn generates the rapid

change of derivatives of @g?(@z,ﬁz) around £? = Q% As far as the mapping of differential
F(2x,R*) is concerned, this is an entirely marginal effect. However, if we look at the mapping
of the integrated gluon structure function Gp(z, Q?), which is derived from (8.8) and (8.9) by
integration by parts,

_os(@) 5 [ 42 905V (Q" 7"

3 K2 dlog K2

Fr(z,Q% = )GD(Q:U,/%'Q), (8.11)

OF(a, @) __as(Q) 5, [ 42004 (@2, 7

a 72 OlogR?

) 2
Flog 07 3 Gp(2z,K7), (8.12)
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Figure 8.13: The weight function ©4 for mapping of the differential gluons structure function
F(z,R8*) as a function of §* for several values of Q*. We show separately the results for light
flavors, u,d, and c.

then the weight functions 0@2{9(@2,%2)/8 log #* will exhibit a slightly irregular behaviour
around #% = Q% FEvidently, such an irregularity appears in any region of fast variation of
Tesf(R*); in our simplified model it is somewhat amplified by the cusp-like £2 dependence of
Tesf(R?).

Finally, starting from (8.12), one obtains a useful representation for how the proton struc-
ture function Fy,(z, Q%) maps the integrated gluon structure function:

Q* dqa dﬁ28®ff) 2 R?
Fp(z,Q%) = _/0 q 5 Z / Dlog 72 )GD(Q;U &%)

Z /d—EQVV 112)a5(1%'2)GD(2:L',1%'2) (8.13)

In Figs. 8.12 and 8.13 we show the weight functions Oy, and O,. Evidently, for light flavours
and very large Q? they can be approximated by step-functions

UD(Q%K?) ~ 0(CLaQ® — 7Y, (8.14)

where the scale factors Cf, ~ % and Cy ~ 2 can be readily read from Figures (for the related
discussion see [52]). Note that the value Cy ~ 2 corresponds to C; ~ 8 introduced in Section
3.2. Recall that the development of the plateau-like behaviour of ©; and ©5 which extends
to % ~ (Q? signals the onset of the leading logQ?* approximation. For large Q? in the approxi-
mation (8.14) the #% integration can be carried out explicitly and Fi(z, Q%) o« Gp(2z, CrQ?).

Similarly, 0Fy(z, Q%) /0log Q* x Gp(2x,C2Q?) (cf. Eq. (3.6)).
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A still better picture of how F7, and scaling violations map the integrated GSF is given

by Figs. 8.14 and 8.15, where we show results for —90(ff),/dlog#* and WZ(ff). The first
quantity is sharply peaked at £ ~ C,Q*; the second quantity develops a plateau at large Q.
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ture function of the proton with R-factorization results for Fy“(z,Q?*) based on the D-GRV
parameterization of the differential gluon structure function F(z,Q?).

As can easily be seen, scaling violations receive a substantial contribution from the beyond-
DGLAP region, £% > Q*

Because of the heavy mass, the case of the charm structure function FZCS(JU’ @?) is somewhat
special. Figs. 8.14 and 8.15 show weak sensitivity of F;Zf(x,Qz) to the soft component of
F(z,R?*), which has an obvious origin: long-wavelength soft gluons with x < m. decouple
from the color neutral c¢ Fock state of the photon, which has a small transverse size (g mic)
Our results for F;g(x,QQ) are shown in Fig. 8.16; the agreement with the recent precision
experimental data from ZEUS [69] is good.
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Chapter 9

Improved determination of the
differential glue in proton: DGD2002
analysis

During the last two years new high-accuracy measurements of the structure function £},
in the expanded parameter space were presented by ZEUS [70], [71] and H1 [72]. In the
light of our analysis, the most important improvement was extension into the low-z region
(down to @ = 6.7-1077 [70]) and 2 + 3% accurate determination of Fy, in the small-Q? (0.25
GeV? < Q? < 0.65 GeV?) and relatively small-z (107° < 2 < 107°) region. Even a brief
comparison of k-factorization predictions for Fj, in this region based on the DGSFE from
the previous section showed a systematic several-sigma deviation from experimental points.
The second problem with the old differential DGSF was that we did not quite match the
experimentally measured exponent of Fy, rise towards high 1/z. As our analysis showed (see
Fig. 8.8), the predicted intercept was 1 + 20 lower for @Q* > 10 GeV?.

Thus, not being able to claim that we reproduce the F, data well enough with the old
DGSF, we re-extracted the differential gluon structure function. This time the eye ball fits
were not acceptable, and therefore a y*-minimization procedure was carried out. This chapter
presents the results of this reevaluation.

9.1 Fitting procedure and parameters of DGSF

Our goal is a determination of small-z DGSF in the whole range of #* by adjusting the relevant
parameters to the experimental data on small-z Fy,(2, Q%) in the whole available region of Q.
The k;-factorization predictions for Fy, were calculated at N = 191 points in (z,Q*) space
and compared to the experimentally values measured at HERA. These points include all data
available currently for low-Q? region (Q* < 1 GeV?), as well as all data points for several
higher values of Q?, namely Q* = 1.5, 2.5, 2.7, 3.5, 4.5, 5.0, 6.5, 10 and 35 GeV?%. The y?
was calculated according to

N (Ftheor. _ er;fp-)2

X'=>

2 2
=1 O stat + Usyst

(9.1)

The parameters that we did not adjust but borrowed from early work in the color dipole

picture are R, = 0.27 fm, i.e., g, = 0.75 GeV, and the frozen value of the LO QCD coupling
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with Agep = 0.2 GeV (7.11). Our previous analysis showed that the parametrizations D-GRV,
D-MRS, and D-CTEQ (that is, DGSF based on GRV, MRS, and CTEQ fits to integrated
gluons) were very close to one another throughout the whole x, #* space. Simply stated, no
matter from what particular DGLAP parametrization we start, we arrive at virtually the same
shape of the differential gluon structure function. To this end we used only GRVI9SLO fits,
since they are available for the widest range of x and Q? values.

The adjustable parameters are s, f:, asoft, Mua, K2 and K; (for the heavier quark masses
we take mg = my, 4+ 0.15GeV and m. = 1.5 GeV). Both m,, 4 and s, have clear physical
meaning and we have certain insight into their variation range from the early work on color
dipole phenomenology of DIS. The role of these parameters is as follows. The quark mass m,, 4
defines the transverse size of the ¢g = ut, dd Fock state of the real photon, whose natural scale
is the size of the p-meson. Evidently, roughly equal values of Fy,(z,Q?) can be obtained for
somewhat smaller F(x,Q?) at the expense of taking smaller m, 4 and vice-versa. Therefore,
although the quark mass does not explicitly enter the parameterization for F(z,&?), the
preferred value of m, 4 could have been correlated with the DGLAP input. We find that it is
sufficient to take m, 4 = 0.21 GeV, which is slightly lower than 0.22 GeV, used before.

Parameter ,us_fft defines the soft scale in which the non-perturbative glue is confined, and
controls the r-dependence of, and in conjunction with as, s sets the scale for, the dipole cross
section for large size ¢g dipoles in the photon. We find that it is sufficient to take ps,p = 0.1
GeV and k2 = 1 GeV? everywhere.

The magnitude of the dipole cross section at large and moderately small dipole size de-
pends also on the soft-to-hard interpolation of DGSF, which is sensitive to DGLAP inputs for
perturbative component Gp(z,Q*). This difference of DGLAP inputs can be corrected for
by adjusting the hard-to-soft interface parameter £7. The slight rise of £} helps to suppress
somewhat too strong z-dependence of the soft tale of the perturbative glue. The specific pa-
rameterizations for K7 depend on the DGLAP input and are presented in Table 2. Only &3
and fi5,f¢ varied from one DGLAP input to another.

In order to be able to assess the uncertainty in the determination of DGSF, we performed
several y? minimization procedures using slightly different sets of free parameters. The result-
ing parameters of the fits are shown in Table 2; below we comment on each fit in detail.

Fit 1

When obtaining Fit 1, we adjusted values of a,f¢, the transition point Q2 in (7.8), the func-
tional form of x} = 3 (x), which we took as a first order polynomial a 4 blog(1/z), and the
power ( of the high-z suppression factor (1 — z)°.

The resulting value of ¢ turned out uncomfortably large (( & 11). Numerically, such a
strong suppression serves as a remedy against somewhat too slow z-behavior of Fy, as we
approach x ~ 1072 from the low-z side. Although rather artificial, this suppression factor
does not invalidate our approach, since the exact behavior of the glue in the limit z — 1
lies far beyond the scope of the present approach. Still, we would like to note the alarming
tendency that, even with this factor, a large contribution to the overall y* comes precisely
from the region we wanted to correct (107° < z < 107?). This might be an indication that our
understanding of this region is far from perfect. More analysis is needed to settle this issue.
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Fit 2

In Fit 2 we opened up another degree of freedom; namely we allowed for shifting in the

second argument of G(x, Q?). As early analyses showed, the best k;-factorization to DGLAP

correspondence would be

0G(z, Q%)

dlog Q? Q?=Cn? '

The early analysis gave C' & 2, but in our approach we treated C' as free parameter.
We started from Fit 1 and let the x? slide to its minimum as we freed parameter C'. We

expected C' > 1 at the minimum point. Indeed, our predictions with Fit 1 for the high-Q?

region suffered from too-high values at high = and too-low values at very small z. As early

Fla, /) & (9.2)

analysis indicated, when we shift the £ scale according to (9.2) we make the unintegrated
gluon density increase for < 1072 and decrease at higher values of . We expect this tendency
to survive the multiple integration procedure and to echo in the proton structure Fj,.

The minimization procedure gave C' & 1.1 with slight adjustment of other parameters (see

Table 2 for details).

Fit 3

In the region of very hard gluons both Fit 1 and Fit 2 rely on the leading order DGLAP
parametrizations of G(z,Q*). Although it is desirable that the integrated gluon structure
function Gp(z,Q?*) based on our parametrizations approaches in the double logarithmic limit
the conventional gluon density obtained from DGLAP evolution, there is certainly no re-
quirement that our fits be built on these DGLAP fits. One should only make sure that at
log(1/z) > 1 and log(Q?*/A%cp) > 1 behavior of our fits is compatible with the corresponding
behavior of the DGLAP fits.

The properties of the DGLAP-evolved gluon density in this limit is well understood. Since
the anomalous dimension of gluons is higher than that of the sea quarks, the secondary gluons
in this limit tend to be radiated from gluons as well. The evolution of the integrated gluon
density G(z,Q?) = zg(x, Q?) separates out and is governed by

851(032822) _ aig?) /: L (;Q2> P (=), 03)

with the splitting function

z 11—z 11
P =2N. |z(1 — —NS(1 = 2). 9.4
o) = 2V, [+(1 = 2) + = ] s - (0.4
The Regge-type behavior
1 A
Gl @) = 1@ (5) (95)
with constant A is compatible with the DGLAP equations and leads to
dlog f(Q?) 1 A z 1—2z 11
— 7 = 4Nc/ d 1— 01 —2)—
ds .07 2 Z)+(1—z)++ z + 2)12
1 1 1 11
= 4N, |— — — — A+2
1z A+l Atz A4z oty +2)
= 4. (9.6)
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Here

s = log |:10g <Q2/AZQCD)] (9.7)
log (Q(Z)/AZQCD)

and C and © are the Fuler constant and the digamma function, respectively. One immediately
gets the solution for the integrated gluon structure function

Gz, Q) x [log( ©’ )r (l)A, (9.8)

2

which leads to the DGSF of the form

Fla, ) [log (Aéip)r_l - (é)A . (9.9)

This analysis inspires us to search for a parametrization of F,; that would be power-like both

in log (EQ/AZ?CD) and log(1/z) in the double logarithmic regime.
The functional form of F,; that Fit 3 is based on is

22 0.34=67 4 0.4
fpt(z;,/?ﬂmta = 0.245 - llog ( )] . <—) . (9.10)
AQCD X
Table 2. The parameters of DGD2002 fits to differential gluon densities.
| | Fit 1 | Fit 2 | Fit3 |
hard input GRVI8LO GRVI8I.O Eq.(9.10)
R2-shift C=1.1
2 GeV*? 1.45 1.45 1.4
Usoft 2.66 2.63 2.6
ki, GeV? | 0.4 4 0.245log £ | 0.38 4 0.2451og 2 | 0.311og 2
[ total y* | 257 | 245 | 226 |

9.2 The properties of the gluon structure function

In Fig. 9.1 we plotted the three fits to the differential gluon structure functions obtained above
vs. K% at several values of 2. One observes there a number of interesting features.

First, the three curves display rather similar behavior at very small z, but at = as high
as 1072 the difference among them throughout the region #% > 1 GeV? is quite sizable. Still,
all of these parametrizations of DGSF do provide a reasonably accurate description of Fy,.
Thus we conclude that modern experimental data on Fj, do not place severe restrictions on
the shape of differential glue at not-very-small z (say, z > 107?).

The second feature of the curves presented is their salient two-peak shape. The technical
origin of this clear separation of the soft and hard exchange mechanisms is, of course, the very
abrupt extrapolation of soft gluons into the hard region and vice-versa, generated by high
powers (. This might seem artificial, but as we described, such abrupt extrapolation seemed
necessary in order to obtain the correct behavior of effective intercept of F3, and therefore
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Figure 9.1: Differential gluon structure function as function of k*: DGD2002 analysis

it was quite essential for getting a better y?. Thus, we inclined to think that such clear
separation of the soft and hard mechanisms is indeed preferred by experiment.

The integrated gluon structure function is shown in Figs. 9.2. A similar observation,
although in a subdued form, can be made. At z = 1072 = 1072 one can notice some departure
among the curves, which die out as we shift towards lower and lower x. As we go to smaller
z, we observe a plateau around £? ~ 1 + 3 GeV?, which originates from the two-peak shape
of F(x,&*) and becomes more and more prominent.

Note also that at small z and very large Q? all three Gp(z,Q*) curves, including Fit 3
with the simple-formula parameterization of Fj,.q, approach each other.
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9.3.1 Structure function F;, and its derivatives
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Figure 9.2: Integrated gluon structure function as function of Q*: DGD2002 analysis

Since the overall behavior of structure function Fy,(z,Q*) was the quantity we tried to fit,
one can expect a very good description of the data. Indeed, as Figs. 9.3 and 9.4 show, our
calculations for Fy, based on all three DGSF fits go almost directly through the experimental
points. This trend is somewhat spoiled beyond the region of fitting, namely for = > 0.01,
but still we do not run into any severe discrepancy even here. Note also that throughout the
fitting region all three curves differ by less than 5%.

Fig. 9.5 illustrates the improvement in the description of the structure function Fy, by the
k;-factorization calculations as we switch from old DGD2000 parametrizations of DGSF to
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gluon structure function

the new DGD2002 fits. The curves now go through very constraining new data points and
therefore have less tendency to depart from each other outside the fitting range.

Fig. 9.6 shows the effective intercept of structure function Fy, in the moderate Q* domain,
together with recent H1 data [73]. The intercepts were calculated according to

2y _ log[Fop(@1, Q%)) Fyp(a2, Q)]
A(Q ) - log(;vg/;m) '

(9.11)

For each differential gluon density fit we plotted here two curves: the upper one, corresponding
to the effective intercept taken between z; = 107" and z, = 107*, and the lower one for
zy = 107* and 2, = 1073, Significant deviation between the two curves indicates the fact that
the power-like law
1\ M@%)
Fap(z, Q) o (—) (9.12)

x

is only a very crude approximation.

The agreement with the data is reasonable, especially when one takes into account that
at lower Q? one should compare the data with the upper curves and at higher Q? the data
should be compared with the lower curves. This is due to the experimental procedure used
by H1 to determine the intercepts: at smaller Q? the value of the intercept comes from data
points in the range = € (107°,107%), while at higher Q? only z ~ 107 = 1072 were available.
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Figure 9.6: The k;-factorization predictions for the effective intercepts of the structure function
Fy, in the moderate Q* region confronted with H1 data (solid circles)

9.3.2 Structure function F7

In 1999 H1 published improved data on the determination of the structure function Fr(z,@Q?).
We show them in Fig. 9.7, together with our predictions. The general agreement can be seen,

but since the data are not very constraining, little futher information can be extracted from
this plot.

9.3.3 Real photoabsorption cross section

Finally, in Fig. 9.8, we show experimental data for real photoabsorption cross section 0.,
together with our predictions.
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Figure 9.7: The longitudinal structure function Fy, of the proton in the moderate Q* region
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Chapter 10

Numerical analysis of vector meson
producton

10.1 1S states: a brief look

10.1.1 Absolute values of cross sections and scaling phenomenon

An overview of the experimental results on vector meson production together with our pre-
dictions is given by Fig. 10.1. Here we plotted the experimentally measured values of p meson
cross sections for photoproduction (H1 [74] and ZEUS [75]) and electroproduction (H1 [76]
and ZEUS [77]), ¢ meson electroproduction cross sections (H1 [78] and ZEUS [79], [80]), J/v
photoproduction (H1 [81]) and electroproduction cross sections (H1 [82] and ZEUS [77], [83]),
and T(15) photoproduction cross sections (H1 [81] and ZEUS [84]). All experimental data
points are either taken at W = 75 GeV or are extrapolated to this energy. Whenever possible,
we used the energy dependence measured experimentally in the corresponding papers. In the
case of T meson photoproduction no reliable data on energy dependence are available, so we
used a power law, o(T) oc W? with § = 1.75, which comes from our calculations.

In the case of ¢, J/v and T mesons, the cross sections were multiplied by appropriate
flavor factors in order to remove trivial sensitivity of the cross sections to the mean-square
charge (e?) of the quark content in a vector meson.

As suggested by the twist expansion analysis, the total production cross sections should
exhibit an approximate scaling in the variable @2. Indeed, as Fig. 10.1 shows, the experimental
data for various vector mesons do possess such a scaling property: data points for p, ¢, and
J/1¢ taken at the same values of @2 almost coincide. It is worth noting that the scaling

phenomenon takes place even at small @2. Note that the k;-factorization predictions also
exhibit approximate scaling phenomenon.

10.1.2 The energy and |t|-dependence

The remarkable scaling in the variable Q2 is observed not only in the magnitude of the pro-
duction cross sections, but also in the patterns of energy dependence and |¢|-dependence.
The energy dependence of the vector meson production cross sections is compatible within
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Figure 10.1: The total cross section of diffraction electroproduction of various vector mesons
against the scaling variable Q* + m3,. Resulls are scaled according to flavor content to equi-
librate the electric charges of different flavours. The ki-factorization predictions based on
oscillator (solid lines) and suppressed Coulomb (dashed lines) are also shown. All calculations
are performed for W =75 GeV; the experimental points are either taken in this energy range
or consistently extrapolated to this energy.

experimental errors with the power-like Regge-type growth:
ocx WP §=4[ap —1]. (10.1)

The latter equality reflects the assumption that the energy behavior comes from the gluon
content of the proton, which is usually linked to the pomeron intercept ap at |t| = 0.
The t-dependence of the differential cross section do/d|t| can be approximated for |¢] < 0.5

GeV? by a simple exponential law,

do  _Bp|
— > . 10.2
ali x e ( 0 )
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The magnitude of the slope parameter B shows how “fragile” the proton and the produced
meson are.

Effective intercept a(0)—1
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Figure 10.2: The effective intercepts (upper panel) and effective slopes(lower panel) of the
vector meson production cross sections vs. the scaling variable Q* + mi,. The data points
represent p meson and J /v meson results. The curves are the ki-factorization calculations for
the p meson with the oscillator wave function.

Both quantities — the intercept and the slope — do exhibit Q% dependence, but again
via the scaling variable @2. Fig. 10.2 shows a plot from [16], where the k;-factorization
predictions for these quantities are compared with the experimental available results. Although
the agreement is not perfect, the tendency is caught by the k;-factorization calculations. Below
we will give more detailed investigation of both quantities.

10.1.3 The level of accuracy

Before proceeding further we should have a clear idea of what level of accuracy one can expect
from the ki-factorization predictions. There is a number of quantities that can be a source of
uncertainty in the final answers. We discuss them below.
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The gluon density

The gluon content of the proton is an intrinsically non-perturbative quantity, and therefore it
is not calculable within the k;-factorization approach. Our extensive analysis of the structure
function Fy, led us to an accurate determination of the differential gluon density F(z,&?) in
the proton. The k;-factorization results for various physical observables based on different fits
to F(z,R?) differ from each other at the level of several percent.

As we discussed above, the vector meson production amplitudes are related not to the
diagonal quantity F(z, %), but to the off-diagonal (skewed) gluon distribution F(zy, x4, £, &)
The situation can be partially cured by linking the skewed gluon distribution to the diagonal
one by means of the Shuvaev formula (5.28) or its simplified version (5.30). Since such a
linking is strictly valid only when x; or z; vanishes, and therefore it is a good approximation
in the cases Q? > m} and Q? < m}.

If Q* ~ mi, this linking is not well justified and the whole procedure introduces an
uncertainty. In order to test the magnitude of the uncertainty associated with the skewness
of the gluon density we performed an additional check; namely we calculated the p meson
cross sections at low Q? using strictly forward and simplified off-forward (5.30) Ansétze for
the gluon structure function. We found that at @? = 0 using forward instead of non-forward
(the latter is the default option for all calculations here) reduced the cross section by a factor
of 1.07. Obviously, the smallness of this factor originates from low average value of the energy
growth exponent A.

Thus, the inaccuracy introduced at low Q? by the forward/off-forward Ansatz for gluon
density is no more than 10%.

The wave function

With the gluon density being brought under reasonable control, the only major uncalculable
piece of the pie is vector meson wave function. As described above, we focus on the soft
wave function; in particular, we used the oscillator and “suppressed Coulomb” wave function
Ansatze. Being virtually the two limiting cases of what the radial part of the wave function
can look like, they represent fairly well the region of uncertainty introduced by a specific choice
of the wave function.

As can be seen from the above figures, the calculations based on the oscillator wave function
Ansatz are roughtly twice as large as those obtained with the suppressed Coulomb wave
function.

The width of vector meson

In our calculations we treated the produced vector mesons as particles with negligible width.
This is not the case for the p meson, whose width is about 1/5 of its mass. Usually, the
incorporation of a finite width of a produced particle is conducted via effective “smearing” of
the results (which depend on the mass of the particle produced) over a certain mass interval.
If the cross sections calculated for a given mass happen to have a convex dependence on mass
(which is precisely the case in p meson production), then such a smearing will lower the values
of the cross sections. Thus, from very general arguments, we can expect such a smearing in
our case as well. Roughly, it should amount to a decrease of the cross sections by factor of

(1+T,/m,) ~ 12
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A more accurate calculation of this effect is a non-trivial task. The problem is that in our
treatment of the vector meson production we never refer to the vector meson mass. We deal
only with the effective invariant mass of the ¢g pair. Therefore accurate calculation of the
smearing effect requires solution of conceptually non-trivial problems.

The limits of k;-factorization approach

Finally, the very approach we use has limited domain of applicability. In particular, it would
be fallacious to extend our calculations to the high Q*region. A rough criterion for the

border of the applicability domain can be given by Q2 , ~ VW22, s, which is about 50

GeV? for the HERA energy range. Above this values the logarithms log(Q?/u?,;;) will be
more important than log(1/z) and one can expect that k;-factorization will underestimate
observed cross sections.

10.2 The p meson production

In this section we provide a detailed description of the ki-factorization predictions for p meson
production. Note that throughout this chapter we treat the physical p meson as a pure 1.5
state. Whether this is indeed realized in nature, and what changes if S/ D wave mixing occurs,
will be discussed in Chapter 11.

Whenever experimental data available we compare them with our results.

10.2.1 (? dependence

The Q*-dependence of the p meson production cross section is shown in Fig. 10.3. One sees
that as we slide to higher values of Q* the cross section drops sharply. Although for the major
part of the Q* region shown the experimental data points fall roughly between the oscillator
and Coulomb wave function predictions, two separate regions of discrepancy are easily visible.

Low (? region

The first problematic point is the low-Q? region. As we come from moderate Q* down to
Q% = 1 GeV? and below, our predictions — if compared to the experimental points — tend
to climb too high.

The first thought would be to suspect that our predictions rise too steeply as Q* — 0. An
accurate analysis shows, however, that this suspicion misses the point. In fact, the Q* — 0
behavior of our predictions is perfectly compatible with experimentally observed tendencies.
This rather unexpected fact is illustrated by Figs. 10.4 and 10.5.

In Fig. 10.4 we zoom in on the region Q% < 1 GeV?, where the available experimental
data include ZEUS 95 BPC [77], ZEUS 94 photoproducton [75] and H1 photoproduction
[74] measurements. The k;-factorization prediction based on the oscillator wave function
(which seems to be a more reasonable choice for the p mesons than the Coulomb WF) and on
DGD2002, Fit 3 are shown with solid line. The k; predictions overshoot the data throughout
the whole region shown here. However, when simply divided by 2, the predictions pass exactly
through all the data points (dotted curve in Fig. 10.4), including the photoproduction point.
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Figure 10.3: Total cross section of the diffractive p meson production as a function of Q*. The
ky-factorization predictions based on oscillator (solid lines) and suppressed Coulomb (dashed
lines) wave functions are also shown. All calculations were performed for W =75 GeV using

DGD2002, Fit 1.

Alternatively, one can try parameterizing the cross sections at low Q? by a simple formula:

L+ R(Q2> : R(QQ) = UL(QZ)

G'(Q ) X —(Q2 I msz)” UT(Q2> ;

(10.3)

which is equivalent to

1
(Q* 4 mZ )

In order to find parameters mgff, n that reproduce the low-Q? behavior of our predictions, we

or(Q?) (10.4)
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Figure 10.4: Total cross section of the diffractive p meson production as a function of Q* in
the small-Q* region. The solid curve represents the kq-factorization predictions; dashed line
shows the same prediction divided by two.

plotted in Fig. (10.5) the quantity

_ loglor(Q* = 0)/07(Q%)]
log(1 4 Q*/m2s)
against £ =1+ QZ/mgff. If Eq.(10.4) holds, this quantity should be equal to n for all values

of £&. We see that when mgff ~ 0.4 GeV?, R has the flattest shape vs. £ and is ~ 2.
This result is in perfect agreement with low-Q? analysis of the ZEUS BPC data [77]; when

(10.5)
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Figure 10.5: The effective Q? + msz exponent of the lransverse p meson production cross
section in the low-Q? region as a function of € =1 + QQ/msz al various values of m.gy

fitted by the formula
14+ R(Q?)
(Q* + mZ; (exp))?

o(Q?) x (10.6)

the data yield
mess(exp) = 0.66 £ 0.11 GeV,

in the excellent agreement with our m.s; ~ 0.6 +0.65 GeV. Note that although in our analysis
power n was a free parameter, it turned out close to 2.

Three conclusions can be drawn from this analysis.

First, we showed that, although there is a sizable (by factor of 2) departure of the magnitude
the k; factorization predictions from the experimentally measured cross sections, the shape
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of low-Q? behavior is perfectly reproduced by the calculations based on the oscillator wave
function.

Second, this analysis demonstrates that the value m.s; ~ 0.65 GeV is dynamically gener-
ated. Indeed, the light quark mass used in our approach was pre-fixed by the gluon structure
function analysis at the level m, = 0.21 GeV. Still, mgff > 4m§, which means that approx-
imately one-half of mgf s comes from quark momentum. The exact proportion depends, of
course, on the particular choice of the vector meson wave function. It still remains to be foudn
out whether or not such a successful description of the low-Q? behavior of the cross section
by means of the oscillator wave function is accidental.

Third, the above means that the actual region where our predictions and the experimental
data really mismatch is not the low-Q?, but rather moderate-Q? region, Q* ~ 1 GeV>.

High Q* region

The second region where our predictions tend to depart from the data is that for high Q2
region (Q? 2 5+ 10 GeV?). If the cross section is (locally) fitted by the power-like fall-off

1

U(Q)“m,

(10.7)

then this discrepancy can be expressed numerically in terms of the effective Q? exponent n.
The experimental determination of this exponent resulted in the following: The ZEUS 95
data [77] with Q? > 5 GeV? are consistent with fit (10.7) with energy independent n.,,, whose
avegare value is found to be 2.32 + 0.10. The more copious H1 data sample [76] taken at
W =75 GeV results in ney, = 2.24 £ 0.09, which is in agreement with ZEUS fit.

The k; factorization predictions for this exponent is shown in Fig. 10.6. Here we plotted
the local analog of the exponent n..,, i.e., the quantity

2 _ 212\ log[U(Q%>/U(Q%)]
(= ara) = log[(Q3 + m2) /(@2 + m2)] (10:8)

Again, if fit (10.7) holds, n should be independent of Q2.
Graphs in Fig. 10.6 show that this is not the case. At intermediate Q?, n starts already
from about 2.5, then grows as Q? increases, and for Q% > 20 GeV? it is even higher than 3.0.
Although standing in constrast with fits to experimental data, such a Q% growth of n(Q?)
is still firmly grounded theoretically. Qualitatively, this can be understood from the analysis
of the leading log @Q? result. At fixed W? and high enough Q?, the Q* dependence of the cross

section comes from

1+ R(Q%) l ( o )r
o(Q%) x ——=L . |G| e, 4 , 10.9

(@) (it 6 (e (10.9)

where ¢ & (.41 comes from the approximate representation of the off-forward gluon distribu-

tion (5.30). The Q? dependence of the slope B and of the running coupling as is not essential
for our point.

The non-trivial Q? behavior arises from the integrated gluon structure function. In Fig. 10.7,

left panel, we show its Q? behavior at W = 75 GeV. The origin of the peaked shape is obvious:

at moderate Q* the integrated glue grows due to the sharp explicit Q* dependence (that is,
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Figure 10.6: Effective Q* + msz exponent of the total p meson produclion cross section in
the high-Q* region as a function of Q*. The solid and dashed curves represent calculations for
oscillator and suppressed Coulomb wave functions respectively

due to large values of the unintegrated gluon density F(x,%?)), while for larger Q* the effect
of decreasing x.¢; overpowers and leads to the decreasing of G as Q* grows further.

On the right panel of Fig. 10.7 we show the local Q* exponent ng of the gluon density (the
gluon density contribution to the local @* exponent n is equal to 2ng),

2 _ 212) _ 10g[G(Q%)/G(Q%)]
o (= V@1QE) = iy ) (Q2 + )] (10-10)

One sees that at moderate Q?, when G is stil rising, it damps the Q? fall, but when Q* > 10
GeV?, gluon density starts decreasing on its own. This is precisely the reason why at higher
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Q* behavior of the integrated gluon densily G(0.41Q*/W? Q*/4) at fized value of W = 75
GeV obtained by integration of the DGD2002 Fit 1; (left panel) The effective Q* exponent of
this integrated gluon density.

@* the Q* exponent n (Fig. 10.6) grows.
The arguments that justify such a behavior seem to be universal and, to this end, it is
surprising why the experimental data do not exhibit such a behavior.

10.2.2 o7, — or decomposition

An important insight into the Q? behavior of the p meson production cross sections comes from
the separate analysis of o7,(Q?) and o7(Q?); that is, the proportion of the p meson production
rates cause by transverse and longitudinal photons.

Fig. 10.8 represents the results for these cross sections within the k;-factorization approach
compared with experimental data [85].

One sees that at high Q? we do provide a reasonably good description of the o, but our
op curves sink significantly deeper as Q* grows. Thus, it is too steep Q?-falloff of o that
causes departure of our curves from the data.

If analyzed in terms of power-like fits

or(Q%) x (Q* + mi)_”T o oon(Q%) o< (Q% + mi)_”L , (10.11)
the experimental data yield [85]
nr(exp) = 2.47 +0.03. (10.12)

We found no explicit expermental results for ny, but clearly it should be even less than ny.
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Figure 10.8: Experimental data on transverse op and longitudinal oy, cross sections of p meson
production compared with the k;-factorization approach.

The k;-factorization predictions for the local values of n; and nr, defined similarly to
(10.8), are shown in Fig. 10.9. At higher Q?, nz, and nr grow to 3 and 4, respectively, the
latter standing in stark contast to the data.

Fig. 10.10 depicts the ratio

o on(Y'p — pp)

experimental points taken from [76]. The glaring disagreement at higher Q?* is, of course,
caused by overly suppressed o that our calculations predict. Evidently, if we found a way to
increase o the ratio R(Q*) would be automatically cured.

10.2.3 Energy dependence

The growth of the vector meson production cross sections is a well-established fact. Tt is
linked basically to the energy growth of the pomeron exchange, and therefore fitting the cross
sections to the energy power law

(W) oc W* (10.14)

seems a natural way to quantitize the energy growth.

Fig. 10.11 shows the experimental data on energy rise exponent ¢ from ZEUS [77] and
H1 [76], together with the k;-factorization predictions based on oscillator and Coulomb wave
function. Since the true W-dependence of the cross sections can deviate from simple power
law (10.14), the exponent § can depend on W as well. At lower Q* the upper pair of curves
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Figure 10.9: The effective Q* exponents shown separately for or, and or as functions of Q*.
Solid and dashed lines correspond to oscillator and suppressed Coulomb wave functions respec-
tively

corresponds to ¢ calculated between 50 and 75 GeV, while the lower pair corresponds to the
energy range between 110 and 150 GeV.

One sees that the agreement is rather good, although the tendency that our curves are
slightly higher than the (ZEUS) data is noticeable. However, due to still significant experi-

mental errors, it is too early to draw any more definite conclusions.
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10.2.4 t-dependence

The analysis of {-dependence of the differential cross sections within a perturbative framework
has an ambiguous status. On one side, if we deal with the proton in final state, this dependence
is governed largely by the intrinsically non-perturbative (multiparticle) form factor of the
proton. Therefore, in order to have a plausible i-dependence, we have to introduce a certain
“educated guess”. On the other hand, our gluon density analysis already uses this form factor,
and therefore places some contraints on it. Finally, as the analysis suggests, at low ¢, within
diffraction cone, several other mechanisms modify the ¢ dependence of the proton form factor.
If one parametrizes the differential cross sections at low ¢ (¢ < 0.5 GeV?) by an exponential
law with slope parameter b,

do

x €

dlt] ’

one finds that various sources of {-dependence can be treated in terms of contributions to the

(10.15)

overall slope b approximately additively.
In principle there can be three sources of the non-zero contributions to the slope: the
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Figure 10.11: Effective exponents § of energy growth for the p meson produclion cross sec-
tions. Solid and dashed lines correspond to oscillator and suppressed Coulomb wave functions,
respectively. The upper pair of curves (at low Q*) corresponds to § calculated between 50 and
75 GeV, while the lower pair is the resull for § calculated between 110 and 150 GeV.

proton transition, the v* — V transition, and the exchange (the pomeron propagation):
b=0bpoyp+ bewen. + by . (10.16)

The first term appears in our calculations explicitly as an effective slope of the energy- and
£%independent dipole form factor,

- 1

F(A?) = = A=1GeV; — by, =4GeV>2. (10.17)

(1+ Az/A2)
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The second term is also introduced explicitly. It is responsible for the shrinkage of the diffrac-
tive cone with energy growth. The third term appears from the accurate QCD treatment of
the v* — V transition. It possesses a characteristic 1/(Q* + m}) shape, which leads to the
scaling phenomenon mentioned earlier.

Due to the above blend of uncalculable soft and perturbative hard contributions, the k;-
factorization approach should not be expected to yield first-principles predictions for the ab-
solute value of the slope parameter. Nevertheless, one can ask whether or not some kinematic
dependencies observed can be efficiently accomodated within our approach.

In principle, one can invoke several definitions of the effective slope parameter, however
there is no siginficant difference among them. Below, in Table 3, we compare results for three
definitions of the effective slope:

dlog(do/d|t]) 1 do 1 [ do
b(defl) = ———————= ; b(def2) = ——| ; b(def.3) = — = ,
d|t] /=0 o dlt] - ey~ f |t|d(am N

calculated at several (Q? points.

Table 3. Various possible definitions of the effective slope and their values obtained from
k,-factorization calculations at three characteristic values of Q2.

Q% GeVZ | b(def.1) | b(def.2) | b(def.3)
0 140 | 131 | 114
22| 102 9.6 8.7
27| 6.7 6.3 6.3

In Fig. 10.12 we present our results for the slope parameter of the p meson production
cross section. The results for our calculations give somewhat too high values of the slope than
the experimentally measured numbers (ZEUS [77] and H1 [76]), but nevertheless they exhibit
the right Q? dependence.

It is interesting to note that the slopes for o7, and o7 differ slightly (see Fig. 10.13). Note
also that at small Q? the calculations based on the Coulomb wave function give larger slopes.

Fig. 10.14 shows a typical pattern of the |¢|-dependence of the differential cross sections
in the region of small-to-moderate ¢ (0 < [¢{| < 1.5 GeV?). The oscillator wave function was
used everywhere in this figure. One sees that initial approximately exponential decrease of
the differential cross section flattens at higher [t| as the process leaves the diffractive peak.

10.2.5 Helicity amplitudes

Our analysis explicitly takes into account all possible helicity amplitudes v*(\,) — V(Av),
with A, Ay = 0, £1. Since the pomeron exchange does not distiguish left from right, only five
independent helicity amplitudes survive.

Fig. 10.15 shows the absolute values of the five helicity amplitudes plotted against the
momentum transfer squared [¢|. Within diffraction cone one sees the characteristic behavior
of all the amplitudes. In the region of moderate |¢| one can observe diffractive dips, whose
location changes from one amplitude to the other. As we did not focus on large ¢, we cannot
be sure that the dips are located exactly where we predicted. Nevertheless, this picture shows
the general pattern of the {-behavior of the helicity amplitudes.
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Figure 10.12: Effective slopes b of the p meson differential cross section within the diffraction
cone as functions of Q*. Solid and dashed lines correspond to the oscillator and suppressed
Coulomb wave functions, respectively.

It is clear that the presence of helicity flip amplitudes leads to the breaking of the s-channel
helicity conservation. It is therefore interesting to ask what the magnitudes of the helicity-flip
amplitudes are.

Fig. 10.16 gives the answer to this question. Here we show ratios of the helicity-flip to
helicity-non-flip amplitudes

Alyr = Vo)l JA(yr = Vo)l Ay — V)
Alyr = Vo) 7 A = Vi)l T JA(y = V2|

and whenever possible compare k;-factorization predictions to the avaliable experimental data,
as taken from [85].

(10.19)
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Figure 10.13: Effective slopes by, and b; of the p meson longitudinal and transverse differential
cross sections within the diffraction cone as functions of Q*. Solid and dashed lines correspond
to the oscillator and suppressed Coulomb wave functions, respectively.

Finally, we made predictions for all the spin density matrix elements for p meson production

and compared them with H1 [76] and ZEUS [86] data. Results are shown in Fig. 10.17.

10.3 ¢ mesons

The production of ¢ mesons has much similarity to p meson production. Therefore we will
not provide as detailed a discussion of the predictions as we did for the p meson, but will
rather show our predictions for the quantities that have been measured experimentally for the
¢ mesons.

120



do /ditl, nbxGeV™?

Glue — DGD2002, Fit 3 W =75 GeV oscillator WF

105; Q* =0 GeV’ s Q> =27 GeV?
; L
104? %
35 10'1;
10 = E
: \ \ 10-2;7 \ \
0 0.5 1 0 0.5 1
It 1, GeV? [ t1, GeV?

Figure 10.14: The transverse momentum squared dependence of the differential p meson pro-
duction cross sections al lwo characteristic values of Q*.

Fig. 10.18 shows the total cross sections of diffractive ¢ meson production as a function of
Q* data taken from H1 [78] and ZEUS [79], [80]. Remembering the scaling phenomenon of the
vector meson production cross sections, we should expect a picture similar to what happens
in the p meson case. Indeed, we see in this figure a reasonably good description of the data
for moderate Q*, and a slight overshooting of our predictions as we move towards small Q%

It is interesting to compare p meson and ¢ meson production cross sections taken at equal
Q*. Fig. 10.19 shows our predictions for the ratio o(v*p — ¢p)/a(v*p — pp) together with
the experimental data. If the scaling phenomenon holds, at higher Q? the ratio is expected to
approach constant value of 2/9, and such a tendency to do so is indeed visible at the figure.
However, at smaller Q? the ratio goes down. This behavior should be expected, for at smaller
()? the ratio can be approximated by

* 2

o(Y'p = ép) _ (Q2 + mﬁaff)
*, 2 2 ?

a(y*p — pp) Q% + Mgy

(10.20)

with Mpeff < Mepeff-

One sees that our predictions for this ratio agree with the data very well. Moreover, note
the remarkable coincidence of the results based on the oscillator and Coulomb wave functions.
The reason for that is, of course, the fact that we study here not absolute values of cross
sections, but their ratios. This removes a significant part of the ambiguity present in this
or that specific choice of the wave function and reveals the features of the k;-factorization
approach in its pure form.

Finally, Fig. 10.20 shows the experimental results for the ¢ meson density matrix measure-
ment by H1 [78]. Our predictions agree well with the data.
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Figure 10.15: The transverse momentum squared dependence of the five helicity amplitudes

for p meson production al Q* = 5.2 GeV?2.

10.4 J/¢ and T mesons

Fig. 10.21 shows the k;-factorization predictions for the total cross sections for .J/¢ meson
electroproduction as a function of Q? compared with available data from H1 [81], [82] and
ZEUS [77], [83]. A reasonable agreement throughout the whole Q* range is seen.

The photoproduction cross sections versus total energy W of the vp collision are shown
at Fig. 10.22. One can see again that the k;~factorization calculations give predictions within
accuracy of roughly a factor of 2, uncertainty coming from the meson wave function. Still, the
experimental data fit between the two curves.

Fig. 10.23 shows the o7, — o7 decomposition of the .J/¢ meson production cross sections
taken from [85]. An agreement at a similar level of accuracy is observed as well. The ratio
R(Q?) = or,/or is shown in Fig. 10.24. The data are taken from ZEUS and HI.

The energy dependence of the T(1s) meson photoproduction is shown in Fig. 10.25. One
observes that the experimental points soar about 10 times higher than both curves. The origin
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Figure 10.16: The Q? dependence of the spin-flip to non-spin-flip amplitudes in the p meson
production compared with the combined HERA dala.

of this discrepancy is not clear. While the k;-factorization predictions for the T production
cross sections follow the scaling behavior in Fig. 10.1, the T photoproduction data do not
comply with this tendency. It should be noted also that a similar behavior is observed for
other processes: that is, the production rates for T seems to be higher than expected.

10.5 Production of excited states

In this section we will give some of the most prominent features in the reaction of diffractive
production of 25 and D-wave vector mesons.
In Fig. 10.26 we show the ratios of the excited-to-ground state production cross sections

o(yp — V(25)p) | o(yp — V(D)p)
a(yp = V(1S)p)’ a(yp = V(15)p)

r(25/15) = r(D/15) = (10.21)

for the p system and for charmonium.
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of Q? compared with k,-factorization predictions based on the oscillator wave function.

A brief look reveals that, although the production rate both of 25 and of D-wave states are

suppressed with respect to ground state, a radically different ? behavior of the suppression
factors r(25/15) and r(D/1S) is observed. This difference is due to the distinctly different

nature of suppression in these two cases.

The suppression for 25 state production comes from the much-discussed node effect of the
25 state wave function. Indeed, if one looks at the 25 production amplitude in the impact
parameter space, then one sees the product of two factors: the photon wave function multiplied
by dipole cross section W, - 54, and the radial wave function of the produced meson. At low
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Figure 10.18: Total cross section of the diffractive ¢ meson production as a function of Q*. The
ky-factorization predictions based on oscillator (solid lines) and suppressed Coulomb (dashed
lines) wave functions are also shown. All calculation are performed for W = 75 GeV using

DGD2002, Fit 1.

Q* V., - 04, is a wide function, peaked at a hadronic scale, which is precisely where the node
of the vector meson wave function is located. This results in significant calcellation between
contributions from impact parameter regions smaller and higher than the node position. At
higher @Q* the photon wave function shrinks, and the peak of W, - 0, shifts toward smaller r
— that is, away from the node. Thus, the effect of calcellation vanishes.

As for the D wave meson suppression, it arises from the angular part of the integrals. In
fact, if the initial photon were built only of the S wave ¢g pair, then, due to ortogonality
between pure S and D waves, there would be no D wave vector mesons at all. However, the
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Figure 10.19: Ratio of ¢ meson to p meson total production cross sections as function Q*. Solid
and dashed lines correspond to oscillator and suppressed Coulomb wave functions, respectively.

spinorial structure of the photon coupling to the quark line does not correspond to the pure
S wave, but contains an admixture of D wave as well. This D wave part leads to the D wave
meson producton and, since it is rather small, the cross sections turn out to be suppressed as
well.

The situation is basically the same both in the p system and in charmonium. The major
difference is the energy scale of the node effect suppression, which can be directly related to
the mass of the corresponding meson.

In the case of charmonium the k;-factorization predictions are compared with the available
H1 data on t(2s) production [87], [88]. A good agreement is seen.

As vividly illustrated by Fig. 10.26, a mere measurement of the production cross section
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Figure 10.20: Fxperimental data on spin density matriz for the ¢ meson produclion as func-
tions of Q*, compared with k;-factorizalion predictions based on the oscillator wave function.

for high-lying states in the p spectrum (such as p’(1450) and p/(1700)) at high @* might be
enough to get some insight into the spin-angular structure of these states. However, even
more dramatic distinction between S and D wave states is offered by the Ry = or,(V)/or(V)
measurements.

Fig. 10.27 shows ratios R(1S5), R(2S), and R(D) for the p system. We see that at higher
Q? the following hierarchy exists:

R(15) > R(25) > R(D), (10.22)

with about one order of magnitude difference between the 1.5 and D wave production rates.
At smaller Q?, R(2S) exhibits very characteristic spectacular wiggles. Starting from zero at
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Figure 10.21: Total cross section of diffractive J /i meson production as a function of Q*. The
ky-factorization predictions based on oscillator (solid lines) and suppressed Coulomb (dashed
lines) wave functions are also shown. All calculations were performed for W =75 GeV using

DGD2002, Fit 1.

Q? = 0, it springs to a local maximum of ~ 0.6 at Q% ~ 0.1 GeV?, then rapidly drops, and
then rises again. This behavior is the manifestation of the node effect as well. Indeed, since the
structure of the transverse and longitudinal photons is not identical, the strongest cancellation
takes places at different Q? values in these two cases. In particular, the curve suggests that as
start from Q% = 0 and we slide along Q? scale, the strongest cancellation occurs in op earlier
than in or,.

A word of caution should be offered now: The exact position of the node in the 25 state
wave function cannot be predicted accurately and depends on the particular Ansatz for the
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Figure 10.22: The energy dependence of the lotal J/v meson photoproduction cross sec-
tion. The k;-factorization predictions based on oscillator (solid lines) and suppressed Coulomb
(dashed lines) wave functions are also shown. All calculations were performed for W = 75

GeV using DGD2002, Fit 1.

wave function chosen. This means that the wiggly shape of R(2S) in Fig. 10.27 — with
positions and the values of local extrema — should not be regarded as accurate predictions.
In fact, one cannot even be sure that the non-monotonic @ behavior of R(2S) actually takes
place. This curve simply illustrates what kind of effect can be expected. The specific profile
of this curve is not, of course, predictable, as long as we rely on simple vector meson wave
functions.

An immediate conclusion from this is that we have found an observable that is extremely
sensitive to the minute details of the vector meson wave function — a powerful tool that would
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Figure 10.23: Decomposition of the J /v production cross sections in o, and or.

help distinguish between various models of the vector meson structure.

The t-dependence of the 25 state production also shows remarkable features originating
from the node effect. Fig. 10.28 shows how the t-profile of the differential cross section changes
over a narrow ()? region. The strongest cancellation, due to the node effect, takes place at
Q* = 0,]t| = 0. When we increase [¢| or Q* the strength of the cancellation diminishes and
the differential cross section grows.

Finally, in Fig. 10.29 we show the spin-angular density matrix for the 1.5, 2.5, and D states
in the p system. A dramatic difference among the Q? profiles in both the SCHC and SCHNC
matrix elements is seen. Note that some of the matrix elements are even of opposite sign for
S and D wave states.
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Figure 10.24: The ratio R = o /or as a function of Q* for J/v meson production as a
function of Q*. Solid and dashed lines correspond to oscillator and suppressed Coulomb wave
functions, respectively.
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Chapter 11

The o7 puzzle

The detailed comparison of the numerical results for p meson production obtained in the
ki-factorization approach with the experimental data shows that the scheme used fails to
reproduce the correct Q? behavior of the transverse cross section or, which was dubbed by
us the op puzzle. In this chapter we explore two possible causes of this mismatch. Namely
we explore the effect of color Coulomb interaction of a ¢g pair and show that it leads to an
increase of op with respect to ar,. We then analyze the issue of possible S/D wave mixing in
the p system and try to obtain a better description of o, /or.

As we will see, the first method might turn out to be the remedy for the o puzzle,
but even an accurate formulation of this method forces us to go beyond the lowest Fock state,
thus making only rough estimates of the effect possible. The second mechanism will be shown,
indeed, to decrease the or,/or ratio at higher Q? to acceptable values, but this happens at the
expense of too low values of oy, rather than increased values of or. Therefore, this mechanism
does not provide the solution to the or puzzle, at least in its pure form.

11.1 The Coulomb tail of the wave function

As we discussed before, the major source of ambiguity in our approach is the vector meson
wave function. Without accurate knowledge of the radial wave function, one is limited to an
educated guess.

In our treatment we used to the soft wave function Ansatz everywhere; that is, we assumed
that any integral involving the wave function would be saturated by the small-p region (|p| ~
1/Ry). This implies that at large p the wave function must vanish fast enough, or to be
precise, faster than any p? power present in numerators of the above formulas. Since the
highest momentum power is ];.’27 which appears, for instance, in the transverse amplitudes, we
conclude that the “softness” of the wave function means that

~ 1
¢(ka)|ié2—>oo:0<§> . (11.1)
The Gaussian wave function Ansatz used everywhere above certainly satisfies this requirement.

It turns out, however, that the above requirement is violated when the true short-range

Coulomb-like interquark potential is taken into account. As is well-known, if the color Coulomb
potential were the only source of the quark-antiquark interaction, the resulting Coulomb-type
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wave function of the vector meson would look like

1

P(p) P (11.2)

In reality, the interquark forces are much more complicated. However, without any need to
know the precise form of interquark forces, one can assert that at short distances there must
be some resemblance of the Coulomb-like high-p* tail.

11.1.1 The strategy

There is certainly a multitude of approaches that claim to account for the color Coulomb
interaction at short distances. One of them would consist in obtaining an accurate numeric
solution of a given potential model. If one prefers to used a fully QFT-based approach, one
must deal then with a set of diagrams. Ideally, one should start with free quarks and then, by
taking their interaction into account, arrive at the physical vector meson with a (presumably)
uniquely defined ¢g wave function.

Realizing such a program is still an unresolved task, and attempts to accomplish it would
certainly go far beyond this study. Moreover, even if we were capable of doing it, we would still
run into interpretational difficulties, at least in the framework of our scheme. Indeed, when
calculating the diagrams we will see the higher Fock states intrude into our ¢g description of
the vector meson. Even if we still wanted to follow only quark-antiquark distribution in a
meson, we will be forced to switch from the wave function to the density matrix description.
Another problem would be the presence of higher angular momenta of the ¢g pair due to
gluon radiation. This will leave no room for our simple S wave/D wave description of the
vector meson. Finally, the ¢g wave function (or density matrix) will have no unique, process-
independent definition. Indeed, in order to preserve the gauge invariance at any given order of
perturbation theory, we will have to include corrections to the rest of a diagram (the kernel)
as well as corrections that entangle the kernel with the wave function. As a result, the two-
particle irreducibility of the process will be lost.

The conclusion is that we cannot expect a reasonable answer to the question of how to
account for short range Coulomb interaction and still stay within the framework of our ap-
proach.

Nevertheless, the mere formulation of this question does not force us to go beyond our
lowest Fock state, two-particle-irreducible approach. Our procedure can be justified by arguing
that the Coulomb tail of the wave function must be there. Given that, can we develop a
reasonable understanding of its impact on dynamics of the vector meson production? In this
formulation, we now ask for a QFT-inspired model that would produce an estimate of the
hard tail without forcing us to confront the problems just mentioned.

We suggest the following procedure that would satisfy this need. We start with the soft
wave function Ansatz and perform an evolution procedure that will generate the hard tail.
This evolution will basically consist of allowing for gluon exchange between the quark and
the antiquark. The result will be interpreted as the hard piece of the vertex function I', and
eventually as the hard piece of the wave function itself.
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11.1.2 The quantum mechanics of the Coulomb tail

Suppose that our potential is a sum of an oscillator and Coulomb potential, the latter being
a "perturbation” and bearing an intrinsic small parameter:

V(p) = Vise(p) + Viour(p) ;
2 2
pw*  12w% 4m
‘/:asc = — . —5 ’ ‘/CO“ =T 5 7

s(p")Cr . 11.3
2 p? (r°)Cr ( )
Here the coupling constant is supposed to be the small parameter. The effective parameter
pe accounts for confinement.

The total wave function is represented as sum of the soft part ¢s = c-exp(—k*a?/2), which
is the solution of Schrodinger equation with oscillator potential only, and the hard part 1,

determined via: ,

v S o
(2# E) ¢h(p) - (2’/7‘)3 dk‘/coul(k>'¢s(p k) (114)
Let’s for a moment neglect running of the coupling constant. Then

1 dra,Cr

Un(p) = = I(p), (11.5)
ey
so that L1 c
a 1 dra,Cr
Y(p) = exp (— 5 ) F_p () 1(p), (11.6)
where
dSE L242 o ‘ 2 2 )
I(p) = /_,—exp(— a)z?ﬂ/ k*dk L log[(p-l_l€> +M§]exp(—ka)
(p— k)2 + p% 2 0 2pk 7 [(p—k)? + pg; 2
O
= 277‘ 0 ]{'Q—I—Mé kp(J,Q . (117)

This function cannot be evaluated exactly. One can, however, ask for its asymptotic large-p
behavior, which can be evaluated directly from (11.4) by replacing k& — p — k and taking
Viout(p — k) &= Vou(p) out of the integral:
2
Yi(p — 00) = 47rC’Fozsp—’l: p(r=0). (11.8)

Note, however, that one should not use this simple analytic form because it spoils the large
distance behavior of the wave function. The wave function (11.8), even when regularized as
p* — p* 4 pZ, leads to exponential decrease of the wave function exp(—rug), while the true
wave function exhibits gaussian decrease, exp(—r?a*/2).

11.1.3 Derivation of Ay

The diagrammatic representation of this procedure is show in Fig. 11.1. Instead of implement-
ing the soft vertex function T'g,;,, we use a properly normalized one,

@ 1 @ o
total — \/—N<Fsoft + AT )7 (119)
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Figure 11.1: Diagrmmatic representation of the effect of Coulomb tail at small distances

where 1/4/N factor accounts for the proper normalization. The Coulomb correction AT is
then

. 1 #(— re (1
/ d*l '92 - (l2 g ( 2+m) soft( 1+m)7# (1110)
1

AF 7k * = — E . - . < . .
(= R)" == | Gay 2+ o) (2 — m? +ie)[(kr — )? — pi& + ic]

The Sudakov decomposition of the momenta of the initial and intermediate particles’ reads

ki = yp" +zq" + KL
Ky = (1—y)p*"+(1-2)¢*"—k;
o= yp"+2q"+11;
ly = (=y)p"+ (1 =2)g" =1
(ks —1)* = (y—y)p* +(z—=2)g" 4+ (kL —1)". (11.11)

We know from the above analysis that one of the initial particles is on-mass-shell. Therefore,
one of the two conditions

_22+m2 _ E2+m2
y= zmi, o ¥= (1 —2z)m3

is fulfilled.

The numerator constitutes the most challenging part. Certainly, there is no problem to
perform gluon index summation:

—fy“(—lAg + m)fya(lAl +m)y, = 2777,27CY — inaig —4(ly = 1)~ (11.12)

The problem, however, is that this spinorial structure cannot be reduced to the scalar multi-
plicative renormalization of the original structure v*. Moreover, after integration, the spinorial
structure cannot be expressed in terms of S and D waves only. Finally, the resulting spinorial
structure will lead to gauge non-invariant corrections to the wave function.

In order to go as far as we can in trying to obtain a reasonable estimate for the Coulomb tail
and avoid trouble, we propose the following procedure. First, we look at the transverse vector
meson production. Since the vector meson polarization vector V* possesses only transverse
components (‘70‘), only transverse terms

2m2;)/'oz + 2[’;};04["_ 2[21(1 _ y’)ﬁ”?a(j’ + y’(l _ Z/)(}/;};aﬁ/] _ 8["01. (11.13)

will survive from the expression (11.12). Then, in order to simplify matters, we will proceed
for the p meson as if it were a heavy quarkonium. That is, we will neglect [? in comparison
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with m? and put z’ = 1. Finally, the last stroke is to put m{ = 4m? in the numerator, so that
y' can be replaced by 1/2 as well. The result of this procedure gives

—7“(—[2 + m)f_y'a(il +m)y, — 4m*y°,. (11.14)

Finally, we postulate that the same scalar renormalization holds for longitudinal vector mesons
as well.

The denominator is calculated in the same way as before. We note that the numerator
in our calculation does not depend on y’; the pole structure on the y’ plane comes from the
propagators only. The position of poles, however, changes with z’: at 2z’ < 0 or 2’ > 1 all poles
lie in the same half-plane, and thus by closing the contour we can nullify the contribution of
these z’ regions to the integral. The interval 0 < 2z’ < 1 then naturally breaks into two parts:
z' < z and 2’ > z. In the former region we prefer to close the contour from below and take
the residue at the position of pole 1. The two other propagators become

pole 2 — (1 —Z2)(mi — M"?) +ic;

Zl

pole3 — (z—2") (ym%/— +m)—(k—l)2—,u2g-|-i€. (11.15)

—.

In the second z’ region we close the contour from above and take residue at y' =1 — (l +
m?)/[(1 = 2" )m}], so that the other poles become

pole 1 — 2/(mi{ — M"?) +ie;
/ 2 2 / 2 P+ m? 7 Re2 2
pole 3 — —('—2)(M”*—mi)—(z'—z)|ym;, — ——— | = (k=1)" — pi, + {21.16)

Note that in both cases the familiar M'* — m$ appears in the denominator, which fuses with
Lsore(M™) to produce v, (M), Thus, the result of the y' integration is

/d , sose(M")
Y (I3 —m?+ie)(13 —m? 4 ie)[(ky — 11)? — p& + i€]

1 1

=0(z -2 SN +0(2 — 2 SN 11.17
| )Ar+@—02+ﬁ ( )AT+@—02+M (L.17)
with
Al = —(Z — ZI) E2-|;’m2 P-I;’/m2)
2 a2 ki on-mass-shell;
e Bit) 4 (2 — ) (M2 — )

Ay = (Z' — z) (1'52+m
(

Ay =(z—-2)

1—=z 1—2/

Dars P ks on-mass-shell.
/ — 14 m +m
AQ__(Z _Z>( 11—z  1-2/ )

The analysis of the positive definiteness of the gluon propagator reveals that in one case
the positiveness indeed holds due to the inequality

2
— /—; — ! - - /—; -
-z ZW+Z,ZP+“FJVZ(Mik—JéO >0,
z z z z
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while in the other case the gluon pole can, in principle, arise in the allowed kinematical
region. Such a pole would correspond to the situation in which both quark and gluon are
simultaneously on mass shell. However, in the case of p mesons such configurations are avoided
due to the sufficiently small mass of the vector meson (m$, < 2u%).

Thus, the expression for Al'(z, E) takes form

. a,(k?) dz' .
AF(Z,]C) = CF A2 4m2 /mdQZ wsoft(Mm)
! 1 ! 1
x |0(z—2") — +0(z' — 2) — . (11.18)
Ay + (k—1)2 4 p? Ay + (k—1)2 4 p?

With AT'(z, E) calculated according to (11.10), we can now construct the hard part of the
wave function 77/)(2,];) However the straightforward answer, §ip = AI'/(M? — m{,), will not
be a satisfactory option due to the unphysical pole at M? = mj,. We remember that when
constructing the soft wave function we forced the corresponding vertex function I'y,; to have
zero at M? = m} in order to cancel the unphysical pole. Here we do not have such freedom
in manipulation with AT, which is, by the way, always positive. However, we can again tune
the soft vertex function I'y.f; so that the entire expression I's,;; + AI' does have zero at the
required point. This can be achieved by shifting the node position of the soft vertex function

7.2
Usosi(z, k%) = thsops(M?) [MZ —my M] , (11.19)

Y sop(mi)

]:‘E:__n;; = mi,. The total wave function then becomes

where

Yaoge(M?) [M2 —m? M] + AF(Z,EZ)

 Wsopi(mi)
M? —m}

-,

wtota,l(za kQ)

1

Psopt(M?)
M?2 — TI’I%/

= oon(M?) + ,
G40 Bt

[AF(Z,EQ)—AF(Z,I%) ] . (11.20)

The wave function constructed in this manner is regular at M? = m?, and has the expected
large M? behavior.

11.1.4 The large (* asymptotics of or: analytical result

The integration in (11.18) cannot be done analytically but, in order to grasp the asymptotics,
a simple estimate can be performed.

For k? > l_é, pé, m?* the denominators turn into ];:22'/2 and 1;:2(1 —2")/(1 — z) for on-
mass-shell initial quarks 1 or 2, respectively. If we then suppose that the soft wave function is
given by the Gaussian Ansatz with R{m? > 1, we can put z/ — 1/2 and do the integration
completely. The answer reads

a (k2 22 (k2 97\ ?
AT(z,k?) = o o) -mQ—E—j-/d?wsoﬁ(M'?) - % op &) dmay - (i) . (11.21)
m

T2
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We see that the hard tail of the wave function AT falls off as 1/E4 at large EQ, in accordance
with our expectations.

The Coulomb tail of the vector meson wave function being finally obtained, we are now
ready to estimate the expected change in the oy, /o ratio for high-Q? production of p mesons.
Before we examine the numerical values, let us make an analytical estimate of the Q% asymp-
totics. We plug the hard tail of the wave function A (z, EZ) into the leading twist expression
for Ap_p, which we write as

\/ d’g
[mAT _ CV 47T'aem/ 1_ Z>d2k¢total(z kQ) /E—fas(EQ)F(x‘g,EQ)
=2
< 2R {4202 4 (1 — )R

[2(1 = 2)Q* + R? + k22

cy VAT Qe
87

42

2

27a(Q)AQ") - Trotal(Q?) . (11.22)
The integral

1 dz - - m2—|—222+1—z2];2
T @) = [ P hrai(, F?) L +(0-7)]
o z(1—z) [2(1 — 2)Q? + &2 + k?)?
is naturally split into Jsp(Q?) and Jhera(@?*). The former is calculated in the heavy-
quarkonium approximation with a Gaussian wave function and yields

3

3 16 2 2
jsoft(Q2> :/m—dgk'ﬁbsoﬁ 54 - %(hp . (R—;r/) . (]]23)

The hard piece is calculated as

Thard(@%) = /012(17_2

o0\ Cpl6 1 Q4 gk
= vaa¢-(—72r> .ﬁ_fi./o dz[22+(1—z>2]-/ ﬁas(kQ)(ll.%)

The ratio Apgra/Asoge is then

2 Q%4 dk? s (12
Ahard(Q ) _ 4CF / dk L 64 lo [M] . (1125)
I

R 2 —_
Awp(Q?) 37 L 2 ) =gy s (3Q%)

This expression represents the asymptotic large—Q2 behavior of the Ayy.q/Asop ratio. As

] which rises with Q? growth, but extremely

slowly. Within the experimentally q’rudled reglon of @* (not higher than 100 GeV?), this
logarithm, which is supposed to be large, is still less than unity (~ 0.5 = 0.7). This indicates
that the asymptotic regime is not reached at HERA, and the estimate just derived seems to

could be expected, it is governed by log [

143



be irrelevant to the real magnitude of the hard tail effects. Nevertheless, this estimate tells us
that no abnormal suppression factors appear in our problem.

The numerical analysis of the Coulomb tail impact on the production amplitudes will be
given elsewhere.

11.2 The S/D wave mixing

The presence of tensor forces in two-fermion bound states is a natural consequence of rela-
tivistic corrections. They lead to mixing of states with definite angular momentum, which in
the case of a vector particle translates into S wave — D wave mixing.

The most famous example is provided by the Breit potential in a hydrogen atom. Such
forces are present in a deuteron, where they lead to about 5% admixture of D wave, and they
can be present in vector meosns as well. Review [89] provides further examples.

How are we going to mix S and D waves? When calculating the normalization or decay
constant for a vector meson, we observed a two-fold dependence on the vector meson state: in
the spinorial structure and in the particular form of the radial wave function. In all cases, the
rest was insensitive to the vector meson state. Therefore, the two quantities we should mix

are S,¥s(p?) and D, p(p?):
IT,0(p%)) = [S.tbs(p?)) cos O + |Dup(p?) sin6) . (11.26)

If mixing angle 6 is constant, then this vector meson state automatically satisfies the normal-
ization condition,

(Cup|Tup) = (Sutps|Sutbs) cos® O + (Dyuop|Dyipp) sin® 0 = g - (11.27)

There can be several types of S/D mixing. First, we can mix D state with 1.5, 25 or even
higher S states. It is not clear a priori which mixing should be stronger. Therefore, in our
analysis below, we accounted for possible 1.5/D and 25/D mixing on equal footing. Second,
the mixing angle 6 can be an explicit function of p?. This case is a bit more complicated but
nothing seems to rule out such possibility.

11.2.1 Constructing the v, vertex

The first issue we wish to elaborate is how to construct the «, vertex from accurate S, and
D,, spinorial structures. This question arises when one tries to check how the naive @y,u
treatment of the quark-antiquark-vector meson vertex differs from the accurate one. To do
so, in the expression

Tup(p?) = <w - %> ts(p?) cos O(p”) + (p*vu + (M +m)p,) ¥n(p*) sin9(p(21)1, .

all terms with p, must be banished by properly adjusting mixing angle 6 = 6(p?). Assuming
for simplicity that we use oscillator Ansatz wave functions with all a; equal, one obtains for

1.5/ D mixing
2 C1 \/%

tn 0(0") = — o (M ) op = (M 4 2m)(M T m)a? (11.29)
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A very rough estimate for the p system gives tan § ~ 0.2. For 25/D mixing one has

V45 (1 —2p2a?/3)

tan 0(0") = ~ 3 2 (M + e

(11.30)

This time the mixing angle even swings with p? growth. After p, terms are canceled in
(11.28), the residual expression is proportional only to 7, and has slightly modified p? depen-
dence via the explicitly p?-dependent mixing angle. However this modification is completely
inessential. Moreover, for 25/D mixing, this modification does not shift the position of the
node. Therefore, it seems that the impact of this specific mixing on the radial wave function
is minimal. The magnitude of this mixing can be also described with only one number — the
integrated mixing angle:

(sin®*0(p?))p
(cos? 0(p?))s °
where (...)gp mean the normalization integral for S/D state. For 15/D and 2S5/D types of
mixing, tan® 0* is equal to 0.027 (0* = 9.3°) and 0.062 (6* = 14°), respectively.

tan? 0* = (11.31)

0./ 0y — rho system with 1S/D mixing

14
. Oscillator WF
12|
i _— @mix = O
; _— §0mix = 0.2
e Ore = 0.5
: e gpmix = 10
8 [
. O H1 data
6 I
4 ;
0 |
00/';'/“ | ‘2[5‘ — ‘é‘ — ‘7I5‘ — ‘1‘0‘ — LIZ‘E'; — ‘1‘5‘ — ‘17‘5‘ — ‘2‘0‘ — ‘22‘5
Q?, GeV?

Figure 11.2: The impact of 15/ D mizing in the p system on the oy, /or ratio for the lowest
enerqy state production.
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11.2.2 Impact of S/D wave mixing on p meson production

For simplicity, we will restrict ourselves to the constant-angle variant of S/D wave mixing. As
our primary motivation here is to check how mixing alters the o7, /o7 ratio in p production,
we will focus only on p meson.

Since a generic p meson production amplitude is linear in the meson wave function (un-
derstood in its complete sense, i.e., spinorial structure times the scalar wave function), one
immediately has

A, = Ascos + Apsin.

With this expression in mind we can now predict the effect of S/D wave mixing by simply

(11.32)

looking at the pictures for pure S and D wave production.

o, vs. oy decomposition

104 104§
10° 103?;2; 3
102 102;7
10 2 10 é
f 0=0 :
1 S §0:8« 1 E
o ;0;1: 4 - W=75 GeV, oscillator WF
10 -1 | L \\‘ | | ;':\\\‘ 10-1 | L \\‘ | L1 \\‘
1 10 1 10
Q?, GeV? Q?, GeV?

Figure 11.3: Changes in Q? profiles of or and o, cross sections for p system ground states
caused by 15/ D mizing.

Fig. 11.2 and Fig. 11.3 show the changes in the longitudinal and transverse p meson cross
sections caused by the 1.5/D mixing. One sees that as ¢, > 0 grows, the ratio o7 /o7
decreases. Fig. 11.2 implies that ¢ ~ 0.7 would do the best job in describing the data points.
Note, however, that the shape of o, /o7 ratio remains the same and does not significantly
flatten, which would be needed for a better description of the experimental points. Even more
problems come from separate analysis of o7, and o7 cross sections. One sees that decrease of
or,/or arises not from making o7 higher, but at the expense of making o7, significantly lower
than the data. Thus, although the ratio o7 /or can indeed be corrected in a simple mixing
scenario, the cross sections themselves still deviate at large Q* from the measured values. This
analysis leads us to conclude that the o7 puzzle in p production still persists in our approach.
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Although the S/D wave mixing failed to completely resolve the or puzzle, it is still an
interesting issue on its own. In constrast to all previous calculations of the vector meson
production amplitudes, our approach allows for a clear formulation and detailed analysis of
this phenomenon.
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Chapter 12

Conclusion

In the present work we formulated the k;-factorization approach to the calculation of the
diffractive production of vector mesons in DIS. Since this approach is organically linked to the
BFKL dynamics, no requirements were placed on the value of Q* 4+ m$,, which allowed us to
investigate the production cross sections from the photoproduction limit up to the highest Q*
values attainable in the experiment.

When describing the vector meson, we limited ourselves to the lowest Fock state; that is,
we treated a vector meson as a bound state of quark-antiquark pair. Being an approximation,
this limitation allowed for the strict construction of the pure S-wave and D-wave states of
the ggq pair sitting inside the meson, which was then applied to the corresponding production
amplitudes.

On the other side of the reaction, we related the production amplitudes to the unintegrated
gluon structure function of the proton. We undertook an extensive study of the differential
gluon density, which included its first-ever extraction from the experiment and detailed inves-
tigation of its properties. This was then used in the vector meson production calculations and
yielded reliable numerical results.

Here we give a detailed list of main results of the present work.

1. Differential gluon structure function of the proton
o First-ever extraction of the unintegrated gluon structure function and its casting
into the form of simple and ready-to-use parametrizations;

o detailed analysis of the soft-hard decomposition of various observables and the
impact of soft-to-hard diffusion phenomenon on them:;

e observation of self-generated two-reggeon-like structure of Fy, predicted by k-
factorization;

e showing by means of y? analysis that the high-precision experimental data on Fy,
suggests rather strong separation of soft and hard parts of the unintegrated gluon
density.

2. Diffractive vector meson production: analytical study

o Developing for the first time a theory for vector meson spin-angular coupling and
using it consistently in the derivation of the meson production amplitudes;
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e observing remarkably different Q?-dependence of S and D wave type amplitudes,
thus providing a way to discern S and D states that are indistinguishable at ete™
colliders;

e observing a dramatic role, at large Q?, of the higher twist contributions to the D
wave vector mesons, which even forced sign change for the I — L amplitude and
led to a non-monotonic O‘L/O'T ratio;

observation of very large helicity-violating effects for D wave vector states, which
do not get suppressed even in the case of heavy quarkonia;

confirmation of the soft dominance of the double spin flip amplitude in the case of
both S and D wave states;

establishing the borders of our approach during discussion of the hard Coulomb tail
of the wave function.

3. Diffractive vector meson production: numerical study

e Showing that Ei-factorization approach leads to a good overall agreement with
availble experimental data on all types of vector mesons. Namely we showed that
the overall shape of the Q* dependence, energy growth, ¢-dependence, the picture
of s-channel helicity-violation observed in p, ¢, and J/¢ mesons production are in
good agreement with ki-factorization prediction.

e Recognizing that two particular issues — the transverse cross section or for p
mesons at higher (? and the magnitude of Y(1s) state — still remain unresolved.
The causes of this discrepancy and the resolution possibilities were discussed.

e Predicting many previously unknown features of the excited vector meson produc-
tion reactions, including opposite signs for the largest spin flip amplitude 7" — L
for S and D wave vector mesons and dramatically different o, /o ratio;

e investigating 5/ D-mixing induced phenomena; indicating that large S/ D wave mix-
ing in the p system can be the origin of or puzzle.

Since the work contains a large number of predictions of the observables that have not yet
been investigated in experiment, [ hope that the thesis will serve as a guide to the directions of
future experimental research. The dramatic differences between S and D wave vector meson
production predicted in this work demand confirmation and offer a novel way to study the
structure of hadrons.

Finally, in this work I intended not merely to list the results, but also give a detailed
and pedagogical presentation of all steps. In particular, Part I, where T introduced the k-
factorization scheme, Chapter 4, where I construct the theory of the vector meson spin-angular
coupling, and Appendices contain very detailed intermediate calculations, so that everyone can
follow the entire line of derivation. To this end, I hope that the present text can be used as a
means of learning as well.
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Appendix A

Denominator evaluation: details

Below we give the denominator calculus in full detail. The major guideline in this derivation
will be the analysis of the pole positions and setting some of the propagators on-mass-shell by
taking appropriate residues.

A.1 The forward Compton scattering

A.1.1 The s-channel diagram: all details

We first start with the forward virtual Compton scattering amplitude. The integral to be
calculated is

1
[(g—k)? —m? +ie][k? — m? +ie][k? — m? 4 ie][(k + k)2 — m? + i¢]

1
(2 — p? +icl?[(p — k)2 — m? +i€] (A1)

/dy dz dov dj

With the Sudakov decomposition

Q2 m? . .
G = q,, — ?p;, Pu =1, + ?q;, ko =yp) +2q./ +kuy ku=oap)/+ 89 +E,, (A2)

one can rewrite all 7 propagators as:
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Let us analyze the position of propagator poles (namely the sign of i€) in complex y plane for
different values of z and 3. We get

Q2 ];,’Z—I—m2 1€
1 = -7 — :
<> 4 S (1—z)s+1—z’

2+ m? e

(2,4 y="T"0 5
. (E+E)2+m2_ 1€

e (F s PR (A-3)

3 a=—-y+ — ;
3) Y (B+ z)s z+ 0
R2 4+ u* e
5),(6) o= - =
B, (6) =T
24+ m? 1€
=1 — ) A4
I = (A4)
Since the function we integrate — namely the product of propagators — is analytic and

decreases at large |y| and large |a| sufficiently fast, we can switch from (—oo, +00) integration
to the contour integration both on y and « complex planes. This is done by adding half-circle
of infinite radius either on the upper or on the lower half planes. What we now have to done
is just to trace how many poles we have inside the contours.

As seen from (A.3) and (A.4), the position of the poles on y and «a planes depends on the
values of z and 3. If these are such that no poles fall inside the contours, the integral turns
zero, and corresponding (z,3) region does not contribute to the total integral. Therefore,
our task now transforms into searching for such (z, ) regions that both y and a contour
integrations are non-zero.

A convenient way to perform this analysis is to do it graphically. Fig. A.1 illustrates the
sign of ie in y = ... £ ie (left panel) and o = ...+ 1e (right panel) for all values of (z, ). Each
shaded line here corresponds to a propagator from (A.3) and (A.4), the shaded side indicating
the half plane with positive value of te. For example, propagator (1) from (A.3) has positive
1e when z < 1.

If we now take a closer look at each of possible regions (z,3), we see that the only (z,3)
pairs that result in a non-zero expression lie inside a triangle, which is shown in Fig. A.2. For
convenience, we break up the whole area into three sub-regions A, B, and C. For each of these
regions, we get only one pole inside y and one pole inside « contours:

0<z<l
Region A: pole (1) for y; pole (3) for a.
—z< (<0
0<z<l
Region B: pole (1) for y; pole (7) for a.
0<fB<m?s
0<pB<m?s
Region C: pole (3) for y; pole (7) for a. (A.5)
—-B<z<0
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2,4 1

Figure A.1: The ie signs of the poles in propagators on complex y (left panel) and « (right
panel) planes as functions of z and 3. At each line, the shaded region indicates (z, 3) semiplane
where the corresponding i€ sign is positive. The numbers refer to propagators.

' B

Figure A.2: The three subregions of (z,3) plane that contribute to the overall integral.

Thus, the evaluation of the integrals over y and « turns into taking the residues at certain
poles. Let us write the result of this procedure for each of the three regions.

Region A
Here we get
Q2 E2 + m? Q2 Ez + m? (E—I—E)Q + m?

y:_?_(l—z)s; a:?+(1—2)5+ (z=18D) (A6)

Since 3 < 0, we explicitly switch to a more clear notation |3|. The other five propagators turn
into

(2)44) = [ b 21— 2)Q7 i

E24m?  (E+R)2+m?|
11—z + z—|f] ks

(5),(6) — —R*—p*—|Q°+
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E24m? (k4 R)?+m?
-z  z—|f]

Here symbol 7 means that the rule for pole passing is not needed since the propagator has
definite sign for the physical values of the parameters.
The result of the integration is

N2 1 z —
/dydzdadﬂ;:<—@>/d2/d|ﬂ|l = 1
propagators S 0 0 z— |3 [k?2 + m? + 2(1 — 2)Q?]?
1
% )2 2 2
{z%+ﬁ+¢ﬂﬂ@2+kﬁ32+“iﬂ;m]}
1

- Q2 BRim?  (F+R)2+m? o
7 = (ot 9 |1 - € - Bt Gt

s—Q°% —

(1) — —R*—m’+

G?H@+wmﬂ

X

X (A.8)

Now comes the last step. The result (A.8) has both real and imaginary parts. Since we are
looking for the imaginary part only, we extract it by means of

1

1 .

and by cancelling the 3 integral with aid of ¢ function. The value of 3 is

=2

Blx =<1, (A.9)

and therefore it can be neglected everywhere else in (A.8). The result is

2 M _
I /d,ydzdozdﬁ :4i dz] z_’ 1 i 1 . (A.10)
propagators s3 Jo zZ [k 4+ m?2 4 2(1 — 2)Q%)? [R2 + p?)?

The z integration limits in (A.10) should not be understood literally as 0 and 1. In fact, when =z
is sufficiently close to 0 or 1, 3 can no longer be neglected in comparison with z. Therefore, the
integrand in (A.10) does not have the correct small z and small 1 —z asymptotics. Nevertheless,
since the physical quantities will have regular 2 — 0 and z — 1 behavior, the impact of this
difference will be suppressed by ~ m?/s simply due to the small integration measure.
Regions B and C
Although region B has much smaller area than region A, one cannot guarantee a priori that
the third pole, which produces the imaginary part of the integral, always lies outside this
region. One can check, however, that it is the case.
We extract first the values of y and a according to (A.5)

Q2 E2 + m? . Bs + 22

y:—?—m, o= m (A.11)

We remind that 0 < 8 < m?/s, so that no singularity arises here. The remaining propagators
are

(2),4) = B b = 2(1 = 2)Q7 i
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We see that throughout the whole phase space of the remaining kinematic parameters all the
propagators have definite sign, which makes the answer purely real.

The similar picture occurs in region C as well. Therefore, regions B and C do not contribute

to the imaginary part of our integral.

A.1.2 The other three s-channel diagrams

The evaluation scheme just described can be applied to the other three diagrams. There will
be slight modifications in quark propagators, but the strategy remains unchanged.

For example, consider diagram (b) of Fig. 5.2. The only difference is the expression for
propagator (4):

(4) = (q—k—ﬂ-)?_m?—{—ic:(l—z—ﬂ)(—%—y—a)—[(E+,§’)2+m2]+—e;
__a_Q_Q_(E—I—/%')Z—I—m? 1€ '
oY= s (1—2z—-p0)s +1—z—/3’
B i i e e (A.12)

+ .
s (1—2z—p0)s l—2z-0
Again, one can check that the main nonzero contribution comes from the same region A and
the same residues. So, if one again calculates the imaginary part of the integral, one finds

{ dy dz da d/@}
o { [ e do 45 _
propagators
2
S - | L aa)
s? Jo k2 4 m? 4 2(1 — 2)Q?[(k 4 R)? 4+ m? + 2(1 — 2)Q?] [R* + p?]

Again, one can make sure that the small regions B and C do not contribute to the imaginary

part as well, although the proof might not appear as clean as before. Namely one can find that
regions B or C will contain a propagator (namely propagator (4)) that can change its sign,
and therefore will contribute to the imaginary part. However, this can happen at abnormally

small 52
—2 m
~ — .
s
Therefore the contribution of this configuration is 1/s-suppressed, and we neglect it at our
level of accuracy.

The results for the remaining two diagrams are

4?1 1 1 i
_3/ dz—s—o _ — 57 diagram C;
F o TR+t 20— QA + it + 21 — )@ [+ 1)
2
4%/ dz— 1 — ! 5 diagram D.
s Jo [(k+R)P2+m?+2(1 —2)Q%? [R2 + p?]
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A.1.3 The u-channel diagrams

We claimed before that the u-channel diagrams do not contribute to the imaginary part. Here
we show that it is indeed the case.

The only difference between ¢t-channel and u-channel diagrams is that in the u-channel case
we switch the direction of particle p. Propagator (7) will now be

1) = (e r = bie = (1) (24 5) s = (8 ) + e

24+ m? 1€

- 1 . .
@ +mz-l—ﬁs B+ m?/s

(A.14)

Following the same line as before, we recognize three regions A, B, and C. In region A (—1 <
B<—m?ls; —f<z< 1) the last propagator turns into

24 m? (k4 &)+ m?

e 2
(7) = —K m s+ Q°+ T p—T

(-4

which means we do not get any contribution to the imaginary part. One can check that no
contribution to the imaginary part arises from the other regions on (z,3) plane (except for
abnormal cases when 2 ~ m?/s). The conclusion is that the u-channel diagram gives no
leading % contributions to the imaginary part of the process.

A.1.4 The a-representation technique

Here, for the purpose of completeness, we show an alternate way to do the integrations over y
and a. Sure enough, the underlying meaning of all manipulations are the same as before. In
a certain sense, however, this way might appears simpler, since it does not require performing
any graphic analysis. Everything is done algebraically. It seems that this method is similar
to the so-called « representation of the loop integrals.

We start with expression (A.1) and use the following representation for each of the seven
propagators

1 ; %
= =7 dt —te — 1t X]. Al
X —ic  etiX L/o exp|—te — it X] (A.16)

The integral (A.1) transforms into

i7/dy dz da dp /0O dty -+ dt; expl—tie —ity(ys + Q) (1 — 2) — itl(EZ + m?)]
0

X exp[—ta€e + itayzs — itg(EQ + m2) —tze+its(y + a)(z + 3)s — itl[(]g + /%')2 + mQ]]
X exp[—ts€ + itgyzs — itg(];:? + m2) — tse + itsaf3s — z't5(/%'2 + ,uQ)]
x exp|[—tse + ilgaf3s — ilg(R> + p?) — tre + itz(m* — Bs)(1 — a) — it7(R* + m*)[A.17)

Since the total integral is convergent and thanks to the factorization of y and « dependencies,
we can do the y and « integration first and obtain

fys[—t1 (1— jas|t ts B+te B+t (B—m? 2mi\?
/dy ezys[ t1 (1—2z)+taz+ts (248)+ta2] /da 62048[3(2+/9)+ 5B3+teB+t7(B—m /8)] — <__>
S

x §[—ti(1 = 2) + taz + ta(z + B) + taz] & [ta(z + B) + L5 + teB + L=(3 — m?[s)] .
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Since all parameters ¢; are positive, the two delta-functions can be simultaneously non-zero
only for certain (z, 3) pairs. As should be expected, these pairs lie precisely within the allowed
regions.
We can now take two of ¢y ...{7; integrations to cancel the two delta-functions. Let them
be t; and t3 (of course, one can take other pairs as well). We get
g m’
ls = ———(ls+letir) +lr—F;
4B e
2
z m
L, = 1 (Lo +t4) — 7 b (ts +te+1t7) + tr . (A.18)

_ . 1—2 (1—2z)s

Since the integrations in ¢; remain factorized, we easily obtain

/ " dtyemtatem it (B Am) = (P am?)=2Q> ! .
o / B 7 . ?

’ L (k2 +m? + 2(1 — 2)Q2] — ie
/OO di e tacemita (B m?) =2 (B 4m?) =207 _ il :
7 . 3

’ liz[/@ +m? 4 z(1 — 2)Q?] — ie

fore) . o . - PN
/ dtse—t5ee—zt5(ﬁ2+,u2)+zt5 Z:Lﬁ[k2+m2 +Q2%(1—2)+(k+R)2+m?]
0

—i

25121 —2) + k2 + m? + (k + R)? + m?]

?

EZ+/L2—’i6—

/OO dtge=toc et (F i) Fite 5 [R24m? +Q2 (1= 2)+(F+R)2+m?]
0

—1

B2+ p? —ie — 2[Q(1 — 2) + B2 + m? + (k + R)? + m’]

I

2 -, -
/°° b e 175 ity =B5) =ity (R 4m?) =itz PP IR2 4 m? 4Q (1—2) 4 (F4R)24m?]
0

= = : (A.19)

EQ%—ﬁs—ie—k%sﬁ_ﬁ[Q?(l—2)—|-152—|—m2+(15—|—k‘)2—|—m2]

If we now bring all pieces together, we will arrive at the expression obtained in the previous
section.

A.2 Vector meson production: the fully off-forward case

The integration in this case is done similarly to the Compton scattering; therefore, we do all
calculations in a less detailed fashion and pay special attention only to distinct features of
vector meson production.

Strictly speaking, the (virtual) photoproduction of vector mesons is always an off-forward
process, even though the final state might have no transverse momentum. The reason is that
when the initial and final states have different masses the exchanged pomeron must carry a
non-zero longitudinal momentum. In the language of two-gluon exchange, it means that the
momenta of the gluons are not identical, in contract to what we had in previous section.
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The integral we deal with is
I'(M?)
[(q — k)2 —m? 4 ie][k? —m? + ie][(k + A)2 —m? 4+ ze][(k + nl)Q —m? + i€

1
[kf — i +ic][r3 — p? +ie][(p — £1)? — m? + ic] (A.20)

With the Sudakov decomposition and notation k; = kK + A/2,k; = & — A/2, we have the
following seven propagators:

/dy dz do dj

(1) (q—k‘)Q—m2—|-z'6:(—y—%)(l—z)s—(p—l-m?)%-ie,
2)  (k+A?—m?+ic=(y+0)(z+8)s—[(k+A)> 4+ m?] +ie,
(3) (k+/~c1)2—m2—|—ie:(y—l—oz—l—%a)(z—l—ﬁ—l—%(S)s—[(E—l—/%'—I—A/Q)Z—I—mZ]—I—ie,

<4> E—m? 4 e = yzs — (]_c'2 + m2) + 1¢,

. 1 1 L1
(5) /ﬁf — 4 ie= (o + 50)(& + 55)5 — (R + §A)2 + ILLQ] + i€,
2 2, 1 1 Y 2
(6)  my—p Fie=(a—50)(B = 58)s = [(R = SA) 4+ p'| +ie,
2 2 . 1 1 - 1"2 2 .
(7) (p—rK1)" —m —I—ze:(]—a—§0)<—ﬁ—§5>s—[(ﬁ,+§A) + m*] + ic.

One can write now poles on the y and « plane, draw the regions of positivity of the correspond-
ing i€’s on the (z,3) plane, and select the regions that leads to non-zero contributions (there
will be five of them in this case). One can again make sure that the leading 1/s contribution
to the imaginary part comes from the main region. The presence of yu? — namely the fact
that pu* > mi, — 4m* for all vector mesons — also helps avoid extra poles.

Setting propagators (1) and (3) on-mass-shell, we obtain

2 12 2 2 7.2 2 I L2 A/9\2 2
y:_Q__k +m ; a:Q——l(f—l—k +m +(k+/s+A/2)+m_ (A.21)
S (1 — Z)S s 2 (1 —2)s (2’ + 3+ 5/2)3
The resulting quark propagators are
o 1 72 2 2 .
(4) = —1_Z[k +m? 4 2(1 = 2)Q] + i
E2+m2

<2> = (Z—I—(S)SU— (z+5)5Q2 — (z—|—5) ] — [(E—I—A)Z —I—m2] + €. (A.QQ)

Note that since the invariant mass of the produced ¢g state is equal to

:E2+m2+(];+/&)2+m2_&2

M2
1—2 z4+ 4 ’

propagator (2) turns into (z 4+ 6)(mi — M?). Together with the vertex factor T'(M?), it gives
rise to the wave function of the vector meson.
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The gluon propagators are

E24+m? (k474 A/2)2 + m?
1—z2 2+ B+4/2

B2 +m? (k4 7+ A/2)% +m?
1—=2 24+ 08446/2

) = B+ %5) (Q2 + ) — (& + %A)Q + 0+ i

<6> = (ﬂ — %5) (—mf/ — A2 + ) - [(E - %AV + M2]+ it

In the case of gluon (5) the absence of the pole was — ue to negativity of both 3 and § —

obvious. In the case of the second gluon, the pole can in principle arise. In our case however

this is avoided due to large enough p? (namely p? > mi — 4m? for all vector mesons).
Finally, the propagator (7) takes the form

B 4m? (k474 A)2)% +m?

ELRY 2 .
11—z S A+82 —[(R+ A +p’]+ic. (A.23)

N2
s—Q 5

(1) = ~(B+59)

This propagator, as usual, is used to extract the imaginary part of the integral, which leads

to .
(R + 3A)?

b = < 1.

With all these manipulations done, we finally obtain

® pO| =

I
[all propagators]

B (_g) (‘?) '/%Wz’g?)' [k2 4+ m? —|—1z(1 — 2)Q? (R? +1u2)2 '

I'm / dy dz da dj (A.24)
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Appendix B

Helicity amplitude technique

Here we give the derivation of expression for traces of the following type
Sp{e (ka+m) i (ks +m) V= (ky+m) §' (ks +m)} (B.1)

in full detail. Although one can calculate this trace covariantly, a particularly convenient way
to do so is given by light cone helicity amplitude technique [25]. We emphasize that both
ways are absolutely equivalent. In the helicity amplitude approach, we recall that all fermion
lines in (B.1) can be taken on-mass-shell (see detailed derivation of LCWF normalization in
Sect.4.5) and decomposed into a sum of light cone helicities

(12: +m) — Z uyuy for quark lines;
A=%

(127 +m) = —[(—l;') —m] — — > _ uy for antiquark lines.
A=%

Since the specific choice of this decomposition does not affect the final result, we are free to

take the most convenient choice of spinors (see [25] for details), namely
1 X(1) A=+1
u(p, A) = f + Bm + o {
(P, A) \/§p+ (Vot +Bm+an) ¢ L N2
( A=+1
o(p,)) = V2pt — Bm +ap { x(H) B.2
(s ) ﬂp+ (V2pt - ) P A=t (B.2)

where

—_
—_ O =
—_
o = O

x(1) = 5
0 —1

We stress that we use here our normal convention for + components of 4-vectors. For conve-
nience, we also give the explicit expressions for all these spinors in the Dirac representation of
~ maftrices:

oF . ok 5
ﬁZVOZ(é—OJ)Vk:(—?;k 0)0‘k:(£k 0)7:((1)é> (B:3)



The explicit expressions for all spinors u™(p), u=(p), v=(p), v*(p) read:

V2pt +m —pa + ipy Vapt —m —ps + ipy
1 P+ ipy V2pt +m P+ ipy V2pt —m
—_—— + . + . (B.4)
ﬂ,/ﬂp+ \/EP —m Pz — 1Py \/EP +m Pz — 1Py
Pz + ipy —ﬂp’*’ +m Pz + ipy _ﬂp+ —m

Using these explicit formulas, one can do straightforward calculations and indeed prove
that comply with orthonormality and completeness rules:

a(p, Nu(p. >=—6<p,x> (p,N) = 2méus
S u(p )it ) = ptmi Svlp i) = - (B.5)

For A = £1 we defined
a(X) = —Xay —iay . (B.6)
Cross product is defined as .
[@b] = azby, — bray . (B.7)

Moreover every matrix element should be multiplied by common factor ,/prqy.
Some useful relations:

vuag) = —dua(q); 7ua(q) (9);
a(=M\)b(\) = —a@b+iN@b]; Y a \) = —2db;
a(—) (bd + iA[bd]) = b(—\)a®. (B.8)

le
S “l"
> -l

A

<
N

AP
<L
b) d

Figure B.1: Four types of transitions, for which we give the amplitudes. Dot with label A
indicates the spinor whose helicity is used as .
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Straight line elements

For line in Fig.B.1a, one has

ur(p)---ux(q)

o 2
_ 1 v
gy (m* 4 pq+iA[pq])
Z.5 dp . aq _ Eﬁﬂ__ﬁﬁﬂ>
aq P++C]+ ZA<P+ q+
1,1
1 m (5 +g5)
VYT -d 2 (@p — i\ap))
a7ty 2 (ag + iNad)
i-3yt7-b 2(a@b + i\[@b])
’y+75 22

For line in Fig.B.1b, one has

oa(p)---va(q)

o 2
- 1 2 oo oy
g} gy (m” + P — iA[pq])
2.5 ap | aq . Eﬁﬂ__h@ﬂ)
a“ P++Q++7’)‘<P+ q+
1 1
vyt

Q-5 o (aq — iAlag))
a-Jyty-b 2(db — iA[ab])
+.5
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Vertex lines

For vertex in Fig.B.1c, one has

QU
-1

p(A) _
P+

q(A
7

v-x(p)---ur(q)

2
1

(—=m? + 57 + i\[77)
P44+
a L aq Ly (@_ @)
P+ q+ P+ q+
m m

__+_
P+ 9+

2 - = . —
— (dp — 1A\[dp))
P+

2 L
— (@G + 1A[dq))
9+

2(ab + iA[ab))
2

—\m (i + L)
P+ 4+

ur(p)...v-x(q)

0 2
1 e o
“prar (PN Ha(=A) (—m® + 53+ iA[53))
1, 1 apg aq . (lap] [@1)
—ma(—=A) (= + = ——|———z/\<———
( )(p+ O+ P+ 4+ P+ q+
p(=2) _a(=2) m_m
P+ 9+ P+ 4+
2m 2 -
—2a(—=A\ — (ap — i \|dp
Bha-) (@ )
_2m 0y 2 oz i
a(=X) (@q+ iA]dq))
4+ 4+
0 2(a@b + i\[@b))
0 2A
A (EE a0y, .5
bt . P+ G+
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Transverse photon polarization

As we see from the table, neither of gluon legs can flip quark helicity. Therefore, there are 4
combinations of all possible helicity assignments.
In the case both ¢g helicities are the same, one gets

—\/Z(l_z)%me*(}\) . M(_m)e(_)\)

22q4p- - 2zq4p- -

z(1 = 2)q+ z(1 — 2)q+
=1 i 252(—m2)e*()\)e(—)\) (B.9)
In the case quark and antiquark helicities are opposite, one obtains
z(1 — =z
2agep - 2egsp- L (k) 4 (R - )~ Al — ()
z(1 — 2)q4
z(l — 2z
'% [(ek)(1 = 2) — (ek)z —iM[e"k](1 — 2) + [€"k]2)]
= SRR = 22) + N [(eR)(1 = 22) — iA[eh] (B.10)

Thus, performing summation over ¢g helicities, one obtains
z

— [m?(ee”) + (k) (k) (1 = 22)? + [ek][eK]]

252
1

Finally, averaging over azymuthal angle, omitting factor 2s* and including (—1) due to one
antiquark propagator reveals

1—=z

z

10 = —[m? + (2 + (1 — 2))k’] (B.11)

Note that the expresswn for Diagr.(d) can be instantly obtained from the above expressions
by replacement k — k z — 1 — z. In this case 3 antiquark propagators also give factor
(—1)°> = —1. So, the answer for this diagram is

I = —[m* + (% + (1 - 2))k] (B.12)

z

1 -2z

Finally, one has
m? + (22 + (1 — 2)2)(k,k + Ii)
m? + (22 + (1 — z)2)(k,k - K)

for Diagrams (b) and (c¢) respectively.
With all these results, Eq.(2.21) turns into

AT g 32 32 2 a2 / &’k / c_i‘Q/%'V(/-c)
" om)? [F2 +m2 + 2(1 — 2)Q?] (ff“r/ﬂ)2

(B.13)

CmP 4 (2 (1_2)2)* +m—|—(2—|—(1—z ]
[k2+m + z(1 — 2)Q?] (E+R)2+m?+z(1
Note that we changed k — —& in Diagr.(c), so that it became identical to Dlagr (b).
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Scalar photon polarization

The virtual photon scalar polarization is described by
"
0

1 1
en = @(QW —|—:cp’“> = @(q_l_ni + ;vp_nli) (B.14)

One notes that in this case only gg states with opposite helicities do contribute. For Diagr.(a)
an amplitude reads

2
2(1 —2)q —m? — k2 —m? _ k2
2( 2)q3

Q 1 —2)¢i
1 -
252@1i2 [m? 42— 21— )@ (B.15)
Therefore,
1_21<)—_L[m +1<:2—z(1—z)c22}2 (B.16)

Obviously, for Diagr.(d) one has

1izl<d):_$[m +R (1 -2 (B.17)

The expressions for Diagrs.(b) and (c¢) can be obtained in the same way and give

10 = o [t B = (1 = Q7] [+ (47— =1 - )07
19 = Ll gk oo - Q7 [P+ F-RP —:0-2QY . (B.1)

0?
Therefore Eq.(2.21) now reads

0o _ B2 s e[ R a1 2)QY PRV (k)
A = ¥ sem/ddk—' | Q/(E2+M2)2
K24+ m?+2(1 —2)Q% [(k—R)?*+m?4 z(1 —2)Q?

In fact, this expression in brackets can be greatly simplified. First, trivial algebra leads to
[m? + K — 2(1 - 2)Q7) L + (k= R)? — 2(1 = 2)Q’]
s mito(l- @2 ((F= R+ m? + (1 - 2)Q
22(1 — 2)Q% ] 2z(1 — 2)Q?
(k2 +m? + z(1 — 2)Q?) [(E—R)2+m?+z(1 — 2)Q?
1 1

:22(1_Z>Q [22+m2+z(1—z)Q2]_[(E ) + m? +Z(1_2)Q]

Second, in we replace e¢g o< (¢’ + xp’) by ¢ = (¢’ — xp'), we will get zero due to the gauge

invariance of the totaf sum of all diagrams. Effectively, it means that residual [m? + k2 —
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z(1 — 2)Q?) can be replaced by —2z(1 — 2)@*. Of course, it does not mean that these two
expressions are identical by themselves. Only after integration over quark momenta they give
the same answer. Thus, the final answer for scalar photons reads

2 9 -
AV = s 128¢) ef o? pre PR /dzz (1-— z) a2k ! / C_i,,fV(/:),z
(2)? B2+ m? +2(1 - 2)Q?] ) (R +4%)

X | —= ! — = ! ] . (B.20)
[k24+m?2 4+ 2(1 —2)Q?*  [(k—K)?+m? +z(1 — 2)Q?]

B.1 Photon vertex amplitudes
Notation is given in Fig.5.3. We start with transverse photon.
u'épv = u'(—7€)w.

Equal ¢q helicities give
——————(—m)e(—=)) = ——=me(—]) (B.21)

Opposite gq helicities give

_@. (@R (1= 2) = (k)2 — i ([FR](1 = 2) + i)z

2(1 = 2)q+ *
_ _ﬁ (&)1 — 22) — iA[R] (B.22)

In the case of scalar photon
—/ A —/ 1
u'égv = @(q_l_fy_ + xp_y4)v

the same helicities give exactly zero while opposite helicities result in
y- - (1 - L l—(—m2 - EZ) +22z(1 —z)p q_l_]
z(1 - Z>q+ Q 4+ '
[ PR - 2(1 - 2)Q7 (B.23)

1—2’

B.2 Vector meson vertex amplitudes

o
This case is more tricky due to the nonzero vector meson transverse momentum A. We start
with the transverse vector meson polarization:

. o 2(VFA
Vi=-=3V"+ 2078) : )p-7+-
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The same ¢q helicities give again

_yE = =)es mV*(\) = - mV*()) (B.24)

2(1—2)q4 / z(1 —2)
while opposite helicities give

z(1 —z - oL Tk 7 T
@{_[(v*kB)z + (VE2)(1 = 2) — i) ([V*Ealz — [V'R](1 = 2)))]

z(1 — 2)q4
2V*A)

S

+ p-22(1 - Z)%}

= {V (1 —22) +iA[VE]} (B.25)

Here we used definitions and properties (see also Fig.5.3):

—k+(1-2)A (B.26)
1 — )];:2 — zky = ];:; (1— z)k‘z—l—zk‘d =(1 —22)E+22(1 —z)&;
ki JEA) + z(1 — 2)A?
,§-|-m2_l;2+m2 29

1—z) _Z(l—z)+

For the longitudinal vector mesons one has for equal quark-antiquark helicities

2(1-2)gr 1 l

T | AR mE RO + k(]| =0 (B-27)

9+

and for opposite helicities

@i{_[(ﬁég)z + (Bk2)(1 = 2) + INAR] 4+ D [—m? 4 (Koks) + iA[Raks]

z(1—2)g4 M g+
A2 — M?
+fp—22(1 - Z)Q+}
1
- %(1-2)M (B.28)
z(1 —2)

B.3 Final trace calculation

Once we have the expressions for vertex amplitudes, the rest is done quickly. We first note
that each gluon vertex attached to the lower or upper line gives factor

2zqy -p- =sz; 21l —z2)gp - p- = s(1 —z) (B.29)

correspondingly.
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So. let’s start with 7" — T amplitude and calculate it for Diagr.(c) at Fig.5.2.
Equal ¢q helicities give

(1 —2)- sz ﬁmv*@\)\/ﬁme(—/\) — _Pmle(—N V() (B.30)
Summing over A gives B
2s°m* (V™). (B.31)
The opposite helicities yield
s [(VR)(1 = 22) + iA[VR]] [(@F) (1 — 22) — i@k ]| (B.32)
Summing over helicities and making use of identity
[@b)[ed) = (aé)(bd) — (ad)(b3) (B.33)
one obtains
252 [(VF) (@) (1 — 22)% + (V) (Kky) — (FR)(V'R))] - (B.34)
Since we factored out 2s* when deriving (5.18), we finally get
I = — (V) (m? + kky) + (VE) () (1 = 22)% — (8)(VR))] - (B.35)

We included factor (—1) since in this diagram we have one antiquark propagator.

An important observation here is that all other integrands, namely (%) (1—2)/z, 1 ).
z/(1 — z) give absolutely the same result (with their own definitions of k1 of course). The only
thing one should not forget is that diagrams (a,d) enter with sign '—’ while diagrams (b,c)
enter with sign 4 .

—z

J@ — ) — o) — __* (@)

z 11—z
For I — L amplitude one has immediately

1 - 1 .
I, = ——[m?+ k2 — 2(1 — 2)Q% - —22(1 — 2)M” (B.36)
Q M
In fact, using simple relation
24k - 2(1 - 2)Q? —2:(1 — 2)Q”
m? + k} + 2(1 — 2)Q? m? + ki + z(1 — 2)Q?
and noting that all unity terms will eventually cancel out in (5.24), one can rewrite (B.36) as
1) = —4QM (1 — 2)?. (B.38)
For T"— L amplitude one has
I, = 22(1 = 2)M(ky)(1 — 22) (B.39)
and for I, — T amplitude one has
o 1, = -
19, = @W F R —2(1 = 2)Q%(1 — 22)(V*k). (B.40)

The same transformation as in . — L amplitude, leads to
I = —22(1 — 2)Q*(1 — 22)(V*E). (B.41)
Note that in the last three amplitudes only opposite gg helicities contributed.
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