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COHERENT SHEAVES WITH PARABOLIC STRUCTURE AND

CONSTRUCTION OF HECKE EIGENSHEAVES FOR SOME

RAMIFIED LOCAL SYSTEMS

JOCHEN HEINLOTH

ABSTRACT. The aim of these notes is to generalize Laumon’s construction [18]
of automorphic sheaves corresponding to local systems on a smooth, projective
curve C to the case of local systems with indecomposable unipotent ramifica-
tion at a finite set of points. To this end we need an extension of the notion
of parabolic structure on vector bundles to coherent sheaves. Once we have
defined this, a lot of arguments from the article “On the geometric Langlands
conjecture” by Frenkel, Gaitsgory and Vilonen [10] carry over to our situation.
We show that our sheaves descend to the moduli space of parabolic bundles if
the rank is < 3 and that the general case can be deduced form a generalization
of the vanishing conjecture of [10].

“Je dirais méme plus.”
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INTRODUCTION

Before explaining the main result (Theorem 2.5) of this article in more detail,
I would like to recall the setting of the geometric Langlands correspondence as in
[21].

Let C be a smooth projective curve over a finite field F,. (As pointed out in [10]
and [21], a lot of the arguments carry over to the case when C' is defined over the
complex numbers.)

In this situation the Langlands correspondence — as proven by Lafforgue [16]
— provides a bijection between irreducible /—adic local systems defined on some
open subset U C C and certain irreducible representations of GL, (A) contained in
the space C*° (GL, (k(C))\GL,(A)) called the space of automorphic functions. Here
we denoted by A := [[,_ K, the ring of adeles of the function field k(C) of C,
and by C*> (GL,,(k(C))\GL,(A)) the space of functions (with values in Q;) that are
right invariant under some compact open subgroup of GL,(A) (for notations see
Section 0). More precisely it is known (see e.g. [20]) that for any representation
me corresponding to some local system E there is a compact open subgroup K such
that mg contains a (up to scalar) unique K—invariant function Ag. Further, this
compact subgroup is determined by the ramification of E. Finally, note that the
group GL, (A) does not act on the K-invariant functions, but the algebra of K-bi-
invariant functions acts on these by convolution. This is the action of the K-Hecke
algebra. The function Ag is an eigenvector for this action, and it is determined by
this condition.

Drinfeld noted [7] that this correspondence might have a geometric interpreta-
tion. First consider the case K = GL,,(O). Weil explained that the double quotient
GL, (k(C))\GL,(A)/GL,(O) can be identified with the set of isomorphism classes
of vector bundles on C' (choose a trivialisation at all local rings of C' and at the
generic point of C, the transition functions give an adele):

Bun, (Fy) = GLn (k(C))\GLn(A)/GLy(O).
Furthermore, Grothendieck explained that any complex A of f—adic sheaves on a
scheme X r, gives rise to a function on the set of its points by
trace : D°(X) — H Funct(X (Fyn))
neN
A tra(x) := trace(Frobr, ., Al.)
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and an irreducible perverse complex is determined by this function ([19]).

Thus, Drinfeld expected that the above Ag should be of the form tra, for some
irreducible perverse sheaf Ag on the moduli space of vector bundles on C. He
proved this for unramified local systems of rank 2. Later Laumon ([18]) gave a
conjectural construction of Ag for local systems of arbitrary rank, and recently
Frenkel, Gaitsgory and Vilonen ([10],[12]) proved that by Laumon’s construction
one indeed obtains a sheaf Ag.

Moreover, the action of the Hecke algebra also has a geometric interpretation
in this case. Consider for example the characteristic function of the double coset

GL,(O,) ((1) 7?1) GL,(0O,), where 7, is a local parameter at some point = € C. For

a vector bundle £ the multiplication of the corresponding adele by an element of
this set produces a subbundle & C £ such that the cokernel is k(x). Further, every
such subbundle can be obtained in this way. Drinfeld therefore considered the stack
Hecke' classifying pairs of bundles & C & such that the cokernel has length 1, i.e.
deg(&’) = deg(€) — 1 =: d — 1. This has forgetful maps

Hecke!
V w quot
Bun? Bun?"! xC

With this definition the sheaf Ag has the additional property that
R(prsmall X qUOt)!pT::)igAE = AE X E[—n + 1](7’” + 1)7

and a similar definition works for more general Hecke stacks. One says that Ag is
a Hecke eigensheaf.

Drinfeld also proved an analogous result for local systems of rank 2 with unipo-
tent ramification at a finite set of points S C C(F,) (see [8]), this time producing a
complex Ag on the moduli space of vector bundles of rank 2 with parabolic structure
at S. The purpose of this article is to generalize this result.

We will start with an irreducible local system E with unipotent ramification at a
finite set of points S C C(F,), and we further have to assume that the ramification
group at these points acts indecomposably, i.e. that the sheaf j.E (where j : C—S —
(') has one-dimensional stalks at all points p € S. This additional condition is the
reason why for the moment we can only prove our main theorem for local systems
of rank < 3.

In this case the corresponding automorphic function should be defined on the
space GL, (k(C))\GL,(A)/Ks, where Ks =[], c_g GLn(Oz) x] ], c g W, and Iw, C
GL,(O;.) is the subgroup of matrices which are upper triangular mod z. As be-
fore we can interpret this set as vector bundles with the additional structure of a
complete flag of subspaces of the stalks at all points in S:

Bun, s(7T') := ((5, (‘/i,p)i=l,e.:s;,n) |€€Bun,;0C Vi, C---CV,,=ERk(p)

This is usually called the stack of vector bundles with (quasi-)parabolic structure.
Note that this can also be described as:
Buny,s(T) = (€, (E"")i=1..n ) | € € Buny; € € €M) € - C €M) = £(p))
pPE
which has a simple generalization to coherent sheaves: one only has to replace “C”
by arbitrary maps “—” and to add the condition that the induced maps £P) —
£P)(p) are the natural ones. This reformulation made our construction possible.
The first step of our construction is to recall that in principle a candidate for the
automorphic function Ag is known, but we do not know of an explicit calculation
of this function. Therefore, we have to prove an explicit formula (Proposition 1.2).
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This motivates a generalization of Laumon’s construction, and — as a by—product
of the notion of parabolic torsion sheaf — we get a geometric interpretation of some
Hecke operators for the group K, i.e. of the Iwahori—Hecke algebra. Our main result
is then the following;:

Theorem 2.5. For any irreducible local system E of rank n < 3 on C — S with
indecomposable unipotent ramification at S there is an irreducible perverse sheaf Ag
on Bun,, s which is an eigensheaf for the Iwahori-Hecke algebra.

The strategy of the proof is the same as in [10], using parabolic sheaves instead
of coherent sheaves, but some additional problems arise from the ramification of E.
We reduce the theorem to an analogue (Proposition 7.1) of the vanishing conjecture
of loc. cit. In particular, we show that the above theorem would follow for local
systems of general rank if this analogue held in general.

The structure of the article is as follows. We start with the calculation of the
Whittaker function for the Steinberg representation given in first section. This is
an elementary calculation which served as motivation for our construction.

In the second section we introduce the notion of a coherent sheaf with parabolic
structure and prove the results needed to give an analogue of Laumon’s “fundamen-
tal diagram” and of Laumon’s Whittaker sheaf £&. As in the unramified situation
we then define two candidates for an automorphic sheaf. At the end of this section
we define the geometric Hecke operators corresponding to operators of the Iwahori-
Hecke algebra which are needed to give a precise formulation of our main Theorem
2.5.

After this short exposition of our results we try to clarify the notion of parabolic
sheaves in Section 3. We explain the general structure of parabolic torsion sheaves.
Further, we give an explicit description of the corresponding moduli stack, and
finally we note some semicontinuity results. We then use these basic results to
prove some properties of the Whittaker sheaf £& (Section 4). Here we give a
substitute for the Springer resolution in the case of parabolic sheaves which can be
used to calculate this sheaf, and we prove a Hecke property of E‘é. The problem
arising in the proof of these results is that in our situation the above resolution
is not small and the ramification of E also generates additional cohomology. By
simultaneously proving the Hecke property and the fact that £Z can be calculated
via the resolution we see that the two effects cancel out.

In the fifth section we then compare the geometric construction of Section 2
with the calculation of the Whittaker function. The key idea here is to define an
analogue of Drinfeld’s compactification as given in [10]. However, we can not copy
the proofs of loc. cit., which use results on the affine Grassmannian for which we
do not know the corresponding statements for the affine flag manifold. Instead, we
give an elementary proof of a much weaker result, sufficient for our purpose.

With these results available we can follow the strategy of [10] again and apply
Lafforgue’s result to deduce the existence of a Hecke eigensheaf on the moduli space
of parabolic vector bundles whenever we know that the two candidates constructed
coincide. This is the content of Section 6.

In the last two sections we then prove a generalization of the vanishing theorem
of [10] for local systems of rank < 3 and deduce the assumption needed to prove
our theorem in Section 6. This is again very similar to the arguments in loc.cit.,
however we have to take care of the Iwahori-Hecke operators, for example we have
to prove that some of them are central elements of the algebra (see Lemma 7.6).
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0. NOTATIONS AND PRELIMINARY REMARKS

We want to fix some notations used throughout this article.

0.1. The curve and its rings. We fix a smooth projective curve C' defined over
a finite field £ = F; and denote by:

k(C) the field of rational functions on C.
Op (resp. O,) the local ring (resp. the complete local ring) at a point

peC R
o K, = Quot(O,)
o A:= H;ec » the ring of adeles of £(C).
e 0:=[L..O
o O := Q¢ the sheaf of differentials on C.

0.2. Groups.

We note by GL,, the algebraic group of invertible n x n matrices.

B,, C GL,, the group of upper-triangular matrices.

N,, C B,, the group of unipotent upper triangular matrices.

Py C GL,, the subgroup fixing the subspace spanned by the first n — 1 base
vectors and acting trivially on the quotient by this subspace, i.e. P1(R) =
{( o ) | A€ GLn 1(R),0 € R},

o~

o lw C GL,(O,) the group of matrices which are upper triangular mod p.

We will further fix a non-trivial additive character ¢ : F; — Q.
Choosing a meromorphic differential form w this defines

U N, (k(C)\Ni(A) — Q)

n—1
‘I’((Up)peC) = H w(tracek(p)/lb‘q (Resp(z up,i,iJrl)w))v
peC i=1
where uy, ; j4+1 is the i-th entry of the first upper diagonal of the matrix U,.

To avoid the choice of a meromorphic differential form we will (as in [9]) often
replace the group GL,, xC//C by the group GL := Aut(®?_,Q®"%). More precisely,
GL,, xC = Aut(O%") is the automorphism group of the trivial vector bundle over C,
since for any ring R the automorphisms of the trivial rank n—bundle over Spec(R)
are the same as elements of GL,,(R). In the same way points of GL! are invertible
matrices in which the (4, j)-th entry is a section of Hom(Qi~%, Q/=1) = /¢ In
particular, the choice of a meromorphic differential w induces a group isomorphism
GL,(A) =5 GL(A).

Denote by Ng C GL;2 the upper triangular matrices, with diagonal entries 1 €
Hom(Q, ), then ¥ is given by the composition N, (A) — NZ(A) PPhicy F, 2,
@;, where the first map is the restriction of the above isomorphism to unipotent
matrices and Y Res is the sum of the residues of the upper diagonal entries.
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0.3. Fourier transform. For the additive character ¢ : F;, — @; chosen above we

denote by Ly the Artin-Schreier sheaf on A': Let AS : Al 222772 A1 be the Artin-
Schreier covering with structure group F,, then L is the v-isotypic component of
AS,Q,. This is additive in the sense that for the addition map + : A x Al — A!
we have +*L¢, = Lw X Lw.

For a vector bundle E -~ X of rank n on a scheme (or algebraic stack) denote

by EV - X the dual bundle and by <,>: E xx EY — A! the contraction. The
Fourier transform defined in [19] is given by

Four: DY(E) — DYEVY)
K = Rppvi(ppK® <,>" Ly)[n].

0.4. The trace function of a complex. For a complex K of Q,-adic sheaves on
a scheme (or algebraic stack) X we denote by trk the function:

trc : [[ X(Fpr) — Qo
n>0
x +— trg(x) := trace(Frob,, K|;).

0.5. Algebraic stacks. For the general theory of algebraic stacks we refer to the
book of Laumon and Moret-Bailly [22]. In particular, an algebraic stack will be a
stack that admits a smooth representable covering by a scheme.

We will view stacks as sheaves of categories for the fppf-topology. Thus to define
a stack M we usually give the category of T-valued points of M and denote this
as:

M(T) := (objects),

where we use the brackets ( ) instead of { } to denote the category of objects
in which the only morphisms are isomorphisms of the objects.

Sometimes it is easier to give the T-valued points of a stack only for affine
schemes T over the given base, which is equivalent to the data for all schemes by
the descent condition for stacks. This point of view is used as definition in loc. cit.

To use the usual operations on constructible sheaves and the corresponding de-
rived categories given in loc. cit. we need that our stacks satisfy the Bernstein—Lunts
condition, i. e. for every n € N we can find n—acyclic presentations for these stacks.

In our case we will often know that our stacks have a presentation as quotients
[X/G], where G is a reductive algebraic group acting on a scheme X. Stacks of this
form satisfy the Bernstein Lunts condition (see [22] 18.7.5). For the moduli stack of
vector bundles over a curve this is not true, but we have an ascending open covering
UpcUycC---C BunfZ in which each of the U; & [X,;/G;] is a Bernstein—Lunts
stack. For us this will be sufficient, since our sheaves will be supported in such a
subset.

0.6. Some remarks on generalized vector bundles. Recall that for a flat al-
gebraic group G acting on a scheme X there is a quotient stack [X/G] classifying
principal G—bundles together with a G—equivariant morphism to X. In this sec-
tion we will be concerned with the particular case of a homomorphism of vector

bundles Ey 2, F4 and take G := Fy acting additively on X := FEj:

Definition 0.1. ([2]) Let Ey 2, By bea homomorphism of vector bundles on
a scheme (or an algebraic stack) X. Then the quotient stack [Ey/FEp] is called a
generalized vector bundle over X.
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Lemma 0.1. Let Ej 2, E; be a homomorphism of vector bundles on some scheme
(or algebraic stack) X. The stack [E1/Eo] can be described as follows:

For any affine scheme T = Spec(A) Lo X over X:

objects = {s € H(T, f*E1)} and for s,t € H(T, f*E1)
Er/Eol(T) = < Hom(s.€) — {h € HOUT, /*En)|s + o(h) — ¢} >

Moreover, any quasi-isomorphism of such complexes gives rise to an equivalence of
the corresponding stacks, thus the stack [Ey/FEy] depends only on the class of the
compler Fy — E7 in the derived category of coherent sheaves on X.

Example: Let C -2~ X be a smooth projective curve over some noetherian base
scheme X, and let Fi,F5 be coherent sheaves on C, flat over X. By [EGAIII]
the complex Rp.(Hom(Fi,Fa)) can be represented by a homomorphism of vec-
tor bundles & — &; on X. By abuse of notation we denote by Ext(Fj, Fs) the
corresponding generalized vector bundle on X.

Note that this is well defined by the above lemma. The description of the cat-
egories of sections given in the lemma tells us that this stack classifies extensions

0— Fp — F — Fi —0, ie. for any T -1 X:

Proof (of Lemma 0.1): First note that the claimed description of [E; /Ep] defines
a stack:

1. We can glue morphisms, because sections of Ey form a sheaf.

2. Any descent datum of objects is effective (i.e. we can glue objects): Let U;
be an affine covering of the affine scheme 7. A descent datum for this covering is a
collection of objects s; € I'(U;, E1) together with morphisms h;; € I'(U,;, Ep) such
that si|v,, + ¢(hi;) = sjlv,; and hilv,,,, = hjlu,,. + hijlus,,.-

This implies that h;; is a 1-cocycle, and since T is affine it must be a coboundary,
ie. we can find h; € H°(U;, Ey) with h; — h; = h;; on U;;. Therefore we may
define s, := s; — h;, and this collection of sections glues to give s € H(T, E;) with
slu, = st

Thus we may define a morphism of stacks

objects = {s € H(T, E1|r)} and for s,t € H(T, E,)
< Hom(s,t) = {h € H(T, Eo)|s + ¢(h) = t} > = B/ Eol(T)

mapping a section ' — Fj to the composition T' — E; — [E/Ejp).

Since HY(T, Ey) = 0 for an affine T any s € [E1/Ep](T) is isomorphic to some
s’ € HY(T, Ey) and by definition any morphism between two elements s,¢ in the
image of this functor is given by a section of H°(T, Ey). Thus the morphism is an
equivalence of stacks.

The above description of the stack [E;/Ep] also shows that a quasi-isomorphism
of complexes induces an equivalence of the categories of points of the corresponding

stacks. Oiemma
Lemma 0.2. Let 0 E(C o Ey 2 EY 0 be an exact sequence of
2 i 1 » Lo
0 E’C E, » B 0

(2 term-)complexes of vector bundles on some (quasi-separated) scheme X . Denote
by [E}/Ey —— [E1/Eo) 2 [EY/EY] the induced morphisms of the generalized
bundles, and let 8" : X — [EY/E{] be a section.

Then locally over X the stack p~'(s") = [E1/Eo] X[y gy X is isomorphic to
[E1/E}]. More precisely such an isomorphism exists over any U — X such that
there is a lift s1 € T'(U, Ey) with p(s1) & s.
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Remark: We might state the above as “p~!(s”) is a principal homogeneous space
for [E1/E{]”. More generally, we will call a morphism of stacks a generalized affine
space bundle if it can be factored into a sequence of maps each of them locally (over
the target space) isomorphic to a generalized vector bundle.
Proof: We may assume that X = U, such that there exists s; € H°(U, E;) with
p(s1) = 8" (e.g. we can take U affine).

Using the previous lemma, we find that p~!(s”)(T') is the category with:

objects = {(s,h") € T(T, E1) x (T, E{) | p1(s) + ¢"(h) = s1}
Hom((s, 2"), (t,g")) = {h € T(T, Ey) | 5 + ¢(h) =t and po(ho) = 1" — g"}.

Thus we define:

[E1/El — pit(s1)
HYT,E}) 35 +— (i1(s') + 51,0)
HYT,E})) > h — ig(h).

This is essentially surjective, since for affine T' and any h” € H°(T, EJ) there is
an h € H(T, Ey) with po(h) = h”, and therefore any (s,h”) = (s — ¢(h),0).
Morphisms of two objects in the image of the above map are given by H(T, Ej)) =
Ker(H(T, Ey) — H°(T, EY))), therefore this is an equivalence of categories. pcmma

Application: We will apply this lemma in the following situation: Consider the
morphism of stacks classifying diagrams (with exact lines and columns) of torsion
sheaves on a curve C":

7/ 7y

\[\ orge f
<Tl(—>7’2%>7§,”>fg—t>72<71 >
¥ ¥ [ +
fflll(_> ,TQH%>,T3H 7—1//(_> 7—2//%)7—3//

where the degree of each torsion sheaf is fixed.
On the right hand stack the exact triangle of complexes

R Hom(7}', 7)) — RHom(T}', T;) > RHom(7', T;")

can be represented by an exact sequence of 2-term complexes of vector bundles.
There is a canonical s” of RHom(73’, 7{") given by the extension in the lower line,
and the projection map from p~*(s”) to the base stack is the map forgetr, .

Thus, by the above lemma, we see that the fibres of this morphism are isomorphic
to the stack Ext(73’,7{). These stacks are generalized affine spaces, in particular
the étale cohomology of the fibres is one-dimensional.

0.7. A lemma used more than once... The following general lemma is stated
in [10], a similar calculation is done in [5]. T would like to thank Sergey Lysenko
for explanations about this:

Lemma 0.3. Let £ 2= X be a (generalized) vector bundle, and denote by sy
X — & the zero-section of €. Let further K € D%(E) be a complex of étale sheaves
on £ such that the restriction of K to the complement of the zero-section descends
to the projective bundle P(E) (e.g. a G, -invariant complex of sheaves on £). Then

Rp.K = sjK.
Proof: We may assume that £ is a vector bundle, since for a generalized vector

bundle [€;/&y] the functor Rp, is defined via an acyclic representable covering of
the bundle, i.e. by definition we may replace [€1/&y] by &;1.
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Let j: £° := & — s9(X) — & be the inclusion. Then we have an exact triangle

— jij KHKHSO*SOKQ.

For the first term j15*K we have to prove that Rp.ji7*K = 0. If we can show
this we are done, since the lemma is true for the last term, and the right hand map
then gives the claimed isomorphism.

Write K° := j*K. Then by assumption K°® 22 proj*(K), where proj : £° — P(&)
is the projection to the projectivized bundle and K is a sheaf on P(£). To get a
relation between £ and P(E) , blow up the zero-section of £, and denote the blow
up by Bl (€):

)

/

Note that Bl (€) P(€) is the line bundle O(—1) over P(£). Let sp(g) :
P(€) — Bls,(€) be the zero-section (i.e. the inclusion of the special fibre of the
blow-up).

Since

S

<—(‘«><—o

PTp(e)
—

Jrprog* (K) = Rbl ji proj* (K)
bl proiective RbI, 3! proj*(K),

we need to show that R(po bl). (ji proj*(K)) = 0. But this is easy, since — as before
— there is an exact triangle on BI(&)

— jiproj* K — priye) K — spe),.K —,

and the natural map induces

__ proj. formula __ —

RPTP(g),*PTE(g) K = K= Rprpe) «5p(e),« K-

Thus Rpr]p(g)v*jgpmj*R = 0, and therefore R(p o bl),jiproj*K = 0, since p o bl
factors through P(E). O

1. THE WHITTAKER FUNCTION FOR THE STEINBERG REPRESENTATION

As indicated in the introduction, for any local system E of rank n on C' — §
with indecomposable unipotent ramification at points in S there is a particular
function fg on GL,(A) which one expects to span the automorphic representation
corresponding to E.

In this section we will give a formula for this function, more precisely we will
give an explicit formula for a function Wg from which fg may be obtained by some
explicit transformation. This formula served as motivation for our construction,
whereas it is not needed to define the geometric construction. The reader might
want to skip the simple, but lengthy calculation.

1.1. The Whittaker space. We will denote by C*°(GL,,(A)) the space of functions
f on GL,(A) with values in Q; such that there exists a compact open subgroup
K C GL,(A) (depending on f) such that f(zk) = f(z) for all x € GL(A),k € K.
The same notation will be used for other locally compact groups.
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The space of functions

= W(u)f(9)
= (GL (A7 = [ e c(aL,(ay |, IO
(GL.(4)) £ ECT(GLA) | L (. g o GLa)
is called Whittaker representation of GL,,(A). A subrepresentation 7 of this repre-
sentation of GL,(A) is called a Whittaker model for the isomorphism class of .
Similarly let C25, (GLy (A))P1 (D) be the space of functions which are Py (k(C))-

invariant and cuspidal® (see [9]). Recall the theorem of Shalika ([23], 5.9) as stated
in loc.cit.:

Theorem 1.1. (Shalika) There is an isomorphism of representations of GL,(A)
D : C®(GLy (AN 20 (GL, (A))PHFED)

given by [~ (f)(g) = 3 (g0 )
)

YENR 1 (k(C)\GLn—1(k

Since the character ¥ is a product of characters of the groups N, (K,), we
may construct functions in the Whittaker representation as products of functions
on GL, (K,) which satisfy the analogous transformation condition for elements of
N, (K,). Thus, using Shalika’s theorem, the strategy to construct automorphic
functions has been to construct functions in the Whittaker model, then to apply ®
and try to prove that the resulting function is not only invariant under the action
of P1(k(C)) but really invariant under the action of GL,, (k(C)).

In this chapter we will only be concerned with the local question, i.e. with
representations of GL,,(K,) for one fixed prime p. The global Whittaker function

We(g) == H We »(9p)
peC

corresponding to our local system will be given as the product of the local functions
We . These are given by the formula of Shintani and Casselman, Shalika (see [9])
for all p € C — S. Whereas for p € S the local factor is the Whittaker function
of the Steinberg representation (twisted by the eigenvalue A, of Frob, on the one-
dimensional stalk (j.E),) which is calculated below.

1.2. The Steinberg representation. Fix a point p € S C C and choose a local
parameter w at p. Let
o (Kot — @
() - ATidi Hq_(di_dj)'
i<j

This may be viewed as a character of B,(K},), by applying d) to the diagonal
entries of an element of B,,(K,). In this interpretation ¢y is the modulus character
multiplied by \valuation(det)

The (twisted) Steinberg representation Sty of GL,,(X,) is the unique irreducible
subrepresentation of the induced representation

IndSe 5005, = {f e ™ (GLu (K, | 19 =00 (9) } .

Vb € Bo(K,), g € GL,(K,)

Here again C*°(GL,,(K},)) denotes the Q;—valued functions which are invariant un-
der some compact open subgroup. For this representation there is a unique (up to
scalar) nontrivial lw-invariant vector, which is an eigenvector of the Iwahori-Hecke

LA reader unfamiliar with this notion may ignore it for the moment, it will be explained again.
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algebra [4]. We denote this vector by fiw. Furthermore we know that this rep-
resentation has a Whittaker model, and we denote the Iw-invariant vector in the
Whittaker model by W) and normalize it by the condition that Wy (1) = 1.

1.3. The Whittaker function — statement of the formula. For any d =
w1
(di,...,d,) € Z™ denote by diag(d) ::( ) the diagonal matrix and
Tl'd"

by o the permutation matrix corresponding to the permutation o(e;) = e4(;).

Proposition 1.2. The unique lw—invariant function Wy in the Whittaker model
of Stx, normalized by Wx(1) =1, is given by:

sign(o) A= %i ) ) _ ) )
Wi(diag(d) - o) = { i< %% vol(lwalw) i 2 di1 = Oo-1(i)>0-2 (i41)
0 otherwise.

. —1/: —1/ i.e. the entry in line i of o
L oifo (@) >0 (i+1) %5 ¢ y
Here 60*1(i)>0*1(i+1) — { 0 olse is right of the entry below

and the volume is normalized by vol(lw) = 1.
Remark: Since
GLn(Kp) = Bn(K,)GLa(0,)
= Uges, Bo(Kp)lwolw = Uyes, Bn(Kp)N, (Op)olw
= UO'ESn Bn(Kp)UIW

the proposition is sufficient to calculate Wj.
Example: For GL, we have

dy dz—dl/\dl-i-dz ifdi > d
W/\(<7T 7Td2>):{q o=

0 otherwise,
7Td1 N qu_dl_l)\dl—"_d2 if d1 > d2 -1
WA(( i )= 0 otherwise.

This is the formula used in Drinfeld’s article [8].

1.4. Eigenvalues of some Hecke operators on the Steinberg representa-
tion. To calculate W), we need first to compute the eigenvalues of the Hecke op-
erators on the lw—invariant vector in Sty. To this end we use the function f),. For
an element g € GL,,(K,) we denote by T, the Hecke operator given by convolution
with the characteristic function of the double coset lwglw, i.e.

T, : C(GL,(K,)/lw) — C(GL,(Kp)/Iw)
o @@= Y f-h)
helwglw/lw

The Hecke operators given by the following particular matrices t<; will be very
useful?:

1
e if j=1 .
tgi(ej) = €1 if 1 <j<1i e fgi = 1
ejifj>i .

]-n—i

The following — presumably well known — lemma gives the eigenvalues of some
of the operators T, on fiu:

2In case i = n the corresponding operation on parabolic bundles is the upper modification.
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Lemma 1.3. (1) Tigiag(nar,...,ran)) frw = NZdi i forall dy > -+ > dy,.
(2) Ty fiw = sign(0) fiw for all o € S,,.

Unfortunately, most of the results on Hecke algebras in the literature are for-
mulated only for semi-simple groups. However, the Iwahori-Hecke algebra for GL,,
differs from the one for SL,, only by the additional element T;_, .

Proof: First we note that Borel shows in [4] that the eigenvalue of T}, is

(T,) fiw = sign(c) fiw for o € S,,.

Further, we may assume fi,(1) = 1, since fi,(1) = 0 would imply that fi, is
identically 0 (see the calculations below), thus

d1

s *

flw( ) — /\Zdiq* i<y di*djflw(l).
0 win

We apply this in the case d; > --- > d, to calculate

Z flw(g)

g€lw diag(d)lw/Iw

= Z flw(g)

geN,, (O) diag(d)lw/Iw
= vol (N, (0) diag(d)Iw)5(diag(d)) fiw(1)
= i< BT )5(diag(d)) fiu(1)
= /\(Zd’?)ﬁw(l).

Taiag(d) fiw(1)

Here we used that an element of Iw is a product of an element in N,,(O) and a lower
diagonal matrix contained in Iw, and that for dy > --- > d,

1 1
p - diag(d) = diag(d) - rdi—day € diag(d) - Iw.
p p 1 ﬂ-dlfdnp 7.[.d27dnp 1

Finally, to compute the eigenvalue of the operator T;_; we first note that by (2):

sign(o) = To fiw(1) = D fiu(g) = vol(lwolw) fiw(0).

g€lwolw/Iw

Further we need a description of the corresponding double coset lw - t<; - lw/Iw.
Take an element £ € Iw and look at k - t<;:

Iw; -t O
Iw; 0 te; = WV\{l W,
p IWn—i <i — p b n—i
1stcolumn
—1
T O}t dine
s Tp P Wy
~—~



SOME HECKE EIGENSHEAVES 15

1 7 oy T o bt ine
Thus, the matrices of the form t<; ! 0 , v € Ty
‘ ]-nfi
0 1
1
form a set of representatives for lwt<;lw/Iw. Set o=} = ,
1 0
‘ ) P
then we have
1 F R T I Sy TR
-1y _ -1
Ttgiﬁw(agi) - Z f'W(O-SZ‘ tgi ) )
veF; ! ‘ Lo
™ V1...Un—4q
1
= § Jiw( )
veEFy~* 1
‘ ‘ Ln—i
_ —iy —(n—1) _ —i+l
- qn 1)‘q (n )—q TN |:lLemma

1.5. The Whittaker function — proof of the formula. First we show the
vanishing assertion. We know that Wi(u - g -v) = ¢ (u)IWA(g) for v € Iw and
u € N, (K). We therefore compute

1 %ul
L 1 1 :%UQ

diag(d)o = diag(d)o ot . . o.

=: u, € lw?

If u, € lw, we must have either ¢(u) = 1 or W) (u - diag(d) - o) = 0, i.e. for
o~ 1(i) > 071 (i + 1) our function Wy can be non-zero only if

(r¥i+179 )y, € p = Res(u;) = 0,

that is d; > d;+1 — 1 and if 071 (i) < 071(i + 1), we need d; > d;;1. This gives the
necessary condition for Wy # 0 claimed in the lemma.

Next, we note that our formula holds for diagonal matrices with d; > dy > --- >
d,, because

AEL W (1) = Tiiag(aW(1) = oo Wiy = > W (g)
g€lw-diag(d)-Iw/Iw geEN(O) diag(d)-lw/Iw

= W (diag(d)) - vol(lw - diag(d) - lw) = W (diag(d)) - ¢>i<i 4 =%,

Now we proceed by descending induction on the number i such that o(j) = j for
all j < i: Assume that o(j) = j for all j > i and o~1(i) < i.

We apply the Hecke operator T;_, to express the value of W (diag(d) - o) for
elements o with o(i) = i—k in terms of the value of W at points with o (i) = i—k+1,
which we know by induction:

Since W), is an eigenfunction for T;_,, with eigenvalue (—1)*"!\, we get

(17N W(o - diag(d)) = (TL,W)(o - diag(d)) = > W(o-diag(d) - k).

k€lwt<;lw/lw
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Dy
D,
Put r := o(i) and write o - diag(d) = | - D, , then the
Dita
above is equal to
Dy
wD, 7r71v1 wflvn,i
. Lixi
= > W ' D; 1 )
1)6]“271 Di+1
D,
7D, D,vq . Dyvg, g
Diyq
Dy,
= ¢ 'Wi(diag(d,...,dr+1,...,dn)oc oo}
Here azil is the cyclic permutation (i,7 — 1,...1) as in the proof of Lemma 1.3.

Note that this gives the sufficient condition for Wy to be non-zero, because we
know by induction that we must have dg(;)—1 > dg(;) > do(s)41 — 1, or equivalently
do(iy—1 +1 < dyi) + 1 < do(i)41- To conclude we have to check that we get the
right power of ¢ in the induction step:

(1) vol(o o (i,i—1,...,1) =: ¢') = ¢#k<ilo’(k)>"()} and we have
#{k < jlo'(k) > o'} =vol(o) — (i — o (i) + (o(i) — 1) = vol(o) — i + 20(7) — 1.
(2) Write d, ;) := do(;) + 1 and dj := d; for j # o(i). Then
(Sres by — (Sicy du=di)+n=o()~(a(i)-1)

So these terms differ by a factor ¢" %, which is what we needed to show. O

2. AN ANALOGUE OF LAUMON’S CONSTRUCTION

We fix an irreducible local system E of rank n on our curve C' — S, ramified
at a finite set of points S C C, such that the ramification group at any point
p € S acts unipotently and indecomposably. We will state this condition as “E has
indecomposable unipotent ramification at S”.

We want to give a geometric construction for an irreducible perverse sheaf corre-
sponding to the Fourier transform ®(We) of the Whittaker function Wg, computed
in the previous section. We will follow Laumon’s construction closely, the only new
ingredient needed for the construction being the notion of a coherent sheaf with
parabolic structure. We will also need to prove generalizations of some results on
vector bundles to the case of quasi-parabolic vector bundles.

2.1. Parabolic vector bundles. Denote by Bunfb, < the moduli space (algebraic
stack) of vector bundles of rank n and degree d on C' with a full flag at the points
of S, i.e.
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E,EP) yector bundles on C x T
EC 5(147) Cc---C 5(”—14’) C 5(p)
“es | E6P) /€ flat over T
rank £ = n,deg(€) = d,deg(E0P)) = d + i

Remark: Usually one defines a vector bundle with full (quasi-)parabolic structure
to be a vector bundle £ together with a full flag V1, G --- G V,,, = € ® k(p) of
subspaces of the stalk of £ at p.

This is equivalent to the above definition — set

£ = ((Ker(€ — €0 klp)/Vip) ) ).

and conversely

Vip = Ker (€ @ k(p) — E0P) @ k(p)).
From this reformulation we get a description of the points of Bunfh g: Denote as
before K := [] cc_g) GLa(Op) x [],e5 Wp, then?®

BunZ,S(Fq) = GLn(k(C’))\GLn(A)norm(det):d/K'

And the double quotient P;(F)\GL,(A)/K contains the points of the bundle
Hominj(O, &) — Buni g -
Notations: 7
(1) We will write £ := (£,E0P)),_1 1 1pes-
(2) Since & C £4:P) C E(p) we also get £(p) € £P)(p), thus a parabolic bundle
is a chain of vector bundles

EWp) c glitln) ... c gl c g(p) c EMP(p) C ...,

where the cokernel of every inclusion is of length 1. For any integer k € Z
we denote by £Fntir) .= £p)(k . p).

Note furthermore that since the map & — &(p) is an isomorphism on
C — {p}, for two distinct points p,q € S the vector bundle £:P) 4- £0:9)
E(p+ q) is a vector bundle of degree d + i+ j. We denote it by () +(:a),
Analogously we define £(45) .= EXpes(ip),

Thus we can shift the whole complex to obtain parabolic structures on
the vector bundle £4P) for all i. This is called the i—th upper modification
of £.

(3) E(Lp) = (0P, gUDTEP)), 1 4es. This notation might be justified,
because £(*P) is of degree d+i = d+ n(+) and for i = n we get the canonical
parabolic structure on the vector bundle £(p).

We now want to mimic Laumon’s construction of automorphic sheaves for unrami-
fied local systems. Consider for example the case of bundles of rank 2. We will view
®(Wg) as a function on vector bundles together with a meromorphic section of €.
At a point  — & such that Q — £ and Q — €19 are both maximal embeddings
®(We) is defined as the sum over all sections of £°/Q with at most simple poles at
S. But the line bundle (£/9)(S) = €19 /Q, thus we might equivalently sum over
all holomorphic sections of €15 /Q.

To apply a similar consideration to bundles of larger rank, our calculation of
WE suggests that we need to consider quotients of £®* by subsheaves which are
not maximal. We therefore look for a notion of coherent sheaves with parabolic

3Recall that given a vector bundle £ one can choose a trivialisation of £ at the generic point
and at all complete local rings of C. The transition functions then give an element of GL, (A), the
double quotient is obtained by forgetting the trivialisations, keeping the flags at S.
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structure? which allows the operation F* — F*(£S). This is easy with the above
definition of parabolic structure:

2.2. Parabolic coherent sheaves.

Definition 2.1. A coherent sheaf on C with n-step parabolic structure at S — also
called parabolic sheaf for short — is a collection of coherent sheaves F* := (F =
.7:(0’17),f(i’p))izl,,,,7n,1;pes together with morphisms ¢(-P) : Fip) — FO+LP) for
i=1,...,n and p € S (where F™P) := F(p)) such that in the resulting sequence

(n,p) (_ (1,p) (2,p) (n—1,p) (m.p) p
LG gl gy @70 0T pamt) O iy O TP pn) )

¢(i—1>p)(p)o___o¢(im) )
the composition of n maps F(i,p) —————— F(i:p) (p) is the natural morphism.

Note:

(1) If the sheaf F("P) is not torsion free at p for some i, then the natural map
Fr) — FP)(p) is not injective, so at least one of the ¢*’s is not injective
(see the examples below).

(2) The degree of F* is defined as the collection deg(F*®) := (deg(FP))) ogicn .

P

(3) Denote the algebraic stack of coherent sheaves of rank r on C with n-
step parabolic structure at S and (multi-)degree d = (d"P))o<i<n pes by
Coh%c,s. Since we usually fix the curve C, we will omit it and write
Coh% g to shorten this lengthy notation.

(4) We denote by Bun% g C Coh% g the substack of torsion free sheaves, i.e.

the substack where all Z(»P) are vector bundles. Note that these stacks
include the stacks of vector bundles with partial parabolic structure at S,
in particular for constant degree d = (d, ...,d) this substack is the moduli
stack of vector bundles without additional structure.
Usually we will consider Bun% g only in the case where d%P) = d+i and
r = n, the other stacks will only7arise in connection with Hecke operators.
(5) As in the case of vector bundles we define F(:P)+(7:0) .= (F(r) g FU.0)) | F
(for the diagonal embedding of F). Note that this quotient is the sheaf
isomorphic to F(»P) on C' — ¢ and isomorphic to F@9 on C — p. These
sheaves glue, since both are canonically isomorphic to F on C — {p, ¢}.
Analogously we define F(5),
(6) Again we define upper modifications as F*(Lp) := (F@p), FUOD+EP)) oo,

qeS
Example: In our case, given a morphism Q®™~1 — £ we get an induced para-
bolic structure on the quotient £/Q®™=1. We only use that £(p)/Q®"=D(p) =
(/2 D)(p) to get

Id

Qe(-1) 14 Q®(n-1) QP10 — 5 QB =1 ()

\L »(1,P) l »(2:P) l »(nP) ‘L

(2.1) £ £ cn-1p) — 2 e(p)

L] | |

g/Q@(n*l) — 5(1:17)/9@("*1) — g(nflyp)/QQb(n*l) — (5/Q®(n71))(p).

4While T was thinking about this, Norbert Hoffmann explained to me that one can formally
adjoin quotients of vector bundles with parabolic structure to the category of such bundles to
obtain an abelian category. The definition below may be viewed as a geometric interpretation of
these quotients. I would like to thank him for the helpful discussion.
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Note that we can view Q®"~1 (or any coherent sheaf) as parabolic sheaf by
defining Q®M—1D0P) .= Q=1 for § = 0,...,n—1. With this definition the above
diagram is an extension of parabolic sheaves.

From this example we see that:

Lemma/Definition 2.1. The category of (quasi—)coherent sheaves with n-step
parabolic structure is abelian.

We denote homomorphisms of parabolic sheaves by Hompgra(__, ), and the
same for Extglmm, etc.
The category of quasi—coherent sheaves has enough injectives.

Proof: The kernel and cokernel of a morphism can be defined componentwise. All
compatibilities thus follow from the corresponding ones for coherent sheaves.
Furthermore the above example shows that:

Remark 2.2. The stack Cohzyc classifying coherent sheaves of rank k and degree
d on C can be embedded into the stack of parabolic sheaves:

j: Cohz’c — Cohl(;ig”’d)
F = F*=(F,FP .= F)
For a coherent sheaf F on C we will write (F)* for its image j(F). The functors
(_)* and (_ )5 are adjoint functors:
Homyara((F)*,G*) = Homo, (F,G*)

and
Hompa7'a(g.7 (‘7:).) = Homoc (g(n—l,S)’ ]:)

For an injective sheaf 7 the adjunction property yields

Hompara(]:.7 (I).) = Homo,, (‘7:(”_173)71)'

Since the functor (_)("~15) is exact we conclude that Hompaa(_, (Z)*) is ex-

act. Thus choosing embeddings G“? < T, , into injective sheaves Z;, we get an
embedding G®* — ®(Z;,)* (21 S + 2==Lp) of G into an injective parabolic sheaf.
|:lLemma

By the above we also have:

Lemma 2.3. The extensions of a parabolic sheaf F* by a line bundle L are classified
by Ext%gc (Fr=19) 1) ie.

Ext)q,q(F°, (£)°) = Extp,, (F™19 ).

para
Proof: By the above remark any injective resolution of £ defines an injective
resolution of (£)®, and to such a resolution we may apply the adjunction formula.

|:lLemma

Note that we could give another proof of this lemma, calculating the Yoneda-Ext

groups directly via the diagram (2.1). The only thing one has to check is that in
this diagram we have E0P) 22 E(MLP) x (o014 jgen-—1y (ECF) /QEN—T).

Corollary 2.4. Let F* be a parabolic sheaf and let L be a line bundle on C'. Then
we have by Serre duality:

n—1

Extyan(F°, (£)*) = (Hompara((£ ® Q71)*(— 8), F*))".

Proof: This is just an application of the adjunction isomorphism to

Ext}gc (_7-'(n71’5)’ L) = Homo,, (L ® 9717‘7_—(7%1,5)).
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The above version of Serre duality (Corollary 2.4) suggests to denote O® := (O)®,
Q° = (2)*(%=19) and analogously Q** := (Q®%)*(k2=1S). Then we can put
L := Q%F to deduce from the corollary that:

Ext)a (F*, Q%) = Hompapa (Q*F 71, 7)Y,
2.3. The fundamental diagram. Reformulating the preceding calculations for
families of parabolic sheaves allows us to construct a variant of Laumon’s “funda-
mental diagram” as follows: Denote by 2. (resp. Fo.;,) the universal parabolic
sheaf on Bunis xC' (resp. on Coh%ys xC where d is defined as d*P) = d + i for
0<i<mn,peS) and let p; be the projection to the i—th factor.

We can view the sheaf p; .(Hom(p3Q*n~1 €2.)) as the classifying stack for
parabolic vector bundles £° together with a homomorphism Q*"~! — £°. Denote
this stack by:

Hom,,(T) := ((F*, preQon—! 2, F|F* e Coh%ws(T».

Write Homiﬁj for the open substack of Hom,, where ¢ is injective.

Similarly write Ext}L for the stack classifying extensions of parabolic sheaves by
Qen: 1

Ext),(T) := (0 — preQ®" — Foy — F* — 0] F* € Coh? (1))

Note that there are open substacks Buni’%md C Bun! g and Coh%émd C Coh%’ s

defined below such that the restrictions of Hom,, and Ext} to these substacks are
vector bundles. More precisely we will call a coherent parabolic sheaf F* good if

Hompara(]:.;Q.’n_i-i_l) = 0 fOF all 1 S Z S n — 1.
By Serre duality this condition guarantees that

Eth (Q.’nii,f.) — EXt}QC (ani’f'(f(nfi)(’nfl),s)) — O7

para

and moreover the same will be true for any quotient of F*.

We define Coh%”gSOOd to be the stack of good parabolic bundles. Over these stacks
the semi-continuity theorem tells us that the sheaves p.Hompara (p5Q*" % F2.0)
and R'py . (Hompara (p5Q°", Fo

. d,good
i) are indeed vector bundles over Coh; . Fur-
thermore we have:

EXt’}L = Rlpl’*('Hompara(p;Q"”,]-—:niv))

since the corresponding R%p; . vanishes for good sheaves. From now on we will

. d
always consider the stacks Ext) and Hom,, as stacks over Coh?°%".
As in Laumon’s construction we have:

(1) To give a short exact sequence 0 — Q*"~1 — F* — F* — 0 it is sufficient
to define the datum 0 — Q*"~! — F*. To restrict this remark to good
parabolic sheaves we denote by Ext:8°°d < Ext! the substack consisting

of extensions in which the middle term is a good parabolic sheaf (therefore

the right term is good as well). We then have an isomorphism
I, : Hom™ =, Ext}89°¢

(2) Over Coh% s the bundles Hom,, and Ext}, are dual vector bundles.

Therefore we can define a fundamental diagram (which we split into several
diagrams):
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JHom o I, 1 dc JExt
Hom,, +—=Hom!™ —— Ext} 8}~ Ext}_,

| ™

d,good dy—1,5:800d
Cohf% Coh, "5 5
dual bundles

1 e o
Ext,_1 Hom,,_1

@32 \
n_1,800d

d
Cohn7115

j - I, j
JH n—1 JExt
Hom,,_; <2 OHom™ | —5 Exth890dC 2y gl

- L.

d,good dp_2
COh’ﬂfl,S COhn72,S

Here the last line is the same as the first one with n replaced by n — 1. Thus we
can continue this to end up with Coh%?s (we drop the superscript “good”, since all
torsion sheaves are good) . We have to keep track of the degrees of the parabolic
sheaves:

AP = (dpi— (=i = 1) dpi — (n—i—2),. .. iy i)
—_——

1+1—times

2

with dp_; == d — Z((n — (29 —2) + (n—j +1)).

In particular, continuing the above diagram to the right, the last term will be
Coh{dodo),
0,5

Laumon’s construction started with a sheaf on Cohgo which corresponds to the
Whittaker function for unramified local systems. This sheaf is pulled back to
Exté’gOOd, then one applies jgom,1+I; to the resulting sheaf, after that one ap-
plies the Fourier transform for the bundles in (2.2) and then continues with pull
backs and intermediate extensions for the maps jyom and jgxt in the upper line of
the diagram until one ends up with a sheaf on Hom,,.

Thus, in our situation we need to find a sheaf on Coh%?s that corresponds to the
Whittaker function as calculated in Section 1.

2.4. The Whittaker sheaf £Z. As noted in Section 2.2, there is an open embed-
ding of torsion sheaves of degree dy on C' — S to parabolic torsion sheaves:

j:Cohdr_g < Cohd
T — T°=(T,70P .=1).
The map j is open, since the condition that supp(7 (%)) c C' — S is open.
Furthermore we have Laumon’s Whittaker sheaf L‘é‘rcis on Cohgfo_ - Re-
call the the definition of Lé“’cis: Let E|(gﬂ)s be the symmetric product of E re-
stricted to the symmetric product (C' — S)(%) of the curve C' — S. Denote jo_g :
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(C — §)(do) Pro/ol- Coho _ g, which is almost an embedding (see [18]). Then
ﬁ(é(fc = jC—S,!*E|c_S

Definition 2.2. We define the Whittaker sheaf corresponding to E to be
L= jily, = (ojo-s)(Elc_s)?.

We will prove some properties of the Whittaker sheaf justifying its name in
Section 4.

2.5. Putting everything together: The Fourier transform of L£I. Now let
quot : Exty — Coh%?s, (O* — Fp — T°*) — T* be the quotient map and denote

the Fourier transform (recalled in 0.3) by Four : D?(Homy) — D?(Ext}.). Following
the fundamental diagram (2.2) from right to left we define:

Definition 2.3. We inductively define the sheaves FE and FE, on Homznj as

Fe = L{jpaquot™LE[do] =: Fe,

FIE+1 = I;+ljgxtf0ur(jHom,!*FE)7

F’E+'1 = I;Jrljik]xtfour(jHom,!FE,!)‘

Note that to keep track of the parabolic degrees we formulated the construction

of FE on Hom}¥ above a fixed connected component Cohy; "’g’OOd C Cohiogd, but we

7 as defined above all the connected components

will often consider Fg and Homm
together.

The restriction of the sheaf Fg to the stack of vector bundles with a section of
Q*"~! will be our candidate to descend to an automorphic sheaf on Bun,, 5. By
construction this is an irreducible perverse sheaf (because this property is preserved
by Four, juom,« and jh)-

As in [17] we also define the sheaves FE,, because it will be easy to prove that
these have a Hecke eigensheaf property, and finally (in Section 8) we will show that
they are isomorphic to F’E for k <n <3.

To end this section we want to state our main theorem. To do this we need to
define geometric Hecke operators for parabolic sheaves. We first give an example
indicating the relation between parabolic torsion sheaves and the Iwahori-Hecke
algebra:

2.6. Parabolic torsion sheaves and Hecke operators. Assume for the moment
that n = 2, S = {p}, and consider the stack Coh . Take any T* € Coh1 W i
supp(7) = q # p, then T* = (k(q)), but if supp('T) = p, then 7° is 1somorph1c to
exactly one of the following sheaves:

(1) To = ky 5 To = ky — To(p) = ky >

(2) To=hy — T = hy —5 To(p) =k —

3) To=ky = Ti=ky = To(p) =kp — ...
We want to relate these sheaves to some Hecke operators of the Iwahori-Hecke
algebra at p, acting on parabolic vector bundles of rank 2. To do this, we consider
torsion free extensions of a vector bundle £’® by the first complex:

—— g10,p) —— g/(1.p) —— £/(0.p) (p) — £/ (L,p) (p) — -

‘L ! l M o (p) +

— £(0,p) g‘;> 1,p)4>g(0,p( ) —— EWLP) (p) —— -

I U 1 . 1

k'p id kp 0 kp id kp
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The middle map in the lower sequence is 0, therefore ¢? factors through £(1?) —
£'0.P)(p). Since all the bundles £(*P) are locally free this map is injective, and since
the two bundles have the same degree it is an isomorphism.

The same argument shows that ¢' does not factor through £M?), so the upper
line is given by a parabolic structure on the vector bundle £1P), different from
the canonical structure (£(?))®. Thus extensions of this type are the set indexing
the summation of the Hecke-Operator T((l) by © T(o by According to Lemma 1.3

™

this operator should act with eigenvalue trace(Frob,, E,) on the Whittaker sheaf.

Analogously we find that summing over extensions of parabolic bundles by the

second torsion sheaf calculates T( 01y T(o 1y Finally the third torsion sheaf gives
w0 10

the Hecke operator Ty o1y which acts with eigenvalue — trace(Frob,, E,) on the

Whittaker function. Ngge that this torsion sheaf is a point of codimension 2 in
Coh(l)jzl77 and thus the perverse sheaf £g will have some H' at this point. The minus
sign of the eigenvalue will come from taking the trace of Frob on this cohomology
group of odd degree (see Section 4). Therefore we define generalized Hecke operators
as follows: i

Fix non negative degrees d = d; + do, and let Heckey, -~ be the stack classifying

extensions of parabolic sheaves of degree dy by torsion sheaves of degree dy, i.e.

Hecke;iTl’CL2 ={(0—-F*—=F*—=T*—=0)F"*e Coh%s,’f" IS Cohzfls>.

The forgetful maps give rise to a correspondence

dy,d
Heckept

y \w‘uot

di+dy da di
Cohms Cohms X CohO,S .

Definition 2.4. The generalized Hecke operator H;iTl’@ is defined as
Hi"® . D¥(Coht i) —  DP(Cohg x Cohgly)

di,d
K — Hp 7K:=R(promau x quot); o pry; K.

To define operators on parabolic vector bundles which correspond to the action of
the Iwahori-Hecke algebra we have to introduce for every (0,...,0) <e < (1,...,1)
the stack

@a 5= Coha o /diagonal G,,-automorphisms.
This stack can also be defined as follows: Choose (ig,po) with €;,,, = 1 then
Coh 5(T) = (T*, ¢ : Op — prp, T0P0)|T* € Cohf 5). The morphism Cohf g —
@as is given by 7° +— (T°* @ pri(pry, T0P))~1 ¢ O =, pro, (Tor)) @
pro,(TUo:P0))=1) For different choices of (ig,po) the resulting stacks are canoni-

cally isomorphic (tensor with pri.(prp 7 1P1))=1),
We define more Hecke correspondences:

g g E® e Bun%s
&' c Bunf’if

PToig Tsmall XPTC
PTsmall XqUO

d—e e d—
Bun{ g Bun;, § xCoh, ¢ — Bun;, ¢ xC.
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Here BunfijsE denotes the moduli space of torsion free parabolic sheaves of degree

d"? = d+i— €P, i.e. the moduli space of vector bundles with partial parabolic
structure at S.

Definition 2.5. The Hecke operator HE€ is defined by:
He:D'(Bunlg) — D'(Bunf & xCohg g)
K — HK:=R(prsman X quot) o pri; K.
Fore=(1,...,1) we set:
H} : D*(Bunf g) — D'(Bun) § xC)
K — HEK:=R(promau X pre) o prig K.

Finally note that the sheaf £f descends to a sheaf Zé on Cohés. Denote by
jo : C — 8 — C the inclusion. We will prove the following;:

Theorem 2.5. Let E be an irreducible local system on the curve C — S with inde-
composable unipotent ramification at S and assume n = rank(E) < 3. Then

(1) FrFz,.

(2) F2 descends to a nonzero perverse sheaf AL on Bunf:gd.

(3) A%OOd extends to a Hecke eigensheaf Ag on Bun, g, i.e. there is a unique
extension Ag of A“éwd to Bun,, s such that:

HAe = Ae®Zg|-n+1)(-n+1)
HAE = 0 for0<e<1
HiAe = AeRjo E[-n+1](-n+1)
and the isomorphism
HloH{Ae =2 AgNjo.EX jo.E[—-2n+2](—2n +2)

18 So—equivariant.

Furthermore, we will show that this implies that the function tra, is an eigen-
function for the action of the Iwahori-Hecke algebra. Indeed, by the example given
above we have already seen that the points of @%’ g give a set of generators for
the Iwahori-Hecke algebra (the invertible element corresponding to ®O(%p) and
the operators corresponding to the transpositions in S,, generate the algebra). Fi-
nally note that by Lafforgue’s theorem we can always assume that the local system
E is pure.

3. SOME PROPERTIES OF PARABOLIC SHEAVES

This section is an attempt to clarify the notion of parabolic sheaves. First we
give a description of the isomorphism classes of parabolic torsion sheaves, then we
prove some lemmata concerning homological algebra of parabolic sheaves. At the
end of this section we give an explicit description of the moduli space of torsion
sheaves on A! with parabolic structure at 0. All these results are simple, but for
completeness they are collected in this paragraph.

3.1. The structure of parabolic torsion sheaves. The structure theorem for
modules over principal ideal domains shows that any torsion sheaf on a curve C'/k
is a direct sum of sheaves of the form O/(p?) =: Oy, for some prime ideals p. We
will prove a similar result for parabolic torsion sheaves. The constituents of a sheaf
T supported in p € S will be of the form (we only give the sheaves in degree (x,p))

._>(9/pd_> ..._,@/pd_»@/p(dfl) _,..._>(9/p(d71) <_>(9/pd_> .

‘)
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more precisely these are isomorphic to O%p(%p) = 0°(Lp)/O*(=Ep) for some
0 <k < i€ N, and in the sequence above d = [%] is the smallest integer bigger
than % The key step is to prove:

Lemma 3.1. Let 7° be a parabolic torsion sheaf supported in p € S, and let
further (’)%p(%p) &, T* be an inclusion such that the sum of the degrees of the
torsion sheaves occurring in O%p(%p) 1s maximal. Then there is a splitting of .
Proof: Since 7° is supported at p, we may assume that S = {p}. We choose a
local parameter 7 at p. Shifting our sequences we may further assume that ¢ = 0.
Note that any inclusion Og, — T(mP) gives rise to an inclusion of some

(9;, () — T* with d' = [%’] Thus for a maximal embedding 1 we know that

d = [£] is the maximal length of the torsion sheaves occurring in 7°®. In particular,
any inclusion Og;, — T (m:P) gplits. Thus we have

Ota—1yp —— +++ —— Ofa_1,€ Oy —— Ogp Oa-1)p
J\wo I lww ‘[ n—1
¢n—1
TO . /]‘r—l Tr T"il(p) - To(p)

(where the number of submodules of the form O(4_1), might be zero). We know
that there is a splitting for v,,_1, and this induces compatible splittings for ; for
r <l <n-—1. In particular, if % € N (i.e. in the upper line of the diagram all terms
are of the form Ogy,), then any splitting of 1,1 induces a compatible splitting for
. We may therefore assume that ¢ : Og_1), — 79 and that d — 1 # 0.

Claim: There is a splitting of 1, _1.

Otherwise 1,1 (1 ) =1 -e._1 for some e,_; € T~ with 7% 1e,_; # 0. Then

71, _ 1(er 1) = 7 2(¢p_1(me,_1) = 7 Mp,_1(1) # 0 contradicting the maxi-

mality of =

Thus We only need to find a compatible splitting of ¢,_1 and v,,_1. To do this,
we may replace 77! by its image in 7" !, since the above argument still works for
this replacement. We then have 77~1 < 7"~! and the cokernel of ¢, is of length
1. In this case any splitting of ¥,_; can be extended to one of ¥,,_1. (Choose a
decomposition 7771 =2 = O(g-1)p¥r-1(1)®EP; Og,pe;. Then either ¢, _1(e;) generates
a direct summand of 7", or ¢,,_1(e;) = me), and e} generates a direct summand.
Completing this to a decomposition of 7"~ ! into indecomposable sheaves we can
define an extension of ¢,_1.) O

From this lemma we get:

Proposition 3.2. (Structure of parabolic torsion sheaves)
(1) Any parabolic torsion sheaf is a direct sum of sheaves of the form

O%p(%p)' = O'(%p)/(’)'(%p), ,jeEN, pe S
and sheaves supported outside S.
(2) Any parabolic torsion sheaf T® has a filtration I° CThy C--CT* such
that the filtration quotients ’Z;’_H/'Z;' are isomorphzc to one of the following:

(a) 7%/} = (k(q))* and q ¢ S
(b) Thereis apg € S and 0 < iy < n such that

(i.p) )Gp) _ | Kk(po) i=td0,p=po €S
Ly /T = { 0 else.

(3) Any parabolic torsion sheaf T® of constant degree degT® = (d,...,d) has a
filtration T;* C --- C T* C --- C T* such that deg(T;*) = (i,...,1).
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Proof: Since for any torsion sheaf 7 we have a canonical decomposition 7 =
Dgesupp()T ® Oc,p, we may assume that 7° is a parabolic torsion sheaf concen-
trated in a single point g, i.e. supp(7“P)) = ¢ for any (i, p).

If ¢ ¢ S, we know that all the 7(?) are isomorphic because the functor @O¢ ()
is the identity functor on sheaves supported in C' — S. Hence 7° = (7(®))® and
for torsion sheaves without extra structure the lemma holds.

For torsion sheaves supported in S the previous lemma implies (1) and the
sheaves O x p(%p) have a filtration satisfying (2) Counting degrees we also get (3).
O

Finally note that for an arbitrary parabolic sheaf the torsion subsheaves are
always a direct summand:

Remark 3.3. Let F* be a parabolic sheaf on C/k. Then F* =E*®T*®, where T*®
is a parabolic torsion sheaf and all EVP are torsion free.

Proof: We know that 7° := torsion(F*®) C F* is a parabolic torsion sheaf and
F0.5) = 7(0.8) 5,£0.8) " And since the ¢("P) are isomorphisms over the generic fibre
of C the images ¢; ,(£(®P)) can be used to define maximal torsion free subsheaves
of FU:P) | these define the desired decomposition. O

3.2. Homological algebra of parabolic sheaves.

%

para VaTISh

Lemma 3.4. For coherent parabolic sheaves on C)), the functors Ext
fori>1.

Proof: Let F* be a parabolic sheaf. We prove that Ext;ara( ,F*)=0fori>1
by descending induction on the rank and degree of F°.

For a line bundle £ on C the functor Hompaa( , (£)*(£S)) coincides with a
Hom —functor on coherent sheaves, and for Ext’b . the lemma holds. By induction,
we may therefore assume that F* is a parabolic torsion sheaf. By Lemma 3.2
giving the structure of parabolic torsion sheaves, we may further assume that F*
is a quotient of two line bundles of arbitrarily high degree, which establishes the
claim. Ubemma

Lemma 3.5. Let 7° be a parabolic torsion sheaf and £® a parabolic vector bundle.
Then:

(1) dim(Ext},,.(T*,&%)) and dim(Hom,e,(E%,7*)) only depend on rank(E*),

para

deg(€®) and deg(T*).

(2) More precisely, for T(P) = { IS(PO) leelo,p “ PO e have

dim(Ext}, (T %)) = deg(E0H1P)) — deg(£0P)).

para
dim(Homypg,q(E%,7*)) = deg(E@P)) — deg(E0-1P)).
(3) If deg(T*) = (d) is constant, we get
dim(Ext},, . (T°, %)) = d - rank(E) = dim(Hom,eq(E°,7°)).

para

Proof: We give a proof of the statements on Extlljara, the case of homomorphisms

is even simpler. Since £° is torsion free, Hompara(7°,£®) = 0. Thus for any exact
sequence 0 — 7'* — 7° — T"* the sequence

0— Bxt' (T'°,E%) — Exatl, (T* E°) — Ext: (T"°,%) — 0

para para para

is exact as well.
To prove the lemma, apply this remark to the filtration 7,° C 7° constructed in

Lemma 3.2 (1) and reduce to the case 7P = k(po) i = 100D =P0 e may
0 otherwise
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shift £°,7* and assume that ig = 0. Write 7 = (£)*/(£)*(—2po) for some line
bundle £ and for simplicity choose deg(£) << 0 such that Extg, (£, EP) = 0 for
all pe S,—1 <i <n. Then

para

Aim(Bxth,, (7%, €)= (R Hompaua (£~ po), £)) ~ (R Homyura (£7, %))
= x(RHomo. (£, 5(17;00))) — x(RHomo, (£, g(O,po)))
= dim(Homp (£, E17))) — dim(Home (L, £070)))
= deg(E1Po)) — deg(£P0))

|:’Lemma

3.3. The moduli stack of parabolic torsion sheaves. First let us consider the
moduli stack of torsion sheaves on A! with parabolic structure at p = 0 as an
example:

This stack classifies sequences of torsion sheaves®:

SR SN SRR N Y - AT R

with the property that the induced maps 7; — 7;(p) are the natural ones.

Recall that a single torsion sheaf 7 on Al can be described by giving its vector
space of global sections HY(A!, 7T) together with the endomorphism given by mul-
tiplication by the coordinate t of A’ = Spec(k[t]). Hence we get a presentation of
the moduli space of torsion sheaves of degree d on A':

COhg7A1 = [Matd,d/GLdL

where GL4 acts on Maty 4 by conjugation. (Under this identification the support of
a sheaf is given by the eigenvalues of the corresponding matrix, and the length of
the indecomposable summands is given by the Jordan decomposition.)

For torsion sheaves with parabolic structure we can define a similar presentation
as follows:

Note that the natural map 7° — 7T*(p) is given by the multiplication by the
coordinate t. Thus for any collection (¢; : k®4i-1 — k®4i)n | we may define 7, by
(k®4i p;op;_1 -+ pr1op,0--0¢;i1) and with this definition the ¢; automatically
define homomorphisms 7; 1 — 7; of Oy1-modules. This proves:

Lemma 3.6.

COh(C)l»O{;).;dn_l = [Matd17d0 X Matd2,d1 Koo X Matd07d'n,—1/(GLd0 Koeee X GLdn—l)]7

where an element (o, ..., Gn-1) € GLg, X -+ X GLq,_, operates on (¢1,...,¢n) €
Matdl,do X Matd%dl X oo X /\/Iatdo,dn_l as
(g()a cee 7gn71) . (¢17 ey ¢TL) = (gl¢1gal7 92¢29;17 cee 7gO¢ng;i1)
|:lLemma

Corollary 3.7. For any smooth curve C and any finite set S C C(k) the stack
Coh%)s is smooth. In case d is constant it is of dimension 0.

Proof: To show the lifting property for smoothness at a point 7° € Coh% g We
only need to consider sheaves on Spec(Il;e supp(7) (5(;7(1). But for a smooth curve we

know that (7)\0’(1 >~ E[[t]] = (7)\A1’0, and therefore it is sufficient to prove the corollary
in case C = A! and S = {0}, which is proven in the previous lemma. Ocoroltary

5T suppress the upper index p since we have assumed that S = {p} = {0}
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In case one does not want to consider deformations of parabolic sheaves one could
use the above lemma and the fundamental diagram to get smooth presentations of
the stacks Coh% g

Corollary 3.8. For any smooth curve C and any finite set S C C(k) the stacks
Coh%’s are smooth algebraic stacks.

4. PROPERTIES OF THE WHITTAKER SHEAF L{

Our main goal in this section is to prove a Hecke property of the sheaf E‘é defined
in 2.2 (Proposition 4.8). In the case of unramified local systems Laumon proved
this in two steps: First he introduced a small resolution of the stack of torsion
sheaves, defined as the stack classifying torsion sheaves, together with a full flag of
subsheaves. Thereby he obtained a geometric description of the Whittaker sheaf,
which he then used to prove the Hecke property.

Translating this into our situation we encounter two problems. The first one is
that £f is already a complex of sheaves. The second problem is that the analogue
of Laumon’s resolution is not small in the case of parabolic torsion sheaves.

Since L¢ is a perverse sheaf on the moduli stack of parabolic torsion sheaves

and most of the questions are local in the étale topology we will often be able to
reduce to the case that our curve is A and our local system is ramified only at the
point 0. Our first aim is therefore to calculate £¢ in this case. After translating
these results into the general situation we then proceed with Laumon’s strategy
as described above. Here we simultaneously prove that the Hecke property of ECEl
holds and that we can give a geometric description of E‘é.
4.1. Calculation of the sheaf j.E on COh%,Al,O‘ Consider the case C = Al
and S = {0}. Let E, be the n—dimensional local system on G,,, ramified at
0, such that the ramification group acts unipotently and indecomposably — i.e.
the invariants under the ramification group are 1-dimensional — constructed as
follows: We have Extg, (Qi(—1),Q¢) = HY (G, Qu(1)) = H (G, Qo)(1) = Q
and therefore there is a unique nontrivial extension E5 of the sheaf Q/(—1) by
the constant sheaf Q. The long exact cohomology sequence corresponding to this
extension gives H!(G,,, E2) = Qy(—2), thus we can repeat this argument to define
E,, filtered by Qo = E; C E; C --- C E,—1 C E,, with subquotients E;/E;_; =
Q¢(—i + 1). Alternatively we could describe this as Sym™~!(Es).

Since Cohz‘LGm — the stack of torsion sheaves of length 1 on G,, — is isomorphic
to [Gpm /Gy for the trivial action of G, on G,,, the sheaf E, descends to a sheaf
on COhé,Gm which we denote again by E,,.

We want to calculate the middle extension ji.E, with respect to the inclusion
J: Coh(lmm — Cohé:;&"l’yl{o} (where Cohé:A"l’)l{O} is the stack of torsion sheaves with
k—step parabolic structure — in this section we allow n # k). Because of the theorem
on smooth base change it is sufficient to do this on a smooth representation of these
stacks, for example:

/

Gm a

/Gm m
1 1

1 J
Coh()’Gm — CohO’Al’0 .
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So we are left calculating ji.m*E, on AF.

Denote D; := {z; = 0} C A¥ and for a subset I C {1,...,k} define D; :=
NicrD;. This stratification of the complement of G¥, gives rise to open immersions
Jit

G =AF —uD; & AF —UDy; & 7S AR —(0,...,0) &5 Ak

And ji,m*E, = T<kRjk7*T<k’1Rjk,1 - 7<1Rj; .m*E,, (this is a definition in
Intersection Homology IT [13] and a proposition (2.1.11) in Faisceaux Pervers [3]).

To simplify notation, let U; := AF — Ugr=;Dr and denote E,, := m*E,.

. Qe p=0 1
For k=1 have RPj.E,|o = A
or we have RPj,E,|o { Qi(=n) p=1 on

(*)
Therefore on A¥ we get that the stalk at 0 is: RPj.E,|q = Hp(Ag JRjEpn) =
H? ((G}:7 # »En) and this isomorphism is compatible with the action of the Galois

group. The equality (x) holds, because E,, is an extension of constant sheaves, for
which the two cohomology groups are canonically isomorphic.
To calculate the latter cohomology group, we can factor m into an isomorphism

i)—las,az,...,an P :
Gk, (@) (o+,g2,.+10n) Gk, followed by the projection onto the first factor, to obtain:

H*(GE,m*E,) = H*(GE, priE,) = H*(Gn,E,) ©@ H* (G, Qp)

Qe *=0
= { Q-1 Lo Q(-n) *=1
etc.

Analogously we get a formula for the stalk of RPj,E,, at a point lying on exactly r
of the divisors:

R*j.Enlp,,. > H* (G, En) @ H* (G771 x AP Q).

..... i) ~Yigi Dy, i)
If the terms of weight > 2n did not appear, then the truncation functors 7<% used
in the definition of j.E, would be trivial and Rj.E,, would “be an irreducible
perverse sheaf”. But these terms do disappear if we pass to the inductive limit of
all the E,, — E, 41 — ---. Therefore define E, := h_n)lEn. We have the following
proposition:

Proposition 4.1. For n > k there is an exact triangle of complexes on A*:

— juEn — Ry Eso — jiEoo(—n)

Proof: (inductively calculating 7<‘Ry; .) Use the shorthand j; 1 := j;o--- 0.
We start with the exact sequence of sheaves on GF,:

0—E, = Ex — Ex(—n) — 0.
Applying ji 1. = T<' Ry« = j1,. we get
0 — jl,*En — jl,*EOO — jl,!Eoo(_n) — 0

Using the previous calculation, that j; +Eoc = Rj1,+Ecc We get an exact triangle
of complexes on Us

- jl,!*En - le,*Eoo - jl,!Eoo(*n) ﬂ’

Because j;.1,1Ec(—n) is an extension of j; 1,1Q¢(—n — ) with r > 0, we will need
to calculate Rj;11,+Ji...1,Q¢ via the sequence

0= Ji1,Qe = Qe = Qelus_ p, =0,
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Where Q| p, is the constant sheaf on the union of the divisors. (We will often
i

use this shorthand: For a closed subscheme Z i» X and a sheaf K on X we write
Klz :=i,.*K.)
For the last term — viewed as a sheaf on the whole of A¥ — we have a resolution

k
0— QZ\U;?:le — ®;1Q¢lp; = ®1<ir<in<kQelp,, 5, — - — Qelp,, — 0.

Restricting this resolution to U; = A* — Ut<ky<--<ki<k Dk, ..k, all terms Qg|p, with
|[I| > i disappear and thus on U; 1 we have a resolution

. k
0—Ji.1)Qr — Qo — &;_1Qulp, = — Dreq.w Q¢|p, — 0.

IT/=:
Lemma 4.2. For any m > i > 0 the complex jm.. i+1,1+Ji...1, Q¢ 5 quasi-isomorphic
to

Jmeit1,6(0 = Qe = ®F_Qelp;, — -+ — @icp . Qelp, = 0).

Proof: For i = 0 there is nothing to prove, so we may assume ¢ > 0. Note that for
|I| = ¢ we have

Q¢lp, p=0
RPjit1+(Qelp;) =S @ronr=k+1Qe(k —i—1)|p,, p=2(i+1-¢c)—1
0 otherwise.

because j;1+1 adds a smooth boundary of codimension i + 1 — ¢ to Dj. Therefore

looking at the spectral sequence calculating Ryji41,.Ji...1,Q¢ via our resolution of

Ji...1,Q we see that the only terms appearing in cohomological dimension < i+ 1

are as claimed. This proves the lemma for m = ¢ + 1. Inductively we may apply

the same argument for m to see that in our spectral sequence the cohomology in

degrees p with i +1 <p <2(m —1i) —1+4+i=2m — (i + 1) vanishes. Oiemma
We will use the last statement of the above proof again:

Lemma 4.3. For m > i+ 1 we we have

~

Imts Um—1..i41,05J0...1,1Qp) = T<2m7(i+1)ij,*(,jm—1.4.i+1,!*ji...1,!QZ)

To finish the proof of Proposition 4.1, we still have to calculate
T<i+1Rji+1,*( — Ji..1,4En = Rii 1.4Eoe = Ji 1,1Ecc(—n) A, )

By our calculation (Lemma 4.2) of j;41.1.7i..11Qe = 7<" ' Ryji11 .Ji...1,Qr we know
that
Ji+1..1,Exc(—=n) p=10
RPjit1.4Ji.1Ec(—n) = ¢ 0 O<p<i
of weight >2n p=1

Considering the long exact cohomology sequence for
Rjit1,+7i.1,+En = Rjit1..1.+Ecc = Ryjit1,+di.1,1Ecc(—1) —
this calculation implies that the map
R'jiv1.14Eoo — R'jiv14di 11Eoo(—n)

must be zero because the weights of the two sheaves are distinct. Thus we have
proven the proposition. Oproposition 4.1

Later we will need the following description of (ji«Es)|p;, which is implicit in
the above:
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Lemma 4.4. The morphism j1 «Ee — ip, «ip, J1,+Eco = iD, «(Qe|D,n0,) on Uz =
A* — (U;2;Dyj) induces an isomorphism
(Rj«Eo)|Dy — Rik...2.+Qe| Dy s

therefore if n > k we have

(714En) Dy — Rik...2,+Qe| Dy,

and more generally

(j!* En)|D1,.,z — Rjk...l,* ((le—l--~2,*Q€‘D1ﬂUz)|D1,.,L—1)'

Proof: For the first statement consider jp, : Uy = A¥ —U;D; — A*¥ —U;~1 D; and
g1+ A¥ —U;s1D; — Uy = A* — (U;; Dy;). This induces an exact sequence
0 — jp, 1B = JDy #Eoo = @D, «Qe|D, — 0.

We therefore have to show that (R(jk”_Q Oji)*le’!Eoo) |p, = 0. Again we first show
that the stalk at 0 vanishes. We know that RP(jx. 2 0 ji).«jp, 1Eaclo = HP(AF —
Ui>1Di, jp,,1Es), because this is true for the other two sheaves in the sequence
above (for the middle term we proved this to calculate Rj.Es).

The cartesian diagram

GE PN AL x GET
(ai)H(Hai,ag,...ak)lZ ZJ/(ai)H(HahaQ,mak)
Gk Cji> Al X Gk—l

lim“ 1 Jpﬁ

G2 a1,
shows that
H*(A' x Gyt jpy 1Eoo) = HY (A x G pridic,, 1 Eco)
= H*(A', jg,, 1) ® H (G, 1, Q) = 0,
because H*(A', jg,, 1Ex) = 0 (we know that H*(Al, jg, 1Q;) = 0 and that E is

an extension of constant sheaves).

Analogously we get that the fibre of the above complex at a point lying on D; and
exactly ¢ other divisors is isomorphic to H*(A, jg, 1Es) @ H*(GE-¢=1 Q) = 0.
So we have proven, the first part of the lemma.

This can be used to give an analogous description of (Rj+Ex)|p,, because Dy =
A*~1 and so we can apply the same reasoning again. Consider the divisor D} C
ARt > Dy and jp; : Gt = Al x GE72. Look at

. ) ) (1]
— ]D'l,!@z — RJD{,*@Z - (RJDL*QZHDi -

Again H*(A® x Gf{17ng,!Q£) = 0, such that inductively
(Rj*Qf”Dl...z = le.“k,*((le...lfl,*QE)|D1...L—1)'
O

Corollary 4.5. For an arbitrary curve C, let E be a rank n local system with
indecomposable unipotent ramification at a finite set of points S C C. Let I C
{1,...,k} and let Dy, C Coh&s be the substack defined by (¢*P = 0);er (i.e. for
C = Al this is the substack defined by D; C A*) and denote by D7, the substack
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defined by ¢UP) #£ 0 for j & I. Finally let pr : Cohy g — Cohy be the
projection. Then the following holds:
(1) For 0 < |I| <k we have Rpn(jiE|5,) = 0.
(2) There is a canonical isomorphism Rpriji.E = j,.E, where j : C—S — Coh(l)
is the inclusion.
(3) Rpri(jiElps ) = Eprp, ) [[I| = 1] for any I and again the isomorphism is
canonical.

Proof: In the special case (C, S) = (Al,{0}) the corollary follows from Lemma 4.4
which shows:

(4.1) J1«EnlDo
(4'2) j!*En‘ﬁly l:ijgﬁ,*j!*EMDl ..... I

.....

~E, @ H (G, Q) is constant and

Combining these formulas, the first assertion of the corollary now essentially fol-
lows from the Kiinneth formula and the fact that for j : G,, — A' we have
H}(A' Rj.Q,) = 0. Namely the above shows that on D; C A* the cohomol-
ogy H}(Dy, (ji<En)|p,) = 0 for 0 < |I| < k. Now we can base change the map pr
by the map Al — Coh(l)’Al and restrict this to the fibre above 0:

Dy

|

1 o _
Cohyg gy 1 ¢ [D1/(GE )]

Coh(l)Al — Spec(Fy).

We have to show that H} ([D;/(GE~1)], 73 51+En) = 0. Since H} (D, (ji.En)|p,) =0
the spectral sequence calculating the cohomology of a stack from the cohomology
of a presentation gives this result.

The second assertion follows because by (1) the cohomology of ji.E,, restricted
to the complement of the section 7 +— 7 ® vanishes. This follows because there is a
resolution:

QZ|U§:25i — @25725}51&' @4|5U — e — Qdﬁz...k — 0

and we just saw that Rpr (ji.Enl5,) = 0 for all D occurring in this resolution.
Moreover this proves (still assuming C' = A!) that the canonical morphism
E, — Rpriji.E, given by the section Coh(l) — Coh%’ g is an isomorphism.
To prove (3) we note that H*(Gy,, Q) = H (G, Qy)[1] and compare (4.1) with
the Leray spectral sequence for

[pt/Gm] —— [pt/G,] = D5,
\ J'pf'lng’p
[pt/Gp] = pr(DJ ).
Thus jI*En|D?’p =~ (RmQy) ® Ep »[I — 1] and therefore
Rpr (jiEnlpe ) = RpriRmE, o[ — 1] = By, p[[1] — 1.

Again this isomorphism is induced from the canonical morphism Rpr(j.En|p, ,) —
Rpr(jiE|pg ) restricted to the —(|I| — 1)-th cohomology.
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The general case follows from these calculations, because the statements are
local in the étale topology on Cohac(: [C/G,,]). Therefore it is a problem which
is local in the étale topology on C', thus to check that the morphisms given above are
isomorphisms we may assume that C' = C;h is strictly henselian and S = {p}, i.e.

(C,p) = (A%’h, 0). In this case any irreducibly ramified sheaf on A%’h is isomorphic
to our sheaf qEn. ! Ocorollary
Remark: This corollary implies that for any parabolic torsion sheaf 7 of degree
one tr(Frobre, j1.E) is the eigenvalue of the Hecke operator corresponding to 7°°
applied to the Whittaker function We, i.e. (—1)°°4m(®) tr(Frob,, j. E,).

To end this section we will prove two more corollaries to the above calculations.
First we take up the situation of Proposition 4.1, i.e. (C,S) = (A!,{0}), and we
keep the notations j; : Ak—Um:iDI — Ak—Um:iHDl and jk. ;= Jko- - Jit197;-

We have the following description of ji.E,, for m < k:

Corollary 4.6. For any 0 < m < k we have:

(1) There is a distinguished triangle of complexes on AF —Uicp,. .y Dy:
[I|=m+1

(1

- jm...l,!* Em - jm...l,!* Ek - jm...l,!Ek—m(*m) I

(2) For allm+r <k we have

. ~ <M s .
]m+r...1,I*E77L =T R]m+r,*]m+r—1...1,!*Em

~

TSm+2T71ij+r,*jm+r71...1,!*Em'
Moreover, there is an exact triangle
. . . ) (1]
— JBm—1 = 54Em = Jrom e dim—1..1,Q — .
Proof: The first part of the corollary has been proven above. We may also recover
it by comparing the triangle from Proposition 4.1 for E; with the one for E,,.

To prove the second part, note that by Lemma 4.3 jpiri1. mt1,15dm...1,1Q1 =
TSR 1 s dmetr.mt 105 m.. 1,1Qe. Combined with Lemma 4.2 this implies
that this complex has no cohomology in degrees m 4+ 1,...m + 2r + 1.

Therefore we can use induction on m to finish the proof: For m = 1 the sheaf
E; is constant, thus the claim is true. By (1.) we have an exact triangle

. . . (1]
- ]m...l,!*Em - ]m...l,!*Em—Q—l - ]m...l,!@l(*m) I
Apply Rjpm+1,« to this complex. Then by induction we know that the left hand
term has no cohomology in degrees m, m+ 1, thus — since jp 114 = 7" Rt 4
— we get that
. . . . (1]
= Jm+1..1,%Em = Jma1..1,6Ems1 = Jmt1,5dm.. 1 Q1 —
is still exact. Therefore jp,41..1,1«Em+1 has a filtration as claimed. Furthermore
the functors 7<"" M Ry 19.4, 75" 2Rymt0. and jmio1. give the the same result
if we apply them to the left or right hand term of the triangle, thus the same is
true for the middle term and again by induction we are done. O

Finally we note that there is a — perhaps surprising — analogue of Corollary 4.5

for the tensor product jiE, ® ji.E,+r which will be needed later on:

Corollary 4.7. Let (C,S) be a curve together with a finite set of points, and let
E,., Exirn be local systems of rank m < k and k+n on C — S with indecomposable
unipotent ramification at all points in S.

Let pr : Coh%ys — Coh(lJ be the map forgetting the k—step parabolic structure of

the torsion sheaves, and denote by j : Coh(l),c_s — Cohac the inclusion.
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Then
Rpr(Le, ® Le,,,) = J.(Em ® Exin).

Proof: To prove the corollary we have to show that Rpri(Lg © EEHH) is the

(middle) extension of its restriction to Cohé}c_ g. This is a local problem on C,

thus we may assume as before that (C,S) = (A',{0}) and that E,, and Ej, are

the unipotently ramified sheaves on G,, defined at the beginning of this section.®
We use the filtration

JixEm—1 = §1Em = Jr mitedim—1...1,1Qe(—m + 1)

given by the previous corollary. We tensor this with ji.E,t; and apply Rpr, to
prove the corollary by induction on m.

For the right hand term we use Lemma 4.2 to replace ji..m 1« jm—1..1,1Qe(—m—+1)
by the complex

(Q¢ — @Q¢|p, — -+ — @\I\:m—l(@ADl)(*m +1).

By Corollary 4.5 we know Rpri((ji«Entx) ® Qelp,) =0 for 0 < |I| <m < k.
Therefore

Rpr!(j!*En—i-k ®jk...m,!*jm—l...l,!@é(fm+ 1)) = Rp’r!(j!*En+k ®Q€(7m+ 1))
Now we apply the induction hypothesis to the right hand term of the filtration

of ji.E.;n to get an exact triangle

- - 1
= Ju(Bm—1 ® Engi) — Rpri(Le,, ® Le, ) = J.Engr(—m +1) 4.

This proves that the middle term is a sheaf and that its dual its dual is a sheaf as
well, thus it is a perverse sheaf which is the middle extension of its restriction to
Cohg ¢r_- O

4.2. A Hecke property on Cohﬁ g- Consider as before S C C and a rank n local
system E on C' — S with indecomposable unipotent ramification at S. To reduce
the number of constants we will assume that we are looking at n-step parabolic
sheaves (it would be sufficient to assume that rank(E) > length of structure).

Using the Definition 2.4 of the generalized Hecke operators the aim of this section
is to prove:

, i.e. for non-negative
degrees d = d + d’ we have

gi'd pd _ C‘él X L‘éQ ifd',d" are constant
0 E — 0

otherwise.

To prove this, we need an analogue of Laumon’s description of the Whittaker
sheaf £¢. To shorten notations fix d := (d, ..., d).

——d
Let Cohg g be the stack classifying parabolic torsion sheaves on (C,S) together
with a complete flag of subsheaves:

—d . .
Cohg o(T) = (T3 D T3, D+ D T[T € Cohyg(T)

6Tn this case note that
T (Em ® Eign) 2 &7 0" 7, B 24 (—1).

This is just the Jordan decomposition for a tensor product (see for example [11], Exercise 11.11).
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We use the diagram

~—d er d 1
Coh, g — i, Cohy g

Coh%ﬁ g

to define the sheaf £¢ := Rforgetﬂag,*gr*(ﬁé)gd on Coh%s. Note that the map
forgetg,, is projective but not small (nor semi-small) in general.

Proposition 4.9. For any decomposition d = d' + d” we have

g fd @Sd/(sd,xsd,,)ég/ X E‘é” ifd = (d,...,d) is constant
0 E .
0 otherwise.

Proof: Extend the diagram used to define the Hecke-operators as follows:

ETExt
Elflag Heck d’,d"’ é\ili a4 d"
ecke X cont , ~ONo,5 = Hecke® ¢ N
/ W"t
1 \d —d f‘”‘getflag d 4 a4
(Cohg ¢)“ + Cohy 5 Cohyg ¢ Cohy 5 x Cohyg ¢

Using the base change theorem for the proper map forgetq,, , we see that
d'.d" 5d ~ = 1,Xd
Hy ™ Lg= RgrExt,!gr;ag[’E .

’ 1! - d
The fibre product Hecke? 4" x cont . Cohy ¢ classifies
0,8 ’

<T/o C To —>TH. , /z—lo C C 7—d.,1 C To>
For every such collection of torsion sheaves we can pull back the filtration of 7°°

to 7'*, and by fixing the degrees d; of the resulting torsion sheaves we obtain a
stratification of the above stack

d.d’ ~—d d.d" ~Td\ g
Hecke® ¢ X Cond Coh g = Ug; (Hecke® © X Gond Cohy g)%,

/ " Nd
where the substacks of Hecke? 4" x cont  Cohy ¢ are defined as
0,8 ’

1o ——d U Tl. —T7° — T//. . .
(Hecke? 4 X Goht Cohoﬂs)gi = << T* T > | deg(T*NT?*) = d2>
15t case: d; = (d,...,d.) is constant for alli. In this case we have a commutative
diagram:

¢ Jorgelgye — g’ ——d"

d,,d” "Vd d’ a =
(Hecke® * XCoh%S Cohg )% — Cohg g x Cohyg ¢

l J wgetgag

(Colif )% ———— (Cobg )** x (Cobg )" Cobi ¢ x Cohi 5.

By Lemma 0.2 the map forgety,, is smooth, the fibres being generalized affine
spaces. These are of dimension 0, since both stacks are smooth of dimension 0,
thus

Rty 1 (8150, (L1 -V
Ext,! flag\"™~E (Hecked'»4"’ X Gond Cohas)g' E E *
oMo, s ’

7
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nd cage: dg not a constant sequence for some 1.

Let Flag(d;) be the stack, classifying torsion sheaves with a flag of subsheaves of
degree (d;). Then we can still factor the restriction of grp,, to the corresponding
stratum into

—
or

Nd ! U 7 ! 1
s Cohy g)% forgetp Flag'?) x Flagld) — Coh% g X Coh% s
S ’ k) )

dl .’4//
(Hecke X Cond

Claim: RforgetExt’IgrEagﬁé’gd =0.

As in the first case the map forgety,, is smooth, and the fibres are generalized
affine spaces: For a fixed point (7%, 74) ¢ Flag(d;) X Flag(d;/) the fibre of forgetg,,
over this point consists of extensions

']‘1/0C . .C ’]”:1( Te
’]'I'C ...C Td.fl( 1.
']’1//0( e ’]’d”:l( Te

e~

Let gr,7'® :=T7/*/T/*,. Then we may factor forgety,, into

’ogn ——d / or ’ 1
(Hecke? 4" x, . a Cohy ¢)% 225 % | Ext(gr,7"*, gr,7"*) — Flag'%) x Flag?
s :

Coha
where Ext(gr,7"®, gr;7'®) is the generalized vector bundle over Flag@;) X Flag@;,)
classifying extensions of the filtration quotients. Furthermore Lemma 0.2 shows
that grg,. is a generalized affine space bundle, which can be factored into maps
with fibres Ext(gr,7"*,7.*;).

Since grg,, also factors through grg,, the sheaf gvr;flag[,‘é is constant on the fibres
of grp,, and thus by the Kiinneth formula it is sufficient to prove that for d =1
and any non-trivial decomposition

d=(1,.. 1) = (e, yen) (T =1,y — )

=:d’ =:d"

we have Hg/’d/,ﬁé = 0. But here we can apply the calculation of LL|p, given in
Corollary 4.4 to establish the claim.

Now we have shown that Hgl ’d//ﬁé has a filtration such that the subquotients are
isomorphic to the sheaves E‘é/ X ﬁé”. Furthermore we know that over the substack
where supp(7'*)Usupp(7"®) consists of d distinct points, this extension splits. The
proof of the following lemma will only use this fact to show that all these sheaves
are perverse sheaves which are the middle extension of their restrictions to any open
subset. Therefore the filtration splits globally. O

Lemma 4.10. The complex L& = Rforget,gr*((LL)®) is a perverse sheaf which
is the intermediate extension of its restriction to Cohg’cfs:

LE = Rforget,gr*((LL)¥? = jl*ﬁ§|00hg

.c—s’

In particular, it carries a natural action of the symmetric group Sy and

£t = (£,
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Again we denoted by j : Cohac_ g = Cohé g the inclusion.

Proof of Lemma 4.10: By Laumon’s results [17] we know that the restriction
of Lg to Cohd 4 is indeed a perverse sheaf which is the middle extension of its
restriction to évery open subset.

Since the question is local on Coh% ¢ we may assume that our local system E
is pure. Then L} is pure (it is irreducible and perverse) and thus, by Deligne’s
theorem ([6], 6.2.6) L& is also pure. Therefore we may apply the Decomposition
Theorem ([3], 5.4.6) to decompose L& = ji.j*LE @ rest?.

We prove the lemma by induction on d. Assume that rest® = 0 for all k < d.
(By definition of L% the statement is true for d = 1.)

By the induction hypothesis and the fact that the restriction of ECEI to Cohg,c—s
is perverse we furthermore know that supp(rest?) C (T*|supp(7) = p € S). The
preceding proposition shows a Hecke property of LifEl and this implies in particular
that Hé’(d)ﬂ-restd =0 for all > 0.

Choose 7°* € supp(rest?) such that the degree of a maximal indecomposable
summand of 7* is maximal. And write 7° = (’)' (J p) ®T'®, such that (9' (%p)
is a direct summand of maximal degree (this is posslble by Lemma 3. 1) Note

that 7° 2 OF, since the latter sheaf has a unique filtration. Now deﬁne d’
deg(7’*) and look at the fibre F of the Hecke correspondence Hecked (D=4 yer
the point (77*, 0. ( p)) € Coh 0.5 % Coh . Then 7 is the only sheaf contained

in supp(restd)ﬂF , becaube every non—tr1v1a1 extension of the two sheaves contradicts
our maximality assumption (again by Lemma 3.1).

Therefore if rest?|7+ # 0 then H** Lrestd # 0, contradicting our assumption

that all the Ek are irreducible perverse sheaves for k < d. U
Proof of Proposition 4.8: This now follows from the above lemma by taking
Sg—invariants in the Hecke property of ECEI. Oproposition

5. THE SHEAF F}, CORRESPONDS TO THE FUNCTION ®(Wg)

The aim of this section is to explain the relation between the function trep,
and Shalika’s definition of ®(Wg). As in the case of unramified local systems, the
problem to compare the two functions stems from the fact that the interpretation
of Laumon’s diagram in terms of adeles does not immediately correspond to the
definition of ®. The main ingredient needed to solve this problem is an analogue
of Drinfeld’s compactification as defined in [10]. This moduli space is on the one
hand related to the fundamental diagram and on the other hand its points have a
simple adelic description. All this follows easily from [10].

However, to prove that the function tan is indeed a non-zero multiple of the
function ®(Wg), we cannot copy the proof of [9 [9], since this argument uses results
on the affine Grassmannian for which we do not know analogous statements for the
affine flag manifold. We will use an elementary approach instead. This yields an
inductive argument to calculate the function trep, on a subset which is sufficiently
big to conclude the proof of our main theorem once we have calculated this function
for n — 1. We will then give a calculation for n < 2.

5.1. An analogue of Drinfeld’s compactification. First we rewrite the induc-
tive definition of F¢, as in the appendix of [17] and [10]:
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Denote by (Q-Ext C £°) the stack classifying
£* € Bun%°U(T), J? € Bun; s(T)
(Q-Ext C £°)(T) := < JS CJs C o C Iy CE >
a;  J)T — Q%" a fixed isomorphism
We may define maps
quot : (Q1-Ext C £°%) — Coh%,s
(€ (T )i=1,.m) = €%/ T3

et (Q-Fxt € £%) — TS Bixth,y, (@177, o) 2557 1
n—1
(€ (T icton) = S QT s T8 [T, — Q)
i=1

forget : (Q-Ext C £*) — Hom'™
(E%(T)iet.n) o (QW1 2 T8 s 89,
Then by definition of Fg, we have
(5.1) FE | = Rforget,(quot™ L ® ext™Ly)[c],
where c¢ is the dimension of the fibres of forget.
Remark: We have an adelic description of the points of the stack (Q-Ext C £°):
(Q-Fxt © £%)(F,) € Ny (K(C))\Na(A) () GLa(A)/(GLa(Oc—s) X Iws)

We will not need this (it is the same as in [9], Section 3), but note that this is not
the set which is used in the definition of the function ®(We).
To define a moduli space whose points will be a subset of

Ny, (k(C)\GLA(A)/GLA(Oc—s x lws)

we argue as in [10] and define a moduli space classifying parabolic vector bundles
together with a full flag of subspaces of the generic fibre of the bundle, satisfying
some regularity condition:

For a parabolic vector bundle £* we denote by /\]C E° its k—th exterior power,
which is defined as the collection of the sequences of vector bundles

k k
e /\5(”’) — /\5(”1”’) — ... forallpes.

Analogously, denote for parabolic bundles £7 ® £3 the tensor product taken com-
ponentwise, together with the natural maps.

Definition 5.1. (Drinfeld’s compactification) The stack Q—Pliicker classifies:

E® e Bzm%ﬁ(T)7
s1:Q0n s g0
Q-Pliicker(T) := < 5, : Q%R QST s ATES L > :
Sn Tl 20 0% — ANE®
s. th. the s; satisfy the Pliicker relations

Recall that the Pliicker relations are given by the condition that over the generic
point of C' the maps s; define a full flag of subspaces of one (or equivalently all)
EUP) In particular we have a map

forgetp,, : (@ — Ext C £°) — Q-Pliicker

(6.7 (\ji.vai)i:l,...,n) = (5.,51' : ®;‘:1Q.’n7j ®J—i1(ij—> /\i.ji. — /\15.)
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Furthermore if all the s; are maximal embeddings (i.e. if the cokernel of s; is torsion
free in every degree (j,p)), then the s; define a full flag of £° at every point of the
curve, i.e. the s; define a full flag of subbundles of £°.

Therefore the points of this stack have a simple description in terms of the zero
divisors of the maps s;: We call a formal sum D =" o gnpp+3_,c5 2p (only
finitely many n, # 0) a parabolic divisor, i.e. it is a divisor, but the coefficients of
points in S are allowed to lie in 1Z. For a parabolic divisor D we call deg(O®*(D))
its degree. In the same way as usual divisors, parabolic divisors of a fixed degree d
form a sheaf Divé s, and the subsheaf of effective parabolic divisors is represented
by a symmetric product of the curve.

Lemma/Definition 5.1. The stack Q—Pliicker has a stratification by locally closed
substacks indexed by degrees of parabolic divisors dy,...,d, The strata are given by:

NS Bun%yS(T),Di € Div%’s,
S1 ¢ Q.’nil(Dl) — g.,
S; . Q.’n_l(D1> ®R...Q Q.’n_i(Dn,” — /\ig.7
(Q*Plﬂcker)(dil,wﬂ)(T) = < 5, QYD) ®... @ 0%(D,) — A"E® >
such that the s; are maximal embeddings
and satisfy the Plicker relations,

and Zle D; is effective for all 1 < k < n.

E® e Bun%’s,ji' € Bun; s, D; € Divdcis
~/ I CIyC--CIy=¢€
S\ @ T (@ )(Dy)

Zle D; is effective for all1 < k < n.

For fized parabolic divisors D1, ..., D, denote by Q-Plickerp, .. p, the correspond-
ing substack of the above stack. O

Note that the above description of the strata of Q2—Pliicker can also be used to
describe the map forgety,,.. Namely, for a point (£°,(J?)i=1,..n) € (8 —Ext C
&*) its image under forget;,, is (€%, (T ""*))i=1,..,n) where J ™" C £° is the
subbundle defined by J;°. But this is only a pointwise description.

Remark 5.2. The points of the stack QQ—Pliicker can be described as a subset:
Q- Pliicker(F,) C Np(k(C))\GLE(A)/(GLHOc_s) x lws).

Proof of Remark 5.2: This is the same as Weil’s description of vector bundles
(see also [9]). However to compare the function Wg with a sheaf on Q-Pliicker we
will need a precise form of the inclusion, therefore we will recall the construction
of the map.

Given a point (£°,s;, D;) € Q-Plickerp, . p, we define an element of GLS (A)
as follows: Let N := —(n — 1)? be the shift in the definition of Q*"~!. (Note that
if all D; = 0 then the bundle £&V:9) is equipped with a filtration with subquotients
QFnH(—(i - 1)S).)

Recall that in 0.2 we have chosen an identification of GL,(A) with GLS}(A), i.e.
we decided to use @?:—01 Q) as standard bundle instead of the trivial one.

o

Denote by 71 the generic point of C' and choose an isomorphism f;, : @?;&Q?i —
&(,nfl’s) such that the image of ®7_} Q% is the subspace defined by (s;)i<;-

i=n—j

Further, for p € C' — S choose a trivialization f, : @?;0191‘ S, NS g O, again
compatible with the filtration induced by the s;. Then fp*1 ofy € GLS (Kp) will
be an element of the form N, - diag(d,, p,...,d1 ), where N, is a unipotent upper



40 JOCHEN HEINLOTH

triangular matrix and the second term is a diagonal matrix such that the valuations
of the entries are given by the p—part of the divisors D;.

For p € S we have to choose an isomorphism f, : @7~/ Q® ® 0, — ENV-5) 0 0,
compatible with the filtration of the stalk €5 @ k(p). Thus we have to choose
fp such that the induced map GBJ;ZOQ@”' ® k(p) — EWNS) @ k(p) factors through
ker (EN9 @ k(p) — (EWN+5) @ k(p))).

Again define f; ' o f, € GL,(K,). To describe this element, let D; = (d; +
%)p + D} with p & supp(D}) and 0 < k; < n, and choose a local parameter 7, at
p. Then f; ' o f,(Q®"1) is contained in the @p—submodule 7Tg1+1(@?1:619®j) e
mh (@?:_kll Q7). Analogously the image of f, ' o f,(2®"~?) is contained in the sub-
space generated by 2 (@inQj ) @& m, (@l QF), ete. (We will only need
this for n = 2.)

Note that in this way we get an element of GL,,(K,) for which we have calculated
the value of the Whittaker function in Proposition 1.2. In particular the shift in the
definition of Q%* assures that the support of the Whittaker function is the subset
of Q-Pliicker where D1 < Dy < --- < D, _;. ORemark 5.2

Note that the map forget factors through Q—Pliicker:

Jorget : (Q-Ext C £°) Jorgclyer O Pliicker "2 Hom!™ .

By Proposition 1.2 the intersection of the support of the Whittaker function Wg
with the points where Dy > 0 lies in Q—Pliicker(F,), and therefore the summation
in the definition of ®(We) is the same as the summation over the points in the fibres
of forget’. Thus, to prove that trep, equals ®(Wg) up to a scalar, it is sufficient to
prove that terorgetTo,,.,;(quot*£5®ezty*Lw) = WE (up to a scalar). Our first aim is to
show that the left hand side of the last equation defines an element of the space of
Whittaker functions (Proposition 5.3).

We denote by Q-Extp, . p, the preimage forget}ir (Q-Pliickerp, .. p,)-

Note that whenever we have 0 < Dy < Dy < --- < D,,, we can define a sheaf
\IJDly--~7Dn on QfPlﬁCkGI‘Dl,_“’Dn via

ertp,,. . p, : QPlickerp, . p, — I Extl,  (Q%" (D), Q%" (D;))

para

N H;’L:—ll Eth (Qo,n—i—l7 Qo,n—i) Zﬁs Al

para

e *
Up,....p, = extp, . p, Ly

Let |Dj] be the biggest divisor smaller than the parabolic divisor D; and denote
by d; its degree. Then we also have a map

div : Q-Pliickerg .4 — C) 5 gldz=d1) o ..oy @ldn=dn-1)

sending (D1,...,D,) to (|D1],|D2] — |D1],---, | Dn)] — | Dn-1]). To simplify
notations we will denote the restriction of div to Q-Pliickerp, . . p, by the same
symbol.

The aim of this section is to prove:

Proposition 5.3. Let Dy,..., D, be parabolic divisors and assume 0 < Dy. Then:
(1) If D; £ D;y1 for some i, then

Rforgetr,, (quot*LE @ ext*Ly))|a prickerp,.  p, =0

(2) If 0 < Dy < Dy < --- < D, then there is a sheaf Wg on Cld) x ... x
Cln=d1) and a constant ¢ such that

RforgetTon!(quot*E‘é ® extLy))|a-plickerp, =Up, .p, Qdiv*Wg[—2c](—c).

..... Dp
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The sheaf Wg and the constant ¢ depend on the parabolic degrees of the
(D;)i=1,....n. and will be defined explicitly in the proof.

Note that the first assertion is the geometric reformulation of the support con-
dition for the Whittaker function given in 1.2.

Proof: We may assume that all D;’s are effective, since otherwise the fibres of
forgetr,, above Q-Pliickerp, . p, are empty.

To study the fibres of the map forgetr,,, we note that this map factors through
the stack Qp, .. p, Extp, ... p,, which we define as the stack classifying

Jgc---cIrcé
T2 TS = Qen=Y(D;) for i <k

< T TS — Qi for i > k > )
such that J7 C £° is a maximal embedding

and J;* C £° lies above Q-Pliickerp, .. p,

Consider the case k = 1 and denote by
forgetDl : Q*EXch_“’Dn — QDl EXth,...,Dn

the forgetful map, which maps (%, (J)i=1,..n) — (E*(T* + T )iz1,..n),
T = Q*"~1(Dy) being the subbundle defined by J°.

A point in the latter stack can alternatively be described as a maximal embedding
Q*"~1(D;) — E&* together with a filtration Ty C --- C T, C £°/(Q*"1(Dy))
and identifications 7, /7;._; =, Q*"~¢. In this description the fibres of forget Dy
consist of the liftings of the inclusion:

Tx

5./9.’717#1"% 50/(Qo,n71(D1)).

And &*/Qen—! = QB?_l(Dl) @®E*/(Q*"1(Dy)), thus forgetp is a torsor for the
group Hom(7, Q3" (Dy)).

To describe such liftings we first lift the inclusion Q*"~2 = 75 C £°/(Q*"~1(Dy))
to Qo2 < £°/Q* L and then lift 7, /Q2*"~2 to the cokernel of j. Note that for a
point in a fixed fibre of forget_ , its image under the map ext : (Q-Ext C £°*) — A?
depends only on the choice of j but not on the lift of 7;/9”"_2, i. e. ext factors
through the stack classifying points of Qp, Extp, . p, together with a lift j. This
is because the extension of Q*"~2 by Q*"~1! is given by the connecting homomor-
phism:

Hom(Q*"~2 £°/Q*" 1) — Ext' (Q*"~1 Q*n=2).

Assume that D1 £ Ds. We claim that in this case

(5.2) Rforget, (quot™LE ® ext*Ly) = 0.

Write D for the effective part of Dy —Ds. Then the group Hom(Q*"~2, Q%" (D)) C
Hom(Q®*" =2, QBT_I (D1)) acts on the choices of j. Note that this action changes the
image under the map ext by the residue of the element in Hom(2*"~2, Q%" (D).
However the cokernel of j is not affected by this action. This is because by con-

struction we have a surjective map

Hom(Q*"~2(Dy), Q5" (D1)) - Hom(Q*" 2, Q3" (D))
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o n—1

and thus given j and s € Hom(Q*"~2 Q%" ' (D)) we can find an isomorphism:

Qen=2 —s £2/(Q"(Dy)) @ Q3 (D) 20
id | = o
Qo,n—Q ]4“) go/(Qo,n—l(Dl)) @ QB?_l(Dl) 7/1072 0

maximal

simply by choosing a splitting of Q*"~%(Dy) "= " £°/(Q*"~ (D)) locally at D.
To see that this implies Formula (5.2), fix a lifting 7, denote by F_, the cokernel
of j and let Lift,,_» be the space of liftings of T /=2 to Fo_,.
Consider the preimage of the Hom(Q*"~2, Q%" " (D))-orbit of j in Q- Extp, . p
Then the above tells us that this preimage is isomorphic to the product

"

Hom(Q*"~2,Q3" (D)) x Lift, o,

and furthermore the restriction of quot*LZ ® ext*Ly to this space is an exterior
product, i.e. ext factors through the projection to the first factor and quot fac-
tors through the projection to Lift,, 5. But ext*Ly is nontrivial on the factor
Hom(Q*"~2 Q%" (D)), and therefore its cohomology is trivial. Thereby we get
that Rforget ,, ((quot*LE ® ext*Ly) = 0 as well.

Assume now that Dy < Ds. In this case we can define a map

extp, : Qp, Extp, .. p, — Al
given as the composition:
n—1
Qp, Extp,,...,p, — Ext!(Q""72(D2), Q""" (D)) x [] Ext' (™" 710" )
o =2

= [ Exth (@it annt) =5 AL
=1

We will use this map to write the restriction of ext*L, to Q-Extp, . p, as a
product of two local systems. To this end note that — because D; < D5 — for any
point in Qp, Extp, . p, thereis a canonical lifting j : Q*"~2 — £*/Q*"~1 (choose
any lifting Q*"~2(Dy) — £°/Q*" ! and restrict this to Q"2 — this is independent
of the choice since D1 < Ds). Moreover, for any point in Qp, Extp, . p, its image
under extp, is the same as ext applied to this canonical lifting.

Note further that for any point of this space the torsion sheaf £*/ 7. is equipped
with a filtration induced by the J*’s with subquotients isomorphic to QB?_i(Di).
Denote by Ext(D,,..., D7) the stack of parabolic torsion sheaves together with
such a filtration.

Since D1 < Dy we can define a residue map for sheaves in Ext(Ds, D1), because
we have an exact sequence

.....

Hom(Q*"%(D2), Q3" (D1)) 2 Hom(Q*" 2, Q3" (D))
— Ext'(Q3) 7 (D2), Q57 (D1)),

and therefore the usual residue map Res : Hom(Q*" 2, QB?il(Dl)) — A! factors
through Ext(Ds2, D1). Let W12 be the pull-back of L, via the composition

Ext(D,,...,D;) — Ext(Dy, D1) 25 Al
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Then we have a diagram

Q-Extp,... b,
/J{Pﬁrib
forgetp, { Fib T) EXt(Dn, - 7D1) Proig COh%,S
\J{Ph lgTDl

qexrtn 2

QDl EXtDQ,_“’Dn — C(dl) X EXt(Dn7 ey Dz).

Here Fib is the fibre product making the lower square cartesian, and the maps are
the natural projections. The additivity of L, implies that

ext™Ly = forgetn (exth Ly) ® qext™¥ps.
Furthermore the map prp,;, is a Hom(£®*/Q*"~1(D,), QB?_I(Dl))fbundle (be-
cause the fibres of prpy;, consist of the different choices of the dotted arrow in:

Qo,n—l jn
¢ £

Q.’n_l(Dl)C—) 5. — go/Qo,n—l(Dl)
¢ !
o ).

Therefore the projection formula and base-change imply that

Rforgetp, (ext™Ly @ quot* L)
= Rforgetp, \(forgetp, exth, Ly @ gext™ ¥y ® quot* L)
= eatp, Ly ® genty_5(Rerp, (priLE © Viz))[-2e1](—c1),
where ¢; = dim(Hom(&*/(Q*"~1(Dy)), QBZ’*l).

Now we can inductively apply the same considerations to the maps forgetp, :
Qp,,..0;,_1 Extp,.p, — Qp,,...p, Extp,4+1.. p, to prove:

(1) Rforgetr,, (ext*Ly ® quot*LE) = 0 unless 0 < Dy --- < D,,.

(2) If we have 0 < Dy < --- < D, then we may define a sheaf ¥r,,. on the
stack Ext(D,,, Dy—1,...,D1) as the tensor product of the sheaves ¥; ;11
defined as the pull back of Ly via the map:

Ext(D,,...,D1) — Ext(Di 11, D;) 25 A,

(3) Denote by gr the natural map
g7 : Ext(Dp, Dn_1,..., D1) — C) x . x Odn=dn=1)
and define Wg := Rgr) (prﬁigﬁé ® Yror). Then
Rforgetr,, (ext"Ly ® quot*ﬂ‘é) X Up, . p, ®div*Wg[—2c](—c),
where ¢ = Y77 ¢; and ¢; = dim Hom(E*/Jy, QB:“Z').

DPI‘oposition

To compare the trace function of Rforgetr,, (ert*Ly ® quot*L3) and Wg we
therefore only need to calculate the trace function of Wg. Denote the trace of W
at the set of divisors Dy < --- < D,, by tr(Frobp, .. p,,Wg). By construction it is
sufficient to calculate this in the case that all D;’s are supported at a single point
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p, because we can write D; = >
and then

pesupp(D;) Di,p With divisors D, supported at p

tr(FrobDl .... D, VVE) = H tl"(FTObDl,p .... Dp.ps VVE)
pEsupp(Dn)

We may also assume that p € S, because for p ¢ S we can use the calculations for
unramified local systems [10] (note however that a calculation similar to the one
we do below (Lemma 5.4) could be applied for p € S as well).

5.2. Calculation in the case rank = 2. We want to compute the trace function
of the sheaf Wg defined in the preceding paragraph in the case of a 2-step parabolic
structure. We use the above reductions, i.e. we take D1 = kp < Dy = (d — k)p
parabolic divisors supported at p € S with d € N. And recall from the proof
of the last proposition that for such parabolic divisors we have defined a residue
map Res : Ext(Da, D1) = Ext(Of,_,,,((d — k)p), 0} (kp)) — A' and a sheaf
Wror = Res*Ly. Further, by abuse of notation, we denote the pull-back of ECEI
to Ext(Ds, Dq) by the same symbol. Finally we will replace the stack Ext by
corresponding set Ext! to prove the following formula:

Lemma 5.4. Consider sheaves with 2—step parabolic structure at S = {p} € C.
Denote by Ag := tr(Froby, j.E). Then for anyd € N and k € %N with0 <k <d—k
we have

?*Ne forkeN
—q* AL fork € % +N.

Z tr(Frobe, Urer @ LE) = {
eGExtl(O(‘d_k)p((dfk)p),Q;P(kp))
Remark: As in the unramified situation we know that tr(FrobO;p(dp), ECEl) = )\‘é =
tr(Frobas (dp), L{), because the parabolic torsion sheaves OF,(dp) and Qf (dp) are
both contained in the image of an open embedding Cohg’c — Coh% g- Therefore,
the Hecke property of E‘é (Proposition 4.8) implies on the level of functions that
"M\ for ke N
0 forkei+N.

(5.3) Z tr(EFrobe, L&) = {

e€Bxt! (0F, ) ((d=k)p), Q% (kp))

(Note that the set Ext! used above differs from the stack Ext by some automor-
phisms, whereby we obtain the factor ¢* in the above formula.) Recall that since
k < d—k we have an isomorphism

Hom(O*, 3, (kp)) = Ext' (O _), ((d — k)p), 0%, (kp))

given by mapping a homomorphism s to the push out of the extension O°* —
O*((d = k)p) — Ofy_4),((d — k)p) by s. Thus the middle term of the resulting
extension of torsion sheaves is

coker (O* (1.9) O*((d — k)p) & Q4 (kp)) =: T.".
Further Hom(O*, Q3 ,(kp)) = Hom(O, Qg;;p)(kp)), therefore we have a filtration of
Ext! given by
Hom(O*, 3, (kp)) > Hom(O®, Qf,_),((k—1)p)) D--- D0
and for any element s of the subset

Hom(O®, 2, ((k — i)p)) — Hom(O®, Q% _,_,,((k — i — 1)p))
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the corresponding parabolic torsion sheaf 7.* is isomorphic to
00 0, @05  for0<i<kandkej+N

A= Q;dl )@O(+) for 0 <i < kand k € Ny

O(d_k)p@ﬁkp if s =0.

It might be helpful to write this out in the simplest cases: For k € % + N we
have Qp (kp) = (Qpq1yp = Qe—1)p, —). Thus, if ¢ = 0, ie. s: O — Qpy(kp)
induces a surjective map O® — Qg (kp), the above cokernel is isomorphic to (q, —
Qgp(p) —) and the second map is an isomorphism. In particular for d = 1,k = %

this extension is of the form (€2, U @ SN —).

Similarly for k& € Nxo, O3, (kp) = (Qkp((k —1)p) — Qup(kp) —). And again
if s : O — Qy,, is surjective we get that the corresponding torsion sheaf is of the
form (Qap — Qa—1)p © Op —), because s induces a non-surjective map on the
(1, p)-component of s* : O* — Qp (kp).

The general case is proven in the same way, the above considerations already
give the isomorphism classes of the Ts(i’p ) and we also know on which summands
the homomorphisms ¢(“?) giving the parabolic structure of T2 are injective or
surjective.

Therefore if we rewrite the summation in (5.3) according to the above filtration
of Ext! we get a recursion relation for the value of the trace at the trivial extension

L‘é(k) _tr(Frobo(-i k)p((d—k)p)@sz;p(kp),ﬁé)

k=1
N —(q—1) ¥ ¢'Li(k—3—i) forkeN
(5.4) Li(k) = s
—(g—1) ;quLE(k—%—i) for k € £ +N.

(To shorten the formula we used that Lg(k) = L&(d — k), since the corresponding
torsion sheaves differ only by a shift.) Note further that this recursion relation does
not depend on the rank of E.

Proof of Lemma 5.4: By induction on k (for k¥ = 0 there is nothing to show).
Since tr(Frobe, Ur,, @ L&) = 1(Res(e)) - tr(Frob,, £2), all the summands corre-
sponding to elements of Hom(O0*, Q¢ ;. ((k—i+1)kp)) — Hom(O*,Q7, _, ((k—
i)p) for k —i > 1 cancel out, because for these Y ¢(Res(e)) = 0. Thus:

3 b(Res(e)) L(e) = LE(k) — LGk — )

2
e€Ext! (O(‘d k)p((dfk)p),ﬂzp(k:p))

Apply (5.4) to Li(k), then this equals:

k=1
@M —qLg(k —3) — (¢ 1) Z ¢'Li(k -3 —i) forkeN
=
= k_,
—qLg¢(k— 1) —(¢g—1) 5 ¢Li(k—4—i) forkel+N

i=1

k=1 ) )
(38~ S 0 (1l 5 =) - LGk —1- )

={ - ié:o ¢ (LE(k —1—14) — Lg(k — 3 — 1)) — qucEz(O)>> for k € N

k=% )
— ;)q““lL‘é(kz—%—i)—&- > ¢ LE(k -5 — i) forke 3 +N
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by induction Lg(k — & — i) — LE(k — 1 —i) = —¢>*==2)Ad for k € N:

Z ¢ (=*FITINE) — Z ¢ (@* D) for ke N
=3 i - ,
Z g (@D 1ad) — Z gt (—?*=imDAD) for k€ 1+ N

qgk)\CEl for k e N
B —¢* N\ forke;+N
|:’Lemma

Corollary 5.5. Let E be a local system on C — S with indecomposable unipotent
ramification at S and denote by Ag := [ ¢ 5 tr(Froby, j.E).

(1) IfE is of rank 2, then for any point x € Q—Pliicker we have
tr(Frob, Rforgetr,,. (ext™Ly @ quot* L)) = Ag - ¢! We(z).

nj

In particular for any point T € Hom’ we have

tr(Frobg, FE ) =Ae- q ®(We) ().
(2) IfE is of rank 3, then for any point x € Q—Plicker with D1 = 0 we have
tr(Froby, Rforgetr,, (ext™Ly ® quot* LE)) = X1 We(z).
In particular, for any point T € Homénj

ding Q%2 — £° we have

tr(Frobz, F%J) =e- ¢ O(We) (7).

corresponding to a maximal embed-

Proof: Comparing the above lemma with the calculation of Wg we get the first
assertion. Note that since the power of Ag appearing on either side of the equation
depends only on the degree, we just have to compare these for the trivial bundle.
Similarly the power of g only depends on the difference Dy — Ds.

For the second assertion note that for a maximal embedding, the quotient sheaf
E* />~ may be viewed as a bundle with (n — 1)-step parabolic structure since
the n—th morphism in the parabolic structure is an isomorphism. Thus for rank 3
bundles we may apply the calculation given above. Ocorollary

6. CONSTRUCTING Ag UNDER THE ASSUMPTION Fg = Fg,

In this section we give a proof of the main Theorem 2.5 under the additional
assumption that Fg = Fg,. Here the proofs are almost identical to the ones in the
case of unramified local systems: First we show that the Hecke property for E‘é
implies that Fg, is a Hecke eigensheaf as well. The second step is to deduce from
Lafforgue’s theorem and the calculation of the previous section, that the function
trp, descends to a function on Bunn g- Therefore we can argue as in [10] that the
sheaf Fe also descends to the space of parabolic vector bundles. The resulting sheaf
Ag inherits the Hecke property from Fg, and we show that this property implies
the one stated in the theorem.

6.1. The Hecke operators on the “fundamental diagram”. We want to check
that Laumon’s arguments in [17] carry over to our situation. We define operators
analogous to the operators Hy on the spaces occurring in the fundamental diagram
(2.2).
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We start with Hom}fj (recall that this is the stack classifying good coherent
sheaves F* of generic rank k together with an injection Q®*~1 < F*). We define
a diagram

Qo,k‘—l s F*

inj inj 7
Hom! Hom, ™~ x Coho,S

< F'e C F* >@<Qo,k1 (—>f/' C f.>

and the corresponding Hecke operator

HE

k,Homini

: D*(Hom}Y) — D"(Hom}" x Cohg )
K — R(msman X quot);L*w{;igK.
Analogously we define an operator
Hj 10+ D (Homy ) — D*(Homy, x Coh g).

We used a shorthand notation to describe the algebraic stacks occurring in the
F'*CF*
Qo,kfl s F*
objects (Q*F—1 «— F*) ¢ Homfcnj, together with a coherent parabolic subsheaf
F'* C F* such that the quotient F*/F’® € COh(%,S is a parabolic torsion sheaf of
degree i. And the maps are the natural ones, e.g. Tsmqu is the map forgetting ev-

erything but the smaller bundle F** and quot forgets everything but the quotient
F*/F'*. To make this easier to read we use the following conventions:

above diagram, e.g. < > denotes the algebraic stack classifying

(1) F* will always be a coherent parabolic sheaf. Oftentimes a subscript will
be used to specify its generic rank.

(2) &° isaparabolic vector bundle, i.e. it is torsion free. Again £ is a parabolic
vector bundle of rank k.

(3) By 7° we will always denote a parabolic torsion sheaf.

(4) Three term sequences will always be short exact sequences.

We have the same on Extj:

Fit C Fe £ Fi> C Fa
Qo,k—l N ]_—]:+1 N ]_—-]: Qo,k—l N I/c.+1 N ]:-}/Co

Ext}, Ext} x Cohg ¢

Ht

o | DP(Exty)  —  DP(Ext) x Cohg g)

K = R(”small X qUOt)!Rp!ﬂ'gigK_
And finally on Extivgood we have:

Fi2C Fn Fi>C Fa
< Qek-1 _7:;:+1 — Fr > §>< Q-1 ]—‘,’;H — ]-—;C' >

Fie X e Fry1 good Fi1 good

% Xt

1,good 1,good z
Ext,, Ext, x Cohg g



48 JOCHEN HEINLOTH

H,

k,Extl800d :

Db(EXti’gOOd) N Db(Ethlc’gOOd % Cohas)
K+ R(fsman x quot) | Rpimy; K.

6.2. The Hecke property of F’E’!. We want to show that these Hecke operators
commute with the functors used to construct FE! (see 2.3). Let iy g5 := deg(T*9))

for any 7° € Coh% 5+ And denote by pr¢, a4 Ext(l) — Coh%s the projection.
’ 0,S ’

Proposition 6.1. For any d,i as above we have:

] * * pyb,d—1 .
(1) Hé,ExtlpTCOhgsK (pre, i % IdCoh%YS) Hy* *K[—2i¢,s](—i0.5), for any

d
K € DP(Coh ).
H£ Ext1*9”°d‘jEXtK = ]EXtHE Ext!

(2) K for any K € D(Ext}).
3) HE,, K =I"H

(4)

()

K for any K € Db(Extl’gOOd)
znj)'

k,Hom®™ k-1, Ext1 good
b
Hk HomJHom,!K = JHom, nHk Homi KK for any K € D”(Hom

Hk,Extl o FourK = Four o Hk,HomK[ ik(n—1),8](—ik(n-1),s) for any K €
D*(Homy,).

(1) Write down the definition of the correspondences:
T/. C T. };} T/. C T.
O. — ‘Fl — T. f/. T/.

T &
/ PTieft ;DTnght small X quot

Extl Vad c T*) Ext1 x Cohf
Toont g forget X PP ond 1><1d
Coh Cohg 3% Coh

The left- and right-hand “squares” are cartesian and p is an affine space
bundle (an Ext'(7®/T’®, ©*)-torsor), therefore we get our claim:

i "
Hy Bt Prond

K= R(Wsmall X QUOt)!Rp!(ﬂ—big OpTCoho,s)*K
= R(7sman % quot)iRpi(forget o pr g, o p)*K
R(’/Tsmall X qUOt) (forget o prrlght)*K[72i075](7i07s) as p is a bundle

= (prcoh%i;- x Id)* (Rgri forget™K)[—2io s](—io,s) by base-change

(2) This holds, because extensions of good sheaves by torsion sheaves are good.
(3) This is true, because there is an isomorphism of the diagrams defining the
two Hecke functors given by:

Fr1 C TRy
Qo,k—l N ]:]: s ‘7_‘]:_1 s (Qo,kfl s ]2. C f]:)
Fit =T XFe_ Fit good
(4) By definition.
(5) Again Laumon’s proof can be copied word by word, the only thing used is

the compatibility of the Fourier transform with bundle maps: Four(¢*K) =
RprFourK[ig(r—1y,5](ik(n—1),s) (see [19] Thm 1.2.2.1 and 1.2.2.4). Op,oposition
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Corollary 6.2. The sheaf FE, is a Hecke eigensheaf on Hom}¥, i.e.:

i Fh = FE, X LiL[—ki](—ki) ifi is constant
k,Hom™ 0 otherwise.

Proof: By the above Proposition 6.1 this follows from the Hecke property of L&
(Proposition 4.8). Ucorottary

6.3. Comparison of the Hecke operators and the generalized Hecke oper-
ators. In the same way as in [10], Proposition 8.4 we want to show that for some
sheaves on Coh,, s the eigensheaf property with respect to HEbt implies that the
restriction of the sheaf to Bun,, s has the eigensheaf property for H¢ and H}. To
do this we need to note some general properties of the maps mgman and g used
in the definition of the operators HE it

Fix a degree d = (d(j ’p)) of parabolic sheaves, and let i some positive degree. We
have defined a diagram

Heck:e* ==
y Wot
a d—i i
Coth Cohn’s X CohO,S

Denote further Cohd = (F* € Coh%’s | length(torsion(F*) < i). Then we have:

Remark 6.3. (1) The map Teman X quot is a generalized vector bundle, in

particular it is smooth.

(2) The map Tgman i smooth.

(3) The map w4 is representable and projective.

(4) The restriction of myig to the pre-image (Tsman X quot)’l(Bun%’_S1 XCOhé’S)
18 smooth.

(5) 2., 3. and the second part of 1. are true for the analogous maps defined by
replacmg Coh* s and Coh* > by Bun s and Buni &, respectively.

Proof:

(1) The map Tgman X quot is the projection from the generalized vector bundle
V(Rpr12,* Hom(pr237;nw7prl$]:unw)) - COh7 § X COhO S

where prj; are the projections from Coh%jé X Coh%, g xC on the j and [-th
factors and 7.° . and F?*

: i
i wniv are the universal bundles on Cohg ¢ xC' and

Coh* ‘% C respectively.
(2) By 1. we only need to note that Cohi 0. is a smooth stack (Lemma 3.7).
(3) The fibres of my,g are closed subschemes in the scheme [ [ Quot rank . (FUp))

deg d(d
which is projective (see [14]).

(4) This is as in [10]: The given pre-image is smooth, since it is a vector bundle
over a smooth stack, and its image under mp;g is Coh? g which is smooth
as well. Now ;s is representable, and therefore it is sufficient to prove
that it induces a surjective map on all tangent spaces.

Thus we need to show that at every point in a fibre of 7y, the kernel of
the induced map is of the correct, constant dimension.

We claim that for any point (£® — F® — T°* := F*/E*) this kernel is
isomorphic to Homperq(€®,7°). In Lemma 3.5 we have shown that this
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space is of constant dimension, and in case that F* is torsion free the map
is certainly smooth at this point, thus it is smooth on the whole subset.”

To prove the claim, take a point in the tangent space, i. e. a deformation
to k[e]/(€?), such that the deformation of the middle term is trivial:

£* —" F3 @i M/ —— T

L]

& 73 73

But then £ = £ x rs F§ Qkle] /e* = 3@ k[e] /€. And therefore the choices
of ¢ are given by Hom(&J, 7 ), as claimed.

(5) Since Bun%)s C Coh%s is open the maps are still smooth. The restriction
of Tpig is still projective because subsheaves of vector bundles on curves are
automatically vector bundles.

|:lRemark
Recall from Section 2 that Coh%’ g = Coh%’ s /(diagonal G,,-automorphisms).
And the diagram defining the Hecke operators HL is:

<5/. C g.>
y \ Tsmall X quot
Bun? Bun  xColi;
u n,S un%SX ° 0,5

Again we say that a perverse sheaf Ag on Coh,, g is a (generalized) Hecke eigensheaf
for E if

Hebipg — { Ae X Li[—(n —1)i](—=(n —1)i) if i is constant

0 otherwise

Note that if the sheaf Fg descends to Coh,, g, then this is the Hecke property of
the descended sheaf (twisted by Q¢(d) on the component of degree d = d(®P) ),
the additional shift coming from the fact that the dimensions of the connected
components of Hom,, are different.

Proposition 6.4. Assume that Ag is a Hecke eigensheaf for E on Coh%vs, such
that DAg is a Hecke eigensheaf for DE =: EV. Then Ag|g e 18 an eigensheaf for
S

n,
HL, je.

—1
HlAE‘Bunnws = AE|Bunn‘s X LE[fn + 1](771 + 1)
and H¢Ag|Bun, s =0 for0<e<l

Proof: Look at the generalized Hecke correspondence restricted to Bun%jslz
(E'* CF*—>T*)

y \wt

d,<1 d-1 1
Cohn’S Bunn,s X Coh075

7Alternatively one could use Lemma 3.5 to calculate the dimensions of the spaces involved,
but one has to be careful in case 7 is not constant
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We know by Remark 6.3 (2.) that in this diagram the map ;. is smooth of relative

. . d,<1
dimension n. Therefore on Coh; 5

Ag R LE = (DHIDAE)[-n + 1)(—n + 1) DAEg eigensheaf
= (DR(7sman X quot)1mp;,DAg)[—n + 1](—n + 1)
= R(Tgman X quot)*ﬂéigAE[—n +1](-n+1)
= R(Tgman X quot)*ﬂ,’;igAE[—n +1+2n](1) Thig SMooth
= R(Tsman X quot)«mp;, Ag[n + 1](1)

In other words, for Ag we can replace R(msman X quot); by R(Tgman X quot), in the
definition of the Hecke operators. Note that the same consideration applies to the
operators H€ for any € with entries ¢(*?) € {0,1}, such that not all ¢(*?) are equal
to 0 and not all €(*?) are equal to 1.

In this case we even know that H<Ag = 0, and this helps to prove:

Lemma 6.5. Under the assumptions of 6.4. the restriction of the sheaf Ag to the
stack Coh%’fgé — Bun%s s zero.

Proof: The map mgman X quot : (€' C F* — T°*) — Bun%_sg x Cohg 4 is a vector
bundle projection, let ¢ be its relative dimension. Furthermore ﬂ-ltigAE is Gy~
equivariant, and thus we can apply Lemma 0.3 to get that

537rf;igAE = R(mgman X quot)*wf;igAE = H%Ag[—2c](—¢) = 0.

DLemma
Now we can apply Lemma 8.5. of [10] — which says that in the situation of

Lemma 0.3, i.e. we have a vector bundle projection p and some G,,—equivariant
perverse sheaf K if both Rp.K[—1] and Rp/K[1] are perverse, then Rp/K = Rp K —
to get that

R(ﬂ'sman X quot)mf;igAE = AE &ZE[—’H + 1}(—11 + 1)

Now the fibres of the projectivized bundle mgman X quot are the projective spaces
P(Ext'(7°*,£%)) and by the above lemma we even know that the stalk of Ag is
zero at sheaves F* with 0 < deg(torsion(F*®)) < 1, therefore in the above equation
we may restrict mgma X quot to the space of torsion free extensions. But on this
substack the base change to Bun%:.;l x@a ¢ gives the map used to define HZL.

DPrOpOSitiOn

Corollary 6.6. Assume that Ag is a Hecke eigensheaf for E on Coh%’s, such that
DAE is a Hecke eigensheaf for DE := EV. Then the corresponding function ta. on
Bun%s is an eigenfunction for the Iwahori-Hecke algebra.

Proof: We just have proven the Hecke-property of the restriction of Ag to Bun,, s.
Therefore we only need to compare the result with the computation of Zg on @é s
(Lemma 4.5) and note that the Iwahori-Hecke-algebra at S is generated by elements
corresponding to the points of Coh%y g And for the Hecke operators supported in
C — S the situation is the same as in the unramified situation ([10]). O

6.4. Descent of the sheaf F¢.

Proposition 6.7. Assume that we know that Fg = F¢,, then Lafforgue’s theorem

implies that F? descends to a Hecke eigensheaf on Bunfl‘;gd, and this sheaf can be

extended to a non zero Hecke eigensheaf Ag on Bun, s.
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Proof: By definition Fg is an irreducible perverse sheaf and by our assumption
FE = Fg, is a Hecke eigensheaf (by Corollary 6.6).

We first want to explain why the function ®(Wg) does not depend on the section
Q*n~1 < £° but only on the bundle £°: On the one hand by Lafforgue’s theorem
[16] there is a (cuspidal) Hecke eigenfunction on Bun,, s(F,) with eigenvalues given
by trze (1.2). On the other hand by Shalika’s result ([23] Theorem 5.9) every Hecke
eigenfunction on Hom!™ (F,) is in the image of ® and there is a unique such function
in the Whittaker space. Therefore the function fg = ®(Wg) is the pull back of a
function on Bun, s(F,).

Assume for the moment that n < 3. In this case we know that restricted to
the maximal embeddings Hom™** ¢ Hom!™ the function trep, = const - ®(WE)
for some non-zero constant. In particular, this function is not Yidentically Z€ero on
Hom,** and descends to Bun,, g(Fy).

Thus to show that this implies the descent of Fg, we can apply a variant of the
argument given in [10]: Since FZ is a Gy,-equivariant irreducible perverse sheaf
it descends to the projective bundle PHom™ and there is a constructible subset

v & PHom™**(Q*"~1 £*) such that FZ|y is an irreducible local system and
FE = jv (FEIv).

Further the restriction of F§ to V is constant on the fibres over Bun, g, be-
cause the trace of F is constant on the fibres (for any extension Fy» of the base
field). And the two pull backs of Fg to P Hom™** Xy, ,’ Hom™"* are irreducible
(PHom™** is an open subset of a projectivized bundle) and isomorphic, because
the corresponding trace functions are the same. Since the two systems are irre-
ducible, there is only one isomorphism of these sheaves which induces the identity
on the points of the diagonal V' C V X gyn, V. Hence FE|y descends to a perverse

sheaf Ag v on preun, s (V). Further, since F§ = jy1.(FE|v), we also know that

n __ * - : n . good good
Ft = prBunn,SJpr(V),!*AE,Va Le. Fg descends to a sheaf Ag™" on Bun;’g".

Note that in particular we have shown that trg., = const - ®(Wg) on the whole

of Homi;”. Therefore we may apply ®~! to see that the trace function of the

sheaf RforgetTOT’!(quot*(EcElo) ® ext*Ly) on Q-Pliicker must be equal to Wg. This
allows us to drop the temporary assumption that n < 3, because we can apply the
argument of Lemma 5.5 to show that the trace of F is equal to ®(We) on the space
of maximal embeddings for n < 4, and this gives an inductive argument for all n.
To finish the proof of the theorem we only need to extend the resulting sheaf
AZ°d to the whole of Bun,, . Again this works as in [10](Section 7.8): For ¢ €

C — S (we might allow ¢ € S) the maps ®O(—rq) : Buni+;’g°°d — Bunﬁ,s are a

covering of Bun,, 5. We define Ag := li_n)1r(®(9(frq))*AE°°d ® (det(E)|q)~®". The
Hecke property of /—\EOOd (together with the Ss-equivariance of the isomorphism
H' o H'AZ? = A8 ) E K E) gives that this is a well-defined Hecke eigensheaf

d
on Bunn. DProposition 6.7

7. THE ANALOGUE OF THE VANISHING THEOREM FOR n < 3

The aim of the last two sections of this article is to prove that our assumption
FE = Fg, holds for k < 3 with k& < n (Proposition 8.2). To do so we need an
analogue of the vanishing theorem in [10] which is given below (Proposition 7.1):

For any i € Z~q consider the total Hecke- or averaging functor ng.iot defined as
follows (i := (i, ...,%)): '
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(£ C & &% €Bunf ¢, £ € Bunj g)

quot
3 7 d

Z z =
Bunk 5 COhO,S Bunk’s

We set
—q d—1 d
Hg ot D'(Buny ¢) —  D°(Bunyg)
K — ngotK i= Rifrpig,1 (Trman K ® quot™LE).

Remark: This definition is used for any d = (d; p)o<i<n pes, therefore it includes
the case of bundles with not necessarily full parabolic structure. In particular for
d=(d) oSi<n the stack Bun,C 5= Bunk is the stack of vector bundles without extra
structure

Proposition 7.1. Let E be a (pure) irreducible rank n local system with indecom-
posable unipotent ramification at S. Then for any k < min(3,n) and any (mized)
complex K € D*(Buny, ) we have
HEM =0 for alli> (29 —2)nk +|S| - k

Note that by Lafforgue’s theorem we may assume that E is pure, since every
irreducible sheaf is pure up to a twist.
Proof: (almost the same as in [10]) We use that, by induction we already know
the proposition for all ¥’ < k.

Reductions: Without loss of generality, we may assume that K is a pure complex,
because any mixed complex has a filtration with pure filtration quotients.

For a pure complex K the complex HE K is pure as well, because HE K=

tot tot
Rig (7}, K @ quot*ﬁ) and Tgmaey 18 smooth (Lemma 6.3), therefore 7% .
preserves purity (i.e. smoothness implies 7¥, . =7\ [2d](d)). The same is true
for quot™ and finally g is proper (Lemma 6.3), therefore Deligne’s theorem ([6],
6.2.6) implies that Rpig« = Rpig,1 also preserves purity.

Furthermore, a pure complex H, E z ,+K is zero if and only if the associated function

trH i kon IF ,i-points is zero for all 1. Hence it is enough to prove that h := trHE i K

is the zero-function.

Finally, to show that a function h on Buny g(IF,) is zero it is sufficient to show
that (1) h is cuspidal and (2) for all cuspidal functions f on Bung s(F,) the scalar
product < h, f >= 0 — the product being defined since cuspidal functions have
finite support on every connected component of Buny s. In the proof of these
statements we will reduce back to a statement for sheaves.

15" step: Hg tOtK s a cuspidal complezx, therefore terf K s a cuspidal function,

ie. for all ky + ky = k and all dy + dp = d let Cdl’d"’
follows

be the functor defined as

(&, =& = &)

forget ',.15')'*(5;:1 751:2)
gr

d dy da.
Bunhs Bunkhs X Bunkz,s
di.d2 | b d b d da
Ckl’k2 : D (Bunkys) — D (Bunk 5 X Bung S)

d17d2

K — LK := Rgr, forget™K.
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Definition 7.1. A complez K € D*(Buny,s) is called cuspidal if for all di,ds and
dy,do

any non trivial partition ki + ko = k we have C,;gK =0.
Proposition 7.2. Let E be a irreducible local system of arbitrary rank n > k on
C — S with indecomposable unipotent ramification at S. Then for all d,,ds and any

gi%; o HZ! K has a filtration with

non trivial partition ki + ko = k the complex C E.tot

subquotients isomorphic to (ngj)t X ngf)t) o Cgll:%jK for some i1 + iy = i.

Note that by induction on k we can assume that the vanishing theorem 7.1 holds
for all k; < k. Therefore we know that the filtration subquotients occurring in the
above proposition are all zero, because k1, ko < k and either i1 or is is sufficiently
big. Therefore the proposition proves that Hl;,;tiotK is cuspidal if i > (29—2)nk+|S|k.
Proof:(of Proposition 7.2) We define a diagram using the conventions given in
Section 6.1, all three term sequences occurring in the diagram are short exact

sequences:
forget gr d d-
<Sl:1 — & — 5122> — Bunﬁs x Bun;~>

da
Bunk,S k2,5

A ’
Thig O Trbig]

/e . forget’ <((€]l€. C 5]:,5]:1 — g]: — 5]:2»
(& epy et
k k

=:Middle

Tsmall

d—i
Bunk, g
to compute

dy.d, —d definition . y . i
Crt ks © He 11K = Ragr, forget” Rpig 1 (75 K @ quot™ L)

base-change

R(gr o m,i, )1 (forget™ mly, K @ forget”™ quot™Lt) .
=K,
The stack Middle is stratified by substacks indexed by 0 < i; < i, given by the
condition deg(é‘,;(j’p) N Eg’p)) = d(lj’p) — igj’p):

En &0+ E
+ vy
Middle; := & 2 &R &R, | Er =& NES and deg(E)) =dy — iy ) -
+ vy
/Z'l. ‘> T. ‘> IZ;.
This stratification will induce the filtration we are looking for.
Now gro ﬂ{)ig restricted to Middle;, is the map forgetting everything but £ and
&r,- We factor this as follows:

First consider the map forgetc. forgetting £7: This is an affine fibration, the

1

fibres being homogeneous spaces for Ext,,,.,

(7, &) (because of the exact square
of Ext! groups we get from the extensions of the 7;* by the &)

Furthermore, both the map meman o forget’ and quot o forget’ factor through
forgetgr.b, ie K \Middlei = forget}lz Ky for some complex Ko and thus Rforgetgz’!Kl =
Kz[2¢](c) for some c.

Now we can compose the map forgetglg with the forgetful map forget,.. This is
just the pull back of the corresponding map in the Hecke correspondence of torsion
sheaves, and still Tgman o forget’ factors through this map. Therefore by the Hecke
property of Lg we get that Rforget e Ko is zero if 4, is not constant.
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But if i; = (i1) is constant, we get that
— —(i—i di,d
R(gr o mg )1 (K|niddte,, ) = He g3y X HE,S)t "o Cy s (K).

Thus the stratification of the stack Middle induces a filtration as claimed.
DProposition 7.2
2 step: For every cuspidal function f we have < tHgi ki, [ >=0.
,tot
Using the same diagram as in the definition of Hg; , at the beginning of this
section, we define H¢ ;K := Rtsman, 1 (i K ® quot*LL), and denote the analogous

operator for functions on Bun%’ g (i.e. the sheaf L{ is replaced by its trace function,
pull-backs are considered as pull-backs of functions, the tensor product is replaced
by the product of functions and Rgpq, is replaced by summation over the fibres
of Tsmaur) by the same symbol. Then for any cuspidal function f

< trH!;’Zot,K, f>=< trK7Hl7é,totf >,

the brackets <, > again denote scalar products.

We want to show that Hé,tot f = 0 for all cuspidal functions f. Using the
Langlands correspondence for k& < n, we know that the space of cuspidal functions
on Buny g is spanned by cuspidal Hecke eigenfunctions fg/ corresponding to local
systems E’ of dimension k& with at most unipotent ramification at S and their
images under the action of the Iwahori-Hecke algebra (note that for unramified
local systems E’ on C these functions do not have an eigenfunction property for
the Iwahori-Hecke algebra). Furthermore, since k < n, we know already that these
fer are the traces of irreducible perverse sheaves Ag: on Buny g/ for some S’ C S.
For this argument we need that m < 3 , because for £k > 3 we have not given a
construction for representations with reducible unipotent monodromy.

To prove the 2°4 step it is therefore sufficient to show:

(1) For all irreducible local systems E’ on C'— S’ with indecomposable unipotent
ramification at S’ C S we have

Hé’totpr]*gunkysl Agr =0 for i > (29 — 2)nk + | S|k,

where PrBun, o : Bung s — Bung g is the map forgetting the parabolic
structure at S — S’ and Ag is the automorphic Hecke-eigensheaf already
constructed for k < n.

(2) Any element of the Iwahori-Hecke algebra commutes with the operator
Hémt on the level of functions.

We need another Hecke-operator HEC As before set i := (7).

(& C &% &® €Bung 4, £* € Bun )

Bun%}s Coh%’s Bun%jsi xC®
Here supp(E'® C £°) := supp(E®/E'®). We set
Hic:D'(Bunjg) — DP(Bung g xCW)
K — HE’CK = R(7sman X supp)!(mp; K @ quot*LE).

Note that in the above we may assume that we are concerned with k—step parabolic
structures since the image of quot is contained in the image of (k—step parabolic
sheaves) C (n—step parabolic sheaves). Thus to prove the first claim we have to
show:
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Proposition 7.3. Let E' a local system of rank k < n, possibly with unipotent
ramification at S C S, and let Ag: be a Hecke eigensheaf for E' on Buny,g:. Then

Hé,totprﬁunk oAe =0 fori> (29 —2)nk + |S|k.
More precisely,
HE cPriun, o Ae = ((E@EN) Y R priyy,, , Ae for alli.

Proof: The first statement follows from the second, as in the proof of Deligne’s
Lemma in [7]:

H%(C,j.(E®E’)) = 0, because E is irreducible and not isomorphic to any sub-
quotient of E’. By Poincaré duality therefore H?(C,j.(E ® E’)) = 0 and thus
dim(HY(C,j«(E® E))) = —x(j«(E ® E')) = kn(2g — 2) + |S|k by the formula for
the Euler characteristic of Grothendieck-Ogg-Shafarevich ([15] Exp. X, 7.1).

Furthermore we can apply the symmetric Kiinneth formula ([1] Exp. XVII,
5.5.21) and — because h® = h? = 0 — we get that

H*(C, (j.(E® EN)D) = A" HY(C, j.(E® E)) = 0 for i > kn(2g — 2) + |S|k.

We are left with proving the second statement.
Reduction to the case that i = 1: Consider the resolution
g cee
TI*C---CTr=¢0/e Tamall XSTPP

, emall X quOt
flag

5/. C g Bunk S XCOhO g — Bunk S XCZ
/ \w‘ J
flag sym
d—
Bunk S Bunk S % Coh s Bunk S xC®)

Note that (H¢ )°'K = R xsupp ((flag’ompig) *K® quot” gr*(£L)®) for any complex
K on Bun%ys. Further, by Lemma 4.10 the sheaf Rﬂag!’((ﬂgt*gr*(ﬁé)&i) carries an
S;-action and

(Rflag](quot gr*(L2)™"))% = quot™ LL.
Therefore the projection formula implies that the complex

Rflag)((muig o flag) 'K ® quot gr(LH)™) = (HL ¢)°K

carries an S; action as well and that ((Hg )*'K)% = H{ (K.
Thus putting K := pr%unk s/AE we are reduced to prove:

Lemma 7.4. With the notation of Proposition 7.3 we have

a— 1AE/|EJ*(E®E)

kS’

1 * *
HE,C(pTBun%S,AE/) = pTBu
Proof: In the proof we will denote sheaves with parabolic structure at S by £°5,
and sheaves with parabolic structure at S” will be denoted £°s” to distinguish the
two sets of data. We have a morphism of the Hecke correspondences for S- and
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S’-parabolic sheaves:

<g/.s C £.S>

Thig small XPTC
forgetyeeis

Bunk S (E'*s' C &) Bungt.;* xC
y \
Bunk g BunE’S*, xC.

The right hand square induces a map to the fibre product:

preip 1 (€% CE®S) — (E7°5" CE%') X i1 o0 (Bun%;l xC) =: Fib.
k,S’ ’

Denote by pry,pro the projections from this fibre product to its factors, and
let quot, quot’ be the quotient maps from the Hecke correspondence to Coh% ¢ and
Coh% & Tespectively.

We can apply the projection formula to rewrite

Hé)c(prguni Agr) = Rpra (Rprra,iquot™ Le) @ (my,, 0 pri)* Agr).
k,S’
The calculation of Rerib’!quot*Lé can be reduced to a calculation for torsion
sheaves as follows. We have a map:
Fib -1 Cohghy
£(p) 1 £1(0:p) ifpe S ori=0

/o5 Cegr (4,p) .— )
(E%2,8%) = T { EOP)(p) /'GP ifpe S — 8 and i # 0,

where ;" = { 8:]% '. ’}32) gg E gl_ g This gives rise to the cartesian dia-
gram
(£ C g05) o (T T LS50 ) 27 Cobi
B “ Cohgy 2525y ot

where G(£*s C £°5) = (£°5/€*s C q(prpa(E/°9,£°%))). By the base change
formula it will be sufficient to calculate:

Lemma 7.5. (Rforgetre \priye L8) 1m(q) = (forgets_ g LE)|rm(q), where by abuse
of motation we denoted by LE the middle extensions of E on C — S to Coh%ys and
Coh%ys,.

Proof: First, we want to show that the image of ¢ is the open substack of Coh%"s
defined by the condition that the maps ¢*P are surjective for 1 < i < k and p €
S—5’. By definition ¢ maps into this substack and we can easily describe the torsion
sheaves in the image of ¢. Given a point (£/*5,E%s") € Fib, let T°® := q(&'*5,E%s").
Locally at p € S — S write £'® = @f;()l(’)'(%p) and £OP) = O%k=1 @ O(p;) such
that the cokernel £(0:») /£/(0:) =~ kp,. If p # p1 we see that
T* =0 0%, (55p) & T
where supp(7’®) = p1. And if p; = p there exists 0 < iy < k such that
T° = i= 017&00% (k7 )@O’H—lop(%p)'
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By the structure of torsion sheaves of degree ¢, (Lemma 3.2) this shows that the
image of the map ¢ exhausts the claimed substack. Denote by

. 1
JSs—s COhB,C—(S—S/),S’ - Im(q)
T = Tt o @i 03, (5p)
and note that by the above this is almost an open embedding (i.e. the image is
an open substack isomorphic to the quotient of Cohé C—(5—8"),8" by a trivial group
action).

Further, note that the map pr;. is smooth, since it can be factored into a
generalized vector bundle over Coh%fg 1 x Coha 5 and the projection onto the second
factor. Therefore pri.Cg is the middle extension of its restriction to the subset
where supp(7(®P)) ¢ S. The map forgets, is projective because the fibres are

closed in a product of projective spaces and therefore Rforgetr. , = Rforgetr. .
Combining the two remarks above we get a canonical morphism

F:js_g Lt — RforgetT/.7*pr§—/.Eé = Rforget.e ,priy. L,

and jsfs',*ﬁé ~ forgeti;fs,ﬁé (note that js_ g/ . makes sense, because EE is a sheaf
(and not a complex) at points with support outside .5).

We have to prove that F' is an isomorphism over the image of ¢. First note that
forgetre is an isomorphism over the open substack where supp(7(*?)) & (S — S'),
so the above sheaves are isomorphic on this substack.

We are left to check that F' is an isomorphism on the fibres over points 7°* with
70 = k, and p € S — S’. Since this problem is local on Cohﬁ’fs we may assume
that (C,S,S") = (A!,{0},0) and E = E,, (see Section 4.1).

We know that k, = T7'6P) ¢ TP) and we may factorize forgets., into the
maps forgetting the choice of the subspaces 77:(#?) ¢ T:P) for ; > k. Consider for
example the map forgetting the choice of 7"(*~1:P) | Tts fibre is either a single point, if
pF=1p(T'(F=2P)) 2 0, or it is isomorphic to the projective space P(H?(C, T *~1:P))),
where the kernel of ¢(*?) defines a linear subspace of codimension 1. Thus we can
apply the calculation of £L = (Lemma 4.4) to conclude that pr.. L{ restricted to this
projective space is the direct image (R ) of its restriction to the the complement of
the kernel of ¢(*?). Thus the cohomology of this fibre is isomorphic to the fibre of
LL at T'* for any choice of 7'® not contained in the linear subspace. By induction
we therefore get the claimed isomorphism. OLemma 7.5

Continuing the proof of Lemma 7.4 we can factor pro as

P - id _
Fib 22 Bung’sl X Coh%’s, rality ung’sl xC'
and apply the projection formula again:
He c(pryp _Ae) = Rpry) (0 Le @ primi Ae)
= R(id x pre)i(pre o Li® Rprg  primhigAer)
0,5’

base-change

= R(id x pTC)!(pT*COh; Le® (prl*gung—; A K L))
0,8’

kS’
projfmla pri, a1 Ae X (Rpre, (L @ L))
uny "
Coroll;ry 4.7 prgungfl AE’ X (j*(E ® E/))
k,S’

DLemma 7.4 and Proposition 7.3
To finish the proof of the vanishing theorem 7.1 we have to show that the operator

H é,tot commutes with all other Hecke operators (at least on the level of functions).
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Fix a parabolic torsion sheaf 7° and define the Hecke operator H=« as the sum
over all Hecke operators corresponding to torsion sheaves contained in the closure

of 7% i.e. let (T') C Cohdeg (7*) be the closure of the substack classifying parabolic
torsmn sheaves which are locally isomorphic to 7°. And define the stack

Heckes := (£'* C £°|€%/€"* € (T*) € Cohys" ™).
As before this provides a Hecke operator

Hers Db(Bun%S) — Db(Bun%TSdeg(T.)).

By induction on the codimension of (7°*) C Cohgig(r) it is sufficient to prove
that Hé,tot commutes with H= for all 7°.

We may apply the reduction of Proposition 7.3 to reduce ourselves to prove this
for the operator Hé,c.

Lemma 7.6. For any K € Db(Bun%,S) we have
HE ¢ o H7K 2 H 0 HE oK
in Db(Bun%,_Sl_deg(T.) xC).

Proof: We may assume that supp(7®) = p for a single point p € S, since every
torsion sheaf is the direct sum of sheaves supported at a single point and for p ¢ S
the lemma is easy to prove (and we do not use it in this case).

As in the previous Lemma the claim is easily reduced to the following lemma
formulated on the stack of parabolic torsion sheaves (apply the projection formula
once more): Denote by

T'* € Cohy
Flag, 7+ := <(0 —T* Q" —>T" —0)| Q*c Coh1+deg( ") >
T € [T+
Further, denote by prgse,prge the projections and by prc the projection to the

curve C defined by the support of 7'°.
Let Flags. ; be the stack defined as above with the roles of 7'® and 7"* inter-

changed, i.e. 7"° € Coh&s and 7'* € (7*), and denote its projections by rpge
etc.

Lemma 7.7. We have a canonical isomorphism of complezes
R(proe x pro)prie Lt 22 R(rpge X rpo)irphme Lg
in Db(COthEg D x0).

Proof: This is similar to the proof of Lemma 7.5: Over the open substack of
Co h1+d€g (") where the support of the torsion sheaf is not equal to supp(7°®) =p
the stacks Flagi 7+ and Flagre 1 are isomorphic, because there are no extensions
between sheaves supported at different points. Therefore the claimed isomorphism
exists over this subset. To extend it, we again reduce to the case (C,S) = (A!,{0})
and note that the maps prgs,rpgs are projective and the map proe (resp. rpge)
can be factored as

Flagi, 7o — Cohﬁs x(T*) — Coh%,s.

The first map is a generalized vector bundle, and the second one is the projection
of a product, therefore both maps are locally acyclic. Hence we can use the exact
triangle
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of Proposition 4.1 once more. If we replace LE by jiEs(—n), then the statement of
the lemma is obvious. Further, if we replace £E by Rj.Ew, then the lemma follows
from the Leray spectral sequence, because we just saw that Rj, commutes with
pri. (and rp%..) and we may replace Rprge x prg)r by Rprge X pro). because
this map is projective. Therefore the lemma follows for L1 as well. O

8. THE VANISHING THEOREM IMPLIES THAT jrom 1FE = jHom,1xFE = RjHom «FE
With the notations of the fundamental diagram (2.2) of Section 2 we have

Proposition 8.1. Assume that the vanishing theorem 7.1 holds for k < n. Then
for k < n and d >> 0 we have jHom,gF’E = jHom,I*FE and thus for k < n we have
FE, = Fb.

Since we have shown the vanishing theorem for local systems of rank < 3, we
get in particular:

Corollary 8.2. For k <n < 3 the sheaves F = F’E’! are isomorphic.
DCorollary

Proof of Proposition 8.1: The Hecke-property of £ allows us to copy the proof
in [10] with some minor changes. We use induction, and assume that the proposition
is true for all &' < k thus, in particular FE = FE!.

1. Step: The claim is true over the substack of parabolic vector bundles.

Here every nontrivial homomorphism from 2°® into a vector bundle is injective,
that is

inj good

Hom,’ = Homy, —(zero-section) over Buny°g® .

Furthermore F’E is G,,-invariant, since the Fourier transform preserves this property
by [19], Proposition 1.2.3.4. Therefore we can apply Lemma 0.3 and get

jHom,!FE = RjHom,* Flé = jHom,!*FIE = RT(!FIE = 07

good

i, Bun}’g® is the projection.

where 7 : Homm

Recall from Section 5 Formula (5.1), that we can calculate F§ = Fg, with the
following diagram:

JgCc---CcJrce
$0/$:1 iQ.,k*i

T X quot
&

) 7 - C jk d
Homan j s £ = ’Z" x Cohg 1
k k J L Q* Jk—i 0,S ext! A
77‘/ / —
dy,,good dy d da
Bung*g Bun; g " Coho’s .

Where d, —d = deg(J(o’p)) and we know that FE = Rforget (ext Ly @ quot*L).
Therefore (RmFE)|;, ngogd = Rmext*Ly ® quot*Lg) = Hg tot(Rm ext™Ly), and
the vanishing theorem 7.1 implies that HE,tot(RW! ext*Ly) =0 for d >> 0.
2. Step: Induction on the length of the torsion of F*:
Recall that in Section 6 we introduced for any r = (r; )
Coh%’é£ = (F* € Coh%s | length(torsion(F*)) <r)

the stack of parabolic sheaves such that the length of the torsion of the coherent
sheaves F(:P) is bounded by 7; . And by induction we need to compare jHOInJFIE
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and RjHorn’*Fé above the points of this stack, where the parabolic sheaf is good
and the length of the torsion is exactly r. Furthermore, note that the torsion free
part of a good sheaf is good as well.

It is sufficient to prove the proposition after a smooth base change. To get a map
to torsion free parabolic sheaves (we want to apply the vanishing theorem again)
we use the stack

Con =" —r,goo ° 00 ° r
Cohy, g = (€* C F* — T*|€* € Bun F#*, F* € Cob§™™, T* € Cobj ).

——d,<r r.
From Remark 6.3 we know that the forgetful map Cohy g~ — Coh%é* is smooth.
And the map

~— 4,<r
,S

d d—r,good
gr : Cohy, 800

—  Bunj g xCohaS
(E*CF®) — (E°,F*/E%)

is a vector bundle, since dim(Ext®, . (7*,£*)) depends only on the degree of 7°

para

and on the rank and the degree of £* by Lemma (3.5).

——d<
Furthermore, over any point of Coh;:gz we have Ext'(Q®F~1 £%) = 0 (by as-

sumption £° € Bun &#°°%)  therefore the dimension of Hom(Q*F~1 £*) is con-

stant, so Hom(2*%~1 £*) is a vector bundle over this stack.

— —d.<r
Consider the base change Homy, of Homy, to Cohy Sr, and analogously define
——inj ——d.,<r

cont ,Coby 5 -

— inj
Hom,, := Hom, " x

By the above, the map
gri= ﬁ(\)_r/nk — Bungv_sz’goOd x Hom(Q®**~1,7*)
(Qo,k—l i) .7:.78. C ]_-o L} T.) — (5.’9.’k_1 p_os) T.)

is also vector bundle, because it is the composition of the map induced by composing
p o s, which has fibres Hom(Q®*~1,£*), and quot. The zero section

(So’Qo,kfl L} T.) — (T (04’52 50 @7—0750 C 50 @T. N T.)
of this bundle is the substack ®

Qo,k,—l AN Fe
go c Fo P, T | length(torsion(F*)) = r and Q**~1 — 7° — F*

and this is by induction hypothesis the substack to which we have to extend F’é.

Thus, denote I =i = Y Eom |Homini and again we have to show that

* k
Rgrﬁgr/nan_i7!erommj Fg = 0.
Since this can be checked fibre wise, we fix a point
(£°,Q%F1 — T°) € Bunj 55! x Hom(Q**~!, T*)

and denote by Fibrege ge.x-1_,7¢ the fibre of ﬁ(\)_l;l;m over this point.
Step 2.1 Reduction to the case that Q**~1 — T* is surjective.

8Note that, if there is a splitting of F® — 7®, then there is a unique one, since torsion(F*) is
a subsheaf of F*°.
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Factor s : Q*F=1 — I'm(s) =: T'* C T°, denote 7°/T'* =: T"* and set r"" :=
deg(T"*). Then for any (Q*F~1 — F* — T°) € Fibre,, o\ 1 s+ ;. We get an
extension F'* C F* — 7"*. Consider the Hecke operator for

Qo}k—l s F'*
HeckeHomi“j = < ]_-/o < F* —» T//o >

P "
inj r
Hom,, Hom,* x Coh07s .

We know by Proposition 6.2 that F’é! is a Hecke eigensheaf and that

Fibre = Fibrege ge.s-1_77e X » Heckegomini -

go)Qo,k—li)T- s

Hom}™ x Coh{
Thus, in case that 7"’ is not constant, we can establish our claim that

H(Fibreg, goioi s g FE) =0,

since the above Hecke operator is zero by 6.1.

If on the other hand r” is constant, we know that it is sufficient to prove the
claim for Fibrege ge.r—1_,77. This has already been done in the case that 7'¢ # 7°.
Therefore we may assume that Im(Q®F 1) =7"* =T*.

Step 2.2. Assume that Q*F~1 — T is surjective, i.e. 7° = Q®k=1/Q®k=1(_D)
for some effective parabolic divisor D.

In this case, giving an element (Q**~! < F*) € Fibrege ge.x—1_7+ is the same
as to give a map QF~1*(—D) < £°*, because we can define a map:

(Qo,k—l(_D) MR 5077—.) — (E' c (5' @Qo,k—l)/ﬂo,k—l(_D))

And indeed for any square

Q-,k—l(_D)( Q.f_l Te
go( Fe T

we automatically get that F* = £® @ge.r-1(_p) Qek-1,

Thus we get an isomorphism Fibrege gex-1_7e — Hom™ (Q®F~1(=D),€*).
Furthermore under this isomorphism Fg|pibre becomes the sheaf on Bun%,_;’g(’od
constructed in the same way as F’E, by replacing Q**~1 by Q*k~1(—D). More
precisely, since

£ /Qmk (D) = Fo QoL
we have again:

JrCc---CcIce /—\
< A G o) > Al

T NARYNG = kit
forget \
|

f JrC---C T2
Hom'™ Q°*(—-D),E*) (Tg = E° > T°%) Npy = Q.’kil(_D) > x COh%,S
NORYNS = qekoit

F

—r d
Bunkys X COho,S

d—r,good
Bunkys
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Here ext’ is the composition
(J2,97(T8) = Q" (-D) @ @25 *7) —— H'(C,Q'(-D)) @ @}=; H'(C, Q")

|

HY(C,Q) @575 H'(C,Q)

lz Res

H'(C,Q) = A!

and therefore
FElFibre,e goi 1, = (Rforget,(quot™ Le ® ext™Ly))|ribre of = over &2
But here we can apply the vanishing theorem again, because
R(7 o forget)(quot™Lg ® ext™Ly) = HE_’fot(Rﬂ'!'ea:t'*Lw) =0.
DProposition 8.1
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