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Introduction

Ripples are characteristic patterns which are found in various natural envi-
ronments. For example, ripples are generated by wind forces on sandy surfaces
in deserts or on snowy surfaces. Subaqueous ripples are, on the other hand,
present in coastal zones or on river beds. The media which show ripple pat-
terns consist always of granular matter at the boundary. A driving medium
(gas, fluid) which is able to entrain particles interacts with the underlying
matter in a complex way. The resemblance of the ripple formed by air and by
water leads to the false assumption that the physical processes behind both
must be similar. If we compare the movement of transported grains in air and
in water, one difference is evident: grains lifted up by wind forces fall down
impacting the surface (see Sect. 1.4). Grains in water show a more flowing
behavior along the sand bed, because the specific weight of the sediment and
water differs less (Trefil 1984). Therefore, in rivers ripple formation results
from special flow structures and not from impact characteristics as for aeolian
ripples (see Sect. 1.6).

The focus of this thesis is on ripples created under uni—directional water
flow. We are interested in modeling the sediment transport over bedforms. It
is supposed to be one of the most interesting problems among a wide range of
processes observed in rivers (Nikora et al. 2002). The questions, which require
clarification are manifold: for example, for river engineering it is important to
know whether bedforms enhance or reduce sediment transport. Geologists try
to relate the morphology of ripples preserved in rock records to ancient flow
conditions, and physicists ask for the long term behavior of a ripple system
in order to understand the dynamics.

Considering the known facts about subaqueous ripples, it is generally ac-
cepted that ripple formation is associated with turbulent flow conditions.
In addition, the shear stress acting on the bed surface must be sufficient to
entrain sediment. In natural environments the ripple patterns are highly vari-
able and the transition to other structures, for example, dunes are “smooth”.
Thus during investigations many different classifications have been used (Ash-
ley 1990). From the modeling, view patterns differ only if the belonging for-
mation processes are basically different. Attention is paid therefore to the
common morphology of ripples and their dynamics. All observed ripples agree
in the following manner: (1) developed ripples move with constant velocities
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Fig. 0.1. Interrelationship between flow characteristics and bedform development
in current flow (Leeder 1980).

almost inversely proportional to their heights (Fredsge and Deigaard 1992);
(2) ripples are asymmetrically shaped with a steep lee side and a flat stoss
side (see Fig. 1.1). In this view ripples are simple patterns, which raise ex-
pectations that a clear transport process could finally underlay the ripple
formation. Nevertheless “for every complex problem there is a simple solu-
tion, and it is wrong” (H.L. Mencken 1880-1956), so that we have first to
ask, what an exact approach looks like. This means to start with microscopic
treatment in which the dynamics of individual sand grains is taken into ac-
count.

In principle such a system is described by the combination of estab-
lished equations and laws; the Navier-Stokes equation (i.e., for turbulent
fluid flow the Reynolds—Averaged Navier Stokes Equations with turbulent
closure model) and hard core interaction between grains (i.e., balance of
forces on single particle). Figure 0.1 shows the interrelations which have to
be considered (Leeder 1980). First the shear stress caused by turbulent flow
is responsible for the sediment transport over the bed. Different transport
rates changes the bedform which in turn retroact with the flow field. Fur-
thermore, a layer of moving sand tends to dampen the flow turbulence. Due
to gravity the sediment transport is also directly influenced by the shape of
the bedforms. If taking all these effects into account (if that is possible at
all, since the correct way of coupling sediment particle movement and fluid
flow dynamics is not known) it is clear that a huge amount of computation is
needed. Nishimori et al. (1998) states, even if this could be done, we must not
forget that most computational resources are wasted in this case to compute
the motions we are not at all interested in. Another question is what can we
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learn if we reproduce ripples on a microscopic scale? Beside the important
conclusion that it is feasible, we do not have necessarily a better understand-
ing of the investigated phenomenon i.e., how ripple patterns occur on the
macroscopic scale.

The aim of the thesis presented here approaches the problem in a different
manner. It is necessary to find a way to relate the sand transport over sand
ripples to bed surface properties, such as height, inclination, and curvature.
We will call it parameterization of the fluid flow, which should extract the
essential factors that significantly control the evolution process of ripples. Our
model describes the sediment transport on a space-time scale much larger
than the elementary processes. We focus on the average effect of elementary
grain moves on the bedform surface. Hence the large scale dynamics of ripples
is in our field of view and we are neither interested in the reproduction of
single grain dynamics nor in exact flow field simulations. The purpose of
the model is to clarify basic questions about initiation, evolution, and final
states. Anderson (1996) argues that given today’s computational power, it is
relatively simple to set up and run models that embed abstracts of geomorphic
processes. We follow him that the effort lies in interpreting the results by
pulling out global conclusions from a set of model runs. Therefore we keep
the number of control parameter minimal to find the most simple, effective
macroscopic description.

Typical questions concerning pattern forming systems are: Why did the
system evolve to this pattern? How stable is the result, and how sensitive
is the final pattern to the initial conditions? What sorts of quantities do we
have to measure in the field so that it helps our understanding at this ripple
scale? These questions are investigated in the next chapters. Beginning with
the phenomenon ‘ripple’ and an experimental setup, a basic approach of our
model is explained in Chap. 2. The theory and principle features of the model
are presented in Chap. 3, whereby Chap. 4 is about the numerics. Our results
are investigated and discussed in Chap. 5.
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1. Ripples

This chapter provides a general survey of the experimentally received knowl-
edge about subaqueous sand pattern, especially ripples. An excursus is up to
aeolian sand pattern, since similar patterns like aeolian impact ripples (see
Figure 1.5) and subaqueous vortex ripples (Sect. 1.3) could have in detail very
different formation processes. Furthermore aeolian phenomena were first con-
sidered in modeling, which gave the motivation to extend it to subaqueous
pattern formation in this thesis.

1.1 Subaqueous Bedforms

Subaqueous bedforms can be observed in rivers and in the sea, particularly the
coastal zone. They can form if water flows over granular material. The fluid
flow is mostly turbulent and the grain size has to be in a order of magnitude
that entrainment is possible. Bedforms which grow under the oscillatory flow
condition of a coastal environment show more symmetry concerning their
profile than bedforms created by unidirectional river flow. They differ a lot
regarding the three dimensional patterns (Hansen et al. 2001).

Figure 1.1 shows schematically a characteristic ripple profile created on a
river bed. The lee slope is steep, usually equal to the angle of repose (30°—32°)
and the stoss side is flatter often below 10°. The two hopping grains in Fig. 1.1
indicate the increasing sediment transport capacity towards the crest, due to
accelerated average fluid flow (see the three arrows). The ripple migrates
downstream and preserves its shape, since all sediment eroded on the stoss
side is deposited behind the crest. Avalanches adjust the slope on the lee side
accordingly.

To describe the shape of ripples two quantities are widely used: the vertical
form index and asymmetry index (for definition see also Fig. 1.1).

Vertical form index:
Ratio between wavelength A\ and height H, also called ripple index.
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Fig. 1.1. Definition of the vertical form index i = 4 and the asymmetry index

H
A:=2.

e

Asymmetry index:
Ratio between the lengths of the horizontal projections u of the stoss
side and lee side e. u

A=
e

Usually river bedforms are divided into ripples, dunes, and antidunes (see
Fig. 1.2). Dunes can form only in turbulent flows and are related to wa-
ter depth. No assertion on this score can be made with regard to ripples.
Subaqueous dune formation is supposed to be most comparable to the devel-
opment of aeolian dune pattern. For froude number Fr > 0.8 (see definition
below), standing waves occur on the free surface of an open channel flow. The
surface wave interacts strongly with the river bed so that antidunes are built,
which are in phase with the surface wave. Antidunes are best understood of
all bedforms (Blatt et al. 1980). The name comes from the peculiarity that
antidunes could migrate upstream. In fact they also migrate downstream and
sometimes even stop moving. Antidunes can only be found in unidirectional

open water flow and the wavelength A is directly related to the mean flow

velocity U (U? = gzé)

Froude number:

dimensionless quantity, which denotes the ratio between the forces of
inertia and the gravity in a viscous fluid. h,, is the water height and u
the average flow velocity.

u

Vhollgl

Fr .=

Beyond the threshold of sediment transport, two regions remain without pat-
tern formation, the lower— and the upper—stage plane. The upper—stage plane
is supposed to be a consequence of very high concentrations of transported
sediment close to the bed, which tends to dampen turbulence (Pye 1994). For
the lower—stage plane Leeder (1980) found the following explanation:
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Fig. 1.2. Existence regions of bed forms (Southard and Boguchwal 1990). The
diagram consists of experimental data from different authors and has a more quali-
tative character. To eliminate the influence of the different parameters, the average

mean velocity was rescaled for a temperature of 10°C' (for details see Southard
(1971))

Lower—stage plane beds are a consequence of the strong, vertical tur-
bulence that occurs over a rough boundary at velocities close to the
threshold for sediment transport. This tends to inhibit the develop-
ment of flow separation so that bed irregularities are not amplified
and propagated downstream.

The diagram shown in Figure 1.2 is a first approach to classify subaqueous
pattern formation. The aim is to find a scale—free description of the onset and
the evolution of ripple formation as this is not yet known, whereby modeling
approaches become important.

1.2 Experimental Setups

The most recent carefully performed experiments in artificial environments
are the one from Baas (1999) considering fully three-dimensional patterns,
and the one from Betat et al. (1999) concentrating on approximate two—
dimensional periodic structures. Most experimental results presented here
refer either to Baas (1994, 1999) or to Betat et al. (1999).
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Fig. 1.3. The experimental setup from Baas (1994) and Baas (1999). Plan view
and cross section of the flume. All dimensions are in millimeters. Section A-B is the
transect along which bedform development was studied.

1.2.1 Recirculating Flume

A recirculating flume is the preferred setup particularly if the three-dimensionality
of ripple formation is considered. All kinds of bedforms are constructible, es-
pecially antidunes, which need an open water flow.

In the rectangular flume of Fig. 1.3 the water flows in a continuous loop.
The rectangular channel is 0.45 m wide and 0.61 m deep and has a maximum
length of 7.96 m (Baas 1994). The depth—averaged downstream flow velocity
U ranges from 0.3 to 0.9 7+ and the flow discharge ¢ = U h,, from 0.1 to 0.4

mTz. Recirculating flumes often consist of only one straight channel, which
must be fed with both water and sand. It is therefore difficult not to disturb
the ripple dynamics especially close to the threshold where the system is
very susceptible (Betat et al. 1999). Besides the costs are extraordinary to
stabilize the fluid flow (guiding vanes, guiding tubes Fig. 1.3) and to achieve
stationary flow condition. Therefore, if the main focus is more on reproducible
flow conditions and less on three dimensionality the annular channel is the
preferred experimental setup.

1.2.2 Annular Channel

The annular channel used by Betat et al. (1999) consists of two telescoped
solid cylinders, which are lowered into an aquarium that is filled with water
(compare Fig. 1.4). The interspace between inner and outer cylinders is filled
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Fig. 1. (a) Side view of the experimental setup, (b) the six
images of the sand-water interface are separated by vertical
white lines. The images have been expanded in the vertical
direction. <

with granular material (glass beads 280-300 pm were used in the experi-
ments of Betat et al. (1999)). To guarantee reproducible initial conditions it
is important to fill the cylinder in the correct way. Simply filling it in with
sand creates internal grain structures inside the sand body (contact network,
arching) which can retard the beginning of sediment transport (see Grasselli
and Herrmann (1997), Grasselli and Herrmann (1999)). To avoid such mem-
ory effects the sand is often caused to vibrate before the experiments. The
shear flow is generated with a rotor disc above the cylinders.

This channel geometry has several advantages compared to a rectangular
recirculating flume: strict mass conservation, rotational symmetry, quasi—
one—dimensional geometry. These properties are especially useful for mod-
eling the formation process because model equations mostly fulfilled mass
conservation, often have periodic boundaries, and are at best quasi—one-
dimensional. But the advantages also include some limitations. Due to the
channel geometry only a finite number of ripples is possible. Compared to
a very large system this could change the ripple wavelength. Another char-
acteristic is that the rotor disk provides rigid boundary conditions for the
water flow on the upper surface, in contrast to open water flow in a rectan-
gular flume. As Betat et al. (2002) noted, this might influence the final size
of the ripples.
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1.3 Sand Ripples under Oscillatory Flow

Ripples beneath a surface wave are comparatively easy to control in the flume
experiments, as their wavelength is related to the amplitude of the fluid wave.
Bagnold (1941) already distinguished two types of ripples:

1. Rolling-grain ripples are generated when starting from a unstable flat
bed and consist of small triangular ridges separated by a comparatively
long stretch of flat bed (Andersen et al. 2001). They are characterized by
the absence of flow separation behind the crest. They appear to be only
transient or unstable patterns (Stegner and Wesfreid 1999).

2. Vortex ripples are characterized by the existence of vortex shedding at
the crest. Experiments have shown that the wavelength A of the steep
sand pattern is proportional to the total amplitude A of the fluid oscilla-
tion (Andersen et al. (2001) appraised A ~ 1.3 - A) and depends neither
on the frequency of the oscillations nor on the grain dimensions.

Andersen (1999) extensively investigated sand ripples formed under the ac-
tion of an oscillatory flow and proposes various modeling approaches (com-
pare Sect. 2.2). According to him the selected wavelength of rolling grain
ripples has nothing to do with the selected wavelength of vortex ripples.
Nevertheless they could be seen as a initial pattern in a transient process to
vortex ripples, as they grow and coarsen to become vortex ripples with no
flat bed between them. The growth of vortex ripples appears to be limited
by the static angle of repose of the granular media (Definition (p. 9)). Also
some influence by the frequency of the oscillation is determinable. The final
state exhibits a strong hysteresis, whether the driving amplitude changes,
and relaxation from large to small wavelengths is not possible (Stegner and
Wesfreid 1999).

An important question arising in conjunction with pattern formation on
sediment beds is whether the sediment transport over bedforms is reduced or
enhanced compared to a flat bed. In the case of vortex this question can be
answered: the presence of vortex ripples induces a higher sediment transport
than for a flat bed. If superposed currents cause a net sediment transport in
one direction the effect of vortex ripples is more complicated (see Andersen
(1999)).

1.4 Aeolian Impact Ripples

Although the ripples in deserts (Fig. 1.5) show similarities compared with
subaqueous bedforms, in particular vortex ripples, the underlying processes
are rather different. The motion of grains results not directly from fluid forces
imposed by the air, but rather from the impact of saltating (see below) par-
ticles that are themselves accelerated by the wind (Anderson 1987). Bagnold
(1941) divided the sand transport by wind into three modes:
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Fig. 1.5. Aeolian impact ripples in sand. Sierra Rosario, Mexico, Photo by Tad
Nichols.

1. If the wind force acting on the sand surface is not sufficient for lifting
up particles but strong enough for keeping them rolling and hopping
along the surface, the transport is called rolling or creeping (Ouchi and
Nishimori 1995). If this transport is caused by a rebound of saltating
particles, the mechanism is also called reptation (Anderson (1987), Hoyle
and Woods (1997), and Fig. 1.6).

2. If the power of flow is sufficient for lifting up particles, but not strong
enough for keeping them in the fluid for long times, the transport mech-
anism is called saltation (Fig. 1.6). In saltating sand, grains are whipped
along the surface of the sand bed by the wind, impacting the bed at small
angles to the surface and with high speed (Hoyle and Woods 1997). A
typical sand grain saltating in air rises steeply to a height of more than
1 cm and strikes the ground at an angle of about 10°, some 10 cm or
more downwind (Blatt et al. 1980). The impacts lead to the ejection of
sand grains from the bed. This impact gives “birth” to a new generation
of salting particles and causes a kind of chain process.

3. Suspended load takes place if the acceleration acting on the particles
during their motion is so strong that they are kept a long time in fluid
and effects of inertia are negligible. The resulting particle traces are more
random, as for saltation, where effects of inertia are more important. The
mechanism is not materially different from suspension of grains in water.

However in the real process of ripple/dune formation the distinction between
creep and saltation is not clear (Anderson 1987). Bagnold (1941) put forward
the hypothesis, that the ripple wavelength (typically of order 10 cm) is equal
to the mean length of saltation jump. Nowadays it is commonly accepted that
the essential physics lies in the variation of reptation flux. The role of salta-
tion, whose trajectories are many times longer than the ripple wavelength,
is indirect (Prigozhin 1999). A model proposed by Anderson (1987) showed
that the initial ripple wavelength is determined by, and several times larger
than, the mean length of reptation.
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Fig. 1.6. Schematical plot of the different transport modes (Prigozhin 1999)

The particle size segregation is another property reported for wind-blown
sand ripples. Heavy (coarse) grains accumulate on the crest on the sand ripple
and light (fine) grains accumulate in the trough of the sand ripple. Following
Ouchi and Nishimori (1995) the crest of the ripple is the most unstable place
for the grain, so the most stable grains (heavy grains) can keep themselves
at the crest of the sand ripple and vice versa for the trough. The reverse
sorting is observed for water ripples. Here the coarse grains are less mobile
than the finer, so that they reach the surface only in the trough, where the
finer sediment is eroded (Blom et al. 2003).

1.5 Granular Matter

Many problems in modeling ripple formation arise because the sediment of
the riverbed is neither treatable like a dense fluid nor as a solid body. Thus no
classical boundary condition applies. Ripples consist of granular matter and
the special characteristics of granular media, for example, avalanching, the
angle of repose, etc. are supposed to influence strongly the pattern formation
(Linz and Hanggi 1995). Let’s first have a look at a granular system, without
a driving fluid.

; Granular matter consists of macroscopic particles
of different size, shape, and surface roughness,
leading to specific packing behavior: disordered
structures allow compaction only in connection
with reorganization of parts of the system. Due
to friction, elastic vibrations, and plastic defor-
mation, energy is dissipated, so that a system of
granular particles is not in thermodynamic equi-
librium (see also Luding (1997)). The left picture
is a close—up photograph of a pile of rice from
Frette et al. (1996).
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Angle of repose:

The maximum angle at which a pile of unconsolidated material can
remain stable is called angle of repose. It depends on the shape of the
granule and is a characteristic property of granular media (Frette et al.
1996).

Sandpiles are the most investigated granular system, because they show al-
most all typical effects of granular media. The real process of pile growth
is usually intermittent. Discharged granular material not only flows conti-
nously over the pile slopes but is also able to build up under the charging
point. From time to time it suddenly pours down the slope in an avalanche
which redistributes the material and stops the slope from over—steepening
(Prigozhin 1994).

The question of whether these system show SOC (self-organized critical-
ity) is frequently discussed. A system exhibits SOC behavior if it tends to
move into a quasi stationary state (critical state), where the distribution of
event sizes is scale invariant, and where the temporal behavior is a % (pink,
flicker) noise (Hergarten (1998) and Hergarten (2002)). To investigate this
question Frette et al. (1996) do their experiment on grains of rice, which
they find to be less subject to slipping and rolling than sand grains. They
report that the avalanche dynamics in the rice pile with the elongated rice A
(see table 1.1) is consistent with a SOC process. For rice B the probability
densities are consistent with a stretched—exponential scaling function, which
do not satisfy a power—law distributed scaling. Frette et al. (1996) propose
the difference in the detailed relaxation mechanisms as an explanation of the
crossover from a critical to a non-critical behavior.

Name Rice A Rice B
Description Unpolished (rough) | Polished (smooth)
Length 7.6 £ 0.9 mm 4.8 £ 04 mm
Width 2.0 £ 0.1 mm 2.4+ 0.2 mm
Angle of repose 48.4° +£1.2° 46.6° +0.8°

Table 1.1. Definition of the rice type A and B.

If we go back to the question of whether granular media influence the pattern
formation, we can say that especially at the beginning of ripple formation
(Sect. 1.7) the leewards avalanche process around the angle of repose and
other complex intra granular interactions (see Sect. 1.2) play an important
role. The effect of grain size and angle of repose on the final wavelength
remains unclear. In the experiments of Betat et al. (2002) the measured angle
of repose for glass beads was around 30° (sand 32°) and the measured slopes
during the runs remain below this angle.
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Fig. 1.7. Time-averaged downstream velocity U and vertical velocity V' (Bennet
and Best 1995).

1.6 Fluid Motion

Many researchers (Nelson and Smith (1989), Yalin (1992), Bennet and Best
(1995), Nelson et al. (1995)) have investigated the interrelation between bed-
forms and flow structure. Their main focus was the measurement of average
flow velocities and fluctuations along a fixed bedform (cement). Figure 1.7
shows an average flow field over fully developed bedforms (dunes) . The flow
structure is schematically summarized in Fig. 1.8. Typically the flow over the
crest is accelerated due to converging pattern of streamlines. The turbulent
flow detaches at the ripple crest and creates a roller (characteristic recircu-
lation pattern) at the lee side before it reattaches at the stoss side of the
adjacent ripple. One can observe that the sediment transport ceases in the
separation zone and sediment is predominantly deposited.

Three regions of different velocity profiles can be distinguished: the inter-
nal boundary layer, the wake region, and the outer region above (compare
Fig. 1.8). A new internal boundary layer originates downstream of the reat-
tachment point and reaches its maximum size over the crest. Wake flow is
characterized by turbulence production one order of magnitude greater than
over the stoss side. Wake current speeds are extremely low and variable in
direction. The greatest downstream velocity occurs just prior to and at the
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Fig. 1.8. Schematic plot of the flow structure over a ripple.

separation zone point of reattachment

dune crest. The time—averaged vertical velocity over the dune crest is close to
zero (compare Fig. 1.7). The distance from the separation point to the flow
reattachment point is around 4 times the dune height. Whereas for a step,
the distance is around 7 times the step height which indicates that the stoss
side of ripples influence the detachment further downstream. From diffusor
experiments it is known that stationary flow detachment arises for angles ¢
(lee slope) greater than 10°. At ¢ < 5°, there is no detachment. For fully
turbulent flow, this behavior does not depend on the flow velocity (Cockrell
and Markland 1963).

The flow field sensitively depends on the present profile of the sand sur-
face and its roughness . Experiments suggest that roughness has a large effect
close to the bed, reducing the longitudinal and increasing the vertical dimen-
sions of turbulent structures (Pye 1994). At the same time, the surface profile
varies in time caused by the transport of sand grains. For a given average
fluid velocity the total surface resistance decreases with growing height and
length of the ripple (Li and Amos 1996). For increasing average fluid velocity
the total resistance of a sand surface grows until it reaches a maximum. After
this maximum the surface resistance decreases again and the transition from
dunes to antidunes is found (Raudkivi 1997). These observations apply to
averaged quantities, but some authors emphasize the importance of instan-
taneous turbulent events on the sediment transport and pattern formation:

Turbulence structures associated with the separation and reattach-
ment process significantly affect the sediment transport field with-
out much affecting the local bed shear stress. They do so by pro-
ducing high-magnitude, low—frequency turbulence events that vary
effectively sediment entrainment and movement. Significant peaks
in the spatial pattern of bed load transport are therefore produced
downstream of separation points, thus lending credence to the idea

11
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Fig. 1.9. Flow profile
of a sequence of events
during a burst cycle
according to Yalin
(1992). Ry and Ry
stand for the high—
speed and low—speed
regions occurring in
the body of the tur-
bulent shear flow. s
denotes the trajectory
of the eddy e. ¢’ and e”
are secondary eddies.

that flow separation plays a central role in the development of bed
forms (Nelson et al. 1995).

Such a turbulent event, called burst, is illustrated in Fig. 1.9. Grass (1971)
has demonstrated experimentally that bursts occur in any regime of turbu-
lent shear flow. Yalin (1992) assumes that a turbulent shear flow contains
in its body a series of large-scale high—speed and low—speed regions. He ex-
plains a burst event in the following way: eddy e (Fig. 1.9) is created at the
boundary of these regions. It is formed by both low- and high-speed fluid,
but the trajectory s lies completely in the low-speed region. During the pro-
cess the size of e increases continually and the high-speed fluid overtakes
the eddy through the gap between this eddy and the free surface (diagram
b in Fig. 1.9). Together with the secondary eddies e’ and e” a process called
ejection arises, which is able to lift up sediment from the bed surface. The
next stage is that the high—speed fluid will suddenly change its configuration
so as to overtake the eddy e by passing under it. This sudden and convective
flow of the high—speed fluid is referred to as a sweep, which is also able to
carry sediment from the bed.

The aim of the thesis is the parameterization of the important flow structures
with regard to the sediment transport. Therefore we focus mainly on flow
separation and reattachment. The influence of a single turbulent event as
described above is not taken into account.
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Fig. 1.10. Ripple development in the lee of an incidental ridge (profile from model
results).

1.7 Initiation

Sediment ripples in flumes arise if bedload is the dominating transport mode.
Bedload in contrast to suspended load means that grains are transported in
a thin layer over the bed.

The detachment of grains is due to the friction shear stress interacting
between the flow and the bed surface; their downstream motion is
due to the local flow velocities (Yalin 1992).

The beginning of turbulent fluid motion is not necessarily identical with the
beginning of ripple formation. Recent experiments focus on the question of
how to determine the threshold of sand movement. The growth of bedforms
is indeed only observable above the threshold of motion, but evidence shows
that pattern formation exists even before that in a range of grain size (Betat
et al. 1999). It is generally accepted that bedforms do not grow simulta-
neously. In fact the growth of one irregularity induces the development of
bedforms in downstream direction (Betat et al. 1999). The nucleation may
be due to local inhomogeneities in the sediment density or size, randomly
occurring turbulent fluid action, or inevitable deviations from a perfectly
smooth sand surface (Betat et al. 2002). A possible formation scenario is
described by Puls (1981):

The starting points for bedform development are small incidental ir-
regularities on a plane bed (height about one grain diameter). In the
lee of an incidental ridge, a small separation zone with increased tur-
bulent agitation develops. The material eroded in this zone deposits
further downstream, building up a new small ridge. In this way, a
range of elevations develop, whose wavelength A is relatively short.
In the course of times, A increases (compare Fig. 1.10).

The properties of the developed sand waves do not depend on the nature of
the geometric discontinuity. The observations show that the ripples grow fast
in height and length in the beginning and reach a kind of saturation, where

13
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they can be stable for a long period (Baas (1994), Southard and Boguch-
wal (1990)). In the beginning the temporal behavior can be represented by
exponential growth with a growth rate o (Betat et al. 1999):

Hppax(t) = Hpax exp(ot) (1.1)

The time to reach the equilibrium state increases exponentially with decreas-
ing flow strength (Baas 1994). The observations from Baas (1999) support
the statement that initial ripple length, defined as the dominant length of
the ripples to form first from flat bed, is largely independent of flow strength
and primarily a function of sediment size.

1.8 Migrating Ripples

There is still confusion as to whether ripples finally stop migrating down-
stream or not. Williams and Kemp (1972) observed stationary ripples: these
bedforms grew to a certain geometry and from then on remained stationary.
But this observation is not supported by any recent experiments. The mi-
gration could be very slow, as the example measured by Betat et al. (1999)
shows: ripples of mean amplitudes of 0.54 cm drift in equilibrium state with a
velocity of approximately 0.09% in a downstream direction (Baas 1993). For
transient isolated dunes of an approximate amplitude between 3 and 14 cm
Mohrig and Smith (1996) measured a migration velocity of 607, which un-
derlines the difficulties in interpretation of measurement in a natural environ-
ment far from equilibrium states. Carling and Gélz (2000) reported that the
measured bedload transport rates over developing dunes in the river Rhine
varies both spatially and temporally, over three orders of magnitude. But
nevertheless ripples are inherently downstream migrating pattern.

Ripple speed is found to vary inversely with height, so that small ripples
catch up with larger ones and merge into them (Hoyle and Woods (1997)).
The relation between the height of a ripple and its migration velocity is
known as the inverse relation and could be seen as the simple result of mass
conservation. If it is assumed that the volumes g¢ per width per unit time
of sand crossing the crest is deposited on the lee side of the ripple, then the
velocity of the ripple is given by

Inverse relation:
V== (1.2)

where H denotes the height of the dune (Nishimori et al. 1998). Only sand
caught by the lee face contributes to the migration of a single ripple, whereas
most of suspended load for example would not.

An important application area of ripple formation not yet mentioned is
the reconstruction of paleo—climate and determining the depositional envi-
ronment and history of sediments and sedimentary rocks. Only in cases where
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Fig. 1.11. Ancient
ripple marks preserved
in rock (picture from
www.geo.umn.edu)

the rate of aggradation is large compared with the rate of migration of the
bedforms can the bedform itself be preserved. It is chiefly the sorting, due
to size segregation of the grains carried down by the avalanches which allows
one cross—stratum to be distinguished from another. The sorting decreases
steadily as the period of avalanching falls within the intermittent range (Allen
1970). To relate the morphology of preserved bedforms (see Fig. 1.11) to in-
ternal structures and external flow conditions, it is necessary to know the
exact dynamic behavior of a ripple including migration rates and directions
(Rubin and Hunter (1982), Allen (1984), Allen (1970)). A time-dependent
model relating wind and sediment parameters to dune morphology would be
helpful for addressing questions regarding the efficacy of using the morphol-
ogy of existing dune fields as paleo—climatic indicators and for inverting the
aeolian rock record to determine the details of past environmental conditions
(Werner 1995).

1.9 Ripple Development

Figure 1.2 shows an attempt to classify bedforms. Southard (1971) chooses
the parameter mean flow velocity U and sediment size D. But it is still an
open question as to which parameter finally controls the ripple formation.
Since the ripple formation retroacts on the flow field it cannot be expected to
find parameters which fit likewise for initiation and equilibrium. One example
may clarify this point: Betat (1999) observed that the critical shear velocity
is more adequate to describe the beginning of ripple formation than a critical
Reynolds number (see definitions).

15
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Shear velocity (undisturbed):

Uly) : dow.nstream v.elocity (2]
Y : vertical coordinate [m)]

%—Z : is estimated by assuming a linear velocity profile U (y)
in the middle of the channel
v : kinematic viscosity of water at room temperature [m72]

Reynolds number: Dimensionless value, which denotes the relation be-
tween inertia forces and friction forces in a viscose fluid. It characterizes
the beginning of turbulent flow.

Re = — (1.4)

h, : water height

Betat reports that if the water height h,, is increased, the velocity U has
to grow accordingly to adjust the same shear velocity (shear stress) on the
bed. Thus, as the Reynolds number is not the appropriate quantity, there
seems to be no correlation between the beginning of turbulent flow and the
initiation of ripples. Furthermore the water height and the fluid velocity are
depending parameters, because one cannot be seen without the other. Leaving
the initiation process and considering subsequent ripple states, height could
gain importance and is no longer a simple scaling parameter, because it also
poses serious limitations on the pattern formation. Ripple dimensions become
controlled by flow depth if the form roughness of the ripples extends its
influence up to the water surface. At such shallow depths undulations at the
water surface induce extra turbulence which extends down to the bed surface
and accelerates incipient erosion of that surface (Baas 1994). Nevertheless,
above this depth the dimensions of ripples are independent of flow depth.
This example should underline the difficulties and the importance of finding
out significant parameters.

Recently, mainly the sediment size and the shear stress are believed to
dominate the equilibrium state of ripples. One experimental difficulty is the
fact that the ripple formation needs a long time to reach a final state. Betat
et al. (2002) measured already about 36 hours to identify a stationary state
with a specific wavelength and amplitude. It became unclear whether the
periodicity of the experimental setup had an influence on the selection of
the final wavelength or not (see Fig. 1.12). According to Baas (1994) the
time needed to develop equilibrium ripples from flat bed conditions is related
to an inverse power of the flow velocity, and ranges between a few minutes
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Fig. 1.12. Spatio-
temporal evolution of
the sand-water inter-
face along the circum-
ference of the channel
(Betat et al. 2002).
Counsecutive data sets
are separated 25 min
in time. The scale is
given at the left side of
the figure.
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at high flow velocities and days or weeks at low flow velocities. In most of
Baas’s experiments equilibrium height is reached earlier than the equilibrium
wavelength because the wavelength increases more slowly than the height,
particularly in the early developmental stages.

Figure 1.12 shows developing ripple profiles over time, resulting from the
experiments of Betat et al. (2002). The ripple evolution is easy dividable
into a transient regime, where ripples grow, diminish, and merge and into
a stabilizing regime, where ripples drift slowly in the downstream direction
without significant changes in the mean ripple amplitude. The procedure of
stabilizing ripple height and ripple length could be understood in the following
way: First the shear stress acting on the bed causes a sediment transport along
the bed. The growing ripples are exposed to a drag force. The resulting form
drag stress 74, quotient of drag force and bed area, reduces the shear stress 7
on the bed surface, as long the total bed stress 7, = 75+ 74 is preserved. Thus
less sediment is transported along the ripples and they stop growing. Finally
the shear stress is just strong enough to keep sufficient sediment on the move,
that the ripples migrate only with stable amplitude and wavelength (Betat
1999). Another explanation is given by Nelson et al. (1993): The velocity
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Fig. 1.13. Left diagram: convergence of two ripples. Right diagram divergence of
a ripple according to Baas (1994)

near the crest increases the higher the ripple grows. They also observed that
the turbulence intensity is reduced over developed ripples. Both effects tend
to move the maximum of sediment transport towards the crest. Ripples stop
growing if the crest corresponds to the area of maximum sediment flux. Then
increasing flux on the stoss side of a ripple generates erosion and decreasing
flux behind the crest deposition, whereby only migration is possible.

The evolution of ripples in the transient regime exhibit ripple interaction
like merging. Baas (1994) observed similar processes in his open channel ex-
periments (compare Fig. 1.13). He reports that the generation of new ripples
occurs by the splitting of one slip face into two separate slip faces, and by
sediment redistribution through local erosion and deposition on an anoma-
lously long flat bed section. According to Baas (1994) the merging of ripples
is an effect of different velocities and sheltering (named shadowing here). If
a little and therefore faster ripple approaches another ripple, the fast ripple
does not simply merge into the slow ripple; since the slow ripple is sheltered
by the first, it loses sediment due to additional erosion and thus it’s veloc-
ity increases again. It depends on the balance between the velocities if the
shadowing ripple is able to overrun the sheltered ripples.

Patterns in three dimensional experimental setups (Sect. 1.2) are more
complex. Measured values like ripple height, wavelength, and ripple velocity
vary in strength over time and are generally more difficult to determine. A
frequency distribution of the heights and wavelengths of three dimensional
equilibrium ripples measured by Baas (1994) is plotted in Fig. 1.14. Since
the ripple dimensions changes, even in the defined equilibrium, they are often
named quasi-stationary. According to Baas (1999) ripples evolve to a quasi—
stationary equilibrium in the following manner: current ripples (median grain
size of 0.095 mm) always attain a linguoid plan morphology with constant
average height (13.1 £ 0.6 mm) and wavelength (115.7 £+ 2.4 mm) (compare
Fig. 1.14). The pattern formation pass through four stages: (1) incipient rip-
ples; (2) straight and sinuous ripples; (3) non—equilibrium linguoid ripples,
and (4) equilibrium linguoid ripples (see Fig. 1.15). Baas (1999) report that
every ripple shows a cyclical development. The height of a ripple develops
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Fig. 1.14. Distribution of height (left diagram) and wavelength (right diagram) of
equilibrium ripples (Baas 1994)

Fig. 1.15. Three di-
mensional pattern for-
mation.

Straight Sinuous Linguoid Lunate

from zero towards a maximum value, and thereafter decreases again towards
zero. This birth and death process is not identical for every ripple. This
is caused by the influence of adjacent ripples that shelter downstream rip-
ples in certain cases, and enhance downstream ripple development in others.
New ripples form constantly, while existing ripples disappear. This described
behavior is apparently not observable in the experiments from Betat et al.
(2002) Fig. 1.12 and seems to be a feature of a complex three-dimensional
ripple field.

Experimentally it is not clear which parameters could describe the final
state, thus are important for the wavelength selection. Baas (1999) observed
that the equilibrium ripple size and flow strength are independent. Theoret-
ically there exists different opinions about the connection between the final
wavelength of ripples and the mean particle size d (Mendoza and Zhou 1999).
According to Yalin (1992) the wavelength of fully developed ripples obey the
following relation:

A=~ 1000d (1.5)

Raudkivi (1997) found for equilibrium wavelength
A~ d*3 (1.6)

and in the beginning of ripple formation A ~ +/d. The truths about the
right parameter, which finally controls ripple wavelengths, are not found yet.
This gives reason to further experiment work, where especially modeling ap-
proaches could provide insight in the relevance of parameter.

19






2. Models

The models we are dealing with focus on questions about wavelength selec-
tion, development and interaction of ripples, and stability of the final state.
As examples, this chapter introduces three different approaches to model such
pattern formation. A common feature of all the approaches is the need for
a parameterization f of the sediment transport along the bed surface. They
differ in the way of relating the sediment flux to the bed structures. Nishi-
mori and Ouchi (1993) and Werner (1995) experimented with height f(H)
and slope f(VH) dependent approaches. A central question is, if the param-
eterization could simply depend on locally determinable (i.e., differential)
surface attributes, or if non—local influences have to be considered.

2.1 Cellular Automata Models

A cellular automaton is a system which is discrete concerning space (cellular)
and time, and whose evolution through time is defined by some rules and
takes place in discrete steps (automaton) which are not necessarily linked to
time in the physical sense (Hergarten 2002). However, it is often possible to
find a transition between a discrete cellular automata model and a continuous
formulation.

A cellular automata model was used by Nishimori and Ouchi (1993) and
Werner (1995) to investigate ripples formed by wind—blown sand. This model
is called coarse grain models, because one cell of the lattice corresponds to
an area of the ground sufficiently larger than an individual sand grain. In
other words it contains more than one sand particle. At each cell a field
variable H;; is allocated to denote the average height of the sand surface
within the cell. The evolution of H;; at one time step does not express the
movement of individual sand grains. It rather describes the resulting surface
height change after the collective motion of many grains during the unit time
period. The time step has to be sufficiently shorter than the characteristic
time of a ripple formation but much larger than the time scale of individual
sand grain dynamics (Nishimori et al. 1998).



2.1. CELLULAR AUTOMATA MODELS

2.1.1 Nishimori and Ouchi (1993)

The model developed by Nishimori and Ouchi (1993) has some similarities
with the approach presented in this thesis (Chap. 3): the degree of abstraction
in determining the parameterization of the sediment transport, and the way
to sum up the processes which destroy pattern in a diffusional term. However,
since their model concerns wind generated ripples, the transport mechanism
differs in detail (Sect. 1.4). Their attention is mainly turned to the onset
mechanism and the wavelength selection of ripple formation. Nishimori and
Ouchi (1993) identify two main kinds of processes: saltation and creeping. In
creeping they also include grain movement by gravity force, when the gradient
of the sand hill where a grain landed is too steep for it to keep its position. To
realize the saltation process within the rules of a cellular automaton, a jump
length L is introduced. Nishimori and Ouchi (1993) propose two different
approaches to couple the saltation length L with the relief:

1. Small scale dynamics f(H):

L = Ly+bH(z,y) (2.1)

qg = const

The jump length depends only on the surface height H(z,y) i.e. the
higher a sand particle starts the further it will fly. Ly is a parameter
proportional to the shear stress of the wind at the sand surface, or more
precisely to the friction velocity of the wind on the sand surface (Kurtze
et al. 2000). The quantity b in general depends on the average drag force
on the grain. g denotes the height transfer, which is here preserved in
each time-step.
2. Large scale dynamics f(VH) (Nishimori et al. 1998):

L = «[tanh(VH(z,y)) +1]
g = P[1+e—tanh(VH(z,y))] (2.2)

a, B, and € are positive constants. The parameter ¢ is the minimum
quantity of sand that is displaced by saltation. The mathematical form
tanh(V H(z,y)) of those relationships assumes that the local slope mainly
controls the granular transport and tries to map the following observa-
tions: compared to a flat area the wind velocity increases on the stoss
side of a dune and decreases at the lee side. Around the crest a sharp
peak of the wind velocity is observed. In spite of Eq. 2.1, the average
transport length L now decisively depends on whether the starting point
is on the stoss side or one the lee side of the sand hill (see Fig. 2.1).

Both approaches use the assumption, that the topography of the landing
point of grains can be ignored. The information at the takeoff point other
than the surface height or the surface inclination are ignored as well. This
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Fig. 2.1. Saltation
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assumption roughly holds if the features’ scale is smaller than, or at most the
same as, the scale of saltation. This is just the case for wind ripple formation.

The creeping process is implemented by a diffusional term. This flux is
the horizontal component of the flow which is assumed to be proportional to
the gravitational force along the slope (Hoyle and Woods 1997). It does not
include any bias motion in the direction of the wind. The complete model
equation is based on a local conservation law of the amount of sand in the
coarse grained space mesh. Thus it reads:

OH, . ¢
5@ =41 N

incoming flux

— N +DAH(z,t)  (2.3)
—_ | Y=

outgoing flux diffusion

where ¢ denotes the z coordinate of the takeoff point of the grains which
land at z. Between z and ¢ the relation z = £ + L(H(£)) is assumed. A is a
scale parameter and D is the rate of relaxation, also called diffusivity. The
diffusion allows grain flux in y—direction, too. It is the only two dimensional
interaction in this model. Any transport due to saltation is in x direction.

Model One reproduces two important kinds of behavior: first, ripple pat-
tern forms spontaneously, independent of initial starting conditions and reach
a stationary wavelength; second, the model shows threshold behavior, when
wind force exceeds critical value. A weakness of the model is the non—physical
result that while the sand grains are blown downwind (saltation to the right)
the ripple pattern itself drifts upwind (simulation example Fig. 2.1.1) Kurtze
et al. (2000) performed a linear stability analysis of Model One and found
out, that the wavelength of the marginal mode, where the growth rate is just
zero, is somewhat longer than the flight distance of a grain in saltation. In
nature the observed saltation lengths are found to be much longer than the
ripple wavelength (Sect. 1.4).
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2.1. CELLULAR AUTOMATA MODELS

before

which is
being completely absorbed by the larger, reaches the crest of the latter, is

bl

One. The profiles are plotted
sequentially in time by an off-
set. The ripples are moving to
the left (upstream). The initial
field variable h(x) is set ran-
domly with sufficiently small
fluctuation around the aver-
aged initial value h = 0. Pe-
riodic boundary conditions are
used.

Calculated profiles of Model
when a small isolated dune catches

up with a larger and slower dune: One is the perfect absorption of the smaller
dune by the larger one. Through this process the average size of isolated
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Fig. 2.2. The effect of the diffusion is that the local height of a sand hill is relaxed

by gravity with a speed proportional to the convexity of the sand surface.
Model Two (Nishimori et al. 1998) shows more interesting dynamics. Two

dunes in the system increases. The second type is called tunneling,
described as follows: the smaller dune climbs up the larger dune and

types of collision could be distinguished
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pushed forward, and eventually escapes from the lee side. A similar process
could be observed in our model before converging of ripples (Sect. 5.6). In
nature this process is not clearly confirmed, neither for wind nor for water
generated ripples.

Caps and Vandewalle (2001a) performed extensive simulations by varying
the parameters a, 8, D and € (Eq. 2.2, Eq. 2.3). They report: modifying «
changes the mean ripple wavelength, while D affects the ripple index. The
values taken by 8 and e determine whether or not ripples appear. The de-
tailed shape of the dunes depends on the combination of L and ¢ which are
experimentally difficult to observe separately. According to Caps and Vande-
walle (2001b) the model leads to the unrealistic feature, that ripples become
infinitely high, a problem which have arisen also in our first model (Sect. 2.3).

2.1.2 Werner (1995)

Werner and Gillespie (1993) claim that the evolution of wind ripples and
other physical systems of this type cannot be modeled by either deterministic
methods or spatial continuum methods. Within the developed worm model,
they investigate the question, if the ripple scale evolution is dominated by
the interaction and merging of ripples due to different translation velocities.
Small ripples travel faster than larger ripples (Eq. 1.2). Their worm model
predicts that the ripple height H (identified with the length of a worm), and
therefore the spacing (for a constant shape), increases logarithmically with
time. Thus they also grow infinitely.

Werner (1995) proposed another more detailed model here, the so called
"slab model" for eolian dunes, where sand is transported in slabs, which
consist of many grains. One grid spacing of the square lattice is equivalent to
the slab size and the surface elevation is proportional to the number of sand
slabs at a lattice site. As a constraint the angle between adjacent lattice sites
cannot overcome the angle of repose set to 30°. The time evolution rules for
this cellular automaton are as follows:

— One randomly chosen slab is moved a specified number of lattice sites [ in
the transport direction and is deposited at this site with a probability that
depends upon the number of sand slabs there. If the slab is not deposited,
then it is repeatedly moved [ sites in the transport direction.

— To keep the inclination between two adjacent lattice sites less than the an-
gle of repose, slabs are moved down the steepest gradient until compliance
is achieved. This allows also slab movement perpendicular to the transport
direction.

— For some simulation, Werner includes a shadow zone (to our knowledge he
is the first), which means a zone behind the dune crest, where no sediment
transport occurs.

To characterize the simulated dune fields Werner chooses two variables: dune
orientation, angle relative to the mean transport direction and the number
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Fig. 2.3. Results from Werner (1995): Simulated barchan dune field. The arrow
indicates the transport direction.

of dune-crest terminations (see Fig. 2.3). As both values tend to zero during
time, which means linear dunes, and because this evolution is independent
of the initial condition Werner concludes that this is due to the existence of
a single attractor in the phase space of the system .

Both models describe situations, which are not found in natural environ-
ment. The worm model includes the assumption that there is unlimited sand
supply and the slab model presumes one transport direction. Nevertheless
these constraints are theoretically conceivable and show important features
of the physical system behavior.

2.2 Semi—Empirical Model

The title indicates models, which contain empirically found relations. This is
the case for an approach proposed by Andersen et al. (2002). They consider
the wavelength selection mechanism of vortex ripple in sand (Sect. 1.3) to
be one-dimensional. Therefore, they start with a discrete equation for the
wavelength A;. The change of one ripple wavelength J\; is, according to this
approach, only a function of A; itself and the length of the neighboring ripples:

P = [ 0) +2f ) — Fye) (2:4)

The interaction function f()\) describes the transfer of mass between neigh-
boring ripples and is extracted from the data analysis of experimental runs.
Ripples, which reach zero length are removed from the system of equations.

The model is able to reproduce coarsening and saturation at a finite wave-
length. Concerning vortex ripples, this is a nice reduction of complexity. Since
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the shape and the growth of vortex ripples is assumed to be limited only by
the angle of repose, the reconstruction of the full ripple profiles is easily
done. Unidirectional current ripples are neither depending only on the close
neighbors nor is their shape determinable through the known wavelength.

2.3 Continuum Model

Our approaches are continuous, which means we are able to formulate a
continuous model equation in space and time, independent of any special
cell size. Nevertheless the models are also coarse grain models since we do
not care for single grain dynamic. In fact the particles transport is described
on a “sand packet scale”. The model proposed in this thesis is based on the
ideas developed for our former two-dimensional model (Kiipper 1999). Thus
we start our investigation here with this former approach. In doing so we
explain the reasons behind some basic assumptions, which are parts of the
actual model too, and we will later on only refer to this section.

In addition to the approaches mentioned above, we also concentrate on
the sediment transport along the bed surface, without modeling the fluid flow
separately. The challenge is then to find a appropriate parameterization of the
impacting fluid flow, in relation to surface properties. The results of our early
numerical experiments confirm the idea to include non—local effects on the
relationship between surface form and sediment transport. Thus our param-
eterization f is always a function of another more complex stream/shadow
function W/S, which itself depends non—locally on the bed relief. Principally
we divide the dynamical processes acting on a river bed into two types:

1. The advective process, which creates patterns. This includes mainly the
average transport effect of the special water flow structures over bed-
forms.

2. The diffusion process, which destroys patterns. This process includes
transport due to gravitational force as well as irregular bed particle mo-
tion, due to turbulent fluid flow. In detail these fluctuation effects around
the average motion are due to turbulent changes in fluid directions, irreg-
ularities of the ripple surface, etc.. This process is assumed to be diffusive
(Nikora et al. 2002).

In the former model we use the two—dimensional master equation for com-
puting the changes of the surface height to model the advective part of the
pattern formation (Kiipper 1999):

%H(m, D=V ( / vy, ) wly, @, 1) 2y — u(w,t)) (2.5)

v(x,t) is the number of saltating particles per area and time starting at the
location x at the surface; w(y, «,t)d?z is the probability that a particle that

27



2.3. CONTINUUM MODEL

28

starts at the location y lands in the interval [z, z + dz|. The first term at the
right hand side of Equation 2.5 describes those particles which start at any
location and touch down at x, while the second term describes the particles
starting at x.

Actually saltation is not present in water environment, because of the
absence of elastic collisions. Nevertheless some authors also use this term for
fluid generated transport. Here the meaning of the term is more a variable
transport length (capacity) than really jumping and repelling particles. Due
to Equation 2.5 the sediment transport vary with the number of entrained
particles v(x,t) and with the distribution of saltation lengths w(x,y,t). As a
first approach, we choose the saltation length to be constant and consider the
influence of the fluid flow in the term v(x,t) which is exclusively depending
on the current bed topography.

2.3.1 Lee/Stoss Effect

The basic idea is to describe the number of moved particles along the sediment
bed as a kind of shadowing: for example, the shadowing is relatively strong in
the separation zone where the sediment transport is reduced in consequence
of the upstream ripple crest, whereas the shadowing effect ceases behind the
point of reattachment (see Sect. 1.6). Thus the sediment transport at the side
x depends on the situation further upstream and is therefore non—local .

For the sake of simplicity the average transport direction is chosen parallel
to the z-axis of the lattice. We assume that due to the shadowing mechanism
the number of moved particles over ripples is reduced compared with the
number of moved particles over a flat bed. We parameterize this behavior
with the water stream function W (z) which varies between zero and one, so
that the number of moved particles can be determined as follows:

v(z,t) = vy W(z,t) (2.6)

where v is the number of moved particles for a flat bed. The function can
be obtained by applying variational calculus:

W(z) = [1 - % min (Ce[glnaa}ﬂs,x]{ - u'(C)})] (2.7)

u>H +
ueC’

u(wmaz):Hma:v

with u as shown in Fig. 2.4. [ ] 4+ denotes the positive part of the term in brack-
ets. The function W assigns each point of the surface H(x) to the derivative
of u(z) (see Fig. 2.5). A is the steepness of u(z) where the particles are not
moved any longer and W is equal to zero. According to W the sand trans-
port decreases at the lee side of a ripple and increases at the stoss side of the
adjacent ripple. As mentioned above, we assume that the saltation length
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Fig. 2.4. Illustra-
tion of the variational
calculus to obtain
the shadow function
W (z). The three plots
shows possible con-
H(x,y;t) nection curves. The
thick black lines de-
notes the sides, where
the negative deriva-
tive of u(&) reach the
maximum. The mid-
dle curve solves the
variational calculus.

Fig. 2.5. Resulting
discrete distribution of
the derivative of u(x)
(Definition of u(z) see
Fig. 2.4) along the
surface H (z) after the
variational calculus.

[ of the particles is constant. Thus the correspondent probability function
w(y, x,t) has the shape of Dirac’s delta function 6(x —y —le;) and Eq. 2.5
turns into:

- VV0-<W(:c—le1)— W(w)) (2.8)
Deposition  Erosion

Hence the alteration of the sand bed height is given by the difference between
the number of incoming and outgoing particles.

2.3.2 The Diffusional Processes

Equation 2.8 describes a process that creates patterns due to the lee/stoss
characteristics. However, ripples observed in nature reach a quasi—stationary
state with a limited height of the crest after a transient process (Baas 1999).
Hence, besides constructive processes, there are also destructive influences
that smooth the bed surface. We identify the following behavior: the steeper
the slope, the larger the number of particles which move downhill due to
rolling; moreover, avalanching occurs if the slope exceeds the angle of repose
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Fig. 2.6. Influence of
diffusion on a constant
sediment transport
downstream. Longer
jumps indicate higher
sediment flux.

(for sand = 32°). Both processes are described by a diffusional approach for
the stream density:

2.9
0 else (29)

@t - { —D(\VH|—tan<p)|g—g if |VH|>tanep
with ¢ as the smallest angle, where rolling occurs. D denotes the diffusivity.
The impact of the diffusional stream on the total sediment transport is shown
in Fig. 2.6. Assuming a net sand transport to the right, the diffusion reduces
the flux uphill and enhanced downhill motion. By putting Eq. 2.8 and Eq. 2.9
together, we yield eventually the governing equation of the model.

OH

S = —divia+ Vi (W(m —le) - W(m)) (2.10)

2.3.3 Results

To illustrate the capabilities of the model, we perform an exemplary simula-
tion experiment (see Fig. 2.7): in the initial state we assume that the sediment
bed has small random fluctuations in height. After some time, ripples begin
to grow and migrate downstream, whereby little ones are captured by bigger
ones. The patterns are 3-dimensional and all crests are lunate. We observe
in our simulations that the development of the ripples continues until one
ripple occupies the whole model region. Then only one large ripple remains
and stops growing if it covers the whole sand bed (Hergarten et al. 2003).

Even if the morphology of ripples is very well reproduced by our model,
the system behavior in the long run is not in agreement with experimen-
tal observation about the final state (Sect. 1.9). Hence further development
is necessary (see Chap. 3). More precisely, the parameterization has to be
revised. The disadvantage of the chosen stream/shadow parameterization is
elaborate numerical formalism. In some extent the discretization is very spe-
cial. A difficult question to answer in this context is, where does the shadow
exactly start on a discrete grid? Is the cell which includes the crest inside, or
outside of the shadow region, or in both? A plausible but not sole solution
is described in Kiipper (1999). The threshold behavior of the diffusion (limit
angle ¢) shows also some surprising effects. It was thought to preserve edges,
because the existence of sharp crests are necessary for this kind of shadow
parameterization. A look at Fig. 2.7 especially the later stages shows some
edges on the stoss side in y—direction, which are artifical effects.
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Fig. 2.7. Ripple development; | = 1 x grid spacing, D = 10, Vo = 1, k = 1,
¢ = 0.1, periodic boundary conditions.
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2.4 Evaluation of Models

The models mentioned above are often called “Toy Models”, because no ex-
perimental data is fitted by the numerical results. Another severe problem
consists in the fact that the unknown model parameter are not accessible
in experiments (in the sense that one can measure them independently). So
what is the essence of these type of models?

Many authors evaluate their results through the similarity between the
morphology of simulated patterns and the naturally existing patterns. This is
dangerous, because as we learned during model development, there are many
ways to create patterns resembling natural examples. Nishimori et al. (1998)
show the linear increase of the dune migration velocity with decreasing dune
height. Such observable dynamic characteristics tell more about the truth
of model behind the simulation than the static morphology. Therefore the
evaluation of our model is mainly based on the dynamic behavior. Otherwise
the shape of simulated ripples could sometimes be helpful to calibrate model
parameter (Sect. 5.4).

Another justification, which is brought up, is the fact that toy models can
be used to simulate long term dynamics and answer questions regarding the
development of system states. It is experimentally very difficult to achieve
such situations in a natural ripple system.



3. Theory

Our new approach is a continuous sediment transport model similar to the
former model proposed in Sect. 2.3. It is reduced to one dimension, because
this allows deeper insight into the processes and into their mathematical
features. The main idea is still to consider the influence of the fluid flow in
terms which are exclusively dependent on the current bed topography. The
new aspect is another even more simple approach for the shadowing S, which
could be formulated in its own differential equation.

3.1 Basic Approach

We again concentrate on the coupling between main fluid flow and surface
attributes. Locally determinable surface characteristics are the heights H (z)
and their derivatives. We consider the relation between the averaged flow
and the surface curvature i.e., aa—;zH (compare Figure 3.1). The average fluid
stream is at pains to follow the surface shape “as long as possible®. If the
curvature is too strong (negative) the fluid flow detaches. This builds a sep-
aration area of reduced fluid motion, which we call shadow zone. Later on,
if the strong curvature has decreased, the main flow reattaches at the bed
surface again. This behavior leads us to the assumption that the change of
shadowing S along the relief is as a first approximation proportional to the
surface curvature. This holds only insofar as the curvature is negative:

fi) 5?2
~ &S ~ [

where [ ]_ denotes the negative part of the term in brackets.

The degree of flow detachment and hence shadowing is also dependent on
the upstream scenery. If a big ripple lies in front (further upstream) of a
little one, the detachment at the second is weaker. A change in S(z) depends
therefore on the current shadowing, which could be interpreted as a memory
value of the processes further upstream. The shadow decreases and thus the
full fluid flow recovers according to the existing shadow. This counteracts the
influence of the surface curvature on shadowing (opposite sign):

—25~8
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Fig. 3.1. Schematic
diagram to illustrate
the relation between
H the bed surface H(z)
and the shadow func-
tion S(z). The point
//\ of interest is the filled
circle. The thick black
Y line represents the area
which has a shadowing
effect on the point,

due to the negative
X curvature.

Putting both processes together we get a differential equation for the shadow
function S(z). For the boundaries we chose periodic conditions because our
considered calculation area L should be a part of a much longer bed region,

where stationary flow conditions are achieved and mass conservation of the
sediment holds.

29—y [g—H] XS with  S(z)=S(z+1L)

H(z): Surface height [m]
S(z): Shadowing along x
L : Calculation area i.e., periodicity
i 2 Influence of the negative curvature, called flow strength.
A: 1/Length where the influence of the curvature has
decreased in an order of e™* [%} . Here called inverse

shadow length.

If the fluid detaches due to strong curvature, sediment is deposited and
shadow increases respectively. The more the shadow changes along the sur-
face, the more sediment is deposited or eroded. To model the evolution of the
surface height through time we assume the mass conservation, which implies
that the total change of the surface H is equivalent to the local change of the
total stream (Eq. 3.2). Based on the shadow function the advective stream
Ja = Ja(S(z)) is defined as:

Advective stream:

ja = esmin_s with S € [Smina OO]

The reason for inserting S(z) in an exponential function follows from the
intention to define the sediment transport over a plan river bed equal to
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one. Thus any variation of the sediment flux due to shadowing will be in a
range between zero and one. With it we avoid negative advective streams and
back flow of sediment. Although back flow really occurs in the lee eddy of a
ripple, it is not considered here because our approach does not account for
the detailed flow structure of an eddy. Rather our parameterization of the
flow derives from the shadow idea, which allows only variation of the amount
of transported sand transport not of the transport direction. A principal
advantage of the stream based approach above is the fact that in contrary
to the former model, no discrete jump length is necessary now because no
difference is made between the amount of transported particles and their
transport length. This is a further simplification of the modeling approach.

The irregularities of the fluid flow, like local turbulent burst or the vertical
variation (see Sect. 1.6) together with the characteristics of the granular
media (avalanching effects on the lee side, see Sect. 1.5 and Sect. 2.3) are put
into the diffusional stream function j4.

Diffusional stream:
jo=—d2H (3.1)
d: Diffusivity [m—z]

S

In contrast to the approach of the former model the diffusional stream no
longer includes a smallest angle ¢, where rolling occurs. This simplifies the
numerics and the interpretation of the results a lot. The angle ¢ inside the
former model turned out to dominate the stoss slope near the crest as well as
it created artifical edges along the y—direction (see Sect. 2.3). Hence simply
introducing a limit angle into the system was not a way to map a behav-
ior comparable to the angle of repose. A feature which is important in the
beginning of pattern formation could be hindering in the later development
stage. The diffusional stream approach of the model is again very simple and
therefore poses no special limitation on the evolution of bedforms. For the
total bed surface changes the advective stream j, and diffusional stream j4
have to be added and inserted in the mass conservation equation.

ZH = =2 (ja + da) (3.2)

The complete set of model equations consists of two equations: the first de-
rived from mass conservation describing the surface evolution and the second
representing the important parameterization of the fluid impact in terms of
shadowing. It finally it reads:
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Fig. 3.2. Effect of
parameter y on the
resulting advective

Advective Sand Transport

weak shadowing stream j, over de-
| veloped ripples. The
— | base line is equivalent
\ i \ to jo = 0, where the

I shadowing reaches the
strong shadowing maximum value.

Fig. 3.3. Effect of
parameter A on the
resulting advective

shadowing of short range stream j, over de-
veloped ripples. The

|
. 1 base line is equivalent
\/ /.\f to jo = 0, where the
I shadowing reaches the
shadowing of long range maximum value.

Advective Sand Transport

Model equations:

SH = 2SS 1dlH (3.3)
29 — [63—;}1]_—,\5 (3.4)

Boundary conditions:

H(z)=H(z+ L) S(z) =S(z+ L)

Three diagrams Fig. 3.2, Fig. 3.3, and Fig. 3.4 show the influence of the
three parameters on the advective stream j, and the diffusional stream jq4
respectively. The proportionality factor u could be interpreted as the average
flow strength. If the flow strength is weak as in the laminar flow region, no
detachment occurs at irregularities, which results in no or weak shadowing.
As a consequence, the sediment transport hardly varies along the bed surface
(compare Figure 3.2). The other way around, if the flow strength is strong like
in the turbulent region, flow detachment is likely to occur at each obstacle.
Hence the modulation of sediment transport due to shadowing rises.

The parameter A quantifies the range of the shadowing. This is compa-
rable to the reattachment length observed in flume experiments. High values
correspond to short reattachment lengths. For low values the length to re-
cover j, completely increases accordingly (see Figure 3.3). The reattachment
length itself is not a simply measured quantity of the fluid flow. In fact it is
complex and depends on the shape of the detachment zone, on flow param-
eters (flow velocity, viscosity, density) and last but not least on properties
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Fig. 3.4. Effect of
Diffusional Sand Transport parameter d on the
resulting diffusional
stream function jq.

The base line is equiv-
alent to jq = 0, where
the derivative of the

L J J surface is zero.

on the sediment (McLean et al. 1994). Thus the parameter \ is difficult to
derive from naturally observable quantities. Nevertheless A is a important
model parameter, because it introduces a length scale. This length scale is
an outcome of the non-local approach in shadowing. The sediment transport
at the side z is strongly influenced by patterns further upstream and thus
not simply derivable from local surface attributes, such as height, slope, and
curvature.

The diffusivity d is also an average quantity and not easy to determine
from naturally measured values (Nikora et al. 2002). The effect of the dif-
fusional stream j4 is shown in Fig. 3.4. It acts in a isotropic way and since
the stream is proportional to the gradient the grains are transported always
downbhill.

3.2 Analytical Solution

It would be desirable to find an analytic solution of the model equation
system. But since Eq. 3.3 is a nonlinear partial differential equation this is
a “bold venture”. Equation 3.4 is more promising in finding a solution. In
the following a way to solve this equation numerically is explained. The next
section will present a concrete solution of the second model equation and also
one for the linearized first model equation.

If H(z) is given, Eq. 3.4 is an ordinary, linear, and inhomogeneous differ-
ential equation, whose solution is the linear combination of a solution of the
inhomogeneous part and the solution of the ordinary part. The boundaries
in our model are periodic.

26—y [ o’ H] ~AS(x)

827

inhomogeneity

~
with  S(z) = ¢(z) e

ordinary solution

25(z) = £p@) e —dp(@) e = —p [ 2o H| — Ap(a) e

dx2

37



3.2. ANALYTICAL SOLUTION

38

o(z) = —/u [a‘;’c:H] M da! + O (3.5)
0

From the periodic boundary conditions we can derive an expression for C. L
is the dimension of the calculation area and therefore equal to the periodicity,
which has to be fulfilled.

S(z) =S(zx+ L)
— oz + L) = p(z) e (3.6)

The differential Equation 3.4 can not be solved with periodic boundary con-
ditions if A is zero. Inserting Eq. 3.5 in Eq. 3.6 yields:

r+L T
- / ) [B‘ZQ,ZH] M dx' + C = —/M [aamz,zH] My +C | e
0 0
$+L 62 ’ z 62 ’
[ n [am,Q H] e dg! — Ju [WH] e dg! el
c= 0 - 0 -
o 1 —er
x+L 5 , z+L 5 ,
| n [6‘2,2 H] eMdr' — [ p [%H] e dg!
c— 0 - L -
B 1 —eM
L 2 ’
[ u [aiﬁﬂ]_ e d!
c="2 (3.7)

1 —er

We have to ensure e’ # 1 so that the denominator does not remain equal to
zero. This is surely true for AL > 0, as A and L are per definition positive. If
62

we know H(z) and thus [WH ] we are able to solve the shadow equation

through Eq. 3.5 and Eq. 3.7. However, for a fast numerical solution another
method is recommended. The one-dimensional, affine solution space can be
constructed without the need for considering the boundary conditions. At the
site = 0 the solution of Eq. 3.4 is S(0) = ¢(0) = C. C could be chosen here
arbitrarily. To solve now the differential equation we need two numerically
determined solutions, representing two points in the solution space. So the
whole solutions line can be constructed by linear combination. Suppose that
So(0) = 0 is the solution with the starting value C = 0 at the site 0. Sp(x)
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denotes the complete solution for C' = (. The same notation is chosen for
C =1, hence S1(0) and S;(x) respectively. The linear combination of Sy(z)
and S;(z) is then the general solution of Eq. 3.4.

S(x) = So(x) + 5(0) (S1(z) = So(x))

S(0) = C is free and has to be fixed via the periodic boundary conditions.

S(0) = S(L)
5(0) = So(L) + S(0) (S1(L) — So(L))
S(0) So(L)

T 1 (5:(L) - So(L))

(3.8)

Hence if two solutions Sp(z) and S1(z) are known, the entire solution is easily
found, remembering that periodic boundaries are required.

3.3 Linear Stability Analysis

The idea behind a linear stability analysis is to investigate how a stationary
solution develops if little perturbations are superposed. Little means in this
case in relation to the linearized model equations. Here we ask how an initial
flat bed behaves if a sinusoidal perturbation of any wavelength is added.
By considering the limits for long or short wavelength it is possible to get
information about which is the most amplified wavelength dominating the
solution and which wavelengths are damped. The following initial situation
is chosen where A denotes the amplitude:

H(z) = A— (3.9)
s 2rx

52 B SIH(T)

ox2 H -4 1.2

The known surface height H(z) is inserted into Eq. 3.7 for C. Since only
the negative part of the second derivative of H(z) is not equal to zero, the
support of the integrand extends from 0 to %
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sin( QWT‘”' )e e da!

I
=
b
S =l

C =

L2(1 — eMl)

Auxiliary calculation:

b
sin( 2z )eAxd.’B _ 1 AL? sin( 2z )eAx b _
L - 1 A212 472 L @
a

—pA < A qin(2 o |’ 1 2 o |?
C = =7 sin(Z7% e — 5= cos(F2)e
21,2 472 L 2w L L
(L4 51— ) \ T T a
. 7 and K = %
witha=0and b= 2 1+)21er2
L
142
_ _ K
C=-s{_L (3.10)
The next step is to compute ¢(z) via Eq. 3.5. Due to the behavior of the
cutoff function []_ it is necessary to split the solution into 0 < z < £ and
% <z <L.
L

X
p(z) = 44 /sin(zWT‘”')eM,da:' +C
0
o(z) = K(ﬁ sin(%Tx)e)“” — 27+L (cos(%Tx)e’\x — 1)) +C

It is now straight forward to compute the two parts of the full solution of
Eq. 3.4:
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‘ ‘ Fig. 3.5. Numerically
numerical result calculated S(z) in
analytical result ~ + .
initial condition - comparison to the

analytical solution

from Eq. 3.11 and
0.01 Eq. 3.12. The slightly

dotted graph is the

0.03

= £ corresponding initial
sinus H (z).
-0.01
0 w ‘ ‘ : -0.03
0 0.2 0.4 0.6 0.8 1

X
L
S(z) K<4>‘2 sm(z”Tm) — %LL (cos(%Tm) e_)‘w)> + Ce

—L 1\
S(z) = 25& >2‘—L sm(2Tm) — cos(2zZ) — =" v (3.11)
L
T> "y
AL

S(z) = (2fL (eT + 1) +C) e

AL 1 A

AL +e 2

A
S(@)=gge " ez +1 1_ e
A 1
_ e2 +

S(z) = — 5K e v y (3.12)

The graph plotted in Fig. 3.5 is an example of the solution of S(z) for the
corresponding initial sinus function H(z) (dotted graph). All calculations in
this section are performed with the parameter values denoted in table 3.1,
where N stands for the number of grid points. Figure 3.5 clearly shows that
the periodicity is satisfied at the boundaries x = 0 and £ = L = 1 and that
S(z) is always positive. The analytic solution and the numerical solution are
in good agreement which proves the correct implementation of Eq. 3.4. The
shadowing reaches its maximum just behind the maximum surface height.
This reflects our view of the shadowing effect that behind a crest (obstacle,
hill) the flow is shielded whereby sediment transport diminishes. If A increases
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N [p|[Xx] d][L]
1000 [1]5]01]1]

Table 3.1. Chosen parameter for numerical simulation in Fig. 3.5 and Fig. 3.6.

the length of the shadowed area is reduced, which leads to a lesser shift
between the maximum of the shadow function and the maximum of the relief
height. To verify this behavior we compute the maximum of S by setting %S
equal zero in Eq. 3.4. Afterwards the limit A — 0o is examined to find out
the minimum distance between the two maxima (see above). Considering the
solution of S(z) it is clear that the condition 2 S = 0 can only be met in the
region x < %

0=—p [3—2H]_—/\S

oz
L
=AL 1
A - T : i T — e 2 + \
0=t sin(22) — 2 [ 3% sin(252) — cos(22) — e €2
—AL 1
. _ e 2 +
0= 27&— sm(zWTm) +COS(27rTm) + e PV (3.13)
in the limit A — oo
2rx L
0=cos(%) = =z= 1 (3.14)
Hp,.x is reached here for an initial sinus at the side z = %. Hence from

Eq. 3.14 it follows that the distance between Sy, and Hy,,, tends to zero
for high values of A, which proves the decreasing shift between both max-
ima with increasing A. In nature a short distance between flow detachment
and reattachment causes only a weak modulation of the sediment transport,
if anything. Our model also produces only small structures for increasing A
thus short reattachment lengths (results see Sect. 5.4.3). However, a kind
of detachment always occurs in our model if the relief surface has irregu-
larities and therefore locally negative curvature (concave). Experimentally
detachment shows a threshold behavior (Cockrell and Markland 1963). The
simplicity of our model does not account for this.

To complete the linear stability analysis we have to insert the computed
S(z) in the linearized Eq. 3.3 for the evolution of H(z). The first order
approximation of the exponential function is 1 + Sy — S. Thus Eq. 3.3
reads:
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06 0.03 Fig. 3.6. Numerically
’ numerical result ' calculated £ H in
analytical result ~ + . at
initial condition H(x) comparison to the an-
0.4 : .
alytical solution from
Eq. 3.15 and Eq. 3.16.
0.2 q001 The dotted graph is
_ . the corresponding ini-
E £ tial sinus H(x). The
used parameters are
02 0.01 denoted in table 3.1.
0.4
0.6 : : : : -0.03
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2

Substitution %S by Eq. 3.4 leads to:

SH= |2 H| —\S— 44sin(22)

It is again necessary to consider the two parted solution of S(z), due to the
cut—off function.

8
IA
no|t

T >

|t

S H =ty sin (22) — \S — 44 sin (212)
7
ot = 8 (B 4) n () G con ()
+ 472
N ~ J b
a
53 1
e 2 + AK A
vl 757 o (3.15)
N—— b
oe
A 1
8 17 _ AK e2—|—\_>\ Ad o (2
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Fig. 3.7. Three si-
nusoidal starting con-
ditions of different
wavelengths in com-
1 parison to the belong-
ing shadow functions.

0.5

o

S(x), H(X)

-0.5

The graph plotted in Fig. 3.6 is a calculated example of the term %H . Nu-
merical and analytical results do not differ much for little time steps. It is
perhaps surprising that the point where most sediment is deposited, lies be-
fore the highest point of the initial relief which entails a backwards moving
structure. This is due to the strong dependence on the first derivative of
S(z). It is not an unphysical result, because it is often observable that if
the flow hit an irregularity the sediment is deposited in front of the crest,
so that the whole structure moves first backwards. While the shape becomes
more asymmetrical the structure starts moving downstream. In contrast an-
tidunes , backwards migrating bedforms, have very symmetrical shapes, but
in a longer run we do not find any stable backwards moving ripple structure
as a result of our model.

Most of the graph in Fig. 3.6 is in a region of erosion (means %H < 0),
where the structures decays. This is because it has been calculated with a
small diffusivity d. Larger diffusivity will produce more deposition, due to
the convexity of the relief and higher erosion due to concavity, so that the
second part (z > 0.5) of the plot would be able to overcome the base line
and structures would grow there.

The central aspect of the linear stability analysis is how the wavelength
of the starting relief influences the results. Figure 3.7 shows three initial sinus
functions of different wavelength together with the belonging solutions S(z).

The plots show clearly that the maximum and minimum of the shadow
function increases if only the wavelength is reduced. This is also confirmed
by the plot of Fig. 3.8, which shows the development of the relative maximum
height of S(z) and its position z(Hpyax — Smax) in relation to the maximum
surface height H,,,,(z). The distance between both maxima tend to zero for
longer wavelengths L. This can be derived as follows: from Eq. 3.13 results
for L — oo that the shadow extrema fulfill cos(222) = e~**. The exponential
function tends quickly to zero and intersects the cosines near its zero point
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‘ ‘ 02 Fig. 3.8. Maximum
X(Hmax-Smaxj/L - of S in comparison

] to the wavelength L.
The function f(z) =
0.16% illustrates a
similar evolution. The

18

a other plot shows the
é S development of the
* relative distance (right
axis ¥) between Hmax
and Smax in relation to
041 1 0.04 L.
02 | S i
0 : ‘ i 0

(z = %), especially if L is increased. Since the surface height is also maximal
at the site x = % the distance to the maximum of the shadow function tends
to zero for increasing L.

The values of S,y itself are inversely related to L. This is comprehensible
if we remember that S is according to Eq. 3.4 approximately proportional
to %H . Since the first derivative depends itself inversely on L (compare
Fig. 3.9) this implies that S ~ .

Fig. 3.9. Schematic
plot of a relief struc-
ture with decreasing
wavelength and the

effect on the deriva-
tives. The amplitude
is preserved. The first

derivative grows pro-
portional to % and
| the second derivative

L L/2 proportional to 7.

Further on because %H is proportional to 6—‘15 the grow of the surface
height through time is in first order approximately proportional to %

To clarify the dependency between growth rate and wavelength let us
come back to the question of whether we could find some information about
the stability of the model solutions. Only solution modes which are amplified
contributes to the final solution. Therefore we need a quantity to measure
the growth rate. Very similar to the derivation of the migration velocity
(see Appendix A) we can define a growth rate, which is also based on the

correlation function.
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Grow rate:

(3.17)

The following calculation consists of inserting H(x) and %H and solving the
integral again for two ranges 0 < z < % symbolized with the superscript —,
and % < z < L symbolized with the superscript +. It is reproducible with the
help of the auxiliary calculation (see below) remembering the abbreviations.

Tz < %
L
2
of (a sin (%Tx) + bcos (QWT‘”) + c—be—M) sin (27r_:v) dr
v, = -
e [ (42) do
o — 27%a 4dmc™ b (e AL N 1)
T4 A
x > %

: — = +
with vy = vy + g

d
v, = 21> (% - ﬁ)

Resubstitution of the abbreviations:

2
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Fig. 3.10. Relief maxima in space and time. The horizontal axis represents the
spatial coordinates z and the vertical axis the temporal coordinates ¢. The upper
curve is calculated for 4096 grid cells and the lower curve for 8192 grid points. The
initial profile is a sinus with one period on the grid length L = 0.1.

As expected, the growth rate depends in the linear approximation inversely on
L2. The amplitude A does not appear in the term, because the relative change
of height is independent of the initial amplitude. The difference between u and
d determines mainly whether in the beginning a structure grows or decays.
Equation 3.18 gives a limit for the longest wavelength L to which L could
grow. For this we have to set the growth rate equal to zero:

27
vy =0 > Lpax= 2“—d—

The existence of a limit wavelength in the linear approximation signifies
that in the early stage perturbations have no infinite range. Ly ay ~ % means
that the faster the shadow decays proportional to A, the smaller the longest
wavelength which just grows. But Eq. 3.18 contains no limitation for de-
creasing wavelengths. Even worse the smaller the wavelength L, the higher
the growing rate. Thus it is inevitable that in the region where the linear
approximation holds the numerical solution which depends on the grid res-
olution. Figure 3.10 shows this dependency on two simulations. The lower
graph is calculated for 8192 grid cells and the upper one for 4096 grid cells.
Both show the spatiotemporal development of the relief maximum, beginning
with the initial sinus function. In the longer run the graphs are very similar
to each other, hence independence of the grid resolution. In the early linear
stage the number of perturbations in the case of 8192 points is twice as much
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as for 4096 points, which proves that the strongest grow of the shortest pos-
sible wavelength. This attribute of the model equation is surely unphysical.
Though the behavior is quickly caught by the non-linearity, the physics in
the early stage has to be considered deeper in further work.

Another point which could be investigated with the help of the linear
approximated solutions, is the question of whether surface patterns could
move or not. To compute the migration velocity v,, we have to cross correlate
the solution of %H with %H . The definition reads (see Appendix A):

Migration velocity:

— f 2 H(z,t) 2 H(z,t)dz

T (a—axH(x, t))2 dx

Again we consider the two parts of the solution separately and utilize the

periodicity.
xz < %
L
2
of (asm (27) + bcos (27) +c be™? )cos (275”) dz
UV, = T
27% fcos2 (2”) dz
_ _7rbL ¢~ bAL? _AL 1
m =Ty ar (14 %5) )

Auxiliary calculation:

5 PR
/cos2 (27L””) de =%+ 8L sm(4L ) 02 =7

0

L

2 L
/sin(ZEx)cos@gw) dr = Lsin® (22)|* =0
0
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L
2 1 L L
2
/cos(2§“)6_’\mda:= % ( Z\TLI'2 cos(zzx)e Az | 2 +%sm(22”)6_>‘m 2)
0 1 + 47!'2 0
AL2 _Az
- A2L? ( 2t 1)
47 (1 + % )
x > %
L
+ n + . —-Xz _ Ad 2 2
Un =g (bcte 24 sin(272)) cos(252) dx
L
2
- 2 AL
e O (o %)
AT (1 + %% )
with v, = v, + v}
wbL Iu
Un = = = 1j Asz (3.19)

As long as p and A are not equal to zero all initial sinus structures will
move. In the linear approximation this is independent of the diffusivity d.
Since p determines the amount of transported particles, it is correct that it
influences linearly the migration velocity. The right hand of Eq. 3.19 can be
simplified to Tz“ by choosing AL > 2. In this case the migration velocity
grows for low A values. This means that long reattachment length allows
in the beginning higher migration velocities of the structure. An attended
result is that the migration velocity is always negative for the symmetrical
initial shape H = 2 sin(22Z). This is a hint that the asymmetrical shape of
the surface at a later date rather than the wavelength seems to be of major
importance for the migration velocity.

In Fig. 3.11 the migration velocity and the growth rate is plotted in
relation to the wavelength. For longer wavelengths migration velocity and
grow rate converge. Hence the sinus decays as fast as it migrates upstream.
Whereas shorter wavelengths move faster than they could grow or decay, be-
sides in the diverging area (L — 0. But an interpretation of these results
is risky, because they are only true in the very early stage of model devel-
opment. As mentioned before, the behavior for very small wavelengths does
not appear to be reasonable. The linear stability analysis provides outcomes
which are very useful for testing the correctness of the implementation and
discretization of the model equation and gives a hint to enhanced model
development concerning the sensitivity on small perturbations.
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3.4 Measured Data

The question of which calculated quantities could be significant for the model
has to be answered carefully. On the one hand we want to use quantities
which are measurable for natural ripples, like for example ripple height and
vertical form index respectively (see definition (p. 1)). On the other hand
these measurands should be meaningful and practically determinable from
the model results. The absolute height is not practical, because it varies
a lot and has to be taken from the deepest valley to the highest crest. In
addition the ripple height is also not a very significant characterization of
model solutions, because it is not scale independent (see Sect. 3.6). Besides,
for geometric comparison with natural ripples it is useful to have a kind of
ripple height. Therefore the variance of the average ripple height is chosen,
here named h, which is more stable than the absolute height and independent
of the defined base line.

1 2
h = \/ ¥ Z (Hi(z) — Hqy) (3-20)

The velocity determination is necessary because it is an important feature
of natural ripple systems. Again it is not sufficient to follow one ripple crest
though time, if the system development is considered. Definition (p. 48) rep-
resents the term of the velocity calculated in our simulation. In the following
the migration velocity is shortened v.

For the shape of ripples the vertical form index and the asymmetry are
widely used. We concentrate on the asymmetry index A (definition (p. 2))
because it turns out to be independent of scaling (Sect. 3.6). To measure the
wavelength the number of mazima is selected, shortened #max, whereby the

average wavelength is easy estimated via Ag, = %
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3.5 Non-Linearity

What is the importance of the non-linear terms in the model equations? In
Eq. 3.3 the non—linearity is due to the exponential function and Eq. 3.4 is
non-linear because of the cut—off function. To check the effect of the expo-
nential function we performed simulations with a first order approximation

of jo(5(x)).

P {1+Smin—S(x) if S(z) < Sppin + 1

0 else

In fact we conserve the non-linearity since a cut—off function is also intro-
duced here. This has to be done because we want to normalize the advective
stream between zero and one. The reason for that is on the one hand the basic
assumption is to describe the advective sediment transport j, according to
the shadow model, which does not include back flow of sediment and nega-
tive streams respectively. On the other hand thereby we limit the maximum
sediment transport rate, which corresponds to the assumption of a stationary
mean flow over the ripples.

v h A
lin | 0.013 & 0.0005 | 0.079 4 0.0001 | 2.57 4+ 0.0003
exp | 0.015 + 0.0006 | 0.051 £ 0.0001 | 2.42 £ 0.0002

Table 3.2. Linear shadow function versus exponential shadow function. The values
height variance h, velocity v, and asymmetry A are averaged over time.

To compare the both stream functions j,(S(x)), exemplary the values of the
height variance h, the velocity v, and the asymmetry A are enlisted in ta-
ble 3.2. The values are averaged over time and calculated for a one ripple
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system. The results of the approximated stream function do not differ much
from the original. It enhanced growing and asymmetry whereby the velocity
is reduced. Even for bigger ripple systems the influence is poor, so that we
can conclude that the exponential function is replaceable by a the cut—off
function, without important effects on the simulation runs.

As mentioned the non-linearity of Eq. 3.4 is due to the cut—off function

ox?

Figure 3.12 shows the resulting advective stream j, over a ripple with and
without a cut—off. The fundamental difference is that the original advective
stream reaches its maximum where the surface is concave, hence near the
crest, whereby an advective stream without cut-off is maximal where the
surface is convex, hence in the vale. The latter implicates new creation of
structures in the lee region of the ripple. Experiments show clearly that the
maximum flow strength is reached near the crest and not near the vale (Hand
and Bartberger 1988), and besides we can not find a stable solution of Eq. 3.3,
excluding an approach with a cut—off function.

[ o H ] which allows only the concave surface to contribute to shadowing.

3.6 Scaling

The aim in considering the scaling properties is to select, out of the three
parameters, quantities which scale independently of each other and still de-
scribe the entire solution space of Eq. 3.3. Therefore three scaling variables
a, b, ¢ are introduced: a represents the space scaling factor, b the time scaling
and c scales the height separately.

I =azx [a] = %
t="bt b =1
H(%,1) = cH(z,1) [c] = %
S(z,1) = S(z,t) (non dimensional)

The new scaled quantities are non dimensional. The idea is to identify solu-
tions which differ only linearly in time or space by the new non—-dimensional
parameter. To find them, it is necessary to formulate the model equations in
a non—dimensional manner:

Equation 3.3:

Jd~ ¢ 0 0?

0 ~ C 0 a? 0% -~
J -~ ac 0 - a® 0% -

R R T
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=
2
ac ~ a
1 — -
b d db
b=ac J:dg
c
if @ = ¢ is chosen:
b=a®> d=d
Equation 3.4:
0 = 0?2
— S8 == —H S
65:5 (u[&cz ]_ )
0~ 1 a’? [ 0% - ~
—S == -u— H| —-)\S
E)is a( 'uc [Bj2 ]_ )
=
. a ~ A
fi=-p A=~
c a
if @ = ¢ is chosen:
- ~ A
p=p A=-
a

The measured quantities have to be transformed in the following way:

vo= fv
&h = COp
A = A (3.21)

The asymmetry and the number of maxima are independent of scaling and
in this respect a good characterization of the results. If a is chosen equal to A
Eqg. 3.3 and Eq. 3.4 depends only on two parameter. For the sake of simplicity
the swung dashes are ignored.

o) _ 8 Smin—5S o
EH = —%6 +d_3x2H
i _ 5*

28 = —u|geH| -5

In this view the parameter ) is only a space and time (remind b = a?) scaling
factor for the solution of the equation system.
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no. | p | A d L T a b c
1 1 8 | 0.5 1 100 1 1 1
2 |20 |35| 10 | 0.23 | 0.26 | 4.38 | 383 | 87.5

Table 3.3. Chosen parameter for two simulation runs. The first row represents

the standard parameter set. L is the area size and T denotes the total run—time. a

represents the space scaling factor, b the time scaling factor and ¢ the height scaling
factor.

no. Vcalc heatc v Oh A
1 0.049 £ 0.003 | 0.041 £ 2e-5 | 2.27 £+ 0.03
2 4.3+0.2 | 4.7e-4 &+ 2e-7 42 £ 0.2 4.7e-4 £+ 2e-7 | 2.28 £+ 0.02

Table 3.4. Resulting measurands for simulation run 1 and 2. The subscript “calc”
denotes the values calculated from the scale relations Eq. 3.21 with the scale factors
of table 3.3.

A numerical check of scaling is described for two sets of model parameters
i, A, and d in table 3.3. The first row represents the standard parameter
set usually chosen. Another parameter set is denoted on the second row. In
addition the respective scaling factors are also listed in row two, whereby
the results of run 1 and run 2 could be identified. The resulting velocity,
variance of height, and asymmetry are measured during the run and averaged
over simulation time 7. Again the noted deviations are in respect to the time
averaged mean value. From the results of run 1 (first row) we could derive
the expected values of run 2 (see first column of table 3.4) with the aid of
the scale factors of table 3.3 and the scale relations (Eq. 3.21). Since the
asymmetry is independent of scaling, it should be preserved in run 2. The
agreement between expected values due to scaling and the measured values
is well and supports the correctness of the numerical results. The asymmetry
is also numerically scale independent.



4. Discretization

This chapter is written also for those, who want to implement Eq. 3.3 and
Eq. 3.4. It is detailed enough to program the algorithm straightforward.

4.1 Discrete Model Equation

The discrete formulation of Eq. 3.3 and Eq. 3.4 reads:

Discrete model equation:

Gt & s s 5
H o §SL, | O oHE s

ot R oz N dz? B

advective transport diffusivity
(4.1)
t _optimt
LS g,

S = 1+ 0z A (4.2)

dx denotes the grid spacing, §t the time increment, ¢ the total model time, and
i the grid cell number. S'f stands for eSmin—Si_ The simplest way to model the
advective stream on the right—-hand side of Eq. 3.3 is to use upwind differenc-
ing, which is first order accurate in the calculation of the spatial derivatives.
The idea behind this is, that a disturbance in the advective quantity S at
mesh point 7 should affect only mesh point 7 + 1, if the transport direction
is positive (Press et al. 1995). The diffusional term in Eq. 4.1 is solved fully
implicit and centered in space. It is of second order accuracy in space, hence
pose no limitation to insure accuracy in spite of the advective term.

The ordinary differential Eq. 3.4 is solved implicitly for the initial values
0 and 1. The solutions are named here Sy(x) and S (x). Since the boundaries
are periodic the final solution can be written as linear combination (Eq. 3.8).

So(L) (S1(z) — So(x))
1= (81(L) = So(L))

Eventually the equation system is coupled by an adaptive time step method.
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4.2 Problem of Second Order Discretization

The proximate idea arises, to treat S(z) of second order accuracy in space,
too, so that the advective and diffusive stream have the same resolution in
space. For this case we define S; as the shadow in middle of node -1 and %
(see Fig. 4.1). Then the differential term is centered in space.

Si+1 —Si _ _#Hi—1_2H2i+Hi+1 _ )\Si+si+1 (4.3)
Sx o 2

The implicit scheme reads:

H;_1—-2H;+H;
Si—,u i—1 &Uz-’r H_l—%ASi

Fig. 4.1. Two definitions of the discrete shadow function around the crest in com-
parison. The filled circles stand for grid nodes. The arrow in the right diagram
symbolized the future development of this grid node.

Figure 4.2 proves the expected higher accuracy of second order discretization
because the graphs converge faster with higher space resolution. The problem
arises if we try to put S(z) into Eq. 4.1. Due to the new definition, S(z) is
shifted about half grid size to the left (if the node numbering goes to the
right, compare Figure 4.1). This has to be corrected when we replace the
advective term.

eSmin=Sit+1 _ gSmin—5i

H=—
= +d

Sle

Performing some simulations based on this scheme, it comes out that the
initial relief does not move. Instead it grows until a stable state is reached
and remains static. The crucial point is, how the shadow function behaves at
the crest. In Figure 4.1 the two different shadow approaches are schematically
explained. The diagram on the left represents the definition of S(z) according
to Eq. 4.3, the one on the right represents the definition finally chosen. Here
we can see, why the model breaks down if it is based on the symmetric
definition of S(x). Node i will grow proportionally to the difference S;+1 — S;.
Since both values of the shadow function lies in the lee region, they are very
similar and node 7 does not change a lot in height. The opposite case is true
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Fig. 4.2. Convergence of first order versus second order discretization of the shadow
function.

for the second diagram. S; is on the lee side, but S;_; is identical with the
shadow at the crest, usually around zero. Hence the difference is large and
node ¢ will grow. Consequently only in the second case migration is possible,
because node ¢ could grow and leave the shadow zone. Physically this means,
that the model works only if point ¢ is not influenced by the surface further
downstream. The whole interaction has to lie upstream.

4.3 Periodic Boundaries

Periodic boundaries are nice to implement but hard to interpret. The idea
behind this choice is always that the calculated area should be a cantle of a
much longer region. Mass is conserved on this cantle and the average fluid
flow is stationary. The problem is to decide whether the cut out area L is
long enough to exclude influence through the boundaries or not.

Figure 4.3 is a plot of the three measured values h, A, and #max over
increasing L. The lowest graph indicates the number of maxima. ﬁrn% is then
the average wavelength. For L < 1.6 one ripple occupies the calculation area.
Above L > 1.5 and below L < 3.3 two ripples can exist. These results are
surely dominated by the boundaries because at least one side is always in
contact with a boundary. Their wavelength is equal L or £ and is absolute

2
stable. h increases according to L, as a result of the scaling properties. The
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Fig. 4.3. h, A, and #max versus length of the calculation area L.

rigorously linear growth of the asymmetry inside a region of stable ripples is
a hint that the solution is forced to arrange on the grid size.

For L > 3.3 the number of maxima exceeds two and the things start
to be more complex, because from three ripples onwards, one of them has
no contact to the boundaries and can evolve more freely. The number of
maxima, is not any more an integer, because the maxima vary with time and
thus the mean value is in between (see Fig. 4.4). All measured average values
in this region show a much higher variance, due to the less stabilizing effect of
the periodicity. The wavelength varies around a mean value, which itself lies
around One. Again h grows in relation to the grid size. The asymmetry seems
to converge to a limit value shortly above Two. Hence the system seems to
develop more freely and admittedly more unstable.

4.4 Variational Time Steps

The model consist of two equations, which have to be coupled in time. Since
the advective term in Eq. 3.3 is of first accuracy in space in contrast to
diffusion (of second order), we expect here the highest dependence on time
step variation. Principally it is important to know that the different processes
described through the equations take place on a comparable time scale. If not
senseless coupling can involve needless numerical effort.
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Fig. 4.5. Influence of increasing time steps 6t on h, v, and A. The left plot is
calculated for grid size, where the stabilization due to the periodic boundaries is
negligible. In contrast the right plot is an example of a one ripple solution.

Figure 4.5 shows the effect of the selected time steps. On the right plot
we can detect a critical time step around 6t.,. = 0.0005, beyond this value the
measureants significantly diverge. The solutions for smaller time steps seems
to be independent of the time resolution, even though the high variations of
the measured values prevent one’s to exclude any influence of chosen time
steps. Therefore a solution is also considered, where the periodic boundaries
care for more stable data. The variation of time step yield a comparable
critical time step, so that we assume that the results below this value are
independent of the special time step.

The concrete value of the critical time step certainly depends on the
grid resolution. The finer the grid spacing the smaller the critical time step.
To avoid adjusting of time steps in relation to grid spacing, we couple the
model equations by an adaptive time step method (see Fig. 4.6). Therefore
we solve Eq. 4.2 with a given relief I(z) = H(z). The resulting shadow
function S((H(z)) is inserted in Eq. 4.1, where the change of height is always
calculated based on I(z). The new height H(I(xz), S) in turn is inserted in the
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new I(x)

start
with any initial

condition 1(x)=H(x)

H(I(x),S)

S(H(X))

| after 10 loops
dt=dt/2

H(I(x).S)

Fig. 4.6. Flow chart of the adaptive time step method.

shadow equation. After some loops the shadowing should no longer change
and another time step can be computed. If not, the actual time step is halved

and the procedure is repeated.

4.5 Variational Grid Spacing

In our former model (Sect. 2.3) the space resolution was a crucial point be-
cause the shadow function was defined in relation to the crest of ripples.
For equidistant grids it is clear that the exact position and height of a crest
depends on the resolution. A big advantage of the actual model is the robust-
ness against variation of grid spacing. Figure 4.7 shows the variance of the
average height over a short simulation run for different grid spacings §z. The
equations are solved for different number of grid nodes N and constant grid

length L. Hence if N increases, 6z = £

converge well for higher resolutions and in the longer run.

decreases accordingly. The graphs

Empirically we found that the results become instable if the relation
Eq. 4.4 is not fulfilled. Whereby the first term comes from analytic con-
siderations of Eq. 3.4 i.e., Eq. 3.7. The meaning of the criterion is easier to
understand with the help of the shadow length [ = % and dz. The second
relation of Eq. 4.4 reads then [ > 6Jz. Hence to resolve the shadowing ad-
equately, at least six grid cells per shadow length have to be spent for the

correct space resolution.
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Fig. 4.7. Run of the initial height variance h for different descritizations.

Stability criterion:

N
0< AL < - (4.4)

In Fig. 4.8 the height variance h and the velocity v are measured over a long
run and denoted depending on the space resolution. The system has enough
time to develop and to leave the linear range, where the solution certainly
depends on grid spacing (see Sect. 3.3). The problem we have to deal with is
that the error of the measured values due to time averaging is bigger than or
in the same range as the dependency of the grid spacing. The error bars for
the velocity allows variation of 100% from the mean in contrast to about 20%
due to discretization. The mean h varies around 10% in spite of about 15%
because of higher resolutions. Nevertheless we noticed that both measured
mean values converge for higher resolutions. The agreement with the fitting
function a/N + b underlies the existence of a limit value.

The high variance of the v measurements depends on the methods to
determine the velocities of ripples. The definition (p. 48) allows every per-
turbation to contribute to the group velocity. As the model reacts sensitively
on little disturbances, many fast moving waves superimposed can result in
highly variable velocities.
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4.6 Jumping Length

Some models make differences between the amount of transported particles
and the transport distance. The model presented here is stream based and
needs neither to distinguish between the transport processes nor to include
a jumping length (compare Sect. 2.1.1 and Sect. 2.3). Nevertheless such a
fixed transport length could easily be introduced in our model and the ef-
fects it produces concerning the principle behavior of the solutions and their
dependence on grid spacing are of interest.

The advective term of Eq. 4.1 can be interpreted in the following manner.
The amount %Sz is eroded from the mesh point ¢ and %S’i_l is deposited.
This means here all "sand packets" are transported One grid spacing Jz.
What happened if we change this jumping length by a multitude of grid
spacing and chose the amount of transported particle (here ¢) independent
of the discretization?

Oy_.. (esmin—S(m) _ esmin-s@—g)) (4.5)

¢ denotes the jumping length. Figure 4.9 shows h and v respectively cal-
culated for a fixed transport length and with a constant portion ¢ of moved
sediment. The number of grid points is increased, which simulate a decreasing
transport length of our original model. In the new approach Eq. 4.5 £ = jiz
is held constant, which implies a transport over j mesh points. According
to decreasing dx the number of overjumped mesh point j grows. v and h
are measured for both situations and averaged over a long period of time
for different space resolutions. The most upper graph and the lowest graph
are calculated without a fixed jumping length (denoted as dz = 1/N). Both
graphs in the middle are computed according to Eq. 4.5 (denoted as dz * j).
Qualitatively, sand transport with a fixed jumping length does not differ from
the original stream approach. Both converge to a limit value with increasing
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grid spacing. Quantitatively there are differences. The velocity in the case of
fixed jumping length ¢ is nearly twice as much as for the variable transport
length §z and h is about 10 % reduced. Thus a jumping length longer than
the cell size enhances the transport velocity.

Also we notice that if a constant transport length ¢ is introduced in our
model the results do not change qualitatively. This supports our idea to
chose a simplified transport process by implementing a stream approach,
where the additional parameter ¢ is avoidable. We must also admit that on a
granular scale it is important to differ between the distance single grains could
move and the total number of entrained particles. As long as our attention is
directed toward a description of large scale ripple dynamics on a “sand packet
scale” this reduction of parameter is reasonable.
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5. Results

Our model generates manifold one-dimensional patterns. A central aim of
this chapter is to interpret the model results appropriately in order to learn
more about naturally observed processes. We concentrate on the set of so-
lutions, which migrates downstream and which are sufficiently asymmetric.
An exception is made, when the influence of the different parameter is con-
sidered in a systematic way. Although in numerical computations a random
distribution (in space and time) of disturbances could be utilized, the results
obtained through this approach starts mainly with single small disturbance.
The advantage is that initiation and selection of the first bedforms can be bet-
ter observed. But it is important to state that the simulated ripple formation
depends not on the special choice of the starting conditions (Sect. 5.5).

5.1 Simulation Examples

Figure 5.1 shows the simulated formation of ripples, on the left, beginning
with a little disturbance and, on the right, beginning with randomly dis-
tributed irregularities. Around ¢ = 0.2 first ripple pattern covers the whole
area. For one irregularity the development successively occurs from the left
to the right in downstream direction. In contrast, the random bed fluctuation
(right picture) are first smoothed before little ripples start growing, arbitrar-
ily distributed over the entire domain. At the beginning, the random initial
condition shows a lot of interaction between ripples of different sizes. Also
for developed structures interactions of ripples continues, mainly by merg-
ing. Generally the bigger ripples behave more slowly than small ones. The
different initial profiles do not influence strongly the ripple evolution at later
states. Both examples are taken out of a transient regime.

In Figure 5.2 4 examples of developed ripples are given. Apart from the
first all are cutoffs from larger grid sizes L € {8, 16,32,64}. The profiles result
from long simulation runs, 7" > 100, to ensure that the transient phase has
finished (compare Fig. 5.4). The measured values: the variance of the ripple
height h, velocity v, asymmetry A, and #max are denoted in table 5.1. All
measurements agree well within their error bars. The results fulfill the basic
features and definitions of ripple forms. With regard to the shape this means
that ripples consist of a flat stoss slope and a steep lee slope, so that they
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Fig. 5.1. Spatiotemporal evolution of simulated ripple system. The successive pro-
files are vertically shifted.

L h v A #max

8 | 0.0561 £0.005 | 0.16 £ 0.1 | 25+£04 | 79+ 1.1
16 | 0.0563 & 0.004 | 0.17 £ 0.08 | 2.5 £ 04 | 16 £ 1.7
32 | 0.057 £0.005 | 0.16 £ 0.06 | 2.5 £ 0.3 | 32 £ 2.7
64 | 0.055 £0.004 | 0.16 £ 0.04 | 25 £ 0.2 | 64 £ 34

Table 5.1. Time averaged data for the plots shown in Fig. 5.2.

are asymmetric. With regard to the dynamics, ripples migrate downstream
(positive velocity v) in the direction of sediment transport.

To analyze the distribution of wavelengths we measured all wavelengths
and ripple heights of the four profiles and calculated the frequencies (compare
Fig. 5.3). The variation of the heights and the wavelengths are around 100%.
Our ripple structures show a higher variability than ripples formed under
nearly one-dimensional flow conditions (annular channel Sect. 1.2.2). Many
different wavelengths can exist simultaneously. During the time, periods of
one wavelength with less variability and periods of a multitude of wavelength
with high variablity could alternate (see Sect. 5.6 and Fig. 4.4).
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Fig. 5.2. Simulation examples. The chosen parameter are g = 1, A = 8, and

d = 0.5. The grid length L changes from 8 to 64. Only a cutoff of the length 8 is
shown from the profiles.

Looking at the ripple profiles Fig. 5.2, it is hardly distinguishable which
one is a cutoff of which area. In detail they do not correspond to each other,
but globally the patterns have much in common. The declination of the lee
side is nearly the same for all ripples, other than in the cases of merging or
diverging ripples. In Fig. 5.4 all measured lee slopes are represented in a bar
diagram. The distribution is narrow which affirms that most ripples have a
similar lee slope. Thus the grow and migration process at the crest of a single
ripple which is responsible for the lee inclination, seems to be the equivalent.

To evaluate the model and to find out model characteristics we have
to exclude effects on the result, which depends only on the special choice
of the boundaries. The resemblance of the ripples of different grid size in
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Fig. 5.3. Height and wavelength distribution of the ripples in Fig. 5.2. All ripple
heights and wavelengths are calculated considering the entire area. The sampled
data are pooled to be represented in a bar chart.
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Fig. 5.4. The diagram on the left shows the time development of profile L = 64
of Fig. 5.2. There is a clear transient phase before for T' = 20. The diagram on the
right represents the summation over all lee slope inclinations of Fig. 5.2. Therefore
the full profile lengths are considered.

Fig. 5.2 indicates already a small influence of the boundaries, which is further
investigated in the next section.

5.2 Stability

Two questions concerning the stability are investigated. First, we analyze
whether there is a stabilizing effect due to the periodic boundaries of the
model? As mentioned above, the results show a high variability which lead
us to the second question of what kind of system describes the solution space
of our model?

To approach the first question we enlarge the calculation area in order to
reduce the boundary influence and to see whether the characteristics of the
solution changes. In Fig. 5.5 the average number of maxima are plotted in
relation to the area size. The corresponding simulations run over a long time
period (7" = 200). The error bars along the graph represent the variance p of
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#max which follows from Eq. 5.1. The discretization was increased propor-
tionally to the grid length L to ensure a constant number of grid points per
ripple and thus to avoid numerical influences.

p= \/% Z (#mazy — #matay) (5.1)
t

The graph shows that the mean wavelength A = 7 Lam of the solutions does

not change with increasing grid length and stays around 1. The other values
as h, A, and v are also measured during the simulations. The results are de-
noted in Fig. 5.6 including a graph where the variance p of #max is plotted
separately in relation to the grid size. All mean values show no systematic de-
pendency on the area size. In particular the mean values of A and v fluctuate
a little depending on L. Therefore, the influence of the periodic boundaries
seems to be negligible, especially for larger grid sizes.

To answer the second question, we look closely at typical simulation runs
(see Fig. 5.9 and Fig. 5.23). We can see that the main ripple pattern is su-
perimposed by little faster moving structures or perturbations, which imply
the high variability of the solutions. Usually, stable solutions are bedforms
i.e., ripples which move downstream preserving their shape, hence station-
ary states which are insensitive to perturbation of the surface. So only the
averaged mean values are stable. In fact the perturbations in our simulations
seem to be necessary to adjust ripple wavelength over the whole area. The
process is reminiscent of avalanching in the case of a sand hill, which holds the
slope inclination around the angle of repose. Our former model which does
not show such disturbances always develops to a one-ripple system. To char-
acterize the system behavior we ask to what extent perturbations reach if the
area is prolongated? Do disturbances still affect the whole domain? — which
is surely true for small area sizes due to the periodic boundaries — or are they
limited in their range? If the range of perturbations is unlimited the system
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Fig. 5.6. The time averaged mean values of solutions for varying grid sizes L are
plotted. The upper left graph shows pxmax (Eq. 5.1), the upper right the variance
of the height h and the both lower graphs the velocity v and the asymmetry A.
The error bars represent the variance of their respective mean values.

behaves chaotically. For the variance p of #max this implies a linear growth
with L, as perturbations gain a longer reach in proportion to the area size. As
mentioned the first diagram of Fig. 5.6 is the plot of p versus L. Its behavior
resembles more a root function than a linear fit. The result supports the con-
jecture, that perturbations have a limited reach and are somehow smothered
during propagation. This may correspond to a chaotic system behavior in the
subcritical region. The other measured data support this observation, since
the absolute values of the variance seem to converge towards increasing grid
length L, too. Recent observations (Sect. 1.2) favor a stationary final state
for ripples systems than sorts of chaotic system behavior (such as for example
in sand piles (Benza et al. 1993)). As long as the experimental influences on
the final pattern are still not clear and since there is a lack of long simulation
runs, conclusions on the principle system behavior remain uncertain.

5.3 Migration
Ripples in equilibrium state move very slowly (see Sect. 1.8). In contrast

the interaction and wavelength selection processes are much faster (compare
Fig. 1.12). Thus, beside the normal transport process of ripples which obeys



Results 5.3. MIGRATION

Fig. 5.7. The ripple is
a cutout of a structure
T 0.17 with six ripples. The
X) —+——

o4l B total ——— i corresponding heights
¥ adwective are denoted on the

j left scale. The other
02} 1 graphs represent the
" change of height per

time in the case of
only advective stream
acting on the surface,
only diffusive stream,
and the summation of
both streams (total).
04 | The zero line indicates
the change from ero-
1 12 14 16 18 2 sion (stoss side) to

X deposition (lee side).

sto; Py, lee

H
o
|
o
dHidt

-0.2 1

the inverse relation, (definition (p. 14)) there is also some faster propagation
mechanism. This section is divided into two parts: one considers the migration
of isolated ripples and the second describes the movement of a whole ripple
system.

5.3.1 Isolated Ripple

Figure 5.7 shows, how simulated ripples move. The plotted ripple is a cutout
of a system of six developed ripples. The sediment transport over the present
ripple is calculated with respect to the shadowing (advective), to the diffusion
(diffusive), and the total transport (total). Beginning with the total sediment
flux, we make the following observations: on the stoss side sediment is eroded
and transported downstream to the crest; towards the crest with growing
negative curvature the shadowing starts and erosion decreases. Around the
crest deposition occurs and reaches the maximum on the lee side. Without
diffusion nearly all sediment is accumulated just behind the crest. As the
curvature changes its leading sign the relaxation of the fluid stream and hence
the sediment transport restarts. Therefore erosion takes place even on the lee
side, if diffusion is absent. The result would be an increasing inclination of the
lee side. Due to diffusion, the sand deposited behind the crest is distributed
along the lee slope. The curve named “total” represents the effect of the
sum of the diffusional stream j; and the advective stream j4. The resulting
partition of accumulated material, is fairly comparable to observed natural
distributions (Chakrabarti and R.Lowe (1981), Hunter (1985) and Anderson
(1988)).

Since the lee slope grows in height and the stoss side loses sediment, the
whole ripple moves downstream. If the ripple is not influenced by neighboring
ripples, the mass loss on the stoss side is equivalent to the mass gain on the
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lee side and the moving ripple can preserve its shape (Mohrig and Smith
1996). As the velocity of such an isolated ripple obeys the inverse relation:
the higher the ripple the slower the velocity (see Fig. 5.10). But there is also
another aspect influencing the migration velocity. If the distance between
ripple crest and the point of maximum deposition decreases, the velocity of
such an isolated ripple also increases. The reason for this is that deposition
near the crest is the fastest possibility to move the maximum. All sediment,
which is accumulated further downstream on the lee slope first changes the
shape of the ripple and since diffusion is acting symmetrically even a little
back flow of sand can occur.

The diagram of Fig. 5.8 is a closeup view of the ripple in Fig. 5.7. Four
graphs are plotted, which represent the total change of height per time for
different values of the inverse shadow length A. The original ripple was com-
puted for A = 4. For this case the corresponding graph is equivalent to the
graph ’total’ on Fig. 5.7, which represents a moving momentarily stable rip-
ple. Altering A changes the ripple characteristics. In fact increasing values of
the inverse shadow length, tends to diminish the wavelength (see Sect. 5.4)
and hence destabilize the existent ripple. To understand the run of the curves
we have to remember that higher value of A means a fast regeneration of the
original stream and an abrupt end of shadowing, respectively. So there is
a narrow region where the sand transport restarts and erosion takes place.
Therefore modulation of the ripple height takes place around this site and a
small bump is built, which later on produces new structures. For A > 4 the
lee slope steepens. The migration direction just after the parameter change
turns backwards, since the old patterns mainly decay. Only A = 1 preserve
the main characteristics of the ripple. The shape will be adjusted towards a
less asymmetrical structure. Summing up this example, it makes clear that
changing the parameter can completely modify the migration characteristic
until new patterns are established. This reorganization needs a relatively long
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time, especially if the ripple is part of a ripple system as the one considered
here.

5.3.2 Ripple System

The migration of a whole ripple system is more difficult to observe and to
determine numerically. The algorithm used for calculating the velocity is
derived from the cross correlation of two stages of solutions shifted in time
(see Appendix A). If the ripple pattern is simply stationary i.e., H(z,t) =
H(z —vg4t), then the measured velocity would be equal to the group velocity
Vg.

In Figure 5.9 the positions of all surface maxima are plotted in time
(vertical) and space (horizontal). We identify each relief maximum with a
ripple crest, knowing that some mounds could be only disturbances, espe-
cially in regions with highly interacting ripples. We can observe groups of
ripples, which migrate very regularly to the right (downstream) preserving
their wavelength. Also, perturbations of this ripple occur from time to time
forcing the ripples to rearrange their wavelength. This kind of signal propa-
gates very quickly through the area (an interpretation of this processes will
be given in Sect. 5.6). Determining the migration velocity, this "high speed’
event contributes inevitably to the measurements and causes an overestima-
tion of the ripple velocity. We have to keep this in mind when we are analyzing
measurements of the velocity.

Figure 5.10 is a plot of the velocity v against the variance of the height h.
The pairs v, h correspond to different values of the diffusivity d. As the vari-
ance of v is much higher than the one from h, we plot only the vertical error
bars. The evolution of the graph shows clearly that high velocities are present
for small heights of the relief (there is no qualitative difference here between
h and the absolute height H) and vise versa. This anti-proportionality is a
little disturbed for high values of diffusivity, where the error bars increases.
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Generally speaking we can say that despite the tendency of our approach to
overestimate ripple velocities, the inverse relation is well confirmed, even for
ripple systems.

5.4 Variation of Parameters

The three parameters of the model are considered separately. Due to adequate
scaling, A could be eliminated. Nevertheless we include A in our examinations
in order to enhance the clearness of the model.

5.4.1 Diffusivity d

In Figure 5.11 the four measured values are plotted depending on d. All mea-
surements for different d are performed over long simulation runs (7" = 100)
and for at least three grid sizes (L = 8,16,32). To hold the space resolution
constant the number of grid points is increased accordingly. For each graph
either a reciprocal, a linear, or a constant function is fitted. If we first con-
sider the plot which shows the variance of the ripple height h, we can see that
according to higher values of d, h decreases approximately as %. This decay
is not surprising because the diffusion smoothes patterns. If only diffusion
were present the model Equation 3.3 would read:

o5 _ 9?

For a Gaussian distribution with H(z = 0,¢t = 0) = Hj the solution looks
like:
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Fig. 5.11. Influence of the diffusivity d on h, A, v, and the average wavelength
A= m. The denoted fit function shows simply the qualitative evolution of the

plots. Beyond d = 0.8 the solutions are numerically instable and therefore omitted.

Hence the diffusivity would simply enhance the decay of the structure in
time, if no pattern creating process is present. Including the advective term,
the diffusivity varies h as long as an equilibrium between both processes
is reached. Concerning the lee slopes this implies increasing gradients for
decreasing diffusivity (see Figure 5.14).

The next diagram of Fig. 5.11 is about the average asymmetry A of the
modeled ripple patterns. The general tendency of the curve shows that the
higher d, the higher is the average asymmetry. Due to the high variability of
the results only a qualitative linear fit can be adjusted to the evolution of
the graph. For determining the asymmetry according to the definition (p. 2)
the algorithm needs the location of maxima and minima on the relief. Each
pair of maxima and minima is thus included and produces, under certain
conditions (e.g. little perturbation), very high values. This explains the high
variation of the result. But how can we understand the tendency that an
increased diffusivity implies higher asymmetries? Of course the diffusional
term in Eq. 3.3 produces itself no asymmetry at all. Nevertheless the diffusion
affects the way in which a sand packet transported due to shadowing will be
redistributed (compare Fig. 5.7). If d is small, nearly the whole sand packet
deposited behind the crest can rest there. As a consequence the crest does not
only move, but also grows in height. High growth rates versus low migration
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Fig. 5.12. Ilustration of the effect of increasing diffusivity d on the asymmetry A.
The diagram does not show the complete truth (see Fig. 5.13).

rates generates symmetrical bedforms, shown schematically in Fig. 5.12 (A =
1). As the diffusion increases the sand packets are distributed more widely
over the lee slope and thus migration overcomes the growth process. Hence
smaller, faster and more asymmetrical ripples are the result (A = 2, A =
3). Consequently this explains also the run of the velocity plot. The ripple
velocity increases with increasing d. As mentioned above the variability of
velocity data is high.

The last diagram of Fig. 5.11 shows the time averaged wavelength in
relation to the diffusivity. d seems to have no systematic effect on the wave-
length selection. The mean wavelength is around one. Thus we have to redraw
Fig. 5.12 in the following way: the mistake in Fig. 5.12 is that the cross area of

A=1
A=2

A=3 >

|

Fig. 5.13. Illustration of the effect of increasing diffusivity d on the averaged
wavelength A.

the profiles is nearly preserved. Thus the mass is also conserved and therefore
it is not possible that for the same transport capacity u the velocity increases
as much as observed. Ripples adjust their entire shape in this way so that
the inverse relation is fulfilled. Experimentally the observed inverse relation
is based only on crest heights which is not sufficient, if the wavelength does
not change accordingly.

Including a diffusional term into our model takes destroying processes into
account, mainly due to gravity and granularity (e.g. angle of repose). Since
the simulated ripples stop growing and adjust a limited lee slope, we can
assert that diffusion is able to confine crest growth and to achieve equilibrium
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conditions. Figure 5.14 shows the measured lee slopes of the profiles belonging
to Fig. 5.11 for T' = 100. One graph corresponds to the slope inclination
tan(%) and the other denotes the angle of slope inclination. The lower
horizontal line represents an inclination angle equal to the angle of repose.
Higher diffusion implies less inclined slopes. Between d = 0.4 and d = 0.5 the
slope inclination is equal to the angle of repose (p. 9). For ceasing diffusion
d = 0 the lee slope tends to an vertical inclination (90°), which corresponds
to unlimited growth. In the opposite direction the surface tends to a plane
bed, if the diffusion is high. For a fixed inclination of lee slope the asymmetry
can be derived from the crest height and the length of a ripple. Baas’ results
show in average asymmetries around 4.2. If in our model the diffusivity d is
adjusted around d = 0.45 so that the mean lee slope is equal to the angle of
repose, the model results tend to an asymmetry of 2.5 £ 0.4 over long runs
(see table 5.1), which slightly underestimates the real values. However we
have to keep in mind that the experiments from Baas consider 3—dimensional
ripple patterns in contrast to our 2-dimensional approach. Nevertheless the
range of the asymmetry is reasonable, in particular in comparison to other
models (including our former model).

The parameter d has a strong influence on the simulation results.By tun-
ing d it is possible to adjust the lee slopes of the ripples around the angle of
repose (Fig. 5.14). This could be a way to calibrate the model results.

5.4.2 Stream Strength u

The so called stream strength p is the opponent of the diffusivity. In our
process image, changing u corresponds to a variation of the flow strength
which includes a change of the sand transport capability. From an algorithmic
view y determines how strongly the curvature of the bed surface influences the
shadowing, thus the maximum amount of transported particles. We assume
that for high stream strength the coupling between bed and fluid is easy to
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influence so that the curvature efficiently modulates the sand transport. If
we try to compare y with natural parameters, then the model parameter u
basically incorporates the averaged shear stress (p. 15) and the grain size.
Figure 5.15 shows that u clearly dominates the final mean ripple height. The
velocity decreases slightly and the averaged wavelength stay around one.
The plot of the asymmetry does not exceed a maximum value of 3.5. Lower
and higher values of p return to values around 2. An increasing asymmetry
implies a steeper lee slope which in turn should reduce the growth process.
This influence seems to be visible comparing the plot of A and A. However,
because of the high variance of the asymmetry we provide here no further
interpretation.

Some authors report a hysteresis effect in ripple formation from experi-
mental results (Betat et al. 1999). This means that the way a ripple system
reacts on a parameter change is not reversible. If the old parameters are
readjusted the back evolution to the former ripple state can be different from
the previous evolution. It is even not clear if the same state will be reached
again. To verify if such a mechanism is also present in our results, simulations
are performed where the parameter y is changed during the run. Figure 5.16
shows the results of a reduction of y from 1 to 0.8 (lower diagram) and back-
ward from 0.8 to 1 (upper diagram). Just after u decreases, the ripple system
reacts with complete destabilization. The ripples stop moving, some even
move upstream. The effects on the ripple migration velocity can be seen in
the right—-hand diagram. In addition to this change of sediment transport the
number of maxima does not change below t = 6. Around ¢ = 6 the surface is
disturbed, so that a new generation of ripples starts growing and migrating
downstream which correspond to a jump of the velocity in Fig. 5.16. The
other way from y = 0.8 to 4 = 1 the newly appearing ripples converge again
to build a system of seven ripples, which is stable until about ¢ = 8. Finally a
6 ripple system, similar to that of the beginning stages, develops. The system
reacts much slower on decreasing than on increasing p and the evolution dif-
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Fig. 5.16. Simulation run after changing the parameter p. On the left-hand side
the plot of the maxima in time (vertical) and space (horizontal) is shown whereby
on the right—hand side the plot of the velocity measurements is denoted. For the
lower diagram g is reduced from 1 to 0.8 and for the upper one y is increased back
from 0.8 to 1.

fers depending on the direction of the parameter change. Hence we see that
the ripple system exhibits hysteresis effects.

5.4.3 Inverse Shadow Length A

The parameter A determines the reach of shadowing. It measures how fast
the influence of the curvature decreases. Small A means slow relaxation of the
originally undisturbed advective flow j,. Thus long wavelengths are the conse-
quence. In fact A dominates the wavelength selection of the model (see #max
Fig. 5.17). In comparison to natural quantities, it represents the macroscopic
reattachment length (Sect. 1.6). It is the only length scale in our model by
which the average ripple wavelength is tunable.

Figure 5.17 shows the detailed effect of changing X. The first three data
points before 25 of the graphs represent a two ripple system, which is stabi-
lized by the periodic boundaries and which therefore show small variances.
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Fig. 5.18. Simulation run after changing the parameter A from 8 to 4. The left
diagram is the plot of the maxima in time (vertical) and space (horizontal) and the

right one is the belonging plot of the velocity measurement.

For the three points on the right the stability criterion (p. 60) is not fulfilled,
why this points are not considered in the following. h decreases continuously
for increasing A. This means shorter reattachment lengths and thus shorter
wavelengths have reduced crest heights. Since the mass of few ripples is only
redistributed over several new little ripples, this causes diminishing crest
heights. As expected, the velocity increases accordingly (lower graph). The
asymmetry seems to be independent of A. This is well in agreement with our
result that A should be independent of length scaling (Sect. 3.6).

In Figure 5.18 the model parameter A is reduced during the simulation
from A = 8 to A = 4. Starting with eight ripples the number of maxima
diminishes fast to five ripples. The changeover to the next state with lesser
maxima takes more time, nearly double the length of time of the previous
state. Such a transition is signalized in the velocity measurement (see left
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Fig. 5.19. Formation of ripples H(z,t = 1) out of the sinusoidal profile H(z,t = 0).
The profile scale is denoted on the top axis. The time scale for the velocity plot
and the maximum height plot is on the bottom axis. As usual the left vertical axis

denotes the height and the right scale the velocity.

diagram of Fig. 5.18). Here we can easily control how growing wavelengths
correlate with slower velocities. A transition to another wavelength causes
higher variations (on the velocity plot). This can be explained by recalling
that before such a changeover, perturbations play an important role which
in turn contribute to the velocity measurement (see Sect. 5.3.2).

5.5 Initiation

Two questions are investigated in this section: firstly, how sensitive is the
final pattern to the initial conditions? And secondly, how does the initial

wavelength develop?

5.5.1 Dependence on Initial Conditions

The question of whether the initiation of pattern formation is dependent on
the shape of the initial profile was already posed in Sect. 3.3. It was found that
the special shape is not important for initiation. Here we pose the question a
second time focusing now on the final ripple state. We are looking at whether
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Fig. 5.20. Plot of the maxima in time (vertical) and space (horizontal) starting
with a sinusoidal profile of one period.

the final state is independent of the starting profile. If that is true, the final
state is also stable against perturbations of the latter stage.

The calculation shown in Fig. 5.19 started from a sinusoidal profile
H(z,t = 0) with 16 maxima on a grid length of L = 16. The other pa-
rameters are the usual ones, so that the sinus function as an initial condition
is very near to the expected stable state around a wavelength of one. Indeed
the developed ripples H(z,t = 1) are stable in shape for a long time (¢ < 120)
and migrate constantly. The velocity and the maximal height hardly varies.
However, the system returns finally to the known end state with high vari-
ance. The time averaged values measured for ¢ > 120 are h = 0.052 + 0.004,
v =0.184£0.09, A = 2.4+0.4, and #max = 16.5+1.9. Compared to table 5.1
they are all inside the error bar. Thus the conclusion is allowed that the final
state does not depend on a special choice of starting conditions. However the
time that is needed to reach the final state is much longer than for a single
initial sinusoidal profile. Thus the precise evolution of the system to the final
state is dependent on the present (initial) shape of the relief.

5.5.2 Development of Initial Perturbation

In Sect. 3.3 we noticed that the initial wavelength is clearly dependent on
the space resolution in the early stage. Figure 5.20 shows the development
of a perturbation in time. Again the maxima are plotted in time (vertical)
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Fig. 5.21.

and space (horizontal). The perturbation is a sinus profile with one period
on the grid length L = 8. Interestingly, after a while far from the linear
region, new little perturbations (crests) are induced in a downstream direc-
tion of the initial maxima. Once created, they slowly grow and move right-
wards/downstream. The growth in height and in wavelength is shown in
Fig. 1.10 of Sect. 1.7. This pattern formation fulfills the scenario described
by Puls (1981). We can observe that merging of ripples occurs shortly after
the first pattern is built. This organization of bedforms takes place before the
first perturbation pattern meets the original pattern (around ¢ = 0.2), due to
the periodic boundaries. As the ripples grow, their migration velocity slows
down.

Defina (2003) reports the same chain reaction for the formation of bars
(diagonal bedforms with height and wavelength comparable to the flow depth
and the channel width). In her model, bar height decreases in the flow direc-
tion while bar velocity increases. This produces increasing wavelengths in the
flow direction. In contrast our simulated ripples show a different formation
process: they increase the wavelengths from inwards (near the initial distur-
bance) to outwards direction, which results in decreasing wavelengths in flow
direction.

5.6 Ripple Interaction

Growing interest is posed on the interaction processes occurring during ripple
formation ( Baas (1999), Betat et al. (1999), and Prigozhin (1999)). The
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question is whether the final wavelength of ripples is simply imprinted by the
fluid pattern or whether it could be seen as a result of the interaction between
the ripples? Prigozhin supposes that small fast moving sand modulation,
observed in his model (see Fig. 5.21) has a organizing effect on the wavelength
selection. We found very similar processes in our model.

Figure 5.23 illustrates the complex interaction of ripples. The simulation
starts with a developed ripple system of averaging 16 ripples. The time scale is
plotted at the right boundary. Successive ripple profiles in time are vertically
shifted. The vertical curves follow the movement of the maxima during the
run. The length scale of the height in y—direction and the coordinates in
z—direction are the same. The entire structure moves downstream (to the
right) about 9 scale lengths. Regions of stable wavelength and slow migration
alternate with regions of high activity, i. e., accelerated movement, birth and
death of ripples. Its complexity has more in common with a profile cutoff
from a three-dimensional ripple field, than the equilibrium state, measured
in an annular channel (see Sect. 1.2).

The detailed view displays interesting processes. New ripples are built on
the stoss side of a existing ripple. Sometimes ripples disappear or are caught
by another one. If we follow the ripple crest i. e., the maximum through time,
and identify the lifetime of a ripple with the existence of the maximum, the
lifetimes differ hugely. There is no ripple which stays undisturbed during all
the simulation time. In contrast there are a lot of short living ripples. We
conclude that our model reacts very sensitively to surface perturbation of
short length.

5.6.1 Converging and Diverging Ripples

Converging and diverging of ripples is often observed in flume experiments
especially during the transient phase (compare Fig. 1.13 and Fig. 1.12). Con-
verging is more common process as long as the system evolution is below the
final state. The time scale for these processes is much shorter than for the
normal migration of the ripples.

Figure 5.22 is a simulation example of converging (left diagram) and di-
verging (right diagram) ripples. For converging the situation starts with the
ripple at the site 9.5 which approaches the ripple further downstream. As
the ripple climbs up the stoss side of the adjacent ripple, it loses height and
its velocity increases, since less mass has to be transported. In contrast, the
shadowing of the climbing ripple starts to reduce the sediment transport over
the next ripple which as a consequence loses height itself, due to diffusion.
However this implies a higher velocity and the ripple can leave without being
caught. So it seems that the upstream ripple pushes the one in front of it.
Pushing failed the next time at around the site 11.5 and the climbing ripple
merges into the adjacent ripple. The evolution is very similar to the scenario
shown in Fig. 5.21.
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Fig. 5.22. Converging of ripples is shown on the left plot and diverging of ripples
on the right plot.

The ripple diverging process compared to other models is new. The typi-
cal starting condition is a ripple, which is slightly longer and bigger than the
surrounding neighbors. The sand stream at the ripple crest reaches the max-
imum and the shadowing turns to zero. Then it happens that the region of
full stream is prolongated further upstream. In this area the incoming sand
flux is equal to the outgoing sand flux and therefore the surface does not
change, although in the neighboring region sediment is eroded (upstream) or
deposited (downstream). This situation is unstable and does not last long.
The small change in curvature at the upstream edge of the area suffices to
have a small shadowing effect, representing the fluid detachment. Since the
full stream recovers fast (or the fluid reattaches), material is eroded inside
the stable surface, which results in the creation of two little mounds and ends
in a state similar to the pushing described above.
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Fig. 5.23. Development of a ripple system in time (vertical shift) and space (hori-
zontal). The ripples migrate to the right and the average velocity is v = 0.18 £ 0.08.
Thus the ripples move during a time period of ¢ = 50 about 9 length scale. The
average asymmetry is about A = 2.5 £ 0.4.




Summary and Conclusions

The aim of this thesis was to approach the problem of ripple formation by a
model which describes the phenomenon on a macroscopic scale and does not
incorporate the detailed dynamics of the fluid flow field. We developed a pa-
rameterization called shadow, which depends only on the negative curvature
of the current bed surface. Since the shadow-function is part of a coupled dif-
ferential equation this approach is non—local. We assert that this non—locality
is inevitable to model the characteristic fluid field. Although we avoid back
coupling of bedforms to the dynamics of the fluid flow, which seems to be a
great simplification of these kinds of models, the resulting shape and their
evolution is surprisingly realistic. Furthermore, this approach enables us to
simulate the long time and large spatial scale evolution of ripples, which we
are hardly able to achieve in natural experiments. Qur model supports the
idea that the mechanism of ripple formation is not strongly affected by the
details of the complex flow structures (Nishimori et al. 1998).

To summerize the results, we begin with the basic ripple features con-
cerning the shape and the migration (Sect. 5.1 and Sect. 5.3). Natural ripples
are asymmetrical so that the stoss slope (upstream directed slope) is always
much flatter than the lee slope, which is supposed to be mostly around the
angle of repose (32°). In our model the measured lee slopes turn out to be
very stable if no strong influence of the neighboring ripples is present (see
Fig. 5.4). It indicates that the local growth and migration processes at the
crests seems to be very similar. If the diffusivity d is adjusted in such a man-
ner that the mean lee slope is equal to the angle of repose (see Fig. 5.14),
the model results tend over long runs to an asymmetry of 2.5+ 0.4 (see table
5.1), which slightly underestimates observed values.

Concerning the migration of ripples, the mechanism is clear for isolated
ripples (Fig. 5.7 and Fig. 5.8). The redistribution of sediment eroded from the
stoss side to the lee side corresponds well to experimental data (Sect. 5.3).
An important feature of our model is the fact that it supports the inverse
relation, which could be seen as consequence of mass equilibrium (Fig. 5.10).
Not only the ripple height but also the ripple shape (asymmetry) changes in
that way in that this relation is fulfilled (Fig. 5.13).

The results of our model are more difficult to interpret, when the devel-
opment of a whole ripple system is investigated. Initiation and stabilization
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of the bedforms are especially of interest. It is generally accepted that rip-
ple formation starts in succession of small incidental irregularities of the bed
surface (see Sect. 1.7). We experimented with narrow, different shaped initial
perturbations and found out that the formation process always shows the
following characteristics: firstly the initial wavelength of developing ripples
is much shorter than in equilibrium; secondly the perturbation signal propa-
gates faster downstream than the ripples can move; thirdly during initiation
the spacing between ripples and the height decreases in downstream direction
(Sect. 5.5). This behavior is quite independent of the special shape of the ir-
regularity and in good agreement with natural observed initiation processes.
Certainly, if the initial surface is disturbed strongly, this has consequences
for the ripple formation at a later stage. From the view of modeling it is a
peculiarity that one perturbation is able to create a chain of new surface mod-
ulations. Many models, including our former one, need randomly distributed
fluctuations in the beginning, which rearrange themselves during the further
development process, to build first structures. Here the early pattern forma-
tion is not a reorganization or discrimination of existing perturbations, but
rather a creation of pattern according to a given fluid flow structure (i.e.
shadow).

During the stabilization of ripples converging and diverging of ripples are
observable. Both processes (detailed description see Sect. 5.6) are found in
the experiments from Baas (1999). In strict two—dimensional experiments
from Betat et al. (1999) we detected (see Fig. 1.12) only converging ripples.
It is an open question as to whether diverging of ripples could also appear
under two—dimensional flow conditions or not. Diverging is responsible in our
model for recurring destabilization of ripple patterns, as shown in Fig. 5.23. It
seems that little perturbations occurring at the ripple crest control the ripple
development from time to time. In this range our measured values vary greatly
and it is difficult to decide how stable the system behaves. Therefore we are
forced to base all our conclusions on computed mean values. The shown
sensibility against little surface modulations at the crest is not present in
nature. Perhaps, due to the increasing sediment transport towards the crest,
granular damping processes smooth perturbations at the crest rather than
amplify them. Future model development will concentrate on granularity to
handle the sensitivity against small disturbances (see Sect. 3.3).

Numerically our model is robust and stable. Numerical stable means that
the solutions of the model equations (Eq. 3.3 and Eq. 3.4) are independent of
grid and time resolutions. Robust means that different discretization schemes
i.e., explicit or implicit, do not change the model behavior. There is also no
need for adaptive methods as it was necessary in our former model (Kiipper
1999). We spend a lot attention on the question of how periodic boundaries
influence the model results (Sect. 4.3). As a rule we can notice: solutions,
which are not perturbed and thus have small variability are dominated by
the boundaries. These are mostly one or two ripple systems. Beginning with



Results 5.6. RIPPLE INTERACTION

three ripples on the selected area, perturbations arise and the boundaries are
of less importance for the solutions. All our measurements are performed for
ripple systems of more than six ripples to exclude strong influence through
the boundaries.

What is easier to verify, is that our simulated ripples show hysteresis ef-
fects. In Sect. 5.4.2 the parameter p is first decreased and afterwards increased
again. Both reactions of the system differ and the initial state is not equal
to the final state. This difference in asymptotic values supports the idea that
there is a memory effect of the fluid modulation on the landscape evolution
(Caps and Vandewalle 2001a). After a parameter change, the evolution of the
landscape depends essentially on the former topography i. e., its history. The
question is if real granular landscapes show also this memory effect, what is
left for future experimental work? Another question of stability is interesting
in this context: how stable is the final state concerning perturbations? We in-
vestigate the range of perturbations by enlarging the calculation area to find
out if the disturbances could still affect the whole ripple system. A linear in-
crease of the range according to the area size would be characteristic for the
behavior of a chaotic system. Since the variation of the ripple wavelengths (a
measure for the perturbation range) grows like a root function, we assume
that our model behaves like a chaotic system in the subcritical region.

Defina (2003) states that the numerical simulation of ripple generation
and development in a direct way and on a macroscopic scale could provide
the missing link between experimental investigations and simplified theories,
offering a valuable tool for bottom morphology investigations. The results
discussed above support this assumption and reveal the ability of numeri-
cal modeling. Since the main mechanisms of ripple formation are well re-
produced by the model, among the complex converging and diverging, our
minimal model may be considered as a significant step toward the compre-
hensive understanding of large scale evolution processes of ripples. The main
disagreement concerns the apparent lack of stable equilibrium conditions for
the wavelength, due to the sensitivity to perturbations. The whole model ap-
proach is based on the assumption that it is possible to simulate the pattern
formation only depending on surface attributes. This implies that any change
of the flow conditions first rearranges the bed relief before new regular bed-
forms could develop. Hence our model underlines that ripple formation is not
only the result of flow structures, which are simply imprinted on the river
bed, but also an effect of ripple interaction.
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adaptive time step method, 59
advective process, 27
analytical solution, 37

angle of repose, 9

Annular channel, 4

antidunes, 2, 11, 44
asymmetry, 75

asymmetry index, 2, 50
attractor, 26

bars, 83

basic approach, 33
bedload, 13

burst, 12

cellular automata, 21
chaotic, 70

coarse grain models, 21
collision, 24
conservation law, 23
converging, 84
coupling, 33
creeping process, 23
critical time step, 59
cross—stratum, 15
cut—off function, 51

differential equation, 35
diffusion, 23, 27

diffusional stream function, 35
diffusivity, 37, 74
discretization, 49

diverging, 84

downstream velocity, 10
dunes, 10

eddy, 12

ejection, 12

equilibrium state, 14, 16
exponential function, 51

flow detachment, 11, 42
flow field, 10

fluid motion, 10

form drag stress, 17
friction shear stress, 13
Froude number, 2

glass beads, b
granular matter, 8
grid spacing, 60
group velocity, 73

initial ripple length, 14
initiation, 13

interaction function, 26
internal boundary layer, 10
intrinsic length scale, 37
inverse relation, 14, 76
inverse relation, 76
irregularity, 13, 35

jump length, 22, 35
jumping length, 62

laminar flow, 36

lee side, 28

linear stability analysis, 47
linear stability analysis, 39
linguoid ripple, 18
logarithmically growth, 25
lower—stage plan, 2
lower—stage plane, 2
lunate, 30

mass conservation, 34
master equation, 27
memory effect, 5
merging, 18

migration, 70

migration velocity, 48, 50
model equation, 35
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non—dimensional, 52
non-linearity, 51
non-locally, 27, 28
nonlocal interaction, 37
number of maxima, 50

oscillatory flow, 6

paleo—climate, 14
paleo—climatic indicator, 15
parameterization, 27

periodic boundaries, 37, 57, 70
phase space, 26

reattachment length, 36, 42, 79
reattachment point, 28
recirculating flume, 4
relaxation mechanism, 9
reptation, 7

Reynolds number, 16
ripple

— development, 15

— interaction, 18
ripple index, 1

ripple marks, 15

ripple system, 73
ripples

— aeolian impact, 6

— rolling grain, 6

— sinuous, 18

— vortex, 6

roller, 10

rolling, 7

roughness, 11
run-time, 54

saltation, 7

sand packet scale, 27
scaling, 52

scaling factor, 53
sediment transport, 6
separation point, 11
separation zone, 28
shadow zone, 25
shadow length, 79
shadowing, 28

shear velocity, 15
shear stress, 16

size segregation, 8, 15
slab model, 25
sorting, 15

stability, 69
stabilizing, 17

state

— stationary, 16

— final, 16

— quasi-stationary, 29
stoss side, 28

stream strength, 77
subaqueous bedforms, 1
suspended load, 7, 14
sweep, 12

threshold

— behavior, 23
time step, 58
toy model, 32
tunneling, 24

upper—stage plane, 2
upwind differencing, 55

variability, 69
variance, 50
variational calculus, 28
vertical form index, 1
vertical velocity, 10
vortex ripples, 6
vortex ripples, 26

wake region, 10
wavelength selection, 84



