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Abstract

In this work we consider systems of partial differential equations of continuum
mechanics and analyze properties of their weak solutions, for instance their
regularity properties.

We start in chapter 2 with the (local) regularity problem related to the
equations modelling the mechanical behaviour of elasto-perfect plastic mate-
rials respectively to an elasto-viscoplastic approximation of these materials,
i. e. we consider the Norton-Hoff approximation to Henckys law. These
equations form a nonlinear systems of partial differential equations of second
order and of elliptic type in the usual primal formulation, where one is in-
terested in the displacement vector u = u(x) respectively the strain tensor
ε(u) = 1

2
(∇u + (∇u)T ). We study these systems via a dual approach which

was developed by A. Bensoussan & J. Frehse. In this approach we look for
the stress tensor σ = σ(x) which solves the system of equations:

Aσ + |σD|p−2σD = ε(u) in Ω ⊂ Rd

divσ + f = 0

in the weak sense with mixed boundary conditions. We show local Hölder
continuity of the stress tensor in two dimensions for the Norton-Hoff approx-
imation of the Hencky law in plasticity theory and deduce also corresponding
results for the strain tensor ε(u).

The main tool to achieve this result is in the static case a logarithmic
Morrey estimate, which was developed by J. Frehse together with A. Ben-
soussan and G. Seregin in the here considered context of the dual theory
of elliptic systems. These logarithmic Morrey estimates combined with a
suitable adapted estimate on higher integrability a la Meyers-Nečas-Gehring-
Giaquinta-Modica give the final result.

We also deal with a system of partial differential equations describing a
steady motion of an incompressible fluid with shear-dependent viscosity and
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present a new global existence result for p > 2d
d+2

. Here p is the coercivity
parameter of the nonlinear elliptic operator related to the stress tensor and
d is the dimension of the space. Lipschitz test functions, a subtle splitting
of the level sets of the maximal functions for the velocity gradients, and a
decomposition of the pressure are incorporated to obtain almost everywhere
convergence of the velocity gradients.

Finally we survey and improve some results concering uniqueness and
regularity of solutions to the instationary Navier-Stokes equations in three
(and higher) dimensions. In particular we shall show that the class of weak
solutions which additionally belong to the space L2(0, T ;BMO) guarantees
uniqueness as well as regularity of the solution under consideration. We also
discuss the related issue of controlling the blow-up phenomenon of smooth
solutions to the Navier-Stokes equations. The method of proof which we
present is elementary and depends deeply on the special structure of the
nonlinear convective term u·∇u of the Navier-Stokes equations together with
divu = 0; namely the convective term is a “div-curl expression and according
to Coifman, Lions, Meyer & Semmes it belongs to the Hardy space H1. This
also shows that it is applicable to other equations in hydrodynamics as for
example the Boussinesq equations, the equations of Magneto-Hydrodynamics
and the equations of higher grade type fluids.
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Chapter 1

Introduction

The subject of this work are local and/or global regularity properties of weak
solutions of some elliptic respectively parabolic systems of partial differential
equations from continuum mechanics.

In chapter 2 we consider the Norton-Hoff approximation of Hencky’s law
for an elasto-perfect plastic material in dual formulation:

Aσ + |σD|p−2σD = ε(u) in Ω ,(1)

divσ + f = 0 in Ω(2)

completed by boundary conditions of Neumann type for σ and of Dirichlet
type for u. Here we already have used the following notation:

• Ω ⊂ Rd (d = 2, 3 in physical relevant situations) is a bounded domain
with Lipschitz boundary ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅ and Hd−1(ΓD) >
0;

• σ = (σij) denotes the (symmetric) stress tensor: σij = σij;

• σD := σ − 1
d
(traceσ)Id is the deviator of σ, i. e. the trace free part of

σ;

• A =
(
Ahk

ij

)
∈ L∞

(
Ω; Rd2×d2)

denotes the material depending elasticity
tensor, for example the classical Lamé-Navier operator:

(Aσ)ij :=
1

2µ
σij −

λ

2µ(2µ+ 3λ)
(traceσ)δij

with given Lamé constants λ and µ;
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• ε(u) := 1
2

(
∇u+ (∇u)T

)
is the linearized strain tensor and

• f stands for some given vector valued function representing some given
volume force.

Equation (1) is the Euler-Lagrange equation of a variational problem
where we minimize over a class of functions specified by equation (2) and the
boundary conditions of the problem. So, the (unique) solution can be found
by minimizing the corresponding variational integral which has p-growth as
well as quadratic growth with respect to |σD| and only quadratic growth
with respect to trace σ = trσ (for example in the case of the Lamé-Navier
operator).

The just roughly described variational problem is the dual variational
problem of the so called primal variational problem in which we look for a
solution u respectively ε(u) minimizing a corresponding variational integral
instead of σ. Very roughly (and more incorrect than correct) we can view
this as follows: Writing equation (1) in the form

ε(u) = ψ(σ)

and inverting the mapping ψ (provided that this is possible) we have:

σ = ψ−1
(
ε(u)

)
and putting this into equation (2) we obtain:

−divψ−1
(
ε(u)

)
= f

which can (eventually) be recovered as Euler-Lagrange equation of a varia-
tional integral. How this is done precisely the reader can find in R. Temam
[Tem85] or in [FS00] by using the Legendre transform instead of the mapping
ψ, ψ−1.

Even if the just described procedure is not completely correct we see that
the primal formulation

−divψ−1
(
ε(u)

)
= f

or the corresponding variational integral represents a nonlinear, “degener-
ate” elliptic system of second order with “anisotropic” growth condition for
|εD(u)|:

• one ”part” has p
p−1

-growth;
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• the other one only linear growth.

In the limit case p ↑ +∞ which corresponds to the Hencky model we have to
deal in the primal formulation with a variational problem with linear growth
explaining partly the difficulty of the problem, because usually the underlying
function space for variational problems with linear growth is not reflexive for
example W 1,1, BV or here the space BD (see chapter 1). Another aspect of
the problem which is more related to regularity is the fact that the elliptic
system in the primal formulation is not of Uhlenbeck-Uralceva type, which
means that the coupling (dependence on) in the gradient of the solution of
the system is not given as a function of the modulus of the gradient, but only
as a function of the modulus of εD(u), i. e. of the deviator of ε(u). This
“explains” somehow that it will be not “easy” to obtain full regularity because
up to now systems of Uhlenbeck-Uralceva type constitute the only “class” of
systems for which full regularity of their solutions is known (see for example
[Gia83] and [DiB93]). Moreover the different, anisotropic growth conditions
for |εD(u)| respectively σD make the problem even more complicated.

The first step uses as an essential tool a refined (inhomogeneous) hole-
filling method developed by J. Frehse (and G. Seregin in the special form
which we are going to use). The second step follows via more standard tools
from the regularity theory of elliptic systems: Either by using the classical
hole-filling method or by using the technique of reverse Hölder inequalities
to obtain higher integrability of ∇σ, i. e. ∇σ ∈ Lq

loc(Ω) for some q > 2 = d.
Since we believe that this inhomogenous hole-filling technique is well suited
to treat regularity problems in limit cases where the integrability exponent is
closed to the dimension d on one hand and on the other hand it seems to be
very flexible with respect to different growth conditions, we formulate here a
version of it:

Proposition 1-I ([SF99]) Suppose that Ω ⊂ R2 is an open and bounded
domain and that two functions H ∈ L2(Ω) and h ∈ W 1,2(Ω) satisfy the
estimate ∫

BR(x0)

H2(x) dx ≤C1


∫

TR(x0)

H2(x) dx+Rα


1/2

1

R

∫
TR(x0)

|hH| dx .
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for some positive α, any x0 ∈ Ω and any 0 < R < R0 such that the ball
B2R(x0) ⊂ Ω. Here TR(x0) denotes the annulus B2R(x0) − BR(x0). Then,
for any q ≥ 1, there exists a positive constant C2, depending on q, C1, α, R0,
‖h|W 1,2(Ω)‖ and ‖H|L2(Ω)‖ such that∫

BR(x0)

H2(x) dx ≤ C2(
log2

2R0

R

)q .

Let us remark right a way that a corresponding statement is true for Ω ⊂ Rd,
H ∈ Ld/d−1(Ω) and h ∈ W 1,d(Ω) replacing the exponent 2 by d/d− 1 for H
and by d for h. Also 1

R
has to be replaced by 1

Rd−1 .
In applications the function H will be usually “given” by the problem

under consideration. The “flexibility” of the method, i. e. of the proposition,
consists of a proper choice of the function h which one has to adapt to the
problem one would like to deal with.

We also review some further regularity results for equations (1), (2) in
chapter 2. Especially we discuss what is known concerning regularity up to
the boundary.

It is well known that the unique solutions (σ, u) = (σp, up) of equations
(1), (2) converge for p ↑ +∞ to a solution (σ̃, ũ) of a limit problem which is
the Hencky model, where the stresses σ̃ are unique (for ũ uniqueness is not
known) and satisfy the von Mises condition |σD| ≤ 1.

Engineers expect continuity of stresses for both the approximation σp as
well as their limit and they use it also in their numerical calculations. In
contrast to this it is “known” that the displacement ũ in the limit problem
possesses discontinuities, which is another reason to work in the limit problem
with the space BD(Ω). We refer to [Pan85, chap. 9] for more details. This
fact also shows that it is more convenient to work with the dual variational
problem and the stresses instead of the primal variational problem and the
displacements.

As a first step towards regularity G. Seregin [Ser87] using an approxi-
mation of the primal variational problem and A. Bensoussan and J. Frehse
[BF93] using the dual approach were able to establish H1,2

loc -regularity for the
approximation σp (p fixed) as well as for the limit as p tends to infinity. For
this purpose they prove that the L2-norm of ∇σp stays locally in Ω uniformly
bounded as p ↑ +∞.

The main result of chapter 2 is concerned with the continuity of stresses
and it reads:
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Theorem 1-II In space dimension d = 2 and for arbitrary, but fixed p : 2 <
p < +∞ the stress tensor σ = σp is locally in Ω Hölder continuous:

σ ∈ C0,α
loc (Ω)

for some positive α. As a consequence of this result and equation (1) we also
have:

ε(u) ∈ C0,β
loc (Ω) and

u ∈ C1,β
loc (Ω)

for some β > 0.

For the proof of the theorem we shall verify a logarithmic Morrey-condition
for the quantity

H2 := ∇ε(u) : ∇σ = Dkεij(u)Dkσij ,

which estimates |∇σ|2 and gives us therefore also a log-type Morrey condition
for ∇σ. This yields in a first step continuity and boundedness of σ and ε(u)
and in a second step by using these new information we obtain the Hölder
continuity.

In chapter 3 we consider in an open bounded set Ω in Rd with Lipschitz
boundary ∂Ω the following system of partial differential equations:

−divT + div (v ⊗ v) +∇P = f ,(1.1)

div v = 0 ,(1.2)

v = 0 on ∂Ω .(1.3)

Here v = v(x) =
(
v1(x) , . . . , vd(x)

)
and P = P (x) denote the unknown

velocity and pressure fields at the point x ∈ Ω, while f =
(
f 1(x) , . . . , fd(x)

)
is a given external force and T is the extra stress for which one has to specify
the constitutive equation.

The system (1.1)–(1.3) describes steady motions of incompressible fluids.
A typical example of considered models that are widely used in engineering
practise is given by

T
(
D(v)

)
≡ ν0|D(v)|p−2D(v) ,(1.4)

where D(v) denotes the symmetric part of the velocity gradient ∇v and
p ≥ 1. We, here, confine ourselves to a discussion of this typical example and
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refer the reader to chapter 3 for more examples, a more detailed discussion of
the continuum mechanical background and more general assumptions on the
extra stress sensor which are sufficient to obtain the desired existence result.

Our aim will be to prove the following existence result:

Theorem 1-III Let p > 2d
d+2

and assume f ∈ W−1,p′(Ω). Then there exists

a weak solution v ∈ Vp ≡
{
v ∈ W̊ 1,p(Ω) : div v = 0

}
to (1.1)–(1.4) in the

sense that∫
Ω

T
(
D(v)

)
: D(Φ) dx = 〈f,Φ〉1,p +

∫
Ω

(v ⊗ v) : D(Φ) dx ∀Φ ∈ C∞
0,σ(Ω) .

The notation we use here, will be explained in detail in chapter 3, section 2.
To prove existence of a weak solution to (1.1)–(1.3) two different methods

were applied up to date. The first method is a combination of weak compact-
ness for v respectively the Galerkin approximation vm to v and monotonicity
arguments (Minty’s trick). This works for p ≥ 3d

d+2
and the reason for this

comes from the convective term v · ∇v ≡ div (v ⊗ v), which should be an
element of such a Lebesgue space Lq that testing by some Φ ∈ Vp provides
an L1-function. Using Sobolev’s inequality and Hölder’s inequality one cal-
culates easily the bound p ≥ 3d

d+2
. This method was performed by J. L. Lions

[Lio69] and O. A. Ladyzhenskaya [Lad67], [Lad68], [Lad69] in the late sixties.
The second method, which we call L∞-truncation method, yields exis-

tence of a weak solution for p ≥ 2d
d+1

. In this case the convective term is at
least a L1-function, explaining that the method is based on the construction
of a special bounded test function by truncation. Since the truncation pro-
cess destroys the solenoidal character of the test function one also needs a
“good” characterisation of the pressure. The method also relies strongly on
the strict monotonicity of T . This latter method was successfully applied
to the steady problem in [FMS97] and [Růž97] (in [Růž97] the limiting case
p = 2d

d+1
is not included).

In chapter 3 we introduce yet another approach, which we would like to
call Lipschitz truncation method, in order to prove the above stated theorem.
For this purpose we construct a Lipschitz test function to show that for
certain approximations vn the tensors D(vn) converge almost everywhere
to its weak limit D(v), which is the crucial point in proving that v is a
weak solution to (1.1)–(1.3). Because of earlier results we can restrict our
consideration to the case p ∈

(
2d

d+2
, 2d

d+1

)
. Note that Lipschitz truncations
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of Sobolev functions were already successfully used in different context, see
the references to chapter 3.

The novelty of our application of the Lipschitz approximation of Sobolev
functions consists of the discovery of the mechanism of obtaining almost
everywhere convergence of gradients for weakly convergent sequences. To
discover this mechanism we have to refine substantially the properties of the
Lipschitz approximation procedure (see Proposition 3-VII and 3-IX in chap-
ter 3, section 5) and due to the fact that truncation destroys the solenoidal
character we also need very precise control of the presssure P . This precise
control is achieved in section 4 of chapter 3 by decomposing the pressure P
into four parts P 1k , P 2k , P 3k and P 4k which are related to the nonlinear parts
of the approximating system to (1.1)–(1.3) (see section 4, chapter 3) by four
auxiliary Stokes problems. This leads finally to a (special) weak formulation
of the approximating system for which we can use the Lipschitz truncation
(vk−v)λ of (vk−v) as test function and we obtain finally almost everywhere
convergence of D(vk) to D(v) and even stronger convergence properties (see
chapter 3).

Lastly we mention that corresponding existence results (of weak solutions)
for the time-dependent system are not known (especially in the case of the
Dirichlet boundary condition v = 0 on (0, T )×∂Ω) (see the cited references to
chapter 3). However, we wish to emphasize, that we believe that a convenient
probably not straightforward modification of the presented techniques can
improve also the existence results for the evolutionary model.

The last chapter, chapter 4, is concerned with the initial value problem
for the Navier-Stokes equation in (0, T )× Rn with 0 < T < +∞ and n ≥ 3:

∂tu
i −∆ui + ujDju

i +Diπ = f i in (0, T )× Rn,(1.5)

divu = 0 in (0, T )× Rn,(1.6)

u(0, x) = a(x) ,(1.7)

where u = u(t, x) =
(
u1(t, x), . . . , un(t, x)

)
and π = π(t, x) denote the

unknown velocity vector and pressure of the fluid at the point (t, x) ∈
(0, T )× Rn, while a = a(x) =

(
a1(x), . . . , an(x)

)
is the given initial velocity

and f = f(t, x) =
(
f 1(t, x), . . . , fn(t, x)

)
is a given external force.

We are interested in the classical problem of finding sufficient conditions
for weak solutions of (1.5)–(1.7) such that they become unique and/or regu-
lar. In section 1 of chapter 4 we introduce the classical Prodi-Serrin condition

PS(α, β) ≡ 2

α
+
β

n
= 1 , because it ensures the uniqueness and also the regu-
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larity of solutions besides the limit case L∞(0, T ;Ln) for which regularity is
still not known. Then we try to give an up to date survey of what is known
to these two problems and discuss “different” contributions and methods of
proof to this circle of questions. Due to the fact that this field of research
is presently “incredibly alive” (cited from the recent thesis of L. Berselli
from the university of Pisa) and active and due to the limited knowledge
of the author - as well as some personal taste - this survey is certainly not
complete, probably even not comprehensive, but we try to give a somehow
representative overview.

In section 2 we introduce the function spaces BMO of bounded mean
oscillation and the Morrey space L2,n−2 - besides some other standard spaces
in this context - , recall some of their properties and introduce the notion of
weak solution before stating our results.

The uniqueness theorem we shall prove in section 3 of chapter 4 reads as
follows:

Theorem 1-IV There exists at most one solution of (1.5)–(1.7) in the sense
of Definition 4-I (see chapter 4) such that the solution u belongs to the class

u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) ∩ L2(0, T ;BMO) or(i)

u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) and ∇u ∈ L2(0, T ;L2,n−2) .(ii)

Such a solution would be continuous from [0, T ] into L2
σ and the usual energy

inequality would turn into an identity.

The uniqueness classes specified in the theorem weaken respectively sharpen
the assumption concerning the regularity with respect to the space variables
of the following “known” uniqueness classes:

u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) ∩ L2(0, T ;L∞) ,(i))

u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) ∩ L2(0, T ;W 1,n) .(ii))

To illustrate how “large” our realized profit is we recall:

i) L∞ ⊂ BMO ⊂ Lp for any p < +∞;

ii) log |x|, log |P (x)| ∈ BMO, P some homogeneous polynomial,
so L∞ $ BMO;

iii) ∇u ∈ Ln =⇒ ∇u ∈ L2,n−2 =⇒ u ∈ BMO.
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Concerning regularity we prove there the following Theorem:

Theorem 1-V Suppose a ∈ W 1,2
σ and u is a weak solution of (1.5)–(1.7) in

the sense of Definition 4-I in [0, T ). If u satisfies

i) ∇u ∈ L2(0, T ;L2,n−2) or

ii) u ∈ L2(0, T ;BMO) or

iii) ∇2u ∈ L1(0, T ;L2,n−2) or

iv) ∇u ∈ L1(0, T ;BMO) , then we have

u ∈ C(0, T ; W̊ 1,2
σ ∩ L2(0, T ;W 2,2

σ ) and a corresponding estimate holds true.
In particular u is a regular and unique solution in [0, T ].

The proofs of the theorems are based either on a Sobolev inequality for diver-
gence free maps (in case of ∇u ∈ L2,n−2) which was proven by S. Chanillo in
1991 and was used by L. S. Evans to establish partial regularity of weakly har-
monic stationary maps which are valued in spheres Sm−1 ⊂ Rm or on a result
from compensated integrability/compactness of Coifman, Lions, Meyer and
Semmes telling us that the convective term ujDju

i belongs to L2(0, T ;H1),
where H1 ⊂ L1 denotes the Hardy space, and the famous duality theorem of
C. Fefferman asserting (H1)∗ = BMO. After a discussion of the necessary
tools – even with proof of what we think are the most important “points” –
we provide the proofs of the theorems and discuss some slight generalisations
respectively related versions of our theorems.

Let us remark that the results of chapter 4 which are described above
were obtained by the author in 1996/97 and he gave a talk on this topic
in spring 1997 in Lisbon on an international conference in honour of the
seventieth birthday of Prof. Dr. J. Nečas. In the mean time appeared
the paper “Bilinear Estimates in BMO and the Navier-Stokes Equations”
of H. Kozono and Y. Taniuchi (Math. Zeitschr. 235 (1): 173–194, 2000)
which contains more or less completely corresponding results, but using the
machinery of “bilinear analysis” developed by Coifman and Meyer (see their
book [MC97]), in their proofs. So we would like to point out that the results
(and more important the proofs of them) are obtained really independently of
the paper of Kozono and Taniuchi and we believe that the proofs we provide
for them are “somehow” more elementary, but of course this is a question of
personal taste.
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Finally in section 4 of chapter 4 we try to argue in favour of regularity in
the limit case u ∈ L∞(0, T ;Ln). We are not able to prove regularity in this
case, but we can somehow unify some known results and give some supple-
ments to what is known. For example we prove the following proposition:

Proposition 1-VI If v ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ;W 1,2

σ ) ∩ L∞(0, T ;Ln) is
a weak solution of (1.5)–(1.7) under the assumption a ∈ L2

σ ∩ Ln, then
there exists ε = ε(‖v|L∞(0, T ;Ln)‖) > 0, such that v ∈ L∞(0, T ;L2+2ε

σ )

and ∇ |v|1+ε

1+ε
∈ L2(0, T ;L2) with corresponding estimate.

Using the result of the proposition together with some interpolation inequal-
ities one can improve the known regularity properties for ∂tv, ∇2v and ∇π
via Solonnikov’s estimates for the time-dependent Stokes equations. This
and related remarks are also discussed in section 4, chapter 4.
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[FMS97] Jens Frehse, Josef Málek, and Mark Steinhauer. An existence result
for fluids with shear dependent viscosity—steady flows. In Proceed-
ings of the Second World Congress of Nonlinear Analysts, Part 5
(Athens, 1996), volume 30, pages 3041–3049, 1997.

[FS00] Martin Fuchs and Gregory Seregin. Variational methods for prob-
lems from plasticity theory and for generalized Newtonian fluids.
Springer-Verlag, Berlin, 2000.

[Gia83] Mariano Giaquinta. Multiple integrals in the calculus of variations
and nonlinear elliptic systems. Princeton University Press, Prince-
ton, NJ, 1983.

[Lad67] O. A. Ladyzhenskaya. New equations for the description of the
motions of viscous incompressible fluids, and global solvability for
their boundary value problems. Trudy Mat. Inst. Steklov., 102:85–
104, 1967.

[Lad68] O. A. Ladyzhenskaya. Modifications of the Navier-Stokes equations
for large gradients of the velocities. Zap. Naučn. Sem. Leningrad.
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Chapter 2

On Hölder-Continuity of
Stresses for Two-Dimensional
Problems of Plasticity

2.1 The Equations of Plasticity

In this section we recall the Hencky-law of plasticity (see [Hen24]) which
describes the plastic behaviour of solids in the static case. We mainly follow
in this introductory part the work of R. Temam [Tem86, Tem85].

2.1.1 The General Equations of Plasticity.

A solid body occupies at rest a region Ω of Rd (d = 2, 3 for the physical rel-
evant situation) with boundary Γ = ∂Ω. This solid undergoes deformations
under the action of volume forces of density f inside Ω and surface forces of
density g on some part ΓN of Γ; f and g depend on x = (x1, . . . , xd) ∈ Ω
forf and x ∈ ΓN for g.

The state of the deformed material is described by the tensor field σ =
σ(x) and the vector field u = u(x). The tensor σ is the Cauchy stress tensor
at point x ∈ Ω, while u is the displacement of the material particle which
is at point x when the body is at rest. Under the assumption of small
displacements, the motion of the body is governed by the classical equation

(2.1) ρ ∂2
t u = f + div σ, x ∈ Ω, t > 0,
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where ρ is the density of the solid and div σ is the vector with components

(2.2) div σ := Djσij :=
d∑

j=1

Djσij =
d∑

j=1

∂σij

∂xj

, i = 1, 2, . . . , d;

σij denoting the components of σ. Here we already used the Einstein index
summation convention and Djφ = φ,j = ∂φ

∂xj
. Partial differentiation with

respect to t is denoted by ∂t = ∂
∂t

or a dot, so that ü = ∂2
t u = ∂2u

∂t2
for

example.
As a consequence of the “principle of conservation of momentum” one

obtains in particular the symmetry of the Cauchy stress tensor:

(2.3) σij(x) = σji(x), x ∈ Ω.

In the static case, the evolution is slow, the acceleration term ρ ü = ρ ∂2
t u

can be neglected and (2.1) is replaced by

(2.4) div σ + f = 0.

Several other equations are necessary to describe the deformation of the
body. First the continuity of forces on ΓN , which implies

(2.5) σ · ν := σijνj = gi := g, x ∈ ΓN ,

where ν = (ν1, . . . , νd) is the unit outward normal on Γ and i = 1, . . . , d.
Then the displacement u is given on the complement ΓD of ΓN on Γ:

(2.6) u = U, x ∈ ΓD.

2.1.2 The Constitutive Law

The general equations above are completed by the constitutive relation con-
necting the stresses σ to the strains ε = ε(u),

(2.7) εij(u) =
1

2
(Diu

j +Dju
i) ,

where we supposed that the deformation of the body – which in general can
be described by the nonlinear deformation tensor

(2.8) E(u) =
1

2
(∇u+ (∇u)T + (∇u)T∇u)
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– is “small”, so that we can neglect the quadratic term (∇u)T∇u and regard
E(u) as the “linearized strain/ deformation tensor”:

(2.9) ε(u) =
1

2
(∇u+ (∇u)T ) .

Let S denote the space of all symmetric tensors of order 2 and let SD be
the subspace of symmetric tensors with vanishing trace. If ξ = (ξij) belongs
to S then its deviatoric ξD ∈ SD is ξ − 1

d
(trace ξ)I or in components

(2.10) ξD
ij = ξij −

1

d
ξll δij .

If ξ, η ∈ S, their scalar product in S is denoted

(2.11) ξ : η := ξijηij :=
d∑

i,j=1

ξijηij

and

(2.12) |ξ| := {ξ : ξ}1/2

denotes the Euclidean norm of ξ ∈ S. Hence,

(2.13) ξ : η := ξD : ηD +
1

d
(trace ξ) (trace η) .

In classical linear elasticity the relation between stresses and strains is linear
at every point x ∈ Ω:

(2.14) σij = 2µεij(u) + λ εkk(u) δij

or

σD
ij = 2µεD

ij ,

σkk = (2µ+ 3λ) εkk(u) = (2µ+ 3λ) div u ,
(2.15)

where λ, µ are the Lamé coefficients. Inverting these relations we can write

(2.16) ε(u) = Aσ ,
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where A is the invertible positive definite operator in S defined as

(2.17) (Aξ)ij :=
1

2µ
ξij −

λ

2µ(2µ+ 3λ)
ξkk δij , ∀ξ ∈ S .

More general A can be any positive definite operator from S into S which
possibly can also depend on x meaning that the considered body is inhomo-
geneous.

For the Hencky-law we are given a convex set K ⊂ S in which the stress
tensor must remain; K will be of the form

KD
⊕

R I ,

where
(2.18)

KD ⊂ SD is a closed convex bounded set containing 0 in its interior.

For example KD can be defined as

(2.19) KD := {ξD ∈ SD : F(ξD) ≤ 0},

where F – the so called flow function – is a given continuous and convex
function. We will here deal with the special function

(2.20) F1(ξ
D) :=

1

2
|ξD|2 − k2

∗ ,

which was introduced by R. von Mises to approximate the flow rule of H.
Tresca (see for example [DL76] or [Zei88]).

For plastic behaviour it is first assumed that

(2.21) σ(x) ∈ K ∀x

while the linear relation 2.16 between ε and σ is no longer valid, and instead
we write

(2.22) εij(u) = Ahk
ij σhk + λij .

Then the Hencky-law give a set of conditions satisfied by λ when λ 6= 0,
which according to J. J. Moreau [Mor68] are equivalent to

(2.23) λij(τij − σij) ≤ 0 ∀τ = (τij) ∈ K,
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where (2.23) holds at every point x ∈ Ω.
The relations (2.22) and (2.23) can also be written in alternate forms

which are sometimes convenient. For instance if χK denotes the indicator
function of the convex set K in S, i. e.

(2.24) χK(ξ) :=

{
0 if ξ ∈ K

+∞ if ξ ∈ S \K

and ∂χK its subdifferential, cf. [ET99], then the material law (2.23) reads

(2.25) λ = ε(u)− Aσ ∈ ∂χK .

Also, if τ ∈ K, we denote by CK(τ) the cone

CK(τ) := {ξ ∈ S : ξ = r(η − τ), η ∈ K, r > 0} .

If τ ∈
o

K (= the interior of K), then CK(τ) = S, while if τ ∈ ∂K, CK(τ) is
the cone of tangents to K at point τ . It is easy to see that ∂χK(τ) is nothing
else than the polar cone C0

K(τ) of CK(τ) and thus (2.25) is equivalent to the
normality law:

(2.26) ε(u)− Aσ ∈ C0
K(τ) .

2.1.3 Notation and Function Spaces

We assume that Ω is an open connected, bounded subset of Rd (d = 2, 3)
with Lipschitz boundary ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅, Hd−1(ΓD) > 0, where
Hd−1 denotes the (d− 1)–dimensional Hausdorff measure.
By ν we denote the unit outer normal to ∂Ω.
We will use the following notation and function spaces:

L2(Ω) = the space of L2-functions from Ω to R;

L2(Ω; Rd) = L2(Ω)d;

L2(Ω; S) = the space of L2-functions from Ω to S;

H1(Ω) = W 1,2(Ω) := {u ∈ L2(Ω) : Diu ∈ L2(Ω) , i = 1, . . . , d}
= Sobolev space of order 1 with exponent p = 2;

H1(Ω; Rd) := H1(Ω)d.
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The scalar product and the norm on either L2(Ω) , L2(Ω; Rd) or L2(Ω; S)
are written (·, ·) and | · |. The scalar product and the norm on H1(Ω) or
H1(Ω; R) are written ((·, ·)) and || · ||.

Finally we denote by Lp(Ω) (respectively Lp(Ω; Rd), Lp(Ω; S)), 1 ≤ p ≤
+∞, the usual Lebesgue spaces of Lp-functions from Ω into R (respectively
Rd,S), which are Banach spaces when endowed with their natural norm.

The space of real L2-functions on Γ = ∂Ω for the (d − 1)–dimensional
Hausdorff measure Hd−1 is denoted by L2(Γ) = L2(∂Ω) and L2(Γ; Rd) =

L2(Γ)d; H
1
2 (Γ) ⊂ L2(Γ) is the space of traces on Γ of functions u in H1(Ω),

and H− 1
2 (Γ) the dual of H

1
2 (Γ) (cf. J. L. Lions & E. Magenes [LM72] or J.

Nečas [Neč67]).

In order to relate surface forces on the boundary ∂Ω to the stress tensor
we call the readers attention to the following result of R. Temam for domains
with boundary of class C1.

Lemma 2-I If τ ∈ L2(Ω; S) and div τ = (Djτij) ∈ L2(Ω; Rd), we can define

the trace of τν = (τijνj) on ∂Ω as an element of H− 1
2 (Γ; Rd), and obtain the

following estimate with a constant C1 depending only on Ω:

(2.27) ||τν||
H− 1

2 (Γ;Rd)
≤ C1 {|τ |L2(Ω;S) + | div τ |L2(Ω;Rd)} ,

for all τ ∈ L2(Ω; S) , div τ ∈ L2(Ω; Rd). Furthermore, we have the generalized
Green formula:∫

Ω

τ : ε(v) dx =

∫
Ω

τij : εij(v) dx =

∫
Ω

τij : Djv
i dx

=

∫
Γ

τijv
iνj dHd−1 −

∫
Ω

Djτijv
i dx

= 〈τν, v〉
H− 1

2 (Γ)d,H
1
2 (Γ)d

−
∫
Ω

v · div τ dx

(2.28)

valid for every v ∈ H1(Ω; Rd) and τ ∈ L2(Ω; S) with div τ ∈ L2(Ω; Rd). Here
the first term on the right hand side denotes the duality pairing between the
spaces H− 1

2 (Γ; Rd) and H
1
2 (Γ; Rd).

For a proof of this result we refer to [Tem86, Tem85] or [CF88].
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2.2 The Static Norton-Hoff Model as an Ap-

proximation of Hencky’s Law for Elasto-

Perfect Plastic Materials

We consider in our bounded domain Ω ⊂ Rd the Norton-Hoff approximation
of Hencky’s law for elasto-perfect plastic materials in dual formulation:

Aσ + |σD|p−2σD = ε(u) in Ω,(2.29)

div σ + f = 0 in Ω,(2.30)

σ · ν = g on ΓN ,(2.31)

u = U on ΓD.(2.32)

Here we used the following notation:

• A = (Ahk
ij ) ∈ L∞(Ω; Rd2×d2

) such that Ahk
ij = Ahk

ji = Akh
ij = Aij

hk and
(Aτ, τ) := Ahk

ij τhkτij ≥ α|τ |2 = α(τij, τij) for all τ ∈ S and some positive con-
stant α, is the (material-dependent) inverse of the elasticity tensor (see the
previous section for the classical Lamé-Navier Operator of linearized elastic-
ity);

• f, g and U are given vector-valued functions which represent the given vol-
ume forces (f), surface forces (g) and the prescribed displacement (U) on
ΓD.

• p ≥ 2 is a given real number which represents a penalty-parameter for pe-
nalising the constraint |σD| ≤ 1 (note that to simplify we have “normalized”

σ to have k∗ =
√

2
2

, see (2.20)), and which is intended to go to +∞. The
reason for this will be clear in the next subsection.
The equation (2.29) is the Euler-Lagrange equation of the following varia-
tional problem: Defining the functional Jp(σ) as

Jp(σ) :=
1

2

∫
Ω

Ahk
ij (x)σhk(x)σij(x) dx+

1

p

∫
Ω

|σD(x)|p dx

−
∫
ΓN

σijνjg
idHd−1

(2.33)

and the set Kp as

Kp :=
{
σ ∈ L2(Ω; S) : div σ + f = 0 in Ω ,

σ · ν = g on ΓN , σ
D ∈ Lp(Ω; SD)

}
,

(2.34)
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where we assumed that

(2.35) f ∈ Lq(Ω; Rd) for every finite q > 1 ,

(2.36) g ∈ H− 1
2 (ΓN ; Rd)

or in a better space as for example

L2(ΓN ; Rd) ,

the Norton-Hoff model (with penalty-parameter p) corresponds to the varia-
tional problem:

(2.37) Jp(σ) −→ min over Kp !

Via the standard “Direct methods of the Calculus of Variations” it is not
difficult to show that the problem (2.37) has a unique solution denoted by
σ = σp. The uniqueness follows from the fact that the functional Jp(σ) is
strictly convex for 1 < p < +∞.
For later use we stress the following uniform estimate for a minimizing se-
quence {σk}k∈N:

‖σk‖2
0,2 + ‖σD

k ‖
p
0,p ≤ K(2.38)

with a constant K independent of k ∈ N and 2 ≤ p.
A necessary and sufficient condition for σ = σp to be a minimizer consists

of ∫
Ω

Ahk
ij (x)σhk(x)τij(x) + |σD|p−2σD

ij τ
D
ij dx = 0(2.39)

∀τ ∈ Lp(Ω; S) such that div τ = 0, τν = 0.
By using this in conjunction with

Proposition 2-II If α ∈ Lp(Ω; S) satisfies∫
Ω

αij(x)βij(x) dx = 0

∀β ∈ Lq(Ω; S) such that div β = 0, βν = 0 on ΓN (1 < p, q < +∞, 1/p +
1/q = 1), then there exists exactly one u ∈ W 1,p(Ω; Rd) such that

α = ε(u) and u = 0 on ΓD .
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We introduce the displacement:

u = up ∈ W̊
1, p

p−1

ΓD
(Ω; Rd) + U , divup = trace(Aσp) ∈ L2(Ω) .(2.40)

Under the following two different, additional hypotheses one can derive also
uniform (with respect to p ↑ +∞) estimates on the displacement u = up:

‖ε(up)‖0,1;Ω ≤ K ,(2.41)

‖up‖0, d
d−1

;Ω ≤ K ,(2.42)

provided that

a) the volume forces f are conservative:

f = ∇F with F ∈ W 1,p(Ω) for all p ∈ (1,+∞)

and F = 0 on ΓD or

(2.43)

b) the safe load condition is satisfied:

∃τ ∈ L2(Ω; S) such that div τ + f = 0 in Ω , τν = g on ΓN

and ∃δ > 0 such that |τD| ≤ 1− δ .

(2.44)

The just mentioned uniform estimates (2.38), (2.41) and (2.42) lead finally to
the following existence result for the constitutive law of the Hencky model:

Theorem 2-III For f ∈ Ld+1(Ω; Rd) and g ∈ H− 1
2
,2(ΓN) there exists exactly

one σ ∈ L2(Ω; S) such that

divσ + f = 0 in Ω ,

σν = g on ΓN ,

|σD| ≤ 1 almost everywhere,

and also (at least) one u ∈ L1(Ω; Rd) with ε(u) ∈ M(Ω; S), divu ∈ L2(Ω)
and u = U on ΓD in the sense that

〈ε(u) τ , 1〉 = 0

∀τ ∈ L2(Ω; S), div τ = 0, τ ν = 0 on ΓN , such that

〈ε(u)− Aσ , τ − σ〉 ≤ 0(2.45)

∀τ ∈ L2(Ω,S), div τ + f = 0, |τD| ≤ 1, τ ν = g on ΓN .
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Here M(Ω; S) denotes the space of Radon measures on Ω with values in
S and the “angles” 〈·, ·〉 represent the duality between M(Ω) and L∞(Ω).
The uniqueness of the displacement u is still not known (up to now).

A detailed proof of Theorem 2-III is given in Bensoussan-Frehse [BF93].
Next we review the H1

loc-regularity for the stresses as proven in [BF93].

Theorem 2-IV Assume that the volume forces f satisfy either (2.35) or
(2.43) and in addition

∆f ∈ Ld(Ω; Rd) ,(2.46)

then we have
(i) ∇σ = ∇σp ∈ L2

loc and |σD| p−2
2 |∇σD| ∈ L2

loc, which means more pre-
cisely that for every D ⊂⊂ Ω there exists a positive constant
K = K(p, dist(D, ∂Ω), d) such that∫

D

|∇σ|2 dx ≤ K(2.47)

and ∫
D

|σD|p−2|∇σD|2 dx ≤ K ,(2.48)

(ii) the estimates (2.47) and (2.48) hold with a constant
K = K(d, dist(D, ∂Ω)) independent of p, i. e. we have uniformly with respect
to p the statement

∇σ ∈ L2
loc(2.49)

and ∫
D

|∇σ|2 dx ≤ K .(2.50)

The proof of Theorem 2-IV is based on the following formal calculation,
which we recall for later use and the convenience of the reader. We test
equation (2.29) with −Dα(η4Dασij), where η is a suitable cut-off function
for D ⊂⊂ Ω:

η ∈ C∞
0 (Ω) , 0 ≤ η ≤ 1 , η ≡ 1 on D ⊂⊂ Ω(2.51)
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and

|∇η| ≤ C(d)

dist(D, ∂Ω)
.(2.52)

Integration by parts yields on the left hand side:

(LHS) ≡
∫
η4Ahk

ij DασhkDασij dx+

∫
η4|σD|p−2Dασ

D
ijDασ

D
ij dx

+ (p− 2)

∫
η4|σD|p−4Dα

|σD|2

2
Dα

|σD|2

2
dx .

(2.53)

For simplicity we deal here only with the case of constant coefficients Ahk
ij ;

otherwise there would appear also a term like∫
η4(DαA

hk
ij )σhkDασij dx ,

which does not create any trouble. Therefore we omit it here.
On the right hand side we obtain∫

Dαεij(u)η
4Dασij dx =

1

2

∫
(DαDju

i +DαDiu
j)η4Dασij dx

= −
∫
Dαu

j[DασijDiη
4 + η4DαDiσij] dx

= −
∫
Dαu

j[Dασij4η
3Diη − η4Dαf

j] dx

(2.54)

by using equation (2.33) Diσij = −f j and the symmetry of σ. Next we
integrate once more by parts the term with f :∫

η4Dαu
jDαf

j dx = −
∫
uj[η4∆f j + 4η3Dαηf

j] dx(2.55)

and write by using equation (2.29):

Dαu
j = 2εαj(u)−Dju

α

= 2(Ahk
αjσhk + |σD|p−2σD

αj)−Dju
α .

(2.56)

Therefore

−
∫
Dαu

jDασijDiη
4 dx = −

∫
uα[Dαf

iDiη
4 +DασijDjDiη

4] dx

− 2

∫
Ahk

αjσhkDασijDiη
4 dx− 2

∫
|σD|p−2σD

αjDασij4η
3Diη dx .

(2.57)
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Finally we move Dα and observe that equation (2.29) implies

divu = Dlu
l = εll(u) = Ahk

ll σhk = tr(Aσ)(2.58)

by applying the operator trace to equation (2.29). This yields

−
∫
uαDασij(4η

3DjDiη + 12η2DjηDiη) dx

=

∫
(divu)σij(4η

3DjDiη + 12η2DjηDiη) dx

+

∫
uασij(4η

3DαDjDiη + 12η2DαηDjDiη + 12η2DαDjηDiη

+ 12η2DjηDαDiη + 24ηDαηDjηDiη) dx .

(2.59)

Collecting our intermediate results we get∫
η4Ahk

ij DασhkDασij dx+

∫
η4|σD|p−2|∇σD|2 dx

+ (p− 2)

∫
η4|σD|p−4

∣∣∣∣∇|σD|2

2

∣∣∣∣2 dx
=

∫
uα

{
σij(4η

3DαDjDiη + 12η2DαηDjDiη + 12η2DαDjηDiη

+ 12η2DjηDαDiη + 24ηDαηDjηDiη)

−η4∆fα − 4η3DβηDβf
α − 4η3DiηDαf

i
}
dx

+

∫
Ahk

ll σhkσij(4η
3DjDiη + 12η2DjηDiη) dx

− 2

∫
Ahk

αjσhkDασij4η
3Diη dx

− 2

∫
|σD|p−2σD

αjDασ
D
ij 4η

3Diη dx

− 2

d

∫
|σD|p−2σD

αjDα(trσ)4η3Diη dx ,

(2.60)

where we used σij = σij − 1
d
(trσ)δij + 1

d
(trσ)δij = σD

ij + 1
d
(trσ)δij for the

last two terms. From (2.60) one can see that one can establish the estimates
(2.47), (2.48) of Theorem 2-IV for d ≤ 4 immediately via Sobolev’s inequality
even uniformly with respect to p thanks to the uniform estimates (2.41),
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(2.42) on the displacements. For the last term of (2.60) one takes into account
the inequality∫

η4|σD|p−2|∇ trσ|2 dx

≤ 2d2

∫
η4|σD|p−2|∇σD|2 dx+ 2d2

∫
η4|σD|p−2|f |2 dx ,

(2.61)

which follows from

|∇σD|2 = Dkσ
D
ijDkσ

D
ij ≥ Dkσ

D
kjDkσ

D
kj = |divσD|2

=
∑

j

( ∑
k

Dkσ
D
kj

)2

=
∑

j

( ∑
k

Dk

(
σkj −

1

d
(trσ)δkj

))2

=
∑

j

(
− f j − 1

d
Dj(trσ)

)2

=
∑

j

(
f j +

1

d
Dj trσ

)2

= |f |2 +
1

d2
|∇ trσ|2 +

2

d
f jDj trσ .

(2.62)

Remark 2-V 1) Theorem 2-IV in the above stated dual formulation was proven
by Bensoussan-Frehse 1993 [BF93]. In the primal formulation a corresponding
result for the Hencky model was obtained by G. Seregin in 1987 [Ser87] via uniform
estimates for some approximation of the primal problem.
2) Due to the fact that the estimates of Theorem 2-IV are uniform with respect
to p they apply also to the solution of the limit problem as p → +∞, i. e. to the
solution of the Hencky model.
3) For fixed p we know from Theorem 2-IV∫

D

|σD|p−2|∇σD|2 dx ≤ constp .(2.63)

Observing that

∇|σ
D|p/2

p/2
= |σD|

p
2
−2σD

ij∇σD
ij ≤ |σD|

p
2
−1|∇σD|
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we get from (2.63)

4
p2

∫
D

|∇|σD|p/2|2 dx ≤ constp ,(2.64)

and provided D is regular enough to apply Sobolev’s imbedding theorem we have
from (2.64)

σD ∈ L
dp

d−2 (D) for d ≥ 3(+)

and

|σD|p/2 ∈ vmo(D) for d = 2 .(**)

From (+) respectively (**) and the equation div σ = −f we would like to conclude

σ ∈ L
dp

d−2 (D) respective σ ∈ Lq(D) ∀q < +∞ ,(2.65)

so that equation (2.29) would give

ε(u) ∈ L
dp

(d−2)(p−1) (D) respective ε(u) ∈ Lq̃(D) ∀q̃ < +∞ ,(2.66)

which with the aid of Korn’s inequality and Sobolev’s imbedding theorem could
finally be turned into

u ∈ C
0, 1

p (D̄) for d = 3 and finite p ,

u ∈ C0,α(D̄) for d = 2 and for all α < 1 ,

u ∈ L
4p

p−2 (D) for d = 4 and 2 < p < +∞ .

(2.67)

The missing link to execute this procedure is contained in the following proposition,
which we recall from Temam [Tem86]:

Proposition 2-VI If σ ∈ Lp1(Ω; S) with div σ ∈ Lr(Ω; Rd) and σD ∈ Ls(Ω; S),
such that 1 < p1, 1 < r < d, s ≥ rd

d−r , then trσ ∈ L
dr

d−r (Ω), i. e. σ ∈ L
dr

d−r (Ω; S),
and there is a constant C = C(Ω, r, s) such that

‖ trσ‖0, dr
d−r

≤ C
{
‖σ‖0,p1 + ‖div σ‖0,r + ‖σD‖0,s

}
.(2.68)

To obtain (2.65) we apply the proposition for d = 3 with p1 = 2, s = dp
d−2 = 3p

and r = 3p
p+1 ; for d = 2 with p1 = 2, s arbitrary, but finite and r = 2s

2+s and for
d = 4 with p1 = 2, s = 2p and r = 4p

p+2 .
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For the sake of completeness (at least to some extent) we review next
some further known regularity results:

1) Concerning boundary regularity for the stresses Frehse-Málek obtained
in [FM99] the following results for the case g = 0 on ΓN and U = 0 on ΓD:

• For arbitrary large, but fixed p the L2-norm of the tangential derivatives
Dτσ can blow up at most as p for p tending to +∞.

• In space dimension d = 2 one has for fixed p the inclusion∇σ ∈ L2−δ(Ω)
for all δ > 0 if ΓD 6= ∅, and the blow-up rate is as before at most p.

• In space dimension d ≥ 3 it holds for fixed p: ∇σ ∈ L
d

d−1
+δ̃(Ω) for some

δ̃ > 0.

• If Ω is a circle or a two-dimensional torus and the boundary condition
is just given as Dirichlet boundary condition u = 0 on ∂Ω, then the
tangential derivatives Dτσ belong to L2(Ω) uniformly in p.

In all four cases an assumption like f ∈ W 2,d(Ω) for the force will be sufficient.
Let us also mention the following example of G. Seregin [Ser96]:

Using his approximations (σk, uk) to the Hencky model, Seregin has con-
structed an example of solutions on a two-dimensional torus such that the
boundary integral∫

∂Ω

εij(u
k)
∂σk

ij

∂ν
dH1 → +∞ as k → +∞ .

In consequence he conjectures that either his approximation is not ”good”,
or global W 1,2-regularity (for stresses) holds for convex domains only.

2) Hardt and Kinderlehrer proved 1983 in [HK83] a higher integrability
result for the displacements u in Hencky’s model; it reads as follows:
There exists some q > d

d−1
, q = q(D) for D ⊂⊂ Ω such that u ∈ Lq(D; Rd)

with a corresponding estimate.
They deal (directly) with the primal formulation of Hencky’s model and
use the technique of reverse Hölder inequalities to obtain the result via a
Gehring-Giaquinta-Modica-Stredulinsky argument.

3) For Hencky’s model, i. e. the limit problem as p tends to +∞ one
obtains from Temam’s result (Proposition 2-VI) or from Nečas’ well-known
theorem on equivalent norms (see [Neč66]):

σ ∈ Lq(Ω; S) for any q < +∞ .
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The argument is as follows: Take in Proposition 2-VI p1 = 2, r = d − ε
for some small positive ε and s = +∞ ≥ d(d−ε)

ε
= d2

ε
− d to get trσ and

σ ∈ Ld2/ε−d with corresponding estimate. The choice ε = d
2

leads to σ ∈ Ld,
ε = d

4
to σ ∈ L3d, ε = d

8
to σ ∈ L7d and so on.

To go one step further it would be nice to have σ ∈ L∞(Ω; S). To conclude
this from an estimate of ‖σ‖0,q for arbitrary q < +∞ it would be necessary
to have ‖σ‖0,q ≤ const with a constant independent of q, but the constant
C = C(Ω, r, s) in the estimate (2.68) of Proposition 2-VI depends on r and
it blows up as r ↑ d. Therefore we cannot conclude σ ∈ L∞(Q; S). The best
we can say is

∇ trσ ∈ W−1,∞(Ω; Rd) = (W̊ 1,1(Ω; Rd))′ .(2.69)

To see this remember that

σij = σD
ij +

1

d
(trσ)δij

and therefore

∇ trσ = divσ − divσD = −(f + divσD) ,

which shows (2.69) because of σD ∈ L∞(Ω; S) and f ∈ Ld(Ω; Rd). From
(2.69) one can deduce that

‖σp‖0,p ≤ Kp(2.70)

with an absolute constant K (see [FM99, p.2] for details). (2.69) and (2.70)
lead us to the following “guess”:

σD ∈ L∞(Ω; S), divσ ∈ Ld(Ω; Rd) and σ ∈ L2(Ω; S)

imply trσ (and therefore also σ) ∈ bmo(Ω) ≡ L2,d(Ω) .
(2.71)

The proof of (2.71) is “equivalent” to the proof of a version of Korn’s (second)
inequality in the Hardy space H1 (or some suitable local version of it). Due
to the fact that we shall not use (2.71) later on, we do not prove (2.71) here,
we only refer the interested reader to chapter 4, where the spaces bmo = L2,d

(BMO there) andH1 are used and discussed at some length. For the fact that
Korn’s inequality does not hold for L1 we refer to Temam’s book [Tem85].

Let us now formulate our main result on Hölder-continuity for the stresses
in two dimensions:
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Theorem 2-VII For space dimension d = 2 and arbitrary, but fixed p sat-
isfying 2 < p < +∞, we have

σ ∈ C0,α
loc (Ω; S) for some positive α ,(2.72)

i. e. σ = σp is locally in Ω Hölder continuous and a corresponding estimate
holds true, provided the volume forces f satisfy either

f ∈ W 2,2(Ω; R2) and ∇2f ∈ L2,λ0

loc (Ω; R8) for some λ0 > 0(2.73)

or

f = ∇F , F = 0 on ΓD and F ∈ W 3,2(Ω) ,

∇3F ∈ L2,λ0

loc (Ω; R8) for some λ0 > 0 .
(2.74)

Corollary 2-VIII In the situation of Theorem 2-VII we have

u ∈ C1,β
loc (Ω) for some β > 0 .(2.75)

Corollary 2-VIII is obtained immediately from equation (2.29) and a
“suitable” version of Korn’s inequality in Hölder spaces, which seems to be
“mathematical folclore” in the sense that the author was and is not able to
provide a nice reference for it, but everyone be asked for agreed that the
result is true and known. Therefore here is a argument to justify this:

εij(u) ∈ C0,α
loc ⇒ (∇u)ij = (∂ju

i) ∈ C0,α
loc .

Let Fij ≡ 2εij(u) and observe

−∂jεij(u) = −1

2
(∂j∂ju

i + ∂j∂iu
j)

= −1

2
(∆ui − ∂idivu) ,

so we have
−(∆u+∇divu) = −divF = −∂jFij .

This is an elliptic system with constant coefficients and right hand side
−divF , F ∈ C0,α

loc
∼= L2,n+2α

loc , where L2,n+2α is a certain Campanato space,
which is isomorphic to C0,α (see [KJF77] or [Cam63]) and from Campanato’s
regularity theory for elliptic systems (see [Cam80]) we get: ∇u ∈ C0,α

loc plus
estimate. Another possibility is to use potential theory to deduce the same
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conclusion, i. e. to use the so called “Giraud-Hölder-Korn-Lichtenstein in-
equality”, for which we refer to [Alt99] or [BJS79].

A possible idea to prove Theorem 2-VII consists of an application of the
so called “hole-filling method” because in identity (2.62) all terms on the
right hand side contain at least on derivative of the cut-off function η, which
means that we have produced a hole there. On the other hand there are terms
which contain second order derivatives, products of first order derivatives and
even third order derivatives respectively products of first and/or second order
derivatives, so it is not immediately clear that one can apply the “usual” hole-
filling method. Another difficulty consists of the different growth behaviour
of σD and tr(Aσ):

• σD grows like |σD|p−1, p “large”, but

• tr(Aσ) grows only linearly.

Therefore the proof of Theorem 2-VII is based on a “refined inhomogeneous
hole-filling method”. The special variant we are going to use was developed
by J. Frehse and G. Seregin in [SF99] and seems to be well suited to han-
dle situations like the above described one. We also would like to remark
that inhomogeneous versions of the hole-filling method were “invented” and
successfully used more than 20 years ago in several cases/situations by J.
Frehse; see for example [Fre79], [Fre77], [Fre75]. The proof of Theorem 2-VII
is based on the following Proposition:

Proposition 2-IX Suppose that H ∈ L2(D) and h ∈ W 1,2(D) satisfy the
estimate

∫
BR(x0)

H2(x) dx ≤ C1

 ∫
TR(x0)

H2(x) dx+Rα


1/2

· 1

R

∫
TR(x0)

|hH| dx(2.76)

for some positive α, any x0 ∈ D ⊂⊂ R2 and any 0 < R < R0 such that
B2R0(x0) ⊂ D. Here TR(x0) denotes the annulus TR(x0) ≡ B2R(x0)−BR(x0).
Then, for any real number q ≥ 1, there is a positive constant C2, depending
on q, ‖h|W 1,2(D)‖, C1, ‖H|L2(D)‖, α and R0, such that∫

BR(x0)

H2 dx ≤ C2(
log2

2R0

R

)q .(2.77)
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In other words: From estimate (2.76) one can conclude that the function H2

satisfies a logarithmic Morrey condition.

A detailed proof of Proposition 2-IX is given in [SF99]. We just recall
here the main steps to illustrate why we call it “inhomogeneous hole-filling
method”. The proof consists of two steps: In the first step one proves with
the aid of Poincaré’s inequality the following estimate:

∫
–

TR(x0)

|h(y)−
∫
–

TR0
(x0)

h(x) dx|2 dy ≤ K
(

log2

2R0

R

) ∫
B2R0

(x0)

|∇h(x)|2 dx ,

(2.78)

where K is an absolute constant and we make use of the notation for mean
values ∫

–
A

f(x) dx =
1

|A|

∫
A

f(x) dx .

The second step uses (2.78) to estimate (set T = TR(x0) and T0 = TR0(x0)
for shorter notation)

∫
–
T

|hH| dx ≤
∫
–
T

|h−
∫
–
T0

h dy| |H| dx+
( ∫

–
T0

|h| dx
)
·
( ∫

–
T

|H| dx
)

≤

{( ∫
–
T

|h−
∫
–
T0

h dy|2 dx
)1/2

+
( ∫

–
T0

|h|2 dy
)1/2

}
·
( ∫

–
T

H2 dx
)1/2

≤ C
(
R0 , ‖h|W 1,2(D)‖

)
·
(

log2

2R0

R

)1/2( ∫
–
T

H2 dx
)1/2

.

(2.79)

Taking into account the assumption (2.76) one arrives at the estimate∫
BR(x)

H2(x) dx ≤ C
(
C1, R0, ‖h|W 1,2(D)‖

)
·
(

log2

2R0

R

)1/2


∫

TR(x)

H2(x) dx+Rα

 ,

(2.80)

which is valid for 0 < R ≤ R0 and B2R0(x0) ⊂ D. From (2.80) one fills the
hole and obtains the assertion of the proposition via iteration as for the usual
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hole-filling technique (see [DHKW92] for a nice proof of this). Now we wish
to apply Proposition 2-IX, where the function H is defined through

H2 = Dkεij(u)Dkσij .(2.81)

Let η be once more a cut-off function such that

0 ≤ η ≤ 1 in Ω ,

supp η ⊂ B2R(x0) ⊂ D = B2R0(x0) ⊂⊂ Ω ,

η ≡ 1 in BR(x0) and

max |∇iη| ≤ C̄

Ri
, i = 1, 2, 3 .

(2.82)

First we observe that η2H belongs to L2(D) because of

η4H2 ≡ η4Dlεij(u)Dlσij

= η4
{
Ahk

ij DlσhkDlσij + |σD|p−2Dlσ
D
ijDlσ

D
ij

+(p− 2)|σD|p−4σD
mnDlσ

D
mnσ

D
ijDlσ

D
ij

}(2.83)

by using equation (2.29). Taking into account the ellipticity of the coefficients
A:

Ahk
ij τhkτij ≥ α|τ |2 and Ahk

ij τhkτij ≤M |τ |2 ,
where M is a bound for the modulus of Ahk

ij , we have

η4
(
α|∇σ|2 + |σD|p−2|∇σD|2 + (p− 2)|σD|p−4

∣∣∣∣∇|σD|
2

∣∣∣∣2 )
≤ η4H2

≤ η4
(
M |∇σ|2 + |σD|p−2|∇σD|2 + (p− 2)|σD|p−4

∣∣∣∣∇|σD|
2

∣∣∣∣2 )(2.84)

and therefore H ∈ L2(D) in view of Theorem 2-IV respectively (2.62).
Let us once more mention that we deal here only with the case of constant

coefficients Ahk
ij for simplicity, otherwise one has to assume Ahk

ij ∈ W
1,∞
loc and

to treat an additional term like

η4
(
DlA

hk
ij

)
σhkDlσij .

From (2.84) we see that, if we are able to show a logarithmic Morrey-condition
for H2, we have it also for |∇σ|2! This will be our next aim. In a similar way
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as we derived the identity (2.62) we proceed for this purpose as follows: Let
us introduce the tensor

σ̄ = σ − σ0 ,(2.85)

where σ0 ∈ S is a constant, symmetric matrix, and the vector field

ū = u− κ0(x− x0)− u0 ,(2.86)

where κ0 ∈ S is another constant, symmetric matrix, x0 ∈ Ω is the center
of our ball BR(x0) and u0 is a rigid deformation, i. e. u0 satisfies ε(u0) ≡
0, which is equivalent to the statement, that u0 is an affine (linear) map
with a skew-symmetric coefficient matrix (see for example Ciarlet [Cia88] or
Hlaváček and Nečas [NH80]). Then we have (obviously):∫

η4H2 dx =

∫
η4Dlεij(u)Dlσij dx

=

∫
η4Dlεij(ū)Dlσ̄ij dx .

(2.87)

Now we proceed similarly as in deriving (2.62), i. e. we integrate suitably
often by parts and use divσ = −f :∫

η4Dlεij(ū)Dlσ̄ij dx

=

∫
η4Dlū

iDlf
i dx−

∫
(Djη

4)Dlū
iDlσ̄ij dx

= −
∫
η4ūi∆f i dx−

∫
4η3Dlη ū

i Dlf
i dx

− 2

∫
(Djη

4) εil(ū) Dlσ̄ij dx+

∫
(Djη

4) Diū
l Dlσ̄ij dx

= −
∫
η4ūi∆f i dx−

∫
4η3Dlη ū

i Dlf
i dx

+

∫
(Djη

4) ūl Dlf
j dx−

∫
(DiDjη

4) ūl Dlσ̄ij dx

− 2

∫
(Djη

4)
[
Ahk

il σhk + |σD|p−2σD
il − κ0

il

]
Dlσ̄ij dx .

(2.88)

37



Next we estimate all terms separately:

|
∫
η4 ūi ∆f i dx| ≤

( ∫
B2R(x0)

|ū|2 dx
)1/2 ( ∫

B2R(x0)

|∆f |2 dx
)1/2

≤ C1(‖∆f |L2,λ0‖) Rλ0/2
( ∫

B2R(x0)

|ū|2 dx
)1/2

(2.89)

by using supp η ⊂ B2R(x0) and the assumed Morrey condition for ∇2f .

|4
∫
η3 Djη ū

l Dlf
j dx| ≤ 4c̄

R

( ∫
TR(x0)

|ū|2 dx
)1/2 ( ∫

TR(x0)

|∇f |2 dx
)1/2

≤ C(‖∇f |L∞(D)‖, c̄)
( ∫

TR(x0)

|ū|2 dx
)1/2

≤ C(‖∇2f |L2,λ0(D)‖, c̄)
( ∫

TR(x0)

|ū|2 dx
)1/2

,

(2.90)

where we used |TR(x0)| = CR2 and that ∇f belongs to L∞(D) due to the
“imbedding”:

∇2f ∈ L2,λ0(D) ⇒ ∇f ∈ L2,2+λ0(D) ∼= C0,λ0/2(D̄) ,

which is a consequence of Morrey’s Dirichlet-growth theorem or a conse-
quence of Poincaré’s inequality and Campanato’s characterisation of Hölder
continuous functions (see for example [Mor66] or [Cam80]).

|
∫

(4η3 DiDjη + 12η2 Diη Djη) ū
l Dlσ̄ij dx|

≤ 12c̄

R2

( ∫
TR(x0)

|ū|2 dx
)1/2 ( ∫

TR(x0)

η4|∇σ̄|2 dx
)1/2(2.91)

and finally

|8
∫
η3 Djη εil(ū) Dlσ̄ij dx|

≤ 8c̄

R

( ∫
TR(x0)

|ε(ū)2 dx
)1/2 ( ∫

TR(x0)

η4|∇σ̄|2 dx
)1/2

.
(2.92)
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Observing that ∇σ̄ = ∇σ and |∇σ|2 ≤ 1
α
H2 we have( ∫

TR(x0)

η4|∇σ̄|2 dx
)1/2

≤ 1√
α

( ∫
TR(x0)

η4H2 dx
)1/2

.(2.93)

By a “suitable version” of the Sobolev-Poincaré inequality we have( ∫
TR(x0)

|ε(ū)|2 dx
)1/2

≤ C

∫
TR(x0)

|∇ε(u)| dx(2.94)

and ( ∫
TR(x0)

|ū|2 dx
)1/2

≤ C R
( ∫

TR(x0)

|ε(ū)|2 dx
)1/2

≤ C R

∫
TR(x0)

|∇ε(u)| dx
(2.95)

because of ∇ε(ū) = ∇ε(u). Replacing TR(x0) by B2R(x0) in the last inequal-

ity gives an analogous estimate for
( ∫

B2R(x0)

|ū|2 dx
)1/2

.

Let us collect what we have:∫
BR(x0)

H2(x) dx ≤ C1(‖∆f |L2,λ0(D)‖) R1+
λ0
2

∫
B2R(x0)

|∇ε(u)| dx

+ C2(‖∇2f |L2,λ0(D)‖, c̄) R
∫

TR(x0)

|∇ε(u)| dx

+
C3√
αR

( ∫
TR(x0)

|∇ε(u)| dx
) ( ∫

TR(x0)

H2 dx
)1/2

.

(2.96)

Next we would like to estimate ∇ε(u) in terms of H. For this purpose we
define the function h as

h ≡ M√
α

+
(
1 + (p− 2)1/2

)
max

(
1, |σD|

p−2
2

)
,(2.97)
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observe that equation (2.29) gives us (after differentiation):

|∇ε(u)| =
∣∣∣∣A∇σ + |σD|p−2∇σD + (p− 2)|σD|p−4∇|σ

D|2

2
σD

∣∣∣∣
≤M |∇σ|+ |σD|p−2 |∇σD|+ (p− 2)|σD|p−3

∣∣∣∣∇|σD|2

2

∣∣∣∣
= M |∇σ|+ |σD|

p−2
2 |σD|

p−2
2 |∇σD|

+ (p− 2)1/2 |σD|
p−2
2 (p− 2)1/2 |σD|

p−4
2

∣∣∣∣∇|σD|2

2

∣∣∣∣
≤ M√

α
H + max

(
1, |σD|

p−2
2

)
H + (p− 2)1/2 max

(
1, |σD|

p−2
2

)
H

=
[ M√

α
+

(
1 + (p− 2)1/2

)
max

(
1, |σD|

p−2
2

)]
H = h H .

(2.98)

For the auxiliary function h we have

|∇h|2 ≤
(
1 + (p− 2)1/2

)2 (p− 2)2

4
|σD|p−4 |∇σD|2 χ{|σD|>1}

≤
(
1 + (p− 2)1/2

)2 (p− 2)2

4
|σD|p−2|∇σD|2

(2.99)

and from Theorem 2-IV we know that h ∈ W 1,2(D) (for fixed p > 2 !!).
Therefore (2.96) turns into∫

BR(x0)

H2(x) dx ≤ C1

(
‖∆f |L2,λ0(D)‖

)
R1+

λ0
2

∫
B2R(x0)

|hH| dx

+ C2

(
‖∇2f |L2,λ0(D)‖

)
R

∫
TR(x0)

|hH| dx

+
C3(

√
α)

R

∫
TR(x0)

|hH| dx
( ∫

TR(x0)

H2(x) dx
)1/2

.

(2.100)

The last two terms of this inequality are estimated by[
C2

(
‖∇2f |L2,λ0(D)‖

)
+ C3(

√
α)

] ( ∫
TR(x0)

H2(x) dx+R4
)1/2 1

R

∫
TR

|hH| dx ,
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which is fine for applying Proposition 2-IX. The first will be “just” enlarged
by Hölder’s inequality:

C1

(
‖∆f |L2,λ0(D)‖

)
R1+

λ0
2

∫
B2R(x0)

|hH| dx

≤ C1

(
‖∆f |L2,λ0(D)‖

)
R1+

λ0
2

( ∫
B2R(x0)

|h|2 dx
)1/2( ∫

B2R(x0)

|H|2 dx
)1/2

≤ C1

(
‖∆f |L2,λ0(D)‖

)
R1+

λ0
2

( ∫
B2R0

(x0)

|h|2 dx
)1/2( ∫

B2R0
(x0)

|H|2 dx
)1/2

= M
(
‖∆f |L2,λ0(D)‖, ‖h‖0,2;B2R0

(x0) , ‖H‖0,2;B2R0
(x0)

)
R1+

λ0
2 .

So we have ∫
BR(x0)

H2(x) dx ≤MR1+
λ0
2

+ C0

( ∫
TR(x0)

H2(x) dx+R4
)1/2 1

R

∫
TR

|hH| dx ,
(2.101)

where M = M
(
‖δf |L2,λ0(D)‖, ‖h‖0,2;B2R0

(x0) , ‖H‖0,2;B2R0
(x0)

)
and C0 =

C2

(
‖∇2f |L2,λ0(D)‖

)
+ C3

(√
α
)
.

As we indicated above (see (2.79) and (2.80)) this can be transformed
into

∫
BR(x)

H2(x) dx ≤ C
(
C0, R0, ‖h|W 1,2(D)‖

)

·
(

log2

2R0

R

)1/2


∫

TR(x0)

H2(x) dx+R4

 +M R1+
λ0
2

= C
(

log2

2R0

R

)1/2
∫

TR(x0)

H2(x) dx+ C
(

log2

2R0

R

)1/2

R4 +M R1+
λ0
2 ,

(2.102)
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which is valid for 0 < R ≤ R0 and B2R0(x0) = D ⊂⊂ Ω. If we set

ϕ(R) :=

∫
BR(x0)

H2 dx

and fill the hole by adding C
(
log2

2R0

R

)1/2
ϕ(R) to both sides of (2.102) we

obtain

ϕ(R) ≤ θ
{
ϕ(2R) +R4

}
+

M

C
(

log2

(
2R0

R

))1/2

+ 1

R1+
λ0
2

= θ

ϕ(2R) +R4 +
M

C
(

log2

(
2R0

R

))1/2
R1+

λ0
2


(2.103)

with θ =
C log2

(
2R0
R

)1/2

C log2

(
2R0
R

)1/2

+1
< 1.

Let us set

N :=
[
log2

R0

R

]
.(2.104)

Then we have

2N+1 ≥ R0

R
≥ 2N(2.105)

and for i ≤ N :

2iR ≤ R0 .

Therefore we obtain from (2.103) the next inequalities for i = 0, 1, . . . , N−1:

ϕ(2iR) ≤ C
√
N − i+ 2

C
√
N − i+ 2 + 1

·
{
ϕ
(
2i+1R

)
+R4

02
−4(N−i)+

M

C
√
N − i+ 2

R
1+

λ0
2

0 2−(1+
λ0
2

)·(N−i)

}
.

(2.106)
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Iteration with respect to i gives:

ϕ(R) ≤

{
N∏

k=1

C
√
k + 2

C
√
k + 2 + 1

}
ϕ(2NR) +R4

0

N∑
i=1

{
N∏

k=i

C
√
k + 2

C
√
k + 2 + 1

}
2−4i+

M R
1+

λ0
2

0

N∑
i=1

{
N∏

k=i

C
√
k + 2

C
√
k + 2 + 1

}
2−i(1+

λ0
2

) · 1

C
√
i+ 2

.

(2.107)

Now we take over from [SF99] the following inequalities:

N∏
k=s

C
√
k + 2

C
√
k + 2 + 1

=
N∏

k=s

(
1− 1

C
√
k + 2 + 1

)
≤ exp

(
−

N∑
k=s

1

C
√
k + 2 + 1

)
,

(2.108)

N∑
k=1

1

C
√
k + 2 + 1

≥ 2

(C + 1)

(√
N + 3−

√
s+ 2

)
,(2.109)

implying

ϕ(R) ≤ exp
(
− 2

√
N + 1

C + 1

)
·

{
exp

( 2
√

3

C + 1

)
ϕ(2R0)+

R4
0

N∑
i=1

2−4i exp
(2
√
i+ 1

C + 1

)
+
M

C
R

1+
λ0
2

0

N∑
i=1

2i(1+
λ0
2 ) · 1√

i+ 2

}
.

(2.110)

Since, for any q > 1, there exists a positive constant C(q) such that

exp(−t) ≤ C(q)

tq
for t > 0

and

A ≡
∞∑
i=1

2−4i exp
(2
√
i+ 1

C + 1

)
< +∞ ,

B ≡
∞∑
i=1

2−i(1+
λ0
2

) 1√
i+ 2

< +∞ ,

43



we get from (2.110) (and the definition of N !):

ϕ(R) ≤ C(q, C)

(N + 1)q/2

{
exp

( 2
√

3

C + 1

)
ϕ(2R0) + A R4

0 +B
M

C
R

1+
λ0
2

0

}

≤ C(q, C)(
log2

(
2R0

R

))q/2
· C(A,B,C,R0) .

(2.111)

Especially for q > 2 we have:∫
BR(xo)

H2(x) dx ≤ C

log2

(
2R0

R

)q/2
,

q

2
> 1 .(2.112)

This is the logarithmic Morrey condition we wanted to establish.
In particular, we have by (2.112) and (2.84):∫

BR(xo)

|∇σ|2 dx ≤ const(
log2

(
2R0

R

))q , q > 2, .(2.113)

This implies

σ ∈ C0
loc(Ω)(2.114)

and, therefore,

ε(u) ∈ C0
loc(Ω) ,(2.115)

because of equation (2.29). These implications follow from Frehse’s “loga-
rithmic” analogue of the well known Dirichlet-growth theorem of Morrey (see
[Mor68, Theorem 3.5.2] and [Fre77, Lemma 1.1]):

Lemma 2-X Suppose u ∈ W 1,p(BR(x0)), 1 ≤ p ≤ d, and that there are
constants µ > 1 and L > 0 such that∫

Br

|∇u|p dx ≤ Lp
(r
δ

)d−p ∣∣∣log
(r
δ

)∣∣∣−µp

,

0 < r < δ = R− |x− x0|
(2.116)
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for every x ∈ BR(x0). Then u ∈ C0(Br(x0)) for r < R and

|u(ξ)− u(x)| ≤ C Lδ1− d
p

∣∣∣∣log
( |x− ξ|

δ

)∣∣∣∣1−µ

(2.117)

for |ξ − x| ≤ δ
2
, where

C = 4Γ
−1/p
d (µ− 1)−1 ,

Γd being the volume of the unit ball in Rd.

To get (2.114) apply Lemma 2-X with u = σ, p = 2 = d , L = const from
(2.113) and µ = q

2
, q as in (2.113). Moreover, there is a constant C = C(D)

for D ⊂⊂ Ω such that

‖σ‖0,∞;D , ‖ε(u)‖0,∞;D ≤ C(D) .(2.118)

Due to this estimate and because of

σ = σD +
1

d
(trσ)I , |σ|2 = |σD|2 +

1

d
(trσ)2

we also know

σD ∈ L∞(D) and ‖σD‖0,∞;D ≤ const ,

but this means that our auxiliary function h also belongs to L∞(D) and is
estimated correspondingly, therefore we can rewrite inequality (2.100) in the
following way:∫

BR(x0)

H2(x) dx ≤ C̃1 R
1+

λ0
2

∫
B2R(x0)

|H| dx+ C̃2 R

∫
TR(x0)

|H| dx

+
C̃3

R

∫
TR(x0)

|H| dx
( ∫

TR(x0)

H2(x0) dx
)1/2

(2.119)

for any x0 ∈ D ⊂⊂ Ω, B2R(x0) ⊂ D.
The last estimate immediately implies a usual Morrey condition for H2

via the usual hole-filling (see for example [DHKW92] or [FR96]), from which
we obtain

∇σ ∈ L2,2γ
loc (Ω) for some positive γ(2.120)
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and

σ ∈ C0,γ
loc (Ω)(2.121)

either directly from (2.120) via Morrey’s Dirichlet-growth theorem or via
Poincaré’s inequality and Campanato’s characterisation of Hölder continuous
functions: ∇σ ∈ L2,2γ

loc =⇒ σ ∈ L2,2+2γ
loc

∼= C0,γ
loc .

The Hölder continuity of σ implies then also the Hölder continuity of ε(u)
because of the equation

Aσ + |σD|p−2σD = ε(u) .

An even better information is available from (2.119), namely it implies
immediately a higher integrability of H2 because slightly rewritten (2.119)
can be read as a “reverse Hölder inequality” which in conjunction with a
well known result of Gehring-Giaquinto-Modica-Stredulinsky (see [Gia83])
implies the mentioned higher integrability of H2, i. e. there are a constant
C = C(D) and a real number t > 1 such that∫

D

H2t dx ≤ C(D) .(2.122)

But, once again, we get from (2.122)∫
D

|∇σ|2t dx ≤ C(D) ,(2.123)

which means, due to the Morrey-Sobolev imbeddingW 1,2t ↪→ C0,1− 1
t , t > 1 in

two dimensions, that σ is a locally Hölder continuous function in Ω. Therefore
Theorem 2-VII is (finally) proven.

Let us close this section with some remarks:

Remark 2-XI 1) Our proof as well as the result that ε(u) is locally Hölder-
continuous clearly show, that this method of proof cannot be used to show that
the stresses are uniformly continuous with respect to p. So we still do not know
whether the stresses σij are continuous or not for the Hencky model, nevertheless
it is good to know that at least the approximation of the Hencky model – namely
our solutions to the Norton-Hoff-model – have (Hölder) continuous stresses.

On the other hand it might help that we know that the “solution-stresses” for
the Norton-Hoff model are Hölder continuous, i. e. it might be possible to obtain
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a weaker – for example an L∞-estimate, but uniformly with respect to p by using
that the approximations are already Hölder continuous. Maybe we can clarify this
in the future.

2) It would be good to have a physical reason/motivation to look on the func-
tion H2 = ∇ε(u) : ∇σ = Dkεij(u)Dkσij , which somehow controls both quantities:
∇σ and ∇ε(u). In analogy to the quasistatic case which we are going to discuss
in the next section we will call

B = σD
ij · εij(u) = σD

ij ε
D
ij (u)

the “loading function” (see P. Haupt [Hau00, discussion on p. 207-211] and the
survey article of A. M. Freudenthal and H. Geininger: “Elasticity and Plasticity”
in the Encyclopedia of Physics, vol. VI, [FG58, discussion on p. 278–283, esp. p.
280]).

So our regularity result(s) seem to indicate that a statement like: “if the load-
ing function is well-behaved (whatever this means in some concrete situation), then
stresses and/or strains are also well-behaved” is in some sense the physical expla-
nation respective reason for regularity. In other words: A nicely controlled loading
function implies that the “physical process” can be (somehow) nicely controlled,
which means that we are able to control the relevant physical quantities with help
of the loading function (and may be some other given, inherent in the problem
functions ...).
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Chapter 3

On Existence of Steady Flows
of Fluids with Shear-Dependent
Viscosity

3.1 Introduction and Problem Formulation

We deal with a system of partial differential equations describing a steady
motion of an incompressible fluid with shear-dependent viscosity and present
a new global existence result for p > 2d

d+2
. Here p is the coercivity parameter

of the nonlinear elliptic operator related to the stress tensor and d is the
dimension of the space. Lipschitz test functions, a subtle splitting of the level
sets of the maximal functions for the velocity gradients, and a decomposition
of the pressure are incorporated to obtain almost everywhere convergence of
the velocity gradients.

Let Ω be an open bounded set in Rd with Lipschitz boundary ∂Ω. We
consider the following system of partial differential equations in Ω

−div T̃ + div (v⊗ v) +∇P = f ,(3.1)

divv = 0 ,(3.2)

subject to the Dirichlet (no-slip) boundary conditions

(3.3) v = 0 on ∂Ω .

Here, v = v(x) = (v1(x), . . . , vd(x)) and P = P (x) denote the unknown
velocity and pressure fields at the point x ∈ Ω,
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while f = f(x) = (f 1(x), . . . , fd(x)) is a given external force and T̃ is the
extra stress for which the constitutive equation will be provided below.

The system (3.1)–(3.2) describes steady motions of an incompressible
fluid. If we suppose that T̃ is a tensorial function of the velocity gradient ∇v,
the principle of material frame indifference then implies that this dependence
happens only through its symmetric part D(v). Thus,

(3.4) T̃(x) ≡ T(x,D(v(x))) .

If in addition the fluid is homogeneous, then (3.4) reduces to

(3.5) T̃(x) ≡ T(D(v(x))) .

Fluids with shear-dependent viscosity represent an important subclass of
non-Newtonian fluids, consisting of fluids that have the ability to shear thin
or shear thicken (see [Raj93]). The power-law fluids that enjoy significant
attention among engineers and physicists fall into this category. Typical
examples of considered models that are widely used in engineering practise
are given by

T1(D(v)) ≡ ν0|D(v)|p−2D(v) + µ∞D(v) ,(3.6)

T2(D(v)) ≡ ν0(µ0 + |D(v)|2)
p−2
2 D(v) + µ∞D(v) ,(3.7)

T3(D(v)) ≡ µ∞D(v) + µ1 arsinh(|D(v)|) D(v)

|D(v)|
,(3.8)

where µ0, µ1, µ∞ and ν0 are (at least) nonnegative constants and p ≥ 1.
Note that if p = 2 and µ∞ > 0 in (3.6), the fluid is Newtonian and (3.1)

reduces to the well known Navier–Stokes equations. For 1 ≤ p < 2, stresses
given by (3.6), (3.7) model shear thinning fluids, while for p > 2 they model
shear thickening phenomena in fluids. Since a lot of models can be assigned
to the former case, there is a need to have an existence theory for p ∈ 〈1, 2).
(We refer the interested reader to [MNRR96], [MRR95] and [Raj93] for a
more detailed discussion of the continuum mechanical background to these
fluids.)

In this chapter we present new results on the existence of weak solutions
to (3.1)–(3.3).

To prove existence of a weak solution to (3.1)–(3.2) and (3.3) two dif-
ferent methods were applied before. The first method is a combination of
(weak) compactness for v and monotonicity arguments, which reveals to be
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applicable to (3.1)–(3.2) and (3.3) if p ≥ 3d
d+2

. It was performed by J. L.
Lions [Lio69] and O.A. Ladyzhenskaya [Lad67], [Lad68], [Lad69] in the late
sixties.

The second method, which we call the L∞-truncation method, yields
existence of a weak solution if p ≥ 2d

d+1
. It is based on the construction of

a special (bounded) test function, a precise characterisation of the pressure,
and relies also strongly on the strict monotonicity of T. This latter method
was successfully applied to the steady problem in [FMS97] and [Růž97] (in
[Růž97] the limiting case p = 2d

d+1
is not included).

Here we introduce yet another approach, which we call the Lipschitz
truncation method, in order to prove the existence of a weak solution for
p > 2d

d+2
. We construct a Lipschitz test function to show that for certain

approximations vn the tensors D(vn) converge almost everywhere to its weak
limit D(v), which is the crucial point in proving that v is a weak solution to
(3.1), (3.2) and (3.3). Because of earlier results (mentioned above) we can
restrict our consideration to the case p ∈ ( 2d

d+2
, 2d

d+1
).

Note that Lipschitz truncations of Sobolev functions were already suc-
cessfully used in different contexts, see [AF84], [AF88], [DHM97], [DHM00],
[Iwa97], [Lan96], [Mül99], and [Zha88], [Zha90], [Zha92]. The novelty of our
application of the Lipschitz approximation of Sobolev functions consists of
discovering the mechanism of obtaining almost everywhere convergence of
gradients for weakly convergent sequences.

If the convective term div (v⊗v) is neglected in (3.1) and the extra stress
tensor T = (Tij)

d
i,j=1 has a potential, i.e. Tij = ∂Φ

∂Dij
, a variational approach

can be used. We refer to the recent work of Fuchs and Seregin [Fuc96a],
[Fuc96b], [FS97], [FS00], where in particular regularity questions for this
kind of problems are discussed.

Finally we mention that the corresponding time-dependent system is
treated in [BBN94], [FMS00], [Lad67], [Lad68], [Lad69], [Lio69], [MNR93],
[MNR01], [MNRR96], [MRR95] and [Pok96]. We are not going to discuss
the dependence of the known existence results on p. We wish to emphasize,
however, that we believe that a convenient probably not straightforward
modification of the techniques presented here can improve also the existence
results for the evolutionary model.

The chapter is organized as follows: In Section 3.2 we fix our notations,
provide the assumptions on the form of T, show that they are satisfied by
the examples given above, and formulate the main result. After that, in
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Section 3.3, we introduce suitable approximations to (3.1) and study their
basic properties. Then, in Section 3.4, we present a subtle decomposition of
the pressure suitable to our analysis. The last Section 3.5 is devoted to the
proof of the main theorem.

3.2 Notation and Main Theorem

First we fix our notation. Let M denote the space of all real (d× d) matrices
F = (Fij), and S be its subspace consisting of all symmetric (d×d) matrices.
Using the usual summation convention on repeated indices we set a ·b ≡ aibi
for a, b ∈ Rd and F : H ≡ FijHij for F, H ∈ M. Also we set |a| ≡ (a · a)1/2

and |F| ≡ (F : F)1/2.

For functions v : Ω → Rd we introduce the differential operator

D(v) ≡ 1

2
(∇v +∇vT ) : Ω → S , where Dij(v) ≡ 1

2
(Div

j +Djv
i) .

We use standard notation of function spaces. If 1 ≤ q ≤ +∞, then Lq(Ω)
and W k,q(Ω) (W̊ k,q(Ω)) denote the usual Lebesgue and Sobolev spaces of
scalar-, vector- and tensor-valued functions (with zero traces at the boundary
∂Ω). The norm of u ∈ W k,q(Ω) is defined as ‖u‖q

k,q;Ω ≡
∑

|α|≤k

∫
Ω
|Dαu|q dx.

By W−1,p′(Ω) we mean the dual space (W̊ 1,p(Ω))′ to W̊ 1,p(Ω) with corre-
sponding duality pairing 〈., .〉1,p,Ω.

As usual, C∞
0 (Ω) denotes the set of all C∞-functions with compact sup-

port in Ω, while the space C∞
0,σ(Ω) consists of Φ ∈ C∞

0 (Ω) such that div Φ = 0.
For p, q ≥ 1 we set

Hq ≡ C∞
0,σ(Ω)

‖·‖0,q
= {v ∈ Lq(Ω) : div v = 0 ,v · n = 0 at ∂Ω} ,

Vp ≡ C∞
0,σ(Ω)

‖∇·‖0,p
= {v ∈ W̊ 1,p(Ω) : div v = 0} ,

V
′

p ≡ dual of Vp .

The brackets 〈. , .〉Vp represent the last duality pairing.

If g,h are vector-valued functions and gihi ∈ L1(Ω), then

(g,h) ≡
∫

Ω

g · h dx .

55



Analogously, for tensor-valued functions η, ξ satisfying ηijξij ∈ L1(Ω) we set

(η, ξ) ≡
∫

Ω

η : ξ dx ,

We will also use the Korn inequality (see [Neč66] for a proof) saying that
for 1 < p < +∞ there exists a constant Kp = Kp(Ω) such that

(3.9) ‖∇v‖0,p ≤ Kp ‖D(v)‖0,p for all v ∈ W̊ 1,p(Ω) .

Concerning the extra stress tensor T = (Tij) ∈ S we will assume that T is
a Carathéodory-function (i.e. for each fixed F ∈ S the function x 7→ T(x,F)
is (Lebesgue-) measurable in Ω and the function F 7→ T(x,F) is continuous
in S for almost every x ∈ Ω) and satisfies for some p > 1 the conditions of

• p-coercivity: there are c1 > 0 and ϕ1 ∈ L1(Ω) such that

T(x,η) : η ≥ c1|η|p − ϕ1(x)(3.10)

for almost all x ∈ Ω and for all η ∈ S;

• polynomial growth of order p − 1: there are c2 > 0 and ϕ2 ∈ L
p

p−1 (Ω)
such that

|T(x,η)| ≤ c2|η|p−1 + ϕ2(x)(3.11)

for almost all x ∈ Ω and for all η ∈ S;

• strict monotonicity:

(T(x,η)−T(x, ξ)) : (η − ξ) > 0(3.12)

for almost all x ∈ Ω and for all η, ξ ∈ S such that η 6= ξ.

Definition 3-I Assume that f ∈ W−1,p′(Ω) and (3.10)–(3.12) hold. We say
that v ∈ Vp is a weak solution to problem (3.1)–(3.3) if∫

Ω

T(x,D(v)) : D(Φ) dx = 〈f ,Φ〉1,p

+

∫
Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ C∞
0,σ(Ω) .

(3.13)
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Note that (v⊗v)ij ≡ vivj ∈ L1(Ω) for p ≥ 2d
d+2

due to Sobolev’s imbedding
theorem. Now we are ready to formulate our existence theorem.

Theorem 3-II Let p > 2d
d+2

. Then there exists a weak solution v ∈ Vp to
(3.1)–(3.3) in the sense of Definition 3-I.

Let us finish this section by showing that the tensors given by formulas (3.6)
and (3.7) in section 3.1 satisfy the hypotheses of Theorem 3-II if ν0 > 0 and
µ0, µ∞ ≥ 0. (The third form (3.8) satisfies the assumption p > 2d

d+2
only if

µ∞ > 0.)

Example 3-III Consider T1(F) = ν0|F|p−2F + µ∞F with constants ν0 > 0 and
µ∞ ≥ 0 and F ∈ S (corresponding to D(v)). Obviously T1 is continuous and
satisfies both the growth condition

|T(F)| ≤ ν0|F|p−1 + µ∞|F|

and the coercivity condition

T(F) : F = ν0|F|p + µ∞|F|2 ≥ 2ν0|F|p .

For monotonicity we consider two cases.
In Case 1 we assume p ≥ 2. Then we have

(T1(F1)−T1(F2)) : (F1 − F2) ≥ ν0γ0(p, d)|F1 − F2|p + µ∞|F1 − F2|2,

where we used Lemma 4.4 of [DiB93, page 13]. This inequality shows not only
that T1 is strictly monotone, but also that T1 is uniformly monotone (see [Zei90,
page 500ff., Def. 25.2]).
Case 2 consists of 1 < p < 2 and we are going to verify that

(T1(F1)−T1(F2)) : (F1 − F2) ≥ ν0γ1(p, d)
|F1 − F2|2

(|F1|+ |F2|)2−p
+ µ∞|F1 − F2|2.

To prove it, it is enough to show that

(|a|p−2a− |b|p−2b) · (a− b) ≥ γ1(p, d)
|a− b|2

(|a|+ |b|)2−p
for a,b ∈ Rk ,

57



which is due to the following computation

(|a|p−2a− |b|p−2b) · (a− b)

=
(∫ 1

0

d
ds |sa + (1− s)b|p−2(sa + (1− s)b) ds

)
· (a− b)

=
∫ 1

0
|sa + (1− s)b|p−2|a− b|2 ds

+
∫ 1

0
(p− 2)|sa + (1− s)b|p−2

(
(a− b) · sa + (1− s)b

|sa + (1− s)b|

)2

ds

≥ (1 + min(0, p− 2))
∫ 1

0
|sa + (1− s)b|p−2 ds |a− b|2

≥ (p− 1)
|a− b|2

(|a|+ |b|)2−p
,

where we use the fact that 1 < p < 2 and |sa + (1 − s)b| ≤ |a| + |b| for all
s ∈ [0, 1]. Thus, we conclude that T1 is strictly monotone, but in general not
uniformly monotone.

Example 3-IV Consider T2(F) = ν0(µ0 + |F|2)
p−2
2 F+µ∞F with constants ν0 >

0 and µ0, µ∞ ≥ 0. Similar considerations as in the previous example show that all
hypotheses of Theorem 3-II are satisfied (see [MNRR96, chap. 5, pages 193–196,
198ff., Lemma 1.19]).

3.3 Approximations and Their Properties

Firstly we define an approximation to our problem: For m = 1, 2, 3, . . . , p > 1
and q ≥ 2p

p−1
= 2p′ we look for (vm, Pm) solving in Ω

−divT(·,D(vm)) + div (vm ⊗ vm) +
1

m
|vm|q−2vm = f −∇Pm ,

divvm = 0 ,
(3.14)

complemented by the boundary conditions

(3.15) vm = 0 on ∂Ω.

The following lemma can be proved by standard monotonicity arguments
and the compact imbedding W̊ 1,p(Ω) ↪→↪→ L2(Ω) valid for p > 2d

d+2
.
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Lemma 3-V Let p > 2d
d+2

and q ≥ 2p
p−1

= 2p′. Suppose f ∈ W−1,p′(Ω). Then
there exists vm ∈ Vp ∩Hq satisfying∫

Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx = 〈f ,Φ〉1,p

+

∫
Ω

(vm ⊗ vm) : D(Φ) dx for all Φ ∈ C∞
0,σ(Ω) .

(3.16)

Moreover, all vm satisfy the following uniform estimate

(3.17) ‖D(vm)‖p
0,p + ‖∇vm‖p

0,p +
1

m
‖vm‖q

0,q ≤ K

and consequently, due to the growth condition (3.11) and Sobolev’s imbedding
theorem

‖T(·,D(vm))‖0,p′ ≤ K ,(3.18)

‖vm‖0, dp
d−p

≤ K ,(3.19)

‖vm ⊗ vm‖0, dp
2(d−p)

≤ K .(3.20)

Remark 3-VI (1) The constant K depends on ‖f‖−1,p′ , the constants in the
Sobolev and Korn inequalities and d and maximizes all a priori estimates used in
the text.

(2) For fixed m the existence result of Lemma 3-V is obvious for any p > 1
and q ≥ 2p′. This follows from the compact imbedding W̊ 1,p(Ω) ↪→↪→ Lp(Ω)
(instead of W̊ 1,p(Ω) ↪→↪→ L2(Ω) ) together with the facts that ‖vm‖q

0,q ≤ Km and
‖v‖0,2 ≤ ‖v‖λ

0,p‖v‖
1−λ
0,2p′ with λ = 1

3−p and 1 − λ = 2−p
3−p , and from the standard

monotone operator theory (Minty’s trick).

Next, we introduce the (approximative) pressures Pm observing that in
(3.16) we can use test functions Φ from Vp ∩ Vr = Vr, where 1

r
= 1 + 2

d
− 2

p
=

(d+2)p−2d
dp

< 1
d

because of Vp ↪→↪→ L
dp

d−p . Let us note that Vr ↪→↪→ L∞ for
2d

d+2
< p < 2d

d+1
. Defining the functional Fm as

〈Fm,Φ〉1,r,Ω ≡
∫
Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx

−
∫
Ω

(vm ⊗ vm) : D(Φ) dx− 〈f ,Φ〉1,p,Ω ,

(3.21)
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we see that 〈Fm,Φ〉1,r,Ω = 0 for all Φ ∈ C∞
0,σ(Ω) due to (3.16). Moreover,

Fm ∈ W−1,r′(Ω) and

‖Fm‖−1,r′ ≤ K , r′ =
r

r − 1
=

dp

dp− (d+ 2)p+ 2d
=

dp

2(d− p)
.

By a version of De Rham’s theorem (see for example [AG94, Theorem 2.8,
page 116 ff.]) there exists Pm ∈ Lr′(Ω) with zero mean value over each
component of Ω such that

(3.22) 〈Fm,Φ〉1,r,Ω ≡ 〈−∇Pm,Φ〉1,r,Ω =

∫
Ω

PmdivΦ dx

and

(3.23) ‖Pm‖0,r′ ≤ C ‖∇Pm‖−1,r′ ≤ C ‖Fm‖−1,r′ ≤ K .

As a consequence of these observations we obtain the following equivalent
weak formulation to (3.16):∫

Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx

= 〈f ,Φ〉1,p +

∫
Ω

(vm ⊗ vm) : D(Φ) dx+

∫
Ω

PmdivΦ dx(3.24)

valid for all m = 1, 2, 3, . . . and all Φ ∈ W̊ 1,r(Ω) with r = dp
(d+2)p−2d

. Note

again that if p ∈ ( 2d
d+2

, 2d
d+1

), then r > d.
The uniform estimates (3.17)–(3.20) and (3.23) imply the existence of

a subsequence {(vk, P k)}k∈N = {(vmk , Pmk)}k∈N of {vm}m∈N and (v, P ) ∈
Vp × Lr′(Ω) such that (k →∞)

D(vk) ⇀ D(v) weakly in Lp(Ω) ,(3.25)

∇vk ⇀ ∇v weakly in Lp(Ω) ,(3.26)

vk → v strongly in Ls(Ω) for all s ∈ 〈1, 2r′) ,(3.27)

vk → v almost everywhere in Ω ,(3.28)

T(·,D(vk)) ⇀ χ weakly in Lp′(Ω) ,(3.29)

P k ⇀ P weakly in Lr′(Ω) .(3.30)
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Now we want to pass to the limit in (3.24) as k →∞. In order to do so
we first observe that (3.17) implies for every Φ ∈ C∞

0 (Ω) and k →∞

(3.31)

∣∣∣∣∣∣1k
∫
Ω

|vk|q−2vk ·Φ dx

∣∣∣∣∣∣ ≤ 1

k1/q

(
1

k
‖vk‖q

q

) q−1
q

‖Φ‖q → 0 .

The convective term is treated with the aid of the compact imbedding
W̊ 1,p ↪→↪→ L2, p > 2d

d+2
. Writing vk = v + vk − v, we have for every

Φ ∈ C∞
0 (Ω) and k →∞∫

Ω

(vk ⊗ vk) : D(Φ) dx =

∫
Ω

[(vk − v)⊗ v] : D(Φ) dx

+

∫
Ω

[v⊗ (vk − v)] : D(Φ) dx+

∫
Ω

(v⊗ v) : D(Φ) dx(3.32)

→
∫
Ω

(v⊗ v) : D(Φ) dx .

Owing to (3.30) we also observe that for Φ ∈ C∞
0 (Ω) and k →∞

(3.33)

∫
Ω

P kdivΦ dx →
∫
Ω

PdivΦ dx .

Collecting our results we find that v ∈ Vp satisfies

(3.34)

∫
Ω

χ : D(Φ) dx = 〈f ,Φ〉1,p +

∫
Ω

(v⊗ v) : D(Φ) dx+

∫
Ω

PdivΦ dx

for all Φ ∈ C∞
0 (Ω) respective Φ ∈ W̊ 1,r(Ω).

Our aim now is to demonstrate that χ = T(·,D(v)). For this purpose it
suffices to show that

D(vk) → D(v) in measure on Ω

or almost everywhere convergence on compact subsets of Ω. If this was true,
we could find a further subsequence by a diagonal procedure (for simplicity
we do not change notation) such that

(3.35) D(vk) → D(v) almost everywhere in Ω .
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Then, by Vitali’s theorem (with the aid of the growth condition (3.11)) we
obtain

(3.36)

∫
Ω

T(·,D(vk)) : D(Φ) dx →
∫
Ω

T(·,D(v)) : D(Φ) dx

and we can finish the proof of Theorem 3-II.
Note also that once we have (3.35), we easily conclude from (3.17) re-

spectively (3.25) using Vitali’s theorem that

D(vk) → D(v) strongly in Ls(Ω) for all s ∈ 〈1, p) ,

which is due to (3.9) tantamount to

vk → v strongly in W̊ 1,s(Ω) for all s ∈ 〈1, p) .

The missing proof of (3.35) will be given in the Section 3.5, while the
next section is devoted to a decomposition of the pressure P k.

3.4 Decomposition of the Pressure

We start with solving four auxiliary Stokes problems, I = 1, 2, 3, 4,

(3.37)

−∆uIk +∇P Ik = HIk in Ω ,

divuIk = 0 in Ω ,

uIk = 0 on ∂Ω ,

where

(3.38)

H1k = −divT(·,D(vk))) ∈ (W̊ 1,p(Ω))∗ ,

H2k = div (vk ⊗ (vk − v)) ∈ (W̊ 1,r(Ω))∗ ,

H3k = div ((vk − v)⊗ v)) ∈ (W̊ 1,r(Ω))∗ ,

H4k =
1

k
|vk|q−2vk ∈ (Lq(Ω))∗ .

The classical theory for the Stokes system (cf. [AG94] for example) im-
plies the existence of solutions (uIk , P Ik), I = 1, 2, 3, 4, with the following
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estimates on the pressures P Ik having zero mean value over each connected
component of Ω :

‖P 1k‖0,p′; Ω ≤ C‖H1k‖(W̊ 1,p(Ω))∗ ≤ C‖T(·,D(vk))‖0,p′; Ω ,(3.39)

‖P 2k‖0,r′; Ω ≤ C‖H2k‖(W̊ 1,r(Ω))∗ ≤ C‖vk ⊗ (vk − v)‖0,r′; Ω

≤ ‖vk‖0,2r′; Ω‖vk − v‖0,2r′; Ω ,(3.40)

‖P 3k‖0,r′; Ω ≤ C‖H3k‖(W̊ 1,r(Ω))∗ ≤ ‖vk − v‖0,2r′; Ω‖vk‖0,2r′; Ω ,(3.41)

‖∇P 4k‖0,q′; Ω ≤ C‖H4k‖(Lq(Ω))∗ ≤ C
1

k
‖|vk|q−1‖0,q′; Ω

≤ 1

k1/q

(
1

k1/q
‖vk‖0,q; Ω

)q−1

.(3.42)

As 2r′ = dp
d−p

, it follows from (3.40), (3.41) and (3.27) that for k → ∞ we
have

(3.43) P 2k → 0 and P 3k → 0 strongly in Ls(Ω) for all s ∈ 〈1, r′) .

Also, due to (3.17) we observe that for k →∞

∇P 4k → 0 strongly in Lq′(Ω) .(3.44)

Of course, one has analogous estimates for uIk . For our purpose, it is enough
to know that

Uk ≡ u1k + u2k + u3k + u4k with divUk = 0

satisfy

‖Uk‖1,r′; Ω ≤ K .(3.45)

Next, summing up the weak formulations of the problems (3.37)I over I =
1, 2, 3, 4, and using (3.24) we obtain∫

Ω

∇Uk : ∇Φ dx−
4∑

I=1

∫
P IkdivΦ dx = 〈f ,Φ〉1,p +

∫
P kdivΦ dx

+

∫
Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ W̊ 1,r(Ω) .

(3.46)
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Taking Φ from Vr in (3.46) (it means that divΦ = 0) we conclude that

(3.47)

∫
Ω

∇Uk : ∇Φ dx = 〈f ,Φ〉1,p +

∫
Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ Vr.

This and (3.45) then imply

(3.48) Uk = U ∈ W̊ 1,r′(Ω) for all k ∈ N .

Indeed, it follows from (3.47) that for k, ` ∈ N∫
Ω

∇(Uk −U`) : ∇Φ dx = 0 for all Φ ∈ Vr .

Choosing Φ to be a solution of

−∆Φ +∇Q =
Uk −U`

|Uk −U`|
in Ω ,

divΦ = 0 in Ω ,

Φ = 0 on ∂Ω ,

leads to (3.48).

Finally, taking again (3.24) into account and replacing
∫

Ω
P kdivΦ dx with

the aid of (3.46) and (3.48) we obtain∫
Ω

T(·,D(vk)) : D(Φ) dx+
1

k

∫
Ω

|vk|q−2vk ·Φ dx

=

∫
Ω

(vk ⊗ vk) : D(Φ) dx−
4∑

I=1

∫
Ω

P IkdivΦ dx(3.49)

+

∫
Ω

∇U : ∇Φ dx−
∫
Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ W̊ 1,r(Ω) .

The advantage of this formulation stems from more precise control of the
particular pressures P 1k , P 2k , P 3k and P 4k owing to (3.39)–(3.44).
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3.5 Almost Everywhere Convergence of

D(vk) to D(v)

The desired convergence of D(vk) to D(v) almost everywhere in Ω will cer-
tainly hold if one shows that for a given, but arbitrary η > 0 there is a
subsequence {v`}`∈N ⊂ {vk}k∈N such that (for some θ ∈ (0, 1), say, θ = 1

2
)

(3.50) lim
`→∞

∫
Ω

[
(T(·,D(v`))−T(·,D(v))) : D(v` − v)

]θ

dx ≤ η .

To reach this goal it seems natural to consider

(3.51) vk − v

as a test function in (3.16), rewrite the left hand side of the obtained equality
as in (3.50) with θ = 1, and to show that the remaining terms are small as
k →∞. Unfortunately, this idea works only for p ≥ 3d

d+2
.

In [FMS97], the L∞-truncation of (3.51), namely,

(3.52) (vk − v)(1−min(
|vk − v|

L
, 1)) with L > 0 small ,

has been successfully applied to deduce (3.50). The main difficulty is to show
the smallness of the integral∫

Ωk
L

T(·,D(vk) : D((vk − v)(1−min(
|vk − v|

L
, 1))) dx ,

where Ωk
L ≡ {x ∈ Ω; |vk(x) − v(x)| < L}. The L∞-truncation method

works for p ≥ 2d
d+1

; the bound is due to the required L1-integrability of the

convective term vk
∂v
∂xk

.
Following the goal to prove Theorem 3-II we have observed that it is

enough to restrict ourselves to the case p ∈ ( 2d
d+2

, 2d
d+1

) and it is neccessary to
use a smoother test function than in (3.52) in order to control the convective
term; yet the test function should not differ from (3.51) too much.

For this purpose, we test (3.49) by

(3.53) (vk − v)λ with λ > 0 large enough ,
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using the notation zk
λ to denote such a Lipschitz (i.e. W̊ 1,∞-) truncation of

zk so that zk
λ coincides with zk except for a small set Ak

λ.
Let us remark that the idea to approximate a given W̊ 1,p-function w by

a Lipschitz continuous function w̃ which agrees with w on a “large” set has
been developed earlier, see [AF88], [EG92], [GIS97], [Iwa97], [Lan96] and
[DHM97], [DHM00] among others.

The proof of (3.50), and consequently of Theorem 3-II, is split into three
steps. Firstly, in Proposition 3-VII, we study properties of (vk − v)λ for
general λ. Then we cover the exceptional sets of non-coincidence Ak

λ by two
sets F k

λ and Gk
λ and show (see Proposition 3-VII and 3-IX) by fixing λ and

taking a convenient subsequence {v`}`∈N that certain quantities are small on
these sets. Finally, we prove (3.50) in Proposition 3-X.

Proposition 3-VII There is a constant C = C(Ω, d) such that whenever
wm ⇀ 0 weakly in W̊ 1,p(Ω), then for all λ > 0 there is a sequence
{wm

λ }m∈N ⊂ W̊ 1,∞(Ω) such that

(3.54) ‖wm
λ ‖1,∞; Ω ≤ Cλ .

Moreover, denoting Am
λ ≡ {x ∈ Ω;wm

λ (x) 6= wm(x)} then

(3.55) |Am
λ | ≤

C

λp
‖∇wm‖p

0,p; Ω ,

Consequently,

(3.56) ‖∇wm
λ ‖

p
0,p; Ω ≤ C‖∇wm‖p

0,p; Ω ≤ K

and (as m→∞)

wm
λ → 0 strongly in Ls(Ω) for all s ∈ 〈1,∞) ,

wm
λ ⇀ 0 weakly in W̊ 1,s(Ω) for all s ∈ 〈1,∞) .

(3.57)

In addition, we construct sets Fm
λ and Gm

λ such that

|Am
λ | ≤ |Fm

λ |+ |Gm
λ | ,(3.58)

|Fm
λ | ≤

C

λp
‖∇wm‖p

0,p; Ω ,(3.59)

|Gm
λ | ≤

C

λ2p
‖∇wm‖p

0,p; Ω .(3.60)
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Before providing a proof of this proposition we recall Kirszbraun’s Ex-
tension theorem (see [Lan96, Prop. 2.1, p. 708]).

Lemma 3-VIII Let M be a metric space and K be a subset of M such that
u : K → R is Lipschitz-continuous with Lipschitz constant L. Then there
exists a continuation û : M → R of u such that û is Lipschitz continuous
with the same Lipschitz bound L and

sup
x∈M

|û(x)| ≤ sup
x∈K

|u(x)| .

Proof of Proposition 3-VII: The proof is based on ideas from [Lan96,
Prop. 2.2 p. 709] and [DHM00, Lemma 4.1 pp. 21/2]. Extending wm

by zero we obtain w̃m ∈ W̊ 1,p(Rd) = W 1,p(Rd) with w̃m ⇀ 0 weakly in
W 1,p = W 1,p(Rd). Recalling the definition of the Hardy-Littlewood maximal-
function of ∇w̃m:

M(∇w̃m)(x) ≡ sup
r>0

1

|Br(x)|

∫
Br(x)

|∇w̃m(y)| dy ≡ sup
r>0

−
∫

Br(x)

|∇w̃m(y)| dy ,

we define for λ > 1

(3.61) Rm
λ ≡ Fm

λ ∪Gm
λ ∪

{
x ∈ Rd : x is not a Lebesgue point of ∇w̃m

}
,

where

Fm
λ ≡

{
x ∈ Rd : λ < M(∇w̃m)(x) ≤ λ2

}
,

Gm
λ ≡

{
x ∈ Rd : M(∇w̃m)(x) > λ2

}
.

(3.62)

Note that the Lebesgue measure of the last set in the definition of Rm
λ is zero.

Since M : Lp → Lp is a “bounded” operator (see for example [Ste70, pp.
4–12] or [Zie89, 2.8.2 Theorem p. 84f]), we obtain

λ|Rm
λ | ≤

∫
Rm

λ

M(∇w̃m(x)) dx ≤ ‖M(∇w̃m)‖0,p|Rm
λ |

1− 1
p

≤ C‖∇w̃m‖0,p|Rm
λ |

1− 1
p ,

which implies

(3.63) |Rm
λ | ≤

C

λp
‖∇w̃m‖p

0,p and |Fm
λ | ≤

C

λp
‖∇w̃m‖p

0,p .
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Analogously, one obtains

(3.64) |Gm
λ | ≤

C

λ2p
‖∇w̃m‖p

0,p .

Next, from Lemma 1 in [AF88] it follows that there is a constant C(d)
such that

(3.65) |w̃m(x)− w̃m(y)| ≤ C(d)λ |x− y| on Rd \Rλ
m

and
|w̃m(x)− (w̃m)x,r| ≤ C(d) r λ on Rd \Rλ

m .

Choosing x ∈ Ω \ Rλ
m and r = 2 dist(x,ΩC), the Lipschitz regularity of the

boundary implies the existence of A (independent of x) such that

|Br(x) ∩ ΩC | ≥ Ard .

Hence, Poincaré’s inequality yields

|(w̃m)x,r| ≤ C r −
∫

Br(x)

|∇w̃m(y)| dy ≤ C dist(x,ΩC)λ .

Thus,
|w̃m(x)| ≤ C dist(x,ΩC)λ on Rd \Rλ

m .

This implies that

w̃m
λ (x) ≡

{
wm(x) on Ω \ (Rλ

m)
0 on Rd \ Ω

is bounded and Lipschitz continuous on its domain of definition. Thus, by
Lemma 3-VIII there exists an extension wm

λ to Rd with Lipschitz constant
C(d)λ and L∞–bound Cρλ, where ρ denotes the diameter of Ω. The assertion
(3.54) is proved.

Moreover, the set Am
λ = {x ∈ Ω;wm

λ (x) 6= wm(x)} is a subset of Rm
λ

and |Am
λ | ≤ |Rm

λ |. This together with (3.61)–(3.64) yields (3.55) and (3.58)–
(3.60). Further, by (3.63) we have

‖∇wm
λ ‖0,p; Ω = ‖∇wm

λ ‖0,p; Ω\Rm
λ

+ ‖∇wm
λ ‖0,p; Rm

λ

≤ ‖∇wm‖0,p; Ω\Rm
λ

+ Cλ|Rm
λ |1/p

≤ ‖∇wm‖0,p; Ω\Rm
λ

+ C‖∇wm‖0,p; Ω ≤ (C + 1)‖∇wm‖0,p; Ω ,
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which is (3.56). Since we also have (with the aid of ‖wm
λ ‖∞ ≤ Cρλ)

‖wm
λ ‖0,p; Ω ≤ C‖wm‖0,p; Ω ,

and wm ⇀ 0 weakly in W̊ 1,p(Ω) we use compact imbedding and interpolation
to conclude (3.57)1. From this and (3.54), (3.57)2 follows easily.

Next, we consider {(vk, P Ik)}I=1,2,3,4
k∈N and v ∈ Vp satisfying (3.17)–(3.20),

(3.23), (3.25)–(3.30), (3.39)–(3.44) and (3.49), and set

(3.66) gk ≡ C
(
|D(vk)|p + |D(v)|p + |ϕ2|

p
p−1 + |P 1k |

p
p−1

)
,

where ϕ2 comes from (3.11).
Due to apriori estimates we see that gk satisfy the uniform bound

(3.67)

∫
Ω

gk dx ≤ K .

Proposition 3-IX For a given ε > 0 there are a subsequence {v`}`∈N ⊂
{vk}k∈N and λ ≥ 1

ε
independent of ` such that

(3.68)

∫
F `

λ

g` dx ≤ ε ,

where

(3.69) F `
λ ≡ {x ∈ Ω;λ < M(∇(v` − v))(x) ≤ λ2} .

Proof of Proposition 3-IX: For a given ε ∈ (0, 1) we find N ∈ N such
that

(3.70) Nε > K (K from (3.67))

and set

(3.71) λ0 =
1

ε
.

For each k ∈ N we introduce sets F k
i , when i = 0, 1, . . . , N − 1

F k
i ≡ {x ∈ Ω;λ2i

0 < M(∇(vk − v))(x) ≤ λ2i+1

0 } ,
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which are for fixed k mutually disjoint. Thus, due to (3.67)

N−1∑
i=0

∫
F k

i

gk dx ≤ K .

Due to (3.70), however, for each k there is an index i(k) such that∫
F k

i(k)

gk dx ≤ ε .

As i(k)’s take values from the finite set {0, 1, . . . , N−1} there exists certainly
a subsequence {v`}`∈N of {vk}k∈N and an index i0 ∈ {0, 1, . . . , N −1} so that
i(`) = i0 for all ` ∈ N. Setting then λ = λ2i0

0 and defining F `
λ as in (3.69) we

observe that Proposition 3-IX is proved.

Proposition 3-X Let θ ∈ (0, 1) be chosen and η > 0 be arbitrary. Then the
sequence {v`}`∈N determined in Proposition 3-X satisfies (3.50).

Proof of Proposition 3-X: We fix p ∈ ( 2d
d+2

, 2d
d+1

) and recall that r =
(d+2)p−2d

dp
. Then we take ε > 0 so small that condition (3.87) specified at the

end of the proof is fulfilled. To this ε, find {v`}`∈N ⊂ {vk}k∈N and λ ≥ 1
ε

such
that Proposition 3-IX holds. Now, we apply Proposition 3-VII to (v` − v)
and use the Lipschitz truncation (v` − v)λ as a test function in (3.49). We
also subtract from both sides of the obtained equality the term∫

Ω

T(·,D(v))) : D((v` − v)λ) dx .

Then we use the facts that v` − v = (v` − v)λ on Ω \ A`
λ, and consequently

div (v` − v)λ = 0 a.e. on Ω \A`
λ. As a result of this consideration we obtain

J ` ≡
∫

Ω\A`
λ

[
T(·,D(v`))−T(·,D(v))

]
: D(v` − v) dx

≡ I`
1 + I`

2 + I`
3 + I`

4 + I`
5 + I`

6 ,

(3.72)

where

(3.73) I`
1 ≡

∫
A`

λ

[
T(·,D(v))−T(·,D(v`))

]
: D((v` − v)λ) dx ,
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(3.74) I`
2 ≡ −

∫
A`

λ

P 1`div ((v` − v)λ) dx ,

(3.75) I`
3 ≡ −

∫
A`

λ

(P 2` + P 3`)div ((v` − v)λ) dx ,

(3.76) I`
4 ≡

∫
Ω

(
v` ⊗ (v` − v) + (v` − v)⊗ v

)
: D((v` − v)λ) dx ,

(3.77) I`
5 ≡

∫
Ω

(
∇P 4` − 1

`
|v`|q−2v`

)
· (v` − v)λ dx

and

(3.78) I`
6 ≡

∫
Ω

(∇U−T(·,D(v))) : ∇(v` − v)λ dx .

We evaluate terms at the right hand side of (3.72) one after another. Note
that λ is fixed and

(3.79) ‖∇(v` − v)λ‖0,∞; Ω ≤ Cλ .

We are interested in showing that all terms I`
k, k = 1, 2, 3, 4, 5, 6, are small

for ` → ∞. First, using the compactness (3.27) and (3.43) together with
(3.79) we observe that

(3.80) lim
`→∞

I`
3 + I`

4 = 0 .

But the same is true for I`
5 due to (3.44), (3.31) and (3.79). Thus

(3.81) lim
`→∞

I`
5 = 0 .

When dealing with I`
1 and I`

2, we use Proposition 3-VII and 3-IX, and the
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Hölder inequality

|I`
1 + I`

2| =
∣∣∣ ∫
F `

λ∪G`
λ

[
T(·,D(v))−T(·,D(v`))− P 1`I

]
: ∇(v` − v)λ dx

∣∣∣
≤

∫
F `

λ

| . . . . . . | dx+

∫
G`

λ

| . . . . . . | dx

≤
( ∫

F `
λ

g` dx
) p−1

p ‖∇(v` − v)λ‖0,p,F `
λ

+ Cλ
( ∫

G`
λ

g` dx
) p−1

p |G`
λ|

1
p

≤ K(ε1− 1
p +

C

λ
) ≤ K C(ε1− 1

p + ε) .

(3.82)

Further, from (3.57) applied to (v` − v)λ we know particularly that

(3.83) (v` − v)λ ⇀ 0 weakly in W̊ 1,r(Ω) .

Since ∇U ∈ Lr′(Ω) and T(·,D(v)) ∈ Lp′(Ω), we have

(3.84) lim
`→∞

I`
6 = 0 .

To summarize we have observed that

(3.85) lim
`→∞

J ` = KC(ε1− 1
p + ε) .

Finally, fix θ ∈ (0, 1) and denote the integral in (3.50) by Y `. Then we
have

Y ` ≤
∫

Ω\A`
λ

[
(T(·,D(v`))−T(·,D(v))) : D(v` − v)

]θ

dx

+

∫
A`

λ

[
(T(·,D(v`))−T(·,D(v))) : D(v` − v)

]θ

dx .

(3.86)

With the aid of the Hölder inequality and a priori estimates we obtain

Y ` ≤ (J `)θ|Ω \ A`
λ|1−θ +K|A`

λ|1−θ .
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Using (3.86) and (3.58)–(3.60) we finally conclude

lim
`→∞

Y ` ≤ |Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K

(C
λp

)1−θ

≤ |Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K (K C)1−θεp(1−θ) .

If ε is taken at the beginning of the proof so that

(3.87) |Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K (K C)1−θεp(1−θ) < η ,

then Proposition 3-X, and consequently Theorem 3-II are proved.

Let us finish with some final remarks.

Remark 3-XI (1) The proof of Theorem 3-II offers also another argument for the
existence result in the case p = 2d

d+1 . This limiting case (for this p the convective
term is “a priori” only in L1) was included in our previous existence result in
[FMS97] were we used the fact that the convective term (v · ∇)v belongs locally
to the Hardy space H1 (due to divv = 0) and the duality of H1 and BMO (=
the John-Nirenberg space of functions with bounded mean oscillation). The above
given proof of Theorem 3-II works (of course) also in this case and therefore we
do not need to use the above mentioned facts (in this case).

(2) On the other hand one can give an alternative proof of Theorem 3-II by
using the following compensated integrability result: For 1

r = 2
p −

1
d = 2d−p

dp and
w ∈ Vp it holds

(w · ∇)w ∈ hr(Ω) ,

where hr(Ω) denotes the local Hardy space. Observe that d
d+1 < r < 1 is equivalent

to 2d
d+2 < p < 2d

d+1 (see [CLMS93], [Mül94] and [Nov98]).
Taking [Tri83, 2.11.3 pp. 180-182, 2.5.7 pp. 89-91 and 2.5.12 pp. 109-114] into

account we can dispose of

hr(Ω) ≡ F 0
r,2(Ω) ≡ Triebel-Lizorkin space for 0 < r ≤ 1

and

(hr(Ω))′ ≡ (F 0
r,2(Ω))′ ≡ B

d( 1
r
−1)

∞,∞ (Ω) ≡ B
2d−(d+1)p

p
∞,∞ (Ω) ≡ C0,α(Ω) ,

where α = 2d−(d+1)p
p ∈ (0, 1) if and only if 2d

d+2 < p < 2d
d+1 . Noticing that our

test function Φk
λ = (vk − v)λ belongs to W̊ 1,β(Ω) for all finite β we certainly have
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Φk
λ ∈ C0,α(Ω). The only difference to the above given proof appears now in dealing

with the convective term: Instead of integrating by parts we keep it in the form∫
Ω

(vk · ∇)vk ·Φk
λ dx ≡ 〈(vk · ∇)vk,Φk

λ〉

where the brackets now denote the duality between hr and C0,α, use the uniform
boundedness of (vk · ∇)vk in hr and have to ensure that it converges to zero for
k →∞. This can be achieved by observing that

Φk
λ → 0 strongly in C0,α for suitable α ∈ (0, 1) .

This however follows from (3.57)1 and the interpolation inequalities

‖Φk
λ‖C0,α ≤ C ‖Φk

λ‖θ
∞ ‖Φk

λ‖1−θ
C0,β

≤ C‖Φk
λ‖

θ
2
0,2d‖Φ

k
λ‖

θ
2
1,2d ‖Φ

k
λ‖1−θ

C0,β ≤ C‖Φk
λ‖

θ
2
0,2d‖Φ

k
λ‖

1− θ
2

1,s ,

valid for 0 < α < β < 1, θ = 1− α
β , 1− θ = α

β and s ≥ 2d so that W 1,s ↪→ C0,β .
The rest of the proof coincides with that before.
(3) Using the method of proof of our main theorem we can also generalize the

result of Dal Maso and Murat [DMM98] to include “some” nonlinear terms on the
right hand side satisfying “suitable” growth conditions, but we will here not follow
these possibilities.

(4) Another possible use of our here developed scheme of proof would be in the
theory of electrorheological fluids with shear-dependent viscosities (steady flows),
but this will be a future project. The interested reader is referred to [Růž00].

74



Bibliography

[AF84] Emilio Acerbi and Nicola Fusco. Semicontinuity problems in the
calculus of variations. Arch. Rational Mech. Anal., 86(2):125–
145, 1984.

[AF88] Emilio Acerbi and Nicola Fusco. An approximation lemma for
W 1,p functions. In Material instabilities in continuum mechanics
(Edinburgh, 1985–1986), pages 1–5. Oxford Univ. Press, New
York, 1988.
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des formes formellement positives. Les presses de l´Université de
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Chapter 4

Some Remarks on Uniqueness
and Regularity of Weak
Solutions to the Navier-Stokes
Equations

4.1 Introduction and Problem Formulation

Let us consider the initial value problem for the Navier-Stokes equations in
(0, T )× Rn with 0 < T < +∞ and n ≥ 3:

∂tu
i −∆ui + ujDju

i +Diπ = f i in (0, T )× Rn,

div u = 0 in (0, T )× Rn,(4.1)

u(0, x) = a(x),

where u = u(t, x) = (u1(t, x), . . . , un(t, x)) and π = π(t, x) denote the
unknown velocity vector and pressure of the fluid at the point (t, x) ∈
(0, T ) × Rn, while a = a(x) = (a1(x), . . . , an(x)) is the given initial velocity
vector and f = f(t, x) = (f 1(t, x), . . . , fn(t, x)) is a given external force.

We are interested in the classical problem of finding sufficient conditions
for weak solutions of (4.1) such that they become unique and/or regular.

If γ ∈ [1,+∞], we denote the space Lγ(Rn) simply by Lγ and the canoni-
cal norm in this space by ||·||0,γ. We use the same symbol to denote functional
spaces consisting of scalar-, vector- or tensor functions. For example the space
Lγ×· · ·×Lγ (n times) is denoted simply by Lγ. This convention also applies
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to other symbols as, for instance, norms. Besides the Lebesgue spaces Lγ

we shall use also the usual Sobolev spaces W 1,p = W 1,p(Rn) = H1,p(Rn) and
their “solenoidal parts”:

Lγ
σ := {v ∈ Lγ : div v = 0} ,

W 1,p
σ := {v ∈ W 1,p : div v = 0} .

We know that for every a ∈ L2
σ and every f ∈ L1(0, T ;L2), there exists at

least one weak solution u of (4.1) satisfying the energy inequality:

(4.2) ||u(t)||20,2 + 2

∫ t

0

||∇u(s)||20,2 ds ≤ ||a||20,2 + 2

∫ t

0

(f(s), u(s))ds .

By a weak solution we mean a function u in L∞(0, T ;L2
σ)∩L2(0, T ;H1,2

σ )
which satisfies (4.1) in the sense of distributions (for a more precise defini-
tion see section 5.2). This existence result was long ago proven by Leray in
1934 [Ler34] (in the case n = 3) and Hopf in 1951 [Hop51] (general case).
Unfortunately we do not know up to now whether such weak solutions are
unique and/or regular or not in the case n ≥ 3. This is in contrast to the
two dimensional case, in which we know that weak solutions are unique and
regular (see for instance: Constantin, Foias [CF88], Ladyzhenskaya [Lad63],
J. L. Lions [Lio69], P. L. Lions [Lio96], Temam [Tem95] or v. Wahl [vW82]
and references cited therein). Therefore the question arises: under which ad-
ditional assumption(s) on the weak solution are we able to deduce uniqueness
and regularity?

Introducing the class Lα(0, T ;Lβ), Prodi [Pro59] showed 1959 that if u is
a weak solution of (4.1) belonging to Lα(0, T ;Lβ) with α, β satisfying

(4.3) PS(α, β) ≡ 2

α
+
n

β
= 1 , β > n

and n = 3, then u is unique. Two years later Foias [Foi61] proved the same
result for general n but under the slightly more restrictive assumption

PS(α, β) < 1 .

For n ≤ 4 Serrin [Ser63] extended Prodi’s and Foias’ result to 2
α
+ n

β
= 1 , β >

n for bounded domains Ω in Rn. More precisely, Serrin proved that if u is
a weak solution belonging to Lα(0, T ;Lβ) for α and β as above and if v is
another weak solution with the same data satisfying the energy inequality,
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then u and v coincide: u ≡ v. This criterion of Serrin has the advantage that
it guarantees uniqueness of weak solutions where only one solution – say u –
is required to be of class Lα(0, T ;Lβ) and the other one belongs to the larger
class satisfying the usual energy inequality.

It is worth to remark that every weak solution of (4.1) in the class
L4(0, T ;L4) fulfills the energy inequality, which turns in this case even into
an identity. Therefore we can rephrase Serrin’s result as follows: Lα(0, T ;Lβ)
solutions are unique in the larger class of L4(0, T ;L4)-solutions. One simply
has to observe that functions which belong to L∞(0, T ;L2)∩L2(0, T ;H1,2)∩
Lα(0, T ;Lβ) are automatically also elements of L4(0, T ;L4), which follows
from some interpolation inequalities (see also later section 5.2).

Another fact which follows from Serrin’s criterion is the following: It does
not matter which of the function classes Lα(0, T ;Lβ) satisfying (4.3) is used
because they are all equivalent respectively they coincide: for example let u
be a weak solution of (4.1) from L5(0, T ;L5) and v be one from L4(0, T ;L6)
or L8(0, T ;L4) (here we take for simplicity n = 3), then it follows: u ≡ v
from Serrin’s result.

Further important contributions to this question were made by Masuda
[Mas84], Sohr-von Wahl [SvW84] (see also von Wahl [vW82]) and finally
by Kozono-Sohr [KS96]. Masuda extended Serrin’s criterion to arbritrary
domains Ω ⊂ Rn for all n ≥ 2. Especially he treated also the limit case
L∞(0, T ;Ln), which was excluded before, and obtained uniqueness for the
class of functions which belong to L∞(0, T ;Ln) and are continuous from the
right with values in Ln. Sohr and von Wahl proved uniqueness in the critical
case α = +∞ , β = n for bounded domains in Rn under the assumptions that
the initial value a belongs to Ln

σ, that the outer force f is smooth in some
sense and that v satisfies a certain stronger form of the energy inequality,
but unfortunately one cannot guarantee this stronger energy inequality in
general. After all Kozono and Sohr succeeded in proving in great generality
a complete analogue of Serrin’s result for L∞(0, T ;Ln). Although this result
is absolutely satisfactory, the author believes that one can prove a slightly
more general result, but this will be discussed elsewhere.

The reason for this comes from the scaling invariance properties of the
Navier-Stokes equations. If the pair (u, p) solves (4.1), so does the family of
pairs (uλ, pλ) defined by

uλ(t, x) = λu(λ2t, λx) , pλ(t, x) = λ2p(λ2t, λx)

(with force fλ = λ3f(λ2t, λx)). Scaling invariance now means that we would
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like to have the relation

‖uλ|Lα(0, T ;Lβ)‖ = ‖u|Lα(0, T ;Lβ)‖

for all λ > 0 and this is exactly true only if the Prodi-Serrin condition
2
α
+ n

β
= 1 is fulfilled. But indeed there are further function spaces which share

this scaling property and are in fact larger than L∞(0, T ;Ln) for example:
L∞(0, T ;Ln

w) (Ln
w = Ln,∞ is the weak Lebesgue space or Lorentz space),

L∞(0, T ;B
− 1

2
2n,n) (B

− 1
2

2n,n is a Besov space), L∞(0, T ;F
− 1

2
2n,1) (F

− 1
2

2n,1 is a Triebel-
Lizorkin space), L∞(0, T ;B−1

∞,∞) (B−1
∞,∞ is another Besov space), ... have all

the same scaling – or differential dimension (in the sense of Nikolskij-Triebel)
namely −1 = −n

n
= −1

2
− n

2n
= −1− n

+∞ . (For PDE people: the differential
dimension is nothing else than the Sobolev number!).

Let us finish our discussion of the uniqueness problem with the hint that
one can find further details in Kozono-Sohr [KS96].

Concerning the regularity problem the starting paper is Serrin [Ser62].
There it is shown that a weak solution u is of class C∞((0, T ) × Rn) if it
belongs to the space Lα(0, T ;Lβ) with exponents α, β satisfying 2

α
+ n

β
< 1.

In proving this Serrin considers the vorticity equation

∂tω
i −∆ωi + uj Djω

i − ωj Dju
i = (curl f)i

where ω is the vorticity, i.e. ω ≡ curlu. Reading this equation as a heat equa-
tion and using the assumption on u he improved step by step the regularity
of ω and using the fact that div u = 0 also that of u.

Ten years later Fabes-Jones-Rivière [FJR72] treated the case of data in
Lp and proved regularity and uniqueness under the same condition as Serrin
supposed.

Sohr [Soh83] succeeded in proving that the class Lα(0, T ;Lβ) with 2
α
+ n

β
=

1, β > n is also a regularity class extending Serrin’s result to the “limit case”,
in which the critical quantity 2

α
+ n

β
can be equal to 1, but (still) β must be

strictly larger than n = dimension. Essential tools in Sohr’s approach are
the use of the Yosida approximation and the potential theoretic estimates of
Solonnikov [Sol68], [Sol77] and von Wahl [vW80]. He also investigated the
limit case L∞(0, T ;Ln) and formulated a slightly more general criterion than
von Wahl in [vW82].

Independently of each other Giga [Gig86b], Struwe [Str88] and Takahashi
[Tak90], [Tak92] proved also the latter result with quite different methods.
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In fact Giga applies “abstract semigroup-theory” (i.e. results like that of
Fujita-Kato [FK64]), Struwe goes back to Serrin’s idea of using the vorticity
equation, but then he proceeds differently (employing test function tech-
niques instead of integral representations). Takahashi finally refines results
of Ladyženskaya-Solonnikov-Ural’ceva [LSU67] on parabolic systems via a
cut-off technique.

The critical case α = +∞, β = n was investigated by Giga [Gig86b],
[Gig86a], von Wahl [vW86], Struwe [Str88] and Takahashi [Tak90], [Tak92];
von Wahl and Giga showed that u belongs to C∞((0, T )× Ω) if u is a weak
solution in C0([0, T );Ln(Ω)). Struwe and Takahashi proved the same claim,
but under the assumption that u ∈ L∞(0, T ;Ln(Ω)) has a sufficiently small
norm in that space. Continuing Giga’s method H. Kato [Kat93] studied the
Hausdorff dimension of the set E of possible time singularities of a weak
solution u. Her result reads:

1) If u belongs to Lq(0, T ;D(Aγ
p)), where Ap denotes the Stokes operator

in Lp
σ and 0 ≤ γ0 ≡ n

2p
− 1

2
< γ < 1, then with k ≡ 1 − q(γ − γ0) > 0 the

k-dimensional Hausdorff measure of the set E is zero and u is in C∞(((0, T )\
E)× Ω).

2) If under the same assumptions as in 1) k ≤ 0, then E is empty, i.e. u
is regular in (0, T )× Ω.

She also showed the following uniqueness result: Let γ0 ≡ n
4
− 1

2
and

0 < γ0 < 1. A weak solution belonging to L∞(0, T ;D(Aγ0)) is unique. This
is clearly a “forerunner” of the uniqueness theorem of Kozono and Sohr.

Further regularity criteria were treated by Beirão Da Veiga [BadV95],
[BaDV97]. Firstly he extended Serrin’s regularity criterion to gradients show-
ing that if

∇u ∈ Lα(0, T ;Lβ) with
2

α
+
n

β
= 2 ,

then

∇u ∈ C0([0, T );L
α

α−1 ) ∩ L
α

α−1 (0, T ;L
2β

n−2 ) ,

in particular u is a (strong and) regular solution.
Secondly he formulated a condition – which he calls Hypothesis A – that

ensures that weak solutions u from L∞(0, T ;Ln) are strong ones and that
his “Hypothesis A” is (much) weaker than continuity from the left, therefore
improving the result of von Wahl [vW82].

The last contribution (to the knowledge of the author) to the regularity
problem in the critical case α = +∞, β = n was made by Kozono-Sohr
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[KS97]. These authors showed that a weak solution u in L∞(0, T ;Ln(Ω)) is
in C∞((0, T )×Ω), if the difference between the left hand lim supt↑t∗ ‖u(t)‖0,n

and ‖u(t∗)‖0,n is sufficiently small for every t∗ ∈ (0, T ). The latter criterion
covers especially the previous ones of Giga and von Wahl (u ∈ C0([0, T );Ln))
and of Struwe respective Takahashi (smallness of the L∞(0, T ;Ln(Ω))-norm
of u) and as an application Kozono and Sohr show that if the weak solution
u in L∞(0, T ;Ln) possesses a left hand limit u = limt↑t∗ u(t) in Ln(Ω) for
every t∗ ∈ (0, T ), then u is regular (in C∞((0, T )×Ω)). Moreover this yields
uniqueness and regularity of weak solutions in the class BV (0, T ;Ln(Ω)),
i.e. the class of all functions on (0,T) with values in Ln(Ω), which are of
bounded variation (see Giusti [Giu84] or Federer [Fed69] for the definition
and properties of the function space BV).

The purpose of this chapter is to study the following four limit cases of
the above mentioned regularity classes:

1) u ∈ L2(0, T ;L∞) ,

2) ∇u ∈ L2(0, T ;Ln) ,

3) ∇u ∈ L1(0, T ;L∞) ,

4) ∇2u ∈ L1(0, T ;Ln) ,

and to weaken/sharpen the assumption concerning the regularity with re-
spect to the space variables. Instead of 1) – 4) we will only assume

1′) u ∈ L2(0, T ;BMO) ,

2′) ∇u ∈ L2(0, T ;L2,n−2) ,

3′) ∇u ∈ L1(0, T ;BMO) ,

4′) ∇2u ∈ L1(0, T ;L2,n−2) ,

where BMO denotes the John-Nirenberg space of functions with bounded
mean oscillation and L2,n−2 denotes a certain Morrey space related to BMO
via the Poincaré inequality (see section 4.2 for details). Our aim will be that
under these weaker assumptions still the classical assertions are true, i.e. all
four classes are uniqueness- and regularity classes.

4.2 Statements of the Results

Before stating our results, we introduce some function spaces, recall some of
their properties and then we give the definition of a weak solution.
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Let C∞
0,σ denote the set of all C∞ vector functions φ = (φ1, . . . , φn) with

compact support such that divφ = 0.
Lγ

σ is the closure of C∞
0,σ with respect to the Lγ-norm ‖ · ‖0,γ; (·, ·) denotes

the duality pairing between Lγ and Lγ′ , where 1
γ

+ 1
γ′

= 1. W̊ 1,γ
σ denotes the

closure of C∞
0,σ with respect to the norm

‖φ‖1,γ ≡ ‖φ‖0,γ + ‖∇φ‖0,γ ,

where ∇φ =
(

∂φi

∂xj

)
; i, j = 1, . . . , n.

For an interval I in R and a Banach space X, Lp(I;X) and Cm(I;X) denote
the usual Banach spaces, where 1 ≤ p ≤ +∞, m = 0, 1, 2, . . ..
BMO denotes the John-Nirenberg space of functions with bounded mean
oscillation i.e.

BMO ≡

f ∈ L1
loc(Rn) : sup

B

1

|B|

∫
B

|f(y)− fB| dy < +∞

 ,

where fB ≡ −
∫
B

f(y) dy = 1
|B|

∫
B

f(y) dy is the mean value of f over B and B

denotes an arbitrary ball in Rn. As a norm on BMO we take

‖f‖BMO = ‖f‖∗ ≡ sup
B

1

|B|

∫
B

|f(y)− fB| dy .

With this norm BMO becomes a Banach space, if we identify functions which
differ by a constant:

‖f‖BMO = 0 ⇔ f ≡ const .

So in fact BMO is a quotient space. To imagine how “large” the space
BMO is we recall from the literature the following facts (see for example
Stein [Ste70, Ste93] and Neri [Ner75]):

i) L∞ ⊂ BMO ⊂ Lp for any p < +∞;

ii) log |x| ∈ BMO, but log |x| /∈ L∞, so L∞ $ BMO;

iii) log |P (x)| ∈ BMO, P some homogeneous polymonial.
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L2,n−2 denotes the Morrey space

L2,n−2 ≡

f ∈ L2(Rn) : ‖f |L2,n−2‖2 := sup
z,r

1

rn−2

∫
Br(z)

|f(y)|2 dy < +∞

 ,

where the supremum is taken over all z ∈ Rn, r > 0. L2,n−2 is a Banach space
with respect to the norm ‖f |L2,n−2‖ and it is related to the space BMO via
Poincaré’s inequality:

u ∈ W 1,2 , ∇u ∈ L2,n−2 ⇒ u ∈ BMO

because of ∫
Br(z)

|u(y)− uBr(z)|2 dy ≤ Cr2

∫
Br(z)

|∇u(y)|2 dy

≤ Crn‖∇u|L2,n−2‖2

implying

sup
z,r

1

|Br(z)|

∫
Br(z)

|u(y)− uBr(z)|2 dy ≤ C‖∇u|L2,n−2‖2

which by means of Hölder’s inequality gives

‖u|BMO‖ ≤ C‖∇u|L2,n−2‖ .

Our definition of weak solutions of (4.1) is as follows:

Definition 4-I Let a ∈ L2
σ and f ∈ L1(0, T ;L2). A measurable function u

is called a weak solution of (4.1) on (0, T ) if

i) u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ );

ii)

(4.4)

T∫
0

{−(u, ∂tΦ) + (∇u,∇Φ) + (u · ∇u,Φ)} dt =

= (a,Φ(0)) +

T∫
0

(f,Φ) dt

for all Φ ∈ C1([0, T ); Υ) with Φ(T ) = 0, where Υ ≡ W̊ 1,2
σ ∩ Ln.
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Remark 4-II
1. For u and Φ as above, the integral

T∫
0

(u · ν,Φ) dt is well defined since we have by

the Sobolev inequality ‖u‖0, 2n
n−2

≤ C‖∇u‖0,2 (for n ≥ 3) that

T∫
0

|(u · ∇u, Φ)| dt ≤
T∫

0

‖u‖0, 2n
n−2

‖∇u‖0,2‖Φ‖0,n dt

≤ C
(

sup
0<t<T

‖Φ(t)‖0,n

) T∫
0

‖∇u‖2
0,2 dt .

2. Υ is a Banach space with the norm ‖Φ‖Υ ≡ ‖Φ‖1,2+‖Φ‖0,n. Under the assump-
tion that the underlying domain Ω satisfies one of the following four hypotheses:

i) Ω is the whole space Rn(n ≥ 3);

ii) Ω is the half spasce Rn
+(n ≥ 3);

iii) Ω is a bounded domain in Rn(n ≥ 3) with C2,µ boundary ∂Ω for some
0 < µ < 1;

iv) Ω is an exterior domain in Rn(n ≥ 3), i.e. a domain having a compact
complement Rn\Ω with C2,µ boundary ∂Ω(0 < µ < 1).

It is known that C∞
0,σ is dense in Υ (see Masuda [Mas84, Proposition 1], Giga

[Gig86b, Appendix] and Kozono-Sohr [KS96, Theorem 2]).
Hence we may take Φ as the test function of the above definition having the form
Φ(t, x) = h(t)φ(x), where φ ∈ C∞

0,σ and h ∈ C1([0, T )) with h(T ) = 0. See also
Masuda [Mas84, Lemma 2.2].
3. After redefinition of u(t) on a set of measure zero on (0, T ), we may assume
that u(t) is weakly continuous in L2

σ (see Prodi [Pro59]).

Our theorem concerning uniqueness now reads:

Theorem 4-III There is at most one solution of (4.1) in the sense of
Definition 4-I such that

i) u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) ∩ L2(0, T ;BMO) or

ii) u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; W̊ 1,2

σ ) and ∇u ∈ L2(0, T ;L2,n−2).

Such a solution would be continuous from [0, T ] into L∞σ .

88



Remark 4-IV
1. The above uniqueness classes weaken/sharpen the assumption concerning the
regularity with respect to the space variables of the following “known” uniqueness-
classes:

i) u ∈ L2(0, T ;L∞),

ii) ∇u ∈ L2(0, T ;Ln),

iii) ∇u ∈ L1(0, T ;L∞),

iv) ∇2u ∈ L1(0, T ;Ln).

This will be clear from the proof of our theorem, but is mostly known to experts
in this field of PDE theory. We refer to von Wahl [vW85], da Veiga [BadV95] for
corresponding results in the literature.

Concerning regularity we prove in the sequel the following a priori estimates:

Theorem 4-V Assume that u is a regular solution of (4.1) in some interval
[0, T ]. Then, if

i) ∇u ∈ L2(0, T ;L2,n−2) or

ii) u ∈ L2(0, T ;BMO) or

iii) ∇2u ∈ L1(0, T ;L2,n−2) or

iv) ∇u ∈ L1(0, T ;BMO),

one has

(4.5) u ∈ C(0, T ; W̊ 1,2
σ ) ∩ L2(0, T ; W̊ 1,2

σ ∩W 2,2) .

Moreover,

ess sup
0≤t<T

‖∇u(t)‖2
0,2 +

T∫
0

‖∇2u(τ)‖2
0,2 dτ(4.6)

≤ C ‖∇u(0)‖2
0,2

1 + exp
(
C

T∫
0

‖∇αiu(τ)|Xi‖βi dτ
) ,
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where i = 1, 2, 3, 4 and

α1 = 1; X1 = L2,n−2; β1 = 2;(4.7)

α2 = 0; X2 = BMO; β2 = 2;(4.8)

α3 = 2; X3 = L2,n−2; β3 = 1;(4.9)

α4 = 1; X4 = BMO; β4 = 1;(4.10)

according to the cases (i)–(iv) above.

Here and in the sequel we denote by c (or c0, c1, . . .) positive constants that
depend, at most, on the dimension n and other absolute constants like the
constant in the Sobolev inequality. The symbol c may be used, even in the
same equation, to denote distinct constants.

In order to show how the above a priori estimates apply in the framework
of classical (weak) Leray-Hopf solutions (see [Ler34] and [Hop51]), we state
the following Theorem:

Theorem 4-VI Suppose a ∈ W 1,2
σ and u is a Leray-Hopf solution of (4.1)

in the sense of Definition 4-I in [0, T ). If u belongs to one of the four classes
specified in Theorem 4-V (i)–(iv), then

u ∈ C(0, T ;W 1,2
σ ) ∩ L2(0, T ;W 2,2

σ )(4.11)

and

ess sup
0≤t<T

‖∇u(t)‖2
0,2 +

T∫
0

‖∇2u(t)‖2
0,2 dt

≤ C ‖∇a‖2
0,2

1 + exp
(
c

T∫
0

‖∇αiu(τ)|Xi‖βi dτ
) ,

(4.12)

where αi, Xi and βi have the same meaning as in Theorem 4-V. In particular
u is regular and unique solution in [0, T ].

4.3 Proofs of the Theorems

We start by preparing the proof of Theorem 4-III. If u and v are weak
solutions of (4.1) with the same exterior force f and the same initial velocity
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a, which additionally belong to one of the classes specified there, we get for
the difference w := u− v the system of equations ∂tw

i −∆wi +Diπw = −wjDjv
i − ujDjw

i ,
divw = 0 ,

w(0, x) = 0 .
(4.13)

By testing with wi we obtain formally the identity

1

2

d

dt
‖w(t)‖2

0,2 + ‖∇w(t)‖2
0,2 = −

∫
Rn

wjDjv
iwi dx

=

∫
Rn

wjDjw
ivi dx ,

(4.14)

because the pressure cancels due to divw = 0 and the term

−
∫
Rn

ujDjw
iwi dx = −

∫
Rn

ujDj
|w|2

2
dx =

=

∫
Rn

(divu)
|w|2

2
dx = 0

(4.15)

vanishes due to divu = 0. We also used integration by parts together with
divw = 0 to transform the right hand side in (4.14).

From (4.14) we would like to estimate the convective term (w · ∇w, v) =∫
Rn

wjDjw
ivi dx in such a way that on applying Gronwall’s inequality we could

finish the proof because of w(0, x) = 0 respective ‖w(0)‖0,2 = 0. For this
purpose we need several auxiliary results:

Proposition 4-VII (S. Chanillo 1991)

If f ∈ W 1,2(Rn), g ∈ L2
σ(Rn) and h ∈ W 1,2(Rn) such that ∇h ∈ L2,n−2(Rn),

then there exists a constant C = C(n) > 0 independent of f, g and h such
that

(4.16)
∣∣∣ ∫
Rn

fgjDjh dx
∣∣∣ =

∣∣∣ ∫
Rn

gjDjfh dx
∣∣∣ ≤ C ‖∇h|L2,n−2‖ ‖∇f‖0,2 ‖g‖0,2 .
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We refer to [Cha91] for a proof of this proposition, but we shall make some
comments to the proposition and its proof after completing the proof of
Theorem 4-III in case of ∇v ∈ L2(0, T ;L2,n−2) (case (ii)). This will be an
immediate consequence of Proposition (4-VII). Applying the proposition
with gj = wj, Djf = Djw

i and h = vi yields directly∣∣∣ ∫
Rn

wjDjw
ivi dx

∣∣∣ ≤ C‖∇v|L2,n−2‖ ‖∇w‖0,2 ‖w‖0,2

≤ 1

2
‖∇w‖2

0,2 +
C

2
‖∇v|L2,n−2‖2 ‖w‖2

0,2

(4.17)

with little help of Young’s inequality. Therefore (4.14) shows that

(4.18)
d

dt
‖w(t)‖2

0,2 + ‖∇w(t)‖2
0,2 ≤ C ‖∇v(t)|L2,n−2‖2 ‖w(t)‖2

0,2

and according to Gronwall’s inequality in conjunction with ‖w(0)‖0,2 = 0 we
conclude by the assumption ∇v ∈ L2(0, T ;L2,n−2):

(4.19) ‖w(t)‖2
0,2 = 0 for 0 ≤ t < T ,

from which the desired uniqueness follows. Therefore Theorem 4-III (ii) is
proven.

Remark 4-VIII
1. Chanillo’s inequality (4.16) was used by L. C. Evans to establish partial regular-
ity of weakly harmonic stationary maps which are valued in spheres Sm−1 ⊂ Rm.
This result is a generalization of a regularity theorem of F. Hélein, who estab-
lished that weakly harmonic mappings from two-dimensional surfaces into spheres
are smooth. The interest in these results comes from the fact that the underlying
system of partial differential equations is of critical growth:

−∆ui = ui|∇u|2 , |u|2 = 1 .

For details see [Eva91].
2. It is tempting to prove Chanillo’s inequality by employing the following scheme:∣∣∣ ∫

Rn

fg · ∇h dx
∣∣∣ ≤ ( ∫

Rn

|f |2|∇h|2 dx
)1/2

‖g‖0,2

using the Cauchy-Schwarz inequality. Now try to show( ∫
Rn

|f |2|∇h|2 dx
)1/2

≤ C
( ∫

Rn

|∇f |2 dx
)1/2

,
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where the constant C depends only on “natural” quantities and on ‖∇h|L2,n−2‖ <
+∞. This just about fails for general h ∈ W 1,2, ∇h ∈ L2,n−2, but it is in fact true
for h(x) = log |x| because of |∇h|2 ≤ 1

|x|2 and the well known inequality∫
Rn

|f |2

|x|2
dx ≤ K

∫
Rn

|∇f |2 dx ∀f ∈ W 1,2

(see for example [Lad63] or [Gal94]). Remember: h(x) = log |x| ∈ BMO! This
strongly suggests that Chanillo’s inequality will also be true for h ∈ W 1,2∩BMO.
3. Another possibility to prove Chanillo’s inequality consists of using the celebrated
theorem of C. Fefferman about the duality between BMO and the Hardy space
H1 in conjunction with a result on compensated integrability/compactness proven
by R. Coifman, P. L. Lions, Y. Meyer and S. Semmes.1 For details we refer to
the paper of Evans ([Eva91]). However, Chanillo’s derivation of inequality (4.16)
is more elementary, if one is willing to accept some machinery from Harmonic
Analysis. Keywords for his proof are: Harmonic extension to Rn+1

+ , Carleson
cylinder, Carleson measures, non-tangential maximal function and their role in
characterizing the space BMO.

The preceding remarks suggest that Chanillo’s inequality will also be true by
replacing the L2,n−2-norm of ∇h with the BMO-norm of h. In fact we have

Proposition 4-IX If f ∈ W 1,2(Rn), g ∈ L2(Rn,Rn), div g = 0 and h ∈
W 1,2∩BMO(Rn), then there exists a positive constant C = C(n) independent
of f, g and h such that

(4.20)
∣∣∣ ∫
Rn

gjDjfh dx
∣∣∣ ≤ C ‖g‖0,2 ‖∇f‖0,2 ‖h|BMO‖ .

Before proving Proposition 4-IX – the proof requires some preparation –
let us quickly finish the proof of Theorem 4-III case (i): Setting gj = wj,
Djf = Djw

i and h = vi the proposition shows∣∣∣ ∫
Rn

wjDjw
ivi dx

∣∣∣ ≤ C ‖w‖0,2 ‖∇w‖0,2 ‖v|BMO‖

≤ 1

2
‖∇w‖2

0,2 +
C

2
‖v|BMO‖2 ‖w‖2

0,2

(4.21)

1The terminology “compensated integrability” instead of compensated compactness
was proposed by L. Tartar to the author.
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and we can conclude in the same way as in case (ii) that ‖w(t)‖2
0,2 = 0 for

0 ≤ t < T (see (4.18), (4.19)).
Next we review the definition and some properties of the Hardy space

H1 = H1(Rn). Assume that g ∈ L1(Rn) and let ϕ be any smooth function
with support in the unit ball:

ϕ ∈ C∞
0 (B1(0)) ,

∫
Rn

ϕ(x) dx = 1 .(4.22)

We set

g∗(x) := sup
r>0

∣∣∣ 1

rn

∫
g(y)ϕ

(x− y

r

)
dy

∣∣∣(4.23)

and say that g belongs to the Hardy space H1 if g∗ ∈ L1(Rn). We write:

‖g|H1(Rn)‖ = ‖g∗‖0,1 .(4.24)

Observe that g ∈ H1 implies
∫

Rn

g(x) dx = 0. An equivalent definition of H1

can be given in terms of Riesz transforms

H1(Rn) =
{
g ∈ L1(Rn) : Rjg ∈ L1(Rn) for j = 1, . . . , n

}
(4.25)

with the norm

‖g|H1(Rn)‖∼ := ‖g‖0,1 +
∑

j

‖Rjg‖0,1 ;(4.26)

here Rj denotes the Riesz transform which is symbolically defined as

Rj := Dj(−∆)1/2 for j = 1, . . . , n(4.27)

or in terms of Fourier multipliers

(Rjf)∧ = i
ξj
|ξ|
f̂ ,(4.28)

where f̂ denotes the Fourier transform of f . See Stein and Weiss [SW71]
or Torchinsky [Tor86] for more detailed information. An easy consequence
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of these definitions is the fact that H1(Rn) is a separable Banach space. A
fundamental theorem of C. Fefferman [Fef71], [FS72] asserts that

(H1)∗ = BMO(4.29)

and in particular provides the duality inequality

|
∫
Rn

f(x)g(x) dx| ≤ C‖f |BMO‖ ‖g|H1(Rn)‖(4.30)

for example for f ∈ L∞(Rn), g ∈ H1(Rn) or f ∈ BMO, g ∈ H1
a, where H1

a is
the dense subspace of H1 consisting of finite linear combinations of H1 atoms
(see Stein [Ste93], chapt. IV). The constant C in (4.30) depends only on the
dimension n. It is also known that

H1 = (VMO)∗ ,(4.31)

where VMO denotes the space of functions with vanishing mean oscillation.
VMO was introduced by D. Sarason in 1974 and it is the completion of C∞

0

with respect to the BMO-norm (see [SW71]).

Finally we reproduce for the reader’s convenience a result of Coifman,
Lions, Meyer and Semmes, based upon important contributions due to S.
Müller (see [CLMS93] and [Mül90]).

Proposition 4-X (i) Assume E ∈ Lp(Rn,Rn), B ∈ Lp′(Rn,Rn) with 1 <
p < +∞ and 1

p
+ 1

p′
= 1 and

divB = 0 , curlE = W (E) = ∇E − (∇E)T = 0(4.32)

in the distribution sense. Then B · E = BjEj ∈ H1(Rn), with the bound

‖B · E‖H1(Rn) ≤ C‖B‖0,p′‖E‖0,p .(4.33)

(ii) If v ∈ Lp′
σ (Rn), u ∈ W 1,p(Rn) with 1 < p < +∞, 1

p′
+ 1

p
= 1, then

v · ∇u = vjDju ∈ H1(Rn) with the bound

‖v · ∇u‖H1(Rn) ≤ C‖v‖0,p′‖∇u‖0,p′ .(4.34)
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Proof :
First observe that (ii) is the consequence of (i): Take B = v and E = ∇u.

To prove (i) we introduce π such that E = ∇π ∈ Lp, which is possible due
to curlE = W (E) = 0. Clearly B · E = B · ∇π ∈ L1(Rn). Now fix
ϕ ∈ C∞

0 (B1(0)),
∫

Rn

ϕdx = 1, choose x ∈ Rn, r > 0, and set ϕr(y) = ϕ
(

x−y
r

)
.

1

rn

∫
Rn

B · ∇π ϕr dy = − 1

rn

∫
Rn

(π − (π)x,r) B · ∇ϕr dy

due to divB = 0. Thus

| 1

rn

∫
Rn

B · ∇π ϕr dy| ≤
C

rn+1

∫
Br(x)

|π − (π)x,r| |B| dy .(4.35)

Choose p < α < p∗ = np
n−p

in case of 1 < p < n and a finite α > p in case
p ≥ n and let β = α

α−1
, 1 < β < p′ = p

p−1
. Then

| 1

rn

∫
Rn

B · ∇π ϕr dy|

≤ C

rn+1

( ∫
Br(x)

|π − (π)x,r|α dy
)1/α ( ∫

Br(x)

|B|β dy
)1/β

≤ C

r1+n/α

( ∫
Br(x)

|π − (π)x,r|α dy
)1/α (

−
∫

Br(x)

|B|β dy
)1/β

≤ C
(
−
∫

Br(x)

|∇π|γ dy
)1/γ(

−
∫

Br(x)

|B|β dy
)1/β

,

(4.36)

where γ is defined through α = γ∗ = nγ
n−γ

, that is γ = nα
n+α

< p for p < n and
certainly γ < n for n ≤ p. Consequently,

| 1

rn

∫
Rn

B · ∇π ϕr dy| ≤ C M(|∇π|γ)1/γ M(|B|β)1/β ,(4.37)

M(·) denoting the Hardy-Littlewood maximal function. Now |∇π|γ ∈ Lp/γ,
p
γ
> 1. Thus

‖M(|∇π|)γ)‖0, p
γ
≤ C‖ |∇π|γ‖0, p

γ
≤ C‖∇π‖γ

0,p .(4.38)
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Similarly,

‖M(|B|β)‖
0, p′

β

≤ C‖ |B|β‖
0, p′

β

≤ C‖B‖β
0,p′ .(4.39)

Therefore we deduce

(B · E)∗ = (B · ∇π)∗ = sup
r>0

∣∣∣∣∣∣ 1

rn

∫
Rn

B · ∇πϕr dy

∣∣∣∣∣∣ ∈ L1 ,

‖(B · E)∗‖0,1 ≤ C ‖M(|∇π|γ)‖1/γ

0, p
γ
‖M(|B|β)‖1/β

0, p′
β

≤ C‖∇π‖0,p ‖B‖0,p′

= C‖E‖0,p ‖B‖0,p .

(4.40)

Now the proof of Proposition 4-IX is an immediate consequence of the last
proposition and the duality inequality (4.30):

|
∫
Rn

gjDjfh dx| ≤ C‖g · ∇f |H1‖ ‖h|BMO‖

≤ C‖g‖0,2 ‖∇f‖0,2 ‖h|BMO‖ .
(4.41)

Let us interrupt our discussion for a short moment for inserting a comment
on the duality inequality (4.30):

|
∫
Rn

f(x)g(x) dx| ≤ C‖f |BMO‖ ‖g|H1‖ .(*)

For general f ∈ BMO and g ∈ H1, the integral
∫

Rn

fg dx does not converge

absolutely, which means that fg is in general not in L1(Rn). There is an
”explicit” counterexample in Stein’s book [Ste93, chapt. IV 6.2, p. 178].
Thus one needs to define this “integral” initially by taking g to be in an
appropriate dense linear subspace of H1 or by taking f to be bounded, then
the integrand belongs to L1, the corresponding inequality (*) is true and one
can extend this functional by continuity (see [Ste93, chapt. IV, p. 142 ff.]).
More precisely, if g ∈ H1

a and f ∈ L∞, then

|
∫
Rn

fg dx| ≤ C‖f |BMO‖ ‖g|H1‖ .(+)
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For f ∈ BMO we set

f (k)(x) =


−k if f(x) ≤ −k ,
f(x) if − k ≤ f(x) ≤ k ,

k if f(x) ≥ k ,

and observe that f (k) → f almost everywhere as k → +∞ and

‖f (k)|BMO‖ ≤ C‖f |BMO‖

because f (k)(x) = max(−k,min(f(x), k)) and BMO forms a lattice. So
inequality (+) implies |

∫
f (k)g dx| ≤ C‖f‖BMO‖g‖H1 for g ∈ H1

a, but any
g ∈ H1

a is bounded, has compact support and satisfies
∫

Rn

g dx = 0 (see

[Ste93]), therefore we can pass to the limit as k → +∞ for such g because
f (k) tends to f in L1(Rn), if f ∈ L1(Rn) due to the absolute continuity of
the Lebesgue integral:

Ek := {x ∈ Rn : |f(x)| ≥ k} ,

|Ek| ≤
‖f‖0,1

k
,∫

Ek

(|f(x)| − k) dx =

∫
Ek

|f(x)|
(
1− k

|f(x)|

)
dx ≤

∫
Ek

|f(x)| dx→ 0

because of |Ek| → 0 for k → +∞. Thus (+) is established for f ∈ BMO and
g ∈ H1

a. On the other hand, (+) holds true for f ∈ L∞ and all g ∈ H1. From
this we conclude that (+) also is satisfied for f ∈ BMO and all g ∈ H1 ∩Lp

for some p > 1 because similar to the above considerations we have f (k) → f
in Lp′ , p′ = p

p−1
, provided f ∈ Lp′ . As a conclusion we write down that the

duality inequality (4.30) is satisfied with fg even in L1 for f ∈ L1 ∩ BMO
and g ∈ H1 ∩ Lp for some p > 1. This shows that the integrand gjDjfh
in (4.30) in fact belongs to L1 (at least), if in addition to the assumptions
of Proposition 4-IX g belongs to some Lp, p > 2, or ∇f belongs to some
Lp with p > 2, otherwise the inequality has to be understood in the above
“explained” sense as an inequality for a linear functional onH1. We will show
now that in our applications this additional assumption is always satisfied:

98



Lemma 4-XI (i) If u ∈ L∞(0, T ;L2
σ) ∩ L2(0, T ; H̊1

σ ∩BMO),
then u ∈ L4(0, T ;L4) and

‖u|L4(0, T ;L4)‖ ≤ C‖u|L∞(0, T ;L2
σ)‖1/2 ‖u|L2(0, T ;BMO)‖1/2 .(4.42)

(ii) If u ∈ L∞(0, T ;L2) ∩ L2(0, T ;W 1,2) and ∇u ∈ L1(0, T ;BMO), then
∇u ∈ L4/3(0, T ;L4) and

‖∇u|L4/3(0, T ;L4)‖ ≤ C‖∇u|L2(0, T ;L2)‖1/2 ‖∇u|L1(0, T ;BMO)‖1/2 .

(4.43)

Proof : (i) Let us introduce the sharp function of Fefferman and Stein. It
is defined by

f#(x) := sup
x∈B

1

|B|

∫
B

|f(y)− fB| dy ,(4.44)

where the supremum is taken over all balls B containing x. Note that a
function f is in BMO exactly when f# is a bounded function, i. e.

f ∈ BMO ⇔ f# ∈ L∞ .(4.45)

Next we observe f# ∈ L∞ ∩ L2 implies f# ∈ L4:∫
Rn

|f#|4 dx ≤ ‖f#‖2
0,∞

∫
Rn

|f#|2 dx(4.46)

or expressed in norms

|f#‖0,4 ≤ ‖f#‖1/2
0,∞ ‖f#‖1/2

0,2 .(4.47)

As it is obvious that the sharp function is pointwise dominated by the (stan-
dard) Hardy-Littlewood maximal function, it follows that

‖f#‖0,2 ≤ 2‖M(f)‖0,2 ≤ C‖f‖0,2 .(4.48)

So we arrive at

‖f#‖0,4 ≤ C‖f |BMO‖1/2 ‖f‖1/2
0,2 ,(4.49)
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saying f ∈ BMO ∩ L2 ⇒ f# ∈ L4, but f ∈ L2 and f# ∈ L4 imply f ∈ L4

and

‖f‖0,4 ≤ A4‖f#‖0,4 ≤ C‖f |BMO‖1/2‖f‖1/2
0,2 .(4.50)

For a proof of the last assertion we refer to Stein [Ste93, Theorem 2, p. 148
f.], Bennett & Sharpley [BS88, Corollary 7.5, p. 350], or [Ste94, chap. 5].

Applying these considerations – in particular (4.50) – with f = u(t) or
f = ∇u(t) raising both sides to the power 4 (for f = u(t)) respective to
the power 4/3(f = ∇u(t)) and integrating with respect to time proves the
lemma.

An immediate consequence of the last lemma is that integrals such as∫
ujDju

iϕi dx or

∫
wjDjv

iwi dx

for u ∈ L2
σ ∩W 1,2 ∩ BMO , ϕ ∈ L4 respective w ∈ L2

σ ∩ BMO, v ∈ W 1,2
σ

are well defined in L1 (as we wanted – see the above discussion). Another
consequence consists in the fact that for weak solutions u of (4.1) in the class
u ∈ L∞(0, T ;L2

σ)∩L2(0, T ;W 1,2 ∩BMO) the energy inequality is in fact an
identity

‖u(t)‖2
0,2 + 2

t∫
s

‖∇u(τ)‖2
0,2 dτ = ‖u(s)‖2

0,2 + 2

t∫
s

(
f(τ), u(τ)

)
dτ(4.51)

for all 0 < s ≤ t ≤ T ; in particular

u ∈ C0(0, T ;L2
σ) .(4.52)

This follows easily by testing the weak formulation of (4.1) by u, which is
allowed in this case due to u ∈ L4(0, T ;L4) (see [vW85, chap. IV, p. 162 ff.]
for more precise statements and details.)
This observation leads us to the following

Remark 4-XII The uniqueness criterion of Theorem 4-III can also be formulated
in the following way:
If u and v are two weak solutions of (4.1) on (0, T ) with the same initial velocity
a ∈ L2

σ such that u belongs additionally to L2(0, T ;BMO) and v satisfies the
energy inequality

‖v(t)‖2
0,2 + 2

t∫
0

‖∇v(τ)‖2
0,2 dτ ≤ ‖a‖2

0,2
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for 0 < t ≤ T 2, then u(t) = v(t) for all t ∈ [0, T ].
For simplicity we took here f ≡ 0, but this is no serious restriction.

For two reasons we do not give a proof of this version of the uniqueness criterion
here: Firstly, the above stated version coincides with Theorem 2(1) of a recent
paper by Kozono-Taniuchi [KT00] and the reader can find there a detailed proof.
Secondly, we shall not apply this version of the uniqueness criterion and we feel
that it is not necessary to do this because the (formal) idea of the proof is clear:
Testing the weak formulation for u by u provides the energy identity for u (see
the discussion above), the energy inequality for v is fulfilled by assumption. On
the other hand, testing formally the weak formulation for u by v and vice versa
provides two other identities which after adding and combining with the two energy
inequalities, gives (after some manipulations) an inequality which corresponds to
(4.14) from which one can conclude the assertion. To justify this procedure one
needs to use a “suitable approximation argument”, but the rest works as just
described. The approximation can be done (of course) in several ways, Kozono-
Taniuchi use one which was developed by Masuda ([Mas84]), another possibility
is to use the Yosida approximation; for this we refer to von Wahl [vW85] or the
more recent book of H. Sohr [Soh01]. 2

Let us finish this section on “uniqueness” with some comments on the
marginal class L1(0, T ;W 1,∞) respective L1(0, T ;W 1

BMO) where W 1
BMO de-

notes the space of functions u such that u and ∇u belong to BMO. Clearly
L1(0, T ;W 1,∞) is a uniqueness class for weak solutions of (4.1) as one can see
from the identity (4.14) where we do not integrate by parts. From (4.14) we
get for the difference w = u− v the inequality:

1

2

d

dt
‖w(t)‖2

0,2 + ‖∇w(t)‖2
0,2 ≤ ‖∇v(t)‖0,∞ ‖w(t)‖2

0,2 ,(4.53)

and immediately one obtains w(t) ≡ 0 from Gronwall’s inequality.
Observe that exactly the same argument works for the Euler equations (drop
the Laplacian in the Navier-Stokes equations). In fact, it is the sole class
which is a uniqueness class for both equations (at least according to what is
known to the author at present). In this regard we would like to mention
that one can replace ∇v by A(v) = ∇v + (∇v)T in all cases where one has
found that it works under some additional assumptions for ∇v. The reason

2The results/remarks which are described in this chapter were obtained by the author in
1996/97 and he gave a talk on this topic in the spring 1997 on an international conference
in honour of Prof. Dr. J. Nečas, which took place in Lisbon. So they are obtained
independently from the paper of Kozono-Taniuchi.
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is that

wjDjv
iwi = wiDiv

jwj =

=
1

2
wj(Djv

i +Div
j)wi =

1

2
wjAij(v)w

i .
(4.54)

Note that from A(v) ∈ L∞ it does in general not follow ∇v ∈ L∞ because
the Riesz transforms Rj = Dj(−∆)−1/2 do not map L∞ into itself, but only
in BMO ⊃ L∞. Therefore the result for A(v) ∈ L1(0, T ;L∞) is stronger
than the one with ∇v ∈ L1(0, T ;L∞). Notice also that weak solutions which
belong to L1(0, T ;W 1,∞) satisfy the energy identity and therefore also the
energy inequality because one can test under this assumption with the solu-
tion.

What about the assumption ∇v ∈ L1(0, T ;BMO)? The bilinear esti-
mates of Kozono-Taniuchi show that in this case we have

‖v · ∇v‖0,2 ≤ C‖v‖0,2 ‖(−∆)1/2v‖BMO ≤ C‖v‖0,2 ‖∇v‖BMO ,(4.55)

here (−∆)1/2 stands for a pseudo differential operator whose symbol on
Fourier side is given by |ξ|, ξ denoting the variable on Fourier side. The
fact that ‖(−∆)1/2v‖BMO and ‖∇v‖BMO are comparable follows from a re-
sult on Fourier multipliers or equivalently from the boundedness of the Riesz
transforms Rj on BMO (see also R. Strichartz [Str80]). The inequality (4.55)
shows that one can use the solution v as test function and one can get the
energy identity/inequality for ∇v ∈ L1(0, T ;BMO). On the other hand the
bilinear estimates cannot be used to estimate the term

∫
wjDjv

iwi dx be-
cause there would also arise a term like ‖v‖0,2 ‖∇w‖BMO, which we do not
want to have. Precisely the bilinear estimate of Kozono-Taniuchi reads (see
[KT00, Lemma 1 p.180]):

‖w · ∇v‖0,2 ≤ C
{
‖w‖0,2 ‖(−∆)1/2v‖0,2 + ‖v‖0,2 ‖(−∆)1/2w‖BMO

}
.

(4.56)

Therefore we are not able to prove uniqueness under the assumption ∇v ∈
L1(0, T ;BMO) at the present. One could prove this, if one could justify an
inequality like

‖w · ∇v‖0,2 ≤ C‖w‖0,2 ‖∇v‖BMO .(4.57)

We suspect that it is possible by taking into account the side conditions
divw = 0 = div v in our setting. In other words we guess that a div-curl ex-
pression like w ·∇v belongs to Lp, p ∈ (1,+∞), if one of its members belongs
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to Lp and the other one to BMO, but up to now we are not able to prove
it. Note, however, that such a result would be ”somehow” a ”dual” version
of the H1-regularity for div-curl expressions of Coifman, Lions, Meyer and
Semmes. An immediate consequence of this would be that also assumptions
like ∇2v ∈ L1(0, T ;Ln) or even better ∇2v ∈ L1(0, T ;L2,n−2) would lead to
uniqueness due to the imbedding W 1,n ↪→ BMO respective W 2,n ↪→ W 1

BMO

or H1,n−2 ↪→ BMO respective H2,n−2 ↪→ W 1
BMO.

Next we pass over to the proof of Theorem 4-VI, which we adapt to our
setting and take it over from Beirão Da Veiga [BadV95]:
Proof of Theorem 4-VI: Since we assume a ∈ W 1,2

σ , one can prove the
existence of a strong solution v on [0, T1] for some T1 > 0. Here strong
solution means that v ∈ L∞(0, T1;W

1,2
σ ) ∩ L2(0, T1;W

2,2
σ ). This can be done

either by a Galerkin approach (see Constantin-Foias [CF88] or Heywood
[Hey80]) or by a fixed point argument (see Da Veiga [BaDV97]). This solution
v is regular and unique (for instance, in the Leray-Hopf class) on [0, T1].
Therefore u ≡ v on [0, T1). By the a priori estimate(s) of Theorem 4-V,
together with the assumption that u belongs to one of the four classes (i)–(iv)
in Theorem 4-V, it follows that the estimates (4.12) hold in [0, T1] (together
with the energy inequality, etc.). This argument shows that as long as one
of the assumptions (i)–(iv) of Theorem 4-V holds, i. e. until the time T the
regular (and unique) solution v ≡ u satisfies (4.12), and can be extended by
a continuation argument. In other words the regular solution v stays regular
and does not loose regularity until time T (see for example [CF88] for more
details).
Proof of Theorem 4-V: Since we assume that u is a regular solution (for
instance a strong one) on [0, T ) we are allowed to test by −∆ui providing

1

2

d

dt
‖∇u(t)‖2

0,2 + ‖∇2u(t)‖2
0,2 =

∫
Rn

Dku
jDjDku

iui dx−
∫
Rn

f i∆ui dx ,

(4.58)

by using integration by parts∫
Rn

ujDju
i∆ui dx = −

∫
Rn

Dku
jDju

iDku
i dx−

∫
Rn

ujDjDku
iDku

i dx

=

∫
Rn

Dku
jDjDku

iui dx+

∫
Rn

∆ujDju
iui dx ,

(4.59)
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observing that the pressure cancels due to divu = 0 = div ∆u and that∫
Rn

ujDjDku
iDku

i dx =

∫
Rn

ujDj
|∇u|2

2
dx

= −
∫
Rn

divu
|∇u|2

2
dx = 0 = −

∫
Rn

div ∆u
|u|2

2
dx

=

∫
Rn

∆ujDj
|u|2

2
dx =

∫
Rn

∆ujDju
iui dx .

(4.60)

In case (i) we use Chanillo’s inequality (4.16) of Proposition 4-VII to estimate:∣∣∣∣∣∣
∫
Rn

Dku
jDjDku

iui dx

∣∣∣∣∣∣ ≤ C ‖∇u|L2,n−2‖ ‖∇2u‖0,2 ‖∇u‖0,2 .(4.61)

Moving the L2-norm of the second derivatives with Young’s inequality to the
left we obtain

d

dt
‖∇u(t)‖2

0,2 + ‖∇2u(t)‖2
0,2

≤ C ‖∇u(t)|L2,n−2‖2 ‖∇u(t)‖2
0,2 + C ‖f(t)‖2

0,2

(4.62)

and Gronwall’s inequality delivers

ess sup
t∈(0,T )

‖∇u(t)‖2
0,2 ≤ exp

(
C

T∫
0

‖∇u(s)|L2,n−2‖2 ds
)

‖∇a‖2
0,2 + C

T∫
0

‖f(s)‖2
0,2 ds

 ,

(4.63)

which by integrating (4.62) with respect to t finally leads to

ess sup
t∈(0,T )

‖∇u(t)‖2
0,2 +

T∫
0

‖∇2u(t)‖2
0,2 dt

≤
(
‖∇a‖2

0,2 + C

T∫
0

‖f(s)‖2
0,2 ds

)
·

1 + exp
(
C

T∫
0

‖∇u(s)|L2,n−2‖2 ds
) .

(4.64)
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Case (i) is proven. To prove case (ii) we use instead of (4.16) (Proposition
4-VII) inequality (4.20) (Proposition 4-IX) and proceed in completely the
same way as before, i. e. replacing in the formula above ‖∇u(t)|L2,n−2‖ by
‖u(t)|BMO‖. Case (iii) and (iv) are proven in the same manner, but by
starting to estimate the right hand side from the “stage” before:

|
∫
Rn

Dku
jDju

iDku
i dx| ≤ C ‖∇2u|L2,n−2‖ ‖∇u‖2

0,2(4.65)

by Chanillo’s inequality (4.16) (∇f ∼ Dju
i, g ∼ Dku

j, h ∼ Dku
i) or by (4.20)

|
∫
Rn

Dku
jDju

iDku
i dx| ≤ C ‖∇u|BMO‖ ‖∇u‖2

0,2 ,(4.66)

where we used the fact that Dku
jDju

i belongs to H1 and fulfills

‖Dku
jDju

i|H1‖ ≤ C ‖∇u‖2
0,2

for all 1 ≤ i, k ≤ n as a consequence of Proposition 4-X, so Theorem 4-V is
proven.

Let us finish this section with some remarks:

Remark 4-XIII 1) The proof of Theorem 4-V in cases (iii) and (iv) shows that
the same assertion holds for solutions of the Euler equations. This comes from the
fact that in these cases we did not use the “dissipation-term”−∆u during the proof.
So we have proven also a regularity class criterion for Euler’s equations which
replaces the class L1(0, T ;W 1,∞), which is known to be a regularity class for the
Euler equations. In fact it is the sole class among the classes “∇u ∈ Lα(0, T ;Lβ)
with 2

α + n
β = 2” to be a regularity class for these equations (at least according to

what is known at present).
2) In all statements of Theorem 4-V one can replace∇u by W (u) = ∇u−(∇u)T

or A(u) = ∇u + (∇u)T . This observation goes back to Kato-Ponce [KP88] and
relies on the fact that the gradient (=Jacobian matrix here) can be recovered from
the Spin tensor W (u) or the deformation tensor A(u) via some Riesz transforms
provided div u = 0:

Dju
k = RjRiWik(u) = RjRi(Dku

i −Diu
k)(4.67)

because of the following formal calculation:

RiDku
i = Di(−∆)−1/2Dku

i = (−∆)−1/2Dkdiv u = 0 ,

−RiDiu
k = −Di(−∆)−1/2Diu

k = (−∆)−1/2(−∆)uk = (−∆)1/2uk ,

Rj(−∆)1/2uk = Dju
k .
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Similarly we have

Dju
k = −RjRiAik(u) = −RjRi(Dku

i + Dju
k) .(4.68)

Since all Riesz transforms are bounded operators on BMO, we see by (4.68), (4.67)
that

∇u ∈ BMO ⇔ A(u) ∈ BMO ⇔ W (u) ∈ BMO(4.69)

for solenoidal vector fields u.
3) The results of Theorem 4-V/4-VI can be reformulated in the spirit of the pa-

per “Remarks on the break down of smooth solutions for the 3-D Euler equations”
of Beale, Kato and Majda from 1984 (see [BKM84] or [DG95] and also [KP88]).
Just to give the reader a “feeling” of this kind of result we formulate one version:

Theorem 4-XIV If u ∈ C0([0, T );W s,p
σ ) is a solution to (4.1)

with u /∈ C0([0, T ];W s,p
σ ), then

T∫
0

‖W (u)(t)|BMO‖ dt = +∞ .

Here we supposed 1 < p < +∞ and s > 1 + n/p. This version corresponds to
Theorem 4.7 in [KP88]. For similar statements (especially in the case p = 2) we
refer also once more to Kozono-Taniuchi [KT00], see Corollary 1, Theorem 3 and
Corollary 2 there. That the statements formulated there in a Hilbert space setting
extend to the case of general p, 1 < p < +∞, is clear in view of [KP88] and what
is written on p. 180–182 of [KT00]. Still the result can be generalized to a larger
space than BMO, namely to the (homogeneous) Besov space B0

∞,∞ ⊃ BMO: see
Bergh-Löfström [BL76], Peetre [Pee76] or the books by Triebel [Tri83],[Tri92] for
a definition of this space and detailed study of Besov spaces. This generalization
is proven by Kozono-Ogawa and Taniuchi (to appear in Math. Zeitschr., but see
also Kozono’s survey article ”On Well-Posedness of the Navier-Stokes-Equations”
in [Koz01]), and the proof is based on logarithmic Sobolev inequalities a lá Brezis-
Wainger [BW80] in the framework of Besovspaces.
4) We dealt up to now only with the whole space case. Certainly the situation will
be the same in a periodic setting, i. e. solving (4.1) on a cube or torus with periodic
boundary conditions, but how to deal with the situation on a bounded domain Ω
with Dirichlet boundary condition u = 0 on (0, T )×∂Ω seems to be not so obvious.
Concerning uniqueness one can handle this case, too, because the necessary tools
are mostly available in the literature: The spaces H1 and BMO belong to Triebel’s
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scale Ḟ s
p,q (homogeneous space): H1 = Ḟ 0

1,2 and BMO = Ḟ 0
∞,2 and have non-

homogeneous counterparts in Triebel’s theory: F 0
1/2 = h1, F 0

∞,2 = bmo (see Triebel
[Tri83],[Tri92]). Using these spaces it is possible to obtain a version of Proposition
4-X on bounded domains, so it seems to work.
For regularity the situation is not so nice on bounded domains because one needs
to test by −P∆u, where P denotes Leray’s projector on solenoidal vector fields,
but due to the fact that P does not preserve boundary values it does not commute
with the Laplacian and therefore we are not allowed to integrate by parts. This
does certainly not mean that it is not possible to prove a corresponding result on
bounded domains, but only that one has to look for “better” tools and methods
to achieve something in this direction.

4.4 Some Remarks towards Regularity in the

Limit Case L∞(0, T ;Ln)

In this section we study the initial value problem for the Navier-Stokes equa-
tions in (0, T )× Rn, n ≥ 3: ∂tv

i −∆vi + vjDjv
i +Diπ = 0 ,

div v = 0 ,
v(0, x) = a(x)

(4.70)

under the assumption that v is a Leray-Hopf solution, i. e. v ∈ L∞(0, T ;L2
σ)∩

L2(0, T ;W 1,2
σ ), which in addition belongs to L∞(0, T ;Ln). (Sometimes we will

change our point of view and assume that v ∈ L∞(0, T ;Ln) will be a suitable
weak solution of (4.70) in the sense of Caffarelli-Kohn-Nirenberg respective
Lin respective Ladyzhenskaya-Seregin (see [CKN82], [Lin98], [LS99]), but
this will be pointed out and discussed when it is necessary.)
Up to now it is still open whether such solutions are regular or not despite
all efforts of so many mathematicians. We would like to argue here in favour
of regularity, but we are not able to prove it. Nevertheless we can unify some
known results and give some supplements to what is known.
Good and nicely written reviews/surveys of the situation in this case can be
found in:
1) Marco Cannone: “Viscous Flows in Besov Spaces”, published in: Ad-
vances in Mathematical Fluid Mechanics (Lecture Notes of the Sixth Inter-
nat. School Math. Theory in Fluid Mechanics, Paseky, Cz, Sept. 1999,
edited by J. Málek, J. Nečas, and M. Rokyta, Springer 2000).
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2) G. P. Galdi: “An Introduction to the Navier-Stokes Initial-Boundary
Value Problem”, published in: Fundamental Directions in Mathematic Fluid
Mechanics (Advances in Mathematical Fluid Mechanics, Series published
by Birkhäuser, edited by G. P. Galdi, J. G. Heywood and R. Rannacher,
Birkhäuser 2000).
3) H. Kozono: ”On Well-Posedness of the Navier-Stokes Equations” and
J. Neustupa and Patrick Penel: ”Anisotropic and Geometric Criteria for
Interior Regularity of Weak Solutions to the 3 D Navier-Stokes Equations”.
Both published in: Mathematical Fluid Mechanics, Recent Results and Open
Questions (Advances in Math. Fluid Mechanics, Eds. J. Neustupa and P.
Penel, Birkhäuser 2001).

These three survey articles by no means give the complete picture – there
are certainly more contributions to this problem –, but they give a somehow
“representative” overview of the different contributions to this question.

Let us start with a ”global” point of view:

Proposition 4-XV If v ∈ L∞(0, T ;L2
σ)∩L2(0, T ;W 1,2

σ )∩L∞(0, T ;Ln) is a
weak solution to (4.1) under the assumption a ∈ L2

σ ∩ Ln, then there exists
ε = ε(‖v|L∞(0, T ;Ln)‖) > 0, such that v ∈ L∞(0, T ;L2+2ε

σ ) and ∇|v|1+ε ∈
L2(0, T ;L2) with corresponding estimate.

Proof 4-XV : We test (4.1) by |v|2εvi for some ε > 0 to be specified later
and obtain:

1

2 + 2ε

d

dt
‖v‖2+2ε

0,2+2ε +

∫
Rn

|v|2ε|∇v|2 dx

+ 2ε

∫
Rn

|v|2ε |∇
|v|2
2
|2

|v|2
dx = 2ε

∫
Rn

πvi|v|2ε−2vlDiv
l dx

(4.71)

by integrating the pressure term by parts and using div v = 0. The convective
term cancels due to div v = 0:∫

Rn

vjDjv
i|v|2εvi dx =

∫
Rn

vjDj
|v|2+2ε

2 + 2ε
dx

= −
∫
Rn

(div v)
|v|2+2ε

2 + 2ε
dx = 0 .

(4.72)
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So we see that testing “globally” creates trouble with the pressure. We
estimate the right hand side as follows:

|
∫
πvi|v|2ε−2vlDiv

l dx|

≤
( ∫

|v|2ε |∇
|v|2
2
|2

|v|2
dx

)1/2 ( ∫
|π|2|v|2ε dx

)1/2

≤ 1

2

∫
|v|2ε |∇

|v|2
2
|2

|v|2
dx+

1

2

∫
|π|2|v|2ε dx

(4.73)

and get

1

2 + 2ε

d

dt
‖v‖2+2ε

0,2+2ε +

∫
Rn

|v|2ε|∇v|2 dx

+ ε

∫
Rn

|v|2ε |∇
|v|2
2
|2

|v|2
dx ≤ ε

∫
Rn

|π|2|v|2ε dx .

(4.74)

Next we observe ∣∣∣∣∇|v|1+ε

1 + ε

∣∣∣∣2 = |v|2ε−2

∣∣∣∣∇|v|22

∣∣∣∣2 ≤ |v|2ε|∇v|2(4.75)

and apply the Sobolev imbedding∫
Rn

|∇f |2 dx ≥ C0

( ∫
Rn

|f |
2n

n−2 dx
)n−2

n

with f = |v|1+ε

1+ε
in order to estimate the integral

∫
|v|2ε|∇v|2 dx from below.

This yields

1

2 + 2ε

d

dt
‖v‖2+2ε

0,2+2ε + C0
1

(1 + ε)2

( ∫
Rn

|v|
2n(1+ε)

n−2 dx
)n−2

n

+ ε

∫
Rn

|v|2ε−2

∣∣∣∣∇|v|22

∣∣∣∣2 dx ≤ ε

∫
Rn

|π|2|v|2ε dx .

(4.76)
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Applying Hölder’s inequality with exponents 2n(1+ε)
(n−2)2ε

for |v|2ε and n(1+ε)
n+2ε

for

|π|2 and then Young’s inequality we arrive at∫
Rn

|π|2|v|2ε dx ≤
( ∫

Rn

|v|
2n(1+ε)

n−2 dx
)n−2

n
ε

1+ε
( ∫

Rn

|π|
2n(1+ε)

n+2ε dx
)n+2ε

2n
· 2
1+ε

≤ ε

1 + ε

( ∫
Rn

|v|
2n(1+ε)

n−2 dx
)n−2

n
+

1

1 + ε

( ∫
Rn

|π|
2n(1+ε)

n+2ε dx
)n+2ε

n
.

(4.77)

Since v is divergence free, we get from (4.1) by applying the operator div to
the equation:

−∆π = Div
jDjv

i = DiDj(v
jvi)(4.78)

or equivalently

π = RiRj(v
jvi)(4.79)

with Ri = Di(−∆)−1/2 denoting the Riesz transform. Hence, by Calderon-
Zygmund it follows that

‖π‖
0,

2n(1+ε)
n+2ε

≤ C1 ‖v‖2

0,
4n(1+ε)

n+2ε

.(4.80)

Observe that for ε ↓ 0 the exponents for the pressure integrals have the
behaviour 2n(1+ε)

n+2ε
↓ 2 for n ≥ 3! So we have to estimate the quantity

‖v‖4(1+ε)

0,
4n(1+ε)

n+2ε

against ‖v‖2(1+ε)

0,
2n(1+ε)

n−2

and ‖v‖0,n in some power. Luckily as we are we find by

interpolation respective Hölder

‖v‖4(1+ε)

0,
4n(1+ε)

n+2ε

≤ ‖v‖2(1+ε)

0,
2n(1+ε)

n−2

‖v‖2(1+ε)
0,n(4.81)

because of

1

2
· n− 2

2n(1 + ε)
+

1

2
· 1

n
=

n− 2

4n(1 + ε)
+

2(1 + ε)

4n(1 + ε)
=

n+ 2ε

4n(1 + ε)
.(4.82)
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Therefore we finally get:

1

2

d

dt
‖v‖2+2ε

0,2+2ε + C0
1

1 + ε
‖v‖2(1+ε)

0,
2n(1+ε)

n−2

+ ε(1 + ε)

∥∥∥∥∇|v|1+ε

1 + ε

∥∥∥∥2

0,2

≤ ε2‖v‖2(1+ε)

0,
2n(1+ε)

n−2

+ εC1‖v‖2(1+ε)

0,
2n(1+ε)

n−2

‖v‖2(1+ε)
0,n

=
(
ε2 + C1ε‖v‖2(1+ε)

0,n

)
‖v‖2(1+ε)

0,
2n(1+ε)

n−2

.

(4.83)

From this inequality the assertion of the proposition follows by choosing ε so
small that

ε2 + C1ε‖v‖2(1+ε)
0,n <

C0

2
≤ C0

1 + ε
( for 0 < ε ≤ 1) ,

which is possible due to v ∈ L∞(0, T ;Ln); moving the right hand side to the
left and integrating with respect to t provides then a corresponding estimate.

Remark 4-XVI 1) The proposition as well as its proof are an output of several
discussions with my advisor Prof. Dr. J. Frehse and I grateful acknowledge his
“all the time readiness” to discuss all issues of this work with me.

2) The above given “proof” is of course formal, but it can be made rigorous by
using a local-in-time existence result for strong solutions (in our setting here the
most simple one is provided probably by Beirão da Veiga [BadV87]) and taking
into account the uniqueness of L∞(0, T ;Ln)-solutions.

3) The most important “contribution” of this result consists in the slightly
improved space-regularity of the solution. As a consequence of this we can slightly
improve the regularity of ∂tv, ∇2v and ∇π. Let us briefly sketch this: From
v ∈ L∞(0, T ;Ln)∩L2(0, T ;W 1,2) we get via parabolic imbedding v ∈ L4(0, T ;L4)
and then by a well known result of Solonnikov [Sol68]:

∂tv,∇2v,∇π ∈ L4/3(0, T ;L4/3)(4.84)

with corresponding estimate. Proposition 4-XV provides now the information

v ∈ L∞(0, T ;Ln) ∩ L2(1+ε)
(
0, T ;L

2n(1+ε)
n−2

)
and by interpolation

v ∈ L4(1+ε)
(
0, T ;L

4n(1+ε)
n+2ε

)
(see the proof). Therefore thanks to Solonnikov we get:

∂tv,∇2v,∇π ∈ L
4(1+ε)
3+2ε

(
0, T ;L

4n(1+ε)
3n+4ε

)
(4.85)
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plus estimate. From v ∈ L4(1+ε)(0, T ;L
4n(1+ε)

n+2ε ) and (4.85) one can also recover a
better estimate for ∇v:

∇v ∈ L
8n(1+ε)

8+2ε
(
0, T ;L

8(1+ε)n
4n+6ε

)
,

and by deriving the system one realizes that one can get also information on ∂t∇v,
∇2v, ∇2π (taking derivatives with respect to the space variables and realizing
that the products arising from the convective term belong to some Lp-space with
p > 1!). Nevertheless all this informations/ estimates are not strong enough to go
further, in fact they are all weaker than the start information v ∈ L∞(0, T ;Ln),
but of course they are slightly better than the usual regularity of any weak solu-
tion.
The improved regularity we just discussed can of course be used to study the
“singular set” of a solution and the above discussed regularity properties can be
“translated/transformed” into statements about the Hausdorff measure of the sin-
gular set. Once more one obtains slight improvements of what is known for any
weak solution, but nothing which would help to go further.

4) The proof of Proposition 4-XV sheds also some light on the following ques-
tion: Why is it not possible to use Moser’s iteration scheme to get something
better for the solution? As we saw during the proof of the proposition the convec-
tive term does not create troubles, but the pressure does. The reason for this seems
to be that the pressure – which is a Lagrange multiplier due to the constraint of
incompressibility div v = 0 – is a “global” or better a non-local term and it seems
to be rather difficult to overcome this problem ...
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ichungen von Navier-Stokes. Math. Z., 184(3):359–375, 1983.

[Soh01] Hermann Sohr. The Navier-Stokes Equations. Birkhäuser, Basel,
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