Die Lößvorkommen des Pleiser Hügellandes bei Bonn und von Neustadt/Wied sowie der Picardie: Mineralogisch-geochemische und geomorphologische Charakterisierung, Verwitterungs-Beeinflussung und Herkunft der Lösse.

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Bettina Smykatz-Kloss

aus

Göttingen

Bonn (November) 2003

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Referent: Prof. Dr. L. Zöller 2. Referent: Prof. Dr. G. W. Brümmer

Tag der Promotion: 19.12.2003

Danksagung

Meinem verehrten Lehrer, Herrn Prof. Dr. L. Zöller, danke ich sehr für die Vergabe des Themas und die engagierte Betreuung der Arbeit sowie für viele gemeinsame Gelände-Begehungen um Bonn und in der Picardie. Herrn Prof. Dr. G. Brümmer danke ich für die Übernahme des Korreferates und für bodenkundliche Ratschläge und anregende Gespräche. Herrn Prof. Dr. U. Haack und Herrn Dr. Jens Schneider von der Universität Gießen danke ich für die Bestimmung und die Interpretation der Strontium-Isotopenwerte. Herrn Prof. Dr. G. Hoernes (Min. Inst., Univ. Bonn) sei für die Bestimmung der Sauerstoffund Kohlenstoff-Isotope, Herrn Dr. N. Günster (Inst. f. Bodenkunde, Univ. Bonn) für Anleitung und Mithilfe bei der Anfertigung und Auswertung der Bodendünnschliffe gedankt. Herr Dr. P. Antoine (Univ. Lille) führte uns in die Lösse der Picardie ein; hierfür und für seine Gastfreundschaft während des einwöchigen Picardie-Aufenthaltes bedanke ich mich herzlich. Den Professoren des Instituts für Mineralogie und Geochemie der Universität Karlsruhe danke ich für die Erlaubnis zur Benutzung der apparativen Einrichtungen (XRD, Thermoanalyse, Elektronen- und Licht-Mikroskope), den wissenschaftlichen RFA, Mitarbeitern Dr. G. Istrate und Dr. U. Kramar für Anleitung und Betreuung bei den dort ausgeführten Untersuchungen. Herrn Prof. Dr. J. Vandenberghe und Herrn Dipl.-Ing. M. Konert aus dem Institut für Erdwissenschaften der VU Amsterdam danke ich für die Einladung nach Amsterdam und die Betreuung während meiner Arbeiten im Sediment-Labor. Für anregende Diskussionen danke ich Frau Prof. Dr. B. Schütt (Inst. für Geographie, FU Berlin). Ganz besonders danke ich meinen beiden lieben jungen Männern, Ehemann Wolf und Sohn Jan Robin, für viele Hilfen und Aufmunterungen, sowie meinem lieben Vater für Anregungen, Kritiken und fachliche Unterstützungen. Der Deutschen Forschungsgemeinschaft danke ich für die dreijährige finanzielle Förderung.

1 EINFÜHRUNG UND ZIELSETZUNG	. 1
2 FORSCHUNGSSTAND	Δ
	. –
3 UNTERSUCHUNGSGEBIETE	. 8
3.1 Pleiser Hügelland und Neustadt/Wied	. 8
3.1.1 Geologische Entwicklung des Untersuchungsgebietes	10
3.1.2 Geomorphologischer Überblick	14
3.1.2.1 Äolische Ablagerungen	15
3.1.2.2 Erosion und Ablagerung an Hängen	16
3.1.2.3 Die fluvialen Prozesse	17
3.1.3 Klimatischer Überblick	18
3.1.4 PEDOLOGISCHE EINHEITEN	19
3.2 Picardie	21
3.2.1 GEOLOGIE	22
5.2.2 KELIEF, KLIMA UND HYDROGRAPHIE	LL
4 GELÄNDEARBEITEN UND AUFSCHLÜSSE	24
4 1 Gei ändeabreiten	24
1. Geländekampagne. Mai -September 1999	24
2. Geländekampagne im Sommer 2000	24
3. Geländekampagne im Herbst 2001	24
4.2 Beschreibung der Aufschlüsse	25
4.2.1 Pleiser Hügelland und Neustadt/Wied	25
4.2.1.1 Profil Birlinghoven	25
4.2.1.2 Profil Rauschendorf	26
4.2.1.3 Bockeroth	27
4.2.1.4 Thomasberg	31
$4.2.1.3$ Neustaut all der wied $\dots \dots \dots$	33 34
4.2.2.1 Sourdon	34
4.2.2.2 Ailly sur Somme	36
4.2.2.3 Heilly	37
• • • • • • • • • • • • • • • • • • • •	
5 UNTERSUCHUNGSMETHODEN	39
5.1 Pedologische Methoden	39
5.1.1 Korngrössenanalyse	39
5.1.2 Bodendünnschliffe	39
5.2 Mineralogische Methoden	40
5.2.1 Röntgenographische Mineralbestimmung	40
5.2.2 THERMOANALYSE	40
5.2.5 LICHTOPTISCHE UNTERSUCHUNGEN AN STREUPRAPARATEN	41 ⊿1
5.2. CROCUMMENTING METHODEN	40
5.3 GEOCHEMISCHE INIETHODEN	42 ⊿2
5.3.2 ELEKTRONENSTRAHL-MIKROSONDE	43

	5.3.3 Isotopenbestimmung	. 44
	5.3.4 Geochemische Methodik zur Charakterisierung von fossilen	
	BODENHORIZONTEN	. 47
••• 6	ERGEBNISSE	. 51
•	6 1 Mined al destand ded lintedsuchten Proeh e	51
	6.1.1 PLEISED HÜGELLAND LIND NEUSTADT/WIED	. 51
	6 1 1 1 Birlinghoven	51
	6 1 1 2 Rauschendorf	51
	6 1 1 3 Bockeroth	54
	6 1 1 4 Thomasberg	58
	6 1 1 5 Neustadt an der Wied	60
	6.1.2 Picardie	. 65
	6.1.2.1 Sourdon	. 65
	6.1.2.2 Ailly sur Somme	. 65
	6.1.2.3 Heilly	. 65
	6.1.3 TONMINERALE DER LÖSSE	. 69
	6.2 CHEMISCHE 715 AMMENSETZUNG DED UNTEDSUCHTEN DOGEN E	72
	6.2 1 Profile Diered Hücelland und Neustart/Wier	· 72
	6.2.1 1 Birlinghoven	· 72
	6.2.1.2 Bauschendorf	. 72 72
	6.2.1.2 Rausenendon	. 72
	6.2.1.4 Thomasherg	. 75
	6.2.1.4 Thomasolig	. 70
	6.2.7 Profile der Picardie	. 75
	6.2.2.1 Sourdon	81
	6 2 2 2 Ailly	81
	6.2.2.2 Hilly	81
	6.3 Spupener EMENT CERTAINE DED INTERCONTEN BROEN E	• • • • •
	6.2 1 DECEMENT-GEHALTE DER UNTERSUCHTEN PROFILE	. 84 94
	6.2.1.1 Divisinghousen	· 04
	6.2.1.2 Deuschendorf	· 04
	6.2.1.2 Rauscheindoll	. 04
	6.3.1.4 Thomasherg	. 0 <i>J</i> 88
	6.3.1.5 Neustadt/Wied	. 00 80
	6.3.7 Profile Dep Picardie	. 09 90
	6.3.2.1 Sourdon	. 90 90
	6 3 2 2 Ailly	. 20
	6.3.2.2 Heilly	. 90 91
	6.4 PALAOBODEN UND OXID-VERHALTNISSE	. 92
	6.4.2 OVID VEDUCATION	. 92
	6.4.2 UXID- VERHALINISSE	. 95
	$6.4.2.1$ DHIIIIgiloven $\dots \dots \dots$. 93 07
	0.4.2.2 Kauschendon	. 91 no
	6.4.2.5 DUCKTIVIII	. 90 101
	$6.4.2.4$ Front Hollies of M_{i}	101
	6.4.2.5 F10111 Incustativ Wicu	101
		103

6.5 Vulkanogene Horizonte		106
6.6 Spurenminerale und Mikrofossilien		112
6.6.1 Rutil		112
6.6.2 Magnetit		113
6.6.3 Ilmenit		113
6.6.4 Apatit		113
6.6.5 Monazit		114
6.6.6 TITANIT		114
6.6.7 Zirkon		114
6.6.8 Granate		116
6.6.9 Chloritoid		118
6.6.10 Ерідот		119
6.6.11 Pyroxen		121
6.6.12 Amphibole		121
6.6.13 TURMALINE		122
6.6.14 CHLORITE	••••	124
6.6.15 GLIMMER	••••	125
6.6.16 GLAUKONIT		126
6.6.17 PALYGORSKIT	• • • • • • • • •	127
6.6.18 FELDSPÄTE	• • • • • • • • •	127
6.6.19 UBERBLICK UBER DIE SPURENMINERALE DER BOHRUNG BOCKEROTH .		130
6.6.20 MIKROFOSSILIEN		130
6.7. Korngrössenanalyse und Isotopenbestimmungen		138
6.7.1 Korngrössenanalyse		138
6.7.2 Strontium-Isotopie		142
		1 4 4
/ DISKUSSION		144
7.1 Charakterisierung der Gesteinstypen		144
7.2 Stratigraphische Korrelationen		150
7.3 Einfluss der Verwitterung und postvulkanischen Exhalationen au	JF	
die Tuff- und Löss-Mineralogie		153
7 4 Hedkunet ded Lösse		161
7.4 HERRONFT DER LOSSE	• • • • • • • • •	101
ZUSAMMENFASSUNG		167
		107
REFERENZEN		171
•••••••••••••••••••••••••••••	••	
ANHANG-KRISTALLCHEMIE: MINERALFORMEL-BERECHNUNGI	E N	206
,		
AUSWERTUNG DER BODENDÜNNSCHLIFFE DES PROFILS		
NEUSTADT AN DER WIED		309

Abbildungs-Verzeichnis

Abb. 1:	Bonner Raum	9
Abb. 2:	Klimastation Bonn-Friesdorf	18
Abb. 3:	Lage der Profile in der Picardie	21
Abb. 4:	Profil Birlinghoven	25
Abb. 5:	Profil Rauschendorf	26
Abb. 6:	Eiskeilpseudomorphose Rauschendorf	27
Abb. 7:	Bohrkern Bockeroth	28
Abb. 8:	Profil Bockeroth II	29
Abb. 9:	Eltviller Tuff (sechsfach), Bockeroth II	30
Abb. 10:	Photo, Profil Bockeroth II	30
Abb. 11:	Nebenschlot Steinringsberg	31
Abb. 12:	Profil Thomasberg	32
Abb. 13:	Profil Neustadt/Wied	33
Abb. 14:	Sourdon, Titelblatt Quaternaire	34
Abb. 15:	Profil Sourdon	35
Abb. 16:	Photo, Profil Ailly	36
Abb. 17:	Profilskizze Heilly	37
Abb. 18:	Photo, Profil Heilly	38
Abb. 19a:	Energiebändermodell	
Abb. 19b:	Charakteristische Temperaturen und Wellenlängenbereiche	
	zweier TL-Signale	
Abb. 20:	Röntgediffraktogramme, Texturpräparate < 2 µm	69
Abb. 21:	Chemische Zusammensetzung, Birlinghoven	73
Abb. 22:	Chemische Zusammensetzung, Rauschendorf	74
Abb. 23:	Chemische Zusammensetzung, Bohrkern Bockeroth	76
Abb. 24:	Chemische Zusammensetzung, Bockeroth II	77
Abb. 25:	Chemische Zusammensetzung, Thomasberg	78
Abb. 26:	Chemische Zusammensetzung, Neustadt/Wied	80
Abb. 27:	Chemische Zusammensetzung, Sourdon	82
Abb. 28:	Chemische Zusammensetzung, Heilly	83
Abb. 29:	Spurenelemente des Profils Birlinghoven in Abhängigkeit von	84
	der Teufe	
Abb. 30:	Spurenelemente des Profils Rauschendorf in Abhängigkeit von	85
	der Teufe	
Abb. 31:	Spurenelemente des Bohrkerns Bockeroth in Abhängigkeit von	86
	der Teufe	
Abb. 32	Spurenelemente des Profils Bockeroth II in Abhängigkeit von	87
	der Teufe	
Abb. 33:	Spurenelemente des Profils Thomasberg in Abhängigkeit von	88
	der Teufe	
Abb. 34:	Spurenelemente des Profils Neustadt in Abhängigkeit von der	89
	Teufe	
Abb. 35:	Spurenelemente des Profils Sourdon in Abhängigkeit von der	90
	Teufe	
Abb. 36:	Spurenelemente des Profils Heilly in Abhängigkeit von der	91
	Teufe	

Abb. 37:	Oxid-Verhältnisse des Profils Birlinghoven in Abhängigkeit von der Teufe	96
Abb. 38:	Y/Zr-Verhältnis sowie TiO ₂ /Al ₂ O ₃ , Profil Birlinghoven	96
Abb. 39	Ausgewählte Oxid-Verhältnisse, Profil Rauschendorf	97
Abb. 40:	Ausgewählte Oxid-Verhältnisse, Bohrkern Bockeroth	99
Abb. 41:	Ausgewählte Oxid-Verhältnisse, Profil Bockeroth II	100
Abb. 42:	Ausgewählte Oxid-Verhältnisse, Bohrkern Bockeroth	100
Abb. 43:	Oxid-Verhältnisse, Profil Neustadt	102
Abb. 44:	Ausgewählte Verhältnisse, Profil Neustadt	102
Abb. 45:	Oxid-Verhältnisse, Profil Sourdon	104
Abb. 46:	Spurenelement-Verhältnisse, Profil Sourdon	104
Abb. 47:	Oxid-Verhältnisse, Profil Heilly	105
Abb. 48:	Spurenelement-Verhältnisse, Profil Heilly	105
Abb. 49:	ET, Profil Bockeroth II	106
Abb. 50a:	Titanite	115
Abb. 50b:	Titanite, Darstellung der 2. Position	115
Abb. 51:	Granate	117
Abb. 52:	Chloritoide	119
Abb. 53:	Epidot	120
Abb. 54:	Epidot, Darstellung der 2. Position	120
Abb. 55:	Amphibole	122
Abb. 56:	Turmaline (Y-Position)	123
Abb. 57:	Chlorite	124
Abb. 58:	Muskovite	126
Abb. 59:	Biotite	126
Abb. 60:	Feldspäte	128
Abb. 61:	Sr-Mischdiagramm; ⁸⁷ Sr/ ⁸⁶ Sr vs 10 ⁵ /Sr(ppm)	143
Abb. 62:	Sediment-Zwischenlager	153

Tabellenverzeichnis

Tab. 1:	Parameter am Diffrakometer von Philips zur Untersuchung von Bodenproben	40
Tab 2:	Untersuchungsbedingungen der Thermoanalyse	41
Tab. 2.	Mineralbestand Profil Birlinghoven	52
Tab. 3.	Mineralbestand, Profil Rauschendorf	53
Tab. 5.	Mineralbestand, Rohrkern Bockeroth	55
Tab. 5:	Mineralbestand, Profil Bockeroth II	56
Tab. 0.	Mineralbestand, Profil Bockeroth III "Schneckenhorizonte"	57
Tab. 7.	Mineralbestand, Profil Thomasherg	59
Tab. 0.a.	Mineralbestand, Hauntbestandteile) Profil Neustadt/Wied	61
Tab. 9 a. Tab. 9 b. (120)	Mineralbestand (Nebenbestandteile), Profil Neustadt/Wied	63
Tab. 10	Mineralbestand Profil Sourdon	67
Tab. 10.	Mineralbestand, Profil Ailly	67
Tab. 12:	Mineralbestand, Profil Heilly	68
Tab. 12.	Tonminerale Profil Bockeroth	71
Tab. 13.	Minaralogische und geochemische Cherokterisierung der	110
1 au. 14.	vulkanogenen Horizonte	110
Tab. 15:	Chemischer Vergleich zweier Rutile aus der Bohrung Bockeroth	113
Tab. 16:	Spurenelement-Gehalte zweier Magnetite aus der Bohrung	113
	Bockeroth (bezogen auf 24 O)	
Tab. 17:	Verleich der kristallchemischen Zusammensetzung zweier Titanite	114
	(bezogen auf 24 O)	
Tab. 18:	Kristallchemie der Chloritoide (bezogen auf 24 O)	118
Tab. 19:	Kristallchemische Zusammensetzung von drei Epidoten (bezogen	119
	auf 24 O)	
Tab. 20:	Kristallchemische Zusammensetzung von vier Turmalinen (bezogen auf 24 O)	123
Tab. 21:	Kristallchemische Zusammensetzung der Feldspäte	129
Tab. 22a:	Spurenminerale des Bohrkerns Bockeroth	131
Tab. 22b:	Spurenminerale der Picardie-Proben	132
Tab. 23 a:	Laser-Korngrößenuntersuchungen von mm-Wechsellagen aus dem	141
	Profil Rauschendorf (grob)	
Tab. 23 b:	Laser-Korngrößenuntersuchungen von mm-Wechsellagen aus dem	141
	Profil Rauschendorf (fein)	
Tab. 24:	TiO ₂ -Gehalte, TiO ₂ /Al ₂ O ₃ -Gehalte und Y/Zr ausgewählter Proben	149
	(Tuffe)	2
Tab. 25:	Vergleich der "Eltviller" mit anderen Tufflagen	152

Tabellen im Anhang:

Tab. 1:	Chemische Analysen, Profil Birlinghoven	191	
Tab. 2:	Chemische Analysen, Profil Rauschendorf	191	
Tab. 3:	Chemische Analysen, Profil Bockeroth	192	
Tab. 4:	Chemische Analysen, Profil Bockeroth II	192	
Tab. 5:	Chemische Analysen, Profil Thomasberg	193	
Tab. 6:	Chemische Analysen, Profil Neustadt/Wied	193	
Tab. 7:	Chemische Analysen, Profil Sourdon	194	
Tab. 8:	Chemische Analysen, Profil Ailly	194	
Tab. 9:	Chemische Analysen, Profil Heilly	195	
Tab. 10:	Spurenelementanalysen, Profil Birlinghoven	196	
Tab. 11:	Spurenelementanalysen, Profil Rauschendorf	196	
Tab. 12:	Spurenelementanalysen, Profil Bockeroth	197	
Tab. 13:	Spurenelementanalysen, Profil Bockeroth II	197	
Tab. 14:	: Spurenelementanalysen, Profil Thomasberg 198		
Tab. 15:	Spurenelementanalysen, Profil Neustadt/Wied	198	
Tab. 16:	Spurenelementanalysen, Profil Sourdon	199	
Tab. 17:	Spurenelementanalysen, Profil Ailly	199	
Tab. 18:	Spurenelementanalysen, Profil Heilly	199	
Tab. 19:	Oxid-Verhältnisse, Birlinghoven	200	
Tab. 20:	Oxid-Verhältnisse, Rauschendorf	200	
Tab. 21:	Oxid-Verhältnisse, Bockeroth	201	
Tab. 22:	Oxid-Verhältnisse, Bockeroth II	201	
Tab. 23:	Oxid-Verhältnisse, Thomasberg	202	
Tab. 24:	Oxid-Verhältnisse, Neustadt/Wied	202	
Tab. 25:	Hauptelement-Oxid-Verhältnisse, Sourdon	203	
Tab. 26	Nebenelement-Oxid-Verhältnisse, Sourdon	203	
Tab. 27:	Oxid-Verhältnisse, Heilly	204	
Tab. 28:	⁸⁷ Sr/ ⁸⁶ Sr und Sr-Gehalte ausgewählter Proben (analysiert von Prof.	205	
	Dr. Udo Haack und Dr. Jens Schneider im Institut für		
	Lithosphärenforschung, Gießen)		

1 Einführung und Zielsetzung

Sedimente und Sedimentgesteine bedecken drei Viertel der Erdoberfläche und Ozeanböden (Correns, 1968). Einen besonderen Anteil unter ihnen nehmen Lösse ein, äolische Sedimente, auf denen sich meist sehr fruchtbare Böden entwickelt haben. Daher gehörten die Löß-Regionen schon früh zu den bevorzugten Siedlungsstandorten der Menschheit. Ein breiter Lößgürtel erstreckt sich von NW-Frankreich bis hin zu den mächtigen Lössen der Ukraine.

Das <u>Pleiser Hügelland</u> ist ein sehr kleiner Teil dieses mitteleuropäischen Lößgürtels. Es liegt im Übergangsbereich der Niederrheinischen Bucht zum Rheinischen Schiefergebirge, größtenteils im Gebiet des Siebengebirgsgrabens. Nach Süden und Südwesten wird das Pleiser Ländchen vom überwiegend oberoligozänen Vulkangebirge des Siebengebirges begrenzt, nach Westen von dessen niedrigen Ausläufern im "Ennert" und der Hauptterrasse des Rheins. Nach Südosten und Osten geht das Pleiser Hügelland in die zerschnittene Rumpfflächenregion des Niederwesterwaldes (Unterdevon) über. Durch Erschließung der neuen ICE-Trasse Köln-Frankfurt wurden im Pleiser Hügelland und südlich davon (bei Neustadt an der Wied) neue Aufschlüsse geschaffen.

Die sowohl als Plateau- als auch als Gehängelösse (Bohrungen von > 20 m) vorliegenden Lösse des Pleiser Hügellandes nehmen eine wichtige Stellung in der Korrelation der süddeutschen Lößprovinzen mit den (nord-) westlichen in den Niederlanden, Belgien und NW-Frankreich ein (Kukla, 1975, Haesaerts, 1985, Zöller & Nehring, 2002). Petrogenetisch und in ihrer paläoklimatischen Geschichte sind sie noch nicht vollkommen erforscht. Daher sollen in diesem Vorhaben Geländebeobachtungen und <u>besonders mineralogische und</u> <u>geochemische Untersuchungen</u> an frisch aufgeschlossenen Profilen zur Klärung ihrer paläoklimatischen Entwicklung führen. Hierzu standen die frisch aufgeschlossenen Löß- und Lößlehmprofile <u>Bockeroth, Rauschendorf, Birlinghoven, Thomasberg und Neustadt/Wied</u> zur Verfügung, sowie Vergleichsproben aus der Picardie.

Der geomorphologische Charakter dieser Arbeit geht auf Ian Foster's "new forensic geomorphology 2000" zurück. Foster & Lees (2002) und Merefield et al. (2002, beide in: Foster, ed. 2002) fordern eine deutliche Neuorientierung der geomorphologischen Forschungsschwerpunkte im Hinblick auf die Herkunft ("provenance studies",1998, "fingerprinting technique for tracing fine particulate sediment", 2000) und eine Anwendung

von naturwissenschaftlichen Methoden (mineralogische, geochemische etc., siehe Abb. 1 im Anhang). In der hier vorgestellten Arbeit geht es um folgende, die Herkunft, Ablagerung und Um-(bzw. Boden-) Bildung der Lösse des Pleiser Hügellandes betreffende Fragen:

- 1. Unterscheiden sich die verschiedenen Lößprofile des Gebietes mineralogisch und geochemisch?
- 2. Lassen sich im besonderen <u>Paläoböden</u> aus der geochemischen Charakterisierung erkennen und wie sind diese dann klimatologisch zu interpretieren?
- 3. Ergeben sich Korrelationen zwischen geochemischen Kriterien (z.B. einigen petrogenetisch charakteristischen Element-Verhältnissen, s. Correns, 1978, An- und Abreicherungen, wie z. B. von Nesbitt & Young, 1983, Nesbitt et al., 1996 angeregt) und geomorphologisch-bodenkundlichen Beobachtungen?
- 4. Lassen sich aus mineralogischen und (besonders) aus geochemischen Bestimmungen (s. z.B. Huisman, 1996) Informationen über die Entwicklung der Lößbildung gewinnen, besonders auch über Änderungen des Paläoklimas und (evtl.) in der Herkunft der Lösse, wie es für fluviale Sedimente beispielhaft von Argast & Donnelley (1987) oder Kroonenberg (1992) gemacht worden ist?
- 5. Gibt es mineralogische Indikatoren (z.B. Indexminerale, s. Poppe et al., 1991) für die Herkunft der Lösse? Hat das Herkunftsgebiet gewechselt oder gab es mehrere Ursprungsgebiete?
- 6. Lassen sich Einzelereignisse (Grobschluff-Feinschluff-Sequenzen) durch (Sr-isotopen-) geochemische oder mit Lumineszenz-Datierungen (TL, IRSL, OSL)¹ ausgliedern oder handelt es sich um periodisch wiederkehrende (eventuell jahreszeitliche) Ereignisse?
- 7. Lassen sich sedimentäre Gefüge oder morphologische Formen (Gredas?) zur Interpretation der Lößbildung heranziehen?
- 8. Sind in den Lössen authigene Mineralneubildungen, wie z. B. nach Struktur oder Kristallchemie spezielle Carbonate (Postma, 1967, Lippmann, 1973), SiO₂ als Chalcedon oder Opal, Feldspäte oder spezifische Bodensilikate (Palygorskit, z.B. Eitel, 1994, 2000) zu beobachten, aus denen auf Um- und Boden-Bildungsprozesse zu schließen ist?

¹ Im Projekt vorgenommene TL-, IRSL- und OSL-Datierungen werden separat in: Zöller, L., Mauz, B., Smykatz-Kloss, B. & Blanchard, H.: Luminescence dating of Upper Pleistocene loess deposits near Bonn, Germany (in Vorbereitung) veröffentlicht.

Ziel dieser Arbeit ist es, mit (isotopen-) geochemischen, (boden-) mineralogischen und sedimentologischen Methoden die Klärung über die Materialherkunft der Lösse (Nah/Fernkomponente; marin/terrestrisch), ihre Ablagerungs- und Umbildungsgeschichte, ihr Alter sowie ihre klimagesteuerte Entwicklung zu erreichen.

2 Forschungsstand

Die Kenntnisse über globale Lößvorkommen und ihre stratigraphischen und quartärmorphologischen Eigenschaften sind sehr groß (z.B. Berg, 1964, Fedorovich, 1972, Pécsi, 1984, 1990, Liu (ed.) 1985, 1991, Velichko, 1987, Pécsi & Loczy (eds.), 1990, Zarate et al., 1993, Smalley, 1995, Derbyshire, 1999). Über die mächtigen Lößvorkommen in China sind hier die Arbeiten von Derbyshire (1983), Kukla & An (1989) und An et al. (1991) zu nennen. Allgemeine Arbeiten über Lößvorkommen in *Europa* sind bei Kukla (1975, 1987), Lautridou (1985), Coudé-Gaussen (1990), Rousseau & Puisségur (1990), Semmel (1999) und Herget (2000) nachzulesen. Untergliedert man die Lößforschung in Europa, so sind für Frankreich die Arbeiten von Lautridou et al. (1986), Lautridou (1987, 1993), Antoine (1990) und Semmel (1995), für Belgien die von Haesaerts (1985), für Ungarn v.a. die von Pécsi (1987) sowie für Österreich die grundlegenden Arbeiten von Fink (1954, 1976) zu nennen. Im Feld der deutschen Lößforschung sind hier einige Arbeiten (z.B. Schönhals, 1950, Brunnacker, 1967 b, 1968, 1984, Bork, 1983, Schröder et al., 1985, Bente & Löscher, 1987, Thiemeyer, 1988, Semmel, 1989, Rösner, 1990, Zöller, 1995, Hatté et al., 1999, Antoine et al., 1999, 2000, 2001, Zöller & Semmel, 2001) anzuführen. Eine Bibliographie der wichtigsten Lößarbeiten bis 1995 ist von Pécsi & Richter (1996) herausgegeben worden. In ihr sind besonders Arbeiten über die Boden- und Lößstratigraphie enthalten, weniger auch über TL-Datierungen.

Daneben sind *mineralogische* (besonders über Schwerminerale und Tonminerale) *sowie geochemische Aspekte* nur selten anzutreffen, so z.B. in den Arbeiten von Yaalon, 1974, 1983, Juvigné (1976, 1985), Bronger et al. (1976), Bronger (1979), Taylor et al. (1983), Bente (1987), Churchman & Bruce (1988), Bronger & Heinkele (1990), Camilion (1993), Liu et al. (1993, 1994), Jahn & Condie (1995), Gallet et al. (1996, 1998) und Chen et al. (1999).

Über *Paläoböden im Löß* und ihre Charakterisierung haben Fink (1954), Ruske & Wünsche (1961), Rohdenburg & Meyer (1966), Bronger (1966, 1976), Brunnacker (1970), Haase et al. (1970), Bronger et al. (1976), Bleich & Schlichting (1979), Mückenhausen (1979), Skowronek (1982), Stremme (1986, 1989, 1998), Bronger & Heinkele (1989 b) und neuerdings Bleich (1998), Schwarz (2000), Stephan (2000 a, b) sowie mit besonderer Berücksichtigung der pedogenen Bildung des Leitminerals Palygorskit, Schwaighofer (1980), Eitel (1994, 2000) und Verrecchia & Coustumer (1996) gearbeitet.

Über den *Bonner Raum* und seine unmittelbar *benachbarten Gebiete* haben Andres (1969), Bibus & Semmel (1977), Burger (1982), Heine (1983), Kremer (1985), Tillmanns & Brunnacker (1987), Janotta (1991), Klostermann (1992), Frechen (1994, 1999), Boenigk et al. (1994), Schirmer (1995, 2000 a, b), Zöller (1995), Hoselmann (1996), Heitfeld et al. (1997), Henze (1998), Stephan & Brixy (1999) sowie Weidenfeller & Zöller (eds.) (1999) publiziert.

Aus den Arbeiten von Semmel (1967), Bibus (1980), Juvigné (1982), Brunnacker et al. (1982) und Windheuser et al. (1982) ist die *Fein- und Tephrostratigraphie* von Lössen aus dem weiteren Umkreis des Arbeitsgebietes in Grundzügen sehr gut bekannt (Zöller & Nehring, 2002). Für die Tephrostratigraphie älterer Lösse (älter als das letzte Interglazial) haben die Datierungen von van den Bogaard & Schmincke (1988, 1990), van den Bogaard et al. (1989) und Frechen (1994) Impulse gesetzt.

Für die Datierung von Lössen haben sich im letzten Jahrzehnt die Lumineszenz-Methoden als besonders tauglich erwiesen (z. B. Wintle & Brunnacker, 1982, Wintle et al., 1984, Singhvi et al., 1986, 1989, Wintle, 1987, Wintle & Packman, 1988, Juvigné & Wintle, 1988, Zöller et al., 1988, Wallner, 1989, Stremme, 1989, Buch & Zöller, 1990, Berger et al., 1992, Musson & Wintle, 1994, Wagner, 1995, Zöller, 1995, Loyer et al., 1995, Lang, 1996, Frechen & Preusser, 1996, Radke et al., 1998). Die Probleme, die sich in TL- und OSL-Datierungen erwiesen haben (unvollständige Bleichung, Altersunterschätzungen), sind in einem gerade beendeten DFG-Projekt von W. Smykatz-Kloss & Zöller diskutiert worden. In diesem Projekt hat sich ergeben, daß die häufig von TL-Datierungen berichtete schlechte Reproduzierbarkeit der Daten auf kristallchemische Ursachen junger, in den Böden subrezent entstandener SiO₂-Anwachszonen beruht; das ist besonders gut in Differenz-Thermoanalyse-Diagrammen zu erkennen, wie sie in der vorliegenden Arbeit beispielhaft enthalten sind. Während das Mittelrheingebiet seit den ersten Anfängen der Lößforschung (siehe Zöller & Semmel, 2001) eine viel bearbeitete Lößregion darstellt, was besonders für die Verknüpfung der Lößstratigraphie mit der Tephrostratigraphie gilt (Andres, 1969, Brunnacker et al., 1969, 1975, Bibus, 1980, Juvigné & Semmel, 1981, Semmel, 1989, Schirmer, 1990), und somit die Lösse des Mittelrheingebietes daher als relativ gut erforscht gelten können, liegt über die Lößforschung im Pleiser Ländchen kaum Literatur vor, was primär durch den Mangel an geeigneten Aufschlüssen bedingt ist. Durch das Anlegen der ICE-Trasse (seit 1998) ist dieser Mangel behoben worden, wodurch neben dieser Arbeit auch die lößstratigraphische, von L. Zöller betreute Diplomarbeit von F. Nehring (2001) profitiert hat. Durch die vorliegenden Untersuchungen sollten auch bessere Vergleichsmöglichkeiten zwischen den mittelrheinischen und den westlich benachbarten Lößlandschaften Belgiens und der Picardie möglich werden. Ein wichtiger Aspekt dieser Arbeit ist demnach ein mineralogischer und geochemischer Vergleich mit den drei Lößprofilen in der Picardie, die stratigraphisch von Lautridou (1985) und Antoine (1990) bearbeitet worden sind.

Erste *feinstratigraphische Gliederungen im Löß* in Deutschland wurden von Schönhals (1950), Freising (1951) und Brunnacker (1954), in Niederösterreich von Fink (1954) und Brandtner (1954) durchgeführt.

Bis zu diesem Zeitpunkt wurde nur "jüngerer Löß" (Würm-Löß) von "älterem Löß" (Riß-Löß) unterschieden, durch den letztinterglazialen (Eem)-Boden getrennt. In Österreich wurde dieser Boden als *Stillfried B* (Fink, 1964), in den Niederlanden und Belgien als *Rocourt-Bodenkomplex* (Gullentops, 1954, Haesaerts, 1987, Zagwijn & Paepe, 1968, Paepe et al., 1990, Juvigné et al., 1996, Haesaerts et al., 1999) und in der Normandie als *Elbeuf I* bezeichnet (Lautridou et al., 1984, van Vliet-Lanoë, 1988). Jedoch wurde er in Belgien und der Normandie als polygenetische Bodenkomplexe gedeutet, während sie in der Bundesrepublik Deutschland als <u>ein Interglazialboden</u> interpretiert wurden.

Freising führte 1951 den Begriff "*Naβboden*" ein, Schönhals gliederte ein *Tuffband* in den Junglössen aus, das er als "Kärlicher Tuff" bezeichnete und das heute nach Semmel (1967) als *Eltviller Tuff* bezeichnet wird. Brunnacker (1954) definierte einen "braunen Verwitterungsboden", der als Leithorizont aus fossilen Bt-Resten das Würm in eine ältere und jüngere Phase untergliederte. Heute wird dieser Leithorizont als Lohner Boden bezeichnet und repräsentiert <u>einen Interstadialboden</u>.

Die Basis des Würmlösses bildet ein <u>interglazialer²</u> Bt-Rest, der Eem-Boden. Der ältere Würmlöß wird durch <u>interstadiale</u> Bodenbildungen untergliedert, jedoch sind diese nicht im Jungwürmlöß zu finden. Der Jungwürmlöß ist durch Naßboden-Komplexe, wie sie von Paas (1962), Fink (1962), Woldtstedt (1962), Lieberoth (1962) und Bibus & Semmel (1977) beschrieben und von zahlreichen Bearbeitern wieder aufgegriffen worden sind, wobei vor allem die Arbeiten von Brunnacker (1964, 1967 c), Schönhals et al. (1964), Bronger (1966),

² wenn das Klima während der Bildung des Bodens gleich warm oder wärmer als bei der Bildung des holozänen Bodens war, spricht man von einer interglazialen (warmzeitlichen) Bodenbildung, war es hingegen kälter, von einer interstadialen Bodenbildung.

Rohdenburg & Meyer (1966), Semmel (1969, 1974), Remy (1969), Schirmer (1970, 1999, 2000 a) und Bibus (1980, 1989) zu nennen sind.

Kukla (1970) und Fink & Kukla (1977) wagten die Korrelation der terrestrischen Lößgebiete mit den marinen Sauerstoff-Isotopenkurven (Emiliani, 1955, Shackleton & Opdyke, 1973). Dabei wurden die letzten 130 000 Jahre in drei relativ warme Stadien 1, 3 und 5 unterteilt und zwei relativ kalte bzw. mit kühlem Klima 2 und 4. Die Wärmestadien gliedern sich wiederum in wärmere Substadien [3a, 3c und 5a, 5c und 5e und kühlere Substadien 3b und 5b, 5d]. Generell wird mit der Anreicherung des schweren Sauerstoff-Isotopes ¹⁸O in den Schalen mariner Foraminiferen ein "Kältestadium" gleichgesetzt.

Lößhorizonte, Solifluktions- und Kryoturbations-Erscheinungen sowie Permafrost-Phänomene werden bei der terrestrischen Lößstratigraphie mit den Kältestadien gleichgesetzt, Paläoböden, torfige Horizonte, Humuszonen, Flugsande und Erosionslücken mit den Wärmestadien.

Eine zeitliche Absicherung der Profile wurde immer mehr gefordert. Probleme stellen dabei die Anwendung der physikalischen Methoden der Altersbestimmung dar. Anfänge wurden Brunnacker von Wintle & (1982)und Zöller et al. (1982)mit der Thermo-Lumineszenz-Datierung von Lössen gemacht. Paläopedologische Methoden wurden von Bibus et al. (1996), Semmel (1999) und Zöller & Löscher (1999) angewandt. Schirmer legte 2000 für die Abfolge im rheinischen Löß 16 interstadiale Böden (Klimaschwankungen der letzten Kaltzeit) fest, die mit den 24 Interstadialen der Eis- und Tiefseebohrkerne korrelieren (Dansgaard et al., 1993).

Erste Aspekte, *mineralogische und geochemische Daten* zur Erkennung von *Paläoverwitterungszonen in Lössen* zu nutzen, sind in den Arbeiten von Nesbitt & Young (1983, 1984, 1989), Wang (1989), Liu et al. (1993), Kalm et al. (1996), Yang et al. (2001) und besonders von Gallet et al. (1996, 1998) enthalten. In der vorliegenden Arbeit wird eine verbesserte geochemische Methodik zur Charakterisierung von fossilen Verwitterungshorizonten (Böden) und von vulkanogen beeinflussten Lagen angewandt, die detailliert bei W. Smykatz-Kloss et al. (in Vorbereitung) wiedergegeben wird.

3 Untersuchungsgebiete

3.1 Pleiser Hügelland und Neustadt/Wied

Das Gebiet wird von Grunert (1988) zum "Bonner Raum" gezählt. Es liegt etwa 15 km südöstlich von Bonn, in der Lee-Lage des Siebengebirges. Seine östliche Begrenzung ist der Pleisbach (s. Abb. 1).

Die Abgrenzung des Bonner Raums geschieht in Anlehnung an Grunert. Der Rhein fungiert als zentrale Achse und tritt in dem Bonn-Godesberger Taltrichter aus seinem engen Tal im Schiefergebirge (dem unteren Mittelrheintal) aus (vgl. Meyer & Stets, 1996). Diese Übergangslandschaft leitet vom Rheinischen Schiefergebirge zur Niederrheinischen Tieflandsbucht über. Als westliche Begrenzung in der Meckenheimer Bucht wurde der NW-SE streichende Swist-Erft-Sprung als tektonische Linie gewählt. Im Süden (linksrheinisch) zählt Grunert das Drachenfelder Hügelland komplett zum Bonner Raum und zieht die Grenzlinie entlang der Linie Oberwinter-Meckenheim. Das Siebengebirge besteht geologisch aus tertiären Vulkaniten - Trachyten, Latiten und Basalten, s. Cloos (1930/31), Overkott (1961), Vieten (1961, 1994), Frechen (1976), Frechen & Vieten (1970), Meyer (1988), Burghardt (1979), Vieten et al. (1988), "Geologische Karte von Preußen", Blatt Bonn 1923, Geologische Karte von Nordrhein-Westfalen, Blätter 5209 Siegburg (1977) und 5309 Königswinter (1995). Rechtsrheinisch zählen das Siebengebirge und die Honnefer Talweitung zum Bonner Raum sowie der westliche Teil des zwischen Siebengebirge und Pleisbach liegenden Pleiser Hügellands. Die Unterlage der untersuchten Lösse besteht nach diesen geologischen Arbeiten überwiegend aus mächtigen Trachyttuffen (Meyer, 1988). Das Untersuchungsgebiet wird wie folgt abgegrenzt:

Im Norden durch die Sieg, im Süden durch den Hasenpother Bach südlich des Steinringsbergs (*Thomasberg*, Stadt Königswinter), im Osten durch den Verlauf des Pleisbaches sowie im Westen durch die Berge des Siebengebirges. Die Aufschlüsse Birlinghoven, Rauschendorf, Bockeroth und Thomasberg liegen sämtlich in diesem abgegrenzten Gebiet des Bonner Raumes. Sie wurden durch die erwähnten ICE-Trassenarbeiten freigelegt, wie auch der etwa 25 km südlicher, an der Wied liegende Aufschluß von Neustadt.

Der letztgenannte Aufschluß gehört nicht mehr zum Pleiser Hügelland, sondern zum westlichen Vorderwesterwald (Grunert, 1988). Die Lösse von Neustadt/Wied haben als Liegendes devonische Tonschiefer der Siegen-Stufe. Durch die Arbeiten an der Trasse wurde eine Kuppe (Höhe: 187 m ü. NN) angeschnitten, die zur Wied hin einen steilen Hang zeigt, an den sich quartäre Sedimente anschließen (vgl. Nehring, 2001). Der Hangfuß befindet sich auf ca. 168 m ü. NN. Burger (1982) stuft die in 4 m erbohrten Schotter unterhalb des Hangfusses als T3 der Wied ein. Dieser Aufschluss wird in die Untersuchungen einbezogen, um auch über die etwas älteren Lösse der näheren Umgebung Informationen zu erhalten.

Abb. 1: Die Aufschlüsse im Pleiser Hügelland (modifiziert nach Preston, 2001)

3.1.1 Geologische Entwicklung des Untersuchungsgebietes

Die Profile im Untersuchungsgebiet Pleiser Hügelland und Niederwesterwald sind ein Teil des Rheinischen Schiefergebirges, bzw. die nördlichsten Profile (Birlinghoven, Rauschendorf) liegen im Übergangsbereich zur Niederrheinischen Bucht. Das Rheinische Schiefergebirge bildet einen Teil des NE-SW streichenden variszischen Grundgebirges. Die ältesten Gesteine des Rheinischen Schiefergebirges sind dem Ordovizium zuzuordnen und ziehen als Venn-Sattel aus den Ardennen herüber, wo sie als "Massif de Stavelot" bezeichnet werden (Henningsen & Katzung, 1998). Aufgeschlossen sind Phyllite, Quarzite und Arkosen (bis 700 m), die ein kambrisches Alter haben (Leitfossil: Rhabdinopora flabilliformis - ein Graptolith), in ihrer Fortsetzung nach Belgien auch präkambrisch.

Die ältesten Gesteine des *Untersuchungsgebietes* gehören den Siegener Schichten des <u>Unterdevons</u> (ca. 400 Mio. Jahre) an, die als tonige und sandige Sedimente in ein ständig sinkendes paläozoisches Meeresbecken (Siegenmeer) geschüttet wurden. Es gehörte zum Rheinischen Trog, einem Sedimentationsbecken für den im Norden anschließenden <u>Old-Red-Kontinent</u>, der in den variszischen Sedimentationstrog entwässerte und im Gebiet des heutigen Rheinischen Schiefergebirges zur Ablagerung von tonig-sandigen Sedimenten mit Mächtigkeiten von 10.000 bis 15.000 m führte. Dabei entstanden Sande im Schelfbereich und Tone im Zentrum des Devonmeeres. Im Mitteldevon führte die Ausdehnung des Meeres nach Norden zur Ablagerung von marinen und flachmarinen Sedimenten (mächtige Riffkalke). An wenigen flachen Meeresschwellen entstanden durch Wachstum von Korallen und Schwämmen organogene Carbonatgesteine. Heutige Überreste sind die Kalkmulden der Eifel mit verkarsteten Kalkriffen und Dolinen (z. B. Gerolsteiner Kalkmulde, Hillesheimer Kalkmulde).

Der Rückzug dieses Meeres erfolgte vor 320 Mio. Jahren, gegen Ende des Kulms (Unterkarbon). Durch die variszische Gebirgsbildung, vor allem die sudetische Phase an der Wende vom Unterkarbon zum Oberkarbon, und im nördlichen Schiefergebirge auch durch die asturische Phase im Oberkarbon, wurden die devonischen und karbonischen Gesteine verfaltet, verstellt und teilweise auch verschiefert (Henningsen & Katzung, 1998). Die einzelnen Strukturen verlaufen meist in erzgebirgischer (SW-NE) Richtung. Vom Oberkarbon bis Perm erfolgten mehrere Faltungsphasen, so daß sich die Sedimente unter hohem Druck zu Grauwacken, Sandsteinen, Tonschiefern, Quarziten und Konglomeraten verfestigten (Gewehr, 1988). Das Rheinische Schiefergebirge bildete somit einen Teil des von

Südwesten nach Nordosten streichenden variszischen Gebirges. Durch die Gebirgsbildung entstand ein Kluft- und Spaltensystem, in das heiße Wässer aus der Tiefe aufstiegen. Später wurden diese Spalten und Klüfte mit hydrothermal gebildeten Gangquarzen und Erzen gefüllt. Die variszische Faltung endete vor ca. 280 Mio. Jahren (Perm). Die Folge der Hebung und der Abtragungsvorgänge war die Bildung einer reliefarmen Rumpffläche im Perm. Eine tektonische Ruhephase, in der das Gebirge teilweise wieder abgetragen wurde, begann (Rotliegend-Sedimente in der Wittlicher Senke, Saar-Nahe-Becken, vgl. Walther, 1995).

Im <u>Mesozoikum</u>, in dem das gesamte Gebiet des Rheinischen Schiefergebirges Hochgebiet war, folgte eine lange tektonische Ruhephase mit weiträumiger Abtragung (Burghardt, 1979). Gegen Ende des Mesozoikums war das Rheinische Schiefergebirge eine flachwellige, eingerumpfte Landschaft, die kaum zertalt war. Sedimente des Mesozoikums fehlen im Bonner Raum (Festlandsockel) und wurden nur in angrenzenden Senken (Hessische Senke, Eifeler Nord-Süd-Zone und Ostrand des Schiefergebirges) abgelagert. Die terrestrischen Ablagerungen, die aus Buntsandstein und Keuper bestehen, weisen auf subtropisch-semiaride Klimaverhältnisse hin. Im Bereich der Eifeler Nord-Süd-Zone und der Hessischen Senke wurde vereinzelt Muschelkalk abgelagert. Nach dem Meeresrückzug im Dogger unterlagen (unter zunehmend humideren Bedingungen) alle Bereiche des Schiefergebirges erneut der Abtragung und der kaolinitischen Verwitterung (vgl. Felix-Henningsen, 1990).

Die <u>Kreidezeit</u> und das <u>Alttertiär</u> wurden durch ein gleichmäßiges (sub-)tropisches Klima (ohne große Jahresschwankungen) geprägt. Eine tiefgründige chemische Verwitterung mit Saprolith- und Graulehm-Bildung setzte ein. Devonische Gesteine verwitterten tiefgründig zu kaolinitischen Tonen. Diese mesozoisch-tertiäre Verwitterungsdecke (MTV) wird detailliert bei Felix-Henningsen (1990) beschrieben.

Zu Beginn des <u>Tertiärs</u>, im Paleozän (ca. 65 Mio. Jahre), war das, was von den unterdevonischen Gesteinen übriggeblieben war, einige Zehner Meter tief verwittert und kaolinisiert. Mit der Heraushebung des südlichen Schiefergebirges wurde das gleichzeitige *Absenken der Rheinischen Bucht* eingeleitet. Phasen der Hebung (Meerestregression) und Senkung (Meerestransgression) wechselten sich ab (Sand- bzw. Tonablagerungen aus Verwitterungsprodukten des Rheinischen Schiefergebirges).

Ein Flußsystem bildete sich zu Beginn des Oligozäns (vor ca. 38 Mio. Jahren) aus, das breit angelegt war und keine Terrassen bildete. Transportiert wurden nicht nur Feinsande und Tone, sondern auch Grobsande und Schotter, die nur örtlich in Kiesrinnen zu finden sind. Der Raum des Siebengebirges lag im Deltabereich dieses Systems, da die Nordsee vom Paleozän bis Oligozän bis in die Gegend von Bonn vorgestoßen war (Burghardt 1979).

Während des Höhepunktes der marinen Transgression im Oberoligozän wurden Sedimente im gesamten Rheinischen Schiefergebirge bis in den Oberrheingraben abgelagert, die als Meeressande noch heute u.a. auf der Rumpffläche der Eifel nachgewiesen sind (Sonne, 1982, Zöller, 1983).

Vor etwa 25 Mio. Jahren, im Oberoligozän, zerbrach der devonische Sockel entlang NW-SE-Störungen in mehrere Schollen, die charakteristische Horst- und Grabenstruktur des Bonner Raumes entstand. Es bildete sich in der Erdkruste, einige Kilometer unter der Oberfläche, ein Magmenreservoir. In diesem Reservoir bildeten sich (durch Kristallisationsdiffertiation) aus ursprünglich basaltischem Material Kieselsäure-reiche Schmelzen. Durch hohe Gasbildung explodierte das Reservoir und es wurden in sehr kurzer Zeit - wahrscheinlich nur in ein paar Tagen - aus mehreren Schloten und Spalten große Mengen an Aschen ausgestoßen (Meyer, 1988). Mit der Bruchschollentektonik gingen vulkanische Prozesse (die radiometrischen K/Ar-Datierungen ergaben K/Ar-Alter zwischen 26,4-24,6 Ma für die Trachyte und Latite und 25-18 Ma für die Basalte des Siebengebirges, Todt & Lippolt, 1979, Lippolt, 1982) mit gewaltigen Trachyttuff-Eruptionen einher (auf der damals noch weitgehend ebenen Landoberfläche nahe der Ausbruchszentren etwa 200 m mächtig). Über dem so rasch entleerten Magmenherd brach eine 5 km breite Caldera ein (Meyer, 1988). Ende Oligozän drangen in die sauren Tuffe trachytische (Drachenfels, Lohrberg) und andesitische Laven (Latitkuppeln: Wolkenburg, Hirschberg, Stenzelberg), vereinzelt auch Basalte (Petersberg, Nonnenstromberg, Großer Weilberg) ein und bildeten Stau- und Quellkuppen. Im Laufe der Zeit wurden die erosionsbeständigeren Schlote herauspräpariert zu Kuppen- und Kegelbergen (Haubrich, 1970), wie z. B. der Drachenfels. Gleichzeitig mit der Hebung des Rheinischen Schiefergebirges setzte die Erosion wieder ein. Große Teile der Lockerprodukte wurden sehr schnell fortgeführt, insbesondere im Bereich der steilen vulkanischen Aufragungen (Burghardt, 1979). Dagegen wurden die Trachyttuffe im Bereich der Nordabdachung des Siebengebirges, im sog. "Siebengebirgsgraben", der den größten Teil des hier untersuchten Gebietes einnimmt, von Tonen, Feinsanden und Braunkohlen in bunter Wechsellagerung überlagert. Diese wurden im Kleinbergbau in ca. 125 Abbaustellen gewonnen, u. a. die

Blätterkohle von Rott und von Rothweiler mit ihrer Vielzahl pflanzlicher und tierischer Fossilien.

Die Höhenunterschiede zwischen der einsinkenden Niederrheinischen Bucht und den sie umgebenden Gebieten verstärkten sich und es kam zur Ausbildung von Flußsystemen.

Im Jungtertiär (Obermiozän), vor etwa 10 Mio. Jahren, hatte der Rhein seine Quelle im Gebiet des Kaiserstuhls (Kaiserstühler Rhein). Im Pliozän, vor etwa 5 Mio. Jahren, begann sich der Rumpf des Rheinischen Schiefergebirges erst langsam, dann rascher zu heben. Der Rhein, der bis zu diesem Zeitpunkt sein Bett in einem trogähnlichen Tal (Trogtal-Stadium) zwischen Bingen und Bonn durch die Rheinische Masse gebahnt hatte, war (wie auch seine Nebenflüsse) gezwungen, sein Bett stärker einzutiefen,um die Hebung zu kompensieren. Der Rhein vergrößerte in dieser Zeit durch rückschreitende Erosion sein Einzugsgebiet. So lassen sich z.B. am Hardtberg bei Bonn Schotter aus Lothringen (Lothringer Rhein) mit "Kieseloolith"-Leitgeröllen finden. Die Verkieselung erfolgte bereits (früh-)diagenetisch im Mesozoikum. Durch das Eintiefen des Rheins und seiner Nebenflüsse entstand ein System ineinandergeschachtelter Talböden, die sog. Terrassentreppe. Jede Treppe entspricht einem ehemaligen Talboden und trägt mit ihren Gerölltypen und dem unterschiedlichen Mineralgehalt der Sande Stufe für Stufe zur Rekonstruktion der weiteren Flußgeschichte bei (s. Kapitel 3.1.2.3).

Im Altpleistozän, zwischen etwa 2,2 und 0,8 Mio. Jahren, kam es zur Anzapfung der Aare und anschließend zum Oberlauf des heutigen Rheins, der zuvor zur Donau entwässerte. Es entstand der "Alpenrhein". Er bedeutete gleichzeitig ein höheres Wasserangebot und eine Erweiterung des Gesteinsspektrums der Kiese. Durch den Rhein und seine Nebenflüsse wurden die Trachyttuffe abgetragen. Dadurch wurden in die Tuffe eingedrungene Eruptivkörper freiggelegt.

3.1.2 Geomorphologischer Überblick

Charakteristisch für die Geomorphologie im Untersuchungsgebiet sind die Prozesse der *Ablagerung* und der *Erosion*. Da es sich in dem Untersuchungsgebiet überwiegend um *quartäre Ablagerungen* handelt, werden vor allem die äolischen Prozesse (Ablagerungen: Löß, Flugsand), die Erosion und Ablagerung an den Hängen (Bodenerosion, Kolluvienbildung) und die fluvialen Prozesse (Flußterrassen) sowie die periglazialen Prozesse der Bodenzerstörung (Permafrost, Bodeneis) umrissen.

Für die geomorphologische Entwicklung des Untersuchungsraumes ist besonders das Rißund Würmglazial von Bedeutung, da mit der Bildung der kaltzeitlichen Sander- und Schotterfluren (Mittel-, Niederterrassen, Sanderflächen) die sedimentpetrologische und mineralogische Voraussetzung für eine Auswehung der feinen Sedimente und damit für die Nahkomponente der Lößbildung gegeben war.3 In West- und Mitteleuropa verläuft am nördlichen Rand der Mittelgebirge eine relativ geschlossene Lößzone. Nördlich dieser Zone fehlt der Löß (Neumeister, 1965), deshalb wird diese Grenze als "Nördliche Lößgrenze" bezeichnet. Von den Mittelgebirgen nach Norden hin kommt es zu einer "äolischen Saigerung" der Sedimente, von Löß über Sandlöß hin zu Flugsand im Norden (Grahmann, 1930/31, Wortmann, 1942, Poser, 1951, Neumeister, 1965, Fiedler & Altermann, 1964, Schmidt, 1971). Die Lößgrenze ist keine linienhafte Erscheinung, sondern mehr eine Grenzzone, die von der Winddynamik abhängig ist und während ihrer Entstehung hin und her pendelte (Poser, 1951). Sie ist eine morphologisch-klimatische Grenze (Büdel 1949, 1951, Poser, 1951), die aufgrund der Strömungsdynamik und der Relieferhebung für die Ablagerung der feinsten Lößpartikel verantwortlich ist. Im Pleiser Hügelland wurden durch Bohrungen (Geländepraktika und Baufirmen im Auftrag der DB) Lößmächtigkeiten von über 20 m erbohrt. Südlich dieser Lößzone findet man Löß nur vereinzelt in den Leelagen der Kuppen⁴ (z.B. Profil Neustadt/Wied im Niederwesterwald) und in Tallagen als umgelagerten Lößlehm.

³ Wie später noch genauer erläutert wird, spielt für die Fernkomponente das kaltzeitlich trockengefallene Schelfgebiet eine Rolle.

⁴ nur wenige dm mächtig

3.1.2.1 Äolische Ablagerungen

Zur Ablagerung von Flugsanddecken und/oder zur Akkumulation der Stäube als Löß dienten des Siebengebirges) windgeschützte Stellen (z. Β. Lee oder Übergänge zu geomorphologischen Stufen (z. B. Terrassenkanten). Als Decksedimente auf der Sanderhochfläche der Niederrheinischen Bucht findet man Flugsande, Sandlösse und Lösse. Die granulometrische Zusammensetzung reicht von Sedimenten mit hohem Sandgehalt bis zu Sedimenten mit relativ hohem Schluffgehalt und einem deutlichen Tonanteil (vgl. Siebertz, 1980).

Für die äolische Bildung der eiszeitlichen Decksedimente (Löß, Sandlöß, lößartige Sedimente) wird ein kaltes, arides Klima gefordert (Poser, 1948, Büdel, 1949, Schönhals, 1957, Lozek, 1965, Vierhuff 1967), so daß unter periglazialen Klimabedingungen mit einer relativ spärlichen Tundrenvegetation, Dauerfrost und sommerlichem Auftauboden eine Ausblasung und Ablagerung von äolischen Sedimenten vornehmlich im Sommer stattfinden konnte (Büdel, 1944, Poser, 1951, Schönhals, 1957).

Aölische Prozesse lassen sich auch noch im jüngeren Holozän nachweisen, die aber im Gegensatz zum Würmglazial keine Deckensande, sondern meist zu Dünen aufgewehte Kuppen bilden (z.B. die "Düne von Sandhausen" bei Heidelberg, vgl. Löscher, 1995). Das Ausgangsmaterial wurde aus gerodeten und bewirtschafteten spätglazialen Dünenfeldern und - untergeordnet - aus trockenliegenden Altarmen des Rheins ausgeweht.

Als Prozess der äolischen *Erosion* ist hier die Deflation zu nennen. Da es sich dabei um die Partikel-Aufnahme durch den Wind in Gebieten handelt, in denen wenig Vegetation (Sanderflächen, Flußbetten, Schwemmfächer) vorhanden ist, sind (unbewachsene, trockene) Lößgebiete bei höheren Windgeschwindigkeiten gefährdet. Die Menge des abgetragenen Materials kann nicht quantifiziert werden. So fehlen jedoch in bestimmten Teilen des Untersuchungsgebietes die jüngeren, (würm-)zeitlichen Ablagerungen. Inwiefern hier andere geomorphologische Prozesse wie z.B. die Bodenerosion eine Rolle spielen, kann nur abgeschätzt werden, z.B. an der Mächtigkeit der Kolluvien (s. Preston, 2001).

3.1.2.2 Erosion und Ablagerung an Hängen

Da es sich bei Löß um Material mit einem Korngrößen-Maximum in der Schlufffraktion handelt, ist er sehr anfällig für Bodenerosion (vgl. Richter, 1965, 1981, Bork, 1989).

Durch Konzentration des Abflusses in Abflußbahnen kommt es zu kleinflächigen Erosionsformen (Rillen- und Rinnenerosion) bis hin zum "Grabenreißen" (gully erosion). Die Gräben entstehen bevorzugt in konkaven Hangmulden und nicht ständig durchflossenen Tiefenlinien. Tiefenlinienerosion beginnt nach De Ploey (1990) in Lößgebieten bereits bei 4-5 ° Hangneigung.

Richter (1965) unterscheidet verschiedene Hangtypen, von denen hier der konvex-konkave, der konkave und der konvexe genannt werden sollen. Beim konvex-konkaven Hang dominiert der Bodenabtrag im konvexen Oberhangbereich und Akkumulation im konkaven Unterhangbereich (Richter, 1965). Der konkave Hang ist im oberen Bereich stark geneigt, deshalb dominiert dort Bodenabtrag. Ab dem Mittelhang setzen bei abnehmender Hangneigung Akkumulationsprozesse ein. Beim konvexen Hang dominiert der Bodenabtrag am gesamten Hang, und es kommt erst am Hangfuß zu Akkumulationen.

Einen Überblick über die Bodenerosion im Pleiser Hügelland geben Botschek et al. (1994), Skowronek et al. (1994), Grunert (1994) und Erdmann (1998). Die Quantifizierung der in diesem Untersuchungsraum erfolgten Bodenerosion mittels ¹³⁷Cs wird in einer von Prof. L. Zöller betreuten Diplomarbeit (Schnocks, 2000) sowie in einer an der Universität Bonn durchgeführten Dissertation von N. Preston (2001) detailliert beschrieben. Auf beide Arbeiten wird in diesem Zusammenhang verwiesen.

Das am Hang abgetragene Material wird am Hangfuß als Kolluvium wieder abgelagert (abnehmende Hangneigung, abnehmende Wassermenge, erhöhter Fließwiderstand). Bei der Sedimentation findet eine Sortierung nach der Korngröße von grob nach fein statt, d.h. zuerst werden Kies, Grob- und Feinsand, mit zunehmender Distanz feinere Partikel wie Grob- und Mittelschluff und zuletzt (bei Stillstand des Abflusses) Feinschluff und Ton sedimentiert. Preston (2001) geht auch auf die Kolluvienbildung sowie deren Datierung mittels OSL ein.

3.1.2.3 Die fluvialen Prozesse

Als wichtigste Ablagerungsformen der fluvialen Prozesse sind in diesem Untersuchungsgebiet die Rheinterrassen zu nennen. Die präjungquartäre Talentwicklung begann mit dem Rückzug des tertiären Meeres. Das höhere Flachland der östlichen Niederrheinischen Bucht (mit Westabfall des Niederbergischen Landes) war die Ausgangsfläche des Rheines. Das Klima war trocken und heiß. Auf dieser Fläche entstanden nach Breddin (1928, 1931) mindestens 5 Terrassen (Höhenterrassen). Diese lassen sich - je nach Alter - weiter in mehrere Haupt-, Mittel- und Niederterrassen unterteilt werden (Bibus & Semmel, 1977, Bibus, 1980, Fuchs et al., 1983, Boenigk, 1990, Klostermann, 1992, Schirmer, 1990, 1994, Zhou, 2000).

Im Frühpleistozän nahm der Rhein nahezu die gesamte Niederrheinische Bucht ein (Boenigk, 1978). Er erreichte damit seine breiteste Talausdehnung. Im mittleren niederrheinischen Raum schnitt sich der Rhein mindestens 30 m in die Oligozänsande ein und formte die Hauptterrasse. Der Körper dieser Hauptterrasse besteht aus groben Schottern und Geröllen von Quarzen, Feuersteinen, Sandsteinen, Grauwacken und Schiefertonen. Außerdem enthält er Rollstücke von Eruptivgesteinen und größere Blöcke von Braunkohlequarziten (Paeckelmann & Zimmermann, 1930). Seit dem *Ende* der Bildung der Hauptterrassen (älteres Mittelpleistozän) ist das Rheinbett bereits auf einen relativ schmalen Streifen entlang des heutigen Niederrheinischen Talzuges eingeengt (Brunnacker, 1978).

Ab dem jüngeren Mittelpleistozän bildeten sich vier Mittelterassen (Talhangterrassen) aus, wobei die MT 4 ins Riß zu stellen ist (Schirmer, 1994).

Die Niederterrassen (Talgrundterrassen) wurden zum einen im Oberwürm (NT1-3), zum anderen vom Subboreal bis ins 19. Jahrhundert gebildet (Aueterrassenphase). Die Niederterrasse 1 wurde im Hochwürm, die Niederterrasse 2 im Späthochwürm und die Niederterrasse 3 in der Jüngeren Dryas aufgeschottert, während die sogenannte "Oberbrunner Terrasse" als Subboreal eingestuft wird. Darauf folgen 4 Terassen, die als römisch, frühmittelalterlich, 15.-17. Jhdt. und 19.Jhdt. eingestuft werden (vgl. Schirmer 1994).

3.1.3 Klimatischer Überblick

Mit relativ milden Wintern und mäßig warmen Sommern ist der Untersuchungsraum nach Köppen/Geiger der feuchtgemäßigten Klimazone (Cfb) mit sommerlichen und herbstlichen Niederschlagsmaxima zuzuordnen. Das Untersuchungsgebiet wird vom Süden her von den Ausläufern des eher kontinentalen Mittelrheintales, von Westen von der atlantischen Klimaprovinz und im Osten vom Mittelgebirgsklima beeinflußt.

Die Station Bonn-Friesdorf hat im 25-jährigen Mittel (Müller-Westermeier, 1996):

Durchschnittstemperatur	10,2 °C
mittlerer jährlicher Niederschlag (mm)	677,9 mm
Zahl der Niederschläge von mind. 1 mm	122
Zahl der Niederschläge von mind. 10 mm	15
mittlere relative Feuchte (%)	75
mittlere Sonnenscheindauer (Stunden)	1.463,8

Eine detaillierte Auflistung der monatlichen Durchschnittswerte siehe Anhang.

Für das im Untersuchungsgebiet liegende Versuchsgut Frankenforst der Universität Bonn werden folgende Daten angegeben:

Höhenlage	130-192 m
Mittl. Jahrestemperatur	9.0 °C
Mittl. jährl. Niederschlagsmenge	700 mm (600-850 mm)

Quelle: http://uf.ilb.uni-bonn.de/versuchsgueter/frankf/default.htm

Somit liegt die Jahresdurchschnittstemperatur im Untersuchungsgebiet um 1,2 °C niedriger als die Station Bonn-Friesdorf des DWD (Müller- Westermeier, 1996).

3.1.4 Pedologische Einheiten

Die **bodenbildenden Substrate** (= Ausgangsmaterialien, -gesteine) in der Bonner Umgebung reichen im Bereich des Siebengebirges von Grauwacken und Tonschiefern des Unterdevons, die zum Teil im Mesozoikum und Tertiär sehr intensiv verwittert sind (mesozoisch-tertiäre-Verwitterungsdecke nach Felix-Henningsen 1990).

Die oberoligozänen Vulkanite (Trachyttuff sowie Trachyt, Andesit und Basalt), sind ein weiteres im Untersuchungsraum verbreitetes Substrat für die Bodenbildung. Der Bonner Raum war während der Eiszeiten Periglazialgebiet. Kaltzeitliche Ablagerungen wie Flugsande (v. a. niederrheinische Bucht) und Lösse (z. B. im Lee des Siebengebirges) sind weitere Substrate für die im Untersuchungsgebiet vorkommenden Bodengesellschaften. Das Material ist teilweise durch Soli-/Gelifluktion während der Kaltzeiten verlagert ("active layer"), sortiert und/oder abtransportiert worden. Einen Überblick über die Böden des Untersuchungsraumes bietet die Bodenkarte (BK50; L5308 Bonn). Je nach geologischem Untergrund kommen vier unterschiedliche Landschaften mit typischen Bodengesellschaften vor (vgl. Mückenhausen, 1975):

 Auf devonischen Tonschiefern entwickelten sich in exponierten Lagen <u>Ranker</u> (Ap-C-Profile), in geschützen Lagen <u>Braunerden</u> (Ah-Bv(Bt)-C-Profile). Wo die mesozoisch-tertiäre Verwitterungsdecke erhalten geblieben ist, treten stellenweise <u>Fersiallite</u> (Grauplastosole, Ah-Bj⁵-(Cv-)C) auf. <u>Pseudogleye</u> (Ah-S(e)w-(II)Sd) und

⁵ Bj als Relikt der präquartären (Weiß-)Verwitterung hochplastisch, reich an Kaolinit

Haftnässegleye sind in Plateaulagen nicht selten, sowie teilweise mit Löß vermischte Solifluktionsdecken (vgl. Mückenhausen, 1950).

- Die Vulkanlandschaft des Siebengebirges (vor ca. 23,5 Mio. Jahren entstanden), vorwiegend Trachyttuffe, die teilweise mit einer Lößschicht bedeckt sind; auf Löß entwickelten sich <u>Parabraunerden</u> (Ah-Al-Bt-Bv-C). Aus vulkanischen Gesteinen (Basalt, Phonolith, Andesit, Trachyt u.a.) sind <u>Braunerden</u> (Ah-Bv(Bt)-C-Profile) und <u>Ranker</u> (Ap-C-Profile) entstanden, teilweise sogar <u>Tephrensaprolithe</u> (östlich von Bonn sind smektitreiche Verwitterungsprodukte des jungtertiären Trachyttuffs mitbestimmend für die Bildung staunasser Böden).
- Die Niederrheinische Bucht mit dem Rheintal und den Horsten von Kottenforst und Ville. Dort, wo die pleistozänen Rheinterrassen (sandig-kiesig) näher an die Oberfläche treten, finden sich <u>Pseudogleye</u> (Ah-Sw-Sd). Aus dem Rheintal wurde im Jungpleistozän Flugsand ausgeweht und am Ostufer abgesetzt. Darauf entwickelten sich <u>Podsole</u> (L-Of-Oh-Ahe-Ae-B(s)h-B(h)s-C) bis <u>Braunerden</u> (Ah-Bv(Bt)-C-Profile), stellenweise <u>Regosole</u> aus Flugsand. Während im Rheintal <u>Braune Auenböden</u> und <u>Parabraunerden</u> vorherrschen, überwiegen in engeren Tälern <u>Gleye</u> (Ah-Go-Gr).
- Die östlichen Ausläufer der Zülpicher Börde, mit Lößauflage, auf der sich Parabraunerden (Ah-Al-Bt-Bv-C), in Überschwemmungsbereichen des Rheins auf Hochflutlehmen auch Braunerden (Ap-Bv(Bt)-C-Profile) entwickelt haben. In Erosionslagen bilden sich Pararendzinen aus Löß (Ap-C).

Für die Landwirtschaft haben vor allem die aus Löß entstandenen Böden besondere Bedeutung. Aus dem anstehenden Würmlöß und seinen Derivaten haben sich, ausgehend vom Rohboden, Pararendzinen, Braunerden und schließlich tiefgründige Parabraunerden entwickeln können (Maas & Mückenhausen, 1971, Mückenhausen, 1975).

3.2 Picardie

Zu Vergleichszwecken, und auch um eventuelle Herkunftshinweise der Lösse des Bonner Raumes zu verfolgen, wurden drei Aufschlüsse in der nordfranzösichen Picardie hinzu genommen. Die Lösse der beiden Aufschlüsse *Ailly* und *Sourdon* sind in ihrer Chronostratigraphie von Antoine (1990) untersucht worden. Der dritte Aufschluß (*Heilly*) ist noch nicht detailliert behandelt worden. Die Geländeaufnahmen wurden - wie auch die von Ailly und Sourdon - im Oktober 2001 gemeinsam mit Antoine und Zöller durchgeführt.

Lautridou (1976, 1985, 1993) und Antoine (1986, 1988, 1989 a, b, c, d, e, g) haben die Lösse der Normandie vor allem stratigraphisch und quartärmorphologisch untersucht. Wenige mineralogische und geochemische Daten über einige der Lösse sind bei Lautridou et al. 1984 zu finden. Detaillierte mineralogische und geochemische Daten über Heilly werden in der vorliegenden Arbeit zum ersten Male wiedergegeben, wie auch die paläopedologische Auswertung der (eigenen) chemischen Analysen der Profile von Sourdon und Ailly. Neu sind hier von diesen Aufschlüssen neben den geochemischen Spezifizierungen auch die Strontium-Isotopendaten, die detaillierten tonmineralogischen und Schwermineralanalysen. Die Lage der drei Profilorte an der Somme siehe Abb 3.

Abb. 3: Profile in der Picardie

3.2.1 Geologie

Der Westen der Normandie (Cotentin, Bocage) ist Teil des Armorikanischen Massivs, während der Osten in das Pariser Becken übergeht. Der geologische Untergrund in der Region besteht aus einem präkambrischen und paläozoischen Gebirgssockel. Im *Mesozoikum* setzte zunächst die Denudation ein. Nach einer Meeres-Transgression im frühen Jura wurden bis in die Kreide marine Kalke abgelagert. Im frühen Tertiär wurde das Gebiet gehoben. Die mesozoischen Kalksteine verwitterten stark, so daß sie heute mit einer dicken Ton-Flint-Schicht ("argile à silex") bedeckt sind.

Im Osten des Gebietes wurde nach einer Transgression im unteren Tertiär eine Serie von Sanden und Kiesen im Pariser Becken abgelagert. Später wurden sie zu Sandsteinen und Konglomeraten verfestigt (Sarsen).

Während des Pliozäns kam es durch tektonische Bewegungen zur Meeres-<u>Reg</u>ression, begleitet von Talbildungen, die bis in das Quartär andauerten.

3.2.2 Relief, Klima und Hydrographie

Das Gebiet zeichnet sich durch ein geringes Relief aus. Nach Lautridou (1982) liegt das Grundgebirge im Westen mit einer mittleren Höhe von 104 m tiefer als die mesozoischen Deckschichten (durchschnittliche Höhe von 176 m). In diesen zwei Gebieten gibt es Unterschiede im Gestein, sowie - dadurch bedingt - in den Böden und der Vegetation.

Im Inneren der Normandie können drei Regionen ausgegliedert werden:

- 1. im Osten das Plateau über der Seine (Haute-Normandie);
- 2. im Zentrum das tiefer gelegene Landschaftsmosaik der "Campagne de Caen";
- 3. im Westen die Zone des Armorikanischen Massivs, die Bocage.

Die Kreidekalke bilden ein Plateau, das teilweise von Ton-mit-Flint-Lagen "argile à silex" und von Löß bedeckt ist. Das Plateau endet an der Küste in einem steilen Kliff. Nach Nordosten steigen die Kreide-Kalke bis zu einer Höhe von 243 m an und dominieren den
Untergrund des Pays de Bray. In südlicher Richtung erstreckt sich ein weites Plateau, das sanft bis zu den Oberläufen der Flüsse Toques und Risle auf eine Höhe von 321 m ansteigt.

Das Klima der Region ist ozeanisch. Die Durchschnittstemperatur beträgt 10-12°C und die sind unterliegen intra-regionalen Schwankungen. So Niederschläge sie in der Haute-Normandie höher und der Campagne de Caen niedriger, mit einem Maximum im November/Dezember und Minimalwerten März bis September. Durch von Höhenunterschiede und Exposition zu den West- bzw. Nordwest-Winden treten z. T. starke lokale klimatische Abweichungen auf.

4 Geländearbeiten und Aufschlüsse

4.1 Geländearbeiten

Die Proben wurden in *drei Geländekampagnen* genommen. Der Bohrkern Bockeroth wurde 1999 stratigraphisch aufgenommen.

1. Geländekampagne, Mai -September 1999

Bedingt durch den Fortschritt der Trassenführung wurden von Mai bis September 1999 fortwährend Proben aus den frisch angelegten Aufschlüssen Birlinghoven, Rauschendorf und Neustadt an der Wied genommen. Je nach methodischer Bearbeitung (RFA, XRD, C-O-Sr-I-sotopie, Bodendünnschliffanfertigung, Schwermineralanalyse) wurden die Proben aufbereitet und in Fraktionen zerlegt. Die stratigraphische Aufnahme erfolgte jeweils im Gelände. Dazu wurden die einzelnen Horizonte in ihrer Mächtigkeit und in ihrem Einfallen vermessen (Geologen-Kompaß, Maßband) und nach der "Bodenkundlichen Kartieranleitung" pedologisch bestimmt.

2. Geländekampagne im Sommer 2000

Im Sommer 2000 wurde die Aufnahme des Profils Bockeroth II durch einen Brücken-Neubau ermöglicht. Das Profil Thomasberg war bis zum Frühjahr 2000 durch einsturzgefährdete Steilhänge kaum zugänglich. Es konnte erst im Sommer 2000 aufgenommen und beprobt werden, nachdem die Steilhänge durch teilweise Ausbaggerungen so weit abgeflacht worden waren, daß sich die Proben gefahrlos nehmen ließen.

3. Geländekampagne im Herbst 2001

Die Aufschlüsse Ailly, Heilly und Sourdon in der Picardie wurden im Oktober 2001 gemeinsam mit P. Antoine (Universität Lille) und L. Zöller besucht, detailliert aufgenommen (Heilly) und beprobt.

4.2 Beschreibung der Aufschlüsse

4.2.1 Pleiser Hügelland und Neustadt/Wied

Eine detaillierte pedologische Beschreibung der Horizonte sowie Angaben zu Corg-Gehalten, zur Körnung und einfache chemische Kenndaten der folgenden Aufschlüsse Birlinghoven, Rauschendorf, Thomasberg und Neustadt/Wied sind in der Diplomarbeit von Nehring (2001) enthalten.

4.2.1.1 Profil Birlinghoven

Das nördlichste der untersuchten Profile umfaßt eine Mächtigkeit von 9 m, die ausschließlich aus (Jungwürm-)Löß-Paläobodensequenzen bestehen (Abb. 4, Profil Birlinghoven). Derartig mächtige und ungestörte Profile von Jungwürmlössen sind ungewöhnlich (mündliche Mitteilungen der Teilnehmer der Exkursion "Arbeitskreis Paläopedologie, AKPP" am 1.6.-3.6.2000).

Profil Birlinghoven

Abb. 4: Profil Birlinghoven (R ²⁵87200 H ⁵⁶23800)

In einer Teufe von 6,25 m unter GOK tritt die "Eltviller Tephra" auf. Der Eltviller Tuff kommt hier in einer ähnlichen Teufe vor wie im Profil Rauschendorf (vgl. Abb. 5). Im Gegensatz dazu ist der Eltviller Tuff im Profil Neustadt/Wied schon in einer Teufe von etwa 1 m lokalisiert worden (Zöller & Nehring, 2002). Die Horizontbezeichnungen (s. Profile) sowie die Bezeichnungen der "Naßböden" erfolgen nach der Würmlöß-Stratigraphie von Semmel (1967).

4.2.1.2 Profil Rauschendorf

Dieses Profil steht etwas südlicher entlang des ICE-Trassenverlaufes an (vgl. Abb. 1). Die Mächtigkeit beträgt ca. 6 m (Profilskizze Rauschendorf). Aus den verschiedenen, im Gelände erkennbaren Farbnuancen der einzelnen Horizonte (von rot bis grau variierend) ist auf unterschiedliche Redoxbedingungen zu schließen (vgl. 6, Ergebnisse). Der rezente Boden ist als Parabraunerde entwickelt, der fossile Boden stellt einen Gley-Pseudogley dar.⁶

Profil Rauschendorf

Abb 5: Profil Rauschendorf (R²⁵87520 H⁵⁶23500)

Der mächtige Sw-Horizont bis 4,40 m ist *ständig* wasserführend und wurde somit als G-Horizont bezeichnet. Das Besondere, unmittelbar angrenzend an diesen Aufschluß, ist die

⁶ stauender Tertiär-Ton im Untergrund, nur durch Drainage zugänglich

in Abb. 6 erkennbare "Eiskeilpseudomorphose" (Semmel, 1991) mit gröberem Material (Sand im Vergleich zum umgebenden siltigen Löß) verfüllt . Der "Eltviller Tuff" liegt hier in einer Teufe von 5,70 m im unteren Bereich der reduzierten (grauen) Zone (vgl. Abb. 5). Erbohrt wurde er 99 m entfernt von diesem Profil in einer Teufe von 11,35 m. Unmittelbar über und unter dem Eltviller Tuff und unterhalb von 1 m (im Bt-Horizont) sind mehrere Feinschluff-Grobschluff-Sequenzen (Mächtigkeit wenige mm) zu beobachten, die an "Warven" bzw. Jahresschichten erinnern.

Abb. 6: Eiskeilpseudomorphose, mit Sandlöß verfüllt, Profil Rauschendorf

4.2.1.3 Bockeroth

Aus der Umgebung von Bockeroth stehen zum einen Proben aus dem Bohrkern Bockeroth, der wenige Meter westlich der Trasse im Zuge einer Grundwasserbohrung der Deutschen Bundesbahn abgeteuft wurde und für diese Arbeit verfügbar ist, zum anderen das Profil "Bockeroth II" zur Verfügung. Dieses Profil wurde im Verlaufe der Trassenbildung durch Untertunnelung der Trasse im Anschnitt des Wirtschaftsweges bei km 34,200 (5 m westlich der Trasse) aufgeschlossen. (Die Gauß/Krüger Koordinaten des Bohrkerns Bockeroth: R ²⁵87380 H ⁵⁶23160 und des Profils "Bockeroth II": R ²⁵87280 H ⁵⁶22900).

Bohrkern Bockeroth

D. S. K. (2000

Abb. 7: Bohrkern Bockeroth

Der rezente Boden des Profils "Bohrkern Bockeroth" ist eine Pararendzina. Außerdem enthält der Bohrkern zwei erodierte fossile Parabraunerden, eine fossile Braunerde und einen fossilen Gley. Das Profil "Bockeroth II" stellt eine Parabraunerde dar, unter der mehrere stauwasserbeeinflußte fossile Horizonte (fSw) sowie ein fossiler Gley aufgeschlossen waren. Neben den Proben dieses Profils wurden in einer Entfernung von etwa 10 m (westlich Bo II) Proben aus einigen besonders schneckenreichen Horizonten genommen ("Bockeroth III"). Dieses kleine Profil wurde durch Grabung bis zum Eltviller Tuff (Teufe absolut: 4,83 m; Grabungstiefe: 40 cm unter Schneckenhorizonten) verfolgt. Insgesamt wurden drei Schnekkenhorizonte beprobt, 3,73 m, 4,13 m und 4,43 m unter GOK. Als Besonderheit ist hier der "Eltviller Tuff" in sechsfacher Aufsplittung zu beobachten (s. Abb. 9).

Bockeroth II

Abb. 8: Profil Bockeroth II

Abb. 9: Sechsfacher Eltviller Tuff

Im Profil Bockeroth II ist der Eltviller Tuff sechsfach aufgegliedert. Die Tuff-Bändchen

haben eine unterschiedliche Stärke und zwischen ihnen ist - ebenfalls in wechselnder Mächtigkeit - Löß eingelagert.

Abb. 10: Photo Profil Bockeroth II

Im Gegensatz zu den übrigen Profilen (Birlinghoven, Rauschendorf, Thomasberg und Neustadt/Wied), in denen die Schichtgrenzen scharf und gerade ausgebildet sind, zeigen sich diese im Profil Bockeroth II - und nur hier - häufig "ondulierend", d.h. wellig und zum Teil abgerissen (vgl. Abb. 10, Photo Bockeroth II). In den Bockeroth-Profilen fallen ab und zu weiterhin Linsen mit Pflanzenresten (schwarze Stengelchen) auf, wie sie typisch in Aufschlüssen von Kolluvien bei Rauschendorf (s. Preston, 2001) auftreten. Auf dem Photo sind durch die Farbgebung unterschiedliche Redox-Milieus erkennbar. Zum einen die (meist durch Ferrihydrit) gekennzeichneten "rostroten" Oxidationshorianderen die Reduktionszonte. zum Horizonte mit den grau-graubraunen Farben.

4.2.1.4 Thomasberg

Die nach stratigraphischen Aufnahmen ältesten Lösse im Pleiser Hügelland befinden sich bei Thomasberg in einer "Sedimentfalle" direkt über mächtigen trachytischen Tuffen (vgl. Nehring 2001). Über den im Liegenden anstehenden Tuffen ist ein z.T. ein meter-mächtiger Verwitterungshorizont sichtbar ("saprolithisierte tertiäre Verwitterungsrinden" nach Felix-Henningsen, 1990). Auch der darüberliegende Löß weist häufig Brocken von Vulkaniten (Basalten) auf, die bis zu 25 cm durchmessen können. Es könnte sich um Reste von Fließerden handeln, die vom Oberhang des benachbarten Vulkans ("*Steinringsberg*") in die Löß-"Tasche" gelangt sind (siehe Abb. 11)

Abb. 11: Profil Thomasberg (R ²⁵88670 H ⁵⁶19400)

In Abb. 11 sind die beiden benachbarten Profile eingezeichnet

Das Profil läßt etwa in einer Teufe von 5 m einen fossilen 1,30 m mächtigen Bt-Horizont erkennen, der nach van Vliet-Lanoë (1988, 1990, 1998) als "Lamellenfleckenzone" anzusprechen ist. Diese rhythmisch auftretenden, wechselnd hellen und dunklen Zonen (Bänder) sind

sehr tonreich (etwa 40 % Ton nach Nehring 2001). Der Untergrund in der Nähe dieses Aufschlusses ist nach Regen außerordentlich "schmierig" und schlecht begehbar.

Von einer etwa 3 km entfernten Lokalität nördlich des Steinringsberges (bei Sonderbusch) wurde aus dem durch die Trassenarbeiten freigelegten Hang eine weiße, äußerst feinkörnige Tonprobe genommen, die im Gelände als "Kaolin" angesprochen wurde.

Abb. 12: Profil Thomasberg (R ²⁵88670 H ⁵⁶19400)

4.2.1.5 Neustadt an der Wied

Während die bisher beschriebenen Aufschlüsse als Liegendes sämtlich tertiäre Gesteine (meist Vulkanite oder ihre Tuffe) aufweisen, liegen diese "ältesten" der hier untersuchten Lösse über devonischen Sedimenten (in einer Mulde der Siegener Schichten). Die etwa 18 m mächtigen Lösse und Fließerden bilden ein gut beprobbares Hangprofil. Der Hang weist eine Neigung von 33,6 ° auf. Der Eltviller Tuff erscheint bei einer Teufe von 1 m unter GOK. Etwa 20 m südlich des untersuchten Profils wurde entlang des abtauchenden Eltviller Tuffs ein etwa 30 cm tiefer, mit Löß verfüllter Eiskeil gefunden. Das Alter dieses Lösses ist auf mehreren Geländebegehungen, an denen u.a. die Bodenkundler und Geomorphologen R. Dikau, N. Günster, A. Skowronek, M. Weidenfeller, L. Zöller teilgenommen haben, umstritten gewesen. Dafür, daß dieser Löß tatsächlich der älteste der untersuchten Vorkommen ist, gibt es nur stratigraphische Argumente (Zöller und Skowronek, mündl. Mitt.).

Abb.13: Profil Neustadt an der Wied (R²⁵88670 H⁵⁶19400) (modifiziert nach Nehring, 2001)

Profil Neustadt/Wied

4.2.2 Picardie

4.2.2.1 Sourdon

Das Vorkommen ist zeitweise als Ziegel-Tongrube genutzt worden. Das Profil stellt demnach eine anthropogen angelegte Grube auf einer sonst sehr einheitlich ebenen Hochfläche dar. Das Lößprofil ist stratigraphisch eingehend von Antoine (1990) beschrieben worden. Nach Antoine ist das Vorkommen im Mittelwürm abgelagert worden, mit Ausnahme einiger sehr junger Horizonte im Hangenden. Antoine (1990) bezieht sich in seiner stratigraphischen Einordnung auf eine Altwürm-Humuszone, die in einer Teufe von 3,70 m auftritt. Die Gesamtmächtigkeit beträgt 6,30 m. Von Antoine (1990, 2001) liegen aus diesem Aufschluß und dem von Ailly sur Somme Korngrößenanalysen und Corg-Bestimmungen vor. Eine "Eiskeilpseudomorphose" (nach Semmel 1991) wird ebenfalls von Antoine (1990) beschrieben. Neben Lößproben wurden für mineralogische und geochemische Untersuchungen von hier auch "Tonproben" unter dem Eiskeil und Proben aus einer Humuszone genommen.

(Abb. 14, Aufschlußaufnahme Sourdon, Titelblatt der "Quaternaire", Vol. 11, No 3-4, 2000)

(Photo: P. Antoine) Auf der Skizze sind die Probenentnahmepunkte der in einer Geländekampagne 2001 zusammen mit L. Zöller und P. Antoine entnommenen TL-Proben eingezeichnet. Für alle drei Proben wurde auch die OSL bestimmt. TL 1 wurde im obersten kalhaltigen Löß entnommen, TL 2 stammt aus dem Löß im Eiskeil und TL 3 aus einem Bodenhorizont (Altwürm).

Abb. 15: Sourdon, Profilbeschreibung (Antoine, 1998)

4.2.2.2 Ailly sur Somme

Wie bei dem Profil Sourdon, wird hier auf Untersuchungen von Antoine (1990) verwiesen. Das Profil zeigt eine Mächtigkeit von 6,5 m Löß, schließt drei fossile Bodenhorizonte sowie mehrfache Wechsel von dunklen und hellen Bändern ein. Durch örtliche Drainage-Anlagen erscheint der Standort im Gelände sehr trocken. Profilskizze siehe Anhang.

Abb. 16, Vorkommen Ailly

4.2.2.3 Heilly

Das nordöstlich von Amiens gelegene und von Antoine 2001 entdeckte Vorkommen von Heilly (s. Abb. 18) ist bisher noch nicht weiter untersucht worden. Die hier wiedergegebenen Daten und das Profil beruhen auf einer gemeinsam mit Antoine und Zöller 2001 durchgeführten Geländebegehung. Das etwa 8 m mächtige Profil enthält vier fossile Bodenhorizonte (s. Abb. 17 "Profilskizze Heilly" und Abb. 18).

Profil Heilly

Das Profil ist ein Straßenaufschluß. Auf der gegenüberliegenden, nahezu 1000 m entfernten Talseite stehen Cenoman-Kalke an. Zwischen den Kalken und dem Lößprofil wird eine Verwerfung vermutet. Kleine Cenoman-Kalk-Brocken sind häufig im Löß enthalten.

Abb.18 Aufschluß Heilly

5 Untersuchungsmethoden

5.1 Pedologische Methoden

5.1.1 Korngrößenanalyse

Die Korngrößen der untersuchten Proben wurden zum Teil mit der Pipette-Analyse nach Köhn bestimmt und dann im Rahmen der Diplomarbeit von F. Nehring (2001) ausgeführt, zum Teil mit der bei B. Smykatz-Kloss et al. (2003, im Druck) beschriebenen Laser-Analysette-Methode im Sedimentlabor der Freien Universität Amsterdam. Die Möglichkeit dazu bot ein Praktikum, das die Mitautoren der oben genannten Veröffentlichung (Vandenberghe und Konert) geleitet haben. Einzelheiten der Methodik siehe B. Smykatz-Kloss et al. (2003, im Druck). Diese letztere Methode sollte v. a. dort angewendet werden, wo entweder von besonders interessanten Proben nur sehr wenig Substanz vorhanden war (z.B. von einigen nur mm-mächtigen "Bändchen", z. B. Rauschendorf, Ailly und Heilly), oder wo durch die Korrelation Korngröße/Isotopengeochemie Informationen über Herkunft bzw. Art des Löß-Ursprungsmaterials zu erwarten waren. Dazu wurden Proben mit einem Aluminium-Stechkasten (B: 80cm, H: 11,5 cm, T: 15 cm) genommen. Diese Proben derartiger "Bändchen"-Horizonte wurden mittels Laser-Analysette A22 auf ihre Korngrößenverteilung untersucht. Zwei charakteristische Bändchen (ein grob- und ein feinkörniges) wurden anschließend exemplarisch auf ihre Sr-Isotopenverteilung (im Geochemischen Labor der Universität Gießen, Prof. U. Haack) analysiert.

5.1.2 Bodendünnschliffe

Von ausgewählten Proben des Profils Neustadt/Wied wurden Dünnschliffe angefertigt, die für diese Arbeit zur Verfügung standen. Die Proben hierzu wurden im Gelände gemeinsam mit Dr. N. Günster (Institut für Bodenkunde, Bonn) orientiert entnommen. Die Präparation geschah nach Bullock et al. (1985) in Hannover (Labor Beckmann), die Interpretation erfolgte nach Fitzpatrick (1980) und unter Zuhilfenahme des "Glossary of Soil Micromorphology" von Jongerius & Rutherford (1979).

5.2 Mineralogische Methoden

5.2.1 Röntgenographische Mineralbestimmung

Sämtliche Proben wurden im Institut für Mineralogie und Geochemie der Universität Karlsruhe nach einer Einführung von G. Istrate an einem Pulver-Diffraktometer geröngt. Hierfür stand ein Philips-Gerät PW 1394 zur Verfügung. Die Proben wurden bei 80°C getrocknet, in einem Achatmörser vorsichtig homogenisiert und dann in einem Probenträger aus Messing analysiert. Von einigen tonreichen Proben, besonders aus dem Aufschluß Thomasberg, wurden Texturproben und Quellpräparate hergestellt. Einzelheiten über die Methodik sind z.B. bei Göbelbecker (1985) ausführlich beschrieben (Analysator: B. Smykatz-Kloss).

Strahlung		CuKa				
Wellenlänge		1,5405 Å				
Anodenspannung		45 kV				
Kathodenstrom		25 mA				
Filter		Ni				
Empfindlichkeit		10 ³ counts/sec				
Diskriminator	a) lower level	30 %				
	b) window	30 %				
Winkelbereich 2 θ		3-50 °				
Goniometergeschwind	ligkeit	1°/min				

Tab.1:	Parameter	für die	Diffraktometeruntersuchung	gen

5.2.2 Thermoanalyse

Für die exakte Identifikation von Tonmineralen und Carbonaten wurden zusätzlich thermoanalytische Methoden (Differenz-Thermoanalyse, DTA, und Thermogravimetrie, TG) angewandt. Die Analysen wurden in einem DTA/TG-Simultangerät der Firma Netsch (STK 411) unter Standardbedingungen (vgl. W. Smykatz-Kloss, 1974) im Institut für Mineralogie und Geochemie an der Universität Karlsruhe durchgeführt (Analysator: B. Smykatz-Kloss; DTA-Kurven siehe Anhang).

Probenmenge	100 mg
Inertmaterial (Referenz)	100 mg Al ₂ O ₃
Packungsdichte	lose eingefüllt
Ofenatmosphäre	stehende Luft
Probenbehälter	Keramiktiegel (Al ₂ O ₃)
Thermoelemente	Pt-Pt ₉₀ /Rh ₁₀
Aufheizgeschwindigkeit	10°/min nach 300°
DTA-Empfindlichkeitsbereich	200µV
Temperaturbereich	25°-1000°

Tab. 2: Untersuchungsbedingungen für die Differenz-Thermoanalyse (DTA)

5.2.3 Lichtoptische Untersuchungen an Streupräparaten

Von einigen Proben wurden Streupräparate unter dem Mikroskop untersucht, um Herkunftsindikatoren (Schwerminerale) und eventuell Mikrofossilien zu ermitteln. Hierfür stand ein Licht-Mikroskop "Leica DMLP" zur Verfügung. Die Dias der einzelnen Schwerminerale wurden mit einer Pentax ILX-Kamera unter Verwendung eines Fujichrome 64T/type II Prof./Dia-Films erstellt. Die Untersuchungen wurden selbst (unter Anleitung von Dr. G. Istrate) im Institut für Mineralogie und Geochemie der Universität Karlsruhe durchgeführt. Einzelheiten über die Methodik s. z.B. Boenigk (1983, 2000).

5.2.4 Elektronenoptische Untersuchungen

An ausgesuchten Streupräparaten konnten im "Zentrallabor für Elektronenmikroskopie" der Universität Karlsruhe elektronenmikroskopische Aufnahmen und chemische Bestimmungen an einzelnen Mineralkörnern (z.B. Schwermineralen) mit Hilfe der Elektronenstrahl-Mikrosonde durchgeführt werden. Über die Methodik s. Göbelbecker (1985). (Die Analysen wurden im Karlsruher Interdisziplinären "Labor für Elektronenmikroskopie von Mitgliedern dieses Labors durchgeführt; die Präparation der Mikro-Anschliffe geschah durch B. Smykatz-Kloss unter Anleitung von Dr. G. Istrate).

5.3 Geochemische Methoden

5.3.1 Röntgenfluoreszenz-Analytik (RFA)

Mit der Röntgenfluoreszenz-Analytik (RFA) wurden chemische Vollanalysen (Gesamtanalysen von Gesteinen und Böden) angefertigt. Von den zu analysierenden Materialien wurden Gläser hergestellt. Benötigte Menge an Material: ca. 1g.

Die Röntgenfluoreszenzanalyse (RFA, englisch XRF für X-Ray Fluorescence Analysis) ist eine *vergleichende Untersuchungsmethode*. Um aus der gemessenen Intensität der Röntgenstrahlung auf die Konzentration des Elementes in der Probe schließen zu können, ist der Vergleich der Röntgenstrahlintensitäten von einer unbekannten Probe mit solchen von Standardproben bekannter Zusammensetzung notwendig.

Eine Röntgenröhre erzeugt polychromatische Röntgenstrahlung, die auf die Probe trifft und sie zur Aussendung *charakteristischer Strahlung* (Eigenstrahlung, die für jedes Element in der Probe charakteristisch ist) anregt. Die RFA bietet die Möglichkeit zur schnellen *quantita-tiven* Bestimmung von Haupt-, Neben- und Spurenelementen.

Zur Unterscheidung der einzelnen Wellenlängen der von der Probe kommenden Röntgenstrahlung wird ein *Analysatorkristall* benutzt. Mit einem nachfolgenden Detektor wird die Intensität der einzelnen Wellenlängen gemessen. Die polychromatische und die charakteristische Röntgenstrahlung gelangt zu einem Analysatorkristall. Der Analysatorkristall sorgt entsprechend der <u>Bragg´schen Gleichung</u> für die unterschiedliche Beugung der einzelnen Wellenlängen und ermöglicht somit deren einzelne Registrierung. Die Intensität der gebeugten Röntgenstrahlen wird mit einem *Gasdurchflußzähler und/oder einem Szintillationszähler* registriert.

Bragg'sche Gleichung:

$\mathbf{n} \times \lambda = 2 \, \mathbf{d} \times \, \sin \, \Theta$

wobei λ die Wellenlänge, n ein Vielfaches der Wellenlänge (ganzzahlig), d der Netzebenenabstand und sin Θ der Beugungswinkel des einfallenden Röntgenstrahls ist. Anhand des Beugungswinkels der Röntgenstrahlung, des bekannten 2d-Wertes des Analysatorkristalles und der aus Tabellen bekannten Wellenlänge der charakteristischen Röntgenstrahlung des Elementes ist die *qualitative* Bestimmung eines Elementes möglich.

	Röntgendiffraktometrie (XRD)	Röntgenfluoreszenz (XRF)
λ	bekannt	$n \times \lambda$ bestimmen \rightarrow Element
d- Wert	eines unbekannten Pulvers, wird	d-Wert bekannt (Analysatorkristalle
	bestimmt	mit bekanntem d-Wert)
Winkel Θ	gemessen	gemessen

Unterschiedliche Parameter bei der Röntgendiffraktometrie und Röntgenfluoreszenz:

Sämtliche Röntgenfluoreszenz-Analytik wurde am Karlsruher Institut für Mineralogie und Geochemie durchgeführt (Analysator: Dr. U. Kramar).

5.3.2 Elektronenstrahl-Mikrosonde

Die Elektonenstrahl-Mikrosonde - kurz auch Mikrosonde genannt - ist im Prinzip ein Röntgenspektrometer. Die Anregung der charakteristischen Röntgenstrahlung erfolgt durch einen fein fokussierten Elektronenstrahl (1-3 µm), der durch ein elektronisches Linsensystem auf einen Durchmesser von wenigen µm gebündelt werden kann. In dem vom Elektronenstrahl getroffenen Punkt auf einem Mineralkorn wird ein Teil des charakteristischen Röntgenspektrums der in dem Mineral vorhandenen Elemente angeregt. Die EMS benutzt wellenlängen-dispersive Spektrometer (WDS), um Analysen auszuführen. Aus energiedispersiven Aufzeichnungen des Elementspektrums einzelner Minerale lassen sich die Konzentrationen der vorhandenen Elemente mit hoher Genauigkeit berechnen. Die Elektronenstrahl-Mikroanalyse ist eine zerstörungsfreie Methode, bei der die untersuchten Bereiche der Probe während der Analyse über ein Elektronenmikroskop beobachtet werden können. Die typische Nachweisgrenze liegt zwischen 500 - 1000 ppm. Die Elektronenstrahl-Mikrosonde erlaubt bei vakuum-beständigen Feststoffen die qualitative und (semi-)quantitative Analyse aller chemischen Elemente mit einer Ordnungszahl Z > 6. Die EMS-Untersuchungen wurden mit einer Microsonde Camerca SX-50 im "Zentrallabor für Elektronenmikroskopie" der Universität Karlsruhe durchgeführt. Zur Methodik s. Reed (1993), Heinrich & Newbury (1995), Hiller & Brümmer (1995) und Potts et al. (1995). (Analysator: Wie bei 5.2.4.).

5.3.3 Isotopenbestimmung

Die auf der Erde vorkommenden Elemente setzen sich - bedingt durch unterschiedliche Anzahl von Neutronen zusätzlich zu den die Ordnungszahl bestimmenden Protonen - aus mehreren <u>Isotopen</u> zusammen (vgl. Hoefs, 1987, Brownlow, 1996, Faure, 1998, Möller, 1986). Neben den "stabilen" Isotopen eines Elementes, die generell in immer gleichen Anteilen vorhanden sind, können, zeitlich unterschiedlich, durch radioaktive Zerfallsprozesse bestimmter radiogener Isotope auch "instabile" Isotope auftreten, deren Verhältnis zu den stabilen Isotopen eines Elementes sich kontinuierlich ändert. Diese auf dem radioaktiven Zerfall instabiler Isotope beruhenden sich ändernden Isotopenverhältnisse bilden die Grundlage für radioaktive Altersbestimmungen (K/Ar, ⁸⁷Sr/⁸⁶Sr, ⁸⁷Rb/⁸⁷Sr, Nd/Sm etc; s. Wagner 1995, Faure, 1998).

So besteht das auf der Erde vorkommende <u>Strontium</u> aus den 4 stabilen Isotopen ⁸⁴Sr (Anteil 0,56 %), ⁸⁶Sr (Anteil 9,86 %), ⁸⁷Sr (Anteil 7,0 %) und ⁸⁸Sr (Anteil 82,58 %). Zusätzlich entsteht ein radiogenes Isotop ⁸⁷Sr aus dem Zerfall des radioaktiven Alkali-Isotops ⁸⁷Rb (Halbwertszeit 48,8 Mio Jahre). In der Natur werden die Sr-Isotope - neben dem Auftreten in eigenen Mineralen - zu einem Teil in <u>Ca</u>-haltige Minerale eingebaut. Magmatische, metamorphe und sedimentäre Gesteine unterschiedlichen Alters sowie vor allem auch Ca-haltige Minerale aus diesen Gesteinen können durch unterschiedliche ⁸⁷Sr/⁸⁶Sr-Verhältnisse charakterisiert werden. So liegen nach Faure (1998) und anderen in den magmatischen Gesteinen und ihren Mineralen generell ⁸⁷Sr/⁸⁶Sr-Verhältnisse über 0,72... vor.

Das rezente Meerwasser ist dagegen durch einen Wert um 0,709 charakterisiert. Nach Faure (1998) und White (1998) werden die ⁸⁷Sr/⁸⁶Sr-Verhältnisse eines (magmatogenen oder metamorphen) Minerals durch Verwitterungsprozesse nicht verändert. So weisen etwa detritische Glimmer in (sub-) rezenten Sedimenten (z. B. in Lössen) hohe Verhältnisse auf (>0,72), während die aus relativ jungen marinen Carbonatgesteinen in diese Lösse gelangten Carbonatminerale praktisch das niedrige Verhältnis des Meerwassers aufweisen. Auch mehrmalige Umlagerungen dieser Lösse verändern die Isotopenverhältnisse der (Löß-) Minerale nicht.

Für die Fragestellung dieser Arbeit könnten Sr-Isotopen-Verhältnisse folgende Informationen liefern:

(1) Stammen die Lösse aus unterschiedlichen Ausgangsgesteinen (nach Alter und Petrogenese) oder ± aus der gleichen Quelle?

Hierzu müssten neben den Isotopen-Verhältnissen die Anteile der unterschiedlichen Komponenten (Carbonatmatrix und Primärgesteine wie Granit, Gneis ...) bekannt sein.

 (2) Können aufgrund unterschiedlicher Isotopenverhältnisse in Carbonat-freien Horizonten vulkanogene Anteile ausgewiesen werden?
Hierzu sind - neben den Carbonat-Bestimmungen - Korngrößenanalysen

notwendig, aus denen die Ton- bzw. Tuffgehalte erkannt werden können.

Die Messungen der Sr-Isotopen-Verhältnisse erfolgt massenspektrometrisch. Da die apparative Ausstattung im Bonner Institut für Geographie hierzu nicht vorlag, wurden die Analysen im Institut für Geowissenwissenschaften und Lithosphärenforschung der Universität Gießen durch Herrn Prof. U. Haack und Mitarbeiter durchgeführt.

Neben den Sr-Isotopen-Verhältnissen sollen weitere Bestimmungen der Isotopen-Anteile Auskunft über petrogenetische (und möglicherweise paläoklimatische) Fragen liefern. Hierzu erscheinen besonders die Verhältnisse der Kohlenstoff- und Sauerstoff-Isotope geeignet. Die Kohlenstoff- und Sauerstoff-Isotope werden gewöhnlich als δ^{13} C und δ^{18} O angegeben. Dabei entspricht der δ^{13} C-Wert dem Verhältnis 13 C/ 12 C (= die beiden stabilen Isotope des Kohlenstoffs, die in der Natur zu 98,89 % [12 C] bzw. 1,11 % [13 C] vorkommen), wobei sich gewöhnlich auf den Standard PDB bezogen wird. Dieser Standard entspricht nach Hoefs (1987) bzw. nach Craig (1957) dem 13 C/ 12 C-Verhältnis von kretazischen Belemniten der Pee-Dee Formation in Süd-Carolina, das als δ^{13} C = 0 gesetzt wird (Craig, 1957, Hoefs 1987). Aus quartären Lössen liegen δ^{13} C-Messungen z.B. von Nußloch in Baden (Hatté et al., 1998, Pustovoytov & Terhorst, 2002) vor. Aus einer Aufstellung von Hoefs (1987) geht hervor, daß marine Carbonate (neben Süßwassercarbonaten, die jedoch weit in den negativen ‰-Bereich hineinreichen) zu den isotopisch schwersten Mineralen gehören: sie überstreichen einen Bereich von etwa +2 bis -3 ‰ δ^{13} C. Auch diese Messungen erfolgen mit Hilfe des Massenspektrometers. Die Analysen wurden im Bonner Institut für Mineralogie (Prof. G. Hoernes) ausgeführt. Über die theoretischen Voraussetzungen und die Meßmethodik s. z.B. Hoefs (1987).

Sauerstoff, das häufigste Element auf der Erde, kommt in drei stabilen Isotopen vor, die nach Garlick (1969) in folgenden Anteilen auftreten: ¹⁶O: 99,763 %, ¹⁷O: 0,0375 % und ¹⁸O: 0,1995 %. Wegen der größeren Massendifferenz wird gewöhnlich das ¹⁸O/¹⁶O-Verhältnis bestimmt und in Form des δ^{18} O angegeben. Meist wird dieser Wert relativ zum "Standard Mean Ocean Water" (SMOW) (s. Baertschi, 1976) angegeben. Die O-Isotopenmessungen wurden ebenfalls am Massenspektrometer des Instituts für Mineralogie der Universität Bonn (Prof. Hoernes) durchgeführt.

5.3.4 Geochemische Methodik zur Charakterisierung von fossilen Bodenhorizonten

Die folgenden Überlegungen werden ausführlich in zwei in Vorbereitung befindlichen Veröffentlichungen von W. Smykatz-Kloss et al. (2003, im Druck; 2003 in Vorbereitung) behandelt. Hier sollen zum Verständnis der Ergebnisse (s. 6.2) die systematischen Vorbedingungen nur kurz skizziert werden.

Chemische Verwitterung von Mineralen und Gesteinen bedeutet Hydrolyse. Soweit die Prozesse und Faktoren der physikalischen Verwitterung (Temperaturvariationen, mechanische Beanspruchung) ein Gestein auch zerkleinert und vergrust haben mögen: ohne Wechselwirkungen mit Oberflächenoder Porenwässern finden (Oxidationsverwitterung ausgenommen) keine chemischen Umsetzungen statt (Correns 1968, Berner 1971). Hieraus läßt sich umgekehrt folgern: Sind in einem (jungen, unverfestigten) Sedimentprofil, das sonst chemisch und petrographisch homogen ist, Zonen zu finden, die auf chemische Umsetzungen hinweisen, so sind dies Zonen höherer Wasseraktivität. Lassen sich nun - und das ist die Voraussetzung für die weiteren Folgerungen - diagenetische Mineralumbildungen (die ebenfalls chemische Veränderungen bewirken) in den untersuchten Profilen ausschließen, so sind die beobachteten Zonen höherer Wasseraktivität Indikatoren für humide(re) Phasen nach der Sedimentablagerung. Die genannte Voraussetzung (keine diagenetischen Umbildungen) trifft für junge Lockersedimente weitgehend zu, z.B. für viele Lösse.

"Ruhepausen" der Lößanwehung können klimatisch bedingt sein, und in humideren Perioden sollte es durch Regenwasser/Löß-Wechselwirkungen zu Prozessen chemischer Verwitterung kommen, d.h. zu (beginnender) Bodenbildung. Sowohl die Einlagerung von (möglicherweise inzwischen bereits umgebildeten) Tuffen als auch Paläobodenbildungen sollten sich durch mineralogische und besonders durch geochemische Kriterien nachweisen lassen.

Lösse sind gut sortiert und recht homogen in ihrem Mineralbestand aus Quarz, Kalifeldspat, Plagioklas, Glimmer, Calcit und Dolomit. In verlehmten Horizonten fehlen die Carbonate. Bei diesem Verlehmungsprozess, in dem die Carbonate Calcit und Dolomit aufgelöst wurden, sollten die silikatischen Lößbestandteile nicht merklich beeinträchtigt worden sein (s. Nesbitt et al., 1996), da die Löslichkeiten des Quarzes und der Silikate sehr viel kleiner sind als die der Carbonate (vgl. z.B. Correns 1968, Berner, 1971, Möller, 1983). Nach ihrem Verhalten in wässrigen Lösungen werden Ionen in drei Kategorien eingeteilt (Möller, 1983, Faure 1998):

- (I) in lösliche Kationen,
- (II) in Hydrolysate und
- (III) in lösliche Anionenkomplexe.

Das Löslichkeitsverhalten wird durch das Ionenpotential (= Ionenladung/Ionenradius) gesteuert: Kationen mit einem Ionenpotential < 3 gehören zu den löslichen Ionen (alle Alkalien, Erdalkalien, Fe²⁺); Al³⁺, Fe³⁺, Ti⁴⁺ gehören zu den Hydrolysaten, d.h. sie fallen nach beginnender Verwitterung meist sofort als unlösliche Hydroxide wieder aus den Verwitterungslösungen aus. Während die Hydrolysate also bei der chemischen Verwitterung an Ort und Stelle bleiben, werden die löslichen Kationen mehr und mehr mit den Verwitterungslösungen abtransportiert. Das heißt: Mit zunehmender chemischer Verwitterung wird das Verhältnis von einem löslichen Kation zu einem Hydrolysat immer geringer. Mit zunehmendem Radius wird die Mobilität der Ionen jedoch immer geringer und die Neigung dieser großen Ionen zur Adsorption an feinkörnige Sediment- bzw. Bodenpartikel nimmt immer mehr zu. So werden die großen Kationen (K⁺, Rb⁺, NH₄⁺...) zunehmend durch Adsorption aus den Verwitterungslösungen entfernt, während das (kleine und zusätzlich durch Hydrathüllen geschützte) Na⁺ und das zwar zweiwertige, aber noch kleinere Mg²⁺ in Gebieten mit positiver Wasserbilanz lösungsstabil bis ins Meer verfrachtet werden (vgl. Nesbitt et al., 1980). Zwar wird das Löslichkeitsverhalten einzelner Ionen durch weitere Parameter beeinflußt (Vorhandensein bestimmter Anionen, Aktivitäten von Lösungsgenossen, pH-Wert, Eh, Temperatur), doch bei den "einfachen" Ionen (Alkalien, Erdalkalien, Al³⁺, Ti⁴⁺) ergeben sich recht verlässliche Verhaltensmuster (Berner, 1971, Baes & Mesmer, 1976, Lindsay, 1979, Drever, 1997, Brookins, 1988, Krauskopf & Bird, 1995, Faure, 1998).

Kriterien für einen Paläoboden in einem Löß(-lehm)profil sind danach <u>niedrigere Verhält-</u> <u>nisse</u> eines löslichen Kations (Na⁺, K⁺, Rb⁺, Ca²⁺, Mg²⁺, Fe²⁺, Sr²⁺, Ba²⁺) zu einem relativ unlöslichen Hydrolysat (Al₂O₃, Fe₂O₃, TiO₂) gegenüber weniger verwitterten liegenden und hangenden Schichten. Als Voraussetzung muß ein vergleichbarer primärer Stoffbestand bzw. vergleichbare Korngrößenzusammensetzung vorliegen. Nicht alle möglichen Verhältnisse sind allerdings gleich gut zu gebrauchen: So sollten die betrachteten Verhältnisse <u>nur durch</u> <u>die bei der Bodenbildung wirksamen Prozesse</u> verändert worden sein und nicht durch diagenetische. Das heißt: Bei carbonathaltigen Proben lassen sich Ca, Mg und Sr nur eingeschränkt gebrauchen, da hier die verwitterungsbedingten chemischen Veränderungen der primären Feldspäte und Glimmer durch die sehr hohen Ca-, Mg-, Sr-Gehalte der Carbonatminerale maskiert werden. In carbonatfreien Proben können auch diese drei Elemente berücksichtigt werden. Nur in den Feldspäten und Glimmern (und nicht in den Carbonaten) sitzen Na, K, Rb, Al₂O₃, TiO₂, so daß die Veränderungen der Verhältnisse dieser Ionen und Oxide echte Kriterien für Hydrolyse-Prozesse, also für die chemische Verwitterung und Bodenbildung sind.

Die durch die chemische Verwitterung verursachte Abfuhr der Alkalien und Erdalkalien (und damit die *Abnahme* der Verhältnisse lösliches Kation/Hydrolysat) ist daher um so deutlicher, je kleiner das lösliche Kation ist, also Na, Mg, Fe²⁺ werden leichter abgeführt als Ca, K, Rb, Sr und Ba (vgl. auch Nesbitt et al. 1980). Die Na₂O/Al₂O₃- und K₂O/Al₂O₃- Verhältnisse von Lössen sind auch von Gallet et al. (1998) als "chemical index of alteration"⁷ benutzt worden, und erste Versuche, die Löß-Geochemie zu paläoklimatischen Interpretationen von Lößprofilen zu nutzen, sind vor allem an den mächtigen chinesischen Lössen durchgeführt worden (Liu, 1985, 1991, Derbyshire et al., 1995, Liu et al , 1994, Gallet et al., 1996).

Einige dieser Autoren beziehen sich methodisch dabei auf Untersuchungen von Nesbitt & Young (1983, 1992), Wang (1989) und von Nesbitt et al. (1996), die in komplexen (nicht in allen Einzelheiten einzusehenden) Formeln alle vorkommenden Oxidverhältnisse berücksichtigen, einschließlich der "carbonat-spezifischen" Komponenten CaO und MgO, jedoch dann die in den Löß-Carbonaten gebundenen CaO-Gehalte abziehen. Dazu muß der Calcit-Gehalt (röntgenographisch, chemisch) exakt bestimmt werden, was bei der relativen Ungenauigkeit aller Carbonat-Bestimmungsmethoden (Scheibler, Thermogravimetrie, IR) zu Fehlern führt, die den Wert für die chemische Verwitterung beeinflussen. Wang (1989) berechnet einen "Verwitterungsindex", in den er auch SiO₂ und Fe₂O₃ einbezieht. Daß jedoch gerade diese beiden Komponenten (SiO₂, Fe₂O₃) zu Fehl-Abschätzungen führen (können), liegt daran, daß SiO₂ sowohl in den Silikaten, als auch als "freier" (in variablen Mengen auftretender) Quarz vorhanden ist, und daß Eisen in seinen Oxid-Gehalten abhängig vom Redox-Potential des Milieus ist: Fe²⁺ ist ein lösliches Kation, vorhanden (in Lösung!) in Gegenwart von organischer Substanz (Humus), Fe³⁺ jedoch ein Hydrolysat, vorhanden bei einem pH-Wert >3,0.

⁷ erste Ansätze dazu in Harnois (1988): CIW (Chemical index of weathering)

Retallack (2001) benutzt zur Charakterisierung von Paläo-Umgebungen und als Maß für damalige Niederschlagsverhältnisse die Verhältnisse SiO₂/Al₂O₃ und $\frac{\text{CaO} + \text{Na}_2\text{O} + \text{K}_2\text{O}}{\text{Al}_2\text{O}_3}$. Alle derartigen Charakterisierungen gehen auf die oben skizzierten Überlegungen über die Ionenpotentiale und Oxid-Löslichkeiten zurück. Eine kritische Betrachtung der verschiedenen Möglichkeiten zur Charakterisierung der chemischen Verwitterung und (Paläo-)- Bodenbildung ist in Vorbereitung und wird an anderer Stelle veröffentlicht (W. Smykatz-Kloss et al., in Vorb. für "Chemie der Erde").

Das Verhältnis der beiden Hydrolysate TiO₂ und Al₂O₃ erwies sich in Sedimentprofilen als nahezu konstant (Gallet et al., 1998, W. Smykatz-Kloss et al., 1998). In den Lößprofilen des Pleiser Hügellandes weicht es von konstanten Werten nur in den (Eltviller) Tuff-Horizonten ab, und zwar zu höheren Werten (s. Ergebnisse). Paläoböden sind demnach besonders deutlich durch (<u>niedrigere</u>) Na₂O/Al₂O₃- und Na₂O/TiO₂-Werte charakterisiert, weniger deutlich auch durch niedrigere K₂O/Al₂O₃- und K₂O/TiO₂-Werte sowie (in carbonatfreien Horizonten) durch niedrigere MgO/Al₂O₃- und MgO/TiO₂-Werte. Durch die partielle Adsorption des K⁺ an Tonminerale und organische Substanzen wird das K⁺ bei der chemischen Verwitterung nicht so stark aus den angewitterten Horizonten entfernt wie das Na⁺, so daß auch die resultierenden zunehmenden K₂O/Na₂O-Verhältnisse für einen chemischen Verwitterungshorizont charakteristisch sind.

6 Ergebnisse

6.1 Mineralbestand der untersuchten Profile

6.1.1 Pleiser Hügelland und Neustadt/Wied

6.1.1.1 Birlinghoven

Der halbquantitative Mineralbestand von 15 Proben aus dem Profil Birlinghoven (Tab. 3) weist nur wenig mineralogische Variation auf. Bis auf den Eltviller Tuff um 6 m Teufe und die zwei Proben unmittelbar darunter und darüber weisen alle Proben Plagioklas als den häufigeren Feldspat auf. In dieser Tuff-Lage, bei 6,25 m, ist der Kalifeldspat vorherrschend. Beide Carbonate sind durchgehend vorhanden, an Tonmineralen treten neben Glimmer (Illit), Chlorit, Kaolinit und Smektit in Spuren auf (über die Spurenminerale s. u.).

Tab. 3: Mineralbestand Profil Birlinghoven

6.1.1.2 Rauschendorf

Die obere Zone des Profils Rauschendorf ist carbonatfrei, also ein Lehm. Darunter (tiefer als 1 m unter GOK) treten sowohl Calcit als auch Dolomit in deutlichen Gehalten auf. Der vorherrschende Feldspat ist Plagioklas. Neben dem "normalen" Kalifeldspat (Orthoklas) tritt bei 1,80 m zusätzlich <u>Sanidin</u> auf (Sanidin ist nur für Vulkanite typisch). Die Schichtsilikate Illit, Chlorit und Smektit (der teilweise in unregelmäßige mixed-layer übergeht) sind generell schlecht geordnet (Breite der [001]-Röntgeninterferenzen).

Tab. 4: Mineralbestand Profil Rauschendorf

S Tab. 3: Mineralbestand des Profils Birlinghoven

Teufe	Quarz	Plagioklas	Kalifeldspat	Calcit	Dolo mit	Chlorit/ Smektit	Glimmer 10 Å	andere Minerale (in Spuren)
0,55	XXX	X	0	Xx	X	I	0	(in Spurch)
0,80	XXX	Xx	X	XX	Xx	Ι	0	Amphibol
1,00	XXX	Xx	0	XX	Xx	0	0	Talk, Amphibol
2,35	XXX	X	0	XX	Xx	0	0	Meta-Halloysit, Amphibol
2,80	XXX	Xx	0	XX	Xx	0	0	
3,25	XXX	X	X	XX	Xx	0	Х	Amphibol
3,50	XXX	0	0	XXx	XX	i	Х	Talk, Hämatit
4,15	XXX	XX	0	XX	Xx	0	0	
4,90	XXX	X	i	XX	Xx	0	Х	Talk, Amphibol, Hämatit
5,50	XXX	i	X	Xx	X	Ι	0	Talk, Amphibol, Hämatit
5,90	XXX	i	X	Xx	Xx	i	0	Amphibol
6,25	XXX	X	X	XX	Х	Ι	0	Sanidin o, Amphibol
(ET)								
6,50	XXX	0	i	Xx	Х	Ι	Ι	Al-Goethit, Pyroxen,
								Zeolith
7,75	XXX	Xx	i	XX	Xx	0	0	
8,65	XXX	Xx	i	XX	Xx	Ι	0	Amphibol

Mengenabschätzungen s. Tab. 4

Ergebnisse

8 K12	Tab. 4: Mineralbestand des Profils Rauschendorf												
	Teufe	Quarz	Calcit	Dolo	Plagio	KF	Chlorit	Illit	Smektit	andere Minerale			
ר מ				mit	klas				/mixed-				
101									layer				
2	0,55 m	XXX			XX	Х	0	0	Ι				
1	0,80 m	XXX			Х	0	0	0	Ι				
	1,35 m	XXX	XXx	Х	xX	0	Ι	0	Ι				
1.	1,80 m	XXX	XXx	xX	Х	0	0	0		Sanidin o (zus. zu norm. KF)			
										Talk I			
, ,	2,15 m	XXX	XXX	XX	XX	Χ	O-X	0	0	i Amphibol			
/ ort	5,65 m	XXX	XXx	Xx	XX	Χ	0	0	Ι	I Amphibol			

Legende										
XXX	= Hauptbestandteil ⁸ (> 30%)	0	= Nebenbestandteil (5-10 %)							
XX	= Hauptbestandteil (20-30%)	Ι	= Spuren 2-5 %							
X	= Nebenbestandteil (10-20%)	i	= Spuren <2%							

Diese Legende gilt für alle Mineralbestandstabellen.

6.1.1.3 Bockeroth

Die "Bohrung Bockeroth" weist mit 30 Proben aus ~18 m Profil die größte Probendichte auf. Zwischen drei und acht Metern und zwischen 12 und etwa 15,50 m Teufe sind die Horizonte carbonatfrei (s. Tab. 5). Zwar ist der Plagioklas generell der vorherrschende Feldspat, doch sind vier Horizonte zu erkennen, in denen der <u>Kalifeldspat</u> überwiegt: in der Teufe von ~5 m (Proben 13-17), 10,50 m (Probe 20) und 12-13 m (Proben 23 und 24). Eine carbonatfreie Probe (11 in 6,10 m Teufe) weist neben normalem Kalifeldspat (= Orthoklas) als zweiten auch (vulkanogenen!) <u>Sanidin</u> auf. Als Nebenbestandteile kommen illitische Glimmer, Chlorit und z. T. bereits in mixed-layer umgewandelte Smektite vor. Untergeordnet (in Spuren) treten <u>Hämatit</u> (besonders in verlehmten Horizonten), <u>Amphibole</u> und - in sehr geringen Gehalten - <u>Palygorskit</u> auf (s. Tab. 5) sowie nur in den beiden oberen Proben etwas <u>Gips</u> (CaSO₄ × 2 H₂O). Dieser ist (bedingt durch seine relativ große Löslichkeit in Oberflächenwässern) nur rezent z.B. durch Wechselwirkung von Saurem Regen mit Calcit (Lößkindl) entstanden: Nach Auflösung des Carbonats in den Sauren Präzipitaten und Wiederausfällung bleibt der Gips in Böden geringer Permeabilität relativ lange erhalten.

Tab. 5: Mineralbestand des Bohrkerns Bockeroth

Das Profil "Bockeroth II" umfaßt 12 Proben (s. Tab. 6). Außer der obersten (0,72 m) sind sie durchweg carbonatreich, zwischen 4 und 4,52 m sogar dolomitreich! Der als "Eltviller Tuff" angesehene Horizont bei ~ 5 m ist relativ carbonatarm, dafür <u>ungewöhnlich</u> in seinen <u>Feldspattypen</u>: Als einzige der 12 Bockeroth II-Proben ist er frei von Plagioklas, aber reich an <u>Kalifeldspat</u>. Und dieser ist ein <u>Hoch-Sanidin</u>, wie er (nur) in Vulkaniten vorkommt. An Spurenmineralen kommen Amphibol, Talk, Gips, Hämatit, Kaolinit (unsicher!) und in einer Probe Palygorskit vor.

Tab. 6: Mineralbestand des Profils Bockeroth II

Etwa 15 m abseits dieses Profils wurden aus einer Baugrube drei Proben aus "Schneckenhorizonten" genommen, und zwar aus Horizonten 1,30 m, 1,60 m bzw. 2,0 m <u>über dem aufgegrabenen Eltviller Tuff</u> ("Bo III", Tab. 7). Die Proben sind mit denen des Profils Bockeroth II sehr vergleichbar - mit dem einzigen Unterschied, daß die oberste Bo-III-Probe carbonatfrei ist (vgl. Tab 7).

Tab. 5: Mineralbestand Bohrkern Bockeroth

Probe	Teufe	Quarz	Calcit	Dolo mit	Plagio klas	KF	Chlorit	Illit	Smektit/ ML	andere Minerale
1	0,75 m	XXX	Xx	0	X	Ι	0	0	Ι	I Gips
2	1,20 m	XXX	XXx	XX	Xx	0	X	Х	0	I Gips I Amphibol
3	1,75 m	XXX	XXx	0	Х	0	Ι	0	Ι	
4	2,50 m	XXX	XXx	XX	Х	0	0	0	0	
5	2,95 m	XXX	Xx	0	Х	Ι	0	Ι	Ι	
6	3,80 m	XXX	i		Х	0	0	0	Ι	
7	4,70 m	XXX			XX	Xx	Х	Х	i	
8	4,95 m	XXX			Х	XX	0	0	Ι	
9	5,50 m	XXX			Ι	XX	0	Х	Ι	
10	5,80 m	XXX	Ι	i	Х	Ι	Ι	0	i	
11	6,10 m	XXX			Х	0	0	Х	Ι	I Sanidin
12	6,50 m	XXX	Ι	Ι	Х	0	Ι	Ι		
13	6,95 m	XXX	i	i	Х	Xx	Х	0	0	
14	7,50 m	XXX			XX	Xx	0	0	0	
15	8,30 m	XXX			Х	Х	0	0	0	
16	8,50 m	XXX			Х	Х	0	0	0	I Amphibol
17	8,95 m	XXX			0	Х	0	Х	Ι	
18	9,50 m	XXX			Х	Ι	Х	0	Ι	
19	9,90 m	XXX	Х	XX	0	0	0	0	Ι	I Hämatit
20	10,50 m	XXX	XXX	XX	Х	Xx	Х	Х	Х	
21	11,50 m	XXX	Х	Ι	0	Ι	0	0	Ι	
22	12,10 m	XXX			Χ	Ι	0	0	Ι	
23	12,25 m	XXX			0	X	0	0	Ι	
24	12,60 m	XXX			0	X	0	Ι	Ι	
25	13,45 m	XXX			0	Ι	Ι	0	Ι	I Palygorskit

H 6	Probe	Teufe	Quarz	Calcit	Dolo	Plagio	KF	Chlorit	Illit	Smektit/	andere Minerale
och					mit	klas				ML	
1-Sa	26	14,35 m	XXX			XX	XX	Х	Х		o Amphibol
anic	27	15,50 m	XXX	Ι	Ι	0	Х	0	0	Ι	
lin	28	16,20 m	XXX	XX	Ι	Х	Х	Х	0	i	I Hämatit, i Palygorskit
	29	17,20 m	XXX	XXx	0	Х	0	Х	Х	0	
	30	17,80 m	XXX	XXx	Xx	XX	Х	0	Х	Ι	

Tab. 6: Mineralbestand, Profil Bockeroth II

Teufe [m]	Quarz	Calcit	Dolo mit	Plagio klas	KF	Chlorit	Illit	Smektit/ ML	andere Minerale			
0,72	XXX	XX	Xx	0	Х	0	0	0	i Talk	i Talk		
0,84	XXX	Ι	i	Х	0	Ι	0	0	I Amphibol			
1,92	XXX	XXx	0	Х	Ι	0	0	0	i Talk	I Gips	I Hämatit	
2,04	XXX	XX	Х	Х	0	0	0	0	i Kaolinit (?) Gips			
2,76	XXX	Xx	Х	Х	0	0	0	0	I Amphibol	i Palygorskit		
3,36	XXX	XXx	0	0	Ι	0	Ι	0	i Amphibol	i Hämatit		
3,60	XXX	Xx	Х	Х	0	0	0	0	I Talk			
4,21	XXX	XX	XXx	Х	0	0	0	Ι				
4,46	XXX	XXX	Xx	Х	0	0	0	i	i Kaolinit			
4,52	XXX	XXx	Xx	Х	0	0	0		i Amphibol			
5,04 (ET)	XXX	Χ	0		Xx ⁹	Ι	Ι	Ι	I Amphibol	I Amphibol		
5,76	XXX	Xx	Xx	X	0	0	0	Ι				

Legende s. Tab. 4.

	Teufe	Quarz	Calcit	Dol	Plagio	KF	Chlorit	Illit	Smektit/	andere Minerale
	über ET			omit	klas				ML	
Bo-III-1	2,00	XXX			XX	0	0	Х	0	Amphibol o
Bo-III-2	1,60	XXX	XX	XX	XX	0	0	X	0	I Hämatit
Bo-III-3	1,30	XXX	Xx	Xx	0	Ι	0	0	Ι	
	ET									

Tab. 7: Mineralbestand, Profil Bockeroth III, "Schneckenhorizonte"

6.1.1.4 Thomasberg

Das Profil Thomasberg wird durch 20 Proben (aus etwa 17 m Profiltiefe) repräsentiert. Dazu werden drei "Ton"-Proben geröntgt (s. Tab. 8, Abb. 20). Das Profil ist — bis auf ganz wenige Proben - weitgehend verlehmt. Carbonatreich sind nur zwei Horizonte (4,68 m und 7,13 m), in denen Calcit überwiegt. Diese beiden carbonathaltigen Horizonte entsprechen nach der Geländeaufnahme einmal einem "verwitterten Tuff" (4,68 m) und zum anderen einer "Schluff-Linse" (s. Profilbeschreibung). Dolomit ist nur in Spuren vorhanden, in den unteren Profilmetern als einziges Carbonat (Tab. 8). Auffallend ist, daß die beiden carbonatreichen Horizonte kaum Feldspäte enthalten. Der Charakter der (sonst häufigen) Feldspäte wechselt mehrmals: Die unteren Profilmeter sind ausgesprochen Kalifeldspat-reich, und dieser ist (wie auch in den drei "Ton"-Proben, vgl. Tab. 8) zumindest teilweise ein (vulkanogener!) Sanidin. Auch die Horizonte 6,75 m und 3-1,15 m sind KF-reich. Dagegen sind die Bereiche zwischen 9,15 m und 7 m, zwischen 4,68 m und 3,20 m sowie der oberste Profilmeter Plagioklas-reich. Quellfähige Schichtsilikate sind in sechs Horizonten häufig und in den aus den benachbarten Vulkanhängen genommenen drei <u>Ton</u>-Proben ("Kaolin", Trachyttuff, verwitterter Trachyttuff) die Hauptkomponenten.

Tab. 8: Mineralbestand des Profils Thomasberg

Besonders im tieferen Teil des Profils nehmen die Kalifeldspäte immer mehr zu (wie auch die Smektite), und diese Proben nehmen immer mehr den Charakter von (veränderten) <u>Trachyttuffen</u> an (Tab. 8): Quarz-arm, KF-reich, Smektit-reich. Dazu tritt als typisch vulkanogenes Mineral (in Spuren) noch <u>Cristobalit</u> hinzu (tetragonales SiO₂).
Tab. 6. Willief	albestane	<u>, 110111 11</u>	iomasuer	2									
Teufe	Zone	Quarz	Calcit	Dolo mit	Plagio klas	KF	Illit	Chlo rit	Smektit /ML	Pyroxe n	andere Mi	nerale	
0,30 m	Ι	XXX			Xx	X	0	0	Ι	i			
0,78 m		XXX			Xx	Х	0	0	0	i			
1,15 m	II	XXX	i	i	Ι	Х	Ι	Ι	0				
1,25 m		XXX	i	0	0	Х	0	Ι	0	Ι			
1,38 m		XXX	Ι	i	Х	XX	0	0	Ι	Ι			
1,50 m		XXX	0	0	0	Х	Ι	Ι	Ι	0			
1,70 m	III	XXX			0	0	Ι	Ι	Xx	Ι			
2,45 m	IV	XXX			0	0	0	0	0	0	o Amph.		
2,95 m		XXX			0	XX	0	0	Ι	0			
3,20 m	V	XXX			Xx	0	0	XX		0			
3,60 m		XXX			Х	0	0	Х	Ι	0			
4,00 m	VI	XXX			XX		0	0	0	0			
4,60 m		XXX			Xx		0	0	0	0			
4,67 m	VII	XXX	XX	0	0	Ι	х	0	Х				
6,75 m	VIII	XXX		i	0	Xx	Ι	i	Xx	Ι	i Amph.		
7,13 m	IX	XXX	XX	0	Х	0	0	Ι	Ι		I Amph.	o Gips	i Talk
9,15 m	Х	XXX	i	i	XX	Х	Х	Ι	Х	Ι	I Amph.		
9,50 m	XI	XXX		i	0	XX	0	0	Xx	0			
10,70 m		XX		Ι	Ι	XXX	Ι	Ι	0		I Amph.	o Cristo	balit
10,90 m	XII	Ι		Ι	Χ	XXX	Ι	Ι	0		I Hämatit		
"Kaolin"		Ι				I ¹⁰	Ι		XXX			_	
Trachyttuff		Х			х	XXX ⁹	х		XX		o Kaol.	Cristoba	alit
vewitt. Trachyttuff		0			XX	XXx ⁹	X		XXx		I Cristoba	lit	

🖉 Tab. 8: Mineralbestand, Profil Thomasberg

59

6.1.1.5 Neustadt an der Wied

Das umfangreichste Profil ist das von Neustadt an der Wied. Tab. 9 gibt die mineralogische Zusammensetzung der 31 untersuchten Proben aus dem etwa 18 m umfassenden Profil wieder. Diese Proben lassen sich zu neun verschiedenen Zonen zusammenfassen (s. Tab. 9). Das Profil ist relativ carbonatarm: nur die Zone IV zwischen etwa 4 und 5,5 m entspricht einem echten Löß. Alle anderen Zonen sind praktisch carbonatfrei. Bis auf die Humuszone (VI, etwa 8,5 m tief) und die drei auftretenden "tonigen" Lehmzonen sowie die oberste Zone des rezenten Bodens ist das Profil plagioklasreich; in den genannten Zonen herrscht der Kalifeldspat vor, der nach optischen Untersuchungen überwiegend ein <u>Sanidin</u> ist, wie er für viele der Mittelrhein-Vulkanite charakteristisch ist (Vieten, 1961). An Schichtsilikaten sind Glimmer/Illite, Chlorite und zu einem geringeren Teil Smektite vorhanden. Die Glimmergehalte nehmen nach unten im Profil deutlich zu. Auffallend ist, daß viele der sanidinreichen Proben auch reich an Schichtsilikaten sind (s. Tab. 9).

Tab. 9a: Mineralbestand (Hauptbestandteile), Profil Neustadt/Wied Tab. 9b: Mineralbestand, Spurenminerale, Profil Neustadt/Wied

Auffallend ist im Vergleich mit den nördlicheren Profilen des Pleiser Hügellandes, daß der Anteil der quellfähigen Minerale (Montmorillonit und "mixed layer") hier im Profil Neustadt <u>geringer</u> ist. Wie auch im Profil Thomasberg (Tab. 8) treten dafür - als Verwitterungsreste - in geringen Gehalten <u>Pyroxene</u> auf, und die Feldspat- und Glimmergehalte sind z.T. recht hoch. <u>Glimmer</u> und häufig auch der <u>Chlorit</u> sind überwiegend gut geordnet: Im Verhältnis zu den Profilen des Pleiser Ländchens sind die Lösse von Neustadt/Wied (obwohl sie älter sind als die nördlichen Lösse) weniger "verwittert". Ein weiteres Indiz hierfür ist die große Anzahl der Spurenminerale (vgl. Tab. 9b).

Teufe	Zone	Quarz	Calcit	Dolomit	Plagioklas	Kalifeldspat	Illit/Glimmer	Chlorit	Smektit/ML
0,39 m	Ι	XXX	i		Xx	XX	X	X	0
0,99 m	II	XXX		Ι	XX	X	0	0	0
2,26 m	III	XXX			XX	X	0	0	0
3,08 m		XXX			Xx	0	0	0	0
3,36 m		XXX			Х	0	Х	0	0
3,91 m	IV	XXX	XX	0	XX	Xx	X	0	0
4,29 m		XXX	xX	Х	Х	0	0	0	0
4,51 m		XXX	XXx	Xx	Xx	0	0	0	0
5,17 m		XXX	XXx	Xx	Xx	0	0	0	0
5,50 m		XXX		i	0	Ι	X (breit)	0	Ι
5,72 m	V	XXX		0	Xx	0	0	Х	0
5,76 m		XXX		0	Xx	0	Х	Х	0
6,38 m		XXX			0	Ι	X	Ι	Ι
6,93 m		XXX			XX	Х	Х	х	Ι
7,70 m		XXX			Х	0	0	0	0
8,03 m		XXX			0	Ι	Х	0	0
8,09 m		XXX			XX	0	Xx	0	0
8,58 m	VI	XXX			XX	XX	0	0	0
8,91 m	VII	XXX			0	0	0	0	
9,68 m		XXX			XXx	0	Х	Х	0
10,12 m		XXX			0	XX	0	X	0
10,29 m		XXX			Х	0	Х	0	0
10,45 m	VIII	XXX			X	0	X	0	Ι
11,00 m		XXX			X	0	0	0	
11,33 m		XXX			0	0	X	0	0

Tab. 9a: Mineralbestand, Profil Neustadt/Wied

Teufe	Zone	Quarz	Calcit	Dolomit	Plagioklas	Kalifeldspat	Illit/Glimmer	Chlorit	Smektit/ML
12,00 m	IX	XXX	i		0	0	X	0	0
13,09 m		XXX			0	XX	Xx	0	0
14,30 m		XXX			Х	0	Xx	0	0
15,40 m		XXX			Х	Xx	Xx	0	0
16,72 m		XXX		Ι	Х	X	Xx	0	0
18,15 m		XXX			Х		Xx	0	0
Eiskeil-	0,77	XXX			Xx	X	X	0	0
füllung	m								
Verlageru	0,66				xXX	Х	X	0	0
ngsboden	m								
Tephra	1 m	XXX			X	0	0	0	0

Teufe	Zone	Hämatit	Zeolith	Palygorskit	Kaolinit	Gips	Talk	Pyroxen	Amph.	andere Minerale
0,39 m	Ι	i	i		Ι			0		
0,99 m	II	i			Ι	Ι		0		I Halit
2,26 m	III				Ι			Ι	Ι	
3,08 m					i			0		
3,36 m								0	Ι	
3,91 m	IV				Ι				Ι	
4,29 m									i	
4,51 m									Ι	
5,17 m			Ι						Ι	
5,50 m					Ι			Ι	i	
5,72 m	V	Ι			Ι			Ι		
5,76 m		i			i			0		
6,38 m		i						i	i	
6,93 m					Ι			0		
7,70 m		Ι			Ι			Ι	i	
8,03 m		Ι			Ι	Ι				
8,09 m		Ι			Ι	Ι	Ι	0		
8,58 m	VI							Ι		
8,91 m	VII						Ι	Ι	Ι	i Goethit
9,68 m		Ι					Ι		Ι	
10,12 m							Ι			
10,29 m	1		i							
10,45 m	VIII			Ι	Ι		Ι	Ι		
11,00 m	1	Ι		Ι			Ι	Ι		
11,33 m		Ι							i	

Tab. 9b: Spurenminerale, Profil Neustadt/Wied

Teufe	Zone	Hämatit	Zeolith	Palygorskit	Kaolinit	Gips	Talk	Pyroxen	Amph.	andere Minerale
12,00 m	IX			Ι				Ι		i Goethit
13,09 m					0	Ι		0	Ι	
14,30 m						Ι		Ι	Ι	
15,40 m					0	i	Ι	Ι	Ι	
16,72 m		Ι			0	i		Ι		
18,15 m					Ι			Ι		I Thenardit
Eiskeil-	0,77			Ι	Ι		Ι	Ι		
füllung	m									
Verlagerungs-	0,66	Ι			Ι	Ι	Ι			
boden	m									
Tephra	1 m				0			Х		I Magnetit

6.1.2 Picardie

Die zum Vergleich und besonders im Hinblick auf die mögliche Herkunft der Lösse des Bonner Raumes aus der Picardie genommenen Proben sind in ihren Mineralgehalten in den folgenden drei Tabellen 10, 11 und 12 aufgeführt.

6.1.2.1 Sourdon

Die drei Proben von Sourdon sind sämtlich "echte Lösse". Sie führen deutliche Calcit-Gehalte, die beiden oberen auch etwas Dolomit. Als vorherrschender Feldspat ist Plagioklas vorhanden, nach unten nehmen die <u>Chlorit</u>-Gehalte merkbar zu.

Tab. 10: Mineralbestand des Profils Sourdon

6.1.2.2 Ailly sur Somme

Im Löß der 5,20-Probe sind "weiße Konkretionen" zu erkennen, die sich als Calcit- (+ wenig Dolomit)-Anreicherungen erweisen. Der vorherrschende Feldspat ist generell <u>Plagioklas.</u> <u>Dolomit</u> ist z.T. idiomorph und bildet zonare Rhomboeder aus (vgl. Optik der Spurenminerale).

Tab. 11: Mineralbestand des Profils Ailly

6.1.2.3 Heilly

Der Mineralbestand der 11 Proben dieses Profils weist neben den Hauptmineralen Quarz, beide Feldspäte, beide Carbonate und den Schichtsilikaten Illit, Chlorit und Smektit eine Reihe von Spurenmineralen auf (s. Tab. 12), unter denen der Palygorskit besonders interessant ist.

Tab.12: Mineralbestand des Profils Heilly

Allein nach der Mineralogie läßt sich das Profil in 6 unterschiedliche Zonen einteilen. Der oberste Bereich (Zone 1, Bt) ist carbonatfrei und besonders reich an Kalifeldspat, der auch hier ein <u>Sanidin</u> ist. Sanidinreich sind außerdem die Zonen III und V, und beide sind auch reich an Schichtsilikaten. Die übrigen Zonen II, IV und VI weisen als Hauptfeldspat Plagioklas auf. Die beiden untersten Proben im Profil repräsentieren jeweils nur ein schmales

Band, charakteristisch abwechselnd ein dunkles Band (6,45 m tief) und ein helles Band bei (6,25 m). Diese beiden Bänder (wie viele weitere, die nicht aufgeführt sind), unterscheiden sich stark in ihrem Mineralbestand, vor allem in den Feldspat-Typen, den Schichtsilikaten und den Carbonatgehalten. Das helle Band ist calcitreich, besonders reich an Sanidin, Smektit und Illit. Das dunkle Band zeigt überwiegend Plagioklas neben Chlorit. Kalifeldspat, Illit und Calcit sind hier nur untergeordnet vorhanden (s. Tab. 12).

Besonders auffallend ist, daß sich die oberen Horizonte (Zonen I-III) von den unteren in ihren Carbonat-, Feldspat- und auch Schichtsilikatanteilen sehr unterscheiden (Tab. 12). So ist Dolomit nur im oberen Profilteil vorhanden, der - bis auf die Zone II - auch sehr sanidinreich ist. Im unteren Teil überwiegen Plagioklas (Ausnahme: die hellen Bänder wie das der Zone V) und die Schichtsilikate, besonders der quellfähige Smektit.

Tab. 10: Mineralbestand, Profil Sourdon

¹¹oberster Löß
¹²unterer Mittelwürmboden
¹³Löß im Eiskeil
¹⁴Kalk-Konkretionen

	Teufe	Quarz	Calcit	Dolo mit	Plagio klas	KF	Chlorit	Illit	Smekti t/ML	andere Minerale
1	11,7	XXX	xXX	0	xX	0	0	0	0	I Palygorskit
1	² 3,3	XXX	xX		xX	0	xX	Ι	(ML) o	
1	³ 4,8	XXX	xХ	Х	Х	0	Х	0		

Tab. 11: Mineralbestand, Profil Ailly

Teufe	Quarz	Calcit	Dolo mit	Plagio klas	KF	Chlorit	Illit	Smektit/ ML	andere Minerale
2,10 m	XXX	XX	0	0	Х	0	i	0	Baryt I
2,70 m	XXX	XX	xX	xX	xX	0	0	0	Dolomit idiomorph
4,40 m	XXX	XX	0	XX	0	0	0	0	
5,20 m	XXX	XX	xX	xX	0	0	Х	0	
5,20	Х	XXX	i	0	Ι	Ι	Ι		
m ¹⁴									

Legende s. Tab. 4.

Ergebnisse

67

	lbestand.	<u>Profil He</u>	illy							
Teufe	Zone	Quarz	Calcit	Dolo mit	Plagio klas	KF	Chlorit	Illit	Smektit /ML	andere Minerale
0,50 m	Ι	XXX			Х	XX ¹⁵	O-X	0	0	I Palygorskit i Serpentin i Gips
2,05 m	II	XXX	XX	Х	0	Ι	0	0	0	Cl-Apatit
3,25 m		XXX	XX	Х	Х	0	0	0	0	i Palygorskit i Serpentin I Amphi
3,55 m	III	XXX	xXX	xХ	X	xX^{15}	0	O-X	0	i Palygorskit i Serpentin I Amphi
4,05 m		XXX	XX	X	Х	xXX ¹⁵	0	0	0	o Cl-Apatit i Goethit i Palygorskit
4,35 m	IV	XXX	XX	o-I	xX	0	0	x	0	I Palygorskit I Biotit i Serpentin Amphibol i Al-Goethit I Kieserit i Gips
4,55 m		XXX	XX		XX	Ι	0	Ι	0	
4,75 m		XXX	xX	Ι	xX	Ι	xX	xХ	xX	i Amphibol I Serpentin i Kieserit
5,05 m		XXX	Х		Х	Х	O-X	Ι	O-X	
6,45 m (helles Band)	V	XXX	xXX		0	XX ¹⁵	X	0	xX	I Serpentin I Amphibol I Goethit Mirabilit
6,55 m (dunkles Band)	VI	XXX	X		xX			Xx		I Palygorskit i Amphibol I Talk

Legende s. Tab. 4.

6.1.3 Tonminerale der Lösse

Um den Charakter der quellfähigen Komponenten (Thomasberg, s. 6.1.1.4) exakt zu bestimmen, wurden von drei Proben (0,78 m, 1,70 m und 9,50 m) die feinen Fraktionen (< $2\mu m \emptyset$) im Atterberg-Zylinder abgetrennt und in Textur- und Quellpräparaten gesondert untersucht. In Abb. 20 sind die Röntgendiffraktogramme der mit Ethylenglykol gequollenen Proben abgebildet.

Abb. 20: Ausschnitte aus den Röntgendiffraktogrammen von den Fraktionen unter 2 μm Ø der Proben 1,55 m (umger. 0,78 m), 3,20 m (umger. 1,70 m) und 19,0 m (umger. 9,50 m); Texturproben mit Ethylenglykol gequollen

Zu sehen ist, daß alle drei Proben (neben Chlorit?) etwas <u>Kaolinit</u> enthalten, wie es für (verwitterte) Tuffe charakteristisch ist. Daneben kommt in unterschiedlichen Mengen illitischer Glimmer vor (am wenigsten bei 1,70 m). In der obersten Zone tritt neben Montmorillonit auch <u>unregelmäßiger Illit/Smektit Mixed Layer (ML)</u> auf, in den beiden unteren Proben (1,70 und 9,50 m) fast nur <u>Montmorillonit</u>. Darauf läßt sich aus der Verschiebung der (001)-Interferenz von 15,5 Å (im ungequollenen, wassergesättigten Zustand, wie er im normalen Texturpräparat vorhanden ist) nach 17,0 Å (im gequollenen Zustand) schließen (s. Brindley & Brown, 1980).

Der Ordnungsgrad dieses Montmorillonits ist für reine Sedimentbildungsverhältnisse recht gut (vgl. Diskussion).

In keinem anderen Profil (außer Thomasberg) ist der Charakter der quellfähigen Komponente so klar ein Montmorillonit. <u>Tab. 13</u> zeigt beispielhaft die Anteile und den Charakter der Bockeroth-Bohrung, und zwar der feinen, im Atterberg-Zylinder abgetrennten Fraktion < 2 μ m Ø von Texturproben.

Tab. 13: Tonminerale Bockeroth-Proben, Fraktion < $2 \mu m \emptyset$ (Texturproben)

<u>Mengenmäßig</u> verhalten sich illitischer Glimmer zu Chlorit oder Smektit nahezu reziprok. <u>Chlorit</u>-reiche Proben sind Smektit- und Illit-arm. <u>Im Profil</u> nimmt der Chlorit-Gehalt nach unten <u>ab</u>, der Smektit-Gehalt nach unten zu. Der kristalline Ordnungsgrad nimmt dagegen wenn auch nicht ganz kontinuierlich - nach unten hin <u>ab</u> (Tab. 13). Ausgenommen hiervon ist der <u>Eltviller Tuff:</u> Sämtliche Schichtsilikate dieser Probe, auch der nur hier im Profil zu findende <u>Kaolinit</u>, weisen einen (sehr) guten Ordnungsgrad auf (vgl. Diskussion).

Die übrigen Profile (Birlinghoven, Rauschendorf, Neustadt/Wied) zeigen ganz analoge Verhältnisse.

JIC											
ĥċ	Teufe		Illit		Chlorit		Smektit, ML	Kac	olinit		
lie	m	(Ordnungsgrad		Ordnungsgrad		Ordnungsgrad	Ordnu	Ordnungsgrad		
Abi	1,40 m	Х	gut, beginnende ML	XX	gut, beginnende ML	X	gut, beginnende ML				
trer	3,40 m	Х	schlecht, ML	Х	gut, beginnende ML	XX	gut, beginnende ML				
Inui	4,50 m	Х	schlecht, ML	XX	schlecht	XX	sehr schlecht				
gu	6,50 m	Х	mittelmäßig	XX	mittelmäßig	Х	schlecht				
von	9,60 m	Х	gut, beginnende ML	XX	mittelmäßig	Х	schlecht				
de	10,10	Х	mittelmäßig	XX	gut	Х	schlecht				
G	m		_								
esa	10,50	XX	gut, beginnende ML	Х	schlecht	XX	sehr schlecht				
mtŗ	m										
prot	12,50	Х	mittelmäßig	Х	mittelmäßig,	XX	sehr schlecht				
be s	m				beginnende ML						
ind	15,60	Х	schlecht	Х	schlecht	XX	sehr schlecht				
di	m										
eΤ	17,25	Х	schlecht	Xx	schlecht	XX	sehr schlecht				
onr	m										
nin	Eltvill	XX	sehr gut	0	sehr gut	0	gut	0	sehr		
era	er Tuff								schlec		
<u>-</u>									ht		

 $\overline{\Box}$ Tab. 13: Tonminerale, Bohrkern Bockeroth, Fraktion <2 \mu m ϕ (Texturproben¹)

71

6.2 Chemische Zusammensetzung der untersuchten Profile

6.2.1 Profile Pleiser Hügelland und Neustadt/Wied

6.2.1.1 Birlinghoven

Aus dem Gesamtprofil Birlinghoven wurden 12 Proben chemisch analysiert (Tab. 1 im Anhang). Die charakteristischen chemischen Verhältnisse (Mittelwerte) für die Abfolge s. Anhang. Der Glühverlust (in %) liegt zwischen 7,93 und 13,52 %. Diese Werte sind zum größten Teil auf CO₂-Abgaben nach Zersetzung der Carbonate zurückzuführen, jedoch teilweise auch auf Verlust an H₂O, OH und organischer Substanz. Die Na₂O-Gehalte variieren nur wenig, im Bereich von 0,91 bis 1,04 %. Da das Profil durchgehend Calcit- und Dolomit-haltig ist, weist es neben hohen CaO-Gehalten auch deutliche MgO-Gehalte auf. Der höchste Wert an SiO₂ wurde in der Probe 6,50 m, kurz unterhalb des <u>Eltviller Tuffs</u> (6,25 m) gefunden. Dieser Horizont enthält noch Anteile des Tuffs und zeigt den geringsten Glühverlust, die geringsten CaO-Gehalte und <u>deutlich höhere Gehalte an Al₂O₃, TiO₂ und Fe₂O₃ (Hinweis auf erhöhte Anteile an mafischen Mineralen im Tuff, d.h. Pyroxene und Amphibole). Die Werte für P₂O₅, TiO₂ und MnO sind relativ konstant.</u>

6.2.1.2 Rauschendorf

Fünf Proben wurden aus charakteristischen Horizonten des Profils Rauschendorf entnommen und chemisch untersucht (Tab. 2 im Anhang). Die *Entkalkungsgrenze* des Profils liegt bei 1,15 m. Diese Grenze spiegelt sich auch deutlich in den Analysen wider. Sowohl oberhalb dieser Grenze als auch im Oxidationshorizont unterhalb 5,25 m sind die Fe₂O₃- und K₂O-Gehalte sehr hoch. Der Eltviller Tuff liegt bei diesem Profil in einer Teufe von 5,75 m. Erhöhte P₂O₅- sowie MnO-Gehalte zeigen sich in diesem Profil bis zu einer Tiefe von 0,80 m. Der Glühverlust liegt unterhalb der Entkalkungsgrenze mit 11,7-13,47 % relativ hoch.

Abb. 21: Chemische Zusammensetzung, Birlinghoven

Abb. 22: Chemische Zusammensetzung, Rauschendorf

6.2.1.3 Bohrkern Bockeroth und Bockeroth II

Aus 20 m Bohrkern (Grundwasserbohrung) wurden 10 Proben chemisch analysiert (Tab. 3 im Anhang). Deutlich sind anhand der Analysen Carbonat-haltige (7,15-10,38 % CaO) und (fast) Carbonat-freie Horizonte (0,52-1,01 % CaO) zu unterscheiden. Parallel zu den CaO-Gehalten steigen entsprechend auch die MgO-Gehalte der kalkhaltigen Proben an. Auffällig ist, daß die prozentualen SiO₂-Gehalte der carbonathaltigen Proben mit ~64 % unter denen der carbonat-freien (durchschnittlich ~75 %) liegen. Ab 12,50 m läßt sich kein MnO mehr nachweisen, jedoch zeigen die Proben 12,50 m und 15,60 m hohe Al₂O₃ und Fe₂O₃-Werte. Die MnO- und P₂O₅-Gehalte sind wie in den oben beschriebenen Profilen relativ konstant.

Aus dem Profil **Bockeroth II** wurden 9 Proben chemisch analysiert (Tab. 4 im Anhang). Das Profil ist durchgehend CaO-haltig. Der rezente Bt-Horizont ist Carbonat-frei. Im Horizont bei 1,32 m fallen die hohen Fe₂O₃- und MnO-Gehalte auf, die sich im Gelände als "starke Rostflecken" äußern. Der Horizont bei einer Teufe von 4,52 m, hat niedrigere CaO-Gehalte als die übrigen Horizonte (was sich auch deutlich im Glühverlust widerspiegelt). In diesem Horizont sind die Fe₂O₃-, SiO₂-, P₂O₅- und Al₂O₃-Gehalte und besonders der TiO₂-Gehalt erhöht.

Abb. 23: Chemische Zusammensetzung, Bohrkern Bockeroth

Abb. 24: Chemische Zusammensetzung, Bockeroth II

6.2.1.4 Thomasberg

Aus dem Profil Thomasberg wurden vier charakteristische Proben ausgewählt und chemisch untersucht (Tab. 5 im Anhang). Die Analysen zeigen, daß das Ausgangssubstrat dieses Profiles Unterschiede zu den typischen in dieser Arbeit untersuchten Jungwürm-Lößprofilen aufweist, bzw. zumindest mit anderen Substraten vermengt ist. Die Fe₂O₃-Gehalte liegen über denen des durchschnittlichen Jungwürmlösses. Bei der Probe 9,35 m deutet der hohe CaO und MgO-Gehalt auf einen (unverwitterten) Löß hin. Die Probe bei 19 m wurde aus dem unverwitterten, anstehenden tertiären Trachyttuff entnommen.

Abb. 25: Chemische Zusammensetzung, Thomasberg

6.2.1.5 Neustadt/Wied

Aus den Proben des Profils Neustadt wurden 11 Proben ausgewählt und chemisch analysiert (Tab. 6 im Anhang). Die chemischen Analysen alleine lassen noch keinerlei Rückschlüsse über Substrat und gegebenenfalls Alter oder paläogeographische Verhältnisse zu. Sehr gut läßt sich jedoch erneut der Tuff anhand der chemischen Analysen charakterisieren, der hier in einer Teufe von 1 m auftritt. Er zeigt erneut erhöhte Al₂O₃ (12,76 % gegenüber einem Durchnittswert von 9,7 % für das restliche Profil) sowie erhöhte TiO₂ (1,29 % ; Ø 0,78 %) und Fe₂O₃-Werte (6,38 %; Ø 3,44 %). Der Wechsel von carbonathaltigen zu carbonatfreien Proben läßt sich deutlich erkennen. Da es sich jedoch nicht um eine lückenlose Beprobung handelt und in diesem Profil mehrere Fließerden-Horizonte eingeschaltet sind, können aus diesen Analysen keinerlei Rückschluß auf Abtragungs- oder Akkumulationszeiten gezogen werden. Auf die von diesem Profil angefertigten <u>Dünnschliffe</u> und deren Auswertung (im Anhang) sei hiermit verwiesen.

Abb. 26: Chemische Zusammensetzung, Neustadt/Wied

6.2.2 Profile der Picardie

6.2.2.1 Sourdon

Fünf Proben aus dem Profil Sourdon wurden chemisch analysiert (Tab. 7 im Anhang). Hohe Glühverluste treten im obersten Löß (Probe 1,7 m) auf. Der B_t-Horizont (3,3 m) ist durch die höchsten K₂O-, Al₂O₃- und Fe₂O₃-Gehalte charakterisiert. Der Eiskeil-Löß (3,4 m) zeichnet sich durch die höchsten MgO-Gehalte aus, die durch hohe Dolomit-Gehalte (siehe Tab. 10) hervorgerufen werden; der B_t-Horizont (3,30m) und der oberste Löß sind dagegen nahezu Dolomit-frei.

6.2.2.2 Ailly

Da die Ailly-Proben sich mineralogisch (bis auf nur aus Calcit bestehenden weißen Konkretionen) voneinander nicht unterscheiden (vgl. Tab. 11), wurden nur 2 Proben chemisch untersucht (Tab. 8 im Anhang). Beide erwiesen sich auch in ihrer chemischen Zusammensetzung als +- identisch.

6.2.2.3 Heilly

Bis auf die oberste Zone I (Boden), die Carbonat-frei ist, ist das Profil durchgehend Carbonat-haltig. Während Calcit als Hauptmineral unterhalb von 0,50 m in allen Proben vorhanden ist (s. Tab. 12), ist das zweite Carbonat-Mineral, der Dolomit, in deutlichen Gehalten, aber nur in den oberen 4 Profilmetern vorhanden. Die darunter liegenden Horizonte sind Dolomit-frei. Dieses wird anhand der CaO- und MgO-Gehalte widergespiegelt (s. Tab. 9 im Anhang): Nur die Proben bis 3,55 m sind Mg- und Ca-reich (Ausnahme: Das Calcit-Band bei 6,45 m). Dieses Calcitband, das beispielhaft für die hellen Bänder analysiert worden ist, die mit schmalen dunklen Bändern wechsellagern, weist neben den hohen Calcit-Gehalten auch die bei weitem höchsten Kali-Gehalte des unteren Profilteiles auf. Derartige Wechsellagerungen von hellen und dunklen Bändern sind auch im Profil von Ailly (vgl. Abb. 8 im Anhang) zu beobachten.

Abb. 27: Chemische Zusammensetzung, Sourdon

Abb. 28: Chemische Zusammensetzung, Heilly

6.3 Spurenelement-Gehalte der untersuchten Profile

6.3.1 Profile Pleiser Hügelland und Neustadt/Wied

6.3.1.1 Birlinghoven

Aus dem Gesamtprofil Birlinghoven wurden 12 Proben Spurenelement-analytisch untersucht (Tab. 10 im Anhang). Wie bei den Hauptelementen (vgl. Tab. 10 im Anhang) zeigen auch die Spurenelemente - wenn auch nicht ganz so deutlich wie die Hauptelemente - eine Zonierung in sechs Bereiche. So weist die Bodenzone I die höchsten Cu-, Zn- und Rb-Werte auf; auch die Y-, Ba- und Zr-Gehalte sind relativ hoch. Diese oberste Zone ist auch deutlich an Sr abgereichert gegenüber der darunterliegenden Zone II.

Abb. 29: Spurenelemente des Profils Birlinghoven in Abhängigkeit von der Teufe

6.3.1.2 Rauschendorf

Die fünf analysierten Proben aus dem Profil Rauschendorf (Abb. 30 und Tab. 11 im Anhang) zeigen ein analoges Bild zu Birlinghoven: Der (hier entkalkte) Bodenhorizont bis 1,15 m weist die niedrigsten Sr-Gehalte, aber die höchsten Gehalte an Cu, Zn, Rb, Y, Zr und Ba auf.

Abb. 30: Spurenelemente des Profils Rauschendorf in Abhängigkeit von der Teufe

6.3.1.3 Bohrkern Bockeroth

Aus 20 m Bohrkern (Grundwasserbohrung) wurden 10 Proben spurenelement-analytisch untersucht (Abb. 31 und Tab. 12 im Anhang). Der obere Carbonat-reiche Horizont (1,4 m) zeigt die weitaus höchsten Sr-Gehalte, Zr, Ba, Zn und Y sind hier jedoch sehr niedrig. Erst bei 9,6 m (bis etwa 11 m) sowie ab 17,25 m weisen relativ hohe Sr-Gehalte wieder auf (Carbonat-haltigen) Löß hin. die übrigen Horizonte sind verlehmt: Niedrige Sr-Gehalte, relativ hohe Gehalte an Zn, Rb, Zr und Ba (s. Tab. 12 im Anhang).

Abb. 31: Spurenelemente des Bohrkerns Bockeroth in Abhängigkeit von der Teufe

6.3.1.3 Bockeroth II

Aus dem Profil Bockeroth II wurden vier charakteristische Proben ausgewählt (s. Abb. 32 und Tab. 13 im Anhang). Bei der obersten Probe handelt es sich um den rezenten Bt. Die Cu- und Sr- Werte sind in diesem Horizont niedrig, die Zn-, Rb, Zr-, Y- und Ba-Werte durch die Verwitterung hoch. Die Probe aus dem (darunterliegenden) Go- Horizont weist die stärksten Verwitterung-Erscheinungen auf. Die Ba- und Sr-Werte sind in diesem Horizont am höchsten. Die Proben aus dem direkt darunter liegendem Gr-Horizont weisen die niedrigsten Cu-, Zn-, und Ba-Werte auf. In einer Teufe von 5,76 m wurde die Probe aus dem sechsfach aufgespaltenen ET entnommen. Sie weist die höchsten Zr (500 mg/kg!) und Cu- und Y-Werte auf.

Abb. 32: Spurenelemente des Profils Bockeroth II in Abhängigkeit von der Teufe

6.3.1.4 Thomasberg

Aus dem Profil Thomasberg wurden 4 charakteristische Proben ausgewählt und chemisch untersucht (Tab. 14 im Anhang).

Abb. 33: Spurenelemente des Profils Thomasberg in Abhängigkeit von der Teufe

6.3.1.5 Neustadt/Wied

Aus dem Profil Neustadt wurden 10 Proben ausgewählt und spurenelement-analytisch untersucht (Tab. 15 im Anhang). Der oberst Boden-Horizont (0,39 m) ist durch die höchsten Zr-Gehalte und niedrigsten Sr-Gehalte charakterisiert. Der bei 1 m auftretende Eltviller Tuff weist die höchsten Ba-, As-, Zn- und Cu-Gehalte auf. Auch die bei 8,6 m auftretende Humuszone weist niedrige Sr-, aber relativ hohe Ba-, Rb- und Zn-Gehalte auf. In den Horizonten zwischen 3,90 m und 5,20 m sind relativ hohe Sr-, aber niedrige Ba-, Zr-, Rb- und As-Gehalte zu beobachten.

Abb. 34: Spurenelemente des Profils Neustadt in Abhängigkeit von der Teufe

6.3.2 Profile der Picardie

6.3.2.1 Sourdon

Hohe Sr-Gehalte finden sich im obersten Löß (1,7 m), im Eiskeil-Löß (3,4 m) sowie im unteren Mittelwürmboden (4,8 m). Sie gehen parallel zu relativ hohen MgO-Gehalten. Der B_t -Horizont (3,30 m) weist die höchsten Cr-, Ni-, Zn-, Ga-, Rb- und V-Gehalte auf, während Sr - wie auch in der Humuszone - recht niedrig ist (Tab. 16 im Anhang).

Abb. 35: Spurenelemente des Profils Sourdon in Abhängigkeit von der Teufe

6.3.2.2 Ailly

Die mineralogisch und nach ihrem Hauptelement-Chemismus sehr ähnlichen Proben des gesamten Profils sind auch in ihrem Spurenelement-Chemismus recht ähnlich (vgl. Tab. 17 im Anhang und Diskussion).

6.3.2.3 Heilly

Wie auch bei den Hauptelementen, so lassen sich bei den Spurenelementen die Horizonte des Profils in sieben Zonen unterteilen (s. Tab. 18 im Anhang). Die obere Lehmprobe (Zone I) weist die höchsten Rb-, Nb-, V-, Cr-, Ni-, Ba- und Zr-Gehalte auf, aber die weitaus niedrigsten Sr-Gehalte. Das helle, Calcit-reiche (Tuff-)Band bei 6,45 m weist die höchsten Sr-, und Y-, aber die niedrigsten V-, Nb-, Zr- und Rb-Gehalte auf. Das dunkle Band bei 6,55 m zeigt ebenfalls relativ hohe Cr-, Rb-, Zr- und Ba-Gehalte, aber sehr niedrige Sr-, Y- und Ga-Gehalte (vgl. ausführliche Erklärung in der Diskussion, 7.3).

Abb 36: Spurenelemente des Profils Heilly in Abhängigkeit von der Teufe

6.4 Paläoböden und Oxid-Verhältnisse

6.4.1 Paläoböden

Seit Anfang der 80er Jahre beschäftigt sich der Arbeitskreis Paläopedologie (AKPP) mit der Bildung, Inventarisierung und der Systematik von Paläoböden (vgl. Bronger & Catt, 1989, Catt, 1990) nach morphologischen und genetischen Gesichtspunkten.

Ein <u>Paläoboden</u> ist per Definition ein Boden, der sich in der Landschaft der Vergangenheit gebildet hat (übersetzt nach Yaalon 1971:"A paleosoil is by definition a soil formed in a landscape of the past…"). Der Begriff Paläoboden wird auf *präholozäne* fossile (von Sedimenten begrabenen, vgl. Mückenhausen, 1954) und relikte Böden (in der Vergangenheit gebildet, jedoch heute an der Oberfläche bzw. oberflächennah) beschränkt.¹⁷ (Bronger und Catt, 1989).

Schon 1983 wurde übereinstimmend festgestellt, daß "die Kennzeichnung der Eigenschaften und des Stoffbestandes der Paläoböden und ihr Einfluß als fossile oder Reliktformen auf die Eigenschaften rezenter Böden" näher untersucht werden müsse. Yaalon (1983) veröffentlichte "eine Inventur der Paläoböden in der Bundesrepublik Deutschland". Darin machte er besonders auf die Merkmale der Reliktböden aufmerksam. Ende der 80er Jahre wurden Paläoböden in Deutschland, England, Italien, Israel, USA und Kanada als Leithorizonte vor allem in Lößprofilen zur Korrelation eingesetzt. Stremme (1979) erkannte frühzeitig, daß die Korrelation quartärer (Pedo)-Stratigraphien sowie die mit der marinen δ^{18} O-Chronologie durch physikalische Datierungen abgesichert werden muß. Er setzte sich insbesondere für den Aufbau und die Entwicklung der Thermolumineszenz-Datierung quartärer Sedimente in Deutschland ein. Er führte weitere Forschungsvorhaben zur großräumigen stratigraphischen Korrelation von Paläoböden in Europa (Stremme, 1986, 1989, 1998) durch.

Paläoböden sind z.T. schwer von Bodensedimenten abgrenzbar, d. h. es müssen erst detaillierte tonmineralogische Analysen sowie z. T. Bodendünnschliffe angefertigt werden, um das Sediment vom Paläoboden unterscheiden zu können. Dies gilt ebenso für den Löß, da nicht jede Staubanwehung zwangsläufig einen Lößbildungsprozess ("loessification") nach sich zieht ("loess is not just an accumulation of dust", Pécsi, 1990). Erst die Mineral- Umund Neubildung läßt Rückschlüsse über Bodenbildungprozesse zu.

¹⁷im Holozän nicht rezent entstandene Böden werden als holozäne fossile Böden bzw. holozäne Reliktböden bezeichnet (Bronger und Catt, 1989) Paläoböden spiegeln nach Catt (AKPP 1993) Klimazyklen detaillierter als Tiefsee-Sedimente wider.

Neubildungen in (Paläo-)Böden sind übewiegend Schichtsilikate (Tonminerale) und Eisenhydroxide. Charakteristisch für derartige Boden-Neubildungen ist ein schlechter struktureller Ordnungsgrad, abzulesen an breiten Basisinterferenzen im Röntgendiffraktogramm und an erniedrigten OH-Abgabe-Temperaturen in DTA-Kurven. Schlechte Ordnungsgrade (d. h. hohe Fehl-Ordnung der Kristallstruktur) spiegeln geringe Bildungsenergien wider: Die niedrigen Temperaturen bei Bodenbildungsprozessen erlauben nur die Neubildung von strukturell unvollkommenen und kleineren Partikeln. Hohe Bildungsenergien sind bei Schichtsilikat-Bildungen nur in hydrothermalen Prozessen zu erwarten, wie sie für die Trachyttuff-Umbildungen des Thomasbergs abgeleitet werden (vgl. Abb. 20). Die beiden Montmorillonite bei 1,70 m und 9,50 sind an ihren vergleichbar "scharfen" Peaks bei 17,0 Å (für die gequollenen Proben) als sehr gut geordnet zu erkennen; sie repräsentieren Bildungen bei höheren Temperaturen (hydrothermale Neubildungen durch höhere Bildungsenergien). Die 0,78 m-Probe (Abb. 20) dagegen zeigt durch ihren wenig intensiven, aber sehr breiten und diffusen 17,0 Å-Reflex einen Smektit schlechten Ordnungsgrades an, wie er für die niedrigen Bildungsenergien in Böden typisch ist. In Tab. 13 sind die Ordnungsgrade der Schichtsilikate für 10 Proben (und einen Tuff) aus dem Bohrkern Bockeroth (Bo-I) aufgelistet. Für diese Bestimmungen sind die (generell nicht sehr hohen Tonmineral-Gehalte) durch Schlämmen (Gewinn der Fraktion < 2µm) und spezielle Texturproben (vgl. Methodik) angereichert worden.

Von den elf Proben wiesen nur 3 einen guten und eine Probe (= der Tuff) einen sehr guten Ordnungsgrad der Schichtsilikate auf (Ausnahme: Der im Tuff auftretende <u>Kaolinit</u>, der im alkalischen Milieu der Dreischicht-Mineral-Bildung abgebaut wird: Kaolinit ist nach Correns, 1968, oder Velde, 1992, nur im schwach sauren Milieu stabil, - daher das "typische" Tonmineral humider Tropenböden!).

Die Tonmineralgehalte der untersuchten Profile sind generell recht niedrig (< 20 %, meist weniger als 10 % insgesamt, vgl. Tab 3-12). <u>Ausnahmen</u> sind umgewandelte Tuffe, z. B. der "Kaolin" und die beiden untersuchten Trachyttuffe des Thomasbergs (Tab. 8), die - wie oben ausgeführt - durch den Einfluß höherer Bildungstemperaturen (also hydrothermal, vgl. Diskussion, 7.3) entstanden sind und dadurch einen guten strukturellen Ordnungsgrad aufweisen (vgl. Abb. 20). Aus Tab. 8 und Abb. 20 geht weiterhin hervor, daß die beiden

relativ Ton-reichen Thomasberg-Horizonte bei 1,70 m und 9,50 m ebenfalls gut geordnete Smektite aufweisen (s. Abb. 20). In diesem Profil sind zwei weitere Horizonte relativ tonhaltig, nämlich bei 6,75 m (rel. hoher Smektitgehalt) und bei 3,20 m (rel. hoher Chlorit-Gehalt, vgl. Tab. 8). Das Profil Thomasberg zeigt nach seinem Mineralbestand eine Vielfalt von sich ständig abwechselnden "Zonen" (vgl. Tab. 8: Zonen I-XII). Ton-reich sind davon III, V, XIII, X und XI, aber die (meist gut geordneten) Tonminerale sind hier keine verläßlichen Paläo-Klimaindikatoren (vgl. Diskussion, 7.3), da sie durch den Einfluß spät-vulkanogener Phasen entstanden sind.

Das ist in den übrigen Profilen anders. Die "Zonen" wechseln nicht so häufig wie am Thomasberg, die Tonminerale sind schlecht geordnet, Ton-reiche sind seltener. Im Profil Birlinghoven sind keine signifikanten Unterschiede im Schichtsilikatgehalt und in ihrem Ordnungsgrad festzustellen. Das Profil Rauschendorf zeigt bei 2,15 m eine schwache Tonmineral-Anreicherung. Im Profil Neustadt/Wied sind Tonmineral- (Illit-!)Anreicherungen bei 5,76 m (= Fließerde), 6,38 m (Reduktionshorizont) und in den älteren Lössen sowie eingeschalteten Umlagerungszonen (8,0-8,10 m, 9,68-10,45, 11,33-18,15 m) zu erkennen.

Der Bohrkern Bockeroth weist relativ Schichtsilikat-reiche Horizonte bei 1,20 m, 4,70 m bis 6,10 m (fossiler Bt) und besonders bei 10,50 m (Reduktionshorizont), 14,35 m (fossiler Bv) und ab 16,20 m (brauner Löß, zunehmend grauer werdend) auf (vgl. Tab. 5).

Die Picardie-Profile sind im Schichtsilikat-Gehalt einheitlicher. In Sourdon ist bei 3,30 m ein Glimmer-reicher (Bt-)Horizont, der darunter liegende Löß (4,80 m) ist ebenfalls Glimmer-(Illit-)reich, aber etwas weniger als der Bt. In Ailly treten erst bei 5,20 m deutliche Chlorit-Gehalte auf. Heilly zeigt einen Horizont bei 4,75 m, der an allen drei Schichtsilikat-Typen (Illit, Chlorit, Smektit/Mixed-layer) relativ reich ist. Die beiden "Tuffbändchen" 6,45 und 6,55 m sind reich an Smektit (6,45 m) bzw. Glimmern (6,55 m).

Die Unterschiede in den Gehalten und der strukturellen Ausbildung der Tonminerale können Informationen über das Paläoklima liefern (vgl. Diskussion, 7.3).
6.4.2 Oxid-Verhältnisse

Der reine Chemismus der Proben (sowie deren Spurenelement-Gehalte) läßt noch keine Aussagen über die Verwitterungsintensität an sich zu. Durch Prozesse der chemischen Verwitterung und Bodenbildung veränderte chemische Zusammensetzungen von Horizonten lassen sich viel deutlicher durch <u>Oxid-Verhältnisse</u> charakterisieren, wie es in 5.3.4. beschrieben worden ist. Daher werden im Folgenden die chemischen Komponenten der Tabellen 1-9 im Anhang in Oxid-Verhältnisse (Tab. 19-27 im Anhang) umgerechnet.

6.4.2.1 Birlinghoven

Tab. 19 im Anhang und Abb. 37 und 38 geben die chemischen Veränderungen im Profil Birlinghoven wider. Die Na₂O/Al₂O₃- und Na₂O/TiO₂-Verhältnisse sind in den obersten 0,55 m deutlich erniedrigt, K₂O/Na₂O sehr deutlich erhöht (Abb. 37). Die MgO/Al₂O₃-, MgO/TiO₂- und CaO/Al₂O₃-Verhältnisse werden durch die vorhandenen Carbonat-Minerale zwar maskiert, sind aber ebenfalls in diesem rezenten Boden sehr deutlich verringert worden. Als weitere, deutlich von den darüber und darunter liegenden Horizonten zu differenzierende Lage ist die bei 6,25 m zu erkennen. Die stark veränderten Na₂O/TiO₂, K₂O/TiO₂ und K₂O/Na₂O-Verhältnisse sowie die übrigen unterschiedlichen Oxid-Verhältnisse (z.B. Fe₂O₃/Al₂O₃, Fe₂O₃/TiO₂, Na₂O/Al₂O₃, K₂O/Al₂O₃, MgO/Al₂O₃, MgO/TiO₂ und CaO/Al₂O₃), vor allem Y/Zr und TiO₂/Al₂O₃ (Abb. 47) weisen diese Lage als ausgesprochen "verändert" aus. Nur sind diese Veränderungen nicht nur durch chemische Verwitterung, sondern auch durch die Zufuhr vulkanogenen Materials ("Eltviller Tuff") zu erklären. Das Verhältnis der beiden Hydrolysate TiO₂/Al₂O₃ erweist sich - unabhängig vom Carbonat-Gehalt, durch den CaO, MgO und Sr maskiert werden - in den Lössen, Böden und Tonen der Untersuchungsgebiete als sehr konstant (~0,07). Erhöhte Verhältnisse sind auf die Zufuhr vulkanogenen Materials zurückzuführen: intermediäre und basische Magmatite weisen nach Winogradow (1954) und Correns (1978) gegenüber Sedimenten deutlich höhere Titan-Gehalte auf; Basalte und Syenite z.B. 0,8 Gew% TiO₂ (gegenüber 0,2-0,4 % in Graniten und den meisten Sedimenten, vgl. Winogradow, 1954, und Correns, 1977).

Abb. 37: Oxid-Verhältnisse des Profils Birlinghoven in Abhängigkeit von der Teufe

Abb. 38: Y/Zr-Verhältnis sowie TiO_2/Al_2O_3 , Profil Birlinghoven

6.4.2.2 Rauschendorf

Die Verhältnisse im Profil Rauschendorf sind in Tab. 20 im Anhang und in Abb. 39 charakterisiert. Die Na_2O/Al_2O_3- , Na_2O/TiO_2- , MgO/Al_2O_3- , MgO/TiO₂sowie CaO/TiO₂-Verhältnisse sind in der obersten Zone deutlich erniedrigt, K₂O/Na₂O sehr deutlich erhöht worden (Abb. 39 a). Außerdem ist es in diesem jüngsten Bodenhorizont zur Anreicherung von Fe₂O₃ und TiO₂ gekommen (erhöhte Verhältnisse von Fe₂O₃/Al₂O₃, s. Tab. 20 im Anhang). Der Horizont bei 2,15 m erweist sich durch die höchsten Na₂O/Al₂O₃-, Na₂O/TiO₂- und K₂O/TiO₂- sowie die niedrigsten K₂O/Na₂O-Verhältnisse als am geringsten von chemischen Verwitterungsprozessen berührt. Die im Gelände zu beobachtenden "Rostflecken" des pseudovergleyten unteren Horizontes bei 5,65 m erweisen sich ebenfalls als starke Anreicherungen von Fe₂O₃ (sehr hohe Fe₂O₃/Al₂O₃- und Fe₂O₃/TiO₂-Verhältnisse). Dieser untere Horizont zeigt daneben auch bereits merkbare Spuren chemischer Verwitterung (niedrigere Na₂O/Al₂O₃- und Na₂O/TiO₂- sowie etwas erhöhte K₂O/Na₂O-Verhältnisse, vgl. Abb. 39 a, b).

Abb. 39: Ausgewählte Oxid-Verhälntisse, Profil Rauschendorf

6.4.2.3 Bockeroth

Die chemischen Verhältnisse des Bohrkerns Bockeroth (Tab. 21 im Anhang) spiegeln häufige chemische und sedimentologische Veränderungen in diesem Profil wider. Insgesamt sind hier neun unterschiedliche Zonen zu erkennen, wobei der oberste, rezente Boden durch die chemischen Analysen noch nicht einmal erfaßt worden ist. So repräsentiert die Probe 1,40 m einen nur wenig chemisch veränderten Löß. Bei 3,40 m ist ein Naßboden zu erkennen, der bereits merkbare erniedrigte Na₂O/Al₂O₃-, Na₂O/TiO₂-, K₂O/TiO₂-, MgO/Al₂O₃-, MgO/TiO₂ und CaO/Al₂O₃-Verhältnisse aufweist. Das K₂O/Na₂O-Verhältnis ist hier deutlich erhöht (Abb. 40 a).

Noch deutlicher sind die chemischen Veränderungen bei 12,50 m, das die niedrigsten Na_2O/Al_2O_3 - (vgl. Abb. 40) und die höchsten K_2O/Na_2O -Verhältnisse sowie niedrige MgO/Al_2O_3, MgO/TiO_2 und CaO/Al_2O_3-Verhältnisse zeigt. Das höchste K_2O/Na_2O -Verhältnis des Bt-Horizontes bei 12,5 m weist auf einen fossilen Boden hin. Die Zone IV bei 6,50 m (am Bohrkern makroskopisch als fossiler "Bv-Horizont" angesehen) weist weniger starke, aber ebenfalls noch merkbare chemische Verwitterungsindizien auf (vgl. Tab. 21 im Anhang). Bei 9,60 m fängt mit der Zone V wieder ein Löß-Horizont an, bis etwa 10,60 m, der kaum Verwitterungsspuren zeigt.

Ab 12 m (bis 15,60 m) sind die Horizonte wieder entkalkt, stellen so einen (chemisch etwas veränderten) Lehmhorizont (12 m) bzw. einen durch deutliche chemische Veränderungen charakterisierten fossilen Bt-Horizont bei 12,50 m und einen weniger veränderten Bv-Horizont bei etwa 15,50 m dar. Der Bt-Horizont weist die höchsten Eisenanreicherungen des gesamten Profils auf. Als unterste Lage ist dann ein nur schwach chemisch verwitterter Paläolöß zu erkennen (vgl. Abb. 40). Unter den Spurenelement-Verhältnissen (Abb. 42) zeigt Sr/Zr große Ähnlichkeit zum Na₂O/TiO₂: Hohe Verhältnisse weisen auf (kaum verwitterten) Löß hin, niedrige auf (Paläo-)Böden. Ba/Zr und Y/Zr erweisen sich unabhängig vom Carbonatgehalt. Sie sind niedrig in chemisch verwitterten, hoch in kaum verwitterten Horizonten.

Abb. 40: Ausgewählte Oxid-Verhältnisse, Bohrkern Bockeroth

Das Profil "Bockeroth II" läßt nach seinen Oxid-Verhältnissen neben dem rezenten Boden (< 1 m) und dem pseudo-vergleyten obersten Löß (1,32 m: Extrem hohe Fe₂O₃/TiO₂- und Fe₂O₃/Al₂O₃-Verhältnisse, vgl. Tab. 22 im Anhang) bei 5,38 m den <u>Eltviller Tuff</u> erkennen sowie <u>drei fossile Böden</u> (vgl. Abb. 41 b und Tab. 22 im Anhang) bei 3,36 m, 4.52 m und - etwas schwächer entwickelt - bei 5,76 m. Diese fossilen Böden zeigen deutlich geringere Na₂O/Al₂O₃-, Na₂O/TiO₂- jedoch höhere K₂O/Na₂O-Verhältnisse als die chemisch verwitterten Löß-Horizonte zwischen 1,32 und 2,76 m und bei 3,60 m (vgl. Tab. 22 im Anhang und Abb. 41). Der Eltviller Tuff ist durch sein hohes TiO₂/Al₂O₃- Verhältnis charakterisiert.

Abb. 41: Ausgewählte Oxid-Verhältnisse, Profil Bockeroth II

Abb. 42: Ausgewählte Oxid-Verhältnisse, Bohrkern Bockeroth

6.4.2.4 Profil Thomasberg

Im Gegensatz zu den bisher untersuchten Profilen, in denen durchweg ein konstantes Verhältnis der beiden Hydrolysate TiO₂/Al₂O₃ von 0,07 zu beobachten war, ist dieses Verhältnis bei Thomasberg nur in der 3,40 m Probe zu finden. Die übrigen drei untersuchten Proben weichen dagegen etwas ab (s. Tab. 23 im Anhang). Nur die dritte Probe (9,35 m) repräsentiert einen Löß. Die erste Probe (1,55 m) ist ein kaum chemisch verwitterter Lehm, wohingegen die 3,40 m-Probe einen Paläoboden darstellt: Die niedrigsten Na₂O/Al₂O₃-, K₂O/Al₂O₃-, Na₂O/TiO₂- und K₂O/TiO₂ sowie hohe K₂O/Na₂O-Verhältnisse sprechen hierfür. Auch der Löß-Horizont bei 9,35 m erweist sich durch analoge Verhältnisse + Fe₂O₃-Anreicherungen als chemisch bereits merkbar verwittert, wenn auch nicht ganz so intensiv wie der 3,40 m-Horizont.

6.4.2.5 Profil Neustadt/Wied

Die zehn Proben dieses Profils lassen sich nach den chemischen Oxid-Verhältnissen zu sechs Einheiten zusammenfassen. Die oberste Probe 0,39 m charakterisiert den rezenten Boden (erniedrigte Alkali/Al₂O₃bzw. TiO₂sowie MgO/Al_2O_3- , CaO/Al₂O₃ und CaO/TiO₂-Verhältnisse und erhöhte K₂O/Na₂O-Verhältnisse gegenüber den Horizonten zwischen 2 und 3,5 m, die auch den Eiskeil beinhalten). Die Probe bei einem Meter zeigt durchweg stark abweichende Oxid-Verhältnisse; sie repräsentiert eine Tephra-Lage. Die Horizonte zwischen 4 und 5,10 m spiegeln einen Löß wider. Bei 8,63 m ist sehr deutlich ein Paläoboden zu erkennen (Fe₂O₃-Anreicherung, stark erniedrigte Alkali/Al₂O₃- bzw. TiO₂-Verhältnisse sowie MgO und CaO/Al₂O₃ bzw. TiO₂-Verhältnisse und ein deutlich erhöhtes K₂O/Na₂O-Verhältnis). Dieser Paläoboden ist nach seinen sehr starken chemischen Veränderungen (s. Tab. 24 im Anhang) viel stärker verwittert als der rezente Boden (Abb. 26 und Abb. 44). "Verwitterungsindizes", wie sie von Nehring (2001) nach Überlegungen von Günster & Skowronek (2001) aufgestellt worden sind, lassen sich nach den hier vorliegenden chemischen Daten nicht begründen, da gerade die Mobilität und das Anreicherungsverhalten von Fe²⁺ und Fe³⁺ in Böden und Lockersedimenten mehreren Faktoren unterliegen (Eh, pH, Adsorptionskinetik) und nur begrenzt systematisch erfasst werden können (vgl. z.B. Stucki et al., 1985, Brookins, 1988, Fischer et al., 1997, Strauss et al. 1997 a, b).

Abb. 44: Ausgewählte Verhältnisse, Profil Neustadt

6.4.2.6 Picardie-Profile

Während in Ailly keine merkbaren geochemischen Differenzierungen zu beobachten sind, werden in den Profilen Sourdon und Heilly größere Variationen in den Verhältnissen der Oxide (Abb. 45, 47 & Tab. 25 im Anhang) und der Spurenelement-Verhältnisse (Abb. 46, 48 & Tab. 16, 18 im Anhang) beobachtet. Sourdon weist bei 3,3 m und - z.T. etwas abgeschwächt - bei 3,70 m sehr niedrige Alkali-/Hydrolysat-Verhältnisse auf, wie sie für deutliche Verwitterung (Bodenbildung) charakteristisch sind. Bei den Ba/Zr- und Y/Zr-Verhältnissen ist zweierlei auffallend:

"Im Prinzip" sind sie durch das Sourdon-Profil gegenläufig: Ba/Zr ist im oberen Bereich und in der untersten Probe relativ niedrig, Y/Zr in beiden Proben relativ hoch (Abb. 46).

Die 3,40-Probe ("Löß im Eiskeil") zeigt übereinstimmend hohe Ba/Zr- und Y/Zr-Verhältnisse, was - in Analogie zum Profil Birlinghoven (vgl. Abb. 22) - für einen deutlichen vulkanogenen Anteil spricht.

Das Profil Heilly ist komplizierter und weist einen (wenn auch nicht unbedingt sehr mächtigen) oberen (rezenten) Bodenhorizont auf: Typisch niedrige Na₂O/Al₂O₃- und niedrige Na₂O/TiO₂- und <u>hohe</u> K₂O/Na₂O-Verhältnisse. Von den beiden dünnen "Bändchen" bei 6,45 (hell) und 6,55 m (dunkel) ist das letztere ein (Corg-reiches) "Band", während das hellere bei 6,45 m zwar durch noch niedrigere Alkali-/Hydrolysat- und höhere K₂O/Na₂O-Verhältnisse ebenfalls Verwitterungsmaterial ist, aber doch - darauf weist das (für dieses Profil ausnehmend) hohe Y/Zr-Verhältnis hin - zu einem guten Teil aus vulkanogenem Material besteht. Die mittleren Heilly-Bereiche um 4 m Profiltiefe zeigen ebenfalls deutliche chemische Verwitterungserscheinungen, es läßt sich eine beginnende Bodenbildung feststellen (vgl. Abb. 47 und 48).

Abb. 46: Spurenelement-Verhältnisse, Profil Sourdon

Abb 47: Oxid-Verhältnisse, Profil Heilly

Abb 48: Spurenelement-Verhältnisse, Profil Heilly

6.5 Vulkanogene Horizonte

Eines der größten Probleme (vor allem bei Lößprofilen) ist die Korrelation der Aufschlüsse. Deshalb ist man z.B. auf sogenannte "Marker-Horizonte" im Löß (Kukla 1975, Horvath, 2001) angewiesen. Ebenso wie die Marker-Horizonte eignen sich auch Tufflagen zur Korrelation. Dabei werden dunkle, rein makroskopisch identifizierbare Tuffbänder und hellere Tufflagen, die erst nach detaillierten (schwer-) mineralogischen Untersuchungen zu identifizieren sind, unterschieden. Je nach Art des vorherrschenden Vulkanismus des Herkunftsgebietes können sie sauer, basisch oder intermediär sein. Es hat sich eine eigene Forschungsrichtung, die als Tephrenchronologie bezeichnet wird, entwickelt.

In den in unserem Untersuchungsgebiet anstehenden Oberwürmlössen wird von Semmel (1967, 1968, 1974), Rohdenburg und Semmel (1971), Sabelberg et al. (1971), Bibus (1973), (1980), Sabelberg & Löscher (1978), Meijs et al. (1983) und Zöller (1995) ein dunkles Tuffband ausgegliedert, das im Gelände in ein bis fünf Tufflagen aufgelöst erscheint. Hierbei handelt es sich nach diesen Autoren um den <u>*Eltviller Tuff*</u>. Im Aufschluß "Bockeroth II" wurde er erstmals in <u>sechsfacher(!)</u> Aufgliederung beobachtet und dem Arbeitskreis Paläopedologie AKKP im Gelände vorgestellt (01.-03.2000, im Beisein der Löß-Bearbeiter Semmel, Bibus und Schirmer).

Abb. 49: Bild ET, Profil Bockeroth II, Photo: Michael Frank

Das TL-Alter des Eltviller Tuffs wird nach Wintle & Brunnacker (1982) mit 19, 1 +-1, 9 ka angegeben. Zöller (1995) gibt es mit 21 ka bis 22 ka an. Frechen & Preusser (1996) geben sein Alter zwischen 31 ka und 16 ka an. Nach vergleichenden IRSL und ¹⁴C-AMS-Altern wird er bei Antoine et al. (2001) im Mittel mit 20 ka angegeben.

Aus den Oberwürmlössen werden weitere Tuffhorizonte in der Literatur beschrieben, so z. B. die Rambacher Tephra (Preusser, 1995, Frechen & Preusser, 1995 und Preusser & Frechen, 1995). Rein makroskopisch wird sie als "grau" beschrieben. Sowohl diese Rambacher Tephra als auch die nach Zöller (1995) bereits ins Riß zu stellende Kritzfelder Tephra konnten im Untersuchungsgebiet nicht nachgewiesen werden.

Außer den erwähnten dunklen Tuffen, die in den Geländeprofilen im hellen Löß gut farblich zu erkennen sind, sind im Untersuchungsgebiet z.T. bis zu 200 m mächtige (helle) Quarztrachyt-Tuffe weit verbreitet (Frechen 1972). Auf vielen dieser Tuffe haben sich tiefgründige Böden entwickelt (Tephrensaprolithe). Durch die generell in intermediären und basischen Vulkaniten recht hohen TiO₂-Gehalte weisen Abweichungen im TiO₂/Al₂O₃-Verhältnis auf Anteile derartiger Tuffe in Löß-Horizonten hin. So zeigen die oberen 5 m im Profil Birlinghoven (vgl. Tab. 19 im Anhang) ein konstantes TiO₂/Al₂O₃-Verhältnis von 0,07, wie es für die Lösse des Pleiser Hügellandes charakteristisch ist. Unterhalb von 5 m Profiltiefe nimmt dieses Verhältnis jedoch auf 0,09 zu. Auch das Y/Zr-Verhältnis weist im ET-Horizont (bei 6,25 m) seinen höchsten Wert auf (siehe Abb. 22). Im Profil Bockeroth II ist der Eltviller Tuff im Horizontbereich um 5 m sechsfach aufgespalten (vgl. Abb. 49). Die höchsten TiO₂-Gehalte treten hier direkt über dem Tuffbereich auf (vgl. Tab. 4 im Anhang). Der Bohrkern Bockeroth weist bei 3,40 m den weitaus höchsten TiO2-Gehalt auf (s. Tab. 3 im Anhang). Makroskopisch ist in diesem Profilbereich kein Tuff zu erkennen.

Im Profil Thomasberg sind ebenfalls einige Abweichungen vom "Normwert" 0,07 (TiO₂/Al₂O₃-Verhältnis), die auf vulkanogene Horizont-Anteile (vgl. Tab. 23 im Anhang) hinweisen, zu beobachten: So z.B. bei 1,55 m und 9,35 m Werte von 0,10 bzw. 0,09.

Im Profil Neustadt/Wied zeigen 7 von 10 Proben erhöhte TiO₂/Al₂O₃-Verhältnisse (vgl. Abb. 44), wobei der Tuff (in 1 m Profiltiefe) den höchsten Wert aufweist (0,10).

<u>Mineralogisch</u> ist der vulkanogene Kalifeldspat <u>Sanidin</u> eindeutiger Hinweis auf (intermediäre bis saure) Tuffe (Gehalt bis zu 75 % in Quarztrachyten !). Sanidin läßt sich sowohl im Röntgendiffraktogramm (s. Brindley & Brown, 1980) als auch optisch in Streupräparaten in vielen der (vermuteten) Tuff-Horizonte nachweisen: Birlinghoven 6,25 m, Bockeroth II 5 m, Trachyttuff und verwitterter Trachyttuff vom Thomasberg sowie in den Heilly-Horizonten 0,50 m, 3,55 m, 4,05 m und 6,45 m ("helles Tuffband"). Das Vorkommen von Amphibolen (Hornblenden) und Apatit kann zwar ebenfalls auf vulkanogene Anteile hindeuten, ist jedoch nicht so eindeutig wie das Auftreten des Sanidins, da beide Mineralarten <u>nicht nur</u> in Vulkaniten vorkommen (sondern auch in Metamorphiten, der Apatit auch in Sedimenten).

Einzig das Auftreten von (Ca-Mg-reichen) Pyroxenen weist noch auf vulkanogene Anteile hin, und zwar auf (im Gegensatz zum Sanidin, der für SiO₂-<u>reiche</u>, also saure bis intermediäre Vulkanite typisch ist) <u>basische</u> Typen (Basalte). Von allen untersuchten Profilen ist <u>nur das</u> <u>vom</u> Neustadt (relativ) reich an Pyroxenen (vgl. Tab. 9b): So sind (optisch und bei Gehalten > 3% auch röntgenographisch) in 24 der 34 Neustadt-Proben deutliche Pyroxen-Gehalte nachweisbar. Die Pyroxen-reichste Probe ist dabei die Tephra-Probe: In dieser tritt als weiteres Basalt-Indexmineral <u>Magnetit</u> auf, Fe₃O₄ (s. Tab. 9b). Der – im Streupräparat der Bockeroth 1-1,40 m-Probe gefundene und unter der Mikrosonde analysierte lichtgrüne Pyroxen (s. 6.6.11 und Farbtafel 2) ist ein Mg-Diopsid, wie er nach Correns (1968) oder Frechen (1976) für Basalte sehr typisch ist.

Das Pyroxen-reiche Profil vom Thomasberg weist- neben den Anteilen an SiO₂-armen (basaltischen) Tuffen, auf die der Pyroxen schließen läßt – auch Anteile intermediärer Tuffe auf, und zwar im unteren Profilbereich (tiefer als 10,50 m; s. Tab. 8). Hierauf deutet neben Sanidin das in drei Proben in Spuren nachweisbare vulkanogene SiO₂-Mineral <u>Cristobalit</u> hin. Es wird nur hier gefunden.

Das Profil am Thomasberg ist nach allen bisher genannten Kriterien am stärksten mit vulkanogenem Material durchsetzt, und zwar sowohl mit solchen aus Trachyt als auch mit solchen aus Basalt. Hinweise auf saure bis intermediäre Tephra-Anteile (Profil Thomasberg):

- Hohe Kalifeldspat/Plagioklas-Verhältnisse (in 8 von 23 Proben) und damit hohe K₂O/Na₂O-Verhältnisse in diesen Proben.
- Das Auftreten von <u>Cristobalit</u> in den (Tuff-reichen) Proben;
- Relativ niedrige TiO₂/Al₂O₃-Verhältnisse.

Hinweise auf basaltische Tephra, in diesem Profil:

- Hohe TiO₂/Al₂O₃-Verhältnisse einiger (neben der Bo1-3,40m-Probe) Thomasberg-Horizonte;
- Relativ hohe Pyroxen-Gehalte ;
- Niedrige Alkali-Gehalte und K₂O/Na₂O-Verhältnisse.

Außer am Thomasberg sind diese Kriterien für (meist) saure bis intermediäre oder (seltener) basische Tephren auch in vielen Proben der übrigen Profile zu beobachten (vgl. auch Abb. 21, 22, 26, 27). Die sauren bis intermediären Tephren (Thomasberg) entstammen hauptsächlich dem tertiären Ausgangsmaterial, die basaltischen Anteile kommen sowohl im Ausgangsmaterial, als auch in den quartären Deckschichten vor. Die folgende Tab. 14 gibt die Kriterien für 16 Proben aus vulkanogenem Material aus den sechs Profilen Birlinghoven, Bohrung Bockeroth (Bo-1), Bockeroth II, Thomasberg, Neustadt/Wied und Heilly wieder.

Tab. 14: Mineralogische und geochemische Charakterisierung der vulkanogenen Horizonte

Die Horizonte Birl 6,25m, Bockeroth II ~ 5m (sechsfach aufgespalten) und Neustadt/Wied 1 m galten bisher (nach Geländebefunden der oben zitierten Autoren) als der "Eltviller Tuff". Wie aus der Tabelle hervorgeht, lassen sich jedoch nur die beiden ersten Horizonte (Birl 6,25 m und Bo-II 5 m) sehr gut korrelieren, sie erweisen sich nach den aufgeführten Kriterien als (±) identisch, als (Quarz-)Trachyt-reicher (Eltviller) Tuff. Der dritte dieser Tuffe dagegen (Neu 1 m), zeigt mineralogisch (vorherrschender Plagioklas, und zwar <u>Ca</u>-reicher) als auch geochemisch (sehr niedriges K₂O/Na₂O-Verhältnis; sehr hoher TiO₂-Gehalt und sehr hohes TiO₂/Al₂O₃-Verhältnis) basaltisch-andesitischen Charakter.

<u> </u>	• •	unter 11 Proben des Profils Neustadt alt unter 11 Proben des Profils Neustadt	unter 10 Proben des Bohrkerns Bockerot
----------	-----	--	--

²¹höchster Gehalt unter 10 Proben des Bohrkerns Bockeroth ²⁰niedrigster Gehalt unter 12 Proben des Profils Birlinghoven ¹⁹zweithöchster Gehalt unter 12 Proben des Profils Birlinghoven

tadt

²⁵höchster Gehalt unter 10 Proben des Profils Heilly

Tab. 14: Mineralogisch	e und geo	chemische C	harakteris	sierung de	er vulkand	ogenen Hori	zonte
Probe	TiO ₂	SiO ₂	K ₂ O	Na ₂ O	KF	Plag.	TiO Al ₂
ET Birl 6,25 m	0,77 ¹⁸	65,7	1,6719	0,9120	Х	х.	0,0
Bohrkern Bockeroth 3,40 m	0,88 ²¹	76,12	1,66	0,6322			0,1
Bohrkern Bockeroth 10,50 m	0,69	65,78	1,64	0,88	Xx	X	0,0
Bohrkern Bockeroth 12,60 m	0,79	69,17	2,1	0,63	Х	0	0,0
Bohrkern Bockeroth 15,50 m	0,79	75,05	1,90	0,90	X	0	0,0
Bo-II 0,72 m	0,71	71,04	2,21	1,06	Х	0	0,0
$\mathbf{D}_{\mathbf{a}}$ HET 5 04 m	0.70	59.00	1.00	1.05	V···	т	0.0

Probe	TiO ₂	SiO ₂	K ₂ O	Na ₂ O	KF	Plag.	TiO ₂ / Al ₂ O ₃	Zr/Y	K ₂ O/ Na ₂ O	K ₂ O/ TiO ₂
ET Birl 6,25 m	0,77 ¹⁸	65,7	1,6719	0,9120	Х	Х.	0,09	10	1,84	2,17
Bohrkern Bockeroth 3,40 m	0,8821	76,12	1,66	0,6322			0,11	18	2,63	1,89
Bohrkern Bockeroth 10,50 m	0,69	65,78	1,64	0,88	Xx	X	0,09	16,4	1,86	2,38
Bohrkern Bockeroth 12,60 m	0,79	69,17	2,1	0,63	Х	0	0,07	15	3,34	2,66
Bohrkern Bockeroth 15,50 m	0,79	75,05	1,90	0,90	Х	0	0,09	15	2,11	2,4
Bo-II 0,72 m	0,71	71,04	2,21	1,06	Х	0	0,07		2,08	3,11
Bo-II ET 5,04 m	0,78	58,09	1,82	1,05	Xx	Ι	0,09		1,79	1,79
	0,58	64,93	1,86							
Tb 1,50 m	0,92	77,9	2,08	1,37	Х	0	0,1	15,5	1,52	2,26
Tb, Trachyttuff					XXX	Х				
Tb, verw. Trachyttuff					XXx	XX				
Neustadt ET 1,0 m	1,2923	63,74	1,99	0,74 ²⁴	Х	XX	0,1		2,69	0,57
Neustadt 0,39 m	0,84	72,25	1,99	0,93	XX	Xx	0,08		2,14	2,17
Neustadt, HZ 8,59 m	0,89	71,18	1,89	0,74	XX	XX	0,08		2,55	0,83
Heilly 0,50 m	0,8125	78,15	1,84	0,92	XX	Х	0,08	26	2	2,26
Heilly 3,55 m	0,58	63,22	1,51	0,98	Xx	X	0,08	26	1,5	2,6
Heilly 4,05 m	0,62	39,12 ²⁶	1,54	1,07	XXx	X	0,08	18	1,5	2,48

26	Probe	TiO ₂	SiO ₂	K ₂ O	Na ₂ O	KF	Plag.	TiO ₂ /	Zr/Y	K ₂ O /	K ₂ O/TiO ₂
								Al_2O_3		Na ₂ O	
	Heilly, helles Band, 6,45 m	0,53	64,48	1,37	0,59	XX	0	0,08	12	2,3	2,59
	Heilly, dunkles Band, 6,55 m	0,72	77,01	1,82	0,82	-	Xx	0,09	72	2,2	2,53

⁶niedrigster Gehalt unter 10 Proben des Profils Heilly

6.6 Spurenminerale und Mikrofossilien

Da Spurenminerale und Mikrofossilien meist durch optische Besonderheiten auffallen (hohes Relief, Farben, bestimmter Habitus, z.B. stengelig oder schuppig, charakteristische Zwillingsbildung), lassen sich viele Minerale auch dann unter dem <u>Lichtmikroskop</u> erkennen und bestimmen, wenn sie nur in <u>Spuren</u> auftreten. Die folgenden 15 Farbaufnahmen (s. Farbtafeln 1-5) sind von Streupräparaten der Proben des <u>Bohrkerns Bockeroth</u> aufgenommen worden.

An typischen Spurenmineralen der Proben dieses Bohrkerns und einiger Proben der Picardie-Löß-Aufschlüsse Ailly, Heilly und Sourdon konnten mit Hilfe der Elektronenstrahl-Mikrosonde auch chemische Analysen durchgeführt werden. Aus dem Vergleich der Bohrkern-Analysen mit solchen aus den Picardie-Lössen, aus der Identifizierung einiger Mikrofossilien und Bestimmung von Spurenmineralen charakteristischer Enstehungsmilieus (vgl. Siegel 2001) werden Informationen über die Transportbedingungen und eine (vorsichtige) Korrelation zwischen den Lössen des Pleiser Hügellandes (speziell des Vorkommens Bockeroth-1) und der Picardie-Aufschlüsse erwartet. Die gefundenen Spurenminerale sind in der Reihenfolge der in der Mineralogie gebräuchlichen Systematik (Correns 1968, Rösler 1984) aufgeführt. Formeln, physikalische Eigenschaften und Hinweise auf (primäre) Entstehungsmilieus s. ebenfalls Correns (1968), Rösler (1984), Matthes (1983). Die detaillierten Mikrosonde-Analysen sind im Anhang zu finden.

6.6.1 Rutil, TiO₂

Verwitterungsresistente, bräunliche Minerale mit hohem Relief unter dem Mikroskop. Weit verbreitet in magmatischen und metamorphen Gesteinen. Durch das (relativ) hohe spezifische Gewicht (D = 4.2 g/cm^3) werden nur recht kleine Körner in den äolischen Silten erwartet. Bild 4 auf der Farbtafel II zeigt einen typischen Rutil-Zwilling aus dem Horizont 1,40 m des Bohrkerns Bockeroth. Die folgende Tab. 15 zeigt den kristallchemischen Vergleich dieses Rutils (Probe 1,40 m, Bild 4, Farbtafel II) mit einem Rutil aus 17,25 m dieses Bohrkerns (bezogen - wie alle Mikrosonde-Analysen dieser Arbeit - auf 24 O, d.h. auf eine Formel Ti₁₂O₂₄).

Probe	Ti	Fe ^{II}	Mn	Al	Cr	Р	Σ Alkali
Bo 1, 1,40 m	10,35	1,55	0,04	0,61	0,04	0,03	0,01
Bo 1, 17,25 m	11,38	0,13	0,01	0,25	0	0	0,1

Tab. 15: Chemischer Vergleich zweier Rutile aus der Bohrung Bockeroth

6.6.2 Magnetit, $\mathbf{F}\mathbf{e}^{II} \mathbf{F}\mathbf{e}^{III}_2 \mathbf{O}_4$

Mit einer Dichte von 5,2 g/cm³ noch schwerer als Rutil, recht verwitterungsresistent und daher häufiges Seifen-Mineral in Sanden. Primär in magmatischen (Basalten!) und metamorphen Gesteinen. Die beiden hier untersuchten Magnetite der Bohrung Bockeroth unterscheiden sich vor allem im Titan-Gehalt sowie in einigen Spurenelementen (vgl. Tab. 16).

 Tab. 16: Spurenelement-Gehalte zweier Magnetite aus der Bohrung Bockeroth (bezogen auf

 24 O)

Probe	Na	K	Mg	Ti	Mn
12,50 m	0	0,09	0	1,23	0
17,25 m	0,16	0	0,06	0,02	0,12

6.6.3 Ilmenit, FeTiO₃

Bei einer Dichte von 4,5-5,0 g/cm³ (Rösler, 1984) ist dieses primär-magmatische Oxid (Gabbros, Diabase) zwar in fluviatilen oder Strandsanden ein häufiges, in äolischen Sedimenten aber eher ein seltenes Mineral. In den oberen Bockeroth-Horizonten ab und zu vorhanden, z. B. in der Probe 4,50 m (s. Analyse im Anhang), in der ein Ilmenit mit der Zusammensetzung

 $\left(Fe_{0,91}^{II} Mn_{0,04} Ca_{0,03} Na_{0,02}\right)_{1,0} (Ti_{0,98} Si_{0,02} Al_{0,01})_{1,01} O_3$

bestimmt wurde.

6.6.4 Apatit, Ca₅ [(OH, F) (PO₄)]₃

Meist etwas grünlich gefärbt, säulig-dicktafelig. Primär in (marinen) Sedimenten und Magmatiten. Dichte um 3,2 g/cm³. Farbbild 5, Farbtafel II, zeigt einen Apatit aus dem Horizont Bo 1-1,40 m.

6.6.5 Monazit, (Ce, Th) PO₄

Typisches Seifenmineral, primär in Pegmatiten. Durch relativ hohe Dichte $(5-5,5 \text{ g/cm}^3)$ selten in äolischen Sedimenten. In den Bockerothproben nur < 10 m beobachtet (selten!).

6.6.6 Titanit, CaTi[O/SiO₄]

Primär in magmatischen Gesteinen. Dichte etwa 3,5 g/cm³. In den Bockeroth-Proben 1,40 m, 3,40 m, 9,60 m, 12,50 m sowie in Ailly. Die beiden Titanit-Analysen im Anhang vergleichen einen Bockeroth (9,60m)-Titanit mit einem aus Ailly. Diese beiden Titanite unterscheiden sich kristallchemisch in charakteristischer Weise (s. Tab. 17): Der Bockeroth-Titanit ist weitaus reiner, weist auf der Si-Position nur Si auf (4,8 bezogen auf 24 O) und enthält keine Alkalien oder Mg. Im Ailly-Titanit ist etwa ein Achtel des Si durch Al ersetzt (s. Tab. 17). Die beiden resultierenden Formeln sind (bezogen auf 24 O):

 $\overbrace{Ca_{4,65} \; Fe^{II}_{0,1} Cr_{0,03} Ti_{0,02}}^{4,80} \overbrace{Ti_{4,49} \; Al_{0,24} \; Si_{0,11}}^{4,84} \left[Si_{4,8} \; O_{24}\right] Bohrkern \, 6,50 \; m$

$$\overbrace{Ca_{4,72} \text{ N}a_{0,1} \text{ K}_{0,07}}^{4,89} \overbrace{Ti_{4,52} \text{ Fe}_{0,21}^{\text{II}} \text{ M}g_{0,07}}^{4,8} \left[\overbrace{Si_{3,71} \text{ Al}_{0,62} \text{Ti}_{0,47}}^{4,8} \text{O}_{24} \right] \text{Ailly, 4,40 m}$$

Tab. 17: Vergleich der kristallchemischen Zusammensetzung zweier Titanite (bezogen auf 24 O)

Probe	Na	K	Mg	Al	Cr	Si ^{IV}
Bohrkern 9,60	0	0	0	0,24	0,03	4,8
m				$(\rightarrow B)$		
Ailly 4,40 m	0,1	0,07	0,07	0,62	0	3,71
				(für Si ^{IV})		

Siehe Abb. 50 a & b, S. 115.

6.6.7 Zirkon, Zr[Si O₄]

Die Dichte dieses sehr verwitterungsresistenten Minerals liegt - abhängig vom Ersatz des Zr durch schwerere Elemente wie Hf, Seltene Erden, Th - zwischen 3,8 und 4,8 g/cm³. Unter dem Mikroskop zeigt er ein ausgesprochen hohes Relief, so daß er gut zu identifizieren ist (s. Farbtafel 4, Bild 11: Zirkon aus Bo 1-1,40 m). In den untersuchten Bockeroth-Proben ist der Zirkon vor allem in den beiden Horizonten 9,60 m und 17,50 m zu finden, die im Gelände als rötliche bis rote Oxidationshorizonte zu erkennen sind.

Abb 50b: Titanite, Darstellung der 2. Position

6.6.8 Granate, $A_3^{II} B_2^{III} [Si O_4]_3$

Granate kommen primär in Metamorphiten vor. Diese gar nicht sehr resistenten, in ihrer Dichte zwischen 3,5 und 4,2 g/cm³ liegenden Mischkristalle sind durch (rote, grüne, schwarze) Farbe, kubischen (meist Rhombendodekaeder, "Granatoeder", s. Correns, 1968, Rösler, 1984 und Matthes, 1983) Habitus und hohes Relief unter dem Mikroskop sowie optisch isotropen Charakter (bei gekreuzten Nicols) sehr gut in den Streupräparaten zu identifizieren. Sie werden besonders häufig (d.h. zu 0.x % in den Streupräparaten) in den Bockeroth-Horizonten (1,40 m, 9,60 m und 12,50 m) sowie in den Heilly-Proben beobachtet. Auffallend ist, daß nur ein einziger Bockeroth-Horizont "granatfrei" ist, und das ist der Reduktionshorizont bei 10,30 m. Die beiden granatreichen Horizonte bei 9,60 und 12,50 m sind ganz allgemein reich an Akzessorien (Spurenmineralen), weisen mehrere Granattypen auf und außerdem (9,60 m) relativ häufig Bruchstücke von Mikrofossilien (s. u.). Die Mischkristalle der Endglieder

<u>Pyrop,</u> Mg₃ Al₂ [SiO₄]₃,

Spessartin, Mn3 Al2 [SiO4]3,

<u>Almandin</u>, $Fe_3^{II} Al_2 [Si O_4]_3$,

Grossular, Ca₃ Al₂ [SiO₄]₃,

<u>Andradit</u>, $Ca_3 Fe_2^{III} [Si O_4]_3$,

Ti-reich als "Grandit" bei Ti-Ersatz für Si (bis 25 % nach Correns, 1968) und Na-Ti für Ca und Fe als Melanit lassen sich, da die Spessartin- und Andradit-Komponenten seltener sind, in einem Dreiecksdiagramm Almandin (Fe^{II})-Pyrop (Mg)- Grossular (Ca) darstellen. Hierzu werden aus der kristallchemischen Formel

$$A_{3}^{II} B_{2}^{III} [Si O_{4}]_{3}$$

die Fe^{II}-, Mg- und Ca-Gehalte (Indices der aus der chemischen Analyse ermittelten Formeln) der <u>A-Position</u> addiert und in Prozent (Fe^{II} + Mg + Ca = 100) angegeben. Von den 13 Granaten ist nur ein Granat (Heilly 5,05 m) deutlich Ti-reich, also ein Grossular -Andradit-Mischkristall (in Abb. 51 weist ein Pfeil auf diese Probe).

In dieser Abbildung lassen sich deutlich zwei kristallchemisch voneinander verschiedene "Regionen" erkennen, eine aus Almandin-Pyrop-Mischkristallen mit höchstens eine <u>Grossular</u>-Region. umfaßt 10%-Grossular-Komponente und Die letztere 2 Heilly-Granate (darunter den Ti-Grossular) und eine Probe des Bockeroth-Horizontes 9,60 m. Die andere umfaßt alle Ailly -zwei weitere Heilly - und sämtliche anderen Bockeroth-Proben (vgl. Diskussion). Farbtafel 1 enthält zwei Granate aus dem obersten Bockeroth-Horizont, beide vergesellschaftet mit Foraminiferen-Bruchstücken.

Abb. 51: Granate

6.6.9 Chloritoid, $(Fe^{2+}, Mg, Mn)_2 (Al, Fe^{3+})(OH)_4 Al_3O_2[SiO_4]_2$

Nach dem Aussehen chlorit-ähnlich (Rösler 1983), aber ein Inselsilikat mit einer Dichte zwischen 3,4 und 3,6 g/cm³. Chloritoid ist ein typisches regionalmetamorphes Mineral aus Glimmer- und Tonschiefern (Matthes 1983, Rösler 1983). Sämtliche fünf analysierten Chloritoide sind Fe-reich, wobei jedoch das Fe^{III}/Fe^{II}-Verhältnis stark variiert (das kann als Verwitterungsgrad der Probe genommen werden): Das Maß für den größte Fe^{III}/Fe^{II}-Verhältnis weist eine der zwei Bo 1-1,40 m-Proben auf (vgl. Tab. 18). Nach ihren darstellenden Punkten im Dreiecksdiagramm Mg- Σ Fe- S Alkalien sind alle fünf Proben identisch. Unterschiede ergeben sich beim Betrachten der Spurenelemente (Ti, Mn, Alkalien) und des Oxidationsgrades (s. Tab. 18). Dabei sind die Proben von Ailly und Bo 1-12,50 m bis auf den Oxidationsgrad völlig identisch, und die der einen Bo 1-1,40 m-Probe ist nahezu identisch mit diesen beiden. Die zweite Bo 1-1,40 m-Probe fällt durch deutliche Alkali- und Mn-Gehalte heraus. Die Probe bei 17,25 m ist diesem 2. Bo 1-1,40 m-Chloritoid zwar recht ähnlich, erweist sich aber durch einen relativ hohen Ti-Gehalt als unterschiedlich.

Probe	Fe ^{III} /Fe ^{II} Gesamtprobe	Ti	S Alkalien	Mn	Al/∑Fe (Position 2,0)
1 Bo 1-1,40 m	0,07	0,02	0,02	0,04	6
2 Bo 1-1,40 m	14,3	0	0,38	0,34	0,8
3 Bo 1- 12,50 m	7,1	0	0,04	0,04	3,3
4 Bo 1- 17,25 m	0,04	0,91	0,4	0,09	0,7
5 Ailly 4,40 m	0,6	0	0,04	0,04	4,7

Tab. 18: Kristallchemie der Chloritoide (bezogen auf 24 O)

Abb. 52: Chloritoide

6.6.10 Epidot, Ca₂ Al₂ (Fe³⁺, Al) [O/OH Si O₄/Si₂ O₇]

Das gewöhnlich feinkörnige, grüne Mineral kommt vor allem regionalmetamorph, seltener magmatisch (in Pegmatiten) vor, Dichte 3,35 bis 3,4. Optisch: Stark pleochroitisch. Mit zunehmendem Fe-Gehalt: Pistazit. Mn-Epidot: Piemontit. Mit Ausnahme des Reduktionshorizontes 10,10 m sind Epidote in allen Bockeroth-Horizonten zu finden. Farbtafel III zeigt einen Epidot aus dem Bo1-Horizont 6,50 m, einmal bei gekreuzten, einmal bei parallelen Nicols (Bild 7 & 8). Nach den Analysen (s. Anhang) sind die beiden untersuchten Bockeroth-Epidote (1,40 m und 9,60 m) identisch, während der Sourdon-Epidot ein Mn-Epidot (Piemontit) ist.

Tab. 19: Kristallchemische Zusammensetzung von drei Epidoten (bezogen auf 24 O)

Probe	Formel
Bo 1-1,40 m	$(Ca_{3,67} K_{0,01})_{3,86} Al_{4,0} O_2 (Fe^{II}_{0,76} Fe^{III}_{0,75} Al_{0,24} Mg_{0,09})_{1,84} (OH)_2 [Si_{6,0} O_{22}]$
Bo 1-9,60 m	$Ca_{3,66} \left(Al_{3,94}Fe_{0,06}^{III}\right)_{4,0} O_2 \left(Fe_{0,84}^{II}Fe_{0,40}^{III} Ti_{0,265} Mg_{0,33}Cr_{0,02}\right)_{1,86} (OH)_2 [Si_{6,0} O_{22}]$
Sourdon, Löß im Eiskeil	$\left(Ca_{0,95} \text{ Mn}_{0,93} \text{ Mg}_{0,35} \text{ Na}_{0,08} \text{ K}_{0,04}\right)_{3,27} \text{ Al}_{4,00} \text{ O}_2 \left(\text{Fe}_{1,46}^{\text{II}}\text{Fe}_{0,44}^{\text{III}} \text{ Al}_{0,08} \text{ Ti}_{0,02}\right)_{2,0} (\text{OH})_2 [\text{Si}_{6,0} \text{ O}_{22}]$

Das wird noch deutlicher in den beiden Dreiecksdiagrammen Ca- Σ Alkalien-Mn (erste Position) und Fe^{II}-Fe^{III}-Al (Position 2,0), s. Abb. 53 und Abb. 54. Der Mn-reiche Sourdon-Epidot ist von den untersuchten Bockeroth-Epidoten völlig verschieden.

Abb. 54: Epidot, Darstellung der 2. Position

6.6.11 Pyroxen, Ca Mg [Si₂O₆]

Häufige Kettensilikate, besonders in Magmatiten (Basalten!), auch in Metamorphiten. Nicht sehr verwitterungsresistent. Dichte 3,1-3,5 g/cm³. In den untersuchten Proben nur selten zu finden, dann licht- bis lauchgrün (z.B. der Pyroxen aus Bo 1-1,40, s. Farbtafel 2, unterstes Bild). Außer im obersten Bockeroth-Horizont auch in Heilly 5,05 m. Der analysierte (lichtgrüne) Augit hat die Zusammensetzung:

$$(Ca_{2,02} K_{0,05} Na_{0,13} Fe_{1,03}^{III} Fe_{0,07}^{II} Mn_{0,02})_{3,52} (Mg_{3,49} Al_{0,36} Fe_{0,15}^{III})_{4,0} [Si_{8,0} O_{24}]$$

6.6.12 Amphibole, A₂ B₅ [(OH, F)₂ (Si, Al)₈ O₂₂]

Metamorphe oder magmatische Minerale, häufig, aber nicht sehr verwitterungsresistent. Dichte 2,9-3,4 g/cm³. Mit Ausnahme der Bt-Horizonte (4,50 m, 12,50 m) in allen Horizonten des Bohrkerns Bockeroth zu finden und auch in Ailly 2,10 m. Das Farbbild 14 (Farbtafel 5) zeigt einen giftig-grünen Aktinolith-Stengel aus der obersten Bockeroth-Schicht (1,40 m), der nach seinem optischen Charakter ein (ziemlich) reiner Ca₂ Mg₅ [(OH, F)₂ (Si, Al)₈ O_{22}]-Vertreter ist. Vier analysierte Amphibole (s. Abb. 55 und Analysen im Anhang) sind relativ ähnlich, wobei - wie auch bei den Granaten (vgl. Abb. in 6.6.8) - auch hier auffällt, daß der Bockeroth-Horizont bei 9,60 m die unterschiedlichsten Typen aufweist. Ein Amphibol dieser Lage ist am ähnlichsten dem Ailly-2,10-Amphibol (wie auch bei den Granaten!).

Abb. 55: Amphibole

6.6.13 Turmaline, X Y₉ B₃ [O, OH, F/Si₆ O₁₈]₆ (OH)₁₋₂

Das stengelige, sehr verwitterungsresistente Ringsilikat stammt aus Magmatiten und Metamorphiten. Es ist chemisch recht variabel und bildet Mischkristalle zwischen <u>Na-Li-Al-(Elbait)</u>, <u>Na-Mg-Al-(Dravit)</u>, <u>Na-Fe-Al-(Schörl)</u> und <u>Ca-Mg-Al-Borat-Silikaten</u> (Uvit). Bor wurde in den 4 Analysen (s. Anhang) nicht bestimmt. Durch die geringe Verwitterungsanfälligkeit gelangen die kleinen, hochlichtbrechenden grünen, gelben oder schwarzen (seltener: roten, rosagefärbten) Stengel in Sande und Silte (Dichte: 2,9-3,25 g/cm³) und werden als kleine Bruchstücke auch äolisch verfrachtet. Bis auf einige Bt-Horizonte sind Turmaline in allen Bockeroth-Horizonten und Picardie-Lössen zu finden. Die Farbbilder 13 (Farbtafel V) und besonders 10 (Farbtafel IV) zeigen grüne, (halb-) idiomorphe Turmalin-Stengel aus der obersten Bockeroth-Schicht (1,40 m). Sowohl in der Dreiecks-Darstellung (Al-Mg-Fe, Y-Position!) als auch in der folgenden Tab. 20 ist zu erkennen, daß alle vier chemisch analysierten Turmaline (Bo 1-1,40 m, Bo 1-9,60 m, Bo 1-12,50 m, Ailly 2,10 m) identisch sind.

Probe	Na	Ca	K	Σ Alk.	Mg	Al	Fe ^{II}	Fe ^{III}	Fe _{tot}	Ti
				+ Ca					al	
Bo 1,40 m	1,04	0,02	0,05	1,11	1,42	5,8	0,67	0,27	0,94	0,08
Bo 9,60 m	0,95	0,03	0,02	1,00	1,39	5,6	0,8	0,1	0,90	0,02
Bo 12,50 m	0,94	0,02	0,02	0,98	1,26	5,85	1,13	0	1,13	0,07
Ailly 2,10	0,59	0,06	0,01	0,66	1,23	6,1	0,94	0,23	1,17	0,07

Tab. 20: Kristallchemische Zusammensetzung	von vier Turmalinen (bezogen auf 24 O)

Abb. 56: Turmaline (Y-Position)

Die Ailly-Probe ist nach diesen Daten und auch der allgemeinen chemischen Zusammensetzung (Tab. 20) der Bo 1- 12,50 m-Probe am ähnlichsten.

6.6.14 Chlorite, (Mg, Fe, Al)₆ [(OH, O)₈ (Si, Al)₄ O₁₀]

Metamorphe oder magmatisch-hydrothermale, seltener sedimentär-diagenetische oder pedogene Bildung. Schichtsilikate geringer Dichte (2,5-2,6 g/cm³), daher äolisch gut verfrachtbar.

Die beiden analysierten Chlorite aus zwei Bockeroth-Horizonten (s. Anhang) sind identisch (vgl. Abb. 57).

Abb. 57: Chlorite

6.6.15Glimmer,K Al_2 [(OH)_2 Al Si_3 O_{10}](Muskovit)undK (Mg, Fe, Al)_3 [(OH)_2 Al Si_3 O_{10}] (Biotit)

Häufige Schichtsilikate magmatischer oder metamorpher Herkunft. Dichte: 2,75-3,1 g/cm³. Muskovit ist relativ verwitterungsresistent, Biotit nicht. Von den 5 analysierten Glimmern (drei Biotite und zwei Muskovite, s. Anhang) aus Bockeroth-1 liegen drei Biotite zwar deutlich auseinander (s. Abb. 41), aber doch nicht so weit, daß sie nicht - nach unterschiedlicher "Verwitterungsgeschichte" - aus der gleichen Quelle stammen könnten (Biotite sind recht anfällig gegen die Verwitterung). Die beiden analysierten Muskovite (1,40 m, 17,25 m) sind <u>identisch</u>, wie Formeln und Darstellung im Diagramm Mg- Σ Fe-Al. Häufige Schichtsilikate magmatischer oder metamorpher Herkunft. Dichte: 2,75-3,1 g/cm³. Muskovit ist relativ verwitterungsresistent, Biotit nicht. Von den 5 analysierten Glimmern (drei Biotite und zwei Muskovite, s. Anhang) aus Bockeroth-1 liegen drei Biotite zwar deutlich auseinander (s. Abb. 59), aber doch nicht so weit, daß sie nicht - nach unterschiedlicher "Verwitterungsgeschichte" - aus der gleichen Quelle stammen könnten (Biotite sind recht anfällig für die Verwitterung). Die beiden analysierten Muskovite (1,40 m, 17,25 m) sind <u>identisch</u>, wie Formeln und Darstellung Muskovite (1,40 m, 17,25 m) sind <u>identisch</u>, wie Formeln und Darstellung Muskovite (1,40 m, 17,25 m) sind <u>identisch</u>, wie Formeln und Darstellung migramm Mg- Σ Fe-Al (Abb. 58) zeigen. Kristallchemische Zusammensetzung der Muskovite:

 $(K_{1,73} Na_{0,27})_{2,0} (Al_{4,35} Fe_{0,3}^{II} Mg_{0,29} Ti_{0,08} Mn_{0,03} Fe_{0,03}^{III})_{5.08} [(OH + F)_4 (Si_{6,95} Al_{1,05})O_{20}]$

 $\left(K_{1,67} \text{ Na}_{0,15} \text{ Ca}_{0,05}\right)_{1,87} \left(\text{Al}_{4,24} \text{ Fe}_{0,48}^{\text{II}} \text{ Mg}_{0,24} \text{ Fe}_{0,19}^{\text{III}} \text{Ti}_{0,12}\right)_{5,27} \left[\left(\text{OH} + \text{F}\right)_4 \left(\text{Si}_{6,87} \text{ Al}_{1,13}\right) \text{O}_{20}\right]$

Abb. 58: Muskovite

Abb. 59: Biotite

6.6.16 Glaukonit, $(K, Ca, Na)_{<1}$ (Al, Fe^{II}, Fe^{III}, Mg)₂ [(OH)₂(Si, Al)₄ O₁₀]

Illit-ähnlicher, sedimentärer Glimmer grüner Farbe (Fe^{II}). Diagenetisch in Sandsteinen und (vor allem) in marinen küstennahen Delta-Sedimenten, aber auch in Tiefseetonen (selten).

Beobachtet im 2.fBt (6,50m) von Bockeroth 1 (s. Farbtafel IV, Bild 12) als Aggregat mikrokristalliner grüner Partikel.

6.6.17 Palygorskit, $(Mg, Al)_2 [OH/Si_4O_{10}] \times 2 H_2O + 2 H_2O$

Stengelig-nadelige, röhrenförmige Mg-(Al-) Silikate geringer Dichte und komplexer Struktur (kombinierte Schicht-/Kettensilikate). Vorkommend in flachmarinen küstennahen Sedimenten und in sub-tropischen Böden. Eitel (1994) beschreibt Palygorskit-Neubildungen in namibischen Sabkha-Sedimenten. Zöller (2003, in Vorb.) fand idiomorphe Palygorskit-Nadeln neugebildet in Böden über Löß auf Lanzarote.

Als Spurenmineral wird Palygorskit auch hier in den Lössen des Pleiser Hügellandes und in der Picardie gefunden (vgl. Mineralogie), aber nicht licht- oder elektronenoptisch. Offensichtlich liegen hier sehr kleine, xenomorphe Kriställchen vor (vgl. Diskussion).

6.6.18 Feldspäte, K Al Si₃O₈ (Orthoklas, Mikroklin, Sanidin); Plagioklas-Mischkristalle aus Na Al Si₃O₈ (Albit) und Ca Al₂ Si₂ O₈ (Anorthit)

Feldspäte, die häufigsten Minerale magmatischer und metamorpher Gesteine der Erdkruste, sind normal keine Spurenminerale. In äolischen Sedimenten (Lössen) kommen sie jedoch nur in geringen Gehalten vor. Da sie nicht sehr verwitterungsresistent sind, sind sie auch nur in sehr jungen Böden anzutreffen. Das läßt sich sehr gut in den Horizonten der Bohrung Bockeroth erkennen: Nur in den obersten sieben Metern sind Plagioklase und Kali-Feldspäte optisch (und ab und zu auch röntgenographisch) zu finden, darunter fehlen sie (vgl. Tab. 5). Der Kalifeldspat-reichste Horizont der Bohrung Bockeroth ist 6,50 m (2.fBt), der Plagioklas-reichste die oberste Lage (1,40 m), aus der auch der <u>Albit</u> der Farbtafel 2 (Bild 6) stammt.

Der Bockeroth-Horizont 12,50 m enthält sowohl <u>Na</u>-reiche <u>Plagioklase</u> (Albit, Oligoklas) als auch <u>Ca</u>-reiche (vgl. Abb. 60) Die letzteren sind nach ihrer kristallchemischen Zusammensetzung identisch mit denen in Heilly, wie die Zusammenstellung der kristallchemischen Feldspatformeln (Tab. 21) zeigt.

Tab. 21: Kristallchemische Zusammensetzung der Feldspäte

F1-Bohrkern Bockeroth 1,40 m	$(Na_{0,68} Ca_{0,2} K_{0,01}) (Al_{1,06} Fe_{0,05}^{III}) [Si_{2,9} O_8]$	Oligoklas-Andesin
F2-Bohrkern Bockeroth 12,50 m	$\left(\mathrm{K}_{0,87}\mathrm{Na}_{0,03}\mathrm{Ca}_{0,07}\mathrm{Fe}_{0,04}^{\mathrm{III}}\mathrm{Fe}_{0,02}^{\mathrm{II}}\right)\left(\mathrm{Al}_{0,97}\right)\left[\mathrm{Si}_{2,95}\mathrm{Al}_{0,05}\mathrm{O}_{8}\right]$	Anorthoklas
F3-Bohrkern Bockeroth 12,50 m-2	$(Na_{0,76} Ca_{0,07} K_{0,01} Fe_{0,03}) (Al_{1,06}) [Si_{2,95} Al_{0,05} O_8]$	Albit-Oligoklas
F4-Bohrkern Bockeroth 12,50 m-3	$(Na_{0,86} Ca_{0,15} K_{0,04} Mn_{0,01}) (Al_{0,94} Fe_{0,04}^{III} Ti_{0,02}) [Si_{2,82} Al_{0,18} O_8]$	Albit
F5-Heilly 4,20 m	$(K_{0,85}Na_{0,13}Ca_{0,06})(Al_{0,94} Fe_{0,033}^{III} Ca_{0,026} Ti_{0,003})[Si_{2,95} Al_{0,05}O_8]$	Anorthit

	К	Na	Ca	Summe
F1	0,01	0,68	0,02	0,71
	1,4	95,8	2,8	100
F2	0,87	0,03	0,07	0,97
	89,7	3,1	7,2	100
F3	0,01	0,76	0,07	0,84
	1,2	90,5	8,3	100
F4	0,04	0,86	0,15	1,05
	3,8	81,9	14,3	100
F5	0,8	0,1	0,1	1
	80,0	10,0	10,0	100

6.6.19 Überblick über die Spurenminerale der Bohrung Bockeroth

Von dieser Bohrung sind die meisten Proben vorhanden (Teufe bis 18 m). Sie stellt verglichen mit den übrigen Profilen - das repräsentativste "Profil" dar und wird daher für die Spurenmineral-Übersicht als "Fallbeispiel" herangezogen. Außer den in 6.6.1 bis 6.6.18 behandelten Mineralen treten noch <u>Cordierit</u> (ein metamorphes Mg-Silikat, Probe 9,60 m), das Y-Phosphat Xenotim (ein typisches Pegmatit-Mineral) und das für hydrothermale Gangbildungen typische Sb-Sulfid <u>Antimonit</u> (Sb₂S₃) auf. Xenotim (neben Sanidin, Mikroklin und Glaukonit) in 1.fBt (4,50 m), Antimonit - neben mehreren Granat-Typen im 3. fBt (12,50 m). Der Go-Horizont bei 9,60 m erweist sich als ausgesprochen reich an Spurenmineralen (und Fossilien!). Hauptminerale aller Horizonte sind Quarz, Carbonate (meist Calcit, seltener Dolomit) und "Tonminerale", bei denen es sich meist um Smektite handelt.

Die folgende Tab. 22 a faßt die Spurenmineral-Assoziationen der Bockeroth-1-Horizonte zusammen. Die Summe aller Spurenminerale eines Horizontes sind maximal 3% der Gesamtprobe. Die folgenden Abschätzungen beziehen sich auf diesen Wert, d. h. XXX bedeutet > 30 % von diesen 3 % usw.

6.6.20 Mikrofossilien

In den Farbtafeln 1 (Bilder 1-3) und 5 (Bilder 13-15) sind Bruchstücke von Flachmeer-Fossilien abgebildet, sämtlich aus dem obersten Bockeroth-Horizont (1,40 m). Neben einer Bryozoe (Bild 2) sind das Bruchstücke von Foraminiferen. Außer in dem 9,60 m-Horizont (Go) sind auch in einigen Ailly - und Heilly-Proben ähnliche Foraminiferen-Bruchstücke zu beobachten, allerdings nicht so (relativ) gut erhaltene wie in der 1,40 m-Schicht. Nähere Angaben zur Art und genauen Charakterisierung der Fossilien sind durch das Zerbrechen der Schalen (auf dem Transport) sehr schwer möglich. Die Foraminiferen (-Bruchstücke) ähneln - soweit es die kleinen Schalenteile erlauben - tertiären (miozänen) Foraminiferen, wie sie z.B. von Knabe (2000) aus den Schwemmlössen des Sinai beschrieben worden sind. Dort, im Sinai, sind diese Fossilien nach einem äolischen Transport aus dem Golf von Suez (Transportweg etwa 100 km) allerdings sehr viel besser erhalten als in den Lössen des Pleiser Hügellandes und der Picardie.
Spurenminerale	1,40 m	3,40	4,50	6,50	9,60	10,10	12,50	17,50
		m	m	m	m	m	m	m
opak	х	Х	-	XX	Х	-	Х	х
(Magnetit, Ilmenit)								
Muskovit	x	-	X	Х	X	-	XX	XX
Biotit/Chlorit	х	Ι	Х	XX	XX	-	Х	XX
Kalifeldspat	-	-	Х	XX	х	-	-	-
Plagioklas	XX	Х	-	Х	-	-	-	-
Granat	XX	-	Х	Х	XX	-	XX	х
Apatit	Х	-	-	-	-	Х	Ι	Ι
Rutil	Х	-	Х	Х	-	Х	-	-
Amphibole	Ι	Х	-	-	XX	Х	-	Х
Epidot	Х	х	-	Ι	х	-	Х	XX
Klino-Pyroxen	Ι	-	-	-	-	-	-	Ι
Monazit	Х	х	Х	Ι	х	Х	Ι	-
Sphen (Titanit)	Х	х	-	-	Х	-	Х	-
Turmalin	х	Х	-	XX	Х	Х	Х	Х
Zirkon	-	-	-	-	х	-	Ι	х
sonstige	-	-	Ι	Ι	Ι	-	Ι	
				Glau			$\mathbf{Sb}_2\mathbf{S}_3$	
			Xeno	konit	Cordi			
			tim		erit			
Fossilien	Х	-	-	-	Х	-		
					Fora			
	Foramini-				mini-			
	feren,				feren,			
	Bryozoen							
					Bryo			
					zoen			

Tab. 22a : Spurenminerale des Bohrkerns Bockeroth

xxx = Hauptbestandteil	I = Spuren, < 5 %
xx => 15 %	- = nicht vorhanden
x = > 5%	

Mineral	Heilly	Sourdon	Ailly 2,10 m	Ailly 4,40 m
Calcit	XX	XX	XX	XX
Dolomit	Х	Х	Х	Ι
Glimmer/Chlorit	X	X	Х	XX
K-Feldspat	-	X	XX	Х
Plagioklas	X	X	Х	Х
Granat	XXX	XX	Х	-
Amphibol	XX	XX	XX	x (Kaersutit)
Turmalin	X	X	Х	Ι
Epidot	X	xx (Mn~)	Ι	Ι
Staurolith	Ι	X	-	-
Zirkon	Х	x (idiom.)	x (idiom.)	Ι
Monazit	Х	-	Ι	-
Ilmenit	Х	Х	Х	Ι
Magnetit	Х	Х	Х	Х
Rutil	X	X	Х	XX
Hämatit	X	X	Х	Х
Apatit	Ι	XX	Ι	Х
Sphen	-	Ι	Ι	Х
Glaukonit	Ι	Ι	-	Ι
Pyroxen	Х	Ι	-	Ι
Chloritoid	-	-	-	Ι
Fossilien	XX	XX	Х	X

Tab. 22 b: S	purenminerale der Picardie-Proben (0	ptik und REM	[)
				_

XXX	= häufig
XX	= deutlich
X	= selten
Ι	= sehr selten
-	= nicht beobachtet

In den folgenden Farbtafeln (Bilder 1-15) sind charakteristische Beispiele für Spurenminerale und Mikrofossilien aus verschiedenen Horizonten der Bohrung Bockeroth aufgeführt.

Sämtliche hier abgebildeten Minerale entstammen dem Bohrkern Bockeroth.

Bild 1 Bo 1-1,40 m, Foraminifere Nicols x

Bild 2 Bo 1 -1,40 m Bryozoe, Nicols II

Bild 3 Bo 1- 1,40 m Foraminiferenbruchstücke, Nicols II

Bild 4 Rutil-Zwilling, Nicols II Bo 1-1,40 m

Bild 5 Bo 1-1,40 m, halbidiomorpher Apatit. Nicols II

Bild 6 Bo 1-1,40 Albit-Zwillinge, Nicols X

Bild 7 Bo 1 - 6,50 m, Epidot (Bildmitte) Nicols x

Bild 8 Bo 1 - 6,50 m wie 7, aber II Nicols

Bild 9 Bo 1 - 1,40 m, Pyroxen (Diopsid) Nicols II

Bild 10 Bo 1-9,60 m, idiomorpher Turmalin

Bild 11 Bo 1 - 1,40 m Zirkon (hohes Relief), Bildmitte Nicols II

Bild 12 Bo 1-6,50 m, Glaukonit Bildmitte, Nicols

Bild 13 Bo 1- 1,40 m, NicolsII, Granat (rechts) Foraminifere (links) kleiner idiomorpher Turmalin (Mitte, links oben)

Bild 14 Bo 1 - 1,40 m Nicols II Aktinolith (Amphibol) Foraminiferen-Bruchstück (rechts)

Bild 15 Bo 1, 1,40 m Nicols II Granat-Bruchstück, (links), Foraminiferen

6.7. Korngrößenanalyse und Isotopenbestimmungen

6.7.1 Korngrößenanalyse

Detaillierte Korngrößenanalysen von den hier untersuchten Profilen sind (bis auf die Picardie-Profile und das Vorkommen Bockeroth II) bei Nehring (2001) zu finden. Nehring hat die Korngrößenzusammensetzungen dieser Profile mit der Pipette-Methode nach Köhn bestimmt. Seine Analysen zeigen (wie auch die eigenen Bestimmungen, s. u.) relativ geringe Variationen in der Korngrößenzusammensetzung- ausgenommen die tonigen Horizonte und die skelettreichen Fließerden. In den tonigen Horizonten (die auch die vulkanogenen Horizonte einschließen) ist die mittlere Korngröße naturgemäß durch den höheren Tonmineralgehalt geringer als in den normalen Lössen. Die skelettreichen Fließerden erscheinen durch wechselnde Anteile gröberer Gesteinsbruchstücke im Mittel grobkörniger. Besonders deutlich wird dieses in dem (ton- und tuffreichen) Profil Thomasberg (Nehring 2001). Generell überwiegt in sämtlichen Profilen die für Lösse normale Silt-Fraktion (Maximum im Grobschluffbereich). Einzelheiten siehe Nehring (2001).

Zusätzlich zu den bei Nehring (2001) aufgeführten Korngrößendaten sind hier von solchen Profilen und Horizonten Korngrößenbestimmungen nach der in 5.1.1 beschriebenen Lasermethode durchgeführt worden, die für die Fragestellung dieser Arbeit besonders interessant waren. Das gilt für den unteren Teil des Profils Birlinghoven, für den Eltviller Tuff-Horizont von Rauschendorf sowie für das gesamte Profil Bockeroth II. Die Picardie-Profile Ailly und Heilly wurden hier ebenfalls nach der Köhn-Methode korngrößenanalytisch untersucht; vom Profil Sourdon gibt es Korngrößendaten von Antoine (1998). Alle diese Daten bestätigen die oben gemachten Aussagen.

Von besonderem Interesse (vgl. 5.1.1) sind Laser-Korngrößendaten aus den für die Sr-Isotopenbestimmungen herangezogenen Proben des "Eltviller Tuff"-Horizontes in Rauschendorf. So wurden für die Laser-Bestimmung exemplarische, geringmächtige Bänder (Löß/Tephra-Gemisch: 2 Proben aus Rauschendorf) und Löß der Profile Rauschendorf, Bockeroth II und Birlinghoven analysiert (s. Tab. 23 a,b).

In mehreren Profilen sind bereits im Gelände feinere und gröbere Lagen zu erkennen, auch zyklische, wenige mm-mächtige Wechsel zwischen helleren und dunkleren Schichten, die sich mineralogisch, geochemisch und spurenelement-analytisch unterscheiden. So etwa im Profil Heilly, wo das hellere Band (Probe 6,45 m) kalkhaltig ist und als Feldspat Sanidin führt, so daß man auf einen Tuff schließen kann (im dunkleren Band ist der vorherrschende Feldspat Plagioklas). Seltene Minerale wie das Na-Sulfat Mirabilit (Na₂SO₄ \times 10H₂O) treten in dieser Schicht auf. Der Glühverlust, wenn man die chemischen Analysen hinzuzieht, ist mit 14,26 % sehr hoch. Auch die Spurenminerale zeigen deutliche Unterschiede zwischen dem helleren und dunkleren Band: Das dunklere zeigt eine sehr hohe Konzentration an dem verwitterungsbeständigen Element Zirkon, sehr hohe Barium-Gehalte und ein Minimum an Sr und Yttrium (Y), während das hellere Band niedrigere Gehalte an Barium, Sr, Rb und Zr zeigt. Mineralogisch kann man im helleren Band Tonminerale, v. a. Smektit und Mixed-Layer, untergeordnet Chlorit und Illit feststellen, während das dunklere Band keinerlei Tonminerale aufweist. Daraus könnte man schließen, daß das hellere Band vor seiner Ablagerung einen Verwitterungs- bzw. Bodenbildungsprozeß durchlaufen hat (vgl. Diskussion). Im helleren Band befinden sich Spuren von Palygorskit.

Ihr Auftreten ist nicht nur für die Picardie typisch: So wurde im Untersuchungsgebiet Pleiser Hügelland eine Probe vom Eltviller Tuff mit einem Aluminium-Stechkasten genommen. In den Proben treten diese zyklischen, mm-starken Wechsel ebenfalls auf. Diese Proben wurden sedimentologisch (Laser-Korngrößen-Analyse) und zwei von ihnen (Rau-L-4, fein & Rau-L-7, grob) exemplarisch Sr-isotopisch untersucht (siehe 6.7.2 & Diskussion).

Tab.23a:Laser-Korngrößenuntersuchungen von mm-Wechsellagen aus dem ProfilRauschendorf (grob)

Tab.23b:Laser-Korngrößenuntersuchungen von mm-Wechsellagen aus dem ProfilRauschendorf (fein)

Die Angabe der Korngrößen-Klassen erfolgt - wie in bei der Laser Analysette üblich - in Phi. Zur Umrechnung in mm: $D(mm) = 2^{-phi}$ (vgl. auch Konert, 2001 & B. Smykatz-Kloss et al. 2003, im Druck). Konert (2001) und Konert & Vandenberghe (1997) haben mit Hilfe einer mathemathischen Korrektur die Unterschätzung der Tonfraktion durch Gleichsetzen der Fraktionen <5,5 μ m und < 8 μ m mit der Köhn-Fraktion < 2 μ m erreicht (vgl. Konert & Vandenberghe, 1997). Dieses wurde durch vergleichende Versuche (B. Smykatz-Kloss et al., 2003, im Druck) bestätigt.

Die Tab. 23 a,b zeigt, daß sich die Anteile der feinen Proben hin zu den groben Proben in einer Korngößen-Klasse im Durchschnitt in der T-Fraktion zwischen 1,04-1,46 %, in der U-Fraktion bei fU: 1,74, mU: 2,14 und gU: 3,06 Pozentpunkte verschieben. So etwa in der Klasse < 12-10,5 φ , die bei den feinen Proben im Ø 11,02 % und bei den gröberen Proben Ø 9,98 % ist. Noch deutlicher zeigt sich das bei der gU-Fraktion: Bei den feinen Proben liegt der gU-Anteil bei Ø 35,7 %, während er bei den gröberen Proben bei Ø 38,76 % liegt. Bei allen groben Proben liegt ein Feinsand-Gehalt von 0,1 % vor, während in keiner der feinen Proben Feinsand nachweisbar ist. Diese Verschiebungen treten bei den *Summen* der U-Fraktion nicht mehr so deutlich hervor, weisen aber im Mittel noch 0,74-1,18 Prozentpunkte auf.

	Tab. 23 a : Laser-Korn	größenuntersuchungen von	mm-Wechsellagen aus d	em Profil Rauschendorf (grob
--	------------------------	--------------------------	-----------------------	--------------------------	------

Probe	T < 12-10,5 [°]	T >10,75 -<9 [°]	f U 9-<7,0 [°]	mU 7-<5,5 [◦]	gU 5,5-< 4 [°]	Summe U 9-<4 [°]	Summe U 7,5 <4 [°]	fS 4-<2,5	Art
Rau-L-2	10	12,7	10	29,9	38,2	80,7	78,1	0,1	grob
Rau-L-5	9,2	11,4	8,9	30,5	40	81,6	79,4	0,1	grob
Rau-L-6	9,4	11,6	9,1	30	40	81,3	79	0,1	grob
Rau-L-7	9,6	11,9	9,2	29,2	39,2	80,6	78,3	0,1	grob
Rau-L-8	11,7	14,6	10,4	30,2	36,4	79,7	76,9	0,1	grob
Durchschnitt	9,98	12,44	9,52	29,96	38,76	80,78	78,34	0,1	grob

Tab. 23 b : Laser-Korngrößenuntersuchungen von mm-Wechsellagen aus dem Profil Rauschendorf (fein)

Probe	T < 12-10,5 [°]	T >10,75 -<9 [°]	f U 9-<7,0 [°]	mU 7-<5,5 [°]	gU 5,5-< 4 [◦]	Summe U 9-<4 [°]	Summe U 7,5 <4 [°]	fS 4-<2,5 [°]	Art
Rau-L-1	10,5	13,2	10,6	31,6	37,1	82,1	79,4		fein
Rau-L-3	10,2	13	11,1	32,4	35,7	82	79,2		fein
Rau-L-4	13	16,3	11,9	30,4	33,8	79,4	76,1		fein
Rau-L-9	11	13,9	11,6	32,4	35	81,9	79		fein
Rau-L-10	10,4	13,1	11,1	33,7	36,9	84,4	81,7		fein
Durchschnitt	11,02	13,9	11,26	32,1	35,7	81,96	79,08		fein

6.7.2 Strontium-Isotopie

Die Sr-Isotope können in erster Näherung als Zweikomponentensystem durch ein Mischdiagramm (⁸⁷Sr/⁸⁶Sr) vs. 10⁵/Sr beschrieben werden (s. Abb. 61). Dabei entspricht die Komponente A dem Kalkstaub (Kreide des Pariser und des Aquitanischen Beckens; ⁸⁷Sr/⁸⁶Sr = 0,7075 nach Dickin, 1997). Die Sr-Konzentrationen der Komponenten sind nicht ganz konstant und betragen ca. 358-400 ppm Sr. Der rezente Wert des Meerwasser-Kalke ist ziemlich homogen und wird mit (87Sr/86Sr)= 0,709 und 450 ppm Sr angegeben. Die Komponente B entspricht der Silikat-Komponente und ist hinsichtlich der Sr-Konzentration variabel zwischen 78 und 110 ppm. Man kann sich B als (durch den Transport) isotopisch homogenisiert mit variablen Gehalten an Quarz (wodurch die Variationen in der Sr-Konzentration in erster Linie bewirkt werden) vorstellen. Die gemessenen ⁸⁷Sr/⁸⁶Sr-Verhältnisse sind daher Mischwerte zwischen leichteren Carbonaten und schwereren Silikat-Anteilen (= aus primären Löß-Ursprungsgesteinen wie Graniten, Gneisen u.a. Metamorphiten). Betrachtet man nun die aufgetragenen Punkte der Abb. 61, so stellt man fest, daß die hier untersuchten Lösse aus denselben Komponenten (A + B) gemischt sind. Zwei Proben, Rau-L-4 und Rau-L-7, fallen ins Auge: Dies sind Löß/Tuff-Mischproben aus einem Tuff-Horizont des Profils Rauschendorf. Die Korngrößen (mittels Laser-Analysette A22) dieser beiden Proben sind in Tab. 23 a,b aufgelistet. Die Probenbezeichnung entspricht der Bezeichnung für die Sr-Isotopenanalyse. Die ⁸⁷Sr/⁸⁶Sr-Werte dieser Löß/Tuff-Mischproben werden durch ihre vulkanogenen (mafischen) Bestandteile zu leichteren Werten verschoben. Da die Probe Rau-L-4 aus einer feineren Schicht stammt (vgl. Tab 23 b) als die Probe Rau-L-7 (grob, vgl. Tab. 23 a), heißt das für die beiden Löß/Tuff-Gemische, daß sich zwar die Windstärke, jedoch nicht das Herkunftsgebiet geändert hat, da das Sr-Mischdiagramm für beide Proben einen fast identischen Wert aufweist.

Abb. 61: Sr-Mischdiagramm; ⁸⁷Sr/⁸⁶Sr vs. 10⁵/Sr(ppm)

7 Diskussion

Wie lassen sich nun die vorgestellten Ergebnisse nutzen, um einige der einleitend aufgestellten Fragenkomplexe zu beantworten?

Der Schwerpunkt der Arbeit liegt auf den mineralogisch-geochemischen Methoden. So lassen sich aus den Ergebnissen dieser Untersuchungen - in Ergänzung zu den geomorphologischen Feldbeobachtungen und diese verfeinernd - Aussagen zu vier Fragenkomplexen machen:

-(1) Der mineralogischen und (besonders) der geochemischen Charakterisierung der verschiedenen in den Löß-Profilen vorkommenden Boden- und Gesteinstypen;

-(2) Dem stratigraphischen Vergleich der untersuchten Profile;

-(3) Den Einfluß der Verwitterung auf den Mineralbestand der Lösse;

-(4) Der Herkunft der Lösse.

Darüber hinaus sind, aufbauend auf den geochemischen Charakterisierungen und auf ersten Datierungen, paläoklimatische Rekonstruktionen möglich.

7.1 Charakterisierung der Gesteinstypen

Hauptmineral der *Löß-Horizonte* ist (naturgemäß) der <u>Quarz</u>, der - wie sich in den Streupräparaten unter dem Mikroskop erkennen läßt - generell recht gut gerundet ist und der sich als (auf dem äolischen Transport) mechanisch deutlich beansprucht erweist. Daneben sind Carbonatgehalte zwischen 20 und 35 % recht typisch, die überwiegend aus Calcit, CaCO₃, bestehen. <u>Dolomit</u>, Ca Mg(CO₃)₂, das zweite Carbonatmineral, ist meist und ebenfalls in deutlichen Gehalten mit dem Calcit assoziiert. Dieses gemeinsame Vorkommen von Calcit und Dolomit gilt für die Profile Birlinghoven, Rauschendorf, Bockeroth I und II (und III, den Schneckenhorizont), Sourdon und Ailly. In den Profilen Thomasberg, Neustadt/Wied und besonders in Heilly gilt es nur für die oberen Profilbereiche (vgl. Tab. 8, 9a und 12). Thomasberg und Neustadt/Wied enthalten auch noch 1-2 m tiefer etwas Dolomit, während der Calcit hier verschwunden ist. In Heilly ist es umgekehrt: Calcit ist durchgehend bis zur Profilbasis in 6,60 m vorhanden, Dolomit nur bis zu einer Teufe von 4,35 m.

In allen Löß-Horizonten sind <u>beide Feldspäte</u> vorhanden. <u>Plagioklas</u> ist generell der vorherrschende Feldspat, und zwar ist es stets ein Na₂O-reicher (<u>Albit</u>-reicher) Plagioklas, wie es sich röntgenographisch und optisch (in Streupräparaten) beobachten läßt. Albit-reiche Plagioklas-Mischkristalle sind primär für SiO₂-reiche (saure) Magmatite (Granite) und Metamorphite (Gneise) typisch. Hiervon sind (vgl. den Abschnitt 6.5 über die Tuffe) die Horizonte auszunehmen, die - nach allen typischen Kriterien (vgl. Tab. 1 im Anhang) - deutliche Anteile an vulkanogenem Material enthalten. Ein typischer "Löß"-Albit mit charakteristischen Zwillingslamellen ist auf Farbtafel 2 (Bild 6) zu sehen: Er stammt aus dem oberen Löß-Bereich des Bohrkerns Bockeroth (Bo-1- 1,40m).

Relativ häufig und für alle Lößhorizonte charakteristisch sind (primär magmatische oder metamorphe) Glimmer, und zwar sowohl Muskovite als auch Biotite, Chlorite und die Umwandlungsprodukte dieser Mineralgruppen (und anderer Silikate wie der Feldspäte, Pyroxene und Amphibole), die sich als Illit-Smektit-Mixed-Layer und auch als reine Smektite (s. Abb. 20: Montmorillonit vom Thomasberg) erwiesen haben (vgl. Abschnitt über die "Tone").

Im oberen Lößbereich der Bohrung Bockeroth wurden optisch (und manchmal - bei größeren Gehalten dieser "Spurenminerale" - auch röntgenographisch) zahlreiche weitere (Spuren-) Minerale gefunden, die - mit wenigen Ausnahmen, vgl. 7.4 - aus primären Magmatiten oder Metamorphiten stammen, deren Gesteinscharakter nicht immer identifizierbar ist. Der optische Charakter dieser Spurenminerale und - wo es durch die Partikelgröße möglich war - ihre chemische Zusammensetzung (in Elektronenstrahl-Mikrosonden-Aufnahmen bestimmt, aus denen dann die kristallchemischen Formeln berechnet wurden, s. 6.6 und Analysen im Anhang) lassen sie eindeutig kristallchemisch und mineralogisch bestimmen.

Für die Löß-Bereiche des spurenmineralogisch detailliert untersuchten Profils Bo- I (Bohrung Bockeroth), aber auch im Löß der Picardie-Vorkommen, sind Rutile, Granate, Zirkon, Apatit, Chloritoide, Epidote, Pyroxene und Turmaline charakteristisch, wobei sich z. T. recht typische Unterschiede zeigen (vgl. 7.4). Farbtafel II Bild 5 zeigt einen halbidiomorphen Apatit (Bo I, 1,40 m). Die ursprünglich gut gerundete Form des Apatits läßt sich noch erkennen. Bei leicht sauren Bedingungen ist um diesen klastischen Apatit ein sekundärer Apatit (idiomorph) gewachsen. In den Proben kommen Apatite entweder in Reduktionshorizonten vor (wie z.B. bei der Bohrung Bockeroth, 10,10 m) oder lassen auf eine erhöhte Phosphatkonzentration in der Bodenlösung schließen (Picardie: unmittelbar benachbarte Phosphat-Lagerstätten).

Geochemisch sind sämtliche Löß-Horizonte aller Profile durch ein recht einheitliches TiO_2/Al_2O_3 -Verhältnis ausgezeichnet, das für die Profile Birlinghoven, Rauschendorf, Bockeroth (I, II, III) und Thomasberg <u>0,07</u> beträgt, bei Neustadt/Wied und den Picardie-Profilen etwas höher liegt (Neustadt: 0,078-0,08; Picardie-Profile: 0,08 ± 0,005).

Entkalkte Löβ-Horizonte, also Löβ-Lehme, unterscheiden sich von den Lössen mineralogisch nur durch das Fehlen der Carbonate, wodurch eine relative Anreicherung der Nicht-Carbonat-Minerale bedingt wird (Quarz, Feldspat, Glimmer). Das ist im oberen Profilbereich (< 0,80 m) von Rauschendorf, bei Bockeroth 1 zwischen etwa 3 m und 9,50 m sowie zwischen 12 m und etwa 16 m, im obersten Bereich des "Schneckenhorizontes" (Bo III bei 2 m, s. Tab. 8), in Thomasberg zwischen 1,70 m und 4,60 m, um 6,75 m sowie unterhalb von 9,15 m, bei Neustadt/Wied oberhalb von 3,50 m sowie unterhalb von 5,20 m der Fall. In den drei Picardie-Profilen treten keine Lehm-Horizonte auf. Geochemisch ändert sich an den (nicht mit CaO, MgO oder SrO, den Carbonat-spezifischen Oxiden korrelierbaren) Elementverhältnissen nur dann etwas, wenn die Entkalkungsvorgänge mit speziellen <u>Bodenbildungs</u>-Prozessen (chemischen Verwitterungsvorgängen, die über eine Auflösung der Carbonate hinausgehen) verbunden sind. Dann nehmen die Alkali-/TiO₂ bzw. /Al₂O₃-Verhältnisse ab.

Boden-Horizonte zeigen demnach deutliche chemische Verwitterungsprozesse. Über die Abnahme der Alkali-/Hydrolysat-Verhältnisse hinaus sind das weiterhin (aber nicht immer zu beobachtende, sondern nur bei oxidierenden Bedingungen festzustellende) Anreicherungen von Oxiden des dreiwertigen Eisens (mineralogisch fast ausschließlich als Goethit, Fe^{III}OOH, vorliegend) oder (relative) Zunahmen des K₂O/Na₂O-Verhältnisses, das durch teilweise Adsorption des eigentlich löslichen Kations K⁺ an feinstkörnige Bodenkomponenten nach den partiellen Auflösungsprozessen der primären K-Na-Silikate (Feldspäte, Glimmer) resultiert. Mineralogisch kommt es bei diesen chemischen Verwitterungsprozessen (Auflösung und anschließende Ausfällung von Al-Si-Gelen, die K⁺ und Fe³⁺, in geringen Mengen auch Na⁺ zur Neubildung von Bodenmineralen mit Schichtstrukturen adsorptiv binden) (Tonmineralen), feinstkörnigen Al-Silikaten mit (zunächst adsorbierten, später in die Mineralstruktur eingebauten) K-Gehalten. Abhängig vom Boden-Milieu (i.w. dem pH) treten entweder Zweischichtsilikate der Kaolin-Gruppe auf (Kaolinit, Halloysit und zwar bei - durch niedrige pH-Werte bedingten - relativ niedrigen Si/Al-Verhältnissen der Boden- bzw.

Verwitterungslösungen) oder aber Dreischicht- Minerale (Smektite oder Illit-Smektit-Mixed-Layer) in alkalischen bis neutralen Bodenlösungen.

Diese skizzierten Kriterien gelten sowohl für (sub-)rezente als auch für <u>fossile Böden</u>. Besonders die erniedrigten Alkali-/Hydrolysat-Verhältnisse haben sich in dieser Arbeit (aber <u>ansatz-</u> <u>weise</u> auch bereits in den Untersuchungen von Nesbitt & Young, 1983, Wang, 1989, Liu et al., 1993, Yang et al., 2001, und besonders von Gallet et al., 1996, 1998, an einigen chinesischen Lössen) als verläßlichste Kriterien zur Charakterisierung fossiler Böden erwiesen.

Reine (fossile) *Tone* in den untersuchten Profilen sind selten und - wie es ganz besonders im Thomasberg-Profil zu beobachten ist - mehr oder weniger verwitterte (oder durch vulkanogene Spätphasen, z.B. Entgasungen umgewandelte?) <u>Tuffe</u>. Für den Einfluß späterer vulkanogener Prozesse (Fumarolen? Durchgasungen?), die bei Temperaturen deutlich über denen reiner Verwitterungsprozesse lagen (also etwa zwischen 80 und 150 °C), sprechen die teilweise recht gut geordneten Kristallstrukturen der neugebildeten Tonminerale (\neg Montmorillonite, vgl. Abb. 20 und Tab. 13).

Nur die "dunklen" (basischen), distalen $Tuffe^{27}$ lassen sich bereits im Gelände gut erkennen, allerdings nur dann, wenn sie ± durchgehende, schichtparallele Bänder oder Lagen bilden. Tuff-Beimengungen in Löß-, Lehm-, Ton- oder Mergellagen lassen sich meist durch detaillierte mineralogische und geochemische Untersuchungen identifizieren. Das gilt auch für die im Pleiser Hügelland (nach Frechen & Vieten 1970) weit verbreiteten "hellen" (sauren, SiO₂reichen) Tuffe, z.B. die Na-Trachyttuffe. Hauptfeldspat vieler intermediärer Tuffe ist der Sanidin (KAlSi₃O₈), der z.B. in Trachyten und ihren Tuffen *bis zu 75* % enthalten sein kann, davon überwiegend als Einsprenglinge (Correns 1968, Frechen & Vieten 1970). Da dieser Kalifeldspat praktisch nur in (sauren und intermediären) Vulkaniten vorkommt (Correns, 1968, Rösler, 1984, Matthes, 1983), ist sein Auftreten in den untersuchten Lössen ein sicherer Hinweis auf vulkanogene Anteile, die entweder äolisch (als Tuff) oder fluvial durch Verlagerungsprozesse auf der Oberfläche (z. B. aus dem Siebengebirge) in die Lösse gekommen sein können. So enthalten der Eltviller Tuff (Profile Bockeroth II: ~ 5 m Teufe; Birlinghoven: 6,25 m) deutliche Sanidin-Gehalte! Von 31 Proben aus dem 18 m tiefen Profil Neustadt/Wied sind fünf Horizonte zu beobachten, in denen der Kalifeldspat (Sanidin !) den sonst häufigeren

²⁷Schließt auch die feinkörnigen vulkanogenen Lockermaterialien ein.

Plagioklas deutlich überwiegt; diese Horizonte weisen also deutliche Beimengungen vulkanogenen Materials auf.

Weitere Kriterien unterstreichen das: So weisen im Profil Neustadt/Wied (aber auch in einigen anderen Profilen) die Sanidin-haltigen Proben auch höhere Anteile an Schichtsilikaten auf (Glimmer, Chlorite, Smektite; in Birlinghoven auch wenig Kaolinit). Als charakteristische Spurenminerale der Sanidin-haltigen Proben treten weitere "vulkanogene" Minerale auf, zwar z.T. nur in sehr geringen Gehalten, aber doch (optisch in Streupräparaten und chemisch unter der Elektronenstrahl-Mikrosonde) eindeutig zu identifizieren: <u>Amphibole</u> (z.T. als "grüne Hornblende", s. Farbtafel V, Bild 14), <u>Pyroxene</u>, z.T. als <u>Diopsid</u> (s. Farbtafel III, Bild 9), z.T. als <u>Augit</u>, wie sie für basische Vulkanite typisch sind, <u>Zeolithe</u> (vereinzelt, z.B. direkt unterhalb des ET-Horizontes in Birlinghoven, s. Tab. 3) und - bei 10,10 m im Profil Thomasberg sowie im verwitterten Trachyttuff dieses Profils (vgl.Tab. 8) - die vulkanogene SiO₂-Modifikation <u>Cristobalit</u>.

Von den Picardie-Vorkommen ist das von <u>Heilly</u> Sanidin- (und Amphibol-) haltig (vgl. Tab. 12): Von den 11 untersuchten Proben enthalten 6 Spuren von Amphibol, und in 5 Proben überwiegt der Sanidin den Plagioklas. Besonders aufschlußreich ist hier die mineralogische und chemische Zusammensetzung der beiden schmalen "Bänder" um 6,50 m: Beide enthalten Amphibole, das hellere Band (6,45 m) dazu - neben Plagioklas - deutliche Mengen an Sanidin. Besonders bemerkenswert ist hier, daß das dunkle Band völlig Kalifeldspat-<u>frei</u> ist (vgl. Tab. 1 im Anhang).

<u>Geochemisch</u> sind (neben Y/Zr und einigen Hauptelement-Verhältnissen, s. u.) vor allem die Gehalte an <u>TiO₂</u> sowie das Verhältnis der beiden Hydrolysate TiO₂/Al₂O₃ recht kritisch: In reinen Lössen ist dieses Verhältnis 0,07 (± 0,005). Basische Vulkanite (z.B. Basalte) weisen hohe TiO₂-Gehalte auf (um 1 - 3 Gew-% TiO₂), damit verschieben sich die TiO₂/Al₂O₃-Gehalte zu Werten \geq 0,09. Saure Vulkanite enthalten nur relativ geringe TiO₂-Gehalte (0,1-0,5 Gew-% TiO₂, vgl. Winogradow, 1954, Correns, 1968, Frechen, 1976, Frechen & Vieten, 1970), so daß ein niedriges (z.B. \leq 0,06) TiO₂/Al₂O₃-Verhältnis resultiert. In der folgenden Tab. 24 sind die Daten für einige Tuff(-reiche) Horizonte zusammengefaßt. Im Vergleich der beiden "Heilly"-Tuffbänder erweist sich das helle Band zwar als TiO₂-arm, doch im Verhältnis TiO₂/Al₂O₃ durchaus als "vulkanogen" (> 0,07); das dunkle Band zeigt noch ein etwas größeres Verhältnis. Derartige, eng übereinander liegende Bänder wurden in mehreren Picardie-Vorkommen beobachtet (Lautridou, 1968, Jamagne et al., 1981) und als "limons à doublets" bezeichnet. Lautridou (1968) stellt sie den "loess calcaires" gegenüber als "non-calcaires".

Die übrigen aufgeführten Tuffe weisen sämtlich hohe TiO_2/Al_2O_3 -Verhältnisse auf, wie sie für intermediäre bis basische Vulkanite typisch sind ($_{\geq}$ 0,09). Die vorhandenen Spurenmine-rale (Amphibole, Pyroxene, Sanidin, Magnetit, Cristobalit) sind eindeutige Indikatoren für vulkanogene Herkunft.

Probe	vulkanogene	TiO ₂ -Gehalt	TiO ₂ /Al ₂ O ₃	Y/Zr	
	Minerale	(Gew-%)			
Heilly 6,45 m (helle- res Band)	Amphibol, Sanidin	0,53	0,08	0,08	
Heilly 6,55 m (dunkleres Band)	Amphibol	0,72	0,09	0,01	
Birl 6,25 m (ET)	Sanidin, Amphibol	0,77	0,09	0,15	
Neustadt 1 m (ET)	Pyroxen	1,29	0,10		
Bohrkern Bockeroth 3,40 m	Amphibol, Titanomagnetit	0,88	0,11	0,06	
Thomasberg 1,55 m	Pyroxen, Sanidin	0,92	0,10	0,07	
Trachyttuff Thomasberg	<u>Pyroxen,</u> Magne- tit, <u>Sanidin</u> , Cristobalit	0,71	0,09	0,10	

Tab. 24: TiO₂-Gehalte, TiO₂/Al₂O₃-Verhältnisse und Y/Zr ausgewählter Proben (Tuffe)

7.2 Stratigraphische Korrelationen

Regionale stratigraphische Korrelationen sind in Lößprofilen nur bedingt mit Hilfe mineralogischer und geochemischer Daten möglich. Gründe hierfür sind einmal gebietsmäßig starke Unterschiede in den Löß-Anwehungen und Tuff-Zuträgen, zum anderen geomorphologische Bedingungen (starkes Relief, Bergketten, Wasserläufe). Dadurch kommen Mächtigkeits-Unterschiede selbst in benachbarten Löß-Fallen zustande und sogar das lokale Fehlen bestimmter Tuffe. Auch die Lage fossiler Bodenhorizonte ist nur in wenigen Fällen regional zu verfolgen.

Am sichersten sind noch die Tuff-Horizonte oder -Lagen zu korrelieren. Nach früheren Bearbeitern der Löß-Vorkommen im Bonner Raum und nach eigenen Gelände-Beobachtungen tritt der <u>"Eltviller Tuff</u>" in den hier untersuchten Profilen Birlinghoven (Teufe: 6,25 m), Rauschendorf (Teufe ~5,65 m), Bockeroth II (~ 5m) und Neustadt/Wied (1 m) auf.

Ein Vergleich der mineralogischen und chemischen Parameter dieser vier als "Eltviller Tuff" angesehenen Horizonte (+ eine unmittelbar darüber liegende tuffreiche Lage in Bockeroth II, bei 4, 52 m und tuff-haltige Lagen aus den Picardie-Profilen Ailly und Heilly) ist im Folgenden vergleichend dargestellt (Tab. 25).

Die beiden ET-Horizonte von Birlinghoven (6,25 m) und Bockeroth II (5 m) sind demnach mineralogisch und geochemisch annähernd identisch. Auch der Rauschendorf-Tuff (5,65 m) ist ein "Eltviller", offenbar aber vermengt mit einem anderen (basischeren) Tuffmaterial, der höhere Plagioklas (Na₂O)- und Fe₂O₃-Gehalte "eingebracht" hat. Diese drei (vergleichbaren und geochemisch annähernd identischen) Tuffe unterscheiden sich von dem Neustädter Tuff (der bisher ebenfalls als "Eltviller" Tuff angesehen wird) nach ihren mineralogischen und geochemischen Zusammensetzungen grundsätzlich. Es kann und soll hier nicht entschieden werden, welche von diesen Tuffen die "echten" Eltviller Tuffe sind. In diesem Zusammenhang sollte auch der von einigen Löß-Bearbeitern (Sabelberg & Löscher, 1978, Zöller 1995, Hatté et al., 1999, Antoine et al. 2001) ebenfalls als "Eltviller Tuff" bezeichnete Nusslocher Tuff (in Nordbaden) nach den hier angewandten mineralogischen und geochemischen Kriterien neu betrachtet werden. TL-Datierungen würden hier möglicherweise Klarheit schaffen, vorausgesetzt die Tephren ließen sich zeitlich auflösen. So haben z. B. Seidenschwann & Juvigné (1986) quartäre, mehrgliedrige Tephren im Randbereich des Vorspessarts untersucht,

die sich mineralogisch unterscheiden und deren Herkunft nicht detailliert geklärt ist. Dagegen ist die Heilly-Tephra (6,45 m, die "helle Lage") dem "Eltviller Tuff" mineralogisch sehr ähnlich. Stratigraphisch liegt sie zu tief und nach den damals und heute vorherrschenden Winden, ist es unwahrscheinlich, daß diese Tephra die "Eltviller" aus der Eifel ist. Möglicherweise stammt sie aus Island (?).

Festhalten läßt sich, daß sich diese Tephra für die benachbarten Löß-Lokalitäten Birlinghoven, Rauschendorf und Bockeroth II - und bisher nur für diese drei Lokalitäten - als stratigraphisch vergleichbarer Horizont benutzen läßt.

Nach dem Spektrum ihrer Schwerminerale, besonders nach den in diesen Löß-Horizonten enthaltenen <u>Amphibolen</u> und <u>Granaten</u>, ist die mittlere Lößlage in Bockeroth I (der schwermineral- und fossilreiche Horizont bei 9,60 m) mit dem Heilly 5,05 m und Ailly 2,10 m-Löß vergleichbar. <u>Einer</u> von 2 Bo-I-9,60 m-<u>Granaten</u> ist ein reiner Grossular; er ist zwei Grossularen aus Heilly (5,05 m) bis auf den Ti-Gehalt kristallchemisch recht ähnlich (vgl. Abb. 33). Der einzige analysierte Ailly 2,10 m-Granat ist ein fast reiner Almandin (20 % Pyrop-Komponente) und nahezu identisch mit 2 weiteren Heilly 5,05 m-Granaten sowie dem zweiten Bo-I-9,60 m-Granat (Abb. 33). Auch einige <u>Amphibole</u> dieses Bockeroth-Horizontes stimmen mit denen des analysierten Ailly 2,10 m überein, daneben enthält der Bo-I-9,60 m-Horizont auch kristallchemisch andere Amphibole. Dieser Spurenmineral- und Fossil-reiche Bo-I-Horizont bei 9,60 m Teufe erweist sich nach Arten und Zusammensetzung der Schwerminerale als außerordentlich informativ. Beide genannten Picardie-Horizonte enthalten (wie Bo-I-1,40 m und 9,60 m) zahlreiche *Fossilbruchstücke*.

Weitere, schwach angedeutete mögliche stratigraphische Korrelationen erscheinen zu spekulativ und werden daher hier nicht weiter erläutert und verfolgt.

Image: Solution of the second secon

Lage	Kalifeld	Plagiokl	Al ₂ O ₃	Fe ₂ O ₃	P_2O_5	TiO ₂ /	Fe ₂ O ₃ /	Na ₂ O/	K ₂ O/	Rb	Ba	Zr	Y	
	spat	as		Masse %		Al_2O_3	Al_2O_3	TiO ₂	Na ₂ O	ppm				
Birl 6,25 m (ET)	Х	Х	8,28	3,05	0,13	0,09	0,37	1,18	1,84	60	327	307	31	
Rau 5,65 m (ET)	Х	Xx	7,54	3,32	0,11	0,07	0,44	1,72	1,74	59	289	339	27	
Bo-II 4,52 m	0	Х	9,08	3,63	0,19	0,08	0,36	1,81	1,73					
Bo- II 5 m (ET)	Xx	-	7,7	2,8	0,11	0,09	0,4	1,33	1,79					
Neu 1 m	Х	XX	<u>12,76</u>	<u>6,38</u>	<u>0,31</u>	0,1	<u>0,5</u>	<u>0,57</u>	<u>2,69</u>	<u>82</u>	<u>443</u>	424		
Ailly 2,70 m	Xx	Xx	6,39	2,3	0,08	0,1	0,36	1,48	1,53	50	210	654	18	
Heilly 4,05 m	XXx	Х	7,53	2,68	0,09	0,08	0,36	1,66	1,5					
Heilly 6,45 m	XX	-	6,77	2,81	0,08	0,08	0,41	1,11	2,32	50	210	351	29	
(helles Tuffband)														

(Legende vgl. Tab. 4)

7.3 Einfluß der Verwitterung und postvulkanischen Exhalationen auf die Tuff- und Löß-Mineralogie

Die Prozesse der chemischen Verwitterung und Bodenbildung lösen die primären Carbonat-, Silikat- (und in geringerem Maße auch Oxid-) Minerale teilweise oder völlig auf. Dabei kommt es zunächst zu Fehlordnungs-Strukturen der primären (K-Mg-Fe-) Al-Silikatminerale, der Glimmer (und bei diesen sehr viel schneller bei den trioktraedrischen, also biotitischen Glimmern) und der Chlorite. Der Grad dieser Umwandlungen der primär geordneten (magmatogenen oder metamorphogenen) Schichtminerale (Glimmer und Chlorite) ist - je nach Wegsamkeit der Gesteine - für die untersuchten Profile unterschiedlich. So sind die Umwandlungen im Profil Neustadt/Wied am geringsten, die primären Silikatminerale am wenigsten umgewandelt (noch zahlreiche Pyroxene vorhanden!). Im Bohrkern Bockeroth sind die primären Glimmer und Chlorite nur teilweise gut geordnet (und zwar die der oberen Horizonte!). Die des unteren Profilbereichs sind überwiegend schlecht geordnet (Tab. 13). Diese Proben des unteren Bereichs (primär!) jüngerer Gesteine sind äolisch zuerst verfrachtet worden. Aus der Tatsache, daß die (primären) Schichtsilikate des oberen Profilbereichs (die primär ja älteren Herkunfts-Gesteinen entsprechen! vgl. die folgende Skizze, Abb. 62) z. T. besser geordnet sind, läßt sich folgern, daß der Einfluß der chemischen Verwitterung auf die Löß-Komponenten nach der Ablagerung dieser äolischen Sedimente recht gering gewesen sein muß (die fossilen und rezenten Böden ausgenommen).

Dafür sprechen auch die zahlreich in den Löß-Profilen (in Spuren) vorhandenen wenig verwitterungsresistenten Schwerminerale, wie Insel-, Ketten- und Bändersilikate (Granate, Chloritoide, Epidote, Pyroxene, Amphibole) und auch die wenig resistenten Fe-Mg-Glimmer (Biotite) und der ab und zu in geringen Gehalten nachzuweisende Palygorskit (s. auch 7.4). Während also der post-sedimentäre Umwandlungsgrad gering ist und höchstens in einem etwas schlechteren Ordnungsgrad (bzw. beginnender Mixed-Layer-Bildung) resultiert, sind die "Tone" (umgewandelten Tuffe) fast vollständig zu gut geordneten Montmorilloniten (Thomasberg !) geworden. Dieser Umwandlungsgrad spricht für einen Umwandlungsprozeß, der höheren Umbildungsenergien unterworfen war, und das heißt: Höheren Temperaturen. Daraus folgt: Die Montmorillonit-reichen ehemaligen Tuffe sind wahrscheinlich unter dem Einfluß postvulkanischer Exhalationen (oder - wie es neuerdings in der geowissenschaftli-Jacobshagen 2001 chen Nomenklatur genannt wird, vgl. et al., von "Durchgasungsprozessen") und (tief-) hydrothermaler Lösungen (auto-) hydrothermal umgewandelt worden. Durch die höheren Umwandlungstemperaturen (verglichen mit sedimentären pedogenen Bedingungen) sind die entstandenen und Smektite (Montmorillonite) strukturell gut geordnet. Aber das ist kein Einfluß von Verwitterung gewesen.

Das Profil Thomasberg zeigt - wohl wesentlich bedingt durch derartige postvulkanische Beeinflussungen - die größten Umwandlungserscheinungen von allen untersuchten Profilen. Im Gelände ist ein Nebenschlot des Steinringsberg-Vulkans angeschnitten zu beobachten, an dem in einer Sedimentfalle (Lößtasche mit Fließerden und einigen Basaltbrocken) der Löß direkt im Kontakt ist (vgl. Abb. 11 und Udluft, 1977). Die vermuteten postvulkanischen Beeinflussungen sind daher recht plausibel. Allerdings muß der Zeitpunkt dieser "post-"vulkanischen Beeinflussungen sehr spät nach dem Vulkanismus selbst geschehen sein, also subrezent. Der Vulkanismus selbst hat im Tertiär stattgefunden. Todt & Lippolt (1979), Lippolt (1982) geben K/Ar-Alter zwischen 26,4-24,6 Ma für die Trachyte und Latite und 25-18 Ma für die Basalte des Siebengebirges an. Spätere hydrothermale Überprägungen, wie sie hier für das Profil Thomasberg angenommen werden, könnten im Zusammenhang mit den spätvulkanischen Erscheinungen am Laacher See zusammenhängen, dessen Nachphasen immer noch zu beobachten sind (Kohlensäuerlinge u. a. postvulkanische Exhalationen). Auch die (post-)vulkanischen Erscheinungen am Rodderberg scheinen in diesen Zeitrahmen zu passen (vgl. Blanchard 2002). Ein besonderes Phänomen läßt sich aus dem Vergleich der beiden Tuff(-reichen) Lagen des Profils Heilly rekonstruieren: Die beiden Bändchen bei 6,45 m (helle Lage) und 6,55 m (dunkle Lage) sind nach ihrer Mineralogie und chemischen Zusammensetzung Löß-Tuff-Gemenge. Sie weisen zahlreiche Besonderheiten auf und sind in diesen Eigenschaften stark unterschiedlich (s. Tab. 26).

Nach dem TiO₂/Al₂O₃-Verhältnis und ihrer Mineralogie (<u>Sanidin</u> im hellen Band, Plagioklas und Glimmer im dunklen Band) sind beides Tuffe (vermischt mit unterschiedlichen Calcitund Quarzgehalten aus Löß), und zwar - nach den relativ geringen TiO₂-Gehalten - intermediäre (Trachyt-)Tuffe. Doch sowohl die Mineral- als auch die Spurenelement-Gehalte weisen systematische Beziehungen auf: Die Ba/Zr-, V/Rb/Cr-, Glimmer/Plagioklas- und die Calcit/Sanidin-Verhältnisse sind positiv korreliert, das Sr/Y-Verhältnis ist negativ korreliert (Tab. 26). Ganz besonders auffallend ist, daß die dunkle Lage (als einzige aller untersuchten Tuff- und Löß-Proben !) völlig Kalifeldspat-frei ist und außerdem ein sehr ungewöhnliches Y/Zr-Verhältnis aufweist, das niedrigste aller untersuchten Proben überhaupt. Weiterhin auffällig ist der Unterschied in Farbe und Korngröße (die helle Lage ist deutlich gröber).

Als Mechanismus einer derart deutlichen und systematischen "Differenzierung" läßt sich nur ein <u>physikalischer Separationsprozeß</u> denken, wie er durch <u>mehrmaliges Gefrieren und</u> <u>Auftauen</u> verursacht werden kann (vgl. Coutard et al., 1988, van Vliet-Lanoë, 1988, 1998, Kessler & Werner, 2003): Die grobkörnigeren Sanidine und Calcite (und ein Teil der Quarze) sind "herausgefroren" worden, die feinkörnigeren (und die schweren) Minerale (Glimmer, Plagioklase, Chlorite und Zirkone !) sind in der tieferen Lage verblieben. Ein derartiger Mechanismus wurde jüngst aus Permafrostböden Spitzbergens von Kessler & Werner (in Nature; 2003) beobachtet und modellhaft erklärt. Diese Beobachtung hat zu eigenen Versuchen mit Modellsubstanzen geführt (Hachicha et al., zur Veröffentlichung eingereicht): Nach 5-maligem Gefrieren (bis -18 °C) und Auftauen eines Löß/Basalt-Gemisches (+ zugesetztem Sanidin, Baryt und Wasser) ergaben sich sehr deutliche Sortierungen. In der <u>oberen</u> Schicht der 25 mm dicken Probe (Zylinder-Füllung, 70 x 25 mm) waren die <u>groben</u> Minerale (Sanidin, Calcit, große Biotit-Blättchen), in den <u>unteren</u> 8 mm die <u>fein</u>körnigen Basaltmatrix-Minerale (Plagioklas, Pyroxen) angereichert.

Tab. 26: Charakterisierung von zwei Tuff (-Löß)-Bändchen (Heilly)

Farbe	Korn- größe	Calcit	Glimmer	Sanidin (KF)	Plagio-k las	Zr	Ba	V	Rb	Cr	Sr	Y	TiO ₂ / Al ₂ O ₃	Y/Zr	TiO2 (%)
6,45 m hellgrau	grob	XXx	0	XX	0	351	210	25	56	61	250	29	0,08	0,08	0,53
6,55 m dunkel	fein	Х	Xx	-	Xx	573	349	47	78	75	100	8	0,09	0,01	0,72

(Legende vgl. Tab. 4; vgl. auch Abb. 48)

Die Experimente erklären die im Profil Heilly an den "limons à doublets" beobachteten Mineralseparierungen. Kessler & Werner (2003) erklären die Sortierung grob (oben) und fein (unten) so: Beim Gefrieren des Porenwassers bilden sich unter den groben Partikeln <u>*Eislinsen*</u>. Durch die Volumenausdehnung beim Übergang H₂O_{flüssig} zu H₂O_{fest}werden die groben Mineralpartikel nach oben gedrückt, feinere (und auch viel schwerere) Partikel rieseln dafür nach unten (Kessler & Werner, 2003). Beim Gefrieren des Wassers treten Drucke von einigen Hundert kp/cm² auf (Correns, 1968).

Die beiden verschiedenen Feldspäte zeigen den Separationsprozeß am deutlichsten; die gröberen Sanidine (Zehntel-mm große Einsprenglinge !) sind sämtlich in der oberen hellen Lage zu finden, der Großteil der Calcite (die gröberen!) ebenfalls. Die feinkörnigen Tonminerale (Glimmer, Chlorite), die kleinen, relativ schweren Zirkone (Dichte 4,0 bis 4,8 g/cm³) und Baryte, die beide mengenmäßig sehr gering sind, verbleiben überwiegend in der dunklen unteren Lage. Die Differenzierung der Spurenelemente ist durch die kryoturbate Mineralseparation ebenfalls vollkommen zu erklären: <u>Barium</u> sollte <u>nicht</u> im Kalifeldspat (Sanidin) eingebaut vorliegen (sonst müßte es - mit dem Sanidin - in der oberen hellen Lage angereichert sein !), sondern in eigenen Mineralen vorliegen (wahrscheinlich als Baryt, BaSO₄, "Schwerspat"), die wie der <u>Zirkon</u>, ZrSiO₄, als kleine, schwere Körner in der unteren Lage verbleiben. <u>Vanadium, Rubidium und Chrom</u> sind gewöhnlich in <u>Glimmer</u> eingebaut (Correns 1968, Rösler, 1984) und damit in der dunklen Lage angereichert. <u>Strontium</u> ist an das Carbonat gebunden, also in der hellen Lage angereichert. Und <u>Yttrium</u> dürfte in Sanidin eingebaut sein, so ist das extrem niedrige Y/Zr-Verhältnis der dunklen (Sanidin-freien !) Lage zu erklären.

Derartige Grob-/Fein-Separierungen dünner Bändchen sind auch in anderen Profilen zu beobachten, in Bockeroth, Rauschendorf (Tab. 23 a,b) und Neustadt/Wied. Um ähnliche, durch Gefrieren und Auftauen verursachte Mineralseparierungsvorgänge rekonstruieren zu können, fehlen hier detaillierte (spuren-) chemische Untersuchungen. Das Erscheinungsbild mancher dieser Grob-/Fein-Wechsellagen läßt als Ursache den Einfluß derartiger physikalischer Verwitterungsvorgänge jedoch wahrscheinlich sein.

Die ab und an zu beobachtende Aufspaltung eines Tuff-Horizontes in mehrere schmale Bänder (z.B. die Sechsfach-Aufspaltung des Eltviller Tuffs im Profil Bockeroth II, s. Abb. 6) dürfte aber nicht durch physikalische Verwitterungsprozesse verursacht worden sein. Nugteren (2002) und Vandenberghe & Nugteren (2001) interpretieren Korngrößenvariationen als Klima-Indikatoren. Ihre Untersuchungen an den Lössen des Chinesischen Zentralplateaus ergaben zahlreiche Wechsellagerungen zwischen groben (= Löß) und feinen Lagen (= Böden), die sie als Folge klimatischer Prozesse sehen: Kalte Perioden wechseln danach schnell mit warmen, humideren Bodenbildungsperioden ab.

Eindeutiger als die Änderung von Korngrößen haben sich in den vorliegenden Untersuchungen Veränderungen chemischer Natur als Kriterien für (paläo-)klimatische Wechsel erwiesen. Besonders deutlich lassen sich chemische Veränderungen, die auf klimatische Veränderungen zurückzuführen sind, in den Verhältnissen von löslichen Kationen zu (nahezu unlöslichen) Hydrolysaten erkennen: So werden die K₂O/Al₂O₃-, K₂O/TiO₂-, Na₂O/Al₂O₃-, Na₂O/TiO₂-, Ba/Zr- und (in Carbonat-freien Horizonten) die CaO/Al₂O₃-, CaO/TiO₂ und Y/Zr-Verhältnisse durch chemische Wechselwirkungen zwischen Löß und Boden- bzw. Sedimentporenwässern generell erniedrigt. Derartige Wechselwirkungen spiegeln Hydrolyse-Prozesse wider, wie sie (nur) bei chemischer Verwitterung (und damit Bodenbildung) auftreten (vgl. Abschnitt 5.3.4). Von den beiden löslichen Kationen Kalium und Natrium reichert sich das größere (und damit weit weniger mobile) K⁺ bei der Bodenbildung gegenüber dem Na⁺ meist sehr deutlich an: Es wird zwar - wie das Natrium auch - bei den chemischen Verwitterungprozessen und der (partiellen) Auflösung primärer Feldspäte, Glimmer und anderer wenig verwitterungsresistenter Minerale gelöst, jedoch anschließend zu einem Teil sofort wieder durch feinstkörnige Partikel (Tonminerale, Huminstoffe) adsorbiert und so partiell im Boden festgehalten. Daher ist auch das K/Na-Verhältnis ein charakteristischer Verwitterungsindex. Diese hier entwickelten und benutzten geochemischen Verhältnisse erwiesen sich auch als "verlässlicher" als ältere Versuche von Nesbitt & Young (1983), Harnois (1988), Wang (1989), Nesbitt et al. (1996) oder Retallack (2001), die mit Hilfe von Element-Verhältnissen "chemische Verwitterungsindizes" rekonstruiert haben. Derartige Verhältnisse berücksichtigen häufig nicht den chemischen Charakter der Oxide. So benutzte z.B. Retallack (2001) zur Charakterisierung von Paläo-Umgebungen, v. a. als Maß für Paläo-Niederschlagsverhältnisse einmal das SiO₂/Al₂O₃-Verhältnis, zum anderen das Verhältnis von (CaO+Na₂O+ K₂O)/Al₂O₃. Dieses letztere Verhältnis ist jedoch nur für Carbonat-freie Horizonte brauchbar: In Carbonat-haltigen (Lössen!) maskieren die sehr hohen CaO-Gehalte der Carbonate die viel geringeren CaO-Gehalte der Silikate. Und nur die silikatischen Veränderungen spiegeln die chemischen Verwitterungsprozesse von Lössen korrekt wider. Das erstere Verhältnis

(SiO₂/Al₂O₃) kann ebenfalls irreführend sein, da das SiO₂ zwar häufig (wie die löslichen Kationen Na, K, Ca, Mg, Sr, Fe²⁺ auch) mit den Bodenwässern weggeführt wird, jedoch auch (abhängig von Temperatur, pH-Wert, Ionenaktivitäten begleitender Kationen) zu einem großen Teil im Boden als Teil von silikatischen Neubildungen fungieren kann. Auch Wang (1989) bezieht das SiO₂ in seine Berechnungen von Verwitterungsindizes mit ein, daneben auch das Fe₂O₃. Derartige Verwitterungsindizes, wie sie von Wang (1989) oder früher von Harnois (1988) oder Nesbitt & Young (1983) berechnet worden sind, können zu Fehlabschätzungen führen: SiO₂ ist sowohl in (primären) Silikaten (und nur deren chemische Veränderungen sind für Bodenbildungen charakteristisch) als auch im Quarz vorhanden. Quarz weist jedoch viel geringere Löslichkeiten als Silikate auf (Correns, 1968, Möller, 1986), und die variablen Silikat/Quarz-Verhältnisse beeinflussen derartige Berechnungen ebenfalls.

Einzig die von Gallet et al. (1998) als "Chemical Indices of Alteration" benutzten Na₂O/Al₂O₃- und K₂O/Al₂O₃-Verhältnisse haben bei der Charakterisierung von chinesischen Lössen zu vernünftigen paläoklimatischen Interpretationen geführt. Die Erweiterung und Verfeinerung derartiger "Indizes" durch die Einbeziehung weiterer chemischer Oxid- und Spurenelement-Verhältnisse, wie sie hier geschehen ist, läßt paläoklimatische Charakterisierungen, ganz besonders durch das Erkennen fossiler Böden, noch sicherer erscheinen.

Bei der Zuordnung chemischer Verhältnisse zu im Gelände beobachteten Horizonten (fBt, E1-5 etc.) muß beachtet werden, daß - außer bei durch chemische Verwitterungsprozesse unbeeinflußten Komponenten, wie dem TiO₂/Al₂O₃-Verhältnis - <u>absolute</u> (Na₂O/TiO₂-, K₂O/Al₂O₃- etc.) Verhältnisse nicht zu erwarten sind, da die mineralogischen "Träger" einzelner Komponenten von Profil zu Profil in ihren Anteilen unterschiedlich sein können. Nur die Veränderungen der Verhältnisse im <u>gleichen Profil</u> sind paläoklimatisch und bodengenetisch interpretierbar. So zeigen die benachbarten Profile Bockeroth I (=Bohrkern) und II (Distanz zwischen beiden etwa 350 m) vergleichbare Verhältnis-<u>Muster</u> (s. Abb. 24 a und b). In beiden Profil Bockeroth I (Bohrkern) sind diese jedoch weit niedriger als im Profil Bo-II (vgl. Abb. 24 a, b). Das heißt: Die Mineralverhältnisse beider Profile sind nicht völlig identisch. Im Bohrkern sind die fossilen Bt-Horizonte (bei ~3,50 m und 12,70 m) durch Na₂O/Al₂O₃-Verhältnisse um 0,06 und Na₂O/TiO₂-Verhältnisse unter 1,0 gekennzeichnet. Im Profil Bo-II liegen beide Verhältnisse für verwitterte Horizonte höher. Da die übrigen, unverwitterten

Horizonte in ihren Verhältnissen sich analog verhalten (d. h. im Bohrkern ebenfalls niedriger sind als in Bo-II) ergeben sich ähnliche Muster, z.B. aus den Sr/Zr- und Ba/Zr-Verhältnissen (Abb. 25 b): Auch hier weisen Minima bei 3,40 m und 12,50 m auf deutliche chemische Beeinflussungen hin. Ein weiteres derartiges Minimum im Sr/Zr-Verhältnis ist im Bohrkern bei 15,60 m festzustellen, d. h. in einem Horizont, der im Gegensatz zu dem bei 3,40 m und 12,50 m (die bereits äußerlich durch starke Farbänderungen auffielen) im makroskopischen Bild nicht zu erkennen war. Ähnliche Erniedrigungen der betrachteten Oxid- und Elementverhältnisse wie durch die Bodenbildungsprozesse verursachten ergeben sich allerdings auch in den beobachteten Tuff-Horizonten. So weist der in Bo-II bei ~5,40 m erscheinende (Eltviller) Tuff besonders niedrige Na₂O/Al₂O₃- und Na₂O/TiO₂-Verhältnisse auf. Das gilt auch für den in 1 m Teufe beobachteten Tuff in Neustadt/Wied (s. Abb. 26). Ein sehr charakteristisch ähnliches Oxid- und Spurenelementverhältnis wie dieser 1-m Tuff erscheint im Profil Neustadt/Wied auch bei 8,60 m (vgl. Abb. 26 und 44). Aus dieser Teufe ist makroskopisch nur Löß beschrieben (Nehring, 2001). Die begleitenden Dünnschliff-Untersuchungen zeigen für die entsprechende Teufe (8,60 m) einen fossilen Ah-Horizont. Ein solcher erklärt die Verhältnis-Erniedrigung ebenfalls. Tuffe und Bt-Horizonte können demnach ähnliche Erniedrigungen in den Verhältnissen der Oxide löslicher Kationen/Hydrolysat (also im Na₂O/Al₂O₃-, Na₂O/TiO₂-, K₂O/Al₂O₃- und K₂O/TiO₂-Verhältnis) aufweisen. In anderen Verhältnissen, und zwar in denen, die ganz spezifisch für Tuffe sind, ergeben sich jedoch klare Differenzierungs-Möglichkeiten, - das sind die Sr/Zr- und TiO₂/Al₂O₃-Verhältnisse: Das erste Verhältnis ist für Tuffe niedrig (und für Bt-Horizonte hoch), das zweite - reziprok - für Tuffe charakteristisch hoch (höher als 0,08), in Bt-Horizonten niedrig, bedingt durch die generell hohen TiO2-Gehalte in (intermediären bis basischen) vulkanogenen Materialien, also z.B. in Trachyt- oder Basalt-Tuffen, vgl. Correns (1968), Frechen & Vieten (1970), und hohen Al₂O₃- Gehalte in Tonen und Bt-Horizonten. Nach diesen Kriterien (vgl. Abb. 44) ist der 8,60 m Horizont im Profil Neustadt/Wied kein Tuff, sondern - wie es das Dünnschliff-Bild (vgl. Abb. N6 im Anhang) anzeigt - ein Ah-Horizont.

Eine Unterscheidung zwischen Interglazial- bzw. Interstadialböden war bei diesen Profilen anhand der gebildeten geochemischen Verhältnisse nicht möglich. Zum einen ist die Dauer des Interglazials bzw. Interstadials von entscheidender Bedeutung und kann nur bedingt (für die Isotopensubstadien 5a, 5c und 5e) als bekannt vorausgesetzt werden. Ähnliche Verwitterungsintensitäten könnten aus zum einen niedrige(re)n Temperaturen, aber längerer Dauer und zum anderen kürzerer Dauer und höheren Temperaturen resultieren. Ältere Bodenbildungen wurden teilweise von jüngeren überprägt. Eine chronostratigraphische Zuordnung ist ohne Datierung nicht möglich. Weitere Untersuchungen an letztinterglazialen Bt-Horizonten (Deutschland, Belgien, Frankreich) mit den hier vorgestellten Methoden sollten angestrebt werden, um eine verläßliche Aussage mit signifikanter Probenmenge über (zunächst) interglaziale Verwitterungsintensitäten zu erhalten.

7.4 Herkunft der Lösse

Zur Herkunftsbestimmung der Lösse lassen sich vor allem die in den Profilen in Spuren (< 0,5 Vol.-%) vorkommenden Schwerminerale und bestimmte, für das Bildungsmilieu der Löß-Komponenten spezifische Indexminerale und eventuell auch Fossilreste nutzen. Die Bestimmung von Strontium-Isotopenverhältnissen hat für diese Frage ergeben, daß es sich bei den Lössen im Pleiser Hügelland, im Vorderwesterwald und in der Picardie um die Mischung zweier Komponenten A und B handelt, wobei A die Kalk-Komponente (87Sr/86Sr: 0,7075, Dickin, 1997) für kreidezeitliche Kalke und B die Silikat-Komponente ist. Deutlich unterschieden sich die Sr-Verhältnisse der Löß/Tuff-Gemische von denen der Lösse (vgl. Abb. 61). Bei Berücksichtigung der Carbonatgehalte und ihrer leichteren ^{87/86}Sr-Verhältnisse (= der Kalk-Komponente des Pariser und Aquitanischen Beckens entsprechend 0,7075) ergeben sich für die hier untersuchten Lösse des Bonner Raumes und der Picardie Werte zwischen 0.7111 und 0,7149 für kalkhaltige Proben (Einzelwerte und 2-Sigma-Fehler s. Tab. 28 im Anhang) und Werte über 0,72 für entkalkte Proben (Verschiebung zur schwereren Silikat-Komponente B). Granite haben oft Sr-Isotopenverhältnisse von $\ge 0,71$ (bei alten Graniten und Gneisen ist die Grenze nach oben offen). Zwei Löß/Tuff-Gemisch-Proben des Profils Rauschendorf zeigen eine Verschiebung zu höheren Sr-Gehalten (358-400 ppm Sr), die durch den höheren Anteil an mafischen Mineralen bedingt ist. Bei Birlinghoven ist ein leichter, kontinuierlicher Trend der ^{87/86}Sr-Verhältnisse von oben (3,25 m) nach unten im Profil (6,50 m) zu größeren Verhältnissen zu beobachten (vgl. Tab. 28 & Abb. 61). Bei Neustadt/Wied (für die Carbonatfreien Proben) und Heilly ist es umgekehrt: Nach unten im Profil werden die Verhältnisse geringer. Deutet sich hier (für Birlinghoven) ein Transport-Zwischenlager an?

Bei den <u>Spurenmineralen</u> sind einige Korrelationen zwischen Dichte, Form und Verbreitung möglich:

- Die relativ <u>leichten</u> Spurenminerale (die Schichtsilikate Biotit, Muskovit, Chlorit; Palygorskit, Turmaline, Chloritoide) sind über das gesamte Bo-I-Profil und auch für die Picardie-Lösse kristallchemisch identisch (vgl. Abb. 51, 39, 40, 41);
- Die <u>Schwer</u>minerale zeigen dagegen kristallchemische Differenzierungen zwischen dem untersten Bo-I-Profilteil (tiefer als 10 m) und dem oberen Teil (Granate, vgl. Abb. 33; Epidote, Abb. 52 und 53; Amphibole, Abb. 55; Rutile: Oben Fe- und Al-reich, unten relativ rein);
- Der mittlere bis untere Lößbereich von Bo-I (> 9,60m) zeigt Ähnlichkeiten im Schwermineral-Spektrum mit dem von Ailly 2,10 m und Heilly 5,05 m (vgl. 7.2); sowohl die Granate als auch die Amphibole erlauben diesen Schluß;
- Der obere Lößbereich von Bo-I (< 9,60 m) zeigt weitgehend das gleiche Schwermineralspektrum, das jedoch verschieden vom unteren ist;
- Die Verbreitung von Palygorskit und von Fossilresten ist regional unterschiedlich (s. u.).

Diese beiden Bo-I-Profilbereiche werden durch einen <u>Reduktions-Horizont</u> bei ~ 10 m getrennt (vgl. Tab. 22 a), der ausgesprochen arm an Spurenmineralen (und frei von Fossilresten) ist. Es finden sich hier nur solche Spurenminerale, die für ein schwach negatives Redoxpotential (Eh) charakteristisch sind, wie etwa Fe²⁺-reiche Amphibole. Dieser Horizont weist auch deutliche Gehalte an den Phosphat-Mineralen Apatit und Monazit (CePO₄), sowie an den (resistenten) "Durchläufern" Rutil und Turmalin auf (vgl. Tab. 22 a).

<u>Granate</u> sind überall vorhanden, ausgenommen den Reduktionshorizont (10,10 m), <u>Muskovit</u>, <u>Chlorit</u> und <u>Biotit</u> ebenfalls. <u>Epidote</u> sind im oberen Bereich (Bo-I) identisch. Im Eiskeil von Sourdon ebenfalls zu finden, jedoch hier kristallchemisch in einem anderen Typ (Mn-Epidot, Piemontit; die Bo-I-Epidote sind Mn-<u>frei</u>). <u>Zirkon</u> ist in Bo-I nur im unteren Profilbereich zu finden. Auch in Heilly ist er im Profilfuß angereichert (vgl. 6.5 und 7.2).

Die beiden Bo-I-Horizonte 1,40 m und 9,60 m weisen das breiteste Spurenmineral-Spektrum auf (vgl. Tab. 22 a) und sind die einzigen (Bo-I)-Horizonte, in denen (marine) <u>Fossil-Bruch-stücke</u> gefunden wurden. Offensichtlich spiegeln beide Horizonte einen Zeitraum stärkeren Transports, höherer Transport-Energie wider (verglichen mit den Verhältnissen, die zur Sedimentations-Zeit der übrigen Bo-I-Horizonte geherrscht haben dürften).

Außer diesen organogenen Bestandteilen weisen Apatit, Glaukonit (typisches flachmarines bis Deltabereichsmineral) und vor allem <u>Palygorskit</u> und die Carbonate eindeutig auf einen Herkunftsbereich der Lösse hin, der im (küstennahen) Flachmeer gelegen haben muß! <u>Palygorskit</u> kann (wie es gerade Zöller et al., 2003, aus Lössen von Lanzarote beschrieben haben und wie es für semi-aride Böden aus Namibia von Eitel, 1994, 2000, berichtet worden ist), pedogen in-situ in semi-ariden Böden und Sedimenten gebildet werden (vgl. auch Velde 1992). Dann sieht er jedoch anders aus als in den hier untersuchten Lössen: Er bildet dann <u>idiomorphe</u> faser- und röhrchenförmige Kristalle (Länge: Bis zu mehreren hundert µm, Breite 10-20µm - also gut erkennbar unter einem normalen Lichtmikroskop!), wie sie von Schwaighofer (1980), Eitel (1994) oder Zöller et al. (2003) in ihren Arbeiten abgebildet worden sind. Hier, in den Bockeroth- und Picardie-Lössen kann der Palygorskit nur röntgenographisch nachgewiesen werden (2-5 Vol.-%), jedoch weder im Licht- noch im Elektronenmikroskop. Daraus lassen sich zwei Schlüsse ziehen:

- 1. Die ehemaligen Fasern und Röhrchen sind vielfach zerbrochen und zerkleinert worden
- Das kann nur durch mechanische Beanspruchung geschehen sein, und zwar auf dem (Wind-) <u>Transport</u> vom Ursprungsort der Lösse bis zur Ablagerung.

Palygorskit ist relativ weich (die genaue Härte ist wegen der meist erdigen, feinstkörnigen Massen, wie sie wohl auch hier vorliegen, nicht bekannt, vgl. Correns, 1968), so daß sie - sowohl wegen der geringen Härte als auch durch die (bei idiomorph ausgebildeten Fasern und Röhrchen, die gewöhnlich ein Länge-/Breite-Verhältnis von 10, häufig mehr als 20 aufweisen, Sudo et al. (1981) spezifische Form - auf dem Transport durch den Wind <u>unbedingt zerbrechen</u> werden.

Auch der Herkunftsbereich dieser transportierten und nun in den Lössen der Picardie und von Bockeroth in Spuren enthaltenen feinstkörnigen <u>Palygorskit-Bruchstücke</u> (die so klein sind, daß sie selbst im Elektronenmikroskop nicht zu identifizieren sind) läßt sich einengen (genauso wie der der Fossil-Bruchstücke): Sie werden sowohl in den Profilen des Bonner Raums als auch in denen der Picardie gefunden. <u>Aber:</u> In den letzteren ist der Palygorskit sehr viel häufiger vorhanden (z.T. auch in etwas größeren Gehalten). So enthalten 2 von 4 Sourdon-Proben und 6 von 11 Heilly-Proben den Palygorskit, aber nur jeweils 3 Bockerothund Neustadt-Proben (von mehr als hundert Lößproben aus dem Bonner Raum !).

Aus dem offensichtlich starken Zerkleinerungsgrad des Palygorskits läßt sich zunächst nur schließen, daß dieses Mineral, das lange zerbrechliche Röhrchen bildet, in beiden

Löß-Regionen (Picardie und Pleiser Hügelland) nicht in-situ entstanden ist. Es ist detritischer Natur, also wahrscheinlich mit dem Löß (s. u.) durch Transport in die Profile gelangt. Als sehr charakteristische Begleiter kommen einmal Al-reiche Smektite (Beidellit, s. Velde, 1992, Blanc-Valleron & Thiry, 1997) vor, aus denen sich - in einem pH-Bereich zwischen 8 und 9,5 (Singer, 1979, Blanc-Valleron & Thiry, 1997) der Palygorskit diagenetisch umbilden kann. Zum anderen tritt er in anderen Proben mit Foraminiferen-Bruchstücken gemeinsam auf. Pedogen entsteht Palygorskit bei der Calcrete-Bildung semi-arid (vgl. Singer, 1979, 1984, Eitel, 1994, 2000, Verrecchia & Le Coustumer, 1996). Flach-marin gebildet ist er in vielen Sedimenten des westlichen Mittelmeerraumes gefunden worden, z.B. in Marokko (Pletsch et al. 1996) und Südspanien (Galan & Ferrero, 1982), wo er abbauwürdige Lagerstätten bildet, und Tunesien (Hachicha et al., 2003). Die begleitenden Foraminiferen-Bruchstücke und - hin und wieder - kleine Phosphorite (Apatite) in den untersuchten Lößproben weisen eindeutig auf diesen letzteren Bildungsort hin (flach-marin). Die aktuellen (und auch damals zur Zeit des Lößtransports) herrschenden Windverhältnisse sind W \rightarrow E. Auf eine Herkunft aus Flachmeerbereichen westlich der normannischen Küste kann nur indirekt geschlossen werden. Die geologische Situation zur Zeit des Löß-Transports, 15-25 ka her, läßt diesen Schluß wahrscheinlich sein. Auf eine Herkunft des Picardie-Palygorskits aus ehemaligen Flachmeer-Sedimenten könnten auch die benachbarten Phosphat (Apatit !)-Vorkommen bei Heilly hinweisen (vgl. Geol. Karte 1: 250 000; Feuille NM 31-8): Nach Hachicha et al. (2003) sind etwa die tertiären Phosphorit(= Apatit)-Vorkommen Mitteltunesiens sehr charakteristisch mit Palygorskit, Foraminiferen und Glaukonit vergesellschaftet. In Spuren findet sich dieses typisch-marine Schichtsilikat Glaukonit auch in den Picardie-Lössen und in Bockeroth (vgl. die Spurenmineral-Charakterisierung und Tab. 22 a). So weist z.B. die Bockeroth-Lage bei 1,40 m neben Foraminiferen-Bruchstücken auch Apatit auf.

Die Strecke von den "möglichen" Löß-(Palygorskit-, Apatit-, Foraminiferen-) Ursprungssedimenten ("off-shore" vor der normannischen oder sogar bretonischen Küste) bis zu den Lößprofilen der Picardie und - weiter noch des Pleiser Hügellandes beträgt mehrere hundert km. Das äolische Material ist durch die mechanische Aufbereitung während des Transports deutlich beansprucht worden:

- Die Quarze sind überwiegend gut gerundet worden (wie mit einem Sandstrahlgebläse);
- Die Korngrößen sind durch sehr gute Sortierung einheitlich;
- Die spaltbaren Minerale (Carbonate, Feldspäte) sind zerkleinert worden;

- Die Schichtsilikate (Glimmer, Chlorite, Glaukonite) sind zerkleinert worden und nur zu einem geringen Teil in die Lößprofile gelangt;
- Die recht zerbrechlichen Fossilien (Foraminiferen, Bryozoen) sind zerkleinert worden und nur in wenigen Exemplaren in den Lössen zu finden (aber immerhin zu finden!);
- Die langen Palygorskit-Röhrchen sind verschwunden (zerbrochen, zerkleinert): Nur noch extrem feinkörnige, selbst im Elektronenmikroskop nicht mehr identifizierbare Partikel davon sind im Löß des Pleiser Hügellandes vorhanden (und röntgenographisch nachweisbar).

Auffallend ist auch, daß der Palygorskit in den Picardie-Profilen häufiger ist als in denen des Pleiser Hügellandes. Ebenfalls ein Hinweis auf Lößtransport von Westen?

Festgehalten soll hier werden: Deutliche Hinweise auf flachmarine Löß-Ursprungsgebiete ("off-shore"-Gebiet vor der normannischen Küste) sind die in beiden Löß-Regionen gefundenen Assoziationen von Carbonaten, Foraminiferen, Palygorskit, Apatit und Glaukonit. Deutliche Hinweise auf einen (Löß-, Palygorskit-, Apatit-, Foraminiferen-)-Antransport von Westen sind die Mengenunterschiede an den zerbrechlichen Komponenten (Fossilien, Palygorskit, geringer auch an Schichtsilikaten) zwischen der Picardie (\rightarrow etwas größere Anteile an diesen Komponenten) und Pleiser Hügelland (\rightarrow etwas geringere Anteile, besonders an Palygorskit und Foraminiferen).

Im Vergleich mit Löß-Untersuchungen im Sinai, wie sie vor kurzem von Knabe (2000) oder Rögner et al. (2003) durchgeführt worden sind und wie sie hier vergleichend ausgeführt werden können, fallen Übereinstimmungen und charakteristische Unterschiede auf: Knabe (2000) und Rögner et al. (2003) rekonstruieren Transportweiten von (nur) 100 - 150 km (Golf von Suez bis in die zentralen Sinai - Berge und deren Wadis). Die Folge ist, daß sich die ebenfalls mit den Lössen aus dem flach-marinen, vor 15 - 25 ka trocken gefallenen Ursprungsgebiet, den miozänen Mergeln des Golfes von Suez herantransportierten - begleitenden Foraminiferen relativ gut erhalten haben, so daß sie sogar paläontologisch bestimmbar sind. Palygorskite und - besonders - Glaukonite sind dort, in den Sinai-Lössen, ebenfalls charakteristische Löß-Bestandteile (neben Carbonaten, von denen besonders der eisenhaltige Dolomit ein Fazies-Indikator für flach-marines, z. T. schwach-reduzierendes Milieu ist). Hier, in der Picardie und - besonders - im Pleiser Hügelland, war der Transportweg sehr viel weiter. Die stark zerbrochenen Palygorskite und der schlechte Erhaltungsgrad der wenigen Foraminiferen, sowie die übrigen oben angeführten Argumente für die "off-shore" - Herkunft, verwundern also nicht. Fazit: Zumindest <u>ein Teil</u> der untersuchten Lösse, nämlich die Fernkomponente, läßt sich in seiner Herkunft aus dem westlichen Flachmeergebiet erklären, die - von Profil zu Profil im Pleiser Hügelland variierende - <u>Nah</u>komponente bleibt hiervon unbeeinflußt: Vulkanogene Komponenten, Einträge aus der Niederrheinischen Bucht und der Niederterrasse der Kölner Bucht komplettieren die Lösse. Metamorphe Schwerminerale, als Spuren in den Lössen vorhanden (siehe Analysen im Anhang), könnten durch Rhein oder Mosel (Müller & Negendank 1974, Boenigk 1983), durch Aufnahme bei Zwischenlagerungen auf dem Wind-Transport von Westen oder auch aus unmittelbarer Umgebung der Profile stammen.

Der letztere "Ort" ist ganz sicher für die große Menge an vulkanogenem Material von Bedeutung, so v.a. am Thomasberg, aber auch in den anderen Lößprofilen des Bonner Gebietes: Eifel und Siebengebirge sollten Ursprung für die (Trachyt - u.a.) Tuffe gewesen sein. Über die Herkunft der (sehr viel geringeren) Tuff-Anteile der Picardie kann dagegen nur spekuliert werden.

Im Sinne der Empfehlungen von Foster (2002, vgl. "Einführung und Zielsetzung" und Abb. 1 im Anhang) wurde in den vorliegenden Untersuchungen versucht, die exakten Methoden der benachbarten Geowissenschaften (v. a. der Mineralogie, Geochemie und Bodenkunde) zur Klärung der geomorphologischen Fragen (verstärkt) zu nutzen. Das ist sowohl bei der Charakterisierung von (fossilen) Bodenhorizonten und von vulkanogenen Einschaltungen, dem Einfluß postvulkanischer Entgasungsprozesse auf die Löß-Geochemie und besonders im Hinblick auf die Provenanz der Lösse geschehen. Viele Fragen, besonders solche nach exakten (fein-)stratigraphischen Korrelationen, sind auch mit diesen Methoden (bisher) nicht eindeutig zu klären, so daß sie weiteren, ergänzenden interdisziplinären Untersuchungen vorbehalten bleiben müssen. Hierzu sollen die vorliegenden Ergebnisse grundlegender Ausgang und Anregung sein.
Zusammenfassung

Die vorliegenden Untersuchungen wurden an den im Verlaufe des ICE-Trassenausbaus (Köln-Frankfurt) frisch aufgeschlossenen Lößprofilen Birlinghoven, Rauschendorf, Bockeroth, Thomasberg (alle im Pleiser Hügelland nahe Bonn) und Neustadt/Wied sowie an drei Vergleichsprofilen in der Picardie (Ailly, Sourdon und Heilly) durchgeführt. Der Schwerpunkt der Untersuchungen lag auf mineralogischen und geochemischen Bestimmungen:

(a) Zur Charakterisierung der Profilhorizonte und ihrer petrographischen

bzw. pedologischen Anteile (Löß, Lößlehm, Tuff-Lagen, Böden),

(b) zum stratigraphischen Vergleich der Profile,

(c) zum Einfluß der Verwitterung auf die Profilbestandteile und

(d) zur Ermittlung der Lößherkunft.

Die insgesamt etwa 275 Proben wurden in drei Geländekampagnen gewonnen. In Korngrößenanalysen, von denen 93 Proben von F. Nehring durchgeführt und in seine Diplomarbeit aufgenommen worden sind (Nehring, 2001), zeigen nur wenige Horizonte ein abweichendes Bild von der Schlufffraktion (2-63 μ m Ø). Dabei handelt es sich entweder um Horizonte mit deutlichen Anteilen von vulkanischem Material, um Fließerden oder um (Paläo-)Böden. mineralogischen Methoden kamen An röntgenographische, thermoanalytische, licht- und elektronenoptische Verfahren zur Anwendung. Sie dienten zur Bestimmung von Mineralen und zur Ermittlung charakteristischer Mineral-Eigenschaften. Die geochemische Charakterisierung von 68 Proben geschah röntgenfluoreszenzanalytisch an (Hauptelementbestimmung) Presstabletten Schmelztabletten und an Elektronenstrahl-Mikrosonde (Spurenelement-Ermittlung). Mit Hilfe der konnten charakteristische Spurenminerale in Streupräparaten kristallchemisch berechnet werden. Weiterhin wurden Strontium-, Sauerstoff-Kohlenstoff-Isotopenbestimmungen und durchgeführt.

Zur Kennzeichnung chemischer Verwitterungsprozesse und damit von Bodenbildungen sowie von vulkanogenen Anteilen im Löß diente als besondere und hier ausführlich genutzte Methode die Bestimmung von Oxid- bzw. Element-Verhältnissen. Hierbei werden die Gehalte löslicher Kationen (bzw. deren Oxide, z. B. Alkalien und Erdalkalien) auf solche (nahezu) unlöslicher Hydrolysate (Al_2O_3 , TiO₂) bezogen. Abweichungen zu geringeren Verhältnissen von Standardwerten für unverwitterte Löß- oder Tuff-Horizonte spiegeln chemische Verwitterungsprozesse wider.

Ergebnisse zu (a) sind: <u>Lösse</u> zeigen mineralogisch (neben dem Hauptmineral Quarz und den Carbonaten Calcit und Dolomit) <u>Plagioklas</u> (Albit-reich) als bestimmenden Feldspattyp, beide Glimmer (den dioktaedrischen Muskovit und den trioktaedrischen Biotit) und Chlorit sowie die Umwandlungsprodukte dieser Schichtsilikate (mixed-layer). Geochemisch sind sie durch recht einheitliche Verhältnisse der Hydrolysate TiO₂/Al₂O₃ gekennzeichnet (0,07-0,08 ± 0,005). Löß-<u>Lehme</u> weisen durch das Fehlen der Carbonate viel geringere CaO-, MgO- und Sr-Gehalte auf. (<u>Paläo-)Böden</u> werden durch erniedrigte Alkalien-/Hydrolysat- sowie erhöhte K₂O/Na₂O-Verhältnisse gekennzeichnet. <u>Tone</u> erweisen sich in den untersuchten Profilen als umgewandelte Tuffe. Ihr Hauptbestandteil ist ein gut geordneter Montmorillonit. Der gute kristallchemische Ordnungsgrad dieses Smektits weist auf Entstehung bei relativ hohen Temperaturen hin, wie sie bei autohydrothermaler Umwandlung von Tuffmineralen (oder vulkanischem Glas) auftreten können. Intermediäre <u>Tuffe</u> schließlich (Trachyt- oder Andesit-Tuffe) weisen nach Correns (1968) oder Vieten (1983) hohe Sanidin-Gehalte auf (neben geringen Plagioklas-Gehalten). Das wird durch K-Feldspat (Sanidin) \gg als Plagioklas sowie K₂O-, Rb-Reichtum widergespiegelt.

Zu (b) bleibt festzuhalten, daß regionale <u>fein</u>stratigraphische Korrelationen von Lößprofilen, wie sie etwa Zöller & Nehring (2002) aus Geländebeobachtungen ableiten, mit mineralogischen und geochemischen Methoden nur sehr bedingt möglich sind. Am sichersten sind die Tuff-Lagen zu korrelieren. Die Daten dieser Arbeit zeigen eindeutig aber auch , daß es sich bei der nach Geländebeobachtungen früherer Bearbeiter (Semmel, 1967, 1987, Juvigné & Semmel, 1981, Schirmer, 2000, Nehring, 2001 und Zöller und Nehring 2002) zwischen in mehreren Profilen korreliertem "Eltviller Tuff" nicht in allen Fällen um den gleichen Tuff handelt: So sind die drei hier untersuchten Tufflagen aus den Profilen Birlinghoven (Teufe 6,25 m), Rauschendorf (5,25 m) und Bockeroth II (5 m) geochemisch und mineralogisch identisch, aber stark unterschiedlich von dem (ebenfalls als "Eltviller Tuff" interpretierten) Tuff des Profiles Neustadt/Wied. Ob die ersten drei oder der letzte nun "echten" Eltviller Tuff darstellen, kann hier nicht beantwortet werden.

Als Ergebnisse zu (c) sind einmal die Montmorillonitisierung ehemaliger Tufflagen (besonders gut im Profil Thomasberg erkennbar), zum anderen - und das ganz besonders - die sich in abnehmenden Oxid-Verhältnissen (Oxide löslicher Kationen/Hydrolysat) widerspiegelnden Prozesse der chemischen Verwitterung und Bodenbildung zu erwähnen. Viele der rekonstruierten Paläoböden lassen sich nur durch derartige Verhältnisse nachweisen (z. B. Birl 4,15 m; Bo 12,50 m; Bo II 3,36 m, 5,38 m; Thomasberg 3,40, 9,35 m; Neustadt/Wied 8,63 m ; Sourdon 3,3 m; Heilly 4,35 m und 4,75 m)!

Im Profil Heilly sind (deutliche) Anzeichen eines physikalischen Separierungsprozesses an zwei übereinanderliegenden Tuffbändern zu erkennen (6,45 m = hell; 6,55 m = dunkel), die sich durch Frost/Tauwechselprozesse erklären lassen (Kessler & Werner, 2003; Hachicha et al. 2003, zur Publikation eingereicht): Durch Volumenvergrößerungen beim Gefrieren von Porenwässern unter großen Kristallen wie Sanidin und Calcit werden diese Kristalle nach oben gedrückt, d. h. in die helle Lage. Feinstkörnige Partikel wie Illite und Matrix-Plagioklas sowie sehr schwere Partikel wie Baryt rieseln dagegen nach unten (Kessler & Werner, 2003, Hachicha et al., 2003).

Die Ergebnisse zu (d) lassen sich einmal aus dem Vorkommen spezifischer (Index-) Minerale, wobei es sich neben den beiden Carbonaten generell um Spurenminerale handelt, zum anderen von Mikrofossilien ableiten. Das Spektrum der gefundenen Spurenminerale ist recht groß und weist auf die verschiedensten Ursprungsgesteine magmatischer und metamorpher Art hin (Vulkanite, Granite, Glimmerschiefer, Gneise, Amphibolite u.a.). Alle derartigen Gesteine stehen westlich der untersuchten Lößgebiete an, von der Eifel bis zur Bretagne. Kristallchemisch fallen gleiche Zusammensetzungen von Titaniten, Granaten, Chloritoiden, Turmalinen und - vorsichtig und mit Einschränkungen - Epidoten und Amphibolen aus Bockeroth und den Picardie - Vorkommen auf. Das weist auf gleiche Herkunftsgebiete für beide Regionen hin. Auch die Zusammensetzung der Plagioklase (aus den Lössen) ist verwandt. Als typische flachmarine Sedimentbildungen sind die Mg-Fe(II) -Silikate Glaukonit und Palygorskit in beiden Gebieten vorhanden, der Palygorskit in den Picardielössen häufiger als in denen des Pleiser Hügellandes. Der Palygorskit ist in kleinste Partikel zerbrochen, nur röntgenographisch, aber nicht im Elektronenmikroskop nachweisbar. Das heißt: Er ist keine in-situ-Bildung, sondern (mit dem Löß) transportiert worden. Hieraus kann - vorsichtig - hergeleitet werden, daß dieses röhrchenförmige, recht zerbrechliche Mineral Palygorskit von Westen äolisch heran transportiert worden ist. Dritter Hinweis auf Transport aus dem Flachmeer sind die Sr - und O - Isotopendaten der carbonatreichen Proben. Vierter Index auf ein flachmarines Herkunftsgebiet sind Mikrofossilien (Foraminiferen). Zur

Zeit des letztglazialen Maximums, als der Meeresspiegel um 100 bis 120 m niedriger lag als heute, könnten die Lösse (+ Mikrofossilien, Palygorskit, Glaukonit und - vor allem - den Carbonaten Calcit und Dolomit) aus den damals im kaltariden Klima trocken gefallenen lockeren Flachmeersedimenten vor der bretonischen Küste vom Wind aufgenommen und ostwärts transportiert worden sein.

Referenzen

Die hier aufgeführten Referenzen sind sämtlich in der Arbeit zitiert.

- Aitken, M. J. (1985): Thermoluminescence Dating. Academic Press, 359 p., London
- Aitken, M. J. (1998): An Introduction to Optical Dating. Oxford University Press, 280 p.
- An, Z., Kukla, G. & Porter, S. (1991): Late quaternary dust flow on the chinese loess plateau. Catena, 18, p. 125-132
- Andres, W. (1969): Über vulkanisches Material unterschiedlichen Alters im Löß Rheinhessens. Mainzer Naturwissenschaftliche Archive, 8, 134-13
- Antoine, P. (1986): Etude stratigraphique de quelques séquences du Pléistocène supérieur de la Somme. Rapport de D.E.A., Université des Sciences et Technique de Lille
- Antoine, P. (1988): Contributions à l'étude des loess du Pléistocène Supérieur du Bassin de la Somme. - In: Cultures et industries en milieu loessique. Revue Archéologique de Picardie, 1-2, p. 25-44
- Antoine, P. (1989 a): Abbeville-carrière Carpentier: stratigraphie et levé récents. In: Livret-guide de l'excursion dans la vallée de la Somme. Colloque L'Acheuléen dans l'Ouest de l'Europe, Saint-Riquier, juin 1989, p. 9-10
- Antoine, P. (1989 b): Géometrie des nappes alluviales du secteur d'Abbeville. In: Livret-guide de l'excursion dans la vallée de la Somme. Colloque L'Acheuléen dans l'Ouest de l'Europe, Saint-Riquier, juin 1989, p. 3-4
- Antoine, P. (1989 c): Le complexe de sols de Saint-Sauflieu (Somme), micromorphologie et stratigraphie d'une coupe type du Début Weichsélien. Publ. du CERP 1, p. 51-59, Lille
- Antoine, P. (1989 d): Le système de la basse terrasse de la Somme. In: Livret-guide de l'excursion dans la vallée de la Somme. Colloque L'Acheuléen dans l'Ouest de l'Europe, Saint-Riquier, juin 1989, p. 100-104
- Antoine, P. (1989 e): Le système des terrasses de la vallée de la Somme. In: Livret-guide de l'excursion dans la vallée de la Somme. Colloque L'Acheuléen dans l'Ouest de l'Europe, Saint-Riquier, juin 1989, p. 28-33
- Antoine, P. (1989 f): Observations récentes sur la géometrie et la stratigraphie des dépôts quaternaires de Mautort. In: Livret-guide de l'excursion dans la vallée de la Somme. Colloque L'Acheuléen dans l'Ouest de l'Europe, Saint-Riquier, juin 1989, p. 19-23
- Antoine, P. (1990): Chronostratigraphie et environnement du Paléolithique du bassin de la Somme. Publications du CERP no 2, 231 p., Lille
- Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.-V., Hatté, C. & Fontugne, M. (2001): High-resolution record of the last interglacial cycle in Nussloch loess-paleosol sequences, Upper Rhine Area, Germany. Quaternary International, 76/77, 1, p. 211-229
- Argast, S. & Donnelley, Th. W. (1987): The chemical discrimination of clastic sedimentary components. J. Sed. Petrol., 57, p. 813-823

Baertschi, P. (1976): Absolute ¹⁸O content of standard mean ocean water. EPSL, 31, p. 341

- Baes, C. F. & Mesmer, R. E. (1976): The Hydrolysis of Cations. Wiley & Sons, New York
- Bente, B. (1987): Geochemische, sedimentologische und stratigraphische Untersuchungen an Löß-Profilen des westlichen Kraichgaus.- Dipl.-Arbeit, 107 S., Geol.-Paläont. Inst. Heidelberg
- Bente, B. & Löscher, M. (1987): Sedimentologische, pedologische und stratigraphische Untersuchungen an Lössen südlich Heidelberg. Göttinger Geogr. Abh., 84, S. 9-17
- Berg, L. S. (1964): Loess as a product of weathering and soil formation. Jerusalem, Program for Scientific Translations, 207 pp.
- Berger, G. W., Pillans, B. J. & Palmer, A. S. (1992): Dating loess up to 800 ka thermoluminescence. Geology, 20, 403-406
- Berner, R. A. (1971): Principles of Chemical Sedimentology. McGraw Hill, New York
- Bibus, E. (1973): Ausbildung und Lagerungsverhältnisse quartärer Tuffvorkommen in der Wetterau. Notizbl. des hess. L.-Amtes für Bodenforschg., 101, 346-361, Wiesbaden
- Bibus, E. (1980): Zur Relief-, Boden- und Sedimententwicklung am unteren Mittelrhein. Frankf. Geogr. Arbeiten Serie D 1
- Bibus, E. (1989): Exkursionsführer 8. Tagung Arbeitskreis Paläoböden der Deutschen Bodenkundlichen Gesellschaft. S. 1-27, Tübingen
- Bibus, E. & Semmel, A. (1977): Stratigraphische Leithorizonte im Würmlöß des Mittelrhein-Gebietes. Geologisches Jahrbuch von Hessen, 105, S. 141-147
- Blanchard, H. (2002): Neue Erkenntnisse zur Eruptions- und Landschaftsgeschichte des Rodderbergs. Dipl.-Arbeit, Geographisches Institut, Bonn (unveröff.)
- Blanc-Valleron, M.-M. & Thiry, M. (1997): Clay Minerals, Paleoweathering,
 Paleolandscapes and Climatic Sequences: The Paleogene Continental Deposits in
 France. In: Paquet, H. & Clauer, N. (Eds.), Soils and Sediments. Mineralogy and
 Geochemistry. Springer-Verlag, Berlin Heidelberg New York.
- Bleich, K. (1998): Zur Deutung und Bedeutung von Paläoböden im (süddeutschen) Löß. Eiszeitalter und Gegenwart, 48, S. 50-56
- Bleich, K. E. & Schlichting (1979): Nachweis und Vorkommen von Paläoböden.
- Boenigk, W. (1983): Schwermineralanalyse. 158 S., Enke Verlag, Stuttgart
- Boenigk, W. (1990): Die pleistozänen Rheinterrassen und deren Bedeutung für die Gliederung des Eiszeitalters in Mitteleuropa. In: Eiszeitforschung, S. 130-140
- Boenigk, W. (2000): Schwerminerale. Handbuch der Bodenkunde, 8, S. 1-18
- Boenigk, W., Frechen, M., Weidenfeller, M. (1994): Die mittel- und oberpleistozäne Deckschichtenfolge im Naturschutzgebiet "Eiszeitliches Lößprofil" in Koblenz-Metternich. Mainzer geowissenschaftl. Mitt., 23, S. 287-320
- Bogaard, C. v. d., Bogaard, P. v. d. & Schmincke, H. U. (1989): Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeitalter und Gegenwart, 39, S. 62-86

- Bogaard, P. v.d. & Schmincke, H.-U. (1988): Aschemarken als quartäre Zeitmarken in Mitteleuropa. Die Geowissenschaften, 6, 75-84, Hannover
- Bogaard, P. v.d. & Schmincke, H.-U. (1990): Die Entwicklungsgeschichte des Mittelrheinraumes und die Eruptionsgeschichte des Osteifel-Vulkanfeldes. Deuqua-Führer, 1, S. 166-190, Hannover
- Bork, H.-R. (1983): Die holozäne Relief- und Bodenentwicklung in Lößgebieten. Beispiele aus dem südöstlichen Niedersachsen. - In: Bork, H.-R. & Ricken, W. (eds.): Bodenerosion, holozäne und pleistozäne Bodenentwicklung. Catena/Supplement, 3, S. 1-93, Braunschweig
- Bork, H.-R. (1989): Soil erosion during the past millenium in Central Europe and ist significance with in the Holocene. Catena/Supplement, 15, p. 121-131
- Botschek, J. (1991): Bodenerosion in Nordrhein-Westfalen. Arbeiten zur Rheinischen Landeskunde, 60, S. 81-92
- Botschek, J., Grunert, J. & Skowronek, A. (1994): Bodenerosion in Nordrhein-Westfalen. -Voraussetzungen, Prozesse und Schutzmaßnahmen. Berichte zur Deutschen Landeskunde, 68(1), S. 33-56
- Brandtner, F. (1954): Jungpleistozäner Löß und fossile Böden in Niederösterreich. Eiszeitalter und Gegenwart, 4/5, S. 127-175
- Breddin, H. (1928): Die Höhenterrassen von Rhein und Ruhr am Rand des Bergischen Landes. Jb. preuß. geol. L.-Anst., 49(1), S. 501-550
- Breddin, H. (1931): Flußterrassen und Lösse am Niederrhein. In: Z. Dt. Geol. Ges., 83, S. 659
- Brindley, G. W. & Brown, G. (1980): Crystal Structure of Clay Minerals and their X-ray Identification. Mineralogical Society, 5, London
- Bronger, A. (1966): Lösse, ihre Verbraunungszone und fossile Böden. Schr. Geogr. Inst. Univ. Kiel, 24, 113 S.
- Bronger, A. (1970): Zur Mikromorphologie und zum Tonmineralbestand von Böden ungarischer Lößprofile und ihre paläoklimatische Auswertung. Eiszeitalter und Gegenwart, S. 122-144
- Bronger, A. (1976): Zur quartären Klima- und Landschaftsentwicklung des Karpatenbeckens auf paläopedologischer Grundlage. Kieler Geogr. Schr., 45, 269 S.
- Bronger, A. (1979): The value of mineralogical and clay mineralogical aspects of loess research. Quaternary International,
- Bronger, A. & Heinkele, T. (1989 a): Micromorphology and genesis of paleosols in the Luochuan loess section in China: Pedostratigraphic and environmental implication. Geoderma, 45, p. 123-143
- Bronger, A. & Heinkele, T. (1989 b): Paleosol sequences and witness of Pleistocene climatic history. Catena/Supplement, 16, p. 163-186
- Bronger, A. & Heinkele, T. (1990): Mineralogical and clay mineralogical aspects of loess research. Quaternary International, 7/8, p. 37-51

- Bronger, A., Kalk, E. & Schroeder, D. (1976): Über Glimmer- und Feldspatverwitterung sowie Entstehung und Umwandlung von Tonmineralen in rezenten und fossilen Böden. Geoderma, 16, S. 21-54
- Brookins, D. G. (1988): Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin Heidelberg New York
- Brownlow, A. H. (1996): Geochemistry. 2nd ed. 580 pp., Prentice-Hall
- Brunnacker, K. (1954): Löß und diluviale Bodenbildungen in Südbayern. Eiszeitalter und Gegenwart, 8, S. 142-151
- Brunnacker, K. (1964): Grundzüge einer quartären Bodenstratigraphie in Süddeutschland. Eiszeitalter und Gegenwart, 15, S. 72-80
- Brunnacker, K. (1967 a): Die regionale Stellung der niederrheinischen Lößprovinz. -Sonderveröffentl. des Geolog. Inst. zu Köln, 13, S. 55-63
- Brunnacker, K. (1967 b): Grundzüge einer Löß- und Bodenstratigraphie am Niederrhein. Eiszeitalter und Gegenwart, 18, S. 142-151
- Brunnacker, K. (1967 c): Grundzüge und Stratigraphie am Niederrhein.- Eiszeitalter und Gegenwart, 18, S. 142-151
- Brunnacker, K. (1968): Das Quartärprofil von Kärlich/Neuwieder Becken. Geologie en Mijnbouw, 47, S. 206-20
- Brunnacker, K. (1970): Kriterien zur relativen Datierung quartärer Paläoböden? In: Z. Geomorphologie, N.F., 14. Berlin, Stuttgart, S. 354-360
- Brunnacker, K. (1975): Quartäraufschlüsse bei Ariendorf am unteren Mittelrhein. Mainzer Naturwissenschaftl. Archiv, 14, S. 93-141
- Brunnacker, K. (1978): Neuere Ergebnisse über das Quartär am Mittel- und Niederrhein. -Fortschr. Geolog. Rheinl. u. Westf., 28, S. 111-122, Krefeld
- Brunnacker, K. (1984): Quaternary stratigraphy in the lower Rhine area and northern Alpine foothills. - In: Sibrava, V., Bowen, D. O. & Richmond, G. M. (eds.): Quaternary glaciations in the Northern Hemisphere. Report of the International Geological Correlation Programme, p. 373-379
- Brunnacker, K., Löhr, H., Boenigk, W., Puisségur, J. J. & Poplin, F. (1975): Quartär-Aufschlüsse bei Ariendorf und am unteren Mittelrhein. - Mainzer Naturwiss. Archiv, 14, S. 93-141
- Brunnacker, K., Löscher, M., Tillmanns, W. & Urban, B. (1982): Correlations of the Quaternary terrace sequence in the lower Rhine Valley and North Alpine Foothills of Central Europe. Quaternary Research, 18, p. 152-173
- Brunnacker, K., Streit, R. & Schirmer, W. (1969): Der Aufbau der Quartärprofile von Kärlich/Neuwieder Becken (Mittelrhein). - Mainzer Naturwiss. Archiv, 8, S. 102-133
- Buch, M. & Zöller, L. (1990): Gliederung und Thermolumineszenz-Chronologie der Würmlösse im Raum Regensburg. Eiszeitalter und Gegenwart, 40, S. 63-84
- Büdel, J. (1944): Die morphologischen Wirkungen des Eiszeitklimas im gletscherfreien Gebiet. Geolog. Rdsch., 34, S. 442-519

- Büdel, J. (1949): Die räumliche und zeitliche Gliederung des Eiszeitklimas. Die Naturwissenschaften, 36, 105-112, S. 133-139
- Büdel, J. (1951): Die Klimazonen des Eiszeitalters. Eiszeitalter und Gegenwart, 1, S. 16-26
- Bullock, P., Federoff, N., Jongerius, A. Stoops, G. & Tursina, T. (1985): Handbook for Soil Thin Section Description.ISSS. Wayne Res. Publ. Albrighton, England, 152 p.
- Burger, D. (1982): Reliefgenese und Hangentwicklung im Gebiet zwischen Sayn und Wied. Kölner Geogr. Arb., 42, 139 S.
- Burghardt, O. (1979): Das Siebengebirge Veränderung einer Landschaft durch Bergbau, Forstwirtschaft, Weinbergflurbereinigung und Verkehrs-Trassen. Berichte zur deutschen Landeskunde, 71, S. 229-254
- Camilión, M. (1993): Clay mineral composition of Pampean loess (Argentina). Quaternary International, 17, p. 27-32
- Catt, J. A. (Ed.) (1990): Paleopedology Manual. Quaternary International, 6, 95 pp
- Chen, J., An, Z. & Head, J. (1999): Variations of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and their Implications for Monsoon Paleoclimatology. Quaternary Research, 51, p. 215-219
- Correns, C. W. (1968): Einführung in die Mineralogie. 2. Aufl. 458 S., Springer-Verlag Heidelberg
- Correns, C. W. (1978): Titanium. In: Wedepohl, K. H.: Handbook of Geochemistry, II 2, 22-B-1 bis 22-O-17, Springer-Verlag, Berlin-Heidelberg-New York
- Coudé-Gaussen, G. (1990): The Loess and Loess-like Deposits along the Sides of the Western Mediterranean Sea: Genetic and Paleoclimatic Significance. Quaternary International, 5, p. 1-8
- Coutard, J., van Vliet-Lanoë, B. & Anzet, A. (1988): Frost heaving and frost creep on an experimental slope: Results for soil structure and sorted stripes. Zeitschrift für Geomorphologie, 78, S. 13-23
- Craig, W. (1957): Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta, 14, p. 1-14
- Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, B., Gunderstrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J. & Bond, G. (1993): Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, p. 218-220
- De Ploey, J. (1990): Threshold conditions for thalweg gullying with special reference to loess areas. Catena/Supplement, 17, p.147-151
- Derbyshire, E. (1983): Origin and characteristics of some Chinese loesses at two locations in China. Eolian sediments and process, p. 69-90
- Derbyshire, E. (Ed.) (1999): Loess: characterization, stratigraphy, climate and societal significance. Loessfest '99, Extended abstracts, Royal Holloway, University of London, 272 pp.
- Dickin, A. P. (1997): Radiogenic Isotope Geology. Cambridge Univ. Press, 506 p.

Drever, J. I. (1997): The Geochemistry of Natural Waters. Prentice-Hall, New York, 436 p.

- Eitel, B. (1994): Paläoklimaforschung: Pedogener Palygorskit als Leitmineral? Die Erde, 125, S. 171-179
- Eitel, B. (2000): Different amounts of pedogenic palygorskite in South West African Cenozoic calcretes: Geomorphological, paleoclimatical and methodological implications (with 6 figures and 1 table). Zeitschrift für Geomorphologie, Suppl.-Band 121, S. 139-150
- Emiliani, C. (1955): Pleistocene temperatures. J. Geol., 63, p. 538-578
- Erdmann, K.-H. (1998): Untersuchungen zur Bodenerosion im südlichen Nordrhein-Westfalen. UNESCO-Man and Biosphere Program, 43, 391 S., Bonn
- Faure, G. (1998): Principles and Applications of Geochemistry: a Comprehensive Textbook for Geology Students. 2nd ed. Prentice-Hall, New Jersey
- Fedorovich, B. A. (1972): Recent and ancient, cold and warm loesses and their relationship with glaciations and deserts. Acta Geologica Acad. Sci. Hung., p. 371-381
- Felix-Henningsen, P. (1990): Die mesozoisch-tertiäre Verwitterungsdecke (MTV) im Rheinischen Schiefergebirge-Aufbau, Genese und quartäre Überprägung. Relief, Boden, Paläoklima, 6, 192 S., Berlin/Stuttgart
- Fiedler, H. J. & Altermann, M. (1964): Verbreitung, Entstehung und Eigenschaften von Sandlöß ("Flottsand") im norddeutschen Flachland und angrenzenden Gebieten. -Geologie, 13, 10, S. 1199-1228
- Fink, J. (1954): Die fossilen Böden im österreichischem Löß. Quartär, 6, S. 85-105
- Fink, J. (1962): Studien zur absoluten und relativen Chronologie der fossilen Böden in Österreich. Archaeologica Austriaca, 31, S. 1-18
- Fink, J. (1964): Die Böden von Niederösterreich. Jahrb. für Landeskunde von Niederösterreich, 36, S. 965-968
- Fink, J. (1976): Internationale Lößforschungen. Eiszeitalter und Gegenwart, 27, S. 220-235
- Fischer, L., Brümmer, G.W., Barrow, N.J. (1997): Einfluß der Kristallinität von Goethiten auf die Adsorption und Diffusion verschiedener Metalle.- Mitt. Dtsch. Bodenkdl. Ges., 85/III, S. 1501-1504
- Fitzpatrick, E. A. (1980): Micromorphology of Soils. Chapman and Hall, 433 p., London
- Foster, I. D. L. (ed., 2002): Tracers in Geomorphology. Wiley & Sons, Chichester, 576 p.
- Foster, I. D. L. & Lees, J. A. (2002): Tracers in Geomorphology: Theory and Applications in Tracing Fine Particulate Sediments. - In: Foster, I. D. L. (ed., 2002): Tracers in Geomorphology. p. 3-19
- Frechen, J. (1971): Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel: Vulkanologisch-petrographische Exkursionen. Slg. geol. Führer, 56, 2. Aufl., 195 S., Stuttgart

- Frechen, M. (1991): Thermolumineszenz-Datierungen an Lössen des Mittelrheingebietes. -137 S; Diss. Univ. Köln
- Frechen, M. (1994): Thermolumineszenz-Datierungen an Lössen des Tönchesberges aus der Osteifel. Eiszeitalter und Gegenwart, 44, S. 79-93
- Frechen, M. (1999 a): Die spätmittelpleistozäne Karmelenberg-Vulkangruppe in der Osteifel. In: Becker-Haumann, R. & Frechen, M.: Terrestrische Quartärgeologie, S. 277-309
- Frechen, M. (1999 b): Upper Pleistocene loess stratigraphy in Southern Germany. Quat. Sci. Rev. (Quat. Geochronol.), 18, p. 243-269
- Frechen, M. & Preusser, F. (1995): Luminescence dating of Upper Weichselian marker horizons. INQUA, Terra Nostra, 95/4, Berlin
- Frechen, M. & Preusser, F. (1996): Kombinierte Lumineszenz-Datierungen am Beispiel des Profils Mainz-Weisenau. Frankfurter Geogr. Arb. D, 20, S. 53-66
- Frechen, J. & Vieten, K. (1970): Petrographie der Vulkanite des Siebengebirges. Decheniana, 122, S. 337-377
- Freising, H. (1951): Neue Ergebnisse der Lößforschung im nördlichen Baden-Württemberg. J. Geol. Abt. Württ. Stat. Landesamt, 1, S. 55-59, Stuttgart
- Freising, H. (1954): Gibt es in Hessen drei Würmlösse? Jber. Oberrhein. Geol. Vereinigung, 35, S. 54-66, Stuttgart
- Fuchs, K., von Gehlen, K., Mälzer, H., Murawski, H. and Semmel, A. (eds) (1983): Plateau Uplift, the Rhenish Shield a Case History, Springer-Verlag, Berlin, 411 pp.
- Galan, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, southern Spain. Clays and Clay Minerals, v. 30, no. 3, p. 191-199
- Gallet, S., Jahn, B. M., Torii, M. (1996): Geochemical characterisation of loess-paleosol sequence from the Luochuan section, China, and its paleoclimatic implications. Chem. Geol., 133, p. 67-88
- Gallet, S., Jahn, B. M., van Vliet-Lanoë, B., Dia, A. & Rosello, E. (1998): Loess geochemistry and its implications for particle origin and composition of the upper continental crust. EPSL, 156, p. 157-172
- Garlick, G. D. (1969): The stable isotopes of oxygen. In: Wedepohl, K.H.: Handbook of geochemistry, Chapter VIII/B., Heidelberg
- Gewehr, H. (1988): Das Siebengebirge Landschaft und Geologie. VDLUFA-Kongreß Bonn (Exkursionsführer), S. 43-50
- Goebelbecker, J. (1985): Sedimentpetrographische und hydrogeochemische Untersuchungen an den dolomitischen Carbonatgesteinen des Djebel Dahar, Südtunesien. - 155 S.; Diss. Univ. Karlsruhe,
- Grahmann, R. (1930/31): Der Löß in Europa. Mitt. Ges. Erdkunde, S. 5-24
- Grunert, J. (1988): Geomorphologische Entwicklung des Bonner Raumes. Arbeiten zur Rheinischen Landeskunde, 58, 165-180, Bonn

- Grunert, J. (1994): Hangabtragung und Bodenerosion im Bonner Raum in historischer Zeit. -In: von Koenigswald, W. & Meyer, W. (Hrsg.): Erdgeschichte im Rheinland. S. 215-222, München
- Gullentops, F. (1954): Contribution à la chronologie du Pléistocène et des formes du relief en Belgique. Mém. Inst. Geol. Univ. Louvain, 18, p. 123-252
- Günster, N. (1999): Paläopedologische Untersuchungen an pliozänen und pleistozänen Sedimenten im Becken von Granada/Südspanien. Bonner Bodenkundliche Abh., 26, 238 S., Bonn
- Haase, G., Lieberoth, I. & Ruske, R. (1970): Sedimente und Paläoböden im Lößgebiet. In: Richter, H. & Haase, G. (Hrsg.) (1970): Periglazial-Löß-Paläolithikum im Jungpleistozän der DDR. Ergänzungsheft zu PGM, 274, S. 99-212, Gotha/Leipzig
- Hachicha, T., Heil, A. & Smykatz-Kloss, W. (2003): Vergleichende mineralogische Untersuchungen an zwei Phosphorit-Vorkommen in Mitteltunesien. (im Druck in: Chemie der Erde, 62, Heft 3)
- Hachicha, T., Smykatz-Kloss, B. & Smykatz-Kloss, W. (2003): Versuche zur Kryodynamik von Lockersedimenten und Böden. (zur Veröff. eingereicht)
- Haesaerts, P. (1985): Les loess du Pleistocène supérieur en Belgique. Comparisons avec les séquences d'Europe Central. Bulletin de l'Association Française pour l'Étude du Quaternaire. P. 105-115
- Haesaerts, P., Mestdagh, H. & Bosquet, D. (1999): The sequence of Remicourt: new insights of the pedo- and chronostratigraphy of the Rocourt Soil. Geologica Belgica, Vol. 2 (1-2)
- Harnois, L. (1988): The CIW index: a new chemical index of weathering. Sediment. Geol., 55, p. 319-322
- Hatté, C., Antoine, P., Fontugne, M., Rousseau, D.-D., Tisnérat-Laborde, N. & Zöller, L. (1999): New chronology and organic matter ¹³C paleoclimate significance of Nußloch loess sequence (Rhine Valley, Germany). Quaternary International, 62, p. 85-91
- Hatté, C., Fontugne, M., Rousseau, D.-D., Antoine, P., Zöller, L., Tisnérat-Laborde, N. & Bentaleb, I. (1998): δ^{13} C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology, 26/7, p. 583-586
- Haubrich, H. (1970): Morphologische Studien im Niederwesterwald. Beitr. zur tertiären u. quartären Entwicklungsgeschichte. Beiträge zur Landespflege in Rheinland-Pfalz, 1, 144 S., Kaiserslautern
- Heine, K. (Hrsg.) (1983): Beiträge zum Quartär der nördlichen Rheinlande. Arb. zur Rhein. Landeskunde, 51, 123 S., Bonn
- Heinrich, K. F. J. & Newbury, D. E. (1995): Electron Probe Quantification. Plenum Press, 400 p., New York & London
- Heitfeld, K., Heitfeld, M. & Hosang, K. (1997): Auswirkung der geplanten ICE-Trasse Köln-Rhein/Main auf die Grundwasserverhältnisse im Bereich des Siebengebirges. Zeitschrift der Deutschen Geologischen Gesellschaft, 148, Heft Nr. 3-4, S. 327-339

- Henningsen, D. & Katzung, G. (2002): Einführung in die Geologie Deutschlands. 6. Aufl., Spektrum Akademischer Verlag. Heidelberg - Berlin
- Henze, N. (1998): Kennzeichnung des Oberwürmlösses der Niederrheinischen Bucht. Kölner Forum für Geologie und Paläontologie, 1, 212 S.
- Herget, J. (2000): Klimaänderungen in Mitteleuropa seit dem Tertiär. Petermanns Geographische Mitteilungen, 144, S. 56-74
- Hiller, D.A. & Brümmer, G. W. (1995): Mikrosondenuntersuchungen an unterschiedlich stark mit Schwermetallen belasteten Böden. 1. Methodische Grundlagen und Elementanalysen an pedogenen Oxiden.- Z. Pflanzenernähr. Bodenk. 158, 147-156
- Hoefs, J. (1997): Stable Isotope Geochemistry. 4th completly rev. updated Edition. Springer-Verlag, Heidelberg
- Horvath. E. (2001): Marker horizons in the loesses of the Carpathian Basin. In: Derbyshire,
 E. (ed.): Loess and Paleosols: Characteristics, Chronology and Climate. A
 Contribution to IGCP 413. Quat. Int., Vol 76-77, p. 157-164
- Hoselmann, C. (1996): Der Hauptterrassenkomplex am unteren Mittelrhein. Z. dt. Geol. Ges., 147/4, S. 481-497, Stuttgart
- Huisman, D. J. (1998): Geochemical Characterization of Subsurface Sediments in the Netherlands. Univ. Wageningen, 173 p.
- Huntley, D. J., Hutton, J. T. & Prescott, J. R. (1985): Optical dating of sediments. Nature, 313, p. 105-107
- Jacobshagen, V. (2000): Einführung in die geologischen Wissenschaften. 432 S. Ulmer Verlag, Stuttgart
- Jamagne, M., Lautridou, J.-P. & Somme, J. (1981): Préliminaire à une synthèse sur les variations sédimentologiques des loess de la France du Nord-Ouest dans leurs cadres stratigraphiques et paléogéographiques. Bull. Soc. Géol., France 23, 2, p. 143-147
- Janotta, A. (1991): Thermolumineszenzdatierungen als chronometrischer Beitrag zur stratigraphischen Beschreibung von Lößprofilen. Düsseldorfer Geographische Schriften, 30, S. 1-116
- Jongerius, A. & Rutherford, G. K. (1979): Glossary of Soil Micromorphology. Univ. Wageningen, 138 p.
- Juvigné, E. (1976): Contribution à la connaissance de la stratigraphie du Quaternaire par l'étude des minéraux denses transparents de l'Eifel au Massif Central français particulièrement en Belgique. Thèse de Doctorat, Université de Liège
- Juvigné, E. (1982): Tephrostratigraphie und Reliefgenese in West- und Mitteleuropa (mit 3 Figuren). Zeitschrift für Geomorphologie, Supplementbände, 42, S. 195-200
- Juvigné, E. (1985): The use of heavy mineral suites for loess stratigraphy. Geologie en Mijnbouw, 64, p. 333-336
- Juvigné, E., Haesaerts, P., Mestdagh, H., Pissart, A. & Balescu, S. (1996): Révision du stratotype loessique de Kesselt (Limbourg, Belgique). - C. R. Acad. Sci. Paris, 321, p. 801-807

- Juvigné, E., Renson, V. & Semitita, P. (1999) Microprobe analyses of transparent heavy minerals of Belgian loess. - In: Becker-Hauman, R.& Frechen, M. (Hrsg.): Terrestrische Quartärgeologie, S. 23-38, Logabook, Köln
- Juvigné, E. & Semmel, A. (1981): Un tuf semblable à l'Eltviller Tuff dans les loess de Hesbaye (Belgique) et du Limburg néerlandais. Eiszeitalter und Gegenwart, 31, p. 83-90
- Juvigné, E. & Wintle, A. (1988): A new chronostratigraphy of late Weichselian loess units in Middle Europe based on thermoluminescence dating. Eiszeitalter und Gegenwart, 38, p. 94-105
- Kalm, V., Rutter, N. & Rokosh, C. (1996): Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, Southern Loess Plateau, China. Catena, 27, p. 49-62
- Kessler, M.A. & Werner, B. T. (2003): Self-Organization of Sorted Patterned Ground. -Nature, 299, p. 380-383
- Klostermann, J. (1992): Das Quartär der Niederrheinischen Bucht: Ablagerungen der letzten Eiszeit am Niederrhein. GLA NRW, 200 S., Krefeld
- Klostermann, J. (1999): Das Klima im Eiszeitalter. Schweizerbarthsche Verlagsbuchhandlung, Stuttgart, 284 S.
- Knabe, K. (2000): Sedimentpetrographische und geochemische Untersuchungen an Sedimenten im Wadi Feiran (Süd-Sinai) zur Klärung ihrer Herkunft und Ablagerungsbedingungen Paläoklimatische Überlegungen. Diss. Univ. Karlsruhe
- Konert, M. (2001): Partikelgrößenbestimmung mit dem Laser Particle Sizer Fritsch A 22.
- Konert, M. & Vandenberghe, J. (1997): Comparison of laser grain size with pipette and sieve analysis. Sedimentology, 44, 523-535
- Krauskopf, K. B. & Bird, D. K. (1995): Introduction to Geochemistry. 3rd Ed. McGraw Hill, New York, 637 p.
- Kremer, B. (1985): Das Siebengebirge Geologisches Portrait einer rheinischen Vulkanlandschaft. Geowissenschaften, 3, S. 145-151
- Kroonenberg, S. B. (1992): Effect of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proc. Int. Geol. Congr. (Kyoto, Japan), Part A, p. 69-81
- Kukla, G. J. (1961): Lithologische Leithorizonte der Tschechoslowakischen Lößprofile. Vestnik Ustred Ustavu Geol., 36, S. 369-372
- Kukla, G. J. (1975): Loess stratigraphy of Central Europe. In: Butzer, K. W. & Isaac, G. L. (Eds.): After the Australopithedines. Mouton, 99-188, Den Haag
- Kukla, G. J. (1987): Pleistocene and climates in China and Europe compared to oxygen isotope record. Paleoecology of Africa and the surrounding islands, 18, p. 37-47
- Kukla, G. J. & An, Z. (1989): Loess stratigraphy in Central China. Paleogeography, Paleoclimatology, Paleoecology, 72, p. 203-225

- Lang, A (1996): Die Infrarot-Stimulierte-Lumineszenz als Datierungsmethode für holozäne Lössderivate. Ein Beitrag zur Chronometrie kolluvialer, alluvialer und limnischer Sedimente in Südwestdeutschland. Heidelberger Geographische Arbeiten,103, 137 S.
- Lautridou, J.-P. (1968): Les formations superficielles de Saint-Romain: leur contribution à l'étude morphologique de la region. 3^{ème} cycle. Thésis 1965, Caen, Publ. Fac. Lettres, 200 p.
- Lautridou, J.-P. (1985): Le cycle périglaciaire pléistocène en Europe du Nord-Ouest et plus particulièrement en Normandie. Thèse de Doctorat-ès-Lettres, 2, 908 p., Caen
- Lautridou, J.-P. (1987): Données nouvelles sur le Quaternaire de Normandie. Bulletin de l'Association Française pour l'Étude du Quaternaire, 3, p. 161-164
- Lautridou, J.-P. (1993): A propos de l'origine de la fraction limoneuse des loess: le cas normand. Würzburger Geographische Arbeiten, 87, S. 299-303
- Lautridou, J.-P., Monier, J. & Morzadec, M. (1986): The pleistocene of Northern France. Quaternary Science Reviews, 5, p. 387-394
- Lieberoth, I. (1962): Die jungpleistozänen Lösse Sachsens im Vergleich zu denen anderer Gebiete. Peterm. Geogr. Mitt., 106, S. 188-198
- Lindsay, W. L. (1979). Chemical Equilibria in Soils. Wiley & Sons, New York, 449 p.
- Lippmann, F. (1973): Sedimentary Carbonates. Springer-Verlag, Berlin Heidelberg New York, 228 p.
- Lippolt, H. J. (1982): K/Ar age determinations and the correlation of Tertiary volcanic activities in Central Europe. Geolog. Jb., D 52, S. 113-135
- Liu, C. Q., Masuda, A., Okada, A. Yabuki, S. & Fan, Z. L. (1994): Isotope geochemistry of Quaternary deposits from the arid lands in Northern China. EPSL, 127, p. 25-38
- Liu, C. Q., Masuda, A., Okada A., Yabuki, S., Zhang, J. & Fan, Z. L. (1993): A geochemical study of loess and desert sand in northern China: Implications for continental crust weathering and composition. Chem. Geol., 106, p. 359-374
- Liu, T. (1985): Loess and the Environment. China Ocean Press, 251 p., Peking
- Liu, T. (1991): Loess, Environment and Global Change. Beijing Science Press, 288 p.
- Löhr, H. & Brunnacker, K. (1974): Metternicher und Eltviller Tuff-Horizont im Würm-Löß am Mittel- und Niederrhein. Notizbl. hess. L.-Amt für Bodenforsch., 102, S. 168-190
- Löscher, M. (1995): Zum Alter der Dünen auf der Niederterrasse im nördlichen Oberrheingraben. - Beih. Veröff. Naturschutz Landschaftspflege Bad.Württ., 80, S. 17-22, (Hrsg.): Landsanst. f. Umweltschutz BaWü, Karlsruhe
- Loyer, S., van Vliet-Lanoë, B., Monnier, J. L., Hallégouët, B. & Mercier, N. (1995): La coupe de Nantois (Baie de Saint-Brieuc, France): Datations par thermoluminescence (TL) et données paléoenvironnementales nouvelles pour le Pléistocène de Bretagne. Quaternaire, 6, p. 21-34
- Lozek, V. (1965): Das Problem der Lößbildung und Lößmollusken. Eiszeitalter und Gegenwart, 16, S. 61-75

- Maas, H., & Mückenhausen, E. (1971): Böden. In: Deutscher Planungsatlas, Bd. I: Nordrhein-Westfalen, Lfg. 1. Veröff. d. Akademie f. Raumforschung und Landesplanung, Hannover
- Matthes, S. (1983): Mineralogie. Springer-Verlag, Berlin-Heidelberg-New York, 417 S.,
- Merefield, J. R., Stone, I. M., Roberts, J., Jones, J., Barron, J. & Dean, A. (2000): Fingerprinting Airborne Particles for Identifying Provenance. - In: Foster, I. D. L. (ed., 2000): Tracers in Geomorphology. P. 87-100
- Meyer, W. (1988): Zur Entstehung der Trachyttuffdecke und einer Caldera im Siebengebirge. Fortschr. Miner., H 2, 66, S. 27-30
- Meyer, W. & Stets, J. (1996): Das Rheintal zwischen Bingen und Bonn. Smlg. Geol. Führer, 89, 386 S., Gebrüder Bornträger, Stuttgart
- Möller, P. (1986): Anorganische Geochemie. Springer-Verlag, Berlin-Heidelberg-New York, 326 S.
- Mückenhausen, E. (1950): Über gleyartige Böden im Rheinland.- Z. f. Pflanzenernähr., Düngung, Bodenkd. 50 (95), S. 113-134
- Mückenhausen, E. (1954): Fossile Böden im nördlichen Rheinland. Z. f. Pflanzenern., Düngung, Bodenkunde, 65, S. 81-103
- Mückenhausen, E. (1975): Die Bodenkunde und ihre geologischen, geomorphologischen, mineralogischen und petrologischen Grundlagen. DLG-Verlag, Frankfurt am Main, 579 S.
- Mückenhausen, E. (1979): Die Paläoböden der Eifel in Abhängigkeit von der Geomorphologie. - In: Bremer, H. & Zakosek, H. (Hrsg.): Relief und Boden. Zeitschrift für Geomorphologie, Supplement Bände, 33, S. 16-24, Stuttgart
- Müller, M. J. & Negendank, J. F. W. (1974): Untersuchung von Schwermineralien in Moselsedimenten. Geol. Rundschau, 63, S. 998-1035
- Müller-Westermeier, G. (1996): Klimadaten von Deutschland 1961-1990. DWD, 431 S, Offenbach
- Musson, F. M., Clark, M. L. & Wintle, A. G. (1994): Luminescence dating of loess from Liujiapo section, Central China. - Quaternary Geochronology (Quat. Sci. Rev.), 13, p. 407-410
- Musson, F. M. & Wintle, A. G. (1994): Luminescence dating of a loess profile at Dolni Vestovice, Czech Republic. - Quaternary Geochronology (Quat. Sci. Rev.), 13, p. 411-416
- Nehring, F. (2001): Lößstratigraphie im Pleiser Hügelland und Niederwesterwald und ihre Bedeutung für die Landschaftsgeschichte. Dipl.-Arbeit, 158 S., Geographisches Institut, Bonn (unveröffentl.)
- Nesbitt, H. W., Marcovics, G. & Price, R. C. (1980): Chemical processes affecting alkalis and alkali earths during continental weathering. Geochim. Cosmochim. Acta, 44, p.1659-1666
- Nesbitt, H. W. & Young, G. M. (1982): Early Proterozoic climates and plate motions interfered from major chemistry of lutites. Nature, 299, p. 715-717

- Nesbitt, H. W. & Young, G. M. (1984): Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim. Cosmochim. Acta, 48, p. 1523-1534
- Nesbitt, H. W. & Young, G. M. (1989): Formation and diagenesis of weathering profiles. J. Geol., 97, p. 129-147
- Nesbitt, H. W. & Young, G. M. (1996): Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43, p. 341-358
- Nesbitt, H. W., Young, G. M., McLennan, S. M. & Keays, R. R. (1996): Effects of chemical weathering and sorting on the petrogenesis of silicic sediments, with implications for provenance studies. J. Geol., 104, p. 525-542
- Neumeister, H. (1965): Probleme der nördlichen Lößgrenze. Leipz. Geogr. Beitr., S. 137-143
- Nugteren, G. D. (2002): Reconstruction of aeolian distribution patterns on the Central Loess Plateau, China, and their palaeoclimatic implications. Thesis, VU Amsterdam
- Paas, W. (1962): Rezente und fossile Böden auf niederrheinischen Terrassen und deren Deckschichten. Eiszeitalter und Gegenwart, 12, S. 165-230
- Paeckelmann, W. & Zimmermann, E. (1930): Erläuterungen zur Geologischen Karte von Preußen und benachbarten deutschen Ländern, Blatt Mettmann, Nr. 2719. Preuß. Geol. L.-Anst., Berlin
- Pécsi, M. (1984): Lithology and stratigraphy of loess and paleosols. Proceedings of the symposium organized by INQUA Commission of Loess and Paleopedology. XIth INQUA Congress, Moscow. Budapest Geographical Research Institute, 325 p.
- Pécsi, M. (1987): The loess-paleosol and related subaeral sequence in Hungary. Geojornal, 15, p. 151-162
- Pécsi, M. (1990): Loess is not just an accumulation of dust. Quaternary International, 7/8, p. 1-21
- Pécsi, M. & Loczy, D. (eds.) (1990): Loess and the paleoenvironment. Quaternary International, Supplementband, 7
- Pécsi, M. & Richter, G. (1996): Löss. Herkunft, Gliederung und Landschaften. Zeitschrift für Geomorphologie. Neue Folgen. Supplementband, 98, 391 p.
- Pletsch, T. Daoudi, L., Chamley, H., Deconinck, J. F. & Charoud, M. (1996): Paleographic Controls on Palygorskite Occurrence in Mid-Cretaceous Sediments of Marocco and Adjacent Basins. - Clay Minerals, 31, p. 403-416
- Poppe, L. J., Commeau, J. A. & Valentine, P. C. (1991): Mineralogy of the silt fraction in surficial sediments from the outer continental shelf of South Eastern New England. J. Sed. Pet., 61, p. 54-64
- Poser, H. (1948): Boden- und Klimaverhältnisse in Mittel- und Westeuropa während der Würmeiszeit. Erdkunde, 2, S. 53-67

- Poser, H. (1951): Die nördliche Lößgrenze in Mitteleuropa und das spätglaziale Klima. -Eiszeitalter und Gegenwart, 1, S. 27-55
- Potts, P. J., Bowles, J. F. W., Reed, S. J. B. & Cave, M. R. (1995): Microprobe Techniques in the Earth Sciences. Chapman and Hall, 419 p.
- Preston, N. J. (2001): Geomorphic Response to Environmental Change: The Imprint of Deforestation and Agricultural Land Use on the Contemporary Landscape of the Pleiser Hügelland, Bonn, Germany. 125 S.; Diss. Univ. Bonn
- Preusser, F. (1995): Dating of Upper Weichselian loess marker horizons from Germany (Eltville and Rambach Tephra): a comparison of OSL and TL (abstract). Luminescence & ESR Research Seminar, Sussex
- Preusser, F. & Frechen, M. (1995): Luminescence dating of Upper Weichselian marker horizons: Eltville and Rambach Tephra. Geologische Vereinigung, Terra Nostra, 95/1, (abstract), Bremen
- Questiaux, D. G. (1991): Optical dating of loess: Comparisons between different grain size fractions for infrared and green excitation wavelengths. Nucl. Tracks Radiat. Meas., 18, p. 133-139
- Radke, U. (Hrsg.)(1998): Lumineszenzdatierung äolischer Sedimente Beiträge zur Genese und Alterstellung jungquartärer Dünen und Lösse in Deutschland. Kölner Geogr. Arb., 70, 124 S.
- Radke, U., Janotta, A. & Semmel, A. (1998): Lumineszenzdatierungen des Lößprofils Am Bingert (bei Wiesbaden). Kölner Geogr. Arb., 70, S. 59-64
- Reed, S. J. B. (1993): Electron Microprobe Analysis. 2nd edition. Cambridge University Press, 326 p., Cambridge
- Remy, H. (1969): Würmzeitliche Molluskenfaunen aus Lößserien des Rheingaus und des nördlichen Rheinhessen. Notizbl. Hess. Bodenforsch., 97, S. 98-116
- Retallack, G. J. (2001): Soils of the Past. An introduction to paleopedology. 2nd edition. Blackwell Publishing, Eugene, USA
- Richter, G. (1965): Bodenerosion Schäden und gefährdete Gebiete in der Bundesrepublik Deutschland. Forschungen zur Deutschen Landeskunde, 152, 592 S.
- Richter, G. (1981): Bodenerosion in Mitteleuropa Landschaften, Faktoren, Forschungsaufgaben. Mitteilungen der DBG, 30, S. 195-212
- Richter, G. (Hrsg.) (1987): Handbuch der Klimastationen der Erde. 4. Aufl. Forschungsstelle Bodenerosion Mertesdorf (Ruwertal), 5, 343 S., Trier
- Richter, G. (Hrsg.) (1998): Bodenerosion. Analyse und Bilanz eines Umweltproblems. Darmstadt
- Rohdenburg, H. & Meyer, B. (1966): Zur Feinstratigraphie und Paläopedologie des Jungpleistozäns und Untersuchungen an südniedersächsischen Lößprofilen. Mitt. Dtsch. Bodenkndl. Ges., 5, S. 1-135, Göttingen
- Rohdenburg, H. & Semmel, A. (1971): Bemerkungen zur Stratigraphie des Würm-Lösses in Mitteleuropa. Notizbl. des hess. L.-Amtes für Bodenforsch., 99, S. 246-252

Rösler, H. J. (1984): Lehrbuch der Mineralogie. 3. Aufl., Berlin

- Rösner, U. (1990): Die mainfränkische Lößprovinz. Erlanger Geogr. Arbeiten, 51, 306 S.
- Rousseau, D.-D.& Puisségur, J.-J. (1990): A 350,000-year climatic record from the loess sequence of Achenheim, Alsace, France. Boreas, 19, p. 203-216, Oslo
- Ruske, R. & Wünsche M. (1961): Löß und fossile Böden im mittleren Saale- und Unstruttal. Geologie, 10, S. 9-29, Berlin
- Sabelberg, U. & Löscher, M. (1978): Neue Beobachtungen zur Würmlöß-Stratigraphie südlich Heidelberg. In: Nagl, H. (Ed.), Festschrift J. Fink, S. 473-487, Wien
- Schirmer, W. (1970): Das jüngere Pleistozän in der Tongrube Kärlich am Mittelrhein. Mainzer Naturwiss. Archiv., 9, S. 257-284
- Schirmer, W. (Hrsg.) (1990): Rheingeschichte zwischen Mosel und Maas. -DEUQUA-Führer, 1, 295 S, Hannover
- Schirmer, W. (ed.) (1995): Quaternary Fieldtrips in Central Europe. INQUA, p.1237-1422, München
- Schirmer, W. (1995): Sop 40: Schwalbenberg/Remagen Middle Würmian- In: Schirmer, W. (Ed.), Quaternary Fieldtrips in Europe. INQUA, p. 530-531, München
- Schirmer, W. (1999): Kaltzeiten und Warmzeiten im Löß. In: Becker-Haumann, R. & Frechen, M.(Hrsg.): Terrestrische Quartärgeologie. S. 81-100, Logabook, Köln
- Schirmer, W. (2000 a): Eine Klimakurve des Oberpleistozäns aus dem rheinischen Löss. Eiszeitalter und Gegenwart, 50, S. 25-49
- Schirmer, W. (2000 b): Rhein loess, ice cores and deep-sea cores during MIS 2-5. Zeitschrift der Deutschen Geologischen Gesellschaft, 151, S. 309-332
- Schmidt, R. (1971): Die Weichselzeit im Übergangsbereich zwischen Löß und Treibsand in Nordsachsen (Grossenhainer Gebiet). - In: Zprávy Géogrfického ústan CSAV, Brno 8, 6, S. 1-23
- Schnocks, Y. (2000): Bodenabtragsmessungen im Pleiser Lösshügelland mittels der Radiocäsium-Methode. Dipl.-Arbeit, 68 S., Geographisches Institut, Bonn (unveröffentl.)
- Schönhals, E. (1950): Über einige wichtige Lößprofile und begrabene Böden im Rheingau. Notizbl. Hess. Bodenforsch., 1, S. 244-259, Wiesbaden
- Schönhals, E. (1957): Spätglaziale äolische Ablagerungen in einigen Mittelgebirgen Hessens. - Eiszeitalter und Gegenwart, 8, S. 5-17
- Schröder, D., Stephan, S. & Zöller, L. (1985): Paläoböden in Lokallössen des mittleren Saartales. Zeitschrift für Geomorphologie, 56, S.125-142
- Schwaighofer, B. (1980): Pedogenetischer Palygorskit in einem Lößprofil bei Stillfried an der March (Niederösterreich).- Clay Minerals, 15, p. 283-289
- Schwarz, T. (2000): Paläoböden als Klimazeugen. Klimazeugnisse der Erdgeschichte, S. 151-174

- Seidenschwann, G. & Juvigné, E. (1986): Fundstellen mittelpleistozäner Tephralagen im Randbereich des Kristallinen Vorspessarts. Ein Beitrag zur Schwermineralogie und Stratigraphie quartärer Tephren. Z. Dt. Geol. Ges., 137, S. 625-655
- Semmel, A. (1967 a): Neue Fundstellen von vulkanischem Material in hessischen Lössen. Notizbl. Hess. L.-Amt Bodenforsch., 94, S. 104-108
- Semmel, A. (1967 b): Über Prä-Würm-Lösse in Hessen. Notizbl. Hess. Bodenforsch., 95, S. 239-241, Wiesbaden
- Semmel, A. (1968): Studien über den Verlauf jungpleistozäner Formung in Hessen. Frankfurter Geogr. Arbeiten H., 45, 133 S.
- Semmel, A. (1969): Bemerkungen zur Würmlößgliederung im Rhein-Main-Gebiet. Notizbl. Hess. L.-Amt Bodenforsch., 97, S. 395-399, Wiesbaden
- Semmel, A. (1989): The importance of loess in the interpretation of geomorphological process and for dating in the Federal Republic of Germany. In: Ahnert, F. (Ed.), Landforms and landform evolution in West Germany. Catena (Suppl.), 15, p. 179-188
- Semmel, A. (1995): Ein Lößprofil bei Lisieux (Normandie) und seine stratigraphische Parallelisierung mit Würmlößböden in Hessen. Eiszeitalter und Gegenwart, 45, S. 59-61
- Semmel. A. (1999): Die paläopedologische Gliederung des älteren Würmlösses in Mitteleuropa - erörtert an Beispielen aus dem Rhein-Main-Gebiet. Z. Geol. Wiss., 27, S. 121-133, Berlin
- Shackleton, N. J. & Opdyke, N. D. (1973): Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale.- Quat. Research, 3, 39-55.
- Siebertz, H. (1980): Weichselzeitliche äolische Sedimente des Reichswaldes (unterer Niederrhein) und ihr paläogeographischer Aussagewert.- 143 S.; Diss. Univ. Bonn
- Siegel, F. R. (2001): Environmental Geochemistry of Potentially Toxic Metals. Springer-Verlag, Berlin - Heidelberg - New York, 200 pp.
- Singer, A. (1979): Palygorskite in sediments: Detrital, diagenetic or neoformed. A critical review.- Geol. Rdsch., 68, S. 996-1008
- Singer, A. (1984): Pedogenic palygorskite in the arid environment.- In: Singer, A. & Galan, E. (Eds.), Palygorskite-Sepiolite- Occurrence, genesis and uses.- Developments in Sedimentology, 37, p. 169-177
- Singhvi, A. K., Bronger, A., Sauer, W. & Pant, R. K. (1989): Thermoluminescence dating of loess-paleosol sequences in the Carpathian basin (East-Central Europe): A suggestion for a revised chronology. Chem. Geol., 73, p. 307-317
- Singhvi, A. K., Sauer, W. & Wagner, G. A. (1986): Thermoluminescence dating of loess deposits at Plaidter Hummerich and its implications for the chronology of Neanderthal man. Naturwissenschaften, 73, S. 205-207
- Skowronek, A. (1982): Paläoböden und Lösse in Mainfranken vor ihrem landschaftsgeschichtlichen Hintergrund. Würzburger Geographische Arbeiten, 57, S. 89-107

- Smalley, I. (1995): Making the material: the formation of silt-sized primary mineral particles for loess-deposits. Quat. Sci. Rev., 14, p. 645-651
- Smykatz-Kloss, W. (1974): Differential Thermal Analysis. Applications and Results in Mineralogy. Springer-Verlag, Berlin Heidelberg New York, 185 pp.
- Smykatz-Kloss, W., Knabe, K., Zöller, L., Rögner, K. & Hüttl, C. (1998): Paleoclimatic changes in Central Sinai, Egypt. Paleoec. of Africa, 25, p. 143-155
- Smykatz-Kloss, W., Roscher, B. & Rögner, K. (2003, im Druck): Pleistocene Lakes in Central Sinai, Egypt. - In: Alsharhan, A. S., Wood, W. W., Goudie, A. S., Fowler, A. & Abdellatif, E. (Eds.): Desertification in the third Millenium. Balkema, Rotterdam
- Smykatz-Kloss, W., Smykatz-Kloss, B., Naguib, N. & Zöller, L. (2003, im Druck): The reconstruction of palaeoclimatological changes from mineralogical and geochemical compositions of loess and alluvial loess profiles. In: Smykatz-Kloss, W. & Felix-Henningsen, P. (Eds.): Palaeoecology of Quaternary Drylands. p.103-120. Springer-Verlag, Berlin Heidelberg New York
- Sonne, V. (1982): Waren Teile des Rheinischen Schiefergebirges im Tertiär vom Meer überflutet?. Mainzer Geow. Mitt., 11, S. 217-219
- Spooner, N. A. & Questiaux, D. G. (1989): Optical dating- Achenheim beyond the Eemian using green and infrared stimulation. - Long & Short Range Limits in Luminescence Dating, Occ. Publ., 9, p. 97-103
- Stephan, S. (2000): Bt-Horizonte als Interglazial-Zeiger in den humiden Breiten: Bildung, Mikromorphologie, Kriterien. Eiszeitalter und Gegenwart, 50, S. 95-106
- Stephan, S. (2000): Substrate, Entwicklungspotentiale und mikromorphologische Merkmale von Bv-Horizonten Mitteleuropas. Trierer Bodenkdl.Schriften, 1, S. 45-50
- Stephan, S. & Brixy, I. (1999): Eine von smectitreichem Tephra-Saprolith geprägte Bodengesellschaft im Pleiser Hügelland bei Bonn. J. Plant Nutr. Soil Sci., 162, S. 677-683
- Stremme, H. E. (1986): Die Korrelation quartärer Paläoböden in Nordwest-Deutschland. Zeitschrift für Geomorphologie, N. F., Supplement Band, 61, S. 89-100
- Stremme, H. E. (1989): Die Korrelation quartärer Paläoböden aus den Gebieten der Vereisungen Nordeuropas und des Alpenvorlandes.- In: Rose, J. & Schlüchter, C. (eds.): Quaternary Type Sections: Imagination or Reality?, S. 125-136, Rotterdam
- Stremme, H. E. (1998): Correlation of Quaternary pedostratigraphy from western to eastern Europe. Catena, 34, S.105-112
- Stucki, J.W., Goodman, B.A, Schwertmann, U. (eds., 1988): Iron in Soils and Clay Minerals. Reidel, Dordrecht, 893 pp.
- Sudo, T., Shimoda, S., Yotsumoto, H. & Aita, S. (1981): Electron Micrographs of Clay Minerals. Developments in Sedimentology, Vol. 31, Elsevier, Amsterdam
- Taylor, S. R., McLennan, S. M., McCulloch, M. T. (1983): Geochemistry of loess, continental crust composition and crustal model ages. Geochim. Cosmochim. Acta, p. 1897-1905

- Thiemeyer, H. (1988): Bodenerosion und holozäne Dellenentwicklung in hessischen Lößgebieten.- Beispiele aus Lößgebieten. Rhein-Mainische Forschungen, 174 S., Frankfurt am Main
- Tillmanns, W. & Brunnacker, K. (1987): The lithology and origin of loess in western and central Europe. Catena/Supplement, 9, p. 47-54
- Todt, W. & Lippolt, H. J. (1979): K-Ar age determinations on Tertiary volcanic rocks. V Siebengebirge, Siebengebirgsgraben. - J. Geophys., 48, 1, S. 18-27
- Udluft, H. (1977): Erläuterungen zur Geologischen Karte von Nordrhein-Westfalen 1:25000.
 In: Geologisches Landesamt Nordrhein-Westfalen (Hrsg.): Erläuterungen 5209 Siegburg. 2. Aufl. Geologisches Landesamt Nordrhein-Westfalen, Krefeld
- Van Vliet-Lanoë, B. (1988): Le Rôle de la glace de segregation dans les formations superficielles de l'Europe de l'ouest. Thèse de Doctorat d'État, Mention Géographie, Université Paris 1 Sorbonne, Centre de Géomorphologie du C. N. R. S., 2 Bde., 854 S., Caen
- Van Vliet-Lanoë, B. (1990): The Genesis and the Age of Argillic Horizons in Weichselian Loess of Northwest Europe. Quaternary International, 5, p. 49-56
- Van Vliet-Lanoë, B. (1998): Frost and soils: implications for paleosols, paleoclimates and stratigraphy. Catena, 34, p. 157-183
- Vandenberghe, J. & Nugteren, G. (2001): Rapid climatic changes recorded in loess successions. Global and Planetary Change, 28, p. 1-9
- Velde, B. (1992): Introduction to Clay Minerals: Chemistry, Origins and Environmental Significance. Chapman and Hall, 208 p.
- Velichko, A. A. (ed.) (1987): Paleogeography and loess. Budapest, Akadémiai Kiado 35-53
- Verrecchia, E. P. & Le Coustumer, M.-N. (1996): Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel. Clay Minerals, 31, p.183-202
- Vierhuff, H. (1967): Untersuchungen zur Stratigraphie und Genese der Sandlößvorkommen in Niedersachsen. In: Mitt. Geol. Inst. TH Hannover, 5, 99 S.
- Vieten, K. (1972): Über die Heteromorphie-Beziehungen in der Vulkanit-Assoziation des Siebengebirges und ihre petrographische Bedeutung. N. Jb. Mineral. Abh., 117, S. 282-323
- Vieten, K. (1983): Tertiary volcanism in the Siebengebirge mountains. In: Fuchs, K., von Gehlen, K., Mälzer, H. Murawski, H. & Semmel, A. (Eds.): Plateau Uplift. The Rhenish Shield - A Case History. S. 131-132, Springer-Verlag, Berlin - Heidelberg -New York
- Vieten, K. (1994): Vulkanismus im Tertiär und Quartär. In: von Koenigswald, W. & Meyer, W. (Hrsg.) : Erdgeschichte im Rheinland. S. 137-148, München
- Wagner, G. A. (1995): Das Alter von Gesteinen und Artefakten: Physikalische und chemische Uhren in Quartärgeologie und Archäologie. 277 S., Stuttgart
- Walter, R. (1995): Geologie von Mitteleuropa. 6. Aufl., 566 S., Stuttgart

- Welp, G., Erlenkeuser, H. & Brümmer, G. W. (1999): Bodennutzung und Bodenerosion seit dem Mittelalter am Beispiel einer lößbedeckten Mittelgebirgslandschaft des Bonner Raumes. - Mitt. Dtsch. Bodenkundl. Ges., 91, S. 1367-1370
- Welp, G., Erlenkeuser, H., Brümmer, G. W. & Lichtfuß, R. (1995): Mobilität und Bindungsformen von Cd, Cr, As und V in urbanen Böden unterschiedlicher Belastung.- Mitt. Dtsch. Bodenkundl. Ges. 76, 487-490
- Windheuser, H., Meyer, W. & Brunnacker, K. (1982): Verbreitung, Zeitstellung und Ursachen des quartären Vulkanismus in der Osteifel. Zeitschrift für Geomorphologie, Supplementbände, 42, S. 177-194
- Winogradow, A. P. (1954): Geochemie seltener und nur in Spuren vorhandener chemischer Elemente im Boden. Akademie-Verlag Berlin, 249 S.
- Wintle, A. G. (1987): Thermoluminescence dating of loess. Catena (Suppl.), 9, p. 103-115
- Wintle, A.G. & Brunnacker, K. (1982): Ages of volcanic tuff in Rheinhessen obtained by thermoluminescence dating of loess. Naturwissenschaften, 69, p. 181-183
- Wintle, A. G. & Packman, S. C. (1988): Thermoluminescence ages from three sections in Hungary. Quat. Sci. Rev., 7, p. 315-320
- Wintle, A. G., Shackleton, N. J. & Lautridou, J.-P. (1984): Thermoluminescence dating of periods of loess deposition and soil formation in Normandy. Nature, 310, p. 491-493
- Wollstedt, P. (1962): Über die Gliederung des Quartärs und Pleistozäns. Eiszeitalter und Gegenwart, 13, S. 115-124
- Wortmann, H. (1942): Bemerkungen zu einer Karte der Lößverbreitung in Niedersachsen. -In: Archiv f. Landes- und Volkskunde Niedersachsen, 12, S. 192-202
- Yaalon, D. H. (ed.) (1971): Paleopedology. Origin, nature and dating of paleosols. Jerusalem
- Yaalon, D. H. (1974): Origin of desert loess. Etude Quater. du monde, 8th INQUA Congress, 775
- Yaalon, D. H. (Hrsg.)(1983): Inventur von Paläoböden in der Bundesrepublik Deutschland. Geol. Jahrbuch, Reihe F, 14, 361 S., Stuttgart
- Yang, J., Chen, J., An, Z., Shielder, G. A., Tao, X. Zhu, H., Ji, J. & Chen, Y. (2001): Variations in ⁸⁷Sr/⁸⁶Sr ratios of calcite in Chinese loess; a proxy for chemical weathering associated with the East Asian summer Monsoon. Palegeography, Paleoclimatology, Paleoecology, 157, p.151-159
- Zagwijn, W. & Paepe, R. (1968): Die Stratigraphie der weichselzeitlichen Ablagerung der Niederlande und Belgiens. Eiszeitalter und Gegenwart, 19, S. 129-146
- Zárate, M., Flegenheimer, N. & Pécsi, M. (1993): Properties, chronology and paleoclimatic significance of loess. Quaternary International, 17,
- Zhou, D. (2000): Jungquartäre Talgeschichte des mittleren Niederrheins.- 248 S.; Diss. Univ. Düsseldorf

- Zöller, L. (1983): Das Tertiär im Ost-Hunsrück und die Frage einer mitteloligozänen Meerestransgression über Teile des Hunsrück (Rheinisches Schiefergebirge). - N. Jb. Paläont. Mn, 505-512
- Zöller, L. (1995): Würm- und Rißlößstratigraphie und Thermolumineszenz-Datierung in Süddeutschland und angrenzenden Gebieten. Habil.-Schrift, Fak. für Geowissenschaften, Univ. Heidelberg
- Zöller, L. & Semmel. A. (2001): 175 years of loess research in Germany long records of unconformities. Earth Science Reviews, 54, p. 19-28
- Zöller, L., Stremme, H. E. & Wagner, G. A. (1988): Thermolumineszenz-Datierung an Löß-Paläoboden-Sequenzen von Nieder-, Mittel- und Oberrhein. Chem. Geol., 73, S. 39-62
- Zöller, L., von Suchodoletz, H. & Küster, N. (2003): Geoarchaeological and Chronometrical Evidence of Early Human Occupation in Lanzarote (Canary Islands).- Quat. Science Review, 22, p. 1299-1307

Tiefen [m]	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
0,55	10,41	0,99	2,23	8,06	61,76	0,11	9,35	1,87	0,60	0,04	2,63	98,05
0,80	12,35	1,02	2,74	7,52	58,94	0,11	11,60	1,60	0,51	0,04	2,49	98,92
1,00	11,76	1,04	2,71	7,38	60,50	0,11	10,92	1,60	0,51	0,04	2,27	98,84
2,00	12,19	0,99	2,69	6,98	59,05	0,11	11,30	1,54	0,50	0,04	2,36	97,75
3,25	12,44	1,01	2,73	7,10	59,94	0,11	11,59	1,52	0,52	0,03	2,42	99,41
4,15	13,52	0,93	2,94	7,54	56,82	0,11	12,29	1,62	0,54	0,03	2,66	99,00
4,90	11,18	0,91	2,40	7,08	61,97	0,10	10,25	1,57	0,57	0,03	2,53	98,59
5,90	9,65	0,94	2,12	7,51	64,28	0,10	9,04	1,61	0,63	0,03	2,39	98,30
6,25	7,93	0,91	2,01	8,28	65,70	0,13	7,14	1,67	0,77	0,03	3,05	97,62
6,50	8,31	0,97	1,92	7,58	66,31	0,10	7,64	1,64	0,67	0,03	2,59	97,76
7,75	10,52	0,98	2,49	7,46	61,80	0,10	9,84	1,60	0,59	0,04	2,47	97,89
8,65	10,60	0,93	2,09	7,17	60,35	0,10	11,97	1,51	0,61	0,02	2,44	97,79

Tab. 1: Chemische Zusammensetzung, Profil Birlinghoven (in Masse-%)

Tab. 2: Chemische Zusammensetzung, Profil Rauschendorf (in Masse-%)

Tiefen [m]	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
0,55	2,62	1,04	1,05	10,56	73,12	0,12	0,70	2,17	0,74	0,08	3,93	96,13
0,80	3,32	1,16	1,06	10,05	74,22	0,13	0,72	2,11	0,72	0,06	3,59	97,14
1,35	11,69	1,00	2,47	7,90	58,79	0,11	10,71	1,80	0,55	0,05	2,70	97,77
2,15	13,47	1,01	2,88	7,26	56,85	0,11	12,56	1,57	0,50	0,04	2,35	98,60
5,65	13,25	0,93	2,83	7,54	56,07	0,11	12,02	1,62	0,54	0,04	3,32	98,27

Tiefen [m]	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
1,40	11,78	0,89	1,71	8,16	61,03	0,11	10,38	1,62	0,59	0,04	3,06	99,37
3,40	4,47	0,63	0,34	8,20	76,12	0,10	0,52	1,66	0,88	0,03	3,65	96,60
6,50	4,36	1,01	0,83	9,74	74,47	0,13	0,69	2,09	0,79	0,03	3,68	97,82
9,60	9,86	0,91	1,78	8,19	64,30	0,12	8,40	1,77	0,66	0,04	2,75	98,78
10,10	10,60	0,95	2,02	8,07	63,40	0,12	9,20	1,71	0,63	0,04	2,52	99,26
10,50	9,01	0,88	1,64	7,92	65,78	0,12	7,15	1,64	0,69	0,03	3,23	98,09
12,00	5,31	0,74	0,70	9,93	73,99	0,09	0,66	1,74	0,78	0,01	4,49	98,44
12,50	6,80	0,62	1,04	11,68	69,17	0,08	1,01	2,10	0,79	0,00	4,97	98,26
15,60	4,34	0,90	0,75	9,17	75,05	0,13	0,71	1,90	0,79	0,00	3,88	97,62
17,25	10,12	0,72	1,25	8,40	64,73	0,10	8,55	1,76	0,68	0,01	2,51	98,83

Tab. 3: Chemische Zusammensetzung, Bohrkern Bockeroth (in Masse-%)

Tab. 4: Chemische Zusammensetzung, Bockeroth II (in Masse-%)

Tiefen	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
[m]												
0,84	6,63	1,06	1,09	9,47	71,24	0,11	2,69	2,21	0,71	0,12	4,18	99,51
1,32	13,04	1,16	1,74	7,57	54,10	0,19	10,63	1,72	0,57	0,27	7,80	98,79
2,04	13,54	1,12	2,34	7,42	57,05	0,13	12,19	1,72	0,53	0,11	2,51	98,66
2,76	13,97	1,19	2,45	7,53	55,63	0,13	12,43	1,73	0,51	0,08	3,19	98,84
3,36	14,07	1,04	2,45	7,93	55,94	0,11	11,93	1,85	0,56	0,07	2,75	98,70
3,60	12,87	1,15	2,30	7,36	58,77	0,12	11,63	1,70	0,55	0,05	2,27	98,77
4,52	9,09	1,04	1,94	9,08	64,92	0,19	6,89	1,86	0,78	0,07	3,63	99,49
ET, 5,38	13,18	1,05	2,21	7,70	58,09	0,11	10,96	1,82	0,58	0,08	2,80	98,58
5,76	10,50	1,07	1,84	7,59	64,35	0,11	8,26	1,70	0,64	0,06	2,55	98,67

		-										_	
Tiefen	Zonen	GV	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
[m]		(%)											
1,55	Ι	2,52	1,37	1,21	9,53	77,90	0,16	0,84	2,08	0,92	0,08	3,61	100,22
3,40	II	5,65	0,91	1,49	14,51	67,68	0,07	1,07	2,08	1,04	0,07	5,61	100,18
9,35	III	16,10	0,64	1,90	7,96	48,50	0,16	17,67	1,97	0,71	0,07	3,60	99,28
19,00	IV	4,21	1,98	1,14	13,53	71,09	0,13	1,02	1,85	0,82	0,15	4,09	100,01
<u>Tab. 6: Ch</u>	nemische Z	usammens	setzung, Pr	ofil Neusta	adt/Wied (i	n Masse-%	<u>%)</u>						
Tiefen	Zonen	GV	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
[m]		(%)											
0,39		3,05	0,93	0,86	10,18	72,25	0,11	0,60	1,99	0,84	0,03	3,99	94,83
0,77	Eiskeil	3,20	1,07	1,03	10,52	71,70	0,13	0,62	2,21	0,83	0,07	3,78	95,16
1,00	ET	4,43	0,74	2,25	12,76	63,74	0,31	1,54	1,99	1,29	0,09	6,38	95,52
2,26		2,29	1,13	0,82	9,22	76,81	0,12	0,65	1,92	0,82	0,03	3,27	97,08
3,10		2,55	1,13	0,97	9,90	74,35	0,13	0,74	2,10	0,84	0,06	3,50	96,27
3,36		2,80	1,09	0,99	9,98	73,32	0,13	0,81	2,11	0,83	0,06	3,76	95,88
3,93		8,26	0,97	2,20	9,14	63,57	0,11	8,81	1,77	0,68	0,02	2,67	98,20
4,31		8,58	0,99	1,65	8,86	64,48	0,12	7,38	1,75	0,71	0,01	3,21	97,74
4,53		9,84	0,97	1,58	9,05	63,57	0,12	6,79	1,81	0,68	0,02	3,45	97,88
5.20		9,69	0,96	2,32	9,50	61,97	0,10	8,67	1,80	0,67	0,01	2,41	98,10
5,20		,	,	,									

Tab. 5: Chemische Zusammensetzun	g, Profil Thomasberg (in Masse-%)
----------------------------------	-----------------------------------

²⁸ ober	<u>Tab. 7: Ch</u>	emische Zus	ammensetzu	ng, Profil	<u>Sourdon</u>	(in Masse	-%)
ster Li	Teufe	GV (%)	Na ₂ O	MgO	Al ₂ O 3	SiO ₂	P ₂ (
jβ	²⁸ 1.7 m	12 34	0.93	1.66	778	62 17	0.1

Bt

194

Teufe	GV (%)	Na ₂ O	MgO	Al ₂ O 3	SiO ₂	P ₂ O ₅	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Sum me
²⁸ 1,7 m	12,34	0,93	1,66	7,78	62,17	0,1	11,78	1,58	0,62	0,06	2,89	101,9 1
²⁹ 3,3 m	3,85	0,79	1,17	11,33	73,02	0,05	0,94	2,09	0,83	0,07	5,09	99,23
³⁰ 3,4 m	9,07	0,99	1,99	8,14	68,25	0,1	7,86	1,67	0,68	0,06	3,06	101,8 7
³¹ 3,7 m	5,94	0,79	0,98	9,33	74,14	0,05	2,43	1,95	0,86	0,07	3,73	100,2 7
³² 4,8 m	10,5	0,87	1,41	9,01	64,97	0,09	7,68	1,55	0,7	0,06	3,72	100,5 6

Tab. 8: Chemische Zusammensetzung, Profil Ailly (in Masse-%)

Teufe	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O	Sum
											3	me
2,70 m	9,74	0,93	1,79	6,39	69,46	0,08	9,34	1,42	0,63	0,05	2,3	102,1 3
5,20 m	10	0,87	1,61	7,17	67,36	0,09	9,41	1,52	0,63	0,07	2,7	101,4 3

Tiefen	GV (%)	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	CaO	K ₂ O	TiO ₂	MnO	Fe ₂ O ₃	Summe
0,50 m	5,43	0,92	1,02	9,63	78,13	0,08	0,70	1,83	0,81	0,06	3,99	102,60
2,05 m	10,17	1,04	2,01	7,36	66,31	0,10	9,34	1,57	0,61	0,05	2,57	101,13
3,25 m	9,09	1,03	2,03	7,50	77,99	0,10	8,65	1,56	0,64	0,05	2,81	112,13
3,55m	9,77	0,98	2,22	7,63	63,22	0,10	11,09	1,51	0,58	0,07	2,82	102,46
4,05 m	12,24	1,03	1,97	7,53	39,12	0,09	8,78	1,54	0,62	0,05	2,68	102,50
4,35 m	8,30	1,00	1,56	8,90	71,70	0,11	6,66	1,62	0,69	0,07	3,50	104,11
4,75 m	7,83	0,94	1,36	8,84	68,88	0,11	5,65	1,52	0,68	0,06	3,51	100,25
6,45 m	14,26	0,59	1,09	6,77	64,48	0,08	10,09	1,37	0,53	0,09	2,81	102,16
6,55 m	5,63	0,82	1,00	8,23	77,01	0,06	2,70	1,82	0,72	0,05	3,18	101,22
6,85 m	14,97	0,73	1,22	6,60	67,73	0,07	6,44	1,32	0,61	0,04	2,48	102,21

Tab. 9: Chemische Zusammensetzung, Profil Heilly (in Masse-%)

5Tab. 10: Spurenelemente, Profil Birlinghoven (in mg/kg)

Tiefen [m]	Cu	Zn	Rb	Sr	Y	Zr	Ba
0,55	19	39	65	192	30	408	319
1,30	17	39	61	216	26	366	263
1,00	13	32	58	202	25	343	262
2,00	14	34	58	218	27	400	264
3,25	17	37	59	221	26	378	263
4,15	13	37	62	224	25	349	273
4,90	15	32	58	203	26	425	285
5,90	17	34	60	187	28	457	274
6,25	18	36	60	164	31	307	327
6,50	13	34	59	164	29	491	288
7,75	12	34	59	194	28	412	267
8,65	18	33	56	181	28	441	267

Tab. 11: Spurenelemente, Profil Rauschendorf (in mg/kg)

Tiefen [m]	Cu	Zn	Rb	Sr	Y	Zr	Ba
0,55	19	63	98	80	40	441	371
0,80	16	46	73	130	32	390	330
1,35	13	38	65	203	27	358	304
2,15	15	35	59	215	25	328	260
5,65	18	45	59	216	27	339	289

Tiefen [m]	Cu	Zn	Rb	Sr	Y	Zr	Ba
1,40	16	42	62	221	26	333	286
3,40	14	43	77	70	31	568	377
4,50	21	57	94	73	34	437	408
6,50	17	47	81	80	40	526	357
9,60	19	38	62	192	29	431	301
10,10	78	40	64	198	30	420	308
10,50	29	41	61	175	31	507	287
12,00	16	52	84	73	33	435	342
12,50	12	62	98	74	26	377	375
15,60	14	48	72	77	36	538	324
17,25	14	43	67	172	27	416	294

Tab. 12: Spurenelemente, Bohrkern Bockeroth (in mg/kg)

Tab. 13: Spurenelemente, Profil Bockeroth II (in mg/kg)

Tiefen [m]	Cu	Zn	Rb	Sr	Y	Zr	Ba
0,84	19	54	79	103	30	456	392
3,36	16	44	31	209	23	324	472
3,60	10	30	58	199	24	367	284
5,76	26	41	62	179	30	500	249

·····							
Tiefen	Ni	Zn	Rb	Sr	Y	Zr	Ba
1,55	22	45	76	98	37	572	349
3,40	18	64	93	114	30	438	426
9,35	41	48	65	277	25	250	322
19,00	27	61	101	242	37	595	651
Tiefe [m]	Cu	Zn	As	Rb	Sr	Zr	Ba
	C	7	•	DI	G	7	n
Tiefe [m]	Cu	Zn	As	Rb	Sr 79	Zr	Ba
Tiefe [m] 0,39 1.00	Cu 18 35	Zn 46	As 12 16	Rb 82 82	Sr 79	Zr 544 424	Ba 354
Tiefe [m] 0,39 1,00 2 26	Cu 18 35 14	Zn 46 69 43	As 12 16 10	Rb 82 82 70	Sr 79 100 84	Zr 544 424 501	Ba 354 443 334
Tiefe [m] 0,39 1,00 2,26 3,10	Cu 18 35 14 18	Zn 46 69 43 49	As 12 16 10 10	Rb 82 82 70 80	Sr 79 100 84 94	Zr 544 424 501 513	Ba 354 443 334 359
Tiefe [m] 0,39 1,00 2,26 3,10 3,38	Cu 18 35 14 18 23	Zn 46 69 43 49 48	As 12 16 10 10 10	Rb 82 82 70 80 80	Sr 79 100 84 94 95	Zr 544 424 501 513 512	Ba 354 443 334 359 375
Tiefe [m] 0,39 1,00 2,26 3,10 3,38 3,93	Cu 18 35 14 18 23 17	Zn 46 69 43 49 48 48	As 12 16 10 10 10 10 11	Rb 82 82 70 80 80 72	Sr 79 100 84 94 95 163	Zr 544 424 501 513 512 404	Ba 354 443 334 359 375 319
Tiefe [m] 0,39 1,00 2,26 3,10 3,38 3,93 4,32	Cu 18 35 14 18 23 17 18	Zn 46 69 43 49 48 48 48 48 45	As 12 16 10 10 10 10 11 9	Rb 82 82 70 80 80 72 70	Sr 79 100 84 94 95 163 173	Zr 544 424 501 513 512 404 415	Ba 354 443 334 359 375 319 308
Tiefe [m] 0,39 1,00 2,26 3,10 3,38 3,93 4,32 4,53	Cu 18 35 14 18 23 17 18 14	Zn 46 69 43 49 48 48 48 45 42	As 12 16 10 10 10 11 9 6	Rb 82 82 70 80 80 72 70 67	Sr 79 100 84 94 95 163 173 185	Zr 544 424 501 513 512 404 415 369	Ba 354 443 334 359 375 319 308 305
Tiefe [m] 0,39 1,00 2,26 3,10 3,38 3,93 4,32 4,53 5,20	Cu 18 35 14 18 23 17 18 14 16	Zn 46 69 43 49 48 48 48 45 42 51	As 12 16 10 10 10 11 9 6 8	Rb 82 82 70 80 72 70 67 71	Sr 79 100 84 94 95 163 173 185 197	Zr 544 424 501 513 512 404 415 369 331	Ba 354 443 334 359 375 319 308 305 311

Tab. 16: Spurenelemente, Profil Sourdon (in mg/kg)

Tiefen [m]	Cr		Ni	Zn	Ga	Rb	Sr	Y	Zr	Nb	Ba	V
1,70	66		20	46	9	60	195	25	428	12	234	32
3,30	97		33	69	13	100	80	26	498	16	388	83
3,40	72		20	46	10	70	180	18	471	12	285	39
3,70	89		23	50	11	88	87	19	549	16	392	56
4,80	78		24	53	11	67	138	21	407	13	272	46
<u>Tab. 17: Spur</u>	reneleme	nte, Pr	rofil Ailly	<u>(in mg/kg)</u>								
Tiefen [m]	Cr	N	Ni	Zn	Ga	Rb	Sr	Y	Zr	Nb	Ba	V
2,70	66		14	36	4	50	190	18	654	11	210	28
5,20	67		18	43	15	59	194	19	497	12	264	31
Tab. 18: Spur	reneleme	nt-Zus	sammense	tzung, Profi	l Heilly (in 1	ng/kg)		X 7	77	NT		X 7
[m]	Zonen	Cr	NI NI	Zn	Ga	KD	Sr	Y	Zr	IND	ва	V
0,50	Ι	86	27	51	11	82	79	23	607	17	366	63
2,05	II	65	16	39	12	57	188	14	478	11	235	31
3,25		65	19	43	7	62	187	18	465	12	241	31
3,55		67	16	39	11	66	182	18	462	13	283	31
4,05	III	61	17	47	5	56	215	21	388	11	214	30
4,35	IV	70	24	54	11	76	151	21	412	13	283	44
4,75		71	22	54	9	82	132	22	426	14	297	48
6,45	V	61	18	41	7	56	251	29	351	10	210	25
6,55	VI	75	21	45	7	78	101	8	573	12	349	47
6,85	VII	67	14	38	9	56	140	16	499	12	193	30

10 Tab. 19: Oxid-Verhältnisse, Birlinghoven

Tiefe	TiO ₂ /	Fe ₂ O ₃ /	Fe ₂ O ₃ /	Na ₂ O/	K ₂ O/	K ₂ O/	K ₂ O/	MgO/	MgO/	MgO/	CaO/	CaO/	CaO/ MgO	Na ₂ O/	Na ₂ O/
	AI_2O_3	AI_2O_3	110_2	AI_2O_3	AI_2O_3	110_2		AI_2O_3	110_2	FC ₂ O ₃	AI_2O_3	110_2	MgO	SIO_2	110_2
0,55	0,07	0,33	4,38	0,12	0,23	3,12	1,89	0,28	3,72	0,85	1,16	15,58	4,19	0,02	1,65
0,80	0,07	0,33	4,88	0,14	0,21	3,14	1,57	0,36	5,37	1,10	1,54	22,75	4,23	0,02	2,00
1,00	0,07	0,31	4,45	0,14	0,22	3,14	1,54	0,37	5,31	1,19	1,48	21,41	4,03	0,02	2,04
2,00	0,07	0,34	4,72	0,14	0,22	3,08	1,56	0,39	5,38	1,14	1,62	22,60	4,20	0,02	1,98
3,25	0,07	0,34	4,65	0,14	0,21	2,92	1,50	0,38	5,25	1,13	1,63	22,29	4,25	0,02	1,94
4,15	0,07	0,35	4,93	0,12	0,21	3,00	1,74	0,39	5,44	1,11	1,63	22,76	4,18	0,02	1,72
4,90	0,08	0,36	4,44	0,13	0,22	2,75	1,73	0,34	4,21	0,95	1,45	17,98	4,27	0,01	1,57
5,90	0,08	0,32	3,79	0,13	0,21	2,56	1,71	0,28	3,37	0,89	1,20	14,35	4,26	0,01	1,49
6,25	0,09	0,37	3,96	0,11	0,20	2,17	1,84	0,24	2,61	0,66	0,86	9,27	3,55	0,01	1,18
6,50	0,09	0,34	3,87	0,13	0,22	2,45	1,70	0,25	2,87	0,74	1,01	11,40	3,98	0,01	1,44
7,75	0,08	0,33	4,19	0,13	0,21	2,71	1,63	0,33	4,22	1,01	1,32	16,68	3,95	0,02	1,66
8,65	0,09	0,34	4,00	0,13	0,21	2,48	1,62	0,29	3,43	0,86	1,67	19,62	5,73	0,02	1,52
· · · ·	, ,		· · · ·		. ,	,	, î	, î	,		,	,	· · · ·		, î

Tab. 20: Oxid-Verhältnisse, Rauschendorf

Tiefe [m]	TiO ₂ / Al ₂ O ₃	Fe ₂ O ₃ /Al ₂ O ₃	Fe ₂ O ₃ /TiO ₂	Na ₂ O/ Al ₂ O ₃	K ₂ O/ Al ₂ O ₃	K ₂ O/ TiO ₂	K ₂ O/ Na ₂ O	MgO/ Al ₂ O ₃	MgO/ TiO ₂	MgO/ Fe ₂ O ₃	CaO/ Al ₂ O ₃	CaO/ TiO ₂	CaO/ MgO	Na ₂ O/ SiO ₂	Na ₂ O/ TiO ₂
0,55	0,07	0,37	5,31	0,10	0,20	2,93	2,09	0,10	1,42	0,27	0,07	0,95	0,67	0,01	1,41
0,80	0,07	0,36	4,99	0,12	0,21	2,93	1,82	0,11	1,47	0,29	0,07	1,00	0,68	0,02	1,61
1,35	0,07	0,34	4,91	0,13	0,23	3,27	1,80	0,31	4,49	0,92	1,36	19,47	4,34	0,02	1,82
2,15	0,07	0,32	4,70	0,14	0,22	3,14	1,55	0,40	5,76	1,23	1,73	25,12	4,36	0,02	2,02
5,65	0,07	0,44	6,15	0,12	0,22	3,00	1,74	0,38	5,24	0,85	1,59	22,26	4,25	0,02	1,72

Tab. 21: Oxid-Verhältnisse, Bockeroth

Tiefe	TiO ₂ /	Fe ₂ O ₃ /	Fe ₂ O ₃ /	Na ₂ O/	K ₂ O /	K ₂ O/	K ₂ O/	MgO/	MgO/	MgO/	CaO/	CaO/	CaO/	Na ₂ O/	Na ₂ O/
[m]	Al_2O_3	Al_2O_3	TiO ₂	Al ₂ O ₃	Al_2O_3	TiO ₂	Na ₂ O	Al_2O_3	TiO ₂	Fe ₂ O ₃	Al_2O_3	TiO ₂	MgO	SiO ₂	TiO ₂
1,40	0,07	0,38	5,19	0,109	0,20	2,75	1,82	0,21	2,90	0,56	1,27	17,59	6,07	0,015	1,51
3,40	0,11	0,45	4,15	0,077	0,20	1,89	2,63	0,04	0,39	0,09	0,06	0,59	1,53	0,008	0,95
6,50	0,08	0,38	4,66	0,104	0,22	2,65	2,07	0,09	1,05	0,23	0,07	0,87	0,83	0,014	0,72
9,60	0,08	0,34	4,17	0,111	0,22	2,68	1,95	0,22	2,70	0,65	1,03	12,73	4,72	0,014	1,28
10,10	0,08	0,31	4,00	0,118	0,21	2,71	1,80	0,25	3,21	0,80	1,14	14,60	4,55	0,015	1,38
10,50	0,09	0,41	4,68	0,111	0,21	2,38	1,86	0,21	2,38	0,51	0,90	10,36	4,36	0,013	1,51
12,00	0,08	0,45	5,76	0,075	0,17	2,23	2,35	0,07	0,90	0,16	0,07	0,85	0,94	0,010	1,28
12,50	0,07	0,43	6,29	0,053	0,18	2,66	3,39	0,09	1,32	0,21	0,09	1,28	0,97	0,009	0,78
15,60	0,09	0,42	4,91	0,098	0,21	2,40	2,11	0,08	0,95	0,19	0,08	0,90	0,95	0,012	1,14
17,25	0,08	0,30	3,69	0,086	0,21	2,59	2,44	0,15	1,84	0,50	1,02	12,57	6,84	0,011	1,06

Tab.22: Oxid-Verhältnisse, Bockeroth II

Tiefe [m]	TiO ₂ / Al ₂ O ₃	Fe ₂ O ₃ / Al ₂ O ₃	Fe ₂ O ₃ / TiO ₂	Na ₂ O/ Al ₂ O ₃	K ₂ O/ Al ₂ O ₃	K ₂ O/ TiO ₂	K ₂ O/ Na ₂ O	MgO/ Al ₂ O ₃	MgO/ TiO ₂	MgO/ Fe ₂ O ₃	CaO/ Al ₂ O ₃	CaO/ TiO ₂	CaO/ MgO	Na ₂ O/ SiO ₂	Na ₂ O/ TiO ₂
0,84	0,07	0,44	5,89	0,112	0,23	3,11	2,08	0,12	1,54	0,26	0,28	3,79	2,47	0,01	1,49
1,32	0,08	1,03	13,68	0,153	0,23	3,02	1,48	0,23	3,05	0,22	1,40	18,65	6,11	0,02	2,04
2,04	0,07	0,34	4,74	0,151	0,23	3,25	1,54	0,32	4,42	0,93	1,64	23,00	5,21	0,02	2,11
2,76	0,07	0,42	6,25	0,158	0,23	3,39	1,45	0,33	4,80	0,77	1,65	24,37	5,07	0,02	2,33
3,36	0,07	0,35	4,91	0,131	0,23	3,30	1,78	0,31	4,38	0,89	1,50	21,30	4,87	0,02	1,86
3,60	0,07	0,31	4,13	0,156	0,23	3,09	1,48	0,31	4,18	1,01	1,58	21,15	5,06	0,02	2,09
4,52	0,08	0,36	4,83	0,136	0,24	3,14	1,73	0,29	3,81	0,79	1,42	18,90	4,96	0,02	1,81
5,38	0,09	0,40	4,65	0,115	0,20	2,38	1,79	0,21	2,49	0,53	0,76	8,83	3,55	0,02	1,33
5,76	0,08	0,34	3,98	0,141	0,22	2,66	1,59	0,24	2,88	0,72	1,09	12,91	4,49	0,02	1,67

Tab. 23: Oxid-Verhältnisse, Thomasberg

Tiefe [m]	TiO ₂ / Al ₂ O ₃	Fe ₂ O ₃ /Al ₂ O ₃	Fe ₂ O ₃ /TiO ₂	Na ₂ O/ Al ₂ O ₃	K ₂ O/ Al ₂ O ₃	K ₂ O/ TiO ₂	K ₂ O/ Na ₂ O	MgO/ Al ₂ O ₃	MgO/ TiO ₂	MgO/ Fe ₂ O ₃	CaO/ Al ₂ O ₃	CaO/ TiO ₂	CaO/ MgO	Na ₂ O/ SiO ₂	Na ₂ O /TiO ₂
1,55	0,10	0,38	3,92	0,14	0,22	2,26	1,52	0,13	1,31	0,34	0,09	0,91	0,69	0,02	1,49
3,40	0,07	0,39	5,39	0,06	0,14	2,00	2,29	0,10	1,43	0,27	0,07	1,03	0,72	0,01	0,88
9,35	0,09	0,45	5,07	0,08	0,25	2,77	3,08	0,24	2,68	0,53	2,22	24,89	9,30	0,01	0,90
19,00	0,06	0,30	4,99	0,15	0,14	2,26	0,93	0,08	1,39	0,28	0,07	1,24	0,90	0,03	2,45

Tab. 24: Oxid-Verhältnisse, Neustadt

Tiefe	TiO ₂ /	Fe ₂ O ₃	Fe ₂ O ₃	Na ₂ O/	K ₂ O /	K ₂ O/	K ₂ O/	MgO/	MgO/	MgO/	CaO/	CaO/	CaO/	Na ₂ O/	Na ₂ O/
[m]	Al_2O_3	$/Al_2O_3$	/TiO ₂	Al_2O_3	Al_2O_3	TiO ₂	Na ₂ O	Al_2O_3	TiO ₂	Fe ₂ O ₃	Al_2O_3	TiO ₂	MgO	SiO ₂	TiO ₂
0,39	0,08	0,39	5,14	0,09	0,20	1,11	2,14	0,08	1,02	0,22	0,06	0,71	0,70	0,01	1,11
1,00	0,10	0,50	5,45	0,06	0,16	0,57	2,69	0,18	1,74	0,35	0,12	1,19	0,79	0,01	0,57
2,26	0,09	0,35	4,34	0,12	0,21	1,38	1,70	0,09	1,00	0,25	0,07	0,79	0,76	0,02	1,38
3,09	0,08	0,35	4,52	0,11	0,21	1,35	1,86	0,10	1,15	0,28	0,07	0,88	0,82	0,01	1,35
3,37	0,08	0,38	4,91	0,11	0,21	1,31	1,94	0,10	1,19	0,26	0,08	0,98	4,00	0,02	1,31
4,04	0,07	0,29	4,22	0,11	0,19	1,43	1,82	0,24	3,24	0,82	0,96	12,96	4,47	0,02	1,43
4,32	0,08	0,36	4,88	0,11	0,20	1,39	1,77	0,19	2,32	0,51	0,83	10,39	4,30	0,02	1,39
4,53	0,08	0,38	5,45	0,11	0,20	1,43	1,87	0,17	2,32	0,46	0,75	9,99	3,74	0,02	1,43
5,20	0,07	0,25	3,85	0,10	0,19	1,43	1,88	0,24	3,46	0,96	0,91	12,94	3,74	0,02	1,43
8,63	0,08	0,40	5,34	0,07	0,17	0,83	2,55	0,06	0,78	0,16	0,05	0,66	0,86	0,01	0,83
Eiskeil	0,08	0,36	4,91	0,10	0,21	1,29	2,07	0,10	1,24	0,27	0,06	0,75	0,60	0,01	1,29
Tab. 25: Oxid-Verhältnisse, Sourdon

Tiefe	TiO ₂ /	Fe ₂ O ₃ /	Fe ₂ O ₃ /	Na ₂ O/	K ₂ O/	K ₂ O/	K ₂ O/	MgO/	MgO/	MgO/	CaO/	CaO/	CaO/	Na ₂ O/	Na ₂ O/
[m]	Al_2O_3	Al_2O_3	TiO ₂	Al_2O_3	Al_2O_3	TiO ₂	Na ₂ O	Al_2O_3	TiO ₂	Fe ₂ O ₃	Al_2O_3	TiO ₂	MgO	SiO ₂	TiO ₂
1,70	0,08	0,37	4,66	0,12	0,20	2,55	1,70	0,59	2,68	0,57	0,21	19,00	7,10	0,59	1,50
3,30	0,07	0,45	6,13	0,07	0,18	2,52	2,65	0,38	1,41	0,23	0,10	1,13	0,80	0,38	0,95
3,40	0,08	0,38	4,50	0,12	0,21	2,46	1,69	0,59	2,93	0,65	0,24	11,56	3,95	0,59	1,46
3,70	0,09	0,40	4,34	0,08	0,21	2,27	2,47	0,41	1,14	0,26	0,11	2,82	2,48	0,41	0,92
4,80	0,08	0,41	5,31	0,10	0,17	2,21	1,78	0,56	2,01	0,38	0,16	10,97	5,45	0,56	2,01
	~														
<u>Tab. 26:</u>	Oxid-Ver	hältnisse,	<u>, Ailly</u>												
Tiofo		E ₂ O	E ₂ O	No O/	K O/	K O/	V O/	MaO/	MaO/	MaO/		$C_{2}O/$		No O/	No O/
Tiele		$\mathbf{F}\mathbf{e}_2\mathbf{O}_3$	$\mathbf{F}\mathbf{e}_2\mathbf{O}_3$		$\mathbf{K}_{2}\mathbf{U}$		$\mathbf{K}_2\mathbf{U}$	MgU/	MgU/	MgO/				$\ln a_2 O/$	$\operatorname{Na}_2\mathbf{U}$
[m]	AI_2O_3	$/Al_2O_3$	/TiO ₂	Al_2O_3	Al_2O_3	TiO ₂	Na ₂ O	Al_2O_3	TiO ₂	Fe_2O_3	Al_2O_3	TiO ₂	MgO	SiO ₂	TiO_2
2,70	0,10	0,36	3,65	0,15	0,22	2,25	1,53	0,28	2,84	0,78	1,46	14,82	5,22	0,01	1,48
5,20	0,09	0,38	4,29	0,12	0,21	2,41	1,75	0,23	2,56	0,60	1,31	14,94	5,84	0,01	1,38

124Tab. 27: Oxid-Verhältnisse, Heilly

Tiefe [m]	TiO ₂ / Al ₂ O ₃	Fe ₂ O ₃ / Al ₂ O ₃	Fe ₂ O ₃ / TiO ₂	$\frac{Na_2O}{Al_2O_3}$	K ₂ O/ Al ₂ O ₃	K ₂ O/ TiO ₂	K ₂ O/ Na ₂ O	MgO/ Al ₂ O ₃	MgO/ TiO ₂	MgO/ Fe ₂ O ₃	CaO/ Al ₂ O ₃	CaO/ TiO ₂	CaO/ MgO	Na ₂ O/ SiO ₂	Na ₂ O/ TiO ₂
0,50	0,08	0,41	4,93	0,10	0,19	2,26	1,99	0,50	1,26	0,26	0,11	0,86	0,69	0,50	1,14
2,05	0,08	0,35	4,21	0,14	0,21	2,57	1,51	0,66	3,30	0,78	0,27	15,31	4,65	0,66	1,70
3,25	0,08	0,36	4,32	0,14	0,20	2,48	1,50	0,67	3,18	0,74	0,26	13,51	4,46	0,67	2,48
3,55	0,09	0,37	4,39	0,14	0,21	2,44	1,51	0,66	3,17	0,72	0,27	19,12	4,26	0,66	1,61
4,05	0,08	0,37	4,86	0,13	0,20	2,60	1,54	0,65	3,83	0,79	0,29	14,16	5,00	0,65	1,69
4,35	0,08	0,39	5,07	0,11	0,18	2,35	1,62	0,62	2,26	0,45	0,18	9,65	4,27	0,62	1,45
4,75	0,08	0,40	5,16	0,11	0,17	2,24	1,62	0,62	2,00	0,39	0,15	8,31	4,15	0,62	1,38
6,45	0,08	0,42	5,30	0,09	0,20	2,58	2,32	0,43	2,06	0,39	0,16	18,96	13,84	0,43	1,11
6,55	0,09	0,39	4,42	0,10	0,22	2,53	2,22	0,45	1,39	0,31	0,12	3,75	2,70	0,45	1,14
6,85	0,09	0,38	4,07	0,11	0,20	2,16	1,81	0,55	2,00	0,49	0,18	10,55	5,28	0,55	1,20

Tab. 28: ⁸⁷Sr/⁸⁶Sr und Sr-Gehalte ausgewählter Proben (analysiert von Prof. Dr. Udo Haack und Dr. Jens Schneider im Institut für Lithosphärenforschung, Gießen)

Probe	⁸⁷ Sr/ ⁸⁶ Sr	2-Sigma-Fehler	Sr-Konzentration [ppm]	10 ⁵ /Sr (ppm)
Rau 4	0,7147	0,00002	339	295
Rau 7	0,7145	0,00001	339	295
Sourdon 1a	0,7145	0,00001	195	513
Sourdon 1b	0,7226	0,00001		
Bockeroth II 4,60m	0,7124	0,00006		
Bockeroth II 6,0 m	0,7121	0,00002		
Bockeroth II 8,20 m	0,715	0,00001		
Heilly 1,20 m	0,7143	0,00005	188	532
Heilly 3,20 m	0,7123	0,00005	215	465
Heilly 4,20 m	0,7111	0,00001		
Ailly 2,70 m	0,7148	0,00001	190	526
Ailly 5,70 m	0,7132	0,00001	194	515
Birl 3,25	0,7122	0,00001	221	452
Birl 4,0 m	0,713	0,00002	224	446
Birl 5,90 m	0,7138	0,00001	187	535
Birl 6,50 m	0,7144	0,00001	164	610
Neu 1,6	0,7241	0,00003	100	1.000
Neu 9,4	0,7137	0,00001	197	508
Neu 14,0	0,7277	0,00003	n.d.	
Komponente A	0,7075		400	280
Komponente A(1)	0,7075		358	250
Komponente B(2)	0,725		72	1.388

Anhang-Kristallchemie: Mineralformel-Berechnungen

Bei kristallchemischen Mineralformel-Berechnungen wird sich auf die <u>Elementarzelle</u> bezogen: diese besteht z.B. bei TiO₂ aus einem Gerüst von 24 O (und damit 12 Ti): Das Mikrosonde-Programm rechnet mit **dieser Bezugsgröße (24 O + OH).** Die O-Ionen bilden eine dichte Kugelpackung mit verschiedenartigen Lücken (tetraedrischen, d.h. solchen, die von 4 Sauerstoffen umgeben sind; oktaedrischen, d.h. solchen mit sechs umgebenden Sauerstoffen), in denen die Kationen sitzen. In den kleineren tetraedrischen Lücken sitzen kleine Kationen (Al³⁺, Si⁴⁺), in den größeren oktaedrischen die relativ größeren Kationen (Mg²⁺, Fe²⁺, Fe³⁺, Mn²⁺ ...). Die oktaedrisch koordinierten Kationen werden nach anderen Aspekten (Ladung, Größe) noch weiter kristallchemisch unterschieden. In Kristallstrukturen sitzen die Kationen auf bestimmten Positionen der Struktur. Das kommt dann in der kristallchemischen Formel zum Ausdruck.

Koordinationszahl	Polyeder	Radien-Verhältnis Kation/Anion	Gittertyp
4	Tetraeder	0,22	ZnS
6	Oktaeder	0,41	NaCl
8	Würfel	0,73	CsCl

Beispiel Granat:

Die theoretische Formel des Granats : $A_3^{II} B_2^{III} [Si O_4]_3$

wobei **A** die "großen" Kationen wie Ca²⁺ (1,34 Å), Mg²⁺ (0,8 Å), Fe²⁺ (Fe²⁺ > Fe³⁺) und z.T. auch große *einwertige* Ionen wie K⁺ (1,08 Å), Na⁺ (1,07 Å) und **B** die "kleineren" drei (bzw. vier-) wertigen Kationen Fe³⁺ (0,63 Å) Al³⁺ (0,61 Å), Cr³⁺ (0,7 Å), Ti⁴⁺ (0,69 Å) sind.

Für die Formelberechnung werden alle Werte x2 genommen. da die oben angegebene Formel nur 12 O enthält (4 x 3), die Elementarzelle aber 24 O umfasst

Theoretische Formel (x 2):

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Tty						S. V	
Heilly D 25	8, a6						
Chi-sqd = 1	.03	Live	etime = 30	.0 Se	c.		
Standardles	s Analysis						
Element	Rel. k-r	atio	Ne	t Cou	ints		
С -К			5488	+/-	82		
0 -K			9198	+/-	92		
Na-K 0	.00000 +/- 0	.00001	0	+/-	0		
Mg-K 0	.06738 +/- 0	.00116	4698	+/-	81		
A1-K 0	.16473 +/- 0	.00176	10725	+/-	114		
Si-K 0	.19887 +/- 0	.00318	12320	+/-	197		
UI-K			114	+/-	44		
S -K 0	.00348 +/- 0	.00194	163	+/-	91		
К -К 0	.00397 +/- 0	.00109	158	+/-	43		
Ca-K 0	.00640 +/- 0	.00261	222	+/-	90		
11-K 0	.00186 +/- 0	.00141	51	+/-	39		
Fe-K 0	.54834 +/- 0	.01036	9739	+/-	184		
Mn-K 0	.00229 +/- 0	.00219	45	+/-	43		
Mn-L			0	+/-	0		
Fe-L			1243	+/-	80		
No. of Iter	ations 3 k-ratio	Beta	₩t	%			_
0×1de Na20 Mg0 A1203 Si02 S03 K20	0.0000 0.1661 0.4292 0.5339 0.0099 0.0049	2.3260 1.5591 1.4316 1.4468 1.3238 1.1367	0. 10. 24. 30. 0.	00 39 64 97 53 22	(Tranat Alucon	S:
0x1de Na20 Mg0 A1203 Si02 S03 K20 Ca0	0.0000 0.1661 0.4292 0.5339 0.0099 0.0049 0.0049	2.3260 1.5591 1.4316 1.4468 1.3238 1.1367 1.0714	0. 10. 24. 30. 0. 0.	00 39 64 97 53 22 40	(Tranat Almon	S:-)
0x1de Na20 Mg0 A1203 Si02 S03 K20 Ca0 Ti02	$\begin{array}{c} 0.0000\\ 0.1661\\ 0.4292\\ 0.5339\\ 0.0099\\ 0.0049\\ 0.0093\\ 0.0093\\ 0.0034 \end{array}$	2.3260 1.5591 1.4316 1.4468 1.3238 1.1367 1.0714 1.0668	0. 10. 24. 30. 0. 0. 0. 0.	00 39 64 97 53 22 40 14	(Travat Abuon	S:-)
Uxide Na20 Mg0 Al203 Si02 S03 K20 Ca0 Ti02 Fe0	$\begin{array}{c} 0.0000\\ 0.1661\\ 0.4292\\ 0.5339\\ 0.0099\\ 0.0049\\ 0.0093\\ 0.0034\\ 0.7443 \end{array}$	2.3260 1.5591 1.4316 1.4468 1.3238 1.1367 1.0714 1.0668 1.0851	0. 10. 24. 30. 0. 0. 0. 0. 32.	00 39 64 97 53 22 40 14 39	(Travat Abuon	S.,
Uxide Na20 Mg0 A1203 Si02 S03 K20 Ca0 Ti02 Fe0 Mn0	$\begin{array}{c} 0.0000\\ 0.1661\\ 0.4292\\ 0.5339\\ 0.0099\\ 0.0049\\ 0.0093\\ 0.0034\\ 0.7443\\ 0.0031 \end{array}$	$\begin{array}{c} 2.3260\\ 1.5591\\ 1.4316\\ 1.4468\\ 1.3238\\ 1.1367\\ 1.0714\\ 1.0668\\ 1.0851\\ 1.0926\end{array}$	0. 10. 24. 30. 0. 0. 0. 0. 32. 0.	00 39 64 97 53 22 40 14 39 14	(Travat Abuon	S.,
Uxide Na20 Mg0 Al203 Si02 S03 K20 Ca0 Ti02 Fe0 Mn0 Cr203	$\begin{array}{c} 0.0000\\ 0.1661\\ 0.4292\\ 0.5339\\ 0.0099\\ 0.0049\\ 0.0093\\ 0.0034\\ 0.7443\\ 0.0031\\ 0.0031\\ 0.0042 \end{array}$	$\begin{array}{c} 2.3260\\ 1.5591\\ 1.4316\\ 1.4468\\ 1.3238\\ 1.1367\\ 1.0714\\ 1.0668\\ 1.0851\\ 1.0926\\ 1.0498 \end{array}$	0. 10. 24. 30. 0. 0. 0. 32. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	00 39 64 97 53 22 40 14 39 14 18	(Tranat Almon	S.,
Uxide Na20 Mg0 Al203 Si02 S03 K20 Ca0 Ti02 Fe0 Mn0 Cr203 Total	$\begin{array}{c} 0.0000\\ 0.1661\\ 0.4292\\ 0.5339\\ 0.0099\\ 0.0049\\ 0.0093\\ 0.0034\\ 0.7443\\ 0.0031\\ 0.0042\\ \end{array}$	$\begin{array}{c} 2.3260\\ 1.5591\\ 1.4316\\ 1.4468\\ 1.3238\\ 1.1367\\ 1.0714\\ 1.0668\\ 1.0851\\ 1.0926\\ 1.0498\\ \end{array}$	0. 10. 24. 30. 0. 0. 32. 0. 100.	00 39 64 97 53 22 40 14 39 14 18 00%	(Travat (Almon	S.,
Uxide Na20 Mg0 Al203 Si02 S03 K20 Ca0 Ti02 Fe0 Mn0 Cr203 Total Na 0.0001 S 0.0630 Fe 4.3229	0.0000 0.1661 0.4292 0.5339 0.0099 0.0049 0.0034 0.7443 0.0034 0.0042 Mg 2.471 K 0.0455 Mn 0.0185	2.3260 1.5591 1.4316 1.4468 1.3238 1.1367 1.0714 1.0668 1.0498 3 Al 5 Ca 5 Cr	0. 10. 24. 30. 0. 0. 32. 0. 100. 4.6349 S 0.0682 T 0.0223 0	00 39 64 97 53 22 40 14 39 14 18 00% i 4 i 0 24	.9433 .0174 .0000	Travat (Alucon	S.,

Da zuerst die Tetraederplätze besetzt werden, wird zuerst die Si-Position besetzt. In diesem Fall sind anstatt der theoretischen 6 Si nur 4,94 Si vorhanden (vgl. obigen Ausdruck "Tty"), d.h. es müssen zur Auffüllung der Si-Position (= 6.0) noch 1,06 andere Ionen herangezogen werden. Als nächstmögliche nach der Größe und Ladung ist dieses das Al³⁺. Die Formel ändert sich somit in:

 $A_{6}^{II} \ B_{4}^{III} \ [Si_{4,94} \ Al_{1,06} \ O_{24}]$

Der Rest des Al³⁺ (= 4,64 - 1,06, entspricht 3,58) wird in die nächstgrößere Position (= die B-Position) gesetzt. In diese B- Position gelangen auch (bis zur Gesamtmente B_4) weitere 3-wertige Kationen, so daß die Formel jetzt:

 $A_{6}^{II} \overbrace{(Al_{3,575} \, Fe_{0,387} \, Cr_{0,02} \, Ti_{0,017})}^{4} [Si_{4,94} \, Al_{1,06} \, O_{24}]$

Hierauf folgt die Besetzung der zweiwertigen Ionen (A). Da diese Position die unsicherste ist, wird sie zuletzt besetzt. Hier kann durchaus einmal ein Ladungs-Überschuß bzw. -Defizit auftreten. In unserem Beispiel der Probe Heilly ist die Formel:

 $\overbrace{\left(Fe_{3,936}^{II}\,Mg_{2,47}\,Ca_{0,068}\,K_{0,045}\right)}^{6,52}\quad\overbrace{\left(Al_{3,575}\,Fe_{0,387}^{III}\,Cr_{0,02}\,Ti_{0,017}\right)}^{4}\quad\left[Si_{4,94}\,\,Al_{1,06}\,O_{24}\right]$

Die Berechnung des Anteils an zwei- bzw. dreiwertigem Eisen erfolgt über die Ladungskontrolle³⁴, wobei der Elementgehalt mit der Ladung multipliziert wird. Es sind 24 O²⁻ Ionen vorhanden, d.h. 48 negative Ladungen. Es werden also 48 Kationen zum Ausgleich gebraucht:

Element	Gehalt laut Mikrosonden-Analyse bezogen auf 24 O	Wertigkeit des Elements	Gehalt * Wertigkeit	/2 um Formel für einen Granat zu erhalten ³⁵
Si	4,95	4	19,8	9,9
Al	4,63	3	13,89	6,95
Ti	0,02	4	0,08	0,04
Cr	0,02	3	0,06	0,03
FeIII	0,39	3	1,17	0,58
Fe II	3,94	2	7,88	3,94
K	0,04	1	0,04	0,02
Са	0,07	2	0,14	0,07
Mg	2,47	2	4,94	2,47
			48	24

 ³⁴Der in der chemischen Analyse ermittelte Wert * Wertigkeit des Ions
 ³⁵bezogen auf 12 O (laut Granat-Formel)

Beispiel Amphibole: (vgl. 6.6.12)

 $A_2 B_5 [(OH, F)_2 (Si, Al)_8 O_{22}]$

A = Ca, Na, K; B = Mg, Al, Ti, Fe,

vgl. 6.6.12 (s. 116 Diss) <u>Beispiel Turmalin</u> (vgl. 6.6.13, S. 117 f.):

X Y₉ B₃ [O, OH, F/Si₆O₁₈]₆ (OH)₁₋₂

Hier werden X und Y anstelle von A und B benutzt, weil B (=Zeichen für Bor) bereits kristallchemisch festgelegt ist und den Borgehalt in der Formel angibt.

X= Na, Ca (= die großen Kationen),

Y= Al, Mg, $Fe^{2+,3+}$, Mn, Ti, Cr, Li (= die kleinen Kationen); von diesen Kationen der Y-Position sind (vgl. Tab. 44) nur Al, Mg und $Fe^{2+,3+}$ in deutlichen Gehalten vorhanden, so daß sich zur Charakterisierung in einem Dreiecksdiagramm nur diese drei Elemente anbieten.

Ζ	Ionen	Größe in Å [4]	Größe in Å [6]
3	Li ⁺	0,68	0,82
12	Mg^{2+}	0,66	0,80
13	Al ³⁺	0,47	0,61
14	Si ⁴⁺	0,34	0,48
15	P ⁵⁺	0,25	0,35
20	Ca ²⁺		1,08
22	Ti ⁴⁺		0,69
24	Cr ³⁺		0,70
25	Mn ²⁺		0,75
26	Fe ²⁺	0,71	0,86
26	Fe ³⁺	0,57	0,63

Größe verschiedener Kationen in Å in [4]er-Koordination und in [6]-er Koordination

Z = Ordnungszahl, sämtliche Werte aus Faure (1998)

Probe Sm 6, 23, Bohrkern Bockeroth 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{I\!I} \ B_4^{I\!II} \ [Si_6 \ O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0	0	0
Ca	0,1	0,2	0,05
K	0,06	0,06	0,03
Mg	4,07	8,14	2,04
Al	4,2	12,6	2,1
Si	5,35	21,4	2,67
FeII	2,72	5,44	1,36
FeIII	0	0	0
Ti	0,02	0,08	0,010
Cr	0,02	0,06	0,01
		47,98	

Element		Ladungsberechnung	/2
0	24	-48	12

$$\overbrace{\left(Mg_{4,07} \; Fe_{2,31}^{II} \; Ca_{0,1} \; K_{0,06}\;\right)}^{6,54} \overbrace{\left(Al_{3,55} \; Fe_{0,41}^{II} \; Ti_{0,02} \; Cr_{0,02}\right)}^{4,0} [\overbrace{Si_{5,35} \; Al_{0,65}}^{6} \; O_{24}]$$

Formel für den Granat:

$$\underbrace{\underbrace{(Mg_{2,03} Fe_{1,16}^{II} Ca_{0,05} K_{0,03})}_{3,27}}_{(Al_{1,78} Fe_{0,20}^{II} Ti_{0,01} Cr_{0,01})} \underbrace{(Si_{2,68} Al_{0,32} O_{12})}_{3}$$

Mg	Fe (1. Position)	Ca	Summe
4,07	2,72	0,1	6,89
59,1	39,5	1,5	100

Tty SM 6, 23 Chi-sqd = 1.04Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K <u>_____</u> 1110 +/-34 0 -K 14522 +/-145 Na-K 0.00000 + / - 0.000010 +/-0 Mg-K 0.14477 +/- 0.00167 8677 +/-100 AĨ-K 0.17699 +/- 0.00196 9907 +/-110 Si-K 0.25534 +/- 0.00223 13600 +/-119 C1-K 0 +/-0 S-K 0.00000 + / - 0.000010 +/-0 К –К 0.00558 +/- 0.00253 191 +/-86 Ca-K 0.01098 + / - 0.00145327 +/-43 Ti-K 0.00302 + / - 0.0015671 +/-36 Fe-K 0.40070 + / - 0.009966118 +/-152 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L ----0 +/-0 Fe-L ------1011 +/-83 Cr-K 0.00261 +/- 0.00166 52 +/-33 Р -К 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Beta Wt % Na20 0.0000 2.0382 0.00 Mq0 0.3569 18.09. 1.4043 A1203 0.4611 1.4173 23.59 Si02 0.6855 1.4335 35.46 \$03 0.0000 1.3438 0.00 K20 0.0069 0.29 1.1518 CaO 0.01591.0872 0.62 Ti02 0.0055 1.0868 0.22 Fe0 0.5439 1.0996 21.58 Mn0 0.0000 1.1102 0.00 Cr203 0.0041 1.0734 0.16 P205 0.0000 1.5165 0.00 Total 100.00% Na-- 0.0000 Mg-- 4.0702 Al-- 4.1960 Si-- 5.3524 S -- 0.0000 K -- 0.0553 Ca-- 0.1010 Ti-- 0.0246 Mn-- 0.0000 Cr-- 0.0190 P -- 0.0000 0 --24.0000 Fe-- 2.7246

Probe Sm 7,5, Bohrkern Bockeroth 9,60 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{I\!I} \ B_4^{I\!I} \ [Si_6 \ O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes *	Formelindizes
		ElemLadung)	
Na	0,09	0,09	0,04
Ca	5,69	11,38	2,85
Κ	0,39	0,39	0,2
Mg	0,95	1,9	0,47
Al	2,93	8,79	1,47
Si	5,71	22,84	2,86
FeII	0,67	1,34	0,34
FeIII	0,2	0,6	0,1
Ti	0,07	0,28	0,035
Mn	0	0	0
Р	0,06	0,45	0,03
		48,06	8,32

Element		Ladungsberechnung	/2
0	24	-48	12

Na-bereinigt!0,26 Apatit (0,065 P +0,195 Ca)

$$\overbrace{(Ca_{5,495} Mg_{0,53} K_{0,39} Fe_{0,06}^{II})}^{6,475} \overbrace{(Al_{2,64} Fe_{0,61}^{II} Mg_{0,42} Fe_{0,2}^{III} Ti_{0,07})}^{4,0} \overbrace{(Si_{5,71} Al_{0,29} O_{24}]}^{6}$$

Formel für den Granat:

$$\overbrace{\left(\text{Ca}_{2,747}\text{ Mg}_{0,265}\text{ K}_{0,195}\text{ Fe}_{0,03}^{\text{II}}\right)}^{3,23}}^{3,23} \overbrace{\left(\text{Al}_{1,32}\text{ Fe}_{0,31}^{\text{II}}\text{ Mg}_{0,21}\text{ Fe}_{0,1}^{\text{III}}\text{Ti}_{0,035}\right)}^{2,0} \overbrace{\left(\text{Si}_{2,85}\text{ Al}_{0,15}\text{ O}_{12}\right]}^{3}$$

Mg	Fe ³⁶	Ca	Summe
0,27	0,03	2,75	3,05
9	1	90	100

³⁶1. Position

Tty SM 7, 5 Chi-sqd = 1.09Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts С -К -3602 +/-55 0 -K 16150 +/-----173 Na-K 0.00159 + / - 0.0009384 +/-49 Mg-K 0.02720 +/- 0.00087 2149 +/-69 A1-K 0.11023 +/- 0.00142 8134 +/-105 Si-K 0.24289 +/- 0.00330 17057 +/-232 C1-K 142 +/-46 S −K 0.00275 +/- 0.00096 146 +/-51 К -К 0.03111 +/- 0.00265 1396 +/-119 Ca-K 0.48024 +/- 0.00587 18806 +/-230 Ti-K 0.00593 +/- 0.00226 182 +/-69 Fe-K 0.09522 +/- 0.00551 1918 +/-111 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L ------0 +/-0 Fe-L 1030 +/-95 Cr-K 0.00000 + / - 0.000010 +/-0 P – K 0.00284 + / - 0.00097170 +/-58 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 2 Oxide k-ratio Beta Wt % Na20 0.0033 1.9052 0.28 1.3449 Mq0 0.0671 4.05 A1203 1.2235 0.2872 15.77 Si02 0.6521 1.2370 36.21 S03 0.0078 1.2498 0.44 K20 0.0385 1.1152 1.93 CaO 0.6964 1.0779 33.70 0.0108 Ti02 1.1768 0.57 Fe0 0.1293 1.1320 6.57 Mn0 0.0000 1.1546 0.00 Cr203 0.0000 1.1360 0.00 P205 0.0078 1.3840 0.49 Total 100.00% Na-- 0.0862 Mg-- 0.9509 Al-- 2.9293 Si-- 5.7051 K -- 0.3878 Ca-- 5.6889 Ti-- 0.0677 S -- 0.0519 Fe-- 0.8655 Mn-- 0.0000 Cr-- 0.0000 P -- 0.0649 0 --24.0000

Probe Sm 7,3, Bohrkern Bockeroth 9,60 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes *	Formelindizes
		ElemLadung)	
Na	0	0	0
Ca	0,55	1,1	0,28
Κ	0,06	0,06	0,03
Mg	0,68	1,36	0,34
Al	3,8	11,4	1,9
Si	6,01	24,04	3
FeII	3,15	6,3	1,58
FeIII	1,24	3,72	0,62
Ti	0	0	0,000
S	0,02	0,12	0,010
Mn	0,38	0,76	0,190
		47,98	

Element		Ladungsberechnung
0	24	-48

$$\overbrace{\left(Fe_{3,15}^{II}Fe_{0,92}^{III}Mg_{0,68}\,Ca_{0,55}\,Mn_{0,38}\,K_{0,06}\,S_{0,02}\right)}^{5,76} \xrightarrow{4,0} \overbrace{\left(Al_{3,68}\,Fe_{0,32}^{III}\right)}^{6,01}}_{\left(Si_{6,01}\right)}O_{24}]$$

Formel für den Granat:

2,884	2,0	3,0
$(Fe_{1,575}^{II}Fe_{0,46}^{III}Mg_{0,34} Ca_{0,28} Mn_{0,189} K_{0,03} S_{0,01})$	$\left(Al_{1,84}\overline{Fe_{0,16}^{III}}\right)$	[Si _{3,0} O ₁₂]

Mg	$\Sigma \ { m Fe}^{37}$	Ca	Summe
0,68	4,07	0,55	5,3
12,8	76,8	10,4	100

Dieser Granat ist ein Almandin.

³⁷ Position A_3^{2+}

Tty SM 7, 3 Chi-sqd = 1.18Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K -----2955 +/-64 0 -K _____ 8121 +/-83 Na-K 0.00000 + / - 0.000010 +/-0 Mg-K 0.01671 +/- 0.00067 1429 +/-57 AI-K 0.12962 +/- 0.00136 10347 +/-109 Si-K 0.23667 +/- 0.00325 17976 +/-247 C1-K 125 +/-87 S -K 0.00127 +/- 0.00084 73 +/-48 К -К 0.00470 +/- 0.00089 228 +/-43 Ca-K 0.04807 +/- 0.00146 2036 +/-62 Ti-K 0.00000 + / - 0.000010 +/-0 0.51745 +/- 0 00914 Fe-K 11268 +/-199 Mn-K 0.04322 +/- 0.00258 1040 +/-62 Mn-L ----0 +/-0 Fe-L 1321 +/-74 0.00000 +/- 0.00001 Cr-K 0 +/-0 0.00230 +/- 0.00190 P -K 150 +/-123 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Beta Wt % Na20 0.0000 2.4257 0.00 Mg0 0.0412 1.6143 2.86 A1203 0.3377 1.3835 20.08 Si02 0.6353 1.3731 37.50 S03 0.0036 1.3159 0.20 K20 0.0058 1.1302 0.28 CaO 0.0697 1.0662 3.19 Ti02 0.0000 1.0681 0.00 Fe0 0.7024 1.0829 32.69 MnO 0.0592 1.0911 2.78 Cr203 0.0000 1.0486 0.00 P205 0.0063 1.4862 0.41 Total 100.00%

Na S	0.0001 0.0247	Mg 0 К 0	0.6846	A1	3.8031	Si	6.0247		
Fe	4.3927	Mn C	0.3777	Cr	0.0000	P	0.0552	0	24.0000

Probe Sm 3,15, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{\rm II} \ B_4^{\rm III} \ [Si_6 \ O_{24}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes *	Indizes/2 = Formelindizes
		ElemLadung)	
Na	0,15	0,15	0,07
Ca	0,18	0,36	0,09
К	0,02	0,02	0,01
Mg	3,42	6,84	1,71
Al	4,51	13,53	2,25
Si	5,17	20,68	2,59
FeII	3,19	6,38	1,6
FeIII	0	0	0
Ti	0,01	0,04	0,005
		48	

 $\overbrace{\left(Mg_{3,42}Fe_{2,88}^{II}\,Ca_{0,18}\,K_{0,02}\,\right)}^{6,5} \overbrace{\left(Al_{3,68}\,Fe_{0,31}^{II}\,Ti_{0,01}\,\right)}^{4,0} \overbrace{\left(Si_{5,17}\,Al_{0,83}\,O_{24}\right]}^{6}$

Formel für den Granat:

3,25	2,0	3
$\left(Mg_{1,71}Fe_{1,44}^{II}Ca_{0,09}K_{0,01}\right)$	$(Al_{1,84}Fe_{0,15}^{II}Ti_{0,005})$	[Si _{2,58} Al _{0,42} O ₁₂]

Mg	Fe (1. Position)	Ca	Summe
3,42	2,88	0,18	6,48
53	44	3	100

Sm3, 15

Chi-sqd -	= 1.34 Livet	ime = 78.0 Sec	
Standard	less Analysis		15.
Element	Rel. k-ratio	Net Count	S
С –К	Contraction of the second seco	1760 +/-	42
0 -K	()	20510 +/-	174
Na-K	0.00313 +/- 0.00091	196 +/-	57
Mg-K	0.11145 +/- 0.00225	10440 +/-	211
A1-K	0.18115 +/- 0.00351	15847 +/-	307
Si-K	0.23332 +/- 0.00305	19423 +/-	254
К –К	0.00179 +/- 0.00090	96 +/-	48
Ca-K	0.01920 +/- 0.00121	891 +/-	56
Ti-K	0.00130 + / - 0.00122	47 +/-	44
Fe-K	0.44867 +/- 0.00817	10708 +/-	195
Mn-K	0.00000 +/- 0.00001	0 +/-	0
Mn-L		0 +/-	0
Fe-L		1729 +/-	101
Р – К	0.00000 + / - 0.00001	0 +/-	0

Bence-Albee Analysis 20.00 kV 40.00 Deg

2720	0111 102451				
No.	of Itera	tions 3			
	0×ide	k-ratio	Beta	Wt %	
	Na20	0.0065	2.1204	0.51	
	Mg0	0.2748	1.4570	14.90	
	A1203	0.4720	1.4157	24.86	
	Si02	0.6264	1.4417	33,60	
	K20	0.0022	1.1467	0.09	
	CaO	0.0278	1.0814	1.12	
	Ti02	0.0024	1.0817	0.10	
	Fe0	0.6090	1.0952	24.82	
	MnO	0.0000	1.1051	0.00	
	P205	0.0000	1.5100	0.00	
	Tota1		1979-1979-1973) (Briddiae (Brid	100.00	b
Na-	- 0.1529	Mg 3.416	51 Al 4.	5076 Si-	- 5 1687
Κ	- 0.0185	Ca 0.184	16 Ti 0.0	0110 Ee	- 3 1927
Mn	- 0.0000	P 0.000	00 024.0	0000	0.1027

Probe Sm 3, 8 Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes *	Formelindizes
		ElemLadung)	
Na	0,04	0,04	0,02
Ca	0,08	0,16	0,04
К	0,08	0,08	0,04
Mg	3,64	7,28	1,82
Al	4,48	13,44	2,24
Si	5,52	22,08	2,76
FeII	2,24	4,48	1,12
FeIII	0,01	0,03	0
Ti	0,04	0,16	0,020
Mn	0,05	0,1	0,025
Р	0,03	0,15	0,015
		48	8,09

6,11	4,0	6,0
$\underbrace{\left(Mg_{3,64}Fe_{2,24}^{II}Fe_{0,01}^{III}Ca_{0,08}\;K_{0,08}\;Mn_{0,05}\;Na_{0,04}\;Ti_{0,04}\;P_{0,03}\right)}$	$(Al_{4,0})$	[Si _{5,52} Al _{0,48} O ₂₄]

Formel für den Granat:

3,1	2,0	3,0
$\left(Mg_{1,82} \operatorname{Fe}_{1,12}^{II} \operatorname{Fe}_{0,005}^{III} \operatorname{K}_{0,04} \operatorname{Ca}_{0,04} \operatorname{Mn}_{0,025} \operatorname{Na}_{0,02} \operatorname{Ti}_{0,02} \operatorname{P}_{0,016}\right)\right)$	$(Al_{2,0})$	[Si _{2,76} Al _{0,24} O ₁₂]

Mg	Fe (1. Position)	Ca	Summe
1,82	1,12	0,04	2,98
61	38	1	100

Dieser Granat ist ein Pyrop-Almandin.

Sm3, 8 Chi-sqd = 1.57Livetime = 93.0 Sec. Standardless Analysis Net Counts Element Rel. k-ratio C-K 3637 +/-58 -----33379 +/-0 -K 223 -----76 +/-Na-K 0.00100 + / - 0.0009471 0.13939 +/- 0.00228 Mg-K 15786 +/-258 A1-K 0.20419 +/- 0.00345 21597 +/-365 0.27742 +/- 0.00300 Si-K 27922 +/-302 К –К 0.00815 + / - 0.00081525 +/-52 54 Ca-K 0.00928 +/- 0.00096 522 +/-Ti-K 0.00473 +/- 0.00201 208 +/-88 Fe-K 0.34644 +/- 0.00679 9996 +/-196 247 +/-Mn-K 0.00772 +/- 0.00173 55 0 +/-Mn-L 0 Fe-L 2469 +/-127 P - K 0.00168 +/- 0.00076 144 +/-65 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 k-ratio ₩t % Oxide Beta Na20 0.0021 1.9642 0.14 Mq0 0.3437 1.3669 16.54 A1203 0.5320 1.3758 25.77 0.7448 Si02 1.4249 37.36 0.0101 K20 1.1565 0.41 CaO 0.0135 1.0922 0.52 Ti02 0.0086 1.0921 0.33 Fe0 0.4703 1.1030 18.26 Mn0 0.0106 0.42 1.1147 0.25 P205 0.0046 1.5226 Total 100.00% Na-- 0.0412 Mg-- 3.6405 Al-- 4.4844 Si-- 5.5168 K -- 0.0774 Ca-- 0.0819 Ti-- 0.0369 Fe-- 2.2549 Mn-- 0.0519 P -- 0.0310 0 --24.0000

Probe Heilly, 5,05 m (D258, a6).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{\rm II} B_4^{\rm III} [Si_6 O_{24}]$

Element	Indizes (Flom Zollo)	Ladungsberechnung	Indizes/2 =
	(LiemZene)	ElemLadung)	Formennuizes
Na	0	0	0
Ca	0,07	0,14	0,04
Κ	0,04	0,04	0,02
Mg	2,47	4,94	1,24
Al	4,63	13,89	2,31
Si	4,95	19,8	2,48
FeII	3,94	7,88	1,97
FeIII	0,39	1,17	0,2
Ti	0,02	0,08	0,010
Cr	0,02	0,06	0,01
		48	

 $\overbrace{(Fe_{3,936}\,Mg_{2,47}\,Ca_{0,068}\,K_{0,045})}^{6,52} \overbrace{\left(Al_{3,575}\,Fe_{0,387}^{III}\,Cr_{0,02}\,Ti_{0,017}\right)}^{4} \overbrace{\left(Si_{4,95}\,Al_{1,06}\right.O_{24}\right]}^{6}$

Formel für den Granat:

$$\overbrace{\left(Fe_{1,97}^{II} Mg_{1,24} Ca_{0,034} K_{0,022}\right)}^{3,26} \overbrace{\left(Al_{1,79} Fe_{0,195}^{III} Cr_{0,01} Ti_{0,0085}\right)}^{2} \overbrace{\left(Si_{2,48} Al_{0,52}\right)}^{3,0} O_{12}]$$

Mg	Fe (1. Position)	Ca	Summe
2,47	3,94	0,07	6,48
38	61	1	100

Heilly D 258, a6 Chi-sqd = 1.03Livetime = 30.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C -K ____ 5488 +/-82 0 -K -----9198 +/-92 Na-K 0.00000 + / - 0.000010 +/-0 0.06738 +/- 0.00116 Mq-K 4698 +/-81 A1-K 0.16473 +/- 0.00176 10725 +/-114 Si-K 0.19887 +/- 0.00318 12320 +/-197 C1-K 114 +/-44 S-K 0.00348 +/- 0.00194 163 +/-91 K -K 0.00397 + / - 0.00109158 +/-43 Ca-K 0.00640 +/- 0.00261 222 +/-90 Ti-K 0.00186 + / - 0.0014151 +/-39 0.54834 +/- 0.01036 Fe-K 9739 +/-184 Mn-K 0.00229 +/- 0.00219 45 +/-43 Mn-L -0 +/-0 Fe-L -----1243 +/-80 Cr-K 0.00267 +/- 0.00155 63 +/-36 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 0xide k-ratio Beta Wt % Na20 0.0000 2.3260 0.00 MqO 0.16611.5591 10.39 A1203 0.4292 1.4316 24.64 Si02 0.5339 1.4468 30.97 S03 0.0099 1.3238 0.53 K20 0.0049 1.1367 0.22 CaO 0.0093 1.0714 0.40 Ti02 0.0034 1.0668 0.14 Fe0 0.74431.0851 32.39 MnO 0.00311.0926 0.14Cr203 0.0042 1.0498 0.18Total 100.00%

Na 0.0001	Mg 2.4713	A1 4.6349	Si 4.9433
\$ 0.0630	K 0.0456	Ca 0.0682	Ti 0.0174
Fe 4.3229	Mn 0.0186	Cr 0.0223	024.0000

Probe Heilly, 5,05 m (D258, a5).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes *	Formelindizes
		ElemLadung)	
Na	0,07	0,07	0,04
Ca	3,66	7,32	1,83
К	0,13	0,13	0,07
Mg	0,21	0,42	0,11
Al	2,94	8,82	1,47
Si	5,79	23,16	2,9
FeII	1,15	2,3	0,57
FeIII	0,48	1,44	0,24
Ti	1,09	4,36	0,545
Cr	0	0	0
		48,02	

$$\overbrace{(Ca_{3,66} \text{ Fe}_{1,15}^{II} \text{ Fe}_{0,315}^{III} \text{ Mg}_{0,21} \text{ K}_{0,13} \text{ Na}_{0,07})}^{5,54} \overbrace{(Al_{2,74} \text{ Ti}_{1,095} \text{ Fe}_{0,165}^{III})}^{4} \overbrace{(Si_{5,79} \text{ Al}_{0,21} \text{ O}_{24}]}^{6}$$

Formel für den Granat:

$$\overbrace{\left(\text{Ca}_{1,83}\,\text{Fe}_{0,57}^{\text{II}}\,\text{Fe}_{0,16}^{\text{III}}\,\text{Mg}_{0,11}\,\text{K}_{0,07}\,\text{Na}_{0,04}\right)}^{2,78} \overbrace{\left(\text{Al}_{1,37}\,\text{Ti}_{0,55}\,\text{Fe}_{0,08}^{\text{III}}\right)}^{2} \overbrace{\left(\text{Si}_{2,89}\,\text{Al}_{0,11}\right)}^{3,0} O_{12}]$$

Mg	Fe (1. Position)	Ca	Summe
0,21	1,15	3,66	5,02
4,2	22,9	72,9	100

Heilly D 258, a5

Si02

\$03

K20

CaO

Fe0

Ti02

0.6753

0.0106

0.0136

0.4700

0.1877

0.2538

Chi-sqd =	0.87	Livet	ime = 30.	0 Sec	5
Standard1e	ess Analysis			0.00	64
Element	Rel. k-	-ratio	Net	Net Counts	
C –K			5455	+/-	77
0 –K			3532	+/-	58
Na-K	0.00130 +/-	0.00064	58	+/-	28
Mg-K	0.00584 +/-	0.00068	384	+/-	45
A Ì-K	0.11263 +/-	0.00268	6914	+/-	165
Si-K	0.25154 +/-	0.00348	14692	+/-	203
C1-K			0	+/-	0
S -K	0.00371 +/-	0.00174	165	+/-	77
К –К	0.01099 +/-	0.00115	411	+/-	43
Ca-K	0.32410 +/-	0.00347	10557	+/-	113
Ti−K	0.10291 +/-	0.00252	2612	+/-	64
Fe-K	0.18698 +/-	0.00758	3132	+/-	127
Mn-K	0.00000 +/-	0.00001	0	+/-	0
Mn-L			0	+/-	0
Fe-L			237	+/-	50
Cr-K	0.00000 +/-	0.00001	0	+/-	0
Bence-Albé	e Analysis	20.00 kV	40.00 [Deg	
No. of Ite	erations 3				
0×ide	k-ratio	Beta	Wt	%	
Na20	0.0027	2.0767	0.2	25	
MgO	0.0144	1.4350	0.9	91	
A1203	0.2935	1.2452	16.2	16	

MnO	0.0000	1.1398		0.00
Cr203	0.0000	1.1172		0.00
Total			10	0.00%
Na 0.0742	Mg 0.21	10 Al	2.9494	Si 5.7860
S 0.0682	K 0.13	23 Ca	3.6670	Ti 1.0952
Fe 1.6275	Mn 0.00	00 Cr	0.0000	0 = -24.0000

1.2511

1.2561

1.1129

1.0634

1.1329

1.1196

37.36

0.59

0.67

9.40

22.10

12.56

Probe Heilly, 5,05 m (D258, a4).

 $A_6^{I\!I} \, B_4^{I\!I\!I} \, [Si_6 \; O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,1	0,1	0,05
Ca	4,37	8,74	2,19
К	0,08	0,08	0,04
Mg	1,97	3,94	0,98
Al	3,17	9,51	1,59
Si	4,77	19,08	2,38
FeII	2,8	5,6	1,4
FeIII	0,2	0,6	0,1
Ti	0,04	0,16	0,020
Cr	0,02	0,06	0,010
Mn	0,08	0,16	0,04
		48,03	

 $\overbrace{\left(Mg_{1,97}\,Ca_{4,37}\,Fe_{1,09}^{II}\,K_{0,08}\,Na_{0,1}\right)}^{7,61} \overbrace{\left(Al_{1,94}\,Fe_{1,71}^{II}\,Fe_{0,20}^{III}\,Mn_{0,08}\,Ti_{0,05}\,Cr_{0,02}\,\right)}^{4} \overbrace{\left(Si_{4,77}\,Al_{1,23}\right.O_{24}\right]}^{6}$

3,8	2	3
$(Mg_{0,98} Ca_{2,18} Fe_{0,55}^{II} K_{0,04} Na_{0,05})$	$\left(\overline{(Al_{0,97} Fe^{II}_{0,855} Fe^{III}_{0,10} Mn_{0,04} Ti_{0,025} Cr_{0,01} } \right)$	[Si _{2,38} Al _{0,62} O ₁₂]

Mg	Fe (1. Position)	Ca	Summe
1,97	2,8	4,37	9,14
21,5	30,7	47,8	100

Heilly D 258, a4

Chi-sqd =	= 1.04 Livet	ime = 30.0 Se	ec.
Standard	less Analysis		
Element	Reĺ. k-ratio	Net Cou	unts
С –К		6739 +/-	87
0 -K		6793 +/-	77
Na-K	0.00140 + / - 0.00091	56 +/-	36
Mg-K	0.04648 + / - 0.00107	2734 +/-	63
AĪ-K	0.09842 +/- 0.00153	5405 +/-	84
Si-K	0.17407 +/- 0.00191	9097 +/-	100
C1-K		0 +/-	0
S −K	0.00164 + / - 0.00111	66 +/-	44
К –К	0.00590 +/- 0.00126	197 +/-	42
Ca-K	0.34695 +/- 0.00601	10111 +/-	175
Ti-K	0.00388 +/- 0.00159	88 +/-	36
Fe-K	0.31172 +/- 0.00948	4670 +/-	142
Mn-K	0.00786 +/- 0.00490	130 +/-	81
Mn-L		0 +/-	0
Fe-L	4000 (100 (1000)	467 +/-	60
Cr-K	0.00169 + / - 0.00164	33 +/-	32

Bence-Albee Analysis 20.00 kV 40.00 Deg

0xide	k-ratio	Beta	Wt 2
Na20	0.0029	2.2114	0.29
MqO	0.1146	1.5073	7.88
А1203	0.2564	1.3712	16.03
Si02	0.4673	1.3341	28.43
S03	0.0047	1.2571	0.27
K20	0.0073	1.1094	0.37
CaO	0.5031	1.0594	24.30
Ti02	0.0071	1.1290	0.36
Fe0	0.4231	1.1083	21.38
MnO	0.0108	1.1242	0.55
Cr203	0.0027	1.0940	0.13
Total			100.00%
Na 0.0952	2 Mg 1.96	83 A1	3.1679 Si 4.7657
S 0.0338	3 K 0.07	91 Ca	4.3654 Ti 0.0459
Fe 2.9981	L Mn 0.07	'83 Cr	0.0175 0 24.0000

Probe Heilly, 5,05 m (D258).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

A₆^{II} B₄^{III} [Si₆ O₂₄]

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes *	Formelindizes
		ElemLadung)	
Na	0,05	0,05	0,03
Ca	0,63	1,26	0,32
Κ	0,06	0,06	0,03
Mg	1,66	3,32	0,83
Al	3,72	11,16	1,86
Si	5,23	20,92	2,62
FeII	4,86	9,72	2,43
FeIII	0,4	1,2	0,2
Ti	0,02	0,08	0,010
Cr	0,02	0,06	0,010
Mn	0,07	0,14	0,04
		47,97	8,3

$$\underbrace{\overbrace{\left(Fe_{4,31}^{II}Mg_{1,66} Ca_{0,63} K_{0,06} Na_{0,05}\right)}^{6,71}}_{\left(Al_{2,94} Fe_{0,55}^{II} Fe_{0,40}^{II} Mn_{0,07} Ti_{0,02} Cr_{0,02}\right)} \underbrace{\left[Si_{5,23} Al_{0,77} O_{24}\right]}_{6}$$

Formel für den Granat:

$$\overbrace{\left(Fe_{2,155}^{II}Mg_{0,83}\,Ca_{0,315}\,K_{0,03}\,Na_{0,025}\right)}^{3,26} \overbrace{\left(Al_{1,47}\,Fe_{0,275}^{II}\,Fe_{0,20}^{III}\,Mn_{0,035}\,Ti_{0,01}\,Cr_{0,01}\,\right)}^{2} \overbrace{\left(Si_{2,615}\,Al_{0,385}\,O_{12}\right]}^{3}$$

Almandin-Pyrop

Mg	Fe (1. Position)	Ca	Summe
1,66	4,86	0,63	7,15
23,22	67,97	8,81	100

Tty/

HEILLY, 4.20m-110

Chi-sgd =	0.95	Live	time = 4	0.0 S	ec.	
Standardle	ss Analysis					
Element	Rel. k-ra	tio	N	let Co	unts	
C –K			28	6 +/-	31	
0 -K			1182	9 +/-	128	
Na-K	0.00069 +/- 0.	00064	з	9 +/-	36	
Mg-K	0.03738 +/- 0.	00091	313	8 +/-	76	
AĬ-K	0.11383 +/- 0.	00282	892	2 +/-	221	
Si-K	0.18884 +/- 0.	00302	1408	4 +/-	225	
C1-K			11	3 +/-	46	
S – K	0.00000 +/- 0.	00001		0 +/-	0	
K – K	0.00478 +/- 0.	00094	22	9 +/-	45	
Ca-K	0.05235 +/- 0.	00156	217	8 +/-	65	
Ti-K	0.00194 +/- 0.	00136	6	3 +/-	44	
Fe-K	0.58649 +/- 0.	00982	1254	1 +/-	210	
Mn-K	0.00792 +/- 0.	00220	18	8 +/-	52	
Mn-L				0 +/-	0	
Fe-L			94	5 +/-	78	
Cr-K	0.00262 +/- 0.	00150	7	3 +/-	42	
P – K	0.00314 +/- 0.	00083	20	0 +/-	53	
Bence-Albe	e Analysis 20	0.00 k¥	40.00) Deg		
No. of Ite	rations 3	D.t.		11 9		
Uxide N=20	K-Fat10	Deta 2 4001		11 6		
MaQ	0.0014	2.4901		. 16		
Mgu	0.0922	1.0554		0.69		
S:02	0.2900	1.4531	10	. 90		
5102	0.0000	1 2062	31			
K 20	0.0050	1 1224		20		
C20	0.0759	1.1234		5.29		
Ti02	0.0035	1 0630	1	1 17		
Fell	0.7961	1 0796	2	7 68		
MoO	0.0108	1 0863	3	52		
Cr 203	0.0041	1 0414		10		
P205	0.0087	1 4721		56		
Total	0.0007	1.4721	100	0.00%		
ivear			100			
Na 0.051	1 Mg 1.6648	B A1	3.7182	Si	5.2295	
S 0.000	00 K 0.062	2 Ca	0.6312	Ti	0.0207	
Fe 5.261	13 Mn 0.073	1 Cr	0.0248	Р	0.0792	024.0000

Probe Ailly, 2,10 m (D262, 9).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0,19	0,19	0,1
Ca	0,13	0,26	0,07
К	0	0	0
Mg	2,71	5,42	1,36
Al	4	12	2
Si	5,52	22,08	2,76
FeII	3,7	7,4	1,85
FeIII	0,18	0,54	0,09
Ti	0,03	0,12	0,015
Cr	0	0	0
Mn	0,09	0,18	0,04
		48,01	

Na – frei gerechnet; Ca_{0,13} in Calcit

$$\overbrace{\left(Fe_{3,52}^{II}Mg_{2,71}\right)}^{6,23} \overbrace{\left(Al_{3,52} Fe_{0,18}^{II} Fe_{0,18}^{II}Mn_{0,09} Ti_{0,03}\right)}^{6} [\overbrace{Si_{5,52} Al_{0,48}}^{6} O_{24}]$$

Formel für den Granat:

$$\overbrace{\left(Fe_{1,76}^{II}\,Mg_{1,35}\,\right)}^{3,1} \overbrace{\left(Al_{1,76}\,Fe_{0,09}^{II}\,Fe_{0,09}^{II}\,Mn_{0,045}\,Ti_{0,015}\right)}^{2} \overbrace{\left(Si_{2,76}\,Al_{0,24}\,O_{12}\right]}^{3,0}$$

Mg	Fe (1. Position)	Ca	Summe
2,71	3,7	0	6,41
42,3	57,7	0,0	100

Dieser Granat ist ein Almandin mit Pyropkomponente.

AILLY 2,10m/ D 262 9

Chi-sqd -	= 1.36 Live	etime = 30.0 Sec.
Standard	less Analysis	
Element	Rel. k-ratio	Net Counts
C –K		683 +/- 41
0 -K	0004828(00)	22715 +/- 126
Na-K	0.00342 + / - 0.00103	179 +/- 54
Ma-K	0.07791 + / - 0.00228	6087 +/- 178
AĬ-K	0.14753 + / - 0.00355	10766 +/- 259
Si-K	0.23466 + / - 0.00336	16293 +/- 233
C1-K		0 + / - 0
S-K	0.00000 + / - 0.00001	0 +/- 0
К –К	0.00000 + / - 0.00001	0 + / - 0
Ca-K	0.01299 + / - 0.00238	503 +/- 92
Ti-K	0.00312 + / - 0.00136	95 +/- 41
Fe-K	0.50922 + / - 0.00944	10136 +/- 188
Mn-K	0.01115 + / - 0.00209	246 +/- 46
Mn-L		0 +/- 0
Fe-L		1748 +/- 94
Cr-K	0.00000 + / - 0.00001	0 +/- 0
Р -К	0.00000 +/- 0.00001	0 +/- 0

Bence-Albee Analysis 20.00 kV 40.00 Deg

No:	of Itera	tions 3				
	0xide	k-ratio	Beta	Wt	%	
	Na20	0.0071	2.2615	0.6	33	
	Mq0	0.1921	1.5353	11.5	56	
	A1203	0.3844	1.4292	21.5	54	
	Si02	0.6300	1.4199	35.0)7	
	S03	0.0000	1.3305	0.0)0	
	K20	0.0000	1.1402	0.0	00	
	Ca0	0.0188	1.0740	0.7	79	
	Ti02	0.0057	1.0718	0.2	24	
	Fe0	0.6912	1.0886	29.5	50	
	Mn0	0.0153	1.0971	0.6	56	
	Cr203	0.0000	1.0559	0.0	00	
	P205	0.0000	1.5040	0.0	00	
	Total			100.0	00%	
Na-	- 0 1924	Ma 2 7126	Δ1	3 9951 5	i 5 5191	
S -	- 0 0000	K 0 0000	Ca	0 1338 T	i 0 0283	
Fe-	- 3.8824	Mn 0.0875	Cr	0.0000 P	0.0000	024.0000
				COCKNORE CONTRACTOR OF A CONTRACTOR OF	WORK A DESCRIPTION OF A DESCRIPTION	

Probe Ailly, 2,10 m (D262, 2).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $A_6^{II} B_4^{III} [Si_6 O_{24}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0	0	0
Ca	0,19	0,38	0,1
К	0,14	0,14	0,07
Mg	1,26	2,52	0,63
Al	4,4	13,2	2,2
Si	5,48	21,92	2,74
FeII	4,82	9,64	2,41
FeIII	0	0	0
Ti	0,04	0,16	0,020
Cr	0,01	0,03	0
		47,99	

$$\overbrace{\left(Fe_{4,75}^{II}\,Mg_{1,26}\,Ca_{0,19}\right)}^{6,2} \overbrace{\left(Al_{3,88}\,Fe_{0,07}^{II}\,Ti_{0,04}\,Cr_{0,01}\right)}^{4} \overbrace{\left(Si_{4,48}\,Al_{0,52}\right.O_{24}]}^{6}$$

Formel für den Granat:

$$\overbrace{\left(Fe_{2,375}^{II} Mg_{0,63}Ca_{0,095}\right)}^{3,1} \overbrace{\left(Al_{1,94} Fe_{0,09}^{III} Fe_{0,035}^{II} Ti_{0,02} Cr_{0,005}\right)}^{2} \overbrace{\left(Si_{2,24} Al_{0,76}\right)}^{3,0} O_{12}]$$

Mg	Fe (1. Position)	Ca	Summe
1,26	4,82	0,19	6,27
20,1	76,9	3,0	100

Dieser Granat ist ein Almandin.

AILLY 2,10m/ D 262 2 Chi-sqd = 0.99Livetime = 30.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts С -К 1534 +/-35 0 -K 8117 +/-____ 78 0.00000 +/- 0.00001 Na-K 0 +/-0 Mg-K 0.03114 + / - 0.000982196 +/-69 A1-K 0.14888 + / - 0.003279802 +/-215 Si-K 0.21125 +/- 0.00326 13235 +/-204 C1-K 0 +/-0 S-K 0.00000 + / - 0.000010 +/-0 К -К 0.01187 +/- 0.00235 475 +/-94 Ca-K 0.01703 +/- 0.00135 595 +/-47 Ti-K 0.00364 +/- 0.00275 99 +/-75 Fe-K 0.57457 +/- 0.01052 10319 +/-189 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/n Fe-L 697 +/-----61 Cr-K 0.00162 + / - 0.0015438 +/-36 P -K 0.00000 + / - 0.000010 +/-Ð Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 0xide k-ratio Wt % Beta Na20 0.0000 2.4239 0.00 MqO 0.0768 1.6125 5.22 A1203 0.3879 1.4087 23.06 Si02 0.5671 1.4157 33.88 S03 0.0000 1.3189 0.00 K20 0.0147 1.1313 0.70 CaO 0.0247 1.0685 1.11 Ti02 0.0066 1.0640 0.30 Fe0 0.7799 1.0819 35.61 MnO 0.0000 1.0889 0.00 Cr203 0.0025 1.0448 0.11 P205 0.0000 1.4929 0.00 Total 100.00% Na-- 0.0001 Mg-- 1.2602 Al-- 4.3977 Si-- 5.4825 S -- 0.0000 K -- 0.1448 Ca-- 0.1931 Ti-- 0.0362 Fe-- 4.8185 Mn-- 0.0000 Cr-- 0.0144 P -- 0.0000 0 --24.0000

Feldspäte: Theoretische Formel: (K, Na, Ca) Al_{1-2} $Si_{3-2}O_8$

Probe Sm 6,6, Bohrkern Bockeroth 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 3 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/3 = Formelindizes
Na	2,05	2,05	0,68
Ca	0,6	1,2	0,2
K	0,03	0,03	0,01
Al	3,19	9,57	1,06
Si	8,69	34,76	2,9
FeII	0	0	0
FeIII	0,1	0,3	0,03
		47,91	

$$(Na, Ca, K)_{3-6} Al_{3-6} Si_{9-6} O_{24}$$

$$\overbrace{(Na_{2,05} Ca_{0,6} K_{0,03})}^{2,68} \overbrace{(Al_{3,19} Fe_{0,1}^{III})}^{3,29} \overbrace{[Si_{8,69}}^{8,69} O_{24}]$$

Formel für den Feldspat:

 $\overbrace{(Na_{0,68} Ca_{0,2} K_{0,01})}^{0,89} \overbrace{\left(Al_{1,06} Fe_{0,05}^{III}\right)}^{1,1} \overbrace{\left(Si_{2,9}\right.}^{2,9} O_8]$

Der Feldspat ist ein Oligoklas.

Tty SM 6, 6 Chi-sqd = 0.91Livetime = 60.0 Sec. Standardless Analysis Element Net Counts Rel. k-ratio С –К 1782 +/-____ 46 0 -K 1532 +/--39 Na-K 0.07624 +/- 0.00150 2286 +/-45 Mg-K 0.00000 + / - 0.000010 +/-0 A1-K 0.21284 + / - 0.002328902 +/-97 Si-K 0.61497 + / - 0.0056824474 +/-226 C1-K 0 +/-0 S-K 0.00409 + / - 0.00213123 +/-64 К -К 0.00413 +/- 0.00142 105 +/-36 Ca-K 0.07940 + / - 0.004601763 +/-102 Ti-K 0.00000 + / - 0.000010 +/-0 Fe-K 0.00833 + / - 0.0032495 +/-37 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/------0 Fe-L 69 +/-38 0.00000 +/- 0.00001 Cr-K 0 +/-0 P - K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 0xide k-ratio Beta Wt % Na20 0.1585 1.5461 8.04 Mg0 0.0000 1.2773 0.00 A1203 0.5546 20.55 1.1292 Si02 1.6509 1.2192 66.05 S03 0.0116 1.3796 0.53 K20 0.0051 1.1831 0.20 CaO 0.1151 1.1182 4.22 0.0000 Ti02 1.1328 0.00 0.0113 0.42 Fe0 1.1272 Mn0 0.0000 1.1447 0.00 Cr203 0.0000 1.1212 0.00 P205 0.0000 1.5623 0.00 Total 100.00% Na-- 2.0510 Mg-- 0.0000 Al-- 3.1865 Si-- 8.6902 S -- 0.0520 K -- 0.0333 Ca-- 0.5956 Ti-- 0.0000

Fe-- 0.0460 Mn-- 0.0000 Cr-- 0.0000 P -- 0.0000 0 --24.0000

Feldspäte: Theoretische Formel: (K, Na, Ca) Al₁₋₂ [Si₃₋₂ O₈]

Bohrkern 12,50 m, BtIII.

Da die Analysen auf 24 O berechnet sind, wird die Formel x 3 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/3 = Formelindizes
Na	0,1	0,1	0,03
Ca	0,07	0,14	0,02
К	2,6	2,6	0,87
Al	3,11	9,33	1,04
Si	8,85	35,4	2,95
FeII	0,05	0,1	0,02
FeIII	0,11	0,33	0,04
		48	

 $(Na, Ca, K)_{3-6} Al_{3-6} Si_{9-6} O_{24}$

$$\overbrace{\left(K_{2,60} \text{ Na}_{1,0} \text{ Ca}_{0,07} \text{ Fe}_{0,11}^{\text{III}} \text{ Fe}_{0,5}^{\text{II}}\right)}^{3,9} \overbrace{\left(\text{Al}_{2,96}\right)}^{2,96} \overbrace{\left(\text{Si}_{8,85} \text{ Al}_{0,15}\right)}^{9,0} O_8]$$

Formel für den Feldspat:

 $\overbrace{\left(K_{0,87}Na_{0,03}\ Ca_{0,07}\ Fe_{0,04}^{III}\ Fe_{0,02}^{II}\right)}^{1,3}\overbrace{\left(Al_{0,97}\right)}^{0,97}\ \overbrace{\left(Si_{2,95}\ Al_{0,05}\right)}^{3,0}\ O_8]$

Der Feldspat ist ein Mikroklin.

Go Bt III, 12,50, 2

Chi-sqd	= 1.24 Livet	ime = 60.0 Sec	
Standard	less Analysis		
Element	Rel. k-ratio	Net Coun	ts
С -К		2071 +/-	40
0 -K		7266 +/-	75
Na-K	0.00267 +/- 0.00081	113 +/-	34
Mg-K	0.00252 +/- 0.00083	159 +/-	52
AĨ-K	0.17466 + / - 0.00342	10209 +/-	200
Si-K	0.52518 +/- 0.00478	29210 +/-	266
К –К	0.26336 +/- 0.00459	9360 +/-	163
Ca-K	0.00690 +/- 0.00155	215 +/-	48
Ti-K	0.00000 + / - 0.00001	0 +/-	0
Fe-K	0.02471 +/- 0.00263	394 +/-	42
Mn-K	0.00000 + / - 0.00001	0 +/-	0
Mn-L		0 +/-	0
Fe-L		120 +/-	59

Bence-Albee Analysis 20.00 kV 40.50 Deg

No.	of Itera	tions 3				
	Oxide	k-ratio	Beta	1	Wt %	
	Na20	0.0056	1.6352		0.35	
	Mg0	0.0062	1.1961		0.29	
	A1203	0.4551	1.0824	1	9.01	
	Si02	1.4099	1.1720	6	3.76	
	K20	0.3262	1.1660	1	4.68	
	Ca0	0.0100	1.1711		0.45	
	Ti02	0.0000	1.1502		0.00	
	Fe0	0.0335	1.1290		1.46	
	Mn0	0.0000	1.1487		0.00	
	Total			10	0.00%	
Na-	- 0.0943	Mg 0.059	94 A1	3.1084	Si	8.8475
Κ	- 2.5979	Ca 0.06	72 Ti	0.0000	Fe	0.1696
Mn-	- 0.0000	024.00	00			

Feldspäte: Theoretische Formel: (K, Na, Ca) Al_{1-2} $Si_{3-2}O_8$

Bohrkern, 12,50 m Tiefe (BtIII).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 3 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/3 = Formelindizes
Na	2,28	2,28	0,76
Ca	0,22	0,44	0,07
Κ	0,04	0,04	0,01
Al	3,2	9,6	1,07
Si	8,84	35,36	2,95
FeII	0	0	0
FeIII	0,09	0,27	0,03
		47,99	

$$(Na, Ca, K)_{3-6} Al_{3-6} Si_{9-6} O_{24}$$

$$\overbrace{\left(Na_{2,28} Ca_{0,22} K_{0,04} Fe_{0,09}^{III}\right)}^{2,63} \overbrace{\left(Al_{3,04}\right)}^{3,04} [\overbrace{Si_{8,84}}^{9,0} Al_{0,16} O_{24}]$$

Formel für den Feldspat:

 $\overbrace{(Na_{0,76}\,Ca_{0,07}\,K_{0,01}Fe_{0,03})}^{0,87}\overbrace{(Al_{1,06})}^{1,06}}\stackrel{3,0}{[\overbrace{Si_{2,95}\,Al_{0,05}}^{3,0}\,O_8]}$

Bei diesem Feldspat handelt es sich um einen Plagioklas, genauer um einen Albit.

Go Bt III, 12,50, 3

Mg0

A1203

Si02

K20

CaO

Ti02

Fe0

MnO

Total

0.0000

0.5689

1.7170

0.0059

0.0443

0.0066

0.0211

0.0000

Chi-sqd = 1.00		Livet	ime = 60	0 Sec	
Standard	less Analysis				
Element	Rel. k-ratio		Net Counts		
С —К			1232	+/-	31
0 -K			4551	+/-	59
Na-K	0.08754 +/-	0.00172	2441	+/-	48
Mg-K	0.00000 +/-	0.00001	0	+/-	0
AĬ-K	0.21836 +/-	0.00247	8493	+/-	96
Si-K	0.63958 +/-	0.00603	23670	+/-	223
К –К	0.00478 +/-	0.00300	113	+/-	71
Ca-K	0.03058 +/-	0.00204	631	+/-	42
Ti-K	0.00361 +/-	0.00187	58	+/-	30
Fe-K	0.01555 +/-	0.00669	166	+/-	71
Mn-K	0.00000 +/-	0.00001	0	+/-	0
Mn-L			0	+/-	0
Fe-L			90	+/-	47
Bence-A1	pee Analysis	20.00 k¥	40.00 [)eg	
No. of It	terations 3				
Oxide	e k-ratio	Beta	Wt	*	
Na20	0.1820	1.5359	8 9	97	

1.2869

1.1350

1.2247

1.1862

1.1199

1.1268

1.1255

1.1424

0.00

20.72

67.49

0.23

1.59

0.24

0.76

0.00

100.00%
Feldspäte: Theoretische Formel: (K, Na, Ca) Al₁₋₂ Si₃₋₂ O₈

Bohrkern, 12,50 m Tiefe (BtIII).

Da die Analysen auf 24 O berechnet sind, wird die Formel x 3 genommen:

Element	Indizes	Ladungsberechnung	Indizes/3 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	2,58	2,58	0,86
Ca	0,44	0,88	0,15
К	0,11	0,11	0,04
Al	3,36	10,08	1,12
Si	8,46	33,84	2,82
FeII	0	0	0
FeIII	0,11	0,33	0,04
Mn	0,03	0,06	0,01
Ti	0,06	0,24	0,02
		47,82	

 $\overbrace{(Na_{2,58} Ca_{0,44} K_{0,11})}^{3,15} \overbrace{(Al_{2,82} Fe_{0,11}^{II} Ti_{0,06} Mn_{0,03})}^{3,03} \overbrace{[Si_{8,46} Al_{0,54}}^{9,0} O_{24}]$

Formel für den Feldspat:

 $\overbrace{(Na_{0,86}\ Ca_{0,15}\ K_{0,04})}^{1,06}\overbrace{\left(Al_{0,94}\ Fe_{0,04}^{III}\ Ti_{0,02}\ Mn_{0,01}\right)}^{1,0} \overbrace{\left(Si_{2,82}\ Al_{0,18}\right.}^{3,0} O_8]$

Bei diesem Feldspat handelt es sich um einen Oligoklas.

Go Bt III, 12,50, 24

Chi-sqd =	1.20	Livet	ime = 60.0 Sec	
Standard1	ess Analysis		00000 0 5050	151
Element	Rel. k-	-ratio	Net Coun	ts
С –К			2320 +/-	42
0 –K			7942 +/-	78
Na-K	0.09454 +/-	0.00157	3485 +/-	58
Mg-K	0.00000 + / -	0.00001	0 +/-	0
A1-K	0.21756 +/-	0.00208	11183 +/-	107
Si-K	0.58271 +/-	0.00341	28502 +/-	167
К –К	0.01369 +/-	0.00256	429 +/-	80
Ca-K	0.05811 +/-	0.00194	1586 +/-	53
Ti-K	0.00861 +/-	0.00155	184 +/-	33
Fe-K	0.02025 +/-	0.00285	284 +/-	40
Mn-K	0.00452 +/-	0.00413	71 +/-	65
Mn-L			0 +/-	0
Fe-L			210 +/-	61
С1-К			0 +/-	0
S -K	10000		58 +/-	38
Bence-Alb	ee Analysis	20.00 k¥	40.00 Deg	
No. of It	erations 3	142025-021130		
Uxide	k-ratio	Beta	Wt %	
Na20	0.1965	1.5521	9.95	
MgU	0.0000	1.3117	0.00	
A 1203	0.5669	1.1507	21.27	
5102	1.5643	1.2395	63.24	
K20	0.0170	1.1797	0.65	
CaO	0.0843	1.1169	3.07	
1102	0.0157	1.1279	0.58	

Na K Mn	2.5810 0.1114 0.0261	Mg 0.0000 Ca 0.4401 024.0000	A1 Ti	3.3554 0.0581	Si Fe	8.4627 0.1129
---------------	----------------------------	------------------------------------	----------	------------------	----------	------------------

Feldspäte: Theoretische Formel: (K, Na, Ca) Al_{1-2} $Si_{3-2}O_8$

Heilly, 5,05 m.

Da die Analysen auf 24 O berechnet sind, wird die Formel x 3 genommen:

Element	Indizes (Flem - Zelle)	Ladungsberechnung	Indizes/3 =
No		(Indizes EleniLadding)	
INA	0,20	0,20	0,09
Ca	0,18	0,36	0,06
Κ	2,55	2,55	0,85
Mg	0,05	0,1	0,02
Al	2,97	8,91	0,99
Si	8,84	35,36	2,95
FeII	0	0	0
FeIII	0,1	0,3	0,03
Mn	0	0	0
Ti	0,01	0,04	0
		47,84	

$$(Na, Ca, K)_{3-6} Al_{3-6} Si_{9-6} O_{24}$$

$$\underbrace{\overbrace{(K_{2,55} \text{ Na}_{0,26} \text{ Ca}_{0,18})}^{2,99}}_{(\text{Al}_{2,81} \text{ Fe}_{0,1}^{\text{III}} \text{Ca}_{0,08} \text{Ti}_{0,01})}^{3,0}} \underbrace{[Si_{8,84} \text{ Al}_{0,16} \text{ O}_{24}]}_{9,0}$$

Formel für den Feldspat:

 $\overbrace{(K_{0,85} Na_{0,13} Ca_{0,06})}^{1,04} \overbrace{\left(Al_{0,94} Fe_{0,033}^{III} Ca_{0,026} Ti_{0,003}\right)}^{1,0} [\overbrace{Si_{2,95} Al_{0,05}}^{3,0} O_8]$

Bei diesem Feldspat handelt es sich um einen Kalifeldspat.

Heilly D 258, a1

Element	Rel. k-ratio	Net	Cour	nts
C –K	New York Con-	9436	+/-	101
0 –K		7594	+/-	84
Na-K	0.00746 +/- 0.00054	695	+/-	50
Mg-K	0.00195 +/- 0.00060	272	+/-	84
AĬ-K	0.16675 +/- 0.00230	21659	+/-	298
Si-K	0.52807 +/- 0.00335	65269	+/-	414
C1-K		0	+/-	0
S-K	0.00221 + / - 0.00065	208	+/-	61
К –К	0.25928 +/- 0.00204	20477	+/-	161
Ca-K	0.01822 + / - 0.00116	1256	+/-	80
Ti-K	0.00143 + / - 0.00095	78	+/-	52
Fe-K	0.01462 + / - 0.00172	519	+/-	61
Mn-K	0.00000 + / - 0.00001	0	+/-	0
Mn-L		0	+/-	0
Fe-L		228	+/-	73
Cr-K	0.00000 + / - 0.00001	0	+/-	0

Bence-Albee Analysis 20.00 kV 40.00 Deg

No.	of Itera	tions 3				
	0×ide	k-ratio	Beta	1	√t %	
	Na20	0.0155	1.6235		0.97	
	MgO	0.0048	1.2003		0.22	
	A1203	0.4345	1.0842	1	8.16	
	Si02	1.4176	1.1660	6.	3.72	
	S03	0.0063	1.3400		0.33	
	K20	0.3211	1.1657	1.	4.43	
	CaO	0.0264	1.1699		1.19	
	Ti02	0.0026	1.1519		0.12	
	Fe0	0.0198	1.1299		0.86	
	MnO	0.0000	1.1499		0.00	
	Cr203	0.0000	1.1294		0.00	
	Total			10	0.00%	
Na-	- 0.2612	Mg 0.04	60 A1	2.9700	Si 8	.8437
S -	- 0.0339	K 2.55	48 Ca	0.1772	Ti 0	.0121
Fe-	- 0.1003	Mn 0.00	00 Cr	0.0000	024	.0000

Amphibole: Theoretische Formel: Ca₂ Mg₅ [(OH, F)₂ Si₈ O₂₂]

Ailly	2,10	m	(D262)
-------	------	---	--------

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0,72	0,72
Ca	1,73	3,46
Κ	0,11	0,11
Mg	2,46	4,92
Al	2,5	7,5
Si	6,95	27,8
FeII	1,26	2,52
FeIII	0,09	0,27
Ti	0,05	0,2
Cr	0,02	0,06
Mn	0,03	0,06
S	0,05	0,3
Р	0,02	0,1
		47,92

 $\overbrace{(Ca_{1,73} Na_{0,72} Mg_{0,34} K_{0,11} Cr_{0,02})}^{2,92} \overbrace{\left(Mg_{2,12} Al_{1,45} Fe_{1,26}^{II} Fe_{0,09}^{III} Ti_{0,05} Mn_{0,03}\right)}^{5,0} [(OH, S, P)_2 \overbrace{Si_{6,95} Al_{1,05}}^{8} O_{22}]$

Das Mineral ist ein Al-Tschermakit.

AILLY 2,10m/ D 262 8

Chi-sqd =	1.18	B Livetime = 30.0 Sec.			с.
Standard	ess Analysis				
Element	Rel. k	-ratio	Net	t Cour	nts
C -K			2564	+/-	67
0 -K			16687	+/-	113
Na-K	0.01749 +/-	0.00102	1007	+/-	59
Mg-K	0.09013 +/-	0.00119	7751	+/-	102
A1-K	0.11370 +/-	0.00146	9131	+/-	117
Si-K	0.36784 +/-	0.00349	28110	+/-	267
C1-K			0	+/-	0
S -K	0.00353 +/-	0.00166	204	+/-	96
K –K	0.01151 +/-	0.00213	562	+/-	104
Ca-K	0.18633 +/-	0.00397	7941	+/-	169
Ti-K	0.00614 +/-	0.00120	205	+/-	40
Fe-K	0.19450 +/-	0.00648	4262	+/-	142
Mn-K	0.00463 +/-	0.00174	113	+/-	42
Mn-L	100000000		0	+/-	0
Fe-L			1211	+/-	90
Cr-K	0.00325 +/-	0.00133	94	+/-	38
Р -К	0.00094 +/-	0.00089	62	+/-	59
Bence-Alt	bee Analysis	20.00 kV	40.00	Deg	
No. of It	erations 3	60 T 12	272-221	1227	
Oxide	e k-ratio	Beta	Wt	%	
Na20	0.0364	1.8644	2.	53	
MgO	0.2222	1.3566	11.2	26	
A1203	3 0.2962	1.3100	14.	50	

FI F for Set Set.	0.6002	T. OT 00	1	7.00			
Si02	0.9875	1.2854	4	7.43			
S03	0.0100	1.3269		0.50			
K20	0.0143	1.1506		0.61			
CaO	0.2702	1.0931	1	1.04			
Ti02	0.0112	1.1255		0.47			
Fe0	0.2640	1.1175	1	1.02			
MnO	0.0063	1.1334		0.27			
Cr203	0.0051	1.1056		0.21			
P205	0.0026	1.4902		0.14			
Total			10	0.00%			
Na 0.7196	Mg 2.460	5 A1	2.5043	Si	6.9498		
S 0.0548	K 0.114	6 Ca	1.7326	Ti	0.0519		
Fe 1.3509	Mn 0.033	3 Cr	0.0245	P	0.0178	024	4.0000

Amphibole: Theoretische Formel: Ca₂ Mg₅ $[(OH, F)_2 Si_8 O_{22}]$

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0,07	0,07
Ca	0,23	0,46
К	0,17	0,17
Mg	1,56	3,12
Al	3,36	10,08
Si	7,06	28,24
FeII	2,56	5,12
FeIII	0,1	0,3
Ti	0,11	0,44
Mn	0,05	0,1
		48

Probe: Bohrkern Bockeroth 6,50 m

$$\overbrace{(Mg_{1,56} Ca_{0,23} K_{0,17} Na_{0,07} Mn_{0,05})}^{2,08} \overbrace{\left(\ Fe_{2,47}^{II} \ Al_{2,42} \ Ti_{0,11} \right)}^{5,0} [(OH,F)_2 \overbrace{Si_{7,06} Al_{0,94}}^{8} O_{22}]$$

Das Mineral ist ein Gedrit (Anthophyllit[orthorhombischer Amphibol]).

I Bt 6.50, 4

	coo milaryoro				
Element	Rel. k-	-ratio	Net Counts		
С –К			1763	+/-	40
0 -K			10895	+/-	138
Na-K	0.00159 +/-	0.00092	65	+/-	37
Mg-K	0.05281 +/-	0.00115	3182	+/-	69
AĨ-K	0.14855 +/-	0.00176	8357	+/-	99
Si-K	0.35424 +/-	0.00256	18962	+/-	137
К – К	0.01713 +/-	0.00132	587	+/-	45
Ca-K	0.02415 +/-	0.00302	721	+/-	90
Ti-K	0.01290 +/-	0.00172	300	+/-	40
Fe-K	0.38166 +/-	0.00958	5858	+/-	147
Mn-K	0.00696 +/-	0.00230	118	+/-	39
Mn-L			0	+/-	0
Fe-L			798	+/-	77
C1-K			136	+/-	78
S -K			0	+/-	0
Bence-A1b	ee Analysis	20.00 kV	40.00 I	Deg	

	Oxide	k-ratio	Beta	Wt %	
	Na20	0.0033	2.0945	0.26	
	Mg0	0.1302	1.4408	7.11	
	A1203	0.3870	1.3183	19.35	
	Si02	0.9510	1.3287	47.91	
	K20	0.0212	1.1522	0.93	
	Ca0	0.0350	1.0901	1.45	
	Ti02	0.0235	1.0902	0.97	
	Fe0	0.5181	1.1004	21.62	
	Mn0	0.0095	1.1118	0.40	
	Tota1			100.00%	
Na	0.0748	Mg 1.56	22 A1	3.3593 Si	7.0585

K -- 0.1742 Ca-- 0.2285 Ti-- 0.1077 Fe-- 2.6632 Mn-- 0.0502 0 --24.0000

Amphibole: Theoretische Formel: Ca₂ Mg₅ $[(OH, F)_2 Si_8 O_{22}]$

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0	0
Ca	2,1	4,2
К	0,15	0,15
Mg	1,57	3,14
Al	1,22	3,66
Si	7,84	31,36
FeII	2,58	5,16
FeIII	0,06	0,18
Ti	0,04	0,16
Cr	0,02	0,06
		48,01

Probe Sm 7,14, Bohrkern Bockeroth 9,60 m

$$\overbrace{(Ca_{2,1}Mg_{0,33} K_{0,15})}^{2,58} \overbrace{\left(Fe_{2,64}^{II}Mg_{1,24} Al_{1,06} Ti_{0,04} Cr_{0,02}\right)}^{5,0} [(OH,F)_2 \overbrace{Si_{7,84} Al_{0,16} O_{22}]}^{8}$$

Das Mineral ist eine Hornblende.

Tty SM 7, 14 Chi-sqd = 0.95Livetime = 60.0 Sec. Standardless Analysis Element Net Counts Rel. k-ratio C-K 3160 +/-48 0 -K 6656 +/-118 Na-K 0.00000 + / - 0.000010 +/-0 Mg-K 0.04539 +/- 0.00094 2947 +/-61 AĬ-K 0.04626 +/- 0.00116 2805 +/-70 Si-K 0.36887 +/- 0.00244 21283 +/-141 C1-K 41 +/-37 S-K 0.00000 +/- 0.00001 0 +/-0 К –К 0.01307 +/- 0.00119 483 +/-44 0.19403 +/- 0.00277 Ca-K 6243 +/-89 Ti-K 0.00443 +/- 0.00140 112 +/-35 Fe-K 0.32573 +/- 0.00895 5388 +/-148 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/--0 484 +/-Fe-L 62 Cr-K 0.00222 + / - 0.0015748 +/-34 P - K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Beta Wt % Na20 0.0000 2.1418 0.00 Mg0 0.1119 1.4651 6.92 A1203 0.1205 1.3329 6.78 Si02 0.9902 1.2308 51.45 **SO3** 0.0000 1.3132 0.00 K20 0.0162 1.1372 0.78 CaO 0.2814 1.0810 12.84 Ti02 0.0081 1.1151 0.38 Fe0 0.4421 1.1082 20.68 MnO 0.0000 1.1220 0.00 Cr203 0.0035 1.0896 0.16 P205 0.0000 1.4777 0.00 Total 100.00% Mg-- 1.5720 Al-- 1.2177 Si-- 7.8391 K -- 0.1511 Ca-- 2.0960 Ti-- 0.0436 Na-- 0.0001 S -- 0.0000 Fe-- 2.6354 Mn-- 0,0000 Cr-- 0.0194 P -- 0.0000 0 --24.0000

Amphibole: Theoretische Formel: Ca₂ Mg₅ $[(OH, F)_2 Si_8 O_{22}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * Elem -Ladung)
Na	0,12	0,12
Са	1,86	3,72
K	0	0
Mg	3,83	7,66
Al	0,26	0,78
Si	8,29	33,16
FeII	1,14	2,28
FeIII	0	0
Ti	0	0
Cr	0	0
S	0,03	0,18
Mn	0,04	0,08
		47,98

Probe	Sm	7	2	Bohrkern	Bockeroth	9.60 m
11000	om	7,	∠,	Domkern	DOCKCIOIII),00 m

$$\overbrace{(Ca_{1,86} Mg_{0,27} Na_{0,12})}^{3,01} \overbrace{\left(Mg_{3,56} Fe_{1,14}^{II} Al_{0,26} Mn_{0,04}\right)}^{5,0} [(OH,F)_2 \overbrace{Si_{8,0}}^{8} O_{22}]$$

0,29 Si = Quarz

Das Mineral ist ein Aktinolith.

Tty SM 7, 2 Chi-sqd = 1.21Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K 2106 +/-54 0 -K 12100 +/-143 Na-K 0.00308 +/- 0.00097 173 +/-54 Mg-K 0.14547 +/- 0.00203 12113 +/-169 A1-K 0.01156 +/- 0.00104 900 +/-81 Si-K 0.46797 +/- 0.00316 34630 +/-234 C1-K 0 +/-0 S-K 0.00204 +/- 0.00084 115 +/-47 К – К 0.00000 +/- 0.00001 0 +/-0 Ca-K 0.20000 +/- 0.00390 8253 +/-161 Ti-K 0.00000 +/- 0.00001 0 +/-0 Fe-K 0.16399 +/- 0.00622 3479 +/-132 Mn-K 0.00589 + / - 0.00179139 +/-42 Mn-L 0 +/-0 Fe-L 765 +/-85 Cr-K 0.00000 + / - 0.000010 +/-0 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Wt % Beta Na20 0.0064 1.8377 0.45 Mq0 0.3586 1.3090 17.90 A1203 0.0301 1.3549 1.56 Si02 1.2563 1.2065 57.80 \$03 0.0058 1.3380 0.30 K20 0.0000 1.1566 0.00 Ca0 0.2900 1.0963 12.12 Ti02 0.0000 1.1330 0.00 Fe0 0.2226 1.1224 9.53 MnO 0.0081 0.35 1.1390 Cr203 0.0000 0.00 1.1121 P205 0.0000 1.5026 0.00 Total 100.00% Na-- 0.1249 Mg-- 3.8264 A1-- 0.2630 Si-- 8.2869 K -- 0,0000 Ca-- 1.8624 Ti-- 0,0000 S -- 0.0318 Fe-- 1.1423 Mn-- 0.0426 Cr-- 0.0000 P -- 0.0000 0 --24.0000

Amphibole: Theoretische Formel: $Ca_2 Mg_5 [(OH, F)_2 Si_8 O_{22}]$

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0,54	0,54
Ca	4,48	8,96
К	0,33	0,33
Mg	0,47	0,94
Al	2,65	7,95
Si	6,5	26
FeII	0,36	0,72
FeIII	0,54	1,62
Ti	0,18	0,72
Mn	0,08	0,16
Cr	0,03	0,09
		48,03

Probe: Heilly, 5,05 m, D258, a2

 $\overbrace{(Ca_{2,28} Na_{0,54} K_{0,33})}^{3,15} (Ca_{2.0}) \overbrace{\left(Al_{1,15} Fe_{0,54}^{III} Mg_{0,47} Fe_{0,36}^{II} Ti_{0,18} Mn_{0,08} Cr_{0,02}\right)}^{2,8} [(OH, F, S_{0,1})_2 \overbrace{Si_{6,5} Al_{1,5}}^{8} O_2$

 $0,\!28 \rightarrow \text{Calcit}$

Das Mineral ist ein Gedrit.

Mg	S Fe ³⁸	Ca	
0,47	0,9	2,2	3,57
13,2	25,2	61,6	100

Heilly D 258, a2

Chi-sqd =	3.41	Livet	ime = 30.0 Sec	:.
Standard1	ess Analysis			
Element	Rel. k-	-ratio	Net Cour	nts
C –K			2553 +/-	56
0 -K			3716 +/-	59
Na-K	0.01066 +/-	0.00085	542 +/-	43
Mg-K	0.01414 +/-	0.00086	1074 +/-	65
AĪ-K	0.10682 +/-	0.00275	7578 +/-	195
Si-K	0.29865 +/-	0.00216	20163 +/-	146
C1-K			73 +/-	42
S-K	0.00533 +/-	0.00090	272 +/-	46
К –К	0.02805 +/-	0.00267	1210 +/-	115
Ca-K	0.40190 +/-	0.00359	15130 +/-	135
Ti-K	0.01704 +/-	0.00150	500 +/-	44
Fe-K	0.10644 +/-	0.00625	2060 +/-	121
Mn-K	0.00931 +/-	0.00402	200 +/-	86
Mn-L			0 +/-	0
Fe-L			173 +/-	54
Cr-K	0.00166 +/-	0.00142	43 +/-	37
Bence-A1b	ee Analysis	20.00 k¥	40.00 Deg	
No. of It	erations 2			
0×ide	k-ratio	Beta	Wt %	
Na20	0.0221	1.9046	1.82	
MgO	0.0349	1.3701	2.06	
A1203	0.2783	1.2162	14.63	
0:00		-		

1	1203	0.27	783	1.	2162		14.63	
4	Si02	0.80	018	1.	2218		42.35	
	SO3	0.01	152	1.	2674		0.83	
I	(20	0.03	347	1.	1240		1.69	
(CaO	0.58	328	1.	0815		27.25	
	Гi02	0.03	311	1.	1616		1.56	
I	⁻ e0	0.14	445	1.	1280		7.05	
1	1n0	0.01	128	1.	1491		0.63	
(Cr203	0.00	026	1.	1287		0.13	
	[ota]					1	00.00%	
Na	0.5423	Mg	0.47	21	A1	2.6451	Si	6.4950
0	The second se		and the second sec		a second s		And the second sec	

2	0.0956	K	0.3303	la 4.47	78 11- <u>-</u> 0.1801
Fe	0.9037	Mn	0.0823	Cr 0.01	55 0 24,0000

Pyroxen (Augit): Theoretische Formel: (Ca, Fe, Na)(Mg, Al, Fe^{III}, Ti) [(Si, Al)₂ O₆]

Probe Heilly D258, a3, 5,05 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 4 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/4 = Formelindizes
Na	0,13	0,13	0,03
Ca	2,02	4,04	0,51
К	0,05	0,05	0,01
Mg	3,49	6,98	0,87
Al	0,36	1,08	0,09
Si	8,2347	32,94	2,06
FeII	1,25	2,5	0,31
FeIII	0	0	0
Mn	0,02	0,04	0
S	0,04	0,24	0,01
		48	

 $(\mathrm{Ca},\mathrm{Fe},\mathrm{Na})_4~(\mathrm{Mg},\mathrm{Al},\mathrm{Fe}^{\mathrm{II}},\mathrm{Ti})_4~[(\mathrm{Si},\mathrm{Al})_8~\mathrm{O}_{24}]$

 $\overbrace{\left(Ca_{2,02}Fe_{1,25}^{II}\,K_{0,05}\right)}^{3,32}\overbrace{\left(Mg_{3,49}Al_{0,36}\,Na_{0,13}\,Mn_{0,02}\right)}^{4,0}\left[\overbrace{Si_{8,23}}^{8,23}\,O_{24}\right]}$

Formel für den Augit:

 $\overbrace{\left(Ca_{0,5}\,Fe_{0,31}^{II}K_{0,01}\right)}^{0,82}\overbrace{\left(Mg_{0,87}Al_{0,09}\,Na_{0,03}\,Mn_{0,005}\right)}^{2,06}}_{\left(Si_{2,06}\right)}O_{8}]$

Heilly 0 258, a3

Chi-sqd =	1.06 Livet	ime = 30.	0 Sec	Ξ.
Standard1	ess Analysis			
Element	Reĺ. k-ratio	Net	t Cour	nts
С –К		2311	+/-	60
0 -K		9917	+/-	88
Na-K	0.00316 + / - 0.00094	171	+/-	51
Mg-K	0.12820 +/- 0.00198	10356	+/-	160
AĨ-K	0.01567 + / - 0.00109	1182	+/-	82
Si-K	0.45539 +/- 0.00322	32693	+/-	231
C1-K		0	+/-	0
S-K	0.00254 +/- 0.00166	139	+/-	91
К –К	0.00501 +/- 0.00214	231	+/-	98
Ca-K	0.21193 +/- 0.00260	8485	+/-	104
Ti-K	0.00000 +/- 0.00001	0	+/-	0
Fe-K	0.17560 +/- 0.00432	3615	+/-	89
Mn-K	0.00251 + / - 0.00189	57	+/-	43
Mn-L		0	+/-	0
Fe-L		493	+/-	70
Cr-K	0.00000 + / - 0.00001	0	+/-	0

Bence-Albee Analysis 20.00 kV 40.00 Deg

No.	of Itera	tions 3			
	0×ide	k-ratio	Beta		Wt %
	Na20	0.0066	1.8637		0.47
	MgO	0.3161	1.3236	1	6.20
	A1203	0.0408	1.3452		2.13
	Si02	1.2225	1.2043	5	7.01
	S03	0.0072	1.3325		0.37
	K20	0.0062	1.1537		0.28
	CaO	0.3073	1.0952	1	3.03
	Ti02	0.0000	1.1340		0.00
	Fe0	0.2384	1.1218	1	0.35
	Mn0	0.0034	1.1386		0.15
	Cr203	0.0000	1.1116		0.00
	Total			10	0.00%
lla-	- 0.1328	Mg 3.48	81 Al	0.3620	Si 8.2347
5	- 0.0405	K 0.05	11 Ca	2.0170	Ti 0.0000
-e	- 1.2507	Mn 0.01	85 Cr	0.0000	0 24.0000

 $\label{eq:chloritoide: Theoretische Formel: (Fe^{2+}, Mg, Mn)_2(Al, Fe^{3+})(OH)_4 \ Al_3 \ O_2 \ [Si \ O_4]_2$

Probe Sm 6,2, Bohrkern Bockeroth 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0	0	0
Ca	0	0	0
Κ	0,02	0,02	0,01
Mg	0,35	0,7	0,17
Al	7,71	23,13	3,86
Si	3,96	15,84	1,98
FeII	3,88	7,76	1,94
FeIII	0,13	0,39	0,07
Mn	0,04	0,08	0,02
Ti	0,02	0,08	0,01
Cr	0,02	0,06	0,01
		48,06	8,02

 $(Fe^{2+}, Mg, Mn)_4 (Al, Fe^{3+})_2 (OH)_8 Al_6 O_4 [Si O_4]_4$

 $\underbrace{\overbrace{\left(Fe_{3,70}^{II}\ Mg_{0,35}\ Mn_{0,04}\ K_{0,02}\ \right)}^{4,11}}_{\left(Al_{1,67}\ Fe_{0,125}^{III}\ Fe_{0,18}^{II}\ Cr_{0,02}\ Ti_{0,02}\right)}\left[(OH)_8\ Al_{6,0}\ \underbrace{\overbrace{\left(Si_{3,96}\ Al_{0,04}\right)}^{4,0}O_{16}}_{(Si_{3,96}\ Al_{0,04})}\right]$

Die Formel für den Chloritoid:

 $\underbrace{\overbrace{\left(Fe_{1,85}^{II}\ Mg_{0,18}\ Mn_{0,02}\ K_{0,01}\right)}^{2,06}}_{\left(Al_{0,835}\ Fe_{0,133}^{III}\ Fe_{0,002}^{II}\ Cr_{0,01}\ Ti_{0,01}\right)}\left[(OH)_{4}\ Al_{3,0}\ \underbrace{\overbrace{\left(Si_{1,98}\ Al_{0,02}\right)}^{2,0}O_{8}}_{O_{8}}\right]$

Tty SH 6, 28 Chi-sqd = 1.05Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K ----625 +/-27 0 -K -----11491 +/-128 Na-K 0.00000 +/- 0.00001 0 +/-0 Mg-K 0.01004 +/- 0.00079 702 +/-55 AI-K 0.30645 +/- 0.00327 19987 +/-213 Si-K 0.15610 +/- 0.00172 9688 +/-107 C1-K 46 +/-41 0.00207 +/- 0.00094 S-K 98 +/-44 K -K 0.00199 +/- 0.00098 80 +/-39 Ca-K 0.00000 + / - 0.000010 +/-0 Ti-K 0.00222 +/- 0.00141 60 +/-38 0.51415 +/- 0.00995 Fe-K 9148 +/-177 Mn-K 0.00504 +/- 0.00214 99 +/-42 Mn-L -0 +/-0 Fe-L -909 +/-76 Cr-K 0.00194 + / - 0.0015946 +/-38 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 4 Oxide k-ratio Beta Wt % Na20 0.0000 2.2731 0.00 Mq0 0.0247 1.5296 1.51 A1203 0.7985 1.3130 41.87 Si02 0.4191 1.5142 25.34 \$03 0.0059 1.3283 0.31 K20 0.0025 1.1393 0.11 CaO 0.0000 1.0730 0.00 0.0041 Ti02 1.0674 0.17 Fe0 0.6979 1.0851 30.25 MnO 0.0069 1.0931 0.30 Cr203 0.0030 1.0514 0.13 P205 0.0000 1.5056 0.00 Total 100.00% Na-- 0.0001 Mg-- 0.3519 Al-- 7.7056 Si-- 3x9573 S -- 0.0366 K -- 0.0224 Ca-- 0.0000 Ti-- 0.0203

Fe-- 3.9499 Mn-- 0.0399 Cr-- 0.0158 P -- 0.0000 0 --24.0000

 $\label{eq:chloritoide: Theoretische Formel: (Fe^{2+}, Mg, Mn)_2(Al, Fe^{3+})(OH)_4 \ Al_3 \ O_2 \ [Si \ O_4]_2$

Probe Sm 6,25, Bohrkern Bockeroth 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(maizes * LiemLadung)	rormennalzes
Na	0,24	0,24	0,12
Са	0,03	0,06	0,01
Κ	0,14	0,14	0,07
Mg	0,35	0,7	0,17
Al	6,81	20,43	3,4
Si	4,07	16,28	2,04
FeII	0,19	0,38	0,1
FeIII	3,03	9,09	1,51
Mn	0,34	0,68	0,17
Ti	0	0	0
Cr	0	0	0,00
		48	

 $(\mathrm{Fe}^{2+},\mathrm{Mg},\mathrm{Mn})_4$ (Al, $\mathrm{Fe}^{3+})_2$ (OH) $_8$ Al $_6$ O $_4$ [Si O $_4$] $_4$

$$\underbrace{\overbrace{\left(Fe_{1,91}^{III} Mg_{0,35} Mn_{0,34} Na_{0,24} Fe_{0,19}^{II} K_{0,14} Ca_{0,03}\right)}^{3,21} \underbrace{\binom{2,0}{\left(Al_{0,88} Fe_{1,12}^{III}\right)}}_{\left(OH\right)_{8} \underbrace{\binom{6,0}{\left(Al_{5,93} Si_{0,07}\right)}}_{\left(Si_{4,0}\right)} O_{16}\right]}$$

+ 0,68 Si in Quarz

Die Formel für den Chloritoid:

$$\underbrace{\left(Fe_{0,955}^{III} Mg_{0,18} Mn_{0,17} Na_{0,12} Fe_{0,095}^{II} K_{0,07} Ca_{0,01}\right)}_{I,0} \left(Al_{0,44} Fe_{0,56}^{III}\right) \left[\left(OH\right)_{4} \underbrace{\left(Al_{2,965} Si_{0,035}\right)}_{(Al_{2,965} Si_{0,035})} \underbrace{\left(Si_{2,0}\right)}_{(Si_{2,0})} O_{8}\right]$$

Tty SM 6, 25 Chi-sqd = 0.95Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K -----2921 +/-65 0 -K 5910 +/-119 Na-K 0.00458 +/- 0.00086 198 +/-37 0.01071 +/- 0.00095 Mg-K 688 +/-61 AI-K 0.28595 +/- 0.00372 17150 +/-223 Si-K 0.19850 +/- 0.00200 11328 +/-114 C1-K 358 +/-82 0.00565 +/- 0.00100 S-K 244 +/-43 К –К 0.01272 +/- 0.00118 465 +/-43 Ca-K 0.00261 +/- 0.00126 83 +/-40 Ti-K 0.00000 +/- 0.00001 0 +/-0 Fe-K 0.43476 +/- 0.01033 7114 +/-169 Mn-K 0.04451 +/- 0.00570 805 +/-103 Mn-L 0 +/-0 Fe-L 322 +/------66 Cr-K 0.00000 +/- 0.00001 0 +/-0 P -- K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 4 Oxide k-ratio Wt % Beta Na20 0.0095 2.1948 0.82 1.5017 1.55 MqO 0.0264 A1203 0.7451 1.2949 37.68 Si02 0.53291.4672 30.54 \$03 1.3299 0.0161 0.84 K20 0.0158 1.1433 0.70 CaO 0.0038 1.0798 0.16 Ti02 0.00 0.0000 1.0743 FeO 0.5901 1.0891 25.10 MnO 0.0610 1.0987 2.62 Cr203 0.0000 1.0597 0.00 P205 0.0000 1.5062 0.00 Total 100.00% Na--- 0.2427 Mg-- 0.3542 Al-- 6.8107 Si-- 4.6828 S -- 0.0962 K -- 0.1377 Ca-- 0.0262 Ti-- 0.0000 Fe-- 3.2193 Mn-- 0.3398 Cr-- 0.0000 P -- 0.0000 0 --24.0000 $\label{eq:chloritoide: Theoretische Formel: (Fe^{2+}, Mg, Mn)_2(Al, Fe^{3+})(OH)_4 \ Al_3 \ O_2 \ [Si \ O_4]_2$

Probe 23, Bohrkern Bockeroth 12,50 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0	0	0
Ca	0,03	0,06	0,01
Κ	0,04	0,04	0,02
Mg	0,43	0,86	0,22
Al	7,53	22,59	3,77
Si	4	16	2
FeII	0,36	0,72	0,18
FeIII	2,55	7,65	1,27
Mn	0,04	0,08	0,02
Ti	0	0	0
Cr	0	0	0,00
		48	

 $(\mathrm{Fe}^{2+},\mathrm{Mg},\mathrm{Mn})_4~(\mathrm{Al},\mathrm{Fe}^{3+})_2~(\mathrm{OH})_8~\mathrm{Al}_6~\mathrm{O}_4~[\mathrm{Si}\,\mathrm{O}_4]_4$

Element		Ladungsberechnung	/2
0	24	-48	12

$$\underbrace{(Fe_{2,08}^{III} Mg_{0,43} Fe_{0,36}^{II} Mn_{0,04} K_{0,04} Ca_{0,03})}_{(Al_{1,53} Fe_{0,47}^{III})} \left[(OH)_8 Al_{6,0} \underbrace{(Si_{4,0})}_{(Si_{4,0})} O_{16} \right]$$

+ 0,47 Si in Quarz

Die Formel für den Chloritoid:

$$\underbrace{\left(Fe_{1,04}^{III} Mg_{0,215} Fe_{0,18}^{II} Mn_{0,02} K_{0,02} Ca_{0,015}\right)}^{1,0} \left(Al_{0,765} Fe_{0,235}^{III}\right) \left[(OH)_{4} Al_{3,0} \underbrace{(Si_{2,0})}^{2,0} O_{8}\right]$$

Go Bt III, 12,50, 23 Livetime = 60.0 Sec. Chi-sqd = 1.01Standardless Analysis Element Net Counts Rel. k-ratio C-K 2347 +/-63 0 -K 11216 +/-147 0 +/-Na-K 0.00000 + / - 0.000010 0.01441 + / - 0.00100909 +/-Mg-K 63 AĬ-K 0.34788 +/- 0.00426 20475 +/-250 Si-K 0.20775 +/- 0.00364 11635 +/-204 K -K 0.00347 +/- 0.00103 124 +/-37 90 +/-Ca-K 0.00288 +/- 0.00122 38 Ti-K 0.00000 + / - 0.000010 +/-0 0.41860 +/- 0.00965 6722 +/-Fe-K 155 0.00502 +/- 0.00220 90 +/-Mn-K 39 Mn-L 0 + / -____ 0 Fe-L 1027 +/-81 C1-K 0 +/-Û S - K 116 +/-44

Bence-Albee Analysis 20.00 kV 40.00 Deg

No.	of Itera	tions 3				
	0xide	k-ratio	Beta	l.	Nt %	
	Na20	0.0000	2.1003		0.00	
	MgO	0.0355	1.4369		1.92	
	A1203	0.9064	1.2573	4	2.86	
	Si02	0.5577	1.4869	3	1.19	
	K20	0.0043	1.1506		0.19	
	CaO	0.0042	1.0844		0.17	
	Ti02	0.0000	1.0809		0.00	
	Fe0	0.5682	1.0941	2	3.38	
	Mn0	0.0069	1.1042		0.29	
	Total			10	0.00%	
Na	- 0.0000	Mg 0.42	63 A1	7.5249	Si	4.6462
К —	- 0.0353	Ca 0.02	72 Ti	0.0000	Fe	2.9130
Mn-	- 0.0360	024.00	00			

 $\label{eq:chloritoide: Theoretische Formel: (Fe^{2+}, Mg, Mn)_2(Al, Fe^{3+})(OH)_4 \ Al_3 \ O_2 \ [Si \ O_4]_2$

Probe Sm 3,13, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0,38	0,38	0,19
Ca	0,02	0,04	0,01
К	0,02	0,02	0,01
Mg	0,28	0,56	0,14
Al	7,07	21,21	3,54
Si	3,75	15	1,88
FeII	3,05	6,1	1,52
FeIII	0,26	0,78	0,13
Mn	0,09	0,18	0,04
Ti	0,91	3,64	0,46
Р	0,02	0,1	0,01
		48,01	7,42

 $(Fe^{2+}, Mg, Mn)_4 \, (Al, Fe^{3+})_2 \, (OH)_8 \, Al_6 \, O_4 \, [Si \, O_4]_4$

Element		Ladungsberechnung	/2
0	24	-48	12

$$\overbrace{\left(Fe_{2,25}^{II} Ti_{0,91} Na_{0,38} Mg_{0,28} Mn_{0,09} Ca_{0,02} K_{0,02}\right)}^{3,95} \overbrace{\left(Al_{0,81} Fe_{0,92}^{II} Fe_{0,27}^{II}\right)}^{2,0} \left[(OH)_8 Al_{6,0} \overbrace{\left(Si_{3,75} Al_{0,25}\right)}^{4,0} O_{16} \right]$$

Die Formel für den Chloritoid:

1,975	1	Г	2,0
$\left(Fe^{II}_{1,125} Ti_{0,455} Na_{0,19} Mg_{0,14} Mn_{0,045} Ca_{0,01} K_{0,01}\right)$	$\left(Al_{0,40}Fe_{0,46}^{II}Fe_{0,135}^{III}\right)$	$(OH)_4 Al_{3,0}$	$(Si_{1,87} Al_{0,13}) O_8$
		L	-

Tty Sm3, 13 Chi-sqd = 1.25Livetime = 101.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts С -К 0 -К ----2730 +/-52 ____ 19900 +/-191 Na-K 0.00661 + / - 0.00106595 +/-95 Mq-K 0.00781 +/- 0.00061 1048 +/-82 AĬ-K 0.27855 +/- 0.00233 34911 +/-291 Si-K 0.14961 +/- 0.00125 17843 +/-149 0.00198 +/- 0.00071 К –К 151 +/-54 0.00182 + / - 0.00081Ca-K 121 +/-54 0.09933 +/- 0.00282 Ti-K 5149 +/-146 0.44235 + / - 0.00699Fe-K 15124 +/-239 Mn-K 0.01099 + / - 0.00342415 +/-129 Mn-L 0 +/-0 Fe-L 1975 +/------114 P -K 0.00094 + / - 0.0006297 +/-63 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Beta Wt % Na20 0.0137 2.2527 1.25 Mg0 0.0193 1.5396 1.19 A1203 0.7258 1.3148 38.42 Si02 0.4016 1.4845 24.00 K20 0.0025 1.1287 0.11 CaO 0.0026 1.0638 0.11 Ti02 0.1812 1.0643 7.76 Fe0 0.6005 1.0892 26.33 MnO 0.0151 1.1002 0.67 P205 0.0026 1.4764 0.15 Total 100.00% Na-- 0.3773 Mg-- 0.2778 Al-- 7.0704 Si-- 3.7483 K -- 0.0222 Ca-- 0.0189 Ti-- 0.9117 Fe-- 3.4385 Mn-- 0.0882 P -- 0.0205 0 --24.0000

Chloritoide: Theoretische Formel: $(Fe^{2+}, Mg, Mn)_2(Al, Fe^{3+})(OH)_4 Al_3 O_2 [Si O_4]_2$

Probe Ailly D264 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element Indizes Indizes/2 = Ladungsberechnung (Elem.-Zelle) (Indizes * Elem.-Ladung) Formelindizes Na 0 0 0 0 0 0 Ca 0,04 0,04 0,02 Κ Mg 0,38 0,76 0,19 7,65 22,95 3,83 Al 2 Si 4 16 FeII 2,21 4,42 1,11 0,63 FeIII 1,25 3,75 0,04 0,08 0,02 Mn 0 0 Ti 0 Cr 0 0 0,00 **48** 7,77

 $(Fe^{2+}, Mg, Mn)_4 (Al, Fe^{3+})_2 (OH)_8 Al_6 O_4 [Si O_4]_4$

$$\overbrace{\left(\text{Fe}_{2,21}^{\text{II}} \text{Fe}_{0,9}^{\text{III}} \text{Mg}_{0,38} \text{K}_{0,04} \text{Mn}_{0,04}\right)}^{3,57} \overbrace{\left(\text{Al}_{1,65} \text{Fe}_{0,35}^{\text{III}}\right)}^{2,0} \left[\left(\text{OH}\right)_{8} \text{Al}_{6,0} \overbrace{\left(\text{Si}_{4,0}\right)}^{4,0} \text{O}_{16}\right]$$

+ 0,31 Si in Quarz

Die Formel für den Chloritoid:

$$\overbrace{\left(Fe_{1,105}^{II} Fe_{0,45}^{III} Mg_{0,19} K_{0,02} Mn_{0,02}\right)}^{I,0} \left(Al_{0,825} Fe_{0,175}^{III}\right) \left[\left(OH\right)_{4} Al_{3,0} \overbrace{\left(Si_{2,0}\right)}^{2,0} O_{8}\right]$$

AILLY,264, b3

Chi-sqd =	1.07 Live	time = 30.0 Sec.
Standardle	ess Analysis	
Element	Rel. k-ratio	Net Counts
С —К		2935 +/- 47
0 -K		10165 +/- 89
Na-K	0.00000 +/- 0.00001	0 +/- 0
Mg-K	0.01179 +/- 0.00082	845 +/- 59
A1-K	0.32681 +/- 0.00360	21857 +/- 241
Si-K	0.18049 +/- 0.00325	11486 +/- 207
C1-K		58 +/- 42
S –K	0.00000 + / - 0.00001	0 +/- 0
К –К	0.00342 +/- 0.00209	140 +/- 85
Ca-K	0.00000 + / - 0.00001	0 +/- 0
Ti-K	0.00000 +/- 0.00001	0 +/- 0
Fe-K	0.47214 +/- 0.00965	8614 +/- 176
Mn-K	0.00536 +/- 0.00208	108 +/- 42
Mn-L		0 +/- 0
Fe-L		987 +/- 71
Cr-K	0.00000 +/- 0.00001	0 +/- 0
Bence-Albe	ee Analysis 20.00 kV	40.00 Deg

of Itera	tions 4			
Oxide	k-ratio	Beta		Wt %
Na20	0.0000	2.1906		0.00
Mg0	0.0291	1.4853		1.67
A1203	0.8515	1.2860	4	2.49
Si02	0.4845	1.5026	2	8.25
S03	0.0000	1.3371		0.00
K20	0.0042	1.1448		0.19
CaO	0.0000	1.0787		0.00
Ti02	0.0000	1.0738		0.00
Fe0	0.6409	1.0892	2	7.09
MnO	0.0073	1.0982		0.31
Cr203	0.0000	1.0583		0.00
Total			10	0.00%
- 0.0001	Mg 0.38	13 Al	7.6479	Si 4.3143
- 0.0000	K 0.03	66 Ca	0.0000	Ti 0.0000
- 3.4594	Mn 0.04	05 Cr	0.0000	024.0000
	of Itera Oxide Na20 Mg0 A1203 Si02 S03 K20 Ca0 Ti02 Fe0 Mn0 Cr203 Tota1 - 0.0001 - 0.0000 - 3.4594	of Iterations 4 0xide k-ratio Na20 0.0000 Mg0 0.0291 A1203 0.8515 Si02 0.4845 S03 0.0000 K20 0.0042 Ca0 0.0000 Ti02 0.0000 Fe0 0.6409 Mn0 0.0073 Cr203 0.0000 Tota1 - 0.0001 Mg 0.38 - 0.0000 K 0.034 - 3.4594 Mn 0.04	of Iterations 4 0xide k-ratio Beta Na20 0.0000 2.1906 Mg0 0.0291 1.4853 Al203 0.8515 1.2860 Si02 0.4845 1.5026 S03 0.0000 1.3371 K20 0.0042 1.1448 Ca0 0.0000 1.0787 Ti02 0.0000 1.0738 Fe0 0.6409 1.0892 Mn0 0.0073 1.0982 Cr203 0.0000 1.0583 Tota1 - 0.0000 K 0.0366	of Iterations 4 0xide k-ratio Beta Na20 0.0000 2.1906 Mg0 0.0291 1.4853 Al203 0.8515 1.2860 4 Si02 0.4845 1.5026 2 S03 0.0000 1.3371 K20 0.0042 1.1448 Ca0 0.0000 1.0787 Ti02 0.0000 1.0788 Fe0 0.6409 1.0892 2 Mn0 0.0073 1.0982 Mn0 0.0073 1.0982 10 10 - 0.0001 Mg 0.3813 Al 7.6479 - 0.0000 K - 0.0366 Ca 0.0000 - 3.4594 Mn 0.0405 Cr 0.0000

Turmalin: Theoretische Formel: X Y₉ B₃ $[O, OH, F + Si O_4]_6 (OH)_{0-2}$

X = Na, Ca, K Y = Al, Mg, Li, Fe, Mn, Ti, Cr

Probe: Sm 6,22; Bohrkern Bockeroth 1,40 m

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	1,04	1,04
Ca	0,02	0,04
Κ	0,05	0,05
Mg	1,42	2,84
Al	5,76	17,28
Si	6,07	24,28
FeII	0,67	1,34
FeIII	0,27	0,81
Ti	0,08	0,32
Mn	0	0
Р	0,02	0,1
		48

 $\overbrace{(Na_{1,04}\ Ca_{0,02}\ K_{0,05})}^{1,11} \overbrace{(Al_{5,76}\ Mg_{1,42}\ Fe^{II}_{0,67}\ Fe^{III}_{0,27}Ti_{0,08}\ P_{0,02})}^{8,22} B_3\ [OH_6,F_6,|\overbrace{Si_{6.07}}^{6,07}O_{24}]$

Tty SM 6, 22 Chi-sqd = 1.00Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C -K 0 -K -1194 +/-37 20086 +/-164 Na-K 0.03410 + / - 0.001301544 +/-59 Mq-K 0.06708 + / - 0.001484537 +/-100 A1-K 0.34575 + / - 0.0049321835 +/~ 311 Si-K 0.36195 + / - 0.0043121751 +/-259 C1-K 0 +/-0 0.00220 +/- 0.00101 S-K 101 +/-46 К -К 0.00596 +/- 0.00102 229 +/-39 0.00325 +/- 0.00116 Ca-K 109 +/-39 0.01130 +/- 0.00153 Ti-K 295 +/-40 Fe-K 0.16729 + / - 0.004642883 +/-80 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/-0 Fe-L 832 +/-88 Cr-K 0.00000 +/- 0.00001 0 +/-0 P -K 0.00111 + / - 0.0010057 +/-51 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 0xide k-ratio Beta Wt % 0.0709 Na20 1.7031 3.90 Mq0 0.1654 1.2892 6.89 0.9009 A1203 1.2158 35.39 Si02 0.9717 1.4021 44.02 S03 0.0063 1.3689 0.28 K20 0.0074 1.1724 0.28 CaO 0.0047 1.1066 0.17 Ti02 0.0206 1.1082 0.74 Fe0 0.2271 1.1142 8.18 MnO 0.0000 1.1287 0.00 Cr203 0.0000 1.0997 0.00 P205 0.0031 1.5483 0.15 Total 100.00% Na-- 1.0437 Mg-- 1.4174 Al-- 5.7558 Si-- 6.0749 S -- 0.0287 K --- 0.0493 Ca-- 0.0249 Ti-- 0.0766

Fe-- 0.9435 Mn-- 0.0000 Cr-- 0.0000 P -- 0.0179 0 --24.0000

Turmalin: Theoretische Formel: X Y₉ B₃ $[O, OH, F + Si O_4]_6 (OH)_{0-2}$

X = Na, Ca, K Y = Al, Mg, Li, Fe, Mn, Ti, Cr

Probe: Sm 7,4; Bohrkern Bockeroth 6,60 m

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)
Na	0,95	0,95
Ca	0,03	0,06
К	0,02	0,02
Mg	1,39	2,78
Al	5,59	16,77
Si	6,36	25,44
FeII	0,8	1,6
FeIII	0,1	0,3
Ti	0,02	0,08
Mn	0	0
Р	0	0
		48

$$\overbrace{(Na_{0,95} Ca_{0,03} K_{0,02})}^{1,0} \overbrace{(Al_{5,59} Mg_{1,39} Fe_{0,8}^{II} Fe_{0,1}^{III} Ti_{0,02})}^{7,9} B_3 [OH_6, F_6, |Si_{6,0} O_{24}]$$

0,23 Si in Quarz

Tty SM 7, 4 Chi-sqd = 1.06Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K 2079 +/-44 0 -K 15374 +/------156 Na-K 0.03146 + / - 0.001231279 +/-50 Mq-K 0.06730 + / - 0.001354087 +/-82 AI-K 0.34181 + / - 0.0025219380 +/-143 Si-K 0.38630 + / - 0.0043720843 +/-236 C1-K 0 +/-0 S -K 0.00130 + / - 0.0010853 +/-44 K – K 0.00270 + / - 0.0011093 +/-38 Ca-K 0.00379 +/- 0.00126 114 +/-38 Ti-K 0.00333 + / - 0.0014579 +/-34 Fe-K 0.16202 +/- 0.00763 2506 +/-118 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/------0 Fe-L ----598 +/-79 Cr-K 0.00000 +/- 0.00001 0 +/-0 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 **Oxide** k-ratio Beta Wt % Na20 0.0654 1.6939 3.56 1.2789 MqO 0.1659 6.83 A1203 0.8906 1.2086 34.62 Si02 1.0370 1.3910 46.40 S03 0.0037 1.3737 0.16 K20 1.1748 0.0033 0.13 CaO 1.1081 0.0055 0.20 Ti02 1.1096 0.0061 0.22 Fe0 0.2199 1.1150 7.89 MnO 1.1294 0.0000 0.00 Cr203 0.0000 1.1004 0.00 P205 0.0000 1.5558 0.00 Tota1 100.00% Na-- 0.9463 Mg-- 1.3938 Al-- 5.5890 Si-- 6.3556 S -- 0.0168 K -- 0.0221 Ca-- 0.0287 Ti-- 0.0223 Fe-- 0.9035 Mn-- 0.0000 Cr-- 0.0000 P -- 0.0000 0 --24.0000

Turmalin: Theoretische Formel: X Y₉ B₃ $[O, OH, F + Si O_4]_6 (OH)_{0-2}$

X = Na, Ca, K Y = Al, Mg, Li, Fe, Mn, Ti, Cr

Probe: Bohrkern Bockeroth 12,50 m, 13

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0,94	0,94
Ca	0,02	0,04
Κ	0,02	0,02
Mg	1,26	2,52
Al	5,85	17,55
Si	6,1	24,4
FeII	1,13	2,26
FeIII	0	0
Ti	0,07	0,28
Mn	0	0
		48,01

$$\overbrace{(Na_{0,94} Ca_{0,02} K_{0,02})}^{0,98} \overbrace{(Al_{5,85} Mg_{1,26} Fe_{1,13}^{II} Ti_{0,07})}^{8,31} B_3 [OH_6, F_6, \overbrace{Si_{6,1}}^{6,1} O_{24}]$$

Go Bt III, 12,50, 13

Flement	Rel k-ratio	Net Counts
C -K		2647 +/- 46
0 -K		8612 +/- 128
Na-K	0.02958 + / - 0.00133	934 +/- 42
Mq-K	0.05802 + / - 0.00159	2734 +/- 75
АĬ-К	0.34483 +/- 0.00528	15171 +/- 232
Si-K	0.35656 +/- 0.00511	14928 +/- 214
К –К	0.00187 + / - 0.00127	50 +/- 34
Ca-K	0.00214 + / - 0.00146	51 +/- 35
Ti-K	0.01011 + / - 0.00192	184 +/- 35
Fe-K	0.19689 +/- 0.00892	2363 +/- 107
Mn-K	0.00000 + / - 0.00001	0 +/- 0
Mn-L		0 +/- 0
Fe-L		392 +/- 67
C1-K	1 - Constant	107 +/- 35
S – K		0 +/- 0

Bence-Albee Analysis 20.00 kV 40.00 Deg

No.	of Itera	tions 3				
	0×ide	k-ratio	Beta		Wt %	
	Na20	0.0615	1.7430		3.51	
	MgO	0.1430	1.3041		6.10	
	A1203	0.8985	1.2168	3	5.77	
	Si02	0.9572	1.4055	4	4.02	
	K20	0.0023	1.1708		0.09	
	CaO	0.0031	1.1041		0.11	
	Ti02	0.0184	1.1052		0.67	
	Fe0	0.2673	1.1123		9.73	
	MnO	0.0000	1.1263		0.00	
	Total			10	0.00%	
Na	- 0.9427	Mg 1.261	6 A1	5.8454	Si	6.1037
K	- 0.0157	Ca 0.016	7 Ti	0.0696	Fe	1.1279
Mn	- 0.0000	024.000	0			

Turmalin: Theoretische Formel: X Y₉ B₃ $[O, OH, F + Si O_4]_6 (OH)_{0-2}$

X = Na, Ca, K Y = Al, Mg, Li, Fe, Mn, Ti, Cr

Probe: Ailly 2,10 m (D 262,12)

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0,59	0,59
Ca	0,06	0,12
Κ	0,01	0,01
Mg	1,23	2,46
Al	6,12	18,36
Si	5,9	23,6
FeII	0,94	1,88
FeIII	0,23	0,69
Ti	0,07	0,28
Mn	0	0
		47,99

 $\overbrace{(Na_{0,59} \ Ca_{0,06} \ K_{0,01})}^{0,66} \quad \overbrace{\left(Al_{6,11} \ Mg_{1,23} \ Fe_{0,94}^{II} Fe_{0,23}^{III} \ Ti_{0,07} \ \right)}^{8,58} B_3 \ [OH_6,F_6,|\overbrace{Si_{5,9} \ Al_{0,1}}^{6,0} O_{24}]$

AILLY 2,10m/ D 262 12 Livetime = 30.0 Sec. Chi-sqd = 0.95Standardless Analysis Net Counts Element Rel. k-ratio 947 +/-С -К 44 0 -K 10520 +/-86 ____ 610 +/-Na-K 0.01821 +/- 0.00128 43 2821 +/-0.05639 + / - 0.0015879 Mg-K 16853 +/-0.36070 +/- 0.00532 A1-K 249 0.33975 +/- 0.00292 15106 +/-130 Si-K 0 +/-C1-K 0 S --K K --K 0.00292 +/- 0.00116 98 +/-39 39 +/-0.00137 +/- 0.00127 36 203 +/-0.00815 +/- 0.00161 40 Ca-K 190 +/-0.00978 +/- 0.00357 Ti-K 69 0.20273 +/- 0.00588 2584 +/-Fe-K 75 0.00000 +/- 0.00001 0 +/-0 Mn-K 0 +/-Mn-L 0 ____ 395 +/-59 Fe-L ----0 +/-0.00000 + / - 0.000010 Cr-K P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 k-ratio Wt % Oxide Beta 2.20 Na20 0.0379 1.7605 0.1390 1.2918 5.94 Mg0 A1203 0.9398 1.2074 37.54 0.9121 Si02 1.4140 42.67 1.3668 0.38 \$03 0.0083 K20 0.0017 1.1704 0.07 0.43 CaO 0.0118 1.1036 Ti02 0.0178 1.1054 0.65 Fe0 0.2752 1.1121 10.12 0.0000 1.1260 0.00 MnO 0.00 Cr203 0.0000 1.0959 P205 0.0000 1.5478 0.00 Total 100.00% Na-- 0.5913 Mg-- 1.2253 Al-- 6.1204 Si-- 5.9024 S -- 0.0389 K -- 0.0116 Ca-- 0.0639 Ti-- 0.0679 Fe-- 1.1713 Mn-- 0.0000 Cr-- 0.0000 P -- 0.0000 0 -- 24.0000

Epidot: Theoretische Formel: $Ca_2 Al_2O (Al, Fe^{III}) OH [Si_2 O_7][Si O_4]$

Probe Bohrkern Bockeroth Sm 6, 17, 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $Ca_4 \ Al_4 \ O_2 \ (Al, Fe^{III})_2 \ (OH)_2 \ [Si_6 \ O_{22}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0	0	0
Ca	3,67	7,34	1,84
К	0,01	0,01	0
Mg	0,09	0,18	0,04
Al	4,24	12,72	2,12
Si	6	24	3
FeII	0,76	1,52	0,38
FeIII	0,75	2,25	0,38
Ti	0	0	0,000
Cr	0	0	0
		48,02	

 $\overbrace{(Ca_{3,67} K_{0,01})}^{3,515} (Al_{4,0}) O_2 \xrightarrow{I,84} (Fe^{II}_{0,76} Fe^{III}_{0,75} Al_{0,24}Mg_{0,09}) (OH)_2 [\overbrace{Si_{6,0}}^{6,0} O_{22}]$

Formel für den Epidot:

 $\overbrace{(Ca_{1,7075} K_{0,005})}^{1,78} (Al_{2,0}) O \left(\overbrace{Fe_{0,38}^{II} Fe_{0,375}^{III} Al_{0,12} Mg_{0,045}}^{0,92} \right) OH \left[\overbrace{Si_{3,0}}^{3,0} O_{11} \right]$

Tty SM 6, 17 Chi-sqd = 1.22Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C -K ------1805 +/-38 0 -K ----7359 +/-76 Na-K 0.00000 + / - 0.000010 +/-0 Mg-K 0.00278 +/- 0.00061 228 +/-50 A1-K 0.18086 +/- 0.00158 13875 +/-121 Si-K 0.27588 +/- 0.00326 20139 +/-238 C1-K 106 +/-88 S −K 0.00408 + / - 0.00163225 +/-90 К –К 0.00116 + / - 0.0009955 +/-46 Ca-K 0.34491 + - 0.0048914040 +/-199 Ti-K 0.00000 + / - 0.000010 +/-0 Fe-K 0.18636 +/- 0.00659 3900 +/-138 Mn-K 0.00398 +/- 0.00190 93 +/-44 Mn-L 0 +/-0 -----Fe-L ----600 +/-65 Cr-K 0.00000 + / - 0.000010 +/-0 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Wt % Beta Na20 0.0000 1.9728 0.00 Mq0 0.0068 1.3745 0.40 A1203 0.4712 1.2008 23.82 Si02 0.7406 1.2889 40.19 S03 0.0116 1.2901 0.63 K20 0.0014 1.1320 0.07 CaO 0.5002 1.0782 22.70 0.0000 Ti02 1.1449 0.00 Fe0 0.2530 1.1199 11.93 MnO 0.0055 1.1381 0.26 Cr203 0.0000 1.1130 0.00 P205 0.0000 1.4456 0.00 Total 100.00% Na-- 0.0001 Mg-- 0.0891 Al-- 4.2361 Si-- 6.0637 S -- 0.0713 K -- 0.0132 Ca-- 3.6703 Ti-- 0.0000 Fe-- 1.5050 Mn-- 0.0334 Cr-- 0.0000 P -- 0.0000 0 --24.0000
Epidot: Theoretische Formel: $Ca_2 Al_2O(Al, Fe_3^{III}) OH [Si_2 O_7][Si O_4]$

Probe Sm 7,15, Bohrkern Bockeroth 9,60 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $Ca_4 \; Al_4 \; O_2 \; (Al_2, Fe_6^{III}) \; (OH)_2 \; [Si_6 \, O_{22}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0	0	0
Ca	3,66	7,32	1,83
К	0,0156	0,02	0
Mg	0,33	0,66	0,17
Al	3,9391	11,82	1,97
Si	6	24	3
FeII	0,84	1,68	0,42
FeIII	0,46	1,38	0,23
Ti	0,27	1,08	0,135
Cr	0,02	0,06	0,01
		48,01	

 $\overbrace{(Ca_{3,66} K_{0,02})}^{3,68} \quad (Al_{3,94}) O_2 \ \overbrace{\left(Fe_{0,84}^{II} Fe_{0,46}^{III} Mg_{0,33} Ti_{0,26} Cr_{0,02}\right)}^{1,91} \ (OH)_2 \ \overbrace{\left(Si_{6,0}}^{6,} O_{22}\right]}^{6,}$

+0,12 Si als Quarz

Formel für den Epidot:

$$\overbrace{(Ca_{1,83} K_{0,005})}^{1,84} (Al_{1,972}) O \left(Fe_{0,42}^{II} Fe_{0,23}^{III} Mg_{0,165} Ti_{0,13} Cr_{0,08} \right) (OH) [\overbrace{Si_{3,0}}^{3,0} O_{11}]$$

Tty SM 7, 15 Chi-sqd = 1.41Livetime = 60.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C -K 1543 +/-54 0 -K 11678 +/-95 Na-K 0.00000 + / - 0.000010 +/-0 Mg-K 0.01044 +/- 0.00066 930 +/-59 AI-K 0.16870 +/- 0.00146 14013 +/-121 Si-K 0.28257 +/- 0.00192 22336 +/-152 С1-К 0 +/-0 S-K 0.00000 + / - 0.000010 +/-0 К -К 0.00139 +/- 0.00087 71 +/-44 Ca-K 0.34699 +/- 0.00306 15295 +/-135 0.02667 +/- 0.00143 Ti-K 917 +/-49 0.16142 +/- 0.00605 Fe-K 3659 +/-137 Mn-K 0.00000 +/- 0.00001 0 +/-0 0 +/-Mn-L 0 Fe-L 1030 +/-78 0.00183 + / - 0.00118Cr-K 55 +/-35 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 **Oxide** k-ratio Beta Wt % Na20 0.0000 1.9501 0.00 Mg0 0.0258 1.3624 1.47 A1203 0.43951.2048 22.22 Si02 0.7586 1.2783 40.70 \$03 0.0000 1.2875 0.00 K20 0.0017 1.1296 0.08 CaO 0.5032 1.0764 22.73 Ti02 0.0486 1.1452 2.34 Fe0 0.2191 1.1225 10.32 MnO 0.0000 1.1415 0.00 Cr203 0.0029 1.1180 0.13 P205 0.0000 1.4414 0.00 Total 100.00% Na-- 0.0000 Mg-- 0.3301 Si-- 6.1200 Al-- 3.9391 S -- 0.0000 K -- 0.0156 Ca-- 3.6625 Ti-- 0.2644 Fe-- 1.2981 Mn-- 0.0000 Cr-- 0.0160 P -- 0.0000 0 -- 24.0000 **Epidot: Theoretische Formel**: $Ca_2 Al_2O (Al, Fe^{III}) OH [Si_2 O_7][Si O_4]$

Probe: Sourdon, D260, 9

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $Ca_4 \ Al_4 \ O_2 \ (Al, Fe^{III})_2 \ (OH)_2 \ [Si_6 \ O_{22}]$

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,08	0,08	0,04
Ca	0,95	1,9	0,47
Κ	0,04	0,04	0,02
Mg	0,34	0,68	0,17
Al	4,07	12,21	2,04
Si	6	24	3
FeII	1,36	2,72	0,68
FeIII	1,46	4,38	0,73
Ti	0,02	0,08	0,010
Mn	0,93	1,86	0,47
		47,95	

 $\overbrace{\left(Ca_{0,95}\ Mn_{0,93}\ Fe_{0,92}^{II}\ Mg_{0,34}\ Na_{0,08}\ K_{0,04}\right)}^{3,27}\ Al_{4,0}\ O_{2}\ \overbrace{\left(\ Fe_{1,46}^{III}\ Fe_{0,44}^{II}\ Al_{0,08}\ Ti_{0,02}\right)}^{2}\ (OH)_{2}\ \overbrace{\left(Si_{6,0}^{6,0}\ O_{22}\right]}^{6,0}$

0,38 als Quarz

Formel für den Epidot:

$$\overbrace{\left(\text{Ca}_{0,475}\text{ Mn}_{0,47}\text{ Fe}_{0,46}^{\text{II}}\text{ Mg}_{0,17}\text{ Na}_{0,04}\text{ K}_{0,02}\right)}^{1,635}\text{Al}_{2,0}\text{ O} \overbrace{\left(\text{ Fe}_{0,73}^{\text{III}}\text{ Fe}_{0,22}^{\text{II}}\text{ Al}_{0,04}\text{ Ti}_{0,01}\right)}^{1,635}\text{ OH }[\overbrace{\text{Si}_{3,0}}^{3,0}\text{O}_{11}]$$

D260 Sourdon,9

Chi-sqd =	1.20	Live	time = 30	.0 S	ec.	
Standard1e.	ss Analysis					
Element	Reĺ. k-	ratio	Ne	t Co	unts	
С –К			3920	+/-	77	
0 –K			17634	+/-	120	
Na-K	0.00130 +/-	0.00067	86	+/-	44	
Mg-K	0.00951 +/-	0.00070	938	+/-	69	
AĪ-K	0.15681 +/-	0.00261	14435	+/-	240	
Si-K	0.27369 +/-	0.00309	23975	+/-	271	
С1-К			0	+/-	0	
S –K	0.00000 + / -	0.00001	0	+/-	0	
К –К	0.00311 +/-	0.00086	175	+/-	48	
Ca-K	0.08811 +/-	0.00289	4305	+/-	141	
Ti-K	0.00189 +/-	0.00108	72	+/-	41	
Fe-K	0.35265 +/-	0.00788	8856	+/-	198	
Mn-K	0.11292 +/-	0.00523	3131	+/-	145	
Mn-L			0	+/-	0	
Fe-L			2171	+/-	103	
Cr-K	0.00000 +/-	0.00001	0	+/-	0	
Р – К	0.00000 +/-	0.00001	0	+/	0	
Bence-Albe	e Analysis	20.00 k¥	40.00	Deg		
No. of Ite	rations 3					
0×ide	k-ratio	Beta	Wt	%		
Na20	0.0027	2.2565	0.	25		
MgO	0.0234	1.5280	1.	49		
A1203	0.4086	1.3120	22.	29		
Si02	0.7347	1.3459	41.	12		
S03	0.0000	1.3183	0.	00		
K20	0.0039	1.1346	0.	18		
CaO	0.1278	1.0717	5.	69		
Ti02	0.0035	1.0831	0.	16		
Fe0	0.4787	1.0916	21.	73		
MnO	0.1546	1.1033	7.	09		
Cr203	0.0000	1.0668	0.	00		
P205	0.0000	1.4902	0.	00		
Total			100.	00%		
Na 0.076	4 Ma 0.34	443 Al	4.0745 S	i	6.3775	
S 0.000	0 K 0.0	359 Ca	0.9462 T	i	0.0181	
Fe 2.818	3 Mn 0.93	320 Cr	0,0000 P		0.0000	0 24.0000

Biotit: Theoretische Formel: K (Mg, Fe, Mn)₃ [(OH, F)₂ Al Si₃ O₁₀]

Probe: Bt III, Bohrkern Bockeroth 12,50 m, 10

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0,1569	0,16	0,08
Са	0,0676	0,14	0,03
K	1,389	1,39	0,69
Mg	2,909	5,82	1,45
Al	2,685	8,05	1,34
Si	6,4763	25,91	3,24
FeII	1,9728	3,95	0,99
FeIII	0	0	0
Mn	0,0673	0,13	0,03
Ti	0,6151	2,46	0,31
		48	

 $K_2 (Mg, Fe, Mn)_6 [(OH, F)_4 Al_2 Si_6 O_{20}]$

 $\underbrace{\overset{2,36}{(K_{1,39}\ Mg_{0,74}\ Na_{0,16}\ Ca_{0,07})}}_{(Mg_{2,17}\ Fe^{II}_{1,97}\ Al_{1,17}\ Ti_{0,62}\ Mn_{0,07})}^{6,0} \left[(OH,F)_4 \ \underbrace{\overset{8,0}{(Si_{6,48}\ Al_{1,52})}}_{(Si_{6,48}\ Al_{1,52})} O_{20} \right]$

Die Formel für den Biotit:

1,17	3,0	Γ	4,0
$(K_{0,69} Mg_{0,37} Na_{0,08} Ca_{0,03})$	$\left(Mg_{1,085} \text{ Fe}_{0,985}^{II} \text{ Al}_{0,59} \text{ Ti}_{0,31} \text{ Mn}_{0,035}\right)$	$(OH, F)_2$	$(Si_{3,24}Al_{0,76})O_{10}$
		L	

Go Bt III, 12,50, 10

Element	Rel. k-ratio	Net Cour	nts
С -К		1211 +/-	43
0 -K		6536 +/-	110
Na-K	0.00331 + / - 0.00100	130 +/-	39
Mq-K	0.09649 + / - 0.00141	5615 +/-	82
AĬ-K	0.10974 + / - 0.00172	5963 +/-	93
Si-K	0.31093 + / - 0.00389	16078 +/-	201
К –К	0.13030 + / - 0.00224	4305 +/-	74
Ca-K	0.00662 +/- 0.00149	191 +/-	43
Ti-K	0.06876 +/- 0.00245	1545 +/-	55
Fe-K	0.26512 + / - 0.00884	3930 +/-	131
Mn-K	0.00874 +/- 0.00446	144 +/-	73
Mn-L		0 +/-	0
Fe-L		811 +/-	71
C1-K		213 +/-	77
S -K		0 +/-	0
Bence-A1	bee Analysis 20.00 kV	40.00 Deg	

No.	of Itera	tions 3				
	Oxide	k-ratio	Beta		Wt %	
	Na20	0.0069	1.9874		0.53	
	MgO	0.2379	1.3870	1	2.84	
	A1203	0.2859	1.3473	1	4.99	
	Si02	0.8347	1.3119	4	2.62	
	K20	0.1614	1.1407		7.17	
	CaO	0.0096	1.1107		0.42	
	Ti02	0.1254	1.1028		5.38	
	Fe0	0.3599	1.1084	1	5.52	
	MnO	0.0120	1.1236		0.52	
	Tota1			10	0.00%	
Na-	- 0.1569	Mg 2.90	91 Al	2.6850	Si	6.4763
К	- 1.3890	Ca 0.06	76 Ti	0.6151	Fe	1.9728
Mn-	- 0.0673	0 24.00	00			

Biotit: Theoretische Formel: K (Mg, Fe, Mn)₃ [(OH, F)₂ Al Si₃ O₁₀]

Probe: Sm 3, 12, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,2805	0,28	0,14
Ca	0,1697	0,34	0,08
К	1,2878	1,29	0,64
Mg	1,956	3,91	0,98
Al	3,6855	11,06	1,84
Si	6,3771	25,51	3,19
FeII	2	4	1
FeIII	0,12	0,36	0,06
Mn	0,0247	0,05	0,01
Ti	0,291	1,16	0,15
Р	0,0335	0,17	0,02
		47,96	

 $K_2 (Mg, Fe, Mn)_6 [(OH, F)_4 Al_2 Si_6 O_{20}]$

 $\underbrace{\overset{2,21}{(K_{1,29}\ Mg_{0,47}\ Na_{0,28}\ Ca_{0,17})}}_{(K_{1,29}\ Mg_{1,49}\ Ti_{0,291}\ Fe^{III}_{0,12}\ Mn_{0,024})}\left[(OH,F)_4 \begin{array}{c} \underbrace{\overset{8,0}{(Si_{6,38}\ Al_{1,62})}}_{(Si_{6,38}\ Al_{1,62})}O_{20}\right]$

Die Formel für den Biotit:

$$\underbrace{\overbrace{(K_{0,645} Mg_{0,24} Na_{0,14} Ca_{0,085})}^{1,10}}_{(Al_{1,04} Fe_{1,0}^{II} Mg_{0,75} Ti_{0,15} Fe_{0,06}^{III} Mn_{0,012})} \left[(OH, F)_2 \overbrace{(Si_{3,19} Al_{0,81})}^{4,0} O_{10} \right]$$

Sm3, 12

Chi-sqd =	1.63	Livet	ime = 133.0 Se	c.
Standardl	ess Analysis			
Element	Rel. k-r	ratio	Net Cour	its
С — К			4933 +/-	65
0 -K			20556 +/-	205
Na-K	0.00600 + / - (0.00137	502 +/-	114
Mg-K	0.06541 +/- 0	0.00103	8158 +/-	129
A1-K	0.15756 + / - (0.00290	18352 +/-	338
Si-K	0.30559 + / - 0	0.00290	33869 +/-	321
К — К	0.12201 + / - (0.00268	8640 +/-	190
Ca-K	0.01683 +/- (0.00235	1041 +/-	145
Ti-K	0.03291 +/- (0.00235	1585 +/-	113
Fe-K	0.28879 +/- (0.00620	9177 +/-	197
Mn-K	0.00325 + / - (0.00157	114 +/-	55
Mn-L			0 +/-	0
Fe-L			2072 +/-	124
P -K	0.00165 +/- 0	0.00074	157 +/-	70
Bence-A1b	ee Analysis 2	20.00 k¥	40.00 Deg	
No. of It	erations 3			
0×ide	e k-ratio	Beta	Wt %	
Na20	0.0125	1.9882	0.96	
MgO	0.1613	1.3944	8.68	
A1203	0.4105	1.3053	20.69	
\$i02	0.8204	1.3321	42.19	
K20	0.1511	1.1448	6.68	
CaO	0.0244	1.1120	1.05	
Ti02	0.0600	1.1045	2.56	
Fe0	0.3920	1.1067	16.75	
Mn0	0.0045	1.1210	0.19	

Biotit: Theoretische Formel: K $(Mg, Fe, Mn)_3 [(OH + F)_2 Al Si_3 O_{10}]$

Probe: Sm 3, 1, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,4033	0,4	0,2
Ca	0,2496	0,5	0,12
Κ	0,6858	0,69	0,34
Mg	1,247	2,49	0,62
Al	3,5324	10,6	1,77
Si	6,39	25,56	3,19
FeII	2,78	5,56	1,39
FeIII	0,34	1,02	0,17
Mn	0,05	0,1	0,03
Ti	0,2653	1,06	0,13
Р	0,0762	0,38	0,04
		47,98	

 $K_2 (Mg, Fe, Mn)_6 [(OH + F)_4 Al_2 Si_6 O_{20}]$

 $\overbrace{(K_{0,6858} Na_{0,40} Ca_{0,2496})}^{1,34} \overbrace{\left(Fe_{2,78}^{II} Al_{1,92} Mg_{1,247} Fe_{0,34}^{III} Mn_{0,05} Ti_{0,27}\right)}^{6,0} \left[(OH,F)_4 \overbrace{\left(Si_{6,39} Al_{1,61}\right)}^{8,0} O_{20} \right]$

Die Formel für den Biotit:

$$\underbrace{\overset{0,668}{\overbrace{(K_{0,343}\ Na_{0,2}\ Ca_{0,125})}}}_{(K_{0,343}\ Na_{0,2}\ Ca_{0,125})}\underbrace{\left(Fe^{II}_{1,075}\ Al_{0,96}\ Mg_{0,6235}Fe^{III}_{0,17}\ Mn_{0,023}\ Ti_{0,133}\right)}_{(OH,F)_2}\left[(OH,F)_2 \xrightarrow{4,0}{(Si_{3,19}\ Al_{0,81})}O_{10}\right]$$

Sm3, 1

Chi-sqd =	2.37 Livet	ime = 146	6. 0 Se	2 C
Standard1	ess Analysis			
Element	Rel. k-ratio	Net	Cour	nts
С –К		6748	+/-	79
0 -K	and the second second	41857	+/-	277
Na-K	0.00745 +/- 0.00054	1309	+/-	94
Mg-K	0.03659 +/- 0.00103	9602	+/-	270
AĬ-K	0.13917 + / - 0.00183	34103	+/-	448
Si-K	0.28724 +/- 0.00197	66980	+/-	460
К –К	0.06168 +/- 0.00087	9189	+/-	129
Ca-K	0.02385 +/- 0.00162	3102	+/-	211
Ti-K	0.02881 +/- 0.00092	2919	+/-	93
Fe-K	0.40582 +/- 0.00480	27130	+/-	321
Mn-K	0.00585 + / - 0.00108	433	+/-	80
Mn-L		0	+/-	0
Fe-L		4429	+/-	161
Р –К	0.00355 +/- 0.00050	705	+/-	99

Bence-Albee Analysis 20.00 kV 40.00 Deg

No.	of Itera	tions 3			
	0xide	k-ratio	Beta	Wt %	
	Na20	0.0155	2.1745	1.35	
	Mg0	0.0902	1.5014	5.42	
	A1203	0.3626	1.3382	19.43	
	Si02	0.7711	1.3407	41.39	
	K20	0.0764	1.1394	3.48	
	Ca0	0.0346	1.0908	1.51	
	Ti02	0.0525	1.0871	2.29	
	Fe0	0.5509	1.0967	24.19	
	MnO	0.0080	1.1082	0.36	
	P205	0.0098	1.4888	0.58	
	Total			100.00%	
Na-	- 0.4033	Mg 1.24	72 A1 3	.5324 Si	6.3859
K	- 0.6858	Ca 0.24	96 Ti 0	.2653 Fe	3.1206
Mn	- 0.0465	P 0.07	62 024	.0000	

Muskovit: Theoretische Formel: K Al_2 $[(OH,F)_2 \ Al \ Si_3 \ O_{10}]$

Probe Sm 6,9, Bohrkern Bockeroth 1,40 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0,2717	0,27	0,14
Ca	0	0	0
К	1,7346	1,73	0,87
Mg	0,2868	0,57	0,14
Al	5,4027	16,21	2,7
Si	6,9497	27,8	3,47
FeII	0,3	0,6	0,15
FeIII	0,0241	0,07	0,01
Mn	0,0333	0,07	0,02
Ti	0,0785	0,31	0,04
S	0,06	0,36	0,03
		48	

 $K_2 \; Al_4 \; [(OH,F)_4 \; Al_2 \, Si_6 \, O_{20}]$

$$\underbrace{\overset{2}{(K_{1,73} \text{ Na}_{0,27})}}_{(Al_{0,35} \text{ Fe}_{0,3}^{\text{II}} \text{ Mg}_{0,29} \text{ Ti}_{0,08} \text{ Mn}_{0,03} \text{ Fe}_{0,03}^{\text{III}})} \underbrace{\overset{4,0}{(Al_{4,0})}}_{(Al_{4,0})} \left[(OH, F)_4 \underbrace{\overset{8,0}{(Si_{6,95} \text{ Al}_{1,05})}}_{(Si_{6,95} \text{ Al}_{1,05})} O_{20} \right]$$

Die Formel für den Muskovit:

$$\underbrace{\stackrel{1}{(K_{0,865} Na_{0,135})}}_{(K_{0,865} Na_{0,135})} \underbrace{(Al_{0,175} Fe_{0,15}^{II} Mg_{0,145} Ti_{0,04} Mn_{0,03} Fe_{0,0015}^{III})}_{(Al_{2,0})} \underbrace{(OH, F)_2}_{(Si_{3,475} Al_{0,525})} O_{10} \right]$$

Tty SM 6, 9 Chi-sqd = 0.84Livetime = 60.0 Sec. Standardless Analysis Rel. k-ratio Element Net Counts C -K ____ 1278 +/-34 0 -K 8145 +/-103 Na-K 0.00826 + / - 0.00176300 +/-64 Mg-K 0.01299 + / - 0.00114704 +/-62 A1-K 0.32085 + / - 0.0045116245 +/-229 Si-K 0.39827 +/- 0.00486 19189 +/-234 C1-K 46 +/-37 S -K 0.00447 + / - 0.00110164 +/-40 K -K 0.18893 +/- 0.00270 5816 +/-83 Ca-K 0.00000 + / - 0.000010 +/-0 Ti-K 0.01013 + / - 0.00310213 +/-65 Fe-K 0.05104 + / - 0.00355706 +/-49 Mn-K 0.00505 + / - 0.0022378 +/-34 Mn-L 99 +/-80 Fe-L 0 +/-0 Cr-K 0.00000 + / - 0.000010 +/-0 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 Oxide k-ratio Beta Wt % Na20 0.0172 1.6385 1.01 MqO 0.0320 1.2071 1.39 A1203 0.8360 1.1014 33.12 Si02 1.0692 1.3056 50.21 \$03 0.0127 1.3468 0.62 K20 0.2340 1.1672 9.82 CaO 0.0000 1.1484 0.00 Ti02 0.0185 1.1345 0.75 Fe0 0.06931.1234 2.80 MnO 0.0069 1.1416 0.28 Cr203 0.0000 1.1185 0.00 P205 0.0000 1.5198 0.00 Total 100.00% Na-- 0.2717 Mg-- 0.2868 Al-- 5.4027 Si-- 6.9497 S -- 0.0641 K -- 1.7346 Ca-- 0.0000 Ti-- 0.0785 Fe-- 0.3241 Mn-- 0.0333 Cr-- 0.0000 P -- 0.0000 0 --24.0000

Muskovit: Theoretische Formel: K Al_2 $[(OH,F)_2 \ Al \ Si_3 \ O_{10}]$

Probe Sm 3,4, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

Element	Indizes	Ladungsberechnung	Indizes/2 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,15	0,15	0,07
Ca	0,05	0,1	0,03
K	1,67	1,67	0,83
Mg	0,24	0,48	0,12
Al	5,37	16,11	2,69
Si	6,87	27,48	3,44
FeII	0,48	0,96	0,24
FeIII	0,19	0,57	0,1
Mn	0	0	0
Ti	0,12	0,48	0,06
		48	7,51

 $K_2 \; Al_4 \; [(OH,F)_4 \; Al_2 \, Si_6 \, O_{20}]$

$$\overbrace{(K_{1,67} Na_{0,15} Ca_{0,05})}^{1,87} \overbrace{\left(Al_{4,24} Fe_{0,48}^{II} Mg_{0,24} Fe_{0,19}^{III} Ti_{0,12}\right)}^{5,27} \left[(OH, F)_4 \overbrace{\left(Si_{6,87} Al_{1,13}\right)}^{8,0} O_{20} \right]$$

Die Formel für den Muskovit:

$$\underbrace{\overset{0,93}{(K_{0,835} \text{ Na}_{0,07} \text{ Ca}_{0,025})}}_{(\text{Al}_{2,12} \text{ Fe}_{0,234}^{\text{II}}\text{Mg}_{0,12}\text{Fe}_{0,1}^{\text{III}}\text{ Ti}_{0,06})} \left[(\text{OH},\text{F})_2 \underbrace{(\text{Si}_{3,435} \text{ Al}_{0,565})}_{(\text{Si}_{3,435} \text{ Al}_{0,565})} \text{O}_{10} \right]$$

Sm3,4

Chi-sqd =	1.10	Live	time = 113.0 S	Sec.
Standardle	ess Analysis			
Element	Reĺ. k-	ratio	Net Cou	ints
С –К	100000		2694 +/-	66
0 -K			9628 +/-	144
Na-K	0.00423 +/-	0.00110	316 +/-	82
Mg-K	0.01012 +/-	0.00070	1126 +/-	78
AĨ-K	0.30377 +/-	0.00302	31566 +/-	313
Si-K	0.37974 +/-	0.00338	37548 +/-	334
К –К	0.17701 +/-	0.00192	11184 +/-	121
Ca-K	0.00542 +/-	0.00247	300 +/-	136
Ti-K	0.01531 +/-	0.00128	659 +/-	55
Fe-K	0.10223 +/-	0.00512	2898 +/-	145
Mn-K	0.00000 +/-	0.00001	0 +/-	0
Mn-L	C oulon		0 +/-	0
Fe-L			600 +/-	83
Р — К	0.00216 +/-	0.00143	183 +/-	121
Bence-Albe	ee Analysis	20.00 kV	40.00 Deg	
No. of Ite	erations 3			
0xide	k-ratio	Beta	Wt %	
Na20	0.0088	1.7116	0.55	
MgO	0.0250	1.2387	1.13	
A1203	0.7915	1.1193	32.47	
Si02	1.0194	1.3110	48.99	
K20	0.2192	1.1628	9.34	
CaO	0.0079	1.1419	0.33	
Ti02	0.0279	1.1293	1.16	
Fe0	0.1388	1.1203	5.70	
MnO	0.0000	1.1378	0.00	
P205	0.0060	1.5158	0.33	
Tota I			100.00%	
Na 0.149	9 Ma 0.23	69 A1	5.3675 Si f	5.8705
K 1.671	18 Ca 0.04	95 Ti	0.1220 Fe 0	6684
Mn 0.000	00 P 0.03	193 02	4.0000	

Magnetit: Theoretische Formel: $Fe_{1,0}^{II} O \times Fe_{2,0}^{III} O_3$

Element	Indizes (ElemZelle)	Ladungsberechnung	Indizes/6 =
		(Indizes * ElemLadung)	Formelindizes
Na	0	0	0
Ca	0,05	0,1	0
Κ	0,09	0,09	0,01
Mg	0	0	0
Al	0,34	1,02	0,06
Si	0,46	1,84	0,08
FeII	20,01	40,02	3,34
FeIII	0	0	0
Ti	1,23	4,92	0,2
Mn	0	0	0
Cr	0	0	0
Р	0	0	0
		47,99	

*6: $Fe_6^{II} O_6 \times Fe_{12}^{III} O_{18}$ Probe: BtIII, Bohrkern Bockeroth 12,50 m, 8

22,04

 $\overbrace{Fe_{20,01}^{II} Ti_{1,23} Al_{0,34} Si_{0,46}}^{II} O_{24}$

(Beimengungen von Calcit)

3,67

 $\overbrace{Fe_{3,34}^{II} \ Ti_{0,20} \ Al_{0,056} \ Si_{0,08}}^{II} \ O_4$

T**ty** Go Bt III, 12,50, 8

Chi-sqd = 0	.92	Livet	ime = 60.0 Sec	
Standardles.	s Analysis			
Element	Rel. k-	-ratio	Net Coun	ts
С -К			1277 +/-	33
0 -K			6219 +/-	78
Na-K 0	.00000 +/-	0.00001	0 +/-	0
Mg-K 0	.00000 +/-	0.00001	0 +/-	0
A1–K 0	.00319 +/-	0.00037	337 +/-	39
Si-K 0	.00615 +/-	0.00047	617 +/-	47
K – K 0	.00303 +/-	0.00153	194 +/-	98
Ca-K 0	.00164 +/-	0.00082	93 +/-	46
Ti-K 0	.05046 +/-	0.00156	2202 +/-	68
Fe-K 0	.93553 +/-	0.00959	26919 +/-	276
Mn-K 0	.00000 +/-	0.00001	0 +/-	0
Mn-L	1004000		0 +/-	0
Fe-L			2425 +/-	84
C1-K			0 +/-	0
S -K			0 +/-	0
Bence-Albee	Analysis	20.00 kV	40.00 Deg	
No. of Iter	ations 2			
Oxide	k-ratio	Beta	Wt %	
Na20	0.0000	3.8616	0.00	
Mg0	0.0000	2.3854	0.00	
A1203	0.0083	1.8527	1.08	
Si02	0.0165	1.5050	1.75	
K20	0.0037	1.0365	0.27	
CaO	0.0024	0.9737	0.16	
Ti02	0.0921	0.9560	6.20	
Fe0	1.2699	1.0119	90.53	
MnO	0.0000	1.0050	0.00	
Total			100.00%	

Na	0.0003	Mg 0.0002	Al 0.3377	Si 0.4625
К ——	0.0923	Ca 0.0463	Ti 1.2323	Fe20.0111
Mn	0.0000	0 24.0000		

Magnetit: Theoretische Formel: $Fe_{1,0}^{II} O \times Fe_{2,0}^{III} O_3$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/6 = Formelindizes
Na	0,16	0,16	0,03
Ca	0,04	0,08	0
К	0,04	0,04	0
Mg	0,06	0,12	0,01
Al	0,33	0,99	0,06
Si	0,42	1,68	0,07
FeII	5,88	11,76	0,98
FeIII	11	33	1,83
Ti	0	0	0
Mn	0,12	0,24	0,02
Cr	0	0	0
Р	0	0	0
		48,07	

*6: $\operatorname{Fe}_{6}^{\operatorname{II}} \operatorname{O}_{6} \times \operatorname{Fe}_{12}^{\operatorname{III}} \operatorname{O}_{18}$
Probe: Sm3,14, Bohrkern Bockeroth 17,25 m

 $\overbrace{Fe_{5,88}^{II} Mn_{0,12}}^{6} Fe_{11}^{III}O_{24}$

(Beimengungen von Calcit)

 $\overbrace{Fe_{2,94}^{II} Mn_{0,06}}^{3} Fe_{1,83}^{III} O_4$

neben Magnetit noch Hämatit (5,46 Fe)

Sm3, 14 Livetime = 115.0 Sec. Chi-sqd = 1.53Standardless Analysis Net Counts Element Rel. k-ratio С –К 4772 +/-91 -----24768 +/-0 -K 159 88 +/5 Na-K 0.00050 + / - 0.0002849 0.00035 +/- 0.00022 93 +/-57 Mg-K 0.00281 +/- 0.00027 691 +/-A1-K 67 0.00512 +/- 0.000330.00117 +/- 0.00048Si-K 1194 +/-76 К –К 175 +/-71 181 +/-Ca-K 0.00138 +/- 0.00055 72 Ti-K 0 +/-0.00000 +/- 0.00001 0 0.98328 +/- 0.00663 Fe-K 65799 +/-444 0.00539 +/- 0.00215 399 +/-Mn-K 159 Mn-L 0 +/-0 ----10410 +/-170 Fe-L P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 2 Oxide k-ratio Beta Wt % Na20 0.0010 3.9524 0.30 0.0009 Mg0 2.4390 0.15 A1203 0.0073 1.8896 1.00 Si02 0.0137 1.5283 1.51 K20 0.0014 1.0392 0.11 CaO 0.0020 0.9748 0.14 Ti02 0.0000 0.9519 0.00 1.3347 Fe0 1.0040 96.27 Mn0 0.0074 0.9940 0.53 P205 0.0000 1.3621 0.00 Total 100.00% Mg-- 0.0633 Al-- 0.3257 Ca-- 0.0418 Ti-- 0.0000 Na-- 0.1589 Si-- 0.4185 K -- 0.0382 Fe--22.3467 Mn-- 0.1239 P -- 0.0001 0 --24.0000

Ilmenit: Theoretische Formel: FeTiO₃

*8:	Fe ₈ Ti ₈ O ₂₄
-----	---

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/8 = Formelindizes
Na	0,18	0,18	0,02
Ca	0,03	0,06	0
Κ	0	0	0
Mg	0	0	0
Al	0,09	0,27	0,01
Si	0,19	0,76	0,02
FeII	7,31	14,62	0,91
FeIII	0	0	0
Ti	7,88	31,52	0,98
Mn	0,29	0,58	0,04
Cr	0	0	0
Р	0	0	0
		47,99	

Probe: Sm 11, 3, Bohrkern Bockeroth 4,50 m

 $\overbrace{Ti_{7,88}Al_{0,09}}^{7,97}\overbrace{Fe_{7,31}^{II}\,Mn_{0,29}\,Si_{0,19}\,Na_{0,18}\,Ca_{0,03}}^{8,0}O_{24}$

 $\overbrace{Ti_{0,985}Al_{0,011}}^{1,0} \overbrace{Fe_{0,913}^{II}\ Mn_{0,04}\ Si_{0,02}\ Na_{0,02}\ Ca_{0,003}}^{1,0} O_3$

Sm11, 3

Chi-sqd =	1.81	Livet	ime = 60.0 Sec	с.
Standard1	ess Analysis			
Element	Rel. k	-ratio	Net Cour	nts
С — К			2070 +/-	45
0 –K	(<u> </u>		4183 +/-	135
Na-K	0.00115 +/-	0.00066	107 +/-	61
Mg-K	0.00000 +/-	0.00001	0 +/-	0
AĪ-K	0.00150 +/-	0.00036	193 +/-	46
Si-K	0.00437 +/-	0.00043	534 +/-	53
C1-K			0 +/-	0
S – K	0.00000 +/-	0.00001	0 +/-	0
КК	0.00000 + / -	0.00001	0 +/-	0
Ca-K	0.00184 +/-	0.00075	125 +/-	51
Ti-K	0.47967 +/-	0.00448	25462 +/-	238
Fe-K	0.49285 +/-	0.00694	17258 +/-	243
Mn-K	0.01862 +/-	0.00318	721 +/-	123
Mn-L			0 +/-	0
Fe-L			1326 +/-	90
Bence-Alb	ee Analysis	20.00 k¥	40.00 Deg	
NO. OT IT	erations 2	0.1		
UX TOE	e K-Fatio	beta 1 1 207	WT %	
NaZU MaQ	0.0024	3.1/9/	0.47	
1 ngo	0.0000	2.0278	0.00	
A1203	0.0039	1.0102	0.39	
5102	0.0117	1.3459	0.97	
203	0.0000	1.1152	0.00	
K20 C=0	0.0000	1.0123	0.00	
	0.0027	0.9548	0.16	
T102	0.8750	0.9776	52.51	
FeU	0.6690	1.0667	43.81	
MnU	0.0255	1.0835	1.70	

Na 0.1808 Mg 0.0001 Al 0.0911 Si 0.1935 S 0.0000 K 0.0000 Ca 0.0333 Ti 7.8781 Fe 7.3096 Mp 0.2867 024 0000	Na 0.1808 Mg 0.0001 Al 0.0911 Si 0.1935 S 0.0000 K 0.0000 Ca 0.0333 Ti 7.8781 Fe 7.3096 Mn 0.2867 024.0000	Total		100.00%		
		Na 0.1808 S 0.0000 Fe 7.3096	Mg 0.0001 K 0.0000 Mn 0.2867	Al 0.0911 Ca 0.0333 024.0000	Si 0.193 Ti 7.878	5 1

Titanit (Sphen): Theoretische Formel: Ca Ti $[O + Si O_4]$

*4,8: $Ca_{4,8}$ Ti_{4,8} [O_{4,8} | Si_{4,8} O_{19,2}]

Probe: Sm 7, 12, Bohrkern Bockeroth 9,60 m

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/4,8 = Formelindizes
Na	0	0	0
Ca	4,65	9,3	0,97
Κ	0	0	0
Mg	0	0	0
Al	0,24	0,72	0,05
Si	4,91	19,64	1,02
FeII	0,1	0,2	0,02
FeIII	0	0	0
Ti	4,51	18,04	0,94
Mn	0	0	0
Cr	0,03	0,09	0
Р	0	0	0
		47,99	

 $\overbrace{Ca_{4,65}\;Fe_{0,1}^{II}Cr_{0,03}Ti_{0,02}}^{4,80}\overbrace{Ti_{4,49}\;Al_{0,24}\,Si_{0,11}}^{4,84}\left[Si_{4,8}\,O_{24}\right]$

Tty SM 7, 12 Livetime = 60.0 Sec. Chi-sqd = 1.06Standardless Analysis Net Counts Element Rel. k-ratio C-K 3541 +/-71 ____ 0 -K ____ 4721 +/-100 Na-K 0.00000 + / - 0.000010 +/-0 Mq-K 0.00000 + / - 0.000010 +/-0 AĬ-K 0.00808 +/- 0.00058 831 +/-60 Si-K 0.21322 +/- 0.00145 20848 +/-142 C1-K 0 +/-0 S -K 0.00000 + / - 0.000010 +/-0 К -К 0.00000 +/- 0.00001 0 +/-0 Ca-K 0.38403 +/- 0.00288 20938 +/-157 Ti-K 0.38164 +/- 0.00452 16217 +/-192 0.01052 +/- 0.00335 Fe-K 295 +/-94 Mn-K 0.00000 + / - 0.000010 +/-0 Mn-L 0 +/------0 Fe-L 0 +/-0 Cr-K 0.00251 + / - 0.0010493 +/-38 P -K 0.00000 + / - 0.000010 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 3 **Oxide** k-ratio Beta Wt % Na20 0.0000 2.1151 0.00 0.0000 Mg0 1.4541 0.00 A1203 0.0211 1.2455 1.28 Si02 0.5724 1.1215 31.44 \$03 0.0000 1.1611 0.00 0.0000 K20 1.0641 0.00 CaO 0.5569 1.0193 27.80 Ti02 0.6962 1.1275 38.45 0.0143 Fe0 1.1368 0.80 0.00 MnO 0.0000 1.1679 Cr203 0.0040 0.23 1.1622 P205 0.0000 1.2710 0.00 Total 100.00% Na-- 0.0001 Mg-- 0.0000 Al-- 0.2364 Si-- 4.9095 S -- 0.0000 K -- 0.0000 Ca-- 4.6513 Ti-- 4.5147 Fe-- 0.1039 $Mn-- 0.0000 \quad Cr-- 0.0278 \quad P \ -- \ 0.0000 \quad 0 \ --24.0000$

Titanit (Sphen): Theoretische Formel: Ca Ti $[O + Si O_4]$

*4,8: Ca_{4,8} Ti_{4,8} $\left[O_{4,8} | Si_{4,8} O_{19,2} \right]$

Probe: Ailly 264, 4,40 m

Element		Ladungsberechnung	/4,8
Na	0,1	0,1	0,02
Ca	5,15	10,3	1,07
Κ	0,07	0,07	0,01
Mg	0,07	0,14	0,01
Al	0,62	1,86	0,13
Si	3,71	14,84	0,77
FeII	0,21	0,42	0,04
FeIII	0	0	0
Ti	4,99	19,96	1,04
Mn	0	0	0
Cr	0	0	0
S	0,05	0,3	0,01
		47,99	

Element		Ladungsberechnung	/4,8
0	24	-48	5

$$\overbrace{Ca_{4,72}\;Na_{0,1}\;K_{0,07}}^{4,89}\overbrace{Ti_{4,52}\;Fe_{0,21}^{II}\;Mg_{0,07}}^{4,8}\left[\overbrace{Si_{3,71}\;Al_{0,62}Ti_{0,47}}^{4,8}O_{24}\right]$$

0,43 Ca in assoziertem Calcit

AILLY,264, b1

Chi-sqd =	0.84	Livet	ime = 30.0 Se	ec.
Standard1	ess Analysis			
Element	Reĺ, k-	-ratio	Net Cou	ints
C –K			2597 +/-	53
0 -K			1611 +/-	41
Na-K	0.00144 +/-	0.00041	75 +/-	21
Mg-K	0.00167 +/-	0.00039	129 +/-	30
A1-K	0.01961 +/-	0.00067	1402 +/-	48
Si-K	0.14779 +/-	0.00144	10055 +/-	98
C1-K	<u>(40,040)(40,00)</u>		0 +/-	0
S -K	0.00251 +/-	0.00138	130 +/-	72
К –К	0.00550 +/-	0.00099	239 +/-	43
Ca-K	0.40355 +/-	0.00353	15310 +/-	134
Ti-K	0.39748 +/-	0.00551	11752 +/-	163
Fe-K	0.02046 +/-	0.00236	399 +/-	46
Mn-K	0.00000 + / -	0.00001	0 +/-	0
Mn-L			0 +/-	0
Fe-L			82 +/-	37
Cr-K	0.00000 +/-	0.00001	0 +/-	0
Bence-A1t	bee Analysis	20.00 kV	40.00 Deg	
No. of It	erations 3			
0×ide	e k-ratio	Beta	Wt %	
Na20	0.0030	2.1612	0.33	
H ₂ O	0 0041	1 40 41	0 01	

rigu	0.0041	1.4841		0.31
A1203	0.0511	1.2682		3.26
Si02	0.3968	1.1524	2	2.98
S03	0.0071	1.1365		0.41
K20	0.0068	1.0521		0.36
CaO	0.5852	1.0110	2	9.74
Ti02	0.7251	1.1262	4	1.04
Fe0	0.0278	1.1356		1.58
MnO	0.0000	1.1679		0.00
Cr203	0.0000	1.1631		0.00
Total			10	0.00%
Na 0.1021	Mg 0.07	41 Al	0.6200	Si 3.7128
S 0.0494	K 0.07	42 Ca	5.1473	Ti 4.9862
Fe 0.2141	Mn 0.00	00 Cr	0.0000	024.0000

Rutil: Theoretische Formel: TiO₂

*12: Ti₁₂O₂₄

Probe: Bohrkern Bockeroth 1,40 m

Element	Indizes (ElemZelle)	Ladungsberechnung	Indizes/12 =	
		(Indizes * ElemLadung)	Formelindizes	
Na	0	0	0	
Ca	0,05	0,1	0	
Κ	0,01	0,01	0	
Mg	0	0	0	
Al	0,61	1,83	0,05	
Si	0,3	1,2	0,02	
FeII	1,55	3,1	0,13	
FeIII	0	0	0	
Ti	10,35	41,4	0,86	
Mn	0,04	0,08	0	
Cr	0,04	0,12	0	
Р	0,03	0,15	0	
		47,99		

12,01

 $\overbrace{Ti_{10,35} \; Fe_{1,55}^{II} \; Mn_{0,04} \; Cr_{0,04} \; P_{0,03}}^{II} \; O_{24}$

(Beimengungen von Calcit)

1,0

 $\overbrace{Ti_{0,86}\ Fe_{0,13}\ Mn_{0,003}\ Cr_{0,003}\ P_{0,0025}} O_2$

Γŧy

Chi-sqd = 6.96Livetime = 127.0 Sec. Standardless Analysis Net Counts Element Rel. k-ratio C -K 3163 +/-83 0 -K 11072 +/-204 0 +/-Na-K 0.00000 + / - 0.000010 0.00000 + / - 0.00001Mg-K 0 +/-0 AI-K 0.01526 +/- 0.00037 3743 +/-90 0.00989 +/- 0.00073 Si-K 2307 +/-171 C1-K 0 +/-0 0.00000 + / - 0.00001S -K 0 +/-0 K -K 0.00078 +/- 0.00047 116 +/-70 Ca-K 0.00402 +/- 0.00058 523 +/-75 Ti-K 0.82728 +/- 0.00420 83879 +/-426 Fe-K 0.13472 +/- 0.00330 9012 +/-221 Mn-K 0.00362 + / - 0.00191267 +/-141 Mn-L 0 +/-0 Fe-L 0 +/-0 Cr-K 0.00340 + / - 0.00139297 +/-121 P -K 0.00103 + / - 0.00043205 +/-85 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 2 0xide Wt % k-ratio Beta Na20 0.0000 0.00 2.6369 0.0000 Mg0 1.7289 0.00 A1203 0.0398 3.09 1.4195 Si02 0.0265 1.2423 1.81 S03 0.0000 1.0727 0.00 K20 0.0010 1.0035 0.05 CaO 0.0058 0.9504 0.30 Ti02 1.5091 82.80 1.0007 Fe0 0.1829 1.1091 11.12 MnO 0.0050 0.31 1.1415 Cr203 0.0053 1.1360 0.33 P205 0.0028 1.1609 0.18 Total 100.00% Na-- 0.0001 Mg-- 0.0001 Al-- 0.6066 Si-- 0.3007 S -- 0.0000 K -- 0.0112 Ca-- 0.0541 Ti--10.3546 Fe-- 1.5465 Mn-- 0.0436 Cr-- 0.0438 P -- 0.0255 0 --24.0000

Rutil: Theoretische Formel: TiO₂

*12: Ti₁₂O₂₄

Element	Indizes	Ladungsberechnung	Indizes/12 =
	(ElemZelle)	(Indizes * ElemLadung)	Formelindizes
Na	0,07	0,07	0
Ca	0,02	0,04	0
Κ	0,03	0,03	0
Mg	0	0	0
Al	0,25	0,75	0,02
Si	0,33	1,32	0,03
FeII	0,13	0,26	0,01
FeIII	0	0	0
Ti	11,38	45,52	0,95
Mn	0,01	0,02	0
Cr	0	0	0
Р	0	0	0
		48,01	

Probe: Sm 3,16, Bohrkern Bockeroth 17,25 m

12,1

 $\overbrace{Ti_{11,38}\;Fe_{0,13}^{II}\;Mn_{0,01}\;Al_{0,25}\;\;Si_{0,33}}^{II}\;O_{24}$

(Beimengungen von Calcit)

 $\overbrace{Ti_{0,95}\;Fe_{0,01}^{II}Al_{0,02}\,Si_{0,03}}^{1,01}\;O_2$

ſty

Sm3, 16 Chi-sqd = 3.75 Livetime = 63.0 Sec. Standardless Analysis Element Rel. k-ratio Net Counts C-K 1805 +/-50 0 -K ------5526 +/-108 Na-K 0.00076 +/- 0.00071 67 +/-63 Mg-K 0.00000 +/- 0.00001 0 +/-0 AI-K 0.00701 +/- 0.00045 866 +/-55 Si-K 0.01184 +/- 0.00054 1391 +/-63 К -К 0.00214 +/- 0.00067 161 +/-50 0.00160 +/- 0.00076 Ca-K 106 +/-500.96306 +/- 0.00617 Ti-K 49170 +/-315 0.01235 +/- 0.00151 417 +/-Fe-K 51 Mn-K 0.00124 + / - 0.0012447 +/-47 Mn-L ----0 +/-0 Fe-L -----0 +/-0 P -K 0.00000 +/- 0.00001 0 +/-0 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 2 Oxide k-ratio Beta Wt % Na20 0.0016 2.4935 0.21 Mg0 0.0000 1.6559 0.00 A1203 0.0183 1.3710 1.35 Si02 0.0318 2.05 1.1959 0.0027 K20 0.9958 0.14 CaO 0.0023 0.9448 0.12 Ti02 1.7568 1.0046 95.01 Fe0 0.0168 1.1217 1.01 Mn0 0.0017 1.1603 0.11 P205 0.0000 1.1296 0.00 Total 100.00% Mg-- 0.0001 Al-- 0.2530 Si-- 0.3258 Na-- 0.0652 K -- 0.0289 Ca-- 0.0202 Ti--11.3762 Fe-- 0.1348 Mn-- 0.0143 P -- 0.0000 0 --24.0000

Apatit: Theoretische Formel: $Ca_5 [(F, Cl, OH) + (PO_4)_3]$

Probe Sm 3, 6, Bohrkern Bockeroth 17,25 m

Da die Analysen auf 24 O berechnet sind, wird die Formel x 2 genommen:

 $Ca_{10} [(F, Cl, OH)_2 + P_6O_{24}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/2 = Formelindizes
Na	0,11	0,11	0,06
Ca	9,5557	19,11	4,78
Κ	0,03	0,03	0,01
Mg	0,04	0,08	0,02
Al	0,15	0,45	0,07
Si	0,31	1,24	0,16
FeII	0,12	0,24	0,06
FeIII	0	0	0
Ti	0	0	0,000
Mn	0,04	0,08	0,02
Р	5,33	26,65	2,67
		47,99	

 $\overbrace{\left(Ca_{9,56} \ Fe_{0,12}^{II} \ Na_{0,11} \ Mg_{0,04} \ Mn_{0,04} K_{0,03}\right)}^{9,9} \quad [(F,Cl,OH)_2 \ | \overbrace{P_{5,33} \ Si_{0,31} \ Al_{0,15}}^{5,79} O_{24}]$

Formel für den Apatit:

 $\overbrace{\left(Ca_{4,78} \ Fe_{0,06}^{II} \ Na_{0,06} \ Mg_{0,02} \ Mn_{0,02} K_{0,02}\right)}^{4,96} \quad [(F,Cl,OH) | \overbrace{P_{2,66} \ Si_{0,16} \ Al_{0,08}}^{2,9} O_{12}]$

Mg	FeII	Ca	Summe
0,95	0,67	5,5	7,12
13,3	9,4	77,2	100

Sm3,6 Chi-sqd = 1.25Livetime = 71.0 Sec. Standardless Analysis Element Net Counts Rel. k-ratio C-K 2011 +/-53 0 -K 3268 +/-----58 Na-K 0.00171 +/- 0.00050 130 +/-38 Mg-K 0.00105 +/- 0.00038 119 +/-43 AI-K 0.00500 +/- 0.00051 528 +/-53 Si-K 0.01288 +/- 0.00071 1292 +/-71 К -К 0.00226 +/- 0.00083 145 +/-53 0.70300 +/- 0.00556 Ca-K 39319 +/-311 Ti-K 0.00000 +/- 0.00001 0 +/-0 Fe-K 0.01130 +/- 0.00188 325 +/-54 Mn-K 0.00397 +/- 0.00157 127 +/-50 Mn-L 136 +/-79 Fe-L ------383 +/-57 P -K 0.25883 +/- 0.00289 22141 +/-247 Bence-Albee Analysis 20.00 kV 40.00 Deg No. of Iterations 2 0xide k-ratio Beta Wt % Na20 0.0035 1.9518 0.36 Mg0 0.0026 1.3731 0.18 A1203 0.0130 1.1969 0.81 Si02 0.0346 1.0865 1.95 K20 0.0028 1.0944 0.16 CaO 1.0194 1.0581 55.89 Ti02 0.0000 1.2232 0.00 Fe0 0.0153 1.1418 0.91 Mn0 0.0054 1.1711 0.33 P205 0.7144 1.0650 39.42 Tota1 100.00% Na-- 0.1110 Mg-- 0.0440 Al-- 0.1518 Si-- 0.3107 K -- 0.0323 Ca-- 9.5557 Ti-- 0.0000 Fe-- 0.1211 Mn-- 0.0446 P -- 5.3255 0 --24.0000

Chlorit: Theoretische Formel: $Mg_3 [(OH)_8 (Si, Al)_4 O_{10}]$

Element	Indizes (ElemZelle)	Ladungsberechnung (Indizes * ElemLadung)	Indizes/1,715 = Formelindizes
Na	0	0	0
Ca	0	0	0
К	0,05	0,05	0,03
Mg	2	4	1,17
Al	4,98	14,94	2,9
Si	4,7	18,8	2,74
FeII	5,04	10,08	2,94
FeIII	0	0	0
Ti	0	0	0
Cr	0	0	0
Mn	0,07	0,14	0,04
		48,01	

*1,715: $Mg_{5,145} [(OH)_{13,27} (Si, Al)_{6,86} O_{17,15}]$ Probe: Bohrkern Bockeroth 6,50 m, 10

$$\left(\underbrace{Fe_{5,04}^{II} Mg_{2,0} Al_{2,82} K_{0,05} Mn_{0,07}}^{9,98} \right) (OH)_{13,72} \left[\underbrace{(Si_{4,7} Al_{2,16})}^{6,86} O_{17,25} \right]$$

Mg	FeII	Al	Summe
2	5,04	2,82	9,86
20,28	51,12	28,6	100

I Bt 6.50, 10

Chi-sqd = 1	. 27	Live	etime = 0	50.0 S	ec.
Standardless	s Analysis				
Element	Rel. k-	ratio		Net Co	unts
C -K			24	32 +/-	40
0 -K			40	64 +/-	59
Na-K 0.	.00000 +/-	0.00001		0 +/-	0
Mg-K 0	.04904 +/-	0.00122	25	65 +/-	64
A1-K 0	.16367 +/-	0.00370	79	96 +/-	181
Si-K 0	.17465 +/-	0.00355	81	18 +/-	165
K – K 0	.00424 +/-	0.00118	1.	27 +/-	35
Ca-K 0	.00000 +/-	0.00001		0 +/-	0
Ti-K 0	.00000 +/-	0.00001		0 +/-	0
Fe-K 0	.60011 +/-	0.01253	79	98 +/-	167
Mn-K 0	.00829 +/-	0.00272	1.	22 +/-	40
Mn-L				0 +/-	• 0
Fe-L			5	51 +/-	53
C1-K				0 +/-	0
S — K				77 +/-	39
No. of Itor	ations 2	20100 KT	10.0	o beg	
No. Of Itera	actions a	Bota		ut %	
Na 20	0 0000	2 4367		0 00	
MaD	0.1209	1 6185		8 17	
A1203	0.4265	1 4454	2	5 74	
Sin2	0 4688	1 4633	2	8 64	
K20	0 0053	1 1304	2	0.25	
Call	0.0000	1 0651		0.00	
Ti02	0.0000	1 0578		0.00	
Fe0	0.8146	1 0787	3	6 69	
MnO	0 0114	1 0851	5	0.51	
Total	0.0114	1.0001	10	0.00%	
Na 0 0001	Ma 1 90	-14 086	4 9778	Sim	4 7009
K 0.0519	Ca 0.00	000 Ti	0 10000	Eo	E 0251

1

Chlorit: Theoretische Formel: $Mg_3 [(OH)_8 (Si, Al)_4 O_{10}]$

 $\begin{array}{l} Mg_{5,145} \left[(OH)_{13,72} \left(Si, Al \right)_{6,86} O_{17,15} \right] \\ Probe: Bohrkern Bockeroth 12,50 \mbox{ m}, 12 \end{array}$

Element	Indizes (ElemZelle)	Ladungsberechnung
		(Indizes * ElemLadung)
Na	0	0
Ca	0,08	0,16
Κ	0,03	0,03
Mg	2,27	4,54
Al	4,97	14,91
Si	4,94	19,76
FeII	4,11	8,22
FeIII	0	0
Ti	0	0
Cr	0	0
Mn	0,19	0,38
		48

$$\left(\frac{9.73}{\text{Fe}_{4,11} \text{ Mg}_{2,27} \text{ Al}_{3,05} \text{ Mn}_{0,19} \text{ Ca}_{0,08} \text{ K}_{0,03}}\right) (\text{OH})_{13,72} \left[\frac{6.86}{(\text{Si}_{4,94} \text{ Al}_{1,92})} \text{ O}_{17,25}\right]$$

Mg	FeII	Al	Summe
2,27	4,11	3,05	9,43
24,07	43,58	32,34	100

Go Bt III, 12,50, 12

Chi-sqd =	1.42	Live	etime = 0	60.0 Se	ec.	
Standardle	ess Analysis					
Element	Rel. k-ratio			Net Counts		
С -К			26	69 +/-	61	
0 -K			74	66 +/-	78	
Na-K	0.00000 +/-	0.00001		0 +/-	0	
Mg-K	0.06264 +/-	0.00137	36	03 +/-	79	
AĬ-K	0.17955 +/-	0.00392	96-	43 +/-	210	
Si-K	0.19935 +/-	0.00211	101	89 +/-	108	
К –К	0.00224 +/-	0.00113		74 +/-	37	
Ca-K	0.00733 +/-	0.00137	2	10 +/-	39	
Ti-K	0.00000 +/-	0.00001		0 +/-	0	
Fe-K	0.52528 +/-	0.01133	76	96 +/-	166	
Mn-K	0.02361 +/-	0.00291	3	83 +/-	47	
Mn-L				0 +/-	0	
Fe-L	and the second		9	42 +/-	66	
C1-K				58 +/-	40	
S -K			2	05 +/-	81	
Bence-Alb	ee Analysis	20.00 kV	40.0	0 Deg		
No. of It	erations 3					
Uxide	k-ratio	Beta		Wt %		
Na2U	0.0000	2.3099		0.00		
MgU	0.1544	1.5503		9.57		
A 1203	0.4678	1.4167	2	6.48		
5102	0.5352	1.4525	31.06			
K20	0.0028	1.1370	0.13			
CaO	0.0106	1.0713	0.46			
1102	0.0000	1.0670	0.00			
Fe0	0.7130	1.0850	30.91			
MnO	0.0323	1.0930	1.41			
Total			10	0.00%		
Na 0.00	01 Mg 2.20	695 A1	4.9669	Si	4.9427	
K 0.02	55 Ca 0.0	776 Ti	0.0000	Fe	4.1139	
Mn 0.19	04 0 24.00	000				

Auswertung der Bodendünnschliffe des Profils Neustadt an der Wied

Aus dem Profil Neustadt/Wied wurden 14 orientierte Bodenproben entnommen, aus denen im Labor Bodendünnschliffe hergestellt wurden. Die Auswertung der Bodendünnschliffe erfolgte selbst nach Anleitung durch Dr. N. Günster und Besuch eines Blockseminares bei Herrn Dr. S. Stephan. Die Aufnahmen wurden im Institut für Mineralogie der Universität Bonn mit einer digitalen Kamera gemacht.

In der aufgeführten Tabelle sind zum einen die nach Ansprache im Gelände vermuteten Horizonte, die Entnahme-Tiefe und die Stratigraphie nach Nehring (2001) aufgelistet.

Bezeichnung	Vermuteter	Stratigraphie nach	Entnommene	Vertikale Tiefe
Dünnschliff	Horizont	Nehring 2001	Tiefe (nicht	im Profil
			umgerechnet)	
N1	Bt- rezent	Bt	0,30	0,17
N2	Löß, dunkel, entkalkt	1.fSw	2,20	1,22
N3	Löß, hell, entkalkt	II CvSw	3,40	1,88
N4	Löß, kalkhaltig	2a fSw	6,60	3,65
N5	Lohner Boden?	2. UZ (h)	12,50	6,91
N6	Ah (?)	5. F (M) BvSw	15,50	8,57
N7	Naßboden	4. II CvSw	16,70	9,24
N8	Ah (?)	9. fBvh	19,80	10,95
N9	Ah, grau	10. fBvh	20,70	11,45
N10	Bt (?)	11. FAh/Al + 4. UZ	21,90	12,11
N11	Bv	5. UZ + 14. fMBvSw	27,60	15,26
N12	Bv	7. II CvSw	30,40	16,81
N13	Eiskeil	I CvSw (Bv)	1,40	0,77
N14	Bodensedime		1,20	0,66
	nt (unter Eltviller)			

N1

Der Dünnschliff N1 wurde aus dem rezenten Bt-Horizont aus einer Teufe von 0,17 m entnommen. Deutlich zu erkennen ist die feinkörnige Matrix, die bei Böden auf Löß(-lehmen)

aus Quarzen (grau, einfarbig), Feldspäten (dunkelgrau mit deutlichen

"Auslöschungsspuren") und ungestörten Tonkutanen (gelb-bräunlich) besteht.

N2

Der Dünnschliff N2 wurde aus einer kalkhaltigen Lößschicht bei 1,22 m entnommen. Auf dem Dünnschliff erscheint eine große Wurzelröhre schwarz. Die Tonkutanen kleiden die Wurzelgänge aus, d.h. hier hat eine Tonverlagerung aus dem Oberboden in diesen Horizont stattgefunden (Maßstab = 63 μ m). "Bunt" erkennt man z. T. große Glimmer, von denen hier einer direkt rechts neben dem Maßstab zu erkennen ist. Die Matrix ist nicht gleichmäßig, was

auf eine Verlagerung hindeuten könnte. Nach diesem Dünnschliff ist der Horizont als Bt(Bv)-Horizont anzusprechen.
Die Probe zur Herstellung des Dünnschliffes N3 entstammt einem hellen Löß aus einer Teufe von 1,88 m. In dieser Probe ist im Gegensatz zu den vorigen Photos, die Matrix feinkörniger und mit einzelnen größeren Gesteinsbruchstücken durchsetzt. In der Bildmitte (rötliche Farben) kann man opake Minerale (Eisen-/Mangan-Oxide) erkennen, die auch bei parallelen Nicols als dunkle Flecken zu erkennen sind. Dieser Horizont ist sehr porös, deshalb konnte sich etwas Ton in der Matrix einlagern. Wahrscheinlich handelt es sich hier um einen <u>Schwemmlöß</u>.

N4

Der Dünnschliff N4 wurde aus einer Teufe bei 3,65 m entnommen. Ohne gekreuzte Polarisatoren erscheint der Dünnschliff "gräulich". Durch Fe-Flecken erscheint die Matrix dunkler als bei den zuvor beschriebenen Dünnschliffen. Deutlich sind (bei gekreuzten Polarisatoren) bläulich schimmerde Farben zu erkennen: Dabei handelt es sich um Calcit (Bruchstücke, z.T. um idiomorphe Rhomboeder). In diesem Horizont sind keine Verbraunungserscheinungen feststellbar. Es lassen sich keine <u>eindeutigen</u> hydromorphen Merkmale feststellen. Dennoch ist dieser Horizont vom Gesamtbild (Gelände) als (beginnende) Naßbodenbildung zu deuten.

N4: Naßboden

N5

Die Matrix dieses Dünnschliffes ist nicht homogen, sie wirkt "durchmischt", d.h. größere Minerale sind in eine feinkörnigere Matrix eingebettet. Daraus läßt sich schließen, daß es sich bei dieser Probe um eine Fließerde handeln könnte. Unterhalb des Maßstabes ist eine Wurzelröhre erkennbar. Die Tonkutanen sind bereits in die Bodenmatrix eingearbeitet, jedoch

noch als solche erkennbar, d.h. der Boden wurde seit der Tonverlagerung nicht erneut umgelagert. Am linken oberen Bildrand ist ein Calcit-Bruchstück erkennbar; ebenfalls kann man ein hochlichtbrechendes Mineral im linken oberen Drittel erkennen, wobei es sich um einen Glimmer handelt.

N5: Fließerde (?) mit Nebengesteinsbruchstücken

Da die Probe N6 für die Fragestellung von großer Bedeutung war, wurden von dem Dünnschliff 25 Dias angefertigt. Die Probe entstammt einer Teufe von umgerechnet 8,57 m und wurde im Gelände als fAh angesprochen. Fossile Ah-Horizonte sind (vor allem in älteren Profilen) oft bereits wieder abgetragen worden, so daß das aus den wenigsten Profilen fAh beschrieben werden können.

Als Hauptminerale sind in dem Dünnschliff eckige und gerundete Quarze zu erkennen; dies spricht für eine unterschiedliche Herkunft des Materials. Die Korngröße ist variabel. Bei den Feldspäten <u>überwiegen die K-Feldspäte (Mikroklin)</u>, die xenomorph, mehr oder weniger frisch in der Matrix verteilt sind. <u>Plagioklase</u> kommen quantitativ weniger vor, meistens als Albit (0-5 % Anorthit). Sie bilden polysynthetische Zwillinge (n \approx 1,53) mit einer schiefen Auslöschung bei 15-17 °; Oligoklas ist seltener in diesem Schliff. Die <u>Glimmer</u> bestehen hauptsächlich aus detritischen Muskoviten, z. T. jedoch auch Serizit/Illit, Chlorit und *Glaukonit*. Als lithische Fragmente treten oval bis linsenförmige Klasten (2-10 mm) auf. <u>Akzesorische Minerale</u>: Zirkon, Turmalin, Apatit, Epidot, Korund, Pyrite u.a. opake

Minerale. Auf zwei der Dias (siehe Abb.) sind rund ovale *Holzkohle-Klasten* zu erkennen. Die Matrix ist sehr schlecht sortiert, was für einen raschen Transport (unter Solifluktion) bzw. Eis (Gelifluktion) spricht. Es sind *keine Tonkutane* vorhanden! Das Vorhandesein von Holzkohleklasten spricht für einen fossilen Ah-Horizont.

N6: Holzkohlestücke (Obj. 10 x = 1,4 mm)

In der Bildmitte ist bei parallelen Nicols deutlich ein idiomorpher isometrischer Turmalin zu sehen. Die Farbe dieses Turmalins wechselt von grün(lich) zu blau. Im oberen Abschnitt sind

Fluideinschlüsse zu sehen

N6: idiomorpher Turmalin mit Fluideinschlüssen (Obj. 50= 0,26 mm)

N7

Der Dünnschliff N7 wurde in einer Teufe von 9,24 m entnommen. Die Matrix des Schliffes ist sehr feinkörnig. Bei parallelen Nicols läßt sich Mn entlang der Wurzelröhren erkennen. Deutlich ist rechts oberhalb des Maßstabes ein Calcit (leuchtend blaue Farben) zu erkennen.

Mn- und Fe-Konkretionen sind bereits bei parallelen Nicols deutlich zu erkennen. Die großen Einsprenglinge bestehen aus Quarz und Feldspäten. Entlang einer Wurzelröhre und feinstverteilt in der Matrix sind Tonminerale zu erkennen. Die deutlichen hydromorphen Merkmale sprechen für einen Naßboden.

Dünnschliff N8 wurde aus einer Teufe von 10,95 m entnommen. Die Bodenmatrix ist homogen, mit einzelnen Einsprenglingen. Die Quarze sind eckig, vergleichbar mit der einen Quarz-Komponente im Dünnschliff N6. Deutlich ist hier ein braun-rötlicher Lithoklast zu erkennen. Es könnte sich hierbei um einen Humus-Eisen-Komplex handeln. Der Dünnschliff zeigt deutlich hydromorphe Merkmale, jedoch keine Pflanzenreste. Es sind große Feldspäte und Plagioklas-Zwillinge zu erkennen. Durch die (durch Humus und Eisen) dunkel gefärbte Matrix spricht alles für einen fAh-Horizont. Ton ist nicht vorhanden, deshalb kann man diesen Horizont nicht (wie Nehring 2001) als Bv-Horizont ansprechen.

In diesem Dünnschliff, der aus einem Horizont bei 11,45 m stammt, handelt es sich um einen fossilen Bv. Deutlich lassen sich abgerissene Tonkutane und große Quarz- und Feldspat-Körner in einer feinkörnigeren Matrix erkennen. Die Quarz- und Feldspatkörner sind gerundet, d.h. unterscheiden sich sehr von denen im darüberliegenden Horizont. Die Tonkutane sind abgerissen, d. h. sie sind verlagert worden.

Die Matrix ist hier sehr feinkörnig und besteht aus Quarzen und Feldspäten. Eingeschaltet sind abgerissene Tonkutane, die, wenn auch nicht sehr weit, transportiert worden sind. Es könnte sich hierbei um eine Solifluktionsdecke handeln.

Im unteren Bild kann man deutlich drei verschiedene Matrix-Komponenten erkennen:

Zum einen eine sehr feinkörnige Matrix mit (abgerissenen) Tonkutanen, daneben eine gleichmäßige, etwas grobkörnigere Matrix (Schluff-Fraktion) mit abgerundeten Quarzen und Feldspäten und ganz rechts im Bild Fe- und Mn- Oxide mit deutlich gerundeten,

angewitterten Quarzen und Feldspäten. Daraus läßt sich schließen, daß es sich hier um eine Fließerde aus Löß und Bodenmaterial handelt. Die Fe- und Mn- Oxide könnten aus einem fossilen Ah stammen, die feinkörnige Matrix mit abgerissenen Tonkutanen aus einem fossilen Bv und die grobkörnigere Fraktion aus einem C(v)-Horizont.

Der Dünnschliff ist aus einem Horizont der Teufe von 12,11 m entnommen worden. Im Gelände wurde er als fossiler Bt angesprochen. Der Dünnschliff zeigt deutliche Tonkutane, die wie im folgenden Bild z.T. intakt um die Wurzelröhren verlaufen, z.T. aber auch in die Bodenmatrix eingearbeitet sind. Teilweise sind die Tonkutane abgerissen, was ein Zeichen für Verlagerung ist. Das Material ist hier etwas hangabwärts transportiert worden. Es sind hydromorphe Merkmale (Fe-Mn-Konkretionen) erkennbar. Große Quarz- und Feldspat-Körner, z. T. gerundet und angewittert sind zu erkennen. Im oberen Bild ist rechts

oberhalb der Wurzelröhre ein polysynthetischer Zwilling (Plagioklas) mit deutlichen Anwachszonen zu erkennen. Der Horizont ist als fBt zu bezeichnen, nicht wie bei Nehring (2001) als fAh/Al und Umlagerungszone.

Bei diesem fBt handelt es sich höchstwahrscheinlich um den fossilen Eem-Bt, da er die stärkste Bodenbildung neben dem rezenten Bt aufweist.

Der Dünnschliff N11 stammt aus einem Horizont in 15,26 m Teufe. Das Material ist eckig mit einigen großen Quarz- und Feldspat-Körnern. Am rechten unteren Bildrand ist Calcit zu

erkennen. Ton ist in die Matrix vollständig eingearbeitet. Die großen Quarze sind an den Rändern korrodiert. Die Bruchstücke weisen eine deutliche Orientierung auf, die auf eine Verlagerung hinweist. Hier handelt es sich um eine Umlagerungszone.

N11: Umlagerungszone aus einem kalkhaltigen Löß und Schieferbruchstücken

N12

Der Dünnschliff N12 (Entnahmetiefe 16,81 m) unterscheidet sich kaum von dem Dünnschliff N11. Die Matrix enthält keinen Ton mehr und die Schieferbruchstücke sind größer als im Dünnschliff N11. Calcit ist in diesem Dünnschliff nicht mehr zu erkennen. Hier scheint es

sich um eine Umlagerungszone aus Löß und Schiefermaterial zu handeln.

N12: grünlich und rötlich im Bild sind Schieferbruchstücke zu

erkennen; Umlagerungszone aus Löß und Schiefer

N13 Bodenmaterial aus dem Eiskeil

Der Eiskeil in einer Teufe von 0,77 m ist mit Bodenmaterial gefüllt. Unterhalb des Eiskeils läßt sich der Eltviller Tuff verfolgen. Die fast intakten Tonkutane sprechen für ein Verfüllen des Eiskeiles mit Bt/Bv-Material. Die Bodenmatrix weist keine Orientierung auf, d. h. sie ist

nicht hangabwärts verlagert worden, sondern in den Eiskeil Abtauen des Eises nach "hereingefallen". Ton ist sowohl in die Matrix eingearbeitet, als feinverteilt in auch der Bodenmatrix vorhanden. Wahrscheinlich handelt es sich hier um das rezente Bt/Bv-Material.

N13a: fast intakte Tonkutane in einer Bodenmatrix (Eiskeilfüllung)

N13b: Bodenmatrix mit eingearbeitetem Ton; eckige Quarz- und Feldspat-Bruchstücke

Bei dem Dünnschliff handelt es sich um einen Horizont, der im Gelände als "Bodensediment" angesprochen wurde unterhalb des Eltviller Tuffs (0,99 m). Die Minerale im Dünnschliff

erscheinen sehr einheitlich. In die Matrix sind Turmaline, Zirkone und andere Schwerminerale eingearbeitet. Die Feldspäte und Quarze erscheinen angewittert. Feinstverteilt kann man in der feinkörnigen Matrix Ton erkennen. Es handelt sich hier um einen BvCv.

Abb. 1: Grundsätzliche Eigenschaften von Erdmaterialien, welche zu Datierungen und Herkunftsbestimmungen genutzt werden (nach Foster 2000)

Abb. 3: Profilskizze Ailly sur Somme

Abb. 4: Differenz-Thermoanalyse und Thermogravimetrie (Probe Bockeroth I, 2,20 m)

Abb. 5: Differenz-Thermoanalyse und Thermogravimetrie (Probe Bockeroth II, 2,05 m)

Abb. 6: Differenz-Thermoanalyse und Thermogravimetrie (Bockeroth II, 2,77 m)

Abb. 7: Differenz-Thermoanalyse und Thermogravimetrie (Bockeroth II, 4,55 m)

Abb. 8: Differenz-Thermoanalyse und Thermogravimetrie (Bockeroth II, 5,40 m)

Laser-Korngrößenanalysen

Die Laser-Korngrößenanalysen wurden von B. Smykatz-Kloss mit einer "Laser Particle Sizer Analysette A-22" von Fritsch an der freien Universität von Amsterdam unter Anleitung von **Prof. Dr. J. Vandenberghe** und **Ing. M. Konert** durchgeführt, die beide die Laser-Beugung zur Korngrößenbestimmung seit Jahren erfolgreich einsetzen (Konert & Vandenberghe 1997; Konert 2001).

Die Probenbezeichnung im Anhang entspricht den im Gelände genommenen Probentiefen, die folgendermaßen umgerechnet werden müssen:

Entnahmetiefe Gelände	Tiefe umgerechnet
Birl 3,20 m	1,60 m
Birl 6,50 m	3,25 m
Birl 11,80 m	5,90 m
Birl 15,50 m	7,75 m
Birl 17,80 m	8,90 m
Bo II 3,40 m	1,93 m
Bo II 4,60 m	2,77 m
Bo II 5,60 m	3,37 m
Bo II 6,0 m	3,61 m
Bo II 7,14 m	4,31 m
Bo II 7,50 m	4,55 m
Bo II E4b 40 cm ueber ET	4,75 m
Bo II 8,20 m	5,00 m
Bo II 8,70 m	5,45 m
Bo II 9,20 m	5,87 m
Bo II E3 unter ET	ca. 5,60 m
Bo III 90 cm über GUK	4,10 m
Bo III 120 cm über GUK	3,80 m

22 Tab. 29: Laser-Korngrößenanalyse, Profil Bockeroth II

Probe	Ton < 2 μm	fU	mU	gU	fS	mS	gS
		2-6,3 μm	6,3-20 μm	20-63 µm	63-200 μm	200-630 µm	630-2000 μm
BoII 3,40 m	5,31	11,03	22,03	46	14,87	0,01	0
Bo II 4,60 m	4,84	10,42	20,96	45,78	17,08	0,22	0
Bo II 5,60 m	5,64	9,14	19,75	49,83	15,64	0	0
Bo II 6,0 m	4,35	7,35	15,7	40,39	17,49	3,9	10,83
Bo II 7,14 m	5,8	11,98	23,88	45,18	12,3	0,01	0
Bo II 7,50 m	6,32	11,78	22,99	44,64	14,22	0,04	0
Bo II 8,20 m	4,2	6,23	15,36	56,64	16,98	0	0
Bo II 9,20 m	4,18	6,55	16,61	56,56	15,49	0	0
Bo II E4b 40	6,59	12,27	23,56	44,45	13,13	0,01	0
cm über ET							
Bo II E3 unter	5,25	8,45	19,12	51,33	15,85	0	0
EI							

Tab. 30: Laser-Korngrößenanalyse, Profil Bockeroth III (Schneckenhorizonte)

Probe	Ton < 2 μm	fU 2-6,3 μm	mU 6,3-20 μm	gU 20-63 μm	fS 63-200 μm	mS 200-630 μm	gS 630-2000 μm
Bo III 1,60 über GUK	6,62	12,05	25,09	45,84	10,41	0	0
Bo III 1,20 über GUK	6,77	13,31	27,05	43,66	9,21	0	0
Bo III 0,90 m über GUK	6,4	13,17	27,11	43,3	9,9	0	0

Legende	Boden	Prozentsatz	Prozentsatz
		Picardie	Frankreich
1	kein Boden vorhanden	0,2	1,2
2	"Sol bruns et bruns calcaires" Braunerden und kalkhaltige Braunerden	19,9	48,5
3	"Sols lessivés dégradés", degradierte, lessivierte Böden	2,3	6,4
4	Rendzina	23,6	8,3
5	"Sols hydromorphes", hydromorphe Böden	0	0,4
6	"Sols isohumiques"	0	0,1
7	Lithosole	0	2,3
8	"Sols alluviaux", tonhaltige Böden	11,8	7,8
9	"Sols lessivés" lessivierte Böden	39,9	14,5
10	"Sols tourbeaux", Fließerden	0	0,3
11	Podsole	2,4	5,6
12	"Sols sableux", sandige Böden	0	0,8
13	"Sols peu évolés sur roche tendre", wenig entwickelte Böden auf Festgestein	0	0,4
14	Andosole	0	1
15	Ranker	0	1,8
16	Vertisole	0	0,1
17	Planosole	0	0,1
18	"Sols salsodiques"	0	0,4

Die Böden der Picardie setzen sich wie folgt zusammen:

Dies wird aus der bodenkundlichen Karte für die Picardie (Quelle: INRA³⁹ 1997) ersichtlich:

³⁹Institut National de la Recherche Agronomique

Probe	Ton < 2 μm	fU	mU	gU	fS	mS	gS
		2-6,3 μm	6,3-20 μm	20-63 μm	63-200 μm	200-630 μm	630-2000 μm
BirlI 3,20 m	5,8	12,37	22,14	43,96	14,16	0,01	0
BirlI 6,50m	4,31	8,16	16,84	47,25	22,7	0,13	0
Birll 8,00 m	4,64	9,23	19,37	47,75	18,33	0,02	0
BirlI 11,80 m	5,04	9,47	18,6	47,2	18,96	0,05	0
BirlI 15,50 m	4,21	7,64	16,66	50,25	20,58	0,04	0
BirlI 17, 80 m	4,45	7,55	18,41	54,48	14,49	0	0

Tab. 31: Laser-Korngrößenanalyse, Profil Birlinghoven