
Concepts for the Representation,
Storage, and Retrieval of

Spatio-Temporal Objects in 3D/4D
Geo-Information-Systems

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jörg Siebeck

aus

Düsseldorf

Bonn 2003



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn



Concepts for the Representation,
Storage, and Retrieval of

Spatio-Temporal Objects in 3D/4D
Geo-Information-Systems



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Gradu-
iertenkolleg 437 “Das Relief – eine strukturierte und veränderliche Grenzfläche”. The support
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Chapter 1

Introduction

The requirements for the modelling of time are manifold in geoscientific applications. They
are covering time conceptions like the modelling of discrete time stamps or the management
of dynamic geo-processes. The fact that entities of the dynamic environment may continously
change both location and shape makes their modelling a complex task.

The work presented has its root in interdisciplinary projects hosted at Bonn University
with participants from the fields of the geo-sciences, computer science, and mathematics. In
particular, one class of applications aims at supporting the database management of geo-
scientific entities. The requirements, though, are demanding. For example, geologically de-
fined geometries are inherently three dimensional, and over time their change may be modelled
in a continuous way. A GIS-in-a-box-package that copes with these two requirements seems
to be not available at present.

Indeed, extending database technology by facilities for storing and querying spatio-tempo-
ral data has become an active field of research over the last years; however, the management
of such time-dependent geometries remains a challenge for the database community (Sellis,
1999). On the one hand, the enormous growth of raw data caused by the introduction of the
fourth dimension requires a maximally compact storage of changing objects. On the other
hand, data analysis demands that the database system possess interactive query processing
facilities which range from selections for online animation to complex set-based operations
such as spatio-temporal joins (Güting et al., 2000).

Geo-data handling is embedded in an information processing environment. A geo-infor-
mation system (GIS) includes the tasks of an information system and extends them. A GIS
can thus be characterised as “a computer-based information system that enables capture,
modelling, manipulation, retrieval, analysis and presentation of geo-referenced data” (Wor-
boys, 1995, p. 1, altered). Usually, the main tasks of storage and manipulation—retrieval
and update—of data are put under control of a specialised software system, the so-called
database management system (DBMS), or database system for short. A DBMS that offers
special facilities for the handling of spatial data is called a spatial DBMS (Rigaux et al., 2002;
Güting, 1994; Breunig, 2001).

Investigating the dynamic aspects of environment has since long been recognised as an
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2 Chapter 1. Introduction

important research need. More recently, Peuquet and Qian (1996) observe that “the ability
to examine the dynamics of geographic phenomena is urgently needed as an essential tool
for examining and increasing our understanding of man-environment interactions at local,
regional, and global scales”. Parent et al. (1999, p. 3) emphasise this point, who argue that
applications also need to express that some information varies in space and/or time and
that any attribute can be time-varying. Zhang and Hunter (2000) observe that “most of the
research has focused on the treatment of discrete changes in spatial objects, for example in
cadastral parcels. However less attention has been paid to the treatment of continuous change
which occurs primarily in dynamic objects found in the natural environment, for example in
seasonal coastal changes”. Some of the requirements when dealing with temporal aspects of
terrain modelling are given by Van Kreveld (1997, p. 71):”Suppose that a sequence of terrains
is given, each representing the terrain at a fixed moment in time. [. . . ] Since the data usually
is available only at a discrete set of moments, interpolation between two terrains at consecutive
moments becomes necessary. [. . . ] One more use of TINs1 in geographic processing is the
simulation of physical processes that influence certain terrain features.”

If a GIS also handles such temporal variation in geo-referenced data, the GIS is termed
a temporal geo-information system (Abraham and Roddick, 1999; Claramunt et al., 1997;
Peuquet and Qian, 1996; Zhang and Hunter, 2000), a time-integrative GIS (Ott and Swiaczny,
2001) or a 4D-GIS (in case of three spatial and one temporal dimension, see also Breunig,
2001). The particular role of temporal GIS (TGIS) lies in the tracing of the lineage of spatial
objects and their attributes (Abraham and Roddick, 1999, chap. 2). Besides the spatial
’where’ and the thematic ’what’ queries a geo-database must support a ’when’-operation
(Voigtmann et al., 1996, p. 7).

While spatial DBMSs are an adequate tool for the data storage component within a GIS,
it is questionable whether they are also adequate for temporal GIS. As the semantics of the
spatial and temporal dimensions, which are intrinsic properties of the data, are unknown to the
underlying DBMS, spatio-temporal aplications do not currently enjoy the built-in, integrated
support that current DBMS’s supply to less challenging applications (Böhlen et al., 1998,
sect. 1). The same point is observed by Wolfson et al. (1998, sect. 1): “Existing DBMS’s
are not well equipped to handle continuously changing data, such as the location of moving
objects. The reason for this is that in databases, data is assumed to be constant unless
it is explicitly modified.” The particular problem of continuous change of spatial data has
also been emphasised by D. Peuquet, when she has put it into the context of the field of
temporal database systems. She wrote (Peuquet, 2001, p. 11, abstract): “Even with much
activity over the past decade, including organized efforts on both sides of the Atlantic, the
representation of both space and time in digital databases is still problematic and functional
space-time systems have not gone beyond the limited prototype stage.” And furthermore,
(Peuquet, 2001, pp. 16, bottom): “Current temporal DBMS can handle discrete change, but
continuous change can only be implied from one recorded state to the next. [. . . ] However,
most geographic spatio-temporal applications involve continuous change of objects in space.”
Despite the long tradition of both temporal and spatial databases in computer science, the
integration of both fields is only in its infancy (Egenhofer et al., 1999, pp. 787). However,
computerised geo-information systems (GIS), though now widespread within the geo-sciences,
are not well equipped with the necessary capabilities for an adequate support. Egenhofer

1TIN = triangular irregular network



3

Basic STP Geometric types Shape Size Orientation Location

Stability any const. const. const. const.

Deformation any but point changed const. const. const.

Expansion any const. growing const. const.
Contraction any but point const. shrinking changed const.

Rotation any but point const. const. changed const.

Translation any const. const. const. changed

Table 1.1: Taxonomy of basic spatio-temporal processes (STPs) according to Clara-
munt et al. (1997).

et al. (1999, pp. 787) note that “most of today’s computational methods in GIScience treat
geographical phenomena as static. A variety of conceptual models for time in GIS have been
studied [. . . ], but to date little impact has been made on commercially available tools.”

Usually, the term ’spatio-temporal data’ is adopted in database and GIS literature when
dealing with both temporal and spatial aspects. Unfortunately, a clear definition of what kind
of data a spatio-temporal database system is expected to support is lacking. Table 1.1 shows
a taxonomy of basic spatio-temporal processes according to Claramunt et al. (1997), which
gives an impression in which complex ways processes act upon geo-objects. It is obvious that
a spatio-temporal DBMS must be able to represent the results of these processes, if it aims
at a larger class of applications. Seen from a different perspective, a classification scheme
could help identifying what aspects are supported in a spatio-temporal database system. One
frequently cited example of such a classification scheme appears in the work of Theodoridis
et al. (1998). Although formulated for the purpose of indexing, it is used in a wider context
here. This classification is purely pragmatic, but useful for the discussion of this work‘s
requirements and of what particular kind of spatio-temporal data it aims at. Therefore, in
the following selected specifications of Theodoridis et al. (1998) are discussed here, while they
are also extended and slightly revised where appropriate. Figure 1.1 gives a short reference
of these specifications.

The first specification relates to the time dependency of spatial objects. (This specification
is not among those of Theodoridis et al. (1998).) Given that a spatio-temporal object can be
regarded as a function f from the temporal domain into the spatial domain, three important
classes can be distinguished. Firstly, there is the special case of a step-wise constant function.
Hence, a spatio-temporal object is given by associating a spatial object o with a time stamp
T with the meaning that for each t ∈ T : f(t) = o. Secondly, there is the special case of
a function that changes an object’s position only. Hence, a spatio-temporal object is given
by associating a spatial object o with a motion function m with the meaning that for each
t ∈ T : f(t) =

⋃

p∈o m(p). Thirdly—and most general—, there is the special case of functions
that change both position and shape of a spatial object. This specification is independent of
the other specifications given below and is well suited to subsume most models introduced
in related work. Obviously, complexity increases with the three classes mentioned. The first
class of step-wise constant functions is at the heart of (traditional) temporal database models.
If a system combines a spatial and a temporal model without any further ado, it falls into this
category, for instance Böhlen et al. (1998). The second class of position-changing functions is
interesting for certain applications, for example, applications that track the position of mobile
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objects (Wolfson, 2002; ESRI, 1998). It is worth noting that there is an inclusion relationship
between the three classes. This thesis falls into the third category, since the other categories
are not expected to be well suited for the complex dynamic objects of environment.

The second specification relates to the spatial data types that are supported. Originally,
this specification distinguished between systems that deal with point data only and systems
that also include region data. Here, this specification is reformulated as having the cate-
gories dimension=0, dimension=0..2, and dimension=0..3. The previous specification has
been changed here, since the majority of related work deals explicitly with objects of spatial
dimensions 0..2 embedded in

� 2, whereas also three-dimensional objects in
� 3 are of interest.

Strictly, this specification is not orthogonal to the previous one, since changing shape of a
0-dimensional object is not meaningful. This thesis falls into the third category. It is worth
noting that the distinction between spatial and spatio-temporal data will be removed here
(at least on an application programming interface level, see also chapter 4).

While the previous specification dealt with the spatiality of objects, the next one relates
to the temporality of objects and asks for which time dimensions are supported. This speci-
fication distinguishes between the traditional temporal domains valid time, transaction time
and the combined bitemporal domain. The first and the second domain are used to model
the time when facts are current in the real world and in the database system, respectively.
The third domain is the Cartesian product of valid and transaction time. This thesis does
not account for transaction time of objects and falls therefore into the first category of valid
time.

The next specification relates to the data set mobility. It aims at the number of spatio-tem-
poral objects that have to be supported and distinguishes between: (1) a growing/shrinking
data set, where the number of spatio-temporal objects changes over time; (2) an evolving-only
data set where the number of objects remains fixed; (3) a fully dynamic environment that
includes both kinds of data sets. It must be noted that the specifications of Theodoridis et al.
(1998) are targeted at indexing, also for restricted classes of applications. However, since an
evolving-only data set must be ruled out for a general class of applications, such restrictions
cannot be justified for the scope of this thesis.

The next specification asks whether past database states can be subject to change, that
means the specification is with respect to time-stamp update. It distinguishes between the
cases when database objects are loaded once and not changed thereafter (static case), when
only current states of objects are allowed to change (chronological case), and the case when
also past states of objects are allowed to change (dynamic case). The static case could
be of interest when dealing solely with results of simulation or similar entities for which a
subsequent change is of no sense. The chronological case is interesting for, e.g., monitoring
applications. For the scope of this thesis, however, the third case (“dynamic”) is central,
since it occurs when spatio-temporal objects are subject to a geometric modelling task (see
also section 3.1.2).

The two following specifications given by Theodoridis et al. (1998) aim solely at the
problem of indexing and are not discussed here: (1) Handling ”obsolete” entries through
support of bulk-loading, packing, or purging operations; (2) a specific object approximation
to be used for indexing. Finally, a specification asks for specific, application-oriented query
processing operations. This yes/no-specification leads to the classes of algorithms and query
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Specification Explanation (domain)

0. Time dependency of spatial objects step-wise-constant | function-
of-location | function-of-
location-and-shape

1. Spatial data types supported dimension = 0 | dimension =
0..3

2. Database classification I: with respect to time
dimension(s) supported

valid-time | transaction-time |
bitemporal

3. Database classification II: with respect to data
set mobility

growing | evolving | full-
dynamic

4. Database classification III: with respect to time-
stamp update

static | chronological | dynamic

5. Specific object approximation No | yes
6. Handling ”obsolete” entries (e.g. support of
bulk-loading/packing/purging operations)

No | yes

7. Specific (application-oriented) query processing
operations

No | yes

Figure 1.1: Classification scheme for spatio-temporal indexing as reported
by Theodoridis et al. (1998), changed: Specification 0 introduced, specification 1
altered.

operators that are to be supported seen from an application’s level. For the scope of this
thesis, these operators are specified in chapters 4 and 6.

The benefits pertaining DBMS-usage within an information system should carry over to
TGIS. To this end, also spatio-temporal data handling must be brought under control of the
DBMS and, hence, its main responsibilities must be applied to this novel kind of data: storage
and manipulation.

A prerequisite of storage is representation. However, a mismatch concerning spatio-tempo-
ral data and its integration into databases has been observed by many researchers (e.g. Peu-
quet, 2001; Böhlen et al., 1998). In particular, Parent et al. (1999) state that “there is a
mismatch between the logical, implementation-oriented view of data supported by the tools,
and the application-oriented, conceptual view that users follow in their everyday work”. This
fact has initiated several research efforts. For instance, in MADS (modeling of applica-
tion data with spatio-temporal features, Spaccapietra et al. (1998)) the database designer is
equipped with a set of modelling constructs, among which are (1) well-known features such
as objects, attributes, methods, integrity constraints, n-ary relationships, is-a links, and ag-
gregation links; (2) spatial abstract data types; (3) the option of adding time-variability to
the above mentioned entities, in particular to a spatial object: “Specifying a spatial attribute
as time-varying allows to describe objects that move and change their shape.” (Parent et al.,
1999). However, the gap between the conceptual level and the implementation level still
remains.

Technically, the requirement of representing spatio-temporal data on the implementation’s
level can be met by three principal approaches. They match those found in representing purely
spatial data within databases as reported, e.g., by Rigaux et al. (2002).
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1. Ontology, structure, and representation of space and time.
2. Models and languages for spatio-temporal database systems.
3. Graphical user interfaces for spatio-temporal information.
4. Query processing in spatio-temporal databases.
5. Storage structures and indexing techniques for spatio-temporal databases.
6. The architecture of a spatio-temporal database systems.

Figure 1.2: According to Sellis (1999), research issues in spatio-temporal database
systems still cover a wide range, as this list indicates.

Firstly, spatio-temporal entities on the conceptual level can be mapped onto a DBMS data
model, e.g., relational. A prominent example for two-dimensional purely spatial data is the
OGC Simple Feature Specification for SQL. Similarly, Spaccapietra et al. (1998) developed
methods to translate the modelling constructs of MADS (see above) to the data model of
TSQL2 (Snodgrass et al., 1994). The advantage of this overall approach is flexibility, since
spatio-temporal types can be modelled quite freely. However, the approach suffers from several
drawbacks, for instance missing data independence.

Secondly, incorporating spatio-temporal data handling into a DBMS can be performed by
using a specialised data store. Spatio-temporal entities on the conceptual level can be mapped
onto the data structures of the specialised data store. A prominent example for the pure-
spatial domain is the ARC-Storm data manager for spatial data (ESRI, 1996). Positively,
the drawback of missing data independence is eliminated in this approach. However, spatio-
temporal data and thematic data remain separated and cannot be processed in an integrated
way.

The third option of putting spatio-temporal data handling under control of a DBMS lies
in extending an existing data model with the appropriate data types that can then be used as
a mapping target from the conceptual to the logical level. A prominent example—again for
two-dimensional purely spatial data—is the OGC Simple Feature Specification for SQL using
spatial data types. This approach rules out the disadvantages of the previous approaches and
offers a tight integration into all components of a DBMS.

To summarise, not only has the third approach advantages concerning representation of
spatio-temporal data, but also concerning its manipulation. Spatio-temporal operations can
be embedded into the DBMS and, hence, used in queries or integrity constraints. Methods
for indexing can be integrated that support efficient query processing. This tight integration
into a DBMS is not possible with the two other approaches, and, as a consequence, this thesis
follows the last approach in that it offers tight integration into a DBMS.

Several researchers have addressed the question of what research work is needed to facil-
itate the aforementioned tight integration with a DBMS. Figure 1.2 lists the research issues
that have been identified by Sellis (1999). Abraham and Roddick (1999, chap. 6) stress the
aspect of the high storage space utilisation when time is introduced as a further dimension.
The authors argue that the unmanageable storage cost can be dealt with, if new and innova-
tive data structures with minimal storage requirements are developed. Furthermore, through
the high storage cost data retrieval becomes problematic, such that advanced querying, vi-
sualisation, and analytical reasoning abilities must be introduced into the DBMS (Abraham
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and Roddick, 1999, chap. 6).

The contribution of the work presented here is threefold. First, it is investigated how
spatio-temporal data can be described through a representational model for continuously
changing spatial data. A model is introduced that evolves from previous models developed
in our former research projects. The model extends the well-known simplicial complex model
for spatial data by time in that it allows for continuous as well as discontinuous change. As a
negative result, the non-closure under certain operations is shown. The model is mapped onto
a small system of classes in an object-oriented database framework. Second, internal data
structures are introduced that represent instances of the (user-level) spatio-temporal classes.
A new technique provides a compromise between compact storage, flexibility, and efficient
retrieval of spatio-temporal objects. These structures correspond to temporal graphs and
support updates as well as the maintainance of connected components over time. Third, it is
shown how to realise further operations on the new type of objects. Among these operations
are range queries, intersection tests, and the Euclidean distance function.

The remainder of the thesis is organised as follows. The following chapter introduces
related work in the field of spatio-temporal database systems. Then, in the next chapter the
new representational model for spatio-temporal objects is introduced. Chapter 4 develops
objectives for the integration of the new types of objects into an object-oriented database
framework and introduces a small system of classes. Chapter 5 presents implementation con-
cepts for these classes. Chapter 6 shows how fundamental query operations can be computed
for the new classes of spatio-temporal objects. Finally, chapter 7 concludes and gives an
outlook for future work on the thesis topics.





Chapter 2

Related Work

A concensus representational model for spatio-temporal data has not yet emerged. This
chapter gives an overview of the many models that have been presented. Operations and
query capabilities of these models are discussed. Less work is available for storage structures
that implement these model. An exception is the large amount of work on index structures
for spatio-temporal data, an overview of which is given in chapter 5.5.

Some of the research work on spatio-temporal database systems originated in the field
of temporal databases (Tansel et al., 1993; Jensen et al., 1998). The rationale behind these
approaches is often such that the facility of a temporal data model to capture time-varying
data implies the facility to capture time-varying spatial data as a special case—assuming
spatial abstract data types are available. As a representative example, Bertino et al. (1998)
model a time-dependent object o as a partial function from the time-domain into the set of
legal values for o. This approach is at the heart of an extension to the ODMG object model,
called T ODMG (Bertino et al., 1998). In T ODMG, the time-domain is isomorphic to the
set of natural numbers, hence it is discrete and linear. This model directly supports the
temporal development of objects. One can declare a time-dependent variable of type t with
the aforementioned semantics by the syntax temporal(t). It is worth noting that temporal()
is not an orthogonal type constructor in T ODMG, since it yields a type that cannot be an
argument to temporal(). Embedding spatio-temporal data handling in this framework seems
possible by giving temporal(spatial ) a proper implementation, while reusing the interface
of T ODMG. However, no query facilities have been defined in (Bertino et al., 1998).

Such temporal developments of object properties are also focus of the Tripod project,
where they are called histories. The Tripod project aims at developing a spatio-temporal
object database system that extends the ODMG standard for object models (Griffiths et al.,
2001c). This system is targeted at discrete changes to data that— as a special case —can
also be spatial. The spatial domain of this system is built on the ROSE algebra of spatial
data types (Güting and Schneider, 1995). Hence, Tripod is capable of representing points,
lines and polygons, each on a discrete grid as the underlying geometric domain, the so-called
realm. The operators of the ROSE algebra are supported. In ODMG terms the spatial types
are literals, i.e., values without an object identifier.

9



10 Chapter 2. Related Work

Tripod’s temporal domain is also based on realms, restricted to one dimension (Griffiths
et al., 2002). As a consequence, this domain is a finite subset of the set of natural numbers.
It is linear and totally ordered. The distance between two adjacent points in this domain is a
chronon. The model comprises four temporal types: (1) a type representing an instant, called
instant : a point in the temporal domain; (2) a type for a temporal interval, called timeInterval
that is given by a starting and ending point from the temporal domain; (3) a type for a set
of intervals, called timeIntervals; and (4) a type for a set of instants, called instants. A
timestamp is either a value of type instants or of type timeInterval. Temporal intervals in
this model are always closed : the starting and the ending instant are both members of the
interval. The duration of a timeInterval is at least two chronon, since start(i) < end(i) is an
integrity constraint on each interval i (Griffiths et al., 2002).

Two special instants beginning and forever are offered as literals and represent the earliest
and latest representable values. The literal until changed specifies a fact valid at present, but
that can change at some future instant. During query processing, every occurrence of this
literal is replaced by the value of “now.”

Predicates are available for testing binary relationships among the aforementioned tem-
poral types. The authors state that predicates from other approaches, e.g., Allen (1983), are
either directly supported or can be built upon the Tripod-predicates (Griffiths et al., 2002).
Among these predicates are:

• Predicates defined on the primitive types instant and timeInterval : equals, before,
overlap, meet, disjoint, on, in, contains. Since the exact definitions are straightforward,
they are omitted here (see Griffiths et al. (2002) for details).

• Extended versions of these predicates for the collection-valued types instants and timeIn-
tervals: Each predicate θ is available in the form θ ∀ and θ ∃. The meaning is that

o1 θ ∀ o2 : ⇔ ∀v1∈o1
∃v2∈o2

: v1 θ v2

o1 θ ∃ o2 : ⇔ ∃v1∈o1
∃v2∈o2

: v1 θ v2

Furthermore, there are operations on instants and timeIntervals that result in values of
temporal types. It is possible to, e.g., perform intersection, union and difference on values
of these types. “Metric” operations can be applied that calculate, e.g., the total duration
of a timeIntervals value. Arithmetic operations allow to add or subtract from values of the
temporal types, to shift a timeInterval value a given amount, etc.

The concept of a history serves as the basis for time-dependent entities. In particular, if
such entities are spatial values, the resulting history represents a (discretely) spatio-temporal
entity. According to Griffiths et al. (2001a), a history is a quadruple H = 〈V, θ, γ, Σ〉, where
V denotes the domain of values whose changes H records, θ is either instants or timeIntervals,
γ is the granularity of θ, and Σ is a set of pairs, called states, of the form 〈τ, σ〉, where τ is
a Tripod timestamp and σ ∈ V is a snapshot. The most important constraints on a history
are: (1) a particular timestamp is associated with at most one snapshot; and (2) a particular
snapshot is associated with at most one timestamp. The latter constraint implies so-called
coalescing performed by the system. According to Jensen et al. (1998, p. 386), the coalesce
operation is performed by packing as many value-equivalent entities as possible into a single
value-equivalent one.



11

As an extension to ODMG ODL, the keyword “historical” is introduced to indicate that
the temporal development of an attribute or an object is to be recorded. This keyword can be
applied to each ODMG object model concept that is value assignable: object types, attributes,
relationships, and the ODL collection object types. The authors refrained from taking an
alternative approach of a type constructor. Such a type constructor must be applicable to
itself such that

historical<historical<set<historical<region>>>>

becomes a valid expression, but the meaning of which is hard to conceive (Griffiths et al.,
2001b, p. 15).

Being part of an interoperable object-oriented GIS-framework for atmospheric modelling,
the geo-object-oriented database core GOODAC comprises two components: (1) the ODMG-
based data model OOGDM and its temporal extension T/OOGQL; (2) the query language
OOGQL (Bernard et al., 1998). OOGDM extends the ODMG data model by offering a
class hierarchy that comprises 0d to 3d features, both field- and object-based. Hence, types
are available for both representing point, curve, surface, and solid data, as well as 2d and 3d
grids. Temporal extensions to the data model comprise valid and transaction time (Voigtmann
et al., 1996). A timestamp is either a chronon or an interval on a linear and discrete time-line.
T/OOGDM allows timestamping of simple types (byte, short, long, float, double, boolean, and
string) or of relationships, whereas timestamping of object and collection types is not allowed.
The keywords “chronon timestamped”, “interval timestamped”, and “timestamped” (short-
hand for “interval timestamped”) are offered to the user of T/OOGDM to indicate recording
of temporal development. Predicates are available for testing binary relationships among
timestamps i, j: i θ j, where θ ∈ {precedes, meets, overlaps, contains} (Becker et al., 1997).

Spatio-temporal entities can be represented by timestamping the geometry-attribute of a
so-called geo object. Alternatively, when spatial entities are represented by raster based data
types, the attribute of such a raster can be timestamped, e.g., the height attribute of a digital
elevation model.

Böhlen et al. (1998) present the spatio-temporal query and data definition language
STSQL, which is an extension of SQL-92. This language adds features from both the tem-
poral and the spatial domain, but neglects inherent spatio-temporal features and, as a result,
does not address the issues of continuous change or compact storage of time-dependent spatial
objects. On the other hand, a main concern of STSQL has been upward compatibility with
existing SQL-92 based databases and applications, to ensure a simpler transition to spatio-
temporal databases. Temporal and spatial aspects are treated uniformly in the sense that
they make up possible dimensions of an STSQL-relation: a tuple in the model is allowed
to be timestamped by one or more valid/transaction-time intervals or to be spacestamped by
one or more geometric attributes. Adding dimensions to a relation facilitates the so-called
upward compatibility and snapshot reducibility (for details see Böhlen et al., 1998). However,
temporal and spatial attributes can also be added as ordinary attributes.

A model for discrete change along with operators has been developed by Worboys (1994).
The well-known spatial representational model of simplicial complexes (Egenhofer et al., 1990,
definitions 3.2.5 and 3.2.6) is extended by bitemporal elements. Here, a bitemporal element
is defined as the union of a finite set of Cartesian products of intervals from the temporal
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domain. Hence, the model can capture both valid and transaction time; the temporal domain
is linear and discrete. A simplex in this model is extended by timestamping with a bitemporal
element yielding a pair (S, T ), called ST-simplices, while an ST-complex C is a finite set of
ST-simplices satisfying the following properties (Worboys, 1994, slightly altered):

• When projected to space, the set of ST-simplices form a simplicial complex.

• If the ST-simplices s1, s2 ∈ C are projected to space, then the fact that the projection
of s1 is face of the projection of s2 implies the bitemporal element of s1 covers that of
s2.

Worboys (1994) defines algebraic operators on ST-complexes, among which are extensions of
equality, subset, and boundary operators. Particularly interesting is the so-called β-product
that combines two ST-complexes by: (1) defining a common refinement of the spatial projec-
tions of the input ST-complexes; and (2) associating each simplex of the refinement with the
bitemporal element that results from the operator β on input bitemporal elements (Worboys,
1994, for details see). Specialisations of this operator are the ST-union, ST-intersection, and
ST-difference.

Chen and Zaniolo (2000) define a data model, query language and an internal representa-
tion along algorithms, called SQLST . They address the issue of point-based vs. interval-based
query languages. Their model is capable of representing discrete change and builds upon Wor-
boys‘s model. The issue of representing continuous change was left for future work.

One class of application deals with a special case of time-dependent spatial objects. Of
primary interest are objects that (continuously) change their location, while other spatial prop-
erties remain unchanged, for example shape. These applications range from transportation
business, location-based-services (LBS), mobile telephony to military; hence, objects of inter-
est are, for example, automobiles, mobile telephone users, or aircrafts. Since state-of-the-art
commercial DBMS are not an adequate tool for the handling of this kind of spatio-temporal
data (Wolfson, 2002; Brinkhoff, 1999), several research efforts have been initiated. Such work
is relevant to the topic of this thesis, since abstracting from the spatial extent also natural
objects—like clouds or glaciers—can be handled by moving objects database systems. By
offering query evaluation involving object trajectories, such systems can prove useful also in
geoscientific applications.

DOMINO is among the moving objects database systems (Sistla et al., 1997; Wolfson et al.,
1999) with focus on tracking moving objects (Wolfson et al., 1998). Central to this system
is its moving objects spatio-temporal data model (MOST) that is based on a relational data
model and comprises also spatial types (points, lines, and regions in two-dimensional space).
Furthermore, MOST incorporates the concept of a dynamic attribute (Sistla et al., 1998).
Representing functions of time, such attributes change without an explicit database update,
and they can be used to model continuously changing values, for example, temperatures,
but also object positions. Hence, movement in two-dimensional space is represented by two
dynamic attributes that together make up a motion vector of the object. A dynamic attribute
A is a three tuple

(A.value, A.updatetime, A.function)

comprising three sub-attributes: (1) A.value, which is equal to A’s value at the time of last
update; (2) A.updatetime, the time of last update; and (3) A.function, the function from
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time into the domain of A. The value of A is defined as A.value for time t = A.updatetime and
A.value+A.function(t), otherwise. In a running system, dynamic attributes are intended to
be updated periodically by the corresponding real world entities, for example using GPS and
communication over a wireless network. A slightly different model with six sub-attributes
for trajectories along a network has been presented by Wolfson et al. (1999). The query
language of MOST is FTL (future temporal logic) that extends a DBMS query language
by spatio-temporal predicates and temporal operators. The former comprise distance- and
intersection-based predicates between moving objects or spatial objects. The latter comprise
two basic operators: Until and Nexttime. Further interesting aspects of DOMINO are the
handling of uncertainty (Sistla et al., 1998) and the indexing of moving objects (Tayeb et al.,
1998). However, since past states of an object’s trajectory are not explicitly represented, the
system is restricted to queries pertaining to the future.

Grumbach et al. (1998) show how to utilise the so-called constraint database approach (Ku-
per et al., 2000) to represent and query spatio-temporal objects. However, the model is limited
to discrete change of spatial data.

Related to the approach based on constraints is the work of Yeh and de Cambray (1995)
and Yeh and Feautrier (1998). The authors present a model for multidimensional data that is
allowed to be a function of a variable. In particular, spatial data can thus be made a function
of time. The authors distinguish an external and an internal level of modelling. In the former,
a spatio-temporal object appears as a sequence (v, t, c)i, where v is a spatial value valid for
snapshot t and c is a so-called behavioural function that specifies spatial values between ti

and ti+1. In the latter, a spatio-temporal object is represented as a collection of convex
objects that are the result of a sweeping operation: if the spatial values in the sequence have
n dimensions, then the sweeping operator constructs an n+1-dimensional object by applying
the behavioural function for each time-step of the sequence. This results in a set of polyhedra,
which the authors define to be convex objects. Each polyhedron is then stored internally either
as a conjunction of inequalities (a convex object is the intersection of half-spaces) or as a set
of points (the convex hull of which equals the polyhedron). Non-convex geometries are stored
in operator trees, similar to constructive solid geometry. The benefit of this representation
is that the temporal versions of the operations intersection, union, difference can be realised
by their spatial versions operating on the internal representation. However, other important
operations like the Euclidean distance remain a challenge. Furthermore, by representing
spatio-temporal objects through n + 1-dimensional polyhedra, movement is restricted since
polyhedra are defined to have non-curved (i.e. linear) bounding faces.

Chomicki and Revesz (1999b) present a two-dimensional data model that is based on
vertex movement, which they call parametric 2-spaghetti data model. It generalises Worboys’s
model (Worboys, 1994) by allowing vertex positions to be linear functions of time. The
negative result is that the intersection of two parametric 2-spaghetti relations cannot be
always represented as a parametric 2-spaghetti relation.

Based on the relational model, Cai et al. (2000) present the so-called parametric rectangles
spatio-temporal data model. In this model, a relation can draw zero or one of its attributes
from the new domain P, the set of all parametric rectangles. In particular, an element of this
domain is a tuple

(x
[
1, x

]
1, . . . , x

[
n, x]

n, from, to)
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where each x
[
i and x

]
i is a polynomial function from f :

�
|[from,to] →

�
. The meaning

is such that for each dimension i a time-dependent interval is given by the functions x
[
i

(lower boundary) and x
]
i (upper boundary). Then, for each t ∈ [from, to] an n-dimensional,

axis-aligned rectangle is defined by the cross product of the n intervals [x
[
1(t), x

]
1(t)] × . . . ×

[x
[
n(t), x

]
n(t)].

In this model, a spatio-temporal object can be represented by a set of parametric rect-
angles. The query language of this model is an extended version of relational algebra. The
operators projection, intersection, union, difference, and complement are defined for relations
with parametric rectangle attribute, whereas selection retains its usual semantic. Further-
more, the operators block, collide, deflect, scale, and temporal operators are defined. To
sum up, the particular strengths of the model are its dimension-independence, the facility
to approximate complex shapes of spatio-temporal objects including also non-linear motion
patterns, and the closure of the algebraic operators defined for the model.

However, in the parametric rectangles data model, complex spatio-temporal objects are
not first-class-citizens: they must be represented by several tuples. This holds for the following
situations: (1) for objects that have a more complex shape than a rectangle; (2) for a rectangle
that changes direction or speed in one of its interval end points, since the corresponding
temporal function is then invalidated and a new parametric rectangle tuple must be generated
to capture that change in movement. As a result, one spatio-temporal object must be stored
either in a separate relation or it must be “intermixed” with other objects. Several difficulties
arise from this design. First, resulting from the fact that one object “spreads” across several
tuples, no trivial way exists to index a set of spatio-temporal objects. Hence, the parametric
rectangle data model has the problem of indexing spatio-temporal objects. Second, for the
same reason it is also unclear how a spatio-temporal object can participate in the predicate
of a select-operation, for instance in the predicate distance(o1, o2) ≤ 50.

These difficulties can be avoided when allowing spatio-temporal objects to be first-class-
citizens, for instance by one level of nesting of a relation. Another possibility lies in an
abstract data type approach. Assuming the relational data model as the underlying basis, a
single spatio-temporal object can then be represented as the attribute of a single tuple.

An approach based on abstract data types has been described by Güting et al. (2000). The
authors define an abstract model for continuous change of data with the focus on changing
2D spatial data. Starting with a set of basic (including spatial) data types, a type con-
structor “moving” is defined that, if applied to one of the basic data types, constructs a
new type that represents a mapping from time into the domain of the argument to “mov-
ing”. Hence, “moving<region>” would construct a time-dependent region data type, whereas
“moving<real>” would construct a data type that maps time instants to real-values. The
spatial data types extended in such a way comprise two-dimensional points, curves (not nec-
essarily simple), and regions (allowed to have holes and may consist of several connected
components). The description is complemented by operations defined on these data types.
An interesting aspect is that of lifting of operations. This technique extends the signature of
operations on the basic data types and their semantics to be applicable to data types con-
structed by the “moving” type constructor. The signatures are extended such that the return
type T as well as any number of arguments are transformed to “moving< T >”, yielding a
set of operation signatures.
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A first step towards the implementation of the model by Güting et al. (2000) has been
described by Forlizzi et al. (2000). The authors propose a data model that enables a finite
representation of the spatio-temporal data types mentioned in the previous work. Central to
the approach is a sliced representation of spatio-temporal objects. According to the sliced
representation, a time-dependent object is given by a finite sequence of snapshots, while the
object can be interpolated for instants in between. Movement and change of extended spatial
objects (i.e., those other than points) is based on a restricted form of point movement: between
two slices the movement of those points, which are connected to form a segment, must be
within a plane in (x, y, t)-space. Furthermore, it is briefly described how the specification of
the data model can be mapped onto the secondary storage structures of the Secondo extensible
DBMS (Dieker and Güting, 2000). Finally, the realisation of two operations are described: a
snapshot query and the binary predicate “inside”. The latter is restricted for the parameters
moving point inside moving region.

An interesting framework for specifying spatio-temporal objects has been reported by
Chomicki and Revesz (1999b). This framework is based on the conception of a spatio-tempo-
ral object as the transformation of a spatial reference object over time. Hence, the authors
define an atomic geometric object to be a quadruple (V, v, I, f), where (Chomicki and Revesz,
1999b)

• V is the reference spatial object,

• v is a reference time instant,

• I is a subset of
�

, the temporal domain of the framework,

• f is the transformation function.

The semantics of such an object1 is given by the set of pairs (V ′, i), resulting from the appli-
cation of f(V, i − v) for each i ∈ I resulting in a new spatial object V ′. Further, the authors
define a molecular geometric object as a finite set of atomic geometric objects whose time
domains are disjoint. Assuming the temporal domain as intervals over the reals, both the
spatial domain as well as the domain of transformation functions may vary. One obtains
then different classes of spatio-temporal objects. Chomicki and Revesz (1999b) suggest sev-
eral such classes that are then investigated concerning closure under set-theoretic operations
intersection, union, and difference. For instance, it is claimed that the class of axis-aligned
rectangles (spatial domain) with linear scaling (transformation function) is closed under the
aforementioned operations, whereas the class of convex polygons with linear scaling is not
closed under intersection or difference (Chomicki and Revesz, 1999b). Finally, choosing the
identity as the transformation function the framework is also capable of representing discrete
change.

The field of qualitative spatio-temporal reasoning is an ongoing field of research (see
also Galton (1995); Muller (1998); Erwig and Schneider (1999); Hazarika and Cohn (2001);
Erwig and Schneider (2002)). The implementation aspect remains still a challenge.

1Slightly revised definition





Chapter 3

A Representational Model for

Spatio-Temporal Data

The representational model for spatio-temporal data plays a central role in spatio-temporal
database systems: it precisely defines the entities that can be represented (a topic covered
in this chapter), it states requirements for the internal representation (covered in chapters 4
and 5), and it forms the basis for operations and their realisation (covered in chapter 6). At
the same time, current systems are not well equipped with spatio-temporal data handling
capabilities and a consensus representational model has not yet emerged (see also chapter 2).

In this chapter, a new model is presented as the basis for representing, storing, and query-
ing spatio-temporal data. Originating in previous work within the GeoToolKit projects,
several aspects of the representational spatio-temporal model are not new. Instead, the new
model consolidates main characteristics of the previous work, and one result of this chapter
is the formalisation of the new model. Furthermore, this chapter investigates the temporal
domain in detail. The findings are the requirements for temporal data types that are to com-
plement the data types for time-dependent geometries from previous projects. An implication
of these findings is the fact that the prevalent representations of time in temporal database
models do not comply with the requirements of the spatio-temporal (geometric) settings. Fi-
nally, this chapter discusses capabilities and limitations of the new model. Here, it is first
emphasised that the model is purely representational. Furthermore, since the objects that
the model represents are time-dependent point sets in three-dimensional space1, it becomes
worth investigating the closure of set-based operations like union or intersection. One result
of the chapter states its non-closure under these set-based operations.

The remainder of the chapter is organised as follows. The next section reviews Geo-

ToolKit projects and their model for spatio-temporal data. Then the main characteristics
are put together by introducing the new model for spatio-temporal data. The chapter closes
with the investigation of the model‘s capabilities and limitations.

1More precisely, these objects are approximations of time-dependent point sets in three-dimensional space.
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3.1 Influences from Previous Projects

Previously, joint projects with partners from computer science and geology, both located
at Bonn University, dealt with temporal aspects of the database management for geoscien-
tific phenomena. These efforts resulted in two different database models for the representa-
tion of continuously changing spatial data: a development from the management of different
timesteps to separating vertex movements for triangular meshes. Bringing characteristics
together, these models evolve then into a new model of temporal simplices and temporal
simplicial complexes as described in the next section.

3.1.1 Balanced Restoration of Structural Basin Evolution

Concerning the management of time-dependent geo-objects, several requirements emerged
during a joint project together with the Geological Institute at Bonn University2. In this
section, the project and its representational model for spatio-temporal data on the database
system side are described briefly. Further information about this project can be found in
Alms et al. (1998) or Breunig (2001).

First ideas for the management for temporal spatial data have been implemented in Geo-

ToolKit to support the balanced restoration of the structural basin evolution for the Lower
Rhine Basin (Balovnev et al., 1999). The bases for the modelling were interpreted lithostrati-
graphic sections with horizontal scale 1:10000 and vertical scale 1:2000. Parallel sections run
in the SW-NE direction and cover a distance of 1.5 to 4.5 km. The computer supported pro-
cess of geological reconstruction was made with help of GeoDeform (Alms et al., 1998). This
application is well suited to demonstrate the spatio-temporal modelling and management of
geo-objects. By coupling with GeoToolKit, GeoDeform benefits from database manage-
ment including interactive selection of spatio-temporal objects. Therefore, GeoToolKit has
additionally been designed according to requirements of this application. The management
of temporal strata and faults was enabled with the addition of a further attribute time in the
corresponding objects (Balovnev and Breunig, 1997). The respective attribute value shows
at which time or time interval the object existed in geological reality. Though developed for
a specific application, the proposed model for spatio-temporal data handling is assessed as
transferable to a wider range of geo-applications (Balovnev and Breunig, 1997).

On the database system side, the representational model for spatio-temporal data has
been designed in such a way that it achieves compatibility to the graphical programming
environment GRAPE3. The system GRAPE is an object-oriented, interactive visualisation
package that offers, among others, an extension of the key-frame interpolation technique for
adaptive triangulations (Polthier and Rumpf, 1994). It has been chosen as the basis of Geo-

Deform (Alms et al., 1998). Importantly, the extended key-frame interpolation technique
leads to a time-dependent surface type incorporated into the database environment of Geo-

2Projects within the Collaborative Research Centre 350: Interaction between and Modelling of Continen-

tal Geo-Systems, founded by the German science foundation (Deutsche Forschungsgemeinschaft, DFG); sub-
projects C4 “Quantitative Modelling of the Tectonic and Sedimentary Development of the Lower Rhine Basin”
and D4 “Object-Oriented Geo-Information System”.

3Developed at the collaborative research centre 256 “Nonlinear Partial Differential Equations” at the Uni-
versity of Bonn.
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Figure 3.1: Schematic view on the development of a spatio-temporal object in the
GRAPE model. Each snapshot consists of a pre- and a post-object that have the
same geometry, but are allowed to have different discretisation of this geometry.
However, post-object and pre-object of two consecutive snapshots have the same
discretisation, enabling interpolation of the geometry for instants between snapshots.

ToolKit. The extended key-frame technique can be described as follows (see also Polthier
and Rumpf, 1994). A schematic view is shown in figure 3.1. Central to the model is a
time-dependent surface type. Such surfaces are composed of triangles that together form a
triangular mesh. A time-dependent surface is represented by a sequence of so-called snapshots
at discrete time instants, each of which contains two (static) triangular meshes: a so-called pre-
object and a so-called post-object associated with an instant in time. Hence, a spatio-temporal
surface can be seen as an ordered collection of purely spatial surfaces, each surface being a
snapshot of the spatio-temporal surface. Together with the requirement that the discretisation
of the post-object at instant ti and the discretisation of the pre-object at the consecutive
instant ti+1 is the same, interpolation of the time-dependent surface can be defined. Since
there is a one-to-one correspondence between the triangles of the post-object at time ti and
the pre-object at time ti+1 (the meshes are homeomorphic), an object can be interpolated for
every instant between ti and ti+1. Furthermore, the discretisation of the surface is allowed to
change at an instant under the requirement that both pre- and post-object describe the same
geometry.

The database implementation of the model, however, can result in a high storage demand,
because the data are stored multiply. This is due to the time-stamping that is performed
on the level of the compound object, instead of time-stamping on the level of the object‘s
elements. Experience showed that only in rare cases the discretisation of a surface changes
completely from one timestep to the next, while it is expected that many mesh elements
remain part of the surface discretisation, ranging over many snapshots. As a result, these
mesh elements occur in all of these snapshots, which is obviously redundant. Time-stamping
on the level of a surface‘s elements can overcome this problem: a fact that is exploited in the
next section when defining the new representational model.

A first approach to cope with the storage space problem has been based on versions. If,
for example, only a small part of a large object changes in time, it is “wasteful” to reproduce
the stable part of the object in each snapshot. Here, the version-based approach stores full
versions at key-frames, while storing ∆-versions (differences between snapshots) in between.
A description of such an approach for the model has been given by Shumilov and Siebeck
(2001).
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Figure 3.2: Position of the Bergheim mine in the Lower Rhine Embayment.

3.1.2 Kinematic Modelling of a Small Faulted Domain

During a subsequent cooperation, a new model for time-dependent surfaces has been de-
veloped by separating vertex movement from mesh topology; however, topology has been
assumed to be static as opposed to the previous model. The project and its representational
model for spatio-temporal data are described briefly. Further information about the project
have been given by Thomsen and Siehl (2000).

The temporal model of the (extended) GeoToolKit has been tested with a geological
model consisting of stratigraphic and fault surfaces extended by a time attribute. The an-
imated surfaces of that model were visualised in the geological modelling software system
Gocad (Mallet, 1992) and stored using GeoToolKit for spatio-temporal database querying.

One of the objectives of the geological model was to examine the balanced restoration
of structural Rhine Basin evolution (Thomsen and Siehl, 2000). This geological process
started in the geological period called tertiary. The exact geological movements, however, are
unknown. Therefore, different possible variants for the time sequences have to be examined
by the geologists. The region under consideration covers the area of an open pit lignite mine
”Tagebau Bergheim” and comprises an area of about 2km×2km up to a depth of 0.5km. The
Bergheim mine was operated by Rheinbraun AG, Köln, since 1984 with an annual output of
15.7 Mill. tons (1996/97) of lignite. The originally static 3D-model on the basis of approx.
20 digitised profile sections of Rheinbraun AG was prepared for the movements. The 3D
geometric model consists of a boundary representation of geological blocks sliding against
each other at fault boundary surfaces. For the reconstruction of the movements in time
Rouby‘s method of map plane restoration was used (Rouby et al., 1996). The system Gocad
served for static 3D modelling and visualisation, thereby using the Weiler model (Weiler,
1985, 1986) that is implemented in this system and assures a consistent 3D model; however,
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this model cannot be made time-dependent. Therefore, a representation extended by time
has been stored within GeoToolKit, complemented by sufficient information to reconstruct
a (valid) Weiler model for every instant in time to enable import into Gocad.

The database model for spatio-temporal data serving this application can be described as
follows. Central to the model is a time-dependent surface type. Such surfaces are composed of
mesh elements (triangles for every instant in time) that together form a triangular mesh. For
the whole lifetime of a surface the set of its constituent mesh elements remains fixed. Hence,
the discretisation of a surface is constant for its whole lifetime. Movement and deformation
are representable through movement of the vertices of the mesh elements; like the previous
model, every instant is associated to a surface. Each vertex is allowed to move on a piecewise
linear path with piecewise constant velocity. This aspect of the model will carry over to the
new model presented in the next section.

An important aspect inherent to the model is the separation of vertex movement from mesh
elements. Each triangle in the triangular mesh holds three references to a (temporal) vertex:
a list of point snapshots representing the movement. This approach has the advantage of
compact storage, since triangles that share a common vertex do not duplicate its trajectory;
instead, they share a reference to a separate object: the time-dependent, moving vertex.
Moreover, the approach of separating vertices from mesh elements has advantages that also
hold in the pure-spatial setting. First, redundancy is avoided and therefore also update
anomalies. Second, it allows for constructing several meshes from the same set of vertices.
For all these reasons, the separation of point location and meshing will carry over to the new
model.

3.1.3 Summary

Within the GeoToolKit projects (Balovnev et al., 2003) two different models for the man-
agement of spatio-temporal data have been developed and tested within applications.

The particular strengths of the first model have been the ability to model discontinuities
and to change the discretisation of objects in the course of time. Problematic in such models is
storage space, since time-stamping is on the complex object level such that different timesteps
necessarily repeat mesh elements. An approach to alleviate these problems has been based on
maintaining versions. The particular strengths of the second model have been the separation
of vertex movement from mesh elements and thereby facilitating a compact representation.
In contrast to the first model, it did not allow for a change in discretisation.

These models along with their advantages have not been formalised and they have not
been unified into a common model. Additionally, temporal data types were missing. This
consolidation is subject of the next section. Furthermore, spatio-temporal operations on this
data have been limited to a temporal range query and, as a special case, a snapshot query on
time-dependent geometry, capable of interpolation between snapshots. Further spatio-tem-
poral operations are discussed in subsequent chapters.
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3.2 Spatio-Temporal Representational Model

A spatio-temporal representational model comprises three parts. First, there is the underlying
temporal structure, which is given by definition of a temporal domain and its operations. The
elements of this domain are used to denote the lifetime of objects or the time when facts are
considered true in the database. Second, there is the spatial domain, which is extended to
capture also time-varying spatial data. Third, there is the spatio-temporal domain. Here,
temporal and spatial aspects are put together in that spatio-temporal entities represent certain
functions from the temporal domain into the spatial domain.

Compared to section 3.1, the particular new work here is as follows. First, the pure-
temporal domain is investigated to infer requirements for temporal data types. Such types
have been absent from work within the GeoToolKit-projects. Second, main characteristics
from both previous approaches are put together by defining the novel concepts of a temporal
simplex and a temporal complex. The resulting model facilitates the representation of topo-
logical change in the course of time, as well as a separation of a mesh and the location of its
vertices. In summary, the representational model comprises not only a separate temporal and
spatial domain as does most related work (see chapter 2), but also a combined spatio-temporal
domain. The remainder of this section discusses the three constituent domains.

3.2.1 Temporal Domain

This section investigates the temporal domain for the spatio-temporal representational model
and infers requirements for temporal data types. In particular, the choices for three different
concepts are explored: (1) the temporal domain itself and the concept of an instant, which
is an element of this domain and represents a (durationless) point in time; (2) a definition
of admissible subsets of the temporal domain that specify the lifetime of objects, resulting in
so-called temporal elements, which are disjoint sets of temporal intervals; a further result is
that intervals must be defined as connected subsets of the temporal domain and may be open
on one or both sides and may have zero duration; (3) operations on the mentioned entities.
The centre of interest lies in spatio-temporal data representation that guides the definitions
of these concepts.

Given that the temporal domain consists of temporal points, also termed instants, several
reasonable options for the structural aspects of time have been discussed in research (see,
for example, Snodgrass, 1992). In particular, these options have connections to the order
relationship among these instants (“before” or “<”). Of interest are: (1) a linear conception of
time, open on both sides (past and future); this conception yields a total order of instants; (2)
a circular conception of time, suitable, for instance, for periodic data; (3) a parallel conception
of time consisting of more than one linear time-line; (4) a directed, acyclic graph conception
of time, also called branching time, yielding a partial order relationship. Although all of these
types of time are worth investigating in spatio-temporal database systems (Raza and Kainz,
1999), this thesis concentrates upon the linear conception of time for the following reasons:
(1) The linear conception of time is prevalent in temporal databases (Snodgrass, 1992); (2) it
is well suited for measurements/observations that follow also a linear pattern; (3) finally, it is
also well suited for simulations, which usually assume a temporal variable ranging over the set
of real numbers. Having decided on the linearity of time, the next question is whether time
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Figure 3.3: Examples for events without duration. Left: The time when three
moving vertices are colinear. Right: The time when moving vertex v1 has distance
d to moving vertex v2.

is discrete or dense; however, since in a discrete time domain it is problematic to describe
continuous change of a variable, time is assumed to be dense. To sum up, the temporal
domain is isomorphic to the set of real numbers.

A time-dependent value from a given attribute domain D can be seen as a function from
any subset of the temporal domain � into the attribute domain f : � → D. For tractability,
however, the admissible subsets of � , which may specify the domain of f , must be restricted.
It is common practice to restrict the domain of such a function f to intervals of � or finite
sets of intervals of � . Alternatively, one can describe infinite sets of intervals, for instance,
by periodic intervals. In their spatio-temporal model, Cai et al. (2000) represent such sets of
intervals by a triplet < from, to, period > to denote the (infinite) set of intervals {< from +
k · period, to + k · period >}. Here, however, periodic intervals are not considered. Then,
having an intuitive notion of intervals (precisely defined below), it must be examined how
“general” they need to be: (1) it is in question if intervals can be assumed to be closed, to
be right-open, or if rather both open and closed intervals are needed; (2) it is in question if
intervals are allowed to have zero duration. Obviously, the different choices influence upon
interval representation, for instance, space demands for storing a single interval. Indeed, these
questions have been discussed in research, of course, independently from space demands. For
example, in the popular system of Allen (Allen, 1983), instants are used to construct intervals,
but instants are not the primitive objects in his theory and every interval has a non-zero
duration. This means that it is impossible to represent facts that are valid at a single instant
only or to represent facts that are not valid at the boundary of an interval. One of Allen’s
motivation for this restriction has been the physical argument that “there seems to be strong
intuition that, given an event, we can always ’turn up magnification’ and look at its structure.
[. . . ] it appears that we can always decompose times into subparts.” (Allen, 1983, p. 834).
Furthermore, he argued that in some situations counterintuitive results appear. These are
also known as the dividing instant problem (see also Galton, 1995). For instance, the state of
a time-dependent variable light-is-on changes when light is turned on or off. Given that light
is turned on at time t2, light-is-on is false during < t1, t2 > and true during < t2, t3 >. If one
allows instants as primitives, one must specify the value of light-is-on at instant t2, what seems
problematic in any case. Hence, Allen rejects instants as primitive objects. While the dividing
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instant problem can be circumvented by a different modelling approach (Galton, 1995), there
is also strong evidence for the necessity to model events without duration, especially in the
geometric setting of spatio-temporal databases. Figure 3.3 shows some motivating examples.
If instants were not supported, problems would arise when applying operations that result in
spatio-temporal objects or timestamps. For instance, the query

When was the distance between spatio-temporal objects v1 and v2 equal to 100?

will result in an instant, assuming no degenerate cases (the case of movement of v1 along
the boundary of the circle around v2 with radius 100 for a duration bigger than zero, or the
case that the distance never reaches 100). For a similar reason, intervals must meet a further
requirement. It must be possible to represent not only closed, but also open and semi-open
intervals. This becomes obvious when replacing “equal to 100” with “less than 100” in the
above example. As a result, instants must be present in spatio-temporal databases in the
sense that intervals are allowed to have zero duration and are allowed to be open on one or
both sides. Consequently, the extra space demand for interval representation4 is an immanent
aspect.

Furthermore, there must be a means to represent that a fact is never true. For instance,
if in the above example object o does not reach a distance of 100 to point p then the fact
“Object o has distance 100 to point p” is never true and the result of the above query must
reflect that. Consequently, a special interval is introduced:

(undef,undef) = ∅

Here, undef augments the temporal domain as a special symbol and is used to construct the
interval ∅.

A further requirement stems from the handling of pure-spatial data and the question of
its temporal validity. Spatial data is not related to time and when it is injected into the
spatio-temporal domain, the only options are: (1) it is assumed to be never valid such that
spatial data implicitly carries the (special) interval ∅; and (2) it is assumed to be always
valid. The first option implies a strict separation between spatial and spatio-temporal data,
contradicting the goal to integrate both kinds of data. Therefore, it is assumed that spatial
data is valid at all instants. The special symbols −∞ and ∞ are introduced into the time
domain for this purpose. Their meaning is such that every instant is bigger than −∞ and
less than ∞. Then, spatial data can implicitly carry the interval of validity (−∞,∞). The
following definitions sum up the arguments given so far.

3.2.1. Definition. (time domain, “<”) The time domain � , interpreted as being isomor-
phic to the set of real numbers, is the structure:

� = (
�

∪ {−∞,∞,undef}, <)

4Not only are intervals specified by their left and right boundary, but also by the necessary information of
open- and closeness.
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The relation “<” is extended as follows. Let p1, p2 ∈ � :

p1 < p2 =















p1 < p2 if p1 ∈
�

and p2 ∈
�

false if p1 = ∞, p2 6= undef or p2 = −∞, p1 6= undef
true if p1 ∈

�
∪ {−∞} and p2 ∈

�
∪ {∞}

undefined if p1 = undef or p2 = undef

Special symbols −∞, ∞, and undef are available. Relation “<” is defined on any two
elements in � \{undef}, but undefined for undef , therefore the extension of “<” is a partial
order. Intervals as described above are the primitives used to model the lifetime of objects.
The relation p ≤ q is defined as p < q ∨ p = q.

3.2.2. Definition. (interval) Let pl, pu be two instants in � \ {undef} such that pl < pu.
An open interval takes one of the following forms:

• A left-open interval is defined as (pl, pu] := {t ∈ � | pl < t ≤ pu}

• A right-open interval is defined as [pl, pu) := {t ∈ � | pl ≤ t < pu}

• An open interval is defined as (pl, pu) := {t ∈ � | pl < t < pu}

Let pl, pu be two instants in � \ {undef} such that pl ≤ pu. A closed interval is defined
as follows: [pl, pu] := {t ∈ � | pl ≤ t ≤ pu}. The lower boundary of an interval i is defined
as inf i and denoted by i−, the upper boundary is defined as sup i and denoted by i+. The
boundary of i, denoted by ∂i, is defined as {i−, i+}. The closure of i is defined as the closed
interval [i−, i+]. Finally, the sets of intervals � is defined as the union of the sets of open and
closed intervals and the set {∅}.

Note that it is possible to form a degenerate interval [t, t]. In the sequel, such intervals are
used to represent that a fact is valid at a single instant. Differently, intervals like [100, 10] do
not conform with definition 3.2.2.

Boolean operations of the kind f : � × � → {true, false} are useful in query conditions, as
in the temporal selection Retrieve all objects whose valid time intersect the interval [100, 200].
Such operations have connections to qualitative reasoning about intervals, and the approach
usually taken is that of Allen (1983). He identified a minimum set of possible relationships
among intervals. However, as noted above, Allen does not allow instants as primitive objects.
As a consequence, these relationships must be extended to account for instants and (semi-)
open intervals. Ma and Knight (1994) have given a solution on a logical level, presenting
a unifying theory including both intervals and points. The operational form derived in this
thesis is topic of the next chapter.

The intersection operation ∩ : � × � → � is defined in the usual set-based way; hence, it
is also defined correctly for the special interval ∅. Except for intersection, intervals are not
closed under set-based operations and are therefore not adequate to model natural language
queries involving “and”, “or”, and “not” (see also Gadia and Yeung, 1988). Furthermore, the
result of when-operations (When has object o met a given predicate?, see also chapter 6) is,
in general, a set of intervals. This leads to the concept of a temporal element.
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3.2.3. Definition. (temporal element) A temporal element is any finite subset of � . A
temporal element e is said to be minimal if for all pairs of distinct intervals i, i′ ∈ e the
condition i ∩ i′ = ∅ holds. The set of temporal elements is denoted by � .

Temporal elements are closed under set-based operations. It is worth noting that for every
temporal element e in � there is a uniquely defined minimal temporal element min(e) such
that

⋃

i∈e i =
⋃

i′∈min(e) i′. Hence, minimal temporal elements correspond to equivalence
classes of � . Equality of temporal elements e1, e2 can then be reduced to membership to the
same equivalence class (e1 = e2 ⇔ min(e1) = min(e2)). Therefore, in the sequel the term
“temporal element” usually refers to “minimal temporal element”. Temporal elements are
used as timestamps, that is specifications of lifetimes and thereby domains of functions from
time into space.

3.2.4. Definition. The boundary of a temporal element e is defined as the set of boundary
instants of each interval in min(e). The closure of e, denoted by closure(e), is defined as the
temporal elements that consists of the closures of e‘s intervals. The hull of e, denoted by
hull(e) is the smallest, closed interval that contains all of e‘s intervals. More formally, these
concepts are defined as follows:

∂e :=
⋃

i∈min(e)

∂i

closure(e) :=
⋃

i∈e

closure(i)

hull(e) := [min
i∈e

{i−}, max
i∈e

{i+}]

e+ := max
i∈e

{i+}

e− := min
i∈e

{i−}

To sum up, the temporal domain is a structure isomorphic to the set of real numbers, extended
by the symbols −∞,∞ and undef for the reasons mentioned above. One element of this
domain is called an instant. It is possible to construct degenerate intervals of the form [t, t].
Furthermore, there is the special temporal interval ∅ to denote that the lifetime of an object is
empty. A temporal interval may be open on one or both sides. The set of temporal intervals �
is the building block for timestamps, or temporal elements, subsumed by the set � . Elements
of � are used subsequently to define the lifetime of spatio-temporal objects.

3.2.2 Spatial Domain

In this thesis, geo-spatial objects are assumed to be embedded in a continuous space under the
Euclidean metric. Many spatial data structures have been proposed in literature to represent
spatial objects. Such representations typically store topological information of a configuration
of spatial objects. For instance, the Node-Arc-Area or Doubly-Connected-Edge-List data
structures in two-dimensional space are prominent examples (see also Worboys, 1995). In



3.2. Spatio-Temporal Representational Model 27

three-dimensional space the Weiler data structure (Weiler, 1985, 1986) or the g-map data
structure (Lienhardt, 1994) of the Gocad geological modelling system (Mallet, 1992, 2002),
boundary representation (B-REP, Mäntylä, 1988), constructive solid geometry are used to
model spatial objects while representing also topological information to a varying degree.
It is worth noting that current commercial database systems as back-ends of geographical
information systems are limited to two-dimensional data without direct support for topological
information.

The simplicial complex model is among the topological models for spatial data (Egenhofer
et al., 1990; Breunig, 1996). It has been chosen for the GeoToolKit projects (Balovnev
et al., 1997) and it is also adopted as the spatial domain for this thesis (Shumilov and Siebeck,
2001). The central concepts are primitive objects, called simplices, which are the building
block for complex objects, called simplicial complexes. These complexes are sets of simplices
conforming to a topological constraint: the intersection of two simplices must also be con-
tained in the complex. This model proved adequate for applications of the GeoToolKit

projects (Balovnev et al., 1998), while other application domains can also be supported, for
instance terrain modelling (Van Kreveld, 1997).

While these concepts are dimension-independent, for the scope of this thesis the number
of dimensions will be fixed to three spatial dimensions. The reason is the capability of in-
tegration of datasets ranging from different disciplines like geography, geology, soil science,
or meteorology, the underlying space for the representational model is assumed to be three-
dimensional. Examples for the following definitions of simplices and simplicial complexes are
given in figure 3.4.

3.2.5. Definition. (d-simplex ) Let P denote a set of d + 1 affine independent points. The
convex hull of P , conv(P ), is called a d-dimensional simplex (d-simplex for short). The
elements in P are called the vertices of a simplex s and are denoted by s(i), 0 ≤ i ≤ d. The
dimension of s is denoted by dim(s). The convex hull conv(P ′) of each subset P ′ ⊆ P is
called a face of s, denoted by f{i0,...,ij}(s) = conv({s(i0), . . . , s(ij)}) with i0, . . . , ij ∈ {0, . . . , d}

pairwise disjoint, j ≤ d. The set of points in
� 3 that form a simplex s, denoted by points(s),

is given by

points(s) =

{

p
∣

∣

∣
p =

∑d

i=0
λis

(i), λi ≥ 0,
∑d

i=0
λi = 1

}

In the following, these pairs of terms will be used interchangeably: point and 0-simplex;
segment and 1-simplex; triangle and 2-simplex; tetrahedron and 3-simplex. Simplices can be
combined to form complex objects; however, they must then obey constraints to form proper
simplicial complexes as expressed in the following definition.

3.2.6. Definition. (simplicial complex ) A finite set C of simplices forms a simplicial complex,
if (a) for each s ∈ C the faces of s are members of C and (b) for each s1, s2 ∈ C the following
condition holds: s1 ∩ s2 = ∅ or s1 ∩ s2 is a face of both s1 and s2. The dimension of C is
defined as maxs∈C dim(s). The set of points in

� 3 of the simplicial complex C is given by

points(C) =
⋃

s∈C

points(s)
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(a)

(b)

(c)

Figure 3.4: (a) simplices of dimensions 0-3, (b) left: simplices forming a simplicial
complex, (b) right: simplices not forming a simplicial complex, (c) a 2-simplex and
its faces.

The following restriction of the class of simplicial complexes results in spatial objects that
represent simple line, areal, and volume objects.

3.2.7. Definition. (d-mesh) Let d > 0. A d-dimensional simplicial complex C is called a
d-mesh if (a) for every simplex s ∈ C with dim(s) < d there exists an s′ ∈ C such that s is a
face of s′, and (b) for every (d− 1)-simplex s′′ there are at most two simplices which contain
s′′ as faces.

A 1-mesh is also called polyline, a 2-mesh is also called a triangular mesh, and a 3-mesh is
also called a tetrahedral mesh. Restriction (a) in definition 3.2.7 states that a polyline only
contains segments, a triangular mesh only contains triangles, and a tetrahedral mesh only
contains tetrahedra as simplices that are not faces of other simplices within the complex.
Restriction (b) states a manifold-condition5: a vertex in a polyline connects at most two
segments, a segment in a triangular mesh connects at most two triangles, a triangle in a
tetrahedra mesh connects at most two tetrahedra. Note that tetrahedral meshes meet this
requirement a priori, since the embedding space is three-dimensional.

The concepts defined so far are the basis for the spatial types, and the system Geo-

ToolKit has been designed with these concepts in mind (Breunig, 1996; Balovnev et al.,
1997). In particular, the set of spatial types comprises 0D-3D simplices (points, segments,

5The manifold condition implies that the vicinity of any point of the interior of a d-manifold is homeomorphic
to an open subset of a corresponding point in d-space.
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triangles, and tetrahedra), 1D-3D simplicial complexes (polylines, triangular meshes, and
tetrahedral meshes), and “analytical objects” like lines or planes. Furthermore, one distinct
type (called Group) allows for aggregating instances of spatial types under the simplicial
complex constraints. Finally, all spatial types support geometric operations, functions, and
predicates.

Although every 0D-3D simplicial complex can be represented within this model, there are
the “first class citizens” polyline, triangular mesh, and tetrahedral mesh which are subject
to the restrictions mentioned above. More general topologies, e.g. non-manifolds, may be
represented through type Group. These restrictions have so far been in compliance with the
requirements of several applications (Balovnev et al., 1998).

Furthermore, the following constraints on objects from this domain have to be met. First,
an object corresponding to a d-dimensional simplex may not be degenerate (no flat tetra-
hedra are allowed, for instance, which is implied by the affine independence condition in
definition 3.2.5). Second, following from the definition of a simplicial complex, any two sim-
plices within the same simplicial complex may only intersect at common sub-simplices.

As mentioned in section 3.1.3, the design principle of separating vertices from mesh ele-
ments has been followed in the GeoToolKit design. On an implementation level, this has
lead to a complex client/server storage architecture. This design principle carries over to the
spatio-temporal setting.

3.2.3 Spatio-Temporal Domain

This section introduces the representational model for spatio-temporal data. It extends the
spatial model of simplicial complexes and combines the characteristics of the previously men-
tioned models. The main properties are: (1) it allows for both continuous and discontinuous
change of spatial objects; (2) the spatial domain is three dimensional; (3) it represents contin-
uous change by linear vertex movement; (4) it separates vertices from mesh elements; (5) it
allows for change in discretisation by time-stamping also on the simplex-level. The emerging
concepts are temporal versions of the pure-spatial concepts: temporal simplices and temporal
complexes, which each are interpreted as mappings from the temporal domain into the spa-
tial domain. Furthermore, geometric constraints of the purely spatial model are injected into
the spatio-temporal domain, for example, the constraint that at no instant of its lifetime a
temporal triangle may degenerate to a line segment or point. Of course, a temporal simplex
is allowed to degenerate at an instant outside of its lifetime, even at the boundary of one of
its validity intervals if the interval is open on the respective side.

The spatio-temporal model has been designed as an extension to the pure-spatial model.
Recall from section 3.1.2 that the separation of a mesh and its vertices carries over to the
spatio-temporal case. Furthermore, the idea of describing change through vertex movement
is adopted from the previous projects. Thus, the first concept to be discussed is that of vertex
movement. Then, temporal simplices and temporal complexes are introduced.

A temporal vertex v can be defined as a function from time into three dimensional space:

v : � →
� 3
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Figure 3.5: Temporal point with lifetime e = {i0, i1, i2}. No movement occurs
during i0. Between i0 and i1 there is a temporal gap. Linear movement occurs
during i1 and i2. The transition from i1 to i2 is a discontinuity. The bracket on the
time-line below indicates that the location of the point for this instant is determined
by the function for i1.

where domain(v) ∈ � and v is continuous. The image of v is also called the trajectory of v,
the curve in 3D

traj(v) = {v(t) | t ∈ domain(v)}

The set of such functions v is denoted by T .

One can break up function v into two components: (1) a position function that describes a
curve in space (the trajectory); and (2) a velocity function that specifies the distance travelled
on the trajectory, parameterised by time. The position function must be parameterised by
arclength to obtain a vertex‘s position at a given instant in time; then, the position is evaluated
by applying first the velocity function and on the result—the arclength—the position function.
However, for the scope of this thesis a simpler scheme is adopted by limiting both position
function and velocity function to be piecewise linear. The implications are piecewise constant
velocity and zero acceleration (except for the path vertices). More complex movement must
be modelled by approximation. The subset F lin of T is defined to contain exactly those
functions in T that are piecewise linear.

For the remainder of this thesis, the representational model for vertex movement is based
on F lin. Therefore, the position function is limited to be piecewise linear. This means that
for each continuous trajectory T of a temporal vertex v ∈ F lin there is an ordered set of
points {p1, . . . , pn} such that T can be calculated through linear interpolation between two
consecutive points pi and pi+1, 1 ≤ i ≤ n − 1. The points in the set {p1, . . . , pn} are called
the support points of v.

Furthermore, also the velocity function, parameterised by t, is limited to be piecewise
constant. This means that if vertex v is at location pi at time ti and at location pi+1 at time
ti+1, then the direction of the velocity vector of v is that of vector pi+1 − pi. The velocity
vector itself is then obtained by dividing by (ti+1 − ti). The location of v between these
instants is obtained by

v(t) = pi +
t − ti

ti+1 − ti
(pi+1 − pi), t ∈ (ti : ti+1)

This implies constant velocity (zero acceleration) between pi and pi+1.
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3.2.8. Definition. (temporal point) Let e denote a minimal temporal element. Furthermore,
let each interval i ∈ e be mapped to a piecewise linear, continuous function vi ∈ F lin. A
temporal point is defined as a mapping v as follows:

v : � →
� 3

t 7→

{

vi(t) if ∃i ∈ e : t ∈ i

undefined otherwise

The set of these mappings v is denoted by T lin.

To summarise, in this thesis the model of vertex movement T lin is based on piecewise
linear functions v that are given by a sequence of assignments A ordered by the time-value
time(pi) assigned to each point pi in A. These points are called the support points of v. Of
course, points with equal coordinates may be present in S. Some support points in A mark
changes in direction, some mark changes only in velocity, some mark both, and some mark
discontinuities (see also figure 3.5). No other restrictions, for example physical restrictions,
apply to the points in A except for those mentioned. Such restrictions have to be imposed at
the application level.

For the remainder of the section, the following notation is introduced. Let S = {f1, . . . , fn}
denote a finite set of functions of one variable t over a common domain. Then, S(t) is a
shorthand for the set

S(t) = {fi(t)|fi ∈ S, t ∈ domain(fi)}

Extending purely spatial simplices and simplicial complexes, d + 1 temporal vertices in
T lin can be combined to form a d-simplex at every instant in their common lifetime. The
following definition makes this precise (see also figure 3.6).

3.2.9. Definition. (temporal simplex ) Let V denote a set of d+1 temporal vertices in T lin.
Let e ∈ � be a temporal element. A temporal d-simplex s[V, e] is the function that maps each
instant in e to the convex hull of V (t) as follows:

s[V, e] : � ⊇ e → P(
� 3)

t 7→ conv(V (t)) =
{

p
∣

∣

∣
p =

∑d

i=0
λivi(t), λi ≥ 0,

∑d

i=0
λi = 1

}

For reasons of integrity, the following conditions on s[V, e] must hold: (1) the temporal vertices
vi ∈ V must be valid during e, hence e ⊆ time(vi); (2) for all t ∈ e the points in V (t) must
be affine independent. Similar to the pure-spatial case, the dimension d = |V | − 1 of s[V, e] is
denoted by dim s, each proper subset of V forms a (temporal) face s[V ′, e] of s[V, e].

The second condition in definition 3.2.9 states that at every instant in its lifetime, a temporal
segment may not degenerate to point, a temporal triangle may not be without area, and a
temporal tetrahedron may not be flat (figure 3.7). In parallel to the 3D case, a temporal
simplicial complex can be composed of a set of temporal simplices and a temporal element e
of validity.
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Figure 3.6: Temporal simplices. (a) A trajectory has been discretised linearly to
form a temporal vertex; the vertex‘s support points are labelled by their time value.
(b) Trajectory of two temporal vertices and some snapshots of the temporal segment
defined by these vertices. (c) Similarly for a temporal triangle. (d) Similarly for a
temporal tetrahedron.

3.2.10. Definition. (temporal simplicial complex ) Let S denote a finite set of temporal
simplices and e ∈ � a temporal element. A temporal simplicial complex C[S, e] is the function
that maps each instant t ∈ e to the (pure-spatial) simplicial complex S(t). For reasons of
integrity, the following conditions on C[S, e] must hold: (1) the temporal simplices si ∈ S
must be valid during e, hence e ⊆ time(si); (2) for each instant t ∈ e the set S(t) must meet
the properties of a simplicial complex (see definition 3.2.6).

The second condition in definition 3.2.10 states that C is subject to the following restriction:
for all t ∈ I the complex should suffer no “self-intersection”. Parallel to the pure-spatial case
the set of temporal simplicial complexes is restricted to form temporal d-meshes that means
temporal polylines, temporal triangular meshes, and temporal tetrahedral meshes.

3.2.11. Definition. (temporal d-mesh) Let C[S, e] denote a temporal simplicial complex.
C[S, e] is called a temporal d-mesh if (1) for each t ∈ e the set S(t) is a valid d-mesh and
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Figure 3.7: Two examples for temporal simplices violating the affine-independence
condition of definition 3.2.9. (a) A temporal triangle invalid at time t = 2. (b) A
temporal tetrahedron invalid at time t = 1; left: side view, right: top view.

(2) for each t, t′ ∈ e the condition dim S(t) = dim S(t′) holds.

It must be noted that—on the level of internal representation, focus of the next chapter—
the elements of S in a temporal d-mesh C[S, e] are augmented by a topological information:
with each temporal simplex the set of neighbouring simplices is stored. These extended
simplices are also called “d-simplices with neighbourhood” and are the elements of so-called
e-complexes (Breunig, 1996). The neighbourhood-information is beneficial for algorithms on
meshes (Breunig, 1996; Breunig et al., 2001). In terms of storage overhead for this redundancy,
there is a distinction between the pure-spatial and the temporal case. For the former, this
redundancy means storing d + 1 references with each (pure-spatial) d-simplex; however, for
the latter, the redundancy means storing a number of references with each temporal d-simplex
that is not bounded by a constant. The details of storing neighbour references are subject of
the next chapters.

On the way to elementary and compound operations, the definitions of timesteps of a
spatio-temporal object are introduced, and on their basis the input sizes to spatio-temporal
operations are defined. These concepts are used in subsequent chapters to analyse running
times of algorithms for operations defined on spatio-temporal objects.

Timesteps mark instants in a spatio-temporal object’s lifetime, at which something “im-
portant” is happening to it. Therefore, the timesteps of a spatio-temporal object are given
as a finite subset of � . Again, it is distinguished between a mesh and its vertices which leads
to the concepts of geometry- and discretisation-timesteps.

In particular, a temporal point v changes its position through the course of time. Every
interval in the lifetime of v is mapped to a piecewise linear, continuous function (defini-
tion 3.2.8), the support points of which are part of the timesteps. Let e denote the lifetime
of v and vi the function that is mapped to an interval i ∈ e.

timesteps(v) =
⋃

i∈e

{t | vi(t) is support point of vi}

Let a temporal d-simplex, d > 0, be given as s[{p1, . . . , pd+1}, e]. The set of gsteps of s is the



34 Chapter 3. A Representational Model for Spatio-Temporal Data

union of timesteps of its temporal points, limited to the lifetime e of the simplex.

gsteps(s) = ∂e ∪
⋃d+1

i=1
(timesteps(pi) ∩ e)

Secondly, through the course of time a temporal complex may not only change its location
and shape of its simplices, but also its discretisation. Therefore, it is distinguished between
discretisation- and geometry-timesteps, or dsteps and gsteps for short. For a temporal complex
C[{s1, . . . , sn}, e] the gsteps are defined as follows:

gsteps(C) =
⋃

s∈C
gsteps(s)

Furthermore, the time-line of a spatio-temporal object o refers to the ordered sequence of
instants in gsteps(o).

Timesteps form the basis for defining input sizes to spatio-temporal operations. It is
important to emphasise that the following definitions do not apply to storage space utilisation.
Instead, they are targeted at running times of operations. Some of them, for example, will
loop over the gsteps of a temporal simplex. Hence, the contribution to the running time is
gsize (see below).

The input size of a temporal vertex v is measured as follows.

size(v) = 4 · |timesteps(v)|

The size of a temporal d-simplex s, d > 0, is given by the number of point-references plus the
number of intervals in the temporal element of validity.

size(s) = (d + 1) + |e|

Given the separation of discretisation and geometry, one can distinguish between two different
input sizes of a temporal complex, depending on whether geometric information is used or
not. For instance, algorithms for detecting holes in a (spatial) triangular mesh do not need
geometric information of their simplices6. While the latter can be defined easily as

gsize(C) = |e| +
∑

s∈C
size(s)

the former refers to the number of neighbourhood-relationships among temporal simplices
and is explained in the following. Given two temporal d-simplices s1, s2 and an instant t,
the (spatial) simplices s1(t) and s2(t) are called neighbours, denoted by s1(t) ] s2(t), if they
share a common face, that is, points(s1(t))∩points(s2(t)) = points(f), where f is a (d-1)-face
of both s1(t) and s2(t). Figure 3.8 illustrates this relationship among simplices. A temporal
d-mesh C[S, e] can then be seen as a (time-dependent) graph. To this end, let F denote the set
of all temporal (d−1)-faces of the temporal simplices in S, that is F = {f{i1,...,id}(s) | s ∈ S}.
Furthermore, there is a special node } corresponding to the exterior of the mesh. The arcs
in the time-dependent graph are of the form [(n1, n2), e], which means that there is an arc
from n1 to n2 for every t contained in the temporal element e. Then, the graph is given by

G = (N, A), where N = S ∪ F ∪ {}} and

6Note, that in complexes internal topology is represented explicitly.
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Figure 3.8: Left: A temporal polyline at three different instants. The connectivity
changes after instant t1. Right: The neighbourhood-relationships of the simplices.
The special symbol } denotes the exterior of the polyline.

A :=
{

[(f{i1,...,id}(s), s
′), e] | s 6= s′ ∈ S, e = {t | s(t) ] s′(t)} 6= ∅

}

∪
{

[(f{i1,...,id}(s), }), e] | s ∈ S, e = {t | 6 ∃s′ ∈ S : s 6= s′ ∧ s(t) ] s′(t)} 6= ∅
}

The graph structure is bipartite, since the set of arcs A only contains arcs that are directed
from nodes in F to nodes in S ∪ {}}. With this graph structure, the dsteps and the dsize
of a temporal mesh can be defined. Note that for a temporal element e the cardinality |e| is
defined as the number of intervals in e.

dsteps(C) =
⋃

[(f,s),e]∈A
∂ e (3.1)

dsize(C) =
∑

[(f,s),e]∈A
|e| (3.2)

size(C) = dsize(C) + gsize(C) (3.3)

The following lemma states a lower and an upper bound for the dsize in terms of S and gsteps.

3.2.12. Lemma. Given a temporal mesh C = C[S, e], the following bounds on dsize(C) hold:

dsize(C) = Ω
(

∑

s∈S
|time(s)|

)

dsize(C) = O
(

|gsteps(C)| · |S|2
)

Proof: The lower bound can be seen as follows. Every face f ∈ F of a simplex s ∈ S
participates in at least one arc [(f, s), e]. The definition of A implies that for every interval
i ∈ time(s) there is either a separate arc in A or the temporal element of an arc contains i.
Either case contributes to the dsize of the mesh. More arcs or bigger temporal elements are
possible, but not less. Since every d-simplex in a temporal d-mesh contributes d+1 faces and
d is bounded by a constant, the lower bound holds. Furthermore, the bound is tight, that
means, meshes exist which have this dsize. This is possible, for instance, if there are only arcs
from f to }. In such a case, every simplex in S is isolated from every other simplex in the
mesh. Every face of a simplex s contributes exactly one arc to A with the temporal element
time(s).

For the remainder of the discussion it is assumed that an arc

[(f, n), e = {i1, . . . , in}] ∈ A
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is replaced by the set of arcs
[(f, n), i1], . . . , [(f, n), in]

Obviously, the replacement yields the same result, since then

gsteps(C) =
∑

[(f,s),e]∈A

|e| = |A|

The set gsteps(C) partitions the temporal evolution of a mesh such that between two con-
secutive instants t1, t2 from this set every vertex of the mesh performs a linear move during
[t1, t2]. Furthermore, every face f ∈ F can “connect” to |F | − (d + 1) different faces during
this interval, yielding as much arcs in A. However, f can also connect to the special node }.
Hence, the worst case is if there are alternate connections of f to a face and to }, contribut-
ing 2 · (|F | − (d + 1)) arcs to A. More arcs for f would be possible only, if f could connect
to another face again during [t1, t2]. But this is prevented by the linearity of the vertices‘s
moves: once a connection is ended, it cannot occur again during [t1, t2]. Therefore, in total
there are at most

(|gsteps(C)| − 1) · |F | · 2 · (|F | − (d + 1))

arcs in A. Since |F | = (d + 1)|S|, the upper bound holds.

3.3 Discussion

This section discusses and explores important properties of the model defined in the previous
section. The first aspect is to what extent the model is capable of building spatio-temporal
objects. It is discussed why specific constraints are built into the model while others are
not. Strongly related is the second problem of constructing spatio-temporal objects out of
existing ones by applying set-based operations union, intersection, and difference. Therefore,
the model is examined for closure under these operations.

3.3.1 Separation of Representation and Construction

The model is representational only. Neither does it contain physical constraints, nor are there
any restrictions for the transition from one timestep to the next that go beyond the injected
spatial restrictions. As a consequence, it is left unspecified how to construct a spatio-tempo-
ral object, e.g., out of different (purely spatial) snapshots, or how to refine approximation.
Application-dependent as such construction operations are, it is arguable whether they should
be tightly integrated into a database model, and the assumption for this work is that they
are to be maintained on an application’s level (compare Koubarakis et al., 2003, sect. 4.1).

In the following four examples, it is described how the discretisation of a surface may
change as time proceeds and thereby modelling continuous change. In the first example, a
triangle s can be replaced by a set M of two or more triangles at a timestep. The new triangles
cover the area of s exactly: points(M) = points(s). In the second example, the surface can be
extended by adding a triangle s′ at the boundary (cf. figure 3.9). This can be accomplished
by assigning s′ the left-open temporal interval (t1, tx]. Thus, s′ does not exist at t1, but at
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Figure 3.10: A deletion of a time-dependent simplex.

t1 + ε. If extrapolated to t1, s′ would become a degenerated triangle that corresponds to
a boundary segment of the surface. Hence, the geometry of the surface is consistent at t1
and extends “smoothly” as time proceeds to t2. In the third example a triangle s′′ vanishes
(cf. figure 3.10). This case is inverse to the previous one. The temporal interval of s′′ is
right-open and if continued to t1 would also reduce to a line segment. The last example deals
with changes to (external) topology. A “hole” may evolve when a moving vertex v is placed
on a non-boundary line-segment at a timestep ti which then moves into the area of triangle
s. The temporal interval of s is [tx, ti]. Let the vertices of s be v0, v1, v2, then s is replaced by
two new triangles (v0, v1, v) and (v1, v2, v) each of which has the temporal interval (ti, ty].

It must be noted that the examples above are purely descriptive and that a mathematical
formulation of how to achieve these surface changes is not part of the model. However, as
was stated above, a methodology for geometry evolution is beyond the tasks of a database
model and also not adequate: a methodology for one application domain may not fit a further
application domain. Therefore, the model is purely representational, in that it is capable of
representing continuous change types as given in the examples above.
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Furthermore, it is easy to verify that the proposed model also conforms to the taxon-
omy of basic spatio-temporal processes according to Claramunt et al. (1997). Every basic
spatio-temporal process (compare table 1.1, p. 3) can be represented: (1) stability, since the
trajectory of a temporal vertex can degenerate to a point yielding no movement at all; (2)
deformation, since the trajectories of temporal vertices can be specified independently; (3)
expansion/contraction, since the trajectories of temporal vertices can be the result of a scal-
ing function; (4) rotation for a rotation function, linearly approximated; (5) translation for a
translation function applied to every temporal vertex in a temporal mesh. Additionally, also
change in topology can be represented, although more demanding on the application‘s level
that must formulate a mathematical model to compute such changes.

3.3.2 Non-Closure of Set-Based Operations

Regarding the representable spatio-temporal objects as time-dependent point sets, it is worth
examining the closure under set-based operations union (∪), intersection (∩), and difference
(\). Conceptually, the definition of these operations is extended straightforwardly for the
spatio-temporal setting. Given two spatio-temporal objects o1 and o2, the result of such an
operation is a function of time, the domain of which is the intersection of the two input
domains of o1 and o2. For example, the union operation can be defined as follows:

o1 ∪ � o2 : t 7→ o1(t) ∪ o2(t), where domain(o1 ∪ � o2) = time(o1) ∩ time(o2)

Intersection and difference can be defined in the same manner. While any spatio-temporal
object—as defined in the previous section—is a time-dependent point set, not every point set
corresponds to a spatio-temporal object. The notion of a time-dependent point set is more
general. Hence, the set of time-dependent point sets is partitioned into two classes, where the
first class contains those point sets that can be represented by a spatio-temporal object and
the second class contains those point sets that cannot be represented by a spatio-temporal
object as defined in the previous section. For this reason, it is interesting to see if operations
on spatio-temporal objects can “lead out” of the first class, that is, if operations are closed
under certain operations. More concrete, since these point sets have the representation given
above, closure means here that the result of a set-based operation on any two given point
sets under the given representation can always be brought into this representation. If there
are cases where the result of such an operation cannot be represented within the model,
then the model is not closed under this particular operation. The operation difference is—
in a strict sense—not closed, because the representational model cannot express point sets
without boundary (open point sets). Within the field of computer-aided design, a related
observation has lead to so-called regularised operations that eliminate also isolated points or
dangling edges. Hence, the set-based operations are interpreted in their regularised form:

o1 \
∗� o2 : t 7→ o1(t) \

∗ o2(t) = closure(interior(o1(t) \ o2(t)))

The other operations are defined analogously. While the problem of open sets, isolated points,
etc., can be overcome in this way, the situation is different with spatio-temporal intersection
and linear vertex movement T lin as defined in section 3.2.3. By proving that an intersection
can yield non-linear vertex-movement, the negative result of non-closure is reported.
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Figure 3.11: To the proof of proposition 3.3.1. (a) Trajectory of a temporal
segment. (b) Intersection with a static plane resulting in a temporal vertex with
non-linear trajectory.

3.3.1. Proposition. The set of temporal simplicial complexes with the T lin model of vertex
movement is not closed under intersection.

Proof: It must be shown that there are temporal simplices the intersection of which cannot
be expressed in terms of the model. To this end, it suffices to construct an example based on
a temporal segment. The temporal vertices v1, v2 of this segment are defined as follows:

v1 : � ⊃ [0, 1] →
� 3

0 7→ (0, 0, 0)

1 7→ (1, 1, 0)

v2 : � ⊃ [0, 1] →
� 3

0 7→ (0, 1, 1)

1 7→ (1, 0, 1)

Hence, the first vertex performs a linear move from the origin to (1, 1, 0), the second vertex
performs a linear move from (0, 1, 1) to (1, 0, 1) (see figure 3.11(a)). The trajectory of the so
defined temporal segment is a bilinear interpolation of the aforementioned points: a curved
surface. Therefore, intersecting the temporal segment with a static triangle can result in
moving vertex trajectory that is non-linear (figure 3.11(b)). Indeed, only if in this case
the triangle is placed such that it lies within a plane parallel to either xy− or yz−plane, a
linear vertex movement results; however, all other placements would result in a non-linear
movement.

Hence, to create a temporal complex by intersection, the resulting vertex trajectories must
be approximated piecewise linear. A similar result for the two-dimensional space has been
reported by Chomicki and Revesz (1999a). However, the result presented here is stronger
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Figure 3.12: Example for a temporal triangle whose trajectory forms a solid with
non-linear bounding faces.

in the following sense. It shows that for three dimensions the intersection operation is not
closed, even for the case of intersecting a spatio-temporal object with a pure-spatial object.
An implication of the proof above is that other operations of interest are also affected, for
example the trajectory-operator. Given a spatio-temporal object o, this operation results in
a pure-spatial object corresponding to o‘s trajectory. While in two dimensions, the model
would support this operation, the situation is different in three dimensions, as exemplified in
figure 3.12. Here, the trajectory of a temporal triangle forms a solid with non-linear bounding
faces that cannot be represented within the model.



Chapter 4

Design of Data Types for a Spatio-Temporal

Database System

The representational model forms the basis for data types, the integration of which into a
database system is the centre of interest in the following two chapters. These types are to be
used in application development or by ad-hoc query systems. One can distinguish between
the external level that defines the appearance of the type system to the user, and the internal
level that forms its implementation. While the latter is discussed in the next chapter, the
former is in the focus now.

The design of the spatio-temporal data types is guided by several objectives. Among such
objectives is simplicity and adequacy, leading to a type system that subsumes pure-spatial and
spatio-temporal objects under a common data type and keeps thus the number of types and in-
terfaces small. A further important design objective stems from the part/subpart-relationship
between a mesh (the part) and its simplices (the subparts). Here, the spatio-temporal data
types are designed such that they allow for the sharing of subparts. Additionally, this rela-
tionship is strongly connected to a logical storage hierarchy for spatio-temporal objects.

The spatio-temporal data types are embedded in the object-oriented framework. Since
objects are characterised by state and behaviour, both aspects are discussed. In particu-
lar, concerning behaviour it is also investigated how to transfer pure-spatial predicates and
operations to the spatio-temporal setting. However, the discussion is limited to operations
for which implementation concepts are developed in this thesis. Concerning the state of an
object, not all (potential) states are valid for spatio-temporal objects. Therefore, so-called
restrictions are defined on the new types so that spatio-temporal objects comply with the
definitions from the previous chapter.

The type system extends the set of predefined classes of ObjectStore
TM

, the underlying
persistent object storage management system, by spatio-temporal classes to be offered in
user-level schema modelling. Thereby, object-oriented features shall be made available, for
instance, substitution polymorphism; a further design objective to be followed.

The remainder of the chapter is organised as follows. The first section reviews concepts of
the object-oriented framework that are being used subsequently. Then, the design objectives
for the spatio-temporal type system are derived. The logical storage hierarchy is focus of the

41
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following section. After that, the classes for spatio-temporal data types are presented, ranging
from the pure-temporal classes to classes for temporal meshes. Part of the description are
structure, behaviour, and object restrictions.

4.1 Object-Oriented Framework

The design of the spatio-temporal data types follows the object-oriented paradigm. This
choice is due to the fact that the GeoToolKit projects (compare section 3.1) were mainly

conducted within the environment of ObjectStore
TM

, an object storage system. Hence, the
system GeoToolKit serves as a starting point, although the concepts derived here are
independent from this environment to a high degree. As current object-relational database
systems also offer many object-oriented features, several aspects might carry over to such
systems.

The remainder of the chapter makes use of the following concepts and notations. Since the
system is built on top of ObjectStore

TM

, its data modelling capabilities are readily available.
Central is the notion of a class, instances of which are called objects. Thereby, every class
comprises two parts: (1) a part describing the state of its instances; (2) a part describing
to what messages instances react (given by method signatures) and how they do it (given by
method implementations).

Every class corresponds to a type, while the reverse does not hold. Each type is defined
by the set of (potential) values for that type and the set of operations that can be applied to
them. Certain built-in types are available, like integer, bool or float, along with their usual
operations and sets of values. The structure of a class c with the attributes a1, . . . , an of types
t1, . . . , tn, respectively, is denoted by c = [a1 : t1, . . . , an : tn]. The set of values for c, denoted
by V(c), is defined by

V(c) = {(. . . , v(ai1), . . . , v(ain), . . .) | v(aij ) ∈ V(tij )}

which is the set of all tuples having attribute values for the attributes a1, . . . , an from V(ti),
respectively. This construct replaces the Cartesian product of values for the purpose of
inheritance (Watt, 1990). The fact that class c is a subclass of class c′ is denoted by c <: c′

(following Abadi and Cardelli, 1996). Then, with the principle “inheritance is subtyping”
one obtains the inclusion relationship: c′ <: c ⇒ V(c′) ⊆ V(c). As usual, for a given object
o of class c, the value for the attribute ai of o is denoted by the so-called dot-notation o.ai.
Instances of classes are objects o that carry an implicit unique identifier, denoted by o.id.

Furthermore, it is assumed that type constructors are available for sets (Set<T>), lists
(List<T>), and references (Ref<T>), where T is called the parameter of the type constructor.
Ref<T> models a reference to an object of type T . An object r of type Ref<T> can assume
the value null. The dereference operator is denoted by resolve: Ref<T> → T . Dereferencing
a null-reference raises an exception. In C++-parlance, the shorthand ∗o is used here for
resolve(o), the shorthand o->a is used for resolve(o).a for an object o having an attribute a.
Methods are treated analogously.

The notion of equality of objects is used at several places. Here, it denotes structural
equality, if not otherwise stated. Hence, given two objects o1, o2 of type T with the set of
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attributes A, equality of o1 and o2, denoted by o1 = o2, is recursively defined as o1.a = o2.a
for each a in A \ {id}. This is in contrast to the identity of two objects o1, o2, denoted by
o1.id = o2.id. Equality of two given references r1, r2 holds if and only if they refer to the same
object, that means r1 = r2 :⇔ r1->id = r2->id.

Following the principle “inheritance is subtyping” (Abadi and Cardelli, 1996) and the
subsumption principle, any spatio-temporal data type also has the type of its abstract base
class stObject (defined below), such that it is possible, for example, to form database collec-
tions of spatio-temporal objects that are of diverse (most specific) types. Furthermore, the
mechanism of dynamic dispatch for method invocation (late binding) is available. Further-
more, certain methods of stObject have parameters that are also of type stObject. Given two
references to stObject-objects o and o′, such a method m is called as follows: o->m(o′). Here,
it is necessary to determine the most specific types of both o and o′, since this information
is needed for the implementation (see definition of the methods below). While the most spe-
cific type of o can be determined at runtime via dynamic dispatch of method m, the most
specific type of o′ can be determined through runtime type information (rti); however, rti
can be circumvented by the following alternative approach that has also been applied in the
GeoToolKit-projects (Balovnev et al., 2003). The approach works as follows. Let the most
specific type of o and o′ be A and B, respectively. Then, the call o->m(o′) must be resolved
to the method A::m(Ref<B>) or, alternatively, B::m(Ref<A>), since the methods under
consideration are commutative (see definitions below). First, the method call is resolved via
late binding to the method A::m(Ref<stObject>). The latter method is implemented such
that it forwards the method call to its final destination by calling o′->m((Ref<A>)o). Fi-
nally, again via late binding, the target method B::m(Ref<A>) is reached. For this to work,
the mentioned methods must be implemented in the specified way for all combinations of
arguments.

Normally, every value of V(c) can be assumed for an object of class c. However, if some
values of V(c) are not admissible, class c is said to be restricted. The restrictions can usually
not be checked at compile-time; rather they must be assured at runtime. In the following, two
types of restrictions are distinguished. First, there are enforced restrictions, which means that
non-admissible values are converted into admissible values (see class temporalElement below
for an example). Second, there are exception restrictions, which means that non-admissible
values raise an exception to be resolved by an appropriate handler.

4.2 Design Objectives

The design objectives for the spatio-temporal data types on the user-level are as follows. First,
spatial and spatio-temporal types should be integrated in a transparent way in that there is
no distinction between the two kinds of data on this level. The reason lies in simplicity and
adequacy of the type system. It yields simplicity in that the number of types and operations is
small and hence less complex for the user. It yields adequacy in that nevertheless both kinds
of data can be represented and treated uniformly, since spatial data is modelled as a special
case of spatio-temporal data (compare the embedding of spatial data in section 3.2.2). As a
consequence, it is refrained from general type constructors, since the meaning of a construct
(interpolation function, etc.) like “temporal<T>” for an arbitrary type T can be given on
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Design Objective Justification

Direct support of temporal d-meshes,
more general topologies through a
special data type

Emphasises most important kind of
spatial data to be extended

Transparent integration: subsume
spatial types as special cases of
spatio-temporal types

Yields simplicity and adequacy

Build dynamic data structures Supports geometric modelling

Separate mesh from vertices Saves space, avoids redundancy, en-
ables building several meshes from
the same set of vertices

Allow for object-oriented features Use modelling capabilities of the un-
derlying framework

Table 4.1: Overview of the mentioned design objectives for spatio-temporal data
types (details see text).

an application‘s level only and is hidden to the DBMS. To sum up, spatio-temporal types are
not modelled as instantiable template classes, but as (simple) classes and thereby subsume
pure-spatial types as special cases of spatio-temporal types.

A second design objective is to support the temporal d-meshes (see section 3.2.3) through
specific types and operations, while more general topologies should be represented by a con-
tainer type conforming to the geometric constraints of a temporal simplicial complex men-
tioned in section 3.2.3. This is in tradition with the GeoToolKit approach for spatial
types (Balovnev et al., 1997).

Building dynamic data structures is a further objective the design should follow. This is
justified by the requirement to support geometric modelling tasks that need to update spatio-
temporal objects after their initial creation (see also section 3.1.1 and the fourth specification
“time-stamp update” in chapter 1). Therefore, the spatio-temporal types should contain
operations for insertion, removal, and update of “subparts“ like vertices, mesh elements, etc.
(see below).

A further design objective stems from the separation of a mesh and its vertices. For the
reasons given in section 5.6, the task of storage allocation for vertices and mesh elements
is transferred to the application‘s level, to some degree. Therefore, creation- and insert-
operations should have a means to specify the storage area for an object‘s subparts. While
this design objective violates simplicity, an implementation can supply default storage areas
and thus relieve the user of this task.

Furthermore, the objective to support the geometric constraints (see section 3.2.3) should
be followed. This leads to the specification of restrictions defined on the new classes. For
example, a pure-spatial type for triangular meshes, say TM , consists—among others—of a
set of triangle objects. Following V(TM), any set of triangle objects can be used to form
a TM object. However, the definition of a triangular mesh (definition 3.2.7) restricts the
admissible sets of triangle objects, for instance in such a way that any two triangles in the
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set may only intersect at sub-simplices. This condition on sets of triangle objects must be
checked at runtime, the class TM is therefore restricted.

Finally, users should be able to take advantage of object-oriented features with the new
spatio-temporal data types. This objective is not “automatically” available, since further goals
on the internal level conflict with this objective, for example, substitution polymorphism.
Such a feature is needed in situations, where one wants to insert triangle objects into a
triangular mesh whose types are in fact a subtype of type triangle, for instance, to extend
triangle objects with a user-specified attribute. At the same time, it is desirable to separate
the geometry-part from the attribute-part for clustering that would support queries based on
geometry. This separation, in conjunction with an assembly where needed, does not come for
free; however, the design described below facilitates the use of object-oriented features, while
their realisation is discussed in the next chapter.

A summary of these design objectives is shown in table 4.1. One implication of the objec-
tives is that spatio-temporal objects are organised hierarchically and are also interdependent.
This hierarchy is focus of the following section.

4.3 Logical Storage Hierarchy

To allow for the flexibility inherent in the design objectives of the previous section, spatio-
temporal objects are organised in a logical storage hierarchy. The hierarchy is termed logical,
since it corresponds to the user‘s view upon the storage structure of spatio-temporal objects
and is in contrast to its internal realisation (see next chapter). The properties of the hierarchy
are threefold. First, it reflects the part/subpart-relationship (aggregation) of spatio-temporal
objects. For instance, a d-mesh is comprised of d-simplices. Second, it allows for a sharing of
temporal simplices and temporal vertices, thereby modelling n:m-relationships among these
objects. Third, it enables the allocation hints and thereby the grouping of temporal points
and simplices in the persistent storage area.

The structure of the logical storage hierarchy in terms of the part/subpart-relationship
is depicted in figure 4.1 and can be described as follows. The top of this hierarchy forms
the container type space (not shown) that holds references to spatio-temporal objects. On
the next level there are the elements of a space, the temporal d-meshes that are logically
containers of references to temporal d-simplex objects. On the next level there are temporal
d-simplices that hold references to temporal point objects. Finally, the lowest level consists
of the referred point objects storing “the geometry” of the spatio-temporal objects.

However, the aggregation-relationship cannot be modelled as an existential aggregation,
which would imply a 1:n-relationship between meshes and vertices, hindering the sharing
of vertices. As a consequence, it must be possible to establish an n:m-relationship between
meshes and vertices. Similarly, meshes must be capable of sharing their simplices. This
modelling approach of sharing subparts results in the use of references as opposed to embedded
objects, as described in the next section.

Finally, using certain storage classes, a user can build groups of vertices and groups of
simplices that are clustered internally for faster retrieval and allow for data partitioning, for
instance onto separate storage devices. Details of internal organisation are subject of the next
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Mesh object Simplex object Point object

Figure 4.1: Logical view on the storage hierarchy of spatio-temporal data types.
The bold arrows indicate reference-relationships.

chapter.

To sum up, the proposed hierarchy allows for flexibility. Temporal points are separated
from temporal simplices, temporal simplices are separated from temporal meshes. Points and
simplices can thus be shared among several of the respective container objects.

4.4 Storage Classes

The simplex objects can reside in different places in persistent memory and they are managed
by special data structures. The point manager is responsible for storing and retrieving point
objects. The segment-, triangle-, and tetrahedron-managers are responsible for the respective
objects. Though described in detail in the next chapter, here, instances of the data structures
are used as parameters that specify the placement of simplex objects. It is worth noting that
an application can create an arbitrary number of such managers to facilitate data partitioning.

4.5 Data Types for Spatio-Temporal Objects

The classes to be presented are organised in an inheritance tree, the root of which forms a so-
called abstract base class. Then, for each d = 0, . . . , 3, there is a pair of classes corresponding
to the notion of a d-simplex and the notion of a d-mesh, respectively, that are subclasses of the
abstract base class. Furthermore, the class group corresponds to the more general notion of a
temporal simplicial complex. This design yields the objective of direct support of d-simplices
and d-meshes, while also allowing for more general temporal simplicial complexes.

To present the system less complex to the user, the number of classes is kept small. This
is facilitated by the fact that pure-spatial data types are modelled as a special case of spatio-
temporal data types. As a result, for each d = 0, . . . , 3, there is only one class corresponding
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to the notion of a d-simplex, capturing both temporal and pure-spatial objects. Likewise, for
each d = 1, . . . , 3, there is only one class corresponding to the notion of a d-mesh. Importantly,
this design does not rule out the usage of pure-spatial internal representations along with,
for example, proven pure-spatial geometric algorithms or indexes. The question of how to
transfer pure-spatial operations to the spatio-temporal setting is discussed in the next section.
To sum up, the design of treating pure-spatial objects as a special case of spatio-temporal
objects yields the objective of a transparent integration of pure-spatial and spatio-temporal
objects.

In the following, an overview of the user-level classes is given. First, the pure-temporal
classes are introduced, followed by the spatio-temporal types and the user-level storage classes.
See also figure 4.7 for a UML-representation of the class hierarchy.

4.5.1 Pure-Temporal Types

The pure-temporal classes are used to represent the (temporal) validity of objects. In par-
ticular, regarding spatio-temporal objects as functions from the time domain into the spatial
domain, temporal elements are used to specify the domain of these functions. First, a class
representing instants is described. Instants are used to construct intervals to be described
thereafter. Finally, the class for temporal elements is presented.

Class instant

Objects of this class model (temporal) instants. Hence, V(instant) corresponds to the tem-
poral domain as defined in section 3.2.1. It contains the elements of a finite representation of
the set of real numbers and the special symbols −∞, ∞, and undef . The class offers usual
arithmetic operators with the following signature.

+,−, ·,÷ : instant × instant → instant

It is assumed that the operations have the “usual” semantics of the underlying representation
scheme for real numbers. Special care must be taken for operands that assume the values of
the special symbols. The comparison operator

<: instant × instant → bool

is specified to raise an exception if one of the operands equals undef (see also definition 3.2.1).

Class interval

Objects of class interval model temporal intervals. Recall from definition 3.2.2 that an interval
consists of a lower and an upper boundary and that it can be open on one or both sides and
may degenerate to a single instant. Hence, the class appears to the user in the following way:

interval=[start: instant, end: instant, leftopen: bool, rightopen: bool ]
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Since V(interval) shall correspond to the set � , the class interval is subject to exception
restrictions. These restrictions follow those mentioned in definition 3.2.2. Hence, for any
object i of type interval the following conditions hold:

1. Either both i.start and i.end equal undef or none equals undef , and

2. if i.start 6= undef , then i.start ≤ i.end, and

3. If i.start = i.end then i.leftopen=i.rightopen=false

These conditions are to be checked during construction or updates of objects of class interval.
The constructor has the following signature.

new: instant × instant × bool × bool → interval

The parameters are used to assign the start-, end-, leftopen-, and rightopen-attribute, re-
spectively. Further operations are available for extracting the boundary of interval objects.
The first operation applied on an object i of class interval returns i.start, the second returns
i.end. The signature is as follows.

inf, sup: interval → instant

Special treatment for the interval never leads to returning undef . The closure operation
applied on an object i of class interval

closure: interval → interval

constructs an interval i′ that is the closure of i (definition 3.2.2). In particular, the following
conditions hold: i.start =i′.start, i.end = i′.end, and i′.leftopen = i′.rightopen = false. There
is no special treatment for the interval never.

Furthermore, Allen‘s thirteen qualitative relationships between intervals, extended for
open and closed intervals, are available as predicates. The signature is given by:

interval × interval → bool

The semantics of the predicates can be taken from figure 4.2. If one of the operands has the
value never, the operands are incomparable with respect to these predicates. The treatment
is therefore to raise an exception.

The set � is not closed under set-based operations, as discussed in section 3.2.1, and
this holds also for V(interval). Although the intersection-operation forms an exception, it
is refrained from offering set-theoretic operations for class interval, thereby following the
simplicity principle. The mentioned intersection-operation can be applied by conversion to
an object of class temporalElement and applying its corresponding methods.
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Predicate Schematic view Semantic extended by points

i during j
(i− > j− ∨ (i− = j− ∧ i( ∧ j[))∧
(i+ < j+ ∨ (i+ = j+ ∧ i) ∧ j]))

i finishes j
(i− > j− ∨ (i− = j− ∧ i( ∧ j[))∧
(i+ = j+ ∧ (i] ⇔ j]))

i starts j
(i− = j− ∧ (i[ ⇔ j[))∧
(i+ < j+ ∨ (i+ = j+ ∧ i) ∧ j]))

i before j
i+ < j− ∨
(i+ = j− ∧ ¬(i] ∧ j[))

i equal j
(i− = j− ∧ (i[ ⇔ j[))∧
(i+ = j+ ∧ (i] ⇔ j]))

i meets j i+ = j− ∧ i] ∧ j[

i overlaps j
(i− < j− ∨ (i− = j− ∧ i[ ∧ j())∧
i+ > j− ∧
(i+ < j+ ∨ (i+ = j+ ∧ i) ∧ j]))

Figure 4.2: Allen‘s thirteen relationships among intervals, extended for intervals
with points (i.e. open, semi-open and degenerate intervals are allowed). Only seven
relationships are shown, since the remaining ones are inverses of the others (except
for equal). The upper interval is denoted by i, the lower interval by j. The lower
boundary of an interval i is denoted by i−, the upper boundary by i+. The fact
that i is open (closed) on the lower boundary is denoted by i( (i[). The case for the
upper boundary is handled analogously.
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Class temporalElement

Objects of this class model temporal elements, which are defined as (arbitrary) sets of inter-
vals. Hence, the attribute part of the class appears to the user in the following way:

temporalElement = [intervals: Set<interval>]

An object e in V(temporalElement) is subject to the following enforced restriction (compare
section 3.2.1):

{ i | i ∈ e.intervals } = min { i | i ∈ e.intervals }.

This means that any temporal element is represented in its minimal form; a fact that is
of interest to the user, since intervals are changed or even removed to obtain the minimal
form (coalescing). This also entails the design decision that the class‘s Set<interval> does
not hold references to intervals. Rather, intervals are copied into the temporal element such
that objects external to a temporal element remain unchanged during coalescing. Note that
this approach breaks with substitution polymorphism as the user can insert objects of most
specific type interval only.

Three constructors are available. First, there is the default constructor that creates
a temporalElement object e with e.intervals=∅. Secondly, the copy constructor takes as
argument an object e′ of type Ref<temporalElement> and creates an object e such that
e.intervals=e′.intervals. Thirdly, there is the constructor that takes as argument an interval
i and constructs a temporalElement e such that e.intervals = {{i}}.

new: → temporalElement
new: Ref<temporalElement> → temporalElement
new: interval → temporalElement

The set � is closed under set-based operations, and this holds also for V(temporalElement).
As a result, the following operations are available, accompanied by operations for constructing
the complement, hull, and closure of temporal elements. Definitions of these operations have
been given in chapter 3.

∩,∪,−: temporalElement × temporalElement → temporalElement
complement: temporalElement → temporalElement

hull: temporalElement → temporalElement
closure: temporalElement → temporalElement

4.5.2 Extension of Pure-Spatial Predicates

Treating pure-spatial objects as special cases of spatio-temporal objects implies a unified
definition of operations on such objects. As a consequence, one must extend the definition of
pure-spatial operations to the spatio-temporal setting adequately. One approach to achieve
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this has been reported by Güting et al. (2000). This approach is called lifting and has been
described in chapter 2.

However, since type constructors for expressing the continuous change of values are not
assumed in this thesis, the lifting-approach cannot be followed directly. The reason for this
lies in the return type of operations, which do not have a correspondence here, for example a
time-dependent boolean value. Therefore, a signature of a binary spatial predicate, which is
given by

spatial × spatial → bool

in the pure-spatial setting, carries over to the spatio-temporal setting, but the operation must
be defined anew carefully, while retaining its meaning when applied to pure-spatial objects.

To extend pure-spatial predicates to the spatio-temporal setting, two different alternatives
appear meaningful. See also Erwig and Schneider (2002) for a related discussion on this topic.
To be more concrete, the remainder of the discussion will be based on the binary predicate
intersects which is defined to be true for two given spatial objects o1, o2 if and only if o1

and o2 have at least one point p ∈
� 3 in common. The first alternative for extension lies

in a for-all- or always-semantic, the second one in an exists-semantic. It is argued that the
always-semantic is not appropriate for the extension of a pure-spatial predicate, while the
extension under an exists-semantic can be well-defined.

• Always-semantic. Here, it is assumed that the (spatio-temporally-extended) intersects
predicate evaluates to true if and only if for all t ∈ � \ {undef,−∞,∞}: o1(t) spatially-
intersects o2(t). Of course, this approach is not well-defined, since the lifetime of spatio-
temporal objects is usually not equal to � \ {undef,−∞,∞}. One had to extend the
pure-spatial intersects predicate to undefined spatial objects also. A better way is to
“bind” the predicate to the common lifetime of o1 and o2. Then the meaning of the
predicate would be described as “Did the objects intersect during their whole common
lifetime?” Hence, the spatio-temporally-extended intersects predicate under the always-
semantic is defined as follows.

o1 always-intersects o2 :⇔

{t ∈ dom(o1) ∩ dom(o2) | o1(t) intersects o2(t)} = dom(o1) ∩ dom(o2)

However, as an undesirable consequence, this expression yields true for objects with
disjoint lifetimes. One way out could be to set it for this case to one of the values
true, false, or undefined. Setting to true or false is obviously of little sense. Therefore,
the only reasonable extension under the always-semantic is as follows. Let D denote
dom(o1) ∩ dom(o2).

o1 always-intersects o2 :⇔

⇔

{

{t ∈ D | o1(t) intersects o2(t)} = D if D 6= ∅
undefined otherwise

This solution, however, is not fully satisfactory, since a three-valued logic is necessary
for a realisation (the predicate may evaluate to true, false, and undefined).
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• Exists-semantic. The extension of a pure-spatial predicate under the exists-semantic is
oriented towards the question “Was there an instant at which both objects existed and
also intersected?” More formal, one can define the extension as follows. Let D again
denote dom(o1) ∩ dom(o2).

o1 sometime-intersects o2 :⇔ {t | t ∈ D and o1(t) intersects o2(t)} 6= ∅

The defined predicate evaluates to false if D is empty. Any extended pure-spatial
predicate will evaluate to false if applied on two objects that have disjoint lifetimes.
This is adequate, since under the exists-semantic one asks for the existence of an instant
at which the (pure-spatial) predicate holds. If no such instant exists, the extended
predicate evaluates to false.

To sum up, in the following it is assumed that pure-spatial predicates are extended under
the exists-semantic. It is worth noting that the extended predicates retain their pure-spatial
meaning if applied to (embedded) pure-spatial objects.

4.5.3 Abstract Base Class stObject

The abstract base class stObject is the root of the inheritance tree containing the classes for
spatio-temporal objects. Three aspects must be investigated. First, there is the integration
into the inheritance tree of the type system. Second, there are the attributes that comprise
class stObject. Third, there is the set of methods, or the interface of class stObject. The
interface comprises only those methods for which implementation concepts are developed in
this thesis. Further operations are possible, see for instance (Galton, 1995; Muller, 1998;
Erwig and Schneider, 1999; Hazarika and Cohn, 2001; Erwig and Schneider, 2002)

The integration into the inheritance tree of the type system is performed as follows. Class
stObject is chosen as an abstract base class for the classes that model spatio-temporal objects.
Class stObject itself does not inherit from any class. The inherent aspects of temporality and
spatiality of a spatio-temporal object are included through aggregation, as described below.

Put differently, the (object-oriented) modelling question is whether an stObject consists
of a temporal element (aggregation), or whether it is a temporal element (inheritance).
However, the latter must be ruled out for the following reason. The approach implies that
methods for temporalElement are also part of the interface of class stObject. But the meaning
of operations for temporalElement-objects is different from those for spatial or spatio-tempo-
ral objects. For example, invoking the method “intersects” on a given stObject-object could
perform the intersection test of the temporal elements only, while not testing the spatio-tem-
poral extent, or it could perform the intersection test for the spatio-temporal extent, while
not testing the temporal element, or, finally, it could perform the intersection test for both.
As a result, the alternative approach yields a conflict of methods. For these reasons, the
conception that an stObject has a temporal element of validity is justified and this approach
is adequate.

The following attributes comprise class stObject. Common to all spatio-temporal objects—
whatever its concrete kind—are: (1) the attribute temporalElement that specifies the lifetime
of the object; and (2) the spatial extent of the object for every instant in its lifetime. Whereas
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Method name Parameter types Return type

Retrieval Methods:

lifetime: → temporalElement
at: instant → Ref<stObject>
range query: boundBox4D → Ref<stObject>
range query: plane → Ref<stObject>
range query: half-space → Ref<stObject>

Boolean Predicates:

intersects: Ref<stObject> → bool
disjoint: Ref<stObject> → bool

Metric Function:

min dist: Ref<stObject> → scalar

Temporal Functions:

when intersects: Ref<stObject> → temporalElement
when disjoint: Ref<stObject> → temporalElement
when min dist: Ref<stObject> → temporalElement

Update Methods:

lifetime: temporalElement →

Figure 4.3: Summary of the method signatures for the abstract base class stObject.
Definitions see text. The table shows only those methods for which implementation
concepts are developed in this thesis.

the former can be modelled in the abstract base class, the latter remains specific to the
concrete classes that inherit from stObject. Hence, the attribute-part of the class appears to
the user in the following way:

stObject = [lifetime: temporalElement ]

It is worth noting that the attribute is itself not stored with stObject (though the methods
manipulating it are). The reason is that for atemporal objects this attribute is not stored at
all, since it is implicitly set to (−∞,∞).

The interface of class stObject can be described as follows (see also figure 4.3). Methods
common to spatio-temporal objects are specified in this base class, while each method is
redefined in the subclasses and accessed via dynamic dispatch (late binding) during runtime.
As a result, each method described below is a virtual method to be defined in the more specific
classes. The methods for stObject are categorised as follows: (1) methods for retrieval that
result in an object of type stObject ; (2) methods for Boolean predicates whose return type is
bool ; (3) methods for metric functions, here the minimum Euclidean distance resulting in a
scalar ; (4) methods for temporal functions that result in a temporalElement ; (5) methods for
updates. Those methods that construct objects, allocate them in transient memory.

The first category (retrieval methods) comprises a snapshot query and a spatio-temporal
range query. The snapshot query “at” returns an object valid at a single instant. Class
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stObject can specify the “temporal part” of this method, while the spatial part is specific
for each subclass. Applied on an stObject o and an instant i, the temporal part of the
method is defined as follows. If i 6∈ o.lifetime, it raises an exception indicating that i is
outside the lifetime of o. Otherwise, it constructs an stObject o′ with o′.lifetime = new
temporalElement(interval(i, i, false, false)).

The next method of the first category (retrieval methods) is the spatio-temporal range
query that takes as argument a boundBox4D object, a plane object, or a half-space object.
Applied on an stObject o and a parameter Q, the method retrieves the part of o that intersects
Q.

Second, there are spatio-temporal predicates the return type of which is bool. For the scope
of this thesis, non-trivial Boolean predicates are limited to a “contains”-, an “intersects”-, and
a “min dist within”-relationship between spatio-temporal objects, as defined below. While
more diverse topological relationships between spatial objects could be extended to the spatio-
temporal setting under the exists-semantic and with the means developed in chapter 6, the
field of qualitative spatio-temporal reasoning is an ongoing field of research (see also Galton
(1995); Muller (1998); Erwig and Schneider (1999); Hazarika and Cohn (2001); Erwig and
Schneider (2002)). The implementation aspect remains still a challenge.

As noted above, the Boolean predicates are interpreted in their exists-semantic (sec-
tion 4.5.2). The discussion is limited to the intersects- and disjoint-predicates. The defi-
nitions of these predicates are based on well-known predicates for atemporal spatial objects.
The predicate “intersects” for two atemporal spatial objects o and o′ holds if and only if there
is a point p ∈

� 3 contained in o that is also contained in o′. Given two stObject-objects o1

and o2, the available methods are defined as follows. Let D denote o1.lifetime ∩ o2.lifetime
and let i denote an interval -object, then

o1.intersects(o2) :⇔

{

true if {t | t ∈ D and o1(t) intersects o2(t)} 6= ∅
false otherwise.

o1.disjoint(o2) :⇔

{

true if ¬ o1.intersects(o2)
false otherwise.

The description of the computation of these predicates is deferred until chapter 6.

The third category of stObject-methods comprise metric functions, here limited to the
Euclidean distance between two spatio-temporal objects. Applied on two stObject-objects o1

and o2, method o1.distance(o2) computes the scalar -value

min {distance(o1(t), o2(t)) | t ∈ o1.lifetime ∩ o2.lifetime}

If the intersection of o1‘s lifetime with o2‘s lifetime is empty, method “distance” raises an ex-
ception. Again, the description of the computation of this function is deferred until chapter 6.

The previous methods of the third and fourth category (Boolean predicates and metric
function) are also available in their when-form, and they make up the fifth category of stO-
bject-methods. The when-form of these methods result in a temporalElement that shows at
what instants the predicates yield true (for the predicates above) or at what instants the
distance has been minimal (for the Euclidean distance function).
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Finally, the category of update methods for class stObject comprises only method “life-
time” that updates the valid time (attribute “lifetime”) of an stObject-object. Since subclasses
must ensure restrictions on this attribute, the method must be redefined in the subclasses
and must therefore be virtual.

To sum up, class stObject is an abstract base class that itself does not inherit from any
class and that consists of a temporalElement-attribute. It contains the interface common to
the specific classes that model spatio-temporal objects and that inherit from class stObject.
Every method is a virtual method that can be applied on any object of type stObject. The
signatures of the methods that have been defined thus far are summarised in figure 4.3.
The implementations of the methods are part of the subclasses of stObject and a method
o.m(o′, . . .) is accessed at runtime (1) via dynamic dispatch for the object o the method
is called upon and (2) via the mechanism described in section 4.1 for the parameter o′.
Methods that construct objects, allocate such objects in transient memory. Further details
for particular subclasses of stObject are focus of the following sections.

4.5.4 Spatio-Temporal Simplices

Each notion of a temporal 0-, 1-, 2-, and 3-simplex is represented by a separate class. Hence,
there is one class for temporal points, one class for temporal segments, one class for temporal
triangles, and one class for temporal tetrahedra. All these classes inherit from their abstract
base class stObject. This section describes these classes covering the aspects of attributes,
restrictions, and methods.

Before discussing classes for spatio-temporal simplices, further support classes must be
introduced. First, there is the class scalar that models a scalar value from

�
. Second, there

are the classes point3D and point4D that model an element of the underlying space
� 3 and

a time-stamped point in
� 3, respectively:

point3D = [x: scalar, y: scalar, z: scalar ]

point4D = [x: scalar, y: scalar, z: scalar, t: instant ]

Third, there is the class pl curve (piecewise linear curve). This class models a piecewise
linear function from F lin that maps each instant in � \ {undef,−∞,∞} to an element in� 3 (see section 3.2.3). Hence, a pl curve-object consists of a set of point4D objects that are
the support points of the curve. Such a support point [x, y, z, t] corresponds to the location
of the point at an instant: t 7→ (x, y, z).

pl curve = [traj: Set<[s: point4D ]>]

The restriction on each object v of type pl curve is such that

1. |v.traj| ≥ 2. This restriction is needed, since at least two support points are needed to
define a linear function.

2. For all s in v.traj: s.t 6∈ {undef,−∞,∞}.
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Method name Parameter types Return type

Constructors/Destructors:

new: → Ref<point>
new: Set<[interval, pl curve]> → Ref<point>
new: Ref<point> × Ref<pointManager> → Ref<point>
destroy: option →

Update Methods:

set: instant × point3D →

Figure 4.4: Methods for point, showing only methods that differ from those for
stObject.

3. For s1, s2 ∈ v.traj : s1.t = s2.t ⇒ s1 = s2. This restriction ensures that v.traj is a
function from time into space.

Finally, there is the class boundBox that models an axis-aligned, three-dimensional bounding
box: boundBox = [lowerLeft: point3D, upperRight: point3D ]. Its main purpose is to provide
arguments for range queries.

Class point <: stObject

The class point corresponds to a temporal 0-simplex and is used to model a time-dependent
vertex that assumes values from

� 3.

point = [lifetime: temporalElement, m: lifetime → pl curve]

The attribute “lifetime” is inherited from class stObject and denotes the valid time of a point-
object. A new notation is introduced by “m: lifetime → pl curve” that denotes a mapping
from each element in “lifetime” to a pl curve object (compare definition 3.2.8).

In addition to the methods inherited from class stObject, the following methods are avail-
able for class point. They comprise the constructors and the destructor to create and delete
objects of class point, as well as the update method “set” to change the trajectory of a
point-object (see also figure 4.4).

The first constructor is the so-called default constructor (i.e. has no arguments). It
constructs an “empty” point object that corresponds to null for every instant. The second
constructor listed in figure 4.4 receives as parameter a set of interval/pl curve-pairs. This set
represents the mapping from a temporal interval to a piecewise linear curve. Implicitly, the
lifetime of the temporal point object is specified by the intervals in the set. These intervals
must form a minimal temporal element, otherwise the constructor raises an exception. The
third constructor listed in figure 4.4 denotes the copy constructor that takes as parameter a
reference to a point-object and to a pointManager -object. The reference to the former may
not be null, otherwise the constructor raises an exception. The constructor copies the data
of its parameter into the second parameter. If that is null, the constructor uses the same



4.5. Data Types for Spatio-Temporal Objects 57

pointManager as the “this”-object. Method “destroy” is the destructor for a point object.
There are two options for the parameter “option”: (1) DEFAULT: the point is deleted, if and
only if there are no simplex objects holding references to it; (2) TRIGGER CASCADE: the
point object is deleted, every simplex-object holding references to it is deleted and removed
from every referring mesh.

Method “set” is used to alter the trajectory of the point-object. Hence, it takes as pa-
rameters an instant and a point in

� 3.

Classes for temporal 1-, 2-, and 3-simplices

The temporal d-simplices (d > 0) hold references to d+1 temporal points and carry a temporal
element of validity that is inherited from class stObject. Furthermore, stObject ‘s methods are
subject to late binding (virtual methods). Therefore, the implementation of each method
is redefined in the subclasses; for brevity, most methods are not repeated here, while their
particular implementation is focus of a separate chapter. To start with, the class segment <:
stObject corresponds to a temporal 1-simplex. It consists of a temporal element of validity
and two references to temporal points. Its structure is defined as follows. Attribute “v” is
meant here as a shorthand for “vertex”.

segment = [lifetime: temporalElement, v: Ref<point>[2]]

Class segment is subject to the following restrictions. Let s denote an object of type segment.
First, each s.v[i] may not be null. Second, s must be temporally sound, that means s.lifetime
must be contained in each s.v[i]->lifetime. Third, the affine independence constraint on a
temporal segment s leads to the following restriction. For all instants in s‘s lifetime, s‘s
vertices may not coincide, that means, for all i ∈ s.lifetime: s.v[0]->at(i) 6= s.v[1]->at(i).

The class triangle <: stObject corresponds to a temporal 2-simplex. Its structure is defined
as follows.

triangle = [lifetime: temporalElement, v: Ref<point>[3]]

Class triangle is subject to the following restrictions. Let t denote an object of type triangle.
First, each t.v[i] may not be null. Second, t must also be temporally sound, that means
t.lifetime must be contained in each t.v[i]->lifetime. Third, the affine independence constraint
on a temporal triangle t leads to the following restriction. For all instants in t‘s lifetime, t‘s
three vertices may not lie on a common line.

The class tetrahedron <: stObject corresponds to a temporal 3-simplex. Its structure is
defined as follows.

tetrahedron = [lifetime: temporalElement, v: Ref<point>[4]]

Class tetrahedron is subject to the following restrictions. Let t denote an object of type
tetrahedron. First, each t.v[i] may not be null. Second, t must also be temporally sound, that
means t.lifetime must be contained in each t.v[i]->lifetime. Third, the affine independence
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Method name Parameter types Return type

Constructors/Destructors:

new: → Ref<simplex>
new: temporalElement × Ref<point>[2/3/4] → Ref<simplex>
new: Ref<simplex> × Ref<simplexManager> ×

Ref<pointManager>
→ Ref<simplex>

destroy: option →

Update Methods:

set: Ref<point>[2/3/4] →

Figure 4.5: Methods for segment/triangle/tetrahedron that augment the methods
for stObject. For shortness, the methods are listed in a single, combined table only;
hence, “simplex” must be replaced by one of segment/triangle/tetrahedron. Likewise,
“2/3/4” must be replaced by “2” in case of segment, by “3” in case of triangle, by
“4” in case of tetrahedron.

constraint on a temporal tetrahedron t leads to the following restriction. For all instants in
t‘s lifetime, t‘s four vertices may not lie on a common plane.

To sum up, the restrictions on temporal simplices comprise: (1) the restriction that none
of the references to point-objects may be null; (2) the restriction that a temporal simplex be
temporally sound; and (3) the restriction that the affine independence constraint of defini-
tion 3.2.9 must be met. Both the first and the second property are easily computed; however,
the solution to the problem of checking the latter property is deferred until chapter 6.

To complete the description of the classes segment, triangle, and tetrahedron, the set of
their methods is specified. First, virtual methods of the abstract base class stObject are
inherited in each of the classes segment, triangle, and tetrahedron. Being general, the defi-
nitions given for class stObject also apply to those mentioned here. Therefore, the solution
to the problem of implementing these methods for every class will be deferred until the next
chapters. Second, there are methods for the classes segment, triangle, and tetrahedron that
augment the interface of stObject. These methods comprise constructors and a destructor, as
well as the method “set” to update an object of the particular class.

The methods are summarised in figure 4.5. The first constructor is the default constructor
that creates an “empty” simplex object. The second constructor listed in figure 4.5 takes
as parameters the temporal element of validity for the corresponding object and an array of
references to point objects. The constructor checks the restrictions for the particular class (see
above) and raises an exception in the negative case. The third constructor listed in figure 4.5
is the copy constructor that takes as parameter a reference to an object of the particular class
and references to a simplexManager and to a pointManager. The first parameter may not be
null, otherwise the constructor raises an exception. The two latter arguments specify where
to allocate the newly constructed simplex and the copied point objects. If both are passed as
null, a new simplex object is created in the same simplexManager as the “this”-object, which
refers to its (existing) point objects. Operation “destroy” is the destructor for a simplex
object. For the parameter “option” there are two options: (1) DEFAULT: the simplex is
deleted, if and only if there are no references from mesh-objects; (2) TRIGGER REMOVE:
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the simplex is removed from every referring mesh object and deleted afterwards.

Method “set” takes as argument an array of references to point-objects that is assigned
to the data member “v”. Like the first constructor, it checks the restrictions and raises an
exception in the negative case.

Having described classes for temporal points, segments, triangles, and tetrahedra, the next
section discusses classes for spatio-temporal meshes.

4.5.5 Spatio-Temporal Meshes

Next discussed are classes for temporal 1−, 2−, 3−meshes. These classes also inherit from
class stObject and carry therefore their own temporal element of validity. Furthermore, they
appear to the user in such way that they contain a set of temporal simplices. Furthermore,
the member-relationship between this set and its temporal simplices is also time-stamped, as
will be shown below. The remainder of the section looks at classes for spatio-temporal meshes
in more detail.

To start with, class polyline <: stObject corresponds to a temporal 1-mesh. It consists of
the inherited temporal element of validity and a set of time-stamped references to segment-
objects. The following class structure consists of: (1) the “lifetime” attribute for the validity
of the object; and (2) the “segments” attribute that is a set of segment/temporalElement-pairs
to express which segment is part of the polyline and when it is part of the polyline.

polyline = [lifetime: temporalElement,
segments: Set<[seg: Ref<segment>, timestamp: temporalElement ]>]

Class triangleNet <: stObject corresponds to a temporal 2-mesh. Again, only references to
triangle-objects are stored, while sub-simplices are implicit. The following class structure
consists of: (1) the “lifetime” attribute for the validity of the object; and (2) the “triangles”
attribute that is a set of triangle/temporalElement-pairs to express which triangle is part of
the triangleNet and when it is part of the triangleNet.

triangleNet = [lifetime: temporalElement,
triangles: Set<[tris: Ref<triangle>, timestamp: temporalElement ]>]

Class tetraNet <: stObject corresponds to a temporal 3-mesh. As in the previous two classes,
sub-simplices are represented implicitly. The following class structure consists of: (1) the
“lifetime” attribute for the validity of the object; and (2) the “tetrahedra” attribute that is a
set of tetrahedron/temporalElement-pairs to express which tetrahedron is part of the tetraNet
and when it is part of the tetraNet.

tetraNet = [lifetime: temporalElement,
tetrahedra: Set<[tets: Ref<tetrahedron>, timestamp: temporalElement ]>]

Class group <: stObject corresponds to a (general) temporal simplicial complex. This class
can also be used to store sub-simplices explicitly. The following class structure consists of:
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(1) the “lifetime” attribute for the validity of the object; and (2) the “elements” attribute
that is a set of stObject/temporalElement-pairs to express which stObject is part of the group
and when it is part of the group.

group = [lifetime: temporalElement,
elements: Set<[objs: Ref<stObject>, timestamp: temporalElement ]>]

The restrictions of the above classes can be described as follows. First, there is the restric-
tion that each reference in the segments/triangles/tetrahedra/elements data member may not
be null. Second, there is the restriction that every object be temporally sound. For example,
for a polyline-object p this means that for all [s, e] in p.segments the following condition holds:
s->lifetime contains e. The remaining classes are analogously. Third, there is the restriction
that for any instant in an object‘s lifetime, the d-mesh property (simplicial complex property
for group) must hold: the segments of a polyline may intersect only at the segments‘s end
points, the triangles of a triangleNet may intersect only at the triangles‘s bounding segments,
the tetrahedra of a tetraNet may intersect only at the tetrahedra‘s bounding triangles, the
simplices of a group may intersect only at common sub-simplices.

To complete the description of the classes polyline, triangleNet, tetraNet, and group, the
set of their methods is specified. First, virtual methods of the abstract base class stObject
are inherited in each of the classes polyline, triangleNet, tetraNet, and group. As for the
temporal simplex classes, the definitions given for class stObject also apply to those mentioned
here. Therefore, the solution to the problem of implementing these methods for every class
will also be deferred until the next chapters. Second, there are methods for the classes
polyline, triangleNet, tetraNet, and group that augment the interface of stObject. These
methods comprise constructors, as well as the methods “insert” and “remove” to update
an object of the particular class. The methods are summarised in figure 4.6. The first
constructor listed in figure 4.6 takes as parameter the temporal element of validity for the
corresponding object to initialise data member “lifetime”. The set data member is initialised
to the empty set. The second constructor listed in figure 4.5 is the copy constructor that takes
as parameter a reference to an object of the particular class. This reference may not be null,
otherwise the constructor raises an exception. The third constructor is the copy constructor
that takes as argument a reference to mesh object, which not be null. The two parameters
Ref<simplexManager> and Ref<pointManager> specify where to allocate simplex objects
and point objects, respectively. If the former is null, the copy constructor inserts references to
the existing simplex objects of the “this”-mesh (and thereby also the existing point objects).
if this parameter is non-null, the copy constructor copies the referenced simplices into the
given simplexManager and—if the parameter Ref<pointManager> is non-null— copies the
point objects into the given pointManager. Newly created simplex objects refer to the newly
created point objects.

Methods “contains” and “when contains” check for containment of the simplex in the
mesh. Method “insert” takes as argument an object of the element type of the mesh. Other-
wise, it checks the restrictions for the particular class (see above), and it raises an exception
in the negative case. In the positive case, the argument is inserted into the mesh. If the object
is already contained in the mesh, its temporal element e of containment is adapted according
to the argument e′: e ⇐ e∪ e′. Finally, method “remove” takes as parameter a reference r to
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Method name Parameter types Return type

Constructors/Destructors:

new: temporalElement → Ref<mesh>
new: Ref<mesh> → Ref<mesh>
new: Ref<mesh> × level → Ref<mesh>
destroy: →

Membership Methods:

contains: simplex → bool

when contains: simplex → temporalElement

Update Methods:

insert: simplex × temporalElement →

remove: simplex →

Index Creation/Removal:

create index: split fct →

remove index: →

Figure 4.6: Methods for polyline/triangleNet/tetraNet that augment the method
set for stObject. For shortness, the methods are listed in a single, combined table
only; hence, “mesh” must be replaced by one of polyline/triangleNet/tetraNet. The
“simplex” must be replaced by segment for polyline, by triangle for triangleNet, by
tetrahedron for tetraNet, and by stObject for group.

the element type of the particular set data member. It removes all those elements [o, e] from
the set data member with r = o.1

Method “create index” is used to create a spatio-temporal index (section 5.5) for the
simplices contained in the mesh. The index is used to speed up operations on the mesh
and the checks for update validity. The parameter split fct to the method is a function that
computes a split2 when given a simplex object. Method “remove index” is used to remove an
index from the mesh.

In this chapter, interface aspects for the spatio-temporal classes have been discussed. The
following chapters concentrate upon implementation aspects. Many of the problems faced
have only non-trivial solutions.

1Remember from section 4.1 that equality of two given references holds if and only if both refer to the same
object.

2Defined in section 5.5.2.
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Figure 4.7: UML-representation of the hierarchy for spatio-temporal data types.
The diagram reflects the classes‘s user-perspective, while “hiding” the internal rep-
resentation, as explained in section 5.



Chapter 5

Design of Data Types on the Internal Level

Having described the data types on an application development‘s level, the design of an inter-
nal representation is focus of this chapter. Since the storage structure is built upon the object
storage system ObjectStore

TM

, the chapter opens with a description of the model of persistent
storage and briefly describes those ObjectStore

TM

features that are used subsequently. Then,
objectives for a design are derived that go beyond scalability and efficiency. Strongly related
to all aspects is indexing. Not only does it support updates and range queries, but also clus-
tering spatio-temporal objects on disk. Therefore, the chapter continues with an investigation
of indexing spatio-temporal objects that includes also an overview of related work. After that,
an architecture is proposed that meets the design objectives. In particular, methods for stor-
age, updates, and basic retrieval are presented. An important aspect, especially when faced
with updates, is that the data structures support connected components of temporal meshes.
To this end, the chapter generalises the notion of a graph and transfers these problems onto
the new graph structure. In particular, temporal variants of the breadth-first-search and the
union-find-problem are derived. Methods for storage comprise an architecture of persistent
structures for spatio-temporal objects. Algorithms for update operations modify spatio-tem-
poral objects. The chapter closes with an algorithm for basic retrieval (the snapshot query).
The fact that the elements of a temporal mesh are traversed by a breadth-first-traversal and
that the point objects are clustered, exploit locality of reference by pre-fetching point-data
into a point cache.

5.1 Architectural Model of Persistent Storage

Database objects, like the spatio-temporal objects from previous sections, are to be stored
persistently, that means the existence of an object is decoupled from the (operating system)
process that created it. The objects are allocated in the so-called persistent storage area that
is usually mapped onto secondary storage devices, such as hard disks. Programming with the
persistent storage area differs from programming with main memory (volatile storage) area.
For instance, to operate on a persistently stored object, the object must first be transferred
(or mapped) from persistent storage area (the “database”) into main memory. In this thesis

63
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it is assumed that the basic unit of transfer is a so-called page, a fixed size unit of storage
that is mostly sized to 4 Kbytes1 or 8 Kbytes.

Update and access of persistent data occurs during transactions. A transaction is a se-
quence of database operations, which has the four well-known properties of atomicity, con-
sistency, isolation, and durability (Haerder and Reuter, 1983). It is distinguished between
read-only transactions and update transactions. Modern object storage systems offer the pos-
sibility to register function hooks on events pertaining to transactions (Biliris and Panagos,
1995; White and DeWitt, 1995; Lamb et al., 1991). Accordingly, an application is capable
to execute functions on the following events: after begin of a transaction, after commit of a
transaction, before abort of a transaction, before commit of a transaction, and before retry
of a transaction. In this thesis, it is assumed that transaction management is performed by
an object storage manager.

Secondary storage is partitioned into database clusters. In ObjectStore
TM

, a cluster is a
region on secondary storage of variable size that offers locality of reference. In this thesis, free
space management is mostly left to the object storage system with one exception. The data
structures to be described often have sub-parts of fixed size. This special case of free space
management can be handled more efficiently. To this end, the following feature is exploited.
When an ObjectStore

TM

array is allocated in persistent memory (starting in a new cluster)
and the array has bpagesize/sizeof(element)c elements, the array occupies a single secondary
storage page. This way, one gets fine-grained control of (fixed-size) object placement.

Finally, the facility of so-called cross-database pointers is of importance. This Object-
Store

TM

facility can be used if objects in one database are to reference objects in another
database. Although not used directly, this facility is the justification for the data partitioning
argument given below.

5.2 Design Objectives

Several objectives guide the design of the storage architecture for the spatio-temporal data
types. While some of them follow from the objectives for spatio-temporal data types on the
user level (see previous chapter), others are new. The former comprise:

• Separation of a mesh, its simplices, and its vertices that are all linked by an n:m-
relationship. Internal structures are affected, since they must reflect this separation
adequately by resolving references or by assuring referential integrity.

• Object-oriented features and user-defined attributes for spatio-temporal objects. Inter-
nal structures are affected, since they must manage the link between user-defined data
and spatio-temporal data.

• Support for temporal d-meshes. Internal structures are affected, since they must assure
the restrictions defined on temporal meshes.

11 Kbyte = 1024 bytes
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• Transparent integration of pure-spatial and spatio-temporal data that are treated uni-
formly on the user-level. Internal structures are affected, since they remove this trans-
parency such that proven spatial storage, access methods, and algorithms can be applied
to pure-spatial data for reasons of efficiency.

The separation of a temporal mesh from its temporal simplices and its temporal vertices
deserves a closer inspection. The storage structure should support the construction of sev-
eral meshes from one or several groups of simplices and vertices. The separation objective
has several implications. First, a (geometric) update operation on a temporal vertex must
be propagated to the referring temporal simplices and meshes, hence to different structures.
Second, such geometric updates invalidate index structures that must also be updated ac-
cordingly.

A further objective is to build a dynamic structure that allows for updates. The justifi-
cation for this objective has been given above. At the same time, it is reasonable to assume
that objects should be grouped according to a “nearness” criterion: objects near in space and
time should be near on secondary storage. This makes sense, since spatial, temporal, and
spatio-temporal range queries are considered prevalent in applications.

For a similar reason, the proposed storage structure should allow for explicit representation
of certain topological information: the (time-varying) neighbours of a temporal mesh-simplex
should be accessible fast. Being redundant, this information must be treated with care during
updates, but it nevertheless proves useful in implementations for operations on temporal
complexes, as will be demonstrated soon.

Since geometric objects are fairly large, there are two main options for the grouping on
secondary storage. First, storage of a set of objects can be determined locally, which means
for each object separately, such that each page contains only data belonging to one and the
same object. Second, storage of a set of objects can be determined globally such that each
page may contain data from several objects. While the former is advantageous if queries and
operations pertain to a single object, for instance, intersecting a spatio-temporal object with
a given plane, the latter is advantageous if queries are related to sets of objects, for instance,
performing range queries over a set of objects. From this discussion, one can conclude that
neither is superior to the other strategy of grouping. At the same time, the decision can
well be done on the application level. Therefore, the storage structure should allow for a
compromise of global versus local clustering, decidable by application developers.

5.3 Overview of the Storage Structure Components

The proposed system consists of an external and an internal level. While the former comprises
the spatio-temporal data types within an object-oriented framework and has been the focus
of the previous chapters, the latter comprises storage methods for the geometric part of the
spatio-temporal objects. However, there must exist a “glue” that holds both levels together.
This “glue”—also a component of the storage structure—is discussed in section 5.4.

The internal part of the storage structure consists of several sub-components. First,
there is a point-manager component responsible for the management and the retrieval of
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(Sub-)Component Responsibilities

point-manager clustering of point data; retrieving
point data through: (1) range query;
(2) object identity

object-header manager for point-
objects

bookkeeping information; serves as
an indirection to turn the points into
relocatable objects

object-header manager for other tem-
poral simplices

bookkeeping information

Table 5.1: Overview of the components of the internal storage structure and their
responsibilities.

time-dependent point objects. Thereby, an application can allocate an arbitrary number of
point-managers. These properties facilitate data partitioning. Second, for every temporal
simplex data type (point, segment, triangle, tetrahedron), there is an object-header manager,
which carries bookkeeping information about the objects (described below). Furthermore,
the object-headers for point objects are used as an indirection during retrieval such that the
point data becomes relocatable, necessary for clustering. Again, an application can allocate
an arbitrary number of object-header managers, facilitating data partitioning. Concerning
the logical storage hierarchy that is based on references, a reference graph is materialised
for references “down” the hierarchy, as well as for references “up” the hierarchy. The latter
is needed to check the validity of updates. Concerning the management of meshes, addi-
tional structures are used to maintain neighbourhood-relationships between simplices and to
maintain connected components. The internal part of the storage structure is summarised in
table 5.1.

5.4 Linking Spatio-Temporal Objects with Thematic Data

Representing, storing, and retrieving spatio-temporal data is in itself not sufficient for a spatio-
temporal database system of a GIS. Moreover, it must also be possible to associate this data
with user-defined, thematic data. Normally, the data model of the underlying DBMS is used
for this purpose. In the case of an object-oriented DBMS, the new classes can participate in
aggregations, associations, or inheritance and establish a connection between thematic and
spatio-temporal data; however, the introduction of the new classes raises several questions.
For instance, since mesh objects are collections of simplices, there is the question whether
substitution polymorphism is supported. With this feature, an application can insert simplex
objects into a mesh object that are in fact instances of a class derived from the particular
simplex class (and obtain a reference to this derived class on request). A problem exists, since
geometric and thematic data are separated internally for the reasons given above. By separat-
ing these parts, the usual mechanism for inheritance are thwarted. This section explores the
problem of how to achieve and manage this association. First, it clarifies how thematic data
can be embedded from a user‘s point of view. Then, it develops the structural aspects of the
association. Finally, it develops the dynamic aspects of the association (creation, deletion,
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and update).

5.4.1 Thematic Data

Having defined the stObject class hierarchy within an object-oriented framework, an applica-
tion can embed these classes in its own database schema. For instance, the stObject classes
can participate in aggregations (in the sense of object-oriented modelling). Such connections
with application-specific classes can already be seen as an association of thematic data with
spatio-temporal data.

One elegant way of associating thematic data with a spatio-temporal object that is partic-
ularly supported is inheriting from the stObject class hierarchy. For example, an application
wants to store thematic data along with every temporal point of a temporal surface and
creates therefore a class derived from point, say myPoint, which carries the thematic at-
tributes. Then, the application can construct triangle objects using myPoint objects and can
in turn construct triangleNet objects using these triangle objects. Furthermore, the applica-
tion expects that references to myPoint objects are returned by the system when it accesses
the points of such a triangleNet object. This requirement has been termed “substitution
polymorphism” requirement above. The remainder of the section addresses the problems of
associating thematic data with spatio-temporal data through inheritance from the stObject
class hierarchy.

5.4.2 Bridging the User-Level and the Internal Level

Within the object storage system ObjectStore
TM

no low-level control of where attributes of
classes are stored physically is available (all attributes of an object are stored together).
Therefore, separating thematic attributes from geometric attributes, when the former are
introduced through inheritance, can only be accomplished, if one part is “factored out” into
a separate inheritance tree. At the same time both parts must be linked to remain accessible
when given a spatio-temporal object.

In the above myPoint-example, the following constructor of triangle can be used to con-
struct a triangle object:

triangle::new(Ref<point>, Ref<point>, Ref<point>)

Via polymorphism also references to myPoint objects may be passed as argument; however,
the constructor is unaware of the potential types of its parameters and simply copying the
point-part of the parameters results in a loss of the user-defined attributes: the triangle object
would refer only to point objects, but not to myPoint objects. Likewise, although using a
technique like a virtual clone-method would solve this problem, it is not applicable, since it
would violate condition (1) of separating the geometry part from the thematic part of an
object. Therefore, on creation of a point object, the geometric part is copied into the internal
structure while establishing a bidirectional link between the geometric and the thematic part.
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Figure 5.1: The structure of the “bridge“ design pattern (taken from Gamma et al.,
1995).

The design pattern “bridge” (Gamma et al., 1995) solves the problem of binding represen-
tations to the data types on the external level. Originally, the intent of the “bridge” design
pattern is to decouple an abstraction from its implementation (Gamma et al., 1995). Its struc-
ture is depicted in figure 5.1. In the setting here, the abstraction mentioned in the pattern
corresponds to the stObject class for spatio-temporal objects, derived classes of which carry
the thematic part of the objects. The implementation mentioned in the pattern corresponds
to the internal level responsible for the geometric part of the objects. Hence, the “bridge”
separates both parts of a spatio-temporal object. At the same time, the bidirectional link
offers a traversal path from the internal to the external part and vice versa. The internal
part is well hidden from the external part and reduces dependencies among both. The “se-
mantics” of the data types on the external level can be preserved, although this needs still to
be demonstrated (see below). Furthermore, this pattern allows to change the representation
of a given spatio-temporal object at runtime. Here, the “bridge” pattern offers an elegant
solution.

The design pattern “bridge” is applied as follows. For each concrete class derived from
stObject (point, segment, triangle, tetrahedron, polyline, triangleNet, tetraNet, and Group)
there is one instantiation of the pattern. In contrast to the description of Gamma et al.
(1995), the aggregation association is not only directed from the abstraction side to the
implementation side, but also directed oppositely. The latter direction is needed for a traversal
path for the internal structures to the thematic data part. Alternatively, this opposite link
can be avoided, if on the implementation side any reference is towards the abstraction side.
For example, the implementation object for a triangle object (on the implementation side)
stores references to three point objects (on the abstraction side) rather than references to
three implementation objects of point objects (on the implementation side). Although this
approach would save storage space, it is not suggested here mainly for two reasons. First
and less important, the alternative approach results in an additional dereference, which leads
in turn to more disk accesses. Second, the implementation object for any spatio-temporal
object is forced to have a persistent counterpart on the abstraction side of the bridge, even
for the case that a spatio-temporal object is not intended to be linked to thematic data at all.
Especially for smaller objects like points this would entail an intolerable overhead. Instead,
for this case the counterpart objects on the abstraction side can be created transiently as
needed, and this is described subsequently.
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The dynamic aspects of the bridge can be described as follows. The implementation
side of the bridge offers the same interface as does its counterpart on the abstraction side
of the bridge. These interfaces have been described in the previous chapter. A call of a
method on the latter side is forwarded to its counterpart on the former side by using the
aggregation association. The construction of a spatio-temporal object is triggered by the
user calling one of the constructors of one of the stObject-subclasses (on the user/external
level). The constructor is responsible for constructing both sides of the bridge; however, the
default constructor without arguments only constructs the abstraction side while setting the
reference to the implementation side to null. The methods of such an object act like those
for a spatio-temporal object with an empty lifetime. For the remaining constructors, the
construction of the abstraction side can occur in two different ways, depending on the user‘s
choice. First, the object on the abstraction side can be constructed persistently for storage
in the database. Second, the object on the abstraction side can be constructed transiently.
The proposed system can use this as a reasonable hint that the user of the stObject hierarchy
wants or does not want permanent linkage to thematic data, respectively:

• One of the subclasses of stObject is instantiated persistently. The system interprets the
creation such that a linkage to thematic data is intended and creates the “complete”
bridge with the bidirectional link.

• One of the subclasses of stObject is instantiated transiently. The system interprets
the creation such that a linkage to thematic data is not intended. It creates only the
implementation side of the bridge persistently. The reference from this side to the
abstraction side is set to null. There is a special mechanism to ensure that the full
bridge “is there” when needed.

The mentioned mechanism must address two important issues. First, it must somehow enable
persistent references to transient objects; indeed, this is necessary, since (a) such references
must not be written to persistent storage; and (b) a read-only transaction is not allowed to
manipulate these references directly. Second, the lifetime2 of these transiently allocated ob-
jects must be managed. The first issue is solved through ObjectStore

TM

‘s facility to manage
persistent pointers to transient objects, as is needed here. Details can be found in (Object-
Store, 2003). The second issue is solved with the concept of a transaction. Since access to
persistent data occurs always within a transaction, the lifetime of the transiently created ob-
jects is bound to the scope of a transaction. By establishing a transaction-hook these objects
can be deallocated at transaction commit or abort. Whenever a reference to an object on
the abstraction side is to be returned, an encapsulating method on the implementation side
is called:

Ref<abstraction> implementation::get abstraction()

The method implementation checks the current reference for equality to null. If this holds,
it creates a transient abstraction object and establishes the persistent-to-transient reference
within the object storage system.

2In the sense of creation and deletion of objects
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Figure 5.2: The application of the “bridge“ design pattern for (a) the simplex
classes and (b) for the mesh classes.

The application of the “bridge” pattern is analogous for all simplex classes and for all
mesh classes. The application of the pattern for the simplex classes is shown in figure 5.2(a).
It is worth noting that—for the simplex classes—there is no abstract base class on the imple-
mentation side of the bridge, since it entails a hidden pointer in the C++ representation3 and,
hence, demands more storage space than necessary. The different treatment for atemporal
and temporal spatial data is realised in a further data structure to be described below. The
application of the pattern for the mesh classes is shown in figure 5.2(b). In particular, the
figure shows on the implementation side an abstract base class for two mesh representation
classes, one for the case of a pure-spatial mesh and one for a temporal mesh. The former
can be based on proven spatial data structures, algorithms, and access methods, while on the
external level a unified interface avoids a proliferation of classes.

The proposed solution exploits further properties of the bridge pattern. First, both the
abstraction side and the implementation side are extensible by subclassing and can vary
independently. Thereby, the abstraction side is intended for application designers who create
their application schemas using the stObject hierarchy. Second, it is possible to switch the
implementation at runtime, while leaving the abstraction side almost unaffected. Third,
objects on the implementation side of the bridge can be shared among each other and this
interdependence can be managed on the implementation side. To sum up, the design pattern
“bridge” fits the problem of binding representations to spatio-temporal objects well and many
properties of it can be exploited. The remainder of the chapter covers the implementation

3This is the virtual function table pointer that is needed to resolve late bound methods.
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side of the “bridge” pattern instantiations.

5.4.3 Managing Object References

The hierarchy of spatio-temporal objects is based on references (see also figure 4.1 on page 46):
a temporal mesh aggregates temporal simplices, while a temporal simplex aggregates temporal
points. To avoid dangling references, a mechanism for their management is built into the
data structures. The aggregated objects exist independently from their aggregating objects,
establishing an n:m-relationship among them: a single temporal point can be aggregated by
an arbitrary number of temporal simplices, while a temporal simplex can be aggregated by
an arbitrary number of temporal meshes. Hence, there are two different paths along the
hierarchy of spatio-temporal objects. First, there is the path mesh-simplex-point “down” the
hierarchy. Second, there is the path point-simplex-mesh “up” the hierarchy. Obviously, the
former path must be materialised, as it describes the way that spatio-temporal objects are
constructed; however, the latter path must be materialised as well, as it describes the way
that updates are checked against restrictions. The following interface is used to manipulate
the path “up” the hierarchy:

Method name Parameter types Return type

Class Point Impl :

insert simplex reference: Ref<Simplex> → void
remove simplex reference: Ref<Simplex> → void

Class Simplex Impl :

insert mesh reference: Ref<Mesh> → void
remove mesh reference: Ref<Mesh> → void

By materialising the path “up” the hierarchy of spatio-temporal objects, it becomes pos-
sible to manage the automatic deletion of the objects on the internal side. A deletion is
triggered by the user calling the destructor of an object of the stObject class system (see
“bridge”-discussion in section 5.4.2). Since an object cannot be accessed any longer, if no
references to it exist, the object can then be deleted safely; however, such an object can be
part of another object on the next higher level of the hierarchy. As mentioned above, the
system materialises this relationship and it can thus decide, whether the object is part of
another one. If it is not, the object can be deleted. If it is, whether deletion occurs or not de-
pends on the parameter passed to the destroy-operation. Consequently, the deletion-operation
“o->destroy(option)” of a spatio-temporal object o is performed as follows: (1) the reference
o->internal->external is set to null; this avoids an endless loop that could otherwise occur,
since the destructor of an implementation object calls the destructor of its abstraction object;
(2) the destructor of o->internal->destroy(option) is called; if the destructor raises an excep-
tion, the reference o->internal->external is restored and an exception is raised; (3) otherwise
cleanup of the user-defined thematic data (user‘s responsibility). The call of the destruction
operation o->internal->destroy(option) in (2) is managed in the following way, depending on
the particular type and parameter option (see also algorithms 5.4.1, 5.4.2, and 5.4.3). For a
point object (algorithm 5.4.1) there are the options: (1) DEFAULT (lines 2–5) for the default
behaviour of not deleting a point in case there are references to it and to throw an exception
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in that case; (2) TRIGGER CASCADE (lines 6–8) for triggering the deletion of any referring
simplex object, which in turn removes the simplex object from any referring mesh object.

Algorithm 5.4.1 point impl::destroy(option)

1: switch option
2: case DEFAULT :
3: if this->external=null and this->simplex references=∅ then delete this
4: else throw exception
5: end case
6: case TRIGGER CASCADE :
7: for all s in this->simplex references do s->destroy(TRIGGER REMOVE)
8: end case
9: end switch

10: if this->external 6=null then delete this->external
11: delete this

For a simplex object (algorithm 5.4.2) there are the options: (1) DEFAULT (lines 2–5) for
the default behaviour of not deleting a simplex in case there are references to it and to throw
an exception in that case; (2) TRIGGER REMOVE (lines 6–8) for triggering the removal of
the simplex from any referring mesh object. Furthermore, management of the path “up” the
hierarchy occurs in line 11.

Algorithm 5.4.2 simplex impl::destroy(option)

1: switch option
2: case DEFAULT :
3: if this->external=null and this->mesh references=∅ then delete this
4: else throw exception
5: end case
6: case TRIGGER REMOVE :
7: for all m in this->mesh references do m->remove(this)
8: end case
9: end switch

10: if this->external 6=null then delete this->external
11: for all points p in this do p->remove simplex reference(this)
12: delete this

For a mesh object (algorithm 5.4.3), no options are needed and the necessary steps are to
manage the path “up” the hierarchy in line 2.

Algorithm 5.4.3 mesh impl::destroy()

1: if this->external 6=null then delete this->external
2: for all simplices s in this->simplices() do s->remove mesh reference(this)
3: delete this
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5.5 Indexing Spatio-Temporal Objects

The purpose of indexing is to speed up searches within a collection of database objects.
Usually, an object to be maintained in an index is associated with a single key. Then, an
index efficiently supports queries for those objects whose keys match a given query key (exact
match query), and queries for those objects whose keys lie in a given range of keys (range
query). Focusing on spatio-temporal objects, one can observe that using indexes helps solving
the following important problems: (1) speed-up of range queries on spatio-temporal objects;
(2) solving related search problems—for example queries based on a distance predicate—
efficiently without having to pre-process the complete data set; (3) speed-up of updates4

on temporal meshes that must check the restrictions mentioned in the previous chapter;
(4) grouping the geometric part of spatio-temporal objects on secondary storage in such a
way that retrieval operations keep the number of disk accesses low. For these reasons, this
section looks at the problem of indexing of spatio-temporal objects in more detail.

The remainder of the section is organised as follows. The next paragraph reviews current
research work on index structures for spatio-temporal data and comes to the conclusion to
adapt the well-known R∗-tree index structure for spatial data. Then, the following paragraph
introduces this index structure in more detail. Finally, the last paragraph centres on how to
adapt the R∗-tree for spatio-temporal data.

5.5.1 Related Work on Spatio-Temporal Indexing

There has been extensive research on the problem of indexing spatio-temporal objects over the
last years. A recent survey of this field of research have been given by Nascimento et al. (1999)
and Pasquale et al. (2003). This section describes first several straightforward approaches and
proceeds then to more novel indexing techniques.

One straightforward approach is based on a two-step process, falling back on available
spatial and non-spatial indexes. The strategy is to perform a query separately for the temporal
part and for the spatial part of a spatio-temporal range query, and to combine the results
appropriately. This strategy has been introduced as a “simple scheme” of spatio-temporal
indexing by Theodoridis et al. (1996, p. 443). Moreover, in the context of the ObjectStore

TM

-
based GeoToolKit system, this strategy has been described by Balovnev and Breunig (1997,
p. 113). It can be summarised as follows:

• perform a temporal range query based on the object storage query facility to obtain a
collection Rt of all objects within the given temporal range

• if the size of Rt is small: perform a spatial range query by iterating through Rt and
testing each object for containment within the given spatial range, obtaining the final
result.

• else if the size of Rt is large:

4Usually, it is assumed that indexing slows down updates, while it speeds up queries; however, here it is
necessary to check the mentioned restrictions before processing an update. These checks benefit from the
presence of indexes.
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– perform a spatial range query using a spatial index to obtain all objects within the
given spatial range, obtaining the collection Rs;

– Output those objects as result, which are contained both in Rt and Rs.

However, Balovnev and Breunig (1997, p. 113) expected that in most cases using multi-
dimensional indexes would yield better performance.

A further straightforward approach was suggested by Xu et al. (1990) who altered the
R-tree spatial index. In the variant tree structure, termed RT-tree, each node is extended to
hold a temporal interval covering the intervals of its descendants in analogy to the minimum
bounding box; however, the insertion process of the RT-tree is guided mainly by the spatial
part of the nodes, although on node overflow, the authors propose a node splitting strategy
based on a time interval preference (Xu et al., 1990, p. 1046). Notwithstanding, the overall
structure seems to arrange data more according to space than to both space and time (see
also Nascimento et al., 1999).

The final straightforward approach to be described is that of using an available multi-
dimensional index structure, while treating time as a further dimension. Theodoridis et al.
(1996) termed this approach the “unified scheme” for their index structure. The idea is
to approximate a two-dimensional spatio-temporal object by a three-dimensional minimum
bounding box, which describes the extent of the object‘s trajectory for the spatial dimensions
and the lifetime of the object for the time dimension. The bounding boxes are in turn indexed
and queried using a three-dimensional R-tree “as-is”.

Several index structures for spatio-temporal objects have been suggested that are based
on the concept of node sharing among several trees, yielding a directed acyclic graph. The
idea is to maintain an index tree for every time-step, but to “re-use” nodes that did not
change from one time-step to the next. One tree, valid for a given temporal interval, contains
the whole indexed data set, whereas further trees, valid for later temporal intervals, only hold
the changes to the data set and refer to nodes of other trees for the unchanged data. For
example, the MR-tree of Xu et al. (1990), the HR-tree of Nascimento and Silva (1998) and the
Overlapping Linear Quadtree of Tzouramanis et al. (2000) try to exploit this strategy. Obvi-
ously, these approaches are most promising when a large part of the indexed data set remains
unchanged from one time-step to the next; however, as has been mentioned in chapter 3,
in the target applications for this work it is expected that data changes continuously, and
therefore “invalidating“ many index nodes from one time-step to the next. This fact renders
the approaches based on node sharing not as effective as in their own target applications of
discretely moving points.

In contrast, much work has been targeted at the application domain of continuously
moving points. The work divides into two different indexing problems (Saltenis et al., 2000):
(1) indexing the current and anticipated future positions of moving objects; and (2) indexing
the histories of the positions of moving objects. Among the work that addresses the former
problem is that of Saltenis et al. (2000) who extend the R-tree to a time-parameterised R-
tree (TPR-tree). This tree stores moving objects of a constant velocity vector within the
TPR-tree nodes. Interestingly, the bounding rectangles of these nodes are functions of time
that must be adjusted when the trajectory of an object changes; however, more complex
trajectories (e.g. piecewise-linear trajectories) cannot be indexed. Closely related to the
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TPR-tree is the work of (Procopiuc et al., 2002). The authors propose a spatio-temporal
self-adjusting R-tree (STAR-tree) for indexing the trajectories of moving points. The tree
maintains auxiliary information and updates itself locally to ensure that queries are answered
efficiently (Procopiuc et al., 2002).

A different approach is taken, if duality transforms of lines in space are exploited. Given
that an object moves on a straight line segment in space (bounded by a temporal interval
of validity), the trajectory of such an object can be transformed to a point in dual space.
The points in dual space can then be indexed by spatial indexes. One such approach has
been described by Agarwal et al. (2000). Moreover, among this approach is the work of
Papadopoulos et al. (2002). The authors propose an indexing scheme that makes use of
two different dual transforms, where one treats the case of “slow” objects. Two-dimensional
movement (movement in the xy-plane) is indexed by two separate R∗-trees (Beckmann et al.,
1990), one for each dimension and are responsible of indexing the points in dual space. Range
queries must be transformed as well, yielding so-called simplex range queries that the authors
approximate by orthogonal range queries suitable for the R∗-tree.

Importantly, the previously mentioned approaches pertain to indexing the currently known
movement of a point object, mostly represented as a constant velocity vector. Since the history
of the movements are not stored, as is necessary for this work, these indexes cannot be used
here.

For a similar reason, the technique of making the indexed data persist with so-called
partially persistent data structures (Driscoll et al., 1989) must be ruled out. A partially
persistent data structure maintains different versions of a structure caused by updates, and
it allows to access versions earlier than the current version, and it allows to access and to
update the current version. Although the history of an object‘s trajectory can be accessed with
this technique, partially persistent data structures allow per definition updates only to the
current state of an object‘s trajectory. A partially persistent data structure for spatio-tempo-
ral objects has been presented by Kollios et al. (2001) and Hadjieleftheriou et al. (2002), who
introduce the partially persistent R-tree (PPR-tree). Furthermore, the MV3R-tree (Tao and
Papadias, 2001) is also targeted at the moving objects application domain and combines ideas
from multi-version B-trees (Becker et al., 1996) and 3D-R-trees. The latter treats time as the
third dimension. The proposed index structure applies two separate indexes: a multi-version
R-tree (MVR-tree, a partially persistent data structure) and a 3D-R-tree that together form
the MV3R-tree index. Both are connected in that the 3D-R-tree is used to index the leaves
of the MVR-tree. The rationale behind the approach is that the MVR-tree is expected to be
more efficient for snapshot and “short“ temporal interval range queries, while the R-tree is
expected to be more efficient for “large” temporal interval queries.

A further technique that is often applied is that of trajectory splitting. The rationale
behind this technique is that approximating the (complete) trajectory of a spatio-temporal
object by (d+1)-dimensional bounding boxes is poor (Theodoridis et al., 1998). Splitting the
trajectory of an object at a set of instants improves the approximation in general, although
at the cost of a greater number of objects that are to be maintained by an index. Several split
algorithms have been given by Hadjieleftheriou et al. (2002). On the contrary, Pfoser et al.
(2000) model the trajectories of two-dimensional moving points as poly-lines (piecewise-linear)
in three-dimensional space and split them into their constituent segments. These trajectories
are then indexed by the spatio-temporal R-tree (STR-tree), introduced by the authors. The
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STR-tree is a variant of the R-tree and has the additional property of preserving trajectories
when updating the index: the index aims at placing the bounding box for a segment “near”
the predecessor-segment of the segment‘s trajectory. Originally, the R-tree aims at preserving
spatial nearness.

To sum up, many index structures have been proposed in literature. However, most of
them are targeted at the application domain of moving objects in a two-dimensional space
in an on-line scenario: the trajectories of objects are updated at certain intervals, while the
history of trajectories is either of no interest or cannot be updated. The index structures that
meet the requirement of the application domains for this thesis are the three straightforward
approaches described above and the STR-tree of Pfoser et al. (2000) for moving point objects.
It is generally assumed that the former ones perform poorly. The latter one focuses on moving
point objects with trajectory preservation as described above. However, trajectory preserva-
tion is not preferable for object-level indexing; deletion of objects has not been described by
Pfoser et al. (2000); retrieval of objects depends on continuous movement (Pfoser et al., 2000,
sect. 4.1), such that discontinuities and temporal “gaps” are ruled out. For these reasons, the
next section describes an indexing scheme for spatio-temporal objects.

5.5.2 Adapting R-Trees for Spatio-Temporal Objects

This section presents a slight modification of the R-tree index structure for spatio-temporal
objects. It accounts for the splitting of object trajectories, while also enabling retrieval of
trajectories of objects with discontinuous movement. As it is a direct modification of the
R-tree structure, it allows for the update (change, extension, reduction, etc.) of any part of
an object‘s trajectory. Since the focus is on grouping of temporal points and on indexing of
a (single) temporal mesh, trajectory preservation as in Pfoser et al. (2000) is not preferred.
Before introducing the modified structure, the R-tree index structure is briefly reviewed.

The R-Tree for Spatial Indexing

An n-dimensional R-tree (Guttman, 1984) organises sets of objects with respect to their keys,
which are n-dimensional hyper-rectangles, orthogonal to the coordinate axes. It is similar
in nature to a B-tree (Bayer and McCreight, 1972; Comer, 1979; Knuth, 1973). It supports
efficient processing of orthogonal range queries, which return references to those objects, the
keys of which intersect the query hyper-rectangle. The R-tree is a dynamic data structure in
that it allows to insert into and to remove objects from the set of indexed objects without
the need for a global re-organisation.

The R-tree is a height-balanced tree that stores its indexed hyper-rectangles only in its
leaves. The inner nodes of the tree, also called directory nodes, contain a number of entries
of the form

(Ref<child>, hyper-rectangle)

where Ref<child> refers to a child node of the inner node and “hyper-rectangle” meets
the condition that it is exactly the minimum bounding hyper-rectangle of the set of hyper-
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rectangles contained in the sub-tree rooted at Ref<child>. A leaf node has entries of the
form

(Ref<object>, hyper-rectangle)

where Ref<object> references the indexed object and “hyper-rectangle” is the key for the
object. The nodes have a maximum number M of entries. The nodes of an R-tree have the
following properties (Guttman, 1984):

• If the root of the tree is not a leaf, then it has at least two child nodes.

• Each inner node, except the root, has between m and M child nodes (2 ≤ m ≤ M/2).

• Each leaf has between m and M entries.

• All leaves are on the same tree-level.

When an R-tree is built via insert- and remove-operations, the structure is guided by the
following heuristic: Minimise the content5 of hyper-rectangles in the directory nodes.

One of the numerous proposed R-tree variants is the R∗-tree (Beckmann et al., 1990).
The authors improved the original R-tree by two strategies that influence upon tree structure:
(1) they made use of different heuristics (reduction of the content as well as the margin and
overlap of directory hyper-rectangles); (2) they introduced a forced re-insert strategy in case
a node overflows during an insert-operation.

It is important to note that unbounded temporal intervals (those that have −∞ (∞) as
lower (upper) boundary) are accounted for by the R-tree index: “Alternatively Ii [a key‘s
interval in one dimension] may have one or both endpoints equal to infinity [. . . ]” (Guttman,
1984, p. 48).

An R-Tree-Variant for Spatio-Temporal Object Indexing

A four-dimensional R-tree can be used “as-is” to index a collection of spatio-temporal objects,
but doing so results in poor retrieval performance. This fact has been observed by Theodoridis
et al. (1998). The authors of that work refer to the low discriminating factor that degrades the
R-tree‘s performance (see figure 5.3). Indeed, using 4D-R-trees without further ado means
to approximate a spatio-temporal object (1) spatially by the three-dimensional minimum
bounding box of the object‘s trajectory and (2) temporally by the hull of the object‘s lifetime.
Together, the approximation forms a four-dimensional minimum bounding box that can be
maintained by a four-dimensional R-tree.

5.5.1. Definition. (4D bounding box ) A four-dimensional (4D) bounding box b is a four-
tuple of intervals b = (Ix, Iy, Iz, It), where Ix, Iy, and Iz are closed intervals in � and denote
the spatial extent of b, whereas It ∈ � denotes the temporal extent of b.

5Content is the generalisation of volume to higher dimensions.
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Figure 5.3: The low discriminating factor that Theodoridis et al. (1998) have
referred to. (Note: time dimension is not shown.) The figure shows the trajectory
of a temporal point that is approximated by a single 4D bounding box (left) and by
several 4D bounding boxes (right) by splitting the trajectory. Observe also, that the
left scheme does not support snapshot queries (“retrieve point location at instant
t”).

5.5.2. Definition. (class boundBox4D) Class boundBox4D models a 4D bounding box. Its
structure is defined as follows: boundBox4D = [bb: boundBox, time: interval ].

Figure 5.3 shows the approximation of a spatio-temporal object and indicates the low discrim-
inating factor that Theodoridis et al. (1998) have referred to. The negative effect is twofold.
First, the low discriminating factor causes an unnecessarily high overlap of the maintained
bounding boxes and, hence, a negative influence on the structure of the R-tree. Second, the
low discriminating factor causes many false hits in range queries. Here, an object is called a
false hit for a given query predicate, if its approximation (the 4D bounding box) meets the
query predicate, whereas the object itself fails to meet the query predicate. One can conclude
that the R-tree query-performance is poor, since the worse the approximation, the higher is
the number of false hits in queries. Besides the low discriminating factor, effective use of
a four-dimensional R-tree “as-is” is hindered by a further disadvantage. By approximating
a spatio-temporal object by a single four-dimensional bounding box, an R-tree is ineffective
with respect to snapshot queries (queries of the form Show the object at instant t, compare
figure 5.3). To sum up, approximating a spatio-temporal object by a single four-dimensional
bounding box results in poor index performance and does not support snapshot queries. These
aspects lead to the conclusion to refine object approximation and to adapt the R-tree index
structure to this end.

By allowing refinement of object approximation, the R-tree index structure is changed
in the following ways. First, a spatio-temporal object is approximated by several four-
dimensional bounding boxes to improve the discriminating factor, as well as the support
for snapshot queries. To this end, a 1:n-relationship is established between objects and keys,
in contrast to the “original” R-tree that establishes a 1:1-relationship between objects and
keys. Second, the structure of an R-tree leaf entry is extended to store pointers that link
all those keys that belong to a single object. Third, the R-tree algorithms are changed to
account for the 1:n-relationship between objects and keys and to account for the maintenance
of the new leaf entry pointers.
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The first aspect of a 1:n-relationship between objects and keys raises the following issues.
Approximating a spatio-temporal object by several four-dimensional bounding boxes (the
keys) implies splitting the object‘s lifetime (and thereby the object‘s trajectory) into several
pieces. This establishes a 1:n-relationship between objects and keys to be maintained by the
index. Splitting can be performed in any reasonable way; however, the following structural
requirements must be met: (1) the time intervals of the resulting 4D bounding boxes must
intersect only at their endpoints (no overlap); (2) the union of the time intervals of the
resulting 4D bounding boxes must be equal to the object‘s lifetime; (3) each resulting four-
dimensional bounding box must (spatially) be the object‘s trajectory minimum bounding
box, where the trajectory is limited to the time interval of the four-dimensional bounding
box. More formal, the concept of a split leads to the following definition.

5.5.3. Definition. (Split) Given a spatio-temporal object o, a split of o is given by a finite
set S of instants (S ⊂ � ) with the following properties:

• for all s ∈ S : s ∈ closure(o.lifetime)

• ∂ o.lifetime ⊆ S

Then, a split S of a spatio-temporal object o induces a set of 4D bounding boxes that together
form the keys of o: keys(o, S) denotes the set of boundBox4D objects [bb, time]. Here, bb is
the minimum bounding box of o‘s trajectory limited to the temporal interval time. The time
intervals time of these boundBox4D objects are formed each by two consecutive instants in
S, with the exception of those intervals that lie outside the lifetime of o, that means without
intervals of the form < ti, ti+1 >, where ti is the upper boundary and ti+1 is the lower
boundary of intervals in o.lifetime.

The structure of the tree nodes are as follows. Inner nodes remain unchanged with respect
to an “original” four-dimensional R-tree. However, the leaf nodes have a new structure
(compare also figure 5.4). Each entry in a leaf is of the form:

multikey entry = [ key: boundBox4D, value: Ref<obj-type>,
prev: Ref<multikey entry>, next: Ref<multikey entry> ]

That means, the entries for a key-sequence of an object are linked bidirectional. The links
are advantageous for the remove-operation and for querying, as shown below.

To account for the 1:n-relationship and the links between leaf node entries, several R-tree
algorithms must be changed. The principal changes are as follows.

• Insert(Ref<obj-type> obj, keySequence keys): The operation is used to insert an object,
indexed by a key-sequence. The operation iterates over each element k of the key-
sequence “keys” and calls the “original” R-tree “insert”-operation on the (obj, k)-pair.
There is an auxiliary function that allocates a leaf entry (a multikey entry object) that
is also responsible for adjusting the links.

• Remove(Ref<obj-type> obj, point4D hint): The operation is used to remove an object
and all its keys from the index. The second argument to the function is a hint for
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Figure 5.4: Structure of the 4D multi-key R-tree. The left part shows an entry in
a tree‘s leaf node. The middle part shows schematically a leaf node that is mapped
onto a secondary storage page. The right part illustrates a remove operation that
is performed by searching the tree with a hint (an (x, y, z, t)− tuple and the point‘s
object-id) and then following the key-pointers to remove the whole key-sequence.

where to find one of the entries for “obj”. Having found one of the entries, the links are
used to find the remaining entries for “obj”. The “original” R-tree remove-operation
is called upon each such entry. However, care must be taken with the “original” sub-
procedure “CondenseTree” (Guttman, 1984). This procedure is called by “remove” and
serves two purposes: first, to propagate node elimination as needed and, second, to
adjust directory hyper-rectangles. The problem with the new remove-operation is that
“CondenseTree” re-organises leaf entries, if there is an underflow of leaf nodes after
a removal, thereby potentially invalidating links of the key-sequence. A “safe” way
of calling “CondenseTree” during removal is as follows. A removed entry is copied to
a temporary location and the links are adjusted accordingly. Then, “CondenseTree”
is called that can safely redistribute leaf entries. Then, the copied entry is deleted,
adjusting the links accordingly.

• Search(boundBox4D query box): This operation is a spatio-temporal range query that
retrieves those objects whose keys intersect the query box. Although the processing
is not changed over the original procedure, it is emphasised that the return type is
List<[Ref<obj-type>, boundBox4D ]>.

To sum up, this section introduced a slightly modified R-tree index structure for the
indexing of spatio-temporal objects. The main characteristics are the 1:n-relationship between
objects and keys and the mechanism for their maintenance that is achieved by linking the
key-sequence. The latter characteristic facilitates a fast removal-operation and a fast retrieval
of the key-sequence with discontinuous object movement. This is in contrast to the work of
Pfoser et al. (2000) who assume that two consecutive trajectory-pieces have a common end-
point and exploit this continuity in their algorithms; however, trajectories with discontinuities
and temporal “gaps” cannot be supported in this approach. In the following, the modified R-
tree structure is used for indexing the simplices of a temporal mesh, as well as for the grouping
of the geometric part (point objects) of spatio-temporal objects on secondary storage.
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Figure 5.5: Organisation of the different parts of point and simplex headers within
the database. Light shaded regions indicate simplex manager responsibility (left)
and point manager responsibility (right). Dark shaded regions denote database
clusters.

5.6 Storing Temporal Simplices

The task of storing temporal simplices comprises three parts. First, there is the task of storing
temporal point-objects that is handled by the data structure “point manager”. Second, there
are the tasks of storing temporal segment-, triangle-, and tetrahedron-objects that are handled
each by a separate data structure, but can be described uniformly in the following, referred
to as data structure “simplex manager”. Third, there is the task of managing bookkeeping
information for the simplex objects handled by object headers.

5.6.1 Object Headers

A point or simplex object has associated with it an object header that holds bookkeeping
information about the object. The owner of a point header is a point manager, and the owner
of a simplex header is a simplex manager (described below). The clustering of the bookkeeping
information on secondary storage is important, as it is often accessed in retrieval. Put simply,
clustering aims at storing data together that is accessed together. Therefore, the information
within the headers is split into several clusters, as follows (see also figure 5.5).

• Point header (fig. 5.5, right): One cluster contains pages (of secondary storage) that
store 5-tuples, where each tuple consists of: (1) a reference to the external part of the
object; (2) a reference to the set of referring simplices; (3) its 4D bounding box; (4) a



82 Chapter 5. Design of Data Types on the Internal Level

#free
slots

free list
head

prev page
free list

next page
free list

object header

in-situ
free space list

point
mgr

page info

array of
object

headers

}

Figure 5.6: Page layout for object headers. The first part of a page contains
bookkeeping information and the pointers for the list of pages that have free space.
The larger second part contains the slots for the fixed-size part of an object header.
These slots are also used for the page‘s free space list.

hint for the indexes (point4D); (5) a reference to the geometric information. A second
cluster stores the set of referring simplices for each point.

• Simplex header (fig. 5.5, left): One cluster contains pages (of secondary storage) that
store 6-tuples, where each tuple consists of: (1) a reference to the external part of the
object; (2) a reference to the set of referring meshes; (3) a reference to its temporal
element of validity; (4) its 4D bounding box; (5) a hint for the indexes; (6) references to
the (fixed number of) vertices. A second cluster stores the temporal elements of validity
for each simplex. A third cluster stores the set of referring meshes.

Since the environment is dynamic, objects that once have been created can be deleted at
any time, leaving a “gap” in persistent memory. Then the problem of free space management
must be addressed: where to allocate a newly created object. Here, the problem is in parts a
simple sub-problem, as the entries for point headers and simplex headers are of fixed size and
the first free “gap” of memory is adequate for allocation of a newly created header. Therefore,
a mechanism should be realised that exploits these properties. The situation is different with
the remaining information (temporal element of validity, sets of referring simplices/meshes),
as it varies in size. Therefore, falling back to the memory management of the object storage
system is an effective solution.

Conversely, the former (simpler) problem of allocating and de-allocating the fixed-size
object headers is solved in an efficient special way. Furthermore, having control over the
placement of object headers offers opportunities for compaction6 and clustering of object
headers in terms of access patterns. The solution organises free space in a way that can
be described as a page-wise in-situ free space list. The layout of a page for this purpose is
depicted in figure 5.6. A linked list of pages contains all those pages that have free slots. The

6Note that information about references to object headers for points and simplices is available and that
thereby the headers are relocatable.
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header of a page p contains pointers to the previous and the next page with free slots, an
integer for the number of free slots in p, and a pointer to the head of the in-situ free space
list within p. The list of pages with free slots is owned by the point manager and simplex
manager for points and 1-, 2-, 3-simplices, respectively. Allocations and de-allocations of slots
occurs only through these managers. The free slots within a single page are organised as an
in-situ stack. On allocation of a new object header, the first free slot in the first page of the
free space list is chosen and the slot is popped off the in-situ stack. If the stack is empty
afterwards, the page is removed from the free-space list. On de-allocation of an object header
in page p, the respective item is put on the top of the stack of p. If afterwards, every slot in
p is empty (i.e. not allocated to an object header) the page is removed from the free space
list and deleted from secondary storage.

5.6.2 Point Managers

The task of a point manager is to cluster parts of temporal points on secondary storage. The
architecture of point managers has the following important properties:

• Support of object-wise data partitioning. Applications can create an arbitrary
number of point managers that can reside in the same or in different database files.

• R-Tree-driven clustering. Internally, the adapted R-tree organises point data onto
secondary storage pages.

A point manager allocates five database clusters: one cluster contains the 4D R-tree that is
used to organise the clustering and four clusters for the point headers. A point manager is
created and accessed via the following interface:

Method name Parameter types Return type

new: void → void
insert: Set<[interval, pl curve]> → Ref<point impl>
remove: Ref<point impl> → void
retrieve: point impl × boundBox4D × Ref<point cache> → void

The available methods comprise construction, update, and retrieval. In brief, the con-
structor creates a point manager and allocates the above mentioned data structures for the
point headers. Method “insert” is used to populate the point manager with point data. The
method is called by the constructors of the point class. Method “remove” removes its argu-
ment from the point manager. Finally, method “retrieve”, used to access point objects for a
given spatial and temporal range, fills a cache that maps point objects to point3D objects.
This method exploits the clustering of point objects by filling the cache with data residing on
the same page as the demanded data. More details are given in the next section.

The clustering is organised by the 4D R-tree that has been described in section 5.5.2. The
following issues must be addressed: (1) the splitting strategy (definition 5.5.3) for temporal
points; (2) the modification of the R-tree leaf entries. First, the split S of a point object p to be
stored within a point manager comprises the boundary instants of the lifetime of the point and



84 Chapter 5. Design of Data Types on the Internal Level

Bbox4D

previous
key

next
key

clustering
R-tree for

temporal points

Place-
ment

determines placement

Bounding Box

point trajectory
point

header

Figure 5.7: Clustering R-tree leaf entry. Every piece of the piecewise linear point-
trajectory is stored in its own leaf entry. Together with the temporal interval (within
the 4D bounding box), “placement” specifies the point coordinates, which need not
be stored explicitly (see also Pfoser et al., 2000).

the support points of its trajectory (see page 31). These instants are to be derived from the
Set<[interval, pl curve]> argument to “insert”7. Then, each key in keys(p, S) corresponds
to a trajectory segment. Second, the leaf entries of the R-tree are modified slightly (see
figure 5.7). An additional data field “placement” encodes the movement of the point along
the trajectory segment. If the corners of the bounding box are numbered, the movement can
be encoded by a single number n (see also Pfoser et al., 2000): at the lower boundary of the
temporal interval (within the 4D bounding box) the point is located at corner n, and at the
upper boundary it is located at the corner opposite to n. For each instant within the interval,
the location of the point is derived by linear interpolation between these two locations (as
defined above). Finally, the data field “value” in a leaf entry is assigned to the header of the
point.

The process of inserting a point object can be sketched as follows. Firstly, a point header
is allocated as has been described above. Then, the modified R-tree entries are computed.
Each key of the split is inserted into the R-tree of the point‘s point manager. Finally, the
reference to the geometric data of the inserted point is set. The process of deleting a point
object comprises the two steps of deallocating the point header and the removal of every R-
tree entry. In particular, the second step utilises the “previous/next”-references in an R-tree
entry to iterate over those entries.

5.6.3 Transient Point Caches

Access to a point for an instant in time is likely to be followed by access to a point that is
near in time or space. At the same time, this locality of reference is reflected by the clustering
R-tree for temporal points. To exploit this locality of reference, a transient point cache is
used during the retrieval of temporal points. Once a requested [point, instant]-pair has been
retrieved, it is held in the cache such that a further request to the point for the same instant

7The pl curve is defined in section 4.5.4
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Figure 5.8: Processing of a point request.

or for a “near” instant can be processed fast. Thereby, “near” point-data is pre-fetched such
that accessing these data does not necessitate an access to secondary storage.

An instance of a transient point cache is created and deleted by the access algorithms
to be described subsequently. The instance can then be passed as argument to the retrieve-
method of a point manager. The processing of a request for a temporal point is depicted in
figure 5.8. The processing of a point request (get 3D point coordinates for a point object at
an instant in time) is summarised as follows. After creation of a point cache instance, the
instance can be passed as argument to the point manager‘s retrieve-method. When a request
for a snapshot of a point p at instant t is issued, the cache is first checked for main-memory
residency of the requested point data. In the positive case, the request is serviced. Otherwise,
the request is forwarded to p‘s responsible point manager. The point manager accesses the
point‘s bounding box (stored in the point‘s header) to search the clustering persistent R-tree
for the requested point impl -reference. The R-tree search method is modified such that the
point data in each leaf node that has been visited in this process, is inserted into the point
cache. Eventually, the requested point is found, its data is stored in the cache and can be
returned.

A transient point cache has a fixed size capacity (specified at creation). If the number
of elements in the cache exceeds a threshold value, a least-recently-used replacement (LRU)
policy is followed. The rationale behind this approach is as follows. Assuming that accesses
follow the locality of reference principle, points in the cache that have not been accessed for
a long period, have left the focus of interest. Therefore, a point cache maintains an LRU-list
of its points. On insertion of a point, the point is stored at the end of the LRU-list. Points
are removed from the head of the list. If a point is requested (accessed again), it is put at
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the end of the LRU-list.

The transient point cache can be realised as a hash-table, where the keys are pointers to
point impl -objects. The value for a key has the following structure. Class rt-entry denotes
the class for entries in an R-tree leaf node.

[ value: Ref<rt-entry>, LRU-next: Ref<rt-entry>, LRU-previous: Ref<rt-entry>]

A point cache is accessed via the following interface:

Method name Parameter types Return type

new: integer → void
delete: void → void
insert: Ref<point impl> × rt-entry → void
evict: point impl → void
retrieve: point impl × instant → Ref<point3D>

An application can create a point cache by calling the constructor with a size argument that
specifies the capacity of the cache (number of temporal points). Method “insert” populates
the cache with key/value-pairs. Method “evict” removes a key/value-pair; it has no effect if
called with an argument not present in the cache. Method “retrieve” returns the requested
point coordinates, if resident in main memory and accessible from the cache; otherwise it
returns null.

5.6.4 Simplex Managers

The task of a simplex manager is to store the headers for the simplex types segment, triangle,
and tetrahedron objects. There is one type of simplex manager for each of these simplex
classes, yielding the classes segmentCluster, triangleCluster, and tetrahedronCluster. Appli-
cations can create an arbitrary number of simplex managers, facilitating data partitioning.
The layout of simplex headers has been described in section 5.6.1. The interface to access a
simplex manager is as follows:

Method name Parameter types Return type

new: void → void
insert: temporalElement × Ref<point>[2/3/4] → void
remove: simplex impl → void

5.7 Storing Temporal Meshes

A temporal mesh data structure implements the interfaces of the types polyline, triangleNet,
and tetraNet. Although as many data structures are to be realised, the subsequent presen-
tation is independent of dimension and refers to a “temporal mesh”. The mapping onto the
specific data structures is then straightforward.
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Thereby, the interface to be implemented is the user‘s perspective on a temporal mesh,
which consists of a temporal element of validity for the lifetime of the temporal mesh object,
a set of time-stamped references to simplices, and the operations defined on it (compare also
section 4.5.5). At the same time, auxiliary data structures for a mesh implementation are
introduced, as is explained below. On that account, not all of these components must be
stored explicitly, but they can be derived from the auxiliary structures. In particular, the
temporal element for the lifetime of a mesh object is not stored explicitly. The time-stamped
references to simplex objects are stored as mesh simplex objects, the structure of which is
defined below. Again, the time-stamp of such a mesh simplex object is derived from internal
structures.

Importantly, a temporal mesh corresponds to a certain graph structure. This graph struc-
ture, termed temporal graph, is defined and it is shown how a mesh maps onto this graph
structure. Many of the problems faced can be solved by algorithms on temporal graphs. For
these reasons, it is possible to not having to store time-step extents (sets with simplices which
are part of the mesh at each time-step), but to derive the extents from the graph structure.
Similarly, maintaining connected components for temporal meshes is beneficial and needs
therefore an efficient solution. First, it is beneficial from an application‘s point of view to
gain efficient access to the connected components. Second, maintaining connected compo-
nents enables—in conjunction with the adjacency lists—the traversal of the complete mesh
at a given instant.

The temporal graph based approach offers a compromise between compact storage and
efficient retrieval. For example, the time-step query demands the temporal mesh at a given
instant. This query type has two apparent solutions. First, one could store one list of simplices
that are part of the mesh and iterate through this list and output only those simplices that are
valid at the given instant. Alternatively, one could store time-step extents that give efficient
access to the valid simplices for each time-step. Both approaches have drawbacks. The former
suffers from computational costs, since every simplex must be examined. The latter suffers
from storage space, since it is expected that many simplices remain from one time-step to
the next such that there is redundant storage. This overhead can in parts be alleviated by a
versioning approach, but demands a higher computational cost (Shumilov and Siebeck, 2001).
Therefore, this thesis proposes to maintain both adjacency lists and connected components.
These auxiliary structures facilitate a compromise between the two “extreme” approaches.

The remainder of the section is organised as follows. First, the graph structure, which a
temporal mesh corresponds to, is defined. Second, the internal data structure for the graph is
explained. Third and based on this structure, it is explained how the problem of maintaining
connected components of a temporal mesh can be solved efficiently.

5.7.1 Graph Structure

An atemporal, d-dimensional mesh of d-simplices can be mapped onto a graph structure (com-
pare also section 3.2.3). The d-simplices being part of the mesh correspond to nodes, whereas
the neighbourhood-relationships among simplices correspond to arcs. The neighbourhood-
relationship between d-simplices holds, if the simplices have a d − 1-simplex in common.

The graph structure can be extended for the case of temporal meshes. By time-stamping
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nodes and arcs, the graph structure becomes temporal.

5.7.1. Definition. (temporal graph) An undirected temporal graph G is a pair G = (N, A)
consisting of a set of time-stamped nodes N and a set of time-stamped arcs

A ⊂ {({n1, n2}, e) | n1 6= n2 ∈ N ∧ e ∈ � }, such that:

for all ({n1, n2}, e) ∈ A : e ⊆ lifetime(n1) ∧ e ⊆ lifetime(n2) (5.1)

for all ({n1, n2}, e), ({n
′
1, n

′
2}, e

′) ∈ A : {n1, n2} = {n′
1, n

′
2} ⇒ e = e′ (5.2)

For brevity, the braces in the description of an arc will be omitted, such that an arc will be
written as “(n1, n2, e)”. Requirement 5.1 states that an arc may not connect two nodes at
times when one of its end-nodes is not valid. Requirement 5.2 states that for each pair of
nodes there is at most one connecting arc in A.

An “ordinary” graph can be defined as a projection onto a given temporal interval. This
graph contains those nodes and edges the lifetime of which intersects a given interval.

5.7.2. Definition. (Projection of a temporal graph) Let G = (N, A) be a temporal graph
and i ∈ � a temporal interval. The projection G(i) of G onto the interval i is an atemporal
graph G(i) = (N(i), A(i)) defined as

N(i) = {n ∈ N | lifetime(n) ∩ i 6= ∅}

A(i) = {{n1, n2} | (n1, n2, e) ∈ A ∧ i ∩ e 6= ∅}

The shorthand G(t) will be used to denote the graph G([t, t]) for an instant t.

5.7.3. Definition. (path through G, validity of a path) Let G = (N, A) be a temporal graph.
A sequence p = (n1, . . . , nk), k > 1, of nodes in N is called a path through G, if

for all l = 1, . . . , k − 1 : e exists such that (nl, nl+1, e) ∈ A and (5.3)

k−1
⋂

l=1

{el | (nl, nl+1, el) ∈ A} 6= ∅ (5.4)

The path is said to be valid for each instant in validity(p) :=
⋂k−1

l=1 el.
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5.7.4. Definition. (reachability) Let G = (N, A) be a temporal graph, n, n′ two distinct
nodes in N , and P the set of all paths from n to n′. The nodes n and n′ are said to be
reachable from each other for all instant in reachable(n, n′) :=

⋃

p∈P validity(p).

Requirements 5.3 and 5.4 state that there must exist arcs connecting two consecutive nodes
on the path and that the intersection of the lifetimes of these arcs may not be empty. Then,
there exist instants t such that there is a corresponding “ordinary” path through G(t). An
example for a temporal graph and paths through it is depicted in figure 5.9.

The mapping from a temporal mesh C[S, e] onto a temporal graph G = (N, A) can be
defined as follows8:

N = S and A = {(s1, s2, e) | ∀t ∈ e : s1(t) ] s2(t) ∧ ∀t 6∈ e : ¬s1(t) ] s2(t)}

For the reasons given above, this graph structure is materialised internally for each temporal
mesh. For this purpose, several data structures for graphs are available, for instance incidence
lists, adjacency lists, or adjacency matrices (see for example Tarjan, 1983; Cormen et al., 1989;
Jungnickel, 1990). Here, the adjacency list representation is chosen, since during computations
the neighbours of a node (or simplex) must be accessed fast ruling out incidence lists, while
at the same time the fan-out of each node is low ruling out adjacency matrices.

However, the notion of an adjacency list must be slightly modified. Since the fan-out for
every t in the lifetime of a node is at most d+1 for a temporal d-dimensional mesh (a d-simplex
has d+1 faces and therefore at most d+1 neighbours, compare definition 3.2.11), every node
is accompanied with a d + 1-tuple. Since in a temporal mesh the neighbours of a simplex are
subject to change, each component of the d + 1-tuple is a table that allows for retrieving the
neighbour of the simplex for the respective face at a given instant. Such a table of simplex
s for face f , termed adjacency table of s for f , contains triples [instant, bool, mesh simplex ]
(see figure 5.10). The table is ordered by the instant of each triple. The instants mark off
changes in the neighbour-relationship. The bool specifies whether the neighbour-relationship
given in the triple holds including the given instant (true) or not (false). Furthermore, in
addition to the nodes given through the above definition of the graph, two special nodes are
introduced. First, there is the node that represents the spatial exterior of the mesh, denoted
by }. Then, an entry in the adjacency table can refer to } as a neighbour, which in fact
means no neighbour for the respective interval. Second, there is the node that represents
non-existence of the simplex, denoted by �. Then, an entry in the adjacency table can refer
to � as a neighbour, which in fact means that the simplex is not part of the mesh for the
respective interval. Recall that the membership of a simplex within a mesh is time-stamped
and that these time-stamps are not stored explicitly. The purpose of node � is the ability to
reconstruct this time-stamp.

On the whole, every d-simplex of a d-dimensional temporal mesh has associated with it
d + 1 adjacency tables, one for each face. The table for face f of simplex s can be accessed
by the method call

s.Adj(f)

8Recall that ] denotes the neighbour-relationship between simplices
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Figure 5.10: A d-simplex that is part of a temporal mesh has associated with
every d − 1-face an adjacency table as depicted on the right hand side. It is shown
how to access the relevant information about the neighbourhood-relationship for an
instant t.

Each table contains arcs represented by simplex/interval-pairs. By definition, there is exactly
one arc for each face f at every single instant in the lifetime of a simplex s. This arc, at a
given instant t, can be obtained by the method call

Adj(f).arc(t)

The target node and the interval of an arc can be obtained as follows:

arc.node
arc.interval

A new arc to a neighbouring simplex s′ for an interval i can be assigned by

s.Adj(f).assign(s′, i)

This operation assigns mesh simplex s for all instants in i and it updates the interval i′ of
any other entry by i′ \ i.

The remainder of the section presents a modified version of the general-purpose procedure
breadth-first search (BFS). Adapted to the temporal graph structure defined above, the pro-
cedure is subsequently used to perform certain tasks on each visited node/simplex. In short,
the BFS explores those nodes of a graph that are reachable from a given starting node via the
arcs incident to any visited node. The order of nodes during the visit is governed by a queue:
when visiting a node, all non-visited adjacent nodes are pushed into the queue, whereupon
the next node is popped off the top of the queue and visited next.

In contrast, the algorithm for a temporal graph differs from the original BFS in two
important ways. First, an additional argument to the algorithm specifies the temporal interval
i for the visit: a node is visited if and only if it is reachable (definition 5.7.1) from the starting
node during i. Second, a node can be visited more than once, since the time-stamp of an
incoming arc must be taken into account when pushing a node onto the BFS-queue; therefore,
the usual BFS-flags are turned into temporal elements that specify when a node has been
visited, and only those outgoing arcs are followed that intersect with the lifetime of the
incoming arc.
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Algorithm 5.7.1 BFS(simplex start, interval timeWindow)

1: Queue<[simplex, temporalElement ]> queue
2: queue.push([start, timeWindow ])
3: mark(start, timeWindow)
4: while queue 6= ∅ do
5: current ⇐ queue.pop()
6: process current
7: for all f ∈ current->simplex->faces do
8: for all arc ∈ current->simplex.Adj(f) do
9: if arc.interval ∩ current->temporalElement 6= ∅ then

10: when visit ⇐ (arc.interval ∩ current->temporalElement) \ get mark(arc.node)
11: if when visit 6= ∅ then
12: queue.push([arc.node, when visit])
13: mark(arc.node, when visit)
14: end if
15: end if
16: end for
17: end for
18: end while

The procedure for the “temporal” breadth-first search is depicted in algorithm 5.7.1. The
procedure makes use of two transient data structures. First, it uses a queue for the nodes to be
visited. Second, it uses a hash table that maps a node to a temporal element. The temporal
element indicates for which instants a node has been visited. The hash table is accessed
via the functions “get mark” and “mark” (lines 3, 10, and 13). As mentioned above, the
BFS-queue holds simplex/temporalElement-pairs (line 1) and is initialised with the starting
simplex and the interval given as a parameter to the procedure (line 2). The while-loop
starting in line 4 processes the elements of the BFS-queue as follows. The leading element is
popped off the queue (line 5) and can be processed (line 6). Then, the neighbouring simplices
are explored, ranging over each face (for-loop starting in line 7) and for each face exploring
the adjacency table for neighbouring simplices (for-loop in line 8). Line 9 ensures that only
those neighbours are examined that are relevant for the current visit. Line 10 obtains the
time for the visit of the neighbour. If there are instants left that are relevant (line 11), the
simplex is pushed onto the queue along with this “relevance”-interval (line 12) and is marked
accordingly (line 13).

This “general purpose” procedure is used below and serves the purpose to explore a
connected component of a temporal mesh, as defined in the next section.

In summary, this section introduced the notion of a temporal graph. It was shown to be an
adequate abstraction for the (discrete) structure of a temporal mesh by specifying a mapping
from a temporal mesh onto this graph structure. Furthermore, the section introduced the
necessary data structures to represent the temporal mesh as a graph. Finally, a generalisation
of the “general purpose” procedure breadth-first-search to temporal graphs has been presented
that is used subsequently to explore a connected component of a temporal mesh. The next
section focuses upon this aspect of the connectivity of a temporal mesh and how to manage
it efficiently when faced with updates.
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Figure 5.11: The relationship between simplex-headers, mesh simplices, mesh-
objects, and connectivity time-line.

5.7.2 Connected Components

The adjacency lists can be used to traverse all simplices of a mesh for a given instant, for
example via breadth- or depth-first-search; however, simplices in different connected com-
ponents cannot be reached in this way. For “usual” (atemporal) graphs, the set of con-
nected components of an undirected graph is defined as the set of equivalence classes of the
“reachable”-relationship between nodes: a node n1 is reachable from another node n2, if
there exists a path along arcs from n2 to n1 (Tarjan, 1983; Jungnickel, 1990). Likewise, in a
temporal graph the connected components are defined in the same way for each atemporal
“instance”9. During the lifetime of a temporal graph, several events are of interest: connected
components can appear, disappear, merge, and split. A connected component in a temporal
graph G = (N, A) is a pair (C, i), where C ⊆ N is a set of nodes and i is a temporal interval
of validity such that for each instant t ∈ i the set of valid nodes in C

{n | n ∈ C and t ∈ n.lifetime}

is a connected component in G(t). The boundaries of the interval i correspond to the men-
tioned events that are defined subsequently.

In a non-dynamic, atemporal environment, where “insert”- and “remove”-operations are
absent, it would suffice to once compute the set of connected components for a given mesh and
to store a representative simplex for each. Here, however, the problem is more complex. The
goal is to store the set of connected components for every instant the connectivity changes
at. These instants are maintained in a separate data structure, called connectivity time-line.
Then, the mesh at instant i can be computed by retrieving the connected components of the
last instant before i within the connectivity time-line and traversing each component using
the adjacency lists of the nodes. The structure of a mesh object is depicted in figure 5.11.

9Although it is possible to extend the definition of a connected component to a temporal graph G, it is
more important to focus upon connected components for the atemporal graphs G(t).
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Furthermore, the problem of maintaining the data structure on updates to the mesh must
be solved. For a simpler situation the problem is an instance of the well-known union-find -
problem (or disjoint-set-problem; Tarjan, 1983; Cormen et al., 1989): the atemporal case
with only the “insert”-operation supported. Originally, the union-find-problem demands the
maintenance of a partition of a set of objects and the support for the following operations:
(1) “union(x, y)”, combining the partitions that the objects x and y belong to; (2) “find(x)”,
retrieving the partition x belongs to. In parlance of an atemporal mesh, the partitions cor-
respond to the connected components, objects to simplices, and operation “union” to the
insertion of a simplex that connects previously disconnected components.

The asymptotically fastest union-find data structure known is the disjoint set forest with
the heuristics “union by rank” and “path compression” (Tarjan, 1983; Cormen et al., 1989).
In this data structure, each disjoint set is given by a representative that belongs to the set.
Each object is element of exactly one tree in the disjoint set forest and carries a reference
to its parent in the tree. The root of the tree is the representative object for the disjoint
set. Hence, the “find(x)”-operation is performed by following the parent-references up to the
root of the tree that x belongs to. The “union(x,y)”-operation is performed simply by letting
the root of x point to the root of y or vice versa. Roughly, the “union by rank”-heuristic
states that during “union” the tree with the fewer nodes is chosen to point to the root of the
other tree. The “path compression”-heuristic states that during “find“ all visited nodes are
adapted to point to the root directly, accelerating the next “find”-operation for these nodes.

For the management of connected components of a temporal mesh, the union-find data
structure and its algorithms are extended by time. The new structure can be summarised as
follows. The temporal aspect must be reflected such that for every instant in a mesh‘s lifetime
the set of connected components is available. Therefore, the modified structure stores a list
of those timesteps the connectivity changes at. This list is called the connectivity time-line
and is in particular defined to contain an instant t, if and only if

• a component appears or disappears at t, or

• components split or merge at t

The following definitions specify these events precisely. Expressed in terms of temporal graphs,
they can be mapped to temporal meshes straightforwardly. The definitions make use of the
notation e◦ for a temporal element e, which denotes the interior of e, i.e., all instants in e
except its boundary instants.

5.7.5. Definition. (appearance/disappearance of a component) Let G = (N, A) be a tem-
poral graph. A component C is said to appear at instant t in G, if and only if the following
conditions hold:

1. There is a node n ∈ C and a left-closed interval i ∈ n.lifetime such that i− = t.

2. For all nodes n′ ∈ N with t ∈ n′.lifetime◦ there is no path from n to n′ in G(t).

Similarly, a component C is said to appear after t in G, if and only if the following conditions
hold:
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1. There is a node n ∈ C and a left-open interval i ∈ n.lifetime such that i− = t.

2. For all nodes n′ ∈ N with t ∈ n′.lifetime◦ there is, for ε → 0, ε > 0, no path from n to
n′ in G(t + ε).

The disappearance of a component is the reverse of appearance of a component.

The first condition in “appearance at” and “appearance after” in the definition above ex-
presses that a node starts its lifetime with a closed interval and with an open interval, re-
spectively. The second condition expresses that a node n, starting its lifetime at t, is not
reachable from any node that started its lifetime before t. Of course, n might be reachable
from such a node at an instant t′ > t, caused by a merge event.

5.7.6. Definition. (split/merge of components) Let G = (N, A) be a temporal graph. A
component C is said to split in G at instant t, if and only if the following condition holds:

• There are nodes n 6= n′ ∈ C such that, for ε → 0, n and n′ are reachable at t − ε, but
not at t.

Similarly, component C is said to split after t in G, if and only if the following condition
holds:

• There are nodes n 6= n′ ∈ C such that, for ε → 0, n and n′ are reachable at t, but not
at t + ε.

A merge of components is the reverse of a split of components.

Importantly, the event of an “extension” of a connected component (when a node starts its
lifetime, but does not connect previously unconnected components) is not among the events
defined above. The same holds for a reduction of a connected component. Such events need
not be recorded by the connectivity time-line. An example for some of these events is depicted
in figure 5.12.

The events (dis-)appearance, split, and merge, determine the connectivity time-line, which
is maintained by the union-find operations (triggered by “mesh::insert(simplex, temporalEle-
ment)”, see below), as well as by the operation “mesh::remove(simplex )” that can cause a
split of components. The connectivity time-line is a data structure that allows to associate
each instant with a set of entry-points into the mesh. The entry-points correspond to the
component representatives. The data structure supports the operations

• insert(mesh simplex s, interval i): associates each instant in i with s. If s was associated
with the instants in the temporal element e, then s is associated with the instants in
e ∪ i after calling this function.

• remove(mesh simplex s, interval i): removes the association. If s was associated with
the instants in the temporal element e, then s is associated with the instants in e \ i
after calling this function.
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Figure 5.12: After inserting simplex B into the mesh, several events had to be
recorded on the time-line (left part). First, a new component comes to existence at
instant 2. At instant 5, A and B become neighbours and their components must
be merged. At instant 7, the neighbour-relationship ends. At instant 9 and 12, the
components of simplex A and B leave the mesh, respectively. The right part shows
the connectivity graph (or disjoint set forest), in which the arcs point to the parent
of a component.

Furthermore, the disjoint set forest of the union-find data structure is altered such that
each node points to the “correct” parent for every instant in the node‘s lifetime. In analogy
to an adjacency table (see also figure 5.10, page 90), each simplex s is accompanied by a
connectivity table that can be accessed by

s.Conn

This table is structured like an adjacency table; the special node }, however, is not needed in
a connectivity table. The update operation (“assign”) is the same as for an adjacency table.
The parent simplex for an instant t can be obtained by

s.Conn->parent(t)

In summary, the modified union-find data structure supports the following operations. The

Algorithm 5.7.2 mesh::make component(mesh simplex s) → void

1: for all intervals i ∈ s.lifetime do
2: this->connectivityTimeline->insert(s, i)
3: s->Conn->assign(s, i)
4: end for

operation “make component” (algorithm 5.7.2) performs the following tasks. First, it updates
the connectivity time-line of the mesh (line 2). Second, it initialises the connectivity table
of the argument mesh simplex s (line 3). The connectivity table of s is modified such that
for each interval in s.lifetime the arc to the parent of s is directed to s itself (s is its own
representative).

The operation “make link” (algorithm 5.7.3), invoked by “union”, updates the connectiv-
ity tables of s1 and s2 by making s1 the parent of s2 for the interval i.
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Algorithm 5.7.3 mesh::make link(mesh simplex s1, mesh simplex s2, interval i) → void

1: s1.Conn->assign(s2, i)

Algorithm 5.7.4 mesh::find(mesh simplex s, interval i) → List<[mesh simplex, interval ]>

1: List<[mesh simplex, interval ]> C ⇐ ∅
2: for all arc ∈ s.Conn where arc.interval ∩i 6= ∅ do
3: if arc.node=s then
4: insert [arc.node, arc.interval ∩ i] into C
5: else
6: List<[mesh simplex, interval ]> comps ⇐ find(arc.node, arc.interval)
7: for all c ∈ comps do
8: s.Conn->assign(c.mesh simplex, c.interval)
9: end for

10: insert each c ∈ comps into C
11: end if
12: end for
13: return C

The operation “find” (algorithm 5.7.4) retrieves the list of component representatives
of s that are valid during the given interval i. Each representative is accompanied with
the information, when it was the representative for the component (limited to the interval
i). The procedure implements the path-compression heuristic for the temporal case (for-
loop in line 7). The strategy is a depth-first-search through the disjoint set forest, using
the connectivity tables of the simplices. In line 6, the algorithm contains a recursion that
terminates at component representatives (“if” in line 3). The operation is a two-pass operation
that in its first pass finds a representative simplex of the component (line 6) and in its second
pass updates the arcs of any visited simplex to point directly to the representative (line 8).

Algorithm 5.7.5 mesh::union(mesh simplex s1, mesh simplex s2, interval i) → void

1: List<[mesh simplex, interval ]> C1 ⇐ this->find(s1, i)
2: List<[mesh simplex, interval ]> C2 ⇐ this->find(s2, i)
3: for all pairs (c1, c2) ∈ C1 × C2 with c1.interval ∩ c2.interval 6= ∅ do
4: interval j ⇐ c1.interval ∩ c2.interval
5: this->connectivityTimeline->remove(c2.mesh simplex, j)
6: make link(c1.mesh simplex, c2.mesh simplex, j)
7: end for

The operation “union” (algorithm 5.7.5) connects the components of s1 and s2 for every
instant in i. It first computes the list of all component representatives for s1 and s2, valid
during the interval i by calling “find” (lines 1 and 2). Each component representative is then
associated with its interval of validity, indicating when it is the representative for the com-
ponent. Method “union” must consider all pairs (c1, c2), c1 ∈ C1, c2 ∈ C2, with intersecting
intervals (line 3) and make c1 the representative of c2 during the intersection interval (line 6).
The component representative c2 is removed from the mesh‘s connectivity time-line for the
intersection interval (line 5).
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The operations “make component”, “union”, and “find” are used subsequently to perform
update operations on temporal meshes that are focus of the following section.

5.8 Update-Operations

Update operations are intended for creating, deleting, and modifying spatio-temporal objects.
Modifications are, for instance, insertion/removal of simplices from temporal meshes or the
modification of a point‘s trajectory. Update operations must ensure the geometric constraints
mentioned in section 3.2.3. Furthermore, updates of temporal simplices can trigger updates
of the internal structures of temporal meshes. In particular, adjacency tables can be affected,
since the neighbour-relationship between the simplices of a mesh can change. For the same
reason, the connectivity of a mesh can change, necessitating an update of its connectivity
time-line and connectivity tables of its simplices. Hence, these operations are computationally
more demanding than usual collection updates.

Updates of spatio-temporal objects can change the geometry-part (location of vertices),
the temporal part (specification of lifetime), or both. Temporal constraints are violated if
after an update to the temporal part of

1. a temporal point p: there is a d-simplex s = [{p1, . . . , pd+1}, e] such that p ∈ {p1, . . . , pd+1}
and e ⊃ p.lifetime

2. a temporal d-simplex s = [{p1, . . . , pd+1}, e]:

(a) there is a point in {p1, . . . , pd+1} violating condition 1.

(b) there is a mesh m containing a time-stamped simplex-reference [s, e] such that
e ⊃ s.lifetime

Constraints for the geometry-part of a spatio-temporal object can only be violated by inserting
a simplex into a mesh and by updating temporal points. Precisely, geometry constraints are
violated after an update if (1) there is a simplex violating the restrictions of definition 3.2.9
or if (2) there is a mesh violating the restrictions of definition 3.2.11.

5.8.1 Creation and Deletion

Creation and deletion of the temporal simplex objects have been described above. Geometry-
constraints for temporal simplex objects can be checked with the operations described in
section 6.2.3. The creation of a mesh object is straightforward, while the deletion is not.
Indeed, referential integrity must be maintained and the internal structures of a mesh cannot
be deleted without further ado. For each simplex in the mesh to be deleted, the mesh
must be removed from the set of mesh references (in the object header for the simplex, see
section 5.6.1). Therefore, the strategy for the deletion of a mesh is to first perform a BFS
through the mesh (cf. previous section) and to update the simplex headers accordingly.
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5.8.2 Updating Temporal Simplices

An update of the geometry-part of a temporal point is processed as follows. Before a point
manager updates its internal structures, the geometry constraints for all referring objects
are checked to determine if the update can be permitted. The objects that are affected by
the update are given by the materialised reference-graph. Hence, all simplices, which hold a
reference to this point, are stored along with the updated point object and must be checked.
Along with each such simplex, the set of referring temporal meshes is stored and must be
checked. If any of these objects responds with a failed check, the update is refused and an
exception is raised. If all checks are passed, the update can be processed. Using again the
materialised referring graph, the update is propagated to the referring objects, in order to
maintain indices owned by any referring mesh.

Similarly, an update of the temporal part of any of the simplex objects can be checked,
using the conditions given above. The remainder of the section focuses on the update of
temporal meshes.

5.8.3 Inserting a Simplex into a Mesh

Given a temporal mesh object, the insert operation can be used to insert a time-stamped
reference to a simplex into the mesh. An insert can affect the connectivity of the mesh: it can
create a new component, merge previously unconnected components, or leave the connectivity
unchanged (by only enlarging a component). These events can occur several times for each
inserted simplex. Therefore, the insert-operation must compute these events and record the
changes into the connectivity time-line and connectivity tables. Since geometric constraints
can be violated by this operation (see definition 3.2.11 of a temporal mesh), the operation
must keep a check on this circumstance. On fail, the operation exits by raising an exception.
On success, internal structures must be updated, in particular the connectivity time-line, the
connectivity tables and the adjacency tables.

The necessary steps are depicted in algorithm 5.8.1. For presentational reasons it is
assumed that the simplex to be inserted is not already contained in the mesh; recall from
chapter 4 that “insert” allows to change the containment temporal element and the algorithm
must therefore be revised slightly. However, with this assumption, the steps to be performed
include: (1) check if geometric constraints for the particular datatype are violated by the
update (line 1); (2) if not, update adjacency tables of the mesh (lines 5–11); (3) insert the
simplex into the index of the mesh, if present (lines 12–14); (4) handle connected components
(lines 15–20) by creating a new component for s and then calling for each neighbour in each
face the union operation described in section 5.7.

5.8.4 Removing a Simplex from a Mesh

Given a temporal mesh object, the remove operation can be used to remove a simplex from the
mesh. While geometric constraints cannot be violated by this operation, internal structures
must be updated, in particular the connectivity time-line, the connectivity tables, and the
adjacency tables.
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Algorithm 5.8.1 mesh::insert(simplex s, temporalElement e)

1: if [s, e] violates mesh restrictions then
2: throw exception
3: end if
4: ms ⇐ new mesh simplex (s)
5: for all f ∈ ms->faces do
6: Set<[mesh simplex, interval ]> neighbours ⇐ ∅
7: neighbours ⇐ this->get neighbours(ms, e)
8: for all n ∈ neighbours do
9: ms->Adj(f)->assign(n.mesh simplex, n.interval)

10: end for
11: end for
12: if this->has index then
13: this->rTree->insert(ms, e);
14: end if
15: this->make component(ms, e)
16: for all f ∈ ms->faces do
17: for all arc ∈ ms->Adj(f) do
18: this->union(ms, arc.simplex, arc.interval)
19: end for
20: end for
21: s->internal part->insert referent(ms)

The removal of a time-dependent simplex s from a mesh m is accomplished as follows. It
is assumed that s is contained in m. (This can be checked by examining s‘s object header;
the operation raises an exception if s is not contained in m.) The strategy for the operation
is then as follows.

1. Update the adjacency tables for all neighbours of s

2. Compute when the removal of s causes a change in connectivity for the connected
components which s resides in; result is a temporal element e

3. Recompute the connected components of each neighbour of s for the instants in e and
update the connectivity time-line and connectivity tables

The details of these steps are depicted in algorithm 5.8.2. In step 1 the adjacency tables
of each neighbour n of s are updated by setting the reference within n to null where it
references s (summarised in line 1). It is realised by iterating through each entry of the
adjacency tables for s. Let s′ denote a neighbour of s, i the interval of the neighbourhood-
relationship and f ′ the face of s′ that is common with s (neighbour-relationship). Then
the operation calls s′->Adj(f ′).set(}, i). Step 2 is a non-trivial operation and makes use of
procedure “when reachable” (line 6, described below). This step iterates over all faces of s
(line 2) and for each such face over all arcs of the face‘s adjacency table (line 3). It follows
from the neighbourhood-relationship that for each instant in the validity of the arc, s and
its neighbour reside in the same component. Line 4 retrieves the representatives for these
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components. For each component found (line 5), the procedure “when reachable” computes
when the neighbour is still connected with the component representative (after removing s
from the neighbourhood-graph), resulting in a temporal element e. Then the complement e
of e, intersected with the component‘s lifetime, contains exactly those instants for which the
component is split. Put differently, before the removal of s each path valid during e∩c.lifetime
from the neighbour of s to the component representative contains s. Step 3 comprises the
for-loop in line 7 that iterates over all intervals during which the “original” component is split
into several new ones. The loop contains the necessary actions of updating the connectivity
time-line (lines 8 and 9) and the connectivity tables (line 10). In particular, the latter action
is performed by procedure BFS. The BFS is started at the neighbour of s, which is made
the representative of the new component. The connectivity table of each visited simplex is
updated to reflect that change (parent pointers are adjusted to point directly to the new
representative simplex).

Algorithm 5.8.2 mesh::remove(simplex s)

1: update neighbours of s // details see text
2: for all f ∈ s->faces do
3: for all arc ∈ s->Adj(f) do
4: List<[simplex, interval ]> components ⇐ this->find(s, arc.interval)
5: for all c ∈ components do
6: temporalElement e ⇐ when reachable(c.simplex, arc.node)
7: for all intervals j ∈ e ∩ c.interval do
8: this->connectivityTimeLine-> remove(c.simplex, j)
9: this->make component(arc.node, j)

10: BFS(arc.node, j, call s′->Conn.assign(arc.node, j) on each visited simplex s′)
11: end for
12: end for
13: end for
14: s->remove referent(this)
15: end for

The algorithm for “remove” uses sub-procedure “when reachable” to compute at what
instants a path exists between two simplices. The pseudocode for this procedure is shown in
algorithms 5.8.3 and 5.8.4. In analogy to the algorithm BFS, this procedure uses the adjacency
tables to perform its task; however, the overall strategy is a depth-first search through the
temporal mesh. Algorithm 5.8.3 starts the recursive algorithm 5.8.4 for each neighbour of
simplex s1. These neighbours are taken from the adjacency tables of s1 (for-loops in lines 3
and 4). Algorithm “recursive reachable” uses a transient hash table that maps simplices to
the temporal element for which the simplex has already been visited (DFS-flag). The table
is accessed by the functions “get mark” and “mark”. For presentational reasons, the table is
a global variable that can be accessed in recursive calls to “recursive reachable”10.

Using a recursive design, the strategy is depth-first. Each call of “recursive reachable”
(line 5) aims at finding a different path from s1 to s2 and it returns with the validity of the
path found (or with an empty temporalElement if no more path is found). After such a call,

10A better solution is to create the table in algorithm “when reachable” and to pass it as an additional
parameter to “recursive reachable”.
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Algorithm 5.8.3 when reachable(simplex s1, s2) → temporalElement

1: mark(s1, [−∞,∞])
2: temporalElement result ⇐ ∅
3: for all f ∈ s1->faces do
4: for all arc ∈ s1->Adj(f ) do
5: result ⇐ result ∪ recursive reachable(arc.simplex, s2, arc.interval \ result)
6: end for
7: end for
8: return result

the next call to “recursive reachable” can be performed excluding the result found thus far
(subtracting result from the validity of the neighbour reference, line 5 of algorithm 5.8.3).

Algorithm 5.8.4 (“recursive reachable”) aims at finding all paths from s to target, limited
to the temporal interval i. It returns with the union of the validity of these paths, limited to i.
To this end, it visits its first parameter s. It checks, if s is equal to the target simplex (lines 1-
3). If so, it returns with its third parameter i. Otherwise, the procedure explores the relevant
neighbours of s (for-loops in lines 6 and 7). Algorithm “recursive reachable” calls itself
recursively on the currently explored neighbour, the target simplex target, and the relevance
interval (line 10). Again, the result found thus far can be excluded from consideration, since
with the length of a path (number of nodes), the validity time of the path cannot grow (see
also definition 5.7.3).

Algorithm 5.8.4 recursive reachable(simplex s, target, interval i) → temporalElement

1: if s ==target then
2: return i
3: end if
4: temporalElement result ⇐ ∅
5: mark(s, i)
6: for all f ∈ s->faces do
7: for all arc ∈ s->Adj(f ) do
8: timeWindow ⇐ (arc.interval ∩ i)\ get mark(arc.simplex)
9: if timeWindow 6= ∅ then

10: result ⇐ result ∪ recursive reachable(arc.simplex, target, timeWindow\ result)
11: end if
12: end for
13: end for
14: return result

5.9 Snapshot Query

Having described the storage structures for spatio-temporal objects, the focus is now on a
realisation of a basic retrieval operation: the time-step query, which retrieves a pure-spatial
object given an instant in time and hence demands to visit all mesh elements valid at that in-
stant; the snapshot query implements method “at” of the interface of class stObject (figure 4.3,
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page 53).

The description can be brief, as the method uses the above algorithms. If the method
is invoked such that also point coordinates are requested for the particular instant, a point-
cache instance is created (section 5.6.3). The connectivity time-line of the mesh is searched
for the biggest instant less than the query instant. The algorithm loops over all components
associated with the instant. For each component, the valid entry point simplex s for the
query instant t is retrieved and the BFS routine is invoked with s and [t, t] as parameters.
During the BFS procedure, each time the neighbour of a simplex has to be visited (pushed
into the BFS queue), the neighbour is chosen which has been temporally valid at t. Each time
a simplex has to be examined (popped from the BFS queue) it is inserted into the resulting
mesh object and is marked visited. If requested, point objects are created, valid at instant t.



Chapter 6

Operations for Spatio-Temporal Objects and

their Realisation

The conceptual model, the data types, and the data structures presented in the previous chap-
ters will prove useful only if they are accompanied by retrieval facilities. Some of them have
also been introduced in these chapters. Among them are the construction-, destruction- and
update-operations. Likewise, support for visualisation was given by snapshot queries. More
query facilities should be offered in spatio-temporal database systems; however, implementa-
tion concepts have been seldom proposed in literature. This chapter develops implementation
concepts for the spatio-temporal range query and for intersects- and distance-based predicates.
Furthermore, it is shown how to ensure the restrictions on spatio-temporal objects.

The necessary steps for the realization of the operations are being developed: (1) geomet-
ric base computations on primitive types (defined below), to be described in a mathematical
framework; (2) application of these computations for compound types, like the trajectory of
a temporal simplex or a temporal mesh. Moreover, the notion of spatial filtering via mini-
mum bounding boxes, widespread in spatial databases, is transferred to the spatio-temporal
setting. The operations to be described are generalised to so-called decomposable problems.
Furthermore, if present, indexes can be exploited in the computation of operations.

6.1 Conceptual Considerations

In general, computing elementary binary operations between temporal simplices cannot be
reduced to a corresponding operation on atemporal simplices, for example, through computa-
tion at each temporal snapshot using well-known spatial operations. Hence, spatio-temporal
operations are more involved. Operations are to be derived that operate upon certain restric-
tions on temporal simplices, the so-called spatio-temporal primitive objects (defined below).
This section clarifies what makes up O(1) operations on spatio-temporal objects and how to
combine them to operations on the spatio-temporal data types. It also shows how to iterate
over the primitive objects of a given spatio-temporal object. Furthermore, this section de-
scribes how the proven technique of a spatial filter for geometric operations can be transferred
to the spatio-temporal setting.
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p1

p2

time-line p1

time-line p2

Figure 6.1: The merged time-line of two temporal points induces a sequence of
spatio-temporal primitive objects. The bold arrow indicates a time interval for a
spatio-temporal primitve object.

6.1.1 A Hierarchy of Operations

Elementary operations form the building blocks for operations on compound spatio-temporal
objects, like complete temporal simplex traces or a complete temporal complex. Beforehand,
though, it is necessary to go a level below the temporal simplices (Breunig et al., 2002).
These operations are designed such that they run in constant time. In the pure-spatial case,
these O(1)-operations include, for example, point/point-distance, point/segment-distance or
segment/segment-intersection, to name but a few. However, the number of time-steps of, for
instance, a temporal point is not bounded by a constant. Therefore, an operation accessing
a non-constant number of time-steps is not among these atomic operations.

Indeed, computing, for example, the minimum distance between temporal points is not
an O(1)-operation. To perform such a computation, it is broken up into smaller units, each
of which performs an elementary operation (see figure 6.1). Linear moves of a temporal
point occur during two consecutive time-steps on its time-line: with linear point movement,
only two time-steps are needed to compute the position in between. Then, consecutive time-
steps on the merged time-line mark time intervals during which both temporal points perform
linear moves (see bold arrows in figure 6.1). Hence, on this interval temporal simplices can
be represented in O(1) space. In general, elementary spatio-temporal O(1)-operations apply
to temporal simplices, limited to consecutive time-steps on their merged time-lines. Such a
limited temporal simplex is called spatio-temporal primitive object:

6.1.1. Definition. (spatio-temporal primitive object) Let o denote a spatio-temporal object.
The object o is called a spatio-temporal primitive object, if

• o is a temporal simplex s[V, e], and

• for each v ∈ V : v|e moves on a straight line, i.e., gsteps(v|e) = 2.

The rationale behind the definition is as follows. Given two spatio-temporal primitive objects
s1[V1, e1] and s2[V2, e2], a primitive operation operates upon these primitives, limited to the
interval e′ = e1 ∩ e2. A different perspective on primitive operations is through the merged
time-line. Given two (complete) temporal simplices s, s′, one can merge the time-lines of both
objects and choose the intervals for which both objects are defined (see figure 6.1). Impor-
tantly, both objects are continuous and differentiable on each such intervals and methods from
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calculus can be applied to perform basic computations, like the minimum Euclidean distance
between the spatio-temporal primitive objects (see subsequent sections). Depending on the
particular problem at hand, the results from these basic computations can then be combined
to obtain the result for s and s′ (operation min in case of the minimum Euclidean distance).

A primitive temporal point can be specified by two 3D points a := p(0) and b := p(1) to
express the temporal point parametrically:

p(t) = a + t · (b − a)

To sum up, spatio-temporal primitive objects can be obtained when simplices are limited
to the interval between two consecutive time-steps on their (merged) time-line. Then, it is
possible to reduce the computations of operations to these primitive objects, the movement
of which is “well-behaved” and methods from calculus can be applied. The results can be
combined to form a result for the given temporal simplices. The results from temporal
simplices can be combined to a result for temporal meshes.

6.1.2 Iteration over the gsteps of a Spatio-Temporal Object

Having defined spatio-temporal primitive objects and how they are used in operations, a fur-
ther building block is the iteration over the gsteps of a spatio-temporal object (section 3.2.3),
obtaining primitive objects one by one. The concept to be realised is that of an iterator,
the gstepIterator, offering the methods “open”, “next”, and “close”. Since the gstepIterator
is to be used only internally, only the internal spatio-temporal classes are allowed to create
a respective iterator. The interface of a gstepIterator for a d-simplex-implementation is as
follows:

Method name Parameter types Return type

new: void → Ref<gstepIterator>
open: Ref<interval> → void
next: void → Ref<[point3D [d+1][2], interval ]>
close: void → void

Here, method “next” returns two snapshots of d + 1 points in 3D and a temporal interval i,
where the first and second snapshot of d + 1 points are valid at i− and i+, respectively.

The constructor “new” is called by the spatio-temporal object implementations. Method
“open” can then be used to open the iterator for a given interval (, i.e., only primitive objects
are returned the lifetime of which intersects the interval). Method “next” returns a pair of
snapshots, which specify a spatio-temporal primitive object. The method returns null in case
all primitive objects have been visited. Method “close” closes the iterator.

The implementation depends upon the particular type of spatio-temporal object. For
a point impl -object, the clustering R-tree of its point manager is utilised. Note that for
clustering purposes a point trajectory is split into primitive objects. On opening the iterator
with an interval i, the R-tree is searched for the first leaf-entry of the point that contains the
instant i−. This search is guided by i− and the boundBox4D of the point header (section 5.6.1).



106 Chapter 6. Operations for Spatio-Temporal Objects and their Realisation

On calling “next”, the current leaf-entry is used to construct the return object and the leaf-
entry pointers are used to find the next primitive object for the point.

The implementation for a temporal segment impl, triangle impl, and tetrahedron impl can
be described together as d-simplices. A gstepIterator for a temporal d-simplex coordinates
d + 1 gstepIterators for temporal points (the vertices of the simplex) and stores internally a
state variable, which is the instant of the last returned snapshot. A call to “open” creates the
d+1 iterators for the simplex‘s points, opens them, calls “next” on each and initialises its state
variable with the lower boundary of the interval parameter. On calling “next”, two snapshots
of the simplex must be created: the first one for the instant given by the state variable and
the second one for the smallest upper instant of the points‘s snapshots. The chosen iterator is
advanced by calling “next” and the state variable is set to the chosen instant. This procedure
can be seen as a construction of the merged time-line of the d + 1 vertices.

The implementation for the temporal mesh implementations is described together as d-
mesh. A gstepIterator for a temporal d-mesh makes use of a transient point cache and aims
at exploiting locality-of-reference for the point accesses. Instead of processing the simplices
of the mesh one by one, the iterator therefore interleaves primitive objects from different
simplices. The iterator outputs primitive objects of a fixed simplex as long as data is in the
point cache to create output without a further access to secondary memory. Recall from
section 5.6.3 that a point cache pre-fetches point data. If the cache data for a simplex is used
up, the iterator chooses a simplex with data available. If none is available, the processing
of the next simplex entails an access to secondary storage. The realisation of this strategy
is a modified version of the BFS-procedure presented in section 5.7. The differences are as
follows. The processing interval of a simplex (as BFS-node) is not bound to the interval of
the incoming arc, but to the availability of point-data in the point cache. For I/O-awareness
(giving those nodes precedence that have cache data), an additional BFS-queue is introduced.
The first queue is used for simplices that have point-data in the cache such that processing
these simplices does not necessitate access to secondary storage. The second queue is used for
simplices that need further secondary storage access to be processed. Only if the first queue
is empty, a simplex is popped off the second queue.

Summing up, the presented iterators are a tool for the implementation of the operations
on spatio-temporal objects. Using these iterators on a (complete) spatio-temporal object, its
primitive objects can be obtained, which in turn are to be consumed by primitive operations
to be presented in the next section. Beforehand, though, the notion of a spatial filter is
extended to the spatio-temporal setting.

6.1.3 Extending Spatial Filtering

In spatial databases it is common practice to apply cheap pre-checks to expensive geometric
computations. Mostly, the approximation of a minimum bounding box (mbb for short) of a
spatial object serves this purpose. A 4D minimum bounding box of a spatio-temporal object
is defined by four intervals: three spatial intervals, which are the extents of the trajectory of
the object; one temporal interval, which is the hull of the valid time of the object. Therefore,
one can readily apply the technique of spatial filtering for geometric operations to the spatio-
temporal objects. With this technique, expensive geometric operations are only performed,
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if the objects under consideration pass a cheap pre-check (two-step process). For example,
if two spatio-temporal objects intersect each other at an instant, then the 4D bounding box
approximations of the two objects intersect. The intersection of the 4D boxes is therefore
a necessary (but not a sufficient) condition. As such, it can be exploited as a filter by
first performing this cheap test and only on success performing the more expensive, exact
intersection test.

For primitive objects, though, one can introduce a three-step process for spatio-temporal
filtering. The first step is the 4D bounding box test. The second step consists of a further
filter operation, but this time based on a more exact approximation. The third step is then
the exact geometric computation.

Since in spatial databases the mbb-approach proved successful, the following definition
makes sense.

6.1.2. Definition. (strong mbb criterion) An approximation scheme for spatio-temporal
objects meets the strong mbb criterion, if and only if (1) for the approximation of a spatio-
temporal object o the projection of this approximation onto an arbitrary instant t is equal
to mbb(o(t)); and (2) the approximation of a spatio-temporal object can be represented with
constant space.

Using 4D bounding boxes, the strong mbb criterion is only met by a very limited set of
moving and changing spatial objects.

6.1.3. Proposition. 4D bounding boxes meet the strong mbb criterion for those spatio-
temporal objects o, for which there is an mbb b, such that for all instants t ∈ time(o):
mbb(o(t)) = b.

Note that for rigid objects—including moving vertices—the above proposition implies that
movement and change is limited, if it can occur at all, if the strong mbb criterion is to be
met. Change is possible for non-rigid objects, but obviously also very limited.

On the contrary, the strong mbb criterion can be met for the class of spatio-temporal
primitive objects. The straightforward approach treats the bounding faces of an mbb as
linear functions of time, similar to the bounding boxes in the indexing approach of Saltenis
et al. (2000). The approximation scheme can be described as follows. Given a spatio-tempo-
ral object, its approximation is an mbb with time-dependent bounding faces. Through the
linearity of the spatio-temporal objects (linear vertex movement and linear objects for each
instant in time) it suffices to have piecewise linear functions for the bounding faces and to
base the computations of these functions on the vertices being part of the spatio-temporal
object. The motion function for the lower side of the x-dimension is defined as follows.

x−(o) :=

{

min
t
{px(t) | p ∈ vertices(o)} for t ∈ time(o)

undef for t 6∈ time(o)
(6.1)

The remaining bounding faces are defined analogously (replace min by max for the upper
boundaries of each face). For the spatio-temporal objects defined in this thesis, the motion
functions are piecewise linear. Together, the definition of the six motion functions (two for
each dimension) forms the tmbb approximation scheme (see also figure 6.2).
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Figure 6.2: A tmbb (unfilled dots) defined by a set of temporal points (filled dots).
Left snapshot : Vectors indicate movement (length means speed). Middle snapshot :
Motion function of the tmbb upper right point changes (y-coordinate now defined
by point 1). Right snapshot : Motion function of the tmbb lower left point changes
(x-coordinate now defined by point 4).

6.1.4. Definition. (temporal minimum bounding box, tmbb) Let o denote a spatio-temporal
object. The temporal minimum bounding box of o is a pair of temporal points

tmbb := [v−, v+]

where v− and v+ are called the lower left and the upper right point, respectively, and are
defined by the linear motion functions defined in equation 6.1.

v− = (x−(o), y−(o), z−(o)), and

v+ = (x+(o), y+(o), z+(o))

For an instant t ∈ time(o), a three-dimensional minimum bounding box of o is given by

tmbb(t) := [v−(t), v+(t)]

By definition, the following properties hold. First, v−.lifetime equals v+.lifetime. Second, for
each t ∈ v−.lifetime and each dimension i: v−i (t) ≤ v+

i (t).

6.1.5. Proposition. The tmbb approximation scheme for spatio-temporal objects meets the
strong mbb criterion for the subset of spatio-temporal primitive objects.

Proof: From the definition of a tmmb b = [v−, v+] for a spatio-temporal object o it is obvious
that for each t ∈ � , b(t) = mbb(o(t)). It remains to show that a tmbb uses constant size
for a spatio-temporal primitive object. But this follows immediately from the fact that these
objects are temporal simplices, the vertices of which are linear functions of time. Then, the
number of vertices is limited by a constant. Finally, the number of gsteps of v− and v+ is
also limited by a constant. This fact follows also from the linearity of movement: if a mo-
tion function is based on a given vertex v ∈ o for a time interval, and for a subsequent time
interval it is based on a vertex v′ ∈ o, then the motion function cannot be based on v again.

The computation of each motion function can be performed iteratively over the vertices of
a spatio-temporal object. In the following, the computation is described for the x−-function;
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the remaining functions are treated similarly. The computation of the x−-function is initialised
with the function that is undefined everywhere. The result of the computation is a time-line
that associates a linear motion function with each interval on the time-line that together
form the function for x−. Then, assuming for the first i − 1 vertices the time-line and its
functions have been computed, the ith vertex v is added as follows. The time-line of v with
its associated functions is built and merged with the computed time-line. After that each
interval on the merged time-line is associated with two linear functions f, fv that must be
processed further to complete the merge. One of three cases can occur. First, both functions
are equal (including two undefined functions). In this case, an arbitrary function can be
chosen. Second, exactly one of the two functions for a given interval on the merged time-line
is undefined. In this case, the defined function is chosen. Thirdly, both f and fv are defined
on the given interval I (and are not equal, which is case 1). In this case, either f(t) ≤ fv(t)
(or vice versa) for all t ∈ I, or I must be split into I1 and I2. In the former case, the smaller
function is chosen. In the latter case, the split-instant is given by t ∈ I such that f(t) = fv(t)
and is unique (as the functions are linear and not equal). Then, for I1 and I2 the former case
holds and the appropriate function can be chosen. Having merged both time-lines in this way,
a post-processing step removes all unnecessary instants from the time-line, which are those
whose neighbouring intervals are associated with the same function.

As the current chapter concentrates on intersects- and distance-based functions, the re-
mainder of the section introduces two filter operations on tmbbs. First, it is shown how to
detect intersections between two tmbbs. Second, it is shown how to compute a distance-based
filter that is passed if two tmbbs have a distance less than a given threshold.

Intersection-detection for tmbbs. In the atemporal case, two mbbs b1, b2 intersect if and
only if all of their x-, y, and z-interval pairs intersect. For simplicity, only the x-dimension is
shown, as the remaining dimensions are handled equivalently. Let x−

1 denote the lower bound-
ary and x+

1 the upper boundary of the x-interval of b1. The respective interval boundaries
for b2 are denoted by x−

2 , x+
2 . Let

vx := x−
1 − x+

2

wx := x+
1 − x−

2

One can observe that the x-intervals intersect if and only if: (1) vx = 0 or wx = 0; or
(2) sgn(vx) 6= sgn(wx). On the whole, the bounding boxes intersect if and only if the x-, y,
and z-intervals intersect.

For the temporal case, one iterates over the intervals on the merged time-line of two
tmbbs b1, b2. Each such interval I has the property that the boundaries of the tmbbs are

linear functions of time: x
+/−
i = mt + c. One obtains

vx(t) := x−
1 (t) − x+

2 (t)

wx(t) := x+
1 (t) − x−

2 (t)

The x-intervals intersect at each instant in the temporal element

ex := {t ∈ time(b1) ∩ time(b2) | vx(t) = 0 ∨ wx(t) = 0 ∨ sgn(vx(t)) 6= sgn(wx(t))}

The temporal elements ey and ez are defined analogously. Then the tmbbs b1, b2 intersect at
ex ∩ ey ∩ ez. The construction of ex is performed as follows. First, the merged time-line of
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b1 and b2 is augmented by those instants t at which sgn(vx) or sgn(wx) changes its value.
On this time-line, each interval I has the property that sgn(vx) and sgn(wx) are constant
within I (excluding the boundaries of I). Starting with an empty ex, an interval I of the
time-line is inserted into ex, if (1) sgn(vx) 6= sgn(wx) holds on I, or if (2) vx = 0 or wx = 0
holds on I. (The boundaries of I must be handled properly.) Note that the instants on the
time-line are degenerate intervals and must also be considered.

Distance-filter for tmbbs. The distance filter checks whether two tmbbs have a distance
less than a (positive) threshold h for an instant in their lifetime. For atemporal mbbs b1, b2,
the minimum Euclidean distance is given by

d(b1, b2) =
√

u2
x + u2

y + u2
z where

ui = min{|i−1 − i+2 |, |i+1 − i−2 |}

For the temporal case, one iterates over the intervals on the merged time-line of two tmbbs
b1, b2. Each such interval I is processed as follows. The temporal variant of the ui-expressions
are defined as follows.

ui(t) = min
t
{|i−1 (t) − i+2 (t)|, |i+1 (t) − i−2 (t)|}

The minimum now ranges over all t and therefore I must be split into several parts, where the
splits are determined by the ui(t). The corresponding time-instant, if present and contained
in I, is such a split-point. For each split-interval I ′, the function

d(b1, b2)(t) =
√

u2
x(t) + u2

y(t) + u2
z(t)

can be searched for the minimum within I. As the square root can be omitted for the
minimum search, one obtains a polynomial at2 + bt + c that contains in a, b, c the constants
for the particular movement of the tmbb-boundaries. Using the first derivative, one can
therefore obtain the solution by substituting these constants into t = −b

2a . One must check
the boundaries of I ′ by evaluating the polynomial at the instants I ′− and I ′+. The global
minimum on I ′ can thus be found. If for any of these intervals the distance is less than the
given threshold h, the test is passed.

6.2 Operations for Spatio-Temporal Primitive Objects

This section investigates how to realise range queries, intersection-related operations, distance-
related operations, and the restrictions on spatio-temporal primitive objects (see defini-
tion 6.1.1). Throughout this section it is assumed that the lifetime of a spatio-temporal
primitive object equals the interval [0, 1], which can be obtained by transforming the lifetime
by translation and scaling1.

6.2.1 Spatio-Temporal Range Queries

In the range queries to be presented, spatio-temporal objects can be tested for intersection
with (atemporal) planes, half-spaces, and axis-aligned bounding boxes. Two different flavours

1This holds except for the distinction of open and closed intervals that must be handled accordingly.
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of operations are distinguished: (1) a boolean operation yielding true if and only if an instant
in time exists for that a primitive object intersected the query object; (2) a temporal operation
yielding those temporal intervals during which a primitive object intersected the query object.

Intersection with a Plane

It is well-known that intersection is best expressed if one object is given in its implicit form and
the other object in its parametric form (see, e.g., Abramowski and Müller, 1991). Intersecting
spatio-temporal primitive objects with a plane, it is observed that it suffices to consider only
the xy-plane, because the general case can be handled by applying an affine transform. This
transform applies to every vector involved and it must map the given plane onto the xy-plane.
Note, however, that only for presentational reasons this simplification has been chosen, which
an implementation should avoid, since the affine transform will in general contain rotations—
an unnecessary source of round-off errors. Secondly, the implicit representation of the plane
is chosen

Pxy(x, y, z) = 0 :⇔ z = 0

Then, in order to intersect Pxy with a parametric function f(t) = (fx(t), fy(t), fz(t)) one can
simply apply substitution, resulting in a single equation only.

Pxy(fx(t), fy(t), fz(t)) = 0 ⇔ fz(t) = 0

In the following, the problem of intersecting a temporal simplex with Pxy is investigated.

Plane with temporal point. The first object under consideration is a temporal point. Let
f ≡ p be a temporal point that moves from location a to location b:

p : (0, 1) →
� 3

t 7→ a + t(b − a)

Substitution yields

Pxy(p(t)) = pz(t) = az + t(bz − az) = 0

t0 =
−az

bz − az
(6.2)

The special case az = bz means movement parallel to the plane and the intersection is either
empty or equal to p. If t0 ∈ (0, 1), the result is p(t0), otherwise the intersection is empty.
One immediately obtains:

intersectsPxy
(pab) ≡

{

t0 ∈ (0, 1) if az 6= bz

az = bz = 0 if az = bz

when-intersectsPxy
(pab) ≡











(0, 1) if az = bz = 0

[t0, t0] if t0 exists and t0 ∈ (0, 1)

∅ otherwise
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Plane with temporal segment. The next object under consideration is a temporal seg-
ment. Let f ≡ s be a temporal segment, based on two temporal points p(t) = a + t (b − a)
and q(t) = c + t (d − c):

s : (0, 1) × [0, 1] →
� 3

(t, λ) 7→ p(t) + λ (q(t) − p(t))

One observes that a segment intersects a plane if and only if one end-point is on one side of
the plane and the other is on the other side of the plane, or if one of the end points lies within
the plane. With respect to Pxy and to time, the following inequalities express the observation:

I. pz(t) > 0 ∧ qz(t) < 0 II. pz(t) < 0 ∧ qz(t) > 0

III. pz(t) = 0 IV. qz(t) = 0

Let SI , SII , SIII , and SIV denote the solution sets for the respective linear inequality (or
system of linear inequalities). Then, the instants in the following solution set S correspond
exactly to the instants at which the temporal segment intersects Pxy:

S := (0, 1) ∩
⋃

i=I..IV

Si

Hence, the intersects and when-intersects operations can be defined as follows.

intersectsPxy
(s) ≡ S 6= ∅

when-intersectsPxy
(s) ≡ S

The exact computation of the solution sets is straightforward and therefore omitted here.

Plane with temporal triangle. The next object under consideration is a temporal triangle.
Let tr be a temporal triangle to be intersected with Pxy, based on the three temporal vertices
p(t) = a + t (b − a), q(t) = c + t (d − c), r(t) = e + t (f − e):

tr : (0, 1) × [0 : 1] × [0, 1] →
� 3

(t, λ, κ) 7→ p(t) + λ (q(t) − p(t)) + κ (r(t) − p(t)), λ + κ ≤ 1

This case can be conveniently reduced to the case of temporal segments, since due to the
linearity, the interior of a triangle cannot intersect Pxy without its boundary intersecting Pxy.
Let pq,pr, rq denote the temporal segments that form for each t ∈ [0, 1] the boundary of
tr(t).

intersectsPxy
(tr) ≡

∨

s∈{pq,pr,rq}

intersectsPxy
(s)

when-intersectsPxy
(tr) ≡

⋃

s∈{pq,pr,rq}

when-intersectsPxy
(s)

Plane with temporal tetrahedron. The case of a temporal tetrahedron can be handled
similar to the previous case. The operations “intersects” and “when-intersects” can be reduced
to the bounding temporal triangles of the temporal tetrahedron.
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Intersection with a Half-Space

Again, the discussion can be limited to the case, where the half-space is bounded by Pxy.
Hence, for the remainder of the section, objects are intersected with Hxy := z ≥ 0.

Half-space with temporal point. The following definitions make use of t0 (see equa-
tion 6.2), denoting the instant at which the temporal point intersects plane Pxy. Let the
temporal point move from a ∈

� 3 to b ∈
� 3.

intersectsHxy
(p) ≡ az ≥ 0 ∨ bz ≥ 0

when-intersectsHxy
(p) ≡























[max{t0, 0}, 1] if bz > az ∧ bz ≥ 0

[0, min{t0, 1}] if az > bz ∧ az ≥ 0

[0, 1] if az = bz ∧ az ≥ 0

∅ otherwise

Half-space with temporal segment. For a temporal segment s, the intersection operations
can be reduced to the operations on the temporal vertices of the segment. Let the temporal
vertices of the temporal segment be p and q.

intersectsHxy
(s) ≡ intersectsHxy

(p) ∨ intersectsHxy
(q)

when-intersectsHxy
(s) ≡ when-intersectsHxy

(p) ∪ when-intersectsHxy
(q)

Half-space with temporal triangle/tetrahedron. As with temporal segments, the in-
tersection operations for temporal triangles and tetrahedra can be reduced to their temporal
vertices. The definition of the operations is therefore a simple extension of the operations for
temporal segments.

Intersection with a Bounding Box

In the sequel, it is assumed that the spatio-temporal primitive objects under investigation are
to be intersected with the 4D query box for the whole validity interval (0, 1) of the spatio-tem-
poral primitive object. Hence, the query box is 3D. A query box is aligned to the coordinate
axes. The 3D query box is the intersection of the six half spaces H1 := x ≥ c1, H2 := y ≥ c2,
H3 := z ≥ c3, H4 := x ≤ c4, H5 := y ≤ c5, H6 := z ≤ c6:

B :=
⋂

i=1..6

Hi

Box with temporal point. Since the intersects operations for a temporal point p and a
half space have been derived, one immediately obtains:

intersectsB(p) ≡
⋂

i=1..6

when-intersectsHi
(p) 6= ∅

when-intersectsB(p) ≡
⋂

i=1..6

when-intersectsHi
(p)
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Figure 6.3: (Atemporal case) Left: Although the segment intersects all half-spaces
of the query box, one cannot conclude that the segment also intersects the query box.
Right: A segment intersects the query box if the intersecting parts of the segment
have points in common.

Box with temporal segment. The intersects operation of a temporal segment with a
query box is more involved, since it cannot be trivially reduced to the intersections with a
half-space (see also figure 6.3). The right part of figure 6.3 indicates a strategy that can be
extended to the temporal case. In brief (neglecting parallel arrangements), for an atemporal
segment s = pq one computes six values λi for each half-space Hi such that p + λi · (q − p)
intersects the bounding plane of half-space Hi. λi determines a solution set Si: for each
λ∗ ∈ Si the 3D-point

p + λ∗ · (q − p)

is located within Hi. If λi 6∈ [0, 1], then Si = ∅ or Si = [0, 1], depending on location.
Otherwise, Si = [0, λi] or Si = [λi, 1], depending on orientation. The solution set for the
whole query box B is therefore

S :=
⋂

i=1..6

Si (6.3)

The segment intersects the query box if and only if S 6= ∅.

In the case, where s(t) = p(t)q(t) is a temporal segment, each half-space is associated
with a function λi :

�
→

�
describing the intersection with the bounding plane of half-space

Hi. Function λi is given by:

λi(t) = ci −
pi(t)

qi(t) − pi(t)
(6.4)

Note that λi is a certain rational function f(x) = P (x)
Q(x) , where P (x) has degree ≤ 1 and Q(x)

has degree = 1. The point

p(t) + λi(t) · (q(t) − p(t))

intersects plane Pi (for each t for which λi is defined). The solution set Si ⊆ [0, 1] × [0, 1] is
the set of (t∗, λ∗)-pairs for which an intersection with Hi results:

Si := {(t∗, λ∗) | p(t∗) + λ∗ · (q(t∗) − p(t∗)) ∈ Hi}
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Figure 6.4: The graph of λi is the boundary of the shaded region describing the
solution set Si. The asymptote (if existing) marks the instant at which the region
switches from below-the-graph to above-the-graph, or vice-versa.

The solution set for the whole query box is defined as in equation 6.3. The “intersects”-
operation returns true if and only if S 6= ∅. The “when-intersects”-operation returns St, the
projection of S onto the t-axis. In the following, the focus is on how to compute S.

In summary, the procedure constructs the region in [0, 1]× [0, 1] that corresponds to S (see
also figure 6.4) and projects it onto the time-axis. The region is enclosed by two chains, which
consist of parts of the λi-graphs: an upper chain, which bounds the region from above, and a
lower chain, which bounds the region from below. Hence, the procedure works in three steps:
(1) it constructs the upper and the lower chains; (2) it combines them to form the solution
set; and (3) it projects the region onto the t-axis and returns the corresponding temporal
element.

However, the computation must deal with the degenerate configuration that λi is undefined
for all t. Function λi is undefined for all t with qi(t) = pi(t) (see equation 6.4). The following
cases can be distinguished:

1. for all t: qi(t) = pi(t) 6= 0; geometric interpretation: s(t) is parallel to, but not contained
in Pi.

2. for all t: qi(t) = pi(t) = 0; geometric interpretation: like 1., but s(t) is contained in Pi.

If for a λi case 1 holds and the segment does not intersect Hi, the computation stops with
the particular return value (“false” for operation intersects and “∅” for operation when-
intersects). Otherwise, in both cases the solution set Si equals [0, 1] × [0, 1]. Therefore, Hi

does not “contribute” to S and can be excluded from further examination. In the sequel, it
is therefore assumed that the functions λi are not degenerate.

It follows that there is at most one ti with qi(ti) = pi(ti). The instant ti is important
for the solution set Si: depending on the orientation of the segment, at ti the solution set
“switches” from the region above the graph of λi to the region below the graph of λi, or
vice-versa (see also figure 6.4). Furthermore, each function λi is split in two parts λL

i , λU
i ,

corresponding to the lower boundary and the upper boundary of the solution set, respectively.
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The dividing instant is the asymptote of λi, or if it does not exist, one of the two functions
is undefined. The decision, which side of the asymptote is which boundary, can be based on
simply probing the function, for instance, at t∗ < ti to obtain a (t∗, λ∗)-pair and checking
whether the 3D-point

v = p(t∗) + (λ∗ − δ) · (q(t∗) − p(t∗))

lies within Hi for an appropriately sized δ > 0. With these choices for t∗ and δ one checks
the left side of the asymptote below the graph of λi. Hence, if v lies within Hi, the left side
of the asymptote is λU

i , while the right side is λL
i , and vice-versa.

Additionally, the solution set S for the whole query box B is bounded by 0 and 1 for both
parameters t and λ. Therefore, the functions are defined such that

λL
i , λU

i : [0, 1] →
�

λL
i (t) =











λi(t) if λi(t) ∈ [0, 1] and s(t, λi(t) + δ) ∈ Hi, δ > 0

0 if λi(t) < 0

undefined otherwise

λU
i (t) =











λi(t) if λi(t) ∈ [0, 1] and s(t, λi(t) − δ) ∈ Hi, δ > 0

1 if λi(t) > 1

undefined otherwise

On this basis, two chains can be defined for the solution set of the whole query box B. The
chains are functions such that:

LC(t) =

{

maxi=1,...,6{λi(t)} if λL
i (t) is defined for all i

undefined otherwise

UC(t) =

{

mini=1,...,6{λi(t)} if λU
i (t) is defined for all i

undefined otherwise

Then, the solution set S for the query box B is given by the (t, λ)-pairs enclosed within the
upper chain UC and the lower chain LC. The algorithms 6.2.1 and 6.2.2 compute both the
upper and the lower chain in an iterative manner. A chain is represented by a set of intervals
in ascending t-order. Each interval is accompanied by the function λi whose graph forms
the boundary of the solution set during this interval. Algorithm 6.2.1 computes first the
functions λL

i and λU
i (lines 1–7) and stores them as chains for Hi. The detailed computation

is omitted here, but should be straightforward from the above discussions. The lower and
upper chains (LC and UC) are initialised with the interval [0, 1] and the constant functions
t 7→ 0 and t 7→ 1, respectively (lines 8 and 9). In lines 10–16 the chains for λi are merged with
the current chains LC and UC. The procedure for the merging the lower chains is depicted
in algorithm 6.2.2. Merging of upper chains is omitted here, but is similar to merging lower
chains (replace “max” by “min” in line 10).

Procedure “merge lower chains” works as follows. It merges the two lower chains C1 and
C2 into the new chain C. To this end, the procedure iterates through both input chains in
ascending t-order by popping intervals from the chains into the variables I1 and I2. Only
if they overlap, it processes I1 and I2. The iteration through the chains is managed in the
lines 5, 6, 8, 12, and 13. A pair of overlapping intervals is processed as follows. Importantly,
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in line 9 the intersection of the associated functions—limited to the overlapping region of the
intervals—are computed. By the nature of these functions, at most two intersection points
are possible (assuming the functions are not equal). The overlapping interval is split into
several intervals for these intersection points (line 10, for presentational reasons assuming
two intersections exist). Each resulting interval j is associated with one of the two functions
associated with the intervals I1 and I2, choosing the function that yields bigger function values
on j.

Finally, in algorithm 6.2.1 (line 17), procedure “get domain” returns the set St of instants
for which the upper chain UC is above or equal to the lower chain LC. The pseudo-code
for procedure “get domain” is omitted, as it is similar to the merging of chains. It also
iterates over intersecting intervals of the two chains. Each such intersection of an interval-
pair is processed as follows. First, the intersection points of the two associated functions are
calculated, splitting the interval into sub-intervals. Each sub-interval is tested, if the function
of the upper chain (for this interval) is bigger than the function of the lower chain. If this
holds, the sub-interval must be inserted into the resulting temporal element. After checking
each interval-pair, the resulting temporal element contains exactly the instants at which the
segments intersects the query box.

Algorithm 6.2.1 segment-box-intersection(s, B = ∩i=1,...,6Hi)

1: for i = 1, . . . , 6 do
2: Hi.LC ⇐ compute λL

i for s
3: Hi.UC ⇐ compute λU

i for s
4: if Hi.LC = ∅ or Hi.UC = ∅ then
5: return empty intersection
6: end if
7: end for
8: LC ⇐ [[0, 1], t 7→ 0]
9: UC ⇐ [[0, 1], t 7→ 1]

10: for i = 1, . . . , 6 do
11: LC ⇐ merge lower chains(LC, Hi.LC)
12: UC ⇐ merge upper chains(UC, Hi.UC)
13: if LC = ∅ or UC = ∅ then
14: return empty intersection
15: end if
16: end for
17: return get domain(LC, UC)

Box with temporal triangle/tetrahedron. While the presented approach for box with
a temporal segment is advantageous, as it also allows to approximate the intersection of the
two objects, with triangles and tetrahedra one and two additional parameters are introduced,
respectively. The approach becomes therefore more complex and a simpler, but practicable
approach is justified. It is based on the distance-function that computes the minimum Eu-
clidean distance between two spatio-temporal objects, which is presented subsequently. The
faces of the query box can be triangulated and, using the distance-function, the minimum
distance of the spatio-temporal primitive object (triangle/tetrahedron) to the faces of the
box is calculated (or when the minimum distance is reached, for the temporal function). The
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Algorithm 6.2.2 merge lower chains(C1, C2)

1: I1 ⇐ [1, 0]
2: I2 ⇐ [1, 0]
3: C ⇐ ∅
4: while C1 6= ∅ and C2 6= ∅ do
5: while I+

1 < I−2 and C1 6= ∅ do I1 ⇐ pop(C1)
6: while I+

2 < I−1 and C2 6= ∅ do I2 ⇐ pop(C2)
7: I ⇐ [max{I−1 , I−2 }, min{I+

1 , I+
2 }

8: if I− > I+ then return C
9: t, t′ ⇐ intersection-points(I1.f|[I−,I+], I2.f|[I−,I+])

10: insert intervals [I−, t], [t, t′], [t′, I+] into C
11: for each inserted interval j do j.f ⇐ max{I1.f|j , I2.f|j}

12: if I+
1 ≤ I+

2 then I1 ⇐ pop(C1)
13: if I+

2 ≤ I+
1 then I2 ⇐ pop(C2)

14: end while
15: return C

result must be combined with a further computation: the case, when the spatio-temporal
object does not intersect the faces of the query box, but its interior; however, this case can be
reduced to the case of when all of the object‘s temporal vertices are contained in the query
box.

6.2.2 Euclidean Metric Operations

Two different flavours of the Euclidean metric operation are developed: (1) an operation
that reports the minimum distance between two spatio-temporal objects and the instant (or
interval) in time when that happened; (2) an operation that reports the instants at which
the distance between objects have been minimal. Again, the mathematical functions are
described first. The former operation then corresponds to an extreme value problem, and it
is shown how to solve this problem.

Since the dimension of temporal simplices is limited, it is possible to implement specialised
algorithms, one for each possible temporal simplex combination; however, these implementa-
tions can be described in a general framework.

1. Problem. Let s1, s2 be two spatio-temporal primitive objects. The minimum Euclidean
distance problem for s1, s2 is defined as

find the value min
t∈[0,1]

{ d(s1(t), s2(t)) }

To solve the minimum distance problem on two given arbitrary spatio-temporal primitive
objects s1 and s2, it is not sufficient to compute min{d(s1(0), s2(0)), d(s1(1), s2(1))}, since
the minimum may be reached for t ∈ (0, 1). The key to the solution lies in parameterising
the 3D Euclidean distance formula

√

∑3

i=1
(xi − yi)

2 (6.5)
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valid for two 3D points x and y, to be described below. If then the number of parameters
equals p, the resulting expression can be viewed as a function dist :

� p →
�

. Therefore,
calculus methods can be applied to solve the problem of computing the minimum distance.
Hence, function dist is analysed for local minima and to this end the (non-linear) system of
equations

∂dist

∂λ1
= 0, . . . ,

∂dist

∂λp
= 0 (6.6)

is built, which must be solved at least for one variable.

Beforehand, one must be sure that dist is a differentiable function, otherwise the approach
is not going to work. To this end, the parameterisation of formula 6.5 is described. First,
there are zero or more “spatial” parameters which give point coordinates of all points of
a purely spatial simplex. In particular, a sole 3D point has no such parameter, whereas a
segment s = pq has one parameter, and a triangle t = ∆(p,q, r) has two, since

s = p + λ · (q − p), 0 ≤ λ ≤ 1

t = p + λ1 · (q − p) + λ2 · (r − p),

λi ≥ 0, λ1 + λ2 ≤ 1

This results in parameterisation of a simplex at a given, but fixed instant.

Secondly, for the instants in (0, 1) there is one temporal parameter. The vertices pi of a
temporal simplex are already expressed in terms of time (see above), and their trajectories
are at hand.

pi(t) = pi(0) + t · (pi(1) − pi(0)), 0 < t < 1

The points in a d-dimensional temporal simplex s having temporal points p1, . . . ,pd+1 the
coordinates of a point contained in s are expressed as

s(t, λ1, . . . , λd) = p1(t) +
∑d+1

i=2
λi · (pi(t) − p1(t))

Finally, given a d1-dimensional simplex s and a d2-dimensional simplex s′, formula 6.5 can be
rewritten as dist(.):

√

√

√

√

3
∑

i=1

(si(t, λ1, . . . , λd1
) − s′

i
(t, κ1, . . . , κd2

))2 (6.7)

Note that the time parameter t is shared by the functions si and s′i.

To prove that dist(.) is differentiable, it now suffices to state that it is a composition of
differentiable functions. Consequently, in order to find the global minimum one can firstly
seek local minima by differentiating dist. It is important to note that the domain of dist is
restricted. It consists of all “valid” parameter configurations. The boundary of this domain
D is given by the formulas

t ∈ {0, 1} (6.8)

λi = 0, ∀i ∈ {1, . . . , d1} (6.9)

κi = 0, ∀i ∈ {1, . . . , d2} (6.10)
∑d1

i=1
λi = 1 (6.11)

∑d2

i=1
κi = 1 (6.12)
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The global minimum of dist|D may not correspond to a local minimum of the unrestricted
dist-function. In this case, the global minimum lies on the boundary of D which must there-
fore be investigated. Yet, this is solved easily. Fixing the time parameter (eq. 6.8) means
computing distances between purely spatial simplices, whereas equations 6.9 to 6.12 in fact
mean reduction of dimensionality of one simplex.

More concrete, formulating specific procedures for the distance computation for two given
types of spatio-temporal primitive objects, consists of the following steps.

1. Parameterising formula 6.5 according to the dimension of the simplices (cf. formula 6.7)
with a shared time parameter. The coordinates describing point-movement appear as
constants; they are input into the procedure via the temporal simplices.

2. Partial differentiation of the resulting expression (cf. equations 6.6).

3. Solving this system of equations for the time parameter t, resulting in a univariate
polynomial p(t), the coefficients of which are expressions of the coordinates for point-
movement2.

On this basis, the procedure computing the minimum distance between two spatio-temporal
primitive objects s, s′ proceeds as follows.

1. Given the simplices in parameterised form, it evaluates the expressions for the coeffi-
cients of the polynomial p(t).

2. Then, it finds the (real) roots of p(t) within interval (0, 1). Here, known numerical
methods for root-finding can be employed. Using numerical methods here is justified, as
polynomial p(t) can assume degree five (temporal parameter t, two spatial parameters,
for instance in segment/segment-distance) that cannot be solved analytically in general.

3. For each such root, that means time instant, the procedure computes the distance
between s(t) and s′(t) and stores the resulting value.

4. The procedure checks the boundary of D by solving the problem of lower dimensionality,
storing the resulting values.

5. Finally, the procedure returns the minimum value among those computed in steps 3
and 4.

Note that it is not necessary to check if at a root of p(t) there is actually a local minimum3,
since in any case the global minimum on D is found.

The underlying space is
� 3. In conjunction with the fact that the above functions are

not per se restricted to D and therefore at each instant operate on affine subspaces of
� 3,

instead of convex hulls of the vertices involved, some simplifications become possible. For
example, computing the distance between a temporal triangle T and a temporal segment S
would at first stage reduce to distance between a plane and a line. This is not very useful,

2Note that the square root need not be considered.
3As opposed to a local maximum or a saddle point.
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since—if not parallel—they are bound to have a distance of 0. Furthermore, if not parallel,
then points that lie in the interior of T and in the interior of S generally do not have the
minimum distance between both objects. The exception is the parallel case, but then one can
find a point on one of the object’s boundaries. In fact, one can immediately proceed to check
the boundary D. Here, this involves computing: (1) distances at the instants t = 0, t = 1; (2)
distances of the temporal boundary segments of the triangle T to segment S; (3) distances of
the bounding temporal points of S to triangle T .

6.2.3 Ensuring Object Restrictions

The restrictions for a spatio-temporal object must be checked on creation and update. Thus
far, however, the computation of the geometric restrictions have been left open. In brief,
geometric restrictions concern (1) temporal simplices: for the whole lifetime, a temporal
segment may not degenerate to a single point, a temporal triangle may not be without area,
a temporal tetrahedron may not be flat; and concern (2) temporal meshes: for the whole
lifetime, the mesh-criterion may not be violated. In the following, both problems of simplex
restrictions and mesh restrictions are solved.

2. Problem. Let o be a spatio-temporal primitive d-simplex (d = 1, . . . , 3). Check if there
exists a t ∈ (0, 1) at which o degenerates, that means its vertices are affine dependent.

The problem can be solved straightforwardly for the atemporal case. The solution is then
extended to the temporal case. In general, a tuple (p0, . . . , pn) of n + 1 points is called affine
independent, if the n vectors p1 − p0, p2 − p0, . . . , pn − p0 are linearly independent. In the
following, computations are derived for temporal segments, temporal triangles, and temporal
tetrahedra.

In particular, two points p1, p2 ∈
� 3 form a (non-degenerated) segment, if the vector

p2 − p1 is linearly independent, that means, if it is not equal to the null vector. Extending to
the temporal case, two temporal points are given as

p1(t) = a + t · (b − a)

p2(t) = c + t · (d − c)

Checking for affine dependency means checking for linear dependency of the vector (after
re-arranging and substitution):

p2(t) − p1(t) = 0 ⇔

c − a + t · (a − c + d − b) = 0 ⇔

a∗ + t · b∗ = 0 ⇔




a∗1
a∗2
a∗3



 + t ·





b∗1
b∗2
b∗3



 =





0
0
0



 (6.13)

Hence, it must be checked, if a t in (0, 1) exists such that condition 6.13 holds. For these
instants, the given two points p1(t), p2(t) coincide and do not form a segment and therefore
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violate the segment-restriction. To obtain a procedure with parameters a,b for p1(t) and
c,d for p2(t), the first stage is to compute the vectors a* and b*. Then, for each equation
a∗i + t · b∗i = 0 the set of instants in (0, 1) can be computed that solve the equation; possible
solutions are (0, 1), {t} for a single t ∈ (0, 1), and ∅. Finally, it is checked if the intersection
of the solution sets are non-empty; in this case the temporal points violate the restrictions
for a temporal segment.

Similarly, three points p1, p2, p3 ∈
� 3 form a degenerate triangle, if the two vectors p2 −

p1 and p3 − p1 are linearly dependent. Put differently, the vector product of both vectors
is then equal to the null vector. Extending to the temporal case, three temporal points
p1(t), p2(t), p3(t) are given as above. Checking for affine dependency means checking for
linear dependency. Expressed in terms of the cross product:

(p2(t) − p1(t)) × (p3(t) − p1(t)) = 0

Substituting u(t) = p2(t) − p1(t) and v(t) = p3(t) − p1(t), one obtains

u(t) × v(t) =





u2(t)v3(t) − v3(t)w2(t)
v3(t)w1(t) − v1(t)w3(t)
v1(t)w2(t) − v2(t)w1(t)



 =





0
0
0





The components of the cross product are polynomials in t of degree two, the roots of which
can be found with well-known methods. Again, if the intersection of these results and the
interval (0, 1) is non-empty, the three temporal points do not form a valid triangle for these
instants; in this case the restriction is violated.

Four points p1, p2, p3, p4 ∈
� 3 form a degenerate tetrahedron, if the three vectors u =

p2 − p1, v = p3 − p1, and w = p4 − p1 are linearly dependent. Put differently, the determinant
of the matrix comprised of these three vectors is equal to 0. Extending to the temporal
case, four temporal points p1(t), p2(t), p3(t), p4(t) are given as above. Checking for affine
dependency means checking for linear dependency. Expressed in terms of the determinant:

∣

∣

∣

∣

∣

∣

u1(t) u2(t) u3(t)
v1(t) v2(t) v3(t)
w1(t) w2(t) w3(t)

∣

∣

∣

∣

∣

∣

= 0

When evaluated, the determinant is a polynomial in t of degree three, the roots of which can
be found with well-known methods. Like before, if the result intersected with the interval
(0, 1) is non-empty, the given temporal points violate the tetrahedron restriction.

Extending these computations from spatio-temporal primitive objects to temporal sim-
plices is simply done by iterating over the gsteps-intervals of the temporal simplex and perform
the test for the induced primitive objects. If a test fails for any of the primitive object, the
test fails for the temporal simplex. If otherwise none of the tests for the primitive objects
fails, the temporal simplex passes the test.

The problem of checking for mesh restriction is described as follows.

3. Problem. Let C = [S, e] be a temporal mesh and s′ = [V, e′] a temporal simplex with
s′ 6∈ S. Check if there exists an instant t ∈ e′ and a temporal simplex s ∈ S such that s′(t)
intersects s(t) and not s′(t) ] s(t), that means the simplices intersect but are not neighbours.
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The problem can be solved as follows. Iterating over the temporal simplices of the mesh,
each simplex s is tested against s′. This test iterates over the instants of the merged time-
line for s and s′, yielding two spatio-temporal primitive objects o1, o2 for each section of the
merged time-line. Then, the set N ⊂ [0, 1] is computed for which instants t the relationship
o1(t)]o2(t) holds. Next, it is computed if the distance between o1 and o2 reaches zero for any
t ∈ [0, 1] \N , using methods from the previous section. If no such t is found, the objects pass
the test. Otherwise, the procedure reports an invalid intersection. Of course, an available
index for the mesh can be exploited, as well as the geometric intersection filter described in
section 6.1.3.

6.3 Operations for (Complete) Spatio-Temporal Objects

The previous section centred on operations for spatio-temporal primitive objects. These
operations can be seen as base operations to be applied on spatio-temporal objects. Putting
aside the restrictions for temporal simplices that have been described in the previous section,
the operations under consideration are summarised in the following.

The operations operate on arbitrary objects of class stObject. Q denotes the type of a
query object, which can be a plane, half-space, bounding box, or stObject.

Boolean operations:
intersects: Q → bool
disjoint: Q → bool

Temporal operations:
when intersects: Q → temporalElement
when disjoint: Q → temporalElement
when mindist: Q → temporalElement

Metric operation:
min dist: Q → scalar

Range Query:
range query: Q → stObject

The meaning of the latter operation, performed on a spatio-temporal object o and a query
object q, can be described as the extraction of the parts of o that intersect the query object
q, limited to the temporal element at which the intersection happened:

o.range query(q) = {s|e | s ∈ o, e = s.when intersects(q)}

As mentioned above, these operations are broken down to the level of spatio-temporal prim-
itive objects. Then, the base operations from section 6.2 can be applied immediately. From
the sub-results, the global result must be inferred. With this observation it is possible to
describe the operations in a common framework, the so-called decomposable search problem
(Bentley, 1979; Mehlhorn, 1984). Using available indexes for spatio-temporal objects, the
“relevant” primitive objects can be found quickly.
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The remainder of the section is therefore organised as follows. The next section intro-
duces the decomposable search problems and how they generalise the above operations. The
remaining sections focus on the different starting positions of index presence or index absence.

6.3.1 Decomposable Problems

It is possible to generalise operations like spatio-temporal distance or Boolean intersects. It
can be observed that the result of, e.g., a spatio-temporal distance between two temporal
meshes can be assembled by computing the distance between each primitive object-pair and
afterwards combining these sub-results by the operation min. Here, both base computation
and assembling operation have time complexity O(1). Furthermore, it can be observed that
the order of these sub-computations is unimportant for the result. More generally, let C, C ′

denote two temporal meshes and

S := {(p, p′) | p, p′ primitive objects, p ∈ C, p′ ∈ C′}

the set of pairs of primitive objects in C, C ′. The operation op on C and C ′ is called decom-
posable, if there exist operations ⊗,⊕ such that

C op C′ =
⊗

(p1,p2)∈S

p1 ⊕ p2

Operation ⊕ operates on spatio-temporal primitive objects and corresponds to an operation
from section 6.2. Operation ⊗ combines the results obtained from the ⊕-applications. Note
that the definition does not require operation ⊗ to be computable in O(1).

For example, to detect intersections between two spatio-temporal objects, one sets

⊕ ≡ intersects,

⊗ ≡ ∨

To compute when an intersection occurred between two spatio-temporal objects one sets the
operations as follows. Here, ∪ denotes the union of temporal elements.

⊕ ≡ when intersects,

⊗ ≡ ∪

Hence, the computation of decomposable problems can be described generically, in an iterative
manner. This procedure is depicted in algorithm 6.3.1.

6.3.2 Binary Operations without Indexes

In case one of the above binary operations operates upon meshes that have both no indexes,
each pair of spatio-temporal primitive objects must be processed in the worst case. However,
the algorithm can be described straightforwardly with the above defined concepts. The strat-
egy is to create a gstepIterator for the first mesh and to iterate over its primitive objects.
For each primitive object, an iterator for the second mesh is created and opened with the
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Algorithm 6.3.1 iterative-decomposable-problem(stObject o1, o2)

1: result ⇐ ne⊗ // neutral element for ⊗
2: for each primitive object p1 ∈ o1 do
3: S ⇐ {p2 | p2 primitive object in o2, p1.lifetime ∩ p2.lifetime 6= ∅}
4: for each p2 ∈ S do
5: result ⇐ result ⊗ (p1 ⊕ p2)
6: end for
7: end for
8: return result

temporal interval that equals the lifetime of the current primitive object of the first mesh.
While iterating through the second mesh, the corresponding base operation is called upon
the current primitive objects, combining the sub-results accordingly. Hence, the procedure
resembles a nested-loop processing of a join operation.

6.3.3 Binary Operations with a Single Index

In case one of the above binary operations operates upon meshes, one of which has an in-
dex, the operation can be realised in an indexed nested-loop fashion. To this end, for the
non-indexed mesh, a gstepIterator is created, iterating over the primitive objects. For each
primitive object the index of the second mesh is traversed to efficiently localise the relevant
primitive objects of the second mesh. Here, relevance depends on the particular operation.
For instance, for “intersects” the index-traversal only follows those links to nodes that have
intersecting keys. For “distance”-operations, a more detailed description follows in the next
section. When a leaf node entry is found to be relevant, a gstepIterator is created for its
simplex and the temporal interval specified in the entry. Recall that the simplices of a mesh
are not necessarily split into primitive objects when indexed. The further processing is that
of the nested-loop-like fashion described in the previous section.

6.3.4 Binary Operations with two Indexes

It is common practice to pre-process data in appropriate data structures to be then operated
on to solve a given problem efficiently. However, such data structures are not widely available
in spatial or spatio-temporal databases, since applying the best data structure for a given
problem would entail either to read the whole data set from secondary storage (to build
the data structure) or to store and maintain every data structure to be used in persistent
memory. Both alternatives are not satisfactory. Index structures for spatio-temporal objects,
on the other hand, resulted also from a pre-processing step, though for the main purpose of
range queries originally. For these reasons, it seems promising to design algorithms operating
on index structures rather than designing specialised data structures for each computational
problem.

R-Trees can be used effectively for the computation of intersection- and distance-based
operations. This section focuses on how to perform the operation “min dist” for two tem-
poral meshes. The strategy can be summarised as a synchronised depth-first tree-traversal
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Algorithm 6.3.2 recursive-distance(R1, R2, dist)

1: if (both R1 and R2 are leaves) then
2: for all entry-pairs p do
3: if p.lifetime1 ∩ p.lifetime2 6= ∅ then
4: v ⇐ compute min dist using no-index-algorithm (section 6.3.2)
5: dist ⇐ min{dist, v};
6: end if
7: end for
8: return dist;
9: end if

10: pairs ⇐ ∅
11: for all e1 ∈ R1.root.entries do
12: for all e2 ∈ R2.root.entries do
13: if e1.lifetime ∩ e2.lifetime 6= ∅ then
14: insert p = (e1, e2) into pairs
15: p.minDist ⇐ compute minimum distance between MBBs
16: p.maxDist ⇐ compute maximum distance between MBBs {definition see text}
17: dist ⇐ min{dist, p.maxDist}
18: end if
19: end for
20: end for
21: sort pairs on p.minDist, smallest first
22: p ⇐ pop first element from pairs
23: while any pairs to process do
24: v ⇐ recursive-distance(p.subtree1,

p.subtree2, dist)
25: dist ⇐ min{dist, v}
26: p ⇐ pop next element from pairs
27: if p.minDist ≥ dist then
28: return dist
29: end if
30: end while
31: return dist
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algorithm.

The algorithm recursive-distance (algorithm 6.3.2) is called by the auxiliary statement:
recursive-distance(R1.root, R2.root, ∞);

Thus, algorithm recursive-distance receives as input two R-trees as well as the distance so far
computed, initialized to infinity for the first call on the roots of the trees. The key idea is to
draw conclusions about which subtree-pairs may be pruned and which to follow next in the
depth-first search and to update the current distance value on each level of recursion. Subtree-
pairs, whose temporal interval of validity does not intersect, need not be considered. Subtree-
pairs, whose objects have a distance guaranteed to be bigger than the current distance-value,
can be neglected as well. More precisely, if the current directory MBBs (the MBBs of an inner
R-tree node) have n and m entries, respectively, the algorithm expands all n × m directory
MBB-pairs in main memory and computes the minimum distance and the maximum distance
between each MBB-pair (lines 11–20). It thereby prunes those pairs the lifetime of which
does not intersect (line 13). The maximum distance between two MBBs b1, b2 is defined as

max{d(p1, p2) | p1 ∈ b1, p2 ∈ b2}

The rationale behind the minDist and maxDist of an MBB-pair is that the distance of the ob-
jects, which the boxes approximate, is guaranteed to be within the interval [minDist,maxDist].
Hence, the current level of recursion is allowed to adapt the current dist-value to the smallest
maxDist-value (line 17). Note that the well-known minMax-dist between MBBs b1, b2, defined
as

min{dmax (f1, f2) | fi is a face of bi} and dmax (f1, f2) = max{d(p1, p2) | pi ∈ fi}

cannot be used here, as the MBBs approximate the trajectories of spatio-temporal objects such
that the minMax-dist holds only for the trajectories, whereas the objects may have been at the
specific locations at different times. After processing each MBB-pair, the algorithm performs
then a quicksort (line 21) on the list of pairs where the sorting key is the distance between the
MBB-pair. The first element of this list of pairs is extracted and the corresponding subtrees
are then searched. When the recursive procedure returns to the current level with an updated
distance-value v (line 24), the next subtrees are only searched if their MBB minDist is smaller
than v (line 27). If, on the other hand, v is less or equal, the remaining subtree-pairs can be
pruned (note the ordering of the pairs-list).

6.3.1. Proposition. Algorithm 6.3.2 terminates and reports the minimum Euclidean dis-
tance d(o1, o2) of its input spatio-temporal objects.

Proof: Computing the distances of all possible primitive simplex pairs {(s1, s2) | s1 ∈ o1, s2 ∈
o2} and returning their minimum obviously yields the result. This is what algorithm 6.3.2
does (line 4 for leaves and line 15 for inner nodes of the R-trees) except for subtree pruning.
A subtree pair is only pruned if its p.minDist is not less than the current dist (line 13). This
pruning is justified. It remains to show that at each stage of the algorithm dist ≥ d(o1, o2)
holds true. Four cases occur: (1) during initialisation it holds true, since dist = ∞; (2) in
line 5 it holds true, since distances between simplices are computed; (3) in line 17 it holds
true; (4) in line 25 it holds true.

The presented algorithm has been targeted at the computation of the minimum Euclidean
distance between two meshes. The adaptation to the further operations mentioned above can
be easily accomplished.
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Conclusions

This thesis aims at developing methods for representing, storing, and retrieving spatio-tempo-
ral geo-objects within a database system. Thereby, temporal change concerns both thematic
and spatial attributes of geo-objects; however, while temporal change of thematic attributes
falls into the domain of temporal database systems (Snodgrass, 1992), temporal change of
spatial data is still a novel research domain of database systems. Therefore, this thesis focuses
on the management of changing spatial object.

At present, applications that must handle such time-dependent objects are not well sup-
ported by state-of-the-art GIS- and database tools (Peuquet, 2001) and would thus benefit
from integrated concepts for their management. Obviously, the concepts must go beyond the
storage of snapshots of objects at time-steps. Main reasons are the redundancy of this storage
scheme (constant parts of a changing geometry are repeated at every snapshot), as well as
insufficient query facilities. Applications, the geometries of which are subject to continuous
change, emphasise the latter aspect, since query conditions about object states between two
snapshots cannot be formulated without further ado (Yeh and de Cambray, 1995).

In particular, the following concepts were the centre of interest of this thesis. First,
it was investigated how to represent spatio-temporal objects within a database system. The
research was conducted by formalising and extending a model that has been introduced within
the collaborative research centre 350, located at Bonn University (Neugebauer and Simmer,
2003). The model facilitates the representation of geometries that undergo both discrete and
continuous change. Secondly, a type system has been derived out of the representational model
that enables the instantiation of spatio-temporal objects on the logical level of a database
system. Hence, this data is treated as a first-class citizen. Third, concepts for the internal
level have been researched that form a realisation of the type system. Fourth, an inventory
of operations for these objects on the internal level has been derived.

Sellis (1999) delineated the research to be undertaken in the field of spatio-temporal
database management systems (STDBMSs) and mentions the following aspects in particular:
(1) ’devising data models and operators with clean and complete semantics’; (2) ’efficient
implementations of these models and operators’; (3) ’work on indexing and query optimisa-
tion’; and (4) ’experimentation with alternative architectures for building STDBMSs’. The
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research of this thesis integrates into these aspects as follows. The representational model is a
contribution to (1); thereby, the model and its operations have been described formally. The
realisation on the internal level subsumes under (2), while work pertaining to (3) is limited
to an extension of the spatial index structure R∗ tree (Beckmann et al., 1990) and also query
optimisation has been excluded. Aspect (4) applies insofar as the realisation environment

rests on ObjectStore
TM

, a commercial object storage system.

Worboys (1994) presents a representational model that is based on simplicial complexes
and allows for change to the geometry of objects in discrete steps. This model is cited fre-
quently. For instance, Chomicki and Revesz (1999a) extend the model such that also continu-
ous change of an object’s geometry becomes representable. Thus, this model is related to the
one proposed in this thesis, although the former does not allow a separation of vertices from
meshes and does not map the model on separate data types other than relations and tuples.
A system of abstract data types for the representation of 2D objects, which change location
and shape continuously, has been introduced by Güting et al. (2000). First steps towards
an implementation of this system are described by Forlizzi et al. (2000). Recent surveys of
further representational models for spatio-temporal data have been given by Peuquet (2001)
and Abraham and Roddick (1999). The book by Ott and Swiaczny (2001) offers a survey
from a more practical perspective, focusing on discrete change to spatial data. The book
by Koubarakis et al. (2003) gives an overview of the research conducted by the Chorochronos
project. On the whole, it must be observed that—with the exception of the field of index
structures—few work has been targeted at internal data structures and operations for spatio-
temporal database systems.

The presentation of the results of this thesis is oriented towards the above mentioned
classification and is structured as follows: (1) representational model and class hierarchy
for spatio-temporal objects; (2) concepts for the internal realisation of the class hierarchy;
(3) operations on the objects and their realisation.

The representational model for spatio-temporal objects has its roots in experiences gained
during a collaborative research centre hosted at Bonn University (Neugebauer and Simmer,
2003). The contributions added in this thesis are the consolidation of the main aspects as
seen from a database system’s perspective (see also Shumilov and Siebeck (2001) for a pre-
liminary presentation and chapter 3 in this thesis). The work results in a novel, formalised
representational model. The basic idea that the location of vertices of triangular meshes are
functions of time has been extended by time-stamping the elements of a simplicial complex
with a lifespan and by integrating certain consistency constraints on the data. The concepts
“temporal simplex”, “temporal complex”, and “temporal mesh” have been defined and make
the extensions precise. Treating spatio-temporal objects as functions from time into space, a
spatio-temporal database system must also account for temporal types (marking off the do-
main of such functions). Therefore, requirements for temporal types have been investigated
that were also included into the model. Treating spatio-temporal objects as time-dependent
point sets, it makes sense to investigate the closure of set-oriented operations like “inter-
section” or “union” on such point sets in their representation. An important result is the
non-closure of these and further operations, even if applied to a spatio-temporal object and
an (atemporal) spatial object.

The representational model has been transferred into a class hierarchy on the user level.



131

The design was guided by the following aspects. First, the defined concepts of a temporal
simplex and a temporal mesh are supported directly by introducing a separate class for each.
Second, to support interactive geometric modelling, the classes contain update operations,
i.e. the resulting data types are dynamic. Third, time-dependent vertices are separated
from the meshes in which they occur; to this end, mesh elements hold references to their
incident vertices. Fourth, the object-oriented concept of substitution polymorphism (Abadi
and Cardelli, 1996) should retain its semantic. This concept facilitates in particular the
assignment of user-defined, thematic attributes to the elements of a mesh through inheritance.
Though supported by the underlying object storage system, it is thwarted by a further design
goal: to separate thematic from geometric data for the purpose of grouping on secondary
storage. Therefore, the facility of substitution polymorphism had to be assured by a special
mechanism. Finally, the integration of spatio-temporal classes was carried out transparently,
that means (atemporal) spatial objects are regarded as a special case of spatio-temporal
objects and are represented by the same classes.

On the internal level, thematic attributes are separated from geometric attributes. Nev-
ertheless, a connection between both parts of a time-dependent geo-object exists such that
the thematic part is accessible from the geometric part and vice-versa. This problem could
be solved by application of the design pattern “bridge” (Gamma et al., 1995). The posi-
tive effect is twofold. First, thematic attributes and geometric attributes can be grouped on
secondary storage independent from each other. Second, the geometric part can be coupled
with different internal representations; this way, spatio-temporal objects, the geometry of
which does not change with time (atemporal objects), can be managed by proven techniques
of spatial database systems (e.g. indexes, algorithms, etc.) and the problem of transparent
integration (see above) can thus be solved practically. Grouping of the geometric part of a
spatio-temporal objects on secondary storage was realised by a clustering index. To this end,
the R∗ tree spatial index (Beckmann et al., 1990) has been adapted accordingly.

Besides these architecture-driven concepts, the realisation of operations has been investi-
gated. Among these operations are updates, basic retrieval like generating a snapshot of a
spatio-temporal object for a given time-step, spatio-temporal range queries, an intersection-
predicate, and functions for computing the minimum Euclidean distance between spatio-tem-
poral objects. Update operations include also the management of neighbour-relationships
between temporal simplices of a temporal mesh, maintaining connected components of a
temporal mesh, as well as checking the consistency constraints on temporal simplices and
meshes.

Beyond the presented and related work, many research questions remain open to be inves-
tigated. In the following, some selected issues are addressed. Strongly tied to this thesis is the
question of placement of object headers (see section 5.6.1). Currently, allocating spatio-tem-
poral object headers ignores spatio-temporal information. Especially when dealing with very
large data sets, it could be interesting to investigate the approach of an 4D R-Tree-driven
allocation. In this scenario, a page of object headers forms the value of an R-Tree leaf entry.
On insertion of a new object header, the R-Tree “ChooseLeaf”-operation (Guttman, 1984)
determines the placement of the header. The approach aims at reducing I/O during retrieval
operations, similar to the BFS-based explorations of temporal meshes.

A further research question lies in how to implement operators that support a qualita-
tive spatio-temporal reasoning, e.g., in the line of Galton (1995); Muller (1998); Erwig and
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Schneider (1999); Hazarika and Cohn (2001); Erwig and Schneider (2002). While in the
spatial setting qualitative topological relationships between spatial objects have found their
way into query languages, the implementation for the spatio-temporal setting remains a chal-
lenge. Here, it would be interesting, if and how such operators can be implemented within
the introduced representational model.

Instead of extending the set of operations on the spatio-temporal objects, another line
of research is their robustness in the presence of floating point arithmetic. As was shown
in chapter 6, even a basic operation involves a huge number of floating point operations,
a potential source of imprecision (Goldberg, 1991). An interesting approach could be the
application of the adaptive floating point arithmetic of Shewchuk (1997).

Yet a different direction can be taken by extending the representational model for spatio-
temporal objects. For instance, the model of point movement can be more powerful, which was
here limited to be piecewise linear. Although the linear approximations seemed appropriate
for the projects presented in section 3.1, approximations, e.g., based on splines could be more
accurate and/or space-efficient. Extending the model of point movement invalidates many of
the presented operations, as they expect linear movement.

Finally there is the goal of a consensus representational model for spatio-temporal data.
Such a model would parallelise the spatial OGC model and would foster the development
of methods and tools for storage, retrieval, visualisation, analysis, and exchange of data; at
present, a visionary goal.
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Abstract

The quickly increasing number of spatio-temporal applications in fields like environmental
management or geology is a new challenge to the development of database systems. This the-
sis addresses three areas of the problem of integrating spatio-temporal objects into databases.
First, a new representational model for continuously changing, spatial 3D objects is introduced
and transferred into a small system of classes within an object-oriented database framework.
The model extends simplicial cell complexes to the spatio-temporal setting. The problem of
closure under certain operations is investigated. Second, internal data structures are intro-
duced that represent instances of the (user-level) spatio-temporal classes. A new technique
provides a compromise between compact storage and efficient retrieval of spatio-temporal
objects. These structures correspond to temporal graphs and support updates as well as the
maintainance of connected components over time. Third, it is shown how to realise further
operations on the new type of objects. Among these operations are range queries, intersection
tests, and the Euclidean distance function.
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