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Chapter 1

Introduction and Outline

1.1 Introduction

Amorphous nitridic ceramics are fascinating
new substances for possible technical applica-
tion in aircraft and engine construction, due to
their high temperature stability and their ex-
cellent mechanical properties.[76, 11, 77] In re-
cent years, one focus of research in this field
have been those ceramics that contain sili-
con, boron, nitrogen and carbon. Further-
more for optical applications, ceramics con-
taining silicon, oxygen and nitrogen are being
investigated.[88]

Quite generally, amorphous substances can
be prepared by a large number of differ-
ent synthesis routes:[35] melting and cooling,
chemical vapor deposition, ion bombardment,
grinding, just to name a few. Thus, it is sur-
prising that these new materials are typically
synthesized by only one procedure: the sol-
gel route.1 Therefore it is natural to ask what
the (possibly different) properties of such ma-
terials would be, if they were synthesized by
some other route. However, few attempts to
synthesize these new ceramics via alternative
routes have been been reported (see [77] for
a review) and it appears that these synthesis
routes do not lead to the desired products.

In contrast, computer simulations are not
limited by experimental constraints and, in
principle, allow one to study a chemical sys-
tem under an almost unlimited number of ’ex-
perimental’ conditions corresponding to dif-
ferent synthesis routes. Furthermore, these
computer simulations offer unlimited oppor-
tunities, in principle, to study a multitude of
amorphous compounds for varying composi-
tions of the elements Si, B, C, N, O -3-3- . Such a

1In the SiON system a synthesis via the classical melt
route is also possible at low nitrogen contents[88].

full exploration of the field of the amorphous
ceramics is clearly desirable, and would open
up the possibility of designing amorphous ce-
ramics with specific physical properties. A
prerequisite for such an ability, however, is
a fundamental understanding of a new class
of materials such as the amorphous nitrides.
Thus, in this thesis, the main focus will be
on a representative prototypic material, amor-
phous silicon boron nitride (a-Si � B � N � ), and to
a lesser extent on the SiO ���� N ��� ��� -system.

A first step to an understanding of a chem-
ical system is the determination of its micro-
scopic structure. However, amorphous ceram-
ics lack translational symmetry and thus struc-
tural properties cannot fully be determined
by conventional X-ray and neutron diffrac-
tion as is the case for crystalline materials. In
the past six years a-Si � B � N � has been charac-
terized by different experimental techniques
with surprising results. The material exhibits
an unusual low density,[78] the element distri-
bution is homogenous down to the nanometer
length scale, no vacancies exist on the length
scales larger than a nanometer.[30] Below the
nanometer length scale cationic islands of sili-
con and cationic islands of boron exist inside
an anionic nitrogen matrix.[167, 166] On the
Angstrøm length scale SiN � tetrahedra and
BN � triangles are observed.[64, 113] Especially
the formation of cationic islands is counterin-
tuitive and thus one may wonder about the
influence of the synthesis route on the struc-
ture formation in a-Si � B � N � . To answer these
questions, a microscopic view of the structure
formation is necessary. Experimental informa-
tion being scarce computer simulations offer a
way to understand these issues.

Ideally, one would like to answer these
questions, by solving the time dependent

3
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Schrödinger equation for a large number of
atoms. However, it is practically impossible
to do so, and one has to resort to a classical de-
scription of the material, and ’only’ integrate
Newton’s equation of motion. But in that clas-
sical description, the time scales \ � 5 � '�:3) 
V�:3) � ns that can be reached are very short com-
pared to the experimental time scales \ ���	� of
days ( \4���	� = :3) 
 � ns) even if one simulates only
relatively small system sizes of about :3) � � :3) �
atoms (compared to macroscopic samples con-
taining :3) � � atoms). Thus, in order to study
the synthesis route of an amorphous system,
such as e. g. a-Si � B � N � , additional approxima-
tions are necessary, resulting in phenomeno-
logical models that still capture the essential
processes involved in the synthesis.

As mentioned, a-Si � B � N � is synthesized
by a sol-gel synthesis in which single
source precursor molecules, (Trichlorosi-
lylamino)dichloroborane (TADB), are cross-
linked by ammonia to form a polymer, and
the polymer is subsequently pyrolized. Thus,
a reasonable approach is to first study the sol-
gel process and then later concentrate on the
pyrolysis step using straight forward simula-
tion methods. However, no well-established
methods treating the sol-gel process exist,
since theoretical research in the sol-gel science
has concentrated on the fundamental ques-
tions like the universality class of the sol-gel
transition [154, 155]. Furthermore the kinetics
of the sol-gel process itself have only been
studied for organic polymers in the context of
the kinetic gelation model[70, 71, 98, 99, 12],
but no algorithm and application to the study
of network formation during the sol-gel
synthesis for more complex materials such
as amorphous nitridic ceramics exist. Apart
from the possibility to mimic the synthesis
route of a-Si � B � N � , a successful ’synthesis’
will allow one to get a clearer understanding
of the influence of the precursor molecules on
the final properties of the material. Further-
more the influence of different re-activities of
the constituting atoms will hopefully become
clear, and finally it may be possible to explain
the very low density of the materials.

Returning to the other possible synthesis
paths and the dependence of the structural
properties of amorphous materials on the
routes chosen, we note that the effects of pro-

cess parameters are typically studied within
the classical glassmaker approach: heating
and melting crystalline substances accompa-
nied by subsequent cooling using different
cooling rates. In computer simulations, these
kind of studies have mostly been focussed on
the SiO � [169] as well as Lennard-Jones[170]
and soft-sphere systems[119], the latter two
serving more as simple generic models that
are meant to represent a larger class of ma-
terials. Of course, experimentally the effects
of cooling rates and temperature schedules
have been studied for many years. However,
for a-Si � B � N � , experimental studies are impos-
sible at ambient pressure, since the material
does not form via melting a mixture of the bi-
nary components BN and Si � N � [171]. Clearly,
this makes the computer simulation approach
even more attractive for investigating a possi-
ble route to a-Si � B � N � via a glass transition.

Focussing on the structural properties of in-
organic nitridic ceramics, it may also be possi-
ble to disregard the actual synthesis and con-
struct models from a limited amount of ex-
perimental data. This approach is used in
the very popular ’molecular modelling’ ap-
proach, where one builds up clusters compris-
ing a few thousand atoms in a step by step
fashion.[55, 173] However, this methods suf-
fers from severe drawbacks. For one, in the
nitridic systems, contrary to SiO � and GeO � ,
the generation algorithm stop at about 1000
atoms, and thus the clusters generated have
a high number of surface atoms. The sec-
ond drawback is that these algorithms do not
seem to work when applied to periodically re-
peated unit cells, which are needed to take
the effectively infinite size of the system into
account. Thus, to study the more complex
nitridic systems, an alternative approach for
the generation of structural models is needed.
Furthermore, to be advantegous, these meth-
ods should also be faster than conventional
computer simulation methods, like molecular
dynamics or Monte Carlo methods typically
used in the study of amorphous materials.

Remembering that the structures of sim-
ple crystalline compounds can be successfully
described by packings of spheres of anions,
which occupy most of the volume of the unit
cell, while the cations reside in the voids or
holes of the packings, the transferability of
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these concepts to amorphous covalent net-
works is clearly an interesting question. If
succesful, it would offer an additional way to
quickly generate structural models of amor-
phous ceramics, and allow the properties of
the materials to be explored.

After these structural models have been
generated by a variety of methods, one can
compare the properties of the models among
each other and those systems with the most in-
teresting properties can serve as experimental
synthesis goals for promising new materials.
Furthermore, the comparison of the different
models to experimental data allows one to un-
derstand the unusual properties especially of
a-Si � B � N � .

Earlier, we mentioned that a-Si � B � N � is pro-
totypic for a new class of materials, that are
expected to be of great future technological
importance in high temperature applications.
However, only the behaviour of the system at
ambient pressure and at comparatively mod-
erate temperatures has been explored experi-
mentally. Thus it is clearly important to know
how the system will behave at other even
more extreme conditions. Apart from these
technologically important questions, answers
to the more fundamental question about the
phase diagram of these nitridic ceramics are
needed. Unfortunately, the phase diagrams of
these materials have not yet been studied ex-
perimentally, but again computer simulations
can clarify the situation.

Another puzzling experimental observation
is that nitridic ceramics like a-Si � B � N � do not
exhibit a glass transition at ambient pressure,
in contrast to the well-studied silica systems.
Since the system is amorphous, one would ex-
pect such a transition to occur. Furthermore
the glassy properties of a-Si � B � N � are inter-
esting from a fundamental point of view. Do
these properties show similarities to the prop-
erties of typical glass formers or do they differ
significantly from those of typical glass form-
ers ? If these properties are not very different
from those typical glass formers, it is highly
interesting to test the applicability of old and
new theoretical approaches to the glass transi-
tion.

The old insight of Goldstein[57], that the
glassy behaviour of a system is related to its
potential energy landscape has become quite

popular again. The computational prescrip-
tion of Stillinger and Weber [161] has been
widely employed to study the energy land-
scape approach. Extending Goldstein’s ap-
proach, Cavagna[26] has suggested that above
the glass transition temperature � � a second
temperature � ! exists above which the dy-
namics of the glassy system is not governed
by minimum hopping as in the original Gold-
stein approach, but by hopping along saddle
points of the energy landscape.

Landscape studies of structural glasses in-
vestigating these features of the glass tran-
sition have only been extensively performed
for simple Lennard-Jones and soft-sphere
systems,[128] but no exhaustive investigation
of complex systems like the amorphous ni-
tridic ceramics exists.2 Thus, we would ex-
pect that an analysis of the energy landscape
of the new class of materials represented by a-
Si � B � N � adds to an understanding of the glass
transition in terms of the energy landscape ap-
proach.

Furthermore, contrary to e. g. the mode-
coupling theory (MCT)[58] of the glass tran-
sition, the energy landscape approach has a
wider applicability, since it can also be ap-
plied to the treatment of the system’s prop-
erties below the glass transition temperature� � . In that temperature regime, one typ-
ically observes aging phenomena, e.g. the
properties of a material depend on the way
and the time system has been thermally
treated. Studies of aging in spin-glass sys-
tems, both experimentally[115] and in com-
puter simulations,[6] have shown that the
fluctuation-dissipation theorem (FDT) is vio-
lated in these systems in a very peculiar man-
ner. Furthermore for spin-glass systems, the
violation of the FDT were related to properties
of model energy landscapes.

Clearly, an analysis of the energy landscape
of more complex systems is highly desirable
to test theoretical concepts derived from spin-
glass systems, and from simple Lennard-Jones
systems. Furthermore, the possible existence
of aging phenomena in technically important
materials is an important piece of information
!

2The investigations of the energy landscape of amor-
phous silica are quite scarce and focus on some special
aspects of the energy landscape.[91, 133]



6 CHAPTER 1. INTRODUCTION AND OUTLINE

1.2 Outline of thesis

First, we review some aspects of the phe-
nomenology and theoretical approaches to
glassiness. Next, we describe the methods em-
ployed in this thesis for the generation and
the analysis of structural models generated by
classical Monte-Carlo and molecular dynam-
ics computer simulation techniques. Next,
we present two new approaches for the gen-
eration of structural models of amorphous
substances. The first of these approaches is
the random close packing (RCP) approach for
the generation of structural models, and it is
tested for a variety of different chemical sys-
tems in chapter 5. The second approach is
a separation of time scale approach to sim-
ulate the sol-gel synthesis of amorphous ni-
tridic ceramics and is applied to a-Si � B � N � in
chapter 6. After these methods have been pre-
sented, we investigate the structural proper-
ties of SiO ���� N ��� ��� -system (z=0. . . ,2) by the
RCP-approach, and then proceed to study the
structural properties of a-Si � B � N � , in chapters
7 and 8, respectively. For a-Si � B � N � , we com-
pare the structural and dynamical properties
of the models that were generated by differ-
ent methods, each representing possible dis-
tinct physical or chemical synthesis routes to
the a-Si � B � N � -system.

After the structural properties have been in-
vestigated, we analyze the (metastable) phase
diagram of the Si � B � N � -system (chapter 9) and
then turn to the glassy properties of the sys-
tem. In chapter 10 we show that a-Si � B � N � ex-
hibits a glass transtion at a temperature T � =
2250 K and in the subsequent chapter, we an-
alyze the energy landscape of a-Si � B � N � both
above and below T � . As part of the analysis of
the energy landscape, we also perform an in-
depth analysis of the vibrational properties of
a-Si � B � N � and compare these to available ex-
perimental data. Closing our analysis of the
energy landscape, we show in chapter 12 that
a-Si � B � N � exhibits aging behaviour and these
aging phenomena are closely related to its en-
ergy landscape.



Chapter 2

Glassiness

The phenomenology of glass forming ma-
terials has many facets that cannot be com-
pletely treated in this thesis, and we have se-
lected only the most important aspects. More
details can be found in the monographs by e.g.
Gutzow and Schmelzer[62] or Elliot[35] or in a
recent review by Angell et al.[9]. A full theory
of the glass transition has not yet been estab-
lished and we will present different theoretical
approaches to glassiness after the discussion
of the glass phenomenology.

2.1 Phenomenology

Usually, a liquid of fixed composition solidi-
fies at its melting temperature � a upon cool-
ing to form a crystalline compound. The so-
lidification is accompanied by a discontinuous
change of extensive thermodynamic variables
like the energy or the volume. However, if
the system is cooled rapidly enough, the liq-
uid does not crystallize at � a but becomes
supercooled with respect to its melting point.
The properties of the supercooled liquid then
smoothly follow the liquid’s properties above� a down to a temperature interval, centered
at a temperature � � _�� a ,1, and at � � , the
properties of the supercooled liquid change
rapidly but still continously. Below �Z� the liq-
uid has turned into an amorphous solid called
a glass. Note that since the system is amor-
phous, no Bragg reflections typical for crystals
are observed.

Since the cooling rate   employed in the
cooling procedure leads to different values for���¡�� �� , it is clear that the glass transition is not
an equilibrium second order phase transition.

1Even though ¢n£ is not a well defined temperature,
we will often write ’at ¢2£ ’, implying that we mean ’in
the interval around ¢ £ ’

In the latter case one would expect a sharply
defined transition temperature. Furthermore,
the properties of a glassy system upon heating
from below ��� depend on the times the sys-
tem has been kept below �p� [62] and/or on the
heating rates. Thus, below �p� the glass is not
in an equilibrium state, in which one would
expect to measure time-independent proper-
ties, but rather in a non-equilibrium state. The
transition from a supercooled liquid to a glass
occurs at the temperature, at which the sys-
tem falls out of equilibrium. However show-
ing that a system is in equilibrium on all rel-
evant experimental time scales i¤���	� in com-
puter experiments is quite difficult, since equi-
libration implies that the ergodicity hypothe-
sis holds for the system, and proving ergodic-
ity is far from trivial. For practical purposes,
certain equations must be fulfilled to call a
system ergodic and thus the equilibrium to
non-equilibrium transition or ergodic to non-
ergodic transition can simply be observed by
checking the validity of these equations dur-
ing the computer experiment.

2.1.1 Above ¥ �
The equilibrium to non-equilibrium transition
temperature is not the only criterion that can
be used to determine the glass transition tem-
perature ��� . Another commonly employed
criterion for the glass transition temperature��� , is that viscosity � of the liquid increas-
ing up to 10 
 � Poise (= 10 
 � C§¦©¨Zª ) at ��� .
For such highly viscous liquids (water at room
temperature has a viscosity of 10 �� Poise), the
liquid does hardly flow on laboratory time
scales and thus the liquid is considered to have
turned into solid. An estimate for the time
scales \¬« on which e. g. irreversible structural
changes happen, can be derived from rate-

7
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theory [56]: Assuming that the viscosity is
related to an elementary jump of length �~� ,
that the diffusion coefficient � @ is related to
the viscosity via2 � @ ' �®,¯°�±	² , and that the
Einstein-Smoluchowski equation � @´³ µ «���
holds, then the time \¶v during which no struc-
tural changes occur is given by\ v ' � �@· > � �?+ (2.1)

where � @ is a typical interatomic distance.
Thus the relaxation times are closely related to
the viscosity. At 1000 K ( ³ 0.1 eV), the above
formula leads to relaxation times of the order
of 10 ¸ s for a viscosity of 10 
 � Poise. Thus
one would not measure any flow for about ten
days and the system can treated as a solid. 3

Concerning the temperature dependence of
the viscosity ������� , we note that this tempera-
ture dependence can often be described e. g.
by either an Arrhenius law�E���f�w'º¹ 
 ¨4»¬¼2½ ¾ ����À¿ + (2.2)

where ��� is an experimentally observed acti-
vation energy. Note that throughout the the-
sis we will use units of temperatures such that· > ' : . In contrast to the Arrhenius-like
dependence typical for so-called strong glass
formers, the temperature dependence of vis-
cosity of the fragile glass formers is often de-
scribed by the purely empirical Vogel-Fulcher-
Tamman (VFT) equation,�������S'Á¹Â�¡¨3»¬¼,½ ¾ Ã� � � U�Ä ¯Å ¿ - (2.3)

Finally, the mode-coupling theory (MCT)[58]
of the viscous slow down describes the tem-
perature dependence of the viscosity by a
power-law�E�����w'*¹ � ¨xÆu� � � a Å ¯Å Ç ÉÈ (2.4)

These functions are depicted in figure 2.1
in an Arrhenius plot ( Ê�Ë1ÌE�j�É� vs. 1/T), where
one observes the straight line typical of the
Arrhenius law, and the super-Arrhenius tem-
perature dependence of the viscosity as the

2Note that this is not the Stokes-Einstein relation.
3Sometimes the ratio of the experimental time scalesÍ�Î�Ï�Ð

and the relaxational time scale Ñ¤Ò is called Debo-
rah’s number.
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Figure 2.1: Temperature dependences of the
viscosities ������� according to an Arrhenius law,
the VFT equation, and the power-law sug-
gested by mode-coupling theory with ¹ 
 '¹Â�('Ó: , ¹ � 'Ô),-/0 , �Õa Å ¯Å 'Ö� U�Ä ¯Å 'Ó:3)1)1) and���×';:3)1)1) and

Ã 'Á),-/0�¨|��� .

critical temperatures � UzÄ ¯Å and � a Å ¯Å are ap-
proached. Note, that the formal activation
energies of the VFT and the MCT equations,±�°± � 
 � ¯ � , increase the closer one gets to the criti-
cal temperatures.

The glass transition is not only accompa-
nied by an exponential increase of the viscos-
ity at ��� , but other observables characterizing
different dynamical processes also change sig-
nificantly. These dynamical processes, span-
ning a frequency range of 10  ¸ Hz to 10 
�Ø
Hz (corresponding to relaxational time scales
of days to picoseconds), can be measured by
broadband dielectric spectroscopy (DES).[103]
When doing DES, one probes the response of
a material’s polarizability to an applied fre-
quency dependent electric field over a range
of frequencies. In the liquid phase one ob-
serves a single peak relaxation frequency, and
as one reaches the supercooled regime, the
single peak relaxation function splits into dif-
ferent peaks. One observes a strong Ù -peak
with an average frequency �ut9ÚÉ� correspond-
ing to a time scale of the Ù -relaxation, \ÛÚ×'
��Ü9Ý�Þ�ß9à , followed by a shoulder correspond-
ing to the slow á -relaxation processes. In the
THz-regime of the frequency spectrum, the so-
called Boson peak shows up in many glass
forming materials.[102] Between the Ù � peak
and the boson peak, a minimum exists on
top of which the fast á -processes have re-
cently been determined experimentally.[102].
For fragile glass formers, the temperature de-
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pendence of the Ù -relaxation times \ Ú (in the
range of seconds) is typically described by
a VFT-equation diverging at the glass tran-
sition temperature �z� 4, whereas the slow á -
relaxation follows an Arrhenius law even be-
low � � , thus indicating two different relax-
ational processes.

2.1.2 Below ¥ �
The properties of glassy materials below �Z�
are difficult to characterize, since one is deal-
ing with a non-equilibrium situation. Exper-
imentally, one observes that the properties of
the materials do not only depend on the tem-
perature �G_â� � at which the experiments are
performed, but also on thermal history of the
samples. The location of the peak of the spe-
cific heat shifts to higher temperatures with
increasing heating rate,[62] differently cooled
glasses show different glass transition tem-
peratures when heated.[62] It has also been
shown, that the location of the specific heat
and the intensity of the peak strongly depend
on the time and temperature the system has
been kept below �z� .[156] Furthermore exper-
iments on spin-glasses have shown that one
observes aging effects, i. e. the properties of the
system not only depend on the waiting time i	�
the system has been kept at a given tempera-
ture but also on the observation time i¤� yP� with
which one performs a measurement.[115]

2.2 Theoretical approaches to
glassiness

Even though glasses have been produced for
millenia, our understanding of the glass tran-
sition is far from complete, and different the-
oretical approaches to the glass transition ex-
ist. Most of the theoretical approaches to the
glass transition study it from the ’liquid-side’
above � � and treat the glass transition assum-
ing that the system is in equilibrium. The the-
ories of Gibbs and DiMarzio[54] and Adam
and Gibbs,[1] which are based on a statisti-
cal mechanical approach, or the very com-
plex Mode-Coupling theory,[58, 59] based on

4Actually, the ã -relaxation is difficult to detect below¢ £ due to the time scales involved.

a dynamic view, have been extensively dis-
cussed in the literature[22],[58], and we will
not present them in detail. Here, we focus on
the description of the glass transition in terms
of the energy landscape picture.

2.3 Energy landscape approach
to glassiness

The potential energy landscape approach
provides a phenomenologically convenient
framework for treating the complex behaviour
of glassy materials both above and below the
glass transition temperature �Z� .

The potential energy landscape (PEL)5 of a
glassy system of N atoms in a volume V, is
a 3N-dimensional surface defined by the po-
tential energy function ���¬ä� 
 +3-3-3-¶+åä�¶�Â� of the N
three dimensional position vectors ä�I5 . The
most interesting properties of the energy land-
scape are the distributions of minima, also
called inherent structures, the saddle points or
barrier regions and the local density of states
surrounding a given minimum. The minima
represent mechanically stable configurations
and the saddle points connecting minima and
the densities of states are responsible for the
dynamical properties of the system. Note that
minima are points of the PEL, where the gra-
dient vanishes, and the Hessian matrix of the
second derivatives has only positive eigenval-
ues. Saddles of order æ are points where the
gradient vanishes and the Hessian matrix hasæ negative eigenvalues.

More than thirty years ago Goldstein [57]
proposed, that the dynamical and static prop-
erties of a material are connected to its energy
landscape. He assumes, that below a tempera-
ture � ! , the system spends most of its time vi-
brating around local minima and occasionally
jumps between minima occur. Above � ! , this
scenario breaks down, because a distinction
between vibrations inside a minimum and the
hopping between minima becomes impossi-
ble. Note that � ! is just the limiting tempera-
ture for validity that the vibrations inside min-
ima and jumps between minima can be kept
dynamically separate. To be more specific we
repeat Goldstein’s assumptions:

5We use the term potential energy surface (PES), syn-
omously.
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1. A glass at low temperatures, like a crystal,
is at or near a potential energy minimum.

2. The portion of the potential energy sur-
face that represents the liquid or glassy
region has, unlike the portion associated
with the crystalline solid, a large number
of minima of varying depths.

3. As temperature is raised, sufficient ther-
mal energy ( :|çI. · > � per classical kinetic
degree of freedom) will become available
to allow transitions to take place over po-
tential energy barriers, even though they
are large compared to the thermal energy.

4. A transition over the potential energy bar-
rier is in some sense ’local’, in that in
the rearrangement process leading from
one minimum to a ’near-by’ one, most
atomic coordinates change very little, and
only those in a small region of substance
change by appreciable amounts.

5. For temperatures below and around the
glass transition temperature, the system
will always be in a process of transition,
but always near a minimum, in that sense
that a sudden cooling will drop it into a
minimum with relatively small changes
of most of the coordinates.

6. The description of viscous flow in terms
of energy barriers will be appropriate at
low temperatures, but become less useful
as temperature is raised and the liquid be-
comes very fluid.

In the PEL description the postulated re-
arrangements involve only few atoms, and it
is not clear how these re-arrangements would
lead to viscous flow or macroscopic mass
transport. According to Goldstein, the vis-
cous flow will only occur, if a large num-
ber of different localized re-arrangements oc-
cur that move the system ’far away’ from its
original minimum, and thus erase its memory.
This large number of different localized re-
arrangements for viscous flow is necessary, be-
cause a localized rearrangement that brings a
region A of the system to a region B, if a force is
applied to macroscopic sample, will snap back
from B to A, once the force is removed, and
thus this single localized re-arrangements will

not contribute to viscous flow. Thus a viscous
flow only occurs, if either cooperative or con-
secutive re-arrangements have occurred. As
already pointed out by Goldstein, the barriers
of the energy landscape do not necessarily re-
semble experimentally determined activation
energies, but are generic properties of the en-
ergy landscape.

2.3.1 Understanding glassy behaviour
starting from the liquid state

Based on Goldstein’s assumptions, Stillinger
et al. [160, 157], developed a scheme to
study the energy landscape of liquid and
glassy materials by computer simulations,
from which the material’s thermodynamic
properties can be determined. Furthermore,
Stillinger has suggested that the dynamic
properties, e.g. diffusion and viscosity can be
derived from a thorough analysis of the en-
ergy landscape.[158]

Instead of treating the whole energy land-
scape, one maps the instantenuous configu-
rations along the trajectories to the underly-
ing minima using a steepest descent path. All
configurations leading to the same minimumè 5 belong the same basin

Ã 5 . The thermo-
dynamic properties of the system can then be
studied by breaking the conventional partition
function into separate contributions from each
basin yielding the equilibrium free energy at
temperature � in terms of the potential energy�V5 of basin é and the number of minima ê§����5u�
with energy �ë5 . ì �PqN+��f�SíîÉï�ð�ñ ò ��� ê����V5P�n»¬¼2½ ¾ � �ë5ÉóJô%M y } � 5�� ���ë5 � ���· > � ¿ �9�m+

(2.5)

where M y } � 5�� ���V5 � ��� is the free energy per par-
ticle of the basin surrounding minimum ��5 .
Typically M y } � 5�� ���V5"+���� is calculated via the
classical harmonic approximation, yielding

ô[¨/M y } � 5�� �����S'*ôX¨ · > � � �c ¸õöQ÷ 
 Ê�ø ¾ : � »¬¼,½ ¾ � � ö· > � ¿ë¿ +
(2.6)

where the sum is over all 3N-6 normal vibra-
tions ù with energy � ö 'úoxt ö , t ö being the
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eigenfrequencies of vibration ù . Note, that for
high temperature ( � ö`û · > � ), the exponen-
tial can be expanded into a power series, re-
sulting in

ôü¨ÛM y } � 5ý� �����N'*ôþ¨ · > � � �c ¸õöQ÷ 
 Êÿø ¾ �
ö· > ��¿ (2.7)

Finally, defining the configurational entropy at
energy �ë5 via the number of accessible basinsê§��� 5 � O Å ���ë5u�S' · > ÊÿøVê����V5P�Q+ (2.8)

equation 2.5 becomes[129] ì �PqS+����wíî ï ð"ñ ò ��� »¬¼2½ ¾ � � 5 óJô%M y } � 5�� ��� 5 � ��� � ��O Å ��� 5 �· > � ¿�n�6-
(2.9)

Note that this treatment leads to a thermo-
dynamic treatment of the equilibrium proper-
ties of the supercooled liquid state in terms
of the distribution of minima, and that this
approach heavily relies on the usefulness of
the assumption, that the system spends most
of its time inside the basins, and occasion-
ally jumps between minima occur. To sup-
port this view, Sastry et. al. showed that dif-
ferent dynamical regimes in the energy land-
scapes of simple glass formers can be distin-
guished upon cooling.[130, 131] In these MD-
simulations of the Ni � @ P � @ -system6 modelled
by a simple Lennard-Jones potential, it was
shown that down to a certain temperature �*': ,7 the average energy of the minima, periodi-
cally determined during cooling, is constant,
and upon further cooling the energy of the
sampled minima decreased and leveled off at
about � ' ),- � 0 . Note, that � ' ),- � 0 is just
the mode-coupling temperature � a Å ¯Å deter-
mined for this systems. Furthermore it was
shown, that the dynamical properties derived
from the inherent structures were similar to
the ones observed from the instantenuous con-
figurations of the glass, thus indicating that

6The Ni � ² P � ² system is one of the favourite test cases
in computer simulation of fragile glass formers.

7In these LJ-systems, data is commonly given in re-
duced units.

the dynamics of the glasses is closely related
to the properties of the energy landscape.

Even though these results are strong indi-
cations for the influence of the energy land-
scape on the dynamics, the direct connection
between barrier crossing on the energy land-
scape and the dynamical properties of the su-
percooled liquid has not been achieved. Nev-
ertheless, Stillinger et al. speculated that slow
relaxations are due to meta-basin changes.
A meta-basin consist of many basins, and
fast relaxations occur within a meta-basin.[32]
The inter-meta-basin changes involve consec-
utive re-arrangements of few atoms, leading
to an overall displacement of almost all atoms,
whereas the intra-meta-basin relaxations are
fast and involve only very few atoms. In
the Goldstein/Stillinger view, the glass transi-
tion occurs when the system gets trapped in
deeper and deeper minimum regions of the
energy landscape as the temperature is low-
ered, since the kinetic energy is not sufficient
to overcome the barriers on the time scale of
the experiments or simulations.

The Goldstein/Stillinger view of the en-
ergy landscape suffers from some drawbacks.
Firstly, it is not yet known how the dynam-
ics on the energy landscape is related to the
macroscopic dynamics. Secondly, the applica-
bility of the minimum hopping scenario is lim-
ited to temperatures where the system spends
most of its time inside the basins. Thirdly, the
analysis is restricted to those temperatures at
which the system is in equilibrium. Therefore
alternative approaches have been proposed.

Cavagna has suggested that, besides mini-
mum hopping, a second mechanism for dif-
fusion, the saddle hopping scenario, is re-
sponsible for the motion across the energy
landscape.[26] In that view, the dynamics
above � ! is governed by the number of imag-
inary modes ôs5 � }�� , allowing the system to es-
cape ’downhill’ from a saddle (and thus take
longer steps on the energy landscape), and
then ending up at another saddle of compara-
ble energy. This approach is related to the in-
stantenuous normal mode approach (INMA)
of Keyes and coworkers[150, 105, 81]. In the
INMA, the diffusion coefficients depend only
on the fraction of imaginary modes of the in-
stantenuous configurations sampled at a tem-
perature T. The original INMA approach, has



12 CHAPTER 2. GLASSINESS

been criticized[52] for some limitations: not
all imaginary modes (the so-called shoulder
modes) lead to basin changes due to anhar-
monic contributions in the interaction poten-
tials, secondly some of the re-arrangements
on leaving the instantenuous configurations
are localized, and thus do not contribute to
a collective motion of all atoms. The INMA
approach and the saddle-ruled scenario have
been supported by a number of computa-
tional studies in which the diffusion coeffi-
cients could be related to number of imaginary
modes or the fraction of imaginary modes
showed a temperature dependence similar to
other properties of the investigated glassy ma-
terials. [149, 18, 25, 60, 8] However it is not
clear, why the saddle-ruled scenario works,
and if it is applicable to other systems. If it
is valid, the dynamics of the system could be
described on an effective landscape restricted
to ôs5 � }�� dimensions, and thus the complexity
of the problem could be reduced significantly.

2.3.2 Understanding glassy behaviour
starting from the solid state

Another point of view of the glass transition,
has put the focus on the approximately ex-
ponentially growing density of states within
a pocket on the energy landscape, present on
length and time scales beyond the vibrational
properties of the system.[143] Within that ap-
proach, it was shown that above a critical tem-
perature, proportional to the inverse growth
rate of the local density of states, the system
spends most of the time on top of the pocket
and the minimum regions are invisible and
the effective barriers to neighbor basins are
very small and easily surmounted. In contrast,
below the trapping temperature, the system
drops to the bottom of the basin, and moves
to neighboring basins are greatly impeded by
the full barriers now encountered.[143] In the
same context, we note that the complex dy-
namics on energy landscapes can be described
by tree- and trap-models[74, 110] which in-
corporate an exponentially growing density of
states as one of the key assumptions. Within
these models, it is possible to recover not only
the equilibrium behaviour of a complex sys-
tem, but also the non-equilibrium properties
of the system.

Below their glass transition temperature � � ,
glassy materials exhibit aging effects. The de-
pendence of the material’s properties on both
the time i�� , one has waited before a measure-
ment of an observable r6�ji	� begins, and on
the observation time i	� yP� , is particularly inter-
esting since in technical applications they are
usually unwanted, and furthermore in theo-
retical work these phenomena are not well un-
derstood. Within the aforementioned tree and
trap models, aging has been shown to exist,
due to the existence of an exponentially grow-
ing density of states and minima. Further-
more, activation barriers of transition have
been included in these models.

An alternative view of the properties of
the energy landscape of amorphous materi-
als in the solid state has been the extension
of the ideas of Cavagna to temperatures be-
low � � [7]. It was found that the system ex-
plores deep-lying saddle regions of the energy
landscape as time progresses after the system
had been brought to non-equilibrium condi-
tions in a typical aging experiment. In this
non-equilibrium situation it was also found
that the index of saddles underlying a given
holding point decreased logarithmically with
time.
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Chapter 3

Computer simulation methods

3.1 Introduction

Computer simulations allow one to study
the properties of many-particle systems. In
this chapter details of classical Monte-Carlo
(MC), the molecular dynamics (MD) simula-
tion techniques used in the thesis will be given
together with a very short introduction to
the statistical mechanical basis of these meth-
ods. The books by Allen and Tildesley[4], by
Landau and Binder [92] and by Frenkel and
Smit [42] are excellent references that contain
a wealth of information about computer simu-
lations.

3.2 Statistical mechanics

Statistical mechanics allows one to study the
average properties of many-body systems
containing ô atoms in three dimensions from
a microscopic perspective. These ô parti-
cles are classically described by their velocity
vectors äù15 and the position vectors ä�¶5 . Thus
the total system can be described microscopi-
cally by the 6N-dimensional vector ä� , whose
components are the velocities äù 5 and the po-
sition vectors ä�¶5 . A distinct set

·
of three-

dimensional position vectors ��ä�Û5
	 constitutes
a configuration and is commonly represented
by the 3N-dimensional configuration vectorä�  ' �¬ä� 
 +9ä�|�I+3-3-3-|+åä�¶�Õ� . Similarly the veloci-
ties of the particles can be written as äq  '�¬äù 
 +9äù1�I+3-3-3-4+9äùå��� . The set of vectors ä�  consti-
tutes the configuration or state space of the
system.1 Note that the ô vectors ä�¶5 are suffi-
cient to describe the arrangement of the parti-
cles. Different particle arrangements (configu-

1In this thesis, capital letters represent configurations.
Particle based vectors are written as small letters.

rations), ä�  and ä�� , will have different poten-
tial energies � � � � � ä�  � and � � � �� � ä� � and have
different kinetic energies �  5ý� � äq  � and � � � äq � � .
The total energy of a configuration space point·

is� � � � } � � ä�  + äq  �S'*� � � � � ä�  ��ó©�  5�� � äq  � (3.1)

It is well known that in thermodynamic equi-
librium, the macroscopic state of a system ofô atoms can be described by three indepen-
dent thermodynamic variables, e. g. ��ô +QqS+	�(� ,��ô +QqS+���� , ��ô=+	Cc+���� , etc. . Thus for a system
with constant number of particles ô enclosed
in a volume q , either the total energy � or the
temperature � can be chosen as the third vari-
able. For constant total energy � , the descrip-
tion is called microcanonical and the system
is represented in the so-called NVE-ensemble,
while for constant temperature the description
is called canonical or the NVT-ensemble rep-
resentation. Experimentally it is difficult to
keep a system at constant volume and thus the
isothermal-isobaric description is used and the
system is represented by the so-called NPT-
ensemble. Here an ensemble means a set of
different microscopic realizations of the sys-
tem that comply with the ensemble condi-
tions, e. g. in the NVE-ensemble the different
microscopic realizations have the same total
energy � and the same number of particles N
inside the same volume q .

The partition function B connects the micro-
scopic and the macroscopic properties of a sys-
tem of ô atoms inside a volume q at temper-
ature � via the Helmholtz free energyì ' � · > �eÊÿøëBS� U ¯ + (3.2)

15
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whereBw� U ¯ ' î ���! � �U�� »¬¼2½Z� � ����� ä� + äq(��ç · > �f�"� ä� � äq(3.3)
is the partition function of the system in the
canonical ensemble and the integral is over the
set of permissible vectors � ä� + äq	 of the sys-
tem. For velocity independent forces the ki-
netic energy part in equation 3.3 can easily be
integrated out, and the average value ��¹f� of an
observable ¹ that only depends on ä� is found
to be:

��¹f�"��� � ' � ���! � ¹(� ä� �n»¬¼,½p� � � � � � � ä� ��ç · > ���"� ä�� � �! � »¬¼,½p� � � � � � � ä� ��ç · > ���"� ä� -
(3.4)

The partition function can be written as a
product B*' B��n¨¶B�� � , withB � � ' î ���U�� »¬¼,½ � � �  5�� � äq~�· > � ���X� äq' î � �U�� »¬¼2½ � ��� �5 
� g 5�äù �5· > � �X� äq

' ����5 ÷ 
 ¾ .� Eg 5 · > �o � ¿"!$#&%� :ô 5(' +
(3.5)

where the integration was performed over all
possible velocities äq . g 5 and ô 5 are the masses
and the number of particles of the æp� different
species found in the sample, respectively. o is
Planck’s constant, and the factors ô�5 ' account
for the indistinguishability of the ô�5 particles.
The configuration space part B � , the so-called
configurational integral, reads:B �� U ¯ í î ���! � »¬¼2½Z� � � � � � � ä� ��ç · > �f� (3.6)

where the integration is over all permissible
configurations ä� 5 . Since this integration in
general cannot be performed analytically for
real systems, one has to resort to other meth-
ods of evaluating the partition function B and
the expectation values of observables. One
way to perform this integration scheme is the
Monte-Carlo method that is discussed in sec-
tion 3.3.

As mentioned, the partition function B � U ¯
suffices to describe the thermodynamic be-
haviour of the system. However, while all con-
figurations � ä� + äq)	 contribute to the partition

function, for a given temperature only some
of them are important, since the probability of
finding a system in a state ä� 5 + äq 5 in thermody-
namic equilibrium is given by the Boltzmann
factor:

* � ä� 5�+ äq�5 � ���S' »¬¼,½,+ � ï � � � ò�ñ � �! % � �U % � ® ¯ -B (3.7)

or restricting to only ä� 5 ,* � ä� 5 � ���w'º»¬¼2½ � � � � � � � ä� 5��· > � �Jç3B � (3.8)

Note that the macroscopic phase (gas, liq-
uid, solid) present is unimportant for the eval-
uation of the partition function B.� , since only
microscopic configurations ä� 5 enter its defini-
tion.

Until now, the thermodynamic and statis-
tical mechanical properties of a system have
been described by the ensemble approach of
Gibbs [53], where one investigates the aver-
age behaviour of a large number of similarly
prepared systems. A different approach is
given by concentrating on the time evolution
of a configuration ä� �ji�� , which visits differ-
ent points in configuration space at a temper-
ature T in subsequent time steps. In the long
time limit i0/ 1 , the system visits all possi-
ble configurations and the average properties
are governed by the Boltzmann factor given in
equation 3.8. If a system can visit all possible
configurations, the system is called ergodic and
the time averages��¹f�S' Ê3254�������7698 :i"� yP� î � �����@ ¹~� ä� �ji	�Q+ äq �ji����"�9i (3.9)

calculated along the trajectory (for a time spani"� yP� ) equal the ensemble averages ��¹��	��� � . If
a system is ergodic, the system is in ther-
modynamic equilibrium. However, achieving
equilibrium in computer simulations of dis-
ordered or amorphous systems is in no way
straightforward. Since the treatment of non-
equilibrium systems is rather involved, we
postpone a discussion of the special features
to the appropriate sections.
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3.3 Monte-Carlo methods (MC)

In the preceding section, general statements
about thermodynamic equilibrium, configura-
tions and trajectories have been made, but no
recipe has been given how to generate these
configurations in such a way that thermody-
namic equilibrium can be achieved, at least
in principle. As already mentioned, to deter-
mine the free energy

ì
, one has to evaluate

the partition function B � U ¯ , which requires
the determination of a multi-dimensional inte-
gral. But in thermodynamic equilibrium, only
those configurations ä� with large Boltzmann
factors * � ä� � ��� are important.

3.3.1 The basic algorithm

Metropolis et al. [109] showed, that the fol-
lowing recipe allows one to evaluate the im-
portant parts of the partition function B:�j�PqS+����
and thus one can calculate the thermodynamic
properties of the system. In the Metropolis al-
gorithm one generates a starting configurationä� �ji§' )9� at a time i�'Ó) and proceeds as fol-
lows:

1. Generation of trial configuration
At each step i of the algorithm one ran-
domly modifies the configuration to gen-
erate a trial configuration ä� � « 5 } � and cal-
culates the difference of the potential en-
ergy���Ö'Á� � � � � ä� � « 5 } � � � � � � � � ä� �ji����Q- (3.10)

2. Metropolis criterion
If �6� _ ) the configuration ä� �ji ó�:|� is
set to the trial configuration ä� � « 5 } � , i. e. en-
ergy gains are always accepted. If ��� W) , a random number �1¦næ�� is drawn, and if�1¦9æ��J_�»¬¼2½p� � ���(ç · > ��� , the trial config-
uration is also accepted as the new con-
figuration. Otherwise the old configura-
tion ä� �ji�� is kept as the new configurationä� �jizó*:|� .

The algorithm is repeated for a total number
of steps i «(; � and at each step, the Metropolis
criterion is employed.

The Metropolis Monte-Carlo algorithm gen-
erates a sequence of configurations ä� �ji	� and

in the limit of long run times i	«�; � the configu-
ration space will be sampled according to the
correct Boltzmann weight at the temperatures
at which the simulations are performed. Note
that for very high temperatures the Metropo-
lis criterion �1¦næ��%_ »¬¼,½p� � ���~ç · > ��� is almost
always fulfilled, and almost all changes are
accepted. For low temperatures, the accep-
tance criterion is hardly ever fulfilled and the
necessary number of steps to achieve a sat-
isfactory sampling of configurations can be-
come prohibitively large and thus equilibrium
properties may be hard to study. Further de-
tails of the ’time scale’ problem one encoun-
ters in computer simulations will be discussed
in chapters 9-12.

3.3.2 Implementations

Our NVT-ensemble MC-simulations are per-
formed similar to the original work by
Metropolis et al. In each Monte-Carlo move,
we shift a randomly selected atom g from its
original position ä� � « 5 } �� ' ä� � �ji	�zóÔäª to generate
the trial vector ä� � « 5 } � . The shift vectoräª�'º�1¦næ��§¨�ä< ¨4� � } � (3.11)

is calculated by randomly selecting a vectorä< on the unit sphere and shifting in that di-
rection by an amount of �1¦9æ���¨2� � } � Å. Here�1¦9æ�� is a random number between zero and
one. In all simulations, the maximum dis-
placement � � } � was adjusted to achieve an ac-
ceptance ratio of the Monte Carlo moves of
50 %, as suggested in the literature.[4] The
acceptance ratios were typically recalculated
every 10 Monte Carlo Cycles (MCC), where
one MCC corresponds to N individual atom
moves. In all MC simulations, we use the
two body interaction potential A (see section
3.9) to evaluate the potential energy � � � � � ä� � .
Since interaction potential A is a short-ranged
two-body interaction potential, we can also
use neighbor or Verlet list[168] to save com-
puter time. Note also that in the Metropo-
lis algorithm, the only relevant quantity is the
difference of the potential energies of the trial
configuration ä� � « 5 } � and the actual configura-
tion ä� �ji�� , and if only single atom moves of an
atom g are involved and the potential energy
is given by a two-body interaction potential,
the difference of the potential energies equals
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��� � � � ' �õ 5 ÷ 
 q���=�ä�|5 � ä� � = � � q���=jä�45 � ä� � « 5 } �3>� �
(3.12)

where � � and � � « 5 } �� are position vectors of the
atoms in the original and the trial configura-
tions, respectively. Note that in equation 3.12,
the sum runs only over N atoms, and not overô � pairs of atoms, as is required for the calcu-
lation of the total potential energy by a two-
body potential of a single configuration� � � � ';:|çI. �õ 5 �õ 7 q��j�4587¶�Q- (3.13)

We construct Verlet lists[168] for each atom é ,
i. e. a list of neighboring atoms ? , that are only
a distance �|587�_ ��U #×�ÕYZóH��� apart. For in-
teraction potential A, �§Y(' 6 Å and the extra
distance �6� was set to 2 Å. Each time an atom
has moved more than :|çI.1�6� Å, the neigh-
bor lists are updated. Using these neighbor
list, one saves approximately KI)A@ computer
time for dense systems, since the atoms do not
move very far and the sum in equation 3.12
runs only over the atoms in the neighbor list
of each atom. However, for dilute systems, we
calculate the energy change �6� by equation
3.13, since the frequently necessary updates of
the Verlet lists actually lead to an increased
computional burden.

In the NVT-simulations, the cell volume is
kept constant, but in experiments the volume
usually is free to adapt to the external pres-
sure CZ���3� . Similar to the free adaption of the
cell volume, one studies the system at an exter-
nal pressure CA���3� by allowing both the atomic
positions and the cell volume to vary. Similar
to the random displacement of the atoms, the
cubic cell volume q ' ¦ � of the (periodically
repeated) simulation cell, was varied isotrop-
ically by changing the volume qm�ji	� to a trial
volume

q � « 5 } � ' q��ji	��óÁ�j�1¦9æ�� � ),-/0å�A¨¶��q � } �,+ (3.14)

and calculating the change in potential en-
ergy of the trial configuration ä� � « 5 } � in which
the position of all atoms are changed by rescal-
ing the cell length ¦ � '×�Pq � « 5 } � ç1qs� 
 ��� ¨�¦ . A trial

configuration was accepted as a new configu-
ration, if the energy change�6�Ö'*� � � �� « 5 } � �Pq � « 5 } � � � � � � � �Pq��ji	���ó�CZ���3��¨9�Pq � « 5 } � � qm�ji	��� (3.15)

was acceptable according to the Metropolis
criterion.

Note that for the calculation of the change in
potential energy, the potential energy for the
trial configuration must be calculated accord-
ing to equation 3.13. Thus, the computional
cost for a volume move \ ö � � is proportional to
the square of the number of atoms. Similar to
the maximum atomic displacement, the max-
imum volume change �mq � } � was adapted to
reach an acceptance ratio of 50 % in ten MCCs.
Again, �1¦9æ�� is a random number between zero
and one. After a volume change it is plausible
to adjust the atomic positions to the new vol-
ume/cell constants and thus the volume was
only changed in one to ten percent of the per-
formed MCCs. Note that for a-Si � B � N � nei-
ther the average cell volume nor the time se-
ries of volumes qm�ji	� depended significantly
on the choice of the ratio atom moves to vol-
ume changes.

3.4 Molecular dynamics simula-
tions

In a molecular dynamics (MD) simulations in
the NVE-ensemble, one solves Newtons equa-
tions of motion (EOM) for the classical mo-
tion of a system of ô atoms, to study the
microscopic time evolution of a many-body
system. After initialization of the velocitiesäùI5"+�éS'�:I+3-3-3-|+	ô and assignment of initial atom
positions ä�|5 , we use the velocity form of the
Verlet-algorithm[4] for the integration of the
EOM. The atoms are placed on randomly se-
lected places inside the cubic simulation cell or
loaded from an external source, and the veloc-
ities are initialized in such a way, that the total
linear momentum of the atom is zero and that
the kinetic temperature �  5�� ' �CB ïED %GF� �  ® equals a
initial temperature � @ . After these initializa-
tions the velocity-Verlet algorithm proceeds as
follows:

1. Predict the values of the positions of the
atoms ä�|5	�ji¡óÖ�~i	� at time i¡ó;��i and the



3.5. THERMODYNAMIC PROPERTIES FROM COMPUTER SIMULATIONS 19

velocities äù 5 �jizó 
� �~i�� at half time izó 
� �~i
byä�45��ji�ó �~i��N' ä�45��ji	��ó©ùI5?¨|�~i�ó :. ¦95	�ji	���~i �

andäùI5��ji�ó :. �~i	�S'ÓäùI5��ji��zó :. ¦95��ji	���~i
(3.16)

2. Calculate the accelerations ä¦ 5 ' �Ä %� % using
the new positions ä�¶5 and the forces äì 5s'��H 5 � � � � .

3. Correct the velocities äùå5��jizó 
� �~i	� byäùI5	�ji4ó :. �~i��w' äùI5��ji	�4ó :. ä¦n5��ji4óm�~i	���~i (3.17)

For the a-Si � B � N � system we chose a time
step of 1 fs for the Velocity Verlet integration
scheme and typical simulations lasted :3) ¸ �:3) � time steps corresponding to real times of
1-10 nanoseconds. Note that in the NVE-
ensemble, the kinetic energy and the potential
energies as well as the pressure and the kinetic
temperature �  5�� fluctuate around their mean
values. To simulate a system in the constant
temperature NVT-ensemble, we rescaled the
magnitude of the velocities äù �5 'ÁÙ ¨näùI5 by a fac-
tor Ù 'JI ���  5ý� ���� (3.18)

where the kinetic temperature ���  5�� � � was av-
eraged over ten time steps prior to rescaling.
Note that other methods exist, that employ an
extended Lagrangian formalism to keep the
temperature or other prescribed variables like
the pressure constant (see the book by Frenkel
and Smit [42] for an exhaustive discussion of
these methods), but these methods have not
been used in this thesis.

3.5 Thermodynamic properties
from computer simulations

In sections 3.3 and 3.4, we showed how it is
possible to generate configurations according
to the laws of statistical mechanics. Now we
show how experimentally accessible data can

be determined from a sequence of ô Y � ��K con-
figurations ä� � , �ji '�:I+3-3-3-|+	ô Y � �LK � . Here the in-
dex i serves two purposes, to distinguish con-
figurations and also to indicate the simulation
time. Note that in the Monte-Carlo simula-
tions there is no real time unit �~i like in MD
simulations, and the time scale can only be set
by comparison to MD-simulations.

The simplest quantity to measure is the av-
erage potential energy2

��� � � � �N' :ô Y � ��K �NM � FPOõ 5 ÷ 
 � � � �5 (3.19)

and the fluctuations of the potential energyQ �SR � � � �UT 'WVX :ô Y � �LK � M � FPOõ 5 ÷ 
 R � � � �5 T��ZY[ � ��� � � � � �
(3.20)

The specific heat T U ' ÆZ\ ï\ ¯ Ç U can serve as an
indicator for a phase transition (PT) between
two equilibrium phases of a system. We deter-
mine the specific heat by numerically differen-
tiating the temperature dependence of the av-
erage potential energy � � � � :T¡UV�����w' �h��� � � � ��~� - (3.21)

From the raw data of a computer simulation
it is often not clear whether a system has re-
ally attained equilibrium, e.g. the configu-
rations have been sampled according to the
correct Boltzmann weight. Furthermore sim-
ple criteria like ’the potential energy shows
no drift for successive configuration’ may
lead to errorrenous conclusions. Therefore
we used the fluctuation-dissipation theorem
(FDT) to distinguish between equilibrium or
non-equilibrium simulations. For the poten-
tial energy the FDT relates the fluctuations in
the potential energy to the change in poten-
tial energy accompanying a change in temper-
ature �h��� � � � ��(� ' Q � R � � � � T· > � � (3.22)

Thus, if the systems is simulated in equilib-
rium, the equal sign must hold at least ap-
proximately. Otherwise the system is not in

2In this chapter, we focus on the Monte-Carlo method
and the kinetic energy ] D %^F is simply ] D %^F`_baPcedef.g ® ¢ .
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equilibrium and measured properties in gen-
eral become time dependent, since the system
is aging.

Since computer simulations are frequently
performed in the NVT-ensemble one impor-
tant quantity to measure is the average pres-
sure ��Cs� . For each configuration ä� � of volume
V, one determines the internal virial h to cal-
culate the pressure CA� .

Cz�p'ÁC 5 ± óJC ö 5 « ' ô · > �q ó h q (3.23)

as the sum of the ideal gas contribution C 5 ±
and the virial contribution C ö 5 « .

For two-body interaction potentials, the in-
ternal virial h can be written as:h ' � :K �õ 5jin7 �õ7 ÷ 
 ä�4587c¨ ä

ì 5 7å+ (3.24)

where ä� 5 7 is difference vector ä� 5 � ä� 7 between
the positions of the atoms é , ? and äì 587 is the
force acting on atom é from atom ? . The aver-
age pressure ��Cs� of a set of configurations

·
is��Cs�S';:|ç�ô Y � ��K � � M � FCO ÷ 
 C  .

3.6 Transport properties

In the study of liquids, supercooled liquids
and glasses, the coefficient of self-diffusion �
and the viscosity � are used to distinguish be-
tween liquids and glasses. The diffusion co-
efficient �%����� can be obtained from the mean
squared distance (MSD) between the atoms of
two configurations ä� �ji 
 � and ä� �ji��4� sampled
at simulation times i 
 _âi � at temperature T,è OA�%�ji 
 +�i��4�S' è OA�e� ä� �ji 
 �Q+ ä� �ji��|���' �õ 5 ÷ 
 �|ä� 5��ji��4� � ä� 5��ji 
 ��� �'k+ ä� �ji 
 � � ä� �ji��4� - � + (3.25)

by using the Einstein-Smoluchowski
relation[34]�Ó' Ê3254µ �36l8 è OA�%�ji 
 +�i"�4�m �u��i�� - (3.26)

Note, that the diffusion coefficient can only be
determined, if the MSD is proportional to the
time interval �~iN'*i�� � i 
 .

Since in Monte-Carlo simulations the vis-
cosity � can only be determined from the
Stokes-Einstein relation[34]�m' · > �� :m  �¦ + (3.27)

and the validity of the relation cannot be taken
for granted,[75] we mostly use the diffusion
coefficient � directly, to discriminate between
glasses and supercooled (liquids) instead of
the macroscopically accessible viscosity � .

For amorphous covalent networks, trans-
port mechanism can also be studied by the
bond-survival probabilities (

Ã ONCm�ji 
 +�i��|� ) of
bonds in the network[75]. With a given defi-
nition of a bond between two atoms (see sec-
tion 4.1), we calculate the probability finding
a bond nI�jé	+
?2� between two atoms é , ? at a timei"� provided that this bond was present at an
earlier time i 
 .

For equilibrium situations, the bond sur-
vival probabilities depend only on the time
difference �~ië'Öi�� � i 
 . Note that, apart from
insights into transport mechanisms, the BSPs
allow one to study the topological similarity
between two configurations, and high values
of the BSP indicate that the amorphous net-
work is mostly preserved. In a-Si � B � N � one
can furthermore distinguish between Si-N and
B-N bonds and this distinction allows one to
study the relative stability of the respective
bonds. Finally, for temperatures below the
glass transition temperature, the BSP will also
show aging behaviour.

3.7 Global optimization

Local optimization techniques usually lead the
system to the closest local minimum of the en-
ergy landscape, which is usually not the min-
imum with the lowest energy. To find the
global minimum, or at least to get close to it,
one usually employs global optimization algo-
rithms. One of these algorithm is simulated
annealing.[84] In the simulated annealing al-
gorithm, one mimics the slow cooling of a liq-
uid to form a solid. Typically, this is done
by first equilibrating the system at a temper-
ature � @ using the Monte-Carlo algorithm (see
section 3.3) using the energy as the cost func-
tion. After equilibration, one lowers the sys-
tem’s temperature to zero by a cooling sched-
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ule. Frequent choices for the cooling schedule
are linear cooling �(�ji	�c' � @ �   ¨|i or geomet-
ric cooling schedules �~�ji��h' � @ ¨,¦ � ( ¦;_´: ).
Between the temperature updates, the system
evolves at the current temperature for, typi-
cally short, relaxation times \ ]å<« � � } � . In this the-
sis, we employ the linear cooling schedule in
our global optimizations, and typical choices
for the relaxation times \x]å<« � � } � are 100 MCC.

3.8 Local optimization

Local minima of the potential energy surface
are characteristic points of the energy surface
and can be determined by different numerical
techniques. In this thesis the conjugate gradi-
ent method and the MC-quench method have
been used for the determination of these local
minima. 3

3.8.1 Conjugate gradient method

The conjugate gradient method uses the gra-
dient of the potential energy � � � �H � � � � ' VooX \ ï Ð � �\ ��p...\ ï Ð � �\ � !$#

YZqq[ (3.28)

to determine a local minimum of the potential
energy surface. \ ï Ð � �\ � % is the derivative of the
potential energy with respect to the coordinateé of the configuration vector ä� . Starting from
an initial configuration vector ä� ��)9� one per-
forms an initial step (of step width r ) down
the steepest descent path, i. e. in the direction
of gradient at configuration space point ä� ��)9� ,
on the potential energy landscape. New steps
in directions äs �jæÂó%:|� from point ä� �jæp� towards
the minimum are calculated from combining
the gradient at previously visited configura-
tion space point H � � � � � ä� �jæ � :|��� and the gra-
dient H � � � � � ä� �jæp��� at the configuration space
point ä� �jæp� using various formulae. The result
of this combination is a useful approximation
of the matrix of the second partial derivatives
by first partial derivatives. For more technical

3The conjugate gradient optimization were per-
formed using the very powerful GULP program. [44]

specification, we refer the reader to the ’Nu-
merical Recipes’ by Press et. al. [175] for
a detailed account of the conjugate gradient
method. Here we note that we used the gra-
dient norm = H � � � � =�_ ),-8)1)1)É: eV as the halting
criterion for the determination of the minima
of the local conjugate gradient search.4

3.8.2 MC-quench

The MC-quench method is a � ' ) K Monte-
Carlo method. After generation of a trial
configuration ä� � « 5 } � only those trial config-
urations are accepted, that lower the poten-
tial energy. We only used atom displace-
ment moves for the quench procedure and the
quench converged, if the net atomic displace-
ments had fallen below 0.001 Å/atom. Note
that the MC-quench procedure does not nec-
essarily brings the system to the true mini-
mum, where the gradient vanishes, but only
very close to it. In fact, it has been shown
that the time to bring the system to a mini-
mum increases logarithmically the closer one
gets to the minimum.[23] However with the
MC-quench method, one can determine differ-
ent minima that are accessible from the same
starting configuration.

Reverse Monte-Carlo (RMC)

After the local optimizations using empir-
ical interaction potentials, a refinement by
the reverse Monte-Carlo (RMC) method of
the structural models was useful to remove
non-critical potential effects, that left the ini-
tial topology of the amorphous network es-
sentially unchanged.5 In the RMC method
[107], we did not optimize the potential en-
ergy but the cost function T6� ä� 5 � r?� , that was
given as a linear combination of the differ-
ence between the computed and experimen-
tally measured (via X-ray (X) or neutron scat-
tering (n), if available) pair correlation func-
tions �u��� !Z� � � ä� 5���� � , and the potential energy�w� � �¤� ä� 5�� of the configuration ä� 5 .

4One should note that in principle the gradient search
can also stop at a saddle point ( tu] _bv for a saddle, too).
However, the conjugate gradient method usually avoids
these traps.

5The RMC-program was written by Dr. H. Putz
(Crystal Impact GBR, Bonn) and was used with permis-
sion.
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T6� ä� 5 � r?�S'wrp�u��� !Z� � � ä� 5���� � óÁ��: � r?�"�w� � �¤� ä� 5P�Q-
(3.29)

Note that the deviations from the experi-
mental pair correlation function � ���	�! ����� and� ���	�� ������u��� !Z� � � � '×�u��� ! � � óÁ�u���~��� � (3.30)

were weighted equally.6 In the optimization of
the cost function Tm� ä� 5 � r?� , only random atom
displacements were accepted that lowered the
cost function. Thus the reverse Monte-Carlo
method is similar to a MC-quench procedure
in which the potential energy is substituted by
the cost function T6� ä� 5 � rx� .
3.9 Interactions potentials for

the Si-B-N system

The potential energy is a key to an under-
standing of the thermodynamic behaviour
of every many-body system. Ideally one
would like to determine the potential en-
ergy of any arrangement of atoms by solv-
ing Schrödinger’s equation for the electronic
and nuclear part of the wave function. How-
ever, this is only possible for rather small sys-
tem sizes and only on very small time scales.
An alternative way to study many-body sys-
tems is to neglect the electronic effects and
to treat the system classically, using an ap-
propriate interaction potential q�� ä� � . Typi-
cally these interaction potentials include two-,
three- and possibly four-body interactions for
the description of the interactions between the
atoms.

q�� ä� �N' �õ 5 �õ 7 q��j�4587¶� ó�õ 5 �õ 7 �õ  qm�j�4587å+�� 5  +ex 587  �Öó four-body terms

(3.31)

Thus two-body interactions require a double
sum for the evaluation of the potential en-
ergy and the potential energy depends on

6The calculation of the pair correlation function of a
configuration yz is discussed in section 4.1.1.

the interatomic distance � 587 . Similarly, three
body terms depend on the two interatomic
distances and the angle x 587  between the three
atoms é	+
?1+ · . Note that the computational cost
for the calculation of the potential energy de-
pends on the squared number of atoms ( íâô � )
for two-body potentials and on the cube of the
number of atoms í;ô � ) for three body inter-
actions. Thus practically treatable computer
simulations of large systems with long simu-
lation times require a two-body potential, and
only for sophisticated interactions and spe-
cial situations one should use three- and four-
body interaction terms.

Thus in this thesis two classical interaction
potentials are employed for the modelling of
a-Si � B � N � .7 These interaction potentials have
been fitted and extensively tested by Gastreich
et. al [47] and are not part of this thesis. The
first one, q < �j� 587 � , is a pure two-body poten-
tial, that contains no Coulomb terms and is
computationally very fast. The second inter-
action potential, q > �j�4587å+�� 5  +ex 587  � , which con-
tains two- and three-body terms as well as
Coulomb terms is computationally very ex-
pensive, and therefore has only been used in
the local optimizations.8 Details of the func-
tional forms and the parameters of the poten-
tials A and B are given in tables 3.2 and 3.3, re-
spectively. For a detailed analysis, we refer the
reader to the original publications[48, 49] and
M. Gastreich’s thesis[47]. In table 3.1, we sum-
marize the potential energies and the densi-
ties of crystalline polymorphs of the Si � B � N � -
system, as determined from the interaction po-
tentials A and B. We note that the interaction
potential A favors phase separation into the
binary phases á � Si � N � and h-BN, whereas for
potential B, the ternary crystalline phase are
more stable.9

7The functional form and the parameters of the inter-
action potential for the Si-O-N system are given in sec-
tion 7.2 of chapter 7.

8Interaction potential B is a preliminary version of the
potential published in [49], but reproduces experimental
properties of the Si/B/N-system.[46]

9Ab-initio calculations for possible ternary crystalline
modifications indicate that the binary phases should be
slightly favored over the ternary phase, in agreement
with potential A.[89]
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System � < � > ���${ è � D aá -Si � N � -5.02 -17.54 -5.31 3.19
h-BN -5.75 -15.67 -6.41 2.29á�� -Si � B � N � -5.43 -16.59 x 2.79
sj-Si � B � N �
[144]

-5.41 -16.53 x+0.09 2.77

mix (3 ¨ h-BN
+ á -Si � N � -5.56 -16.14 -6.13 2.83� (sj-Si � B � N � )
- E(mix)

+0.14 -0.39 +0.22� ( á�� -
Si � B � N � ) -
E(mix)

+0.15 -0.45 +0.13

Table 3.1: Potential energies and densities of
crystalline polymorphs in the Si � B � N � -system.
The potential energies � < and � > are cal-
culated using interaction potentials A and B
and are given in eV/atom, the densities are
given in g/cm

�
. The crystal structures of

so-called the á?� -Si � B � N � -polymorph and for
the sj-Si � B � N � -polymorph were taken from
refs. [89] and [144], respectively.The quantum
mechanically calculated energies ���${ è � are
taken from refs. [89] and [47], respectively.
The quantum-mechincally calculated energy
of the á�� -Si � B � N � -polymorph is � = -189.85
eV/atom.[89]
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Name Analytical Form Parameters Units

Morse �×'*�6�S¨&|?��: � <  } � «  « ² � � � � :A} ��� , ¦ , � @ eV, Å  
 , Å

general 1 �×' < « ¨ <  « ��~ ¹s+�D eV ¨ Å, Å

damped dispersion �×' � Å��« ¸ ¨ + : � <  y � « ¨ � ¸ ÷ @ � y � « � D�� - T ¸ +�n ¸ eV ¨ Å ¸ , Å  

two-body Taper C Ø '×� � � � � 5u�  Ø¨ | � m ¨3� Ø ó~:40É� � 5xó � � �p¨4� �� :3)�� � �5 ó � � 5 � � ó � �� �p¨|� �ófKI)�� � �5 � � ó � 5 � �� �Z¨3� �� KI) � �5 � �� ¨3�ó~:3) � �5 � �� ó � Ø� � 0 � 5 � � � }

� 5�+ � � Å, Å

(a) Functional form

Interaction Partners Type of Potential Parameter Value
N–B Morse �6� 5.50007¦ 2.84990� @ 1.32521
N–Si Morse � � 3.88461¦ 2.32660� @ 1.62136
N–N damped T ¸ 16691.4

dispersion n ¸ 0.50328
N–N general 1 ¹ 2499.01D 0.36029
B–B general 1 ¹ 1231.52D 0.36119
Si–Si general 1 ¹ 177.510D 0.63685
B–Si general 1 ¹ 643.332D 0.43302
Two-body taper � 5 4.30000� � 5.80000

(b) Parameter set

Table 3.2: Functional forms and parameters of the two-body potential q < �j�9� of Gastreich et al.
[50].
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Name Analytical Form Parameters Units

Buckingham �;'Á¹H¨4»¬¼,½p� � �9ç¶DÉ� ¹ , D eV, Å

Damped Dispersion �×' � Å �« ¸ ¨N+å: � <  y � « ¨ � ¸ ÷ @ � y � « � D�� - T ¸ +�n ¸ eV ¨ Å ¸ ,
Å  


Two-body Taper C Ø 'Ô� � � � � 5P�  Ø¨ | � m ¨3� Ø ó~:40É� � 5xó � � �p¨4� �� :3)�� � �5 ó � � 5 � � ó � �� �Z¨3� �ófKI)�� � �5 � � ó � 5 � �� �Z¨3� �� KI) � �5 � �� ¨3�ó~:3) � �5 � �� ó � Ø� � 0 � 5 � � � }
� 5 , � � Å, Å

Stillinger-Weber
three-body

� 'þ¹Ö¨ < � * + ~« p �  «�� ò Ï p � ó ~« p !  «��
ò Ï p ! - ¨���¬ËS�|�$x§� � �¬ËS�¶�$x�@4��� � ¹ , D ,� � } � 
 � ,� � } � 
 � , x @ eV ¨ �1¦2� �� ,

Å, Å, Å,
deg

Table 3.3: Functional form of the three-body potential q > �j� 5 7 +�� 5  +ex 5 7  � .

Type of Potential Param. Value
N–B Buckingham ¹ 29685.43D 0.137782
N–Si Buckingham ¹ 10959.748D 0.190292
N–N damped T ¸ 20.4

dispersion n ¸ 1.23
B–B Buckingham ¹ 451.46D 0.29467

Two-body damping � 5 3.55� � 4.55

(a) Two-body part. Charges are: q(Si)=+1.995085,
q(B)=+1.49631375, and q(N)=-1.49631375.

Param. Val.
B-N-B ¹ 9.047D 3.705x @ 120.0� � } � 
 � � 
 � 3.750
N-B-N ¹ 9.047D 3.705x @ 120.0� � } � 
 � � 
 � 3.750
N-Si-N ¹ 65.36D 3.9068x @ 109.47� � } � 
 � � 
 � 3.750
Si-N-Si ¹ 65.36D 3.9068x @ 120.00� � } � 
 � � 
 � 3.750

(b) Three-body part. Stillinger-
Weber type functional form.

Table 3.4: Parameter set of the three-body potential B q > �j�|5 7å+�� 5  +ex 5 7  � .



26 CHAPTER 3. COMPUTER SIMULATION METHODS



Chapter 4

Properties of configurations

4.1 Structural properties

4.1.1 Pair correlation functions

We calculate the X-ray and neutron scattering
pair correlation functions � !Z� � ����� for each
model/configuration via

� !Z� � �����N' õ< � >�� < � > M !Z� �< M !Z� �>�uM � � � <E> �����
(4.1)

where the partial pair correlation functions
are: � <E>!Z� � �����N' �  E�� > R D <?> ����� � D @ T - (4.2)

In equation 4.1 � < and � > are the concentra-
tions of the atom types A and B and M !Z� �< andM !Z� �> are the scattering factors/lengths of the
atoms A and B for X-ray and neutron scat-
tering, respectively. Note, that the scattering
factors for X-rays depend on the wavelength
of the incident X-ray beam. In equation 4.2,D @ ' � U is the number density and D <E> is the
number of B-type atoms per unit volume at
distance � from an A-type atom at the origin.

4.1.2 Topology and local geometry

We determine the topology of the amorphous
network from the bonding graph � .1 The
bonding graph � contains the atoms as the
vertices of the graph and the bonds < 587 #nÛ�jé¤+
?n� between atoms é , ? form the edges of
the graph. We drew bonds between two
atoms é , ? of types i�5 , iu7 , respectively, if
the interatomic distance fell into an interval

1See Cormen [29] for a introduction to graph theory
and graph algorithms.

R � � 5����ji�5"+�iu7¶�Q+�� � } �x�ji"5�+�iu7¶� T . Note that two con-
nected atoms were nearest neighbors. In
the Si-B-N system only Si-N and B-N nearest
neighbor distances are observed experimen-
tally and thus we chose � � 5�� (Si-N)= � � 5�� (B-N)
= 1.0 Å and � � } � (B-N) = 1.8 Å and � � } � (Si-N)
= 2.1 Å as the distances that defined the con-
nectivity of the bonding graph � .2 The near-
est neighbor atoms ? of an atom é defined the
first coordination sphere TsO¡:å�jé"� of atom é . The
first coordination number T§ôX:å�jé"� is the num-
ber of nearest neighbors of atom é . The mean
coordination number

è Tfô©:å�ji�5P�S' :ôJ�ji 5 � � � � % �õ 5 ÷ 
 T§ôX:å�jé"�Q+ (4.3)

is the average number of atoms surrounding
an atom of type i 5 . To distinguish between dif-
ferent coordination numbers of the atoms we
calculated the distributions of first coordina-
tion spheres o � 
 �� % ��&2� for types i"5 = Si, B or N.
For silicon and boron we determined the oc-
currences of SiN � -( &H' :A-3-3- m ) and BN � -( &H':A-3-3- m ) coordination spheres and for nitrogen
we considered the N(Si � B �¬�� ) ( & ' :A-3-3- m ,� Fú& ) coordination spheres and the distri-
butions o � 
 �� ��&�+ � � . Note that in the case of ni-
trogen 36 different coordination spheres were
considered. We analyzed the geometry of the
different coordination spheres TsOc�ji�5"+	&n� using

2For the other chemical systems, that were investi-
gated in this thesis, the minimum and maximum dis-
tances employed are given at the appropriate places; in
this section details for the Si-B-N system are given.

27
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Pair � � �	�� 5�� � � �	�� } �
B-B 2.0 2.9
B-Si 2.0 3.2
Si-Si 2.0 3.2
Si-B 2.0 3.2
N-N 2.0 2.9

Table 4.1: Distances used in the determination
of the second coordination spheres of atoms of
type i"5 surrounded by next nearest neighbors
of type iu7 in a-Si � B � N � . All distances are given
in Å.

the angular distribution functions,¹Õ� ì �$x(+	&n�S':ôJ�ji"5P�p¨¶& � � � � % �õ 5 ÷ 
 �õ7Z� Å ] � � % � �¤�
õ � Å ] � � % � �¤��� �$x

� x 5 7  �Q-
(4.4)

We used two different procedures for the de-
termination of the second coordination sphere
of next nearest neighbors. In the topological
procedure, we determined these next nearest
neighbors of atom é from the neighbors

·��T�O¡:å��?2� of the neighbors ? � T�O¡:å�jé"� of atomé . In the geometrical procedure we determined
the next nearest neighbors of atoms é by count-
ing all atoms ? , with interatomic distances �I587
falling into intervals R � � �	�� 5�� +�� � �	�� } � T . Table 4.1
summarizes the distance criteria employed.3

Note that the geometrical and the topological
procedure gave similar results.

Ring determination

We determined the rings in the structure from
the bonding graph � by finding the short-
est path from neighbor ? � TsO¡:å�jé"� to neigh-
bor

·w� TsO¡:å�jé"� of atom é , where atom é was
excluded from the shortest path search. We
searched for rings containing at most � � } � '�A�

atoms and excluded those rings of size ��� ,
whose vertices where already found in a ring
of smaller size � 
 _ ��� . Next we describe
the details of the ring determination algorithm
(RDA) and ring counting procedures used in
the thesis.

3B-N and Si-N next nearest neighbors were not ob-
served in our simulations.

The RDA uses the bonding graph � of the
configuration as input. Note that � is an
undirected graph. For each vertex ù95 � � ,
we determine the shortest path Cm�jùÛ71+3-3-3-¶+�ù  � 4
of length æ ' �6�ji�� from neighbors ù¶7 �T�O¡:å�jù 5 � to other neighbors ù  � TsOc�jù 5 ���'Ôù 7 .
Here T�Oc�jùI5P� is the coordination sphere of ver-
tex/atom ù 5 . In the RDA, we set the initial
maximum ring size �6��)9�c';K and increase the
maximum ring size to �6�jgh¦ � �%' �A�

in unit
steps. For a fixed ring size �6�ji�� , we deter-
mine for each vertex ùå5 , the shortest path fromù 7 to ù  by a breadth first search, omitting ù 5
from the search procedure, of course. Each
time, we find a shortest path Cm�jùÛ71+3-3-3-4+�ù  � ,
we check whether an already existing ring�6�jù 
 +3-�-�- ùÛ��� , æ _ �6�ji�� , does not contain all
vertices ù � � Cm�jù 7 +�ù  � . If we find that all
vertices ù4� � C��jù37å+�ù  � are not contained in
a smaller ring, we add the path Cm�jù 7 +3-3-3-4+�ù  �
to the list of known rings. After the maxi-
mum ring size has been reached, the number
of known rings ô « 5�� � � , is the number of small-
est rings in the structure. Since we are analyz-
ing a ternary chemical system, we additionally
assign to each vertex ùå5 a ’color’ � 5 according to
the element type of atom ùå5 , and characterize
the structure by

1. the total number of rings.

2. the number ô v �jæp� of rings of size æ .

3. the composition of the rings Tc�?�POAé"� ,T �E� Ã � and T �E��ô%� , where T �E� � � is the
number of atoms of element X in a ring
of size æ .

Since the structural models contain different
numbers of vertices/atoms, we normalize our
data to the number of smallest rings in the
structure, and thus show:o v �jæp�N' ô v �jæp�ô « 5ý� � � + (4.5)

the relative number of rings of size æ ando Åv �jæp�w' ô Åv �jæp�ô v �jæp� (4.6)

the relative number of rings of size æ with a
specified composition äT with respect to total
number of rings ô v �jæp� of size æ .

4A shortest path �`��� p7�(�(�(�(� � F�� between to vertices � p
and � F is the minimum number of edges one has to tra-
verse to get from vertex � p to vertex � F .



4.1. STRUCTURAL PROPERTIES 29

Identification of Si-N-B building units

In a-Si � B � N � , the interesting question arises,
whether the models could be synthesized
from Si-N-B building units, which repre-
sent the precursor molecule TADB. We deter-
mined the maximum number of Si-N-B build-
ing block by mapping this problem to the
maximum cardinality matching (MCM) prob-
lem. In the MCM problem one wants to find
the maximum number of edges of a graph� that do not share a common vertex. In
our case, the graph � is the graph con-
taining only silicon and boron atoms as ver-
tices, and we drew edges between a silicon
and a boron atom, if these atoms were con-
nected by a common nitrogen atom. Note
that no edges between two silicon or two
boron atoms are drawn. Below we will show
that the above mapping to the MCM problem
allows us to determine the maximum num-
ber of Si-N-B building units within the Si-B
graph. Note, that the problem can be conve-
niently solved using the LEDA library func-
tion MAX CARD MATCHING [108].

Above, we mentioned that the maximum
number of Si-N-B building units from which a
structural model can be generated in principle,
can be calculated from the maximum match-
ing of the cation connectivity graph � <E> . In
the graph � <E> , silicon atoms are vertices with
color ¹ and boron atoms are vertices with
color

Ã
. The edges of the graph � <E> are

drawn from ¹ to
Ã

colored vertices, that are
connected via a common nitrogen atom. Note
that the nitrogen atoms are not considered
anymore and that no ¹ � ¹ or

Ã � Ã edges
are drawn, since these edges cannot be gen-
erated by Si-N-B in the first place (see figure
4.1). A maximum matching of an uncolored
graph � is the largest set of edges < , where
no two edge share a common vertex. What
has to be shown now, is that from a match-
ing M of � , the same maximum matching in
the colored graph � <?> can be reproduced.
We focus on connected graphs � <E> , and note
that for each connected graph � <E> the color-
ing of this graph is uniquely determined by
the color of a single node, since by definition
edges are only drawn between differently col-
ored vertices. Thus, the graph � can be col-
ored to produce the graph � <?> by keeping

one color fixed. We proceed in two steps now,
first showing that from a maximum match-
ing

è R of the uncolored graph � , a matchingè �<E> is induced. In the second step, we show
that

è �<?> is a maximum matching
è R<E> .

Consider a maximum matching
è R of � ,

that should is recolored. Every edge < of
è R ,

is, due to its generation of � from � <E> , ei-
ther a A-B or a B-A edge, that is allowed in a
matching

è <E> of � <?> . Since a matching
è

is
a subset of the edges of � , the edges of

è
are

also a subset of the colored graph � <E> , and
the recolored edges are also a matching

è �<?>of � <?> .
To show that

è �<?> is a maximum matching,
we note that a maximum matching

è R<E> be-
comes a matching

è � � of the graph � after un-
coloring, since only constraints are removed.
Thus

è � � is a matching of � but not necessar-
ily a maximum matching of

è
. Thus,= è R<E> =1'�= è � � =,F�= è R = + (4.7)

where = � = denotes the cardinality (the number
of elements) of the set X. On the other hand,è �<E> is an allowed matching of � <E> , andè R<E> is by assumption a maximum matching.
Thus = è R =å'�= è �<E> =2F�= è R<?> = + (4.8)

but the two inequalities: = è R =fFW= è R<E> = and= è R<E> =,F�= è RS= , are only valid if = è R<E> =å'�= è RS= ,
and thus a recoloring of the maximum match-
ing

è R of the uncolored graph � generates a
maximum matching

è R<E> of the graph � <?> .

Void determination

Our void determination algorithm has been
adapted from [10]. To identify a void inside
a given structural model, we proceed in two
steps. First we divide the cubic unit cell into
cubic sub-cells of size ¦ _§_�� , where � is
the box length of the unit cell and determine
for each sub-cell whether it is occupied by an
atom or not. The cubic sub-cells constitute a
graph � ] , that contains the sub-cells as ver-
tices and we drew edges from each sub-cell
to its 26 ( K6¨nK�¨2K � : ) adjacent sub-cells. Theæ�YPY connected components T¡5 of size ª¶5 of the
graph   ] , which contain the connected va-
cancies of the structure, are determined by a
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(b) Second coordination sphere graph with Si-
B depicted as full lines and Si-Si/B-B edges de-
picted as dashed lines.
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(c) Graph óõô ® serving as input for maximum
matching algorithm. A possible maximum
matching is indicated by bold lines.
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(d) Bonding graph with the maximum matching
indicated by rectangular boxes.

Figure 4.1: Mapping to maximum cardinality matching. Construction of cation graph   <?>
from bonding graph and results of maximum matching procedure. Filled/open symbols rep-
resent silicon and boron atoms, respectively, and nitrogen atoms are depicted as hatched circles.
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depth-first search. Note that with the above
mentioned procedure, no information about
the shapes of the vacancies is given. With
these definitions, the free volume of the struc-
ture is q K ' ¦ � � � MjM5 ÷ 
 ª|5 and the occupied vol-
ume is q � YPY ' � � � ¦ � � � M M5 ÷ 
 ª 5 . Since we also
wanted to get some measure for the size of
the voids inside the structure, we calculated
the average size �PqxYPY	� of the connected compo-
nents of the vacancy graph.

Global connectivity

The existence of molecular crystals shows, that
the atomistic structure of solid compounds
is not restricted to ’fully connected’ arrange-
ments of atoms. Furthermore, in gases differ-
ent molecules exist as stable arrangements of
atoms. Deciding from a given arrangement
of atoms, whether small molecules, medium
sized clusters or a solid exist, is not straight-
forward. Therefore we analyze the global con-
nectivity of an arrangement of atoms with the
help of the bond graph � of the configura-
tion. We determine the connected compo-
nents of the bond graph � by a depth first
search[29] and identify these connected com-
ponents as the clusters/molecules Tc5 that oc-
cur in the arrangement of atoms. Note that for
covalent amorphous networks at solid densi-
ties one usually finds one cluster that contains
all atoms.

From the different clusters found inside a
given structure, we derive some useful quan-
tities: The distribution of cluster sizes oz�PO Y � � ,
( O Y � ' :I+3-3-3-¶+	ô } � � � � . From oz�PO Y � � i�� , we ex-
tracted the average cluster size of a configu-
ration containing ô Y � clusters

O � � } �~' :ô Y � � M
ñõ 5 ÷ 
 O Y � + (4.9)

the size of the largest cluster present O � } ���ji	� ,and the number of clusters at time i , ô Y � �ji	� .
From �uoz�PO Y � ����� , the average over a large

number of configurations, one can derive the
likelihood �U�Â�PO Y � � of an atom to be found as
part of a cluster of size O Y � ,�U�Â�PO Y � �����p' O Y � ¨9�uoz�PO Y � ��� �ô } � � � - (4.10)

4.2 Bulk properties

The pair correlation functions and the topol-
ogy of structural models of amorphous sub-
stances are frequently used to validate the
’correctness’ of a structural model with respect
to experimental data. However other (bulk)
properties are also important. The simplest
one and very often the most difficult one to re-
produce by computer simulations [21] is the
mass density D � of the amorphous material.
In computer simulations that employ periodic
boundary conditions, the density is simplyD � ' aU M Î ñ ñ , where

è
is the mass of the atoms

and q YP� �^� is the volume of the simulation. For
open boundary or cluster models, the deter-
mination of the volume q Y � ; � �ÿ� « requires addi-
tional effort. We determined the density from
the average number of atoms inside spheres
of increasing radii � and plotted the densities
of the spheres vs the radius � . After some ini-
tial oscillations, the density fluctuates around
an average value up to a distance � � } � , above
which the density decreases, due to the finite
size of the cluster. We used the observed aver-
age value of the density as the density of the
cluster.

For technical applications, the elastic prop-
erties of materials are very important and thus
we have used the GULP program[44] to com-
pute the Bulk moduleÃ ' q @ ¨ ¾�� � � � � � �Pqs�� � q ¿ U ² (4.11)

of the structural models, in order to estimate
the mechanical strength of the structural mod-
els. The bulk module B is the inverse of the
compressibility + \ U\ � - ¯ at constant tempera-
ture, and high values of the bulk module indi-
cate that the volume does change only slightly,
when high pressures are applied to the sys-
tem. Even though no experimental data is
available for the a-Si � B � N � system and thus
a comparison with the experimental data was
impossible, the bulk module serves as a very
important measure for the ’stiffness’ of the ma-
terial. Note that, these properties of the struc-
tural models may depend on their location on
the energy landscape.
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4.3 Vibrational properties

The vibrational properties of amorphous sub-
stances are interesting for several reasons.

In glasses one observes strong deviations of
the � � dependence of the specific heat at tem-
peratures � _ :3) K,[5] which have been ex-
plained in terms of strongly localized low fre-
quency modes in the context of the soft poten-
tial model[45].

In the context of computer simulation, these
localized modes have been studied for soft-
sphere glasses[138], amorphous selenium[118,
116] and amorphous silica [17, 18]. One has
found that localized low frequencies exist a
agreement with the soft-potential model. Re-
cently it has been shown that the so-called Bo-
son peak in glasses can be attributed to these
localized low-frequency modes.[61]

From the chemist’s point of view, one uses
the vibrational properties to identify vibra-
tions associated with typical building groups.
Of course, this becomes difficult if the exper-
imental vibrational spectra are not well re-
solved. Computational studies can help to
clarify the assignment of the various peaks
or in general to study the contributions of
building units. Finally, vibrational and imag-
inary modes have been used to discuss relax-
ations and diffusion of (supercooled) liquids
and glasses (see chapter 2).

In the harmonic approximation, the vibra-
tional properties of a structural model can be
calculated by diagonalizing the Hessian ma-
trix �~587 ,

� Ú��587 � ä� �w' :� g 5�gm7 � � �� � Ú5 � � �7 + (4.12)

of the configuration. The elements of the dy-
namical matrix � Ú��587 are the mass-weighted
second derivatives of the potential energy �
with respect to atomic positions � Ú5 , � �7 of
atoms é , ? . If the Hessian is calculated at a
minimum of the potential energy landscape,
the 3N positive eigenvalues rx5 of the Hessian
matrix are the squared phonon frequencies � �5 .
For points on the energy landscape that are not
minima, negative eigenvalues and thus imag-
inary frequencies exist, which are written as
negative frequencies �Z5Â# ��� ¨ �z5 , by conven-

tion. The phonon or vibrational density of
states

� r�OV�!� �S' :KIô � �õ 5 ÷ 
 � �!� � �z5P� (4.13)

is a histogram of the frequencies of the vi-
brational modes observed in the structure,
and can be compared to experimental inelastic
neutron scattering data, after a re-weighting
of the intensities with the neutron scattering
cross sections. However, since no experimen-
tal data is available for a-Si � B � N � , we only dis-
cuss the phonon density of states, without re-
weighting.

4.3.1 Properties of phonons

We studied the degree of localization of modesé with frequency �Z5 of the vibrational densities
of states using the participation ratioD v � ä� �¬�!�p5u�S' VX�ô �õ7 ÷ 
 �¬ä< 57 ¨�ä< 57 � � Y[  
 - (4.14)

Here ä< 57 is the (3-dimensional) contribution
of atom ? to the normalized KIô dimen-
sional eigenvector ä< 5 . For extended modes,D v � ä� �¬�!�p5u� is of order unity and for (quasi-
) localized modes, DÉvw� ä� �¬�!� 5 � scales inversely
with the system size.

The joint contribution of elements of type Ù
( Ù ' B, N, Si) to a vibrational mode é of fre-
quency �p5 was characterized by the projected
density of statesC§��rsOEÚ��!�z5P�N' �õ 7 " ä< 57 �!�z5P��� �$# � �&% � Ú?+ (4.15)

where iu7 was the type of atom ? .
Since in a-Si � B � N � well-defined first coor-

dination spheres exist for each silicon, boron
and nitrogen atom é , we first characterized the
coordination spheres by the number of neigh-
bors T�ONC � � �Û�5 of type æ�i . These number of
neighbors TsOAC � � �Û�5 served as an index á , for
the calculation of the coordination sphere pro-
jected density of states

T§��rsO � � �¶� �!� �S' �õ 5 ÷ 
 R ä< 5 �!� � T � � Å ]å^ �(' F �% � � - (4.16)
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Note that for a given atom type i 
 ,� � Å ] � �Up"���õ7 ÷ 
 T§��rsO?� p � 7å�!� �S'ºC§� r�OE� p �!� �Q+ (4.17)

where ô©�PTsOc�ji 
 ��� is the number of coordi-
nation spheres of type i 
 . The coordination
sphere projected density of states is an esti-
mate for the contribution of local coordination
spheres to a vibrational mode with frequency� 5 .
4.3.2 Imaginary modes

As already mentioned, imaginary modes are
believed to be important for relaxations in
glasses and (supercooled) liquids. We charac-
terize the imaginary modes, which are present
only for non-minimum configurations, by the
fraction of imaginary modesMÛ5 � }�� � ä� �w' ô 5 � }�� � ä� �KIô � m (4.18)

of the configurations ä� . Furthermore, we
determine the densities of states and the dif-
ferent projected densities of states as well
as the participation ratios D v �!�z5P� of the in-
stantenuous configurations, in order to study
both the possible localization of these imagi-
nary modes as well the atomic and coordina-
tion sphere contributions to these modes. A
knowledge of the latter quantities would al-
low to find those parts of the amorphous net-
work, that contribute most strongly to relax-
ational processes.
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Chapter 5

A random close packing based
algorithm for the generation of
amorphous covalent networks

5.1 Introduction

In this chapter we will describe a newly de-
veloped method,[67] which allows us to gen-
erate amorphous covalent networks with the
help of random close packings of spheres.
These spheres mimic the anionic partial struc-
ture which occupies most of the volume of the
solid. Our approach is inspired by the obser-
vation that many simple ionic/covalent crys-
talline compounds can be formally described
as a dense packing of the ”anions”, with
”cations” occupying those voids in the an-
ionic partial structure, which agrees best with
their preferred local ionic/covalent bonding
requirements [112]. This method can be ap-
plied to large systems, is relatively fast, im-
plements the boundary conditions, and can be
adapted to a variety of covalent systems with-
out significant problems.

In the next section, we will describe our ap-
proach, followed by an optimization of the al-
gorithms in section 5.3. Finally, applications
of the method to several example systems, a-
SiO � , a-Si � N � , a-SiO �	� � N 
 ��� , and a-B � O � , will
be given.

5.2 Method

5.2.1 Outline

The goal of our approach is the generation
of structural models for continuous random
networks of a given chemical system with
specified composition. An important aspect
that distinguishes covalent compounds from

metallic ones is the fact that usually all metal
atoms can be nearest neighbors in the struc-
ture, while the stronger polarity of the cova-
lent bond usually requires nearest neighbors
to be of opposite charge. In order to take these
preferred local environments of the atoms into
account, we proceed in several steps, as shown
on the flowchart (fig. 5.1). As a first step,
we generate random close packings (RCP) of
the anions, using a modification of an algo-
rithm by Frost et al. [43] for periodic bound-
ary conditions. Next, we identify those voids
in the structure, which possess the appropri-
ate topology and geometry to host the cations.
Placing the cations into these voids is a global
optimization problem, which can be mapped
onto the task of determining the cost-optimal
subgraph of a certain graph. One should note
that this approach is a natural extension of the
packing paradigm of crystal chemistry [112]
to amorphous systems. Finally, we adjust the
bond lengths and bond angles using an (em-
pirical) interaction potential and/or a reverse
Monte Carlo (RMC) procedure[80, 107] while
leaving the topology essentially unchanged.

5.2.2 Input

In general, the chemical system consists ofô } � � � atoms, which belong to ô �*)��4� atom
types i . ôJ�ji	� is the number of atoms of typei ( ô } � � � ' � � ôJ�ji�� ). Furthermore one as-
sumes that the atoms can be divided into an-
ions and cations, belonging to the types i } andi Y , respectively. Thus, ô } ' � � ò ô©�ji } � andôsY©' � � M ôJ�ji�Y¤� are the total number of an-
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Figure 5.1: Flowchart of RCP algorithm.

ions and cations, respectively. In addition, we
usually have experimental information about
the typical distances between (nearest) neigh-
bor ions é and ? of type ª and i , �,� ����	� �jé	+
?n� ,
about feasible local coordinations of cations of
type ª by anions of various types i character-
ized by the coordination numbers æ � �uªI� and
the anion-anion distances within the coordi-
nation polyhedra, and preferred connectivities
among these polyhedra. The choice of toler-
ances about the ideal values depends on the
specifics of the algorithm. We employ� � �� } � �jé	+
?2�cW � � �@ �jé¤+
?n� ³ � � ����	� �jé	+
?n�VW � � �� 5ý� �jé	+
?2�(5.1)
and� � �� } � �jé	+
?n�VWâ� � �@ �jé	+
?2� ³ � � ����	� �jé	+
?2�cWâ� � �� 5�� �jé	+
?2�(5.2)
as parameters for the identification of feasi-
ble voids, and for the optimal placing, respec-
tively. Note that � @ , � � 5�� and � � } � need not
be equal to � @ , � � 5�� and � � } � , although they
must be chosen compatible with each other, of
course, since both reflect the local bonding of

the covalent compound. Usually, we choose� � } � and � � 5�� equidistant to � @ ,� � �� } � �jé	+
?2� � � � �@ �jé	+
?2�w'*� � �@ �jé¤+
?n� � � � �� 5�� �jé	+
?n� 'Á��� � � -(5.3)
Since we still have to add the cations to the
anion structure, for most systems the goal is
not to achieve the highest packing density
for random close packing (RCP- limit [178]), � } � ³ m �

%. Instead, we usually stop upon
reaching a prescribed (stable) packing density R ³ 01.S@ � 0 � @�_  � } � (see below).

Finally, we need appropriate energy func-
tions for the final adjustments of the structure
candidates. Since realistic model systems are
too large to allow the use of ab initio energy
calculations, one employs various empirical
interaction potentials that are usually fitted to
crystalline modifications or to results of ab ini-
tio calculations on small related systems.

5.2.3 Generation of random close pack-
ings of anions

The generation of random close packings of
anions is an adaptation of the algorithm by
Frost et al.[43] to periodic boundary condi-
tions. Initially all ô < anions are placed at
random positions ä�|5 in a periodically repeated
large cubic box of volume q,6 with an initial
packing density  6 ' ��ô } �Û5 � �Éq } �¶5 � �É��ç1q 6þ³),-/K . Subsequently, the cell is isotropically com-
pressed, leading to an eventual overlap among
some of the anions,�4587ë'�=�ä�4587�=å'�=jä�Q7 � ä�45�=2_ � � �@ �jé	+
?n�Q- (5.4)

The next step is to reduce the overlap by mov-
ing every atom é by a vector äù �87 55K¬� �jé"� : 1

äù �87 55K¬� �jé"�w' � :. � ôõ7 ÷ 
 ä�|5 7� 5 7 �u���Õ5 7Û�Q- (5.5)

Here, �6�Â587Õ'9 �n� �@ �jé	+
?n� � �4587 if �4587f_ �2� �@ �jé¤+
?n�) if � 587 L �2� �@ �jé¤+
?n� (5.6)

1For many atoms, these shifts may lead to new over-
laps, of course. For a single pair of anions this vector
shifts the anions until mutual tangency is reached.
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Next, this shifting is repeated (up to ô �:7 55K¬�
times), until the overlap rsq vanishes within
some predefined tolerance rsq � � � ,r�qÖ' :.Iô < � ôõ 5 ÷ 
 � ôõ7 ÷ 
 ���Õ587fF r�q � � � - (5.7)

This compression and minimization-of-
overlap scheme defines a compression cycle.
The compression cycle is repeated, until the
desired packing density is reached,  'l R ,
or the algorithm fails to reduce the overlap
to zero within ô �87 55K¬� attempts. In the latter
case, the algorithm performs a decompression
cycle which consists of a volume expansion
accompanied by a subsequent overlap reduc-
tion. If the new overlap equals zero, the cell
is compressed again, otherwise the decom-
pression cycles proceed until the overlap van-
ishes. Subsequently the simulation cell is com-
pressed again until the packing criterion is ful-
filled or the permitted maximum number of
decompression cycles has been attempted.

Since both the final packing densities and
the efficiency with which such a packing is
achieved, may depend on the way the cell is
compressed, we have used both a linear and
a geometrical volume schedule, q �jæXóÓ:|�['qm�jæp� � áZq;6 and q��jæ óÖ:|�§'Óá`¨9q��jæp� , respec-
tively.

5.2.4 Determination of feasible voids
for cations

Usually, the anion structure with the highest
packing density is used for the subsequent de-
termination of voids appropriate for the var-
ious cations. For each cation type i Y the al-
gorithm determines those sets of æw�ji	Y¤� anions? that define coordination polyhedra, which
correspond within some tolerances to the pre-
ferred local environment around the cation.
Starting from any anion, we first determine
all neighbor anions within a given distance.
Within this neighborhood, all sets < ' �xä� 7 	
of æw�ji�Y¤� anions are generated that contain the
starting anion, where æw�ji�Y	� is the coordination
number preferred by the cation. The center of
gravity of these anionsä� 6 ' :æw�ji�Y¤� õ 7Z� 6 ä��7 (5.8)

defines the spatial location, where a cation é of
type i�Y is to be placed, ä�¶5z'Óä� 6 .

Next, we check for each such polyhedron,
whether the cation-anion and anion-anion dis-
tances �2� � �jé	+
?2��' =�ä�|5 � ä�Q7A= are within the pre-
scribed tolerances,� � �� 5ý� �jé	+
?n� F � � � �jé	+
?2�cF � � �� } � �jé	+
?n�Q- (5.9)

This procedure is repeated for each anion as
a starting point. Finally, duplicates are elim-
inated by a comparison of the cation loca-
tions ä�|5 . One should note, that many of the
voids might be appropriate for several types
of cations, which are of similar size and prefer
the same coordination number.

5.2.5 Mapping to a weighted graph

After all voids for all cation types i	Y have been
determined, the algorithm proceeds with the
generation of a weighted graph. Usually, there
are more voids than cations of type i Y to be
placed, ô ö � 5 ± �ji�Y¤�~W ô©�ji�Y¤� . However, the pos-
sible placements of the ô©�ji	Y¤� cations are not
equivalent once we take the actual local geom-
etry of the coordination polyhedra and their
connectivity into account. Thus, we have to
find that subset of the set of voids that is op-
timal for the geometrical and topological con-
straints of the chemical system.

Mathematically, this task can be formulated
as the determination of the cost-optimal sub-
graph of a certain weighted graph.2 We con-
struct this graph as follows: All anions and
voids are chosen as vertices of various typesù �5 . We define edges < 587 between two verticesé and ? of types ª and i , respectively, if the in-
teratomic distances �x�jé¤+
?n� are shorter than the
maximum distance allowed, �2� �� } � �jé	+
?2� ,�x�jé	+
?2�VF � � �� } � �jé	+
?n�Q- (5.10)

Finally, we define a weight function = � < 587¶� for
each edge < 587 :

2Graph theoretical notation [29]: A weighted graph>
is composed of a set of vertices � %@?BA , a set of

edges C % % _ ��� % � � % �D?FE and a set of weights (costs)G �HC % % � . Two vertices are called connected, if an edgeC % % _ ��� % � � % � exists. A graph
>JI

is called a subgraph of>
, if A ILK A and E IJK E where A I

, E I are the vertex
and edge sets of subgraph

> I
, respectively. Addition-

ally we assign a type
Í

to each vertex � �% . The degree
(topological coordination number) M � ��� �% � of a vertex � �%is the number of vertices � �% of type

Í
connected to vertex� �% of type N .
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= � < 587 �S'OPPPPQ PPPPR
S � � �jé	+
?n� if �x�jé	+
?2�VF � � �� 5�� �jé	+
?n�M � �
 ���x�jé¤+
?n��� if � � �� 5ý� �jé	+
?2�cF �?�jé	+
?n�ëFâ� � �@ �jé	+
?2�M � �� ���x�jé¤+
?n��� if � � �@ �jé	+
?2�cF �?�jé	+
?n�ëFâ� � �� } � �jé	+
?2�) if �x�jé¤+
?n�ëWâ�å� �� } � �jé	+
?2�

(5.11)

Note that = � < 587|� only depends on the inter-
atomic (vertex) distance �?�jé	+
?n� of the edge < 5 7 .
The parabolic functions M � �5 � � �w'*¦95 � � ó nQ5 � ó � 5( éN';:I+¤. ) account for deviations from the ideal
distance between atoms of type ª and type i .3
The choice of the values for S � � has proven to
be important for efficiently achieving an op-
timal ion distribution. If the anion distribu-
tion is kept fixed, we can use ��' T � M � MT � ò � M as a
measure for the relative importance attached
to the cation-cation and cation-anion distance
requirements.

In order to achieve an efficient cost function,
the edge costs are normalized to the interval
[0,1].

=e�?� < 587¶�N' = � < 587¶� � 42�øÉ� D"ñ = � <  � �4VUÛ¼�� D"ñ = � <  � � � 42ÿø,� D"ñ = � <  � � -(5.12)
Summing =%�x� < 587Û� over all those edges, whose
vertices are both occupied, yields the geomet-
ric cost of the subgraph:W � � � ��� ] �S' õ� % % ��X I =e�x� < 5 7I� (5.13)

To this, we can add the topological cost of
the graph,W � � ����� ] �S' �ZYõ � � òõ 5  6�\[ � �jù �5 ���Q+ (5.14)

where ��\[ � �jù �5 �N'ÁÙ���¨ ¾ [ � �jù2�5 � � [ � �@[ � �@ ¿ � - (5.15)

Here, [ � �@ are the desired degrees of a vertex of
type ª (analogous to the preferred coordina-
tion numbers of cations and anions), and Ù � is

3We calculate the parameters ] p �_^ p �_` p and ]�� �\^ � �a` �
from the constraints: b � �p ' � �*c � �² � _ v , d Ofe(gh_i jd Ï �*c � �² � _ v ,b � �p �*c � �� %^F � _@k

� �
and b � �� �*c � �� ò Ï � _bv � l k � � .

an adjustable parameter (c.f. section 5.3). Sum-
ming

W � � � and
W � � � yields the total cost of a

subgraph,W ��� ] �S' W � � � ��� ] ��ó W � � ����� ] �Q- (5.16)

Note that the full graph and the various
subgraphs contain anion-anion, anion-cation
and cation-cation edges. In the examples pre-
sented in section 5.4, we have kept the dis-
tribution of the anions over the anion sub-
graph fixed. In that case, one can simplify the
subsequent optimizations by assigning a zero
weight to the anion-anion edges, thereby elim-
inating them from the calculations.

5.2.6 Determination of cost-optimal
subgraphs

The number of possible subgraphs is given
in general by a complicated expression (in-
volving sums and products of binomial coeffi-
cients), indicating that the number of possible
placements grows at least exponentially with
the size of the system4. As a consequence, typ-
ical deterministic graph-optimization routines
will fail for realistic problem sizes (see sec-
tion 5.2.6) and finding good cost-optimal sub-
graphs requires the use of global optimization
methods. We have chosen simulated anneal-
ing for this task [84].

Simulated annealing

Key ingredients of simulated annealing are the
moveclass, i.e. the rule according to which
new configurations are generated, and the
control-parameter schedule Tm�jæp� . Starting
from a random occupation of void vertices by
cations (represented as a dynamically chang-
ing list � ö ��ô } � � � � ) we generate a new sub-
graph (configuration) by randomly replacing
a vertex ù �� � ± of the list � ö by a new vertexù ��Û��� �nm ] , for a randomly chosen cation type
t.5 Note that both vertices have to be of the
same type. The new subgraph is accepted ac-
cording to the standard Metropolis criterion
[109]. Subsequently, the control parameter T

4E.g., for the simple case of only one type of cations,
we have fporq _ts #vu:w!xzy#|{ �*}a~!� .5If the distribution of different anion species over the
anion vertices also needs to be optimized, appropriate
moves can be included in the moveclass, of course.
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is changed according to the chosen scheduleT6�jæp� . Since the result of a simulated annealing
run usually depends on T6�jæp� , we have com-
pared two different cooling schedules, a linear
and a geometrical one, T6�jæp�N' T6��)9� �  Õ¨Pæ andT6�jæ óÖ:|��'Ó =¨9T6�jæp� , respectively (c.f. section
5.3.2).

Integer programming

In this section we describe how the determina-
tion of the cost-optimal subgraph can be trans-
formed to an integer programming problem.
Let the weighted graph � be defined by its
vertex set

m '�|åù �5 } of ô~U vertices, its edge setW ' � < 587 	 # � <  	 of ô ï edges and its weight
set � ' ��= � < 587|��	©# ���  	 . We describe the
vertex set

m
and the edge set

W
by boolean

variables �Û),+4:�	 Q �5 and S  , where Q �5 ' : , if
the vertex ù �5 of type i is occupied in the sub-
graph �@� and Q �5 'Ö) else. Similarly, S  '�: , if
both vertices of the edge <  are occupied, andS  ' ) else. With these variables the mixed
integer problem reads:

Maximize: � W � � � ' ���õ  S  �  (5.17)

Subject to the boundary conditions:�r�õ 5 Q �5 '*ô � (5.18)

for all occuring vertex types t ( ô � =number of
ions of type t), andQ �5 � S  L ) (5.19)Q �7 � S  L ) (5.20)S  � Q 5 � Q 7 L � : (5.21)

for all edges <  ' < 587 and vertices ù �5 .
Equation 5.17 corresponds to equation 5.13.
Equation 5.18 ensures that the number of oc-
cupied vertices ô �ö for each type t equals the
number of atoms ô � required by composi-
tion. Equations (5.19, 5.20, 5.21) ensure that
the boolean variables S  ' : , if and only if Q 5
and Q 7 both equal one. In other words: the
last three equations ”activate” edge <  ' < 5 7 ,
if both vertices, ù 5 and ù 7 , are ”switched on”.
For a typical optimization in which about 400

cations should be placed among 800 anions,
the whole graph � typically contains about
2000 vertices and about 40000 edges yielding
a total of about 42000 boolean variables to be
optimized. Clearly the number of possible
configurations precludes the use of a branch
& bound algorithm[29], if one is interested in
good results in a short time, and thus we em-
ploy the simulated annealing procedure de-
scribed in the previous paragraph for the de-
termination of the cost-optimal subgraph.

5.2.7 Local optimizations of structure
candidates

Typically, the configurations generated by the
algorithm described above tend to be slightly
distorted, and it is necessary to relax the
structure candidates in the final step of our
approach. In particular, the anion-anion pair
correlation function are always � -functions of
the nearest neighbor distance by construction,
and similarly the nearest neighbor peaks in
that cation-anion pair correlation function
are too broad. The local relaxation removes
these anomalies, while keeping the topology
of the network essentially intact: Depending
on the choice of the cost functions for the
relaxation, between 85% and 99% of the bonds
persist during the relaxation, and the broken
bonds essentially result in dangling bonds
with very minor structural rearrangements,
if any at all. Figure 5.2 shows a ”before” and
”after” picture of the pair correlation function
for the relaxation of a-SiO � using a simple
cost function with 96% percent of the bonds
preserved.

Usually, one chooses the potential energy
as the cost function for the local optimiza-
tion involved, using e.g. the conjugate gradi-
ent method. Since realistic systems are too
large for optimizations based on ab initio en-
ergy calculations, we employ either interac-
tion potentials based on fits to ab initio calcu-
lations on small systems related to the chemi-
cal system of interest, or simple empirical po-
tentials, where we fit the parameters to related
binary or ternary crystalline structures.

If experimental data of sufficient quality
are available, one can also perform the relax-
ation using the reverse Monte Carlo method
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(RMC) [107]. Here, the cost function consists
of the difference between the computed and
measured radial distribution functions, plus
penalty terms that prevent unphysical atom-
atom distances.

Figure 5.2: Comparison of pair correlation
function � � ����� calculated from the structural
models of a-SiO � before and after the local re-
finement. The upper curves show both the ex-
perimental data (smooth curve) and the cal-
culated pair correlation function after refine-
ment, the lower curve is the pair correlation
function before refinement. Note that 96% of
the cation-anion bonds are identical in the ’be-
fore’ and ’after’ structure models.

5.3 Analysis and optimization of
the algorithm

In this section we analyze the characteristics of
the two main parts of our algorithm. First we
discuss the behaviour of the RCP-algorithm
(section 5.3.1) and second we elaborate on the
features of the determination of cost-optimal
subgraphs (section 5.3.2). In the final subsec-
tion (section 5.3.3) we comment on the over-
all run-time characteristics of the whole algo-
rithm.

5.3.1 Generation of random close pack-
ing of anions

We investigate the dependence of the RCP-
algorithm on the size of the system by per-
forming five runs each for every system sizeô ' K1. , m � , :4. � , .10 m , 0,:4. , :3)å. � and .I) �A� of
spheres of equal size for four different values
of the compression rate á ' ),-ÿ:I+	),-8)É:I+	),-8)1)É:
and ),-8)1)1)É: , applying a linear compression
schedule.
Fig. 5.3 shows the total number of shifts\3Y � � ���P R � needed to reach a given packing
density  R for several different values of á . In
figure 5.4, we show, as a double logarithmic
plot, the total number of shifts \¶Y � � � neces-
sary to reach the (color-coded) packing frac-
tions  �5 . The results show, that a lowering
in decompression rate does lead to an over-
all increase of calculation time. This fact is
readily explained by noting that a decrease
of (de-)compression rate results in an increase
in the number of minimization-of-overlap cy-
cles which is not compensated for by the re-
duced number of shifts required to minimize
the overlap. Additionally, the straight line
fits in the double-log plot ( \|Y � � � í ô�� ) show
that the number of shifts required to minimize
the overlap depend on the number of atoms
(spheres) only sublinearly ( � ³ ),-/K ) and that
these exponents are basically independent of
the applied cooling rate á . We would like to
add, that the results of an investigation using
a geometric compression schedule yielded al-
most the same results.

5.3.2 Determination of cost-optimal
subgraph

We analyzed the properties of our algorithm
for a test system of composition Si � � O ¸ � N � @ .
Here, we treat silicon atoms as cations, and
oxygen and nitrogen atoms as anions, respec-
tively. The preferred coordinations of silicon
by the anions, oxygen by silicon, and nitrogen
by silicon are four, two and three, respectively.
The distance parameters employed are shown
in table 5.1.

Both �2� �@ and �å� �@ are set equal to the experi-
mental values � � ����	� . The parameters � � ò � ò� 5�� , � � ò � ò� } � ,
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� � M � M� 5�� , and � � M � M� } � are given by� � ò � ò� 5�� � � } � 'º� � M � ò� 5�� � � } ��� .É��: � �$� ª2�\� � M@ ��� (5.22)

and � � M � M� } � ' � � M � ò� } � � .É��: � �$� ªn�\� �
ò@ ���� � M � M� 5�� ' � � M � ò� 5�� � .É��: � �$� ªn�\� �
ò� 5�� ��� (5.23)

Here, � � M@ �P' :3)��2- � {��¶� is the ideal bond an-
gle at silicon, � � ò@ denotes the optimal bond
angle at an anion of type i } ( � �@ �P' :4.I),-8)��|�
and �v�@ �P' : � ),-8) � � ), and � � ò� 5�� is the minimum
allowed bond angle at an anion of type i }( � �� 5ý� �P'��I),-8)��|� and � �� 5�� �P'��I),-8)��|� ).

Atoms � @ � � } � � � 5�� �|���	�
Si-O 1.61 2.11 1.11 1.61
Si-N 1.72 2.22 1.22 1.72
O-O 2.63 3.45 1.98 2.63
N-O 2.72 3.54 2.07 2.72
N-N 2.81 3.63 1.99 2.81
Si-Si 3.00 3.97 1.20 3.00

Table 5.1: Geometric parameters for edge
weights function f 
 � � . All lengths are given in
Å. Experimental values �Û���	� are taken as aver-
age interatomic distances from crystalline ref-
erences substances Ù -quartz, Si � N � O and á -
Si � N � .

The test runs were organized as follows:
First, several volume schedules were tested
concerning their efficiency in reaching the de-
sired packing fraction  R . Next, two of these
schedules were employed to generate ten dif-
ferent anion packings each. For each pack-
ing, three different values ���É� � '*),-/K2+	),- � +	),-/0 ˚¹
were used to identify feasible voids, followed
by the generation of the void graph6, where
the weights of the edges were varied ( � ':I+¤.2+3-3-3-¶+¤0 ). Finally, four different annealing
schedules were tested for each weighted void
graph, and for each schedule twenty optimiza-
tion runs were performed. In each case, the
initial control parameter T @ was set to .2-8) c.u
(units of cost), and after ten Monte-Carlo cy-
cles7, the control parameter was updated ac-
cording to the chosen cooling schedule.

In a first step, we investigated the effect of
varying the criterion employed for the void
identification, ���â' ),-/K Å, ),+ � Å, and ),-/0 Å.
Figure 5.5 shows æ ö � 5 ± as a function of packing
density  R for different values of ��� . Clearly,
the larger ��� and the higher the packing den-
sity  R the more suitable voids can be found.
Of course, since many of the new voids will
be of poor quality, it is not obvious that choos-
ing larger values of e.g. �6� will result in better
final configurations. Furthermore, while the
number of voids per cation æ ö � 5 ± is larger for
higher tolerances and a larger number of pos-

6We did not vary the parameters c � %^F$� �
ò Ï in this pro-

cess, since these values are essentially dictated by the
chemistry of the system.

7One Monte-Carlo cycle (MCC) corresponds to f � � %��attempted cation exchanges.
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Figure 5.5: Dependence of the number of iden-
tified voids per cation æ ö � 5 ± on the packing
fraction  R for different tolerances ��� .

sible voids should give the system more flex-
ibility to find better solutions, an increase inæ ö � 5 ± results in a considerably larger config-
uration space that needs to be explored and
might result in very long run times of the
global optimization. The analysis of the con-
figurations produced by the subsequent sim-
ulated annealing runs (c.f. table 5.2) revealed
that the best energies (lowest costs) were ob-
tained for a slow geometrical cooling sched-
ule, provided that the geometrical tolerance��� is chosen suitably large: The choice ���%'),-/K Å did not produce enough useful voids
( æ ö � 5 ± ';),- { � :I-/0 ), to allow a placement of all
cations, while ���('Á),- � Å ( æ ö � 5 ± ';:I- { � K2- � ) al-
ways produced optimal graphs that still con-
tained (highly undesirable) face-sharing tetra-
hedra ( � � �3�¤��� ] �Â'×),-/Kå{IK � ),- � )1) ). Finally, for����'G),-/0 Å ( æ ö � 5 ± ';K2-8) � m -8) ), most neighbor-
ing tetrahedra shared only corners, with the
rest exhibiting edge-connectivity ( � � �3�	��� ] �V'),-/K1.å{ � ),-/K � ) ). Thus, the size of the graph did
not pose a serious problem, and the availabil-
ity of more suitable voids (even though many
would only be of marginal quality) allowed
us to strongly reduce the number of unfavor-
able polyhedra connections like face- and edge
sharing.

Regarding the ratio � ' T � � M � M �T � � M � ò � of theS -parameters used to assign weights to the
edges, we find that the results also depend on
the choice of this ratio. Testing �H'ü:I+¤.2+3-3-3-¶+¤0
(c.f. table 5.2) shows that a large ratio of 0��S:
yielded the best results.

Finally, we checked, to what degree �Õ� � �

� d � � � 5�� � � � } � � y � � �
0.50 5.0 2.26 0.329 0.327
0.50 4.0 2.26 0.330 0.327
0.50 3.0 2.26 0.332 0.329
0.50 2.0 2.22 0.335 0.332
0.50 1.0 2.15 0.342 0.339
0.40 5.0 1.58 0.375 0.373
0.40 4.0 1.59 0.376 0.374
0.40 3.0 1.58 0.379 0.376
0.40 2.0 1.57 0.383 0.381
0.40 1.0 1.59 0.395 0.392

Table 5.2: Dependence of best energies � y � � �
and corresponding minimum silicon-silicon
distances � � 5�� (given in Å) on ��� (given in Å)
and ratio � for the slowest geometrical cool-
ing schedule. 200 optimization runs are in-
cluded for every value of ��� and � ( :3) dif-
ferent random packings, with .I) optimization
runs each). � � � } � is the average cost of the
observed low-cost subgraphs.

should contribute to the cost of an edge. We
found that large contributions of � � � � were
detrimental (even ÙZ��' ),-ÿ: was already ”too
large”), and small ones were essentially ”neu-
tral”. Thus we have set Ùp�¡'×) in the applica-
tions described in section 5.4.

We therefore conclude that for our test
system the geometrical tolerance factor ���
should lie in the range of ),- � � ),-/0 Å and that
a geometrical cooling schedule should be used
in conjunction with a low cooling rate   ( ),-&� �
c.u/ :3) MCC proved to be slightly better, on
average, than ),-&�I) c.u/ :3) MCC). Furthermore,
very short cation-cation edges should be pe-
nalized more strongly than cation-anion edges
that are too short, i.e. a large ratio � should be
used.

5.3.3 Run-time analysis

The overall run-time of the RCP-algorithm can
be deduced from figure 5.6, showing that the
wall-clock time i�«(; � scales with system sizeô 'Àô } � � � as rm��ô��9� [with r ' .2-ÿ: � .2- � ].
From our implementation we recognize that
the time required to minimize the overlap
scales as r6��ô � � . The results of section 5.3.1
showed that the number of shifts required
to minimize the overlap for a given fixed
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Figure 5.6: Run-time behaviour of RCP-
algorithm. Wall-clock run time in seconds
for different system sizes N and compression
rates á needed to reach a packing fraction R =57%. Straight lines are fits to a power lawi «(; ��í*ôn� . The fit results in r ³ .2-/K2-
volume introduced an additional size depen-
dence \ �:7 5�K3� íüô @�� � . We would like to stress,
that the additional exponent � arises from the
definition of the optimization problem. It is
probably not related to the particular imple-
mentation but points to inherent aspects of the
optimization problem.
The void determination is basically rm��ô%� , and
the generation of the weighted graph goes asr6��ô � � . Finally, one MC-cycle in the simulated
annealing is of order r6��ô � , and the number
of MC-cycles needed to generate a satisfactory
cation placement depends on the cooling rate  . Since the determination of the cost-optimal
subgraph is NP-complete, one would have
to choose, in principle, a logarithmic cooling
schedule in order to reach the global optimum
with probability one [51].

5.4 Applications to selected
chemical systems

We have applied our method to the systems
a-SiO �	� � N 
 ��� , a-SiO � and a-Si � N � and a-B � O � .
Each system consisted of about 1000 atoms.
Ten packings were generated and for each
packing the best subgraph out of twenty sim-
ulated annealing runs was submitted to the
local optimization procedure. The local opti-
mizations were performed using the program
GULP[44] employing an empirical interaction

potential, whereas local optimizations using
the reverse Monte-Carlo method were per-
formed with the program RMC [124]. Note
that our RMC-procedure is not a global search
but only a quench (T=0K in terms of simu-
lated annealing). Thus, only minute atomic
displacements take place leading to the clos-
est minimum of the cost-function employed:
For the local optimizations with empirical po-
tentials and RMC, the shifts of the atoms were
below ),-8)åK Å/atom and ),-8)1)åK Å/atom, respec-
tively. In the examples presented, the overall
topology remained intact with 87% to 97% of
the bonds being preserved throughout the re-
laxation.

5.4.1 a-SiO �
The local optimizations were performed by
successive application of a conjugate gradi-
ent optimization utilizing the well-known BKS
potential [15] and a quench-RMC procedure
using the experimental data taken from ref.
[177]. Our results show, that silicon is mostly
tetrahedrally coordinated by oxygen and oxy-
gen is mostly two-fold coordinated by sil-
icon (mean coordination numbers MCN(Si)
= K2-&�1. /MCN(O)= :I-&� m ). This is in excellent
agreement with the experimental value of
MCN(Si) = 3.8 - 3.9 [177]. Figure 5.7 com-
pares the experimental pair correlation func-
tion (from neutron scattering) with the aver-
age pair correlation function derived from our
models.8 Note the remarkable agreement be-
tween simulation and experiment. Addition-
ally we would like to point out that the aver-
age density of about 2.5 g/cm

�
is within 10%

of the experimental value.9 Very similar re-
sults were found when we employed a sim-
ple Lennard-Jones type potential for the re-
laxation (see chapter 7) instead of the BKS-

8In all figures, the correlation functions derived from
the models are normalized such that the integral over the
function agrees with the integral over the experimental
curve.

9Of course, our algorithm would allow us to adjust
the overall density of our models to achieve close agree-
ment with experiment. However, one should note that
a) experimentally measured densities of amorphous sys-
tems often tend to systematically underestimate the den-
sity of the ”ideal” (defect-free) material, and b) the ob-
served density often depends on the details of the gen-
eration. Thus, we have not performed a fine-tuning of
the density of our models.
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Figure 5.7: Pair correlation function for a-SiO � .
Experimental data was taken from reference
[177]. Curves are shifted for clarity. Units
of the � -axis are barns ¨ Å �� (taken from ref.
[177]). The bottom curve is the plot of the dif-
ference D � 5 �� ����� - � ���	�� ����� .
potential.

5.4.2 a-SiO �	� � N 
 ���
The local optimizations were performed using
an empirical interaction potential fitted to the
crystalline structures Ù -quartz, á -Si � N � and
Si � N � O, only10 , followed by a RMC-quench
based on the experimental data from X-ray
scattering[63]. In the final structures silicon
exhibited tetrahedral coordination by the an-
ions ((MCN(Si) = 3.68), nitrogen was mostly
trigonally planar coordinated by silicon atoms
(MCN(N)=2.68) , and O was mostly two-fold
coordinated by Si with an Si-O-Si angle of
about : � ) � . More than 90 % of the SiO � �� N �
tetrahedra were connected via corners, but
some edge sharing also occurred. These re-

10For cation-anion interaction, the potential is a com-
bination of Coulomb and Lennard-Jones terms, and a
soft sphere potential ( ��� c c � ) was used for anion-anion-
interactions. (For details of the potential see table 7.1 in
chapter 7)
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Figure 5.8: Comparison of experimental[63]
and calculated X-ray pair-correlation function
for a-SiO �	� � N 
 ��� . In the experimental data, the
peak at .2-ÿ: Å is clearly a ghost peak, and the
same probably holds for the smaller one at .2- �
Å [63]. Curves are shifted for clarity. Units
of the � -axis are Å �� (taken from ref. [63]).
The bottom curve is the plot of the difference
D � 5 �! ����� - � ���	�! ����� , where we have excluded
the range 2.1 - 2.4 Å(ghost peaks) from the dif-
ference plot.
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Figure 5.9: Pair correlation function for a-
Si � N � . The experimental data was taken from
[72]. The peak at .2-/K Å is supposed to be a
ghost peak [3, 72]. Curves are shifted for clar-
ity. Units of the � -axis are electronic units per
unit of composition ¨�� m  
 (taken from ref.
[72]). The bottom curve is the plot of the differ-
ence D � 5 �! ����� - � ���	�! ����� , where the ghost peak
at 2.3 Å has been excluded from the difference
plot.
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Figure 5.10: Pair correlation function for a-
B � O � . The experimental data was taken from
[153]. Curves are shifted for clarity. Units
of the � -axis are barns ¨ Å �� (taken from ref.
[153]).The bottom curve is the plot of the dif-
ference D � 5 �� ����� - � ���	�� ����� .
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sults are in good agreement with experimental
data from NMR-spectroscopy [88].

When we compare the experimental X-ray
pair correlation function of a-SiO �	� � N 
 ��� [63]
with the results from our models, we find a
quite satisfactory agreement (fig. 5.8). One
clearly distinguishes three peaks in the pair
correlation functions D ! (R) at about :I- m 0 , .2- m
and K Å, which belong to Si-O/N, O/N-O/N
and Si-Si interatomic distances, respectively.
The experimental pair correlation function ex-
hibits a further broad peak at about 4.2Å,
which is also present in the simulated struc-
ture and can be associated with third nearest
neighbor distances Si-N/O.

5.4.3 a-Si � N �
The local optimizations of structural models
for Si � N � were performed by utilizing the
interaction potential B [48] (see also section
3.9, followed by a RMC-quench based on the
experimental data from X-ray scattering[72].
Analysis of the structures showed that the lo-
cal environments can be classified as tetra-
hedral for silicon and mainly trigonally pla-
nar for nitrogen (with MCN(Si) = 3.77 and
MCN(N) = 2.83), respectively.

Concerning the pair correlation function,
the agreement with experimental data[72] is
quite remarkable. All peaks which are ob-
served experimentally are also found in the
results of our simulations (see fig. 5.9). The
relatively sharp peak at about 1.7 Å clearly
refers to Si-N interatomic distances, while the
slightly broader peak at 3.0 Å represents N-
N and Si-Si distances. Additionally the peak
at 4.0 Å is also visible in the simulation, and
is dominated by third nearest neighbor Si-N
distances. The small shoulder at about 2.6 Å
in the pair correlation function for the simu-
lated structure is also observed in the exper-
imental data, and is associated with Si-Si in-
teratomic distances stemming from edge shar-
ing SiN � tetrahedra. The average density of
our structural models is .2- {I0 g/cm

�
. This

agrees well with the experimental values that
vary between .2- m g/cm

�
and .2- � g/cm

�
, de-

pending on the reaction conditions during the
deposition[3].

5.4.4 a-B � O �
We generated five different structural mod-
els for a-B � O � using for the local optimiza-
tion a combined application of conjugate-
gradient optimization and a quench-RMC pro-
cedure. The conjugate-gradient optimizations
employed the interaction potential B1 of refer-
ence [164], and the experimental data (for the
RMC) was taken from reference [153]. In fig-
ure 5.10 we show the experimental and sim-
ulated pair correlation function as obtained
from neutron scattering. One clearly distin-
guishes three peaks at 1.35 Å, 2.6 Å and 3.8
Å in both the simulation and experimental
curves. A further analysis shows, that these
peaks correspond to B-O (1.35 Å), B-B/O-
O (2.6 Å) interatomic distances. The peak
at about 3.62 Å can be attributed to next-
nearest neighbor B-O interatomic distances.
Furthermore our results show, that boron is
mainly trigonally planar coordinated by oxy-
gen (MCN(B-O) = 2.82) and oxygen is two-fold
coordinated by boron (MCN(O-B) = 1.91). The
average density of our models is 1.78 g/cm

�
,

quite close to the experimental value of 1.8
g/cm

�
[104].

5.5 Discussion

As we have mentioned earlier, we do not
require the packing fraction of our random
close packings to be close to the RCP-limit of � } � ³ 64 %. Of course, in principle, our al-
gorithm does reach this limit after sufficiently
long times, and test runs with small systems
show that we also find crystalline packings in
the end. No stable packings (with respect to
the moveclass of our algorithm) are found be-
tween

m �
% and ca. {Û) %, where crystalliza-

tion (to bcc or fcc packings) occurs. Similar re-
sults had been obtained by Frost et al.[43] for
small clusters using the analogous algorithm
for clusters11.

In the literature, several algorithms have
been proposed for the generation of random
sphere packings with periodic boundary con-
ditions close to the RCP- limit[101, 100, 28].
Among these, one by Clark and Wiley[28]

11The first incarnation of this algorithm goes actually
back to work by Stillinger[159] and Finney[38].
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shows the greatest resemblance to ours, since
their rescaling of the radii has the same effect
as our rescaling of the simulation cell. In order
to accelerate the convergence to high densities,
they introduce, in addition, random displace-
ments of the atoms, analogous to adding heat
to the system. We find that such moves do im-
prove the speed of our algorithm, too, but only
for densities above the 0 � % range, which usu-
ally are not of interest to us.

In this context, one should note that the
packing fractions in our algorithm usually
reach a plateau at some point, where the pack-
ing fraction oscillates between about 01. % and0 � %. Interestingly enough, hard-sphere liq-
uids in mode-coupling theory exhibit a critical
density of  Ea Å ¯Y ³ 52.5 % [59], and Rintoul
et al. [125] show that a melting/freezing range
for hard spheres exists between  Kº³ � �2-/0 %
and  � ³ 0 � -/0 %. Finally, the experimentally
observed transition from an (ergodic) hard-
sphere liquid to a (non-ergodic) solid takes
place at  ���	�Y ' 0å{n- � % for a gel consisting of
spherical particles (diameter ca. .I)1) nm) [165].
This might offer some explanation, why both
the geometrical and the linear schedule for
volume compression are similarly efficient in
generating random close packings with  �R ³010S@ .

Combining random packings of anions with
placements of cations in feasible voids has
been attempted for amorphous ionic models
of yttrium iron garnet (YIG) by Lines[95]. He
employed a sequential addition algorithm of
anions and cations by building a cluster of an-
ions (with open boundary conditions) while
concurrently placing the cations into existing
voids defined by at least three anions. The an-
ions are added subject to the condition that
they touch at least three neighboring ions.
However, after the cluster size reaches sev-
eral hundred atoms, the algorithm terminates,
since it is no longer possible to maintain the
correct composition of the system. In order
to overcome this problem, one would have to
introduce some ”rewinding” procedure into
this ”depth-first”-type of algorithm - a pro-
cess which becomes very quickly very time-
consuming, as has been observed for similar
schemes in network-building algorithms[174].

In contrast, our algorithm proceeds much
more globally, since we first generate the anion

partial structure, and then optimally place the
cations into these resulting voids. This proce-
dure has the great advantage that many fea-
sible configurations are available irrespective
of system size. It provides a fast method for
the generation of structural models of cova-
lent amorphous networks12. As the examples
show, it can be adapted to a variety of chem-
ical system where covalent bonding is domi-
nant, as long as some information about the
preferred local environment of the ions and
some empirical potential is available. Thus,
the algorithm adds a new tool for the gen-
eration of amorphous structures, both com-
plementing existing methods and serving as
an alternative approach in systems with non-
trivial synthesis routes.

12On a Pentium 450 MHz PC generating a system con-
sisting of ca. 1000 atoms takes about one or two days
depending on the potential employed during the final
adjustment stage.
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Chapter 6

Modelling the sol-gel synthesis of
a-Si � B � N  
6.1 Introduction

From a modeller’s point of view, a sol con-
sist of a number of different monomers in-
side a container at medium densities. The
monomers have different bonding functional-
ities M and can be connected via bonds to form
a number of connected components of various
sizes, commonly called clusters. If for a con-
centration of monomers * at least one cluster
extends from one side of the container to the
other side, the sol has turned into a gel. The
concentration * Y of monomers above which
this large cluster, the so-called infinite incipi-
ent cluster (IIC), exists is called the critical con-
centration, and * Y indicates the onset of the
sol-gel transition (SGT).

Understanding this transition theoretically
is far from trivial. Flory[39, 40, 41] and
Stockmayer[162, 163, 180] showed that, if the
monomers do not form loops, a sol-gel tran-
sition occurs as soon as the concentration of
monomers * , having a single functionality M
exceeds the critical value * Y ' 
KÛ 
 . De
Gennes[31] and Stauffer[154] showed, that the
SGT is closely related to the - purely geomet-
rical - lattice percolation problem. In the perco-
lation problem one asks the simple question:
how many clusters does one find on a lattice
of size � � , if a fraction of �¢¡�'*ômç�� � of the lat-
tice sites are occupied and fictive bonds exist
between all neighboring lattice sites. Depend-
ing on the lattice type, one finds different crit-
ical fractions �ÛY of occupied lattice sites above
which a cluster exists, that reaches from one
side of the lattice (the container) to the other
side of the lattice.

The dynamic processes occuring during

gelation have been studied extensively in the
kinetic gelation model of Manneville and de
Seze[106] and Herrmann et al.[70, 12]. 1The
kinetic gelation model is a lattice model for
the radical polymerization of organic bi- and
tetra functional monomers. Usually simula-
tions are performed on a cubic lattice with
about 50 % of the lattice sites occupied. Chem-
ical reactions are initiated by randomly plac-
ing a small number of radicals on the lattice.
These radicals move across the lattice, and
bonds between monomers are created along
the trace of the radicals. Within this type of
modelling it was shown that a sol-gel transi-
tion exists. Furthermore, spatial correlations
between pairs of tetramers exist[13], and thus
the distribution of tetramers is not purely ran-
dom as it would be the case in the percolation
type approach. The kinetic gelation has been
extended by Pandey and coworkers to include
thermal motion of the monomers, effects of
solvents and temperature[96, 98, 97, 99, 122].

The kinetic gelation model and its variants
has been extensively investigated with special
focus on the critical properties and the sol-gel-
transition, but it is not clear whether such sim-
plified models can be used for the generation
of structural models of amorphous ceramics,
and furthermore, if these models are capable
to mimic the very complex synthesis routes
that are necessary to produce these newly de-
veloped inorganic materials.

Thus we have developed a separation of
time scales approach that take specific aspects
of the real system (here: a-Si � B � N � ) into ac-
count. In this chapter, we first give a gen-

1For a review see [71].
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eral outline of our separation of time scales
approach, followed by details of our specific
implementations. Next, the resulting struc-
tural models are analyzed with respect to the
influence of various process parameters, and
finally compared with geometrical and topo-
logical information gained from physical mea-
surements.

6.2 Sol-Gel Route

6.2.1 Experimental observations

As mentioned earlier in section 1.1, a true sim-
ulation of the full sol-gel route is not yet feasi-
ble. In order to design the intermediate steps
needed to construct a multi-stage model of the
process, we first identify the central elements
and stages of the actual synthesis route.

In the experiments, one starts with a dis-
persion of molecules containing (Si-N-B)-units
(TADB = Cl � Si-(NH)-BCl � ) in a medium con-
sisting of NH � molecules plus a certain
amount of hexane. All components are highly
mobile at this stage. During polymerization,
new bonds are generated among and between
these and the NH � molecules, removing the
functional parts of the TADB-molecules (the
Cl atoms) and leaving only some hydrogen
containing end-groups:£¥¤§¦L¨ óª©§« � � / ½EËåÊ*¬®?Ë ¯¤ËS��2ÿÊHU�°±U1øÉ»Só²©J« ��³ Ê

(6.1)
More specifically, the following reactions at

the functional groups (X-Cl), (X-NH � ), and (X-
NH-Y) are likely to dominate the process:´ 
 �!µ � ³ Ê���óª©§« � � /´ 
 �!µ � ©§«Õ�4��ó²« ³ Ê�+ (6.2)

´ 
 �!µ � ³ Ê��Eó ´ �å�(¶ � ©J«Â�4� � /´ 
 �!µ � ©J« � ¶�� ´ �wóª« ³ Ê�+ (6.3)

´ 
 �!µ � ©J«Â�|�zó ´ �1�(¶ � ©J«Õ�|� � /´ 
 �!µ � ©J« � ¶§� ´ �wó²©§« � + (6.4)

´ 
 �!µ � ©J« � ¶§� ´ �wó ´ � �a· � ©§«Õ�4� � /� ´ 
 µf�¬� ´ ��¶§�¬� ´ � ·��¸© ót©§« � - (6.5)

Here, X, Y and Z can be B or Si, and R 
 ,
R � and R � just denote the remainder of the
molecule containing the functional group.

There exists only a limited amount of exper-
imental and theoretical information regarding
the details of these reactions. Presumably, the
condensation reactions (6.4) and (6.5) are the
slowest overall, while for identical R 
 and X,
reaction (6.2) should be somewhat faster than
reaction (6.3). Of particular interest has been
the question, of how the speed of the aminol-
ysis reactions (6.2) and (6.3) depend on the
identity of X, and the details of the remain-
der R 
 . Ab initio Car-Parrinello calculations
have confirmed[127] the experimental obser-
vation/intuition that the (B-Cl) bond is more
easily broken than the (Si-Cl) bond, and that
the details of R 
 are not crucial compared with
the B vs. Si effect.

Hexane does not appear to play any role in
the actual reaction process; it only ensures that
the final polyborosilazane remains soluble for
the purpose of further processing (shaping,
spinning, etc.) before the pyrolysis step. From
the point of view of modeling the polymer-
ization, the only effect of hexane is some re-
duction of the overall density of the reacting
molecules.

Furthermore, we notice that this first reac-
tion phase usually takes place in a consider-
able excess of NH � , �$¹,º ! ç ��» ¼,½¿¾ 'Ô� Å ³ :3)1) .
These conditions suggest that most of the Cl-
elimination will have taken place very early in
the process before the actual cross-linking be-
gins among the TADB molecules. Noting that
each TADB contains 0 Cl-atoms, one would
estimate that the fraction of TADB-molecules
that are involved in æw��Fþ0å� reactions of type
(6.3) is on the order of rm��� ��Å � .2

Depending on � Å , one would expect that by
the end of the Cl-elimination only relatively

2Most likely, this estimate is actually an upper limit,
since the NH ! molecules are much more mobile than
oligomers containing more than one (Si-N-B)-unit. Thus,
multiple encounters of TADB molecules needed to gen-
erate large oligomers early in the polymerization stage
are even less likely once the local region around a TADB
that has participated in several reactions has been de-
pleted of TADB. Whether this effect makes a quantita-
tive difference depends on the speed of reaction (6.2)
compared to the speed of diffusion of the oligomers, of
course. For a more precise analysis, the corresponding
diffusion-reaction problem would need to be solved.
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small oligomers containing no more than on
the order of ten (Si-N-B)-units will be present.3

Further cross-linking should then occur via
NH � -elimination according to reactions (6.4)
and (6.5).

Since the temperature is relatively low,
many of the (Si-N-B)-units from TADB are
likely to survive intact at this polymerization
stage. However, this is surely no longer go-
ing to be the case during the pyrolysis stage of
the synthesis. During this pyrolysis in N � , the
remaining foreign atoms are removed while
evolving NH � , N � and H � , and the structure
is allowed to solidify, becoming more dense in
the process. This second process will also in-
clude the wholesale destruction and rebuild-
ing of the Si-N and B-N bonds (locally), due to
the high annealing temperatures ( ³ :40I)1) K).

We conclude from our analysis that the cen-
tral elements of the process are the following:� Initial configuration� Cl-elimination� Cross-linking while (X-Cl) functional

groups are still present (first stage)� Cross-linking while only (X-NH � ) and (X-
NH-Y) functional groups are available
(second stage)� Annealing

6.2.2 General multi-stage approach

Initial configuration

We first note that the initial configuration can
be modeled as being a random arrangement
of the TADB-, NH � - and hexane molecules in
a (periodically repeated) simulation cell. Fur-
thermore, since hexane is inert for all prac-
tical purposes, it can be eliminated from the
model. Thus, the initial configuration can be
simplified and should only consist of TADB
and NH � , where all effects due to hexane are

3A tree graph oligomer derived from À TADB
molecules, i.e. containing À (Si-N-B)-units occurs with
probability Á`�HÂÄÃ �Y � . For Â Y _ � vCv and À _ � v , this
leads to a probability Å _ � v Ã � ² . Assuming � v � p TADB
molecules immersed in � v � ! NH ! molecules leads to
about � v ( À _ � v )-oligomers.

incorporated as a lowering of the initial den-
sity of the system.4

Cl-elimination

From the ab-initio simulations, it appears that
the details of the removal of the Cl-atoms are
probably not critical for the overall process.
Here, we are only referring to possible differ-
ences in the reaction rates for the first, second,
etc. Cl-atom to be eliminated. The different
reaction rates of B-Cl and Si-Cl bonds clearly
need to be included in the model. For the
simple model we are trying to construct, we
will therefore ignore the Cl-atoms by treating
them as mere placeholders for free Si- and B-
valencies. Similarly, the hydrogen atoms can
be modeled as placeholders for free nitrogen
valencies, both in TADB and ammonia.

While it appears to be safe to discard the Cl-
and similarly the H-atoms as such, a critical
question is, whether there exists a preference
for the removal of Cl from the B- or the Si-
functional unit. Similarly, we have to wonder,
whether free N-valencies prefer to react with
available Si- or B-valencies. Finally, there is the
issue of whether free N-valencies in TADB and
oligomers (denoted N 
 ) react as quickly with
free B- or Si-valencies as the free valencies in
NH � (denoted N � ). Within the approach pre-
sented here, we assume that the reactivity of
N 
 and N � are comparable.

First stage cross-linking

A first step to model this process would be
to assume a very simplified interaction of
molecules walking randomly inside the sim-
ulation cell: If a N with a free valency ap-
proaches a Si or B with a free valency, the two
molecules link with a gain in energy � ] 5�x�;_� > x� , respectively. In the low-temperature
regime of the polymerization process, we can
even assume that any bond which has been
formed is not going to be broken. Regard-
ing the shape of the new molecule, we can
assume that it obeys the simple model build-
ing rules for molecules, with N and B being
approximately trigonally planar coordinated
by cations and anions, respectively, while Si

4In principle, the polymerization will also take place
without any hexane being present.
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is tetrahedrally coordinated by N, with com-
plete flexibility in the dihedral angles up to the
point that two atoms collide within their van-
der-Waals radii.

We note that B-N is the stronger bond, and
thus one would assume that there will be a
tendency to form B-N bonds over Si-N bonds.
On the other hand, with B-N bonds having
perhaps formed quickly initially, they might
be too stable to allow the formation of e.g. a
B-N-B linkage starting with two B-N bonds.

Ideally, we would perform long-term simu-
lations, with a realistic ratio of the diffusion-
and reaction-rates, and similarly realistic en-
ergy gains and costs for creating and destroy-
ing a B-N or Si-N bond. However, such a sim-
ulation is only feasible for a highly activated
system, i.e., for unrealistic temperatures. A
way to address this problem is a separation of
time scales approach. At the beginning of the
process, we can assume that the diffusion of all
reaction participants is fast enough to create a
homogeneous mixture (analogous to the well-
stirred reactor approximation). No spatial
variation of the reaction partners is present,
and we can assume that the likelihood of each
TADB to react with another TADB is exactly
given by :|çÛ� Å . From the modeling point of
view, this has another advantage: we can as-
sume that, on the density-equilibration time
scale, each TADB and NH � molecule moves
randomly with arbitrary step length, i.e., each
free spot in the simulation cell has equal prob-
ability to be the next location of the molecule.

However, we quickly encounter a prob-
lem regarding the movement of the newly
linked molecules containing several Si-N-B-
units. Modeling the movement of these
oligomers is rather expensive in computation
time, in particular in a dense solution, where
two such molecules are very slow to pass one
another. A possible solution is to recall that the
ammonia molecules are both highly mobile
and present in excess. Thus we can assume
that molecules consisting of more than ô � } �Si-N-B-units are essentially stationary with re-
spect to the medium, while the NH � molecules
are always present everywhere in the system
as before. Once cross-linking has started and
produced larger molecules, these serve as spa-
tially fixed growth centers for the further ad-
sorption of TADB and ammonia molecules.

One issue we have to address at this
stage is the faster reactivity of B-Cl-functional
groups. If we assume that the individual
TADB molecules can quickly rotate in the NH �
medium, the opportunity to react can be taken
as equal for all functional groups, B-Cl and Si-
Cl, and the likelihood that a successful reac-
tion takes place depends on the reaction rates.
Thus, free B-valencies will more quickly be
saturated than the Si-valencies, both at the sta-
tionary oligomers and the still mobile TADB.

Second stage cross-linking

After all free B- and Si-valencies have been
saturated, two things change. The NH �
molecules can no longer react, and the reac-
tion rates will presumably be slower than be-
fore, since only reactions (6.4) and (6.5) can
take place. Thus, we can from now on ignore
the NH � molecules, while continuing to move
single TADB molecules and perhaps also small
oligomers. Now reactions (6.4) and (6.5) will
occur among the stationary oligomers and
mobile TADB, where we still assume that at
the low temperatures where the polymeriza-
tion is performed no B-N or Si-N bond will
break, at least not without being re-formed
right away during the ammonolysis.

Once all TADB molecules have become part
of stationary oligomers, the separation of time
scales arguments cut the other way. Now the
diffusion (and ’wobbling’) of the oligomers
will be the slow controlling time scale, while
we assume that the (irreversible) reaction
takes place at once after the encounter of two
oligomers. In principle, we can now perform
an appropriate diffusion simulation for the
oligomers. However, there is a faster way: Re-
ducing the density by rescaling the simulation
cell leads for the small clusters to get within
range of another, and results in the desired
merger dynamics of the small oligomers.

We note that, implicitly, this model assumes
that growth takes place essentially continu-
ously without any breaking of bonds. This
favors a ”first seen, first bonded” approach,
only modified by the special model kinetics fa-
voring the saturation of the free B-valencies.
However, for very long polymerization times
in the real system, one might want to per-
mit bond-breaking, too. In this way, the rela-
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tive strengths of the B-N and Si-N bonds men-
tioned earlier can be taken into account, too.

Still, these statistically relevant properties
of the system would not make themselves
felt during the relatively short MC/MD-
simulations we can perform. Annealing at
low temperatures is too slow for the statisti-
cal preference to preserve B-N bonds, to have
an effect compared to the influence of the ini-
tial random placement - after all, Si-N bonds
are also very strong by themselves and do not
break easily at low temperatures once they
have formed5. Of course, we can take this
tendency, i.e. for stronger B-N bonds to be
present with a higher probability, into account
by again favoring reactions (6.4) and (6.5) for
X = B over X = Si during the merger dynamics.

Annealing

While at the beginning of the annealing phase
we can still use the modeling procedure from
the previous step, this no longer holds true
for the long-time annealing at higher tempera-
tures. Although the available simulation times
are still rather short, we can now perform MC
or MD simulations at the annealing tempera-
ture � Fü:40I)1) K, using satisfactory empirical
potentials.

6.2.3 Procedure 1

General aspects

In the first procedure, we have decided to
model polymerization and the early stage of
the pyrolysis in one step, to focus on the ki-
netic effects. We assume that, on the long
time scales we are interested in, many open-
ings and closings of Si-N and B-N bonds can
take place. Thus, concepts from statistical me-
chanics can be applied: We can assume that
the (Si-N-B)-unit can be destroyed, and, fur-
thermore, the addition of new atoms and the
growth of the polymer clusters can be mod-
eled by assuming an enhanced average stick-
ing probability of B atoms at free N atom va-
lencies.

5Of course, in the melt at high temperatures, we
clearly notice the higher strength of the B-N bond, even
on short time scales (see section 10). But such high tem-
peratures are not part of the sol-gel route we would like
to model.

In addition, we note that the larger the
oligomers and polymers have become the less
likely they are to move past each other in
the solution. On the other hand, the indi-
vidual molecules and atoms that attach to the
larger units are still quite mobile and thus can
be assumed to be homogeneously dispersed
throughout the volume. The assumption of
many bond-breakings and -openings allows
us to model the growth of these polymers as
a aggregation-growth process, where no atom
that has been linked to the polymer is ever re-
moved again6.

Since this process will take place through-
out the volume, we assume that several start-
ing centers are present, where the growth pro-
cess will be initiated. The kinetic effect makes
itself felt in the preference of non-saturated N-
atoms at the surface of the polymer to prefer-
entially bond to the available B-atoms. One
should also note that we are in a highly over-
saturated state, and that the density is so high
that the final fully linked compound is cre-
ated by a merger dynamics[85, 141] of these
small polymer-pieces, and not via an Ostwald-
ripening process.

Algorithmic implementation

To implement this procedure, we proceeded
as follows: We started with a periodic (in or-
der to take the essentially infinite extent of the
real system into account) diamond-type lat-
tice, where the number of sites in the simu-
lation cell was such that a prescribed density
was going to be achieved upon the placement
of all ô } � � � 'úôÇÆÉÈpó;ô ¾ ó×ô ¹ atoms. The
distance between two neighboring lattice sites
corresponded to the average of the B-N and Si-
N bond lengths. A small percentage of the (Si,
N, and B) atoms were placed onto the lattice to
serve as aggregation initiation sites. Next, we
swept over all anions and cations already on
the lattice and added one cation or anion from
the reservoir, respectively, to an open neigh-
boring lattice point of the atom under consid-

6Of course, each individual atom will be added and
removed many times. But statistically, there will always
be some atom present at the bonding site once an atom
has been added a first time. Thus, the (pieces of the)
polymer only grow and never diminish when viewed on
the long time scale on which short time fluctuations have
been averaged out.
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eration. Of course, we ensured that the topol-
ogy was correct, i.e. only up to three neighbors
for B and N were allowed, and similarly no
cation-cation or anion-anion nearest neighbors
were permitted. This applied to both the site at
which the atom was inserted and the occupied
neighbor sites. The kinetic effect was taken
into account by given a preference to B-atoms
whenever it was a N-atom’s ”turn” to choose
a new neighbor, while ensuring that the final
composition was as desired ( ô ÆÉÈ = ô ¾ ). After
each insertion of a B or Si atom, we update the
bonding probabilities * � ¹  ¾ � ( ';: � * � ¹  ÆÊÈ � ),* � ¹  ¾ � �jæ�ó*:|�w' ô «¾ô «¾ óâô «ÆÉÈ

* � ¹  ¾ � �jæp�Q+ (6.6)

where ô «ÆÉÈ and ô «¾ are the number of silicon
and boron atoms in the reservoir, respectively.
The initial value of * � ¹  ¾ � was denoted * @ � ¹  ¾ �As long as the prescribed final density was
not too high, this process only stopped after
all ô } � � � atoms have been placed. Thus, we
chose a density of D 5��¶5�� ' :I-/01K g/cm

�
, which

is consistent with the density at the beginning
of the pyrolysis stage of the actual synthesis
( D6';: � :I- � g/cm

�
[78]). Using this procedure,

we generated five structures each for two sizes
of the initial atoms set (3 and 30).7

At this stage, we removed the strains in-
troduced by the lattice-based growth proce-
dure, by a constant volume local optimiza-
tion followed by a constant pressure conjugate
gradient local optimization and finally refined
the structural models using an RMC quench-
procedure to remove non-critical potential ef-
fects, that influence the precise atom-atom dis-
tances, but do not change the overall topology
of the network. The optimizations employed
the computationally efficient two-body inter-
action potential A (see section 3.9). In the Re-
verse Monte Carlo (RMC) stochastic quench
procedure, we chose the weighting factor r='),-/.I) (see section 3.8.2). Typically, the changes
in the atom positions in this final refinement
step were small ( _ 0.001 Å).

Annealing We modelled the final annealing
by Monte Carlo relaxations at different tem-
peratures between 250 and 3000 K, in which

7For consistency checks, we also generated structures
with � l growth centers for selected values of Å { # Ã ® ~ .

we varied both the cell parameters and the
atomic position at zero external pressure. For
the MC relaxations we employed the interac-
tion potential A. The run length of the simula-
tions was :3) ¸ MCC, and we varied the cell pa-
rameters isotropically every 100 MCC on av-
erage. As mentioned, one MCC consisted ofô atomic displacements. The final tempered
configurations were again optimized by con-
jugate gradient local optimizations in which
both the cell parameters and the atomic posi-
tions were simultaneously optimized and we
refined the optimized models using the RMC
stochastic quench procedure.

6.2.4 Procedure 2

General aspects

An alternative implementation places the di-
vision line between the initial network forma-
tion and the annealing phase of the pyrolysis
towards the end of the polymerization step.
Here, we assume that the Si-N-B-units are es-
sentially preserved, i.e. we deal with complete
Si-N-B-units placed into the simulation cell to-
gether with N-units. Nevertheless, we want
to reduce the amount of computational effort
needed as much as possible.

Thus, we use the separation of time scales
arguments to make several simplifications.
First, we note that in the first linking stage, en-
counters among clusters consisting of linked
TADB-molecules and N-atoms, are unlikely
for clusters beyond a certain size ô � } � . Thus,
we postpone the actual placement into the
simulation cell, and instead keep a list of
the ô ¯ <,ËN> Si-N-B units involved. We run
through this list, and keep replacing Cl-atoms
by N(H � )-units. In a fraction of :|çÛ� Å cases,
we take one of the not-yet-linked TADB-
molecules8 from the list, and link it with the
TADB (or a (n)-unit-oligomer) just being con-
sidered, thus creating a (n+1)-unit oligomer.9

From a certain size ( ô � } � ), the oligomer is too
slow to move, and will not be picked any more
as the second partner in the first stage linking.

8In general, we can also use small oligomers contain-
ing more than one TADB-unit at this step.

9The choice of whether to take a TADB (= 1-unit
oligomer) or a small oligomer ( ÌLÍ 1 ), is again made at
random, where the probability is a monotonic function
of the mobility of the oligomer.
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The process stops once all Cl-atoms have
been removed10. Now we are going to place
the oligomers at random into the cell at a com-
paratively low density (taken to agree with
the original density based on the amount of
hexane and NH � still present). We now pro-
ceed by shrinking the volume of the period-
ically repeated simulation cell. At this stage,
the only movements of the oligomers consist
in rotations of the molecules. Whenever two
functional N-valencies encounter one another
during this process, a condensation reaction
takes place, and a link is formed, creating a
larger oligomer. This process continues un-
til no more rotational movement is possible,
and further shrinkage would result in massive
overlap of the atoms in the oligomers.

At this point, one fully connected polymer
should have been generated. From here on,
the modeling of the annealing procedure fol-
lows the route outlined for procedure 1 in sub-
section 6.2.3.

Algorithmic implementation

Following the above outline, the algorithm is
divided into four parts: generation and op-
timization of fragments, packing and merg-
ing of fragments, optimization of the packed
oligomers, and the final annealing of the sys-
tem.

Generation and optimization of fragments
We distinguish two types of atoms: those that
are already part of an oligomer (”fragment”
atoms), and those that are still part of the reser-
voir (”reservoir” atoms). We assume that a
reaction only takes place between a fragment
atom and a reservoir atom.11

Furthermore non-occupied nearest-
neighbor sites ? of some atom ¦ at site é
can only be used for a growth step, if the
following (mostly topological) constraints
are fulfilled for both the lattice site ? at
which the reacting atom of the reservoir
will be placed and the other lattice sites

10Depending on the choice of parameters, we might
continue, until all the mobile oligomers have become
linked.

11Intra-fragment reactions are not supposed to occur.
Of course this will happen in the later compactification
phase.

that will be occupied by the remainder of
the inserted atom/molecule: The atom ¦ is
under-coordinated12, and there are neighbor
sites, where reservoir atoms/molecules can
be inserted13. Finally, no two cations are
permitted to be nearest neighbors on the
lattice.

Initially, we select ô @K TADB molecules
from a reservoir that contains ô «� » ¼,½¿¾ � TADB-
molecules (represented as Si-N-B building
units) and ô «¹ ammonia molecules (repre-
sented as nitrogen atoms). Since the actual
synthesis takes place in an excess of ammonia,
we chose �fY6'þô « � £Î¤J¦L¨ ��ç�ô « �\©f� ³ ),-8)åK for
a complete application of the algorithm. Each
atom of these molecules is placed at the cen-
ter of a tetrahedral lattice.14 The distances be-
tween the points of these lattices was 1.54 Å,
approximately equal to the average B-N and
Si-N bond distance.

The actual growth algorithm consists of the
following steps: First, one randomly selects a
fragment M � that is capable of growth, and se-
lects the top ranked atom ¦,� � � of fragment M � .
Here, we rank each atom in the fragment ac-
cording to

� · ��¦n5u�N'�Ï ¾ æ � \���¦95��æ ¿ó���: � Ïc�Z¨ ¾ Tfô � } ���ji"5P� � TfôJ��¦95P�Tfô � } ���ji�5P� ¿ � (6.7)

for each atom ¦25 , \���¦n5�� is the time at which it
had been inserted into a fragment.

A high value of Ï favours a ’first-in first
grow’ strategy producing relatively compact
oligomers, while low values of Ï lead to a
growth mechanism similar to the DLA (diffu-
sion limited aggregation) approach and result

12We call an atom ] % under-coordinated, if the number
of nearest neighbors Ð f �*] %3� is smaller than the max-
imum coordination number Ð f �

ò Ï � Í %3� of the type
Í %of atom ] % . Here we have chosen Ð f �

ò Ï �ZÑÓÒ � _ÕÔ ,Ð f �
ò Ï �HÖ � = 3 and Ð f �

ò Ï � f � _ a in agreement with
the experimental data.

13Atoms that fulfill these requirements are called capa-
ble of growth. Similarly, a fragment b is called capable
of growth if it contains at least one such atom.

14For bookkeeping, we create two lists: frag grow and
atom grow(f). In frag grow we store the fragments that
are capable of growth, and in atom grow(f) we store for
each fragment b the specific atoms. After initialization,
frag grow contains f O entries and for each Si-B-N frag-
ment b atom grow(f) contains three entries.
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in fractal-like fragments. In equation 6.7 æ is
the total number of growth steps performed
on the selected fragment M � and T§ô©��¦n5P� is the
current number of nearest neighbors of atom¦95 .

Next, we select the element type nQi of the
atom that will bind to atom ¦,� � � . If atom ¦n� � �
is a silicon or boron atom, only nitrogen atoms
are eligible for bonding. If ¦,� � � is a nitrogen
atom, the selection of the element type is gov-
erned by the bonding probabilities * � �V > � and* � �V ] 5ÿ� '�: � * � �V > � . This is followed by se-
lecting the bonding unit nÉ× that contains atoms
of the element type nQi . If n¤iV' Si or B, only Si-
N-B units are eligible, but if n¤iS' N, we chose a
Si-N-B unit or a nitrogen atom randomly with
probability � Å or : � � Å , respectively.

Next, one attempts to place the bonding unitnÊ× as a nearest neighbor to atom ¦,� � � onto the
lattice. In general, several placements that do
not violate the constraints may exist. In that
case we randomly chose one of these arrange-
ments for insertion. If no insertion was possi-
ble, the bond atom ¦2� � � was removed from the
list of atoms capable of growth.

After this growth step had been executed,
the procedure was repeated, until either the
reservoir or the list of fragments capable of
growth were empty.15 Finally, the resulting
oligomers were optimized using the conjugate
gradient method with the interaction potential
A.

Packing of optimized fragments At this
stage, the set of oligomers M are independent
molecular species, containing an overall ex-
cess of nitrogen. The process of packing and
merging these oligomers is implemented in
several steps. First, we treat each fragment M
as a (quasi)-independent sphere with radius:� K ' 4VUÛ¼5 ÷ 
 �Ø�Ø� � ò � � �O �u�6�Â5P�Q+ (6.8)

where ô } � � �K is the number of atoms in
oligomer M and = � ä� K5 =?' = ä� K5 � ä� K@ = is the dis-
tance of atom é of fragment M from the center
of gravity ä� K@ of fragment M .

We now assign a hard sphere radius� d ]K '*� K � � �:7 (6.9)
15Except for extreme parameter choices the reservoir

did not become empty.

to each fragment M and create a random pack-
ing of these hard spheres using Monte Carlo
simulations. The fragments were placed into
a periodically repeated unit cell of volumeqÉ5��Û5�� with an initial packing density of D K « }��� } Y  '),-/K . The move class includes random dis-
placements of the hard-spheres and compres-
sions of the simulation cell, at a ratio of 99:1.
The length of the runs was æ � } � ' .I)1)1)1)
MCC, where one MCC consisted of ô K moves.
Within æ � } � we reached packing densities
of D K « }��� } Y  W ),- m ) , where the packing densi-
ties were calculated with respect to the hard-
sphere radii ��d ]K .16

Next, the optimized rotational configura-
tion Ùe�P y � � �K +ÛÚ y � � �K +f� y � � �K � ( M ' :A-3-3-�ô K ) of the
fragments for this random packing was de-
termined by comparing ô « � �Ó' 0I)1)1) rota-
tional configurations Ù%�P K +ÛÚ K +f� K � . Each con-
figuration was generated by placing all frag-
ments M inside the cell at the position of
the corresponding hard spheres and rotating
each fragment M by random Eulerian angles�P K +ÛÚ K +f� K � . The number of pairs of close ni-
trogen atoms ( � � � _H. Å) belonging to neigh-
boring fragments determined the ”value” of
a configuration, since the mergers among the
oligomers should take place by eliminating
one of the two nitrogen atoms. If no config-
uration that fulfilled all geometric and topo-
logical constraints was found in this step,� �:7 was decreased ( � �:7 ' � �87 � � � ) and
a new random packing of hard spheres with
larger radii ��d ]K 'þ� K � � �87 was generated.
Finally, the overall composition of the sys-
tem was adjusted by removing one N atom
from each pair of the neighboring nitrogen
atoms. However, usually, the required com-
position had not been reached after this step,
and further under-coordinated nitrogen atoms
were removed at random until the composi-
tion Si � B � N � was reached.

Local optimization of linked oligomers and
tempering We optimized the resulting as-
sembly of linked oligomers in two steps. First
we removed the largest strains in the system
by a conjugate gradient energy minimization
employing potential A, where we only var-

16No packing densities exceeding v � Ü Ô have been ob-
served.
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ied the atomic positions. Next, we relaxed the
structure by varying both the cell parameters
and the atomic positions, again using the con-
jugate gradient method. The final step of pro-
cedure 2 was the annealing of the locally op-
timized system with a standard Monte-Carlo
(MC) algorithm at temperatures �GF :40I)1) K at
constant pressure, analogous to procedure 1.
This energy optimization was again followed
by a RMC-quench refinement.

6.3 Results

6.3.1 Procedure 1

Polymerization and pyrolysis

Tables 6.1(a) and 6.2(a) show the mean coor-
dination numbers for the first and second co-
ordination spheres of the atoms after the con-
stant volume plus subsequent constant pres-
sure conjugate gradient minimizations, re-
spectively. In the first coordination spheres,
boron and silicon were coordinated by .2- m � K2-8)
and K2- m � � -8) nitrogen atoms, respectively, and
nitrogen was coordinated by about .2- � � .2-&�
cations. We only observe a relatively small
dependence on the probability to form N-B
bonds, * @ � ¹  ¾ � , and on the number of growth
centers < : Larger values of * @ � ¹  ¾ � resulted in
higher/lower coordination of B/Si by nitro-
gen, and variations in the number of starting
sites did not lead to significant changes. Note
that the densities of the optimized models is in
all cases around 1.7 g/cm

�
, close to the exper-

imentally observed density of 1.9 g/cm
�
.

The effect of * @ � ¹  ¾ � is more visible in the
second coordination sphere, where e.g. larger
values of * @ � ¹  ¾ � result in higher B-B next near-
est neighbor coordinations. Again, no clear
dependence on the number of the initially
placed atoms < is found.

Figures 6.1(a) and 6.1(c) show the computed
X-ray and neutron diffraction radial distribu-
tion functions in comparison with experiment,
before a RMC-refinement. In both cases, al-
ready good qualitative agreement with exper-
iment is observed, which improves even more
once the RMC refinement is performed (c.f.
fig. 6.1(b), 6.1(d)). As function of * @ � ¹  ¾ � ,the agreement appears to be higher for higher
values of * @ � ¹  ¾ � , both for X-ray and neutron

data. As mentioned earlier, the topology of
the structure does not change significantly in
the RMC refinement step.

Next, we present the angle distributions at
Si, B, and N. We observe only relatively small
effects of the choice of * @ � ¹  ¾ � , mostly in the
strength of the �I) � peak in the N-Si-N an-
gle distribution which indicates the presence
of edge-sharing among the SiN � tetrahedra.
Note that this effect is less pronounced for the
RMC-refined models.

Annealing

Finally, we turn to the structures of the mod-
els one finds after tempering for :3)n¸ MCC
at various temperatures at zero external pres-
sure. We have tempered only those models
that were generated using an initial bonding
probability * @¹  ¾ ' ),-&� � at different tempera-
tures T F 4000 K.
Figures 6.3(a), 6.3(b), 6.3(c) and 6.3(d) depict-
ing the temperature dependences of differ-
ent structural and bulk properties of the tem-
pered (squares), the constant pressure opti-
mized (circles) and the refined models (trian-
gles), show that these properties change sig-
nificicantly once the temperature was raised
above :40I)1) K. Below 1500K the density of the
structure increased only slightly, reaching a
value of :I- � g/cm

�
, close to the experimen-

tally found value. Similarly, we find that the
mean coordination numbers for the first coor-
dination sphere are essentially preserved up
to :40I)1) K, only an increase is observed, while
the second coordination number only changes
weakly up to :40I)1) K (figures 6.3(b)-6.3(c)).
Above 1500 K, the higher number of boron
boron next nearest neighbors as well as sil-
icon silicon next nearest neighbors vanishes.
We note here that neither the optimization nor
the RMC refinements change the structural
and bulk properties significantly, which are in
agreement with the experimental data. This
holds also for the pair correlation functions,
which continue to show good agreement with
experimental data (figure 6.4). Note that the
agreement between the experimental and the
pair correlation functions of the ’high temper-
ature’ models is better than for the low tem-
perature models. In contrast, the densities and
the numbers of next nearest neighbors of the
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Figure 6.1: X-ray (top) and neutron (bottom) pair correlation functions of the constant pressure
optimized structural models (left column) and the refined models generated by procedure 1.
Numbers inside the figures are the values of * @ � �V > � . The number of initially placed atoms was
30.
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* @ �V > < Si B N D � �3�
0.50 30 3.97 2.58 2.81 1.65
0.50 3 4.04 2.53 2.82 1.57
0.70 30 3.91 2.70 2.83 1.68
0.70 3 3.95 2.71 2.85 1.61
0.80 30 3.86 2.80 2.85 1.72
0.80 3 3.87 2.82 2.87 1.70
0.90 30 3.77 2.87 2.85 1.72
0.90 5 3.77 2.91 2.86 1.62
0.95 30 3.74 2.95 2.87 1.74
0.95 3 3.73 2.97 2.87 1.62
0.99 30 3.70 2.97 2.86 1.79
0.99 3 3.74 2.98 2.88 1.67

(a) optimized

* @ �V > < Si B N
0.50 3 3.90 2.54 2.76
0.50 30 3.79 2.58 2.73
0.70 3 3.74 2.71 2.77
0.70 30 3.73 2.70 2.75
0.80 3 3.65 2.82 2.77
0.80 30 3.63 2.80 2.76
0.90 3 3.56 2.91 2.77
0.90 30 3.56 2.87 2.76
0.95 3 3.51 2.96 2.78
0.95 30 3.49 2.94 2.76
0.99 3 3.50 2.97 2.78
0.99 30 3.46 2.95 2.76

(b) refined

Table 6.1: Mean coordination numbers of silicon (Si), boron (B) and nitrogen (N) of constant
pressure optimized (left) and RMC refined models (right) generated by procedure 1. * @ �V > is
the initial probability to bind an nitrogen atom to a boron atom. < is the number of atoms
initially placed on the lattice. D � �3� is the density in g/cm

�
of the constant pressure optimized

models.

* @ �V > < Si-S Si-B B-B B-Si
0.50 30 5.12 2.78 2.07 2.78
0.50 3 5.56 2.26 2.55 2.26
0.70 30 4.83 3.00 2.16 3.00
0.70 3 4.92 2.96 2.30 2.96
0.80 30 4.57 3.25 2.24 3.25
0.80 3 4.48 3.30 2.20 3.29
0.90 30 4.47 3.16 2.48 3.16
0.90 3 4.59 3.05 2.66 3.05
0.95 30 4.61 3.03 2.87 3.03
0.95 3 5.07 2.59 3.29 2.59
0.99 30 4.61 2.83 3.29 2.83
0.99 3 5.62 2.11 3.99 2.11

(a) optimized

* @ �c > < Si-Si Si-B B-B B-Si
0.50 30 4.55 2.63 2.07 2.63
0.50 3 5.13 2.16 2.56 2.16
0.70 30 4.28 2.82 2.16 2.82
0.70 3 4.31 2.77 2.30 2.77
0.80 30 3.91 3.03 2.23 3.03
0.80 3 3.89 3.06 2.20 3.06
0.90 30 3.81 2.94 2.47 2.94
0.90 3 3.93 2.85 2.66 2.85
0.95 30 3.89 2.80 2.85 2.78
0.95 3 4.29 2.43 3.28 2.42
0.99 30 3.88 2.58 3.25 2.56
0.99 3 4.76 1.93 3.96 1.92

(b) refined

Table 6.2: Mean number of next nearest neighbors of silicon (Si-Si/Si-B) and boron (B-B/B-
Si) of constant pressure optimized models (left) and RMC refined models (right) generated by
procedure 1. * @ �c > is the initial probability to bind an nitrogen atom to a boron atom. < is the
number of atoms initially placed on the lattice.
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Figure 6.2: Angular distribution function of silicon (left), boron (middle) and nitrogen atoms
(right) before (thin lines) and after (bold lines) RMC refinements of the constant pressure opti-
mized models. The number of initially placed atoms was 30.

’low temperature’ models agree better with
the experimental data.

6.3.2 Procedure 2

Since procedure 2 is rather complex, and each
step depends on several parameters, we an-
alyzed the algorithm in three steps. First
we study the effects of the system sizes O ,
the ratio of the number of initially placed
TADB molecules to the total number of TADB
molecules, the ratio of nitrogen atoms to the
TADB-molecules, and the different bonding
probabilities, on the properties of the ’as-
generated’ fragments. Secondly, we study for
a system size O ' KI)1) TADB molecules (1300
atoms), the dependence of the properties of
the optimized fragments on different bond-
ing probabilities and on the number of ini-
tially placed TADB-molecules for a fixed value
of ��Y ' ),-8)åK . After these investigations, we
employ the remaining parts of procedure 2 to
a system containing a final number of 1300
atoms, and annealed this system at different
temperatures T _ 2000 K.

Generation and optimization of fragments

Generation of fragments Figures 6.5(a) to
6.5(d) depict the dependence of various prop-
erties of the as-generated fragments on the

mean number of atoms of the fragments��ô } � � �K � , averaged over different choices for��Y and the number of TADB molecules in the
reservoir

� « (TADB)= ô©� £¥¤§¦L¨ � � ô @K � £¥¤J¦J¨ �
and system size O . For each choice of the pa-
rameters, five sets of fragments were gener-
ated. Note that the properties depended only
on the fraction of TADB molecules in the reser-
voir and on the bonding probabilities * � ¹  ¾ � .The fraction of TADB molecules in the reser-
voir only influences the average number of
atoms of the fragments, and the bonding prob-
abilities are responsible for some structural
properties.

Clearly for Ï =1 all fragments are compact.
The fractal dimension � K is approximately 3
and does not depend on the choice of the
bonding probability * � �V > � . The fractal di-
mension � K was calculated by fitting a power
law �6��ô �[í ôÝË O to the dependence of the
mean radius � �� � } � ' � � Ï5 � ä�Õ5 � ä� @ � � on the
system size ô } � � �K 'ºæ�� , where ä� @ is the center
of gravity of the cluster. Note, that for Ï '*),-ÿ: ,
we observed rod like fragments with a fractal
dimension 1.0 in three dimensions.

The effect of the bonding probability * � �V > �
can be inferred from figure 6.5(b), in which
we plot the average distance of a silicon and
a boron atom from the center of gravity of
the fragment vs. the fragment size. For ex-
treme values (* � ¹  ¾ � ' ),-8)1)1)É:|çÛ),-&� � � � ), sili-
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Figure 6.3: Temperature dependence of different properties of the tempered model generated
by procedure 1. Squares represent the data of the instantenuous configuration, circles the data
of the optimized models and triangles are the data for the RMC refined models.
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con atoms are further/closer to the center of
gravity of the fragments. For * � ¹  ¾ � = 0.5,
the distances to the center of the fragment
are identical. Even though the mean dis-
tances of silicon and boron atoms are slightly
different on average for different choices of
the bonding probabilities, the average number
of next nearest silicon-boron neighbors does
not depend on the bonding probabilities for
larger fragment sizes ( ô } � � �K L 150 atoms).
However the average number of boron-boron
and silicon-silicon next nearest neighbors de-
pends on the choice of the bonding proba-
bility * � ¹  ¾ � . Low values of * � ¹  ¾ � result in
a higher number of silicon-silicon next near-
est neighbors, contrary to the lower number
of silicon-silicon next nearest neighbors ob-
served for higher values of * � ¹  ¾ � . Note,
that the mean number of boron-boron/silicon-
silicon next nearest neighbors is always sub-
stantially lower than the experimentally ob-
served values four/six. For larger fragment
sizes, the number of next nearest neighbors be-
come independent of the size of the fragments
and independent on the choice of the bonding
probabilities.

Optimization of fragments Having dis-
cussed the dependence of the properties of the
”as generated” clusters/fragments on differ-
ent choices of the bonding probability C � �V > � ,
we now turn to the discussion of the proper-
ties of optimized fragments for two extreme
values of the bonding probability C � �V > � '),-/0 and C � �c > � ' ),-&� � � � , weighting factorÏJ';:I-8) , and a total system size of 1300 atoms.
Since the above analysis had shown that the
properties of the fragments were basically in-
dependent of the choice of ��Y , we use ��Y='),-8)åK in the forthcoming sections. The num-
ber of initially placed TADB affected the prop-
erties of the fragments and thus we initially
placed 50, 30, 15 and 5 TADB molecules on the
lattice, thus leaving 250 (83%), 270 (90 %), 285
(95 %) and 295 (98 %) TABD molecules in the
reservoir.

Table 6.3 shows the average number of
atoms inside an oligomer (fragment) for dif-
ferent numbers ô @K of initially placed TADB
molecules. As expected, the number of atoms
in the oligomers increases with a decreasingô @K . Figures 6.6(a) to 6.6(f) show the average

ô @ ��ô } � � �K �ÛÞf�Öô K
60 33 Þ 13
50 38 Þ 13
30 61 Þ 14
15 117 Þ 17
5 328 Þ 20

Table 6.3: Average number of atoms ��ô } � � �K �
in the fragments generated by procedure 2 us-
ing different numbers of initially placed TADB
molecules ô~@ . The total number of TADB
molecules was 300 and the bonding probabil-
ity * � �c > � was 0.9999. Note that at this stage
the total number of atoms in all oligomers ex-
ceeds the prescribed value of :4KI)1) , requiring
the removal of many excess N-atoms in the
merger phase.

probability of finding a boron/silicon atom
among all atoms a distance �ßÞ ��� away from
the center of gravity of the optimized frag-
ments for the two investigated bonding prob-
abilities C � �V > � ' ),-/0 and C � �V > � ' ),-&� � � � .
For higher values of C � �c > � , we find a pref-
erence for boron atoms close to the center of
the optimized oligomers, but we note that the
fluctuations are quite large. Note also, that if
we only grow one cluster, one does observe
a clustering of boron atoms close to the cen-
ter of the center for high values of * � �V > � , but
for larger distances the probability of finding a
boron or a silicon atom are more or less equal.

Packing and merging of optimized frag-
ments

Next we focus on the packing and merging
stage of procedure 2. As already mentioned
in the description of the algorithm, the gener-
ation of random packings of fragments leads
to packing densities of 0.59 _ D � } Y  _ 0.64 for
more than 15 fragments. For completeness, we
have summarized the packing densities in ta-
ble 6.4. There we also give the fraction of un-
dercoordinated nitrogen atoms

� � that had
to be removed from the assembly of packed
fragments. Note that a fraction ( : � � � ) of
the atoms are removed by the merging proce-
dure. Furthermore, the shell radius � �:7 that
could be subtracted from the maximum radius
of the fragments without resulting in too short
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Figure 6.5: Dependence of various properties of the fragments generated by procedure 2 on
the number of atoms of the fragments. Filled symbols show the data for boron related proper-
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interatomic distances, is larger for larger frag-
ments, indicating that the larger fragments are
more ’diffuse’ at larger distances. In table 6.4
we also list the size of the largest connected
component and the densities both after con-
stant volume ( D ö and O � } �ö

) and after sub-
sequent constant pressure conjugate gradient
optimization ( D � and O � } �� ), respectively, of
the packed and merged fragments. After this
stage there are still a few oligomers ( _ 5 % of
the total number of atoms) that are not linked
to the largest connected cluster.

Annealing

Finally, we turn to the structures of the models
one finds after annealing for :3) ¸ MCC at var-
ious temperatures at zero external pressure.
We have annealed those models, that were
generated using an initial bonding probability* ¹  ¾ ' ),-&� � � � at different temperatures T F
2000 K.
Figures 6.8(a), 6.8(b), 6.8(c) and 6.8(d), de-
picting the temperature dependences of dif-
ferent structural and bulk properties of the
annealed (squares), the constant pressure op-
timized (circles) and the refined models (tri-
angles), show that the structural properties
change little as the temperature is increased.
Only healing (increase of the number of near-
est neighbor) is observable. The average num-
ber of next nearest silicon-silicon neighbor
atoms is slightly higher than the number of
next nearest silicon-boron neigbor atoms, but
for boron the number of boron-boron next
nearest neighbors is lower than the number
of boron-silicon next nearest neighbors. We
note here that neither the optimization nor the
RMC refinements change the structural and
bulk properties of the models very much. Fur-
thermore, the refined pair correlation func-
tions show good agreement with the experi-
mental data.

The density of the structures increased at
higher temperatures reaching a value of ³ .2- �
g/cm

�
below 1250 K, and similar to the results

on the stability of voids, which are discussed
more thoroughly in section 9.3.4, we also ob-
served a logarithmic time dependence of the
densities (see figure 6.7). Comparing the aver-
age sizes of vacancies found in structures gen-
erated by both procedures, shows that in pro-

cedure 1, larger voids are generated, that are
stable up to 1500 K, whereas in procedure 2,
the voids are destroyed at lower temperatures,
again showing the increased internal surface
sizes, that most probably lead to much quicker
reshuffling of the volume (figure 6.11). Finally,
we note that most of the B-N bonds are pre-
served during the annealing phase, whereas
more Si-N bonds are destroyed in the course
of the simulation (figure 6.9).
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Figure 6.7: Time dependence of the density
during variable atom/cell MC-relaxation at
different temperatures for 30 (open symbols)
and 15 (filled symbols) initially placed TADB
fragments. The models were generated using
a bonding probability * �V > '*),-&� � � � and em-
ploying procedure 2.

6.4 Discussion

In the two previous sections two modifica-
tions of a separation of time scales approach
to the modeling of a-Si � B � N � were presented.
The agreement of the pair correlation func-
tions derived for neutron and X-ray scatter-
ing is satisfactory. Similarly, silicon rich re-
gions are observed in the final ceramic after
annealing. Note that these silicon rich regions
are observed in NMR experiments.[167, 166]
The quantitative agreement is better for pro-
cedure 1, in which the densities of the gener-
ated models are very close to the experimen-
tal density. Most likely, the reason for the
latter observation is that in procedure 1, the
growth from one aggregation center is influ-
enced by the growth from another aggrega-
tion center, whereas in procedure 2, oligomers
grow independently and the pack and merge
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ô @K � �87 � � O � } �ö D ö O � } �� DÛ� D � } Y 
50 1.35 0.73 1258 0.7 1266 0.94 0.63
30 1.50 0.78 1245 0.84 1281 1.12 0.61
15 2.35 0.77 1253 0.97 1274 1.22 0.59
5 2.85 0.85 1248 0.70 1249 1.00 0.51

Table 6.4: Overview over results after the packing and merging stage of procedure 2 as function
of initially placed TADB molecules ô @K . � �:7 is the shell radius in Å at which the successfull
merging could be accomplished (see equation 6.9).

� � is the fraction of under-coordinated
nitrogen atoms that needed to be removed at the end of the merging stage. O � } �U � � and D,U � �
are the sizes of the largest connected components and the density (in g/cm

�
) after the local

constant volume and constant pressure optimization, respectively. D � } Y  is the packing fraction
of the hard spheres that enclose the fragments prior to merging.
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Figure 6.8: Temperature dependence of different properties of the annealed models generated
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experimentally observed density at 298 K after annealing. For comparison see figure 6.3.
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stage of procedure 2 is not capable to com-
pactify the structures, thus leading to a larger
inner surface. Here one should also keep in
mind, that in the experiment the overall vol-
ume can only decrease by the diffusion of
voids to the surface of the material. But once
a crust has formed, i. e. all voids within a few
nanometers have been removed, this process
stops and the density remains essentially un-
changed for the remainder of the annealing.
In contrast during the simulations, void space
can be removed rather easily (the surface is
”effectively” only about 20 Å away !). Thus the
increase of the density during the annealing
tends to greatly exaggerate the densification
effect. Within the approach presented here,
the large inner surface generated by procedure
2 can very easily move to the boundaries of the
simulation cell, thus resulting in a faster den-
sification and denser structural models.

Considering the formation of silicon rich re-
gions, the kinetic effect incorporated by the
preferred bonding probabilities * � �V > � is most
clearly visible in procedure 1, in which the
growth is performed at different growth cen-
ters in the same ’container’ atom by atom,
whereas in procedure 2 the aggregation cen-
ters grow independently. Furthermore the ki-
netic effect is much less pronounced for proce-
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Figure 6.11: Temperature dependence of the
average volume of vacancies inside structural
models generated by procedures 1 and 2 dur-
ing MC-NPT relaxations. For procedure 2, we
show the data for 15 and 30 initially placed
TADB molecules. In the void determination
algorith, we used a lattice spacing �6¦ =2.5 Å.

dure 2 in which individual TADB molecules
are used in the growth procedure. In pro-
cedure 1 both silicon and boron rich islands
are formed, whereas in procedure 2 no boron
rich island are produced, since the growth
by TADB molecules introduces silicon atoms
at random position after some initial growth
steps have been performed. Procedure 2
has also shown, that the kinetics affect the
structural properties only on length scales_ 10 Å leading to different second coordi-
nation spheres and to a preference for the
formation of surfaces that contain an excess
of the ’slowly reacting’ atoms, in agreement
with experiment which shows a homogenous
cation distribution on length scales exceeding
1 nm.[30]

However this effect is less pronounced for
larger distances, casting some doubt on the
special role the TADB precursor molecules
play for the formation of the island like struc-
tures on intermediate length scales ( _ m

Å).
Maybe the TADB molecules are more impor-
tant for the development of a homogenous
distribution of the elements on length scale W
10 Å. However, our findings are in agreement
with the general line of thought of the sepa-
ration of time scale approach, where the re-
actions among the TADB molecules and the
NH � molecules are expected to occur through-
out the solution, i. e. we do not have a stan-
dard nucleation process as one would expect
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during the growth of the amorphous ceramic
during the cooling from the melt.

A comparison of the final structures with
those one finds when simulating alternative
synthesis routes, (see section 8.3 of chapter
8), such as glass formation from the melt,
sintering of nanosized crystal fragments, ran-
dom packing analogous to vapor deposition)
shows that the structures presented here com-
pare favourably with those other models, both
regarding the pair correlation functions and
with respect to medium range order and the
density17. Only the crystal fragment model ex-
hibits similarly good agreement with experi-
mental data. Furthermore, the structural prop-
erties of the annealing models are rather in-
sensitive to the annealing at temperatures T _
1500 K, again showing that the synthesis route
and the kinetics involved do play an impor-
tant role for the structural properties of the
synthesized product.

Finally, the separation of time scale ap-
proach we have presented here is more gen-
eral of course, and can be easily modified
to model the sol-gel synthesis of other amor-
phous solids. In these modifications one
could also include solvent effects, concurrent
growths of larger building units and thus ob-
tain an in depth view into the genesis of inor-
ganic polymers.

17Keeping the limitations of the finite size of the sim-
ulation cell and the crust formation in mind.



Chapter 7

Modelling of the amorphous
Si/O/N-system

7.1 Introduction

Multi-component oxynitridic glasses are
an important class of amorphous ceram-
ics that are of great interest for technical
applications[65], since they can combine
the strength of oxidic/nitridic glasses with
the feasibility of tuning their properties via
the variation of the nitrogen/oxygen ratio.
However, they share with other amorphous
ceramics the dearth of information about their
microscopic structure, which makes ab initio
theoretical predictions about the properties
of the ceramics very difficult. Furthermore, it
has not been possible so far to synthesize com-
positions with all possible ratios of nitrogen
and oxygen[88]. Thus, a rational synthesis
aimed at producing an oxynitridic ceramic
with well-defined mechanical, thermal, opti-
cal, and dielectric properties is handicapped
in a two-fold way: the predictability of the
ceramics properties remains at the empirical
stage, while at the same time the full range of
the possible compounds cannot be explored
synthetically. Just as with silicate glasses,
each chemical system will exhibit its own
specific microstructure, depending on the
network modifiers added. However, it is to be
expected that many structural features found
for simple glasses will also be found in the
more complex systems. In this chapter, we
focus on the simplest paradigmatic system,
amorphous Si/O/N. We have employed the
random close packing based algorithm[67] for
the generation of amorphous covalent net-
works to model a-SiO ���� N ��� ��� (a-SiON) for
a range of & values. After briefly describing
the aspects of the algorithm specific to the

Si/O/N-system employed (sec. 7.2), we com-
pare the experimental data for a-SiO �	� � N 
 ���
with the properties of our models (sec. 7.3).
Finally, we discuss the structural properties of
models for the amorphous SiON compounds
as a function of nitrogen content (sec. 7.4).

7.2 Generation of structural
models

We apply the random close packing based
algorithm described in section 5 and in [67]
to the generation of network models for
SiO ���� N ��� ��� , with different compositions & .
The first subsection gives a short outline for
the general algorithm, and the second subsec-
tion discusses the parameters employed.

7.2.1 Outline of the general algorithm

In this section, we outline the RCP-based algo-
rithm for the generation of structural models
of covalent networks. The details of the algo-
rithm are described in chapter 5.
The basic idea of the algorithm employed is
the observation that most of the accessible vol-
ume in a typical inorganic crystal structure is
occupied by densely packed anions, while the
cations reside in the voids of the anion pack-
ing. We transfer this idea to amorphous struc-
tures in a four step process: First we generate
a random close packing of anions (represented
by spheres of radius �f5 ) using a modification
of the RCP-algorithm by Frost et al.[43] to pe-
riodic boundary conditions. Next we identify
all ô ö � 5 ± voids ù in the packing, which are suit-
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able locations for cations of type s1. The result-
ing set of voids 2 and the anions form the set
of vertices of a graph � . Edges are defined
between pairs of vertices, with weights de-
pending on the agreement of the ion-ion dis-
tances in the structure with typical values in
crystalline compounds containing the analo-
gous atoms. In a third step we determine the
cost-optimal subgraphs � ] 3 of the weighted
graph � . Note that the determination of a
cost-optimal subgraph is a NP complete prob-
lem, which requires the application of global
optimization techniques. We employ simu-
lated annealing for this task [84]. This leads to
a number of low cost subgraphs from which
we derive structure candidates. Finally, these
structure candidates are refined by conjugate-
gradient methods utilizing an empirical inter-
action potential. If experimental data is avail-
able, a final fine-tuning via a Reverse Monte-
Carlo (RMC) procedure is also possible.

7.2.2 Choice of parameters for a-SiON

We have investigated the chemical system
SiO ���� N ��� ��� , for several compositions &ú'),+	),-/.102+3-3-3-Û+¤. . For each composition & we have
generated ten random close packings of aboutm )1) anions (oxygen and nitrogen) resulting in
a total number of atoms of about one thousand
inside a cubic cell of about .I) Å cell length. Ta-
ble 7.1 summarizes the parameters of the ran-
dom close packings and the graph generation
part of the algorithm. The cooling rate   for
the simulated annealing used in the determi-
nation of the least-cost subgraphs � ] was set
to  h'Á),-&� � (for a geometric cooling schedule),
and 25 optimizations were performed for each
packing. The potential energy was modeled as
a sum of two-body terms,� � � �p' õi�587çæ q �j�4587|�Q- (7.1)

1These cations of type N have a preferred coordination
number Ì � � Í � and preferred interatomic distances to an-
ions of type t, i.e. all distances c � % of the center of gravity
of the void to all of its anions è must fall into an intervalé c � �� %^F � c � ��

ò ÏÉê , thus defining the coordination sphere.
2Usually the number of identified voids exceeds the

number of cations required by composition.
3The size of

> I
is f �o¿q _bf Mìë f

ò
vertices, where f Mand f

ò
are the number of cations and anions required

by composition, respectively. The number of vertices in
Graph

>
is f �o _bf � � %&� ë f

ò
.

s-t � @ �~� � � 5�� � � } �
O-O 2.63 0.82 11.98 3.45
N-O 2.72 0.82 1.98 3.54
N-N 2.81 0.82 1.99 3.63
Si-Si 2.98 0.94 1.20 3.97
Si-O 1.61 0.50 1.11 2.11
Si-N 1.72 0.50 1.22 2.22

Table 7.1: Random close packing parameters.
Distances are given in Å. For further explana-
tion see sec. 7.2.1.

s-t T 587
O-O 1131.0
N-O 1586.0
N-N 1425.0

s-t S 587 Q 587
Si-O 0.20 1.998
Si-N 0.20 2.165

Table 7.2: Interaction potential parameters for
the Si/O/N-system. Parameters T 587 , S 587 andQ 587 refer to equations 7.2.

Here, the simple two-body interaction po-
tential q��j�|587¶� consisted of a Coulomb plus a
Lennard-Jones term for cation-anion interac-
tion and Coulomb plus soft-sphere term for
anion-anion and cation/cation interactions:

q�Y } �j�4587¶�w' [ 5 [ 7�4587 ó � Sîí ¾ Q 587�4587 ¿ 
 � � ¾ Q 587�4587 ¿ ¸�ï +q }Q} �j�4587Û�S' [35![¤7� 5 7 ó T 587� ¸587 -
(7.2)

We set the atomic charges [|5 equal to the for-
mal oxidation states of the atoms ( [,� Si � 'ó � , [É� O � ' � . , and [É� N � ' � K ). The re-
maining parameters of the interaction poten-
tial were chosen in such a way that the ge-
ometrical properties (bond lengths, bond an-
gles) of the crystalline phases SiO � , Si � N � and
Si � N � O were reproduced under constant vol-
ume conditions and are given in table 7.2.

7.3 Comparison to experimental
data

The models for the composition &('*),-8) (SiO � ),& ' ),-/0 (SiO �	� � N 
 ��� ) and z=2 (Si � N � ), were
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generated as described in section 7.2. In or-
der to fine-tune their structure, we performed
RMC-optimization (see section 3.8.2) on all of
the ten structural models obtained after the
local optimizations with respect to the sim-
ple empirical energy function. In the RMC-
refinements, we used a weighting parameterrÔ' ),- � ) , giving more weight to the experi-
mental data, and employed the interaction po-
tential described in section 7.2.2

Figure 7.1 shows the experimental and the
averaged simulated pair correlation functions.
One clearly notices four major peaks ( :I- m . ,.2- m K , K2-8)å. and

� -ÿ:40 Å) in both the experimental
and the simulated structures. The first three
peaks can clearly be attributed to Si-O/N,
O/N-O/N and Si-Si interatomic distances, re-
spectively. The last peak at about 4.15 Å cor-
responds to third nearest neighbor Si-N/O-
Si-N/O interatomic distances. One should
note that this satisfactory agreement between
experiment and model is already present for
the original structural models without (!) the
RMC based fine-tuning (see table 7.3). As
one already suspects from the small aver-
age atomic displacements during the RMC-
optimization, the effect of the RMC-procedure
only consisted of a smoothing of the pair cor-
relation function - the main geometric and
topological features of the models are estab-
lished during the procedure described above
in section 7.2.2

Our results compare well with experimen-
tal findings as shown in figure 7.2 (already
shown in figure 5.7 of chapter 5), in which
experimental as well simulated pair correla-
tion functions for a-SiO � [177] and a-Si � N � [72]
are depicted. One clearly notices the good
agreement between simulated and experimen-
tal data. Regarding the small peaks observed
between .2-8) and .2- � Å in the experiment, we
classify them as ghost peaks arising from the
Fourier transform of the structure factor Oc�\[å�
that lacks measurements at high [ -values.

7.4 Structural properties of a-
SiO ñ òôó N ñìó�õ±ö

Since the agreement between experiment and
model was quite satisfactory for &[' ),-/0 (see
above), & ' ) (a-SiO � ) and & ' .2-8) (a-

1 2 3 4 5 6

D
(R

)

R [Å]

Figure 7.1: Experimental X-ray pair corre-
lation function � ! ����� (top) and average X-
Ray pair correlation function of the structural
models of a-SiO �	� � N 
 ��� (bottom) after local
optimization and RMC-refinement.
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Figure 7.2: Comparison of experimental pair
correlation functions � � �"! ����� for a-SiO � [177]
(neutron) and a-Si � N � [72] (X-ray) with the
model based pair correlation functions.

Si � N � ) (see figures 7.1,7.2), we have gener-
ated a sequence of models for compositions&('*),-/.102+3-3-3-Û+4:I- {I0 . All data presented are aver-
ages over ten independently generated mod-
els after local optimizations with the empir-
ical interaction potential. Since no measure-
ments have been performed for these compo-
sitions, no fine-tuning with RMC was possi-
ble. However, since this step only resulted in
very minor changes of the structures for amor-
phous SiO � , a-Si � N � and a-SiO �	� � N 
 ��� , we feel
that the simple energy function is sufficient
for a geometric and topological analysis of the
models for a-SiON. Figure 7.3 shows the total
pair correlation functions � ! ����� , for different
compositions & . Here, D?����� is the number den-
sity of atoms surrounding an atom at the ori-
gin within a spherical shell of volume

�  �� � �9�
and distance � from the origin. One clearly
notices three peaks at about :I- m , .2- � and K2-8)
Å in all models. In addition, broad peak(s) at
about 4 Å are visible. The first peak at about:I- m Å shifts to about :I- { � Å as the nitrogen con-
tent increases with higher & . It can be clearly
attributed to Si-O ( ³ :I- m Å) and Si-N inter-

atomic distances ( ³ :I- { Å). This becomes ob-
vious when one considers the de-convolution
of the total pair correlation function �%����� into
its partial pair correlation functions ��5879����� for&(';:I-8) in figure 7.4.
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)

R [Å]

z=0.00

z=0.25
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Figure 7.3: X-ray pair correlation func-
tions � ! ����� of structural models for
SiO ���� N ��� ��� for the & values given in the
figure after local optimization.

The peak(s) in the range from .2- m to K2-8)
Å correspond to O/N-O/N and Si-Si inter-
atomic distances, respectively. The broad peak
at about

� -8) Å is clearly due to Si-N/O third
nearest neighbor distances as can be seen from
figure 7.3. Furthermore, a peak at about .2- � Å
becomes more prominent with increasing ni-
trogen content. Within the models, this peak
can clearly be attributed to shorter silicon-
silicon inter-atomic distances (see below).
Important geometric and topological quan-
tities of interest are the first coordination
spheres of the structural models. Here, we de-
fine the first coordination sphere of an atomé to contain those atoms ? , whose distance�4587 to é lies between :I- � and .2-8)1) Å. Table
7.3 summarizes the mean coordination num-
bers and mean bond lengths for silicon, oxy-
gen and nitrogen for different compositions
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Figure 7.4: Deconvolution of the total pair cor-
relation function D(R) into the partial pair cor-
relation functions ��587n����� for &(';: . Pair corre-
lation functions are calculated for X-ray scat-
tering.

& . The silicon coordination number close
to four together with the peak in the X-Si-
X (X = O,N) angular distribution function
(ADF) (figure 7.5) at about :3)��÷� indicate the
mainly tetrahedral coordination of Si by oxy-
gen and/or nitrogen, which is in good agree-
ment with experimental results from NMR-
spectroscopy[88]. The coordination number of
oxygen is close to two and the mean bond an-
gle (Si-O-Si #  Z�Pr�� ) of about : � . � indicates the
non-linear two-fold coordination of oxygen by
silicon. Again, this is in good agreement with
experimental NMR results on the bond angle
distribution in silica glass (  ï �	���Pr��*' : � 0 �
[36]. The coordination number of nitrogen
is close to three, and the peak in the angu-
lar distribution function for Si-N-Si (  p��ô � ) at:4.I) � indicates the mainly trigonally planar co-
ordination of nitrogen by silicon. A careful
analysis of angular distribution functions for
the X-Si-X and Si-N-Si bonding angle, also re-
vealed an increasing peak at about �I) � with
increasing nitrogen content which is related
to the increase in the number of edge-sharing

SiO � �� N � tetrahedra.
A simple geometric argument4 shows that

these additional peaks are correlated with
shortened inter-atomic silicon-silicon dis-
tances of about .2-/0 Å (see fig. 7.3). We would
like to point out that these findings cannot
be ruled out from experimental results even
for a-Si � N � , since all reported pair correlation
functions [3, 72] show a small shoulder at
about .2-/0 Å. In addition, the formation of
edge-sharing tetrahedra can actually be favor-
able energetically, if this edge-sharing leads to
a decrease in the number of dangling bonds5.

Concerning the distribution of SiO � �� N � -
tetrahedra, our results show these tetrahedra
to be randomly distributed throughout the
simulation cell. No phase separation occurs.
Figure 7.6 compares the simulation results to
the results of a mean-field model that incor-
porates a random distribution of tetrahedra
as its key ingredient (c.f. section 7.5). The
good agreement between mean-field model
and simulation data yields evidence that the
main characteristics (random distribution of
tetrahedra) of the mean field model are also
present in our simulations. Furthermore the
mean coordination numbers (O-O, N-O and
N-N) (c.f. table 7.4) in the ternary phases do
not show any indications for phase separa-
tions on the length scale of our modeling ap-
proach.

7.5 Mean field model
for distribution of
SiO ø ò�ù N ù tetrahedra in
SiO ñ�òôó N ñ±ó õçö

In this section we derive a formula for
the number of different SiO � �� N � tetrahedra
in a-SiO ���� N ��� ��� in a mean field approach.
We assume that an idealized structural

4 ú �ZÑÓÒôûüÑýÒ � _ ú �ZÑÓÒpû f �ÿþ d �\��û `�� NP� � � f ��� �ú �ZÑÓÒÎû�ÑÓÒ � _ d � Ô Å with ú �ZÑÓÒÎû f � _ � � � d Å and� � f � _ � v �5This edge-sharing occurs independently of the po-
tential one chooses for the local optimization. In the case
of a-Si ! N � , where more refined interaction potentials[48]
exist, we have performed additional local optimizations
of the models with such a potential. We found that the
optimizations yielded similar results concerning the ge-
ometric and topological properties.
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Figure 7.5: Angular distribution functions of silicon (left), oxygen (middle) and nitrogen (right)
atoms for different compositions z given inside the figure.

Z Si-X O-Si N-Si D
d CN d CN d CN

0.00 1.63 3.76 1.63 1.881 2.55
0.25 1.64 3.74 1.63 1.893 1.72 2.46 2.62
0.50 1.65 3.67 1.63 1.884 1.71 2.47 2.64
0.50 R 1.65 3.62 1.63 1.879 1.71 2.41 2.64
0.75 1.66 3.66 1.63 1.895 1.72 2.552 2.67
1.00 1.67 3.59 1.63 1.868 1.72 2.56 2.58
1.25 1.68 3.54 1.63 1.857 1.71 2.56 2.58
1.50 1.69 3.57 1.63 1.874 1.72 2.62 2.63
1.75 1.71 3.53 1.64 1.825 1.72 2.63 2.58
2.00 1.72 3.54 1.72 2.65 2.59
2.00 R 1.76 3.54 1.76 2.79 2.75

Table 7.3: Mean bond lengths d and mean coordination numbers CN for silicon, oxygen and
nitrogen and average densities of the structural models for different compositions z after local
optimization. Bond lengths are given in Å and the density is given in [g/cm

�
]. Data marked

by an asterix � is the data for the structural models after the RMC-refinement step.
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Z Si-Si O-O O-N N-O N-N
0.00 3.54 5.28
0.25 3.80 4.75 0.56 3.25 0.63
0.50 3.99 4.07 1.11 3.09 1.44
0.50 R 3.87 4.02 1.08 3.09 1.44
0.75 4.37 3.40 1.79 3.17 2.29
1.00 4.60 2.63 2.41 3.00 3.12
1.25 4.86 1.92 2.99 2.86 3.92
1.50 5.38 1.26 3.74 2.82 4.97
1.75 5.69 0.51 4.24 2.58 5.89
2.00 6.16 6.92
2.00 R 6.92 7.77

Table 7.4: Mean number of next nearest neighbors Si-Si, O-O, N-O and N-N for different com-
positions & . Data marked by an asterix � corresponds to the data obtained after the RMC-
refinement.
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Figure 7.6: Comparison of mean-field model
for the distribution of SiO � �� N � for different
compositions z to results of computer simu-
lations. The mean field model is depicted as
full lines, data from the simulations is shown
as points, dotted lines are a guide to the eye
only. Experimental data for z=0.22 is depicted
as open symbols[88].

model contains non-interacting SiO � �� N � -
tetrahedra and that there are 	 formula units
SiO ���� N ��� ��� in the structure. We would like
to know the probability P(SiO � �� N � ) of find-
ing a SiO � �� N � -tetrahedron, if we pick a sili-
con atom coordinated by four arbitrary anions
randomly from a structure with given compo-
sition z.

Furthermore we assume that the anions are
randomly distributed in the structure. In that
case the probability of finding an oxygen atom
is simply given as number of oxygen atoms di-
vided by the total number of anions. Similarly
the probability of picking a nitrogen atom is
the number of nitrogen atoms divided by the
total number of anions. Since the total num-
ber of anions is 	×¨É�u. � &§ó ���� �Â'
	Ô¨É�u. � �� �
the probability of drawing a nitrogen atom is
simply C��\©��S' ����. � �� (7.3)

and for oxygen Cm�����N' . � &. � �� (7.4)

The joint probability of drawing
� � � oxygen

and � nitrogen atom in four draws then reads:Cm���2�� � ���©Â�9�N' ¾ �� ¿ ¨|C����§� � �� ¨|Cm�\©f� �Cm���2�� � �� ©Â�9�S' � '� � � � � ' � ' ¨ ¾ . � &. � � � ¿ � �� ¨ � ����. � �� � �
(7.5)
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7.6 Summary and discussion

Using the random close packing approach
for the modelling of amorphous covalent
networks, we have shown that the structural
properties of amorphous silicon oxynitrides
are best described by a network of corner-
sharing randomly distributed SiO � �� N � -
tetrahedra. Additionally our results suggest
that oxygen is two-fold coordinated and
nitrogen prefers trigonal coordinations. Fur-
thermore, we have presented evidence that
with increasing nitrogen content the number
of the SiO � �� N � tetrahedra sharing edges
increases slightly.



Chapter 8

Structural Modelling of a-Si � B � N �

8.1 Introduction

In this chapter, we present in detail five
different classes of structural models for a-
Si � B � N � based on different generation proce-
dures, each associated with a different chem-
ical and physical route that might, in princi-
ple, allow us to generate a-Si � B � N � . First, we
describe and shortly discuss the various tech-
niques. Next, the resulting structural models
are compared among each other and with ge-
ometrical and topological information gained
from physical measurements. Finally, several
physical properties such as the bulk modu-
lus and the phonon spectra will be calculated,
and compared with experimental data as far
as available.

8.2 Model generation

In general, each of our modeling approaches
can be divided into two steps. The first,
major one, consists of the generation of the
”raw” model, where the final network topol-
ogy is established to over 90 %. Depending
on the synthesis class, several techniques, in-
cluding possibly a global optimization, might
be needed. In each instance, this first stage
is followed by a local (conjugate gradient) re-
laxation and fine-tuning of the ”raw” model
structures based on refined potentials and cost
functions described in subsection 8.2.2.

8.2.1 Classes of model generation

Cooling from the Melt (Class A)

The procedure to generate a model for a-
Si � B � N � via rapid cooling from the melt was as
follows. First a hypothetical crystalline struc-

ture of Si � B � N � [89] in a cubic box with side
length � � ���
	�� Å was heated to ������ K
and allowed to equilibrate for ��	�� ns, using
(N,V,T)-ensemble1 molecular dynamics (MD).
The size of the system was ��������� ������� ��"!#�$�"% � &'�(� atoms, with �����)� ��*�� ,�"!+� ��*�� , and ��%,� -(&�. . For the MD-
simulations, we employed a velocity-Verlet in-
tegration algorithm[4], with a time step /�01���	�� fs. The temperature was fixed by peri-
odic velocity rescaling, and we used the com-
putationally efficient empirical two-body po-
tential A to describe the potential energy of
the system. For details of the complex func-
tional form of the interaction potential see sec-
tion 3.9. In order to take the essentially in-
finite extent of the real system into account,
we have employed periodic boundary condi-
tions. Next, the system was rapidly cooled
down to zero Kelvin using molecular dynam-
ics simulated annealing with three cooling
rates 243657�8�
	9;:<�=�
>@?�A��
	9;:<�=�
>B>CA��
	9;:<�=�
>@D K/s
while keeping the volume constant. This cool-
ing was performed for three different starting
configurations taken along the 1 ns trajectory
at 2500K. As an alternative, we also performed
slow Monte Carlo (MC) coolings simulated
annealing for the same system. First, the sys-
tem was equilibrated at EF�G������ K for �=�IH
MCC. We then employed several cooling rates2 36J �K�
	91:I�=�
L > A��
	91:(�=�
L ? A��
	9;:I�=�
L � K/MCC
again keeping the volume constant, starting at
three different melt configurations. The move-
class of the MC simulations consisted of sin-
gle atom moves, where the atom chosen was
shifted by a random vector MN . The step-size OCMN O

1(N,V,T)- and (N,p,T)-ensemble refer to simulations
with constant particle number, volume and temperature,
and constant particle number, pressure and temperature,
respectively (see chapter 3).

81
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was adjusted such that for each temperature
an acceptance rate of PQ�� % was achieved.
Each Monte Carlo cycle (MCC) consisted of a
random sweep over all atoms in the system,
i.e. ���R����� individual atom moves.

In addition, we used stochastic simulated
annealing as a global optimization procedure
by performing the annealing from a number
of high-temperature starting points, i.e., we
heated the equilibrated ( ES�T������ K) melt to
an initial temperatures E D �U������ and *������
K. Again, three different cooling rates 2Q�-��VA�-
AR�V	9- K/MCC were used for each E D .

For comparison, we also performed local
optimizations as described in subsection 8.2.2
for each of the equilibrated high-temperature
configurations, corresponding to quenches
with infinite cooling rates.

At the end of each of the three processes, the
topological structure of the resulting random
covalent network had been established. In a
final step (c.f. subsection 8.2.2), we could now
fine-tune the atom positions using refined po-
tentials for a conjugate gradient minimiza-
tion. Subsequently the difference between
measured and computed X-ray and/or neu-
tron scattering data served as the cost func-
tion in the RMC-refinement via a stochastic
quench.

Crystal Fragments (Class B)

An alternative route to a-Si � B � N � might be
the solid state sintering of microcrystallites of
BN and Si � N W . However, so far, such ex-
periments do not appear to lead to a ternary
Si/B/N compound. It seems that there does
not exist a sufficiently strong driving force
that would lead to a mixing, once we are
below the melting point of the binary two
end-compounds. Furthermore, ab initio en-
ergy calculations of hypothetical crystalline
Si � B � N � structures suggest that the stable ther-
modynamic state at zero temperature might
correspond to a phase separation into crys-
talline BN and Si � N W [89]. Similarly, the en-
ergies computed with the potential we em-
ployed for our model generation, show that
the binary compounds are energetically favor-
able compared with the crystalline and amor-
phous ternary compounds. To what extent
such a phase separation would occur at very

Class P Explanation
1 Melt equilibrated with molecu-

lar dynamics (MD) followed by
cooling with MD

A 2 Melt equilibrated with MC fol-
lowed by cooling with MC

3 Melt equilibrated with MD fol-
lowed by global optimization
with simulated annealing

4 Simulated annealing of low den-
sity crystal fragment

B 5 Constant pressure Monte-Carlo
cooling of medium density crys-
tal fragment

6 Constant volume Monte-Carlo
cooling of medium density crys-
tal fragment

C 7 Constant pressure Monte-Carlo
cooling of cluster with open
boundary conditions

8 Constant pressure Monte-Carlo
cooling of periodically repeated
interior of cluster

D 9 Random close packing model
E 10 Sol-gel model

Table 8.1: Overview of model classes and
modelling procedures used for each of the
classes A-E. Details of the modelling proce-
dures are given in table 8.2.

high temperatures in the ternary melt is not
clear, since at standard pressures decomposi-
tion is supposed to take place for EYXZ������� K.

However, we note that we would be in a
non-equilibrium situation during a rapid cool-
ing process from the melt into the solid state.
Thus, knowing or suspecting that a separa-
tion into crystalline BN and Si � N W is energet-
ically favorable compared to the ternary com-
pound at low temperatures and pressures, is
not conclusive evidence to exclude that a suf-
ficiently rapid cooling process at high pres-
sures would not result in an amorphous phase
with a nearly homogeneous cation distribu-
tion. Furthermore, one would expect that at
very high temperatures and pressures, e.g. be-
yond the critical liquid-gas point of the ternary
melt ([FXQ[]\KP 1.3 GPa, E X^E4\)P .������
K)2, a complete mixing of the constituents

2The critical pressure and temperature have been es-
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could take place. Nevertheless, some degree
of phase separation might well occur during
the quenching into the glassy state even at
high pressures.

Currently, straightforward MD/MC simu-
lations cannot resolve this issue, since the time
scales involved in modeling such a separa-
tion process, if it were to take place at all, are
too long. Note that e. g. the rapid cooling
procedure described above produced amor-
phous random networks with a very homo-
geneous distribution of cations (c.f. table 8.6).
In order to address a possible separation ten-
dency (which might well appear during any
process chosen to synthesize a-Si � B � N � , not
only via the melt route!), we have introduced
such an effect by hand. We have constructed a
model[66] for a-Si � B � N � that consists of many
( P��� ) BN and Si � N W nano-crystallites ( _U`�Ca�� nm). The size of the system was � �R����� ����cb�b , with �����1�d��*'b , ��!Y�e��*'b , and ��%f�*V��* . The side length of the cubic box was�Q���(& Å, resulting in an initial density ofg �h��	9 g/cm � . Besides the standard energy
relaxation and fine tuning as described in sub-
section 8.2.2, we have also performed global
optimizations using stochastic simulated an-
nealing ( E D �Y-
ABbiA�kjl�=� � K and three cooling
rates m)�n-��VA�-
AR�V	9- K/MCC each), where the
volume was kept constant. Again, potential A
was used for the energy evaluation.3

For comparison, we performed additional
global and local optimizations at higher ini-
tial density g �K�
	��i� g/cm � , re-scaling the side
length for this purpose to �e�Q��
	��(- Å. For
this starting configuration, we performed two
sets of global optimizations, keeping the vol-
ume and the pressure constant, respectively.
Again several starting temperatures ( E D ���A��
A=	=	=	oA�pjk�=� � K) and three cooling rates ( mq��=� L >�A��=� L ?�A��=� L � K/MCC) were used.

Clearly, the model is expected to exagger-
ate the heterogeneity of the cation distribu-
tion by assuming fully formed nanocrystal-
lites. Nevertheless, it constitutes a possible

timated from calculations of the liquid-gas region of the
equation of state of the ternary system Si r B r N s deter-
mined in chapter 9.

3We note that upon heating to starting temperatures
for the global optimization above t�uvuvu K, the individ-
ual crystallites began to melt and the cation distribu-
tion started to resemble somewhat the one of the high-
temperature melt employed in subsection 8.3.2.

structure model that takes some features of the
melt-route structure generation process into
account that would otherwise not be accessi-
ble. Furthermore, it constitutes a limiting case
for those structure models that incorporate in-
homogeneities of the cation distribution.

Molecular Modeling (Class C)

A traditionally quite popular way to generate
computer models for amorphous systems has
been the molecular modeling approach.[16]
Here, one takes some local coordination in-
formation into account and, starting with a
small nucleus consisting of a few atoms, one
builds the amorphous structure in an atom-
by-atom or building-block-by-building-block
fashion. Originally, this used to be done by
hand, but nowadays one can perform this task
using a computer. Typically, this procedure re-
sults in a cluster, since periodic boundary con-
ditions are usually not part of the generation
process.

Physically, this process would correspond
to the slow growth of a cluster in vacuum,
where small precursor molecules or individ-
ual atoms are adsorbed on the surface, fol-
lowed by chemical reactions and, possibly, a
reorganization of the cluster or part of it, in or-
der to relieve tensions. Clearly, a comparison
with bulk amorphous compounds is difficult
as long as surface effects are relevant. How-
ever, if we can reach very large cluster sizes,
perhaps exceeding millions of atoms,[111] the
influence of the surface on the internal struc-
ture might vanish, and we can treat the in-
terior of the cluster as a representative of the
amorphous material. Furthermore, if we gen-
erate a large number of such clusters in the
gas phase, they can be deposited on a surface,
and allowed to grow into a bulk amorphous
material upon solid state sintering. From the
modeling point of view, amorphous network
clusters containing hundreds of thousands of
atoms are not easily constructed and diffi-
cult to perform e.g. dynamic calculations with.
Thus, our goal was to generate a periodic
model using molecular modeling. As a start-
ing point, we have chosen to use the molecu-
lar modeling procedure originally developed
by Gladden[55], and refined by Wefing[173],
for clusters. But since this method does not
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work well when imposing periodic bound-
ary conditions, we have proceeded via a two-
step process, in order to generate a periodic
structure model. As mentioned above, start-
ing from a few-atom nucleus, we add atoms,
alternating between nitrogen and the cations
(B and Si being chosen at random, with �w���yx� ! Pz� on average), where we make sure that
the local coordinations (BN � -triangles, SiN W -
tetrahedra, and N(Si,B) � -triangles) and geo-
metric constraints are fulfilled. Once this is no
longer possible, we allow some removal of re-
cently added atoms, in order to attempt a new
line of construction. As the cluster grows, fur-
ther improvements become increasingly more
difficult, until the time needed to add further
atoms (including the deconstruction and re-
building time of the cluster) exceeds all practi-
cal limits4. For the Si/B/N clusters we have
constructed, this typically takes place when
the cluster reaches a size of a thousand atoms.

In a second step, we cut a cubic section from
the interior, containing about 600 atoms, and
use this as the periodically repeated simula-
tion cell for the relaxation calculations. Since
we end up with rather large energetically
unfavorable interfaces at the boundaries of
the simulation cell, careful annealing starting
at relatively high temperatures is needed to
reach a reasonable structure. Here, we pro-
ceeded in two stages. First, the system was
allowed to equilibrate at two initial temper-
atures E D � ������ and ������ K using Monte
Carlo simulations at constant pressure. For
three end-configurations from different ran-
dom walk trajectories, we performed the usual
local optimizations (c.f. subsection 8.2.2). Fur-
thermore, these configurations served as start-
ing points for global optimizations with two
different initial temperatures ( E D �{������ and������ K) and cooling rates ( m|�}�
	9":
�=� L >CA��
	9":�=�
L ? A��
	91:I�=�
L � K/MCC)

For a comparison, the same annealing pro-
cedure was performed for the original cluster
without periodic boundary conditions. The
structural properties of the periodic structures
could then be compared with those one would

4These destruction/rebuilding processes are concep-
tually similar to the famous ”Tower of Hanoi” problem,
where each new layer doubles the time required to per-
form the task leading to an exponential growth in com-
plexity with system size.

find for the interior of the original cluster.
In all instances, subsequent local relaxations

were performed as a final step as described in
subsection 8.2.2.

Random Close Packing (Class D)

Chemical vapor deposition of molecules con-
taining (Si-N)-, (B-N)-, or (Si-N-B)-units, or
atom beam deposition of the participating
atoms Si, B, and N, on a substrate followed
by low-temperature sintering would be an-
other possible route to generate bulk amor-
phous Si/B/N-materials, in this instance, as
an amorphous film. The pre-sintering struc-
ture generated in this way would be a random
arrangement of Si and B atoms probably al-
ready surrounded by (and bonded to) nitro-
gen. One possible model describing the struc-
tures produced in this way is the so-called
random close packing model adapted for the
generation of covalent networks[67] ( see also
chapter 5). We generated five different topolo-
gies using the RCP procedure, each contain-
ing 1040 atoms. In the usual final step, we
performed a conjugate gradient minimization
of energy and a structural fine tuning as de-
scribed in subsection 8.2.2. We note that the
topology of the network had already been es-
tablished to over ��� % after the cation place-
ment step, however.

Sol-Gel Route (Class E)

While constituting reasonable structures, none
of the preceding models has been generated in
a fashion that corresponds to the route cho-
sen by the experimental chemist. As men-
tioned above, a true simulation of the full sol-
gel route is not yet feasible. Nevertheless, we
have developed a separation of time scales
(lattice-based) approach that allows us to in-
vestigate the effects of the kinetics of the poly-
merization, that appears to favor the early for-
mation of B-N bonds, and pyrolysis during the
sol-gel-process (see chapter 6).

As a reminder we briefly recall the imple-
mentation of procedure 1, detailed in section
6.2.3. We proceeded as follows: We started
with a periodically repeated diamond-type
lattice, where the number of sites in the sim-
ulation cell was such that a prescribed density
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was going to be achieved upon the placement
of all ���R�����~�+�������z��!l�z��% atoms. The
distance between two neighboring lattice sites
corresponded to the average of the B-N and
Si-N bond lengths. About 1 % of the atoms
were placed onto the lattice to serve as aggre-
gation initiation sites. Next, we swept over
all anions and cations already on the lattice
and added one cation or anion, respectively, to
an open neighboring lattice point of the atom
under consideration. Of course, we ensured
that the topology was correct, i.e. only up to
three neighbors for B and N were allowed, and
similarly no cation-cation or anion-anion near-
est neighbors were permitted. The kinetic ef-
fect was taken into account by giving a pref-
erence to B-atoms whenever it was a N-atom’s
turn to choose a new neighbor, while ensuring
that the final composition was as desired (N �(�� N � ). This preference was implemented by
employing selection or bonding probabilities ([�� % L !�� /[�� % L ���9� ) for the choice of neighbors of
not yet fully coordinated nitrogen atoms.

As long as the prescribed final density was
not too high, this process only stopped after
all ��������� atoms have been placed. Thus, we
chose a density of g ���o��� �n��	9�- g/cm � , which
is consistent with the density at the begin-
ning of the pyrolysis stage of the actual syn-
thesis ( g �,�6����	�b g/cm � ). Using this pro-
cedure, we generated five structures each for
two numbers of aggregation sites (3 and 30)
two choices for the initial bonding probabili-
ties []D � % L !�� =0.95 and []D � % L !�� ���V	9��� . Finally,
we optimized and refined the atom positions
and the cell volume by the local optimization
procedures described in subsection 8.2.2.

Summary of the model generation

Using the five different general approaches
described above, about ����� structure mod-
els have been generated, using ten particu-
lar modeling procedures: Each of these proce-
dures contained several parameters, and each
was followed by four local optimizations pro-
cedures as described in subsection 8.2.2. The
only exception were the open cluster, where
constant volume minimizations did not ap-
ply, and the sol-gel process, where we always
performed the second group of minimizations
(constant volume followed by constant pres-

sure). In addition, for all procedures that in-
volved a global optimization or cooling stage
we also performed these local optimizations
(quenches) directly for the starting configura-
tions of the annealing procedure, for compar-
ison. Table 8.2 gives an overview over all the
models, listing the total number of atoms in-
volved, what kind of cooling/global optimiza-
tion procedure (if any) was applied, and what
specific parameters of the annealing were var-
ied.

8.2.2 Local relaxation and structure re-
finement

Although at the end of each generation proce-
dure the resulting structure already possessed
the final network topology, several of these
”raw” models, e.g. the models produced by
the RCP procedure or the crystal-fragment
based models, still exhibited a locally dis-
torted structure. Thus, we performed in each
case additional local optimizations of the en-
ergy using the conjugate gradient technique
(see section 3.8). Two different potentials have
been employed to calculate the potential en-
ergy, potential A, which contained only two-
body terms without Coulomb contributions,
and a more complex potential potential B,
that contained two- and three-body as well as
Coulomb terms (c. f. section 3.9). For compar-
ison purposes, two different procedures were
used for each interaction potential:

1. We proceed in two steps: First, we op-
timize the atom positions while keeping
the simulation cell fixed (constant vol-
ume optimization), in order to remove the
most egregious tensions from the system.
Next, we optimize both atom positions
and cell variables (constant pressure op-
timizations).

2. We vary atom position and cell variables
concurrently to find the nearest local min-
imum.

This results in four different local optimization
strategies, which we label I (potential A/Opt
1),II (A/2), III (B/1) and IV (B/2), respectively.
We note that both potentials have been fit-
ted to reproduce the structure and phonon
spectrum of the binary end-compounds BN
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Class P ���R����� g D E D 0���� 2 Ens � �����

1 702 2.75 2500 �=� H �
	91:I���=�
>@?(A��=�
>B>CA��=�
>@Do� NVT 9
A 2 702 2.75 2500 �=� H �
	9�:
���=� L > A��=� L ? A��=� L � � NVT 9

3 702 2.75 5000, 6000, 7000 �=� � -
	���:I���=�
>CA��=��D NVT 18
4 1144 1.54 5000, 6000, 7000 �=� � -
	��1:
���=� > A��=� D A��=�
L > � NVT 27

B 5 1144 2.01 1000, 2000, 3000 �=�<� ��	��1:
���=� L >�A��=� L ?�A��=� L � � NpT 36
6 1144 2.01 1000, 2000, 3000 �=� � ��	��1:
���=�
L > A��=�
L ? A��=�
L � � NVT 36

C 7 974 2.65 1500, 2500 �=� H �
	9�:
���=� L >�A��=� L ?�A��=� L � � NpT 18
8 562 2.85 1500, 2500 �=�IH �
	9�:
���=�
L > A��=�
L ? A��=�
L � � NpT 18

D 9 1040 2.83 n.a. n.a. n.a. n.a. 5
E 10 1300 1.57 n.a. n.a. n.a. 1,5. 10

Table 8.2: Details of the modelling procedures. P is the number of the procedure , introduced
for later reference. ��������� is the number of atoms in that model. The densities g are given in
g/cm � and the initial temperatures E D are in K. The models were kept for 0R��� timesteps at the
initial temperature E D , before the global optimization/slow cooling began. The cooling rates2 are given in K/MCC in the MCC simulation and in K/s in the MD simulations. Similarly
the equilibration times 0R��� are given in MCC and fs for MC and MD-simulations, respectively.
Ens denotes the ensemble in which the global optimizations/coolings were performed. Note,
that in the NpT ensemble the external pressure was set to zero ([ ���=� �8� GPa). To improve the
statistics, we generated three trajectories for each set of the optimization parameters E D , 0���� and2 . � ����� is the total number of raw models generated for the specific modelling procedure.

and Si � N W , and the structures of hypothetical
ternary crystalline Si � B � N � compounds that
had been optimized using ab initio methods.
Furthermore, the potentials reproduce the ab
initio calculations of simple molecules con-
taining Si, B, and N.

After the local optimizations, our final step
consisted of a Reverse Monte Carlo (RMC)
type stochastic quench at constant volume (see
section 3.8.2 for details). We chose �����V	9���
and the structures were optimized for 6:]�=�<�
MCC. Typically, the changes in the atom posi-
tions in this final refinement step were small
( `Z�V	��(- Å/atom).

8.3 Structural properties

For each of the ten modeling procedures be-
longing to the five classes of structure mod-
els for a-Si � B � N � , we have analyzed vari-
ous structural properties: the radial and an-
gular distribution functions, the mean coor-
dination numbers within the first and sec-
ond neighbor spheres around the atoms, and
the ring statistics. The details of the pro-
cedures/algorithms for the determination of
these properties are discussed in chapter 4.1.
Experimentally, direct comparisons are possi-

ble for the radial distribution function mea-
sured with X-ray and neutron scattering, for
the first coordination sphere via e.g. EXAFS
or NMR measurements, and for the second
coordination sphere via REDOR-NMR exper-
iments. Angular distributions are only acces-
sible in an indirect fashion, and the same holds
true for e.g. the third neighbor sphere. Finally,
fingerprinting of IR/Raman data can possibly
give access to information regarding the pres-
ence of various ring structures in the amor-
phous network. The available experimental
data is summarized in table 8.3.

First, we will present the structural proper-
ties of the models, that represent the different
classes in section 8.3.1. In the second subsec-
tion (c.f. subsection 8.3.2), we will discuss in
detail the dependence of the properties of the
models of each class on the specific choice of
the parameters used in the generation of the
models in the class.

8.3.1 Comparison of classes

In this section we compare the structural prop-
erties of those models, that are typical for each
class. We show the data for those models that
were optimized using the local optimization
procedure IV, in which we optimized the cell
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First coordination sphere
Pair

N
CN local geometry

B-N 1.43 2.95 trig. plan.
Si-N 1.72 3.82 tetrahedr.
N-B 1.43 trig. planar
N-Si 1.72 trig. planar

N-(Si/B) n.a. 2.95 trig. planar
Second coordination sphere
B-B B-Si Si-B Si-Si
4-5 1.4 1.8 6g ���R� 1.9 g/cm �

Table 8.3: Summary of available experimental
data, taken from references [64] [114] [167] for
a-Si � B � N � . The mean distances

N
are given in

Å and the mean coordination numbers of the
first and the second coordination spheres are
dimensionless. The density g ���R� is given in
g/cm � , and the local geometries describe the
geometries of the first coordination spheres.

parameters and the atomic positions simulta-
neously, and employed interaction potential B.
The reverse Monte-Carlo (RMC) data were de-
termined from the minima after the local opti-
mizations were performed. First we discuss
the pair correlation functions, next we focus
on the first coordination spheres and finally
discuss the second coordination spheres and
the ring statistics.

Pair correlation functions

Figure 8.1 shows a comparison of the X-
ray and neutron pair correlation function���� �¡ �£¢�� of the models, representing the dif-
ferent classes, and the experimental data, af-
ter the energy minimization and after the final
RMC-fine-tuning, respectively. We find that
the models agree with the general shape of the
experimental function, and can associate the
various peaks with well-defined atom-atom
distances within the first and second neighbor
spheres: 1.43 Å with B-N bond distances, 1.72
Å with Si-N bond distances, 2.44 Å with B-N-B
and N-B-N distances, 2.74 Å with N-Si-N and
Si-N-B distances and the shoulder at about Å
with Si-N-Si distances, respectively (see also
figure 8.2). Note also, that there exist addi-
tional small peaks at P 3.8 and 4.2 Å. The best
quantitative agreement is found for the crys-

tal fragment (class B) and the sol-gel model
(class E). We also note the fact that even after
the RMC-fine tuning there exist noticeable dif-
ferences between the various models, which
are greater than the internal spread (c.f. sub-
section 8.3.2).

In figure 8.2, we show the contributions of
the partial pair correlation functions

�¥¤ ��¦ �¡ �£¢��
for neutron (N) and X-ray (X) scattering ex-
periments determined from procedures one
and five after RMC-refinement. As mentioned
above, the first four peaks at 1.43 Å, 1.72 Å,
2.44 Å, 2.74 Å and the shoulder at 3.1 Å can be
associated with B-N distances, Si-N distances,
B-B and N-(B)-N distances, Si-B and N-(Si)-N
distances and finally Si-Si distances. The shal-
low peaks between P 3.8 and 4.2 Å in the ex-
perimental pair correlation function can be as-
sociated with -�§ � neighbor Si-N and B-N dis-
tances, whereas the oscillations at P 4.5 to 5
Å come from b ��¨ neighbor N-N and Si-N dis-
tances. Note also that there exist small peaks
in the B-B, Si-B, Si-B, Si-Si and N-N partial
pair correlation functions at P 2.05, 2.2 and 2.6
Å, which indicate the existence of edge shar-
ing polyhedra in the structural models (see be-
low for further discussion.). We have summa-
rized the different peak assignments in table
8.4. The differences in the models of the differ-
ent classes can be most easily seen in the inten-
sities of the B-B, Si-B and the B-N partial pair
correlation functions depicted in figure 8.2 for
models belonging to classes A and B. The dif-
ference of the intensities of the peaks at 2.5 Å
and 2.75 Å belonging to the B-B and Si-B par-
tial pair correlation functions, shows the dif-
ference in the second coordination sphere of
the models A and B. The models of class A
(melt model, black curves) contain more Si-
B next-nearest neighbor pairs than the mod-
els of class B. On the other hand, there exist
more B-B and Si-Si next-nearest neighbor pairs
in the models of class B (gray curves) than in
class A. Note also, that in the models of class
E more Si-Si/B-B next-nearest neighbor pairs
exist than the models of found in class A.

Local coordinations and angular distribution
functions

Table 8.5 shows the mean coordination num-
bers and the distribution of the coordination
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Figure 8.1: Neutron (left) and X-ray (right) diffraction pair correlation functions
�©�� �¡ �£¢�� for

the models of the classes A-E, after thermal treatment and after local optimizations. The gray
curves are the pair correlation functions after the RMC-refinement, the full black lines show the
pair correlations functions after the local optimizations and the dashed curves are the experi-
mental pair correlation functions. The distances ¢ are given in Å. Note that the differences of
intensities of the peaks are due to the the different scattering factors of the pairs of atom, that
contribute to that peak.
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Figure 8.2: Contributions of the partial pair correlation functions
�ª¤ ��¦ �¡ �£¢�� (A, B=Si, B and

N) to the pair correlation functions
� �¦ �¡ �£¢�� for models of procedure 1, representing class A

(black curves) and procedure 5, representing class B (grey curves). The partial pair correlation
functions were calculated from the refined models, after slow cooling and local optimization.
Left: pair correlation functions from neutron scattering, right: X-ray scattering. Note that the
differences of intensities of the peaks are due to the the different scattering factors of the pairs
of atom, that contribute to that peak.



8.3. STRUCTURAL PROPERTIES 89

Peak Pairs/Distances
1.43 B-N(I) 1.43
1.72 Si-N(I) 1.72
2.50 N-N(I) 2.50,B-B(I) 2.50
2.77 N-N(II) 2.71,Si-B(I) 2.75
3.00 B-N(II) 2.90, Si-Si(I) 3.0
3.80 B-N(III) 3.80
4.20 Si-N(II) 4.20, B-B (IV) 4.25
5.20 N-N(III) 5.2, B-B(V) 5.0

Table 8.4: Peak positions in the experimen-
tal pair correlation functions of a-Si � B � N � and
the corresponding atom-atom distances, that
are determined in this work. All distances are
given in Å. We have added roman numerals
to those pairs that contribute to more than one
peak in the experimental pair correlation func-
tion.

spheres of silicon, boron and nitrogen of the
refined models. Clearly, silicon atoms are
mainly fourfold coordinated, whereas boron
atoms are surround by three nitrogen atoms,
and nitrogen is surrounded mostly by three
cations. Comparing the silicon and boron
atoms, we find that boron atoms achieve their
ideal coordination number of 3 more often
than the silicon atoms, and that coordina-
tion defects will be more frequently found at
silicon than at boron.5 Differences between
the models belonging to different classes can
be found in the distribution of the nitrogen
coordination spheres NSi � B � L � . For mod-
els derived from the classes A, C and D the
distribution of NSi � B � L � shows a preference
for NSi ? B > - and NSi > B ? coordination spheres.
Contrary to this observation, the models of
classes B and E contain a higher percentage of
NSi � and NB � coordination spheres.

Figures 8.3 show the angular distribution
functions for the N-B-N, the N-Si-N and
(B/Si)-N-(B/Si) angles. While all models
clearly show that the dominant angles at
Si, B, and N are those that correspond to
a tetrahedral and trigonal coordination, re-
spectively, we see that all models also ex-
hibit a small peak at 90 degrees in the N-

5The models representing the classes D and E contain« 10-15 % fourfold coordinated boron atoms. However
this effect is a combination of an effect of the interaction
potential and the insufficient equilibration in the gener-
ation of the raw models.

Si-N and N-B-N distributions. This indi-
cates that a certain amount of edge connected
SiN W -tetrahedra and BN � -triangles is present
in all these models. The interatomic distancesNI¬ D �®K�°¯�� , with X,Y=Si or B, corresponding
to these 90 degree angles can be calculated
from

N ?± �®K�ª¯��©� N ? �®K�|²��³� N ? �´¯8�µ²;�p���: N �´¯8�|²1�¶: N �®K�|²;�
·c¸(¹o�»º¼� , and this yields
for a bonding angle º½�®#�l²7�°¯6�¾P ���<¿ ,NI¬ D �£ÀÁ�|Àp�ZP �
	��(� Å,

NI¬ D �»ÂVÃi�lÀp�ÄP �
	9��- Å
and

N<¬ D �»ÂVÃ��ÅÂVÃ��YP �
	�b�b Å. Since these val-
ues are close to other relevant interatomic dis-
tances, they will at most result in small shoul-
ders of large peaks in the total pair correlation
functions. Note however, that small peaks at
these positions can be found in the partial pair
correlation functions (see figure 8.2). The an-
gular distribution function of boron atoms is
sharper than the one for silicon and for nitro-
gen atoms. We also mention the good agree-
ment between the angular distribution func-
tion of the models before and after the RMC
refinement.

Second coordination spheres and ring statis-
tics

One of the great advantages of a computer
model of an amorphous material is the abil-
ity to exactly determine the local coordination
of any atom beyond the first neighborhood
and other characteristics such as the distribu-
tion of ring sizes. Table 8.6 shows the distri-
butions of the second coordination spheres of
the atoms for the five different model classes.
We find, that even though all models yielded
similar values for the first coordination sphere
and similar results for the angular distribu-
tion functions, the second (cation-cation) coor-
dination spheres demonstrate the differences
between the model classes. As mentioned
above, the models corresponding to classes B
and E contain more Si-Si and in particular B-
B next-nearest neighbor contacts than all other
models, thus being in best agreement with ex-
periment. The ring size distributions of the
different models are listed in table 8.7. We
note that there exist about 7-10 % of 4-rings
in the models generated in classes A-C and
about 12-14 % in classes D and E. The exis-
tence of these 4-rings was already suggested
by the small peaks at P ���<¿ in the angular
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Class Si SiN W SiN � SiN � B BN � BN W BN ?
A 3.96 0.94 0.05 0.01 3.03 0.97 0.03 0.00
B 3.78 0.76 0.23 0.01 3.06 0.91 0.07 0.02
C 3.94 0.92 0.07 0.01 3.02 0.97 0.02 0.01
D 3.83 0.81 0.17 0.01 3.14 0.85 0.14 0.01
E 3.63 0.62 0.37 0.01 3.17 0.81 0.18 0.01

(a) Si/B

Class N-Si N-B NSi � B D NSi ? B > NSi > B ? NSi D B �
A 1.70 1.30 0.10 0.48 0.31 0.02
B 1.62 1.31 0.33 0.13 0.13 0.26
C 1.69 1.29 0.16 0.39 0.30 0.07
D 1.64 1.34 0.16 0.33 0.28 0.08
E 1.56 1.36 0.14 0.28 0.24 0.12

(b) N

Table 8.5: Mean coordination numbers and distribution of coordination spheres for silicon and
boron (top) and nitrogen (bottom) for the refined models. In the upper table, columns labelled
Si/B contain the mean coordination number of silicon and boron, respectively. The data in
the columns labelled Æ©²�Ç are the fractions of Æª²ÈÇ (X=Si,B) building units. In the lower table,
columns labelled N-Si/N-B contain the mean number of silicon and boron atoms surrounding
a nitrogen atom. The columns labelled NSi � B Ç contain the fraction of NSi � B Ç building units
found in the structures. Note that the distribution of NSi � B Ç was calculated for all nitrogen
atoms but only the data for threefold coordinated nitrogen is shown.

0

0

0

0

0

60 80 100 120 140

A
D

F(
N

−S
i−

N
) [

re
l. 

pr
ob

.]

Θ(N−Si−N) [°]

Class A

Class B

Class C

Class D

Class E

0

0

0

0

0

60 80 100 120 140

A
D

F(
N

−B
−N

) [
re

l. 
pr

ob
.]

Θ(N−B−N) [°]

Class A

Class B

Class C

Class D

Class E

0

0

0

0

0

60 80 100 120 140

A
D

F(
X

−N
−Y

) [
re

l. 
pr

ob
.]

Θ(X−N−Y) [°]

Class A

Class B

Class C

Class D

Class E

Figure 8.3: Angular distribution functions (ADF) of the first coordination spheres of silicon
(left), boron (middle) and nitrogen (right) atoms for the models representing the classes A-
E. The thick black curves are calculated from the RMC-refined models, whereas the thin black
curves are from the locally optimized models, both calculated from ’cooled’ models. The dotted
vertical lines are at positions of bonding angles that correspond to tetrahedral (109.47 ¿ )(left)
and trigonal planar (120 ¿ )(middle and right) coordination geometries.
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Model Si B N É ��ÊË\
0 2 2 0.06

A 1 1 2 0.61
2 0 2 0.37
0 2 2 0.22

B 1 1 2 0.28
2 0 2 0.50
0 2 2 0.07

C 1 1 2 0.48
2 0 2 0.50
0 2 2 0.26

D 1 1 2 0.58
2 0 2 0.17
0 2 2 0.30

E 1 1 2 0.57
2 0 2 0.12

Model Si B N É ��ÊË\
0 2 2 0.05

A 1 1 2 0.59
2 0 2 0.38
0 2 2 0.19

B 1 1 2 0.30
2 0 2 0.50
0 2 2 0.03

C 1 1 2 0.45
2 0 2 0.55
0 2 2 0.21

D 1 1 2 0.59
2 0 2 0.20
0 2 2 0.24

E 1 1 2 0.60
2 0 2 0.16

Table 8.8: Average fraction É ��ÊË\ of occurences of 4-rings with the specified compositions. Note,
that the fractions do not sum up to one due the averaging. The numbers are the probabilities
of selecting a ring with composition Si � B Ê N \ from rings of size 4, given that a ring of size 4 has
been found. The left table shows the data calculated from the optimized models and right data
from the refined models.

Class Si B N %
0 3 3 0.01

A 1 2 3 0.20
2 1 3 0.58
3 0 3 0.20
0 3 3 0.34

B 1 2 3 0.13
2 1 3 0.13
3 0 3 0.40
0 3 3 0.01

C 1 2 3 0.26
2 1 3 0.44
3 0 3 0.28
0 3 3 0.05

D 1 2 3 0.27
2 1 3 0.40
3 0 3 0.27
0 3 3 0.10

E 1 2 3 0.33
2 1 3 0.34
3 0 3 0.23

Model Si B N %
0 3 3 0.01

A 1 2 3 0.21
2 1 3 0.58
3 0 3 0.20
0 3 3 0.35

B 1 2 3 0.13
2 1 3 0.14
3 0 3 0.38
0 3 3 0.02

C 1 2 3 0.27
2 1 3 0.44
3 0 3 0.27
0 3 3 0.06

D 1 2 3 0.28
2 1 3 0.40
3 0 3 0.26
0 3 3 0.11

E 1 2 3 0.34
2 1 3 0.33
3 0 3 0.23

Table 8.9: Average fraction É ��ÊË\ of occurences of 6-rings. Note, that fractions É ��ÊË\ do not sum
up to one due to the averaging. The numbers are the probabilities of selecting a ring with
composition Si � B Ê N \ from rings of size 6, given that a ring of size 6 has been found. The left
table shows the data calculated from the optimized models and right data from the refined
models.
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Class Si-Si Si-B B-B B-Si

A 3.81 3.99 1.96 3.99
B 5.66 1.39 4.64 1.39
C 4.24 3.32 2.54 3.32
D 4.17 3.18 2.84 3.18
E 3.79 2.76 3.29 2.76

Exp 6 1.8 4-5 1.4

Table 8.6: Mean coordination numbers of the
second coordination spheres of silicon and
boron atoms for the refined models represent-
ing classes A-E.

distribution functions and in the small pre-
peaks in the partial pair correlation functions.
Note that no preference for edge-sharing be-
tween two SiN W -tetrahedra over edge-sharing
between an SiN W tetrahedron and a BN � tri-
angles can be observed in the distribution
of the compositions of four-membered rings
(c.f. table 8.8). Furthermore, no rings ex-
ceeding a size of 16 atoms exist in the struc-
tures. The differences between model classes
can again be detected in the higher fraction
of six-membered rings found in the structures
of class B (see below). These models were
derived from the crystal fragment model and
thus contained a considerable number of bo-
razene rings (B � N � ). These borazene rings are
still present in the structures of class B. Table
8.9 shows the distribution of the compositions
of six-membered rings. Quite remarkably the
models of class B contain P 40 % B � N � and
Si � N � rings, clearly showing that a consider-
able part of the initial structure has remained
intact. Finally, the models derived from class E
contain fewer six-membered rings than model
generated in class B, but the relative amount
of borazene rings in class E models is consid-
erably higher, than the corresponding fraction
of borazene rings in the models of classes A, C
and D.

8.3.2 Comparison of classes and proce-
dures

In the previous subsections, we have pre-
sented and compared the results for typical
models of each class for the optimized and the
refined models. Now we are going to focus
on each class separately, and analyze the dif-
ferent procedures involved. We have to ad-

Class Ì©�#b Ì©�K* Ì©�K. ÌÍ�Î�=� Ì©�Î���
A 0.06 0.27 0.39 0.26 0.02
B 0.08 0.41 0.32 0.15 0.04
C 0.08 0.27 0.37 0.24 0.03
D 0.13 0.24 0.36 0.23 0.04
E 0.16 0.27 0.31 0.19 0.05

(a) Optimized

Class Ì©�#b Ì©�K* Ì©�K. ÌÍ�Î�=� Ì©�Î���
A 0.05 0.28 0.39 0.27 0.02
B 0.06 0.41 0.32 0.16 0.04
C 0.07 0.27 0.37 0.25 0.04
D 0.10 0.24 0.36 0.25 0.05
E 0.12 0.27 0.31 0.21 0.06

(b) Refined

Table 8.7: Ring size distributions of rings of
size Ì containing silicon, boron and nitrogen
atoms. The numbers in the columns labelledÌ are the fractions of rings of size Ì for each
class. The upper table contains the data for
the optimized models and the lower table con-
tains the data for the refined models.

dress four different aspects: influence of spe-
cific modeling parameters if present, param-
eters of the global optimization if performed,
effect of the two potentials used for the refine-
ment and energy relaxation, and the effect of
performing only a constant pressure local min-
imization or a combination of constant vol-
ume followed by constant pressure minimiza-
tion. We present our results for the models
determined from the local optimizations only,
since the RMC-refinement procedure does not
change the structural properties significantly.

We have found that the effect of the choice of
potential for the final local optimizations is the
same for all procedures, and does not corre-
late with the other choices of optimization pa-
rameters or influence the comparison between
two procedures, except for those procedures,
that employed very fast cooling. Thus, all the
comparison data we show below are for calcu-
lations with the more complex potential B. We
have performed these comparisons also with
potential A, of course, and the various trends
are the same as for potential B (see appendix
B.1 for details of the topological properties of
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the models for the different local optimiza-
tions and refinements.).

Regarding the question of performing only
one constant pressure minimization or a com-
bination of constant volume followed by con-
stant pressure, we found that the effect is most
pronounced for those procedures where nei-
ther a global optimization nor a slow cooling
stage had been included. In these latter cases,
we find that only performing constant pres-
sure minimizations right away led to some-
what lower densities than first allowing the
system to remove extreme tensions by con-
stant volume minimizations.

For the RCP model, we are not going to
present a specific analysis. The only param-
eters that can be varied are those in the spe-
cific modeling algorithm (no global optimiza-
tion stage present). A detailed analysis of the
influence of the various parameters for the
RCP model has already been given (see [67]
and chapters 5 and 7) for several example sys-
tems such as a-SiO ? , a-Si � N W , and amorphous
Si/O/N. Similarly, for the sol-gel model, and
a detailed analysis of the many model pa-
rameters and possible sub-models that can be
constructed within the context of the sol-gel
model would go beyond the purview of this
chapter, and is presented in chapter 6.

Class A: Cooling-from-melt models

Figure 8.4 shows the pair correlation functions
for the three procedures 1 (MD), 2 (MC), and
3 (GO), plus the outcome of the direct applica-
tion of the conjugate gradient minimizations
to the structures equilibrated at ������ K. The
comparison of the pair correlation functions
of the MC and MD cooling using compara-
ble cooling rates shows no difference between
these methods. We again find the peaks at
1.43 Å and 1.72 Å resembling B-N and Si-N
interatomic distances. Note that these peaks
are slightly wider for faster cooling. Fur-
thermore, within each procedure, slower cool-
ing leads to more pronounced peaks at P 2.4
and 2.74 Å. The pair correlation functions are
rather featureless for distances longer than 3.5
Å. Finally, quenching the (at 2500 K) equili-
brated models, leads to pair correlation func-
tions that are similar to the one calculated for
models that were rapidly cooled and locally

optimized.
Each of the three procedures was performed

for three different cooling rates, with the
global optimization simulated annealing, in
addition, starting from three very high initial
temperatures. Fast cooling leads to stronger
deviations from the ideal coordination num-
bers three and four for boron and silicon, re-
spectively. Additionally, we find for the MC
and MD cooling procedures, that higher cool-
ing rates lead to the existence of a higher frac-
tion of four-membered rings. Finally, no clear
dependence of the mean coordination num-
bers of second coordination spheres on eitherE D or 2 can be deduced from our data.

Class B: Crystal fragment models

In this section, we analyze the models de-
rived from the crystal fragment model by pro-
cedures 4, 5 and 6. Within each procedure,
we investigate both the dependence on the
initial temperature E D at which the systems
were equilibrated and on the cooling rates em-
ployed in the cooling process.

Figure 8.5 shows the pair correlation func-
tion for the three procedures 4, 5 and 6 for dif-
ferent initial temperatures and cooling rates,
together with the direct minimization for each
initial density. The models obtained from a
slow cooling process that started after the sys-
tem had been ’equilibrated’ at a low tempera-
ture ( E D = 2000 K and 1000 K ), exhibit a well
structured pair correlation function. These
pair correlation functions contain all peaks up
to P 5 Å, that have already been discussed
in section 8.3.1 and summarized in table 8.4.
However, keeping the system at 2000 K or
3000 K prior to cooling leads to significant dif-
ferences in the pair correlation functions of
the models, obtained after cooling. For the
NPT-simulations (middle part of figure 8.5),
the pair correlation functions become feature-
less at distances ¢zXZ-
	9 Å for the two slowest
cooling rates, if the system was equilibrated at������� K, and for all cooling rates, if the system
was kept at -������ K prior to cooling. In the
NVT-simulations, the lack of features at dis-
tances R X 3.5 Å can be found for the initial
temperature E D = -������ K. For the global opti-
mizations, we find similar results. Note that
the cooling rates employed in the global opti-
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Figure 8.4: Pair correlation functions for neutron (left) and X-ray (right) scattering calculated
from optimized models of class A. The pair correlation functions that are labelled with MD/MC
are obtained from optimized models after MD/MC cooling with different cooling rates. Sim-
ilarly GO refers to the global optimizations. For each procedure, we show from bottom to
top, the data for lowest cooling rate, the medium cooling rate and the fastest cooling rates. The
fourth curve within each section shows the pair correlation functions of those models that were
obtained by locally optimizing the starting configurations of each procedure. For the MC and
MD models the structures were equilibrated at E D = 2500 K and the GO section shows the data
for a system heated to 7000K. Curves are shifted for clarity.
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Figure 8.5: Neutron scattering pair correlation functions calculated from the models of class
B (crystal fragments). Left: Global optimization, middle NPT-MC cooling and right NVT-MC
cooling procedure. For each procedure, we show the data for the locally optimized models after
the cooling. We distinguish, for each procedure, between the initial temperatures E D (given in
K inside the figure), and the cooling rates 2 , that were employed in the cooling procedures.
For a given initial temperatures E D , we show from bottom to top the data for the slowest, the
medium and the fastest cooling rates. Curves are shifted for clarity.
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P E D 2 Si-N B-N N-Si N-B Si-Si Si-B B-B B-Si
1 2500 0 3.95 3.08 1.69 1.32 3.82 3.85 2.14 3.85
1 2500 1 3.97 3.07 1.70 1.31 3.84 3.91 2.08 3.91
1 2500 2 3.96 3.06 1.70 1.31 3.79 3.98 2.06 3.98
1 2500 3 3.97 3.02 1.70 1.30 3.81 3.99 1.96 3.99
2 2500 0 3.85 3.15 1.65 1.35 3.74 3.90 2.31 3.90
2 2500 1 3.94 3.10 1.69 1.33 3.70 4.05 2.03 4.05
2 2500 2 3.95 3.07 1.69 1.32 3.67 4.02 2.03 4.02
2 2500 3 3.97 3.05 1.70 1.31 3.72 4.08 1.97 4.08
3 0 0 3.85 3.15 1.65 1.35 3.74 3.90 2.31 3.90
3 5000 1 3.87 3.12 1.66 1.34 3.79 3.90 2.27 3.90
3 5000 2 3.92 3.14 1.68 1.35 3.76 3.81 2.31 3.81
3 6000 1 3.85 3.17 1.65 1.35 3.75 3.89 2.36 3.89
3 6000 2 3.91 3.18 1.68 1.36 3.70 3.91 2.27 3.91
3 7000 1 3.86 3.15 1.66 1.35 3.72 3.83 2.33 3.83
3 7000 2 3.91 3.18 1.68 1.37 3.90 3.75 2.47 3.75

Table 8.10: Coordination numbers of the first and second coordination spheres of the models
of class A. The columns labelled Si-N and B-N contain the mean coordination numbers of sil-
icon and boron atoms. Similarly, columns labelled N-Si and N-B contain the average number
of silicon and boron atoms surrounding a nitrogen atom in its first coordination sphere. The
mean number of next-nearest silicon and boron atoms around a silicon atom are given in the
columns labelled Si-Si and Si-B and the mean number of next-nearest silicon and boron atoms
around a boron atom can be found in columns B-Si and B-B. P is the procedure used in the
generation of these models. E D is the temperature (in K) at which the structures were thermal-
ized. 2 =0,1,2,3 refer to results of the local optimizations with no cooling, fast, medium and
slow cooling, respectively.

P E D 2 Ì¥�#b Ì©�K* Ì©�K. Ì©�Î�=� Ì©�Î���
1 2500 0 0.09 0.23 0.41 0.24 0.03
1 2500 1 0.09 0.25 0.38 0.25 0.04
1 2500 2 0.07 0.27 0.38 0.26 0.02
1 2500 3 0.06 0.27 0.39 0.26 0.02
2 2500 0 0.04 0.24 0.43 0.27 0.02
2 2500 1 0.08 0.27 0.37 0.27 0.02
2 2500 2 0.07 0.27 0.38 0.25 0.03
2 2500 3 0.05 0.31 0.38 0.24 0.02
3 0 0 0.04 0.24 0.43 0.27 0.02
3 5000 1 0.04 0.24 0.43 0.26 0.02
3 5000 2 0.11 0.23 0.36 0.26 0.03
3 6000 1 0.05 0.23 0.43 0.27 0.02
3 6000 2 0.11 0.24 0.36 0.25 0.02
3 7000 1 0.08 0.24 0.41 0.25 0.03
3 7000 2 0.12 0.24 0.37 0.25 0.03

Table 8.11: Distribution of ring size Ì calculated from the models that were generated in class
A. P is the procedure used in the generation of these models. E D is the temperature (in K) at
which the structures were thermalized. 2 =0,1,2,3 refer to results of the local optimizations with
no cooling, fast, medium and slow cooling, respectively.
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mizations were an order of magnitude larger
than the ones employed in the NPT and NVT
cooling schemes. Heating the system to ������ K
or *������ K followed by rapid cooling results in
still well structured pair correlation functions.

The data for the first coordination spheres
of the models obtained via global optimiza-
tions and, to a lesser extent of those obtained
via slow MC cooling, show similarities to the
data derived from the models obtained by
melt cooling.(Table 8.12) Slower cooling leads
to smaller deviations of the coordination num-
bers of silicon and boron from their ideal val-
ues 3 and 4, respectively. We also mention
that nitrogen atoms are always threefold co-
ordinated as in the melt models, and that the
nitrogen coordination does not show any pref-
erence for N-B coordination over N-Si coor-
dination. However the second coordination
spheres reveal differences among the mod-
els and shows the dependence of the struc-
tural properties on the thermal history. We
find a decrease of the number of Si-Si and B-B
next nearest neighbors with decreasing cool-
ing rates 2 for all models that were heated to
temperatures EYÏª-������ K. For the slowest cool-
ing rates (procedures 5 and 6), we also note
that these coordination numbers of the sec-
ond coordination spheres approach the values
found for the models determined from melt
processing. Noticably, this approach to the
’melt-values’ is not found for the models, that
were only heated to �=����� K initially or were
cooled very fast from 2000K. In this context,
we would also like to point out, that this mix-
ing of Si and B cations in the overall structure
is only visible for E D �K-������ K in the NVT cool-
ing simulations in contrast to the NPT sim-
ulations, were this mixing sets in for models
heated to ������� K and cooled slowly. The anal-
ysis of the ring statistics (c.f. table 8.13), again
shows the (dis)similarities to the models ob-
tained from the melt procedure. Fast cooling
leads to a higher fraction of four-membered
rings in all models, regardless of their thermal
treatment. The differences between the mod-
els become clearer, if we focus on the fraction
of six-membered rings. The fraction of six-
membered rings decreases from a high value
of P}b(� % to the values of PÐ�� %, once we
heat the system to temperatures above �������
K and keep it at that temperature for a suffi-

ciently long time. Note that the breakdown
of ’ring-ordering’ is closely correlated with the
increase in the number of Si-B next nearest
neigbors. Finally we note that these effects are
visible in the NVT-simulations only, if we heat
the system to -������ K.

Cluster models

Figure 8.6 shows the pair correlation function
for the open cluster and the periodically re-
peated cluster interior, together with the cor-
responding quench results. Again, we find the
same peaks in the pair correlation function as
in the models derived from the melt-cooling
procedures and the crystal fragment models.
Note, however, that the first two peaks at 1.43
and 1.72 Å in the pair correlation function
of the open cluster models, are substantially
broader than the ones found for the periodi-
cally repeated interior of the cluster because
of surface effects. Concerning the effects of
choice of the initial temperatures, the second
double peak in the pair correlation functions
of the open cluster models are more blurred
than the corresponding peaks in the periodi-
cally repeated interior of the cluster. For the
latter models, the splitting of that second dou-
ble peak is much more pronounced, for slower
cooling rates. Returning to surface effects, we
show in figure 8.7 the dependence of the den-
sity of the open cluster models on the distance
from the center of gravity of the cluster. Note
that the cluster radius is PÑ��� Å for the equi-
libration at ������ K and Pf��� Å at ������ K, and
the densities are around 2.75 g/cm � .

The structural properties of the cluster
based models depend on the process parame-
ters that were employed in the generation of
these models in a similar manner as do the
structural properties of the crystal fragment
models (Table 8.14). Silicon atoms are mainly
tetrahedrally coordinated by nitrogen, boron
and nitrogen atoms are mainly trigonally pla-
nar coordinated by nitrogen, and silicon or
boron, respectively. Slower cooling leads to an
increased coordination number of silicon and
faster cooling leads to more BN W units. The
second coordination spheres of the cluster-
based models do not show a preference for
a high number of Si-Si and B-B next nearest
neighbors over Si-B and B-Si nearest neighbor,
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P E D 2 Si-N B-N N-Si N-B Si-Si Si-B B-B B-Si
4 0 0 3.78 3.17 1.62 1.36 5.76 1.34 5.00 1.34
4 5000 1 3.76 3.12 1.61 1.34 5.71 1.27 4.90 1.27
4 5000 2 3.79 3.06 1.62 1.31 5.37 1.49 4.13 1.49
4 5000 3 3.83 2.98 1.64 1.28 4.15 2.70 2.64 2.70
4 6000 1 3.77 3.14 1.62 1.34 5.65 1.35 4.79 1.35
4 6000 2 3.79 3.04 1.63 1.30 5.12 1.66 3.88 1.66
4 6000 3 3.80 2.97 1.63 1.27 3.71 3.01 2.29 3.01
4 7000 1 3.74 3.11 1.61 1.33 5.47 1.29 4.69 1.29
4 7000 2 3.79 3.04 1.62 1.30 4.91 1.88 3.64 1.88
4 7000 3 3.76 2.99 1.61 1.28 3.52 3.17 2.13 3.17
5 1000 1 3.82 3.08 1.64 1.32 5.76 1.42 4.70 1.42
5 1000 2 3.83 3.06 1.64 1.31 5.77 1.44 4.60 1.44
5 1000 3 3.83 3.07 1.64 1.32 5.78 1.41 4.67 1.41
5 2000 1 3.85 3.03 1.65 1.30 5.64 1.52 4.39 1.52
5 2000 2 3.94 3.04 1.69 1.31 3.91 3.65 2.21 3.65
5 2000 3 3.97 3.03 1.70 1.30 3.92 3.83 2.11 3.83
5 3000 1 3.92 2.99 1.68 1.28 4.79 2.57 3.02 2.57
5 3000 2 3.94 3.04 1.69 1.31 3.91 3.65 2.21 3.65
5 3000 3 3.97 3.03 1.70 1.30 3.92 3.83 2.11 3.83
6 1000 1 3.79 3.07 1.62 1.31 5.69 1.34 4.68 1.34
6 1000 2 3.80 3.05 1.63 1.30 5.70 1.33 4.66 1.33
6 1000 3 3.83 3.00 1.65 1.29 5.71 1.40 4.46 1.40
6 2000 1 3.84 3.01 1.64 1.29 5.63 1.41 4.41 1.41
6 2000 2 3.90 2.97 1.68 1.27 5.25 2.04 3.67 2.04
6 2000 3 3.92 2.96 1.68 1.27 5.16 2.22 3.45 2.22
6 3000 1 3.88 2.99 1.66 1.28 4.57 2.57 2.89 2.57
6 3000 2 3.89 2.96 1.67 1.27 3.83 3.40 2.08 3.40
6 3000 3 3.91 3.01 1.68 1.29 3.61 3.73 1.98 3.73

Table 8.12: Coordination numbers of the first and second coordination spheres of the models
of class B. The columns labelled Si-N and B-N contain the mean coordination numbers of sil-
icon and boron atoms. Similarly, columns labelled N-Si and N-B contain the average number
of silicon and boron atoms surrounding a nitrogen atom in its first coordination sphere. The
mean number of next-nearest silicon and boron atoms around a silicon atom are given in the
columns labelled Si-Si and Si-B and the mean number of next-nearest silicon and boron atoms
around a boron atom can be found in columns B-Si and B-B. P is the procedure used in the
generation of these models. E D is the temperature (in K) at which the structures were thermal-
ized. 2 =0,1,2,3 refer to results of the local optimizations with no cooling, fast, medium and
slow cooling, respectively.



98 CHAPTER 8. A-SI � B � N �

P E D 2 Ì¥�#b Ì©�K* Ì©�K. Ì©�Î�=� Ì©�Î���
4 0 0 0.09 0.42 0.34 0.13 0.03
4 5000 1 0.09 0.38 0.35 0.14 0.03
4 5000 2 0.16 0.26 0.30 0.19 0.07
4 5000 3 0.17 0.28 0.28 0.15 0.06
4 6000 1 0.10 0.35 0.35 0.15 0.04
4 6000 2 0.18 0.24 0.29 0.19 0.08
4 6000 3 0.18 0.25 0.26 0.20 0.07
4 7000 1 0.12 0.31 0.32 0.18 0.05
4 7000 2 0.16 0.23 0.29 0.20 0.09
4 7000 3 0.17 0.26 0.27 0.17 0.08
5 1000 1 0.08 0.42 0.32 0.14 0.03
5 1000 2 0.08 0.42 0.32 0.14 0.03
5 1000 3 0.08 0.41 0.32 0.15 0.04
5 2000 1 0.09 0.39 0.31 0.16 0.04
5 2000 2 0.10 0.28 0.35 0.23 0.04
5 2000 3 0.08 0.33 0.34 0.21 0.04
5 3000 1 0.12 0.28 0.33 0.19 0.06
5 3000 2 0.10 0.28 0.35 0.23 0.04
5 3000 3 0.08 0.33 0.34 0.21 0.04
6 1000 1 0.08 0.41 0.33 0.14 0.04
6 1000 2 0.09 0.42 0.32 0.14 0.03
6 1000 3 0.08 0.42 0.32 0.14 0.04
6 2000 1 0.10 0.40 0.30 0.15 0.04
6 2000 2 0.09 0.40 0.31 0.15 0.03
6 2000 3 0.09 0.41 0.31 0.14 0.03
6 3000 1 0.15 0.27 0.30 0.19 0.06
6 3000 2 0.12 0.29 0.32 0.19 0.06
6 3000 3 0.12 0.34 0.31 0.19 0.04

Table 8.13: Distribution of ring size Ì calculated from the models that were generated in class
B. P is the procedure used in the generation of these models. E D is the temperature (in K) at
which the structures were thermalized. 2 =0,1,2,3 refer to results of the local optimizations with
no cooling, fast, medium and slow cooling, respectively.
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Figure 8.6: Neutron pair correlation functions calculated from the models of class C (cluster-
derived models). Left: Open cluster model, right: periodically repeated interior of cluster. Each
plot contains sets of pair correlation functions of those models that were equilibrated at the
initial temperatures E D (given in K inside the figure) and cooled to 0 K using different cooling
rates. Within each set we show from bottom to top the pair correlation functions of the models
after slow, medium, fast cooling rate, and and no cooling had been performed prior to the local
optimization.

but only show an increased number of Si-Si
next nearest neighbors. This higher number
of Si-Si next-nearest neighbor decreases how-
ever, if the system is equilibrated at ������ K for
open boundary conditions and at ������ K fol-
lowed by slow cooling for periodic boundary
conditions. The analysis of the first and sec-
ond coordination spheres of the open-cluster
models were restricted to those atoms, that
lay inside a cube of edge length ÒÓ�n��: N ��Ô:Õ¢ \»Ö9×oØ»��� § a�Ù -YP ��*
	9� Å, with the center of
the cube at the center of gravity of the clus-
ter. Here ¢ \@Ö�×oØ@��� § is the radius of the open clus-
ter, calculated as the maximum distance any
atom has from the center of gravity of the clus-
ter. With this construction, the mean number
of next nearest neighbors will already decrease
due to surface effects. Searching for next near-
est neighbors (at distances between 2.5 and 3.2
Å from an atom close the border of the cubePÚ. Å from the center of gravity of the open
cluster, will lead to searches in regions of the
cluster, that are P7�����w��� Å away from the cen-
ter of gravity of the cluster and thus in a region
where possibly no atoms exist at all. Note that
only *�� % of the atoms of the open cluster are
included in the analysis when including this

restriction. The ring statistics, especially for
larger rings, will be even more prone to sur-
face effects. Thus, we show only the data for
the periodically repeated interior of the clus-
ters in table 8.15. For these structures, we only
find very small differences in the mean coordi-
nation numbers of the bulk and border region
atoms. Here, we defined atoms to belong to
the border region of the periodically repeated
unit cell, if they had a maximum distance of
2.5 Å from the unit cell faces. Finally, we note
that similar to the crystal fragment model,
only those cluster based structures could be
distinguished from the melt-based structures,
which had been cooled rapidly or had only
been relaxed at ������ K.

Class E: Sol-Gel models

In figure 8.8 we show the X-ray and neu-
tron scattering pair correlation functions of the
models generated by procedure 1 of the sol-gel
algorithms presented in chapter 6 for differ-
ent choices of the local optimization strategy,
together with the results of the RMC-refined
models. We observe effects of the choice of
the interaction potential in the intensity of the
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P E D 2 Si-N B-N N-Si N-B Si-Si Si-B B-B B-Si
7 0 0 3.79 3.06 1.58 1.40 4.21 2.53 3.22 2.25
7 1500 0 3.84 3.03 1.72 1.31 3.72 2.96 2.36 3.19
7 1500 1 3.88 3.03 1.74 1.32 3.76 3.01 2.39 3.22
7 1500 2 3.86 3.02 1.72 1.32 3.77 2.99 2.37 3.17
7 1500 3 3.88 3.02 1.74 1.30 3.77 3.06 2.35 3.27
7 2500 0 3.70 2.90 1.70 1.23 3.33 3.08 1.65 3.46
7 2500 1 3.78 2.94 1.72 1.26 3.49 3.31 1.71 3.60
7 2500 2 3.81 2.93 1.73 1.25 3.52 3.27 1.75 3.57
7 2500 3 3.80 2.99 1.72 1.29 3.51 3.45 1.76 3.66
8 1500 0 3.98 3.05 1.70 1.31 4.29 3.38 2.57 3.38
8 1500 1 3.98 3.02 1.70 1.30 4.27 3.36 2.55 3.36
8 1500 2 3.98 3.04 1.70 1.30 4.26 3.40 2.57 3.40
8 1500 3 3.96 3.02 1.70 1.30 4.26 3.35 2.54 3.35
8 2500 0 3.91 3.08 1.68 1.32 3.77 3.72 2.15 3.72
8 2500 1 3.91 3.06 1.67 1.31 3.65 3.76 2.09 3.76
8 2500 2 3.92 3.07 1.68 1.31 3.68 3.83 2.09 3.83
8 2500 3 3.94 3.03 1.69 1.29 3.68 3.92 1.98 3.92

Table 8.14: Coordination numbers of the first and second coordination spheres of the models
of class C. The columns labelled Si-N and B-N contain the mean coordination numbers of sil-
icon and boron atoms. Similarly, columns labelled N-Si and N-B contain the average number
of silicon and boron atoms surrounding a nitrogen atom in its first coordination sphere. The
mean number of next-nearest silicon and boron atoms around a silicon atom are given in the
columns labelled Si-Si and Si-B and the mean number of next-nearest silicon and boron atoms
around a boron atom can be found in columns B-Si and B-B. P is the procedure used in the
generation of these models. E D is the temperature (in K) at which the structures were thermal-
ized. 2 =0,1,2,3 refer to results of the local optimizations with no cooling, fast, medium and
slow cooling, respectively.
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Figure 8.7: Dependence of the densities of the
open cluster models on the distance from the
center of gravity of the cluster. For each initial
temperature E D (given in K inside the figure),
we show the data for locally optimized models
after slow, medium and fast cooling as well as
without cooling (from bottom to top). Curves
are shifted for clarity.

peak at PÐ�
	�bI Å of the second double peak
in the pair correlation functions. However the
pair correlation functions of the RMC-refined
models are barely distinguishable from each
other and agree with the experimental data
fairly well. Note also that the number of initial
aggregation sites does not influence the pair
correlation function.

These models show a significant percent-
age of SiN � and BN W building units, resulting
in rather low silicon mean coordination num-
bers and rather high boron coordination num-
bers compared to the experimental data (Table
8.16). The second coordination sphere of these
models show a high number of B-B and Si-Si
next nearest neighbors , which is an effect of
the kinetic factor [ D � % L !�� �#�V	9��� , which induces
a higher bonding probability of free nitrogen
atoms to boron than to silicon atoms, as al-
ready mentioned in section 8.2.1. Note, that a

P E D 2 Ì©�#b 6 8 10 12
7 0 0 0.07 0.26 0.28 0.27 0.09
7 1500 0 0.08 0.27 0.28 0.24 0.10
7 1500 1 0.09 0.26 0.29 0.24 0.09
7 1500 2 0.08 0.27 0.31 0.24 0.08
7 1500 3 0.08 0.28 0.32 0.23 0.08
7 2500 0 0.13 0.22 0.27 0.25 0.09
7 2500 1 0.12 0.24 0.32 0.23 0.07
7 2500 2 0.12 0.26 0.29 0.22 0.09
7 2500 3 0.10 0.27 0.32 0.22 0.07
8 1500 0 0.09 0.27 0.37 0.24 0.03
8 1500 1 0.08 0.27 0.38 0.24 0.03
8 1500 2 0.08 0.28 0.36 0.25 0.03
8 1500 3 0.08 0.27 0.37 0.24 0.03
8 2500 0 0.13 0.28 0.33 0.22 0.04
8 2500 1 0.12 0.25 0.35 0.24 0.04
8 2500 2 0.10 0.27 0.34 0.24 0.04
8 2500 3 0.08 0.29 0.35 0.26 0.03

Table 8.15: Distribution of ring size Ì calcu-
lated from the models that were generated in
class C. P is the procedure used in the genera-
tion of these models. E D is the temperature (in
K) at which the structures were thermalized.2 =0,1,2,3 refer to results of the local optimiza-
tions with no cooling, fast, medium and slow
cooling, respectively.

high number of like cation next nearest neigh-
bors remains visible, if we relax these sol-gel
models via NPT-MC simulations at tempera-
tures below 1000 K (see section 6.3.1 in chapter
6). Finally, we observe no preferred existence
of six-membered rings in the sol-gel modelled
structures (table 8.17).

8.4 Bulk Properties

8.4.1 Density and energy

As is well known from models for other amor-
phous compounds forming covalent networks
such as a-SiO ? , one of the most difficult quan-
tities to model is the overall density.[169, 20]
The reason for this can be found both in the
intrinsic faults of the models regarding struc-
ture design and energy function employed,
and in the hidden features of the experimen-
tal structure in the nearly ”inaccessible” range
of 1/2 - 2 nm, which could not be taken into
account during the modeling process. On this
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Figure 8.8: Neutron(left) and X-ray pair correlation functions (right) for the class E (sol-gel
models) for the two interaction potentials A, B and the results after RMC refinement (upper
curves). The dashed curves are the experimental data. The numbers in the figure are number
of initial atoms placed on the lattice. Curves are shifted for clarity.

P E D 2 Si-N B-N N-Si N-B Si-Si Si-B B-B B-Si
10 95 1 3.63 3.21 1.56 1.38 3.89 2.62 3.48 2.62
10 95 2 3.68 3.21 1.58 1.38 3.67 3.04 2.98 3.04
10 99 1 3.62 3.22 1.55 1.38 4.33 2.08 4.09 2.08
10 99 2 3.66 3.24 1.57 1.39 3.84 2.79 3.39 2.79

Table 8.16: Coordination numbers of the first and second coordination spheres of the models of
class E. The columns labelled Si-N and B-N contain the mean coordination numbers of silicon
and boron atoms. Similarly, columns labelled N-Si and N-B contain the average number of
silicon and boron atoms surrounding a nitrogen atom in its first coordination sphere. The mean
number of next-nearest silicon and boron atoms around a silicon atom are given in the columns
labelled Si-Si and Si-B and the mean number of next-nearest silicon and boron atoms around a
boron atom can be found in columns B-Si and B-B. The column labelled N gives the number of
initially placed atoms and the columns labelled p(N-B) give the probability of binding a boron
atom to a nitrogen atom.
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P [ D% L ! 2 4 6 8 10 12
10 95 1 0.15 0.28 0.30 0.19 0.05
10 95 2 0.16 0.27 0.31 0.18 0.05
10 99 1 0.16 0.26 0.31 0.19 0.05
10 99 2 0.16 0.27 0.31 0.19 0.05

Table 8.17: Distribution of ring size Ì calcu-
lated from the models that were generated in
class E. P is the procedure used in the gener-
ation of these models. The column labelled
N gives the number of initially placed atoms
and the columns labelled [¼D � % L !�� give the ini-
tial probability of binding a boron atom to a
nitrogen atom.

length scale, we are usually not able to de-
termine from the experimental measurements,
whether a ”dense” packing of the building
units (tetrahedra, octahedra, etc.) is present,
or whether small voids exist that are stable
within the macroscopic real compound. Typ-
ically, these would not appear in the context
of a high-temperature MD/MC simulation or
any other modeling procedure that explicitly
aims at generating the microscopic structure
of the dense portion of the amorphous mate-
rial.

Figure 8.9 shows the densities calculated for
the various models. Again, we find that the
closest agreement with experiment is found
for the crystal fragment model (class B) and
the sol-gel model (class E). However, in all
cases, the void-free regions show a density
of g �R����Ø�� P �
	9l�}�
	9. g/cm � . This should
be compared with the density of hypothetical
crystalline ternary compounds ( g \ § Ç Ø»� P �
	9�
g/cm � ), and the appropriate weighted aver-
age of the experimental densities of crystalline
BN and Si � N W ( g ��Û�� § PY�
	Ü&� g/cm � ). This sug-
gests that the reason for the surprisingly low
density of a-Si � B � N � might be the existence
of stable voids with diameters below � nm,
which would be difficult to determine experi-
mentally. Since the synthesis route via the sol-
gel process would naively be expected to lead
to many mismatches and the formation of cav-
ities of all sizes, the fact that the final density of
the sol-gel model agrees best with experiment
appears to be self-consistent, and justifies faith
in the model generating procedure. However,
it is not clear, how significant this result truly

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 1000 2000 3000 4000 5000 6000 7000

ρ 
[g

/c
m

3 ]

T0 [K]

A
B
C
D
E

Figure 8.9: Dependence of the densities of the
locally optimized models on the initial tem-
peratures employed in their generation. We
plot the data for the different classes, seper-
ately. The data for classes D, E are indepen-
dent of the initial temperature and are placed
at arbitrary positions. The dotted horizontal
line is the experimental density at 298 K.

is. Since we cannot follow the full synthesis
route of the sol-gel process, we note that the
good agreement with the result for the sol-
gel model might be just fortuitous. Further-
more, the data depicted in figure 8.9 shows a
wide spread even for a single model class, and
thus we discuss the dependence of the densi-
ties of the models on the process parameter
employed in their generation next, and later
discuss the influence of voids.

Figure 8.10 shows the dependence of the
densities of the melt based and crytal-
fragment based models on the cooling rates2 ¤�¶Ý¼Þ and 2 ¤��ß]Þ after constant pressure lo-
cal optimizations. Note that under constant
volume conditions in the cooling procedures
the variations in the densities stem from the
local optimization step. In that figure we
have included the densities of the models af-
ter local optimization using interaction poten-
tials A/B (open/closed) symbols. The densi-
ties of the melt based models are significantly
higher than the densities of the crystal frag-
ment based models. For both models we find
a decrease of the final densities after slower
cooling during the NVT-stage of the simula-
tions. No difference between the melt based
MD cooled models ( à > ) and the melt based
MC cooled models ( à ? ) is observable. Fur-
thermore the densities of the crystal fragment
based models are lower, if the final local op-
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timization stage was performed using interac-
tion potential A, compared to the densities of
the models that were optimized using inter-
action potential B. Note also that a similar ef-
fect is visible for the very rapidly cooled melt
based models. The NVT cooling simulation re-
lieve the strain in the system, and the final con-
stant pressure local optimizations bring the
system to the closest minimum with respect
to both atomic positions and cell parameters,
thereby not changing the densities dramati-
cally. Similarly, potential effects are most pro-
nounced if the system was cooled rapidly, thus
leaving the system in a highly strained state.
Then the local optimizations ’can do’ a lot and
noticeable effects of the choice of the interac-
tion potential can be identified.

The NPT cooling procedure shows, that
slower cooling leads to higher densities of the
final structural models after local optimization
(c. f. figure 8.10(b)) for the crystal fragment-
based models as well as the cluster-derived
models. Note, however, that the densities of
crystal-fragment models change by about 50
% and do not only depend on the choice of
the cooling rates, but also on the choice of the
initial temperature E D , that were used in the
NPT-cooling simulation. The densities of the
models that were cooled very rapidly ( 2 = 0.1
K/MCC) are rather low ( P 2.3 g/cm � , ap-
proximately equal to the densities of the NVT
cooled models). But for slower cooling the
densities of the crystal fragment based models
reach the densities of the melt based models,
provided that the system was heated to at least
2000 K. Note that it did not matter, whether we
performed the local optimization in a two step
manner (constant volume followed by con-
stant pressure local optimizations) or directly
under constant pressure conditions (open and
closed symbols in figure 8.10). 6 The rea-
son for the dramatic change in the density of
crystal fragment models can be found in the
structural freezing-in of the system at temper-
atures below 2000 K. Figure 8.11 depicting the
dependence of the densities on the tempera-
ture for different cooling rates after the system
had been prepared at 3000 K. Clearly, below

6The effect of the choice of the interaction potential
are similar to the ones of the NVT simulation discussed
above and the dependence on the cooling rate is the
same for either choice of potential.

2000 K the changes in densities become very
small, and for very low temperatures the den-
sities hardly change. Note also, that the rapid
cooling with �=�VL > K/MCC leads to lower den-
sities than slower cooling, since the time spent
above 3000 K is too short.

The energies of the crystal fragment-based
models are higher than the energies of the
melt-based and the cluster-based models.
Even though these energies fall into different
ranges, we find for the NVT- and the NPT-
cooling procedures, that slow cooling leads
to lower energies (see figure 8.12) for both
regimes. Furthermore, the energies of the NPT
slowly cooled crystal fragment based models
fall into the same regime as the melt based
models. Note also that the energies of the sol-
gel-based models are higher than the energies
of the low-density crystal fragment models
and that the energies of the RCP-based mod-
els are higher than energies of the melt-based
models, but still below the energies of the crys-
tal fragment-based models. The energies do
not depend on the specific choice of the lo-
cal optimization procedure. Even though the
magnitudes of the energies are different for
the two interaction potentials, the dependence
of the energies on the model class and on the
cooling rates are the same for both interaction
potential.

In figure 8.13, we show a scatter plot of
the density vs. the excess energy /6á ¤   � �
á ¤

  ������ § ��¨ �âá ¤
  �\ § Ç Ø@� , where á ¤

  �\ § Ç Ø»� are the po-
tential energies of a hypothetical crystalline
polymorph[144] for Si � B � N � . The density is
the higher, the lower the energy, thus show-
ing that the higher density models are ener-
getically more favorable.

8.4.2 Stability of voids

As mentioned above, a critical issue is the
stability of the voids. Clearly, in the melt,
these voids are not (or no longer) present, as
we have seen in the heating of the crystal
fragment beyond the melting temperature in
subsection 8.3.2, where the density increased
from �
	9� to �
	9* g/cm � . Similarly, our simula-
tions in subsection 8.3.2 indicate that no sig-
nificant voids are created during the quench-
ing from the melt. However, during the sol-gel
synthesis route the system remains far below
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Figure 8.10: Dependency of the densities g (in
g/cm � ) of the different model classes on the
cooling rate 2 ¤��Ý4ÞÕ »�ãß]Þ . The models àÈ�@a'äÈ�
were generated by different procedures å from
the melt-based models (A) and crystal frag-
ment based models (B). The cooling simula-
tions were run in the NVT ensemble and used
interaction potential A. The local optimiza-
tions employed interaction potentials A (open
symbols) and B (closed symbols) under con-
stant pressure conditions. Note that the crystal
fragment based models of procedure ä;Woa'ä H
had different initial densities g �£ä W �æ�Î��	9'b andg �£ä H �7� �
	��i� g/cm � , respectively. For one
cooling rate, we depict the data for different
initial temperatures E D by the same symbol.
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Figure 8.12: Dependence of the energies E (in
eV/Atom) of the different models on the cool-
ing rate 2 ¤�¶Ý¼Þ . The models à � a'ä � were gener-
ated by different procedures å from the melt-
based models (A) and crystal fragment based
models (B). The cooling took place in the NVT
ensemble. Interaction potential A was em-
ployed in the cooling procedures and in the fi-
nal local optimizations. Filled/open symbols
show the densities of the models that were lo-
cally optimized under constant pressure con-
dition without/with a preceding constant vol-
ume local optimization. The dotted horizon-
tal line is the average energy of the random
close packing-based models and the full hor-
izontal line is average energy of the sol-gel-
based models.



106 CHAPTER 8. A-SI � B � N �

 1.5

 2.0

 2.5

 3.0

0 0.1 0.2 0.3 0.4 0.5

ρ 
[g

/c
m

3 ]

∆ EA/B [eV]
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eV/Atom). The data calculated with potential
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gies /6á ¤   � �eá ����� § ��¨¤   � �Óá \ § Ç Ø»�¤   � , were calcu-
lated with respect to a hypothetical crystalline
polymorph of Si � B � N � . See text for details.

the melting temperature, and voids in bulk a-
Si � B � N � might prove to be quite stable up to,
say, ������ K.

We note that in a real system, a slow coars-
ening process takes place, where larger pores
grow at the expense of the smaller ones.[85]
However, this only corresponds to a ”reshuf-
fling” of empty space within the material
without a change in the overall density. The
space occupied by voids in the system can
only be eliminated from the system via migra-
tion of vacancies to the surface (the ”infinite”
pore). But once a crust near the surface has
been depleted of vacancies, it acts as a bar-
rier, and the removal of further voids from
the real system will essentially come to a halt.
In contrast, during constant pressure simula-
tions with periodic boundary conditions, the
”surface” is effectively only one cell constant
( P,���Í�)b(� Å!) away, and voids will vanish
tremendously more quickly than in real bulk
systems.

Thus, we have investigated the stability of
voids of various sizes ( ¢1Û���\1�z- Å,  Å, and .
Å for long simulation times ( �=� H MCC) over
a wide range of temperatures at zero exter-
nal pressure (see section 9.3.4 for details). The
model system consisted of ������ randomly ar-
ranged atoms and we introduced a number of
voids of sizes ¢ Û����ç� �U- ,  and . Å to pre-
pare systems with initial densities of P 1.8
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Figure 8.14: Temperature dependence of aver-
age densities for models that included voids of
radii ¢ Ý ��\ �K- ,  and . Å.

g/cm � and calculated the averages densities
from those configurations that are were gen-
erated in the last 20 % of the run time to re-
duce aging effects. Figure 8.14 depicting the
temperature dependences of the average den-
sities, clearly shows that larger voids are more
stable than smaller voids, and that voids of
radii X 5 Å are stable up to 1500 K. For all
configurations we checked by visual inspec-
tion that the original voids are still present in
the structure at the end of the simulations.

8.4.3 Phonon densities of states and
bulk moduli

We used the GULP-program for the calcu-
lation of the phonon spectra è ÛR�çÊ �ËéÕ� and the
bulk moduli B of the different models and cal-
culated these properties for all models after
employing the four local optimization strate-
gies. First, we show the bulk moduli as a
function of the excess energy /�á ¤   � , for the
two interaction potentials A and B, for all of
the PQ���� local minima that occurred in the
study of the different models. The excess en-
ergies /6á ¤   � ��á �R�¶� § �C¨¤   � �êá \ § Ç Ø»�¤   � were calcu-
lated with respect to a hypothetical high en-
ergy crystalline polymorph of the Si � B � N � sys-
tem. We find a distinct correlation between the
potential energy and the elastic strength of the
material. The lower the energy of the amor-
phous structures the higher are the bulk mod-
uli. Note also that the values of the bulk mod-
uli of the investigated systems depend very lit-
tle on the choice of the interaction potential.
Only for the high lying minima differences be-
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tween the two interaction potentials can be ob-
served. Figure 8.16, depicting the dependence
of the bulk moduli on the densities of the min-
ima after the local optimizations employing ei-
ther of the two interaction potentials, clearly
shows a correlation between the bulk moduli
and the densities. The more dense the system,
the higher is its bulk modulus. Note also that
the values of the bulk moduli do not depend
significantly on the choice of the interaction
potential.

Figure 8.17 shows the phonon spectra cal-
culated as averages over all structures found
for each class, employing interaction poten-
tials A and B in the local optimization and the
subsequent matrix diagonization. The over-
all shape of the spectra are the same, with
only slight differences in the high-frequency
regions, namely the peak at about ������ cm L >
is less pronounced for the models of classes B
and E. Comparison to the calculated phonon
densities of states of crystalline ë -Si � N W and
hexagonal boron nitride shows that the peak
at 1500 cm L > can be associated with vibrations
of hexagonal boron nitride, while the peaks atP 1000 cm L > stems mostly from Si-N lattice vi-
brations.7 Note that the choice of interaction
potential does not change the phonon densi-
ties of states significantly. Only the intensities
of the peaks in the phonon spectra of the crys-
tal fragment models depend on the choice of
the interaction potential.

8.5 Discussion

First we discuss the structural properties of
the different model classes and compare these
properties to the experimental data, examine
the dependence of the structural properties on
the process parameters used in the generation
of the models and compare these dependences
to the results of computer simulations of dif-
ferent systems. Next we focus on the bulk
properties of the models and discuss their de-
pendence on the process parameters used in
their generation of these models. Finally, we
will discuss some method related aspects.

In all structural models boron and silicon
atoms are mainly trigonally planar and tetra-

7In section 11.3.3, we perform a detailed peak assign-
ment based on the eigenvector analysis of a-Si r B r N s .
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Figure 8.15: Dependence of the bulk moduli
B (in GPa) on the excess energies /6á ¤   � (in
eV/Atom). The data calculated with potential
A is shown as filled squares and the data for
potential B as open squares. The excess ener-
gies /6á ¤   � �eá ����� § ��¨¤   � �7á \ § Ç Ø@�¤   � , were calcu-
lated with respect to a high-energy hypotheti-
cal crystalline polymorph of Si � B � N � . See text
for details.
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Figure 8.17: Phonon spectra of models rep-
resenting the classes A-E. Thin lines are the
phonon densities of states calculated after lo-
cal optimizations using potential A and bold
lines represent data after local optimizations
using potential B.

hedrally surrounded by three and four nitro-
gen nearest neighbors, respectively, and ni-
trogen atoms are surrounded by three cations
(silicon or boron atoms). These results agree
well with the experimental investigations of
a-Si � B � N � . Independent of the model classes,
we found that faster cooling leads to more
coordination defects, i.e. deviations from the
ideal coordination numbers four, three and
three of silicon, boron and nitrogen atoms, re-
spectively. The RCP-based models and the sol-
gel based models were only quenched (viz.
infinitely fast cooling) and showed a higher
number of coordination defects, confirming
the general observation that faster cooling
leads to more coordination defects. Voll-
mayr et al. found similar cooling rate depen-
dences in their study of the structural prop-
erties of a-SiO ? [169]. Note, however that in
the a-Si � B � N � system two cationic atoms ex-
ist that show a different relative number of
coordination defects. These defects are more
pronounced for silicon than for boron atoms,
clearly showing that nitrogen atoms are more
tightly bound to boron than to silicon atoms.

Even though the first coordination spheres
of the atoms were almost identical, signifi-
cant differences were found in the second co-
ordination spheres of the models. The melt-
, cluster- and RCP-based models showed a
rather homogenous distributions of the num-
ber of cations surrounding a given cation
in the second coordination sphere, but the
crystal-fragment- and sol-gel-based models
showed a preference for boron atoms sur-
rounding a boron atom in the second coor-
dination sphere. Similarly in the latter mod-
els, silicon was mostly surrounded by sili-
con atoms in the second coordination sphere.
The results for the crystal fragment based and
the sol-gel based models are in good agree-
ment with all experimental data, thus indi-
cating that the microscopic structure of the
real a-Si � B � N � material is close to these mod-
els. Furthermore for the crystal-fragment
based models, the heterogeneous distribu-
tions of cations disappeared once the system
was heated above 2000 K for a sufficiently
long time, thus providing evidence that aboveE J P 2000 K the memory of the type of amor-
phous structure in the solid state vanishes.
Note that this occured for the simulations that
were performed both in the NVT- and for
those in the NPT- ensemble and that these re-
sults did not depend on the local optimization
strategy employed. Note further that, NPT-
MC-relaxations of the sol-gel based models
at temperatures below and above E J showed
that the heterogenous distributions of cations
remained unchanged at temperatures belowE J but disappeared at temperatures above E J
(see chapter 6).

The X-ray and neutron pair correlation func-
tions of the crystal-fragment-based models
and the sol-gel-based models showed good
agreement with the experimental data as long
as the system was kept below 2000 K. These
pair correlation functions were clearly distin-
guishable from the ones of the other classes,
which fit the experimental data (at 298 K) only
moderately. Note also that the disappearance
of the heterogenous distribution of cations at
temperatures EìXÚE J is closely followed by
the disappearance of the clearly distinguish-
able features at distances ¢zXZ-
	9 Å in the pair
correlation functions of the different models.
Furthermore this lack of features at distances
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¢ÑX)-
	9 Å is common to all models except for
the low temperature crystal fragment-model
and the sol-gel-model.

The ring distributions in a-Si � B � N � are quite
difficult to characterize, due to the existence of
many different compositions of rings of sizesÌ . However, the structures are all compact,
since no large rings containing more than 16
atoms are found in all structures. We did not
find significant cooling rate effects in the over-
all distribution of ring sizes, only an increase
of four-membered rings in the models ob-
tained after very fast cooling was detectable.
These results on the ring statistics are similar
the results of Vollmayr et. al. [170] on the a-
SiO ? system. Again focussing on the crystal
fragment based model, we found a change of
the ring distributions from a preference for six
membered rings that were mostly Si � N � and
B � N � rings to a distribution of ring sizes, that
closely resembled the ring size distributions of
the other models, once the system was heated
above 2000 K.

The models belonging to the various classes
are also characterized by different densities,
ranging from 1.8 g/cm � to 2.9 g/cm � . Clearly
the ’low-temperature’ crystal fragment based
models and the sol-gel based models come
closest to the experimental densities. The den-
sities of the models belonging to the other
classes are all greater than 2.6 g/cm � , indi-
cating that the synthesis route is important
for the final density of the ’product’. Even
though the magnitudes of the densities were
specific for one model class, the cooling rate
dependence of the densities followed a gen-
eral scheme. For the NVT-simulations, we
found that slow cooling led to lower densities
of the locally optimized models, regardless of
the strategy employed in the local optimiza-
tions. In the NVT-cooling schemes, we re-
lieved the strain at constant (relatively large)
volume. Thus the slower we cool, the smaller
was the final strain, and the final constant
pressure local optimization does not shrink
the cell volume by a large amount, since this
local optimization only leads the system to a
close-by local minimum of the energy hyper-
surface. Contrary to the NVT-simulations, the
NPT-simulations led to higher densities of the
models after slow cooling and local optimiza-
tion. For a-SiO ? , Vollmayr et al. found a de-

crease of the density with increasing cooling
rate in a MD-NPT computer simulation study,
but the authors pointed out that these results
may be due to the density anomaly of a-SiO ? .
In a study on binary Lennard-Jones glasses,
the same authors[170] found that the density
increases with decreasing cooling rates. Note
that, experimentally, the density of borosili-
cate glasses increases upon slower cooling.[94,
69]

The crystal fragment-based models showed
a 40 % change in the density once these mod-
els were heated to temperatures above 2000
K, clearly indicating a transition to a denser
state at higher temperatures. Note that the
structural changes of the second coordination
spheres discussed in the preceding section ac-
company these changes of density. Further-
more, the study of NPT- relaxations of the sol-
gel models showed a dependence of the densi-
ties and the distribution of next-nearest neigh-
bors on the temperature, which was similar
to the dependences of these quantities in the
crystal fragment based models.

The energies of the models belonging to the
different classes also allowed for a distinction
of the different models. The denser mod-
els had lower energies than the lower den-
sity (crystal fragment based and sol-gel based)
models, thus indicating that the denser mod-
els are energetically more stable than the low-
density models. An exception were the dense
RCP-based models, due to the large number of
coordination defects in these structures. Fur-
thermore, the dependences of the energies on
the cooling rates was independent of the in-
vestigated model class and ensemble used in
the simulation. Slower cooling led to lower
energies, except for the highest cooling rates at
which the system fell out of equilibrium very
quickly. These cooling rates effect on the en-
ergies have also been found in computer sim-
ulations of spin glasses, a-SiO ? and Lennard-
Jones glasses, just to name a few of the inves-
tigated glassy systems.

The crystal fragment-based models are only
metastable with respect to the melt-based
models. However, at sufficiently low temper-
atures (i. e. below 2000 K), the time scale of
our simulation procedures are not sufficient to
bring the system to one of its low energy/high
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density configurations.8 which are struc-
turally different from the low temperature
structures the simulation were started from.
One possible explanation for this metastabil-
ity and thus the low density of the amor-
phous compounds observed experimentally is
the stability of voids in the structure. Our sim-
ulations showed, that voids of radii of 8Å are
stable up to 1500 K. This void-based explaina-
tion of the low-density of a-Si � B � N � is also
supported by experimental results of Sauter
et al.[132] of the vacancy sizes in amorphous
B-C-N ceramics. One should note, that our
simulations actually underestimate the stabil-
ity of voids. In the experiments a dense crust
will form at the surface of the material once
all the voids near the surface have been ex-
pelled. Thus the densification of the ceramic
is strongly inhibited. In contrast, voids can be
rather easily removed in a simulation with pe-
riodic boundary conditions - the effective sur-
face is only a few nanometers away.

Similar to the results of Omeltschenko et
al.[120] on low densitiy amorphous Si � N W ,
the bulk moduli of the a-Si � B � N � models de-
creased with decreasing density of the models.
Furthermore our results support Stillinger’s
view[172], that the bulk modulus of an amor-
phous material depends on the height of the
minimum on the energy landscape, thus indi-
cating that the low-lying minima have steeper
walls than the high-lying minima.

In general our results did neither depend on
the choice of interaction potential used in the
local optimization nor on the way these local
optimizations were performed. The choice of
the interaction potential affected the proper-
ties of only those models, that were rapidly
quenched, but the dependences on the cooling
rates was not affected by either choice of the
interaction potential.

8.6 Summary and conclusion

We showed that the properties of the amor-
phous ceramic a-Si � B � N � strongly depend
on the way we ’synthesize’ different mod-
els belonging to different classes on the com-
puter. The models that contained a certain

8Of course, these low energy/high density models
are only metastable at infinite simulations times.

degree of heterogeneity in the second coor-
dination sphere agreed well with the experi-
mental pair correlation functions, the exper-
imentally determined first and second coor-
dination spheres and the experimental densi-
ties. The unusually low density of this com-
pound is most probably due to existence of
sub-nanometer sized voids. Our results also
showed, that the amorphous ceramics pro-
duced by the sol-gel route are less dense, and
probably energetically less stable, than those
one might be able to synthesize in the future
via e. g. the glass formation route. Neverthe-
less for application below E J P 2000 K, the
present ceramic should prove to be sufficiently
stable for long-time applications.

The inclusion of a kinetic factor into the
modelling approaches showed that aspects of
the synthesis route should be included in fu-
ture modelling strategies for these new types
of amorphous compounds. Finally, we would
like to point to the plethora of rather differ-
ent and experimentally distinguishable amor-
phous structures that will be found when fol-
lowing different synthesis routes. Clearly, one
expects a similar behaviour to occur in other
complex amorphous systems such as multi-
nary amorphous oxides.
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Chapter 9

Thermodynamic properties of Si � B � N �

9.1 Introduction

In the previous chapters, we have shown that
the main building units of a-Si � B � N � are SiN W
tetrahedra and BN � and N(Si/B) � triangles.
Furthermore, at length scales í 7 Å, het-
erogeneities in the cation-cation next-nearest
neighbor distributions exist. We have pro-
vided evidence, that these heterogeneities are
due to the special synthesis route employed in
their generation. Furthermore the low-density
(both experimentally and simulated) of the
models could be traced back to the synthe-
sis route resulting in the existence of voids
on the sub-nanometer length scale. However,
the low-density structures were compactified
when heated above 2000 K and the hetero-
geneity was removed on doing such a thermal
treatment.
In order to understand the thermodynamic
behaviour more thoroughly, we will now in-
vestigate the (metastable) phase diagram of
Si � B � N � , with a particular focus on the high-
temperature liquid-gas region of the ternary
system. After a short description of the sim-
ulation method, we are going to analyze the
computed pressure data and the cluster size
distributions as function of temperature and
volume, and construct the phase diagram of
the ternary Si � B � N � -fluid. Finally, we are go-
ing to address the issue of the surprisingly
low density of the (metastable) amorphous ce-
ramic and analyze the stability of nano-size
cavities in the amorphous solid more thor-
oughly.

9.2 Method

9.2.1 Model

The model of Si � B � N � we employed for the
thermodynamics computations consisted of��*�� Si-atoms, ��*�� B-atoms and -(&�. N-atoms
( �"�������n�{&'�(� ), respectively, in a periodically
repeated cubic box and we used interaction
potential A (see section 3.9). The simulations
were performed at fixed temperature and vol-
ume, with a Monte-Carlo algorithm using the
Metropolis acceptance criterion.1 The move-
class consisted of single atom moves. The
temperatures investigated ranged from ���� K
to &'����� K, and the volumes (of the period-
ically repeated simulation cell) ranged from������ Å � to �
	9î:��=��H Å � , corresponding to num-
ber densities g � from �V	���� atoms/Å � to �=� L �
atoms/Å � . For each temperature and volume
we performed runs of length �=� H MCC, result-
ing in about 600 data points for each of the
two procedures described below. Since it is
known that the system exhibits aging effects,2

we have only used the last ��:Õ�=� � MCC (cor-
responding to a time window of about �=��� ps)
after a waiting time of 0Bï8�S.�:��=��� MCC, for
analysis purposes in order to allow the system
to reach at least quasi-equilibrium.

It is well-known that, for low tempera-
tures, the time scales of the simulations are
much too short for the system to reach full
equilibrium[92, 87]. Thus, we have performed
two different sets of simulations that differed
in the starting configuration, in order to be
able to place the results into the proper con-
text. In procedure 1, the starting configurations

1Note that the kinetic energy ( tcð�ñ�òCó�ô per atom) does
not appear in MC-simulations.

2see [68] and chapter 12.
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for the simulations were generated by equili-
bration of a ternary melt at Ee�e������� K in a
simulation cell of volume ���
	��©j)���
	��©j����
	��
Å � Põ&'����� Å � , followed by a re-scaling to the
volume under consideration. Thus, the ini-
tial atom arrangement could be denoted as a
”stretched melt” configuration. For very large
volumes, the subsequent process can be visu-
alized as a condensation from the gas phase.
In procedure 2 we generated the starting con-
figuration by placing the relaxed melt config-
uration unchanged at the center of the simu-
lation cell. We called this arrangement a ”free
block” configuration, and the time evolution
corresponds to the evaporation from the con-
densed phase.

9.2.2 Analysis

In order to distinguish between solid, liquid
and gaseous phases several criteria were used,
which were based on one-time properties such
as the (potential) energy, pressure and cluster
distributions, as well as on two-point proper-
ties like the diffusion coefficient and the bond-
survival probabilities. To analyze the one-time
properties, we registered the potential energyáã����� , the pressure ö , the distribution of con-
nected clusters every 100 ��¨ MCC.

Clusters were identified using a topology-
based criterion (see section 4.1.2) yielding the
cluster size distribution at time 0 , ÷¦�»ø \»Ö»ù 0B�
( ø \»Ö � ��A=	=	=	CAR���R����� ). From ÷��»ø \»ÖËù 0R� , we ex-
tracted the average cluster size at a given timeø]�����R�¼�®0B� , the size of the largest cluster presentø ����� �®0B� , and the number of clusters at time0 , � \@Ö �®0B� . Furthermore, the distributions were
averaged over the observation time of ��:Õ�=�<�
MCC (after a waiting time of 0 ï � .ª:ú�=� �
MCC), yielding ûË÷��»ø \»Ö �Bü�� , û»ø]�¶�����iü�� , û»ø]�����<ü�� ,
and û£� \@Ö ü � . As discussed in section 4.1.2,
from ûË÷¦�»ø \@Ö �Bü�� , one can derive the likelihoodû£�î�»ø \»Ö �Bü�� of an atom to be found as part of a
cluster of size ø \»Ö ,

û£�î�»ø \»Ö �Bü � � ø \@Ö :<ûË÷��»ø \@Ö �Bü��
�"������� 	 (9.1)

For the two-time properties, we cal-
culated the mean square displacementý ø � �®0 ��Ê»Ø�ù EpA�þ�� and the bond survival
probabilities ä�ø ö � �(� � � �®0�ïãAB0 ��Ê»Ø=ù EpA�þ�� andä6øæö � � � � �®0 ï AB0 ��Ê»Ø=ù EpA�þ�� , i.e. the likelihood

that a given Si-N or B-N bond, respectively,
observed at time 0 ï �»� Z:1�=� � MCC) still
exists after a time 0 ��Ê»Ø �»� °:ú�=��� MCC) has
elapsed. From the mean squared displace-
ment

ý ø � �®0 ��Ê»Ø � , we calculated the diffusion
coefficients

� �´EpA�þ��æ� ÿ Ã ��������	��
 ý ø � �®0 ��Ê»Ø=ù EpA�þ��
*'0 ��Ê»Ø 	 (9.2)

Note that in the non-equilibrium regime,
equation 9.2 only gives an estimate for the
diffusion coefficient, since in that regime
the linear relationship between 0 ��Ê»Ø and theý ø � �®0 ��Ê»Ø�ù þúA�E�� does not hold in general. But
for the present purpose this estimate suffices.

Two steps were required to assign a sim-
ulated system, for a given set of thermody-
namic parameters ( þúA�E ), to the solid, liquid
or gaseous state. First we needed to identify
the condensed states (solid and liquid) and the
gaseous states, and in a second step, we had
to distinguish between solid and liquid states.
In contrast to a system in the thermodynamic
limit ( ����������A�þ� � , with g � � �"�������1a�þ¾�
constant), the simulations can never realize a
condensed phase of infinite size, and further-
more surface effects (i.e. interface between
condensed and gas phase) need to be taken
into account. Thus, in order to gain a quan-
titative handle that allows us to assign a la-
bel ”condensed”/”gaseous” to a point ( þúA�E )
in the phase diagram, we have chosen ø �\»Ö �K��
as a delimiter, after careful inspection of the
cluster size distributions we have obtained. If
the likelihood to be part of a cluster with sizeø \»Ö íÓø �\»Ö ,
Éæ�»ø \»Ö A�ø �\»Ö �ã�Y�Cav�"������� �

������� ������ ø \@Ö :IûË÷��»ø \@Ö �Bü��
� �
� ��� � � ���� û£�î�»ø \@Ö �Bü � A

(9.3)

exceeds a predefined cutoff É \»×�� �»� �V	9�(� , the
system as a whole is considered to be in the
gaseous phase, while for Éæ�»ø \@Ö A�ø �\»Ö �8` ��� �É�\Ë×�� �f�V	��C� , the system as a whole is assigned
to the condensed state. For intermediate val-
ues, the system was considered to be in the
two-phase region, where a condensed and a
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gaseous phase co-exist. Even though these as-
signments to a condensed or a gaseous state
depend on the choices of ø � and É�\Ë×�� , we found
no significant effect on the final assignments
for a wide range of these parameters (see fig-
ure 9.8).

In the second step, we have used the bond-
survival probabilities as a criterion for distin-
guishing between the solid and the liquid state
of Si � B � N � . We note that the structure re-
mains essentially unchanged, if most of the
bonds are preserved for a given observation
time 0 ��Ê»Ø . Thus, we called the condensed sys-
tem liquid, if the BSPs for a condensed phase
had dropped below a value �Ca�� .3 On the other
hand, if the BSPs for the condensed phase
were larger than �V	9. , we identified the sys-
tem as an (amorphous) solid. Note that the
”BSP-criterion” alone could not be used to dis-
tinguish between the gaseous state and the
solid state, since a system consisting of gas
molecules only, will also show a high value of
the bond-survival probabilities. Here, the dif-
fusion coefficient could be used as a criterion,
in principle.

9.3 Results

9.3.1 Ternary liquid-gas region

Using procedure 1 outlined in the previ-
ous section, we have calculated the pres-
sure at each given volume and temperature.
Fig. 9.1(a) shows the so-called compression
coefficient[168] �S�Ñ[¼þ�av� �R������� �½E as a func-
tion of number density g � �Y�"�������1a�þ , which
would equal one for an ideal gas. For a given
temperature, � rapidly increases to high posi-
tive values for high densities, crosses zero nearg � �S�V	�� atoms/Å � (close to the equilibrium
value for the starting melt, corresponding for
Si � B � N � to a mass density of g � �K�
	Ü& g/cm � ),
exhibits a negative minimum value aroundg � � �V	��(. atoms/Å � , and then slowly in-
creases monotonically for g � �^� . Fig. 9.1(b)
shows the pressure computed according to eq.
3.23 for high temperatures. The general shape
resembles the one observed for e.g. a van der

3Note that for a system that relaxes according to a
Debye-law, a value of the BSPs larger than �Bð � would
imply that the relaxation times ! exceeded the observa-
tion time " �#�$� .
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Figure 9.1: Dependence of the compression
factor ��� g � �Ô� ��% Ý�'& ó Þ and the pressure p on
the number density g � for procedures 1 (open
symbols) and 2 (filled symbols) for selected
isotherms.

Waals gas, but we do find negative pressures
for densities below g � �#�V	��(. atoms/Å � .

For the second procedure, we see from fig-
ure 9.1(b) that for the most part [½�»þæA�E1�¥XS� ,
dropping below zero only for low tempera-
tures at intermediate densities ( �V	��i�Á` g � `�V	�� atoms/Å � ). It appears that for the free
block model the major contribution to the
pressure stems from the few atoms that have
evaporated from the condensed phase and be-
have nearly like an ideal gas. In contrast, in
the first procedure the negative pressures are
presumably due to the energy loss associated
with the formation of the comparatively large
numbers of clusters starting at intermediate
densities.
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9.3.2 Cluster size distribution in the

fluid phase

One conclusion from the preceding subsection
9.3.1, would be that Si � B � N � does not neces-
sarily behave like a simple fluid. Thus, within
the range of our simulations, the mean-field
picture is not appropriate for a quantitative
description. This agrees with our work study-
ing the glass transition (see chapters 10 and
12): Judging from the specific heat curves,
there appears to occur a considerable release
of configurational entropy far above the actual
glass transition at En�dE)(õP{�������Ô�#������ K
that was computed based on the peak in the
specific heat and the decrease of the diffusion
constants.

The reason for this disparity lies in the fact
that upon melting / softening of the crys-
talline / amorphous solid, we do not quickly
reach a phase consisting of individual atoms
or molecules, respectively. Instead, we ob-
serve a wide distribution of long-lived Si/B/N
clusters in the fluid phase(s).

Fig. 9.2(a) and fig. 9.2(b) show the time-
average of the average size of the observed
clusters û»ø �����R� ü � , and the average number of
clusters û£� \»Ö ü�� present, respectively, as a func-
tion of E and þ , for both procedures. As ex-
pected, the mean cluster size decreases with
increasing temperature and decreasing den-
sity, for both procedures, although we note the
markedly higher values at low temperatures
and low densities for procedure 2.

However, the mean cluster size is not neces-
sarily a very significant measure of the clus-
ter distribution. While at low densities and
high temperatures we would expect that the
cluster sizes cluster around the average value,
this might not be true for the low density-
low temperature region. Here, we might
deal with a large piece of solid surrounded
by a few atoms or very small clusters in the
gas phase. Thus, we show in fig. 9.2(c) the
time-averaged size of the largest cluster ob-
served for each configuration, û»ø �¶�R� ü � , as a
function of density. For procedure 1, we see
that for temperatures up to ������ K the maxi-
mal cluster size û»ø4�����Iü�� observed remains con-
stant Pf&'��� atoms (as in the solid state) down
to a density of �V	��i� atoms/Å � which corre-
sponds to about �Ca
�=� of the density in the solid
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Figure 9.2: Dependence of the mean cluster
size û»ø �¶�����\@Ö�×oØ@��� § ü , the number of clusters � \»Ö9×oØ@��� §
and the maximum cluster size û»ø �¶�R�\»Ö9×oØ@��� § ü on
the number density g � for selected isotherms
calculated from configurations generated by
procedure 1 (open symbols) and procedure 2
(filled symbols)
.
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Figure 9.3: Dependence of time averaged cluster distribution properties on the number den-
sity �wa�þ¾� g � for different temperatures given (in K) in the legends. The number densitiesg � are given in atoms/Å � . The properties were calculated from configurations generated by
procedure 1.
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state. For these volume-temperature combi-
nations, the average cluster size û»ø��¶�����iü�� al-
ready begins to decrease indicating the pres-
ence of ”gas molecules” in addition to the
solid/liquid phase. Procedure 2 leads to the
same behavior but again with a larger stability
of the large clusters (encompassing nearly all
atoms in the simulation cell) for low densities.

One should note that the curves for û»ø��¶�R�<ü��
are nearly identical for E$íÎb(����� K, although
for low temperatures we are clearly dealing
with a solid, while for temperatures exceed-
ing ������� K a melt is present (c.f. the analysis in
subsection 9.3.3 and figure 9.3), for both pro-
cedures. Similarly, we see that the data points
for û£� \»Ö ü�� for densities below �V	��i� atoms/Å �
also fall on the same curve for temperatures
up to -������ K for procedure 1. This suggests
the interpretation that up to b(����� K we can
easily distinguish between a condensed and
a gaseous phase, which is probably no longer
true above b(����� K.

An interesting but hard to quantify obser-
vation in the stretched melt model is the fact
that in the low density range ( g � ` �V	��i�
atoms/Å � ) we often find that the large clus-
ters do not form compact objects. Instead, they
appear to take on rather diffuse shapes, sug-
gesting that we are either dealing with many
smaller clusters or fragments that are more or
less loosely connected to each other, or witness
the slow compactification of a very large clus-
ter from many small ones.

For temperatures exceeding b(����� K, we find,
for both procedures, that clusters of the size
of the whole system are only present at very
high densities, while the mean cluster size de-
creases much more rapidly with volume than
even for temperatures in the range �������Á�-������ K. Clearly, the range of volumes where
equilibrium between a condensed phase and
a gaseous phase exists is shrinking, and the
fluid consists of small clusters that inter-
connect periodically.

More details are gained from the study of
the actual cluster distribution. In figures 9.4
to 9.6, we show for all temperatures, the like-
lihood of an atom to be part of a cluster of
size ø \@Ö , û£�È�»ø \»Ö �Bü�� for both procedures. A bi-
nary distribution of û£�È�»ø \»Ö �Bü�� with peaks nearø \»Ö � � and ø \@Ö � � �R����� , indicates a con-
densed phase in equilibrium with a gaseous

phase, while a function with a single peak cor-
responds to an essentially homogeneous fluid
phase. We see that for procedure 1, a multi-
cluster phase is found for all temperatures for
a density below �V	��i� atoms/Å � , with some
small amount of ”gas” phase present already
at higher densities and low temperatures. In
contrast, procedure 2 yields essentially no gas
phase for temperatures up to -������ K, and even
at b(����� K some remnant of a condensed phase
appears to be present for all densities.

Finally, an important aspect is the stability
of the clusters and, for the large ones encom-
passing nearly the whole system, their viscos-
ity. In order to estimate these quantities, we
have computed the bond survival probabili-
ties BSP between the atoms, and the diffusion
coefficients D(V,T).

Figure 9.7 shows the dependence of the
bond survival probabilities BSP ( 0Rï��Ú6:Õ�=���
MCC, 0 ��Ê»Ø ��k:¼�=� � MCC) for Si-N and B-N
on the densities and the temperature, for both
procedures. For fixed temperature, all curves
for procedure 1 exhibit a very flat minimum in
the density range �V	�� atoms/Å � X g � Xf�V	��i�
atoms/Å � , where both the depth of the min-
imum and its breadth increase with tempera-
ture. For procedure 2, this effect is much less
visible: for fixed temperature, the BSPs are
nearly constant as a function of density.

Qualitatively, this can be understood as fol-
lows: For all temperatures, the high-density
region has a reduced atom mobility such that
a sizeable fraction of the bonds is going to sur-
vive on the time scale measured ( P)���� psec)4.
Similarly, in the gaseous phase, the few bonds
that still exist after a relaxation for a time 0�ï°�y:��=� � MCC are likely to have survived for an-
other time span of 0 ��Ê»Ø �~¥:��=��� MCC.5 In-
between, the condensed phase and the large
clusters are going to exhibit the full malleabil-
ity of the relaxed condensed state, which is
essentially independent of volume for quite a
range of densities.

By comparing the ä�ø ö with those of our

4For high enough pressures, we are dealing with a
solid phase even at very high temperatures - there is no
critical point in the solid/fluid transition.

5Keep in mind that the free energy barriers associated
with bond switches in the liquid are much lower than
those associated with the break-up of a small molecule
or cluster.
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Figure 9.4: Dependence of the distribution of the mean number of atoms øÁ:]ûË÷��»øã�Bü inside a
cluster of size ø \»Ö9×oØ»��� § on the number density g � �#�wa�þ for temperatures E8íZ������� K.
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Figure 9.5: Dependence of the distribution of the mean number of atoms øÁ:]ûË÷��»øã�Bü inside a
cluster of size ø \»Ö9×oØ»��� § on the number density g � �#�wa�þ for temperatures �������wí EYíZ-������ K.
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Figure 9.6: Dependence of the distribution of the mean number of atoms øÁ:]ûË÷��»øã�Bü inside a
cluster of size ø \»Ö9×oØ»��� § on the number density g � �#�wa�þ for temperatures E8XZ-������ K.
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Figure 9.7: Temperature and density depen-
dence of the time averaged bond survival
probabilities BSP for silicon nitrogen (red) and
boron nitrogen bonds (blue). The temperature
is given in K and the densities are given in
Atoms/Å � . The time averages were calculated
over the last ��:´�=� W MCC observation time steps
and the BSP were calculated with respect to a
waiting 0 ï �â�:��=� � MCC. The total observa-
tion time was 0 ��Ê»Ø �KÈ:I�=��� MCC.

ρN 
 [Atom/Å3] T [K]

f(S
,S

m
ax

)

300
150
50

02000400060008000

1e−05
1e−04

1e−03
1e−02

1e−01
1e+00

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Procedure 1

ρN 
 [Atom/Å3] T [K]

f(S
,S

m
ax

)

300
150
50

02000400060008000

1e−05
1e−04

1e−03
1e−02

1e−01
1e+00

0

0.2

0.4

0.6

0.8

1

(b) Procedure 2

Figure 9.8: Dependence of fraction of atomsÉæ�»ø½A�ø � � defined by equation 9.3 on the num-
ber density g � (given in Atoms/Å � ) and the
temperature T (given in K) for three differ-
ent choices for maximum cluster size ø �

em-
ployed in the calculation of Éæ�»ø½A�ø � �
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studies of aging and the ergodic-non-ergodic
transition (chapters 10 and 12), we select�Ca��I�»P��V	9-(� and �V	9. as the critical values for the
BSP: For ä6øæöì`h�Ca�� , we are dealing with a
liquid, and ä�ø ö�XZ�V	9. indicates a solid.

Finally, we turn to the diffusion constants
shown in figure 9.9. Similar to the distinction
between a glass and a (supercooled) liquid,
we called the system an (amorphous) solid6,
if the diffusion coefficients

� �»þæA�E�� were be-
low �V	��i� Å ? /MCC (corresponding to about�i:´�=� L � cm ? /sec). Using this approach, we note
that the condensed phase remains solid up to
about �C&��� K. Furthermore, we see a signifi-
cant increase of

� �»þæA�E1� for all temperatures
when lowering the density - here, the contri-
bution of the gas phase to the average diffu-
sion coefficient makes itself felt, of course.

9.3.3 Construction of the (metastable)
phase diagram

From the results of the previous subsection
9.3.2, we can construct phase diagrams in the
( þúA�E ) plane, shown in fig. 9.10 Both proce-
dures yield very similar results for densities
above �V	��i� atoms/Å � , and also for tempera-
tures above b(����� K. As expected, the differ-
ences are most visible in the low temperature-
low density region. In order to decide, which
of the two procedures produces the more ac-
curate results in which region of the phase di-
agram, we have estimated the free energy for
both procedures, using: � >	; ? � Pzû£á�ü � >	; ? �� �°E�û»øúü � >	; ? �� A (9.4)

where û£á�ü � >	; ? �� �Qû£á & ��� ü � >	; ? �� �}û£áã�C����ü � >	; ? �� �
û£á ����� ü � >	; ? �� �©-(a���� � �æE . For the entropic contri-
bution û»øúü�� , we employed a simple lattice gas
approximation7

û»øãü � Pzû£� \»Ö ü � ÿ5<4�»þ¶a�þ D ��A (9.5)

where we assume that the cell volume þ>=Fþ D
is much greater than the cluster, and the av-
erage number of clusters is much greater than
1.

6Recall that up to now, no crystalline ternary modifi-
cation has been synthesized, and we have not seen any
tendency to form crystalline phases in our simulations.

7See appendix A.1 for details.
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Figure 9.9: Temperature and density depen-
dence of the diffusion coefficients D. The tem-
perature is given in K and the densities are
given in Atoms/Å � .
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Since we are only interested in the approxi-

mate difference between the two systems, we
did not include the entropic contributions due
to the vibrations of the atoms belonging to the
various clusters in this simple estimate.

Using equation 9.4, we find that for E í-������ K,
: � ? � í : � > � (c.f. fig. 9.11). In particular,

the low density region g � `¾�V	��i� atoms/Å �
appears to be better described by procedure 2.
Thus, for this volume and temperature range,
the system is in the condensed phase, with
only a minute amount of gas phase present.
On the other hand, for E~Ïnb(����� K,

: � > � í: � ? � , indicating that here in the low density re-
gion a gas-like cluster fluid is present that is
separated from the condensed (liquid) phase
by a two-phase co-existence region.

Figure 9.12 shows the final (metastable)
phase diagram. We see that up to about �������
K, the system is a solid for all densities in-
vestigated. For EnPG�C&���q�#������� K, we find
a ”liquid-solid” co-existence region, based on
the analysis of the BSPs and the diffusion co-
efficients. Apart from technical aspects of the
simulations, such as finite simulation times
and system sizes, the reason for the existence
of such a region is the occurrence of a glass
transition in this temperature range between
the liquid melt and the amorphous solid. Up
to about -������l�Îb(����� K, we find the liquid
state, with a small admixture of gas phase
molecules. For even higher temperatures, the
gaseous state prevails. Here, we also find a
certain volume range, where both liquid and
gas phase are present in substantial amounts.
Extrapolating from our data, we estimate that
this co-existence region should continue up to
about .������Õ��������� K, resulting in a critical point
at about g \ § Pz�V	��(- atoms/Å � and E \ § P}.�����
K.

9.3.4 Cavities in the amorphous phase

As was noted in the introduction, the ex-
perimentally observed density of the (amor-
phous) solid phase is about -�� % less than
the weighted average of the binary crystalline
compounds Si � N W and BN. Furthermore, slow
cooling from the melt in simulations (see chap-
ter 8) also leads to densities in the amorphous
phase that are considerably higher ( g � P$�
	Ü&
g/cm � ) than the experimental value.
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Figure 9.10: Estimates of phase diagrams of
the Si � B � N � system using procedures 1 and 2.
G: gas phase, L: liquid phase, S: solid phase,
L-G: liquid-gas region, S-L: solid liquid coex-
istence S-G: solid-gas coexistence.
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Figure 9.12: Phase diagram estimate for Si � B � N � . G: gas phase, L: liquid phase, S: solid phase,
L-G: liquid-gas region, S-L: solid liquid coexistence. The data below 4000 K (indicated by the
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procedure 1. See figure 9.10 for comparison. The large filled diamond is the estimate of the
critical point of the Si � B � N � -system.
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Figure 9.11: Temperature dependence of the
free energy estimates

: >	; ?��´E ù þ�� for proce-
dures 1(open symbols) and 2 (filled symbols)
for three typical isochores. The free energies
are given in eV and the temperature is given in
K. Number densities are given inside the fig-
ure.

One possible reason is the existence of small
voids below the nanometer scale, which might
escape detection in the experiment but never-
theless are stable enough to survive the high
temperatures the compound faces during syn-
thesis and later applications. Experimentally,
this interpretation is supported by the fact that
the available a-Si � B � N � samples have all been
synthesized via the sol-gel process, which
starts with the formation of oligomeric net-
works from single molecule precursors. These
polymers are then pyrolized at about ������ K
to form the final ceramic. Simulations of this
process (see chapter 6) suggest that during
the polymerization and pyrolysis stages a sub-
stantial number of nano-size cavities might be
formed and/or survive leading to a homoge-
neous (on length scales above 1 nm) ceramic
containing about -�� % nano-voids.

From the thermodynamic point of view, two
issues are of interest: the coarsening process
in the system, and the stability of the cavities
as function of size and external temperature.
One should note in this context, that during
real coarsening processes in the experiment,
the coarsening by itself does not change the to-
tal volume of the material containing the voids
- only the diffusion of voids/vacancies to the
surface (the infinite pore!) can reduce the vol-
ume and raise the density. After the voids
near the surface have been eliminated, a crust
is formed, which prevents further changes in

the density although the coarsening inside the
material can continue. In contrast, during
constant pressure simulations with periodic
boundary conditions the size of the simula-
tion cell can easily change. As a consequence,
the vacancies can easily be removed from the
system - in a way the ”surface” is only about
the length of the simulation cell (here: b(� Å!)
away. Thus, the stability of voids we observe
in such simulations will actually lie much be-
low the one in real materials.

In the following, we are going to present
two sets of simulations: Constant volume sim-
ulations at the experimental density ( g �n��	9�
g/cm � ) for a range of temperatures in the solid
state (T ` ������� K) and in the liquid state
(T X}������� K), analogous to those presented in
subsection 9.3.1, and constant pressure simu-
lations at the same density but with voids of
various sizes already present.

Turning to the first set of runs, we note
that the process of creating starting config-
urations at high volume (low density) by
re-scaling of equilibrated melt configurations
results in starting configurations that con-
tain an essentially homogeneously distribu-
tion of ”sub-Ångstrom size cavities” due to
an equal stretching of the bonds among the
atoms (”stretched melt configurations”). For
low temperatures, i.e. in the solid amorphous
state, this should lead to the formation of
larger voids via a coarsening process. Once
these voids have reached a size sufficient for
them to possess an intrinsic stability, i.e. be-
yond the critical nucleation size for voids, we
can relax the constant volume requirement
and study their stability using constant pres-
sure simulations.

Fig. 9.13 shows the average void size as
function of time in MCC. Since we were ex-
pressly interested in the non-equilibrium phe-
nomenon of coarsening, we have started col-
lecting the data after a short initialization
phase of ������ MCC. We are not able do detect
any coarsening processes during the simula-
tions. However averaging over these trajecto-
ries, we observe two different regimes in the
temperature dependence of the average num-
ber of voids � Û����ç��Ø �´E�� (see figure 9.14). For
temperatures E7` 2000 K, the number of voids
decreases with increasing temperature, and
for E�X 2000 K, the number of voids increases
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Figure 9.13: Time dependence of the mean
void size in the ’stretched-melt’ configura-
tions. The configurations were calculated at
fixed density 1.9 g/cm � and the temperatures
given in figure. Open/filled symbols de-
pict results for lattice spacings of 2.0/3.0 Å,
that were employed in the void determination
algorithm described in section 4.1.2, respec-
tively.

with increasing temperature. Note that the
number of voids is determined from a lattice
with lattice spacing /6Ò , and the shape of the
voids is not necessarily spherical, and thus the
results depend on the lattice spacing. Figure
9.15, depicting the dependence of the number
of determined voids on the lattice spacing /6Ò ,
shows that for the selected lattice spacing, we
determined the maximum number of voids.
For /�ÒYí 2.0 Å, the algorithm would deter-
mine too few voids, since it is very likely to
find a very large cluster of voids, that reaches
through the whole simulation cell. On the
other hand, using a very large lattice spacing,
leads to a too coarsened picture of the void
size distribution, since in that case it is very
likely to find an atom in a cube, thus leading to
an erroneous conclusion that the analyze cube
of volume  � Å � is occupied.

However, since the time scales we are able
to cover in our simulations are not very large
compared to the ones typically observed in
coarsening experiments (see above), we have
in addition studied systems containing larger
predefined cavities (see also section 8.4.2).
Here, we employed constant pressure simu-
lations at temperatures up to b(����� K. In or-
der to start from locally equilibrated config-
urations, we first placed spherical cavities of
various sizes ( ¢ ���)-
A�
A�. Å) inside simulation
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Figure 9.14: Temperature dependence of the
mean number of voids and the mean void
volume inside ’stretched melt’ configurations,
that have a density of 1.9 g/cm � . Open/filled
symbols depict results for lattice spacings of
2.5/3.0 Å, that were employed in the void
determination algorithm described in section
4.1.2, respectively.
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Figure 9.16: Time dependence of the mass
density g (in g/cm � ) for different probabilities
of performing a cell variation in the MC-NPT
simulations. The system size was 5200 atoms
and initially voids of radius ¢;Û���\��z. Å, were
introduced. See also figure 9.17.

cells filled with ������ atoms at the experimen-
tal density of ��	9� g/cm � . These configurations
were equilibrated for w: �=� W MCC with fixed
cavities inside at temperature T and zero exter-
nal pressure. The moveclass consisted of sin-
gle atom displacements ( ��� %) and isotropic
cell changes ( � %).8 In order to avoid changes
in the cavities already during this initialization
phase, we replaced the cavity by an impen-
etrable hard sphere, for computational pur-
poses:

þ(��� § � L �R������� N �ú�@? ��� x N íÄ¢ �� x N XÄ¢³� A (9.6)

where
N

equals the distance between the center
of the pore and the atom.

Next, we removed these spheres and al-
lowed the system to relax for �=� H MCC. In this
fashion, we could observe the stability of large
cavities as function of temperature and time,
and also compare the energies of these config-
urations with the ones we found during the
equilibration of the stretched-melt configura-
tion.9

8The relaxation calculations were repeated for differ-
ent ratios of atom/cell moves and no significant varia-
tions were found (see figure 9.16).

9A further advantage of starting with large cavities
from the outset is the fact that such cavities are expected
to exist during the final pyrolysis stage of the sol-gel pro-
cess as mentioned earlier (see chapter 6). Thus, we can
consider these solids with predefined cavities as repre-
sentatives of the outcome of the sol-gel process.

Not surprisingly, we find that large voids
are more stable than small ones (c.f. figs. 9.18
and 9.17). But even cavities with diameter- Å remain stable after a first densification
phase up to �=����� K, while voids with diame-
ter . Å survive up to ������ K. Keeping in mind
the effective closeness of the ”surface”, this
suggests that nano-voids can very well sur-
vive the high temperature treatment the amor-
phous ceramic is exposed to. This agrees well
with the observation that the diffusities of the
hard-spheres rapidly decreases when decreas-
ing the temperature below ������� K (see figure
9.19). Fig. 9.18 shows the densities of the re-
laxed material averaged over the final ��:Õ�=�<�
time steps, where one again sees that for the
largest vacancies the most rapid increase in
density only occurs above ������ K.

9.4 Discussion

In the preceding section, we have analyzed the
cluster size distribution observed for the two
simulation procedures. Next, we have used
these distributions together with information
about the bond survival probability and some
simple estimates of the free energy to deduce
a phase diagram for the ternary region of the
system Si � B � N � . Finally, we have investigated
the stability of voids inside the amorphous
solid a-Si � B � N � , in order to understand the
surprisingly low density of this ceramic.

By extrapolation from the phase diagram,
we estimated that the system should possess a
critical point in the liquid-gas region at aboutE¼\ § PS.����� K and g \ § P �V	��(- atoms/Å � . An-
other way to gain an estimate for the loca-
tion of this critical point is to attempt to fit the[½�»þúA�E�� curves in the high-temperature regime
to an empirical equation of state. As we noted
in subsection 9.3.3, procedure 1 appears to
lead to somewhat more realistic values for this
region ( EYÏÄb(����� K). Thus, we have performed
a fit of the simulated data of procedure 1 to a
van der Waals equation,

�Ü[¶��[ D �»þúA�E��B�c�»þ|�BA��»þúA�E��B�ú�#���R����� � � EîA (9.7)

where [ D is commonly assumed to depend
on volume via [ D � Òia�þ"? , and A is identified
with the atomic volume A �#���������1þÕ�R�����)�)þ D .
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Figure 9.17: Dependence of the mass density g
(given in g/cm � ) on the simulation time 0 (in
MCC) for vacancies of radii ¢;Û���\°�F-
A� and. Å at various temperatures both below and
above the glass transition temperature E½\ P
2000 K. The dotted vertical lines in the figure
indicated the time 0 ï after the time averaging
has been performed.
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Figure 9.19: Temperature dependence of the
diffusion coefficients of the vacancies, mod-
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Figure 9.21: Volume dependence of the pres-
sure and fits to the van der Waals equation
9.7 for isotherms above 2250 K calculated from
procedure 1.

As we see from figure 9.21, the fit works
best for high and low densities, while the neg-
ative pressures in the intermediate density re-
gion are not well described. From the fit pa-
rameters, we can now calculate the critical
values for pressure, temperature and density,[ \ § P¾��	9- GPa, E4\ § P .������ K and g \ § Pâ�V	��(-��
atoms/Å � , respectively. This is in satisfactory
agreement with our rough estimate from the
phase diagram.

Of course, we cannot expect the system to
completely obey the equation of state of a van
der Waals fluid. The reason is that the mean
field picture that justifies eq. 9.7 by assum-
ing essentially identical monoatomic feature-
less fluid particles interacting with the mean
field created by the other particles in the sys-
tem, qualitatively fails for Si � B � N � . As we saw
in subsection 9.3.2, even at very high tempera-
tures and large volumes, we still observe non-
neglible atom-atom interactions that result in
the presence of small clusters of atoms in the
fluid phase. Of course, these will contribute
to the free energy of the system, and, in the
context of the van der Waals picture, result in
terms in [ D that are only very weakly depen-
dent on volume, [ D PFÒ > a�þEDÔ�YÒ ? a�þ ? , with��`GFê`Ä� .

On the other hand, the mean field picture
is moderately realistic for the state of the fluid
at high densities, where most atoms are part
of larger clusters, and thus all atoms experi-
ence the same ”average” interaction over the
observation time. We note that, on this level of
sophistication, this also includes the solid state

of the system. As we have seen, distinguishing
between the liquid and the solid state is more
subtle at this level, of course, and requires
the introduction of time-dependent quantities
such as the bond survival probability, or the
mean square displacement.

Another issue we should mention is the fact
that quite a number of data points are in a
region, where in the van der Waals picture
we would expect the system to be thermody-
namically unstable. In our simulations, this
makes itself felt as a phase separation into e.g.
a liquid-plus-gas or a solid-plus-gas mixture.
One possible way to improve on the van der
Waals fit is to use a virial expansion of � as
function of powers of the density. This has
been done, and it does improve the fit, but
does not lead to much further insight.

We have repeatedly indicated that the
phase diagram we present is an intrinsically
metastable one, and strictly only applies for
the ternary region of the space of Si/B/N com-
pounds. The reason for this caveat is threefold:

For one, the time scales of the simulations
we are able to perform10 are several orders of
magnitude below those needed for the system
to reach full thermodynamic equilibrium. One
consequence of this is that we never observe a
crystalline variant of Si � B � N � nor the forma-
tion of crystalline binary phases such as Si � N W
or BN. Furthermore, except at high temper-
atures, we did not reach convergence of the
two simulation procedures to the same equi-
librium state11. While we were able to per-
form some simple (free energy based) esti-
mates, which procedure was more appropri-
ate for which region of the phase diagram,
we were not assured to have reached equi-
librium in either one. In the solid state at
low temperatures, all configurations observed
were amorphous structures. For compari-
son, we also computed the energy of several
hypothetical crystalline structure candidates,
and also the energies of the binary crystalline
compounds ë -Si � N W and h-BN. We find that
the energetically lowest state corresponds to
a weighted mixture of ë -Si � N W and h-BN, fol-

10The simulations presented took the equivalent of
about 10 years on an AMD+1800 processor.

11Many other criteria did appear to indicate equilib-
rium at temperatures above ñ�uvu�u K, however, such as
the potential energy.
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lowed by the ternary crystalline modifications
of Si � B � N � (see table 3.1). Thus, the ternary
phase diagram derived can only be termed
”metastable”.

We do know that the ternary crystalline
state does melt at about 2500 K (see chapter
10). Thus, including the crystalline state does
not have much of an influence on the shape of
the phase diagram, except at very high densi-
ties. Regarding the BN and Si � N W phase sep-
aration, we do have to note that this would
(in the context of the simulations using a fi-
nite simulation cell) correspond to an unpleas-
ant interface, at least in the solid state, which
might prevent us from seeing it compared to
e.g. the ternary crystalline state. Even though
it would be highly interesting, to put bulk
BN and Si � N W into a simulation cell and just
heat the two solid phases and investigate the
phase behaviour of these mixtures, the cur-
rent computational power and difficult algo-
rithmic questions prohibit these kind of inves-
tigations at the moment.

A second complication is the finite size
of the system. While simulations of e.g.
Lennard-Jones and soft-sphere systems have
been performed in the past12, Si � B � N � is
considerably more involved, and thus we
were limited in the system size we could
treat. As is well-known, finite size effects,
in particular the existence of non-negligible
surfaces of the condensed phase and the
formation of interfaces between condensed
and gaseous phases, bedevil the computer
experimentalist[42]. Clearly, this is a reason
behind the appearance of negative pressures
at intermediate densities. In order to gain
some insight into the effects of finite size, we
have repeated the calculations for a system
of half the size ( ���R��������-�V� ), for both pro-
cedures. In order to save some computation
time, we have performed these calculations
on a wider grid of volume values, but for the
full temperature range. We find no qualitative
change from the results in the larger system,
as can be seen from figure 9.22, in which we
plot the temperature dependence of the aver-
age potential energies of configurations gener-
ated by procedure 2 for system sizes 702 and
351 atoms.

12See chapters 8-10 of Frenkel’s book [42].
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Figure 9.22: Volume dependence of the poten-
tial energy for selected isotherms for two sys-
tem sizes generated by procedure 2.

Finally, there is the question of the poten-
tial we have employed to model the interac-
tions among the atoms. While it is well-suited
to represent hetero-atom interactions between
different types of atoms, it does not properly
apply to the elements themselves, i.e. for nei-
ther elementary Si or B nor N ? molecules can
one compute the correct bond energies that
would allow a comparison with the bond en-
ergies among those different types of atoms.
In particular, our results must exclude the for-
mation of Si, B or N ? vapor. Especially the lat-
ter is sorely missed, since it might most easily
form at high temperatures and low pressures,
opening a possibly important route to decom-
position of the ternary compound. From the
point of view of the experimentalist, map-
ping the phase diagram outlined in this work
should therefore presumably take place in a
nitrogen saturated atmosphere.

A very rough estimate of the pressure
needed to suppress the evolution of N ? from
the condensed phase at relatively low temper-
atures can be derived from comparing the free
energies,13

: �»ÂVÃ��cÀ³�=²��c�ãP#ák�»ÂVÃç�=À³�=²��=�úP#ák�»ÂiÃç�=² W �B��á �£À¶²��
(9.8)

and: �»ÂVÃËARÀÈAR² ? �úP#á �»ÂVÃ£ARÀy���"ák�£² ? �C� � � E©ÿ$<ãè¼�£² ? ��A
(9.9)

where è]�£² ? � is the number of ways ² ?
molecules can be placed in a cubical box of
volume þ .

13For details of the approximations, see appendix A.2



132 CHAPTER 9. THERMODYNAMIC PROPERTIES OF SI � B � N �
This yields

[ Ö����ã��� �´E��ãP g Ö������ � � � EpA (9.10)

with

g Ö������ � PK�V	�� :IHKJML)Nç�£ák�»ÂVÃ � ²îWo�4� á �£À¶²��
�yák�»ÂiÃ£ARÀ �ú�|ák�£² ? �B�BaV�£� �£² ? � � � �@EPO (9.11)

in units of atoms/Å � . Taking these data from
experiment, we find [ Ö����ã��� P 0.16 � � E . In par-
ticular, [ Ö����ã��� (2000 K) P 0.01 eV/atom P 4 GPa.

A similar cluster-size analysis has been per-
formed in the past[139] for the derivation of
the phase diagrams of many elementary com-
pounds, such as elemental sodium. There,
an analytical mean-field expression of inter-
acting clusters was investigated and the cor-
responding Gibbs free energy was minimized
with respect to the average cluster size and
the overall density. For metals, it was found
that the typical cluster sizes were very small
( � \»Ö �Î�¼��- )14, while for group 4 elements that
exhibit a stronger tendency towards network
formation, the melt contained clusters of size
up to ten close to the freezing temperature.

Much of the more recent work has focused
on the liquid-gas region and to a lesser extent
on the solid-gas region, where large computer
simulations have been performed. In partic-
ular, Lennard-Jones[79, 73, 14] type and hard
and soft sphere systems[2] have been investi-
gated. However, these systems are not well
suited to model network forming systems that
can exhibit a wide variety of clusters in the
liquid-gas region of the phase diagram. This
also extends to the Gibbs ensemble simula-
tions of phase-equilibration[121], since the ex-
change of atoms between the liquid (not to
mention the solid15) and gaseous phases is far
from trivial in a system like Si � B � N � .

Turning to the question of nano-voids in the
amorphous solid a-Si � B � N � , we note that the
larger voids are more stable than smaller voids
below 1500 K, and that only above 1500 K
the density of the void-prepared a-Si � B � N � in-
creased significantly in the variable cell MC-
simulations.

14In the super-cooled state, the cluster size could in-
crease considerably.

15An interesting extension to Gibbs ensemble simula-
tions to cover solid-vapor phase equilibria has recently
been proposed [27]

The vacancy analysis of the NVT simu-
lations at g 3 � ��	9� g/cm � , has shown,
that above the glass transition temperature of
T (ÐP ������ K, the average void volume de-
creases with increasing temperature, whereas
below E ( , the average void volume increases
with increasing temperature; most probably,
the surrounding Si/B/N matrix compactifies.
Furthermore, the diffusion coefficients of the
voids, modelled as hard spheres, follow ap-
proximately a

� �£¢ Û����ç� A�E��RQ,¢ D � Þ �Û������ law (see
figure 9.20), with a temperature dependent ex-
ponent F¶�´E��;�õ���Ä- . Unfortunately, it is im-
possible to study the dynamics of the voids
once the hard sphere constraints are removed
due to algorithmic difficulties in the identifica-
tion of the voids, together with a subsequent
analysis of the void’s motion. Nevertheless,
one should note that due to the isotropic amor-
phous nature of the material, no fast diffusive
pathways (e.g. via grain boundaries[140]) are
available that allow the exchange of material
among the pores and thus speed up the coars-
ening process. Thus once a certain size of cav-
ities has been reached such that no contact via
shape modulation is possible anymore16, we
expect further coarsening processes to follow
the Lifshitz-Slyozov 0c>   � law[93]. As a conse-
quence, we are unlikely to observe many pores
larger than 1 nm in real materials, unless these
have been formed already during the sol-gel
process. Finally, these voids have not yet been
observed experimentally for a-Si � B � N � due to
measurement difficulties, but recent work by
Sauter et al. [132] has shown that in amor-
phous Si-B-C ceramics, voids with a diameter
of about 6-8 Å are present.

16Once two cavities get into contact, the surface ten-
sion in the neck leads to a rapid merger [90, 141].



Chapter 10

Glassiness of a-Si � B � N �

10.1 Introduction

In chapter 9, we determined the metastable
phase diagram of the Si � B � N � -system for a
wide range of densities and temperatures. In
this and the forthcoming chapters, we focus
on the density regime ( ��� = 0.07 - 0.11 Å � � ),
in which we observed a solid-to-liquid transi-
tion of the Si � B � N � system. We will show that
a-Si � B � N � indeed shows a glass transition by
determining the temperature �
	 at which an
ergodic to non-ergodic transition occurs. Fur-
thermore we show that close to ��	 the self-
diffusion coefficient � decreases by orders of
magnitude. Additionally we show that the
topology of the amorphous covalent network
is effectively frozen in below � 	 . The total of
these observations allows us to predict a glass
transition for a-Si � B � N � .

10.2 Models and Techniques

In sections 6.3 and 8.4.2, we saw that the low-
densities models of a-Si � B � N � , compactify
at elevated temperatures to give low-energy
models with higher density. Therefore, we fo-
cus on the low-energy/high-density models
we expect to have the highest statistical weight
in (quasi-) equilibrium.

We consider a system of N = 702 atoms,
which was originally generated by melt-
ing the hypothetical crystalline polymorph��

-Si � B � N � [89] at 2500-3000 K using MD-
simulations[66]. The atoms were confined to
a cubic simulation cell of side length 19.1 Å
( ��� = 0.11 Å � � ), and we performed NVT-MC-
relaxations at temperatures between 250 and
7000 K for ��������� MCC.1 Note that the mass

1At each temperature, we generated nine MC-

density was kept constant at ������� �!��"$# �&%('*)
g/cm � . In the MC-simulations, the moveclass
consisted of the usual single atom displace-
ments and the maximum atomic displacement+�,.-0/

was adjusted at each temperature to
reach an acceptance ratio of 50 % (see section
3.3 for simulation details).

In order to compare the melting point�21 with the glass transition temperature �43
(typically �53 # �

� �21 [62]), we determined
the melting point ��1 of the Si � B � N � -system.
We heated a recently predicted crystalline
polymorph of the Si � B � N � -system [144] us-
ing NVT-MC simulations at different temper-
atures between 250 and 6000 K. Note that
the density of the crystalline modification is� 	7698;:=< -?> = 2.78 g/cm � . We denote this pro-
cedure ’crystal heating’, in contrast to the
’liquid-cooling’ scheme described in the pre-
vious paragraph.

We determined the ergodic-to-non ergodic
transition temperature ��	 # �@3 for the a-
Si � B � N � -system as that temperature at which
the fluctuation-dissipation theorem (FDT) for
the potential energy is violated for the first
time, upon cooling the system. The FDT for
the potential energy holds, if

ACBEDGF <IH2JK<EJK<IH�L7<�M=NPORQS�UTA � #WV
� Q D TX<IH�JK<EJK<IH�L7<�M=NSOYQS�UTZ\[ � � ]

(10.1)

where
BED^F < H JK<EJK< H L7< M=NPO is the average poten-

tial energy of the configurations generated at
temperature � and averaged over time after
a waiting time _9` .

ACBEDGF
is the change in

the average potential energy accompanying a

trajectories below 2000 K and 3 MC-trajectories above
2000 K, respectively.

133



134 CHAPTER 10. GLASSINESS OF A-SI � B � N �
change in change in temperature

A � . Simi-
larly V

� Q D TX< H JK<EJK< H L7<�MXNPO*QS�UT are the fluctuations
in the potential energy of the configurations
generated at temperature � after a waiting
time _ ` has elapsed.

As usual the diffusion coefficients were
determined from the Einstein-Smoluchwski
equation 3.26, after first checking the validity
of that equation. The topological stabitity of
the networks were characterized by the time
dependence of the bond survival propabibal-
ities at a given temperature, and fitting the
bond survival probabilities to a Kohlrausch-
Williams-Watts law:

acb4d [ ��egf � � Qh_0Tjilknm�o�prqsQh_0tRu [ f\vwTXx�y (10.2)

yielded the relaxation times u [ f\v for the B-
N and the Si-N bonds in the network, respec-
tively.2 Fitting the temperature dependence of
the diffusion coefficient � and the relaxation
times u [ f�v to an Arrhenius law,

�Wi{z|knm�o�Q9q A}D�~ t Z [ �UT ]
and

u [ f�v�i�z�knm&o�QgQ AcD T [ f\v�t Z [ �UT ]
(10.3)

gave the formal activation energies of dif-
fusion

A}D�~
and for bond breaking

A}D [ f�v .
Furthermore, from the diffusion coefficients,
one can estimate the critical temperature� 1}	��	 suggested by the mode-coupling theory
(MCT) and the exponent � of the power-law
divergence

�W��QS��q�� 1}	��� T=��% (10.4)

10.2.1 Results

First, we will discuss the temperature depen-
dence of various properties derived from the
’liquid-cooling’ procedure, and then turn to
the determination of the melting point of the
hypothetical crystalline polymorph.

Cooling the liquid

Peaks in the specific heat ��� commonly are as-
sociated with phase transitions and, as men-
tioned, the ergodic to non-ergodic transition

2The relaxation times �?����� are independent of the ex-
ponent � .

of a system is indicated by the violation of the
fluctuation-dissipation theorem. Figure 10.1,
depicting the temperature dependence of the
specific heats ��� calculated according to the
l.h.s and the r.h.s of equation 10.1, respectively,
clearly shows that in the temperature range
2000-2500 K a phase transition occurs, and fur-
thermore that below 2000 K, the fluctuation-
dissipation theorem is violated and ergodic-
ity is broken, hence allowing us to identify�2	�i�����)*� K with the temperature, at which
the glass transition occurs. We already note
at this stage that the specific heats show some
aspects related to aging phenomena, since the
specific heat calculated from the fluctuations
depends both on the time _0� � : over which the
fluctuations are measured and on the waiting
time _ ` i���� � MCC. (see inset of figure 10.1).3

Our suggestion of a glass transition occur-
ing at 2250 K is further supported by the sig-
nificant decrease of the diffusion coefficients�c��� e9�Ke9  QS�UT as �@	 is approached from above.
Note, that above 2000 K, we are in a regime,
where the mean squared displacement MSD
depends linearly on time and does not depend
on the waiting time _9` , at which the reference
configuration for the calculation of the mean
squared displacements was chosen. (see fig.
10.2). Furthermore the relaxation times u [ f�v ,
derived from fitting the time dependence of
the bond-survival probabilities (fig. 10.4) of
the B-N and Si-N bonds, to a Kohlrausch-
Williams-Watts law (eq. 10.2), shows that at
approximately 2000 K the relaxation times ex-
ceed the time scales of our computer experi-
ment. Thus, below 2250 K the network topol-
ogy is essentially frozen and the system be-
haves like a solid.

Furthermore, we observe that B-N bonds
are more stable than the Si-N bonds, since the
corresponding relaxation times are longer for
the B-N bonds. Both the diffusion coefficients
and the relaxation times u [ f\v could be fitted
to an Arrhenius law in the temperature range
from 2000 to 4000 K, yielding the formal acti-
vation energies

A}DU~
and

AcD [ f�v summarized
in table 10.1(a).4 Surprisingly, the activation

3Aging phenomena are more thoroughly discussed in
chapter 12.

4Fitting the total diffusion coefficient ¡£¢ M ¢¥¤g¦ to a
power law (eq. 10.4) over the whole temperature range,
yields a critical temperature §4¨.©�ª« ¬®g¯;°;±�² .
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energies for Si-N bond-breaking are slightly
higher than the activation energies for B-N
bond breaking. Note also that the activation
energies for silicon diffusion and boron dif-
fusion in the liquid state are similar, whereas
the activation energies for nitrogen diffusion
are slightly higher than their cationic coun-
terparts. This agrees with the experimental
observations in the solid state (table 10.1(b)),
where it is found that nitrogen diffusion re-
quires a slightly higher activation energy than
silicon diffusion. We cannot rigourosly com-
pare the diffusion coefficients to experimental
data, since the unit of time of the Monte-Carlo
simulations is not known.

A rough estimate is feasible, however, by
comparing the mean squared displacements
calculated from NVT-MD simulations at 2500
K to the MC results at the temperatures. This
results in an estimate of 1 MCC # 0.2 fs. Thus
a diffusion coefficient of 0.01 Å

�
/(MCC) cor-

responds to a diffusion coefficient of �c�7���K�K³
cm

�
/s, which is of the same order of mag-

nitude as the values ( D f � (4000 K) # �����K³
cm

�
/s)) one obtains for simulations in amor-

phous silica above the ergodic to non-ergodic
transition temperature.[75] In that context, we
note that our activation energies

A}D´~
for sili-

con are about a factor of three smaller than the
values obtained from the simulations of amor-
phous silica.

Below the ergodic to nonergodic transition
temperature � � , the data analysis is severely
hampered by insufficient statistics. What can
be said however is that the system does not
crystallize (see figure 10.8) and the solid amor-
phous network becomes stiffer as time passes,
since more bonds survive the longer the amor-
phous system has been allowed to relax (see
figure 10.6). Note, that it would be also in-
teresting to compare the waiting time and
temperature dependence of relaxation timesu [ f�v in that temperature regime, but the run
lengths possible for our simulations do not al-
low such a comparison.

Heating of a crystalline polymorph

In the previous subsection, we discussed the
temperature dependence of various one-time
and two-time properties, once we cool a liquid
below the ergodic to non-ergodic transition
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Figure 10.1: Temperature dependence of the
specific heat ��� . Open symbols are the
specific heats calculated from numerical dif-
ferentation (l.h.s of equation 10.1) and filled
symbols represent the specific heats calculated
from the fluctuations (r.h.s of equation 10.1.
The inset shows the specific heat calculated
from the fluctuations for observation times_ �9� : iµ��� ³ shorter (open circles) than the wait-
ing time _9`®i¶���*³ MCC and an order of magni-
tude larger observation times _0�9� : iW����� MCC
(filled circles) than the waiting time _0`·i����*³
MCC.

temperature �5	 , which we tentatively identi-
fied with the glass transition temperature �43
below which the structural properties changes
only very little. It would be of interest to com-
pare the glass transition temperature with the
melting temperature �51 of the system. Thus
in this section, we analyze the melting of a
crystalline polymorph of Si � B � N � in order to
determine the melting point.5 Furthermore,
we compare the temperature dependences of
the specific heats, the diffusion coefficients
and the relaxation times obtained from melt-
ing the crystalline polymorphs to the data ob-
tained when cooling from the liquid state.

The specific heat � � of the heated crys-
talline polymorph shows a sharp peak at ap-
proximately ��)*����¸ (see figure 10.7), close to
the critical temperature observed when cool-
ing the liquid. Furthermore, the data is clearly
equilibrium data in the whole temperature
range on the time scale of our simulations,

5It seems that the melting point of none of the crys-
talline polymorphs of crystalline silica has been deter-
mined in the context of computer simulations and com-
pared to the results of the glassy state of amorphous sil-
ica.
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Figure 10.2: Time dependence of the mean
square displacements MSD in Å

�
for different

temperatures T ¹�� � . Full lines are the data for
a waiting time _9`�i������ MCC and dotted lines
are for waiting times _9`�i¶���*³ MCC.

since both prescriptions yield the same results.
Furthermore, we note that the specific heat be-
low 1800 K, is close to �� Z [ , the value one ex-
pects as the contribution from the potential en-
ergy in the harmonic approximation.

The heated crystals remain quasi-crystalline
up to about 2250 K, as can be seen from figure
10.8, in which we show the average pair corre-
lation functions g(R) of the heated crystals for
different temperatures. In addition, we show
in figure 10.9 snapshots of the configurations
sampled at different temperatures. Clearly the
system remains crystalline below � 	 iº����)*� ,
and in figure 10.10, we show the integrated
peak intensities

» QE¼U½�Tji �¾�¿
À�Á J À�Â ¤gÃÄ
À�ÁÆÅ�À Â Á(ÇwÈ QE¼ � T ] (10.5)

calculated from the pair distribution functions
g(R) depicted in figure 10.8 for two peaks lo-
cated at ¼É½�ilÊ�%I� and ¼U½�i{)&%Ë� Å, respectively,
where these peaks indicate long-range order
in the system. Above 2750 K, the peak inten-
sity becomes rather small, whereas below 2000
K the peak intensity is considerably higher,
thus showing that also from a structural point
of view, the system undergoes a transition to a
disordered liquid state.

Comparing the structural properties of the
heated crystal and the cooled liquid, we ob-
serve a change of various structural proper-
ties at about 2250 K. (see figure 10.11). Below
2000 K, the average number of nearest neigh-
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Figure 10.3: Arrhenius plot of the tempera-
ture dependence of the diffusion coefficients� f � e [ calculated from the mean squared dis-
placements (MSD) depicted in figure 10.2. Full
lines are fits to an Arrhenius law (equation
10.3). The very bold line is a fit to a power
law (eq. 10.4) yielding a critical temperature� 1}	��� i¶�!Ì�Í�)*¸ and an exponent �Ci¶�*%(' .

bors (Si-N and B-N) does not change much, ex-
cept that some silicon atoms with coordination
numbers ¹ 4 are removed from the structures
and a significant number of Si-N bonds con-
tained in SiN ³ tetrahedra is broken above 1500
K. Furthermore the average number of near-
est neighbors of silicon coincide above 1500 K
for both procedures. Note, that the average
number of nearest neighbors of boron atoms
remains essentially constant over all temper-
atures. For the average number of next near-
est B-B, Si-B and Si-Si neighbors, we also find
that these numbers are independent of the
chosen procedure at temperatures T ¹Î����)*�
K. Note that below 2250 K, we always ob-
serve the structural properties corresponding
to the frozen liquid or the heated crystal, re-
spectively.

Next, we compare the specific heats of the
heated crystal and the cooled liquid in fig-
ure 10.12. The specific heats ��� were calcu-
lated by numerical differentiation according to
the l.h.s of equation 10.1. In the liquid phase
above 2500 K, the specific heats are identical,
and both curves show a peak at # 2500 K.
As already mentioned, at temperatures below
2000 K, the cooled melt has clearly fallen out
of equilibrium and a comparison between the
two procedures is useless. Note however that
between 2000 and 2500 K, the specific heats
are almost identical, showing that we have
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Diffusion BSPAcD A}D
Si 1.615 Ï 0.09 1.64 Ï 0.02
B 1.611 Ï 0.06 1.60 Ï 0.02
N 1.707 Ï 0.08 n.a.

(a) Simulations in the liquid state

El. System
A}D

Ref.
N Ð -Si � N ³ 2.4 [83]
N


-Si � N ³ 8.1 [83]

N a-Si � BC ³nÑ � N
�

7.0 [136]
Si Ð -Si � N ³ 2.1 [82]
Si a-Si

� Ñ Ò N � Ñ � C ³nÑÔÓ 5.5 [137]
Si a-Si � BC ³nÑ � N

�
5.7 [137]

(b) Experimental data for solids

Table 10.1: Comparison of the activation ener-
gies for diffusion of silicon, boron, and nitro-
gen and bond breaking of Si-N and B-N bonds
obtained from fitting the diffusion coefficients� f � e [ eÆ� and the relaxation times u [ f�v of B-
N and Si-N bonds to an Arrhenius law (Table
10.1(a)). Table 10.1(b) lists the experimental ac-
tivation energies in the solid. All activation en-
ergies are given in eV/atom.

.

obtained equilibrium-like data in the super-
cooled temperature regime between 2000 and
2500 K.

Since the heated crystal melts to form a liq-
uid at # 2500 K at a pressure of 2 GPa (see fig-
ure 10.13) it is worth to compare the dynamical
properties of the cooled liquid and the heated
crystals, since one would assume that these
properties are similar. We show the temper-
ature dependence of the diffusion coefficients�®QS�UT , and, complementing this, the relaxation
times u [ f�v QS�UT of the B-N bonds for the cooled
liquid and the heated crystal in figures 10.15
and 10.14, respectively. Clearly diffusion in
the heated crystal requires a higher activation
energy. Furthermore, the network of heated
crystal is stiffer than the network of the cooled
liquid at the same temperature, since a higher
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Figure 10.4: Time dependence of the bond
surivival probabilities BSP’s for Si-N and B-
N bonds for temperatures T ¹º� � . Full lines
are fits to the Kohlrausch-Williams-Watts law
(equation 10.2). The exponents


were approx-

imately 0.4 for Si-N bonds and 0.6 for the B-N
bonds, respectively.

activation energy is required to break a B-N
bond. 6

10.3 Summary

By locating a peak in the equilibrium specific
heat ��� , we showed that crystalline Si � B � N �
melts at about �51Õ#Ö��)*��� K forming a com-
plex liquid. The melting is accompanied by
a dramatic increase in the diffusion coeffi-
cients and a dramatic decrease of the relax-
ation times u [ f\v . Furthermore, structural re-

6The fit to a power law of the diffusion coefficients of
the heated crystal, was not satisfactory, thus we cannot
determine the critical temperature accurately.
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Figure 10.9: Snapshots of typical configuration of the melted crystal at the specified tempera-
tures.
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Figure 10.5: Temperature dependence of the
relaxation times u [ f�v of the bond survival
propabilities determined from the fit to the
KWW-law (equation 10.2). Full lines are fits to
an Arrhenius law in the temperature regime
2250-4000 K yielding the activation energies
given in table 10.1(a). The dotted horizontal
line show the length of computer simulations.

arrangements in the first and the second co-
ordination sphere occured at the melting tem-
perature �@1 . Comparing the results of the
melting procedure to the (cooling from the
liquid) procedure, shows that the liquid be-
gins to solidify slightly below to the melt-
ing temperature �51 and forms an amorphous
solid thereby undergoing a glass transition.7

Furthermore, even below 2000 K, the super-
cooled liquid continues to stiffen, while the
heated crystal has already reached a dynam-
ical regime dominated by harmonic motion
about the crystalline structure.

The analysis of the temperature dependence
of the diffusion coefficients � , calculated upon
cooling, showed that close to the melting point�21 the diffusion coefficients and the relax-
ation times u [ f\v followed an Arrhenius law.
The activation energies of the heated crystal
were higher than the activation energies of
the cooled liquid. This demonstrates that the
heated crystal is stiffer than the cooled liq-
uid at the same temperature. Furthermore we
showed, that below the melting point �
1 , one
can calculate the diffusion coefficients accord-
ing to the Einstein-Smoluchowski equation.
These diffusion coefficients show an equilib-
rium like behaviour even below the melting

7The glass transition temperature §&× ¬ 2250 K, is an
upper estimate for the experimentally observable glass
transition temperature, of course.
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Figure 10.6: Waiting and observation time de-
pendence of the bond survival probability of
Si-N and B-N bonds for waiting time _0`�i¶��� ³
MCC (open symbols) and _9`Øi¶��� � (filled sym-
bols) MCC.

point. Furthermore, it seems that the specific
heats ��� of the cooled liquid are equilibrium-
like below �@1 , thus indicating that below ��1
= 2500 K, the system is super-cooled.
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Figure 10.7: Temperature dependence of the
specific heats � � for the heated crystalline
polymorph. Open symbols depict data cal-
culated according to the l.h.s of equation 10.1
and full symbols represent the data calculated
according to the r.h.s of equation 10.1. Note
that the enhanced peak in specific heat calcu-
lated from the fluctuations (filled symbols) is
due to an aging effect.

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8

g(
R

)

R [Å]

250 K

750 K

1750 K

2000 K

2500 K

4000 K

Figure 10.8: Average pair distribution func-
tions g(R) of the heated crystal (full lines) and
the cooled liquid at (dotted lines) for tempera-
tures given inside the figure.

2

2.25

0 1000 2000 3000 4000 5000 6000

in
te

gr
at

ed
 p

ea
k 

in
te

ns
ity

T [K]

250 K

500 K

750 K

1000 K

1250 K

1500 K

1750 K

2000 K

R=4.00−4.50 Å
R=5.25−5.75 Å

Figure 10.10: Temperature dependence of the
integrated peak intensities of peaks between 4
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Figure 10.11: Temperature dependence of the
mean coordination numbers of the first and
second coordination sphere of silicon and
boron atoms. Open symbols are the data for
the heated crystals and filled symbols are the
data for the cooled liquid.
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Chapter 11

Properties of the energy landscape of
a-Si � B � N �

11.1 Introduction

In the previous chapters, we have dis-
cussed the ’metastable’ phase diagram of the
Si � B � N � -system and subsequently shown that
a-Si � B � N � undergoes a glass transition at � 3 i
2250 K. In this chapter, we will discuss the
properties of the energy landscape and the
vibrational properties of a-Si � B � N � , using a
combination of MC-techniques and gradient
optimizations for the melt and the crystal
fragment model introduced in section 8.2.1.
First, we briefly recall the two structural mod-
els used and the energy function employed,
together with the exploration techniques we
have used. Next, the results will be presented
in detail, and finally we will deduce some gen-
eral features of this energy landscape and dis-
cuss the consequences for the static and dy-
namical properties of the system, and possible
connections to the energy landscapes of vari-
ous other glass-forming model systems.

11.2 Models and Techniques

11.2.1 Monte-Carlo simulations and lo-
cal optimizations

We investigated the energy landscape(s) of
two different models (

» ] »\» ) of a-Si � B � N � in a
temperature range from 25 K to 7000 K, using
a combination of NVT Monte Carlo (MC) sim-
ulations and local optimization techniques.
We employed the two-body interaction poten-
tial A. We generated model

»
by ’melting’ the

hypothetical crystalline phase
2�

-Si � B � N � ,[89]
via NVT MD-simulations. Model

»�»
was a

hand-built model containing small fragments

( üµ#ý��t*� nm) of the crystalline binary phases
-Si � N ³ and hexagonal BN.[66] The two mod-

els were chosen from among a larger num-
ber of possible ones, because the discussion
of the structural properties in section 8.3 had
shown them to be limiting cases with respect
to the local cation distribution: Model I exhib-
ited a completely homogeneous distribution,
while the nanocrystallite-based model II was,
by construction, very heterogeneous.

The models consisted of 702 (I) and 1144 (II)
atoms, respectively, and we fixed the densities
at ��Q » T�# 2.75 g/cm � , �7Q »\» T£# 1.5 g/cm � . We
generated three different trajectories with run
lengths of �C������� to �à�
��� Ò Monte-Carlo cy-
cles (MCC) for each model by NVT-MC sim-
ulations. Here, one MCC consisted of N

- < � ,
of the usual random atomic displacements.

We used two different procedures (a and
b), summarized in figure 11.2.1, for the local
optimizations. In procedure a, we collected
sets of logarithmically spaced halting pointsþ|ÿ QS�UT$i ��� ÿ Qh_ ] �UT�� ( _$i � ] � ] ) ]��&] Ì������ /
MCC, � i � ] ô ] Ê ) from the trajectories and
determined the set of minima 	 , ��
 QS�UT���Ý , ��
 Qh_ ] �UT�� from these holding points us-
ing the conjugate-gradient optimization tech-
nique. Procedure b consisted of two steps.
We selected sets of holding points

þ [ QS�UT����� [ Qh_�ê9�UT�� at evenly spaced time intervals
(
A _ =40000 MCC) along a trajectory and per-

formed ten quench runs ( � i � K Monte
Carlo simulations) from each holding point.1

In the second step of procedure B, we opti-
mized the end configurations of the quench

1The halting criterion of the quench runs was the net
atomic displacement per MCC dropping below ��� ��� 
Å/atom.
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runs �|Qh_;ê9�UT�����ä���Qh_;ê9�UT��$ä���p�� [ QS� ] _0T=y�� by the
conjugate gradient method, yielding the set of
minima � , ��
 QS�UT������ , ��
�� � Qh_�ê9�UT�� .
11.2.2 Data analysis

We characterized the energy landscape of a-
Si � B � N � by the single-point properties of the
configurations  ! Qh_�ê9�ÉT 2 and by two-point
properties that relate two configurations, e.g.
a minimum with a quench point or a hold-
ing point at time _ . Note, that the data was
collected for temperatures both in the equilib-
rium and in the non-equilibrium regime above
and below � 	 i{����)*� K, respectively.

The analysis of the single point properties
focused on the energies and the vibrational
properties of the minima, the holding points
and the quench points, respectively. We an-
alyzed the atomic contributions to the vibra-
tional modes and the localizations of these
modes. Additionally, we were interested in
properties of the imaginary modes found at a
given temperature and energy. This connected
to the analysis of two point properties, where
connections between the vibrational modes
and relaxational modes can be found. These
can yield insight into possible hierarchical as-
pects of the energy landscape and the system’s
dynamics, and indicate relationships between
experimentally accessible properties and fea-
tures of the energy landscape.

Single point properties

We chose the energy
D Q� ! Qh_;ê9�UTgT of the con-

figurations and the properties derived from
the eigenvalues " � i$# �� and the eigenvectors % Q&# � T of the dynamical matrix �(' x� � Q) ! Qh_�ê9�ÉTgT as
single-point properties to be investigated. Ad-
ditionally, we characterized the average local
curvatures at points of the energy landscape,
by the arithmetic mean of the real and imagi-
nary frequencies,

2Recall that we describe the configuration of the N
atoms by the *,+ -dimensional vector -. , whose compo-
nents are the Cartesian coordinates of the atoms.

B # 60/ -�> F i �¾ 61/ -?> �3254 ¤g¦Ä
� # �
and

B # � ,.-76 F i �¾ � , -�6 � Á Â ¤18Ä
� # �

(11.1)

The maximum number of ’diffusive’ direc-
tions is given by the fraction of imaginary
modes 9

� , -76 i
¾ � , -�6
ô ¾ q Í % (11.2)

Of course,
9
� , -76

differs from � only for the
quench and the holding points.

The participation ratio � À Q: ! T of a configu-
ration  ! was used to identify the degree of lo-
calization of the mode ã with frequency # � . The
joint contribution of elements of type Ð ( Ð�i
B, N, Si) to a vibrational mode ã of frequency# � was characterized by the projected density
of states

d �<; b ' Q&# � T , whereas the contribu-
tions of buildings units


were analyzed by the�É�(; b x Q&# � T . For details see section 4.3.1.

Two-point properties

An important question when analyzing the
properties of systems with complex energy
landscapes is the connection between the en-
ergy landscape the system explores at a given
temperature � , and the ”underlying” set of
minima, saddle points and barriers that are
present in that region of the landscape. In par-
ticular, it is of interest to know, to what ex-
tent the dynamics of the system can be un-
derstood in terms of the properties of the lo-
cal minima and their (low energy) connecting
saddle points.

Thus, we have investigated the differences
of the potential energies of the holding points
and the quench points, the quench points
and the minima, and the holding points and
the minima. Additionally we calculated ref-
erence energies

D 60/>= Qh_;ê9�UTWi D Q�� ÿ Qh_;ê9�UTgTcqô�t*� ¾ Z [ � by subtracting the average poten-
tial energy associated with the vibrational mo-
tion in the harmonic approximation from the
energy of the halting point, for each hold-
ing point � ÿ Qh_�ê9�UT in procedure A. This refer-
ence energy

D 60/1= Q�� ÿ Qh_�ê9�UTgT should equal the
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Figure 11.1: Schematic description of the local optimization procedures A and B. Filled circles
represent the holding points H selected along a trajectory at temperature T. From each holding
point, conjugate gradients optimizations (solid lines) are performed in procedure A to give
the minima set 	 , �^
 QS�UT (hatched squares). In procedure B quench runs (dashed lines) are
performed from each holding point H and the end points (open circles) of the quench runs are
further optimized by the conjugate gradient method (dotted lines) resulting in the minima set� , ��
 QS�UT (filled squares). The double arrows ( _ ) indicate the two-point properties calculated
for the characterization of the energy landscape (see section 11.2.2 for details).
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energy

D QEÝ , ��
 Qh_;ê9�UTgT of the underlying min-
ima Ý , �^
 in the harmonic approximation, if the
major portion of the trajectories consisted in
harmonic motion around local minima (plus
e.g. minima hopping). Thus, the excess energyA}D 60/1= i D 61/1= Q�� ÿ Qh_;ê9�UTgTëq D QEÝ , ��
 Qh_;ê9�UTgT be-
tween the holding points and the minima in-
dicates deviations from the harmonic approx-
imation as well as deviations from a descrip-
tion of the dynamics on the energy landscape
in terms of the minima.

Another important aspect is the structural
relationship between e.g. holding points and
their associated quench points and minima,
or between holding points at different times
along the trajectory. To address this issue, we
have analyzed the topography of the energy
landscape by the mean squared displacement
(MSD) between two configurations  ! Q9��T and ! Q ��T , which we denote by

+ � Q) ! Q9��T ]  ! Q ��TgT�i
�Ä�,` Ó Q A � � T � (11.3)

in this section. (see equation 3.25)

Here Q A � � T 
 i a  � � Q ��T�q  � � Q9��Tba 
 , is the
nth power of the absolute value of the (3-
dimensional) difference vector of the position
vectors  � � Q9��t*��T of atom c in configuration �
and � , respectively. Additionally, we deter-
mined the number of common chemical bonds
that existed in two configurations (yielding
the bond survival probability BSP), and the
number of identical coordination spheres that
existed in two distinct configurations. We de-
fined a chemical bond between two atoms ã , c ,
if the interatomic distance Ú � � lay in the inter-
val Ú , �^
�d Ú � � d Ú ,.-0/

, and the set of bonds
emanating from atom c defined the coordina-
tion sphere e�Ü�Qfc&T of the atom c .

Possible correlations between the eigenvec-
tors  % � Q�g¶T of the vibrational modes of the min-
ima and the eigenvectors corresponding to
the imaginary modes of the holding/quench
points  % � , -76� Qih�T can be detected by expand-
ing the eigenvectors  % � Q�g¶T of the real modes
at the minima in terms of the orthonormal set
of the eigenvectors of the dynamical matrix at

the holding/quench points:

 % � Q�g¶T i
� Á Â ¤18Ä��` Ó Ý � �  % � ,.-76� QihØT (11.4)

j �3254 ¤g¦Äk ` Ó � k �  % 60/ -?>k QihØT (11.5)

with the expansion coefficient Ý � � and � k � for
the imaginary(c ) and the real modes (

Z
) modes

of the holding/quench points defined by:

Ý � � i  % � Q�g T4�  % � ,.-76� QihØT (11.6)� k � i  % � Q�g T4�  % 60/ -?>k QihØT�% (11.7)

Note, that the sum in equation 11.4 is re-
stricted to the imaginary modes and the sum
in equation 11.5 to the real modes of the hold-
ing/quench point configurations. Since the
eigenvectors of the holding/quench points are
an orthonormal set, the squared eigenvectora  % � Q�g¶Tba � reads:

a  % � Q�g Tba � i
� Á Â ¤18Ä��` Ó Ý �� � j � 2l4 ¤g¦Äk ` Ó Ý �k � % (11.8)

Thus a real mode  % � Q�g T becomes a ’reactive’
mode Ú with eigenvector  % 6 , i.e. a linear com-
bination of the imaginary modes  % � Qih�T of the
holding point, if the frequency dependent co-
efficient

m Q&# � Tji
� Á Â ¤>8Ä�,` Ó Ý �� � # �*% (11.9)

Complementary to this projection of the
real modes onto the imaginary modes, we
expanded the imaginary modes of the hold-
ing/quench points into the set of vibrational
modes of the minima.

 % � QihØT L i
� 2l4 ¤g¦Ä k e k �  % k Q�g¶T (11.10)

 % � QihØT � i
� 254 ¤9¦Ä k + k �  % k Q�g¶T ]

where the superscripts L and � indicate real
and imaginary modes, respectively. The ex-
pansion coefficients e k � and

+ k � were given bye k �5i  % � Q�g¶T
�  % Lk QihØT (11.11)+ k �5i  % � Q�g¶T
�  % �k QihØT�%



11.3. RESULTS 147

Averaging procedures

We averaged all single-point properties both
over time and over the sets of data points col-
lected at the temperatures at which the tra-
jectories were generated. Note, that we cal-
culated time averages in the non-equilibrium
regime for observation times _ greater than a
typical waiting time _9` of ��� ³ MCC, to reduce
aging effects. Additionally, we mention that,
all results for the end points of the quench
run were first averaged for each holding point
from which the quench runs were started, then
over time and finally over the ensemble of tra-
jectories at temperature T.

For each trajectory, we calculated the aver-
ages of the two point properties, which de-
pend on the initial time _ Ó and the time differ-
ence

A _�i¶_ � q _ Ó for different initial times _ Ó .
Subsequently, we calculated the average over
the different trajectories for each temperature
and selected initial times _ Ó .

The averaging procedure for the data
of the quench runs (procedure B) requires
some further comment. For each hold-
ing point, h(t;T), we calculated the aver-
age values of the two-point properties that
related pairs of quench configurations and
pairs of minima. The two-point properties
TPP(a,b) that relate sets of quench config-
urations/minima that were generated from
successive holding points �5QS� ] _;ê?Ü � T , ��QS� ] _ jA _�ê?Ü � T from the same trajectory Ü � at temper-
ature T, were calculated as follows. For each
pair Ý�tn� of quench/minima configurations !po � 1�Qh_�ê7hæQS�sê?Ü � TgT ]  !po � 1ØQh_ j A _;ê7h QS�ëê?Ü � TgT , we
calculated the TPP(a,b) for each of the ���õ����Øi ����� pairs, then averaged over the hold-
ing point times _ and subsequently over the
sets of trajectories.

Due to aging phenomena, the temperature
dependence of various properties is not com-
pletely straightforward and/or meaningful in
the non-equilibrium regime. Therefore, we
also analyzed our data as a function of the
potential energy of the configurations, and in
terms of the energies of the minima and the
differences between the energies of the hold-
ing/quench points and the associated minima.

11.3 Results

This section is divided into three subsections.
In subsections 11.3.1 and 11.3.2, we describe
the properties of the energy landscape of mod-
els

»
and

»�»
determined by procedures A and

B, respectively. In subsection 11.3.3, we dis-
cuss the vibrational properties of a-Si � B � N � .
11.3.1 Procedure A

One-point properties

The average equilibrium energies of the hold-
ing points and minima for a trajectory at a
temperature T are the first step in the charac-
terization of the energy landscape. However
establishing equilibrium at all temperatures T
is quite a difficult task and aging effects be-
come important. To study these aging effects
(see also chapter 12), we analyzed the time and
temperature dependence of the average ener-
gies of the minima (figures 11.2(a) and 11.2(b))
for temperatures � below and above the er-
godic to non-ergodic transition temperature�2	è#¶����)*��¸ . We observed a logarithmic time
dependence

D 1®Qh_;ê9�UT{i % ½�QS�ÉTsqq�*QS�UT Þir È Qh_0T ,
after an initial time _ ��
Y� < # ������� MCC, for
all temperatures �tsW�5	 .3 For this tempera-
ture regime, we found the overall lowest ener-
gies of the minima at temperatures � just be-
low the transition temperature �
	 . Addition-
ally, the logarithmic decay rate �*QS�UT was the
highest just below the transition temperature
and decreased almost linearly as the temper-
ature decreased below ��	 (see figure 11.2(c)
and 11.2(b)). Note, that even though the decay
rate for the crystal fragment model (model II)
is higher than the decay rate of the melt based
model, the maximum decay rate is still found
just below the critical temperature �
	 = 2250
K.

The temperature dependence of the time
and trajectory averaged energies of the min-
ima showed two different regimes (see Fig.
11.3), which did not depend on the model in-
vestigated. For temperatures in the intervalô*������¸ ¹µ�vu �@	�#ö����)*� K, the average en-
ergy of the minima rapidly increased with in-
creasing temperature, and for �wu ô*����� K the

3For temperatures §�xõ§ © , no drift occurs, and the
energies fluctuate around their equilibrium values.
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Figure 11.2: Time dependences of the en-
ergy of the minima found during the MC-
simulations at temperatures T d ô�)*��� K for
models I and II using procedure a. Note
the logarithmic time scales in the subfigures
11.2(a) and 11.2(b).
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Figure 11.3: Temperature dependence of the
time averaged energies of the minima. The in-
set shows the temperature dependence of the
time averaged reference energies

AcD 60/1= . In
the averaging procedure, we omitted the first��� ³ MCC to reduce aging effects visible in fig-
ures 11.2(a) 11.2(b). M � - e � represent the data
of the minima of model I, generated by pro-
cedures a and b, described above and M �7� is
the data for the minima of the crystal fragment
model II.

rate of increase of the average energy of the
minima was considerably smaller. For tem-
peratures ��s �*����� K, the average energy of
the minima increased with decreasing temper-
ature, in contrast to what would be expected
for equilibrium-like behaviour.

For temperatures ��s ��������¸ , the average
reference energies

D 61/1= QS�UT were identical with
the average minimum energies, and the dif-
ference

AcD 60/>= began to increase slightly with� up to � # �*������¸ . At this temperature,
the increase of

A}D 60/1= QS�UT became more pro-
nounced (see inset of figure 11.3). Turning to
the landscape observed using model

»�»
(crys-

tal fragment model) for a-Si � B � N � , we first
note the high degree of similarity to the results
found for model I. The two curves

D , ��
 QS�UT
(and

AcD 60/1= QS�UT in the inset) are very similar,
with the energies of the melt-based configu-
rations (model I) lower than the crystal frag-
ment ones.4 Again, we leave the harmonic
(minimum hopping) region when increasing
the temperature above �*����� K.

Next we turn to the average vibrational

4This relates to the fact that the crystal fragment mod-
els are less dens than the melt-based models. Recall fig.
8.13 in section 8.4.1, where the energies were correlated
to the densities of the models.
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properties of the minima and the holding
points of models I and II. For both mod-
els the mean vibrational frequency of the
real modes of vibrations of the minima
again showed two regimes. In the (high-
temperature) equilibrium regime, the mean vi-
brational frequencies of the minima increased
with decreasing temperature, and in the (low-
temperature) non-equilibrium regime (figure
11.4), the mean vibrational frequencies de-
creased. Comparing figures 11.4(a) and 11.3,
we see that the energetically deeper minima
exhibit higher mean frequencies, indicating
somewhat steeper walls of the deep minima
(see also fig. 8.15 of section 8.4.1). The average
vibrational properties did not depend on the
procedure employed but only on the model
investigated, and on average, the minimum
configurations of the crystal-fragment model
are somewhat softer and they ’see’ less steeper
walls surrounding them. Surprisingly the av-
erage frequencies of the imaginary modes of
the holding points (fig. 11.4(b)) only depended
on the temperature but not on the models in-
vestigated. However, the mean frequency of
the imaginary modes does not show the two
regime behaviour, that was observed for the
mean energies of the minima, the reference en-
ergies and the mean vibrational frequencies.
This two-regime behaviour is only found in
the temperature dependence of the fraction of
imaginary modes

9
� , -�6

. The fraction of imag-
inary modes depended on the temperature � ,
similar to the dependence of the reference en-
ergies

A}D 60/>= . For ��s 1000 K, they were
close zero, thus the system spends most of its
time at close to the minima, whereas between
1000 and 2000 K the harmonic approximation
breaks down. Above 2000 K, we find a steep
increase of the fraction of imaginary modes of
the holding points, but note that the only 20
% the total number of vibrational modes are
imaginary modes even at 7000 K. This agrees
nicely with the formation of clusters in the
liquid phase even at high temperatures (see
chapter 9).

Two point properties

The average distances between the holding
points and the minima reached from these
holding points, increased with temperature
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(figure 11.5) and this increase became more
pronounced at about �*����� K. Note again, that
the procedure employed did not influence
these results, only the distances between the
holding points and the minima of the crystal
fragment model are a slightly larger. The dis-
tances between successive minima are an or-
der of magnitude larger than the distances be-
tween the holding points and the minima over
the whole temperature range, the effect being
more pronounced above 2000 K. In this con-
text, we note that the minima and the holding
points were topologically similar for temper-
atures � d �*����� K, since the bond survival
probabilities (the fraction of the number of
bonds common to both structures) were close
to one (figure 11.6). This showed that in the
low temperature regime, the holding points
and the minima were related by small atom re-
arrangements that do not change the topology.
On the other hand, for temperatures �$¹l�*�����
K, the BSP decreased with increasing temper-
ature. Here the B-N bonds were stronger than
the Si-N bonds.

The diffusion coefficients calculated from
the mean squared distance between subse-
quent minima and subsequent holding points
are indistinguishable5(see figure 11.7). Again
no dependence on the procedure employed in
the generation of the minima from the hold-
ing points can be detected. Furthermore the
coefficients of diffusion are slightly higher for
the crystal fragment model, which has a lower
density.6 Note also that the diffusion coeffi-
cient in the equilibrium regime could be fitted
by a power-law ��QS�UT.i zl��QS�lqØ�3�´T � , with a
critical temperature � � #ý�*����� K, close to the
critical temperature �5	 , that we determined
earlier in the analysis of the energies, the mean
vibrational frequencies and fraction of imagi-
nary modes. Note that a fit to the Arrhenius
equation �W��knm&o�Q9q A}D t Z [ �UT (dotted lines in
figure 11.7) was also satisfactory in the range
between 2000 and 3000 K.

Another way to view this result is that the
distance between consecutive holding points
along a trajectory is essentially equal to the

5Recall that for temperatures §��Ø§ © , equation 3.26
is a rough approximation, only.

6In chapter 9.3.1, we showed that the diffusion coef-
ficients indeed increase with decreasing density in the
temperature regime of interest.
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distance between the two associated local min-
ima. Thus, the trajectory does not perform
a random walk ”on the surface” of a single
attractor or in the transition region between
two widely separated large attractors. Instead,
there appears to be some degree of homogene-
ity of the landscape on a global level, with a
high similarity of the landscape below the var-
ious holding points.

11.3.2 Procedure B

One-point and two-point properties

The general observation when surveying the
results from procedure b is that qualitatively,
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and to a large extent quantitatively, the ob-
servations agree with those for procedure A.
In particular, the average minimum energies
again exhibit a logarithmic decrease with time
for fixed temperature, and steeper slopes �*QS�UT
for higher temperatures � d � 	 ,

D , ��
 Qh_ ] �UT�iD ½�QS�UT�q��RQS�ÉT&ò��@Qh_gT . On average, the energies
of the minima for procedure b are equal to
the minima found by procedure a (see fig-
ure 11.3) and the logarithmic decay laws are
indistinguishable. (see figure 11.8). Regard-
ing the other properties of the minima, they
show e.g. the same vibrational spectra, and the
eigenmodes are indistinguishable, too. Sim-
ilarly, the topological and geometrical two-
point properties for the holding points and
the associated minima are quite analogous to
those for procedure A.

The mean square distance between consecu-
tive holding points, and the distances between
minima associated with consecutive holding
points are again the same, just as for proce-
dure A (see figure 11.5). But this already points
to an important aspect: The use of a quench
swarm along the trajectory producing ten lo-
cal minima per holding point does not result
in widely disparate local minima. Instead,
the minima appear to cluster rather closely
around each other, with the centers of consec-
utive swarms exhibiting a similar separation
as the holding points themselves.7

7It is exactly such aspects of the landscape that can
be investigated using swarms of quench runs along long
trajectories. This method has been used to identify char-
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Fig. 11.9(a) shows the average energy of
the endpoints of the quench runs, the hold-
ing points, and the final minima as function
of temperature. Complementing this, figure
11.9(b) depicts the excess energies

A o~� D 61/1= i BED Q�� [ QS�UTgT F q� BED QEä�QS�ÉTgT F j ô
�
¾ Z\[ ��� (11.12)

acteristic regions on crystalline landscapes[148], show-
ing that the regions that can be largely associated with
minima are much larger than those associated with tran-
sition regions, even at energies much above the saddle
points. Procedure b implements this method.
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Figure 11.9: Dependences of the potential
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D�� QS�UT ] D o QS�UT ] D 1ØQS�UT and the refer-
ence energies

A � � o�� � o�� D 60/>= on the tempera-
tures.

and A o�� D 60/1= i D Q�� [ Qh_;ê9�UTgT;q� BED QEä�QS�UTgT F j �
�
B ¾�� ���!QEä�QS�UTgT F Z\[ ��� (11.13)

where
BED Q�� [ QS�ÉTgT F � D�� QS�UT andBED QEä�QS�UTgT F � D o QS�UT are the mean poten-

tial energies of the holding and the quench
points, respectively. The second bracketed
terms on the r.h.s of equations 11.12 and
11.13 are the potential energies of the quench
points plus the average vibrational ener-
gies of quench points. In equation 11.13B ¾�� ����QEä�QS�UTgT F iûôG� ¾ ��Q9�Éq

9
� , -�6 T is the mean

number of real vibrational degrees of freedom
of the quench points. As expected the poten-
tial energies of the holding points are always
higher than the energies of the quench points,

whose energies are higher than the energies
of the minima. As already seen in figure
11.3, the reference energies of the holding
points,

A � D 61/1= begins to increase from zero
at about 1000 K, and a significant increase ofA � D 60/>= is visible at approximately 2000 K.
The reference energies of the quench pointsA o���� � D 60/1= are effectively zero up to 2000 K
and then decrease to negative values, thus
indicating that the quench points determined
by our procedure contain too many imaginary
modes for these reference energies to be
zero. Strikingly however, the decrease of the
reference energies begins at a temperature of
about 2000 K, which is just the temperature,
where the ergodic to non ergodic transition
occurs.
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Figure 11.10: Dependence of the fraction of
imaginary modes of the holding points (H)
and the quench point (Q) on the temperature.

Similar to the reference energies, the frac-
tion of imaginary modes

9
� ,.-76 Qih ]�� T of the

holding and the quench points increase sub-
stantially right at 1000 and 2000 K (figure
11.10). Recently, a similar behaviour of the
fraction of imaginary modes of quasi saddles
has been observed in simple Lennard-Jones
systems, and the fraction of imaginary modes
and diffusion coefficients have been related
to the geometric properties of the potential
energy landscape.[8] In that study, the po-
tential energy as well as the difference of the
potential energies of the saddle points and the
underlying minima depended linearly on the
fraction of imaginary modes. Figures 11.11(a)
and 11.11(b), depicting the dependence of
the potential energies and difference of the
potential energies on the fraction of imaginary
modes, show that a-Si � B � N � exhibits a similar
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kind of behaviour. Furthermore, the energy
landscape of a-Si � B � N � contains saddles,
whose potential energy increase linearly
with increasing the saddle order. Note that
according to Cavagna[26] one could use the
slopes � to calculate the effective potential
energy barrier

A}D 	 -7�
at a the critical temper-

ature temperature � 	 -��
	 , if one assumes, that

the saddles, which we approximate by the
quench points, are the important parts of the
energy landscape for the dynamics. However,
the diffusion coefficients do not suffice to
distinguish between a dynamics that is ruled
by minimum hopping or by saddle hopping
or by a simple flow across holding points,
as one can infer from figure 11.12, where we
summarized the temperature dependence of
the diffusion coefficients � � QS�ÉT , � o QS�UT and�c1®QS�ÉT calculated from linear fits of the mean
squared displacements g b ��Q�� [ Qh_ ` T ] � [ Qh_ ` jA _gT�ê9�ÉT g b ��QEä�Qh_X`wT ] ä�Qh_ ` j A _gT�ê9�ÉT andg b ��Q&� [ Qh_ `4T ] � [ Qh_ ` j A _0T�ê9�UT of subsequent
holding points, quench points and minima,
respectively. These diffusion coefficients are
almost identical, and thus they do not allow
a distinction between the different scenarios
proposed for energy landscape exploration
in glassy materials. In the same context, we
note that even though the diffusion coeffi-
cients divided by T depended linearly on the
fraction of imaginary modes (fig. 11.13), as it
has been observed in computer simulation
studies of amorphous silica modelled by the
BKS-potential[91], the significance of these
observations is unclear and thus a further
investigation of the energy landscape is
necessary.

Next, we study the temperature depen-
dence of the average distances among the
quench points ä � Qh_�ê9�UT�_ ä � Qh_;ê9�UT and among
the minima � � Qh_;ê9�UT�_ � � Qh_;ê9�UT reachable
from the same holding point � [ Qh_gT and the dis-
tances between the quench points and their as-
sociated minima ä � Qh_;ê9�UT�_�� � Qh_�ê9�UT as well as
the distances between a quench point and the
minima found from the other quench pointsä � Qh_;ê9�UT _�� � Qh_�ê9�ÉT . Fig. 11.14 shows these av-
erage distances. We see that all distances grow
with temperature, with the quench-quench
and the quench-minima ones exhibiting expo-
nential growth as function of temperature. For�¡s �@	 , the separations among the minima
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filled symbols depict data for T u��
	 . Straight
lines are fits to a linear dependence of the en-
ergies/difference of energies on the fraction of
imaginary modes. ??.

and among the quench points are very similar,
while for � ¹º�@	 , the separation among the
minima increases more strongly and begins to
approach the distances between quenches and
minima. Considering the distances between
quench points and minima, we note that they
are an order of magnitude larger than the dis-
tance among quench points themselves. For�ws��@	 , this implies that the conjugate gradi-
ent part of the minimization does not lead to
a dispersal of the quench swarm. For ��¹ �
	 ,
there is a larger dispersal at this stage.

In this context one should note that if the
movement from holding point to quench point
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were to correspond to an unfocused random
walk, the distance among the quench points
would be of the same order of magnitude
as the distance between holding point and
quench point, and similarly for the quench-
minimum gradient stage. Thus, the fact that
there is an order of magnitude difference be-
tween these distances is quite remarkable.
For comparison we show in figure 11.15 the
temperature dependence of the average dis-
tances between holding points and the min-
ima �5Qh_;ê9�UT¨_ �õQh_�ê9�UT , which is the largest
distance depicted in figure 11.14, and the dis-
tances between holding points/minima that
are 40000 MCC apart. Clearly the distances be-
tween subsequent holding points are another
order of magnitude larger than the distances
explored during the quench swarm procedure
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Figure 11.14: Temperature dependence of the
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B.
Finally, we considered the eigenmodes of

the imaginary frequencies of the quench
points, and performed a projection onto the
eigenmodes of the associated minima (see fig-
ure 11.16). We find that the imaginary modes
project onto soft (low frequency) modes of the
associated local minima (see figure 11.16). This
is reasonable, since the quench algorithm is
more likely to stop in saddle regions, where
only flat downhill regions, with low curvature
i.e. low frequency, exist.

Putting these results together, we see that
during the quench stage from holding point
to quench point, the swarm does not spread
much, although quite a large distance (see
fig. 11.15 for average holding point to quench
point distances) has been covered. Quite gen-
erally, the spread in minimum points is quite
small compared to the distance from the rele-
vant holding point, and most of this spread oc-
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Figure 11.16: Projections of the imaginary
eigenvectors of quench points collected at
1750 K onto the eigenvectors of the corre-
sponding minima. Frequencies are given in
eV.

curs in the gradient minimization stage. Tak-
ing into account that the quenches stop at crit-
ical points with few downhill directions, we
note that the stochastic downhill dynamics on
the landscape leads in essentially the same di-
rection, quite similar to the behavior observed
in the crystalline system, where the quench
swarms mostly ended in the same minimum
region.

These observations correlate with the be-
havior of the bond survival probabilities,
where the topological similarity among the
minima of a swarm was greater than the sim-
ilarity between the minima and the associated
holding point. Again, as function of temper-
ature, the BSP decreased for temperatures ex-
ceeding the critical temperature. Furthermore,
the B-N part of the network again proved to be
more stable than the Si-N part, as had already
been noted for procedure A. (see figure 11.17)

11.3.3 Vibrational properties

First, we focus on the detailed vibrational
properties of the minima, the holding and
quench points of the energy landscapes of a-
Si � B � N � for the two models I and II. For the
vibrational properties of the minima, we also
perform a qualitative comparison to experi-
mental data.

Minima

We observe two main peaks centered at 0.05
eV and 0.17 eV in the vibrational density of
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Figure 11.17: Temperature dependence of the
bond survival probabilities among minima of
the swarm � � Qh_0T�_©�p��Qh_0T and between hold-
ing points and the minima ��Qh_gTª_ �õQh_gT . Cir-
cles: BSP(Si-N), squares: BSP(B-N).

states (VDOS) for both models and for the two
temperatures depicted in figure 11.18. Ad-
ditionally, small peaks are visible at approxi-
mately 0.23 eV in the crystal fragment-based
models both at 250 K and 2500 K. The second
main peak at 0.17 eV becomes less intense in
the VDOS of the high temperature minima of
the crystal fragment-based model, whereas for
the melt model this peak is somewhat broad-
ened at higher temperatures. Difference be-
tween the VDOS of the two models are only
noticeable in the slight shift to higher energies
of the high energy vibrations of the peak at
0.17 eV for the low temperatures of vibrational
spectra. Furthermore at higher temperatures,
the low energy peak centered at 0.05 eV splits
into two peaks at # 0.03 and 0.08 eV and the
spectra for the two models are distinguishable.
Note also that the peak at 0.08 eV is already
visible in the ’low-temperature’ minima.

To study the nature of the aforementioned
peaks, we follow Taraskin et. al. [126] and
study the localization of the vibrational modes
and the assignment of these modes to atomic
and building unit contributions with the help
of the participation ratio � À , the atom and
building unit projected densities of statesd �(; b

and the �´�<; b
, respectively. Clearly,

the vibrational modes in the main peak at 0.05
eV are all non-localized since the participa-
tion ratios � À Q�«�T depicted in figures 11.19 and
11.20 are around 0.4, and the localization of
modes is usually indicated by values on order
of ��t ¾ #���%ß��� of the participation ratio. By the
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Figure 11.18: Average phonon densities of
states ¬s�<; b Q�«�T for minima collected at tem-
peratures T = 250 K and T = 2500 K for models
I and II.

same criterion, the vibrational modes with en-
ergy greater than 0.1 eV are localized and only
very few atoms ( # 3-7 atoms) are involved
in the vibrational modes. The localization of
these modes is further supported by a size
scaling analysis (inset of figure 11.21) of the
participation ratios of random arrangements
of 1300 and 2600 silicon, boron and nitrogen
atoms. These configurations were optimized
using interaction potential A. The value of the
participation ratios of the system containing
2600 atoms are about half of the values of the
1300 atom system, as expected for a correct
size scaling of the localized modes. In the low
frequency range, no clear scaling is observed.
Thus, we cannot decide whether these modes
modes should be classified as localized as has
been found in soft-sphere glasses[138]. In the

atomic participation ratios (also shown in fig-
ures 11.19 and 11.20), the values of the atomic
contributions to the participation ratio is pro-
portional to the composition Si � B � N � . Further-
more, the participation ratios of the configura-
tions do not show any significant dependence
on the investigated model or on the tempera-
ture at which these models were generated.
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Figure 11.19: Average participation ratios� À Q�«�T for typical minima collected at temper-
atures T = 250 K and T = 2500 K for model I.

The building unit projections ( �´�<; b Q�«�T ) of
the vibrational eigenmodes reveal some dif-
ferences between the two models (see figure
11.23). First, we first analyze the atomic con-
tributions to the vibrational modes. Figure
11.22, depicting the atomic contributions to the
eigenvectors of the vibrational modes, shows
that the density of states at low energies is
dominated by vibrations of silicon and nitro-
gen atoms, whereas the vibrations above 0.15
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Figure 11.20: Average participation ratios� À Q�«�T for typical minima collected at temper-
atures T = 250 K and T = 2500 K for model II.

eV are clearly dominated by boron and nitro-
gen atoms and no contributions from the sili-
con atoms are discernible.8

Turning to the contributions of different
possible building units of silicon, boron and
nitrogen, the vibrations of silicon and boron
atoms are dominated by vibrations of SiN ³
and BN � units, respectively. (figures 11.23(a)
and 11.23(b)) In the low energy modes we
also observe contributions from SiN � and BN

�
building units. In the high frequency region,
the peaks at 0.25 eV are clearly due to BN

�
building units. The contributions from differ-
ent nitrogen building units NSi � � /

B
/

(x=0,3)
allows to distinguish among the models due
to different probabilities of occurrences these
building units (figure 11.23(c)). The main

8The atomic projections are model independent
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Figure 11.21: Participation ratios � À Q�«�T of
models of system sizes 1300 (open squares)
and 2600 (filled squares). The two models are
minima of an initially random arrangement of
silicon, boron and nitrogen atoms. The inset
shows an enlargement of the high frequency
regime.

peak in the nitrogen contribution to the vi-
brational densities of states is dominated ei-
ther by NSi

�
B Ó units (melt-based model) or by

NSi � building units. Note that the peak at 0.22
eV present for model I is due to undercoordi-
nated nitrogen atoms, similar to the contribu-
tions of BN

�
units in the boron contributions

to the vibrational densities of states. These as-
signments agree well with analysis of the par-
ticipation ratios, were we had found that only
3-7 atoms contributed to these high frequency
vibrational modes.

Based on the above analysis of the vibra-
tional densities of states and the different con-
tributions to it, we conclude that an experi-
mental measurement of the vibrational den-
sities of states will most probably not allow
a distinction between the two models. How-
ever, the above analysis has shown that the
different peaks in the vibrational densities of
states can be attributed to different building
unit vibrations, that are only localized in the
high frequency ranges. Furthermore we men-
tion, that the above assignments are in qual-
itative agreement with the experimental IR-
spectra, which show broad peaks at 0.11 eV ( #
934 cm �2Ó ) and 0.166 eV ( # 1339 cm �2Ó )[171],
which were assigned to Si-N vibrations and
B-N vibrations, respectively. The vibrations
above 0.2 eV ( # 1620 cm �2Ó ), that we observed
in our models are not found in the experimen-



158 CHAPTER 11. ENERGY LANDSCAPE OF A-SI � B � N �
tal IR-spectra. This is not surprising, since
these were clearly due to coordination de-
fects in the models, which are expected to be
less common in well-annealed experimental a-
Si � B � N � .
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Figure 11.22: Atomic contributions of silicon,
boron and nitrogen atoms to the total vibra-
tional densities of states (very bold line) for
melt (top) and crystal fragment-based model
(bottom) generated at 250 K. Dotted vertical
lines indicate peak positions in the experimen-
tal IR-spectrum of a-Si � B � N � assigned to Si-N
(0.11 eV) and B-N vibrations (0.16 eV).[171]

Holding and quench points

After analyzing the vibrational densities of
states of the minima, we now turn to the dis-
cussion of the vibrational densities of states
of the holding and quench points. As al-
ready mentioned, in these vibrational densi-
ties of states imaginary frequencies are ob-

served, which will be denoted by negative fre-
quencies.

The vibrational densities of states of the
holding points of the two models, depicted in
figure 11.24, differ from the phonon densities
of states of the corresponding minima only in
the high-frequency range ( «¶¹���%I��� ). On in-
creasing the temperature, the intensity of the
high frequency decreases, eventually turning
into a shoulder, similar to the results for sim-
ple Lennard-Jones-systems[17, 149] and amor-
phous silica[18]. The maxima of the imagi-
nary mode spectra shifted toward lower fre-
quencies with increasing temperature and the
maxima were more intense, independent of
the model investigated. Concerning the par-
ticipation ratios of the real and the imagi-
nary modes of the holding points, we see that
the high-frequency vibrations of the holding
points show the same degree of localization
as the high-frequency modes of the minima.
Furthermore, we see from figure 11.25 that the
imaginary modes at low imaginary frequen-
cies, are localized modes (based on a participa-
tion ratio cutoff � � � <À of 0.05). Sine the general
features of the real and the imaginary modes
are independent of the investigated model, we
now focus on the properties of the real and
imaginary modes derived from model I for a
detailed analysis.

In figure 11.26, we show the participation
ratios � À Q�«�T of the holding points of model I
for a wider range of temperatures. For temper-
atures �s � 	 , the low frequency imaginary
modes «(s q ��%ß����) have very low participation
ratio indicating a higher degree of localization
of these modes. Furthermore, in the frequency
range q ��%ß���®sw«�s � , the participation ratios
increase upon increasing the temperature but
level off for temperatures above � ¹ 2000 K
(see the inset of figure 11.26, in which we plot
the temperature dependence of the frequency
averaged participation ratios of the imaginary
frequencies). Thus, the character of the imagi-
nary modes changes from a localized vibration
to an extended type of motion at temperature
T ¹ 2000 K, which coincides with the critical
temperature determined in the previous sec-
tions. As already mentioned, localized modes
involve only very few atoms and these modes
do not contribute significantly to the collective
motion of the atoms. Thus these modes can
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Figure 11.23: Building unit projections �É�(; b Q�«�T on the atom contributions to the vibrational
densities of states of melt-based models (left) and crystal fragment based models (right) gener-
ated at 250 K.. Dotted vertical lines indicate peak positions in the experimental IR-spectrum of
a-Si � B � N � assigned to Si-N (0.11 eV) and B-N vibrations (0.16 eV).[171]
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Figure 11.24: Average vibrational densities of
states VDOS of the holding points generated
along trajectories at the temperatures given in
the figure for the melt-based and the crystal
fragment based models. In each figure, the
bold line is the average phonon spectrum of
the minima generated at 250 K.

be subtracted9 from the total number of imag-
inary modes yielding the corrected number
of imaginary modes

9 � � 6 6� ,.-76 , depicted in figure
11.27. Even though the choice of � � � <À to dis-
tinguish between localized and non-localized
modes is somewhat arbitrary, a conservative
estimate based on the finite size analysis of
the real modes of vibrations of the minima,
suggested � � � <À =0.05(see figure 11.21). For that
choice, the corrected fraction of imaginary of
modes begins to increase just at 1750 K. Note
that effectively all imaginary modes for tem-

9The aforementioned anharmonic contributions to
the imaginary mode spectrum cannot be removed by
this technique.
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Figure 11.25: Average participation ratio of
holding point configurations of the melt based
model (I) and the crystal fragment model (II)
from trajectories generated at 2500 K (circles)
and 250 K (squares). The full lines are the
vibrational densities of states of the holding
points of model II, whereas dashed lines are
the average VDOSs of the holding points of
model I.

peratures T s 2000 K are labeled ’localized’
and approximately 30-50 % of the imaginary
modes at higher temperatures are also local-
ized.

In the previous subsections, we argued that
rearrangement processes a-Si � B � N � are due to
Si-N bond-breakings. Figure 11.28, depicting
the contributions of silicon, boron and nitro-
gen atoms to the eigenvectors of the imaginary
modes of the holding points at two temper-
atures above and below the critical tempera-
ture, clearly shows that the important contri-
butions to the eigenvectors of the imaginary
modes at the maxima of the imaginary mode
spectrum are located at silicon and nitrogen
atoms. This provides us with additional evi-
dence that the Si-N bonds are the weaker part
of the amorphous network and responsible for
the rearrangement processes that occur in a-
Si � B � N � . 10 Note that the eigenvectors of the
imaginary modes with frequencies below the
maximum of the density of states of the imag-
inary modes are dominated by boron and ni-
trogen atoms. 11

10One could extend this type of analysis of the pre-
cise nature of the building units by analyzing projec-
tions onto the eigenmodes of elementary building units
(e.g. SiN ¯ tetrahedra) as performed by Taraskin[126] and
Oligschleger[116] for amorphous SiO

�
.

11A further analysis showed, that the eigenvectors of
these modes are mostly located at boron atoms, that are
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Figure 11.26: Average participation ratio and
vibrational density of states of holding point
configurations of the melt based model (I)
from trajectories generated at the tempera-
tures given in the legend. The inset shows the
temperature dependence of the average par-
ticipation ratios of the imaginary frequencies
greater than -0.02, -0.01 and -0.005 eV.

Finally we compare the vibrational proper-
ties of the quench points sampled at temper-
ature � Ó to the vibrational properties of the
holding points sampled at temperature � � s� Ó . (see figure 11.30). Apart from the less pro-
nounced peak in the high-frequency regime in
the vibrational densities of states of the hold-
ing points, the spectra of the holding points
and the quench points are indistinguishable.
Note also that the degree of localizations of the
modes are also identical. Comparing the ener-
gies the holding and of the quench points (see
figure 11.9), we note that these are fall into the
same energy range.

11.4 Discussion

Collecting the various results presented, the
following picture of the energy landscape of
a-Si � B � N � emerges: A multitude of local min-
ima is connected via low-lying saddles. For��s·������� K, the dynamics consists in minima-
hopping, i.e. the walker is found most of the
time within the harmonic part of the local min-
ima. However, this does not mean that the
walker is below all saddles: in most directions,
the walls around the minima increase nearly
parabolically, while in a few other directions,
the transition to neighboring minima is pos-
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Figure 11.27: Temperature dependence of
the corrected fraction of imaginary modes9 � � 696� , -76 QS�UT for the holding point configurations
(squares) and quench points (circles). Open
symbols represent the uncorrected data. The
participation ratio cutoff was � � � <À Q�«�T�i���%ß��) .

sible - very similar to the shape observed for
minima in a-Se.[117]

The saddles are rather flat, and the deeper
the minima, the steeper the walls on aver-
age. But, in general, all the minima are very
similar in their vibrational properties. From
the point of view of the minima, we see no
great difference between the two very dis-
tinct amorphous structures (models I and II),
whose landscapes have been investigated in
this chapter. Above the low-lying saddles
and their associated minima, we find higher-
lying states (holding points) that show certain
topological differences to the minima - in con-
trast, the low lying saddles associated with the
quench points are topologically nearly identi-
cal with the minima.

An important observation is that starting at� i ������� K, the trajectories lie at energies
that are higher than one would expect from
adding the average potential energy of a set
of harmonic oscillators ( ô�t*� ¾ - < � ,ÉZ [ � ) to the
energies of the minima. Since for the min-
ima in material systems we would expect a
net-softening of the minimum region instead,
this is a rather surprising result. Cavagna has
suggested that the cause for similar observa-
tions in Lennard-Jones systems[26, 25] might
be that the walkers no longer ”oscillate” about
the minima but now have the saddles as their
reference points, and thus a higher reference
energy than the energies of the minima. This
might be a possible explanation for the tem-
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Figure 11.28: Average contributions of silicon,
boron and nitrogen atoms to the imaginary
modes of the holding points configurations of
model I generated at 1250 and 2500 K. In each
figure, the full line is the vibrational densities
of states.

peratures up to the ergodic-non-ergodic tran-
sition �@	 # �*����� K. Furthermore, for � u�2	 , the energy difference between the hold-
ing points and the quench points, which are
usually close to the relevant saddle points12 is
close to the vibrational energy of the quench
points.13

Thus the description of Cavagna of the dy-
namics on the energy landscape seems to pro-
duce a correct description. What is missing
however a reason for the success of the de-
scription in terms of the saddle hopping sce-

12The statistical weight of the higher saddles is too
small; else the quenches would have stopped earlier.

13The negative reference energies £ §±° ¢ 254�² are most
probably due to approximating the true saddles with the
quench points.
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Figure 11.29: Average vibrational densities of
states ¬s�<; b Q�«�T of quench points generated
from trajectories at temperatures given in the
figure.

nario. One possibility is that, analogous to
the behavior observed in lattice network mod-
els of glasses,[145, 147] trapping occurs, i.e.,
the local accessible density of states grows
approximately exponentially, and the walker
cannot enter the region where this fast growth
is present for �ó¹µ�2<�6 - ¿ . In contrast, for �³s�7<�6 - ¿ , the walker drops to the bottom of this re-
gion, now facing very high barriers that need
to be crossed.

The dynamical effect is profound: due to
the very high reference energy (at the top of
the exponentially growing region), the walker
floats above all low-lying energy barriers and
is highly mobile, while after dropping into the
rugged valley, the mobility becomes very re-
stricted. Since this effect takes place over a
very small range of temperatures, it has been
suggested as a possible explanation for the oc-
currence of the glass transition with � <�6 - ¿ #� 6�>Ë- : : .[143] Obviously, the presence of a trap-
ping transition around �{#{�*����� K (i.e. �@<�6 - ¿ #�2	 ) would agree well with the rapid increase
in the atomic mobility around �
	 . Note, that
above �@	 , all atoms are involved in the atomic
motions, whereas below ��	 , the only fewer
atoms seem to involved in the atomic motion,
as has already been proposed by Goldstein.

The logarithmic decrease of the average en-
ergy, both of holding points and minima, as
function of time along the trajectories for �$s�2	 nicely correlates with the aging that has
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Figure 11.30: Comparison of the vibrational
densities of states and the participation ra-
tios of the quench points generated from tra-
jectories at temperature � Ó (symbols) to the
data of the holding points at temperature � �
(lines). Labels inside figure indicate tempera-
tures � Ó t�� �

.

been observed in the system (see chapter 12).
General explanations of aging behavior[152]
have suggested that the landscape should pos-
sess some kind of hierarchical structure. Di-
rect evidence for or against a real hierar-
chy is difficult to obtain for continuous land-
scapes such as this one (in contrast to dis-
crete landscapes such as lattice networks[146]
or polymers[142]). Nevertheless, the fact that
the typical distance from a holding point to the
associated quench points is an order of mag-
nitude larger than the distances among the
quench points, suggests that each of the hold-
ing points is associated with only one particu-
lar basin containing many small local minima

and saddles.14

Finally, we need to understand the fact that
at high temperatures the minima found lie
considerably higher that those observed for�vsW�@	 . This might appear trivial, based on
”experience”, but it is not. These higher-lying
minima are less steep indicating they might be
somewhat larger than the low-lying ones, but
else they are very similar. Furthermore, there
must be enough high-lying minima and sad-
dle points available to prevent the walker from
reaching deep-lying minima on the downhill
path from the holding points. One might be
tempted to speak of a ”different” part of the
energy landscape for the ”liquid” state.

Together with the ergodic-non-ergodic tran-
sition and the aging phenomena, this sug-
gests that we have a rugged landscape with
a ”basin”-based hierarchy, but where for each
basin both the local density of states and the
local density of minima grow very rapidly,
possibly exponentially for the accessible den-
sity of states. In addition, the energy differ-
ence of the saddle points to ’their’ associated
minima also shows a steady increase with the
energy of the minima, but probably not as fast
as the density of states itself.

Finally, the increase in the number of imagi-
nary modes of the quench points indicates that
the associated flat transition regions (proba-
bly harboring several saddle points at higher
energies) slowly change in complexity with
energy. But the fact that even the holding
points with the highest energies still exhibit
frequency spectra with over � � % real frequen-
cies, shows that even in this energy range most
of the movement is not diffusive but some
kind of oscillatory motion. In this context one
should note that for temperatures up to Ê������
K, the system is still in the condensed (liquid)
phase. Only for � ¹óÊ������ K are we dealing
with a cluster fluid, where the average clus-
ter size lies below )*� atoms. For that region
of configurations space, the landscape one ex-
plores will exhibit rather different properties,
of course15. But the investigation we have

14Similar observations have been made in simulations
on Lennard-Jones systems[33, 7].

15Neither have we considered the region of the land-
scape associated with the crystalline modifications of
Si ¹ B ¹ N º , or with mixtures of large Si ¹ N ¯ and BN crystal-
lites. Nevertheless, the results for model II show that for
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performed here has focussed on the ternary
system for temperatures below the gaseous
phase, and yields a satisfactory description of
the landscape of amorphous Si � B � N � .

mixtures of crystallites with a diameter below  nm, the
features of the landscape do not differ substantially from
those of the region containing the melt-derived struc-
tures.



Chapter 12

Aging behaviour of a-Si � B � N �

12.1 Introduction

Determining whether a possibly non-ergodic
system has ”for all practical purposes”
reached thermal (quasi-)equilibrium is not
straightforward and possibly constitutes
an ill-posed question. Physical properties
of amorphous systems are known to drift
with the time _9` , or age, elapsed since the
quench into the glassy phase. For short
observation times _g�9� :¼» _X` , the drift is
undetectable and a state of quasi-equilibrium
is revealed by the approximate validity of the
fluctuation-dissipation theorem. Concomitant
to the violations of the fluctuation-dissipation
theorem for _9�9� : ¹ _X` , the correlation and
response functions acquire an additional
dependence on _9` . This breaking of time
translational invariance has been observed
e.g. in the magnetic susceptibility of spin
glasses, both in experiments[115] and model
simulations[74, 24], in measurements of � ¿
for a-Se[156], and also in simulations of the
dynamical structure factor of e.g. a-SiO

�
above the glass transition temperature[86].

To detect ergodicity breaking we use 1) the
specific heat � � , which we calculate in three
different ways, all agreeing in equilibrium
but markedly differing if ergodicity is broken,
and 2) the two-time energy-energy average½ Qh_ ` ] _9�9� : ê9�UT , and the related two-time auto-
correlation function ��¾�Qh_ ` ] _9� � : ê9�UT . In quasi-
equilibrium, the former equals one and the lat-
ter equals a generalized standard equilibrium
specific heat

Z [ � � �£��Qh_X` ] _ �9� : ê9�ÉT . The age de-
pendent ��� has been studied experimentally,
e.g. for charge-density-wave systems[19], but
does not appear to have been theoretically ex-
plored outside of two-level systems at very
low temperatures[123].

Since aging is linked to the complexity of
the energy landscape of the system, we re-
peat some aspects of the latter (see chapter 11)
and compare them to the aging behaviour, em-
phasizing their relation to the non-equilibrium
dynamics. Furthermore, we show by ana-
lyzing the waiting time dependences of two-
time properties like the mean-squared dis-
placement or the bond-survival-probabilities
that these aging phenomena can also be ob-
served in quantities related to structural prop-
erties.

12.2 Model and Techniques

The model of a-Si � B � N � consisted of �!Í�� Si-
atoms, �!Í�� B-atoms and ô�' � N-atoms, respec-
tively, in a �!Ì&%I�¿�¶�!Ì&%I�¿�¶�!Ì&%I� Å � cubic box
at density ��1 i �&%('*) g/cm � . As an interac-
tion potential, we employed the two-body po-
tential A. The simulations were performed at
fixed temperature and volume, with a Monte-
Carlo algorithm using the Metropolis accep-
tance criterion and the usual atomic displace-
ments serving as the moveclass. Note that the
kinetic energy ( ô�t*� Z [ � per atom) does not ap-
pear in MC-simulations, and that all quantities
studied relate to the configurational energy.

The temperatures investigated ranged from
25 to 7000 K. For each temperature up to ô*�����
K and above ô*����� K, Ì and ô runs, respec-
tively, of length _ < � < -?> i �À� ��� � MCC were
performed. In addition, for a pair of selected
temperatures (1250 K and 4000 K), ensembles
of ����� runs of length _ < � < -?> i ����Ò MCC were
studied. The energy as function of time was
registered every ��� MCC. Along the individ-
ual trajectories for � i ��)*� ] %�%�% ] 'R����� K, halting
points � � were chosen, from which both con-
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jugate gradient minimizations ( � �ÂÁ �ÄÃ ÓÆÅ, ��
 )
and a set of ��� stochastic quenches ( � i �
K MC-runs) followed by conjugate gradient
minimizations ( � � Á � o Á � Ã � Å, ��
 ) were per-
formed.1 In the following, _ ��
Y� <5#¶������� MCC is
the initialization time of the MC-simulations
needed for the system to reach equilibrium in
the ergodic regime (i.e. at high temperatures),
while _9`¨u _ ��
Y� < is the waiting time before the
observations begin.

12.3 Ergodicity from specific
heats

To investigate ergodicity versus temperature,
we studied the specific heat � � and the two-
time energy-energy average

½ Qh_ ` ] _9�9� : ê9�UTji
BED Qh_ `4T D Qh_ ` j _ �9� : T F / 
 :BED Qh_ `jT D Qh_ `4T F / 
 : QS�UT ]

(12.1)
where the subscript ”ens” always denotes an
average over all trajectories. ��� was calcu-
lated using three different computational pre-
scriptions. First

� -
� QS�UTjiÇ BgBED^F <iÈ±É < H � < ¢ M ¢¥¤g¦ËÊ F / 
 :YQS�UTÇ � ] (12.2)

where time averaging extends from _0` to the
end of the simulation _ < � < -?> and the tempera-
ture derivative is performed after the averag-
ing. Secondly

� �� QS�UT
iBED QS� j A �sêg_ `4T F <iÈÌÉ <IH � <IHKL7<�M=NPO ÊfÍ <�M=NSO>ÎU<IH

� A �
q

BED QS��q A �sêg_ `
T F <iÈ±É <IH � <IHKL7<�M=NPO ÊfÍ <�M=NSO>ÎU<IH
� A � %

(12.3)

This emulates a step experiment where the
system ages at temperature � . The time av-
erages over the observation time _?�9� :�» _ `
are performed at temperatures �®Ï A � , whereA �·# ��%I�;� . Finally we gauge the energy fluc-

1See chapter 11 for details.

tuations in p _ ` ] _ ` j _9�9� : y by calculating

� �� QS�UTwiBgBED � F <iÈÌÉ < H � < H L7<�M=NSO Ê q BED^F �<iÈ±É <IH � <IHKL7<�MXNPO Ê F / 
 :!QS�UTZ [ � � ]
(12.4)

for a range of observation times _?�9� : which
straddles _9` .

The experimental setups are depicted in fig-
ure 12.1 . Rapidly bringing a system from its
initial temperature � � to its final temperature� = leads to two different scenarios. For tem-
peratures � = ¹ �@3 , the system equilibrates
very quickly, and the average energies and the
fluctuations in e.g. the potential energy nei-
ther depend on the choice of _0` nor on the
choice of _9�9� : and the system is in thermody-
namic equilibrium. The situation changes, if
the temperatures � = are smaller than the glass
transition temperature ��3 . In that case the
calculated mean energies depend both on the
waiting time _ ` and the observation times _0�9� : ,
and the fluctuations V

� Q D T , depend even more
very strongly on the choice of the waiting
times _ ` and the chosen observation time _?�9� : .
For practical purposes, the prescription for the
calculation of � -

� has only a very weak _g�9� : de-
pendence. By way of contrast, when increas-
ing _9�9� : past _ ` the observed dynamics in � ��
changes dramatically from quasi-equilibrium
to off-equilibrium (cf. inset in fig.12.4). � �� ,
which mimics an experiment performed after
some relatively long equilibration time _?` , (see
figures 12.2 and 12.3) likely yields the most
”realistic” value for the specific heat for all
temperatures.

As shown in fig. 12.4 the above prescrip-
tions yield, as expected, almost identical re-
sults in the high- � ergodic dynamical regime,
but differ at low � . This indicates that below�2	 # �*�����ëq ô*����� K ergodicity is broken. Fur-
ther evidence stems from the observation that
for ��só�@	 , the motion is sub-diffusive (see
figure 12.6), while for �W¹ �5	 standard diffu-
sion is observed: For � ¹ý��	 # ������� K, the
diffusion coefficients for B, Si and N, follow a
power law �û��QS�õq �@	wT � with �ài��*%(' , show-
ing structural freezing-in. Similarly, the relax-
ation times associated with the bond survival
probabilities of B-N and Si-N bonds display a
rapid increase below � 	 (see chapter 10 for de-
tails).
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Figure 12.1: Experimental setup and typical
time dependences of measured one-time and
two-time properties of an equilibrium and
non-equilibrium (aging) system. The dotted
lines depict the temperature schedule used to
cool a system from an initial temperature � �
to it final temperatures � = ¹��@3 (upper part)
and � = s$�@3 (lower part) at time _0½ . _ ` is the
waiting time before measurements of the one
or the two time quantities begins, and _?�9� : are
the observation times for which a property has
been measured. Full lines depict the potential
energy of the system. V

� Q D TnQh_ ` ] _ ` j _ �9� : ê9� = T
are the fluctuations in energy. For tempera-
tures �$¹è�@3 the system is in equilibrium, and
for �øsæ� 3 the system is aging.

For � ¹ �@	 , the two-point correlation
function always remains very close to the
equilibrium value � . The aging behavior in
the glassy phase is shown in fig. 12.5 for� i �!��)*� K, and for three different wait-
ing times _9`óiÕôà�@��� � ] ��� ³ ] ����� . In the non-
equilibrium regime _g�9� : uè_X` ,

½
is seen to devi-

ate strongly from its equilibrium value
½ / � �� . The closely related autocorrelation function� ¾ Qh_ ` ] _9�9� : ê9�ÉTù� BED Qh_ ` TU� D Qh_ ` j _9�9� : T F / 
 : qBED Qh_ `wT F / 
 :�� BED Qh_ ` j _9�9� : T F / 
 : also exhibits the

expected aging behavior, i.e. a marked de-
crease to zero from an almost constant value
( � �£� Qh_ `4T ) once _g� � : exceeds _ ` . This mono-
tonic dependence on _9` of the time range_ �9� :�ú p � ] _X`5y during which (quasi-)equilibrium
behavior is still observed, correlates with the
stiffening of the response of the system char-
acteristic for aging processes: The longer the
system is allowed to equilibrate, the longer
is the subsequent time range during which
equilibrium-like behavior is observed. This ef-
fect concurs with our observation that for � d

t

ûýü Ò
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Figure 12.2: Sketch of the step experiment
for the determination of the specific heat� �� QS�UT . At various times _g` , the temperature
is raised/lowered by Ï A � , and the changes
in potential energy Ï A}D

due to the tempera-
ture changes are recorded for times _?�9� :�» _ ` .
See also figure 12.3.
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Figure 12.3: Results for the step experiment at
initial temperature � � i ��'*)*� K described in
the text.

�2	 we can fit
D Qh_�ê9�UT (and also

BED Qh_;ê9�UT F / 
 : )
over the interval p _ ��
R� < ] _ < � < -?> y as a logarithmi-
cally decreasing function,

D Qh_�ê9�UT i D ½�QS�UT�q
zGQS�ÉT&ò���� << z Ã � Å�� (see also chapter 11). Neglect-
ing the fluctuations compared to the drift, one
has

½ Qh_ ` ] _9� � : ê9�UT�# ¾ Ã <IHKL7<�M=NPO Å ¾ Ã <IH Å¾ Ã < H Å ¾ Ã < H Å . Expanding½
for _9� � : » _ ` then yields½ Qh_ ` %Ô_ �9� : ê9�ÉTj#¶� j za D Qh_X`jTba _ �9� :_ ` % (12.5)

Thus,
½ Qh_ ` ] _9� � : ê9�UT substantially deviates from� for _9�9� : ¹ _ ` , as observed in the simula-

tions. The inset shows ��¾£Qh_ ` ] _9�9� : ê9�UT plotted
as function of the scaled variable _?�9� : tY_ ` . As_ �9� : increases, the data appears to collapse on
a single curve, indicating that _?� � : tY_ ` scaling
can be expected to hold asymptotically.
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Figure 12.4: Temperature dependence of the
specific heats � - � �>� �� . The waiting _9` and the
observation times _g�9� : were ��� � MCC for � -

�
(
a r�� )and � ���� , and _ ` u$����� , _9� � : i·)U����� � for� �� ( � ). Inset (note the different y-scale): � ��

for _ ` iÖ���*³ , _9� � : iÖ���*³ ( � ), ��� � ( � ). Note that� �� #�� �� for _9�9� : d _ ` , while for _g�9� : ¹{_ ` the
two quantities differ.

Up to now, we have analyzed the proper-
ties of the energies along the trajectories and
shown that the responses (measured with re-
spect to the energies) become weaker as the
system ages for a time _g` . The stiffening of
the response characteristic of aging systems,
is also reflected in the mean squared displace-
ments and the bond-survival-probabilities.
Figure 12.6, depicting the mean squared dis-
placements of all atoms and the bond-survival
probabilities for logarithmically spaced wait-
ing times _ ` , shows that the system becomes
stiffer as the waiting time is increased. The
distances traveled for the same observation
times _9�9� : become smaller. Furthermore, the
time dependence of the g b �®Qh_g` ] _9�9� : T can be
divided into two regimes

»
and

»�»
. For short

times, the g b ��Qh_ ` ] _ �9� : Tj�l_ ' follows a power
law with an exponent Ð � i ��%Ë) , independent
of _ ` , and at longer times Ð �7� #���%(' � . Note that
our data does not allow to tell whether aging
phenomena are present in the MSD.

The waiting time and observation time de-
pendence of the bond-survival probabilities
also reflects the aging behaviour of the system.
The longer the system has aged, the longer
it takes to break a bond on average. Very
roughly, the observation time _0�9� : needed to
break a bond is proportional to the age ( _ ` ) of
the system.
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Figure 12.5: Observation and waiting time de-
pendences of the two-time energy-energy av-
erage

½ Qh_ ` ] _9�9� : ê9�ÉT for �!��)*� K, for an ensem-
ble size of ����� runs (raw data). The inset
shows the two-time autocorrelation function� ¾ Qh_X` ] _ �9� : ê9� i �!��)*��¸ØT . Since, even for 100
runs (corresponding to ca. one year of CPU
time on an AMD 1800+ MP processor), the
scatter in ��¾ is relatively large, the data in the
inset are averaged over ten time steps.

12.4 Energy landscape

Finally, we would like to link the non-
equilibrium behavior to the properties of the
energy landscape of a-Si � B � N � , discussed in
chapter 11. Figure 12.7 shows the average en-
ergy

BED Qh_;ê9� ] � Ã ÓÆÅ, ��
 T F / 
 : of local minima � Ã ÓÆÅ, ��

found by applying a conjugate gradient al-
gorithm for logarithmically spaced halting
points along several trajectories as a function
of time for different temperatures.

We note that
BED Qh_�ê9� ] � Ã ÓÆÅ, ��
 T F / 
 : decreases

logarithmically with time for � s���	 analo-
gously to

BED Qh_�ê9�ÉT F / 
 : [7]. A fit of the logarith-
mic slope yields z^QS�UTwi·'*Í&%Ë��Ì � � qØ�!ôRÊ�%Ë)�Í � � �

,
which qualitatively agrees with the low tem-
perature expansion of

BED Qh_�ê9�ÉT F / 
 : for the so-
called LS-tree models[151], suggesting that the
landscape of a-Si � B � N � might possess some
hierarchical aspects in that energy range rel-
evant for �øsæ� 	 .

For fixed simulation time, the deepest local
minima are reached for �Õi ��'*)*� K, which
lies right below �5	 . We find a similar behav-
ior for the average energy

BED QS�ëê0� Ã � Å, ��
 T F of the
local minima �ÄÃ � Å, ��
 found after quenching plus
gradient minimization starting from the hold-
ing points ��� , shown as a function of tem-
perature in fig. 12.8. We clearly recognize a
minimum in this curve at � # ��'*)*� K, and
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Figure 12.6: Waiting time and observation time dependence of the mean squared displacement
(MSD) and the bond survival probabilities (BSPs) of Si-N and B-N bonds after instantenuous
temperature changes from 4000 to 1250 K. In the double-log plot of the mean squared dis-
placements, the dotted vertical lines indicate two different regimes, I and II, for the power law
increase of the MSD with increasing observation time g b �®Qh_;�9� : TÉ�áÝ���_ ' yielding Ð � #á��%Ë)*�
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-3710

-3705

-3700

-3695

-3690

-3685

-3680

-3675

-3670

-3665

1000 10000 100000

〈E
(t;

T,
x(1

)
m

in
)〉

 [e
V

]

t [MCC]

750K
1250K
1500K
1750K

Figure 12.7: Time dependence of the average
energies

BED Qh_;ê9� ] �ÄÃ ÓÆÅ, ��
 T F / 
 : of the minima �æÃ ÓÆÅ, ��

for selected temperatures �ýi '*)*� K, �!��)*� K,�!)*��� K, ��'*)*� K.

the largest increase occurs at �Ö#ó�
	 . Anal-
ogous observations are well-known from e.g.
global optimization studies of complex sys-
tems, where it has been found that reaching
the deepest local minima using Monte-Carlo-
type search algorithms is achieved by spend-
ing most of the search time in the tempera-
ture interval slightly below the glass transition
temperature[84]. Thus this result serves as an-
other confirmation that ergodicity breaking is
taking place at ��#��5	 .
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Figure 12.8: Temperature dependence of the
average energies

BgBED QS�sê0�æÃ � Å, �^
 T F < M=NSO F / 
 : of the
minima � Ã � Å, �^
 (Full squares). The open squares
are values of reference energies

D 61/1= QS�UT (see
text). The inset shows the temperature depen-
dence of the excess energy

A
(see text).
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12.5 Discussion

The computational analysis of a-Si � B � N � us-
ing � - � �>� �� and

½ Qh_ ` ] _9�9� : ê9�UT shows that this
amorphous material can be expected to ex-
hibit a glass transition with a concurrent break
in the ergodicity at about ��	 # ����)*� K if
pressures high enough to prevent decomposi-
tion are applied. Regarding its structural dy-
namics and aging properties for � s �
	 , a-
Si � B � N � exhibits a general behavior similar to
standard test systems (Lennard-Jones, a-SiO

�
)

and CDW systems, insofar as we observe a
freezing-in of the structure, and a waiting-time
dependence of the two-time correlation func-
tion and the specific heat.

This aging phenomenon is related to the
slow non-exponential relaxation dynamics on
the energy landscape for �øsæ��	 , resulting in a
logarithmic drift towards lower energies. This
applies both to the actual trajectories and the
time-sequence of observed local minima. Fur-
thermore, the dynamics on the energy land-
scape is accompanied by a stiffening of the
amorphous network as reflected in the de-
creasing distances traveled through the energy
landscape and the higher probability of bonds
to survive. Independent of these aspect of the
dynamics, we find that starting around �
	 the
average potential energy greatly exceeds the
value associated with harmonic vibrations at�2	 . ’Thermodynamically’, this makes itself
felt as a peak in the specific heat, which is often
associated with the so-called ’configurational
entropy’ due to an increased availability of ad-
ditional amorphous configurations.
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Chapter 13

Summary and Outlook

13.1 Summary

In the first part of this thesis, two new ap-
proaches for the structural modelling of amor-
phous ceramics have been developed, that
overcome the time scale problems one encoun-
ters when using computer simulation meth-
ods for the modelling of complex materials
like the amorphous nitridic ceramics.

The first one, the random close packing
approach,[67] has been successfully applied to
different chemical systems like a-SiO

�
, a-B

�
O � ,

a-Si � N ³ and the SiO
� �
	 N � 	 e9� -system. For the

latter, it has been shown, that the structural
properties of these SiONs are best described
by a network of corner-sharing SiO ³n� /

N
/
-

tetrahedra. These tetrahedra are linked via
trigonally planar coordinated nitrogen atoms
and non-linear two-fold coordinated oxygen
atoms. Furthermore, the SiO ³n� /

N
/
-tetrahedra

are most probably randomly distributed in-
side the structure, since no phase separation
was observed. The good agreement between
the distribution of tetrahedra and the mean-
field model developed to describe the distri-
bution of the tetrahedra provided additional
evidence for the randomness of the distribu-
tion of the SiO ³n� /

N
/
-tetrahedra.

The second new method is a separation of
time scales approach for the modelling of the
sol-gel synthesis of a-Si � B � N � . This method,
which can be rather easily modified to ap-
ply to other sol-gel processes had to be de-
veloped for essentially two reasons: the time
scales of computer simulations of about 10 ns
are much shorter than the time scales of real
experiments (about ��� ÓÆ³ ns). Thus a full sim-
ulation of the synthesis of these substances
using classical interaction potentials will not
be feasible within the next decades. Further-

more, conventional algorithms for generating
amorphous structures, tend to produce low-
energy configurations. However, in case of
the amorphous nitridic ceramics, the experi-
mentally observed structures are most likely
metastable ones corresponding to high energy
configurations.

Within the separation of time scales ap-
proach, we showed that the formation of
boron-rich island and silicon-rich islands in
the structural models can be traced back to
different speeds of N-B and N-Si bond forma-
tion. Furthermore, this modelling approach
has cast some doubt on the stability of the
TADB precursor molecules during the forma-
tion of these islands, since keeping Si-N-B
linkages in TADB-molecules unchanged dur-
ing the modelling procedure hindered the
growth of silicon rich and boron rich islands
in the resulting oligomers. The separation of
time scales approach has also shown, that due
to the synthesis route, vacancies or voids are
formed, that remain stable up to 1500 K. This
explains the unusually low density of the a-
Si � B � N � -material.

The main part of the thesis has dealt with
a-Si � B � N � . The structural properties of this
compound have been investigated experimen-
tally (by others) in parallel to the theoretical
research performed in this thesis. The sur-
prising experimental results on the structural
and the bulk properties of these materials, i. e.
the formation of silicon containing and boron
enriched islands as well as the material’s un-
usual low density, required the investigation
of a high number of different modelling pro-
cedures, and the development of the two new
approaches mentioned above.

The comparison of the structural and the
bulk properties of the models generated by
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distinct modelling techniques showed that
the structural properties of these materials
strongly depend on the synthesis routes. It
is especially noteworthy, that the low-energy
structures are the denser ones, and that the
conventional synthesis route for glasses via
melting and cooling should result in structures
with a density of about 2.7 g/cm � , compared
to the experimentally observed density of 1.9
g/cm � . Our results suggest that around 2000
K and at a pressure of 2-4 GPa, the material
will most probably compactify. During such
a process, small voids of radius R

� �X��" s ô
Å will first be removed, while larger voids
are expected to be stable up to temperatures
of 1500 K. Furthermore, above 2000 K, the
observed silicon-rich and boron-rich islands
will disappear, accompanied by a densifica-
tion, and the formation of a network of ho-
mogeneously distributed SiN ³ -tetrahedra and
BN � -triangles. We also note that the bulk mod-
uli of the densified structures (

a �!� 6 � � " / 
 : #
150-200 GPa) will be significantly higher than
the bulk moduli of the low density structures
(
a > � ` � " / 
 : # Í*��qû����� GPa). Furthermore,

the vibrational properties of the models were
in satisfactory agreement with experimental
data. Our investigations also provide evi-
dence, that a material produced by sintering
of BN and Si � N ³ nano-particles will exhibit
structural properties similar to the properties
of the sol-gel synthesized materials.

To understand the equilibrium properties
of the Si � B � N � -system, we have calculated
the ’metastable’ phase diagram of the sys-
tem, by two different approaches, starting
from a dilute liquid and a solid + gas ini-
tial configuration, respectively. We showed,
that the Si � B � N � -system is solid below 2000 K,
and transforms into a liquid containing small
cluster-like atom aggregates, in a narrow tem-
perature range. Furthermore, we determined
the liquid-gas critical point of the system to lie
at about � � 6 � < = 8000 K and critical densities of
about 0.03 atom/Å � . Focusing on the liquid-
solid region, we have shown that a-Si � B � N �
will undergo a glass transition at about 2250
K and a pressure of about 2 GPa, slightly be-
low the melting temperature of a hypotheti-
cal crystalline polymorph, as indicated by the
rapid decrease of the diffusion coefficients.

In the context of the glass transition, we

have analyzed the energy landscape of a-
Si � B � N � , and showed that the dynamics on
the energy landscape can be divided into two
regimes. Far below the glass transition tem-
perature �53 , the dynamics is clearly dom-
inated by hops between different, but ad-
jacent minima. Furthermore, these minima
are related to each other by localized re-
arrangements comprising only few atoms. At
higher temperatures, but still below �
3 , the
re-arrangements involve an increasing num-
ber of atoms. Finally, above ��3 , these re-
arrangements comprise all atoms of the con-
figurations. Our analysis of the quench points,
which we could identify with low-lying sad-
dle points, has shown that, above �
3 , the
dynamics on the energy landscape can most
likely be described by a saddle hopping sce-
nario.
We have investigated the aging behavior of
a-Si � B � N � .[68] The aging behaviour is charac-
terized by logarithmic time dependences, and
the two-time properties strongly depended on
the waiting time _9` that elapsed before a mea-
surement began. Furthermore, the fluctuation
dissipation theorem is violated in a very pe-
culiar way, and our data provided evidence,
that for long times, the properties depend only
on the ratio _9�9� : tY_ ` (instead of _9` and _9�9� : sep-
arately). The crossover from equilibrium to
non-equilibrium behaviour is only observed
for observation times _g�9� : greater or equal to
the waiting time _g` . The aging behavior of a-
Si � B � N � manifests itself not only in properties
of the energy landscape, but also in various
properties related to structural aspects such as
the bond survival probabilities or the mean
squared displacements. After very long wait-
ing times, the amorphous network becomes
stiffer, and the distances covered while explor-
ing configuration space become shorter. Thus,
through the aging process, it became harder
for the system to reach different regions of
configuration space, since the barriers for es-
cape effectively increased.

13.2 Outlook

A thorough understanding of amorphous ni-
tridic ceramics requires a detailed understand-
ing of the microscopic structural and dy-
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namical properties, which -in principle- may
be gained from computer simulations. As
mentioned above, computer simulations are
severely hampered by time scale problems,
e.g. the available computational resources are
too small to study time dependent properties
on experimental time scales.

Lattice-based approximations or approxi-
mations involving elementary building units
could serve as useful tools towards a micro-
scopic understanding of the dynamic prop-
erties of the amorphous nitridic ceram-
ics. Within these modelling approaches one
should use some information about the reac-
tion rates of the elementary steps involved
in the genesis of these materials. In that
context, we note that an application of the
methods developed in this thesis to the
commercially interesting carbon-containing
Si/B/N/C-ceramics would be very interest-
ing. But in order to study these ceramics at ele-
vated temperatures and for large system sizes,
effective pair potentials have to be developed
first.

Experimentally, it would be highly interest-
ing to investigate the temperature and pres-
sure dependence of the structural and the bulk
properties of a-Si � B � N � in the temperature
range of the predicted glass transition, and
to compare these with the results of our sim-
ulations. Note, that it may also be possible
to crystallize Si � B � N � , after thermal treatment
above 2000 K and pressures of several GPa.

The interpretation of the glass transition in
the framework of the energy landscape picture
- a field of current research - is quite difficult.
As the example of a-Si � B � N � has shown, con-
clusive evidence about the important proper-
ties of the energy landscape that lead to the
slow dynamics in glassy materials is difficult
to obtain. A full theoretical description of the
glass transition, requires the understanding of
the energy landscape of glass forming systems
in great detail. In particular, there is a press-
ing need for a more detailed analysis of the
density of states of the minima, saddles and
holding points. Furthermore, from a theo-
retical point of view, it must become clearer
how the dynamics between many saddles can
be modelled, how to distinguish between the
two different scenarios (minimum vs. saddle
hopping), and what are the true reason(s) for

the successful description of the dynamics in
terms of the saddles ruled scenario or the tree-
graph models. And last but not least, while
these theoretically important questions are be-
ing clarified, an equally crucial effort should
be devoted to connecting these theoretical re-
sults to experimental data.
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Appendix A

Free energy estimates for the
Si � B � N � -system

A.1 Free energy estimate for cluster distributions

To calculate the average entropic contribution
B b F < to the free energy �$i D ¿ � < j ô�t*� ¾ Z [ ��q}���B b F < arising from the different clusters occuring inside a volume V of the unit cell,1 we assume

that on average
B ¾ � > F clusters of mean size

B b , / - 
 F i � ¤g¢ M Â� � « ¦� and volume ¬ � > i B b , / - 
 F �ý¬ - < � ,
( ¬�½^i ¾ - < � , �ý¬ - < � , is the volume occupied by the atoms in the system) exist. To proceed, we
mentally divide the volume ¬ into

¾G>Ë- <�< i ¬B b , / - 
 F �n¬ - < � , i ¬ � B ¾ � > F¾ - < � , �n¬ - < � , i ¬¬�½
B ¾ � > F (A.1)

cubes, and calculate the number of ways� i
¾ë>(- <�<��B ¾ � > F < � Q ¾G>Ë- <�< q B ¾ � > F <XT � ] (A.2)

one can arrange
B ¾ � > F clusters on a lattice of

¾}>Ë- <�< sites. Using Stirling’s approximation ( � � i��ò����sq�� ) and noticing
b i Z [ ò�� � one finds for the entropic contribution

b t Z [ i ò�� � i�ò�� � �
Û � �\QhÛ}q ��T � (A.3)

b t Z [ i Ûë�Yò�� � � Û q �b� q � ��ò������ q Û� � (A.4)

with � i ¾G>(- <�< and Û}i B ¾ � > F . Returning to
¾^>(- <�< and

B ¾ � > F variables yields:

b t Z [ i B ¾ � > F òå� � ¬¬�½ q �b��q ¬¬�½
B ¾ � > F ò�� � � q ¬�½¬ � (A.5)

If ¬�� ¬�½ , � z� » � , and the second term in the last equation can be expanded into a power
series,2 yielding

b t Z [ # B ¾ � > F ò�� � ¬¬K½ q �b� q ¬¬�½
B ¾ � > F � q ¬�½¬ � (A.6)

b t Z [ # B ¾ � > F ò�� � ¬¬ ½ q �b� j B ¾ � > F (A.7)

b t Z [ # B ¾ � > F � ò�� � ¬¬�½ q �b� j �b� (A.8)

1We neglect the vibrational contributions to the entropy, ¶ ÁËÇ ¢ 2 ¤� Á N that is due to interatomic vibrations inside a
cluster.

2 ��� { ���� } ¬ �!� , for �#"� .
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Now, since �� z � � , ò�� � �� z q � � #lòå� � �� z � � � , equation A.8 becomes

b # Z [ B ¾ � > F òå� � ¬¬ ½ � (A.9)

A.2 Free energy estimate for the decomposition of a-Si $ B $ N %
Since the interaction potentials used in this thesis do not allow us to include the formation
of nitrogen, we estimate the free energy change associated with a possible decomposition of
a-Si � B � N � into silicon, boron and nitrogen N

�

Si � B � N � Q ÜRT Á Si � N ³ Q ÜRT j ô h-BN(s)
Á ô Si Q Ü*T j ô B Q ÜRT j '

� N
� Q È T�% (A.10)

We calculate the free energy change of the decomposition reaction. Denoting the l.h.s. of A.10
by z and the r.h.s of A.10

a
, the free energies read:� ÿ i D Q a-Si � B � N � T4q�� � b � �r�!Q a-Si � B � N � T

# D Q Si � N ³ T j ô D Q BN T
q����\Q b � ���!Q Si � N ³ T j b � �r�!Q h-BN TgT (A.11)

and the free energy of the decomposition products in system B is� [ i{ô D Q Si T j ô D Q B T j '
�
D Q N � T
q����\Q b � ���!Q Si T j b � �r�!Q B TgT4qØ� � b Q N � T ] (A.12)

where
D Q ! T are the potential energies of the compounds/element X. Equating the above equa-

tions and assuming that vibrational contributions to the entropy
b�� ���!Q Si � N ³ T , b � ���!Q h-BN T andb � ���!Q Si T , b � ���!Q B T of the different compounds/elements are approximately equal, yields the en-

tropic contribution of the nitrogen molecules to the free energy,

� � b Q N � Twi j �
ô D Q Si T j ô D Q B T j '

�
D Q N � Twq Q D Q Si � N ³ T j ô D Q BN TgT � � A}D

(A.13)

To calculate the entropic contribution
b Q N � T , we again assume that the volume ¬ is subdivided

into small sub volumes ¬ Q N � Tw#lÚ �N � , and calculate the number of different ways, one can place¾ Q N � T molecules of volume ¬ Q N � T onto the resulting lattice containing

¾ë>(- <�< i ¬¬�Q N � T (A.14)

lattice sites. If ¬&� ¬ Q N � T , we can use formula A.9, to calculate

b Q N � Tji Z [w¾ Q N � T&òå� � ¬¾ Q N � TgT
��¬ Q N � T � i Z [w¾ Q N � T&ò�� ' � �2Ó�¬ Q N � T)( (A.15)

Plugging this into equation A.13, yields

�&��i �¬�Q N � T ��knm&o
� q A}D
¾ Q N � T Z [ � � (A.16)

We approximate the potential energy differences
A}D

, by the weighted sums of the heats of
formation

A h of the binary phases Si � N ³ and h-BN:

Si � N ³ Q Ü*T Á ô Si Q Ü*T j � N
� ] A hói j '�%Ë��ô eV/atom [179] (A.17)

ô h-BN Q ÜRT Á ô B Q Ü*T ä j ô
� N

� ] A hói j '�%Ë)�Í eV/atom [135] ] (A.18)
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and the average size of a nitrogen molecule Ú�Q N � T is about 2.1 Å,3 yielding for the volume¬�Q N � Tw# 10 Å � /molecule, and we finally obtain

� � Q ¾ Q N � TgTj#{��%I��knm&o
� j �nÊ�%('*Ì eV/atom¾ Q N � T Z [ � � molecules/Å � % (A.19)

Treating the N
�

molecules as an ideal gas yields a pressure

d Q ¾ Q N � T ] �ÉTjil�&�ëQ N � T Z [ � ] (A.20)

in particular
d Q ¾ Q (N � i¶� � Ì�T ] �*����� K) #lÊ GPa.

3The bond length of an N
�

molecule is 1.1 Å plus twice the atomic radius of about 0.5 Å.
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Appendix B

Structural properties of a-Si � B � N �

B.1 Dependence on the choice of interaction potentials

In section 8.3 of chapter 8 we reported on the structural and the topological properties of
the structures belonging to classes A-E, representing different physical or chemical synthe-
sis routes. The results presented there were calculated using the local optimization procedure
IV, which employed interaction potential B and both atom positions and cell parameters were
optimized simultaneously. For completeness, we summarize the topological properties of the
structures generated by the local optimization procedures I-IV,1 in which we employed interac-
tion potentials A and B. In addition we include the results of the RMC-refinements performed
after the local optimizations.

1In class C, we show only the data for optimization procedures II and IV.
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Param I II III IV
1 2500 1 3.98 3.93 4.07 4.00 3.94 3.91 3.97 3.91
1 2500 2 3.96 3.92 4.04 4.00 3.95 3.91 3.96 3.93
1 2500 3 3.97 3.96 4.06 4.00 3.97 3.96 3.97 3.96
2 2500 1 4.08 3.99 4.08 3.98 3.93 3.87 3.94 3.91
2 2500 2 4.06 4.02 4.06 4.02 3.97 3.91 3.95 3.93
2 2500 3 4.03 3.99 4.03 3.98 3.96 3.94 3.97 3.95
3 5000 1 3.93 3.87 3.95 3.87 3.82 3.82 3.87 3.83
3 5000 2 4.08 3.95 4.07 3.96 3.90 3.86 3.92 3.86
3 6000 1 3.96 3.90 3.97 3.89 3.85 3.83 3.85 3.83
3 6000 2 4.08 3.96 4.11 3.97 3.90 3.86 3.91 3.88
3 7000 1 3.99 3.92 4.03 3.93 3.86 3.84 3.86 3.83
3 7000 2 4.11 3.97 4.12 3.97 3.91 3.89 3.91 3.89

(a) Si-N

Param I II III IV
1 2500 1 3.07 3.05 2.99 2.99 3.06 3.05 3.07 3.06
1 2500 2 3.06 3.06 3.00 3.00 3.04 3.06 3.06 3.05
1 2500 3 3.02 3.01 3.01 3.01 3.02 3.01 3.02 3.03
2 2500 1 3.01 3.01 3.01 3.01 3.10 3.08 3.10 3.08
2 2500 2 3.00 3.00 3.00 3.00 3.07 3.06 3.07 3.06
2 2500 3 3.00 3.00 3.00 3.00 3.05 3.05 3.05 3.04
3 5000 1 3.00 3.00 3.01 3.01 3.09 3.08 3.12 3.10
3 5000 2 3.00 3.00 3.01 3.01 3.14 3.12 3.14 3.13
3 6000 1 3.00 3.00 3.01 3.01 3.14 3.12 3.17 3.13
3 6000 2 3.02 3.02 3.02 3.02 3.14 3.12 3.18 3.16
3 7000 1 3.00 3.00 3.01 3.01 3.11 3.10 3.15 3.12
3 7000 2 3.01 3.01 3.03 3.02 3.14 3.11 3.18 3.15

(b) B-N

Table B.1: Class A: Topological properties (Si/B)-N. The first column indicates the cooling pro-
cedure used in the generation of the structures, the second column is the initial temperature of
the cooling, and the third column is the cooling rate, where 0 corresponds to a local optimiza-
tion and higher numbers refer to slower cooling. The roman numerals indicate the optimization
procedure employed. For each optimization procedure the left column is the data before and
right column is the data after RMC-refinement, respectively.
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Param I II III IV
1 2500 1 1.71 1.68 1.75 1.72 1.69 1.67 1.70 1.68
1 2500 2 1.70 1.68 1.73 1.71 1.70 1.67 1.70 1.69
1 2500 3 1.70 1.69 1.74 1.71 1.71 1.69 1.70 1.70
2 2500 1 1.75 1.71 1.75 1.71 1.69 1.66 1.69 1.68
2 2500 2 1.74 1.72 1.74 1.72 1.70 1.68 1.69 1.68
2 2500 3 1.73 1.71 1.73 1.71 1.70 1.69 1.70 1.69
3 5000 1 1.69 1.66 1.69 1.66 1.64 1.64 1.66 1.64
3 5000 2 1.75 1.69 1.74 1.70 1.67 1.66 1.68 1.66
3 6000 1 1.70 1.67 1.70 1.67 1.65 1.64 1.65 1.64
3 6000 2 1.75 1.69 1.76 1.70 1.67 1.66 1.68 1.66
3 7000 1 1.71 1.68 1.73 1.69 1.66 1.65 1.66 1.64
3 7000 2 1.76 1.70 1.77 1.71 1.68 1.66 1.68 1.67

(a) N-Si

Param I II III IV
1 2500 1 1.31 1.31 1.28 1.28 1.31 1.31 1.31 1.31
1 2500 2 1.31 1.31 1.29 1.29 1.30 1.31 1.31 1.31
1 2500 3 1.30 1.29 1.29 1.29 1.30 1.29 1.30 1.30
2 2500 1 1.29 1.29 1.29 1.29 1.33 1.32 1.33 1.32
2 2500 2 1.29 1.29 1.29 1.29 1.32 1.31 1.32 1.31
2 2500 3 1.29 1.29 1.29 1.29 1.31 1.30 1.31 1.31
3 5000 1 1.29 1.29 1.29 1.29 1.33 1.32 1.34 1.33
3 5000 2 1.29 1.29 1.29 1.29 1.35 1.34 1.35 1.34
3 6000 1 1.29 1.29 1.29 1.29 1.35 1.34 1.35 1.34
3 6000 2 1.30 1.29 1.29 1.29 1.35 1.34 1.36 1.35
3 7000 1 1.29 1.29 1.29 1.29 1.33 1.33 1.35 1.34
3 7000 2 1.29 1.29 1.30 1.30 1.35 1.33 1.37 1.35

(b) N-B

Table B.2: Class A: Topological properties N-(Si/B). See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param I II III IV
1 2500 1 3.85 3.73 3.99 3.88 3.80 3.74 3.84 3.70
1 2500 2 3.79 3.75 3.92 3.88 3.77 3.72 3.79 3.73
1 2500 3 3.81 3.76 3.95 3.86 3.81 3.83 3.81 3.81
2 2500 1 3.93 3.79 3.94 3.75 3.67 3.59 3.70 3.66
2 2500 2 3.87 3.80 3.87 3.81 3.69 3.59 3.67 3.64
2 2500 3 3.83 3.78 3.83 3.77 3.67 3.67 3.72 3.71
3 5000 1 3.93 3.80 3.98 3.84 3.66 3.67 3.79 3.71
3 5000 2 4.14 3.94 4.10 3.92 3.75 3.68 3.76 3.69
3 6000 1 3.94 3.81 3.95 3.81 3.72 3.67 3.75 3.70
3 6000 2 4.06 3.87 4.12 3.88 3.71 3.65 3.70 3.63
3 7000 1 3.95 3.83 4.04 3.87 3.72 3.67 3.72 3.66
3 7000 2 4.22 3.97 4.27 4.06 3.90 3.86 3.90 3.84

(a) Si-Si

Param I II III IV
1 2500 1 3.92 3.90 3.97 3.92 3.88 3.86 3.91 3.88
1 2500 2 3.97 3.95 4.04 4.00 3.95 3.94 3.98 3.95
1 2500 3 3.99 3.97 4.09 4.04 3.99 3.98 3.99 3.99
2 2500 1 4.14 4.06 4.14 4.05 4.03 3.98 4.05 4.01
2 2500 2 4.09 4.05 4.09 4.05 4.03 4.00 4.02 4.00
2 2500 3 4.14 4.11 4.14 4.11 4.07 4.06 4.08 4.07
3 5000 1 3.83 3.77 3.86 3.79 3.79 3.77 3.90 3.86
3 5000 2 3.84 3.74 3.86 3.76 3.77 3.75 3.81 3.75
3 6000 1 3.83 3.77 3.86 3.80 3.85 3.81 3.89 3.84
3 6000 2 3.94 3.83 3.97 3.88 3.86 3.82 3.91 3.89
3 7000 1 3.82 3.79 3.88 3.81 3.80 3.77 3.83 3.79
3 7000 2 3.84 3.74 3.85 3.74 3.71 3.69 3.75 3.72

(b) Si-B

Table B.3: Class A: Topological properties Si-(Si/B). See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param I II III IV
1 2500 1 3.92 3.90 3.97 3.92 3.88 3.86 3.91 3.88
1 2500 2 3.97 3.95 4.04 4.00 3.95 3.94 3.98 3.95
1 2500 3 3.99 3.97 4.09 4.04 3.99 3.98 3.99 3.99
2 2500 1 4.14 4.06 4.14 4.05 4.03 3.98 4.05 4.01
2 2500 2 4.09 4.05 4.09 4.05 4.03 4.00 4.02 4.00
2 2500 3 4.14 4.11 4.14 4.11 4.07 4.06 4.08 4.07
3 5000 1 3.83 3.77 3.86 3.79 3.79 3.77 3.90 3.86
3 5000 2 3.84 3.74 3.86 3.76 3.77 3.75 3.81 3.75
3 6000 1 3.83 3.77 3.86 3.80 3.85 3.81 3.89 3.84
3 6000 2 3.94 3.83 3.97 3.88 3.86 3.82 3.91 3.89
3 7000 1 3.82 3.79 3.88 3.81 3.80 3.77 3.83 3.79
3 7000 2 3.84 3.74 3.85 3.74 3.71 3.69 3.75 3.72

(a) B-Si

Param I II III IV
1 2500 1 2.08 2.05 2.00 2.00 2.06 2.04 2.08 2.08
1 2500 2 2.06 2.07 1.96 1.96 2.02 2.09 2.06 2.06
1 2500 3 1.96 1.96 1.92 1.92 1.93 1.92 1.96 1.96
2 2500 1 1.91 1.91 1.90 1.90 2.01 2.00 2.03 2.02
2 2500 2 1.91 1.91 1.91 1.91 2.03 2.01 2.03 2.01
2 2500 3 1.89 1.89 1.89 1.89 1.97 1.97 1.97 1.97
3 5000 1 2.19 2.19 2.20 2.20 2.27 2.26 2.27 2.25
3 5000 2 2.12 2.12 2.15 2.15 2.31 2.29 2.31 2.30
3 6000 1 2.18 2.18 2.18 2.18 2.34 2.32 2.36 2.33
3 6000 2 2.08 2.08 2.09 2.09 2.21 2.19 2.27 2.24
3 7000 1 2.13 2.13 2.17 2.17 2.26 2.26 2.33 2.31
3 7000 2 2.22 2.22 2.25 2.24 2.39 2.36 2.47 2.43

(b) B-B

Table B.4: Class A: Topological properties B-(Si/B). See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param I II III IV
4 5000 1 4.00 3.91 4.03 3.92 3.69 3.67 3.76 3.73
4 5000 2 4.03 3.91 4.04 3.92 3.70 3.67 3.79 3.75
4 5000 3 3.92 3.84 3.92 3.84 3.79 3.75 3.83 3.78
4 6000 1 4.03 3.93 4.04 3.92 3.71 3.68 3.77 3.75
4 6000 2 4.00 3.88 4.00 3.89 3.75 3.71 3.79 3.75
4 6000 3 3.88 3.80 3.88 3.79 3.77 3.72 3.80 3.76
4 7000 2 3.93 3.85 3.99 3.88 3.76 3.72 3.79 3.74
4 7000 3 3.88 3.80 3.86 3.78 3.76 3.71 3.76 3.73
5 1000 1 4.02 3.93 4.02 3.93 3.80 3.78 3.82 3.78
5 1000 2 4.01 3.94 4.01 3.93 3.83 3.80 3.83 3.80
5 1000 3 4.02 3.94 4.02 3.94 3.81 3.78 3.83 3.78
5 2000 1 4.01 3.92 4.01 3.93 3.83 3.79 3.85 3.80
5 2000 2 4.04 3.96 4.04 3.97 3.93 3.90 3.94 3.90
5 2000 3 4.03 3.99 4.03 3.98 3.97 3.96 3.97 3.94
5 3000 1 4.04 3.96 4.04 3.95 3.91 3.86 3.92 3.87
5 3000 2 4.04 3.96 4.04 3.97 3.93 3.90 3.94 3.90
5 3000 3 4.03 3.99 4.03 3.98 3.97 3.96 3.97 3.94
6 1000 1 3.99 3.91 3.99 3.90 3.77 3.75 3.79 3.77
6 1000 2 3.97 3.91 3.97 3.92 3.79 3.76 3.80 3.78
6 1000 3 3.99 3.93 3.99 3.92 3.82 3.78 3.83 3.80
6 2000 1 3.99 3.92 3.99 3.92 3.82 3.78 3.84 3.80
6 2000 2 4.00 3.92 3.99 3.93 3.86 3.83 3.90 3.85
6 2000 3 4.00 3.95 4.00 3.94 3.92 3.88 3.92 3.90
6 3000 1 3.99 3.91 3.99 3.91 3.85 3.80 3.88 3.83
6 3000 2 3.97 3.90 3.97 3.91 3.89 0.00 3.89 3.85
6 3000 3 3.99 3.94 4.00 3.95 3.90 0.00 3.91 3.89

Table B.5: Class B: Topological properties Si-N. See B.1 for explanation of the different columns
headed Param and I-IV.
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Param I II III IV
4 5000 1 2.83 2.83 2.92 2.92 3.06 3.03 3.12 3.08
4 5000 2 2.62 2.62 2.66 2.66 3.02 2.96 3.06 3.01
4 5000 3 2.63 2.63 2.64 2.64 2.94 2.92 2.98 2.95
4 6000 1 2.79 2.79 2.91 2.91 3.04 3.01 3.14 3.10
4 6000 2 2.63 2.63 2.62 2.62 2.99 2.94 3.04 2.99
4 6000 3 2.67 2.67 2.66 2.66 2.95 2.94 2.97 2.96
4 7000 2 2.55 2.55 2.63 2.63 3.01 2.96 3.04 2.99
4 7000 3 2.67 2.67 2.67 2.67 3.00 2.96 2.99 2.96
5 1000 1 2.96 2.96 2.96 2.96 3.09 3.07 3.08 3.06
5 1000 2 2.97 2.97 2.97 2.97 3.06 3.05 3.06 3.05
5 1000 3 2.96 2.96 2.96 2.96 3.07 3.05 3.07 3.06
5 2000 1 2.92 2.92 2.92 2.92 3.03 3.02 3.03 3.02
5 2000 2 2.99 2.99 2.99 2.99 3.05 3.04 3.04 3.03
5 2000 3 3.00 3.00 3.00 3.00 3.03 3.03 3.03 3.03
5 3000 1 2.84 2.84 2.84 2.84 2.99 2.98 2.99 2.98
5 3000 2 2.99 2.99 2.99 2.99 3.05 3.04 3.04 3.03
5 3000 3 3.00 3.00 3.00 3.00 3.03 3.03 3.03 3.03
6 1000 1 2.92 2.92 2.92 2.92 3.07 3.05 3.07 3.05
6 1000 2 2.93 2.93 2.93 2.93 3.05 3.03 3.05 3.04
6 1000 3 2.93 2.93 2.93 2.93 3.01 3.00 3.00 3.00
6 2000 1 2.90 2.90 2.89 2.89 3.02 3.01 3.01 3.00
6 2000 2 2.90 2.90 2.91 2.90 2.98 2.98 2.97 2.97
6 2000 3 2.92 2.92 2.92 2.92 2.97 2.97 2.96 2.96
6 3000 1 2.78 2.78 2.78 2.78 2.98 2.96 2.99 2.97
6 3000 2 2.87 2.87 2.87 2.87 2.95 0.00 2.96 2.95
6 3000 3 2.96 2.96 2.96 2.96 3.01 0.00 3.01 2.99

Table B.6: Class B: Topological properties B-N. See B.1 for explanation of the different columns
headed Param and I-IV.
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Param I II III IV
4 5000 1 1.71 1.68 1.73 1.68 1.58 1.57 1.61 1.60
4 5000 2 1.73 1.68 1.73 1.68 1.59 1.57 1.62 1.61
4 5000 3 1.68 1.64 1.68 1.64 1.63 1.61 1.64 1.62
4 6000 1 1.73 1.68 1.73 1.68 1.59 1.57 1.62 1.61
4 6000 2 1.72 1.66 1.71 1.67 1.60 1.59 1.63 1.61
4 6000 3 1.66 1.63 1.66 1.62 1.61 1.59 1.63 1.61
4 7000 2 1.68 1.65 1.71 1.66 1.61 1.60 1.62 1.60
4 7000 3 1.67 1.62 1.65 1.62 1.62 1.59 1.61 1.60
5 1000 1 1.72 1.69 1.72 1.69 1.63 1.62 1.64 1.62
5 1000 2 1.72 1.69 1.72 1.69 1.64 1.63 1.64 1.63
5 1000 3 1.73 1.69 1.73 1.69 1.63 1.62 1.64 1.62
5 2000 1 1.72 1.68 1.72 1.69 1.64 1.62 1.65 1.62
5 2000 2 1.73 1.69 1.73 1.70 1.69 1.67 1.69 1.67
5 2000 3 1.73 1.71 1.73 1.71 1.70 1.70 1.70 1.69
5 3000 1 1.73 1.69 1.73 1.69 1.67 1.65 1.68 1.66
5 3000 2 1.73 1.69 1.73 1.70 1.69 1.67 1.69 1.67
5 3000 3 1.73 1.71 1.73 1.71 1.70 1.70 1.70 1.69
6 1000 1 1.71 1.67 1.71 1.67 1.62 1.61 1.62 1.62
6 1000 2 1.70 1.67 1.70 1.68 1.62 1.61 1.63 1.62
6 1000 3 1.71 1.68 1.71 1.68 1.64 1.62 1.65 1.63
6 2000 1 1.71 1.68 1.71 1.68 1.64 1.62 1.64 1.63
6 2000 2 1.71 1.68 1.71 1.68 1.65 1.64 1.68 1.65
6 2000 3 1.71 1.69 1.71 1.69 1.68 1.67 1.68 1.67
6 3000 1 1.71 1.67 1.71 1.68 1.65 1.63 1.66 1.64
6 3000 2 1.70 1.67 1.70 1.67 1.66 0.00 1.67 1.65
6 3000 3 1.71 1.69 1.71 1.69 1.67 0.00 1.68 1.67

Table B.7: Class B: Topological properties N-Si. See B.1 for explanation of the different columns
headed Param and I-IV.
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Param I II III IV
4 5000 1 1.22 1.22 1.25 1.25 1.31 1.30 1.34 1.32
4 5000 2 1.12 1.12 1.14 1.14 1.29 1.26 1.31 1.29
4 5000 3 1.13 1.13 1.13 1.13 1.26 1.25 1.28 1.27
4 6000 1 1.19 1.19 1.25 1.25 1.30 1.29 1.34 1.33
4 6000 2 1.13 1.13 1.12 1.12 1.28 1.26 1.30 1.28
4 6000 3 1.14 1.14 1.14 1.14 1.27 1.26 1.27 1.27
4 7000 2 1.10 1.10 1.13 1.13 1.29 1.27 1.30 1.28
4 7000 3 1.14 1.14 1.15 1.15 1.29 1.27 1.28 1.27
5 1000 1 1.27 1.27 1.27 1.27 1.33 1.32 1.32 1.31
5 1000 2 1.27 1.27 1.27 1.27 1.31 1.31 1.31 1.31
5 1000 3 1.27 1.27 1.27 1.27 1.32 1.31 1.32 1.31
5 2000 1 1.25 1.25 1.25 1.25 1.30 1.29 1.30 1.29
5 2000 2 1.29 1.28 1.29 1.28 1.31 1.31 1.31 1.29
5 2000 3 1.29 1.28 1.29 1.28 1.30 1.30 1.30 1.30
5 3000 1 1.22 1.22 1.22 1.22 1.28 1.28 1.28 1.28
5 3000 2 1.29 1.28 1.29 1.28 1.31 1.31 1.31 1.29
5 3000 3 1.29 1.28 1.29 1.28 1.30 1.30 1.30 1.30
6 1000 1 1.25 1.25 1.25 1.25 1.32 1.31 1.31 1.31
6 1000 2 1.25 1.25 1.25 1.25 1.30 1.30 1.30 1.31
6 1000 3 1.26 1.26 1.26 1.26 1.29 1.29 1.29 1.29
6 2000 1 1.24 1.24 1.24 1.24 1.29 1.29 1.29 1.29
6 2000 2 1.24 1.24 1.25 1.24 1.28 1.28 1.27 1.27
6 2000 3 1.25 1.25 1.25 1.25 1.27 1.27 1.27 1.27
6 3000 1 1.19 1.19 1.19 1.19 1.28 1.27 1.28 1.27
6 3000 2 1.23 1.23 1.23 1.23 1.26 0.00 1.27 1.26
6 3000 3 1.27 1.27 1.27 1.27 1.29 0.00 1.29 1.28

Table B.8: Class B: Topological properties N-B. See B.1 for explanation of the different columns
headed Param and I-IV.
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Param I II III IV
4 5000 1 6.41 6.22 6.47 6.25 5.54 5.49 5.71 5.63
4 5000 2 6.01 5.79 5.97 5.77 5.27 5.21 5.37 5.30
4 5000 3 4.31 4.20 4.31 4.19 4.09 4.04 4.15 4.12
4 6000 1 6.49 6.25 6.52 6.25 5.51 5.46 5.65 5.59
4 6000 2 5.56 5.38 5.53 5.34 4.99 4.94 5.12 5.06
4 6000 3 3.76 3.66 3.77 3.64 3.65 3.61 3.71 3.66
4 7000 2 5.02 4.90 5.18 4.97 4.85 4.81 4.91 4.81
4 7000 3 3.53 3.46 3.51 3.40 3.45 3.40 3.52 3.47
5 1000 1 6.44 6.26 6.45 6.26 5.72 5.62 5.76 5.65
5 1000 2 6.36 6.21 6.36 6.21 5.77 5.70 5.77 5.71
5 1000 3 6.43 6.26 6.43 6.27 5.74 5.68 5.78 5.66
5 2000 1 6.15 5.94 6.16 5.97 5.61 5.51 5.64 5.53
5 2000 2 4.09 3.99 4.09 3.99 3.89 3.83 3.91 3.84
5 2000 3 4.05 3.98 4.05 3.96 3.92 3.89 3.92 3.88
5 3000 1 5.14 4.98 5.14 4.97 4.79 4.71 4.79 4.70
5 3000 2 4.09 3.99 4.09 3.99 3.89 3.83 3.91 3.84
5 3000 3 4.05 3.98 4.05 3.96 3.92 3.89 3.92 3.88
6 1000 1 6.32 6.15 6.32 6.14 5.66 5.62 5.69 5.64
6 1000 2 6.22 6.11 6.22 6.12 5.65 5.59 5.70 5.66
6 1000 3 6.13 6.00 6.13 6.00 5.66 5.57 5.71 5.67
6 2000 1 6.06 5.94 6.06 5.93 5.58 5.51 5.63 5.53
6 2000 2 5.82 5.64 5.48 5.66 5.45 5.41 5.25 5.41
6 2000 3 5.37 5.29 5.37 5.27 5.14 5.09 5.16 5.10
6 3000 1 4.91 4.77 4.90 4.74 4.48 4.41 4.57 4.51
6 3000 2 3.98 3.86 3.97 3.88 3.81 0.00 3.83 3.77
6 3000 3 3.75 3.70 3.76 3.69 3.57 0.00 3.61 3.57

Table B.9: Class B: Topological properties Si-Si. See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param I II III IV
4 5000 1 1.04 1.03 1.21 1.18 1.08 1.06 1.27 1.25
4 5000 2 1.26 1.24 1.31 1.28 1.30 1.27 1.49 1.47
4 5000 3 2.49 2.46 2.51 2.47 2.63 2.60 2.70 2.67
4 6000 1 1.05 1.03 1.22 1.19 1.13 1.12 1.35 1.34
4 6000 2 1.47 1.43 1.49 1.45 1.59 1.58 1.66 1.63
4 6000 3 2.82 2.79 2.82 2.79 2.97 2.94 3.01 2.99
4 7000 2 1.68 1.66 1.76 1.74 1.85 1.81 1.88 1.86
4 7000 3 3.00 2.98 2.97 2.96 3.17 3.14 3.17 3.15
5 1000 1 1.28 1.25 1.28 1.25 1.41 1.44 1.42 1.40
5 1000 2 1.37 1.33 1.37 1.33 1.44 1.42 1.44 1.43
5 1000 3 1.32 1.29 1.32 1.29 1.39 1.37 1.41 1.39
5 2000 1 1.44 1.42 1.44 1.42 1.50 1.48 1.52 1.50
5 2000 2 3.71 3.66 3.71 3.67 3.65 3.63 3.65 3.62
5 2000 3 3.85 3.83 3.85 3.83 3.85 3.84 3.83 3.81
5 3000 1 2.55 2.51 2.55 2.51 2.56 2.52 2.57 2.54
5 3000 2 3.71 3.66 3.71 3.67 3.65 3.63 3.65 3.62
5 3000 3 3.85 3.83 3.85 3.83 3.85 3.84 3.83 3.81
6 1000 1 1.22 1.20 1.21 1.19 1.32 1.32 1.34 1.33
6 1000 2 1.25 1.24 1.25 1.23 1.32 1.31 1.33 1.32
6 1000 3 1.39 1.38 1.39 1.37 1.40 1.39 1.40 1.38
6 2000 1 1.37 1.36 1.37 1.36 1.40 1.39 1.41 1.41
6 2000 2 1.66 1.65 2.06 1.64 1.66 1.65 2.04 1.67
6 2000 3 2.24 2.22 2.24 2.22 2.21 2.21 2.22 2.21
6 3000 1 2.48 2.45 2.48 2.46 2.55 2.53 2.57 2.54
6 3000 2 3.40 3.35 3.40 3.36 3.39 0.00 3.40 3.38
6 3000 3 3.77 3.74 3.77 3.75 3.71 0.00 3.73 3.72

Table B.10: Class B: Topological properties Si-B. See table B.1 for explanation of the different
columns headed Param and I-IV.



192 APPENDIX B. STRUCTURAL PROPERTIES OF A-SI � B � N �

Param I II III IV
4 5000 1 1.04 1.03 1.21 1.18 1.08 1.06 1.27 1.25
4 5000 2 1.26 1.24 1.31 1.28 1.30 1.27 1.49 1.47
4 5000 3 2.49 2.46 2.51 2.47 2.63 2.60 2.70 2.67
4 6000 1 1.05 1.03 1.22 1.19 1.13 1.12 1.35 1.34
4 6000 2 1.47 1.43 1.49 1.45 1.59 1.58 1.66 1.63
4 6000 3 2.82 2.79 2.82 2.79 2.97 2.94 3.01 2.99
4 7000 2 1.68 1.66 1.76 1.74 1.85 1.81 1.88 1.86
4 7000 3 3.00 2.98 2.97 2.96 3.17 3.14 3.17 3.15
5 1000 1 1.28 1.25 1.28 1.25 1.41 1.44 1.42 1.40
5 1000 2 1.37 1.33 1.37 1.33 1.44 1.42 1.44 1.43
5 1000 3 1.32 1.29 1.32 1.29 1.39 1.37 1.41 1.39
5 2000 1 1.44 1.42 1.44 1.42 1.50 1.48 1.52 1.50
5 2000 2 3.71 3.66 3.71 3.67 3.65 3.63 3.65 3.62
5 2000 3 3.85 3.83 3.85 3.83 3.85 3.84 3.83 3.81
5 3000 1 2.55 2.51 2.55 2.51 2.56 2.52 2.57 2.54
5 3000 2 3.71 3.66 3.71 3.67 3.65 3.63 3.65 3.62
5 3000 3 3.85 3.83 3.85 3.83 3.85 3.84 3.83 3.81
6 1000 1 1.22 1.20 1.21 1.19 1.32 1.32 1.34 1.33
6 1000 2 1.25 1.24 1.25 1.23 1.32 1.31 1.33 1.32
6 1000 3 1.39 1.38 1.39 1.37 1.40 1.39 1.40 1.38
6 2000 1 1.37 1.36 1.37 1.36 1.40 1.39 1.41 1.41
6 2000 2 1.66 1.65 2.06 1.64 1.66 1.65 2.04 1.67
6 2000 3 2.24 2.22 2.24 2.22 2.21 2.21 2.22 2.21
6 3000 1 2.48 2.45 2.48 2.46 2.55 2.53 2.57 2.54
6 3000 2 3.40 3.35 3.40 3.36 3.39 0.00 3.40 3.38
6 3000 3 3.77 3.74 3.77 3.75 3.71 0.00 3.73 3.72

Table B.11: Class B: Topological properties B-Si. See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param I II III IV
4 5000 1 4.30 4.30 4.52 4.52 4.75 4.70 4.90 4.83
4 5000 2 3.20 3.20 3.31 3.31 4.10 4.04 4.13 4.07
4 5000 3 1.97 1.97 1.99 1.99 2.54 2.53 2.64 2.61
4 6000 1 4.10 4.10 4.42 4.41 4.59 4.54 4.79 4.73
4 6000 2 3.07 3.07 3.04 3.04 3.69 3.65 3.88 3.82
4 6000 3 1.79 1.79 1.77 1.77 2.22 2.21 2.29 2.29
4 7000 2 2.64 2.64 2.84 2.84 3.50 3.44 3.64 3.59
4 7000 3 1.65 1.65 1.65 1.65 2.12 2.11 2.13 2.10
5 1000 1 4.53 4.53 4.53 4.53 4.71 4.69 4.70 4.66
5 1000 2 4.50 4.50 4.50 4.50 4.60 4.59 4.60 4.57
5 1000 3 4.51 4.51 4.51 4.51 4.69 4.67 4.67 4.64
5 2000 1 4.23 4.23 4.23 4.23 4.40 4.38 4.39 4.37
5 2000 2 2.17 2.17 2.17 2.17 2.23 2.23 2.21 2.21
5 2000 3 2.07 2.07 2.07 2.07 2.10 2.10 2.11 2.11
5 3000 1 2.71 2.71 2.71 2.71 3.03 3.02 3.02 3.02
5 3000 2 2.17 2.17 2.17 2.17 2.23 2.23 2.21 2.21
5 3000 3 2.07 2.07 2.07 2.07 2.10 2.10 2.11 2.11
6 1000 1 4.48 4.48 4.46 4.46 4.67 4.63 4.68 4.66
6 1000 2 4.45 4.45 4.44 4.44 4.64 4.62 4.66 4.64
6 1000 3 4.31 4.31 4.31 4.31 4.45 4.43 4.46 4.46
6 2000 1 4.14 4.14 4.14 4.14 4.41 4.40 4.41 4.39
6 2000 2 3.92 3.92 3.56 3.92 4.08 4.08 3.67 4.07
6 2000 3 3.33 3.33 3.33 3.33 3.45 3.44 3.45 3.44
6 3000 1 2.47 2.47 2.47 2.47 2.82 2.81 2.89 2.87
6 3000 2 1.93 1.93 1.93 1.93 2.05 0.00 2.08 2.08
6 3000 3 1.94 1.94 1.94 1.94 1.98 0.00 1.98 1.96

Table B.12: Class B: Topological properties B-B. See table B.1 for explanation of the different
columns headed Param and I-IV.
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Param II IV
7 0 0 3.96 0.00 3.79 0.00
7 1500 0 4.01 0.00 3.84 0.00
7 1500 1 4.00 3.84 3.88 3.62
7 1500 2 4.01 3.86 3.86 3.61
7 1500 3 4.02 3.82 3.88 3.56
7 2500 0 3.89 0.00 3.70 0.00
7 2500 1 3.94 3.77 3.78 3.57
7 2500 2 3.97 3.74 3.81 3.53
7 2500 3 3.98 3.68 3.80 3.44
8 1500 0 4.05 0.00 3.98 0.00
8 1500 1 4.05 4.00 3.98 3.94
8 1500 2 4.04 4.02 3.98 3.95
8 1500 3 4.03 3.99 3.96 3.94
8 2500 0 4.04 0.00 3.91 0.00
8 2500 1 4.02 3.92 3.91 3.86
8 2500 2 4.03 3.97 3.92 3.89
8 2500 3 4.03 0.00 3.94 0.00

(a) Si-N

Param II IV
7 0 0 2.97 0.00 3.06 0.00
7 1500 0 2.95 0.00 3.03 0.00
7 1500 1 2.95 2.87 3.03 2.92
7 1500 2 2.97 2.87 3.02 2.91
7 1500 3 2.98 2.89 3.02 2.92
7 2500 0 2.76 0.00 2.90 0.00
7 2500 1 2.81 2.69 2.94 2.75
7 2500 2 2.88 2.77 2.93 2.79
7 2500 3 2.95 2.83 2.99 2.83
8 1500 0 2.99 0.00 3.05 0.00
8 1500 1 2.99 2.99 3.02 3.01
8 1500 2 2.99 2.99 3.04 3.04
8 1500 3 2.99 2.99 3.02 3.02
8 2500 0 2.96 0.00 3.08 0.00
8 2500 1 2.96 2.96 3.06 3.05
8 2500 2 2.99 2.99 3.07 3.06
8 2500 3 2.99 0.00 3.03 0.00

(b) B-N

Table B.13: CLASS C: Topological properties (Si/B)-N. See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.

Param II IV
7 0 0 1.69 0.00 1.58 0.00
7 1500 0 1.93 0.00 1.72 0.00
7 1500 1 1.92 1.73 1.74 1.63
7 1500 2 1.94 1.74 1.72 1.62
7 1500 3 1.94 1.72 1.74 1.60
7 2500 0 1.86 0.00 1.70 0.00
7 2500 1 1.88 1.70 1.72 1.60
7 2500 2 1.91 1.69 1.73 1.59
7 2500 3 1.91 1.66 1.72 1.55
8 1500 0 1.74 0.00 1.70 0.00
8 1500 1 1.73 1.71 1.70 1.69
8 1500 2 1.73 1.72 1.70 1.69
8 1500 3 1.73 1.71 1.70 1.69
8 2500 0 1.73 0.00 1.68 0.00
8 2500 1 1.72 1.68 1.67 1.66
8 2500 2 1.73 1.70 1.68 1.67
8 2500 3 1.72 0.00 1.69 0.00

(a) N-Si

Param II IV
7 0 0 1.36 0.00 1.40 0.00
7 1500 0 1.29 0.00 1.31 0.00
7 1500 1 1.29 1.31 1.32 1.34
7 1500 2 1.29 1.31 1.32 1.33
7 1500 3 1.29 1.32 1.30 1.33
7 2500 0 1.19 0.00 1.23 0.00
7 2500 1 1.23 1.23 1.26 1.26
7 2500 2 1.24 1.27 1.25 1.28
7 2500 3 1.27 1.29 1.29 1.29
8 1500 0 1.28 0.00 1.31 0.00
8 1500 1 1.28 1.28 1.30 1.29
8 1500 2 1.28 1.28 1.30 1.30
8 1500 3 1.28 1.28 1.30 1.29
8 2500 0 1.27 0.00 1.32 0.00
8 2500 1 1.27 1.27 1.31 1.31
8 2500 2 1.28 1.28 1.31 1.31
8 2500 3 1.28 0.00 1.29 0.00

(b) N-B

Table B.14: CLASS C: Topological properties N-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.
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Param II IV
7 0 0 4.52 0.00 4.21 0.00
7 1500 0 4.43 0.00 3.72 0.00
7 1500 1 4.34 4.42 3.76 3.88
7 1500 2 4.37 4.46 3.77 3.87
7 1500 3 4.35 4.36 3.77 3.72
7 2500 0 3.90 0.00 3.33 0.00
7 2500 1 4.01 3.76 3.49 3.27
7 2500 2 4.08 3.73 3.52 3.30
7 2500 3 4.08 3.67 3.51 3.05
8 1500 0 4.44 0.00 4.29 0.00
8 1500 1 4.43 4.36 4.27 4.24
8 1500 2 4.41 4.38 4.26 4.23
8 1500 3 4.40 4.33 4.26 4.24
8 2500 0 3.94 0.00 3.77 0.00
8 2500 1 3.87 3.74 3.65 3.59
8 2500 2 3.92 3.82 3.68 3.64
8 2500 3 3.79 0.00 3.68 0.00

(a) Si-Si

Param II IV
7 0 0 2.31 0.00 2.53 0.00
7 1500 0 3.04 0.00 2.96 0.00
7 1500 1 3.03 3.22 3.01 3.04
7 1500 2 3.09 3.25 2.99 3.01
7 1500 3 3.13 3.27 3.06 3.03
7 2500 0 3.22 0.00 3.08 0.00
7 2500 1 3.41 3.44 3.31 3.29
7 2500 2 3.45 3.53 3.27 3.29
7 2500 3 3.63 3.63 3.45 3.36
8 1500 0 3.39 0.00 3.38 0.00
8 1500 1 3.39 3.37 3.36 3.32
8 1500 2 3.40 3.38 3.40 3.39
8 1500 3 3.38 3.36 3.35 3.35
8 2500 0 3.76 0.00 3.72 0.00
8 2500 1 3.79 3.74 3.76 3.73
8 2500 2 3.90 3.85 3.83 3.81
8 2500 3 3.97 0.00 3.92 0.00

(b) Si-B

Table B.15: CLASS C: Topological properties Si-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.

Param II IV
7 0 0 2.34 0.00 2.25 0.00
7 1500 0 3.57 0.00 3.19 0.00
7 1500 1 3.55 3.17 3.22 2.99
7 1500 2 3.55 3.20 3.17 2.98
7 1500 3 3.61 3.23 3.27 3.00
7 2500 0 3.64 0.00 3.46 0.00
7 2500 1 3.76 3.39 3.60 3.24
7 2500 2 3.88 3.48 3.57 3.23
7 2500 3 4.09 3.59 3.66 3.30
8 1500 0 3.39 0.00 3.38 0.00
8 1500 1 3.39 3.37 3.36 3.32
8 1500 2 3.40 3.38 3.40 3.39
8 1500 3 3.38 3.36 3.35 3.35
8 2500 0 3.76 0.00 3.72 0.00
8 2500 1 3.79 3.74 3.76 3.73
8 2500 2 3.90 3.85 3.83 3.81
8 2500 3 3.97 0.00 3.92 0.00

(a) B-Si

Param II IV
7 0 0 3.00 0.00 3.22 0.00
7 1500 0 2.32 0.00 2.36 0.00
7 1500 1 2.30 2.54 2.39 2.61
7 1500 2 2.31 2.56 2.37 2.61
7 1500 3 2.31 2.57 2.35 2.58
7 2500 0 1.54 0.00 1.65 0.00
7 2500 1 1.59 1.61 1.71 1.71
7 2500 2 1.71 1.82 1.75 1.81
7 2500 3 1.70 1.83 1.76 1.82
8 1500 0 2.50 0.00 2.57 0.00
8 1500 1 2.50 2.50 2.55 2.54
8 1500 2 2.49 2.49 2.57 2.57
8 1500 3 2.52 2.52 2.54 2.54
8 2500 0 2.01 0.00 2.15 0.00
8 2500 1 1.99 1.99 2.09 2.08
8 2500 2 2.00 2.00 2.09 2.09
8 2500 3 1.95 0.00 1.98 0.00

(b) B-B

Table B.16: CLASS C: Topological properties B-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.
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Param I II III IV
10 95 1 3.77 3.71 3.67 3.57 3.64 0.00 3.63 3.60
10 95 2 3.77 3.59 3.76 3.64 3.66 3.60 3.68 3.63
10 99 1 3.77 3.65 3.69 3.58 3.62 0.00 3.62 3.58
10 99 2 3.74 3.63 3.72 3.61 3.61 3.61 3.66 3.63

(a) Si-N

Param I II III IV
10 95 1 2.97 2.96 2.96 2.96 3.16 0.00 3.21 3.12
10 95 2 2.95 2.93 2.95 2.95 3.17 3.12 3.21 3.13
10 99 1 2.98 2.99 2.97 2.97 3.18 0.00 3.22 3.13
10 99 2 2.97 2.96 2.96 2.96 3.19 3.10 3.24 3.17

(b) B-N

Table B.17: CLASS E: Topological properties (Si/B)-N. See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.

Param I II III IV
10 95 1 1.61 1.59 1.57 1.53 1.56 0.00 1.56 1.54
10 95 2 1.62 1.54 1.61 1.56 1.57 1.54 1.58 1.56
10 99 1 1.61 1.56 1.58 1.54 1.55 0.00 1.55 1.54
10 99 2 1.60 1.56 1.60 1.55 1.55 1.55 1.57 1.56

(a) N-Si

Param I II III IV
10 95 1 1.27 1.27 1.27 1.27 1.35 0.00 1.38 1.34
10 95 2 1.27 1.26 1.27 1.27 1.36 1.34 1.38 1.34
10 99 1 1.28 1.28 1.27 1.27 1.36 0.00 1.38 1.34
10 99 2 1.27 1.27 1.27 1.27 1.37 1.33 1.39 1.36

(b) N-B

Table B.18: CLASS E: Topological properties N-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.
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Param I II III IV
10 95 1 4.34 4.29 4.08 3.94 3.88 0.00 3.89 3.84
10 95 2 3.90 3.61 3.90 3.72 3.61 3.50 3.67 3.62
10 99 1 4.78 4.63 4.58 4.39 4.29 0.00 4.33 4.27
10 99 2 3.89 3.67 3.84 3.69 3.68 3.55 3.84 3.79

(a) Si-Si

Param I II III IV
10 95 1 2.50 2.45 2.39 2.33 2.63 0.00 2.62 2.57
10 95 2 2.88 2.76 2.84 2.77 2.94 2.90 3.04 2.97
10 99 1 2.03 1.97 1.97 1.92 2.06 0.00 2.08 2.02
10 99 2 2.69 2.69 2.68 2.60 2.68 2.80 2.79 2.76

(b) Si-B

Table B.19: CLASS E: Topological properties Si-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.

Param I II III IV
10 95 1 2.50 2.45 2.39 2.33 2.63 0.00 2.62 2.57
10 95 2 2.88 2.76 2.84 2.77 2.94 2.90 3.04 2.97
10 99 1 2.03 1.97 1.97 1.92 2.06 0.00 2.08 2.02
10 99 2 2.69 2.69 2.68 2.60 2.68 2.80 2.79 2.76

(a) B-Si

Param I II III IV
10 95 1 3.29 3.36 3.30 3.30 3.34 0.00 3.48 3.38
10 95 2 2.87 2.77 2.90 2.90 2.93 2.89 2.98 2.90
10 99 1 3.99 3.96 3.97 3.97 4.05 0.00 4.09 3.98
10 99 2 3.30 3.21 3.28 3.27 3.28 3.00 3.39 3.29

(b) B-B

Table B.20: CLASS E: Topological properties B-(Si/B). See table B.1 for explanation of the dif-
ferent columns headed Param and I-IV.
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Appendix C

Formalia

C.1 Software and technical resources

The following software packages were used in this thesis:

1. The GULP program[44] version 1.2, for conjugate gradient optimizations and the calcula-
tion of phonon and bulk properties.

2. The RMC-program RMC version 1.1 by Dr. H. Putz with bug fixes from C. M. Marian.

3. The GNUPLOT3.7 package for the generation of the plots of the data.[176]

4. The MOLDEN program package for the 3D display of structures.[134]

5. The LEDA library, Version 4.7. [108]

6. The Xfig package, Version 3.2.[37]

7. The GNU Fortran Compiler g77, Version 0.5.25, and the INTEL Fortran Compiler ifc, Ver-
sion 6.0 .

8. The LaTeX-package, Version 3.14159.

9. If not stated otherwise, crystal structures were taken from the Inorganic Crystal Structure
Database (ICSD), FIZ Karlruhe.
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C.2 Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, daß ich die vorliegende Arbeit selbstständig verfaßt und
die verwendeten Hilfsmittel angegeben habe.




