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0.1 Inhalt und Zusammenfassung

Gravitationslinseneffekt Mit Hilfe der Allgemeinen Relativitätstheorie lässt sich zeigen,
dass Massen die Raumzeit krümmen und dass frei fallende Körper diesen Krümmungen fol-
gen. Dies gilt auch für Lichtstrahlen, die demnach in Gravitationsfeldern abgelenkt werden
(Gravitationslinseneffekt, siehe auch Bartelmann & Schneider, 2001). Ist die entlang der
Sichtlinie projizierte Massendichte eines Objekts groß genug, so kann das Licht einer Quelle
auf verschiedenen Wegen um die Masse herumlaufen und zum Beobachter gelangen, der dann
mehrere Abbilder der Quelle am Himmel sieht. Dies ist auch als starker Linseneffekt bekannt,
der für Galaxienhaufen erstmals durch Soucail et al. (1987a,b) und Lynds & Petrosian (1986)
nachgewiesen wurde, die stark verzerrte Mehrfachbilder ferner Galaxien durch den Haufen
Abell 370 hindurch beobachteten. Seither wurden mehrere Dutzend solcher Haufen gefunden,
die ähnliche Muster aufweisen.

Aufgrund der großen Masse eines Haufens sind die Verzerrungen (Scherung) in den Ab-
bildern von Hintergrundgalaxien auch noch in größerer Winkelentfernung vom Haufen de-
tektierbar. Dies gelingt jedoch nur noch statistisch, da die intrinsischen Elliptizitäten der
Galaxien die zusätzlichen Verzerrungen durch den Linseneffekt stark zu dominieren begin-
nen. Dieser schwache Linseneffekt wurde erstmal zu Beginn der 90er Jahre nachgewiesen.
Aufgrund der Beziehung zwischen der projizierten Flächenmassendichte der Linse und der
Scherung in den Galaxienbildern lässt sich aus letzterer die Massenverteilung in der Linse
rekonstruieren, sowie ein Schätzwert für ihre Gesamtmasse bestimmen. Der Vorteil dieser
Methode liegt darin, dass sie unabhängig von der Leuchtkraft der Linse ist und keine Kennt-
nis über deren dynamischen Zustand benötigt. Eine Beschreibung der grundlegenden kos-
mologischen Physik sowie des Linseneffekts an sich findet sich in Kapitel 1.

Massenselektierte Galaxienhaufen Aufgrund der schnellen Entwicklung in der
Teleskop- und Detektortechnologie und dem erstmaligen Einsatz von Weitwinkelkameras
wurde es Ende der 90er Jahre erstmals möglich, die schwachen Scherfelder von Galaxien-
haufen auch noch in größeren Abständen vom Haufenzentrum zu vermessen. Die Entwick-
lung mündete schließlich im Nachweis des sehr schwachen Linseneffekts der großräumigen
Strukturen im Universum (Bacon et al., 2000; Kaiser et al., 2000; van Waerbeke et al., 2000;
Wittman et al., 2000). Diese Kosmische Scherung ist direkt mit dem Fluktuationsspektrum
des Dichtefelds im Universum verknüpft und daher von großem Interesse in der gegenwärtigen
Forschung.

Mit den nunmehr vorhandenen Möglichkeiten, gleichzeitig tiefe und sehr weite Aufnah-
men des Universums zu gewinnen, kann man den Linseneffekt nicht nur zur Bestimmung
der Materieverteilung in Haufen benutzen, sondern auch zu deren Detektion, indem nach
charakteristischen Verzerrungsmustern in den Galaxienabbildern gesucht wird. Diese Me-
thode hat den Vorteil, dass die Galaxienhaufen direkt anhand ihrer fundamentalen physi-
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kalischen Eigenschaft, der Masse, selektiert werden, und nicht anhand ihre Helligkeit. Eine
derartig ausgewählte Stichprobe ist wünschenswert, da die Masse eines Haufens wesentlich
von den kosmologischen Rahmenbedingungen abhängt und daher tiefergehende Rückschlüsse
auf die zugrundeliegende Kosmologie und die Entwicklung dieser Haufen ermöglicht werden.
Bereits die erste mit dieser Methode entdeckte Massenkonzentration ist außergewöhnlich, da
sie mit keiner irgendwie gearteten räumlichen Konzentration von Galaxien assoziiert zu sein
scheint (Erben et al., 2000). Seitdem wurden etwa 10 weitere Massenkonzentrationen auf
diese Art selektiert, von denen etwa die Hälfte ebenfalls dunkel ist. Die physikalische Natur
dieser dunklen Haufen - falls sie tatsächlich existieren und ihnen nicht irgend eine noch un-
bekannte Systematik zugrunde liegt - ist gegenwärtig ungeklärt. Entweder werden sie von
Galaxien mit aussergewöhnlich niedriger Leuchtkraft gebildet, die in den Aufnahmen nicht
nachweisbar sind, oder aber sie bestehen ausschliesslich aus Dunkler Materie. Beide Vorstel-
lungen stellen eine Herausforderung sowohl an die gegenwärtigen Theorien der Bildung von
Strukturen und Galaxien dar, als auch an die beobachtende Astrophysik.

Beobachtungsprogramm und Softwareentwicklung Um eine größere Stichprobe von
masseselektierten Galaxienhaufen zu erhalten, und um die Existenz von dunklen Haufen zu
überprüfen, führten wir eine große Beobachtungskampagne mit der Weitwinkelkamera am
2.2m- MPG/ESO-Teleskop durch. Bis zum gegenwärtigen Zeitpunkt konnten tiefe Aufnah-
men von 20 Quadratgrad des Südsternhimmels unter sehr guten Beobachtungsbedingungen
gewonnen werden. Für die Bearbeitung der sehr großen Datenmengen (mehrere TB) wurde
eine automatische Reduktionspipeline entwickelt, da eine manuelle Handhabung in diesem
Maßstab nicht mehr möglich ist.

Aufgrund der wachsenden Anzahl von zur Verfügung stehenden Weitwinkelkameras und
ihrer technologisch bedingten eher kurzen Betriebsdauer (wenige Jahre) wurde die entwick-
elte Pipeline so flexibel wie möglich gehalten. Mit ihr lassen sich Daten, die weltweit an ver-
schiedenen Teleskopen gewonnen wurden, problemlos reduzieren. Die Anforderungen an den
Reduktionsprozess sind hierbei gerade für Messungen des schwachen Linseneffekts außeror-
dentlich hoch, da die Formen kleiner, leuchtschwacher Galaxien zuverlässig bestimmt werden
müssen. Dies kann nur gelingen, wenn das Rauschen in den koaddierten Bildern so niedrig
wie möglich gehalten wird. Darüber hinaus muss die astrometrische Lösung, die die Abbil-
dung der einzelnen Aufnahmen in das kombinierte Summenbild beschreibt, sehr exakt sein.
Ansonsten werden die Galaxienbilder künstlich verzerrt, was die Scherungsmessung sehr viel
schwieriger und unzuverlässiger macht. Aus diesem Grund mussten die verwendeten Algo-
rithmen sehr sorgfältig getestet werden, bevor sie endgültigen Eingang in die Pipeline fanden.
Die Softwareentwicklung und die Reduktion einiger sehr großer Testdatensätze wurde wieder-
holt parallel durchgeführt, bis ein optimales Ergebnis erreicht wurde. Hierauf, und auf die
tatsächliche Reduktion der Daten wurden je zwei Jahre von Thomas Erbens und meiner Zeit
verwendet. Dies berücksichtigt nicht die Entwicklungsarbeit, die von anderen Leuten geleis-
tet wurde und deren Programme in unserer Pipeline Verwendung fanden. Etwa zwei Drittel
der Zeit, die für die vorliegende Dissertation aufgewendet wurde, ist auf diese Entwicklungs-
arbeit und die Datenreduktion verwandt worden. Eine Beschreibung der Pipeline und die
Besonderheiten in der Datenreduktion von Multichip-Kameras findet sich in Kapitel 2.

Selektionsmethode Der Schwerpunkt von Kapitel 3 liegt auf der Analyse der koaddierten
Bilder und der Gewinnung des Linsensignals. Die maßgebliche Messgröße hierbei sind die
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Formen der (eventuell) gelinsten Galaxien. Diese Aufgabe ist nicht einfach, da die Ga-
laxien sehr weit entfernt sein müssen, um effektiv durch die gravitativen Gezeitenfelder
eines näheren Haufens gelinst werden zu können. Daher erscheinen ihre Abbilder klein und
leuchtschwach und sind sehr anfällig gegenüber atmosphärischen Turbulenzen und Unge-
nauigkeiten im Strahlengang eines Teleskops. Es wird ausführlich auf eine gängige Methode
zur Korrektur dieser Effekte eingegangen und gezeigt, wie die Gravitationsfelder an sich die
Formen der Galaxienbilder verändern. Sind die Scherungsmessungen erst einmal gewonnen
und korrigiert worden, so kann anhand einer bestimmten Statistik ein durch einen Haufen
verursachtes charakteristisches Verzerrungsmuster in den Galaxienbildern identifiziert wer-
den. Darüber hinaus ermöglicht diese Statistik die gleichzeitige Bestimmung eines Signal-
zu-Rausch Verhältnisses für eben diese Detektion. Die mathematische Beschreibung greift
hierbei auf eine bestimmte Filterfunktion zurück, für die mehrere verschiedene Formen in
der Literatur vorgeschlagen wurden. Diese wurden zusammen mit weiteren, in dieser Ar-
beit eingeführten, Filterfunktionen ausführlich getestet. In diesem Rahmen konnte ein sehr
effizienter neuer Filter für die Detektion von Massenkonzentrationen identifiziert werden.
Nachdem die nötigen Begriffsbildungen und Formalismen eingeführt worden sind, wird am
Ende dieses Kapitels die Erstellung eines sauberen Objektkatalogs diskutiert.

Resultate In Kapitel 4 schließlich werden die benutzten Methoden anhand der Daten selbst
noch einmal auf Konsistenz überprüft. Anschließend werden die Ergebnisse präsentiert, die
aus den 20 Quadratgrad gewonnen werden konnten. Zunächst wird gezeigt, dass die Gala-
xien in den Feldern keine zufälligen Orientierungen haben, sondern kohärente Schermuster
vorhanden sind, die mit der im vorigen Kapitel erwähnten Statistik klar nachgewiesen werden
können. Diese lassen sich durch die Kosmische Scherung sowie durch das Linsensignal von
Galaxienhaufen erklären, wie anhand von Simulationen gezeigt wird.

Daher wird im Anschluss eine masseselektierte Stichprobe von 100 hochsignifikanten
Massenkonzentrationen präsentiert. Diese ist etwa 10 mal größer als die gesamte Anzahl
masseselektierter, bisher in der Literatur publizierter Haufen. Etwa 60% dieser Haufen sind
dunkel, während 30% mit Galaxienüberdichten assoziiert sind. Für die Hälfte dieser op-
tischen Gegenstücke konnten Spektren in der Literatur gefunden werden, die dann auch
deren Haufennatur bestätigten. Die verbleibenden 10% in der Stichprobe konnten nicht ein-
deutig nach hell und dunkel klassifiziert werden. Eine erste statistische Auswertung der
hellen und dunklen Haufen zeigt, dass diese zufällig über die Detektorfläche der Kamera
verteilt sind und daher keine instrumentellen Effekte die Daten beeinflussen. Darüber hinaus
finden sich keine offensichtlichen Unterschiede in den Verteilungen der beiden Haufentypen
hinsichtlich ihrer Größe und Signifikanz, ausgenommen einer überdurchschnittlichen Anzahl
sehr kompakter und kleiner dunkler Haufen. Diese stellen möglicherweise Fehldetektionen
dar. Diese Ergebnisse wurden durch eine Simulation überprüft, in der durch Randomisierung
jegliche kohärente Schermuster in den Feldern beseitigt wurden. Hier zeigt sich, dass echte
Massenkonzentrationen von Fehldetektionen dadurch unterschieden werden können, dass sie
auf verschiedenen Filterskalen signifikant auftreten.

Anschließend werden anhand eines konkreten Beispiels verschiedene Methoden vorgestellt,
die bei Vorhandensein weiterer Daten der gleichen Felder (z.B. Beobachtungen in anderen
Wellenlängenbereichen) eine Identifikation der Massenkonzentrationen erlauben. Dies um-
fasst den Nachweis einer Überdichte von roten Galaxien an der Position der Massenkonzentra-
tion sowie den Nachweis von Röntgenemission, ausgehend von einem eventuell vorhandenen
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heissen Gas, mit dem viele Galaxienhaufen angefüllt sind. Darüber hinaus wird vorgeschla-
gen, nach positiven Korrelationen zwischen den gefundenen Massenkonzentrationen und den
bekannten helleren Quasaren in den jeweiligen Bildfeldern zu suchen. Von letzteren weiß man,
dass sie oft durch massereiche Vordergrundobjekte gelinst werden und daher heller erscheinen.

Zweifelsohne muss in den kommenden Jahren noch wesentlich mehr Arbeit in die Klärung
der Natur der dunklen Haufen investiert werden. Auch wenn diese Arbeit deutliche Hinweise
auf die tatsächliche Existenz dieser Objekte liefert, bleiben sie rätselhaft. Ein tatsächlicher
Beweis ihrer Existenz, entweder durch eine positive Korrelation mit Quasaren oder durch den
Nachweis von sehr leuchtschwachen Galaxien an ihrer Position, wäre sehr nützlich. Mit der
gefundenen Anzahl von 60 dunklen Haufen liegt eine sehr gute Stichprobe vor, aus der sich
geeignete Kandidaten für eine detailliertere Analyse und Nachfolgebeobachtungen auswählen
lassen.



0.2 Contents and Summary

Gravitational lensing The deflection and distortion of a light bundle by tidal gravitational
fields is described in the framework of General Relativity (Bartelmann & Schneider, 2001).
There, light bundles from a source follow exactly the curvature of spacetime, and thus can
reach the observer from different directions if the projected density of an intervening mass is
large enough (strong lensing effect). Such a lensing effect of a galaxy cluster was observed
the first time by Soucail et al. (1987a,b) and Lynds & Petrosian (1986), who identified highly
distorted multiple images of background galaxies close to the centre of the galaxy cluster
Abell 370. Since then, several dozen additional clusters were found showing similar strong
distortion effects.

Due to a galaxy clusters’ large mass, the distortions (shear) of the shapes of lensed back-
ground galaxies are still measurable if the projected angular distance between the source
and the lens is several arcminutes large. However, the distortion can then be detected sta-
tistically only, since the intrinsic ellipticity of a galaxy dominates the distortion induced by
gravitational lensing. This weak lensing effect was measured the first time at the beginning
of the nineties. Due to a well-known mathematical relationship between the projected sur-
face mass density of the lens and the observed shear in the galaxy images, the latter can be
used to reconstruct the (dark) matter distribution in the lens, and to obtain a mass estimate
independent of the luminosity and the virialisation of the lens. A description of the basic
(cosmological) physics behind gravitational lensing is given in Chapter 1, together with an
introduction into the subject of gravitational lensing itself.

Mass-selected galaxy clusters With the rapid improvement of detector and telescope
technology, and the advent of wide field imagers at the end of the nineties, it became possible
to probe the shear fields of galaxy clusters to larger radii. The improved understanding of
the shape measurement process of small and faint galaxies in such images led then to the
discovery of the Cosmic Shear, i.e. the very weak gravitational lensing effect of the large
scale structure in the universe (Bacon et al., 2000; Kaiser et al., 2000; van Waerbeke et al.,
2000; Wittman et al., 2000). The Cosmic Shear is directly related to the power spectrum of
the underlying density field, and is therefore of great interest in cosmology.

Having deep wide field images at hand, the lensing argument can be turned around and one
can use the weak lensing effect to search for mass concentrations in the universe. This method
has the advantage that the galaxy clusters are detected directly by their most fundamental
property, the mass, and not by their luminosity. The mass of a cluster, in turn, is a sensitive
measure of cosmology and thus a mass-selected (more accurately: shear-selected) sample of
galaxy clusters is highly desireable in this respect. The first mass concentration that has been
detected serendipitously by this method is still a mystery, since it is entirely dark (Erben et
al., 2000). No overdensity of galaxies is seen at its position. Since then, about 10 mass
concentrations were found in this way, about half of them being dark. The physical nature
of the latter objects, if they are indeed real and not due to some yet unknown systematics,
is still unclear. Either these objects consist of very underluminous galaxies that are not seen
in the exposures, or they are constituted of dark matter only. Both scenarios are a challenge
for current theories of structure and galaxy formation as well as for observations.

Observations and software development In order to establish a larger sample of shear-
selected galaxy clusters, our group conducted a weak lensing survey with the Wide Field
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Imager at the 2.2m MPG/ESO telescope. So far, 20 square degrees of the southern sky
were mapped to great depth in excellent observational conditions. For the reduction of the
very large amount of data (several TB), a fully automatic pipeline had to be developed,
since a manual processing of such data is no longer feasible. Due to the growing number
of Wide Field Imagers and the comparatively short duty time of astronomical instruments,
this pipeline was designed to be as flexible as possible in order to be easily adapted to any
imager and telescope in the world. The demands on the data reduction process are very
high, since the shapes of faint and small galaxies have to be measured reliably. This can only
be achieved if the signal-to-noise in the reduced images is as best as possible. Furthermore,
the astrometric solution that describes the mapping of the individual exposures onto the
coadded image has to be very exact. Otherwise, galaxy shapes are artificially distorted,
making a shear measurement even more difficult. For these reasons, a lot of careful testing
of the algorithms used had to be done. The software development and the data reduction
of some very large test data sets took place in parallel, and were iterated until satisfactory
results were achieved. This, and the actual reduction of the survey data consumed more two
four years each of Thomas Erben’s and my time, not mentioning the much larger effort that
has been put by other people into the software modules we make use of in the pipeline. About
two thirds of the time dedicated to the present thesis were occupied by this developmental
work and the reduction of the survey data. A description of the reduction pipeline and the
techniques required especially for multi-chip cameras is given in Chapter 2.

Selection method In Chapter 3 the focus of interest is on the analysis of the reduced
images, and the extraction of the desireable weak lensing signal. The basic quantity which is
to be obtained from the images are the shapes of the potentially lensed galaxies. This task
is not trivial, since those galaxies must be very distant in order to be lensed and distorted
efficiently by an intervening galaxy cluster. Thus their images are faint and small, and their
shapes are prone to atmospheric turbulence and many technical aspects of a telescope. After
evaluating how these image shapes are changed by the tidal gravitational fields of a galaxy
cluster, a widely used technique to correct for various atmospheric and telescopical distortion
and smearing effects is described. Having the corrected image shapes at hand, a statistics
is introduced that allows the identification of a distortion pattern characteristic for galaxy
clusters, and an estimate of the signal-to-noise of its detection. This statistics involves a filter
function, for which several suggestions are given in the literature. Further possibilities are
introduced in this work, and the various filters are tested extensively against each other. A
very effective new filter was found in this process for the detection of mass concentrations.
After having introduced all the necessary techniques and terminologies, the actual object
catalogue extraction is described, and it is explained what kind of filtering steps have to be
applied for the cleaning of this catalogue.

Results Chapter 4, finally, verifies the used evaluation methods and presents the results
obtained from the 20 square degrees of the survey. It is shown that the galaxies in the survey
fields are not randomly oriented, but show significant coherent shear patterns. Simulations
show that these can be explained by the presence of Cosmic Shear and cluster lensing.

In order to prove the existence of clusters in the data, a shear-selected sample of 100 mass
concentrations with a signal-to-noise of at least 4 is presented and analysed. This sample
is about ten times larger than the total number of shear-selected clusters that have been
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presented in the literature so far. About 60% of the mass concentrations found are dark,
whereas 30% are bright, having obvious optical counterparts. Half of the latter are already
spectroscopically confirmed in the literature, the other half have been previously unknown.
The remaining 10% of the sample could not be classified unambiguously as being bright or
dark. First statistics of the bright and the dark sample show that they are randomly selected
from the Wide Field Imager’s field of view, thus no systematic instrumental effects are found
in the data. Furthermore, the populations of the bright and dark mass peaks show very
similar distributions in their size as well as in their significance, apart from the very smallest
angular scale probed where disproportionate many dark peaks are found. It is argued that
these could probably be spurios detections. These findings are cross-checked by simulations,
in which any lensing signal has been destroyed by randomisation of the galaxy orientations.
It is shown that true mass peaks can be discerned from spurious peaks in the sense that they
appear on a significant level for a broader range of filter scales.

Thereafter, various verification methods for the mass detections found are presented by
means of an example. These encompass the identification of red cluster member galaxies at
the position of a peak as well as X-ray radiation of the hot intracluster gas. Besides, it is
suggested to correlate the mass concentrations found with the known bright quasars in the
field, since the latter are known to be often gravitationally lensed and therefore brightened
by the intervening matter.

Clearly, much more work has to be put onto the subject of dark matter concentrations in
the coming years. Even though further evidence for their existence and some basic descriptive
statistics was obtained in this work, their nature remains entirely unresolved. An actual
proof of their existence, either by a positive correlation with quasars in the field, or by the
identification of very underluminous galaxies at their positions, would be highly desireable.
With 60 of those enigmatic objects a very good sample is at hand from which candidates for
a more detailed analysis and follow-up observations can be selected.
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Chapter 1

Hazards in a Photon’s life

In this chapter the principles of the propagation of a photon through the universe are de-
scribed, starting with General Relativity, and arriving at the Friedmann-Lemâıtre description
of a homogeneous and isotropic cosmos. Basic concepts such as cosmological redshift and
various distance measures are introduced. A summary of the mechanism of structure forma-
tion in a Friedmann cosmology follows.
With these tools at hand the underlying physics of this thesis is presented, the deflection of
light in the tidal gravitational fields of the intervening matter. The chapter ends with the end
of the photon’s life... its wild passage through the Earth’s atmosphere, multiple deflections
in a telescope’s imperfect optics, and the final absorption in the observer’s CCD.

1.1 From General Relativity to cosmology

The field equations Gravitation, though being the weakest of the four known interca-
tions, is the dominating force in the universe on larger scales. It governs the formation of all
major structures, from planets to superclusters of galaxies. On an even larger scale gravi-
tation determines the dynamics of the entire universe. Currently, our best approach for the
description of gravitation is General Relativity, which tightly connects the pull of matter
to the curvature and dynamics of spacetime. In their most general form, and in units of
c = 1 = G which will be used throughout this section, the field equations read

Gµν = 8πTµν − gµνΛ , (1.1)

where the Einstein tensor G describes the geometry of spacetime and the stress-energy ten-
sor T contains all sources of mass and energy. g is the generalisation of the metric tensor
η = diag(−1, 1, 1, 1) for the flat and static Minkowskian spacetime1 to curved spacetime,
and Λ stands for the cosmological constant. The latter is often interpreted as vacuum energy
emerging from the virtual particle zoo, but its true nature is still entirely unclear. Predictions
from quantum field theory for Λ are about 120 orders of magnitude larger than the observa-
tionally favoured value, a discrepancy which is still unsolved. For this work the presence of
Λ is of some relevance, but its nature is not.

So far, exact solutions for the field equations were only found for highly symmetric cases.
In general, the problem is to find a metric g for a given matter- and energy distribution T ,

1Note that in this work the (− + ++) convention is used for the metric. When using the (+ − −−)
convention the field equations read G = 8πT + gΛ.

13
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with g deeply buried inside the Einstein tensor G. The metric is often represented by the
line element

ds2 = gµν dxµ dxν with µ, ν ∈ {0, 1, 2, 3} , (1.2)

where implicit summation over identical indices on different levels is assumed.

Solution for a symmetric universe The matter distribution in the local universe appears
largely irregular, but on scales of several hundred Mpc the distribution becomes isotropic.
Assuming that an observer in the universe is in no way privileged (Copernican principle),
one deduces that the universe as a whole appears isotropic from any point of view, and
must be, therefore, homogeneous. The assumption of isotropy and homogeneity is called the
cosmological principle. Robertson (1935) and Walker (1936) found independently of each
other a solution of equation (1.1) for such an idealised cosmology with constant curvature.
The line element of this metric, which was already used by Friedmann (1922), reads

ds2 = −dt2 + a2(t)
[
dw2 + f 2

K(w)
(
dθ2 + sin2θ dφ2

)]
, (1.3)

where w is the (comoving) radial coordinate, t the proper time of a comoving observer, a(t) the
expansion factor, and θ and φ are the angular coordinates. The function fK(w) discriminates
between three-dimensional spacelike hypersurfaces of constant time t with positive, zero, or
negative curvature K. It is given by

fK(w) =





1√
K

sin(
√
Kw) K > 0

w K = 0 .
1√
−K sinh(

√
−Kw) K < 0

(1.4)

With this metric and the field equations at hand, the Friedmann equations can be derived,
describing the dynamics of spacetime. Here the general procedure is quickly outlined, the
details can be found in the literature, amongst many others e.g. in Misner et al. (1973).
In a first step the connection coefficients Γαµν , which allow the comparison of a tensor field
between two neighbouring events in a curved spacetime, are calculated from the metric as

Γαµν =
1

2
gαβ (gβν,µ + gβµ,ν − gµν,β) with gαβ,γ :=

∂gαβ
∂xγ

. (1.5)

Based on these coefficients the Riemann tensor R, describing the curvature of spacetime, is
derived,

Rαβγδ = Γαβδ,γ − Γαβγ,δ + Γαµγ Γµβδ − Γαµδ Γµβγ . (1.6)

Finally, the Einstein tensor G is built from R and g,

Gµν = Rαµαν −
1

2
gµν g

βγ Rαβαγ . (1.7)

When performing these three steps with the metric given in the line element (1.3), and making
use of the two relations

[f ′K(w)]2 = 1−Kf 2
K(w) , f ′′K(w) = −Kf 2

K(w) (for all K) , (1.8)
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as can be seen from (1.4), one finds a diagonal2 Einstein tensor with the components

Gtt = 3
K + ȧ2

a2
(1.9)

Gww = a2

(
−K + ȧ2

a2
− 2

ä

a

)
(1.10)

Gθθ = a2 f 2
K(w)

(
−K + ȧ2

a2
− 2

ä

a

)
(1.11)

Gφφ = a2 f 2
K(w) sin2θ

(
−K + ȧ2

a2
− 2

ä

a

)
. (1.12)

Here (t, w, θ, φ) are the (0, 1, 2, 3)-components, respectively. In these Gµµ the coefficients of
the total derivatives in the line element (1.3) are rediscovered. Thus the same Einstein tensor,
transformed to an orthonormal coordinate system, reads

Gt̂t̂ = 3
K + ȧ2

a2
, Gî̂i =

(
−K + ȧ2

a2
− 2

ä

a

)
, î ∈ {w, θ, φ} . (1.13)

The Friedmann equations In an isotropic and homogeneous universe the matter and
energy is described by T = diag(ρ, p, p, p), where ρ = ρ(t) and p = p(t) are functions of time
only, representing the homogeneous density and the pressure. The combination of equations
(1.1) and the Gµ̂µ̂ in (1.13) then yields the two Friedmann equations

(
ȧ

a

)2

=
8πρ

3
− K

a2
+

Λ

3
, (1.14)

2
ä

a
= −8πp− K

a2
+ Λ−

(
ȧ

a

)2

. (1.15)

Differentiating (1.14) with respect to t and inserting it into (1.15) yields the conservation law
of energy in the form

d

dt
(ρ a3) = −p d

dt
(a3). (1.16)

Thus the initial value equation (1.14) and the conservation of energy are sufficient to describe
the global evolution of the universe. Matter, radiation, and the cosmological constant are
the dominant sources of gravitation on the right hand side of (1.1), where the matter can
be regarded as pressureless dust, i.e. collisionless particles moving at non-relativistic speeds.
The equations of state for these three constituents are then pd = 0, pr = ρr/3 and pΛ = −ρΛ.
Their evolution with cosmological time t is determined by (1.16) as

ρd ∝ a−3 (1.17)

ρr ∝ a−4 (1.18)

ρΛ = const . (1.19)

2The diagonality arises from the assumed symmetry, i.e. isotropy and homogeneity.
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Figure 1.1: Some solutions of the Friedmann-Lemâıtre equation, depicting typical expansion histories
of various cosmologies obeying the cosmological principle. A universe with Λ = ΛE = 8πρ − 3K/a2

is called Einstein cosmos, in which Λ prevents a static universe from collapsing under its own grav-
itational pull. Our universe has Ω0 ∼ 0.3 and ΩΛ ∼ 0.7. Note that the individual curves are not to
scale, they just show the general appearance of the solutions.

As an initial condition for (1.14) a(t0) = 1 is used, with t0 being the cosmological time
today. Relation (1.14), known as the Friedmann-Lemâıtre equation, can be rewritten in the
form

H2(t) = H2
0

(
Ω0

a3
− K

a2H2
0

+ ΩΛ

)
, (1.20)

where the Hubble function was defined as H(t) := ȧ(t)/a(t), describing the expansion rate of
the universe, with H0 = H(t0).

Ω0 :=
8π

3H2
0

ρ0 and ΩΛ :=
Λ

3H2
0

(1.21)

are the matter density and vacuum density parameters at present times. The radiation density
is neglected in this expression, since it decays much faster than the matter density due to
its dependence on a−4. Solving (1.20) for K at t = t0 and substituting the result back into
(1.20) yields the Friedmann-Lemâıtre equation in its commonly used form,

H2(t) = H2
0

(
Ω0

a3
+

1−Ω0 − ΩΛ

a2
+ ΩΛ

)
. (1.22)

Among others, an explicit solution of (1.22) for the scale factor a(t) can be given for a flat
universe with 1 − Ω0 − ΩΛ = 0. By means of variable separation the differential equation
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(1.22) can be transformed into an integral, yielding t(a) as

t− t0 =
2

3H0

√
ΩΛ

ln



a3/2ΩΛ +

√
Ω0ΩΛ + a3Ω2

Λ

ΩΛ +
√

Ω0ΩΛ + Ω2
Λ


 . (1.23)

This expression can be inverted. Determining t0 such that a(0) = 0 and using Ω0 = 1− ΩΛ

then yields after a series of simplifications

a(t) =

(√
Ω0

ΩΛ
sinh (ωt)

)2/3

, with ω =
3H0

√
ΩΛ

2
. (1.24)

Peacock (2001) and Carroll (1992) derived (1.23) in a different form. Figure 1.1 shows some
typical solutions for the Friedmann-Lemâıtre equation. Several of the former emerge from a
hot and compact beginning and are commonly called big bang models.

1.2 Redshift and distances

Cosmological redshift Consider a photon emitted by a galaxy at a comoving radial dis-
tance w, and absorbed at the observer’s position w = 0. Both emitter and absorber are
comoving with the cosmological expansion. Orienting the coordinate system such that the
photon travels along the polar axis, its line element reads ds2 = 0 = −c2 dt2 + a2(t) dw2,
where c is the speed of light. Two consecutive maxima of the light wave are emitted at
cosmological times te1 and te2, and absorbed at ta1 and ta2. The wavelengths of the photon
at times of emission and absorbtion are

λe = c (te2 − te1) and λa = c (ta2 − ta1) , (1.25)

respectively. The comoving distance travelled by both maxima is by definition the same. By
integrating the photon’s line element one gets

0 =

∫ ta2

te2

a−1(t) dt −
∫ ta1

te1

a−1(t) dt . (1.26)

Exchanging the integration limits then gives for infinitely small time intervals between the
emission (absorption) of the two maxima

0 =

∫ ta2

ta1

a−1(t) dt −
∫ te2

te1

a−1(t) dt =
ta2 − ta1

a(ta1)
− te2 − te1

a(te1)
. (1.27)

Using (1.25) the ratio of the emitted and absorbed wavelengths then becomes

λa

λe
=
ta2 − ta1

te2 − te1
=
a(ta1)

a(te1)
. (1.28)

Finally, the cosmological redshift is defined as

z :=
λa − λe

λe
=
a(ta)

a(te)
− 1 . (1.29)
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Distances in the universe Contrary to Euclidean spacetime, in a dynamic and curved
spacetime such as a Friedmann universe distances can no longer be measured in an unique
way. The most commonly used distance measures are the proper distance, the comoving
distance, the angular diameter distance and the luminosity distance.

The definition of the proper distance is based on the light travel time between two events
at redshifts z2 > z1, given by dDprop(z1, z2) = −cdt. Changing the integration variable from
cosmological time to the observable redshift, dDprop(z1, z2) = −c a/(a ȧ) da = −c/(aH) da,
and expanding the Hubble function H then yields

Dprop(z1, z2) =
c

H0

∫ a(z1)

a(z2)

[
Ω0

a
+ (1− Ω0 − ΩΛ) + a2 ΩΛ

]−1/2

da . (1.30)

For a flat universe (1− Ω0 − ΩΛ = 0), this expression can be evaluated analytically,

Dprop(z1, z2) =
2 c

3H0

√
ΩΛ

[
ln

(
a3/2ΩΛ +

√
Ω0ΩΛ + a3Ω2

Λ

)]a(z1)

a(z2)

. (1.31)

In analogy to the proper distance one derives the comoving distance. This is the dis-
tance between the source and the observer on a spacelike hypersurface, defined by points
with identical cosmological time t = t0. Starting again with the line element one has
dDcom(z1, z2) = dw = −c/adt = −c/(a2H) da, resulting in

Dcom(z1, z2) =
c

H0

∫ a(z1)

a(z2)

[
aΩ0 + a2 (1− Ω0 − ΩΛ) + a4 ΩΛ

]−1/2
da

= w(z1, z2) . (1.32)

For gravitational lensing the angular diameter distance is of great importance. It is defined
in analogy to Euclidean space as the ratio of the source area δA and the solid angle δΩ, under
which the source is seen by the observer: Dang(z1, z2) = (δA/δΩ)1/2 = a(z2)fK (w(z1, z2)).
Using (1.32), the angular diameter distance reads

Dang(z1, z2) = a(z2)fK [Dcom(z1, z2)] . (1.33)

The luminosity distance is as well derived in analogy to Euclidean space. Taking into account
the delay in the arrival time of the photons due to the expansion of the universe, their redshift
and the photon number conservation, one obtains

Dlum(z1, z2) =
a(z1)2

a(z2)
fK [Dcom(z1, z2)] . (1.34)

Note that due to the prefactors of a and the non-linearity of fK the angular diameter distances
and the luminosity distances are not additive, i.e. D(z1, z3) 6= D(z1, z2) +D(z2, z3).

1.3 Structure formation

Since the detection of structures such as galaxy clusters is at the focus of interest in this
work, the basic principle of the gravitational collapse of structures is outlined in this section.
Based on a linearised Newtonian description, it is shown that the density field in the universe
is gravitationally unstable with respect to small perturbations, i.e. inhomogeneities are not
damped by the expansion of the universe, but grow in amplitude. At the end of this section
the power spectrum is introduced, which is used for a statistical description of the density
field.
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1.3.1 Evolution of the density field

The Euler-Newtonian system For some basic considerations of structure formation it
is sufficient to look at a local volume of the universe, which is small enough not to feel
the curvature of spacetime, but large enough to be called representative. A typical scale
that satisfies this condition is ≈ 200 Mpc. Fill this volume with massive particles moving
with non-relativistic speeds. The latter assumption is necessary since otherwise small-scale
fluctuations in the density field of this system would have been washed out in the early phase
of the universe, and nowadays galaxies wouldn’t exist. Furthermore, it is assumed that these
initial fluctuations are small, so that their gravitational fields are small (Φ/c2 � 1) and can
be described using Newtonian gravity. This condition is perfectly satisfied, since the largest
bound objects to date (superclusters of galaxies) have gravitational potentials on the order
of Φ/c2 = 0.001. As long as neighbouring world lines do not intersect (shell crossing), the
description of such a system is given by the Euler-Newtonian-System (ENS),

∂t ρ+∇ · (ρv) = 0 , (1.35)

∂t v + (v ·∇)v = g − ∇p
ρ
, (1.36)

∇× g = 0 , (1.37)

∇ · g = −4πGρ+ Λ . (1.38)

The first equation is the continuity equation, stating that no energy (matter) can be lost. The
second expression is known as the the Euler equation and guarantees momentum conservation.
The third equation states the conservative character of the gravitational force field, and from
the last equation one can see that a (positive) cosmological constant is a source of negative
gravity, acting against the pull of the matter field ρ. Hereafter, bold faced quantities denote
vector fields.

In order to look at the formation of structures, one adds deviations (peculiar motions) to
the homogeneous and isotropic Hubble flow,

ρ = ρH + ρ̃ , (1.39)

v = vH + ũ , (1.40)

g = gH + w̃ , (1.41)

p = pH + p̃ , (1.42)

and defines the density contrast δ as

δ :=
ρ− ρH
ρH

, respectively ρ̃ = ρH δ . (1.43)

Then one takes out the homogeneous Hubble expansion vH = H r from the system, i.e. one
transforms to comoving coordinates q := x/a(t). Renaming ũ → u, w̃ → w, and p̃ → p
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yields the ENS for the peculiar motions,

δ̇ +
1

a
(1 + δ)∇ · u = 0 (1.44)

u̇+Hu = w − ∇ p

a ρH(1 + δ)
(1.45)

1

a
∇×w = 0 (1.46)

1

a
∇ ·w = −4πGρH δ . (1.47)

Here it is defined that ( )̇ := ∂t + 1/a (u ·∇). Note that the cosmological constant Λ does
not appear as a source of gravity in the last equation any more.

Gravitational instability in the linear regime An approximate solution of the ENS
for the peculiar system comes with its linearisation for δ � 1,

∂t δ +
1

a
∇ · u = 0 (1.48)

∂t u+Hu = w − ∇ p

a ρH
(1.49)

1

a
∇×w = 0 (1.50)

1

a
∇ ·w = −4πGρH δ . (1.51)

Using the equation of state ∇p = c 2
s∇ρ, where cs is the speed of sound, taking the gradient

of the second equation in the linearised ENS and combining with the first one then yields

∂ 2
t δ + 2H ∂t δ − 4πGρH δ =




c2s/a

2 ∇2δ (p 6= 0)

0 (p = 0)
. (1.52)

To get an idea of the dynamics of this equation, look at the p = 0 case. One solution
δ−(t) for this differential equation is then the Hubble function H(t), as can be verified by
insertion. A second solution δ+(t) can be determined by means of the Wronski determinant.
The general solution is given by a linear combination of both. As an example, consider the
(1− Ω0 − ΩΛ = 0) cosmology. From (1.24) one has

δ−(t) = H(t) =
ȧ

a
=

2

3
ω coth (ωt) . (1.53)

This is a monotonically falling function, and thus corresponds to the decaying mode. The
growing mode δ+(t) (the growth factor) can not be expressed with elementary functions.
Instead, a numerical solution of (1.52) is shown in Fig. 1.2. One can see that the matter field
in the test volume is gravitationally unstable concerning small perturbations, i.e. structures
can grow.

A major disadvantage of the linear regime is that present structures grow in a self-similar
fashion only, i.e. no new and more complicated structures can form. Numerical N-body
simulations are used to understand the formation of structures such as clusters of galaxies as
they are observed today.
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Figure 1.2: Extrapolated evolution of the density contrast in a flat (Ω0 = 0.3, ΩΛ = 0.7) universe,
given the linear regime in (1.52) with p = 0 and ρ0 = 10−29 g cm−3. The density contrast follows
a power law, δ ∝ tn, and then saturates once the exponential expansion in equation (1.24) of the
universe starts dominating the scale factor. The power law index n increases with ρ0, and n = 1 for
ρ0 ≈ 5.5 · 10−29 g cm−3. The linear regime (1.52) is only applicable for δ � 1.

1.3.2 Power spectrum

The actual matter distribution in the universe at a given time t, respectively its density
contrast δ, is a random field and can not be predicted by theory. However, it is possible to
describe the evolution of its statistical properties with time. Two such descriptors are the
two-point correlation function

ζ(r) = 〈δ(x) δ∗(x+ r)〉 (1.54)

and its Fourier transform, the power spectrum

Pδ(k) =

∫
d3r ζ(r) exp(ikr) , (1.55)

where k is the comoving wave vector. For a full description of a random field also higher-
order correlation functions are needed. A special case are Gaussian random fields, which are
characterised by mutually independent Fourier components δk. If their phases are random,
then the central limit theorem states that the δk are Gaussian distributed. Such a random
field is then entirely described by its power spectrum. It is commonly assumed that the
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quantum fluctuations in the early universe lead to such a Gaussian character of the initial
density field.

The functional behaviour of Pδ is not a priori clear. If one assumes that there is no
preferred length scale in the initial power spectrum, the only allowed functional form for P is
a power law, Pδ(k) ∝ kn, where n is the spectral index determining whether structures form
first on large or on small scales. If fluctuations occur on all scales at the same level, then
n = 1.

The translation of δ at some redshift z into present times, i.e. the evolution of the density
contrast, is governed by the transfer function

Tk =
δ(k, 0)

δ(k, z) δ+(z)
, (1.56)

where δ+ is the linear growth factor between some redshift z and the present, as was in-
troduced in the previous example. This linear extrapolation, however, can only explain the
density contrast on very large scales. Smaller and more compact structures such as clusters
of galaxies and galaxies themselves are non-linear features, arising from interactions of fluc-
tuations with different scale k. The effect of this non-linear evolution on the power spectrum
was fitted by Peacock & Dodds (1996), resulting in more power on smaller scales driving the
cluster formation.

A normalisation of the power spectrum has to be obtained from observations, determining
the amplitude of the spectrum for different scales. The power spectrum can be scaled such
that it reproduces the local abundance of galaxy clusters, which fixes the amplitude on scales
of the order of 10 Mpc. Second, the variance of the density field can be observed in the
distribution of galaxies on the sky, assuming that the luminous matter follows the dark
matter. For this purpose, galaxy counts in spheres with a radius of 8 Mpc are compared,
which results in σ8 ≈ 0.9. The main uncertainty here is the unkown exact relation between
the luminous and the dark matter. Third, the power spectrum can be normalised by means of
the fluctuations in the cosmic microwave background (see next section), fixing the amplitude
for the largest scales.

1.3.3 The microwave background

Anisotropies Those Friedmann-Lemâıtre models which are in agreement with current ob-
servations predict that the universe started from a hot and very dense beginning. A relic,
and the most important observational proof of this hot beginning, is the cosmic microwave
background (CMB), which has a thermal Planck spectrum with a temperature of 2.73 K. In
the CMB one sees the universe at an age of about 300000 years, when its temperature fell
below about 3000 K so that electrons and protons could combine and form neutral atoms.
This is the time of decoupling between the matter and the radiation field, allowing photons
to travel freely. In the CMB one sees these photons, the last scattering surface, redshifted to
z ≈ 1100.

The observed isotropy of the CMB is one of the strongest arguments for the validity of
the cosmological principle. At the same time, this isotropy imposes a severe problem for
cosmological theories. Defining the comoving particle horizon as

rH =

∫ t

0

c

a(t′)
dt′ , (1.57)
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which is the size of the region that could become causally connected since the beginning of
the universe, one finds that rH(z = 1100) ≈ 100 Mpc. This corresponds to an angle of about
1 degree in the CMB, meaning that the CMB is causally disconnected on larger scales. Thus
the isotropy of the CMB can only be explained by a short period of inflation in the very
early, causally connected universe, which increased its size by at least 60 e-foldings.

The CMB shows very small anisotropies δT/T = 10−5 on angular scales of up to 90
degrees. These do not come unexpected since the structures seen today must have been
already present at a redshift of z = 1100, eventually stemming from quantum fluctuations in
the very early universe. These density variations cause the observed temperature fluctuations
in the CMB through various processes. First, photons have to escape from the overdensities’
gravitational potentials and are redshifted (Sachs-Wolfe effect). Second, photons are scattered
from electrons in a moving plasma, causing some Doppler shift. Third, overdense regions are
hotter and recombine later, appearing thus less redshifted (adiabatic effect). The SW-effect
dominates on large scales, whereas on scales smaller than about 1.8 degrees the other two
effects take over, with the adiabatic effect dominating.

Dark matter Various observations indicate that the structures in the universe are largely
made of dark matter, i.e. matter that does not radiate but only interact by means of gravita-
tion. Strong evidence comes from clusters of galaxies, whose apparent gravitational potential
must be 10 − 50 times deeper than what their luminous matter indicates: member galaxies
show a velocity distribution ∼ 10 times broader than expected, and the clusters themselves
are often filled with a 107 − 108 K hot plasma which should have easily escaped from the
potential if there was only the luminous matter.

Further evidence for the existence of dark matter comes from the anisotropies in the CMB
itself. With normal (baryonic) matter only, one expects hardly any anisotropies in the CMB,
since before recombination the strong radiation pressure dilutes any baryonic overdensities.
Structures could only form afterwards, resulting in density contrasts lower than the one
observed in galaxies and clusters of galaxies. Dark matter, however, decoupled much earlier
from the radiation field and could clump together, attracting baryonic matter, too. This infall
was counterbalanced by radiation, driving the baryons out of the dark potentials again. Thus
the amplitudes of the adiabatic anisotropies in the CMB underestimate the actual density
contrast by a factor of about 10. Without non-baryonic dark matter none of today’s galaxies
would ever have formed.

1.4 Light deflection in gravitational fields

The metric g of spacetime, and thus the matter inside, governs the propagation of all freely
falling particles. This section introduces the basic concepts of light deflection in such gravi-
tational fields. An illustration of the lens geometry is shown in Fig. 1.3, which also defines
some of the basic lensing terms.

The following approximations and assumptions can safely be made:

1. The gravitational potential of the most massive known objects in space, clusters and
superclusters of galaxies, are on the order of Φ/c2 ≈ 0.001 � 1. In addition, the peculiar
velocities in such clusters are vpec/c ≈ 0.003 � 1, thus frame dragging (Lense-Thirring
effect) is absent from the problem. Hence, the gravitational fields can be described with
non-relativistic Newtonian physics.
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Figure 1.3: Geometry of a single gravitational lens. The path of light from a source S is deflected
by α̂, so that the observer sees the source at the image position I . α is called the reduced deflection
angle. η and η′ are the distances of the source and its image from the optical axis in the source
plane. The optical axis is defined as the connecting line between the observer and the barycenter
of the lensing mass distribution. ξ is the impact parameter, the distance at which the light path
passes the gravitational lens. θ and β are the angles under which the observer sees the source with
and without the lens. Dd, Dds and Ds are the angular diameter distances from the observer to the
lens (the deflector), from the lens to the source, and from the observer to the source, respectively.
Remember that angular diameter distances are not additive. Source, lens and observer form the lens
system. This figure was adapted from Bartelmann & Narayan (1996).

2. The extent of the lens is very small compared to the total extent of the lens system.
In the case of cluster lensing the extent of the lens is typically some Mpc, whereas
the distances between source, lens and observer are usually several Gpc. One can thus
project the mass distribution of the lens along the line of sight into a two-dimensional
mass sheet, and assume that all the light deflection takes place in this lens plane.
This assumption is known as thin lens approximation. It does not hold for lensing by
large-scale structure.

General relativity enters the description only in a few places. Most notably, the angular
diameter distances from equation (1.33) are used for the description of the lens geometry,
and second, the deflection angle is derived from the line element as is shown below. Details
of the formalism presented below can be found e.g. in Bartelmann & Narayan (1996) and
Bartelmann & Schneider (2001).
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1.4.1 The lens equation

Using the notation in Fig. 1.3, the small angle approximation and the theorem of intersecting
lines,

ξ

Dd
=
η′

Ds
(1.58)

one finds

η = η′ − α̂Dds = ξ
Ds

Dd
−αDs . (1.59)

Note that the angular diameter distances were defined in such a way that the relation (1.58)
holds. Dividing the last equation by Ds yields the lens equation

β = θ −α(θ) , (1.60)

which could have been also obtained directly from Fig. 1.3. The lens equation (1.60) is
non-linear in general, and allows for multiple images of the same source, i.e. the light can
reach the observer along different paths. It is shown in the literature (see Schneider et al.,
1992, for example), that this equation can be derived entirely from General Relativity. There
it is contained as a special case for weak fields, where the line element of the Minkowski
spacetime is perturbed by a gravitational potential Φ� c2. Since the deflection of the light
ray is a very local event, the expansion of the universe and its curvature can be neglected in
the deflection process. In this case, an approximation of the static Minkowskian line element
for a photon traveling along the polar axis is

ds2 = 0 = −
(

1 +
2φ

c2

)
c2 dt2 +

(
1 +

2φ

c2

)−1

dr2 . (1.61)

Thus, ∣∣∣∣
dr

dt

∣∣∣∣ = ceff = c

(
1 +

2Φ

c2

)
=
c

n
with n ≈

(
1− 2Φ

c2

)
. (1.62)

Here n is the refractive index, introduced in analogy to conventional optics. The deflection
angle is then defined as the line integral of the gradient of n perpendicular to the light path
γ, integrated along γ,

α̂ = −
∫

γ
∇⊥ndl =

2

c2

∫

γ
∇⊥Φ dl . (1.63)

Since deflection angles in gravitational lensing are typically just a few arcseconds, the line
integral can be replaced by an integral along an unperturbed path of light with the same
impact parameter ξ.

1.4.2 Convergence and shear

Since the deflection of light in a gravitational potential is a very local effect when compared to
the total extent of the lens system, one introduces the lensing potential ψ(θ) as the projection
of Φ = Φ(ξ, z) along the optical axis onto the lens plane. Φ is written as a function of the
impact parameter ξ = Ddθ and of the distance z along the unperturbed light ray starting
from the point of closest approach. The lensing potential is scaled such that its gradient
yields the reduced deflection angle α (see eq. (1.63) for comparison),

ψ(θ) =
2

c2
Dds

DdDs

∫
Φ(Ddθ, z) dz (1.64)
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∇θψ = Dd∇ξψ =
2

c2
Dds

Ds

∫
∇ξΦ(ξ, z) dz (1.65)

=
2

c2
Dds

Ds

∫
∇⊥Φ dz = α .

The projected mass distribution has a surface mass density

Σ(ξ) =

∫
ρ(ξ, z) dz . (1.66)

Using this and Poisson’s equation ∆Φ = 4πGρ(ξ, z), one finds that the Laplacian of ψ is
proportional to Σ,

∆θψ = D2
d ∆ξψ =

2

c2
DdDds

Ds

∫
∆ξΦ dz (1.67)

= 2
4πG

c2
DdDds

Ds

∫ ∞

−∞
ρ(ξ, z) dz

= 2
4πG

c2
DdDds

Ds
Σ(θ) (1.68)

Introducing the critical surface mass density

Σcr =
c2

4πG

Ds

DdDds
(1.69)

the Laplacian of ψ reads

∆θψ = 2
Σ(θ)

Σcr
=: 2κ(θ) . (1.70)

The surface mass density Σ, scaled with its critical value, is called convergence κ. For κ� 1
one has the weak lensing regime, whereas a lens with Σ > Σcr is called supercritical, meaning
that multiple images and other strong lensing effects can occur.

Relation (1.70) can be inverted and yields, up to harmonic functions,

ψ(θ) =
1

π

∫
dθ′ κ(θ′) ln|θ − θ′| . (1.71)

Taking the gradient gives by definition the deflection angle,

α(θ) =
1

π

∫
dθ′ κ(θ′)

θ − θ′
|θ − θ′|2 . (1.72)

Linearised lens mapping As far as the lensing formalism was presented up to here, the
deflection of a single light ray was the subject of interest, and no assumptions were made about
the source. In general, sources such as distant background galaxies are extended objects, and
a bundle of light rays is received by the observer, stemming from many different points in the
source. Due to its finite width a light bundle passes by the lens at various distances, probing
the lensing potential at different positions. This means that the image of an extended source
appears distorted as compared to the unlensed case.

If the cross section of the light bundle in the lens plane is small compared to the extent
of the projected mass distribution, then the lens mapping can be locally linearised since
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the lensing potential and thus the deflection angle do not vary considerably for the various
light rays in the bundle. This clearly holds for cluster lensing, where the angular extent
of the cluster is on the order of a few arcminutes, whereas the apparent diameter of the
lensed background galaxies is typically a hundred to a thousand times smaller. Under this
assumption the aforementioned differential effects are described by the Jacobian matrix of
the lens mapping (1.60),

A ≡ ∂β

∂θ
=

(
δij −

∂αi(θ)

∂θj

)
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
= 1− (ψ,ij) . (1.73)

Hence the deviation from the identical (unlensed) mapping is described by the Hessian matrix
(ψ,ij) of the lensing potential. The Jacobian A can be rewritten by introducing in addition
to κ another linear combination of ψ,ij, the two-component complex shear γ,

γ = γ1 + i γ2 = |γ| e2iϕ (1.74)

where

γ1 :=
1

2
(ψ,11 − ψ,22)

γ2 := ψ,12 .

With this definition and the convergence in (1.70), A becomes

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)

= (1− κ)

(
1 0
0 1

)
− |γ|

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (1.75)

Defining the observable reduced shear g as

g :=
γ

1− κ , (1.76)

the lens mapping can also be written as

A = (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
. (1.77)

In these representations of A the meaning of κ and γ, respectively g, becomes clear. Without
the shear γ the convergence alone causes an isotropic magnification of the source, leaving its
shape unchanged. The (reduced) shear, however, introduces a distortion in the image shape,
where |γ| describes the strength of the distortion and ϕ its orientation. With κ 6= 1 and
γ 6= 1, an intrinsically circular source is mapped onto an ellipse with major and minor axes
(1−κ−|γ|)−1 and (1−κ+ |γ|)−1, respectively. The factor 2 in the trigonometric functions of
(1.75) accounts for the invariance of the shape of an ellipse under a rotation of 180 degrees.

In analogy to conventional optics a magnification µ can be defined in the lens mapping. It
is given by the ratio of the image size δθ2 and the size of the source, δβ2. The distortion that
is introduced in the light bundle and thus its cross section is described by the determinant
of A. The magnification is

µ =
δθ2

δβ2
=

1

detA
=

1

(1− κ)2 − |γ|2
(1.78)
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Based on Liouville’s theorem (photon number conservation), the surface brightness of the
source is conserved in the lensing process. Thus the flux ratio between the source and the
image is given by the geometric magnification.

A gravitational lens suffers from all aberrations known from conventional optics, apart
from one. The equivalence principle guarantees that there are no chromatic errors, i.e. light
deflection in gravitational fields is independent of wavelength.

The principle of mass reconstruction Inserting equation (1.71) into the definition (1.74)
of the shear yields a relation between the shear and the convergence,

γ(θ) =
1

π

∫
d2θ′ κ(θ′)D(θ − θ′) with (1.79)

D(θ) =
−θ2

1 + θ2
2 − 2iθ1θ2

θ4
. (1.80)

Kaiser & Squires (1993) derived the inversion of this relation, obtaining the convergence κ
from the shear γ,

κ(θ) =
1

π
Re

(∫
d2θ′ γ(θ′)D∗(θ − θ′)

)
+ κ0 , (1.81)

where the asterisk ∗ denotes complex conjugation. Thus the convergence can be obtained from
the shear only up to an additive constant κ0. This is known as the mass sheet degeneracy.
A more general variant of this degeneracy is given by the invariance transformation

T : A→ λA (1.82)

of the lens mapping,

λA = λ (1− κ)

(
1 0
0 1

)
− λ|γ|

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
(1.83)

=
(
1− κ′

)( 1 0
0 1

)
− |γ′|

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)

=
(
1− κ′

)( 1− g1 −g2

−g2 1 + g1

)
.

Here it was implicitly defined that

κ′ := 1− λ(1− κ) , γ ′ := λγ ( and thus µ′ := λ−2µ ) . (1.84)

From the definition (1.76) of g and from (1.77) one can see that the reduced shear, and thus
the shape of an image, remains unchanged under this transformation, g ′ = g. Hence, from
the image shapes alone, the surface mass density of the lens can not be reconstructed unam-
biguously. One needs to take into account magnification effects, or assume κ = 0 on average
at a large distance from the lens to break this degeneracy. This invariance transformation
will be accounted for in section 3.2.1, where the shear selection method for galaxy clusters is
introduced.
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Figure 1.4: Left: Relative lensing strength from equation (1.86), for lens redshifts zd ∈
[0.1, 0.25, 0.5, 0.8] and two different cosmologies as a function of source redshift. Overlaid is a redshift
distribution taken from Brainerd et al. (1996), characteristic for the galaxies in the data used for this
work (see also section 3.4). Lenses at various redshifts have different sensitivities with respect to the
redshift distribution.
Right: Relative lensing efficiency calculated for a singular isothermal sphere (SIS ) with ρ ∝ 1/r2

and a fixed source redshift of zs = 1.0. For an SIS κ ∝ DdsDd/(Ds r) =: D/r. Shown is the ratio
κ(zd)/κ(zref) = D(zd)/D(zref), i.e. the strength of a lens at redshift zd is compared to the strength
of a lens at reference redshift zref . In a (Ω0 = 0.3, ΩΛ = 0.7)-cosmology lensing is most efficient when
the lens is at a redshift of zd ≈ 0.35, compared to zd ≈ 0.30 when Ω0 = 1.0. Furthermore, lensing
becomes inefficient when the lens is at an exceedingly low or high redshift with respect to the sources.
The dash-dotted line compares the strength of the same lens at redshift zd in the two model universes.
Mass profiles other than the SIS yield comparable results.

Relative lensing strength It is useful to illustrate the strength of a gravitational lens at
redshift zd as a function of source redshift z. For this purpose one compares the convergence
and the shear for a redshift z to their counterparts at redshift infinity,

κ(z) =
Σ(z; zd)

Σcr(z; zd)
=

Σ(z; zd)

Σcr(∞; zd)

Σcr(∞; zd)

Σcr(z; zd)
H(z − zd) = κ∞ s(z; zd) (1.85)

where

s(z; zd) =
Σcr(∞; zd)

Σcr(z; zd)
H(z − zd) (1.86)

is the relative lensing strength (see left panel in Fig. 1.4) and κ∞ the convergence for a
source at redshift infinity. The Heaviside function guarantees that galaxies closer than the
lens remain unlensed. A similar relation holds for the shear,

γ(z) = γ∞ s(z; zd) . (1.87)

This rescaling preserves the relation (1.79) between γ and κ.
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1.5 Light deflection in the atmosphere

Seeing Before a light beam with an imprinted lensing signal arrives at a telescope’s detector,
it has to pass through the turbulent atmosphere of Earth. Pressure and temperature gradients
change the effective refractive index n of the atmosphere along the path of light, causing a
smearing of the cross section of the light bundle and an erratic motion in the detector plane
over time. This effect is called atmospheric seeing 3. In the detector plane the light profile of
a point source such as a star gets broadened by the seeing and by diffraction effects in the
telescope. Such a light profile is called PSF (point spread function).

Partially, the PSF is caused by dome and telescope seeing, caused by turbulences and
convective motions mostly due to temperature gradients inside the dome and the optics.
The closer the disturbing atmospheric layer is to the focal plane, the more it can become
a dominant source of seeing. The reason for this is of purely geometrical nature: A larger
change in n at high altitudes leads to a very large displacement of the light beam at the
telescope, making it likely that the according photons will be absorbed by the telescope’s
baffle system. Light deflections due to changes in n in the local environment and inside the
dome, however, can fully propagate to the detector. Even very thin layers of warmer air,
e.g. just above the surface of the main mirror, can easily become as disturbing as the whole
atmosphere above (mirror seeing). Warm laminar streamings perpendicular to the optical
path can even cause significant anisotropies in the PSF. Proper ventilation systems inside
the telescope and the dome destroy such optically disturbing layers and flows of warm air.

Thus, for an analysis of weak gravitational lensing effects very stable atmospheric condi-
tions are required, since the shapes of small galaxies have to be measured reliably. Besides,
the dome and the telescope must have cooled down to ambient temperatures. Since the typ-
ical angular size of a lensed background galaxy is on the order of 0.′′2, the size of the PSF
should be equal or smaller than about 1.0 arcseconds for a weak lensing analysis. Otherwise
the lensing signal is too much diluted by the seeing. In section 3.1.2 it is shown how one can
correct to first order for the anisotropic and smearing effects of the PSF.

3The mathematical description is in its principles very similar to the one for gravitational lensing, which
was derived from an effective refractive index due to gravitational fields. The main difference is that many
such deflections take place in the Earth’s atmosphere, whereas for example in the case of cluster lensing a
single lens event accounts for most of the shear signal.



Chapter 2

From Photons to Images

This chapter describes the data reduction process, emphasising the reduction of multi-chip
cameras. In the first section an overview of the Garching-Bonn Deep Survey (hereafter:
GaBoDS) is given, the database upon which this weak lensing survey relies. It is followed by
a description of the pre-processing steps, the astrometric and photometric calibration of the
data and the image coaddition.

2.1 The Garching-Bonn Deep Survey

2.1.1 The instrument

Observations for GaBoDS were conducted with the Wide Field Imager at the 2.2m MPG/ESO
telescope at La Silla, Chile. Hereafter, this specific instrument will be refered to as WFI@2.2,
whereas the term WFI will be used for wide field imaging instruments in general. WFI@2.2
is a multi-chip camera consisting of eight back-illuminated 2k×4k Marconi/EEV CCDs with
a pixel size of 15 microns. The area covered on the sky is 34′ × 33′ , corresponding to a pixel
scale of 0.′′238. WFI@2.2 is attached at the Cassegrain focus of the MPG/ESO telescope,
which has a 2.2m hyperbolic primary and a 1.0m hyperbolic secondary mirror. This Ritchey-
Chretién layout allows for a very flat focal plane with very good PSF properties throughout
the fully illuminated field of view, which is essential for large detector arrays. The native
focal ratio of the telescope is f/8.0, which is shortened to f/5.9 by means of a focal reducer,
having six lenses in two groups. This reducer also corrects efficiently for remaining optical
abberations and field curvature. A cut through the instrument along the optical axis and the
layout of the detector array are shown in Fig. 2.1.

Terminology The following list gives an explanation for the most frequently used terms
in the next sections.

• CCD, chip – one of the detectors in a multi-chip camera

• exposure – a single WFI shot through the telescope

• image – the part of the exposure that belongs to a particular CCD

• science image – an image of the actual target, not a calibration image

• mosaic – all images are coadded, i.e. the final product

31
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Figure 2.1: Left: The layout of the WFI@2.2 detector array. The size of the gaps between the CCDs
is not to scale. Right: A cut through the WFI@2.2 focal reducer/corrector. Both figures were taken
and modified from the WFI@2.2 user manual (Baade, 2000).

• dithering – offsetting the telecope between the exposures

• overlap – images from different CCDs and exposures overlap if the dithering between
the exposures was large enough

• bias – exposure with zero seconds exposure time, thus containing pure read-out noise
of the camera electronics, only.

• dark – exposure with a certain exposure time, keeping the shutter closed. It contains
the read-out noise and the accumulated thermic dark current of the CCD. Chip defects
are easily recognised in these exposures.

• flatfield – exposure of an evenly illuminated area. This can either be a screen in the
telescope dome (domeflat), or the sky close to zenith shortly after sunset or before
sunrise (skyflat). The flatfield contains the total throughput of the telescope, including
filters and the detector.

• gain – a factor relating the number of photons absorbed in the detector to the number
of released electrons

• superflat – a flatfield calculated from the data itself after it has been calibrated by
the bias and the normal flatfield. Useful for correcting remaining residuals in the sky
background of the images.

2.1.2 Survey characteristics

Data mining the ESO archive The present weak lensing analysis initially aimed at a sky
coverage of at least 10 square degrees for the GaBoDS. Only about 3.7 square degrees were
finally observed, however, in 20 allocated nights of our own GO programme (PI: P. Schneider)
due to unfavourable weather conditions. Including available data from the EIS1 Deep Public

1ESO Imaging Survey



2.1. THE GARCHING-BONN DEEP SURVEY 33

Survey and COMBO-172 left us with about 3 missing square degrees. A manual search in the
large ESO archive turned out to be unfeasible, since the search engine available at that time
did not allow for filtering with respect to our requirements. The only usable fields known
beforehand in the archive were the ones from the Deep Public Survey and one observation
of the Capodimonte Deep Field. Other WFI@2.2 data such as the five COMBO-17 fields
were taken during MPG time before the 2.2m telescope started into service mode operation,
and were thus not publicly available through the archive. Besides, the very low number3

of publications based on data taken with WFI@2.2 did not allow a direct identification of
further usable data. Therefore an ASTROVIRTEL program4,5 was proposed, aiming at an
enhancement of the querator 6 search engine’s capabilities (Pierfederici, 2001). In order for a
field to be included in the GaBoDS, the following requirements addressed by querator had
to be met:

• minimum exposure time in R-band: ∼ 5 ksec,

• image seeing ≤ 1.′′0,

• random field, at high galactic latitude,

• empty field, i.e. avoidance of known very massive structures in or next to the field, no
bright stars or large foreground objects inside the field.

The first item in this list guaranteed a high enough number density (≥ 10 arcmin−2) of galax-
ies with securely measurable shapes for the lensing analysis. Furthermore, as was mentioned
previously in section 1.5, exposures had to be taken in excellent seeing conditions, since the
S/N for shape measurements decreases with the squared size of the PSF. The random char-
acter of the fields was needed to avoid a biasing towards certain types of objects, such as
quasars or clusters of galaxies. In addition, in this way it was ensured that the fields sparsely
sample the universe along independent lines of sight, keeping thus the effect of cosmic vari-
ance small. The last point in the above list was to further guarantee that a given pointing
would be usable for the purposes of this work: massive structures such as large clusters of
galaxies bias the search for unknown dark matter haloes. One has to keep in mind that this
introduces a bias towards lower density lines of sight. By avoiding bright and large foreground
objects the usable area of a field is kept as large as possible.

About data quality It is clear that ‘data quality’ is a very ambiguous term, highly depen-
dent on the science which is to be drawn from the data. Given the involved, time consuming
reduction of WFI data, the quality of archival data had to be assessed as well as possible
before any request or data reduction. This is straightforward for the total exposure time,
available filters, presence of bright objects, availability of calibration exposures, and the ambi-
ent conditions during which the observation was performed (moon; clouds; seeing, according
to the seeing monitor). However, not all of those can be expressed in terms of numbers,
and some judgement had to be done upon visual inspection of the data. Other data quality

2MPIA Heidelberg
3Only about a dozen papers based on WFI@2.2 data had been published up to April 2002.
4ASTROVIRTEL cycle 2: Erben et al., Gravitational lensing studies in randomly distributed, high galactic

latitude fields
5http://www.stecf.org/astrovirtel
6http://archive.eso.org/querator
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issues, such as image seeing or PSF properties could not be evaluated without more complex
operations on the data itself. To address most of these points, the following demands were
defined to ASTROVIRTEL and querator :

• measure the image seeing for all archived WFI@2.2 data,

• provide a preview facility, allowing quick visual inspection of the data ahead of a request,

• make available the submitted proposal abstract (‘why was this particular observation
done?’)

All items but the last one were implemented. The image seeing, crucial for a weak lensing
analysis, was determined by automatically extracting all non-saturated stars from one of the
eight WFI@2.2 chips, and averaging their FWHM. It was superior to the DIMM7 seeing,
since the DIMM on La Silla could not pick up local effects such as dome seeing, zenith
distance, flexure and temperature of the telescope’s Serrurier8 structure, focus and tracking.
On average the DIMM seeing has been found to be 0.′′1 − 0.′′2 better than the image seeing
for WFI@2.2. It was only in rare cases that the difference between the two dropped below
0.′′1.

In this way a list of useful candidate fields was extracted from the archive, minimising the
amount of unusable data slipping into the reduction process. Fields that were rejected at this
late step suffered from scattered light or had very bad PSF properties. Checking the PSF
anisotropies on an image is a very time consuming task and was thus not blindly performed
on all data in the archive. Instead, each selected data set was investigated manually, and
an individual threshold for the PSF depending on the overall quality of the set was chosen.
Exposures with anisotropies above this threshold were excluded from the coaddition. For
example, if there was a large data set with good quality, the threshold was chosen to be more
conservative and one still got a decent deep image. On the other hand, if the PSF quality
was comparatively low for another data set, then more exposures with a degraded PSF were
stacked in order to reach a useful depth. Yet one should keep in mind that exposures of the
WFI@2.2 with a rather bad PSF are still rated very good when compared to other wide field
imaging instruments. As a rule of thumb, exposures with PSF anisotropies of ≈ 6% or larger
were rejected from the coadditions. The left hand panel of Figure 2.2 illustrates the PSF
anisotropies for WFI@2.2 chips 1 and 8 for 700 randomly selected exposures in the GaBoDS.
This gives a rough impression of the spread in image quality one can expect when the data
is taken by about a dozen different observers (including some service mode observations)
in sub-arcsecond seeing conditions. If the observer regularily takes care of the focus of the
instrument, then the PSF anisotropies of WFI@2.2 are reproducably better than ≈ 3%. At
the time of GaBoDS, however, this could easily consume 30-60 minutes per night.

Using the enhanced querator about 5 square degrees (20 pointings) of data were found
in the ESO archive which passed the criteria, not counting the already known fields such as
the ones from the EIS Deep Public Survey. This was about twice the expected area, but it
must be noted that 15 of the pointings were done by a single observer, searching for trans-
neptunian objects. The efficiency of the archive search with querator was about 75%, i.e.
three out of four candidate fields were usable. Thus the missing sky coverage for GaBoDS

7Difference Image Motion Monitor
8A frequently used design for the telescope structure connecting the upper part with the secondary mirror

to the lower part with the main mirror cell.
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Figure 2.2: Characteristic PSF anisotropies (modulus of the ellipticity) of 700 randomly chosen
exposures for two selected CCDs of the WFI@2.2 mosaic. The exposure times were typically in
the range of 300-500 seconds, and the zenithal distances were usually smaller than 40 degrees. The
anisotropy is defined as the modulus of the stellar ellipticity. Clearly, the characteristics for the two
CCDs are different, which is due to the fact that they are not exactly in the same focal plane (right
panel, copied from the WFI@2.2 homepage). The WFI@2.2 CCDs are confined within ±20 microns
and react thus differently to the chosen focus of the telescope. Anisotropies larger than 4 − 5% are
usually due to a defocused camera. Very large zenithal distances and a rarely failing mirror support
system can cause anisotropies, too. The exposures that went into the above statistic were taken by
about a dozen different observers, and give an idea of the quality of archival data (very bad images
were excluded beforehand of the statistic). See Fig. 2.4 for more information.

was complemented with advanced data mining of the ESO archive. Tables 2.1 and 2.2 lists
all fields in the GaBoDS that were used for this work together with their sources.

2.1.3 Main characteristics of the GaBoDS fields

Making heavy use of archival data, more than 19 square degrees of high quality R-band
exposures with only 10 clear nights of own observations were collected. For nearly half of the
fields multicolour information was also available. As can be seen from Fig. 2.3, the GaBoDS
fields can be split into a shallow part (9.6 square degrees, 4-7 ksec total exposure time), a
medium deep part (7.4 square degrees, 8-11 ksec) and a deep part (2.6 square degrees, 13-56
ksec). The survey fields are randomly distributed at high galactic latitude in the southern
sky. The image seeing in the mosaics is equal to or better than 1.′′0, and our astrometric
solution is accurate enough not to introduce artificial PSF anisotropies (see section 2.2.3 for
details). The typical PSF quality of a field in the survey can be seen in the lower right
panel of Fig. 2.4. There the PSF anisotropies of a mosaic consisting of 57 exposures are
shown, giving a total integration time of 27.1 ksec. The image seeing of this particular field
is 0.′′8, thus possible shortcomings in the astrometric algorithm could easily be seen. The
rms PSF anisotropy merely amounts to 0.8%, making WFI@2.2 very well suitable for weak
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Figure 2.3: Left. Sky distribution of the GaBoDS fields. The size of the symbols depicts the covered
sky area. All fields are at high galactic latitude. Note that a single exposure with WFI covers a bit
more than the stated 0.25 square degrees, the exact figure is 0.32 square degrees. Right: Exposure
times in GaBoDS. The peak at 56 ksec represents the Chandra Deep Field South (CDF-S).

gravitational lensing studies. The larger anisotropies in the field corners, especially in the
lower left, are due to a combination of slightly tilted CCDs with respect to the focal plane,
and residual optical abberations off axis.

Such quality of the data can only be achieved with a very carefully and frequently re-
focused telescope. The effect of a slightly defocused telescope on the PSF is shown in the
remaining three panels of Fig. 2.4. One can see that anisotropies become significant once
the detector is out of focus. Furthermore, the PSF rotates by 90 degrees when the focal
plane passes through the detector plane. This is characteristic for tangential and sagittal
astigmatism. Still the PSF of WFI@2.2 is very homogeneous over the field of view, even
when crossing chip borders. Thus larger dither patterns can be used for the observations,
and a single smooth model can be fitted to the PSF in the mosaic. A detailed description of
the applied PSF correction method is given in section 3.1.2.

2.2 Data reduction with the GaBoDS pipeline

The advent of multi-chip CCD cameras imposes new, high demands on data reduction. Pre-
processing steps such as debiasing or flatfielding can be done independently on a chip-by-chip
basis, allowing for efficient parallel processing on a multi-processor machine with sufficient
disk space. Whereas these steps can be tackled using the same well-known algorithms as
for single-chip cameras, an accurate astrometric and photometric calibration of WFI data
requires techniques going well beyond those routines. Different sensitivities of the CCDs and
gaps between them lead to a very inhomogeneous exposure time and accordingly noise in the
coaddition. An accurate weighting scheme is essential in order to retain control over these
effects in the mosaic. In the following our approach to WFI data reduction is described.

An almost fully automatic pipeline (apart from absolute photometry) for WFI reduction
was developed, based on existing software modules wherever possible, such as EIS drizzle 9,

9http://www.eso.org/science/eis
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Figure 2.4: PSF anisotropies for an intrafocal (upper left), focal (upper right) and extrafocal (lower
left) exposure. The chosen scale for the stick length is the same for those three plots in order to show
the increase in the anisotropies with respect to the focused exposure. The mean stellar ellipticities
are 6.6%, 0.9% and 5.9%, respectively. The lower right panel depicts typical PSF anisotropies of a
WFI@2.2 R-band mosaic (∼ 57 exposures with ∼ 500 sec exposure time each). Note that the largest
PSF anisotropies in the mosaic are as small as ≈ 1.0%. Compared to the other three PSF plots a
different scale for the stick length was used in order to clearly show the anisotropies.
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the Terapix10 software suite, FLIPS 11 (J.-C. Cuillandre, not yet publicly available), Eclipse 12,
Imcat13 (N. Kaiser) and LDAC 14 (E. Deul, Leiden Data Analysis Center, used for catalogue
format and handling). Most of these packages are stand-alone C-programs. IRAF was not
used in the pipeline, apart from the drizzle coaddition, since it did not allow for efficient
scripting and reduction of this specific kind of data. A number of bash shell scripts were
wrapped around those tools, which allows for an efficient, flexible and automatised end-to-
end reduction of WFI data in parallel mode. The usage of the pipeline is not restricted to the
WFI@2.2. Data from other instruments such as FORS1/2@VLT, ISAAC@VLT, SUPRIME-
CAM@SUBARU, MOSAIC-I@CTIO, MOSAIC-II@KPNO, WFI@AAO and WFI@INT has
already been successfully reduced. Supported architectures are Solaris, AIX, Linux and Dec-
Alpha.

The pipeline was designed with the GaBoDS data in mind, i.e. empty fields at high
galactic latitude, with a fairly large dither pattern of up to 3.′0, and a very large number
of single exposures per pointing. The reduction of various test data sets with very different
characteristics in terms of crowding and extent of objects has shown that the GaBoDS pipeline
can handle such fields easily, too. Figure 2.9 at the end of this chapter shows the effects of
some of the data reduction steps on a set of images.

2.2.1 The pre-processing

Overscan correction, debiasing, flat fielding Apart from the astrometric, photometric
and coaddition processes, all chips are processed individually, allowing for an easy paralleli-
sation of the code. During pre-reduction, any instrumental signatures present in the data are
removed. This includes overscan correction, bias subtraction and flat fielding with skyflats15.
For the master biases all bias exposures are median combined with outlier rejection. Flat
fields are combined in the same way, but each flat exposure is normalised to 1 before the com-
bination. Thus the different gains in the science images are still present after the flat fielding
step. This is due to the fact that the chip-to-chip gain variations can be better determined
from a superflat, which is drawn from already flatfielded exposures.

Creation of a superflat Residuals of around 3-4% after normal flat fielding are common
for WFI@2.2, depending on sky brightness and the filter in use. A superflat is computed for
correction of this effect, by median combining all exposures from a given observing run, using
outlier rejection. Pixels that are affected by stars or galaxies are detected with SExtractor
(Bertin & Arnouts, 1996) and masked beforehand. By doing so the contribution to the su-
perflat of bright extended haloes around stars is prevented. This superflat is then heavily
smoothed, yielding an illumination correction for each chip. All images are divided by their
individual illumination correction. They are also normalised to the same (the highest) gain,
which is accurately determined by comparing the modes of the individual superflats. Re-
maining residuals in the sky background are typically below 2%, and with absence of bright
stars, even below 1%.

10http://terapix.iap.fr
11http://www.cfht.hawaii.edu/∼jcc/Flips/flips.html
12http://www.eso.org/projects/aot/eclipse
13http://www.ifa.hawaii.edu/∼kaiser/imcat
14ftp://ftp.strw.leidenuniv.nl/pub/ldac/software
15For WFI@2.2m telescope dome flats are inferior compared to skyflats.
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In case one has taken a sufficiently large number of exposures (more than, say, 15), but not
enough skyflats (for example only 3 or 4), dividing the flatfielded images with the unsmoothed
superflat instead of the illumination correction can help. This is because there can be re-
maining systematics (mostly high-frequency pixel-to-pixel noise) in the master skyflat due to
the small number of individual skyflats. These systematics are then inherited by the images
and the superflat. Dividing by the superflat instead of its smoothed version, the illumination
correction can thus correct for the poor skyflat sampling. The gain can be up to 10 % in
the background noise. In case of fringing (see next paragraph), however, one has to use the
illumination correction instead of the superflat.

Defringing Besides the illumination correction, a fringing model is calculated by subtract-
ing the illumination correction from the superflat. This fringing model is then individually
scaled for each image and subtracted. Hereby it is assumed16 that the amplitudes of the
observed fringes scale directly with the sky background. For WFI@2.2 the fringing in the
R-band is of the order of a few percent as compared to the sky background. Its correction
makes sense only if more than ∼ 10 exposures were used in the calculation of the model.
Otherwise the pixel-to-pixel noise in the fringing model is larger than the fringing amplitude
itself. This would introduce more noise into the individual defringed images than what is
taken out by the correction of the lower frequency fringes. Since for weak lensing studies one
is interested in measuring shapes of faint and small galaxies, one wants to avoid additional
pixel-to-pixel noise such as from this source. However, all mosaics in the GaBoDS survey
were constructed from many more than just 10 exposures, thus the contribution of additional
high frequency noise is small, and one profits from taking out the gentle fringing pattern. In
the case of the redder I-band the fringing can be much more prominent, and is in general
much more difficult to remove.

2.2.2 The importance of dithering

Offsetting the telescope between the exposures is fundamential for high-quality, high-S/N
mosaics. Hereby the dither box, i.e. the box that encompasses all dither offsets, should be
clearly larger than the gaps between the CCDs of the camera. Using such a wide dither
pattern has several advantages as compared to the staring mode (no offsets at all) or to the
application of only small offsets.

First, the CCDs in a multi-chip camera are fully independent from each other. They see
the sky through different sections of the filter, and they have their individual flatfields, gains
and read-out noise. Choosing a wide dither pattern is the only way to establish a global
photometric solution for the mosaic, based on enough overlap objects. Even though the
science presented in this work can be done without a global photometric system (and for a
few of the ASTROVIRTEL fields this was the case since they were obtained in staring mode),
other projects that are based on this data rely on a global photometry. The latter also holds
for projects that require excellent astrometry over the entire field. For example, the CDF-
S field that was reduced with the GaBoDS pipeline serves as the astrometric reference for
GOODS (Great Observatories Origin Deep Survey), based on which all space- and ground-

16This assumption only holds for photometric nights. In non-photometric nights it can be impossible to
remove fringing in the I-band, since the model is changing within minutes on scales smaller than the field of
view of a single CCD.
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Figure 2.5: Sky background variations in a mosaic obtained in staring mode (left), and for one
obtained with a wide dither pattern (right). The contrast scaling for both mosaics is the same.

based observations in the different wavelengths will be registered with respect to each other.

Second, the wide dither pattern allows for a significantly better superflatfielding of the
data, since the objects do not fall on top of themselves and thus for every pixel an good
estimate of the background can be obtained. Besides, remaining very low-amplitude patterns
in the sky background caused by improper flatfields etc. do not add in the mosaic, but are
averaged out. Thus, a wide dither pattern will lead to an improved sky background from
which both, photometry and shape measurements of faint objects, profit. Besides, two of
the spin-off projects of GaBoDS, the search for low surface brightness galaxies and for tidal
streams, could not be done on mosaics with a highly variable sky background (see Fig. 2.5
for an illustration).

Third, the object S/N in a mosaic with a wide dither pattern is clearly superiour to one
obtained in staring mode. The reason for this is that the master bias and the master skyflat
are not noise-free, since they are created from a finite number of images. An identical copy
of this calibration noise in the master bias and skyflat is then created in each science image
during the preprocessing. If no dither offsets are applied, then the calibration noise in the
n science images is stacked on top of itself during the coaddition, and thus increases in the
same way as the flux of the objects (∝ n) instead of averaging out (∝ √n). Depending on
the ratio of the calibration noise and the noise in the uncalibrated images themselves, the
effective exposure time of the mosaic can be very significantly reduced. This is especially true
for observations gained under excellent (dark) conditions, since the sky noise in the science
images is then reduced, and the calibration noise becomes more important. One should
therefore always aim at a sufficient number of calibration exposures, and go for larger dither
offsets. This holds for single-chip cameras, too.
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2.2.3 Astrometric calibration

After the pre-processing a global astrometric solution and a global relative photometric so-
lution is calculated for all images. This is where the reduction of WFI data becomes much
more complicated than the one for single-chip cameras.

In the first step, high S/N objects in each image are detected by SExtractor, and a
catalogue of non-saturated stars is generated. Based on a comparison with the USNO-A2
astrometric reference catalogue, a zero-order, single shift astrometric solution is calculated
for each image. For a single-chip camera with a small field of view such an approach is often
sufficient, but it no longer holds for multi-chip cameras with a large field of view. There the
CCDs can be rotated with respect to each other, tilted against the focal plane (see Fig. 2.2),
and in general cover areas at a distance from the optical axis where field distortions become
prominent17. Figure 2.6 shows the difference between a zero order (single shift with respect
to a reference catalogue) and a full astrometric second order solution per image. From this
figure it is obvious that the simple shift-and-add approach will not work for the whole mosaic.
The issue is further complicated by the gaps between the CCDs and large dither patterns that
are used to cover them. Thus, images with very different distortions overlap. In addition,
due to the large field of view, the observed patch of the sky must no longer be treated as a
flat plane, but as a spherical curved surface.

In the second step Mario Radovich’s Astrometrix 18 (Terapix) package is used to determine
third order polynomials for the astrometric solution of each image. This corrects for the above
mentioned effects, and thus allows for the proper mosaicing in the later coaddition process.
For this purpose all high S/N objects (stars and galaxies) detected in the first step are
identified with each other, including those from the overlap regions. The latter ones are most
important in establishing a global astrometric (and photometric) solution, since the accuracy
of available reference catalogues such as the USNO-A2 with an rms of 0.′′2 is insufficient for
sub-pixel registration. Thus the astrometric solution is determined from the data itself. The
USNO-A2 is used only to fix the solution with respect to absolute sky coordinates within
the stated 0.′′2 rms. With Astrometrix an internal astrometric accuracy of 1/20 − 1/10th of
a pixel (0.′′02–0.′′01) is consistently achieved, thus the final PSF is mostly determined by the
intrinsic PSFs of the individual exposures (see Fig. 2.4). Additional artificial seeing and
PSF anisotropies are introduced into the mosaic on a very low level only, even for very large
data sets such as the CDF-S, consisting of 150 WFI@2.2 R-band exposures. This is a crucial
requirement for this work.

2.2.4 Photometric calibration

Once an astrometric solution is found, a relative photometric solution is straightforward.
Relative fluxes of objects in different exposures and overlap regions are compared, allowing
the calculation of relative photometric zeropoints for all images in the data set. Given two
overlapping images k and j, consider all i = 1...N objects and calculate the mean deviation
of magnitudes K and J

Mk,j :=
ΣiWi(Ki − Ji)

ΣiWi
, (2.1)

17A ZEMAX analysis (Philipp Keller, private communication) for the full optical system of WFI@2.2 shows
that the radial field distortion increases with δ = a1r

2 + a2r
6. However, the total amplitude of this distortion

is very small (∼ 30 pixels), which is in agreement with the WFI user manual (Baade, 2000).
18http://www.na.astro.it/∼radovich/WIFIX/astrom.ps



42 CHAPTER 2. FROM PHOTONS TO IMAGES

174.8 174.6 174.4 174.2

-11.8

-11.6

-11.4

Ra

Figure 2.6: Left: Difference in object position between a single-shift approach and a full two-
dimensional second order astrometric solution for the WFI@2.2. In other words, shown are the higher
order terms needed for matching the images to the sky. The patterns belonging to the left two CCDs
are due to a rotation with respect to the mosaic. The maximum position difference in the plot is
about six pixels, still a fairly small value compared to other telescope designs. It becomes clear that
a single, global distortion polynomial for all 8 CCDs does not work. Instead, every image has to be
treated individually.
Right: Coadded weight of a small WFI@2.2 data set consisting of five exposures. One clearly identifies
regions with less effective exposure time due to gaps between CCDs and different pixel sensitivities.
The size of the dither pattern also becomes obvious. Brighter regions correspond to pixels with higher
weight. The variations from chip to chip are due to differences in the gain and the flatfield.

with Wi = (σ2
K + σ2

J)−1, where the σ are the measurement errors of the corresponding
magnitudes. Objects deviating in Ki − Ji more than a user defined threshold are excluded
from the statistics that follows. The relative zeropoints ZPl for all N overlapping images are
determined by a χ2 minimisation with respect to ZPk,

χ2 =

N∑

k,j

[Mk,j − (ZPk − ZPj)]2 . (2.2)

Finally, the relative photometric zeropoints are normalised so that their mean is zero. This
approach assumes that the relative zeropoints are constant for each image19. An automatic
absolute photometric solution is not yet implemented in the pipeline.

2.2.5 A statistically optimised weighting scheme

The effective exposure time for a mosaic is highly non-uniform. Read noise and the flatfields
are chip-dependent, and gaps between the CCDs contribute further to the inhomogeneous
depth of a mosaic. Applying a statistically optimised weighting scheme to the images during
coaddition allows for a significantly improved object S/N ratio (up to a factor of ∼ 1.5).

19Zeropoint variations for images taken with WFI@2.2 that were not superflat corrected are described in:
http://www.ls.eso.org/lasilla/sciops/wfi/zeropoints .
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In a first step, a pixel is assigned its normalised skyflat value as a weight, which contains
the information about relative gains between the CCDs and pixel-to-pixel sensitivities. For
the detection of permanent image defects, such as hot or dead pixels and bad columns, dark
exposures and superflats are used. Affected pixels are set to zero in the corresponding weight
map. Thus each CCD in the WFI mosaic has its own basic (‘global’ ) weight image after the
first step. The global weight for a particular CCD does not change in a data set unless the
images from this CCD were flatfielded with different skyflats or were taken more than about
a week apart.

In a second step these global weights are adjusted individually for each image. Contrary
to other methods, ‘bad’ pixels (hot or cold pixels, pixels affected by cosmics, reflections or
satellite tracks) are not detected by comparing all images in the stack, but on the individual
images themselves. Hot pixels and cosmics are easily identified with SExtractor in conjunction
with Eye (Terapix), since they appear much sharper than the stellar PSF even under good
seeing conditions. There is some redundancy in this step, since quite a few of the permanent
pixel defects that are already recognised in the first step are detected a second time. Bright
reflections and satellite tracks, however, need to be masked by hand, the only step in the
pipeline which is not yet automatised. Moving objects like asteroids go unmasked and show
up as dashed lines in the mosaic. During coaddition, the individual weight images are scaled
with correction factors for airmass and varying photometric conditions. Changing seeing
conditions from image to image can be included on an optional basis, too. All individual
weights are resampled and coadded in exactly the same way as the respective science images,
yielding the noise properties for all pixels in the final mosaic (see Fig. 2.6 for an example).

2.2.6 The coaddition process

Before the coaddition, all images are sky subtracted. In order to model the sky background,
all objects in an image with a S/N ≥ 1.0 in the field are detected with SExtractor and
replaced with the mean sky background as determined from the remaining pixels. The S/N
threshold can vary, depending on the individual data set and the objects therein. This object-
subtracted image is then convolved with a very broad smoothing kernel (width between 200
and 500 pixels) and subtracted from the science image itself.

For the coaddition, the EIS drizzle in IRAF is used. It allows for a weighted mean
coaddition, guaranteeing the best S/N in the mosaic. For the coadding, the input pixels
from the images are mapped onto the initially empty output grid, using the full astrometric
solution. This process is known as resampling, and guarantees that a varying pixel scale is
correctly taken into account also from a photometric point of view. In general, an individual
input pixel lands somewhere on top of several neighbouring output pixels, and is distorted
and rotated. Its flux is then accordingly distributed amongst these output pixels, which
leads to correlated noise in the mosaic. Such a procedure is called forward mapping. The EIS
drizzle approach strongly simplifies the calculation (the kernel) of the flux distribution, in the
sense that only non-integer shifts are taken into account, whereas rotations and distortions
of the mapped pixels are neglected. A general description of the drizzling approach is given
in Gonzaga et al. (1998).

Alternatively, one can use SWarp (E. Bertin, Terapix), which makes use of a more ad-
vanced kernel for the resampling, and uses a technique called reverse mapping for the coad-
dition. In this approach all input images get individually undistorted and resampled. An
individual pixel in the output image is then mapped onto all n resampled input images, using
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Figure 2.7: Comparison of image seeing and ellipticities between two mosaics created with SWarp
respectively EIS drizzle. The left panel shows that the swarped image has an image seeing that is
0.09 pixels smaller than the one for the drizzled image (plotted are the half light radii for unsaturated
stars). The absolute mean values for the image seeing are 0.′′95 for the drizzled image and 0.′′91 for
the swarped one. The latter value is consistent with the expected image seeing (the geometrical mean
of the seeing in the individual images), given a perfect coaddition procedure. The same astrometric
solution was used for both coadditions. Thus EIS drizzle slightly increases the size of the PSF, an
effect of its simplified kernel. In Fig. 2.8 it is shown that the PSF anisotropies are identical for both
coaddition strategies.
The right panel shows the PSF corrected image ellipticities for galaxies (see Sect. 3.1.2). It becomes
clear that the coaddition method does not bias the shape measurement.

the inverse astrometric solution. Thus n flux estimates for the output pixel are at hand, from
which an optimal value is calculated (see Bertin, 2002, for details).

The advantages of SWarp over drizzle are that the mosaic does not have correlated noise,
and has a slightly better image seeing (see left panel of Fig. 2.7). Apart from these the
differences become negligible when a larger number of exposures is stacked (n ≈ 10 − 20).
In particular, the measured ellipticities of faint background galaxies remain unbiased when
switching from SWarp to drizzle (see right panel of Fig. 2.7). Besides, the PSF patterns for
SWarp and drizzle are remarkably similar as can be seen from Fig. 2.8.

In the drizzling approach used, four factors determine the value of an output pixel in the
mosaic. Given is a value Ii from an input pixel in the science image, and an associated value
Wi in the weight map. Ii represents the part of the input pixel that is mapped onto the
corresponding output pixel. Besides, Ii is scaled with factors fi to the consistent photometric
zeropoint and normalised to a fixed exposure time of 1 second. This scaling reads

fi = 10−0.4ZPi/ti, (2.3)

where ti is the exposure time and ZPi the relative photometric zeropoint. All images are also
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weighted according to their sky noise. This weight scale is given by

wi =
1

σ2
sky,if

2
i

. (2.4)

Here it is taken into account that the noise also scales with the flux scale fi. The values Iout

and Wout in a stack of N exposures then read

Iout =

∑N
i=1 IifiWiwi∑N
i=1 Wiwi

, Wout =

N∑

i=1

Wiwi . (2.5)

EIS drizzle creates its output with the TAN projection. Alternatively, the COE projection
can be used (see Greisen & Calabretta, 2002, for further information on sky projections). In
the mosaics North is up and East to the left. A reference coordinate can be specified for
the coaddition. Thus, if multicolour information is available for a particular pointing, the
mosaics in the different bands are automatically registered with sub-pixel accuracy.
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Figure 2.8: PSF anisotropies in a drizzled (left column) and a swarped (right column) mosaic of the
same data set. The patterns are virtually identical. Yet EIS drizzle marginally increases the size of
the PSF, as was shown in the left panel of Fig. 2.7.
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Figure 2.9: Individual calibration exposures and their effect on the exposures as they run through
the pipeline. From left (l) to right (r), and from top (t) to bottom (b) this is: (tl) the master bias,
(tm) the master skyflat, (tr) the raw exposure, (ml) the debiased and flatfielded images, (mm) the
illumination correction including the gain differences, (mr) the superflatted and gain corrected images,
(bl) weight for an individual exposure, (bm) the mosaic, (br) the coadded weight.
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Table 2.1: GaBoDS fields

Field α(2000.0) δ(2000.0) Exp time Source

Field α(2000.0) δ(2000.0) Exp time Source
C04p3 215.098018 −10.75340 4000 ASTROVIRTEL
CAPO-DF 186.037876 −13.10764 13000 ESO archive
CDF-S 53.133442 −27.82255 57200 EIS COMBO-17 GOODS
CL1037−1243 159.444072 −12.75499 3600 EDisCS
CL1040−1155 160.139300 −11.96379 3600 EDisCS
Cl1054−1146 163.581888 −11.81304 3600 EDisCS
Cl1054−1245 163.647353 −12.79700 3600 EDisCS
CL1059−1253 164.755650 −12.92051 3000 EDisCS
CL1119−1129 169.784677 −11.52558 3600 EDisCS
CL1138−1133 174.508878 −11.59953 3600 EDisCS

A1347 P1 175.257022 −25.51474 13500 own observation
A1347 P2 175.792544 −25.50918 7500 own observation
A1347 P3 175.239760 −25.00933 7000 own observation
A1347 P4 175.794592 −24.99836 8000 own observation
A901 149.077714 −10.02734 18100 COMBO-17
AM1 58.811816 −49.66762 7500 ASTROVIRTEL
B8m1 340.34884 −10.08953 4500 ASTROVIRTEL
B8m2 340.348548 −10.58954 5400 ASTROVIRTEL
B8m3 340.346888 −11.08857 5400 ASTROVIRTEL
B8p0 340.348861 −9.59009 7200 ASTROVIRTEL

B8p1 340.346051 −9.08957 4500 ASTROVIRTEL
B8p2 340.345309 −8.58963 5400 ASTROVIRTEL
B8p3 340.345149 −8.08951 5400 ASTROVIRTEL
C0400 214.360609 −12.25356 4800 ASTROVIRTEL
C04m1 214.727417 −12.75342 4000 ASTROVIRTEL
C04m2 214.478576 −13.25319 4000 ASTROVIRTEL
C04m3 215.318002 −13.75352 4000 ASTROVIRTEL
C04m4 215.111423 −14.25337 4000 ASTROVIRTEL
C04p1 214.726983 −11.75319 4000 ASTROVIRTEL
C04p2 214.727266 −11.25366 4000 ASTROVIRTEL
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Table 2.2: GaBoDS fields (continued)

CL1202−1224 180.645603 −12.44172 3600 EDisCS
CL1216−1201 184.170966 −12.06268 3600 EDisCS
CL1301−1139 195.467853 −11.63099 3600 EDisCS
CL1353−1137 208.306268 −11.59813 3600 EDisCS
CL1420−1236 215.066773 −12.64986 3600 EDisCS
Comparison 65.307669 −36.28380 5300 ASTROVIRTEL
DEEP1a 343.795067 −40.19886 7200 EIS
DEEP1b 343.058572 −40.22481 3900 EIS
DEEP1c 342.328125 −40.20702 3900 EIS
DEEP1e 341.966792 −39.52874 9000 EIS

DEEP2a 54.372223 −27.81551 6000 EIS
DEEP2b 53.746626 −27.80862 5100 EIS
DEEP2d 52.506344 −27.81774 3000 EIS
DEEP2e 53.122917 −27.30467 7500 own observation
DEEP2f 53.669953 −27.32400 7000 own observation
DEEP3a 171.245593 −21.68289 7200 EIS
DEEP3b 170.661597 −21.70969 9300 EIS
DEEP3c 170.019096 −21.69960 9000 EIS
DEEP3d 169.428759 −21.70164 9300 own observation
FDF 16.445419 −25.85742 11840 COMBO-17

F17 P1 216.419162 −34.69460 10000 own observation
F17 P3 217.026113 −34.69463 10000 own observation
F4 P1 321.656115 −40.25193 9500 own observation
F4 P2 321.719420 −39.76761 7000 own observation
F4 P3 322.320122 −40.23769 10000 own observation
F4 P4 322.323894 −39.72689 7500 own observation
NDF 181.362371 −7.65226 21800 MPE IR group
NGC300 13.721845 −37.67132 15000 ASTROVIRTEL
Pal3 151.432117 −0.00344 4200 ASTROVIRTEL
S11 175.748601 −1.73458 21500 COMBO-17

SGP 11.498527 −29.61047 20000 COMBO-17
SHARC-2 76.333333 −28.81805 11400 own observation
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Chapter 3

Finding galaxy clusters by weak
lensing

In this chapter it is demonstrated how a dark matter halo can be detected by means of
its lensing signal (shear selection). For this purpose, an object catalogue must be created
from the coadded image that was produced in the previously described manner, containing
information about the lensed galaxies in this image. This catalogue must be filtered with
respect to several criteria in order to be useful for the subsequent analysis. The catalogue
production and filtering are explained in section 3.3, after the basic concepts of the techniques
used have been introduced and the motivation for several filtering steps became clear.

In section 3.1, a measure for the ellipticities of galaxy images is defined. It is shown how
the lensing signal can be recovered from these ellipticities, and how one can correct to first
order for various PSF effects. Thereafter, it is demonstrated in section 3.2 in what way the
extracted lensing signal can be used for the detection of clusters of galaxies. At the end of
this chapter an estimate of this method’s detection limits in terms of redshift and galaxy
cluster mass is given for the underlying GaBoDS data.

3.1 Recovering gravitational shear

As was shown in equation (1.75), a circular source is mapped into an ellipse under the action
of the gravitational shear γ. Since galaxies have an intrinsic ellipticity, the shear signal can
not be obtained from a single galaxy alone, but must be measured from a larger number of
lensed background sources. Figure 3.1 shows the effect a galaxy cluster has on the images of
unlensed background galaxies. It induces a tangentially oriented distortion pattern in them.
The extraction of this signal requires a measurement of the shape of the individual galaxies,
whose angular sizes are very small, typically comparable to the PSF. Thus, PSF effects have
to be taken into account, which makes the measurement of a weak lensing signal one of the
more difficult tasks in observational astronomy.

3.1.1 Image ellipticities

Basic definitions Let I(θ) be the surface brightness of a galaxy on the sky. Choose the
coordinate system such that the first moment of the surface brightness vanishes, i.e. the
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Figure 3.1: Tangential distortion pattern caused by cluster lensing. The left panel shows a simulated
image of background galaxies created with SkyMaker (E. Bertin). The assumed exposure time was
50 ksec, the image seeing is 0.′′6 and the field is 75′′ wide. In the right panel the shear field of a
model cluster with a critical central surface mass density of κ = 1.47 was imprinted into the galaxy
catalogue before the image creation. The cluster was taken from a dark matter simulation by Jain &
van Waerbeke (2000), its position is marked by the small cross. As can be seen, the tidal gravitational
field of a galaxy cluster imprints a tangentially aligned, coherent distortion pattern onto the images
of the background galaxies. Note that the real exposures in GaBoDS are typically a factor of five less
in exposure time, and have 50% larger seeing. Besides, the fields were selected in a way to avoid such
massive clusters, i.e. the alignment patterns sought in this work are significantly weaker than the one
shown here.

origin of the coordinate system is put at the image “centre”,

Qi =

∫
θiI(θ) d2θ = 0 . (3.1)

Based on the second brightness moments

Qij =

∫
θiθjI(θ) d2θ , (3.2)

two complex image ellipticities χ, alternatively ε, are defined,

χ =
Q11 −Q22 + 2iQ12

Q11 +Q22
, (3.3)

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2
√
Q11Q22 −Q2

12

. (3.4)

χ and ε are entirely equivalent to each other, both concepts are used in the literature. The
two are related through

ε =
χ

1 +
√

1− |χ|2
. (3.5)
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To understand these two definitions, consider a galaxy with elliptical isophotes, position angle
ϕ and a ratio r ∈ ]0, 1] of the minor and major axes. The two ellipticities for this galaxy then
read

χ =
1− r2

1 + r2
e2iϕ (3.6)

ε =
1− r
1 + r

e2iϕ . (3.7)

Transformation under a gravitational shear field Now that a measure for the el-
lipticity of an image with arbitrary surface brightness profile is at hand, how does a tidal
gravitational field change this quantity? It was shown by e.g. Schneider & Seitz (1995) that
a gravitational lens relates the unlensed intrinsic source ellipticity χs to the lensed image
ellipticity χ by

χ =
χs + 2g + g2χ∗s

1 + |g|2 + 2 Re(gχ∗s )
. (3.8)

The operator ∗ denotes complex conjugation, and g is the reduced shear defined in equation
(1.76). The corresponding transformation for ε was given by Seitz & Schneider (1997),

ε =





εs+g
1+g∗εs

for |g| ≤ 1

1+gε∗s
ε∗s +g∗ for |g| > 1

. (3.9)

Note the case distinction for |g|. In the weak lensing regime |γ| � 1 and κ� 1, thus |g| � 1.
This also holds for the GaBoDS fields which are biased towards lower density lines of sight,
hence for this work

ε ≈ εs + g ≈ εs + γ . (3.10)

From ellipticities to shear Since the intrinsic shape of a galaxy is not known in the pres-
ence of lensing, the reduced shear can not be extracted from equation (3.10). The assumption
is made, instead, that the ellipticities of background galaxies are random and uncorrelated
in the absence of lensing1. Then the (reduced) shear at the position θ can be recovered from
the image ellipticities by averaging over a sufficient number of galaxies that are close enough
to θ, so that the local lens properties κ and γ do not vary significantly between them. It is
first assumed that all sources are at the same redshift, since κ and γ are calculated from the
lensing potential ψ in equation (1.64), and thus depend of the redshifts in the lens system.
One obtains

〈ε〉 ≈ 〈εs〉+ g = 0 + g ≈ γ (3.11)

as an unbiased estimator for the local shear. Sufficiently deep exposures with a high enough
number density of background galaxies (n & 10 arcmin−2) should be obtained for a sufficient

1This certainly holds for spatially uncorrelated galaxies, but it was shown that alignments in the intrinsic
ellipticities may exist once galaxies are physically connected (see Heymans & Heavens, 2003; Jing, 2002, for
details). The contribution of such alignments to the weak lensing signal is believed to be on the 10% level for
deeper surveys such as GaBoDS, and is thus neglected in this work.
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weak lensing analysis with this estimator. Its rms was determined by Schneider et al. (2000)
to be

σg ≈ σε
1− |g|2√

n
, (3.12)

where σε is the dispersion of the intrinsic source ellipticities εs, and n is the number of galaxies
in the aperture.

However, the effect of a source redshift distribution on the lensing strength can be signif-
icant (see Fig. 1.4) and should not be neglected. Relations for the shear estimator including
a known source redshift distribution are given in Seitz & Schneider (1997) and Bartelmann
& Schneider (2001). There it is shown that in the weak lensing regime a slight modification
of equation (3.10) can account for the redshift distribution,

〈ε〉 ≈ 〈s〉 γ∞ , with 〈s〉 =

∫
p(z) s(z) dz = s(z0) (3.13)

where p(z) is the source redshift distribution and s(z) the relative lensing strength as defined
in equation (1.86). Thus one can replace the redshift distribution with a single redshift z0

defined such that the relative lensing strength s(z0) = 〈s〉.

Individual galaxy weighting Erben et al. (2001) introduced a weighting scheme that
estimates the reliability of the shear information gained from an individual galaxy. For this
purpose, the variance σ2

g of the reduced shear is calculated from a sample of galaxies with
similar properties in the two-dimensional parameter space consisting of the half-light radius
rh and the detection S/N . The 20 nearest neighbours in the (rh, S/N)-space are used for the
calculation of this variance. The individual weighting factors are determined as wi = 1/σ2

g .

3.1.2 PSF correction

In this section the KSB method (Kaiser et al., 1995) for the PSF corrections is summarised,
together with an extension of Luppino & Kaiser (1997) and a modification proposed by
Hoekstra et al. (1998). Contrary to other methods such as those proposed by Bonnet &
Mellier (1995) and Wilson et al. (1996), KSB does not rely on calibrations gained from
simulations, but derives all PSF corrections from the individual data directly. It has been
widely used and tested and was found to yield good results (see Erben et al., 2001; Hoekstra
et al., 1998, for example).

For practical purposes the quadrupole moments (3.2) of the brightness distribution need
to be replaced by weighted moments,

Qij =

∫
θiθjI(θ)W

(
θ2/σ2

)
d2θ . (3.14)

Here W is an isotropic Gaussian, suppressing the background noise and the influence of
neighbouring objects. Its width σ depends on the individual object size.
The following very technical description is mostly taken from Bartelmann & Schneider (2001).
These quantities and relations are needed for the first half of KSB :

• P (θ), the normalised PSF

• P iso(θ), the azimuthally averaged, isotropic part of the PSF
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• q(θ), the anisotropic part of the PSF – see equation (3.15)

• Is(θ), the unlensed image of the source without any PSF

• I(θ), the lensed image without any PSF

• I0(θ), the unlensed image blurred with P iso

• I iso(θ), the lensed image blurred with P iso

• Iobs(θ), the actually observed surface brightness.

P (θ) =

∫
d2ϑ q(ϑ)P iso(θ − ϑ) (3.15)

defines the PSF as a convolution of the isotropic part with the anisotropic kernel q. Both q
and P iso are chosen to have vanishing first moments and are normalised to unity. For the
surface brightnesses introduced the corresponding convolutions with the PSF or its isotropic
part are

Iobs(θ) =

∫
d2ϑ I(ϑ)P (θ − ϑ) , (3.16)

I iso(θ) =

∫
d2ϑ I(ϑ)P iso(θ − ϑ) , (3.17)

I0(θ) =

∫
d2ϑ Is(ϑ)P iso(θ − ϑ) . (3.18)

The second moments of the PSF anisotropy q are assumed to be small. This holds very well
for the GaBoDS data where the mean PSF anisotropies are of the order of 1% (see Fig. 2.4).

Correcting for PSF anisotropies Relating the observed image I obs to the isotropically
smeared image I iso, the impact of the PSF anisotropy can be quantified. According to the
splitting of the PSF into an isotropic and an anisotropic part, the observed image can be
described as

Iobs(θ) =

∫
d2ϕ q(θ −ϕ) I iso(ϕ) . (3.19)

Setting ϑ = θ−ϕ, and assuming for the moment that f(θ) is an arbitrary function, one has

∫
d2θ f(θ)Iobs(θ) =

∫
d2ϕ I iso(ϕ)

∫
d2ϑ f(ϕ+ ϑ) q(ϑ) . (3.20)

Expanding f(ϕ+ ϑ) into a Taylor series, the last integral in (3.20) is to second order

f(ϕ)

∫
d2ϑ q(ϑ) +

∫
d2ϑϑk q(ϑ) ∂k f(ϕ) +

1

2

∫
d2ϑ ϑk ϑl q(ϑ) ∂2

kl f(ϕ) .

Here implicit summation over the indices k, l is assumed. The second term in this sum
disappears since the first moments of q are zero. Defining qij as the second moments of q,
and making use of the fact that q is normalised, one has

∫
d2θ f(θ)Iobs(θ) ≈

∫
d2ϕ I iso(ϕ)f(ϕ) +

1

2
qkl

∫
d2ϕ I iso(ϕ) ∂2

kl f(ϕ) . (3.21)
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In the following only terms linear in q are kept. With this approximation the I iso in the
integral involving the derivative can be replaced by I obs. Substituting f(θ) = θiθjW (θ2/σ2),
and solving for the integral with I iso yields the second brightness moments,

Qiso
ij = Qobs

ij − 1/2Zijkl qkl with (3.22)

Zijkl =

∫
d2ϕ Iobs(ϕ) ∂2

kl

[
ϕiϕjW

(
ϕ2

σ2

)]
. (3.23)

Having this expression for the Qij at hand, one can calculate the complex ellipticity χ defined
in equation (3.4). Defining q1 = q11 − q22 and q2 = 2q12, and keeping again only terms up to
first order in qα, one obtains a relation between the ellipticities of the observed image and a
hypothetical image smeared by an isotropic PSF only,

χiso
α = χobs

α − P sm
αβ qβ . (3.24)

The following terms are used in this relation,

P sm
αβ =

1

TrQobs
(Xαβ − χobs

α xβ) , (3.25)

Xαβ =

∫
d2ϕ Iobs(ϕ)

[(
W +

2ϕ2

σ2
W ′
)
δαβ +

ηα(ϕ)ηβ(ϕ)

σ4
W ′′
]
, (3.26)

xα =

∫
d2ϕ Iobs(ϕ)

(
2W ′ +

ϕ2

σ2
W ′′
)
ηα(ϕ)

σ2
. (3.27)

Here δαβ is the Kronecker symbol, and η1(ϕ) = ϕ2
1 − ϕ2

2 and η2(ϕ) = 2ϕ1ϕ2. The linear
response of the ellipticity to an anisotropy in the PSF is described by the smear polarisability,
P sm
αβ . Note that the ellipticities of larger images are less affected by the anisotropy than the

ones of smaller images, since the previously defined correction factor P sm
αβ is divided by TrQobs,

which becomes the larger the larger the image gets.
In order to make use of equation (3.24), one has to determine the qα. These can be

measured directly from the stars in the images, since stars are intrinsically round and not
affected by lensing. Thus their χ∗,isoα = 0, and from (3.24) one obtains

qα = (P ∗,sm)−1
αβ χ

∗,obs
β . (3.28)

Since the PSF in the coadded WFI@2.2 images varies smoothly over the field of view and
over the chip boundaries (see Fig. 2.4), a two-dimensional polynomial can be fitted to q.
Thus the anisotropy at any given position in the field is known, and the ellipticities can be
individually corrected for it.

Correcting for isotropic PSF smearing The isotropic smearing of a PSF has a circu-
larising effect on the ellipticity of galaxy images, diluting the imprinted shear signal. In the
following a correction for this effect is derived. In addition, an effective PSF P̂ is introduced
which contains the gravitational shear as an anisotropic component, thus the previously found
relations can be applied. Combining this result with the one obtained above yields a first or-
der correction for PSF anisotropies and isotropic PSF smearing, and allows for the evaluation
of the reduced shear g.
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Using the locally linearised lens mapping (1.73), the lensed image without any PSF reads
I(θ) = Is(Aθ). One can then relate the lensed and isotropically blurred image I iso to the
source Is as

I iso(θ) =

∫
d2ϕ Is(Aθ)P iso(θ −ϕ) (3.29)

= (detA)−1

∫
d2ζ Is(ζ)P iso(θ −A−1ζ) (3.30)

=: Î(Aθ) , (3.31)

where

Î(θ) =

∫
d2ϕ Is(ϕ)P̂ (θ −ϕ) , (3.32)

P̂ (θ) := (detA)−1P iso(A−1θ) . (3.33)

Calculating the Q̂ij from Î gives

Q̂ij =

∫
d2β βiβj Î(β)W

(
β2

σ̂2

)
(3.34)

= detAAikAjl

∫
d2θ θkθl I

iso(θ)W

(
θ2 − δα ηα(θ)

σ2

)
,

where σ̂2 = (1 − κ)2(1 + |g|2)σ2, and δ := 2g/(1 + |g|2). For small δ the weighting function
can be replaced by a Taylor series up to first order, which then yields an expression between
χ̂ and χiso,

χ̂α = χiso
α − Cαβ gβ . (3.35)

In this relation the following definitions were used,

Cαβ = 2δαβ − 2χobs
α χobs

β +
2

TrQobs

(
Bαβ − χobs

α Lβ

)

Bαβ =

∫
d2θ Iobs(θ)W ′

(
θ2

σ2

)
ηα(θ) ηβ(θ)

σ2

Lα =

∫
d2θ Iobs(θ)W ′

(
θ2

σ2

)
θ2 ηα(θ)

σ2
. (3.36)

Cαβ is called the shear polarisability. In principle it should be calculated from I iso instead
of Iobs, but due to the smallness of q the difference between C iso

αβ gβ and Cobs
αβ gβ in (3.35)

is neglected, since g is also small. Thus the shear polarisability can be calculated from the
observed light profile, as was the case for the smear polarisability.

In full analogy to the correction of PSF anisotropies, P̂ is split into an isotropic and an
anisotropic part (the shear). One finds

P̂ (θ) =

∫
d2ϕ P̂ iso(ϕ) q̂(θ −ϕ) (3.37)

Î0(θ) =

∫
d2ϕ Is(ϕ) P̂ iso(θ −ϕ) (3.38)

Î(θ) =

∫
d2ϕ Î0(ϕ) q̂(θ −ϕ) , (3.39)
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thus the relation between Î and Î0 is the same as between Iobs and I iso, and the ellipticities
become

χ̂0
α = χ̂α − P̂ sm

αβ q̂β . (3.40)

Again one makes use of the fact that q̂ is small, so are the differences between I obs, I iso and
Î. Continuing the first-order approximation, the P̂ sm can be calculated from Iobs instead of
Î, and thus P̂ sm = P sm is expressed in terms of observables, too.

The χ̂α can be eliminated by combining equations (3.35) and (3.40),

χiso
α = χ̂0

α + Cαβ gβ + P sm
αβ q̂β . (3.41)

As for the true PSF anisotropies q, a relation for the shear-induced q̂ and the reduced shear
g can be inferred from this equation from stellar sources, since their χ̂0 and χiso vanish,

q̂α = −(P ∗,sm)−1
αβ C

∗
βγ gγ . (3.42)

With this result at hand, and combining it with equations (3.24) and (3.28) from the
anisotropy correction, one finally obtains the full correction as

χ̂0
α = χobs

α − P sm
αβ qβ − P g

αβ gβ (3.43)

with

qβ = (P ∗,sm)−1
βγ χ

∗,obs
γ , (3.44)

P g
αβ = Cαβ − P sm

αγ (P ∗,sm)−1
γδ C

∗
δβ . (3.45)

Quantities with an asterisk ∗ are calculated from stellar sources. It was shown by Hoekstra et
al. (1998) that the correction factors obtained from stars should better be calculated with the
same scale σ in the weight function as is used for an individual galaxy, although the formalism
here does not imply such a necessity. Thus, for practical purposes, a set of correction factors
is calculated for a sample of ≈ 10 different weighting scales. The closest match for a particular
galaxy is then selected for the correction.

Practical shear estimate An estimate of the reduced shear g is obtained by inverting
(3.43). In matrix notation,

g = (P g)−1(χobs − P smq)− (P g)−1χ̂0. (3.46)

Since χ̂0 is dominated by the intrinsic ellipticity of the galaxy, this measure for g is very
noisy. Since

〈
(P g)−1χ̂0

〉
≈ 0 (Erben et al., 2001),

〈g〉 =
〈

(P g)−1(χobs − P smq)
〉

(3.47)

is an unbiased estimator of the reduced shear.

A further simplification of this formalism is the approximation of the matrix approach
with a scalar description, i.e. P sm

αβ ≈ 1
2 δαβ Tr (P sm) and P g

αβ ≈ 1
2 δαβ Tr (P g) (see Erben et

al., 2001). The scalar correction is found to yield slightly less noisy results than the full
matrix approach.
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3.2 Using weak shear for cluster detection

As was illustrated in Fig. 3.1, the tidal gravitational field of a cluster-sized mass concentra-
tion induces a coherent distortion pattern into the images of distant background galaxies. By
scanning the field for such characteristic distortion patterns one can detect mass concentra-
tions directly, irrespective of their luminosity (see Erben et al., 2000; Umetsu & Futamase,
2000; Wittman et al., 2001; Schirmer et al., 2003, for examples). However, the total mass
of such clusters inside a given aperture can not be determined from shear information alone
due to the invariance g′ = g under the transformation (1.82) in the lens mapping. A quantity
related to the total mass, however, is the difference in the mean mass inside a circle with
radius θ1 and inside an outer ring with θ1 ≤ r ≤ θ2. Thus an additive constant to κ (see
equation (1.81)) is eliminated. This measure is known as the ζ-statistics,

ζ(θ; θ1, θ2) := κ̄(θ; 0, θ1)− κ̄(θ; θ1, θ2) , (3.48)

suggested by Kaiser (1995). Calculating such a quantity on a grid that has been laid over a
data field immediately picks out overdense and underdense regions of various sizes, depending
on the filter scale. A great advantage of such a statistics is that the same measure, applied
to mock catalogs with randomised ellipticities, yields a direct handle on the S/N ratio and
thus the reliability of a particular cluster detection. If, in addition to the detection S/N , the
cluster redshift is available, an estimate for the cluster’s total mass can be obtained.

3.2.1 Map-statistics

For the purpose of this work a generalised version of the ζ-statistics is used, i.e. the aperture
mass statistics Map, introduced by Schneider (1996). Map is a filtered integral of κ inside an
aperture at a given position θ0,

Map(θ0) =

∫
d2θ κ(θ + θ0)U(θ) , (3.49)

where U(θ) ≡ U(|θ|) is a radially symmetric filter function. For

U(θ) =





(πθ2
1)−1 0 ≤ θ ≤ θ1[

π(θ2
1 − θ2

2)
]−1

θ1 < θ ≤ θ2

0 θ2 < θ

(3.50)

the Map-statistics is identical with the ζ-statistics.

Expressing Map in terms of shear In the above form Map is not particularly useful for
practical purposes since κ is not directly observable. However, Schneider (1996) showed that
Map can be expressed in terms of γ when substituting κ with the inversion given in equation
(1.81),

Map(θ0) =
1

π

∫
d2θ U(θ) Re

(∫
d2θ′ γ(θ′)D∗(θ + θ0 − θ′)

)
+

+
1

π
κ0

∫
d2θ U(θ) . (3.51)
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This relation allows for the elimination of the additive constant κ0 if the filter function U is
chosen to be compensated, i.e.

∫
d2θ U(θ) =

∫ 2π

0
dϕ

∫ ∞

0
dθ θ U(θ)

︸ ︷︷ ︸
= 0

= 0 . (3.52)

Substituting

ϕ := θ′ − θ0 , Θ := θ1 + iθ2 = θ ei η , Φ := ϕ1 + iϕ2 = ϕ eiα , (3.53)

and using D(θ) = −1/(Θ∗)2, equation (3.51) becomes

Map(θ0) =
−1

π
Re

(∫
d2ϕγ(ϕ + θ0)

∫
d2θ U(θ)

1

(Θ− Φ)2

)

=
−1

π
Re

(∫
d2ϕγ(ϕ + θ0)

∫ ∞

0
dθ θ U(θ)

∫ 2π

0

dη

(Θ− Φ)2

)
. (3.54)

Changing the integration variable in the last integral from η to Θ, keeping θ fixed, yields
dη = −i dΘ/Θ. This corresponds to an integration around the unit circle in the complex
number plane. The integrand then has two poles at Θ = 0 and Θ = Φ, with residues of
−i/Φ2 and i/Φ2, respectively. If the second pole lies inside the loop, i.e. θ > ϕ, then the
integral evaluates to zero since the two residues cancel each other. If θ < ϕ, only the first
residue contributes to the integral, yielding a non-zero value. For θ = ϕ the integration path
cuts the second pole, yielding a delta function. Thus,

∫ −i dΘ

Θ(Θ− Φ)2
=

π

Φ2
[2H(ϕ− θ)− ϕ δDirac(ϕ− θ)] , (3.55)

where H is the Heaviside function, combining the cases θ > ϕ and θ < ϕ. In the following,
the last two integrals in (3.54) become

∫ ∞

0
dθ θ U(θ)

π

Φ2
[2H(ϕ− θ)− ϕ δDirac(ϕ− θ)] = (3.56)

=

∫ ϕ

0
dθ θ U(θ)

2π

Φ2
− ϕ2U(ϕ)

π

Φ2
=

=
πϕ2

Φ2

(
2

ϕ2

∫ ϕ

0
dθ θ U(θ) − U(ϕ)

)
.

Thus, Map can be written as

Map(θ0) =

∫
d2ϕ

[
−ϕ2 Re

(
γ(ϕ+ θ0)

Φ2

)] (
2

ϕ2

∫ ϕ

0
dθ θ U(θ) − U(ϕ)

)

=

∫
d2ϕ γt(ϕ;θ0) Q(ϕ) . (3.57)

Here the tangential shear γt at position ϕ relative to the point θ0 was defined as

γt(ϕ;θ0) = −ϕ2 Re

(
γ(ϕ+ θ0)

Φ2

)

= −Re
(
γ e−2iα

)

= − (γ1 cos 2α+ γ2 sin 2α) , (3.58)
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and the new filter function Q is

Q(ϕ) =
2

ϕ2

∫ ϕ

0
dθ θ U(θ)− U(ϕ) . (3.59)

Thus Map can be expressed in terms of the tangential shear with an appropriately chosen
filter function. It can be calculated from a finite field if Q becomes zero beyond a certain
radius. Note that γt is undefined if ϕ = 0, i.e. when the position where γt is to be measured
coincides with θ0.

3.2.2 S-statistics and an optimal filter Q

S-Statistics It was shown above that by means of the Map-statistics mass concentrations
can be found. Apart from the fact that U should be compensated, no further constraints
were imposed on U and Q. In the following, various suggestions for the filter functions Q are
presented, followed by an analysis of their effectiveness in detecting mass concentrations.

Schneider (1996) showed that the variance of Map for the unlensed case, respectively the
weak lensing regime, is given by

σ2
Map

=
πσ2

ε

n

∫ θ

0
dϑϑQ2(ϑ) , (3.60)

where σε is the ellipticity dispersion and n the number density of background galaxies. The
integration is performed over a finite interval since it is assumed that Q ≡ 0 for ϑ > θ. For
the application to real data this integral has to be replaced by a sum over individual galaxies.
Section 3.2.4 contains the derivation of the corresponding expressions.

With the σ2
Map

at hand one defines the S-statistics, or the S/N for Map,

S(θ;θ0) =

√
n

π σ2
ε

∫ θ
0 d2ϑγt(ϑ;θ0)Q(ϑ)√∫ θ

0 dϑϑQ2(ϑ)
. (3.61)

In the following, θ0 denotes the position at which Map, respectively the S-statistics, is evalu-
ated. θ gives the size of the aperture, and ϑ measures the distance inside this aperture from
its centre at θ0.

An optimal filter Q The filter function Q that guarantees the highest possible S/N can
be derived directly from the S-statistics in (3.61). Assuming a radially symmetric density
profile for the dark matter halo, and dropping the constant pre-factor, (3.61) becomes

S(θ) =

∫ θ
0 dϑϑγt(ϑ)Q(ϑ)√∫ θ

0 dϑϑQ2(ϑ)
. (3.62)

Using the variational principle, an optimal choice for Q can be derived. Assuming a fixed
aperture size (δθ = 0), an infinitely small variation δQ leads to a variation δS,

δS(Q, θ) =
∂S

∂Q
δQ+

∂S

∂θ
δθ =

∂S

∂Q
δQ . (3.63)



62 CHAPTER 3. FINDING GALAXY CLUSTERS BY WEAK LENSING

S is extreme if δS = 0,

δS =
∂

∂Q

∫ θ
0 dϑϑγt(ϑ)Q(ϑ)√∫ θ

0 dϑϑQ2(ϑ)
δQ

=

√∫ θ
0 dϑϑQ2(ϑ)

∫ θ
0 dϑϑγt(ϑ) −

∫ θ
0 dϑϑγt(ϑ)Q(ϑ)

R θ
0 dϑϑQ(ϑ)qR θ
0 dϑϑQ2(ϑ)

∫ θ
0 dϑϑQ2(ϑ)

δQ

= 0 . (3.64)

This is satisfied if the numerator in the last equation vanishes,

∫ θ

0
dϑϑQ2(ϑ)

∫ θ

0
dϑϑγt(ϑ) =

∫ θ

0
dϑϑγt(ϑ)Q(ϑ)

∫ θ

0
dϑϑQ(ϑ) (3.65)

By comparing the integrands in the last expression, one immediately finds that

Q(ϑ) ∝ γt(ϑ) (3.66)

solves the problem, and thus extremises S. This result is intuitively clear, since a signal with
a certain shape is best picked up by a similar filter function. The same conclusion was derived
by Schneider (1996) in a different way, using the Cauchy-Schwarz inequality.

Still, the exact radial tangential shear profile of a given cluster is not known a priori.
This means that a generic filter function will not detect a particular dark matter halo with
the highest possible S/N . However, in general it should be as effective as possible. In the
following a selection of filter functions Q is discussed.

3.2.3 A sample of filter functions

In the following various filters U(x) and Q(x) are presented, with x := ϑ/θ. Here ϑ is the
projected angular distance on the sky from the aperture centre, normalised by the aperture
radius θ. By varying θ, shear patterns respectively dark matter haloes of different extent can
be detected.

If Map is evaluated close to the border of an image, the aperture covers only part of the
data field and thus does no longer give a correct result for Map in the sense of its definition
in (3.49). Actually, this is the case for virtually all fields and most of the filter scales used
in this work. The typical apertures used have diameters of 5′ - 25′ and more, compared to
an image size of just about 34′ × 34′ . Besides, holes of significant size are spread across the
galaxy distribution due to the masking of bright stars which are present in every image (see
also Sect. 3.5). Thus, only in a few cases Map can be evaluated in its original sense.

Unaffected by this, however, is the capability of Map to detect correlated shear patterns
in the field, including a S/N -estimate according to (3.62). Hereafter Map, respectively the
S-statistics, is used in this sense only. This also gives greater freedom in the search of a
filter function Q, irrespective of U , which is best suited for the detection of coherent shear
patterns.
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Polynomial filter function Q In Schneider (1996) it is argued that a filter function that
closely follows the tangential shear profile has some disadvantages. First, in the inner part
of a cluster the shapes of faint background galaxies can not be measured (reliably) due
to the presence of the extended bright cluster galaxies. Besides, these regions of such a
cluster may no longer be described by the weak lensing regime. Thus, a better choice for Q
follows the tangential shear profile only for larger radii, whereas it drops to zero for small
radii, downweighting the troublesome areas. This also takes into account the fact that the
tangential shear is undefined for a galaxy at the filter centre. Second, Q has to go to zero (or
be very close to zero) at the outer edge of the aperture, so that Map can be calculated from
a finite field. This also ensures that a small shift of θ0 does not give too much weight to the
new galaxies which enter the aperture, leading to high-frequency but low amplitude patterns
in the resulting S/N map.

The following filter function U is suggested in Schneider (1996) which satisfies these
constraints,

US96(x) =





1 for 0 ≤ x < ν1[
ν1

[
(x− ν1)2 + ν2

1

]− 1
2 − c

]
/(1− c) for ν1 ≤ x < ν2 .

b (1− x)2 (x− α) for ν2 ≤ x ≤ 1

(3.67)

The constants α, b, c are determined requiring smoothness and continuity at x = ν1 and
x = ν2. They can be evaluated analytically, but are rather cumbersome and not needed for
further understanding. The same holds for QS96, which can be constructed piecewise from
US96. Instead of writing it down, the graphical representation of QS96 in Fig. 3.2 provides
better insight than its analytical expression for a given set of parameters.

In Schneider et al. (1998) these filter functions are replaced by conceptually much simpler
polynomials,

UPOLY(x) =
(l + 2)2

π θ2
(1− x2)l

(
1

l + 2
− x2

)
H(1− x) , (3.68)

QPOLY(x) =
(1 + l)(2 + l)

π θ2
x2 (1− x2)lH(1− x) . (3.69)

H is the Heaviside step function, so that U(x) = 0 = Q(x) for x > 1. It is shown in Fig.
3.6 in the following section that polynomial filters with l > 1 do not yield improved results
compared to the l = 1 case.

An exponential filter function Q A disadvantage of US96 and UPOLY, and thus the
corresponding functions Q, is the strong compensation of U , i.e. the amplitude where U is
negative is comparable to the amplitude where U is positive. Thus, if one has a cluster at the
centre of U , and a second cluster in the compensated (negative) filter area, the Map signal
of the first cluster gets diluted by the second one. Furthermore, this yields artificially low
values of Map, respectively the S-statistics, around a cluster position. A possible solution is to
flatten the negative part of U , and extend it to much larger radii to satisfy the compensation
criterium, and then calculate Q from it. For example, such a filter function can be constructed
from the difference of two Gaussians,

UEXP(x) = e−16 x2 − 1

4
e−4x2

, (3.70)
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Figure 3.2: Left panel: filters according to Schneider (1996). Two examples with (ν1 = 0.1, ν2 = 0.8)
and (ν1 = 0.2, ν2 = 0.8) are plotted in order to show the variety of curves. Right panel: the polynomial
filters (l = 1).

QEXP(x) = −
(

1 +
1

16x2

)
e−16 x2

+

(
1

4
+

1

16x2

)
e−4 x2

. (3.71)

This filter extends formally to infinity, but is limited by the finite size of the data field. The
numerical factors are chosen such that Q(x) is close to zero for x = 1 (see Fig. 3.3). Q
decreases as exp(−4x2) for x > 1, so that the calculation of the S-statistics can in principle
be restricted to a finite field for practical purposes, since galaxies at larger radii virtually do
not contribute to the result. Furthermore Q(0) = 0, as one can see by expanding the two
Gaussians into a Taylor series up to second order around x = 0.

Filters following the tangential shear profile As was shown in (3.66), an optimal
filter function should resemble the tangential shear profile. In the following such a filter is
constructed. Since the expressions involved are relatively complicated and thus slow down
the computation process considerably, a simpler analytical formula is given, having a similar
functional behaviour and effectiveness.

Navarro et al. (1997) introduced an universal density profile for clusters based on numer-
ical simulations of the structure evolution of the dark matter in the universe. This radial
NFW profile reads

ρ(r) =
ρ0(z,Ω0,ΩΛ, c)

y (1 + y)2
with y = r/rs , (3.72)

where ρ0 is a function of cosmology and contains a characteristic cluster density. y is the
dimensionless radius, and rs ≈ 200 kpc is a typical NFW scale radius for a galaxy cluster.
Hereafter, ρ0 is not considered any more since it becomes just a constant factor in Q, and
therefore cancels in the S-statistics.

As was shown by Wright & Brainerd (2000) and Bartelmann (1996), the tangential shear
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Figure 3.3: QEXP, normalised for better comparison such that it occupies the same area as QPOLY

over the [0, 1] interval.

γt for the NFW profile can be written as

γt NFW(y) =





4(3y2−2)

y2(y2−1)
√

1−y2
arctanh

√
1−y
1+y + 4

y2 lny2 + 2
1−y2 for y < 1

10
3 − 4 ln 2 for y = 1

4(3y2−2)

y2(y2−1)
√
y2−1

arctan
√

y−1
1+y + 4

y2 lny2 + 2
1−y2 for y > 1

. (3.73)

This expression is smooth and continuous for y = 1, and approaches zero as ln(y)/y2 for
y > 1. Based on equation (3.66), the optimal filter function is

QNFW(x) ∝ γt NFW(x) , (3.74)

where x = ϑ/θ as defined at the beginning of this section. Due to the mathematical complex-
ity of (3.73), the calculation of the S-statistics is rather time consuming. An approximating
filter function with simpler mathematical form was found, producing similarly good results
as QNFW. It is given by

QTANH(x) =
tanh (x)

x
, (3.75)

having a 1/x dependence for larger radii. The hyperbolic function was introduced to com-
pensate the singularity at x = 0, yielding QTANH(0) = 1.

Both QNFW and QTANH extend as QEXP formally to infinity, but they approach zero much
slowlier than the latter. Furthermore, they give relatively large weight to a few galaxies at
the centre of the aperture, which can lead to discontinuous fluctuations in the S-statistics
when evaluated on a grid. Therefore, an exponential cut-off is introduced for very small radii,
effectively making Q(0) ≈ 0.

The density profiles of galaxy clusters can be very different from the ideal NFW profile as
introduced above. Some greater flexibility in the design of the filter function is useful in this
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Figure 3.4: Left panel: QNFW (solid line), together with some of the simpler QTANH. The exponential
cut-off for small and large radii is not introduced in this plot in order to show the differences between
the two filter types better. As can be seen, the TANH filter is a good approximation for the NFW,
giving a bit more weight to smaller radii. Right panel: TANH filter with the cut-off at both ends,
plotted against the radial coordinate ϑ. The dashed line (θ = 1) can be compared directly to the
dash-dotted line in the left panel. The combination of xc with the aperture size θ yields a larger
sample of available filter functions.

respect. For this purpose an exponential cut-off is introduced for larger radii too, together
with a scaling parameter xc, yielding

Q(x) =
1

1 + ea− bx + e−c+ dx
QNFW /TANH(x/xc) . (3.76)

Hereafter, these filters are referred to as NFW and TANH, respectively. A choice of e.g. a = 6
and b = 150 lets Q drop to zero for the innermost part of the aperture. Choosing c = 47 and
d = 50 makes Q ≈ 0 around x = 1 (see right panel of Fig. 3.4). The filter shape remains
unchanged for radii in between. The parameter xc changes the width of the filter over the
[0, 1] interval, in the sense that more weight is put to smaller radii for smaller values of xc.

An example illustrates the greater flexibility. Without xc, only the aperture size θ controls
the width of the filter. Introducing xc alone has no effect, since twice the aperture size is
compensated with a value of xc = 0.5. In conjunction with the exponential cut-off for x ≈ 1
however, different filters can be created (right panel of Fig. 3.4), since this cut-off does not
depend on xc. Thus, the TANH filter is constructed from the two-dimensional parameter
space (θ , xc. It turns out that this cut-off does not influence the efficiency of the filter in a
negative way if the downweighting takes place on small scales only.

An analysis of the efficiency of the various filters is presented in section 3.2.5.

3.2.4 Tangential ellipticity and S/N estimation

Tangential ellipticity For practical purposes, the tangential ellipticity εt is defined in
analogy to the tangential shear in equation (3.58). Geometrically speaking, εt is the ellipticity
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component perpendicular to the line connecting an image at position θ = (θ1, θ2) with a
reference position θ0 (typically the lens position). It is written as

εt = −(ε1 cos 2α+ ε2 sin 2α) with α = arctan
∆θ2

∆θ1
, (3.77)

where ∆θ1 = θ1 − θ01 and ∆θ2 = θ2 − θ02. Alternatively,

εt = − ε1(∆θ2
1 −∆θ2

2) + 2ε2 ∆θ1 ∆θ2

∆θ2
1 + ∆θ2

2

. (3.78)

Note that εt is undefined if the distance between source position and reference position
becomes zero. In the weak lensing case, the tangential ellipticity is an unbiased estimator of
the tangential shear, γt = 〈εt〉.

S/N estimation Kruse & Schneider (1999) and Schneider (1996) have shown that an
estimate for the noise can be obtained directly from Map. In the discrete case, Map is given
as a sum over the tangential ellipticities of N galaxies, multiplied by the filter function Q,

Map =
1

n

N∑

i=1

εt i Qi . (3.79)

Here n is the number density of galaxies per square arcminute. The variance for Map is
defined as

σ2(Map) =
〈
Map

2
〉
− 〈Map〉2 . (3.80)

In the absence of lensing 〈Map〉 = 0, and

σ2(Map) =
1

n2

∑

i,j

〈εt i εt j〉 QiQj =
1

n2

∑

i

〈
εt i

2
〉
Qi

2 . (3.81)

This corresponds to a randomisation of the orientations of the galaxies, keeping their posi-
tions, and thus the Qi, fixed (from a large number of such randomisations an estimate for
σ2 can be obtained, too). The εt i and εt j are mutually independent, and average to zero for
i 6= j. Thus the summation is taken only over one index. With the definition (3.77) of εt,

〈
εt

2
〉

=
〈
ε1

2 cos2 2α
〉

+
〈
ε2

2 sin2 2α
〉

+ 〈ε1 ε2 sin 2α cos 2α〉 =
1

2
|ε|2 . (3.82)

Hence,

σ2(Map) =
1

2n2

∑

i

|εi|2 Qi2 . (3.83)

Due to the introduction of individual galaxy weighting factors at the end of section 3.1.1,
Map and the S/N read a bit different,

Map =

∑
i εt iwiQi∑

i wi
, (3.84)

and

σ2(Map) =

∑
i,j 〈εt i εt j〉 wiwj QiQj

(
∑

i wi)
2 =

∑
i |εi|2 wi2 Qi2
2 (
∑

i wi)
2 . (3.85)

Since the individual galaxy weights wi and Qi are constant for each galaxy, they drop out of
the averaging process. The prefactor 1/n was omitted, too, since it cancels in the calculation
of the final S/N .
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Figure 3.5: Tangential shear and S-profile for the two largest clusters in the survey data. In the
upper row the tangential shear is shown, with the QTANH that yielded the highest S/N overlaid as a
solid line. For better comparison the amplitude of QTANH was scaled so that it best fits the tangential
shear. The error bars were decreased by a factor of 4 for better visualisation.
The lower row shows the S-profile of the two clusters for different filters Q. The NFW is plotted for
10 different xc ∈ [0.01, 1.5]. In case of S11 it is obvious that the NFW and the TANH filters yield
much better results than filters EXP, POLY and S96. The detection with the TANH filter is about 50
times more robust than with the POLY filter (i.e. the difference between a 4.7σ and a 3.8σ detection).
Both the best fitting NFW and TANH had xrmc = 0.05. For A901 the result is similar, however the
discrepancy between the filters is not as large, about a factor of 10 in robustness. Here xrmc = 0.5 for
both filters. Although the tangential shear is smaller for A901 than for S11, the S/N is higher due
to the larger number density of galaxies with measured shapes (n = 15 arcmin−2 for S11, and n = 24
arcmin−2 for A901).
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Figure 3.6: Left panel: a sample of POLY filters (3.69) for l ∈ [1, 3, 5, 10]. Their amplitude was
normalised in this plot for better comparison. The effect of a growing l is to shift the maximum
towards smaller scales while changing the asymmetric shape of the filters a bit. Filters with larger
l will therefore produce similar results as the ones with small l, but for correspondingly larger filter
scales. This is shown in the right panel, where the S/N for the cluster in the S11 field is shown for
various filter scales and l. No improvement is gained in the S/N when moving to larger values for l.

3.2.5 Effect of filter functions on the detection S/N

In order to evaluate the performance of the various presented filters, they were tested against
each other on two GaBoDS cluster fields (Fig. 3.5) for various filter scales. These plots show
that filters which resemble the shear profile yield better results, whereas the others are less
effective since they downweight the areas where the lensing signal is strongest.

3.3 Catalogue creation and filtering

The catalogue production can be split into three parts. First, SExtractor (Bertin & Arnouts,
1996) is used to create a primary source catalogue. Second, the basic lensing quantities for
each of the objects in this catalogue are determined with KSB (Kaiser et al., 1995, see Sect.
3.1.2), and are then included in the primary catalogue. Subsequently, several filtering steps
ensure that only objects with reliable shear information remain in the final catalogue.

3.3.1 Creation of a source catalogue

Single passband catalogue The basic principle in the detection algorithm of SExtractor
is that a certain number of connected pixels with a user-defined minimum S/N above the
background noise is taken as a single object. The background noise is not determined from
the coadded image itself, but from the coadded weight map which is given to SExtractor in
parallel. This weight map contains the effective exposure time for each individual pixel in the
image, and thus an estimate of its noise respectively the reliability of its stored information.
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The detection can take place on the image itself, or after it has been convolved with a (e.g.
Gaussian) detection kernel. This filtering affects in particular small objects with a very low
detection significance of S/N = 2 and less. Since reliable lensing information can only be
obtained from high-S/N objects, this does not affect the final lensing catalogue. The number
of connected pixels used in this work for the primary object detection was 5, and the detection
threshold has been set to 2.5 (in units of S/N). These thresholds are rather generous, and
many of the detected objects are rejected again in the later filtering process since they were
too small and too faint for a realiable shear measurement.

The most relevant parameters in this context provided by SExtractor are the magnitude
(MAG AUTO) of the detected object and its half-light radius (FLUX RADIUS), i.e. the
radius which contains half of the object’s flux. For the present work an absolute calibration
of the magnitudes is of little interest, and if required, the adaption of photometric standard
zeropoints within an accuracy of 0.1− 0.2 mag is sufficient (ZPR = 24.5 for WFI@2.2).

Multicolour catalogues In case a particular image has been observed in several filters, a
colour catalogue can be generated from the individual coadded images. For this purpose the
images are rescaled so that their mean background noise is 1, and are then combined into
a detection image. The weight maps are rescaled and combined accordingly. The detection
image, its weight and one of the images taken in a particular filter (photometry image) are
then given to SExtractor, using the same criteria as for the single passband catalogue creation.
An object’s position and size is then measured in the detection image, and its flux in the
photometry image. This guarantees that the magnitude of a particular object in various
filters is measured at the same position and within the same aperture, yielding accurate
relative colour information for the objects, even when the absolute zeropoints have not been
determined precisely. These steps are repeated for all passbands, and the catalogues created
are then combined.

Including the lensing information For the extraction of the shapes of lensed galaxies
and the PSF corrections the KSB method (Kaiser et al., 1995) is used. The details of the
involved techniques were already discussed in section 3.1.2. The primary source catalogue
obtained with SExtractor feeds the initial positions of the detected galaxies into KSB, which
then performs the actual measurements on the image itself. The galaxy positions are iterated
by KSB until the first brightness moments vanish. The PSF corrected ellipticities and a
number of other parameters (such as the KSB detection significance νmax and the shear and
smear polarisabilities) are then added to the initial catalogue for each object.

3.3.2 Catalogue filtering

Filtering on the SExtractor level Adopting a simple detection threshold approach for
the creation of the primary source catalogue leads to a large contamination by spurious
objects. SExtractor offers several ways to avoid such detections. Two of them were already
mentioned above, i.e. the minimum number of connected pixels, and the inclusion of weight
maps. The latter guarantees that the highly non-uniform effective exposure time in the WFI
exposures is taken into account properly, and that no spurious objects are detected at the
edges of the image which are typically very noisy.

A common problem in catalogue creation is deblending. Some sources such as spiral
galaxies show a lot of substructure or appear clumpy at larger distance, and one wants them
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to appear in the catalogue as single objects. Others, such as galaxies in a cluster or objects
superimposed onto the bright haloes of stars should be recognised as individual objects.
SExtractor offers a highly configurable deblending mode which can discern between the two
scenarios, and which is very effective already in its default configuration and does not need to
be changed for the purpose of this work. In addition, SExtractor models the sky background
on a user supplied scale (typically a few hundred pixels), taking the model into account when
detecting objects and determining their magnitudes. Thus it is guaranteed that objects in
the vicinity of brighter stars are still properly detected.

However, stars can have very large diffraction spikes which appear as rather elliptical
objects in the source catalogue (mimicking a shear signal), and the shape measurement of
faint galaxies is affected the closer they are to the bright stars. Thus, masking stars and
their surroundings is a very important step in the creation of a clean catalogue, which is
a very cumbersome task when done manually. By switching off the automatic background
modelling (BACK TYPE = MANUAL), and supplying a user defined constant value for
the sky background (BACK VALUE = 0, due to sky subtraction in the pipeline processing),
SExtractor will not detect any objects in the surrounding area of bright stars that are affected
by scattering light, since this area is taken as a single object, then. Figure 3.8 shows an
example. The BACK TYPE and BACK VALUE keys are not present by default in the
SExtractor config file, and have to be added by hand if one wants to make use of this feature.

Further filtering on the SExtractor level is done by excluding all objects that are flagged
with FLAG > 4 and those with half-light radii smaller than 0 (false detections) or larger than
30 pixels (very large unlensed foreground galaxies).

Filtering on the KSB level In addition to SExtractor, KSB also offers a flag parameter
(cl), indicating whether problems in the determination of e.g. the shape or the position
occurred. Only objects with cl = 0 remain in the galaxy catalogue. The stellar catalogue (for
PSF correction) is automatically extracted from a diagram showing the half-light radius and
magnitudes of the objects. Galaxies with half-light radii smaller than 0.1 − 0.2 pixels than
the left ridge of the stellar branch are rejected from the lensing catalogue, as are those with
exceedingly bright magnitudes or a low detection significance (νmax < 10). See the left panel
of Fig. 3.10 for the stellar branch and an illustration of the cuts in the rh−mag space.

A significant number of galaxies have sizes comparable to or a bit smaller than the PSF
(see Fig. 3.10), which increases the error of their shape measurement as compared to larger
objects. The fact that galaxies have measured sizes smaller than the PSF indicates that
the exposures are still somewhat undersampled for the detection algorithm. Indeed, image
simulations with SkyMaker for a seeing of 0.′′9 support this assumption. Decreasing the pixel
scale from 0.′′238 to 0.′′15 increased the measured half-light radii of about 70% of the small
galaxies to values larger than the characteristic PSF, simplifying the determination of their
ellipticities. Yet the number of very small galaxies in the GaBoDS data is large enough so that
the shear selection of galaxy clusters can profit significantly when these objects are included
in the calculation, even though faint stars will contaminate the sample a bit. For example,
in case of S11 the S/N rises from 4.66σ to 4.95σ (18112 respectively 22567 galaxies), and
for A901 it rises from 5.97σ to 6.13σ (24137 respectively 28166 galaxies) when these objects
are included. Going to even smaller galaxies decreases the S/N again.

Furthermore, all galaxies with a PSF corrected modulus of the ellipticity larger than
1.5 are removed from the catalogue (the ellipticity can become larger than 1 due to the
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PSF correction factors), as are those for which the correction factor (TrP g)−1 > 5 (see the
discussion of (3.47)). The fraction of rejected galaxies due to the cut-off in P g is relatively
small, as can be seen from the right panel in Fig. 3.10. However, the smoothness of the
two-dimensional visualisation of the S-statistics (hereafter S-map) is significantly improved
by rejecting such galaxies (see Fig. 3.11 for an example).

An overall impression of the remaining objects in the final catalogue is given in Fig. 3.9.
In total, typically 10 − 20% of the objects are rejected from the catalogue due to the KSB
filtering steps.

3.4 Sensitivity of the shear-selection method

Kruse & Schneider (1999) outlined how to calculate the expected S/N for a dark matter halo
with NFW density profile at redshift zd, taking into account a source redshift distribution
p(zs) for the lensed galaxies. In this case Map becomes

Map =

∫ θ

0
d2ϑ

∫ ∞

zd

dzs p(zs)κ(ϑ, zd, zs)U(ϑ) , (3.86)

where the normalised redshift distribution is given by Brainerd et al. (1996) as

p(zs) =
3

2z0

(
zs

z0

)2

exp

[
−
(
zs

z0

)1.5
]
. (3.87)

The parameter z0 ≈ 0.66 〈z〉 was fixed for this work based on photometric redshifts, computed
from the UBV RI WFI@2.2 data (EIS Deep Public Survey) for the Chandra Deep Field South
(see left panel of Fig. 3.7). In this data set, the exposure time in the R filter was 9 ksec.
A value of z0 ≈ 0.5 is taken for the redshift distribution, even though a fit of the Brainerd
model prefers a value of z0 ≈ 0.4 due to the lack of galaxies with photometric redshifts around
z = 1.

The right panel of 3.7 shows some predicted S/N ratios for massive haloes as a function of
redshift and for the POLY filter. From this plot it can be seen that medium-sized clusters with
masses of 3.2×1014M� are detectable up to a redshift of z = 0.45, and those with 1.0×1015M�
can be found up to z = 0.65 for a filter size of 3.′2. Structures with ∼ 1.0×1014M� can hardly
be detected at the 3.′2 scale. Given the very inhomogeneous depth of the GaBoDS data (see
Tables 2.1 and 2.2), these values can only serve as a rough reference, as does the filter scale
of 3.′2 (compare Fig. 3.5). As was shown above, the NFW and TANH filters yield a better
S/N , but on the other hand many of the ASTROVIRTEL fields are shallower in their depth
as the obervations of the CDF-S which were used for this estimate.

Hence the shear selection method is not very efficient in detecting clusters of galaxies at
larger redshift, since the number density of available galaxies at accordingly high redshift
drops rapidly. Yet weak lensing effects for galaxy clusters at redshifts of zd ≈ 0.8 were
measured from the ground with 8m class telescopes (see Sato et al., 2003, for example).
From space it is much easier to reach a remote enough population of galaxies, since the
sky brightness is typically a factor of 30-100 smaller, and no atmospheric seeing affects the
shape measurements (see Hoekstra et al., 2000, for example). Number densities of n = 100
arcmin−2 can be reached in comparable exposure times.

Thus, for the selection of higher-redshift clusters, it is much more effective to pick them up
by means of their luminosity in the optical or the X-ray part of the electromagnetic spectrum,
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Figure 3.7: Left Panel: Photometric redshift distribution for the Chandra Deep Field South, de-
termined from UBV RI WFI@2.2 photometry (EIS data, only). The redshifts were estimated with
hyperz (Bolzonella et al., 2000). Only objects that had a good redshift fit of P (χ2) > 0.9 went into
the distribution shown.
Right panel: The expected S/N ratios for NFW dark matter haloes with 1.0 × 1015, 3.2 × 1015

and 1.0 × 1015 solar masses, measured with the POLY filter. The assumed number density of the
background galaxies is n = 20 arcmin−2, which corresponds to an exposure time of 10 − 20 ksec,
depending of various filtering thresholds. Two galaxy populations with different redshift distributions
(3.87) were used for the calculation. The higher redshifted population leads to a somewhat larger
sensitivity (dashed line).

and not by means of their mass. For example, the red cluster sequence method (Gladders &
Yee, 2000) has been used with great success in recent years to detect clusters even at higher
redshifts zd ≈ 1 (see Barrientos et al., 2003, for example), and combined narrow and broad
band imaging techniques can reveal structures out to z = 4 (Venemans et al., 2002). However,
with these methods only luminous clusters are detected, objects with very high M/L ratios
can go unnoticed even at low redshifts.

3.5 Exclusion of side-effects

Unit width of the unlensed S-distribution Figure 3.12 shows the typical appearance
of the S-maps for various filters. The bright patch above the centre is the detection of the
galaxy cluster Abell 901. Even though these maps appear rather different, the distribution
of the S-statistics (hereafter S-distribution) would be by definition a Gaussian of unit width
if no lensing by A901 took place. In fact, the distribution is slightly wider than one with unit
width.

Figure 3.13 exemplarily shows the S-distribution for a POLY and a TANH filter of 3′ and
12′ scale, respectively. For each plot in the left column, the galaxy orientations in an arbi-
trarily selected, empty field were randomised 300 times, thus removing any lensing signal. A
mean, unlensed S-distribution and its error were then calculated from these 300 realisations.
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The S-distribution can be approximated by a Gaussian with a width of 1.006±0.002 (for the
3′ scale). This is shown in the right column of the figure, where once a unit Gaussian and
then a best-fit Gaussian was subtracted from the mean distribution. The widening is caused
by the application of equation (3.85) to a data set with a finite number of galaxies, so that
the result approaches a normal distribution, but does not resemble it exactly. Therefore, the
analysis in the next Chapter uses only randomised data sets as an unlensed reference instead
of a unit or a best-fit Gaussian.

Effect of holes in the data field The number density of background galaxies inside a
Map aperture is not a constant over the field due to the masking of brighter stars. The
lower right panel of Fig. 3.14 shows a typical projected distribution of the galaxies in the
final object catalogue. As long as the holes in this distribution are small compared to the
Map filter size, and as long as their number density is small enough so that no significant
overlapping of holes takes place, the effects onto the S-statistics are small. The S/N of the
peaks in such areas is then simply lowered by the smaller effective number density of galaxies
inside the aperture.

However, if the size of the holes becomes comparable to the aperture, spurious peaks
appear in the S-map at the position of the holes since the underlying galaxy population
changes significantly when the aperture is moved to a neighbouring grid point. The affected
areas are excluded from the statistics and masked in the S-map, even though these spurious
peaks are typically not very significant (∼ 2σ). The S-statistics is not evaluated at a given
grid point if the effective number density of the galaxies in the aperture is reduced by more
than 50% due to the holes. Spurious peaks become very noticeable if the holes cover about
80% of the aperture, which is rarely the case for the GaBoDS fields unless the aperture size
is rather small (2′ - 3′ ), or a particular star is very bright.
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Figure 3.8: Automatic masking of bright stars, achieved by forcing SExtractor to use a constant,
user-supplied value for the sky background. Note that at the upper image border no spurious objects
are detected, although this region is very noisy because of little effective exposure time. This is due
to the use of a proper weight map. No KSB filtering has taken place for this plot.
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Figure 3.9: Lensing catalogue after all typical filtering steps. Only fainter background galaxies are
kept. Brighter sources, spurious detections, stars and highly elliptical objects such as asteroid tracks
are largely absent from the catalogue.
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Figure 3.10: Left panel: Stars appear as a vertical branch in a rh-mag plot. Those brighter than
R = 16.5 saturate the detector and thus increase in size. The solid line encircles the galaxies which
are used for the lensing analysis. The upper curved line indicates a cut in detection significance
(νmax > 10), which has proven to work better than a constant cut on the faint end of the magnitudes.
Right panel: νmax against P g. Objects left of the indicated threshold are rejected from the lensing
catalogue. Typically 1% of the galaxies are removed during this step. The effect of this cut onto the
S-statistics is shown in Fig. 3.11.

Figure 3.11: Effect of the cut-off in P g. Shown is the S-statistics calculated with TANH for a 15′ wide
field centered on the cluster in the S11 field. The left panel is without, the right panel with the cut-off.
The aperture size is 14′ . The peak significance in the right panel decreases marginally from 4.72σ to
4.66σ.
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Figure 3.12: Appearance of the S-map for various filter types and scales. The data shown corresponds
to the full 34′ × 34′ A901 field. Smaller filter scales were chosen for the left column, and larger ones
for the right one. The scales were adapted such that the size of the structures in the maps within
a column are comparable. The EXP filter yields the smoothest results. The intensity levels of this
grey-scale representation correspond to [−4σ, 5σ] for the left column, and to [−4σ, 6σ] for the right
one.
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Figure 3.13: Width of the unlensed S-distribution for two filters. In the left column the normalised
mean S-distribution is shown for 300 randomisations of the galaxy orientations. The shaded region
depicts the 1σ scattering amongst the randomisations, and the dashed line shows one of them for
comparison. The right panels depict the difference between the mean distribution and a unit Gaussian,
and between the mean distribution and a best-fit Gaussian. The error bars there were obtained by
bootstrapping, i.e. 300 randomly chosen realisations were selected from the sample, and their mean
was calculated. A particular realisation can be drawn several times. This was repeated 300 times,
which yielded an error estimate for the mean. As can be seen, the S-distribution is slightly wider than
the unit Gaussian.
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Figure 3.14: Upper right: S-map (POLY, 4′ ) for randomised galaxy orientations and positions.
Upper left: The same S-map, evaluated after 10 randomly positioned holes with a radius of 90% of
the filter scale were cut into the data field (lower left). Artificial features show up in the S-map at
the positions of the holes, which are exaggerated in number and size for better visualisation. Lower
right: True galaxy distribution in this field. The largest hole corresponds to an 8th magnitude star.



Chapter 4

Shear-selection in the GaBoDS

Whereas rather massive clusters can be clearly detected by weak gravitational lensing, less
massive haloes merge with the surrounding noise in the S-map, which is mostly due to the
intrinsic ellipticities of the galaxies. Nevertheless, evidence for the presence of gravitational
lensing in such fields can be obtained by comparing the S-statistics of the total survey area to
an “unlensed” data set with randomised galaxy orientations. Gravitational lensing by clusters
and the lensing effect of the large scale structure in the universe (Cosmic Shear) broaden the
S-distribution, but these two effects are difficult to disentangle. In Sect. 4.1 the combined
S-distribution for GaBoDS is presented. It is shown that very significant deviations from the
unlensed profile are present for all filters at all scales, even for the sub-sample of GaBoDS in
which no significant mass concentrations were found. The contribution by Cosmic Shear is
considerable.

In Sect. 4.2 a list of individual, highly significant shear-selected mass concentrations is
presented. A simple classification scheme for these peaks is introduced (“bright” and “dark”,
i.e. with and without optical counterparts), and analysed with respect to differences between
the two classes. It is shown that with multi-colour data at hand clusters of galaxies can
be easily identified as possible counterparts, thus verifying the weak lensing detection (Sect.
4.3). Finally, remaining “open issues” that could not be addressed in this work, and a number
of smaller and larger follow-up projects are given in Sect. 4.4.

4.1 Combined S-distribution

Unlensed reference S-distribution In order to show the actual presence of weak grav-
itational lensing in the survey fields, the combined S-distribution is compared against an
unlensed reference distribution. For the latter, the positions, shapes and weights of the cat-
alogued galaxies from all 62 fields were combined into a master catalogue, irrespective of the
inhomogeneous exposure times and thus redshift distributions of the fields (see right panel of
Fig. 2.3). However, the large majority of the fields was taken with relatively short exposure
times, so that the contribution of the deep fields to this master catalogue is only about 10%.
Furthermore, the ellipticity distribution of the galaxies is only marginally changed by weak
lensing, and the seeing in the images is comparable (0.′′85 to 1.′′0). Therefore, the master
catalogue provides a representative sample of galaxy shapes for the creation of an unlensed
reference S-distribution.

From this catalogue 15000 galaxies were randomly extracted, which corresponds to the

81
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average number density of n = 13 arcmin−2 of the survey fields. The orientations of the
galaxies in this mock catalogue were randomised and the S-distribution for a particular filter
and scale was calculated. This was repeated for 400 different mock catalogues, resulting in
400 S-distributions that were then averaged yielding the reference S-distribution. Thereafter,
the actual distributions for the 62 survey fields were calculated and averaged, yielding the
sheared S-distribution. Since the differences between the two distributions are rather small,
the reference distribution was subtracted from the sheared distribution for better visualisation
in Figs. 4.1 and 4.2. The rrror estimates were obtained by bootstrapping (see caption of Fig.
3.13).

Contribution of Cosmic Shear and Clustering For the determination of the effect the
Cosmic Shear has on the S-distribution, 50 independent galaxy fields with similar properties
as the actual observations were simulated. These fields are 29′ × 29′ in size, with random
ellipticities but an imprinted Cosmic Shear signal (P. Simon, private communication). The
assumed cosmological parameters were Ω0 = 0.3, ΩΛ = 0.7, σ8 = 0.9, H0 = 70 km s−1 Mpc−1,
and the galaxy population was chosen to match a typical GaBoDS field (〈z〉 = 0.8, σε = 0.35,
n = 15 galaxies arcmin−2). The Cosmic Shear contribution was calculated based on a power
spectrum for a Gaussian density field. The spectrum was corrected for non-linear effects on
smaller angular scales according to the Peacock & Dodds (1996) prescription (see 1.3.2 for
details).

For the creation of an unlensed reference S-distribution a similar approach as for the
survey data was chosen. The galaxies from all 50 fields were combined into a master catalogue,
from which 300 mock catalogues with 12600 galaxies each (as many as in one simulated field)
were randomly selected. Again, the orientations of the galaxies were randomised and the
S-distributions calculated.

For all filter scales and types significant deviations from the unlensed reference distribution
are found for the GaBoDS data. Cosmic Shear is seen in all but the smallest filter scales of
2′ and partly 3′ , for which a significant deviation from the reference distribution is found.
The simulation is consistent with the observations in the [−3σ, 3σ] interval, apart from the
largest and broadest filters (12′ TANH with xc = 0.2, and POLY with 8′ and 5′ ). The
tails of the distribution (|ν| > 3σ) are negative for the smallest scales, meaning that in
the randomised data more mass peaks and voids (underdense regions) are found than in the
actual observations. With increasing filter scale the signs of the tails change, thus more peaks
and voids than in the reference data are observed. The differences between the simulation
and the observation are attributed to the non-linear clustering in the density field which is
not accounted for in the simulation.
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Figure 4.1: Differences between the sheared and the reference S-distribution. The error bars resemble
the combined rms of both the reference and the sheared distribution. The thick lines were calculated
from all fields (n = 62) in GaBoDS, and the dotted lines show only those fields (n = 21) that do not
contain any weak lensing signal higher than 4σ in any filter at any scale. The thin line is obtained
from simulations. The error bars for this line are comparable with the ones for the actual data, and
are omitted to avoid cluttering. The tails (|ν| > 3σ) of the distributions were magnified in amplitude
by a factor of 10.
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Figure 4.2: Same as Fig. 4.1, but for other filter types.
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4.2 Shear-selected mass concentrations

4.2.1 The sample

Tables A.1 to A.3 in the appendix list all shear-selected mass concentrations with a S/N ≥ 4.0
in at least one filter, sorted in right ascension. The S/N -threshold keeps the contamination
of the sample with spurious noise detections small. Columns 1, 2 and 3 contain a preliminary
name for the mass concentration, and its coordinates. The maximum detection significance
and a classification are given in columns 4 and 5. The latter is either the redshift1 of the
optical counterpart, the statement “bright” if no redshift could be found, or “dark” if no
obvious optical counterpart is present. The term “unclear” is explained below. Thereafter,
columns 6, 7 and 8 list the filter, its core radius (if applicable) and its scale for the individual
detection. Finally, column 9 has the name of the corresponding GaBoDS field. The tables
are followed by the images showing these peaks.

Redshifts, positional accuracy and projection effects If at least two galaxies of an
optical counterpart of a mass concentration have similar redshifts, then this value is given
in the table. The only excemptions are SSMC-004 and SSMC-005, whose redshifts were
deduced from the colours of their elliptical galaxies instead of spectroscopy, and SSMC-017,
for which only a single redshift is known. The redshift measurements themselves were taken
from Colless et al. (2001), Gonzalez et al. (2001), Goto et al. (2002), Olsen et al. (1999) and
Vettolani et al. (1998).

From those mass concentrations with spectroscopically confirmed counterparts and from
a few others associated with bright galaxies (SSMC-026, 033, 062, 076), it is found that the
lensing position can be offset with respect to the counterpart by up to 2′ . The position
itself rarely shifts more than about 0.′5 when switching to different filter scales and types.
For the largest clusters in the sample, Abell 901 (SSMC-024) and Abell 1364 (SSMC-053),
the positions of the weak lensing detections are usually well in agreement with the brightest
cluster galaxies for small filter scales. Offsets occur only for larger filter scales in the sense
that the detection appears to be shifted towards the centre of mass, i.e. away from the
brightest galaxies into the direction of sub-clumps present in these clusters. This does not
come unexpectedly, since the filter becomes insensitive to the structures in the central mass
distribution of a cluster when probing the shear field on large scales.

A similar effect is observed for lensing detections next towards a projection of clusters
at different redshifts. For example, SSMC-032 sits close to the centre of the triangle formed
by the clusters LCDCS-0188, -0189 and -0190 at redshifts 0.52, 0.41 and 0.60, respectively
(partially visible in the corresponding figure). It is detected at the 4σ-level only for larger
filter scales that encompass the shear fields of all three clusters. The components alone are
not found by means of the shear-selection method. A similar situation is probably given for
SSMC-083, which is located between a rather distant overdensity of galaxies to the North-
West, and another one with lower (also unknown) redshift to the South-East. The angular
distances to the centres of both of these concentrations are about 2′ each, and the lensing
contours are extended parallel to the line connecting the two clusters. Besides, like in the
case of SSMC-032, the best-matched filter is rather large.

1Redshifts were taken from the NASA Extragalactic Database (NED) and the references to the literature
therein.
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The observed tangential shear in these cases is a result of the projection of the surface
mass densities of the individual clusters along the line of sight (multiple lens plane). In
this manner, the combined shear of smaller clusters of galaxies that would not be detected
individually can be found.

4.2.2 Underluminous clusters

The above mentioned projection effects could be a possible explanation for the “dark” mass
concentrations, lacking obvious optical counterparts. Instead of a single, underluminous
galaxy cluster, possibly with very red galaxies that emit their light predominantly at longer
passbands than the R-band filter used (z ≈ 0.9 and larger), a projection of small galaxy
groups along the line of sight could trigger a similar detection. Since it is known from
the bright mass concentrations that the offsets can be as large as 2′ , two or three smaller
groups with low central concentrations can easily submerge in the surrounding galaxy field at
opposite sides of the lensing position. Thus, a dark and extended cluster would be mimicked
(e.g. SSMC-008, 012, 054).

Besides, there is a non-negligible number (∼ 10% of the sample) of very compact detec-
tions that are found with filter scales of less than 2′ (e.g. SSMC-011, 037, 042, 046, 074). All
of them are dark apart from one which has been classified as unclear. Normal galaxy clusters
can not explain these detections, independent of their redshift. If they were rather close they
would be seen in the images and the lensing signal would be more extended. In the R-band
and with 2-3 hours of exposure time, such clusters can be seen out to redshifts of 0.8 or 0.9.
But then their masses must be much larger than 1015M� (see also Fig. 3.7) in order for the
clusters to be detected by weak lensing with a S/N ≥ 4 in the GaBoDS data. Such masses,
in turn, are extremely rare according to current theories of structure formation. Since the
peaks found occur mainly in the smallest filter and disappear for larger scales, they could
simply be noise peaks as is argued further below.

Proving the actual existence of dark clumps in the universe, and clearifying their exact
nature is obviously an extraordinary difficult task. In the case of the first dark cluster found
(Erben et al., 2000), a large number of checks have been made with the data and the methods
used for the weak lensing analysis. This dark clump (∼ 5σ) has been verified independently by
various groups, using different techniques and telescopes. Extensive follow-up observations
were made in the infrared from the ground (Gray et al., 2001, H-band), searching for a
population of red galaxies that has not been found. Space-based observations confirm the
lensing results, albeit with a lower significance. Furthermore, they do not reveal a luminous
counterpart either, leaving open the possibility for the existence of truly dark cluster-sized
objects.

Finally, a few of the mass concentrations detected could not be classified and are thus
marked as “unclear”. Either they are further away than 2′ from a neighbouring galaxy cluster
(SSMC-019, 021, for example), or the underlying concentration of galaxies is too distant to be
safely identified as a probable cluster based on the single-passband data alone (e.g. SSMC-
031, 034, 061). Or, as is the case for SSMC-099, the detection is located in the middle
of a very extended (∼ 10′ ) projection of four galaxy groups at different redshifts (0.126,
0.135, 0.143, 0.240), showing no concentration of galaxies to their centres. SSMC-099 itself,
however, appears only for smaller filter scales, which makes it less likely that it is associated
with these foreground sheets of matter. Therefore it was marked as “unclear”.
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Figure 4.3: Left panel: combined spatial peak distribution for all WFI mosaics. Filled symbols
indicate dark peaks, open symbols bright and unclear peaks. The size of the dots indicates the S/N .
Right panel: peak distribution in bins of 0.2σ.

4.2.3 Some statistics

All these examples show that the variety of mass concentrations found with the shear-selection
method is quite big. The 100 detections made allow some basic statistics of the sample,
shedding more light on the population of bright and dark peaks. 59 of the 100 detections
presented are dark, with SSMC-082 being the most significant one (5.1σ). 15 of the 31 optical
counterparts have measured redshifts, and 10 detections remain unclassified. Thus, about
twice as many mass concentrations are dark rather than bright. This fraction is larger than
for the individual shear-selected mass concentrations that were published in the literature so
far (Erben et al., 2000; Umetsu & Futamase, 2000; Maoli et al., 2001; Wittman et al., 2001,
2002; Miralles et al., 2002; Miyazaki et al., 2002; Dahle et al., 2003; Schirmer et al., 2003).
About 50% of these candidate mass concentrations are dark. However, the two figures are
difficult to compare since the sample presented in this work is a factor of 10 larger than what
has been published to date, and the authors from the cited papers used different methods
for their cluster detection. Larger surveys (such as the Red Cluster Sequence Survey or
the CFHT Legacy Survey) that are or will be systematically analysed with respect to weak
lensing will provide a much better comparison in the near future.

Figures 4.3 and 4.4 provide more insight into the population of bright and dark peaks. The
left panel of the former shows that the peaks from Tables A.1 to A.3 appear to be randomly
distributed in the WFI mosaics. As expected, the S-statistics does not select peaks above
average near the image borders. The right panel shows the absolute frequencies of occurrence
the dark, bright and unclassified peaks (the filters used are not the same). Apart from the
amplitudes no differences between the three distributions are apparent. The S/N of the
peaks as a function of filter scale is shown in the left panel of Fig. 4.4, where the vertical line
patterns are due to a discrete set of filter scales used for the analysis (1.6, 2.0, 2.4, 2.8, 3.2,
3.6, 4.0, 4.8, 5.6, 6.3, 7.1, 7.9, 8.7, 9.9, 11.9, 13.9, 15.9, 17.9, 19.8 arcminutes). The number of
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Figure 4.4: Left panel: S/N of the peaks as a function of the filter scale for which they appeared
most significantly. Filled, open and cross symbols denote dark, bright and unclear peaks, respectively.
Right panel: number of peaks per filter scale, normalised to unit area for better comparison.

data points per filter scale in this plot is shown in the right panel. There are disproportionate
more bright than dark peaks between 10′ and 15′ , and considerably more dark than bright
peaks for the smallest filter scale of 1.′6, as was already mentioned above. Apart from these
two regions the distributions are quite similar.

Comparison with randomised data sets In order to evaluate the contamination of
the sample with spurious noise peaks, the galaxy orientations in the 62 GaBoDS fields were
randomised once. The number of galaxies in the individual fields was not changed. Thereafter,
the S-statistics was calculated for the same filter types and scales as for the real data, and
the peaks were selected in the same manner, i.e. they must have S/N > 4 in at least one
filter. A total of 869 peaks were found, almost 9 times as many as in the actual survey data.
The significance of the highest noise peak was 5.58 (7 peaks had a S/N > 5). Thus, from a
single S-map alone one can not tell whether a peak is a real or a spurious detection, but a
look at the S-profile helps in clearing the situation.

Figures A.18 to A.22 show the S-profiles for the actual data. The filter type for a given
panel corresponds to the type for which the peak under consideration was detected most sig-
nificantly. Figure A.24 depicts some of the profiles for the data with randomised orientations.
The latter ones are much more erratic than the survey data, even for the POLY and EXP
filters that distribute their weight more evenly onto the galaxies than some of the sharper
TANH filters. Highly significant peaks disappear when switching to the next larger or smaller
filter scale, so that no coherence in the S-maps as a function of filter scale is observed. Only
for 21 (3) out of the 869 noise peaks was the S-profile higher than 3σ for 2 (3) neighbouring
filter scales. Most of the shear-selected mass concentrations in GaBoDS, however, show much
broader profiles. Thus, as a good discriminator between true peaks and spurious peaks serves
the width of the profile above the 3σ-level. Based on this criterium, SSMC-010, 029, 046,
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047, 051, 074, 075 and 077 would then be noise-peaks, since they have S/N > 3 only for two
or three neighbouring filter scales. Interestingly, all of the latter peaks have very small filter
scales and were classified as dark or unclear. Based on this, an estimate for the contamination
of the mass-selected cluster sample by spurious detections of ∼ 10% is derived. For further
comparison, Fig. A.23 shows some S-profiles of the GaBoDS fields (without randomisation
of orientations), but for randomly selected positions in the field. The patterns are consider-
ably smoother than for the data set with randomised galaxies, indicating a non-zero shear
alignment in these fields.

It is surprising that in the fields with randomised orientations so many more (9 times)
significant peaks are found than in the true data. This clearly shows that in the observed fields
the galaxy orientations are very different from being randomly distributed, which obviously
suppresses the number of noise peaks or their significance very efficiently. This, in turn, is
not intuitively clear and needs to be investigated further, for example by adding increasingly
larger amounts of randomness to the orientations of the galaxies in the field. Two different
tests show that at least less significant peaks react rather sensitively on minor changes of
the galaxy orientations. The S-maps for the same data set, for example, once coadded with
drizzle and once with SWarp, look very different below the 3 to 3.5σ level, even though the
ellipticities are correlated tightly (see Fig. 2.7). The same is true if two coadditions are
created for the same data set, the first one with exposures with better PSFs, and the second
one with the remaining exposures.

4.3 A case study: NGC 300

4.3.1 Field characteristics

One of the fields identified during the ASTROVIRTEL programme (see Sect. 2.1.2) was
centred on NGC 300, a face-on spiral galaxy in the Sculptor group at a distance of about
2.1 Mpc (Freedman et al., 2001). Its angular size is 25′ × 18′ , occupying about 40% of the
WFI@2.2 field of view. The field did thus not meet all requirements for GaBoDS, but the
image seeing of a significant fraction of the R-band data (15 ksec) was around 1.′′0, so that
a lensing analysis became feasible. Deep V -band observations (∼ 37 ksec, 1.′′1 image seeing)
were available too. The WFI@2.2 data for NGC 300 was taken in 34 nights between July 1999
and January 2000 for an identification of the Cepheid population in this galaxy (Pietrzynski
et al., 2002a).

Upon visual inspection in the Digitized Sky Survey (DSS) before the data retrieval request,
two concentrations of fainter galaxies were recognised North-East and South-East of NGC
300, at the edge of the WFI@2.2 field. 21 spectra were taken for the first concentration by
Cappi et al. (1998), confirming a galaxy cluster at z = 0.165. The second, less prominent
concentration is known as EDCC-499 at z = 0.117 (Collins et al., 1995). Hereafter, these two
clusters are refered to as CL0056.03 and CL0056.02, respectively, using their epoch 2000.0
right ascensions.

Data reduction and catalogue creation The data was reduced essentially in the same
way as described in Chapter 2. Due to the large extent of this galaxy, however, a superflat
could only be calculated for the field outside NGC 300. Pixels lying inside the galaxy were
only corrected for the gain differences, which were determined from the unaffected outer area.
The same held for the sky subtraction of individual images before the coaddition process.
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Figure 4.5: PSF anisotropies in the NGC 300 R-band image. Upper left: before correction. Upper
right: after correction. Lower left: anisotropies as measured in the image. Lower right: a two-
dimensional polynomial fit to the PSF anisotropies.

The sky was modeled outside NGC 300 and assumed to be constant inside, so that no discrete
jumps appeared between the inner and outer part. This image was then smoothed with a large
kernel and subtracted. A substantial part of the images suffered from secondary scattering
light, and from occasional vignetting caused by the filter holder. Most affected was the south-
eastern corner of the field, where CL0056.02 is located. This cluster was therefore excluded
from the subsequent analysis.

The photometric zeropoint of the coadded V -band image was determined by matching
stellar magnitudes to the secondary standard stars established by Pietrzynski et al. (2002b)
in the Johnson-Cousins system. No calibration was available for the R-band, for which a
zeropoint was determined based on the expected V − R colours for the elliptical galaxies in
CL0056.03. This zeropoint is estimated to be accurate within 0 .m1, which is sufficient for the
analysis presented here since a highly accurate absolute photometry is not required.
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For the catalogue creation NGC 300 was masked and replaced by the mean sky background
in order to avoid any biasing of the source detection algorithm. Thus, most of the flux present
in the image was removed. With SExtractor all objects with at least 6 connected pixels ≥ 2σ
above the sky background noise were detected. This catalogue contained 44146 objects, for
which shear estimates were obtained with KSB after PSF correction (Fig. 4.5). After filtering
(νmax > 12, R > 23.0), the catalogue of the background galaxies contained 12694 objects with
reliable shapes, corresponding to a number density of ∼ 20 galaxies arcmin−2.

4.3.2 S-statistics for the NGC 300 field

Fig. 4.7 shows the S-statistics for the POLY filter on the 4′ scale. As can be seen, CL0056.03
is recovered at the 3σ level within 50–100′′ south of the cluster centre. It is seen on a similar
level also for filter scales up to 6′ . CL0056.02 at the very lower left is not or only marginally
detected, since useful shear information could only be obtained from about 30% of the area
which would be available if the cluster did not lie next to the field corner in a region with
bad image quality. The argument of field truncation also holds for CL0056.03, but to a much
lesser extent. There the useable field was limited by the edge of the image, 2.′5 east of the
cluster centre, and NGC 300 5.′5 to the South-West. From Fig. 3.7 and the cluster redshift
of z = 0.165 it is concluded that a mass of ∼ 1.4 × 1014M� would produce a comparably
significant lensing detection. This is a lower limit, since the number of galaxies with a
measured shear signal was reduced by the field geometry, thus decreasing the detection S/N .

The S-statistics furthermore picks up a number of other peaks at various filter scales
(clumps A and C ). The latter one rises to the 3σ level on the 3′ scale. Besides, a stable peak
is found inside the mask of NGC 300 at the 3.0 − 3.5σ level for filter scales of 3′ to 6′ . Such
a detection is not surprising, since Map is a highly non-local measure. It can pick up those
parts of the shear field of a possible cluster hidden behind NGC 300 that extend beyond NGC
300 itself, provided that this putative cluster is massive enough. The detection in question is
at the very outer edge of the galaxy disk, but the confusion limit of foreground stars in NGC
300 is already reached. Yet the optical thickness of the disk is still small enough close to
the edge, so that larger and brighter galaxies can be seen through the galaxy. Thus, if there
was a massive lower redshift cluster such as CL0056.03 at this position, it could be directly
identified. More distant clusters, however, could no longer be seen as such, since their smaller
and fainter images are drowned in the foreground confusion. At the position of this hidden
peak no optical counterpart could be identified, but clumps A and C lie within 20–70′′ and
50′′ of two concentrations of red galaxies, as is shown in the next section.

4.3.3 Peak verification

The red cluster sequence technique Apart from a spectroscopic confirmation of optical
counterparts, multi-colour data can be used do exclude a chance projection of galaxies at
various redshifts, mimicking a larger galaxy cluster. This method makes use of the fact that
due to the consumption of gas during cluster formation no new stars can be formed any more,
and thus the stellar populations of the cluster galaxies have similar ages and colours. Clusters
can therefore be identified by searching for overdensities of galaxies with similar properties in
multi-colour space (see Postman et al., 1996, for a description). Furthermore, richer clusters
form a tight sequence in a colour-magnitude diagramme of the total galaxy population, a
feature which is then easily picked up (Gladders & Yee, 2000).
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Figure 4.6: Left: colour-magnitude diagramme for all galaxies in the field. The large box marks
the cluster sequence for CL0056.03. The small box outlines the only galaxies besides the members
of CL0056.03 for which spatial clumping has been observed (see Fig. 4.9). Right: Shown are the
predictions for WFI V − R colours of elliptical galaxies as a function of redshift (Bolzonella et al.,
2000; Bruzual & Charlot, 1993). Based on the track that includes evolutionary effects the redshifts of
the cluster candidates are estimated.

In a (V − R, R)-colour-magnitude diagramme (Fig. 4.6), the red cluster sequence of
CL0056.03 is indicated by the large box. The distribution of these galaxies on the sky is
displayed in Fig. 4.8, where CL0056.03 as well as CL0056.02 stand out significantly over the
rest of the field. By moving a smaller window over the galaxies in this colour-magnitude
space, another population of redder galaxies (V −R ≈ 1.45) was found that forms four very
significant overdensities in the field (see Fig. 4.9). Two of them coincide with the shear-
selected mass concentrations A and C. From the colours of the galaxies in these cluster
candidates, redshift estimates of z ≈ 0.45− 0.5 were deduced (right panel of Fig. 4.6), which
translates to mass estimates of MA(4.′0) ≈ (4±3)×1014M� and MC(3.′2) ≈ (6±3)×1014M�
for the filter scales in which they are detected most significantly. These clusters are not yet
spectroscopically confirmed.

X-ray observations In order to obtain further evidence for the physical existence of the
presented mass concentrations, a 100 ksec X-ray exposure of NGC 300 taken with XMM-
Newton by M. Turner (2002, unpublished) was overlaid over the optical data set in Fig. 4.10.
However, the field of view of XMM is a bit smaller than the one for WFI@2.2, thus clump
C is missed. Diffuse X-ray emission from the hot intra-cluster gas is detected at the fringes
of CL0056.03, but not for clump A, which sits at the very edge of the field where the total
throughput of XMM drops to 28% due to vignetting. Thus, a X-ray confirmation of the latter
was not possible. From the detection that was made behind the disk of NGC 300 no X-ray
flux is received, either.



4.3. A CASE STUDY: NGC 300 93

CL0056.03

CL0056.02
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Figure 4.7: S-statistics for the NGC 300 field (POLY, 4′ ). The contours depict the 2.0, 2.5, 3.0,
3.5σ levels. The large elliptical contour arises from the fact that Map can not be determined at the
positions inside due to the absence of galaxies.
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Figure 4.8: Positions of the galaxies that were selected in the colour-magnitude diagramme of Fig.
4.6 by the large box (big dots). The small dots indicate galaxies brighter than R = 21 which do
not fall inside the red sequence window. The overlaid contours are isodensity contours for the red
sequence members, smoothed at a 3.′6 scale, and starting with the 1σ-overdensity contour in steps of
1σ. CL0056.03 and CL0056.02 are detected at the 8σ and 5σ level, respectively. CL0056.03 appears
strongly elongated, with an intersecting 12′ long filament extending north-south at its eastern side.
Part of the filament could belong to Abell S0102 at (α, δ) = (13.91,−37.41), a poor cluster at z = 0.05.
Galaxies with measured spectra are highlighted with small squares around them.
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Figure 4.9: Positions of the galaxies that were selected in the colour-magnitude diagramme of Fig.
4.6 by the small box (big dots). These galaxies are shown as big dots, whereas all other galaxies
brighter than R = 22.5 are resembled by the small dots. Overlaid are isodensity contours for the big
dots, smoothed on the 1.′5 scale, and starting with the 1σ overdensity contour in steps of 1σ. The
overdensities for clumps A to D are found at the 10, 7, 7, and 5σ levels, respectively.
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A

C

CL0056.03

Figure 4.10: A 100 ksec XMM-Newton observation of the NGC 300 area. Shown are X-ray (0.3-
6.0 keV) contours and the XMM field of view, superimposed on the optical WFI data. The most
significant shear detections are indicated by the circles.
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4.4 Future work

Increasing the sample In a first step, one can change the various thresholds in the cat-
alogue creation process in a way that, e.g., only galaxies within the faintest 2 magnitudes
instead of the faintest 3.5 magnitudes are used. Thus the sensitivity of the shear-selection
method would be increased for more distant clusters of galaxies. Furthermore, the lower
S/N -threshold of 4σ could be decreased to 3.5σ, which will increase the number of objects in
the shear-selected sample by several hundred, but also the contamination by spurious noise
detections. One might also try less conservative object detection thresholds for the SExtractor
catalogue creation.

Spurious detections, real detections, dark detections A larger effort has yet to be
undertaken in the analysis of the so-called noise peaks. It was demonstrated that highly
significant noise peaks can appear, and that these can be distinguished from real peaks by
means of the width of the S-profile above the 3σ-threshold. Noise peaks disappear again for
filter scales not much larger or smaller than the one in which the peak was detected. This is
because the galaxies mimicking the shear signal leave the aperture again, or get downweighted
by the filter and by the large number of new galaxies with random orientations that enter
the aperture. For these reasons the disproportionate occurrence of compact dark peaks that
are seen in the smallest, 1.′6 wide filter, could be due to noise (see Fig. 4.4). A real mass
concentration, on the other hand, imprints its shear signal in principle at arbitrarily large
radii, and it is only up to the depth of the exposure and the seeing to measure it to such
distances. Therefore, a true peak is seen at a wider range of filter scales, i.e. its S-profile is
wider than the one of a noise peak. A proper mathematical combination of the S-statistics for
various filter scales could lead to a new definition of the S/N for the peaks under consideration,
resulting in more efficient detection criteria. This has to take into acount a proper measure
for the overlap of filters with similar scales.

An effect that has to be further investigated is the disproportionately large number of
noise peaks in data sets with randomised ellipticities, as compared to the observed data.
Adding increasingly larger random angles to the true galaxy orientations will significantly
contribute to the understanding of the nature of the peaks observed. This, in turn, will
yield constraints on the minimum accuracy of the astrometric solution and the coaddition
procedure used. The effects of these data reduction steps onto the weak lensing statistics
presented must be investigated in more detail.

M/L ratios Of great interest is a comparison of the mass-to-light ratios of the bright peaks
in this sample with the peaks from flux-selected samples from similar surveys. Significant
differences can be expected, as is indicated by the presence of dark peaks (which can not
have a M/L ratio assigned). For this purpose, the corresponding fields have to be observed
in bluer bands (B or V ) for the identification of further cluster members and for an estimate
of the cluster redshift (see Sect. 4.3).

A question which will probably remain unanswered for the next years is whether the dark
peaks, if they are not a statistical fluke, are truly dark, or whether they consist of extremely
red and relatively dark galaxies. First constraints on this were already obtained by Gray et
al. (2001), but a lot more observations of these targets with the largest telescopes have to be
made before one can come to a robust conclusion. If these dark clumps indeed turn out to
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be dark, possibly consisting of dark matter only, then the question has to be answered why
they did not attract any baryons contrary to their luminous cousins.

Cross-correlation with other surveys Even though this work has shown that there is
good evidence for the existence of dark and bright mass concentrations in the universe that
can be selected by weak gravitational lensing, one would like to gain even more faith in
those detections. Spectroscopic follow-up observations of the bright peaks can confirm the
existence of a cluster into a particular direction, and from the derived velocity dispersion a
mass estimate can be obtained. However, the optical counterparts of a typical bright peak in
the sample presented do not appear very rich. Therefore the velocity dispersion in conjunction
with the virial theorem will yield unreliable results if only an insufficient number of spectra
can be obtained, leaving open the question whether the mass peak is physically related to
the galaxies seen, or whether it is a spurious detection that just happened to coincide with
the light. The amount of the latter cases is cut down by the requirement of a ≥ 4σ detection,
and further constraints can be obtained from the S-profile. Yet a statistical analysis that
evaluates the probability of a noise peak to fall on top of a galaxy group would be very useful
in this respect.

Closely related to this is the calculation of the correlation function between the S-map
and the light map obtained for the particular line of sight. In addition, a correlation with the
X-ray maps from the ROSAT All Sky Survey (Voges et al., 1999) should be performed, since
at least some of the bright peaks (and maybe the dark peaks, too) could be filled with hot
gas. Another analysis worth being done is a correlation of the mass peaks with the known
quasars in the field. It is known that for the brightest quasars a positive correlation exists
with flux-selected mass concentrations, since the latter ones magnify the quasars by their
gravitational lensing effect (magnification bias). If such a correlation is found for the shear-
selected mass concentrations too, then this would be a direct and independent verification
for the existence of these objects. Furthermore, the correlation could be done with the dark
peaks only. However, such a correlation measurement requires a homogeneously selected,
flux-limited sample of quasars for the investigated area, which does not exist for the GaBoDS
data. The recently started CFHT legacy survey can provide such a data set, since it goes
deep enough for lensing studies, and allows for quasar classification based on a five-band
multi-colour photometry.

Another possibility for proving the reality of dark peaks is the statistical combination of
the number density of background galaxies behind the mass concentrations. In such a sample
one can search for changes of the number density as a function of angular distance to the lens,
since gravitational lensing leads to a magnification of the space behind the lens, thus diluting
the galaxies in the corresponding volume projected on the sky. At the same time, however,
the fluxes of the lensed background galaxies are enlarged, thus fainter objects can be detected
which go unnoticed, otherwise (see Broadhurst et al., 1995, for further discussion). Whether
the one or the other of these two effects dominates, depends on the slope of the luminosity
function of the galaxies in the observed wavelength range. In the blue bands the two effects
cancel each other, whereas in the red bands a diluting of the galaxies can be seen. For this
purpose, carefully determined absolute photometric zeropoints must be determined for the
GaBoDS fields.
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Table A.1: Shear-selected mass concentrations

ID α(2000.0) δ(2000.0) ν z/class Filter xc Scale Field

SSMC-001 00 44 52 -29 34 12 4.40 dark TANH 2.0 2.′8 SGP
SSMC-002 00 44 55 -29 38 43 4.18 dark POLY 2.′4 SGP
SSMC-003 00 45 15 -29 38 58 4.17 bright TANH 2.0 3.′6 SGP
SSMC-004 00 45 20 -29 23 54 5.01 0.2 TANH 0.025 19.′8 SGP
SSMC-005 00 45 37 -29 48 31 4.31 0.5 TANH 0.05 6.′3 SGP
SSMC-006 00 45 50 -29 36 58 4.13 dark TANH 0.025 5.′6 SGP
SSMC-007 00 45 58 -29 30 41 4.15 dark TANH 0.025 5.′6 SGP
SSMC-008 00 46 25 -29 24 09 4.73 dark POLY 7.′9 SGP
SSMC-009 00 46 37 -29 20 38 4.22 bright TANH 0.1 3.′6 SGP
SSMC-010 01 05 03 -25 53 10 4.17 dark TANH 2.0 2.′0 FDF

SSMC-011 01 06 33 -25 36 40 4.09 dark TANH 1.0 1.′6 FDF
SSMC-012 03 31 11 -27 34 03 4.64 dark TANH 0.5 5.′6 CDF-S
SSMC-013 03 31 40 -27 55 35 4.20 0.095 POLY 2.′4 CDF-S
SSMC-014 03 32 18 -27 58 44 4.02 0.125 TANH 0.2 2.′4 CDF-S
SSMC-015 03 32 30 -27 28 48 4.02 0.146 POLY 2.′4 CDF-S
SSMC-016 03 53 26 -49 42 27 5.02 dark TANH 0.2 4.′8 AM1
SSMC-017 03 54 08 -49 38 45 4.05 0.22 (unclear) TANH 2.0 9.′9 AM1
SSMC-018 03 56 16 -49 36 12 4.54 dark TANH 0.2 3.′2 AM1
SSMC-019 04 20 31 -36 02 11 4.10 unclear TANH 2.0 2.′4 Comparison
SSMC-020 05 03 58 -28 41 35 4.39 dark TANH 0.1 4.′0 SHARC2

SSMC-021 05 06 01 -28 31 34 4.25 unclear POLY 2.′0 SHARC2
SSMC-022 09 55 47 -10 00 07 4.63 0.160 TANH 2.0 6.′3 A901
SSMC-023 09 55 59 -09 45 59 4.00 dark EXP 1.′6 A901
SSMC-024 09 56 24 -09 56 31 6.30 0.160 TANH 0.1 19.′8 A901
SSMC-025 10 06 15 -00 08 32 4.13 0.185 TANH 2.0 2.′8 Pal3
SSMC-026 10 40 03 -11 51 28 4.19 bright TANH 0.5 2.′4 CL1040-1155
SSMC-027 10 41 01 -12 03 35 4.07 dark TANH 1.0 9.′9 CL1040-1155
SSMC-028 10 53 35 -12 53 05 4.18 0.07 − 0.122 TANH 0.1 5.′6 CL1054-1245
SSMC-029 10 54 54 -11 53 54 4.13 dark POLY 2.′0 CL1054-1146
SSMC-030 10 54 58 -11 33 38 4.07 dark TANH 0.05 3.′6 CL1054-1146

SSMC-031 10 58 32 -13 02 25 4.21 unclear TANH 0.1 5.′6 CL1059-1253
SSMC-032 10 59 17 -12 53 37 4.02 0.4 − 0.6 TANH 2.0 6.′3 CL1059-1253
SSMC-033 10 59 45 -13 05 16 4.19 bright POLY 2.′4 CL1059-1253
SSMC-034 11 16 26 -21 46 57 4.53 unclear TANH 2.0 3.′2 DEEP3d
SSMC-035 11 17 36 -21 34 08 4.24 bright TANH 0.1 5.′6 DEEP3d
SSMC-036 11 18 22 -11 27 06 4.38 bright TANH 0.5 5.′6 CL1119-1129
SSMC-037 11 18 36 -21 53 46 4.25 dark TANH 0.1 1.′6 DEEP3d
SSMC-038 11 19 00 -21 43 09 4.07 dark POLY 17.′8 DEEP3c
SSMC-039 11 25 24 -21 35 25 4.38 bright POLY 2.′0 DEEP3a
SSMC-040 11 26 10 -21 56 44 4.21 unclear TANH 0.2 3.′2 DEEP3a
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Table A.2: Shear-selected mass concentrations (continued)

ID α(2000.0) δ(2000.0) ν z/class Filter xc Scale Field

SSMC-041 11 39 51 -25 36 26 4.02 bright TANH 0.05 7.′9 A1347 P1
SSMC-042 11 41 08 -25 26 59 4.00 dark TANH 0.1 1.′6 A1347 P1
SSMC-043 11 41 25 -24 59 23 4.21 unclear TANH 0.025 6.′3 A1347 P3
SSMC-044 11 41 41 -24 43 36 4.32 dark TANH 0.05 7.′1 A1347 P3
SSMC-045 11 41 53 -01 38 18 4.39 bright POLY 2.′4 S11
SSMC-046 11 42 02 -01 29 35 4.27 dark TANH 0.5 1.′6 S11
SSMC-047 11 42 21 -01 45 19 4.43 dark TANH 0.5 1.′6 S11
SSMC-048 11 42 26 -01 39 30 4.76 dark TANH 2.0 2.′8 S11
SSMC-049 11 42 26 -01 31 17 4.27 bright TANH 0.05 13.′9 S11
SSMC-050 11 42 40 -01 53 18 4.05 0.119 POLY 2.′8 S11

SSMC-051 11 43 15 -01 29 06 4.07 unclear POLY 1.′6 S11
SSMC-052 11 43 30 -24 45 48 4.02 dark TANH 0.1 2.′8 A1347 P4
SSMC-053 11 43 33 -01 45 19 4.87 0.106 TANH 0.025 13.′9 S11
SSMC-054 12 05 46 -07 36 25 4.48 dark POLY 13.′9 NDF
SSMC-055 12 05 57 -07 20 45 4.30 dark TANH 0.1 7.′9 NDF
SSMC-056 12 15 33 -12 16 41 4.63 bright TANH 0.5 2.′4 CL1216-1201
SSMC-057 12 17 01 -11 50 48 4.43 dark TANH 0.5 4.′0 CL1216-1201
SSMC-058 12 17 09 -12 02 09 4.01 bright TANH 2.0 5.′6 CL1216-1201
SSMC-059 12 17 13 -11 46 34 4.64 dark TANH 0.2 3.′2 CL1216-1201
SSMC-060 13 02 23 -11 50 19 4.40 dark POLY 3.′2 CL1301-1139

SSMC-061 13 02 37 -11 20 26 4.18 bright TANH 2.0 9.′9 CL1301-1139
SSMC-062 13 52 45 -11 24 54 4.64 bright TANH 0.025 11.′9 CL1353-1137
SSMC-063 14 16 23 -12 11 40 4.39 dark TANH 2.0 3.′6 C0400
SSMC-064 14 16 54 -12 21 06 4.28 dark POLY 5.′6 C0400
SSMC-065 14 19 00 -11 24 29 4.64 dark TANH 2.0 5.′6 C04p2
SSMC-066 14 19 04 -14 13 13 4.22 dark TANH 2.0 2.′4 C04m4
SSMC-067 14 20 06 -12 28 50 4.08 dark TANH 2.0 2.′4 CL1420-1236
SSMC-068 14 20 08 -12 39 15 4.37 dark POLY 6.′3 CL1420-1236
SSMC-069 14 20 25 -13 30 24 4.43 dark TANH 1.0 2.′4 C04m3
SSMC-070 14 20 52 -12 35 28 4.03 dark TANH 0.2 6.′3 CL1420-1236

SSMC-071 14 21 16 -12 35 56 4.05 dark TANH 0.1 4.′0 CL1420-1236
SSMC-072 14 21 53 -13 37 35 4.01 dark TANH 0.05 4.′0 C04m3
SSMC-073 14 24 20 -34 38 34 4.07 dark TANH 0.5 2.′4 F17 P1
SSMC-074 14 27 00 -34 35 53 4.28 dark TANH 2.0 1.′6 F17 P1
SSMC-075 21 26 37 -40 31 51 4.11 dark TANH 0.5 2.′0 F4 P1
SSMC-076 21 27 44 -40 31 21 4.09 bright TANH 0.2 3.′6 F4 P1
SSMC-077 21 27 56 -40 25 09 4.02 dark TANH 0.2 2.′0 F4 P3
SSMC-078 21 28 21 -39 59 14 4.00 dark TANH 1.0 2.′4 F4 P3
SSMC-079 21 28 44 -40 26 23 4.06 dark EXP 2.′0 F4 P3
SSMC-080 21 29 06 -39 47 25 4.13 dark TANH 0.025 7.′9 F4 P4
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Table A.3: Shear-selected mass concentrations (continued)

ID α(2000.0) δ(2000.0) ν z/class Filter xc Scale Field

SSMC-081 21 30 23 -39 41 20 4.00 dark TANH 0.1 3.′2 F4 P4
SSMC-082 22 40 12 -09 44 03 5.10 dark TANH 0.05 17.′8 B8p0
SSMC-083 22 40 19 -10 09 34 4.29 unclear TANH 0.05 19.′8 B8m1
SSMC-084 22 40 21 -10 24 22 4.12 dark TANH 1.0 2.′4 B8m2
SSMC-085 22 40 23 -09 37 48 4.05 dark POLY 7.′1 B8p0
SSMC-086 22 40 25 -09 21 02 4.61 dark EXP 4.′0 B8p0
SSMC-087 22 40 26 -09 46 30 4.87 dark POLY 3.′6 B8p0
SSMC-088 22 40 29 -09 35 33 4.35 dark TANH 0.2 2.′0 B8p0
SSMC-089 22 40 32 -08 23 01 4.13 bright TANH 0.05 15.′9 B8p2
SSMC-090 22 40 41 -09 21 56 4.59 bright TANH 0.5 3.′2 B8p0

SSMC-091 22 40 51 -09 17 24 4.97 bright POLY 4.′0 B8p1
SSMC-092 22 40 52 -08 11 08 4.07 dark TANH 0.1 6.′3 B8p3
SSMC-093 22 41 25 -11 18 44 4.11 dark POLY 2.′0 B8m3
SSMC-094 22 41 26 -10 01 58 4.25 dark TANH 0.1 1.′6 B8m1
SSMC-095 22 41 29 -09 08 54 4.11 dark TANH 2.0 3.′6 B8p1
SSMC-096 22 41 47 -10 17 11 4.27 dark TANH 0.5 2.′0 B8m1
SSMC-097 22 42 03 -09 38 01 4.14 dark TANH 1.0 2.′0 B8p0
SSMC-098 22 42 06 -09 03 05 4.11 dark POLY 3.′2 B8p1
SSMC-099 22 50 21 -40 06 04 4.02 unclear TANH 0.5 3.′6 DEEP1c
SSMC-100 22 54 20 -40 06 51 4.35 0.151 TANH 0.05 7.′9 DEEP1a
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Figure A.1: Shear selected mass concentrations (a)The field of view in all these plots is 4.′3.
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Figure A.2: Shear selected mass concentrations (b)
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Figure A.3: Shear selected mass concentrations (c)
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Figure A.4: Shear selected mass concentrations (d)
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Figure A.5: Shear selected mass concentrations (e)
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Figure A.6: Shear selected mass concentrations (f)
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Figure A.7: Shear selected mass concentrations (g)



110 APPENDIX A. APPENDIX

Figure A.8: Shear selected mass concentrations (h)
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Figure A.9: Shear selected mass concentrations (i)
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Figure A.10: Shear selected mass concentrations (j)
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Figure A.11: Shear selected mass concentrations (k)
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Figure A.12: Shear selected mass concentrations (l)
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Figure A.13: Shear selected mass concentrations (m)
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Figure A.14: Shear selected mass concentrations (n)
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Figure A.15: Shear selected mass concentrations (o)
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Figure A.16: Shear selected mass concentrations (p)
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Figure A.17: Shear selected mass concentrations (q)
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Figure A.18: S-profiles for the shear-selected mass concentrations from GaBoDS. The x-axis
shows the filter scale in arcmin, the y-axis the detection significance. The dashed line takes
into account that the peak position can vary slightly for different scales, whereas the solid
line shows the S/N for the one position in the S-map at which the peak was detected most
significantly. Dark, grey and white diamonds indicate the classifications dark, unclear and
bright, respectively.
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Figure A.19: S-profiles for GaBoDS
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Figure A.20: S-profiles for GaBoDS



123

Figure A.21: S-profiles for GaBoDS
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Figure A.22: S-profiles for GaBoDS
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Figure A.23: S-profiles for GaBoDS calculated for randomly selected positions and filter types
in the fields without randomisation of the galaxy orientations. The dashed line is explained
in the caption of Fig. A.18.
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Figure A.24: Noise S-profiles calculated from data sets with randomised galaxy orientations.
These are much more erratic than the S-profiles determined from real data, independent of
the filter type. The plots labeled F 3 26, F 3 31 and F 3 34 were calculated for the POLY
filter, and F 3 42 for the EXP filter. All others are TANH with varying widths xc. The
dashed line is explained in the caption of Fig. A.18.
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