
Plan Projection, Execution, and Learning

For Mobile Robot Control

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Thorsten Belker

aus

Wuppertal

Bonn (Januar) 2004

To my parents

Acknowlegements

The work described in this thesis could not have been done without the sup-
port of numerous people. First of all, I wish to thank my advisor Armin
B. Cremers and my co-advisor Joachim Hertzberg. I am grateful for their
suggestions and their guidance. I would also like to express my gratitude
to Armin B. Cremers as well as Michael Beetz for offering me the oppor-
tunity to work on the DFG funded research project “Modell- und diagnose-
basiertes Transformationslernen von symbolischen Navigationsplänen für mo-
bile Roboter” which inspired me to this thesis in the first place.

This work owes much of its inspiration to Michael Beetz. In many hours
of discussion he was always willing to listen and gave valuable suggestions.
Joachim Hertzberg as well had an enormous impact on my thinking and
helped to improve this work a lot. I thank both of them as well as Malik
Ghallab and Martha E. Pollack for organizing the seminars on plan-based
robot control which took place at Schloss Dagstuhl in 2001 and 2003. The
many fruitful discussions at Dagstuhl helped me a lot in finding a scientific
approach to the problems I address in this thesis.

Several other people contributed to this thesis as well. Let me first mention
Jürgen Schumacher who has been my office mate for the last four years. I
would like to thank him for his patience and serenity. I would also like to
thank him and Dirk Schulz for many valuable suggestions which helped to
improve this work a lot. Finally, I would like to thank all the other current
and former members of the “RHINO team”, and especially Wolfram Burgard,
Dieter Fox, Dirk Hähnel, Mark Moors, Martin Hammel, and Klaus Schulz
for the joyful working atmosphere and their spirit of cooperation.

Abstract

Most state-of-the-art hybrid control systems for mobile robots are decom-
posed into different layers. While the deliberation layer reasons about the
actions required for the robot in order to achieve a given goal, the behavioral
layer is designed to enable the robot to quickly react to unforeseen events.
This decomposition guarantees a safe operation even in the presence of un-
foreseen and dynamic obstacles and enables the robot to cope with situations
it was not explicitly programmed for.

The layered design, however, also leaves us with the problem of plan execu-
tion. The problem of plan execution is the problem of arbitrating between
the deliberation- and the behavioral layer. Abstract symbolic actions have
to be translated into streams of local control commands. Simultaneously,
execution failures have to be handled on an appropriate level of abstraction.
It is now widely accepted that plan execution should form a third layer of a
hybrid robot control system. The resulting layered architectures are called
three-tiered architectures, or 3T architectures for short.

Although many high level programming frameworks have been proposed to
support the implementation of the intermediate layer, there is no generally
accepted algorithmic basis for plan execution in three-tiered architectures. In
this thesis, we propose to base plan execution on plan projection and learning
and present a general framework for the self-supervised improvement of plan
execution. This framework has been implemented in Appeal, an Architec-
ture for Plan Projection, Execution And Learning, which extends the well
known Rhino control system by introducing an execution layer.

This thesis contributes to the field of plan-based mobile robot control which
investigates the interrelation between planning, reasoning, and learning tech-
niques based on an explicit representation of the robot’s intended course of
action, a plan. In McDermott’s terminology, a plan is that part of a robot
control program, which the robot cannot only execute, but also reason about
and manipulate. According to that broad view, a plan may serve many pur-
poses in a robot control system like reasoning about future behavior, the
revision of intended activities, or learning. In this thesis, plan-based control
is applied to the self-supervised improvement of mobile robot plan execution.

Arbeiter der Stirn

Ein Mensch sitzt kummervoll und stier
Vor einem weißen Blatt Papier.
Jedoch vergeblich ist das Sitzen –

Auch wiederholtes Bleistiftspitzen
Schärft statt des Geistes nur den Stift.

Selbst der Zigarre bittres Gift,
Kaffee gar, kannenvoll geschlürft,

Den Geist nicht aus den Tiefen schürft,
Darinnen er, gemein verbockt,
Höchst unzugänglich einsam hockt.

Dem Menschen kann es nicht gelingen,
Ihn auf das leere Blatt zu bringen.

Der Mensch erkennt, daß er nichts nützt,
Wenn er den Geist an sich besitzt,

Weil Geist uns ja erst Freunde macht,
Sobald er zu Papier gebracht.

aus: Eugen Roth, Ein Mensch, 1935

Contents

1 Introduction 1

2 The RHINO Architecture 5

2.1 Introduction . 6
2.2 Related Work . 11

2.2.1 Markov Decision Processes 11
2.2.2 Partially Observable Markov Decision Processes 12

2.2.3 The Navigation Problem as a POMDP 14
2.2.4 Greedy POMDP planning 15

2.3 Decision-theoretic Action Selection 20
2.4 Learning Action Models . 23

2.4.1 Neural Networks . 25
2.4.2 Tree Based Induction 25

2.5 Experimental Results . 26

2.5.1 Learning the Models 26
2.5.2 Simulator Experiments 28
2.5.3 Experiments with the Mobile Robot 30

2.6 Summary . 33

3 Local Planning for Collision Avoidance 35
3.1 Introduction . 36
3.2 Related Work . 37

3.3 Computing Optimal Utility Functions 39
3.4 Evaluation Functions for Control Commands 43

3.4.1 Searching for Control Commands 43
3.4.2 Evaluating Control Commands 44

3.5 Experimental Results . 46
3.5.1 Experiment 1 . 47
3.5.2 Experiment 2 . 49

3.6 Summary . 52

ii CONTENTS

4 HTNs for Plan Execution 53
4.1 Introduction . 54
4.2 Related Work . 55
4.3 Hierarchical Task Networks 59
4.4 Execution Planning using HTNs 60
4.5 Execution Planning in APPEAL 67
4.6 Experimental Results . 68

4.6.1 Failure Recovery using HTNs 69
4.6.2 Failure Recovery by Replanning 72

4.7 Summary . 73

5 Plan Projection for Online Scheduling 77
5.1 Introduction . 78
5.2 Related Work . 80
5.3 Tree-based Induction . 82

5.3.1 Decision Trees . 82
5.3.2 Regression Trees . 88
5.3.3 Model Trees . 88
5.3.4 Implementation Details 90

5.4 Learning Action Models . 91
5.5 Scheduling Navigation Tasks 93
5.6 Experimental Results . 95
5.7 Summary . 105

6 Plan Projection for Action Selection 107
6.1 Introduction . 108
6.2 Related Work . 109
6.3 Action Selection as an MDP 112
6.4 Computing the Optimal Utility Function 115
6.5 Experimental Results . 116

6.5.1 Real World Experiment 117
6.5.2 Simulator Experiments 121

6.6 Summary . 123

7 Learning Action Selection Rules 125
7.1 Introduction . 126
7.2 Related Work . 127
7.3 Sequential Covering Algorithms 130

7.3.1 Stopping Criteria . 132
7.3.2 Cutting Criteria . 132
7.3.3 Incremental Post Pruning 133

CONTENTS iii

7.3.4 Speeding Up Learning 135
7.4 Learning Action Selection Rules 135
7.5 Experimental Results . 139
7.6 Summary . 143

8 Conclusions 145

A Statistical Testing 149
A.1 Parametric Tests . 150
A.2 Testing Hypotheses about the Mean 150

A.2.1 Z Test . 151
A.2.2 One-sample t Test . 152
A.2.3 Two-sample t Test . 153
A.2.4 Paired-Sample t Test 154

A.3 Computer-Intensive Statistical Methods 155
A.3.1 Bootstrap Two-Sample t Test 155
A.3.2 Randomization Paired-Sample t Test 157

B Learned Rules 159
B.1 Plan Projection for Online Scheduling 159
B.2 Plan Projection for Action Selection 161
B.3 Learning Action Selection Rules 165

B.3.1 Using Decision Trees 165
B.3.2 Using Sequential Covering 168

iv CONTENTS

Chapter 1

Introduction

Most state-of-the-art hybrid control systems for mobile robots are decom-
posed into different layers. While the deliberation layer reasons about the
actions required for the robot in order to achieve a given goal, the behavioral
layer is designed to enable the robot to quickly react to unforeseen events.

The deliberation layer provides an interface for user interaction. It employs
symbolic planning techniques like means-end analysis to compute plans for
user specified goals. For this purpose, the planner uses an abstract and
mainly static model of the robot’s environment and its actions. The result-
ing action plans are often partially ordered sets of abstract symbolic action
specifications. The behavioral layer, on the other hand, is designed for fast
feed-back control. It is reactive in that it only relies on the current sensor
readings of the robot or a local environment model built from the most recent
sensor readings.

This decomposition guarantees a safe operation even in the presence of un-
foreseen and dynamic obstacles and enables the robot to cope with situations
it was not explicitly programmed for. From a software technological point of
view, this design is advantageous as the layers can be designed independently
by different teams of developers. The layered design, however, also leaves us
with the problem of plan execution.

The problem of plan execution is the problem of arbitrating between the
deliberation- and the behavioral layer. Abstract symbolic actions have to be
translated into streams of local control commands. Simultaneously, execution
failures have to be handled on an appropriate level of abstraction. It is now
widely accepted that plan execution should form a third layer of a hybrid
robot control system. The resulting layered architectures are called three-
tiered architectures, or 3T architectures for short.

2 Introduction

Although many high level programming frameworks have been proposed to
support the implementation of the intermediate layer, there is no generally
accepted algorithmic basis for plan execution in three-tiered architectures. In
this thesis, we propose to base plan execution on plan projection and learn-
ing, and we present a general framework for the self-supervised improvement
of plan execution. This framework has been implemented in Appeal, an
Architecture for Plan Projection, Execution And Learning, which extends
the well known Rhino control system by introducing an execution layer.

The core of Appeal’s execution layer is the explicit representation of the
state of plan execution. This is achieved using Hierarchical Task Networks
(HTNs). This representation forms the basis for task decomposition and
failure recovery. In contrast to HTN action planning, there are in general
many ways to decompose an abstract action into a partially-ordered set of
actions and many possible serializations of a partial order. Which expansion
is selected and how the tasks are serialized, however, might have a substantial
impact on the robot’s performance. We consider HTN execution planning
as a search for plans with a high expected performance.

To estimate the expected performance of a plan, the execution of the plan
is projected. It is one of the main ideas presented in this thesis to base the
projection on action models learned from experience. The learned models
provide an estimate of the time needed to execute an action. They can be
learned from data collected during the plan execution process.

The search for an optimal execution plan is computationally expensive. To
mitigate this problem, we interleave planning and execution. This is achieved
by applying transformational planning techniques. A default plan is gener-
ated by selecting the standard expansion for all pending actions. While
the robot starts to execute the plan, the planner can reason about different
courses of actions. As soon as a more promising HTN has been determined,
the execution plan is transformed accordingly.

This thesis is organized as follows. Chapter 2 describes the Rhino con-
trol software. Although mobile robot navigation in general is a Partially
Observable Markov Decision Process, the Rhino navigation system heuristi-
cally decomposes the POMDP into a state estimation process, a navigation
planning process and an active localization process. Following this line of
reasoning, we suggest adding another planning process, an execution plan-
ning process. This process – as the navigation planning – can be considered
as a Markov Decision Process. Experimental results show that execution
planning in combination with learned action models bears the potential to
improve the robot’s performance considerably.

3

The experiment also demonstrates the need to improve the reliability of the
behavioral layer. Chapter 3 describes how the trajectory evaluation for re-
active navigation can be improved using local planning techniques.

Chapter 4 introduces the idea to use HTNs to represent the state of plan
execution explicitly. Besides the use of HTN planning for task decomposi-
tion, we show the benefits of HTNs for handling execution failures on the
right level of abstraction. Experiments show that using these techniques the
reliability of plan execution can be improved substantially.

Chapter 5 and Chapter 6 describe the application of plan projection to ex-
ecution planning. There are two main tasks involved in execution planning.
First, the sequencing of a partially ordered set of tasks and second, the se-
lection of the most suitable task expansion. A solution to the first task is
described in Chapter 5. A solution to the second task is discussed in Chap-
ter 6. The main focus of Chapter 5 is on learning the required action models.
The proposed solution is based on features derived from a path planning
process and model tree learning. The focus of Chapter 6 is on the applica-
tion of transformational planning techniques and the application of a slightly
different plan projection technique.

Due to the application of transformational planning techniques it becomes
feasible to perform online execution planning. However, the action selec-
tion process is not transparent to the human observer. In Chapter 7, we
demonstrate how action selection rules can be learned from offline execution
planning. The action selection rules can be applied in HTN planning at the
time of plan generation and turn out to be an alternative to transformational
planning. The technique, however, is only applicable in the case of planning
problems that do not require a long planning horizon, and not for example
to the sequencing problem.

This thesis contributes to the field of plan-based mobile robot control which
investigates the interrelation between planning, reasoning, and learning tech-
niques based on an explicit representation of the robot’s intended course of
action, a plan. In McDermott’s terminology [McD92a], a plan is that part of
a robot control program, which the robot cannot only execute, but also rea-
son about and manipulate. According to that broad view, a plan may serve
many purposes in a robot control system: As Beetz et al. [BHGP02] put
it, ”the use of plans enables these robots to flexibly interleave complex and
interacting tasks, exploit opportunities, quickly plan their courses of action,
and, if necessary, revise their intended activities”. In this thesis, plan-based
control is applied to the self-supervised improvement of mobile robot plan
execution.

4 Introduction

The idea to have a mobile robot autonomously learn from past experience
how its performance can be improved is central to our work. For the task of
plan execution, this kind of knowledge is difficult to specify for the human
programmer as it requires a deep understanding of the control system. In
addition, it is a cumbersome work to specify a good execution policy. It is
the aim of Appeal to automatize this work.

For the application of self-supervised learning techniques to the control of a
mobile robot in a human-structured environment, it is important to provide
as much domain knowledge to the robot as possible. The use of domain
knowledge helps to reduce the amount of data required for learning and
confines the space of learnable policies. In Appeal, this is achieved by
providing the task hierarchy of the HTN planning framework. The set of
possible tasks and the set of possible task expansions structure the learning
problem and therefore simplify learning considerably.

When trying to learn parts of a mobile robot control system, especially if the
robot is to work together with people, it is important that the control system
is transparent to the human operator. In Appeal, this is achieved by using
symbolic learning algorithms both for the acquisition of the predictive models
as well as the acquisition of action selection rules. In this thesis, we propose to
apply tree-based inductive learning as well as sequential covering algorithms
to both tasks. These algorithms allow to learn symbolic rules which are
intelligible for human inspection. In these respects, the approach presented
in this thesis differs from other approaches to self-supervised learning for
robot control like Q-learning and evolutionary algorithms.

Chapter 2

The RHINO Architecture

This chapter provides an overview of the Rhino architecture.
Rather than giving a detailed description of all different aspects
and components, it focuses on its main design principles. The
Rhino system can be characterized as a modular and hybrid
mobile robot control architecture which is based on probabilistic
and decision-theoretic algorithms for state estimation, navigation
planning, and active localization.

Despite the impressive performance of the Rhino system which
has been demonstrated in two long term experiments, we argue
that it can still be enhanced substantially by execution planning.
To underpin this hypothesis, we describe experimental results ob-
tained by augmenting the Rhino system with a decision-theoretic
action selection component. The experiments show that the per-
formance of Rhino can be improved considerably. These results
motivate the application of planning and learning techniques to
the problem of plan execution.

We argue that the problem of selecting the next target point from
the optimal path to the goal can be considered as a Markov De-
cision Process. The proposed action selection function, however,
is limited in various aspects. We discuss the limitations in some
detail in order to motivate the improvements suggested in sub-
sequent chapters. We demonstrate how learned action models
can be applied to decision-theoretic action selection. The idea
that execution planning should be based on learned models of
the robot’s actions is central to this thesis and further refined in
the following chapters.

6 The RHINO Architecture

2.1 Introduction

Purely reactive approaches to mobile robot navigation (please refer to the
introductory books of Arkin [Ark98] and Murphy [Mur00] or the article col-
lection of Brooks [Bro99] for details) are based on the assumption that suc-
cessful mobile robot behavior can be achieved solely by reacting appropriately
to sensor stimulus. In contrast to these approaches, the Rhino system relies
on an explicit representation of the environment. For navigation, a metric
map is used. As described by Thrun et al. [TBB+98, TBB+99] a grid map
of an indoor environment can be learned by the robot.

The problem of mobile robot navigation in known environments can be
decomposed into three interrelated subtasks: (1) The problem of self-
localization, estimating the robot’s pose (position and orientation) within
the environment, (2) the problem of navigation planning, computing a se-
quence of actions that when executed lead the robot to its goal position, and
(3) the problem of local control, the execution of purely reactive navigation
behaviors.

As can be seen from Figure 2.1, a separate module is devoted in the Rhino

architecture to each of these three problems. Additional modules exist for
sensor interpretation, effector control, map learning, task-level planning, and
user interaction.

The localization component [Fox98, FBT99, FBDT99] tries to fit the sen-
sor readings of a mobile robot in a model (a map) of the robot’s working
environment to estimate the robot’s current position or pose within the envi-
ronment and reduce uncertainty caused by unreliable dead reckoning. In the
case that the uncertainty about the current robot position becomes too high,
the localization component can make suggestions about navigation actions
which might help to reduce the robot’s position uncertainty. This process is
called active localization [BFT97, BBFC98].

The navigation planning component receives goal points from either a user
interface, a task planner or - in the case of active localization - from the
localization component. In the Rhino software, navigation planning is per-
formed using a path planner that computes optimal paths to a given goal.
Path planning is done using value iteration where the underlying state space
is based on a fine-grained two-dimensional grid map of the environment. As
explained in Section 2.2.1, value iteration results in a policy which assigns
an optimal navigation action to each state in the state space. For the naviga-
tion problem, this means that an optimal path to the goal can be computed
efficiently for each state in the state space by executing the navigation policy.

2.1 Introduction 7

EFFECTORS SENSORS

TASK PLANNING USER INTERFACE
TASK DESCRIPTION

LOCAL CONTROL

READINGSSENSOR
CONTROL

LOCALIZATION

PLANNING MAP
MAP
DATA

MAP
DATA

GOALS GOALS

ACTIONS

GOALS

MOTOR

Figure 2.1: Main components of the Rhino control software.

This kind of path planning algorithms support efficient replanning when the
robot is detected to deviate from the previously computed path. Plans are
executed by computing intermediate points that are passed to the execution
layer to be approached reactively.

The local control component ensures a safe navigation even in the case of
unexpected or even dynamic obstacles. It is designed to approach a given
local target point while avoiding obstacles. It generates a sequence of motor
control commands that can be directly executed by the robot while taking its
dynamic constraints into account. It is purely reactive, i.e., reacts directly to
its sensor readings. This makes the robot independent of a global map and
the correct estimation of its position with respect to this map.

Each module is designed as an own process and modules can therefore be
distributed over various machines. The asynchronous inter-process commu-
nication was originally implemented using the Tcx package [Fed93] specifi-
cally developed for mobile robot control. In a recent reimplementation of the
system and the extensions described in this thesis, however, Corba was used

8 The RHINO Architecture

Figure 2.2: The museum tour guide robots Rhino (left) and Minerva

(right).

as a middleware platform. Modules are implemented as software components
that can be distributed over a local network. Using Corba, modules can
be run on different operation systems and be implemented using different
programming languages like C++, Java, or Lisp.

The use of a modular and component-based architecture allows to quickly
reconfigure the system, depending on a particular robot, sensor configura-
tion and application. It also simplifies the software engineering process, as
different teams of programmers can extend and modify different modules
independently.

The tour guide application [BCF+98, TBB+99] made it necessary to intro-
duce additional modules for user interaction and task planning. A web in-
terface [SBC99, SBF+00, Sch02] makes it possible to control and monitor
the robot via the Internet, while simultaneously providing background in-
formation and a forum for discussion. The task planner schedules the asyn-
chronously arriving user requests and coordinates various robot activities re-
lated to navigation and user interaction. The task planner also monitors the
successful execution of plans and modifies plans in response to plan failures.

2.1 Introduction 9

In the first tour guide project in the Deutsches Museum in Bonn, Golog,
a first-order logic programming language based on the situation calcu-
lus [LRL+97], was used to schedule the user requests for visiting exhibits.
The main benefit of Golog for mobile robot control is that it allows to
integrate programming and planning and therefore makes it easy to spec-
ify high-level control programs. The integration of the Golog planner into
the Rhino system was achieved by an interface module, Golex [HBL98],
written in Prolog and C which extends Golog in three aspects.

1. It introduces conditional plans and the possibility to react to exogenous
events.

2. It allows to monitor the execution of the computed plan and to react
to plan failures.

3. It provides a set of abstract actions that are translated into a sequence
of actions executable by the lower control layers.

In the second tour guide project in the Smithsonian Museum of American
History in Washington, DC, a structured reactive controller (Src) [Bee99]
was applied to the task planning. The Src could compute default plans
efficiently, monitor their execution and detect plan failures or non-standard
situations and repair plans or adapt them in reaction to unforeseen situa-
tions using plan transformations. The Src was implemented using Rpl,
a Lisp macro language, and integrated into the Rhino system using Hli,
a C-based subsystem of Golex. Rpl supports the reaction to exogenous
events, conditional plans and sub-plan abstractions. Rpl is therefore a more
powerful mobile robot control language than Golog, and is in this respect
more similar to a standard programming language like C.

The integration of deliberative and reactive components makes the Rhino

system a hybrid mobile robot control system. The navigation software com-
prises a pilot layer and a navigator layer which is a common decomposition
of navigation software [Mey90, CKK96]. The pilot layer comprises the col-
lision avoidance module and the modules for sensor analysis and effector
control, while the navigator layer consists of the localization component, the
map component, and the path planning module. The task planner and the
user interface form a third layer, the deliberation layer. The plan execution
modules Golex/Hli form an interface layer between navigator layer and
deliberative layer.

It is the central hypothesis of this thesis that despite the impressive perfor-
mance of the Rhino system as demonstrated in the two tour guide experi-

10 The RHINO Architecture

ments, the navigation performance can still be improved considerably when
applying learning and planning techniques to the task of plan execution.

We propose in this thesis to extend the Rhino system in three aspects.

• To improve the behavioral layer by introducing a local planning process
to guide the search for good trajectories based on Markov Decision
Process Planning (Chapter 3).

• To extend the Rhino system by an execution planning system which
is based on Hierarchical Task Networks (Chapter 4).

• To enhance the system by a learning component which acquires action
models from previous experience. The learned action models form the
basis of plan projection and execution planning (Chapter 5 – Chap-
ter 7).

The Rhino system extended in these aspects will in the following be denoted
as Appeal, Architecture for Plan Projection, Execution and Learning.

To underpin the before mentioned hypothesis, we describe in this chapter ex-
perimental results obtained by extending the Rhino system with a decision-
theoretic action selection component. We suggest modeling the problem of
selecting the next target point from the optimal path to the goal as a Markov
Decision Process and discuss how the necessary action models can be learned
from experience. The experiments show that the performance of Rhino can
be improved considerably in this way.

The proposed action selection function, however, is limited in various re-
spects. We discuss the limitations in some detail in order to motivate the
improvements suggested in subsequent chapters. Besides the introduction
of the basic concepts used throughout the thesis and underlying the design
of the Rhino system like (Partially Observable) Markov Decision Processes,
the purpose of this chapter is to motivate the application of planning and
learning techniques for the task of plan execution.

The chapter is organized as follows. After introducing (Partially Observable)
Markov Decision Processes and discussing their application in the Rhino sys-
tem as well as in other robot control architectures in Section 2.2, we describe
how the problem of selecting intermediate points can be modeled as Markov
Decision Process in Section 2.3. Section 2.4 deals with the question of how
the necessary action models can be learned from experience. In Section 2.5,
we demonstrate the usefulness of the decision-theoretic intermediate point
selection in both simulator- and real world experiments and conclude in Sec-
tion 2.6.

2.2 Related Work 11

2.2 Related Work

In addition to the modular design of the software, the Rhino system is
characterized by the application of probabilistic and decision-theoretic al-
gorithms. As will be discussed in this section, the navigation problem is
considered as a Partially Observable Markov Decision Process (POMDP),
and an approximate solution is computed using a technique called Greedy
POMDP Planning. This section provides a brief introduction to Fully and
Partially Observable Markov Decision Processes and compares the implemen-
tation of Greedy POMDP Planning in the Rhino system to other related
robot navigation systems. The application of POMDP planning is well
suited for mobile robot control because it allows to model (a) nondeterminis-
tic action effects, (b) partial observability, (c) unreliable sensor information,
and (d) effector inaccuracy.

2.2.1 Markov Decision Processes

Markov Decision Processes (MDPs) provide a general framework for the
specification of simple control problems where an agent acts in a stochastic
environment and receives rewards from this environment. A solution of an
MDP is a policy, a mapping from states into actions. An optimal policy is
a policy that maximizes the expected accumulated future reward.

More formally, an MDP is given by

• a set of states S,

• a set of actions A,

• a probabilistic action model P (S|S, A),

• and a reward function R : S × A→ R.

P (s′|s, a) specifies the probability that action a taken in state s leads to the
state s′. R(s, a) denotes the immediate reward gained by taking action a in
state s. The property that action effects only depend on the action and the
state in which they are executed is called the Markov property. The optimal
solution to the Markov Decision Problem is a policy π given by the Bellman
Equation (for a discrete state space):

π(s) = arg max
a∈A

[R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)] (2.1)

12 The RHINO Architecture

Algorithm 1 Value iteration algorithm

for all s ∈ S do
V1(s) := 0

end for
t := 1
repeat

t := t + 1
for all s ∈ S do

for all a ∈ A do
Qt(s, a) := R(s, a) + γ

∑

s′∈S P (s′|s, a)Vt−1(s
′)

end for
Vt(s) := maxa Qt(s, a)

end for
until |Vt(s)− Vt−1(s)| < ε for all s ∈ S

The action π(s) in Equation 2.1 is the action that maximizes the sum of the
immediate reward R(s, a) for taking action a in state s and the discounted
expected future reward γ

∑

s′∈S P (s′|s, a)V ∗(s′). V ∗(s′) denotes the utility of
being in state s′ when acting according to the optimal policy. The constant
γ is called discounting factor and weighs the expected future rewards with
respect to how far in the future they will occur.

Markov Decision Processes can be solved efficiently using value itera-
tion [Bel57] or policy iteration [How60]. Both algorithms are based on the
ideas of dynamic programming. In Algorithm 1 we describe the value itera-
tion algorithm.

It can be shown that limt→∞ Vt = V ∗, i.e. that the value function converges
to the optimal value function. In addition, one can prove [WL93] that the
following property holds.

∀s ∈ S |Vt(s)− Vt−1(s)| < ε⇒ max
s∈S
|Vt(s)− V ∗(s)| < 2ε

γ

1− γ
(2.2)

It gives us a criterion for terminating the value iteration with a near-optimal
value function.

2.2.2 Partially Observable Markov Decision Processes

Although in the MDP framework there will in general be uncertainty about
the effects of an action a taken in state s, there is no uncertainty about the
current state of the agent. The agent is assumed to have complete and perfect

2.2 Related Work 13

perceptual capabilities. Partially Observable Markov Decision Processes are
a generalization of MDPs for which this is not the case. In addition to the
state space S, the action space A, the reward function R, and the action
model P (S|S, A) an POMDP is defined by a set of possible observations
O and the observation model P (O|S). P (o|s) denotes the probability of
making observation o in state s. In POMDPs actions and observations are
assumed to alternate. While an action taken in general increases the agent’s
uncertainty about its current state, an observation might reduce it again.

POMDPs are much more difficult to solve than MDPs. The intuitive reason
for this is that no distinction can be drawn between actions that are taken
to change the world and actions that are taken to gather information. Pa-
padimitriou and Tsitsiklis [PT87] have shown that finite horizon POMDPs
are PSPACE-complete. Madani et al. have proven that infinite horizon
POMDPs are even undecidable [MHC99].

The key to finding solutions for POMDPs is to cast the problem as a belief
state MDP. A belief state b is a probability distribution over the state space
S and thus the state space of a belief state MDP is continuous. The belief
state MDP (B(S), A, Pbel(B|B, A), Rbel) which is equivalent to the POMDP

(S, A, P (S|S, A), R, O, P (O|S)) is given by

• a set of belief states B(S) over S,

• a set of actions A,

• the action model Pbel(B|B, A) given by

Pbel(b
′|b, a) =

∑

o∈O

P (b′|o, b, a)P (o|b, a) (2.3)

• the reward function Rbel given by

Rbel(s, a) =
∑

s∈S

b(s)R(s, a) (2.4)

As for a belief state b the next state b′ is determinated by the action a taken
in b and the observation o made afterwards, P (B ′|o, b, a) = 1 for exactly one
belief state, b′.

P (B′|o, b, a) =

{

1 B′ = b′

0 otherwise
(2.5)

14 The RHINO Architecture

SE(b, a, o) = b′ is the estimated belief state of the agent after executing action
a in belief state b and observing o. Belief state b′ can be computed as follows.

b′(s′) = P (s′|o, a, b)

=
P (o|s′, a, b)P (s′, a, b)

P (o, a, b)

=
P (o|s′, a, b)P (s′|a, b)P (a, b)

P (o|a, b)P (a, b)

=
P (o|s′, a, b)P (s′|a, b)

P (o|a, b)

=
P (o|s′, a, b)

∑

s∈S P (s′|a, b, s)P (s|a, b)

P (o|a, b)

=
P (o|s′, a)

∑

s∈S P (s′|a, b, s)P (s|a, b)

P (o|a, b)

(2.6)

Please note that the agent’s current belief state contains all information about
the agent’s past actions and observations. The belief state update computed
by the state estimation function is a simple application of Bayes’ rule. The
dominator P (o|s, b) can be treated as a normalizing factor that guarantees
∑

s b′(s) = 1.

P (o|b, a) is defined as follows.

P (o|b, a) = P (o|b′′) =
∑

s∈S

P (o|s)b′′(s) (2.7)

where b′′(s′) =
∑

s∈S P (s′|s, a)b(s).

Based on the idea that a POMDP can be cast as a continuous-valued belief
state MDP there are many algorithms that try to approximate the real-
valued utility function. However, these algorithms are beyond the scope of
this thesis. Please refer to [KLC98, BDH99] for a more detailed introduc-
tion to MDPs, POMDPs and the computation of approximate solutions to
POMDPs, e.g. using the Witness algorithm [KLC98].

2.2.3 The Navigation Problem as a POMDP

Robot navigation is an obvious example of a Partially Observable Markov
Decision Process. Using a map of the environment, the robot repeatedly
senses its environment to estimate its current state, e.g. its current position
and orientation within the environment. In general the robot’s state is not

2.2 Related Work 15

fully observable, for example because sonar or laser beams have only a limited
range and are noisy and due to symmetries in the environment two or more
states might be indistinguishable from the current sensor readings (sensor
aliasing). Besides the navigation planning for achieving a given goal the
robot thus has to plan information gathering actions that help it to re-localize
itself. In addition, navigation actions are uncertain due to drift or possible
execution failures and are associated with some cost (negative reward). The
collision with obstacles is associated with some high negative reward while
the event of reaching the goal state is associated with some high positive
reward.

In practice, however, it is intractable to model the navigation problem as
POMDP. The fact that the planning for navigation actions and the plan-
ning for information gathering actions are closely interleaved, causes the high
complexity of POMDP planning which makes it infeasible for real-time con-
trol. To reduce this complexity, the planning process can be decomposed into
a state estimation process and an MDP planning process. This technique is
called greedy POMDP planning.

2.2.4 Greedy POMDP planning

The idea of greedy POMDP planning is to (heuristically) assume that the
decision process is fully observable. Under this assumption, the POMDP

is reduced to an MDP for which an optimal policy π∗ can be computed
efficiently. To execute the resulting policy the current belief state is updated
using the state estimation function SE(b, a, o) and an action is selected based
on the estimated belief state b′. Various strategies for greedy POMDP

planning have been discussed by Cassandra al. [CKK96] and Koenig and
Simmons [KS98].

The first one is the most likely state strategy. It computes the most likely
state s with respect to the belief state b′ and executes the optimal action a
for state s.

a = π∗(arg max
s

b′(s)) (2.8)

This strategy is used in the Dervish system [NPB95, Nou98] as well as in
the original Rhino system [BBC+95, TBB+98] although in both systems
path planning is done using a deterministic path planner rather than a path
planner based on an MDP.

In the Xavier system [SK95], the belief state b′ is used to vote for the

16 The RHINO Architecture

Figure 2.3: Left: The navigation problem. Right: the optimal navigation
policy computed by value iteration.

optimal action. This strategy is therefore called voting strategy.

a = arg max
a

∑

s∈S

b′(s)I(π∗(s) = a) (2.9)

Littman et al. [LCK95] suggest a refinement of this method which weighs
various actions rather than vote for them. This strategy is called weighting
strategy. It is optimal when the state is fully observable after one step.

a = arg max
a

∑

s∈S

b′(s)[R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)] (2.10)

While in the Dervish and in the Xavier system path planning is done using
deterministic path planning algorithms, Cassandra et al. [CKK96] suggest
finding the best action in the underlying MDP. Figure 2.3 shows a simple
navigation problem with uncertain action effects together with an optimal
navigation policy for this problem.

To make the MDP planning feasible, both the state and the action space
have to be discretized. The state space is discretized by dividing a metric
environment map into grid cells of 1 m2 resolution with one of four abstract
orientations (compass directions). The action space is built by five abstract
actions (move-forward, turn-left, turn-right, no-op and declare-goal).

In a recent reimplementation of the path planning module, we have built
a path planner based on a two-dimensional MDP which uses a resolution

2.2 Related Work 17

Figure 2.4: A metric and a topological map of an office environment.

of 15 cm2. A probabilistic action model allows to model drift behavior and
keeps the robot away from obstacles.

State Estimation

The problem of robot localization consists of estimating the robot’s current
pose from the measurements of the odometry sensors, a map of the envi-
ronment and a history of sensor readings. If the initial pose of the robot
is known, this is the problem of position tracking, if it is unknown it is the
problem of global positioning.

In a probabilistic framework, both problems can be cast as state estima-
tion problems and can be solved using the Bayes’ formula as described in
Equation 2.6. The probability distribution P (O|S) is called sensor model
and P (o|s) describes the probability of a sensor reading o at position s.
The probability distribution P (S|S, A) is called motion model. P (s′|s, a) de-
scribes the probability of the robot being at state s′ after executing action
a in state s. P (s′|s, a) is computed from the measurements of the odometry
sensor and a noise term which is intented as probabilistic model of drift and
slippage.

Probabilistic approaches to robot localization differ in the way they model
the underlying POMDP which is often closely related to the environment
model used. Koenig and Simmons [KS98, SK95] use a topological map of
the environment like the one shown in Figure 2.4 (right). A topological map
is a graph where the nodes represent robot states (e.g. being in a room)
and the edges represent possible transitions between states. The edges in a
topological map can be annotated with metric information or with actions
that have to be executed to translate from one state to a neighboring one.

18 The RHINO Architecture

The nodes can be annotated with probabilities to store the current belief
state. Koenig and Simmons [SK95] discuss in detail how a topological map
of the environment can be automatically translated into a POMDP.

The probabilistic action model P (S|S, A) models drift and slippage in nav-
igation. To be useful these transition probabilities should be learned from
experience. The same is true for the observation model P (O|S). Observa-
tions in the Xavier system are abstract features like open doors, crossings
etc., and their detection may fail. This is modeled in the probabilistic ob-
servation model. Koenig and Simmons describe an approach based on the
Baum-Welch Algorithm for learning Partially Observable Markov Decision
Models [KS96].

The Rhino system does not rely on abstract observations, but considers
the raw sensor measurements as observations. The possible states of the
robot are the position and orientation in a metric map of the environ-
ment. The continuous belief state can be represented discretely using grid
maps [FBTC98, FBT99], octrees [BDFC98] or particle filters [FBDT99].
While grid maps and octrees discretize the state space, particle filters repre-
sent the belief state by a population of hypotheses which are updated using
importance sampling. In contrast to Kalman filters [Kal60], which use a
Gaussian distribution to represent the current belief state, these techniques
can represent multi-modal distributions as well as uniform distributions and
can therefore deal with situations where the robot has more than one likely
hypothesis or is completely ignorant about its current position. Markov as
well as Monte Carlo localization therefore solve not only the problem of po-
sition tracking, but also the problem of global localization.

To compute the probability of an observation o in a state s they use sensor
models and an occupancy grid map of the environment [Mor89, Elf89] like the
one shown in Figure 2.5. Occupancy grids divide the environment into cells
of equal size and assign to each cell the probability that the cell is occupied
by an obstacle. Occupancy maps can be autonomously learned as described
in [TBB+98]. Figure 2.5 shows a map of the first floor of the Department of
Computer Science III at the University of Bonn learned by the mobile robot
Rhino using its two laser range finders.

Active Localization

Cassandra et al. [CKK96] propose to use the entropy of the belief state to
decide to switch from taking actions to achieve the goal to taking actions to
gain information. This idea is refined by Burgard et al. who have proposed

2.2 Related Work 19

Figure 2.5: A learned occupancy grid of the first floor of the Department of
Computer Science III at the University of Bonn. It has been learned by the
mobile robot Rhino using two laser range finders.

a method for active localization [BFT97, BBFC98]. Whenever the entropy

H(b) = −
∑

s∈S

P (s) logP (s) (2.11)

in the belief state distribution exceeds a threshold θ, an active localization is
performed. For this purpose a set of actions in the robot centric coordinate
system is considered and the action a that has minimal costs with respect to
Ea(H(b)) + αc(a) is selected for execution. Here Ea(H(b)) is the expected
entropy of the belief state after executing a and c(a) are the expected costs
associated with action a. They are computed using the following formula.

c(a) =
∑

s∈S

P (s)c(a|s) (2.12)

Here c(a|s) is the cost of executing action a when the robot starts in state
s. c(a|s) can be computed efficiently using e.g. value iteration. To compute
c(a) efficiently only states s are considered with a probability P (s) > θ2.

20 The RHINO Architecture

Ea(H(b)) can be computed as follows.

Ea[H(b)] = −
∑

s′∈S

∑

o∈O

P (s′|o, s, a) log P (s′|o, s, a)P (o|s, a)

= −
∑

s′∈S

∑

o∈O

P (o|s′, s, a)P (s′, s, a)

P (o, s, a)
P (o|s, a) logP (s′|o, s, a)

= −
∑

s′∈S

∑

o∈O

P (o|s′)P (s′|s, a)P (s, a)

P (o|s, a)P (s, a)
P (o|s, a) logP (s′|o, s, a)

= −
∑

s′∈S

∑

o∈O

P (o|s′)P (s′|s, a) log
P (o|s′, s, a)P (s′, s, a)

P (o, s, a)

= −
∑

s′∈S

∑

o∈O

P (o|s′)P (s′|s, a) log
P (o|s′)P (s′|s, a)P (s, a)

P (o|s, a)P (s, a)

= −
∑

s′∈S

∑

o∈O

P (o|s′)P (s′|s, a) log
P (o|s′)P (s′|s, a)

P (o|s, a)

(2.13)

Roy and Thrun investigate a related method to account for position uncer-
tainty while avoiding the whole complexity of POMDP planning: coastal
navigation [RT99]. They augment the state space with an additional dimen-
sion which accounts for the position uncertainty. The position uncertainty is
measured as the entropy of the probability distribution of the robot’s pose.
Path planning is done using value iteration trading-off transition costs and
position uncertainty in the reward function of the underlying MDP. The ap-
proach is superior to active localization as it can smoothly interleave actions
to approach the goal with actions to reduce position uncertainty. However, to
be able to compute the entropy of the probability distribution of the robot’s
pose efficiently, they assume a uni-modal Gaussian distribution which is un-
realistic and critical.

2.3 Decision-theoretic Action Selection

In the Rhino system an optimal path to the robot’s goal is computed using a
deterministic version of value iteration on a grid map of the environment. It
takes the distance between two neighbored grid cells as well as the occupancy
probability of the grid cells into account. Intermediate target points are
computed from the resulting navigation policy using a simple heuristic which
selects the last point on the optimal path which is still visible form the robot’s
current state.

2.3 Decision-theoretic Action Selection 21

In this chapter, we discuss how the selection of intermediate points can be
based on learned models of the robot’s behavior. These models include the
average time needed by the behavioral layer to approach a given target point.
As the robot might fail completely to approach a given target point, it is also
necessary to predict the probability of execution failures. In the rest of this
section, we describe an action selection function which trades off the expected
cost of an action against the probability of a complete execution failure.

We suggest considering the problem of selecting intermediate target points
as an MDP, more precisely as a stochastic shortest path problem. We as-
sume full observabilty of the robot’s state. This is justified by the same
arguments as discussed above, as the action selection MDP is part of the
navigation planning process which only takes place when the robot is suf-
ficiently confident about its current position. In the other case, the robot
performs an active localization before it proceeds the navigation process.
We briefly describe the state space, the action space, the reward function,
and the probabilistic action model to specify the action selection MDP.

The States

For the action selection MDP we consider states s ∈ S that include
the robot’s position and orientation and the shortest path to the goal,
p = [p0, p1, ..., pn]. The path can be computed efficiently from the navi-
gation policy generated by the path planning algorithm. The discretization
of the path results from the discretization of the environment grid map.

The Actions

We consider as possible actions those actions that ask the local naviga-
tion system to approach one of the intermediate points on the path p =
[p0, p1, ..., pn]. The selection of actions has to consider the following trade-off:
Often the choice of target points that are more distant allows the reactive
navigation system to drive smoother trajectories. On the other hand, the
target point should be close enough so that it is reachable using a local nav-
igation action. The decision between short but difficult versus easy but long
paths is already done by the path planning system.

22 The RHINO Architecture

The Probabilistic Action Model

In our action models, the local navigation actions have two possible outcomes:
action success and action failure. We consider an action a to be unsuccessful
when the robot has not reached its target point within tto seconds, that is,
has received a timeout.

In the success case, we assume that the robot has reached the specified target
point upon action completion. Specifying the effects if the action has failed
is much more difficult. We believe that in this case the exact resulting state
is not critical because in the case of action failure the robot is punished with
a large negative reward. Thus, in the case of action failure we can simply
assume the robot to be where it started to execute action a. We denote the
probability that the robot is timed out when executing action a in state s as
P (T = true|s, a) = P +(s, a), and the probability that it is not timed out as
P (T = false|s, a) = P−(s, a).

The Reward Function

The reward for executing action a in state s is defined as follows. For
a successful action execution, the agent receives the reward R−(s, a) =
−l(a)/v(s, a) where l(a) denotes the length of the path to the target point
of action a. The term v(s, a) denotes the expected average velocity for the
execution of action a in state s. For a timed out action the robot gets an im-
mediate reward of R+(s, a) = −tto. In both cases the reward is an estimation
of the time the robot loses when executing action a. The robot’s expected
immediate reward thus is given by:

R(s, a) =
∑

i∈{+,−}
P i(s, a)Ri(s, a)

The Action Selection Function

Using the Markov Model depicted above we can use the following decision
theoretic action selection function:

abest = arg max
a∈A

V ∗(s, a) (2.14)

where

V ∗(s, a) =
∑

i∈{+,−}
P i(s, a)(Ri(s, a) + V i(s, a))

2.4 Learning Action Models 23

and P+(s, a), P−(s, a), R+(s, a), R−(s, a) are defined as above. V +(s, a)
denotes the utility of being in state s and V −(s, a) the utility of being in
state s′ where s′ is the state that results from a successful execution of action
a in state s, i.e. the target state of a.

To understand Equation 2.14 recall our assumption that a successful action
a leads the robot to the target of a, while an unsuccessful action leaves the
robot where it started to execute a. The latter assumption biases the robot
to prefer actions with a higher probability of success. We have chosen the
discounting factor γ to be 1 because the problem is a finite horizon problem
where the agent always reaches an absorbing state after executing a finite
number of actions.

The Utility Function

So far we have not specified how V +(s, a) and V −(s, a) are computed. In
principle, this could of course be done by value iteration [Bel57]. However,
in this chapter we use the following approximation: Let p = [p0, p1, ..., pn]
be the path from the robot’s current position s to its destination and l(p)
be

∑n

i=1 |pi−1, pi|. Further, let vavg be the robot’s average velocity while
performing navigation tasks. We can then approximate V +(s, a) and V −(s, a)
like follows:

V −(s, a) = − l(p)− l(a)

vavg

, V +(s, a) = − l(p)

vavg

Here the value vavg can be obtained by a simple running average.

2.4 Learning Action Models

Let us now consider how the velocity function v : S × A → R, the average
velocity when executing action a in state s, and the probabilistic action
model P (T |S, A) can be learned. To do so, we will first define a suitable
feature language to describe state-action pairs (s, a), i.e. a set of observable
conditions that are expected to correlate with the navigation performance.

In our learning experiments, we use the following features: (1) clearance
towards the target position, (2) clearance at current position, (3) clearance
at target position, (4) minimum clearance on path, (5) curvature of the
planned path, (6) average clearance on path, (7) maximal minus minimal
clearance on the path, and (8) relative length of the path to target position.

24 The RHINO Architecture

(1)(2)

(3)

(4)

Figure 2.6: The features (1) to (4).

The robot’s clearance at any position is the distance to the next obstacle in
its environment. It can be computed using the robot’s environment map and
a ray tracing algorithm. The clearance towards the target position is the
distance to the next obstacle in this direction, but relative to the Euclidian
distance to the target position. For all k points on the path to the target,
we compute the clearance and keep the minimal clearance, the average clear-
ance and the difference between maximal and minimal clearance as features.
Another feature is the curvature of the path to the target point a which is
l(a) as defined above relative to the Euclidian distance to the target point.
We compute the relative length of the path towards a as l(a)/lmax where
lmax = 800 cm. Figure 2.6 illustrates the features (1) to (4) graphically. The
features are relatively simple and can be computed efficiently.

Having specified the feature language we will now look at the learning mecha-
nisms themselves. We will apply two alternative approaches: neural network
learning and tree-based induction. Artificial neural networks [Bis96] are well
known as general function approximators. They have therefore often been
used to approximate utility and reward functions in reinforcement learning
and have the advantage of realizing continuous functions. Tree based induc-
tion methods [BFOS84], on the other hand, have the advantage that they
provide in addition to a classification (in case of decision trees) or a value
prediction (in case of regression trees) an explanation of the results they
produce. The learned tree representations are often valuable resources for
human inspection and automated reasoning.

2.4 Learning Action Models 25

2.4.1 Neural Networks

To learn the action model P (T |S, A) we have used a simple feed forward
neural network with sigmoidal activation functions which was trained using
an epoch back propagation algorithm. To speed up convergence we have
scaled the features described above so that their scaled values lie in the
interval [0,1]. Each normalized feature vector was associated with either 0
when no timeout was observed or 1 if a timeout was observed. The output of
the neural network (after a sufficiently long training) is a value in the interval
[0, 1] which can be interpreted as the probability of a timeout.

We have used the same neural network structure to learn the function v.
Only the training examples differ. The output values in this case are: p =
vcur/vmax ∈ [0, 1] where vcur is the robot’s current, and vmax is the robot’s
maximal velocity.

2.4.2 Tree Based Induction

Decision trees [Qui93a] can be interpreted as a set of Horn clauses that are
well understandable for humans. To learn the action model P (T |S, A) with
a decision tree we, classify each training example given by the set of features
described above as true or as false depending on whether a timeout occurred
or not. In the decision tree framework, a probability can be associated with
each classification like this: if n is the number of training examples that are
mapped to a decision tree leaf l which is associated with the classification c
and m is the number of examples in this set that are classified as c, we can
associate the probability p = m/n with this classification (given the observed
features).

To learn the function v is a regression and not a classification task. Regression
trees [BFOS84] are tree based function approximators and can be applied to
the task. Regression trees are similar to decision trees, but differ from them in
that leaf nodes are not associated with classifications, but with real values.
A regression tree like a decision tree can be translated into a set of horn
clauses.

To build a regression tree, a set of training examples associated with a node
in the tree is split to minimize some given impurity measure. This impurity
measure often is the empirical variance of the output value of the function
to learn. For example, to split a set of n examples, S, with a variance in the
output value σ2, into two sets S1 and S2, a split is chosen that minimizes
n1σ

2
1 + n2σ

2
2 where ni is the number of examples in Si and σ2

i is the variance

26 The RHINO Architecture

in the set Si with respect to the output value. This process is iterated
recursively until some given stopping criterion is met.

We have used the following stopping criterion: For each split we have tested
if the split reduces the variance significantly. If the best split does not reduce
the variance significantly we stop growing the tree at that node. Whether a
split reduces the variance significantly can be tested using a bootstrap test
described in some detail in Appendix A. The test computes the probability
that a reduction of variance higher than or equal to the observed reduction
would be observed under the assumption that the variance has not changed.
If this probability, the significance probability, is smaller than some given
threshold value θ we say that the split reduces the variance significantly with
respect to the significance level θ. The choice of θ allows us to trade-off the
prediction accuracy of the tree (on the training examples) against its size.
Chapter 5 provides a more detailed introduction to decision- and regression
trees.

2.5 Experimental Results

In this section, we will demonstrate (1) that the action selection function
defined by Equation 2.14 can be used to execute a navigation plan quickly and
reliably and (2) that the necessary models can be learned autonomously. We
have performed both simulator experiments and experiments on a real robot
to show that the learned action selection improves the robot’s performance
substantially and significantly.

The setup of the experiments is as follows. After the learning phase, in which
the robot has acquired the action models needed, the default methods and the
learned action selection policy are compared. The default methods include
one that chooses the next target point randomly between 1 and 8 meters
ahead on the planned path and a second one that chooses it systematically.
The methods are compared based on a sequence of k navigation tasks that is
executed n times. We then test whether the learned action selection function
improves the robot’s performance significantly. This is done with a bootstrap
t test (please refer to Appendix A for details).

2.5.1 Learning the Models

To learn the velocity function v and the timeout probability P (T |S, A) we
have generated some training and test data using the random action selection

2.5 Experimental Results 27

as described above and the simulator. We used a set of 5279 training and
3266 test examples for the classification task (will the robot be timed out
when performing a given action?) and 4203 training and 2531 test examples
for the regression task (what is the robot’s expected average velocity when
performing an action?). This data volume corresponds to collecting data
from robot runs that take about 24 hours. For the regression task we only
consider examples where the robot was not timed out.

Learning the Models with Neural Networks

For the classification task as well as for the regression task we trained a
neural network with 8 nodes in the input layer, 8 nodes in the hidden layer
and 1 node in the output layer. We performed epoch back propagation to
train both neural networks.

For the classification task we used a learning rate of 0.8 and a momentum
term of 0.9. After 203590 iterations (a night) we had 88.14% of the training-
and 88.77% of the test examples correctly classified.

For the regression task we used a learning rate of 0.8 and a momentum term
of 0.95. After 406360 iterations (about 24 hours) we got an absolute error of
3.698 cm/s on the training- and of 3.721 cm/s on the test set where 60 cm/s
is the maximal velocity of the robot.

Learning the Models with Tree Induction

We used the same data to learn a decision and a regression tree. Table
2.1 gives the statistics of the training error, the test error and the number
of generated rules depending on the significance level used in the stopping
criterion for the decision tree learning.

Table 2.2 gives the same statistics for the regression tree where the training
and test errors are absolute errors in cm/s.

In our experiments, we have chosen the rules generated from the trees grown
with a significance level of 0.05. These rules are well intelligible when in-
spected by a human operator. The trees are grown within about two min-
utes.

28 The RHINO Architecture

level training error test error rules

0.5 6.6% 13.2% 301
0.4 7.4% 12.6% 202
0.3 8.0% 12.7% 146
0.2 9.6% 12.9% 72
0.1 12.0% 14.0% 21
0.05 12.3% 14.1% 12

Table 2.1: The training error, the test error, and the number of generated
rules depending on the significance level used in the stopping criterion for
the decision tree learning.

level training error test error rules

0.5 2.71 cm/s 3.76 cm/s 743
0.4 3.33 cm/s 3.76 cm/s 256
0.3 3.68 cm/s 3.88 cm/s 96
0.2 3.98 cm/s 4.11 cm/s 48
0.1 4.27 cm/s 4.30 cm/s 29
0.05 4.33 cm/s 4.37 cm/s 25

Table 2.2: The absolute training and test error and the number of generated
rules depending on the significance level used in the stopping criterion for
the regression tree learning.

2.5.2 Simulator Experiments

In the simulator experiments, we compared the learned and the random
action selection mechanism based on a sequence of 14 navigation tasks in a
university office environment, which was executed 18 times. Figure 2.7 shows
the set of tasks that had to be performed.

Experiment 1

In the first experiment, we compared the performance of the two action se-
lection mechanisms, where the models are learned using neural networks.
The average time needed to complete all tasks is 1380 seconds with random
action selection and 1107 seconds with the learned action selection. This
corresponds to a performance gain of 19.8%. The significance probability
computed with a bootstrap t test is 0.0002, and the performance gain there-

2.5 Experimental Results 29

Figure 2.7: The set of target points that define the 14 navigation tasks
performed in each iteration of the experiment (three of the points define two
navigation tasks depending on the starting position of the robot). Initially
the robot is close to target point 13.

fore clearly significant. The significance probability of a reduced variance
using the learned action selection mechanism in 0.0247. Table 2.3 summa-
rizes these results.

Experiment 2

In the second experiment, we compared the learned action selection using the
tree structured models with the random action selection. With the learned
action selection the robot in average needed 925 seconds to complete the
whole sequence, in contrast to 1380 seconds with the random action selec-
tion. That is a reduction of 33 %. The significance probability of an improved
performance is lower than 0.0001. Furthermore, the significance probability
of a reduced variance in the execution time is 0.0097. The results are sum-
marized in Table 2.4.

30 The RHINO Architecture

average time with random action selection 1380.44 s
average time with learned action selection 1107.78 s
performance gain 19.75 %
significance probability of a reduced average duration 0.0002
significance probability of a reduced variance 0.0247

Table 2.3: The results of Experiment 1.

average time with random action selection 1380.44 s
average time with learned action selection 925.39 s
performance gain 32.96 %
significance probability of a reduced average duration < 0.0001
significance probability of a reduced variance 0.0097

Table 2.4: The results of Experiment 2.

Experiment 3

A purely random action selection seems to be a quite weak standard for the
performance comparisons. However, as we will show in this experiment, this
is not the case. To demonstrate this, we compared a deterministic action
selection with the random one: the robot always selects as next target point
the last point on the path that is still visible from its current position. This
is more or less the strategy that is used in the original navigation system.
Surprisingly, the performance is about 11.6 % worse with the deterministic
strategy compared to the random action selection. The robot, on average,
needs 1541 seconds for the 18 navigation tasks compared to the 1380 seconds
with the random action selection. Therefore, the random action selection is
significantly better than the deterministic one (with respect to a significance
level of 0.001). However, the standard deviation is significantly smaller, 115.2
seconds compared to 237.9 seconds, with respect to the same significance
level.

2.5.3 Experiments with the Mobile Robot

In the experiments performed on the mobile robot, we test how well the
models learned in simulation generalize when tasks different from those con-
sidered in the training phase have to be performed by a real robot. This
is an interesting question because it is unrealistic to require state-of-the-art

2.5 Experimental Results 31

Figure 2.8: The set of target points that define the 5 navigation tasks per-
formed in each iteration of the experiment with the real robot. The robot
starts near target point 4.

research platforms to perform the time-consuming learning without keeping
them under surveillance. Therefore, it should be possible to learn at least
part of the models in simulation.

The robot was to execute a sequence of 5 navigation tasks 18 times both with
random action selection and with the informed action selection described
above. The experiments were carried out in a populated university office
environment. Figure 2.8 shows the environment and the tasks that have to
be performed within that environment.

Experiment 4

When using neural networks to learn the models, the robot needed 362 sec-
onds in average to perform the five tasks, opposed to 420 seconds with the
random action selection. This is a performance gain of 13.8%. The signifi-
cance probability of an improved performance when using the action selection
function defined in Equation 2.14 is 0.0002. The significance probability of
a reduced standard deviation is 0.0541. The robot’s performance can be
summarized by the descriptive statistics shown in Table 2.5.

32 The RHINO Architecture

average time with random action selection 420.06 s
average time with learned action selection 362.00 s
performance gain 13.82 %
significance probability of reduced average duration 0.0002
significance probability of reduced variance 0.0541

Table 2.5: The results of Experiment 4.

average time with random action selection 420.06 s
average time with learned action selection 306.17 s
performance gain 27.11 %
significance probability of a reduced average duration < 0.0001
significance probability of a reduced variance 0.0097

Table 2.6: The results of Experiment 5.

Experiment 5

In the last experiment, we have compared the performance of the robot
using Equation 2.14 and decision/regression trees for the models with its
performance using random action selecticoon: The average time needed to
execute the sequence of five navigation tasks is 306 seconds with the learned
models as opposed to 420 seconds with the random action selection. This is a
reduction of 27.1%. The significance probability of an improved performance
is lower than 0.0001 and the significance probability of a reduced variance is
0.0097. The statistics of this experiment are summarized in Table 2.6.

Summary of the Experimental Results

The experiments show that the action selection function defined by Equa-
tion 2.14 can be used to execute a navigation plan effectively and reliably
and that the necessary models can be autonomously learned by the robot.
As shown in the experiments 3 and 4 we can use the simulator to learn an
action selection function that performs well on a real robot. Furthermore,
it was demonstrated that the learned policy generalizes well to tasks that
have not been used for the training. In the domain, tree structured models
perform slightly better than neural networks. However, these results do not
support a general comparison of the two learning methods as we have used
fairly simple implementation of both methods.

2.6 Summary 33

2.6 Summary

In this chapter, we have given a short overview of the Rhino system. Its
modular, hybrid design and the consequent application of decision-theoretic
and probabilistic algorithms for navigation planning, state estimation and
active localization make it a robust mobile robot control system which has
proven reliable and performant in two long-run experiments.

One of the deficiencies of the Rhino control architecture is the plan execu-
tion. This can be demonstrated for the selection of local target points that
are used to parameterize the collision avoidance behavior. We have suggested
to model the selection of the next intermediate target point as a stochastic
path planning problem which is a special type of MDP. Starting from these
considerations, an action selection function has been designed that trades off
the expected costs for executing an action and the probability of execution
failures.

The approach presented is limited in two respects. First, the lookahead is
restricted to one action. The values V −(s, a) and V +(s, a) are not computed
based on forward projection, but estimated heuristically. Chapter 6 shows
how to apply value iteration to compute an optimal action selection policy.

Second, we have no accurate model of the robot’s new state in case of an
execution failure. We assume that in this case, the robot is still where it
started to execute the action. It is very difficult to come up with a better
model, even if this model is to be learned. One way to deal with this problem
is to eliminate the occurrence of complete execution failures altogether. In
Chapter 3 we describe how the robustness of the approach point behavior can
be improved considerably using local planning techniques for trajectory eval-
uation. Chapter 4 describes a mechanism to handle execution failures during
plan execution. Both techniques help to eliminate probabilistic uncertainty
and transform it into metric uncertainty.

Despite these limitations, the performance of the mobile robot Rhino could
be improved considerably in the experiments. This is probably due to the
learned action models, both for predicting execution failures as well as pre-
dicting the average time needed to execute an action. Neural network learn-
ing as well as tree-based induction have been demonstrated to achieve sub-
stantial performance improvements. For the rest of the thesis, we will use
tree-based induction methods, because they can be transformed into sym-
bolic rules and are therefore well understandable for humans. In Chapter 7
we discuss how decision trees can be used for learning action selection rules.

Chapter 5 introduces model trees which generalize regression trees. Their

34 The RHINO Architecture

leafs can contain general linear models and therefore approximate piecewise-
linear functions. We also elaborate on the idea to compute a suitable feature
language from the shortest path to the goal. These features can be used
for attribute tests as well as for prediction functions associated with the
tree leafs. Chapter 5 describes an application of model tree learning to the
problem of sequencing navigation tasks. In Chapter 6, we come back to the
problem of action selection – this time in the context of HTN planning.

The experimental results demonstrate that plan execution is an interesting
problem and a good opportunity to improve a mobile robot’s navigation per-
formance substantially. MDP-based action selection using learned models
of the robot’s behavior is a promising approach to overcome these short-
comings. The approach used in the experiments, however, is also limited in
various respects. The following chapters will discuss how the limitations can
be overcome.

Chapter 3

Local Planning for Collision
Avoidance

This chapter deals with the reactive layer of Appeal which is
concerned with the task of approaching given target points while
avoiding obstacles and controlling the robot’s velocities in a way
that takes the robot’s dynamic constraints into account. In the
Rhino architecture, this is achieved by the Dynamic Window
Approach which performs a local search in the space of possible
control commands. Control commands are evaluated based on
a projection of the execution of the control commands using a
heuristic evaluation function.

We discuss how the the Dynamic Window Approach can be im-
proved using evaluation functions which are computed by a local
planning process. While the search for control commands allows
to take the robot’s dynamics into account and therefore allows for
very smooth navigation behavior, planning is able to determine
the optimal path towards the goal and minimizes the likelihood
that the robot gets trapped in dead-end situations.

The experiments show that the application of local planning im-
proves the reliability of the behavioral layer considerably. We also
introduce different evaluation functions that employ the utility
function computed in the planning step to evaluate control com-
mands and compare their performance in extensive experiments.
In these experiments, we find one evaluation function to signifi-
cantly outperform the other evaluation functions, especially the
one that models a path following algorithm.

36 Local Planning for Collision Avoidance

3.1 Introduction

Collision avoidance is a crucial part for all autonomous mobile robots oper-
ating in populated and dynamic environments. In order to navigate safely,
they must be able to react to unforeseen obstacles like humans crossing their
paths. For this reason, virtually all navigation systems comprise some kind
of collision avoidance component that controls the robot’s motion.

In general, it is also desired that the robot reaches its destination fast. It
should therefore take the robot’s dynamics into account and move the robot
towards the target location most effectively. The optimal approach would
be to do an exhaustive search for the sequence of control commands that
achieves the shortest time to target, or more generally minimizes a given
cost function. However, this approach is computationally expensive and not
suited to issue safe control commands at high frequency. An exhaustive
search in the space of control commands is therefore not feasible in order to
be able to navigate at high speeds.

Many collision avoidance systems use purely reactive approaches that allow
for high update rates. They decide on the next control command solely based
on different heuristics. However, as no planning is involved, these approaches
risk that the robot gets trapped in dead-end situations like for example U-
shaped obstacle configurations.

In this chapter, we present a collision avoidance approach that uses local
path planning followed by a search for the best next motor control command
given the current plan. Local path planning finds the shortest path within
a map built from the robot’s latest range measurements, and can be carried
out much faster than a search for the optimal sequence of control commands.
That way, we reduce the risk of getting stuck in a dead-end situation and
still achieve the high update rates required for fast navigation.

The crucial aspect of this hybrid reactive approach of course is, how to decide
on the control commands based on a plan. A simple approach would be to
stick to the planned path as close as possible. However, as path planning
does not respect the robot’s dynamics, this can result in poor performance.
In this work, we consider path planning systems that assign a utility value
to each state in the state space. For this purpose, we formalize the naviga-
tion problem as a Markov Decision Process which allows us to use dynamic
programming algorithms to efficiently compute optimal utility functions for
the decision problem.

We introduce different evaluation functions that employ the utility function
computed in the planning step to evaluate control commands. We compare

3.2 Related Work 37

the performance of these functions in extensive experiments carried out with
a differential drive robot within our office environment. In these experiments,
we find one evaluation function to significantly outperform the other evalu-
ation functions, especially the one that models a path following algorithm.

The algorithm presented here is an extension of the Dynamic Window Ap-
proach to collision avoidance [FBT97]. We show that the algorithm outper-
forms this approach with respect to reliability. This is especially important
when trying to learn models of the behavior of the local layer to improve the
overall navigation behavior as depicted in Chapters 5-7.

The remainder of this chapter is organized as follows. After discussing related
work in Section 3.2, we describe how local navigation planning can be applied
to evaluate control commands in Section 3.3. Section 3.4 describes in detail
how the evaluation of the performance of control commands is based on a
utility function computed in the planning step and we introduce the different
evaluation functions we have developed. In Section 3.5, we give results on the
performance of our collision avoidance method using the different evaluation
functions. Section 3.6 concludes.

3.2 Related Work

Most existing collision avoidance methods are purely reactive in the sense
that they search for safe robot control commands based on the robot’s cur-
rent proximity sensor data without any projection of the robot’s future state.
These methods differ in the way this search is carried out. The Vector Field
Histogram method [BK91] for example decides on the next movement di-
rection and the speed of the robot based on an angular histogram, which
describes the density of obstacles in the surrounding of the robot. Poten-
tial field methods [Lat91] achieve collision avoidance behavior by simulating
repulsive forces exerted from obstacles and an attractive force towards the
target. Both approaches do not explicitly take the constraints imposed by
the dynamics of the robot into account. Koren and Borenstein [KB91] iden-
tify two major problems of potential field approaches: They often fail to find
trajectories between closely spaced obstacles and can produce oscillatory be-
havior in narrow passages.

Behavior-based navigation systems are composed of at least two behaviors.
An approach target behavior and a collision avoidance behavior. While ar-
bitration schemes based on voting are often not able to take dynamic con-
straints into account, a decision-theoretic arbitration scheme recently pro-

38 Local Planning for Collision Avoidance

posed by Rosenblatt [Ros00] is.

Another popular method, which is more closely related to our approach is the
Dynamic Window Approach to collision avoidance [FBT97, Sim96, Sch98].
This method searches for the trajectory the robot should take within the next
time step based on a local map of the robot’s surrounding built from the lat-
est sensor measurements. A trajectory is specified by the translational and
rotational velocity of the robot and the search is carried out in this velocity
space. In order to reduce the search space, the robot’s dynamic constraints
are taken into account by considering only velocities that can be reached
within the next time interval. The approach decides on the best next veloc-
ities based on a linear evaluation function which weighs clearance, heading
towards the target and speed. Our method adopts this search method, but
uses new evaluation functions based on the computation of optimal utility
functions from a local map.

The major disadvantage of all purely reactive approaches is that they might
not reach the target although a path to the target exists. Therefore, more
recently, methods have been developed, that use local planning to overcome
this problem. Ulrich and Borenstein [UB00] describe an extension of the Vec-
tor Field Histogram method which carries out A-star search on a local map in
order to obtain the best sequence of movement directions towards the target
location. Konolige [Kon00] uses dynamic programming on the local map to
compute the gradient towards the target. To make this approach computa-
tionally feasible, only the two dimensional space of possible robot positions
is considered for planning. This results in optimal paths with respect to
some cost function but does not allow to model the robot’s dynamics cor-
rectly. In this paper, we suggest a method that simultaneously plans optimal
collision-free paths and takes the dynamics of the robot into account. Like
Konolige we use a path planner based on dynamic programming to compute
a utility value for each state in the state space, but rather than computing
an optimal path from the utility function using gradient ascent, we directly
use the utility function to evaluate control commands. As our experiments
show, our method is able to produce a smoother navigation behavior than
a path following algorithm, because it makes a better use of the computed
utility function.

Brock and Khatib [BK99] developed a similar method for holonomic mobile
robots. They compute a navigation function which labels each cell in the
local grid map with the L1 distance to the goal. They replace the term
for the target heading and the clearance term in the evaluation function of
the dynamic window approach by two features derived from that navigation

3.3 Computing Optimal Utility Functions 39

Figure 3.1: An obstacle field constructed from the robot’s current sensor
readings.

function. Although the computed navigation function is guaranteed to have
no local optima, the combined evaluation function is not. In our approach,
however, the evaluation function is directly derived from the utility function
and thus guaranteed to have no local optima.

3.3 Computing Optimal Utility Functions

In this section, we discuss how navigation problems can be formalized as
Markov Decision Problems. Optimal utility functions for these navigation
problems can be computed efficiently using dynamic programming algo-
rithms.

As discussed in Section 2.2.1 an MDP is given by

• a set of states S,

• a set of actions A,

• a probabilistic action model P (S|S, A) and

40 Local Planning for Collision Avoidance

0
5

10
15

20 0

5

10

15

20

-1000

-500

0

500

1000

0
5

10
15

20 0

5

10

15

20

-1000

-500

0

500

1000

0
5

10
15

20 0

5

10

15

20

-1000

-500

0

500

1000

0
5

10
15

20 0

5

10

15

20

-1000

-500

0

500

1000

Figure 3.2: The diffusion process for the wavefront algorithm.

• a reward function R : S × A→ R.

We show in this section how different state and action spaces as well as reward
functions result in different utility functions. The next section demonstrates
how these utility functions can be used to evaluate local control commands
and Section 3.5 compares the performance of the resulting evaluation func-
tions.

We compute the state space of the first utility function which we will
call distance-based utility function 2D (DUF2D) by discretizing the two-
dimensional obstacle field of the robot built from its last sensor readings into
quadratic cells. Figure 3.1 shows an example of an obstacle field. In our
implementation we used a map of 14 m2 and a resolution of 10 cm2. The
obstacles are thickened by the robot’s radius which allows to treat the robot
as a point when computing the utility function.

The possible actions in this case are translations to each of the eight neigh-

3.3 Computing Optimal Utility Functions 41

0
20

40
60

80
100

120
140 0

20
40

60
80

100
120

140

-2000

-1500

-1000

-500

0

Figure 3.3: The value function computed for the navigation task depicted in
Figure 3.1.

boring grid cells. The reward for an action a in state s is

r(s, a) =

{

−2000 if s contains an obstacle

−cost(a) otherwise
(3.1)

Here, cost(a) = dist(m(s), m(succ(s, a))) where s(s, a) denotes the successor
state of s when executing action a, m(s) is the midpoint of the grid cell s
and dist(p, p′) denotes the Euclidian distance between points p and p′. The
state containing the target point is modeled as an absorbing state.

For efficiency reasons, we assume a deterministic action model where the in-
tended state transition is assumed to always succeed. As we use a determinis-
tic action model, we can use Dijkstra’s algorithm instead of value iteration to
compute an optimal utility function V ∗. For grid-like state spaces the wave
front algorithm [TBB+98, Kon00] is even more efficient. The algorithm also
applies dynamic programming, but is more efficient than value iteration. It
only updates the utility values for the states on the fringe of a wave diffusing
from the target state(s). Figure 3.2 illustrates the diffusion process in the
wavefront algorithm. Figure 3.3 shows the value function computed for the
navigation task depicted in Figure 3.1. The path shown there results from a
hill climbing search with respect to the value function.

An obvious extension of the MDP considered so far is to make the reward
for an action a taken in state s not only dependent on the cost for executing
action a, cost(a), but on the cost of being in state s, cost(a).

42 Local Planning for Collision Avoidance

0
20

40
60

80
100

120
140 0

20
40

60
80

100
120

140

-2000

-1500

-1000

-500

0

Figure 3.4:

r(s, a) =

{

−2000 if s contains an obstacle

−cost(a)− cost(s) otherwise
(3.2)

In the navigation domain, it is reasonable to make cost(s) dependent on
the clearance of the robot in state s. In our implementation, we have used
the following formula: cost(s) = −α max(0, θcl − clearance(s)) where θcl is a
threshold value specifying when the robot has enough clearance. In the ex-
periments, we have used the parameters α = 10 and θcl = 60. Because of the
deterministic action model, we can again compute an optimal value function
for the MDP using the wave front algorithm. We call the resulting utility
function distance- and clearance-based utility function (DCUF). Figure 3.4
shows the DCUF computed for the navigation task shown in Figure 3.1
using the values α = 20 and θcl = 40. Figure 3.5 shows that the optimal
path to the target computed from DCUF significantly deviates from the one
computed for DUF2D.

One problem with the utility functions developed so far is that they do not
support turns on the spot. As the state space does not contain the robot’s
orientation, we cannot model that in some situations it is advantageous for
the robot to turn to the target before starting to approach it. To be able
to do so, we have to introduce an additional dimension to the state space:
the robot’s orientation. To keep things feasible, the orientation has to be
discretized. We consider four discrete orientations and the three actions:
forward translation, left turn and right turn. We call the resulting evaluation
function distance-based utility function 3D (DUF3D).

3.4 Evaluation Functions for Control Commands 43

Figure 3.5: The optimal path to the target according to DCUF for the
situation shown in Figure 3.1.

3.4 Evaluation Functions for Control Com-

mands

In this section, we describe how we search for admissible control commands
which in the case of synchro-drive or differential-drive robots, can be ap-
proximated by circular trajectories. In the second part of this section, we
examine how these trajectories can be evaluated using the utility functions
described in the previous section.

3.4.1 Searching for Control Commands

When using synchro-drive or differential-drive robots a control command is
given by a pair (vo, ωo), the target translational- and rotational velocity of
the robot. When we assume that the robot immediately reaches the new ve-
locities and therefore ignore boundaries on the maximal positive and negative
accelerations, we can model these control commands as simple trajectories:
(vo, ωo) corresponds either to a circular trajectory (if vo > 0 ∧ ωo 6= 0), to a

44 Local Planning for Collision Avoidance

straight line trajectory (if vo > 0 ∧ ωo = 0) or to a rotation on the spot (if
vo = 0 ∧ ωo 6= 0). As Fox et al. show [FBT97] the error we make under this
assumption when predicting the position (x, y) of the robot after ∆t seconds
is bounded by

err =
√

2(∆v)2(∆t)2 =
√

2∆v∆t (3.3)

where ∆v = |vt − vt+∆t|. We can account for this error by thickening the
robot and by keeping the time between two successive control commands
small.

If we model control commands and their effects using these simple trajec-
tories, cutting algorithms can be used to check whether a trajectory is ad-
missible, that is whether the robot can stop safely before the next obsta-
cle on the trajectory. It is also straight forward to project the robot state
(x′, y′, θ′, v′, ω′) after ∆t′ seconds given an initial state (x, y, θ, v, ω) and the
trajectory (vo, ωo). Assuming that (vo, ωo) can be reached in ∆t seconds, the
projection error is bounded as before.

To select a suitable control command, we have to search for admissible control
commands in the space of all possible velocity combinations and then select
the one with the highest evaluation with respect to some given evaluation
function. To make this search feasible, only the small window of this space
is considered that is given by the dynamic constraints of the robot, namely
its maximal velocities and its maximal (positive and negative) translational
and rotational accelerations together with its current velocity. Given a small
constant time ∆t, the time the robot needs for one iteration of the algorithm,
these constraints limit the possible velocity combinations (v, ω) the robot can
reach within this time window. This method to prune the search space for
potential control commands has first been proposed by Fox et al. [FBT97]
and is called Dynamic Window Approach.

3.4.2 Evaluating Control Commands

Under all the admissible trajectories in the dynamic window, one has to be
selected according to an evaluation function G. Fox et al. [FBT97] propose
to use the class of functions

G(v, ω) = σ (αhead(v, ω) + β dist(v, ω) + γ vel(v, ω)) (3.4)

Here head(v, ω) is 180−∠(v, ω) where ∠(v, ω) is the angle to the target after
executing action (v, ω) for ∆t seconds, dist(v, ω) is the distance to the closest
obstacle on the trajectory and vel(v, ω) is a projection on the translational
velocity v. The function σ is a smoothing function intended to increase

3.4 Evaluation Functions for Control Commands 45

Figure 3.6: Evaluating trajectories by local projection.

the side-clearance of the robot. In the evaluation function, head(v, ω) and
vel(v, ω) take the role of progress estimators, while dist(v, ω) accounts for
the future utility of a trajectory. In the following, we will call this class of
evaluation functions weighted-sum-based evaluation functions (WSEF).

This class of evaluation functions, however, might fail to guide the robot
towards its target. The robot might for example get stuck in situations like
U-shaped obstacle configurations. In the following we will discuss how the
utility functions described in Section 3.3 can be used to evaluate trajectories
and to avoid this problem.

To evaluate trajectories we project the state (x′, y′, θ′, v′, ω′) after ∆t′ seconds
given the initial state (x, y, θ, v, ω) and the trajectory (vo, ωo). For the two-
dimensional utility functions, we map (x′, y′) to a state s in the MDP’s state
space and assign the utility v(s) to (vo, ωo) where v(s) is computed from V ∗ by
distance-weighted linear interpolation using s and all eight neighbors of s. For
the three-dimensional utility function, we do not perform an interpolation.
The projected pose (x′, y′, θ′) is mapped to the corresponding state s in the
three-dimensional state space and directly assign the utility V ∗(s) to the
trajectory.

46 Local Planning for Collision Avoidance

We call the evaluation functions based on DUF2D, and DUF3D, distance-
based evaluation function 2D (DEF2D) and distance-based evaluation func-
tion 3D (DEF3D) respectively. Please note that with DEF2D the robot
will never consider turns on the spot as they never increase the evaluation
function. DEF3D, in contrast, does support turns on the spot.

When using DCUF to evaluate trajectories, the evaluation of a trajectory
should not only depend on the projected state after ∆t′ seconds, but on
the projected states after 1

k
∆t′, 2

k
∆t′, ..., k

k
∆t′. We obtain the evaluation as

the average evaluation of all the projected states at these times. We call
this evaluation function the distance- and clearance-based evaluation function
(DCEF).

For our experiments, we have developed a fifth evaluation function: the path
following evaluation function (PFEF). It takes the projected position (x′, y′)
of the robot after ∆t′ seconds given trajectory (vo, ωo) and assigns −∞ to
the trajectory if the closest point on the shortest path to the goal is more
than maxdec cm (in the experiments maxdec = 50.0) away from (x′, y′) and
DEF2D (vo, ωo) in any other case. This evaluation function simulates the
computation of robot control commands from a planned path to the goal.

Figure 3.7 shows the evaluation functions (a) WSEF, (b) DEF2D,
(c) DEF3D, and (d) DCEF for the situations shown in Figure 3.6. Al-
though in this simple case all the evaluation functions agree that fast straight
motion is the best thing to do, the WSEF is much more jagged than the
other functions. Sharp turns to the left or to the right seem to be similarly
attractive actions as fast straight motion.

In the experiments, we have used a lookahead time of ∆t′ = 5 s. The value of
this parameter is crucial for the performance of the robot. The relatively high
value ensures that the robot slows down smoothly as it approaches the target
position. Ideally, the robot would look ahead for a smaller time period, but
would search for a sequence of trajectories rather than a single trajectory.
However, this search process results in an explosion of the search space and
is in general not feasible. Stachniss and Burgard [SB02] discuss heuristics
and pruning strategies to make an A∗-like search for sequences of trajectories
possible.

3.5 Experimental Results

In this section, we describe two real robot experiments. The first one com-
pares the reliability of WSEF and DEF2D in terms of goal achievement.

3.5 Experimental Results 47

0 10 20 30 40 50 60 70 80 90 -0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 -0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

-600

-500

-400

-300

-200

-100

0

0 10 20 30 40 50 60 70 80 90 -0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

-90

-80

-70

-60

-50

-40

-30

-20

-10

0 10 20 30 40 50 60 70 80 90 -0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

-800

-700

-600

-500

-400

-300

-200

Figure 3.7: The evaluation functions (a) WSEF, (b) DEF2D, (c) DEF3D,
and (d) DCEF for the situation shown in Figure 3.6.

The second one compares the performance of the four evaluation functions
DEF2D, DEF3D, DCEF, and PFEF. Both experiments have been carried
out using a pioneer II platform equipped with a laser range finder as shown
in Figure 3.8.

3.5.1 Experiment 1

In the first experiment, the robot repeatedly executes planned paths between
the four goal positions shown in Figure 3.9. The path planner generates
intermediate goal points 2 m ahead on the path until the goal point itself is
within 2 m distance. In case that the robot finds no admissible trajectory, the
planner tries three methods to handle the exception. 1.) The robot turns to
the target before it continues to approach it. 2.) The robot moves backward
a bit and then tries to approach the target again. 3.) The robot turns to
free space, moves forward 50 cm, turns back to the target and continues to

48 Local Planning for Collision Avoidance

Figure 3.8: The Pioneer II platform

evaluation function # failures # tasks failure rate

WSEF 37 101 36.63
DEF2D 2 107 1.87

Table 3.1: The number of execution failures for the two evaluation functions
WSEF, and DEF2D.

approach it. If all three handlings are not successful, the robot tries them
again with the target point only 1 m ahead on the path. If the three handlings
fail again, the robot gives up and starts to execute the next task. The
exception handling is not built into the behavioral layer, but implemented
using the HTN planner introduced in Chapter 4.

As you can see from table 3.1 using WSEF the robot had a failure rate of
36.63 % where the robot with DEF2D had a failure rate of only 1.87 %. In
the latter case, at least one of the failures was caused by a human teasing
the robot by repeatedly blocking its way. With WSEF the failure rate was
with over 60 % particularly high for the second navigation task (2→ 3). For
this task, WSEF is often not able to find the door opening.

The experiment clearly demonstrates that DEF2D is significantly more re-
liable than WSEF for difficult navigation tasks like entering or leaving a
room. Please note that the experiment is designed to compare two evalua-

3.5 Experimental Results 49

3

2

1

4

Figure 3.9: The experimental setup.

tion functions rather than two systems. It does not make any claims about
the performance of the original Rhino system in comparison to Appeal.

3.5.2 Experiment 2

In the second experiment, the path planner randomly generates intermediate
goal points for the collision avoidance which are between 1 m and 5 m ahead
on the planned path. Note that this is a quite challenging setup to test a local
navigation algorithm as the goal points tend to be quite far away. We draw
the distance to the next target point on the path randomly to ensure that the
robot faces many different situations. Please also note that we performed our
experiments in a populated university office where humans cross the robot’s
way occasionally. The sampling of target points introduces many variance
in the robot’s behavior. Therefore each course of the experiment consisting
of the four navigation tasks shown in Figure 3.9 was repeated 12 times.
Figure 3.10 shows the average time it took the collision avoidance system
to complete the course using the four evaluation functions together with the
95% confidence interval of the mean.

As we can see from Figure 3.10, DCEF performs significantly better than
all other evaluation functions. For example, it is 15% better than DEF2D,

50 Local Planning for Collision Avoidance

80

100

120

140

160

180

200

220

DEF2D PFEF DCEF DEF3D

Figure 3.10: The average time it took the collision avoidance module to com-
plete a sequence of four navigation tasks using different evaluation functions.
The bars visualize the 95% confidence intervals of the mean.

the second best evaluation function. DEF2D and DEF3D do not differ
significantly in the experiment. PFEF is by far the worst evaluation function
and performs significantly worse than the other three functions.

It is not surprising that the robot performs better using DCEF than using
DEF2D alone because DCEF takes the side clearance of the robot as well
as the progress towards the target into account. In another experiment, we
drove the robot up and down the corridor of our department building with
a speed of up to 100 cm/s where the corridor is blocked by two unknown
obstacles. In Figure 3.11 you can see typical traces produced by these two
evaluation functions during this experiment. As illustrated in the figure,
DEF2D tends to come closer to obstacles and then has to reduce its veloc-
ity. In the figure the robot’s current velocity is indicated by the width of
the light grey background of the robot’s trajectory. In additional simulator
experiments using the same setting, DCEF on average required 11.4% less
time for completing a sequence of four navigation tasks than DEF2D.

Surprisingly, it turned out that DEF3D does not perform significantly better

3.5 Experimental Results 51

Figure 3.11: Paths produced by DEF2D and DCEF. The plotted positions
are estimated by the localization component.

and in fact even slightly worse than DEF2D. However, this can be explained
by the very coarse model used, and in addition, the evaluation of this function
takes more than 1 second per iteration using our current implementation
rather than about 0.25 seconds with DEF2D. As the robot adapts to these
long update times, it is in general still possible to navigate reliably, but
the robot drives more carefully. However, for high speed navigation in the
hallway the update interval for DEF3D is much too large and results in
unreliable navigation behavior. Here DEF2D clearly outperforms DEF3D,
although not for principal reasons but due to the speed limitations of current
computers.

PFEF performs significantly worse than the other evaluation functions. This
is caused by the type of map used for planning. We use a local map of the
robot’s environment that is built from one sensor reading only. Due to occlu-
sion, the map can change considerably during a short time period resulting in
a new shortest path which differs drastically from the previous one. This can
lead to unstable navigation behavior when using PFEF. Figure 3.12 demon-
strates this effect. After a small rotation of the robot the shortest path to
the target point has changed completely.

52 Local Planning for Collision Avoidance

Figure 3.12: The instability of paths.

3.6 Summary

In this chapter, we have presented an approach to collision avoidance for
mobile robots that uses local path planning within a map built from the
robot’s latest range measurements followed by a search for control commands
to steer the robot towards the goal safely and efficiently. While the search
for control commands allows to take the robot’s dynamics into account and
therefore allows for very smooth navigation behavior, planning is able to
determine the optimal path towards the goal and minimizes the likelihood
that the robot gets trapped in dead end situations.

In extensive real robot experiments, we have compared the distance-based
evaluation function with the weighted-sum-based evaluation function and
found the former to significantly outperform the latter in terms of reliability.
This result is important when trying to learn models of the behavior of the
behavioral layer to improve the overall navigation behavior as depicted in
Chapters 5–7. The rare cases where DEF2D does not find an admissible
trajectory, are in general not due to local maxima of the evaluation func-
tion, but to unexpected obstacles. We will discuss in Chapter 4 how these
execution failures can be handled in the execution layer.

We have also compared four approaches to utilize the results of path planning
in the search for good control commands and show that the navigation per-
formance achieved with the distance- and clearance-based evaluation function
is significantly better than the performance achieved by the other three eval-
uation functions, especially the one that models a path following behavior.

Chapter 4

HTNs for Plan Execution

Most state-of-the-art systems for mobile robot control comprise
a deliberative and a reactive layer. The deliberative layer com-
putes mission- or task plans based on a static or slowly changing
world model and abstract models of the robot’s possible actions.
In contrast to the deliberative layer, the reactive layer performs
fast feed-back control and is thus able to act in highly dynamic
environments and react to unforeseen changes in the robot’s sur-
roundings.

One of the problems of mediating between the two layers is the
problem of plan execution. Abstract tasks have to be decomposed
in terms of behaviors that can be executed by the reactive system.
Plan execution also has to deal with execution failures, e.g., due
to dynamic obstacles in the robot’s environment or out-dated
environment models. In three-tiered robot control architectures
the plan execution constitutes an own layer.

This chapter introduces the execution layer of Appeal. We show
how Hierarchical Task Networks (HTNs) can be used for the
transparent representation of the state of the execution process.
In contrast to classical HTN planning, tasks are considered as ob-
jects that can perform considerable computation like, e.g., path
planning on initialization. This helps to keep the task decom-
position process simple. The explicit representation of choice
points in the plan execution process helps to handle unexpected
failures on an adequate level of abstraction and to reason about
plan improvements. We demonstrate these benefits of the HTN

representation for plan execution in three real world experiments.

54 HTNs for Plan Execution

4.1 Introduction

Abstract plan- or task layers have been used in robot control since Shakey’s
times [Nil84], and they are essential in hybrid robot control architec-
tures [Mur00, KBM98]. One of the main problems when applying symbolic
plans to mobile robot control is their robust execution. Abstract symbolic
actions have to be decomposed into sequences of reactive behaviors provided
by the behavioral layer of the control system. This is the reason why plan ex-
ecution layers in three-tiered architectures are often named sequencing layers,
or Sequencers for short.

In contrast to task or mission planning where it is in general a hard problem to
find a correct solution to a given problem in the first place, in plan execution
there are often many possible task decompositions that achieve a given goal
but which might be more or less appropriate in a given situation. To find
the task decomposition that maximizes plan quality – either with respect to
robustness or the robot’s expected performance – is the problem of action
selection, and a plan execution system has to deal with it.

Besides the decomposition of actions, plan execution systems have to account
for execution failures, e.g., due to changes in the environment. It is important
that these failures are handled on the right level of abstraction, that is, on the
right level of the decomposition hierarchy. A closed door has to be handled
by planning a new path to the goal based on an update of the environment
map, while a failure caused by a dynamic obstacle might be handled by a
sequence of reactive behaviors to circumvent the obstacle.

In this chapter, we describe the execution layer of Appeal as implemented
in the Rhino system and discuss how it accounts for these problems. It
is built on top of the reactive layer described in the previous chapter and
executes abstract navigation tasks. The tasks can be specified by a human
user using a graphical user interface. The tasks could, in principle, also be
provided by a symbolic planning system which performs some kind of task-
or mission planning.

Appeal’s execution system is based on the idea to represent the decomposi-
tion hierarchy and the state of the decomposition process explicitly as a plan.
We use HTNs [NCLMA99] as the plan format. The hierarchical nature of
HTN plans makes them a handy substrate for dealing with execution failure
by jumping to higher levels of abstraction within the current plan and pick
alternative task expansion strategies. This ‘failing upwards’ was one of the
reasons for developing it for the archetype of HTN planners, Noah [Sac77].

The approach to HTN planning presented in this chapter deviates from the

4.2 Related Work 55

original approach in various aspects. First, tasks are considered as objects
that know about their possible decompositions. They keep track of the state
of their execution, for example to avoid the repeated execution of decom-
positions that have failed before. They can also perform considerable com-
putation on their initialization. This computation can itself be a planning
process like the computation of the shortest path to a given goal.

The execution system should also be able to replan opportunistically in order
to improve the robot performance. This requires the explicit representation of
the state of the execution process in order to remove tasks from the plan and
choose new expansions where appropriate. In Appeal, this is guaranteed by
the application of the HTN plan representation.

The reasoning about the benefits of different courses of actions as required
for the replanning can be based on plan projection. This, however, requires
informative models of the tasks which are subject to replanning. As these
models might be difficult to acquire, especially for tasks that are directly
executed by the behavioral layer, it is useful to learn the required action
models autonomously. To this end, the robot has to be able to monitor
and log execution data for the tasks. The logging functionality is another
important feature of Appeal’s execution layer.

The chapter is organized as follows. After discussing related work in the
field of plan execution and hybrid robot control architectures, we give a
short overview of HTN planning in Section 4.3. Section 4.4 applies HTN

planning to the problem of navigation task execution and shows how the
plan representation supports task decomposition, action selection, and failure
handling. Section 4.5 gives a short overview of the execution planning system
of Appeal and its three main components. In Section 4.6, we demonstrate
the use of HTN-based execution planning in three real robot experiments
and conclude in Section 4.7.

4.2 Related Work

Appeal is an example of a three-tiered architecture. Three-tiered architec-
tures organize the control software in three layers.

1. A reactive layer. It controls the effectors of the robot and does the
sensor interpretation. It provides simple reactive behaviors like wall
following and collision avoidance. It is also called control layer.

2. A deliberative layer. It computes mission- and/or task plans from ab-

56 HTNs for Plan Execution

Deliberation

Sequencing

Reactive Skills

World /
Environment

Partial Task Ordering

Instantiated Tasks

Sensor
Readings

Actuator
Commands

Figure 4.1: Interaction of the three levels in a 3T architecture.

stract task descriptions and abstract, often static models of the robot’s
working environment and its possible actions. This layer is also named
deliberation layer.

3. An execution layer. This layer mediates between the reactive and the
deliberative layer. Abstract plans are decomposed in terms of reactive
behaviors while taking execution failures and exceptional situations
into account. In the literature, this layer is often named sequencing
layer as computing a totally-ordered sequence of behaviors from a par-
tially ordered plan was originally considered the main problem of plan
execution. However, we will use the more general term execution layer.

Figure 4.1 sketches the layering of a typical three-tiered (3T) architecture
and describes the interaction between the three layers. The picture is taken
from [BFG+97]. The idea to organize the control software of a mobile
robot in three layers has been suggested independently by three research
groups [Gat92, Con92, Bon91] at about the same time. Gat [Gat98] provides
a detailed overview of successful three-tiered architectures for mobile robot
control and discusses their differences.

4.2 Related Work 57

Tasks / Sketchy Plan

RAP Task Agenda

RAP Interpreter

Results

Perception
Skills

Action
Skills

RAP
Library

World
Model

Requests Requests

World

Figure 4.2: The Animate Agent Architecture

The suggested architectures were all intended to overcome the short-
comings of the Sense-Plan-Act (SPA) approach to robot control [Nil84]
and of the purely reactive architectures like the subsumption architec-
ture [Bro86, Bro99]. The SPA architecture as applied to control the mobile
robot Shakey did not scale well to highly dynamic environments. It turned
out that for mobile robot control the robust execution of a plan is signif-
icantly more difficult than its generation. Subsumption-style architectures
can be regarded as a radical reaction to the problems of SPA architectures.
Hierarchically layered behaviors make robot control very fast and reliable, but
the approach lacks the possibility to integrate some kind of mission planning.
Three-tiered architectures can be considered the most successful approach to
combine purely reactive control and planning.

In the research on three-tiered architectures many different plan execu-
tion languages and frameworks like RAPs [Fir89, Fir95], REX [Kae87],
PRS [GL87], and ESL [Gat97] were suggested. Bonasso et al. give a com-
prehensive overview of the research on plan execution languages and frame-
works [BFG+97].

RAPs (Reactive Action Packages) [Fir87] are a set of rules implemented in
a macro language of Lisp that define how actions are to be decomposed into
sequences of behaviors executable by the reactive system. It is possible to

58 HTNs for Plan Execution

have more than one method to decompose an abstract action into sequences of
behaviors. Which decomposition method is to apply depends on the current
state of the world. If a decomposition fails, the next applicable rule can
be applied if there is one. RAPs can be arranged into hierarchies, which
allows to handle failures on the right level of abstraction. This kind of failing
upwards is supported by the HTN-style execution system of Appeal as well.

RAPs have been successfully integrated into the Animate Agent Architec-
ture [FKPS95] and applied to control the mobile robot Chip which was
developed at the University of Chicago. Figure 4.2 gives an overview of
the Animate Agent Architecture. The Animate Agent Architecture is not a
three-tiered architecture as there is no planning layer. Instead, sketchy plans
given by a user are refined by task decomposition and by adding ordering
constraints for the tasks. Like in Appeal, this is done until a behavior is
determined that can be directly executed by the reactive system. ESL (Exe-
cution Support Language) [Gat97] is a macro language of Lisp developed to
ease the implementation of plan execution layers in 3T architectures. ESL

is based on the ideas of RAPs, but provides more sophisticated methods for
failure recovery and action monitoring by language extensions.

The early execution systems like RAPs and PRS are based on a set of
symbolic rules that are processed based on the current situation. More re-
cent plan execution systems emphasize the hierarchical nature of tasks and
their decomposition. TCA (Task Control Architecture) [Sim94] provides
commonly needed control constructs like task decomposition, task synchro-
nization, execution monitoring, and exception handling by managing task
trees. Task trees can be considered as execution traces of hierarchical plans
and are created dynamically at run time. Like in Appeal, plan execution is
performed by expanding abstract tasks into tasks directly executable by the
behavioral system where the expansion can be dependent on the robot’s state.
In contrast to Appeal, not only tasks are explicitly represented in the task
tree, but also monitors, exception handlers, and temporal constraints on the
execution order. TCA has been successfully applied to control many differ-
ent mobile robot platforms like e.g. Xavier [KS98]. TDL (Task Description
Language) [SA98] provides the functionality of TCA as an extension of the
programming language C++.

RAPs, ESL, TCA, and TDL as well as the other plan execution frameworks
suggested in the literature [BFG+97] are well suited to select behaviors and
their parameterizations. When selecting the next behavior, the execution
system can take the robot’s current state into account and is therefore re-
active. In addition, it can maintain a state history to avoid the repeated

4.3 Hierarchical Task Networks 59

execution of unsuccessful actions. However, these sequencing systems are
not intended to do search, some kind of planning, or learning. The execu-
tion layer of Appeal deviates from earlier sequencing layers in this respect.
This chapter will show how path planning using the MDP framework can
be made part of the HTN planning. Chapters 5–7 demonstrate the integra-
tion of search, temporal projection, and learning into Appeal’s execution
system.

CLARAty (Coupled Layer Architecture for Robotic Autonomy) [VNE+01]
is another more recent architecture that tightly integrates planning and exe-
cution in an execution layer. In contrast to Appeal, however, CLARAty is
intended as a two-layer architecture.

In the Robels system [MG02b, MG02a], HTNs are used for the specifica-
tion of sensor-motor modalities. Sensor-motor modalities specify how dif-
ferent self-localization and navigation methods can be combined in order to
complete a task. Robels is in some aspects very similar to Appeal, espe-
cially in the attempt to combine learning and planning techniques for plan
execution. Regarding the use of HTNs the main difference is that in Robels

planning processes are only allowed in leaf nodes of the AND/OR tree while
in Appeal they can be part of inner nodes as well. Chapter 6 provides a
more detailed discussion of Robels.

4.3 Hierarchical Task Networks

HTN planning specifies a planning problem as a task network, i.e. a set of
tasks together with constraints on the order in which they can be performed
and restrictions on how variables may be bound. Tasks may be elementary or
compound. The expansion, in general, is not unique. Planning is performed
by expanding compound tasks until only elementary tasks remain.

HTN planning can be considered as extension of least-commitment planning
where a plan is given by (a) a set of plan steps, (b) a partial order on the
set, (c) a set of variable bindings, and (d) a set of causal links between the
plan steps1. Hierarchical decomposition extends partial-order planning by
abstract operators. A plan p correctly implements an abstract operator o if
it is a complete and consistent plan for the problem of achieving the effects
of o given the preconditions of o if

1Please refer to the introductory textbook of Russel and Norvig [RN95] or the survey
article of Weld [Wel94] for an introduction to least-commitment and partial-order planning

60 HTNs for Plan Execution

1. p is consistent: there is no contradiction on the ordering- or variable
binding constraints,

2. every effect of o is asserted by at least one step of p and is not denied
by some other, later step of p, and

3. every precondition of the steps in p is achieved by a step in p or is one
of the preconditions of o.

Although the selection of expansion methods for non-primitive tasks intro-
duces a new kind of choice point to least commitment planning, it is in
general helpful to focus the search. Furthermore, hierarchical decomposition
can help to prune the search tree if one of the following two properties holds.

Downward Solution Property If p is an abstract solution to the planning
problem, then there is a primitive solution of which p is an abstraction.

Upward Solution Property If an abstract plan is inconsistent, then there
is no primitive solution of which it is an abstraction.

The downward solution property can be used to prune away all other abstract
plans as soon as an abstract solution has been found. The upward solution
property on the other hand can be used to prune away all descendents of an
inconsistent abstract plan in the search tree.

HTN planning originates from early work by Sacerdoti [Sac77]. Since then,
it has been used as a technique in several domain-independent and special-
purpose planners. Milestones include the Sipe-2 system [Wil88] and its vari-
ous applications, as well as BridgeBaron [SNT98], the winner of the 1997
computer bridge world championship. The Shop planner [NCLMA99] is
a modern, domain-independent HTN planner incorporating the Bridge-

Baron design knowledge.

4.4 Execution Planning using HTNs

This section will describe the use of the HTN representation for plan execu-
tion. We will discuss that HTNs provide an elegant way to represent choice
points in the execution process. This is especially important when handling
failures. It might for example be appropriate to backup several levels in the
expansion hierarchy to handle a failure on a more abstract level.

4.4 Execution Planning using HTNs 61

However, the execution planning process in Appeal deviates from standard
HTN planning in various aspects. First, in the implementation presented
here, we deal with fully instantiated tasks all the time. Second, we consider
only fully ordered sequences of tasks as possible expansions. Third, we do
not consider other planning operators than the expansion of compound tasks.
These three restrictions basically reduce HTN planning to a search in an
AND/OR tree. This proves to be sufficient for our application domain, for
other applications, however, it might be useful to have the full HTN planning
framework.

There is another difference with respect to the search process. In our im-
plementation, the AND/OR tree is searched depth-first and the execution
process stops as soon as a plan stub has been determined. We call plan stub
an HTN with an elementary task as the first task in its ordering. The strat-
egy of stopping to reduce compound tasks in an HTN as soon as a plan stub
has been found, is called the lazy expansion principle. This principle is used
in our case as the robot may start navigating even before a complete solution
plan has been found. The rationale is that we cannot assume that no un-
forseen events occur during plan execution (which would make plan suffixes
unexecutable or irrelevant) and that plans may include sensing actions whose
results may not be known at planning time. The lazy expansion principle
just reduces waste of planning time in these cases. After each successful ex-
ecution of a task, the search backs up in the tree until a task is found that
is not yet completed.

Please note, that with the lazy expansion principle it becomes possible to
expand a compound task into a sequence of tasks whose length might not
even be known before expanding the task for the last time. This is central
for using HTNs for path execution as will become clear shortly.

In our framework tasks are not purely syntactical constructs, but are objects.
These objects know about their possible expansions and about the state of
their execution. In addition, these objects can initiate substantial compu-
tation like MDP path planning on construction. This is true not only for
elementary actions, but also for compound tasks.

Before dealing with these issues in some more detail, we give an example of
execution planning using HTNs. For this purpose, we first introduce part
of the operator inventory for our execution planner. We have the following
schemata for elementary tasks:

SetTarget(x, y, d) sets the target point (x, y) for the low-level routine for
collision-free drive control, which has to be approached up to a precision

62 HTNs for Plan Execution

of d cm.

TurnTo(x, y) causes the robot to rotate on the spot until heading towards
the point (x, y).

TurnToFree() causes the robot to rotate on the spot until heading towards
some free space.

MoveForward(d) causes the robot to move by d cm straight forward.

MoveBackward(d) causes the robot to move by d cm straight backward.

All elementary tasks must have an implementation in terms of behaviors
provided by the behavioral layer, so that executing an elementary task means
calling the respective routine. That does, of course, not guarantee that each
and every elementary task instance, or its corresponding control routine,
respectively, can be successfully executed. Failure is possible, as usual. This
issue will be addressed below.

We have two types of compound tasks, the schemata of which are:

ApproachPoint(x, y, d) drives the robot to position (x, y) within an
approach distance of d. In terms of the expansion hierarchy,
ApproachPoint is a middle-level task that serves for dealing with self-
generated intermediate target points.

MDPgoto(x, y) drives the robot to the user-specified target at posi-
tion (x, y). Over the time, it gets expanded into a sequence of
ApproachPoint operators.

In the experiments, we consider the following expansions. The compound
task MDPgoto(x, y) can be expanded into ApproachPoint(tx, ty, c) with
the target point (tx, ty) either 2m (default), 1m, or 4m ahead on the opti-
mal path to the goal point (x, y) and with c=1m, c=0.5m or c=2m respec-
tively. ApproachPoint(x, y, d) is either expanded into SetTarget(x, y, d)
(default), into the sequence TurnTo(x, y), SetTarget(x, y, d), into the se-
quence MoveBackward(30), TurnTo(x, y), SetTarget(x, y, d), or into the se-
quence TurnToFree(), MoveForward(30), TurnTo(x, y), SetTarget(x, y, d).
Figure 4.3 gives a schematic summary of the expansion hierarchy used in the
example.

Within a plan, an instance of any task has all arguments fully instantiated,
as we are dealing with purely propositional plans here. Moreover, all task
instances have an additional argument saying whether they are pending,

4.4 Execution Planning using HTNs 63

MDPgoto

Approach 1m Approach 2m Approach 4m

TurnTo SetTarget

TurnTo SetTarget

SetTarget

MoveBack

TurnTo SetTargetMoveForw.TurnToFree

Figure 4.3: The expansion hierarchy.

i.e., not yet executed (for elementary tasks) or expanded in the case of
compound tasks. Executed tasks are simply deleted from the current plan.

Representing a plan as a stack, here is an example. Assume the navigation
target is the position (1521.31, 1563.8) on some given floor map. This would
be transformed into the one-task plan

MDPgoto(1, pending, 1521.31, 1563.8)

where the first two arguments are the task instance ID and the status, respec-
tively, and the following ones are like in the task schema descriptions given
above. (This pattern will re-appear in all other task instances to follow.)

Dealing with the top task of the stack means expanding it, in this case, since
it is compound. Using the default expansion, this yields

ApproachPoint(2, pending, 1434.38, 1009.38, 100)
MDPgoto(1, expanded, 1521.31, 1563.8)

and, expanding the ApproachPoint task,

64 HTNs for Plan Execution

SetTarget(3, pending, 1434.38, 1009.38, 100)
ApproachPoint(2, expanded, 1434.38, 1009.38, 100)

MDPgoto(1, expanded, 1521.31, 1563.8)

As the topmost task is elementary, this is a plan stub, and according to
the lazy expansion principle, this operator gets immediately executed by the
robot, activating an approach target behavior.

Assuming that all goes well, the control routine implementing the SetTarget

task terminates successfully. This task pops out, and so does ApproachPoint

in consequence. The MDPgoto task, however, is not yet finished, as its
target point is not yet reached according to the robot’s self-localization. In
consequence, it gets re-expanded, yielding

ApproachPoint(4, pending, 1476.88, 1158.12, 100)
MDPgoto(1, expanded, 1521.31, 1563.8)

the topmost task of which would get expanded into the respective SetTarget

task and executed as before. If all keeps going well, this cycle of expand-
execute-pop is repeated until the final target point is reached and MDPgoto

pops out. Figure 4.4 summarizes such an expand-execute-pop cycle.

Failures to execute an elementary task are reported by the low-level control
routines by raising exceptions of different types. Assume that executing the
top task in the plan

SetTarget(5, pending, 1476.88, 1158.12, 100)
ApproachPoint(4, expanded, 1476.88, 1158.12, 100)

MDPgoto(1, expanded, 1521.31, 1563.8)

results in an exception of type no-admissible-trajectory, i.e., the low-
level execution cannot find an unoccluded local path from the current position
to the point (1476.88, 1158.12), based on the recent sensor readings. As a
result, the failed task would pop out and the next expansion alternative for
the ApproachPoint task would be patched in, resulting in

MoveBackward(6, pending, 30)
TurnTo(7, pending, 1476.88, 1152.12)

SetTarget(8, pending, 1476.88, 1158.12, 100)
ApproachPoint(4, expanded, 1476.88, 1158.12, 100)

MDPgoto(1, expanded, 1521.31, 1563.8)

4.4 Execution Planning using HTNs 65

MDPgoto MDPgoto

App.Point

MDPgoto

SetTarget

App.Point

MDPgoto

SetTarget

App.Point

MDPgoto

SetTarget

App.Point

MDPgoto

App.Point

I II III

IV V VI

Figure 4.4: Task decomposition using HTNs.

Assume that after the successful execution of MoveBackward and TurnTo

the execution of the SetTarget task fails again. The planner has to backup
to the ApproachPoint task in the tree. If we assume that there is no other
expansion applicable in this situation, the planner can even backup to the
pending MDPgoto task in the stack. Only if no more backtracking is possi-
ble, the execution of the main task fails and permanent failure is reported.
Figure 4.5 summarizes the example.

The example nicely demonstrates the lazy expansion principle for task decom-
position and the handling of exceptions caused by unexpected obstacles or
inaccurate effectors. It can also be used to illustrate some of the advantages
of the object-oriented representation of tasks.

MDPgoto performs a full path planning on a grid map of the environment
when created. The path planning process results in an MDP policy which

66 HTNs for Plan Execution

MDPgoto

SetTarget

App.Point

MDPgoto

MoveBack

App.Point

TurnTo SetTarget

MDPgoto

App.Point

TurnTo SetTarget

MDPgoto

SetTarget

App.Point

NO_ADMISSIBLE_TRAJECTORY

MDPgoto

App.Point

NO_ADMISSIBLE_TRAJECTORY

MDPgoto

App.Point

SetTarget

NO_ADMISSIBLE_TRAJECTORY

III

I II

IV

V VI

Figure 4.5: Failure recovery using HTNs.

assigns to each possible state of the robot, that is, a cell in the grid map, the
optimal action with respect to the MDP. From this policy, the optimal path
from the robot’s current position to the goal can be computed efficiently.
From the optimal path to the goal, instances of the ApproachPoint com-
mand can be generated where the target point is 1 m, 2 m, or 4 m ahead on
the path. In contrast to classical HTN planning, the expansion depends on
the current state of the robot when expanding the MDPgoto task. This
simplifies planning as we deal with fully instantiated tasks all the time. To
represent tasks as objects is an elegant way to integrate path planning and
HTN planning in a hybrid planning process.

4.5 Execution Planning in APPEAL 67

Which expansion to select from a set of possible expansions, can have a
considerable influence on the robot’s performance. However, the choice of the
best action in the current situation, might also mean heavy computations.
In general, however, the robot has to wait for the results of this computation
before it can act. This time loss might in some cases even outweigh the
performance improvement gained by the reasoning. To mitigate this problem,
the execution planner always selects the default expansion of a task when
expanding it for the first time. Like this, the resulting default plan can
be computed very fast and the robot can start acting immediately. The
time needed for the execution of the planned sequence of elementary actions,
however, can be used to reason about plan improvements that can be achieved
by the selection of alternative task expansions on some level of the current
plan.

If for some compound task in the task tree an alternative expansion has been
found which is projected to result in a better performance, the current plan
has to be transformed accordingly. As the construction of plan stubs is very
fast, this can be achieved by pruning all nodes in the tree up to the node that
is to be expanded in a different way and then expand the tree again until a
new plan stub has been generated. Chapter 6 will discuss this application of
transformational planning to the problem of selecting the best expansion for
a given task in some more detail.

4.5 Execution Planning in APPEAL

Figure 4.6 gives an overview of the execution planner of Appeal which
comprises three main components. 1.) The plan module which represents
the current state of the plan execution as an HTN. 2.) The world model
which collects the data from various modules of the overall system like the
localization module, the mapping module, and the behavioral system. It
also provides an interface to these modules which can be used to execute
elementary tasks. 3.) The observer module which observes the current state
of the world to react to changes either by modifying the current plan or by
logging state changes in a database system.

The plan module represents the current state of the plan execution as an
HTN. Abstract tasks specified by a human or some task planning system
form the input of the plan module. They are decomposed using default
expansions until a plan stub has been generated. The elementary tasks of
the plan stub can be executed directly by the behavioral system.

68 HTNs for Plan Execution

Figure 4.6: The APPEAL architecture

The world model provides a uniform interface to the other modules of the
system that are necessary for a robust navigation. This is the localization
system briefly introduced in Chapter 2, the behavioral system introduced in
Chapter 3, and a mapping system used to perform updates of a static world
map.

The observer module comprises three submodules. The recovery module is
responsible for modifying the plan in reaction to execution failures. The
transformation module reasons about the current plan of the robot in order
to detect opportunities for plan improvements. The reasoning is based on
learned models acquired from the data collected by the logging system. This
will be explained in some more detail in Chapter 5.

4.6 Experimental Results

This section presents results of three experiments that have been performed
to evaluate the design of the execution planner of Appeal. All experiments

4.6 Experimental Results 69

demonstrate the use of HTN-like representations for failure recovery. In the
first two experiments, a Pioneer II robot is faced with an unexpected ob-
stacle. Backtracking in the task tree helps the robot to successfully recover
from the failure in both cases. The failures, however, are handled in differ-
ent ways, based on a simple diagnosis of the failure. The third experiment
demonstrates how a failure on a low level of abstraction (executing a naviga-
tion behavior) is handled on a much higher level of abstraction by replanning
a path.

4.6.1 Failure Recovery using HTNs

The first experiment is intended to demonstrate how the execution planner of
Appeal supports the handling of exceptions caused by unexpected moving
obstacles. Figure 4.7 shows how a human steps into the way of the robot.
As the obstacle moves fast towards the robot, the robot can do nothing but
an immediate stop. After the stop, the SetTarget behavior fails by throwing
the exception no-admissible-trajectory and the exception handling is
activated. The situation is similar to the one shown in 4.5. The execution
planner removes the failed SetTarget from the plan and has now to select
an alternative expansion of the ApproachPoint task. As the direct way to
the target is blocked, the second possible expansion of ApproachPoint is
not an option in this case (please refer to Figure 4.3 for an overview of the
possible expansions in this case). The robot thus selects the third expansion.
It moves backward until it is free again and continues its approach target
behavior. However, the human decided to do the same and thus all possible
trajectories are blocked again. The failure recovery decides to try the last
possible expansion. The robot turns into the direction of highest clearance,
moves a bit forward in this direction, turns back towards the target and
restarts the approach point behavior. The robot succeeds in passing the
human.

Figure 4.8 shows another example of successful failure recovery. In this
scene, a wastebasket has been placed near the entry of a door passage. The
robot tries to drive round the obstacle but the controller overshoots and the
robot gets too close to the wall. This again causes an immediate stop and
the robot throws the exception no-admissible-trajectory. In this case,
however, the exception can be handled by selecting the second expansion of
ApproachPoint. The robot just turns to the target and can then successfully
approach the target again.

The two experiments show that HTNs provide an elegant framework for han-

70 HTNs for Plan Execution

Figure 4.7: A Pioneer II robot handles a sequence of exceptions caused by
a moving human obstacle.

4.6 Experimental Results 71

Figure 4.8: A robot handling a failure caused by an unexpected obstacle.

dling execution failures caused by unexpected and possibly moving obstacles.
They demonstrate that failures can be handled by backtracking in the task
tree and then selecting an alternative expansion on some appropriate level
of abstraction. The action selection process for exception handling might
include some kind of diagnosis. In our experiments a few hand-coded rules
have been sufficient for this.

In the experiments presented so far, we only had to backtrack one level in the
expansion hierarchy to successfully handle execution failures. In the following
section, we will present an experiment where an execution failure is handled
by backtracking multiple levels in the task tree which implements some kind
of replanning.

72 HTNs for Plan Execution

x x

Figure 4.9: Replanning in the presence of a blocked passage.

4.6.2 Failure Recovery by Replanning

Consider the situation depicted in Figure 4.9 where the robot is asked to
go to the point marked by a cross. The robot computes the path shown
in Figure 4.9 (left) although there is an alternative path which, however, is
considerably longer. As soon as the robot gets to know that an obstacle
(marked by a yellow bar) blocks its way, it should replan and consider the
longer way (right). The experiment described in this section shows that this
kind of replanning can be achieved by HTN-based execution planning.

For this purpose, we have to extend the task hierarchy by an additional level
shown in Figure 4.10. The Goto tasks can be expanded in two ways. First,
by an MDPgoto or second by a MapUpdate followed by an MDPgoto.
MapUpdate is an elementary task which is executed by collecting a se-
quence of laser range scans that are then integrated into the robot’s global
environment map. MapUpdate is a sensing action/task. This is deliberately
so as the computationally demanding task should only be performed when
required.

As can be seen from Figure 4.11, using the extended task hierarchy the
mobile robot Rhino shows exactly the expected behavior. It first tries to
navigate to the goal using the computed shortest path (1). It is then faced
with an unexpected obstacle (2). As the obstacle blocks a narrow passage, no
alternative expansion of the ApproachPoint task is expected to be useful in
this case. The planner thus backtracks further. For the MDPgoto as well no
alternative expansion is considered to be useful and the planner backtracks
again. On the top level of the task hierarchy, the planner finally selects an
alternative expansion of the Goto task. Goto is expanded into a sequence
of MapUpdate and MDPgoto. The map update includes the wastebasket

4.7 Summary 73

Goto

MapUpdateMDPgoto MDPgoto

Figure 4.10: Extension of the expansion hierarchy for implementing map
updates.

into the map and the MDPgoto task performs path planning on the updated
map. It finds another path, which is longer, but avoids the blocked passage.
The new MDPgoto is again decomposed in a sequence of ApproachPoint

tasks (3-5) until Rhino finally arrives at its goal position (6). Figure 4.12
summarizes the experiment.

The experiment shows that using the HTN framework, execution failures on
the lowest level of the task hierarchy might be handled on a much higher level
of abstraction if appropriate. To this end, the exception handling mechanism
has to be able to detect that a failure cannot be handled appropriately on a
given level of abstraction. In the experiment, this has been achieved by using
the concept of a narrow passage which can be computed from a clearance
map (please refer to Chapter 5 for more details). However, we do not claim
to have a general story about this kind of diagnosis and it might well be an
interesting topic for future research in this area.

4.7 Summary

The sequencing layers of three-tiered architectures like Appeal have three
main responsibilities.

1. Decomposing abstract tasks into a sequence of elementary tasks that
can be executed by a behavioral layer. This decomposition process
should be efficient to allow for fast replanning.

2. Handling failures reported by the behavioral system. The failure han-

74 HTNs for Plan Execution

Figure 4.11: The mobile robot Rhino performing replanning when con-
fronted with an unexpected obstacle.

4.7 Summary 75

Figure 4.12: Summary of the experiment. The numbers denote where the
pictures of Figure 4.11 have been taken.

dling should be performed on the right level of abstraction, that is e.g.,
by choosing a different behavior or by computing a new path on an
updated map depending on the severity of the failure.

3. Optimizing plan quality with respect to some given performance mea-
sure. The optimization of plan quality is an important aspect of plan
execution, as an abstract task or a partially ordered set of such tasks
generally has many different valid execution plans which might differ
considerably with respect to their quality, that is e.g., their robustness
or effectiveness.

In this chapter, we have introduced the plan execution layer of Appeal,
which meets the three above-mentioned requirements. It is based on the
idea to use Hierarchical Task Networks for the transparent representation
of the state of the execution process. In contrast to the task- and mission
planning approaches, which are based on HTNs, tasks are considered as
objects. They keep track of the state of their execution, for example to avoid
the repeated execution of decompositions that have failed before. They can
also perform considerable computation on their initialization like planning

76 HTNs for Plan Execution

the shortest path to a given goal. This helps to integrate different planning
techniques like hierarchical decomposition and path planning in a hybrid
planning system.

The explicit representation of choice points in the plan execution process
helps to perform failure recovery on the appropriate level of abstraction (fail-
ing upwards). This has been demonstrated in three real world experiments
with two different robot platforms, the Pioneer II platform and the RWI

B21 platform. The experiments show how different failures caused by un-
expected obstacles are handled on different levels of abstraction depending
on the situation in which they occurred. While in two cases the exception
could be handled by selecting a different sequence of elementary tasks, the
blockage of the robot’s path by an obstacle in a narrow passage was handled
by a replanning based on an update of the robot’s environment map.

It has also been argued that the execution planner of Appeal supports some
kind of transformational planning. It computes a default plan, which can be
generated very fast by always selecting the default expansion of a task, and
immediately starts to execute it. This default plan is only modified if some
alternative course of action is projected to result in a better performance.
Chapter 5 and Chapter 6 deal with this issue in some more detail and discuss
how the relevant projective models can be learned from the data collected
by Appeal’s execution system.

Chapter 5

Plan Projection for the Online
Scheduling of Navigation Tasks

This chapter demonstrates the application of plan projection to
the online scheduling of navigation tasks. In our approach, plan
projection is based on models of the robot behavior where the
models are learned from data collected by the execution system.
We apply model tree learning, a generalization of regression tree
learning, to predict the time it takes the robot to execute an
action. Model trees are well suited for learning action models as
they combine the benefits of memory-based learning and general
function approximation.

We introduce the projection-based scheduling system Pbs. Pbs

schedules asynchronously arriving user requests for navigation
tasks in order to maximize a given reward function taking dead-
lines, expected execution time, and task priorities into account.
Pbs performs a heuristic search in the space of all possible task or-
derings to find the schedule that maximizes the robot’s expected
reward, where which is computed based on projecting the sched-
ules. Pbs is integrated in the HTN-based execution system in-
troduced in the previous chapter by adding a new level to the
task hierarchy.

The experimental evaluation of projection-based scheduling
shows that it outperforms both first-in-first-out scheduling and
urgent-first scheduling in two different scheduling scenarios. For a
third scheduling scenario, we investigate how different prediction
functions and projection methods impact the robot performance.

78 Plan Projection for Online Scheduling

5.1 Introduction

The idea of plan projection is to forecast the physical robot performance
on the basis of the abstract, symbolic plan representation. Plan projection,
however, is not a simulation, and deliberately so. Plan projection tolerates
all the abstractions and inaccuracies of the plan level domain description for
the sake of efficiency of reasoning. Its purpose is to find with negligible effort
possible alternative courses of action that look better in some respect than
the currently available plan. If such a plan is found, it is swapped into the
robot controller instead of the previous one.

We borrow the term plan projection from McDermott [McD92b] and from its
refinements later developed by Beetz [Bee00]. Their work on plan projection
has focused on making the robot performance more robust by forestalling
certain critical situations that some plan might lead the robot into. Our
focus is more on predicting the expected performance of a robot executing a
navigation plan.

We show in this chapter, how a projection algorithm can be based on models
of the robot behavior learned from previously collected execution data. The
main challenge here is to effectively compute a feature language that is suited
to compactly describe a navigation action and allows for precise predictions
of the time it takes to execute the action. To solve this problem, we use the
optimal path to the action’s goal point together with a clearance map of the
environment to compactly describe the action.

Based on the feature language computed from this path, we can apply stan-
dard learning techniques to estimate the time it takes the robot to execute
an action. In this chapter, we introduce model tree learning, which combines
the benefits of linear regression and regression trees. While linear regression
is a technique for function approximation well known from the statistics lit-
erature, regression trees and model trees are less known. Regression trees
are similar to decision trees, but contain real-valued predictions in the tree
leafs. Model trees combine both concepts and allow for general linear func-
tions in the tree leafs. Model trees are well suited for learning action models
as they combine the benefits of memory-based learning and general function
approximation. In addition, they can be transformed into sets of rules that
are well suited for human inspection and interpretation.

As application scenario for plan projection based on learned models, we con-
sider in this chapter the online scheduling of navigation tasks. We introduce
the projection-based scheduling system Pbs. Pbs schedules asynchronously
arriving user requests for navigation tasks in order to maximize a given re-

5.1 Introduction 79

Figure 5.1: The only possible expansion of PerformTasks is Goto.
PerformTasks keeps a list of Goto tasks and selects the first task in the
list for expansion.

ward function taking deadlines, expected execution time, and task priorities
into account. Pbs performs a heuristic search in the space of all possible task
orderings to find the schedule that maximizes the robot’s expected reward
where the expected reward of a schedule is computed based on its projection.

The sequencing of a partially ordered or completely unordered set of tasks
for a single robot is a relatively simple scheduling problem. In contrast to
other scheduling tasks, e.g. for a fleet of robots, we consider task sequencing
to be part of the plan execution problem.

The online scheduling is integrated in the HTN-based execution system by
introducing a new task to the task hierarchy. The task PerformTasks makes
the top level of the task hierarchy. It is responsible for executing all user
requests that are currently pending. For this purpose, PerformTasks keeps
a list of all pending user requests. In each expansion step, the first task in
the list is selected.

New tasks are added to the list in the order of arrival (or alternatively in the
order given by the urgency of the tasks). Pbs reschedules the tasks in order
to maximize the robot’s expected reward. In contrast to the simple heuristics
used to generate a default ordering, Pbs can account for the probability of
missed deadlines, expected execution time, and task priorities simultaneously.

The rescheduling is organized as a transformational planning process. The
robot starts to execute the default schedule computed by one of the above
mentioned heuristics. Parallel to execution, the scheduler searches for sched-
ules that promise a higher expected reward. As soon as such a schedule is
found, the default plan is replaced by the new schedule. When the next task
has to be selected by expanding PerformTasks, this is done with respect to
the new schedule.

80 Plan Projection for Online Scheduling

The remainder of this chapter is organized as follows. The next chapter
sketches related work in the field of plan projection, projection-based plan-
ning, scheduling, and the learning of action models. Section 5.3 briefly re-
views the concept of decision trees and introduces regression trees and model
trees. In Section 5.4 we discuss in some more detail the feature language used
to describe navigation actions and learn their expected duration. Section 5.5
describes the scheduling system Pbs, which is then experimentally evaluated
in Section 5.6. Section 5.7 concludes the chapter.

5.2 Related Work

We borrow the term plan projection from McDermott [McD92b] and from
its refinements later developed by Beetz [Bee00]. Their work on plan pro-
jection has focused on forestalling plan failures caused by exogenous events
and is part of a framework for transformational planning. The idea of trans-
formational planning is to interleave planning and execution. Rather than
computing a correct plan in the first place, a default plan to carry out the
user-specified tasks can be assembled quickly just by retrieval from a plan
library. The default plan, however, is neither guaranteed to be optimal nor
even to be correct. To forestall potential plan failures, the default plan is
repeatedly projected and transformed as suggested by plan critics. Both
plan projection as well as plan repair can be done during execution, and plan
execution and plan projection can therefore be closely interleaved this way.

McDermott [McD94] has suggested a probabilistic rule language that allows
to specify what can happen when an event occurs, as well as what events can
occur when certain propositions are true. The language supports a Monte
Carlo style of projection, in which event sequences are sampled randomly
using the probabilities specified by the rules. This means that the same
plan has to be projected many times in order to obtain statistically valid
propositions. The idea of this Monte Carlo style projection is very similar
to logic sampling, a stochastic simulation method to compute probabilities
from complex Bayes nets [RN95, Jor98].

Beetz et al. [BBG99] describe a transformational planning approach for
scheduling navigation tasks. It is based on the transformational plan-
ning framework of McDermott [McD92b] and his probabilistic rule lan-
guage [McD94], but is applied to scheduling navigation tasks for real and
simulated robots. They also give a criterion for probabilistically approxi-
mately accurate predictions which determines the number of sample execu-
tion scenarios necessary to detect a failure that occurs with a probability ≥ θ

5.2 Related Work 81

with a probability of at least β.

McDermott and Beetz use plan projection to find a probably correct plan
for a given problem. We, in contrast, consider planning problems for which
many valid solutions exist, but where plans differ considerably in their qual-
ity. Plan projection is thus used to improve plans rather than repair them.
Both approaches have in common that plan projection is used for interleav-
ing planning and plan execution. Another important difference to their work
are the techniques used for plan projection. While they are using a plan
projection based on Monte Carlo simulation, which is computationally very
demanding, we apply learned action models, which allows for faster projec-
tion.

In this chapter, we apply plan projection to schedule navigation tasks. More
precisely, we deal with the problem of sequencing a partially ordered or com-
pletely unordered set of navigation tasks for a single robot. This is a relatively
simple scheduling task and generally considered part of the plan execution
problem. Alami et al. [AFH+98] as well as Surman and Morales [SM02] de-
scribe solutions to the more general problem of scheduling tasks for fleets of
robots. Both approaches, however, do not attempt to learn action costs.

To learn the action models required for the plan projection, we apply model
tree learning, a generalization of regression tree learning that combines the
advantages of memory-based learning with the advantages of function ap-
proximation. Regression trees have been applied to learn action models for
navigation planning, e.g. by Balac [Bal02] and Haigh [Hai98]. Balac uses
regression tree models to predict action costs for navigation actions of an
outdoor robot and applies these action models to do path planning which
enables the planner to take different terrain conditions into account.

Haigh et. al. have also applied regression tree learning to acquire cost models
for navigation actions. They are applied to compute the best route in an
indoor environment taking into account that the crowdedness of floors and
hallways varies with respect to the time of day. In another application,
regression tree rules are transformed into search control rules for the Strips-
like planning system Prodigy [VCP+95].

Haigh as well as Balac argue that regression tree learning is well suited for
learning action models and can be used by path planning and task planning
systems for various reasons. (a) Tree-based induction methods can learn
conditional action effects, (b) they are applicable to continuous variables,
(c) they tolerate noisy data, and (d) they produce explanations well under-
standable to human users. In this chapter, we will argue that model trees
are well suited for the same reasons, but are more expressive models as they

82 Plan Projection for Online Scheduling

are not limited to approximating piecewise-constant functions.

Wang and Dietterich [WD99] discuss the use of regression trees in combi-
nation with TD(λ)-learning to solve job-shop-scheduling problems. They
utter the hope that regression tree learning might be suitable to become the
“basis of a function approximation methodology that is fast, gives good per-
formance, requires little-or-no tuning of parameters, and works well when
the number of features is very large and when the features may be irrelevant
or correlated”.

Balac [Bal02] provides a comparative study of different learning algorithms
and concludes that regression trees are best suited for learning action models.
In the experimental comparison of neural networks and regression trees de-
scribed in Chapter 2 we obtain similar results. Sridharan and Tesauro [ST00]
applied Q-learning in combination with regression trees in multi-agent sce-
narios. They point out that regression trees have been superior to neural
networks both in the policies learned and the reduced training effort.

5.3 Tree-based Induction

This section describes tree-based induction methods. We briefly review the
concept of decision trees and then introduce regression trees and model trees,
which generalize tree-based learning techniques to numeric target attributes.

5.3.1 Decision Trees

Decision tree learning is a method for approximating functions of the form
y = f(x1, ..., xk) where the k attributes x1, ..., xk can be nominal or numeric
and the target attribute y is nominal. Although decision tree learners are
weak learners, decision tree learning belongs to the most popular learning
schemes. This popularity is due to the fact that decision trees can be inter-
preted as sets of horn clauses. Therefore decision trees do not only allow to
predict values of the target function, but in addition help to understand the
structure of the target function. This makes them particularly attractive for
data mining tasks [WF00].

Figure 5.2 shows a simple example of a decision tree used by Russell and
Norvig in their AI textbook [RN95] to introduce decision trees. It predicts
whether a person (say R.) will wait for a table in a restaurant. The inner
nodes of decision trees are labeled with attribute tests, each of the leaving
edges is labeled with one of the possible outcomes of the test and each leaf

5.3 Tree-based Induction 83

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes

No Yes

YesNoYes

YesNo

WaitEstimate?

Figure 5.2: A simple decision tree

node with a value of the target concept.

Each path from the root node to a leaf node corresponds to a horn clause.
In the example, the rule that predicts whether R. will wait for a table in the
situation given by the feature vector (Alternate=No, Bar=Yes, Fri/Sat=Yes,
Hungry=No, Patrons=30-60, Price=cheap, Raining=No, Reservation=Yes,
Type=Burger, WaitEstimate=30-60) is

IF Patrons=Some AND WaitEstimate=30-60 AND
Alternate=No AND Reservation=Yes

THEN WillWait=Yes

Decision trees can represent arbitrary boolean functions, as every row in the
truth table can be represented by a path from the root node to a leaf node in
the decision tree. Unfortunately, such a representation is not always compact
as can be demonstrated for the parity function

parity(~x) =

{

1
∑

i xi is even

0 else

84 Plan Projection for Online Scheduling

To represent this function we need 2n−1 inner nodes and 2n leaf nodes,
because every row in the truth table has to be represented with a path
containing n attribute tests.

Standard decision trees are propositional in nature, as all attribute tests refer
to a single object and expressions of predicate calculus like

∀x, y[∃zP (x, z) ∧ P (z, y)⇒ G(x, y)]

therefore cannot be represented. However, extensions of decision tree learning
to first-order logic exist [BuR98].

From the fact that decision trees can represent any boolean function by stor-
ing the complete truth table of the function, it follows that a decision tree
learner should prefer simpler trees against more complex trees (if they have
the same prediction quality) to achieve a suitable generalization. As a com-
plete search in the space of all possible decision trees is not feasible (the prob-
lem of growing optimal decision trees is known to be NP-complete [HR76]),
decision tree learning is carried out by a general-to-specific hill-climbing
search in this space. Simple decision tree learners perform no backtracking
during this search. More advanced decision tree learning algorithms perform
post-pruning (see below) which can be regarded as a form of backtracking.

Although the aim of the search is to increase the prediction quality of the
tree, it is not a good strategy to select the tree that maximally reduces the
classification error in each iteration of the greedy search. As was shown
experimentally [BFOS84, Qui93a] it is a better strategy to select in each
iteration the tree that maximally reduces the impurity of the training data.

A descriptive statistics that measures the impurity of numeric attributes is
the variance. For nominal attributes y with possible values y1, ..., yk such an
impurity measure is the entropy:

entropy(S) = −
k

∑

i=1

p(yi)log2p(yi)

Here p(yi) is the proportion of examples with target value yi in S, that is
p(yi) = pi

n
where pi is the number of occurrences of yi in S and n is the

number of examples in S.

Together with the language bias of decision trees this search bias to greedily
reduce impurity within the training data constitutes the inductive bias of
decision tree learners.

5.3 Tree-based Induction 85

Algorithm 2 Generic Recursive Partitioning Algorithm

Require: A set of n data points T = {< ~xi, yi >}
if termination criterion is met then

create a leaf node l and assign value g(T) to it
else

find best splitting test s∗

create node t with split s∗

partition T into TL and TR according to s∗

apply the algorithm recursively to TL and TR

end if

Growing Decision Trees

Decision trees are built with recursive partitioning algorithms like the one
given in algorithm 2. This algorithm partitions the input space into regions
and assigns a class to each region.

The complexity of the decision tree built by such algorithms depends on five
decisions that have to be made.

Stopping Criterion When to stop the tree growing process.

Possible Splits What kind of attribute tests to consider.

Splitting Criterion How the best attribute test is chosen from a set of
candidate splits.

Possible Predictions What kind of predictions are used in the leaf nodes.

Prediction Function How the predictions for the leaf nodes are computed.

The choice of the stopping criterion is considered as not very critical when
using a suitable post-pruning method (see below). A possible stopping cri-
terion is that the number of examples p that are assigned to a certain leaf
node is less than a constant threshold value c. Often a threshold of c = 2 is
chosen. This results in huge decision trees which tend to overfit the training
data. An alternative stopping criterion is to limit the depth of the tree.

Which splits are considered for an attribute y depends on the type of the
attribute. If the attribute is categorical with the possible values y1, ..., yk

splits of the form y = yi are constructed. If the attribute is ordered, that
is discrete-valued with an order defined on the attribute values, splits of the
form y < yi are supported as well. For numeric attributes splits of the form

86 Plan Projection for Online Scheduling

y < θ are considered. This produces decision boundaries that are parallel to
the main axes. Other splits like multi-variate splits have been investigated
in the machine learning literature [MKSB93, BU95].

Breiman et. al. [BFOS84] suggest selecting the best split as follows. Let T be
a set of training samples and TL(s) and TR(s) be partitions of T according to
some split s. Let I(T) be some measure for the impurity of an example set T .
Then the split s∗ is considered best that maximizes the impurity reduction:

s∗ = arg max
s

[

I(T)− (
|TL(s)|
|T | I(TL(s)) +

|TR(s)|
|T | I(TR(s)))

]

(5.1)

where |T | is the number of examples in set T . As impurity measure they
suggest to use the Gini index [BFOS84]. Quinlan [Qui93a] suggests to use
the entropy (see above) as impurity measure for nominal attributes.

In standard decision trees, predictions are of the form y = yi where yi is
one of the possible values of y. It is simple to compute a confidence factor
that can be interpreted as the probability that a classification is correct. It
is just the proportion of examples in a leaf node that are correctly classified.
Instead of constant-valued predictions it is also possible to have predictions
of the form y = h(~x) where the function h could for example be represented
by a neural network. Quinlan [Qui93b] discusses how decision tree learning
can be combined with instance-based learning by using a distance-weighted
prediction.

In the simplest case, the function for computing the predictions is a majority
vote of the classifications of all the examples in the leaf node. In case of
non-constant predictions of the form y = f(~x), the prediction function is
itself a learning scheme like a neural network learner.

Post-pruning Decision Trees

A major problem when growing decision trees is to decide when to stop the
growing process. Stopping too late causes huge trees that tend to overfit the
training data and therefore achieve a poor generalization on the test data.
A stricter stopping criterion, e.g. to stop when no more split can be found
that significantly reduces the impurity, might prevent to find a combination
of splits that can significantly reduce impurity. To circumvent this problem,
Quinlan [Qui87] has suggested growing trees using a trivial stopping criterion
(e.g. until each leaf node only contains examples that belong to the same
class) and then do reduced-error post-pruning. For reduced-error pruning a
part of the data that can be used for training (e.g. a third of it) is split from

5.3 Tree-based Induction 87

Algorithm 3 Reduced-error post-pruning

Require: A set of n data points V = {< ~xi, yi >} independent of the set
used for growing the tree

Ensure: l is the root of a binary decision (sub)tree
if l is leaf node then

return
end if
Apply the algorithm recursively to the two sons of l, l′ and l′′

if l′ and l′′ are leaf nodes then
if the fusion of l′ and l′′ reduces the error on V then

l=fuse(l′,l′′)
end if

end if
return

the training data and stored as validation set. Then a tree is built using the
reduced training set, the growing set, and a trivial splitting criterion. The
validation set is then used for the post-pruning of the tree. Two leaf nodes
are fused again if the prediction error on the validation set is less with the
resulting smaller tree than it was with the bigger tree. Here, fusing means
that the data stored in each leaf node is merged and the prediction function
is applied to the merged data to generate a new prediction. This pruning
step is repeated until the prediction error on the validation set cannot be
further reduced. The pseudo code of the reduced-error pruning method is
given in Algorithm 3.

Breiman et.al. [BFOS84] consider another post-pruning mechanism, cost-
complexity pruning, which assigns a cost to each split and uses it to maximize
the utility of the tree which trades off the complexity of the tree for the
prediction error it produces. Quinlan and Rivest [QR89] describe a post-
pruning method based on the Minimum Description Length principle. The
latter two methods have the advantage that they do not need to withhold
data from the training set for the validation set.

An alternative to pruning the decision tree to avoid overfitting phenomena,
is to first derive rules from the tree and then prune the rules in the rule set by
removing preconditions until this does not further improve the quality of the
rule. One way to evaluate the quality of a rule is measuring the prediction
error for a separate validation set (reduced-error pruning). Quinlan [Qui93a]
describes a heuristic rule pruning method.

When translating a decision tree into a set of rules, the rules have the fol-

88 Plan Projection for Online Scheduling

lowing property: Every possible example is covered by exactly one rule. In
the rule pruning process this property is in general not maintained. A single
example can be covered by more than one rule or no rule. This has two
consequences: a default rule has to be introduced and the rules have to be
ordered and processed in that order. An advantage of rule pruning over tree
pruning is that the resulting rules are often much simpler and more intelli-
gible. A test relevant in one context (rule) but irrelevant in another context
(rule) can be removed from the first rule while being maintained in the other
rule. Because of the tree structure of decision trees this kind of pruning is
not possible for tree pruning.

5.3.2 Regression Trees

Regression trees [BFOS84] are similar to decision trees but predict a contin-
uous valued function rather than classify an object into discrete classes.

Regression trees are built with recursive partitioning algorithms like the one
given above, but the predictions, the prediction function, and the stopping
criterion differ. In the simplest case the prediction is of the form y = θ. For
learning a function f(~x) = y with f : R

n → R using univariate threshold
splits this results in a piecewise constant regression model where the input
space is partitioned into regions with boundaries parallel to the main axes
and where a constant value is assigned to each region. In this case the
constant prediction is computed as the average target value of the examples
in a leaf node, the prediction function is thus the mean function. The splitting
criterion is again impurity reduction where the impurity measure in this case
is the empirical variance.

Kramer [Kra96] introduces structural regression trees, a generalization of re-
gression trees where the inner nodes can contain first-order literals or their
conjunction. The algorithm requires a background theory to make the grow-
ing process feasible and to allow for non-determinate literals (literals that
introduce new variables that can be bound in several alternative ways).

5.3.3 Model Trees

When using a linear regression rather than the mean function as the predic-
tion function, the resulting trees are called model trees. This term can also
be applied to tree-based models with more complicated prediction functions
like a neural network learner, although this is seldom the case.

5.3 Tree-based Induction 89

Different methods have been proposed to grow and prune model trees. Kar-
lic [Kar92] proposes to use linear regression in the growing as well as in the
pruning process. For the growing process this means to use another impurity
measure I:

I(S) =
∑

i:si∈S

(yi − g(~xi))
2 (5.2)

where g(~xi) is the predicted value for the measurement vector ~xi according
to the regression plane and yi = ~xi is the observed value. The same impurity
measure is used during the post pruning process where ~xi and yi are taken
from the validation set

As this method is quite computationally demanding, Quinlan [Qui92] sug-
gests introducing the linear models only during the pruning stage while the
tree is grown using the mean target value as prediction function. This is
much more efficient as the linear model has only to be computed for each
leaf node and not for each candidate leaf node during the growing process.
However, this method is less consistent from a theoretical point of view as
the choice of the splits in the tree should depend on the prediction function
used.

Torgo [Tor99] has proposed a third alternative. A regression tree is grown
and pruned using the standard method described above. After both steps,
a model is fitted to the training data in the leaf nodes. This procedure of
course only makes sense if a variety of different models like linear models,
polynomial models or kernel models can be used. Using a validation set
or cross-validation, it can be experimentally determined for each leaf node
which model predicts the data best.

Figure 5.3 shows a simple model tree. To get an impression of the per-
formance of the above mentioned algorithms in comparison with standard
regression trees for ideal data, we have generated 4000 training and 2000
test examples from this model tree by randomly choosing the variables x,y
and z in the interval [0,100]. Table 5.1 summarizes the performance of the
following four learning algorithms on this data: (1) using linear predictions
for the growing as well as for the pruning process [Kar92], (2) using constant
predictions in the growing as well as the pruning process (using a standard
regression tree) [BFOS84], (3) using a constant prediction in the growing as
well as in the pruning process and replace it with a linear prediction after-
wards [Tor99], and (4) using a constant prediction in the growing process and
a linear prediction in the pruning process [Qui92]. We used a depth limit
stopping criterion with a maximal depth of three and allowed for regression
over all three input variables x, y and z

90 Plan Projection for Online Scheduling

X<50

Y<20 10X+200

3Y+20 Z<40

9Z−40 1X

falsetrue

falsetrue

falsetrue

Figure 5.3: A simple model tree.

1 2 3 4
absolute training error (s) 0.45 45.1 8.49 8.49
absolute test error (s) 0.67 46.8 9.49 9.49
quadratic training error (s2) 42.10 3563 425 425
quadratic test error (s2) 214 4082 663 663
learning time (s) 325 75 75 75
number of rules 5 6 6 5

Table 5.1: Performance comparison of the four different regression-/model
tree learning algorithms described in the text.

On the synthetic data, algorithm 1 gives by far the best predictions, but takes
more than four times as long as the other algorithms. Algorithm 2 results in
the weakest prediction, while algorithms 3 and 4 do not differ significantly
with respect to the prediction quality.

5.3.4 Implementation Details

For the experiments, we have implemented a generic tree learning algorithm.
The algorithm can be parameterized by different stopping criteria, splitting
criteria, prediction functions and post-pruning strategies. This design allows
to view decision-, regression- and model tree learning as different instances of
the same tree learning algorithm as suggested by Breiman et al. [BFOS84].

The package is implemented as C++ class library and contains classes for
the depth limit stopping criterion, the minimal support stopping criterion,

5.4 Learning Action Models 91

the impurity reduction splitting criterion, the error reduction splitting cri-
terion, the majority vote prediction function, the mean prediction function,
the single-variate linear regression prediction function, the multi-variate lin-
ear regression function, and reduced-error tree post-pruning.

Our implementation can generate lists of rules from a learned tree, prune
these rules and store them in a text file. The package also provides a rule
interpreter which can be used to load and process the rules, e.g. in order to
estimate execution costs of various navigation actions.

5.4 Learning Action Models

Projecting navigation plans involves the prediction of the cost, that is the
duration of navigation actions. This is straight forward for most actions.
The costs of a TurnTo command for example can be estimated by a linear
function of the angle the robot is to turn. More difficult, however, is the
prediction of the costs for an MDPgoto, an ApproachPoint, or a SetTarget

command. The time the robot needs to execute these tasks depends on the
distance to the target or goal point and the local surroundings of the robot.
In free space, for example, the robot will translate faster than in a narrow
passage.

The main challenge here is to efficiently compute a feature language which
is suited to compactly describe a navigation action and allows a learning
algorithm to predict the time it takes to execute the action with sufficient
accuracy. We address this problem by using the optimal path to the ac-
tion’s goal point together with a clearance map of the environment to derive
features that compactly describe the action.

The time the robot needs to arrive at the goal position (within some given
accuracy) has to be estimated based on previous experience with executing
this kind of task. As the time the robot needs to execute the navigation task
depends on the shape and length of the path to the goal state G, we use a
set of features derived from that path.

The set of features contains the path length, the path curvature, that is the
ratio of the Euclidian distance to the target and the path length, the initial
velocities of the robot, and the initial angle of the robot towards the path and
the target. In addition, we use features derived from the main axis clearance
map of the environment.

To compute the main axis clearance map for a grid map like the one shown

92 Plan Projection for Online Scheduling

a b

c d

Figure 5.4: An environment segmentation based on the main axis clearance
map. (a) The floor plan, (b) narrow passages, (c) passages, and (d) free
passages.

in Figure 5.4, we compute the clearance, that is the distance to the clos-
est obstacle, in the four main directions ’up’, ’left’, ’right’ and ’down’ for
each grid cell s in the map, which yields cu(s), cl(s), cr(s) and cd(s). The
four clearance values can be computed by a simple growing algorithm. The
clearances along the x-axis and the y-axis can be defined as follows.

cx(s) :=
cl(s) + cr(s)

2
and cy(s) :=

cu(s) + cd(s)

2

It is straight forward to use cx and cy to define a segmentation of the oper-
ation environment into walls, narrow passages, passages, and free passages.
Figure 5.4 visualizes this segmentation.

The environment segmentation can be used to compute additional fea-
tures suitable to describe a navigation action and to predict its dura-
tion. The three features narrowPassageCounter, passageCounter, and

5.5 Scheduling Navigation Tasks 93

feature explanation

pathLength length of the path in centimeters
pathCurvature quotient of path length and distance to target
angleToTarget angle to the target point
angleToPath angle to first point on the path
startTvel initial translational velocity
startRvel initial rotational velocity
counter number of grid cells on the path
narrowPassageCounter number of path cells in a narrow passage
passageCounter number of path cells in a passage
freePassageCounter number of path cells in a free passage
numberOfSegments number of segments on the path
narrowPassageSegments number of narrow passage segments
passageSegments number of passage segments
freePassageSegments number of free passage segments

Table 5.2: Feature language used for the plan projection.

freePassageCounter count the number of grid cells on the path that lie
in narrow passages, passages, and free passages, respectively. The features
narrowPassageSegments, passageSegments, and freePassageSegments

count the number of narrow passage segments, passage segments, and free
passage segments along the path. Table 5.2 summarizes the features used in
the experiments.

5.5 Scheduling Navigation Tasks

This section introduces the projection-based scheduling system Pbs used in
Appeal. Pbs schedules asynchronously arriving user requests for naviga-
tion tasks in order to maximize a given reward function taking deadlines,
expected execution time, and task priorities into account. Pbs performs a
heuristic search in the space of all possible task orderings to find the sched-
ule that maximizes the robot’s expected reward where the expected reward
is computed based on its projection.

Scheduling navigation tasks is the problem of deciding on an order in which
user-specified navigation tasks are to be carried out in order to maximize the
expected robot performance. The robot performance might depend on many
factors like missed deadlines, task priorities and expected execution times.

94 Plan Projection for Online Scheduling

Many interesting mobile robot applications require the robot to schedule its
navigation tasks. For example, in a long-run experiment in the Deutsches
Museum in Bonn where the mobile robot Rhino had to give museum tours,
users could specify exhibits they wanted the robot to explain next. This
could be done both via a web interface as well as via the on-board touch
screen. In this scenario, the robot had to decide in which order the exhibits
are visited taking into account (a) that no user should have to wait too long,
(b) that the requests of users physically present in the museum should have
higher priority than those of web users, and (c) that the time needed for one
task is not constant, but varies significantly with respect to where the robot
starts to execute the task. Employing the mobile robot for office delivery
tasks poses similar problems.

In this section, we introduce the scheduling system Pbs, which is specially
designed for the scheduling of navigation tasks and addresses this kind of
problems. The scheduler is based on the idea to express the above-mentioned
constraints as reward function and to search for the schedule that maximizes
the expected reward. In this decision-theoretic formalization of the problem,
the robot can trade-off different and possibly conflicting goals while taking
into account the uncertainty with respect to whether and to which degree
these goals are achieved.

Pbs schedules asynchronously arriving new navigation tasks as follows. The
system considers all possible insertions of the new task into the current sched-
ule. Each resulting schedule is projected to evaluate its expected utility and
the one with the highest expected utility is selected. This procedure is clearly
not optimal as for the scheduling of n navigation tasks only

∑n
i=1 i = n(n+1)

2

instead of n! schedules are considered. With the heuristic of inserting the
action with the most urgent deadline first, however, this results in a good
anytime behavior. This is important as the robot might be forced to com-
mit to the execution of some action before the search for the most promising
schedule has been completed. It is straightforward to make the search process
optimal. However, as we are more interested in the evaluation of different
projection methods and action models rather than different search heuristics,
we stick to the heuristic described before .

During the search, each schedule is projected to compute its expected utility.
The reward for the navigation task i executed in state s at time t is defined
as

r(s, t, i) = δs,t(i)R(i)− d(s, i) (5.3)

where δs,t(i) is 0 if the task deadline was missed and 1 otherwise, R(i) is the
reward for the successful execution of task i and d(s, i) is the time it takes

5.6 Experimental Results 95

the robot to execute the task.

The reward for executing schedule π = [π(1), ..., π(n)] in state s at time t is
given by

r(s, t, π) =

n
∑

i=1

r(si−1, ti−1, π(i)) (5.4)

Here, si is the state of the robot after executing π(i) in state si−1 with s0 = s
and ti = ti−1 + d(si−1, π(i)) with t0 = t.

For the projection, the expected duration E(d(s, i)) and the probability of a
missed deadline P (δs,t(i)) are used to estimate the expected reward.

E(r(s, t, i)) = P (δs,t(i))R(i)− E(d(s, i)) (5.5)

The prediction of d(s, i) is based on the ideas described in Section 5.4.

5.6 Experimental Results

In this section, we describe two types of experiments. In the first experiment,
we compare projection-based scheduling with first-in-first-out scheduling and
urgent-first scheduling. In the second experiment, we perform an experimen-
tal comparison of different projection methods in two scheduling domains.

Experiment 1

In the first experiment, projection-based scheduling is compared to two
other scheduling methods, first-in-first-out scheduling (FIFO scheduling) and
urgent-first scheduling. FIFO scheduling executes the tasks in the order they
arrived. In urgent-first scheduling, the task with the closest deadline is exe-
cuted first.

For predicting the duration d(s, i) of task i in state s we use a simple linear
prediction function learned from execution data.

duration = 0.044615 ∗ pathLength (5.6)

P (δs,t(i) = 0), the probability that the task deadline will be missed, can be
estimated based on the predicted duration of a navigation task i, E(d(s, i))
and the deadline of task i, D(i), as follows.

96 Plan Projection for Online Scheduling

Figure 5.5: The robot performance (accumulated reward) in the first scenario
with (a) projection-based scheduling (PB), (b) urgent-first scheduling (UF),
and (c) FIFO scheduling (FIFO).

P (δs,t(i) = 1) =

{

0 if t + E(d(s, i)) ≥ D(i)

1 else
(5.7)

The projection method is deliberately simple in this case. The purpose of
this first experiment is to show that even using these primitive projective
models, projection-based scheduling outperforms FIFO scheduling as well as
urgent-first scheduling. In the following experiments, we will introduce more
sophisticated projection methods.

Figure 5.5 shows the accumulated reward of a simulated B21 robot for a
sequence of 10 scheduling tasks applying the three scheduling algorithms
mentioned above. Each scheduling task consists of a sequence of 10 naviga-
tion tasks randomly drawn from a probability distribution. The distribution
governs

1. the time between the arrival of two successive queries,

2. the time available for one task (in the current experiment randomly

5.6 Experimental Results 97

Figure 5.6: The robot’s performance in the second scheduling scenario with
(a) projection-based scheduling (PB), (b) urgent-first scheduling (UF), and
(c) FIFO scheduling (FIFO).

drawn from the interval [300, 1000] with equal probability),

3. and the target coordinates of each task.

Projection-based scheduling dominates the other two scheduling methods.
It has an average reward of 380.7 in contrast to 172.0 and 228.2 for FIFO
scheduling and urgent-first scheduling. This corresponds to a performance
gain of 121% and 66%, respectively. The significance probability of both
pairwise comparisons is far below 0.001 and the performance improvement
therefore clearly statistically significant. Although urgent-first scheduling has
in average a higher average reward than FIFO scheduling in this scenario, the
improvement is not statistically significant with respect to strict standards.
The significance probability is 0.1242. The significance probabilities have
been computed with a randomized paired t test which is applicable in this
case as all three scheduling methods have been tested on the same sequence
of navigation tasks. Please refer to Appendix A for details on this test.

The second run, depicted in Figure 5.6, differs from the first run only in the
time available for one task. It is randomly drawn from the interval [150, 300]

98 Plan Projection for Online Scheduling

with equal probability. In this run, again projection-based scheduling domi-
nates both, FIFO scheduling and urgent-first scheduling, but FIFO schedul-
ing in this case performs also significantly better than urgent-first schedul-
ing. Projection-based scheduling has an average reward of -66.5 in contrast
to -424.3 for urgent-first and -310.3 for FIFO scheduling which means a per-
formance improvement by a factor of 6 and 4.5 respectively. The significance
probabilities are 0.001 and 0.002. The significance probability of the pairwise
comparison of FIFO scheduling and urgent-first scheduling is 0.005.

In both runs, the fact that projection-based scheduling outperforms the other
two scheduling methods is clearly statistically significant. In the first run,
it is in general not difficult for the robot to meet the deadlines. Instead,
the robot arranges tasks in a way that the traveling time is minimized. In
the second run, projection-based scheduling predicts that it cannot meet all
deadlines and explicitly reasons about which deadlines to miss in order to
maximize the probability that other deadlines can be met.

Experiment 2

In the second experiment, we perform an experimental comparison of dif-
ferent projection methods. We are especially interested in the performance
gain achieved by more expressive action models and by taking the uncer-
tainty of these models explicitly into account when projecting whether or
not a deadline will be missed.

In the previous experiment, the probability of a missed deadline was esti-
mated using Equation 5.7. If we assume that the prediction error is nor-
mally distributed around d(s, i) with a variance of σ(s, i)2, we compute the
probability of meeting the deadline D(i) of task i as follows.

P (δs,t(i) = 1) =

∫ D(i)

−∞

1
√

2πσ(s, i)2
e
− (x−d(s,i))2

2σ(s,i)2 dx (5.8)

Here, σ(s, i)2 is the mean squared training error of the learned model. For a
given schedule or schedule prefix π = [π(1), ..., π(n)], the error accumulates
like follows.

σ(s, π)2 =
n

∑

i=1

σ(si−1, π(i))2 (5.9)

In this equation, si is the state after executing π(i) in state si−1 with s0 = s.

Figure 5.7 gives an example of this computation. The deadline of the current
task is at 215, but the expected termination time is 230 with an (accumu-

5.6 Experimental Results 99

0

0.005

0.01

0.015

0.02

0.025

0.03

180 200 220 240 260 280deadline

Figure 5.7: Probability that the robot does not miss the deadline at 215.

lated) predicted mean squared error of 152. The area of the hatched region
is the probability that the deadline is met nevertheless.

Please note that using this model we get a non-zero probability not to miss
the deadline even for deadlines in the past. We could escape this problem
using the log-normal distribution.

f(x) =
1√

2πσ2x
e

−(log x−µ)2

2σ2 (5.10)

However, as this anomaly has negligible effect in practice, we stick to the
normal distribution.

To improve prediction accuracy, we consider multi-variate linear regression
rather than single-variate regression to predict the time the robot needs for
executing the task. Equation 5.11 shows the function learned from previously
collected execution data. Crossing a narrow passage is almost five times more
expensive than crossing a passage and even nine times more expensive than
navigating in free space.

100 Plan Projection for Online Scheduling

duration = 5.27 ∗ narrowPassageCounter+

1.11 ∗ passageCounter+

0.58 ∗ freePassageCounter

(5.11)

In the first run of this experiment, we compare the robot performance using
four different projection methods.

DPSVLR Deterministic projection based on single-variate linear regression,
the method used in the previous two experiments. The expected time
needed to execute the navigation task i in state s is estimated based on
Equation 5.6. The probability of a missed deadline is estimated based
on Equation 5.7.

PPSVLR Probabilistic projection based on single-variate linear regression.
The expected time needed to execute the navigation task i in state s is
estimated based on Equation 5.6. The probability of a missed deadline
is estimated using Equation 5.8.

DPMVLR Deterministic projection based on multi-variate linear regres-
sion. Equation 5.11 is used to estimate d(s, i). The probability of a
missed deadline is estimated based on Equation 5.7.

PPMVLR Probabilistic projection based on multi-variate linear regression.
Equation 5.11 is used to estimate d(s, i). The probability of a missed
deadline is estimated based on Equation 5.8.

For most scheduling scenarios, e.g. for the two scenarios described above, the
performance of the projection methods does not have a significant impact on
the robot performance. This is especially true if the task deadlines are in
general not critical. In this case, it is most important to minimize the overall
navigation distance in order to optimize the robot performance.

Only in case that there are many critical deadlines, and tasks vary signif-
icantly with respect to the reward the robot can gain by their successful
execution, it is important for the robot to precisely project the schedule exe-
cution. In this experiment, we therefore consider a scenario where the robot
has to schedule ten tasks and where the rewards for successfully executing a
task are randomly drawn from the interval [100, 1000] with equal probability.
As task deadlines are every 35 seconds, the robot is forced to ignore certain
tasks in order to be able to successfully execute more important tasks.

5.6 Experimental Results 101

A vs. B DPSVLR PPSVLR DPMVLR PPMVLR

DPSVLR - 0.9911 0.9701 0.9993
PPSVLR 0.0089 - 0.2652 0.8622
DPMVLR 0.0299 0.7348 - 0.9765
PPMVLR 0.0007 0.1378 0.0235 -

Table 5.3: Significance probabilities for the first run of Experiment 2.
The significance probabilities are computed using the randomized one-tailed
paired t test as described in Appendix A. For computing the differences
the performance of algorithm B (col) is subtracted from the performance of
algorithm A (row).

Figure 5.8 and Figure 5.9 show the reward for a sequence of 20 naviga-
tion tasks with the four scheduling methods. A statistical analysis of the
data reveals that (a) PPSVLR performs significantly better than DPSVLR,
(b) DPMVLR performs significantly better than DPSVLR, and (c) PPMVLR
performs significantly better than DPMVLR with respect to a significance
level of 0.05. However, (d) PPMVLR does not perform significantly better
than PPSVLR with respect to the same significance level. Table 5.3 summa-
rizes the significance probabilities of these pairwise comparisons which were
again performed using a randomized paired t test.

This first run demonstrates that there are scheduling scenarios where the
projection methods used have a significant impact on the robot performance.
It suggests that more precise prediction functions as well as probabilistic
plan projection help to improve robot performance. The careful analysis of
the experiment data, however, also seems to suggest that switching from
deterministic to probabilistic plan projection in this case is more useful than
improving the prediction accuracy.

Till now we have limited our comparison to linear models to demonstrate the
utility of the task features narrowPassageSegments, passageSegments, and
freePassageSegments in combination with a multi-variate linear regression.
In the rest of this chapter, we compare linear models to model trees.

Table 5.4 summarizes the prediction accuracies of different model trees de-
pending on the complexity of the tree and the depth limit used during learn-
ing. Training and test errors are computed for sets of 486 and 209 exam-
ples. The comparison shows that the use of a multi-variate linear regression
prediction functions as opposed to single-variate linear regression prediction
functions improves the prediction accuracy considerably.

102 Plan Projection for Online Scheduling

Figure 5.8: Performance comparison between (a) DPSVLR and PPSVLR
(top) and (b) DPSVLR and DPMVLR (bottom).

5.6 Experimental Results 103

Figure 5.9: Performance comparison between (c) DPMVLR and PPMVLR
(top) and (d) PPSVLR and PPMVLR (bottom).

104 Plan Projection for Online Scheduling

single-variate linear prediction function
depth mean absolute error mean squared error # of
limit training test training test rules

0 10.9199 12.0282 191.011 235.475 1
1 8.58043 9.53059 136.336 173.414 2
2 8.25315 9.2648 122.276 150.979 4
3 8.11783 9.09834 116.276 152.228 5
4 8.11783 9.09834 116.276 152.228 5

multi-variate linear prediction function
depth mean absolute error mean squared error # of
limit training test training test rules

0 6.75188 6.65504 77.1874 80.1471 1
1 6.16721 6.35078 67.6448 77.0089 2
2 5.73725 5.92305 62.2236 70.5484 4
3 5.49640 5.76475 58.5757 67.8078 6
4 5.49640 5.76475 58.5757 67.8078 6

Table 5.4: Prediction accuracy of the model tree learner with single-variate
linear regression prediction function (top) and multi-variate linear regression
prediction function (bottom). The mean absolute training error, the mean
absolute test error, the mean squared training error, the mean squared test
error, and the number of rules depending on the depth limit used by the
depth-limit stopping criterion.

In a second run of the previously described experiment, we compare the per-
formance of four projection methods based on multi-variate linear regression
prediction (MVLR) and model trees with multi-variate linear predictions
(MVMT). Both models are applied in combination with deterministic and
probabilistic projection methods. In the following, the methods will be ab-
breviated as DPMVLR, PPMVLR, DPMVMT, and PPMVMT using the
same naming convention as before.

Table 5.5 shows the significance probabilities for the pairwise comparison of
the four projection methods. They are again computed using a randomized
paired t test. DPMVMT performs significantly better than DPMVLR, PP-
MVMT, however, is not significantly better than PPMVLR (with respect to
a significance level of 0.05). The performance gain achieved by using prob-
abilistic instead of deterministic projection is statistically significant again.
Like in the previous run, these results seem to suggest that switching from

5.7 Summary 105

A vs. B DPMVLR PPMVLR DPMVMT PPMVMT

DPMVLR - 0.9756 0.9705 0.9995
PPMVLR 0.0244 - 0.3306 0.8890
DPMVMT 0.0295 0.6694 - 0.9754
PPMVMT 0.0005 0.1110 0.0246 -

Table 5.5: Significance probabilities for the second run of Experiment 2.

deterministic to probabilistic projection is more useful than using a more
accurate prediction function.

Appendix B.1 shows the rules used by the MVMT projector. The robot has
learned to discriminate tasks where it has to cross one or no door from those
where it has to cross at least two doors (narrowPassageSegments < 1.5).
The path length is also an important feature as tasks where the robot has
to travel longer distances, generally involve longer portions of travel in the
hallway which tends to be faster.

5.7 Summary

One of the purposes of symbolic plans in hybrid robot control architectures
like Appeal is to increase the robot performance. The focus of this chapter
was to examine how plan projection can increase robot performance for the
online scheduling of navigation tasks.

We have presented an approach to plan projection which is based on learned
models of the robot behavior. We apply model tree learning, a generalization
of regression tree learning, to predict the time it takes the robot to execute
an action. To ease the learning task, we have developed an expressive fea-
ture language to compactly describe navigation tasks. It can be efficiently
computed using path planning algorithms and a segmentation of the robot
environment, which is based on main axis clearance maps.

The chapter introduces the projection-based scheduling system Pbs. Pbs

schedules asynchronously arriving user requests for navigation tasks in order
to maximize a given reward function taking deadlines, expected execution
time, and task priorities into account. Pbs performs a heuristic search in the
space of all possible task orderings to find the schedule that maximizes the
robot’s expected reward where the expected reward of a schedule is computed
based on its projection. It is a transformational planning system which starts

106 Plan Projection for Online Scheduling

to execute the current best plan immediately and transforms the plan as soon
as a new best plan has been determined. Using this technique, sophisticated
schedules can be computed without having to wait until the planning process
terminates.

In the experimental evaluation, projection-based scheduling was shown to
outperform FIFO and urgent-first scheduling by far in two different schedul-
ing scenarios. The scheduling domain is also well suited to investigate which
impact the accuracy of the prediction function has on the robot perfor-
mance. From the experiments performed, we conclude that model trees
are well suited for learning action models as they combine the benefits of
memory-based learning and general function approximation. Model trees in
combination with linear regression are ideally suited to predict the duration
of a navigation action based on a compact description of the shortest path
to the action’s target position.

Chapter 6

Plan Projection for Action
Selection

This chapter demonstrates the application of MDP planning
techniques for the selection of task expansions in the HTN plan-
ning framework introduced in Chapter 4. This requires an esti-
mate of the time the robot needs to execute an action in a given
situation. Like in the previous section, this function is learned
from execution data using model trees.

The generation of a navigation plan has to be fast as the robot
cannot move until it has computed a plan. In consequence, the
MDP planning should not be performed when selecting the next
expansion. We suggest to perform transformational planning in-
stead. The robot generates a default plan, which it can start to
execute immediately. While executing the plan, the robot reasons
about alternative courses of action that might result in a better
navigation performance and transforms the plan as soon as it has
found one.

The experiments demonstrate that MDP execution planning in
combination with transformational planning techniques is well
suited to improve mobile robot performance substantially and sig-
nificantly. In extensive simulation experiments, we show that the
MDP-based planning of plan transformations performs equally
well as a set of carefully designed hand-coded transformation
rules. Additional real world experiment shows that models ac-
quired from simulation runs can be used to control a physical
mobile robot.

108 Plan Projection for Action Selection

6.1 Introduction

In Chapter 4, we have introduced the HTN planning framework and argued
that it is well suited to represent choice points during the plan execution
process. The selection of the best operator expansion in a given situation,
however, might have a significant impact on the robot performance. This
chapter discusses how the action selection can be based on MDP planning.

The selection of the best operator expansion has to be fast as the robot cannot
move until it has computed a plan stub. We therefore suggest applying
transformational planning techniques to deal with this problem. The robot
generates a default plan by applying the default expansion to each operator.
This does not involve any reasoning and is therefore very efficient. While
starting to execute the plan, the robot can reason about alternative courses
of action that might result in a better navigation performance. The plan can
be transformed accordingly as soon as a better plan has been determined.

Plan transformation is achieved by replanning, that is, removing all operators
from the task tree up to the one that is to be expanded in a different way,
re-expanding this one in the desired way, and then applying the default
expansions to all other tasks until a new plan stub has been generated. Please
note, that the robot does not have to stop plan execution as the previously
selected behavior stays activated until a new behavior is selected. This is the
reason why we talk of plan transformations rather than replanning.

Besides exception handling and task sequencing, action selection is the third
important aspect of plan execution. In the previous chapter, we have demon-
strated the application of transformational planning to the online schedul-
ing of navigation tasks. It is based on the online projection of alternative
schedules. Besides the selection of the next navigation task to execute, the
selection of the next intermediate target point is an important choice point
in the plan execution process. We discuss how action selection can be for-
mally described as a Markov Decision Process. Action selection is thus the
second application of projective planning techniques to the problem of plan
execution discussed in this thesis.

Markov Decision Processes allow not only to reason about the costs of actions
but also about the expected successor state of the agent after executing an
action. We can therefore take the probability of an action failure explicitly
into account in this framework as was demonstrated in Chapter 2. However,
only very seldom do action failures on higher levels of abstraction occur in the
context of Appeal. In this chapter, we are therefore more concerned with
metric uncertainty rather than probabilistic uncertainty. This uncertainty

6.2 Related Work 109

has to be handled when learning the reward function. We show that model
trees are well suited for this learning task.

The experiments show that the MDP-based plan transformations improves
the robot performance significantly. Using the MDP-based transformational
execution planning, the robot performs equally well as with a set of care-
fully designed hand-coded transformation rules. We also investigate how the
robot’s maximal planning horizon limits the possible performance improve-
ment.

The remainder of this chapter is structured as follows. After discussing some
related work in the area of reinforcement learning and MDP planning in
Section 6.2, we formally describe the problem of selecting the best opera-
tor expansion as MDP. Section 6.3 shows how the plan execution problem
can be formalized as MDP. In Section 6.4 we discuss how an optimal util-
ity function can be computed for the continuous state MDP using a graph
structure of the state space. In Section 6.5, we describe both simulator and
real world experiments to evaluate plan execution based on MDP planning.
We conclude in Section 6.6.

6.2 Related Work

In this chapter we consider the plan execution problem as a Markov Deci-
sion Process (MDP). MDPs have been formally introduced in Chapter 2.
They provide a mathematical model of a situation in which an agent acts
in a stochastic environment in order to maximize its expected accumulated
reward. The effects of its actions might be uncertain, that is, the state of the
agent after executing the action might not be predictable with certainty. The
environment, however, is completely accessible to the agent and can thus be
determined with certainty. A solution of an MDP is a policy, a mapping
from states to actions. An optimal policy is a policy that maximizes the
agent’s expected accumulated future reward. Please refer to Chapter 2 for
further references on this topic.

Reinforcement learning is a framework for learning optimal policies for an
MDP. In contrast to unsupervised learning (e.g. clustering) and super-
vised learning (e.g. classification or regression), reinforcement learning is
self-supervised. It learns from feedback in the form of incidental reward.
Reinforcement learning solves the temporal credit assignment problem, the
problem of propagating a reward backwards over time, by either learning a
globally consistent utility function or by computing an action-value function.

110 Plan Projection for Action Selection

There are different well-known reinforcement learning algorithms like tem-
poral difference learning [Sut88] and Q-learning [WD92]. While temporal
difference learning (TD-learning) updates a utility function defined on the
state space, Q-learning directly operates on an action-value function Q that
assigns a value Q(s, a) to each state-action pair (s, a). For each experience
(s, a, s′, r) Q-learning performs the following update of the action-value func-
tion

Q(s, a)← Q(s, a) + α(r + max
a′

Q(s′, a′)−Q(s, a)) (6.1)

Here s′ is the observed new state of the agent and r is the reward the agent
received. α is the learning factor which should be decreased over time. Please
note that Q-learning does neither require an explicit model of the robot’s
actions nor an explicit representation of the reward function R. It can thus
be applied in completely unknown environments.

Another way to solve an MDP using learning techniques is to learn the
reward function and the action model from observation in a first step and
then compute the optimal policy using some dynamic programming algo-
rithm like value iteration [Bel57] or policy iteration [How60]. This kind
of algorithms is especially well suited when computation is considered to
be cheap and real-world experience costly. If the model acquisition phase
and the planning phase are interleaved, this kind of reinforcement learning
is called certainty equivalence [KLM96] or adaptive dynamic programming
(ADP) [RN95]. Kaelbling et al. also mention refinements of this idea like
Sutton’s Dyna architecture [Sut90], prioritized sweeping [MA93] and real-
time dynamic programming [BBS95]. We will refer to this class of algorithms
as model-based reinforcement learning algorithms as they all learn the ac-
tion model and the reward function in a learning step and then explore the
learned models in a planning step.

The action selection method based on MDP planning to be presented in
this chapter can be considered as some kind of model-based reinforcement
learning. It is well suited in our case as the same model can be applied
to different instances of the plan execution problem. The model can be
updated whenever new examples are available e.g. because the robot has
been transferred to a new environment.

For large or continuous state and/or action spaces, neither the utility func-
tion nor the action-value function can be stored explicitly, that is, in a table.
Function approximation algorithms have to be applied to store these func-
tions implicitly to solve the structural credit assignment problem, the prob-
lem of how to propagate the reward spatially across states so that similar
states cause the agent to take similar actions. Many different approaches have

6.2 Related Work 111

been considered to perform this kind of input generalization. Incremental
learning algorithms like neural network learning have for example been suc-
cessfully applied in combination with Q-learning. Kaelbling et al. [KLM96]
as well as Sutton and Barto [SB98] give a comprehensive overview of different
approaches to input generalization in reinforcement learning.

Rather than generalize the utility function or the state-action function, in
our approach we apply general action models to compute optimal policies
for special instances of the execution problem. Although the problem is
continuous in nature, for each instance of the problem only a small number of
states has to be considered and the utility function can thus be represented
explicitly in a graph structure. As the computation is relatively fast, the
optimal execution policy for each new instance can be computed on demand.

There are many applications of reinforcement learning to mobile robot nav-
igation problems [Lin93, Mat94, HP99]. Dorigo and Colombetti [DC94] dis-
cuss many practical aspects of mobile robot reinforcement learning. Among
other things, they take up the idea first introduced by Mahadevan and Con-
nell [MC92] to split tasks into their constituent tasks and learn policies for
each of them separately. In contrast to Mahadevan and Connell they also
consider the problem of how to combine the different policies.

For robot learning, it is considered as very costly to generate new expe-
rience. To mitigate this problem many different approaches like progress
estimators [Mat94] and the combination of planning and learning tech-
niques [Moo93] have been suggested. For the problem of plan execution the
path to the goal provides a very useful progress estimator. We will discuss
in more detail how path planning in the MDP framework simplifies learning
in our application.

With respect to the application domain of plan execution, the work of Moris-
set and Ghallab [MG02b, MG02a] is most similar to ours. They consider the
task of selecting between different ways to perform a navigation task in a
known environment. The modalities combine different algorithms for local-
ization, path planning, and local navigation. They propose to select between
these modalities using an optimal policy computed from an MDP. The state
space consists of all nodes of a topological map taking the precision and con-
fidence of the position estimate, the clutteredness of the local surroundings
of the robot and the last selected modality into account. To discretize the
state space, the continuous features in the above mentioned feature space are
discretized. Given the discrete state space and the small number of naviga-
tion modalities, the probabilistic action model as well as the reward function
can be estimated using the observed relative frequency of state transitions

112 Plan Projection for Action Selection

as well as the average time needed to execute a modality and there is thus
no function approximation involved. In our approach, we apply decision tree
and model tree learning in order to automatically discretize the state space.

6.3 Action Selection as an MDP

In Chapter 4, we have argued that HTNs support the optimization of naviga-
tion performance by opportunistic plan transformations and fast replanning.
However, the detection of opportunities for plan improvements is often dif-
ficult and the specification of a good detector requires much insight in the
robot’s operation. In Chapter 5, opportunities were detected by the com-
bination of heuristic search and the forward projection of the execution of
navigation plans. In this section, we will discuss how the detection of oppor-
tunities can be based on MDP planning which can be considered as another
form of projective planning.

We consider the problem of expanding an MDPgoto task into a sequence
of ApproachPoint tasks. To reduce the time the robot has to wait for the
computation of an executable task, the planner starts to compute a default
plan, which results from applying the default expansion to each pending task
in the task tree. While executing the first elementary task in the task tree,
the robot can reason about alternative expansions of tasks in the task tree.
During this time, the behavior launched by the default plan stays activated
until a new behavior is selected. As soon as an alternative task expansion
has been determined that promises to improve the robot performance, the
plan is transformed accordingly.

Plan transformations are based on some kind of prediction of the robot’s
future performance. In this chapter, we will use MDP planning to compute
the best action in the current situation. If this action deviates from the action
selected by default, it is replaced accordingly and a new plan is computed.

In our application, the selection of the best expansion of a pending MDPgoto

task is equivalent to the selection of the best next intermediate target point.
This selection has to consider the following trade-off: Often the choice of
target points that are more distant allows the reactive navigation system
to drive smoother trajectories. On the other hand, the target point should
be close enough so that it is reachable using the reactive approach point
behavior. Please note that the decision between short but difficult versus
easy but long paths is already done on initialization of the MDPgoto task.

For the selection of the best next way point, we have to compute the optimal

6.3 Action Selection as an MDP 113

sequence of way points. In the following we will formalize this problem as
an MDP. In order to do so, we have to specify the state space, the action
space, the probabilistic action model, and the reward function.

The State Space

The state space consists of all triples (x, y, θ) where (x, y) is the robot’s
position within a global coordinate system of the known environment and θ
is the robot’s orientation within this coordinate system.

The Action Space

The action space consists of all possible expansions of the MDPgoto task,
that is, ApproachPoint(x,y,d) where (x,y) is a point on the path that is 1
meter, 2 meters, or 4 meters ahead on the optimal path to the goal and d is
either 0.5 meters, 1 meter, or 2 meters, respectively. Our approach can be
generalized to more than three actions, of course, but depends on a finite set
of discrete actions.

The Action Model

After successful execution of a navigation task, we consider the robot to be
at the closest point P = (Px, Py) on the optimal path to the target posi-
tion (Tx, Ty) that is at most d centimeters away from the target, facing the
target. Here the approach distance d is a parameter of the ApproachPoint

task. Figure 6.1 visualizes the computation of the projected position P after
successfully executing the action.

We consider the optimal path from the robot’s current position to its goal
state as part of the specification of the MDP. It is computed using a grid
map of the environment and is thus given by a finite sequence of way points
p = [p0, p1, ..., pn]. In our case, the path itself is computed by solving an
MDP using value iteration. This, however, is not essential for the solution
of the path execution MDP.

In our experiments reported in Section 6.5, we use deterministic action mod-
els where we assume that the robot always successfully executes the task.
This is justified by the observation that an ApproachPoint command fails
only very rarely due to the advanced trajectory evaluation mechanism de-
scribed in Chapter 3 and the sophisticated failure recovery mechanism de-
scribed in Chapter 4. In the experiments, an unrecoverable failure occurred

114 Plan Projection for Action Selection

Figure 6.1: Projection of the position of a robot after successful completion
of a navigation task.

with a probability of less than 0.001. Due to this fact, it is not only unneces-
sary to predict the cases where a failure might happen, it is also impossible
without having an unrealistically large training set.

The basic idea to consider plan execution as an MDP, however, is not re-
stricted to deterministic action models as demonstrated in Chapter 2. The
experiment reported there was performed using the original Rhino control
software where failure events occur much more often. However, we discussed
the inherent difficulty to predict the new state of the robot after an execution
failure occurred.

In the experiment described in Section 2.5, we therefore content ourselves
with estimating the probability of an action failure and pessimistically as-
sume in case of an action failure that the robot is where it started to execute
the action. With this assumption, the problem of estimating the continu-
ous probability function of the robot’s new state is reduced to the problem of
predicting with what probability an action failure occurs in a given situation.
This, however, is a crude heuristic.

Because of the improvements over the original Rhino system described in
Chapter 3 and Chapter 4 this kind of probabilistic uncertainty is transformed
into metric uncertainty. This uncertainty has to be handled when learning
the reward function from data.

6.4 Computing the Optimal Utility Function 115

The Reward Function

The reward for executing an action a in state s equals the negative cost of
executing action a in state s, that is, R(s, a) = −C(s, a). Here C(s, a) is an
estimate for the time the robot needs to execute the action a in situation s.

The time the robot needs to execute an action a in state s has to be estimated
based on previous experience of executing this kind of task. As the time the
robot needs to execute the navigation task depends on the shape and length
of the path to the projected state P , we use a set of features derived from the
path. In fact, we use the same feature language as introduced in Chapter 5.

For the learning task we apply model tree learning, both using single-variate
and multi-variate linear regression prediction functions. As they cluster dif-
ferent situations according to the expected execution time of an action, model
trees are well suited to represent the metric uncertainty inherent in this learn-
ing task.

6.4 Computing the Optimal Utility Function

In the setting described above where we only have finitely many actions and
each action has only finitely many possible successor states, the MDP can
be represented in a graph structure. It is constructed using a queue. Initially
it contains only one state, the current state of the robot. It is said to have
depth of d as it can be reached from the current state with a sequence of d
actions. In each iteration a state s of depth d is removed from the queue.
A new state s′ of depth d + 1 is added to the queue if some action a exists
that results in state s′ with probability P (s′|s, a) > 0 and s′ is not a terminal
state. If the graph already contains a node for state s′, no new state has to
be added to the queue. State s′ is a terminal state if it is sufficiently close to
the robot’s goal state. The algorithm terminates if the queue is empty.

From the constructed graph an optimal utility function can be computed by
one of the standard algorithms like policy iteration or value iteration. In the
experiments reported below, we used value iteration. To check whether the
constructed state graph already contains a given state s′ slightly slows down
the construction of the graph structure, but speeds up value iteration con-
siderably. Please note that for the case of a deterministic action model there
are more efficient algorithms to compute an optimal policy, e.g. Dijkstra’s
algorithm.

The standard version of the value iteration algorithm uses an infinite plan-

116 Plan Projection for Action Selection

ning horizon. As replanning is performed continuously in our setting, it
might be appropriate to limit the planning horizon to speed up computa-
tion. Limiting the planning horizon can be done by limiting the number of
iterations performed in the value iteration process. This is not appropriate
in our application scenario, however, as this method might not even find a
policy leading to the goal state. In contrast, we already take the maximal
planning horizon into account when computing the state space graph. For
each state s of depth d all possible successor states are computed as described
above only if d ≤ h. If d > h the only successor state of state s is deter-
mined by the projected state after successfully executing the default action
ApproachPoint(2m). In the resulting state space graph, a policy is then
computed using full value iteration. Using this method a navigation policy
is computed that is guaranteed to lead to a goal state. In the experimental
section, we will analyze how the choice of the planning horizon influences the
robot performance.

6.5 Experimental Results

This section describes experiments carried out to evaluate the ideas developed
throughout this chapter. We experimentally compare hand-coded transfor-
mation rules to MDP-based plan transformation, both in simulation and in
a real world experiment. We compare the following action selection policies.

DEFAULT The robot always selects the default action for expansion, that
is, ApproachPoint(2m). In contrast to the other policies, no further
plan transformations are performed.

CODED The robot selects the next expansion according to five hand-coded
rules. The next best action is computed based on the minimal clearance
and the curvature of the path within some region around the robot.
These rules have been carefully designed and can be regarded as expert
knowledge.

MDP The robot computes the optimal utility function for the plan execu-
tion problem in the current situation. It selects the action with the
highest utility in the current situation.

MDP(k) The robot computes the optimal utility function for the plan ex-
ecution problem. The planning horizon in this case is limited to k.
Again the robot selects the current best action according to the utility
function.

6.5 Experimental Results 117

As described above, the MDP planning is based on a model of the exe-
cution costs of an action a in a situation s. This model is learned from
execution data. The necessary data is selected in an exploration phase. For
this purpose, expansions of the MDPgoto task are selected randomly and
their execution is monitored and logged into a database. From the logged
data, a compact description of the actions can be computed using the feature
language described in Section 5.4 which provides the training data for the
learning problem. The data collected during plan execution comprises for
each action start- and end state of the robot, the target state, whether the
action was successful and the duration of the action.

For security reasons, the data selection process necessary for learning the
model takes place in simulation. In this way, the robot cannot be damaged by
any obstacles not visible for its sensors or by a hardware failure. In addition,
in simulation, we can abstract away from all aspects of the control software
that are not relevant for the selection of the next action, e.g. problems with
the localization module. The real world experiment shows that the models
learned in simulation are still useful when transferred to the real robot.

6.5.1 Real World Experiment

This section describes an experiment carried out using a Pioneer II mo-
bile robot platform. The robot is to execute the sequence of four navigation
tasks shown in Figure 6.3. The above-mentioned transformation policies are
compared on basis of the average time the robot needs to complete the se-
quence of four navigation tasks. The tasks are chosen such that the behavior
of the robot in four different situations can be analyzed. Entering an office,
leaving an office, navigation in the hallway, and navigation from one office
to another.

To generate the data to learn the reward function for solving the plan ex-
ecution MDP, the robot repeatedly executes a sequence of 12 navigation
tasks in simulation by randomly selecting a possible reduction of the current
MDPgoto task. The tasks contain all possible ways to navigate from one
point of Figure 6.3 to another. They thus include the four tasks that have
to be carried out in the experiment.

For learning the reward function we apply model tree learning with (a) a
greedy error reduction splitting criterion, (b) a linear regression prediction
function, (c) a depth-limit stopping criterion, and (d) a reduced-error post-
pruning criterion.

118 Plan Projection for Action Selection

single-variate regression prediction
depth mean absolute error mean squared error # of
limit training test set training test set rules

0 15.2789 15.2837 430.923 441.406 1
1 7.52703 7.40560 237.199 230.478 2
2 5.63955 5.52984 170.183 161.316 4
3 5.12713 5.03262 158.559 152.942 7
4 4.80145 4.71544 155.346 149.964 10
5 4.79675 4.70188 154.681 147.922 12
6 4.76554 4.72379 153.643 147.416 17
7 4.76554 4.72379 153.643 147.416 17

multi-variate regression prediction
depth mean absolute error mean squared error # of
limit training test set training test set rules

0 6.65413 6.66462 201.443 201.396 1
1 5.74134 5.55187 162.434 141.487 2
2 5.21999 5.06955 152.820 141.992 4
3 4.78258 4.68903 145.947 138.958 8
4 4.72953 4.65368 144.469 139.642 11
5 4.63652 4.58086 143.199 137.894 14
6 4.60611 4.57695 142.628 138.854 17
7 4.57469 4.54026 141.232 137.747 24
8 4.56540 4.53918 141.175 137.765 27
9 4.56369 4.53271 141.152 137.720 27
10 4.56369 4.53271 141.152 137.720 27

Table 6.1: Prediction accuracy of the model tree learner with single-variate
(top) and multi-variate (bottom) linear regression as the prediction function
and a depth-limit stopping criterion. The absolute training error, the abso-
lute test error, the mean squared training error, the mean squared test error,
and the number of rules depending on the depth limit used for the learning.

6.5 Experimental Results 119

Figure 6.2: The Pioneer II platform

Table 6.1 summarizes the prediction accuracies depending on the parameter
of the depth-limit stopping criterion and the linear model used as prediction
function. Mean absolute and mean squared errors are computed for a training
set of 7072 examples and a test set of 3031 examples.

For the single-variate linear regression pathLength was used as the only re-
gression variable. In the case of multi-variate regression, the three attributes
narrowPassageSegments, passageSegments, and freePassageSegments

were used. As you can see from the tables, after a depth limit of 6 and 9,
respectively, no further increase of the prediction accuracy could be achieved.
Although the model tree with multi-variate prediction has a slightly better
prediction accuracy in the experiment, we used the rules derived from the
model tree with single-variate regression, because they are more comprehen-
sible. The rule below gives a flavor of the rules learned for this task.

IF pathCurvature < 1.05 AND
NOT crossesDoor AND
pathLength ≥ 110.0 AND
pathLength < 130.0

THEN duration = 1
23.99
∗ pathLength

120 Plan Projection for Action Selection

Figure 6.3: The four goal points for the real world experiments.

Appendix B.2 lists the 17 rules learned by the tree-based induction learner.
The robot learns to discriminate situations where the robot only navigates
in free space (passageSegments < 0.50 AND (narrowPassageSegments <
0.50), situations where the robot enters a narrow passage from a
free passage or leaves a narrow passage and enters a free passage
(passageSegments < 0.50) AND NOT (narrowPassageSegments < 0.50)
AND (freePassageSegments < 1.5) and situations where the robot crosses
a passage (passageSegments > 0.50) for all other situations. The learner
subdivides these classes of situations using tests on the path length and the
path curvature.

To asses the performance of the above-mentioned transformation policies, the
sequence is executed 10 times using each of the methods. The application
of MDP(1) results in a navigation performance of the Pioneer which is
41.88 % better than with DEFAULT and still 8.4 % better than with the
hand-coded transformation rules of CODED. Both performance improve-
ments are statistically significant with respect to a significance level of 0.05.
In this example, the performance of MDP and MDP(1) does not differ sig-
nificantly. The significance results are computed using a randomized paired
t test (please refer to Appendix A for details).

Figure 6.4 shows the target points expanded by the two policies in a typical
run. While the target points expanded by DEFAULT are equally spaced on

6.5 Experimental Results 121

Figure 6.4: Target points selected by DEFAULT (top) and MDP(1) (bot-
tom). Crosses indicate way points, circle size indicates travel speed.

the path, MDP(1) has learned to select a target further ahead on the path
while crossing the hallway. When crossing a narrow passage it selects target
points that are only 1 m ahead on the path.

The experiment shows that in the context of Appeal, MDP planning out-
performs the hand-coded execution policy which can be considered as kind
of expert knowledge. It also shows that the model learned from simulation
data can be transferred to a physical robot without problems. In this experi-
ment, however, there is no significant difference in the performance achieved
by MDP and MDP(1). This might be an artefact caused by the relatively
small number of tasks in the experiment. In the next experiment, which is
carried out in simulation, a larger number of tasks is examined to see whether
we find a significant difference in performance in this case.

6.5.2 Simulator Experiments

In the simulator experiment, the robot has to execute the sequence of naviga-
tion tasks depicted in Figure 6.5. Each sequence is executed five times using
the different policies. Besides comparing the average time the robot needs
to accomplish the sequence of navigation tasks, we compute the statistical
significance of an observed performance using a randomized paired t test.

We use a model learned from 7139 examples. In contrast to the first exper-
iment, we apply multi-variate linear regression as the prediction function.
From these examples, the robot learns a set of 11 rules to predict the time
it needs to complete an ApproachPoint task.

Figure 6.6 visualizes the time the robot needs to accomplish the sequence

122 Plan Projection for Action Selection

Figure 6.5: The twenty goal points used in the simulator experiment.

of navigation tasks using the different policies. As you can see, all planned
execution policies as well as CODED outperform DEFAULT. The graphic
also shows that a lookahead of more than one improves the performance
considerably in this experiment. In figures, CODED performs 15.30 %,
MDP(1) 2.22 %, MDP(3) 11.05 %, MDP(5) 10.22 % and MDP 12.70 %
better than default.

Table 6.2 shows the significance probabilities for the pairwise comparison of
the different methods, that is, the probabilities to obtain a mean pairwise
difference higher than the observed mean pairwise differences under the as-
sumption that algorithm A and algorithm B in fact perform equally well. The
probabilities have been computed using a randomized paired t test which is
discussed in some more detail in Appendix A. In contrast to the parametric
t test it does not rely on the assumptions that each sample is drawn from
a normal distribution and that the distributions have equal variance. We
thus follow Noreen’s advice [Nor89] to use it instead of the parametric t test
because that frees us from worrying about the above mentioned assumptions.

With respect to the well-established significance level of α=0.05 DEFAULT
is outperformed by CODED, MDP(3), MDP(5) and MDP. At this level,
the latter algorithms do not differ in performance. They all outperform
MDP(1), however, at a significance level of α=0.1. We conclude from these
observations that MDP-based plan transformation can improve the robot

6.6 Summary 123

Figure 6.6: The average time needed to execute the sequence of 20 navigation
tasks in the experiment computed from 5 passes.

performance significantly. A larger planning horizon significantly improves
the plan quality only to a certain level k, in this experiment k=3.

6.6 Summary

This chapter has introduced the application of MDP planning to select ex-
pansions in the HTN planning framework discussed in Chapter 4. The re-
ward function is learned using traces of previous plan executions. As MDP

planning is a time consuming task, we combine MDP planning with an idea
from transformational planning. Rather than performing the reasoning at
the time of plan generation, the robot starts to execute a default plan which
can be computed very efficiently. While executing the plan, the robot reasons
about alternative courses of action that might result in a better navigation
performance and transforms the plan as soon as it has found an alternative
plan with a better expected plan quality.

The ideas presented in this chapter expand the ideas presented in Chapter 2.
They broaden the ideas in at least two respects. First, by applying full value

124 Plan Projection for Action Selection

A vs. B DEF CODED MDP(1) MDP(3) MDP(5) MDP

DEF - 0.9998 0.6392 0.9917 0.9853 0.9963
CODED 0.0006 - 0.0068 0.0795 0.0378 0.2690
MDP(1) 0.3487 0.9909 - 0.9551 0.9012 0.9693
MDP(3) 0.0073 0.9193 0.0476 - 0.4189 0.6849
MDP(5) 0.0131 0.9618 0.0941 0.5840 - 0.6907
MDP 0.0031 0.7266 0.0313 0.3126 0.3009 -

Table 6.2: The significance probabilities for the pairwise comparison of the
different policies. The significance probabilities are computed using the ran-
domized one-tailed paired t test as described in Appendix A. For computing
the differences the performance of algorithm B (col) is subtracted from the
performance of algorithm A (row). The observed fact that corresponding
entries do not sum to 1 is an effect caused by the randomization.

iteration in a state space graph rather than a lookahead of one. Second, by
using model trees to learn the reward function rather than regression trees.

In contrast to this early experiment performed with the original Rhino con-
trol software, we apply deterministic action models. This is motivated by the
fact that in Appeal action failures on higher levels of abstraction occur only
very seldom so that it is hardly possible to acquire accurate predictions for
when these events occur. In principle, however, the same learning techniques
can be applied to acquire probabilistic action models.

As argued in Chapter 2, it is an inherently difficult problem to obtain good
predictions of the robot state in case of action failures even if failures can
be predicted with reasonable accuracy. The enhancements over the original
Rhino control software presented in Chapters 3 and 4 transform this kind of
probabilistic uncertainty into a metric uncertainty and therefore simplify the
learning task considerably. This was one of the major motivations for these
enhancements. Model trees are well suited to handle metric uncertainty.

The experiments demonstrate that MDP execution planning in combination
with transformational planning techniques is well suited to improve mobile
robot performance substantially and significantly. The real world experiment
shows that models acquired from simulation runs can be used to control a
physical mobile robot.

Chapter 7

Learning Action Selection
Rules

The generation of a navigation plan has to be fast as the robot
cannot move until it has computed a plan. In the previous chap-
ter, we have applied transformational planning techniques to deal
with this problem. The robot immediately starts to execute a
default plan, which can be computed very efficiently using de-
fault expansions. During execution, the robot projects alterna-
tive plans in order to detect opportunities for plan improvements.
As soon as a promising alternative plan has been detected, the
default plan is transformed accordingly.

In this chapter, we will explore a different approach to handle
this problem: to learn action selection rules from offline projec-
tions. In order to learn them, we apply the same projection tech-
niques as described before. In contrast to the transformational
planning approach, they are applied offline to randomly sampled
navigation tasks. The union of all the situation-action mappings
computed this way forms the input of a rule learning algorithm.
The learning algorithm generalizes from task-specific execution
policies to general situation-action mappings.

The learned action selection rules are not only fast to process,
but also well accessible for human inspection. Our experiments
show that the learned action selection rules perform slightly worse
than the projection-based plan transformation, although not sig-
nificantly. The transparency of the learned action selection rules,
however, probably outweighs the slightly worse performance.

126 Learning Action Selection Rules

7.1 Introduction

The experimental results of Chapter 6 have shown that the number of ac-
tions the robot looks ahead makes a difference only to some degree. For the
environment used in the experiments, this seems to be a look-ahead of three.
This result suggests that instead of performing expensive plan projections on-
line, action selection rules can be learned from offline plan projection. This
general idea is concretized in this chapter.

This generalization process can be regarded as speed-up learning. Experience
from a planning process is memorized to avoid repeated computation of the
same kind and to speed up the decision process in time critical situations.

In order to learn action selection rules from offline projection, we apply the
same projection mechanisms as introduced in the previous chapter. They
are applied to randomly sampled navigation tasks. The projection computes
the optimal action a for each tuple (x, y, θ, xG, yG) where (x, y, θ) denotes the
current pose of the robot and (xG, yG) denotes the goal of the robot. Each
pair ((x, y, θ, xG, yG), a) forms an input for the learning algorithm.

The training examples have to be given in a suitable feature language. Like
in the previous chapters, we compute the feature language from the shortest
path to the goal and the environment segmentation depicted in Figure 5.4.
In contrast to the regression task of learning the expected reward when exe-
cuting an action, the feature language has to be more expressive in this case.
We use the length and type of the k first segments of the optimal path to
the goal as additional features. In the experiments, we chose k=3. This is
justified by the observation that in the experiments reported in a previous
chapter a planning horizon of more than 3 did not result in a significant
further performance improvement.

For the learning task, we apply two different learning algorithms: Decision
tree learning which has been discussed in some detail in Chapter 5 and se-
quential covering. While decision tree learners partition the input space by
a divide-and-conquer algorithm, sequential covering algorithms in each step
separate a set of training examples from the set of all training examples
for which the class can be predicted perfectly or with sufficient accuracy by
a single rule. Therefore sequential covering algorithms are called separate-
and-conquer algorithms. We introduce a sequential covering algorithm which
computes a decision list, i.e. a list of rules that have to be processed in order.
In the experiments, sequential covering algorithms perform slightly better in
comparison with decision tree algorithms, but are less comprehensible. Sec-
tion 7.3 will introduce this kind of algorithms in more detail.

7.2 Related Work 127

Our experiments show that the learned action selection rules perform slightly
worse than the projection-based plan transformation, although not signif-
icantly. The transparency of the learned action selection rules, however,
probably outweighs the slightly worse performance as the action selection
rules help to understand the robot’s behavior.

The remainder of this chapter is structured as follows. After discussing some
related work in the areas of explanation-based learning in general and speed-
up learning in particular in Section 7.2, we introduce the class of sequential
covering algorithms in Section 7.3. In Section 7.4, we describe how sym-
bolic learning algorithms like decision tree learning and sequential covering
algorithms are applied to the task of learning general action selection rules.
A detailed experimental comparison of the action selection rules learned by
different methods is given in Section 7.5. We conclude in Section 7.6.

7.2 Related Work

In this chapter, we propose to learn general action selection policies from ex-
amples. Each example is composed of a compact description of a navigation
task as well as the action to be executed by the robot in the current situa-
tion. Although in terms of the learning techniques applied this is a classical
supervised learning task , it is also closely related to explanation-based learn-
ing (EBL). In the following, we will examine the relation between learning
explanations and explanation-based learning more closely and discuss related
work in this field.

EBL [MKKC86, Thr95, RN95, Mit97] is motivated by the attempt to speed
up an inference process by trying to learn from past experience. For first order
learning, this principle can be explained considering Prolog-Ebg [KCM87]
as an example. Prolog-Ebg works by proving first-order classifications
from first-order descriptions of the examples and some relational background
knowledge. From the proof tree a rule can be learned where the clause body
is formed from the predicates in the tree leafs and the clause head is formed
from the predicate in the root of the leaf. The rules learned in this way can
themselves be used in the proof process and thus help to speed up inference.

If B denotes the background knowledge, D denotes the first-order description
of the examples, C the description of the classifications, and H the learned
hypothesis, Prolog-Ebg satisfies the following entailment constraints:

(a) H ∧D |= C and (b) B ∧D |= H (7.1)

128 Learning Action Selection Rules

and thus the entailment constraint

B ∧D |= C (7.2)

In general, however, EBL algorithms only satisfy the two constraints

(a) H ∧D |= C and (b) B ∧D ∧ C |= H (7.3)

from which the same conclusion cannot be drawn. In this more general
formulation, the classifications contain information necessary to form the
hypothesis H. As you can see from constraint 7.3 (b), the learner does
not acquire any knowledge that would allow completely new inferences to
be performed, but knowledge of a new quality. The new quality is that the
knowledge helps to speed up the inference process and is more explicit. EBL

like the learning reported in this chapter is a knowledge compilation process.

There are mainly three manifestations of EBL.

1. learning of inference rules [MKKC86, KCM87]

2. learning of plan libraries [Sus77, Sus90, Ham89]

3. learning of search control knowledge [LRN86, VCP+95]

Ebg [MKKC86] and Prolog-Ebg [KCM87] are examples of algorithms for
the first class of problems. Mitchell et al. have also applied explanation-based
learning algorithms to learn stimulus-response rules [Mit90]. In the Theo

architecture, a set of stimulus-response rules is applied to control a robot
collecting cans in an office environment. Whenever there is no rule applicable
to the current situation, the robot uses a general purpose planning system to
compute a plan for this situation. Given the plan, a Prolog system is used
to explain the choice of action in the current situation. The generalization
of the computed explanation forms a new stimulus-response rule.

The learning in Theo and Appeal is closely related. Both systems are in-
tended to speed up action selection and make the action selection mechanisms
more explicit. In both systems, the planning and the generation of explana-
tions are two different processes. While in Theo this is a deductive inference
process, Appeal uses an inductive inference process. This approach differs
from ours in at least two important respects. First, the learning process in
Theo depends on hand-coded action models, both for the planning as well

7.2 Related Work 129

as the explanation process. Second, the planning system as well as the ex-
planation system of Theo are fairly limited in that they cannot deal with
uncertain action effects and actions with situation-dependent costs.

Action selection rules are the search control knowledge in the HTN planning
framework. They are, however, not intended to speed up the computation of
a correct plan, but to direct the search towards a plan with high quality, i.e.
with a high expected performance. As argued before, it is quite simple to
compute a working navigation plan, although much more difficult to compute
a plan with a high expected performance. As action selection rules help to
avoid costly online plan projections, they help to speed up the search for a
performant plan. In addition, these rules transform declarative knowledge in
a procedural form which is much simpler to understand.

Some of the learning algorithms applied in the Prodigy architec-
ture [VCP+95] have a very similar motivation. Veloso et al. consider learning
algorithms designed to extend a strips-like planner which combines forward
projection and backward chaining. They identify three types of learning tasks
in this context: 1.) reducing the planning time, 2.) improving the quality of
plans and 3.) refining the domain knowledge. Quality and Hamlet are
two learning algorithms intended to improve plan quality.

In the Quality algorithm, a user-supplied plan and a plan generated by the
current control rules are compared. The algorithm explains why the second
plan is better than the original one (if it actually is). The algorithm identifies
the choices that might have led to the better performance and makes them
operational in form of a control rule. As the rule is induced from a single
example the resulting rule tends to over-generalize. An incremental process
adds more specific rules to override the too general rule in case of plan failures.

The Hamlet algorithm produces a set of rules by explaining the differences
in quality and success of different plans in the space of all plans for some
simple planning problem. In contrast to Quality, Hamlet therefore does
not need any user guidance. The resulting rules again can be too general or
overly specific. They are refined or generalized when false positive or false
negative examples are encountered in new episodes. Hamlet thus acquires
increasingly correct control knowledge.

Both algorithms are incremental learning algorithms. The same is true for
Prolog-Ebg. The learning of action selection rules in Appeal is not incre-
mental. All action selection rules are generated at once. Although in general
this might be a disadvantage, we avoid the danger to add more and more
rules which at the end might even slow down the action selection process. In
addition, batch learning algorithms like decision tree learning and sequential

130 Learning Action Selection Rules

covering are less vulnerable to overfitting in the case of noisy data.

Laird et. al [LRN86] apply explanation-based learning techniques to improve
the general problem solving architecture Soar [LNR87]. Soar is based on a
forward chaining production system. Conflict resolution rules can be learned
to improve the problem solving behavior. The explanation-based learning in
Soar is intended as a cognitive model of human chunking, the association
of chunks (expressions or symbols) into a new, single chunk. It aims at
explaining a human’s ability to move from problematic to routine behavior.

The learning approach presented in this chapter is intended in improving
plan execution. While we are mainly interested to improve plan quality
in terms of the average robot performance, Bennett and DeJong [BD96]
are more interested in improving the robustness of a plan. They combine
classical explanation-based learning with an approach to make robot plans
more permissive. The technique, which they call permissive planning, ap-
plies knowledge-based diagnosis of execution failures. It is used to add and
refine preference constraints on the parameters of the operator schemes. In
the Grasper system they apply permissive planning to improve robot ma-
nipulation tasks.

7.3 Sequential Covering Algorithms

While decision tree learners partition the input space by a divide-and-conquer
algorithm, sequential covering algorithms in each step separate a set of train-
ing examples from the set of all training examples for which the class can
be predicted perfectly or with sufficient accuracy by a single rule. Therefore
sequential covering algorithms are called separate-and-conquer algorithms.
The Aq system [Mic93] and the Prism system [Cen87] are early implemen-
tations of this idea. The systems Cn2 [CN89] and Induct [GC95] generalize
the approach to noisy training data. Foil [Qui90] and Icl [uRuL95] are sys-
tems for learning first-order concepts from relational data using sequential
covering algorithms.

In classification tasks where one class is much more frequent than the other
classes, rule sets generated by sequential covering algorithms can be much
more compact than the ones generated by decision tree learning algorithms.

Suppose the boolean concept f : N
2 → B given by

f(x, y) =

{

false x > 2 ∧ x < 5 ∧ y > 2 ∧ y < 5

true else

7.3 Sequential Covering Algorithms 131

and the training set depicted in Figure 7.1.

1 + + + + + +
2 + + + + + +

3 + + - - + +
4 + + - - + +

5 + + + + + +
6 + + + + + +

1 2 3 4 5 6

Figure 7.1: Training data for the function f .

Using a decision tree learner the training set is partitioned as shown in Figure
7.2 (a) which results in 5 partitions and consequently in five rules. Using the
knowledge that true is the most frequent value of f , a sequential covering
algorithm generates two rules which correspond to the definition of f . Figure
7.2 (b) shows how the generated rules partition the training set. The example
shows that sequential covering algorithms are well suited to find and explain
deviations from expectations.

+ + + + + +

+ + + + + +
+ + - - + +

+ + - - + +
+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +
+ + - - + +

+ + - - + +
+ + + + + +

+ + + + + +

Figure 7.2: (a) The partitions of the input space generated by a decision tree
learning algorithm. (b) The partitions generated by a sequential covering
algorithm.

Algorithm 4 describes a basic sequential covering algorithm for learning de-
cision lists (lists of rules that have to be processed in order). The algorithm
is parameterized by two choices, the choice of the stopping criterion and the
choice of the cutting criterion.

132 Learning Action Selection Rules

Algorithm 4 Sequential covering decision list growing

Require: a set of data points E = {(~x, y)}
for all possible values yi of y do

while E contains instances of class yi do
create a rule R with an empty left hand side that predicts class yi

while the stopping criterion is not met do
select the best test t with respect to the selection criterion
add the test to the left hand side of R
remove the instances covered by R from E

end while
end while

end for

7.3.1 Stopping Criteria

For noise free training sets a good stopping criterion might be to stop if the
instances in the set of examples E ′ covered by the current rule all belong to
the same class, that is, the current rule is perfect. In the presence of noise,
however, it might happen that no more attribute-value tests exist that have
not been tested, although the rule is not perfect. An alternative criterion is
to stop when the coverage of the rule (the number of examples to which it
applies) falls below some threshold value θ.

7.3.2 Cutting Criteria

A simple but often used cutting criterion is to always select a test such that
the accuracy of the new rule is maximal. Here, the accuracy of a rule is
defined as p

n
where n is the number of examples covered by the rule and

p is the number of examples that are classified correctly, that is, support
the rule. This criterion, however, cannot discriminate between rules with
the same accuracy but different coverage. A criterion, which can do this
discrimination is the information gain criterion. It selects a test t such that
the information gain of test t

I(t) = p[log
p

n
− log

P

N
]

is maximal. Here P
N

is the accuracy of the rule before test t was added to
the preconditions and p

n
the accuracy of the rule after t was added.

A third alternative is to always select the cut that maximizes the quality of
the resulting rule. In the Induct system [GC95] the value of a rule r that

7.3 Sequential Covering Algorithms 133

predicts class c with accuracy p

n
is computed as 1 minus the probability that

a rule r′ predicting the same class, has the same coverage n and a support
p′ ≥ p is generated randomly. This probability can be computed based on
the hypergeometric probability distribution.

The main idea behind this probabilistic measure of rule quality is to define a
rule extensionally, that is, by the coverage and support of the rule for a given
set of examples. Assume a set of examples S of size N where P examples
are of class c. Given a rule r that covers n examples of S and classifies p of
these examples correctly, the probability to generate r by drawing n exam-
ples randomly from S (without replacement) is given by the hypergeometric
distribution

H(N, P, n, p) =

(

P

p

)(

N−P

n−p

)

(

N

n

) . (7.4)

The probability to draw a rule r′ with coverage n′ = n and support p′ ≥ p
by random sampling without replacement from S is therefore

M(r′) =

P
∑

p′=p

H(N, P, n, p′) =

P
∑

p′=p

(

P

p′

)(

N−P

n−p′

)

(

N

n

) (7.5)

The computation of H(N, P, n, p) is expensive. For large N , H(N, P, n, p)
can be approximated by the binomial distribution

B(N, P, n, p) =

(

n

p

) (

P

N

)p (

N − P

N

)(n−p)

. (7.6)

This distribution can be computed more efficiently than the hypergeo-
metric distribution which speeds up learning considerably. Witten and
Frank [WF00] describe how the computation can be further accelerated.

7.3.3 Incremental Post Pruning

An obvious problem for sequential covering algorithms is that they tend
to overfit the training data, especially when the stopping criterion requires
perfect prediction. The solution as in the case of decision trees is to do post-
pruning. The main difference here is that for decision trees, the pruning
can be done after the growing is completed. Although in principle this is
possible as well for sequential covering algorithms, when learning decision
lists (i.e. lists of rules that are to be processed in a given order) it makes
more sense to interleave the growing and the pruning process, which is known
as incremental pruning [FW94]. To interleave growing and pruning has the

134 Learning Action Selection Rules

Algorithm 5 Sequential covering decision list growing and pruning

Require: a set of data points E = {(~x, y)}
for all possible values yi of target y do

while E contains instances of class yi do
create a rule R with an empty left hand side that predicts class yi

while the stopping criterion is not met do
select the best test t with respect to the cutting criterion
add the test to the left hand side of R

end while
while the stopping criterion for pruning is not met do

select a test from R with respect to the pruning method
and remove it

end while
append rule R to the decision list
remove the instances covered by R from E

end while
end for

advantage that rules are immediately adjusted to the right level of generality
and the learning of subsequent clauses cannot be disturbed by the influence
of an overly specific first rule. Algorithm 5 describes how this is done.

One possible choice for the pruning method is reduced-error pruning. Before
starting the learning process, a validation set is split from the training set.
As already mentioned, for learning decision lists the growing and pruning
has to be interleaved. After a rule has been built, tests are removed from the
preconditions of the rule until the accuracy of the rule with respect to the
validation set cannot be further improved. The pruning starts from the last
test added and works backwards along the rule. Please note that this greedy
procedure will not necessarily select the best test to remove from the rule.
Using the probabilistic measure for rule quality for pruning results in an-
other pruning criterion. In our experiments, however, the pruning algorithm
performed slightly worse using this measure rather than rule accuracy.

Algorithm 5 generates a decision list. To classify a given example, the rules
in the decision list have to be processed in order. If the rule base is processed
this way, every possible example is classified by exactly one rule.

7.4 Learning Action Selection Rules 135

7.3.4 Speeding Up Learning

If Algorithm 5 is used to build the decision list, the quality of the generated
rules depends on the order in which the classes are processed. It is often
a good choice to process the rarest classes first, more common ones later.
Besides the accuracy of the learned rules, this improves the learning speed,
especially if deviations from a default prediction are infrequent.

It is often useful to stop building rules for one class before all instances of
this rule have been covered by some rule. In our implementation, we stop
growing rules for a class as soon as a rule has been found that predicts class
c but would perform better when predicting another class c′. In this case
we skip the learned rule and continue learning for the next class in the class
ordering. A more complicated criterion of when to stop learning rules for
one class is based on the MDL principle [Coh95b].

7.4 Learning Action Selection Rules

In the previous chapter, it has been described how the computation of optimal
plan execution policies can be understood as a Markov Decision Process. We
have demonstrated how optimal plan execution policies can be computed for
instances of the MDPgoto task. The computed policies map poses (x, y, θ)
(on the optimal path to the goal position) to the optimal action in this
situation which is an instantiation of an ApproachPoint task. The policy is
therefore specific to the problem instance which is given by the goal state.
In this section, we will describe how general action selection rules can be
computed from a set of problem specific situation-action mappings.

A general action selection policy is given by a mapping from general state
descriptions to instances of the ApproachPoint task where a general state
description is independent both of the robot’s current position and its goal
position. It is given by a vector of features computed from the path to
the goal. In the experiments, we have used the twelve features described in
Table 7.1.

The first six features are computed based on the environment segmentation
depicted in Figure 5.4 and the optimal path to the goal. They summarize
the class as well as the length of the first three passages on the path. The
feature numberOfPassages is defined as the number of different passages on
the path and gives some measure of how difficult the navigation task is.

136 Learning Action Selection Rules

feature description

firstPassage class of the first passage
secondPassage class of the second passage
thirdPassage class of the third passage
lengthOfFirstPassage length of the first passage
lengthOfSecondPassage length of the second passage
lengthOfThirdPassage length of the third passage
numberOfPassages number of passages on the path
straightLinePath distance the robot can translate forward

without having to leave the path
angleToGoal angle to the goal
angleToPath angle the robot has to turn to face the

first point on the path to the goal
pathLength length of the path
pathCurvature curvature of the path

Table 7.1: Features for a general state space description

The feature straightLinePath is defined as follows.

s =



















0 if ¬∃ 1 ≤ i ≤ n (∠(θ, R, Pi) < d)

|P0, Pi|p if ∃ 1 ≤ i ≤ n (∀ k ≤ i(∠(θ, R, Pk) < d) ∧
∠(θ, R, Pi+1) ≥ d)

|P0, Pn|p else

(7.7)

where P0, P1, .., Pn is the sequence of points on the optimal path to the goal
G = Pn, R = P0 is the current position of the robot, θ is the current orien-
tation of the robot, and ∠(θ, R, P) is the minimum distance between point
P and the line given by the robot position R and its orientation θ. |Pi, Pj|p
denotes the path distance between two points Pi and Pj on the path and

is defined as
∑k=j−1

k=i |Pk, Pk+1|. In the experiments, we used a threshold of
d = 50.0.

As the feature language is propositional, we have to decide on the maximal
number of segments that are to be considered. An alternative approach is to
characterize the path by a conjunction of logical predicates like

7.4 Learning Action Selection Rules 137

path(x) ∧ length(x, 1130) ∧ curvature(x, 1.2) ∧
pathSegment(x1, 1, x) ∧ isFreePassage(x1) ∧ length(x1, 450) ∧
pathSegment(x2, 2, x) ∧ isNarrowPassage(x2) ∧ length(x2, 70) ∧
...

Using this first-order language, it is possible to describe paths of arbitrary
length and complexity. To learn action selection rules from examples specified
in a relational feature language, ILP algorithms have to be applied. Blockeel
and deRaedt [BuR98] describe how to upgrade decision tree learning to first-
order theories, Kramer [Kra96] describes a first-order version of regression
tree learning. Foil [Qui90] and Icl [uRuL95] are examples of first-order
sequential covering algorithms.

As the experiments suggest, in our application the propositional language
introduced above suffices. To learn a general action selection policy, we pro-
ceed as follows. In each iteration a navigation task, which is given by a
start- and a goal state, is sampled randomly and the optimal policy for this
task is computed using the algorithm described above. From each policy
k state-action mappings are sampled and for each such mapping, the state
description is computed based on the optimal path to the goal. The result-
ing feature vector together with the recommended action is then added to
the training data. After collecting a sufficient number of examples in this
way, any propositional classification algorithm like decision tree learning or
sequential covering can be applied to the data to predict the best action in
a given situation.

For the learned action selection rules, the number of the rules as well as
the prediction quality of the rules depends on various factors. Besides the
number of examples used for training, the maximal lookahead in the planning
process as well as the maximal rule depth determine the performance of the
learning algorithms. The numbers given in Table 7.2 show this interrelation.
The first column lists the number of examples used for training and testing.
70 % of the examples form the training set and the remaining 30 % form the
test set. 30 % of the training examples are used for the pruning set, the rest
is used for the growing set.

Not surprisingly, the policies computed with a lookahead of one are easier
to learn which can be read from both training- and test error. Sequential
covering outperforms decision tree learning in all cases. The higher prediction
accuracy, however, is bought by a much longer time required for learning. In
addition, the sequential covering algorithm described in Section 7.3 generates

138 Learning Action Selection Rules

of planning maximal # of training test time
examples horizon depth rules error error (sec)

decision tree learning
2000 - 5 16 0.311 0.396 5
2000 1 5 9 0.222 0.219 5
2000 - 10 62 0.244 0.321 6
2000 1 10 64 0.157 0.184 6

10000 - 5 17 0.310 0.320 119
10000 1 5 15 0.198 0.209 118
10000 - 10 111 0.230 0.267 133
10000 1 10 59 0.165 0.178 136
50000 - 10 113 0.240 0.246 2055
50000 1 10 85 0.162 0.170 2188

sequential covering algorithm
2000 - 5 17 0.268 0.317 61
2000 1 5 10 0.210 0.229 46
2000 - 10 29 0.235 0.296 114
2000 1 10 26 0.134 0.209 142

10000 - 5 22 0.259 0.287 1733
10000 1 5 9 0.188 0.201 1239
10000 - 10 72 0.211 0.244 11167
10000 1 10 34 0.152 0.l69 2674
50000 - 10 166 0.178 0.193 262406
50000 1 10 58 0.137 0.141 104703

Table 7.2: Comparison of the two learning algorithms

7.5 Experimental Results 139

IF lengthOfFirstPassage ≥ 400.0 AND
firstPassage=freePassage

THEN expansion=approachPointFar

IF lengthOfFirstPassage < 200 AND
secondPassage=narrowPassage

THEN expansion=approachPointNear

IF TRUE
THEN expansion=approachPointMid

Table 7.3: Four hand-coded rules that specify opportunities for plan improve-
ments. The rules are arranged in a decision list, that is, have to be processed
in order until the first applicable rule is found.

a decision list, that is, rules have to be processed in a given order. The
resulting rule set is thus more difficult to understand.

Appendix B.3.1 and Appendix B.3.2 show sets of action selection rules
learned from 10000 examples. The examples were generated applying value
iteration with infinite planning horizon to the action selection MDP. In both
cases, a depth limit of 5 was used. In the experiments described below, we
use the rules learned from the data set containing 50000 examples using a
depth limit of 10.

7.5 Experimental Results

In this section, we experimentally compare the performance of the action
selection policies listed below. Each one is given by a set of action selection
rules. As the set of rules can be processed efficiently, they can be applied
already for plan generation and not only for plan transformation.

DEFAULT The robot always selects the default action for expansion, i.e.
ApproachPoint(2m).

CODED The robot selects the next expansion according to five hand-coded
rules. The next best action is computed based on the minimal clearance

140 Learning Action Selection Rules

and the curvature of the path within some region around the robot.
These rules have been carefully designed and can be regarded as expert
knowledge. The rules are the same rules used in the previous section.
Throughout this section, however, they are used for task expansion
rather than plan transformation.

NAIVE The robot selects the next expansion according to the three hand-
coded rules shown in Table 7.3. The rules are arranged in a decision
list, i.e. rules that have to be processed in order until the first rule
is found that is applicable. In contrast to CODED, the rules are
expressed in the feature language which is also used for the learning.
They constitute a first guess of how the robot’s performance might be
improved.

DT The action selection rules learned form a set of n independently sampled
plan execution problems. The best action is computed using MDP and
the rules are learned by decision tree learning.

DT(k) The action selection rules learned form a set of n independently
sampled plan execution problems. The best action is computed using
MDP(k) and the rules are learned by decision tree learning.

SC The action selection rules learned form a set of n independently sampled
plan execution problems. The best action is computed using MDP and
the rules are learned by sequential covering.

SC(k) The action selection rules learned form a set of n independently
sampled plan execution problems. The best action is computed us-
ing MDP(k) and the rules are learned by sequential covering.

To compare the above listed action selection policies, the robot has to execute
the sequence of 20 navigation tasks shown in Figure 6.5, each sequence five
times. We thus have the same conditions as in the experimental comparison
of the plan transformation policies in Chapter 6.

Figure 7.3 shows the average time needed by the robot for completing the se-
quence of 20 navigation tasks. Compared to DEFAULT, NAIVE performs
3.74 %, DT(1) 1.79 %, and SC(1) 3.82 % better. The performance gain
achieved when learning from the execution policies generated by full MDP

planning is considerably higher: 10.75 % with decision tree learning and even
12.56 % with sequential covering. However, the highest performance gain is
achieved when applying the hand coded rules of CODED. In this case the
performance can be improved by 16.75 %.

7.5 Experimental Results 141

Figure 7.3: Comparison of the hand-coded and the learned action selection
policies.

Table 7.4 shows the significance probabilities for the pairwise comparisons of
the action selection policies. With respect to a significance level of α=0.05,
DT, SC, and CODED outperform DEFAULT. The other action selec-
tion policies do not. With respect to the same significance level, SC, DT,
and CODED perform equally well. The same is true for the three policies
DT(1), SC(1), and NAIVE. SC and SC(1) perform better than DT and
DT(1) respectively, although not significantly.

Figure 7.4 compares the learned action selection policies with the MDP-
based transformation policies introduced in the previous chapter. The differ-
ences are not considerable and, as you can see from Table 7.5, not significant.

This observation can be interpreted as follows. Although the MDP-based
action selection is more accurate, this advantage is compensated by the fact
that the action selection rules can be processed much faster. In consequence,
they can be used for plan generation as well as for plan transformation.
Although the online plan projection results in a slightly better performance
compared to the learned action selection rules, the rules are more intelligible
and the behavior specification therefore more transparent. This advantage
might in general outweigh the slightly worse performance.

142 Learning Action Selection Rules

A vs. B DEF NAIVE CODED DT DT(1) SC SC(1)

DEF - 0.7603 0.9992 0.9676 0.6232 0.9816 0.7454
NAIVE 0.2422 - 0.9939 0.8952 0.3477 0.9532 0.5025
CODED 0.0007 0.0046 - 0.1059 0.0055 0.1923 0.0099
DT 0.0295 0.1052 0.8883 - 0.0580 0.6694 0.0924
DT(1) 0.3881 0.6516 0.9952 0.9430 - 0.9741 0.6460
SC 0.0188 0.0440 0.7992 0.3283 0.0271 - 0.0480
SC(1) 0.2538 0.4960 0.9910 0.9108 0.3562 0.9547 -

Table 7.4: The significance probabilities for the pairwise comparison of the
different policies. The significance probabilities are computed using a ran-
domized paired t-test as described in Appendix A. For computing the dif-
ferences, the performance of algorithm B (col) is subtracted from the perfor-
mance of algorithm A (row). The observed fact that corresponding entries
do not sum to 1 is an effect caused by the randomization.

A vs. B DT DT(1) SC SC(1) MDP MDP(1)

DT - 0.0582 0.6736 0.0894 0.7234 0.0666
DT(1) 0.9404 - 0.9726 0.6530 0.9868 0.6126
SC 0.3334 0.0247 - 0.0450 0.6018 0.0284
SC(1) 0.9068 0.3515 0.9578 - 0.9735 0.4826
MDP 0.2730 0.0121 0.3974 0.0229 - 0.0298
MDP(1) 0.9244 0.3843 0.9731 0.5176 0.9676 -

Table 7.5: The significance probabilities for the pairwise comparison of the
learned action selection policies and the transformation policies introduced in
Chapter 6. The significance probabilities are computed using a randomized
paired t-test as described in Appendix A. For computing the differences,
the performance of algorithm B (col) is subtracted from the performance of
algorithm A (row). The observed fact that corresponding entries do not sum
to 1 is an effect caused by the randomization.

7.6 Summary 143

Figure 7.4: Comparison of the action selection policies and the transforma-
tion policies.

7.6 Summary

The execution planning discussed in the previous chapter is computationally
demanding. This is the reason why we suggested using online planning of plan
execution policies only for plan transformation rather than plan generation.
In this chapter, we propose to learn action selection policies from offline
execution planning. The action selection policies consist of lists or sets of
rules and can be processed very efficiently. They are thus well suited to be
used for plan generation.

The rules are learned by randomly sampling navigation tasks and applying
the MDP-based execution planning introduced in the previous chapter to
compute an optimal plan execution policy for each of them. With a suitable
feature language, a learning algorithm generalizes from task specific execution
policies to general situation-action mappings. We propose to use symbolic
learning algorithms like decision tree learning and sequential covering algo-
rithms which produce symbolic rules well accessible for human inspection.

The experiments show that when using these learned action selection rules,
the robot performs almost as well as using online execution planning in

144 Learning Action Selection Rules

combination with plan transformations. The slightly worse performance is,
however, probably outweighed by the advantage of more transparent behav-
ior specifications. The rules learned with the sequential covering algorithm
perform slightly better than those produced by decision tree learning, al-
though this observation is not statistically significant with respect to the
well-established significance level of α = 0.05.

Due to the higher intelligibility, we suggest using action selection rules learned
from offline planning rather than transformational online execution planning.
However, this recommendation is restricted to the task of selecting interme-
diate target points. Other execution planning tasks – like the scheduling
of navigation tasks – are more complicated planning tasks. In this case,
comparably good execution policies cannot be specified as a set of rules.

Chapter 8

Conclusions

Throughout the thesis, we have addressed different aspects of the problem of
plan execution in the context of mobile robot control. This problem results
from the need to compose a mobile robot control system of reactive and de-
liberative components. Deliberative components tend to be slow and reason
about complex, abstract, and mainly static models of the world. They are re-
quired for the robot to deal with situations it was not explicitly programmed
for. Reactive components, on the other hand, are needed to guarantee a
safe and reliable operation even in the case of unexpected situations that
have not been foreseen by the deliberative system. Deliberative and reactive
components often form two separate layers of a mobile robot control system.
The problem of plan execution is the problem to arbitrate between these two
layers.

We have examined this problem considering the Rhino control system as
an example. The Rhino control system is well known for the consistent
application of probabilistic algorithms to both map learning and localiza-
tion. The high robustness of the system has been demonstrated in two early
tour-guide projects in the Deutsches Museum in Bonn and the Smithsonian
Institute in Washington D.C. Despite this fact, we could identify a large po-
tential for performance improvement by introducing an intermediate layer
to the Rhino control system that mediates between the reactive and the
deliberative layer. The resulting three-tiered architecture is called Appeal,
Architecture for Plan Projection, Execution And Learning.

Like in the original Rhino software, the reactive layer is composed of a single
module, which is mainly responsible for approaching local target points while
avoiding obstacles and taking the robot’s dynamic constraints explicitly into
account. We have proposed to enhance the Dynamic Window Approach to

146 Conclusions

collision avoidance by using heuristic functions that are computed using local
path planning. These heuristic functions are applied in order to guide the
search for the next motor control commands. Besides improving the robot’s
performance considerably, this enhancement makes the robot’s behavior more
reliable, which simplifies its prediction.

The deliberation layer consists of a single module as well. A user interface
allows a human user to specify navigation tasks with deadlines and priorities.
The deliberation layer may also contain a symbolic planner to compute a
partially ordered plan from any user specified goal. In the current system,
however, a symbolic planner is not required as all reasoning tasks necessary
for navigation planning can be performed by the execution planner which is
part of the execution layer.

The core of the execution layer is an HTN plan representation. It represents
the state of plan execution using Hierarchical Task Networks. The hierar-
chical representation of tasks and their potential refinements allow for an
explicit representation of choice points in the plan execution process. The
HTN representation allows for the efficient computation of default plans,
the handling of execution failures on the right level of abstraction, and the
reasoning about alternative courses of action.

The reasoning is based on learned models of the robot’s possible actions.
To compute an expressive feature language suitable to predict the execu-
tion costs of the navigation actions with sufficient accuracy, we use a feature
language computed from an optimal path to the goal or target point of the
robot together with its segmentation, which is based on a clearance map of
the environment. The execution costs for this kind of actions depend on the
path length and shape. To learn them, we apply model tree learning, which
combines the advantages of memory-based learning and general function ap-
proximation. The learned models can be expressed in the form of symbolic
rules and are thus well intelligible for human inspection.

The learned models are applied in two different reasoning tasks. First, the
sequencing of a partially ordered set of tasks. Second, the selection between
different possible expansions of a given task. The sequencing is demonstrated
for the example of scheduling a set of user-specified navigation tasks that all
have a deadline and some utility value. The action selection is demonstrated
for the problem of selecting an intermediate target point when navigating
along a computed path to the goal.

For the scheduling we have suggested a heuristic search in the space of all
possible schedules. The schedules are evaluated based on a forward pro-
jection. Plan projection is a powerful tool for execution planning as it can

147

take different factors that influence the robot’s performance into account, i.e.
missed deadlines, execution costs, and task priorities.

The action selection problem can be considered as a Markov Decision Prob-
lem. The problem of selecting the next intermediate target point in Appeal

has been considered as a deterministic problem, as complete failures on this
level of abstraction are very rare. On lower levels of the task decomposition
hierarchy, however, it might be more appropriate to consider uncertain action
effects and to model the possibility of execution failures.

For mobile robot navigation, it is extremely important that planning and
plan execution is interleaved. In both cases, this is achieved using transfor-
mational planning techniques. The scheduling is limited to tasks that have
not already been started and is therefore straightforward. For the action se-
lection problem, a new plan has to be generated whenever a more promising
task expansion has been determined.

Extensive robot and simulator experiments have demonstrated that online
execution planning improves the mobile robot’s performance considerably.
The action selection, however, is not very transparent to human observers.
For simple planning problems, i.e. problems that require only limited looka-
head, action selection rules can be learned form offline planning. Our experi-
ments demonstrate that using these rules, the robot performs almost equally
well for the task of selecting intermediate target points as with using online
planning. Similar results, however, cannot be expected for the sequencing
task as this task in general requires a full lookahead.

The application of online and offline plan projection in the Appeal archi-
tecture proved to improve the performance of the mobile robot Rhino con-
siderably. This is remarkable as Rhino can be regarded as a state-of-the
art mobile robot control system, which has been proven performant and re-
liable in two long-term experiments. However, we expect the techniques to
be useful in other domains as well. These domains comprise mobile robot
manipulation as well as action selection in robot soccer.

The first central idea of this thesis is to represent the state of plan execu-
tion explicitly using Hierarchical Task Networks. This representation allows
to handle execution failures on the right level of abstraction by failing up-
wards and forms the basis for planning, reasoning, and learning in Appeal.
Planning takes the form of transformational planning, which is based on the
possibility to generate working default plans fast and to improve them by
plan transformations during execution.

We have demonstrated the application of plan transformations for two tasks:

148 Conclusions

The selection of the best expansion for a given task and the computation of
the optimal order for a set of partially ordered tasks, i.e. task sequencing
and action selection. In both cases, plan transformations are selected on the
basis of learned models of execution costs where the models are acquired from
execution traces logged during plan execution. For the task of mobile robot
navigation, it is central to predict the robot performance for actions that
are intended to change the robot’s position or pose. This has been achieved
using a feature language based on a path planning process. These features in
combination with model tree learning provide an accurate prediction of the
robot performance.

This combination of planning and learning techniques can be regarded as a
self-supervised learning framework. It can be generalized to the task of learn-
ing action selection rules. We have demonstrated how a task-independent
action selection policy can be computed from a set of task-specific action
selection rules using inductive learning. This learning technique, however, is
applicable only to problems that require a limited lookahead like the prob-
lem of selecting intermediate target points. For this task, the robot performs
equally well using the learned action selection rules as with online execution
planning. The action selection policy, however, is much more intelligible for
human inspection.

In summary, the techniques presented throughout this thesis provide a gen-
eral framework for the problem of mobile robot plan execution. The ideas
have been implemented in Appeal and demonstrated to bear a large poten-
tial for performance improvement.

Appendix A

Statistical Testing

To compare the average performance of two systems e.g. two
control programs or learned models is often difficult if the sys-
tems show a high variance in their performance. This problem
is unavoidable in robotics and perhaps even more so in the field
of robot learning. With statistical significance tests the proba-
bility that a performance gain was observed by chance, that is,
although the system performance has not changed, can be esti-
mated. If this probability, the significance probability, is small,
say less than α, one can speak of a significant performance with
respect to the significance level of α. This means that the prob-
ability that the observed performance gain was not caused by
an improvement of the system but only measured by chance, is
sufficiently small.

This chapter recapitulates the basics of statistical testing. After
introducing a general method for hypothesis testing, methods for
testing hypotheses about the mean are introduced: the Z test,
the one-sample t test, the two-sample t test, the paired sample
t test. They all make critical assumptions about the underlying
population distribution, although they tend to be robust against
their violation.

An alternative approach is to use computer-intensive tests which
are based on resampling techniques. We discuss two such meth-
ods. The bootstrap two-sample t test and the randomization
paired-sample t test. These methods do not rely on the assump-
tions made by parametric tests and are therefore more robust.
They are also not limited to testing hypothesis about the mean,

150 Statistical Testing

but can be applied to testing hypothesis about any statistic.

A.1 Parametric Tests

Hypotheses testing is a procedure that consists of five steps.

1. Make an assumption about the population distribution.

2. Formulate a null hypothesis. For the comparison of two sample means
x̄1 and x̄2 this is for example the assumption that both means are equal:
H0 : x̄1 = x̄2.

3. Compute the test statistic and its distribution under the assumption
that the null hypothesis is true.

4. Compute the critical range of values given significance level α.

5. If the observed value of the test statistic lies within the critical range,
reject H0 and keep it otherwise.

The only difficult part of this procedure is estimating the sampling distri-
bution in step 3. In general, this is only possible when the assumptions
made in step 1 are sufficiently strong. For the comparison of means, the
sampling distribution is the t distribution which gives the t test its name.
Given the sampling distribution the critical range for a significance level α
can be computed from the α

2
-quantile and the (1 − α

2
)-quantile of the sam-

pling distribution in case of a two-tailed test or from the (1− α)-quantile of
the sampling distribution in case of a one-tailed test.

A.2 Testing Hypotheses about the Mean

For the comparison of the performance of two systems, we need algorithms for
testing hypotheses about the mean, median, mode or some other expectation
measure. However, only for hypotheses about the mean, a sampling distri-
bution can be computed analytically. Hypotheses about e.g. the median can
only be tested with so called computer-intensive procedures as described in
Section A.3.

This section describes four statistical tests for hypotheses about the mean:
the Z test, the one-sample t test, the two-sample t test and the paired-sample

A.2 Testing Hypotheses about the Mean 151

t test. It discusses in which test situation these tests can be applied and give
an algorithm for each of them.

A.2.1 Z Test

Applicability

1. To test the null hypothesis µ = µ0 for a sample x

2. if x is drawn from N(µ, σ2) and

3. σ2 is known.

Test Procedure

Let x̄ be the mean of sample x with sample size n.

Compute Z = x̄−µ0

σx̄
with σx̄ = σ√

n

Choose a significance level α, e.g. α = 0.05.

Let q1−α
2

be the (1− α
2
)-quantile of the N(0, 1) distribution and qα

2
be the α

2
-

quantile of the N(0, 1) distribution. Reject the null hypotheses H0 : µ = µ0

and confirm the hypothesis H1 : µ 6= µ0 with significance level α if Z ≤ qα
2

or Z ≥ q1−α
2
.

Let q1−α be the (1−α)-quantile of the Z distribution. Reject the null hypothe-
ses H0 : µ = µ0 and confirm the hypothesis H1 : µ > µ0 with significance
level α if Z ≥ q1−α.

Remarks

If the null hypothesis is true, Z is N(0, 1) distributed1. Due to the central
limit theorem the same is approximately true for large n (say n > 30). In this
case, σ can be approximated by the sample variance s of x. (1−α)100 percent
of the mass of the N(0, 1) distribution lie within the interval [qα

2
, q1−α

2
]. That

means in the case of the two-tailed test that if Z ≤ qα
2

or Z ≥ q1−α
2

the null
hypothesis is true with a probablilty of at most α. Only α100 percent of the
mass of the distribution lie in the interval [q1−α,∞]. Therefore in the case of
a one-tailed test, if Z ≥ q1−α the probability that the null hypothesis is true
is at most α and the null hypothesis can therefore be rejected.

1The N(0, 1) distribution is also called Z distribution which gives the Z test its name.
Another common name for this test is Gauß test.

152 Statistical Testing

A.2.2 One-sample t Test

Applicability

1. To test the null hypothesis H0 : µ = µ0

2. if the sample x is drawn from N(µ, σ2)

3. but the variance σ2 is not known.

Test Procedure

Let x̄ be the mean of sample x with sample size n and let s be the sample
standard deviation.

Compute t = x̄−µ

σx̄
with σx̄ = s√

n

Choose a significance level α, e.g. α = 0.05.

Let q1−α
2

be the (1− α
2
)-quantile of the t(n−1) distribution and qα

2
be the α

2
-

quantile of the t(n− 1) distribution. Reject the null hypotheses H0 : µ = µ0

and confirm the hypothesis H1 : µ 6= µ0 with significance level α if t ≤ qα
2

or
t ≥ q1−α

2
.

Let q1−α be the (1 − α)-quantile of the t(n − 1) distribution. Reject the
null hypotheses H0 : µ = µ0 and confirm the hypothesis H1 : µ > µ0 with
significance level α if t ≥ q1−α.

Remarks

The t test in contrast to the Z test is also applicable if the population variance
σ2 is not known. Instead of testing against the N(0, 1) distribution the t test
tests against the t(k) distribution. The t(k) distribution looks like the normal
distribution but has heavier tails than the normal distribution. More of the
mass of the distribution is in the tails and consequently it is harder to pass
the test. That the shape of the t(k) distribution depends on k where k = n−1
for the test, takes the uncertainty into account that results from small sample
sizes.

A.2 Testing Hypotheses about the Mean 153

A.2.3 Two-sample t Test

Applicability

1. To test the null hypothesis H0 : µ1 = µ2 about two samples x1 and x2

2. if the samples are drawn from N(µ1, σ
2
1) and N(µ2, σ

2
2) and

3. σ2 = σ2
1 = σ2

2 and

4. σ2 is not known.

Test Procedure

Let x̄1 and x̄2 be the means of the samples x1 and x2, let s1 and s2 be the
sample standard deviations and n1 and n2 their sample sizes.

Compute the pooled variance

σ̂2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(A.1)

and the standard deviation of the sampling distribution

σ̂x̂1−x̂2 =

√

σ̂2
p

(

1

n1
+

1

n2

)

(A.2)

Compute t = x̄1−x̄2

σ̂x̂1−x̂2

Choose a significance level α, e.g. α = 0.05.

Let q1−α
2

be the (1− α
2
)-quantile of the t(n1 + n2− 2) distribution and qα

2
be

the α
2
-quantile of the t(n1 + n2 − 2) distribution. Reject the null hypotheses

H0 : µ1 = µ2 and confirm the hypothesis H1 : µ1 6= µ2 with significance level
α if t ≤ qα

2
or t ≥ q1−α

2
.

Let q1−α be the (1−α)-quantile of the t(n1 +n2−2) distribution. Reject the
null hypotheses H0 : µ1 = µ2 and confirm the hypothesis H1 : µ1 > µ2 with
significance level α if t ≥ q1−α.

Remarks

In the case of a two-sample t test we do not know the standard deviation of
the underlying distributions. We can approximate it by the pooled variance
given by equation A.1. For a more detailed discussion of the two-sample
t test please refer to [Coh95a, pp.127-129].

154 Statistical Testing

A.2.4 Paired-Sample t Test

Applicability

1. To test the null hypothesis H0 : µ1j
= µ2j

∀j ∈ {1, ..., n}

2. given two samples x1 = (x11 , .., x1n
) and x2 = (x21 , ..., x2n

) of equal size

3. where each xij is drawn from N(µj, σ
2
j) and

4. σ2
1 = σ2

2 = ... = σ2
n = σ2.

Test Procedure

Compute x = (x1, ..., xn) where xi = x1i
− x2i

. Let x̄ be the sample mean
and s be the sample standard deviation. If the null hypothesis is true x can
be generated by sampling from an N(0, σ2) distribution. We can test this
hypothesis using a one-sample t test.

Compute t = x̄
σx̄

with σx̄ = s√
n

.

Choose a significance level α, e.g. α = 0.05.

Let q1−α
2

be the (1 − α
2
)-quantile of the t(n − 1) distribution and qα

2
be the

α
2
-quantile of the t(n−1) distribution. Reject the null hypotheses H0 : µ = 0

and confirm the hypothesis H1 : µ 6= 0 with significance level α if t ≤ qα
2

or
t ≥ q1−α

2
.

Let q1−α be the (1 − α)-quantile of the t(n − 1) distribution. Reject the
null hypotheses H0 : µ = 0 and confirm the hypothesis H1 : µ > 0 with
significance level α if t ≥ q1−α.

Remarks

The paired t test is easier to pass than the corresponding two-sample t test.
However, it should only be applied if the variance in the experiment has
been controlled carefully in the sense described above. Please note that the
variance is assumed to be equal for all pairs which in practice might be a
very strong assumption. For further details on the paired sample t test please
refer to [Coh95a, pp.129-130].

A.3 Computer-Intensive Statistical Methods 155

A.3 Computer-Intensive Statistical Methods

As outlined before, the classical approach to statistical testing is to derive
the sampling distribution for a statistic and then calculate the critical range
of the sample statistic from this distribution. This method has two major
drawbacks.

• For many interesting statistics like the trimmed mean or the interquar-
tile range the sampling distribution of the statistic cannot be derived
analytically.

• Parametric tests make non trivial assumptions about the distribution of
the population distribution. The family of t tests for example assumes
that the samples are drawn from a normal distribution and – in the
case of the two-sample t test – that both samples are drawn from
distributions with the same variance.

These problems can be avoided using computer-intensive sampling tech-
niques. For the purpose of this thesis, we are mainly concerned with the sec-
ond point. Please refer to Cohen [Coh95a] for an example of the application
of a computer-intensive test procedure to the comparison of censored means.
We describe the application of computer-intensive techniques to comparing
means using a bootstrap two-sample t test and a randomization version of a
paired t test.

A.3.1 Bootstrap Two-Sample t Test

Applicability

1. To test the null hypothesis H0 : x̄1 = x̄2 about two samples x1 and x2

2. if the two samples are representative for the underlying distributions.

Test Procedure

Algorithm 6 describes the test procedure. The algorithm computes an es-
timate of the probability that the difference of the two means is observed
under the assumption that the null hypothesis is true, i.e. the significance
probability.

156 Statistical Testing

Algorithm 6 Bootstrap Two-Sample t Test

Require: Two samples x1 and x2 with the size n1 and n2 respectively.
Be x̄1 and x̄2 be the sample means with x̄1 > x̄2 and be θ = x̄1 − x̄2.

Ensure: Returns an estimate of the probability that the difference θ is ob-
served although x1 and x2 are drawn from distributions with equal expec-
tation values
c = 0
Combine x1 and x2 in a single sample xp

for all i = 1 to k do
Draw a pseudosample x∗

1 of size n1 from xp by sampling with replacement
Draw a pseudosample x∗

2 of size n2 from xp by sampling with replacement
Compute θ∗ = x̄∗

1 − x̄∗
2

if θ∗ ≥ θ then
c=c+1

end if
end for
return c/k

Remarks

We call the method bootstrap two-sample t test as it tests the same type of
hypothesis as the t test, although it does not make use of the t distribution
to compute the critical range of the test statistic. Bootstrap methods do
not require to know the population distribution, but assume that the sample
is representative of the population. In contrast to randomization methods,
bootstrap methods sample with replacement.

The null hypothesis that both samples have the same mean is reflected by
the fact that both samples are combined into a new sample which is used to
draw pseudosamples of the same size as the original samples.

Bootstrap methods can also be applied to test hypothesis about any other
test statistic like the median, the interquartile range or a censored mean.
For those statistics no sampling distribution can be computed analytically.
Unlike the parametric t test, the bootstrap t test does not make any as-
sumptions about the underlying distributions and does not require the two
samples to have the same variance. Please refer to [ET93] and [Coh95a] for
a more detailed discussion of bootstrap methods.

A.3 Computer-Intensive Statistical Methods 157

Algorithm 7 Randomization Paired-Sample t Test

Require: Two paired samples x1 and x2 of equal size n.
Be xd = (xd1 , ..., xdn

) where xdi
= x1i

− x2i
. Be x̄d the mean difference.

Ensure: Returns an estimate of the probability that x̄d is observed although
x1 and x2 are generated by distributions with pairwise equal expected
values.
c = 0
Create an empty list x∗

d

for all i = 1 to k do
for all j = 1 to n do

Draw a random number p from the interval [0,1]
if p > 0.5 then

Add xdj to x∗
d

else
Add −xdj to x∗

d

end if
end for
Calculate x̄∗

d, the mean of the elements in xd

if x̄∗
d > x̄d then

c=c+1
end if

end for
return c/k

A.3.2 Randomization Paired-Sample t Test

Applicability

1. To test the null hypothesis H0 : µ1j
= µ2j

∀j ∈ {1, ..., n}

2. given two samples x1 = (x11 , .., x1n
) and x2 = (x21 , ..., x2n

) and

3. each xij is sampled from some distribution with expected value µij .

Test Procedure

Algorithm 7 describes the test procedure. Again the algorithm returns an
estimate of the significance probability and does not assume a significance
level as input.

158 Statistical Testing

Remarks

Like for the bootstrap method, the null hypothesis is reflected by the way
pseudosamples are generated. Under the null hypothesis that the two sam-
ples x1 and x2 are generated by the same probability distribution, randomly
changing the signs of the elements of xd should have no influence on the
expected value of x̄d as each element might be drawn with equal probability
in one sample or the other.

The main difference between bootstrap methods and randomization methods
is the way they draw pseudosamples. As the bootstrap methods draw with
replacement they have to assume that the samples are representative for
the underlying distribution. The randomization methods on the other hand
perform sampling without replacement. The algorithm described above for
example could equally well be implemented as follows. In each step draw a
pseudosample of size n from a sample x′ where x′ contains for each element
xdi

in xd both xdi
and −xdi

. Please refer to [Nor89] and [Coh95a] for a more
detailed discussion of statistical testing based on randomization.

Appendix B

Learned Rules

B.1 Plan Projection for Online Scheduling

IF pathLength < 1530.0 AND
narrowPassageSegments < 1.5 AND
pathLength < 890.0

THEN duration = 5.92*narrowPassageCounter +
1.22*passageCounter +
0.76*freePassageCounter

(55 examples)

IF pathLength < 1530.0 AND
narrowPassageSegments < 1.5 AND
NOT pathLength < 890.0

THEN duration = 6.27*narrowPassageCounter +
1.44*passageCounter +
0.59*freePassageCounter

(53 examples)

IF pathLength < 1530.0 AND
NOT narrowPassageSegments < 1.5

THEN duration = 4.29*narrowPassageCounter +
0.95*passageCounter +
0.74*freePassageCounter

(60 examples)

160 Learned Rules

IF NOT pathLength < 1530.0 AND
freePassageSegements < 3.5

THEN duration = 4.83*narrowPassageCounter +
1.0*passageCounter +
0.57*freePassageCounter

(70 examples)

IF NOT pathLength < 1530.0 AND
NOT freePassageSegements < 3.5 AND
pathLength < 2110.0

THEN duration = 3.42*narrowPassageCounter +
1.08*passageCounter +
0.85*freePassageCounter

(50 examples)
IF NOT pathLength < 1530.0 AND

NOT freePassageSegements < 3.5 AND
NOT pathLength < 2110.0

THEN duration = 4.83*narrowPassageCounter +
1.01*passageCounter +
0.62*freePassageCounter+0.0

(52 examples)

B.2 Plan Projection for Action Selection 161

B.2 Plan Projection for Action Selection

IF passageSegments < 0.5 AND
narrowPassageSegments < 0.5 AND
pathLength < 150.0

THEN duration = 0.058929 * pathLength
(1491 examples)

IF passageSegments < 0.5 AND
narrowPassageSegments < 0.5 AND
NOT pathLength < 150.0 AND
pathLength < 350.0 AND
pathCurvature < 1.05

THEN duration = 0.035200 * pathLength
(59 examples)

IF passageSegments < 0.5 AND
narrowPassageSegments < 0.5 AND
NOT pathLength < 150.0 AND
pathLength < 350.0 AND
NOT pathCurvature < 1.05 AND
pathLength < 270.0

THEN duration = 0.030952 * pathLength
(1115 examples)

IF passageSegments < 0.5 AND
narrowPassageSegments < 0.5 AND
NOT pathLength < 150.0 AND
pathLength < 350.0 AND
NOT pathCurvature < 1.05 AND
NOT pathLength < 270.0

THEN duration = 0.031452 * pathLength
(83 examples)

IF passageSegments < 0.5 AND
narrowPassageSegments < 0.5 AND
NOT pathLength < 150.0 AND
NOT pathLength < 350.0

THEN duration = 0.015116 * pathLength
(671 examples)

162 Learned Rules

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
freePassageSegments < 1.5 AND
pathCurvature < 1.55 AND
pathLength < 130.0

THEN duration = 0.109375 * pathLength
(224 examples)

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
freePassageSegments < 1.5 AND
pathCurvature < 1.55 AND
NOT pathLength < 130.0 AND
pathLength < 260.0

THEN duration = 0.041228 * pathLength
(154 examples)

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
freePassageSegments < 1.5 AND
pathCurvature < 1.55 AND
NOT pathLength < 130.0 AND
NOT pathLength < 260.0

THEN duration = 0.071622 * pathLength
(50 examples)

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
freePassageSegments < 1.5 AND
NOT pathCurvature < 1.55

THEN duration = 0.037061 * pathLength
(63 examples)

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
NOT freePassageSegments < 1.5 AND
pathLength < 510.0 AND
pathLength < 210.0

THEN duration = 0.076389 * pathLength
(214 examples)

B.2 Plan Projection for Action Selection 163

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
NOT freePassageSegments < 1.5 AND
pathLength < 510.0 AND
NOT pathLength < 210.0

THEN duration = 0.066111 * pathLength
(355 examples)

IF passageSegments < 0.5 AND
NOT narrowPassageSegments < 0.5 AND
NOT freePassageSegments < 1.5 AND
NOT pathLength < 510.0

THEN duration = 0.047044 * pathLength
(103 examples)

IF NOT passageSegments < 0.5 AND
pathCurvature < 1.55 AND
pathLength < 390.0 AND
pathCurvature < 1.25

THEN duration = 0.072222 * pathLength
(78 examples

IF NOT passageSegments < 0.5 AND
pathCurvature < 1.55 AND
pathLength < 390.0 AND
NOT pathCurvature < 1.25 AND
pathCurvature < 1.35

THEN duration = 0.051333 * pathLength
(62 examples

IF NOT passageSegments < 0.5 AND
pathCurvature < 1.55 AND
pathLength < 390.0 AND
NOT pathCurvature < 1.25 AND
NOT pathCurvature < 1.35

THEN duration = 0.060920 * pathLength
(54 examples)

164 Learned Rules

IF NOT passageSegments < 0.5 AND
pathCurvature < 1.55 AND
NOT pathLength < 390.0

THEN duration = 0.034884 * pathLength
(66 examples)

IF NOT passageSegments < 0.5 AND
NOT pathCurvature < 1.55

THEN duration = 0.180791 * pathLength
(108 examples)

B.3 Learning Action Selection Rules 165

B.3 Learning Action Selection Rules

Action selection rules learned from a set of 10000 examples with (a) decision
tree learning and (b) sequential covering. In both cases, we used a depth
limit of 5. The examples were generated from the action selection MDP by
value iteration with infinite planning horizon.

B.3.1 Using Decision Trees

IF (lengthOfFirstPassage < 375.00) AND
(firstPassage = narrowPassage) AND
(lengthOfSecondPassage < 375.00)

THEN expansion=approachNear

IF (lengthOfFirstPassage < 375.00) AND
(lengthOfSecondPassage < 525.00) AND
(firstPassage = narrowPassage) AND
NOT (lengthOfSecondPassage < 375.00)

THEN expansion=approachMid

IF (lengthOfFirstPassage < 375.00) AND
(lengthOfSecondPassage < 525.00) AND
NOT (firstPassage = narrowPassage) AND
(secondPassage = narrowPassage)

THEN expansion=approachNear

IF (lengthOfFirstPassage < 375.00) AND
(lengthOfSecondPassage < 525.00) AND
NOT (firstPassage = narrowPassage) AND
NOT (secondPassage = narrowPassage)

THEN expansion=approachMid

IF NOT (lengthOfSecondPassage < 525.00) AND
(lengthOfFirstPassage < 325.00)

THEN expansion=approachNear

166 Learned Rules

IF (lengthOfFirstPassage < 375.00) AND
NOT (lengthOfSecondPassage < 525.00) AND
NOT (lengthOfFirstPassage < 325.00) AND
(firstPassage = passage)

THEN expansion=approachMid

IF (lengthOfFirstPassage < 375.00) AND
NOT (lengthOfSecondPassage < 525.00) AND
NOT (lengthOfFirstPassage < 325.00) AND
NOT (firstPassage = passage)

THEN expansion=approachNear

IF NOT (lengthOfFirstPassage < 375.00) AND
(lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 375.00) AND
(lengthOfSecondPassage < 75.00) AND
(numberOfPassages < 4.50) AND

THEN expansion=approachNear

IF NOT (lengthOfFirstPassage < 375.00) AND
(lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 375.00) AND
(lengthOfSecondPassage < 75.00) AND
NOT (numberOfPassages < 4.50)

THEN expansion=approachFar

IF NOT (lengthOfFirstPassage < 375.00) AND
(lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 375.00) AND
NOT (lengthOfSecondPassage < 75.00) AND

THEN expansion=approachFar

IF NOT (lengthOfFirstPassage < 375.00) AND
(lengthOfFirstPassage < 600.00) AND
NOT (straightLineDistance < 375.00) AND
(firstPassage = passage)

THEN expansion=approachMid

B.3 Learning Action Selection Rules 167

IF NOT (lengthOfFirstPassage < 375.00) AND
(lengthOfFirstPassage < 600.00) AND
NOT (straightLineDistance < 375.00) AND
NOT (firstPassage = passage)

THEN expansion=approachFar

IF NOT (lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 600.00) AND
(lengthOfThirdPassage < 225.00)

THEN expansion=approachFar

IF NOT (lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 600.00) AND
(lengthOfThirdPassage < 375.00) AND
NOT (lengthOfThirdPassage < 225.00)

THEN expansion=approachMid

IF NOT (lengthOfFirstPassage < 600.00) AND
NOT (lengthOfThirdPassage < 375.00) AND
(straightLineDistance < 300.00)

THEN expansion=approachFar

IF NOT (lengthOfFirstPassage < 600.00) AND
(straightLineDistance < 600.00) AND
NOT (lengthOfThirdPassage < 375.00) AND
NOT (straightLineDistance < 300.00)

THEN expansion=approachNear

IF NOT (lengthOfFirstPassage < 600.00) AND
NOT (straightLineDistance < 600.00)

THEN expansion=approachFar

168 Learned Rules

B.3.2 Using Sequential Covering

IF (secondPassage = narrowPassage) AND
(lengthOfFirstPassage ≥ 375.00) AND
(lengthOfFirstPassage < 600.00)

THEN expansion=approachFar

IF (firstPassage = freePassage) AND
(lengthOfFirstPassage ≥ 775.00)

THEN expansion=approachFar

IF (secondPassage = undefined) AND
(lengthOfFirstPassage < 675.00) AND
(straightLineDistance ≥ 375.00)

THEN expansion=approachFar

IF (lengthOfFirstPassage ≥ 525.00) AND
(lengthOfSecondPassage < 75.00) AND
(straightLineDistance < 300.00)

THEN expansion=approachFar

IF (lengthOfFirstPassage ≥ 525.00) AND
(lengthOfThirdPassage < 225.00)

THEN expansion=approachFar

IF (lengthOfFirstPassage ≥ 375.00) AND
(lengthOfFirstPassage < 675.00) AND
(secondPassage = undefined) AND
(straightLineDistance < 325.00)

THEN expansion=approachFar

IF (lengthOfFirstPassage ≥ 375.00) AND
(lengthOfSecondPassage < 75.00) AND
(lengthOfFirstPassage < 625.00) AND
(secondPassage = narrowPassage)

THEN expansion=approachFar

IF (secondPassage = passage) AND
(lengthOfFirstPassage ≥ 75.00) AND
(lengthOfFirstPassage < 225.00)

THEN expansion=approachMid

B.3 Learning Action Selection Rules 169

IF (lengthOfSecondPassage < 225.00) AND
(lengthOfFirstPassage < 150.00) AND
(numberOfPassages ≥ 4.50) AND
(straightLineDistance ≥ 475.00)

THEN expansion=approachMid

IF (lengthOfSecondPassage < 300.00) AND
(straightLineDistance ≥ 175.00) AND
(straightLineDistance < 300.00) AND
(lengthOfFirstPassage ≥ 225.00) AND
(lengthOfSecondPassage ≥ 75.00)

THEN expansion=approachMid

IF (lengthOfSecondPassage < 300.00) AND
(lengthOfFirstPassage < 150.00) AND
(straightLineDistance < 375.00) AND
(straightLineDistance ≥ 300.00)

THEN expansion=approachMid

IF (firstPassage = passage) AND
(lengthOfThirdPassage < 75.00) AND
(straightLineDistance < 300.00) AND
(numberOfPassages < 6.00)

THEN expansion=approachMid

IF (straightLineDistance ≥ 175.00) AND
(firstPassage = passage) AND
(lengthOfFirstPassage < 75.00) AND
(lengthOfThirdPassage ≥ 225.00)

THEN expansion=approachMid

IF (firstPassage = passage) AND
(lengthOfThirdPassage < 75.00) AND
(pathCurvature < 2.10) AND
(pathCurvature ≥ 1.65)

THEN expansion=approachMid

IF (straightLineDistance ≥ 175.00) AND
(lengthOfSecondPassage < 75.00) AND
(lengthOfFirstPassage ≥ 225.00) AND
(straightLineDistance < 300.00) AND
(lengthOfThirdPassage ≥ 300.00)

THEN expansion=approachMid

170 Learned Rules

IF (straightLineDistance ≥ 175.00) AND
(firstPassage = passage) AND
(pathCurvature < 3.15) AND
(straightLineDistance < 525.00)

THEN expansion=approachMid

IF (lengthOfSecondPassage < 75.00) AND
(lengthOfFirstPassage ≥ 225.00) AND
(straightLineDistance < 300.00)

THEN expansion=approachMid

IF (straightLineDistance ≥ 450.00) AND
(lengthOfFirstPassage < 750.00) AND
(lengthOfFirstPassage ≥ 225.00)

THEN expansion=approachMid

IF (straightLineDistance ≥ 175.00) AND
(secondPassage = passage) AND
(straightLineDistance < 300.00) AND
(lengthOfFirstPassage < 25.00)

THEN expansion=approachMid

IF (straightLineDistance ≥ 175.00) AND
(secondPassage = passage) AND
(pathCurvature < 1.55) AND
(numberOfPassages < 7.50) AND
(lengthOfSecondPassage < 175.00)

THEN expansion=approachMid

IF (straightLineDistance ≥ 175.00) AND
(lengthOfSecondPassage < 625.00) AND
(lengthOfSecondPassage ≥ 375.00) AND
(straightLineDistance ≥ 375.00) AND
(firstPassage = narrowPassage)

THEN expansion=approachMid

IF TRUE
THEN expansion=approachNear

Bibliography

[AFH+98] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi
robot cooperation in the Martha project. IEEE Robotics and
Automation Magazine, 5(1):36–47, 1998.

[Ark98] R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge,
MA, 1998.

[BAB+00] M. Beetz, T. Arbuckle, T. Belker, A. B. Cremers, D. Hähnel,
and D. Schulz. Enabling autonomous robots to perform com-
plex tasks. Künstliche Intelligenz, 14(4):5–10, 2000.

[BAB+01] M. Beetz, T. Arbuckle, T. Belker, M. Bennewitz, W. Bur-
gard, A. B. Cremers, D. Fox, H. Grosskreutz, D. Hähnel, and
D. Schulz. Integrated plan-based control of autonomous service
robots. IEEE Intelligent Systems, 16(5):56–65, 2001.

[Bal02] N. Balac. ERA: Learning Planner Knowledge in Complex, Con-
tinuous and Noisy Environments. PhD thesis, Vanderbilt Uni-
versity, 2002.

[BB99] M. Beetz and T. Belker. Experience- and model-based trans-
formational learning of symbolic behavior specifications – pre-
limary report. Technical Report IAI-TR-99-3, University of
Bonn, 1999.

[BB00a] M. Beetz and T. Belker. Environment and task adaptation
for robotic agents. In Proceedings of the Fourteenth European
Conference on Artificial Intelligence, pages 648–652, 2000.

[BB00b] M. Beetz and T. Belker. Learning structured reactive naviga-
tion plans from executing MDP policies. In Proceedings of the
Second International Cognitive Robotics Workshop, pages 3–11,
2000.

172 BIBLIOGRAPHY

[BB00c] M. Beetz and T. Belker. XRFRMLearn - a system for learn-
ing structured reactive navigation plans. In Proceedings of
the Eighth International Symposium on Intelligent Robotic Sys-
tems, pages 61–73, 2000.

[BB01a] M. Beetz and T. Belker. Learning robot action plans for con-
trolling continuous, percept-driven behavior. In Proceedings of
the Sixth European Conference on Planning, 2001.

[BB01b] M. Beetz and T. Belker. Learning structured reactive naviga-
tion plans from executing MDP policies. In Proceedings of the
Fifth International Conference on Autonomous Agents, pages
19–20, 2001.

[BB01c] T. Belker and M. Beetz. Learning to execute navigation plans.
In KI-2001: Advances in Artificial Intelligence, pages 425–439,
2001.

[BBC+95] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann,
F. Schneider, J. Strikos, and S. Thrun. The mobile robot Rhino.
AI Magazine, 16(2):31–38, 1995.

[BBC02a] T. Belker, M. Beetz, and A. B. Cremers. Learning action models
for the improved execution of navigation plans. Robotics and
Autonomous Systems, 38(3-4):137–148, 2002.

[BBC02b] T. Belker, M. Beetz, and A. B. Cremers. Learning of plan
execution policies for indoor navigation. AI Communications,
15(1):3–16, 2002.

[BBFC98] M. Beetz, W. Burgard, D. Fox, and A. B. Cremers. Integrating
active localization into high-level control systems. Robotics and
Autonomous Systems, 23:205–220, 1998.

[BBG99] M. Beetz, M. Bennewitz, and H. Grosskreutz. Probabilistic,
prediction-based schedule debugging for autonomous robot of-
fice couriers. In Proceedings of the 23rd German Conference on
Artificial Intelligence, 1999.

[BBS95] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act
using real-time dynamic programming. Artificial Intelligence,
72(1):81–138, 1995.

BIBLIOGRAPHY 173

[BCF+98] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. The interactive museum
tour-guide robot. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, pages 11–18, 1998.

[BD96] S. Bennett and G. F. DeJong. Real-world robotics: Learning to
plan for robust execution. Machine Learning, 23(2-3):121–161,
1996.

[BDFC98] W. Burgard, A. Derr, D. Fox, and A. B. Cremers. Integrat-
ing global position estimation and position tracking for mobile
robots: the dynamic markov localization approach. In Pro-
ceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 730–735, 1998.

[BDH99] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1–94, 1999.

[Bee99] M. Beetz. Structured reactive controllers — a computational
model of everyday activity. In Proceedings of the Third In-
ternational Conference on Autonomous Agents, pages 228–235,
1999.

[Bee00] M. Beetz. Concurrent Reactive Plans: Anticipating and Fore-
stalling Execution Failures. LNAI 1772. Springer Publishers,
2000.

[Bee02] M. Beetz. Plan-Based Control of Robotic Agents: Improving the
Capabilities of Autonomous Robots. LNCS 2554. Springer Pub-
lishers, 2002. Habilitationsschrift, Dept. of Computer Science,
University of Bonn.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University
Press, Princeton, New Jersey, 1957.

[BFG+97] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and
M. Slack. Experiences with an architecture for intelligent, reac-
tive agents. Journal of Experimental and Theoretical Artificial
Intelligence, 9(2-3):237–256, 1997.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Inc., Belmont,
CA, 1984.

174 BIBLIOGRAPHY

[BFT97] W. Burgard, D. Fox, and S. Thrun. Active mobile robot lo-
calization. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1997.

[BHGP02] M. Beetz, J. Hertzberg, M. Ghallab, and M. Pollack. Preface.
In Advances in Plan-Based Control of Robotic Agents, 2002.

[BHH03] T. Belker, M. Hammel, and J. Hertzberg. Learning to optimize
mobile robot navigation based on HTN plans. In Proceedings
of the International Conference on Robotics and Automation,
pages 4136–4141, 2003.

[BHH04] T. Belker, M. Hammel, and J. Hertzberg. Plan projection under
the APPEAL robot control architecture. In Proceedings of the
Eigtth Conference on Intelligent Autonomous Systems, 2004. to
appear.

[Bis96] C. M. Bishop. Neural networks for pattern recognition. Oxford
University Press, Oxford, England, 1996.

[BK91] J. Borenstein and Y. Koren. The vector field histogram – fast
obstacle avoidance for mobile robots. IEEE Journal of Robotics
and Automation, 7(3):278–288, 1991.

[BK99] O. Brock and O. Khatib. High-speed navigation using the global
dynamic window approach. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pages 341–346,
1999.

[Bon91] R. P. Bonasso. Integrating reaction plans and layered com-
petences through synchronous control. In Proceedings of
the Twelfth International Conference on Artificial Intelligence,
pages 1225–1231, 1991.

[Bro86] R. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(2):14–23, 1986.

[Bro99] R. A. Brooks. Cambrian Intelligence. MIT Press, 1999.

[BS00] T. Belker and D. Schulz. Robot soccer - a second year practical
course on mobile robotics. In Proceedings of the First Work-
shop on Edutainment Robotic, 2000. http://www.edutainment-
robotics.com/Workshop-Papers/.

BIBLIOGRAPHY 175

[BU95] C. E. Brodley and P. E. Utgoff. Multivariate decision trees.
Machine Learning, 19(1):45–77, 1995.

[BuR98] H. Blockeel and L. De Raedt. Top-down induction of first order
logical decision trees. Artificial Intelligence, 101(1-2):285–297,
1998.

[Cen87] J. Cendrowska. PRISM: an algorithm for inducing mod-
ular rules. International Journal of Man-Machine Studies,
27(4):349–370, 1987.

[CKK96] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting
under uncertainty: Discrete bayesian models for mobile-robot
navigation. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 1996.

[CN89] P. Clark and T. Niblett. The CN2 algorithm. Machine Learning,
3(4):261–284, 1989.

[Coh95a] P. Cohen. Empirical Methods for Artificial Intelligence. MIT
Press, Cambridge, MA, 1995.

[Coh95b] W. W. Cohen. Fast effective rule induction. In Proceedings
of the Twelfth International Conference on Machine Learning,
pages 115–123, 1995.

[Con92] J. Connell. SSS: A hybrid architecture applied to robot naviga-
tion. In Proceedings IEEE International Conference on Robotics
and Automation, pages 2719–2724, 1992.

[DC94] M. Dorigo and M. Colombetti. Robot shaping: Developing
autonomous agents though learning. Artificial Intelligence,
71(2):321–370, 1994.

[Elf89] A. Elfes. Using occupancy grids for mobile robot perception
and navigation. IEEE Computer, 22(6):46–57, 1989.

[ET93] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap.
Chapman and Hall, New York, NY, 1993.

[FBDT99] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo
localization: Efficient position estimation for mobile robots. In
Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 343–349, Orlando, FL, 1999.

176 BIBLIOGRAPHY

[FBT97] D. Fox, W. Burgard, and S. Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics and Automation
Magazine, 4(1):23–33, 1997.

[FBT99] D. Fox, W. Burgard, and S. Thrun. Markov localization for
mobile robots in dynamic environments. Journal of Artificial
Intelligence Research, 11:391–427, 1999.

[FBTC98] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers. Position
estimation for mobile robots in dynamic environments. In Pro-
ceedings of the Fifteenth National Conference on Artificial In-
telligence, 1998.

[Fed93] C. Fedor. An interprocess communication system for build-
ing robotic architectures. programmer’s guide to version 10.xx.
Technical Report PA 15213, Carnegie Mellon University, 1993.

[Fir87] J. Firby. An investigation into reactive planning in complex
domains. In Proceedings of the Sixth National Conference on
Artificial Intelligence, pages 809–815, 1987.

[Fir89] J. Firby. Adaptive Execution in Complex Dynamic Worlds.
Technical report 672, Yale University, Department of Computer
Science, January 1989.

[Fir95] J. Firby. The RAP language manual. Animate Agent Project
Working Note AAP-6, University of Chicago, 1995.

[FKPS95] J. Firby, R. Kahn, P. Prokopowitz, and M. Swain. An archi-
tecture for vision and action. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pages
72–79, 1995.

[Fox98] D. Fox. Markov Localization: A Probabilistic Framework for
Mobile Robot Localization and Navigation. PhD thesis, Dept.
of Computer Science, University of Bonn, Germany, December
1998.

[FW94] J. Fürnkranz and G. Widmer. Incremental reduced error prun-
ing. In Proceedings of the Eleventh International Conference on
Machine Learning, pages 70–77, 1994.

BIBLIOGRAPHY 177

[Gat92] E. Gat. Integrating planning and reacting in a heteroge-
neous asynchronous architecture for controlling real-world mo-
bile robots. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 809–815, 1992.

[Gat97] E. Gat. ESL: A language for supporting robust plan execution
in embedded autonomous agents. In Proceedings of the IEEE
Aerospace Conference, 1997.

[Gat98] E. Gat. Three-layer architectures. In D. Kortenkamp,
P. Bonasso, and R. Murphy, editors, Artificial Intelligence and
Mobile Robots: Case studies of successful robot systems. MIT
Press, 1998.

[GC95] B. R. Gaines and P. Compton. Induction of ripple-down rules
applied to modeling large data bases. Journal of Intelligent
Information Systems, 5(3):211–228, 1995.

[GL87] M. P. Georgeff and A. L. Lansky. Reactive reasoning and plan-
ning. In Proceedings of the Sixth National Conference on Arti-
ficial Intelligence, pages 677–682, 1987.

[Hai98] K. Z. Haigh. Situation-Dependent Learning for Interleaved
Planning and Robot Execution. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburg, PA, 1998.

[Ham89] K. Hammond. Case-Based Planning. Academic Press, Inc.,
1989.

[Ham03] M. Hammel. Planbasierte Robotersteuerung mit HTNs. Mas-
ter’s thesis, Department of Applied Computer Science, Univer-
sity of Bonn, 2003.

[HBL98] D. Hähnel, W. Burgard, and G. Lakemeyer. GOLEX - bridging
the gap between logic (GOLOG) and a real robot. In Proceed-
ings of the 22nd German Conference on Artificial Intelligence,
1998.

[How60] R. A. Howard. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, Massachusetts, 1960.

[HP99] A. E. Howe and L. D. Pyeatt. Integrating POMDP and rein-
forcement learning for a two layer simulated robot architecture.
In Proceedings of the Third International Conference on Au-
tonomous Agents, pages 168–174, 1999.

178 BIBLIOGRAPHY

[HR76] L. Hyale and R. Rivest. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5:15–17,
1976.

[Jor98] M. Jordan, editor. Learning in Graphical Models. Kluwer
Acadamic Publishers, 1998.

[Kae87] L. P. Kaelbling. REX: A symbolic language for the design and
parallel implementation of embedded systems. In Proceedings of
AIAA Conference on Computers in Aerospace, pages 143–150,
1987.

[Kal60] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME - Journal of Basic
Engineering, 8:35–45, 1960.

[Kar92] A. Karalic. Employing linear regression in regression tree leaves.
In Proceedings of the Tenth European Conference of Artificial
Intelligence, pages 440–441, 1992.

[KB91] Y. Koren and J. Borenstein. Potential field methods and their
inherent limitations for mobile robot navigation. In Proceedings
of the IEEE International Conference on Robotics and Automa-
tion, pages 1398–1404, 1991.

[KBM98] D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors. Arti-
ficial Intelligence and Mobile Robots: Case studies of successful
robot systems. MIT Press, Cambridge, MA, 1998.

[KCM87] S. Kedar-Cabelli and T. McCarthy. Explanation-based gener-
alization as resolution threorem proving. In Proceedings of The
Fourth International Workshop on Machine Learning, pages
383–389, 1987.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99–134, 1998.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[Kon00] K. Konolige. A gradient method for realtime robot control. In
Proceedings of IEEE/RSJ Conference on Intelligent Robots and
Systems, 2000.

BIBLIOGRAPHY 179

[Kra96] S. Kramer. Structural regression trees. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages
812–819, 1996.

[KS96] S. Koenig and R. G. Simmons. Unsupervised learning of proba-
bilistic models for robot navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages
2301–2308, 1996.

[KS98] S. Koenig and R. G. Simmons. Xavier: A robot navigation
architecture based on partially observable markov decision pro-
cess models. In D. Kortenkamp, P. Bonasso, and R. Murphy,
editors, AI-based Mobile Robots: Case studies of successful robot
systems. MIT Press, 1998.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub-
lishers, 1991.

[LCK95] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learn-
ing policies for partially observable environments: Scaling up.
In Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 362–370, 1995.

[Lin93] L. J. Lin. Hierarchical learning of robot skills by reinforcement.
In Proceedings of the International Conference on Neural Net-
works, pages 181–186, 1993.

[LNR87] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An archi-
tecture for general intelligence. Artificial Intelligence, 33(1):1–
64, 1987.

[LRL+97] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl.
GOLOG: A logic programming language for dynamic domains.
Journal on Logic Programming, 31(1-3):59–84, 1997.

[LRN86] J. E. Laird, P. S. Rosenbloom, and A. Newell. Chunking in
SOAR: the anatomy of a general learning mechanism. Machine
Learning, 1(1):11–46, 1986.

[MA93] A. W. Moore and C. G. Atkeson. Prioritized sweeping – re-
inforcement learning with less data and less time. Machine
Learning, 13:103–130, 1993.

180 BIBLIOGRAPHY

[Mat94] M. J. Mataric. Reward functions for accelerated learning. In
Proceedings of the Eleventh International Conference on Ma-
chine Learning, pages 181–189, 1994.

[MC92] S. Mahadevan and J. Connell. Automatic programming of
behavior-based robots using reinforcement learning. Artificial
Intelligence, 55(2):311–365, 1992.

[McD92a] D. McDermott. Robot planning. AI Magazine, 13(2):55–79,
1992.

[McD92b] D. McDermott. Transformational planning of reactive behavior.
Research Report YALEU/DCS/RR-941, Yale University, 1992.

[McD94] D. McDermott. An algorithm for probabilistic, totally-ordered
temporal projection. Research Report YALEU/DCS/RR-1014,
Yale University, 1994.

[Mey90] A. Meystel. Knowldge based nested hierarchical control. Ad-
vances in Automation and Robotics, 2(2):63–152, 1990.

[MG02a] B. Morisset and M. Ghallab. Learning how to combine sensory-
motor modalities for a robust behavior. In Advances in Plan-
Based Control of Robotic Agents, pages 157–178, 2002.

[MG02b] B. Morisset and M. Ghallab. Synthesis of supervision policies
for robust sensory-motor behaviors. In Proceedings of the Sev-
enth International Conference on Intelligent Autonomous Sys-
tems, pages 236–243, 2002.

[MHC99] O. Madani, S. Hanks, and A. Condon. On the undecidability
of probabilistic planning and infinite-horizon partially observ-
able markov decision problems. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages 541–548,
1999.

[Mic93] R. S. Michalski. A theory and methodology of inductive learn-
ing. In R. S. Michalski, J. Carbonell, and T. Mitchell, editors,
Machine Learning: An Artificial Intelligence Approach, pages
83–134. Morgan Kaufmann, San Mateo, CA, 1993.

[Mit90] T. Mitchell. Becoming increasingly reactive. In Proceedings of
the Eighth National Conference on Artificial Intelligence, pages
1051–1058, 1990.

BIBLIOGRAPHY 181

[Mit97] T. Mitchell. Machine Learning. Mc Graw-Hill, New York, 1997.

[MKKC86] T. Mitchell, R. Kellar, and S. Keddar-Cabelli. Explanation
based learning: A unifying view. Machine Learning, 1(1):47–
80, 1986.

[MKSB93] S. Murphy, S. Kasif, S. Salzberg, and R. Beigel. OC1: Random-
ized induction of oblique decision trees. In Proceedings of the
Eleventh National Conference on Artificial Intelligence, pages
322–327, 1993.

[Moo93] A. Moore. The parti-game algorithm for variable resolution re-
inforcement learning in multidimensional state spaces. In Ad-
vances in Neural Information Processings Systems, pages 711–
718, 1993.

[Mor89] H. P. Moravec. Sensor fusion in certainty grids for mobile
robots. AI Magazine, 9(2):61–74, 1989.

[Mur00] R. Murphy. Introduction to AI Robotics. MIT Press, 2000.

[NCLMA99] D. S. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. Shop: Sim-
ple hierarchical ordered planner. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, pages
968–973, 1999.

[Nil84] N. J. Nilsson. Shakey the robot. Technical Report 323, SRI
International, Menlo Park, California, 1984.

[Nor89] E. W. Noreen. Computer-intensive Methods for Testing Hy-
potheses: An Introduction. John Wiley & Sons, New York, NY,
1989.

[Nou98] I. Nourbakhah. Dervish: An office-navigating robot. In D. Ko-
rtenkamp, P. Bonasso, and R. Murphy, editors, AI-based Mobile
Robots: Case studies of successful robot systems. MIT Press,
1998.

[NPB95] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: an office-
navigating robot. AI Magazine, 16(2):53–60, 1995.

[PT87] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of
markov chain decision processes. Mathematics of Operations
Research, 12(3):441–450, 1987.

182 BIBLIOGRAPHY

[QR89] J. R. Quinlan and R. Rivest. Inferring decision trees using the
minimum description length principle. Information and Com-
putation, 80(3):227–248, 1989.

[Qui87] J. R. Quinlan. Rule induction with statistical data – a com-
parison with multiple regression. Journal of the Operational
Research Society, 38:347–352, 1987.

[Qui90] J. R. Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5(3):239–266, 1990.

[Qui92] J. R. Quinlan. Learning with continuous classes. In Proceedings
of the Fifth Australien Joint Conference on Artificial Intelli-
gence, pages 343–348, 1992.

[Qui93a] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufman, San Mateo, California, 1993.

[Qui93b] J. R. Quinlan. Combining instance-based and model-based
learning. In Proceedings of the Tenth International Conference
on Machine Learning, pages 236–243, 1993.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[Ros00] J. Rosenblatt. Maximizing expected utility for optimal action
selection under uncertainty. Autonomous Robots, 9(1):17–25,
2000.

[RT99] N. Roy and S. Thrun. Coastal navigation with mobile robots.
In Advances in Neural Information Processing Systems, 1999.

[SA98] R. Simmons and D. Apfelbaum. A task description language for
robot control. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robotics and Systems, 1998.

[Sac77] E. D. Sacerdoti. A Structure for Plans and Behavior. Elsevier,
North-Holland, 1977.

[SB98] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[SB02] C. Stachniss and W. Burgard. An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dy-
namic environments. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2002.

BIBLIOGRAPHY 183

[SBC99] D. Schulz, W. Burgard, and A. B. Cremers. Robust visual-
ization of navigation experiments with mobile robots over the
internet. In Proceedings of IEEE/RSJ Conference on Intelligent
Robots and Systems, 1999.

[SBF+00] D. Schulz, W. Burgard, D. Fox, S. Thrun, and A. B. Cre-
mers. Web interfaces for mobile robots in public places. IEEE
Robotics and Automation Magazine, 7(1):49–56, 2000.

[Sch98] C. Schlegel. Fast local obstacle avoidance under kinematic
and dynamic constraints for a mobile robot. In Proceedings
of IEEE/RSJ Conference on Intelligent Robots and Systems,
1998.

[Sch02] D. Schulz. Internet-Based Robotic Tele-Presence. PhD thesis,
Dept. of Computer Science, University of Bonn, Germany, May
2002.

[Sim94] R. Simmons. Structured control for autonomous robots. Trans-
actions on Robotics and Automation, 10(1):34–43, 1994.

[Sim96] R. Simmons. The curvature-velocity method for local obstacle
avoidance. In IEEE International Conference on Robotics and
Automation, 1996.

[SK95] R. Simmons and S. Koenig. Probabilistic robot navigation in
partially observable environments. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence,
pages 1080–1087, 1995.

[SM02] H. Surman and A. Morales. Scheduling tasks to a team of au-
tonomous mobile service robots in indoor environments. Jour-
nal of Universal Computer Science, 8(8):809–833, 2002.

[SNT98] S. J. J. Smith, D. S. Nau, and T. Throop. Success in spades:
Using AI planning techniques to win the world championship
of computer bridge. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 1079–1086, 1998.

[ST00] M. Sridharan and G. J. Tesauro. Multi-agent Q-learning and
regression trees for automated pricing decisions. In Proceed-
ings of the Seventeenth International Conference on Machine
Learning, pages 927–934, 2000.

184 BIBLIOGRAPHY

[Sus77] G. Sussman. A Computer Model of Skill Acquisition. American
Elsevier, New York, NY, 1977.

[Sus90] G. Sussman. The virtuous nature of bugs. In J. Allen,
J. Hendler, and A. Tate, editors, Readings in Planning, pages
111–117. Kaufmann, San Mateo, CA, 1990.

[Sut88] R. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3(3):9–44, 1988.

[Sut90] R. S. Sutton. Integrated architectures for learning, planning and
reacting based on approximate dynamic programming. In Pro-
ceedings of the Seventh International Conference on Machine
Learning, pages 216–224, 1990.

[TBB+98] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus,
D. Hennig, T. Hofmann, M. Krell, and T. Schmidt. Map learn-
ing and high-speed navigation in RHINO. In D. Kortenkamp,
P. Bonasso, and R. Murphy, editors, AI-based Mobile Robots:
Case studies of successful robot systems. MIT Press, 1998.

[TBB+99] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Del-
laert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz. Minerva: A second generation mobile tour-guide
robot. In Proceedings of the IEEE International Conference on
Robotics and Automation, 1999.

[Thr95] S. Thrun. Explanation-Based Network Learning: A Lifelong
Learning Approach. PhD thesis, Dept. of Computer Science,
University of Bonn, Germany, July 1995.

[Tor99] L. Torgo. Predicting the density of algae communities using
local regression trees. In Proceedings of the European Congress
on Intelligent Techniques and Soft Computing (EUFIT), 1999.

[UB00] I. Ulrich and J. Borenstein. VFH∗: Local obstacle avoidance
with look-ahead verification. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 2505–
2511, 2000.

[uRuL95] L. De Raedt and W. Van Laer. Inductive constraint logic. In
Proceedings of the Sixth International Workshop on Algorithmic
Learning Theory, pages 80–94, 1995.

[VCP+95] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and
J. Blythe. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental and Theoretical Artificial
Intelligence, 7(1):81–120, 1995.

[VNE+01] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras, and
H. Das. The CLARAty architecture for robotic autonomy. In
Proceedings of the IEEE Aerospace Conference, 2001.

[WD92] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-
4):279–292, 1992.

[WD99] X. Wang and T. Dietterich. Efficient value function approxi-
mation using regression trees. In Proceedings of the IJCAI-99
Workshop on Statistical Machine Learning for Large-Scale Op-
timization, 1999.

[Wel94] D. S. Weld. An introduction to least commitment planning. AI
Magazine, 15(4):27–61, 1994.

[WF00] I. H. Witten and E. Frank. Data Mining. Morgan Kaufman,
2000.

[Wil88] D. Wilkins. Practical Planning. Extending the Classical AI
Planning Paradigm. Morgan Kaufmann, San Mateo, CA, 1988.

[WL93] R. J. Williams and C. B. Leemon. Tight performance bounds
on greedy policies based on imperfect value functions. Technical
report, Northeastern University, College of Computer Science,
1993.

