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Abstract: Tau lepton decays with open strangeness in the final state are measured with the Opal detector
at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark.
The decays τ−→ (Kπ)−ντ , (Kππ)−ντ and (Kπππ)−ντ with final states consisting of neutral and charged
kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have
been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for
the strange final states including η mesons. The reconstructed strange final states, corrected for resolution
effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the
spectral function and the ratio of strange to non-strange moments, which are important input parameters
for theoretical analyses, are determined. Furthermore, the branching fractions

B(τ− → K−π0ντ ) = (0.471 ± 0.064stat ± 0.021sys)%

B(τ− → K−π+π−ντ ) = (0.415 ± 0.059stat ± 0.031sys)%

have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the
mass of the strange quark at the τ mass scale has been determined

ms(m
2
τ ) = (84 ± 14exp ± 6Vus

± 17theo)MeV.

Evolving this result to customary scales yields

ms(1GeV2) = (111+26
−35)MeV

ms(4GeV2) = (82+19
−25)MeV.
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1. INTRODUCTION

In 1975, Martin L. Perl and collaborators observed events for which they had ‘no conventional explanation’
at that time [1]. These events had one electron and one muon in the final state, plus missing energy. From
event kinematics, the missing energy had to be due to at least two particles, escaping undetected:

e+e− → e± + µ∓+ ≥ 2 undetected particles.

They concluded that these events, apparently violating lepton number conservation, are ‘the signature for
new types of particles or interactions’. All together 24 of these events were recorded until then, using the
SLAC-LBL [3] magnetic detector, operated at the Stanford Linear Accelerator Center (SLAC) colliding beam
facility SPEAR at center-of-mass energies at or above

√
s = 4GeV.

By that time, the fermionic particle content of the Standard Model consisted of two leptons, the electron
and the muon plus the accompanying neutrinos, and three quarks. The up and the down quark, ordinary
matter consists of, and the strange quark. A fourth quark, the charm quark, was already predicted, but then
not observed. Apart from theoretical considerations, with the fourth quark, once it were found, one could
explain e.g. the absence of flavor changing neutral currents or the small branching fraction for the decay of
the long lived neutral kaon into a pair of muons. In addition, the symmetry of the Standard Model would
be re-established, having an equal number of generations for quarks and leptons. By that time, there was
no need and no experimental hint for third generation fermions.
For the events mentioned above, no immediate explanation was found, though several solutions were pro-
posed. The pair production of charged bosons for example, higher order weak interactions or the production
of neutral leptons. But either the mass of those particles would be too large to be produced at the energies
accessible at that time, or the cross sections predicted for these processes were too small to explain the ob-
served number of events. However, already in the first publication on the ‘anomalous lepton production’, it
was suggested that this type of events could be explained, by pair production of new heavy charged leptons.
This assumption was finally established one year later in the publication on ‘Properties of the Proposed
τ Charged Lepton’ [2] and so the first fermion of the third generation was found. In this paper, various
properties of the new lepton were already determined, like its mass and a limit on the mass of the associated
neutrino was set. Its leptonic branching fractions, the production cross section and the τ -neutrino cou-
pling were measured. The discovery of the third generation lepton was later confirmed by the experiments
PLUTO [4] and DASP [5] at the DORIS storage ring at DESY.
Today, the third generation is established in the lepton sector and in the quark sector. The fermionic content
of the Standard Model of particle physics, as we know it today, consists of three generations of charged leptons
plus the associated neutrinos ((e, νe), (µ, νµ) and (τ, ντ )) and three generations of quarks ((u, d′)†, (c, s′)†

and (t, b′)†). Compared to the leptons, they carry in addition a color charge. The left-handed particles
are grouped in doublets of weak isospin T = 1

2 , its right-handed partners are singlets with weak isospin
T = 0. The forces of the electroweak interaction are mediated by bosons of spin one. There are two neutral
bosons, the Z0 and the photon, and two charged bosons, the W+ and the W−. The photon couples to all
charged particles. The W boson couples only to left-handed particles, the coupling of weak neutral boson Z0

is proportional to the weak isospin and the electric charge and it therefore interacts with all fermions. The
eight gluons, which carry color and anti-color at the same time, mediate the strong force, i.e. they couple
to all colored particles. The Standard Model is completed by the spin-zero Higgs boson, which has not yet
been discovered. It is responsible for the masses of the elementary particles. The non-zero neutrino masses,
which were established by neutrino oscillation experiments are the first hint for physics beyond the Standard
Model. In the simplest extension, a right-handed neutrino would be added to the list of elementary particles.
They were singlets and therefore would not have any Standard Model interactions.
Important contributions to τ physics in the last years came from the four LEP experiments, the CLEO
collaboration and the SLD collaboration at SLC. These experiments have meanwhile stopped data taking.

† The weak eigenstates labeled with a prime are mixtures of the mass eigenstates d, s, b.
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FERMIONS (S=1/2)

LEPTONS QUARKS
T3 Q Q T3
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Tab. 1.1: The Standard Model of particle physics. In the table, the fermionic content is given, which can be divided
into leptons and quarks. The left-handed particles are organized in doublets, the right-handed particles
are singlets. For the fermions, in addition the electric charge and the third component of the weak isospin
is given, which characterize the coupling of the fermions.

In October 1999 the asymmetric b-factories BaBar at PEP-II and Belle at KEKB have started operation.
Until the end of 2003, over 300 fb−1 of data have been recorded. At these experiments, the analysis of τ
data has only just begun and the amount of data will allow for even more stringent tests of the Standard
Model or the discovery of possible new phenomena in particle physics.
With its mass of mτ = (1776.99+0.29

−0.26 )MeV‡, the τ lepton is the heaviest lepton known to date. In the more
than two decades since its discovery, it has provided us with high precision measurements on the percent
level, which helped to improve our understanding of particle physics. Due to its high mass, it could be
particularly sensitive to new physics beyond the Standard Model and thus the study of τ leptons is also an
interesting field for the search for new phenomena. The τ lepton is the only lepton that can decay either
leptonically or hadronically. It therefore provides an ideal tool to study the leptonic as well as the hadronic
current. In the following, some examples are given.
In leptonic decays, the structure of the leptonic current and the universality of the coupling of leptons to
the W boson can be studied. Exploiting the polarization of τ leptons from Z0 decays, one can determine
the leptonic Michel parameters ρ`, δ`, ξ` and ηµ which characterize the nature of the leptonic current. In
particular, the parameter ηµ is sensitive to a possible right handed coupling and thus to the mass of the
charged Higgs boson, which is predicted in extensions of the Standard Model.
Hadronic τ decays allow for a study of strong interaction effects. This includes studies of the structure of
the hadronic current, the determination of resonance parameters and radial excitations and the search for
CP violating effects beyond the Standard Model. A comparison of the inclusive hadronic decay rate of the
τ lepton with QCD predictions allows the measurement of some fundamental parameters of the theory. The
inputs to these studies are the spectral functions that measure the transition probability to create hadrons
of invariant mass m =

√
s in the hadronization process. The energy regime accessible in τ -lepton decays

can be divided into two different regions. Non-perturbative QCD effects dominate in the low energy regime
with a rich resonance structure. At the kinematic limit at s = m2

τ = (1.777GeV)2, perturbative QCD
dominates. Thus τ -lepton decays provide an environment where the strong coupling constant αs can be
measured [6–10, 12] without large influence from non-perturbative effects, while the perturbative expansion
still converges well. The measurement of the non-strange spectral function of hadronic τ decays [40–42] has
provided us with one of the most accurate measurements of αs, and some very stringent tests of perturbative
QCD at relatively low mass scales [22].
The spectral function of τ decays with open strangeness will allow additional and independent tests of
QCD and a measurement of the mass of the strange quark [6, 15, 20, 21]. Among the free parameters of
the Standard Model, the quark masses are the ones less precisely known. In particular, the comparison of
strange and non-strange spectral functions allows to pin down the SU(3)Flavor breaking effects, and thus
allows for determination of the mass of the strange quark.
The strange spectral function of the τ lepton is obtained from the invariant mass spectra of hadronic τ
decay modes with net strangeness. From an experimental point of view, the key issues of this analysis
are the separation of charged kaons and pions in the dense environment of multiprong τ decays via energy
loss measurement in the Opal Jet Chamber. Substantial improvements have been achieved compared to
previous analyses [43]. In particular, those improvements have made it possible to obtain a reliable dE/dx
measurement in the environment where three tracks are very close to each other. The reconstruction of π0

is based on the study of shower profiles in the electromagnetic calorimeter. Furthermore, the identification

‡
~ = c = 1
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and reconstruction of τ decays involving neutral kaons has been achieved with high efficiency and good mass
resolution.
For this analysis, data collected with the Opal detector during the LEP-I period from 1991 to 1995 has
been used. Applying the standard τ selection [39], the data sample comprises a total of 162 477 τ candidate
events.
This thesis is organized as follows. Chapter 2 gives a short overview over the theoretical framework hadronic
τ decays are analyzed in. In Chapter 3, a description of the Opal detector is given, concentrating on those
components that are important for this analysis. Chapter 4 continues with a discussion of the experimental
aspects of this work. The Monte Carlo samples used in the analysis and the selection of the strange final
states are described in Chapter 4.4 and Chapter 5, respectively. A presentation of the unfolding procedure
employed in this thesis is given in Chapter 6. The results are presented in Chapter 7. This includes the
measurement of the branching fractions, the strange spectral function and the spectral moments derived
from it. From the comparison of strange and non-strange spectral moments, a value for the mass of the
strange quark is obtained.



 



2. THEORETICAL ASPECTS

The τ lepton with its mass of mτ = (1776.99+0.29
−0.26 )MeV is the only lepton heavy enough to decay into

leptons and into hadrons. Of particular interest is the τ hadronic width which is often stated as the ratio
Rτ of the partial width of τ lepton decays into hadrons normalized to the partial width of τ lepton decays
into electrons

Rτ :=
Γ(τ → ντhadrons(γ))

Γ(τ → ντeνe(γ))
. (2.1)

Here, γ represents possible additional photons or lepton pairs. On the one hand, this quantity can be
studied experimentally under very clean conditions using τ data from e+e−annihilation. On the other
hand, its inclusive character guarantees a precise theoretical calculation using analyticity constraints and
the Operator Product Expansions (OPE).
In the näıve parton model, where strong and electroweak radiative corrections are ignored and the masses
of all final state particles are neglected, the universality of the W coupling to the fermionic charged currents
implies that this ratio should be

Rτ = NC(|Vud|2 + |Vus|2) ≈ 3, (2.2)

where NC is the number of colors of the quarks, |Vud| and |Vus| are the corresponding matrix elements of
the weak mixing matrix (CKM matrix). However, if calculated from the measured leptonic widths of the τ
lepton

Rτ =
1 − Γ(τ → ντeνe) − Γ(τ → ντµνµ)

Γ(τ → ντeνe)
= (3.632 ± 0.016), (2.3)

the result obtained is about 20% higher. This is due to perturbative radiative corrections and non-
perturbative hadronization effects which are neglected in the näıve approach. The energy scale, defined
by the mass of the τ lepton is high enough so that Rτ can predominantly be described by perturbative
QCD. However, the scale is low enough to be sensitive to non-perturbative QCD effects without affecting
the convergence of the perturbative expansion. This allows for a precise determination of parameters of
QCD, like e.g. the strong coupling constant, where the analysis of τ data provides one of the most precise
measurements [40].
The quark masses only play a minor role in Rτ . Considering the small mass of the light quarks, their
associated corrections are on the percent level. The corrections due to the relatively large mass of the
strange quark are suppressed by the Cabbibo factor |Vus|, which reduces its correction to Rτ also to the
percent level. But predictions can also be made for the τ decay widths associated with specific quark currents:

Rτ = Rτ,non−S + Rτ,S (2.4a)

= Rτ,V + Rτ,A + Rτ,S. (2.4b)

One can separately compute strange and non-strange contributions. The non-strange contributions can be
further resolved into vector (Rτ,V) and axial-vector (Rτ,A) parts according to whether there are an even or
an odd number of pions in the final state1. Strange decays (Rτ,S) are identified by the presence of an odd
number of kaons. A further separation into vector and axial-vector parts for strange decay modes would
require a detailed analysis of the underlying resonance structure. Due to the limited statistics, this is not
within the realms of possibility of this work.
By analyzing separately the semi-inclusive decay width of the τ lepton into modes with and without open
strangeness, the relatively large value of ms induces an important effect. The corresponding Rτ,S prediction
is very sensitive to the strange quark mass and can be used to extract information on this parameter. In the
following section a short overview is given on the theoretical framework necessary to determine the mass of
the strange quark.

1 Electromagnetic decays and decays involving kaons do not respect this relation. Therefore, this assignment does not work
for non-strange channels with two kaons in the final state and for decays involving ω or η mesons
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2.1 Theory of Hadronic τ Decays

The influence from QCD in hadronic τ decays becomes manifest in the deviation from the predictions of the
näıve parton model where free, massless quarks appear in the final state. By analyzing Rτ , which is defined
as the partial decay width of the τ lepton into hadrons normalized to the partial width of τ decays into
electrons2:

Rτ :=

Γ




∝cos2 ΘC

τ−

ντ

W−
d

ū
QCD

+

∝sin2 ΘC

τ−

ντ

W− s

ū
QCD




Γ




τ−

νeντ

W−

e−




, (2.5)

parameters of the QCD can be determined, like e.g. the strong coupling constant or the mass of the strange
quark. There are two contributions to the numerator, the decays into non-strange final states (ūd) and
decays with open strangeness in the final state (ūs), where the partial width is proportional to sin2 ΘC and
cos2 ΘC for non-strange and strange final states, respectively. The angle ΘC is the so-called Cabbibo or
quark mixing angle, which relates the weak eigenstates to the quark mass eigenstates.
The decay width to electrons in the denominator can be calculated, treating the process as an effective
four-fermion contact interaction

Γ(τ− → ντe−νe) =
G2

Fm5
τ

192π2
· (1 + ∆). (2.6)

Here, GF = 1.16639(1) · 10−5 GeV−2 is the Fermi coupling constant. The additional term ∆ includes
corrections to this lowest order calculation which come from the mass of the final state leptons, QED
radiative corrections and corrections due to the W propagator. They are of the order of ∼ 0.5%.
The matrix element for τ decays into hadrons

M =
GF√

2

(
sinΘC

cos ΘC

)
LµHµ (2.7)

is expressed in terms of the leptonic current

Lµ = ūγµ(gV − gAγ5)u (2.8)

(with gV = gA = 1 in the Standard Model) and the hadronic current

Hµ = 〈h−|(Jµ(0))†|0〉 = 〈h−|V µ(0) − Aµ(0)|0〉. (2.9)

2 In order to simplify the text we refer only to the decays of the negatively charged τ lepton. Simultaneous treatment of the
charge conjugate decay is always implied.
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The operator Jµ(x) describes the creation of hadronic final states from the vacuum by means of QCD.
According to the weak interaction, the hadronic current is decomposed into vector (V µ) and axial-vector
(Aµ) contribution. The differential τ hadronic width can be expressed in the general Ansatz

dΓij(τ
− → ντ hadrons−) =

GF

4mτ
|Vij |2LµνHµνdLips, (2.10)

where ij ∈ {ūd, ūs} labels the quark flavor involved in the decay. The leptonic (hadronic) tensor is denoted
by Lµν (Hµν) and dLips is the Lorentz invariant phase space element. Integrating over the phase space
except for the integration over the invariant mass of the hadronic system yields the total hadronic width of
τ lepton decays into strange and non-strange final states:

Γ(τ− → ντ hadrons−) =
G2

Fm5
τ

32π2

∫ m2
τ

0

ds

m2
τ

×

×
(
|Vud|2

(
1 − s

m2
τ

)2((
1 + 2

s

m2
τ

)
ρ
(0)
1 + ρ

(0)
0

)

+ |Vus|2
(
1 − s

m2
τ

)2((
1 + 2

s

m2
τ

)
ρ
(1)
1 + ρ

(1)
0

))
. (2.11)

The real functions ρ
(S)
J are the spectral functions in strange (S = 1) and non-strange (S = 0) τ decays. The

subscript J denotes the angular momentum in the hadronic rest frame. The spectral functions can be split
further into vector (v) and axial-vector (a) parts, referring to the vector and axial-vector part of the weak
current

ρ
(S)
J = v

(S)
J + a

(S)
J . (2.12)

From the experimental point of view, the spectral functions are obtained from the invariant mass spectra of
the hadronic final states (dNV/A/ds), normalized to their respective branching fractions B and divided by
the corresponding kinematic factor:

v
(S)
J (s)/a

(S)
J (s) =

m2
τ

6|Vud/us|2Sew

((
1 − s

m2
τ

)2(
1 +

2s

m2
τ

)J
)−1

×
∑

τ−→ντ X−

B(τ− → ντ (V/A)(S, J))

B(τ− → ντe−ν̄e)

1

NV/A

dNV/A

ds
, (2.13)

where the sum runs over all final states of a particular spin and strangeness content and Sew is an electroweak
correction factor.
In the non-strange case, the individual contributions to vector and axial-vector spectral functions can be
identified by their G parity. It is defined as the eigenvalue of a combination of charge conjugation C and
rotation in isospin: G = C(−1)

I
. The vector (axial-vector) current only couples to states with positive

(negative) G parity. Currents which do not obey this rule are called second class currents [62]. They have
not yet been found. Since hadronic final states of different G parity also differ in the JP quantum number,
there is no interference between the two states, and the total hadronic width can be written as the linear
sum of vector and axial-vector partial widths.
In e+e− annihilation, the G parity is related to the isospin I of the hadronic final state in the case of non-
strange τ decays. Since G parity is a multiplicative quantum number, one obtains isospin I = 1 (I = 0) for
a final state with an even (odd) number of charged or neutral pions in the final state. Therefore, the vector
(axial-vector) current only couples to states with positive (negative) G parity and thus to a final state with
an even (odd) number of pions.

There is no contribution from scalar final states to the non-strange vector spectral function v
(0)
0 . The

conserved vector current (CVC) theorem relates the non-strange part of the vector current to the vector
current in e+e−annihilation processes. The contribution from a possible scalar component is proportional to
the difference of the masses of the light quarks. This difference is zero to very good approximation. However,
this is not the case in strange τ decays. Due to the relatively large mass of the strange quark, contributions
to the v1

0 part of the spectral function exist through the K∗
0(1430) resonance.

The G parity is not a good quantum number for decay modes involving strange particles. Therefore,
a separation into vector and axial-vector parts would require a detailed analysis of the structure of the
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Resonance JP Mass/MeV Width/MeV Decay Type
Mode B/%

K 0− 493.677 ± 0.016 - - - pseudoscalar

K∗(892)± 1− 891.66 ± 0.26 50.8 ± 0.9 Kπ ∼ 100 vector

K1(1270) 1+ 1273 ± 7 90 ± 20 Kρ 42 ± 6 axial-vector
K∗

0(1430)π 28 ± 4
K∗(892)π 16 ± 5
Kω 11 ± 2

K1(1400) 1+ 1402 ± 7 174 ± 13 K∗(892)π 94 ± 6 axial-vector

K∗(1410) 1− 1414 ± 15 232 ± 21 K∗(892)π > 40 vector

K∗
0(1430) 0+ 1412 ± 6 294 ± 23 Kπ 93 ± 10 scalar

K∗
0(1680) 1− 1717 ± 27 322 ± 110 Kπ 38.7 ± 2.5 vector

Kρ 31.4 ± 3.43

K∗(892)π 29.9 ± 3.53

Tab. 2.1: Resonances involved in τ decays with open strangeness. The mass of the resonances, the width of the
resonances, spin-parity JP and the dominant decay modes are given [57].

underlying resonances of the hadronic system. Due to the limited statistics this is not possible in this
analysis. The known resonances involved in τ decays with open strangeness are listed in Table 2.1. The
Kπ final state for examples includes contributions from both, vector (K∗(892) and K∗

0(1680)) and scalar
(K∗

0(1430)) resonances. Contributions from different currents can also be found in the K−π+π−ντ final
state. Axial-vector resonances (K1(1270/1400)) contribute as well as scalar (K∗

0(1430)) and vector (K∗
0(1680))

resonances.

2.2 Theoretical Analysis of Rτ

With the expression given in Equation 2.11, a theoretical analysis of the inclusive hadronic τ decay width
is not possible. It requires the integration over all hadronic resonances of the invariant mass spectra. This
involves large contributions from non-perturbative effects of QCD and thus can not be reliably calculated
at present. As discussed later, only phenomenological parametrizations assuming vector dominance models
exits. The free parameters of these parametrizations (usually the mass and the width of the corresponding
resonance) can not be predicted in QCD, but have to be determined from the data. However, assuming
analyticity and using the Operator Product Expansion (OPE), the total hadronic width can be calculated.
The central quantities in a theoretical analysis are the so-called two-point correlation functions. These
complex functions are given by the time ordered product of the currents involved

Πµν
ij,J (q) ≡ ı

∫
d4xeıqx〈0|T (J µ

ij(x)J ν
ij(0)

†)|0〉 (2.14)

for the vector and axial-vector quark currents (i, j = u,d, s)

J µ
ij = V µ

ij = q̄jγ
µqi (2.15a)

J µ
ij = Aµ

ij = q̄jγ
µγ5qi, (2.15b)

respectively. The two-point correlation functions describe the creation of hadronic states with total angular
momentum J from the vacuum by means of QCD. The lower indices describe the quark flavors and the type
of the current (ij ∈ (ūd, ūs)). The correlators have the Lorentz decomposition

Πµν
ij,V/A(q) = (−gµνq2 + qµqν)Π

(J=1)
ij,V/A(q2) + qµqνΠ

(J=0)
ij,V/A(q2) (2.16)

3 Errors are symmetrized
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where the superscript refers to the angular momentum in the hadronic rest frame (J = 1: transverse
component, J = 0: longitudinal component). The correlator can be decomposed according to the quark
current involved

Π(J)(s) ≡ |Vud|2
(
Π

(J)
ud,V(s) + Π

(J)
ud,A(s)

)

+|Vus|2
(
Π

(J)
us,V(s) + Π

(J)
us,A(s)

)
, (2.17)

into non-strange and strange contributions. The contributions can be split further into vector and axial-
vector parts.

The connection between the spectral functions ρ
(S)
J in Equation 2.11 and the two-point correlation function

in Equation 2.17 is given via the optical theorem, which is illustrated in Figure 2.1. It relates the total
cross section of a process to the imaginary part of the forward scattering amplitude. Here, it relates the

spectral functions ρ
(S)
J , that are proportional to the total hadronic width in τ lepton decays, to the two-

point correlation function. Using the definition of the spectral functions in Equation 2.13, one identifies the
following relation

1

π
=Π

(J)
ij, V/A(s) =

1

2π2
(vJ/aJ )(s). (2.18)

This relation connects the experimentally measurable quantities, the spectral functions, to the two-point
correlation function, calculable with QCD techniques. Equation 2.11 would require the calculation of all
exclusive final states which can not be handled by perturbative QCD. The vacuum polarization (Equation
2.17) however already includes all final states and can be calculated theoretically. The hadronic width ratio
of the τ lepton as defined in Equation 2.5 can thus be written as an integral over the imaginary part of the
correlation functions

Rτ = 12π

∫ m2
τ

0

ds

m2
τ

(
1 − s

m2
τ

)2((
1 + 2

s

m2
τ

)
=Π(1)(s) + =Π(0)(s)

)
. (2.19)

The integration requires analyticity of the correlation functions. Unfortunately, the correlation functions

Π
(J)
ij,V/A are analytic functions in the complex plane except for the positive real axis. This has two reasons.

First, there are two poles, the pion pole and the kaon pole at s = m2
π and s = m2

K. Second, the correlation
function has a discontinuity as the imaginary part crosses the real axis. The line, where the discontinuity
shows up is called branch cut or branch line. Using Cauchy’s theorem, however, the integral along the real
axis can be transformed into an contour integral

1

π

∫ m2
τ

0

ds g(s)=Π(s) = − 1

2πı

∮

|s|=m2
τ

ds g(s)Π(s). (2.20)

The correlation functions are therefore analyzed as depicted in Figure 2.2. As ε approaches zero, the
imaginary part again approaches the branch cut. However at |s| = m2

τ , any possible pole is suppressed by
the factor (1− s

m2
τ
)2, so that the integration can safely be performed. The hadronic width ratio Rτ can thus

∣∣∣∣∣∣∣∣∣∣

τ

ντ

W

h1

h2

· · ·
hn

∣∣∣∣∣∣∣∣∣∣

2

∝ =


 W W




Fig. 2.1: The optical theorem relates the production of hadrons from τ decays to the imaginary part of the forward
scattering amplitude. The left hand side requires the calculation of all hadronic final states, while they are
implicitly contained on the right hand side.
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IV
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II ε
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Im s
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mK

s=|m  |τ
2

Branch Cut

Fig. 2.2: Integration path in the complex plane as used in the analytic calculation of Rτ . The integration path
runs counter-clockwise around the circle at |s| = m2

τ . Since the correlation functions are analytic functions
except for the real axis, the integration path has an offset of ±ıε along the real axis.

be expressed as an integral around the contour that runs counter-clockwise around the circle4 s = m2
τ

Rτ,V/A = 6πı

∮

|s|=m2
τ

ds

m2
τ

(
1 − s

m2
τ

)2((
1 + 2

s

m2
τ

)
Π(1) + Π(0)

)
. (2.21)

The advantage of this expression over Equation 2.19 is that it requires knowledge of the correlator only
for complex s of the order m2

τ , which is significantly larger than the scale associated with non-perturbative
effects in QCD. The Operator Product Expansion, which will be discussed in the next section, can therefore
be used, to organize perturbative and non-perturbative contributions and to reliably calculate the correlator.

The näıve prediction for Rτ is reproduced by inserting the correlators for massless non-interacting quarks
into Equation 2.21:

Π
(1)
ij,V (s) = Π

(1)
ij,A(s) = − NC

12π2
log(−s) + constant (2.22a)

Π
(0)
ij,V (s) = Π

(0)
ij,A(s) = 0. (2.22b)

For technical reasons, not Π(J) but rather the so-called Adler functions are used in the calculations. These
are essentially the logarithmic derivatives of the correlation functions

DL+T ≡ −s
d

ds

(
Π(0+1)(s)

)
(2.23)

DL(s) ≡ s

m2
τ

d

ds

(
sΠ(0)(s)

)
. (2.24)

They satisfy the homogeneous renormalization group equations. This representation avoids renormalization-
scheme and scale dependent subtraction constants which do not contribute to any physical observable. The
total hadronic width ratio can then be written as

Rτ = −πı

∮

|s|=m2
τ

ds

s

(
1 − s

m2
τ

)3(
3

(
1 +

s

m2
τ

)
DL+T(s) + 4DL(s)

)
, (2.25)

where L and T denote the longitudinal (J = 0) and transversal (J = 1) contributions, respectively.

4 Here it has been used that the correlation function depends logarithmically on s, (s ∈ R), i.e.

=Π(J) = −
ı

2

(
Π(J)(s + ıε) − Π(J)(s − ıε)

)
.
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2.3 Operator Product Expansion

As explained before, for low momentum transfer the spectral function cannot be described using perturbative
QCD. A theory describing non-perturbative processes, dominant in this energy regime, does not exist. For
inclusive observables like Rτ however, the Operator Product Expansion (OPE) [35–38] allows to separate
the description of perturbative effects (dominant at large momentum transfer) and non-perturbative effects
(dominant at low energy transfers).

For scalar correlators, the OPE has the form

Π(J)(s) =
∑

D=0, 2, 4, ...

1

(−s)D/2

∑

dimO=D

C(J)(s, µ) < O(µ) >, (2.26)

where the outer sum runs over all energy dimensions D and the inner sum runs over all operators of the same
dimension. The parameter µ is an arbitrary factorization scale, separating long distance non-perturbative
effects from short distance effects. Long distance effects are described by the vacuum matrix elements
< O(µ) >. Short distance effects are parametrized by the so-called Wilson Coefficients C (J)(s, µ). They
are dimensionless functions of s and the factorization scale µ, which can be computed perturbatively as
expansions in powers of αs(µ). Here, it is convenient to choose the factorization scale µ = mτ to avoid large
logarithms of the form log(−s/µ2) in the perturbation expansion.

Dimension-0 Correction: The dimension-0 operator is the perturbative correction assuming massless
quarks. It is therefore identical for the vector and axial-vector parts. The lowest order vacuum polar-
ization diagram contributing is displayed in Figure 2.3. It contains one quark loop inserted into the W
propagator. A contribution of second order in αs is given by the second diagram in Figure 2.3. In addition
to the gluon exchange, self-energy diagrams contribute. An example for a third order diagram, containing
an additional quark loop is also given. The dimension-0 corrections are described by

DL+T
ij,V/A(s)

∣∣∣
D=0

=
1

4π

∑

n=0

K̃n(ξ)an(−ξ2s), (2.27)

where an = αs/π and ξ is an arbitrary scale factor of order unity. The coefficients K̃n are constrained by
the homogeneous renormalization group equation

d

dξ
K̃0(ξ) = 0 (2.28)

ξ
d

dξ
K̃n(ξ) =

n∑

k=1

(k − n)βkK̃n−k(ξ), (2.29)

where βk are the coefficients of the renormalization group β function which is known to the four-loop level [27].
The coefficients are given in Chapter 7.5.2. The perturbative expansion of the Adler functions is known up
to order α3

s [28]

K0 = K1 = 1 K2 =
299

24
− ζ(3) K3 =

58057

288
− 779

4
ζ(3) − 75

2
ζ(5), (2.30)

where ζ represents the Riemann ζ function(ζ(3) = 1.20206..., ζ(4) = 1.08232... and ζ(5) = 1.03693...).

� � �������

Fig. 2.3: Feynman diagrams for the dimension-0 operators. The wiggled lines represent the W propagator, the solid
lines are quark lines. The curled lines represent gluons. Examples for diagrams up to third order in αs are
given.
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Dimension-2 Correction: Dimension-2 operators are perturbative corrections of the form mi(µ)mj(µ),
which contain the operator describing running quark masses. For light quark masses (mu = md = 0), this
operator becomes zero. It has however to be taken into account in the case of Cabbibo suppressed decays.
Neglecting the light quark masses, the correction is proportional to the mass of the strange quark m2

s . In
terms of the running quark mass and the QCD coupling, the correction is given via

DL+T
us (s)

∣∣∣
D=2

=
3

4π2s
m2

s(−ξ2s)
∑

n=0

d̃L+T
n (ξ)an(−ξ2s) (2.31a)

DL
us(s)

∣∣∣
D=2

=
3

8π2m2
τ

m2
s

∑

n=0

d̃L
n(ξ)an(−ξ2s). (2.31b)

The coefficients d̃
L/L+T
n are constrained by the renormalization group equation

d

dξ
d̃0(ξ) = 0 (2.32a)

ξ
d

dξ
d̃n(ξ) =

∑

n=1

(
2γk − (n − k)βk

)
d̃n−k(ξ). (2.32b)

These equations involve the coefficients of the renormalization group β and γ functions, which are known to
the four-loop level [27]. The coefficients are given in Chapter 7.5.2. The J = L + T coefficients are known
to order O(α2

s), the J = L coefficients are known to order O(α3
s) and for ξ = 1 the numerical values in the

MS scheme are

dL+T
0 = 1 dL+T

1 =
13

3
dL+T
2 =

23077

432
− 32

9
+

(
179

54
+

8

3

)
ξ(3) − 520

27
ξ(5) (2.33a)

and

dL
0 = 1 dL

1 =
17

3
dL
2 =

9631

144
− 35

2
ξ(3)

dL
3 =

4748953

5184
− 91519

216
ξ(3) − 5

2
ξ(4) +

715

12
ξ(5). (2.33b)

There are no non-perturbative contributions here. It is impossible to build dynamical operators of dimension-
2 from quark and gluon fields. Therefore the leading non-perturbative contribution comes from dimension-4
operators.

Dimension-4 Correction: The dimension-4 corrections contain dynamical contributions from the quark-
operator 〈mq̄iqi〉 and the gluon-operator 〈(αs/π)GG〉. Additional contributions from the running quark
masses enter to the fourth power in ms. Given the experimental situation, these contributions can safely
be neglected. Feynman diagrams contributing to the so-called quark and gluon condensates are displayed
in Figure 2.4. The crosses represent the fact that a particle annihilates into the vacuum and ’condensates‘
at this point. The condensates parametrize the non-perturbative contributions. In perturbative QCD, the
vacuum expectation values of these operators vanish. Non-vanishing vacuum expectation values are a hint
for non-perturbative effects. The dimension-4 contribution to the correlation functions is given by

(
DL+T

ud,V +A(s) − DL+T
us,V +A(s)

) ∣∣∣
D=4

= − 4

s2
δO4(−ξ2s)

∑

n=0

q̃n(ξ)an(−ξ2s) + O(m4
s ) (2.34a)

(
DL

ud,V +A(s) − DL
us,V +A(s)

) ∣∣∣
D=4

= − 2

sm2
τ

δO4(−ξ2s) + O(m4
s ), (2.34b)

where δO4(µ
2) is the quark condensate defined in the MS scheme

δO4(µ
2) ≡ 〈0|mss̄s − mdd̄d|0〉. (2.35)

It is the only contribution from dimension-4 operators considered here. The scale dependence of the
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Quark Condensates Gluon Condensates
〈mj q̄iqi〉 〈αs

π GG〉

� � ��� � � � � ��� � �

Fig. 2.4: Feynman diagrams for the dimension-4 operators. The wiggled lines represent the W propagator, the
solid lines are quark lines. The curled lines represent gluons. The crosses represent the corresponding
condensates. Examples of the Feynman diagrams contributing to the quark condensate and to the gluon
condensate are given.

perturbative expansion coefficients q̃n is fixed by the renormalization group equations

ξ
d

dξ
q̃L+T
0 (ξ) = 0 (2.36a)

ξ
d

dξ
q̃L+T
n (ξ) =

n∑

k=1

(k − n)βk q̃L+T
n−k (ξ). (2.36b)

The coefficients are known to second order in αs

q̃L+T
0 (ξ) = 1 q̃L+T

1 (ξ) = −1 q̃L+T
2 (ξ) = −131

24
− 9

2
ln ξ. (2.37)

Dimension>6 Correction: The largest contribution to the dimension-6 operator comes from the 4-quark
operator. These operators have the form q̄iΓqj q̄kΓql, where Γ is the product of a Dirac matrix and an
SU(3)Flavor color matrix. Further contributions come from the triple gluon condensate 〈f abcGaν

µ Gbλ
ν Gcµ

λ 〉.
Examples of Feynman diagrams contributing to the dimension-6 operators are depicted in Figure 2.5. In
addition lower dimension operators multiplied by running quark masses have to be considered. The overall
contribution from the dimension-8 operators to Rτ is expected to be small. They arise from quark-quark
condensates, quark-gluon and four-gluon condensates [30]. The largest contribution comes from the square
of the gluon condensate. The contributions from dimension-10 or higher are even smaller.

Four Quark Operator Gluon Operator
〈q̄iΓ1qj q̄kΓ2ql〉 〈fabcGaν

µ Gbλ
ν Gcµ

λ 〉

� � ��� � � � � ��	 	 	

Fig. 2.5: Feynman diagrams for the dimension-6 operators. The wiggled lines represent the W propagator, the
solid lines are quark lines. The curled lines represent gluons. The crosses represent the corresponding
condensates. Examples of the Feynman diagrams contributing to the four-quark operator and the gluon
operator are given.
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2.4 Rτ and the Spectral Moments

It is convenient to express the corrections to Rτ from dimension D operators in terms of the fractional

corrections δ
(D)
ij, V/A to the näıve contribution from the current with quantum numbers ij, V/A

δ
(D)
ij, V/A =

∑

dimO=D

< O(µ) >

mD
τ

4πı

∮

|s|=m2
τ

ds

m2
τ

(−s

m2
τ

)−D/2(
1 − s

m2
τ

)2

×

×
((

1 + 2
s

m2
τ

)
C(0+1)

ij, V/A(s, µ) − 2
s

m2
τ

C(0)
ij, V/A(s, µ)

)
, (2.38)

where C(J)
ij, V/A(s, µ) are the Wilson coefficients for the correlators Π

(J)
ij, V/A(s). The contour integral in Equa-

tion 2.38 is dimensionless and depends only on the scales µ and mτ .
In terms of the fractional corrections defined in Equation 2.38, the three experimentally measurable com-
ponents of Rτ , the vector and the axial-vector part in the non-strange case and the contribution from the
hadronic width into final states with open strangeness, can be expressed as

Rτ, V =
3

2
|Vud|2Sew


1 + δew + δ(0) +

∑

D=2, 4, ...

δ
(D)
ud, V


 (2.39a)

Rτ, A =
3

2
|Vud|2Sew


1 + δew + δ(0) +

∑

D=2, 4, ...

δ
(D)
ud, A


 (2.39b)

Rτ, S = 3|Vus|2Sew


1 + δew + δ(0) +

∑

D=2, 4, ...

δ(D)
us


 . (2.39c)

Here, δ
(D)
ij is the average of the vector (V) and axial-vector (A) corrections δ

(D)
ij = (δ

(0)
ij, V + δ

(0)
ij, V)/2 . The

electroweak correction factors Sew and δew are explained in Chapter 2.5. The dimension-0 correction δ(0) is
the purely perturbative correction, neglecting quark masses. It is the same for all components of Rτ .
The measurement of the invariant mass distribution of the hadronic final state provides additional informa-
tion on QCD dynamics. The invariant mass spectrum can be analyzed by using the spectral moments [11]
defined as

Rkl
τ ≡

∫ mτ

0

ds

(
1 − s

m2
τ

)k (
s

m2
τ

)l
dRτ

ds
. (2.40)

Using Equation 2.25, the spectral moments can be rewritten as contour integral in the complex s plane

Rkl
τ = −πı

∮

|x|=1

dx

x

(
3Fkl

L+T (x)DL+T (m2
τx) + 4Fkl

L (x)DL(m2
τx)
)
, (2.41)

where x = s/m2
τ . All kinematic factors have been absorbed into the kernels, defined via

Fkl
L+T ≡ 2(1 − x)3+k

l∑

n=0

l!

(l − n)!n!
(x − 1)n (6 + k + n) + 2(3 + k + n)x

(3 + k + n)(4 + k + n)
(2.42a)

Fkl
L ≡ 3(1 − x)3+k

l∑

n=0

l!

(l − n)!n!
(x − 1)n 1

3 + k + n
. (2.42b)

2.5 Electroweak Corrections

In addition to the corrections from QCD, the partial width of the τ lepton for decays into electrons/hadrons
also depends on electroweak radiative corrections. Two contributions have to be considered here. The
radiation of real photons off the final state fermions and the self-interaction of final state fermions via the
exchange of virtual photons and Z0 bosons. In the ratio of the partial width of the τ lepton into hadrons to the
partial width into electrons, however they do not completely cancel. The difference arises from the different
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charges of the final state fermions involved in hadronic and leptonic τ decays. From the self-interaction
diagrams, a finite correction is obtained [31]

Sew = 1 + 4
α

2π
ln

mZ0

mτ
(2.43a)

=

(
α(mb)

α(mτ )

)9/19(
α(mW)

α(mb)

)9/20(
α(mZ0)

α(mW)

)36/17

= 1.0194. (2.43b)

The following values of αQED have been used α(mτ ) = 1./133.29, α(mb) = 1./132.05, α(mW) = 1./127.97,
and α(mZ0) = 1./127.93. The correction from the radiation of real photons off the final state fermions is
implemented as an additive correction [33]

δew =
α

2π

5

6
= 0.001, (2.44)

which is numerically small. Summing up Equations 2.39(a-c), the τ hadronic width can be written as

Rτ = 3(|Vud|2 + |Vus|2)Sew


1 + δew + δ(0) +

∑

D=2,4,...

(
cos2 ΘCδ

(D)
ud + sin2 ΘCδ(D)

us

)

 . (2.45)

2.6 SU(3)Flavor Breaking

The correlators for strange and non-strange τ lepton decays are identical in the SU(3)Flavor limit, i.e. in the
limit of vanishing quark masses. Rescaling strange and non-strange hadronic widths by their corresponding
suppression factors, i.e. the elements of the weak mixing matrix, their difference

δRkl
τ ≡

Rkl
τ, V +A

|Vud|2
−

Rkl
τ, S

|Vus|2
(2.46)

vanishes in the chiral limit. Any non-zero value measured from τ data is due to the mass of the strange quark
and thus a sign for breaking of the SU(3)Flavor symmetry. The separate measurement of Cabbibo allowed
and Cabbibo suppressed decays of the τ lepton therefore allows to pin down the SU(3)Flavor breaking effects.
From the theoretical point of view this quantity has the advantage that the theoretical uncertainties are
reduced in the difference.
In principle these flavor breaking quantities can also be constructed for the vector part, the axial-vector
part or for the sum of both. However, for the strange final states, the separate vector and axial-vector
contributions can not be reconstructed due to the limited statistics. Therefore, the vector plus axial-vector
spectral distributions are used in the construction of the weighted difference.
Using the Operator Product Expansion, the weighted difference can be rewritten as

δRkl
τ = 3Sew

∑

D≥2

(
δ

kl(D)
ud − δkl(D)

us

)
, (2.47)

which contains only contributions from dimension-2 and higher. The dimension-0 correction are the purely
perturbative corrections calculated in the chiral limit. The contributions are therefore identical for strange
and non-strange spectral moments. In the weighted difference (Equation 2.46) they cancel exactly. The
same is true for the additive electroweak corrections.
The corrections of various dimensions to the τ hadronic width have already been introduced in Chapter
2.3. Here, the corresponding expressions for δRkl

τ are given and their relevance in the determination of the
strange quark mass is discussed.

Dimension-2 Correction:
The contribution of the dimension-2 operator to the weighted difference of non-strange and strange moments
δRkl can be written as

δRkl
τ

∣∣∣
D=2

= 24Sew
m2

s (m
2
τ )

m2
τ

(1 − ε2d)∆
(2)
kl (aτ ), (2.48)
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where aτ = αs(m
2
τ )/π, ε = md/ms = 0.053 ± 0.002 [23] and

∆
(2)
kl (aτ ) =

1

4

(
3
∑

n=0

d̃L+T
n (ξ)B

kl(n)
L+T (aξ) +

∑

n=0

d̃L
n(ξ)B

kl(n)
L (aξ)

)
(2.49)

=
1

4

(
3∆L+T

kl (aτ ) + ∆L
kl(aτ )

)
(2.50)

is the perturbative contribution of the dimension-2 operators. To the extent that (mu + md)/2 � ms, this
contribution is proportional only to m2

s which generates the sensitivity to the mass of the strange quark.
The leading quark mass corrections of dimension-2 have been studied in detail in [13, 14, 16–19, 26]. The
dimension-2 correction involves the functions BL+T kl and Bkl

L which are defined via

B
kl, (n)
L+T ≡ −1

4πı

∮

|x|=1

dx

x2
Fkl

L+T (x)

(
m(−ξ2m2

τx)

(m2
τ )

)2

an(−ξ2m2
τx) (2.51a)

B
kl, (n)
L ≡ 1

2πı

∮

|x|=1

dx

x
Fkl

L (x)

(
m(−ξ2m2

τx)

(m2
τ )

)2

an(−ξ2m2
τx). (2.51b)

These functions now only depend on αs(ξ
2m2

τ )/π, log(ξ).

Dimension-4 Correction:
The dimension-4 correction to δRkl

τ is given by

δRkl
τ

∣∣∣
D=4

= −12Sew

(
4π2 δO4(m

2
τ )

m4
τ

Qkl(aτ ) + O
(m4

s

m4
τ

))
, (2.52)

where terms of the order m4
s can safely be neglected compared to the mass of the τ . The function Qkl is

defined via

Qkl = QL
kl + QL+T

kl , (2.53)

where

QL
kl =

−1

6πı

∮

|x|=1

dx

x2
Fkl

L (x)
δO4(−ξ2m2

τx)

δO4(m2
τ )

(2.54)

QL+T
kl =

−1

4π

∮

|x|=1

dx

x3
Fkl

L+T (x)
δO4(−ξ2m2

τx)

δO4(m2
τ )

∑

n

q̃L+T
n (ξ)an(−ξ2m2

τx) (2.55)

and x = s/m2
τ . The operator δO4 denotes the contribution from the quark condensate. The definition of

q̃L+T
n can be found in Chapter 2.3.

In principle, the SU(3)Flavor breaking condensate δO4(m
2
τ ) could be extracted from the τ decay data together

with ms in a combined fit of different δRkl
τ moments. Given the current experimental accuracy of the data,

this is not possible. To date, the contribution from δO4(m
2
τ ) is estimated using constraints provided by the

chiral symmetry of QCD. To lowest order in Chiral Perturbation Theory [24], δO4(µ
2) is scale independent

and is fully predicted in terms of the pion decay fπ constant and the pion and kaon masses

δO4(mτ2)
∣∣∣
O(p2)

= (ms − md)〈0|q̄q|0〉 ' −f2
π(m2

K − m2
π) ' −1.9 · 10−3 GeV4. (2.56)

Here, 〈0|q̄q|0〉 denotes the quark condensate in the chiral limit given by [24,25]

(mu + md)〈0|qq̄|0〉 ' mu + md

2
〈0|dd̄ + uū|0〉 ' −f2

πm2
π. (2.57)

This estimate is improved by taking into account the leading O(p4) corrections [10]

vs ≡
< 0|̄ss|0 >

< 0|d̄d|0 >
= 0.8 ± 0.2. (2.58)

This yields the estimate

δO4(m
2
τ )
∣∣∣
O(p4)

= (vsms − md) < 0|d̄d|0 > ' − ms

mu + md
(vs − εd)f2

πm2
π (2.59)

' −(1.5 ± 0.4) · 10−3 GeV4 (2.60)

for the quark condensate.
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Dimension> 6 Corrections:
The leading order coefficients of dimension six and eight corrections for the two-point functions have been
studied in the MS scheme [29]. In view of the theoretical uncertainties in the dimension-2 and dimension-4
corrections and in the view of the unknown values of the dimension six and eight condensates, contributions
D > 6 are not considered here. They are regarded as additional theoretical uncertainties.

2.7 The Determination of ms and the Choice of Moments

The mass of the strange quark at the τ scale can now be determined from the weighted difference of strange
and non-strange spectral moments for each combination of kl individually using the following relation

m2
s (m

2
τ )
∣∣∣
kl

=
m2

τ

2(1 − εd)

1

∆
(2)
kl (aτ )

( δRkl
τ

12Sew
+ 4π2 δO4(m

2
τ )

m4
τ

Qkl(aτ )
)
. (2.61)

Contributions from dimension-4 operators other than the quark condensate δO4 are neglected here. They
are suppressed by factors m4

s , so that the expected experimental uncertainty is larger than these corrections.
Corrections of dimension-6 or higher are again much smaller, so that they are not considered here.
In the choice of moments, the experimental and the theoretical uncertainties associated with it have to be
taken into account. Using the definition of the weighting function in Equation 2.40, this means that for
increasing values of k the low mass range gets higher weights, while for increasing l the high mass range
becomes more pronounced.
The low mass range is dominated by the few-meson final states, the kaon pole and the K∗(892) resonance.
These final states have relatively large branching fractions and they are measured with high accuracy. From
the theoretical point of view, this is the range where the non-perturbative contributions play an important
role. This means that the moments are dominated by the vacuum condensates of higher-dimension operators.
The condensates of dimension-6 and higher are either connected with large uncertainties or they are even
completely unknown. The theoretical uncertainty associated with these corrections therefore increases with
increasing values of k.
The high mass range is dominated by the multi-meson final states. This region becomes more and more
pronounced as l increases. Here, the branching fractions become smaller as the invariant mass of the
corresponding final state approaches the kinematic limit. From the experimental point of view, this region
is dominated by large statistical uncertainties. In addition, not all spectra are determined from data. For
the four-meson final states for example, the prediction from Monte Carlo is used, since the statistics is too
low to allow for a determination from data. In addition, the Monte Carlo simulation is not based on studies
of the resonance structure in this case, because the experimental data in the strange sector to date is not
sufficiently precise to allow for these studies. A phase space distribution is assumed instead in the Monte
Carlo simulation. The theoretical uncertainty associated with the operator product expansion for increasing
l however is smaller than in the case discussed before. As s approaches m2

τ , contributions from perturbative
QCD dominate and the influence from non-perturbative effects is small.



 



3. THE EXPERIMENT

In this section, a description of the LEP accelerator and the Opal detector is given. On those detector
components that are important for this analysis, i.e. the central tracking chamber and the electromagnetic
calorimeter, a detailed description is given.

3.1 The LEP Accelerator

The e+e− storage ring LEP (Large Electron Positron Collider) is located at the European Center of Nuclear
Research (CERN). The storage ring is 100m below the surface in a tunnel with a circumference of 26.7 km.
During the LEP-I phase from 1989 to 1995, beams of electrons and positrons were accelerated to 45.6GeV.
Several bunches of electrons and positrons were circulating in opposite directions and were brought to collision
at four interaction points, where the detectors Aleph, Delphi, L3 and Opal were build. The center of
mass energy of

√
s = 91.2GeV allowed for a study of the production and decay properties of the neutral

weak boson Z0.
From 1989 until fall 1995, an integrated luminosity of 165 pb−1 has been collected per experiment. This
corresponds to roughly 6 million Z0 decays and allowed for many precision tests of the Standard Model
in electroweak and strong interactions. In particular, during the LEP-I phase, a total of about 500 000 Z0

boson decays into a pair of τ leptons have been recorded by the four experiments. This provided a unique
environment to study the couplings of the Z0 boson to heavy leptons, where many extensions of the Standard
Model would induce significant modifications to the expectation. In leptonic τ decays, the structure of the
leptonic current and the universality of the coupling of leptons to the W boson could be studied. Hadronic
τ decays allowed for a study of the structure of the hadronic current and the determination of parameters
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of the Quantum Chromo Dynamics QCD, like the strong coupling constant αs or the quark masses.
Since 1995, the energy of the colliding beams was progressively increased. This was achieved by inserting
new and replacing old normal conducting cavities by superconducting ones. In 1996, a center of mass energy
of

√
s = 161GeV was achieved which allowed for the study of production and couplings of the charged weak

bosons W±. In 1997, at center of mass energy of
√

s = 183GeV, the study of the production of Z0 pairs
and anomalous triple gauge couplings was of particular interest.
During the year 2000, the goal was to collect data at the highest energies possible. Finally, a center of mass
energy of 208GeV has been achieved. During the whole LEP period, not only tests of the Standard Model
with unprecedented precision were possible. Especially during the last period, the search for new particles
which are predicted e.g. by supersymmetric theories (SUSY) came into focus. In particular, the search for
Higgs bosons, either the one predicted by the Standard Model or those from extended theories, was one of
the main subjects. Since no evidence was found, Opal was able to set a limit on the mass of the Standard
Model Higgs boson of mH > 114.1GeV (at 95% CL). In these particle searches, data from τ lepton decays
played an important role.
Finally, in the fall of 2000, LEP was switched off and the civil engineering for the LHC (Large Hadron
Collider) project began. This accelerator, when started in 2007 will provide proton beams with an energy
of

√
s = 7TeV. New physics up to the TeV scale will come into reach.

3.2 The Opal Detector

The Opal detector (Omni Purpose Detector for LEP) [44] was one of four detectors at the e+e− storage
ring LEP. The detector had a length of 12m, a diameter of 10m and a total weight of roughly 3000 t. The
detector, covering 98% of the total solid angle, provided the means for the identification and reconstruction
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Fig. 3.2: The Opal detector.
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of e+e− → f̄f events (f 6= ν):

• The central tracking system provided the means for a measurement of direction, momentum and
charge of particles. In addition, it provided the possibility of particle identification via measurement
of the specific energy loss (dE/dx). The excellent spatial resolution allowed for the reconstruction of
secondary vertices near the interaction region to detect long lived particles like B-mesons or neutral
kaons.

• The calorimeter section allowed for the identification of photons and the measurement of their 4-
momentum (electromagnetic calorimeter) as well as the identification of hadrons and the measurement
of their energy (hadron calorimeter).

• The measurement of the luminosity via Bhabha scattering events in the forward direction using Silicon-
Tungsten luminosity detectors.

In the following, a brief description of the components of the detector is given. Components which are
vital for this analysis, i.e. the central jet chamber and the electromagnetic calorimeter are described in more
detail. A detailed description of all components of the Opal detector can be found elsewhere [44].

3.2.1 The Central Tracking System

• Silicon-Microvertex Detector (SI) consisted of two double layer silicon strip detectors, mounted
at radii of 6.1 cm and 7.5 cm. The inner layer consisted of 11 tiles, the outer one of 14 layers. It
covered a polar angle range of | cos Θ| < 0.77 (after the upgrade in 1996 it covered an angular range
of | cos Θ| < 0.88). It played an important role in the reconstruction of secondary vertices, i.e. in the
identification of mesons containing b-quarks. A resolution of 5 � m in the (r − φ)-plane and 13 � m in z
direction was achieved.

The Microvertex detector was surrounded by a pressure vessel which contained the central tracking system.
It was filled with a gas mixture of argon (88.2%), methane (9.8%) and isobutane (2.0%) and it was operated
at a pressure of 4 bar. The central tracking system consisted of the following components.

• The Vertex Chamber (CV) was a drift chamber of length 1m. The inner radius of the chamber
was at 8.8 cm, the outer radius at 23.5 cm. It was subdivided into 36 sectors, each containing two layers
of sense wires. The innermost 12 layers were mounted parallel to the beam pipe. The outer 6 layer
had a stereo angle of 4◦ in order to obtain the full 3D position information. A resolution of 55 � m in
(r − φ) and 300 � m in z direction was achieved.

• The Jet Chamber (CJ) was a cylindrical drift chamber with a total length of 4m. It covered the
radial range from r = 25 cm to r = 185 cm. In azimuthal direction it was subdivided into 24 sectors,
each containing 159 signal wires with a radial distance of 10mm. To resolve the left-right ambiguity,
the signal wires were staggered by 100 � m. Between each pair of sense wires and between neighboring
sectors, field wires were mounted that provided a uniform drift field. An ionization cloud, produced
by a particle traversing the sensitive volume, had a drift velocity of 52.7 � m/ns and a Lorentz angle
of 20◦ relative to the anode plane. All wires were mounted parallel to the beam axis. The maximum
drift distance was 3 cm at the innermost radius and up to 25 cm at the outermost radius.

For every measured point, the full 3D information was obtained from the position of the corresponding
sense wire, the measured drift time in r−φ and the charge collected at each end of the signal wires (z
direction). A spatial resolution of 135 � m in the (r − φ) plane and 6 cm in z direction was achieved.
The double track resolution was 2mm. From the curvature of the track within the magnetic field (B =
0.435T), the momentum and the charge of the particle was determined. The transverse momentum
resolution achieved was

σpT

pT
=
√

(0.02)2 + 0.0015/GeV · pT.

For particle identification, the specific energy loss (dE/dx) was used. The relative accuracy was

σdE/dx

dE/dx
= 3.8%.
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• The Z-Chamber (CZ) consisted of 24× 8 drift chambers, which covered the polar angular range up
to | cos Θ| < 0.72. Each drift chamber had 6 layers of sense wires which were arranged perpendicular to
the beam axis. By using the information from this device, the resolution could be improved to 300 � m
in z direction.

The inner detector was contained in a solenoidal, homogeneous magnetic field of 0.435T. The outer detector
consisted of the following components:

3.2.2 The Outer Detector

• The Time-Of-Flight System (TOF) was used to measure the time of flight of particles coming
from the interaction region. It consisted of 160 scintillation counters, forming a barrel of mean radius
2.36m. A time resolution of 300 ps in the barrel region was achieved. After 1996 the system was
extended to the endcaps (0.85 < | cos Θ| < 0.97), where a time resolution of 3 ns was achieved. It
served mainly as trigger and for the rejection of cosmic ray events.

• The Presampler (PB, PE) was mounted in front of the electromagnetic calorimeter. It consisted
of two layers of limited streamer tubes in the barrel region and 16 multi-wire proportional chambers
in the endcap region. Since the material in front of the electromagnetic calorimeter corresponds to 2
radiation lengths X0 in the barrel region (and up to 7 radiation lengths in some regions between the
barrel and the endcaps), most showers start already within the pressure vessel or inside the solenoidal
coil. This reduced the accuracy of the energy measurement. With the presampler, the multiplicity of
the shower, which is proportional to the energy lost in the material in front of the calorimeter, was
measured and this information could be used to correct the energy in the electromagnetic calorimeter.

• The Electromagnetic Calorimeter (ECAL) was used to identify electrons, positrons and photons
and to measure their energy in a range from 100MeV up to 100GeV. Together with the hadron
calorimeter it was used to separate electrons/positrons from hadrons. It was mounted between the
magnetic coil and the return yoke. It consisted of the barrel region (covering the angular range of
| cos Θ| < 0.68), the overlap region (0.68 < | cos Θ| < 0.72) and the endcap region (| cos Θ| > 0.72).
Together they covered 98% of the total angular range.

– The Barrel Region of the ECAL consisted of 9440 lead glass blocks which were mounted at
a radius of 2445mm from the beam pipe. Each block had a (10 × 10) cm2 cross section and a
length of 37 cm (=̂24X0), so that electrons, positrons and photons were completely absorbed.
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Fig. 3.3: The tracking system of the Opal detector.
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The Čherenkov light emitted when a particle enters a lead glass block was detected via photo
multipliers. The calorimeter had a quasi-pointing geometry. Therefore, the total energy was
almost completely contained within one single block.

– The Endcap Region consisted of 1132 lead glass blocks with a cross section of (9.4 × 9.4) cm2.
They covered the angular range 0.81 < | cos Θ| < 0.98. Depending on the radial position, they
had a length of 380mm, 420mm or 520mm, which corresponds to an average length of 20.4X0.
All blocks were mounted parallel to the beam pipe.

The energy resolution, taking into account the material in front of the ECAL, was measured to be

σEγ

Eγ
=

(
0.160 ± 0.003√

Eγ

)
⊕ (0.015 ± 0.003) (3.1)

and

σEγ

Eγ
=

(
0.218 ± 0.025√

Eγ

)
⊕ (0.018 ± 0.013) (3.2)

for the barrel and the endcap region, respectively [47].

• The Hadron Calorimeter measured the energy of hadrons emerging from the electromagnetic
calorimeter and it assisted in the identification of muons. It was subdivided into a barrel part (HB),
two endcaps (HE) and two pole tips (HP). In the barrel, it consisted of 9 layers of limited streamer
tubes, alternating with 8 iron slabs. It covered the radial range from r = 339 cm up to = 439 cm and
it had a hadronic interaction length of ∼ 5λ. In the endcap region, 8 layers of chambers alternated
with 7 slabs of iron. Since there were already about 2.2 interaction lengths of material in front of the
hadron calorimeter, the total hadronic energy could only be measured by combining the information
from the hadronic and the electromagnetic calorimeter. An energy resolution of

σE

E
= 120%/

√
E

was achieved.

• The Muon Chambers consisted of 110 drift chambers in the barrel region that were mounted in four
layers. In the endcap region, 2×2 layers of streamer tubes were used, which were oriented perpendicular
to each other. The azimuthal and axial resolution was 1.5mm and 2mm, respectively.

3.2.3 The Luminosity Detector

To measure the luminosity in Opal, e+e− pairs from Bhabha scattering events were used. This process is
very well understood from the theoretical point of view and has a very high event rate. To measure the
event rate, two detectors were mounted in forward direction which allow for an accuracy of 0.1%.

• The Forward Detector (FD) consisted of a system of drift chambers, proportional counters and
a calorimeter of scintillating material with an interaction length of 24X0 in sandwich geometry. This
detector covered the angular range from 47mrad to 120mrad.

• The Silicon-Tungsten Detector (Si-W) was mounted at |z| = 240 cm. It was introduced in 1993
to allow for a precise measurement of the luminosity. It consisted of 19 layers of silicon detectors with
one layer of tungsten in between each pair, resulting in 22 interaction lengths. This detector covered
the angular range from 25mrad up to 59mrad.

3.3 Coordinate System and Track Parameters

The coordinate system used in Opal is as follows: The positive z axis is pointing parallel to the direction of
flight of the electron, the x axis is pointing towards the center of the LEP storage ring. The polar angle Θ is
measured relative to the z axis, the azimuthal angle φ is measured relative to the x axis and maps the plane
perpendicular to the beam axis. In the axial magnetic field the trajectory described by the charged particles
in Opal is parametrized by five track parameters: κ, φ0, d0, tan λ and z0. They are defined as follows:
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− κ = 1
2ρ is the curvature of the track and ρ is the radius of the curvature.

− φ0 is the azimuthal angle of the track tangent at the point of closest approach (p.c.a.).

− d0 is the impact parameter at the p.c.a.. It is defined by

d0 = φ̂ × ~d · ẑ,

where φ̂ is the unit track vector at the p.c.a., ~d is the vector from the origin to the point of closest
approach and ẑ is the unit vector along the z axis.

− tan λ = cot Θ where Θ is the track angle measured relative to the z axis.

− z0 is the z coordinate of the track at the point of closest approach.



4. EXPERIMENTAL ASPECTS

In this chapter, the experimental aspects of the analysis are discussed. This includes the calibration of the
energy loss measurement in the central drift chamber. It had to be optimized for the use in the τ pair
environment, which is described in detail in Chapter 4.1. In Chapter 4.2, the identification of photons from
shower shapes in the electromagnetic calorimeter and the reconstruction of neutral pions is discussed. The
Find Photon algorithm, which was developed for the measurement of non-strange spectral function was
improved using a pairing scheme in order to reduce the number of fake photons and to increase the energy
resolution. In Chapter 4.3, the identification and reconstruction of the four-momentum of neutral kaons is
described. After the selection, all K0

S candidates are subject to a 2C kinematic fit, which is explained in
detail. Finally, in Chapter 4.4, the update of the τ Monte Carlo is discussed. This became necessary in
order to include four-meson final states with kaons, which were not simulated so far.

4.1 Energy Loss Calibration in the τ Environment

The most important part in this analysis is the kaon identification via energy loss measurement (dE/dx) in
the jet chamber. Since this is the only possibility to distinguish between pions and kaons in Opal, a very
good understanding of the effects caused by the dense multi-track environment in τ decays is vital for any
analysis that requires particle identification.

The high Lorentz boost (γ ≈ 25) of the τ lepton results in its decay products being contained in a narrow
cone with a typical opening angle of 5◦. In those cases, where the final state consists of more than one track,
the dE/dx measurement is known to be no longer reliable [43]. A systematic shift in the dE/dx distribution
was observed which lead to a misidentification of pions as kaons and thus to a reduced sensitivity in those
cases where particle identification is required. A detailed study of the calibration procedure therefore has
been carried out, using τ decays with at least three tracks in the final state. The effect, two very close tracks
have on the measured energy loss has been studied on a hit-by-hit basis using drift time information.

This chapter starts with an introduction on particle identification via energy loss measurement. In Chapter
4.1.2, the standard Opal calibration corrections are described. They can be split into corrections applied on
a hit-by-hit bases and those applied on track level. The improvements in the energy loss calibration, using
events from τ decays are described in Chapter 4.1.4. The adjustment of the experimental error is discussed
in Chapter 4.1.5.

4.1.1 Energy Loss of Particles in Matter

The only means to distinguish pions from kaons in Opal is via the measurement of the specific energy loss
in the jet chamber. The mean energy loss per unit length of an incident particle of charge 1 is described by
the Bethe-Bloch equation [48,49]

−dE

dx
= C1ρ

Z

A

1

β2

(
1

2
ln

(
2mec

2η

I2

)
− β2 + ln βγ − δ(β)

2
− C2

Z

)
, (4.1)

where C1 is defined as

C1 = 4πNAr2
emec

2 = 0.307MeV cm2/g

and
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Fig. 4.1: Energy loss as a function of the particle momentum. The predicted energy loss in keV/ cm for different
particle species is displayed. The expectation for kaon (pion) tracks is given by the dashed (dotted) curve.
The momentum range relevant in this analysis (3 GeV ≤ p ≤ 35GeV) is indicated by the shade area. In
this range, the expected separation between kaons and pions is at least 1.5σ.

• re is the classical electron radius

• m2
e is the mass of the electron ×c2

• NA is Avogadro’s number

• I is the mean excitation energy

• Z is the atomic number of the absorbing mate-
rial

• A is the atomic weight of the absorbing material

• ρ is the density of the absorbing material

• δ is the density correction described below

• η is the maximum energy transfer in a single
collision.

There are two additional corrections in Equation 4.1, δ/2 and C2/Z, which apply for high and low energetic
particles, respectively.

• The density correction δ(β)/2 accounts for the fact that the electric field of high energetic particles
tends to polarize the atoms along their path. Electrons at some distance from the path of the particle
will be shielded from the full electric field intensity. Collisions with these outer lying electrons will
therefore contribute less to the total energy loss than predicted by the Bethe-Bloch formula. This
effect, which depends on the density of the material, becomes more important as the particle energy
increases.

• The shell correction C2/Z depends on the atomic number of the material and becomes important as
the velocity of the incident particle approaches the orbital velocity of the bound electrons. At such
energies, the assumption that the electron is stationary with respect to the incident particle is no longer
valid. Because of the high energy of the particles considered here, this term is neglected.

For a given material, the mean energy loss per unit length is a universal function of βγ for all particle types.
It shows a characteristic decrease of the energy loss proportional to 1/β2 for low energetic particles, and it
reaches a minimum at around βγ ∼ 3. Such particles are called minimum ionizing particles (MIPS). In the
region beyond this point, a logarithmic rise is observed (however partly canceled by the density correction )
which ends in the Fermi plateau.
The mean energy loss as a function of the particle momentum in the Opal jet chamber is displayed in Figure
4.1. As a function of momentum, the curve is no longer universal but still shows the characteristic behavior
discussed above. By measuring simultaneously the mean energy loss and the momentum of a track, particle
identification becomes possible. The momentum range relevant for this analysis (3GeV ≤ p ≤ 35GeV) is
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Fig. 4.2: Landau distribution for minimum ionizing pions (p = (0.4− 0.6) GeV). A cut at | cos Θ| < 0.7 was applied
and a minimum of 40 dE/dx hits was required. The most probably value is about 6.8 keV/ cm. In order
to determine the average energy loss from a couple of dE/dx samples, the method of truncated mean is
used. The 30% highest energy loss samples are rejected and are not used to calculate the average energy
loss.

indicated by the shaded area. In this region, the expected energy loss for electrons as a function of the
momentum does not vary much. Electrons have the highest dE/dx of all particles considered. The energy
loss for protons is the smallest. Protons are too heavy to occur in τ decays, however they occur in qq̄
background events with low multiplicity. Muon tracks have an energy loss quite similar to the one for pions.
They can be reliably identified by the muon chambers, so that no dE/dx measurement is necessary in this
case. The expectations for kaons and pions, which are of particular interest here, are displayed as dashed
and dotted lines, respectively.
The distribution of energy loss of individual particles follows a Landau distribution which is displayed in
Figure 4.2. It peaks at low energy transfers which originates from distant collisions. One-sided non-gaussian
tail is due to high energy knock-on collisions with shell electrons.

4.1.2 The Energy Loss Measurement in Opal

Details of the Opal jet chamber have already been discussed in Chapter 3.2.1 and will not be repeated here.
When a charged particle passes through the jet chamber it produces an ionization cloud. This cloud travels
at a constant speed of vD ≈ 53 � m/ns in the homogeneous drift field to the sense wires, where it produces
a signal pulse. This signal pulse is integrated over ∆t = 200 ns, which corresponds to a drift distance of
∼ 1 cm. The integral is proportional to the energy loss of the particle in this particular drift volume. There
is a maximum sample size of 159 individual measurements for a given track. Certain quality criteria are
imposed on each individual hit and on the total hit sample used to evaluate the mean energy loss for each
track [51].

• Only hits, which are assigned to a track in the track fit are used. A hit is discarded, if a second one
is recorded on the same wire within ∆t = 200 ns. Hits are rejected, if a second one is expected within
3mm as calculated from the track parameters, since these hits could no longer be resolved. If a hit
is as close as 2mm to the anode plane, it is discarded since the drift field is no longer homogeneous,
which affects the energy loss measurement. For tracks crossing the sector boundaries, hits are rejected
for the same reason if they have a distance of 1 cm or less to the field wires. In the following, all hits
fulfilling these quality criteria are called ‘dE/dx hits’.



36 4. Experimental Aspects

• Each sample of hits recorded for a given track has to have a minimum size in order to determine the
mean energy loss with sufficient accuracy. The large inherent width of the energy loss distribution
as explained above, makes it necessary to require at least 20 of them along each track where particle
identification is required.

The individual samples for a given track are distributed according to a Landau distribution. To calculate the
mean energy loss, the method of truncated mean [50] is used, where 30% of the highest measured charges is
discarded. No truncation at the lower tail of the distribution is applied. The mean is then calculated using
the remaining 70% of the measured hits. Following this procedure, basically the gaussian like peak from soft
collisions is used for the calculation. Requiring at least 20 hits in each sample has the advantage, that in
the limit of many tracks, the distribution of the truncated means follows a gaussian distribution.

4.1.3 The Standard Opal Calibration

The measured energy loss for kaons and pions is quite similar in the momentum range considered here (see
Figure 4.1). The relative difference is of the order of 10% or less depending on the particle momentum. The
uncertainty of the measurement, which depends e.g. on the sample size for a given track and on its polar
angle, is of the order of 3%. A reliable particle separation is therefore possible with a significance of more
than 1.5σ over the full momentum range relevant here. This however requires an accurate and bias-free
measurement of the energy loss.

In the following, the standard Opal calibration corrections are described. They can be split into corrections
applied on a hit-by-hit basis and those applied on the mean energy loss of the corresponding track. These
corrections were determined using high multiplicity qq̄ events. A summary of all corrections applied either
to data events and/or events from Monte Carlo simulation are summarized in Table 4.1.

• Corrections on a Hit-by-Hit Basis:

– Effective Charge: If a high number of charged particles passes one sector of the drift chamber at
the same time, the amplitude, homogeneity and stability of the drift field as created by the field
wires is affected. The size of the effect depends on the rate of tracks, the synchrotron radiation
and the gas gain.

– Saturation Correction: Due to the high gas gain of 104, saturation effects have an impact on the
accuracy of the energy loss measurement. Near the sense wires, a screening effect is observed,
which is due to the remaining ions from the amplification of the electrons arriving first. The effect
is largest for tracks perpendicular to the wires, where the electrons reach the wire almost all at
the same spot. In addition, for short drift times, the electron cloud is not spread out much by
diffusion. For large drift distances or tracks with a small polar angle relative to the direction of
the wire, where the ions are distributed longitudinally and the space charge density is low, the
effect becomes smaller.

– Attachment Correction: The energy deposition of a charged particle in the jet chamber is not
completely recorded at the sense wires. Contaminations of electronegative material (e.g. oxygen)
in the drift chamber gas leads to an absorption of the electrons produced by the passage of the
charged particles. The size of this effect depends on the drift distance.

– Relative Gain Correction/Asymmetry Correction: The amplification factors are different due to
differences in the electric field or the gain constants of the amplifiers. Systematic differences
also arise from field distortions in the vicinity of the sector boundaries. The gain differences are
corrected using calibration factors derived from the data.

– Gas Density Correction: During data taking, the pressure and the density of the chamber gas
varied. This effect was corrected for by analyzing muon tracks from dimuon events as function of
the gas density. A typical time scale for readjustments of the density correction was of the order
of one week.

– Wine Bottle Effect: As the ionization cloud approaches the anode wires, the field is no longer
homogeneous. The electrons are drifting radially towards the sense wire. This effect is called wine
bottle effect. Correction factors are applied depending on the sector and wire number and on the
track angle relative to the drift direction.
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ID MC Data Description

0
√ √

Saturation (theta)
1 -

√
Cross Talk (local phi)

2 -
√

Correlation (theta x local phi)
3 -

√
Attachment

4 -
√

Wire to Wire Gain
6 -

√
Sector to Sector Gain (if no gas density)

8 -
√

Wine Bottle
9

√ √
Geometric Track Length (theta)

10
√ √

Geometric Track Length (local phi)
11 - - Curvature
12 -

√
Logarithmic Track Length

14
√

- Smear MC
15

√ √
Correction of Truncated Mean

16 -
√

Asymmetry Correction
17

√ √
Correction to Number of Hits

18
√ √

Correction to Effective Charge
19

√
- MC Rescaling to Different Bethe-Bloch Curve

Tab. 4.1: Standard corrections to the energy loss measurement applied to dE/dx hits in data and/or Monte Carlo
events.

– True Track Length: The measured charge on each individual wire depends on the projected track
length on the direction of the wire. Therefore the measured charged is normalized to 1 cm track
length. This normalization depends on the polar angle θ with respect to the beam axis and on
the angle relative to the drift direction given by the Lorentz angle.

• Corrections on Track Basis:

– In the calculation of the truncated mean, 30% of the highest energy loss measurements are dis-
carded. However, 0.3 times the number of dE/dx-hits is not always an integer number. This
leads to a shift in the calculated truncated mean, which depends on the total number of measured
hits.

– The value obtained for the mean energy loss via the calculation of the truncated mean depends on
the number of hits in the sample. This dependence has been studied using isolated tracks as well
as tracks in dense particle environments. This correction is only applied to hits with | cos Θ| < 0.8.

– Cross Talk: If a signal is recorded on one wire, a signal of opposite polarity is observed on the
two neighboring wires. This effect depends on the azimuthal angle φlocal of the track relative to
the sense wire plane.

4.1.4 Energy Loss Measurement in τ Decays

Before any of the corrections mentioned above is applied, either on hit level or on track level, a drift time
correction is calculated for each individual hit. This correction is explained in the following text and is
illustrated in Figure 4.3(b).
The measurement procedure of the energy loss for a single track traversing the jet chamber has been described
in Chapter 4.1.2. If an additional track passes through the same sector, a second pulse will be created on
each sense wire, which overlaps with the tail of the first one. The contribution of the tail is estimated
via extrapolation using a reference pulse [51], where the normalization of that pulse is proportional to the
integral over the first pulse. This estimated contribution is then subtracted from the measured integral over
the second signal pulse.
In τ decay events, where the final state consists of more than one track, the dE/dx measurement is known not
to be reliable [43]. The number of tracks that were identified as kaons was much higher than the expectation
and this could not be explained e.g. by the uncertainty on the branching fraction in strange τ decays (see
Figure 4.15). Therefore, in previous analyses of 3-prong τ decays, only the energy loss information of the
first track relative to the anode plane in the corresponding sector has been used for particle identification
purposes. All subsequent tracks have not been considered. This reduces the available statistics by roughly
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Fig. 4.3: Illustration of the tail subtraction procedure. (a) shows one half-sector of the Opal central drift chamber
with three tracks. The arrow indicates the drift direction of the ionization cloud following a path given by
a Lorentz angle of 20◦; (b) illustrates the signal seen on the sense wire for two successive pulses.

a factor of three. In addition, without particle identification for all tracks, the expected background rate
is higher. In the selection of a K−π+π−ντ final state, the contributions from K−K+π−ντ and K−K+K−ντ

events represent an irreducible background if particle identification is not required for all tracks.
The reference pulse used in the correction of the energy loss measurement was determined using qq̄ events.
Compared to τ decay events, they have on average a larger track multiplicity and therefore a lower energy.
The lower energy of the decay products leads to a larger spatial separation of the tracks in the event. This
means that the drift time difference between two subsequent hits on the same anode wire on average is
larger in multihadronic events compared to τ decay events and thus, the correction required is considerably
smaller. The distribution of the average drift time difference as observed in multihadronic events and in τ
decays is illustrated in Figure 4.4. Especially drift time differences in the range (200 − 400) ns, where the
correction is particularly large, are much more frequent in τ decays than in multihadronic events. If, in the
above correction procedure, the tail correction for ‘second pulses’ is overestimated, this leads to a systematic
shift in the energy loss measurement towards lower values and thus to a misidentification of pions as kaons
(see Figure 4.1).

4.1.4.1 Drift Time Correction

In order to quantify the systematic shift in the energy loss measurement as a function of the drift time
difference between two subsequent hits, and in order to determine an optimized reference pulse, the following
track topology was selected from the data. Tracks that have ‘first hits’ as well as ‘second hits’ and a
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Fig. 4.4: Distribution of the drift time differences in τ decays compared to qq̄ events. The distribution obtained
using τ decays is given by the solid line. The distribution obtained using high multiplicity multi-hadronic
events is displayed as dashed histogram. For τ decays, the average distance between two successive hits
on the same sense wire is considerably smaller.
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momentum greater than 3GeV were used. This means that only events have been used, where a second
track traverses the same sector of the drift chamber and these two tracks have an intersection point in the
r − φ plane within the sensitive volume. This is illustrated in Figure 4.3(a). The tracks (1) and (2) fulfill
the above requirements. The ‘first hits’ (‘second hits‘) on each track are illustrated by the full (open) dots.
Thus, for a given track, some of the hits do not need tail subtraction (‘first hits’) and some hits do need tail
subtraction (‘second hits’). Using ‘first hits’ only (given there are at least 20 of them) the expected energy
loss (dE/dx)exp for a the track is calculated. The ‘second hits’ of the same track were then used to obtain
the measured energy loss (dE/dx)meas. The measured energy loss, normalized to the expectation was then
analyzed as a function of the drift time difference ∆t between two successive hits on the same anode wire1.
The result obtained is displayed in Figure 4.6(a). For two hits that are as close as ∆t = 200 ns, the observed
deviation is of the order of 10% of the expected energy loss. In the region between 400 ns < ∆t < 900 ns the
measured dE/dx is slightly overestimated. The standard correction is finally switched off for pulses with
a drift time difference of more than 1000 ns which produces the step visible there. Weighted with the ∆t
distribution of all measured hits, this gives on average the correct mean energy loss for high multiplicity
events. For multiprong τ decays, however, the distribution of drift time differences, as illustrated in Figure
4.4, is different and the mean energy loss for the corresponding track tends to be too low. This leads to the
systematic misidentification of kaons as pions.
The same procedure can be used in those cases where a third track is present in the same sector. Again,
the measured energy loss, normalized to the expectation is calculated and displayed in Figure 4.6(b). The
distribution is analyzed as a function of the drift time relative to the first hit observed on the corresponding
anode wire. Since a minimum drift time difference of 200 ns is required for two successive hits by the quality
criteria, the distribution starts only at a ∆t of ∼ 400 ns.
For this analysis, a new reference pulse has been developed that avoids the shortcomings of the standard
one using the distribution as obtained from the analysis of ‘second hits’. A parametrized pulse shape was
used here instead of a binned one in order to avoid artifacts from the binning like the dip at ∆t ≈ 500 ns.
The new reference pulse is of the form

Pnorm =
(
p1∆t exp

(
−∆t

p2

)
+ p3(∆t)2 exp

(
− (∆t)2

p4

))

+
(
p5∆t exp

(
−∆t

p6

)
+ p7(∆t)2 exp

(
− (∆t)2

p8

))

+
(
p̃1 + p̃2∆t

)
(4.2)

to describe the short-range and the long range part respectively plus a linear contribution. The pi are
parameters that are optimized using the dense environment in τ decays. The numerical values are given

1 The left-right ambiguity, which in principle exists if two tracks pass on different sides of the anode plane, is treated properly
here, since the correction is applied based on measured drift times and not on the spatial separation of the tracks.
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Fig. 4.5: In (a), the new normpulse is shown as shaded band in arbitrary units. The long range part is shown
separately. The width represents the uncertainty on the parametrization. The old, binned normpulse
is shown as histogram. In (b), the integral over the reference pulses as used in the tail subtraction is
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Normpulse Parametrization

Long Range Part Short Range Part Linear Part (×10−2)

p1 5.43 ± 0.13 p5 0.0407 ± 0.0001 p̃1 -8.69 ± 0.8
p2 2.17 ± 0.03 p6 26.03 ± 0.13 p̃2 -0.02 ± 0.004
p3 1.04 ± 0.12 p7 0.117 ± 0.004
p4 1.72 ± 0.07 p8 4.96 ± 0.04

Tab. 4.2: Parameters of the optimized pulse shape. The parameters are given separately for the short range and
the long range part, respectively.

in Table 4.2. The shaded band in Figure 4.6(a) and (b) represents the uncertainty in the parametrization
of the pulse shape. The new correction is applied to all hits, not only to those where the preceding hit is
within ∆t ≈ 1000 ns (5 cm) of the preceding pulse, to avoid the s-shaped structure. The new reference pulse
is displayed in Figure 4.5. The new pulse is displayed as a smooth curve. The binned histogram represents
the old, binned pulse as used in the standard Opal correction. The new pulse has a steeper rise for very
small ∆t and a smaller tail for higher drift time differences.

The measured energy loss, normalized to the expectation as a function of the drift time difference using
the new reference pulse, is displayed in Figure 4.6(c). The corresponding distribution for ‘second hits’ is
displayed as full dots. The distribution shows a flat behavior over the whole range of observed drift time
differences.

The correction procedure using a reference pulse is applied iteratively, i.e. the first pulse is used to correct
the second one, the first and corrected second pulse are used to correct a possible third pulse and so on.
Therefore, the chosen reference pulse is valid for any jet topology [51]. The same reference pulse is therefore
used to correct the sample of ‘third hits’. The corrected distribution in this case in displayed as open dots
in Figure 4.6(c). Also this distribution shows a flat behavior over the full range of observed drift time
differences. This distribution is shifted by −0.1 for illustration purposes. As a result of this procedure, a
dE/dx bias reduction to better than 1% in (dE/dx)meas/(dE/dx)exp has been achieved, which is illustrated
in Figure 4.7.

4.1.4.2 Cross Talk Correction

When a signal is present at a sense wire, a signal of opposite polarity is induced in the neighboring wires,
which affects the accuracy of the energy loss measurement. This effect is called cross talk. It has been
analyzed on a hit-by-hit basis as a function of the time difference ∆t = t2 − t1 between signals recorded on
neighboring wires for the same track (see Figure 4.8(a)). It is a function of the local azimuthal angle φlocal

of the track within the corresponding sector and a function of the curvature of the track.

This effect is analyzed using muon tracks from Z0 → µ−µ+ events. Since the effect is also a function of
the curvature of the track, i.e. a function of the momentum, muons from τ decays involving muons are also
used. For a given track, the measured energy loss, normalized to the expectation as calculated using the
Bethe-Bloch parametrization, is analyzed as a function of the drift time difference ∆t = t2 − t1 between
signals on two neighboring anode wires. The size of the effect was found to be dependent on the polar angle.
It was therefore analyzed in seven bins in the range −0.9 ≤ cos Θ ≤ 0.9. The result is displayed in Figure
4.8 for the bin −0.1 ≤ cosΘ ≤ 0.1, where the effects is largest (crosses) and as integral over the full cos Θ
range as full dots. The effect is of the order of −5% with respect to the expectation for ∆t = 0. In this case
the tracks have very high momentum and they traverse the jet chamber very close to the anode plane. The
effect is +5% with respect to the expectation for a high momentum track that passes the sector close to the
cathode plane or for low momentum tracks with large curvature.

The observed effect is parametrized as a function of ∆t

C(cos Θ, ∆t) =

3∑

i=1

Ai(cos Θ) · (∆t)i−1, (4.3a)
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Fig. 4.8: Illustration of the cross talk correction. In plot (a), the drift time difference ∆(t2 − t1) as used in the
analysis of the cross talk correction is illustrated. In plot (b), the cross talk correction as determined using
muons from τ decays and Z0 → µ+µ− events is displayed. This effect was studied in seven cos θ bins. The
results is displayed for the bin −0.1 ≤ cos Θ ≤ 0.1, where the effects is largest (crosses) and integrated over
the full momentum range (full dots). The size of the correction is up to 5%. The regions marked on top
of the plot refer to the explanations as given in the text.

where the Ai are functions of the polar angle cos Θ

Ai(cos Θ) =

4∑

j=1

a
(j)
i · | cos Θ|j−1. (4.3b)

The numerical values for the parameters ai are given in Table 4.3.
In [43], an additional correction as a function of the local azimuthal angle of the track φlocal in the sector
of the jet chamber was introduced. This effect was found by analyzing Z0 → µ+µ− on track level, i.e. the
mean energy loss of the track. This effect is displayed in Figure 4.9 as open dots. The mean energy loss for
high energetic muons from Z0 → µ+µ− is expected to be 9.7 keV/ cm. For φlocal = 0 this value is observed
within the experimental uncertainties. Close to the anode plane (|φlocal| ≈ 1◦) the observed mean energy
loss for a high energetic muon tracks is ∼ 2% below the expectation. This corresponds very well to the
results obtained in Figure 4.8 in region I. Due to the influence from cross talk, the measured energy loss is
lower than the expectation. With increasing |φlocal|, this effect becomes smaller (region II). At the sector
boundaries, close to the cathode plane, the measured energy loss is again overestimated (region III). The
same event type was analyzed as in [43]. With the hit based cross talk correction, used instead of the track
based one, the φlocal dependence is no longer visible in Figure 4.9. The effect can therefore be fully explained
by cross talk effects, which have been corrected using the hit-based procedure, developed in this work.

4.1.4.3 Anode/Cathode Plane Correction

If a track is within one or two cm of the anode- or cathode plane in the jet chamber, the drift field is no
longer homogeneous. This affects the accuracy of the energy loss measurement for tracks near the sector
boundaries. In order to study the size of this effect and to determine a correction function, Z0 → µ−µ+

events have been used. These events were tagged by requiring exactly two tracks in the event. One muon was

a
(1)
i a

(2)
i a

(3)
i a

(4)
i

A1 0.947 0.156 -0.283 0.192
A2 -0.004 0.0188 -0.0330 0.0204
A3(×10−3) 0.0202 0.276 -0.328 0.119

Tab. 4.3: Parameters for the cross talk correction.
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Fig. 4.9: The measured mean energy loss for tracks from Z0 → µ+µ− events. The open dots represent the distri-
bution using the standard Opal cross talk correction. The full dots represent the same distribution using
the hit-based cross talk correction developed in this work. The regions marked on top of the plot refer to
the explanations as given in the text.

tagged by cutting on its energy (|Ebeam − Eµ− | < 2GeV). Background contributions from other di-lepton
events were reduced by requiring associated hits in the muon chambers and an energy deposition of less
than 1GeV in the electromagnetic calorimeter. Remaining muons from τ decays, which will not have the
expected energy due to the additional neutrino are discarded by requiring an acollinearity angle of less than
1◦.
The energy loss measurement is then analyzed as a function of the distance to the anode/cathode plane
using the muon in the opposite hemisphere. Since the energy of the muon is known in this case, the expected
energy loss can be calculated using the prediction from the Bethe-Bloch parametrization.
The measured energy loss, normalized to the expectation is displayed in Figure 4.10 and Figure 4.11 sep-
arately for µ− (full dots) and µ+ (open dots) as a function of the distance to the cathode plane and the
anode plane, respectively. A deviation of up to 3% relative to the expectation was observed for drift times

of ≈ 200 ns
∧
= 1 cm. For drift times larger than 600 ns

∧
= 3 cm, no correction is necessary any more in all

cases. Linear functions A(∆t) and C(∆t) were used to correct for the observed effects close to the anode
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Fig. 4.10: Anode and cathode plane corrections, determined using Z0 → µ+µ− events. The measured energy loss,
normalized to the expectation as calculated from the Bethe-Bloch parametrization, is displayed as a
function of the distance to the anode plane.
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Fig. 4.11: Anode and cathode plane corrections, determined using Z0 → µ+µ− events. The measured energy
loss, normalized to the expectation as calculated from the Bethe-Bloch parametrization is displayed as a
function of the distance to the cathode plane.

and cathode plane, respectively:

A(∆t) = 1.04 +/− 0.67 · 10−4∆t (4.4)

C(∆t) = 0.95 +/− 0.69 · 10−4∆t (4.5)

The sign in front of the second term corresponds to particle approaching from the left or from the right side.

4.1.4.4 Correlation between Corrections

In principle, correlations exist between the individual corrections applied to each individual hit. For example
the attachment correction, which compensates the charge loss of an ionization cloud due to electronegative
gas like oxygen in the drift chamber, is a function of the drift distance. The improved drift time correction
as developed in this analysis could in principle affect the standard Opal corrections.
Therefore, the effect on each of the standard corrections, with and without the above improvements applied,
has been studied. The effect was found to be largest for the attachment correction and the gain correction.
This is illustrated in Figure 4.12. In these cases, the effect was found to be of the order of 1%
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Fig. 4.12: Correlation to the standard correction. The influence of the new corrections on the attachment correction
(left plot) and the gain correction (right plot) is illustrated as function of the drift time difference. The
effect is of the order of 1%
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4.1.5 Adjustment of the Experimental Errors

After all the corrections described above, the systematic bias of the energy loss measurement in the τ
environment could be reduced from O(10%) to O(1%). From the measured energy loss, its error and the
expectation calculated using the Bethe-Bloch equation, χ2 probabilities are calculated that the measured
energy deposition is in accordance with the expectation for a given particle type, as

P (χ2
meas, ν) =

∫ ∞

χ2
meas

Γ(χ2, ν) dχ2, (4.6)

where Γ(χ2, ν) is the χ2-p.d.f. and ν = 1 the number of degrees of freedom. Pion- and kaon-weights, Wπ

and WK are then calculated by taking one minus the value of this probability. These weights acquire a
sign depending on whether the actual energy loss lies above or below the expectation for a certain particle
hypothesis. This means that Wπ is expected to be close to −1 for kaons since their energy loss per unit
length is smaller in the momentum range relevant in this analysis. For electron tracks, Wπ is expected to be
close to +1 due to the higher energy loss in this case. Whenever these quantities are used in the selection,
a cut on at least 20 dE/dx hits for this track is implicitly made.
To calculate the probability that the measured energy loss is in agreement with the expectation for a given
particle type, an accurate description of the experimental uncertainty is necessary. In order to verify this
and to determine correction factors if needed, distributions of residuals R are studied:

R =
(dE/dx)meas − (dE/dx)exp

σ
dE/dx
exp

, (4.7)

which is the measured energy loss for a given particle observed in the detector, minus the expectation as
calculated from the Bethe-Bloch equation for a particular particle hypothesis, divided by the expected error
of the measurement. For a sample of a single particle species and for the right particle hypothesis, this
results in a unit Gaussian with mean zero and unit width. Any deviation in shape and position from this
expectation is an indication for either the wrong particle hypothesis, a systematic shift in the energy loss
measurement or an inaccurate description of the experimental uncertainties.
The track sample analyzed here contains three different particle species: pions, kaons and electrons. The
distribution of residuals as defined in Equation 4.7 is therefore a superposition of three distributions. The
number of muon tracks in the sample considered here is negligible. For those tracks, the probability for final
state radiation and a subsequent conversion of the photon (to fake a 3-prong event) is very low. The rate
is below 1% and these tracks are absorbed in the peak produced by the pions. Using pion hypothesis, one
observes one Gaussian peak originating from pion tracks which is centered around zero. The peak from the
kaons in the sample is situated left from the pion peak, since the energy loss for kaons is less than the one
expected for pions in the momentum range considered here (see Figure 4.1). The contribution from electron
tracks is expected right from the pion peak. The shape of the contributions from kaon and electron tracks
are not Gaussian-like since the difference in energy loss for these two particle species is not constant as a
function of the particle momentum relative to the expectation from pions. The individual contributions as
described above are illustrated in Figure 4.13.
The residual under pion hypothesis is then analyzed in a χ2-fit as explained below. To assess possible
correction factors, for every track in the sample the residual under pion hypothesis Rπ

meas is calculated

Rπ
meas =

(
dE

dx

)

meas

· Pscal −
(

dE

dx

)π

exp

σ
dE/dx
meas · Perr ·

( dE
dx )

π

exp

( dE
dx )

meas

− Pmean. (4.8)

The parameters Pscal and Perr are multiplicative scaling factors for the measured energy loss and the exper-
imental error. Pmean is an additive correction factor, to allow for an overall shift of the whole distribution.
They are free parameters in the fit. After all corrections, Pscal and Pmean are expected to be one. Since the
bias of the dE/dx measurement has been substantially improved, the experimental uncertainty is expected
to be smaller. Perr is therefore expected to be less than one, which is then used as scaling factor for the
experimental uncertainty. For small enough momentum bins, the difference in energy loss is in good approx-
imation constant and the expected distribution of measured residuals can be described by the sum of three
Gaussians.

Dtheo =
∑

i∈{K,π,e}

Ci exp

(
−1

2

x2
i

σ2
i

)
, (4.9)
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Fig. 4.13: Distribution of residuals as expected for the particles species considered here.

where xi is the expected residual as calculated from the Bethe-Bloch formula for each of the particle hy-
potheses using the measured momentum of the track. The parameters Ci are normalization factors that
represent the relative size of the contributions of each of the three particle species relevant here. Two of
them, CK and Ce are free parameters of the fit. The fraction of pion tracks is not a free parameter since
it can be calculated via Cπ = 1 − CK − Ce. The error σi is the expected width of the Gaussian, which is

σπ = 1 for the central peak and σi =
(

dE
dx

)i
exp

/
(

dE
dx

)
meas

for kaons and electrons.

In the fit, the following χ2 is minimized

χ2 =

∑
Tracks Rπ

meas −
∑

Tracks Dtheo

σstat
. (4.10)

The fit was tested using Monte Carlo track samples. Here, the particle species for each individual track is
known, and the distribution of the residual and the relative size of the contribution of each particle species
can be compared to the result obtained in the fit. This is illustrated in Figure 4.14. In the upper row, the
momentum distribution of all tracks considered in the fit is displayed separately for all three particle species.
The dots represent the distribution used in the Monte Carlo simulation and the histogram is the prediction of
the fit as calculated from the fit parameters CK, e, π. The shaded area represents the uncertainty as obtained
in the fit. Below, the residual for each individual particle species as obtained from the fit is compared to the
expectation. In general, a good agreement between the Monte Carlo and the results of the fit is observed.
The scaling factor Perr for the experimental uncertainty of the energy loss measurement were found to be
one within the errors of the fit. The corrections described in the previous section are relevant for data tracks

only. They are not present in the Opal detector simulation, therefore no scaling of σ
dE/dx
meas is necessary. The

same is true for Pscal and Pmean, which were found to one and zero within statistical uncertainty, respectively.

This fit is now applied to the track sample in data events. The tracks in 1-prong and in multi-prong τ decay
environment are fitted separately for each year of data taking. The results obtained for the parameters of the

fit are given in Table 4.4. For the error on the energy loss measurement σ
dE/dx
meas a scaling factor of up to 0.9

was obtained in the multi-prong environment. This means a 10% reduction of the experimental uncertainty.
Furthermore, in this environment, a shift of the order of 0.05 was observed. In the 1-prong environment, as
expected only small corrections are obtained from the fit.
The effect of all corrections can be seen in figure 4.15. It shows the dE/dx pull distribution under a pion-
hypothesis for all like-sign tracks from 3-prong tau decays. The full dots represent the result obtained using
tracks in data events with all corrections applied. The solid line represents the prediction from the fit as
explained above. In addition, the distribution of residuals with the default Opal correction only is shown as
open dots. Due to the effects explained above, a significant excess of events is observed in the range where
the kaon tracks are expected.
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Fig. 4.14: Test of the fit procedure using tracks from Monte Carlo simulation. In the upper row, the momentum
distribution in the Monte Carlo (dots) is compared to the distribution as obtained from the fit (histogram).
The shaded area represents the uncertainty from the fit. Below, the distribution of residuals for the
individual particle species as obtained from the fit (histogram) is compared to the prediction from the
Monte Carlo simulation.

1-prong

Year Pmean Perr Pscal

91 0.0077 ± 0.0015 0.9810 ± 0.0073 0.9989 ± 0.0022
92 0.0078 ± 0.0049 1.0128 ± 0.0054 0.9995 ± 0.0016
93 0.0048 ± 0.0027 1.0013 ± 0.0063 0.9995 ± 0.0070
94 0.0012 ± 0.0013 1.0018 ± 0.0090 0.9971 ± 0.0057
95 0.1128 ± 0.0032 1.0100 ± 0.0056 0.9994 ± 0.0062

91 0.0533 ± 0.0091 0.9293 ± 0.0077 1.0074 ± 0.0015
92 0.0517 ± 0.0056 0.9365 ± 0.0065 1.0099 ± 0.0012
93 0.0499 ± 0.0046 0.9021 ± 0.0074 1.0064 ± 0.0006
94 0.0371 ± 0.0039 0.9509 ± 0.0097 1.0085 ± 0.0010
95 0.0355 ± 0.0083 0.9657 ± 0.0120 1.0081 ± 0.0022

Year Pmean Perr Pscal

multi-prong

Tab. 4.4: Result of the fit to the residuals. The mean of the parameters Pmean, Perr and Pscal are given separately
for each year of data taking and for tracks in 1-prong and multi-prong environment separately.
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Fig. 4.15: Pull distribution obtained under a pion hypothesis for all tracks in 3-prong τ decays with a minimum
momentum of 3 GeV and a minimum number of 20 hits in the dE/dx measurement. Only the tracks with
the same charge as the decaying τ are shown. The full points with error bars are data after all corrections
and the histograms shows the expectation as explained in the text. The open points in the range between
-8 to -2 show the same distribution but without the corrections mentioned in the text. The smaller plot
at the bottom shows the ratio of the full data points to the histogram.
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4.2 Photon Reconstruction and Identification of Neutral Pions

For a classification of the final states in hadronic τ decays, a reliable identification of the number of neutral
pions involved is therefore essential. The neutral pion decays after a mean lifetime of τπ0 = (0.084±0.006) fs
into two photons. The identification of photons and the reconstruction of their four-momenta is therefore
necessary for the reconstruction of the invariant mass of the hadronic system. This requires the analysis of
electromagnetic showers observed in the Opal lead glass calorimeter. It includes the identification and the
correct treatment of electromagnetic cluster with or without an associated track pointing to it.
The algorithm used here is based on a shower parametrization described in [61] and the ’Find Photon
Package’ [40], which determines the number of photons and their four-momenta for a given electromagnetic
cluster observed in the detector. This package was originally developed for the measurement of the non-
strange spectral function. In this analysis, the algorithm had to be optimized for the use in strange τ decays
for two reasons.

1) The algorithm has the tendency to reconstruct too many photons. While the high energy tail is
described precisely, the low energy part shows some clear discrepancies. In particular in 3-prong τ
decays, too many photons with energies below 2GeV are reconstructed. Pairing algorithms, originally
developed to reconstruct jets in multihadronic events, are used to reduce the number of low energy
photons and to improve the energy resolution.

2) The relative size of the branching fractions for the multi-meson final states in τ decays are different in
the strange and in the non-strange case. Two effects contribute here:

• The (JP = 1−) final state in strange decays is dominated by the K∗(892) resonance. Assuming
isospin symmetry and an equal contribution from decays involving K0

S and K0
L, the three decay

channels of the K∗(892)(K−π0, K0
Sπ− and K0

Lπ−) should contribute equally. The decay channel
involving a neutral pion is therefore suppressed by the ratio 2

B(τ− → K0π−ντ )

B(τ− → K−π0ντ )
=

2

1
. (4.11)

There is no such effect in the corresponding two-meson final state in the non-strange case.

• The relative size of τ decays into a single kaon is enhanced with respect to the non-strange
counterpart (τ− → π−ντ ). This can be explained by ‘helicity suppression’ of the spin-0 final
states. In the restframe of the W boson, the decay products are produced back-to-back. In the
chiral limit, only left-handed fermions and right-handed anti-fermions exist. Therefore, the decay
products have to be in a spin-1 state. If the final state fermions have mass, the decay into a spin-0
state is possible. However it is still suppressed by a factor which is proportional to the masses of
the quarks involved:

mu

mτ
+

md/s

mτ
+ O

(
m2

u/d/s

m2
τ

)
. (4.12)

In the case of non-strange final states, where the masses of the quarks are still very small, this
leads to a strong suppression of the decay τ− → π−ντ (JP = 0−) over τ− → π−π0ντ (JP = 1−),
while from phase space considerations alone. The latter would be expected to be smaller.

In strange decays, however, the situation is different due to the relatively large mass of the strange
quark. Here, the single kaon final state (JP = 0−) is enhanced with respect to the τ− → K∗(892)ντ

final state (JP = 1−).

The ratios of the branching fractions in the strange and non-strange case are

B(τ− → π−ντ )

B(τ− → π−π0ντ )
=

(11.06 ± 0.11)%

(25.41 ± 0.14)%
≈ 1

2
(4.13a)

B(τ− → K−ντ )

B(τ− → K−π0ντ )
=

(0.686 ± 0.023)%

(0.450 ± 0.030)%
≈ 1.5

1
. (4.13b)

2 Corrections due to the masses of the final state particles involved are neglected in this explanation.
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Since the background contribution from the single kaon in the K0π−ντ final state is higher than in
the corresponding non-strange decay channels for the reasons explained above, the reconstruction and
selection criteria had to be optimized for the use in strange τ lepton decays.

Therefore, in the optimization of the photon reconstruction and the identification of neutral pions, only
those events where used, where at least one kaon candidate track was found. This section starts with an
introduction on the description of electromagnetic shower and the parametrization of the shower shape in
the barrel part of the OPAL lead glass calorimeter is explained. In Section 4.2.3 the Find Photon algorithm
is explained which is used to identify photon candidates and to reconstruct their four-momenta. A pairing
algorithm in then applied to these candidates in order to reduce the number of fake photons and to increase
the energy resolution. Finally, the reconstruction of neutral pions from photon candidates is described in
Section 4.2.5

4.2.1 Description of Electromagnetic Shower

For an electromagnetic shower, the longitudinal energy distribution scales with the radiation length X0

of the matter it develops in. The lateral distribution scales with the so-called Molière radius RM [55],
which describes the average deviation of an electron of energy EC from the incident direction by Coulomb
scattering. It is given by

RM = X0
ES

EC
(4.14)

where ES is the scale energy ES =
√

4π/α mec
2 = 21.1MeV. In material containing fractions wj of the

element with critical energy Ec, j and radiation length Xj , the Molière radius is given by

1

RM
=

1

ES

∑

j

wjEc, j

Xj
. (4.15)

The Opal lead glass calorimeter in the central region consists of SF-57 with a density of 5.54 g/cm
3

and a
radiation length of X0 = 1.50 cm which leads to a critical energy of EC = 13.0MeV and a Molière radius of
RM = 2.92 cm.
This analysis is restricted to the barrel part of the Opal detector (| cos Θ| < 0.68). Since there is no
segmentation in longitudinal direction, the development of the shower can only be analyzed considering the
lateral development. The density of the lateral energy distribution can be described by the sum of two
exponentials [56]

f(ρ) = a1λ
2
1 · exp

(
− λ1ρ

)
+ a2λ

2
2 · exp

(
− λ2ρ

)
, (4.16)

where Bremsstrahlung is responsible for the narrow part which is called the ‘core’ of the shower. The broad
component is due to Coulomb scattering and is called the ‘halo’. The factors a and b are normalization
constants which add up to unity. The variable ρ is the radial distance from the shower axis. The integral

∫ R

0

f(ρ)ρdρ (4.17)

then gives the fraction of the total energy of the shower, which is contained within a radius R around the
axis of the shower. Measurements now show, that 90% of the total shower energy is contained within one
Molière radius and 99% is contained within 3.5RM. Requiring that the integral in Equation 4.17 goes to
unity as the radius R goes to infinity, leads to three constraints

∫ ∞

0

f(ρ)ρdρ = 1 (4.18a)

∫ RM

0

f(ρ)ρdρ = 0.9 (4.18b)

∫ 3.5 RM

0

f(ρ)ρdρ = 0.99. (4.18c)
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The value of c = b/a of the relative contribution of halo to core, and the parameters λ1 and λ2 were
determined in a fit to the observed lateral energy distribution using (2−10)GeV electrons (see [61]). Equation
4.16 can then be rewritten as

f(ρ) = 0.89 · (1.81)2 · exp
(
− 1.81ρ

)
+ 0.11 · (0.39)2 · exp

(
− 0.39ρ

)
, (4.19)

using c = 0.12, λ1 = 1.81 and λ2 = 0.39.

4.2.2 Parametrization of the Shower Shape in the Barrel

Equation 4.19 can now be used to predict the energy of a photon shower deposited in each calorimeter block
as a function of the center of the shower. The energy is given by

Ei =
1

2π

∫ xmax
i

xmin
i

dx

∫ ymax
i

ymin
i

dy
dE

dρ
(4.20)

with

dE

dρ
= E0 ·

(
0.89 · (1.81)2 · exp

(
− 1.81ρ

)
+ 0.11 · (0.39)2 · exp

(
− 0.39ρ

))
(4.21)

and

ρ =
√

(x − x0)2 + (y − y0)2. (4.22)

Here (x0, y0) are the cartesian coordinates of the point of incidence, and E0 is the energy of the photon.
Performing this integration for each photon shower is time consuming. Therefore, in [61] the simulated
energy distribution of an electromagnetic shower in a lead glass block cluster was calculated using Equation
4.20 for showers with centroids at 441 distinct points within the central block of the cluster. The front side
of each block in the barrel has a cross section of (10 × 10) cm2 and two points in the grid therefore have
a distance of 0.5 cm. The energy fractions deposited in each block as a function of the coordinates of the
centroid in the central block are displayed in Figure 4.16. Only those showers that have their center close to
the edge of a block, deposit a significant amount of energy in the neighboring block. There are two effects
that are small and that are therefore neglected in the calculations.

1. Only those blocks are considered that are direct neighbors of the block the center of the shower is
located in. In this 3 × 3 lead glass block cluster, at least 98.9% of the total energy of the incident
particle is deposited. Other blocks further away are not considered.

2. The lead glass blocks in the barrel region of the ECAL have a quasi-pointing geometry. This means
that they are not directly pointing to the primary vertex, but they have a small tilt angle of 2.25◦

in ϕ-direction and of ∼ 1.9◦ in z-direction. By this configuration, it is excluded that photons exactly
hit the gap between two blocks, where they are not recognized. This small tilt is neglected in the
calculations.

The calculated fractions were found to be smooth functions of the position of the center of the shower and
can therefore be parametrized using higher order polynomials. Five different polynomials were used

Block 1 : (a1 + a2x
6)(a3 + a4y

6) (4.23a)

Block 2, 4 : (a1 + a2x + a3x
2 + a4x

3 + a5x
4 + a7x

6+

a8x
7 + a9x

8)(a10 + a11y
4) (4.23b)

Block 3, 5 : (a1 + a2y + a3y
2 + a4y

3 + a5y
4 + a7y

6+

a8y
7 + a9y

8)(a10 + a11x
4) (4.23c)

Block 6, 8 : a1 + a2(x + y) + a3(x + y)2 + a4(x + y)3 + a5(x + y)4+

a7(x + y)6 + a8(x + y)7 + a9(x + y)8 + a10(x + y)9 + a11(x + y)10 (4.23d)

Block 7, 9 : a1 + a2(x − y) + a3(x − y)2 + a4(x − y)3 + a5(x − y)4+

a7(x − y)6 + a8(x − y)7 + a9(x − y)8 + a10(x − y)9 + a11(x − y)10. (4.23e)

The numbering scheme for each block within the cluster is given in Figure 4.16 and the parameters ai are
given in Table 4.5.
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Fig. 4.16: Fraction of the total energy deposited in each block in a cluster of the size 3× 3 blocks. The coordinates
given in each always correspond to the incident coordinates of the photon in the central block. For better
visibility, only fractions larger than 0.05 are displayed. The numbers given in the center of each block
correspond to the numbering scheme of the parametrization as used in Equations 4.23.

Block a1 a2 a3 a4 a5 a6

1 8.732·10−1 -3.667·10−5 1.092 -4.588·10−5 - -
2 3.168 -1.269 5.191·10−2 -1.665·10−2 5.468·10−2 -1.345·10−2

3 5.791·10−1 -2.264·10−1 6.683·10−2 -2.195·10−2 1.127·10−3 3.354·10−4

4 1.374 5.413·10−1 1.501·10−1 4.746·10−2 3.733·10−3 -1.343·10−4

5 5.035·10−1 2.175·10−1 5.156·10−2 5.578·10−3 7.610·10−7 1.225·10−3

6 1.399·10−3 -4.106·10−4 3.720·10−5 5.261·10−6 4.000·10−6 -1.425·10−6

7 1.403·10−3 4.202·10−4 3.715·10−5 -6.639·10−6 3.896·10−6 1.480·10−6

8 1.399·10−3 4.136·10−4 3.678·10−5 -6.456·10−6 3.924·10−6 1.494·10−6

9 1.395·10−3 -4.187·10−4 3.970·10−5 7.002·10−6 3.645·10−6 -1.514·10−6

Block a7 a8 a9 a10 a11

1 - - - - -
2 2.466·10−3 -1.015·10−3 1.379·10−4 2.498·10−3 -2.228·10−6

3 7.642·10−4 -2.967·10−4 2.878·10−5 1.295·10−2 -1.153·10−5

4 1.812·10−3 6.774·10−4 6.572·10−5 5.483·10−3 -4.862·10−6

5 8.677·10−4 2.071·10−4 1.674·10−5 1.524·10−2 -1.363·10−5

6 -6.850·10−8 4.487·10−8 -8.048·10−10 -5.051·10−10 3.027·10−11

7 -6.381·10−8 -4.585·10−8 -8.903·10−10 5.123·10−10 3.092·10−11

8 -6.162·10−8 -4.609·10−8 -9.431·10−10 5.114·10−10 3.103·10−11

9 -5.290·10−8 4.648·10−8 -1.064·10−9 -5.148·10−10 3.172·10−11

Tab. 4.5: Table of coefficients for the parametrization of the fraction of energy deposited in a 3 × 3 cluster of lead
glass blocks in the barrel region (see Equations 4.23). The numbering scheme is illustrated in Figure 4.16.
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4.2.3 The Find Photon Algorithm

The above parametrization is now used to describe the measured shower shape in each cluster3 as a function
of the four-momentum of the incident photons. The hypothesis that up to n = 8 photons are responsible
for the observed shower shape is tested. For each photon, the energy and its azimuthal and polar angle
(Ei, ϕi, θi) are fitted, which gives a total number of 3n parameters in a fit, where the hypothesis is tested,
that n photons are responsible for the measured shower shape. In this fit, only those blocks within a cluster
are considered that have a minimum energy of EBlock

min = 150MeV. The distribution of block energies can be
found in Figure 4.17(a) and (b) for cluster without and with associated track, respectively. The data is well
described by the Monte Carlo simulations for block energies above 150MeV. The number of blocks observed
in a given cluster is displayed in Figure 4.18 for minimum block energies of 50MeV and 150MeV for cluster
with and without associated tracks. With the more stringent energy cut applied, the distribution observed
in the data is well described by the Monte Carlo simulation, while for the looser cut significant discrepancies
are observed.
In Figure 4.19(a) the energy distribution for clusters without associated track is given. The dashed line
denotes the contribution from those clusters in the Monte Carlo, where on generator level a photon from a
π0 decay is pointing to it. By requiring a minimum cluster energy of ECluster

min = 600MeV, the rate of fake
clusters is significantly reduced.
Not only photons and electrons/positrons are expected to leave an energy deposit in the electromagnetic
calorimeter. Due to hadronic interactions, pions/kaons or muons also leave a certain amount of energy.
Therefore, the energy deposit of a minimum ionizing muon is subtracted from the measured energy in each
block a track is pointing to. The energy deposit of a minimum ionizing muon was determined using muons
from τ decays and it was found to be 420MeV in the barrel region [40]. The total energy observed in the
clusters with associated tracks is displayed in Figure 4.19(b). The peak from minimum ionizing particles is

3 A cluster is a group of neighboring blocks with minimum energy EBlock
min ≥ 50 MeV.
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Fig. 4.17: Block energy in cluster with and without associated tracks. The dots are the data and the histogram is
the Monte Carlo simulation. The small insert shows a logarithmic plot of the whole energy range. The
plots are normalized to the number of τ decays.
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Fig. 4.19: Energy distribution of clusters without (plot (a)) and with (plot (b)) associated tracks. A minimum
block energy of EBlock

min = 150 MeV is required. The dots are the data and the solid histogram denotes the
prediction from Monte Carlo simulation. The small inserts show a logarithmic version of the plot over
the whole energy range. In the upper plot, the dashed line denotes those clusters in the Monte Carlo,
where a photon on tree-level is pointing to it. Below, the fake rate is given. The peak from the energy
deposition of minimum ionizing particles is visible in plot (b). The plots are normalized to the number
of τ decays. A minimum cluster energy of 600MeV is required for the further analysis in both cases.



4.2. Photon Reconstruction and Identification of Neutral Pions 55
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Fig. 4.20: Illustration of the iteration procedure for the Find Photon algorithm. In (a) the original configuration is
displayed where two photons, γ1 and γ2, generate the shower shape observed in the cluster. (b) shows
the energy distribution as predicted in the first iteration step by a single simulated photon γ̃1. This
contribution is then subtracted from the original energy deposition in each block. In the next iteration
step, the second simulate photon γ̃2 is fitted, using the energy and center of the block with highest energy
residual as starting values.

clearly visible. This peak is not very well described by the Monte Carlo simulation. Therefore, a minimum
cluster energy of ECluster

min = 600MeV is required for further analysis.

The energy deposit of a hadron or muon, however, is not always the one expected for a minimum ionizing
particle. Therefore, an additional photon is fitted for each track pointing to a block in the cluster under
investigation. For these photons, only the energy is a free parameter. The direction of the photon, i.e. the
azimuthal and polar angles, is fixed and is extrapolated from the track parameters measured in the central
jet chamber.

Now, in an iterative algorithm, the hypotheses are tested that up to eight photons (plus one photon for
each track pointing to the cluster) are responsible for the observed energy deposit in a given cluster. In
the first iteration step, the energy and the center of the block with the highest energy in the cluster are
chosen as starting values for the photon parameters in the fit. The parameters are then varied, until the
best agreement is achieved between the measured block energies in the cluster and the energy deposition of
the simulated photon as calculated from the shower parametrization. A χ2 criterion is used

χ2 =

m∑

Block i=1


Ei −

n∑

j=1

Eγ(i) −
l∑

k=1

Etrack
γ (i)




2

σ2
i

, (4.24)

where the outer sum goes over all m blocks in the cluster under investigation and Ei is the energy as measured
in the corresponding block. The sum over j (k) includes the energy deposit in this particular block from all
photons (‘track’ photons) considered in the fit. The energy as predicted by the parametrization for each of
the photons for the particular block i is labeled Eγ(i) (Etrack

γ (i)) for the fitted photons (‘track’ photons).
The error of the energy measurement is assumed to be 100MeV for each block.

The energies as predicted by the parametrization for the fitted photons are then subtracted from the measured
block energies. In the next iteration step, the block with the highest remaining energy deposit is chosen, and
its energy and center are used as starting values for an additional photon. For the other photons, the results
obtained from the previous iteration step are used as starting values. In this iteration step, all photons
are again fitted simultaneously. This iteration procedure is illustrated in Figure 4.20. In this example, two
photons were responsible for the observed shower shape. The true photons are denoted by γ1 and γ2, the
fitted photons by γ̃1 and γ̃2.

This procedure is repeated until the maximum energy remaining in the highest energetic block is less than
150MeV or the number of reconstructed photons exceeds eight. The four-vectors of the photons and their
error matrix is then taken from the iteration step with the minimum χ2/n.d.o.f.. All photon candidates with
an energy less than Emin

γ < 50MeV are discarded.
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4.2.4 Photon Pairing Algorithm

Using the parametrization of the shower shape and the Find Photon Algorithm described above, the number
of reconstructed photons tends to be too high compared to the expectation. This can be explained by several
effects.

• The parametrization of the shower shape has been developed using electrons from τ decays with an
energy of (2 − 10)GeV [61]. A ratio of halo to core of c = 0.12 has been found there. In [56] a ratio
of c = 0.14 using TF-1 lead glass has been found. This difference in the halo to core ratio affects
the shower shape and thus the fraction of energy deposited in the individual blocks of a given cluster.
The residuals are compensated by fitting additional low energetic photons which reduces the energy
resolution.

• The electromagnetic calorimeter is situated outside the magnetic coil and the pressure vessel, containing
the central tracking detectors. The radiation length a photon has to traverse before it enters the
electromagnetic calorimeter is ∼ 2X0. There is a certain probability, that the electromagnetic shower
starts developing, before the photon enters a lead glass block. The amount of material in front of the
electromagnetic calorimeter is a function of the polar angle cos θ of the photon which might change
the shape of the shower. This has not been considered in [61].

• The energy distribution in a shower which is initiated by hadronic interaction is expected to be broader
than the corresponding showers initiated by photons or electrons/positron. The width of the shower

initiated by hadrons scales with the hadronic interaction length which is given by λ ∼ 35g/cm
2
A−1/3,

where A denotes the atomic weight of the material. The energy deposit from hadronic interactions is
therefore not expected to be described correctly by the ‘track’ photons, since the same parametrization
is used as for photons and hadrons. The residuals are compensated by fitting additional low energetic
photons, which reduces the energy resolution.

• The calorimeter has some showers that are not caused by photons and are not directly the result of
track hits. These extra showers arise for instances when a hadron strikes the calorimeter and some
secondary particles are created in the interaction. These particles may cause the reconstruction of
additional photons if they deposit their energy in the calorimeter sufficiently displaced from the track.
This is called ‘hadronic split-offs’.

• Depending on the energy of the neutral pion, the two photons from its decay are too close together so
that they cannot be resolved, given the size of the calorimeter blocks and the intrinsic resolution of

Algorithm Resolution Combination Remarks

E
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Tab. 4.6: Selection of the pairing algorithms. The resolution parameter used in the corresponding algorithms is
given as well as the instructions used in the combination of objects. The table includes algorithms obeying
energy and momentum conservation (E, JADE, D, G) and those that violate either energy or momentum
conservation (E0, p0).
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the photon fit. The fit tends to reconstruct one high energetic photon and the remaining residuals are
described by additional low energetic photons, which again reduces the energy resolution.

These affects described above reduce the energy resolution of the photons and thus the invariant mass
resolution in τ decays with neutral pions in the final state. A Jet-Pairing algorithm is used to recombine the
additional photons in order to increase the resolution. An overview over jet pairing algorithms is given in
Table 4.6. It includes the resolution parameter and the instructions to recombine neutral objects to photon
candidates. These algorithms were applied iteratively.

1. The resolution parameter is calculated for all possible combinations of photon candidates, reconstructed
by the Find Photon Algorithm in a given electromagnetic cluster.

2. For the combination with the lowest value for the resolution parameter, the four-vectors of these two
objects are combined using the instructions for the corresponding algorithm given in Table 4.6.

3. This procedure is repeated with all remaining photon candidates in the cluster. The procedure stops,
when the resolution parameter for all possible combinations exceeds a certain value ycut. This param-
eter has to be optimized for the use in strange τ decays.

For the reasons explained above, the shower shapes are different for clusters with and without associated
tracks. Therefore, two ycut values have been determined. The following procedure has been applied. First,
the number of expected photons has to be calculated. To do this, an angular resolution is assumed in
the Monte Carlo, e.g. ∆MC = 1.3◦. The Monte Carlo tree is analyzed and all photons found with an
angular separation of less than the assumed resolution are combined to a new photon object by adding their
corresponding four-vectors. This procedure is repeated until all neutral object have a separation of more
than 1.3◦ on tree-level.
Then, the objects found by the Find Photon Algorithm are analyzed. Here, a pairing algorithm is used to
combine the neutral objects found on detector level. The ycut value was varied in the range from −7 to −2
in 50 steps, which results in different numbers of photon candidates. For each step, the χ2 is calculated from
the number of photons expected (assuming some angular resolution on tree-level as explained above) and
the number of photons candidates found by the pairing algorithm. For the above example, i.e. an angular
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Fig. 4.21: Determination of the ycut value for cluster without associated tracks. The left plot shows the χ2 as
calculated from the number of observed photons and the number of predicted photons as function of
ycut. Each curve corresponds to a particular resolution of the photon reconstruction algorithm assumed
to determine the number of expected photons as explained in the text. The minimum χ2 is obtained
assuming a resolution of 1.7◦ at a ycut value of -4.6 using the p0 scheme. In the right plot, the number
of reconstructed photons is shown. The dashed histogram shows the number of photons obtained using
the Find Photon algorithm. The solid histograms shows the predicted number of photons assuming a
resolution of 1.7◦. The dots represent the number of reconstructed photons using the p0 algorithm with
a ycut value of -4.6. The small insert shows a version of the same plot using a logarithmic y-axis.
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resolution of 1.3◦, the solid line in Figure 4.21 is obtained. In the next step, the assumed angular resolution
is increased, the number of expected photons on tree-level is re-evaluated and the pairing algorithm is again
applied to all objects originally found by the Find Photon Package. Again, the χ2 as function of the ycut

value is plotted.

The result of this procedure is illustrated in Figure 4.21 for angular resolutions between 1.3◦ and 2.1◦, using
the p0 recombination scheme, which was found to give the best results. The minimum χ2 was found for an
angular resolution of 1.7◦ and a ycut value of −4.6. The corresponding distribution of the number of photon
candidates found is displayed on the right hand side of Figure 4.21. Here the number of photons expected
(solid histogram), the original number of photon candidates from Find Photon (dashed histogram) and the
reconstructed number of photons with the combination scheme applied (dots) is displayed. The smaller
insert is the same distribution on a logarithmic scale.

For clusters with associated tracks, the expected resolution is worse. Here, an angular resolution of 2.1◦ with
a ycut value of −3 was found to give the optimal result again using the p0 combination scheme.

The resolution achieved with and without the pairing algorithm applied is shown in Figure 4.22. The
corresponding distribution for the energy resolution and the resolution in the polar and azimuthal angle are
displayed for clusters with and without associated track. The energy distribution was improved for both
types of cluster. Even with the pairing algorithm applied, a small shift in the energy is observed and the
distribution is slightly asymmetric. This is due to the fact, that approximately 2X0 of material are situated
in front of the electromagnetic calorimeter. For a shower that starts before the photon actually reaches a
lead glass block, a certain fraction of the energy is deposited in the detector material rather than in the
calorimeter. The resolution in the azimuthal and polar angles are only slightly improved.

If a photon candidate is too close to an entrance point of a track into the ECAL, the track’s hadronic
interaction can distort the photon energy measurement. Therefore a minimum angle between a photon
candidate and a the entrance point of the electromagnetic calorimeter of 2.8◦ is required. This value is
obtained from studies of the rate of fake π0 in the decay τ− → K−ντ . The energy in the hadron calorimeter
is not considered here.
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Fig. 4.22: Resolution of the reconstructed photons after applying the photon pairing algorithm. The upper (lower)
plots correspond to cluster without (with) associated track. In each row, the resolution in energy and the
resolution in the polar and azimuthal angles is given. The solid line corresponds to the resolution distribu-
tion with the pairing algorithm applied to the reconstructed photons, the dashed histogram corresponds
to the distribution without pairing algorithm.
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Fig. 4.23: Energy of reconstructed photons. In the upper (lower) plot, the corresponding distribution for clusters
without (with) associated track is displayed. The dots are the data, the histogram is the predicted
distribution from Monte Carlo simulation. The smaller insert shows a logarithmic version of the plot over
the whole energy range.

The neutral objects remaining after the pairing procedure are called photons. The energy of the reconstructed
photons can be found in Figure 4.23. The energy distribution for clusters with and without associated tracks
in general is very good up to the highest photon energies observed in τ decay events. For photon energies
below ∼ 1.5GeV, the number of photons reconstructed is still slightly underestimated in the Monte Carlo
simulation compared to the data.

4.2.5 Reconstruction of Neutral Pions

The angular resolution of the photon reconstruction using the algorithm explained above, was found to be
1.7◦ (2.1◦) for clusters without (with) an associated track pointing to one of its blocks. From this resolution,
the minimum energy of a neutral pion can be calculated for which the two photons from its decay can
no longer be separately reconstructed by the algorithm applied. Therefore, reconstructed photons with an
energy of more than 7.5GeV were directly interpreted as neutral pions. To account for the mass of the π0,
the momentum vector of the photon is corrected by a factor x:

x =

√
E2

γ − m2
π0

Eγ
→ ~pπ0 = x · ~pγ , (4.25)

which is calculated from the energy of the reconstructed photon and the nominal mass of the neutral pion.
For the remaining photons, each possible combination of two photons is tested, whether they can be

combined to a neutral pion. The number Nπ0 of neutral pions that can be reconstructed from Nγ photons
(where Nπ0 ≤ Nγ/2) identified in a τ cone by the above algorithm is given by

M
Nγ

Nπ0
=

(
Nγ

2Nπ0

)
(2Nπ0)!

(Nπ0)! 2Nπ0
. (4.26)
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Fig. 4.24: Invariant two-photon mass for 1-prong and 3-prong τ decays in plot (a) and (b), respectively. The dots
are the data and the histogram denotes the prediction from Monte Carlo simulation. A minimum energy
of 1.5 GeV (2.0 GeV) is required for the neutral pion in the 1-prong (3-prong) case.

The combination which results in the maximum number of neutral pions is chosen, where the two-photon
invariant mass may have a maximum deviation of 1.5σ from the nominal π0 mass. For 1-prong τ decays,
a minimum energy for the neutral pion of E1−prong

min = 1.5GeV is required. In the 3-prong case, all π0-

candidates with an energy less than E3−prong
min = 2.0GeV were rejected. The energy distribution is displayed

in Figure 4.25.
To increase the mass resolution, these π0 candidates are then subjected to a kinematic fit, that constrains
the invariant two photon mass to the nominal mass of the π0. The invariant two photon mass before the
kinematic fit can be found in Figure 4.24. The distribution from data is well described by the Monte Carlo
simulation. All π0 candidates where the kinematic fit converges are called neutral pions. The invariant two
photon mass found in 3-prong τ decays is broader compared to that from 1-prong decays. This reflects the
reduced resolution (see Figure 4.22) in the presence of an associated track in the electromagnetic cluster.
The number of neutral pions reconstructed in 1-prong and 3-prong τ decays is displayed in Figure 4.26. The
data is well described by the Monte Carlo simulation.
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Fig. 4.25: The energy of the reconstructed neutral pions is displayed for 1-prong (3-prong) τ decays in plot (a) (plot
(b)).The dots are the data and the histogram denotes the prediction from Monte Carlo simulation. The
cut on the minimum energy of the π0 is indicated by the dashed line and is placed at E1−prong

min = 1.5 GeV
and E3−prong

min = 2.0 GeV, respectively.
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Fig. 4.26: The Number of reconstructed neutral pions in 1-prong and 3-prong τ decays is displayed in plot (a) and
(b), respectively. The dots are the data and the histogram denotes the prediction from the Monte Carlo
simulation.
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4.3 Identification of Events Containing K0

A neutral kaon is involved in roughly 1.8% of all τ decays and in about 30% of all decays with open
strangeness. It is produced in weak interactions with definite strangeness S = 1 and −1 for the K0(ds̄)

and the K
0
(d̄s), respectively. It is the lightest meson containing a strange quark and since strangeness is

conserved in strong and electromagnetic interaction, it can only decay weakly. Weak decays, however, are

expected to be eigenstates of CP4, which the neutral kaon is not. Linear combinations of K0 and K
0

however
are CP eigenstates

|K0
S〉 =

1√
2
(|K0〉 + |K0〉) CP = +1

|K0
L〉 =

1√
2
(|K0〉 − |K0〉) CP = −1.

In the absence of orbital angular momentum and zero net spin, possible hadronic final states are 2π and
3π, which have CP eigenvalues +1 and −1, respectively. The K0 signal therefore consists of 50% K0

L and
50% K0

S. The phase space factors for the 2π and 3π decay modes are substantially different, and therefore
substantially different lifetimes are expected.
The K0

L has a lifetime τK0
L

= (51.7 ± 0.4) ns which corresponds to a decay length of τK0
L

= 31mGeV−1.

In τ decays, neutral kaons on average are produced with a γ ≈ 30, the K0
L is therefore not expected to

decay within the central detector. Its signature is a large energy deposit in the hadron calorimeter without
associated tracks pointing to it. An event display of a K0

L decay can be found below. The resolution of the
hadron calorimeter does not allow for a clean reconstruction of this channel, thus it is not considered in this
analysis.
The K0

S has a lifetime of τK0
S

= (89.37 ± 0.12) ps and a decay length of τK0
S

= 5.4 cm GeV−1. In 68%
of all decays, two charged pions are produced. The signature of this decay mode is a secondary vertex
which is separated from the interaction point. Due to the mass of the K0, a non-zero opening angle of the
decay products is observed, which helps in the rejection of track pairs originating from a photon conversion
(γ → e+e−). In 32% of all cases the K0

S decays into two neutral pions. Since the photon reconstruction
algorithm explicitly exploits the quasi-pointing geometry of the electromagnetic calorimeter in the barrel,
only photons coming from the primary vertex can be properly reconstructed. Therefore, this decay mode is
not considered in this analysis. An example for a K0

S decay into two charged pions can be found below.
The aim of this selection is to reduce the background in the K0

S candidate sample and to have an efficient
selection. Two background contributions are distinguished. The background from photon conversions and

4 neglecting CP violation
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Fig. 4.27: Event display of τ decays involving neutral kaons. The left plot shows a decay τ− → ντK0
Sπ− with

the neutral kaon decaying into two charged pions. The secondary vertex is clearly separated from the
interaction point. The right plot shows a decay τ− → ντK0

Lπ−. This signature is a large energy deposit
in the hadron calorimeter without a track associated to it.
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the combinatorial background which comes from the wrong combination of tracks.

4.3.1 Selection of K0
S Candidates

The selection starts by combining each pair of oppositely charged tracks in a τ decay event. Each track
considered has to have a transverse momentum with respect to the beam axis of pT ≥ 150MeV. Tracks with
less energy have a large curvature and cannot be properly reconstructed. Furthermore the combinatorial
background is reduced, since these tracks are most likely produced by δ electrons. A minimum of 20 out
of 159 possible hits in CJ, at least 20% of all geometrically possible hits, are required for each track. A
maximum χ2 for the track fit of 50 is allowed. This guarantees a good momentum resolution. For each
combination of tracks, their intersection points in the plane perpendicular to the beam axis are calculated.
At least one intersection point within the sensitive volume of the central drift chamber is required. A radial
distance of r ≤ 150 cm is required for the secondary vertex candidate. For vertices with r > 150 cm there are
not enough measured points in CJ so that the tracks can not be properly reconstructed. Due to the mass of
the K0, the opening angle of the decay products is non-zero and at least one intersection point is found in
almost all K0

S decays. The requirement to find at least one intersection point within the sensitive volume of
the central drift chamber already reduces the background contribution from photon conversions, where the
opening angle is zero. In this case it is more likely to find no intersection point at all due to resolution effects.
If two vertices are found which fulfill the above requirements, the one with the first measured hit closest to
the intersection point is selected. In addition the z-coordinate of the vertex has to satisfy |zV| < 80 cm.
The variables used in the selection described below are shown in Figure 4.29. For each K0

S candidate, the
angle between the reconstructed momentum of the candidate vertex and the K0

S direction of flight must be
less than |ΘV| < 0.5◦ (see Figure 4.28). This guarantees, that the neutral particle, reconstructed from the
two tracks actually was produced at the primary vertex. With this cut the contribution from combinatorial
background is reduced. If the number of dE/dx-hits is more than 20 on at least one of the tracks, the
energy loss information is used to veto photon conversions. All candidates where at least one track has a
pion weight of more than 0.98 are rejected. To further reduce this kind of background, the invariant mass of
the K0

S candidate is calculated using electron hypothesis for the masses of the two tracks. All combinations
with a mass mee < 0.1GeV are rejected.
The remaining background from 3prong τ decays can be reduced by applying cuts on the impact parameter
d0 of the two tracks. For tracks coming from a K0

S decay, due to the opening angle of the decay products and
the lifetime of the K0

S, they are expected to have on average a large impact parameter. Tracks from decays
not involving K0

S are expected to have small |d0|, since they are produced at the primary vertex (neglecting
the flight distance of the τ lepton, which is small compared to that of the neutral kaon). The minimum and
the maximum of the absolute value of the impact parameters from the two tracks in K0 candidates can be
found in Figure 4.29(c/d). Cuts are placed at 0.03 cm for the minimum and 0.1 cm for the maximum. The
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Fig. 4.28: Illustration of selection quantities in K0
S decays.
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d0 values have to have opposite signs according to the OPAL convention. Using this convention, the impact
parameter is defined as

d0 ≡ Φ̂ × ~d · ẑ (4.27)

where

• Φ̂ is the unit vector along the track trajectory at the point of closest approach (p.c.a)

• ~d is the vector from the interaction point to the p.c.a.

• ẑ unit vector along the z axis.

The cross product in the above equation leads to different signs of the impact parameter for track pairs of
opposite charge as illustrated in Figure 4.28.
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Fig. 4.29: Variables used in the K0
S selection. A detailed description of all variables is given in the text. The dots

represent data and the open histogram is Monte Carlo signal. The shaded areas show the background
where photon conversions are marked separately. Events on the side of the direction of the arrow are
kept. For all plots all selection cuts have been applied except for the cut on the variable shown.
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4.3.2 Result of the K0
S Selection

The remaining K0
S candidates have to have a total momentum of pK0

S
> 3GeV. To those the 3D vertex

fit as explained in Appendix 9.3 is applied including a constraint of the invariant two-track mass under
pion-hypothesis to the nominal K0

S mass.
The invariant two-track mass under pion hypothesis before the kinematic fit can be found in Figure. The
radius of the reconstructed secondary vertex is displayed in Figure 4.30(a). This does not exhibit an ex-
ponential behavior, as might be expected. This is due to reduced efficiency near the primary vertex. Two
effects contribute. As the radius of the secondary vertex becomes smaller, the resolution of the track param-
eters and thus the reconstruction of the secondary vertex does not allow for a clean and efficient separation
from the primary vertex. The second contribution comes from background events not containing K0

S or from
photon conversions.
The χ2 probability of the kinematic fit can be seen in Figure 4.30(c). It shows a nice flat behavior down
to 10−5. The background from conversions and the background from true 3-prong τ decays piles up at low
probabilities and is removed by a cut at 10−5. If more than one K0

S candidate share the same track, the one
with the smaller deviation from the nominal K0

S mass before the fit is selected. After this selection procedure
a total of 535 K0

S remains with an estimated purity of 82%. About 70% of the background consists of wrong
combinations of tracks, 30% comes from conversions. In one data event two K0

S candidates are found within
one cone. This event is considered as background.
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Fig. 4.30: Result of the K0
S selection. Plot (a) shows the invariant mass distribution of the K0

S candidates under
pion hypothesis before the kinematic fit. Plot (b) shows the radius of the reconstructed secondary vertex
and plot (c) the distribution of the χ2-probability of the 2C-fit. A cut is applied on the probability at
10−5. The dots represent the data and the open histogram is Monte Carlo signal. The shaded areas show
the background where conversions are marked separately.
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4.4 The Monte Carlo Simulation

Kaons are involved in roughly 3% of all τ final states with open strangeness. The single kaon and the two
meson final states are the largest ones. The three meson final states are of about the size of the single kaon
channel. Though the four-meson final states with strangeness together make up only 5% of all strange final
states, they are of particular importance since they populate the high end of the mass spectrum. For final
states with an invariant mass above ∼ 1GeV for example, they already make up ∼ 20% of all reconstructed
events. In the standard τ Monte Carlo, these final states are missing. The corresponding background
channels (i.e. four-meson final states with an even number of kaons) are also not simulated. In addition,
strange τ decays involving η mesons are also not implemented in the standard τ Monte Carlo.

This section starts with a short introduction on the parametrization of multi-meson final states including
intermediate resonances. In this chapter, the update of the resonance structure of the three meson final
states and the simulation of the missing τ decay modes is discussed. In the last section, an overview over
the complete set of Monte Carlo samples used in this analysis is given.

4.4.1 Update of the Three Meson Final States

Hadronic τ decays occur often via intermediate vector or axialvector resonances. For example the decay
into a three pions occurs via the a1 resonance, which then decays via the intermediate ρ resonance. Another
example is the K0π−ντ final state, which has the K∗(892) as intermediate resonance. Those decays can
described in the so-called Vector Dominance Model (VDM), where the resonances are parametrized by
Breit-Wigner form factors. The mass and the width of the resonances involved can not be predicted in this
model. They are free parameters which have to be determined by experiment. In contrast to the non strange
final states which can be assigned to a vector or axialvector current by simply counting the number of pions5,
decay modes involving kaons allow for vector and axialvector contributions at the same time.

The most general Ansatz for the matrix element of the quark current Jµ, describing the creation of three
mesons, is given via

Jµ = 〈π1(q1)π2(q2)π3(q3)|Jµ
A(0) + Jµ

V (0)|0〉

= V µ
1 F1 + V µ

2 F2 + ıV µ
3 F3 + V µ

4 F4. (4.28)

It is characterized by four complex form factors Fi, which are functions of the Dalitz variables s1 = (q2+q3)
2,

s2 = (q1 + q3)
2, s3 = (q1 + q2)

2 and Q2, the invariant mass of the hadronic system. The form factors F1 and
F2 originate from the JP = 1+ spin-1 axial vector current and F3 originates from the JP = 1− spin-1 vector
state. The F4 form factor corresponds to the JP = 0+ spin-0 part of the axial current matrix element. It
is assumed to be negligible here. The current components Vi can be calculated from the four-vectors of the
final state particles qµ

i :

V µ
1 = qµ

1 − qµ
3 − Qµ Q(q1 − q3)

Q2
V µ

3 = εµαβγq1αq2βq3γ

V µ
2 = qµ

2 − qµ
3 − Qµ Q(q2 − q3)

Q2
V µ

4 = qµ
1 + qµ

2 + qµ
3 = Q.

The form factors are given by

F1(Q
2, s2, s3) =

2
√

2A

3fπ
G1(Q

2, s2, s3) (4.29a)

F2(Q
2, s1, s3) =

2
√

2A

3fπ
G2(Q

2, s1, s3) (4.29b)

F3(Q
2, s1, s2) =

A

2
√

2π2f3
π

G3(Q
2, s1, s2), (4.29c)

where A and the functions Gi are given in Table 9.2 [78]. They contain Breit-Wigner functions which contain

5 neglecting decays involving the ω and η resonance
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Fig. 4.31: Comparison of the invariant mass spectra between the standard Monte Carlo (dashed histograms) and
the updated event sample.
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admixtures of radial excitations.

T 2m =
BWi + βBWj

1 + β
(4.30a)

T 3m =
BWi + βBWj + γBWk

1 + β + γ
(4.30b)

In Equations 4.30a and 4.30b, BW denote normalized Breit-Wigner propagators with an energy dependent
width:

BWX(Q2) =
m2

X

m2
X − Q2 − ı

√
Q

2
ΓX(Q2)

. (4.31)

The factors β and γ denote the relative strength of the contributions from the higher excitations.
The three meson final states with kaons are updated using the parametrizations given in [78]. A comparison
of the new and the old parametrization of the three meson final states with kaons is displayed in Figure 4.31.

4.4.2 Four-Meson Final States

For the four-meson final states, the structure of the resonances involving kaons is basically unknown. Unfor-
tunately, the statistics in this analysis is by far not sufficient, to gain insights into the structure. Though the
branching fractions for these decay channels are small and the statistical error is large, they make important
contributions to the invariant mass spectrum and the spectral function near the kinematic limit. This can be
seen in Figure 4.32(b). The dashed histogram represents the strangeness spectral function as obtained using
the standard τ Monte Carlo. Close to the kinematic, the measured distribution is expected to approach the
prediction from the näıve parton model. Due to the missing four-meson strange final states this is not the
case.
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states are marked separately. The distributions as obtained from the standard τ Monte Carlo is denoted
by the dashed line.
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In addition, the background in the corresponding signal channels, as predicted by the standard Monte Carlo
is not correct. The four-meson final states either with an odd or an even number of kaons contribute
for example to the measured three meson spectra. Therefore, the four-meson final states with kaons are
implemented into the τ Monte Carlo, assuming an invariant mass distribution according to phase space.
The invariant mass spectra for the corresponding channels are displayed in Figure 4.31. The invariant mass
distribution for the strange final states and the strangeness spectral function as simulated in the Monte
Carlo including the updated resonance structure for the three meson final states and the new four-meson
final states is displayed in Figure 4.32(a) and (b), respectively. The exclusive contributions from the various
multi meson final states are marked separately.

4.4.3 Monte Carlo Samples

The τ Monte Carlo sample used consists of 200 000 τ pair events generated at
√

s = mZ0 using KoralZ 4.02
[80] and a modified version of Tauola 2.4 [81], including the modifications described above. The branching
fractions of the decay channels with kaons are enhanced in this sample so that it comprises roughly a factor
of ten more τ decays with kaons than expected from data. The Monte Carlo events are then reweighted to
the latest branching fractions given in [57], which are used throughout the selection procedure. The Monte
Carlo events were processed through the GEANT OPAL detector simulation [79].
The non-τ background was simulated using Monte Carlo samples that consist of qq̄ events generated with
Jetset [82], Bhabha events generated with Bhwide [83], µ-pair events generated with KoralZ [80] and
two-photon events using Phojet [84], F2Gen [85] and Vermaseren [86,87]. The non-τ background Monte
Carlo samples used are summarized in Table 4.7. The number of events generated for each physics process
and the integrated luminosity the size of the Monte Carlo sample corresponds to is given. The last column
contains the weight as used in the event selection.

MCID Physics Process Events Luminosity/ pb−1 Event Weight

Bhabha Events 1360 e+e− → e+e− 574 000 139.9 0.982

µ Pair Events 1618 e+e− → µ+µ− 792 000 534.1 0.257

Multihadron Events 2790/4 e+e− → q̄q 4 000 000 129.9 1.061

Two Photon Events 1014 γγ → q̄q 999 999 209.0 0.656
1039 γγ∗ → q̄q 100 000 660.0 0.906
1099 γγ → µ+µ− 250 000 492.0 0.270
1098 γγ → e+e− 350 000 687.0 0.270
1017 γγ → τ+τ− 55 000 202.0 0.504

Tab. 4.7: Summary of the non-τ background Monte Carlo samples used in the analysis strangeness spectral function.
The physics process is given, the number of events and the integrated luminosity of the Monte Carlo sample.
The last column contains the event weights as used in the selection.



 



5. THE EVENT SELECTION

The data analyzed in this work was recorded with the Opal detector during the years 1991 to 1995 at a
center of mass energy which corresponds to the mass of the neutral weak boson Z0 (

√
s = mZ0 = 91.2GeV).

A total integrated luminosity of L = 121 pb−1 has been recorded. In 3.37% of all decays of the Z0 boson, a
pair of τ leptons is produced, which are subject to this analysis.
In this chapter the separation of the τ pair events from non-τ background and the selection of τ decays with
open strangeness is described. These channels make up a total of Bstrange = 2.94% of all τ decays (using
the branching fractions given in [57]). The following final states are contributing, which are summarized in
Table 5.1.

• (K)−: The single kaon channel has a branching fraction of B = (0.686 ± 0.023)%. No invariant mass
reconstruction is possible, since the energy resolution in the hadron calorimeter is not sufficient.

• (Kπ)−: The two-meson final states with a total branching fractions of 1.340% consist of two decay
channels. The decay1 τ− → K−π0ντ has a branching fraction of 0.450% and can be fully reconstructed.
The τ− → K0π−ντ channel (B = 0.890%) consists of two decay chains: τ− → K0

Lπ−ντ (50%) and
τ− → K0

Sπ−ντ (50%). For reasons explained in Chapter 4.3, the long lived neutral kaon is not
considered here. The K0

S decays to two neutral (charged) pions in roughly 32% (68%) of all cases.
Only the charged decay mode is considered here.

• (Kππ)−: The decay channels τ− → K−π+π−ντ (B = 0.280%) and τ− → K0π−π0ντ (B = 0.370%)
are fully reconstructed. The decay τ− → K−π0π0ντ with two neutral pions in the final state, is taken
from Monte Carlo simulation. The three meson final states with strangeness together make up a total
of (0.708 ± 0.068)% of all τ final states.

1 In order to simplify the text we refer only to the decays of the negatively charged τ lepton. Simultaneous treatment of the
charged conjugate decay is always implied.

Measured in this Analysis Not Measured

Btotal/% τ Decay BPDG/% τ Decay BPDG/%

(K)− 0.686 ± 0.023 τ− → K−ντ 0.686 ± 0.023

(Kη)− 0.027 ± 0.006 τ− → K−ηντ 0.027 ± 0.006
(Kπ)− 1.340 ± 0.050 τ− → K−π0ντ 0.450 ± 0.030

τ− → K0π−ντ 0.890 ± 0.040

(Kππ)− 0.708 ± 0.068 τ− → K0π−π0ντ 0.370 ± 0.040
τ− → K−π+π−ντ 0.280 ± 0.050

τ− → K−π0π0ντ 0.058 ± 0.023
(Kηπ)− 0.029 ± 0.009 τ− → K∗(892)ηπ0ντ 0.029 ± 0.009

(Kπππ)− 0.150 ± 0.045 τ− → K−π+π−π0ντ 0.064 ± 0.024
τ− → K0π−π0π0ντ 0.026 ± 0.024
τ− → K−π0π0π0ντ 0.037 ± 0.021
τ− → K0π−π+π−ντ 0.023 ± 0.020

∑
Btotal

strange 2.940 ± 0.099
∑

Bmeas
strange 2.054 ± 0.085

∑
Bnotmeas

strange 0.886 ± 0.051

Tab. 5.1: Overview of all channels with net strangeness and their respective branching fractions as given in [57].
The numbers are given separately for those τ final states that have been measured in this analysis and for
those that were taken from Monte Carlo simulation.
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• (Kπππ)−: The four-meson final state with a total branching fraction of (0.150 ± 0.045)% is detected
via the decay τ− → K−π+π−π0ντ (0.064 ± 0.024)% which has the largest branching fraction among
the four-meson final states. The remaining channels are taken from Monte Carlo simulation.

• (Kη)− and (Kηπ)−: The final states involving η mesons have a branching fraction of (0.027± 0.006)%
and (0.029 ± 0.009)% [66], respectively. These channels are taken from Monte Carlo simulation.

Of the multi-meson final states with open strangeness, (Kπ)−, (Kππ)− and (Kπππ)−, 93.4% of all decay
channels involved are measured. The remaining 6.6% are taken from Monte Carlo simulation.
This chapter is organized as follows: First the τ selection is described. It separates the τ pair events from
Z0 decays into electron pairs, muon pairs or a pair of quarks and from Bhabha scattering events and two
photon background. In the second section the identification of final states with open strangeness is described
and finally the invariant mass spectra are presented in Chapter 5.3.

5.1 The τ Pair Selection

The Z0 decays in (3.370±0.008)% of all cases into a pair of τ leptons. They are produced back-to-back in the
lab frame2 with an energy of Ebeam =

√
s/2 = 45.6GeV. In most of the cases, they decay into final states

with one or three charged particles plus possible associated neutral pions or kaons. The typical signature is
therefore a low multiplicity event with energy deposition in the electromagnetic and/or hadron calorimeter.
Decays into five charged particles occur in only 0.1% of all cases, τ decays into seven charged particles have
not been observed, yet (B(τ → ντ7 − prong) < 2.4 · 10−6 at CL= 90%). Due to the Lorentz boost of the τ
lepton (γ ≈ 25), all decay products are contained in a narrow cone of opening angle of typically 5◦. At least
one neutrino is involved in τ decays and therefore the measured total energy in τ pair events is less than
the beam energy. Due to the τ -lifetime of τ = (290.6 ± 1.1) fs, a secondary vertex can be observed which is
on average 2mm displaced from the primary interaction point. An example for a Feynman diagram of a τ
decay is given below where one τ decays leptonically, the other hadronically.

e

e

γ/Z0

τ

W

τ
W

ντ

h1

h2

h3

f

f̄

ντ

f ∈ (e, µ, ν)

hi ∈ (π,K)

A typical τ pair event can be seen in the event display in Figure 5.1. The left plot shows the event in the
(r − φ) plane as recorded with the Opal detector. The tracks are recorded in the central drift chambers
represented, by the inner circle. The light shaded bars represent the energy deposited in the electromagnetic
calorimeter. Every bar represents one cluster, where the size is proportional to the energy measured therein.
The dark shaded blocks represent the energy deposited in the hadron calorimeter. Hits in the muon chambers
are indicated by arrows. In the box above the display, parameters of the event are given, e.g. run and event
numbers, beam energy and visible energy.
In the upper hemisphere, a τ decay into three charged particles (pions or kaons) is seen. Besides the energy
deposition in the hadron calorimeter, there is a large amount of energy in the electromagnetic calorimeter,
which indicates the presence of additional neutral pions or final state radiation. The right plot is a zoom of
the event. A secondary vertex can be clearly identified for the 3-prong τ decay.
In the lower hemisphere, a τ decay into one charged particle is seen. There is only little energy deposition
in the electromagnetic calorimeter and a large amount of energy in the hadron calorimeter, which indicates
that the charged track is a hadron (pion or kaon). The hit in the muon chamber, represented by the arrow,
comes from a punch-through of the shower particles in the hadron calorimeter.
In the following, only events are considered where all decay products of the two τ leptons are contained in
exactly two cones with a maximum half-angle of 35◦. This includes all tracks in the jet chamber and all

2 Neglecting initial and final state radiation
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Fig. 5.1: Event display of τ decay in the r − φ plane. In the upper hemisphere of the left plot, a 3-prong τ decay
can be seen. The lower hemisphere is a 1-prong decay. Details are given in the text. The right plot shows
a zoom of the same event to region of the primary vertex. For the 3-prong decay, a displaced vertex is
observed which is due to the lifetime of the τ lepton.

clusters reconstructed in the electromagnetic calorimeter. A maximum acollinearity angle of 15◦ is allowed
for these cones. The tracks and clusters considered have to fulfill the following quality criteria.

• A good track has to have at least 20 hits in the jet chamber in order to guarantee a proper recon-
struction of the trajectory. A maximum radial distance of the first measured hit of rmax = 75 cm from
the primary vertex is allowed. The point of closest approach has to be less than d0 < 2 cm away from
the primary vertex. In z direction the maximum distance is |zmax| = 75 cm. A minimum transverse
momentum of pT > 0.1GeV is required for each reconstructed track.

• A good cluster has to have at least one block with a minimum energy of Emin = 100MeV if the
cluster is reconstructed in the barrel part of the detector. A minimum of two blocks with an energy sum
exceeding Emin = 200MeV is required if the cluster is in the endcaps. In that case, the most energetic
block must not contain more than 99% of the total total electromagnetic energy in the cluster.

In the following the individual sources of non-τ background are discussed and the selection criteria applied
to remove them are explained.

qq̄ Events:

e

q̄

e Z0/γ q

Y

X
Z

200 . cm .

Cen t r e o f s c r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 )

50 GeV20105

The Z0 decays with a branching fraction of B = (69.91 ± 0.06)% into a pair of quarks. A typical
hadronic Z0 decay can be seen in the event display above. Due to the high center of mass energy this
results in a final state with two back-to-back jets of high multiplicity3 and significant energy deposition
in the electromagnetic and hadron calorimeters. The radiation of gluons off the final state quarks would
result in additional jets. To remove hadronic events, the following cuts are applied.

3 The average multiplicity of a hadronic events is of the order of 15.
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– A maximum of two cones with half-angle of 35◦ are allowed in the event. The energy in each cone
has to exceed 1% of the beam energy.

– At least one ‘good’ track per cone is required. The maximum number of tracks in the event must
not exceed six.

– A maximum of ten ‘good’ clusters in the electromagnetic calorimeter is allowed in the event.

Two Photon Events:

e+

e−

e+

f̄

f

e−γ

γ

f ∈ (e, µ, τ, q)

Y

X
Z
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50 GeV20105

In these events, a photon is radiated off each of the two initial state electrons/positrons. The interaction
of these photons can produce either a leptonic or a hadronic final state. A typical two-photon event
can be seen in the event display above. Since the energy of the two photons is different, the resulting
final state is boosted. The event looks in general asymmetric. Furthermore, the energy of this final
state is usually less than the beam energy, since the initial state particles escape undetected. The
following cuts are applied to remove two-photon events.

– The maximum acollinearity angle allowed between the two cones in the event is 15◦.

– The event is removed if the visible energy in one of the cones is less than 3% of the beam energy.

– If the visible energy is in the range 3% < Evis < 20%, the transverse momentum as calculated
from tracks and clusters has to exceed 2GeV.

Muon Pair Events:

e−

µ+

e+
Z0/γ

µ−

Y

X
Z
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In (3.366± 0.007)% of all cases, the Z0 decays into a pair of muons. The experimental signature is two
high energetic (Eµ ≈ √

s/2 = 45.6GeV) back-to-back tracks in the central detector, small or no energy
deposition in the electromagnetic and hadron calorimeters and hits in the muon chambers which can
be assigned to the tracks. A typical muon pair event can be seen in the event display above. The two
muons are identified separately by requiring that at least one of the following criteria is fulfilled.

– The total energy deposited in the electromagnetic calorimeter must not exceed 2GeV. A minimum
ionizing particle on average deposits an energy of E = 420MeV in the Opal lead glass calorimeter.

– The sum of the number of fired layers in the muon chamber and the last three layers of the HCAL
must be larger than 5.
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– At least two hits are found in the muon chambers.

If both muon candidates fulfill these requirements and if the sum of the energy measured in the jet
chamber and in the electromagnetic calorimeter exceeds 60% of the center of mass energy, the event is
identified as a muon pair.

e+e− → e+e− Events:

e−

e+

e+
Z0/γ

e−

e−

e+

e−

γ

e+

Y

X
Z

200 . cm .

Cen t r e o f s c r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 )

50 GeV20105

Y Z

X 200 . cm .

Cen t r e o f s c r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 )

50 GeV20105

The experimental signature is two back-to-back high energetic tracks in the jet chamber with an energy
close or equal to the beam energy. Since electrons are completely absorbed in the electromagnetic
calorimeter, one high energetic cluster is expected per hemisphere, which can be assigned to the
corresponding track. No or very little energy deposition is measured in the hadron calorimeter and no
hits are expected in the muon chambers.

Two physics processes contribute to this final state. In the s-channel process, which is shown by the
upper Feynman diagram, electron and positron annihilate to a Z0 or γ which then decays into an
electron-positron pair. The angular distribution of the final state particles is ∝ (1 + cos2 Θ) like in τ
pair events. In the t-channel process, where electron and positron are scattered by only a small angle
via γ exchange, the angular distribution is peaking in forward direction. To remove this event type,
the following cuts were applied.

– Barrel Region:

If the average | cos Θ| as calculated from tracks and the clusters in the electromagnetic calorimeter
is less than 0.7 (barrel region), the average cluster energy in the event plus 30% of the average
energy as calculated from the tracks has to be larger than 80% of the beam energy.

– Endcap Region:

In the endcap region the event is identified as a Bhabha event if the following criteria are not
fulfilled:

∗ The average energy as calculated from the tracks is less than 80% of the beam energy and
the sum of the track energy plus the average energy as measured in the electromagnetic
calorimeter is less than 1.05 times the beam energy.

∗ The average energy as calculated from the tracks is greater than 80% of the beam energy and
the average energy as deposited in the electromagnetic calorimeter is less than 25% of the
beam energy.
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Cosmic Muon Events:
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They are produced in the interaction of cosmic radiation with the atmosphere. They pass the detector
from outside and leave one track in the jet chamber which will most probably be displaced from the
primary vertex. For events in the central region of the detector (| cos Θ| < 0.8) the information from
the Time-of-Flight counter is used. Events from τ decays are required to contain at least one TOF
counter that measures a time within 10 ns of that expected for a particle coming from the interaction
point. In addition the time difference between the signals from two opposite4 modules is considered.
Events were rejected as cosmic rays if ∆t > 10 ns for all such pairs. If an event is not classified as
being in the barrel region and does not satisfy the TOF acceptance criteria, it is required to contain
at least one pair of tracks with

∑
|d0| < 0.6 cm

∑
|z0| < 25 cm.

After the τ selection as described above, a total of 7.28% non-τ background events remain in the event
sample. The Bhabha scattering events are recorded in the very forward direction (| cos Θ| > 0.9). The
remaining background from µ-pairs is recorded at around | cos Θ| ≈ 0.8, which is in the overlap region
between the barrel and the endcaps of the detector. The two-photon events that pass the τ selection are
also predominantly in the forward direction (| cos Θ| ≥ 0.6). Since this analysis is restricted to the barrel
region, their contribution is reduced to the permille level in the relevant range. The largest contribution to
the non-τ background comes from qq̄ events (6.28%). By requiring that in each cone the sum of the charges
of all good tracks is ±1 and that cones in opposite hemispheres have opposite net charge, this background
is reduced to below 1%.

5.2 Selection of the Signal Channels

For the selection of the various final states, a cut based procedure is used. For all selected decay modes, the
cone axis calculated from the momenta of all tracks and neutral clusters identified in the electromagnetic
calorimeter have to have a polar angle within | cos Θ| < 0.68 for the reasons explained above. Each selected
cone has to have at least one good track coming from the interaction point where the momentum sum of all
tracks has to be less than the beam energy. Since there is at least one hadron in the final state, the energy
deposit in the hadron calorimeter within the cone is required to exceed 1GeV. In the following, the various
final states are discussed individually.

5.2.1 τ− → K−π0ντ

In the K−π0ντ selection, exactly one good track coming from the primary vertex is required. This track
has to have a minimum momentum of p > 3GeV for kinematic reasons. For the track, to be selected as a
kaon, the pion weight has to satisfy Wπ < −0.98 and the kaon weight WK < 0.6. Furthermore exactly one
identified π0 with Eπ0

min > 1.5GeV, selected using the algorithm explained in Chapter 4.2, is required. The
variables used in this selection are shown in Figure 5.3.

4 The two TOF modules have to have an azimuthal angle of φ > 165◦
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Fig. 5.2: The pion weight Wπ for 1-prong τ decays in the range (−1 : −0.8). The dots are the data points, the open
histogram denotes the contribution from kaon tracks as predicted from the Monte Carlo simulation and
the shaded area represents the contribution from pion tracks. Events on the side of the direction of the
arrow are considered kaon candidates.

From this selection 360 events are seen in the data with 190.5 background events predicted from Monte
Carlo. This corresponds to a background fraction of 54%. The invariant mass spectrum can be seen in
Figure 5.8. The mass resolution in this channel is approximately 40MeV. The main background comes from
τ− → K−ντ decays where one fake neutral pion was reconstructed. Additional sources of background are
τ− → π−π0ντ , τ− → K−K0ντ and τ− → K0K−π0ντ where the K0 is a K0

S decaying to two neutral pions or
a K0

L which does not decay within the jet chamber.

5.2.2 τ− → K0π−ντ

The selection is very similar to that for the K−π0ντ final state. Here exactly one identified K0
S is required

using the procedure from Chapter 4.3. There has to be one good track in the cone coming from the primary
vertex. If the momentum of this track lies above the kinematically allowed minimum for a kaon, the same
identification procedure as mentioned above is applied to veto decays τ− → K−K0ντ . Only events with zero
reconstructed π0 are accepted. The variables used in the selection are shown in Figure 5.4.
From this selection 361 events are expected in the Monte Carlo with a background fraction of 47%, and 344

are seen in the data. The main background contribution comes from decays τ− → K0K
0
π−ντ , τ− → K−K0ντ
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Fig. 5.3: Variables used in the K−π0ντ selection. The dots are the data points, the open histogram is the prediction
from the Monte Carlo. Plot (a) shows the number of reconstructed neutral pions with E > 1.5 GeV. In this
plot the shaded area is the background prediction from the Monte Carlo. Plot (b) shows the kaon weight
as explained in the text. Here the shaded area represents the expected background from pion tracks. The
arrows indicate the events kept in the selection. For all plots all selection cuts have been applied except
for the cut on the variable shown.
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Fig. 5.4: Variables used in the K0π−ντ and K0π−π0ντ selection. (a) shows the number of reconstructed π0 mesons.
The dots are the data, the open histogram is the signal. The dark-shaded area represents the contribution
from K0π−π0ντ final states, the light-shaded area denotes other background channels. Plot (b) is the kaon
weight of the primary track.

and τ− → K0π−π0ντ where the π0 escapes detection. The invariant mass spectrum for this channel is shown
in Figure 5.8. The mass resolution in this channel is approximately 60MeV.

5.2.3 τ− → K−π+π−ντ

The selection starts by requiring exactly three good tracks coming from the interaction point. These tracks
are fitted to a common vertex and the fit probability is required to be larger than 10−7. In addition, each
pair of oppositely charged tracks has to fail the selection criteria for neutral kaons as defined in Chapter 4.3.
These two requirements reduce the background from photon conversions and decays containing K0

S.
To identify the kaon, the like-sign5 candidate track has to have p > 3GeV and Wπ < −0.9. To further
reduce the pion background among these candidate tracks, WK and Wπ are inputs to a neural network. The
track is rejected if the output of the neural network is below 0.3 (see Figure 5.6(c)). Exactly one like-sign
track is allowed to fulfill these requirements, otherwise the decay is treated as background. If the momentum
of the unlike-sign track is consistent with the τ− → π−K−K+ντ hypothesis, this τ decay is only accepted if
Wπ > −0.95 (see Figure 5.5).
The algorithm for identifying neutral pions explained in Chapter 4.2 is then applied to the selected cones.
For this channel, the number of reconstructed π0 mesons with an energy greater than 2GeV is required
to be zero (see Figure 5.6(b)). Otherwise this τ decay is treated as background. To further improve the

5 Tracks with the same charge as the initial τ lepton.
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Fig. 5.5: Pion weight of the unlike-sign track. The dots are the data, the open histogram is the signal expected from
pion track and the shaded area shows the background from kaon tracks. Here all selection cuts have been
applied except for the one on the π-weight. Events on the side of the direction of the arrow are kept.
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purity of the selection the cosine of the decay angle in the rest frame of the τ lepton, the so-called Gottfried-
Jackson angle Θ∗ is calculated. The cos Θ∗ distribution is shown in Figure 5.6(a). For events where the
kaon hypothesis was applied to the wrong track or the number of identified π0 does not correspond to the
true number, this calculation leads to unphysical values of that variable. Due to resolution effects, correctly
identified signal events can also give values beyond ±1. Therefore a cut was applied at cos Θ∗ = ±1.2. The
contribution from τ− → K−π+π−(nπ0)ντ events is included in the background estimate.
From this selection 269 events are seen in the data with a contribution of 149.8 background events predicted
from Monte Carlo. This corresponds to a background fraction of 63%. The main background contribution
comes from decays τ− → π−π−π+ντ , τ− → π−K−K+ντ and τ− → K−π+π−π0ντ , where the π0 meson
escapes detection. The invariant mass spectrum can be found in Figure 5.9. The mass resolution in this
channel is approximately 20MeV.

5.2.4 τ− → K0π−π0ντ

Exactly one identified K0
S and exactly one π0 is required. The pion candidate track has to satisfy the same

requirement as for (Kπ)− final states.
From this selection 65 events are expected in the Monte Carlo simulation of signal plus background and 67
seen in the data with a background fraction of 72%. The main background contribution comes from decays
τ− → K0π−ντ where the π0 escapes detection. The invariant mass spectrum can be seen in Figure 5.9. The
mass resolution in this channel is approximately 100MeV.

5.2.5 τ− → K−π+π−π0ντ

The (Kπππ)− signal consists of the following final states: K−π+π−π0ντ , K0π−π0π0ντ , K−π0π0π0ντ and
K0π−π+π−ντ . From these, only the first one which has the highest branching fraction is investigated.
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The same procedure as for the K−π+π−ντ channel is used. In addition, one identified π0 meson with an
energy of more than 2GeV is required. The invariant mass spectrum can be seen in Figure 5.7. From this
selection, 14 events are seen in the data with a contribution of 10 events from background. The selection
efficiency is of the order of 1%. The main background contribution comes from τ− → K−π+π−ντ decays,
where one fake neutral pion was identified.
Since the number of signal events in this final state is not significantly different from zero, this channel is
not considered any further in this analysis. For the spectral function, the Monte Carlo prediction has been
used instead.

5.3 Invariant Mass Spectra

From the selected events as described above, now the invariant mass spectra can be calculated. They are
displayed in Figure 5.8 for the two meson final states, K−π0ντ and K0π−ντ . For the three meson final
states, K−π+π−ντ and K0π−π0ντ , the invariant mass distributions are displayed in Figure 5.9. For all
plots in all signal channels, a bin width of 150MeV was chosen, which corresponds to at least 1.5 times the
invariant mass resolution in the corresponding spectrum. In addition, the background subtracted spectrum
is displayed. The selection efficiency for each signal channel is given in the last column as a function of the
invariant mass of the corresponding spectrum. They are of the order of 10% or less. The efficiency correction
is only applied to the individual spectrum after the unfolding procedure as described in Chapter 6.2.
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Fig. 5.8: Invariant mass spectra of the two meson final states. In the first (second) row, the plots for the K−π0ντ

(K0π−ντ ) final states are shown. Plot (a) shows the measured invariant mass spectrum. The dots are the
data, the open histogram is the Monte Carlo signal and the shaded area is the background. Plot (b) shows
the background subtracted spectrum and plot (c) the selection efficiency as function of the invariant mass.
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Fig. 5.9: Invariant mass spectra of the three meson final states. In the first (second) row, the plots for the K−π+π−ντ

(K0π−π0ντ ) final states are shown. Plot (a) shows the measured invariant mass spectrum. The dots are
the data, the open histogram is the Monte Carlo signal and the shaded area is the background. Plot (b)
shows the background subtracted spectrum and plot (c) the selection efficiency as function of the invariant
mass.



 



6. THE MASS CORRECTION PROCEDURE

Physical observables like the invariant mass spectra or angular distributions are usually distorted by the
measurement procedure for several reasons. The probability of observing an event in the detector is usually
less than one due to acceptance effects. The response of the measuring device might not be linear and
thus distorting the measured observable, or the limited resolution of the detector leads to a smearing of
the observed quantity. The measured observable therefore substantially depends on the properties of the
detector. In order to be able to compare the results obtained from different experiments, to combine invariant
mass spectra with different mass resolution or to theoretically evaluate the obtained results, a procedure to
correct for these detector effects is necessary. This procedure is usually called unfolding, deconvolution or
unsmearing. Apart from high energy physics, correcting measured observables from biasing effects is applied
in various fields like medical imaging, radio astronomy or crystallography, to give some examples.
Any correction procedure has to fulfill certain quality criteria. It has to produce numerically stable results.
An enhanced sensitivity to statistical fluctuations, either in the measured observable or in the Monte Carlo
sample used in the correction procedure, is otherwise likely to produce artifacts in the ‘corrected’ spectrum.
They could erroneously be interpreted as information from physics processes, or hide the wanted information.
The result of the correction should be as independent as possible from the dynamics of the physics process
used in the Monte Carlo simulation. In particular in those cases, where the dynamics in the data events are
basically unknown, like in the case of invariant mass spectra in strange hadronic τ decays. The stability of
the result when using Monte Carlo samples containing different models of the process under investigation,
is vital for a useful physical interpretation. In addition, a good knowledge of the detector effects biasing the
measurement is important. This means that the calibration and the resolution of the detector have to be
well described by the Monte Carlo simulation.
Several correction procedures have been used in the analysis of high energy particle physics data. There
are simple migration corrections, where each bin is assumed to be independent, unfolding procedures based
on Singular Value Decomposition [58], methods using spline interpolations to parametrize the detector
response [59] or methods based on Bayes Theorem [60]. Any correction procedure however in principle
has a bias towards the model used in the Monte Carlo simulation. This bias has to be minimized, e.g. by
‘regularization’ of the result or by using iterative algorithms, where the model of the corresponding process
in the Monte Carlo simulation is refined according to the results obtained after each iteration step. The
remaining systematic uncertainty associated with the procedure chosen has to be reliably estimated.
In this analysis, a Matrix Unfolding method was used, where the inverse detector matrix was determined
directly from Monte Carlo simulation, which avoids the instabilities of numerical matrix inversion. This
correction procedure is used in an iterative algorithm, which leads to stable results within a few iteration
steps. The result obtained for the corrected spectrum is independent of the dynamics of the physics process
assumed in the Monte Carlo simulation within the statistical uncertainties of this analysis.
This chapter is organized as follows. It starts with a mathematical formulation of the unfolding problem
followed by a brief discussion of other unfolding procedures. The Matrix Unfolding is introduced in Chapter
6.2 and the iteration procedure, applied in order to reduce the bias toward the model used in the Monte
Carlo, is explained. Tests using events including full simulation of the Opal detector and assuming various
resonance structures for the invariant mass spectra is presented in 6.2.3. Finally the results obtained from
the unfolding of the spectra from τ data events are presented in Chapter 6.3.

6.1 Introduction

Let g(y) be the measured distribution which depends on some variable y ≡ smeas and let f(x) be the true
distribution depending on x ≡ strue. The measured distribution g(y) can then be written as

g(y) =

∫ xmax

xmin

dxA(y, x)ε(x)f(x) + b(y). (6.1)
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Equation 6.1 is a Fredholm integral equation of first order. Mathematically, the function A(y, x) is called
kernel of the integral equation. It describes the effects of the detector on some true distribution x, leading
to the measured distribution y. In other words, it gives the probability that for a certain event, y = y0 is
measured if x = x0 were the true value. The detector response function is usually not known analytically and
is therefore taken from a Monte Carlo simulation. The contribution from background events is denoted by
b(y), which is assumed to be known either from independent measurements or from calculations. The function
ε(x) describes efficiency and acceptance effects, which are determined using Monte Carlo simulations. In
high energy physics, the measured distributions are usually given in the form of histograms. Therefore, the
number of events observed in bin i is given by

gi =

∫ yi

yi−1

g(y) dy =
m∑

j=1

Aij + bi, (6.2)

where

Aij =

∫ yi

yi−1

Aj(y) dy

=

∫ yi

yi−1

(∫ xmax

xmin

A(y, x)fMC(x)ε(x) dx

)
dy

and

bi =

∫ yi

yi−1

b(y) dy.

Equation 6.2 can be written as matrix equation

g = A · f + b, (6.3)

where g and b are n-vectors in detector space, f is an m-vector in tree-space and A is an n × m matrix.
The vector, containing the unfolded distribution is then obtained by solving the set of Equations

f = A−1(g − b). (6.4)

To obtain the inverse of the detector response matrix, several procedures exist, which are briefly discussed
here.

• Numerical Matrix Inversion: The determination of the detector matrix from Monte Carlo simulation
and its numerical inversion leads to unsatisfactory results. Due to statistical fluctuations in the sim-
ulation and in the data set to be unfolded, this procedure is numerically unstable. The obtained
distributions are wildly fluctuating. In addition, the number of bins has to be identical for the mea-
sured and for the unfolded spectrum, since only squared matrices can be numerically inverted. This
includes, that there are events in the whole physically allowed range of the corresponding observable.
Otherwise, the inverse matrix is undefined. For invariant mass spectra this is not usually the case,
especially close to the kinematic limit.

• Bin-by-Bin Unfolding: This is a special case of the numerical inversion of the detector matrix. Here,
each bin in the distribution to be unfolded is treated independently, i.e. the bins are assumed to be
uncorrelated. Only the net migration of events from or into a particular bin is considered. The transfer
matrix is diagonal and can therefore be inverted without the disadvantage of numerical instabilities.
This method has a strong bias towards the model used in the Monte Carlo simulation. Since the
resonance structure is not very accurately known, in particular in strange final states with three or
more mesons, this method is not applicable here.

• Regularized Unfolding (see e.g. [58, 59]): These methods like e.g. Singular Value Decomposition, ana-
lyzes the measured spectrum in terms of eigenvalues and eigenvectors of the detector matrix, similar
to a Fourier analysis. The unfolded spectrum is obtained by adding up the eigenvectors with the cor-
responding eigenvalues as relative weights. This procedure stops when the weight, i.e. the eigenvalue is
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no longer statistically significant and all higher contributions are neglected. This is called regulariza-
tion or damping of the unfolded spectrum. The regularization parameter has to be determined using
Monte Carlo simulations and the final result highly depends on this parameter. In the limit of no
regularization, the same oscillating result is obtained as for the numerical matrix inversion.

Using the regularized unfolding, only smooth deviations from the Monte Carlo prediction can be
measured with reasonable accuracy. Otherwise eigenvectors representing ‘high frequencies’ would be
needed to describe the spectrum. This enhances the statistical fluctuations in the spectrum and,
depending on the given spectrum, may cause artifacts. To avoid this, the detector matrix is normalized
to the prediction from the Monte Carlo and as a result, coefficients describing the deviation of the
spectrum to be unfolded relative to the prediction from the Monte Carlo are obtained.

The resonance structure for the strange decay channels however is not very accurately known, in particular
in cases with three or more mesons in the final state. Due to the limited statistics a detailed analysis of the
resonance structure prior to the unfolding procedure is not possible. To keep the method simple and the
systematic uncertainty small, a matrix unfolding procedure explained in the next section was used to correct
for detector effects.

6.2 Matrix Unfolding

In this section, the matrix unfolding is explained in detail and tests of the method are presented. The
following notation is used:

• gi: Number of events in measured distribution

• fi: Number of events in the unfolded distribution

• a−1
ij : Elements of the inverse detector matrix

In the determination of the inverse detector matrix, the following quantities are required:

• Nij : Number of events generated in bin i and reconstructed in bin j.

• Xi: Number of events generated in bin i

• Yi: Number of events reconstructed in bin j.

In order to reduce the bias towards the Monte Carlo, this method is applied in an iterative procedure. After
each unfolding step, the simulated events are reweighted:

• w
(n)
i : Reweighting factor.

The superscript denotes the iteration step, the reweighting factors belong to. In the Matrix Unfolding
procedure, the inverse detector matrix is determined directly from Monte Carlo to avoid the instabilities of
a numerical inversion. The elements a−1

ij of the matrix are calculated according to

a−1
ij =

#(generated in bin i and measured in bin j)

#measured in bin j
=

Nij∑
j Nij

=
Nij

Yj
, (6.5)

which is the number of events generated in bin i and reconstructed in bin j, normalized to the total number
of events reconstructed in bin j. The elements of the matrix therefore represent the probability for a
reconstructed event found in bin j, that it was originally generated in bin i. Unlike in the bin-by-bin
unfolding discussed earlier, the correlation between the bins of the measured distribution is fully taken into
account.
The coefficients a−1

ij are calculated for each measured spectrum using the corresponding signal Monte Carlo.
The events used in the calculation of the matrix have to fulfill the selection criteria for the corresponding
signal channel. The inverse detector response matrix is then applied to the background subtracted spectrum
to obtain the unfolded distribution. The number of events, observed in bin i of the distribution g(y) is then
given by

fi = εi

∑

j

a−1
ij (gj − bj). (6.6)
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The efficiency corrections are then applied to these corrected distributions. Due to the limited statistics in the
data set, a simultaneous unfolding including all signal channels and the dominant background contributions
(like e.g. in [40]) is not possible here. In the unfolding procedure, the individual spectra are assumed to be
independent.

6.2.1 Unfolding ‘Ideal’ Distributions

In the following example, the unfolding procedure is illustrated. In this example, the resonance structure is
assumed to be exactly known. The identical distribution is used to calculate the smeared distribution and
to set up the inverse detector matrix. Therefore, in this example, no statistical fluctuations occur and the
tree-level distribution has to be exactly reconstructed in the unfolding procedure without iteration.
A background-free distribution is assumed, where on tree level 800 events are in the central bin and 100
events are on either side. To simulate the detector response, this distribution is folded with a resolution
function. An arbitrary resolution function is assumed, where 80% of all events remain in the bin they
were created in, 7% and 3% migrate to the neighboring and next-to-neighboring bin, respectively. This is
illustrated in Figure 6.1. The inverse detector matrix can now be reconstructed using Equation 6.5:

A−1 = (a−1)ij =

...
a3j :
a4j :
a5j :

...




0
0.03·100

3
0.07·100

31
0.80·100

139
0.07·100

654
0.03·100

139 0 0

0 0.03·800
31

0.07·800
139

0.80·800
654

0.07·800
139

0.03·800
31 0

0 0 0.03·100
139

0.07·100
654

0.80·100
139

0.07·100
31

0.03·100
3

0




. (6.7)

Here, each row represents one bin on generator level and each column represents one bin on detector level. The
inverse detector matrix can now be applied to the ‘measured’ distribution, yielding the unfolded spectrum

f = A−1 · g

=




0

1.00 0.23 0.58 0.01 0.02 0 0

0 0.77 0.40 0.98 0.40 0.77 0

0 0 0.02 0.01 0.58 0.23 1.00

0




·




3
31
139
654
139
31
3




=




0
0

100
800
100
0
0




.

In this ideal case, the generated spectrum is precisely reproduced by construction. The covariance matrix
in this case is calculated from the statistical error on the ‘measured’ distribution alone:

Cov(f) = A−1 · ∆g · (A−1)T = · · · =




0

0 0 52 45 3 0 0

0 0 45 709 45 0 0

0 0 3 45 52 0 0

0




. (6.8)

The correlation between the bins, introduced by the resolution function is fully taken into account. The
correlation coefficient is of the order 25% for the first off-diagonal elements, though only 7% of the events
were assumed to migrate to either side of the corresponding bin in this example. The correlation is of the
order of 5% for the second off-diagonal elements.

6.2.2 Iteration Procedure

The analysis of real data is different from the ideal case. The distribution realized in nature is usually
not known and therefore the result of the correction procedure has to be independent from the dynamics
assumed in the Monte Carlo simulation. In addition, statistical fluctuations cause deviations to the measured
spectrum. They should be reflected in the unfolded distribution. The Matrix Unfolding procedure is applied
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Fig. 6.1: Illustration of the unfolding procedure. Plot (a) shows the generated distribution on tree-level. By con-
struction, it is identical to the spectrum after the unfolding procedure. The error bars represent the
statistical uncertainty of the original spectrum. The shaded areas show the error as obtained from the
diagonal elements of the covariance matrix after the unfolding procedure. Due to the correlation between
neighboring bins, these errors are smaller than the original ones. For better visibility, the errors are multi-
plied by a factor three compared to the numerical example given in the text. The distribution on detector
level is shown in plot (b), the correlation matrix is illustrated in plot (c). In this example the correlation
is of the order of 25% (5%) for the first (second) off-diagonal elements.

in an iterative procedure to reduce the possible bias. After each unfolding step, the obtained result for the
unfolded distribution is used to refine the Monte Carlo simulation. This adjusted Monte Carlo sample is
then used to re-evaluate the inverse detector matrix and the unfolding is repeated.
After the nth unfolding step, weights are calculated by comparing bin-by-bin the unfolded distribution to
the distribution used in the Monte Carlo simulation on tree-level:

w
(n)
i = Nf

X · fi

X
(0)
i

= Nf
X ·

∑
j a−1

ij gj

X
(0)
i

= Nf
X ·

∑
j w

(n−1)
i

Nij

Yj
gj

∑
j Nij

= Nf
X ·

∑
j w

(n−1)
i

Nij∑
i Nij

gj

∑
j Nij

.

Here, Nf
X is a Monte Carlo normalization factor. The inverse detector matrix is then re-evaluated, now

multiplying each event in the Monte Carlo with the corresponding weight, according to the bin i it was
generated in. With this new detector matrix the unfolding is repeated.
To illustrate the iteration procedure the same distribution and resolution function as in the last chapter are
used. However, here the dynamics in the Monte Carlo used in the set up of the detector matrix is assumed to
produce flat mass distributions on generator level. This is illustrated in Figure 6.2(a), where the distribution
on generator (detector) level is given as solid (dashed) line. If no statistical fluctuations are present, the true
distribution is exactly reproduced in the limit of an infinite number of iterations. This is illustrated by the
solid line in Figure 6.2(b), where the χ2 as calculated from the original distribution and the result of the
unfolding is plotted as a function of the number of iteration steps.
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In the presence of statistical fluctuations, the situation is different. An infinite number of iterations in this
case would lead to an enhancement of the fluctuations and thus to unsatisfactory results. This is discussed
in detail in the next chapter. In order to study the performance of the Matrix Unfolding procedure in the
presence of statistical fluctuations, fluctuations are applied to the detector spectrum as illustrated in Figure
6.2(c). The histogram with the shaded areas represent the original distribution and the error bars. The dots
are the spectrum with the fluctuations applied.

The Matrix Unfolding Procedure is now applied using an iterative algorithm as explained above. Again, the
χ2 as calculated from the original distribution and the unfolded spectrum and is displayed as function of
the iteration depth as a dotted line with full dots in Figure 6.2(b). This function shows a minimum after
4 iteration steps. The region around the minimum is flat, i.e. no significant change (given the assumed
statistical uncertainty) is observed when changing the number of iterations from four to three or five. The
variation stays well below 5%. For a larger number of iterations, the χ2 increases again unlike in the ideal
case, thus leading to an unsatisfactory result with enhanced statistical fluctuations. The result obtained after
the optimal number of iteration steps is compared to the true distribution in Figure 6.2(d). Here the central
bin is lower than in the original distribution. The left (right) neighboring bin has fewer (more) entries. This
shape corresponds well to the statistical fluctuations applied on detector level, where altogether 55 events
less have been observed in this particular example. This means that if the deviations were not just statistical
fluctuations but were due to deviations from the dynamics assumed in the Monte Carlo simulation, it would
have been retained after the unfolding.
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Fig. 6.2: Test of the iteration procedure. In plot (a), the input distribution as used to set up the inverse detector
matrix is shown. The generator (detector) level is denoted by the solid (dashed) line. (b) shows the χ2 as
a function of the number of iteration steps. The full (open) dots illustrates the example without (with)
statistical fluctuations. Plots (c) and (d) show the test sample on detector level and on generator level,
respectively. The histogram represents the ideal case without statistical fluctuations, where the shaded
area represents the statistical uncertainty. The dots are the corresponding distributions with the statistical
fluctuations applied.
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6.2.3 Test with τ Monte Carlo

To be able to apply the unfolding method explained above to the Opal data, special Monte Carlo samples
were generated. For the signal channels τ− → K−π0ντ , τ− → K0π−ντ and τ− → K−π+π−ντ 200.000 events
were generated for each decay mode. For the τ− → K0π−π0ντ , due to the much lower selection efficiency,
600.000 events are produced. These events were processed through the full Opal detector simulation.
The events in these samples are generated between the lower kinematic limit (which depends on the signal
channel under investigation) and the upper limit of m2

τ = 3.154GeV2 with a flat mass distribution. This
allows for a precise determination of the inverse detector response matrix even in mass regions where the
standard τ Monte Carlo does not provide a sufficient number of events. The uncertainty on the inverse
detector response matrix due to the Monte Carlo statistic in these sample is of the order of a (3 − 4)% for
the diagonal elements of the matrix and below 10% for the two first off diagonal elements. These events are
also used for the determination of the selection efficiency.
In order to test the method, a flat mass distribution and a mass distribution according to phasespace was
used to set up the inverse detector matrix. The latter is obtained from the flat distribution by reweighting
the Monte Carlo events. Then, a subsample test was performed. For each signal channel, 200 subsamples
of the size expected in the data for the corresponding channel were selected. The events were then unfolded
using the iterative procedure as explained above.
The result of the unfolding procedure can be seen in Figures 6.3 and 6.4. In the first row in each figure,
the results obtained after each iteration step are displayed using a phasespace distribution as initial guess
to set up the inverse detector matrix. In the second row the same results are shown, now using a flat mass
distribution as initial guess. In each row in the first plot, the mass distribution used as initial guess can be
seen on generator level (dotted line) and detector level (dashed line). The dots show the distribution to be
unfolded averaged over all subsamples. The next plots in the row, labeled ‘0th Iteration Step’, ‘1st Iteration
Step’ and so on, compare the results of the corresponding iteration step (dots) to the original distribution
on detector level (dashed line) and generator level (dotted line).
Using a phasespace distribution as initial guess, for all final states considered here, an agreement between
the unfolded spectrum and the corresponding distribution on generator level of better than the expected
statistical uncertainty was obtained after the second iteration step. Applying on additional iteration step
changes the result only on the percent level, which can be seen by comparing the last and the second-to-
last plot in the first row for each corresponding channel. Using a flat mass distribution as initial guess
for the unfolding matrix, one additional iteration step is necessary to obtain a result which reproduces the
corresponding tree distribution on the same level as for the phase space distribution. Also in this case, the
obtained result is stable against one additional iteration step.
In all plots discussed here, the error bars do not correspond to the statistical uncertainty of the spectrum.
They represent the spread obtained over the 200 subsamples.

6.3 Unfolding Data Events

The invariant mass spectra measured in Chapter 5.2 have different invariant mass resolutions, ranging from
20MeV for the final state K−π+π−ντ , up to 100MeV for the channel K0π−π0ντ . In order to be able to
combine these signal channels (and the corrections from Monte Carlo) to obtain the strangeness spectral
function, the invariant mass spectra are now subject to the mass correction procedure. Because of the large
statistical uncertainty, a simultaneous unfolding of all signal channels like in [40] is not possible. Therefore,
each channel is treated individually.
The inverse detector matrix is set up for each signal channel, using the special Monte Carlo as explained
in the previous section. As initial guess, a phase space distribution is used for all spectra. The number of
iteration steps is two for each channel. The corrected spectra for all signal channels are displayed on the
left side of in Figure 6.5. The correlation matrices for the corresponding spectra are displayed on the right
side. The size of the correlation is color-coded. The correlation between the bins varies from ∼ 20% for the
channel with the best invariant mass resolution (K−π+π−ντ ) to about 50% for the two-meson final states.
In the τ decay in the channel K0π−π0ντ , which has the worst resolution, the correlation bins is larger than
50% for neighboring bins and of the order of 50% to next-to-neighboring bins.
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Fig. 6.5: Unfolded spectra and correlation matrices for the final states K−π0ντ , K0π−ντ , K−π+π−ντand K0π−π0ντ .
On the left side the unfolded spectra are displayed. On the right sight, the correlation matrices are given.



7. RESULTS

In this chapter, the results obtained from the measured invariant mass spectra are presented. At first,
new branching fractions for the decay channels τ− → K−π0ντ and τ− → K−π+π−ντ are determined in
a simultaneous fit. Since the measured values change the present world averages, improved averages are
calculated for these final states. In Section 7.2, the strangeness spectral function is presented and the
systematic uncertainties associated with it are discussed. Spectral moments are then determined from the
spectral function. In addition, the weighted difference of strange and non-strange spectral moments and
their ratio are calculated. Finally, in Section 7.5, the mass of the strange quark is determined from this
weighted difference and the obtained result is compared to previous analyses.

7.1 Branching Fractions

The channels τ− → K−π0ντ and τ− → K−π+π−ντ allow the determination of competitive branching frac-
tions from the measured data used in the spectral function analysis. The branching fractions are determined
in a simultaneous χ2-fit, taking all measured final states into account. The expected number of events is
calculated by

Ni = N 6τ
i + (1 − f 6τ

bkg) · Nτ
∑

j

εijBjF
Bias
j ,

where i is the signal channel under consideration and index j runs over all channels including background.
The other quantities are

• N 6τ
i : the number of events expected from the non-τ background channels

• f 6τ
bkg: the fraction of non-τ background in the corresponding decay channel.

• Nτ : the number of τ candidate events selected in the data

• εij : the efficiency matrix as determined from Monte Carlo simulations

• FBias
j : the bias factor due to the τ selection cuts

• Bj : the fitted branching fractions.

While the branching fractions for the signal channels under consideration were allowed to vary freely, the
branching fractions of all other τ decay modes contributing to the background prediction were allowed to
vary only within their errors. An additional term is added to the fit function to account for the variation of
the branching fractions not measured here. The fit function then reads

χ2 =
∑K−π0ντ

K−π+π−ντ

(
Nmeas − Nexp

σ

)2

+
∑

j∈other

(
Bj − Bj, PDG

σj

)2

. (7.1)

The shift in the branching fractions not measured here were found to be small. The selection quantities
used in the fit are shown in Table 7.1(a/b) as well as contributions from the background channels and their
branching fractions used in the Monte Carlo simulation. From the fit, the following results were obtained:

B(τ− → K−π0ντ ) = (0.471 ± 0.064stat ± 0.021sys)%

B(τ− → K−π+π−(0π0, ex.K0)ντ ) = (0.415 ± 0.059stat ± 0.031sys)%.

It has been excluded that the π−π+ pair in the K−π+π−ντ final state comes from a K0
S decay.
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τ− → K−π0ντ

No. of Events 360
Selection Efficiency /% 8.42 ± 0.17
Preselection Bias Factor 1.016 ± 0.011
Non-τ Background Fraction 0.006 ± 0.004
τ Background Fraction 0.540 ± 0.027

π−π0ντ 13.5% 0.051 ± 0.005 25.41 ± 0.14
K−K0π0ντ 9.9% 6.0 ± 0.3 0.155 ± 0.020

K−ντ 8.1% 1.25 ± 0.06 0.686 ± 0.023
K−K0ντ 7.3% 4.5 ± 0.2 0.154 ± 0.016

π−π0π0ντ 6.2% 0.07 ± 0.01 9.17 ± 0.14
K−π0π0ντ 5.0% 9.6 ± 0.5 0.058 ± 0.023

K−π0π0π0ντ 2.6% 8.9 ± 0.6 0.037 ± 0.021
other 1.4%

Bkg. Fraction Efficiency /% BPDG/%

τ− → K−π+π−ντ

No. of Events 269
Selection Efficiency/% 6.59 ± 0.06
Preselection Bias Factor 0.953 ± 0.013
Non-τ Background Fraction 0.007 ± 0.006
τ Background Fraction 0.631 ± 0.044

π−π+π−ντ 21.6% 0.15 ± 0.02 9.22 ± 0.10
K−K+π−ντ 10.3% 3.9 ± 0.2 0.161 ± 0.019

π−π+π−π0ντ 8.1% 0.5 ± 0.1 4.24 ± 0.10
K−π+π−π0ντ 6.7% 2.7 ± 0.2 0.064 ± 0.024

other 16.4%

Bkg. Fraction Efficiency /% BPDG/%

Tab. 7.1: Quantities used in the fit for the branching fractions. The errors quoted for efficiency, bias factor and
background fractions is from Monte Carlo statistics only. The last column contains the branching fractions
for the background channels used in the Monte Carlo simulation [57].

τ− → K−π0ντ τ− → K−π+π−ντ

Energy Loss Measurement ∆dE/dx 0.012 0.019
Energy Scale ∆E 0.010 0.011
Momentum Scale ∆p 0.003 0.003
MC Statistics ∆MC 0.014 0.021
Bias Factor ∆FBias 0.004 0.005

Total 0.022 0.031

Tab. 7.2: Individual contributions to the systematic uncertainty of the branching fraction measurements for the
decay channels τ− → K−π0ντ and τ− → K−π+π−ντ . For the total error quoted, the individual contri-
butions have been added in quadrature.
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7.1.1 Systematic Studies for the Branching Fractions Measurement

For the estimation of the systematic uncertainty, the following sources are considered. They are summarized
in Table 7.2. The total error is obtained by adding the individual contributions in quadrature.

• Energy loss measurement (∆dE/dx):
In the selection, the specific energy loss dE/dx is used to separate pions from kaons. Cuts on cor-
responding weights are applied which are calculated from the pull distribution (see Figure 4.15). A
possible shift in this quantity can lead to a systematic misidentification of tracks. The pull distribution
is therefore shifted within the error on its mean and the selection procedure is repeated. The difference
between the branching fractions obtain with and without the shift applied contributes to the systematic
uncertainty.

• Energy scale in π0 reconstruction (∆E):
The energy resolution can be tested by measuring the invariant two-photon mass from π0 decays. A
systematic shift in the observed mass in the data compared to the detector simulation can be translated
into a scale factor for the reconstructed photon energies. Deviations of ∆mγγ(0.5 ± 0.9)MeV from
the nominal π0 mass have been observed [40], corresponding to a scale factor of 1.004 ± 0.007. The
energies of the reconstructed photons in the Monte Carlo samples were therefore varied by ±0.7%. The
difference between the branching fractions obtained with and without the variation is the systematic
uncertainty.

• Momentum scale (∆p):
The systematic uncertainty connected with the momentum scale was tested using Z0 → µ−µ+ events
[40]. The difference in momentum resolution between data and Monte Carlo as a function of cos θ was
studied. To assess the systematic uncertainty ∆p in hadronic τ decays, all particle momenta in the
Monte Carlo were varied accordingly. The difference in the result with and without this variation is
quoted as a systematic uncertainty.

• Monte Carlo statistics (∆MC):
The precision of the background prediction depends on the Monte Carlo statistics used in the selection
procedure. Therefore, the number of background events selected is varied randomly within its statistical
uncertainty. The observed spread in the branching fraction due to this variation is quoted as systematic
uncertainty.

• Bias factor (∆FBias):
The bias factors as determined from the Monte Carlo are varied by their known uncertainty and the
branching fractions are then refitted. The observed spread observed due to this variation contributes
to the total systematic uncertainty.

7.1.2 Improved Averages for B(τ− → K−π0ντ ) and B(τ− → K−π+π−ντ )

For the determination of the spectral function and the moments described below, new average values for
the branching fractions of the decays τ− → K−π0ντ and τ− → K−π+π−ντ are determined. The same
measurements are used as inputs for the calculation as in [57], but the older branching fractions from Opal

were replaced by those determined in this work. For the channel τ− → K−π+π−ντ in addition, the new
measurement from CLEO [65] is included. For each measurement, first the total error is calculated by
adding the statistical and systematic uncertainties in quadrature. The new average is then determined by
calculating the weighted mean of the corresponding individual measurement, where the total error squared
is used as weighting factor. The new averages are:

Bav(τ
− → K−π0ντ ) = (0.453 ± 0.030)%

Bav(τ
− → K−π+π−ντ ) = (0.330 ± 0.028)%.

The measurements used, together with the averages given in [57] and the improved value for the branching
fractions obtained here, are displayed in Figure 7.1 (a/b) for the (K−π0ντ ) and the (K−π+π−ντ ) final state,
respectively.
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This Work (0.471 ± 0.064stat ± 0.022sys)%

ALEPH 99 (0.444 ± 0.026stat ± 0.024sys)%

CLEO 94 (0.51 ± 0.1stat ± 0.07sys)%
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PDG Mean
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(a)
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Fig. 7.1: Comparison of the Branching Ratio Measurements for the final states τ− → K−π0ντ (a) and τ− →
K−π+π−ντ (b). The full dots represent the measurements used in the calculation of the improved average.
Previous measurements, which are not used in the calculation are marked with open dots. The error
bars show the statistical uncertainty (inner error bar) and the systematic uncertainty added in quadrature
(total error). The shaded band represents the new average and the PDG average is denoted by the dashed
lines. In (b) the theoretical prediction from [78] is given by the square and the prediction from isospin
relations [88] is given by the triangle.

7.1.3 Discussion

The branching fraction obtained from this analysis for the K−π0ντ channel is consistent with the previous
measurements within the errors quoted. The value obtained for the K−π+π−ντ channel is consistent with
the new measurement from CLEO and the theoretical prediction in [78]. The ALEPH result differs from
these values by roughly 2.5σ. The error on the PDG average contains a scaling factor of 1.4 due to the
spread of the individual measurements.
The branching fraction for the K−π+π−ντ final state can be predicted from the measured branching fraction
of the final states K0π−π0ντ and K−π0π0ντ using isospin relations [88]:

BK−π+π−ντ
=

1

2
BK0π−π0ντ

+ 2BK−π0π0ντ
(7.2)

From the recent world averages taken from the PDG-Fit

B(K0π−π0ντ ) = (0.37 ± 0.04)% (7.3)

B(K−π0π0ντ ) = (0.058 ± 0.023)%, (7.4)

and taking into account the correlation, the following result is obtained:

BIsospin
K−π+π−ντ

= (0.301 ± 0.051)%, (7.5)

which is consistent with the improved average calculated in the previous section.
The PDG mean for the decay channel K−π+π−ντ was calculated using the three measurements displayed
at the bottom of Figure 7.1(b). This mean was dominated by the ALEPH value, which deviates by about
2σ from the other measurements. The two recent measurements labeled ‘This Work‘ and ’CLEO03’ favor
a higher value for this branching fraction which is also preferred by isospin predictions and theoretical
calculations.
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7.2 The Strangeness Spectral Function

The hadronic decay of the τ lepton is commonly written in terms of the so-called spectral functions v1(s),
a0/1(s) for the non-strange part and vS

0/1(s) and aS
0/1(s) for the strange part. The functions v and a are

the vector (V) and the axial-vector (A) contributions, respectively, while the subscript denotes the angular
momentum J in the hadronic rest frame. The variable s is the invariant mass squared of the hadronic
system. The spectral function is experimentally determined by measuring the invariant mass spectra of the
given hadronic modes and normalizing them to their respective branching fractions. The contributions to
the total strangeness spectral function then read:

vS
1 (s)/aS

1(s) =
m2

τ

6|Vus|2Sew

(
1 − s

m2
τ

)−2(
1 +

2s

m2
τ

)−1

× B(τ → (V/A)(S=−1,J=1)ντ )

B(τ → e−ν̄eντ )

1

NV/A

dNV/A

ds
(7.6a)

and

vS
0 (s)/aS

0(s) =
m2

τ

6|Vus|2Sew

(
1 − s

m2
τ

)−2

× B(τ → (V/A)(S=−1,J=0)ντ )

B(τ → e−ν̄eντ )

1

NV/A

dNV/A

ds
(7.6b)

where |Vus| = 0.2196 ± 0.0023 [57] is the CKM weak mixing matrix element, mτ = (1 776.99+0.29
−0.26)MeV [89]

is the mass of the τ lepton and Sew = 1.0194 ± 0.0040 [31] is an electroweak correction factor.
The total strangeness spectral function (v + a) is obtained by adding these individual contributions. To
disentangle the vector and the axial-vector parts for the spin-1 part, a detailed analysis of the resonance
structure of the measured spectra would be necessary which is not done here due to the limited statistics.

The kaon pole contributes to the pseudoscalar spin-0 part a
(1)
0 .

The Monte Carlo prediction of the total strangeness spectral function as a function of the invariant mass
squared is displayed in Figure 7.2. The improved version of the τ Monte Carlo as explained in Chapter 4.4
has been used here. For illustration purposes the spectral function is shown using two different binnings. A
non-equidistant binning is chosen which corresponds to a bin width of 50MeV and 150MeV in the invariant
mass, respectively. The errors given here are from Monte Carlo statistics only.
The spectral function obtained from the data is displayed in Figure 7.3. For τ− → K−π0ντ and τ− →
K−π+π−ντ , the new average branching fractions and their respective errors as given in Section 7.1.2 are
used. The binning chosen in this plot corresponds to a bin width of 150MeV in the invariant mass and
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Fig. 7.2: The strangeness spectral function as predicted from Monte Carlo. For illustration purposes two different
binnings were used – 150 MeV and 50MeV in mass in the left and right plot, respectively. The dots
represent the inclusive spectrum. The white histogram denotes the contribution from the (Kπ)− and
(Kη)− final states, the dark shaded histogram those from the (Kππ)− and (Kηπ)− channels and the light
shaded area shows the contribution from (Kπππ)− final states. The leftmost bin represents the kaon pole.
The errors shown include the statistical uncertainty of the Monte Carlo as well as the uncertainties on the
branching fractions.
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Fig. 7.3: The measured spectral function from strange τ decays. The dots show the inclusive spectrum as measured
in Opal. The white histogram shows the exclusive (Kπ)− spectrum, the dark shaded area the (Kππ)−

contribution and the light shaded area the contribution from the (Kπππ)− final states. The error bars
show the statistical uncertainty (inner error bar) and the systematic uncertainty added in quadrature (total
error). The kaon pole is calculated from the PDG branching fraction alone.

is governed by the mass resolution of the K0π−π0ντ final state. The dots with error bars represent the
inclusive spectrum. The inner error bars are the statistical uncertainties. They include the uncertainty on
the efficiency and on Monte Carlo statistics. The total error is calculated by adding up the statistical and
systematic uncertainties (explained in the next section) in quadrature. The numerical values are given in
Table 7.3. The systematic uncertainty is dominated by the uncertainty on the branching fractions.
The kaon pole is not measured from the data. It was instead calculated from the branching fraction. For the
(Kπ)− final state, both τ decay channels K0π−ντ and K−π0ντ are measured. The channel K−ηντ which also
contributes to the two meson final state is taken from Monte Carlo simulation. For the (Kππ)− final state,
the spectra K0π−π0ντ and K−π+π−ντ are measured. The contribution from the decay K−π0π0ντ is added
from Monte Carlo as well as the K−ηπ0ντ channel which also contributes to the three meson final states.
For the (Kπππ)− spectrum, which consists of the channels K−π+π−π0ντ , K0π−π0π0ντ , K−π0π0π0ντ and
K0π−π+π−ντ , the prediction from the Monte Carlo is taken.

7.3 Systematic Uncertainties on the Spectral Function

The sources for possible systematic uncertainties listed below have been considered. Since the individual
contributions are different for the different final states the error is given for each bin in s separately. The
systematic uncertainties are summarized in Table 7.3.

• PDG errors on the branching fractions (∆B):
The dominant contribution to the systematic uncertainty comes from the uncertainty in the τ branching
fractions (see Table 5.1). A shift in the branching fractions can affect the measurement spectral
function for two reasons. It influences the predicted contribution from background processes in the
measurement of the invariant mass spectra. Furthermore, for the signal channels it influences the
calculation of the strangeness spectral function since the branching fractions are used as weights for
the individual channels. For τ− → K−π0ντ and τ− → K−π+π−ντ the new average branching fractions
and their respective errors as given in Section 7.1.2 are used. The channels which populate the region
of high s have branching fractions with relative errors close to 100% leading to a large uncertainty in
the spectral function itself. This error also covers the lack of knowledge on the details of the shape.

• Energy loss measurement (∆dE/dx):
One of the key elements in this analysis is the K-π separation via dE/dx. During the selection, cuts on
kaon and pion weights are applied. A possible shift in the pull distribution from which the weights are
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determined leads to systematic misidentification of tracks. The pull distributions were shifted within
the errors on their mean value. The resulting change was found to be small compared to the statistical
uncertainty. In particular no mass dependent effects are observed.

• K0
S identification (∆K0

S
):

A possible origin for systematic effects in the K0
S identification is the estimation of the background

using Monte Carlo. In particular the number of photon conversions found in τ decays is not perfectly
modeled. The cut on the χ2 probability of the 2-C constrained fit to K0

S (see Section (4.3)) has been
varied from 10−5 to 0.01 to estimate a possible systematic effect. This cut reduces the number photon
conversions in the sample by one order of magnitude.

• Energy scale in π0 reconstruction (∆E):
The measured invariant mass spectrum may be distorted due to a bias in the measurement of the
photon energies in π0 decays. The energy resolution can be tested by measuring the invariant mass
of the two photons from π0 decays. A systematic shift in the observed mass in the data compared
to the detector simulation can be translated into a scale factor for the reconstructed photon energies.
Deviations of (0.5 ± 0.9)MeV from the nominal π0 mass have been observed [40], corresponding to a
scale factor of 1.004 ± 0.007. The energies of the reconstructed photons in the Monte Carlo samples
were therefore varied by ±0.7%.

• Momentum scale (∆p):
The measurement of the particle momenta may have a bias which results in a distortion of the measured
invariant mass spectra. The systematic uncertainty connected with the momentum scale was tested
using Z0 → µ+µ− events. In these events, due to the event kinematics, the muons have to have an
energy of Eµ = 45.6GeV, which corresponds to the beam energy. One muon is used to tag the event,
the momentum resolution is then determined using the track from the second muon. The difference in
momentum resolution between data and Monte Carlo as function of the cosΘ was studied. To asses
the systematic uncertainty ∆p in hadronic τ decays, all particle momenta in the Monte Carlo were
varied accordingly. The difference in the result with and without this variation is quoted as systematic
uncertainty.

• Mass correction procedure (∆mcorr):
In order to asses the systematic uncertainty associated with the mass correction procedure, two possible
sources have to be considered: The effect due to different input mass spectra and the effect due to
the choice of the number of iterations. Both have been studied using high statistics event samples.
The systematic deviations using either flat, phase space, or resonance shaped input spectra (with an
optimized number of iterations for each scenario) are about 5% in each mass bin. The deviations are
largest when a flat input distribution is assumed. Because the true mass spectrum is certainly not flat,
we consider 5% still a conservative estimate for ∆mcorr. The effect due to the number of iterations was
estimated using a phase space distribution as input spectrum and one additional iteration step was
performed. The effect was found to be negligible compared to the effect from a change in the input
distribution.

(s-range)/GeV2 ∆B ∆dE/dx
∆K0

S
∆E ∆p ∆mcorr ∆tot

sys ∆stat V + A

(0.18, 0.34) – – – – – – – – 3.22± 0.10

(0.53, 0.77) 0.04 0.006 0.006 0.007 0.003 0.06 0.07 0.17 1.17± 0.18
(0.77, 1.06) 0.13 0.011 0.011 0.014 0.001 0.11 0.17 0.18 2.27± 0.25
(1.06, 1.39) 0.08 0.003 0.003 0.004 0.001 0.03 0.09 0.07 0.69± 0.11
(1.39, 1.77) 0.18 0.005 0.005 0.005 0.002 0.05 0.18 0.19 0.90± 0.26
(1.77, 2.19) 0.32 0.006 0.007 0.007 0.003 0.06 0.33 0.25 1.22± 0.41
(2.19, 2.66) 0.35 0.007 0.009 0.009 0.003 0.07 0.36 0.49 1.44± 0.61
(2.66, 3.17) 0.30 0.007 0.008 0.008 0.003 0.07 0.31 0.85 1.35± 0.90

Tab. 7.3: Result for the strangeness spectral function. The table shows the values of the strangeness spectral function
together with the statistical and the systematic uncertainties for every bin in s. The total uncertainty
quoted is the quadratic sum of the statistical and systematic uncertainties. The first line corresponds to
the contribution from the kaon pole. This value is not obtained from Opal data but is calculated using
the branching fraction from [57].
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7.4 Rτ and the Spectral Moments

From the branching fractions in hadronic τ decays into strange and non-strange final states, the total hadronic
width Rτ can be calculated. Exploiting in addition the shape of the spectral function, spectral moments can
be determined, which are inputs to theoretical analyses.

7.4.1 The Measurement Rτ

Computing the ratio of the vector and axial-vector branching fractions to the electronic branching fraction,
using the values from [57], the following hadronic width ratios were obtained

Rτ, V = 1.767 ± 0.013
Rτ, A= 1.702 ± 0.012

Rτ, V +A= 3.469 ± 0.014

Rτ, S= 0.1667 ± 0.0050.

For the non-strange final states, the individual values for vector and axial-vector currents are given separately.
In addition, the sum of the two is given. In the calculation of Rτ, V +A the large anti-correlation is taken into
account. This correlation is ∼ −40% and it is due to the constraint of the sum of all branching fractions to
unity. In the case of the strange final states, only the combined value (V + A) is given, since the available
statistics does not allow for a separation of vector and axial-vector part.
The values obtained here for the non-strange final states can now be compared to previously published
results [40]. The results were found to be consistent within the experimental uncertainty. For the axial-
vector final states however, the value obtained here differs from the published results by ∼ 1σ. This is
mainly due to the branching fraction in the π−π0π0ντ final state, which changed from B = (9.27 ± 0.14)%
to B = (9.13 ± 0.14)%.
The total strange branching fraction of the τ lepton, including the improved averages for the K−π0ντ and
K−π+π−ντ final states, is Bstrange = (2.993± 0.90)%. This corresponds to a total strange hadronic width of

Rτ, s = 0.1677 ± 0.0050. (7.7)

The expectation value for a vanishing strange quark mass can be calculated using Equation 2.46, leading to
Rτ,S(ms = 0) = 0.1766±0.0038. The result obtained in this analysis differs significantly from the expectation
in the chiral limit. This is evidence for a massive strange quark.
The corresponding values obtained by the ALEPH collaboration are BALEPH

strange = (2.87±0.12)% and RALEPH
τ =

0.161 ± 0.0066 [63]. They differ from the Opal values by about one standard deviation. This is mainly
due to difference in the branching fractions for the decay channel τ− → K−π+π−ντ . The value for the
branching fraction obtained here is consistent with a previous OPAL analysis [64] and with the recent result
from CLEO [65]. It differs however from the value published by ALEPH [67] by roughly three standard
deviations. The improved average for the K−π+π−ντ branching fraction used in the calculation of Rτ here
and in the determination of the spectral function and the spectral moments is still about 1σ higher.
Adding the non-strange and strange contributions to the semileptonic width, the following result for the
total hadronic width of the τ lepton is obtained:

Rτ = 3.637 ± 0.015. (7.8)

A value for Rτ can also be obtained from the leptonic branching ratio of the τ lepton and from its lifetime.

• Rτ from the branching leptonic branching fractions:
The total hadronic width can be calculated from the branching fraction of the τ lepton into electrons
and into muons. The value for Rτ is then obtained via

Rτ =
1 − B(τ− → ντe−νe) − B(τ− → ντµ−νµ)

B(τ− → ντe−νe)
= 3.632 ± 0.016. (7.9)

It can be improved assuming lepton universality. The branching fraction of the τ lepton into muons is
then calculated from the branching fraction into electrons via

B(τ− → ντµ−νµ) = B(τ− → ντe−νe) ·
Γe

Γµ
. (7.10)
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Using Γe

Γµ
= 0.9726 [31] and Γe = 4.0329 · 10−13 GeV [31,32] this yields

Rτ =
1 − B(τ− → ντe−νe) − B(τ− → ντe−νe)

Γe

Γµ

B(τ− → ντe−νe)
= 3.633 ± 0.013. (7.11)

• Rτ from the τ lifetime:
Another possibility is the calculation of Rτ from the mean lifetime of the τ lepton. Using ττ =
(290.6 ± 1.1) fs one obtains:

Rτ =
τ−1
τ − Γe − Γµ

Γe
= 3.644 ± 0.021. (7.12)

The values from the above calculations are independent from the result obtained using hadronic τ decays.
They were found to be consistent with the result obtained here. The central value from ALEPH is about
one standard deviation higher.
A graphical comparison of the results obtained here and in [70, 72] can be found in Figure 7.4. The value
obtained in this work is marked by the full dot, the ALEPH result by the open dot. The crosses represent
the values from the above calculations. The shaded band is the mean calculated from the values mentioned
there. In the error on the mean, the correlation between the values obtained from the leptonic branching
fraction is taken into account.

Rτ

This Work 3.637 ± 0.015

ALEPH 3.655 ± 0.016

Branching Ratio 3.632 ± 0.016

Lepton Universality 3.633 ± 0.013

τ Lifetime 3.644 ± 0.021

Mean 3.639 ± 0.008

3.6 3.62 3.64 3.66 3.68 3.7

Fig. 7.4: Experimental results for Rτ . The result obtained from this work is represented by the full dot. The open
dot represents the ALEPH measurement as calculated from [70,72]. The values calculated from the mean
lifetime of the τ lepton and from the leptonic branching fractions are represented by the open cross. The
shaded band represents the weighted mean for Rτ as calculated from the values given here.

7.4.2 Measurement of the Spectral Moments

Spectral moments, which are input parameters for theoretical analyses, can be calculated from the measured
spectral function. They are defined as

Rkl
τ (m2

τ ) =

∫ m2
τ

0

ds

(
1 − s

m2
τ

)k (
s

m2
τ

)l ∑

τ−→ντ X−

B(τ → (V/A)(S=−1/0,J=0/1)ντ )

B(τ− → e−ν̄eντ )

1

NV/A

dNV/A

ds
, (7.13)

where the sum runs over all hadronic final states. The values measured for the strange moments kl =
{00, 10, 11, 12, 13, 20, 21, 30, 40}, their statistical and systematic uncertainties are given in Table 7.5. The
various sources contributing have been discussed in Section 7.3. The value for R00

τ,S is calculated from the
branching fractions alone and is therefore independent of the measured spectra. In addition, the non-strange
moments kl = {00, 10, 11, 12, 13} published in [40] have been reevaluated using updated branching fractions.
The non-strange moments kl = 20, 21, 30, 40 are also calculated, as they are later used in the determination
of the strange quark mass. The values for Rτ,V/A and the correlations are given in Table 7.4. In Chapter
9.2 the individual contributions Rτ,V , Rτ,A and their correlation coefficients are given.
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In addition to the spectral moments, the CKM-weighted difference of the corresponding strange and non-
strange moments are given:

δRkl
τ =

Rkl
τ,non−S

|Vud|2
−

Rkl
τ,S

|Vus|2
, (7.14)

where Rkl
τ,S are the strange moments and Rkl

τ,non−S is the sum of the updated vector plus axial-vector non-
strange moments. The values of the matrix elements used as weights for the non-strange and strange
moments are |Vud| = (0.9734 ± 0.0008) and |Vus| = (0.2196 ± 0.0023), respectively [57]. Systematic errors
which are common to both, strange and non-strange moments, as for instance the energy scale error and
the momentum scale for tracks, are 100% correlated and are treated accordingly. A graphical comparison of
the values obtained here with the ALEPH values for the moments kl = {00, 10, 20, 30, 40} can be found in
Figure 7.5. The values from ALEPH are denoted by the open dots. They stay rather constant. The values
obtained from this analysis increase with increasing k. Since the total strange branching fraction is higher
than the one determined by ALEPH, lower values for δRkl

τ were expected. Since for higher values of k the
low end of the mass spectrum becomes more pronounced, which has in general higher statistics and more
accurately measured branching fractions, the errors decrease with increasing k. The CKM matrix elements
used in the calculation of the weighted differences here and in [63] are different. In the latter, they fulfill the
unitarity constraint for the mixing matrix. Using the same numerical values for these elements here, yields
the results marked by the open crosses in Figure 7.5. A detailed discussion of these values and their impact
on the result for the strange quark mass will be given in Section 7.5.3.

Correlation/%

kl Rτ, V +A 00 10 11 12 13 20 21 30 40

00 3.469 ± 0.014 100
10 2.493 ± 0.013 66 100
11 0.549 ± 0.004 68 65 100
12 0.203 ± 0.002 51 9 74 100
13 0.092 ± 0.002 33 -26 33 86 100
20 1.944 ± 0.011 55 93 45 -11 -40 100
21 0.346 ± 0.003 59 86 88 35 -13 71 100
30 1.597 ± 0.009 48 85 28 -24 -44 93 58 100
40 1.362 ± 0.008 42 77 14 -30 -43 87 43 92 100

Tab. 7.4: Spectral moments obtained from non-strange hadronic τ decays. These values are obtained from [40] using
updated branching fractions. The correlation matrix for the spectral moments is given on the right side.
The correlations are large, since all moments are based on the same measured spectral function.

δR
τ kl

kl=(00) kl=(10) kl=(20) kl=(30) kl=(40)

ALEPH
OPALCKMU

OPAL0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Fig. 7.5: Comparison of the values for the CKM weighted differences of strange and non-strange moments for
kl = {00, 10, 20, 30, 40} as used in the calculation of the strange quark mass. The open dots are the
ALEPH results [63], the full dots represent the results obtained in this work using OPAL data. The open
crosses represent the results obtained with the unitarity constraint applied to the CKM matrix elements.
The errors include statistical and systematic uncertainties added in quadrature.
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kl Rkl
τ,S ∆stat ∆dE/dx ∆K0

S
∆E ∆p ∆mcorr 00 10 11 12 13 20 21 30 40

00 0.1677± 0.0050 – – – – – – 100
10 0.1161± 0.0038 0.0035 0.0006 0.0006 0.0005 0.0002 0.0011 89 100
11 0.0298± 0.0012 0.0011 0.0001 0.0001 0.0001 0.0001 0.0004 97 83 100
12 0.0107± 0.0006 0.0005 0.0002 0.0002 0.0002 0.0001 0.0002 86 54 91 100
13 0.0048± 0.0004 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 74 36 78 97 100
20 0.0862± 0.0028 0.0025 0.0006 0.0006 0.0006 0.0002 0.0008 75 97 66 32 13 100
21 0.0191± 0.0007 0.0006 0.0001 0.0001 0.0001 0.0001 0.0002 92 96 92 66 47 87 100
30 0.0671± 0.0022 0.0020 0.0005 0.0005 0.0004 0.0002 0.0006 66 92 54 19 1 99 78 100
40 0.0539± 0.0018 0.0016 0.0003 0.0003 0.0003 0.0001 0.0005 60 87 46 11 -4 96 70 99 100

kl δRkl
τ ∆exp ∆|Vus| 00 10 11 12 13 20 21 30 40

00 0.184 ± 0.128 0.105 0.073 100
10 0.224 ± 0.095 0.080 0.050 79 100
11 -0.039± 0.028 0.025 0.013 88 67 100
12 -0.008± 0.014 0.013 0.005 67 37 65 100
13 -0.002± 0.009 0.009 0.000 49 20 48 53 100
20 0.264 ± 0.070 0.059 0.037 64 74 51 20 5 100
21 -0.031± 0.017 0.015 0.008 81 76 75 46 26 66 100
30 0.294 ± 0.055 0.047 0.029 56 71 42 11 0 73 60 100
40 0.320 ± 0.045 0.038 0.023 52 69 36 6 -4 74 55 77 100

kl Rkl
τ,S/Rkl

τ,non−S 00 10 11 12 13 20 21 30 40

00 0.0484± 0.0015 100
10 0.0466± 0.0015 79 100
11 0.0543± 0.0022 88 67 100
12 0.0527± 0.0030 67 37 66 100
13 0.0518± 0.0045 49 20 48 53 100
20 0.0444± 0.0015 64 74 51 20 5 100
21 0.0552± 0.0021 80 76 75 46 26 66 100
30 0.0420± 0.0014 57 71 42 12 0 73 59 100
40 0.0400± 0.0013 53 69 36 7 -4 73 55 76 100

Tab. 7.5: The spectral moments for kl = {00, 10, 11, 12, 13, 20, 21, 30, 40}. The table includes the values for the strange spectral moments and the statistical and
systematic uncertainty, where the statistical uncertainty also contains the uncertainty on the branching fractions. The moment R00

τ is calculated from the
branching fractions alone. It is therefore independent of the measured spectra. In addition, the weighted difference δRkl

τ of the strange to non-strange moments
are given. The corresponding elements of the weak mixing matrix |Vud|2 and |Vus|2 are used as weighting factors. In bottom table, the ratio of strange to
non-strange moments is given. On the right hand side of each table, the correlations are given in percent. The experimental errors for δRkl

τ and the ratio
include the statistical and systematic uncertainties added in quadrature. Contributions that are common to strange and non-strange moments are treated
accordingly. For δRkl

τ the error on the matrix element ∆|Vus| is given separately.
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7.5 Measurement of the Strange Quark Mass ms

The theoretical framework necessary to determine the mass of the strange quark was discussed already in
Chapter 2. The principle is briefly repeated here.
The mass of the strange quark ms is obtained from the analysis of the weighted integrals over the mea-
sured invariant mass spectra. Using the Operator Product Expansion, perturbative and non-perturbative
contributions to Rτ can be separated and the corresponding expression for the moments read:

Rτ = 3(|Vud|2 + |Vus|2)Sew


1 + δew + δ(0) +

∑

D=2,4,...

(cos2 ΘCδ
(D)
ud ) + sin2 ΘCδ(D)

us )


 , (7.15)

where |Vud| = 0.9734 ± 0.0008 and |Vus| = 0.2196 ± 0.0023 [57] are the corresponding elements of the weak
mixing matrix (CKM Matrix) and sin2 Θ ≡ |Vus|2/(|Vud|2 + |Vus|2). The electroweak corrections are split
into a multiplicative part Sew = 1.0194 ± 0.0040 [31] and an additive correction δew = 0.0010. The purely
perturbative correction is denoted by δ(0). These are calculated neglecting the quark masses and are therefore
identical for vector and axial-vector contributions and for strange τ decays.
By analyzing separately the Cabbibo-allowed and the Cabbibo-suppressed decay widths of the τ lepton, a
sensitivity to the mass of the strange quark is induced (for details see Chapter 2). The quantity analyzed in
this work is the CKM weighted difference of strange to non-strange moments

δRkl
τ ≡

Rkl
τ, V +A

|Vud|2
−

Rkl
τ, S

|Vus|2
= 3Sew

∑

D≥2

(
δ

kl(D)
ud − δkl(D)

us

)
. (7.16)

In the limit of SU(3)Flavor symmetry, this quantity is expected to be exactly zero. Any deviation from this
expectation is due to a massive strange quark. The dominant contribution to the SU(3)Flavor breaking effects
comes from the dimension-2 corrections. They create the wanted sensitivity to the mass of the strange quark.
The only other contribution (from dimension-4 operators) considered here is the quark condensate

δO4(µ
2) ≡ 〈0|mss̄s − mdd̄d|0〉(µ2), (7.17)

which was calculated using lowest order in Chiral Perturbation Theory [24]. It could in principle be deter-
mined from τ data using a combined fit to different moments Rkl

τ . However, given the large experimental
uncertainties of the spectral moments, this is not sensible. The following estimate was obtained in [10]:

〈δO4(m
2
τ )〉 ' −(1.5 ± 0.4) × 10−3 GeV4, (7.18)

Additional condensates contributing to the dimension-4 corrections are suppressed by a factor m4
s . They are

too small to be determined here, given the experimental uncertainty on the measured moments. The same
is true for corrections of dimension D > 6 so that they don’t have any significant impact on the result. The
strange quark mass is then obtained from [10]

m2
s (m

2
τ )
∣∣∣
kl

' m2
τ

(1 − ε2d)∆
(2)
kl (aτ )

(
δRkl

τ

24Sew
+ 2π2 〈δO4(m

2
τ )〉

m4
τ

Qkl(aτ )

)
, (7.19)

for each moment kl individually. Here ∆
(2)
kl (aτ ) and Qkl(aτ ) are the perturbative QCD series associated with

the dimension-2 and dimension-4 corrections to δRkl
τ , aτ = αs(m

2
τ )/π and εd = md/ms = 0.053 ± 0.002 [34]

is the ratio of the mass of the d-quark to the mass of the strange quark. The numerical values used in the

calculation of the mass of the strange quark are given in Table 7.6, where ∆
(2)
kl was calculated from the L+T

and the L contribution via

∆
(2)
kl (aτ ) =

1

4

(
3∆L+T

kl (aτ ) + ∆L
kl(aτ )

)
. (7.20)

In Chapter 2.7 it was discussed which considerations, either theoretical or experimental, should lead to a
certain choice of moments to be analyzed in the determination of the mass of the strange quark. Given
the actual experimental uncertainties on the l 6= 0 moments, their sensitivity on the strange quark mass is
small. In addition for moments δR1l

τ , the contributions from dimension-2 and dimension-4 operators have
a theoretical uncertainty close to 100% [20], which leads to an increased sensitivity on higher dimension
condensates. These are basically unknown. Therefore, in this work only moments δRk0

τ are analyzed.
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7.5.1 Measurement of ms at the τ Mass Scale

The perturbative QCD contribution of dimension-2 is calculated up to third order for the J = L part and
up to second order for the J = L+T part [19,20], using αs = 0.334±0.022 for the strong coupling constant.

An estimate of the third order contribution can be found in [26]. ∆
(2)
kl can therefore be displayed up to third

order, which yields:

∆
(2)
00 (aτ ) = 0.9734 + 0.4811 + 0.3718 + 0.3371 + ...

∆
(2)
10 (aτ ) = 1.0390 + 0.5576 + 0.4820 + 0.4771 + ...

∆
(2)
20 (aτ ) = 1.1154 + 0.6432 + 0.6082 + 0.6470 + ...

∆
(2)
30 (aτ ) = 1.1990 + 0.7374 + 0.7516 + 0.8507 + ...

∆
(2)
40 (aτ ) = 1.2880 + 0.8404 + 0.9142 + 1.0928 + ... .

where aτ = αs(m
2
τ )/π. For k ∈ {0, 1} the series converges reasonably well up to the third oder. However,

for k ∈ {2} and k ∈ {3, 4}, the contributions increase again, starting from the second order and first order,
respectively. This is due to the bad convergence behavior of the J = L series.
Therefore, the following truncation procedure is applied, which was adopted from [63]. The contributions

from all orders up to the minimum term are kept in the calculation of ∆
(2)
k0 . The higher order terms are

neglected. This means that ∆
(2)
k=0/1, l=0 are summed up to third order, ∆

(2)
k=2, l=0 up to second order and

∆
(2)
k=3/4, l=0 up to first order only. The value of the last term considered is taken as systematic error to account

for the uncertainty associated with the truncation procedure. The numerical values for the contributions

from ∆
(2)
k0 and the perturbative dimension-4 coefficient Qkl are given in Table 7.6 [63].

The numerical values for the mass of the strange quark can now be calculated separately for the individual
moments. The values are given in Table 7.7. They vary within the total uncertainty given from ∼ 75MeV
for kl = 10 up to ∼ 90MeV for kl = 30. As k increases, the contribution from the theoretical uncertainty
becomes more important. This is due to the limited validity of the OPE in the range of non-perturbative
QCD. The experimental error decreases at the same time, since the spectra at the low mass end are easier
to measure from the experimental point of view. To optimize the experimental and theoretical sensitivity,
a weighted mean is calculated using all moments l 6= 0, taking into account the full covariance matrix. The
variation of the final result on the strange quark mass when using different moments is given in Table 7.8.
The observed variation is of the order of 5MeV which is small compared to the total uncertainty quoted.
Therefore, for the final result, all moments up to kl = 40 are used in the calculation of the weighted mean.
The value obtained from this procedure is

ms(m
2
τ ) = (84 ± 14exp ± 6Vus

± 17theo)MeV (7.22a)

= (84+20
−26)MeV, (7.22b)

where the individual contributions to the total uncertainty have been added in quadrature. The experimental
uncertainty quoted is calculated from the uncertainty on the spectral moments alone. The theoretical
uncertainty on the strange quark mass is given separately for the contribution from the CKM matrix element

kl ∆
(2)
kl Qkl kl

00 2.16 ± 0.34 1.07 ± 0.02 ± 0.01 00
10 2.56 ± 0.48 1.50 ± 0.02 ± 0.01 10
20 2.37 ± 0.65 1.92 ± 0.01 ± 0.003 20
30 1.94 ± 0.73 2.33 ± 0.01 ± 0.01 30
40 2.13 ± 0.84 2.72 ± 0.03 ± 0.02 40

Tab. 7.6: Numerical values for the perturbative QCD series of dimension-2 (∆
(2)
kl ) and dimension-4 (Qkl), using

αs = 0.334 ± 0.022. The error given for ∆
(2)
kl is the theoretical uncertainty associated with the truncation

procedure. For Qkl, the first error denotes the contribution from the theoretical uncertainty; the second
error represent the contribution to the uncertainty from the experimental error on the strong coupling
constant at the τ scale.
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ms/MeV σtheo/MeV σ/MeV Correlation/%

kl σ(αs) σ(〈mss̄s〉) σ(Trunc.) σtheo σ|Vus| σexp 00 10 20 30 40

00 79.5± 49.7 0.6 7.8 6.2 10.0 27.3 39.4 100 59 46 31 22
10 76.0± 34.7 0.5 9.7 7.1 12.0 16.7 26.7 100 53 38 29
20 82.4± 29.5 0.2 12.3 10.6 16.2 12.4 19.7 100 37 29
30 91.1± 32.3 0.3 16.5 17.3 24.0 10.7 17.1 100 24
40 85.6± 30.9 0.8 18.7 16.9 25.2 8.3 13.5 100

Tab. 7.7: The strange quark mass ms as calculated from the CKM weighted differences δRkl
τ of the measured strange

and non-strange spectral moments for kl = {00, 10, 20, 30, 40}. The theoretical uncertainty σtheo quoted
includes the uncertainty on αs, on the quark condensate ms〈s̄s〉 and on the truncation procedure added
in quadrature. The uncertainty on the CKM matrix element |Vus| is given separately. In addition, the
experimental uncertainty is given. The total error is obtained by adding the individual contributions
in quadrature. The correlation between the values for the strange quark mass obtained from different
moments is given on the right side of the table.

|Vus| and the theoretical uncertainty as given in Table 7.7. The theoretical uncertainty quoted in the final
result contains two additional contributions.

1) An additional uncertainty ∆OPE = 8MeV is assigned due to the limited validity of the operator product
expansion in the low mass range. As k increases, the low mass end of the spectral function, where
non-perturbative effects become more important and the operator product expansion might no longer
be valid, dominates. The uncertainty is estimated from the variation of values obtained for the strange
quark mass from different moments alone (see Table 7.7).

2) To split the total error as given above, the fit for the weighted mean is repeated. The contribution to
be determined is subtracted from the total error. The total error obtained on the weighted mean was
then compared to the original result and the difference is quoted as systematic uncertainty. Since the
size of the errors vary with the moments used, the final result is different when considering different
contributions to the total error. The variation on the mean obtained from the fit (∆Fit = 2MeV) is
assigned as additional systematic uncertainty.

The theoretical uncertainty as given in 7.22a was obtained by adding these two additional contributions
in quadrature. The total error on final result for the strange quark mass is dominated by the theoretical
uncertainty.

Moments (m̄s ± ∆tot
m̄s

)/MeV ∆asym.
ms

/MeV

k = 0 alone 79.5 ± 49.0 −117.9
+39.3

k = 0 to 1 76.5 ± 26.7 −23.2
+34.5

2 79.8 ± 23.2 −20.6
+28.2

3 83.0 ± 22.6 −20.2
+27.0

4 84.0 ± 21.7 −19.4
+25.5

Tab. 7.8: Variation of the strange quark mass as function of the moments used in the fit for the weighted mean. In
the second column, the central value and the total error with the experimental and theoretical uncertainties
added in quadrature is given. The error was symmetrized for reading convenience. In the last column the
asymmetric errors are given.

7.5.2 The Strange Quark Mass at µ2 = 1 GeV2 and µ2 = 4 GeV2

The mass of the strange quark, measured at the τ mass scale, can now be evolved to different scales using
the renormalization group β and γ functions. The mass of the strange quark can be evolved using the γ
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function:

−µ2

as

dmi

d ln µ2
= γ(as) (7.23a)

= +γ0as + γ1a
2
s + γ2a

3
s + γ3a

4
s + O(a5

s), (7.23b)

where as = as(µ
2) = αs(µ

2)/(4π). The γ function is known to the 4-loop level [27]. The coefficients γi in
the MS scheme are given by

γ0 = 4 (7.24a)

γ1 =
202

3
− 20

9
nf (7.24b)

γ2 = 1249 +
(
− 2216

27
− 160

3
ζ(3)

)
nf − 140

81
n2

f (7.24c)

γ3 =
4603055
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135680

27
ζ(3) − 8800ζ(5)

+
(
− 91723

27
− 34192

9
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18400

9
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)
nf

+
(5242

243
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800

9
ζ(3) − 160

3
ζ(4)

)
n2

f +
(
− 332

243
+

64

27
ζ(3)

)
n3

f , (7.24d)

where nf is the number of active flavors and ζ is the Riemann ζ-function (ζ(3) = 1.20206..., ζ(4) = 1.08232...
and ζ(5) = 1.03693...). This equation depends on the strong coupling constant at the same scale. It can be
evaluated using the RGE β function:

−µ2 das

d ln µ2
= asβ(as) (7.25a)

= +β0a
2
s + β1a

3
s + β2a

4
s + β3a

5
s + O(a6

s). (7.25b)

The β-function is also known to the 4-loop level [27], with the coefficients βi in the MS scheme given by

β0 = 11 − 2

3
nf (7.26a)

β1 = 102 − 38

3
nf (7.26b)

β2 =
2857

2
− 5033

18
nf +

325

54
n2

f (7.26c)

β3 =
(149753

6
+ 3564ζ(3)

)
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(1078361
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ζ(3)

)
nf +

(50065

162
+

6472

81
ζ(3)

)
n2

f +
1093

729
n3

f . (7.26d)

This differential equation can be solved at different scales using the Runge-Kutta procedure. In this proce-
dure, the solution of a differential equation at some scale µ2 = m2

τ + h, is obtained from a known solution
(here αs(m

2
τ ) = 0.334 ± 0.022) in an iterative procedure, where h is the step width. The error on this

procedure scales with h5. Thus by choosing sufficiently small intervals, the additional uncertainty from this
procedure is negligible.
The solution of Equation 7.23a can be approximated by the Taylor expansion

mi(µ
2) = m̂qa

γ0
β0
s

(
1 + A1a +

(
A2

1 + A2

)a2
s

2
+

(
1

2
A3

1 +
3

2
A1A2 + A3

)
a3

s

2
+ O(a4

s)

)
, (7.27)

where m̂q is a renormalization group independent quark mass. The coefficients Ai are a function of the
coefficients of the RGE β- and γ-functions. They are given by

A1 = −β1γ0

β2
0

+
γ1

β0
(7.28a)

A2 =
γ0

β2
0

(
β2

1
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0
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(7.28b)
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β0

(
β2

1
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0

(
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1
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2
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− β1γ2

β2
0
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. (7.28c)
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Using the above definitions, the following expansion for the running strange quark mass in the MS scheme
at the 4-loop level is obtained:

ms(µ
2) = m̂s

(αs

π

) 4
9

(
1 + 0.895062

(αs

π

)
+ 1.37143

(αs

π

)2

+ 1.95168
(αs

π

)3
)

. (7.29)

The value for the renormalization group independent mass m̂s is chosen in a way that the measured mass of
the strange quark ((84+20

−26)MeV) is obtained when setting µ2 = m2
τ . This leads to

m̂s = (204 ± 56)MeV. (7.30)

Using Equation 7.29 with αs(m
2
τ ) = 0.334 ± 0.022 and ms(m

2
τ ) = (0.084 ± 0.023)GeV, the following values

are obtained for the strange quark mass at the scales µ2 = 1GeV2 and µ2 = 4GeV2:

ms(1GeV2) = (111+26
−35)MeV (7.31)

ms(4GeV2) = (82+19
−25)MeV. (7.32)

These results are displayed in Figure 7.6. The above values are shown together with the one obtained at
µ2 = m2

τ . The errors shown in the plot were symmetrized. The shaded band represents the uncertainty on
the evolution from the error on the strong coupling constant. In addition, the values obtained by the ALEPH
collaboration are shown [63]. All results are obtained, assuming three active quark flavors. The values for
the strange quark mass obtained here are significantly lower at all scales than the one from ALEPH in the
publication mentioned above.
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200
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Fig. 7.6: Running of the strange quark mass. The value of ms is evaluated at the scales µ2 = {1 GeV2, m2
τ , 4 GeV2}.

The value at µ2 = m2
τ = (1.777 GeV)2 was obtained from experiment. The two other values were calculated

using the RGE equation at the 4-loop level. The open dots represent the Opal result, the full dots the
measurement from ALEPH [63]. The error bars denote the total uncertainty with the experimental and
theoretical uncertainties added in quadrature. For this plot, the errors were symmetrized. The shaded
band represents the uncertainty from the strong coupling constant αs alone.
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7.5.3 Discussion

The value obtained for the strange quark mass ms at µ2 = 4GeV2 can be compared to previous analyses.
A graphical comparison is shown in Figure 7.7 with additional remarks on the type of analysis the result is
based on. The mass of the strange quark obtained in this work is represented by the full dots. The open dots
represent the analyses based on the ALEPH spectral function which are therefore correlated. Other analyses,
not based on τ spectral functions are given as open crosses. In addition, the preferred range for the strange
quark mass using QCD sum rules (QCDSR) and Lattice QCD (LQCD) predictions are given by the dashed
and dotted lines, respectively [69]. The shaded band represents the preferred region as given by the Particle
Data Group fit. This fit includes additional results from theoretical calculations, which are not mentioned
here. In this comparison, only results based on experimental data are discussed. The value obtained in
this work favors the preferred range from Lattice QCD calculations. However it is also consistent with
the prediction from QCD sum rules within the errors quoted. The analyses based on the ALEPH spectral
functions slightly favor the range covered by QCD sum rules. Analyses not based on spectral functions from
τ decays usually tend to yield higher mass values.

Comparison with ALEPH Results:
The various analyses based on ALEPH data (GAMIZ03, MALTMAN02, CHEN01B, KOERNER01,
BARATE99R, MALTMAN99, PICH99) display some differences in their treatment of the truncation proce-
dures for the dimension-2 correction, in their treatment of the dimension-4 correction and in the moments
used in the calculation. Since there is a high degree of cancellation between the weighted integrals of the
strange and the non-strange spectral function, the result of ms is also very sensitive to differences in Rτ, s,
Rτ, non−s and on the values used for the matrix elements |Vud| and |Vus| in the two analyses. These differences
have to be taken into account, when comparing the results obtained here to the ALEPH based analyses. The
comparison with CHEN01B is of particular interest, since the same truncation procedure for the perturbative
series of dimension-2 was used here and the treatment of the dimension-4 condensate is identical. The values
obtained here are consistent in the sense that the error bars overlap. However the central values differ by
1.5 standard deviation. The differences in these two analyses are discussed in more detail.

1) The Elements of the CKM Matrix:
The values of the weak mixing matrix used here do not satisfy the unitarity constraint

|Vud|2 + |Vus|2 + |Vub|2 = 1. (7.33)

Taking the measured values from [57]

|Vud|2 + |Vus|2 + |Vub|2 = 0.9957 ± 0.0019, (7.34)

reveals a 2.3σ deviation from unity. The matrix elements can be reevaluated using an unitarity con-
straint for the elements which yields the following results

V CKMU
ud = 0.9749 ± 0.0004 (7.35a)

V CKMU
us = 0.2225 ± 0.0019 (7.35b)

V CKMU
ub = (3.604 ± 0.7) · 10−3. (7.35c)

Compared to the unconstrained values, this means a shift of roughly 2σ for |Vud| and ∼ 1σ for |Vus|.
The results obtained for the weighted difference of strange and non-strange moments are compared
to the original values and the results obtained in [70] in Figure 7.5. The dependence of δRkl

τ on the
matrix elements becomes smaller with increasing k. The strange quark mass obtained in this analysis
can be reevaluated using the constraint matrix elements, which yields

ms(m
2
τ ) = (95 ± 15exp ± 4Vus

+ 14theo)MeV (7.36a)

= (95+18
−22)MeV. (7.36b)

Evolving this to the scales µ2 = 1GeV2 and µ2 = 4GeV2, one obtains

ms(1GeV2) = (125+24
−29)MeV (7.36c)

ms(4GeV2) = (91+17
−21)MeV. (7.36d)
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Considering the results obtained with and without unitarity constraint for the matrix elements at
µ2 = 4GeV2, a shift of the strange quark mass by ∼ 10MeV is observed.

In CHEN01B, |Vus| = 0.2225 ± 0.0021 was used, which corresponds to the value obtained above with
the unitarity constraint applied to the elements of the CKM matrix. The value for |Vud| is not given
in [70]. It can however be reconstructed from the δRkl

τ and their results on the non-strange spectral
moments taken from [41]. It was found to be |Vud| = 0.9759. These matrix elements differ by roughly
4σ from the unconstrained values in the case of |Vud| and 1σ in the case of |Vus|. The sensitivity of ms

on a shift of that size in |Vud| however produces negligible variation. The observed shift is of the order
of 1MeV in ms.

2) The Branching Fractions:
The total strange branching fraction used in this analysis was Bs = (2.993± 0.90)%. This differs from
the total strange branching fraction used in [70] (BALEPH

s = (2.900± 0.102)%) by about one standard
deviation. The largest difference was observed for the decay channel τ− → K−π+π−ντ . The branching
fraction for this final state was measured in this analysis using Opal data:

B(τ− → K−π+π−ντ ) = (0.415 ± 0.059stat ± 0.031sys)%. (7.37)

This value was found to be consistent with previous Opal publications [64] and the recent result from
the CLEO collaboration [65]. For the determination of the spectral function and the calculation of the
spectral moments, the improved average as calculated in Section 7.1.2 was used. It differs from the
value used in CHEN01B (B(τ− → K−π0ντ ) = (0.276 ± 0.048)%) by two standard deviations. For the
strange spectral moments, this difference results in a shift of 0.0017 for R00

τ . This translates into a
shift in the mass of the strange quark of ∼ +5MeV at µ2 = 4GeV2.

3) Update of Non-Strange Spectral Moments Rτ, non−s:
For the calculation of the weighted difference of strange and non-strange spectral moments δRkl

τ , the
results from [40] were updated using recent branching fractions. The value for Rτ was found to be

Rτ, non−s = 3.469 ± 0.014. (7.38)

This differs from the previously published value Rτ, non−s = 3.484± 0.025 by 1.1σ. This is mainly due
to the axial-vector part. The branching ratio for the decay channel τ− → π−π0π0ντ , which contributes
to Rτ, A changed by more than one standard deviation from B = 9.27% to B = 9.13%.

The value for Rτ used in CHEN01B is Rτ = 3.492 ± 0.014. Taking the moments kl = {00} and
kl = {10} (since these were the only l = 0-moments previously published) one observes a shift in the
strange quark mass of ∼ +5MeV at µ2 = 4GeV2.

Implications on ε′/ε:
The mass of the strange quark is an important parameter which enters, among other quantities like the
elements of the weak mixing matrix or the strong coupling constant, in the calculation of the ratio ε′/ε.
This ratio parametrizes the size of the direct CP violation in K0

L → π+π− decays with respect to the
CP violation in mixing or so-called indirect CP violation. Deviations of the experimental results from
the theoretical calculations can be a sign of new physics beyond the Standard Model. As an example, in
supersymmetric models, charginos or charged Higgs bosons contributing in loop diagrams change the value
for ε′/ε. The current world average is based on the recent experimental results from NA48 [90], KTeV [91],
NA31 [92] and E731 [93] which yields:

ε′

ε
= (16.6 ± 1.6) · 10−4. (7.39)

Assuming that ε′/ε is fully dominated by Standard Model contributions, this experimental results can be
reproduced in next-to-leading-order calculations assuming that the mass of the strange quark lies in the
region ms(m

2
c) 6 100MeV or equivalently ms(4GeV2) 6 85MeV [94]. The results obtained in this analysis

from hadronic τ decays complies with this limit.
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ms / GeV
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CHEN 01B
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BARATE 99R

MALTMAN 99

NARISON 99

PICH 99

DOMINGUEZ 98

CKMN
This Work

CKMU

PDG Fit

LQCD

QCDSR

OPAL Data

ALEPH Data only

Other, non-τ data

50 100 150 200

ms(4GeV2)/MeV Remarks

GAMIZ 03 [68] 117 ± 17 Determination of ms from SU(3)Flavor breaking effects in τ
hadronic width. A fit to δRkl

τ for kl = {00, 10, 20, 30, 40}
has been performed with and without imposing unitarity
constraints on the CKM matrix elements.

MALTMAN 02 [69] 100 ± 17 Extract ms from finite energy sum rules of the flavor
breaking difference of light-strange quark vector plus axial-
vector correlators, using spectral functions determined from
hadronic τ decays.

CHEN 01B [70] 116 ± 22 Determines ms using spectral moments of the strange spec-
tral function in hadronic τ decays.

KOERNER 01 [71] 125 ± 27 Determines ms from kl = {00} spectral moment of the
τ spectral function employing contour improved resumma-
tion.

BARATE 99R [72] 170 ± 48 A combination of strange and non-strange spectral functions
is used to determine ms and non-perturbative contributions
to the strange hadronic width.

MALTMAN 99 [73] 115 ± 8 The strange quark mass is determined from a study of the
correlator using finite energy sum rules.

NARISON 99 [74] 129 ± 24 Extracting the strange quark mass from decay sum rules for
the Φ meson and hadronic τ decays.

PICH 99 [75] 114 ± 23 Determination of ms from SU(3)Flavor breaking effects in τ
hadronic width. A fit to δRkl

τ for kl = {00, 10, 20} has been
performed.

DOMINGUEZ 98 [76] 115 ± 19 Using data from radial excitations of the kaon and the spec-
tral function reconstructed using threshold normalization
from chiral symmetry, the mass of the strange quark is de-
termined.

Fig. 7.7: Comparison of ms measurements at µ2 = 4 GeV2. The full dots represent the values from this work.
The result labeled ‘CKM Unitarity’ is obtained employing an unitarity constraint on the elements of the
weak mixing matrix. The open dots represent the results based on the analysis of the spectral function
in hadronic τ decays from the ALEPH collaboration. These results are therefore correlated. The dashed
and dotted lines denote the preferred region for the strange quark mass from lattice QCD calculations and
QCD sum rules, respectively. The shaded band represents the preferred region for the strange quark mass
from the PDG evaluation.



 



8. CONCLUSION

The measurement of the spectral function in τ lepton decays into vector or axial vector final states with
open strangeness, using data taken with the Opal detector during the years 1991 to 1995 operating on the
Z0 resonance, has been presented. A total of 121 pb−1 of data have been analyzed. The analysis of the
strangeness spectral function requires a detailed understanding of the energy loss measurement dE/dx in
the Opal central drift chamber, the efficient identification of neutral kaons and the reconstruction of neutral
pions from measured shower profiles in the electromagnetic calorimeter.

• In this work, the energy loss measurement in the Opal central drift chamber has been studied for τ
lepton decays to optimize the separation of charged kaons and pions in this particular environment.
A drift time dependent correction on a hit-by-hit basis has been developed using data events only.
In addition, cross-talk corrections and corrections due to inhomogeneities of the drift field have been
optimized for τ lepton decays.

• Neutral Pions in τ lepton decays are reconstructed comparing measured shower shapes in the electro-
magnetic calorimeter. The selection procedure for photon candidates has been optimized for strange
τ lepton decays to account for the different background fraction and energy distribution compared to
the non-strange case. In addition, the JADE jet-pairing algorithm with the P0 option has been used
to combine neutral objects to photon candidates. This has led to an improvement in the energy and
momentum resolution.

• An efficient identification procedure for neutral kaons has been developed. A simultaneous 2-C kine-
matic fit to the invariant K0

S mass and the secondary vertex has been implemented. This has lead
to an improvement in the resolution of the invariant mass spectrum for final states including neutral
kaons.

The invariant mass spectra of 93.4% of the τ decay channels τ−→ (Kπ)−ντ , (Kππ)−ντ and (Kπππ)−ντ have
been reconstructed in the analysis. For the remaining 6.6% and for the final states including η mesons, Monte
Carlo simulations have been used. To obtain a better description of the signal channels and the prediction
from background channels, the standard Monte Carlo has been extended to include the four-meson final
states with kaons. Since the resonance structure for those final states is unknown, phase space distributions
have been used here.
For the decay channels τ− → K−π0ντ and τ− → K−π+π−ντ , from the selected number of events, competitive
branching fractions are obtained in a simultaneous χ2-fit. The following results were obtained

B(τ− → K−π0ντ ) = (0.471 ± 0.064stat ± 0.021sys)%

B(τ− → K−π+π−ντ ) = (0.415 ± 0.059stat ± 0.031sys)%,

where experimental and systematic uncertainties are given separately.
The measured invariant mass spectra have been corrected for resolution effects, using the matrix unfolding
procedure. The dependence of the corrected spectra on the assumed resonance structure in the simulated
spectra has been studied. Monte Carlo samples for the signal channels containing either a flat mass distribu-
tions or a distributions according to phase space have been generated. The results obtained were compared
to those using the standard Monte Carlo.
From the measured invariant mass spectra, corrected for efficiency and resolution effects, the spectral function
of strange τ lepton decays is obtained by adding the individual spectra, weighted with their respective
branching fractions and unfolding them from the phase space factors.
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The spectral moments Rkl
τ,S for kl = {10, 11, 12, 13, 20, 21, 30, 40} as well as the ratio of strange and non-

strange moments, updated from [40], and the weighted differences δRkl
τ which are useful quantities for further

theoretical analyses of the data are calculated from the strange spectral function. The following results were
obtained

kl Rkl
τ,S δRkl

τ Rkl
τ,S/Rkl

τ,non−S

00 0.1677± 0.0050 0.184 ± 0.128 0.0484± 0.0015
10 0.1161± 0.0038 0.224 ± 0.095 0.0466± 0.0015
11 0.0298± 0.0012 -0.039± 0.028 0.0543± 0.0022
12 0.0107± 0.0006 -0.008± 0.014 0.0527± 0.0030
13 0.0048± 0.0004 -0.002± 0.009 0.0518± 0.0045
20 0.0862± 0.0028 0.264 ± 0.070 0.0444± 0.0015
21 0.0191± 0.0007 -0.031± 0.017 0.0552± 0.0021
30 0.0671± 0.0022 0.294 ± 0.055 0.0420± 0.0014
40 0.0539± 0.0018 0.319 ± 0.045 0.0400± 0.0013

These results have been published by the Opal collaboration [95].
Using the weighted differences δRkl

τ for the moments kl = {10, 20, 30, 40}, a value for the strange quark
mass at the scale µ2 = m2

τ is obtained

ms(m
2
τ ) = (84 ± 14exp ± 6Vus

± 17theo)MeV

= (84+20
−26)MeV.

The error on the strange quark mass is dominated by the theoretical uncertainty. Evolving this result to
customary scales, using the renormalization group equation at the 4-loop level, yields

ms(1GeV2) = (111+26
−35)MeV

ms(4GeV2) = (82+19
−25)MeV.

where the experimental and theoretical uncertainties have been added in quadrature.



9. APPENDIX

9.1 Branching Fractions used in Monte Carlo Simulation

The τ decay modes realized in the updated Monte Carlo sample is summarized. The PDG code of the τ
decay is given together with the possible decay modes and the corresponding branching fractions. In the
last column, detail can be found either on the branching fraction or on its implementation in the τ Monte
Carlo.

PDG Code τ Decay Final States B/% Remarks

aΓ5 τ → eν̄eντ e 17.83 ± 0.06
aΓ3 τ → µν̄µντ µ 17.37 ± 0.07
aΓ10 τ → πντ π 11.09 ± 0.12
aΓ14 τ → ρντ ππ0 25.40 ± 0.14 ex. B(non-ρ)=(3 ± 3.2) · 10−3

τ → a1ντ

Γ61 =a Γ63 +
0.0221aΓ144

πππ 9.18 ± 0.11 TAUOLA a1 only

ex. K0

aΓ20 ππ0π0 9.13 ± 0.14 ex. K0

aΓ11 τ → Kντ K 0.699 ± 0.027
Γ110 τ → K∗(892)ντ 1.29 ± 0.05
aΓ16 Kπ0 0.454 ± 0.033
aΓ35 K0π 0.90 ± 0.04

πππ 2
3
B(τ → K∗(892)ντ )

ππ0π0 1
3
B(τ → K∗(892)ντ )

Γ70 =a Γ71 +
0.888aΓ144 +

0.021aΓ145

τ → 3ππ0ντ ππππ0 4.20 ± 0.08
TAUOLA (70%ω + 30% ph.-sp.)
ex. K0, incl. ω

aΓ26 τ → π3π0ντ ππ0π0π0 1.08 ± 0.10 ex. K0

aΓ103 τ → 5πντ πππππ 0.078 ± 0.006 5h ex. K0

aΓ104 τ → 5ππ0ντ ππππππ0 0.022 ± 0.005 5hπ0 ex. K0

aΓ95 τ → KKπντ KKπ 0.161 ± 0.018
aΓ46 τ → K0K

0
πντ K0K

0
π 0.119 ± 0.020

π0π0π0π0π 1
3
· 1

3
B(τ → K0K

0
π)

πππ0π0π 1
3
· 2

3
· 2B(τ → K0K

0
π)

πππππ 2
3
· 2

3
B(τ → K0K

0
π)

aΓ42 τ → KK0π0ντ KK0π0 0.157 ± 0.021
Kπ0π0π0 1

3
B(τ → KK0π0ντ )

Kπππ0 2
3
B(τ → KK0π0ντ )

aΓ23 τ → K2π0ντ Kπ0π0 0.060 ± 0.024 ex. K0

aΓ88 τ → Kππντ Kππ 0.27 ± 0.05 ex. K0

aΓ40 τ → πK0π0ντ πK0π0 0.38 ± 0.04
ππ0π0π0 1

3
B(τ → πK0π0ντ )

ππππ0 2
3
B(τ → πK0π0ντ )

aΓ73 +

0.888aΓ145

τ → 3π2π0ντ ππππ0π0 0.49 ± 0.05 TAUOLA ω only

3h2π0, ex. K0, η
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PDG Code τ Decay Final States B/% Remarks

aΓ124 τ → ηππ0ντ ηππ0 0.174 ± 0.024
ππππ0π0 0.230 · B(τ → ηππ0ντ )
ππ02γ 0.3933 · B(τ → ηππ0ντ )
ππ0π0π0π0 0.3224 · B(τ → ηππ0ντ )
ππ0ππγ 0.0475 · B(τ → ηππ0ντ )

Γ81 τ → 3π3π0ντ ππππ0π0π0 0.029 ± 0.008 3h3π0

aΓ144 · 0.085 τ → ππ0γντ ππ0γ 0.164 ± 0.011 τ → ωπντ
0.085
→ ππ0γντ

hω
aΓ37 τ → KK0ντ KK0 0.155 ± 0.017

Kπ0π0 1
3
B(τ → KK0ντ )

Kππ 2
3
B(τ → KK0ντ )

aΓ92 τ → Kπππ0ντ Kπππ0 0.060 ± 0.024 ex. K0, η
Γ44 τ → K0ππ0π0ντ 0.026 ± 0.024

π0π0ππ0π0 1
3
B(τ → K0ππ0π0ντ )

ππππ0π0 2
3
B(τ → K0ππ0π0ντ )

aΓ27 τ → Kπ0π0π0ντ Kπ0π0π0 0.039 ± 0.022 ex. K0, η
Γ53 τ → K0πππντ 0.023 ± 0.020 K03h

π0π0πππ 1
3
B(τ → K0πππντ )

πππππ 2
3
B(τ → K0πππντ )

aΓ96 τ → KKππ0ντ KKππ0 0.040 ± 0.016

Γ49 τ → K0K
0
ππ0ντ 0.031 ± 0.023

π0π0π0π0ππ0 1
3
· 1

3
B(K0K

0
ππ0ντ )

πππ0π0ππ0 1
3
· 2

3
· 2B(K0K

0
ππ0ντ )

ππππππ0 2
3
· 2

3
B(K0K

0
ππ0ντ )

? τ → KK0ππντ ? ± ?
Γ45 τ → KK0π0π0ντ ¡0.016
aΓ126 τ → Kηντ 0.027 ± 0.006

Kπππ0 0.230 · B(τ → Kηντ )
K2γ 0.3933 · B(τ → Kηντ )
Kπ0π0π0 0.3224 · B(τ → Kηντ )
Kππγ 0.0475 · B(τ → Kηντ )

Γ128 τ → Kηπ0ντ 0.018 ± 0.009
Kπππ0π0 0.230 · B(τ → Kηπ0ντ )
Kπ02γ 0.3933 · B(τ → Kηπ0ντ )
Kπ0π0π0π0 0.3224 · B(τ → Kηπ0ντ )
Kπ0ππγ 0.0475 · B(τ → Kηπ0ντ )
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9.2 Update of the Non-Strange Spectral Moments

The non-strange spectral moments k ∈ {00, 10, 11, 12, 13} for vector and axial vector final states have been
reevaluated using updated branching fractions. In addition the moments kl ∈ {20, 21, 30, 40} have been
calculated which are used in the determination of the strange quark mass. The updated moments are given
in the table below. In addition, the correlations between the moments are given in percent. They are not
negligible, since the moments are calculated from identical spectra.

Correlation/%

kl Rτ, V 00 10 11 12 13 20 21 30 40

00 1.767 ± 0.013 100
10 1.271 ± 0.011 65 100
11 0.299 ± 0.004 69 74 100
12 0.094 ± 0.002 67 35 82 100
13 0.040 ± 0.001 57 2 49 89 100
20 0.972 ± 0.009 53 95 52 9 -17 100
21 0.205 ± 0.002 54 87 89 48 5 72 100
30 0.767 ± 0.007 47 87 33 -4 -23 97 55 100
40 0.616 ± 0.006 41 77 18 -12 -23 91 38 98 100

Correlation/%

kl Rτ, A 00 10 11 12 13 20 21 30 40

00 1.702 ± 0.012 100
10 1.222 ± 0.008 68 100
11 0.250 ± 0.003 87 65 100
12 0.109 ± 0.002 75 19 85 100
13 0.052 ± 0.001 63 -5 64 94 100
20 0.972 ± 0.006 43 93 34 -15 -36 100
21 0.141 ± 0.002 71 93 82 39 9 76 100
30 0.830 ± 0.005 29 84 14 -32 -48 98 60 100
40 0.746 ± 0.004 21 76 2 -41 -52 93 48 99 100

Due to the correlation of the branching fractions and due to the unfolding procedure, vector and axialvector
moments are not independent. The cross-correlations are given in the table below. The correlations are up
to 40% for kl = 00. They become negligible for higher moments.

V/A Correlation/%

kl 00 10 11 12 13 20 21 30 40

00 -40 -19 -34 -35 -34 -8 -21 -3 0
10 -15 -6 -15 -15 -14 0 -9 3 5
11 -32 -20 -30 -30 -28 -10 -20 -5 -3
12 -43 -25 -39 -39 -36 -15 -25 -10 -8
13 -41 -23 -36 -37 -35 -15 -24 -10 -9
20 -5 -4 -6 -6 -6 4 -4 6 8
21 -16 -11 -16 -16 -14 -5 -11 0 2
30 -1 -1 -2 -2 -2 0 -1 7 9
40 1 1 0 0 -1 1 1 1 9
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9.3 Kinematic Fit

To improve the invariant mass resolution in τ final states containing neutral kaons, a kinematic fit is applied.
It constrains the two tracks to a common secondary vertex and the invariant two-track mass under pion
hypothesis has to correspond to the nominal K0

S mass. First the general formalism of kinematic fitting is
briefly explained. This formalism is then adapted to the constraints described above.

General Formalism
The kinematic fitting technique is based on the Lagrangian multiplier method. It is assumed that the
constraint equations can be linearized and summarized into matrices. The function describing the constraints
can be written as

H(α) = 0, (9.1)

where H = {H1, ..., Hn} are the n constraint equations and α = {α1, ..., αm} is the set of m parameters
in the fit. Expanding 9.1 around a convenient point αA using a Taylor expansion, yields the linearized
equations

0 =

(
∂H(αA)

∂α

)
(α − αA) + H(αA) (9.2)

≡ Dδα + d, (9.3)

where δα = α − αA and

D = (D)ij =
∂Hi

∂αj
d = (d)i = Hi(α). (9.4)

The constraints are implemented using Lagrangian multipliers λ. The expression for χ2 consists of two
terms. One from the parameters and their covariance matrix and one from the constraint equations. The
expression then reads:

χ2 = (α − α0)
T V−1

α0
(α − α0) + 2λT (Dδα + d). (9.5)

The vector α0 contains the initial, unconstrained parameters and Vα0
represents their covariance matrix.

Equation 9.5 is now minimized with respect to α and λ which yields the two equations

V−1
α0

(α − α0) + DT
λ = 0 (9.6a)

Dδα + d = 0. (9.6b)

The solution for the new parameter vector α and the Lagrangian multipliers is then

α = α0 − Vα0
DT

λ (9.7a)

λ = (DVα0
DT )−1(Dδα0 + d). (9.7b)

The covariance matrix for the new parameter set is the calculated via

Vα = Vα0
− Vα0

DT (DVα0
DT )−1DVα0

. (9.8)

The χ2 for the individual iteration steps is then calculated from the Lagrangian multipliers via

χ2 = λ
T (Dδα + d). (9.9)

Invariant Mass and 3D Vertex Constraint
In this work, a combined constrained fit to the invariant two track mass and the unknown position of the
secondary vertex is performed. The formalism explained above can be easily adapted to this problem.

• The constrained equation of the two track invariant mass to the nominal mass of the K0
S reads

∑

i

(Ei)
2 −

∑

i

(p′xi)
2 −

∑

i

(p′yi)
2 −

∑

i

(p′zi)
2 − m2

K0 = 0, (9.10)

where the prime denotes the momentum of the track calculated with respect to the production point

p′xi
= pxi

− ai∆yi ∆yi = yc − yi (9.11a)

p′yi
= pyi

− ai∆xi ∆xi = xc − xi. (9.11b)
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• For the constraint to a common secondary vertex, for each of the two tracks there are two equa-
tions, corresponding to the constraint in the bend and non-bend planes respectively. In the solenoidal
magnetic field of the Opal jet chamber, the following equations are obtained

0 = pxi
∆yi −

ai

2
(∆x2

i + ∆y2
i ) (9.12a)

0 = ∆zi −
pzi

ai
sin−1

(
ai

(pxi
∆xi + pyi

∆yi)

p2
Ti

)
, (9.12b)

where ∆xi = (xx − x) is the distance to the secondary vertex position. The quantities ∆yi and ∆zi

are defined accordingly. The parameter a is defined as ai = c · 10−6BQi, where c is the speed of light,
B the strength of the magnetic field and Qi the charge of the particle under consideration.

The problem then is the following. The parameter vector α contains the five track parameters ti of each of
the two tracks and the position v of the secondary vertex to be determined.

α = (t1, t2, v) (9.13)

= (κ1, φ1, d0, 1, tan λ1, z0, 1, κ2, φ2, d0, 2, tan λ2, z0, 2, xvtx, yvtx, zvtx).

For each individual track, the covariance matrix consist of a 3-by-3 submatrix and a 2-by-2 submatrix. This
is due to the procedure of the track fit in the OPAL jet chamber. It is performed separately for the r − φ
plane and the x − z plane. Therefore, (κ, φ, d0) are correlated and (tan λ, z0) are correlated.
There is no correlation among the track parameters for different tracks. The covariance matrix for the
unconstrained parameters therefore reads

Vα0
=




Vt1
0 0

0 Vt2
0

0 0 Vvtx


 . (9.14)

The matrix D which contains the derivatives of the constraint equations with respect to the track parameters
is a 5 × 15 matrix and it reads

D =




Dt1 0 E1

0 Dt2 E2

Dmass1 Dmass2 Emass


 , (9.15)

where the components Dt1/2
is the derivatives of the vertex constraint equations with respect to the track

parameters, E1/2 is the derivative with respect to the vertex position, Dmass1/2 is the derivative of the
mass constraint equation 9.10 with respect to the track parameters and Emass is the derivative of the mass
constraint equation with respect to the vertex position. The explicit expression for these matrices are

Di =

(
∆yi −∆xi 0pyi

+ a + i∆xi −pxi
+ ai∆yi 0

−pzi
pTi

SiRxi
+ Ui

pxi

pTi
−pzi

ptiSiRyi + Ui
pyi

pti
− 1

ai
(pTi

sin−1 Bi) pxi
pzi

pTi
Si pyi

pzi
pTi

Si −pti

)

Ei =

(
−pyi

− ai∆xi pxi
− ai∆yi 0

−pxi
pzi

pTi
Si −pyi

pzi
pTi

Si pTi

)

di =

(
A1i − ai

2 (∆x2
i + ∆y2

i )
UipTi

)

Dmass,i =
(
−2p′x + 2E

p′

x1

Ei
−2p′y + 2E

p′

y1

Ei
−2p′z + 2E

p′

z1

Ei
2ai

(
p′y − E

p′

yi

Ei

)
2ai

(
p′x − E

p′

xi

Ei

)
0
)

Emass =
(
2E
∑

i

p′

yi
ai

Ei
− 2p′y

∑
i ai 2E

∑
i

p′

xi
ai

Ei
− 2p′s

∑
i ai 0

)
.

The following addition definitions are used

E =
∑

i

Ei

p′x =
∑

i

p′xi
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and

A1i = pxi
∆yi − pyi

∆xi

A2i = pxi
∆xi − pyi

∆yi

Bi = ai
A2i

p2
Ti

Rxi
= ∆xi − 2pxi

A2i

p2
Ti

Ryi
= ∆yi − 2pyi

A2i

p2
Ti

Si =
(
p2
Ti

√
1 − B2

i

)−1

Ui = ∆zi −
pzi

ai
sin−1 Bi

This fit is a constrained fit with two degrees of freedom. The number of degrees of freedom of a kinematic
fit is calculated as

ND.o.F. = Nmeas − Nfitted + Nconstr., (9.16)

where Nmeas is number of measured parameters that are inputs to the fit. In this case, these are all together
ten track parameters for the two tracks. Nfitted is the number of fitted parameters. Here, this number is 13,
the ten track parameters and the 3D position of the vertex. Nconst. is the number of constraints. It is five
in this case. Two for each track from the vertex constraint plus the constraint to the invariant mass.
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Tab. 9.2: Updated parametrizations of the 3 meson final states. The upper table corresponds to the background
channels involving kaons and the lower table corresponds to the strange final states.
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