Untersuchungen zu den Auswirkungen atmosphärischer Stickstoffeinträge auf epiphytische Flechten und Moose im Hinblick auf die Bioindikation

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Isabelle Franzen-Reuter

aus

Kehl

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

- 1. Referent: Prof. Dr. Jan-Peter Frahm
- 2. Referent: Prof. Dr. Wilhelm Barthlott

Tag der Promotion: 03.09.2004

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.unibonn.de/diss_online elektronisch publiziert. Inhaltverzeichnis

1 Einleitung	1
1.1 Warum Biomonitoring?	1
1.2 Warum epiphytische Flechten und Moose?	2
1.3 Atmosphärische Stickstoffeinträge	
 1.4 Untersuchungen zur Wirkung erhöhter Stickstoffeinträge auf Flechten und Moose 1.5 Zielsetzung der Arbeit 	e 5 6
2 Auswirkungen regionaler Stickstoff-Depositionsunterschiede auf die Epiphytenflora	8
2.1 Einleitung	
2.2 Material und Methoden	9
2.2.1 Datenerhebung	9
2.2.2 Auswertung	10
2.2.3 landesweite NRW-Kartierung	12
2.2.4 Statistische Analysen.	
2.3 Ergebnisse	12
2.3.1 LOBF-Messstationen	12
Westfalens	18
2 4 Diskussion	
2.4.1 Bedeutung der Eutrophierungszeiger	
2.4.2 Bioindikationsverfahren mit Epiphyten	
3 Veränderungen des Epiphytenbewuchses an Dauerbeobachtungsflächen in Nor- Westfalen zwischen 2002 und 2004	drhein- 29
3.1 Einleitung	
3.2 Methoden	
3.2.1 Untersuchungsgebiete	
3.2.2 Aufnahme der Flechten und Moose	
3.2.3 Auswertung	
3.4 Diskussion	52
3.5 Schlussfolgerung	40
4 Auswirkungen experimenteller Stickstoffgaben auf die Epiphytenflora in beobachtungsflächen	Dauer- 41
4.1 Einleitung	41
4.2 Material und Methoden	41
4.2.1 Untersuchungsgebiete	41
4.2.2 Anlage und Behandlung der DBF	42
4.2.3 Aufnahme der DBF	43
4.3 Ergebnisse	43
4.5.1 Kelberg	45
4.3.2 DUIR ACIII	40 70
4. <i>3.3</i> Kenelani	49

4.3.4 Martental	50
4.3.5 Zusammenfassende Betrachtung	
4.4 Diskussion	
4.5 Schlussfolgerung	55
5 Untersuchungen zur Stickstoffakkumulation zur Ermittlung geeigneter Monitorarten	56
5.1 Einleitung	56
5.2 Material und Methoden	57
5.2.1 Charakterisierung der Arten und Probeflächen	57
5.2.2 Behandlung der Probeflächen	58
5.2.3 Probenahme und Materialaufbereitung	58
5.2.4 Stickstoffanalytik	59
5.2.5 Gesamtchlorophyll und Aminosäureanalytik	59
5.2.6 Statistische Analysen	60
5.3 Ergebnisse	
5.3.1 Gesamtstickstoffkonzentrationen der untersuchten Arten	60
5.3.2 ¹⁵ N _{excess} -Konzentration	
5.3.3 Aminosäuren	
5.3.4 Chlorophyllgehalt	71
5.4 Diskussion	
5.4.1 N- und ¹⁵ N _{excess} -Konzentration	
5.4.2 Aminosäuren	
5.4.3 Chlorophyllgehalt	
5.5 Schlussfolgerungen	80
(Disindilation assignments) Chickets (CD-maritic manufactor his damit animhatis dam Elad	
6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech6.1 Einleitung	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 	nten 82 82 83 83
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 6.3.3 Aminosäuren 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 6.3.3 Aminosäuren 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 	nten 82
6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ^{15} N 6.3.3 Aminosäuren 6.3.4 Pigmente 6.4.1 N-Konzentrationen 6.4.2 δ^{15} N	nten 82
6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ^{15} N 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 6.4.3 Aminosäuren 6.4.3 Aminosäuren 6.4.3 Aminosäuren	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Fleel 6.1 Einleitung	nten 82
6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ^{15} N 6.3.3 Aminosäuren 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 6.4.2 δ^{15} N 6.4.3 Aminosäuren 6.4.2 δ^{15} N 6.4.3 Aminosäuren 6.4.4 Chlorophyll- und Carotinoidgehalt 6.5 Schlussfolgerung	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 6.4.2 δ¹⁵N 6.4.3 Aminosäuren 6.4.4 Chlorophyll- und Carotinoidgehalt 6.5 Schlussfolgerung 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flech 6.1 Einleitung	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 6.4.2 δ¹⁵N 6.4.3 Aminosäuren 6.4.4 Chlorophyll- und Carotinoidgehalt 6.5 Schlussfolgerung 	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung 6.2.3 Analysen 6.2.4 Statistische Auswertung 6.3 Ergebnisse 6.3.1 N-Konzentrationen 6.3.2 δ¹⁵N 6.3.3 Aminosäuren 6.3.4 Pigmente 6.4 Diskussion 6.4.1 N-Konzentrationen 6.4.2 δ¹⁵N 6.4.3 Aminosäuren 6.4.4 Chlorophyll- und Carotinoidgehalt 6.5 Schlussfolgerung 7 Stickstoffgehalte in <i>Parmelia sulcata</i> als Indikator atmosphärischer Stickstoffeir einer Großstadt am Beispiel Düsseldorf	nten 82
 6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flecl 6.1 Einleitung 6.2 Material und Methoden 6.2.1 Probenahmegebiete 6.2.2 Probenahme und Materialaufbereitung. 6.2.3 Analysen	nten 82

7.2.1 Untersuchungsgebiet	
7.2.2 Entnahme und Aufarbeitung der Flechtenproben	
7.2.3 Stickstoffanalyse	
7.2.4 Auswertung und Interpretation	
7.2.5 Statistische Analysen	
7.3 Ergebnisse	
7.4 Diskussion	
7.5 Schlussfolgerung	116
8 Schlussbetrachtung	
9 Zusammenfassung	119
10 Danksagung	
11 Literaturverzeichnis	

Anhang

1 Einleitung

Nachdem Schwefeldioxid dank strenger Maßnahmen zur Reinhaltung der Luft heutzutage kaum noch eine nennenswerte Bedeutung besitzt, treten andere Luftschadstoffe als Störgröße in den Vordergrund. Hier sind vor allem luftgetragene Stickstoffverbindungen zu nennen, die vornehmlich aus dem Straßenverkehr und der Landwirtschaft stammen. In den letzten zehn Jahren war kaum eine Abnahme der Stickstoffeinträge zu verzeichnen (UMWELTBUNDESAMT 2002), vielfältige negative Auswirkungen sind die Folge. So sind Stickstoffverbindungen verantwortlich für Eutrophierung und Versauerung empfindlicher naturnaher Ökosysteme, tragen zur Belastung des Grundwassers bei, beeinflussen das stratosphärische Ozon, sind klimawirksam und beeinflussen die Aerosolbelastung der Luft. Die Beobachtung und Überwachung ihres Eintrags, sowie die Erfassung der Auswirkungen erscheinen zwingend erforderlich. Hier erweist sich der Einsatz von Flechten und Moosen als Bioindikatoren als kostengünstiges und natürliches Kontrollelement der biologisch wirksamen Stickstoffkonzentration in der Luft – ergänzend zu technischen Messungen - als sinnvoll. Ziel der vorliegenden Arbeit ist es, die Auswirkungen atmosphärischer Stickstoffeinträge auf die epiphytische Moos- und Flechtenflora zu untersuchen und zu überprüfen, welche Möglichkeiten die Bioindikation bietet.

1.1 Warum Biomonitoring?

In Anbetracht sich ständig verändernder Umweltbedingungen (Klima, Luftbelastung) ist es notwendig, Verfahren zu entwickeln, die diese Veränderungen erkennen, bewerten und überwachen können. Für solch ein Umweltwarnsystem kommt in erster Linie das Biomonitoring, d.h. Langzeitüberwachung von Organismen, in Frage. Die Vorteile eines solchen biologischen Überwachungssystems zeigen sich darin, dass

- Organismen die Umwelteinflüsse und -änderungen integrieren
- viele Organismen eine besondere Sensibilität auf spezielle Veränderungen besitzen
- die biologische Wirkung auf einen Organismus erfasst wird
- die Wirkung von Schadstoffen über einen langen Zeitraum erfasst wird
- die Kumulationswirkung aller Schadstoffe erfasst wird
- die Wirkungen flächendeckend und nicht nur punktuell erfasst werden

 mit denselben Methoden Veränderungen unterschiedlichster Parameter, z.B. Auswirkungen von Klimaänderungen <u>und</u> atmosphärischen Veränderungen bestimmt werden können.

Die Umweltüberwachung mit Messinstrumenten allein erscheint nicht ausreichend, weil immer nur einzelne Parameter gemessen werden, die Relevanz der Messwerte für die Umwelt oder den Menschen nicht abschätzbar ist und Organismen schon auf kleinste, kaum messbare Änderungen reagieren. In vielen Fällen werden die relevanten Schadstoffkomponenten mit technischen Verfahren auch nicht ausreichend erfasst. So existiert beispielsweise für die Ermittlung der Ammoniakkonzentrationen in der Luft aufgrund des hohen Aufwandes und der Kostenintesität kein flächendeckendes Messnetz. Bei dem Einsatz von Messstationen bzw. Messwagen werden einzelne Schadstoffe an wenigen Standorten über eine bestimmte Zeit oder zu bestimmten Zeitpunkten gemessen. Das ist sicherlich in Hinblick auf eine Luftüberwachung nicht nur sinnvoll, sondern auch notwendig, da es die Veränderung einzelner Parameter erfasst. Der Einsatz von Bioindikationsmethoden zielt jedoch auf die Wirkung auf den Organismus. Es wird die <u>Wirkung</u> auf komplexe Systeme wie die Natur (Ökosysteme) und Teilen davon (auch den Menschen) erfasst und nicht nur die Veränderung en sich.

Ein weiterer Vorteil des Biomonitorings gegenüber chemisch-physikalischen Messverfahren ist, dass es meist weitaus kostengünstiger ist.

1.2 Warum epiphytische Flechten und Moose?

Verglichen mit anderen Pflanzengruppen haben Moose und Flechten wichtige Eigenschaften, die sie als Bioindikatoren besonders geeignet machen:

- Als poikilohydrische Organismen ohne schützendes Abschlussgewebe nehmen sie Wasser und darin gelöste Nährstoffe mit Regen, Tau oder Nebel über die gesamte Oberfläche auf. Somit gelangen auch Schadstoffe direkt in die Pflanze.
- Moose und Flechten haben weitaus größere Areale als Blütenpflanzen. So können europaweit für das Schwermetallmonitoring Moosarten benutzt werden, die sowohl in Skandinavien als auch Italien in entsprechender Häufigkeit vorhanden sind.
- Moose und Flechten verfügen über eine leichte und effektive Windverbreitung, können sich somit rasch ausbreiten und auf Veränderungen der Umweltbedingungen schnell reagieren.

- Moose haben schnelle Reproduktionszyklen. Ein ganzer Entwicklungszyklus wird schnellstens in 4 Wochen durchlaufen, bei vielen Arten in einem halben Jahr. Eine schnelle Reaktion auf Umwelteinflüsse ist dadurch gesichert.
- Untersuchungen mit Moosen und Flechten können ganzjährig durchgeführt werden.
- Aufgrund ihres geringen Temperaturoptimums erreichen Moose ihr Maximum an Stoffwechselaktivität im Spätherbst und Winter, wo Hausbrand und Inversionswetterlagen die Schadstoffbelastungen erhöhen.
- Moose und Flechten verfügen über keine physiologische Anpassung, die es ihnen ermöglichen würde, schädliche Stoffe abzuscheiden.
- Die Symbiosenatur der Flechten stellt ein kompliziertes und daher störungsanfälliges Gleichgewicht zwischen Pilz und Alge dar, das durch Änderungen im chemischen Milieu leicht beeinträchtigt werden kann.

Aufgrund dieser Eigenschaften werden Flechten und Moose schon seit Jahrzehnten als Bioindikatoren für die Luftqualität genutzt (vgl. BARKMAN 1968, DÜLL 1977, FEIGE 1982, KIRSCHBAUM & WIRTH 1997, FRAHM 1977, 1998, CONTI & CECCHETTI 2001, NIMIS et al. 2002). Es sind insbesondere die Auswirkungen säurebildender Luftverunreinigungen (SO₂), die in der Vergangenheit in zahlreichen Studien untersucht wurden. Zum einen hatte die Versauerung der Standorte die Epiphytenvegetation verändert und nur noch wenigen Arten ein Überleben ermöglicht (z.B. DOMRÖS 1966, GILBERT 1970, LEBLANC & DESLOOVER 1970). Zum anderen wurde in Laborexperimenten die Toxizität von SO₂ vielfach bestätigt (RAO & LEBLANC 1965, COKER 1967, DÄSSLER & RANFT 1969, SYRATT & WANSTALL 1969, TÜRK & WIRTH 1975).

Beide Artengruppen werden zudem als Bioindikatoren für Boden- und Gewässerversauerung (STETZKA 1993, TREMP 1999, STETZKA & BAUMANN 2001), im Schwermetallmonitoring (ZECHMEISTER 1994, SIEWERS & HERPIN 1998, SCERBO et al. 1999) und neuerdings auch als Zeigerpflanzen für Klimafluktuationen genutzt (FRAHM & KLAUS 2001, VAN HERK et al. 2002).

1.3 Atmosphärische Stickstoffeinträge

Nachdem die SO₂-Belastung auch in den Städten und Ballungsräumen kaum noch eine nennenswerte Bedeutung besitzt, treten stickstoffhaltige Luftverunreinigungen in den Vordergrund. Hierzu zählen insbesondere NO, NO₂ und NH₃ als trockene Deposition sowie

 NO_3^- und NH_4^+ als nasse Deposition. Ammoniak und das daraus gebildete Ammonium stammen fast ausschließlich aus der Landwirtschaft. Die Tierhaltung hat hierbei gefolgt vom N-Düngereinsatz den wichtigsten Anteil. Der Straßenverkehr, hier vor allem Autos mit Katalysator, ist ebenfalls eine Quelle von Ammoniak (GLADTKE 1997). Die Hintergrundkonzentrationen von NH3 liegen in unbelasteter Atmosphäre im Bereich von weniger als 1 µg m⁻³ über Ozeanen bis wenigen µm g⁻³ über terrestrischen Gebieten fernab von Emissionen aus Landwirtschaft (FANGMEIER et al. 1994). Erhöhte Werte von 30 bis 60 µg m⁻³ werden in unmittelbarer Umgebung von Massentierhaltungsbetrieben gemessen (FOWLER et al. 1998). In der Atmosphäre wird Ammoniak verhältnismäßig schnell durch Reaktionen mit Oxiden des Schwefels und des Stickstoffs z.T. unter Beteiligung von Luftsauerstoff und Wasser in Ammoniumsalze umgewandelt. Die Ausbreitungsreichweiten von NH₃ und NH₄⁺ unterscheiden sich wesentlich. Während Ammoniak im direkten Umfeld der Quellen deponiert (bis max. 10 km Entfernung), kann Ammonium, im Wolkenwasser gelöst, mehrere hundert Kilometer verdriftet werden (ASMAN et al. 1998). Ammoniumsalze bilden einen wesentlichen Bestandteil so genannter sekundärer Aerosole, die wiederum bis zu 50% des Feinstaubs ausmachen, der als besonders gesundheitsschädlich gilt. Trotz verbindlicher internationaler Richtlinien und Abkommen (Göteborg Protokoll der UN-ECE), die bis 2010 eine Minimierung der NH₃-Emissionen in Deutschland auf 550 kt fordern, stagnieren die Einträge in den letzten zehn Jahren bei etwa 630 kt auf zu hohem Niveau (UMWELTBUNDESAMT 2002). Neben der direkten phytotoxischen Wirkung (z.B. FANGMEIER et al. 1994) trägt Ammoniak wesentlich zu erhöhten Stickstofffrachten bei. Dies führt zur Überdüngung nährstoffarmer Böden (Eutrophierung) und, durch bakterielle Umsetzung von Ammonium zu Nitrat, zur Bodenversauerung. So trägt NH_v seit 1998 mehr zur Versauerung der Waldökosysteme bei als Schwefel (GEHRMANN et al. 2003).

Die wichtigsten Emittentengruppen für NO_x sind die Industrie und der Straßenverkehr, der infolge kontinuierlich wachsender Kfz-Zahlen trotz des verstärkten Einsatzes von Katalysatortechnik zu über 50% aller NO_x-Emissionen beiträgt. So treten deutliche NO₂-Immissionsunterschiede zwischen verkehrsfernen Regionen und Ballungsräumen auf. Ein eindeutiger Trend zur Zu- oder Abnahme der NO₂-Konzentrationen konnte im vergangenen Jahrzehnt nicht festgestellt werden. Während in Ballungsräumen Jahresmittelwerte zwischen einzelne Verkehrsmessstellen bis 80 μ g m⁻³. Die NO₂-Belastung in ländlichen Regionen beträgt im Jahresmittel meist nicht einmal 10 μ g m⁻³ (UMWELTBUNDESAMT 2002).

Somit ist die räumliche Verteilung der Deposition einzelner Stickstoffverbindungen sehr inhomogen, da zum einen die Quellen (urbano-industriell und landwirtschaftlich) unterschiedlich verteilt sind und zum anderen die Verbindungen sich hinsichtlich ihres Verhaltens in der Atmosphäre unterscheiden.

1.4 Untersuchungen zur Wirkung erhöhter Stickstoffeinträge auf Flechten und Moose

Die Wirkungen erhöhter Stickstoffeinträge auf terrestrische Ökosysteme sind sehr verschiedenartig (z.B. FANGMEIER et al. 1994, VAN DER EERDEN et al. 2001). In erster Linie ist Stickstoff in verschiedenen Verbindungen für sämtliche Organismen ein unentbehrlicher Nährstoff. Als Bestandteil sämtlicher Amino- und Nukleinsäuren, und damit der Eiweißstoffe und genetischen Informationsträger sowie anderer Grundstoffe, sind Lebensformen ohne ihn gar nicht denkbar. In höheren Dosen führt er jedoch zu physiologischen Störungen und nimmt die Rolle eines Schadstoffs ein. So zeigen beispielsweise experimentelle Untersuchungen, dass Stickstoffgaben die Photosynthese von Parmelia sulcata hemmen (BROWN & TOMLINSON 1993, BROWN et al. 1995). Begasungsexperimente mit NH₃ an Heidemoosarten führten zu direkten Schädigungen wie Chlorosen und Nekrosen (VAN DER EERDEN et al. 1991, GREVEN 1992). Die Empfindlichkeit von Flechten gegenüber NO₂-Immissionen zeigten HOLOPAINEN & KÄRENLÄMPI (1985) und NASH (1976). Untersuchungen zu den Auswirkungen erhöhter N-Depositionen wurden in der Vergangenheit insbesondere an Sphagnum-Arten durchgeführt. Die Folgen sind beispielsweise Abnahmen in der Biomasseproduktion (KOOIJMAN & KANNE 1993, JAUHIAINEN et al. 1994), Hemmung der Photosynthese (RUDOLPH & VOIGT 1986), Akkumulation von bestimmten Aminosäuren (BAXTER et al. 1992, NORDIN & GUNNARSSON 2000) und Abnahme der Nitratreduktase-Aktivität (RUDOLPH & VOIGT 1986). Einige Experimente an Flechten zeigen aber auch eine Wachstumsförderung infolge von Stickstoffdüngung (HAKULINEN 1966, ARMSTRONG 1984). Über die vielfältigen Auswirkungen verschiedenster N-Verbindungen auf Moose und Flechten berichten auch BROWN (1992) und CRITTENDEN et al. (1994).

Untersuchungen der letzten Jahre zeigen, dass erhöhte N-Depositionen zu einer Akkumulation des Stickstoffs im Moos- und Flechtengewebe führen (BAKKEN 1995, PITCAIRN & FOWLER 1995, HYVÄRINEN & CRITTENDEN 1998, CARROLL et al. 2000, GAIO-OLIVEIRA et al. 2001). Diese Eigenschaft machte man sich im Biomonitoring atmosphärischer Stickstoffeinträge zunutze (BRUTEIG 1993, BADDELEY et al. 1994, SØCHTING 1995, MOHR 1998, PITCAIRN et al. 1995, 2001, GOMBERT et al. 2003).

Die offensichtlichsten Auswirkungen eutrophierender Luftverunreinigungen zeigten sich in den letzten Jahren in einem Wandel der Moos- und Flechtenvegetation mit dem Rückgang acidophytischer Arten und Zunahme von Neutrophyten und Eutrophierungszeigern. Dies betrifft sowohl bodenbewohnende Gesellschaften (DURING & WILLEMS 1986, BERG & VERHOEF 1998, LEE et al. 1998) als auch insbesondere die epiphytische Vegetation (z.B. VAN DOBBEN 1996, VAN DOBBEN & DE BAKKER 1996, VAN HERK 1999, STAPPER et al. 2000, ZIMMER 2000, FRANZEN 2001). Als Ursache für die extreme Zunahme der Nitrophyten werden verschiedene Gründe angeführt. DE BAKKER (1989) sieht die Ursache in dem Anstieg der NH₃-Konzentrationen in den letzen Jahren als Folge der intensiven Viehhaltung in den Niederlanden. VAN DOBBEN & TER BRAAK (1996) führen drei mögliche Gründe an; (a) die Erhöhung des Borken-pHs als Folge des Rückgangs der SO₂-Konzentrationen; (b) nitrophytische Arten reagieren empfindlicher gegenüber SO₂ als andere Arten; und (c) nitrophytische Arten sind in der Lage neue Standorte schneller zu besiedeln, als andere Arten. VAN HERK (1999) vermutet, dass der Einfluss des Ammoniaks auf die Nitrophyten nicht in der Verfügbarkeit des Stickstoffs liegt, sondern dass in erster Linie die Erhöhung des BorkenpHs die Ansiedlung ermöglicht. Die Zunahme der Nitrophyten scheint somit ein vieldiskutiertes Phänomen zu sein und bedarf in jedem Fall weiteren Untersuchungen.

1.5 Zielsetzung der Arbeit

Wie bereits aufgezeigt, sind die Auswirkungen erhöhter Stickstoffeinträge vielfältig und machen eine Umweltüberwachung notwendig. Anhand diverser Untersuchungen soll die vorliegende Arbeit einen Beitrag dazu leisten, inwiefern epiphytische Flechten und Moose als Bioindikatoren atmosphärischer Stickstoffeinträge eingesetzt werden können. Dabei standen folgende Fragen im Vordergrund:

- Wie reagieren die Epiphyten auf die veränderten Schadstoffbedingungen (Rückgang SO₂, erhöhte N-Einträge)?
- Gibt es regionale Unterschiede im Vorkommen der Epiphyten?
- Welche Auswirkungen haben erhöhte Stickstoffeinträge auf die Epiphytenflora?
- Wie ist die zeitliche Entwicklung der Epiphytenflora unter unterschiedlichen Depositionsbedingungen?
- Wie äußert sich der Einfluss der verschiedenen N-Spezies (NH_y, NO_x)?

- Spiegeln sich regionale N-Depositionsunterschiede in Stickstoffgehalten bestimmter epiphytischer Arten wider?
- Lassen sich Aussagen zur Stickstoffbelastung anhand epiphytischer Flechten und Moose als Bioindikatoren ableiten?
- Was für Gründe kommen in Betracht, dass die verschiedenen Arten so unterschiedlich auf erhöhte Stickstoffeinträge reagieren?
- Welche Arten eignen sich besonders gut als Indikatoren erhöhten Stickstoffeintrags im Hinblick auf zukünftige Biomonitoringverfahren?

Hierzu werden zunächst die Auswirkungen regionaler N-Depositionsunterschiede auf die Epiphytenflora erfasst (Kapitel 2 und 3). Im Weiteren sollen experimentelle Untersuchungen klären, wie epiphytische Flechten und Moose auf erhöhte N-Zufuhr reagieren und sich sowohl als Reaktions- als auch als Akkumulationsindikatoren für Stickstoffeinträge eignen (Kapitel 4 und 5). Abschließende Untersuchungen sollen die Ergebnisse des experimentellen Teils in der Praxis überprüfen (Kapitel 6 und 7).

2 Auswirkungen regionaler Stickstoff-Depositionsunterschiede auf die Epiphytenflora

Zusammenfassung

Ziel der Untersuchung war es, in unterschiedlich stark belasteten Regionen die Auswirkungen erhöhter atmosphärischer Stickstoffeinträge auf die Epiphytenflora zu erfassen. Das Vorkommen und die Häufigkeit einiger Arten sind eng mit der Stickstoffbelastung der Standorte korreliert. Arten, deren Frequenzwerte mit zunehmender N-Deposition ansteigen sind *Phaeophyscia orbicularis, Orthotrichum diaphanum* und *Physcia tenella*.

Die Verbreitung fadenförmiger Grünalgen an den untersuchten Bäumen lässt darauf schließen, dass diese ebenfalls durch stickstoffhaltige Luftverunreinigungen gefördert werden. Landesweit betrachtet hat sich gezeigt, dass insbesondere in den landwirtschaftlich geprägten Regionen im Norden von Nordrhein-Westfalen (Münsterland, Niederrhein, Ostwestfalen) nitrophytische Arten dominieren, während die Eifel, das Sauerland und das Bergische Land durch Neutro- und Acidophyten gekennzeichnet ist. Durch die gleichzeitige Anwendung verschiedener Aufnahmeverfahren gelang eine Auswertung der Daten anhand verschiedener Bioindikationsverfahren. Die in Kürze in Kraft tretende VDI-Richtlinie 3957 Blatt 13, die das Vorkommen von Eutrophierungszeiger bei der Beurteilung der Luftqualität negativ bewertet, liefert eine realistische Einschätzung der lufthygienischen Belastung der untersuchten Gebiete.

2.1 Einleitung

Im Verlauf der letzen Jahrzehnte haben sich Art und Konzentration der Luftverunreinigungen gewandelt, was zu erheblichen Veränderungen der Epiphytenvegetation geführt hat. Mit dem starken Rückgang des sauren Schadgases SO₂ verstärkten sich die Auswirkungen luftgetragener Stickstoffverbindungen und es kam zu einer deutlichen Zunahme der Neutrophyten und Eutrophierungszeiger (VAN DOBBEN & DE BAKKER 1996, VAN HERK 1999, ZIMMER 2000, FRANZEN 2001). Aufgrund des Umstandes, dass einige Arten durch bestimmte Immissionen gefördert werden, erweist es sich nicht mehr als sinnvoll anhand einfacher Bioindikationsverfahren, wie der VDI-Richtlinie 3799 Blatt 1 (VDI 1995), Rückschlüsse auf die Immissionsbelastung zu ziehen. Spezielle Monitoringprojekte basierend auf Nitrophyten existieren bisher nur in den Niederlanden, welche zu den mit Ammoniakimmissionen am höchsten belasteten Gebieten in Europa zählen. Um die unterschiedliche Ammoniakbelastung mit Hilfe epiphytischer Flechten anzuzeigen, entwickelte VAN HERK (1999) den "Nitrofiele Indicatie Waarde (NIW)". In Deutschland wurde eine umfassende Überarbeitung der Flechtenkartierungsrichtlinie vorgenommen die den veränderten Immissionsverhältnissen gerecht werden soll (VDI 2004).

Ziel des vorliegenden Untersuchungsabschnitts ist zunächst es, in Gebieten, die sich in ihrer Nutzungsform und Immissionssituation stark unterscheiden, die Epiphytenflora zu untersuchen und die Auswirkungen regionaler N-Depositionsunterschiede darzustellen. Im Weiteren wird anhand einer landesweiten Kartierung Nordrhein-Westfalens (FRANZEN et al. 2002) ein Vergleich verschiedener Bioindikationsmethoden vorgenommen.

2.2 Material und Methoden

2.2.1 Datenerhebung

Die Aufnahme der Epiphyten erfolgte in der Umgebung der sieben Depositionsmessstationen der Landesanstalt für Ökologie, Bodenordnung und Forsten (LÖBF) in Nordrhein-Westfalen (Abb. 2-1). In Tab. 2-1 sind Stationen aufgeführt mit Angaben zum atmosphärischen Stickstoffeintrag.

Abb. 2-1: Lage der sieben LÖBF-Messstationen in Nordrhein-Westfalen.

Tab. 2-1: Messstationen der LÖBF mit Angaben zur naturräumlichen Einordnung und Meereshöhe. Daten zu Niederschlag, Bulk-Deposition (Summe aus NH_4^+ und NO_3^-) für das Jahr 2002 und Mittelwert aus den Jahren 1999-2002 sowie NH_3 -Immissionen für das Jahr 2002 (Datenquelle: LÖBF NRW).

Station		Naturraum	Höhe ü.	Nieder- schlag	Bulk-De [kg h	eposition a ⁻¹ a ⁻¹]	Immissionen [µg m ⁻³]
			NN [m]	$[mm a^{-1}]$	N _{ges} 2002	N _{ges} 99-02	NH ₃
Elberndorf	ELB	Sauerland	670	1722	9,78	11,16	0,57
Glindfeld	GLI	Sauerland	470	1083	8,08	8,39	0,82
Haard	HAA	Westfäl. Bucht	80	952	17,66	14,99	2,63
Kleve	KLE	Niederrh. Tiefl.	35	974	16,81	15,58	6,76
Paderborn	PAD	Weserbergland	380	1386	17,18	16,22	-
Rott	ROT	Nordeifel	510	1255	13,91	12,71	1,39
Velmerstot	VEL	Weserbergland	420	1417	14,00	14,86	1,12

An jeder Messstation wurden im Umkreis von fünf Kilometern etwa 20 Trägerbäume ausgewählt, die den Anforderungen der VDI-Richtlinie 3799/1 entsprechen.

Die Aufnahme der Flechten und Moose gemäß VDI-Richtlinie 3799/1 erfolgte an der am stärksten bewachsenen Seite des Baumstammes. Dort wurde ein Aufnahmegitter von 20 cm x 50 cm Kantenlänge, das in zehn Quadrate von 10 x 10 cm² unterteilt ist, mit der Unterkante 1 m über dem Boden am Baum angelegt. Für jede epiphytische Moos- und Flechtenart wurde ermittelt in wie vielen der zehn Felder des Gitters die Art vorkommt (= Frequenz). Die maximale Frequenz einer Art an einem Baum beträgt somit 10. Arten, die nicht innerhalb des Aufnahmegitters vorkommen, aber in unmittelbarer Nähe zu finden sind, wurden mit der Frequenz 1 notiert. Die Frequenz fadenförmiger Algen wurde ebenfalls aufgenommen.

Zusätzlich wurde die Aufnahmemethodik nach ASTA et al. (2002) angewendet, die auch in der geplanten VDI-Richtlinie 3957, Blatt 13 umgesetzt wird. Danach wird ein Aufnahmegitter, bestehend aus vier unabhängigen Gitterstreifen mit je fünf 10 cm \times 10 cm großen Quadraten auf der Ost-, Süd-, West- und Nordseite in gleicher Höhe am Stamm befestigt, so dass sich die untere Kante 1 m über dem höchsten Bodenpunkt befindet. Somit kann eine Art eine maximale Frequenz von 20 erreichen.

Detaillierte geographische Angaben zur Lage aller untersuchten Bäume sind Anhang A zu entnehmen.

2.2.2 Auswertung

Gemäß VDI-Richtlinie 3799/1 wurde für jede Station Luftgütewert (LGW) berechnet, der dem Mittelwert der Frequenzsummen an den kartierten Bäumen entspricht.

Im Gegensatz hierzu werden in der zukünftigen VDI-Richtlinie 3957/13 die eutrophierungstoleranten Flechtenarten gesondert berücksichtigt. Dies sind die Arten *Caloplaca citrina, Caloplaca holocarpa, Lecanora dispersa, Lecanora hagenii*-Gruppe, *Lecanora muralis, Phaeophyscia nigricans, Phaeophyscia orbicularis, Physcia adscendens, Physcia caesia, Physcia dubia, Physcia tenella, Physconia distorta, Physconia grisea, Rinodina* spp., *Xanthoria candelaria, Xanthoria parietina, Xanthoria polycarpa.* Für die Eutrophierungszeiger und die übrigen Arten werden jeweils die mittleren Frequenzen ermittelt, die als Flechtendiversitätswerte (FDW) bezeichnet werden.

Die Bewertung einer Station und damit ihr "Luftgüteindex" ergibt sich aus der Kombination der Diversitätswerte der Eutrophierungszeiger und der übrigen Arten (Abb. 2-2).

Abb. 2-2: Bewertung der Luftgüte anhand der Kombination der Diversitätswerte der Eutrophierungszeiger und der übrigen Arten.

	Tab. 2-2	: Erläuterungen	zur Bewertung	gsmatrix.
--	----------	-----------------	---------------	-----------

Bewe Berü eutro	ertung der Luftgüte ohne cksichtigung phierender Luftschadstoffe	Bev	wertung eutrophierender Luftschadstoffe
5	sehr hohe Luftgüte	5	sehr starker Einfluss eutrophierender Verbindungen
4	hohe Luftgüte	4	starker Einfluss eutrophierender Verbindungen
3	mittlere Luftgüte	3	mittlerer Einfluss eutrophierender Verbindungen
2	geringe Luftgüte	2	geringer Einfluss eutrophierender Verbindungen
1	sehr geringe Luftgüte	1	sehr geringer Einfluss eutrophierender Verbindungen

Folgende Beispiele erläutern die verbale Beschreibung des Luftgüteindexes:

- Luftgüteindex 1.1: Sehr geringe Luftgüte bei sehr geringem Einfluss eutrophierender Verbindungen
- Luftgüteindex 1.5: Sehr geringe Luftgüte bei sehr starkem Einfluss eutrophierender Verbindungen
- Luftgüteindex 5.1: Sehr hohe Luftgüte bei sehr geringem Einfluss eutrophierender Verbindungen.

2.2.3 landesweite NRW-Kartierung

Für die landesweite Epiphytenkartierung Nordrhein-Westfalens diente als Messnetz der Kartenschnitt des Topographischen Kartenwerkes 1:25000, dessen Grundfeld das so genannte Messtischblatt (MTB) ist, welches etwa 12 x 11,1 km groß ist. Jeweils der erste Quadrant eines MTB (Nord-West) diente als Untersuchungsfläche. Insgesamt wurden 234 Quadranten untersucht, wovon etwa zwei Drittel von Herrn Dipl.-Biol. Dr. N.J. Stapper und die restliche Fläche von der Autorin bearbeitet wurden.

In jedem Quadranten wurden im Mittel acht gleichmäßig verteilte Bäume auf ihren Moosund Flechtenbewuchs hin untersucht. Die Datenerhebung erfolgte nach den bereits erläuterten Verfahren nach VDI 3799/1 und VDI 3957/13. Die Ergebnisse der Untersuchung sind im Internet unter www.bryologie.uni-bonn.de/deutsch/content/forschung/bioindikation/ nrw%20bericht.pdf verfügbar.

2.2.4 Statistische Analysen

Um die Stärke und Richtung der Zusammenhänge zwischen der N-Deposition und der Häufigkeit epiphytischer Flechten- und Moosarten zu untersuchen wurden mit Hilfe des Programmpakets SPSS 11 Korrelationsanalysen durchgeführt. Aufgrund der geringen Anzahl der untersuchten Stationen erweist sich die Spearmansche Rangkorrelationsanalyse als geeignete statistische Methode.

2.3 Ergebnisse

2.3.1 LÖBF-Messstationen

An den insgesamt 134 im Rahmen der Erhebung untersuchten Bäumen wurden 42 Flechtenund 22 Moosarten nachgewiesen (Tab. 2-3 und 2-4). Die höchste Artendiversität verzeichnen die Stationen in den Höhenlagen, wobei Glindfeld und Rott die meisten Flechten-, Elberndorf und Velmerstot die meisten Moosarten aufweisen.

Art	ELB (15)	GLI (18)	HAA (21)	KLE (26)	PAD (15)	ROT (20)	VEL (19)
Amandinea punctata		*	*	*	*	*	*
Caloplaca holocarpa		*		*			*
Candelaria concolor				*			*
Candelariella reflexa	*	*	*	*	*	*	*
Candelariella xanthostigma	*			*			
Cetraria chlorophylla	*						
Cladonia coniocraea	*	*					
Evernia prunastri	*	*	*	*	*	*	*
Flavoparmelia caperata			*	*		*	
Hypogymnia physodes	*	*	*		*	*	*
Lecanora chlarotera		*				*	
Lecanora conizaeoides		*				*	
Lecanora expallens							*
Lecanora hagenii		*		*		*	*
Lecidella elaeochroma						*	*
Lepraria incana	*	*	*		*	*	*
Melanelia exasperatula		*	*				*
Melanelia glabratula	*	*				*	*
Melanelia laciniatula	*	*				*	*
Melanelia subaurifera			*	*		*	*
Mycoblastus fucatus		*					
Parmelia saxatilis	*	*			*	*	
Parmelia sulcata	*	*	*	*	*	*	*
Parmeliopsis ambigua	*	*					
Parmotrema chinense			*			*	
Phaeophyscia nigricans		*		*	*		
Phaeophyscia orbicularis	*	*	*	*	*	*	*
<i>Physcia adscendens/tenella</i>	*	*	*	*	*	*	*
Physcia caesia		*	*	*		*	
Physcia dubia		*	*	*			
Physconia grisea				*			
Platismatia glauca	*	*				*	
Pleurosticta acetabulum		*					
Pseudevernia furfuracea		*				*	
Punctelia ulophylla			*	*		*	
Punctelia subrudecta			*	*		*	*
Ramalina farinacea		*	*	*		*	*
Scoliciosporum chlorococcum						*	
Usnea spec.						*	*
Xanthoria candelaria		*	*	*	*	*	*
Xanthoria parietina	*	*	*	*	*	*	*
Xanthoria polycarna		*	*	*	*	*	*
Artanzahl	16	29	20	22	13	29	23

Tab. 2-3: Spektrum der Flechtenarten an den verschiedenen Stationen; in Klammern: Anzahl der kartierten Bäume; *: Art vorhanden.

	ELB	GLI	HAA	KLE	PAD	ROT	VEL
Art	(15)	(18)	(21)	(26)	(15)	(20)	(19)
Amblystegium serpens							*
Brachythecium rutabulum		*			*		*
Brachythecium salebrosum	*						*
Brachythecium velutinum	*						*
Bryum argenteum				*			
Ceratodon purpureus	*	*		*	*		*
Dicranoweisia cirrata							
Dicranoweisia cirrata	*	*	*	*		*	*
Dicranum tauricum	*						
Grimmia pulvinata			*	*	*	*	*
Hypnum cupressiforme	*	*	*	*	*	*	*
Metzgeria furcata	*						
Orthotrichum affine	*	*	*	*	*	*	*
Orthotrichum spec.	*	*					
Orthotrichum diaphanum	*	*	*	*	*	*	*
Orthotrichum lyellii	*					*	
Orthotrichum pumilum	*	*					
Orthotrichum speciosum							*
Pterigyneuron filiforme							*
Rhynchostegium confertum							*
Tortula muralis					*		
Ulota crispa/bruchii	*	*		*	*	*	*
Artanzahl	13	9	5	8	8	7	14

Tab. 2-4: Spektrum der Moosarten an den verschiedenen Stationen; in Klammern: Anzahl der kartierten Bäume; *: Art vorhanden.

Die Präsenz fadenförmiger Grünalgen wurde an den im Sauerland befindlichen Stationen Glindfeld und Elberndorf nicht nachgewiesen werden.

Die Ergebnisse der Luftgüteberechnungen sind in Tab. 2-5 dargestellt. Die nach VDI 3799/1 lufthygienisch "besten" Gebiete sind mit einem LGW von über 30 die Stationen Glindfeld, Kleve und Rott. Eine "hohe" Belastung weisen die Stationen Haard, Paderborn und Velmerstot auf. Nach der neuen VDI-Richtlinie ergibt sich eine etwas andere Situation. Hiernach wird die Station Kleve mit einer geringen Luftgüte schlechter bewertet aufgrund des hohen Anteils der Eutrophierungszeiger am Flechtendiversitätswert. Eine bessere Einstufung gegenüber der "alten" VDI-Richtlinie erhalten die Stationen Haard und Velmerstot sowie die Station Elberndorf, deren Flechtendiversitätswert der übrigen Arten am höchsten ist. Die Betrachtung der Flechtendiversitätswerte aller Arten zeigt, dass die Stationen Elberndorf, Glindfeld, Kleve und Rott in einem ähnlichen Bereich liegen, die unterschiedliche Bewertung Luftgüte somit auf die Unterschiede im Artenspektrum der beruhen. Der Flechtendiversitätswert aller Arten beträgt etwa das 1,2 bis 1,6 fache des Luftgütewerts.

Tab. 2-5: Luftgütewerte (LGW), Diversitätswerte der Eutrophierungszeiger (FDW_{eu}) und der übrigen Arten (FDW_ü), Gesamtdiversitätswert (FDW_{ges}) sowie das Verhältnis von FDW_{eu} zu FDW_ü an den untersuchten Stationen. Farbgebung für LGW nach der mitteleuropäischen Skala gemäß VDI 3799/1, für FDW nach der Bewertungsmatrix aus Abb. 2-2.

Station	LGW	FDW _{eu}	$\mathrm{FDW}_{\ddot{\mathrm{u}}}$	FDW _{ges}	FDW _{eu} /FDW _ü
Elberndorf	26,2	2,9	39,7	42,5	0,1
Glindfeld	32,3	21,2	23,9	45,1	0,9
Haard	23,3	20,3	9,6	30,0	2,1
Kleve	32,8	35,4	5,1	40,5	6,9
Paderborn	17,7	23,7	2,6	26,3	9,1
Rott	30,7	24,4	17,2	41,6	1,4
Velmerstot	20,6	20,8	6,4	27,3	3,2

Zusammenhänge zwischen a) Verhältnis der Diversitätswerte Abb. 2-3: der Eutrophierungszeiger zu den Diversitätswerten der übrigen Arten und der N-Deposition bzw. b) der NH₃-Immission sowie zwischen c) Diversitätswert der übrigen Arten und der N-Deposition bzw. d) der NH₃-Immission. (N-Deposition: Mittelwerte des Zeitraums 1999-2002. NH₃: Jahresmittelwert von 2002). Dargestellt sind Regressionsgerade, Bestimmtheitsmaß und Geradengleichung.

Mit zunehmendem Stickstoffeintrag an den untersuchten Stationen steigt das Verhältnis der FDW der Eutrophierungszeiger zu den FDW der übrigen Arten (Abb. 2-3 a). Für die Ammoniakimmisionen ist der Zusammenhang noch eindeutiger (Abb. 2-3 b). Eine negative Beziehung hingegen ergibt sich bei der alleinigen Betrachtung der Diversitätswerte der übrigen Arten, die an Stationen mit geringer N-Deposition am höchsten sind (Abb. 2-3 c). Der Zusammenhang zwischen der NH₃-Immissionskonzentration und dem FDW der übrigen Arten ist etwas schwächer (Abb. 2-3 d).

Während in Abb. 2-3 der Zusammenhang zwischen N-Deposition und Diversitätswerten von Artengruppen (Eutrophierungszeiger und übrige Arten) untersucht wurde, soll im Folgenden der Einfluss des Stickstoffeintrags auf das Vorkommen bestimmter Arten analysiert werden (Abb. 2-4). Hierbei zeigt sich, dass mit zunehmender N-Deposition insbesondere die Häufigkeit der fadenförmigen Algen, der Moosart *Orthotrichum diaphanum* und der Flechtenart *Phaeophyscia orbicularis* zunimmt. Einige Arten hingegen zeigen ein gegenläufiges Verhalten, d.h. sie erreichen in Gebieten mit niedrigem N-Eintrag signifikant höhere Frequenzen als in Regionen mit hohem Eintrag. Es handelt sich hierbei um die Krustenflechte *Lepraria incana*, die Blattflechten *Parmelia sulcata* und *Hypogymnia physodes* sowie das Laubmoos *Orthotrichum affine*. Hierbei sollte in Betracht gezogen werden, dass erhöhte N-Depositionen v.a. in den Tieflandsbereichen aufgrund der landwirtschaftlichen Nutzung auftreten. Somit ergibt sich auch für die genannten Arten ein Zusammenhang zwischen den Frequenzwerten und der Höhenlage der untersuchten Baumstandorte (Abb. 2-5).

Abb. 2-4: Zusammenhang zwischen Frequenzwerten (VDI 3799/1) häufiger epiphytischer Arten und N-Deposition (Messzeitraum 1999-2002); Korrelationskoeffizient nach Spearman; *: p<0,05, **: p<0,01, zweiseitig.

Abb. 2-5: Zusammenhang zwischen Frequenzwerten (VDI 3799/1) häufiger epiphytischer Arten und mittlerer Höhenlage der Baumstandorte; Korrelationskoeffizient nach Spearman; *: p<0,05, **: p<0,01, zweiseitig.

2.3.2 Ergebnisse der immissionsökologischen Epiphytenkartierung Nordrhein-Westfalens

Die Ergebnisse aus Kap. 2.3.1 haben gezeigt, dass sich das Artenspektrum in den verschiedenen Gebieten aufgrund der unterschiedlichen Immissionssituation stark unterscheidet und somit die Häufigkeit und Epiphytendiversität alleine nicht länger für die Bioindikation geeignet ist. Anhand der landesweiten Kartierung epiphytischer Flechten und Moose werden im Folgenden verschiedene Bioindikationsverfahren zur Bewertung der Luftqualität vorgestellt, wobei sich die Auswertung auf die Flechten beschränkt.

2.3.2.1 VDI-Richtlinie 3799, Blatt 1

Wie die Luftgütekarte (Abb. 2-6) zeigt, ist der Großteil des Landes als "hoch" bzw. "mäßig" belastet einzustufen. Die nach der VDI-Richtlinie lufthygienisch "besten" Gebiete liegen am Niederrhein, in der Eifel und im Hochsauerland. Das nördliche Ruhrgebiet, sowie der Kölner Raum und Gebiete östlich von Aachen sind "hoch bis sehr hoch" belastet.

Abb. 2-6: Lufthygienische Belastung von Nordrhein-Westfalen ermittelt mit epiphytischen Flechten gemäß VDI-Richtlinie 3799(1) (VDI 1995).

Die Verteilung der unterschiedlichen Belastungszonen ist allerdings mit Vorbehalt zu sehen und spiegelt nicht unbedingt die tatsächliche Luftbelastung wieder, da die Berechnung der Luftgüteklassen, wie bereits erwähnt, nur auf der Häufigkeit bestimmter Flechten beruht, die artspezifische Empfindlichkeit gegenüber Luftschadstoffen aber unbeachtet bleibt. So tragen beispielsweise zu den hohen Luftgütewerten am Niederrhein insbesondere hohe Frequenzwerte nitrophytischer Arten bei. Abb. 2-7 verdeutlicht am Beispiel der Verbreitung von Xanthoria parietina und Hypogymnia physodes die unterschiedliche räumliche Verteilung eutrophierender Luftverunreinigungen in NRW. Der Verbreitungsschwerpunkt von X. parietina liegt in den landwirtschaftlich genutzten Gebieten Nordrhein-Westfalens. Sie gedeiht bei ausreichender Nährstoffversorgung auch in den höheren Lagen. Im Gegensatz zu X. parietina meidet H. physodes jedoch eutrophierte Standorte, weshalb sie in den landwirtschaftlich geprägten Regionen selten anzutreffen ist und vorwiegend in Eifel und Sauerland üppige Bestände bildet. Grundsätzlich gilt H. physodes als gegenüber Luftschadstoffen tolerante Art, die auch in Tieflandsbereichen gut gedeihen kann und in den 80er Jahren des vergangenen Jahrhunderts zu den ersten wiederbesiedelnden Arten in Ballungszentren zählte (ROSE & HAWKSWORTH 1981).

Abb. 2-7: Vorkommen und Häufigkeit (mittlere Frequenz) der nitrophytischen Blattflechte *Xanthoria parietina* sowie der acidophytischen und eutrophierungsintoleranten Flechtenart *Hypogymnia physodes* in Nordrhein-Westfalen.

2.3.2.2 Flechtendiversität als Indikator für Umweltqualität nach ASTA et al. (2002)

Der Vorschlag von ASTA et al. (2002) stellt ein standardisiertes Verfahren zur Bestimmung der Flechtendiversität auf Baumborken vor. Im Gegensatz zur VDI-Richtlinie 3799 entfällt die subjektive Feststellung der am stärksten bewachsenen Stammseite, da hier die Frequenz mit einem 10 cm x 50 cm großen Aufnahmegitter, unterteilt in 5 Quadrate, an den 4 Haupthimmelsrichtungen des Baumes bestimmt wird.

Die Richtlinie baut auf der Tatsache auf, dass die Vielfalt epiphytischer Flechten durch Luftschadstoffe und Umweltbelastung beeinträchtigt wird. Die Häufigkeit einer Flechtenart innerhalb des Aufnahmegitters wird verwendet, um die Flechtendiversität zu erfassen und als Parameter den Grad der Umweltbelastung abzuschätzen (= Flechtendiversitätswert (FDW)). Der FDW einer Untersuchungsfläche entspricht dem Mittelwert der Frequenzsummen.

Die für Nordrhein-Westfalen ermittelten FDW liegen zwischen 5,6 und 65,5 und werden in der Ergebnisdarstellung in 5 Klassen mit einer Klassenbreite von 15 dargestellt (Abb. 2-8). Ähnlich der VDI-Auswertung liegen auch hier die am besten bewerteten Gebiete am Niederrhein, in der Eifel, im Sauerland und auch vereinzelt im Münsterland. Niedrige bis mittlere Flechtendiversitätswerte befinden sich im Weserbergland. Die schlechteste Bewertung erhält das Ruhrgebiet.

Abb. 2-8: Beurteilung der Flechtendiversität in Nordrhein-Westfalen nach ASTA et al. (2000).

2.3.2.3 Mittlere Nährstoffzahl

Die Nährstoffzahl nach WIRTH (2001) schätzt die Versorgung mit Mineralsalzen ab und beschränkt sich nicht nur auf Stickstoff als Nährelement, obwohl dieser wahrscheinlich vornehmlich in urbanen und landwirtschaftlich geprägten Gebieten eine bedeutende Rolle einnimmt. Der maximale Wert für rindenbewohnende Flechten beträgt N=7 und bedeutet, dass diese Arten nährstoffreiche Habitate, häufige Staubimprägnierung oder mäßige Düngung durch Tiere ertragen, wohingegen Flechten mit N=1 mineralarme Borken bevorzugen. Allerdings siedeln sich mittlerweile auch extrem düngungstolerante Gesteinsflechten mit einer N-Zahl von 8 oder 9 auf Baumrinden an, wie beispielsweise *Physcia caesia, Lecanora muralis* und *Caloplaca citrina*. Die mittleren Nährstoffzahlen der landesweiten Kartierung Nordrhein-Westfalens reichen von 3,2 bis 6,2.

Wie die Karte in Abb. 2-9 zeigt, zeichnet sich der gesamte nördliche Teil Nordrhein-Westfalens durch Flechten mit hohen Nährstoffzahlen aus (blau). Insbesondere sind hier die landwirtschaftlichen Intensivgebiete in der Umgebung von Münster und Coesfeld und im Weserbergland mit der Umgebung von Delbrück und Paderborn hervorzuheben. Im Gegensatz dazu ist die Eifel, das Sauerland und Bergische Land sowie das südwestliche Ruhrgebiet durch Flechten mit niedrigen Nährstoffzahlen gekennzeichnet (rot).

Abb. 2-9: Mittlere Nährstoffzahlen epiphytischer Flechten an freistehenden Bäumen in Nordrhein-Westfalen.

2.3.2.4 "Nitrofiele Indicatie Waarde" (NIW)

Abb. 2-10: Mittlere Anzahl nitrophytischer Flechten an freistehenden Bäumen. Diese ist identisch mit dem "Nitrofiele Indicatie Waarde" (NIW; VAN HERK 1999).

Um die unterschiedliche Ammoniakbelastung mit Hilfe epiphytischer Flechten anzuzeigen, entwickelte VAN HERK (1999) den "Nitrofiele Indicatie Waarde" (NIW), welcher definiert ist als die mittlere Anzahl nitrophytischer Arten pro Baum. Die ermittelten Werte werden in Klassen eingeteilt und kartographisch dargestellt (Abb. 2-10). Im Gegensatz zur mittleren Nährstoffzahl, die von der Präsenz eutrophierungsintoleranter Arten mit bestimmt wird, beschränkt sich diese Darstellung auf die empirisch als nitrophytisch eingestuften Arten, ist also strenger. Aber auch bei dieser Auswertung liegen die Messtischblätter mit im Mittel fünf und mehr nitrophytischen Flechtenarten am Niederrhein und im nördlichen Münsterland, zerstreut auch in (Ost-)Westfalen. Seltener sind nitrophytische Flechten in den Hochlagen der Mittelgebirge und in Zonen mit insgesamt geringerer Flechtenartendiversität, wie im Ruhrgebiet und östlich von Aachen.

2.3.2.5 VDI-Richtlinie 3957, Blatt 13

Im Gegensatz zum NIW werden nach der geplanten VDI-Richtlinie 3957, Blatt 13 sämtliche Arten in der Auswertung berücksichtigt, wobei die Bewertung der Luftgüte sich aus der Kombination der Diversitätswerte der Eutrophierungszeiger und der übrigen Arten ergibt. (vgl. Kap. 2.2.2). Hiernach wird die Luftgüte im gesamten nördlichen Teil Nordrhein-Westfalens als "gering" bis "sehr gering" eingeschätzt (Abb. 2-11). Gebiete mit hoher Luftqualität befinden sich in der Eifel und im Sauerland. Das Messtischblatt "Blankenheim" in der Eifel erhält als einzige Untersuchungsstation die Einstufung "sehr hohe Luftgüte".

Abb. 2-11: Luftgütekarte von Nordrhein-Westfalen gemäß VDI-Richtlinie 3957, Blatt 13.

Abb. 2-12 macht deutlich, dass die Mehrzahl der untersuchten Gebiete durch geringe Diversitätswerte der übrigen Arten gekennzeichnet ist. Die FDW der Eutrophierungszeiger hingegen liegen überwiegend im Bereich von 20 bis 50, mit Maximalwerten am Niederrhein. Die überwiegend geringe Luftqualität des Landes liegt somit in einem mäßigen bis hohem Einfluss eutrophierender Substanzen begründet.

Abb. 2-12: Flechtendiversitätswerte der 234 untersuchten Messtischblattquadranten.

2.4 Diskussion

2.4.1 Bedeutung der Eutrophierungszeiger

Mit sinkenden SO₂-Immissionen gewinnen Stickstoffverbindungen, die vornehmlich aus dem Straßenverkehr und der Landwirtschaft stammen, immer mehr an Bedeutung. So zeigen Untersuchungen aus den letzten Jahren, dass sich insbesondere die nitrophytischen Arten rasch ausbreiten (VAN DOBBEN 1996, STAPPER et al. 2000, FRANZEN 2001). Im Gegensatz dazu ist ein Rückgang bzw. eine erheblich langsamere Zunahme acidophytischer Arten zu beobachten, darunter Hypogymnia physodes und Lecanora conizaeoides (KIRSCHBAUM et al. 1996, FRANZEN 2001). Offenbar betreffen diese Veränderungen der Epiphytenflora den gesamten landwirtschaftlich geprägten nördlichen Teil Nordrhein-Westfalens, Wahrscheinlich sind hierfür Immissionen aus der Landwirtschaft verantwortlich, insbesondere Ammoniak und Amine, einmal als eutrophierende Substanzen und indem sie den pH-Wert der Borke steigern (VAN DOBBEN & TER BRAAK 1996; VAN HERK 1999). In Landkreisen mit einem besonders hohem Großviehbestand je Hektar ist die Abundanz nitrophytischer Flechten am größten. Die Höchstwerte der Ammoniak-Emissionen in NRW liegen in den Kreisen Borken (40,1 kg ha⁻¹ a⁻¹), Coesfeld (31,03 kg ha⁻¹ a⁻¹), Steinfurt (28,03 kg ha⁻¹ a⁻¹) und Kleve (23,74 kg ha⁻¹ a⁻¹) (LETHMATE et al. 2002). Die Beobachtung, dass sich Gebiete mit hohem Viehbesatz und einer hohen Anzahl nitrophytischer Flechten auf den Bäumen weitgehend entsprechen machte auch VAN HERK (1999) in einer niederländischen Studie. Die Dominanz der Eutrophierungszeiger ist jedoch nicht nur in landwirtschaftlich geprägten Regionen zu beobachten, sondern zeichnet sich auch in Ballungsräumen wie dem Ruhrgebiet (STAPPER et al. 2000, KRICKE 2002) sowie kleinräumig an stark verkehrsbelasteten Standorten ab (VORBECK & WINDISCH 2002). Auch unter den Moosen ist die Ausbreitung nitrophytischer Arten zu beobachten (FRAHM & SOLGA 1999). Dies betrifft besonders die Art *Orthotrichum diaphanum*, deren Frequenzwerte sich in einer Transektstudie in Duisburg innerhalb eines Jahres nahezu verdoppelt haben (FRANZEN 2001). Die Annahme, dass *O. diaphanum* durch erhöhten Nährstoffeintrag gefördert wird, bestätigt sich im Rahmen der vorliegenden Untersuchung, in der zwischen der N-Deposition und den Frequenzwerten dieser Art ein signifikanter Zusammenhang ermittelt wurde.

Die zunehmende Eutrophierung lässt sich auch durch die dynamische Ausbreitung fadenförmiger Grünalgen dokumentieren (FRAHM 1999). Diese Nährstoffzeiger waren vor einigen Jahren noch kaum an Baumborken zu finden. Sie werden wahrscheinlich sowohl durch verkehrsbedingte wie auch durch landwirtschaftliche Immissionen gefördert, da sie in dicht besiedelten Gebieten mit hoher Verkehrsdichte (Ruhrgebiet) und in den Gebieten mit hohem Viehbesatz (Niederrhein, Münsterland) gleichermaßen häufig vorkommen, in den Untersuchungsflächen in der Eifel und im Sauerland jedoch fehlen (FRANZEN-REUTER & STAPPER 2003). Mit einem Korrelationskoeffizient von r = 0,85 zeigten die Frequenzwerte dieser Grünlagen den stärksten Zusammenhang mit der N-Deposition.

Ein weiteres Indiz für die zunehmende Eutrophierung ist das vermehrte epiphytische Vorkommen von Flechten- und Moosarten, die normalerweise Gestein besiedeln, z.B. *Candelariella vitellina*, *C. aurella*, *Grimmia pulvinata*, *Lecanora muralis*, *Physcia caesia* oder *Tortula muralis* (STAPPER et al. 2000). Die Beobachtung, dass epilithische Moosarten auf Bäume überwechseln machten auch BATES et al. (1997) in England.

Momentan stellt sich die Frage, wie weit sich in manchen Regionen das Artenspektrum zugunsten nitrophytischer Arten überhaupt noch entwickeln kann und ob bei weiterhin hohem N-Eintrag toxische Effekte auch gegenüber Nitrophyten auftreten können.

Darüber hinaus lässt sich noch nicht abschätzen, ob in relativ unbelasteten Regionen wie Eifel und Sauerland die Eutrophierungszeiger in Zukunft ebenfalls häufiger werden und andere Arten verdrängen.

2.4.2 Bioindikationsverfahren mit Epiphyten

Die Nachteile der Luftgütebestimmung gemäß VDI-Richtlinie 3799/1 wurden bereits in Kapitel 2.3.2.1 angedeutet. Die Europäische Richtlinie zur Erhebung des Flechtendiversitätswertes nach ASTA et al. (2002) unterscheidet sich hiervon im wesentlichen dadurch, dass nicht die Frequenz ausgewählter, sondern aller Flechtenarten bestimmt wird, ebenfalls mit einem Zählgitter und zwar in den vier Haupthimmelsrichtungen. Das Verfahren ist zudem objektiver, da die vom Bearbeiter getroffene Feststellung der am stärksten bewachsenen Stammseite entfällt. Ein Nachteil beider Methoden ist, dass für die Bewertung nur die Häufigkeit (Frequenzen) der Flechten berücksichtigt wird, die artspezifische Empfindlichkeit gegenüber Luftschadstoffen aber unbeachtet bleibt. So zeigen beide Frequenzmethoden eine geringe Luftbelastung in den südlichen Regionen Eifel und Sauerland an, jedoch ebenso in den Agrargebieten am Niederrhein. Die hier errechneten hohen Diversitätswerte und Luftgütewerte entstehen durch hohe Frequenzwerte nitrophytischer Arten, die oft den gesamten Baumstamm bedecken. Die Berechnung der mittleren Nährstoffzahlen (Abb. 2-9) verdeutlicht, dass sich das Artenspektrum in den landwirtschaftlich genutzten nördlichen Regionen, in denen Nitrophyten dominieren, sehr stark unterscheidet von den überwiegend forstlich geprägten Regionen im Süden NRWs mit vorwiegend acidophytischen Arten.

Der Umstand, dass einige Flechtenarten durch bestimmte Immissionen gefördert werden, sollte somit in zukünftigen Verfahren berücksichtigt werden, wie es nun in der VDI-Richtlinie 3957/13 umgesetzt wird. Den Anteil der Eutrophierungszeiger bei der Bewertung der lufthygienischen Situation negativ zu belegen, erlaubt für die landesweite Kartierung Nordrhein-Westfalens realistische Aussagen über die Luftbelastung der Regionen. Die Berechnung eines "Nitrophyten-Index" (NIW), in der ausschließlich nitrophytische Arten berücksichtigt werden, zielt auf die Einschätzung der Ammoniakbelastung der untersuchten Gebiete ab (VAN HERK 1999). Die Einbeziehung der so genannten "übrigen Arten", wie in der VDI-Richtlinie 3957/13 praktiziert, geht somit einen Schritt weiter und bewertet das Vorkommen und die Häufigkeit von Neutro- und Acidophyten positiv im Hinblick auf die gesamte Luftqualität. Hierdurch erhalten einige Gebiete in Eifel und Sauerland eine bessere Bewertung als in der NIW-Auswertung, was auch den tatsächlichen lufthygienischen Verhältnissen entsprechen dürfte.

Bisherige Bioindikationsverfahren mit Epiphyten beschränken sich überwiegend auf Flechten und klammern die ebenfalls luftschadstoffsensiblen Moose aus. Da Moose und Flechten jedoch unterschiedliche ökologische Optima besitzen, v.a. hinsichtlich Feuchtigkeit- und Lichtansprüchen (FRAHM 2003), erscheint eine ergänzende Kartierung epiphytischer Moose nicht nur sinnvoll, sondern in manchen Gebieten (z.B. Mittelgebirgsregionen, Wälder) auch vorteilhafter. Momentan ist die Anzahl epiphytischer Moosarten in Nordrhein-Westfalen im Vergleich zu Rheinland-Pfalz oder Baden-Württemberg noch relativ gering, doch sie wird mit hoher Wahrscheinlichkeit in den kommenden Jahren infolge Wiedereinwanderung weiter ansteigen (STAPPER 2002a). Um diesem Umstand gerecht zu werden, ist eine VDI-Richtlinie zur "Kartierung der Diversität epiphytischer Moose als Indikator für Umweltqualität" in Bearbeitung.

Zusammenfassung

In Dauerbeobachtungsflächen (DBF) an freistehenden Bäumen wurden in vier verschiedenen Regionen Nordrhein-Westfalens die Veränderungen des epiphytischen Moos- und Flechtenbewuchses während eines Zeitraums von zwei Jahren anhand der VDI-Methode 3957 Blatt 8 untersucht. Die Zusammensetzung sowie die Entwicklung der einzelnen Arten variiert erheblich in Abhängigkeit von der Immissionsbelastung des Standorts. An Standorten mit erhöhtem N-Eintrag (Niederrhein) fehlen acidophytische Arten völlig. Hier konnte eine deutliche Ausbreitung von *Phaeophyscia orbicularis*, einer Zeigerart für stark eutrophierte Standorte, festgestellt werden, die Bedeckung von *Physcia tenella* hingegen hat abgenommen. Einen Zuwachs erzielte *P. tenella* in den DBF im Weserbergland. An den im Sauerland befindlichen DBF zeichnet sich ein deutlicher Trend in Richtung Rückgang der acidophytischen Arten ab, bis hin zu völligen Bestandeinbrüchen von *Hypogymnia physodes*. Hohe mittlere Zeigerwerte zu Nährstoff- und Reaktionszahlen weisen auf eine Eutrophierung sämtlicher Standorte hin.

3.1 Einleitung

Wie in Kapitel 2 gezeigt werden konnte, reagieren die Epiphyten differenziert auf die regionalen N-Depositionsunterschiede und machen eine Einschätzung der <u>räumlichen</u> Verteilung eutrophierender Luftschadstoffe möglich. Im vorliegenden Untersuchungsabschnitt soll nun anhand von Dauerbeobachtungsflächen die Entwicklung einzelner Moos- und Flechtenindividuen unter unterschiedlichen lufthygienischen Bedingungen im <u>zeitlichen</u> Verlauf erfasst werden. Als ein für diese Fragestellung geeignetes Verfahren findet die VDI-Richtlinie 3957 Blatt 8 "Flächenbestimmmung epiphytischer Flechten zur immissionsökologischen Langzeitbeobachtung" Anwendung.

3.2 Methoden

3.2.1 Untersuchungsgebiete

Für die Untersuchung wurden in Nordrhein-Westfalen vier verschiedene Gebiete ausgewählt, die sich in ihrer Nutzungsform und Immissionssituation unterscheiden. Um eine Einschätzung des Stickstoffeintrags der Untersuchungsstandorte zu ermöglichen, erfolgte die Anlage der Dauerbeobachtungsflächen in geringer Entfernung zu Depositionsmessstationen der LÖBF

(Tab.3-1).

Einen Überblick über die Lage der Stationen gibt Abb. 2-1 (Kap. 2).

Tab. 3-1: Messstationen der LÖBF mit Angaben zur naturräumlichen Einordnung, Messtischblattnummer (TK 25) und Meereshöhe, sowie Daten zu Niederschlag (Messjahr: 2002) und Stickstoff-Deposition (Bulk-Sammler) für das Jahr 2001 und 2002 (Datenquelle: LÖBF NRW).

Station	Naturraum	TK 25 Nr.	Höhe ü.	Nieders.	N-Deposition	n [kg ha ⁻¹ a ⁻¹]
			NN [m]	$[mm a^{-1}]$	2001	2002
Glindfeld	Sauerland	4718	470	1083	6,51	8,08
Kleve	Niederrh. Tiefl.	4202	35	974	15,25	16,81
Rott	Nordeifel	5303	510	1255	10,52	13,91
Velmerstot	Weserbergland	4119	420	1417	18,5	14

Die höchsten Stickstoffeinträge verzeichnen die Stationen Kleve und Velmerstot. Als Ursache für die hohe N-Deposition im Niederrheinischen Tiefland ist die Intensivlandwirtschaft anzunehmen. Die hohen Einträge im Weserbergland sind wahrscheinlich durch Emissionen aus der westlich angrenzenden Westfälischen Bucht sowie durch hohe Niederschlagssummen bedingt. Die geringste N-Deposition wurde an der im Sauerland befindlichen Station Glindfeld gemessen.

Die Schwefeldioxid-Konzentrationen an den Stationen sind seit 1998 nahezu unverändert niedrig und die Messwerte liegen teilweise unter der Nachweisgrenze von 10 μ g m⁻³ (RADERMACHER & GEIGER 2003).

3.2.2 Aufnahme der Flechten und Moose

Die Aufnahme der Epiphyten zur genauen Überprüfung der Zuwachsraten erfolgte in Anlehnung an die VDI-Richtlinie 3957, Blatt 8. Hierzu wird am Baumstamm im Bereich zwischen 1 m und 1,50 m Höhe über dem Boden eine 20 cm x 20 cm große Klarsichtfolie befestigt. Auf dieser Untersuchungsfläche werden die Umrisse aller vorhandenen Flechten und Moose mit farbigen Filzstiften nachgezeichnet. Im Weiteren wird die Folie durch Scannen digitalisiert. Die Bestimmung der Flächenanteile einzelner Arten erfolgt mit Hilfe inklusive für Fragestellung Software, die einer speziell diese entwickelten Bedienungsanleitung über das Internet frei verfügbar ist (http://www.vdi.de/vdi/organisation/schnellauswahl/fgkf/krdl/richtlinien/03247). Da sich die
Software auf Flechten beschränkt, wurde eine Erweiterung der Artenliste um epiphytische Moosarten vorgenommen. Eine Anleitung für das Einfügen weiterer Gattungen bzw. Arten geben KIRSCHBAUM et al. (2002).

Die Aufnahme der Flächen erfolgte im April 2002 und wurde nach zwei Jahren wiederholt. An jeder Station (Tab. 3-1) wurden drei Dauerbeobachtungsflächen eingerichtet, wobei *Acer platanoides* und *A. pseudoplatanus* als Trägerbäume dienten. Die Lagedaten der Bäume sind Anhang B zu entnehmen.

3.2.3 Auswertung

Die Beurteilung des Untersuchungsstandortes hinsichtlich seiner Immissionsbelastung, der Ansäuerung des Substrates und der Eutrophierung wurde auf der Basis der mittleren Zeigerwerte für Flechten nach VDI 3951/8 vorgenommen. In einer neunstufigen Skala wird das ökologische Verhalten der Flechten gegenüber den Faktoren "pH-Wert des Substrates (R)", "Nährstoffangebot" und "Empfindlichkeit gegenüber Immissionen" (E) eingeschätzt, wobei 1 das geringste und 9 das größte Ausmaß des betreffenden Faktors bedeutet. Zur Berechnung der mittleren Zeigerwerte einer Station, werden die Werte der vorkommenden Flechtenspecies mit dem jeweiligen prozentualen Flächenanteil, den eine Art in der Untersuchungsfläche (400 cm²) besitzt, multipliziert. Die Produkte werden aufsummiert und durch die Summe der Flächenanteile aller vorkommenden Arten dividiert. Der Quotient stellt den mittleren gewichteten Zeigerwert des betreffenden Faktors dar.

3.3 Ergebnisse

Tab. 3-2 gibt einen Überblick über das Vorkommen der epiphytischen Arten und deren Zeigerwerte an den vier untersuchten Stationen. Innerhalb der insgesamt 12 Dauerbeobachtungsflächen (DBF) (400 cm²) wurden 19 Flechten- und sechs Moosarten festgestellt, von denen die meisten als gering bis mäßig empfindlich gegenüber Luftschadstoffen einzustufen sind.

(R) und Nährstoffzahl für Flechten nach VDI 3957, Blatt 8.											
Flechtenart	Code	Station	Е	R	Ν						
Amandinea punctata	amapun	G,K,R,V	1	5	5						
Candelariella reflexa	canref	K	6	5	5						
Evernia prunastri	evepru	R	4	3	3						
Flavoparmelia caperata	parcap	Κ	6	4	3						
Hypogymnia physodes	hypphy	G	2	3	2						
Lecanora hagenii	lechag	G	2	8	6						
Melanelia subaurifera	parsau	R,V	6	6	4						
Parmelia sulcata	parsul	G,R,V	2	5	4						
Phaeophyscia nigricans	phanig	V	2	8	7						
Phaeophyscia orbicularis	phaorb	K, R, V	2	7	7						
Physcia caesia	phycae	R	4	8	8						
Physcia tenella	phyten	G, K, R, V	2	6	6						
Pseudevernia furfuracea	psefur	R	4	2	1						
Punctalia ulophylla	parulo	R	4	4	3						
Punctelia subrudecta	parsub	K	4	4	3						
Ramalina farinacea	ramfar	G	5	5	3						
Xanthoria candelaria	xancan	G, K, R, V	3	6	7						
Xanthoria parietina	xanpar	K,V	3	7	6						
Xanthoria polycarpa	xanpol	Κ	3	6	6						
Moosart											
Amblystegium serpens	ambser	G									
Dicranoweisia cirrata	diccir	G,K									
Grimmia pulvinata	gripul	K									
Hypnum cupressiforme	hypcup	G,K									
Orthotrichum affine	ortaff	G, K, R									
Orthotrichum diaphanum	ortdia	KRV									

Tab. 3-2: Arteninventar der 12 Dauerbeobachtungsflächen an den Stationen Glindfeld (G), Kleve (K), Rott (R) und Velmerstot (V) mit Angaben zur Empfindlichkeits- (E), Reaktions-(R) und Nährstoffzahl für Flechten nach VDI 3957, Blatt 8.

Abb. 3-1 zeigt die Entwicklung der Moos- und Flechtenbedeckung an den einzelnen Stationen, wobei jeweils die Mittelwerte von drei Trägerbäumen dargestellt sind. Die Einzeldaten sind Anhang B zu entnehmen. Die höchsten Bedeckungsgrade erzielt *Physcia tenella*, die bezogen auf alle DBF 28,7 % (Jahr 2002) bzw. 28,2 % (Jahr 2004) Deckung erreicht.

Bei der Betrachtung der Zuwachsraten im Untersuchungszeitraum von zwei Jahren zeigt sich, dass in den DBF der Station **Rott** kaum Veränderungen stattgefunden haben (Abb. 3-1 b). Bemerkenswert sind lediglich Neuerscheinungen von *Evernia prunastri* und *Physcia caesia*. Mit Arten wie beispielsweise *Pseudevernia furfuracea*, *Phaeophyscia orbicularis* oder *Xanthoria candelaria* sind in den Flächen sowohl acidophytische Arten als auch Eutrophierungszeiger vertreten.

Die im Sauerland befindliche Station **Glindfeld** ist die einzige der vier Untersuchungsflächen, in der die acidophytische Flechtenart *Hypogymnia physodes* nachgewiesen wurde und in der *Phaeophyscia orbicularis* und *Orthotrichum diaphanum* fehlen (Tab. 3-1). Nach Abb. 3-1 a zeichnet sich allerdings ein Trend in Richtung Rückgang der acidophytischen Arten (*Dicranoweisia cirrata, Hypogymnia physodes, Ramalina farinacea*) an dieser Station ab. Ebenfalls deutlich in ihrer Bedeckung zurückgegangen ist die euryöke Blattflechte *Parmelia sulcata*. Den größten Zuwachs nach zwei Jahren verzeichnet die Moosart *Hypnum cupressiforme*.

In den Dauerbeobachtungsflächen der Station Velmerstot haben alle Arten mit Ausnahme von *Melanelia subaurifera* in ihrer Bedeckung zugenommen (Abb. 3-1 c). Den stärksten Zuwachs erzielt *Physcia tenella*, die im Jahr 2004 etwa 40 % Bedeckung innerhalb der Untersuchungsflächen einnimmt. Die Wiederholungsaufnahme nach zwei Jahren zeigt in einer der drei Untersuchungsflächen als Neuansiedlung die nährstoffliebende Art *Phaeophyscia nigricans*.

Die Dauerbeobachtungsflächen der Station Kleve besitzen fast ausschließlich Flechtenarten mit Nährstoffzahlen ≥ 5 (Ausnahme: *Flavoparmelia caperata* und *Punctelia subrudecta*), wovon *Phaeophyscia orbicularis*, *Physcia tenella* und *Xanthoria parietina* dominieren (Abb. 3-1 d). Auffällig ist der deutliche Rückgang der Bedeckungsgrade von *Physcia tenella*, der in allen drei Dauerbeobachtungsflächen der Station Kleve zu beobachten ist (Daten im Anhang B). Im Gegensatz hierzu hat sich die Flechtenart *Phaeophyscia orbicularis* in den Untersuchungsflächen stark ausgebreitet. Die Veränderung der Bedeckungsgrade dieser beiden Flechtenarten während des Untersuchungszeitraums ist in Abb. 3-2 exemplarisch anhand einer Folienaufnahme dargestellt.

Die Exemplare von Xanthoria parietina haben ebenfalls sichtbar in ihrer Größe zugenommen.

Abb. 3-1: Veränderungen der mittleren Bedeckung der Untersuchungsflächen an den Stationen Glindfeld (a), Rott (b) und Velmerstot (c) zwischen 2002 (weiße Balken) und 2004 (graue Balken). Dargestellt sind Mittelwerte aus drei Dauerbeobachtungsflächen.

Abb. 3-1 d: Veränderungen der mittleren Bedeckung der Untersuchungsflächen an der Station Kleve zwischen 2002 (weiße Balken) und 2004 (graue Balken). Dargestellt sind Mittelwerte aus drei Dauerbeobachtungsflächen.

Abb. 3-2: Entwicklung der Bedeckungsgrade in der Untersuchungsfläche Kleve-1 von 2002 (links) bis 2004 (rechts).

Die Betrachtung der mittleren Zeigerwerte der einzelnen Stationen lässt nur geringfügige Veränderungen nach zwei Jahren erkennen (Tab 3-3). Insbesondere die Werte der Stationen Rott und Velmerstot liegen sehr nahe beieinander. Während die Station Kleve schon im Jahr 2002 durch vergleichsweise hohe Reaktions- und Nährstoffzahlen gekennzeichnet war, sind die Werte im Jahr 2004 nochmals angestiegen.

Eine Steigerung der Nährstoffzahl konnte ebenfalls in Glindfeld festgestellt werden. Lag diese im Jahr 2002 noch deutlich unter dem Wert von Rott, ist für das Jahr 2004 eine Annäherung der Werte dieser beiden Stationen zu verzeichnen.

Station —	Empfine	dlichkeit	Real	xtion	Nährstoffe			
	2002	2004	2002	2004	2002	2004		
Glindfeld	2,01	2,00	5,54	5,72	5,07	5,41		
Rott	2,07	2,08	5,71	5,65	5,49	5,38		
Velmerstot	2,01	2,00	5,92	5,94	5,83	5,87		
Kleve	2,16	2,28	6,15	6,45	6,05	6,28		

 Tab. 3-3: gewichtete mittlere Zeigerwerte der Dauerbeobachtungsflächen in den Jahren 2002 und 2004.

3.4 Diskussion

Die Ergebnisse zeigen, dass bereits in einem kurzen Zeitraum von zwei Jahren sichtbare Veränderungen in der Flechten- und Moosbedeckung auftreten. Eine ähnlich hohe Bestandsdynamik konnten KIRSCHBAUM & HANEWALD (2000) an hessischen, ZIMMER (2000) an schleswig-holsteinischen und STAPPER (2002a, b) an nordrhein-westfälischen Dauerbeobachtungsflächen feststellen. Eine Transektstudie in Duisburg zeigte ebenfalls deutliche Veränderungen im Moos- und Flechtenbewuchs während eines Zeitraums von nur einem Jahr (FRANZEN 2001).

An den insgesamt zwölf untersuchten DBF konnten sowohl Zunahmen als auch Abnahmen der Bedeckungsgrade einzelner Arten beobachtet werden. Interessant erscheint die Entwicklung der am häufigsten vertretenen Art Physcia tenella: Während sich deren Bedeckungsgrade an den Stationen Glindfeld und Rott kaum verändert haben, ist an der Station Velmerstot eine deutliche Zunahme und an der Station Kleve ein klar erkennbarer Rückgang zu verzeichnen. Sowohl in der Eifel als auch im Sauerland sind die Einflüsse von Industrie und Landwirtschaft als eher gering einzustufen, somit sind die vergleichsweise geringen Veränderungen erwartungsgemäß. Untersuchungen von STAPPER (2002a) zur Veränderung der Epiphytenflora nordrhein-westfälischer Waldökosystem-Dauerbeobachtungsflächen zeigten ebenfalls, dass die Immissionsbelastung in Sauerland und Eifel am geringsten ist. Während in der Vergangenheit an der Station Velmerstot im Eggegebirge die Belastung mit sauren Immissionen sehr hoch gewesen sein dürfte, konnten dort in den letzten Jahren, bedingt durch Fernimmissionen aus dem Tiefland, hohe Stickstoffeinträge festgestellt werden (Tab. 3-1). Diese Situation spiegelt sich in dem Fehlen acidophytischer Arten sowie in der Zunahme der Eutrophierungszeiger an dieser Station wider. Das Niederrheinische Tiefland mit der Station Kleve ist besonders von hohen Stickstoffeinträgen betroffen. So wurde dort 1999 in einem Kiefernforst die landesweit höchste Überschreitung der Belastungsgrenze ("Critical Loads") für eutrophierenden Stickstoff mit 75 kg N ha⁻¹ a⁻¹ erreicht (GEHRMANN et al. 2003). Die hohen mittleren Zeigerwerte für die N- und R-Zahlen (> 6) belegen die Auswirkungen der hohen Stickstoffeinträge. Es erstaunt, dass mittlerweile selbst Physcia tenella in den Untersuchungsflächen der Station Kleve stark zurückgegangen ist. Über mögliche Ursachen für dieses Verhalten kann nur spekuliert werden. Abb. 3-2 deutet darauf hin, dass der Rückgang zu Lasten der Ausbreitung der eutrophierungstoleranteren Art Phaeophyscia orbicularis geht. Eine starke Ausbreitung von Phaeophyscia orbicularis auf Eichen infolge hoher NH₃-Belastung wird auch in den Niederlanden beobachtet (VAN HERK 2001). Zudem liegen Beobachtungen vor dass Physcia tenella mit zunehmender Verkehrsbelastung zurückgeht, das Wachstum von Phaeophyscia orbicularis hingegen an solchen Standorten gefördert wird (VORBECK & WINDISCH 2002, FRANZEN-REUTER & STAPPER 2003, STAPPER & KRICKE 2004).

Abb. 3-3: Entwicklung der Bedeckungsgrade in der Untersuchungsfläche Glindfeld-3 von 2002 (links) bis 2004 (rechts).

Bemerkenswert ist das völlige Fehlen der acidophytischen und toxitoleranten Krustenflechte Lecanora conizaeoides in allen Flächen. **Bereits** 1991 stellte Wirth an Dauerbeobachtungsflächen in Baden-Württemberg eine deutliche Abnahme von Lecanora conizaeoides innerhalb von fünf Jahren fest infolge des Rückgangs saurer Immissionen (WIRTH 1993). Ähnliche Beobachtungen machten KIRSCHBAUM & HANEWALD (2000) für Hessen und ZIMMER (2000) für Schleswig-Holstein, die immerhin noch an vereinzelten Untersuchungsflächen L. conizaeoides nachweisen konnten. Das völlige Fehlen des ausgesprochenen Acidophyten in den Dauerbeobachtungsflächen sowie die nur sehr geringen Nachweise in der landesweiten Kartierung Nordrhein-Westfalens (FRANZEN et al. 2002) deuten darauf hin, dass sich die Verminderung saurer Immissionen bei gleichzeitiger Erhöhung der Ammoniak-Emissionen in NRW früher ausgewirkt hat als in Hessen oder Schleswig-Holstein. In Nordrhein-Westfalen scheint Lecanora conizaeoides momentan nur noch an Waldbäumen mit von Natur aus sehr sauerer Borke (Fagus, Quercus, Picea) eine Überlebenschance zu haben (STAPPER 2002a).

Bei der gleichfalls acidophytischen Art Hypogymnia physodes ist das gleiche Phänomen in abgeschwächter Form zu beobachten. Während bereits FRANZEN et al. (2002) ihr Verschwinden an freistehenden Ahornbäumen in landwirtschaftlich geprägten Tieflandregionen von Nordrhein-Westfalen feststellen konnten, wurde H. physodes in der vorliegenden Untersuchung nur in den DBF der im Sauerland befindlichen Station Glindfeld nachgewiesen. Hier wurde in den Wiederholungsaufnahmen ein Rückgang festgestellt (Abb.3-1 a), in einer der drei Glindfelder DBF ist sie mittlerweile sogar völlig verschwunden (Abb. 3-3). Für das Verschwinden insbesondere von Blatt- und Strauchflechten ist jedoch nicht nur die veränderte Immissionssituation von Bedeutung. Das Abfallen von Flechtenthalli kann auch durch Windschur, Schneehaftung oder durch starkes Quellen nach intensiven Regenfällen ausgelöst werden (WIRTH et al. 1999). Diese Ursachen kommen wahrscheinlich für den Rückgang von Parmelia sulcata in Glindfeld in Betracht, da insbesondere größere Exemplare im Jahr 2004 nicht mehr in den DBF vorhanden waren (Abb. 3-3). Durch regelmäßige Wiederholungsaufnahmen ist zu klären, ob solche Verluste wieder ausgeglichen werden können und ob die Standortbedingungen eine Wiederansiedlung von Hypogymnia physodes ermöglichen.

Bisher ist in der Umgebung von Glindfeld die Belastung mit Stickstoffverbindungen vergleichsweise gering (Tab. 3-1), was sich auch in den mittleren Zeigerwerten der N- und R-Zahlen widerspiegelt. Die Steigerung der Werte innerhalb von zwei Jahren deuten allerdings

auf eine zunehmende Eutrophierung des Standortes hin und es bleibt abzuwarten, ob sich acidophytische Arten hier weiterhin halten können.

Abb. 3-3 zeigt nicht nur eindrucksvoll den Rückgang von *Hypogymnia physodes*, *Parmelia sulcata* und *Dicranoweisia cirrata*, sondern belegt auch das rasche Wachstum der pleurokarpen Moosart *Hypnum cupressiforme*. Eine deutliche Zunahme von *H. cupressiforme* innerhalb von zwei Jahren stellte auch STAPPER (2002a, b) an Waldökosystem-Dauerbeobachtungsflächen in Nordrhein-Westfalen fest. Ebenso konnten WIRTH et al. (1999) in Dauerbeobachtungsflächen an Waldbäumen in Baden-Württemberg einen starken Zuwachs von *Hypnum cupressiforme* nachweisen, wobei bestimmte Krustenflechten allerdings aufgrund allelopathischer Wirkungen nicht überwuchert wurden. Inwieweit *H. cupressiforme* sich weiter innerhalb der Untersuchungsflächen der vorliegenden Untersuchung ausbreitet und eine Konkurrenz für andere Moos- und Flechtenarten darstellt, werden zukünftige Aufnahmen zeigen.

Die mittleren Zeigerwerte zu den Nährstoff- und Reaktionszahlen sind mit Werten zwischen 5 und 6,5 vergleichsweise hoch und weisen auf eine Eutrophierung sämtlicher Standorte hin.

Die Mehrzahl der Dauerbeobachtungsflächen in Schleswig-Holstein besitzen mit mittleren Nährstoffzahlen zwischen 3 und 4,5 deutlich niedrigere Werte (ZIMMER 2000). Die mittleren Zeigerwerte der hessischen DBF sind vergleichbar mit den Werten der Stationen Glindfeld und Rott bzw. sind noch niedriger. Untersuchungen nach VDI 3957, Blatt 8 von BARTHOLMEB (2004) in Heidelberg zeigten eine große Spannweite der mittleren N- und R-Zahlen (N: 2,67-6,72; R: 3,62-6,84). Niedrige Zeigerwerte für Nährstoff- und Reaktionszahl werden in Nordrhein-Westfalen meist nur noch an Waldstandorten mit Fichten-, Eichen- oder Buchenbestand erreicht (STAPPER 2002a). Der Einfluss der Borkeneigenschaften der Trägerbäume auf das Artenspektrum zeigt sich auch an rheinland-pfälzischen Waldökosystem-Dauerbeobachtunsflächen, in denen Flechtenarten mit geringen bis sehr geringen Reaktions- und Nährstoffzahlen überwiegen (JOHN 1997).

Durch die vergleichsweise geringe Zeitspanne von zwei Jahren zwischen Erst- und Wiederholungsaufnahme lassen sich momentan nur vorläufige Trends in der Entwicklung der Epiphytenvegetation an den untersuchten Stationen ableiten. Durch eine regelmäßige Wiederholung der Erhebung in nicht zu großen Zeitabständen kann ein wichtiger Beitrag zur Dynamik epiphytischer Moos- und Flechtengesellschaften an Freilandstandorten geleistet werden und ermöglicht ein langfristiges und darüber hinaus kostengünstiges Monitoring von Immissionswirkungen.

3.5 Schlussfolgerung

Die Untersuchung hat gezeigt, dass bereits während eines Zeitraums von zwei Jahren erhebliche Veränderungen im Epiphytenbewuchs stattfinden. Der Einfluss atmosphärischer Stickstoffeinträge nimmt hierbei eine zentrale Rolle ein. Bisher hatten eutrophierende Luftverunreinigungen auf die Ausbreitung der Epiphyten noch eher fördernde Wirkung, wenngleich sich die Frage stellt inwieweit sich das Artenspektrum in Richtung Nitrophyten überhaupt noch entwickeln kann. Die Tatsache, dass selbst als Eutrophierungszeiger eingestufte Arten wie *Physcia tenella* bei erhöhten N-Depositionen zurückgehen, weist auf eine zunehmende Verarmung der Epiphytenflora an stark stickstoffbelasteten Standorten hin.

Zusammenfassung

In Dauerbeobachtungsflächen (DBF) an verschiedenen Trägerbaumarten in der Eifel wurden die Auswirkungen erhöhten Stickstoffeintrags auf die Epiphytenvegetation untersucht. Die DBF wurden in vierzehntägigen Intervallen über einen Zeitraum von 21 Monaten mit NH₄Cl-, KNO₃- und NH₄NO₃-Lösungen besprüht, deren reine Stickstoffkonzentration 11 mM und 22 mM betrug. Veränderungen der epiphytischen Moos- und Flechtenvegetation wurden mittels planimetrischer Verfahren (nach VDI 3957 Blatt 8) detailliert erfasst. Vor allem kommune Arten mit weiter Standortamplitude wie *Hypnum cupressiforme* und *Parmelia sulcata* haben sich im Verlauf des Experiments innerhalb der DBF ausgebreitet. Die Bedeckungsgrade der acidophytischen Flechtenarten *Hypogymnia physodes* und *Lepraria incana* sind zurückgegangen. Da visuell keine Schädigungen der Flechtenthalli festgestellt wurden, könnte auch das Herabfallen einiger Thalli durch Wind oder Regen als Ursache für den Rückgang in Betracht kommen. Einige Moosarten (*Metzgeria furcata, Radula complanata, Ulota crispa, Brachythecium rutabulum*) entwickelten im Verlauf der Düngung Nekrosen.

4.1 Einleitung

In den vorangegangenen Kapiteln konnte bereits gezeigt werden, dass erhöhte Stickstoffeinträge das Vorkommen und die Häufigkeit einiger epiphytischer Moos- und Flechtenarten erheblich beeinflussen. Als Ursache kommt sowohl die trockene (NH_3 , NO_x) als auch die nasse Deposition (NH_4^+ , NO_3^-) in Betracht.

Im vorliegenden Untersuchungsabschnitt soll ein 21-monatiges Düngungsexperiment klären, welche Effekte lösliche Nitrat- und Ammoniumverbindungen auf Epiphytengesellschaften ausüben. Hierbei finden unterschiedliche Borkensubstrate sowie ein breites Artenspektrum Berücksichtigung.

4.2 Material und Methoden

4.2.1 Untersuchungsgebiete

Die Anlage der Dauerbeobachtungsflächen (DBF) erfolgte an epiphytenreichen Baumstandorten in der südlichen Eifel (Rheinland-Pfalz) mit überwiegend acidophytischer Epiphytenvegetation. Es wurden vier Untersuchungsgebiete ausgewählt, deren Beschreibung mit Angaben der verwendeten Trägerbaumart Tab. 4-1 zu entnehmen ist. Während es sich bei den Stationen Kelberg, Retterath und Hohe Acht um freistehende Bäume an Straßen mit geringer Verkehrsbelastung handelt, befindet sich die Station Martental in einem lichten Eichen-Niederwald.

Station	Geogr. Länge	Geogr. Breite	Höhe ü.NN [m]	Trägerbaum	Anzahl der DBF
Kelberg	6°57'42.1''E	50°17'25.4''N	640	Fraxinus excelsior	14
Martental	7°05'06.5''Е	50°12'28.4''N	420	Quercus robur	7
Retterath	7°01'16.9''Е	50°16'20.2''N	400	Populus x canadensis	14
Hohe Acht	7°02'41.2''E	50°23'57.7''N	550	Acer platanoides	14

Tab. 4-1: Angaben zu den Dauerbeobachtungsflächen.

4.2.2 Anlage und Behandlung der DBF

An jeder Station wurden sieben aufrechte Baumstämme ausgewählt, an denen jeweils in Nord- und Südexposition eine 20 cm x 20 cm große DBF in mindestens 1 m Höhe über dem Boden mit Nägeln markiert wurde. Somit ergeben sich 14 DBF pro Untersuchungsstation (Tab. 4-1). Die Ausnahme bildet die Station Martental, an der jeweils nur eine DBF pro Baumstamm (süd-exponiert) eingerichtet wurde aufgrund des geringen Vorkommens von Epiphyten an der Nord-Seite des Stammes.

Die DBF wurden ab Dezember 2001 in zweiwöchentlichem Abstand über den Gesamtzeitraum von 21 Monaten mit KNO₃, NH₄Cl und NH₄NO₃ –Lösungen besprüht, die auf einen pH-Wert von 5,5 eingestellt wurden, was in etwa dem Wert von Regenwasser entspricht. Der Stickstoff wurde in zwei verschiedenen Konzentrationen, nämlich 11 und 22 mM, zugeführt und bei jedem Sprühereignis wurden 30 ml pro DBF appliziert. Hiermit wurde eine Deposition von 30 und 60 kg ha⁻¹ a⁻¹ simuliert. Mit destilliertem Wasser behandelte Flächen dienten als Kontrolle. Somit ergeben sich inklusive der Kontrolle sieben Düngevarianten. Jede Düngevariante wurde an den Stationen mit jeweils 14 DBF (Kelberg, Retterath und Hohe Acht) in Duplikaten ausgeführt.

Um eine unmittelbare Auswaschung durch Regen zu verhindern, erfolgte die Besprühung an trockenen Tagen, sowie in den frühen Morgenstunden zur Vermeidung von Brandschäden durch hohe Sonneneinstrahlung.

4.2.3 Aufnahme der DBF

Die Veränderungen der epiphytischen Moos- und Flechtenvegetation wurden sowohl mittels Frequenzbestimmung als auch durch exakte Flächenbestimmung mit Hilfe von Folien (nach VDI 3957 Blatt 8) erfasst.

Bei der Frequenzanalyse wurde ein 20 cm x 20 cm großes Gitter, welches in 100 Quadrate mit eine Kantenlänge von 2 cm unterteilt ist, auf die Untersuchungsfläche angebracht und für jede Art die Präsenz in den Kleinquadraten ermittelt. Der zeitliche Abstand zwischen den Frequenzaufnahmen betrug sieben Monate, die erste Kartierung wurde im Dezember 2001, die abschließende im September 2003 durchgeführt.

Zur genauen Überprüfung der Zuwachsraten einzelner Arten wurden zu Beginn und am Ende des Experiments die Umrisse der Moos- und Flechtenthalli innerhalb der DBF auf eine Klarsichtfolie nachgezeichnet. Die Folie wurde durch Scannen digitalisiert und die Flächenanteile einzelner Arten mit Hilfe einer Software, die inklusive Bedienungsanleitung über das Internet frei verfügbar ist (http://www.vdi.de/vdi/organisation/schnellauswahl/fgkf/krdl/richtlinien/03247), bestimmt. Veränderungen im Moos- und Flechtenbewuchs lassen sich dabei mit hoher Genauigkeit feststellen.

Weiterhin wurden im Verlauf des Experiments auftretende chlorotische und nekrotische Verfärbungen vermerkt.

Die Pappeln der Station Retterath mussten im April 2003 gefällt werden, somit konnte hier zum letzten Kartierungstermin (September 2003) keine Frequenzbestimmung mehr durchgeführt werden und die abschließende Flächenbestimmung (VDI 3957/8) erfolgte bereits im März 2003.

4.3 Ergebnisse

Tab. 4-2 gibt einen Überblick über das Vorkommen der epiphytischen Arten an den vier untersuchten Stationen. Innerhalb der insgesamt 49 DBF (400 cm²) wurden 24 Flechten- und 11 Moosarten festgestellt, von denen die meisten saure, nährstoffarme Standorte bevorzugen.

	())		1 , ,	1 5		
Flechten	Code	Ök.	Vorkommen	Moose	Code	Vorkommen
Amandinea punctata	Amapun		R	Brachythecium rutabulum	Brarut	Н
Candelariella reflexa	Canref	n	Κ	Brachythecium velutinum	Bravel	Н
Candelariella xanthostigma	Canxan	n	R	Dicranoweisia cirrata	Diccir	R, H, K
Cladonia coniocraea	Clacon	a	R, H	Frullania dilatata	Frudil	R, H, K, M
Evernia prunastri	Evepru	a	R, H, K, M	Hypnum cupressiforme	Hypcup	R, H, K, M
Hypogymnia physodes	Hypphy	а	R, H, K, M	Metzgeria furcata	Metfur	H, K
Lecanora conizaeoides	Leccon	а	М	Orthodicranum montanum	Ortmon	Μ
Lecanora hagenii	Lechag	n	R, H, K	Orthotrichum affine	Ortaff	R, H, K
Lepraria incana	Lepinc	а	R, H, K, M	Orthotrichum diaphanum	Ortdia	R, K
Melanelia glabratula	Pargla		R, H, K	Radula complanata	Radcom	R, H
Melanelia laciniatula	Parlac		Н	Ulota crispa	Ulocri	H, K
Parmelia saxatilis	Parsax	а	H, K			
Parmelia sulcata	Parsul		R, H, K, M			
Parmelina tiliacea	Partil		R			
Parmeliopsis ambigua	Paramb	a	М			
Parmotrema chinense	Parchi		Н			
Physcia tenella	Phyten	n	R, H, K			
Physconia grisea	Phygri		R			
Platismatia glauca	Plagla	а	H, K, M			
Pleurosticta acetabulum	Parace		R			
Pseudevernia furfuracea	Psefur	а	R, H, K			
Ramalina farinacea	Ramfar		R			
Usnea filipendula	Usnfil	а	М			
Xanthoria candelaria	Xancan	n	Κ			

Tab. 4-2: Arteninventar der 49 Dauerbeobachtungsflächen an den Stationen Retterath (R), Hohe Acht (H), Kelberg (K) und Martental (M) mit Angaben zum ökologischen Verhalten der Flechten nach VAN HERK (1999), n=Nitrophyt, a=Acidophyt.

Die Auswertung der frequenzanalytischen Erhebung hat ergeben, dass in den meisten Fällen zwischen den einzelnen Aufnahmezeitpunkten (sieben Monate) nur geringfügige Veränderungen stattgefunden haben. Daher erscheint ein Vergleich zwischen den Terminen zu Beginn und Ende des Experiments sinnvoller. Somit werden im Folgenden die Ergebnisse der Flächenbestimmung detailliert vorgestellt, die aufgrund der exakten Flächenberechnung der einzelnen Arten genauer ist als die Frequenzanalyse. Fälle, in denen starke Veränderungen während des 7-Monats-Turnus stattgefunden haben, werden für einzelne Arten exemplarisch dargestellt. Sämtliche Frequenzdaten sowie die prozentualen Bedeckungsgrade zu den jeweiligen Aufnahmeterminen sind dem Anhang zu entnehmen (Anhang C).

4.3.1 Kelberg

Tab. 4-3: Veränderungen der mittleren Bedeckung (in %) in den Kontroll- und Düngungsflächen an der Station **Kelberg** (*Fraxinus excelsior*) zwischen Dezember 2001 und September 2003; Daten stellen Mittelwerte aus jeweils zwei DBF dar; im Text erwähnte auffällige Veränderungen sind fett gedruckt.

	KNO ₃					NH	[₄ Cl			NH4	NO ₃		Kontrolle	
Art	11 1	mМ	22 1	mМ	11	mМ	22 1	mМ	11 1	mМ	22 1	mМ	Ron	uone
	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003
Canref	-	-	-	-	0,56	0,33	-	-	-	-	0,14	0,18	-	-
Diccir	-	-	0,02	0	0,12	0,35	0,33	0,81	-	-	0,30	0,28	-	-
Evepru	6,54	7,97	4,69	3,08	0,03	0,08	0,63	0,15	-	-	-	-	1,47	2,52
Frudil	-	-	-	-	-	-	-	-	-	-	-	-	0	0,16
Нурсир	-	-	-	-	0,53	1,18	1,68	3,76	5,1	7,94	15,7	22,8	-	-
Hypphy	-	-	5,83	0	11,1	1,51	15,7	4,12	0,46	0,26	1,63	1,09	7,03	4,13
Lechag	-	-	0,04	0,04	-	-	-	-	-	-	-	-	0,84	0,35
Lepinc	17,6	2,14	6,11	3,73	-	-	-	-	2,00	1,16	3,37	0,79	-	-
Metfur	-	-	-	-	-	-	-	-	-	-	1,28	1,70	-	-
Ortaff	-	-	0,51	0,58	0,08	0,12	0,30	0,29	1,41	2,81	0,72	1,90	-	-
Ortdia	-	-	0,28	0,35	-	-	-	-	-	-	-	-	-	-
Paramb	0,03	0	-	-	-	-	2,14	1,48	-	-	-	-	0,21	0,21
Pargla	4,37	4,53	0,78	0,88	0,08	0,44	1,47	0,23	0	0,32	-	-	3,65	4,04
Parsax	-	-	-	-	1,71	2,41	1,68	1,85	-	-	-	-	1,54	1,60
Parsul	56,9	58,1	29,9	31,4	34,5	37,7	26,1	34,2	52,3	57,5	31,6	35,5	40,8	52,5
Phyten	0	0,09	24,5	16,1	2,73	2,57	0,17	0,32	6,37	7,85	0,79	0,85	0,15	0,15
Plagla	-	-	-	-	-	-	-	-	-	-	-	-	0,44	0,24
Psefur	-	-	-	-	-	-	-	-	-	-	-	-	1,20	0,29
Ulocri	0,54	0,33	-	-	-	-	-	-	-	-	-	-	-	-
Xancan	-	-	0,96	0,56	-	-	-	-	-	-	-	-	-	-
Gesamt- deckung	86,0	73,1	73,7	56,8	51,5	46,7	50,2	47,2	67,6	77,9	55,5	65,0	57,3	66,2

Die Gesamtbedeckungen der DBF an der Station Kelberg sind mit über 50 % vergleichsweise hoch (Tab. 4-3). Im Wesentlichen trägt die Blattflechte *Parmelia sulcata* zu den hohen Bedeckungsgraden bei. Während in den KNO₃- und NH₄Cl-Varianten eine Abnahme der Gesamtbedeckung zu beobachten war, ist sie in den NH₄NO₃-gedüngten DBF sowie in den Kontrollflächen angestiegen. Die Abnahme wurde im Wesentlichen durch den starken Rückgang von *Lepraria incana* und *Hypogymnia physodes* verursacht, letztere war auf einer DBF (22 mM KNO₃) am abschließendem Aufnahmetermin sogar völlig verschwunden. Die Ursache für die Abnahme der Bedeckungsgrade von *H. physodes* lag im Herabfallen einzelner Thalli. In den KNO₃-gedüngten Flächen verschwanden weiterhin im Verlauf des Experiments *Dicranoweisia cirrata* und *Parmeliopsis ambigua*. Als Neuansiedlungen traten *Frullania dilatata* in einer der beiden Kontrollflächen und *Physcia tenella* in der 11 mM KNO₃-Variante auf. Auf sämtlichen Düngungsflächen mit Vorkommen von *Hypnum cupressiforme* sind die Bedeckungsgrade diese Moosart angestiegen. Den größten Zuwachs weisen hierbei die Flächen auf, die mit Ammoniumnitrat-Lösungen behandelt wurden. Auf diesen Flächen hat sich auch *Orthotrichum affine* sichtbar ausgebreitet, wohingegen die anderen N-Verbindungen keine Auswirkungen auf das Wachstum von *O. affine* zeigten. Die Blattflechte *Parmelia sulcata*, als einzige Art in allen DBF vertreten, verzeichnet überall einen Flächenzuwachs, am stärksten in den Kontrollflächen. Bei *Metzgeria furcata* wurden in der 11 mM NH₄NO₃-Variante nach etwa 12 Monaten Schädigungen (Braunverfärbungen) festgestellt, die sich zum Ende des Versuchs verstärkten (Tafel I a).

4.3.2 Hohe Acht

Während die Gesamtbedeckung in der KNO₃-Variante abnahm, stieg sie in den übrigen Düngungsflächen leicht an. Bedeutsame Zunahmen sind in den gedüngten DBF für *Hypnum cupressiforme* zu verzeichnen, wobei die höchsten Zuwachsraten die 11 mM NH₄NO₃-Variante aufweist (Tab. 4-4). Die kontinuierliche Zunahme von *H. cupressiforme* auf den Düngungsflächen ist in Abb. 4-1 anhand der Frequenzen, die im Abstand von sieben Monaten ermittelt wurden, dargestellt. Im Gegensatz hierzu haben die Bedeckungsgrade von *Hypogymnia physodes* auf sämtlichen Düngungsflächen deutlich abgenommen, jedoch nicht in den Kontrollflächen. Die starke Abnahme von *Melanelia glabratula* in der 11 mM NH₄Cl-Variante ist in erster Linie durch die starke Ausbreitung der pleurokarpen Moosarten *Hypnum cupressiforme* und *Brachythecium rutabulum* zu erklären (Abb. 4-2). Ebenso sichtbar ausgebreitet hat sich auf dieser Fläche *Orthotrichum affine*. Die Konkurrenzstärke von *H. cupressiforme* zeigt sich auch in der 11 mM NH₄NO₃-Variante, in der *Melanelia glabratula* und *Metzgeria furcata* überwachsen wird (Tafel I b). Weiterhin wurden in den mit NH₄NO₃-Lösungen behandelten Flächen eine deutliche Abnahme von *Lepraria incana* festgestellt.

Vereinzelte Exemplare von *Ulota crispa* haben sich bereits wenige Monate nach der KNO₃-Düngung deutlich braun verfärbt (Tafel I c). Ebenso zeigten *Radula complanata* (22 mM KNO₃) im Verlauf des Experiments Erscheinungen des Absterbens (Tafel I d). Als weitere Lebermoosart ist auf dieser DBF *Frullania dilatata* vorhanden, die trotz geringfügiger Abnahme keine Schädigungen aufweist. Nach anfänglich verstärktem Wachstum von *Brachythecium rutabulum* in der 11 mM NH₄Cl-Variante wurden gegen Ende des Experiments starke Schädigungen festgestellt (Tafel I e). Solche Erscheinungen des Absterbens bei *B. rutabulum* konnten in den KNO₃-gedüngten DBF nicht beobachtet werden.

Sowohl in der 11 mM NH₄Cl-Variante als auch in der 11 mM NH₄NO₃-Variante siedelte sich nach etwa 14 Monaten die Flechte *Cladonia coniocraea* neu an. Die acidophytischen Arten *Platismatia glauca* (22 mM KNO₃) und *Pseudevernia furfuracea* (11 mM NH₄Cl) hingegen verschwanden gegen Ende des Experiments völlig.

Tab. 4-4: Veränderungen der mittleren Bedeckung (in %) in den Kontroll- und Düngungsflächen an der Station **Hohe Acht** (*Acer platanoides*) zwischen Dezember 2001 und September 2003; Daten stellen Mittelwerte aus jeweils zwei DBF dar; im Text erwähnte auffällige Veränderungen sind fett gedruckt.

		KN	NO ₃		NH ₄ Cl				NH4	NO ₃		Kontrolle		
Art	11	mМ	22	mМ	11	mМ	22 :	mМ	11	mМ	22	mМ	Kon	uone
	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003
Brarut	0,44	0,97	0	1,48	9,07	16,7	-	-	-	-	-	-	-	-
Bravel	-	-	-	-	-	-	-	-	0,29	0,21	-	-	-	-
Clacon	-	-	0,30	0,07	0	0,16	-	-	0,09	0,22	0	0,24	-	-
Diccir	3,15	3,25	1,80	1,24	-	-	-	-	0,06	0,06	0,68	0,09	0,29	0,27
Evepru	-	-	-	-	-	-	-	-	-	-	-	-	0,54	1,13
Frudil	-	-	0,12	0,05	-	-	-	-	-	-	-	-	-	-
Нурсир	0,18	1,23	2,85	8,95	5,83	15,2	1,62	2,28	2,00	3,88	13,7	36,3	19,4	20,8
Hypphy	20,9	7,33	10,1	1,21	2,15	0,03	1,21	-	16,3	2,44	2,18	0,14	10,5	9,12
Lechag	-	-	-	-	-	-	-	-	-	-	-	-	0,01	0
Lepinc	2,12	1,34	1,56	0,46	1,31	0,31	-	-	0,29	0,05	7,64	1,12	2,17	1,05
Metfur	-	-	-	-	-	-	-	-	-	-	0,71	0,25	-	-
Ortaff	0,24	0,34	1,51	2,32	2,68	4,96	0,23	0,36	1,15	1,49	0,09	0,65	0,10	0,18
Parchi	-	-	-	-	-	-	-	-	0,25	0,43	-	-	-	-
Pargla	10,9	14,0	5,55	10,7	7,49	1,46	16,6	18,9	11,5	16,7	15,2	10,6	9,29	9,57
Parlac	-	-	-	-	-	-	-	-	-	-	0,97	0	-	-
Parsax	-	-	-	-	-	-	-	-	6,34	15,7	1,90	3,77	-	-
Parsul	4,81	6,48	5,97	7,04	32,1	31,9	23,2	24,9	7,41	6,39	2,92	2,57	5,49	6,31
Phyten	0,04	0,12	3,02	4,04	0,29	0,20	0,71	0,63	0,04	0,13	1,41	3,09	-	-
Plagla	-	-	0,28	0,30	2,78	0	-	-	-	-	-	-	2,8	0,25
Psefur	-	-	1,13	0	-	-	-	-	-	-	-	-	-	-
Radcom	-	-	0,56	1,22	-	-	-	-	-	-	-	-	-	-
Ulocri	-	-	0,39	0,21	-	-	-	-	-	-	1,96	0,6	-	-
Gesamt- deckung	42,7	35,1	35,1	39,3	63,7	70,8	43,6	47,1	45,7	47,7	49,3	59,4	50,5	48,7

Abb. 4-1: Veränderungen der mittleren Frequenzen (n=2) von *Hypnum cupressiforme* in den DBF der Station Hohe Acht über 21 Monate Beobachtungsdauer.

Abb. 4-2: Veränderungen der Bedeckungsgrade der mit 11 mM NH₄Cl behandelten DBF an der Station Hohe Acht von Dez. 2001 (links) bis Sept. 2003 (rechts).

4.3.3 Retterath

Tab. 4-5: Veränderungen der mittleren Bedeckung (in %) in den Kontroll- und Düngungsflächen an der Station **Retterath** (*Populus* x *canadensis*) zwischen Dezember 2001 und März 2003; Daten stellen Mittelwerte aus jeweils zwei DBF dar; im Text erwähnte auffällige Veränderungen sind fett gedruckt.

	KNO ₃ NH ₄ Cl					[₄ Cl			NH4	NO ₃		Kontrolle		
Art	11	mМ	22 1	mМ	11 1	mМ	22 1	mМ	11	mМ	22 1	mМ	Ron	uone
	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003
Amapun	0,23	0,15	-	-	-	-	-	-	-	-	-	-	0,67	0,43
Canxan	-	-	-	-	-	-	-	-	-	-	-	-	0,21	0,27
Clacon	-	-	-	-	-	-	-	-	0,04	0,09	-	-	0,42	0,52
Diccir	-	-	-	-	1,64	3,31	0,22	0,51	-	-	-	-	-	-
Evepru	-	-	4,95	2,17	-	-	0,21	0	6,43	9,44	4,02	3,70	1,18	0,49
Нурсир	1,99	3,85	0,27	0,42	0,63	0,96	0,91	1,59	1,40	1,58	-	-	-	-
Hypphy	4,50	5,17	2,46	0,75	1,68	0,16	3,05	0,78	0,21	0,11	-	-	-	-
Lechag	1,36	1,53	-	-	-	-	-	-	0,64	0,70	-	-	-	-
Lepinc	7,85	7,77	2,59	0,09	-	-	0,84	0,49	-	-	-	-	0,30	0,25
Ortaff	4,22	8,65	-	-	0,34	0,09	0,06	0,03	-	-	-	-	1,73	1,39
Ortdia	-	-	-	-	-	-	-	-	-	-	-	-	0,15	0,21
Parace	-	-	4,61	6,41	-	-	-	-	0,82	1,25	16,9	19,1	-	-
Pargla	0,97	0,92	0,16	0,10	0,86	1,11	0,49	0,25	1,45	1,20	0,12	0,56	-	-
Parsax	-	-	4,32	4,87	-	-	-	-	-	-	-	-	-	-
Parsul	8,16	9,39	26,5	27,9	31,3	31,2	33,2	37,0	43,8	44,2	25,2	27,8	3,85	3,97
Partil	2,60	4,06	0,81	1,19	-	-	-	-	-	-	-	-	0,70	1,41
Phygri	0,06	0,20	1,93	1,84	-	-	-	-	-	-	-	-	-	-
Phyten	1,10	2,56	0	0,08	-	-	0	0,15	0,04	0,04	0,03	0,07	-	-
Psefur	-	-	0,70	0,32	-	-	1,35	0	-	-	-	-	-	-
Radcom	-	-	7,32	3,62	-	-	-	-	-	-	-	-	-	-
Ramfar	4,72	5,45	3,91	5,16	3,18	4,8	2,24	2,65	-	0,03	0,54	0,47	0,05	0,12
Gesamt- deckung	37,8	49,7	60,5	54,9	39,7	41,6	42,6	43,5	54,9	58,7	46,7	51,7	9,26	9,06

Mit Ausnahme der 22 mM KNO₃-Variante erfolgte auf allen Düngungsflächen eine Zunahme der Gesamtbedeckung. Auf den Kontrollflächen blieb die Gesamtbedeckung weitestgehend unverändert. Insgesamt betrachtet haben auf den untersuchten DBF der Station Retterath keine bemerkenswert großen Ab- oder Zunahmen stattgefunden. Zu den Arten, deren Bedeckungsgrade im Verlauf des Experiments angestiegen sind, zählen *Hypnum cupressiforme*, *Physcia tenella* und *Parmelia sulcata*. Als Neuansiedlung trat *Physcia tenella* sowohl in der 22 mM KNO₃- als auch in der NH₄Cl-Variante auf. Ebenfalls neu erschienen ist *Ramalina farinacea* in der 11 mM NH₄Cl-Variante. Geringfügige Abnahmen in der Bedeckung war bei *Hypogymnia physodes* (Ausnahme: 11 mM KNO₃) zu beobachten. *Evernia prunastri*, die v. a. in der 22 mM KNO₃-Variante sichtbar zurückgegangen ist,

verschwand in der 22 mM NH₄Cl-Variante völlig. Die Entwicklung von *Parmelia sulcata* ist mit leichten Zuwachsraten innerhalb der 21 Monate auf allen Flächen vergleichbar.

Bereits nach wenigen Monaten waren an *Radula complanata* in der 22 mM KNO₃-Variante starke Schädigungen (Braunverfärbungen) zu beobachten, die zu einem Rückgang der Art innerhalb der DBF führten (Tafel I f).

4.3.4 Martental

Tab. 4-6: Veränderungen der mittleren Bedeckung (in %) in den Kontroll- und Düngungsflächen an der Station **Martental** (*Quercus robur*) zwischen Dezember 2001 und September 2003; im Text erwähnte auffällige Veränderungen sind fett gedruckt.

		KN	IO_3			NH	[₄ Cl			NH4	NO ₃		Kontrolle	
Art	11 1	mМ	22 mM		11	mМ	22 1	mМ	11 1	mМ	22 1	mМ	Kom	uone
	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003	2001	2003
Evepru	-	-	-	-	3,29	0,03	-	-	-	-	0,37	1,25	-	-
Hypcup	-	-	-	-	13,2	7,85	-	-	-	-	-	-	-	-
Hypphy	0,81	0,70	9,57	7,42	1,15	1,65	44,9	33,1	2,43	2,15	0,61	0,77	3,57	3,23
Leccon	-	-	0,11	-	-	-	-	-	-	-	-	-	-	-
Lepinc	-	-	2,82	2,98	0,80	0,41	-	-	-	-	3,12	2,54	4,12	4,54
Ortmon	-	-	-	-	-	-	-	-	-	-	0,32	0,12	-	-
Paramb	-	-	-	-	-	-	0,11	0,12	-	-	-	-	-	-
Parsul	0,98	0,07	2,05	1,55	4,51	0,23	0,79	1,39	1,12	-	2,28	1,95	-	-
Plagla	-	-	4,94	5,21	0,21	0,54	-	-	0,98	1,25	5,66	1,43	2,68	2,46
Usnfil	13,9	14,4	15,3	11,3	14,1	17,4	2,95	2,43	43,1	48,5	21,5	28,2	7,10	10,9
Gesamt- deckung	15,7	15,2	34,8	28,4	37,3	28,2	48,8	37,0	47,7	51,9	33,8	36,3	17,5	21,1

Die Artendiversität in den DBF der Station Martental ist im Vergleich zu den anderen Stationen geringer. Zur Gesamtbedeckung trägt im Wesentlichen die Bartflechte *Usnea filipendula* bei, die sich im Verlauf des Experiments in allen Flächen, mit Ausnahme der 22 mM KNO₃-Variante, weiter ausgebreitet hat. Die Zunahmen der Bedeckungsgrade von *U. filipendula* kamen nicht nur durch Zuwachsraten bereits vorhandener Exemplare zu Stande, sondern sind vielfach durch das Auftreten neuer Thalli entstanden (Tafel II a). Trotz der Zuwachsraten von *U. filipendula* sind auf den mit KNO₃ und NH₄Cl gedüngten Flächen die Gesamtbedeckungen zurückgegangen. Verantwortlich hierfür sind in erster Linie die Abnahmen von *Hypogymnia physodes*, *Parmelia sulcata* und der Moosart *Hypnum cupressiforme*, welche allerdings nur in der 11 mM NH₄Cl-Variante vorkommt. In der 22 mM NH₄Cl-Variante ist die Bedeckung von *Hypogymnia physodes* um etwa ein Drittel zurückgegangen. Als Ursache kommen Schädigungen in Betracht, die auf dieser Fläche zu

beobachten waren (Tafel II b). Ob die Ammoniumchlorid-Düngung für diese Schädigungen verantwortlich ist, bleibt fraglich, da auch einige Thalli außerhalb der DBF solche Verfärbungen aufweisen.

4.3.5 Zusammenfassende Betrachtung

Bei sämtlichen Flechtenarten konnten visuell keine Schädigungen als Folge der Düngung festgestellt werden. Unter den Moosen zeigten folgende Arten Nekrosen:

- *Metzgeria furcata* durch 11 mM NH₄NO₃ (Station Kelberg und Hohe Acht)
- *Ulota crispa* durch 22 mM KNO₃ (Station Hohe Acht)
- *Brachythecium rutabulum* durch 11 mM NH₄Cl (Station Hohe Acht)
- *Radula complanata* durch 22 mM KNO₃ (Station Hohe Acht und Retterath)

Da weder *M. furcata* noch *R. complanata* in weiteren DBF vorhanden ist, kann keine Aussage darüber getroffen werden, ob auch die anderen Düngungsvarianten schädigende Wirkungen auf diese Lebermoosarten hätten. *Ulota crispa* hingegen, deren Blättchen sich bereits nach wenigen Monaten in der 22 mM KNO₃-Variante an der Station Hohe Acht braun verfärbten, zeigte in der 11 mM KNO₃-Variante an der Station Kelberg keine Nekrosen. Bei *B. rutabulum* waren Erscheinungen des Absterbens nur in der 11 mM NH₄Cl-Variante zu beobachten jedoch nicht in den KNO₃-gedüngten Flächen (Station Hohe Acht). Dies deutet darauf hin, dass zumindest bei diesen beiden Moosarten sowohl die Darbietungsform des Stickstoffs als auch die Konzentration für die Schädigungen von Bedeutung sind.

Tab. 4-7 gibt einen Überblick wie sich die Bedeckungsgrade häufig vertretener Arten im Verlauf des Experiments verändert haben. Mit Ausnahme der Station Martental verzeichnen die Moosarten *Hypnum cupressiforme* und *Orthotrichum affine* in den Düngungsflächen z.T. deutliche Zunahmen. Bei den Flechtenarten *Hypogymnia physodes* und *Lepraria incana* wurde überwiegend eine Abnahme der Bedeckungsgrade festgestellt. Das Verhalten von *Parmelia sulcata*, die in sämtlichen DBF vorhanden war ist indifferent, wobei die Entwicklung in den Düngungsflächen oft ähnlich verlaufen ist wie in den Kontrollflächen. Eine Ausbreitung von *Physcia tenella* in den gedüngten DBF konnte nur an der Station Retterath festgestellt werden.

Tab. 4-7: Veränderungen der Bedeckungsgrade ausgewählter Moos- und Fl	echtenarten
während des Untersuchungszeitraums von 21 Monaten in den gedüngten DBF (N) und den
Kontrollflächen (K). +: Zunahme; =: kaum Veränderungen; -: Abnahme; o:	Art nicht
vorhanden.	

Art _	Kel	berg	Hohe	Acht	Rette	erath	Martental		
	N	Κ	Ν	Κ	Ν	Κ	Ν	Κ	
Hypnum cupressiforme	+	0	+	=	+	0	-	0	
Orthotrichum affine	+	0	+	=	=/+	=	0	0	
Hypogymnia physodes	-	0	-	-	-	0	-	-	
Lepraria incana	-	0	-	-	=/-	=	=	=	
Parmelia sulcata	+	+	=/+	+	=	=	-	-	
Physcia tenella	=	=	=	0	+	0	0	0	

4.4 Diskussion

Die starke Ausbreitung von Hypnum cupressiforme auf den Düngungsflächen deutet auf eine Förderung der Art durch erhöhten N-Eintrag hin. Ähnliche Beobachtungen machte auch SOLGA (2003) in Düngungsexperimenten an nährstoffarmen Standorten. Auf die hohe Ausbreitungsfähigkeit von Hypnum cupressiforme in Abhängigkeit der Verfügbarkeit an Nährstoffen weisen bereits GRUBB et al. (1969) hin. Pionierpflanzen wie Ulota crispa werden so von später eindringenden und sich schnell ausbreitenden Arten wie H. cupressiforme verdrängt. Die Autoren konnten außerdem in H. cupressiforme signifikant höhere N-Konzentrationen feststellen als in Ulota crispa. Auf die Fähigkeit von H. cupressiforme, konkurrenzschwächere Moose durch Überwachsen zu verdrängen, weist auch Düll (1997) hin. Die Zunahmen der Bedeckungsgrade von Orthotrichum affine auf den Düngungsflächen lassen ebenfalls vermuten, dass O. affine einen erhöhten N-Eintrag nicht nur toleriert, sondern darauf mit verstärktem Wachstum reagiert. Untersuchungen zur epiphytischen Moosflora in Duisburg zeigten eine bemerkenswerte Zunahme von O. affine innerhalb nur eines Jahres, wobei als Ursache sowohl der Rückgang der SO₂-Immissionen als auch die zunehmende Eutrophierung angenommen wird (FRANZEN 2001). DIERBEN (2001) stuft diese Art allerdings als indifferent gegenüber Eutrophierung ein.

Während somit einige Moosarten mit einem Anstieg in der Bedeckung reagierten oder zumindest den erhöhten N-Eintrag tolerierten, führte die Düngung bei einigen Moosen zu Schädigungen. Diese waren besonders bei gegenüber Luftverschmutzung empfindlich eingestuften Moosarten (FRAHM 1998), wie *Metzgeria furcata*, *Radula complanata* und *Ulota crispa* zu beobachten.

Das Absterben von *Brachythecium rutabulum* in der 11 mM NH₄Cl-Variante am Standort Hohe Acht erstaunt, da diese Art normalerweise für nährstoffreiche Standorte charakteristisch ist (NEBEL et al. 2001) und selbst in der Umgebung von Massentierhaltungsbetrieben vorkommt (PITCAIRN et al. 2002). Untersuchungen von RINCON (1990) zeigen, dass *B. rutabulum* bei erhöhtem Nährstoffangebot mit deutlichen Wachstumszunahmen reagiert. Als mögliche Ursachen für die beobachteten Schädigungen als Folge der Düngung können auch pH-Wert-Veränderungen (CARROLL et al. 2000) oder direkte negative Wirkungen des Chlorid-Ions ("salt effect") in Betracht gezogen werden (KAUPPI 1980, BROWN & TOMLINSON 1993).

Im Gegensatz zu den Moosen konnten bei den Flechten keinerlei Schädigungen festgestellt werden. Selbst die als empfindlich eingestufte Art *Usnea filipendula* zeigte keine Verfärbungen, sondern reagierte mit einem Flächenzuwachs. Bisherige experimentelle Düngungsversuche lieferten je nach untersuchter Art und Nährstoffkonzentration unterschiedlichste Ergebnisse (z.B. BROWN 1992, CRITTENDEN et al. 1994). Experimente an *Parmelia sulcata* von BROWN et al. (1995) führten erst bei stark erhöhten Konzentrationen von 1 M NH₄Cl zu Schädigungen (Pinkfärbung).

Ob für den deutlichen Rückgang der acidophytischen Flechtenart *Hypogymnia physodes* innerhalb sämtlicher DBF die Nitrat- und Ammoniumdüngung verantwortlich ist, bleibt fraglich. Zwar zeigen mittlerweile zahlreiche Studien eine drastische Abnahme von *H. physodes* in landwirtschaftlich geprägten Regionen (z.B. DE BAKKER 1989, VAN DOBBEN & TER BRAAK 1996, VAN HERK 1999, ZIMMER 2000), in der vorliegenden Untersuchung konnten jedoch visuell keine Schädigungen infolge der Düngung festgestellt werden. Die Ursache für den Rückgang von *H. physodes* kann auch im Herabfallen einzelner Thalli, ausgelöst durch Windschur, Schneehaftung oder starkes Quellen, liegen (WIRTH et al. 1999). Dass NH₄⁺ und NO₃⁻ dennoch toxisch auf *H. physodes* wirken können, zeigen die Ergebnisse des Düngungsexperiments im folgenden Kapitel 5, in dem die erhöhte N-Zufuhr zu einem deutlichen Anstieg der Aminosäurekonzentration als mögliche Form der Entgiftung führte. Zur Einschätzung von *H. physodes* gegenüber erhöhten N-Einträgen bedarf es weiterer experimenteller Untersuchungen, die die Auswirkungen verschiedenster Stickstoffverbindungen auf physiologische Stoffwechselprozesse erfassen. Es ist nicht ausgeschlossen, dass auch der Borken-pH hierbei eine Rolle spielt (VAN HERK 1999).

Während *H. physodes* aufgrund ihrer Wuchsform relativ leicht vom Substrat herabfallen kann, trifft dies für die Krustenflechte *Lepraria incana* wohl eher nicht zu. Laut WIRTH et al.

(1999) weisen epiphytische Krustenflechtenbestände eine sehr geringe Dynamik auf. Daher ist der deutliche Rückgang von *L. incana* in den Düngungsflächen wohl auf die applizierten N-Verbindungen zurückzuführen. *L. incana* gilt allgemein als Besiedler nährstoffarmer Habitate (WIRTH 1995).

Die als nitrophytisch eingestufte Art *Physcia tenella* (VAN HERK 1999) zeigte keine wesentlichen Veränderungen in der Bedeckung als Folge der Düngung. Einzige Ausnahme bilden hier die KNO₃- und NH₄Cl-gedüngten Pappeln der Station Retterath, an denen Neuansiedlungen bzw. Zunahmen der Bedeckungsgrade zu beobachten waren.

Nach DEGELIUS (1964) handelt es sich bei *Physcia tenella* um eine Pionierflechte, die im Vergleich zu anderen Species früh Sorale bildet (BESCHEL 1958) und sich somit rasch ausbreiten kann. Somit ist möglicherweise, neben der hohen Toleranz gegenüber Luftschadstoffen, die schnelle Ausbreitungsfähigkeit für die weite Verbreitung und Zunahme von *Physcia tenella* in den letzten Jahren ausschlaggebend und weniger die Verfügbarkeit an Nährstoffen. Eine Abnahme der Abundanz von *P. tenella* an stark eutrophierten Standorten, bedingt durch hohe Verkehrsbelastung (VORBECK & WINDISCH 2002, FRANZEN-REUTER & STAPPER 2003, STAPPER & KRICKE 2004) oder starken landwirtschaftlichen Einfluss (siehe Kap. 3, Station Kleve) sowie die geringen Zuwachsraten der vorliegenden Untersuchung, unterstützen die Hypothese, dass ein besonders hohes Angebot an Nährstoffen bei dieser Art nicht wachstumsfördernd wirkt.

Insgesamt betrachtet lassen die Ergebnisse keine Rückschlüsse zu, ob eher die NH_4^+ - oder die NO_3^- -haltigen Düngelösungen größere Auswirkungen auf das Wachstum oder die Vitalität der untersuchten Arten hatte. Bei den N-Verbindungen, die zu nekrotischen Erscheinungen führten, handelte es sich allerdings jeweils immer um die höher konzentrierte Variante, die eine N-Deposition von 60 kg ha⁻¹ a⁻¹ simulierte.

Für den Rückgang der Acidophyten bzw. die Zunahme der Nitrophyten in den letzten Jahren scheint den Ergebnissen zur Folge nicht nur der N-Eintrag in Form von Ammonium und Nitrat entscheidend zu sein, sondern es sind auch weitere Umwelteinflüsse von Bedeutung. Faktoren, die einen Einfluss auf das Vorkommen und die Häufigkeit der Epiphyten ausüben sind: gasförmige Immissionen (VAN DOBBEN & TER BRAAK 1998), pH-Wert der Borke (VAN HERK 2001), Elementgehalt der Borke (HAUCK et al. 2001, HAUCK & RUNGE 2002), Niederschlag (WIRTH 2001), Höhenlage (VONARBURG 1993, LOPPI et al. 1997), Mikroklima (FRAHM 2003, STAPPER & KRICKE 2004), Ausbreitungsfähigkeit (DEGELIUS 1964, GILBERT 1992).

4.5 Schlussfolgerung

Die Untersuchung hat gezeigt, dass die Reaktion auf eine simulierte Erhöhung der Stickstoffdeposition artspezifisch ist. Wachstumsförderung, Bedeckungsrückgang sowie Nekrosen kommen je nach Art als mögliche Folgen der Düngung in Betracht. Da überwiegend nur Tendenzen aufgezeigt werden konnten, werden für zukünftige Düngungsexperimente längere Zeitspannen als notwendig erachtet. Es wird vermutet, dass neben Ammonium und Nitrat auch gasförmige N-Verbindungen für Veränderungen von Epiphytenbeständen verantwortlich sind. Begasungsversuche mit NO_x und NH₃ würden Aufschluss über eventuelle Wachstumsförderung oder Schadwirkung auf epiphytische Moose und Flechten geben.

5 Untersuchungen zur Stickstoffakkumulation zur Ermittlung geeigneter Monitorarten

Zusammenfassung

Die epiphytischen Flechten *Evernia prunastri, Hypogymnia physodes, Parmelia sulcata* und das Moos *Orthotrichum affine* wurden in vierzehntägigen Intervallen über einen Zeitraum von einem Jahr mit folgenden stickstoffhaltigen Lösungen besprüht: K¹⁵NO₃ (14,3 und 28,6 mM), ¹⁵NH₄Cl (14,3 und 28,6 mM), NH₄¹⁵NO₃ (7,15 und 14,3 mM) und ¹⁵NH₄NO₃ (7,15 und 14,3 mM). Im Abstand von 3 Monaten wurde die Gesamt-N- und ¹⁵N-Konzentration in den Pflanzen bestimmt. Alle Arten nahmen den applizierten Stickstoff auf, wobei die Höhe der Anreicherung artspezifisch ist und von der applizierten Stickstoffform abhängt. Von allen Arten wird Ammonium bevorzugt gegenüber Nitrat aufgenommen, wobei der assimilierte Stickstoff sich verstärkt in den Wachstumszonen der Flechtenthalli anreichert. Für die Bioindikation atmosphärischer Stickstoffeinträge eignen sich am besten *Hypogymnia physodes* und *Parmelia sulcata*, da diese auf die simulierte N-Deposition am eindeutigsten mit einem Anstieg ihrer N-Gewebekonzentration reagierten.

Versuchsdauer den Nach zwölf Monaten wurde von drei Flechtenarten die Gesamtchlorophyllkonzentration und die Konzentrationen diverser Aminosäuren bestimmt. Für alle drei Arten ergaben sich deutliche Anstiege der Chlorophyllkonzentrationen sowie insbesondere der Arginin- und Glutamin-Konzentrationen als Effekt der Düngung. Folglich zugeführten Stickstoffverbindungen metabolisiert und in organische wurden die Verbindungen eingebaut. Aminosäuren fungieren zum einen als Speicher für überschüssigen Stickstoff, zum anderen stellt die schnelle Umsetzung von toxischem NH₄⁺ in Aminosäuren eine Entgiftungsfunktion dar. Von den drei Arten zeigte Hypogymnia physodes die stärkste Zunahme in den Aminosäuren, jedoch die geringste im Gesamtchlorophyll. Die Glutaminund Arginin-Konzentration in Hypogymnia physodes könnte somit ebenfalls für die Bioindikation erhöhter Stickstoffdepositionen genutzt werden.

5.1 Einleitung

Es wurde bereits mehrfach darauf hingewiesen, dass sich die Epiphytenflora in den letzten Jahren deutlich verändert hat. Die Untersuchungen aus den vorangegangenen Kapiteln zeigen, dass einige Arten mit Zu- oder Abnahmen auf erhöhte Stickstoffeinträge reagieren und somit als Reaktionsindikatoren im passiven Monitoring eingesetzt werden können. Das Vorkommen der Epiphyten wird allerdings neben den stickstoffhaltigen Immissionen auch von weiteren Faktoren beeinflusst, wie Borken-pH, Ausbreitungsfähigkeit, historische Belastung der Standorte durch SO₂. Um diese Faktoren auszuschließen, bietet sich das passive Akkumulationsmonitoring an. Hier hat sich in der Vergangenheit insbesondere das Monitoring luftgetragener Schwermetalle bewährt (RÜHLING 2002, SIEWERS & HERPIN 1998, SCERBO et al. 1999).

Ziel dieses Untersuchungsabschnitts ist es, den Einfluss von Stickstoffdüngung auf den Stickstoffgehalt sowie auf die Aminosäurekonzentration ausgewählter Arten zu untersuchen und aufgrund des Akkumulationsverhaltens geeignete Arten zum Monitoring atmosphärischer Stickstoffeinträge zu selektieren. Hierzu wurden zwischen November 2002 und November 2003 drei epiphytischen Flechten- und einer epiphytischen Moosart an natürlichen Vorkommen an Straßenbäumen in regelmäßigen Abständen verschiedene stickstoffhaltige Lösungen zugeführt.

Die Untersuchung diente insbesondere der Klärung folgender Fragen:

- Welche Auswirkungen hat die Düngung mit verschiedenen Stickstoffverbindungen auf den Stickstoffgehalt der untersuchten Arten?
- Wird eher Nitrat oder eher Ammonium von den Testorganismen aufgenommen?
- Wie sieht das Akkumulationsverhalten bei unterschiedlich konzentrierten Düngelösungen aus?
- Gibt es jahreszeitlich bedingte Änderungen der N-Gewebekonzentration in den ungedüngten Kontrollflächen?
- Wie wirkt sich die Düngung auf den Aminosäure- und Chlorophyllgehalt aus?
- Welche Art spiegelt einen erhöhten Stickstoffeintrag in ihrer N-Gewebekonzentration am besten wider und eignet sich somit als Akkumulationsindikator für Stickstoff in zukünftigen Biomonitoringverfahren?

5.2 Material und Methoden

5.2.1 Charakterisierung der Arten und Probeflächen

Als Hauptkriterium für die Auswahl der Arten war eine weite Verbreitung, sowie eine möglichst einfache Probenahme und Weiterverarbeitung ausschlaggebend. Mit *Evernia prunastri, Parmelia sulcata, Hypogymnia physodes* und *Orthotrichum affine* wurden drei Flechten- und eine Moosart ausgewählt, für die Probeflächen mit weitgehend reinen Beständen an freistehenden Bäumen in der Ost-Eifel (Rheinland-Pfalz) eingerichtet wurden. Tab. 5-1 gibt Auskunft über die vier Arten und die verwendete Trägerbaumart.

A rt	Wushaform			Zei	gerw	erte			Trägerbaum	
Alt	w uclisionin	L	Т	K	R	F	Ν	То	Hagerbaum	
Evernia prunastri	Strauchflechte	7	5	6	3	3	3	6	Quercus robur	
Hypogymnia physodes	Blattflechte	7	Х	6	3	3	2	8	Acer platanoides	
Parmelia sulcata	Blattflechte	7	Х	6	5	3	4	8	Fraxinus excelsior	
Orthotrichum affine	Akrokarpes Laubmoos	8	4	5	6	4	-	-	Acer platanoides	

Tab. 5-1: Übersicht über die Arten des Freiland-Düngungsexperiments mit Angaben zu Wuchsform, Zeigerwerten nach WIRTH (2001) und DÜLL (2001) und Trägerbaumart.

Detaillierte geographische Angaben zur Lage der Probeflächen sind Anhang D zu entnehmen. Für jede Art wurde an aufrechten Baumstämmen in mindestens 80 cm Höhe über dem Boden neun Flächen mit einer Größe von 40 x 40 cm² in südwestlicher Exposition markiert.

5.2.2 Behandlung der Probeflächen

Die Probeflächen wurden in zweiwöchentlichem Abstand über den Gesamtzeitraum von einem Jahr mit ¹⁵N markierten (10 Atom%) K¹⁵NO₃,¹⁵NH₄Cl, ¹⁵NH₄NO₃ und NH₄¹⁵NO₃ Lösungen, die auf einen pH-Wert von 5,5 eingestellt wurden, besprüht. Die ¹⁵N-Salze wurden bei der Firma Chemotrade (Leipzig, Germany) bezogen. Bei jedem Sprühereignis wurden 100 ml mit 20 mg bzw. 40 mg N pro Fläche appliziert, und somit nach 24 Sprühereignissen eine Deposition von 30 bzw. 60 kg N ha⁻¹ a⁻¹ simuliert (dies entspricht für K¹⁵NO₃ und ¹⁵NH₄Cl einer Konzentration von etwa 14,3 bzw. 28,6 mM, für NH₄¹⁵NO₃ und ¹⁵NH₄NO₃ einer Konzentration von etwa 7,15 bzw. 14,3 mM). Jeweils eine Kontrollfläche pro Art wurde pro Sprühereignis mit 100 ml destilliertem Wasser behandelt. Um eine unmittelbare Auswaschung durch Regen zu verhindern, erfolgte die Besprühung an trockenen Tagen, sowie in den frühen Morgenstunden zur Vermeidung von Brandschäden durch hohe Sonneneinstrahlung.

5.2.3 Probenahme und Materialaufbereitung

Proben für die Stickstoffanalytik wurden bei trockenem Wetter im Abstand von 3 Monaten aus jeder Fläche zufällig entnommen, in Polyethylenbeutel verpackt und bis zur Weiterverarbeitung bei -18°C tiefgefroren. Die Beprobung erfolgte immer zwei Wochen nach der letzten Besprühung. Im Labor wurden die Pflanzen zunächst von anhaftenden Schmutzpartikeln und Borkenresten gesäubert und 60 Sekunden unter fließendem destilliertem Wasser gereinigt, um anhaftendes und noch nicht inkorporierten ¹⁵N zu entfernen. Die Trocknung des Materials fand bei 70 °C über 48 Stunden im Trockenschrank statt. Für die Analysen wurden nur von *Hypogymnia physodes* ganze Thalli verwendet. Von *Parmelia sulcata* wurden etwa 30 Stücke der äußeren 5 mm des Thallusrandes zu einer Probe vereint. Bei *Evernia prunastri* fanden etwa 30 Thallusspitzen mit einer Länge von 5 mm für eine Messung Verwendung. Von *Orthotrichum affine* wurden etwa 50 Sprossspitzen von einer Länge von 5 mm pro Probe aufbereitet. Aus jeder Fläche wurden pro Entnahmetermin fünf Parallelproben erstellt. Das so aufbereitete, getrocknete Material wurde mittels einer Kugelmühle zerkleinert.

Für die Bestimmung der Aminosäuren und des Chlorophyllgehaltes wurden nach zwölf Monaten Versuchsdauer sämtliche Thalli von *E. prunastri, H. physodes* und *P. sulcata* von den Flächen entnommen, vor Ort von anhaftenden Schmutzpartikeln und Borkenresten gereinigt und in flüssigem Stickstoff tiefgefroren. Die Zwischenlagerung bis zur Analyse erfolgte bei -80 °C.

5.2.4 Stickstoffanalytik

Nach Einwaage des getrockneten und zerkleinerten Materials von 5 bis 5,5 mg pro Probe erfolgte die Messung von Gesamt-N und Atom-%¹⁵N mittels eines Massenspektrometers (Europa Scientific, Typ 20-20, Crewe/UK). Die Konzentration des aus den Düngelösungen stammenden markierten Stickstoffs in den Moos- und Flechtenproben wurde aus dem Atom-% an ¹⁵N und der Gesamt-N-Konzentration berechnet (Gleichung 1). Hierzu wurde zunächst der natürliche Gehalt an ¹⁵N in den Proben (Messwert zu Beginn des Experiments) von dem Atom-%¹⁵N-Wert subtrahiert.

(1) ${}^{15}N_{excess}$ -Konzentration [‰ TG] = (At%_t - At%_{t0}) x [N]

Wobei: $At\%_t = Atom-\%$ ¹⁵N zum Zeitpunkt t $At\%_{t0} = Atom-\%$ ¹⁵N zum Zeitpunkt t0 (natürlicher ¹⁵N-Gehalt) [N] = N-Konzentration [% TG] zum Zeitpunkt t

5.2.5 Gesamtchlorophyll- und Aminosäureanalytik

Die Proben wurden gefriergetrocknet und gemahlen (micro dismembrator U.B. Biotech, Melsungen, Germany). Die Bestimmung der Aminosäuren Arginin (ARG), Alanin (ALA), Asparagin (ASN), Glutamin (GLN), Glutamat (GLU), Glycin (GLY), Serin (SER) und Prolin (PRO) erfolgte mittels HPLC nach HUHN & SCHULZ (1996). Die Chlorophyllkonzentration wurde ermittelt nach der Methode von LICHTENTHALER & WELLBURN (1983).

Nicht von allen Flächen war ausreichend Material für die Analytik vorhanden. Proben der ¹⁵NH₄NO₃- und NH₄¹⁵NO₃-Varianten wurden zu einer Probe vereint.

5.2.6 Statistische Analysen

Die Varianzanalyse mit Messwiederholung (GLM) soll klären, ob im Laufe der Probenahmezeitpunkte signifikante Änderungen der ¹⁵N- bzw. N-Konzentrationen auftreten. Dabei soll auch der Einfluss der Faktoren Düngeverbindung und -konzentration berücksichtigt werden. Neben den Vorraussetzungen zur Varianzanalyse ohne Messwiederholung (Normalverteilung, Varianzhomogenität) kommt als weitere Voraussetzung die Sphärizitätsanahme hinzu. Zur Überprüfung der Sphärizitäts-Voraussetzung wurde der Mauchly's Sphericity Test verwendet, Normalverteilung und Varianzhomogenität wurden mittels Kolmogorov-Smirnov-Test bzw. Levene-Test überprüft. Bei Verletzung der Sphärizitätsanahme wurde die Greenhouse-Geisser-Korrektur verwendet. Zur Stabilisierung der Varianz und zur Normalisierung wurden die Daten mittels der für Prozentwerte empfohlenen Winkeltransformation (Arcus-Sinus-Transformation) transformiert (SACHS 1999).

Unterschiede zwischen Stickstoffkonzentrationen in Wachstumszonen und älteren Bereichen der untersuchten Flechtenthalli wurden mittels t-Test auf ihre statistische Signifikanz überprüft. Die notwendigen Vorraussetzungen der Normalverteilung und Varianzhomogenität wurden mittels Kolmogorov-Smirnov-Test bzw. Levene-Test überprüft.

Für die Analysen wurde das Softwarepaket SPSS 11 verwendet.

5.3 Ergebnisse

5.3.1 Gesamtstickstoffkonzentrationen der untersuchten Arten

Tab. 5-2 fasst die Gesamteffekte des Versuchs auf die N-Gewebekonzentration der untersuchten Arten zusammen. Der Faktor Zeit sowie die Interaktion mit der Düngeverbindung hat bei allen Arten einen signifikanten Einfluss auf die Stickstoffkonzentration. Während bei *H. physodes* und *P. sulcata* auch sämtliche Wechselwirkungen signifikant sind, gilt dies nicht für *E. prunastri*.

Tab. 5-2: Einfluss des Hauptfaktors "Zeit" (Z) und des Interaktionseffekts mit den Faktoren "Düngeverbindung" (V) und "Düngekonzentration" (K) auf die N-Konzentration der vier untersuchten Arten sowie Prüfung der Zwischensubjekteffekte. Ergebnisse der Varianzanalyse mit Messwiederholung, **p<0,01, ***: p<0,001, ns: nicht signifikant.

A rt		Innersubj	ekteffekte	Zwisch	Zwischensubjekteffekte				
Alt	Ζ	Z*V	Z*K	Z*V*K	V	Κ	V*K		
Evernia prunastri	***	***	ns	ns	***	***	***		
Hypogymnia physodes	***	***	**	***	***	***	***		
Parmelia sulcata	***	***	***	***	***	***	***		
Orthotrichum affine	***	***	-	-	***	***	-		

Die Veränderungen der N-Konzentration der untersuchten Arten sind in Abb. 5-1 und 5-2 dargestellt.

Die Düngung mit verschiedenen Stickstoffverbindungen hat bei allen vier Arten über die Gesamtdauer des Experimentes betrachtet zu signifikant höheren Stickstoffgehalten gegenüber der Kontrolle geführt. In vielen Fällen war ein Anstieg allerdings erst nach 6 bzw. 9 Monaten zu beobachten. Den geringsten Einfluss auf den Stickstoffgehalt der untersuchten Arten hatte die 14,3 mM KNO₃-Lösung. Die Behandlung mit der doppelten Menge an KNO₃ führte nach neun Monaten Düngung zu einer geringen Zunahme des N-Gehaltes, der sich nach 12 Monaten nicht mehr signifikant änderte. *Parmelia sulcata* und *Hypogymnia physodes* zeigen in allen Düngevarianten die klarsten Anreicherungsverläufe, wobei die 28,6 mM NH₄Cl-Lösung den stärksten Einfluss ausübt und nach 12 Monaten Versuchsdauer zu einer Verdopplung des N-Gehaltes in den beiden Arten geführt hat. Während die durch Ammoniumnitrat hervorgerufenen Anreicherungen bei *Parmelia sulcata* und *Hypogymnia physodes* ähnliche Verläufe zeigen, sind die Verläufe der Ammoniumnitrat-Varianten bei *Evernia prunastri* sehr inhomogen.

Bei *Orthotrichum affine* ist die Zunahme des Stickstoffgehaltes im Vergleich zu den Flechtenarten deutlich geringer, insbesondere in der KNO₃-Variante sind kaum Veränderungen zu beobachten (Abb. 5-2).

Abb. 5-1: Veränderungen der N-Konzentrationen von *Parmelia sulcata*, *Hypogymnia physodes* und *Evernia prunastri* über 12 Monate Versuchsdauer durch Behandlung mit verschiedenen stickstoffhaltigen Lösungen in unterschiedlichen Konzentrationen. Dargestellt sind Mittelwerte aus 5 Parallelen mit einfacher Standardabweichung.

Abb. 5-2: Veränderungen der N-Konzentrationen von *Orthotrichum affine* über 12 Monate Versuchsdauer durch Behandlung mit verschiedenen stickstoffhaltigen Lösungen mit einer reinen Stickstoffkonzentration von 14,3 mM. Dargestellt sind Mittelwerte aus 5 Parallelen mit einfacher Standardabweichung.

In den mit destilliertem Wasser behandelten Kontrollpflanzen variiert die Stickstoffgewebekonzentration nur sehr gering. Die größte Schwankungsbreite im Jahresverlauf zeigt *Orthotrichum affine* mit Werten von 1,57 % (Mai) bis 2 % (November 2002). Bei *Hypogymnia physodes* variiert der Stickstoffgehalt zwischen den einzelnen Probenahmeterminen am geringsten und die Unterschiede sind ebenso wie bei *Parmelia sulcata* und *Evernia prunastri* nicht signifikant.

Über das Jahr gemittelt weist *Hypogymnia physodes* mit 0,8 % die geringste, *Orthotrichum affine* mit 1,8 % die höchste Stickstoffgewebekonzentration auf. *Parmelia sulcata* und *Evernia prunastri* haben mit einem Wert von etwa 1,3 % im Mittel ähnliche Gewebekonzentrationen.

In den Probeflächen wurden bis zum Ende des Experimentes keine sichtbaren Schädigungen an den untersuchten Arten festgestellt.

5.3.2 ¹⁵N_{excess}-Konzentration

In Tab. 5-3 sind die Ergebnisse der Varianzanalyse mit Messwiederholung (GLM) zusammen gestellt.

Sowohl der Faktor Zeit, als auch die Düngeverbindung- und konzentration beeinflusste bei allen Arten die ¹⁵N_{excess}-Konzentration signifikant. Im Gegensatz zu *Evernia prunastri* waren

bei *Hypogymnia physodes* und *Parmelia sulcata* die Wechselwirkungen zwischen den Faktoren signifikant.

Tab. 5-3: Einfluss des Hauptfaktors "Zeit" (Z) und des Interaktionseffekts mit den Faktoren "Düngeverbindung" (V) und "Düngekonzentration" (K) auf die ¹⁵N_{excess}-Konzentration der vier untersuchten Arten sowie Prüfung der Zwischensubjekteffekte. Ergebnisse der Varianzanalyse mit Messwiederholung, **p<0,01, ***: p<0,001, ns: nicht signifikant.

Art	Innersubjekteffekte				Zwischensubjekteffekte		
	Ζ	Z*V	Z*K	Z*V*K	V	Κ	V*K
Evernia prunastri	***	***	ns	ns	***	***	***
Hypogymnia physodes	***	***	**	***	***	***	***
Parmelia sulcata	***	***	***	***	***	***	***
Orthotrichum affine	***	***	-	-	***	***	-

Die Düngung mit markierten Stickstoffverbindungen hat in allen vier Arten zu einer Anreicherung des Isotops ¹⁵N geführt (Abb. 5-3 und 5-4). Die Höhe der Anreicherung fällt bei den einzelnen Arten unterschiedlich aus und ist jeweils abhängig von der applizierten Stickstoffform. Die höchsten Anreicherungen zeigen die Flechten *Parmelia sulcata* und *Hypogymnia physodes*, die geringsten das Moos *Orthotrichum affine*. Bei allen Arten wurde die höchste ¹⁵N_{excess}-Konzentration in der ¹⁵NH₄Cl-Variante festgestellt. Die deutliche Präferenz für NH₄⁺-haltige Lösungen zeigt auch der Vergleich zwischen den NH₄¹⁵NO₃- und ¹⁵NH₄NO₃-Varianten: wenn sowohl Nitrat als auch Ammonium zur Verfügung steht, wird von allen Arten in höherem Maße Ammonium aufgenommen. Dieser Unterschied wird bei der Flechte *Evernia prunastri* am deutlichsten, die aus sämtlichen ¹⁵NO₃-haltigen Düngelösungen nur sehr wenig von dem markierten Stickstoff aufgenommen hat. Bei *Orthotrichum affine* ist nach 12 Monaten Düngung mit K¹⁵NO₃ sogar eine Abnahme der ¹⁵N_{excess}-Konzentration zu beobachten (Abb. 5-4). Die begrenzte Aufnahme von Nitrat zeigt sich auch darin, dass durch die Verdopplung der KNO₃-Konzentration (von 14,3 mM auf 28,6 mM) keine Steigerung in der ¹⁵N_{excess}-Konzentration erzielt wurde.

Die Düngung mit der 14,3 mM ¹⁵NH₄NO₃-Varianten führt zu ähnlichen Werten in der ¹⁵N_{excess}-Konzentration, die durch die Düngung mit der 14,3 mM ¹⁵NH₄Cl-Varianten hervorgerufen werden. Beim Vergleich der 14,3 mM NH₄¹⁵NO₃- mit der 14,3 mM K¹⁵NO₃-Varianten trifft dieser Umstand zumindest für *Parmelia sulcata* und *Hypogymnia physodes* nicht zu, hier werden durch die K¹⁵NO₃-Düngung höhere Anreicherungen erzielt als durch Düngung mit NH₄¹⁵NO₃.

Abb. 5-3: Veränderungen der ¹⁵N_{excess}-Konzentrationen von *Parmelia sulcata*, *Hypogymnia physodes* und *Evernia prunastri* über 12 Monate Versuchsdauer durch Behandlung mit verschiedenen stickstoffhaltigen Lösungen in unterschiedlichen Konzentrationen. Dargestellt sind Mittelwerte aus 5 Parallelen mit einfacher Standardabweichung.

Abb. 5-4: Veränderungen der ¹⁵N_{excess}-Konzentrationen von *Orthotrichum affine* über 12 Monate Versuchsdauer durch Behandlung mit verschiedenen stickstoffhaltigen Lösungen mit einer reinen Stickstoffkonzentration von 14,3 mM. Dargestellt sind Mittelwerte aus 5 Parallelen mit einfacher Standardabweichung.

Bei Verdopplung der Konzentration der ¹⁵NH₄⁺-haltigen Düngelösungen steigt die ¹⁵N_{excess}-Konzentration bei *Hypogymnia physodes* etwa um das doppelte, bei *Parmelia sulcata* um das 1,5fache.

In allen vier Arten ist, mit Ausnahme der KNO₃-Variante bei *Orthotrichum affine*, eine Steigerung der ¹⁵N_{excess}-Konzentration im zeitlichen Verlauf zu beobachten, wobei die Zunahme zwischen 3 und 6 Monaten (Februar und Mai) sowie zwischen 9 und 12 Monaten (August und Dezember) stärker ist als in den Monaten zwischen Mai und August.

Zum letzten Beprobungstermin wurden bei *Evernia prunastri* und *Parmelia sulcata* zusätzlich auch die älteren Thallusteile (Zentrum bei *P. sulcata*, Basis bei *E. prunastri*) analysiert, um zu untersuchen, in welchen Bereichen des Thallus sich der Stickstoff überwiegend anreichert. Wie Abb. 5-5 zeigt, wird der applizierte Stickstoff sowohl bei *Parmelia sulcata* als auch bei *Evernia prunastri* vorwiegend in den Wachstumszonen des Thallus akkumuliert. Bei beiden Arten ist der Unterschied in sämtlichen Düngevarianten signifikant, wobei die Werte in den Wachstumsbereichen etwa 1,3 - 1,5fach höher sind als in den älteren Thallusteilen.

Abb. 5-5: Vergleich der ¹⁵N_{excess}-Konzentration in den zentralen bzw. basalen Thallusbereichen (weiße Säulen) und Randbereichen bzw. Spitzen (graue Säulen) von (a) *Evernia prunastri* bzw. (b) *Parmelia sulcata* nach 12 Monaten Düngung mit verschiedenen stickstoffhaltigen Lösungen in unterschiedlichen Konzentrationen. Dargestellt sind Mittelwerte aus 5 Parallelen mit einfacher Standardabweichung. *: p<0,05, **: p<0,01, ***: p<0,001 (t-Test).

5.3.3 Aminosäuren

Die Düngung mit verschiedenen Stickstoffverbindungen über die Versuchsdauer von 12 Monaten führte zu einem Anstieg der Aminosäurekonzentrationen AGR, GLN, ASN und PRO in fast allen Probeflächen. Die weiteren fünf analysierten Aminosäuren (ASP, ALA, GLU, GLY, SER) zeigten keine eindeutige Reaktion als Effekt der Düngung. Die stärkste Zunahme in den vier verschiedenen Aminosäuren im Vergleich zu den Kontrollpflanzen zeigt *Hypogymnia physodes*, deren ARG-Gehalt in der 28,6 mM NH₄Cl-Variante um das achtfache, der GLN-Gehalt etwa um das sechsfache angestiegen ist (Abb. 5-6). *Parmelia sulcata* zeigt in diesen beiden Aminosäuren bei allen Verbindungen, mit Ausnahme der 14,3 mM KNO₃-Variante, eine 2-3fache Erhöhung des Wertes der Kontrollfläche. Die höher konzentrierten Düngelösungen bewirken bei *Parmelia sulcata* und *Hypogymnia physodes* höhere ARG- und GLN-Gehalte als die geringer konzentrierten Varianten. Für *Evernia prunastri* trifft dieser Umstand in der NH₄Cl-Varianten nicht zu.

Insgesamt betrachtet führten die ammoniumhaltigen Düngevarianten bei allen Arten zu einem höheren Anstieg in den verschiedenen Aminosäuren als die KNO₃-Varianten.

Bei den unbehandelten Proben besitzt *E. prunastri* höhere GLN-, ARG- und insbesondere PRO-Konzentrationen als die anderen beiden Arten. Die Analyse von ASN der Kontrollpflanzen ergab bei *P. sulcata* die höchsten Konzentrationen.

Abb. 5-6: Glutamin-, Arginin-, Asparagin- und Prolinkonzentrationen von *Evernia prunastri*, *Hypogymnia physodes* und *Parmelia sulcata* nach zwölfmonatiger Behandlung mit verschiedenen Stickstoffverbindungen in unterschiedlichen Konzentrationen.

Abb. 5-7 verdeutlicht, dass mit zunehmender Stickstoffkonzentration der untersuchten Arten infolge der zwölfmonatigen Düngung, der Stickstoff verstärkt in Form von Aminosäuren akkumuliert wird. Insbesondere *Hypogymnia physodes* weist bei einem hohen N-Gehalt stark erhöhte Konzentrationen an Glutamin und Arginin auf.

Abb. 5-7: Zusammenhang zwischen der Konzentration der Aminosäuren Glutamin, Arginin, Prolin, Asparagin und der N-Konzentration von *Evernia prunastri* (schwarze Punkte), *Hypogymnia physodes* (weiße Punkte) und *Parmelia sulcata* (schwarze Dreiecke) nach zwölf Monaten Versuchsdauer.

5.3.4 Chlorophyllgehalt

Abb. 5-8: Gesamtchlorophyllgehalt von *Evernia prunastri*, *Hypogymnia physodes* und *Parmelia sulcata* nach zwölfmonatiger Behandlung mit verschiedenen Stickstoffverbindungen in unterschiedlichen Konzentrationen. (von *H. physodes* war in der 14,3 mM, von *E. prunastri* in der 28,6 mM KNO₃-Variante nicht genügend Material für die Analytik vorhanden).

Wie Abb. 5-8 zeigt, ist der Chlorophyllgehalt der drei Flechtenarten in den mit Stickstoff behandelten Flächen höher als in den unbehandelten Kontrollflächen. Die 14,3 mM NH₄Cl-Variante verursachte in allen drei Arten den höchsten Chlorophyllgehalt, welcher bei *Evernia prunastri* und *Parmelia sulcata* auf mehr als das Doppelte angestiegen ist als in den unbehandelten Flechten. Eine Erhöhung der NH₄Cl-Konzentration auf 28,6 mM führte in allen drei Arten zu einer Abnahme des Chlorophyllgehalts. Bei *Hypogymnia physodes* liegen die Werte in den gedüngten Flächen im Bereich zwischen 1,3 und 1,7 mg g⁻¹ TG eng zusammen und sind im Vergleich zu den beiden anderen Arten am geringsten. Die Kaliumnitratdüngung hat bei *Evernia prunastri* und *Parmelia sulcata* zu niedrigeren Chlorophyllgehalten geführt als die NH₄⁺-haltigen Varianten, jedoch nicht bei *Hypogymnia physodes*.

5.4 Diskussion

5.4.1 N- und ¹⁵N_{excess}-Konzentration

Die Ergebnisse zeigen, dass ein erhöhter Stickstoffeintrag in Form von Ammonium oder Nitrat zu einer Erhöhung des Stickstoffgehalts in den untersuchten epiphytischen Arten führt. Ein durch Düngung erzielter Anstieg des Stickstoffgehalts in Moosen und Flechten sind auch in anderen Untersuchungen nachgewiesen worden, beispielsweise für die Moosarten Dicranum majus (BAKKEN 1995), Sphagnum cuspidatum (PRESS et al. 1986), Rhytidiadelphus squarrosus (CAROLL et al. 2000) oder die Flechtenarten Hypogymnia physodes und Platismatia glauca (DAHLMAN et al. 2003). Diese Ergebnisse stehen im Gegensatz zu Düngungsexperimenten von DAHLMAN et al. (2002) mit Nephroma arcticum und Peltigera aphtosa oder GAIO-OLIVEIRA et al. (2004) mit Xanthoria parietina bei denen trotz hoher Stickstoffaufnahme, nachgewiesen anhand ¹⁵N-markierter Verbindungen, kein signifikanter Anstieg der Stickstoffgewebekonzentrationen festgestellt werden konnten. Als mögliche Ursache führen GAIO-OLIVEIRA et al (2004) eine schnelle metabolische Umsetzung des Stickstoffs an, bei der N-Aufnahme und N-Verlust im Gleichgewicht stehen. Dies deutet darauf hin, dass die Fähigkeit Stickstoff zu akkumulieren artspezifisch ist. In der vorliegenden Untersuchung war die Stickstoffaufnahme und -akkumulation bei Parmelia sulcata und Hypogymnia physodes am größten, insbesondere in der NH₄Cl-Variante stieg der N-Gehalt stark an. Die Anreicherungsverläufe erreichten hier keine Sättigung und lassen die Vermutung zu, dass auch noch bei höheren Depositionen als 60 kg N ha⁻¹ a⁻¹ eine Aufnahme und Akkumulation von Ammonium möglich ist. Die deutlich geringere N-Anreicherung in der Strauchflechte Evernia prunastri im Vergleich zu den beiden Blattflechten liegt möglicherweise in der Wuchsform begründet. Einen Zusammenhang zwischen der Wuchsform von Flechten und der N-Aufnahme sahen auch LANG et al. (1976), die bei den Blattflechten Platismatia glauca, Parmelia saxatilis und Hygymnia spp. eine höhere Ammoniumaufnahme feststellen konnten als bei den Strauchflechten Evernia mesomorpha, Pseudevernia cladonia und Usnea spec.

Die bei allen Arten beobachteten höheren Stickstoffgehalte in den NH₄Cl-Varianten gegenüber den KNO₃-Varianten deuten auf eine bevorzugte Aufnahme des Stickstoffs in der Kationenform hin. Dies wird auch in den unterschiedlich markierten Ammoniumnitrat-Varianten deutlich, in denen NH₄⁺ gegenüber NO₃⁻ bevorzugt aufgenommen wird. Ähnliche Beobachtungen liegen für einige epigäische Moos- (SOLGA 2003, SOARES & PEARSON 1997,

WEBER & VAN CLEVE 1981, RUDOLPH et al. 1993) und Flechtenarten (SMITH 1960, HÄLLBÖM & BERGMAN 1983, CRITTENDEN 1996, DAHLMAN et al. 2002, 2004) vor. Auch in Höheren Pflanzen (MARSCHNER et al. 1991, KRONZUCKER et al. 1997, FLAIG & MOHR 1992, RAVEN et al. 1992) sowie in Pilzen (z.B. JENNINGS 1995, SMITH & READ 1997) ist die bevorzugte Aufnahme von NH_4^+ ein bekanntes Phänomen.

Hierfür werden in der Literatur verschiedene Gründe angeführt. Zum einen ist bei Moosen und Flechten die Kationenaustauschkapazität bei der Nährstoffaufnahme von entscheidender Bedeutung (NIEBOER et al. 1978, BROWN 1982, BATES 1992, BROWN et al. 1994). Untersuchungen von CLYMO (1963) mit verschiedenen Arten der Gattung *Sphagnum* zeigten, dass die Anionenaustauschkapazität etwa hundertmal geringer ist als die der Kationen. MILLER & BROWN (1995) haben an *Peltigera membranacea* nachgewiesen, dass Ammoniumionen und andere Kationen sehr schnell extrazellulär an negativ geladenen Stellen der Zellwand gebunden werden können, wobei die Ammoniumaufnahme bei einer Konzentration von etwa 40 mM NH₄Cl gesättigt scheint.

Während die extrazelluläre Aufnahme von Salzen über Ionenaustauch ein passiver Prozess darstellt, erfolgt die intrazelluläre Aufnahme aktiv. Da Stickstoff stets in reduzierter Form in organische Verbindungen eingebaut wird, ist die Assimilation von Ammonium für die Pflanze energetisch günstiger, als die Aufnahme von Nitrat (GROSSMAN & TAKAHASHI 2001). Sowohl Pilze als auch grüne Pflanzen reduzieren Nitrat in zwei enzymkatalysierten Schritten über Nitrit zu Ammonium:

Nitratreduktase NO₃⁻
$$\longrightarrow$$
 NO₂⁻ \longrightarrow NH₄⁺

Die Nitratreduktase ist in grünen Pflanzen und Pilzen nicht permanent vorhanden, sondern die Bildung wird durch das Substrat Nitrat und Licht induziert. Bei Fehlen des Substrats wird die Nitratreduktase innerhalb kurzer Zeit abgebaut. Weiterhin kann die Nitratreduktase bei Vorhandensein von NH₄⁺ reprimiert werden (GROSSMAN & TAKAHASHI 2001). Dies erklärt möglicherweise die geringen ¹⁵N_{excess}-Konzentrationen der NH₄¹⁵NO₃-Varianten im Vergleich zu den K¹⁵NO₃-Varianten. RUDOLPH & VOIGT (1986) konnten nachweisen, dass bei einer Konzentration von 322 μ M NO₃⁻ die Enzymaktivität der Nitratreduktase in *Sphagnum magellanicum* um 50% gesteigert wurde, wohingegen eine Abnahme der Aktivität um 20% bei 600 μ M NH₄Cl zu beobachten war. Eine Hemmung der Nitratreduktaseaktivität durch NH₄⁺, sowie eine Aktivitätsteigerung durch NO₃⁻ stellten auch SOARES & PEARSON (1997) bei den Moosarten *Racomitrium lanuginosum, Rhytidiadelphus loreus* und *Philonotis fontana* fest. Untersuchungen an *Sphagnum fuscum* zeigten, dass die Nitratreduktaseaktivität durch Erhöhung der Nitratzufuhr gesteigert werden kann und dass eine zusätzliche Behandlung mit Ammonium die Aktivität verringert (WOODIN et al. 1985). Düngungsexperimente von DAHLMAN et al. (2004) an mehreren Flechtenarten weisen darauf hin, dass die N-Aufnahme ein ATP-abhängiger Prozess ist. Durch Hemmung ATP-abhängiger zellulärer Transportwege konnte insbesondere die Nitrataufnahme deutlich reduziert werden. Die Aufnahme von Ammonium hingegen ist im Vergleich zu Nitrat in höherem Maße passiv.

In Begasungsexperimenten an Höheren Pflanzen wurde festgestellt, dass auch Ammoniak die Nitratreduktase zu hemmen vermag (PEARSON & SOARES 1998), NO_x hingegen die Aktivität dieses Enzyms fördert (NORBY et al. 1989, THOENE et al. 1991, PEARSON & STEWART 1993).

Sowohl das aus der Nitratreduktion entstandene als auch das aus dem Medium aufgenommene NH_4^+ wird durch die Glutaminsynthetase in Glutamin umgesetzt. Während die Bildung der Nitratreduktase durch NH_4^+ gehemmt wird, führt die Düngung mit NH_4^+ in Blättern Höherer Pflanzen zu einer Aktivitätssteigerung der Glutaminsynthetase (PEARSON & SOARES 1998).

Die angeführten physiologischen Charakteristika könnten somit mögliche Ursachen für die präferente Aufnahme von Ammonium gegenüber Nitrat darstellen. Weiterführende Untersuchungen zu den Auswirkungen von Nitrat und Ammonium auf die am Stickstoffmetabolismus beteiligten Enzymen Nitratreduktase, Glytaminsynthetase und Glutamatdehydrogenase in Flechten wären wünschenswert.

Bei den Ergebnissen fällt auf, dass E. prunastri deutlich weniger von den markierten aufgenommen hat und insbesondere die ¹⁵NO₃-haltigen Stickstoffverbindungen Düngevarianten eine wesentlich geringere ¹⁵N_{excess}-Konzentration aufweisen als die ¹⁵NH₄⁺haltigen (Abb. 5-3 c). Über die Gründe hierfür kann nur spekuliert werden. Möglicherweise ist bei der N-Aufnahme die Wuchsform von Bedeutung, wobei strauchige, stark verzweigte Thalli lösliche Nährstoffe schwächer absorbieren können als die breiten Loben der Blattflechten (SHAPIRO 1984). Diese Vermutung steht jedoch im Gegensatz zu Untersuchungen von DAHLMAN et al. (2004), die bei einigen Blattflechtenarten signifikant geringere Nitrataufnahmeraten feststellen konnten als bei Strauchflechten. Hierbei war jedoch weder E. prunastri noch P. sulcata Gegenstand der Untersuchung, somit lassen sich diesbezüglich keine generalisierende Aussagen treffen. Wahrscheinlicher ist, dass die Aktivität der Nitratreduktase von Art zu Art variiert. SHAPIRO (1984) analysierte bei mehreren Flechtenarten die Aktivität der Nitratreduktase nach Inkubation der Thalli in einer KNO3-Lösung und stellte fest, dass die Höhe der Nitratreduktaseaktivität bei den verschiedenen Arten sehr unterschiedlich ist und bei einer Art (*Peltigera malacea*) sogar keinerlei Aktivität festgestellt werden konnte. SCHUURKES et al. (1986) konnten nachweisen, dass *Sphagnum flexuosum* Nitrat als N-Quelle nicht nutzen kann und führen als Begründung eine extrem niedrige Aktivität der Nitratreduktase an.

Parmelia sulcata und *Hypogymnia physodes* können zwar deutlich mehr Nitrat aufnehmen, doch zeigt sich auch hier, dass trotz Verdopplung der K¹⁵NO₃-Konzentration keine Steigerung der ¹⁵N_{excess}-Konzentration erzielt werden konnte.

Zwischen Mai und August nimmt die ¹⁵N_{excess}-Konzentration in allen vier Arten wesentlich geringer zu als zwischen den restlichen Monaten. Die Ursache hierfür liegt wahrscheinlich darin, dass in den trockeneren Sommermonaten die physiologische Aktivität der Kryptogamen deutlich geringer ist als im Herbst oder Winter und somit weniger Stickstoff verstoffwechselt und akkumuliert werden kann. Düngungsexperimente von GAIO-OLIVEIRA et al. (2004) in Portugal an *Xanthoria parietina* mit ¹⁵NH₄Cl-Lösungen zeigen ebenfalls, dass in den Sommermonaten mit wenig Regenereignissen keine Aufnahme von Stickstoff stattfindet.

Beim Vergleich der ¹⁵N_{excess}-Konzentration in den unterschiedlichen Thallusbereichen von Evernia prunastri und Parmelia sulcata hat sich gezeigt, dass in den Wachstumszonen deutlich höhere Werte erzielt wurden als in den älteren Thallusbereichen. Ähnliche Ergebnisse liegen auch für die Blattflechten Nephroma arcticum und Peltigera aphtosa vor (DAHLMAN et al. 2002, SUNDBERG et al. 2001) sowie für die Strauchflechte Cladonia portentosa deren Stickstoffgehalte in den Thallusspitzen (5 mm) zwei bis fünf mal höher sind als im basalen Bereich (HYVÄRINEN & CRITTENDEN 1998). DAHLMAN et al. (2002) führen als Erklärung zwei unterschiedliche Gründe an: entweder wird der aufgenommene Stickstoff von den älteren Thallusbereichen verstärkt in die Wachstumszonen verlagert oder die Aufnahmerate ist in den randlichen Bereichen des Thallus höher aufgrund einer höheren Dichte an Photobionten. Untersuchungen von GREENHALGH & ANGLESEA (1979) an Parmelia saxatilis zeigten, dass die Anzahl der Algenzellen in den Randloben am höchsten ist. Daher ist es aus Gründen der Standardisier- und Vergleichbarkeit ratsam, bei der Bestimmung des N-Gehaltes in Flechten zur Abschätzung atmosphärischer Stickstoffeinträge definierte Thallusabschnitte zu verwenden. So wird auch bei der Bestimmung von Schwermetallen in Flechten nur die äußere 2-4 mm-Randzone analysiert, da der innere ältere Thallusbereich meist eine höhere Konzentration an Schwermetallen aufweist (SCERBO et al. 1999, BARGALI & NIMIS 2002). Untersuchungen an Moosen zeigen, dass die N-Aufnahme in den oberen Sprossabschnitten größer ist als in den basalen Bereichen (SOARES & PEARSON 1997, JONSDOTTIR et al. 1995). Auf die Wichtigkeit der Verwendung vergleichbarer Sprossabschnitte bei Moosen zum Monitoring atmosphärischer N-Einträge weist MALMER (1998) hin. Bei Flechten kann es allerdings je nach Wuchsform und Größe des Thallus schwierig sein, Wachstumszonen zu differenzieren und ist auch nicht zwingend nötig. So zeigen die Stickstoffkonzentrationen der Thalli von *Physcia adscendens* oder *Hypogymnia physodes* gute Korrelationen mit dem atmosphärischem N-Eintrag (GOMBERT et al. 2003, BRUTEIG 1993). In der Blattflechte *Xanthoria parietina* konnten GAIO-OLIVEIRA et al. (2001) keinen signifikanten Unterschied im N-Gehalt zwischen der Randzone und dem inneren Bereich feststellen.

Die geringe Variation des N-Gehaltes in den mit destilliertem Wasser behandelten Flechten zeigt, dass die Jahreszeit keinen bedeutenden Einfluss auszuüben scheint und die Probenahme das ganze Jahr über durchgeführt werden kann. Diese Feststellung machten auch GOMBERT et al. (2003) in Grenoble für *Physcia adscendens*, deren Stickstoffgehalte zu zwei unterschiedlichen Jahreszeiten (Juli und November) keinen Unterschied aufwiesen. Die Kontrollpflanzen von *Orthotrichum affine* hingegen besitzen im Spätherbst einen deutlich höheren Stickstoffgehalt als im Frühjahr. Für das Wachstum von Moosen sind hohe Luftfeuchtigkeit und Niederschlag von entscheidender Bedeutung (STREETER 1965, RINCON & GRIME 1989) und somit ist auch die Nährstoffaufnahme in den kühl-feuchten Herbstmonaten am größten (BROWN 1982, STREETER 1965). Bei der Analyse des Stickstoffgehalts in Moosen von unterschiedlichen Standorten ist es folglich wichtig, einen eng begrenzten Probenahmezeitraum einzuhalten (SOLGA 2003, PITCAIRN & FOWLER 1995). Im Gegensatz zu den Moosen sind die saisonal unterschiedlichen Zuwachsraten bei Flechten wahrscheinlich zu gering, um den Stickstoffgehalt wesentlich zu beeinflussen (GOMBERT et al. 2003).

5.4.2 Aminosäuren

Der in der vorliegenden Untersuchung beobachtete Anstieg in der Aminosäurekonzentration infolge von Stickstoffdüngung ist übereinstimmend mit Ergebnissen aus Düngungsexperimenten an Moosen und Höheren Pflanzen. NORDIN & GUNNARSSON (2000) zeigten bei verschiedenen Arten der Gattung *Sphagnum*, dass der Einfluss von unterschiedlich konzentrierten NH₄NO₃-Lösungen auf den Gehalt an Arginin, Asparagin, Prolin und Glutamin höchst signifikant ist. Die Düngung mit 0,1 mM NH₄Cl führte bei *Sphagnum cuspidatum* zu einem Anstieg von Glutamin um das dreifache, von Arginin um das 19fache und von Asparagin um das vierfache (BAXTER et al. 1992). Signifikante Einflüsse von NH₄NO₃ auf die Aminosäurekonzentration wurden für Arginin und Glutamin in *Vaccinium myrtilis*, für Asparagin in Blättern und Wurzeln von *Deschampsia flexuosa* und für Asparagin, Arginin und Glutamin für *Dicranum majus* und *Pleurozium schreberi* festgestellt (NORDIN et al. 1998). Für Flechten allerdings liegen bisher kaum Untersuchungen über den Einfluss von Stickstoffdüngung auf den Aminosäuregehalt von. Lediglich DAHLMAN et al. (2003) ermittelten einen signifikanten Anstieg der Gesamtaminosäure- sowie insbesondere der Argininkonzentration bei *Hypogymnia physodes* und *Platismatia glauca* aus mit NH₄NO₃ gedüngten Fichtenwäldern. Mit einer Arginin-Konzentration für *H. physodes* von etwa 5,2 mg g⁻¹ TG bei einer Gesamt-N-Konzentration von 1,5% TG ermittelten die Autoren deutlich geringere Werte als in der vorliegenden Untersuchung.

Da NH₄⁺ als Entkoppler der Phosphorylierung fungiert, ist dessen Anreicherung, entweder durch direkte Aufnahme von NH₄⁺ oder durch Reduktion von Nitrat, toxisch (Strasburger 1998). Die schnelle Umsetzung in Aminosäuren stellt somit für die Pflanzen eine Entgiftungsfunktion dar. Die erhöhten Aminosäurekonzentrationen infolge der Düngung deuten darauf hin, dass von den Flechten mehr Stickstoff aufgenommen wird als in Proteine umgesetzt werden kann und der überschüssige Stickstoff in Form von Aminosäuren akkumuliert wird. Auf die Funktion der Aminosäuren als Speicher für überschüssigen Stickstoff weisen auch FLAIG & MOHR (1992), NORDIN & NÄSHOLM (1997) und PITCAIRN et al. (2003) hin.

Die stärkste Reaktion auf die Düngung zeigten die Aminosäuren Glutamin und Arginin. Da bei der NH_4^+ -Assimilation als erstes Produkt Glutamin entsteht, ist dessen Anreicherung durch Zufuhr NH_4^+ -haltiger Lösungen erwartungsgemäß, so zählen Asparagin und Glutamin zu den wichtigsten Transportmetaboliten für Stickstoff (PATE 1980, STEWART et al. 1993). Die Akkumulation des Arginins erklärt sich durch das sehr geringe C/N-Verhältnis (1,5), das diese Aminosäure im Vergleich zu anderen Aminosäuren, wie beispielsweise Glutamat (C/N-Verhältnis = 5), besitzt. Daher ist bei der Metabosilierung von anorganischen Stickstoffverbindungen in Aminosäuren die Synthese von Arginin energetisch am effizientesten (HUHN & SCHULZ 1996, NORDIN & NÄSHOLM 1997). Zudem kann akkumuliertes Arginin sehr schnell wieder mobilisiert werden (PLANELLES & LEGAZ 1987). Mit einem C/N-Verhältnis von 2,5 für Glutamin bzw. 2 für Asparagin ist für die Bildung dieser beiden Aminosäuren ebenfalls vergleichsweise wenig Kohlenstoff notwendig. Begasungsversuche mit NH₃ und NO₂ an Höheren Pflanzen resultierten ebenfalls in einem Anstieg der Aminosäurekonzentrationen (ITO et al. 1986, PÉREZ-SOBA et al. 1994). Die höchsten Konzentrationen an Glutamin und Arginin wurden in *Hypogymnia physodes* nachgewiesen. So führte beispielsweise die Düngung mit 28,6 mM NH₄Cl zu einer dreimal höheren Arginin-Konzentration als in *Parmelia sulcata*, obwohl die Kontrollpflanzen dieser beiden Arten im Arginin-Gehalt sehr ähnlich liegen. Möglicherweise kann *P. sulcata* wesentlich besser den applizierten Stickstoff für die Proteinsynthese nutzen als *H. physodes*, die den überschüssigen Stickstoff verstärkt in Form von Aminosäuren akkumuliert. Die bei *H. physodes* vergleichsweise geringere Produktion an Chlorophyllen bei erhöhtem Stickstoffangebot stützt diese Vermutung. Die Ursache für das großflächige Fehlen von *H. physodes* in Regionen mit hohen NH₄⁺-Depositionen (vgl. Kap. 2) könnte somit in der begrenzten Fähigkeit liegen, verfügbaren Stickstoff zu metabolisieren. Toxisches NH₄⁺ wird dann nicht ausreichend in Form von Aminosäuren entgiftet.

In den Kontrollpflanzen ist bei allen drei Arten die Konzentration an Glutamin am größten, gefolgt von Arginin, Prolin und Asparagin. Zu ähnlichen Ergebnissen kamen auch JÄGER & WEIGEL (1978) für die Flechtenarten *Platismatia glauca*, *Hypogymnia physodes* und *Pseudevernia furfuracea*. Bemerkenswert ist die deutlich höhere Prolin-Konzentration der Strauchflechte *Evernia prunastri* im Vergleich zu den beiden Blattflechten. Einen für die Strauchflechte *Pseudevernia furfuracea* erhöhten Prolingehalt im Vergleich zu den Blattflechten *Platismatia glauca* und *Hypogymnia physodes* stellten auch JÄGER & WAIGEL (1978) fest. Es kann vermutet werden, dass Strauchflechten, die aufgrund ihrer Wuchsform erhöhtem Trockenstress ausgesetzt sind, grundsätzlich höhere Prolingehalte aufweisen, da diese Aminosäure unter anderem auch bei Wasserstress akkumuliert wird (HSIAO 1973).

Ein durch Stickstoffdüngung erhöhter Prolingehalt wurde in den bereits zitierten Düngungsexperimenten weder an Moosen noch an Kiefernnadeln festgestellt. Lediglich NÄSHOLM et al. (1994) ermittelten durch simulierte Düngung von 500 kg N ha⁻¹ a⁻¹ in Form von NH₄NO₃ einen signifikanten Anstieg der Prolinkonzentration in *Vaccinium vitis-idaea*, *Deschampsia flexuosa* und *Epilobium angustifolium*. GHOULAM et al. (2002) zeigten, dass durch erhöhte Konzentrationen von NaCl die Prolinkonzentration in Zuckerrüben stark ansteigt. Die Autoren vermuten, dass der Aminosäure Prolin eine Bedeutung bei der Salztoleranz von Pflanzen zukommt.

5.4.3 Chlorophyllgehalt

Der durch die Düngung erzielte Anstieg des Chlorophyllgehalts in den drei Flechtenarten zeigt, dass der aufgenommene Stickstoff von den Flechten metabolisiert wurde und nicht nur in Aminosäuren sondern auch in Chlorophyll umgesetzt wurde. Daraus lässt sich schließen, dass erhöhte Stickstoffeinträge von 30 bzw. 60 kg N ha⁻¹ a⁻¹ den Photobionten nicht schädigen, sondern im Gegenteil die Chlorophyllsynthese steigern. Es kann davon ausgegangen werden, dass mit einer Zunahme des Chlorophyllgehalts auch weitere an der Photosynthese beteiligte Proteine in ihrer Konzentration ansteigen und zu einer erhöhten Photosynthesekapazität führen (VALLADARES et al. 1996, PALMQVIST et al. 2002, DAHLMAN et al. 2003). Fraglich bleibt allerdings inwiefern der Mycobiont auf die Stickstoffzufuhr reagiert. GAIO-OLIVEIRA et al. (2004) konnten in einem Düngungsexperiment mit *Xanthoria parietina* nachweisen, dass der Photobiont bei stark erhöhten NH₄⁺ - Konzentrationen weniger geschädigt wird als der Mycobiont. Als Ursache hierfür wird die größere Oberfläche der Pilzhyphen, die den N-Verbindungen ausgesetzt ist, sowie die bessere Fähigkeit des Photobionten assimiliertes Ammonium in nicht-toxische Substanzen (Aminosäuren, Proteine) umzusetzen, diskutiert.

Einen Zusammenhang zwischen erhöhtem N-Eintrag und Chlorophyllgehalt bei *Hypogymnia physodes* konnte auch KAUPPI (1980) feststellen, der in der Umgebung einer Düngemittelfabrik etwa dreifach höhere Chlorophyllgehalte analysierte als in Kontrollproben. Düngungsexperimente von DAHLMAN et al. (2003) belegen ebenfalls einen deutlichen Anstieg der Chlorophyll-a-Konzentration bei *Hypogymnia physodes* und *Platismatia glauca*. Allerdings scheinen stark erhöhte Stickstoffeinträge die Photosynthese zu hemmen, wie Düngungsexperimente an *Parmelia sulcata* belegen (BROWN & TOMLINSON 1993, BROWN et al. 1995).

Dass erhöhte Stickstoffeinträge auch in Moosen die Chlorophyllkonzentration ansteigen lässt, zeigen Experimente an *Dicranum majus* (BAKKEN 1995). Zu gegenteiligen Ergebnissen allerdings kommen BAXTER et al. (1992) bei *Sphagnum cuspidatum* und RUDOLPH & VOIGT (1986) bei *Sphagnum magellanicum*.

In der vorliegenden Arbeit wurde der höchste Chorophyllgehalt in allen drei Flechtenarten durch die Applikation von 14,3 mM NH₄Cl erzielt, wobei der Anstieg bei *Evernia prunastri* im Vergleich zur Kontrolle am stärksten war. Die beobachtete Abnahme der Chlorophyllgehalte bei der doppelt so hohen NH₄Cl-Konzentration bei allen drei Arten lässt

vermuten, dass eine optimale Nutzung des Stickstoffs für die Chlorophyllsynthese bei einem Ammoniumeintrag von etwa 30 kg N ha⁻¹ a⁻¹ liegt.

Hypogymnia physodes weist im Vergleich zu den beiden anderen Arten die geringste Spannweite im Chlorophyllgehalt auf. Dies weist darauf hin, dass *H. physodes* weniger effizient den applizierten Stickstoff für die Synthese von Chlorophyll sowie an der Photosynthese beteiligten Proteine nutzen kann und daher wahrscheinlich den Stickstoff verstärkt in Form von Aminosäuren akkumuliert.

5.5 Schlussfolgerungen

Die Untersuchung zeigt, dass das N-Akkumulationsverhalten artspezifisch ist. Für die Bioindikation atmosphärischer Stickstoffeinträge eignen sich vor allem Hypogymnia physodes und Parmelia sulcata, die auf die simulierte Deposition am eindeutigstem mit einem Anstieg in ihrer N-Gewebekonzentration reagieren. Die Materialaufbereitung von Hypogymnia physodes gestaltet sich weniger zeitintensiv als bei Parmelia sulcata und ist deshalb in Gebieten mit häufigem Vorkommen dieser Art für ein Stickstoffmonitoring vorzuziehen. Allerdings spricht das mittlerweile fast völlige Fehlen von Hypogymnia physodes in landwirtschaftlich intensiv genutzten Regionen für die Verwendung von Parmelia sulcata, deren ökologische Standortamplitude breiter ist und die zu einer der häufigsten epiphytischen Flechten in Deutschland zählt. Von der Verwendung ganzer Thalli wird bei Parmelia sulcata abgeraten, da den Ergebnissen zur Folge sich die N-Gehalte der Randloben und der zentralen Thallusteile sehr stark unterscheiden. Zudem sind große und somit ältere Individuen länger einem Stickstoffeintrag ausgesetzt sind, so dass wahrscheinlich mehr Stickstoff in ihrem Gewebe anreichert ist als jüngeren Thalli. Diese Differenzierung gestaltet sich bei Hypogymnia physodes bedingt durch die Wuchsform deutlich schwieriger, weshalb hier aus Gründen der besseren Handhabbarkeit ganze Thalli für die Analytik genutzt werden sollten.

Aufgrund der bevorzugten Aufnahme von Ammonium-N besteht bei Rückschlüssen auf die Deposition aus Flechten-Stickstoffgehalten möglicherweise die Gefahr der Unterschätzung der Gesamtdeposition in Regionen mit hohem Nitrat-Eintrag. Diese Gefahr wird allerdings als gering eingeschätzt und besteht v.a. bei der Verwendung von *Evernia prunastri* als Akkumulationsindikator. Da sowohl *Parmelia sulcata* als auch *Hypogymnia physodes* in der Lage sind, in gewissem Maß Nitrat aufzunehmen und die Nitrat-Depositionen in Deutschland meist weit unter den hier simulierten Depositionen liegen, dürften auch die Nitrateinträge miterfasst werden.

Stickstoffgehaltsmessungen in Flechten sind v.a. sinnvoll bei vergleichenden Untersuchungen mit räumlichem Bezug. Aufgrund des Akkumulationsverhaltens sind zeitliche Vergleiche nur über größere Zeiträume hinweg möglich.

Die in der Kontrolle beobachteten geringen Schwankungen lassen die Vermutung zu, dass der Zeitpunkt der Probenahme von untergeordneter Bedeutung ist. Allerdings handelt es sich bei dem Untersuchungsgebiet um eine Region mit geringer Hintergrundbelastung und es bleibt die Frage offen, wie sehr die Stickstoffgehalte variieren können in Regionen mit saisonal sehr unterschiedlichem N-Eintrag.

Die durch die Düngung erzielten Zunahmen der Aminosäure- und Chorophyll-Gehalte zeigt, dass die zugeführten Stichstoffverbindungen metabolisiert wurden. Überschüssiger Stickstoff wird vor allem in Form Arginin und Glutamin gespeichert, woraus zu schließen ist, dass hohe Konzentrationen dieser beiden Aminosäuren einen erhöhten Stickstoffeintrag anzeigen und ebenfalls für die Bioindikation genutzt werden können. Hierfür würde sich insbesondere *Hypogymnia physodes* eignen, deren Aminosäurekonzentration infolge der Düngung am stärksten anstieg. Nachteilig sind allerdings die hohen Analysekosten, sowie die notwendige Trockenbiomasse von etwa 500 mg pro Messung.

Die vorliegende Untersuchung beschränkt sich auf die Auswirkungen von Nitrat und Ammonium auf den Stickstoffgehalt von Epiphyten. Inwiefern Stickstoff aus gasförmigen Verbindungen wie NH_3 und NO_x von epiphytischen Flechten und Moosen aufgenommen und verstoffwechselt werden kann und den Gesamtstickstoffgehalt beeinflusst, bedarf zusätzlicher umfangreicher Untersuchungen.

6 Bioindikation regionaler Stickstoff-Depositionsunterschiede mit epiphytischen Flechten

Zusammenfassung

In Gebieten mit unterschiedlichen N-Depositionen wurden Proben von *Parmelia sulcata*, *Hypogymnia physodes* und *Xanthoria parietina* gesammelt zwecks Analyse der N-Gewebekonzentration, des natürlichen N-Isotopenverhältnisses, der Konzentration bestimmter Aminosäuren und des Chlorophyllgehaltes. Für *Parmelia sulcata* und *Hypogymnia physodes* Arten ergaben sich signifikante Zusammenhänge zwischen der Höhe des Stickstoffeintrags und den analysierten N-Gewebekonzentrationen. Hinsichtlich des N-Isotopenverhältnisses wurde die beste Beziehung zwischen dem δ^{15} N und der Ammoniumdeposition bei *Parmelia sulcata* erzielt, wobei mit zunehmendem NH₄⁺-Eintrag die δ^{15} N-Werte negativer wurden. Die Aminosäureanalyse zeigte deutliche Unterschiede im Gehalt bestimmter Aminosäuren in Abhängigkeit des Stickstoffeintrags. Bei *Parmelia sulcata* war an Stationen mit hohen N-Depositionen eine Akkumulation insbesondere von Arginin zu beobachten (etwa 20fach). Die Arginin-Konzentrationen von *Xanthoria parietina* hingegen waren im Vergleich zu *Parmelia sulcata* deutlich geringer (etwa Faktor 10).

Die Ergebnisse bestätigen, dass die Ermittlung der N-Gewebekonzentrationen von *Parmelia sulcata* und *Hypogymnia physodes* als Indikator für atmosphärische Stickstoffeinträge genutzt werden kann. Die Analyse der Aminosäuren Arginin, Asparagin Glutamin und Prolin bei *Parmelia sulcata* erlaubt ebenfalls Rückschlüsse auf die Höhe des N-Eintrags.

6.1 Einleitung

Die Untersuchungen des vorangegangenen Kapitels haben gezeigt, dass insbesondere die Flechtenarten Hypogymnia physodes und Parmelia sulcata auf eine erhöhte Stickstoffzufuhr mit einem Anstieg in ihrer N-Gewebekonzentration reagieren. Ziel des vorliegenden Untersuchungsabschnitts ist es, zu überprüfen, ob sich auch unter natürlichen Depositionsverhältnissen kausale Beziehungen zwischen dem N-Eintrag und den N-Gewebekonzentrationen dieser beiden Arten ableiten lassen. Dass eine solche Beziehung bei H. physodes grundsätzlich besteht, haben bereits Arbeiten aus Skandinavien gezeigt (BRUTEIG 1993, SØCHTING 1995). Aufgrund des mittlerweile großflächigen Fehlens von H. physodes in einigen Regionen Mitteleuropas ist diese Art allerdings nur bedingt für ein großflächiges Monitoring verwendbar. Daher ist es von besonderem Interesse, ob auch P. sulcata, als einer der häufigsten epiphytischen Flechtenarten in Mitteleuropa, als Bioindikator für atmosphärische N-Einträge geeignet ist. Neben der Analyse der N-Konzentrationen wurde auch die natürliche Variation der Stickstoffisotope ${}^{14}N/{}^{15}N$ ($\delta^{15}N$ -Werte) ermittelt. Der $\delta^{15}N$ -Wert Pflanzen hauptsächlich durch Isotopenverhältnis von wird das der Stickstoffquellverbindung bestimmt. So zeigen Untersuchungen, dass Moose oder

Kiefernborken an Standorten mit hohen Ammoniakimmissionen deutlich negative δ^{15} N-Werte besitzen (PEARSON et al. 2000, SCHULZ et al. 2001). Da bislang an Flechten keine Studien bekannt sind, die einen solchen Zusammenhang untersuchen, soll in der vorliegenden Untersuchung überprüft werden, inwiefern das Isotopenverhältnis in Flechten Rückschlüsse auf mögliche Belastungsquellen erlaubt.

Abschließend soll die Analyse der Aminosäure-, Chlorophyll- und Carotinoidkonzentrationen klären, inwiefern sich regionale N-Depositionsunterschiede auf diese Stoffwechselprodukte auswirken.

Die Einbeziehung der nitrophytischen Flechtenart *Xanthoria parietina* in die Untersuchungen soll Erklärungsansätze für die Nitrophilie dieser Art liefern.

6.2 Material und Methoden

6.2.1 Probenahmegebiete

Die Beprobung erfolgte in der Umgebung der sieben Depositionsmessstationen der Landesanstalt für Ökologie, Bodenordnung und Forsten (LÖBF) in Nordrhein-Westfalen. In Tab. 6-1 sind Stationen aufgeführt mit Angaben zum atmosphärischen Stickstoffeintrag. Es handelt sich um Messwerte der mittels Bulk-Sammler erfassten Freiflächendeposition. Eine Beschreibung der eingesetzten Bulk-Sammler geben GEHRMANN et al. (2001) Zusätzlich zu den erwähnten Messstationen wurden mit den Stationen "Coesfeld" in Nordrhein-Westfalen und "Lirstal" in Rheinland-Pfalz zwei weitere Standorte beprobt, die sich in ihrer Immissionssituation deutlich unterscheiden dürften. Die Region um Coesfeld in der Westfälischen Bucht ist stark landwirtschaftlich geprägt mit entsprechend hohen Ammoniakdepositionen (LETHMATE et al. 2002), die Eifel hingegen unterliegt überwiegend forstlicher Nutzung.

Detaillierte geographische Angaben zur Lage aller beprobten Baumstationen sind Anhang E zu entnehmen.

Tab. 6-1: Messstationen der LÖBF und die zwei weiteren beprobten Stationen mit Angabe
zur naturräumlichen Einordnung und Meereshöhe. Daten zu Niederschlag, Bulk-Depositio
und gasförmiger Stickstoffeintrag beziehen sich auf das Jahr 2002 (Datenquelle: LÖB
NRW).

			Nieder-	Bulk-Deposition		on	Immissionen	
Station	Naturraum	Höhe ü.	schlag	$[kg ha^{-1} a^{-1}]$			$[\mu g m^{-3}]$	
		NN [m]	$[mm a^{-1}]$	NH ₄ -N	NO ₃ -N	N _{ges}	NH ₃	NO ₂
Kleve	Niederrh. Tiefl.	35	974	10,74	6,07	16,81	6,76	17,37
Haard	Westfäl. Bucht	80	952	10,17	7,49	17,66	2,63	19,57
Velmerstot	Weserbergland	420	1417	7,55	6,45	14,00	1,12	10,42
Glindfeld	Sauerland	470	1083	3,55	4,53	8,08	0,82	7,00
Elberndorf	Sauerland	670	1722	4,72	5,06	9,78	0,57	6,60
Rott	Nordeifel	510	1255	7,70	6,21	13,91	1,39	8,06
Paderborn	Weserbergland	380	1386	9,54	7,64	17,18	-	-
Coesfeld	Westfäl. Bucht	80	-	-	-	-	-	-
Lirstal	Östl. Eifel	390	-	-	-	-	-	-

6.2.2 Probenahme und Materialaufbereitung

In der Untersuchung wurden die Blattflechten *Parmelia sulcata, Hypogymnia physodes* und *Xanthoria parietina* berücksichtigt. Da die beiden letztgenannten Arten aufgrund des Fehlens in einigen Regionen nicht an allen Stationen beprobt werden konnte, war nur für *Parmelia sulcata* eine Beprobung an allen Stationen möglich.

Die Probenahme erfolgte im April 2003 an freistehenden Bäumen der Arten *Acer platanoides* und *Acer pseudoplatanus* im Umkreis von maximal drei km der Freilandmessstationen der LÖBF. Es wurden nur Bäume mit unverletzten, senkrecht stehenden Stämmen (\pm 5 Grad) von mindestens 70 cm Umfang ausgewählt. An jeder Station wurden mindestens 25 Flechtenthalli von mehreren Baumstämmen (n > 10) gesammelt. Dabei wurde eine Mindesthöhe von 1 m über dem Boden eingehalten, um Einflüsse durch Spritzwasser und Hundeharn zu minimieren.

Das Material für die Gesamt-N- und Isotopenanalyse wurde in Polyethylenbeutel verpackt und bis zur Weiterverarbeitung bei -18°C tiefgefroren. Im Labor wurden die Flechtenthalli von Schmutzpartikeln und Borkenresten gereinigt und bei 70°C für 48 Stunden im Trockenschrank getrocknet. Von *Parmelia sulcata* und *Xanthoria parietina* wurden jeweils etwa 30 Stücke der äußeren 5 mm eines jeden Thallus zu einer Mischprobe vereinigt. Die Zerkleinerung der getrockneten Proben wurde mit einer Kugelmühle durchgeführt. Mit Ausnahme der Station Coesfeld wurden pro Gebiet mindestens zehn Proben von jeder Art analysiert. Material, das für die Aminosäure- und Pigmentanalyse bestimmt war, wurde vor Ort von anhaftenden Borkenresten und Schmutzpartikeln gereinigt und in flüssigem Stickstoff tiefgefroren. Die Zwischenlagerung bis zur Analyse erfolgte bei -80°C. Zur Analyse gelangten Mischproben aus ca. 50 Flechtenthalli von mindestens zehn Trägerbäumen.

6.2.3 Analysen

N und $\delta^{15}N$

Die Analyse der Gesamtstickstoffkonzentration und des natürlichen N-Isotopenverhältnisses erfolgte mittels eines Massenspektrometers (Europa Scientific, Typ 20-20, Crewe/UK). Das getrocknete und pulverisierte Flechtenmaterial wurde in Zinnkapseln mit einer Probenmenge von ca. 5 mg in das Gerätesystem eingebracht. Die Variation der natürlichen ¹⁵N/¹⁴N-Isotopenverhältnisse wird allgemein als δ^{15} N-Wert ausgedrückt und nach folgender Gleichung berechnet (z.B. SHEARER & KOHL 1993):

$$\delta^{15} N[\%] = \frac{({}^{15} N/{}^{14} N)_{\text{Probe}} - ({}^{15} N/{}^{14} N)_{\text{Standard}}}{({}^{15} N/{}^{14} N)_{\text{Standard}}} x1000$$

¹⁵N/¹⁴N beschreibt das Verhältnis der Anzahl an ¹⁵N-Atomen zu der Anzahl an ¹⁴N-Atomen. Als Standard diente die Isotopenverteilung des molekularen Luftstickstoffs mit einem Wert von 0,3663 Atom%.

Aminosäuren und Pigmente

Die Proben wurden gefriergetrocknet und gemahlen (micro dismembrator U.B. Biotech, Melsungen, Germany). Die Bestimmung der Aminosäuren Arginin (ARG), Alanin (ALA), Asparagin (ASN), Glutamin (GLN), Glutamat (GLU), Glycin (GLY), Serin (SER) und Prolin (PRO) erfolgte mittels HPLC nach HUHN & SCHULZ (1996). Die Chlorophyll- und Carotinoidkonzentration wurde ermittelt nach der Methode von LICHTENTHALER & WELLBURN (1983).

6.2.4 Statistische Auswertung

Zur Analyse linearer Abhängigkeiten der ermittelten Daten mit den N-Depositionsraten der LÖBF-Stationen diente die lineare Regression. Um die Stärke und Richtung der Zusammenhänge zwischen den ermittelten Aminosäurekonzentrationen und N-Konzentrationen wurde der Rangkorrelationskoeffizient nach Spearman berechnet. Die Analysen wurden mit dem Programmpaket SPSS 11 durchgeführt.

6.3 Ergebnisse

6.3.1 N-Konzentrationen

Die in den Flechtenproben ermittelten Stickstoffkonzentrationen liegen bei *Hypogymnia physodes* zwischen 0,65 und 3,05%, bei *Parmelia sulcata* zwischen 0,78 und 3,81% und bei *Xanthoria parietina* zwischen 1,61 und 3,91%. Tab. 6-2 gibt einen Überblick über die mittleren N-Konzentrationen der drei Arten an den verschiedenen Stationen. Zur besseren Übersicht sind die Ergebnisse in Abb. 6-1 grafisch dargestellt. Nur an den Stationen "Rott" und "Velmerstot" konnten alle drei Arten gemeinsam beprobt werden. Die höchsten N-Konzentrationen weist *Xanthoria parietina* auf, deren Werte mit Ausnahme an der Station Rott etwa um 0,3-0,5 höher sind als bei *Parmelia sulcata. Hypogymnia physodes* zeigt im Vergleich die geringsten N-Konzentrationen.

	Parmelia sulcata	Hypogymnia physodes	Xanthoria parietina
Coesfeld	$3,10 \pm 0,10$	-	$3,61 \pm 0,27$
	(2,96 - 3,22)	-	(3,24 - 3,91)
	n=5	-	n=5
Elberndorf	$1,16 \pm 0,17$	$0,92 \pm 0,18$	-
	(0,84 - 1,65)	(0,65 - 1,35)	-
	n=40	n=36	-
Glindfeld	$1,37 \pm 0,12$	$1,26 \pm 0,17$	-
	(1,12 - 1,56)	(0,92 - 1,50)	-
	n=40	n=19	-
Haard	$3,16 \pm 0,34$	$2,46 \pm 0,41$	-
	(2,29 - 3,81)	(1,69 - 3,05)	-
	n=30	n=13	
Kleve	$3,05 \pm 0,27$	-	$3,46 \pm 0,16$
	(2,49 - 3,59)	-	(3,21 - 3,70)
	n=30	-	n=16
Lirstal	$1,09 \pm 0,11$	$0,90 \pm 0,10$	-
	(0,88 – 1,39)	(0,71 - 1,13)	-
	n=43	n=45	-
Paderborn	$2,12 \pm 0,34$	-	$2,44 \pm 0,24$
	(1,58 - 2,68)	-	(2,23 - 2,90)
	n=20	-	n=10
Rott	$1,96 \pm 0,53$	$1,63 \pm 0,12$	$2,20 \pm 0,40$
	(0,78 - 2,68)	(1,41 - 1,78)	(1,61 - 2,73)
	n=50	n=10	n=10
Velmerstot	$2,05 \pm 0,30$	$1,69 \pm 0,28$	$2,06 \pm 0,47$
	(1,52 - 2,62)	(1,33 - 2,07)	(1,71 - 3,12)
	n=20	n=6	n=10

Tab. 6-2: Mittelwerte der N-Konzentrationen mit Standardabweichung von *Parmelia sulcata*, *Hypogymnia physodes* und *Xanthoria parietina* an den untersuchten Stationen (Spannweite in Klammern); -: Art kam nicht in ausreichender Menge vor.

Abb. 6-1: N-Konzentrationen von *Hypogymnia physodes*, *Parmelia sulcata* und *Xanthoria parietina* an den untersuchten Stationen. Dargestellt sind die Mittelwerte mit einfacher Standardabweichung (Anzahl der Proben siehe Tab. 6-2).

Die räumliche Verteilung der N-Konzentrationen am Beispiel von *Parmelia sulcata* zeigt sich in der kartographischen Darstellung der Untersuchungsergebnisse (Abb. 6-2). Die niedrigsten N-Konzentrationen wurden im Sauerland festgestellt. In der Nordeifel und im Weserbergland waren die Stickstoffgehalte mit Werten von etwa 2% vergleichbar. Die höchsten N-Konzentrationen wurden mit Mittelwerten von mehr als 3% in den agrarisch genutzten Tieflandsbereichen im Nordwesten von Nordrhein-Westfalen festgestellt.

Abb. 6-2: N-Konzentrationen mit einfacher Standardabweichung (in % TG) von *Parmelia sulcata* an freistehenden Bäumen in Nordrhein-Westfalen.

Sowohl für *Parmelia sulcata* als auch für *Hypogymnia physodes* ergibt sich ein signifikanter Zusammenhang zwischen der N-Deposition und den ermittelten N-Konzentrationen (Abb. 6-3). Der Anstieg der N-Konzentrationen mit zunehmender Deposition ist bei *Parmelia sulcata* größer als bei *Hypogymnia physodes*, die Modellgüte (R²) ist bei beiden Arten vergleichbar.

Abb. 6-3: Zusammenhang zwischen N-Deposition und N-Konzentrationen von *Parmelia sulcata* und *Hypogymnia physodes*. Dargestellt sind Mittelwerte mit einfacher Standardabweichung sowie die Regressionsgerade mit Geradengleichung und Bestimmtheitsmaß (Anzahl der Proben siehe Tab. 6-2).

Abb. 6-4: Zusammenhang zwischen NH_4^+ -N-Deposition und N-Konzentrationen von *Parmelia sulcata* und *Hypogymnia physodes*. Dargestellt sind Mittelwerte mit einfacher Standardabweichung sowie die Regressionsgerade mit Geradengleichung und Bestimmtheitsmaß (Anzahl der Proben siehe Tab. 6-2).

In Abb. 6-4 ist der Zusammenhang zwischen der Ammoniumdeposition und den N-Konzentrationen von *Parmelia sulcata* und *Hypogymnia physodes* dargestellt. Mit steigender NH_4^+ -Deposition nehmen die N-Konzentrationen beider Arten zu. Die berechneten Regressionsgleichungen sowie Modellgüten (R²) der beiden Arten unterscheiden sich nur geringfügig.

Die Beziehung zwischen der Nitratdeposition und den N-Konzentrationen erweist sich für *Parmelia sulcata* gegenüber den vorher gezeigten Zusammenhängen als schwächer (Abb. 6-5). Bei *Hypogymnia physodes* ist die Modellgüte von $R^2 = 0,68$ identisch mit den Modellgüten der Regressionen aus Abb. 6-3 und 6-4. Für beide Arten ist der statistische Zusammenhang signifikant.

Beim Vergleich der beiden Arten ist zu beachten, dass *Hypogymnia physodes* nur an fünf Stationen beprobt werden konnte im Gegensatz zu sieben Stationen bei *Parmelia sulcata*.

Abb. 6-5: Zusammenhang zwischen NO₃⁻N-Deposition und N-Konzentrationen von *Parmelia sulcata* und *Hypogymnia physodes*. Dargestellt sind Mittelwerte mit einfacher Standardabweichung sowie die Regressionsgerade mit Geradengleichung und Bestimmtheitsmaß (Anzahl der Proben siehe Tab. 6-2).

$6.3.2 \ \delta^{15} N$

Die für die Arten *Hypogymnia physodes*, *Parmelia sulcata* und *Xanthoria parietina* ermittelten durchschnittlichen δ^{15} N-Werte sind stets negativ. Einige wenige Messungen an den Stationen Rott, Glindfeld und Elberndorf ergaben positive Werte (Messdaten siehe Anhang E). Die mittleren δ^{15} N-Werte liegen für *P. sulcata* zwischen -2,8 und -8,9‰, für *H. physodes* zwischen -1,5 und -8,5 ‰ und für *X. parietina* im Bereich von -2,8 bis -10,8‰. Die niedrigsten δ^{15} N-Werte wurden an den Stationen Kleve und Haard sowie in der Umgebung von Coesfeld festgestellt (Abb. 6-6). Während das δ^{15} N von *Xanthoria parietina* in Kleve und Coesfeld deutlich negativer ist als von *Parmelia sulcata*, trifft dies für die Stationen Paderborn und Velmerstot nicht zu. An den Stationen mit Vorkommen von *Hypogymnia physodes* hat diese Art meist ein negativeres δ^{15} N als *Parmelia sulcata* bzw. *Xanthoria parietina*, wobei der Unterschied nicht signifikant ist.

Abb. 6-6: δ^{15} N von *Hypogymnia physodes* (weiß), *Parmelia sulcata* (grau) und *Xanthoria parietina* (schwarz) an den untersuchten Stationen. Dargestellt sind die Mittelwerte mit einfacher Standardabweichung (Anzahl der Proben siehe Tab. 6-2).

Abb. 6-7 zeigt den Einfluss der Ammoniumdeposition auf das N-Isotopenverhältnis. Mit zunehmender NH4⁺-Deposition weisen beide Arten ein negativeres δ^{15} N auf, allerdings ist der Zusammenhang bei einem Bestimmtheitsmaß von 0,4 bzw. 0,36 relativ schwach einzustufen.

Abb. 6-7: Zusammenhang zwischen Ammoniumdeposition und dem δ^{15} N von *Parmelia sulcata* und *Hypogymnia physodes*. Dargestellt sind Mittelwerte mit einfacher Standardabweichung sowie die Regressionsgerade mit Geradengleichung und Bestimmtheitsmaß (Anzahl der Proben siehe Tab. 6-2).

Der Zusammenhang zwischen Nitratdeposition und dem N-Isotopenverhältnis ist in Abb. 6-8 dargestellt. Im Vergleich zu den bisher gezeigten Beziehungen zeigt dieses Modell mit einem Bestimmtheitsmaß von unter 0,4 die geringste Anpassungsgüte.

Abb. 6-8: Zusammenhang zwischen Nitratdeposition und dem δ^{15} N von *Parmelia sulcata* und *Hypogymnia physodes*. Dargestellt sind Mittelwerte mit einfacher Standardabweichung sowie die Regressionsgerade mit Geradengleichung und Bestimmtheitsmaß (Anzahl der Proben siehe Tab. 6-2).

6.3.3 Aminosäuren

Die Konzentrationen der analysierten Aminosäuren der drei Flechtenarten aus den verschiedenen Untersuchungsgebieten sind in Tab. 6-3 aufgeführt. Es liegen nur für *Parmelia sulcata* Daten von allen Stationen vor. Glutamin ist in allen Fällen die dominierende Aminosäure, deren Gesamtanteil an den analysierten Aminosäuren etwa 50% beträgt, gefolgt von Arginin und Prolin. Die Stationen Coesfeld und Haard zeigen in den dominierenden Aminosäuren die höchsten Konzentrationen, wohingegen in Glindfeld und Lirstal die niedrigsten Konzentrationen festgestellt wurden (Abb. 6-9). Insbesondere Arginin zeigt eine große Spannweite. So beträgt die Arginin-Konzentration von *Parmelia sulcata* in Coesfeld fast das 20fache des Wertes aus Glindfeld. GLY, ALA, ASP und SER weisen von allen analysierten Aminosäuren die geringsten Konzentrationen auf.

Tab. 6-3: Aminosäurekonzentrationen ($\mu g g^{-1} TG$) von *Parmelia sulcata* (Parsul), *Xanthoria parietina* (Xanpar) und *Hypogymnia physodes* (Hypphy) aus verschiedenen Untersuchungsgebieten.

		Coesfeld	Glindfeld	Haard	Lirstal	Kleve	Paderborn	Rott	Velmerstot
ASN	Parsul	688	51	445	194	288	281	213	114
	Xanpar	-	-	-	-	40	-	-	-
	Hypphy	-	49	-	69	-	-	-	-
GLN	Parsul	7629	2745	7099	2574	4865	4997	5259	3859
	Xanpar	-	-	-	-	5051	6333	4654	-
	Hypphy	-	4054	-	1712	-	-	-	-
ARG	Parsul	3807	205	2730	788	2371	1674	1778	712
	Xanpar	-	-	-	-	275	173	171	-
	Hypphy	-	737	-	718	-	-	-	-
PRO	Parsul	2611	690	2251	670	2311	2241	1641	1200
	Xanpar	-	-	-	-	1831	1984	1974	-
	Hypphy	-	501	-	561	-	-	-	-
GLU	Parsul	758	817	519	879	549	608	751	778
	Xanpar	-	-	-	-	336	512	493	-
	Hypphy	-	1401	-	1584	-	-	-	-
GLY	Parsul	119	15	74	28	60	35	32	23
	Xanpar	-	-	-	-	34	42	33	-
	Hypphy	-	14	-	17	-	-	-	-
ALA	Parsul	178	252	172	106	131	223	208	251
	Xanpar	-	-	-	-	147	241	181	-
	Hypphy	-	329	-	120	-	-	-	-
ASP	Parsul	237	100	-	161	125	116	158	141
	Hypphy	-	135	-	161	-	-	-	-
SER	Parsul	121	47	-	59	68	47	50	58
	Hypphy	-	35	-	51	-	-	-	-

Abb. 6-9: Konzentrationen der häufigsten Aminosäuren von *Parmelia sulcata* in verschiedenen Untersuchungsgebieten.

Die nitrophile Flechtenart *Xanthoria parietina* konnte nur an den Stationen Kleve, Paderborn und Rott beprobt werden. Ein Vergleich der Aminosäurekonzentrationen von *Parmelia sulcata* und *Xanthoria parietina* an diesen Stationen zeigt, dass sich die Arginin-Konzentration dieser beiden Flechtenarten stark unterscheidet. *Parmelia sulcata* besitzt etwa acht- bis zehnmal mehr an Arginin als *Xanthoria parietina* (Abb. 6-10). Solche erheblichen Unterschiede wurden für die anderen Aminosäuren nicht festgestellt (Tab. 6-3).

Abb. 6-10: Vergleich der Argininkonzentrationen von *Parmelia sulcata* und *Xanthoria parietina* an den Stationen Kleve, Paderborn und Rott.

Abb. 6-11: Zusammenhang zwischen N-Deposition und Asparagin- (ASN), Arginin- (ARG), Glutamin- (GLN) und Prolinkonzentration (PRO) von *Parmelia sulcata*. Dargestellt sind die Regressionsgerade, die Geradengleichung und das Bestimmtheitsmaß.

Mit zunehmender Stickstoffdeposition nimmt die Konzentration der Aminosäuren ASN, ARG, GLN und PRO von *Parmelia sulcata* stark zu (Abb. 6-11). Der Anstieg ist am größten bei Arginin und Glutamin.

Für *Parmelia sulcata* ergeben sich signifikant positive Korrelationen zwischen Gesamtstickstoffkonzentration und den Aminosäuren GLN, ARG, GLY, PRO und ASN. Mit der N-Konzentration korreliert signifikant negativ der Gehalt an Glutamat.

Aminosau	irekonzent	rationen b	el Parmeli	a sulcata	(n=8). *: P	<u>′ < 0,05, *′</u>	r: P < 0,01	, zweiseitig
	N _{ges}	GLN	GLU	ARG	GLY	ALA	PRO	ASN
N _{ges}	1,00	*	*	*	**		**	**
GLN	0,81	1,00		**	*		*	*
GLU	-0,81	-0,67	1,00				*	
ARG	0,81	0,86	-0,67	1,00	**		**	**
GLY	0,86	0,83	-0,69	0,98	1,00		**	**
ALA	-0,19	-0,07	0,21	-0,55	-0,52	1,00		
PRO	0,90	0,83	-0,74	0,88	0,90	-0,24	1,00	**
ASN	0,86	0,83	-0,69	0,98	1,00	-0,52	0,90	1,00

Tab. 6-4: Korrelationskoeffizienten nach Spearman zwischen Gesamtstickstoff- (N_{ges}) und Aminosäurekonzentrationen bei *Parmelia sulcata* (n=8). *: P < 0,05, **: P < 0,01, zweiseitig.

6.3.4 Pigmente

In Abb. 6-12 und 6-13 sind die Zusammenhänge zwischen dem Chlorophyll- bzw. Carotinoidgehalt und dem Stickstoffgehalt von *Parmelia sulcata* dargestellt. Bei niedriger N-Konzentration weist *P. sulcata* vergleichsweise geringe Gehalte der analysierten Pigmente auf. Mit zunehmender N-Konzentration steigt der Pigmentgehalt zunächst deutlich an mit einem Maximum bei einer N-Konzentration von etwa 2% TG. Der Chlorophyllgehalt ist hier etwa um das dreifache, der Carotinoidgehalt etwa um das doppelte angestiegen. Bei erhöhten N-Konzentrationen von über 3% TG nimmt der Gehalt an Pigmenten wieder ab.

Abb. 6-12: Zusammenhang zwischen dem Chlorophyllgehalt (Chlorophyll a und b) und der N-Konzentration bei *Parmelia sulcata*. Kurvenanpassung durch nichtlineare Regression.

Abb. 6-13: Zusammenhang zwischen dem Carotinoidgehalt (Chlorophyll a und b) und der N-Konzentration bei *Parmelia sulcata*. Kurvenanpassung durch nichtlineare Regression.

6.4 Diskussion

6.4.1 N-Konzentrationen

Die aufgezeigten Zusammenhänge zwischen N-Deposition und N-Konzentration von *Parmelia sulcata* und *Hypogymnia physodes* (Abb. 6-3 bis 6-5) belegen, dass sich regionale Depositionsunterschiede im Stickstoffgehalt dieser beiden Flechtenarten widerspiegeln. Die Analyse der N-Gewebekonzentrationen dieser Arten erlaubt dem zur Folge eine grobe Abschätzung der N-Freiflächendeposition. Die Gesamtstickstoffdeposition sowie die NH₄⁺- Deposition scheinen die N-Konzentrationen bei beiden Arten stärker zu beeinflussen als die Nitratdeposition. Der statistische Zusammenhang zwischen den N-Konzentrationen in den Flechten und N-Depositionsraten beruht den Ergebnissen aus Kapitel 5 zur Folge auf der Fähigkeit der Flechten deponierte Stickstoffverbindungen zu akkumulieren. Trotz deutlich geringerer Niederschlagsmengen in den Untersuchungsgebieten im Niederrheinischen Tiefland und in der Westfälischen Bucht wird in den N-Konzentrationen der beprobten Flechten die insgesamt hohe Belastung durch stickstoffhaltige Luftverunreinigungen in diesen Gebieten deutlich.

Bereits KAUPPI (1980) untersuchte die Auswirkungen eutrophierender Luftschadstoffe aus einer Düngemittelfabrik auf den N-Gehalt von *Hypogymnia physodes* und ermittelte in unmittelbarere Umgebung der Fabrik mit Spitzenwerten von 3,31% etwa vierfach höhere Werte als in Kontrollflechten in 15 km Entfernung.

Einen signifikanten Zusammenhang zwischen atmosphärischem Stickstoffeintrag und Stickstoffgehalten von *Hypogymnia physodes* ermittelte auch BRUTEIG (1993) in Norwegen. Mit Stickstoffkonzentrationen von 0,42-1,96% wurden für Norwegen damals deutlich geringere Werte festgestellt als in der vorliegenden Untersuchung. SØCHTING (1995) berichtet über Ergebnisse von N-Gehaltsmessungen bei *Hypogymnia physodes* aus Skandinavien, die im Bereich zwischen 0,7 und 2,5% liegen. N-Analysen bei *Platismatia glauca* im Westen der USA ergaben signifikant höhere Werte in urbanen oder agrarisch genutzten Gebieten als in unbelasteten Waldstandorten (FENN et al. 2003). Weitere Beispiele für Stickstoffkonzentrationen einiger epiphytischer Flechtenarten im Vergleich zu den eigenen Analysedaten sind in Tab. 6-5 zusammengestellt.

Art	Ν	Untersuchungsgebiet	Autor
Evernia prunastri	1,00%	Schweden	PALMQVIST et al. (2002)
Hypogymnia physodes	0,90-2,46%	NRW, Deutschland	eigene Untersuchung
Hypogymnia physodes	0,7-2,5%	Schweden	SØCHTING (1995)
Hypogymnia physodes	0,42-1,96 %	Norwegen	Bruteig (1993)
Hypogymnia physodes	0,75-2,56%	Finnland	POIKOLAINEN (1998)
Hypogymnia physodes	0,81-3,17%	Umgebung einer Düngemittelfabrik in Finnland	Kauppi (1980)
Hypogymnia physodes	0,6-0,8%	Schweden	PALMQVIST et al. (2002)
Hypogymnia physodes	1,21-3,75%	Grenoble, Frankreich	GOMBERT et al. (2003)
Parmelia sulcata	1,09-3,16%	NRW, Deutschland	eigene Untersuchung
Parmelia sulcata	1,60%	London	PURVIS et al. (2002)
Physcia adscendens	1,75-4,21%	Grenoble, Frankreich	GOMBERT et al. (2003)
Platismatia glauca	0,35-0,98 %	Westen der USA	FENN et al. (2003)
Xanthoria parietina	2,06-3,61%	NRW, Deutschland	eigene Untersuchung
Xanthoria parietina	2,36-3,34%	Portugal	Gaio-Oliveira et al. (2001)

Tab. 6-5: Mittlere Stickstoffkonzentrationen epiphytischer Flechtenarten diverser Untersuchungen.

In Großbritannien konnten HYVÄRINEN & CRITTENDEN (1998) zeigen, dass sich regionale N-Depositionsunterschiede im Stickstoffgehalt der heidebewohnenden Flechtenart *Cladonia portentosa* widerspiegeln.

Untersuchungen über den Zusammenhang zwischen N-Depositionen und Stickstoffgewebekonzentrationen liegen auch für Moose vor. Beispiele hierfür finden sich bei MALMER (1988), BADDELEY et al. (1994), MOHR (1999), PITCAIRN et al. (1995, 1998, 2001, 2002, 2003) und SOLGA (2003).

Xanthoria parietina weist an allen Stationen, an denen sie beprobt wurde, höhere N-Konzentrationen als *Parmelia sulcata* und *Hypogymnia physodes* auf. GAIO-OLIVEIRA et al. (2001) konnten an *Xanthoria parietina* im Vergleich zu *Parmelia caperata*, *Evernia prunastri* und *Ramalina fastigiata* ebenfalls die höchsten N-Konzentrationen feststellen.

Die hohen N-Konzentrationen von bis zu 3,5% bei *Xanthoria parietina* (Station Coesfeld) entsprechen Werten, die normalerweise bei stickstofffixierenden Flechten nachgewiesen werden (GREENFIELD 1992, PALMQVIST et al. 2002). Ornithokoprophytische Flechtenarten an eutrophierten Standorten in der Antarktis besitzen N-Konzentrationen von 1,05 bis 3,15% (GREENFIELD 1992). Die für *X. parietina* ermittelten höheren N-Konzentrationen als für *P. sulcata* und *H. physodes* können eine Erklärung für die Nitrophilie dieser Flechteart darstellen. Untersuchungen von CRITTENDEN et al. (1994) deuten darauf hin, dass durch

Stickstoffdüngung bei *X. parietina* der Chitingehalt des Mycobionten wesentlich stärker zunimmt als bei anderen Arten. Dies lässt die Vermutung zu, dass *X. parietina* ein Überangebot an Stickstoff besser nutzen kann als einige andere Arten.

$6.4.2 \ \delta^{15}N$

In Gebieten mit hoher Stickstoffbelastung war die δ^{15} N-Signatur der untersuchten Flechtenarten negativer als in Gebieten mit geringer Belastung. Die im Vergleich beste Beziehung existiert für *Parmelia sulcata* zwischen der Ammoniumdeposition und dem δ^{15} N. Als Ursache für die Variabilität des N-Isotopenverhältnisses ist die Variation der δ^{15} N-Signatur bei den verschiedenen Quellverbindungen anzunehmen. Niederschlagsanalysen belegen für Ammonium stets ein negativeres δ^{15} N als für Nitrat (FREYER 1978, GARTEN 1992, HEATON et al. 1997). Ursache hierfür sind u.a. kinetische Isotopeneffekte, die bei Diffusionsprozessen und Wechselwirkungen zwischen den Molekülen auftreten. Dabei wird das schwerere Isotop ¹⁵N grundsätzlich gegenüber dem leichteren Isotop ¹⁴N diskriminiert (SCHLEE et al. 1996a). Aus diesem Grund wird Ammoniak beim Verflüchtigungsprozess besonders an ¹⁵N abgereichert (FREYER 1978). Die Diskriminierung des ¹⁵N Isotops bei der Verflüchtigung des Ammoniaks aus der kondensierten in die Gasphase wird auch bei MOORE (1977) diskutiert. SCHULZ et al. (2001) ermittelten für aus Gülle stammendes Ammoniak δ^{15} N-Werte zwischen -37 und -42,9‰, Analysen von ERSKINE et al. (1998) ergaben für an einem Pinguinfelsen emittiertes NH₃ eine Signatur von -10 ‰. Das δ^{15} N von Stickoxiden hingegen ist deutlich höher. FREYER (1991) konnte für Stickoxide in Autoabgasen δ^{15} N-Werte zwischen +3,7 und -1,8% feststellen. Das δ^{15} N von Stickoxiden aus Kraftwerkemissionen liegt im Bereich zwischen +6 und +13‰ (HEATON 1990). Dies bedingt die nur schwach negativen bzw. positiven δ^{15} N-Werte des Nitrats im Niederschlag.

Über den Einfluss der emittierten Stickstoffverbindung auf das natürlichen N-Isotopenverhältnis einiger epilithischer Moosarten berichten PEARSON et al. (2000). Sie ermittelten in Ballungsräumen mit verkehrsbedingten hohen NO_x-Emissionen positive δ^{15} N-Werte, für Bereiche mit geringem Verkehrsaufkommen schwach negative Werte und für den ländlichen Raum mit dominierenden NH₃-Emissionen stark negative Werte. Einen engen Zusammenhang zwischen δ^{15} N-Werten und NH₃ bzw. NH₄⁺-Deposition stellten auch SCHULZ et al. (2001) bei der Analyse von Kiefernborke aus unterschiedlich stark belasteten Gebieten fest. Zu Bedenken ist, dass in der vorliegenden Untersuchung auch mit zunehmender Nitratdeposition eine Abnahme der δ^{15} -Signatur zu beobachten ist. Bei *Hypogymnia physodes* ist der Zusammenhang zwischen dem δ^{15} und der Ammoniumdeposition sogar vergleichbar mit dem der Nitratdeposition. Somit erscheint es hier nicht möglich aufgrund der δ^{15} N-Signatur von *H. physodes* Rückschlüsse auf die N-Quelle zu ziehen. Möglicherweise eignet sich das natürliche N-Isotopenverhältnis von Flechten zur Bioindikation verschiedener N-Spezies nicht in dem Maße wie es bisher für andere Organismengruppen nachgewiesen wurde. Auf die Schwierigkeit eine Beziehung zwischen der δ^{15} -Signatur bei Flechten und dem atmosphärischen N-Eintrag herzustellen, weisen auch Untersuchungen von ELLIS et al. (2003) hin. Problematisch für die statistische Auswertung dieses Untersuchungsabschnitts sind die N-Depositionsverhältnisse der untersuchten Stationen, die bei erhöhtem Ammonium-Eintrag gleichzeitig eine erhöhte Nitrat-Deposition aufweisen. Umgekehrt besitzen die Stationen mit niedrigen NH₄⁺-Depositionsraten auch geringe Nitrat-Werte. Um die Einflüsse von NH₄⁺ bzw. NO₃⁻ auf das δ^{15} N von Flechten zu untersuchen, müssten Standorte ausgewählt werden, die sich in den Depositionsraten dieser beiden N-Spezies stark unterscheiden. Zudem wäre eine größere Anzahl an Untersuchungsstandorten sinnvoll.

Die größte Spannweite im N-Isotopenverhältnis (-2,8 bis -10,8‰) mit stark negativen Werten in den landwirtschaftlich beeinflussten Regionen um Kleve und Coesfeld weist *Xanthoria parietina* auf. In den mit NH₃ und NH₄⁺ eher unbelasteten Gebieten in Eifel und Weserbergland sind die δ^{15} N-Werte von *X. parietina* nur schwach negativ und im Vergleich zu *P. sulcata* und *H. physodes* höher. Dies lässt die Vermutung zu, dass das N-Isotopenverhältnis von *X. parietina* möglicherweise am ehesten für den Nachweis von NH₃-Immissionen bzw. NH₄⁺-Depositionen geeignet ist.

Da bislang kaum Untersuchungen zu N-Isotopenverhältnissen von Flechten existieren, stehen entsprechend wenige Vergleichsdaten zur Verfügung. Von SCHLEE et al. (1996b) wurde die Variabilität des natürlichen N-Isotopenverhältnisses von *Hypogymnia physodes* und *Pseudevernia furfuracea* in Abhängigkeit eines Höhengradienten in den östlichen Zentralalpen untersucht. Die dabei ermittelten δ^{15} N-Werte zwischen -5 und -7‰ entsprechen in etwa den Werten von *H. physodes* aus der vorliegenden Untersuchung.

6.4.3 Aminosäuren

Die Untersuchungen zu den Auswirkungen experimenteller Stickstoffdüngung auf Flechten in Kapitel 5 haben bereits gezeigt, dass eine erhöhte Stickstoffzufuhr den Gehalt bestimmter Aminosäuren ansteigen lässt. Im Rahmen des vorliegenden Untersuchungsabschnitts bestätigt sich nun, dass auch unter natürlichen Depositionsbedingungen ein Zusammenhang zwischen dem atmosphärischen Stickstoffeintrag und der Aminosäurekonzentration von Parmelia sulcata besteht. Für die Bioindikation atmosphärischer Stickstoffeinträge anhand der Analyse Aminosäurekonzentrationen fanden bisher meist epigäische Moose, von Blätter waldbodenbewohnender Phanerogamen sowie Kiefer- bzw. Fichtennadeln Verwendung. PITCAIRN et al. (2003) ermittelten einen engen Zusammenhang zwischen der in der Moosart Rhytidiadelphus triquetrus dominierenden Aminosäure Arginin und der NH₃-Immission. Analysen von Kiefernnadeln an Standorten mit unterschiedlichen N-Depositionen zeigten eine bemerkenswerte Anreicherung (etwa 100fach) der Aminosäure Arginin in Gebieten mit erhöhtem N-Eintrag (HUHN & SCHULZ 1996). Ebenfalls erhöhte Arginin-Konzentrationen in Regionen mit hohen N-Depositionen stellten EDFAST et al. (1990) in Nadeln von Pinus sylvestris und Picea abies fest. In den erwähnten Untersuchungen an Moosen und Phanerogamen konnte kein Zusammenhang zwischen dem N-Eintrag und der Prolinkonzentration festgestellt werden. Die in der vorliegenden Untersuchung nachgewiesenen hohen Konzentrationen von Prolin in Gebieten mit hohen N-Depositionen scheinen möglicherweise ein flechtenspezifisches Phänomen zu sein. SILBERSTEIN et al. (1996) konnten an stark verkehrsbelasteten Standorten in Tel-Aviv eine etwa vierfach höhere Prolin-Konzentration bei Xanthoria parietina feststellen als in Gebieten mit relativ geringer Luftbelastung im Nordosten Israels. Die Autoren vermuten, dass unter Stressbedingungen, wie beispielsweise hohe Belastung mit Luftschadstoffen, Prolin eine Schutzfunktion besitzt. Generell gilt Prolin als Stressmetabolit, der bei den verschiedensten Belastungen, besonders auch im Zusammenhang mit Wassermangel, zu teilweise enormen Konzentrationen akkumuliert (SCHULZE et al. 2002).

Zur Klärung des Akkumulationsverhaltens von Prolin in Flechten bei erhöhten Stickstoffdepositionen bedarf es weiterer Untersuchungen.

Ein Vergleich mit den Analyseergebnissen des Düngungsexperiments aus Kapitel 5 zeigt, dass die Aminosäurekonzentrationen des vorliegenden Untersuchungsabschnitts selbst an den mit Stickstoff am höchsten belasteten Standorten geringere Werte aufweisen. Somit scheint *Parmelia sulcata* grundsätzlich in der Lage zu sein, höhere Stickstoffeinträge zu tolerieren als die zurzeit gegebenen.

Über die Funktion der Aminosäuren bei erhöhtem Stickstoffeintrag wurde bereits in Kapitel 5 ausführlich diskutiert. Einige Untersuchungen weisen auf die Bedeutung freier Aminosäuren, insbesondere Arginin, für die N-Speicherung in Pflanzen hin (OHLSEN et al. 1995, NORDIN & NÄSHOLM 1997). Eine wesentliche Funktion der Aminosäuren Arginin und Glutamin in pflanzlichem Gewebe ist die Entgiftung von cytotoxischem NH₃/NH₄⁺ (EDFAST et al. 1990,
HUHN & SCHULZ 1996). Parmelia sulcata kann möglicherweise ein hohes Angebot an Stickstoff nicht ausreichend in Proteine umsetzten und muss überschüssiges NH₄⁺ in Form besagter Aminosäuren speichern. Xanthoria parietina hingegen weist im Vergleich zu Parmelia sulcata an gleichen Standorten deutlich geringere Arginin-Konzentrationen auf (etwa Faktor 10). Dies könnte darauf hinweisen, dass Xanthoria parietina den Stickstoff bei einer hohen Verfügbarkeit wesentlich effizienter nutzen kann, beispielsweise für die Proteinsynthese, und nicht auf die Entgiftung oder Speicherung des NH_v in Form von Aminosäuren angewiesen ist. Als Ursache für das häufige Vorkommen nitrophytischer Arten wie Xanthoria parietina in landwirtschaftlich genutzten Gebieten wird meist ein durch NH₃-Emissionen erhöhter Borken-pH-Wert angeführt (DE BAKKER 1989, VAN DOBBEN & DE BAKKER 1996, VAN DOBBEN & TER BRAAK 1998, VAN HERK 1999, 2001). Die Ergebnisse des vorliegenden Untersuchungsschnitts lassen allerdings vermuten, dass die Regulation des N-Stoffwechsels für das Vorkommen bestimmter Arten in Gebieten mit hohem N-Eintrag von Bedeutung ist. Düngungsexperimente von GAIO-OLIVEIRA et al. (2004) zeigen, dass Xanthoria parietina eine Stickstoffdeposition von etwa 1000 kg ha⁻¹ a⁻¹ tolerieren kann. Weitere Untersuchungen zu den Auswirkungen erhöhter N-Depositionen auf die N-Aufnahme und den N-Stoffwechsel nitrophytischer Flechtenarten wären wünschenswert.

6.4.4 Chlorophyll- und Carotinoidgehalt

Die Ergebnisse zeigen, dass der Pigmentgehalt von *Parmelia sulcata* in Abhängigkeit von der N-Konzentration und somit auch vom N-Eintrag stark variieren kann. Höhere N-Konzentrationen führen zu einer Steigerung der Pigmentgehalte und somit zu einer Förderung der Photosynthese. Dieser Prozess findet jedoch nur in begrenztem Maß statt, da bei stark erhöhten N-Konzentrationen wiederum eine Abnahme des Chlorophyll- und Carotinoid-gehalts zu beobachten war. Zu ähnlichen Ergebnissen kommt auch KAUPPI (1980), der entlang eines Transekts den Einfluss einer Düngemittelfabrik auf den Chlorophyllgehalt von *Hypogymnia physodes* untersuchte. VON ARB et al. (1990) ermittelten einen linearen (positiven) Zusammenhang zwischen NO₂-Immissionen und dem Chlorophyllgehalt von *Parmelia sulcata*. Einen Zusammenhang zwischen der N-Konzentration und der Chlorophylla-

6.5 Schlussfolgerung

Durch die enge Beziehung zwischen N-Deposition und N-Gewebekonzentrationen bietet die Bioindikation eine kostengünstige Alternative zu physikalisch-chemischen Messungen. So ist mit einem geringen Aufwand bei Vorhandensein der entsprechenden Organismen eine grobe Einschätzung der N-Einträge in einem Untersuchungsgebiet möglich. Mögliche Rückschlüsse auf die Höhe des Ammoniumeintrags erlaubt die Ermittlung des natürlichen N-Isotopenverhältnisses von Parmelia sulcata, möglicherweise auch von Xanthoria parietina. Die Überprüfung dieses Zusammenhangs durch Beprobung einer weitaus größeren Anzahl von Gebieten mit bekannten Depositionsraten wird allerdings unbedingt als notwendig erachtet. Die Untersuchung hat weiterhin gezeigt, dass Parmelia sulcata in Gebieten mit erhöhtem N-Eintrag den Stickstoff in Form von bestimmten Aminosäuren (v.a. Arginin und Glutamin) akkumuliert. Die Analyse dieser Aminosäuren kann somit ebenfalls als Indikator für erhöhte Stickstoffdepositionen genutzt werden. Aufgrund der möglicherweise effizienteren Nutzung von N-Verbindungen und daraus resultierenden, vergleichsweise Konzentrationen besagter Speicher-Aminosäuren erweist sich niedrigen die Aminosäureanalyse von Xanthoria parietina für die Bioindikation als ungeeignet. Andererseits ermöglicht es diese physiologische Eigenschaft, dass X. parietina extrem nährstoffreiche Standorte besiedeln kann.

7 Stickstoffgehalte in *Parmelia sulcata* als Indikator atmosphärischer Stickstoffeinträge in einer Großstadt am Beispiel Düsseldorf

Zusammenfassung

Innerhalb der Großstadt Düsseldorf wurden an zehn Stationen mit unterschiedlicher Verkehrsbelastung die N-Konzentration und das natürliche N-Isotopenverhältnis von *Parmelia sulcata* analysiert. Die Ergebnisse lassen einen Einfluss der Verkehrsbelastung auf den Stickstoffgehalt von *Parmelia sulcata* erkennen, jedoch nicht auf die δ^{15} N-Signatur. Die an stark verkehrsbelasteten Standorten ermittelten N-Konzentrationen von über 4 % gehören mit zu den höchsten, die bisher für epiphytische Grünalgenflechten festgestellt wurden. Weiterhin zeigt sich ein negativer Zusammenhang zwischen den ermittelten N-Konzentrationen und der Flechtendiversität am Standort. Die Ergebnisse lassen vermuten, dass der Einfluss verkehrsbedingter Emissionen sowohl auf die Zusammensetzung der Epiphytenflora als auch auf den N-Gehalt von Flechten ebenso von Bedeutung ist wie Emissionen aus der Landwirtschaft. Die Beprobung von *Parmelia sulcata* stellt somit eine schnelle und kostengünstige Methode zur Abschätzung der Stickstoffbelastung innerhalb einer Großstadt dar.

7.1 Einleitung

Bisherige Untersuchungen mit Flechten als Akkumulationsindikatoren für Stickstoff beschränken sich überwiegend auf den Nachweis großräumiger Verteilungsmuster der N-Depositionen (BRUTEIG 1993, SØCHTING 1995). Die Untersuchungen des vorangegangenen Kapitels haben gezeigt, dass hierfür auch die Blattflechte Parmelia sulcata genutzt werden kann. Ziel des vorliegenden Untersuchungsabschnitts ist es nun, die Eignung dieser Flechtenart als Bioindikator kleinräumiger atmosphärischer N-Einträge zu überprüfen. Hierbei findet insbesondere der Einfluss des Verkehrs Berücksichtigung. Einen Zusammenhang zwischen der Verkehrsbelastung und der N-Konzentration von Physcia adscendens konnten bereits GOMBERT et al. (2003) feststellen. Bisher völlig unerforscht sind die Auswirkungen verkehrbedingter Immissionen auf das natürliche N-Isotopenverhältnis bei epiphytischen Flechten. Während PEARSON et al. (2000) einen engen Zusammenhang zwischen der Verkehrsbelastung und der δ^{15} N-Signatur bei Moosen ermittelten, soll der vorliegende Untersuchungsabschnitt klären, ob eine solche Beziehung auch für Parmelia sulcata festgestellt werden kann. Für die Verwendung der Blattflechte Parmelia sulcata, die auch an hoch belasteten Standorten in Düsseldorf noch in einer für die Analyse ausreichender Menge vorkommt, sprechen praktische Gründe.

7.2. Material und Methoden

7.2.1 Untersuchungsgebiet

Die Landeshauptstadt Düsseldorf liegt im Übergangsbereich zwischen den naturräumlichen Großeinheiten "Niederrheinisches Tiefland", "Niederrheinische Bucht" und "Süderbergland", das Klima ist maritim geprägt mit ca. 750 mm jährlicher Niederschlagssumme und ca. 10°C mittlerer Jahrestemperatur (DEUTSCHER WETTERDIENST 1989). Der größte Teil des Stadtgebietes liegt auf der östlichen Rheinseite 35 bis 40 m über NN. Mit 570000 Einwohnern stellt die Stadt ein wichtiges Industrie- und Handelszentrum dar, dessen Verkehrsaufkommen zu einem hohen Anteil von Pendlern verursacht wird.

Die für die Entnahme von Flechtenproben ausgewählten zehn Messpunkte liegen verteilt über das gesamte Stadtgebiet an Straßen mit unterschiedlich hohem Verkehrsaufkommen, breitem oder schluchtartigem Profil, in der Innenstadt und in den Vororten, und somit auch an Standorten mit erheblichen Unterschieden hinsichtlich der mittleren Anzahl der Flechtenarten pro Baum und Rasterquadrat (Abb. 7-1 und Tab. 7-1). Die Messpunkte Stadion 1 und Stadion 2 (Abkürzung ST1 und ST2 in Abb. 7-1) zwei mit ihren maximal 40 m voneinander entfernt stehenden Bäumen dienten zur Kontrolle der Reproduzierbarkeit der Ergebnisse bei gleichen Standortbedingungen. Messpunkte mit hoher Verkehrsbelastung sind Mörsenbroich (MOE) und Kruppstraße (KRU) mit breitem Straßenprofil, und die Corneliusstraße (COR) mit einem engen, schluchtartigen Profil.

Messpunkt	Code Rechts / Hoch	"Gelände- struktur"	Straßenprofil	Verkehrs- belastung	Kfz pro 16h (31.12.2002)	
Stadion 1	ST1 2550,6/5681,4	offen	Parkplatz auf Rasen	sporadisch kurzzeitig hoch	50000 (*)	
Stadion 2	ST2 2550,6/5681,4	offen	Parkplatz auf Rasen	sporadisch kurzzeitig hoch	"	
Messegelände	MES 2551,6/5681,6	offen	Parkplatz auf Rasen	sporadisch kurzzeitig hoch	"	
Mörsenbroich	MOE 2556,0/5679,8	City, Randlage Nord	breit permanent hoch		>60000	
Corneliusstraße	COR 2554,7/5675,7	City, geschloss. Bebauung	schluchtartig permanent hoch		46000	
Lessingplatz	LES 2555,5/5675,7	City, geschloss. Bebauung (*)	schluchtartig	mäßig/Parken	k. A.	
Kruppstraße	KRU 2555,7/5675,5	City, Randlage Süd	breit permanent hoch		35000	
Bilk, Dahlacker	BIL 2553,9/5674,4	City Randlage Süd	schluchtartig	hoch	9000 (**)	
Benrath	BEN 2561,4/5669,6	Vorort, lockere Bebauung	breit	gering	k. A.	
Garath	GAR 2562,7/5667,6	Vorort, lockere Bebauung	breit	gering-mäßig	70000 (***)	

Tab. 7-1: Beschreibung der Untersuchungsstationen.

(*) kleine Grünanlage (1,1 ha) mit altem Baumbestand inmitten geschlossener, mindestens viergeschossiger Bebauung, schluchtartiges Straßenprofil.

(**) Zubringerstraße mit 55000 Kfz/16h kreuzt in <500 m Distanz südlich der Station.

(***) Autobahn oder vergleichbare Linearquelle ca. 500 m östlich der Station.

Abb. 7-1: Mittlere Anzahl der Flechtenarten pro Baum und Rasterquadrat in Düsseldorf sowie die Lage der Messpunkte für die Bestimmung des Strickstoffgehaltes in *Parmelia sulcata*. Messpunkte von Norden nach Süden: Parkplatz am Rheinstadion (ST1, ST2); Parkplatz Messegelände (MES); Verkehrsknotenpunkt Mörsenbroich (MOE); Corneliusstraße/Fürstenwall (COR); Grünanlage Lessingplatz (LES); Kruppstraße (KRU); Bilk, Am Dahlacker (BIL); Benrath, Brucknerstraße (BEN); Garath Süd-West (GAR).

Immissionsdaten zur Belastung mit Stickoxiden liegen nur für die Stationen Mörsenbroich und Corneliusstraße vor (Tab. 7-2). Mit Mittelwerten von über 50 µg m⁻³ für NO bzw. NO₂ gehören diese Stationen im Vergleich zu anderen Messstationen zu den am stärksten belasteten Standorten in Nordrhein-Westfalen. Die Konzentrationen für NO und NO₂ liegen über den Grenzwerten der Technischen Anleitung zur Reinhaltung der Luft. Neben den hohen NO_x -Konzentrationen lassen auch Messungen der Ammoniakkonzentration an der Station Mörsenbroich in den 90er Jahren den Einfluss des Straßenverkehrs deutlich erkennen. So betragen die Tagesmittelwerte werktags zwischen 10 bis 15 µg m⁻³, an Feiertagen und am Wochenende sinken sie auf Werte von 6 bis 9 µg m⁻³. Zu Hauptverkehrszeiten (7:00 Uhr) werden Spitzenwerte bis 20 µg m⁻³ erreicht (GLADTKE 1997)

Tab. 7-2: Immissionskonzentrationen des Jahres 2003 an den Verkehrsstationen "Düsseldorf Corneliusstraße" und "Düsseldorf Mörsenbroich" des Luftqualitätsüberwachungssystems (LUQS) des Landesumweltamtes NRW (Quelle: LUA, Internetangebot).

Station	Rechts-/ Hochwert	Stickstoffmonoxid [µg/m3]		Stickstoffdioxid [µg/m3]			Kohlenmonoxid [µg/m3]			
		Mittel wert	98%- Wert	1/2-h Max.	Mittel wert	98%- Wert	1/2-h Max.	Mittel wert	98%- Wert	1/2-h Max.
Corneliusstr.	2554,7/ 5675,7	71	238	524	59	113	430	0,9	2,7	5,2
Mörsenbroich	2556,0/ 5679,8	54	208	509	50	98	159	0,7	2,1	5,1

7.2.2 Entnahme und Aufarbeitung der Flechtenproben

Nach ARNDT et al. (1987) sollen Organismen, die für ein Akkumulationsmonitoring eingesetzt werden, leicht zu handhaben und zu standardisieren sowie genetisch einheitlich sein, ausreichend häufig vorkommen und statistisch auswertbare Unterschiede der zu messenden Größe ermöglichen. In Anlehnung an diese Vorgaben wurde die Blattflechte *Parmelia sulcata* als Testorganismus ausgewählt, deren Eignung als Akkumulationsindikator für atmosphärische N-Einträge bereits in Kapitel 5 und 6 bestätigt werden konnte.

Die Probenahme erfolgte bei trockenem Wetter im März 2004 an freistehenden Bäumen der Arten *Acer platanoides* und *Acer pseudoplatanus*. Es wurden nur Bäume mit unverletzten, senkrecht stehenden Stämmen (\pm 5 Grad) von mindestens 70 cm ausgewählt, deren Stämme wenigstens einmal am Tag Sonnenlicht erhalten und frei vom Wind angeströmt werden können. Als Mindestabstand zu benachbarten Bäumen und Bauten wurde mindestens rund ein Kronendurchmesser eingehalten. Zwecks Gewährleistung einer repräsentativen Probenahme wurden pro Station mindestens 20 Flechtenthalli von mehreren benachbarten Baumstämmen gesammelt. Dabei wurde eine Mindesthöhe von 1 m über dem Boden eingehalten, um Einflüsse durch Spritzwasser und Hundeharn zu minimieren. Die Proben wurden in Polythylenbeutel verpackt und bei -18° C für wenige Tage bis zur Weiterverarbeitung gelagert. Im Labor wurden anhaftende Borkenreste und Schmutzpartikel entfernt und von den Flechtenthalli rund 30 Stücke der äußeren 5 mm eines jeden Thallus zu einer Mischprobe vereinigt. Dieses Material wurde 48 Stunden bei 70°C getrocknet und danach in einer Kugelmühle zerkleinert.

7.2.3 Stickstoffanalyse

Die Analyse der Gesamtstickstoffkonzentration und des natürlichen N-Isotopenverhältnisses erfolgte mittels eines Massenspektrometers (Europa Scientific, Typ 20-20, Crewe/UK). Das getrocknete und pulverisierte Flechtenmaterial wurde in Zinnkapseln mit einer Probenmenge von 5 bis 5,5 mg in das Gerätesystem eingebracht. Pro untersuchte Station wurden 5 bis 10 Proben analysiert.

Die Variation der natürlichen ${}^{15}N/{}^{14}N$ -Isotopenverhältnisse wird allgemein als $\delta^{15}N$ -Wert ausgedrückt und nach folgender Gleichung berechnet (z.B. SHEARER & KOHL 1993):

$$\delta^{15} N[\%] = \frac{({}^{15} N/{}^{14} N)_{\text{Probe}} - ({}^{15} N/{}^{14} N)_{\text{Standard}}}{({}^{15} N/{}^{14} N)_{\text{Standard}}} x1000$$

Als Standard diente die Isotopenverteilung des molekularen Luftstickstoffs mit einem Wert von 0,3663 Atom%.

7.2.4 Auswertung und Interpretation

Die Interpretation der Analyseergebnisse erfolgte in Abhängigkeit der Standortdaten aus Tab. 7-1 und der Ergebnisse der immissionsbezogenen Epiphytenkartierung von Düsseldorf (STAPPER & KRICKE 2003), die nach dem "Europäischen Rahmenrichtlinienentwurf zur Kartierung der Umweltbelastung mit Flechten" (ASTA et al. 2002) auf Quadratkilometerbasis durchgeführt wurde und auf Daten von 1015 Bäumen im gesamten Stadtgebiet beruht. Anhand der Flechtendiversitätswerte der maximal 500 m um jeden Messpunkt befindlichen Bäume wurden für jeden Messpunkt separate Flechtendiversitätswerte (FDW; das ist die Frequenzsumme aller Flechtenarten in den vier 10 cm breiten und 50 cm hohen Gittern an Nord-, Ost-, Süd- und Westseite der Baumstämme) sowie der prozentuale Anteil der Eutrophierungszeiger am Flechtendiversitätswert berechnet. In der zukünftigen VDI-Richtlinie 3957 Blatt 13 zur Beurteilung der lufthygienischen Situation eines Gebietes, die auf o.g. Rahmenrichtlinienentwurf basiert, werden die eutrophierungstoleranten Flechtenarten gesondert berücksichtigt. Dies sind die Arten *Caloplaca citrina, Caloplaca holocarpa, Lecanora dispersa, Lecanora hagenii*-Gruppe, *Lecanora muralis, Phaeophyscia nigricans, Phaeophyscia orbicularis, Physcia adscendens, Physcia caesia, Physcia dubia, Physcia tenella, Physconia distorta, Physconia grisea, Rinodina spp., Xanthoria candelaria, Xanthoria parietina, Xanthoria polycarpa.* Ergänzend wurde für jeden Messpunkt die mittlere N-Zahl nach WIRTH (2001) ermittelt. Grundsätzlich ist die Mittelung ordinaler Größen zwar unzulässig, jedoch im Falle von ökologischen Zeigerwerten gängige Praxis. Alle aus STAPPER & KRICKE (2003) abgeleiteten Daten sind in Tab. 7-3 gemeinsam mit den Ergebnissen der Stickstoffanalyse aufgeführt.

7.2.5 Statistische Analysen

Um die Stärke und Richtung der Zusammenhänge zwischen verschiedenen Variablen zu untersuchen, wurden Korrelationsanalysen mit Hilfe des Programmpakets SPSS 11 durchgeführt. Aufgrund der geringen Anzahl der Messpunkte erweist sich die Spearmansche Rangkorrelationsanalyse als geeignete statistische Methode.

7.3 Ergebnisse

Die Stickstoffgehalte von Parmelia sulcata variieren von 2,05% bis 4,33% mit einem Mittelwert von $2,95\% \pm 0,67\%$ über alle Messpunkte (Tab. 7-3). Die Messpunkte Stadion 1 und Stadion 2 liegen maximal 40 m auseinander und in einem von der Geländestruktur und Verkehrsaufkommen sehr ähnlichen Gelände wie der 1 km östlich gelegene Punkt Messegelände. Für alle Messpunkte wurden praktisch übereinstimmende drei Stickstoffgehalte, Flechtendiversitätswerte und mittlere Nährstoffzahlen ermittelt. Die höchsten Stickstoffgehalte mit über 4% wurden in den Proben der Messpunkte Mörsenbroich und Corneliusstraße gemessen, also von Standorten mit sehr hoher Verkehrsbelastung. Ebenfalls hohe N-Konzentrationen von etwa 3% wurden an der stark befahrenen Kruppstraße sowie am Lessingplatz festgestellt. Die an den Messpunkten Benrath und Garath im Süden von Düsseldorf entnommenen Flechtenproben weisen mit 2,24% bzw. 2,45% die geringsten Stickstoffkonzentrationen auf.

relative ivacitatione reinperatur (in Kervin) der Standorte.										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Mess-	Anzahl	FDW	DW	FDW	$FDW_N/$	N-	N-Konz.	$\delta^{15}N$	RNT	
punkt	Bäume	FDW	Parsul	FDW _N	FDW	Zahl	(% TG)	(‰)	(K)	
ST1	7	44,3	4,6	26,7	0,60	4,6	2,47±0,26	-4,25±1,82	-3	
ST2	7	44,3	4,6	26,7	0,60	4,6	2,73±0,17	-3,54±3,43	-3	
MES	6	45,7	5,2	22,7	0,50	4,7	2,62±0,26	-1,46±2,60	-2	
MOE	20	25,4	1,1	19,4	0,76	5,4	4,10±0,16	-5,77±0,83	2	
COR	14	17,1	0,5	16,1	0,94	6,0	4,08±0,13	-8,25±0,44	4	
LES	4(*)	33,8	2,0	25,8	0,76	4,8	2,85±0,24	-2,32±2,62	2	
KRU	11	23,3	0,5	21,1	0,91	6,0	2,97±0,09	2,37±1,78	2	
BIL	12	28,3	1,6	24,3	0,86	5,6	2,83±0,19	-2,62±1,12	3	
BEN	9	38,2	2,4	27,6	0,72	4,9	2,24±0,17	-2,71±1,71	0	
GAR	11	45,9	2,9	35	0,76	4,6	2,45±0,07	-4,39±1,67	-2	

Tab.	7-3:	Daten	zu	den	untersuch	nten	Me	esspun	kten.
------	------	-------	----	-----	-----------	------	----	--------	-------

(1) Anzahl der Bäume aus STAPPER & KRICKE (2003); (2) Mittlerer Flechtendiversitätswert (alle Flechtenarten); (3) Mittlerer Diversitätswert von *Parmelia sulcata*; (4) Mittlerer Diversitätswert der Eutrophierungszeiger, (5) Anteil der Eutrophierungszeiger am FDW, (6) mittlere N-Zahl, (7) und (8) N-Konzentration und δ^{15} N-Wert der *Parmelia sulcata*-Proben; (9) relative Nächtliche Temperatur (in Kelvin) der Standorte.

(*) Nur Bäume unmittelbar im Bereich der kleinen Grünanlage mit zum Teil an Flechten reichem Baumbestand.

Die an den Messpunkten ermittelten δ^{15} N-Werte von *Parmelia sulcata* liegen im Bereich von -8,3 bis +2,4‰ mit einem durchschnittlichen Wert von -3,3‰. Die niedrigsten δ^{15} N-Werte wurden an den Verkehrsmesspunkten Corneliusstraße und Mörsenbroich, die höchsten in der Kruppstraße festgestellt (Tab. 7-3). Für die weiteren Stationen liegt das natürliche N-Isotopenverhältnis mit Werten zwischen -2‰ und -4‰ nahe beisammen.

Wie Abb. 7-2 zeigt, sinkt der Stickstoffgehalt in Parmelia sulcata mit steigendem Flechtendiversitätswert. Nimmt man anstelle des Flechtendiversitätswertes, der nach ASTA et al. (2002) ein Maß für die Umweltbelastung am Baumstandort ist, die mittlere Anzahl verschiedener Flechtenarten pro Baum, so erhält man das gleiche Ergebnis (nicht gezeigt). Je höher die Verkehrsbelastung an den Baumstandorten, umso höher ist der Anteil der Eutrophierungszeigerarten und die mittlere Nährstoffzahl der Flechten (STAPPER & KRICKE 2003, 2004). Vergleicht man anstelle des Flechtendiversitätswertes, der nicht zwischen eutrophierungstoleranten und -intoleranten Arten unterscheidet, den Anteil der Eutrophierungszeiger an der Gesamtdiversität mit dem Stickstoffgehalt in den Flechtenproben, so ergibt sich ein positiver Zusammenhang zu den Analysedaten. Messpunkte mit einem hohen Anteil an Eutrophierungszeigern weisen erhöhte Stickstoff-Gewebekonzentrationen auf (Abb. 7-2). Für die mittlere N-Zahl, die eine Einschätzung zur Nährstoffversorgung der Standorte gibt, zeichnet sich ein ähnliches Bild ab (Abb. 7-3).

Abb. 7-2: Zusammenhang zwischen der Stickstoffkonzentration in *Parmelia sulcata* und dem Flechtendiversitätswert (links) bzw. Anteil der Eutrophierungszeiger am Flechtendiversitätswert in der Umgebung der Messpunkte (rechts). Dargestellt sind Mittelwerte mit Regressionsgerade und Spearmansche Korrelationskoeffizient. *: p<0,05, **: p<0,01, zweiseitig.

Abb. 7-3: Beziehung zwischen der Stickstoffkonzentration von *Parmelia sulcata* und der mittleren N-Zahl. Dargestellt sind Mittelwerte mit Regressionsgerade und Spearmansche Korrelationskoeffizient. *: p<0,05, **: p<0,01, zweiseitig.

Wie eingangs erwähnt, überlagern sich in der Großstadt Immissionen und Effekte des Stadtklimas. Die Mehrzahl der häufigen Flechten - das sind in der Regel diejenigen, die auch den höchsten Beitrag zur Frequenzsumme in Aufnahmen mit Zählgittern leisten - zeigt einen Rückgang der Frequenz mit steigender relativer nächtlicher Temperatur am Baumstandort. Ebenso meiden sie stark eutrophierte Standorte, nur wenige sind an solchen Standorten mit großer Häufigkeit vertreten (STAPPER & KRICKE 2004). Der Stickstoffgehalt in den Flechtenproben steigt nicht nur mit dem Anteil eutrophierungstoleranter Arten am Flechtendiversitätswert, sondern auch mit der relativen nächtlichen Temperatur im Bereich der Messpunkte (Abb. 7-4).

Abb. 7-4: Beziehung zwischen der Stickstoffkonzentration von *Parmelia sulcata* und der relativen nächtlichen Temperatur. Dargestellt sind Mittelwerte mit Regressionsgerade und Spearmansche Korrelationskoeffizient. *: p<0,05, **: p<0,01, zweiseitig.

7.4 Diskussion

Die Ergebnisse weisen auf einen erhöhten Stickstoffeintrag innerhalb Düsseldorfs hin. Die für *Parmelia sulcata* ermittelten N-Konzentrationen von über 4% gehören mit zu den höchsten, die bisher für epiphytische Grünalgenflechten festgestellt wurden (Tab. 6-5, Kap. 6). Werte über 3% werden meist nur von Arten erreicht, die in Symbiose mit Cyanobakterien leben (PALMQVIST 2002).

Die niedrigsten N-Konzentrationen weist die Station Benrath auf. Diese liegen etwa im Bereich wie sie für das Weserbergland ermittelt wurden (Kap. 6). Laut Regressionsgleichung aus Kapitel 6, Abb. 6-3 entsprechen die in Düsseldorf ermittelten niedrigsten N-Konzentrationen einer Bulk-Deposition von etwa 13-15 kg N ha⁻¹ a⁻¹, die höchsten etwa 23 kg N ha⁻¹ a⁻¹.

Die signifikanten Unterschiede der N-Konzentrationen an unterschiedlich verkehrsbelasteten Stationen deuten auf einen Zusammenhang zwischen verkehrsbedingten N-Immissionen und N-Konzentrationen von *Parmelia sulcata* hin.

Bisher gibt es an epiphytischen Flechten kaum Untersuchungen zur Aufnahme von Stickoxiden und deren Auswirkungen auf den N-Gehalt. SØCHTING (1995) vermutet aufgrund von Transplantationsversuchen mit Hypogymnia physodes am Straßenrand, dass durch Kfz-Verkehr emittierte Stickoxide nur in sehr begrenztem Maße auf die Flechten deponiert und aufgenommen wird. Untersuchungen von GOMBERT et al. (2003) in Grenoble zeigten ebenfalls keinen signifikanten Einfluss des Verkehrs auf die N-Konzentrationen von Hypogymnia physodes. Die Autoren ermittelten jedoch einen signifikanten Zusammenhang zwischen der Verkehrsbelastung und der N-Konzentration von Physcia adscendens und vermuten, dass artspezifische morphologische und/oder physiologische Eigenschaften für das unterschiedliche Verhalten dieser beiden Flechtenarten verantwortlich sind. Den Ergebnissen von HYVÄRINEN & CRITTENDEN (1998) zur Folge scheint nicht nur die Gesamtstickstoffdeposition, sondern auch NO2 einen starken Einfluss auf den Stickstoffgehalt der Flechtenart Cladonia portentosa auszuüben. In der Schweiz beprobten VON ARB et al. (1990) Parmelia sulcata in der Nähe von Immissions-Messstationen und konnten einen positiven linearen Zusammenhang zwischen NO₂-Immissionen und dem Chlorophyllgehalt feststellen. Einen schädigenden Einfluss von NO2 auf Flechten hingegen wiesen HOLOPAINEN & KÄRENLAMPI (1985) sowie NASH (1976) in Begasungsexperimenten nach. Allerdings entsprachen dabei die verwendeten NO₂-Konzentrationen von über 500 µg m⁻³ bzw. über 7000 µg m⁻³ nicht den natürlichen Verhältnissen. DAVIS et al. (2002) vermuten, dass NO_x sehr rasch von einigen Flechtenarten assimiliert werden kann. Ebenso nimmt MASUCH (1993) eine Förderung des Flechtenwachstums durch Stickoxide aufgrund der Düngewirkung an.

Bei der Interpretation der Ergebnisse sollte berücksichtigt werden, dass durch Einführung der Katalysatoren zwar der Ausstoß an Stickoxiden verringert werden konnten, allerdings zu Lasten höherer NH₃-Emissionen. Untersuchungen von SUTTON et al. (2000) weisen darauf hin, dass in Großbritannien der Verkehr mittlerweile zu 10% an den Gesamt-NH₃-Emissionen beiträgt.

Standorte im Citybereich mit hoher Verkehrsdichte und schluchtartigem Straßenprofil weisen auch eine vergleichsweise hohe Nachttemperatur auf (Tab. 7-1). Die mittlere auf null gesetzte Stufe, repräsentiert die Bereiche ohne zusätzliche Erwärmung oder Abkühlung. Es stellt sich die Frage, inwiefern im Citybereich neben der hohen Luftbelastung der zusätzliche Trockenstress Auswirkungen auf den N-Gehalt epiphytischer Flechten ausüben kann. Generell gilt Prolin als Stressmetabolit, der bei den verschiedensten Belastungen, besonders auch im Zusammenhang mit Wassermangel, zu teilweise enormen Konzentrationen akkumuliert (SCHULZE et al. 2002). Eine Anreicherung von Prolin in *Xanthoria parietina* konnten SILBERSTEIN et al. (1996) an stark verkehrsbelasteten Standorten in Tel-Aviv nachweisen. Die Autoren vermuten, dass unter Stressbedingungen Prolin eine Schutzfunktion besitzt.

Wie bereits in Kapitel 6 erläutert kann die Analyse des N-Isotopenverhältnis Rückschlüsse auf die vorherrschend deponierte N-Spezies geben. In Großbritannien ermittelten PEARSON et al. (2000) für verschiedene epilithische Moosarten in Gebieten mit starker Verkehrsbelastung und entsprechen hohen NO_x-Emissionen positive δ^{15} N-Werte, in ländlichen Bereichen mit dominierenden NH₃-Emissionen hingegen negative. Die vorliegenden Ergebnisse lassen keinen klaren Zusammenhang zwischen der Verkehrsbelastung und dem δ^{15} N von *Parmelia* sulcata erkennen. Zwar werden an dem stark verkehrsbelasteten Standort "Kruppstraße" positive Werte erreicht, an den verkehrsreichen Stationen "Corneliusstraße" und "Mörsenbroich", die hohe NO_x-Immissionen aufweisen, sind die δ^{15} N-Werte mit -8,3 bzw. -5,8% deutlich negativ. Die Ursache für diesen Unterschied ist schwer zu ergründen. Laut ROBINSON (2001) unterliegt das N-Isotopenverhältnis stets einer Vielzahl von Einflüssen und Prozessen und wird nie ausschließlich durch die δ^{15} N-Signatur der Stickstoffquelle bestimmt. Da bislang kaum Untersuchungen zu natürlichen N-Isotopenverhältnissen von Flechten existieren, stehen entsprechend wenige Vergleichsdaten zur Verfügung. Mit einem mittleren δ^{15} N von -3.3‰ sind die δ^{15} N-Werte nur schwach negativ und liegen deutlich über den Werten die für landwirtschaftlich geprägte Gebiete ermittelt wurden (Kap. 6, Abb. 6-6).

7.5 Schlussfolgerung

Die Ergebnisse lassen einen Zusammenhang zwischen der Verkehrsbelastung und der N-Konzentration von *Parmelia sulcata* erkennen, was vermuten lässt, dass die durch Kfz-Motoren freigesetzten Stickoxide einen Einfluss auf den N-Gehalt dieser Flechtenart ausüben. Die Beprobung von *Parmelia sulcata* stellt somit eine schnelle und kostengünstige Methode zur Abschätzung des N-Eintrags innerhalb einer Großstadt dar. Da die δ^{15} N-Signatur bei *Parmelia sulcata* keine klare Beziehung zur Verkehrsbelastung erkennen lässt, erweist sich die Analyse des natürlichen Isotopenverhältnisses auf kleinräumigem Gebiet als unbrauchbar zur Ermittlung der NO₂-Belastung. Möglicherweise eignet sich die δ^{15} N-Analytik bei Flechten nur zur Erfassung großräumiger Immissionsunterschiede, da die δ^{15} N-Werte der ländlichen Standorte aus der Untersuchung des vorangegangenen Kapitels insgesamt betrachtet deutlich negativer ausfallen als die Werte der Düsseldorfer Standorte. Weitere Flechtenarten sollten auf die Eignung des natürlichen N-Isotopenverhältnis als Bioindikator für NO_x- bzw. NH₃-Imissionen überprüft werden.

Begasungsexperimente mit NO bzw. NO₂ in realitätsnahen Konzentrationen (z.B. 50 μ g m⁻³) und deren Auswirkungen auf den N-Haushalt von Flechten (z.B. N-Gehalt, Aminosäuren, Chlorophyll-, Carotinoid-, Chitingehalt, Enzymaktivität) könnten Aufschluss über die Rolle dieser Luftschadstoffe im Stickstoffwechsel der Flechten geben.

8 Schlussbetrachtung

Anhand verschiedener Untersuchungen wurde in der vorliegenden Arbeit gezeigt, dass erhöhte N-Depositionen einen erheblichen Einfluss sowohl auf das Vorkommen einzelner Arten als auch auf die N-Gewebekonzentration bestimmter Arten ausüben. Das Biomonitoring atmosphärischer Stickstoffeinträge mittels epiphytischer Flechten und Moose bietet somit je nach Fragestellung mehrere Möglichkeiten, wobei insbesondere die Flechten hierfür als geeignet erscheinen. Die Kartierung der Epiphytenflora erlaubt nicht nur eine Abschätzung der Belastung mit eutrophierenden Luftverunreinigungen, sondern erfasst die integrale Belastung der biologisch relevanten Umweltfaktoren. Durch regelmäßige Wiederholungskartierungen können somit die Veränderungen der Umweltbedingungen langfristig dargestellt werden. Hierbei dient das Biomonitoring nicht nur zur Feststellung von negativen Effekten wie Säureeintrag oder Eutrophierung, sondern bietet auch die Möglichkeit die Effektivität von Maßnahmen zur Immissionsminderung überprüfen.

Die Analyse der N-Gewebekonzentration bei *Parmelia sulcata* und *Hypogymnia physodes* erlaubt konkrete Rückschlüsse auf die Stickstoffbelastung des Standortes. Hierbei hat sich gezeigt, dass sowohl landwirtschaftliche als auch verkehrsbedingte Immissionen sich im Stickstoffgehalt der Flechten widerspiegeln. Ebenso konnte ein deutlicher Zusammenhang zwischen dem Stickstoffeintrag und der Konzentration bestimmter Aminosäuren festgestellt werden.

Aufgrund der Ergebnisse der Stickstoffgehalts- und Aminosäureanalysen wird vermutet, dass für die Verbreitung nitrophytischer Arten physiologische Eigenschaften (Stickstoffmetabolismus) von Bedeutung sind, so dass Nitrophyten ein erhöhtes Stickstoffangebot nicht nur besser tolerieren können als andere Arten, sondern auch effizienter nutzen können. Zur näheren Klärung bedarf es weiterer Untersuchungen auf biochemischer Ebene.

Die vorliegende Arbeit beschränkte sich überwiegend auf die Auswirkungen der nassen Deposition in Form von Nitrat und Ammonium auf epiphytische Flechten und Moose. Abschließend sei noch auf die Wichtigkeit gasförmiger stickstoffhaltiger Immissionen hingewiesen, die mit hoher Wahrscheinlichkeit ebenfalls Effekte auf den Stickstoffmetabolismus der Flechten und Moose ausüben. Diese können zum einen aufgrund der düngenden Wirkung wachstumsfördernd sein, zum anderen sind toxische Auswirkungen denkbar. In zukünftigen Untersuchungen sollten Begasungsexperimente mit NO_x und NH₃ in realitätsnahen Konzentrationen und unter kontrollierten Bedingungen unbedingt Berücksichtigung finden.

9 Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden die Auswirkungen atmosphärischer Stickstoffeinträge auf epiphytische Flechten und Moose untersucht und dabei überprüft, welche Möglichkeiten die Bioindikation bietet. Hierzu wurden verschiedene Untersuchungen durchgeführt.

1. In unterschiedlich stark belasteten Regionen Nordrhein-Westfalens wurde die Epiphytenflora erfasst. Das Vorkommen und die Häufigkeit einiger Arten sind eng mit der Stickstoffbelastung der Standorte korreliert. Arten, deren Frequenzwerte mit zunehmender N-Deposition ansteigen sind *Phaeophyscia orbicularis*, *Orthotrichum diaphanum* und *Physcia tenella*.

Die Verbreitung fadenförmiger Grünalgen an den untersuchten Bäumen lässt darauf schließen, dass diese ebenfalls durch stickstoffhaltige Luftverunreinigungen gefördert werden. Landesweit betrachtet hat sich gezeigt, dass insbesondere in den landwirtschaftlich geprägten Regionen im Norden von Nordrhein-Westfalen (Münsterland, Niederrhein, Ostwestfalen) nitrophytische Arten dominieren, während die Eifel, das Sauerland und das Bergische Land durch Neutro- und Acidophyten gekennzeichnet ist. Durch die gleichzeitige Anwendung verschiedener Aufnahmeverfahren gelang eine Auswertung der Daten anhand verschiedener Bioindikationsverfahren. Die in Kürze in Kraft tretende VDI-Richtlinie 3957 Blatt 13, die das Vorkommen von Eutrophierungszeiger bei der Beurteilung der Luftqualität negativ bewertet, liefert eine realistische Einschätzung der lufthygienischen Belastung der untersuchten Gebiete.

2. In Dauerbeobachtungsflächen (DBF) an freistehenden Bäumen wurden in vier verschiedenen Regionen Nordrhein-Westfalens die Veränderungen des epiphytischen Moosund Flechtenbewuchses während eines Zeitraums von zwei Jahren anhand der VDI-Methode 3957 Blatt 8 untersucht. Die Zusammensetzung sowie die Entwicklung der einzelnen Arten variiert erheblich in Abhängigkeit von der Immissionsbelastung des Standorts. An Standorten mit erhöhtem N-Eintrag (Niederrhein) fehlen acidophytische Arten völlig. Hier konnte eine deutliche Ausbreitung von *Phaeophyscia orbicularis*, einer Zeigerart für stark eutrophierte Standorte, festgestellt werden, die Bedeckung von *Physcia tenella* hingegen hat abgenommen. Einen Zuwachs erzielte *P. tenella* in den DBF im Weserbergland. An den im Sauerland befindlichen DBF zeichnet sich ein deutlicher Trend in Richtung Rückgang der acidophytischen Arten ab, bis hin zu völligen Bestandeinbrüchen von *Hypogymnia physodes*. Hohe mittlere Zeigerwerte zu Nährstoff- und Reaktionszahlen weisen auf eine Eutrophierung sämtlicher Standorte hin.

3. In Dauerbeobachtungsflächen (DBF) an verschiedenen Trägerbaumarten in der Eifel wurden die Auswirkungen erhöhten Stickstoffeintrags auf die Epiphytenvegetation untersucht. Die DBF wurden in vierzehntägigen Intervallen über einen Zeitraum von 21 Monaten mit NH₄Cl-, KNO₃- und NH₄NO₃-Lösungen besprüht, deren reine Stickstoffkonzentration 11 mM und 22 mM betrug. Veränderungen der epiphytischen Moosund Flechtenvegetation wurden mittels planimetrischer Verfahren (nach VDI 3957 Blatt 8) detailliert erfasst. Vor allem kommune Arten mit weiter Standortamplitude wie Hypnum cupressiforme und Parmelia sulcata haben sich im Verlauf des Experiments innerhalb der DBF ausgebreitet. Die Bedeckungsgrade der acidophytischen Flechtenarten Hypogymnia physodes und Lepraria incana sind zurückgegangen. Da visuell keine Schädigungen der Flechtenthalli festgestellt wurden, könnte auch das Herabfallen einiger Thalli durch Wind oder Regen als Ursache für den Rückgang in Betracht kommen. Einige Moosarten (Metzgeria furcata, Radula complanata, Ulota crispa, Brachythecium rutabulum) entwickelten im Verlauf der Düngung Nekrosen.

4. Die epiphytischen Flechten *Evernia prunastri, Hypogymnia physodes, Parmelia sulcata* und das Moos *Orthotrichum affine* wurden in vierzehntägigen Intervallen über einen Zeitraum von einem Jahr mit folgenden stickstoffhaltigen Lösungen besprüht: K¹⁵NO₃ (14,3 und 28,6 mM), ¹⁵NH₄Cl (14,3 und 28,6 mM), NH₄¹⁵NO₃ (7,15 und 14,3 mM) und ¹⁵NH₄NO₃ (7,15 und 14,3 mM). Im Abstand von 3 Monaten wurde die Gesamt-N- und ¹⁵N-Konzentration in den Pflanzen bestimmt. Alle Arten nahmen den applizierten Stickstoff auf, wobei die Höhe der Anreicherung artspezifisch ist und von der applizierten Stickstoffform abhängt. Von allen Arten wird Ammonium bevorzugt gegenüber Nitrat aufgenommen, wobei der assimilierte Stickstoff sich verstärkt in den Wachstumszonen der Flechtenthalli anreichert. Für die Bioindikation atmosphärischer Stickstoffeinträge eignen sich am besten *Hypogymnia physodes* und *Parmelia sulcata*, da diese auf die simulierte N-Deposition am eindeutigsten mit einem Anstieg ihrer N-Gewebekonzentration reagierten.

Nach zwölf Monaten Versuchsdauer wurde von den drei Flechtenarten die Gesamtchlorophyllkonzentration und die Konzentrationen der Aminosäuren Arginin,

Asparagin, Glutamin und Prolin bestimmt. Für alle drei Arten ergaben sich deutliche Anstiege der Chlorophyllkonzentrationen sowie insbesondere der Arginin- und Glutamin-Konzentrationen als Effekt Folglich wurden die zugeführten der Düngung. Stickstoffverbindungen metabolisiert und in organische Verbindungen eingebaut. Aminosäuren fungieren zum einen als Speicher für überschüssigen Stickstoff, zum anderen stellt die schnelle Umsetzung von toxischem NH_4^+ in Aminosäuren eine Entgiftungsfunktion dar. Von den drei Arten zeigte Hypogymnia physodes die stärkste Zunahme in den Aminosäuren, jedoch die geringste im Gesamtchlorophyll. Die Glutamin- und Arginin-Konzentration in Hypogymnia physodes könnte somit ebenfalls für die Bioindikation erhöhter Stickstoffdepositionen genutzt werden.

5. In Gebieten mit unterschiedlichen N-Depositionen wurden Proben von *Parmelia sulcata*, *Hypogymnia physodes* und *Xanthoria parietina* gesammelt zwecks Analyse der N-Gewebekonzentration, des natürlichen N-Isotopenverhältnisses, der Konzentration bestimmter Aminosäuren und des Chlorophyllgehaltes. Für *Parmelia sulcata* und *Hypogymnia physodes* Arten ergaben sich signifikante Zusammenhänge zwischen der Höhe des Stickstoffeintrags und den analysierten N-Gewebekonzentrationen. Hinsichtlich des N-Isotopenverhältnisses wurde die beste Beziehung zwischen dem δ^{15} N und der Ammoniumdeposition bei *Parmelia sulcata* erzielt, wobei mit zunehmendem NH4⁺-Eintrag die δ^{15} N-Werte negativer wurden. Die Aminosäureanalyse zeigte deutliche Unterschiede im Gehalt bestimmter Aminosäuren in Abhängigkeit des Stickstoffeintrags. Bei *Parmelia sulcata* war an Stationen mit hohen N-Depositionen eine Akkumulation insbesondere von Arginin zu beobachten (etwa 20fach). Die Arginin-Konzentrationen von *Xanthoria parietina* hingegen waren im Vergleich zu *Parmelia sulcata* deutlich geringer (etwa Faktor 10).

Die Ergebnisse bestätigen, dass die Ermittlung der N-Gewebekonzentrationen von *Parmelia sulcata* und *Hypogymnia physodes* als Indikator für atmosphärische Stickstoffeinträge genutzt werden kann. Die Analyse der Aminosäuren Arginin, Asparagin Glutamin und Prolin bei *Parmelia sulcata* erlaubt ebenfalls Rückschlüsse auf die Höhe des N-Eintrags.

6. Innerhalb der Großstadt Düsseldorf wurden an zehn Stationen mit unterschiedlicher Verkehrsbelastung die N-Konzentration und das natürliche N-Isotopenverhältnis von *Parmelia sulcata* analysiert. Die Ergebnisse lassen einen Einfluss der Verkehrsbelastung auf den Stickstoffgehalt von *Parmelia sulcata* erkennen, jedoch nicht auf die δ^{15} N-Signatur. Die an stark verkehrsbelasteten Standorten ermittelten N-Konzentrationen von über 4 % gehören

mit zu den höchsten, die bisher für epiphytische Grünalgenflechten festgestellt wurden. Weiterhin zeigt sich ein negativer Zusammenhang zwischen den ermittelten N-Konzentrationen und der Flechtendiversität am Standort. Die Ergebnisse lassen vermuten, dass der Einfluss verkehrsbedingter Emissionen sowohl auf die Zusammensetzung der Epiphytenflora als auch auf den N-Gehalt von Flechten ebenso von Bedeutung ist wie Emissionen aus der Landwirtschaft. Die Beprobung von *Parmelia sulcata* stellt somit eine schnelle und kostengünstige Methode zur Abschätzung der Stickstoffbelastung innerhalb einer Großstadt dar.

10 Danksagung

Mein besonderer Dank gilt Herrn Prof. Jan-Peter Frahm für die intensive Betreuung der vorliegenden Arbeit und seine stete Hilfs- und Diskussionsbereitschaft. Herr Frahm hat mein Interesse für die Moose und Flechten geweckt und mich in den letzten Jahren in jeder Hinsicht unterstützt und gefördert.

Herrn Prof. Wilhelm Barthlott danke ich für die Betreuung meiner Arbeit als Korreferent.

Ohne die finanzielle Förderung der Deutschen Bundesstiftung Umwelt wäre die Anfertigung dieser Arbeit nicht möglich gewesen. Für die Großzügigkeit, die mir als Stipendiat entgegengebracht wurde, bedanke ich mich.

Für die gute und produktive Zusammenarbeit in den letzten Jahren danke ich Dr. Norbert J. Stapper, der stets für Diskussion bereit war, mir hilfreiche Anmerkungen zum Manuskript gegeben hat und seine Kartierungsdaten für die Auswertung zur Verfügung gestellt hat. Die zahlreichen gemeinsamen Kartierungstage und Exkursionen werden mir in bester Erinnerung bleiben.

Am Institut für Pflanzenernährung der Universität Bonn erhielt ich von PD Dr. Jürgen Burkhardt, Dr. Thomas Eichert und Deborah Rupprecht wertvolle Unterstützung bei experimentellen Fragen und bei der Auswertung der Ergebnisse. Zudem realisierte Deborah Rupprecht die Durchführung der N-Gehaltsanalysen schnell und zuverlässig.

Am Umweltforschungzentrum Leipzig-Halle haben Dr. habil. Horst Schulz und Sigrid Härtling umfangreiche Analysen zur Bestimmung der Aminosäuren und Pigmentgehalte durchgeführt. Hierfür, sowie für die hilfreichen Diskussionen und Ratschläge, bedanke ich mich herzlich.

Die Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen (LÖBF) in Recklinghausen stellte die Messwerte zur Stickstoffdeposition zur Verfügung. Für die hervorragende Zusammenarbeit danke ich Dr. Joachim Gehrmann, Lutz Genßler und Christian Adamik.

Für die Digitalisierung der zahlreichen Folien, die im Rahmen der Untersuchungen nach der VDI-Methode 3957 Blatt 8 erstellt wurden, sei Philip Schmitz gedankt. Peter Sahl möchte ich für das Korrekturlesen der Arbeit meinen Dank aussprechen.

Allen Mitarbeitern des Nees-Instituts für Biodiversität der Pflanzen, insbesondere der Arbeitsgruppe Bryologie, danke ich für das angenehme Arbeitsklima während des schönen Forschens in Bonn.

Abschließend gilt mein besonderer Dank meinen Eltern Karin und Andreas Franzen und meinem Mann Thomas Reuter, die mich auf meinem gesamten Weg begleitet und immer unterstützt haben.

11 Literaturverzeichnis

ARMSTRONG, R.A. (1984): The influence of bird droppings and uric acid on the radial growth of five species of saxicolous lichens. Environmental and Experimental Botany 24: 95-99.

ARNDT, U., NOBEL, W. & SCHWEIZER, B. (1987): Bioindikatoren: Möglichkeiten, Grenzen und neue Erkenntnisse. Ulmer, Stuttgart (Hohenheim). 388 S.

ASMAN, W.A.H. (1998): Factors influencing local dry deposition of gases with special reference to ammonia. Atmospheric Environment 32(3): 415-421.

ASTA, J., EHRHARDT, W., FERRETTI, M., FORNASIER, F., KIRSCHBAUM, U., NIMIS, P.L., PIRINTSOS, S., PURVIS, O.W., SCHEIDEGGER, C., VAN HALUWYN, C., WIRTH, V. (2002): Mapping lichen diversity as an indicator of environmental quality. In: NIMIS, P.L., SCHEIDEGGER, C. & WOLSELEY, P.A. (Hrsg.): Monitoring with lichens - monitoring lichens. Nato Science Series IV, 7, Kluwer, Dordrecht. S. 273-279.

BADDELEY, J.A., THOMPSON, D.B.A. & LEE, J.A. (1994): Regional and Historical variation in the nitrogen content of *Racomitrium lanuginosum* in Britain in relation to atmospheric nitrogen deposition. Environmental pollution 84: 189-196.

BAKKEN, S. (1995): Effects of nitrogen supply and irradiance on growth and nitrogen status in the moss *Dicranum majus* from differently polluted areas. Journal of Bryology 18: 707-721.

BARGALI, R. & NIMIS, P.L. (2002): Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: NIMIS, P.L. SCHEIDEGGER, C. & WOLSELEY, P.A. (Hrsg.): Monitoring with lichens – Monitoring lichens. NATO Science Series, IV, vol. 7. Kluwer, Dordrecht. S. 295-300.

BARKMAN, J.J. (1968): The influence of air pollution on bryophytes and lichens. In: Air Pollution - Proceedings of the First European Congress on the Influence of Air Pollution on Plants and Animals, Wageningen. S. 197-209.

BARTHOLMEB, H. (2004): Determination of the growth rate of epiphytic lichens – A new VDIguideline and first results from lichen mapping in Heidelberg 2002. In: KLUMPP, A., ANSEL, W. & KLUMPP, G.: Urban air pollution, bioindication and environmental awareness. S. 243-248.

BATES, J.W., PROCTOR, M.C.F., PRESTON, C.D., HODGETTS, N.G. & PERRY, A.R. (1997): Occurrence of epiphytic bryophytes in a 'tetrad' transect across southern Britain. Journal of Bryology 19: 685-714.

BAXTER, R., EMES, M.J. & LEE, J. (1992): Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of *Sphagnum cuspidatum* EHRH. ex. HOFFM. from differently polluted areas. New Phytologist 120: 265-274.

BERG, M.P. & VERHOEF, H.A. (1998): Ecological characteristics of a nitrogen-saturated coniferous forest in The Netherlands. Biology and Fertility of Soils 26(4): 258-267.

BESCHEL, R. (1958): Flechtenvereine der Städte, Stadtflechten und ihr Wachstum. Berichte des Naturwissenschaftlich-Medizinischen Vereins Innsbruck 52. 158 S.

BROWN, D.H. (1982): Mineral Nutrition. In: SMITH, A.J.E. (Hrsg.): Bryophyte ecology. Chapman and Hall, London. S. 383-444.

BROWN, D.H. (1992): Impact of agriculture on bryophytes and lichens. In: BATES, J.W. & FARMER, A.M. (Hrsg.): Bryophytes and lichens in a changing environment. Clarendon Press, Oxford. S. 259-283.

BROWN, D.H. & TOMLINSON, H. (1993): Effects of nitrogen salts on lichen physiology. Bibliotheca Lichenologica 53: 27-34.

BROWN, D.H., AAVALOS, A., MILLER, J.E. & BARGAGLI, R. (1994): Interactions of lichens with their mineral environment. Cryptogamic Botany 4: 135-142.

BROWN, D.H., STANDELL, C.J. & MILLER, J.E. (1995): Effects of agricultural chemicals on lichens. Cryptogamic Botany 5: 220-223.

BRUTEIG, I. (1993): The epiphytic lichen *Hypogymnia physodes* as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental Monitoring and Assessment 26: 27-47.

CARROLL, J.A., JOHNSON, D., MORECROFT, M., TAYLOR, S.J.M., CAPORN, S.J.M. & LEE, J.A. (2000): The effect of long-term nitrogen additions on the bryophyte cover of upland acidic grasslands. Journal of Bryology 22 (2): 83-90.

CLYMO, R. S. (1963): Ion exchange in *Sphagnum* and its relation to bog ecology. Annals of Botany 27: 309-324.

COKER, P.D. (1967): Effects of sulphur dioxide pollution on bark epiphytes. Transactions of the British Bryological Society 5: 341-347.

CONTI, M.E. & CECCHETTI, G. (2001): Biological monitoring: lichens as bioindicators of air pollution assessment - a review. Environmental pollution 114: 471-492.

CRITTENDEN, P.D. (1996): The effect of oxygen deprivation on inorganic nitrogen uptake in an antarctic macrolichen. Lichenologist 28(4): 347-354.

CRITTENDEN, P.D., KALUCKA, I. & OLIVER, E. (1994): Does nitrogen supply limit the growth of lichens? Cryptogamic Botany 4: 143-155.

DAHLMAN, L., NÄSHOLM, T. & PALMQVIST, K. (2002): Growth, nitrogen uptake, and resource allocation in the two tripartite lichens *Nephroma arcticum* and *Peltigera aphtosa* during nitrogen stress. New Phytologist 153: 307-315.

DAHLMAN, L., PERSSON, J., NÄSHOLM, T. & PALMQVIST, K. (2003): Carbon and nitrogen distribution in the green algal lichens *Hypogymnia physodes* and *Platismatia glauca* in relation to nutrient supply. Planta 217(1): 41-48.

DAHLMAN, L., PERSSON, J., PALMQVIST, K. & NÄSHOLM, T. (2004): Organic and inorganic nitrogen uptake in lichens. Planta 219(3): 459-467.

DÄSSLER, H.-G. & RANFT, H. (1969): Das Verhalten von Flechten und Moosen unter dem Einfluß einer Schwefeldioxidbegasung. Flora Abt. B 158: 454-461.

DAVIES, L., JAMES, P.W., CHIMONIDES, J.H. & PURVIS, O.W. (2002): Impacts of NO_x on lichens. In: Imperial College & The Natural History Museum: Effects of NO_x and NH_3 on lichen communities and urban ecosystems - A Pilot Study. S. 30-48.

DE BAKKER, A.J. (1989): Effects of ammonia emission on epiphytic lichen vegetation. Acta Botanica Neerlandica 38: 337-342.

DEGELIUS, G. (1964): Biological studies of the epiphytic vegetation on twigs of *Fraxinus* excelsior. Acta Horti Gotoburgensis 24: 11-55.

DEUTSCHER WETTERDIENST (1989): Klima-Atlas von Nordrhein-Westfalen. Minister für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen, Düsseldorf. 65 S.

DIERBEN, K. (2001): Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca 56. J. Cramer, Berlin, Stuttgart. 289 S.

DOMRÖS, M. (1966): Luftverunreinigung und Stadtklima im Rheinisch-Westfälischen Industriegebiet und ihre Auswirkung auf den Flechtenbewuchs der Bäume. Arbeiten zur Rheinischen Landeskunde 23: 1-132.

DÜLL, R. (1977): Moose als Bioindikatoren für die Luftreinheit. Jahresberichte des Naturhistorischen Vereins in Wuppertal 10: 21-31.

DÜLL, R. (1997): Exkursiontaschenbuch der Moose. IDH-Verlag, Bad Münstereifel. 280 S.

DÜLL, R. (2001): Zeigerwerte von Laub- und Lebermoosen. In: ELLENBERG, H., WEBER, H. E., DÜLL, R., WIRTH, V. & WERNER, W.: Zeigerwerte von Pflanzen in Mitteleuropa, 3., durchgesehene Auflage. Scripta Geobotanica: 175-220.

DURING, H.J. & WILLEMS, J.H. (1986): The impoverishment of the bryophyte and lichen flora of the Dutch chalk grasslands in the thirty years 1953-1983. Biological Conservation 36: 143-158.

EDFAST, A.-B., NÄSHOLM, T. & ERICSSON, A. (1990): Free amino acid concentrations in needles of Norway spruce and Scots pine trees on different sites in areas with two levels of nitrogen deposition. Canadian Journal of Forest Research 20: 1132-1136.

ELLIS, C.J., CRITTENDEN, P.D., SCRIMGEOUR, C.M. & ASHCROFT, C. (2003): The natural abundance of ¹⁵N in matforming lichens. Oecologia 136: 115-123.

ERSKINE, P.D., BERGSTROM, D.M., SCHMIDT, S., STEWART, G.R., TWEEDIE, C.E. & SHAW, J.D. (1998): Subantarctic Macquarie Island - a model ecosystem for studying animal-derived nitrogen sources using ¹⁵N natural abundance. Oecologia 117: 187-193.

FANGMEIER, A., HADWIGER-FANGMEIER, A., VAN DER EERDEN, L. & JÄGER, H.-J. (1994): Effects of atmospheric ammonia on vegetation - a review. Environmental Pollution 86: 43-82.

FEIGE, G.B. (1982): Niedere Pflanzen - speziell Flechten - als Bioindikatoren. Decheniana (Bonn) 26: 23-30.

FENN, M.E., BARON, J.S., ALLEN, E.B., RUETH, H.M., NYDICK, K.R., GEISER, L., BOWMAN, W.D., SICKMAN, J.O., MEIXNER, T., JOHNSON, D.W. & NEITLICH, P. (2003): Ecological effects of nitrogen deposition in the Western United States. BioScience 53(4): 404-420.

FLAIG, H. & MOHR, H. (1992): Assimilation of nitrate and ammonium by Scots pine (*Pinus sylvestris*) seedling under conditions of high nitrogen supply. Physiologia Plantarum 84: 568-576.

FOWLER, D., FLECHARD, C. SKIBA, U., COYLE, M. & CAPE, J.N. (1998): The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Phytologist 139: 11-23.

FRAHM, J.-P. (1977): Experimentelle Untersuchungen über die Moose als Bioindikatoren für die Luftverschmutzung. Staub, Reinhaltung, Luft 37(2): 55-58.

FRAHM, J.-P. (1998): Moose als Bioindikatoren. Biologische Arbeitsbücher 57, Quelle & Meyer, Wiesbaden. 187 S.

FRAHM, J.-P. (1999): Epiphytische Massenvorkommen der fädigen Grünalge *Klebsormidium crenulatum* (KÜTZING) LOKHORST im Rheinland. Decheniana (Bonn) 152: 117-119.

FRAHM, J.-P. (2003): Climatic habitat differences of epiphytic lichens and bryophytes. Cryptogamie, Bryologie 24(1): 3-14.

FRAHM, J.-P. & SOLGA, A. (1999): Der Einfluss von Stickstoffemissionen auf Moose und Flechten. Bryologische Rundbriefe 28: 1-10.

FRAHM, J.-P. & KLAUS, D. (2001): Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia 26: 97-104.

FRANZEN, I. (2001): Epiphytische Moose und Flechten als Bioindikatoren der Luftgüte am Westrand des Ruhrgebietes. Limprichtia 16. 85 S.

FRANZEN-REUTER, I. & STAPPER, N.J. (2003): Nachweis eutrophierender Luftverunreinigungen in NRW – Landesweite Kartierung epiphytischer Flechten und Moose. LÖBF-Mitteilungen 1/03: 76-78.

FREYER, H. D. (1991): Seasonal variation of ${}^{15}N/{}^{14}N$ ratios in atmospheric nitrate species. Tellus 43B: 30-44.

GAIO-OLIVEIRA, G., BRANQUINHO, C., MAGUAS, C. & MARTINS-LUCAO, M.A. (2001): The concentrations of nitrogen in nitrophilous and non-nitrophilous lichen species. Symbiosis 31: 187-199.

GAIO-OLIVEIRA, G., DAHLMAN, L., PALMQVIST, K. & MAGUAS, C. (2004): Ammonium uptake in the nitrophytic lichen *Xanthoria parietina* and its effects on vitality and balance between symbionts. Lichenologist 36(1): 75-86.

GARTEN, C.T. (1992): Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. International Journal of Environmental Analytical Chemistry 47: 33-45.

GEHRMANN, J., ANDREAE, H., FISCHER, U., LUX, W. & SPRANGER, T. (2001): Luftqualität und atmosphärische Stoffeinträge an Level II-Dauerbeobachtungsflächen in Deutschland. Arbeitskreis B der Bund-Länder-Arbeitsgruppe Level II, BMVEL, Bonn. 94 S.

GEHRMANN, J., BECKER, R. & SPRANGER, T. (2003): Neue Grundlagen für die Berechnung von Critical Loads und deren Überschreitung durch Stoffeinträge. In: Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen (Hrsg.): Der Waldzustand 2003 in Nordrhein-Westfalen. S. 28-32.

GHOULAM, C., FOURSY, A. & FARES, K. (2002): Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany 47: 39-50.

GILBERT, O.L. (1970): A biological scale for estimation of sulphur dioxide pollution. New Phytologist 69: 629-634.

GILBERT, O.L. (1992): Lichen reinvasion with declining air pollution. In: BATES, J. W. & FARMER, A.M. (Hrsg.): Bryophytes and lichens in a changing environment. Oxford University Press, New York. S. 159-177.

GLADTKE, D. (1997): Messung von Ammoniak-Immissionen in NRW. In: LANDESUMWELT-AMT NORDRHEIN-WESTFALEN: Jahresbericht 1997. S. 107-109.

GOMBERT, S., ASTA, J, & SEAWARD, M.R.D. (2003): Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environmental Pollution 123: 281-290.

GREENFIELD, L.G. (1992): Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarctic science 4(2): 205-206.

GREENHALGH, G.N. & ANGLESEA, D. (1979): The distribution of algal cells in lichen thalli. Lichenologist 11(3): 283-292.

GREVEN, H. (1992): Changes in the Dutch bryophyte flora and air pollution. J. Cramer, Berlin, Stuttgart. 237 S.

GROSSMAN, A. & TAKAHASHI, H. (2001): Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annual Review of Plant Physiology and Plant Molecular Biology 52: 163-210.

GRUBB, P.J., FLINT, O.P. & GREGORY, S.C. (1969): Preliminary observations on the mineral nutrition of epiphytic mosses. Transactions of the British Bryological Society 5: 802-817.

HAKULINEN, R. (1966): Über die Wachstumsgeschwindigkeit einiger Laubflechten. Ann. Bot. Fennici 3: 167-179.

HÄLLBOM, L. & BERGMAN, B. (1983): Effects of inorganic nitrogen on C_2H_2 reduction and CO_2 exchange in the Peltigera praetextata-Nostoc and Peltigera aphthosa-Coccomyxa-Nostoc symbioses. Planta 157: 441-445.

HAUCK, M., JUNG, R. & RUNGE, M. (2001): Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback. Environmental pollution 112: 221-227.

HAUCK, M. & RUNGE, M. (2002): Stemflow chemistry and epiphytic lichen diversity in dieback-effected spruce forest of the Harz Mountains, Germany. Flora 197: 205-261.

HEATON, T.H.E. (1990): ${}^{15}N/{}^{14}N$ ratios of NO_x from vehicle engines and coal-fired power stations. Tellus 42B: 304-307.

HEATON, T.H.E., SPIRO, B. & ROBERTSON, S.M.C. (1997): Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia 109: 600-607.

HOLOPAINEN, T.H. & KÄRENLAMPI, L. (1985): Characteristic ultrastructural symptoms in lichens caused by experimental exposure to nitrogen compounds and fluorids. Ann. Bot. Fennici 22: 333-342.

HSIAO, T.C. (1973): Plant response to water stress. Annual Review of Plant Physiology 24: 519-570.

HUHN, G. & SCHULZ, H. (1996): Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. New Phytologist 134: 95-101.

HYVÄRINEN, M. & CRITTENDEN, P.D. (1998): Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen *Cladonia portentosa*. New Phytologist 140: 519-530.

INSAROV, G.E. & SCHROETER, B. (2002). Lichen monitoring and climate change. – In: NIMIS, P.L., SCHEIDEGGER, C. & WOLSELEY, P.A. (Hrsg.): Monitoring with Lichens – Monitoring Lichens. NATO Science Series, IV, vol. 7. Kluwer, Dordrecht. S. 183-201.

ITO, O., OKANO, K. & TOTSUKA, T. (1986): Effects of NO_2 and O_3 exposure alone or in combination on kidney bean plants: amino acid content and composition. Soil Science and Plant Nutrition 32: 351-363.

JÄGER, H.-J. & WEIGEL, H.-J. (1978): Amino acid metabolism in lichens. The Bryologist 81(1): 107-113.

JAUHIAINEN, J., VASANDER, H. & SILVOLA, J. (1994): Response of *Sphagnum fuscum* to N deposition and increased CO₂. Journal of Bryology 18: 83-95.

JENNINGS, D.H. (1995): The physiology of fungal nutrition. Cambridge University Press. Cambridge, UK.

JOHN, V. (1997): Aufnahme der epiphytischen Flechtenvegetation an Waldökosystem-Dauerbeobachtungsflächen in Rheinland-Pfalz. Mitteilungen aus der forstlichen Versuchsanstalt Rheinland-Pfalz 40: 91-112.

JONSDOTTIR, I.S., CALLAGHAN, T.V. & LEE, J.A. (1995): Fate of added nitrogen in a moss sedge Arctic community and effects of increased nitrogen deposition. The Science of the Total Environment 160-161: 677-685.

KAUPPI, M. (1980): The influence of nitrogen-rich pollution components on lichens. Acta Universitatis Ouluensis, Ser. A, 101: 1-25.

KIRSCHBAUM, U. & WINDISCH, U. (1995): Beurteilung der lufthygienischen Situation Hessens mittels epiphytischer Flechten. Umweltplanung, Arbeits- und Umweltschutz 171. 150 S.

KIRSCHBAUM, U., MARX, A. & SCHIEK, J.E. (1996): Beurteilung der lufthygienischen Situation Gießens und Wetzlars mittels epiphytischer Flechten (1995). Angew. Bot. 70: 78-96.

KIRSCHBAUM, U. & WIRTH, V. (1997): Flechten erkennen - Luftgüte bestimmen. 2., verbesserte Auflage. Ulmer, Stuttgart (Hohenheim). 128 S.

KIRSCHBAUM, U., SIEGMUND, M. & WIRTH, V. (2002): Flächenbestimmung von Flechten zur ökologischen Langzeitbeobachtung. Herzogia 15: 159-178.

KOOIJMAN, A.M. & KANNE, D.M. (1993): Effects on water chemistry, nutrient supply and interspecific interactions on the replacement of *Sphagnum subnitens* by *S. fallax* in fens. Journal of Bryology 17: 431-438.

KRICKE, R. (2002): Untersuchungen zur epiphytischen Flechtenvegetation in urbanen Gebieten, dargestellt an der Rückkehr der Flechten in das Ruhrgebiet und ausgewählter Nachbargebiete. Dissertation, Universität-GSH-Essen. 208 S.

KRONZUCKER, H.J., SIDDIQI, M.Y. & GLASS, A.D.M. (1997): Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385: 59-61.

LANG, G.E., REINERS, W.A. & HEIER, R.K. (1976): Potential alteration of precipitation chemistry by epiphytic lichens. Oecologia 25: 229-241.

LEBLANC, F. & DESLOOVER, J. (1970): Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany 48 (7): 1485-1492.

LEE, J.A., CAPORN, S.J.M., CARROLL, J., FOOT, J.P., JOHNSON, D., POTTER, L. & TAYLOR, A.F.S. (1998): Effects of ozone and atmospheric nitrogen deposition on bryophytes. In: BATES, J.W., ASHTON, N.W. & DUCKETT, J.G. (Hrsg.): Bryology for the twenty-first century. Maney Publishing and the British Bryological Society, Leeds. S. 331-341.

LETHMATE, J., EICKELMANN, B. & WORRINGER, T. (2002): Der nordrhein-westfälische Gülle Belt und sein Einfluss auf die Deponate des Teutoburger Waldes. Geoöko 23: 61-75.

LICHTENTHALER, H.K. & WELLBURN, A.R. (1983): Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603: 591-592.

LOPPI, S., PIRINTSOS, S.A. & DE DOMINICS, V. (1997): Analysis of the distribution of epiphytic lichens on *Quercus pubescens* along an altitudinal gradient in a Mediterranean area (Tuscany, Central Italy). Israel Journal of Plant Sciences 45: 53-58.

MALMER, N. (1988): Patterns in the growth and the accumulation of inorganic constituents in the *Sphagnum* cover on ombrothrophic bogs in Scandinavia. Oikos 53: 105-120.

MARSCHNER, H., HAEUSSLING, M. & GEORGE, E. (1991): Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce *Picea abies* (L.) KARST. Trees 5: 14-21.

MASUCH, G. (1993): Biologie der Flechten. Quelle & Meyer, Wiesbaden. 411 S.

MILLER, J.E. & BROWN, D.H. (1999): Studies of ammonia uptake and loss by lichens. Lichenologist 31(1): 85-93.

MOHR, K. (1999): Passives Monitoring von Stickstoffeinträgen in Kiefernforsten mit dem Rotstengelmoos (*Pleurozium schreberi* (BRID.) MITT.). UWSF - Zeitschrift für Umweltchemie und Ökotoxikologie 11(5): 267-274.

MOORE, H. (1977): The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmospheric Environment 11: 1239-1243.

NASH III, T. H. (1976): Sensitivity of lichens to nitrogen dioxide fumigations. The Bryologist 79: 103-106.

NÄSHOLM, T., EDFAST, A.-B., ERICSSON, A. & NORDEN, L.G. (1994): Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytologist 126: 137-143.

NEBEL, M., SAUER, M. & SCHOEPE, G. (2001): Brachytheciaceae, Kurzbüchsenmoose. In: NEBEL, M. & PHILIPPI, G.: Die Moose Baden-Württembergs, Band 2. Ulmer, Stuttgart (Hohenheim). S. 355-428.

NIEBOER, E., RICHARDSON, D.H.S. & TOMASSINI, F.D. (1978): Mineral uptake and release by lichens: an overview. The Bryologist 81(2): 226-246.

NIMIS, P. L. (1999). Linee guida per la bioindicazione degli effetti dell'inquinamento tramite la biodiversità dei licheni epifiti. In: PICCINI, C. & SALVATI, S. (Hrsg.): Atti Workshop Biomonitoraggio Qualità dell'Aria sul territorio Nazionale. ANPA, Ser. Atti, 2: 267-277.

NORBY, R., WEERASURIYA, Y. & HANSON, P. (1989): Induction of nitrate reductase activity in red spruce needles by NO_2 and HNO_3 vapor. Canadian Journal of Forest Research 19: 889-896.

NORDIN, A. & NÄSHOLM, T. (1997): Nitrogen storage forms in nine boreal understorey plant species. Oecologia 110: 487-492.

NORDIN, A., NÄSHOLM, T. & ERICSON, L. (1998): Effects of simulated N deposition on understorey vegetation of a boreal coniferous forest. Functional Ecology 12: 691-699.

NORDIN, A. & GUNARSSON, U. (2000): Amino acid accumulation and growth of *Sphagnum* under different levels of N deposition. Ecoscience 7(4): 574-480.

OHLSON, M., NORDIN, A., NÄSHOLM, T. (1995): Accumulation of amino acids in forest plants in relation to ecological amplitude and nutrient supply. Functional Ecology 9: 596-605.

PALMQVIST, K., DAHLMAN, L. VALLADARES, F., THELER, A., SANCHO, L.G. & MATTSSON, J.-E. (2002): CO₂ exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133: 295-306.

PATE, J.S (1980): Transport and partitioning of nitrogenous solutes. Annual Review of Plant Physiology 31: 313-340.

PEARSON, J. & STEWART, G.R. (1993): The deposition of atmospheric ammonia and its effects on plants. New Phytologist 125: 283-305.

PEARSON, J. & SOARES, A. (1998): Physiological responses of plant leaves to atmospheric ammonia and ammonium. Atmospheric Environment 32(3): 533-538.

PEARSON, J., WELLS, D.M., SELLER, K.J., BENNETT, A., SOARES, A., WOODALL, J. & INGROUILLE, M.J. (2000): Traffic exposure increases natural ¹⁵N and heavy metal concentrations in mosses. New Phytologist 147: 317-326.

PÉRES-SOBA, M., STULEN, I. & VAN DER EERDEN, L.J.M. (1994): Effects of atmospheric ammonia on the nitrogen metabolism of Scots pine (*Pinus sylvestris*) needles. Physiologia Plantarum 90: 629-636.

PITCAIRN, C.E.R. & FOWLER, D. (1995): Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and *Calluna vulgaris* (L.) HULL. Environmental Pollution 88: 193-205.

PITCAIRN, C.E.R., LEITH, I.D., SHEPPARD, L.J., SUTTON, M.A., FOWLER, D., MUNRO, R.C., TANG, S. & WILSON, D. (1998): The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vincinity of livestock farms. Environmental pollution 102/S1: 41-48.

PITCAIRN, C.E.R., LEITH, I.D., FOWLER, D., HARGREAVES, K.J., MOGHADDAM, M., KENNEDY, V.H. & GRANAT, L. (2001): Foliar nitrogen as an indicator of nitrogen deposition and critical loads exceedance on a european scale. Water, Air, and Soil Pollution 130: 1037-1042.

PITCAIRN, C.E.R., SKIBA, U.M., SUTTON, M.A., FOWLER, D., MUNRO, R. & KENNEDY, V.H. (2002): Defining the spatial impacts of a poultry farm ammonia emissions on species composition of adjacent woodland groundflora using Ellenberg Nirogen Index, nitrous oxide and nitric oxide emissions and foliar nitrogen as marker variables. Environmental Pollution 119: 9-21.

PITCAIRN, C.E.R., FOWLER, D., LEITH, I.D., SHEPPARD, L.J., SUTTON, M.A., KENNEDY, V. & OKELLO, E. (2003): Bioindicators of enhanced nitrogen deposition. Environmental Pollution 126: 353-361.

PLANELLES, V. & LEGAZ, M.E. (1987): Purification and some properties of the secreted arginase of the lichen *Evernia prunastri* and its regulation by usnic acid. Plant Science 51: 9-16.

POIKOLAINEN, J., LIPPO, H., HONGISTO, M., KUBIN, E., MIKKOLA, K. & LINDGREN, M. (1998): On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environmental pollution 102/S1: 85-92.

PRESS, M.C., WOODIN, S.J. & LEE, J.A. (1986): The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic *Sphagnum* species. New Phytologist 103: 45-55.

PURVIS, O.W., CHIMONIDES, J., DIN, V., EROTOKRITOU, L., JEFFRIES, T., JONES, G.C., LOUWHOFF, S., READ, H. & SPIRO, B. (2003): Which factors are responsible for the changing lichen floras of London? The Science of the Total Environment 310(1): 179-189.

RADERMACHER, L. & GEIGER, J. (2003): Zeitliche Entwicklung der Luftschadstoffkonzentrationen in Waldbeständen im Zeitraum 1993-2002/03. In: Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen (Hrsg.): Der Waldzustand 2003 in Nordrhein-Westfalen. S. 22-26.

RAO, D.N. & LEBLANC, F. (1965): Effects of sulphur dioxide on the lichen algae with special reference to chlorophyll. The Bryologist 69: 69-75.

RAVEN, J.A., WOLLENWEBER, B. & HANDLEY, L.L. (1992): A comparison of ammonium and nitrate as nitrogen scources for photolithotrophs. New Phytologist 121: 19-32.

RINCON, E. (1990): Growth responses of *Brachythecium rutabulum* to different litter arrangements. Journal of Bryology 16: 120-122.

RINCON, E. & GRIME, J.P. (1989): An analysis of seasonal patterns of bryophyte growth in a natural habitat. Journal of Ecology 77: 447-455.

ROBINSON, D. (2001): $\delta^{15}N$ as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16(3): 153-162.

ROSE, C.L. & HAWKSWORTH, D.L. (1981): Lichen recolonization in London's cleaner air. Nature 289: 289-292.

RUDOLPH, H. & VOIGT, J.U. (1986): Effects of NH_4^+ -N and NO_3^- -N on growth and metabolism of *Sphagnum magellanicum*. Physiologia Plantarum 66: 339-343.

RUDOLPH, H., HOHLFELD, J., JACUBOWSKI, S., VON DER LAGE, P., MATLOK, H. & SCHMIDT, H. (1993): Nitrogen metabolism of *Sphagnum*. Advances in Bryology 5: 79-105.

RÜHLING, Å. (2002): A European survey of atmospheric heavy metal deposition in 2000-2001. Environmental Pollution 120: 23-25.

SACHS, L. (1999): Angewandte Statistik: Anwendung statistischer Methoden. Springer, Berlin. 881 S.

SCERBO, R., POSSENTI, L., LAMPUGNANI, L., RISTORI, T., BARALE, R. & BARGHIGIANI, C. (1999): Lichen (*Xanthoria parietina*) biomonitoring of trace element contamination and air quality assessment in Livorno (Tuscany, Italy). The Science of The Total Environment 241: 91-106.

SCHLEE, D., SCHULZ, H. & JUNG, K. (1996a): Biomonitoring - Eine Methode der Umweltanalytik. UWSF – Zeitschrift für Umweltchemie und Ökotoxikologie 8(3): 172-178.

SCHLEE, D., JUNG, K., TÜRK, R. & GEHRE, M. (1996b): Natural isotopic variation in species of lichens on an altitude gradient in the eastern central alps. Berichte des Naturwissenschaftlich-Medizinischen Vereins Salzburg 11: 25-34.

SCHULZ, H., GEHRE, M., HOFMANN, D. & JUNG, K. (2001): Nitrogen isotope ratios in pine bark as an indicator of N emissions from anthropogenic sources. Environmental Monitoring and Assessment 69: 283-297.

SCHULZE, E.-D., BECK, E. & MÜLLER-HOHENSTEIN, K. (2002): Pflanzenökologie. Spektrum Akademischer Verlag, Heidelberg, Berlin. 846 S.

SCHUURKES, J.A.A.R., KOK, C.J. & DEN HARTOG, C. (1986): Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquatic Botany 24: 131-146.

SHAPIRO, I.A. (1984): Activities of nitrate reductase and glutamine synthetase in lichens. Sovient Plant Physiology 30: 539-542.

SHEARER, G. & KOHL, D.H. (1993): Mineralization and assimilation in soil-plant systems. In: KNOWLES, R. & BLACKBURN, T.H. (Hrsg.): Nitrogen isotope techniques. Academic Press. S. 209-242.

SIEWERS, U. & HERPIN, U. (1998): Schwermetalleinträge in Deutschland. Geologisches Jahrbuch, Sonderhefte Reihe D, SD2, Stuttgart, Hannover, 199 S.

SILBERSTEIN, L., SIEGEL, B.Z., MUKHTAR, A. & GALUN, M. (1996): Comparative studies on *Xanthoria parietina*, a pollution-resistant lichen, and *Ramalina duriaei*, a sensitive species. II. Evaluation of possible air pollution-protection mechanisms. Lichenologist 28(4): 367-383.

SMITH, D.C. (1960): Studies in lichen physiology - 1. The effects of starvation and of ammonia absorption upon the nitrogen content of *Peltigera polydactyla*. Annals of Botany 24: 52-62.

SMITH, S.E. & READ, D.J. (1997): Mycorrhizal Symbiosis. 2. Auflage, Academic Press, San Diego, USA.

SOARES, A. & PEARSON, J. (1997): Short-term physiological responses of mosses to atmospheric ammonium and nitrate. Water, Air, and Soil Pollution 93: 225-242.

SØCHTING, U. (1995): Lichens as monitors of nitrogen deposition. Cryptogamic Botany 5: 264-269.

SOLGA, A. (2003): Untersuchungen zur Eignung von Moosen als Bioindikatoren atmosphärischer Stickstoffeinträge. Dissertation, Universität Bonn. 179 S.

STAPPER, N.J. (2002a): Veränderungen der Immissionsbelastung nordrhein-westfälischer Waldökosystem-Dauerbeobachtungsflächen zwischen 1999 und 2001 ermittelt mit epiphytischen Moosen und Flechten als Bioindikatoren. Limprichtia 20. 179-204.

STAPPER, N.J. (2002b): Epiphyten haben sich seit 1999 weiter im Bestand ausgebreitet – Zwischenbericht zur Dauerbeobachtung epiphytischer Moose und Flechten im Wald. LÖBF-Mitteilungen 4/2002: 49-54.

STAPPER, N.J., FRANZEN, I., GOHRBANDT, S. & FRAHM, J.-P. (2000): Moose und Flechten kehren ins Ruhrgebiet zurück. LÖBF-Mitteilungen 2/2000: 12-21.

STAPPER, N.J. & KRICKE, R. (2003): Luftbelastung in Düsseldorf 2003 ermittelt mit epiphytischen Flechten und Moosen als Bioindikatoren. Gutachten im Auftrag der Landeshauptstadt Düsseldorf. 64 S.

STAPPER, N.J. & KRICKE, R. (2004): Epiphytische Moose und Flechten als Bioindikatoren von städtischer Überwärmung, Standorteutrophierung und verkehrsbedingten Immissionen. Limprichtia: 187-208.

STETZKA, K.M. (1993): Moose als Zeigerpflanzen für Umweltveränderungen: Anwendungsmöglichkeiten von ökologischen Zeigerwerten. Forstarchiv 64: 226-232.

STETZKA, K.M. & BAUMANN, M. (2001): Wassermoose als Versauerungs- und Eutrophierungs-indikatoren – Untersuchungen aus dem Erzgebirge/Sachsen. Herzogia 15: 277-296.

STETZKA, K.M. & STAPPER, N.J. (2001): Moose und Flechten im Level-II-Programm: Erste Untersuchungsergebnisse aus Hessen, Sachsen und Nordrhein-Westfalen. In: BUNDESMINISTERIUM FÜR VERBRAUCHERSCHUTZ, ERNÄHRUNG UND LANDWIRTSCHAFT (BMVEL) (Hrsg.): Dauerbeobachtung der Waldvegetation im Level II-Programm: Methoden und Auswertung. S. 88-157.

STEWART, G.R., PATE, J.S. & UNKOVICH, M. (1993): Characteristics of inorganic nitrogen assimilation of plants in fire-prone Mediterranean-type vegetagion. Plant, Cell and Environment 16: 351-363.

STRASBURGER, E. (1998): Lehrbuch der Botanik. 34. Auflage, Gustav Fischer Verlag, Stuttgart, Jena, Lübeck, Ulm. 1003 S.

STREETER, D.T. (1965): Seasonal variations in the nutrient content of carpets of *Acrocladium cuspidatum* (HEDW.) LINDB. Journal of Bryology 4: 818-827.

SUNDBERG, B., NÄSHOLM, T. & PALMQVIST, K. (2001): The effect of nitrogen on growth and key thallus components in the two tripartite lichens, *Nephroma arcticum* and *Peltigera aphtosa*. Plant, Cell and Environment 24: 517-527.

SUTTON, M.A., DRAGOSITS, U., TANG, Y.S. & FOWLER, D. (2000): Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment 34: 855-869.

SYRATT, W.J. & WANSTALL, P.J. (1969): The effect of sulphur dioxide on epiphytic bryophytes. In: Air Pollution - Proceedings of the First European Congress on the Influence of Air Pollution on Plants and Animals, Wageningen, April 22 to 27, 1968. S. 79-85.

THOENE, B., SCHRÖDER, P., PAPEN, H., EGGER, A. & RENNENBERG, H. (1991): Absorption of atmospheric NO₂ by spruce (*Picea abies*) trees - NO₂ influx and its correlation with nitrate reduction. New Phytologist 117: 575-585.

TREMP, H. (1999): Submerged bryophytes in running waters, ecological characteristics and their use in biomonitoring. Environmental Science Forum 96: 233-242.

TÜRK, R. & WIRTH, V. (1975): The pH dependence of SO₂ damage to lichens. Oecologia 19: 285-291.

UMWELTBUNDESAMT (2002): Umweltdaten Deutschland 2002. Umweltbundesant, Berlin. 60. S.

VALLADARES, F., SANCHO, L.G. & ASCASO, C. (1996): Functional analysis of the intrathalinne and intracellular chlorophyll concentrations in the lichen family Umbillicariaceae. Annals of Botany 78: 471-477.

VAN DER EERDEN, L.J.M., JÄGER, H.-J. & FANGMEIER, A. (2001): Wirkungen von Stickstoffdepositionen auf terrestrische Ökosysteme. In: GUDERIAN, R. (Hrsg.): Handbuch der Umweltveränderungen und Ökotoxikologie, Band 2. S. 40-62.

VAN DER EERDEN, L.J.M., DUECK, T.A., BERDOWSKI, J. J.M., GREVEN, H. & VAN DOBBEN, H.F. (1991): Influence of NH_3 and $(NH_4)_2SO_4$ on heathland vegetation. Acta Botanica Neerlandica 40(4): 281-296.

VAN DOBBEN, H.F. (1996): Decline and recovery of epiphytic lichens in an agricultural area in The Netherlands (1900-1988). Nova Hedwigia 62 (3-4): 477-485.

VAN DOBBEN, H.F. & DE BAKKER, A.J. (1996): Re-mapping epiphytic lichen biodiversity in The Netherlands: effects of decreasing SO₂ and increasing NH₃. Acta Botanica Neerlandica 45 (1): 55-71.

VAN DOBBEN, H.F. & TER BRAAK, C.J.F. (1996): Monitoring of epiphytic lichens in The Netherlands (1977-1990). IBN Research 96/7. 60 S.

VAN HERK, C.M. (1999): Mapping of ammonia pollution with epiphytic lichens in The Netherlands. The Lichenologist 31(1): 9-20.

VAN HERK, C.M. (2001): Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33(5): 419-441.

VAN HERK, C.M., APTROOT, A. & VAN DOBBEN, H.F. (2002): Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34(2): 141-154.

VEREIN DEUTSCHER INGENIEURE (VDI) (Hrsg.) (1995): VDI-Richtlinie 3799 Blatt 1: Messen von Immissionswirkungen; Ermittlung und Beurteilung phytotoxischer Wirkungen von

Immissionen mit Flechten. Flechtenkartierung zur Ermittlung des Luftgütewertes (LGW). Beuth Verlag, Berlin. 24 S.

VEREIN DEUTSCHER INGENIEURE (VDI) (Hrsg.) (2003): VDI-Richtlinie 3957 Blatt 8: Flächenbestimmung epiphytischer Flechten zur immissionsökologischen Langzeitbeobachtung. Beuth Verlag, Berlin. 16 S.

VEREIN DEUTSCHER INGENIEURE (VDI) (Hrsg.) (2004): VDI-Richtlinie 3957 Blatt 13: Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen auf Flechten (Bioindikation) – Kartierung der Diversität epiphytischer Flechten als Indikator für die Luftgüte. (Gründruck).

VON ARB, C., MUELLER, C., AMMANN, K. & BRUNOLD, C. (1990): Lichen physiology and air pollution - II. Statistical analysis of the correlation between SO₂, NO₂, NO and O₃, and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of *Parmelia sulcata* TAYLOR. New Phytologist 115: 431-437.

VONARBURG, C. (1993): Das Mikroklima an Standorten epiphytischer Flechten – Immissionsökologische Untersuchungen entlang eines Höhengradienten in den Zentralschweizer Voralpen. Veröffentlichungen aus dem Natur-Museum Luzern 5: 1-123.

VORBECK, A. & WINDISCH, U. (2002): Flechtenkartierung München – Eignung von Flechten als Bioindikatoren für verkehrsbedingte Immissionen. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen (StMLU) (Hrsg.). Materialien Umwelt und Entwicklung 173. München. 174 S.

WEBER, M.G. & VAN CLEVE, K. (1981): Nitrogen dynamics in the forest floor of interior Alaska black spruce ecosystem. Canadian Journal of Forest Research 11: 743-751.

WIRTH, V. (1993): Trendwende bei der Ausbreitung der anthropogen geförderten Flechte *Lecanora conizaeoides*? Phytocoenologia 23: 625-363.

WIRTH, V. (1995): Die Flechten Baden-Württembergs. Ulmer, Stuttgart (Hohenheim). 1006 S.

WIRTH, V. (2001): Zeigerwerte von Flechten. In: ELLENBERG, H., WEBER, H.E., DÜLL, R., WIRTH, V. & WERNER, W.: Zeigerwerte von Pflanzen in Mitteleuropa, 3., durchgesehene Auflage. Scripta Geobotanica 18: 221-243.

WIRTH, V., CEZANNE, R. & EICHLER, M. (1999): Beitrag zur Kenntnis der Dynamik epiphytischer Flechtenbestände. Stuttgarter Beitr. Naturk., Ser. A, 595: 1-17.

WOODIN, S., PRESS, M.C. & LEE, J.A. (1985): Nitrate reductase activity in *Sphagnum fuscum* in relation to wet deposition of nitrate from the atmosphere. New Phytologist 99: 381-388.

ZECHMEISTER, H.G. (1994): Biomonitoring der Schwermetalldepositionen mittels Moosen in Österreich. Umweltbundesamt, Wien. 168 S.

ZIMMER, D. (2000): Dauerbeobachtung der epiphytischen Flechtenvegetation unter immissionsökologischen Aspekten an Boden-Dauerbeobachtungsflächen in Schleswig-Holstein. Bibliotheca Lichenologica 75: 231-251.
Anhang

Anhang A: Epiphytenkartierung

Anhang B: Veränderungen des Epiphytenbewuchses an Dauerbeobachtungsflächen

Anhang C: Auswirkungen experimenteller Stickstoffgaben auf die Epiphytenflora in Dauerbeobachtungsflächen

Anhang D: Untersuchungen zur Stickstoffakkumulation

Anhang E: Bioindikation regionaler N-Depositionsunterschiede

Anhang F: Stickstoffgehalte von Parmelia sulcata in Düsseldorf

Tafel 1

Tafel 2

Anhang A: Epiphytenkartierung

				Höhe				Enggy	Free	quenz	VDI 38	57/13
Station	BaumNr	Baumart	Exposition	ü. NN	Rechtswert	Hochwert	Artcode	Frequ. VDI3799	Süd	Ost	Nord	West
Elberndorf	e1	acps	SW	600	3444316	5653468	ortlye	0	0	0	3	0
Elberndorf	e1	acps	SW	600	3444316	5653468	ort	1	1	0	0	2
Elberndorf	e1	acps	SW	600	3444316	5653468	ortaff	2	0	0	5	4
Elberndorf	e1	acps	SW	600	3444316	5653468	hypcup	0	0	0	2	0
Elberndorf	e1	acps	SW	600	3444316	5653468	plagla	1	1	0	0	0
Elberndorf	e1	acps	SW	600	3444316	5653468	paramb	2	0	0	0	0
Elberndorf	e1	acps	SW	600	3444316	5653468	parsax	10	3	2	0	4
Elberndorf	e1	acps	SW	600	3444316	5653468	phyten	5	0	0	5	5
Elberndorf	e1	acps	SW	600	3444316	5653468	parsul	4	1	5	3	4
Elberndorf	e1	acps	SW	600	3444316	5653468	pargla	1	1	1	0	0
Elberndorf	e1	acps	SW	600	3444316	5653468	hypphy	9	5	3	0	0
Elberndorf	e1	acps	SW	600	3444316	5653468	evepru	1	0	0	0	0
Elberndorf	e1	acps	SW	600	3444316	5653468	canref	1	0	0	0	0
Elberndorf	e10	acps	SW	485	3447500	5650620	parsax	4	4	2	1	1
Elberndorf	e10	acps	SW	485	3447500	5650620	cetchl	2	1	0	0	1
Elberndorf	e10	acps	SW	485	3447500	5650620	parlac	0	0	0	1	0
Elberndorf	e10	acps	SW	485	3447500	5650620	plagla	1	1	1	0	0
Elberndorf	e10	acps	SW	485	3447500	5650620	paramb	10	5	4	5	5
Elberndorf	e10	acps	SW	485	3447500	5650620	parsul	10	4	2	1	5
Elberndorf	e10	acps	SW	485	3447500	5650620	lepinc	2	2	0	0	0
Elberndorf	e10	acps	SW	485	3447500	5650620	hypphy	5	4	2	1	3
Elberndorf	e10	acps	SW	485	3447500	5650620	diccir	2	5	0	1	3
Elberndorf	e11	acps	SW	485	3447582	5650631	ortpum	3	0	0	0	0
Elberndorf	e11	acps	SW	485	3447582	5650631	ortaff	3	4	1	1	2
Elberndorf	e11	acps	SW	485	3447582	5650631	diccir	2	2	0	5	3
Elberndorf	e11	acps	sw	485	3447582	5650631	parsax	3	0	2	3	0
Elberndorf	e11	acps	sw	485	3447582	5650631	parsul	10	5	5	5	5
Elberndorf	e11	acps	SW	485	3447582	5650631	pargla	4	2	0	4	3
Elberndorf	e11	acps	SW	485	3447582	5650631	canxan	1	0	0	0	0
Elberndorf	e12	acps	SW	485	3447514	5650574	parsax	10	5	3	0	2
Elberndorf	e12	acns	SW	485	3447514	5650574	parsul	10	1	2	5	5
Elberndorf	e12	acns	SW	485	3447514	5650574	narola	3	2	1	0	3
Elberndorf	e12	acns	SW	485	3447514	5650574	leninc	10	5	3	0	5
Elberndorf	e12	acns	SW	485	3447514	5650574	naramb	1	2	0	0	1
Elberndorf	e12	acns	SW	485	3447514	5650574	bravel	1	0	0	2	0
Elberndorf	e12	acns	SW	485	3447514	5650574	diccir	1	2	0	0	0
Elberndorf	e12	acns	SW	485	3447514	5650574	hypeup	2	0	0	0	3
Elberndorf	e12	acns	SW	485	3447514	5650574	metfur	1	1	0	1	0
Elberndorf	e12	acns	SW	485	3447514	5650574	ortaff	2	1	1	3	0
Elberndorf	e12	acns	SW	485	3447514	5650574	brasal	1	0	0	2	0
Elberndorf	e13	acpl	SW	485	3447637	5650566	metfur	0	0	0	1	0
Elberndorf	e13	acpl	SW	485	3447637	5650566	canref	1	0	1	0	0
Elberndorf	e13	acpl	SW	485	3447637	5650566	ortaff	1	1	0	0	0
Elberndorf	e13	acpl	SW	485	3447637	5650566	leninc	0	0	5	3	3
Elberndorf	e13	acnl	SW SW	485	3447637	5650566	narsay	7	5	0	5	3
Elberndorf	e13	acpl	SW	185	3//7627	5650566	hypeup	10	0	0	5	5
Elberndorf	e13	acpi	SW	403	344/03/	5650566	corpur	10	0	0	2 2	1
Elberndorf	e13	acpl	5W	403	3/17627	5650566	parala	1	5	1	0	0
Elborndorf	012	acpi	5W	403	3/17627	5650544	pargia	1	0	4	0	0
Elberndorf	e13	acpi	SW	403	344/03/	5650566	piryten	1	2	1	1	0
Elberndorf	e13	acpi	5W	403	344/03/	5650566	dicair	4	0	4	0	0
Elborndorf	c13	acpi	5W	403	344/03/	5650640	diagin	10	5	5	5	5
LIDCINGOIL	C14	acpi	5W	400	344/311	5050040	ulcell	10	5	5	5	3

Tab. A 1: Standortdaten der untersuchten Bäume und Frequenzwerte der nachgewiesenen Moos- und Flechtenarten (nach VDI 3799 Blatt 1 und VDI 3857 Blatt 13).

Elberndorf	e14	acpl	SW	485	3447511	5650640	hypphy	8	5	5	0	5
Elberndorf	e14	acpl	SW	485	3447511	5650640	parsul	10	1	3	1	2
Elberndorf	e14	acpl	SW	485	3447511	5650640	parsax	6	5	5	1	2
Elberndorf	e14	acpl	SW	485	3447511	5650640	evepru	1	1	0	0	0
Elberndorf	e14	acpl	SW	485	3447511	5650640	lepinc	0	0	5	4	3
Elberndorf	e15	acpl	SW	485	3447590	5650575	hypphy	3	0	1	2	1
Elberndorf	e15	acpl	SW	485	3447590	5650575	plagla	1	1	3	3	1
Elberndorf	e15	acpl	SW	485	3447590	5650575	parsul	7	1	0	3	1
Elberndorf	e15	acpl	SW	485	3447590	5650575	diccir	2	4	5	3	1
Elberndorf	e15	acpl	SW	485	3447590	5650575	hypcup	1	0	0	2	2
Elberndorf	e15	acpl	SW	485	3447590	5650575	ortaff	1	1	1	1	1
Elberndorf	e15	acpl	SW	485	3447590	5650575	dictau	0	0	1	0	0
Elberndorf	e15	acpl	sw	485	3447590	5650575	parsax	8	5	2	4	5
Elberndorf	e15	acpl	SW	485	3447590	5650575	lepinc	8	5	5	5	5
Elberndorf	e2	acns	SW	560	3444719	5652788	paramb	4	4	2	1	1
Elberndorf	e2	acns	SW	560	3444719	5652788	narsax	10	5	5	2	2
Elberndorf	e2	acns	SW	560	3444719	5652788	parsul	5	0	3	0	2
Elberndorf	e2	acns	SW	560	3444719	5652788	hypphy	3	0	0	0	0
Elberndorf	e2	acps	SW SW	560	344/710	5652788	evenru	2	1	0	1	0
Elberndorf	e2	acps	5W CW/	560	34//720	5652778	ortaff	1	0	1	0	0
Elbarndorf	e ²	acps	5W	560	3444720	5652770	naramh	1	0	0	0	1
Elberndorf	e ²	acps	SW	560	3444729	5652770	paranto	10	5	5	5	5
Elborndorf	e5 2 ²	acps	SW	560	3444729	5652770	parsax	10	5	5	0	0
Elberndorf	e5 	acps	SW	500	2444720	5652770	parsui	2	5	5	0	0
Elberndori	e5	acps	SW	560	3444729	5052778	nyppny	3	0	0	0	0
Elberndorf	e3	acps	SW	560	3444729	5652778	evepru	2	2	2	0	0
Elberndorf	e4	acps	SW	540	3445179	5652424	lepinc	0	0	0	1	0
Elberndorf	e4	acps	SW	540	3445179	5652424	pargla	1	l	0	0	0
Elberndorf	e4	acps	SW	540	3445179	5652424	hypphy	1	2	2	0	0
Elberndorf	e4	acps	SW	540	3445179	5652424	metfur	1	0	0	0	1
Elberndorf	e4	acps	SW	540	3445179	5652424	ulo	1	1	0	1	2
Elberndorf	e4	acps	SW	540	3445179	5652424	hypcup	1	0	0	1	0
Elberndorf	e4	acps	SW	540	3445179	5652424	paramb	1	1	2	1	0
Elberndorf	e4	acps	SW	540	3445179	5652424	pargla	8	3	2	5	3
Elberndorf	e4	acps	SW	540	3445179	5652424	parsax	10	5	5	5	5
Elberndorf	e4	acps	SW	540	3445179	5652424	parsul	1	0	0	0	0
Elberndorf	e5	acpl	SW	540	3445192	5652434	parsax	10	5	5	5	5
Elberndorf	e5	acpl	SW	540	3445192	5652434	ulo	1	0	0	0	0
Elberndorf	e5	acpl	SW	540	3445192	5652434	hypcup	1	0	0	0	2
Elberndorf	e5	acpl	SW	540	3445192	5652434	paramb	2	3	0	0	0
Elberndorf	e5	acpl	SW	540	3445192	5652434	plagla	10	5	0	0	5
Elberndorf	e5	acpl	SW	540	3445192	5652434	phyten	1	0	0	0	1
Elberndorf	e5	acpl	SW	540	3445192	5652434	pargla	1	0	0	0	1
Elberndorf	e5	acpl	SW	540	3445192	5652434	lepinc	0	0	2	2	0
Elberndorf	e5	acpl	SW	540	3445192	5652434	diccir	1	0	0	0	2
Elberndorf	e6	acps	SW	530	3445155	5652364	ortdia	1	0	0	0	1
Elberndorf	e6	acps	SW	530	3445155	5652364	paramb	0	0	0	1	0
Elberndorf	e6	acps	SW	530	3445155	5652364	ortaff	8	1	0	0	2
Elberndorf	e6	acps	SW	530	3445155	5652364	plagla	1	0	0	0	0
Elberndorf	e6	acps	SW	530	3445155	5652364	parsax	3	2	0	0	3
Elberndorf	e6	acps	SW	530	3445155	5652364	xanpar	3	0	0	0	0
Elberndorf	e6	acps	SW	530	3445155	5652364	phyten	8	5	5	5	3
Elberndorf	e6	acps	SW	530	3445155	5652364	parsul	8	5	1	5	2
Elberndorf	e6	acps	SW	530	3445155	5652364	pargla	1	2	0	0	0
Elberndorf	e6	acps	SW	530	3445155	5652364	evepru	1	0	0	0	2
Elberndorf	e6	acps	sw	530	3445155	5652364	canref	5	5	0	0	0
Elberndorf	e6	acns	sw	530	3445155	5652364	hypeup	4	2	0	0	0
Elberndorf	e7	acns	sw	485	3447585	5650610	ulo	1	0	0	0	0
Elberndorf	e7	acns	SW	485	3447585	5650610	ortaff	5	2	3	5	2
Elberndorf	e7	acne	cu	485	3447585	5650610	hypeup	0	0	2	1	0
Elberndorf	e7	acne	SW SW	485	3447585	5650610	narsay	8	3	2	0	5
Licendon	0,	acps	5 **	105	5171505	2020010	Paisan	0	5	-		J J

Elberndorf e7 acps sw 485 3447885 5650610 phaorh 2 0 0 1 0 Elberndorf e7 acps sw 485 3447585 5650610 parsal 8 1 3 0 2 Elberndorf e7 acps sw 485 3447585 5650610 expnt 1 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
I'lbemdorf e7 acps sw 485 3447885 5650610 parsul 8 1 3 0 2 Elberndorf e7 acps sw 485 3447585 5650610 lepine 0 0 2 0 0 0 Elberndorf e7 acps sw 485 3447585 5650610 cexpru 1 1 0 0 0 1 Elberndorf e8 acps sw 485 3447595 5650602 metun 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 2 0 0 1 0 0 1 1 0 0 1 1 1
Elberndorf $e7$ acps sw 485 3447885 5650610 lepinc 0 0 2 0 0 5 Elberndorf $e7$ acps sw 485 3447585 5550610 everyu 1 1 1 0 0 1 Elberndorf $e7$ acps sw 485 3447585 5550602 uo 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 3 1 1 2 0 0 3 1 1 2 0 0 3 1 1 2 0 0 3 1 1 2 0 0 3<
Elberndorf $c7$ acps sw 4485 3447585 5550610 lepine 0 0 2 0 0 Elberndorf $c7$ acps sw 4485 3447585 5550610 caxan 3 2 5 0 0 Elberndorf $c8$ acps sw 4485 3447595 5550602 uicl 1 0 0 1 0 Elberndorf e8 acps sw 4485 3447595 5550602 uicl 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
Iblemdorf e7 acps sw 448 3447885 5650610 evepru 1 1 1 0 0 Elberndorf e8 acps sw 4485 3447595 550002 metiru 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
Elberndorf c7 acps sw 485 3447895 5650602 metfur 1 0 0 0 1 Elberndorf c8 acps sw 485 3447595 5650602 ulo 1 0 0
Elberndorf e8 acps sw 485 3447595 5650602 ulo 1 0 0 1 Elberndorf e8 acps sw 485 3447595 5650602 ulo 1 0 0 1 0 Elberndorf e8 acps sw 485 3447595 5650602 parsax 1 1 2 0 0 Elberndorf e8 acps sw 485 3447595 5650602 parsax 1 1 2 0 0 Elberndorf e8 acps sw 485 3447595 5650602 canxan 6 5
Elberndorf e8 acps sw 485 3447595 5650602 ulo 1 0 0 1 0 Elberndorf e8 acps sw 485 3447595 5650602 hypup 8 5 0 0 3 Elberndorf e8 acps sw 485 3447595 5650602 parsul 10 5 4 5 5 Elberndorf e8 acps sw 485 3447595 5650602 canxan 6 5 4 0 3 Elberndorf e8 acps sw 485 3447595 5650602 clarif 8 5 5 0 Elberndorf e9 acps sw 485 3447621 5650622 parsul 10 5 5 0 Elberndorf e9 acps sw 485 3447621 5650632 parsul 10 0 0 1 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Elberndorfe.8acpssw48534475955650602parsax11200Elberndorfe.8acpssw48534475955650602parsax11200Elberndorfe.8acpssw48534475955650602parsax65403Elberndorfe.8acpssw48534475955650602carxan6550Elberndorfe.8acpssw48534475955650602dictir10010Elberndorfe.9acpssw48534476215650632parsul105550Elberndorfe.9acpssw48534476215650632pargla60000101001001001001001001000100010001000100010001000100010001000100010001000100010000100
Eiberndorfe.8acpssw48534475955650602parsul105455Eiberndorfe.8acpssw48534475955650602canxan65403Eiberndorfe.8acpssw48534475955650602ortaff85555Eiberndorfe.8acpssw48534475955650602ortaff85555Eiberndorfe.9acpssw48534476215650632parsul105550Eiberndorfe.9acpssw48534476215650632lepinc60000010Eiberndorfe.9acpssw48534476215650632lepinc60555
Elberndorfe8acpssw485 3447595 5650602 carxan65403Elberndorfe8acpssw485 3447595 5650602 elpinc00550Elberndorfe8acpssw485 3447595 5650602 elpinc10010Elberndorfe9acpssw485 3447521 5650632 parsul105550Elberndorfe9acpssw485 3447621 5650632 parsul105550Elberndorfe9acpssw485 3447621 5650632 pargla6000010Elberndorfe9acpssw485 3447621 5650632 pargla600010010010010010010010010010010001000100010001000100010001000100010001000100001000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Elberndorfe9acpssw485 3447621 5650632 uio10001Elberndorfe9acpssw485 3447621 5650632 ortdia15000Elberndorfe9acpssw485 3447621 5650632 ortaff10112Elberndorfe9acpssw485 3447621 5650632 hypcup30045Elberndorfe9acpssw485 3447621 5650632 diccir20241Glindfeldg1acplsw420 3479321 5674703 hypphy40024Glindfeldg1acplsw420 3479321 5674703 ortaff1000111Glindfeldg1acplsw420 3479321 5674703 ortaff100001Glindfeldg1acplsw420 3479321 5674703 hypcup1000100Glindfeldg1acplsw420 3479321 5674703 phyten954555Glindfeldg1acplsw420 3479321 5674703 phaerb001000Glindfeldg1acp
Elberndorfe9acpssw485 3447621 5650632 ordia15000Elberndorfe9acpssw485 3447621 5650632 ortaff10112Elberndorfe9acpssw485 3447621 5650632 hypcup30045Elberndorfe9acpssw485 3447621 5650632 diccir20241Glindfeldg1acplsw420 3479321 5674703 hypphy40024Glindfeldg1acplsw420 3479321 5674703 ortaff100011Glindfeldg1acplsw420 3479321 5674703 ortaff100011Glindfeldg1acplsw420 3479321 5674703 hypcup100011Glindfeldg1acplsw420 3479321 5674703 hypcup100011Glindfeldg1acplsw420 3479321 5674703 hypcup95455Glindfeldg1acplsw420 3479321 5674703 pharen95455Glindfeldg1acplsw420
Elberndorte9acpssw485 $344/621$ 5650632 ortaft10112Elberndorfe9acpssw485 3447621 5650632 hypcup30045Elberndorfe9acpssw485 3447621 5650632 diccir20241Glindfeldg1acplsw420 3479321 5674703 hypphy40024Glindfeldg1acplsw420 3479321 5674703 ortdia00011Glindfeldg1acplsw420 3479321 5674703 ortaff100001Glindfeldg1acplsw420 3479321 5674703 hypcup100011Glindfeldg1acplsw420 3479321 5674703 hypcup100011Glindfeldg1acplsw420 3479321 5674703 hypcup95455Glindfeldg1acplsw420 3479321 5674703 pharb00100Glindfeldg1acplsw420 3479321 5674703 pharb00100Glindfeldg1acplsw420 3479321
Elberndorfe9acpssw485 3447621 5650632 hypcup 3 0 0 4 5 Elberndorfe9acpssw 485 3447621 5650632 diccir 2 0 2 4 1 Glindfeldg1acplsw 420 3479321 5674703 hypphy 4 0 0 2 4 Glindfeldg1acplsw 420 3479321 5674703 ortdia 0 0 0 1 1 Glindfeldg1acplsw 420 3479321 5674703 ortaff 1 0 0 0 0 Glindfeldg1acplsw 420 3479321 5674703 hypcup 1 0 0 0 1 Glindfeldg1acplsw 420 3479321 5674703 hypcup 1 0 0 0 1 Glindfeldg1acplsw 420 3479321 5674703 hypcup 9 5 4 5 5 Glindfeldg1acplsw 420 3479321 5674703 phyten 9 5 4 5 5 Glindfeldg1acplsw 420 3479321 5674703 phyten 9 5 4 5 5 Glindfeldg1acplsw 420 3479321 5674703 phyten 0 0 1 0 </td
Elberndorfe9acpssw485 3447621 5650632 diccir20241Glindfeldg1acplsw420 3479321 5674703 hypphy40024Glindfeldg1acplsw420 3479321 5674703 ortdia00011Glindfeldg1acplsw420 3479321 5674703 ortdia00000Glindfeldg1acplsw420 3479321 5674703 hypcup10001Glindfeldg1acplsw420 3479321 5674703 hypcup10001Glindfeldg1acplsw420 3479321 5674703 phyten95455Glindfeldg1acplsw420 3479321 5674703 phyten95455Glindfeldg1acplsw420 3479321 5674703 phaorb00100Glindfeldg1acplsw420 3479321 5674703 parsul100055Glindfeldg1acplsw420 3479321 5674703 parsul10020Glindfeldg1acplsw420 3479321 5674703 parsul
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Glindfeldglacplsw420 3479321 5674703 ortdia00011Glindfeldg1acplsw420 3479321 5674703 ortaff10000Glindfeldg1acplsw420 3479321 5674703 hypcup10001Glindfeldg1acplsw420 3479321 5674703 kancan85250Glindfeldg1acplsw420 3479321 5674703 phyten95455Glindfeldg1acplsw420 3479321 5674703 phyten95455Glindfeldg1acplsw420 3479321 5674703 phaorb00100Glindfeldg1acplsw420 3479321 5674703 phaorb00100Glindfeldg1acplsw420 3479321 5674703 parsul10055Glindfeldg1acplsw420 3479321 5674703 parsul10020Glindfeldg1acplsw420 3479321 5674703 parsul100020Glindfeldg10acplsw 500 3476900 5675399 mycfuc1<
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Glindfeld g1 acpl sw 420 3479321 5674703 parexl 1 0 0 2 0 Glindfeld g10 acpl sw 500 3476900 5675399 mycfuc 1 1 1 0 1 0 0 0 0
Glindfeldg10acplsw50034769005675399mycfuc11100Glindfeldg10acplsw50034769005675399evepru12000Glindfeldg10acplsw50034769005675399parsul105555Glindfeldg10acplsw50034769005675399phyten105555Glindfeldg10acplsw50034769005675399ramfar10001Glindfeldg10acplsw50034769005675399ramfar10001Glindfeldg10acplsw50034769005675399pargla12010
Glindfeld g10 acpl sw 500 3476900 5675399 evepru 1 2 0 0 0 Glindfeld g10 acpl sw 500 3476900 5675399 parsul 10 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 parsul 10 5 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 phyten 10 5 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1 Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1 Glindfeld g10 acpl sw 500 3476900 5675399 pargla 1 2 0 1 </td
Glindfeld g10 acpl sw 500 3476900 5675399 parsul 10 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 parsul 10 5 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 phyten 10 5 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1 Glindfeld g10 acpl sw 500 3476900 5675399 pargla 1 2 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 phyten 10 5 5 5 Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1 Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1
Glindfeld g10 acpl sw 500 3476900 5675399 ramfar 1 0 0 0 1 Glindfeld g10 acpl sw 500 3476900 5675399 pargla 1 2 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 pargla 1 2 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 parsax 2 1 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 hypcup 2 0 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 ortaff 2 0 1 0
Glindfeld g10 acpl sw 500 3476900 5675399 parace 4 3 0 0 2
Glindfeld g11 acpl sw 500 3476870 5675409 ortaff 6 5 5 3 3
Glindfeld g11 acpl sw 500 3476870 5675409 hypcup 0 0 2 1 0
Glindfeld g11 acpl sw 500 3476870 5675409 lepinc 7 5 3 0 0
Glindfeld g11 acpl sw 500 3476870 5675409 pargla 5 1 0 0 2
Glindfeld g11 acpl sw 500 3476870 5675409 parsul 10 1 3 4 5
Glindfeld g11 acpl sw 500 3476870 5675409 phyten 5 0 5 0
Glindfeld g11 acpl sw 500 3476870 5675409 parsax 3 0 0 1 3
Glindfeld g12 acpl sw 460 3477441 5674781 hypcup 5 0 0 5 3
Glindfeld g12 acpl sw 460 3477441 5674781 pargla 1 2 2 0 0
Glindfeld g12 acpl sw 460 3477441 5674781 phaorb 1 1 0 0 0
Glindfeld g12 acpl sw 460 3477441 5674781 parsax 10 0 0 3 5
Glindfeld g12 acpl sw 460 3477441 5674781 mvcfuc 1 1 0

Glindfeld	g12	acpl	SW	460	3477441	5674781	brarut	2	0	0	2	0
Glindfeld	g12	acpl	SW	460	3477441	5674781	ortaff	10	5	0	5	3
Glindfeld	g12	acpl	SW	460	3477441	5674781	parsul	10	2	1	3	5
Glindfeld	g12	acpl	SW	460	3477441	5674781	lepinc	5	5	0	5	3
Glindfeld	g13	acpl	SW	460	3477481	5674778	ortpum	0	0	1	0	0
Glindfeld	g13	acpl	SW	460	3477481	5674778	pargla	10	5	5	5	5
Glindfeld	g13	acpl	SW	460	3477481	5674778	parsul	10	5	5	5	5
Glindfeld	g13	acpl	SW	460	3477481	5674778	nhaorb	2	2	0	0	0
Glindfeld	g13	acpl	SW	460	3477481	5674778	phươn	2	2	5	0	0
Glindfold	g13	acpi	SW	460	2477481	5674779	phyten	1	2	1	0	0
Clindfold	g13	acpi	SW	400	2477481	5674770	paisax	2	0	1	0	2
Glindleid	g15	acpi	SW	400	3477481	5(74770		1	0	0	0	2
Glindfeld	g13	acpi	SW	460	3477481	56/4//8	nypcup	1	0	0	0	1
Glindfeld	g13	acpl	SW	460	34//481	56/4//8	ort	1	0	0	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	evepru	2	0	0	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	hypphy	10	2	0	0	3
Glindfeld	g14	acpl	SW	460	3477502	5674775	pargla	2	0	0	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	parsul	10	5	1	4	5
Glindfeld	g14	acpl	SW	460	3477502	5674775	phyten	10	5	5	4	5
Glindfeld	g14	acpl	SW	460	3477502	5674775	xanpol	3	2	0	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	parlac	10	5	1	0	5
Glindfeld	g14	acpl	SW	460	3477502	5674775	parace	1	0	0	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	canref	1	0	1	0	0
Glindfeld	g14	acpl	SW	460	3477502	5674775	parsax	1	0	1	0	0
Glindfeld	g15	acps	SW	560	3474611	5677439	hypcup	2	0	0	0	1
Glindfeld	g15	acns	SW	560	3474611	5677439	hypptup	5	0	1	0	4
Glindfeld	g15	acns	SW	560	3474611	5677439	narsul	10	5	1	0	5
Glindfold	g15	acps	SW	560	2474611	5677420	paisui	10	5	5	2	5
Clindfold	g15	acps	SW	560	2474611	5677439	vancen	2	5	5	3	5
Glindleid	g15	acps	SW	560	34/4611	5677439	xancan	3	3	3	1	0
Glindfeld	g15	acps	SW	560	34/4611	5677439	xanpar	1	0	Î	1	0
Glindfeld	g15	acps	SW	560	3474611	5677439	ortaff	2	2	0	0	1
Glindfeld	g16	acps	SW	560	3474615	5677439	evepru	1	0	0	0	0
Glindfeld	g16	acps	SW	560	3474615	5677439	ramfar	1	1	0	0	0
Glindfeld	g16	acps	SW	560	3474615	5677439	xancan	2	2	0	0	1
Glindfeld	g16	acps	SW	560	3474615	5677439	ulo	1	0	0	0	1
Glindfeld	g16	acps	SW	560	3474615	5677439	parsul	10	5	2	3	5
Glindfeld	g16	acps	SW	560	3474615	5677439	hypphy	10	1	0	0	5
Glindfeld	g16	acps	SW	560	3474615	5677439	phyten	3	5	4	0	0
Glindfeld	g17	acps	SW	560	3474622	5677439	ortaff	1	2	0	0	0
Glindfeld	g17	acps	SW	560	3474622	5677439	hypphy	2	1	0	0	0
Glindfeld	g17	acps	SW	560	3474622	5677439	parsul	10	1	0	0	5
Glindfeld	g17	acps	SW	560	3474622	5677439	phyten	10	5	5	5	5
Glindfeld	σ17	acns	SW	560	3474622	5677439	parsax	4	1	0	0	2
Glindfeld	g17	acns	sw	560	3474622	5677439	ortdia	1	0	0	0	0
Glindfeld	σ17	acne	cw	560	3474622	5677430	yannar	1	2	0	1	0
Glindfeld	σ18	acnl	5W	560	347/625	5677/20	lening	0	0	0	2	0
Glindfold	g10	acpi	SW	560	2474635	5677439	noralo	0	0	1	0	0
	g10	acpi	SW	500	3474035	5(77439	pargia	10	0	1	0	0
Glindfeld	g18	acpi	SW	560	34/4635	5677439	parsui	10	2) ,	5	5
Glindfeld	g18	acpl	SW	560	3474635	5677439	xancan	2	3	5	0	0
Glindfeld	g18	acpl	SW	560	3474635	5677439	parsax	10	5	2	5	5
Glindfeld	g18	acpl	SW	560	3474635	5677439	paramb	0	0	0	2	0
Glindfeld	g18	acpl	SW	560	3474635	5677439	plagla	2	0	0	0	1
Glindfeld	g2	acpl	W	410	3478847	5674266	xanpol	10	1	0	0	5
Glindfeld	g2	acpl	W	410	3478847	5674266	xancan	2	5	0	0	0
Glindfeld	g2	acpl	W	410	3478847	5674266	hypphy	1	1	0	2	0
Glindfeld	g2	acpl	W	410	3478847	5674266	calhol	7	0	0	0	5
Glindfeld	g2	acpl	W	410	3478847	5674266	xanpar	9	0	0	0	5
Glindfeld	g2	acpl	W	410	3478847	5674266	phyten	10	5	5	5	5
Glindfeld	g2	acpl	W	410	3478847	5674266	phycae	2	0	0	2	1
Glindfeld	g2	acpl	W	410	3478847	5674266	phaorb	10	5	2	5	5
Glindfeld	g2	acpl	W	410	3478847	5674266	phanig	10	5	5	5	5
		r r					1 0					

Glindfeld	g2	acpl	W	410	3478847	5674266	lechag	10	0	0	0	5
Glindfeld	g2	acpl	W	410	3478847	5674266	parsul	2	0	0	1	2
Glindfeld	g2	acpl	W	410	3478847	5674266	phydub	10	2	0	0	5
Glindfeld	g3	acps	S	455	3479858	5675151	leccon	6	3	3	0	0
Glindfeld	g3	acps	S	455	3479858	5675151	hypphy	6	4	0	0	0
Glindfeld	03 03	acns	s	455	3479858	5675151	xanpol	1	1	1	0	0
Glindfeld	a3	acns	s	455	3479858	5675151	vancan	2	2	1	0	0
Glindfeld	55 3	acns	5	455	3479858	5675151	nhyten	10	5	3	1	5
Clindfold	g5 2	acps	3	455	2470858	5675151	phyten	0	2	4	0	0
Clin df-1d	g5	acps	8	455	3479838	5(72104	paisui	0	3	4	0	0
Glindfeld		acps	SW	450	347770	5(72104	leccili	0	0	0	0	0
Glindleid	g4	acps	SW	450	34////0	56/5104	psetur	1	0	0	0	0
Glindfeld	g4	acps	SW	450	3477770	5673104	xancan	2	0	0	0	0
Glindfeld	g4	acps	SW	450	3477770	5673104	phyten	1	3	5	1	0
Glindfeld	g4	acps	SW	450	3477770	5673104	pargla	3	1	0	0	0
Glindfeld	g4	acps	SW	450	3477770	5673104	hypphy	10	2	0	0	4
Glindfeld	g4	acps	SW	450	3477770	5673104	evepru	1	2	0	0	0
Glindfeld	g4	acps	SW	450	3477770	5673104	parsul	1	2	1	0	0
Glindfeld	g5	acpl	W	455	3478093	5673196	ortaff	1	0	0	1	1
Glindfeld	g5	acpl	W	455	3478093	5673196	xanpol	7	4	0	0	4
Glindfeld	g5	acpl	W	455	3478093	5673196	xanpar	1	1	0	0	1
Glindfeld	g5	acpl	W	455	3478093	5673196	parsul	8	2	2	3	5
Glindfeld	95 95	acpl	w	455	3478093	5673196	xancan	1	0	0	3	0
Glindfeld	05	acpl	w	455	3478093	5673196	lechag	5	0	0	0	4
Glindfeld	5 ⁵	acpl	W	455	3478093	5673196	hypphy	1	0	0	3	0
Glindfold	g5	acpi	w	455	2478093	5672106	avopru	2	0	2	0	2
Clindfold	g.5	acpi	w	455	2478093	5672106	evepiu	10	5	5	5	5
Glindleid	go	acpi	W	455	3478093	50/5190	pnyten	10	5	5	5	5
Glindfeld	g6	acpl	W	560	34/4605	5677439	phyten	10	5	5	0	5
Glindfeld	g6	acpl	W	560	3474605	5677439	ulo	1	0	0	0	0
Glindfeld	g6	acpl	W	560	3474605	5677439	ortaff	8	1	0	0	4
Glindfeld	g6	acpl	W	560	3474605	5677439	hypcup	5	0	0	0	3
Glindfeld	g6	acpl	W	560	3474605	5677439	diccir	10	0	0	0	5
Glindfeld	g6	acpl	W	560	3474605	5677439	cerpur	1	0	0	0	1
Glindfeld	g6	acpl	W	560	3474605	5677439	xancan	1	4	0	0	0
Glindfeld	g6	acpl	W	560	3474605	5677439	parsul	4	1	1	2	2
Glindfeld	g6	acpl	W	560	3474605	5677439	parsax	1	0	0	0	0
Glindfeld	g6	acpl	W	560	3474605	5677439	hypphy	6	5	0	5	2
Glindfeld	26	acpl	W	560	3474605	5677439	clacon	1	0	0	0	0
Glindfeld	8¢ ∞6	acpl	W	560	3474605	5677439	brarut	2	0	0	0	1
Glindfeld	<u>8</u> ° ₀7	acns	SW	420	3479370	5674693	narola	5	0	0	0	2
Glindfeld	97 97	acns	SW	420	3479370	5674693	nhyten	10	5	5	4	5
Clindfold	<u> </u>	acps	3₩	420	2470270	5674602	lanina	10	0	0	-	2
Clin df-1d		acps	SW	420	3479370	5(74(9)	Tepine	10	5	2	0	
	g/	acps	SW	420	34/93/0	5674712	xancan	10	2	3	1	2
Glindfeld	gð	acps	SW	420	34/93/6	56/4/13	nypcup	0	0	Û	1	0
Glindfeld	gð	acps	SW	420	3479376	5674713	parsul	10	5	0	2	5
Glindfeld	g8	acps	SW	420	3479376	5674713	pargla	10	0	0	5	5
Glindfeld	g8	acps	SW	420	3479376	5674713	lepinc	1	0	3	5	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	ortaff	0	0	0	1	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	hypphy	3	4	5	0	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	hypcup	0	0	1	3	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	lecchl	2	1	0	0	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	parace	4	0	0	0	3
Glindfeld	g9	acpl	SW	500	3476906	5675390	phyten	2	0	0	5	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	pargla	3	4	0	0	0
Glindfeld	g9	acpl	SW	500	3476906	5675390	evepru	1	0	3	0	0
Glindfeld	09	acnl	sw	500	3476906	5675390	amanun	10	5	0	Ő	5
Glindfeld	σQ	acul	SW	500	3476906	5675390	narsul	5	5	5	5	5
Haard	ь ⁷ h1	acne	5W	60	2502277	572/0/6	nhydub	1	1	2	0	0
Haard	h1	acps	SW	60	2592527	5724940	varnal	1	1	 1	0	0
Hadiu	111	acps	5W	00	2592527	5724046	хапрог	2	1	1	0	0
Haard	hl	acps	SW	60	2592327	5/24946	xancan	2	4	2	0	0
Haard	hl	acps	SW	60	2592327	5724946	phyten	10	5	5	5	5

Haard	h1	acps	SW	60	2592327	5724946	parsul	1	1	1	1	1
Haard	h1	acps	SW	60	2592327	5724946	parsub	3	0	0	0	3
Haard	h1	acps	SW	60	2592327	5724946	parsba	1	0	1	1	0
Haard	h1	acps	SW	60	2592327	5724946	parcap	1	0	0	0	0
Haard	h1	acps	SW	60	2592327	5724946	evepru	0	0	1	0	0
Haard	h1	acps	SW	60	2592327	5724946	canref	0	0	3	3	0
Haard	h10	acpl	SW	95	2586385	5722796	parsul	1	1	0	0	3
Haard	h10	acpl	sw	95	2586385	5722796	hypnhy	3	1	0	0	3
Haard	h10	acpl	SW	95	2586385	5722796	fädal	6	0	0	2	5
Heard	h10	acpl	SW	95	2586385	5722796	nhyten	10	5	0	5	5
Hoord	h10	acpi	SW	95	2586385	5722790	over	10	0	0	0	1
Haard	h11	acpi	5W	95	2580585	5722790	househou	0	0	1	0	1
Haald	111	acpi	SW	95	2380378	5722790	пуррпу	1	1	1	0	0
Haard	h11	acpi	SW	95	2580378	5722790	ramlar	1	1	0	0	0
Haard	n11	acpi	SW	95	2586378	5/22/96	amapun	2	0	0	0	1
Haard	hll	acpl	SW	95	2586378	5/22/96	canref	2	0	0	0	2
Haard	h11	acpl	SW	95	2586378	5722796	evepru	1	0	0	0	1
Haard	h11	acpl	SW	95	2586378	5722796	xancan	6	2	0	0	3
Haard	h11	acpl	SW	95	2586378	5722796	parsba	2	0	0	0	1
Haard	h11	acpl	SW	95	2586378	5722796	fädal	10	0	0	0	0
Haard	h11	acpl	SW	95	2586378	5722796	xanpar	1	1	0	0	0
Haard	h11	acpl	SW	95	2586378	5722796	parsul	9	1	0	0	3
Haard	h11	acpl	SW	95	2586378	5722796	phyten	10	5	0	0	5
Haard	h12	acpl	SW	95	2586385	5722805	xanpar	1	0	0	1	0
Haard	h12	acpl	SW	95	2586385	5722805	fädal	0	0	0	5	3
Haard	h12	acpl	SW	95	2586385	5722805	phyten	10	5	5	5	5
Haard	h12	acpl	SW	95	2586385	5722805	phaorb	1	0	0	5	0
Haard	h12	acpl	SW	95	2586385	5722805	phycae	1	0	0	0	0
Haard	h12	acpl	SW	95	2586385	5722805	canref	2	0	0	2	1
Haard	h12	acpl	SW	95	2586385	5722805	hypphy	2	0	0	0	1
Haard	h12	acpl	SW	95	2586385	5722805	xanpol	5	2	1	0	4
Haard	h12	acpl	SW	95	2586385	5722805	evenru	2	2	0	0	1
Haard	h12	acpl	sw	95	2586385	5722805	parsul	7	1	0	0	3
Haard	h13	acpl	SW	90	2586599	5722866	narsha	1	0	0	0	1
Haard	h13	acpl	sw	90	2586599	5722866	fädal	0	0	5	0	0
Haard	h13	acpl	SW	90	2586599	5722866	ortdia	3	0	0	0	0
Haard	h13	acpl	SW	90	2586599	5722866	hypphy	1	1	1	0	0
Haard	h13	acpl	SW	90	2586500	5722866	nhaorh	5	0	0	0	0
Hoord	h12	acpi	SW	90	2586500	5722800	phaoro	10	5	1	4	5
Haard	h12	acpi	SW	90	2586500	5722800	pilyteii marsul	10	0	1	4	1
Haard	1115		SW	90	2380399	5722800	parsu	10	5	0	5	1
Haard	n14	acpi	SW	90	2586613	5722800	pnyten	10	3	3	5	4
Haard	n14	acpi	SW	90	2586613	5722866	Tadal	/	0	0	5	5
Haard	h14	acpl	SW	90	2586613	5/22866	parsul	3	3	2	0	4
Haard	hl4	acpl	SW	90	2586613	5/22866	parsba	1	1	0	0	0
Haard	h14	acpl	SW	90	2586613	5/22866	xanpol	1	0	0	1	0
Haard	h14	acpl	SW	90	2586613	5722866	hypphy	1	0	1	0	1
Haard	h14	acpl	SW	90	2586613	5722866	evepru	1	0	1	0	1
Haard	h14	acpl	SW	90	2586613	5722866	amapun	2	0	0	0	0
Haard	h15	acpl	SW	90	2586620	5722866	canref	1	0	0	5	0
Haard	h15	acpl	SW	90	2586620	5722866	parsul	2	1	1	2	2
Haard	h15	acpl	SW	90	2586620	5722866	evepru	1	1	0	0	1
Haard	h15	acpl	SW	90	2586620	5722866	fädal	8	0	0	5	5
Haard	h15	acpl	SW	90	2586620	5722866	phaorb	7	0	0	4	2
Haard	h15	acpl	SW	90	2586620	5722866	phyten	10	5	5	5	5
Haard	h15	acpl	SW	90	2586620	5722866	Parexl	1	0	0	1	0
Haard	h15	acpl	SW	90	2586620	5722866	ortdia	1	0	0	5	0
Haard	h15	acpl	SW	90	2586620	5722866	parsba	3	0	0	0	0
Haard	h15	acpl	SW	90	2586620	5722866	hypphy	2	2	0	0	1
Haard	h16	acpl	SW	90	2588771	5726791	parsul	1	1	0	0	0
Haard	h16	acpl	SW	90	2588771	5726791	fädal	2	0	0	0	4
Haard	h16	acpl	SW	90	2588771	5726791	phaorb	1	0	0	0	0

Haard	h16	acpl	SW	90	2588771	5726791	amapun	8	5	0	0	5
Haard	h16	acpl	SW	90	2588771	5726791	parsba	6	1	0	0	2
Haard	h16	acpl	SW	90	2588771	5726791	xanpol	2	2	0	0	2
Haard	h16	acpl	SW	90	2588771	5726791	xanpar	1	1	0	0	1
Haard	h16	acpl	SW	90	2588771	5726791	phyten	10	5	5	0	5
Haard	h17	acpl	SW	90	2588785	5726798	parsba	1	0	0	0	0
Haard	h17	acpl	SW	90	2588785	5726798	xanpol	1	0	0	0	2
Haard	h17	acpl	SW	90	2588785	5726798	amapun	5	0	0	0	2
Haard	h17	acpl	SW	90	2588785	5726798	phyten	10	5	4	1	5
Haard	h18	acpl	sw	90	2588791	5726803	canref	4	2	0	0	0
Haard	h18	acpl	sw	90	2588791	5726803	phaorb	2	0	0	0	0
Haard	h18	acpl	SW	90	2588791	5726803	amapun	6	0	0	0	3
Haard	h18	acpl	sw	90	2588791	5726803	xanpar	1	0	0	0	3
Haard	h18	acpl	SW	90	2588791	5726803	parsha	4	2	0	0	0
Haard	h18	acpl	SW	90	2588791	5726803	narsul	2	1	0 0	0	2
Haard	h18	acpl	SW	90	2588791	5726803	nhyten	10	5	5	0	5
Haard	h10	acpl	SW	100	2589312	5727200	diccir	10	0	0	0	3
Hoord	h10	acpi	SW	100	2580312	5727200	nhutan	10	5	0	2	5
Hoord	h10	acpi	SW	100	2589312	5727200	piryteii	10	0	0	2	0
Hoord	h10	acpi	SW	100	2589312	5727200	fädal	2	0	0	2	2
Haard	h10	acpi	SW	100	2589512	5727200	lamina	2	0	1	2	2
Haard	1119	acpi	SW	100	2589312	5727200	iepine	1	1	1	3	0
Haard	h19	acpi	SW	100	2589312	5727200	parsui	1	1	0	0	0
Haard	110	acpi	SW	100	2589312	5727200	xanpar	1	1	0	0	1
Haard	n19	acpi	SW	100	2589312	5727200	parsba	1	0	0	0	0
Haard	h19	acpl	SW	100	2589312	5727200	amapun	/	1	0	0	3
Haard	h2	acps	SW	60	2592357	5724946	parcap	1	0	0	0	0
Haard	h2	acps	SW	60	2592357	5724946	fädal	5	0	0	0	5
Haard	h2	acps	SW	60	2592357	5724946	ramfar	2	0	0	0	0
Haard	h2	acps	SW	60	2592357	5724946	phyten	8	3	0	0	0
Haard	h2	acps	SW	60	2592357	5724946	phaorb	10	5	5	5	5
Haard	h2	acps	SW	60	2592357	5724946	parsul	2	1	0	0	4
Haard	h2	acps	SW	60	2592357	5724946	parsba	1	0	0	0	3
Haard	h2	acps	SW	60	2592357	5724946	hypphy	1	0	0	0	1
Haard	h2	acps	SW	60	2592357	5724946	canref	10	5	5	5	0
Haard	h2	acps	SW	60	2592357	5724946	parsub	1	0	0	0	0
Haard	h20	acpl	SW	100	2589315	5727212	phyten	3	0	0	0	0
Haard	h20	acpl	SW	100	2589315	5727212	lepinc	0	0	0	1	0
Haard	h21	acpl	SW	100	2589319	5727220	lepinc	0	0	0	1	0
Haard	h21	acpl	SW	100	2589319	5727220	amapun	3	1	0	0	0
Haard	h21	acpl	SW	100	2589319	5727220	parsub	1	1	0	0	0
Haard	h21	acpl	SW	100	2589319	5727220	fädal	2	0	0	5	5
Haard	h21	acpl	SW	100	2589319	5727220	canref	1	0	0	0	0
Haard	h21	acpl	SW	100	2589319	5727220	xanpol	1	0	0	0	1
Haard	h21	acpl	SW	100	2589319	5727220	parsul	1	1	0	0	1
Haard	h21	acpl	SW	100	2589319	5727220	phyten	6	4	4	0	5
Haard	h3	acps	SW	60	2592401	5724936	phaorb	5	3	0	0	0
Haard	h3	acps	SW	60	2592401	5724936	parsul	1	1	0	0	2
Haard	h3	acps	SW	60	2592401	5724936	parsub	1	0	0	0	1
Haard	h3	acps	SW	60	2592401	5724936	parsba	3	1	0	0	0
Haard	h3	acps	SW	60	2592401	5724936	evepru	1	0	0	0	1
Haard	h3	acps	SW	60	2592401	5724936	canref	0	0	0	4	0
Haard	h3	acps	SW	60	2592401	5724936	phyten	10	5	0	5	5
Haard	h3	acps	SW	60	2592401	5724936	ramfar	3	0	0	0	1
Haard	h3	acps	SW	60	2592401	5724936	phycae	1	0	0	0	2
Haard	h3	acps	SW	60	2592401	5724936	fädal	5	0	0	5	5
Haard	h3	acps	SW	60	2592401	5724936	phydub	1	0	0	0	1
Haard	h3	acps	SW	60	2592401	5724936	xancan	10	5	0	0	5
Haard	h4	acps	SW	60	2592411	5724925	fädal	10	0	0	0	5
Haard	h4	acps	sw	60	2592411	5724925	xappol	1	1	0	0	0
Haard	h4	acps	sw	60	2592411	5724925	xancan	4	1	0	0	1

Haard	h4	acps	SW	60	2592411	5724925	phyten	10	5	2	5	5
Haard	h4	acps	SW	60	2592411	5724925	parsul	3	1	0	0	0
Haard	h4	acps	SW	60	2592411	5724925	parsba	7	0	0	0	1
Haard	h4	acps	SW	60	2592411	5724925	hypphy	1	0	0	0	2
Haard	h4	acps	SW	60	2592411	5724925	evepru	1	2	0	0	0
Haard	h4	acps	SW	60	2592411	5724925	canref	4	5	1	0	5
Haard	h5	acps	SW	60	2592434	5724919	evenru	2	0	0	0	0
Haard	h5	acns	SW	60	2592434	5724919	fädal	10	0 0	0	0	5
Haard	h5	acns	SW	60	2592434	5724919	ortdia	0	0	0	5	0
Haard	h5	acps	SW	60	2592434	5724010	nhydub	1	1	0	0	0
Hoord	h5	acps	SW	60	2592434	5724919	vannal	1	1	0	0	0
Haard	115	acps	5W	60	2592434	5724919	хапрот	1	2	0	0	0
Haard	115	acps	SW	60	2592434	5724919	xancan	10	5	5	0	5
Haard	1.5	acps	SW	60	2592434	5724919	pnyten	10	3	3	0	5
Haard	n5	acps	SW	60	2592434	5/24919	pnaorb	0	0	1	5	0
Haard	h5	acps	SW	60	2592434	5724919	parsul	3	0	0	0	3
Haard	h5	acps	SW	60	2592434	5724919	parsub	1	0	1	0	0
Haard	h5	acps	SW	60	2592434	5724919	parsba	0	0	1	0	0
Haard	h5	acps	SW	60	2592434	5724919	hypphy	3	0	0	0	2
Haard	h5	acps	SW	60	2592434	5724919	canref	10	3	5	5	5
Haard	h5	acps	SW	60	2592434	5724919	parcap	2	0	0	0	1
Haard	h6	acps	SW	60	2592460	5724915	fädal	0	0	0	3	0
Haard	h6	acps	SW	60	2592460	5724915	parchi	1	0	0	0	1
Haard	h6	acps	SW	60	2592460	5724915	xancan	10	5	3	1	5
Haard	h6	acps	SW	60	2592460	5724915	phyten	10	5	5	4	5
Haard	h6	acps	SW	60	2592460	5724915	phycae	3	1	2	0	1
Haard	h6	acps	SW	60	2592460	5724915	phaorb	5	3	0	0	5
Haard	h6	acps	SW	60	2592460	5724915	parsba	1	1	0	0	1
Haard	h6	acps	SW	60	2592460	5724915	parsul	4	0	2	0	2
Haard	h6	acps	SW	60	2592460	5724915	evepru	1	2	0	0	0
Haard	h6	acps	SW	60	2592460	5724915	parulo	1	0	0	0	0
Haard	h7	acpl	SW	80	2585218	5723758	phyten	10	5	2	2	5
Haard	h7	acpl	SW	80	2585218	5723758	fädal	0	0	0	2	0
Haard	h7	acpl	SW	80	2585218	5723758	hypeup	2	0	0	0	0
Haard	h7	acpl	SW	80	2585218	5723758	diccir	10	0	0	0	5
Haard	h7	acpl	SW	80	2585218	5723758	vannar	1	1	0	0	1
Heard	h7	acpl	SW	80	2585218	5723758	narcul	1	0	0	0	2
Hoord	h7	acpi	SW	80	2585218	5723758	parsha	1	1	0	0	2
Haard	117 h7	acpi	SW	80	2585218	5723730	lanina	0	1	2	0	0
Haard	117	acpi	SW	80	2585218	5722759	lepine	1	1	2	0	0
Haard	n/	acpi	SW	80	2585218	5723758	evepru	1	1	0	0	0
Haard	n/	acpi	SW	80	2585218	5/25/58	canrel	0	2	0	0	0
Haard	h/	acpl	SW	80	2585218	5/23/58	amapun	1	0	0	0	0
Haard	h/	acpl	SW	80	2585218	5/23/58	xanpol	1	0	0	0	2
Haard	h8	acpl	SW	80	2585218	5723758	tädal	4	2	0	2	0
Haard	h8	acpl	SW	80	2585218	5723758	ortaff	1	0	0	0	0
Haard	h8	acpl	SW	80	2585218	5723758	hypcup	4	1	0	0	0
Haard	h8	acpl	SW	80	2585218	5723758	diccir	10	0	0	0	0
Haard	h8	acpl	SW	80	2585218	5723758	parchi	1	1	0	0	0
Haard	h8	acpl	SW	80	2585218	5723758	xanpar	1	1	0	0	1
Haard	h8	acpl	SW	80	2585218	5723758	xancan	1	0	0	0	1
Haard	h8	acpl	SW	80	2585218	5723758	phaorb	4	0	0	0	1
Haard	h8	acpl	SW	80	2585218	5723758	parsul	1	0	0	0	0
Haard	h8	acpl	SW	80	2585218	5723758	ortdia	3	0	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	parsul	1	0	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	lepinc	1	0	0	2	0
Haard	h9	acpl	SW	80	2585215	5723750	parcap	1	0	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	fädal	10	0	0	3	5
Haard	h9	acpl	SW	80	2585215	5723750	ortdia	1	4	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	ortaff	1	0	0	0	0
Haard	h9	acnl	SW	80	2585215	5723750	hypcup	1	0	1	0	1
Haard	h9	acpl	SW	80	2585215	5723750	gripul	1	0	0	0	0

Haard	h9	acpl	SW	80	2585215	5723750	diccir	10	0	4	0	1
Haard	h9	acpl	SW	80	2585215	5723750	xanpol	1	1	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	xanpar	1	0	0	0	0
Haard	h9	acpl	SW	80	2585215	5723750	phyten	10	5	3	3	5
Haard	h9	acpl	SW	80	2585215	5723750	phaorb	1	2	1	0	0
Haard	h9	acpl	SW	80	2585215	5723750	canref	0	0	2	0	0
Kleve	k1	acpl	W	20	2503022	5736512	amapun	0	0	5	1	0
Kleve	k1	acpl	W	20	2503022	5736512	phaorb	5	5	4	0	3
Kleve	k1	acpl	W	20	2503022	5736512	xanpar	10	5	5	5	5
Kleve	k1	acpl	W	20	2503022	5736512	trente	0	0	0	5	0
Kleve	k1	acpl	w	20	2503022	5736512	phyten	10	5	5	0	5
Kleve	k10	acns	SW	40	2506900	5735590	xannar	5	0	1	0	0
Kleve	k10	acps	sw	40	2506900	5735590	phyten	10	5	5	0	5
Kleve	k10	acps	SW	40	2506900	5735590	phaorb	5	0	0	0	2
Kleve	k10	acns	SW	40	2506900	5735590	amanun	8	5	2	0	5
Kleve	k10	acps	SW	40	2506990	5735620	cancon	4	2	0	0	1
Kleve	k11	acps	SW	40	2506990	5735620	cancef	1	1	5	5	5
Klove	k11 1/11	acps	SW	40	2506000	5735620	ortoff	0	-	1	0	0
Kleve	k11 1/11	acps	SW	40	2506990	5735620	omonun	0	2	0	0	5
Kleve	k11 1/11	acps	SW	40	2506990	5735620	amapun	6	2	0	0	5
Kleve	K11 1-11	acps	SW	40	2506990	5735020	ontana	0	0	0	0	0
Kleve	K11	acps	SW	40	2506990	5735620	pnycae	10	0	0	0	0
Kleve	K11	acps	SW	40	2506990	5735620	xanpar	10	3	2	0	5
Kleve	K11	acps	SW	40	2506990	5/35620	ramfar	1	1	0	0	0
Kleve	k11	acps	SW	40	2506990	5/35620	phyten	10	5	5	5	5
Kleve	k11	acps	SW	40	2506990	5735620	phaorb	1	5	0	0	1
Kleve	k11	acps	SW	40	2506990	5735620	parsul	1	1	0	1	0
Kleve	k11	acps	SW	40	2506990	5735620	parsub	1	0	0	0	0
Kleve	k11	acps	SW	40	2506990	5735620	lechag	2	0	0	0	0
Kleve	k11	acps	SW	40	2506990	5735620	fädal	0	0	5	0	0
Kleve	k12	acps	SW	40	2507100	5735640	phyten	10	4	5	2	5
Kleve	k12	acps	SW	40	2507100	5735640	phaorb	7	0	1	0	2
Kleve	k12	acps	SW	40	2507100	5735640	amapun	4	5	5	3	2
Kleve	k12	acps	SW	40	2507100	5735640	xanpar	10	2	5	0	2
Kleve	k13	acpl	SW	40	2506830	5735500	xanpar	2	2	0	0	1
Kleve	k13	acpl	SW	40	2506830	5735500	phyten	10	5	0	0	5
Kleve	k13	acpl	SW	40	2506830	5735500	phanig	1	1	0	0	0
Kleve	k13	acpl	SW	40	2506830	5735500	lechag	3	0	0	0	0
Kleve	k13	acpl	SW	40	2506830	5735500	amapun	5	3	3	3	5
Kleve	k14	acpl	SW	40	2506825	5735480	xanpol	1	1	0	0	0
Kleve	k14	acpl	sw	40	2506825	5735480	xanpar	1	4	0	0	1
Kleve	k14	acpl	SW	40	2506825	5735480	phyten	10	5	0	1	5
Kleve	k14	acpl	SW	40	2506825	5735480	phaorb	10	5	0	1	1
Kleve	k14	acpl	SW	40	2506825	5735480	parsul	4	0	0	0	1
Kleve	k14	acpl	SW	40	2506825	5735480	amapun	10	2	2	1	1
Kleve	k15	acpl	SW	40	2506730	5735400	phyten	10	5	5	3	5
Kleve	k15	acpl	SW	40	2506730	5735400	xanpar	3	2	1	0	1
Kleve	k15	acpl	SW	40	2506730	5735400	phaorb	2	1	1	0	2
Kleve	k15	acpl	SW	40	2506730	5735400	cancon	1	1	0	0	0
Kleve	k15	acpl	SW	40	2506730	5735400	amapun	10	5	2	2	5
Kleve	k15	acpl	SW	40	2506730	5735400	fädal	0	0	4	0	0
Kleve	k16	acps	SW	15	2503333	5731500	xanpar	10	5	5	4	5
Kleve	k16	acps	SW	15	2503333	5731500	phyten	8	5	4	4	2
Kleve	k16	acps	SW	15	2503333	5731500	phaorb	10	5	5	3	5
Kleve	k16	acps	SW	15	2503333	5731500	amapun	2	0	1	3	0
Kleve	k17	acps	SW	15	2503400	5731480	phaorb	10	5	5	4	5
Kleve	k17	acns	SW	15	2503400	5731480	lechag	0	0	1	0	0
Kleve	k17	acns	sw	15	2503400	5731480	amanun	10	0	0	4	5
Kleve	k17	acns	sw	15	2503400	5731480	phyten	10	3	5	.5	5
Kleve	k17	acns	sw	15	2503400	5731480	xannar	10	5	5	5	5
Kleve	k18	acpl	sw	15	2504100	5731420	amanun	4	2	1	0	3
			5			2.21120	pun	· · · · ·		-	~	

Kleve	k18	acpl	SW	15	2504100	5731420	phydub	1	1	0	0	0
Kleve	k18	acpl	SW	15	2504100	5731420	phygri	1	2	0	0	0
Kleve	k18	acpl	SW	15	2504100	5731420	xanpol	1	1	1	0	0
Kleve	k18	acpl	SW	15	2504100	5731420	xanpar	10	5	5	0	5
Kleve	k18	acpl	SW	15	2504100	5731420	phyten	10	5	5	1	5
Kleve	k18	acpl	SW	15	2504100	5731420	phaorb	10	5	5	1	5
Kleve	k18	acpl	SW	15	2504100	5731420	lechag	2	0	1	0	2
Kleve	k19	acpl	SW	15	2503490	5731400	ortdia	1	0	0	0	3
Kleve	k19	acpl	SW	15	2503490	5731400	xanpar	8	2	5	0	3
Kleve	k19	acpl	SW	15	2503490	5731400	phyten	10	5	5	2	5
Kleve	k19	acpl	SW	15	2503490	5731400	phaorb	10	1	2	0	1
Kleve	k19	acpl	SW	15	2503490	5731400	lechag	4	0	0	0	0
Kleve	k19	acpl	SW	15	2503490	5731400	evepru	0	1	0	0	0
Kleve	k19	acpl	SW	15	2503490	5731400	amapun	8	0	0	0	0
Kleve	k19	acpl	SW	15	2503490	5731400	canref	1	4	0	0	0
Kleve	k2	acpl	W	20	2502843	5737008	xanpar	0	0	2	1	0
Kleve	k2	acpl	w	20	2502843	5737008	amapun	0	1	0	0	0
Kleve	k2	acpl	w	20	2502843	5737008	canref	6	0	2	1	4
Kleve	k2	acpl	W	20	2502843	5737008	phaorb	1	5	5	0	0
Kleve	k2	acpl	W	20	2502843	5737008	phuoro	10	5	3	5	5
Kleve	k2	acpl	W	20	2502843	5737008	diccir	10	0	0	1	5
Kleve	k2	acnl	vv 11/1	20	2502045	5737008	hypeup	8	0	0	0	4
Kleve	k2	acpl	vv 11/1	20	2502045	5737008	trente	0	5	0	0	0
Kleve	k2	acpl	w	20	2502843	5737008	fädal	0	0	0	5	0
Kleve	k2	acpl	W	20	2502843	5737008	nhycae	1	0	0	1	1
Kleve	k20	acpl	w cw	15	2502845	5731380	phyten	10	5	5	2	5
Klove	1/20	acpi	SW	15	2503595	5721280	omonun	10	0	0	2	1
Kleve	K20	acpi	SW	15	2503595	5721280	amapun	2	0	1	0	1
Kleve	K20	acpi	SW	15	2503595	5721280	xanpoi	10	5	1	1	4
Kleve	K20	acpi	SW	15	2503595	5731380	pnaoro	10	3	3	1	5
Kleve	K21	acps	SW	15	2503700	5731320	xanpoi	10	0	0	0	0
Kleve	K21	acps	SW	15	2503700	5731320	xanpar	10	5	1	0	5
Kleve	K21	acps	SW	15	2503700	5751520	pnyten	10	5	3	3	5
Kleve	K21	acps	SW	15	2503700	5/31320	pnaorb	4	2	0	1	0
Kleve	K21	acps	SW	15	2503700	5/31320	canxan	2	2	1	0	0
Kleve	K21	acps	SW	15	2503700	5/31320	amapun	8	5	0	0	2
Kleve	K3	acpi	SW	20	2502821	5/3/181	xancan	0	1	0	0	0
Kleve	K3	acpi	SW	20	2502821	5/3/181	xanpar	2	2	0	0	1
Kleve	K3	acpi	SW	20	2502821	5/3/181	bryarg	1	0	0	0	1
Kleve	K3	acpi	SW	20	2502821	5/3/181	diccir	3	0	0	0	4
Kleve	K3	acpi	SW	20	2502821	5/3/181	gripul	3	0	0	0	0
Kleve	k3	acpl	SW	20	2502821	5/3/181	hypcup	1	0	0	0	0
Kieve	K3	acpl	SW	20	2502821	5/3/181	ortaff	10		0	0	0
Kieve	K3	acpl	SW	20	2502821	5/3/181		10	0	0	2	0
Kieve	K3	acpl	SW	20	2502821	5/3/181	pnaorb	10	2	2	0	0
Kleve	K3	acpl	SW	20	2502821	5/3/181	ulo ulo	10	0	0	0	0
Kieve	K3	acpi	SW	20	2502821	5/3/181	pnyten	10	2	2	2	3
Kieve	K3	acpl	SW	20	2502821	5/3/181	canret	5	3	4	0	0
Kleve	k3	acpl	SW	20	2502821	5/3/181	parsul	1	0	0	0	0
Kleve	K4	acps	SW	35	2508825	5/33/98	pnaorb	10	2	0	0	2
Kleve	K4	acps	SW	35	2508825	5/33/98	fadal	0	0	0	5	5
Kieve	K4	acps	SW	35	2508825	5/33/98	xanpar	10	2	1	0	2
Kleve	K4	acps	SW	35	2508825	5/33/98	phyten .	4	2	4	2	5
Kleve	k4	acps	SW	35	2508825	5/33/98	parsub	1	0	0	0	
Kleve	k4	acps	SW	35	2508825	5733798	cancon	2	0	0	0	0
Kleve	k4	acps	SW	35	2508825	5733798	canref	2	5	4	1	0
Kleve	k5	acps	SW	35	2508825	5733750	amapun	10	2	0	0	5
Kleve	k5	acps	SW	35	2508825	5733750	fädal	3	0	2	5	0
Kleve	k5	acps	SW	35	2508825	5733750	gripul	1	0	0	0	0
Kleve	k5	acps	SW	35	2508825	5733750	xanpar	6	5	2	0	2
Kleve	k5	acps	SW	35	2508825	5733750	phyten	10	5	5	5	5

Kleve	k5	acps	SW	35	2508825	5733750	phaorb	3	1	0	0	2
Kleve	k5	acps	SW	35	2508825	5733750	parsba	1	0	0	0	0
Kleve	k5	acps	SW	35	2508825	5733750	canref	1	0	2	3	4
Kleve	k5	acps	SW	35	2508825	5733750	evepru	1	0	0	0	0
Kleve	k6	acps	SW	35	2508825	5733700	amapun	5	0	0	0	0
Kleve	k6	acps	SW	35	2508825	5733700	canref	1	2	0	3	0
Kleve	k6	acps	SW	35	2508825	5733700	evepru	1	0	0	0	1
Kleve	k6	acps	SW	35	2508825	5733700	fädal	5	0	5	5	5
Kleve	k6	acps	SW	35	2508825	5733700	xanpar	10	5	5	0	4
Kleve	k6	acps	sw	35	2508825	5733700	parsba	1	1	0	0	1
Kleve	k6	acps	sw	35	2508825	5733700	phyten	10	3	5	1	5
Kleve	k6	acps	SW	35	2508825	5733700	parsub	1	0	0	0	0
Kleve	k6	acps	sw	35	2508825	5733700	parsul	1	0	0	0	1
Kleve	k6	acps	SW	35	2508825	5733700	phaorb	10	5	5	0	4
Kleve	k7	acns	SW	35	2508825	5733555	vannar	10	5	4	0	5
Kleve	k7	acps	SW	35	2508825	5733555	nhyten	5	5	3	1	5
Kleve	k7	acps	SW	35	2508825	5733555	parsul	1	0	0	0	0
Kleve	1r7	acps	SW	25	2508825	5722555	omonun	10	2	2	0	5
Kleve	K/	acps	SW	25	2508825	5722555	nhoorh	10	5	5	0	5
Kleve	K / 1/9	acps	SW	25	2508825	5722400	fädal	0	0	5	5	0
Kleve	1-9	acps	SW	25	2508825	5722400	nhoorh	10	5	5	0	5
Kieve	<u>ко</u> 1-9	acps	SW	25	2500025	5722400	vormar	10	5	1	4	5
Kleve	<u>кð</u> 1-9	acps	SW	25	2508825	5722400	xanpar	10	5	4	4	3
Kieve	K0 1-0	acps	SW	25	2500025	5722400	nhutar	10	5	5	4	1
Kleve	K8	acps	SW	35	2508825	5733490	pnyten	10	3	2	4	5
Kleve	K8	acps	SW	35	2508825	5733490	canrel	0	0	5	1	0
Kleve	K8	acps	SW	35	2508825	5/33490	cancon	8	2	2	1	0
Kleve	k9	acps	SW	35	2508825	5/33180	phycae	10	0	0	0	2
Kleve	k9	acps	SW	35	2508825	5/33180	fadal	0	0	0	5	0
Kleve	k9	acps	SW	35	2508825	5733180	ortdia	1	2	0	0	0
Kleve	k9	acps	SW	35	2508825	5733180	hypcup	0	0	0	0	0
Kleve	k9	acps	SW	35	2508825	5733180	xanpar	4	5	3	2	0
Kleve	k9	acps	SW	35	2508825	5733180	phyten	10	5	5	5	5
Kleve	k9	acps	SW	35	2508825	5733180	phaorb	10	5	5	0	5
Kleve	k9	acps	SW	35	2508825	5733180	parsul	1	0	0	0	1
Kleve	k9	acps	SW	35	2508825	5733180	parsub	1	0	0	0	0
Kleve	k9	acps	SW	35	2508825	5733180	lechag	1	2	0	0	0
Kleve	k9	acps	SW	35	2508825	5733180	evepru	1	0	0	0	1
Kleve	k9	acps	SW	35	2508825	5733180	ortaff	1	0	0	0	1
Kleve	k9	acps	SW	35	2508825	5733180	amapun	3	3	0	0	0
Kleve	k9	acps	SW	35	2508825	5733180	canref	4	3	5	5	3
Kleve	t1	acps	SW	35	2511022	5734510	amapun	3	0	4	0	5
Kleve	t1	acps	SW	35	2511022	5734510	phaorb	10	4	3	2	4
Kleve	t1	acps	SW	35	2511022	5734510	phyads	1	0	0	0	0
Kleve	t1	acps	SW	35	2511022	5734510	phycae	10	5	5	5	5
Kleve	t1	acps	SW	35	2511022	5734510	xancan	8	0	0	0	0
Kleve	t1	acps	SW	35	2511022	5734510	xanpar	4	1	3	0	1
Kleve	t1	acps	SW	35	2511022	5734510	xanpol	2	2	1	0	1
Kleve	t1	acps	SW	35	2511022	5734510	fädal	0	0	0	3	0
Kleve	t2	acpl	SW	35	2511027	5734452	phaorb	10	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	canref	4	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	phyten	10	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	xanpar	10	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	xanpol	2	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	ortdia	8	0	0	0	0
Kleve	t2	acpl	SW	35	2511027	5734452	phanig	1	0	0	0	0
Kleve	t3	acps	W	35	2511020	5734518	phyten	10	0	0	0	5
Kleve	t3	acps	W	35	2511020	5734518	ortdia	0	0	0	0	0
Kleve	t3	acps	W	35	2511020	5734518	xanpol	1	1	0	0	0
Kleve	t3	acps	W	35	2511020	5734518	xanpar	2	1	1	0	1
Kleve	t3	acps	w	35	2511020	5734518	parsba	1	0	0	0	1

Kleve	t3	acps	W	35	2511020	5734518	phycae	0	0	1	0	0
Kleve	t3	acps	W	35	2511020	5734518	amapun	1	2	5	0	1
Kleve	t3	acps	W	35	2511020	5734518	evepru	1	1	0	0	0
Kleve	t3	acps	W	35	2511020	5734518	parsul	1	1	0	0	0
Kleve	t3	acps	W	35	2511020	5734518	phaorb	2	4	3	0	0
Kleve	t3	acps	W	35	2511020	5734518	canref	1	2	3	0	0
Kleve	t4	acps	S	35	2511015	5734461	xancan	10	5	0	0	5
Kleve	t4	acps	S	35	2511015	5734461	phyten	10	5	5	5	5
Kleve	t4	acps	S	35	2511015	5734461	phycae	2	1	0	0	0
Kleve	t4	acps	S	35	2511015	5734461	phaorb	10	5	5	0	0
Kleve	t4	acps	S	35	2511015	5734461	parsul	1	1	1	0	0
Kleve	t4	acns	s	35	2511015	5734461	parulo	1	1	0	0	0
Kleve	t4	acps	s	35	2511015	5734461	amapun	7	4	5	1	0
Kleve	t4	acps	s	35	2511015	5734461	canref	1	0	5	5	0
Kleve	t5	acns	s	35	2511021	5734410	narcan	1	1	0	0	0
Kleve	t5	acps	3	35	2511021	5734410	parcap	1	0	0	0	0
Kleve	+5	acps	5	35	2511021	5734410	amanun	5	3	0	0	2
Klove	+5	acps	3	25	2511021	5724410	nhưduh	1	0	0	0	0
Kleve	+5	acps	5	25	2511021	5734410	vannal	1	2	0	0	2
Klove	+5	acps	5	25	2511021	5724410	vonnor	7	2	0	0	0
Kleve	+5	acps	5	25	2511021	5724410	хапраг	5	2	2	0	0
Kleve	L) +5	acps	s	25	2511021	5724410	nhutan	10			5	5
Kleve	15	acps	S	35	2511021	5734410	phyten	10	2	3	3	5
Kieve	15	acps	S	35	2511021	5734410	pnaorb	2	2	0	0	0
Paderborn	1	acpi	SW	280	3496007	5729780	canret	3	2	0	0	0
Paderborn	pl 1	acpl	SW	280	3496007	5/29/80	evepru	0	0	0	0	1
Paderborn	pl	acpl	SW	280	3496007	5/29/80	phaorb	0	0	2	0	0
Paderborn	pl	acpl	SW	280	3496007	5729780	phyten	10	5	5	3	5
Paderborn	pl	acpl	SW	280	3496007	5729780	brarut	0	0	0	2	0
Paderborn	p1	acpl	SW	280	3496007	5729780	cerpur	3	1	2	5	0
Paderborn	p1	acpl	SW	280	3496007	5729780	hypcup	8	1	0	0	0
Paderborn	p1	acpl	SW	280	3496007	5729780	ortdia	3	0	0	0	0
Paderborn	p1	acpl	SW	280	3496007	5729780	fädal	2	0	0	0	0
Paderborn	p10	acpl	SW	245	3501081	5731297	ulo	0	0	0	1	0
Paderborn	p10	acpl	SW	245	3501081	5731297	hypcup	1	0	0	1	0
Paderborn	p10	acpl	SW	245	3501081	5731297	phaorb	10	1	1	3	5
Paderborn	p10	acpl	SW	245	3501081	5731297	ortaff	1	0	0	1	4
Paderborn	p11	acpl	SW	230	3501130	5731648	gripul	1	0	0	0	0
Paderborn	p11	acpl	SW	230	3501130	5731648	ortaff	1	0	0	0	1
Paderborn	p11	acpl	SW	230	3501130	5731648	ortdia	10	3	4	0	5
Paderborn	p11	acpl	SW	230	3501130	5731648	fädal	0	0	0	3	0
Paderborn	p11	acpl	SW	230	3501130	5731648	xanpar	8	5	5	0	5
Paderborn	p11	acpl	SW	230	3501130	5731648	phyten	10	5	5	3	5
Paderborn	p11	acpl	SW	230	3501130	5731648	phanig	1	1	0	0	0
Paderborn	p11	acpl	SW	230	3501130	5731648	phaorb	10	0	2	3	5
Paderborn	p12	acpl	SW	240	3501128	5731624	phaorb	1	1	0	0	2
Paderborn	p12	acpl	SW	240	3501128	5731624	phyten	10	5	0	2	5
Paderborn	p12	acpl	SW	240	3501128	5731624	xanpar	3	0	0	0	0
Paderborn	p12	acpl	SW	240	3501128	5731624	ortaff	1	0	0	0	0
Paderborn	p12	acpl	SW	240	3501128	5731624	ortdia	10	0	0	0	5
Paderborn	p13	acpl	SW	240	3501128	5731604	amapun	1	4	0	0	0
Paderborn	p13	acpl	SW	240	3501128	5731604	phaorb	1	1	0	0	0
Paderborn	p13	acpl	SW	240	3501128	5731604	phyten	10	5	5	4	5
Paderborn	p13	acpl	SW	240	3501128	5731604	xancan	10	5	0	0	3
Paderborn	p13	acpl	SW	240	3501128	5731604	xanpar	1	1	1	0	0
Paderborn	p13	acpl	sw	240	3501128	5731604	ortaff	1	0	0	0	0
Paderborn	n13	acul	sw	240	3501128	5731604	xannol	1	0	0	0	0
Paderborn	n14	acnl	sw	230	3501136	5731221	phyten	3	2	3	5	4
Paderborn	n14	acnl	SW	230	3501136	5731221	fädal	0	0	2	0	0
Paderhorn	n14	acnl	cw	230	3501136	5731221	ortdia	3	0	0	1	1
Paderborn	n14	acnl	SW CW/	230	3501136	5731221	xannar	1	1	1	0	0
1 440100111	1 P1-1	acpi	5 **	250	2201120	5151441	ampai		-		v v	~

Paderborn	p14	acpl	SW	230	3501136	5731221	xancan	3	2	0	0	1
Paderborn	p14	acpl	SW	230	3501136	5731221	canref	1	2	1	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	phaorb	2	0	0	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	ortdia	3	0	0	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	cerpur	1	0	0	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	xanpar	3	3	0	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	phyten	10	5	5	2	5
Paderborn	n15	acpl	SW	230	3501121	5731277	canref	0	0	5	0	0
Paderborn	p15	acpl	SW	230	3501121	5731277	vancan	8	0	0	0	2
Paderborn	p15	acpl	SW	230	3496102	5730175	narcul	1	0	0	0	0
Padarborn	p2	acpi	SW	280	3490102	5720175	vonnor	0	1	0	0	0
Paderbolli	- p2	acpi	5W	280	3490102	5730175	xalipai	0	1	0	0	0
Paderborn	- p2	acpi	SW	280	3496102	5720175	cantel	1	5	2	5	0
Paderborn	2	acpi	SW	280	3496102	5/301/5	pnaorb	1	5	0	3	0
Paderborn	p2	acpi	SW	280	3496102	5/301/5	pnyten	10	5	2	0	5
Paderborn	p2	acpl	SW	280	3496102	5/301/5	xancan	3	0	0	0	1
Paderborn	p2	acpl	SW	280	3496102	5730175	brarut	0	1	0	5	0
Paderborn	p2	acpl	SW	280	3496102	5730175	cerpur	6	0	5	1	2
Paderborn	p2	acpl	SW	280	3496102	5730175	hypcup	1	0	0	0	0
Paderborn	p2	acpl	SW	280	3496102	5730175	ortdia	1	5	4	1	0
Paderborn	p2	acpl	SW	280	3496102	5730175	fädal	5	0	0	0	0
Paderborn	p3	acpl	SW	280	3496091	5730144	ortdia	10	5	5	5	0
Paderborn	p3	acpl	SW	280	3496091	5730144	canref	0	0	5	0	0
Paderborn	p3	acpl	SW	280	3496091	5730144	lepinc	0	0	0	1	0
Paderborn	p3	acpl	SW	280	3496091	5730144	phaorb	10	5	0	2	0
Paderborn	p3	acpl	SW	280	3496091	5730144	phyten	1	0	5	2	3
Paderborn	p3	acpl	SW	280	3496091	5730144	brarut	0	0	0	4	0
Paderborn	p3	acpl	SW	280	3496091	5730144	cerpur	1	0	0	2	0
Paderborn	p3	acpl	SW	280	3496091	5730144	hypcup	0	0	0	2	0
Paderborn	n3	acpl	SW	280	3496091	5730144	ortaff	4	1	0	0	1
Paderborn	n4	acpl	SW	290	3496076	5730070	cernur	0	0	0	5	4
Paderborn	p1	acpl	SW	290	3496076	5730070	ortaff	0	1	0	0	0
Paderborn	p4	acpl	SW	290	3496076	5730070	hypeup	0	1	0	3	3
Paderborn	p+	acpl	SW	290	3496076	5730070	nhyten	10	5	0	2	5
Padarborn	p4	acpi	SW	290	3490070	5720070	piryten	10	0	0	2	0
Paderborn		acpi	SW	290	2496070	5720729	paisui	1	2	0	2	1
Paderborn	p5	acpi	SW	290	3496220	5720729	tamen	2	3	0	2	2
Paderborn	p5	acpi	SW	290	3496220	5729738	nypcup	2	0	0	0	2
Paderborn	p5	acpi	SW	290	3496220	5/29/38	cerpur	8	0	0	3	0
Paderborn	p5	acpl	SW	290	3496220	5729738	brarut	1	0	0	0	0
Paderborn	p5	acpl	SW	290	3496220	5729738	xancan	4	0	0	0	0
Paderborn	p5	acpl	SW	290	3496220	5729738	phyten	10	5	0	5	5
Paderborn	p5	acpl	SW	290	3496220	5729738	evepru	1	1	0	0	0
Paderborn	p5	acpl	SW	290	3496220	5729738	ortaff	1	0	0	0	0
Paderborn	p5	acpl	SW	290	3496220	5729738	parsul	1	1	0	0	0
Paderborn	p5	acpl	SW	290	3496220	5729738	ortdia	5	5	0	0	5
Paderborn	p6	acpl	SW	295	3496221	5729726	fädal	10	0	0	0	5
Paderborn	p6	acpl	SW	295	3496221	5729726	ortdia	10	5	2	5	0
Paderborn	p6	acpl	SW	295	3496221	5729726	ortaff	1	1	0	0	0
Paderborn	p6	acpl	SW	295	3496221	5729726	cerpur	3	0	0	0	1
Paderborn	p6	acpl	SW	295	3496221	5729726	xanpar	1	1	0	0	0
Paderborn	p6	acpl	SW	295	3496221	5729726	phyten	10	5	5	4	5
Paderborn	p6	acpl	SW	295	3496221	5729726	parsul	3	0	0	0	3
Paderborn	p6	acpl	SW	295	3496221	5729726	canref	1	0	1	0	0
Paderborn	p6	acpl	SW	295	3496221	5729726	hypphy	1	0	0	0	0
Paderborn	p6	acpl	SW	295	3496221	5729726	amapun	1	0	0	0	0
Paderborn	p6	acpl	SW	295	3496221	5729726	phaorb	4	5	5	4	0
Paderborn	n7	acpl	sw	295	3496303	5729664	amanun	1	0	0	0	2
Paderhorn	n7	acnl	sw	295	3496303	5729664	cernur	3	0	0	4	2
Paderborn	p7	acnl	SW	295	3496303	5729664	xannar	1	0	0	0	0
Padarborn		acpi	SW SW	205	3/06202	57290664	vancan	10	5	5	1	5
Dodorber	р/ "7	acpi	5₩	293	2406202	57204	nanuali	10	5	0	4	1
raderborn	p/	acpi	SW	293	3490303	3729664	parsui	1	U	U	U	1

Paderborn	p7	acpl	SW	295	3496303	5729664	phyten	10	5	5	5	5
Paderborn	p7	acpl	SW	295	3496303	5729664	gripul	1	0	0	0	1
Paderborn	p7	acpl	SW	295	3496303	5729664	hypcup	1	0	0	0	1
Paderborn	p7	acpl	SW	295	3496303	5729664	ortdia	3	5	0	0	0
Paderborn	p8	acpl	SW	295	3496331	5729639	amapun	2	5	0	0	0
Paderborn	n8	acpl	SW	295	3496331	5729639	parsul	1	2	0	0	1
Paderborn	n8	acpl	SW	295	3496331	5729639	nhyten	10	5	5	5	5
Paderborn	p0	acpl	SW	295	3496331	5729639	vancan	10	5	3	1	1
Dadarharn	po	acpi	3₩	205	2406221	5720620	narray	10	1	0	0	0
Paderborn	po	acpi	SW	293	2490331	5729039	parsax	2	1	0	0	5
Paderborn	p8	acpi	SW	295	3496331	5729039	cerpur	3	0	0	2	5
Paderborn	p8	acpl	SW	295	3496331	5/29639	fadal	0	0	0	5	0
Paderborn	p8	acpl	SW	295	3496331	5729639	hypphy	1	1	0	0	0
Paderborn	p8	acpl	SW	295	3496331	5729639	ortaff	1	0	0	0	0
Paderborn	p9	acpl	SW	290	3596060	5729980	amapun	3	3	0	0	0
Paderborn	p9	acpl	SW	290	3596060	5729980	canref	1	0	0	0	2
Paderborn	p9	acpl	SW	290	3596060	5729980	phaorb	4	0	0	0	0
Paderborn	p9	acpl	SW	290	3596060	5729980	ortaff	1	0	0	2	1
Paderborn	p9	acpl	SW	290	3596060	5729980	ortdia	5	0	0	2	2
Paderborn	p9	acpl	SW	290	3596060	5729980	cerpur	1	0	0	0	2
Paderborn	p9	acpl	SW	290	3596060	5729980	xanpol	1	0	0	0	0
Paderborn	p9	acpl	SW	290	3596060	5729980	xanpar	2	0	0	0	0
Paderborn	p9	acpl	SW	290	3596060	5729980	xancan	1	0	0	0	2
Paderborn	n9	acpl	sw	290	3596060	5729980	nhvten	10	5	4	5	5
Paderborn	n9	acpl	SW	290	3596060	5729980	tormur	1	0	0	0	1
Pott	r1	tipl		540	2510743	5610749	hypphy	5	3	0	4	3
Rott	11 r1	tip1	5	540	2519743	5610749	nyppily	0	0	0	4	3
Rott	11	upi	8	540	2519745	5610749	parsoa	0	0	0	0	1
Rott	rl	tipl	S	540	2519743	5610/49	parsul	4	3	0	0	2
Rott	rl	tıpl	S	540	2519743	5610749	phyten	10	5	0	0	1
Rott	rl	tipl	S	540	2519743	5610749	xancan	10	5	0	0	1
Rott	r1	tipl	S	540	2519743	5610749	psefur	1	0	0	0	1
Rott	r1	tipl	S	540	2519743	5610749	lecchl	1	1	0	0	0
Rott	r1	tipl	S	540	2519743	5610749	lechag	0	0	0	0	0
Rott	r10	acps	SW	485	2522249	5617186	ortaff	8	1	0	0	0
Rott	r10	acps	SW	485	2522249	5617186	fädal	0	0	0	5	0
Rott	r10	acps	SW	485	2522249	5617186	parsul	5	1	0	0	2
Rott	r10	acps	SW	485	2522249	5617186	hypcup	1	0	0	0	0
Rott	r10	acps	SW	485	2522249	5617186	diccir	3	0	0	0	0
Rott	r10	acps	SW	485	2522249	5617186	xanpol	0	0	1	0	0
Rott	r10	acps	SW	485	2522249	5617186	nhvten	10	5	5	3	5
Rott	r10	acns	SW	485	2522249	5617186	ortdia	1	1	0	0	0
Rott	r10	acns	SW	185	2522219	5617186	narsha	2	1	0	0	1
Rott	r10	acps	3w	405	252224)	5617186	laason	4	5	1	0	0
Rott	r10	acps	5₩	403	2522249	5617102	conref	4	1	0	0	0
Rott	-10	acps	5₩	405	2522249	5617106	callel	5	-	1	0	0
Rott	-10	acps	SW	485	2522249	5(1710)	amapun	3	3	1	0	0
Rott	r10	acps	SW	485	2522249	5617186	xancan	1	0	3	0	2
Rott	rIl	acps	SW	485	2522254	5617191	amapun	5	2	0	0	0
Rott	r11	acps	SW	485	2522254	5617191	parsub	2	0	0	0	1
Rott	r11	acps	SW	485	2522254	5617191	parsul	4	0	0	0	1
Rott	r11	acps	SW	485	2522254	5617191	phyten	10	5	5	5	5
Rott	r11	acps	SW	485	2522254	5617191	xancan	8	1	1	0	2
Rott	r11	acps	SW	485	2522254	5617191	xanpol	2	1	1	1	2
Rott	r11	acps	SW	485	2522254	5617191	xanpar	1	0	0	0	1
Rott	r11	acps	SW	485	2522254	5617191	fädal	0	0	0	5	0
Rott	r12	acps	SW	485	2521692	5616070	scochl	2	0	0	0	0
Rott	r12	acps	SW	485	2521692	5616070	amapun	2	0	0	0	0
Rott	r12	acns	SW	485	2521692	5616070	evenru	2	0	0	0	0
Rott	r12	acns	sw	485	2521692	5616070	parsul		2	2	1	3
Rott	r12	acps	SW SW	195	2521092	5616070	nhyton	10	5	5	5	5
Pott	-12	acps	5₩	+0J 10F	2521092	5616070	vorm - 1	10	1	5		0
Rott	r12	acps	SW	485	2521692	50100/0	xanpol	1	1	0	0	0
Kott	r12	acps	SW	485	2521692	5616070	diccir	2	0	0	0	0

Rott	r12	acps	SW	485	2521692	5616070	ortaff	2	0	0	0	3
Rott	r12	acps	SW	485	2521692	5616070	xancan	5	5	3	0	0
Rott	r13	acps	SW	485	2521699	5616100	hypphy	3	0	0	0	2
Rott	r13	acps	SW	485	2521699	5616100	parulo	1	0	0	0	1
Rott	r13	acps	SW	485	2521699	5616100	parsul	9	2	0	1	5
Rott	r13	acps	SW	485	2521699	5616100	phyten	10	3	0	1	4
Rott	r13	acps	SW	485	2521699	5616100	diccir	5	0	0	0	5
Rott	r13	acps	SW	485	2521699	5616100	hypcup	1	0	0	0	1
Rott	r13	acps	SW	485	2521699	5616100	ortaff	4	2	0	0	0
Rott	r13	acps	SW	485	2521699	5616100	ortdia	1	0	0	0	1
Rott	r13	acps	SW	485	2521699	5616100	fädal	0	0	0	2	0
Rott	r14	acps	SW	555	2521381	5615436	ortaff	4	0	0	2	5
Rott	r14	acps	SW	555	2521381	5615436	parsul	10	4	2	0	4
Rott	r14	acps	SW	555	2521381	5615436	parulo	1	0	0	0	1
Rott	r14	acns	SW	555	2521381	5615436	phyten	10	5	5	5	5
Rott	r14	acns	SW	555	2521381	5615436	xancan	10	4	5	0	5
Rott	r14	acns	SW	555	2521381	5615436	xannar	1	0	1	0	0
Rott	r14	acns	SW	555	2521301	5615436	hypeup	1	0	0	0	2
Rott	r14	acps	SW	555	2521381	5615436	gripul	1	0	0	0	0
Rott	r14	acps	SW	555	2521381	5615436	narsha	8	2	0	0	2
Rott	r14	acps	SW	555	2521381	5615436	amanun	8	5	0	0	0
Rott	r14	acps	SW	555	2521381	5615430	amapun	0	0	0	0	0
Rott	r14	acps	5W	555	2521301	5615430	ortaff	1	0	0	0	0
Rott	r15	acps	SW	555	2521374	5615420	diagin	2	0	0	0	5
Roll Datt	- 15	acps	SW	555	2521374	5615428	diccir f: 1-1	2	0	0	0	5
Roll Datt	- 15	acps	SW	555	2521374	5615428	Tadal	0	0	0	3	0
Roll	15	acps	SW	555	2521374	5615428	xanpar	10	0	0	1	0
Rott	r15	acps	SW	555	2521374	5615428	xancan	10	0	2	1	2
Rott	r15	acps	SW	555	2521374	5615428	usn	1	0	0	0	0
Rott	r15	acps	SW	555	2521374	5615428	amapun	2	0	0	0	3
Rott	r15	acps	SW	555	2521374	5615428	canref	0	0	2	0	0
Rott	r15	acps	SW	555	2521374	5615428	evepru	1	0	0	0	0
Rott	r15	acps	SW	555	2521374	5615428	hypphy	2	0	0	0	3
Rott	r15	acps	SW	555	2521374	5615428	lechag	2	0	2	0	0
Rott	r15	acps	SW	555	2521374	5615428	parsul	10	3	2	0	4
Rott	r15	acps	SW	555	2521374	5615428	phyten	10	5	5	4	5
Rott	r16	acps	SW	555	2521370	5615419	parsul	10	4	0	3	5
Rott	r16	acps	SW	555	2521370	5615419	evepru	1	1	0	0	1
Rott	r16	acps	SW	555	2521370	5615419	hypphy	0	0	0	2	0
Rott	r16	acps	SW	555	2521370	5615419	phyten	10	5	5	5	5
Rott	r16	acps	SW	555	2521370	5615419	xancan	8	5	5	4	4
Rott	r16	acps	SW	555	2521370	5615419	xanpol	2	2	1	0	0
Rott	r16	acps	SW	555	2521370	5615419	diccir	1	0	0	5	0
Rott	r16	acps	SW	555	2521370	5615419	ortaff	4	0	0	0	2
Rott	r16	acps	SW	555	2521370	5615419	ortlye	1	0	0	0	1
Rott	r16	acps	SW	555	2521370	5615419	fädal	0	0	5	2	0
Rott	r16	acps	SW	555	2521370	5615419	psefur	1	1	0	0	0
Rott	r17	acpl	SW	420	2512358	5611590	canref	3	0	5	0	3
Rott	r17	acpl	SW	420	2512358	5611590	parcap	0	0	0	0	0
Rott	r17	acpl	SW	420	2512358	5611590	ortdia	2	0	0	2	3
Rott	r17	acpl	SW	420	2512358	5611590	parsul	10	5	5	5	5
Rott	r17	acpl	SW	420	2512358	5611590	phyten	8	2	0	5	5
Rott	r17	acpl	SW	420	2512358	5611590	xanpar	0	0	3	0	0
Rott	r17	acpl	SW	420	2512358	5611590	parsax	0	0	0	1	0
Rott	r17	acpl	SW	420	2512358	5611590	parchi	1	1	0	0	0
Rott	r17	acpl	SW	420	2512358	5611590	diccir	4	0	1	0	0
Rott	r17	acpl	SW	420	2512358	5611590	ortaff	8	4	1	3	5
Rott	r17	acpl	SW	420	2512358	5611590	ulo	3	3	0	0	0
Rott	r17	acpl	SW	420	2512358	5611590	pargla	10	5	0	2	5
Rott	r17	acpl	SW	420	2512358	5611590	hypcup	4	0	0	3	2
Rott	r18	acpl	SW	435	2513515	5610714	hypcup	4	1	0	0	0

Rott	r18	acpl	SW	435	2513515	5610714	parsax	3	2	2	5	5
Rott	r18	acpl	SW	435	2513515	5610714	psefur	1	0	0	0	1
Rott	r18	acpl	SW	435	2513515	5610714	plagla	1	0	0	0	3
Rott	r18	acpl	SW	435	2513515	5610714	evepru	2	1	0	0	0
Rott	r18	acpl	SW	435	2513515	5610714	hypphy	2	0	4	3	0
Rott	r18	acpl	SW	435	2513515	5610714	lepinc	2	0	5	5	0
Rott	r18	acpl	SW	435	2513515	5610714	parsul	10	5	5	5	5
Rott	r18	acpl	SW	435	2513515	5610714	ramfar	2	1	0	0	0
Rott	r19	acps	SW	500	2515126	5610933	lechag	7	1	0	5	1
Rott	r19	acps	SW	500	2515126	5610933	parsul	1	0	0	0	0
Rott	r19	acps	SW	500	2515126	5610933	phycae	1	0	0	0	0
Rott	r19	acps	SW	500	2515126	5610933	phyten	10	5	5	5	5
Rott	r19	acps	SW	500	2515126	5610933	xancan	6	3	5	5	3
Rott	r19	acps	SW	500	2515126	5610933	parlac	1	0	0	0	0
Rott	r19	acps	SW	500	2515126	5610933	ledela	1	0	0	1	2
Rott	r?	tinl	sw	540	2519753	5610744	xancan	1	0	4	0	1
Rott	r2	tipl	SW	540	2519753	5610744	evenru	0	0	1	0	0
Rott	r2	tipl	SW	540	2519753	5610744	hypphy	7	5	1	1	0
Rott	r2	tipl	SW	540	2519753	5610744	leccon	1	2	-	0	0
Rott	r2	tipl	SW	540	2519753	5610744	narsha	1	1	0	0	0
Rott	r2	tipl	SW	540	2519753	5610744	parsoa	10	0	1	1	5
Rott	r2	tinl	5W	540	2519755	5610744	vannar	10	0	0	0	0
Rott	12 r)	tinl	SW	540	2519755	5610744	vannal	1	0	0	0	0
Rott	12	tip1	SW	540	2519753	5610744	xalipoi	1	0	0	0	0
Rott	12	tip1	SW	540	2519755	5610744	pseiui moraul	1	0	0	0	0
Roll Datt		upi	SW	540	2519753	5610744	parsui	1	0	0	0	0
Roll	120	acps	SW	505	2519743	5610734	pnyten	10	3	3	2	5
Rott	r20	acps	SW	505	2519743	5610/34	amapun	3	0	0	0	0
Rott	r20	acps	SW	505	2519743	5610/34	lechag	3	0	0	0	0
Rott	r20	acps	SW	505	2519743	5610/34	parsul	2	1	0	0	1
Rott	r20	acps	SW	505	2519743	5610/34	xanpar	3	I r	0	0	2
Rott	r20	acps	SW	505	2519743	5610/34	xancan	8	5	4	0	1
Rott	r20	acps	SW	505	2519743	5610/34	xanpol	1	1	0	0	0
Rott	r3	tipl	SW	540	2519763	5610/39	hypphy	9	3	3	2	0
Rott	r3	tipl	SW	540	2519763	5610/39	parsba	10	5	3	2	3
Rott	r3	tıpl	SW	540	2519763	5610739	parsul	1	1	0	0	0
Rott	r3	tipl	SW	540	2519763	5610739	phyten	10	2	0	5	5
Rott	r3	tipl	SW	540	2519763	5610739	xancan	1	2	0	0	0
Rott	r3	tipl	SW	540	2519763	5610739	xanpol	1	0	0	0	1
Rott	r3	tipl	SW	540	2519763	5610739	psefur	2	0	0	1	0
Rott	r3	tipl	SW	540	2519763	5610739	lechag	1	0	0	0	0
Rott	r4	acps	S	530	2520850	5607159	phyten	10	5	5	3	5
Rott	r4	acps	S	530	2520850	5607159	xanpar	1	1	0	0	0
Rott	r4	acps	S	530	2520850	5607159	xanpol	8	4	5	0	3
Rott	r4	acps	S	530	2520850	5607159	pargla	0	0	0	0	1
Rott	r4	acps	S	530	2520850	5607159	phycae	5	3	3	0	0
Rott	r4	acps	S	530	2520850	5607159	parsul	2	2	0	0	3
Rott	r4	acps	S	530	2520850	5607159	hypphy	1	1	0	0	3
Rott	r5	tico	S	530	2520832	5607558	evepru	1	1	0	0	0
Rott	r5	tico	S	530	2520832	5607558	hypphy	10	5	5	3	5
Rott	r5	tico	S	530	2520832	5607558	lepinc	0	0	0	3	0
Rott	r5	tico	S	530	2520832	5607558	parsul	5	3	2	0	2
Rott	r5	tico	S	530	2520832	5607558	phyten	0	0	0	0	2
Rott	r5	tico	S	530	2520832	5607558	ramfar	1	0	0	0	0
Rott	r5	tico	S	530	2520832	5607558	xancan	10	5	5	0	0
Rott	r5	tico	S	530	2520832	5607558	diccir	4	1	0	0	5
Rott	r6	tico	SO	530	2520853	5607568	ramfar	1	1	0	0	0
Rott	r6	tico	SO	530	2520853	5607568	hypphy	10	5	5	5	5
Rott	r6	tico	SO	530	2520853	5607568	parsul	10	5	5	5	5
Rott	r6	tico	so	530	2520853	5607568	xancan	4	2	1	0	0
Rott	r6	tico	SO	530	2520853	5607568	parsax	7	4	1	0	0

Rott	r6	tico	so	530	2520853	5607568	diccir	0	0	2	2	5
Rott	r6	tico	so	530	2520853	5607568	lepinc	0	0	2	0	0
Rott	r7	acps	S	520	2521645	5615956	diccir	1	1	0	0	0
Rott	r7	acps	S	520	2521645	5615956	evepru	1	0	0	0	0
Rott	r7	acps	S	520	2521645	5615956	parcap	1	1	0	0	0
Rott	r7	acps	S	520	2521645	5615956	pargla	0	0	1	0	1
Rott	r7	acps	s	520	2521645	5615956	parsub	1	5	0	0	0
Rott	r7	acps	s	520	2521645	5615956	parsul	10	5	0	0	0
Rott	r7	acps	s	520	2521645	5615956	phyten	10	5	5	5	5
Rott	r7	acps	S	520	2521645	5615956	xancan	6	5	5	0	2
Rott	r7	acps	S	520	2521645	5615956	xanpol	7	5	0	0	1
Rott	r7	acps	S	520	2521645	5615956	ortaff	1	1	0	0	0
Rott	r7	acps	s	520	2521645	5615956	psefur	1	1	0	0	0
Rott	r7	acps	s	520	2521645	5615956	ortdia	1	1	0	0	0
Rott	r8	acns	w	480	2522101	5616975	lechag	1	5	0	0	0
Rott	r8	acns	W	480	2522101	5616975	narsul	3	0	0	0	2
Rott	r8	acns	W	480	2522101	5616975	parsha	1	0	0	0	0
Rott	r8	acns	w	480	2522101	5616975	philoth	3	2	0	0	0
Rott	r8	acps	w	480	2522101	5616075	phaoro	10	5	5	4	5
Rott	r8	acne	vv W	480	2522101	5616975	xancan	5	0	0	0	3
Rott	rQ	acps	VV 337	480	2522101	5616075	vappar	1	1	0	0	0
Rott	10 rQ	acps	W	400	2522101	5616075	vannal	1	-+	0	0	1
Rott	10	acps	W	400	2522101	5616075	ortaff	1	0	0	0	2
Rott	10	acps	w	480	2522101	5616075	ortdia	4	0	0	0	2
Rott	10	acps	w	480	2522101	5616075	fädal	4	0	0	5	2
Roll	18	acps	W	480	2522101	50109/5	ladal	10	0	0	5	5
Rott	19	acps	SW	500	2515124	5610944	pnyten	10	2	3	3	5
Rott	r9	acps	SW	500	2515124	5610944	amapun	3	2	0	0	2
Rott	r9	acps	SW	500	2515124	5610944	phaorb	2	2	0	0	0
Rott	r9	acps	SW	500	2515124	5610944	parsul	1	1	0	0	1
Rott	r9	acps	SW	500	2515124	5610944	xanpar	1	I -	0	0	0
Rott	r9	acps	SW	500	2515124	5610944	xancan	10	5	5	5	4
Velmerstot	vl	acps	SW	330	3496082	5/4420/	hypcup	0	0	0	0	1
Velmerstot	vl	acps	SW	330	3496082	5744207	evepru	Î	0	0	0	0
Velmerstot	vl	acps	SW	330	3496082	5/44207	lepinc	0	0	2	0	0
Velmerstot	v1	acps	SW	330	3496082	5744207	pargla	1	0	1	0	0
Velmerstot	vl	acps	SW	330	3496082	5744207	phaorb	1	0	0	0	0
Velmerstot	vl	acps	SW	330	3496082	5744207	phyten	10	5	5	5	0
Velmerstot	v1	acps	SW	330	3496082	5744207	ramfar	1	0	0	0	1
Velmerstot	v1	acps	SW	330	3496082	5744207	xancan	5	1	0	0	0
Velmerstot	v1	acps	SW	330	3496082	5744207	brarut	0	0	2	0	2
Velmerstot	v1	acps	SW	330	3496082	5744207	diccir	4	0	0	0	3
Velmerstot	v1	acps	SW	330	3496082	5744207	ortaff	2	0	0	0	0
Velmerstot	v1	acps	SW	330	3496082	5744207	ortdia	5	0	2	0	4
Velmerstot	v1	acps	SW	330	3496082	5744207	bravel	0	0	0	0	1
Velmerstot	v1	acps	SW	330	3496082	5744207	amapun	2	0	0	0	0
Velmerstot	v10	acpl	SW	265	3497685	5745920	canref	4	2	0	0	2
Velmerstot	v10	acpl	SW	265	3497685	5745920	parsul	2	0	1	0	2
Velmerstot	v10	acpl	SW	265	3497685	5745920	phaorb	1	1	0	0	0
Velmerstot	v10	acpl	SW	265	3497685	5745920	phyten	8	5	1	5	2
Velmerstot	v10	acpl	SW	265	3497685	5745920	xancan	1	2	0	3	0
Velmerstot	v10	acpl	SW	265	3497685	5745920	xanpol	2	2	0	0	0
Velmerstot	v10	acpl	SW	265	3497685	5745920	ledela	10	5	0	5	3
Velmerstot	v11	acpl	SW	265	3497720	5745605	hypphy	1	0	0	0	1
Velmerstot	v11	acpl	SW	265	3497720	5745605	canref	2	0	2	0	0
Velmerstot	v11	acpl	SW	265	3497720	5745605	phyten	8	3	4	4	4
Velmerstot	v11	acpl	SW	265	3497720	5745605	ledela	5	3	2	3	2
Velmerstot	v11	acpl	SW	265	3497720	5745605	fädal	1	0	2	0	0
Velmerstot	v12	acps	SW	260	3497887	5745958	ortaff	0	0	1	0	1
Velmerstot	v12	acps	SW	260	3497887	5745958	xancan	10	3	0	0	3
Velmerstot	v12	acps	SW	260	3497887	5745958	phyten	10	5	0	5	5

Velmerstot	v12	acps	SW	260	3497887	5745958	parlac	1	0	1	0	0
Velmerstot	v12	acps	SW	260	3497887	5745958	canref	1	1	2	0	1
Velmerstot	v12	acps	SW	260	3497887	5745958	evepru	1	0	1	0	0
Velmerstot	v12	acps	SW	260	3497887	5745958	pargla	1	1	0	0	0
Velmerstot	v12	acps	SW	260	3497887	5745958	parsul	2	0	1	0	2
Velmerstot	v12	acps	SW	260	3497887	5745958	phaorb	4	0	0	0	3
Velmerstot	v13	acpl	SW	260	3497700	5745999	hypphy	2	0	0	0	1
Velmerstot	v13	acpl	SW	260	3497700	5745999	pargla	1	1	0	0	0
Velmerstot	v13	acpl	SW	260	3497700	5745999	phyten	8	5	3	3	4
Velmerstot	v13	acpl	SW	260	3497700	5745999	xancan	1	1	0	0	0
Velmerstot	v13	acpl	SW	260	3497700	5745999	xanpol	1	0	0	1	2
Velmerstot	v13	acpl	SW	260	3497700	5745999	parlac	2	0	0	0	1
Velmerstot	v13	acpl	SW	260	3497700	5745999	ledela	1	1	0	0	1
Velmerstot	v14	acps	SW	260	3497892	5745960	phyten	10	5	5	5	5
Velmerstot	v14	acps	SW	260	3497892	5745960	narsuh	1	0	0	0	0
Velmerstot	v14	acns	SW	260	3/07802	5745960	parsul	3	1	0	1	1
Velmerstot	v14	acns	SW	260	3/97892	5745960	canref	1	0	1	0	0
Velmerstot	v14	acps	SW	260	3407802	5745960	nhaorh	1 Q	5	0	0	5
Velmerstot	v14	acps	SW	260	2407802	5745960	romfor	0	0	0	1	0
Velmerstot	v14	acps	SW	260	3497892	5745960	Taillia	0	0	0	1	0
Valmaratat	v14	acps	SW	260	2497892	5745960	usii	2	0	0	0	1
Volmoratot	v14	acps	SW	260	2407002	5745960	xancan	1	1	0	0	1
Volmorated	v14	acps	SW	200	2407002	5745900	xanpar	1	1	0	0	1
Veimerstöt	V14	acps	SW	260	3497892	5745960	xanpoi	1	0	0	0	1
Velmerstot	V14	acps	SW	260	3497892	5745960	parlac	5	0	1	5	5
Velmerstot	v14	acps	SW	260	3497892	5/45960	ortaff	1	3	2	0	2
Velmerstot	v14	acps	SW	260	3497892	5/45960	fadal	0	0	0	5	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	parsul	1	0	1	1	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	phyten	10	5	5	5	5
Velmerstot	v15	acpl	SW	260	3499930	5745920	ramfar	1	0	0	0	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	xancan	2	0	0	0	1
Velmerstot	v15	acpl	SW	260	3499930	5745920	xanpol	0	0	1	0	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	parlac	4	0	0	0	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	ortaff	4	4	0	0	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	ulo	1	0	0	0	1
Velmerstot	v15	acpl	SW	260	3499930	5745920	canref	1	1	0	0	0
Velmerstot	v15	acpl	SW	260	3499930	5745920	fädal	0	0	0	2	0
Velmerstot	v16	acpl	SW	260	3497952	5745910	phaorb	3	2	0	0	1
Velmerstot	v16	acpl	SW	260	3497952	5745910	cancon	1	0	0	0	1
Velmerstot	v16	acpl	SW	260	3497952	5745910	phyten	10	5	5	2	5
Velmerstot	v16	acpl	SW	260	3497952	5745910	xanpar	3	1	0	0	1
Velmerstot	v16	acpl	SW	260	3497952	5745910	ortaff	0	0	0	1	0
Velmerstot	v16	acpl	SW	260	3497952	5745910	fädal	0	0	0	3	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	ortaff	4	0	0	1	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	ortdia	6	5	5	1	5
Velmerstot	v17	acpl	SW	255	3499331	5742525	brasal	0	0	3	0	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	hypcup	0	0	3	1	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	cerpur	0	0	3	1	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	cancon	5	0	0	0	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	canref	1	1	0	0	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	parsul	1	0	0	0	0
Velmerstot	v17	acpl	SW	255	3499331	5742525	phyten	1	5	1	4	5
Velmerstot	v18	acpl	SW	255	3499300	5742525	ortaff	2	0	0	0	1
Velmerstot	v18	acpl	SW	255	3499300	5742525	canref	3	0	5	1	0
Velmerstot	v18	acpl	SW	255	3499300	5742525	parsul	4	2	1	0	1
Velmerstot	v18	acpl	SW	255	3499300	5742525	phaorb	4	0	2	0	0
Velmerstot	v18	acpl	SW	255	3499300	5742525	phyten	10	5	5	5	0
Velmerstot	v18	acpl	SW	255	3499300	5742525	ramfar	1	0	0	0	1
Velmerstot	v18	acpl	SW	255	3499300	5742525	xancan	10	1	0	1	5
Velmerstot	v18	acpl	SW	255	3499300	5742525	ledela	1	0	0	0	0
Velmerstot	v18	acpl	SW	255	3499300	5742525	ortdia	1	1	0	0	3
		r*										

Velmerstot	v18	acpl	SW	255	3499300	5742525	xanpol	2	0	0	0	0
Velmerstot	v19	acpl	SW	255	3499282	5742525	canref	0	0	0	2	0
Velmerstot	v19	acpl	SW	255	3499282	5742525	phaorb	1	0	2	2	0
Velmerstot	v19	acpl	SW	255	3499282	5742525	phyten	10	5	5	5	5
Velmerstot	v19	acpl	SW	255	3499282	5742525	xancan	5	1	0	0	0
Velmerstot	v19	acpl	sw	255	3499282	5742525	xanpar	3	1	0	0	1
Velmerstot	v19	acpl	SW	255	3499282	5742525	xanpol	1	1	0	0	0
Velmerstot	v19	acpl	SW	255	3499282	5742525	ortdia	7	0	5	3	5
Velmerstot	v2	acps	S	330	3496082	5744195	ortdia	6	4	0	0	4
Velmerstot	v2	acps	s	330	3496082	5744195	fädal	3	0	0	0	0
Velmerstot	v2	acps	s	330	3496082	5744195	bravel	1	0	0	1	0
Velmerstot	v2	acps	s	330	3496082	5744195	ortaff	2	2	0	2	4
Velmerstot	v2	acps	s	330	3496082	5744195	hypcup	0	0	1	0	0
Velmerstot	v2	acps	S	330	3496082	5744195	canref	1	1	0	0	1
Velmerstot	v2	acps	S	330	3496082	5744195	lecexp	0	0	0	3	0
Velmerstot	v2	acps	s	330	3496082	5744195	parsul	3	2	0	0	0
Velmerstot	v2	acps	s	330	3496082	5744195	phyten	10	5	2	3	5
Velmerstot	v2	acns	s	330	3496082	5744195	xancan	2	2	0	0	0
Velmerstot	v2	acns	s	330	3496082	5744195	rhycon	0	0	0	4	1
Velmerstot	v3	acns	s	330	3496082	5744218	amanun	10	5	0	0	0
Velmerstot	v3	acps		330	3496082	574/218	nhyten	10	5	2	2	5
Velmerstot	v3 v3	acps	с с	330	3496082	57//210	yancan	2	1	1	0	0
Velmerstot	v3 v3	acps	о с	330	3496082	57//210	rhycon	0	0	0	0	1
Velmerstot	v3 v2	acps	5	330	3490082	5744210	diagir	2	1	0	0	1
Valmaratat	v3 4	acps	8	280	2496082	574210	mbytan	10	5	2	2	1
Velmerstot	V4	acps	SW	280	3496201	5742003	phyten	10	3	3	2	3
Veimerstot	V4 4	acps	SW	380	3496201	5742003	pargia	1	0	0	0	0
Velmerstot	V4	acps	SW	380	3496201	5742003	pnaorb	1	0	0	0	0
Velmerstot	V4	acps	SW	380	3496201	5/42003	xancan	4	3	2	0	0
Velmerstot	v4	acps	SW	380	3496201	5742003	xanpar	1	0	0	0	1
Velmerstot	v4	acps	SW	380	3496201	5742003	xanpol	1	0	0	0	0
Velmerstot	v4	acps	SW	380	3496201	5742003	ortaff	1	1	0	0	0
Velmerstot	v4	acps	SW	380	3496201	5742003	ortdia	1	1	0	0	0
Velmerstot	v4	acps	SW	380	3496201	5742003	parsul	2	0	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	phyten	10	5	5	2	5
Velmerstot	v5	acps	SW	370	3496590	5740710	amapun	1	1	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	canref	4	2	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	ambser	0	0	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	parsul	2	2	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	brarut	0	0	2	1	0
Velmerstot	v5	acps	SW	370	3496590	5740710	diccir	6	3	2	0	3
Velmerstot	v5	acps	SW	370	3496590	5740710	ortaff	4	3	2	0	3
Velmerstot	v5	acps	SW	370	3496590	5740710	ortdia	0	0	0	1	0
Velmerstot	v5	acps	SW	370	3496590	5740710	ulo	1	1	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	ortspe	0	0	0	0	0
Velmerstot	v5	acps	SW	370	3496590	5740710	fädal	0	0	2	0	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	ambser	0	0	0	0	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	lepinc	1	1	5	2	0
Velmerstot	v6	acpl	SO	250	<u>34953</u> 85	5747639	xanpar	1	0	0	0	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	brarut	0	0	0	2	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	brasal	0	0	0	2	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	ortaff	8	3	0	5	0
Velmerstot	v6	acpl	SO	250	3495385	5747639	ortdia	8	2	0	5	5
Velmerstot	v6	acpl	so	250	3495385	5747639	ptefil	0	0	0	1	0
Velmerstot	v6	acpl	so	250	3495385	5747639	trente	10	0	0	5	5
Velmerstot	v6	acpl	so	250	3495385	5747639	phyten	10	5	2	1	0
Velmerstot	v7	acpl	W	240	3495639	5748191	gripul	1	0	0	0	0
Velmerstot	v7	acnl	w	240	3495639	5748191	hypcup	0	1	0	0	0
Velmerstot	v7	acpl	w	240	3495639	5748191	ortaff	2	1	0	0	1
Velmerstot	v7	acnl	w	240	3495639	5748191	ortdia	10	1	0	0	5
Velmerstot	v7	acnl	w	240	3495639	5748191	trente	8	0	0	0	0
	• /		.,	- 10	2.72007	0, .01/1		5			3	

Velmerstot	v7	acpl	W	240	3495639	5748191	phyten	1	0	0	2	0
Velmerstot	v7	acpl	W	240	3495639	5748191	cerpur	2	0	0	0	0
Velmerstot	v7	acpl	w	240	3495639	5748191	brarut	1	0	0	0	0
Velmerstot	v7	acpl	W	240	3495639	5748191	lepinc	0	0	4	2	0
Velmerstot	v7	acpl	w	240	3495639	5748191	phaorb	10	5	0	4	5
Velmerstot	v8	acpl	SW	240	2497980	5745888	xancan	1	1	0	0	0
Velmerstot	v8	acpl	sw	240	2497980	5745888	amapun	1	0	0	0	0
Velmerstot	v8	acpl	SW	240	2497980	5745888	lechag	3	0	0	0	0
Velmerstot	v8	acpl	SW	240	2497980	5745888	parsba	1	0	0	0	0
Velmerstot	v8	acpl	SW	240	2497980	5745888	phyten	10	5	5	5	5
Velmerstot	v8	acpl	SW	240	2497980	5745888	xanpar	2	2	0	0	2
Velmerstot	v8	acpl	SW	240	2497980	5745888	xanpol	2	5	2	0	0
Velmerstot	v8	acpl	SW	240	2497980	5745888	ortaff	1	0	0	0	1
Velmerstot	v8	acpl	SW	240	2497980	5745888	ortdia	2	0	0	0	0
Velmerstot	v8	acpl	SW	240	2497980	5745888	phaorb	4	0	0	0	0
Velmerstot	v9	acps	s	240	2497905	5745964	ortaff	2	0	0	0	1
Velmerstot	v9	acps	S	240	2497905	5745964	ortdia	1	0	3	5	5
Velmerstot	v9	acps	s	240	2497905	5745964	phyten	10	5	5	5	5
Velmerstot	v9	acps	S	240	2497905	5745964	xanpol	1	0	1	0	0
Velmerstot	v9	acps	S	240	2497905	5745964	canref	2	2	2	0	0
Velmerstot	v9	acps	S	240	2497905	5745964	parexl	4	3	2	0	0
Velmerstot	v9	acps	S	240	2497905	5745964	parsul	1	1	0	0	0
Velmerstot	v9	acps	s	240	2497905	5745964	xancan	9	5	3	0	0

Anhang B: Veränderungen des Epiphytenbewuchses an Dauerbeobachtungsflächen

Glindfeld								
Boumpr	A rt	Bedeckun	gsprozente					
Daumin.	Alt	April 2002	April 2004					
	hypphy	0,54	0,16					
	parsul	21,37	9,85					
1	phyten	2,93	1,81					
1	ramfar	0,23	0,00					
	xancan	0,77	0,04					
	ortaff	0,00	0,10					
	hypphy	0,22	0,02					
	lechag	0,85	0,61					
2	parsul	4,61	8,85					
	phyten	30,14	44,77					
	xancan	0,00	0,06					
	hypphy	0,57	0,00					
	parsul	14,25	2,60					
	phyten	15,91	4,00					
3	ambser	0,08	0,58					
	diccir	2,95	0,16					
	hypcup	6,43	13,87					
	ortaff	2,71	6,49					

Tab. B 1: Bedeckungsprozente der Moos und Flechtenarten in den DBF.

		Rott		
Doumar	A set	Bedeckun	gsprozente	
Daumini.	AIt	April 2002	April 2004	
	parsau	0,06	0,06	
	parulo	2,12	2,76	
	parsul	17,23	24,26	
	phyten	17,49	16,17	
1	psefur	2,10	2,65	
	xancan	0,31	0,39	
	ortaff	0,44	0,14	
	amapun	0,00	0,31	
	evepru	0,00	0,12	
	parsau	0,22	0,00	
	parsul	3,45	3,39	
2	phyten	40,18	25,02	
2	xancan	0,22	0,29	
	ortdia	0,90	1,73	
	phycae	0,00	0,04	
	amapun	0,13	0,00	
	parsul	8,47	13,34	
3	phaorb	0,14	0,16	
	xancan	0,46	0,66	
	phyten	53,85	74,54	

Kleve								
Doumpr	A ret	Bedeckung	gsprozente					
Daumin.	Alt	April 2002	April 2004					
	canref	0,13	0,21					
	phaorb	9,62	40,29					
1	phyten	31,14	12,78					
	xanpar	6,92	9,77					
	ortdia	0,18	0,05					
	canref	0,74	0,87					
	phaorb	2,02	0,40					
	phyten	4,09	2,51					
	xanpar	1,63	2,10					
2	gripul	0,07	0,07					
2	hypcup	0,92	0,58					
	ortaff	0,58	0,76					
	diccir	0,54	0,44					
	xancan	0,00	0,03					
	parsub	0,00	0,10					
	amapun	0,29	0,17					
	parcap	1,49	2,17					
	phaorb	0,05	0,28					
2	phyten	66,60	35,82					
3	xanpar	2,66	4,37					
	xanpol	0,04	0,03					
	xancan	0,00	0,06					
	canref	0,00	0,80					

Velmerstot									
Boumpr	A rt	Bedeckung	gsprozente						
Daumin.	Alt	April 2002	April 2004						
	amapun	0,38	1,10						
1	phyten	0,85	4,96						
1	xancan	0,03	0,20						
	phaorb	0,00	0,03						
	parsau	0,16	0,03						
	parsul	7,56	9,09						
r	phaorb	0,05	0,29						
2	phyten	29,88	59,40						
	xancan	0,05	0,21						
	ortdia	0,01	0,13						
	phanig	0,00	0,06						
	phaorb	0,12	1,52						
3	phyten	51,92	56,56						
	xanpar	0,16	0,26						
	ortdia	0,50	1.04						

			Höhe ü.			
Gebiet	Baumnr.	Baumart	NN	Expos.	Rechtswert	Hochwert
	1	Acer platanoides	420	SW	3479321	5674703
Glindfeld	2	Acer pseudoplatanus	455	w	3479868	5675151
	3	Acer platanoides	560	w	3474605	5677439
	1	Acer platanoides	20	w	2502843	5737008
Kleve	2	Acer platanoides	20	SW	2502821	5737181
	3	Acer pseudoplatanus	25	SW	2511021	5734410
	1	Acer pseudoplatanus	520	S	2521645	5615956
Rott	2	Acer pseudoplatanus	480	w	2522101	5616975
	3	Acer pseudoplatanus	500	S	2515124	5610944
	1	Acer pseudoplatanus	330	S	3496082	5744207
Velmerstot	2	Acer pseudoplatanus	380	SW	3496201	5742003
	3	Acer platanoides	240	sw	3497980	5745888

Tab. B 2: Beschreibung der Trägerbäume der DBF.

Anhang C: Auswirkungen experimenteller Stickstoffgaben auf die Epiphytenflora in Dauerbeobachtungsflächen

				Freq	uenz	,	,			Bedeck	kung %	1
	12	/01	07/	/02	02	/03	09	/03	12	/01	09	/03
	S	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S	Ν
11 mM NH40	Cl									•	•	
Canref	69		77		35		59		0,56		0,33	
Diccir		3		3		3		3		0,12		0,35
Evepru		1		1		2		2		0,03		0,08
Нурсир		5		6		10		15		0,53		1,18
Hypphy	0	78	10	80	11	24	2	19	0	22,19	0,04	2,98
Ortaff	9		9		6		6		0,08		0,12	
Pargla	4		15		9		17		0,08		0,44	
Parsax	8		12		8		6		1,71		2,41	
Parsul	98	68	100	68	100	69	100	69	40,78	28,31	51,45	24,03
Phyten	81	0	87	3	86	3	79	3	5,45	0	5,09	0,04
22 mM NH40	Cl											
Diccir	8		8		7		6		0,33		0,81	
Evepre		3		3		3		3		0,63		0,15
Нурсир	21		24		21		23		1,68		3,76	
Hypphy	19	90	41	93	31	63	31	54	4,87	26,62	3,82	4,41
Ortaff	2		2		1		0		0,3		0,29	
Paramb		22		22		20		18		2,14		1,48
Pargla	1	2	3	2	7	2	10	2	0,16	2,78	0,31	0,14
Parsax		3		6		7		8		1,68		1,85
Parsul	99	92	96	92	97	93	100	96	41,82	10,36	48,53	19,9
Phyten	4		4		7		8		0,17		0,32	
11 mM KNO	3											
Evepru	7	43	9	51	9	51	6	52	0,57	12,5	0,78	15,2
Lepinc		81		79		34		12		17,62		2,14
Paramb	3		4		0		0		0,03		0	
Pargla	9		9		10		9		4,37		4,53	
Parsul	100	71	100	70	100	70	100	70	83,17	30,6	85,28	30,8
Phyten		0		3		4		4		0		0,09
Ulocri		4		4		4		4		0,54		0,33
22 mM KNO	3	-	-		-		-		_			-
Diccir	1		1		0		0		0,02		0	
Evepru	8		9		11		10		4,69		3,08	
Hypphy	12		12		3		0		5,83		0	
Lechag		1		1		1		1		0,04		0,04
Lepinc		54		50		51		51		6,11		3,73
Ortaff		9		10		10		10		0,51		0,58
Ortdia		9		16		20		26		0,28		0,35
Pargla	2		2		4		3		0,78		0,88	
Parsul	95	43	96	65	98	66	99	66	52,11	7,73	49,85	13
Phyten		100		100		100		100		24,51		16,12
Xancan		58		52		37		22		0,96		0,56
5,5 mM NH4	NO3	-	-	1	-		-	1				-
Нурсир		18		20		25		27		5,1		7,94
Hypphy	3		4		1		1		0,46		0,26	
Lepinc		53		47		48		48		2		1,16
Ortaff		17		18		18		21		1,41		2,81
Pargla		0		2		3		4		0		0,32

Tab. C 1: Station **Kelberg**; Frequenzwerte und Bedeckungsgrade der Moose und Flechten in den DBF zu den verschiedenen Aufnahmeterminen; S, N: Süd-, Nordseite des Baumstamms.

Parsul	100	67	100	90	100	93	100	95	81,17	23,4	83,21	31,8
Phyten		93		93		94		94		6,37		7,85
11 mM NH4N	103											
Canref		18		19		19		20		0,14		0,18
Diccir	3		5		5		3		0,3		0,28	
Нурсир	59	12	66	21	69	21	79	21	28,03	3,46	39,13	6,41
Hypphy		5		5		5		5		1,63		1,09
Lepinc	69	20	63	14	47	14	41	10	6,57	0,17	1,39	0,18
Metfur	4		4		5		6		1,28		1,7	
Ortaff	0	45	0	48	0	50	1	52	0	1,43	0,07	3,72
Parsul	48	73	55	75	52	77	56	78	19,49	43,6	16,65	54,3
Phyten	0	42	0	43	1	43	1	43	0	1,58	0,01	1,68
Kontrolle												
Evepru	13		19		21		22		1,47		2,52	
Frudil	0		0		1		2		0		0,16	
Hypphy	7	63	28	62	20	60	10	58	1,08	12,97	1,34	5,28
Lechag	19		53		26		25		0,84		0,35	
Paramb	2		15		11		12		0,21		0,21	
Pargla	9	6	9	6	9	6	15	6	4,71	2,58	5,88	2,19
Parsax	3		4		4		4		1,54		1,6	
Parsul	99	97	100	100	100	100	100	100	47,21	34,33	63,64	41,4
Phyten	2		1		2		2		0,15		0,15	
Plagla	2		3		2		2		0,44		0,24	
Psefur	3		2		2		2		1,2		0,29	

Tab. C 2: Station **Hohe Acht**; Frequenzwerte und Bedeckungsgrade der Moose und Flechten in den DBF zu den verschiedenen Aufnahmeterminen; S, N: Süd-, Nordseite des Baumstamms.

				Fr	equer	ız			Bedeckung %				
	12	/01	0'	7/02	02	2/03	09	/03	12	/01	09	/03	
	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S	Ν	S	
11 mM NH	4Cl												
Brarut	22		33		40		49		9,07		16,65		
Clacon	0		0		1		1		0		0,16		
Нурсир	38	3	43	6	51	9	59	9	11,41	0,24	29,73	0,58	
Hypphy	2	33	1	24	0	10	0	0	0,91	3,39	0,05	0	
Lepinc	29		26		4		4		1,31		0,31		
Ortaff	24	9	43	9	65	14	47	14	4,96	0,39	9,36	0,55	
Pargla	92	30	92	26	80	26	57	21	13,54	1,43	2,23	0,69	
Parsul	7	98	10	98	10	100	10	100	2,6	61,61	3,35	60,45	
Phyten	39	3	37	3	36	2	36	2	0,44	0,13	0,32	0,07	
Plagla	9		10		0		0		2,78		0		
22 mM NH	4Cl									_	_	-	
Нурсир	12		15		17		21		1,62		2,28		
Hypphy		3		1		0		0		1,21		0	
Ortaff	3	1	3	4	4	4	4	4	0,39	0,07	0,58	0,14	
Pargla	62	88	65	90	70	95	71	96	12,43	20,81	13,69	24,15	
Parsul	87	7	88	8	92	10	95	8	45,13	1,31	47,65	2,07	
Phyten	3	62	5	96	8	46	14	48	0,13	1,28	1,02	0,24	
11 mM KN	03									_	_	-	
Brarut	2		2		3		3		0,44		0,97		
Diccir	51		60		83		54		3,15		3,25		
Нурсир	0	5	5	7	12	7	8	7	0	0,35	2,1	0,36	
Hypphy	80	64	79	54	73	20	67	19	29,54	12,23	13,31	1,35	
Lepinc	78	23	89	17	20	17	29	15	3,54	0,7	2,23	0,45	
Ortaff		4		5		15		19		0,24		0,34	
Pargla	1	64	3	70	5	92	2	92	0,14	21,61	0,27	27,81	

Parsul		9		10		12		19		4,81		6,48
Phyten	8	3	49	16	39	28	24	32	0,04	0,04	0,13	0,1
22 mM KN	03											
Brarut	0		0		6		6		0		1,48	
Clacon	1		1		2		1		0,3		0,07	
Diccir		33		39		25		15		1,8		1,24
Frudil		1		2		1		1		0,12		0,05
Hypcup	34	1	44	4	45	3	68	4	5,67	0,02	17,46	0,44
Hypphy	29	60	12	32	7	7	6	4	6,33	13,77	1,43	0,98
Lepinc	23	33	30	30	13	22	12	8	0,86	2,25	0,2	0,71
Ortaff	7	5	20	10	38	25	50	37	1,84	1,17	3,15	1,48
Pargla	60	29	71	37	83	52	86	53	7,24	3,85	14,19	7,17
Parsul	5	16	5	19	6	20	10	23	2,41	9,53	3,52	10,55
Phyten	79	78	98	83	99	84	100	90	1,73	4,31	5,06	3,02
Plagla	1		1		1		1		0,28		0,3	
Psefur	4		0		0		0		1,13		0	
Radcom		5		5		4		4		0,56		1,22
ulocri		3		3		3		2		0,39		0,21
5,5 mM NH	I4NO	3						•				, i i i i i i i i i i i i i i i i i i i
Bravel	2		2		2		2		0,29		0,21	
Clacon		1		1		4		6		0,09		0,22
Diccir	1		1		1		1		0,06		0,06	, i i i i i i i i i i i i i i i i i i i
Hypcup	6	56	14	70	16	70	21	72	1,09	2,9	2,69	5,06
Hypphy	65		69		33		25		16,25		2,44	
Lepinc		14		14		2		4		0,29	,	0,05
Ortaff	4	16	4	19	7	31	7	38	0,77	1,52	1,03	1,94
Parchi	1		1		2		3		0,25		0,43	
Pargla	50	57	52	67	75	71	68	80	10,27	12,74	17,69	15,77
Parsax	30		40		49		54		6,34	,	15,65	
Parsul	4	55	5	55	6	55	12	55	1,06	13,76	1,46	11,31
Phyten	9	0	26	0	18	2	26	2	0,08	0	0,21	0,05
11 mM NH	4NO3											
Clacon	0		0		2		14		0		0,24	
Diccir	16		4		2		2		0,68		0,09	
Hypcup	69		84		96		96		13,68		36,34	
Hypphy		17		15		2		3		2,18		0,14
Lepinc	71		79		2		4		7,64		1,12	
Metfur	4		1		1		2		0,71		0,25	
Ortaff	0	5	5	6	12	10	21	14	0	0,18	0,3	0,99
Pargla	96	44	90	53	87	77	71	75	25,4	5,26	10,69	10,44
Parlac		18		20		0		0		0,97		0
Parsax		14		19		16		25		1,9		3,77
Parsul	17	24	12	30	9	40	8	22	2,15	3,68	0,16	4,97
Phyten		83		100		100		100		1,41		3,09
ulocri	11		5		3		5		1,96		0,6	
Kontrolle												
Diccir	2		2		2		2		0,29		0,27	
Evepru	2		2		2		4		0,54		1,13	
Hypcup	87	13	91	15	91	16	93	16	38,17	0,56	40,77	0,83
Hypphy	38	38	38	36	38	36	22	36	10.3	10,61	8,45	9,78
Lechag		3		3		1		0	,	0,01		0
Lepinc	95	12	99	10	99	7	83	7	4,28	0,05	2,06	0.03
Ortaff	-	1	-	1	-	2	_	3	, -	0.1	,	0,18
Pargla	85	89	87	93	87	93	95	93	7,47	11.1	6.8	12.33
Parsul	0	65	0	66	0	73	1	73	0.04	10.94	0.06	12,55
Plagla	10		12		12		4		2.8		0.25	,
						0					/ -	

		1 Iuiiiu	Free	menz	1, 0, 10	. Duu ;	110100	Redec	kung %	/
	12	/01	07	/02	02	/03	12/	01		/03
	N	S	N	S	N	S	N	S	N	S
11 mM NH₄Cl										
Diccir	20		27		45		1,64		3,31	
Hypcup		4		6		6	,	0,63		0,96
Hypphy	3		5		2		1.68	, ,	0.16	,
Ortaff		20	_	15		1	,	0.34	-, -	0.09
Pargla	14		13		15		0,86	, ,	1,11	,
Parsul	82	96	88	94	88	94	16,95	45.7	20,68	41,7
Ramfar	4	32	5	39	7	56	0.35	6,01	0,38	9,21
22 mM NH₄Cl							,	,		,
Diccir	2		9		19		0,22		0,51	
Evepru	2		1		0		0,21		0	
Hypcup		6		8		9	,	0,91		44,65
Hypphy	41	2	32	0	19	0	5,8	0,29	1,55	1,59
Lepinc	34		34		23		0,84	, ,	0,49	,
Ortaff		4		3		3	,	0,06		0.03
Pargla	7		6		3		0,49	,	0,25	,
Parsul	89	96	89	95	94	97	28.68	37.8	29.42	0.5
Phyten	0		0		7		0	, -	0.15	-)-
Psefur	5		0		0		1.35		0	
Ramfar	14	2	14	5	24	7	4,21	0,27	4,79	0
11 mM KNO ₃							,	,		
Amapun	1		6		4		0,23		0,15	
Нурсир	9		10		13		1,99		3,85	
Hypphy		33		36		36		4,5		5,17
Lechag	7		8		10		1.36	,	1,53	, , , , , , , , , , , , , , , , , , ,
Lepinc	77	95	92	97	84	95	1,53	14,2	1,64	13,9
Ortaff	30		26		40		4,22		8,65	,
Pargla	3	4	6	6	12	6	0,9	1,03	0,84	1
Parsul	23	71	34	80	43	84	3.07	13.3	2,34	16,4
Partil		7		7		8	, í	2,6		4,06
Phygri	1		1		1		0,06		0,20	,
Phyten	27		44		48		1,1		2,56	
Ramfar	16		23		28		4,68		6,11	
22 mM KNO ₃										•
Evepru	19		17		16		4,95		2,17	
Нурсир		5		9		8		0,27		0,42
Hypphy	24		13		4		2,46		0,75	
Lepinc		34		14		1		2,59		0,09
Parace	11		14		16		4,61		6,41	
Pargla	2		4		2		0,16		0,1	
Parsax	9		10		8		4,32		4,87	
Parsul	80	82	86	77	83	67	33,72	19,2	38,48	17,3
Partil		2		3		3		0,81		1,19
Phygri	7		12		14		1,93		1,84	
Phyten	0		2		2		0		0,08	
Psefur	3		5		3		0,7		0,32	
Radcom		31		28		14		7,32		3,62
Ramfar	0	37	1	42	1	42	0	7,81	0,03	10,3
5,5 mM NH ₄ NO	3									
Clacon	1		1		1		0,04		0,09	
Evepru	22	ſ	20		32		6,43	Ι	9,44	
Hypcup		5		7		7		14		1.58

Tab. C 3: Station **Kelberg**; Frequenzwerte und Bedeckungsgrade der Moose und Flechten in den DBF zu den verschiedenen Aufnahmeterminen; S, N: Süd-, Nordseite des Baumstamms

Hypphy		0		0		2		0,21		0,11
Lechag	4		2		2		0,64		0,7	
Parace	1		4		5		0,82		1,25	
Pargla		23		30		26		1,45		1,2
Parsul	94	98	97	94	97	92	35,53	52,1	36,89	51,5
Phyten		1		1		1		0,04		0,04
Ramfar	0		0		1		0		0,03	
11 mM										
NH ₄ NO ₃										
Evepru	13	15	8	13	7	16	3,04	5	1,24	6,16
Parace	52		45		57		16,85		19,08	
Pargla		3		7		12		0,12		0,56
Parsul	77	93	80	90	85	94	27,77	22,5	26,03	29,5
Phyten	0	3	0	6	2	6	0	0,05	0,05	0,08
Ramfar		1		1		1		0,54		0,47
Kontrolle										
Amapun		57		40		10		0,67		0,43
Canxan		56		59		61		0,21		0,27
Clacon	2		2		10		0,42		0,52	
Evepru	11	2	9	3	2	4	1,97	0,39	0,33	0,65
Lepinc		4		3		8		0,3		0,25
Ortaff		9		9		11		1,73		1,39
Ortdia		5		7		8		0,15		0,21
Parsul	39	33	36	25	38	34	1,32	6,38	1,34	6,59
Partil		2		8		8		0,7		1,41
Ramfar		1		1		1		0,05		0,12

Tab. C 4: Station **Martental**; Frequenzwerte und Bedeckungsgrade der Moose und Flechten in den DBF zu den verschiedenen Aufnahmezeitpunkten.

					Bedeo	ekung						Bedeo	ckung
		Freq	uenz		9	6			Freq	uenz		%	0
-	12/01	7/02	2/03	09/03	11/01	09/03		12/01	7/02	2/03	09/03	11/01	09/03
22 mM NH	I4Cl						Kontrolle	9					
Hypphy	97	97	96	93	44,91	33,09	Usnea	23	27	30	32	7,1	10,87
Paramb	1	1	3	6	0,11	0,12	Plagla	28	29	23	17	2,68	2,46
Parsul	9	23	24	27	0,79	1,39	Hypphy	22	22	23	21	3,57	3,23
Usnea	8	8	9	10	2,95	2,43	Lepraria	100	100	100	100	4,12	4,54
22 mM KN	103						11 mM N	H4Cl	-				
Hypphy	33	31	32	33	9,57	7,42	Parsul	30	22	13	5	4,51	0,23
Parsul	15	15	15	15	2,05	1,55	Hypphy	27	24	22	19	1,15	1,65
Usnea	38	35	32	29	15,33	11,26	Нурсир	42	37	30	23	13,17	7,85
Plagla	25	26	29	32	4,94	5,21	Usnea	35	37	38	39	14,12	17,44
Lepraria	74	80	84	87	2,82	2,98	Evepru	8	7	2	1	3,29	0,03
Leccon	5	5	0	0	0,11	0	Lepraria	92	79	70	62	0,8	0,41
11 mM NH	I4NO3						Plagla	1	3	4	6	0,21	0,54
Parsul	19	17	17	17	2,28	1,95	11 mM K	NO3	-				
Usnea	48	58	65	78	21,46	28,19	Usnea	58	58	59	59	13,87	14,4
Evepru	6	10	13	19	0,37	1,25	Parsul	13	6	5	5	0,98	0,07
Plaglau	29	29	25	21	5,66	1,43	Hypphy	17	17	17	17	0,81	0,7
Hypphy	6	14	17	20	0,61	0,77	5,5 mM N	NH4NO	3				
Lepraria	93	90	83	80	3,12	2,54	Usnea	85	87	90	93	43,12	48,53
Ortmon	2	2	2	2	0,32	0,12	Hypphy	25	23	22	22	2,43	2,15
							Plagla	13	16	16	16	0,98	1,25
							Parsul	7	4	1	0	1,12	0

Anhang D: Untersuchungen zur Stickstoffakkumulation

Art	Trägerbaum	Geogr. Länge	Geogr. Breite	Höhe ü. NN [m]	nächster Ort
Evernia prunastri	Quercus robur	6°59'28.2''	50°16'47.3''	510	Retterath
Hypogymnia physodes	Acer platanoides	7°02'44.2''	50°15'20.8''	390	Lirstal
Parmelia sucala	Fraxinus excelsior	7°02'44.2''	50°15'20.8''	390	Lirstal
Orthotrichum affine	Acer platanoides	7°02'41.2''	50°23'57.7''	550	Hohenleimbach

Tab. D 1: Geographische Lage der Baumstandorte.

Tab. D 2: Stickstoffkonzentrationen und ¹⁵NAtom%excess-Werte der vier Arten zu den verschiedenen Probenahmezeitpunkten; Codierung der Düngevarianten: 1=Kontrolle, 2=14,3 mM K¹⁵NO₃, 3=28,6 mM K¹⁵NO₃, 4=14,3 mM, ¹⁵NH₄Cl, 5=28,6 mM, ¹⁵NH₄Cl, 6=7,15 mM <u>NH₄¹⁵NO₃, 7=14,3 mM, NH₄¹⁵NO₃, 8=7,15 mM, ¹⁵NH₄NO₃, 9=14,3 mM, ¹⁵NH₄NO₃.</u>

	t Variante		N-Konze	ntration	1 [% TG	1	15	N Atom	% exces	<u>5.</u>
Art	Variante	11/02	02/03	05/03	08/03	11/03	02/03	05/03	08/03	11/03
Evepru	1	0,36	0,37	0,40	0,36	0,37	0,001	0,031	0,000	0,001
Evepru	1	0,36	0,36	0,37	0,36	0,37	0,001	0,006	0,001	0,001
Evepru	1	0,36	0,36	0,37	0,36	0,37	-0,001	0,005	0,000	0,001
Evepru	1	0,36	0,36	0,37	0,36	0,36	0,000	0,006	0,001	0,001
Evepru	1	0,36	0,36	0,37	0,36	0,36	0,000	0,008	0,001	0,000
Evepru	2	0,36	0,49	0,52	0,52	0,70	0,124	0,151	0,154	0,340
Evepru	2	0,36	0,48	0,57	0,57	0,77	0,117	0,210	0,210	0,405
Evepru	2	0,36	0,47	0,53	0,61	0,75	0,104	0,164	0,250	0,390
Evepru	2	0,36	0,52	0,59	0,53	0,78	0,157	0,224	0,167	0,415
Evepru	2	0,36	0,52	0,56	0,62	0,00	0,152	0,193	0,257	-
Evepru	3	0,37	0,54	0,61	0,66	0,67	0,178	0,242	0,297	0,305
Evepru	3	0,36	0,54	0,59	0,69	0,73	0,172	0,226	0,322	0,364
Evepru	3	0,36	0,55	0,59	0,80	0,80	0,190	0,222	0,440	0,434
Evepru	3	0,36	0,54	0,70	0,64	0,78	0,177	0,338	0,273	0,420
Evepru	3	0,36	0,56	0,59	0,66	0,73	0,200	0,227	0,296	0,367
Evepru	4	0,37	0,98	2,05	1,76	1,94	0,617	1,689	1,395	1,580
Evepru	4	0,37	1,09	1,84	1,75	1,91	0,727	1,477	1,382	1,546
Evepru	4	0,37	1,13	2,04	1,50	1,86	0,765	1,670	1,135	1,498
Evepru	4	0,37	1,15	1,77	2,02	1,92	0,788	1,399	1,650	1,552
Evepru	4	0,36	1,09	1,75	1,93	1,98	0,726	1,388	1,565	1,619
Evepru	5	0,37	1,34	2,23	2,22	2,32	0,979	1,866	1,859	1,959
Evepru	5	0,37	1,53	2,44	2,52	2,65	1,163	2,069	2,155	2,280
Evepru	5	0,37	1,49	2,26	2,40	2,67	1,123	1,894	2,038	2,301
Evepru	5	0,36	1,52	2,65	2,23	2,61	1,158	2,288	1,861	2,245
Evepru	5	0,36	1,69	2,51	2,11	2,70	1,329	2,145	1,744	2,332
Evepru	6	0,36	0,46	0,48	0,49	0,61	0,096	0,116	0,121	0,246
Evepru	6	0,36	0,51	0,50	0,54	0,55	0,144	0,138	0,178	0,188
Evepru	6	0,36	0,48	0,51	0,48	0,59	0,116	0,150	0,112	0,221
Evepru	6	0,36	0,45	0,52	0,48	0,56	0,089	0,151	0,117	0,199
Evepru	6	0,36	0,45	0,46	0,54	0,59	0,088	0,097	0,178	0,229
Evepru	7	0,36	0,46	0,50	0,53	1,02	0,098	0,140	0,161	0,660
Evepru	7	0,36	0,44	0,60	0,52	0,66	0,080	0,236	0,160	0,295

Evepru	7	0,36	0,52	0,45	0,54	0,63	0,157	0,088	0,171	0,261
Evepru	7	0,37	0,51	0,49	0,63	0,67	0,142	0,128	0,260	0,300
Evepru	7	0,36	0,56	0,45	0,60	0,65	0,198	0,086	0,234	0,283
Evepru	8	0,37	0,81	1,30	1,34	1,41	0,445	0,931	0,975	1,044
Evepru	8	0,37	0,80	1,02	1,25	1,38	0,435	0,658	0,884	1,013
Evepru	8	0,36	0,79	1,09	1,37	1,32	0,427	0,727	1,002	0,958
Evepru	8	0,37	0,82	1,56	1,35	1,44	0,451	1,198	0,985	1,079
Evepru	8	0,37	0,86	0,00	1,21	1,24	0,493	-	0,847	0,878
Evepru	9	0,36	0,87	1,37	1,39	1,52	0,509	1,009	1,029	1,159
Evepru	9	0,37	0,83	1,38	1,43	1,84	0,464	1,014	1,068	1,472
Evepru	9	0,37	0,86	1,40	1,38	1,74	0,498	1,030	1,019	1,379
Evepru	9	0,36	0,85	1,21	1,25	1,48	0,484	0,842	0,888	1,114
Evepru	9	0,37	0,87	1,32	1,49	1,51	0,501	0,953	1,127	1,144
Hypphy	1	0,37	0,37	0,42	0,69	0,82	0,001	0,057	0,329	0,450
Hypphy	1	0,36	0,37	0,37	0,72	0,73	0,001	0,008	0,355	0,367
Hypphy	1	0,37	0,36	0,39	0,82	0,76	-0,002	0,023	0,455	0,397
Hypphy	1	0,36	0,37	0,37	0,71	0,70	0,000	0,003	0,341	0,335
Hypphy	1	0,37	0,36	0,37	0,67	0,83	-0,001	-0,001	0,309	0,468
Hypphy	2	0,37	1,26	2,10	2,63	3,34	0,894	1,730	2,260	2,970
Hypphy	2	0,37	1,33	2,41	2,88	2,92	0,960	2,040	2,506	2,555
Hypphy	2	0,37	1,25	2,32	2,59	3,26	0,880	1,955	2,220	2,898
Hypphy	2	0,37	1,36	2,24	2,99	3,10	0,989	1,875	2,623	2,733
Hypphy	2	0,37	1,32	2,45	2,73	3,87	0,950	2,084	2,364	3,502
Hypphy	3	0,36	1,12	2,42	2,00	2,76	0,752	2,054	1,632	2,397
Hypphy	3	0,36	1,23	2,37	1,86	1,80	0,865	2,004	1,495	1,433
Hypphy	3	0,37	1,24	2,13	2,20	2,30	0,874	1,767	1,836	1,937
Hypphy	3	0,37	1,28	2,10	2,18	1,97	0,910	1,731	1,818	1,610
Hypphy	3	0,37	1,32	2,00	2,22	2,10	0,957	1,631	1,859	1,736
Hypphy	4	0,37	1,05	2,06	2,23	2,23	0,682	1,693	1,866	1,862
Hypphy	4	0,36	0,99	2,21	2,22	2,94	0,629	1,842	1,851	2,579
Hypphy	4	0,36	1,23	2,17	2,38	2,22	0,865	1,810	2,014	1,851
Hypphy	4	0,36	1,09	1,97	2,01	3,19	0,721	1,608	1,644	2,820
Hypphy	4	0,36	1,17	2,52	2,18	2,91	0,802	2,159	1,814	2,542
Hypphy	5	0,37	2,41	3,30	3,54	4,07	2,045	2,934	3,176	3,708
Hypphy	5	0,37	2,55	2,85	3,12	4,09	2,184	2,479	2,750	3,720
Hypphy	5	0,37	2,37	3,06	3,62	3,93	2,001	2,693	3,258	3,564
Hypphy	5	0,37	2,26	3,30	2,98	4,03	1,897	2,930	2,616	3,663
Hypphy	5	0,37	2,21	2,37	3,31	4,49	1,841	2,000	2,945	4,117
Hypphy	6	0,37	0,68	0,99	1,01	1,25	0,314	0,626	0,644	0,886
Hypphy	6	0,37	0,63	0,87	0,96	1,38	0,264	0,503	0,593	1,011
Hypphy	6	0,37	0,70	0,88	1,01	1,40	0,330	0,516	0,645	1,034
Hypphy	6	0,36	0,65	1,02	1,22	1,33	0,287	0,655	0,856	0,961
Hypphy	6	0,37	0,62	1,13	1,00	1,15	0,249	0,766	0,636	0,782
Hypphy	7	0,37	0,99	1,67	1,61	1,57	0,621	1,304	1,243	1,201
Hypphy	7	0,37	1,01	1,51	1,85	1,88	0,645	1,142	1,484	1,515
Hypphy	7	0,37	0,99	1,41	1,55	1,91	0,624	1,048	1,180	1,540
Hypphy	7	0,37	0,99	1,57	1,77	1,65	0,623	1,205	1,408	1,283
Hypphy	7	0,37	0,98	1,64	1,66	1,93	0,609	1,274	1,294	1,562
Hypphy	8	0,36	0,65	1,26	1,20	1,20	0,281	0,897	0,840	0,832
Hypphy	8	0,37	0,70	1,38	1,46	1,46	0,330	1,012	1,090	1,094
Hypphy	8	0,36	0,58	1,05	1,32	1,39	0,215	0,688	0,959	1,029

Hypphy	8	0,36	0,63	1,52	1,40	1,45	0,264	1,159	1,034	1,085
Hypphy	8	0,36	0,54	1,03	1,11	1,47	0,178	0,664	0,742	1,110
Hypphy	9	0,37	1,10	1,53	2,12	2,19	0,733	1,167	1,749	1,827
Hypphy	9	0,37	0,97	2,12	1,87	2,29	0,608	1,760	1,509	1,929
Hypphy	9	0,37	1,03	1,31	1,78	2,11	0,660	0,944	1,415	1,743
Hypphy	9	0,36	1,12	2,05	2,02	2,04	0,756	1,688	1,651	1,673
Hypphy	9	0,36	1,01	1,75	1,64	1,79	0,643	1,383	1,272	1,422
Ortaff	1	0,36	0,37	0,37	0,37	0,37	0,002	0,002	0,001	0,001
Ortaff	1	0,36	0,37	0,37	0,37	0,37	0,001	0,002	0,002	0,002
Ortaff	1	0,36	0,36	0,37	0,36	0,37	0,000	0,002	0,000	0,002
Ortaff	1	0,00	0,36	0,38	0,37	0,37	-	-	-	-
Ortaff	1	0,00	0,00	0,00	0,36	0,37	-	-	-	-
Ortaff	2	0,36	1,25	1,65	1,51	1,22	0,882	1,286	1,141	0,857
Ortaff	2	0,36	1,30	1,62	1,56	1,26	0,937	1,255	1,200	0,899
Ortaff	2	0,36	1,38	1,68	1,51	1,35	1,015	1,320	1,148	0,980
Ortaff	2	0,36	1,29	1,73	1,59	1,28	0,926	1,362	1,224	0,912
Ortaff	2	0,36	1,37	0,00	0,00	1,27	1,002	-	-	0,908
Ortaff	4	0,36	1,36	2,19	1,75	2,08	0,997	1,821	1,389	1,717
Ortaff	4	0,36	1,37	2,07	1,90	2,08	1,004	1,710	1,535	1,711
Ortaff	4	0,36	1,38	2,17	1,88	2,06	1,015	1,806	1,515	1,698
Ortaff	4	0,00	1,36	0,00	0,00	2,17	-	-	-	-
Ortaff	6	0,36	0,89	0,94	0,89	1,10	0,525	0,571	0,527	0,733
Ortaff	6	0,36	0,90	0,95	0,95	1,14	0,533	0,586	0,590	0,777
Ortaff	6	0,36	0,90	0,91	0,92	1,07	0,540	0,542	0,559	0,700
Ortaff	6	0,36	0,95	0,91	0,92	1,05	0,587	0,542	0,551	0,681
Ortaff	6	0,37	0,89	0,00	0,94	0,95	0,529	-	0,580	0,582
Ortaff	8	0,37	1,06	1,42	1,27	1,65	0,698	1,052	0,905	1,282
Ortaff	8	0,37	1,20	1,54	1,56	1,79	0,831	1,178	1,195	1,428
Ortaff	8	0,36	1,04	1,49	1,24	1,/5	0,6//	1,122	0,8/3	1,384
Ortaff	8	0,37	1,13	1,40	1,32	1,6/	0,761	1,032	0,958	1,303
Derraul	8	0,37	1,11	0,00	1,4/	1,89	0,744	-	1,109	1,528
Parsul	1	0,37	0,30	0,38	0,30	0,37	-0,001	0,014	0,000	0,001
Parsul	1	0,30	0,37	0,37	0,30	0,37	0,001	0,002	0,000	0,000
Parsul	1	0,37	0,30	0,37	0,30	0,30	-0,001	0,002	-0,001	0,000
Parsul	1	0,37	0,37	0,37	0,30	0,37	0,000	0,003	-0,001	0,001
Parsul	2	0,30	1.26	2 10	0,00	3.64	- 0.800	-	- 2 3 5 8	3 271
Parsul	2	0,30	1,20	2,19 2.17	2,72 2.48	3,04	0,899	1,824	2,558	3 2 2 8
Parsul	2	0,30	1,07	2,17 2 37	2,40	3.80	1 134	2 007	2,114	3 4 3 0
Parsul	2	0.36	1,30	2,37	2,35	3 71	1 363	2,007	1 940	3 347
Parsul	2	0.36	1,75	2,35	2,50	3 43	1,052	1 781	2 304	3 063
Parsul	3	0.37	1.03	1 00	1 45	2 03	0.666	0.638	1 088	1 662
Parsul	3	0.36	0.95	1.24	1.43	2.39	0.589	0.876	1.068	2.028
Parsul	3	0.37	1.05	1,20	1,40	2.33	0.684	0.832	1.030	1.959
Parsul	3	0.37	1.11	1.24	1.59	2.34	0.744	0.879	1.221	1,973
Parsul	3	0.37	0,99	1,30	1,41	2,17	0,622	0,933	1,049	1,804
Parsul	4	0,37	1,22	2,41	2,18	2,80	0,856	2,042	1,817	2,436
Parsul	4	0,36	1,26	2,52	2,56	2,80	0,895	2,159	2,192	2,436
Parsul	4	0,36	1,46	2,20	2,26	3,03	1,098	1,835	1,898	2,663
Parsul	4	0,00	1,31	2,09	2,34	3,04	-	-	-	-
Parsul	4	0,00	1,15	2,36	2,13	2,97	-	-	-	-

Parsul	5	0,37	2,35	3,01	2,60	3,98	1,987	2,639	2,233	3,610
Parsul	5	0,37	1,60	2,88	2,66	3,60	1,235	2,518	2,298	3,231
Parsul	5	0,36	1,77	2,57	2,76	3,91	1,403	2,210	2,397	3,550
Parsul	5	0,36	1,97	2,38	2,74	3,79	1,606	2,014	2,376	3,429
Parsul	5	0,37	2,39	2,60	2,93	3,53	2,020	2,232	2,560	3,169
Parsul	6	0,37	0,74	0,85	0,81	1,12	0,377	0,482	0,445	0,752
Parsul	6	0,36	0,62	0,89	0,90	1,18	0,252	0,521	0,538	0,815
Parsul	6	0,37	0,70	0,88	0,83	1,18	0,332	0,513	0,463	0,816
Parsul	6	0,36	0,67	0,87	0,79	1,12	0,306	0,502	0,426	0,756
Parsul	6	0,36	0,00	0,00	0,00	1,18	-	-	-	0,820
Parsul	7	0,36	0,92	1,23	1,31	1,45	0,558	0,868	0,942	1,084
Parsul	7	0,36	0,95	1,34	1,14	1,52	0,581	0,977	0,775	1,152
Parsul	7	0,36	0,90	1,38	1,31	1,41	0,534	1,012	0,941	1,048
Parsul	7	0,36	0,86	1,37	1,29	1,41	0,492	1,001	0,922	1,041
Parsul	7	0,36	0,93	1,37	1,09	1,43	0,569	1,007	0,729	1,065
Parsul	8	0,36	0,90	1,40	1,21	2,00	0,535	1,037	0,848	1,635
Parsul	8	0,37	0,95	1,20	1,72	1,98	0,583	0,838	1,359	1,612
Parsul	8	0,36	0,87	1,40	1,49	2,05	0,505	1,037	1,128	1,681
Parsul	8	0,37	1,02	1,20	1,52	2,05	0,651	0,830	1,154	1,689
Parsul	8	0,37	0,93	1,63	1,45	1,99	0,562	1,264	1,087	1,623
Parsul	9	0,37	1,10	1,93	2,17	2,52	0,728	1,559	1,804	2,150
Parsul	9	0,37	1,13	2,14	2,00	2,35	0,762	1,771	1,630	1,986
Parsul	9	0,37	1,13	2,10	2,01	2,18	0,766	1,729	1,648	1,813
Parsul	9	0,37	1,00	1,90	2,10	2,32	0,632	1,532	1,739	1,959
Parsul	9	0,37	1,11	1,94	2,06	2,37	0,747	1,572	1,690	2,008

Anhang E: Bioindikation regionaler N-Depositionsunterschiede

Station	Rechtswert	Hochwert	Höhe ü. NN [m]	Trägerbaumart
Elberndorf	3444,7	5652,8	540	acps
Elberndorf	3446,7	5652,2	550	acps
Elberndorf	3447,6	5650,6	485	acps
Glindfeld	3479,3	5674,7	420	acpl, acps
Glindfeld	3476,9	5675,4	500	acpl, acps
Glindfeld	3477,4	5674,8	460	acpl, acps
Glindfeld	3474,6	5677,4	660	acpl, acps
Haard	2581,9	5725,8	65	acps
Haard	2586,6	5722,9	80	acps, acpl
Haard	2592,3	5724,9	60	acps
Haard	2586,6	5722,9	90	acpl
Haard	2585,2	5723,7	80	acpl
Kleve	2511,0	5734,5	45	acps, acpl
Kleve	2508,9	5732,8	45	acps, acpl
Kleve	2502,8	5736,9	35	acps, acpl
Kleve	2506,8	5745,5	40	acps, acpl
Kleve	2507,9	5737,3	40	acps
Lirstal	2574,6	5569,3	390	acpl
Paderborn	3496,3	5729,7	290	acpl
Paderborn	3501,1	5731,6	230	acpl
Paderborn	3595,5	5731,1	280	acps, acpl
Paderborn	3596,8	5733,9	290	acpl
Rott	2521,6	5615,9	530	acps
Rott	2521,3	5615,4	530	acps
Rott	2522,1	5617,0	480	acps
Rott	2515,1	5610,9	500	acps
Rott	2512,4	5611,6	420	acpl
Velmerstot	3495,3	5747,6	250	acpl
Velmerstot	3497,6	5745,9	265	acpl
Velmerstot	3497,9	5745,0	260	acps, acpl
Velmerstot	3499,3	5742,5	255	acpl
Velmerstot	3496,1	5744,2	330	acps

Tab. E 1: Standortdaten der beprobten Baumstationen.

Tab. E 2: N-Konzentrationen und δ^{15} N-Werte von *Hypogymnia physodes* (hypphy), *Parmelia sulcata* (parsul) und *Xanthoria parietina* (xanpar) an den beprobten Stationen.

Art	N [%]	$\delta^{15}N$	
Coesfeld	1		
parsul	3,05	-8,4]
parsul	3,12	-8,5	1
parsul	3,22	-9,0	1
parsul	3,17	-9,1	1
parsul	2,96	-9,3	1
xanpar	3,24	-9,9	1
xanpar	3,66	-11,0	1
xanpar	3,78	-11,0	1

Forts	. Coesf	eld
xanpar	3,45	-11,0
xanpar	3,91	-12,0
Elberndo	orf	
hypphy	1,13	0,2
hypphy	1,02	-0,5
hypphy	0,91	-1,0
hypphy	1,14	-1,3
hypphy	0,96	-1,3
hypphy	0,86	-1,6
hypphy	1,00	-1,7

proote	ii Stat										
Forts. Elberndorf											
1,12	-1,8										
1,17	-2,1										
0,98	-2,3										
0,65	-2,3										
0,69	-2,3										
1,21	-2,5										
0,86	-2,7										
0,68	-2,7										
0,85	-2,9										
1,05	-3,0										
	Elbern 1,12 1,17 0,98 0,65 0,69 1,21 0,86 0,68 0,85 1,05										

/11.		
Forts.	Elbern	dorf
hypphy	0,95	-3,1
hypphy	0,76	-3,3
hypphy	0,74	-3,3
hypphy	0,90	-3,4
hypphy	0,72	-3,8
hypphy	0,77	-3,9
hypphy	0,66	-4,2
hypphy	1,05	-4,2
hypphy	0,93	-4,6
hypphy	1,08	-4,7

Forts.	Elbern	dorf	Forts.	Elbern	dorf		Forts	Glind	feld	For	ts. Haa	rd
hypphy	0,73	-5,3	parsul	1,30	-4,7	I	parsul	1,28	-4,3	parsul	3,55	-9,1
hypphy	0,68	-5,4	parsul	1,30	-5,3	I	parsul	1,56	-4,5	parsul	3,72	-9,3
hypphy	1,35	-5,5	Glindfel	d		I	parsul	1,30	-4,5	parsul	3,14	-9,4
hypphy	0,99	-5,6	hypphy	1,29	0,5	I	parsul	1,41	-5,2	parsul	3,22	-9,4
hypphy	0,82	-6,0	hypphy	1,05	-2,3	I	parsul	1,56	-5,3	parsul	3,77	-9,7
hypphy	1,15	-6,2	hypphy	1,29	-2,6	I	parsul	1,22	-5,4	parsul	2,93	-9,8
hypphy	0,75	-6,4	hypphy	1,38	-4,4	I	parsul	1,43	-5,9	parsul	3,09	-9,8
hypphy	1,02	-6,7	hypphy	1,50	-4,4	I	parsul	1,32	-5,9	parsul	2,97	-9,8
hypphy	0,79	-7,5	hypphy	1,05	-4,7	I	parsul	1,46	-6,3	parsul	2,98	-9,9
parsul	1,26	0,2	hypphy	1,17	-4,8	I	parsul	1,12	-6,6	parsul	2,29	-10,0
parsul	1,32	0,1	hypphy	1,48	-4,8	I	parsul	1,53	-6,8	parsul	3,22	-10,0
parsul	1,18	-0,2	hypphy	1,43	-4,8	I	parsul	1,38	-6,8	parsul	3,03	-11,0
parsul	1,34	-0,7	hypphy	1,41	-4,9	I	parsul	1,29	-6,9	Kleve	-	
parsul	1,06	-0,8	hypphy	1,18	-4,9	I	parsul	1,31	-7,3	parsul	3,22	-4,4
parsul	1,27	-0,9	hypphy	1,30	-5,1	I	parsul	1,46	-8,0	parsul	3,23	-5,3
parsul	1,04	-0,9	hypphy	1,41	-5,1]	Haard			parsul	2,76	-5,4
parsul	1,13	-0,9	hypphy	1,16	-5,3	ł	hypphy	2,03	-6,5	parsul	3,24	-5,6
parsul	1,17	-1,0	hypphy	1,43	-5,3	ł	hypphy	2,10	-7,4	parsul	2,68	-5,9
parsul	1,03	-1,1	hypphy	1,07	-5,3	ł	hypphy	2,29	-7,5	parsul	3,59	-6,2
parsul	0,87	-1,1	hypphy	1,34	-5,4	ł	hypphy	2,41	-7,7	parsul	3,14	-6,5
parsul	1,03	-1,2	hypphy	0,92	-5,9	ł	hypphy	2,90	-7,8	parsul	3,36	-6,6
parsul	1,12	-1,3	hypphy	1,17	-6,3	ł	hypphy	2,82	-7,9	parsul	3,35	-6,7
parsul	0,98	-1,5	parsul	1,36	6,1	ł	hypphy	2,75	-8,2	parsul	2,70	-7,3
parsul	1,14	-1,6	parsul	1,20	3,5	ł	hypphy	2,77	-8,6	parsul	3,06	-7,4
parsul	1,05	-1,7	parsul	1,21	1,9	ł	hypphy	1,69	-8,8	parsul	2,71	-7,5
parsul	0,88	-1,8	parsul	1,14	1,8	ł	hypphy	2,67	-9,5	parsul	3,26	-7,9
parsul	0,93	-1,9	parsul	1,29	0,9	ł	hypphy	2,06	-9,8	parsul	2,82	-7,9
parsul	1,23	-2,1	parsul	1,42	0,2	ł	hypphy	3,05	-10,0	parsul	2,62	-8,4
parsul	1,16	-2,5	parsul	1,35	-1,0	ł	hypphy	2,38	-11,0	parsul	3,23	-8,4
parsul	1,23	-2,6	parsul	1,47	-1,6	I	parsul	2,75	-6,4	parsul	2,49	-8,6
parsul	1,13	-2,7	parsul	1,47	-2,1	I	parsul	2,68	-7,0	parsul	2,73	-8,7
parsul	1,04	-2,8	parsul	1,38	-2,2	I	parsul	3,25	-7,1	parsul	2,94	-8,8
parsul	1,24	-3,0	parsul	1,51	-2,2	I	parsul	3,06	-7,4	parsul	3,22	-8,9
parsul	1,27	-3,0	parsul	1,32	-2,7	I	parsul	3,30	-7,9	parsul	3,33	-9,1
parsul	1,23	-3,2	parsul	1,37	-2,8	I	parsul	2,90	-8,1	parsul	3,08	-9,2
parsul	1,13	-3,3	parsul	1,36	-3,1	I	parsul	3,33	-8,3	parsul	3,39	-9,3
parsul	1,24	-3,6	parsul	1,50	-3,1	I	parsul	2,88	-8,4	parsul	2,96	-9,9
parsul	1,14	-3,8	parsul	1,25	-3,2	I	parsul	3,20	-8,4	parsul	3,18	-10,0
parsul	1,00	-3,8	parsul	1,26	-3,2	I	parsul	3,05	-8,7	parsul	3,00	-10,0
parsul	1,34	-3,9	parsul	1,27	-3,2	I	parsul	3,03	-8,8	parsul	3,13	-10,0
parsul	1,09	-4,0	parsul	1,55	-3,7	I	parsul	3,38	-8,8	parsul	2,98	-11,0
parsul	1,65	-4,1	parsul	1,33	-3,7	I	parsul	3,46	-8,8	parsul	3,26	-11,0
parsul	1,61	-4,5	parsul	1,42	-3,8	I	parsul	2,97	-8,9	parsul	2,97	-11,0
parsul	0,84	-4,5	parsul	1,55	-3,8	Į	parsul	3,29	-8,9	xanpar	3,70	-8,8
parsul	1,39	-4,5	parsul	1,14	-3,8	I	parsul	3,81	-8,9	xanpar	3,21	-9,2
parsul	1,04	-4,6	parsul	1,33	-3,8	I	parsul	3,73	-9,0	xanpar	3,45	-9,3
margui	1.04	17	porcul	1 56	12		norgul	2 95	0.1	vonnor	2 12	0.4

Forts. Kleve			For	ts. Lirst	al	For	ts. Lirst	al	Fo	rts. Rot	t
xanpar	3,35	-9,4	hypphy	0,77	-0,8	parsul	1,01	-4,1	hypphy	1,69	-4,9
xanpar	3,46	-9,6	hypphy	0,94	-4,4	parsul	1,03	-3,8	hypphy	1,71	-5,6
xanpar	3,68	-9,7	hypphy	0,94	-5,5	parsul	1,08	-3,8	parsul	2,18	1,3
xanpar	3,66	-9,8	hypphy	0,86	-0,8	parsul	1,09	-4,4	parsul	2,38	-0,5
xanpar	3,34	-10,0	hypphy	0,88	-3,0	parsul	1,07	-3,3	parsul	1,82	-0,5
xanpar	3,58	-10,0	hypphy	0,74	-1,9	parsul	1,14	-4,6	parsul	1,95	-0,9
xanpar	3,29	-10,0	hypphy	0,81	6,6	parsul	1,05	-5,2	parsul	2,28	-1,0
xanpar	3,70	-11,0	hypphy	0,84	9,0	Paderbo	rn		parsul	1,88	-1,3
xanpar	3,22	-11,0	hypphy	0,82	-1,4	parsul	2,68	-1,4	parsul	1,92	-1,4
xanpar	3,43	-11,0	hypphy	0,84	1,6	parsul	2,40	-3,4	parsul	2,54	-1,4
xanpar	3,43	-15,0	hypphy	0,84	4,9	parsul	2,30	-4,0	parsul	1,88	-1,5
xanpar	3,39	-16,0	parsul	1,17	-2,5	parsul	1,63	-4,3	parsul	1,52	-1,5
Lirstal			parsul	1,35	-4,4	parsul	2,27	-4,6	parsul	2,29	-1,6
hypphy	1,02	-3,8	parsul	1,27	-3,8	parsul	2,55	-4,6	parsul	2,18	-1,9
hypphy	0,96	-2,7	parsul	1,13	-3,8	parsul	1,58	-4,7	parsul	2,23	-1,9
hypphy	1,05	-3,8	parsul	1,04	-3,3	parsul	1,66	-4,8	parsul	1,15	-1,9
hypphy	0,96	-3,8	parsul	1,10	-4,1	parsul	2,34	-4,8	parsul	2,17	-2,1
hypphy	0,98	-4,6	parsul	0,97	-1,4	parsul	1,62	-4,9	parsul	2,21	-2,2
hypphy	1,01	-2,7	parsul	1,11	-2,2	parsul	1,73	-5,4	parsul	2,33	-2,2
hypphy	0,95	-4,4	parsul	0,97	0,8	parsul	2,53	-5,5	parsul	2,22	-2,3
hypphy	1,05	-4,6	parsul	1,07	-1,4	parsul	2,36	-5,7	parsul	2,46	-2,5
hypphy	0,94	-4,6	parsul	1,03	0,6	parsul	2,31	-5,9	parsul	2,47	-2,6
hypphy	0,99	-4,6	parsul	0,99	-2,5	parsul	2,06	-6,2	parsul	2,41	-2,6
hypphy	0,96	0,0	parsul	1,02	-2,2	parsul	2,16	-6,5	parsul	1,01	-2,7
hypphy	0,79	-0,8	parsul	1,09	-1,1	parsul	2,25	-7,1	parsul	2,41	-2,7
hypphy	0,87	-3,3	parsul	1,28	-4,9	parsul	2,09	-7,2	parsul	1,84	-2,7
hypphy	0,98	-5,7	parsul	1,17	-1,1	parsul	2,08	-7,2	parsul	2,35	-2,8
hypphy	0,78	0,0	parsul	1,39	-3,6	parsul	1,87	-7,5	parsul	1,25	-2,8
hypphy	0,96	1,1	parsul	1,14	-2,2	xanpar	2,77	-0,3	parsul	2,68	-2,8
hypphy	1,13	-3,3	parsul	0,88	-1,9	xanpar	2,65	-2,0	parsul	2,47	-2,8
hypphy	0,95	-3,0	parsul	0,92	-3,6	xanpar	2,90	-2,9	parsul	1,54	-2,8
hypphy	1,07	-4,1	parsul	1,05	-6,0	xanpar	2,23	-3,1	parsul	1,22	-2,9
hypphy	1,12	-4,4	parsul	0,90	-5,2	xanpar	2,24	-3,1	parsul	2,07	-3,0
hypphy	0,95	-3,3	parsul	0,99	-2,5	xanpar	2,35	-3,2	parsul	2,37	-3,1
hypphy	0,90	1,1	parsul	1,09	-2,2	xanpar	2,28	-3,3	parsul	1,61	-3,2
hypphy	0,87	-0,6	parsul	1,15	-4,6	xanpar	2,28	-3,5	parsul	1,69	-3,2
hypphy	0,86	1,6	parsul	1,12	-3,0	xanpar	2,30	-3,5	parsul	2,34	-3,3
hypphy	0,88	4,4	parsul	1,16	-4,9	xanpar	2,35	-3,6	parsul	2,34	-3,3
hypphy	0,77	-3,0	parsul	1,10	-4,6	Rott			parsul	1,12	-3,3
hypphy	0,80	0,0	parsul	0,94	-3,3	hypphy	1,49	-2,5	parsul	2,47	-3,4
hypphy	0,75	1,6	parsul	1,20	-3,8	hypphy	1,78	-3,6	parsul	2,05	-3,4
hypphy	0,71	-0,6	parsul	1,23	-3,3	hypphy	1,73	-3,6	parsul	2,26	-3,6
hypphy	0,84	-0,6	parsul	1,05	-3,6	hypphy	1,41	-3,6	parsul	2,26	-3,8
hypphy	0,84	-1,4	parsul	1,22	-4,4	hypphy	1,62	-3,6	parsul	2,32	-4,0
hypphy	0,97	-3,8	parsul	1,11	-4,6	hypphy	1,54	-4,0	parsul	2,66	-4,3
hypphy	0,85	1,6	parsul	1,02	-5,2	hypphy	1,74	-4,0	parsul	1,46	-4,7
humphu	0.88	-38	narsul	1.08	-49	hypphy	1 59	-46	narsul	2 16	-48

Forts. Rott			Fo	Forts. Rott				Forts. Velmerstot				Forts. Velmerstot		
parsul	2,34	-5,0		xanpar	2,12	-5,5		parsul	2,22	-3,8		parsul	1,95	-6,5
parsul	1,07	-5,4		xanpar	2,19	-5,8		parsul	2,24	-4,0		parsul	1,74	-6,5
parsul	0,78	-5,5		Velmers	tot			parsul	1,97	-4,3		parsul	1,86	-7,1
parsul	0,79	-6,2		hypphy	1,79	-4,3		parsul	1,78	-4,7		xanpar	1,85	0,1
parsul	0,82	-6,6		hypphy	1,46	-4,4		parsul	2,09	-4,8		xanpar	1,73	-2,3
xanpar	1,66	4,6		hypphy	1,89	-5,5		parsul	1,96	-4,9		xanpar	2,07	-2,5
xanpar	1,61	-1,9		hypphy	1,62	-5,8		parsul	1,52	-5,2		xanpar	2,13	-2,8
xanpar	2,65	-2,9		hypphy	2,07	-6,6		parsul	1,76	-5,2		xanpar	1,81	-3,1
xanpar	2,69	-3,2		hypphy	1,33	-6,8		parsul	2,07	-5,2		xanpar	1,74	-3,6
xanpar	2,73	-3,6		parsul	2,23	-2,3		parsul	2,45	-5,4		xanpar	1,82	-3,9
xanpar	2,02	-4,3		parsul	1,84	-3,1		parsul	2,62	-5,4		xanpar	2,66	-4,3
xanpar	2,09	-4,5		parsul	2,62	-3,5		parsul	1,77	-5,5		xanpar	1,71	-4,7
xanpar	2,25	-5,4		parsul	2,28	-3,7		parsul	2,09	-6,0		xanpar	3,12	-5,3
Anhang F: Stickstoffgehalte von Parmelia sulcata in Düsseldorf

Station	Ν	$\delta^{15}N$	Station	Ν	$\delta^{15}N$	Station	Ν	$\delta^{15}N$
BEN	2,13	-5,12	GAR	2,31	-3,41	MOE	4,25	-5,48
BEN	2,14	-0,79	GAR	2,43	-5,10	MOE	4,00	-5,25
BEN	2,05	-0,70	GAR	2,47	-5,16	MOE	3,91	-4,38
BEN	2,53	-2,70	KRU	2,96	2,43	MOE	4,11	-6,86
BEN	2,27	-3,40	KRU	3,07	4,11	MOE	4,23	-6,94
BEN	2,31	-3,54	KRU	2,89	0,56	MOE	4,06	-6,37
BIL	2,61	-3,04	LES	2,85	-4,62	MOE	3,85	-5,05
BIL	2,96	-3,27	LES	2,62	-4,41	ST1	2,38	-0,95
BIL	2,96	-4,18	LES	2,62	-1,07	ST1	2,49	-6,18
BIL	3,02	-2,41	LES	2,94	1,64	ST1	2,55	-4,22
BIL	2,59	-1,06	LES	3,20	-3,13	ST1	2,14	-5,40
BIL	2,81	-1,77	MES	3,01	-1,46	ST1	2,91	-4,94
COR	3,97	-7,92	MES	2,30	-2,29	ST1	2,37	-3,83
COR	4,12	-8,24	MES	2,55	-3,19	ST2	2,87	-5,46
COR	4,23	-9,00	MES	2,84	2,50	ST2	2,39	-4,83
COR	3,92	-7,93	MES	2,49	-4,76	ST2	2,81	-5,19
COR	4,18	-8,16	MES	2,54	0,43	ST2	2,79	-4,56
GAR	2,50	-6,06	MOE	4,33	-6,31	ST2	2,79	-4,65
GAR	2,47	-1,47	MOE	4,25	-5,73	ST2	2,75	3,42
GAR	2,49	-5,15	MOE	3,96	-5,38			

Tab. F 1: N-Konzentrationen (in % TG) und δ^{15} N-Werte (in ‰) von *Parmelia sulcata* an den Untersuchungsstationen in Düsseldorf.

Tafel I:

- a) Nekrosen bei Metzgeria furcata, Station Kelberg, 11 mM NH₄NO₃-Variante
- b) *Hypnum cupressiforme* überwächst *Metzgeria furcata*, Station Hohe Acht, NH₄NO₃-Variante
- c) Nekrosen bei Ulota crispa, Station Hohe Acht, 22 mM KNO3-Variante
- d) Nekrosen bei Radula complanata, Station Hohe Acht, 22 mM KNO3-Variante
- e) Nekrosen bei Brachythecium rutabulum, Station Hohe Acht, 11 mM NH₄Cl-Variante
- f) Nekrosen bei Radula complanata, Station Retterath, 22 mM KNO3-Variante

Tafel II:

a) Jungwuchs von *Usnea filipendula*, Station Martental, 11 mM NH₄NO₃-Variante b) Nekrosen bei *Hypogymnia physodes*, Station Martental, 22 mM NH₄Cl-Variante