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“My dear fellow,” said Sherlock Holmes as we sat on either side of the fire
in his lodgings at Baker Street, “Life is infinitely stranger than anything which the
mind of man could invent. We would not dare to conceive the things which are really
mere commonplace of existence. If we could fly out of that window hand in hand,
hover over this great city, gently remove the roofs, and peep in at the queer things
which are going on, the strange coincidences, the plannings, the cross-purposes, the
wonderful chains of events, working through generations, and leading to most outré

results, it would make all fiction with its unconventionalities and forseen conclusions
most stale and unprofitable.”

“A Case of Identity”, Sir Arthur Conan Doyle
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Chapter 1

Introduction

More than 2500 years ago Greek philosophers introduced and developed the basic
ideas of the concepts of modern science. Pythagoras – impressed from his long travel
through the orient – was the first who used numbers and the relations between them
to describe the world. In his lore of the harmonics he introduced the term “cosmos”
and tried to explain the nature of music using some basic relations and symmetries.

Two of his famous successors, Leukippos and his scholar Demokritos, continued to
build the philosophical basis of science. Their important contributions to the ancient
philosophical discussion were the principle of causality and the idea of an empty
space, extended over the whole cosmos, which is filled with indivisible entities, the
atoms. From their point of view the attributes of all existing things are given by the
shape, position, order and dimension of these atoms.

Unlike the models of modern physics, the ancient Greek philosophers did not
claim to be able to predict physics phenomena from their philosophical lore. This
revolutionary idea was reserved for medieval geniuses such as Galileo or Kepler. Thus,
it would take more than 2000 years before the pure philosophical ideas were identified
in nature as basic principles and become scientific models.

The technology to pursue scientific investigations only became avaliable in the
past centuries. In the seventeenth century, the inventions of the microscope and of
the telescope allowed man to observe objects invisibly small or very far away. Those
observations revealed a first glance of the structure of matter as well as our solar
system. This scientific breakthrough gave rise to a philosophical and political change
in the occidental part of the world that was the major cause of the downfall of many
of the church’s doctrines. However, the scale of the fundamental building blocks is
much smaller than that which was observed by microscopes, and is still invisible to
most modern light microscopes.

First indications that matter can be decomposed into a set of basic elements
came therefore not from observations with the microscope but from chemistry. The
composition hypothesis greatly simplified the classification of chemical elements and
the understanding of chemical reactions. Finally Mendeleev introduced the periodic
system in 1865, albeit with some holes for predicted but so far undiscovered elements
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which were eventually filled. In 1910 Geiger and Marsden performed an experiment
where a beam of “α”-particles – later identified as nuclei of helium atoms – was
scattered off a gold foil target. The α-particles were scattered sometimes almost
backwards which led to Rutherford’s interpretation that the mass of gold atoms is
concentrated in a compact object at its centre. Bohr developed an atomic model on
this basis for hydrogen and later on, after the discovery of the neutron, Chadwick
extended the model to heavier nuclei.

The experimental method of Geiger and Marsden, the scattering of a beam of
probing particles off a target to be examined laid the foundation of all modern high
energy scattering experiments. The spatial resolution of scattering experiments is
defined by the wavelength of the probing particle and is inversely proportional to the
momentum of the probe in the centre of mass of the probe-target system. It has
increased dramatically during the past decades.

In the 1950s Hofstadter conducted an experiment to measure the charge distribu-
tion in the proton the results of which suggested a substructure. A whole series of
electron-proton scattering experiments at SLAC in 1969 revealed that protons were
composed of smaller objects, entities named partons. Later the partons were iden-
tified as the “quarks” which had been introduced by Murray Gell-Mann and Yuval
Ne’eman in 1961 as fundamental objects. They were the first who used the quarks
in a model to classify all hadrons observed in geometrical patterns given by the (ap-
proximate) symmetry properties of an SU(3)f group.

The quark model was strongly supported by the discovery of the Ω− particle which
was predicted by the model but had not discovered at that time. Originally three light
quark flavour eigenstates named up (u), down (d), strange (s) were sufficient to form
the known hadrons. With the later discovery of three much heavier additional quark
flavours – charm (c), bottom (b), top (t) – the group had to be extended. The hadrons
are subdivided into mesons and baryons. Mesons are formed by qq̄ (with one quark
in the “flavour” eigenstate q and one in the eigenstate q̄). The D∗+ (D∗−) meson,
whose production in electron-proton collisions is measured in this thesis, consists of
cd̄ (c̄d) quark–anti-quark pairs. The baryons are formed from a combination of three
quarks flavours qqq, e.g. the proton has a quark content of uud.

However, the SU(3)f symmetry of the flavour model is not able to describe the
interactions between the quarks as it is only a phenomenological ordering scheme.

The theory of Quantum Chromodynamics (QCD) allows the forces between quarks
to be predicted. In this theory the quarks correspond to a fundamental three-
dimensional representation of SU(3), and each quark flavour appears in one of three
colours. This SU(3)c is an exact symmetry group with 8 generators associated to
the 8 “gluons”. The gluons mediate the strong force between the quarks and have
spin 1. Due to the non-Abelian property of the SU(3)c symmetry group the gluons
can interact with themselves and the effective coupling constant of the strong force,
αs, decreases with increasing energy scale µ of the reaction. Using the Heisenberg
uncertainty principle the scale variable can be interpreted as resolution, where a large
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scale variable indicates a better resolution than a small one. There are some remark-
able features of QCD such as asymptotic freedom, limµ→∞ αs(µ) → 0, which indicates
that the strong force gets weak at very high scales. Another is the quark confinement,
which means that only colour neutral objects are observed as free particles. Although
the colour symmetry is exact, the calculation of QCD observables, such as the cross-
sections, has to be done using a perturbation series in αs(µ) which is valid for µ larger
than the QCD cut-off parameter ΛQCD = (100 . . . 400)MeV. But at scales µ ≈ ΛQCD

the effective coupling constant becomes large and the approximation breaks down.
The topic of this thesis is the measurement of D∗± meson production in the tran-

sition region between photoproduction (PhP) and deep-inelastic ep-scattering (DIS),
where the calculations are difficult. PhP reactions are characterised by the exchange
of a quasi-real photon between the colliding electron and the proton, whereas in DIS
reactions a virtual – i.e. off shell – photon is exchanged. In the kinematic region of
interest for this thesis the scale µ, used in the perturbative QCD calculation, does not
only depend on the momentum carried by the photon but also on the charm quark
mass and is of the same order as ΛQCD. Therefore the results of this thesis allow the
theoretical predictions which use the perturbative ansatz to be tested.

This thesis starts with a theoretical description of deep-inelastic scattering pro-
cesses. An overview of the charm production mechanism and the formation of hadrons
like the D∗± meson by fragmentation is also given. Chapter 3 gives a brief overview of
the Monte-Carlo generators and the theoretical calculations used in the physics sim-
ulation. The next, Chapter 4, contains an overview of the ZEUS detector. Chapter
5 is dedicated to a detailed description of the beam-pipe calorimeter (BPC), which
allows the region of low four-momentum transferred squared, Q2, to be accessed by
the measurement of the energy and position of the scattered electron. The selection
and the analysis of events containing D∗± mesons is explained in Chapter 6. In the
second part of the chapter the cross-sections are calculated. Finally, the results are
compared with theoretical predictions and put in a larger context by using previous
measurements in Chapter 7.



Chapter 2

Theoretical Overview

For the theoretical understanding of high-energy lepton-proton-scattering (the so-
called ep-scattering) three out of the four fundamental forces of nature are relevant.
These are the electromagnetic, weak and strong interactions. They are all believed to
be accurately described by a quantum field theory possessing local gauge symmetries.
Quantum Electrodynamics (QED) describes the electromagnetic interaction with the
massless photon as the intermediary gauge boson. QED is unified with the weak inter-
action in the standard electroweak model. Along with the photon the heavy W ± and
Z particles are the gauge bosons of the electroweak interaction. In the 1970s quantum
chromodynamics (QCD) was developed as the theory of strong interactions [1, 2], de-
scribing quark and gluon interactions. QCD is based on a non-Abelian local SU(3)
colour symmetry. Each quark appears in one of three colour states. The strong force
is mediated by massless gluons, which themselves carry colour. An overview of all
particles and interactions of the standard model is tabulated in Table. 2.1. Gravita-
tion is the fourth and the weakest fundamental interaction. It is not included in the
standard model, because the description of gravitation by a quantum field theory is
not yet possible.

This chapter gives a brief overview of the theory describing the physics of the
analysis presented in this thesis. The first section explains the kinematics and cross-
sections in deep-inelastic ep-scattering (DIS) and their interpretation in the frame-
work of QCD. A short section on photoproduction (PhP) follows. The production
mechanism of heavy quarks in DIS events, the subsequent fragmentation into hadrons
and their hadronic decays are discussed in the second section. Further information
can be found in textbooks, e.g. [3].

2.1 Deep-Inelastic Scattering at HERA

In the 1998–2000 data taking period the centre-of-mass system (CMS) energy of the
ep-scattering process at HERA was 318 GeV with beam energies of Ee = 27.6 GeV
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Electric Charge/units of e
0 −1 +2/3 −1/3

Generation Fermions
Leptons Quarks

1st νe e u d
2nd νµ µ c s
3rd ντ τ t b

Bosons
︸ ︷︷ ︸

g strong
︸ ︷︷ ︸

γ electromagnetic
︸ ︷︷ ︸

W+,W−, Z weak

Table 2.1: The elementary fermions, the fundamental forces that act on them and
the corresponding mediator bosons. A further boson, the Higgs, is predicted by
the Standard Model, but has not yet been found. The fermions are split into three
“generations” with increasing masses.

for the electrons or positrons and Ep = 920 GeV for the protons:

s = (k + P )2 ≈ 4EeEp ≈ 3182 GeV2 ,

where k and P are the 4-vectors of the electron and the proton as presented in Fig. 2.1
for the two kinds of deep-inelastic scattering (DIS) events. The symbols of the 4-
vectors of the incoming and outgoing particles are given in parentheses. A general
lepton-nucleon scattering process is defined as a deep-inelastic scattering (DIS) event,
if the scattered electron can enter the proton deeply and as a consequence the proton
breaks apart. The proton remnants and the struck quark, which forms hadrons via a
fragmentation process, define the hadronic system X. A necessary condition for the
hit proton to break apart is that the fraction of energy transferred from the lepton
to the proton, y, is sufficient, therefore y is considered as the “inelasticity”.

As there is no difference between the scattering positron or electron in the context
of this thesis1, electrons and positrons will be denoted by “electrons” in the following.

Measuring the final state or the scattered electron of such deep-inelastic ep-
scattering events allows the structure of the proton to be determined. Within the
picture of the quark parton model, the proton consists of quarks and gluons. The
highly-energetic incoming electron then probes the structure of the proton by cou-
pling through the electroweak current to the charged partons inside the proton. In
neutral current (NC) events, e + p → e + X sketched in Fig. 2.1, the exchanged

1The difference is relevant at high Q2 for the NC and for the CC process.
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boson is either a virtual photon, γ, or a Z boson. For charged current (CC) events,
e+p → νe +X, the exchanged boson is a charged W boson, and the final state lepton
is a neutrino, which escapes the detector undetected.

Only two variables are needed to fully determine the kinematics of DIS events.
Usually two out of the following three are chosen:

Q2 = −q2 = −(k − k′)2

x =
Q2

2P · q and

y =
q · P
k · P

where Q2, called “virtuality”, is the negative squared four momentum transfer from
the incoming electron to the proton. Q2 gives the resolution power of the photon
probing the proton, since the photon wavelength is determined by λ = 1/|q| =
1/

√

Q2. This variable gives the “hardness” of the reaction. The maximum possible
value of Q is s, therefore it is important to achieve a high CMS energy in order to get
a high resolution. In the quark parton model, x can be interpreted as the momentum
fraction of the proton carried by the struck parton and is called Bjorken x. It is
convenient to boost to the so-called infinite momentum frame, where the proton has
very high longitudinal momentum. The masses of the proton and the partons can be
neglected and x can be shown to be the momentum fraction of the scattered parton.
Thus it ranges from 0 to 1. The inelasticity, y, also ranges from 0 to 1.

γ, Z(q)

p(P )

a) e(k)

}X(P ′)

e(k′)

W−(q)

p(P )

b) e(k)

}X(P ′)

νe(k
′)

Figure 2.1: Feynman diagrams of the a) neutral current (NC) and b) charged current
(CC) DIS process.

Neglecting the electron mass, me, the three variables are related to each other by

Q2 = (s − m2
p) xy ≈ sxy , (2.1)

where the approximation is applicable for s � m2
p. The square of the invariant mass

of the hadronic final state system X is given by

W 2 = (s − m2
p) y − Q2 + m2

p ≈ sy − Q2,

= Q2(
1

x
− 1) + m2

p ,
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From Eqn. 2.1 we see that for a DIS event with low Q2 the product x · y has to be
very small. For the analysis presented in this thesis, with an inelasticity range of
0.02 < y < 0.85, this implies also a very low x range of 10−7 < x < 10−3.

Variable Reconstruction at low Q2

In this analysis the energy E ′
e and the angle θ w.r.t. the beam-axis of the scattered

electron are used to reconstruct the event variables. The energy and the angle are ac-
cessible with high precision in the Q2 region of interested. Q2 and y can be calculated
using the following equations (“Electron method”):

Q2 = 2EeE
′

e(1 − cos θ) (2.2)

y = 1 − E ′
e

2Ee

(1 + cos θ) (2.3)

There are some other methods to reconstruct the event variables by using a different
pair of independent observables. The Jacquet-Blondel method uses energy and angle
of the hadronic system whereas the Double Angle method takes the angles of the
scattered electron and the hadronic system.

2.1.1 DIS Cross-Sections

The main subject of this thesis is the measurement of the cross-section for heavy quark
production at low Q2 in neutral current events. Hence the following discussions will
focus on neutral current events only. The theoretical description of the cross-section
for deep-inelastic scattering events consists of a leptonic and a hadronic part

dσ ∼ Lµν · Wµν (2.4)

The tensor Lµν , called the leptonic tensor, describes the interaction of the electron
with the exchanged boson. Lµν is calculable via electroweak theory. For Q2 � M2

Z

photon exchange dominates and the leptonic tensor is described only by QED. If the
energy rises, Q2 ∼ M2

Z , the contribution from Z boson exchange must be taken into
account. The interaction of the exchanged boson with the proton is described by
the so called hadronic tensor Wµν . This tensor is not fully calculable but it can be
parametrised in various ways. Assuming Lorentz invariance and current conservation,
the double differential Born cross-section of DIS events may be expressed in terms of
structure functions F1, F2 and F3 of the proton

(
d2σNC(e±p)

dxdQ2

)

Born

=
4πα2

xQ4
{y2xFNC

1 (x, Q2)+(1−y)F NC
2 (x, Q2)∓

(

y − y2

2

)

xFNC
3 (x, Q2)}

(2.5)
where α is the electromagnetic coupling constant.
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The structure functions express the non-calculable part of the hadronic tensor.
The structure function F NC

3 represents the parity-violating contribution to the dif-
ferential cross-section due to Z exchange, and thus only becomes noticeable at very
high Q2. For the analysis, which is the subject of this thesis, the important regime
is Q2 . 1 GeV � M 2

Z . Hence in the following discussions only γ∗ exchange is consid-
ered. The structure function F1 is related to F2 and the longitudinal proton structure
function FL by the relation FL = F2 − 2xF1. The contribution of FL to the cross-
section is small, and only becomes significant at high y. The structure functions
in Eqn. 2.5 are defined with respect to the Born cross-section, thus no electroweak
radiative effects are taken into account.

2.1.2 The Näıve Quark Parton Model

The näıve quark parton model describes the proton as consisting of point-like non-
interacting constituents, the quarks. The deep-inelastic ep-scattering process is then
simply the scattering off a point-like particle inside the proton. For large enough
Q2 the point-like constituents of the proton can be resolved. Consequently for even
higher Q2 the structure functions, which describe the photon-proton scattering pro-
cess, should no longer depend on the length scale 1

Q
, characterising the size of the

constituents of the proton. Therefore, in this model, the structure functions are ex-
pected to be independent of Q2 because no further detailed structure can be resolved.
Hence it follows that the structure functions only depend on one parameter, e.g. on
x. This scaling behaviour of the structure functions was predicted by Bjorken, and
was observed in DIS experiments at SLAC a short time later [4].

In the picture of the quark parton model, the structure function F2 for photon
exchange only can be simply expressed in terms of quark densities fa(x) in the proton,

F2(x) =
∑

a

e2
axfa(x) (2.6)

where the index a runs over all quark flavours and ea is the charge of quark a. The
structure functions F1 and F2 are related by the Callan-Gross relation, 2xF1(x) =
F2(x), because the quarks are point-like spin 1

2
particles. Hence it follows that the

longitudinal structure function FL = F2 − 2xF1 is zero in the picture of the näıve
quark parton model. Another prediction from the näıve quark parton model is that
the integrated momentum fraction εq =

∑

a

∫ 1

0
xfa(x)dx carried by all quarks inside

the proton should be equal to unity. However measurements showed that only about
50% of the protons momentum is carried by the quarks. Hence the remaining 50%
must be carried by electrically neutral particles; the gluons introduced by QCD.

2.1.3 Quantum Chromodynamics

The gluons are the mediating gauge bosons of the strong force. The strong interaction
between quarks and gluons is described by QCD, a non-Abelian gauge theory based
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on the SU(3) colour symmetry group. Quarks carry colour, the charge of the strong
interaction. They appear in one of the three colours, “red”, “green” or “blue”. Colour
charge is exchanged between the quarks via gluons. Due to the non-Abelian structure
of QCD, the gluons themselves carry colour (forming a colour octet) and therefore
interact with each other. The coupling constant of the strong force, αs, is scale-
dependent2. Towards high Q2, and hence small distances, the coupling decreases.
The dependence on the scale is given by the renormalisation group equation. To
leading order the strong coupling constant is given by

αs(Q
2) =

12π

(33 − 2Nf) ln
(

Q2

Λ2

) (2.7)

where Nf is the number of quark flavours. The parameter Λ describes the scale
at which the coupling becomes large. For Q2 > Λ2, αs decreases logarithmically.
This means that due to the small coupling at high energies, the quarks inside the
proton may be regarded as free at high Q2 (asymptotic freedom). For low Q2 , i.e.
Q2 < O(Λ2), the coupling becomes large and a perturbative description is no longer
valid. Due to the large coupling at low Q2 , and hence at long distances, quarks
cannot be observed as free particles but only as bound states in colourless hadrons.
This behaviour is called confinement. Λ is not predicted by theory and so it must be
determined by experiment. It is found to have a value of (100 . . . 400)MeV.

Since we have to take the gluon into account, the näıve quark parton model
described in Section 2.1.2, which ignores any colour interactions, is incomplete. In
addition to qγ∗ → q, processes like qγ∗ → qg (QCD Compton scattering) and gγ∗ →
qq̄ (boson-gluon-fusion, BGF) also contribute to the cross-section for deep-inelastic
ep-scattering. In the case of QCD Compton scattering, the quark radiates a gluon
either before or after interacting with the virtual photon. If a gluon splits into a quark
anti-quark pair and one of the quarks interacts with the virtual photon, the process
is called boson-gluon-fusion. These two additional processes are shown schematically
in Fig. 2.8. In terms of perturbative QCD, the QCD Compton and BGF processes
are leading order (LO) αs contributions to the deep-inelastic cross-section.

In the perturbative calculation of cross-sections divergences occur. The diver-
gences can be interpreted in terms of virtual fluctuations, such as a gluon fluctuating
into a qq̄ or gg pair. The divergences can be absorbed into changes of the strong
coupling constant αs. Therefore a cut-off parameter, µR, is introduced and all fluc-
tuations that occur at time scales t < 1

µR
are absorbed into αs(µR).

2.1.4 The Factorisation Theorem

Perturbative QCD permits the calculation of the cross-sections for scattering pro-
cesses like qγ∗ → q, qγ∗ → qg or gγ∗ → qq̄ at high Q2 (hard scattering processes)

2The electromagnetic coupling constant is also scale dependent, but to a lesser extent.
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because αs becomes small. For calculations of ep-scattering processes, the distribu-
tions of the quarks and gluons in the proton must be known. These parton densities
are not calculable in perturbative QCD since αs is large (confinement). The “factori-
sation theorem” defines the structure functions as a convolution of the hard scattering
process, F̂ a

i , calculable in perturbative QCD, with the parton densities fa(x) inside
the proton [5]. The structure functions Fi of the proton may be written as follows:

Fi(x, Q2) =
∑

a

fa(x, µF ) ⊗ F̂ a
i

(

x,
Q

µF
, αs(µR)

)

(2.8)

where the sum runs over gluons and all quark and anti-quark flavours. The factorisa-
tion of the structure functions requires the introduction of the factorisation scale µF .
It divides the soft physics, namely the parton densities, from the hard physics, which
is calculable in perturbative QCD. The partonic structure function F̂ a

i describes the
hard scattering process between the virtual photon and the parton. Consequently
both quantities, fa(x, µF ) and F̂ a

i (x, Q
µF

, Λs(µR)), depend on the factorisation scale
µF . The measurable quantities must be independent of any arbitrary scale intro-
duced by theory. In principle the factorisation scale µF and the renormalisation
scale µR can take any values and one straightforward and common choice is to set
µF = µR = Q = µ.

Different schemes exist to define the parton densities and the factorisation and
renormalisation scale µ. Some schemes are used frequently, like the minimal sub-
traction scheme (MS, in the following denoted with “M”, as e.g. in CTEQ5M), the
deep-inelastic scattering scheme (DIS, labelled with “D”) and the fixed flavour num-
ber schemes for N = 3 and N = 4 (FFN3 and FFN4, labelled with “f3” and “f4”
respectively) which will be used later in the the NLO calculations. In the DIS scheme
the corrections to all orders in αs are absorbed into the parton density functions, such
that the structure function F2 is simply defined as F2(x, Q2) = x

∑

a e2
afa(x, Q2). In

Section 2.1.2 the structure function F2 was already expressed in terms of quark den-
sities of the proton within the picture of the näıve quark parton model. In terms of
QCD, Eqn. 2.6 is the lowest order, O(α0

s), calculation of the structure function F2

using the factorisation theorem as in Eqn. 2.8.

2.1.5 DGLAP Evolution Equations

Although the initial parton densities cannot be calculated perturbatively, QCD pre-
dicts their evolution with Q2 if the density at a certain initial Q2 = Q2

0 can be
given. The evolution is described by a set of integro-differential equations known
as the DGLAP evolution equations after Dokshitzer, Gribov, Lipatov, Altarelli and
Parisi [6, 7, 8]. The evolution of the quark density is given by

dqi(x, Q2)

d ln(Q2)
=

αs(Q
2)

2π

1∫

x

dy

y

(

qi(y, Q2)Pqq

(
x

y

)

+ g(y, Q2)Pqg

(
x

y

))

(2.9)
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and the evolution of the gluon density is given by

dg(x, Q2)

d ln(Q2)
=

αs(Q
2)

2π

1∫

x

dy

y

(

qi(y, Q2)Pgq

(
x

y

)

+ g(y, Q2)Pgg

(
x

y

))

(2.10)

where i denotes the quark flavour, and the sum runs over all quark and anti-quark
flavours. Ppfpi are the splitting functions

Pqq(z) =
4

3

1 + z2

1 − z
(2.11)

Pgq(z) =
4

3

1 + (1 − z)2

z
(2.12)

Pqg(z) =
1

2
(z2 + (1 − z)2) = Pgq(1 − z) (2.13)

Pgg(z) = 6

(
1 − z

z
+

z

1 − z
+ z(1 − z)

)

(2.14)

They represent the probability of a quark to radiate a gluon or of a gluon to
split into a quark–anti-quark pair. The different processes are shown schematically
in Fig. 2.2. The DGLAP equations express that a quark (gluon) with momentum

Pqq(z)

a) q

q(z)

g(1 − z)
Pgq(z)

b) q

q(1 − z)

g(z)

Pqg(z)

c) g

q(1 − z)

q(z)
Pgg(z)

d) g

g(1 − z)

g(z)

Figure 2.2: Fragmentation of the struck partons into hadrons has to be described by
factorisation. It is not calculable using perturbative QCD. Hence, the shown splitting
functions for the involved processes a) Pqq(z), b) Pgq(z), c) Pqg(z) and d) Pgg have to
be used in the DGLAP Evolution Equations (Eqn. 2.9).
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Figure 2.3: The gluon, sea, u and d valence distributions extracted from a ZEUS NLO
QCD fit at Q2 = 10 GeV2 [9]. They are compared to those extracted from two other
fits MRST2001 [10] and CTEQ6M [11]. Note that the gluon and sea distributions
are much higher and are scaled by 0.05.

fraction x can come from a quark or gluon with momentum fraction y > x which
either radiates a gluon or splits into a quark–anti-quark or gluon-gluon pair. The
probability for such a splitting or radiation is proportional to the respective splitting
function. The integral runs over all possible momentum fractions y > x. Having a
starting value for the parton density at fixed Q2

0 the parton densities can then be
evolved to any Q2 value.

Due to the quarks radiating gluons as described by QCD and the gluons split-
ting into qq̄ pairs, the picture of the näıve quark parton model is only a first order
approximation. One of the consequences is the “scaling violation”3 of the proton
structure functions. Fig. 2.4 shows the proton structure function F2 versus Q2 for
different values of x. It can be seen that only for x ∼ 0.22 the structure function
is independent of Q2 , but for lower x, F2 increases significantly with increasing Q2.
The quarks inside the proton produced by gluon splitting are called sea quarks. Their
number increases towards lower x. For increasing Q2 more and more sea quarks at
low x can be resolved. As a consequence the structure function rises with Q2 in this
low x region. Towards higher x the valence quarks carry the proton’s momentum and
the quark density decreases. Thus no more detailed structure can be resolved with
higher Q2 and the structure function decreases.

With a fixed value of αs the scaling violation of the structure functions is calculable

3Which is in fact not a violation but the general case.
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using perturbative QCD. Thus, its measurement allows the extraction of the gluon
density in the proton (see Fig. 2.5). It should be noted that QCD predicts that
the parton densities are universal. They do not depend on the probe, and should
therefore be independent of the measuring experiment.
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Figure 2.5: The gluon density at six values of Q2 as obtained from the the ZEUS-
S NLO QCD fit to the proton structure functions [9]. The uncertainties on these
distributions are shown beneath each distribution as fractional differences from the
central value.
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2.1.6 Partonic Parametrisations

In order to extract the parton densities from measured proton structure functions, a
parametrisation of the densities, with a number of tunable parameters, is fitted to
the experimental data. Once the parameters are tuned at a given Q2

0, the obtained
parametrisation can be evolved to any Q2 using the DGLAP evolution equations.
Due to the universality of the parton densities the data used for the fit does not need
to be restricted to ep-scattering only, and data from other experiments, for instance
pp̄ scattering, may be used as well. This approach is used by the CTEQ collabora-
tion [13]. They choose a starting scale Q2

0 of a few GeV2 to fit their parametrisation
and then evolve to higher Q2 using the DGLAP equations. The ZEUS collabora-
tion performed the same next-to-leading-order QCD analysis but extended it using
recently available ZEUS data together with the data from previous experiments [9].
The gluon density function obtained from this analysis is shown in Fig. 2.5.

2.2 Transition Region to Photoproduction

In contrast to the photon emitted by the incoming electron in a DIS reaction, the
photon emitted in a PhP reaction is quasi-real, i.e. Q2 ≈ 0GeV2 and the cross-
sections of both processes are different. If the lifetime of the exchanged photon in the
electron-photon interaction is long compared to its interaction time with the proton,
the interaction can be factorised into the emission of a photon by the electron, and
their subsequent interaction of the photon with the proton [14]. This condition is
met if

x � 1

2rpmp
·
√

1 +
4m2

px
2

Q2
, (2.15)

i.e. for small x and/or large Q2 (rp ≈ 1 fm, the proton radius). The electron is treated
as source of the photon flux and the interaction is described by the total photon-
proton cross-section. The longitudinal and transverse components of the cross-section
can be expressed separately, taking into account that the photon has in general three
possible helicity eigenstates λ = 0,±1:

σγ∗p
T =

1

2
(σ+ + σ−) (2.16)

σγ∗p
L = σ0 .

The cross-sections for unpolarised photons with λ = +1 and λ = −1 are equal, which
can be shown by requiring parity conservation. The cross-sections can also be related
to the structure functions by

σγ∗p
tot = σγ∗p

T + σγ∗p
L =

4π2α

Q2
F2 (2.17)

σγ∗p
L =

4π2α

Q2
FL (2.18)
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Figure 2.6: The LO direct (left) and NLO resolved (right) contributions to the pro-
duction of heavy quarks. In the direct process the photon couples directly to the
quark whereas in the resolved process the hadronic structure of the photon becomes
essential.

In a PhP reaction there is no longitudinal contribution to the cross-section in
Eqn. 2.17, because a real-photon has only transverse helicity eigenstates. As a con-
sequence in the transition region between DIS (at ZEUS usually defined as Q2 >
2 GeV2) and PhP where Q2 → 0, the longitudinal contribution to the cross-section
and F2 will decrease and should disappear completely at Q2 = 0 GeV2.

Since the DGLAP equations have been derived in perturbative QCD, they cannot
be expected to be valid when αs becomes large, equivalent to Q2 becoming small;
αs ≈ 0.5 at Q2 = 1 GeV2. It is important to see where perturbative QCD breaks
down, i.e. where they predict a Q2 dependency of the cross-sections and structure
functions that is incompatible with the data.

Another limitation of the DGLAP formalism appears when considering the terms
that have been neglected so far; there is no recombination mechanism for quarks and
gluons, i.e. the process qq̄ → g, and thus their number grows towards lower x for
increasing Q2. However, at some point this increase must violate unitarity (an upper
bound for the cross-section where the probability of anything to happen becomes
greater than 1). Therefore measurements at low Q2 can be used as a tool to look for
signs of recombination.

A speciality of PhP events is that like purely hadronic reactions, photoproduction
is expected to have a soft component, due to peripheral processes, as well as a hard
component from the scattering of the parton from the proton on a parton from a
vector meson. The vector meson comes from a photon fluctuation before the inter-
action with the soft component. In addition to its hadronic features, the photon can
also couple directly to quarks and the coupling is point-like. Therefore the scattering
processes are distinguished into two types of processes shown in Fig. 2.6: the “direct”
and the “resolved” processes.
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The PhP regime can be described theoretically using phenomenological models
such as the Vector Dominance Model (VDM) [15] and the Regge theory [16, 17]. The
VDM makes the ansatz that the photon is a superposition of the bare photon and
of vector-meson states: |γ >= |γbare > +

∑ |V >, where V = ρ, ω, φ. Because one
observes that the VDM is in agreement with experimental data only at low Q2 it
has been extended to the Generalised VDM (GVDM) [18]. The idea of GVDM is to
extend the set of ρ, ω and φ by a mass continuum of heavier vector meson states.

Regge theory was originally developed in the early days of strong interaction
physics and provides a successful description of soft hadronic cross-sections, as well
as of elastic and diffractive scattering. As usual in scattering processes, the interaction
of two hadrons is viewed as mediated by the exchange of particles. In the beginning
the strong interaction could be well described by one-pion exchange; however, there
is no justification not to allow the exchange of other mesons with higher spin, which
would unfortunately violate the Froissart bound – an upper limit for cross-sections –
for spin ≥ 1. Regge theory solved this problem by the introduction of the concept of
the exchange of a trajectory of particles (a reggeon), corresponding to the exchange
of many particles with different spin, J = 0, 2, 4 . . . or J = 1, 3, 5 . . . , and otherwise
identical quantum numbers. A trajectory is made by a group of particles which lie
on a straight line in the Chrew-Frautschi plot [19] of spin vs. mass squared. A very
prominent prediction of this model is the postulate of a new trajectory particle with
JPC = 0++, the pomeron. Glueballs, bound states of two gluons, would be possible
candidates. However, the interest in the Regge theory has decreased over the years as
it was unable to describe hard hadronic processes and attempts to make the theory
more rigorous proved to be problematic. The Regge theory was partly resurrected
when processes interpreted as hard scattering off a pomeron were observed [20, 21]
and when at HERA a significant fraction of similar events was found, considered as
diffractive deep-inelastic scattering, or deep-inelastic scattering on the pomeron [22,
23].

Previous inclusive ZEUS measurements [24] supported the expectation that in
the low Q2 regime, the dominant processes can be assumed to be non-perturbative
and therefore can be described by Regge and GVDM models (Fig. 2.7). However,
with increasing Q2 perturbative contributions become more important. Thus it is of
fundamental interest to understand the role of soft and hard processes in different
reactions theoretically, and to measure where in Q2 the transition takes place in the
production processes of charmed mesons.

2.3 Heavy Quarks in DIS

Quarks with masses which are considerably higher than the value of Λ, for instance
mc/b � Λ, with mc = 1.2 to 1.5 GeV and mb = 4.1 to 4.4 GeV [25], are so-called
“heavy” quarks. Therefore, in addition to Q2 , representing the hard scale for deep-
inelastic ep-scattering, another hard scale appears, if we consider events with heavy
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quark production (αs(µ = mc) = 0.39, αs(µ = mb) = 0.22 [25]. This makes the
measurement of heavy quark production in DIS an interesting test of perturbative
QCD, especially in the transition region to PhP.

2.4 Charm Quark Production Mechanism

In this section the heavy quark production mechanisms and their theoretical descrip-
tion are discussed. The focus is on open charm production, since this is the subject
of this thesis. Two theoretical approaches exist to describe the production of charm
in deep-inelastic ep-scattering. In the first approach no charm inside the proton is
present, and it is only produced extrinsically by “heavy flavour creation” [26, 27].
Hence, in leading-order, charm is produced exclusively via the boson-gluon-fusion
process, γ∗g → cc̄, as illustrated in Fig. 2.8b. In this picture the charm production
cross-section is directly correlated with the gluon density in the proton and is therefore
expected to increase towards low x. Comparisons of experimental results with theo-
retical predictions indeed show that the BGF process is the predominant production
mechanism for charm quarks in deep-inelastic ep-scattering at HERA [28, 29, 30, 31].

The second approach is intrinsic charm production, where a cc̄ is assumed to
exist in the proton bound state, and is produced via the so-called “heavy flavour
excitation” [27]. These charm quarks are not taken into account in the perturbative
QCD description. Results from EMC fixed target experiments gave indications for
this intrinsic charm component at high x. The flavour excitation process assumes
that charm quarks already exist within the radius of the proton. The virtual photon
excites a heavy parton inside the proton, which means that the process depends on
the virtuality of the photon and is kinematically only possible for Q2 � m2

c and
therefore does not play a role in this analysis.

Several schemes exist to perform the calculation of heavy quark production, where
the main difference between them is the treatment of the mass of the charm quark.
The zero-mass variable-flavour-number scheme (ZM-VFN) treats the charm quark
as a massless parton. Depending on the scale Q2 of the process, the number of
active partons is either four or five. In Eqn. 2.8 the sum in this scheme runs over
a = u, d, s, g for Q2 < m2

c and a = u, d, s, c, g for Q2 > m2
c . The partonic structure

function describes the hard scattering for all active partons, assigning them zero mass.
For charm production this scheme is a reasonable approximation for Q2 � m2

c, and
clearly becomes unreliable in the region where Q2 ∼ O(m2

c). In the fixed-flavour-
number scheme (FFN), a fixed number of flavours, where all quarks are regarded
as massless, are assumed to contribute to the proton sea at all values of Q2. In
the FFN3 scheme only the light partons, a = u, d, s, g, are included in the proton
parton densities fa. The production of the heavy charm quark is calculated via the
hard scattering process, using the charm mass. The perturbative calculation contains
logarithmic factors, ln(Q2/m2

c), which become large if Q2 becomes large. Hence the
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FFN scheme is most reliable in a region where Q2 ∼ m2
c , and becomes inappropriate

in the higher Q2 region. The FFN4 scheme also treats charm as a massless active
flavour at all values of Q2 and therefore is only reliable at very high Q2 and thus
not used to calculate the predictions for the measurements presented in this thesis.
Other schemes exist which try to cover the problematic region between Q2 ≥ m2

c and
Q2 � m2

c where none of the above schemes is appropriate [32]. One of them is the
ACOT (Aivaziz-Collins-Olness-Tung) scheme, which matches the FFN scheme with
the ZM-VFN scheme with non-zero-mass charm quarks. The problematic terms in
the FFN scheme, ln(Q2/m2

c), can be resumed and become a parton distribution fc

without taking the limit m2
c → 0 as done in the ZM-VFN scheme.

In this thesis the results will be compared to calculations which are using the
FFN3 scheme because this scheme is expected to be the most reliable in the low Q2

region below 1 GeV2.

2.4.1 Contribution of Fcc̄
2 to the Proton Structure Function

The double differential cross-section for charm production in deep-inelastic scattering
events, e+p → e+c+c̄+X, where one of the charm quarks is tagged, can be expressed
in terms of charm structure functions F cc̄

i , in analogy to Eqn. 2.5 in Section 2.1.4.
Considering only virtual photon exchange, and thus neglecting F3, and substituting
F1 by ( 1

2x
(F2 − FL)), the following expression is obtained:

d2σNC
cc̄

dxdQ2
=

2πα2

xQ4
[(1 + (1 − y)2)F cc̄

2 (x, Q2) − y2F cc̄
L (x, Q2)] . (2.19)

In the y range covered by this analysis the contribution to the cross section from
the longitudinal structure function F cc̄

L is small and therefore neglected. The charm
contribution to the inclusive proton structure function F2 is up to 20% at small x [33].

A precise measurement of F cc̄
2 is therefore interesting for the understanding of the

sea quark and gluon distribution of the proton. As discussed above, charm production
is dominated in leading order by BGF, γ∗g → cc̄. Considering Eqn.2.8 the measurable
quantity F cc̄

2 can therefore directly be related to the gluon density g of the proton by

F cc̄
2 (x, Q2) = g(x, µF ) ⊗ F̂ g

2 (x,
Q

µF

) . (2.20)

F̂ g
2 describes the BGF part, which is calculable in perturbative QCD. The extraction

of g(x) from charm measurements and its comparison with the result from the scaling
violation of F2 thus provides another consistency check of QCD. In addition to the
LO BGF process, next-to-leading order processes (NLO), in O(α2

s), contribute to
the charm cross-section. These are the gluon-bremsstrahlung process, γ∗g → cc̄g,
and processes of the type γ∗q(q̄) → cc̄q(q̄). The q(q̄) is a massless quark, radiating a
gluon which then interacts with the virtual photon. A NLO calculation for the charm
cross-sections exists [34] and will later compared to the measurements.
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2.4.2 Fragmentation of Heavy Quarks

The particles observed experimentally are the decay products of the hadrons resulting
from fragmentation of the charm quarks. Measurements of the charm cross-section
and the charm structure function, F cc̄

2 , therefore require phenomenological descrip-
tions about the fragmentation process and the subsequent decay into the observed
particles.

To calculate the cross-section for processes like ep → eHX, where H means a
heavy hadron, the process of fragmentation needs to be described theoretically. The
hadronisation of charm quarks into hadrons (confinement) is not calculable pertur-
batively in QCD, but is assumed to be independent of the hard scattering process.
Hence the calculation of the cross-section can be factorised in a way similar to the
factorisation of the proton structure function, which was described in Section 2.1.4.
To extend the calculation for charm production to the production of heavy hadrons,
the cross-section for charm production has to be convoluted with a fragmentation
function.

Several models exist to describe the process of fragmentation of heavy quarks,
Q, into hadrons. The Peterson fragmentation function [35] is frequently used in the
description of the transition Q → H(Qq̄) + q:

DH
Q (z) =

NH

z
(1 − 1

z
− εQ

1 − z
)−2 (2.21)

The heavy quark, Q, with momentum P is marginally slowed down by picking up
a light anti-quark q̄. The resulting hadron then carries the momentum zP , with a
probability proportional to DH

Q (z). NH is the normalisation factor constrained by
the sum over all hadrons containing the heavy quark,

∑

H

∫
dzDH

Q (z) = 1. The only

free parameter is εQ of O(
m2

q

m2

Q

), which can be determined from fits to experimental

data from e+ + e− colliders. Fig. 2.9 shows the Peterson fragmentation function for
different values of εQ. The function peaks at z = (1 − 2εQ) and its width is ∼ εQ.
Thus the higher εQ the softer the spectrum of the fragmented heavy hadrons.

The variable z in Eqn. 2.21 is not directly accessible by experiments, and so other
scaling variables which are close approximations to z must be used. Figure 2.10
shows the inclusive cross-section for D0 and D∗+ production versus the variable xP =
p/pmax. The measurements were performed by the ARGUS [36] and CLEO [37]
collaborations in e+ + e− collisions at

√
s ∼ 10 GeV. A fit to the data using only the

Peterson fragmentation function yields εQ(D0) = 0.135±0.010 and εQ(D∗) = 0.078±
0.008. In order to obtain results which are comparable to other experiments, radiative
effects must be taken into account. This has been done by the OPAL collaboration.
They studied the production of D∗± mesons in Z0 decays. A fit of the Peterson
function gives a softer fragmentation spectrum, with εQ(D∗) = 0.035± 0.009 [38, 39].
This is the value used as input for predictions for D∗ production at HERA.
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Figure 2.8: LO contributions to D∗ production cross-section: The a) the QCD Comp-
ton process and b) boson-gluon-fusion (BGF). At low Q2 BGF dominates the pro-
duction. For each of both processes exist another indistinguishable process of the
same amplitude where for a) the gluon radiation takes place before the interaction of
the quark with the photon and for b) the outgoing quark lines are twisted.
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Chapter 3

Physics Simulation

The complexity of the ZEUS detector system complicates the accurate determina-
tion of its efficiency and resolution for the desired particle momentum and position
reconstruction as well as for the energy measurement. The measured data has to
be corrected for the detector effects in order to obtain detector independent and
comparable results.

The response of the detector to a certain physics event has to be studied using a
simulation of the scattering process (event generator) and then a complete detector
simulation. Monte-Carlo (MC) simulation is the basis of these studies.

The event generators used for this analysis will be described in the first section.
The second section is dedicated to the description of a NLO calculation for charm
production in DIS events, which will be used to compare the results of the D∗ pro-
duction at low Q2 analysis. The chapter will end with an description of MOZART,
the detector simulation package.

3.1 Event Generators

The initial physics scattering process is simulated by an event generator. In this thesis
two of these generators are used: HERWIG and RAPGAP. Both use as theoretical
input perturbative QCD for the hard process of charm and beauty production in the
scattering reaction.

HERWIG and RAPGAP simulate essentially the same processes but RAPGAP
includes an extension to also generate diffractive events. HERWIG is used as the
standard MC generator in this analysis because the η(D∗) distribution (Fig. 3.1)
agrees better with previous D∗ production measurements at HERA [41].

The soft part is described by phenomenological models – e.g. the parton den-
sity function and the fragmentation process. In the next step the particles, namely
hadrons and leptons, are propagated through the ZEUS detector. In the propagation
effects like decays, multiple scattering, ionisation, etc. are taken into account using
the MOZART (Section 3.3) package.

29
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3.1.1 HERWIG

The dominant mechanism to produce charmed and bottom mesons at low Q2 in
DIS and photoproduction is the BGF mechanism (described in Section 2.4). In
order to generate a MC sample of such events for the analysis the event generator
HERWIG 6.301 [42, 43] is used. Photoproduction and beauty production events are
treated as background in this analysis. The BGF process can be considered to be
subdivided into resolved and direct processes (Fig. 2.6) by looking at the photon
vertex. However, the ratio between the number of D∗ mesons produced in both
processes has not been measured in the transition region between photoproduction
and DIS (0 < Q2 < 1 GeV2). Therefore the ratio of resolved and direct processes
which is used to create the initial HERWIG MC sample was taken from previous ZEUS
photoproduction measurements (∼ 0.3). In order to estimate the corresponding error
on the cross-section calculation different values of the ratio are assumed and put into
a systematic uncertainty.

The HERWIG event generator starts the physics simulation by generating the
4-momenta of the particles involved in the ep reaction according to the theoretical
predictions. The hard part of the scattering process is calculated using the pQCD
processes, here namely the BGF process. The parametrisations of the parton densities
functions of the proton can be selected. For the MC sample produced for this analysis
the CTEQ5L pdf parametrisation was chosen, where the suffix “L” denotes a leading-
order fit to CTEQ data. The generator takes care of radiative processes before and
after the ep-scattering process, i.e. initial and final state radiation. QCD radiative
processes are simulated in QCD parton showers based on the DGLAP evolution
equations [6, 8] to leading order in αs.

The partons are transformed into hadrons using the cluster fragmentation model [44],
whereby the primary hadrons are produced from an isotropic two body decay of
colour-singlet clusters formed from partonic constituents.

3.1.2 RAPGAP

The RAPGAP event generator [45] is used in this analysis to study the system-
atic uncertainties coming from different parton shower algorithms and fragmentation
models. RAPGAP uses the program packages HERACLES, JETSET and LEPTO
– all described below – enhanced with parton showers based on DGLAP evolution
equations calculated to leading order in αs. For a more detailed simulation of the LO
process the exact matrix element of the specific process can be included. For heavy
quark production this is done via the BGF process.

Again, the CTEQ5L parametrisation of the parton densities of the proton is chosen
for this analysis. The parton showers comprise gluon radiation from the charm quarks
and approximate NLO corrections for charm production.

For the QED radiative process along the electron beam-line, RAPGAP uses the
HERACLES event generator [46] to generate the (eγ∗e) vertex including initial and
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Figure 3.1: Distributions of the kinematic variables a) Q2, b) y, c) pt(D
∗) and d) η(D∗)

taken from the event generator. Solid lines indicate the HERWIG MC distributions,
RAPGAP MC is represented by dashed lines. The RAPGAP MC distributions are
normalised to the same area as the HERWIG MC distributions.

final state radiation as well as virtual corrections.

The fragmentation is simulated by JETSET using the Lund string model [47]. In
this model the proton remnant is connected with the produced – coloured – partons
by a colour string. The further the parton moves away from the proton remnant, the
more energy is stored in the colour string and it breaks up by the production of qq̄
pairs. By this method light qq̄ pairs are produced between the outgoing partons and
the proton remnant. The production of heavy quarks in this process is suppressed due
to their large mass and hence they are not expected to be produced via fragmentation
but only in the hard scattering process.

The treatment of the proton remnant is done by LEPTO [48]. In the case of BGF
a colour octet gluon is removed from the proton which creates a qq̄ pair. Two colour
strings are generated connecting each of the quarks with the proton remnant.
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A comparison of the distributions of the relevant kinematic variables from the
event generators are shown in Fig. 3.1. The slope of the η(D∗) distributions are
different for both generators; the HERWIG distribution rise towards higher η(D∗)
values while the RAPGAP distribution is falling. The measured distributions of
η(D∗) (Fig. B.1d) for the analysis presented in this thesis and for previous ZEUS
D∗ in DIS analysis [49] agree better with the HERWIG distribution and therefore
HERWIG is used in this analysis for the calculation of the acceptance. However,
the discrepancies between the two generators are well within the statistical error of
this analysis and therefore the RAPGAP MC is used in the systematic uncertainty
calculation.

3.2 NLO Calculations

An integration of the LO matrix elements is performed in HERWIG and RAPGAP
which depends on the renormalisation and fragmentation scale of the scattering pro-
cess. Therefore calculations of higher order are desirable. For heavy quark produc-
tion a MC program named HVQDIS [50] exists, which performs the calculations up
to NLO.

3.2.1 HVQDIS

Instead of generating single events like an event generator, the HVQDIS program
provides kinematic distributions calculated in LO and NLO for the production of
heavy quarks in DIS. Thus, no full MC simulation including the detector and trigger
simulation of the NLO predictions is possible. The measured data has to be corrected
for detector effects with LO MC such as HERWIG and the obtained distributions can
then be compared to the NLO predictions from the HVQDIS program.

The FFN3 parametrisation scheme (see Section 2.1.4) is used to perform the cal-
culation assuming the charm production occurs only via BGF and higher order QCD
processes. The calculation starts with the differential cross-section for charm produc-
tion in terms of the proton structure functions. Higher order corrections, including
gluon bremsstrahlung, higher order production processes and virtual corrections, are
calculated and added as NLO corrections to the charm structure functions.

The input parton densities are by default limited to three factorisation schemes:
GRV, CTEQ4F3 and CTEQ5F3 [13]. In this thesis an enhanced parton density set
based on the ZEUS NLO fits [51], including the results of ZEUS open charm analyses
from 1995 to 2000, is used. In order to use these PDFs the HVQDIS program was
extended by the ZEUS collaboration [52].

The results are expected to be most accurate at Q2 ≤ m2
c and become less reliable

for Q2 � m2
c due to the use of the FFN3 scheme. The choice of the the charm quark

mass value is left to the user and will be varied for systematic checks. The scale at
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which the LO and NLO calculation are performed – e.g. µ2 = (Q2 + 4m2
c) – can be

chosen by the user and will also be changed for systematic checks.
The output of the program are differential distributions for parton kinematics

accurate up to O(α, α2
s). To obtain observable distributions, Peterson fragmentation

is applied to both charm quarks to obtain the cross-section on the hadron level.
The Peterson fragmentation function contains a single parameter, εc, that should be
determined by experiment (see Section 2.4.2).

3.3 Detector Simulation

The interaction of the detector with the final state particles of the events is described
in the detector simulation. For this purpose, it contains a description of the geometry
and the materials of the detector, in order to be able to emulate the interaction of
primary and secondary particles with matter, like shower formation etc. The decays
of unstable particles inside the detector are described as well. This is the passive part
of the detector simulation.

In the MC sets for this analysis the path of produced particles through the ZEUS
detector is calculated using the MOZART program which is part of the MC simula-
tion package (funnel). MOZART is based on GEANT [53], the detector simulation
package. MOZART describes the decay, multiple scattering, ionisation and energy
loss of the propagating particles. The knowledge of the detector response is based on
the current understanding of the detector from physics studies and from test-beam
measurements, always taking into account the geometry and materials.

The MC also implements algorithms that simulate the response of the active
detector components to the particles as most components use the energy deposit
to generate an electronic response. This is the active part of the simulation. For
example, in a calorimeter the amount of energy deposited in the simulated scintillator
plates could be taken as a measure of the amount of light that would be created in
the real detector.

This active part is done for the ZEUS detector using e.g. the trigger simulation
package (ZGANA) and the reconstruction package (ZEPHYR).

The output from the detector simulation is reconstructed with the same algorithms
as the real data (although for some aspects separate branches exist, implementing a
slightly different treatment of data and MC), and the output has the same format as
the output from the real detector, plus some additional variables about the “true”
particles. This true particle variables, e.g. Q2

MC , provided by the event generator do
not undergo any reconstruction and are used for detector resolution studies etc.
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HERA and ZEUS

The first lepton-proton collider HERA [54] collides electrons or positrons with protons
and is located at DESY in Hamburg, Germany. It was approved in 1984; the electron
ring was operational in 1989, while the proton ring started in 1991. Some technical
details are presented in section 4.1. In the following year, the colliding beam detectors
ZEUS and H1 took their first data.

The ZEUS detector, which is introduced in section 4.2, is operated by an inter-
national collaboration of 400 physicists and many engineers and technicians from
around 50 institutes distributed all over the world.

4.1 The HERA Collider

HERA consists of two storage rings, one for electrons and one for protons which
circulate in opposite directions (see Figure 4.1). The rings are located 15–25 m
underground and have a circumference of 6.3 km.
In 1998 and the first half of 1999 electrons of 27.6GeV collided with 920GeV protons.
From the second half of 1999 HERA switched to positrons with the same energy as
the electrons. Some of the most important HERA parameters are listed in Table 4.1.
During normal operation, the electrons (protons) are injected with an energy of 12
(40)GeV and then accelerated further to their nominal energy (so called “ramping”).
Due to collisions with residual gas molecules (“beam gas”), the electron current drops
continously with a typical lifetime between 8–16 hours. This can be seen in Figure 4.2.
After this time, the electron beam is usually dumped and new electrons are filled and
ramped. The electrons and protons are grouped in up to 210 bunches and the bunch
crossing rate is 96 ns.

Four experiments have used the HERA facility during 1998–2000 to carry out their
physics research program.

Longitudinally polarised electrons from the electron beam are scattered off the
HERMES [55] target nuclei of polarised hydrogen, deuterium or 3He. Thus it is
possible to measure the spin structure of the corresponding nuclei. The fixed targets
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Figure 4.1: The HERA collider. Four circular 90◦-arcs are connected with straight
sections. There is one experiment in the middle of each straight section. The pre-
accelerators Linac, DESY and PETRA are shown as well.
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16:30, both electron and proton beams were dumped and afterwards filled again, first
protons (in three steps), then positrons. Data were taken e.g. between 7:30 and 16:00.
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HERA parameters Design Values Achieved in 1998–2000
e± p e± p

Circumference [m] 6336
Energy [GeV] 30 820 27.6 920
Centre-of-mass energy [GeV] 314 318
Injection energy [GeV] 14 40 12 40
Maximum current [mA] 58 160 37 99
Number of bunches (“pilot” bunches) 210 210 174 (15) 174 (6)
Time between bunch crossings [ns] 96
Horizontal beam size [mm] 0.301 0.276 0.200 0.200
Vertical beam size [mm] 0.067 0.087 0.054 0.054
Longitudinal beam size [mm] 8 110 8 170
Specific luminosity [ cm−2s−1 mA−2] ≤ 3.6 · 1029 ≤ 9.9 · 1029

Inst. luminosity [ cm−2s−1] ≤ 1.5 · 1031 ≤ 2.0 · 1031

Integrated luminosity per year [ pb−1a−1] 35 34

Table 4.1: HERA design parameters and the values of the 1998–2000 running period.

at the HERA-B experiment [56, 57], are wires of different materials. Protons from
the beam halo of the proton beam collide with these wires. The aim was to measure
the CP -violation in the B system and the dependence of charm production on the
atomic number of the wire material.

Both beams are brought to collision in the North and South experimental halls
where the H1 and ZEUS detectors are located. These multi-purpose detectors are de-
signed to analyse the particles which are produced and scattered in the ep-collisions.
Their angular calorimetry coverage is almost hermetic. The detectors differ mainly
in the choices that were made with respect to calorimetry. H1 [58] decided to build
their liquid argon calorimeter within the magnetic field of a superconducting coil
delivering 1.15 T, thereby achieving very good electron identification and energy res-
olution. ZEUS built a compensating calorimeter, i.e. its response to electromagnetic
and hadronic showers is the same, thus achieving a good unbiased jet energy mea-
surement.

The first period of HERA (HERA I) was completed in August 2000. In the subse-
quent shutdown, major upgrade modifications were made [59]. New superconducting
beam focusing magnets were installed close to the interaction points at ZEUS and H1.
These are designed to improve the instantaneous luminosity by a factor of ∼ 5. The
ZEUS and H1 detectors were partially changed and new detector components were
installed. ZEUS installed the Micro-Vertex-Detector and the Straw-Tube-Tracker to
improve the tracking of charged particles in order to make full use of the higher
luminosity [60]. Also the luminosity system was changed.
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4.2 The ZEUS Detector

The ZEUS detector [61] consists of many specialised detector components. Most
of the components can be seen in Figure 4.3. The ZEUS detector is asymmetric

Figure 4.3: The ZEUS detector in a Z–Y -cross section.

because it is adapted to the special kinematics at HERA. The different energies
of the electron and proton result in a CMS moving in the “forward” proton beam
direction1 in the laboratory system with a boost of β = 0.94. As a consequence the
detector is instrumented more extensively in the forward hemisphere.

Since the start-up the ZEUS detector has seen many – almost yearly – upgrades
by adding or exchanging components in the detector. Here, the status of the ZEUS
detector (Fig. 4.3) as of the 1998–2000 running period is described from inside out-
wards.

The beam-pipe is surrounded by a tracking system for charged particles. It con-
sists of a set of gas chambers (Figure 4.4). The cylindrical drift chamber (CTD)

1The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in
the proton beam direction, referred to as “forward direction”, and the X axis pointing left towards
the centre of HERA. The coordinate origin is at the nominal interaction point.
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surrounds the interaction point. In the forward region, three sets of planar drift
chambers (FTD) and a transition radiation detector (TRD) are installed. In the rear
direction, additional tracking information is provided by one set of drift chambers,
the rear tracking device (RTD). The CTD is embedded in the axial magnetic field of
1.43T of a superconducting solenoid, thus giving the possibility to measure a charged
particle’s track and momentum. Additionally the inner tracking detectors are used
for particle identification by dE/dx and transition radiation measurements.

SRTD

Figure 4.4: The inner components of the ZEUS detector, namely the central tracking
detector (CTD), the forward tracking detector modules (FTD), the transition radi-
ation detector (TRD), and in the rear part the rear tracking detector (RTD). The
CTD is surrounded by the superconducting coil supplying the magnetic field and the
first sections of the calorimeter (of FCAL, BCAL and RCAL). The small angle rear
tracking detector (SRTD), which is attached to the RCAL around the beam-pipe is
also shown here.

The whole inner detector is surrounded by a high resolution uranium-scintillator
calorimeter (UCAL), which is the main instrument to measure the energy of elec-
trons and hadrons. It is subdivided into three parts, the forward (FCAL), the bar-
rel (BCAL) and the rear calorimeter (RCAL). From 1995 to 2000, the beam-pipe
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calorimeter (BPC) was installed in a gap between the RCAL and the beam-pipe to
detect electrons scattered under very small angles, thereby providing the possibility
to measure very small values of Q2 (Chapter 5).

An iron yoke conducts the magnetic field flux of the solenoid. The yoke consists
of 7.3 cm thick iron plates, which surround the UCAL. Electromagnetic and hadronic
showers are absorbed in the uranium calorimeter. If any energy leaks out, it can be
measured with the backing calorimeter (BAC), consisting of proportional chambers
placed inside the iron yoke [62, 63]. Muons can pass through all the calorimeter
layers. Their momentum is measured in the rear (RMUON), barrel (BMUON) and
forward (FMUON) region using the magnetic field of the yoke and limited streamer
tubes mounted inside (R-, B-, FMUI) or outside (R-, B-, FMUO) the iron yoke [64].
The FMUO additionally uses drift chambers and the toroidal field.

Leaving the radial path through the detector and entering the axial – beam-line
– path, there are several detector components close to the beam-line, which address
various more specialised topics. In the proton direction at Z = 26−96 m six stations of
silicon strip detectors measure very forward scattered protons in the leading proton
spectrometer (LPS) [65]. The forward neutron calorimeter (FNC) is installed at
Z = 105.6 m to detect very forward produced neutrons [66].

In the electron beam direction, at about 8m, 35m and 44m, small calorimeters
measure forward scattered electrons at different values of W and Q2 ≈ 0 GeV2, thus
extending the kinematic range of tagged photoproduction (see Figure 4.9).

The most important detector components for this thesis will be described in more
detail in the following.

4.2.1 The Central Tracking Detector

The CTD [67] is a cylindrical drift chamber. Its active volume has a length of 205 cm,
an inner radius of 18.2 cm and an outer radius of 79.4 cm. The azimuthal angle, φ,
is covered completely whereas the polar angle region is 15◦ < θ < 164◦. The CTD is
operated with a mixture of argon, CO2 and ethane2. It is partioned in ρ =

√

x2 + y2

into nine superlayers, and in the azimuthal angle, φ, into eight octants. Figure 4.5
shows the layout of a CTD octant. The number of drift cells per superlayer in an
octant increases from four in the first superlayer to twelve in the ninth superlayer.
Every drift cell is equipped with eight sense wires. Superlayers with odd numbers
have sense wires parallel to the beam axis, while the sense wires in those with even
numbers run under a certain small stereo angle to the beam axis.

For the superlayers 1, 3 and 5, the signal latency time on the sense wires can be
used to produce a “Z-by-timing” measurement with a resolution (standard deviation)
of σZ ≈ 4 cm. The resolution in r − φ is about 230 µm, while in Z it is 1–1.4 mm
using stereo hits. For full length tracks, this results in a transverse momentum

2During the running period 2000, ethanol was added in order to regain the efficiency of the
previous running periods.
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Figure 4.5: Layout of a typical CTD octant. The stereo angle of each superlayer is
indicated.

resolution of σ(pT )/pT = (0.58pT ⊕ 0.65 ⊕ 0.14/pT )% with pT in GeV and a pseudo-
rapidity resolution, σ(η), of about 0.002 for pT > 2 GeV [68]. The interaction vertex
is measured for events containing at least one CTD track with a typical resolution
along (transversal) the beam direction of 0.4(0.1) cm. For each track, the energy loss
by ionisation, dE/dxm, is determined.

4.2.2 The Uranium Calorimeter

The high resolution uranium-scintillator calorimeter (CAL) [69] is a sampling calorime-
ter which consists of alternating layers of 3.3 mm thick depleted uranium and 2.6 mm
thick plastic scintillator plates. It is compensating, i.e. the energy response to elec-
trons and hadrons is the same (e/h = 1.00 ± 0.02). The CAL energy resolutions,
measured under test beam conditions, are σ(E)/E = 0.18/

√
E for electrons and

σ(E)/E = 0.35/
√

E for hadrons (E in GeV).

The calorimeter is divided into three parts corresponding to pseudo-rapidity re-
gions of -3.49 to -0.72 (RCAL). -0.74 to 1.10 (BCAL) and 1.01 to 3.95 (FCAL).
Each part is subdivided transversely into towers and longitudinally into one electro-
magnetic section (EMC) and either one (in RCAL) or two (in BCAL and FCAL)
hadronic sections (HAC) as shown in Figure 4.6. The layout of an FCAL module
can be seen in Figure 4.7. The CAL towers, shown in Figure 4.8, have a surface of
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Figure 4.6: Overview of the uranium calorimeter of ZEUS. RCAL, BCAL and FCAL
cover different pseudo-rapidity regions.

20× 20 cm2; while each HAC section in a tower consists of one cell, the EMC section
is transversely subdivided into four EMC cells (two in the RCAL) with rectangular
surface 20 × 5(10) cm2, resulting in a better Y resolution for the RCAL and FCAL
and θ in the BCAL.

4.2.3 The Luminosity Measurement

One key ingredient in the determination of a cross-section is the measurement of the
luminosity. It has to be done with high precision, because its variance immediately
adds a systematic uncertainty on the time-integrated luminosity to each measured
cross-section. A way to a measurement of the luminosity is to measure the number
of events N for a process with a well-known cross-section σ. At ZEUS the number
of events with Bremsstrahlung photons from the Bethe-Heitler process ep → eγp is
counted. The cross-section for this process is known from QED to an accuracy of
better than 0.5%. There is a detector to measure the photons (LUMIG), and one for
the scattered electrons (LUMIE) [70]. However, the ZEUS collaboration decided to
use only the photon detector for the luminosity measurement.

Figure 4.9 shows the complete luminosity monitor system. The Bethe-Heitler
photons with π − θ < 0.5 mrad leave the beam-pipe through a Cu-Be window
at z = −92m and are detected at z = −107m in the lead-scintillator calorimeter
LUMIG. A position reconstruction with a precision ≈ 0.2 cm is provided by two
layers of orthogonal 1 cm wide scintillator strips installed at a depth of 7X0 within
the LUMIG. Hence, the electron beam profile can be determined and is used by HERA
when optimising the beam. In front of the detector, a carbon-lead filter shields it
against synchrotron radiation. At z = −35 m there is the small electromagnetic lead-
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Figure 4.7: Cross section of an FCAL module. It is subdivided into one EMC and
two HAC sections, which are divided further into towers.

scintillator calorimeter LUMIE, that detects electrons with energies between 7 and
20 GeV and scattering angles less than 5 mrad, which have been deflected by the
HERA magnet system.

The measured photon rate has to be corrected for background events originat-
ing from Bremsstrahlung processes with residual gas molecules. The empty proton
bunches paired with electron bunches are used to estimate this background.

The accuracy of the luminosity measurement, which depends on the beam condi-
tions, is about 2% for the 1998–2000 running period.

4.2.4 The C5 Counter and the Veto Wall

The C5 counter is a scintillator based particle counter located at the collimator “C5”
at Z = −3.15m. The time measurement of the C5 counter is used obtain the mean
vertex position in the z direction.
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Figure 4.8: The tower structure of the uranium calorimeter. λ is the nuclear inter-
action length (1λ ≈ 25X0).

The veto wall is a iron plate of 8 × 8m2 at Z = −7.4m. On both sides of this
wall scintillators are used to detect background events.

Both detectors are mainly used to suppress non-ep background.

4.2.5 The Trigger and the Data Acquisition System

During data taking the predominant task is to find interesting signal events in a far
greater number of uninteresting background events. For the huge amount of data to
be processed and stored, this decision has to be taken “online”, during the process of
data taking itself. This is the purpose of triggers.

At the HERA interaction points the electron and proton bunches cross with a rate
of 10.4MHz. In some of these bunch crossings an ep-interaction takes place. The
event measurements, containing information from about 250000 readout channels,
can be put onto hard disks with a rate of about 5Hz. This implies that only the most
interesting events can be written to tape. On the other hand, the rate of detectable
signals in the detector components is dominated by non-ep-events like the interaction
of the proton beam with residual gas in the beam-pipe or – less frequently – beam halo
interactions, cosmic ray events and electron beam gas interactions. These amount to
a rate of the order 10 – 100 kHz. The ZEUS trigger system was designed to perform
a good separation of signal and background events under these conditions.

It consists of three stages, the first, second and third level trigger (FLT, SLT and
TLT shown in Fig. 4.10). In order to keep the dead-time low, the detector components
store their data in hardware buffers or pipelines.

Firstly, the event information is processed at the local FLT of the components
which send information to the gFLT – mainly the CTD and the CAL. The decision
has to be sent to the gFLT within 3 µs. In order to satisfy this requirement the FLT
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Tagger 8m

LUMI System

Tagger 44m

Figure 4.9: Layout of the luminosity measuring devices: the electron and the γ
detector. Note the very different horizontal and vertical scales. The interaction point
(IP), the nominal electron and proton beam lines (e–e, P–e) and the corresponding
magnets are indicated. The 8m and 44m-taggers are shown as well.

is designed as a fast analogue hardware trigger. The GFLT combines this informa-
tion and issues a trigger decision within another 2 µs. Only if this is positive, the
components read out their pipelines and process the data further. The FLT reduces
the event rate to below 1 kHz. The second level trigger has to reduce the event rate
to less than 100Hz. It uses a network of programmable transputer CPUs, designed
for high network throughput. Again, the global SLT (GSLT) forms its decision from
the local SLT information of the components.

After a positive GSLT, the components transmit their data to an event builder.
This combines the data and makes it available to the TLT in the (ADAMO) database
format, which is also used for offline processing and analysis. Hence, the TLT has
information from all components, and a part of the offline reconstruction code can
be used to analyse the events. After the TLT, the goal of lowering the event rate to
∼ 5Hz is reached.
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Chapter 5

The Beam-Pipe Calorimeter

In this chapter the key detector for the D∗ production at low Q2 analysis is presented.
The chapter starts with a motivation and continues with an overview of the BPC.
Further the measurement of the energy and position of the scattered electron or
positron with the BPC is described. The chapter ends with a discussion of the
calibration of the BPC energy for the running period 1998–2000.

5.1 Measurements at low Q2

The motivation to install a small-angle detector like the BPC at ZEUS was to get
access to the fraction of electrons emerging at low scattering angles w.r.t. beam axis.

In DIS reactions, detecting the scattered electron at these small angles is equiva-
lent to measure the reaction at low Q2 (Section 2.1). This is the key to studying the
transition region between deep-inelastic scattering and photoproduction.

There are two more possible methods to measure the electron for lower values
of Q2, but both have the disadvantage of reduced statistics and larger systematic
uncertainties. One is the shifted vertex method, where the event vertex is shifted in
the proton direction, so that the scattered electron can be detected in the RCAL at
lower values of the polar angle θ. This was done only for a very limited period of
runs in 1995 and 2000. Additionally, two RCAL modules were moved nearer to the
beam-pipe.

The second method uses events, where an initial-state radiation photon is seen
in the LUMIG detector. The photon lowers the ep-CMS energy, and thus the same
scattering angle implies lower values of Q2. However the statistics is reduced due to
the limited ISR probability and large systematic uncertainties arise.

The BPC measures Q2 in low-Q2 events, when the electron escapes through the
beam-pipe windows in the RCAL direction [71, 72]. In this region, any other recon-
struction method suffers from a very poor resolution [33, 73]. Thus, it is necessary
to measure well the scattered electron.
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5.2 The BPC in ZEUS

In 1995 the BPC was installed to measure energy and position of the scattered electron
at very high values of the polar angle, 18 mrad < θ < 32 mrad (Fig. 5.1). It consists
of two modules, one on the south side and one on the north side of the beam-pipe
(Fig. 5.2). The backward beam-pipe has two exit windows at Z = −249.8 cm in

pe

Z

X

18-32 mrad

BCAL
F

C
A

L

R
C

A
L

BPT
CTD

BPC
Central

Calorimeter

Tracking Detector Beam Pipe
Calorimeter

Beam Pipe
Tracker

Figure 5.1: Schematic Z-X view of the ZEUS detector, indicating the position and
angular acceptance of the BPC. The angles are determined by a window in the
beam-pipe where the electrons can escape. Located in front of the BPC is the BPT
detector, that provided tracking information of the scattered electron in the 1995
running period.

front of the BPC modules. They are made of 1.5mm thick aluminium, corresponding
to a very small radiation length of 0.016 X0. Their dimensions in X and Y are defined
by the surrounding RCAL modules. These are responsible for the effective fiducial
areas of the BPC modules. The space for the exit window in front of the BPC South
module is significantly smaller, resulting in a very small fiducial area.

The readout electronics of the RCAL and BPC modules constrain the dimensions
of the two BPC modules. The modules are both 13.8 cm in Y and 16.0 cm in Z,
but of different size in X (North 13.8 cm, South 9.8 cm). Their design is shown in
Figure 5.3. They consist of 26 plates of tungsten alloy (3.5mm thick) and alternating
layers (2.6mm thick) of scintillator material. The overall radiation length of 24 X0

provides sufficient longitudinal shower containment for electromagnetic showers up to
the maximum energy of 27.6 GeV. The scintillator layers are transversely divided into
7.9 mm wide optically decoupled fingers. Their orientation alternates between the
X- and Y -direction. Both BPC modules have 16 fingers in Y . In X, BPC North has
15 and BPC South 11 fingers. The light of all fingers with the same orientation lying
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Figure 5.2: The backward beam-pipe and the BPC modules North and South. Two
exit windows for the scattered electron reduce the amount of material to be traversed
to a minimum.
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Figure 5.3: The BPC North and South modules. The scintillator fingers, wave-
length shifters (WLS) and photomultiplier tube (PMT) housings are indicated. The
beam-pipe separates both modules and the RCAL readout electronics surrounds them
completely.
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behind each other in the longitudinal direction (called a “strip”) is collected together
by means of wavelength shifters into one photomultiplier tube (PMT) corresponding
to one readout channel. Hence, the BPC is insensitive to the longitudinal shower
profile, but the transverse position of a shower can be determined.

From the BPC PMT pulses, a charge fraction of approximately 10% is used for
a BPC first level trigger. The remaining charge is analysed by BPC analogue cards.
If a positive GFLT decision arrives, event information is sent to digital cards, where
(uncalibrated) energy and time are reconstructed by digital signal processors (DSPs).
This information is available for the reconstruction.

Important BPC parameters are given in Table 5.1. More details on the detector
and the trigger can be found in [72].

BPC parameters

Energy resolution 17%/
√

E/GeV (1)

Position resolution ≈ 0.22 cm/
√

E/GeV (2)
Depth ≈ 24 X0 (3)
Molière radius ≈ 13 mm (3)
Linearity ≤ 1% (3)

(1) from test beam measurements
(2) from 1997 data [74]
(3) from design

Table 5.1: Some BPC parameters. The position determination has additional biases
from other sources like alignment amounting to 0.1 cm.

Between the beam-pipe exit window and the BPC North, a tracking device, the
Beam-Pipe Tracker (BPT), was installed. It consists of five silicon micro-strip detec-
tors mounted orthogonal to the Z-axis. It is designed in order to improve Z-vertex
reconstruction, reduce photon background and enhance the position measurement of
the BPC to improve especially the Q2 resolution. As the Q2 resolution of the BPC is
sufficient (Section 6.7.1) for this analysis only the BPC energy and position is used
to measure the scattered electron here.

The BPC South module is only used for alignment purposes as it has a substan-
tially reduced active area. It is not designed to be used in physics analyses, therefore
the following chapters will concentrate on the BPC North module. In the following
BPC will always denote the BPC North.
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5.3 BPC Position Measurement

The measurement of the impact position of the electron in the BPC is needed for a
precise reconstruction of Q2.

The BPC is segmented transversely into X and Y fingers as discussed in Sec-
tion 5.2. Since no information of the longitudinal energy deposition in the BPC is
available, only the X and Y position (XBPC ,YBPC) of electrons detected in the BPC
can be calculated. This is done at Ze

BPC , the effective depth, of the electromagnetic
shower produced by initial electron in the BPC. Ze

BPC is from the measured energy
and a shower simulation [75].

The reconstruction of the Xe
BPC and Y e

BPC position at the effective depth is done
using the energy imbalance between strip energies. This method uses a fit of the
energy imbalance of the most energetic X and Y strips an its neighbours to extract
the Xe

BPC and Y e
BPC position with a spatial resolution of less than 1mm for energies

greater than 4 GeV [74].
The impact position (Xe

BPC , Y e
BPC , Ze

BPC) is extrapolated in the vertex direction
to the front face of the BPC and denoted as (X, Y, Z) in the following.

5.3.1 Survey for the 1998–2000 Running Period

After the 1998 shutdown a survey of the BPC was performed in order to determine
the absolute position in the ZEUS coordinate system. The method of the survey
was identical to the method used after the 1995 and 1997 shutdowns [33]. With
optical devices the positions of the BPC modules were determined relative to the
compensator magnet. The position of the magnet was determined relative to the
ZEUS coordinate system.

The result of the survey refers in X to the position of the inner edge of the first
X-finger. In Y it refers to the edge between the 8th and 9th Y -finger and in Z to
the BPC front face. The overall precision is estimated to be 0.1 cm. Also the angles
of the BPC edges w.r.t. ZEUS coordinate system were determined and found to be
negligibly small.

The result of the 1998 survey is

X0
BPC = 4.31 ± 0.03(stat) ± 0.06(sys) cm

Y 0
BPC = 0.01 ± 0.03(stat) ± 0.06(sys) cm

Z0
BPC = −293.70 ± 0.03(stat) ± 0.06(sys) cm

These position values were used in the standard ZEUS offline BPC reconstruction
software (BPRECON) for this analysis.

5.3.2 BPC Fiducial Area

One of the most important cuts in this analysis is the BPC fiducial area cut. This
cut is applied because the energy deposition of an electromagnetic shower has to be
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contained inside the BPC. Thus, a small gap between the lateral position of the
shower and the edge of the BPC is needed. Events detected in this gap suffer from
energy leakage and therefore have a reduced BPC energy. To avoid this systematic
effect a fiducial area cut on the lateral shower position is applied. For the 1997 F2

analysis the cut was chosen to be [33]:

Data and MC
(5.2 cm < X < 9.3 cm) ∧ (−2.3 cm < Y < 2.8 cm) ∧
(X − Y < 10.7 cm) ∧ (X + Y < 11.2 cm)

The event sample of the 1997 analysis was much larger than in this analysis because
an inclusive ep trigger was used. The fiducial area was enlarged as much as possible
in order to improve the statistics of this analysis (Fig. 5.4). The impact positions are
in a D-shaped area given by the escape window of the beam-pipe. There is a slightly
higher occupancy at X between 4.8 cm and 5.0 cm than in the rest of the BPC. The
significantly enlarged fiducial area cut for this analysis can be found in the following
table:

Data Monte Carlo

5.0 cm < X < 10.0 cm 5.0 cm < X < 10.0 cm
−2.5 cm < Y < 3.5 cm −2.9 cm < Y < 3.1 cm
X − Y < 11.2 cm X − Y < 11.6 cm
X + Y < 12.2 cm X + Y < 11.8 cm

Comparing Data and MC for the 1998–2000 running periods a shift in the Y -position
of 0.4 cm is found (see also [76]). Therefore the fiducial area cut applied to the MC
was shifted correspondingly in Y to cut on the same area and the electron scattering
angle reconstructed with the BPC was corrected for MC.

5.4 BPC Time and Shower Width Reconstruction

The reconstructed time, TBPC , and the shower size, ΣBPC , are used to reject back-
ground events (see Section 6.6).

TBPC is reconstructed from the energy weighted time, ti, of the single scintillator
strips taken from the DSPs. TBPC has the order of microseconds and is the time
between the ep-reaction and the appearance of a signal on the DSPs. The major part
of this time is consumed by reading out the photomultipliers. As the timing between
the HERA clock, which defines when the ep-reaction has taken place, and the GFLT
timing can shift, one is not interested in TBPC , but in BPC timing distribution per
run, TBPC , and the time residual T res

BPC = TBPC − TBPC to reject background events.
T res

BPC has the order of nanoseconds because the constant but large signal propagation
and processing delay in the readout electronic is subtracted in the residual.
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The shower width, ΣBPC , is taken from the second moments of the lateral shower
distributions in X and Y using a logarithmically-weighted energy method [72].

5.5 BPC Energy Measurement

The BPC energy calibration is important for the D∗ production at low Q2 analysis
presented here. The measured BPC energy is used for the reconstruction of the kine-
matic variables in the electron method and therefore influences the event selection.
A different energy scale in data and MC may result in event migration.

The energy readout of the DSPs during data taking is only a first approximation to
the true BPC energy. It is corrected for strip-to-strip gain variations, energy leakage
out of the calorimeter, light attenuation inside the scintillators and non-uniformities
caused by the 0.1 mm gaps between adjacent scintillators as described in [74]. These
corrections are implemented in BPRECON and therefore used for this analysis.

The built-in corrections in the reconstruction software were optimised for the
analysis of 1995–1997 data and thus do not take into account the energy degradation
before and during the 1998–2000 running period. This BPC energy which is corrected
using the 1995–1997 correction but not the 1998–2000 corrections is called Euncorr

BPC

here. For this analysis a recalibration of Euncorr
BPC is performed as described in the next

section.

5.6 Energy Calibration for 1998–2000

In the running periods 1998–2000 the energy response of the BPC decreased signif-
icantly due to radiation damage of the BPC scintillators. This radiation damage
is mainly caused by hard synchrotron radiation, which is most intense at the BPC
position very close to the ZEUS beam-pipe.

In this section the effects of position and time dependence of the energy response
are studied. The results are used to correct the BPC energy degradation.

5.6.1 Expected and Measured Energy

Four-momentum conservation leads to the definition of energy-momentum difference
along the z-axis of the event, δBPC . This quantity can be used as an estimator for
the calibration of the BPC energy and to clean the analysis event sample from PhP
background events. One can write

δBPC = (E − pz)e′ + δ + (E − pz)P ′ (5.1)

where e′ denotes the final electron state, P ′ the proton (remnant) and δ =
∑

i(E−pz)i

the final NC event state with index i running over all UCAL clusters. This equation is
true, if the energy of the electron is detected in the BPC and the energy of the rest of
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the final state is detected in the UCAL. In this case (E−pz)e′ can be calculated using
the BPC energy, EBPC , and the angle of the scattered electron w.r.t. the beam-axis,
ΘBPC , measured in the BPC:

(E − pz)e′ = 2Ee′ = EBPC(1 − cos(ΘBPC) , (5.2)

neglecting the mass of the scattered electron.
Regarding the initial state we can evaluate equation (5.1) to δBPC = (E − pz)e =

2Ee = 55.2 GeV. The right side can be simplified as (E−pz)P ′ ≈ 0. Using Eqn. (5.1)
and Eqn. (5.2) one can define the “missing energy”:

Emiss = 2Ee − EBPC(1 − cos(ΘBPC)) − δ

= 55.2GeV − δBPC . (5.3)

In the following this quantity is used to correct the energy of the BPC. An
ideal detector would give an unbiased energy Emiss = 0 for a NC DIS event. If
the resolution is not negligible, as in this analysis, the mean missing energy 〈Emiss〉
should be 0 with a spread given by its resolution. In the ZEUS detector there are
always a few particles which escape partially or completely undetected, e.g. through
small gaps in the region between the RCAL and the BPC, and give a bias to Emiss.
Therefore 〈Emiss〉 is not even 0 for MC. However, the Emiss distribution for data and
MC should have approximately the same mean and shape.

The energy correction for 1998–2000 was iterated until the Emiss distributions for
data and MC showed a reasonable agreement (Fig. 5.5). The resolution in data is
somewhat worse than in MC mainly due to the radiation damage. The calibration
procedure will be discussed in detail in the next sections.

5.6.2 Event Selection

In order to study the energy and time dependence a data sample of D∗ mesons with
the same properties1 as the final sample for the D∗ production at low Q2 analysis
is needed. Ideally it should have a much higher statistics and shouldn’t contain the
final D∗ mesons of the D∗ production at low Q2 analysis.

The calibration sample uses the same inclusive NC D∗ and BPC triggers as the
final sample. A description of these triggers can be found in Section 4.2.5 and 6.2. To
enrich the data sample only loose selection cuts on the D∗ topology and kinematics
are applied (Appendix A). The BPC fiducial cut is not applied, thus the calibration
is done for the whole active area of the BPC.

After these selection cuts the number of D∗ candidates in the calibration sample
is about 100000. Therefore the contribution of the events of the final sample of the
D∗ production at low Q2 analysis, around 700, can be neglected.

1All selected events have a scattered electron in the BPC and a D∗ candidate is found. The
additional final state particles are detected in the CTD and the CAL.
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5.6.3 Y -Position Dependent Energy Calibration

The radiation damage is not homogeneously distributed over all BPC fingers but has
a special structure which is presented for the Y distribution in Figure 5.6 and for
the X distribution in Figure 5.7. One would expect an energy degradation slightly
increasing towards the beam-pipe, i.e. to lower X values, because the radiation which
causes the damage is more intense here. Surprisingly, this behaviour is not observed.
However there is a maximum in the energy degradation around Y ≈ −1 cm.

To correct the Y -dependency the shape of the average of EBPC was fitted using
three linear functions in three Y regions as indicated by the lines in Figure 5.6. The
functions e1(Y ), e2(Y ) and e3(Y ) obtained by these fits (see Table 5.2) are used in
the following way to calibrate the energy:

E∗

BPC = Euncorr
BPC (Y ) ∗

(

1 +
E0

BPC − ei(Y )

E0
BPC

)

, (5.4)

where i has to be chosen w.r.t. Y and E0
BPC = 26.5 GeV is the mean BPC energy for

the MC sample. No corrections were applied to the Euncorr
BPC (X) distribution.

Function Index Range Correction Function

1 Y ≤− 1.1 cm e1(Y ) = 18.0 GeV − 3.4GeV
cm

· Y

2 −1.1 cm < Y ≤− 0.5 cm e2(Y ) = 26.5 GeV + 4.4GeV
cm

· Y

3 −0.5 cm < Y e3(Y ) = 24.5 GeV − 0.4GeV
cm

· Y

Table 5.2: Correction functions extracted by linear fits to the average of EBPC(Y ).

After the correction of the Y -dependent part of the energy degradation the energy
distribution E∗

BPC is distributed homogeneously in X and Y over the whole fiducial
area as shown in Fig. 5.7. But the X- and Y -averaged BPC energy shows still a time
dependence and therefore E∗

BPC = E∗
BPC(Runnr).

5.6.4 Calibration of the Run Dependent Energy Response

The BPC energy degradation worsened continuously during the 1998–2000 running
period. In order to visualise this effect the mean missing energy 〈Emiss〉 for groups
of 30 runs is plotted against the run number (Fig. 5.8). To first order the time
dependence of 〈Emiss〉 can be described by a straight line [76]. Therefore a linear
correction factor k(Runnr) which increases with the run number can be defined:

k(Runnr) = 0.98 + 0.08 · Runnr − 30000

7000
(5.5)
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Applying this correction to E∗(Runnr) one obtains the calibrated BPC energy EBPC

(Fig.5.8), which is used in this analysis:

EBPC = E∗

BPC(Runnr) · k(Runnr) (5.6)



56 Chapter 5. The Beam-Pipe Calorimeter

X  (cm)
4 6 8 10

Y
  (

cm
)

-4

-3

-2

-1

0

1

2

3

4

5
Dataa)

X  (cm)
4 6 8 10

Y
  (

cm
)

-4

-3

-2

-1

0

1

2

3

4

5
MCb)

Figure 5.4: Reconstructed impact position of scattered electrons in the BPC for a)
data and b) Monte Carlo. These event samples were obtained by using the BPC
trigger and requiring EBPC > 4GeV. The area within the outer lines is the fiducial
area of the BPC used in this analysis. The fiducial area of the 1997 analysis is
indicated by the inner thinner lines.
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Figure 5.5: Distributions of the missing energy Emiss for the calibration sample a)
before and b) after applying the 1998–2000 corrections to the BPC energy. The data
are represented by points. The filled area is the MC distribution normalised to the
same area as the data distribution. The rapid fall at 10GeV is an effect of the δ
selection cut applied on the calibration sample (see Section 5.6.2).
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Figure 5.6: Y -dependence of EBPC a) before and b) after applying the 1998–2000
corrections on the calibration sample. The dotted lines e1, e2 and e3 indicate the
linear fits for the calibration of EBPC(Y ). The solid lines indicates the limits of the
fiducial area of the BPC used in this analysis (see Section 5.3.2).
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Figure 5.7: X-position dependence of EBPC a) before and b) after applying the
1998–2000 corrections to the calibration sample. The solid lines indicates the limits
of the fiducial area of the BPC used in this analysis (see Section 5.3.2).
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Figure 5.8: Time dependence of the mean missing BPC energy, 〈Emiss〉, with (open
rectangles) and without (filled circles) the 1998–2000 calibrations, 〈Euncorr

BPC 〉. Each
entry is the mean over 30 runs and the error bars are the standard error on 〈Emiss〉
and 〈Euncorr

BPC 〉. The dashed line is 〈Emiss〉 of the MC sample, the dotted-dashed lines
indicates the standard error on 〈Emiss〉 of the MC sample.



Chapter 6

D∗ Meson Production at Low Q2

The goal of the analysis presented in this chapter is to measure the cross-section of
D∗ production at low Q2 using the BPC of ZEUS as motivated in Chapter 2. For
this measurement a sample of events containing a D∗ together with an identified and
well-measured electron in the BPC is required.

The analysis follows the usual steps of such an high-energy physics analysis: the
selection of the desired event class, the extraction of the signal and the correction
for the influence of the detector. At the end the total D∗ production cross-section is
presented as well as the differential cross-sections in the variables Q2, y, pt(D

∗) and
η(D∗). These cross-sections will be compared with theoretical predictions from NLO
calculation in the next chapter.

6.1 The Analysed D∗± Meson Decay

The decay channel investigated in this analysis is

D∗+ → D0 + π+
s

→ K− + π+ + π+
s

and the charge-conjugate channel1. Due to the small mass difference between the
D∗ and the D0 meson, ∆M = M(D∗) − M(D0) = 145MeV, the momentum of the
pion in the D∗ rest frame is very low, hence the subscript “slow” on πs. The mass
difference ∆M is measured in this analysis instead of the mass of D∗ or D0 itself to
increase the resolution.

The decay of the D∗+ → D0π+
s has a branching ratio of ≈ 68%. The subsequent

decay D0 → K−π+ has a branching ratio of only 3.85%, which gives for the whole
decay process a branching ratio of ≈ 2.6%2.

1In the following the charge-conjugate channel is always implied
2There are of course many more possible D∗ decays, e.g. D∗+ → K−π+π+π−π+

(s) or D∗+ →
K−π+π+π0. The first decay has a larger branching ratio but suffers from increased combinatorial

61
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6.2 Trigger Preselection of the Data Sample

The trigger preselection is done by demanding that the ZEUS heavy flavour BPC
trigger (HFL-BPC) has fired during data taking.

Additionally, events taken when the ZEUS heavy flavour photoproduction (HFL-
PHP) trigger has fired are also selected in order to study the efficiency of the HFL-
BPC trigger in the 1998–2000 running period. The reason to choose the HFL-PHP
trigger for that purpose is that events triggered by the HFL-BPC trigger are an
independent subset of events triggered by the HFL-PHP. The details will be described
in the following sections.

6.2.1 Event Topology

Events which pass the trigger preselection have some general properties which are
defined by the signal class of the D∗ production at low Q2 analysis. One is the
presence of three tracks from the interaction point of the event which can be combined
to a D∗ candidate as described in Section 6.3. Additionally a reconstructed electron
in the BPC is needed as well as some amount of energy in the uranium calorimeter
from the hadronic final state. Furthermore the absence of a scattered electron in
the the uranium calorimeter is used as a veto condition to reduce DIS background
events with Q2 > 2 GeV2. A typical D∗ event of the low Q2 signal class is shown in
Figure 6.1.

6.2.2 HFL-BPC Trigger

In Section 4.2.5 the ZEUS trigger system was introduced. Different physics filters are
used at each trigger level and each physics filter is designed to trigger events from a
certain process. For the running period 1998–2000 there was a dedicated hardware
trigger to select events with an electron in the BPC and tracks in the CTD which
can be combined to a D∗ candidate.

This is the first analysis which benefits from the implementation of this trigger.
The HFL-BPC trigger used in this analysis consists of the HFL-FLT Slot 34, the
HFL-SLT slot 8 and the HFL-TLT slot 14 (Fig. 6.2). If a positive decision is given at
each of these trigger slots the event is selected. The trigger conditions at each trigger
level are described below:

D∗ + BPC First Level Trigger (HFL-FLT34)

If the following simple conditions are fulfilled, the HFL-FLT34 slot “fired”:

• Localised energy deposition detected in BPC:
This indicates that an electron candidate was found in the BPC.

background. The second has a neutral particle in the final state which make the reconstruction
more difficult.
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BPC

Figure 6.1: A typical ZEUS low Q2 DIS event. The event display on top shows a Z-R
projection through the ZEUS detector while the event display at the bottom is the
projection in the plane perpendicular to the beam which includes the event vertex.
In this event the D∗ reconstruction has found one candidate with the correct charge
by combining the 4-vectors of three CTD tracks as described in Section 6.3. The
BPC has detected an electron with EBPC = 23.4 GeV and additionally no electron
was found by the electron finder of the CAL (Sinistra). In the FCAL close to the
beam-pipe the energy deposit of the proton remnant, which has been broken up, is
indicated by filled rectangles with areas proportional to the measured energy in each
EMC/HAC cell.
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FLT 40/41/42/43 FLT 59 FLT 42 HFL-FLT 34

HPP-SLT 1/2/3 HPP-SLT 4 HFL-SLT 1 HFL-SLT 8

HFL-TLT 10 HFL-TLT 11 HFL-TLT 14

BPCCTD Tracks + E

e in BPC + charm

e in BPC + D*

UCAL energy sum charm CALCTD tracks + E

ππ K→D* ππππ K→D*

PHP PHP DIS

HFL-PHP Trigger HFL-BPC Trigger

Figure 6.2: An overview sketch of the ZEUS HFL-PHP and HFL-BPC triggers as
implemented in the 1998–2000 running period. The arrow-like area indicates that
events triggered by the HFL-BPC trigger are a sub-sample of the HFL-PHP trigger
as the trigger conditions to find a D∗ pre-candidate are the same for both of these
triggers. The text on the bottom of the boxes is a rough description of the event
attribute or variable used by the corresponding trigger slot. Details are described in
the text.
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• ECAL > 4972 MeV and no. of CTD tracks ≥ 5 in the CTD:
The amount of energy is sufficient to find an D∗ in the hadronic final state and
the number of charged CTD tracks is sufficient to combine them to a D∗ → Kππ
or D∗ → Kππππ candidate.

Some additional trigger conditions prevent the HFL-FLT34 from firing, so called
vetoes:

• The C5 and the veto wall (Section 4.2.4) component signals that the reaction
has taken place outside the ZEUS interaction region.

• The SRTD detects a scattered electron and thus the electron detected in the
BPC is probably a fake electron.

D∗ + BPC Second Level Trigger (HFL-SLT8)

On the next level of the event triggering a simplified tracking has been done and more
precise variables can be used to in order to select the desired events. Signal events of
this analysis have to fulfil the following conditions:

• HFL-FLT34.

• An ep-vertex3 has been reconstructed.

• The transverse calorimeter energy is ET :=
∑

i Ei sin θi > 4 GeV; the sum is
over all UCAL cell energies, Ei, and their angle, θi, ignoring the two inner rings
of FCAL.

• The number of vertex matching CTD tracks ≥ 2.

• The number of found CTD tracks ≥ 5.

• The number of found CTD tracks ≤ 16 or the sum of two highest-pt tracks
> 1.2 GeV.

D∗ + BPC Third Level Trigger (HFL-TLT14)

At the last trigger level the full reconstruction has been done, thus all reconstructed
event variables can be used to select physics events. The conditions for the HFL-
TLT14 trigger to fire are:

• HFL-SLT8.

• HFL-TLT10 (D∗ → Kππ, see Section 6.2.3) or
HFL-TLT11 (D∗ → Kππππ) has fired.

3The reconstruction of an ep-vertex is done using CTD tracks in an iterative procedure. The
vertex finding algorithm is described in detail in [77].
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6.2.3 HFL-PHP Trigger (HFL-TLT10)

For the study of the HFL-BPC trigger efficiency the HFL-PHP trigger is used to
preselect the event sample as it is known to have an efficiency ≈ 0.92 in the same
kinematic region as considered in this analysis, but with a limited y range of y <
0.7 [78]. The event samples selected by both triggers have a large overlap, as the
HFL-PHP trigger uses almost the same quantities and cuts as the HFL-BPC trigger.
However, both triggers are implemented using different program codes are therefore
independent.

The HFL-PHP trigger selects D∗ events in photoproduction by the absence of the
scattered electron in the uranium calorimeter without requiring of an electron in the
BPC. The HFL-BPC trigger uses the filters of the HFL-TLT10 and HFL-TLT11 to
select D∗ candidates. As the HFL-PHP trigger has no veto condition on the BPC,
events which are triggered by the BPC should also be triggered by the HFL-PHP
trigger if they are also in the kinematic region of the BPC. The detailed conditions
for the HFL-TLT10 to fire are the following:

• HFL-FLT40 ∨ 41 ∨ 42 ∨ 43 ∨ 59

• HPP-SLT1 ∨ 2 ∨ 3 ∨ 4 or HFL-SLT14

• −50 < Zvertex < 50 cm

• 3 ≤ No. of CTD tracks < 100

• pt(πs) > 0.1 GeV

• pt(K, π) > 0.35 GeV

• 1.4 < M(D0) < 2.2 GeV

• ∆M < 0.170 GeV

• pt(D
∗) > 1.5 GeV

The trigger does not cut on the charge of the D0 candidate, therefore wrong charge
combinations are also triggered. The HFL-BPC trigger efficiency is defined in the
following as the ratio:

εBPC =
N(HFL − PHP ∧ HFL − BPC)

N(HFL − PHP)

∣
∣
∣
∣
total visible kin. BPC region

(6.1)

where N is the number of events triggered with the condition in the argument. The
evaluation of the efficiency is restricted to the total visible region of this analysis – i.e.

4All used subtriggers require a reconstructed ep-vertex, a certain amount of transverse energy in
the UCAL and the absence of the scattered electron in the CAL. The amount of transverse energy
and the number and momentum of the CTD tracks they cut on is varied in the different subtriggers.
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the whole accessible kinematic BPC and D∗ region after applying all analysis cuts
(Section 6.6):

0.05 < Q2 < 0.7 GeV2

0.02 < y < 0.85

1.5 < pt(D
∗) < 9.0 GeV

|η(D∗)| < 1.5

Using the 1998–2000 data sample one obtains εBPC = 0.97± 0.01. The same is done
for each kinematic bin (Section 6.7) of this analysis (Fig. 6.3). The HFL-BPC trigger
efficiency is larger than 94% in all bins of the considered kinematic variables, except
in the third η(D∗) bin where also the statistics is low.

Due to the small dependency of the trigger efficiency on the kinematic variables,
the effect of the trigger on the cross-sections is corrected assuming εBPC = 97% to be
constant in all analysis bins.
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Figure 6.3: Dependence of the HFL-BPC trigger efficiency on the kinematic variables
used in the D∗ production at low Q2 analysis for the running period 1998-2000. The
efficiencies are divided into the analysis bins for each kinematic variable a) Q2, b) y,
c) pt(D

∗) and d) η(D∗). The errors are calculated using binominal statistics.

6.2.4 Run Range

This analysis uses the data of the running periods 1998–1999 (electrons) and 1999–
2000 (positrons) taken by the ZEUS collaboration. The data taking performance and
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quality were monitored during the whole period and all runs affected by detector
problems were discarded.

The total integrated luminosity taken during the 1998–2000 running period is
Lint = 82.2 pb−1. For details see Table 6.1.

Run Range Running Period Integrated Luminosity
30764 – 32075 1998e− 4.7 pb−1

32125 – 32906 1999e− 12.2 pb−1

33125 – 34486 1999e+ 19.9 pb−1

35031 – 37715 2000e+ 45.4 pb−1

Total 82.2 pb−1

Table 6.1: Run range used in the D∗ production at low Q2 analysis. HERA switched
from electrons to positrons in 1999; the charge of the lepton is indicated in the running
period column.

6.3 Reconstruction of the D∗→ Kππ Decay

The selection of the desired class of events starts with the forming of a D0 candidate
using the 3-momentum and the charge of a pair of CTD tracks, which both passes
the following conditions: the tracks can be matched to the ep-vertex5, pt > 0.1 GeV,
the number of hit CTD super-layers ≥ 3 and the tracks are oppositely charged.

For each pair of oppositely charged particle tracks6, the tracks are assigned alter-
nately the π mass and the K mass. The 4-vectors, calculated from the CTD momenta
and the mass hypothesis, are summed and if the mass of the 4-vector sum, M(D0), is
distributed in a certain window around the mass of the D0 particle the pair is taken
into account as a D0 candidate.

The next step is to form a D∗ candidate by looking for another charged particle
track and assigning the π mass to it. If the mass difference of the 4-vector sum of
the latter and the D0 candidate, ∆M(D∗), is consistent with the hypothesis of being
a D∗, the three tracks are counted as a D∗ candidate.

The M(D0) selection window has to be chosen with care because close to the
signal peak of the D0 particle, the so-called satellite peak can appear in the M(D0)
distribution. The satellite peak comes from the D0 → K−π+π0 decays. The π0 leaves
the CTD undetected. Due to the imperfect momentum (track) reconstruction such

5If a CTD track matches the ep-vertex is decided by a measurement of the distance of the
extrapolated track to the vertex. It does not matter if the decay happens at the primary or secondary
vertex because the ZEUS is not able to distinguish between them.

6Before the tracks are combined to candidates cleaning cuts are applied on the pt of the particle
tracks which build the D0 candidate and pt of the third particle track which then combines to the
D∗ candidate.
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a three body decay can be misidentified as D0 → K−π+. In order to reduce these
events a pt(D

∗) dependent cut on the M(D0) distribution is applied (Table 6.2).

The M(D0) and ∆M distribution for the calibration sample are shown in Fig. 6.4.
Both distributions show clear signals on a combinatorial background which is well
described by the “wrong charge” (WC) background (Fig. 6.4). This background

pt(D
∗)/[GeV/c] M(D0)/[GeV] Cut Window

1.50 – 3.25 1.82 – 1.91
3.25 – 5.00 1.81 – 1.92
5.00 – 8.00 1.80 – 1.93
8.00 – 9.00 1.79 – 1.94

Table 6.2: To pick out D∗ candidates a pt(D
∗) dependent cut on M(D0) is used.

The M(D0) cut window is widening with increasing pt(D
∗) because the momentum

resolution of the CTD is worsening at higher values of pt.

is obtained by the same procedure as for the “right charge” (RC) combinations but
combining like-signed charged tracks to a pseudo-D0 candidate. All combinations
of three tracks with charge ±1 and its treatment in this analysis are described in
Table 6.3. Combinations with charges 6= 1 are discarded.

Sign of Charge Type Treatment in the Analysis
D0 πs

︷ ︸︸ ︷

K π
+ + – WC D∗+ Background
+ – – RC D∗− Signal
+ – + — Neglected (DC suppr.)
– + + RC D∗+ Signal
– + – — Neglected (DC suppr.)
– – + WC D∗− Background

Table 6.3: All charge combinations of CTD tracks to build a D∗± candidate. The
candidates are classified as RC and WC using the charge of the K and the π. The
use of the combinations in the analysis is mentioned in the last column. For right
charge combinations the πs candidate carries always the charge of the decayed D∗±.
Combinations with a subsequent decay D0 → K+π− or D0 → K−π+ are “doubly
Cabbibo” suppressed and thus neglected (branching ratio ≈ 1.5 · 10−4).
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Figure 6.4: The M(D0) and ∆M(D∗) distributions obtained by combining 2 (top) + 1
(bottom) CTD tracks from the full kinematical range of this analysis after application
of the preselection cuts and the EBPC > 4GeV cut. Clear invariant mass peaks of
the D0 meson (1864.5 ± 0.5MeV [40]) and of ∆M(D∗) (145.421 ± 0.010MeV [40])
can be seen. The shaded areas are the combinations of like-sign charged tracks to a
D0 candidate. This so-called “wrong charge” (WC) background gives an estimate of
the combinatorial background in the “right charge” (RC) distribution. The SNR is
≈ 1.5 for the upper and ≈ 1.4 in the bottom distribution.
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6.4 Monte Carlo Simulation

The reason to use a Monte Carlo simulation is to correct the number of reconstructed
signal events for the detector acceptance. Thus it is necessary to simulate the pro-
duction and decay of the D∗ as described earlier (Chapter 3).

6.4.1 Signal Monte Carlo

The MC simulating the D∗ production signal events and the subsequent decay is
HERWIG 6.301. The MC sample for 1998–2000 was generated by the ZEUS heavy
flavour working group for general heavy flavour analysis purposes in the full Q2 range
of the ZEUS detector (0.01 < Q2 < 50000 GeV2). It includes several charm and
beauty production and decay modes. The integrated MC luminosity generated for
1998–2000 is ≈ 600 pb−1.

Trigger emulation

The BPC trigger used to select the data sample is not simulated in MC. Therefore in
MC all trigger conditions (Section 6.2.2) have to be emulated by offline cuts on raw
detector information.

6.5 Corrections

Several corrections have to be applied on the data and the MC sample for effects
which are not simulated in data or MC.

6.5.1 Correction of the BPC Trigger Efficiency

The MC simulation of the BPC trigger is done by offline cuts in this analysis only
(Section 6.4.1). These cuts do not take the dependence of the HFL-BPC trigger
efficiency on the BPC energy into account. Thus the HFL-BPC energy dependence
is corrected in MC using the measured efficiency in data in 1 GeV bins according to
Fig. 6.5.

6.5.2 CTD Momentum Scale

The CTD momentum is scaled up by 0.3% to bring the ∆M(D∗) peak in DIS to the
∆M peak at 0.1454 GeV [79]. This correction is applied to data and MC.

6.5.3 CTD Water

In 2000 the gain of the CTD decreased significantly. In order to improve the situation
a small amount of water was added to the chamber gas. The change of the gas mixture
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Figure 6.5: Measured energy dependence of the HFL-BPC trigger in the 1998–2000
D∗ production at low Q2 analysis data sample in bins of 1 GeV. At low EBPC the
the trigger is inefficient. The line indicates the cut EBPC > 4 GeV which is used
to reduce systematic uncertainties in the analysis. The errors are calculated using
binominal statistics.
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had a strong influence on the resolution of the CTD and thus on the BPC trigger,
especially for low pt tracks. To reduce the impact of this effect D∗ candidates from
runs with a run number larger 36560 and pt(πs) < 0.25 GeV were discarded. For
the 1998–2000 MC sample a fraction of D∗ candidates with pt(πs) < 0.25 GeV were
discarded to correct for this effect. The fraction of D∗ which should be taken into
account is calculated using the integrated luminosity over the runs before the water
was added to the CTD gas and the integrated luminosity over all runs used in this
analysis (Sec. 6.2.4):

Le±p
before water/Le±p = 0.795

That means roughly every 5th D∗ candidate with pt(πs) < 0.25 GeV is discarded.

6.6 Signal Selection Cuts

Several offline cuts are applied on data and MC in order to reduce combinatorial and
physics background which is not already rejected by the trigger. Physics background
of this analysis are e.g. D∗ candidates coming from processes when the incoming elec-
tron radiates a photon (ISR) at a very small angle w.r.t to beam-pipe or events from
photoproduction when the photon does not escape completely undetected through
the beam-pipe but deposits some energy in the BPC.

The cuts and their influence on the data and MC sample are summarised in
Table 6.4 and visualised in Fig. 6.6. Although the HFL-BPC trigger reduced the
analysis background quite efficiently, some background events have to be discarded
by the cuts. A short description of each analysis cut is given following list. The
numbers in curly brackets after the cuts name correspond to the cut numbers, i, in
the table. The corresponding plots are collected in Appendix B.

• Preselection cuts: {0}
As disk space is always limited only the relevant information of the BPC and
D∗ triggered events are stored. The events are also preselected offline by the
same conditions as the events for the BPC energy calibration (Section 5.6).

• BPC offline trigger cuts: {1}
This cut selects only events with a positive decision at each level of the BPC
trigger chain: HFL-FLT34 → HFL-SLT8 → HFL-TLT14. Due to the missing
trigger simulation for the BPC in MC this cut is applied only to the data. In
MC the BPC is simulated by offline cuts (Section 6.4.1 and 6.2.2) . The cuts
are applied to these variables correspondingly.

• BPC timing cut: |T res
BPC | < 3 ns {2}

Events with time residuals longer than 3 ns are taken out of the sample because
they are not correlated to the event. Their origin is mostly electronic noise.
This cut is applied only to the data because the timing is not simulated in the
detector simulation of the BPC.
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• BPC energy cut (Fig. B.1): EBPC > 4 GeV {3}
The BPC trigger shows a lack of efficiency at energies less than 4 GeV. To
reduce the systematic uncertainties BPC triggered events with lower energies
are discarded. The value of this energy cut restricts the upper limit of the y
range of the analysis to y < 0.85.

• Energy imbalance cut (Fig. B.1): 35 < δBPC < 65 GeV {4}
The photoproduction background is rejected by applying this cut. The rejec-
tion of photoproduction background is efficient because photoproduction events
typically have δBPC < 10 GeV whereas for DIS events δBPC peaks at ≈ 55 GeV.

• BPC fiducial area cut (Fig. 5.4): {5}
The fiducial area cut is applied to reduce the systematic effects caused by events
with an incomplete energy measurement in the BPC (See Section 5.3.2). The
fiducial area cut restricts the Q2 range of the analysis to 0.05 < Q2 < 0.70 GeV2.

• Veto cut on Sinistra electrons: {6}
The uranium calorimeter reconstruction software Sinistra provides the electro-
magnetic energy of a particle and its probability to be the scattered electron.
This information is used to find BPC triggered events which are background
or fake events. An event is removed if Sinistra finds an electron in the ura-
nium calorimeter with a probability of more than 90% and an electron energy
Ee > 5 GeV.

• Z-Vertex cut (Fig. B.4): |ZVertex| < 50 cm {7}
The longitudinal vertex distribution is used to reject events from non-ep back-
ground.

• D∗ finder cuts (Fig. B.2): The combinatoric background of the D∗ candidate
reconstruction can be reduced by tightening the related cuts. For this analysis
the cuts are chosen to be:

– Slow pion momentum cut: pt(πs) > 0.12 GeV {8}

– Pion momentum cut: pt(π) > 0.45 GeV {9}

– Kaon momentum cut: pt(K) > 0.45 GeV {10}

• D0 mass cut, pt(D
∗) dependent: {11}

The D0 mass window cut has to be applied in order to select the signal range
in the D0 mass distribution. However, the CTD momentum resolution worsens
with increasing momentum. Therefore the D0 mass cut is varied depending on
pt(D

∗) (Table 6.2).



6.7. Signal Extraction 75

• CTD acceptance region cuts: {12}
Two cuts on the D∗ candidates are used to define the kinematic range of this
analysis. The cuts on |η(D∗)| < 1.5 and pt(D

∗) > 1.5 GeV have already been
applied in the preselection {0} of the data and MC sample. Here, additionally
the upper limit of the momentum region is limited to pt(D

∗) < 9.0 GeV for a
better comparison with previous ZEUS analysis. The cuts are chosen to be well
within the region where the CTD acceptance is high.

• Event shape cut (Fig. B.2): pt(D
∗)/Et > 0.1 cut: {13}

The cut on Pt(D
∗)/Et permits background events to be rejected without loss of

signal, because charm fragmentation is hard and thus the D∗ carries a significant
fraction of the c-quark momentum.

No. Cut (N0...i)data (N0+i)data (N0...i)MC (N0+i)MC

0 Preselection 190041 190041 1309390 1309390
1 BPC trigger 73811 73811 10041 10041
2 BPC timing 73241 174398 10041 1309390
3 BPC energy 68928 91481 9763 17252
4 δBPC 61886 114420 8635 439903
5 BPC Fiducial Area 36380 103953 4279 36736
6 Sinistra Veto 35602 183660 4257 1025928
7 ZVertex 35359 188400 4169 1274838
8 pt(πs) 30057 164064 3795 1172227
9 pt(π) 26633 167760 3362 1152017
10 pt(K) 22530 164273 2850 1133137
11 M(D0) 3614 29212 1337 532400
12 pt(D

∗) 3607 189943 1326 1302357
13 pt(D

∗)/Et 2806 142014 1260 1163806

Table 6.4: Influence of the cuts on data and MC for the full kinematic region of the
analysis. N0...i is the number of events which pass all cuts up to the i-th. N0+i is the
number of events which pass the 0-th and the i-th cut. All combinations of the fit
region mπ < ∆M < 0.168GeV (RC) are taken into account. Due to the substantially
reduced combinatoric background of the signal MC sample (N0...14)MC is much smaller
than (N0...14)data.

6.7 Signal Extraction

The total number of visible D∗ candidates which are left in data in the window be-
tween 0.14 < ∆M < 0.17 GeV after all selection cuts are applied is around 2800
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Figure 6.6: Influence of the cuts on data and MC for the visible kinematic region of
the D∗ production at low Q2 analysis. N0...i is the number of events which pass all
cuts from left to right up to the one in the corresponding bin shown in a) for data
and in b) for the HERWIG signal MC. N0+i is the percentage of events which are
discarded by the cut in the corresponding bin w.r.t. the number of events which pass
the preselection cuts shown in c) for data and in d) for the HERWIG signal MC. The
cuts are described in detail in Section 6.6.
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including the combinatoric background. In order to reduce the error on the mea-
surement of the total visible cross-section and the differential cross-section the signal
extraction method has to be chosen carefully. For this low statistics analysis a simple
counting of the D∗ after a statistical subtraction of the properly scaled7 WC back-
ground in a certain ∆M signal window will lead to large statistical errors for the
number of signal D∗. Therefore a fit of the ∆M distribution is prefered to extract
the number of measured D∗. However, the standard method to fit the WC subtracted
∆M distribution using a simple Gaussian signal function has no advantage as the fit
error is still large due to the subtraction of the WC background.

Hence, in this analysis the signal and background distributions are fit using the
following fit function f(∆M) with five free parameters:

f(∆M) = s(∆M) + b(∆M) (6.2)

=
a0√
2πa2

exp

(

−(∆M − a1)
2

2a2
2

)

+ a3(∆M − mπ)a4 (6.3)

with mπ = 0.13957 GeV, the mass of the pion. The first term in Eqn. 6.2 describes
the Gaussian signal (a0: scale factor, a1: mean and a2: σ) whereas the second term
is the combinatoric background (a3: normalisation factor and a4: slope).

First the ∆M distribution from WC combinations, which contains only combi-
natoric background, is fit over the full ∆M mass window (mπ < ∆M < 0.168 GeV)
using only the background function b(∆M). From this fit the scale a′

3 and the slope
a′

4 of the WC ∆M distribution is obtained. These parameters are used as initial val-
ues for the corresponding parameters in the following fit of the RC ∆M distribution,
which contains the D∗ signal. This step was introduced in order to stabilise the fit
results, because the combinatoric background (and the SNR) depends strongly on
the considered kinematic bin.

Then the RC ∆M distribution is fit in the same range mπ < ∆M < 0.168 GeV
using the fit function f(∆M) with 5 free parameters a0 . . . a4. The initial parameters
of the fit are set to the previously measured peak value of the ∆M signal [79], a1 =
0.1454GeV, to values obtained by the previous WC background fit, a3 = a′

3 and
a4 = a′

4, and to values which are in the expected parameter range, a0 = 80 and
a2 = 6 · 10−4 GeV8. However, the fit is not sensitive to the variation of a0, a2, a3, a4

and also not to small variations (≈ 15%) of a1.
To perform the fits an unbinned likelihood method [80] was used because the

stability of the standard binned likelihood fits was not sufficient. The result of the
fit in the total visible region (Fig. 6.8) for data is Ndata

tot (D∗) = 250 ± 22. The same
fit on MC sample yields NMC

tot (D∗) = 1069 ± 29 (Appendix C).
For the differential analysis the total visible region has to be divided into bins of

the kinematic variables. In this analysis four bins in Q2, y, pt(D
∗) and η(D∗) were

7For this analysis scale factors between 0.03 and 0.06 are necessary depending on the kinematic
bin. Previous ZEUS D∗ analyses used scaled factors up to 0.13.

8Similar to previous ZEUS D∗ measurements [49]
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Bin n 1 2 3 4

Q2
n ( GeV2) [0.05, 0.20[ [0.20, 0.35[ [0.35, 0.50[ [0.50, 0.70]

yn [0.02, 0.15[ [0.15, 0.30[ [0.30, 0.50[ [0.50, 0.85]
pt,n(D∗) ( GeV) [1.5, 2.5[ [2.5, 3.8[ [3.8, 5.0[ [5.0, 9.0]
ηn(D∗) [−1.5,−0.5[ [−0.5, 0.0[ [0.0, 0.5[ [0.5, 1.5]

Figure 6.7: Bin definitions for the differential D∗ analysis in Q2, y, pt(D
∗), η(D∗).

chosen, requiring at least 25 signal D∗ in each bin. The bin definitions are given in
Table 6.7.

After performing the fits in all those bins it turned out that some of the fits still
do not converge, e.g. in the first Q2 and in the first pt(D

∗) bin where the combinatoric
background is rather high. Therefore the widths wi in the differential fits are fixed to
wdata

tot = a2 ≈ 6.6 ·10−4 GeV and wMC
tot ≈ 6.5 ·10−4 GeV obtained by the fit of the total

visible RC ∆M distribution in data and MC, respectively. This parameter fixation
reduces also the fit error because number of degrees of freedom is reduced.

The ∆M distributions and the corresponding fits are presented in Fig. 6.9 and
Fig. 6.10 for all bins of the data sample. The extracted number of D∗ mesons
NXi

(D∗) – with X out of {Q2, y, pt(D
∗), η(D∗)} and i = 1 . . . 4 – by these fits are

tabulated in the following table and a graphical representation is shown in Fig. 6.11:

Ndata
Xi

(D∗) n = 1 n = 2 n = 3 n = 4

X = Q2
n 65 ± 11 106 ± 12 57 ± 8 25 ± 6

X = yn 55 ± 7 69 ± 9 78 ± 10 50 ± 10
X = pt,n(D∗) 77 ± 13 102 ± 11 40 ± 6 31 ± 5
X = ηn(D∗) 74 ± 9 57 ± 8 40 ± 8 81 ± 12

Very similar unbinned likelihood fits are done for MC and the results are presented
in Appendix C. The only difference from the fit of the data sample is that the initial
fit parameters of the background function, a3 and a4, are not taken from separate
WC background fits but are set to values which parametrise an almost flat and very
low combinatoric background. This is needed because in the HERWIG MC sample
the combinatoric background is significantly lower than in data.

A graphical representation of the numbers of D∗ extracted by the fits in each bin
for the HERWIG MC sample is shown in Fig. 6.11 and the numbers are listed in the
following table:

NMC
Xi

(D∗) n = 1 n = 2 n = 3 n = 4

X = Q2
n 335 ± 16 433 ± 18 210 ± 13 95 ± 9

X = yn 180 ± 12 294 ± 15 317 ± 16 281 ± 15
X = pt,n(D∗) 298 ± 15 407 ± 18 207 ± 13 160 ± 11
X = ηn(D∗) 302 ± 15 200 ± 13 201 ± 13 370 ± 17
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Figure 6.8: The ∆M distribution in the total visible region of the data sample.
The number of D∗ is extracted by an unbinned likelihood fit to a Gaussian signal
function and a background function (see Section 6.7). The points represent the data,
the shaded area is the WC background. The line shows the result of the fit. The
obtained number of D∗ is Ndata

tot (D∗) = 250 ± 22

The HERWIG MC sample was generated with a luminosity corresponding to LMC ≈
600 pb−1 and thus we expect around 6 times more events in MC than in data. The
tables above are in good agreement with this expectation.
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Figure 6.9: The ∆M distribution for the differential analysis in each Q2 and y bin
of the data sample. The number of D∗ is extracted in every bin by an unbinned
likelihood fit of a Gaussian signal + a background function (see Section 6.7). The
data are represented by points, the shaded area is the WC background. The lines
show the result of the fits.
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Figure 6.10: The ∆M distribution for the differential analysis in each pt(D
∗) and

η(D∗) bin of the data sample. The number of D∗ is extracted in every bin an unbinned
likelihood fit of a Gaussian signal + a background function (see Section 6.7). Data
are represented by points, the shaded area is the WC background. The lines show
the result of the fits.
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Figure 6.11: Number of D∗ extracted by the unbinned likelihood fits in each analysis
bin for a) Q2

BPC , b) yBPC , c) pt(D
∗) and d) η(D∗) of the data sample (top four) and

the HERWIG signal MC sample (bottom four).
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6.7.1 MC Distributions and Resolutions

The distributions of the kinematic variables Q2, y, pt(D
∗) and η(D∗) in data and MC

are shown in Fig. B.3. Q2 and y are given by the measurement of the electron via
the electron method as described in Section 2.1. The transverse momentum and the
pseudo-rapidity of the D∗ meson are given by the measurement of the momenta of
the decay products. The mean values of these distributions for the D∗ production at
low Q2 analysis are:

〈
Q2

〉
= 0.29 GeV2

〈y〉 = 0.40

〈pt(D
∗)〉 = 0.31 GeV

〈η(D∗)〉 = 0.42

(〈x〉 ≈ 10−5)

The correlation between the true MC and the measured kinematic variables are shown
in Fig 6.12. In the low-pt(D

∗) regime the momentum resolution of the CTD worsens
due to two effects: one is the increase of the effect of multiple scattering. The other
one is a geometrical CTD effect: Low-pt tracks are measured predominantly only at
the inner CTD superlayers because the track curvature is large. This worsens the
track resolution.

Total and differential resolutions of these variables are shown in Fig. 6.13 and
Fig. 6.14. The resolution is given by the σ-width of a fit of the Gaussian function
to the distribution of the distance between the true and the reconstructed kinematic
values. From the resolutions it can be seen that the bins of the D∗ production at
low Q2 analysis are large enough to cover the resolution and therefore bin-by-bin
migration can be neglected in this analysis.

6.7.2 Acceptance Corrections

The calculation of the acceptance is done in the following way:

1. D∗ mesons from the HERWIG MC which were generated in the kinematic
region to be measured, e.g. 0.05 < Q2 < 0.7 GeV2 are counted. The values of
the kinematic variables to cut on are taken from the generator. Events which
pass the cut are the so-called “generated” events, N gen.

2. All events undergo the same reconstruction and the same event selection as
the data events (described in Section 6.6). Furthermore the same unbinned
likelihood fit is used in order to extract the number of D∗ (see Fig. C.2, Fig. C.3).
The number of D∗ mesons is extracted then for the kinematic region of interest
yielding, N rec.
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Figure 6.12: Scatter plots of the reconstructed vs. the true kinematic MC variables
a) Q2, b) y, c) pt(D

∗) and d) η(D∗) for the RC combinations in the mass difference
window mπ < ∆M < 0.168GeV. All four variables show a reasonable correlation
over the whole visible region.
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Figure 6.13: Distributions of the differences of the kinematic MC variables a) Q2
MC −

Q2
BPC , b) yMC − yBPC , c) pt,MC(D∗) − pt,REC(D∗) and d) ηMC(D∗) − ηREC(D∗) for

the RC combinations of the MC sample in the mass difference window mπ < ∆M <
0.168GeV. The plotted differences are obtained by subtracting the reconstructed
value from the true value known from MC. An estimator of the resolution of the
variable is given here by the σ-width of an Gaussian function fit to the histogram.
The obtained Gaussian functions are drawn and the important parameters are quoted.
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Figure 6.14: Dependency of the resolution on the reconstructed kinematic MC vari-
ables a) Q2, b) y, c) pt(D

∗) and d) η(D∗) using the analysis binning. Only RC combi-
nations of the MC sample in the mass difference window mπ < ∆M < 0.168GeV have
been used to calculate these resolution. The points are placed in the bin centres and
the error bars indicate the RMS of the distributions in the corresponding bins which
can be considered as the bin resolutions. The extraction of the resolution suffers from
the low statistics in the bins of the MC sample and from the few uncorrelated entries
shown in Fig. 6.12. However, the bin width of this analysis is chosen wide enough to
cover the RMS well in all bins. Therefore migration effects can be neglected.



6.7. Signal Extraction 87

)
2

   (GeVBPC
2Q

0.2 0.4 0.6
0

50

100

)
2

   (GeVBPC
2Q

0.2 0.4 0.6
0

50

100 a)

BPCy
0.2 0.4 0.6 0.8

0

50

BPCy
0.2 0.4 0.6 0.8

0

50

b)

)   (GeV)*(Dtp
2 4 6 8

0

50

100

150

)   (GeV)*(Dtp
2 4 6 8

0

50

100

150 c)

(D*)η
-1 0 1

0

50

(D*)η
-1 0 1

0

50

d)

   (GeV)BPCE
10 20 30

0

50

100

   (GeV)BPCE
10 20 30

0

50

100
e)

   (GeV)zE-P
40 50 60

0

50

100

150

   (GeV)zE-P
40 50 60

0

50

100

150 f)

)   (GeV)sπ(tp
0.2 0.3 0.4 0.5

0

50

100

150

)   (GeV)sπ(tp
0.2 0.3 0.4 0.5

0

50

100

150
g)

)   (GeV)π(tp
2 4 6

0

100

)   (GeV)π(tp
2 4 6

0

100

h)

(K)   (GeV)tp
2 4 6

0

100

200

(K)   (GeV)tp
2 4 6

0

100

200
i)

   (cm)VertexX
-0.2 0 0.2

0

50

100

   (cm)VertexX
-0.2 0 0.2

0

50

100
j)

   (cm)VertexY
-0.2 -0.1 0 0.1 0.2
0

50

100

150

   (cm)VertexY
-0.2 -0.1 0 0.1 0.2
0

50

100

150
k)

   (cm)VertexZ
-40 -20 0 20 40

0

50

100

   (cm)VertexZ
-40 -20 0 20 40

0

50

100
l)

   (cm)BPCY
-2 0 2

0

50

   (cm)BPCY
-2 0 2

0

50

m)

   (cm)BPCX
5 6 7 8 9 10

0

50

   (cm)BPCX
5 6 7 8 9 10

0

50

n)

t)/E
*

(Dtp
0.1 0.2 0.3 0.4 0.5
0

50

100

t)/E
*

(Dtp
0.1 0.2 0.3 0.4 0.5
0

50

100 o)

Figure 6.15: Distributions of some important variables for the analysis data sample
(points) and the MC sample (shaded area) in the following order from top left to
bottom right: a) Q2, b) y, c) pt(D

∗), d) η(D∗), e) EBPC , f) δ = (E − pz)CAL+BPC,
g) pt(πs), h) pt(π), i) pt(K), j) XVertex, k) YVertex, l) ZVertex, m) YBPC , n) XBPC and
pt(D

∗)/Et. In order to obtain these distributions all selection cuts of the final sample
are applied except the one on the variable which the distribution shows. Additionally
the WC was subtracted and only D∗ events with 0.1435 < ∆M < 0.1475 GeV are
taken into account. The error bars indicate the statistical error. All MC distributions
agree reasonably well with the data distributions.
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n αQ2
n

[%] αyn
[%] αpt,n

[%] αηn
[%]

1 0.70 ± 0.03 2.22 ± 0.10 1.69 ± 0.10 0.82 ± 0.08

2 0.58 ± 0.04 1.13 ± 0.06 1.72 ± 0.09 1.77 ± 0.11

3 0.58 ± 0.04 1.69 ± 0.10 2.94 ± 0.18 3.49 ± 0.28

4 1.03 ± 0.05 1.33 ± 0.08 1.33 ± 0.08 1.16 ± 0.06

Table 6.5: The tabulated acceptance values for all analysis bins. The errors are given
by the fit errors of function f(∆M) (Eqn. 6.2) used to fit the ∆M distribution in the
corresponding kinematic bin.

3. The acceptance α of the corresponding kinematic region is calculated as the
ratio of these two numbers:

α =
N rec

Ngen
(6.4)

In this analysis the acceptance is the product of two independent acceptances: the
geometrical acceptance of the BPC and the acceptance of the D∗ reconstruction
method.

The total geometrical acceptance in the visible region of the BPC is ≈ 9% [76]
and typical acceptance values of the D∗ reconstruction method are ≈ 14% [78]. The
multiplication of these values results in a acceptance value of α ≈ 1.3%.

The calculated acceptance of the visible region of the BPC is

αtot = (1.11 ± 0.03)%

The values of the acceptance in all four kinematic variables αXn
are listed in Table 6.5.

Fig. 6.16 shows the graphical representation of these acceptance values.

The variation of the acceptance as a function of Q2 and y is mainly caused by
the special geometry of the BPC. The calculation of the variation as function of Q2

can be found in Appendix D. Comparing the slope of the Q2 dependence with the
calculated variation it can be seen that the measured acceptances are distributed in
agreement with the expectation.

The pt and η dependence of the acceptance is given by the D∗ reconstruction
acceptance. One effect which leads to the very low acceptance values in the low-pt

regime is that a D∗ with low pt very likely contains a πs with very low momentum,
which is harder to reconstruct than one with a higher momentum. Another effect is
that the water correction of the CTD, which affected the gain, results in a reduction
of the acceptance in the low-pt region (Section 6.5.3).
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Figure 6.16: Acceptances as a function of the the kinematic variables a) Q2
BPC , b)

yBPC , c) pt(D
∗) and d) η(D∗) using the analysis binning. The acceptance values are

placed in the centre of the bins. The error bars are given by the errors of the fit to
the MC.

6.8 Cross-Sections

The total visible cross-section is calculated in the full kinematic region of the BPC:

σtot(D
∗ → Kππ) =

Ntot(D
∗)

Lint · B · αtot · εBPC
= (10.1 ± 1.0) nb (6.5)

where Ntot(D
∗) = 253 ± 25, Lint = (82.2 ± 1.84) pb−1, εBPC = 0.97 and B = 0.026 ±

0.003 are the number of total visible signal events, the integrated luminosity, the
trigger efficiency and the branching ratio of the D∗ → Kππ decay. The acceptance
in this region is αtot = (1.11 ± 0.03)%.

The differential cross-sections are calculated for each bin n = 1 . . . 4 of the four
considered kinematic variables:

dσ

dXn
(D∗ → Kππ) =

NXn
(D∗)

L · B · αXn
· ∆Xn

· εBPC
(6.6)

with X = {Q2, y, pt(D
∗), η(D∗)}, NXn

(D∗) the number of signal events in a bin, αXn

the bin acceptance and ∆Xn
the bin width.
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The results of the evaluation of the differential cross-sections using Eqn. 6.6 can
be found in Table 6.6. Fig. 6.17 shows the graphical representation of these values.

The statistical error of the cross-section is given by the error of the fit in the
corresponding analysis bin. The large error bars in first bins of Q2, y and pt(D

∗)
are caused by the very small value of the acceptance in these bins. To calculate the
errors Eqn. 6.5 and Eqn. 6.6 have to be used. It can be seen easily that therefore the
fit errors are “scaled” by 1/α.

n dσ/dQ2
n ( nb/GeV2) dσ/dyn ( nb) dσ/dpt,n ( nb/GeV) dσ/dηn ( nb)

1 29.1 ± 5.2+3.0
−2.8 34.3 ± 5.1+3.4

−3.2 6.8 ± 1.2+1.4
−1.4 3.4 ± 0.5+0.9

−0.9

2 15.0 ± 1.8+1.7
−1.7 19.5 ± 2.8+2.2

−2.1 2.2 ± 0.3+0.6
−0.6 4.1 ± 0.6+1.0

−1.0

3 10.7 ± 1.6+1.6
−1.6 10.7 ± 1.5+1.7

−1.6 0.5 ± 0.1+0.4
−0.4 2.9 ± 0.6+0.9

−0.9

4 7.1 ± 1.8+1.7
−1.6 3.8 ± 0.8+1.2

−1.2 0.1 ± 0.0+0.2
−0.2 3.3 ± 0.5+1.0

−0.9

Table 6.6: The tabulated differential cross-section for all analysis bins. The values
are given in the following format: dσ/dX ± ∆stat ± ∆sys.

Restricted Total Visible Cross-Section

For the comparison with previous results of similar ZEUS D∗ analyses in the next
chapter an adjusted total visible cross-section is needed. Firstly the y region had to
be restricted to 0.02 < y < 0.7 and secondly the pt(D

∗)/Et was not applied. The
result with these adjustments is:

• N ′
tot(D

∗) = 239 ± 27

• α′
tot = (1.15 ± 0.04) %

• σ′
tot = (9.8 ± 1.2) nb

6.9 Study of Systematic Uncertainties

In this section systematic uncertainties are studied considering only those systematic
effects which contribute significantly (> 1% of the cross-section or the differential
cross-sections). For an easy identification of the systematic uncertainties their indices
are assigned to names in the following list:
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Figure 6.17: Differential cross-sections in all bins of the the kinematic variables
a) Q2

BPC , b) yBPC , c) pt(D
∗) and d) η(D∗). The data points are placed in the

centre of the bins. The inner error bars represent the statistical error of the data.
The statistical and all systematic errors in the corresponding bin are added in
quadrature to obtain the outer error bars.

0 STD:
The nominal cross-section value given by the standard selection cuts.

1 RAPGAP:
A different signal MC sample generated with RAPGAP is used.

2,3 HW±RS∓DR:
The HERWIG signal MC sample was composed differently of direct and resolved
processes. The resolved part was increased by +30% (2) or decreased by −30%
(3) constraining the integrated luminosity to be the same as the original sample.
The variation of the resolved part of 30% with the above constraint results
in a variation of the direct part of about 60%. These variation values are
chosen because similar heavy flavour analysis at Q2 ≈ 2.5 GeV2 measured the
ratio of the direct to the resolved components of the BGF process with this
accuracy [81].

4,5 XBPC ± 1:
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Shift of the BPC X position in MC by +1mm (4) and −1mm (5). The data are
left unchanged. The variation of ±1mm is chosen because this is the position
uncertainty of the detector survey.

6,7 YBPC ± 1:
Shift of the BPC Y position in MC by +1mm (6) and −1mm (7). The data
are left unchanged.

8,9 ±CTD-Scale:
Variation of the CTD momentum scale by −0.3% (8) and +0.3% (9) in MC [68].

10,11 <>, >< FidArea:
The BPC fiducial area is extended or reduced by shifting the edges of the area
by 1 mm outwards (10) or inwards (9).

12,13 ><, <> ∆M(D0):
The invariant mass window ∆M(D0) to select D0 combinations is decreased
(12) or increased (13) by 10MeV.

14,15 ±EBPC-Scale:
Variation of the BPC energy by −1% (14) or +1% (15) in MC. This variation
is chosen w.r.t. the BPC test-beam energy measurements.

16,17 ±σ fixed fit:
For the differential analysis the σi of the unbinned likelihood fits in each bin,
which are fixed to σ of the total visible fit, are varied by +∆σ (16) or −∆σ
(17).

18,19 ±CAL E:
Variation of the CAL energy scale by +2% (18) or −2% (19) in MC. Data are
left unchanged.

20,21 ±pt(D
∗)/Et: Variation of the pt(D

∗)/Et cut by +20% (20) or −20% (21) in
data and MC.

A graphical representation of the systematic uncertainties of the total visible cross-
section is shown in Fig. 6.18. For the differential analysis the same is shown for each
bin in Fig. 6.19.

The systematic error of the total cross-section is calculated by summing up the
uncertainties of all studies in quadrature separately for the upper and the lower values:

∆sys
tot =

√
∑

n∈Σ±

(σtot − σn
tot)

2 (6.7)
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with Σ± the set of variations with σtot − σn
tot,n > 0 (Σ+) or σtot − σn

tot,n < 0 (Σ−).
Using Eqn. 6.7 and Eqn. 6.5 yields

σtot(D
∗ → Kππ) =

(
10.1 ± 1.0 (stat.)+1.1

−0.7 (syst.)
)

nb (6.8)

The systematic errors in all kinematic bins of the analysis are calculated corre-
spondingly and are listed in Table 6.6.

In most of the kinematic bins the statistical errors dominate the error of the
measurement. In the other bins the systematic effects caused by using the RAPGAP
MC sample instead of HERWIG and by the variation of the resolved and direct
components in the HERWIG MC give the largest contributions.



Chapter 7

Results

This chapter starts with the comparison of the cross-section for the production of
D∗ mesons at low Q2 with predictions from NLO calculation. The cross-section will
then be put into the context of previous ZEUS D∗ production measurements. The
chapter ends with a discussion of the results.

7.1 Comparison with HVQDIS Predictions

The NLO predictions which are used to compare with the results of this analysis are
obtained using the HVQDIS program described in Section 3.2.

Although the HVQDIS program was originally not designed to perform NLO
calculation in the low Q2 region it can be used at this values of Q2 because the
calculation neglects the terms of orders higher than αs. These terms also contain
log(Q2/m2

c) factors which can become large for Q2 � mc.
The nominal – or central – values of the predictions presented in Fig. 7.1 and

Fig. 7.2 are calculated using the following four main parameters for the HVQDIS
calculations (the complete parameter set can be found in Appendix E):

• Peterson fragmentation with εQ = 0.035

• Charm quark mass mc = 1.35GeV

• Normalisation and factorisation scale µ =
√

Q2 + 4m2
c

• ZEUS NLO QCD fit [9] for the parametrisation of the proton PDFs

The nominal cross-section in the total visible region of the BPC calculated with those
parameters is:

σHVQDIS
tot (D∗ → Kππ) = 8.6+1.9

−1.8 nb (7.1)

In order to estimate the theoretical uncertainty quoted above, four independent errors
from the ZEUS NLO PDF fit and the HVQDIS calculation have been added up in
quadrature. These errors are: the combined uncertainty of the ZEUS PDF fit, the
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Figure 7.1: Measured differential D∗ → Kππ production cross-sections in bins of Q2

(left) and y (right) compared to the NLO predictions of HVQDIS. Data are repre-
sented by points. The inner error bars are the statistical errors of the measurement
while the open error bars are the sum of statistical and systematical uncertainties
added in quadrature. The shaded area indicates the theoretical uncertainties ob-
tained by variation of the HVQDIS parameters described in the text. The dashed
lines represent the HVQDIS calculation for the CTEQ5f3 parametrisation of the PDF
fits.

variation of the charm quark mass 1.2 < mc < 1.5 GeV in the range of the results from
lattice calculations [25], the variation of the scale (Q2 +m2

c) < µ2 < 4(Q2 +4m2
c) [49]

and the variation of the parameter εQ of the Peterson fragmentation function 0.02 <
εQ < 0.05. The variation of the scale µ tests the mc dependency of this scale at low
Q2. In other words, it tests, if mc is still a hard scale at low Q2.

The largest contributions to the theoretical uncertainty come from the charm mass
variation (∼ 60% of the theoretical uncertainty) and the scale variation (∼ 25%).
These variations are also performed for the HVQDIS calculations in each analysis
bin.

Another source of uncertainty is estimated using the CTEQ5f3 parametrisation
of the PDF fits instead of the ZEUS NLO QCD fit. However it is not taken into
account in the theoretical uncertainty but only drawn for each bin in Fig. 7.1 and
Fig. 7.2, where the measured differential cross-sections and the corresponding NLO
calculations from HVQDIS as functions of Q2, y, pt(D

∗) and η(D∗) are presented.
As can be seen the effect of this variation is small, except in the 1st y bin where the
deviation is ≈ 10% w.r.t. to the nominal value of the NLO calculation. For an easier
comparison of the results the charm quark mass used in the HVQDIS calculation for
the CTEQ5f3 parametrisation is the same as in [49].
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Figure 7.2: Differential D∗ → Kππ production cross-sections in bins of pt(D
∗) (left,

using a logarithmic dσ/dpt(D
∗) scale) and η(D∗) (right) compared to the NLO predic-

tions of HVQDIS. The data are represented by points and the shaded area indicates
the theoretical uncertainties obtained by variations of the HVQDIS parameters. The
dashed lines represent the HVQDIS calculation with CTEQ5f3 parametrisation of the
PDF fits.

The HVQDIS calculation for the total visible region yields then:

σHVQDIS,CTEQ5f3
tot (D∗ → Kππ) = 8.1 nb

The measured cross-sections are consistent with NLO calculation of BGF charm
production using the HVQDIS program and ZEUS NLO PDF fits. However, the
predictions slightly underestimate the data.

7.2 Combination with previous ZEUS Results

This analysis extends previous ZEUS measurements of D∗ production in DIS [49],
which were made in the range 1.5 < Q2 < 1000 GeV2, to the low Q2 region.

In order to be able to compare the results the kinematic region of this analysis
is restricted to the same kinematic region as the previous D∗ analysis (described in
Section 6.8). For this restricted analysis the differential cross-section as a function of
Q2 is calculated and presented together with the previous ZEUS measurement and the
NLO prediction from HVQDIS in Fig. 7.3. The combination of both measurements
shows that the slope of dσ/dQ2 changes with Q2. At high Q2 the slope is steeper
than at low Q2 as predicted by HVQDIS. Therefore the analysis in this thesis extends
the previous measurement in good agreement with the HVQDIS NLO calculations.
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It should be mentioned that there is a small gap between Q2 = 0.7 GeV2 and
Q2 = 1.5 GeV2 which is not covered by the measurements. Also it was not possible
to add the corresponding PhP cross-section value to the DIS measurements because
the previous ZEUS PhP analysis used incompatible kinematic cuts to be compared
with the measurements of this analyses.
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Figure 7.3: The D∗ production cross-section as a function of Q2 for the low Q2 analysis
in this thesis with slightly changed kinematic cuts (Section 6.8) and from previous
results on D∗ production in DIS [49] compared to NLO predictions. The results are
shown using logarithmic scales. The data are represented by points. The inner error
bars are the statistical errors of the measurement while the open error bars are the
sum of statistical and systematical uncertainties added in quadrature. The shaded
area indicates the theoretical uncertainties obtained by variations of the HVQDIS
parameters. The dashed line is the prediction for the Q2 region (0.7 < Q2 < 1.5 GeV2)
where no measurements are available.

7.3 Discussion and Interpretation of the Results

The previous comparison showed that the measured differential cross-sections can
be described over the complete Q2-region of ZEUS by the NLO predictions from
the HVQDIS program. However, the central total and differential D∗ production
cross-sections from the NLO calculation lie below the measured total and differential
cross-sections in almost all bins.
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The underestimate of the measured cross-sections in the low Q2 region by the
NLO calculation may have several reasons: the charm quark mass mc = 1.35 GeV
has been set too high, the effect of the charm quark mass in the factorisation and
renormalisation scale µ =

√
Q2 + 4m2

c is underestimated or the omission of the terms
of orders higher than αs is not justified for the low Q2 regime and inclusion of these
higher order αs terms would increase the cross-sections. The influence of the Peterson
fragmentation function parameter εQ and the chosen PDF fit parametrisation is small
and therefore of minor importance in this context.

The lowest charm quark mass obtained by different QCD lattice calculations for
hadron composition is mc = 1.2 GeV. Comparing the measured cross-sections with
the NLO calculation for mc = 1.2 GeV it can be seen that the measurements and the
NLO predictions agree within the 1σ error of the measurements. Thus, the results
of this analysis would prefer a lower charm quark mass than the one which is orig-
inally used in the NLO calculation for the nominal cross-sections (mc = 1.35 GeV).
However, comparing the measured and the central NLO cross-section one can see
that they agree within the 2σ error. Therefore the measurement is in reasonable
agreement with the NLO calculations.

Beside this, it is very likely that the omission of the higher αs terms in the NLO
calculation is not justified if the predictions are compared with the low Q2 measure-
ments and that the omission contribute to the underestimate of the measurements.

In general the slope of the differential cross-sections measured in this analysis is
defined by the the phase space available to produce a D∗ meson and the influence of
the partonic structure of the proton given by its structure functions (Section 2.1.1).
The differential cross-sections as functions of pt(D

∗) and η(D∗) reflect only the phase
space dependency of the D∗ production, because the structure functions do not de-
pend on them.

The variation of the measured differential cross-sections as a function of Q2 and
y (Fig. 7.3 and Fig. 7.1) is strongly influenced by the proton structure functions
F cc̄

2 (Q2, x) and F cc̄
L (Q2, y). The slope of dσ/dQ2(Q2) flattens1 towards lower values of

Q2 because in the PhP region the Q2 dependency of the differential cross-section is
∼ 1/Q2 and compensates the Q2 dependency of F2 ∼ Q2(σT + σL). At higher values
of Q2 the variation of the differential cross-section is ∼ 1/Q4 coming from the photon
propagator term. Therefore the cross-section falls towards higher Q2 as 1/Q2. The
slope of the measured dσ/dQ2(Q2) is in good agreement with these predictions.

The differential cross-sections presented in this thesis are in reasonable agreement
with the NLO calculation using HVQDIS. They extend the previous ZEUS measure-
ments of dσ

dQ2 (D
∗ → Kππ) to lower Q2. The dependence on Q2 of dσ

dQ2 (D
∗ → Kππ)

is in in good agreement with the theoretical expectations.

1For this consideration x is fixed to the mean value of this analysis, 10−5.



Chapter 8

Summary and Outlook

In this thesis a measurement of charm production in deep-inelastic ep-scattering at
low Q2 in the transition region between PhP and DIS has been presented. The data
were taken with the ZEUS detector during the period 1998–2000 and amount to
an integrated luminosity of 82.2 pb−1. The total and differential cross-sections were
calculated. The low Q2 region could be reached using the beam-pipe calorimeter
which measures the scattered electron at small angles.

The reconstruction and selection of the DIS events followed the standard pro-
cedures of a high energy particle physics analysis. The selection of events with
charm production was made using the decay of charmed D∗ meson. Special em-
phasis was put on the calibration of the BPC in order to reconstruct events in the
range 0.05 < Q2 < 0.7 GeV2 and 0.02 < y < 0.85. Several corrections had to be ap-
plied to get an accurate measurement of the energy and the position of the scattered
electron which is needed in the calculation of the kinematic variables Q2 and y. For
the first time a special trigger designed for HFL analyses at low Q2 was used and its
performance has been investigated.

The cross-section for charm production was measured using the decay of D∗

mesons into lighter mesons D∗+ → K−π+π+ and the charged conjugated decay in
the kinematic region 0.05 < Q2 < 0.7 GeV2, 0.02 < y < 0.85, 1.5 < pt(D

∗) < 9.0 GeV
and −1.5 < η(D∗) < 1.5. The measured total cross-section σtot(D

∗ → Kππ) =
10.1 ± 1.0+1.1

−0.7 nb agrees with the theoretical prediction from the NLO calculation,

σHVQDIS
tot (D∗ → Kππ) = 8.6+1.9

−1.8 nb. For the extension of previous ZEUS measurements
the cross-section was additionally calculated in a restricted y range of 0.02 < y < 0.7.
This total cross-section σ′

tot = 9.8±1.2+1.1
−0.7 nb also agrees with the corresponding NLO

prediction, σ′HVQDIS
tot (D∗ → Kππ) = 8.2+1.8

−1.8 nb.
Differential cross-sections as a function of Q2, y, pt(D

∗) and η(D∗) were presented.
The agreement with the theoretical predictions from NLO calculations was reason-
able. For the extension of previous ZEUS measurements the differential cross-section
as a function of Q2 is calculated in the y range of previous ZEUS D∗ DIS analysis.
The obtained differential cross-section agree within the errors with the predictions
from the NLO calculation and extend the kinematic region of the previous ZEUS
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measurement towards the PhP regime.
Finally, it could be shown in this thesis that the NLO calculation which is based

on the standard model of particle physics and uses the perturbative QCD ansatz is
able to describe the obtained cross-sections in the transition region between PhP and
DIS.

One future prospect is to extract the charm contribution to the proton structure
function F cc̄

2 (Q2, x) in the low Q2 region of this analysis. In order to extract F cc̄
2 (Q2, x)

first the double differential cross-section d2σ
dxdQ2 (Q

2, x) has to be measured in some bins

with reasonable statistics. From this double differential cross-section F cc̄
2 can be cal-

culated using the LO MC, the NLO predictions and a standard unfolding technique.
The measurement will extend previous HERA measurements of F cc̄

2 (Q2, x) to the low
Q2 and low x region of the kinematical range where hardly any measurement has
been done, except for a few measurements by fixed target experiments.

An interpolation of the differential cross-section of charm production as a function
of Q2 to the PhP regime would be very desirable. This needs a measurement from
ZEUS or H1 in a consistent kinematic range.



Appendix A

BPC Calibration Sample

The following trigger conditions and cuts are applied in order to obtain the BPC
calibration sample used in Chapter 5 to calibrate the energy of the BPC:

• Trigger Selection: (DST bit 90) ∨ (DST bit 27) ∨ (HFL-TLT10) ∨ (HFL-
TLT14)

• At least one D∗ candidate could be reconstructed in the event as described in
Section 6.3 with following conditions:

– pt(K, π) > 0.35GeV

– pt(πs) > 0.10GeV

– |η(K, π, πs)| < 1.9

– 1.4 < M(D0) < 2.2GeV

– 0.14 < ∆M(D∗) < 0.17GeV

– pt(D
∗) > 1.5GeV

– |η(D∗)| < 1.5

• Electron energy deposition in BPC with Euncorr
BPC > 0.1GeV

• DIS event selection: 35 < δBPC < 65GeV

The calibration sample contains around 100000 D∗ candidates after all cuts are ap-
plied. The signal-to-noise ratio of the D∗ signal in calibration sample is ≈ 0.1.
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Appendix B

Selection Cuts

In this appendix the chosen final selection cuts (see Section 6.6) will be introduced
and shown.

B.1 BPC Distributions

The two most important BPC distributions – EBPC and δBPC – and the cuts on
them are shown in Fig. B.1. The reason for the EBPC > 4GeV cut is the decreasing
efficiency of the BPC trigger used in this analysis below 4 GeV. The 35 < δBPC <
65 GeV cut is used to select DIS and reduce the background from PhP events.

B.2 D∗ Distributions

Fig. B.2 shows the four distributions and cuts with the largest effect on the D∗ recon-
struction. The reason to use such cuts is to remove the “soft” D∗ (low momentum)
candidates which are most probably not D∗ but (WC) background.

B.3 Distributions of the Kinematic Variables

The cuts on the kinematic event variables depend on the acceptances of the ZEUS
detector components used in this analysis to reconstruct the event, namely the BPC
and the CTD. The geometrical acceptance of the BPC restricts the Q2 and y region,
whereas the pt(D

∗) and the η(D∗) region is defined by the acceptance of the CTD.

B.4 Vertex Distributions

The cut on the ZVertex distribution is applied to clean the samples from non-physics
background as described in Section 6.6.
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Figure B.1: Distribution of a) the reconstructed BPC energy and b) δBPC for the
1998–2000 data sample. In order to obtain these distributions all selection cuts of
the final sample are applied except the one on the variable which the distribution
shows. Additionally only D∗ events with 0.1435 < ∆M < 0.1475 GeV are taken into
account. The (right charged) signal distribution is represented by points while the
error bars indicate the statistical error. The shaded area represents the wrong charge
background (WC) from track combinations with sign-like charge. The vertical lines
and the arrows indicate the selection cuts which are applied on the corresponding
variables to select the final D∗ sample.
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Figure B.2: Distributions of variables which are relevant for the D∗ reconstruction:
a) pt(πs), b) pt(π), c) pt(K) and d) pt(D

∗)/Et. The RC signal is represented by
points while the error bars indicate the statistical error. The shaded area is the WC
background. The vertical lines and the arrows indicate the selection cuts which are
applied on the corresponding variables to select the final D∗ sample.
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Figure B.3: Distribution of the kinematic event variables a) Q2, b) y, c) pt(D
∗), and

η(D∗) of the D∗ production at low Q2 analysis. The cuts define the kinematic region
of the analysis. The RC signal is represented by points while the error bars indicate
the statistical error. The shaded area is the WC background. The vertical lines
and the arrows indicate the selection cuts which are applied on the corresponding
variables to select the final D∗ sample.
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Figure B.4: Distributions of the reconstructed event vertex position in the 1998–
2000 data sample. The numbers are given in the ZEUS coordinate system for the
transverse directions a) X and b) Y and c) the longitudinal direction Z. Only Z is
used to cut on for background reduction in the final D∗ sample. The RC signal is
represented by points while the error bars indicate the statistical error. The shaded
is the WC background. The vertical lines and the arrows indicate the selection cuts
which are applied on the corresponding variables in the final sample.



Appendix C

HERWIG MC ∆M (D∗) Fits

The ∆M distribution of the MC signal samples are fit using an unbinned likelihood
method as described in Section 6.7. The only difference from the fit of the ∆M
distribution of the data sample is that the initial fit parameters a3 and a4 are set to
0.01 which parametrise an almost flat and very low combinatoric background. This is
needed because the MC is a pure signal MC and the combinations from combinatoric
background are much reduced. The result of the fit for the full visible region of the
BPC is shown in Fig. C.1. The results of the fits in the bins of the differential analysis
are presented in Fig. C.2 and Fig. C.3. The number of D∗ extracted by these fits in
order to calculate the acceptance is tabulated in Section 6.7.
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Figure C.1: The ∆M distribution for the total visible region of the HERWIG sig-
nal MC sample as described in Section 6.4. The distribution is fitted using an un-
binned likelihood fit of a Gaussian signal function and a background function (see
Section 6.7). The points represent the data with statistical errors, the shaded area
is the background from combination of like-sign charged tracks to a D0 candidate
(WC). The number of D∗ yielded by the fit is NMC

tot (D∗) = 1069 ± 29
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Figure C.2: The ∆M distribution for the differential analysis in each Q2 and y bin of
the HERWIG signal MC sample. The number of D∗ is extracted in every bin by an
unbinned likelihood fit of a Gaussian signal + a background function (see Section 6.7).
MC is represented by points, the shaded area is the WC background.
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Figure C.3: The ∆M distribution for the differential analysis in each pt(D
∗) and

η(D∗) bin of the HERWIG signal MC sample. The number of D∗ is extracted in
every bin an unbinned likelihood fit of a Gaussian signal + a background function
(see Section 6.7). MC is represented by points, the shaded area is the WC background.



Appendix D

Geometrical BPC Acceptance

The acceptance of the BPC (Section 6.7.2) is the product of two independent ac-
ceptances: the acceptance given by the D∗ reconstruction method, which uses CTD
tracking information and depends on the CTD acceptance, and the BPC acceptance
which is given by the BPC geometry.

The dependency of the acceptance on the D∗ reconstruction method affects mainly
the pt(D

∗) and η(D∗). In order to reduce this effect the analysis cuts are chosen well
within the acceptance region of the CTD (Section 6.6).

Of special interest for this analysis is the Q2 and y dependency of the BPC ac-
ceptance. They depend on the special geometry and position of the BPC. Therefore
in the following the Q2 dependency will be calculated explicitly and compared to the
measured acceptance.

For the electron scattering angle Θ′ one can write

tan Θ′ =

√

x2 + y2

f
(D.1)

with x- and y-position of the electron on the BPC front face and f = 273 cm, the Z-
distance of the BPC front face to the nominal vertex in the ZEUS coordinate system.
From Fig. D.1 one obtains the relation

α = arctan
y

x
=

∆φ

2
(D.2)

and

cos α = x/
√

x2 + y2 . (D.3)

The dependency of α on Q2 can be expressed in the following way:

α(Q2) =
∆φ

2π
=

2α

2π
=

1

π
arctan

x

y
(D.4)

where x and y are depend implicitly on Q2.
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X
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∆φ
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3
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51

2

Y

Figure D.1: Schematical view on the front face of the BPC. The numbers label the
edges of the BPC front face which are defined in Tab. D.1. The dashed lines are
lines of equal Q2 or Θ′ (under the assumption of fixed E ′ and the simplification of a
symmetric front face w.r.t. the X-axis).
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Edge number i xi/[cm] yi/[cm]
1 5.0 –
2 5.0 3.1 (-2.9)
3 8.5 3.1 (-2.9)
4 10.0 1.8 (-1.6)
5 10.0 –

Table D.1: X- and Y -positions of the edges of the BPC front face used in the geo-
metrical calculation of Q2-dependence of the acceptance. Values in brackets refer to
the lower edge of the BPC front face.

Eqn. 2.2 is transformed then to an equation depending on the variables x, y and
f :

Q2 = 2EE ′ (1 − cos Θ′)

= 2EE ′

(

1 − cos
(

arctan
(√

(x2 + y2)/f
)))

= 2EE ′

(

1 − f/(
√

f 2 + x2 + y2

)

= 2EE ′

(

1 − f/(
√

f 2 + r2

)

= 2EE ′

(

1 − 1/(
√

1 + r2/f 2

)

Using this equation we can evaluate the Q2-dependence of the geometrical accep-
tance for the different edges of the BPC front face as labelled in Fig. D.1:

Q2
1 = 2EE ′

(

1 − 1/(
√

1 + x2
1/f

2

)

Q2
2 = 2EE ′

(

1 − 1/(
√

1 + (x2
1 + y2

2)/f
2

)

Q2
3 = 2EE ′

(

1 − 1/(
√

1 + (x2
3 + y2

2)/f
2

)

Q2
4 = 2EE ′

(

1 − 1/(
√

1 + (x2
4 + y2

4)/f
2

)

Q2
5 = 2EE ′

(

1 − 1/(
√

1 + (x2
5)/f

2

)

where xi and yi denotes the coordinates of the edges of the BPC front face. These
positions can be found in Tab. D.1. In order to calculate the Q2 dependence of the
acceptance one can use Eqn. D.4. As an example, this is done for the area between
1 and 2:

α(Q2) =
1

π
arctan

(√
r2 − a2/a

)

=
1

π
arctan

√

(r/a)2 − 1



116 Chapter D. Geometrical BPC Acceptance

r2 = f 2






1
(

1 − Q2

2EE′

)2
− 1






α(Q2) =
1

π
arctan

√
√
√
√
√
√

f 2

a2






1

1 −
(

Q2

2EE′

)2
− 1




 − 1

This result and the results of the analogue calculations for the other areas between
the labelled edges are shown in Fig. D.2.

Comparing Fig. D.2 with Fig. 6.16 we see that the shape of the measured α(Q2)
is very similar to the calculated α(Q2). Thus the main contribution to the variation
of the acceptance as function of Q2 is just the BPC geometry.
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Figure D.2: Geometrical Q2-dependence of the BPC acceptance for different energies
E ′ of the scattered electron. The numbers indicate the edges of the BPC as used in
the calculation.



Appendix E

HVQDIS Parameters

The HVQDIS NLO calculations for the central values are performed using the fol-
lowing configuration file:

2 ! 0:LO 1:NLO CORRECTIONS ONLY (NO LO) 2:FULL NLO RESULT

11 ! RENORMALIZATION SCALE (SEE SUBROUTINE MSCALE FOR DEFINITIONS)

11 ! FACTORIZATION SCALE (SEE SUBROUTINE MSCALE FOR DEFINITIONS)

10 ! 1: CTEQ4F3 2: CTEQ5F3 3: GRV94 4: GRV98 10:ZEUS NLO pdf

50000 ! NUMBER OF VEGAS POINTS FOR LO

20 ! NUMBER OF VEGAS ITERATIONS FOR LO

1000000 ! NUMBER OF VEGAS POINTS FOR NLO

10 ! NUMBER OF VEGAS ITERATIONS FOR NLO

1 ! 1: CHARM 2: BOTTOM

1.35D0 ! QUARK MASS

920D0 ! ENERGY OF PROTON

27.5D0 ! ENERGY OF INCIDENT ELECTRON

0.05D0 ! Q2 MIN

0.7D0 ! Q2 MAX

0.D0 ! XBJ MIN

1.D0 ! XBJ MAX

0.02D0 ! Y MIN

0.85D0 ! Y MAX

1.5D0 ! |ETA| MAX

1.5D0 ! PT MIN

9.D0 ! PT MAX

1 ! 0: NO FRAGMENTATION 1: PETERSON FRAGMENTATION

0 ! 0: NO SL DECAY 1: SL DECAY (ONLY WITH IFRAG=1)

0.035D0 ! EPSION FOR PETERSON FRAGMENTATION

0.235D0 ! HADRONIZATION FRACTION (ONLY USED WHEN FRAGMENTING)

2.01D0 ! MASS OF HEAVY HADRON
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