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SUMMARY 

Various reactive molecules such as aldehydes and their intermediates accumulate in 

plants exposed to environmental stress conditions. These molecules are highly toxic and 

can cause peroxidation of cellular lipids, protein and nucleic acid modifications. Due to 

the potential cytotoxicity of these molecules in living cells, various aldehyde 

dehydrogenase (ALDH) proteins are involved in maintaining a careful balance of cellular 

accumulation of the toxic aldehyde molecules by converting them into their non-toxic 

corresponding carboxylic acids. To investigate the biological role of plant-ALDHs and 

their involvement in abiotic stress tolerance mechanisms, several transgenic Arabidopsis 

plants containing different Arabidopsis- and Craterostigma-ALDH-cDNA constructs 

have been generated and characterized under various abiotic stress conditions. Cellular 

and tissue specific localization of ALDH gene expression via GUS reporter gene fusion 

showed that ALDH3I1, ALDH3H1 and Cp-ALDH are stress inducible genes. The 

experiments also revealed that ALDH3I1 and Cp-ALDH expression is leaf specific, while 

the stress-inducible expression of ALDH3H1 is restricted to roots. Immunological 

experiments showed that ALDH3I1 protein accumulations were triggered by ABA, 

paraquat (methyl viologen, a chemical that induces oxidative stress), and H2O2 treatment, 

indicating that the signal transduction leading to ALDH gene expression is responsive to 

ABA and reactive oxygen species (H2O2). The overexpression of ALDH genes controls in 

return the excessive accumulation of ROS, which occurs as a result of environmental 

stress. This confers thereby an enhanced tolerance to stress. Molecular and biochemical 

characterizations of selected transgenic plants exposed to stress treatments revealed that 

transgenic plants overexpressiong the ALDH genes showed significant tolerance to a 
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wide range of abiotic stress conditions especially dehydration, salt stress (NaCl, KCl), 

heavy metal toxicity (copper and cadmium) and low temperature exposure in comparison 

to the wild-type plants. The loss of ALDH gene functions or a repression of endogenous 

ALDH gene expression in kock-out and antisense transgenic plants respectively correlates 

with sensitivity to various abiotic stress treatments. The overexpression of ALDH genes 

was found to significantly reduce the level of lipid peroxidation, and the amounts of 

reactive oxygen species (H2O2, O2
-) in plants exposed to dehydration and salt stress 

conditions. These findings suggest that aldehyde dehydrogenase genes play a crucial role 

in aldehyde detoxification and antioxidant systems of plants exposed to abiotic stress 

conditions. Understanding the regulatory mechanisms of ALDH gene expressions in 

plants could prove to be a promising way to generate transgenic plants that can cope with 

multiple abiotic and even biotic stress conditions. 
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1. INTRODUCTION 

The adaptation of plants to environmental stress has been widely studied in a number of 

plant species (Holmstrom et al 2000, Zhang et al 2003, Zhu et al 2003). Major research 

efforts have been focused on the isolation of stress-inducible genes as a means to 

understand the molecular and physiological events underlying the adaptation process in 

plants exposed to stress (Ingram and Bartels 1996, Shinozaki and Yamaguchi-Shinozaki 

2000, Ramanjulu and Bartels 2002, Seki et al 2003, Shinozaki and Dennis 2003, Kirch et 

al 2004). Availability of water is one of the most important and determinant factors for 

geographical distribution and plant productivity (Bartels 2001a). Living organisms are 

exposed to different kinds of stressors, which include pathogen attacks, air pollution, 

drought, salt stress, temperature, light intensity, and nutritional limitation. Since plants 

have limited mechanisms to avoid stress, they require flexible means of adaptation to 

constantly changing environmental conditions (Arora et al 2002). The response and 

adaptation of plants to these stresses is however very complex and highly variable 

(Ingram and Bartels 1996). This includes generally the expression of specific sets of 

genes, structural changes of membranes, changes in metabolic processes, production of 

secondary metabolites, repression of some active genes and expression of various stress-

regulatory factors (Ramanjulu and Bartels 2002, Shinozaki et al 2003, He and Gan 2004). 

In extreme environmental constraints, plants undergo cellular damages despite all 

adaptive machineries used to cope with the stress conditions. Long term external stimuli 

lead generally to the production of reactive oxygen species (ROS) such as hydroxyl 

radicals, singlet oxygen, superoxides and hydrogen peroxide (Bartels 2001b, Kotchoni 

and Bartels 2003), and various other by-products, which include reactive aldehydes 
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molecules (Kirch et al 2001, Kotchoni and Bartels 2003). These molecules are highly 

toxic and can easily attack cellular macromolecules such as nucleic acids, proteins, 

carbohydrates and phospholipids (Skibbe et al 2002, Sunkar et al 2003). Therefore 

regulating the accumulation of ROS and removing the production of aldehydes and their 

intermediates in plants exposed to environmental stress is essential for cell viability. 

Aldehyde dehydrogenases (ALDH, EC 1.2.1.3) have been reported as a group of 

enzymes that play a crucial role in stress relevant detoxification of aldehydes produced as 

result of lipid peroxidations, and these enzymes are widely characterized in humans and 

animals (Lindahl 1992, Yoshida et al 1998). In contrast, ALDH characterizations in 

plants have been relatively limited. Here, physiological and molecular studies were 

carried out to characterize plant-ALDHs in response to abiotic stress and to gain insight 

into processes by which their activities limit cellular damage caused by toxic aldehydes. 

This work reveals that manipulating ALDH genes in plants could be a promising way to 

generate transgenic plants that can cope with a wide range of environmental stressors. 

 

1.1. Water deficit and salt stress: two abiotic stresses with common detrimental 

effects in plants 

Water deficit and salt stress represent one of the most complex physiological phenomena 

that limit plant growth and productivity (Bartels 2001b) by imposing osmotic stress 

(alteration of osmotic potential) to plant tissues. The most detrimental effect of high 

amounts of salt in the soil is the disruption of water uptake by the plants. Generally, 

plants take up water from soil through roots in the presence of an osmotic potential slope 

between soil and plant. Osmotic stress causes an alteration in extracellular solute 
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concentrations and a subsequent flux of water from the plant cells (Bohnert et al 1995). 

The loss of water from the cells causes a decrease in turgor and an increase in 

concentrations of intracellular solutes, which subsequently put a strain on membranes and 

macromolecules. Increasing salt concentrations in soil therefore leads to water deficit and 

associated detrimental effects in plants (accumulation of several toxic solutes such as 

chlorine, aldehyde molecules, excess sodium ions, and deactivation of enzymes) as a 

result of a decline of the osmotic potential difference between plant extra- and 

intracellular compartments (Ramanjulu and Bartels 2002). In addition, severe water 

deficit negatively affects photosynthetic reactions (Kaiser 1979). In such conditions, the 

chloroplasts are generally exposed to excess excitation energy leading to the production 

of toxic substances such as superoxides, peroxides generally known as reactive oxygen 

species (ROS) and toxic aldehyde molecules, which damage membranes, enzymes and 

macromolecules (Kaiser 1979, Sunkar et al 2003). 

Presently around 18 % of global farmland suffers of water deficit, and farming in those 

lands is possible only under irrigation systems (Somerville and Briscoe 2001). Up to 40 

% of the global food supply is produced from the irrigated farmlands (Somerville and 

Briscoe 2001). However, irrigated lands in arid regions are susceptible to salinisation. 

Naturally occurring salinisation is mainly a consequence of capillary water level 

elevation and subsequent evaporation of saline groundwater (salt remains in the soil). 

Salinisation phenomenon therefore results from irrigation water practice, which generally 

contains higher salt concentrations in comparison with the rain-water (Somerville and 

Briscoe 2001). A progressive accumulation of water-soluble salt, especially sodium 

chloride (NaCl), sodium carbonate (Na2CO3) and calcium chloride (CaCl2) from arid 
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irrigated lands leads irreversibly to saline soils. In addition to these, there are several 

other adverse downstream effects associated with salt and drought stress. They lead to an 

increased pH-level of the soil, and crop plants generally fail to grow under high pH 

growth conditions. Furthermore, salinity causes degradation of the soil structure, leading 

to soil surface pudding and therefore negatively affecting soil-gas exchange (Somerville 

and Briscoe 2001). It is clear that arable lands may be irreversibly lost through the 

detrimental effects of salt and drought stress if care is not taken (Bartels 2001a). 

 

1.2. Responses of plants to environmental stress 

Plants live in an environment in which they must acclimatize in order to ascertain their 

viability and perpetuation. Environmental stress is perceived as an external factor 

imposing detrimental growth conditions to plants during their life cycle (Kim at al 2003). 

For plants, environmental stress is grouped into two stress categories; biotic stress 

(pathogen attack) and abiotic stress. The latter includes water deficit, heavy metal 

pollution, chilling and freezing, heat stress, UV irradiation, salinity, oxygen deficiency 

and nutrient deficiency (Yamaguchi and Kamiya 2001). Abiotic stress is often difficult to 

tackle, because the different developmental stages of the plant (seed germination, 

seedling development, seed maturation and senescence) are differentially affected by the 

stress conditions (Ingram and Bartels 1996, Kermode 1997). For instance, drought or 

desiccation tolerance is part of the normal developmental cycle in higher plants especially 

during seed maturation and seed dormancy (Ingram and Bartels 1996, Koornneef et al 

2002, He and Gan 2004). Under normal growth conditions, most of the up-regulated 

genes during drought stress are induced towards the final stage of seed maturation i.e. 
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when the embryo reaches its lowest water content, and during seed dormancy. This stage 

of plant development enables the embryo to survive adverse environmental conditions 

(Baskin and Baskin 1998, Ramanjulu and Bartels 2002). Seed dormancy is believed to be 

an evolutionary survival strategy because the end of the reproductive growth of parental 

plants is often the beginning of an extended period of unfavourable environmental 

conditions (Baskin and Baskin 1998, He and Gan 2004). However, water deficit for 

instance is perhaps one of the most prevalent causes of crop yield loss because of the 

strong link between transpiration and photosynthesis. 

Plants must however maintain their cellular water status in a normal homeostasis in order 

to survive adverse conditions. As already mentioned, plants use various morphological 

and physiological strategies to cope with the stress conditions. Morphological approaches 

of plant responses to abiotic stress (water deficit) include: development of deep root 

systems, stomatal closure, reduction of surface proportionally to the entire volume of the 

plant by dropping-off of leaves and retention of water molecules in specific water tissues 

especially in succulent plants (Ingram and Bartels 1996, Holmstrom et al 2000). The 

physiological strategies of plant adaptation to stress include: ion exclusion, ion transport 

and cell wall modification by an increased flexibility, osmotic adjustments and 

osmoprotection (Ingram and Bartels 1996, Pastori and Foyer 2002, Yamaguchi-Shinozaki 

et al 2002). Osmotic adjustment is a physiologically efficient mechanism by which plants 

produce osmoprotectants, therefore protecting cells by turgor maintenance of roots and 

shoots in response to water deficit as well as salt stress (Yamaguchi-Shinozaki et al 

2002). Osmoprotectants such as proline, glycine betaine and sugars (mannitol, fructans, 

saccharose) are well documented and known to help plants to overcome the effects of 
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water deficit and salt stress (Bartels 2001b). In addition, plants accumulate specific 

proteins such as LEA proteins (late embryogenesis abundant proteins) and chaperones 

(heat-stress induced proteins) in response to abiotic stress (Ingram and Bartels 1996). 

LEA proteins and chaperones have been reported to be involved in protecting 

macromolecules like enzymes, lipids and mRNA (Ingram and Bartels 1996, Yamaguchi-

Shinozaki et al 2002). LEA proteins accumulate mainly in embryos during seed 

desiccation and in response to water stress. The correlation between LEA gene 

expression and/or LEA protein accumulation and stress tolerance in a number of plant 

species provided evidence for the role of the LEA proteins in stress tolerance 

mechanisms (Ingram and Bartels 1996). Transgenic rice ectopically expressing a barley-

HVA1 gene (LEA gene) shows a significantly increased tolerance to water deficit and 

salinity (Xu et al 1996). The expression of HVA1 gene caused a delayed development of 

damage symptoms in the transgenic rice when compared to the wild-type rice under 

stress conditions (Xu et al 1996). 

On the other hand, abiotic stress leads to the production of reactive oxygen species 

(ROS), which cause extensive damage to cells and inhibit photosynthetic reactions 

(Kaiser 1979). The damaging phenomenon referred to as oxidative damage is the 

consequence of oxidative stress, the stress resulting from almost all abiotic stresses 

(Ramanjulu and Bartels 2002). Stressed plants increase the production of specific 

antioxidants, which are needed for the reduction of active oxygen species. These enzymes 

include ascorbate peroxidases, glutathione peroxidases and gluthatione reductase (Assada 

1992, Mittler 2002). Recently, aldehyde dehydrogenases have been reported to display a 

probable antioxidative ability in Arabidopsis thaliana (Sunkar et al 2003). Molecular 
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studies have revealed that protein phosphorylation and dephosphorylation via kinases and 

phosphorylases are important signal transduction mechanisms used by plants to sense the 

external stimuli and to programme an adequate response based on extremely fine and 

highly coordinated regulatory system to express stress-related gene and/or repress several 

other set of genes whose functions disrupt the stress adaptation mechanism (Ingram and 

Bartels 1996, Kovtun et al 2000). Endogenous ABA levels have been reported to increase 

as a result of environmental stress and are therefore thought to be involved in signal 

transduction mediating the up regulation of several abiotic stress-inducible genes 

(Ramanjulu and Bartels 2002, He and Gan 2004). A genome-wide survey of gene 

expression in Arabidopsis thaliana revealed that about 1354 genes whose expression was 

either enhanced or suppressed after ABA treatment (Hoth et al 2002, He and Gan 2004) 

were related to abiotic stress tolerance mechanisms. 

Here, particular attention has been focused on physiological and molecular analyses of 

ALDH gene expression and their corresponding proteins. Although the expression of 

several genes in many plant species responding to abiotic stress has been studied, little is 

known about the aldehyde dehydrogenase genes and their potential role in plants exposed 

to abiotic stress. To carry out such investigation, Arabidopsis thaliana has been selected 

as model taking advantage of the potent molecular and genetic tools available from this 

species. Its short life cycle (approximately 40 to 50 days) makes it possible to 

conveniently carry out several experimental trials within a short time period. This plant 

species is therefore an appropriate candidate for thorough experimental analyses to 

establish research findings, before they are extended to crop plants. 
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1.3. Aldehyde dehydrogenases: Importance in cellular metabolism 

Aldehydes are long-lived molecules that can be generated from various endogenous 

sources (metabolism of amino acids, carbohydrates, vitamins and lipids) and exogenous 

sources such as abiotic and biotic stress (Sophos and Vasiliou 2003, Sunkar et al. 2003). 

Acetaldehyde, glyceraldehydes 3-phosphate, p-nitobenzaldehyde, glycolaldehyde, 

phenylacetaldehyde, malondialdehyde (MDA), succinic semialdehydes, propionaldehyde, 

4-hydroxy-trans-2-nonenal (4-HNE or HNE) are the most frequently recorded molecules 

that are highly reactive and harmful to cells (Ting and Crabbe 1983, Trivic and Leskovac 

1994). They cause genotoxicity i.e. chromosomal aberrations and DNA adducts 

(Comporti 1998), protein inhibition and biophysical changes of lipid membranes as 

illustrated in Figure 1 below showing the interaction of 4-HNE (aldehyde) with cellular 

molecules (Hu et al 2002). The generation of aldehydes either during normal cell 

metabolism or under external stimuli must be regulated in order to avoid cell 

developmental arrest. Aldehydes are generally oxidized into their corresponding non-

toxic carboxylic acids by aldehyde dehydrogenases (ALDH, EC 1.2.1.3). A vast literature 

exists on human-ALDHs proving their function in detoxification pathways of cellular 

metabolisms (Yoshida et al 1998, Kikonyogo et al 1999, Ohsawa et al 2003). ALDHs are 

a family of NAD(P)+-dependent enzymes with a common oxidative function (Kirch et al 

2001). However, the subtle differences in their structure and arrangements of subunits 

allow them to be grouped into subfamilies (Vasiliou et al 1999, Sophos and Vasiliou 

2003, for details see Nomenclature and classification of ALDHs). 
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Figure 1: Interaction of reactive aldehydes (HNE) with macromolecules (protein, lipids and DNA) 
causing alteration of their structure and active sites. 
Ref. Chen et al 1998, Guichardant et al 1998, Karlhuber et al 1997, Subramaniam et al 1997, Wacker et al 
2001. 
 

ALDHs are widely expressed in tissues and subcellular compartments and are important 

in cell defence against exogenous and endogenous aldehydes such as those derived from 



 23

lipid peroxidation (Lindahl and Petersen 1991, Vasiliou et al 1996). Cytosolic class 3 

ALDH enzymes are reported to oxidize medium (6 to 9)-chain-length saturated and 

unsaturated aldehydes but not short chain aliphatic aldehydes, such as malondialdehyde 

and 4 –hydroxyalkenals (Lindahl and Petersen 1991), while class 2 ALDHs are largely 

expressed in cytosol and transported into the mitochondrial matrix space where they are 

mainly responsible for the oxidation of acetaldehyde generated during in vivo oxidation 

of ethanol coupled with energy production through the use of acetyl-CoA in the TCA 

cycle (op den Camp and Kuhlemeier 1997, Canuto et al 2001, Tsuji et al 2003). Apart 

from their aldehyde detoxification ability, ALDHs also contribute to the production of 

acetyl-CoA (metabolism of ethanol-derived acetaldehyde). During low oxygen 

conditions, pyruvate is directly converted into acetaldehyde by pyruvate decarboxylase 

(PDC). Acetaldehyde (a toxic molecule) is converted into acetate (a non-toxic molecule) 

by aldehyde dehydrogenase. Acetate is thereafter transformed into acetyl-CoA by acetyl-

CoA synthetase (ACS) and supplied as a substrate for the TCA cycle (energy 

biosynthesis) (op den Camp and Kuhlemeier 1997, Tsuji et al 2003). Another possible 

role of ALDHs is to supply NAD(P)H for respiration. The supply of NAD(P)H by class 2 

ALDHs during the oxidation of ethanol into acetyl-CoA represents a unique alternative 

way for cellular economy during biosynthetic reactions (Liorente and de Castro 1977). 

The oxidation of aldehydes into corresponding carboxylic acids by ALDHs 

concomitantly converts NAD+ into NADH in the mitochondria (Kirch et al 2001). This 

irreversible oxidative reaction contributes to a rapid recovery of respiration and ATP 

synthesis. Aldehyde dehydrogenases are therefore considered crucial for cellular 

metabolism due to their multifunctional properties (Vasiliou et al 1996, Kirch et al 2001). 
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Canuto et al (1996) demonstrated that enhancement of lipid peroxidation by cell 

enrichment with arachidonic acid and treatment with pro-oxidants inhibit the effect of 

class 3 ALDH due to a probable decrease of class 3 ALDH gene transcripts. When such 

cell treatment resulted in the complete inhibition of the class 3 ALDH protein synthesis, 

cell death followed. However, class 3 ALDHs oxidize relatively small amounts of 

saturated and unsaturated aldehyde molecules. A large number of the other unsaturated, 

saturated and hydroxylated aldehydes generated during peroxidation of cellular lipids are 

therefore oxidised by different ranges of other ALDHs that are equally important in 

cellular metabolism. In 1996, the first gene encoding a plant mitochondrial ALDH, the 

restorer gene of fertility 2 gene (rf2), was identified in maize (Cui et al 1996). 

Subsequently, two other ALDH genes (Aldh2a and Aldh2b) were identified in tobacco; 

Aldh2a transcript and Aldh2a protein were found to be present at high levels in floral 

tissues, especially stamens, pistils and pollen (op den Camp and Kuhlemeier 1997) 

indicating the importance of ALDH activity not only in the detoxification process but 

also in general metabolism of cells. In addition, the biosynthesis and accumulation of 

glycine betaine has been reported in various plant species in response to salinity and 

drought (Kishitani et al 2000, Nakamura et al 2001). Higher plants synthesize glycine 

betaine via a two-step oxidation of choline (Nakamura et al. 2001). In the last step of 

glycine betaine biosynthesis, betaine aldehyde is catalysed into glycine betaine by betaine 

aldehyde dehydrogenase (BADH). Glycine betaine acts as non-toxic osmolyte in the 

cytoplasm and probably plays its osmoprotective role against detrimental effects of 

drought and salt stress by turgor maintenance during osmotic tress (Holmstrom et al 

2000, Nakamura et al 2001, Zhu et al 2003). 
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1.4. Aldehyde dehydrogenases: Nomenclature and classification 

Presently more than 500 independent ALDH genes with detected ALDH protein or 

protein-like activity have been identified (Sophos and Vasiliou 2003). A nomenclature 

for ALDH proteins has been established by the ALDH Gene Nomenclature Committee 

(www.uchsc.edu/sp/sp/alcdbase/aldhcov.html). The nomenclature is based on relatively 

simple criteria (Vasiliou et al 1999); in which the ALDH genes are grouped in families 

and each family is represented by the root symbol (ALDH) followed by a number (family 

number), a capital letter indicating the sub-family, which is followed by a number 

identifying the individual gene as illustrated in Table 1 (for details see Kirch et al 2004). 

The ALDH superfamily is furthermore categorized on the basis of their substrate 

specificity. Based on this, some ALDHs are known as non-specific ALDHs. Non-specific 

ALDHs react with a wide range of substrates (aliphatic and/or aromatic aldehydes) and 

include the tetrameric class 1 and 2 ALDHs (cytosolic and mitochondrial) and dimeric 

class 3 ALDHs (Yoshida et al 1998). Some other ALDHs are known as substrate specific 

ALDHs and these include all the semialdehyde dehydrogenases (SemiALDHs), betaine 

aldehyde dehydrogenase (BADH), while others are grouped as ALDH-like genes as 

described in table 1, which summarizes some plant-ALDH genes and their putative 

functions. 

 

1.5. Plant-ALDH gene expression and its relationship to abiotic stress 

Plants respond to various stressors by expressing specific sets of genes. Accumulation of 

several ALDH gene transcripts have been reported in various plant species exposed to 



 26

abiotic stress. However, many of these genes code for proteins with unknown functions 

in the mechanisms of plant adaptation to abiotic stress. Recently, ALDH3H1 (Ath-

ALDH4) and ALDH3I1 (Ath-ALDH3) encoding two novel aldehyde dehydrogenases 

belonging to non-specific class 3 ALDHs have been reported from A. thaliana (Kirch et 

al 2001) and overexpression of ALDH3I1 in transgenic plants improves tolerance to 

multiple environmental stresses (Sunkar et al 2003). Table 1 shows ALDH genes whose 

transcripts were detected under various abiotic stressors in plants. The BADH genes are 

the most widely characterized (Table 1) probably due to their ability to code for a 

substrate specific ALDH protein (BADH protein) whose activity produces glycine 

betaine a potential osmoprotectant allowing normal metabolic functions to continue in 

cells under osmotic stress (Weretilnyk and Hanson 1990, Holmstrom et al 2000, Zhu et al 

2003). These findings have drawn attention on the glycine betaine synthesis pathway and 

their corresponding genes to produce transgenic plants resistant to osmotic stress. 

Nonetheless, our current knowledge of several other ALDH protein activities to trigger 

abiotic stress tolerance in plants is still limited. 
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Table 1: Plant-ALDH gene families with functions likely to be related to environmental stress 
tolerance. 
 

Classification ALDH 
nomenclature 

Putative function (former name) Source Subscellular 
localization 

 
 
 
 
Nonspecific 
ALDHs 

 
ALDH2B3 
ALDH2B4 
ALDH2C4 
ALDH3F1 
ALDH3H1 
ALDH3I1 
ALDH7B4 
ALDH22A1 

 
NaD+-Aldehyde dehydrogenase (ALDH2b) 
Aldehyde dehydrogenase (ALDH2a) 
Aldehyde dehydrogenase (ALDH1a) 
Aldehyde dehydrogenase (ALDH5) 
Aldehyde dehydrogenase (ALDH4) 
Aldehyde dehydrogenase (ALDH3) 
Turgor-ALDH (ALDH6) 
Putative Aldehyde dehydrogenase (ALDH7) 

 
A. thaliana 
A. thaliana 
A. thaliana 
A. thaliana 
A. thaliana 
A. thaliana 
A. thaliana 
A. thaliana 

 
Mitochondria 
Mitochondria 
Cytosol 
Nd 
Chloroplast 
Chloroplast 
Nd 
Secretory 
pathway 

 
 
 
 
 
Substrate 
specific 
ALDH 

 
ALDH5F1 
ALDH6B2 
ALDH10A1 
ALDH10A2 
ALDH10A3 
ALDH10A4 
 
ALDH10A6 
ALDH10A7 
ALDH10A8 
ALDH10A9 
ALDH11A3 
ALDH11 
 
 

 
Succinate semiALDH (SSALDH1) 
Methylmalonate semiALDH(MMSALDH) 
Betaine ALDH (SBADH) 
Betaine ALDH (BADH) 
Betaine ALDH (BADH) 
Betaine ALDH (BADH) 
 
Betaine ALDH (BADH) 
Betaine ALDH (BADH) 
Putative Betaine ALDH (putBADH) 
Betaine ALDH (BADH) 
Glyceraldehyde 3-P dehydrogenase (GAPDH) 
Glyceraldehyde 3-P dehydrogenase (GrapC-
Crat) 

 
A. thaliana 
A. thaliana 
Sorghum bicolor 
Beta vulgaris 
Atriplex hortensis 
Amaranthus 
hypochondriacus 
Hordeum vulgare 
Spinacia oleracea 
A. thaliana 
A. thaliana 
A. thaliana 
C. plantagineum 
 

 
Mitochondria 
Mitochondria 
Nd 
Nd 
Nd 
Nd 
 
Nd 
Nd 
Nd 
Mitochondria 
Nd 
Cytosol 
 

 
 
 
 
ALDH-like 
proteins 
 

 
ALDH7B1 
ALDH7B3 
ALDH12A1 
 
ALDH18B1 
 
ALDH18B1 
 
ALDH18B1 
 

 
Turgor-ALDH-like protein (PSCC26G) 
Turgor-ALDH-like protein (BNBTG26) 
Delta1-pyrroline5-carboxylate dehydrogenase 
(P5CDH) 
Delta1-pyrroline5-carboxylate synthase 
(P5cS-1) 
Delta1-pyrroline5-carboxylate synthase 
(P5cS) 
Delta1-pyrroline5-carboxylate synthase (Pro2) 
 

 
Pisum sativum 
Brassica napus 
A. thaliana 
 
Medicago savita 
 
Oryza sativa 
 
Solanum 
esculentum 
 

 
Nd 
Nd 
Mitochondria 
 
Nd 
 
Nd 
 
Nd 
 

Ref: Vasiliou et al (1999), Skibbe et al (2002), Kirch et al (2001), Sunkar et al (2003), Kotchoni and Bartels 
(2003), Sophos and Vasiliou (2003), Kirch et al 2004, Nd = not determined. 
 

1.6. Reactive oxygen species and ROS-scavenging function of ALDHs 

Molecular oxygen is produced during photosynthesis in plant cells and is directly used 

during photorespiration. Both reactions (production and the use of oxygen) have positive 

and negative effects on plant metabolism (Arora et al 2002). Under adverse growth 
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conditions, molecular oxygen undergoes sequential electron reduction (Izumi and 

Schroeder 2004) leading to the production of superoxide anion, hydrogen peroxide, 

hydroxyl radical and hydroperoxyl radical generally known as reactive oxygen species 

(ROS). Plants exposed to stress show a high level of photo-inhibition followed by 

development of chlorosis (Wise and Naylor 1987). ROS are immediately produced upon 

exposure of plants to environmental stress and mediate subsequent molecular 

peroxidations, which are perceived as oxidative stress in cells (Wise and Naylor 1987). 

ROS generally inactivate enzymes and damage important cellular components. Their 

effects include the induction of lipid peroxidation, fatty acid de-esterification and 

membrane breakdown (Goel and Sheoran 2003). It is clear that the capacity and activity 

of the antioxidative defence system are crucial in limiting the oxidative damage caused 

by the excess production of ROS. Oxidative stress is essentially a regulatory process, 

which is dependent on the equilibrium between the ROS generation and the antioxidative 

capacities under given stress conditions (Bartels 2001b). When the antioxidative systems 

are at the upper level of the equilibrium the plant becomes tolerant to the stress, otherwise 

the plant will be damaged and viability is stopped. Therefore, under stress conditions 

plants activate the efficient ROS-scavenging systems that protect them from cellular 

damage. The ROS-scavengers include superoxide dismutase (SOD), which catalyses the 

disproportionation of superoxides into molecular oxygen and H2O2 (Scandalios 1993), 

ascorbate peroxidase responsible for the removal of H2O2, and glutathione reductase that 

is responsible for the protection of thiol groups on enzymes (Goel and Sheoran 2003). 

The effects of abiotic stress in plants are coupled with the generation of toxic by-products 

such aldehyde molecules that are addressed in this work. One of the most important 
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pathways of the aldehyde metabolism is their oxidation into carboxylic acids. This 

reaction leads to the production of NAD(P)H, which represents a potential donor of 

electrons during the reduction of hydrogen peroxide and the protection of enzymatic thiol 

groups by ascorbate peroxidase and glutathione reductase respectively (Arora et al 2002). 

The oxidation of the carbonyl group is considered as a general detoxification process and 

is very crucial in avoiding molecular attack. Therefore, the bonus of NAD(P)H 

production during ALDH activity  indirectly reduces the accumulation of ROS in the cell 

and promotes thereby the ALDHs as one of the potential ROS-scavenging enzymes. 

Ohsawa et al (2003) demonstrated that deficiency in mitochondrial ALDH2 increases 

vulnerability to oxidative stress in animal cells. Their findings suggest that aldehyde 

dehydrogenases are involved in the antioxidative defence system and their deficiency 

enhances oxidative stress. Therefore ALDHs enhance the efficiency of reducing 

oxidative damage in cells undergoing environmental stress by detoxifying the cytotoxic 

products of lipid peroxidation and reducing the accumulation of ROS. Further molecular 

and biochemical analyses on plant ALDHs are worthy to be accomplished to fully 

understand the functions of these genes responses to environmental stress. 

 

1.7. Objectives of the study 

The generation of transgenic plants offers a unique way by which one can study the role 

of a transgene or the subsequent effect of the loss of specific genes in the host plants. In 

order to understand the biological functions of plant ALDHs in conferring tolerance to 

multiple abiotic stresses, this study was planned with the following objectives: 
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1. To carry out the expression analysis of aldehyde dehydrogenase (ALDH) genes in 

response to various abiotic stressors in order to establish the relationship between 

these genes and the responses of plants to environmental stress. 

2.  To produce specific ALDH antibodies by immunising rabbits with recombinant 

GST-ALDH fusion proteins to raise ALDH-antisera against plant ALDHs in order 

to investigate patterns of ALDH protein accumulation. 

3. To analyse several independent transgenic plants with different transgenes such 

as: constitutive ALDH-expressing plants, stress-inducible ALDH expressing lines, 

antisense ALDH-suppressive lines and ALDH knock-out plants. 

4. To characterize the physiological and molecular downstream effects of ALDH 

overexpression, reduction or repression of ALDH transcript accumulation and the 

loss of ALDH functions in selected transgenic plants responding to abiotic stress. 

5. To carry out comparative biochemical studies such as lipid peroxidation, reactive 

oxygen species accumulation, chlorophyll content, biomass accumulation with 

transgenic and wild-type plants to establish the functions of ALDH genes in plants 

with respect to abiotic stress. 

6. To identify the expression of ALDH genes in plant cells by using the GUS 

reporter gene fusion as tool for gene expression analyses.  
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2. MATERIALS AND METHODS 

2.1. Plant materials 

Arabidopsis thaliana ecotypes C-24 and Col-0 and were used in this work. Transgenic 

plants overexpressing ALDH3I1 and Cp-ALDH cDNAs under control of the CaMV35S-

promoter were established earlier (Kelbert 2000, Heuft 2000) and seeds (T3) were kindly 

provided to me. All plants were grown (see growth conditions in section 2.7) and 

subjected to various abiotic stresses (see plant stress treatments in section 2.13). 

Untreated and stress treated plant samples were collected and used either immediately for 

analyses or frozen in liquid nitrogen and stored at –70 °C for further use. 

 

2.2. Chemicals 

Chemicals used in this work were from the following companies: Amersham Buchler-

Braunschweig, Boehringer-Manheim, Merck-Darmstadt, Pharmacia-Freiburg, Quiagen-

Hilden, Sigma-Deisenhofen, Stratagene-Heidelberg, BIOMOL-Hamburg, Serva-

Heidelberg, Roth-Karlsruhe, Germany. 

 

2.3. DNAs, vectors and bacteria  

The plasmid vectors and bacteria used in this work are listed below. Molecular details of 

the vectors are provided in the appendix. All the vectors used in this work are kept as 

plasmids at -20 °C (Department of Molecular Physiology, Institute of Molecular 

Physiology and Biotechnology of Plants (IMBIO), University of Bonn). The bacteria 

were stored in glycerol cultures at -80 ºC, and were available for direct use. 
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cDNAs for ALDH3I1 and ALDH7B4 used in this study were provided by Kirch H-H. C2-

cDNA and C2-promoter was kindly provided by Ditzer A. Isolation of ALDH3I1, 

ALDH3H1 and Cp-ALDH promoter sequences and construction of promoter-GUS fusion 

was done earlier by Sunkar R. and ALDHpromoter-GUS fusions in pBIN19 were kindly 

provided to me. 

 

2.3.1. pBluescript II SK +/-  

This vector (Stratagene, La Jolla, USA) was used as cloning vector for the Arabidopsis-

ALDH (ALDH3I1, ALDH3H1)- and the Craterostigma-ALDH (Cp-ALDH)-cDNA 

constructs. The vector contains a gene sequence encoding for â-lactamase and can 

therefore be selected by ampicillin. 

 

2.3.2. pBT10gus vector 

This vector (Sprenger-Haussels and Weisshaar 2000) contains the GUS gene used as 

reporter gene for the constructs and the molecular analysis of the ALDH promoter-GUS 

fusions. The vector contains the â-lactamase gene and can be selected by ampicillin. 

ALDH3I1 promoter-GUS, ALDH3H1 promoter-GUS and Cp-ALDH promoter-GUS were 

subsequently isolated from pBT10gus vector and inserted into pBIN19 vector for 

Agrobacterium tumefaciens transformation (see section 2.11.6.5). 

 

2.3.3. pBIN19 and pROK2 

pROK2 vector (Baulcombe et al 1986) is a binary vector derivative of pBIN19 (Bevan 

1984, Frisch et al 1995). PROK2 was used to clone the 35S-ALDH7B4 cDNA construct 
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into Agrobacterium tumefaciens, which was then used for plant transformation. pBIN19 

and pROK2 contain the NPTII gene encoding for kanamycin resistance as plant 

selectable marker. 

 

2.3.4. pGEX 5x1 

This vector was used for the expression of the GST-ALDH3I1 fusion protein (Amersham 

Pharmacia Biotech, Freiburg) used as antigene the raise ALDH3I1 antibodies from 

immunized rabbits. The ALDH3I1 cDNA (1.4 kb) was isolated from EcoRI digestion of 

pBluescript-ALDH3I1 cDNA recombinant plasmid and fused to the N terminal (EcoRI) 

site of GST (for details see production of antibody in section 2.9.8) and induced by 

adding IPTG. 

 

2.3.5. pcC C2 vector (Ditzer et al 2001) 

This vector contains the Craterostigma plantagineum C2 cDNA (Ditzer 1999, Ditzer 

2003). The promoter of the C2 gene (760 bp) was isolated after EcoRI digestion of 1.0 kb 

PCR amplification fragment of C2 promoter from pcC C2 recombinant vector and fused 

to ALDH3I1 cDNA in pBIN19 in order to obtain a C2-ALDH3I1 cDNA construct (for 

detail see forward and reverse primer used for PCR amplification of C2 promoter (1.0 kb) 

in section 2.8). 

 

2.3.6. Escherichia coli DH10B (Lorrow and Jessee 1990) 

Genotype: F-mcrA Ä(mrr-hsdRMS-mcrBC) �80d lacZÄM15 ÄlacX 74 endA1 recA1 

deoR Ä(ara, leu)7697 araD139 galU galK nupG rpsL ë- 
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2.3.7. Escherichia coli BL21 (Pharmacia, Freiburg) 

Genotype: F- ompT hsdSB (rB
-mB

-) gal dcm (DE3). 

This bacterium strain was used for the expression of GST-ALDH protein fusion. 

 

2.3.8. Agrobacterium tumefaciens LBA 4404 

This bacteria Smr, (Rifr), vir-region (Ooms et al 1982, Hoekema et al 1983) was used in 

the infectious process of plant Agrobacterium tumefaciens-mediated transformation. 

 

2.4. Enzymes and markers 

Restriction enzymes and their corresponding buffers were from Amersham Pharmacia 

Biotech (Freiburg), MBI-Fermentas (St. Leon-Rot), Roche/Boehringer (Mannheim), 

Sigma (Muenchen), Invitrogen/GibcoBRL (Karlsruhe). The DNA marker (1 kb ladder) 

was from Invitrogen/GibcoBRL (Karlsruhe) and the protein standards such as 

Phosphorylase (97 Kda), Albumin bovine (66 Kda), Albumin egg (45 Kda), Carbonic 

anhydrase (29 Kda), á-Lactalbumin (14 Kda) were from Sigma (Muenchen). 

 

2.5. Software programmes 

Adobe Photoshop 6.0 

Vector NTITM suite 5.5 (Informax Inc, 1999, North Bethesda, MD, USA) 

Corel Photo Paint 8 
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2.6. Media, buffers and solutions 

All media, buffers and solutions used were sterilized either by filter sterilization or by 

autoclaving for 20 min at 120 ºC at 1.5 bars. Seedlings were grown on MS (Duchefa)-

agar plates as described by Murashige and Skoog (1962). 

 

2.6.1. Media 

MS-medium (per litre): 4.6 g MS-salts, 20 g sucrose, 1 ml vitamins, adjust pH to 

5.8 with 1M NaOH, and 8 g selected agar (optional). 

LB-medium (per litre): 10 g peptone, 10 g NaCl, 5 g yeast extract, adjust pH to 7.5, 

and 15 g selected agar (optional) for agar plate cultures. 

YEB (per litre): 5 g saccharose, 5 g of meat extract, 5 g peptone, 1 g yeast 

extract, 2 mM MgSO4 (0.493 g MgSO4), adjust pH at 7.0, 

and 15 g Select agar (optional) for agar plate cultures only. 

SOC: 2% (w/v) trypton, 0.5% (w/v) selected yeast extract, 10 

mM NaCl, 10 mM MgSO4, 10 mM MgCl2 

 

2.6.2. Buffers and solutions 

10 x TAE buffer:   0.4 M Tris-acetate, 20 mM EDTA, pH 8,0. 

RNase A + T1: 1mg/ml RNase A, 10000 U/ml RNase T1, 10 min heating, 

and cooling at room temperature, and stored at -20°C for 

further use. 

Denaturing buffer:  1.5 M NaCl, 0.5 M NaOH without adjusting the pH and 

stored at room temperature. 
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Neutralizing buffer:  1 M Tris, 1.5 M NaCl, pH 8.0 was adjusted with 

concentrated HCl, stored at room temperature. 

10 x blue gel loading buffer: 25 mg Bromophenol blue, 25 mg Xylencyanol, 1 ml 10 x 

TAE (as above), 3 ml glycerol, and 6 ml sterile distilled 

water (sd H2O). 

20 x SSC:  3 M NaCl, 0.3 M Sodium citrate, stored at room 

temperature. 

1 x TE buffer:  10 mM Tris-HCl, 1mM EDTA, pH 8.0 and stored at room 

temperature. 

Washing buffer: 0.1 % (w/v) SDS, 2 x SSC. Stored at room temperature. 

Vitamin solution: 2 mg/l glycine, 0.5 mg/l Niacin (Nicotine acid), 0.5 mg/l 

pyridoxin-HCl, 0.1 mg/l thiamine-HCl. Use 1:1000 dilution 

of the solution. 

 

2.7. Growth conditions 

2.7.1. Germination of seeds 

For seed germination, seeds were surface sterilized in 70 % (v/v) ethanol for 2 min and 

then in 7 % (v/v) NaOCl, 0.1 % (w/v) SDS for 30 min, rinsed three times in sterile 

distilled water and sown on MS-agar plates. All transgenic seeds were selected on MS-

agar plates containing 50 mg/l kanamycin (end concentration). Both wild-type and 

transgenic seeds were grown under approximately 7000-8000 lux light at 22 °C with a 

day/night cycle of 16/8h. Seven to 12 day-old seedlings were transferred into soil trays of 
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3:1 soil: vermiculite, or into hydroponic cultures and then subjected to various abiotic 

stressors. 

 

2.7.2. Growth of microorganisms 

All different strains of E. coli were incubated and cultured either in liquid LB medium at 

shaking with 300 rpm or in solid LB-agar medium at 37 °C, while the Agrobacteria were 

incubated in liquid YEB medium at 250 rpm or in solid YEB-agar medium at 28 °C. The 

microorganism cultures were incubated with appropriate selection markers. 

 

2.8. Primers 

2.8.1. Primers (5’�3’) for GST-ALDH3I1 construct 

Identity    Sequence      Restriction enzyme 
 
Ara5Eco (fwd) GAAGGAATTCGCTGTGGTAAAGGAGCAAGCATC  EcoRI 
Ara3EcoI (rev) GAAGGAATTCTCATGAGTCTTTAGAGAACCCAAAG  EcoRI 
 

Ara5Eco and Ara3EcoI primers were designed for the amplification of 1.4 kb 
ALDH3I1 cDNA fragment subcloned into EcoRI site of pGEX 5.1 expression vector. 
 

2.8.2. Primers (5’�3’) for Cp -C2 promoter cDNA 

C2-PromEcoRI (fwd)   GATCTAAACTCGAATTCACACCTG  
 EcoRI 
C2-Ext (rev)    CTTCTGATGTCCTCGCATCG    None 
 

C2-PromEcoRI and C2-Ext primers were designed to amplify 1.0 kb C2 promoter 
cDNA fragment from pcC C2 plasmid (Ditzer 2003). 
 

C2-Prom SphI   TTCTATTCTTGCATGCGTGG    SphI 
 

C2-Prom SphI was designed for the sequencing of C2-prom from pBin-C2-
ALDH3I1 plasmid.  
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2.8.3. Primers (5’�3’) for 35S-ALDH7B4 construct 

ALDH7B4 (fwd)   AGATGGGTTCGGCGAACAAC    None 
ALDH7B4 (rev2)   TTAACGAGTAAATCTCTGAAA   
 None 
 

ALDH7B4 (fwd) and ALDH7B4 (rev) primers were designed for amplification of 
1.5 Kb ALDH7B4 cDNA fragment from pROK2-ALDH7B4 construct. 
 

P35S-pROK2    CACTGACGTAAGGGATGACGC   None 
 
 This primer was used for the sequencing of ALDH7B4 fragment from 5’ end of 
35S-promoter site of pROK2 plasmid. 
 

ALDH7B4-zum promotor   CGTAATCCTCTAGAGAAGCTTC  None 
 
 ALDH7B4-zum promotor was designed for sequencing the ALDH7B4 fragment 
from 3’ end towards 35S-promotor of the pROK2 plasmid. 
 

2.9. Extraction of nucleic acids 

2.9.1. Extraction of RNA from Arabidopsis thaliana 

Plant material (250 mg) from stress-treated and untreated seedlings was frozen in liquid 

nitrogen and ground to a fine powder. The total RNA was extracted according to Bartels 

et al (1990). The plant material was homogenised in 500 µl of 80 ºC pre -warmed RNA 

extraction buffer:phenol (1:1 i.e. 250 µl:250 µl) and then resuspen ded in 250 µl 

chloroform:isoamylalcohol (24:1) for 30 sec followed by centrifugation (14000 rpm) at 

room temperature for 5 min. The supernatant was mixed with one volume of 4 M LiCl 

and kept overnight on ice or at 4 ºC. The mixture was then centrifuged (14000 rpm, 4 ºC, 

20 min) and the pellet dissolved in 250 µl d H2O, to which 0.1 volume of 3 M sodium 

acetate pH 5.2 and 2 volume of 100 % ethanol were added and kept at –70 ºC for 2 h. The 

RNA extract was finally recovered in the pellet after centrifugation (14000 rpm, 4 ºC, 10 
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min), washed twice with 70 % (v/v) ethanol, air-dried and resuspended in 25 µl RNase-

free water and stored at –70 ºC. The concentration of the extract was quantified 

spectrophometrically at 260 nm. The quality of the extraction was ascertained by 

measuring the OD at 260/280 nm and confirmed by agarose gel fractionation (1 % [w/v] 

agarose) followed by ethidium bromide staining, visualized under UV light. 

 

RNA extraction buffer:  100 mM LiCl, 100 mM Tris, 10 mM EDTA, 1% (w/v) 

SDS, pH 8.0, add one volume of phenol solution 

(immediately) before pre-warming the mixture. 

 

2.9.2. Extraction of genomic DNA from Arabidopsis thaliana (Doyle and Doyle 1989) 

Plant material (500 mg) was ground in liquid nitrogen and dissolved in 7.5 ml of pre-

warmed (60 ºC) DNA extraction buffer and further incubated at 60 ºC (in water bath) for 

30 min. The mixture was resuspended in one volume chloroform/isoamylalcohol (24/1) 

and centrifuged at 20 ºC for 10 min at 1600 x g. The supernatant was mixed with 2/3 

volume (5 ml) isopropanol and incubated at room temperature for 2 h. The mixture was 

centrifuged as above and the pellet resuspended in 15 ml 76 % (v/v) ethanol, 10 mM 

ammonium acetate and centrifuged again (10 min, 1600xg, RT). The supernatant was 

carefully discarded; the pellet air-dried and then resuspended in 1 ml 10 mM Tris-HCL 

pH 8.0. To this mixture 10 µl RNase A+T1 (1 µg/ µl) was added and incubated at 37 ºC 

for 30 min. 2 ml 10 mM Tris-HCl pH 8.0; 1 ml 7.5 M ammonium acetate pH 7.7 and 10 

ml 100 % ethanol were then added to the mixture and incubated at –20 ºC for 2 h. The 

mixture was centrifuged (10 min, 14000 rpm, 4 ºC) and the pellet (genomic DNA) 
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washed twice in 70 % (v/v) ethanol, air-dried and resuspended in 100 µl 10 mM Tris-HCl 

pH 8.0 and stored at –20 ºC.  

 

DNA extraction buffer: 3.5 % (w/v) CTAB, 100 mM Tris-HCl pH 8.0, 20 mM 

EDTA pH 8.0, 1.4 M NaCl, 0.2 % (v/v) â-mercaptoethanol 

which should be added in-situ (before DNA extraction). 

 

2.9.3. Plasmid DNA (mini-prep) (Birnboim and Doly 1979) 

For plasmid mini-prep, transformed Agrobacterium tumefaciens or E. coli clones were 

inoculated in 2 ml YEB or LB media containing appropriate selection markers 

respectively and allowed to grow (28 ºC, 250 rpm) for about 21 h for A. tumefaciens and 

16 h at 37 ºC and 300 rpm for E. coli. The bacteria were centrifuged (6000 rpm, 5 min, 

RT) and the pellet resuspended in 400 µl solution I and further incubated for another 10 

min at RT without shaking. Solution II (800 µl) was added to the suspension, carefully 

mixed and further incubated for 10 min at RT. In order to obtain a high quality plasmid 

DNA mini prep, 120 µl of solution IIa and 600 µl of 3 M sodium acetate pH 5.2 were 

added to the suspension and carefully mixed to avoid breaking of the DNA. The mixture 

was incubated at –20 ºC for 15 min, and then centrifuged at 14000 rpm for 10 min at 4 

ºC. The supernatant, which contains the plasmid DNA was carefully taken and 3 aliquots 

of 650 µl of it were made. To each aliquot, 2 volume of cold 100 % ethanol was added 

and incubated at –80 ºC for 15 min. The aliquot was centrifuged (14000 rpm, 10 min at 4 

ºC) and the pellet was resuspended in 500 µl 0.3 M sodium acetate pH 7.0, and then in 

1ml 100 % ethanol. The suspension was incubated at –80 ºC for 15 min. The plasmid 
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DNA was recovered in the pellet after centrifugation (14000 rpm, 10 min, 4 ºC). The 

plasmid DNA was washed twice in 70 % (v/v) ethanol and air-dried at RT. The dried 

pellet was dissolved in 50 µl 10 mM Tris-HCl pH 8. Finally 3 µl of RNase A+T1 (Sigma) 

was added to the solution and incubated at RT for 15 min. A test gel (0.8 % agarose gel) 

of 9 µl of the plasmid prep was made to monitor the purity of the extraction. 

 

Solution I: 50 mM Glucose, 10 mM EDTA, 25 mM Tris, pH 8.0; 4 mg/ml 

Lysozyme (freshly prepared) 

Solution II:  0.2 M NaOH, 1% [w/v] SDS (always prepared freshly) 

Solution IIa:  2 volume of solution II, 1 volume of Phenol 

 

2.9.4. Precipitation and purification of DNA 

To the DNA aliquot solution as prepared in sections 2.9.2 and 2.9.3, x volume of distilled 

water was added (to make 100 µl end volume), which is suspended into 100 µl of 

phenol/chloroform/isoamyl alcohol (25/24/1) and vortexed if necessary. The suspension 

was centrifuged (14000 rpm, 20 min, RT) and the supernatant was mixed with 0.1 

volume 3 M sodium acetate pH 5.2, 2.5 volume of absolute ethanol and incubated at –20 

°C for 2 h or overnight. The mixture was thereafter centrifuged (14000 rpm, 20 min, 4 

°C) and the pellet washed in 70 % (v/v) ethanol, air-dried and resuspended in 20 µl sterile 

water. The OD was measured at 260 nm to determine the DNA concentration and the 

DNA solution stored at –20 °C. 
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2.9.5. Extraction of DNA fragments from agarose gels 

After restriction enzyme digestion or PCR amplification of plasmid DNA constructs, 

DNA bands or plasmid inserts were isolated from agarose gels using QIAEX II Qiagen 

extraction kit. The extraction and purification was done after excising the bands from the 

agarose gel followed by the purification according to the instructions of the manufacturer 

(Qiagen). 

 

2.10. Protein extraction 

2.10.1. Protein extraction from Arabidopsis plant material 

Plant material (500 mg) was frozen in liquid nitrogen, ground and directly homogenized 

in 500 µl Laemmli buffer (Laemmli 1970). The samples were briefly vortexed and 

incubated at 95 °C for 5 min. Samples were then spun down (14000 rpm) for 5min at RT. 

Supernatants containing the crude protein extracts were transferred into new eppendorf 

tubes and stored at –20 °C. For protein analysis, samples were incubated at 95 °C for 2 

min before loading on an SDS-PAGE gel. 

 

Laemmli Buffer: 62.5 mM 0.5 M Tris-HCl pH 6.8, 10 % (v/v) glycerol, 2 % (w/v) 

SDS, 5 % (v/v) â-mercaptoethanol, 0.1 % (w/v) bromophenol blue 

(the buffer was stored at 4 °C) 

 

2.10.2. Protein extraction from bacteria 

150-200 ml LB culture of bacteria (300 rpm, 37 °C) was grown overnight with selected 

antibiotics. A 1:10 dilution was made into fresh LB medium and further incubated (300 
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rpm, 37 °C, 3 h) in presence or absence of protein inducer (IPTG: 0.1-1.0 mM). The 

bacteria cultures were centrifuged (5000 rpm, 5 min, RT) and the supernatant used to 

check for soluble protein, while the bacteria pellets were used to isolate inclusion bodies. 

For the inclusion body protein preparation, the pellet was resuspended in 100 µl of 

MTPBS (0.15 M NaCl, 16 mM Na2HPO4, 4 mM NaH2PO4), 1 % Triton x 100 and 

sonificate (5 x 20 sec) on ice with one min interval followed by centrifugation (14.000 

rpm, 10 min, 4 °C) in order to separate the soluble protein. The pellet, which contains the 

inclusion body protein was resuspended into 200-500 µl protein extraction buffer 

(Laemmli buffer) and incubated at 95 °C for 5 min, cooled in ice and used for protein 

analyses or stored at –20 °C. 

 

2.10.3. Production of antibody 

In order to produce a specific antibody against the plant proteins, PCR amplification of 

ALDH3I1 cDNA fragment (1.4 kb) was amplified from pBluescript-ALDH3I1 cDNA 

recombinant plasmid (for details see primers designed for the amplification of the 1.4 kb 

ALDH3I1 cDNA in section 2.8) and fused to the N terminal GST protein at EcoRI site of 

a pGEX 5.1 vector. The recombinant plansmid was sequenced and checked for correct 

orientation. This construct was used to transform E. coli BL21 via electroporation. The 

fusion protein (GST-cDNA) was induced by IPTG, purified from inclusion bodies and 

used as antigen to induce the production of specific antibody through immunization of 

rabbits. A total amount of 150 mg of purified protein was provided for the immunization 

of the rabbits. 
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The immunization of the rabbit was carried out by BioGenes mbH, Berlin. The antigen 

was injected into the rabbit in order to raise the specific ALDH3I1antisera. Preimmune 

serum (1.5 ml) was collected from the rabbits prior to the immunization. The first boost 

and the second boost were carried out at weekly intervals and the third boost/antiserum 

was collected two weeks after the second boosting i.e. a total period of one month for the 

rabbit to produce the antiserum. 20-50 ml antiserum was collected per immunized rabbit, 

which was used at 1:500 dilutions as antiserum to analyse the plant protein expression 

pattern under abiotic stress. 

 

2.11. Qualitative and quantitative estimation of concentrations of macromolecules 

2.11.1 Qualitative and quantitative estimation of DNA and RNA 

 Extracted nucleic acids (DNA and RNA) were qualitatively monitored in 1 % (w/v) 

agarose gel electrophoresis using 1 kb ladder. The concentration of the nucleic acids was 

spectrophotometrically determined at OD of 260 and 280 nm. A value of OD260 = 1 

corresponded to 50 µg/µl DNA solution while OD 260 = 1 corresponded to 40 µg/µl RNA 

solution. For a pure DNA extraction, the value of OD260/OD280 must be between 1.8 and 

2. A value of OD260/OD280 below 1.8 means a contamination of DNA preparation with 

proteins or phenolic compounds. For the purity of RNA extraction, OD260/OD280 value 

must be higher than 2. A value of OD260/OD280 below 2 indicates a contamination of 

RNA extraction with proteins or phenolic compounds. 
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2.11.2. Quantitative estimation of protein extracts 

The estimation of protein concentration was carried out using a BioRad protein assay kit 

according to Bradford (1976). Protein aliquots (100 µl) were mixed with 200 µl BioRad 

protein assay kit and brought to 1000 µl with sterile H2O (700 µl). The suspensions were 

incubated at room temperature for 5 min followed by an OD measurement at 595 nm. 

The quantification of the protein aliquots was calculated by calibrating the measurement 

of each sample with the OD (595 nm) of a definite concentration (10 µg/µl) of standard 

proteins (generally BSA). 

 

2.12. Cloning of DNA fragments 

2.12.1. Primers designed for cloning 

For PCR amplification, DNA sequencing and various plasmid DNA constructs, specific 

primers were designed with the following criteria:  

The GC content of a primer must be approximately 50%, and the melting temperature 

(TM) should be according to Faust rules TM = 4 (G+C) + 2 (A + T) where G, C, A, T 

represent the DNA bases of the primer sequence. TM should be approximately between 

60 to 65 °C. Based on the fact that GC are complemented (linked) with three hydrogen 

bonds, the primers preferentially ended with at least one dGTP or dCTP. The primers 

were designed to avoid self-complementation forming thereby a secondary structure. 

Forward and reverse primers of each PCR reaction were designed to have approximately 

the same TM. 

The primers were designed to contain at least at their 5’-end a minimum of 2 bp after 

BamHI site, 1 bp after EcoRI, 3 bp after Hind III, 4 bp after Sal I, 4 bp after SphI, 4 bp 
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after Pst I, and 2 bp after Xba I in order to ensure a possible and subsequent digestion of 

the amplified DNA fragments by the above mentioned enzymes. 

 

2.12.2. Polymerase chain reaction (PCR) 

DNA fragments were amplified from various plasmid DNA constructs or genomic DNA 

as described below: 

For each PCR reaction a total volume of 50 µl solution was prepared as followed: 

30-35 µl sd H2O 

     5.0 µl 10 x PCR-buffer (GibcoBRL/Invitrogen) 

     1.5 µl 50 mM MgCl2 (GibcoBRL/Invitrogen) 

     2.0 µl Fwd-primer (10 pmol/µl)  

     2.0 µl Rev-primer (10 pmol/ µl) 

     1.0 µl 10 mM dNTPs 

     1.2 µl plasmid DNA (5 ng/ µl) or PCR product (5 ng/ µl) or bacterial clones 

(tooth picks), or 1 to 5 µl of genomic DNA solution 

      1.5 µl 1:10 diluted Taq-polymerase (Pluthero 1993) into Taq-buffer 

 

Taq-buffer: 50 mM Tris, 50 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5 mM PMSF, 50 

% (v/v) glycerol, pH 7.9, filter sterilized and stored at 4 °C. 

 

Each PCR aliquot (50 µl) was mixed. PCR reactions were performed in a TRIO-

thermoblock (Biometra, Göttingen). The optimal number of PCR cycles and the 
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annealing temperature was determined empirically per PCR reaction. A standard PCR-

programme was as followed: 

 

      94 °C 3 min of denaturing 

      94 °C 30 sec 3(6 times) of denaturing 

          TA 30 sec (36 times) of primer binding 

      72 °C � 30 sec (36 times) of DNA -synthesis 

      72 °C 5 min at the end of the reaction 

       4 °C indicating the end of PCR running programme 

 

TA = annealing temperature = TM – 4 °C 

TM = melting temperature 

 

2.12.3. Restriction endonuclease treatments 

DNA digestion was carried out by restriction endonucleases according to the following 

criteria: the reaction buffer (10x) was 1/10 of the end volume and 5 U of restriction 

enzymes was used per 1 µg of DNA to be digested. A double digestion was possible per 

reaction only when both restriction enzymes used the same buffer otherwise the 

digestions were performed chronologically. 
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2.12.4. Dephosphorylation 

Digested DNA fragments were dephosphorylized at their 5’ end with shrimp alkaline 

phosphatase (SAP, Boehringer/Roche, Mannheim) in order to avoid religation or 

recycling of cohesive-ends of plasmid DNA during DNA recombination. 

The reaction was made in 9 µl (end volume) comprising of 0.9 µl phosphorylation bu ffer 

(10 x), 1.0 µl (1 unit) shrimp alkaline phosphatase, and appropriate µg plasmid DNA. 

The mixture was brought to 9 µl with sterile distilled water. The solution was incubated 

for 10 min at 37 °C and followed by inactivation of SAP at 65 °C for 15 min. A 

dephosphorylation of blunt-ended DNA fragments was carried out at 37 °C for 60 min 

followed by inactivation of SAP by incubating the mixture at 65 ºC for 15 min.. 

 

2.12.5. Ligation 

For plasmid DNA constructs, different DNA inserts were ligated in various independent 

DNA-recombination experiments. The ligation reaction was brought to 10 µl (end 

volume), which comprises 1.0 µl ligase buffer (10 x), x µl digested plasmid DNA vector 

(dephosphorylated or not), 1.0 µl T4-ligase (Roche), and y µl DNA insert. The mixture 

was brought to 10 µl with sterile H2O and incubated at 16 °C for 20 h. For a good ligation 

reaction the amount of plasmid vector must represent the third of the DNA insert in the 

mixture. 
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2.12.6. Transformation 

2.12.6.1. Calcium-competent E. coli 

Bacterial culture (100 µl) was allowed to grow (37 °C, 250 rpm) till OD600 = 0.5, cooled 

in ice for 5 min and centrifuged (5 min, 5000 rpm, 4 °C). The pellet was suspended in 1 

ml cold 0.1 M CaCl2 and further centrifuged as above. The pellet was resuspended in 9.0 

ml cold 0.1 M CaCl2 and centrifuged again as above. The pellet was finally resuspended 

in 1 ml 0.1 M CaCl2, 15 % (v/v) glycerol and stored at –70 °C in aliquots of 100 µl of 

competent cells. 

 

2.12.6.2. Transformation of Calcium-competent E. coli 

One ìl plasmid DNA (5 -50 ng/ µl) or ligated plasmid DNA construct was brought to 100 

µl with cold 0.1 M CaCl2 and added to one aliquot of calcium-competent cells (100 µl) 

and carefully mixed. The mixture was incubated in ice for 1 h and immediately heat 

shocked in a water bath at 42 °C for 120 sec. LB medium (650 µl) was added to the 

transformed cells and further incubated (37 °C, 250 rpm) for 1 h. Before plating, 1:10 and 

1:100 dilutions of the transformed cells were made with LB medium. Aliquots (100-200 

µl) of the diluted cells were spread on selective plates and incubated at 37 ºC overnight.  

 

2.12.6.3. Electrocompetent E. coli 

E. coli bacteria were inoculated in 10 ml LB medium, incubated (37 °C, 12 h, 250 rpm) 

and resuspended into 200 ml new LB medium and further incubated till OD600 = 0.6. The 

culture was cooled on ice for 30 min and centrifuged (5 min, 5000 rpm, 4 °C). The pellet 

was washed firstly in 50 ml cold sd H2O, centrifuged as above and secondly washed in 25 
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ml sd H2O and centrifuged as well. The pellet was further washed twice in 25 ml 10 % 

(v/v) glycerol and resuspended in 10 ml cold GYT-medium. The cell suspension was 

centrifuged and the pellet resuspended in 2 ml GYT. Aliquots (50 µl) of the cell 

suspension were shock frozen in liquid nitrogen and stored at –70 °C). 

 

GYT: 10 % (v/v) glycerol, 0.125 % (w/v) selected yeast extract, 0.25 % (w/v) 

trypton 

 

2.12.6.4. Electrocompetent Agrobacterium tumefaciens 

A. tumefaciens was inoculated in 3 ml YEBRif medium, incubated (28 °C, 16 h, 250 rpm) 

and resuspended into fresh YEBRif (50 ml) and further incubated till OD600 = 0.5. The cell 

culture was cooled in ice for 30 min and centrifuged (5000 rpm, 4 °C) for 5 min. The 

pellet was resuspended in cold sterile H2O and centrifuged as above. The pellet was 

resuspended in the following solutions with centrifugations (5000 rpm, 10 min, 4 °C) 

between the suspensions. 

  25 ml 1 mM Hepes pH 7.5 

  12.5 ml 1 mM Hepes pH 7.5 

  10 ml 10 % (v/v) glycerol, 1 mM Hepes pH 7.5 

  5 ml 10 % (v/v) glycerol, 1 mM Hepes pH 7.5 

  2 ml 10 % (v/v) glycerol 

  1 ml 10 % (v/v) glycerol 

Aliquots (40 µl) of the last suspension were made, shock frozen in liquid nitrogen and 

stored at –70 °C as electrocompetent A. tumefaciens. 
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2.12.6.5. Transformation via electroporation (Tung and Chow 1995) 

Aliquots of electrocompetent cells were cooled in ice before transformation. About 1 to 2 

µl DNA of a ligated vector or specific plasmid DNA (approximately 5-10 ng/µl) was 

added to the competent cells and carefully mixed in a precooled electrocompetent 

cuvette, which undergoes 3 to 5 sec electroporation (GenePulser II, BIO-RAD) for the 

transformation. 1 ml YEB-mediun or 800 µl SOC was added to the transformed cells and 

further incubated in a glass tube for another 1 h at 37 ºC (for E. coli transformation) or 3 

h at 28 ºC (for A. tumefaciens transformation) shaking at 250 rpm. 100 µl aliquots of the 

cells were finally plated out overnight with the selected antibiotics at appropriate 

temperatures as indicated below. 

 

Transformation parameters E. coli A. tumefaciens 

DNA 

Electo–cuvette (Bio-Rad) 

Capacity 

Power 

Resistance 

Incubation Medium 

Incubation temperature 

Incubation time for selected clones 

Ligated vector or plasmid 

1 mm 

25 µF 

1.6 kV 

200 Ù 

SOC 

37ºC 

12-16 h 

Only plasmid 

2 mm 

25 µF 

2.5 kV 

400 Ù 

YEB 

28ºC 

48-72 h 

 

2.12.6.6. Agrobacterium tumefaciens-mediated transformation of Arabidopsis plants 

Wild-type plants were transformed via Agrobacterium tumefaciens-mediated 

transformation with the appropriate ALDH cDNA construct under the control of either the 

35S-CaMV promoter or a stress-inducible promoter using a modified method of Clough 
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and Bent (1998). The wild type seedlings were allowed to grow to the stage of 

inflorescence. The Agrobacterium clone carrying the transgene were incubated (28 ºC, 

250 rpm) in 250 ml YEB/Kanamycin/Rifampycin till OD600 = 0.9 and centrifuged (5000 

rpm, 10 min, 4 ºC) in a 250 ml centrifuged bottles. The pellets were resuspended in a 

minimum volume of 400 ml infiltration medium (0.01% (v/v) Silwet 77 in YEB) and 

further incubated using a stirring magnet till OD600 = 0.8. The infiltration medium was 

prepared in a 500 ml beaker to enable the wild-type seedlings to be immersed in the 

solution for transformation. Slowly the pots containing the wild-type Arabidopsis plants 

were carefully inverted and immersed in the infiltration medium while stirring for 1 min. 

Care was taken to submerge all the earlier inflorescence of the seedlings in the solution. 

The seedlings were thereafter placed back in the trays and sealed in plastic bags. Few 

holes were made in the bags for aeration. Three days after infiltration the plastic bags 

were removed and the seedlings were supported together with a stick and allowed to 

grow till the first generation of seeds (T1). 

 

2.12.7. Screening methods 

2.12.7.1. Screening for positive transformed clones 

Using a replica plating technique, cell clones were transferred into new plates and 

assigned appropriate numbers, which were considered throughout the screening process. 

The clones were either used as DNA source to amplify DNA inserts via PCR 

amplification or used for individual plasmid mini prep from which appropriate DNA 

digestions were carried out using specific restriction enzymes in order to check the DNA 

fragments and confirm the correct insertion. In addition, all transformed cells were 
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further confirmed by DNA gel blot analysis using specific radioactive probes (see section 

2.11.4.) to detect the DNA bands. 

 

2.12.7.2. Screening for transgenic Arabidopsis seeds 

After transformation, the first generation of seeds (T1) was collected, surface sterilized 

and sown on MS-agar plates containing appropriate selection marker (50 mg/l kanamycin 

final concentration). After 15-days of growth, transgenic seeds were able to germinate 

and produce green leaves in the presence of the marker while the non-transgenic seeds 

were not able to grow with true green leaves. The positive seedlings (transgenic lines) 

were transferred into soil trays and allow to grow for the next generation of seeds (T2). 

 

2. 13. Electrophoresis and blotting methods 

2.13.1. Agarose gel electrophoresis 

In order to ascertain the quality and/or the specificity of DNA digestions, all nucleic acid 

molecules (genomic DNA, RNA) extracted from plants and all plasmid DNAs extracted 

from bacteria were checked in 0.8-1.2 % (w/v) agarose gel electrophoresis. For a 

quantitative electrophoresis, approximately 1-1.5 µg of DNA solution (1 µg/µl) was 

loaded in the gel and electrophoretically separated (65-70 mA, 45-60 min) in 1 x TAE 

buffer using a 1 kb ladder (GigcoBRL/Introgen) as reference marker. The detection of 

DNA fragments was carried out under UV light using ethidium bromide staining. 

 

Agarose gel:    0.8-1.2 % (w/v) agarose in 1 x TAE buffer 

Ethidium bromide solution:  1 mg/l ethidium bromide in 1 x TAE buffer 
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2.13.2. RNA blot analysis 

RNA aliquots (30 µg) were separated in formaldehyde-agarose (1.2 % w/v) gels using 

RNA running buffer and then transferred overnight into Hybond-nylon membrane 

(Amersham) by means of capillary adsorption blot via Northern-transfer buffer (20 x 

SSC) according to Sambrook et al (1989) and Bartels et al (1990). The membrane was 

pre-hybridised (3 h, 42 ºC) in a shaking water bath and hybridised overnight with a 

specific probe (see below: section 2.11.4.) in the RNA hybridisation buffer (50 % (v/v) 

formamide, 5 x SSC, 10 mM PIPES pH 6.8, 0.1 % (w/v) SDS, 1 x Denhardt’s, 100 µl 

denatured hering spermDNA (ssDNA: Biomol). Equal amounts of RNA aliquots in the 

gels were controlled by hybridising the same membrane with an actin probe or with a 

ribosomal probe pTA71 (Gerlach and Bedbrock 1979). The membrane was thereafter 

washed (2 x 20 min at 42 ºC and 1 x 20 min at 65 ºC) in blot -washing buffer (0.1 % (w/v) 

SDS, 2 x SSC). The membrane was then exposed to X-ray film (X-OMAT, Kodak) and 

stored at –70 ºC for a specific period and developed.  

 

12 % (w/v) RNA blot-agarose gel: 1.8 g agarose gel, 30 ml 5 x Mops, 93 ml sd H2O, 

27 ml 37 % (v/v) formaldehyde. 

5 x MOPS: 41.7 g/l MOPS, 4,1 g/l Na-acetate, 10 ml/l 0.5 M 

EDTA pH 7.0 

RNA blue marker:  100 µl 5 x MOPS, 175 µl 37 % (v/v) formaldehyde, 

500 µl formamide, 0.2 µl 10 % (w/v) bromophenol 

blue. 
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RNA running buffer:  200 ml/l 5 x MOPS, 80 ml/l 37 % (v/v) 

formaldehyde, add sd H2O to make one litre 

solution. 

100 x Denhardt’s: 2% (w/v) BSA (fraction V), 2 % (w/v) ficoll 400, 2 

% (w/v) PVP 360,000. 

 

2.13.3. DNA blot analysis 

Genomic DNA was digested with appropriate restriction enzymes and size-fractionated in 

an agarose gel, (section 2.11.1). The gel was incubated for 30 min in alkaline denaturing 

buffer and 30 min in neutralising buffer in a shaking water bath and blotted overnight on 

a Protran BA 85-membrane (Schleicher and Schuell, Dassel) using 20 x SSC blotting 

buffer. The membrane was pre-hybridised (65 ºC) for a minimum period of 3 h, and 

hybridised overnight with the 32P-labeled probe (see below: section 2.11.4.) at 65 ºC in 

Southern hybridisation buffer (Sambrook et al 1989). The membrane was subsequently 

washed (3 x 20 min) in washing buffer (2 x SSC, 0.1 % (w/v) SDS) and thereafter 

exposed to X-ray film and kept at –70 ºC for film development. 

 

DNA hybridisation buffer:  15 ml 4 M NaCl, 10 ml 0.1 M PIPES pH 6.8, 200 µl 

0.5 M EDTA pH 8.5, 1 ml 10 % (w/v) SDS, 10 ml 

100 x Denhardt’s, 63.7 ml sd H2O, 100 µl ssDNA. 
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2.13.4. Synthesis of 32P-DNA hybridisation probes (Feinberg and Vogelstein 1983) 

An appropriate size of a cDNA sequence was PCR-amplified using specific forward and 

reverse primers. The fragments were purified using QIAEX-kit (Qiagen) purification and 

used as probes for DNA and RNA blot analysis as described by Bartels et al (1990). 

HexalabelTM-labeling kit (MBI Fermentas, Hannover) was used for the probe labelling. 

10 µl of hexanucleotides were added to 1-2 µl cDNA and H2O was added to a final 

volume of 40 µl. The probe was denatured by heating for 5 min at 95 ºC and immediately 

cooled in ice. 3 µl Mix C (dNTPs without dCTP) was added and then 2 µl 32P-dCTP and 

1 µl Klenow fragment were added, carefully mixed and incubated for 10 min at 37 ºC. 

Finally 4 µl dNTP-Mix was added and incubated for another 5 min at 37 ºC. The reaction 

was stopped by adding 50 µl of 1x TE pH 8.0. The labelled probe was separated from the 

non-incorporated nucleotides through a 1 ml Sephadex G-50 column pre-equilibrated 

with 1 x TE buffer. Ten fractions of 100 µl were eluted (100 µl of 1 x TE per tube). The 

Geiger counter was finally used to measure the eluates in order to identify the synthesized 

DNA probe. The tubes, which showed the first peak of labelling were pooled, incubated 

for 5 min at 95 ºC, cooled immediately on ice and used as probe for the hybridisation. 

 

2.13.5. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

The SDS-PAGE was performed according to Laemmli (1970). The gel was made of 4 % 

(w/v) acrylamide stacking gel and 12 % (w/v) acrylamide separating gel as described 

below. Protein samples were boiled for 5 min and cooled on ice before loading onto the 

gel (10 cm x 10 cm) and run with 1 x SDS-protein running buffer at 20 mA for 2 h. The 

protein standards (protein markers, Sigma) used were: Phosphorylase (97 Kda), Albumin 
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bovine (66 Kda), Albumin egg (45 Kda), Carbonic anhydrase (29 Kda), á-Lactalbumin 

(14 Kda). 

 

Stock solution 4 % Starking gel 12 % Separating gel 

 

30 % (v/v) Acrylamide* 

0.5 M Tris-Cl pH 6.8 

1.5 M Tris-Cl pH 8.8 

10 % (w/v) SDS 

Sterile H2O 

10 % (w/v) APS 

TEMED 

Total volume 

 

0.65 ml 

1.25 ml 

- 

50 µl 

3.05 ml 

25 µ l 

5 µl 

5.30 ml 

 

4 ml 

- 

2.5 ml 

100 µl  

3.4 ml 

50 µl 

5 µl 

10 ml 

* Purchase from BIO-RAD 

 

5 x SDS-protein running buffer: 15 g Tris, 72 g glycerol, 5 g SDS, pH 8.2 per litre 

final volume. 

 

2.13.6. Protein staining methods 

2.13.6.1. Coomassie blue staining of SDS-PAGE 

The SDS-PAGE was stained with Coomassie blue R-250 according to Zehr et al (1989) 

in order to visualize the proteins in the gel. The gel was gently submerged in staining 

solution and kept shaking and then distained (3 h) at room temperature with distaining 

solution. 
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Staining solution:  0.1 % (w/v) Coomassie blue R-250, 50 % (v/v) methanol,  

7 % (v/v) glacial acetic acid. 

Distaining solution:  50 % (v/v) methanol, 7 % (v/v) glacial acetic acid. 

 

2.13.6.2. Ponceau staining 

Protein detection on the membrane was performed by ponceau staining (0.2 % (v/v) 

ponceau S in 3 % (w/v) TCA) before carrying out the antibody detection of specific 

protein synthesis. 

 

2.13.7. Protein blot analysis 

After SDS-PAGE, separated protein samples were transferred from the gel onto a Protran 

nitrocellulose BA 85-membrane (Schleicher and Schuell, Dassel) using a protein blot 

transfer buffer (PBTB) as described by Towbin et al (1979). In order to detect the 

accumulation of specific plant proteins under stress conditions, the membrane was probed 

with specific antiserum in a milk (3 % w/v)-TTBS buffer and anti-rabbit IgG horse-radish 

peroxidase-linked antibodies (1:10000) (Sigma) were used as secondary antibodies. 

Binding of antibodies was detected using an ECL Plus Western blotting detection kit 

(ECL-Amersham Pharmacia biotech.). 

 

PBTB   25 mM Tris-HCl pH 7.5, 19.2 mM glycine, 20 % (v/v) methanol 

TTBS buffer  20 mM Tris-HCl pH 7.5, 137 mM NaCl, 0.1 % (v/v) Tween 20 
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2.14. Plant stress treatments 

2.14.1. Stress treatment of seedlings 

For salt stress experiments, plant seeds were allowed to germinate and were grown in 

solid (MS-plates, soil) and liquid media containing different concentrations of NaCl or 

KCl.  

For H2O2 treatments, seeds were placed on filter paper pre-wetted with water containing 

different concentrations of H2O2. Plates were kept for 4 days at 22 ºC in the presence of 

2500 lux white light. The H2O2 solution was changed daily to avoid conversion of H2O2 

into H2O. The seedlings were collected, frozen in liquid nitrogen and used for various 

analyses or kept at –70 ºC for later use. 

 

2.14.2. Stress treatment of plants transferred into soil 

For the stress treatment of adult seedlings, 15 day-old seedlings grown on MS-agar plates 

were transferred into pots or trays containing soil/vermiculite (3:1) and allowed to grow 

for a further week at 22 ºC for acclimation before applying stress treatments. 

 

2.14.2.1. Dehydration stress treatment 

Dehydration stress was imposed to adult seedlings by withholding watering for a 

maximum period of two weeks for phenotypic and biochemical analyses. For molecular 

analysis, dehydration experiments were performed with plants placed on filter paper and 

air-dried at room temperature for various time points. 
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2.14.2.2. Salt stress treatments 

Salinity stress was carried out by irrigating the seedlings with NaCl or KCl solutions (0, 

100, 200, 300, 400 mM) every two days for a period of 2 weeks. Parallel experiments 

were performed in hydroponic cultures containing different concentrations of salts. 

Phenotypic traits and biochemical characterizations (chlorophyll contents, fresh weight 

accumulation, MDA accumulation, ROS generation) of the seedlings were recorded after 

an appropriate time of exposure to stress (generally one to two weeks). 

 

2.14.2.3. ABA treatments 

The seedlings grown in soil were removed and placed in water containing 100 µM ABA 

(cis/trans isomers) and incubated in a growth chamber for various time points. The plant 

materials were frozen in liquid nitrogen and used for subsequent molecular analyses. 

 

2.14.2.4. Cu and paraquat and H2O2 treatments 

The Cu treatments were performed with seedlings put in water containing 200 µM CuCl2 

for different time points. Likewise, the seedlings were put in 10 µM paraquat (methyl 

viologen) or 5 mM H2O2 solutions in independent experiments respectively for various 

indicated time points. Methyl viologen (MV) inhibits the photosysthem I (PSI), therefore 

leading to the accumulation of reactive oxygen species in chloroplasts (Sunkar et al 

2003). The plant material was frozen in liquid nitrogen and used for different 

physiological and molecular analyses. 
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2.15. Determination of chlorophyll content 

Chlorophyll was extracted in 80% (v/v) aqueous acetone based on the work of 

MacKinney (1941) and spectrophotometrically quantified according to Arnon (1949). For 

the extraction, 0.2 g plant materials were used and suspended in 2 ml extraction buffer 

and incubated in the dark under shaking at room temperature for 30 min. The suspension 

was centrifuged (5min, 10000 rpm, RT) and the OD of the supernatants was measured at 

663 nm and 645 nm. The chlorophyll content was estimated by the following formula as 

described by Arnon (1949): C= 20.2 x OD645 + 8.02 x OD663 where C expresses the total 

chlorophyll content (chlorophyll A + chlorophyll B) in mg/l of extraction solution. 

 

2.16. Lipid peroxidation assay 

The level of lipid peroxidation was measured in the plant cells according to the 

thiobarbituric acid (TBA) test, which determines the malondialdehyde (MDA) as the end 

product of the lipid peroxidation reaction (Heath and Packer 1968, Loreto and Velikova 

2001). Plant materials (0.2 g) were homogenized in 5 ml 0.1 % (w/v) trichloroacetic acid 

(TCA) solution on ice. The homogenates were centrifuged at 10,000 x g for 5 min at 4 ºC 

and the supernatants were collected in clean test tubes. 1 ml of 20 % (w/v) TCA 

containing 0.5 % (w/v) TBA was added to a 0.5 ml aliquot of the supernatant. The 

mixture was kept in boiling water for 30 min and immediately cooled on ice. After 

centrifugation at 10,000 x g for 10 min, the OD of the supernatant was taken at 532 nm 

and 600 nm. The absorbance at 600 nm was subtracted from the absorbance at 532 nm, 

and the MDA concentration was calculated using its extinction coefficient 155 mM-1 cm-1 
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(Heath and Packer 1968). No significant readings were obtained without addition of the 

reactive TBA. 

 

2. 17. In vivo detection of H2O2 by the DAB-uptake method and H2O2 measurements 

For the localization of H2O2 generation as result of abiotic stress, leaf materials were cut 

from stress treated and unstressed plants and placed in 1mg/ml 3,3’-diaminobenzidine 

(DAB)-HCl, pH 3.8 (Sigma, a low pH is necessary in order to solubilize DAB) and adjust 

the pH to 7.5 after solubilization. Samples were incubated in a growth chamber for 8 h 

and cleared by boiling the leaves in 80 % (v/v) ethanol for 2 h and imbedded in 10 % 

(v/v) glycerol. The accumulation of H2O2 was observed as brownish stains in the leaves 

(Thordal-Christensen 1997). 

For H2O2 measurement a modified method of Rao et al (2000) was used. Briefly, 200 mg 

of plant material was treated with the DAB up-take method as described above, followed 

by chlorophyll clearing by boiling the sample in 96 % (v/v) ethanol (20 min) and 

immediately homogenized in 1 ml of 0.2 M HClO4 in a precooled pestle and mortar. The 

mixtures were incubated in ice for 5 min and centrifuge (10,000 g, 10 min, 4 °C). The 

optical density (OD450) of the supernatants was measured as described by Tiedemann 

(1997) and the H2O2 concentrations were obtained via standard solutions of 0.2 M 

HClO4, containing 5, 10, 25, 50 µMol H2O2 (Sigma), which were used to calibrate the 

data at the same OD (450 nm) during each assay run. 

 

 

 



 63

2.18. Assay for production of superoxide anions in plants exposed to stress 

conditions 

The detection of the superoxide anion (O2
-) was based on its ability to reduce nitroblue 

tetrazolium (NBT). Stress treated and untreated plant materials were immerged in 3 ml of 

0.05 % (w/v) NBT, 10 mM sodium azide (NaN3) in potassium phosphate buffer pH 7.5 

and incubated in room temperature for 1 h to allow a maximum reduction of NBT by the 

generation of O2
- produced by the plants. The solution was then heated at 85 ºC for 15 

min and immediately cooled on ice. The OD580 of the solution was then measured. The 

amounts of O2
- generated in plants were expressed as increased absorbant unit (AU) per 

hour of reaction and per mg of seedling fresh weight (AU/h/mg Fwt) as described by 

Doke (1983). 

 

Potassium phosphate buffer: 8.6 ml of A + 94.4 ml of B 

    A= 9.08 g/l KH2PO4,   B= 1.88 g/l K2HPO4 

 

2. 19. Detection of cell viability (Widholm 1972) 

To assess cell viability, stress treated and untreated leaves from adult seedlings were 

imbedded in fluorescein diacetate staining solution. Fluorescein diacetate dye is absorbed 

only by viable cells and constitutes therefore a specific method to detect the levels of cell 

survival under stress conditions. Plant samples were submerged in a mixture of phenol, 

lactic acid, glycerol, distilled water (1:1:1:1) containing 0.01% (w/v) fluorescein 

diacetate from a stock solution of 0.1% (w/v) fluorescein diacetate in acetone stored at –
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20 °C. The fluorescein diacetate stock solution should not be older than one week; 

otherwise a new stock solution must be prepared before use. 

 

2.20. GUS staining of Arabidopsis plants 

In order to identify the expression pattern of ALDH genes in the plants, young (13 day-

old) and adult (4 week-old) transgenic plants carrying GUS-ALDH constructs were 

treated with NaCl (200 mM), dehydrated or treated with ABA for a period of 4 h in 

petridishes, while the control plants were treated with distilled water for the same period 

or directly used without treatment to analyse the expression and localization pattern of 

GUS activity. The GUS enzyme catalyses the cleavage of X-Gluc (a colourless substrate), 

which undergoes a dimerization leading to a final insoluble blue precipitate known as 

dichloro-dibromoindigo (ClBr-indigo). The ability of ClBr-indigo to immediately 

precipitate upon formation was used to trace the location site of GUS activity under the 

control of the ALDH promoters, allowing thereby an analysis of tissue specific 

localization of gene expressions. 

 

2.20.1. GUS-Assay with X-Gluc as substrate (Jefferson et al 1987) 

Treated and untreated Arabidopsis plants were incubated overnight at 37 ºC in GUS-

staining solution (a minimum volume of the staining solution was used). The seedlings 

were thereafter incubated in two changes of 80 % (v/v) ethanol solution at 80 ºC to 

distain the chlorophyll. The seedlings were finally submerged in 10% (v/v) glycerol and a 

photograph of the seedlings was taken to show the expression pattern of the ALDH genes 

in the plants. 
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GUS-staining solution:  3 mM X-Gluc (0.075 g/50 ml) 50 mM NaH2PO4 

buffer pH 7.2 (always freshly prepared) 0.1% (v/v) 

Triton x100 (0.5 ml of 10% (v/v) Triton stock 

solution) 8 mM â-ME (28 µl/50 ml). 

The staining solution was made in 50 ml falcon tubes and care was taken to minimize the 

use of excessive staining solution. 

 

2.20 .2. Fluorometric GUS activity assay 

The fluorometric GUS activity was carried out from homogenized wild-type and 

transgenic seedlings after the indicated period of ABA treatment (100 µM), NaCl (200 

mM) or dehydration treatment according to a modified method of Jefferson et al (1987). 

100 mg of plant material was homogenized in 100 µl extraction buffer (50 mM sodium 

phosphate, pH 7, 10 mM EDTA, 0.1 % (v/v) Triton x 100, 0.1 (v/v) Na-lauryl sarcosine) 

and centrifuged (14000 x g, 4 �C) for 10 min. 10 µl aliquots of the supernatant were 

incubated in 50 µl of 1mM 4-methylumbelliferyl-glucuronid (4-MUG, Sigma) at 37 �C. 

The mixtures were removed periodically and added to 1 ml stop buffer (0.2 M Na-

carbonate: Na2CO3, pH 9.5) and then used to perform the assay. Standard solutions of 

Na2CO3, pH 9.5, containing 5, 10, 25, 50 nmol 4-methylumbelliferone (4-MU) were used 

to calibrate the data during each running assay. Using a RF-1501 

spectrofluorophotometer (Shimadzu) with an excitation at 365 nm and a measuring 

emission at 455 nm, the specific GUS activity was expressed in 4-MU pmol/min/mg 

protein extract. Protein concentrations were determined using the Bradford-protein assay 
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in a Biorad kit (Bradford 1976). The data recorded represent mean values of triplicate 

experiments. 
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3. RESULTS 

3.1. Involvement of ALDH genes in stress tolerance mechanism 

Before investigating the role of aldehyde dehydrogenase in stress tolerance processes, 

ALDHs were first analysed for their involvement in plant responses to abiotic stress. In 

these experiments, wild-type plants were exposed to various abiotic stressors and used to 

analyse the ALDH mRNA accumulation profile and the corresponding protein 

accumulation pattern in stressed and unstressed plants. A direct involvement of these 

genes in stress-response mechanisms is expected to result in an up-regulation of these 

genes and the accumulation of their corresponding proteins under stress conditions. 

 

3.1.1. Induction of ALDH genes under various abiotic stressors 

The transcript accumulation of ALDH genes was investigated in wild-type Arabidopsis 

plants under dehydration and different concentrations of NaCl treatment. RNA blot 

analyses showed a progressive accumulation of ALDH3I1 transcripts from 4 h of 

dehydration treatments (Figure 2 b). Under NaCl treatment, a significant increased 

accumulation of ALDH3I1 was observed from 2 h of salt (250 mM NaCl) treatment 

(Sunkar et al 2003) as shown in Figure 2 c. An increasing accumulation of ALDH3I1 

mRNA transcript was observed in WT plants from 200 mM of NaCl treatment after 24 h 

of different concentrations of NaCl exposure (0 to 400 mM) as shown in Figure 2 a. For 

further molecular studies, a concentration of 200 mM NaCl was selected for salt stress 

because higher concentrations of salt stress damaged the leaf materials for subsequent 

biochemical analyses such as histochemical localization of GUS activity in the plants 

exposed to stress conditions. 
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Figure 2: Induction of the ALHD3I1 gene in wild-type plants exposed to dehydration and salt stress 
rd29A = stress-responsive gene in Arabidopsis plants, used to monitor the osmotic stress status of the plants 
(Yamaguchi-Shinozaki and Shinozaki 1993), Actin = actin probe was used to confirm the equal loading of 
total RNA samples in the gel. ALDH3I1-cDNA (870 bp) was used as probe to detect the ALDH3I1 
transcript accumulation in RNA blot analyses. The temporal accumulation pattern of ALDH3I1 transcripts 
(c) in response to NaCl (250 mM) was adopted from Sunkar et al (2003), with permission. 
 

3.1.2. ALDH protein accumulation pattern under stress conditions 

3.1.2.1. Production of ALDH3I1 antibody 

For ALDH protein detection in plants, a specific ALDH antibody was raised and used in 

different protein blot analyses to gain insight into the kinetic expression of the protein 

under stress conditions. In order to raise the specific ALDH3I1 antibody, the coding 

region of the ALDH3I1 gene (1.5 kb) was amplified and ligated (at EcoRI site) to the N 

terminal GST of pGEX 5.1 vector as illustrated in Figure 3. The construct was used to 
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transform E. coli BL21 and grown at 37 °C for 3 h in the presence or absence of IPTG 

used as protein inducer. SDS-PAGE analysis of E. coli BL21 protein followed by 

Coomassie blue staining confirmed the production of ALDH3I1 protein band (54 kDa) 

from the crude protein extract analysis (Figure 4 a). The band was excised, purified and 

used as antigene to raise the production of antibody during immunization of rabbits. The 

antibody raised recognizes the ALDH3I1 protein band (54 KDa) in a protein blot analysis 

experiment of E. coli BL21-protein extract under IPTG induction (Figure 4 c). No band 

was detected with the pre-immune ALDH3I1 serum (Figure 4 b). The immunoreaction 

was therefore specific because the antibody could uniquely compete with the ALDH3I1 

protein used for the immunization (Figure 4 c). Under IPTG induction, the different 

protein sizes; GST (about 30 KDa), ALDH3I1 insert (54 KDa), and GST-ALDH3I1 

fusion (84 KDa) were clearly identified as a result of partial digestion of the recombinant 

protein construct during the incubation of E. coli BL12 (Figure 4 c).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: GST-ALDH3I1 cDNA fusion construct in pGEX-5x1 vector 
The coding sequence of ALDH3I1 was amplified and ligated at the EcoRI site of the N terminal GST site of 
pGEX-5x1 and cloned in E. coli BL21. 
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Figure 4: Production of the ALDH3I1 antibody and detection of induced ALDH3I1 protein in E. coli 
BL21 
ALDH3I1 protein was excised from the SDS-PAGE gel (see arrow), purified and used to raise specific 
ALDH3I1 antibody in rabbits. Preimmune antiserum shows no background (b) in protein blot analysis of 
BL21-protein extract, while the ALDH3I1 antibody recognised the expected protein bands after IPTG 
induction (c). The arrow indicates the induction of ALDH3I1 protein (54 kDa) in SDS-PAGE staining with 
Coomassie blue. 50 ìg total protein was loaded per line in the g els. 
 

3.1.2.2. Kinetic analysis of ALDH3I1 protein accumulation pattern 

Wild-type Arabidopsis plants were subjected to various abiotic stresses (dehydration, salt 

stress, hydrogen peroxide, cold stress, paraquat, copper, and ABA treatment) over 72 h of 

stress exposure and used to investigate ALDH3I1 protein accumulation pattern via 

protein blot analyses (Figure 5). ALDH3I1 protein accumulated in response to all stress 

treatments but was differently induced by the stress conditions. ALDH3I1 protein was 

strongly expressed during dehydration, salt stress and heavy metal (copper) treatment, but 

weakly expressed in response to cold treatment (Figure 5 a). In order to gain insight into 

the regulatory mechanism of the protein induction pattern, several reagents such as ABA, 

ROS (hydrogen peroxide), and paraquat were used to trigger the expression of the 

protein. 
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Figure 5: Kinetic analysis of the ALDH3I1 protein accumulation under various abiotic stressors 
Wild-type plants were exposed to different abiotic stressors for indicated time period and used to analyse 
ALDH3I1 protein expression (a). ABA, H2O2 and paraquat applications mediate the accumulation of 
ALDH3I1 protein (b). The cold stress was imposed to the plants by incubating them in cold room (4 °C) for 
indicated time period. 
 

Figure 5 b revealed the accumulation of two strong protein bands under ABA, hydrogen 

peroxide and paraquat (methyl viologen) treatment (a chemical that induces oxidative 

stress). The detection of the second band could be interpreted by a probable degradation 

of the ALDH3I1 protein, which occurred during the protein extraction from the plant or 

as the precursor of the active accumulating ALDH3I1 protein, which could still be 
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recognized by the antibody. The protein detection mediated by ABA and hydrogen 

peroxide was similar to the protein accumulation pattern observed under dehydration and 

salt stress. These results suggest that the ALDH3I1 protein expression pathway is 

probably cross-linked to the ABA biosynthesis pathway and the accumulation of ROS 

(H2O2) in plants exposed to environmental stress. 

 

3.2. Molecular characterization of transgenic plants 

The analysis of ALDH-transcript and ALDH-protein accumulation has revealed that the 

ALDH3I1 gene is responding to a range of abiotic stress conditions. It was then planned 

to investigate the biological role of ALDH genes in plant responses to those stresses. 

Several independent transgenic Arabidopsis plants carrying different constructs of ALDH 

cDNA sequences both in sense and antisense orientation were thus used in molecular and 

physiological studies to gain insight into the role of ALDH genes in stress tolerance 

mechanisms. 

 

3.2.1. Characterization of different plasmid DNA constructs 

For the generation of transgenic plants, the full length of different ALDH-cDNA 

sequences encoding ALDH3I1 and Cp-ALDH were fused to the constitutive CaMV-35S 

gene promoter in the pBIN19 vector in sense or antisense orientation (Kelbert 2000, 

Heuft 2000) as shown in Figure 6. These constructs were stably transferred into wild-type 

Arabidopsis thaliana via Agrobacterium tumefaciens-mediated transformation (Kelbert 

2000, Heuft 2000). In addition, a stress-inducible promoter (C2-promoter) isolated from a 

resurrection plant Craterostigma plantagineum (Ditzer 2003) was alternatively used to 
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replace the constitutive CaMV-35S promoter and fused to ALDH3I1-cDNA (sense 

orientation) in pBIN19 (Figure 7), in order to generate stress-inducible ALDH3I1 

transgenic plants. In addition, ALDH7B4-cDNA was cloned from pBluescript (pBs) and 

ligated to the constitutive CaMV-35S promoter at the SmaI site of the pROK2 vector as 

shown in Figure 8. The binary pROK2 vector is a derivative of pBIN19 used for 

Agrobacterium tumefaciens transformation. 

 

 
 
 
 
 
 
 
 
 

 

Figure 6: ALDH-cDNA constructs in pBIN19 for Agrobacterium tumefaciens transformation 
35S-Pro: Constitutive CaMV-35S gene promoter; T: stop codon (terminator) 
ALDH3I1                 :   Arabidopsis ALDH3I1 gene inserted in sense orientation 
ALDH3I1                 :   Arabidopsis ALDH3I1 gene inserted in antisense orientation 
Cp-ALDH                 :  Craterostigma ALDH gene inserted in sense orientation 
(Ref. Kelbert 2000, Heuft 2000) 

 

All constructs were checked for correct orientation by specific genomic DNA digestion, 

DNA blot analysis (Figure 7, 8) and confirmed by DNA sequencing. The constructs were 

used to stably transform wild-type Arabidopsis plants via Agrobacterium tumefaciens-

mediated transformation. The insertion of transgenes in the host plants was checked by 

PCR amplification analyses and DNA blot analyses in T2 progeny plants. Subsequent 

molecular and physiological analyses were carried out on transgenic plants from 

independent lines of the T2 or T3 generations. 
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Figure 7: C2 promoter-ALDH3I1 cDNA construct in pBIN19 
The recombinant pBIN plasmid was digested with the indicated restriction enzymes. The photograph (a) 
shows the Et.br. staining of the agarose gel, and (b) shows the autoradiograph of the membrane after 
probing the blot with the 32P-labeled 760 bp EcoRI-EcoRI C2 promoter fragment. M = marker, Un. = 
Undigested recombinant pBIN vector. 
 

Table 2 summarizes the names of the transgenic plants used in this work and the origin of 

the transgenes in all transgenic plant populations generated. The letters S-A3 in the name 

indicates a transgenic plant carrying a 35S-ALDH3I1 cDNA sense orientation. The initial 

AS-A3 indicates a transgenic plant carrying a 35S-ALDH3I1 cDNA construct in 

antisense orientation. C-A3 indicates a transgenic plant carrying a C2 promoter-

ALDH3I1 cDNA construct in sense orientation. CP indicates a transgenic plant carrying 

a 35S-CpALDH cDNA construct in sense orientation. S-A7 indicates a transgenic plant 

carrying a 35S-ALDH7B4 cDNA construct in sense orientation. The initial knock 

indicates knock-out T-DNA insertions in the ALDH3I1 coding sequence. The letter P in 

the name indicates the independent transgenic plant (Table 2). 
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Table 2: Nomenclature and molecular characterizations of the transgenic plants 

Number of 

transgenic plants 

analysed 

Name of 

transgenic plants* 

cDNA constructs or T-DNA 

insertion mutants 

 

Origin of transgene 

 

6 

 

S-A3P1-6 

 

335S-ALDH3I1 cDNAsense 

 

Arabidopsis thaliana 

 

12 

 

AS-A3P1-12 

 

35S-ALDH3I1 cDNA antisense 

 

Arabidopsis thaliana 

 

3 

 

C-A3P1-3 

 

C2 promoter-ALDH3I1 cDNA 

C2 promoter is from C. 

plantagineum and ALDH3I1 

from A. thaliana 

 

4 

 

Knock1-4 

T-DNA (KONCZ 16843) 

ALDH3I1 

 

 

 

3 

 

S-A7P1-3 

 

35S-ALDH7B4 cDNA sense 

 

Arabidopsis thaliana 

 

12 

 

CP1-12 

 

35S-CpALDH cDNA sense 

 

Craterostigma plantagineum 

* S-A3 = sense 35S-ALDH3I1 cDNA construct; AS-A3 = antisense 35S-ALDH3I1 cDNA construct; C-A3 
= sense C2 promoter-ALDH3 cDNA construct; Knock = T-DNA knock-out insertion of ALDH3I1; S-A7 = 
sense 35S-ALDH7B4 cDNA construct; CP = sense 35S-CpALDH cDNA construct; P = independent 
transgenic plant. 
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Figure 8: 35S-ALDH7B4 construct in pROK2 binary vector and detection of transgene in the 
transgenic plants. 
ALDH7B4-cDNA was cloned from pBluescript (pBs) vector (digested with ClaI, SnI, SspI) as shown in the 
gel (a), and inserted at the SmaI site (MCS) of pROK2 and checked for correct orientation by DNA 
sequencing and BglII digestion of the recombinant pROK plasmid (gel b). ALDH7B4 transgenes were 
checked and confirmed in transgenic plants by PCR amplification of the insert in the plant genomic DNA 
(gel c). Und. = Undigested recombinant pROK2 vector. 
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for mRNA suppression. This strategy aimed to complement the endogenous ALDH3I1-

DNA strand (RNAs: the coding sequence of ALDH3I1 gene) in the plants and to repress 

the protein formation. The result should lead to a double RNAs-RNAas strand status, 

which is not translatable by the ribosomal machineries into ALDH protein (Baier and 

Dietz 1999). To produce high-suppression intensities, the ALDH3I1 cDNA was fused to 

the constitutive CaMV-35S promoter (Holtorf et al 1995). The antisense ALDH3I1 

transgenic plants were therefore expected to show a suppressive status of ALDH3I1 gene 

expression. 

 

3.2.2. Characterization of T-DNA insertion mutants of ALDH3I1 knock-out 

transgenic plants 

The expression of the ALDH3I1 gene was knock-out by T-DNA insertions in the coding 

region of the ALDH3I1 gene in order to study the subsequent effects of loss of ALDH 

function in plants exposed to abiotic stress. Four independent homozygous knock-out 

lines (knock#1, 2, 3, 4) carrying a T-DNA (KONCZ 16843) insertion in the second intron 

(position 27470 bp) of the ALDH3I1 gene (Szabados and Koncz 2003, Schlingensiepen 

2003, Kirch and Koncz, unpublished) were investigated under stress conditions. The 

number 16843 indicates the number of the independent transgenic plant with the 

knockout T-DNA insertion for the ALDH3I1 out of the whole T-DNA insertion collection 

(Szabados and Koncz 2003). Figure 9 shows the genomic structure of the ALDH3I1 gene 

and the position of the T-DNA insertions. PCR analysis of the T-DNA insertion in this 

line (16843) revealed that the T-DNA was inserted as two copies in inverse orientation 

with the RB of each T-DNA copy at the centre and their LB at the periphery as indicated 
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by the arrows in the Figure 9 (Schlingensiepen 2003). The number of introns and exons 

in ALDH3I1 gene were deduced from the sequence alignment of the ALDH3I1 cDNA 

and the genomic sequence of the ALDH3I1 gene using the Vector NTITM Suite 

programme. The progeny of the knock-out mutants were checked and confirmed for 

homozygocity by RT-PCR analysis (Ditzer, unpublished). These T-DNA insertions 

interrupt the coding sequence of the gene leading therefore to a non-active ALDH3I1 

protein. ALDH3I1 protein accumulation was completely absent in those knock-out 

mutants even under salt stress treatment as shown by the results of protein blot analysis 

(Figure 18). These knock-out mutants were therefore regarded as good negative 

candidates in comparison with the transgenic plants overexpressing ALDH genes for 

studying the role of ALDH genes. 

 

 

 

 

 

 

Figure 9: ALDH3I1 gene structure and the location of the T-DNA insertion. 
The orange boxes represent the exons, while the black lines represent the introns in the ALDH3I1 gene 
sequence. 
 

3.2.3. DNA blot analysis of transgenic plants 

In order to investigate the number of ALDH transgene copies in the transgenic plants, 

genomic DNAs were digested with EcoRI restriction enzyme in independent experiments 

and probed with 32P-labelled NPTII (the gene encoding for kanamycin resistance) or 

Koncz 16843

5’ 3’

ALDH3I1 
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probed with other specific probes (C2 promoter-probe) designed to detect the transgene 

copies. Figure 10 shows the number of bands in independent transgenic lines 

corresponding to the number of transgene copies stably incorporated into the transgenic 

plants. 

 

 
 
Figure 10: DNA blot analysis of transgenic Arabidopsis plants 
Genomic DNA samples were digested with EcoRI and probed with the 32P-labeled NPTII probe (for 35S-
ALDH3I1 sense/antisense, 35S-CpALDH sense). The 32P-labeled C2 promoter (580 bp) probe was used for 
the C2-ALDH3I1 sense transgenic plants. The sizes of molecular mass markers are indicated at the margin. 
Transg. copy = number of transgene copies stably integrated into the host genomic DNA. 
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3.2.4. ALDH promoter-GUS reporter gene constructs 

In order to investigate the ALDH gene expression pattern in plant responses to abiotic 

stress, the GUS reporter system was used. Various ALDH promoters were isolated by 

designing specific forward and reverse primers and fused to the GUS reporter gene 

(Table 3). The promoters were cloned into the pCR cloning vector (pCR2.1), sequenced 

from both ends and subsequently fused to the reporter gene (GUS) in the pBT10 vector as 

described in Table 3. These constructs were inserted into the pBIN19 vector or directly 

used from the pBT10 vector to transform Arabidopsis plants via Agrobacterium 

tumefasciens-mediated transformation. 

 

Table 3: Primers designed to construct the ALDH promoter-GUS reporter genes. 
 

PCR amplification 
of the ALDH 
promoter  

Designed Primers for ALDH promoter amplification 
Insertion sites in 
pB-10GUS plasmid 

 
ALDH3I1 prom. 
(0.9 kb) 
 
ALDH3H1 prom. 
(1.52 kb) 
 
Cp-ALDH prom 
(0.9 kb) 
 

 
Fwd.: 5’TGAAGATCGGTGTGGCAGATTCCA3’ 
Rev.:5’ ACTTCGTCATGAATTCGGTTCAG 3’ 
 
Fwd.: 5’TGCATCACACAATGACAACTTTACTC3’ 
Rev.: 5’TCCTCAATATCTCTCTTACGTAACG3’ 
 
Fwd.: 5’CAGAATAGTAGGCAAGCTTTC3’ 
Rev.: 5’ACGCGTCGACTTCCTTTTATTCTTTTG3’ 
 

 
HindIII/EcoRI  
 
 
XhoI/SpeI 
 
 
HindIII/SalI 

 

The promoter sequence analysis of ALDH3I1, ALDH3H1 and CpALDH genes revealed 

some putative cis-elements at various locations in the promoters. A comparative analysis 

of putative cis-elements in these promoters is shown in Table 4. The promoter of the 

ALDH3H1 gene, which is constitutively expressed (Figure 11, 12, Kirch et al 2001) lacks 

DRE like core motif, while the ALDH3I1-promoter and the Cp-ALDH promoter contain a 

DRE like core motif (Table 4) (For detail, see promoter sequences in appendices: section 
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5). DRE like core motifs (drought responsive elements) are motif elements mainly 

responsible for the upregulation of genes under drought and salt stress, while ACGT-like 

ABRE motifs are mainly responsible for the upregulation of genes under ABA treatment 

(Ingram and Bartels 1996). 

 

Table 4: Putative cis-elements present in ALDH31, ALDH3H1 and Cp-ALDH promoters. 
 

 
Orange boxes indicate the motif elements with their position in ALDH3I1 promoter sequence. The grey 
boxes indicate the motif elements with their position in ALDH3H1 promoter sequence. The black boxes 
indicate the motif elements and their position in the Cp-ALDH promoter sequence. 
 

 

3.2.4.1. The GUS reporter gene system to study ALDH gene expression in plants 

The bacterial â-glucuronidase gene (uidA or gusA) commonly referred to as GUS gene 

was used as reporter gene to study the expression pattern of plant-ALDH genes under salt 

stress, dehydration and ABA treatment. The promoter region of ALDH genes including 

TATA Box ACGT-like ABRE motif G Box like DRE like core motif 

(-47 bp) (-115 bp) 

(-200 bp) 

(-740 bp) 

(-48 bp) 

(-549 bp) (-147 bp) 

(-994 bp) 

(-990 bp) 

(-880 bp) 

(-170 bp) (-1050) 

(-1070) 

(-95) (-247) (-147) none 

none 

CCGAC CACGTG ACGT TATA 
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the ATG start codon of the ALDH structural gene sequences were fused to the GUS gene 

and transformed into Arabidopsis plants via Agrobactrim tumefaciens-mediated 

transformation. The histochemical localization of GUS activity in transgenic plants 

exposed to stress was carried out to gain insight into the regulatory mechanisms of ALDH 

gene expression. Transgenic plants screened under dehydration (4h) and 200 mM NaCl 

treatment (4h) indicated that the ALDH3I1 gene (from Arabidopsis thaliana) and the Cp-

ALDH gene (from Craterostigma plantagineum) were highly expressed mainly in leaves, 

while the ALDH3H1 gene (from Arabidopsis thaliana) was mainly expressed in roots 

(Figure 11). Microscopic observations of stressed leaves and roots revealed that GUS 

activity under the control of ALDH3I1 promoter is located in chloroplasts probably as a 

result of artificial diffusion of the blue precipitate (indigo) into chloroplasts (Figure 12). 

In addition, GUS activity was quantitatively assayed using a fluorometric substrate 4-

methylumbelliferone (4-MU) in order to estimate the expression level under stress 

conditions. Table 5 presents the levels of GUS activity in leaves and roots of independent 

seedlings exposed to different abiotic stresses. The GUS activity induced by ALDH3I1 

promoter is located in leaves and not in roots. This activity is induced 20-60 times higher 

in leaves as in roots and also 20-60 times higher in stress leaves than unstressed leaves 

(Table 5). In contrast, induction of GUS activity by ALDH3H1 promoter shows a 

constitutive low expression in leaves and induced 10-20 times higher in roots under stress 

conditions (Table 5). In untreated plants, GUS activity is induced by ALDH3H1 promoter 

6-10 times higher in roots than in leaves (Table 5). In all growth conditions GUS activity 

was insignificant in wild-type plants (Table 5). 
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Figure 11: Histochemical localization of GUS expression in transgenic plants under salt stress and 
dehydration. 
Four week-old seedlings grown on soil were subjected to the indicated stress conditions for 4h to avoid 
damage of the leaf materials during GUS-staining. 
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Figure 12: Microscopic analysis of ALDH-GUS gene expressions in plants exposed to salt stress 
treatments 
Seedlings were subjected to salt stress conditions. Leaf and root materials were prepared from the treated 
and untreated plant samples and observed under microscope. Bars = 40 µm 
 

 

Table 5: GUS activity in wild-type and transgenic plants exposed to dehydration, NaCl and ABA 
treatments 
 

Specific GUS activity (4-MU pmol/min/mg protein) 
ALDH3I1prom-GUS ALDH3H1prom-GUS 

 
Plant 
materials 

 
 
Stress conditions 0 h 4 h 10 h 0 h 4 h 10 h 

 
 
Leaves 

 
ABA (100 ìM)  
NaCl (200 mM) 
Dehydration 
 

 
192 ± 13 
192 ± 13 
192 ± 13 
 

 
3843 ± 30 
4427 ± 47 
4265 ± 32 
 

 
6428 ± 35 
7725 ± 41 
6260 ± 32 
 

 
277 ± 18 
277 ± 18 
277 ± 18 
 

 
373 ± 26 
382 ± 29 
352 ± 30 
 

 
390 ± 25 
393 ± 33 
352 ± 27 
 

 
 
Roots 

 
ABA (100 ì M) 
NaCl (200 mM) 
Dehydration 
 

 
189 ± 16 
189 ± 16 
189 ± 16 
 

 
199 ± 21 
197 ± 16 
193 ± 19 
 

 
186 ± 13 
198 ± 18 
193 ± 22 
 

 
778 ± 20 
778 ± 20 
778 ± 20 
 

 
4007 ± 33 
4095 ± 47 
4440 ± 60 
 

 
5742 ± 42 
8040 ± 37 
7271 ± 44 
 

Each value represents the average GUS activity (± SD) of triplicate experiments. GUS activity in WT plants 
was insignificant (94 ± 15 pmol 4-MU/min/mg protein) under all conditions tested and is not included in 
the Table. 
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Although ALDH3I1, ALDH3H1 and Cp-ALDH protein sequence analysis revealed 70 to 

80% homology to each other (Kirch et al 2001, Figure 13), their gene expression patterns 

in plants exposed to stress are diverse. The differences observed in the putative cis-

elements of the ALDH-promoter sequences (Table 4) may be partially responsible for the 

differences of ALDH gene expression patterns in the stressed plants. The presence of the 

DRE like core motifs in ALDH3I1 and Cp-ALDH promoters indicates the stress inducible 

status of those genes (ALDH3I1, Cp-ALDH), and probably the reason why ALDH3I1 and 

Cp-ALDH transcripts significantly increased under drought and salt stress treatment 

(Kirch et al 2001). The presence of ACGT-like ABRE motifs (ABA responsive elements) 

in all the promoters is probably the reason why these genes (ALDH3I1, ALDH3H1, Cp-

ALDH) respond to exogenous application of ABA (Kirch et al 2001, Schlingensiepen 

2003). However, ALDH3H1 is also a stress-inducible gene and its expression is restricted 

to roots (Figure 12). These results suggest that putative cis-element analysis of the 

promoters is not sufficient to reveal detailed information regarding their stress inducible 

expression status in plants response to environmental stress. 
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                 1                                                                   70 
  Cp-ALDH    (1) ---------------------------------------------------------------------M 
  ALDH3I1    (1) MTKLLEINHIQTLCFAKGFSPARLNVATSPFLISRRGGGGYCSNACIPYRLKFTCYATLSAVVKEQASDF 
  ALDH3H1    (1) ---------------------------------------------------------------MAAKKVF 
 
                 71                                                                 140 
  Cp-ALDH    (2) SQVDAEGVVDGLRRTYISGKTKSYEWRVSQLKALLKITTHHDKEVVEALRADLKKPEHEAYVHEIFMVSN 
  ALDH3I1   (71) RGKEAALLVDELRSNFNSGRTKSYEWRISQLQNIARMIDEKEKCITEALYQDLSKPELEAFLAEISNTKS 
  ALDH3H1    (8) GSAEASNLVTELRRSFDDGVTRGYEWRVTQLKKLMIICDNHEPEIVAALRDDLGKPELESSVYEVSLLRN 
 
                 141                                                                210 
  Cp-ALDH   (72) ACKSALKELHQWMKPQKVKTSLATYPSSAEIVSEPLGVVLVITAWNYPFLLALDPMIGAIAAGNCVVLKP 
  ALDH3I1  (141) SCMLAIKELKNWMAPETVKTSVTTFPSSAQIVSEPLGVVLVISAWNFPFLLSVEPVIGAIAAGNAVVLKP 
  ALDH3H1   (78) SIKLALKQLKNWMAPEKAKTSLTTFPASAEIVSEPLGVVLVISAWNYPFLLSIDPVIGAISAGNAVVLKP 
 
                 211                                                                280 
  Cp-ALDH  (142) SEIAPATSALLAKLLNQYVDTSAIRVVEGAVPEMQALLDQRWDKIFYTGSSKVGQIVLSSAAKHLTPVVL 
  ALDH3I1  (211) SEIAPAASSLLAKLFSEYLDNTTIRVIEGGVPETTALLDQKWDKIFFTGGARVARIIMAAAARNLTPVVL 
  ALDH3H1  (148) SELAPASSALLTKLLEQYLDPSAVRVVEGAVTETSALLEQKWDKIFYTGSSKIGRVIMAAAAKHLTPVVL 
 
                 281                                                                350 
  Cp-ALDH  (212) ELGGKCPTVVDANIDLKVAARRIISWKWSGNSGQTCISPDYIITTEENAPKLVDAIKCELESFYGKDPLK 
  ALDH3I1  (281) ELGGKCPALVDSDVNLQVAARRIIAGKWACNSGQACIGVDYVITTKDFASKLIDALKTELETFFGQNALE 
  ALDH3H1  (218) ELGGKSPVVVDSDTDLKVTVRRIIVGKWGCNNGQACVSPDYILTTKEYAPKLIDAMKLELEKFYGKNPIE 
 
                 351                                                                420 
  Cp-ALDH  (282) SQDMSSIINERQFERMTGLLDDKKVSDKIVYGGQSDKSNLKIAPTILLDVSEDSSVMSEEIFGPLLPIIT 
  ALDH3I1  (351) SKDLSRIVNSFHFKRLESMLKENGVANKIVHGGRITEDKLKISPTILLDVPEASSMMQEEIFGPLLPIIT 
  ALDH3H1  (288) SKDMSRIVNSNHFDRLSKLLDEKEVSDKIVYGGEKDRENLKIAPTILLDVPLDSLIMSEEIFGPLLPILT 
 
                 421                                                                490 
  Cp-ALDH  (352) VGKIEECYKIIASKPKPLAAYLFTNDKKRTEEFVSNVSAGGITINDIALHFLEPRLPFGGVGESGMGSYH 
  ALDH3I1  (421) VQKIEDGFQVIRSKSKPLAAYLFTNNKELEKQFVQDVSAGGITINDTVLHVTVKDLPFGGVGESGIGAYH 
  ALDH3H1  (358) LNNLEESFDVIRSRPKPLAAYLFTHNKKLKERFAATVSAGGIVVNDIAVHLALHTLPFGGVGESGMGAYH 
 
                 491                                                      550 
  Cp-ALDH  (422) GKFSFDAFSHKKSVLKRSFGGEVAARYPPYAPWKLHFMEAILQGDIFGLLKAWLGWSS-- 
  ALDH3I1  (491) GKFSYETFSHKKGVLYRSFSGDADLRYPPYTPKKKMVLKALLSSNMFAAILAFFGFSKDS 
  ALDH3H1  (428) GKFSFDAFSHKKAVLYRSLFGDSAVRYPPYSRGKLRLLKALVDSNIFDLFKVLLGLA--- 
 

 

Figure 13: Amino acid sequence homology between ALDH3I1, ALDH3H1 and Cp-ALDH proteins. 
In the alignment, identical amino acids are shaded in grey and conserved sequence motifs are shaded in 
blue. 
 

3.2.5. Expression analysis of ALDH genes in transgenic plants 

To establish the relationship between ALDH genes and abiotic stress conditions, the 

expression of ALDH genes was analysed in the wild-type and transgenic plants exposed 

to various external stimuli. RNA blot analyses showed that the ALDH3I1 gene was 

constitutively expressed in 35S-ALDH3I1 sense-transgenic plants (S-A3P1-6 except S-

A3P5) (Figure 14). Likewise, 35S-CpALDH sense transgenic plants (CP1 CP9) and 35S-
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ALDH7B4 sense transgenic plants (S-A7P1, S-A7P2, S-A7P3) constitutively expressed 

Cp-ALDH and ALDH7B4 transcript respectively (Figure 14 and 16). However, the 35S-

ALDH3I1 antisense transgenic plants showed a suppressive expression of the same gene 

as expected (Figure 14). These results indicate that antisense expression of ALDH3I1 

gene was able to repress the expression of endogenous ALDH3I1 gene by a RNA-RNA 

complementation. 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Expression of ALDH genes in non-stressed transgenic plants 
(a): ALDH3I1 transcript accumulation pattern in WT and transgenic plants (S-A3P1-6) carrying 35S-
ALDH3I1 cDNA sense construct, (b): Cp-ALDH transcript accumulation pattern in WT and transgenic 
plants (CP1, CP9) carrying the 35S-Cp-ALDH cDNA sense construct, (c): ALDH3I1 transcript 
accumulation parttern in the WT and transgenic antisense plants (AS-A3P1-9) and in transgenic sense 
plants (S-A3P3, S-A3P6). The actin transcript profile accumulation was used to monitor the equal loading 
of RNA in the gel. 
 

ALDH3I1 and ALDH7B4 genes were overexpressed under salt stress (NaCl 100 mM) in 

transgenic S-A3P- and S-A7P-transgenic plants, while transgenic antisense plants still 

exhibit a repressed expression of the ALDH3I1 gene even under NaCl (200 mM) 
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treatment (Figure 15, 16). These results demonstrate that the transgenic plants really 

presented the expected phenotype at the transcriptional (production of ALDH-mRNAs) 

level (Figure 14, 15, 16). On the other hand, transgenic plants expressing ALDH3I1 gene 

under the control of the C2 promoter showed a similar expression profile as wild-type 

plants under control conditions (non-stressed plants), but these plants showed an 

increasing accumulation of the ALDH3I1 transcript and the corresponding protein under 

stress conditions as (Figure 17, 18). The upregulation of the ALDH3I1 gene obtained in 

C-A3P-lines under salt stress conditions confirmed the expected expression pattern of 

those transgenic plants at the transcriptional (Figure 17) and translational level (Figure 

18). 

 

 

 

 

 

 

 

 

 
Figure 15: Expression profile of the ALDH3I1 gene in transgenic sense and antisense lines under salt 
stress. 
(a): ALDH3I1 transcript expression, (b): rd29A transcript profile expression, (c): rRNA under ethidium 
bromide staining, (d): Actin transcript profile expression. Salt stress (NaCl) was applied to four week-old 
seedlings in soil for a period of 72 h. 
 

 

 

0 100 0 100 0 100 
NaCl 
(mM) 

a 

b 

c 

-A
3P

3 

-A
3P

6 

 

NaCl (200 mM) treatment 

a 

b 

d 

-A
3P

3 

A
S-

A
3P

2 

A
S-

A
3P

7 

A
S-

A
3P

9 

A
S-

A
3P

5 

A
S-

A
3P

4 



 89

 

 

 

 

 

 

 

Figure 16: ALDH7B4 transcript accumulation in wild-type and transgenic plants under stressed and 
non-stressed conditions 
The rd29A probe was used to check the osmotic stress status in Arabidopsis plants, while the actin probe 
was used to check the equal amounts of RNA loaded in the gel. 
 

 

 

 

 

 

 

 

Figure 17: ALDH3I1 transcript accumulation in wild-type and C-A3P-transgenic plants under 
stressed and non-stressed conditions. 
The rd29A probe was used to check the osmotic stress status in Arabidopsis plants, while the actin probe 
was used to check the equal amounts of RNA loaded. 
 

3.2.6. Analysis of ALDH-protein accumulation in transgenic plants 

The expression of the ALDH3I1 gene was investigated at the protein level in WT, 
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4). The plants were treated with salt stress (NaCl 200 mM) for 24 h and used for protein 

analysis. The results showed no ALDH3I1 protein accumulation in the knock-out mutants 

under control and NaCl (200 mM) treatment, while transgenic plants overexpressing the 

ALDH3I1 gene (S-A3P1-6) showed a constitutive ALDH3I1 protein accumulation 

(Figure 18). On the other hand, transgenic plants expressing the ALDH3I1 gene under the 

control of the stress inducible C2-promoter (C-A3P1-3) showed an increasing ALDH3I1 

protein accumulation only under stress conditions. Their protein accumulation profile 

was similar to the wild type under control conditions (untreated plants) (Figure 18). 

These results indicate that all the transgenic plants showed the expected expression 

pattern at the protein level respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18: Constitutive and stress inducible accumulation of ALDH3I1 protein in transgenic 
Arabidopsis plants and loss of the protein in knockout mutants 
Salt stress (NaCl 200 mM) was applied to adult seedlings (4 weeks old) in soil for a period of 72 h. Untr. = 
Untreated wild type seedlings. Expression of the 6-19 protein was investigated to confirm the salt stress 
status of the plants. Antibodies against 6-19 polypeptide from C. plantagineum also recognise Arabidopsis 
thaliana homologues (Ingram and Bartels 1996). 6.-19 cDNA encodes for a D11-LEA protein related 
polypeptide, which is upregulated under osmotic stress and ABA treatment (Piatkowski et al 1990). 
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3.3. Physiological and biochemical characterization of wild-type and transgenic 

plants exposed to various stressors 

3.3.1. Plant responses to salt stress exposure 

The response of plants to salt stress was checked in different media (MS-agar, soil and 

hydroponic cultures) containing different concentrations of NaCl and KCl. Figure 19 

shows the seed germination and the seedling development of independent plants in MS-

NaCl media. No growth differences were observed in wild-type and all transgenic plants 

in the absence of stress (control conditions), but significant growth differences appeared 

after two weeks of seedling development under stress (NaCl) conditions. All tested 

transgenic seeds overexpressing the ALDH genes grew faster than the wild type despite 

stress exposure, and developed their first true leaves faster than the wild-type plants 

(Figure 19 a, c). However, the antisense transgenic seeds and the knock-out mutants 

showed retarded growth under salt stress and generally failed to germinate at 150 mM 

NaCl (Figure 19 a, b). Table 6 summarizes the biochemical analyses (chlorophyll 

content, fresh weight accumulation, MDA accumulation) in the seedlings exposed to the 

stress. In antisense and knock-out mutants the MDA and Chlorophyll content were not 

determined at 100 and 150 mM NaCl because those seedlings failed to grow with true 

leaf development (Figure19, Table 6) and therefore sample collection for biochemical 

assay was not possible in those transgenic lines under such stress conditions. This 

observation suggests that antisense and knock-out mutant plants are more sensitive to salt 

stress than the wild-type and transgenic plants overexpressing ALDH genes. Under salt 

treatments, the level of lipid peroxidation expressed as result of MDA measurements was 

higher in WT plants than in the transgenic plants overexpressing ALDH genes (Table 6). 



 92

Inversely the chlorophyll contents and fresh weight accumulation in transgenic plants 

overexpressing ALDH genes were higher than in WT (Table 6), indicating that transgenic 

S-A3P-lines, S-A7P-lines and C-A3P-lines showed a reduced level of oxidative stress 

and were able to cope with the stress conditions better than the wild-type, antisense and 

ALDH3I1 knock-out mutant seedlings (Figure 19, Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT AS-A3P2 AS-A3P7 AS-A3P9b S-A3P3 

WT C-A3P1 C-A3P2 C-A3P3 S-A3P3 

0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 

100 mM 100 mM 100 mM 100 mM 100 mM 100 mM 100 mM 

Knock 1 Knock 2 

0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 

100 mM 100 mM 100 mM 100 mM 100 mM 

WT S-A7P1 S-A7P2 S-A7P3 

0mM NaCl 0mM NaCl 0mM NaCl 0mM NaCl 

100 mM 100 mM 100 mM 100 mM 

150 mM 150 mM 150 mM 150 mM 

c 

a 

Figure 19: seed germination and 
early seedling development of 
wild-type and transgenic plants 
exposed to salt stress. 
(a): Phenotype of 15 day-old wild-
type and selected 35S-ALDH3I1
sense (AP3) and C2prom-ALDH3I1
sense transgenic lines (C-A3P1, C-
A3P2, C-A3P3) and ALDH3I1
knock-out mutants (knock 1, knock 
2) growing in MS-NaCl (0-100 
mM), (b): 15 day-old wild-type, 
35S-ALDH3 antisense (AS-A3P2, 
AS-A3P7, AS-A3P9) and one of the 
35S-ALDH3 sense (AP3) transgenic 
lines growing in MS-NaCl (0-100 
mM), (c): 20 day-old wild-type and 
35S-Ath-ALDH7B4 sense (S-A7P1, 
S-A7P2, S-A7P3) transgenic lines 
growing in MS-NaCl (0-150 mM). 
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Table 6: Comparative studies of biochemical analysis of seedling development under salt stress 
 

 
MS-NaCl (mM) media 

 
Control (0 mM NaCl) 100 mM NaCl 150 mM NaCl 

 
 
DNA 
constructs 

 
 
 
Seedlings 

F.W TL Chl MDA F.W TL Chl MDA F.W TL Chl MDA 
  

WT 
 
19±2 

 
+++ 

 
9±2 

 
6±2 

 
8±2 

 
+ - - 

 
4±2 

 
16±2 

 
ND 

 
- - -  

 
ND 

 
ND 

 
35S-
ALDH3I1 
sense 

 
S-A3P3 
 
S-A3P6 

 
22±4 
 
27±2 

 
+++ 
 
+++ 

 
10±2 
 
11±4 

 
5±1 
 
5±2 

 
18±1 
 
15±2 

 
+++ 
 
+++ 

 
9±2 
 
8±1 

 
7±1 
 
8±2 

 
4±1 
 
ND 

 
++ - 
 
+ - - 

 
ND 
 
ND 

 
ND 
 
ND 

35S-
CpALDH 
sense 
 

 
CP9 

 
23±5 

 
+++ 

 
9±3 

 
6±1 

 
14±3 

 
+++ 

 
8±2 

 
7±2 

 
2±0 

 
+ - - 

 
ND 

 
ND 

 
 
35S-
ALDH7B
4 sense 

 
S-A7P1 
 
S-A7P2 
 
S-A7P3 

 
26±5 
 
27±3 
 
29±4 

 
+++ 
 
+++ 
 
+++ 

 
10±2 
 
15±3 
 
12±2 

 
7±1 
 
6±2 
 
5±1 

 
22±4 
 
25±3 
 
20±5 

 
+++ 
 
+++ 
 
+++ 

 
9±2 
 
9±3 
 
8±1 

 
7±0 
 
7±3 
 
6±1 

 
8±1 
 
5±0 
 
7±2 

 
+++ 
 
+++ 
 
+++ 

 
6±1 
 
5±0 
 
8±2 

 
11±4 
 
12±4 
 
14±2 

 
 
C2-
ALDH3I1 
sense 

 
C-A3P1 
 
C-A3P2 
 
C-A3P3 

 
27±6 
 
20±2 
 
24±3 

 
+++ 
 
+++ 
 
+++ 

 
12±2 
 
11±3 
 
13±2 

 
6±1 
 
5±2 
 
6±2 

 
15±3 
 
16±3 
 
19±2 

 
++ - 
 
+++ 
 
+++ 

 
7±1 
 
8±2 
 
8±1 

 
7±2 
 
6±2 
 
8±3 

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

 
35S-
ALDH3I1 
antisense 

 
AS-A3P2 
 
AS-A3P7 
 
AS-A3P9 

 
25±2 
 
19±3 
 
27±5 

 
+++ 
 
+++ 
 
+++ 

 
9±4 
 
10±2 
 
12±4 

 
6±2 
 
8±1 
 
7±1 

 
ND 
 
ND 
 
ND 

 
- - - 
 
- - - 
 
- - - 

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

 
- - -  
 
- - -  
 
- - -  

 
ND 
 
ND 
 
ND 

 
ND 
 
ND 
 
ND 

ALDH3I1 
knockout 
mutants 

 
Knock 1 
 
Knock 2 

 
26±2 
 
20±4 

 
+++ 
 
+++ 

 
11±2 
 
15±5 

 
7±2 
 
8±2 

 
ND 
 
ND 

 
- - -  
 
- - -  

 
ND 
 
ND 

 
ND 
 
ND 
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Seedlings exposed to salt stress were used for biochemical analyses after 14 days of development in MS-
NaCl conditions. F.W = fresh weight accumulation (mg/20 seedlings), Chl = chlorophyll content (mg/20 
seedlings) MDA = malondialdehyde accumulation (nmol/mg F.W), TL = true leaf development, (+++) = 
100 % true leaf development, (++-) = 75 % true leaf development, (+--) = 25 % true leaf development, (---) 
= no record of true leaf development, ND = data not determined. The data represent the mean values ± SD 
of three replicate experiments. The recorded boldfaced values showed significant stress tolerance 
improvements when compared to those of the wild type under similar stress conditions. 
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Figure 20: Responses of plants to NaCl treatments in hydroponic cultures 
Three weeks old plants were transferred to hydroponic cultures containing indicated salt concentrations and 
allowed to grow for another two weeks. The photograph (a) represents the phenotype of the plants after one 
week of salt stress exposure. The average mean values of fresh weight accumulation  ± SD of three 
replicate experiments were recorded (b). F.W = fresh weight accumulation of the plants. 
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weeks under salt stress (NaCl) treatments. Figure 20 a shows the phenotype of the plants 

exposed to salt stress in hydroponic cultures and Figure 20 b presents the fresh weight 

accumulation of the plants exposed to salt stress. No significant differences were 

observed in untreated plants. However, the wild type was found more sensitive to salt 

treatment than the transgenic lines. The wild type developed signs of wilting earlier than 

the transgenic plants overexpressing ALDH genes (Figure 20 a). The transgenic plants (S-

A3P3, S-A3P4, S-A3P6, CP9) even remained green after 10 days of salt stress, while the 

wild-type and the antisense transgenic leaves (WT, AS-A3P4) withered away at the same 

time of stress exposure (Figure 20 a). 

Figure 21 shows the phenotypic traits of selected transgenic lines in soil experiments 

under different concentrations of NaCl and KCl treatments. The results showed 

significant salt stress tolerance improvement in transgenic plants overexpressing ALDH 

genes (S-A3P3, S-A7P1, S-A7P2, S-A7P3, C-A3P1, C-A3P2) under NaCl and KCl 

treatments. No significant stress tolerance differences were observed between S-A3P/S-

A7P-transgenic plants carrying 35S-ALDH cDNA constructs and the C-A3P-transgenic 

plants carrying the C2-ALDH cDNA constructs (Figure 21). Figure 22 shows the lipid 

peroxidation assays in those plants exposed to various concentrations of salt (NaCl) 

treatments in soil experiments. It was obvious that transgenic plants overexpressing 

ALDH3I1, and ALDH7B4 genes showed an improved stress tolerance in comparison with 

the wild-type and the ALDH3I1 knock-out plants. The plants presented similar stress 

tolerant phenotypes to that of hydroponic-NaCl cultures. The levels of lipid peroxidation 

recorded in these plants are similar to that of MS-agar and hydroponic culture 

experiments i.e. higher lipid peroxidation in WT and knock-out mutants and lower lipid 
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peroxidation in transgenic plants overexpressing ALDH genes under stress conditions. 

These results show that the observed phenotypes under stress conditions were not limited 

to specific developmental stages of the plants. 
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Figure 22: Lipid peroxidation values expressed as MDA content in plants exposed to 7 days of salt 
(NaCl) stress treatments. 
The MDA content in knock 1, knock 2, AS-A3P2, 7 and 9 was not determined at 300 and 400 mM NaCl 
treatment because the plant material at those stress conditions was not enough to carried out the assay. 
Data represent the mean values ± SD of three independent experiments. ND = not determined. 
 

3.3.2. Responses of plants to dehydration stress 

Seed germination and early seedling development was monitored in MS-agar under water 

deficit conferred by different concentrations of polyethylene glycol (PEG 8000, Sigma). 

PEG was added into pre-cooled autoclaved MS-agar media because changes occur in 

PEG chemical properties when autoclaved. PEG was used to lower the water content in 

the agar plates. Seeds were germinated and allowed to grow in MS-agar containing PEG 

concentrations ranging from 0 to 20 % (w/v) PEG. MS-agar media failed to solidify at 

PEG concentrations higher than 20 %. Figure 23 shows the levels of lipid peroxidation 
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and the fresh weight accumulation of seedlings after 15 days of water deficit exposure. 

First investigations showed that concentrations between 0 and 5 % (w/v) PEG revealed 

no growth differences between the wild-type and the transgenic plants. The experiments 

were therefore carried out with 10 and 20 % (w/v) PEG. Significant growth differences 

were observed after one-week of seedling growth. Transgenic plants overexpressing 

ALDH genes grew better and showed less signs of lipid peroxidation than the wild-type 

plants under water deficit as confirmed by their fresh weight accumulation and their level 

of MDA production (Figure 23). The wild-type seeds failed to germinate at 20 % (w/v) 

PEG, while the transgenic lines showed approximately 25 % of seed germination with 

true leaf development at water deficit conditions conferred by 20 % (w/v) PEG. 

To test the responses of plants to drought stress, 12 to 14 day-old seedlings grown in MS-

agar plates were transferred into trays containing soil/vermiculite (3:1) and allowed to 

acclimate for another 7 days before applying the drought stress. The soil was allowed to 

dry by withholding the watering for 15 days. The wild-type plants showed more wilting 

symptoms after one week of dehydration than the transgenic ALDH overexpressing plants 

(S-A3P3, S-A7P1-3, C-A3P1-3) (Figure 24). 
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Figure 23: Fresh weight accumulation (a) and lipid peroxidation (b) in wild-type and transgenic 
plants exposed to water deficit conferred by addition of PEG 8000 into MS-media. 
F.W = fresh weight accumulation (mg/50 seedlings), MDA = malondialdehyde accumulation (nmol/mg 
F.W), ND = data not determined because WT seeds failed to germinate at 20 % (w/v) PEG. The data 
represent the mean values ± SD of three replicate experiments. 
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On the other hand, transgenic plants with stress-inducible ALDH3I1 phenotype (C-A3P-

lines) were more tolerant to dehydration stress than the transgenic plants constitutively 

expressing ALDH genes (S-A3P3, S-A7P1, S-A7P2, S-A7P3) (Figure 24). After 10 days 

of dehydration, C-A3P1 and C-A3P2 plants were still green showing phenotype of 

enhanced dehydration tolerance compared to wild-type and the transgenic plants (S-

A3P3, S-A7P1, S-A7P2, S-A7P3) constitutively expressing ALDH genes. Figure 25 

shows the level of lipid perodixation in transgenic plants constitutively expressing 

ALDH3I1, Cp-ALDH, ALDH7B4 and the stress inductive ALDH3I1 gene expression (C2-

ALDH3I1) under dehydration treatment. The results showed that MDA production in the 

wild-type plants was two times higher than in the transgenic plants overexpressing ALDH 

genes under drought stress. The levels of MDA content were elevated both in wild-type 

and in all the transgenic plants, but the degree of lipid peroxidation was significantly 

lower in transgenic plants overexpressing ALDH genes than in stressed wild-type plants 

(Figure 25). Transgenic C-A3P-lines showed even lower amount of MDA accumulation 

than the transgenic plants constitutively expressing ALDH3I1 gene (S-A3P lines, CP 

lines, S-A7P lines) under dehydration treatment (Figure 25). The ALDH3I1 knock-out 

mutant plants (Knock 1 and 2) showed more sensitivity to dehydration than the wild type 

as illustrated in Figure 26. The phenotypes of knock-out mutants under dehydration 

correlated with the expected results and confirmed thereby the involvement of ALDH 

genes in stress tolerance mechanisms. 
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Figure 24: Drought tolerance in transgenic plants overexpressing ALDH3I1 and ALDH7B4 genes 
The plants growing in pots were exposed to dehydration stress for 15 days. Photograph shows the 
phenotypes of independent plants after 7 days of dehydration exposure. Each line is presented in triplicate. 
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Figure 25: Estimation of lipid peroxidation level expressed as the amounts of MDA contents in plants 
exposed to dehydration treatments. 
Seedlings transferred to soil-trays were allowed to acclimate for one weeks and dehydration was imposed 
for indicated periods by withholding to water the plants. The data represent the mean values ± SD of three 
replicate experiments. Dehy. = dehydration treatment. 
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Figure 26: Sensitivity of ALDH3I1 knock-out mutant plants to dehydration. 
Dehydration was imposed to the plants for a period of 15 days and samples were collected for lipid 
peroxidation assays. Data represent mean values ± SD of three replicate experiments. The photograph 
shows stress sensitivity of the mutant plants in comparison with the wild-type plants. 
 

3.3.3. Responses of plant to hydrogen peroxide exposure 

In order to evaluate the role of ALDH genes to confer tolerance to oxidative stress, wild-

type and independent transgenic plants were exposed to hydrogen peroxide, a causal 

agent of oxidative stress in plants. The tolerance of plants to H2O2 was analysed during 

seed germination and early stages of seedling development. Seeds were germinated in 

liquid media containing different concentrations of H2O2. Figure 27 shows the rates of 

seed germination after 4 days of growth. 5 mM H2O2 inhibits wild-type and antisense 

transgenic seed germination, while the transgenic seeds overexpressing ALDH genes (S-

A3P3, S-A3P6) were able to germinate and produce true leaves under the same 

conditions (Figure 27). 
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Figure 27: Effect of hydrogen peroxide during early stage of seed germination. 
Seeds were allowed to germinate in indicated concentrations of hydrogen peroxide for 4 days and the 
germination rate was recorded. Data represent mean values  ± SD of three replicate experiments. 
 

3.3.4. ROS scavenging effects of ALDHs and oxidative stress tolerance in transgenic 

plants 

The role of ALDHs as ROS scavengers was first investigated by measuring the 

accumulation of endogenous superoxide ion and hydrogen peroxide in WT, S-A3P3 and 

S-A3P6 plants under various abiotic stresses. As shown in Figure 28 the production of 

superoxide ion in the wild-type plants was found to be about four times higher than that 

of the transgenic lines under 24 h of dehydration treatment (Figure 28 a). Since hydrogen 

peroxide is very reactive, its accumulation in the plants was assayed after 4 h of plant 

exposure to salt stress (200 mM NaCl) and dehydration. Figure 28 b shows that higher 

amounts of hydrogen peroxide were produced in wild-type seedlings than in transgenic 

plants (S-A3P3, S-A3P6) under stress conditions. These findings promote the role of 

ALDHs as ROS scavengers and may explain the oxidative stress tolerance in transgenic 

S-A3P3 and S-A3P6 plants. Tolerance of the transgenic plants to this stress has been 
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further checked by an assay for the level of MDA production in the plants. The results 

showed a reduced accumulation of MDA in comparison with the wild type under 

dehydration and salt stress (Figure 25). 
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Figure 28: Reduced accumulation of superoxide anion and hydrogen peroxide in transgenic plants 
constitutively expressing ALDH3I1 gene under abiotic stress. 
AU = mean absorbance multiplied by 1000 without any further conversions (Tiedemann 1997) ± SD of 
three replicate experiments. (a) = superoxide anion content in seedlings exposed to dehydration over 24 h 
period. (b) = Hydrogen peroxide accumulation in seedlings exposed to salt stress and dehydration for 4 h. 
Untr. = Untreated seedlings used as control. 
 

 

The accumulation of H2O2 was further monitored by an in vivo assay in transgenic plants 

overexpressing ALDH3I1 (S-A3P3), ALDH7B4 gene (S-A7P1, 2, 3), and in transgenic C-

A3P-plants expressing the ALDH3I1 gene under the control of the C2-promoter. Figure 

29 shows the in vivo detection of H2O2 in some selected plants and Figure 30 shows the 

level of H2O2 accumulation in the plant tissues exposed to stress conditions. Salt stress 

induces an increased accumulation of H2O2 in the wild-type as well as in the transgenic 

lines (S-A3Ps, S-A7Ps, C-A3Ps), but the rate of accumulation was much lower in 

transgenic ALDH overexpressing plants (S-A3Ps, S-A7Ps, C-A3Ps) than in the wild-type 

ba
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plants (Figure 29, 30). These results confirmed the potential of ALDH protein activities 

to reduce the H2O2 accumulation in plants exposed to abiotic stress. The reduction of 

H2O2 accumulation in those plants correlated with improved stress tolerance in 

comparison with the wild-type and the knockout mutant plants (Figure 19, 20, 21). 

The level of cell viability was further analysed in plants exposed to salt stress conditions. 

Figure 31 shows the in vivo detection of viable cells via fluorescein diacetate staining 

under fluorescence microscope observation. Fluorescein diacetate is a specific staining 

compound, absorbed only by vital cells, and constitutes therefore a good detection 

method to localize intact and vital cells in vivo (Widholm 1972). The results show that 

transgenic plants overexpressing ALDH genes present more viable cells than the wild-

type plants under stress conditions (Figure 31), probably because of the reduced levels of 

MDA and ROS accumulation in those transgenic plants. This protective status of 

transgenic plant cells probably is due to the higher level of ALDH protein activity in 

comparison with the wild-type plants as shown by the protein blot analysis under stress 

conditions (Figure 5). 

It is evident from the above biochemical analyses that transgenic plants overexpressing 

Arabidopsis ALDH genes are more tolerant to dehydration and salt stress than the wild-

type plants due to the overexpression of ALDH genes, subsequently reducing the level of 

cellular and molecular damages caused by accumulation of reactive aldehydes and ROS 

in plant cells. The overexpression of Arabidopsis ALDH genes therefore provides a 

protective status to cells under stress conditions. 
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Figure 29: In vivo detection of H2O2 accumulation in plants exposed to salt stress via DAB method 
Wild-type and transgenic plants subjected to different concentrations of NaCl treatment and used to assess 
the in vivo accumulation of H2O2 after one week of salt treatments. The level of H2O2 accumulation 
correlates with the intensity of brownish of the leaves according to DAB method. 
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Figure 30: Quantitative estimation of ROS (H2O2) generation in plants exposed to dehydration and 
salt stress. 
Seedlings were exposed to various stress conditions for 24 h and then used to check the amounts of ROS 
(H2O2) generated in the plant cells. Data represent mean values ± SD of three replicate experiments. 
Dehy.= Dehydration treatment. 
 

 

WT S-A3P3 S-A7P1 S-A7P2 S-A7P3 

0 

200 

NaCl 
(mM) 

C-A3P1 C-A3P2 



 108 

 

 

 

0

20

40

60

80

100

120

140

WT S-A3P3 S-A7P1 S-A7P2 S-A7P3

C
el

l v
ia

bi
lit

y 
(i

n 
%

)

Control

100 mM NaCl

200 mM NaCl

 

Figure 31: Microscopic detection of viable plant cells under salt stress 
Leaf materials were collected from one week-stressed and unstressed plants to assess the amounts of viable 
plants cells via fluorescein diacetate vital staining solution. The viable cells were fluorescent and able to be 
counted under microscope observation. The data were estimated in percentage of viable cells (± SD) of 
three replicate experiments. 
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4. DISCUSSION 

Controlling gene expression is one of the key-regulatory mechanisms used by living cells 

to accomplish specific biological functions under a given growth condition. In the last 

decade, increasing amounts of stress-inducible genes have been characterized in various 

plant species (Kishor et al 1995, Ingram and Bartels 1996, Ramanjulu and Bartels 2002, 

Shinozaki and Dennis 2003). Some stress-inducible aldehyde dehydrogenase genes have 

been also characterized in plants (Cui et al 1996, op den Camp and Kuhlemeier 1997, 

Deuschle et al 2001, Kirch et al 2001, Liu et al 2001, Liu and Schnable 2002, Sunkar et al 

2003, Bouché et al 2003, Tsuji et al 2003, Kirch et al 2004). Nowadays, the advance in 

molecular technique has provided new ways to analyse the transcriptomes of plants 

involved in environmental stress tolerance mechanisms (Scheideler et al 2002, Shimono 

et al 2003). This technology has greatly contributed to our current understanding of 

molecular and physiological mechanisms of stress tolerance in plants. Whereas the role 

of some proteins as regulatory factors or as biosynthetic enzymes in development and 

adaptation of plants to environmental stress are known, the involvement and role of 

aldehyde dehydrogenase proteins in plants to confer environmental stress tolerance is just 

emerging (Kirch et al 2001, Kirch et al 2004). Apart from the well-studied substrate 

specific BADH gene, which is involved in the synthesis of the osmoprotectant glycine 

betaine in plants responding to osmotic stress (Weretilnyk and Hanson 1990, Zhu et al 

2003), the biological role of most stress-inducible aldehyde dehydrogenase genes in 

relation to abiotic stress tolerance is unknown. It is only in 2004 that Kirch et al (2004), 

based on the release of the complete genome sequences of Arabidopsis thaliana 

examined for the first time the phylogenetic and molecular relationship of all ALDH 
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genes in Arabidopsis plants and the functional features of the corresponding ALDH 

protein families. Their contribution provided a revised and unified nomenclature for 

plant-ALDH genes (Kirch et al 2004), which was adopted by the ALDH Gene 

Nomenclature Committee (AGNC) (Vasiliou et al 1999). The revised ALDH gene 

nomenclature according to Kirch et al 2004 has been used here for the sake of 

conformity. The study undertaken here contributes uniquely to our knowledge of plant 

ALDH functions with regard to their involvement to confer tolerance under various stress 

conditions. The data presented here demonstrate that ALDHs display a crucial 

antioxidative role coupled with aldehyde detoxification in mechanisms of plant responses 

to abiotic stress. 

 

4.1. Regulation of Arabidopsis ALDH gene expressions in response to abiotic stress 

The increased accumulation of Arabidopsis-ALDH mRNAs in plants exposed to 

dehydration and salt stress (Figure 2, Kirch et al 2001, Sunkar et al 2003) suggested that 

some Arabidopsis-ALDH genes are involved in the phenomenon of plant adaptation to 

abiotic stress. The analysis of ALDH3I1 (formerly known Ath-ALDH3), ALDH3H1 

(formerly known as Ath-ALDH4) and Cp-ALDH protein sequence relationship showed a 

high homology (70 %) to each other (Kirch et al 2001). However, recent studies revealed 

that several Arabidopsis-ALDH genes are differentially expressed in plant tissues exposed 

to stress conditions (Schlingensiepen 2003). This indicates that the highly homologous 

Arabidopsis-ALDH genes are probably controlled by diverse regulatory mechanisms. In 

this study as well as in previous studies (Kirch et al 2001, Sunkar et al 2003, 

Schlingensiepen 2003), ALDH transcript accumulations and their corresponding protein 
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accumulations were analysed under exogenous applications of plant hormone ABA, 

hydrogen peroxide and paraquat in order to study the regulatory pattern of ALDH genes 

in Arabidopsis plants under specific stress elicitors. ALDH3I1, ALDH3H1, ALDH3F1, 

ALDH7B4 genes were differentially induced in shoots and roots by ABA 

(Schlingensiepen 2003). Likewise, the Craterostigma-ALDH (Cp-ALDH) gene was 

upregulated in the whole plants exposed to exogenous treatment of ABA (Kirch et al 

2001). RT-PCR analysis revealed a rapid accumulation of the ALDH3I1 transcript in 

plants exposed to 1 h of hydrogen peroxide treatment (Sunkar et al 2003). This data 

suggested that ALDH3I1, ALDH3H1 and Cp-ALDH genes might probably be induced by 

an accumulation of endogenous ABA and ALDH3I1 by an endogenous accumulation of 

ROS (H2O2) under stress conditions or that there might be a cross-link expression 

pathway between the ALDH transcript accumulation and ROS/ABA biosynthesis. This 

hypothesis was confirmed here by the ALDH-protein accumulation analyses after ABA, 

H2O2 and paraquat treatment (Figure 5). The Cp-ALDH protein displayed an increasing 

accumulation from 6 h to 72 h of ABA treatment (Kirch et al 2001), while the ALDH3I1 

protein was found to progressively accumulate from 2 h to 72 h of ABA, paraquat, and 

H2O2 treatments (Figure 5). These findings point out the potential of ABA and ROS to 

trigger the synthesis of ALDH-proteins. 

Recently, direct genetic evidence showed that activation of other enzymes such as 

membrane bound NAD(P)H oxidases in root hair growth is under the control of ABA-

ROS signalling transduction pathway (Foreman et al 2003). The expression of NAD(P)H 

oxidases was triggered by accumulation of ABA and ROS, and the transcript 

accumulation of these genes correlated not only with root hair elongation but also with 
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stomatal closure (Foreman et al 2003). Such kind of signal transduction modulated by 

endogenous accumulation of ABA and ROS might also be the probable transduction 

cascade pathway leading to the upregulation of stress-inducible ALDH genes in 

Arabidopsis thaliana. Microarray analyses of transcript accumulation under stress 

conditions (Scheideler et al 2002, Shimono et al 2003, Seki et al 2002) revealed that 

ABA is involved in the signal transduction process of environmental stress tolerance in 

various plant species. Accumulation of endogenous ABA leads to an upregulation of a 

specific set of stress inducible genes via MAPK cascade pathway (Kovtun et al 2000, 

Xiong and Yang 2003). ROS accumulation is beneficial to some extent to the adaptation 

mechanisms of plants to abiotic stress (Allen and Tresini 2000, Dat et al 2000). 

Increasing literature suggests that ROS probably act as one of the earliest factors that 

induce the expression of defence-related genes such as GST, encoding glutathione S-

transferase, and PAL, encoding Phenylalanin-ammonia lyase (Desikan et al 1998, Grant 

et al 2000). Lopez-Huertas et al (2000) asserted that H2O2 induces the expression of 

genes required for peroxisome biogenesis. Peroxisomes are organelles of direct 

importance for antioxidant defence. ROS is also believed to play a pivotal role in the 

phenomenon of cross-tolerance, in which exposure to one stress can induce tolerance to 

other stresses (Bowler and Fluhr 2000). 

A previous report on Arabidopsis-ALDH gene expression revealed that ALDH3H1 is 

constitutively and weakly expressed in wild-type plantlets (Kirch et al 2001), This work 

revealed that ALDH3H1 is significantly expressed in roots under ABA, NaCl and 

dehydration treatments (Figure 11, 12, Table 5), confirming that the expression of the 

ALDH gene superfamily responds to various regulatory pathways. These results suggest 
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that ALDH3H1 gene may be involved in several cellular metabolic pathways including 

stress in plants. Not all stress-inducible genes require an accumulation of endogenous 

ABA and/or ROS to trigger their expression under stress conditions (Ramajulu and 

Bartels 2002). However, both ABA/ROS-dependent and –independent regulatory systems 

of gene expression operate in highly defined functional connections to confer tolerance 

under a given stress condition (Ramanjulu and Bartels 2002). Based on ALDH transcript 

and ALDH protein accumulation analyses under various elicitors, the scheme below 

(Figure 32) illustrates our current knowledge of signal cascade transduction leading to the 

upregulation of the stress-inducible ALDH gene families in Arabidopsis thaliana exposed 

to various abiotic stresses. The scheme indicates the signal transduction pathways leading 

to the upregulation of plant-ALDH gene expressions under stress conditions. 
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Figure 32: A schematic representation of the regulatory pathway of stress-inducible ALDH genes 
in Arabidopsis thaliana. 
Arrows indicate the signal transduction cascade leading to the expression of the gene under stress 
exposure. As a result of the signal transduction, transcription factors bind to the promoter at specific 
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4.1.1. Tissue-specific localisation of ALDH proteins  

To study tissue specificity of ALDH genes, analyses were carried out in transgenic plants 

expressing the GUS reporter gene under the control of different ALDH promoters. The 

results indicated that ALDH3I1-GUS and CpALDH-GUS were mainly expressed in leaf 

tissues, while ALDH3H1-GUS was concentrated in roots under dehydration, salt stress 

and ABA treatments. The GUS detection was also confirmed by quantitative analysis of 

specific GUS activity under stress condition. The results revealed significant increase 

levels of GUS activity in leaves and particularly in chloroplasts in transgenic plants 

transformed with ALDH3I1 promoter-GUS construct under stress conditions (Figure 11, 

12, Table 5). The GUS fusion system has been used in various studies of plant gene 

expression, especially for promoter analysis, for dissecting gene families and for protein 

targeting studies (Schmitz et al 1990). Previous studies indicated that Cp-ALDH is 

located in plastids (Kirch et al 2001). The amino acid sequence analysis of Cp-ALDH 

could not however provide evidence for a specific chloroplast targeting sequence (Kirch 

et al 2001). The sequence analysis has also predicted the ALDH3I1 protein to be 

localised in chloroplasts, because it has an appropriate targeting sequence (Kirch et al 

2001). However, results in this work could not support a chloroplast localisation of 

ALDH3I1 protein activity because the ALDH3I1-GUS construct contains the ALDH3I1 

promoter without a downstream fragment of the ALDH3I1 structural gene, which may 

have appropriate chloroplast-targeting sequences. It can be hypothesized that the 

chloroplast localisation of the GUS activity could be due to an artificial diffusion of the 

blue precipitates (ClBr-indigo). Therefore, the data shown are not sufficient to provide 
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detailed information about the organellar localisation of ALDH3I1, ALDH3H1 and Cp-

ALDH proteins. The expression of ALDH3I1 and Cp-ALDH gene is leaf specific under 

stress conditions, while ALDH3H1 is constitutively and weakly expressed in the whole 

plant but highly concentrated in roots under stress treatments. These genes (ALDH3I1, 

ALDH3H1, Cp-ALDH) however belong to the same family 3 ALDH genes but display a 

diverse tissue specific expression pattern under stress condition. This diverse expression 

pattern points to a crucial ALDH protein function specificity respectively in a highly 

coordinative physiological mechanism to confer abiotic stress tolerance in plants. It 

would be interesting to gain detailed information about their functional specificity to 

enhance abiotic stress tolerance in higher plants. 

 

4.2. Phenotypic analysis of transgenic Arabidopsis plants under stress conditions 

4.2.1. Transformation of Arabidopsis thaliana with ALDH cDNA constructs and 

molecular characterization of the transgenic plants. 

Transgenic techniques have become a powerful tool to address analysis of gene functions 

in plants, especially in identifying physiological roles of novel proteins (Aoyama and 

Chua 1997, Bartels 2001b, Shinozaki et al 2003). These techniques often include transfer 

of stress-inducible genes to improve tolerance to a specific stress condition (Holmberg 

and Buelow 1998). In this work a set of transgenic plants overexpressing ALDH3I1, 

ALDH7B4 and Cp-ALDH genes were used (for detail see Table 2) in order to study the 

physiological role of ALDH in plants, particularly under abiotic stress conditions. In 

addition several independent transgenic lines with repressed and knock-out ALDH gene 

expressions were studied together with the wild type in order to gain insight into the 
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extent of ALDH gene involvement in processes of stress tolerance mechanisms in plants. 

ALDH3I1 and Cp-ALDH genes belong to the class 3 stress-inducible ALDH gene family 

(Kirch et al 2001), while ALDH7B4 is a stress-inducible or turgor ALDH gene in pea 

(Guerrero et al 1990, Wood and Krayesky 2002) responding to a range of abiotic stresses 

including dehydration, low temperature, heat shock and high concentrations of ABA 

(Wood and Krayesky 2002, Kirch et al 2004). The main objective of this work was to 

generate and characterize transgenic plants overexpressing stress-inducible ALDH3I1, 

Cp-ALDH, and ALDH7B4 genes in order to improve osmotic and oxidative stress 

tolerance in higher plants. Generally, a comparative study including knock-out mutant 

plants and transgenic plants overexpressing a specific gene is an ideal strategy to gain 

information on the functional involvement of a gene of interest in cellular metabolism. 

Downstream effects of reduced or loss of function in antisense or knock-out mutant 

plants compared with the transgenic plants overexpressing the same gene are adequate 

parameters to evaluate the extent of the gene involvement in stress tolerance mechanisms. 

For instance, the loss of function in the NAD(P)H oxidase gene (atrbohC) by T-DNA 

insertion has demonstrated its involvement in root hair growth (Foreman et al 2003, 

Kwak et al 2003). Wong et al (2004) used the same down-regulation approach to 

demonstrate that metallothionin is a crucial reactive oxygen scavenger in rice. To test the 

hypothesis that ALDH protein activities display a protective function in plant responses 

to abiotic stress, Arabidopsis mutants with reduced ALDH transcript/protein 

accumulation (antisense and knock-out transgenic plants) were subjected to various 

abiotic stresses together with the wild-type and the ALDH overexpressing transgenic 

Arabidopsis plants. 
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4.2.2. Transgenic plants overexpressing ALDH genes 

Several stress-inducible genes encoding for key enzymes such as osmolyte biosynthesis, 

and detoxification enzymes have been overexpressed in transgenic plants and this has 

conferred a stress tolerant phenotype. Attempts to improve osmotic stress tolerance in 

plants include the use of genes encoding enzymes for biosynthesis of various 

osmoprotectants such as E. coli mannitol 1-phosphate dehydrogenase for mannitol 

synthesis (Tarczynski and Bohnert 1993), delta-1-pyrroline-5-carboxylate synthetase for 

proline synthesis (Kishor et al 1995, Igarashi et al 1997) and betaine aldehyde 

dehydrogenase for glycine betaine (Ishitani et al 1995, Takabe et al 1998, Zhu et al 

2003). In those transgenic approaches, only a single gene for a protective protein or 

enzyme was overexpressed under the control of the constitutive CaMV 35S promoter in 

the transgenic plants. Here, ALDH3I1 and ALDH7B4 genes were successfully 

overexpressed in independent transgenic Arabidopsis plants using the same transgenic 

approaches. The transgenic plants (S-A3Ps, S-A7Ps, C-A3Ps) showed an increased 

expression of the ectopic ALDH3I1 and ALDH7B4 genes (Figure 15,16). The 

overexpression of ALDH3I1, ALDH7B4 and Cp-ALDH genes in transgenic plants (S-

A3Ps, S-A7Ps, C-A3Ps and CPs) confers enhanced tolerance to dehydration and salt 

stress as shown by phenotypic analyses in plants exposed to different concentrations of 

NaCl in MS-media as well as in soil-experiments (Figure 19, 20, 21). These results 

suggest that overexpression of ALDH genes could confer stress tolerance at any 

developmental stage of the plants. The stress tolerance was furthermore confirmed at the 

seed germination stage, where transgenic plants displayed approximately 40 % of seed 
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germination with proper true leaf development in salty-soil (200 mM NaCl), while the 

wild-type seeds failed to germinate under such conditions. The improved stress tolerance 

in these plants could be explained by a higher activity of ALDH proteins as a result of 

increased expression level of the ectopic genes in comparison with the wild type. The 

level of toxic aldehyde by-products, which accumulated in plant tissues under stress 

conditions, was highly reduced in the transgenic plants (S-A3Ps, S-A7Ps, C-A3Ps, CPs) 

in comparison with that of the wild-type plants as a result of reduced level of MDA 

accumulation in those transgenic lines (Table 6). Several other research observations also 

point to a role of plant-aldehyde dehydrogenases in osmotic stress tolerance. Velasco et al 

(1994) have reported about the molecular characterization of ALDH11 protein family 

(GapC-Crat), a cytosolic GAPDH from the resurrection plant Craterostigma 

plantagineum. The mRNA and enzymatic activity of GAPDHc was significantly 

increased in response to dehydration and exogenous application of ABA. From a 

proteomic study of the Arabidopsis seeds, a cytosolic GAPDH peptide was identified to 

be associated with the desiccation process of seeds, indicating the importance of these 

enzymes for desiccation tolerance (Gallardo et al 2001). In addition, characterization of 

cDNAs encoding the GAPDH from a desert halophyte Atriplex nummularia L. was 

shown to play a crucial role in osmotic stress tolerance (Nui et al 1994). Wood et al 

(1999) used expressed sequence tags (EST) analysis to discover several genes including 

ALDH genes that are likely to be involved in vegetative desiccation tolerance in the moss 

Tortula ruralis. In addition Chen et al (2002) characterized several cDNAs at the 

transcriptional level including ALDH7B6 confirming thereby the findings of Wood et al 

(1999). Here, overexpression of the ALDH3I1 and ALDH7B4 genes was clearly proven to 
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confer tolerance to dehydration and salt stress in transgenic plants. Understanding the 

processes by which plant-ALDH activities limit the cellular damage caused by toxic 

aldehydes may represent a critical protective strategy for plants to survive osmotic and 

oxidative stress. 

 

4.2.3. Induced repression of endogenous ALDH-transcript accumulation in antisense 

transgenic plants 

One of the most crucial metabolic alterations in plant response to abiotic stress is the 

silencing of a specific set of genes (Ingram and Bartels 1996) whose functions render the 

plant vulnerable to the ongoing stress condition. The silencing of protein functions could 

be achieved by antisense expression of the gene or by inactivating the messenger RNAs 

(mRNAs) by short RNAs referred to as RNA interference (RNAi) (Jorgensen 1990, 

Romano and Macino 1992). Antisense- and RNAi-directed silencing or knock-down of 

gene expression has been used successfully in various research applications for rapid and 

reliable analysis of gene functions in living cells (Dykxhoorn et al 2003). In order to 

initiate target mRNA silencing, it is first necessary for an introduced gene and the 

homologous endogenous target gene to specifically interact. Plausibly, the 

recognition/initiation phase of RNA silencing is promoted by the presence of 

homologous RNA transcripts alone (perhaps above a certain threshold level), or 

alternatively, by the expression of aberrant and/or incorrectly processed RNA transcripts 

(Baulcombe 1996) that operate through a double strand RNA (dsRNA) intermediate, 

inducing the formation of siRNAs. Both small sense- and small antisense-RNA 

molecules have been detected during early stages of RNA silencing in various organisms. 
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An RNA silencing-like mechanism was first described in plants following attempts to 

overexpress gene constructs encoding key enzymes in the anthocyanin biosynthesis 

pathway, in transgenic petunia (Napoli et al 1990, van der Krol et al 1990). Contrary to 

their expectation, the pigmentation in the flowers and the endogenous gene mRNA 

transcript levels of transformed plants were not enhanced (Napoli et al 1990, van der Krol 

et al 1990). 

The functional analysis of Arabidopsis-ALDH genes was here investigated by exploring 

the antisense-ALDH3I1 transcript accumulation, which induced the repression of 

endogenous ALDH3I1 gene through the control of the constitutive CaMV 35S promoter 

in transgenic Arabidopsis plants. Since the overexpression of the gene conferred 

tolerance to drought and salt stress, it was then hypothesised that antisense repression of 

the endogenous gene in transgenic plants could result into stress sensitivity. Efficiency of 

antisense repression of the ALDH3I1 gene was tested by RNA blot analysis (Figure 14, 

15). Transgenic antisense lines AS-A3P1, AS-A3P2, 3, 5, 7 and AS-A3P9 showed a 

complete repression of the ALDH3I1 gene, while AS-A3P4 showed a 60 - 75 % reduction 

level of the endogenous ALDH3I1 transcript (Figure 14). The levels of lipid peroxidation 

and ROS generation in antisense transgenic plants under stress conditions were relatively 

higher than in the wild-type and in transgenic plants overexpressing ALDH3I1 gene. 

These results confirmed that ALDH genes are involved in mechanisms of abiotic stress 

tolerance in plants and their repression in antisense transgenic lines induced vulnerability 

to several abiotic stresses. This molecular approach has been used successfully in 

functional characterization of genes in various plant species exposed to stress conditions. 

The antisense expression of the prl1 gene in Arabidopsis plants resulted in root 
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elongation arrest (Nemeth et al 1998). These results point to the involvement of the prl1 

gene in processes of root elongation in plants. In addition Oervar and Ellis (1997) 

demonstrated that expression of an antisense construct, comprising about 45 % of the 3’ 

coding region of tobacco catalytic ascorbate peroxidase (APX), could reduce 

significantly both the endogenous APX mRNA levels and the APX catalytic activity in 

those plants. Their findings also showed that transgenic plants with reduced endogenous 

APX mRNA and APX catalytic activity displayed a significantly higher level of ozone 

injury following very high ozone exposure, indicating that cytosolic APX is an important 

factor in oxidative stress management in tobacco plants following ozone exposure. 

Likewise, the results presented here showed that antisense repression of ALDH3I1 

resulted not only in sensitivity to dehydration and salt stress but also to vulnerability to 

lipid peroxidation and oxidative stress. In the presence of 2.5 mM H2O2 the antisense 

ALDH3I1 transgenic seeds completely failed to germinate, confirming their vulnerability 

to oxidative stress. This study is the first successful antisense suppression of ALDH3I1 

gene that proves the involvement of ALDH gene in abiotic stress tolerance in plants. 

 

4.2.4. ALDH knock-out in transgenic T-DNA insertion mutant plants 

Another powerful approach of functional characterization of proteins is the screening of 

mutagenized populations by techniques that create protein inactivations using T-DNA 

insertions. In the last decade, increasing amounts of transgenic plants with specific 

protein inactivations have been generated in various studies by Agrobacterium 

tumefaciens-mediated T-DNA insertions (Østergaard and Yanofsky 2004). This approach 

was successfully used by Finkelstein (1994) to identify two novel Arabidopsis loci 
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(ABA-insensitive 4 and 5: ABI4, ABI5) involved in ABA sensitivity at seed germination, 

dormancy and stomatal regulation. Recently Nair et al (2004) have used this approach (T-

DNA insertion) to demonstrate that REDUCED EPIDERMAL FLUORESCENCE 1 

(REF1) gene encodes an aldehyde dehydrogenase that is involved in ferulic and sinapic 

acid biosynthesis in Arabidopsis thaliana. REF1 is needed for the accumulation of cell 

wall-bound ferulic acid in higher plants and mutant plants with defective REF1 activity 

accumulate reduced amount of ferulic and sinapic acid in the plant cell walls (Nair et al 

2004). REF1 has been reported to have a useful application in crop improvement because 

of its role in cross-linking cell wall-bound polysaccharides to lignin (Grabber et al 2000, 

Grabber et al 2002). Agrobacterium tumefaciens-mediated ALDH3I1 T-DNA insertion 

was used here to identified ALDH3I1 knock-out transgenic plants in order to study 

downstream effects of ALDH3I1 protein function under various abiotic stress conditions. 

The knock-out mutants displayed a higher level of sensitivity to dehydration and salt 

stress and showed signs of wilting five days earlier than the wild-type and transgenic 

ALDH3I1 overexpressing lines. The protein blot analysis showed a complete loss of the 

ALDH3I1 protein accumulation in the selected knock-out mutant plants. Phenotypic 

sensitivity of the knock-out transgenic plants to the stress treatments could be attributed 

to the loss of ALH3I1 protein function. The level of lipid peroxidation is higher in the 

knock-out mutants than in the wild-type and the transgenic plants overexpressing ALDH 

genes. Bouché et al (2003) have used T-DNA insertion mutagenesis to elucidate the 

potential of mitochondrial succinic-semialdehyde dehydrogenase (SSADH) of GABA 

shunt in protecting Arabidopsis plants against excessive accumulation of ROS under 

abiotic stress. Under 3 weeks of light exposure, ssadh-mutant plants accumulate higher 
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amounts of ROS in their leaves when compared to the wild-type plants (Bouché et al 

2003). These data confirm the role of ALDH genes in plant protection against the effects 

of lipid peroxidation and generation of ROS. It is therefore hypothesized that reduced 

function of ALDH genes could lead to susceptibility to various abiotic stress conditions. 

The loss of ALDH function could irreversibly weaken the oxidative defence systems of 

plants and render them vulnerable to various environmental stresses. This results are in 

agreement with the findings of Bouché et al (2003) about a mitochondrial succinic-

semialdehyde dehydrogenase (SSADH) of GABA shunt, which is requested to protect 

Arabidopsis plants against excessive accumulation of ROS.  

 

4.3. Protective effects of ALDHs against lipid peroxidation 

To check the level of cell damage in the plant tissues under stress conditions, the 

accumulation of MDA as result of polyunsaturated fatty acid oxidations was determined. 

Lower lipid peroxidation occurred in transgenic plants (S-A3Ps, CPs, S-A7Ps, C-A3Ps) 

overexpressing the ALDH genes than in the wild-type plants under all different stress 

conditions tested. Aldehyde molecules derived from lipid peroxidation are highly reactive 

and stable (Sunkar et al 2003). They can easily diffuse and attack proteins and nucleic 

acids far away from their production site. It is believed that the enhanced detoxification 

of aldehydes and their intermediates in transgenic plants overexpressing ALDH genes 

reduce the level of lipid peroxidation, which might also improve the photosynthetic 

reactions in those plants. Several other genes were reported to reduce lipid peroxidation 

in plants under environmental stress (Oberschall et al 2000). Overexpression of a novel 
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aldose/aldehyde reductase protects transgenic plants from lipid peroxidation under 

chemical and drought stress conditions (Oberschall et al 2000).  

The overexpression of ALDH3I1 and ALDH7B4 genes in transgenic plants was proven to 

significantly reduce the level of lipid peroxidation under drought and salt stress (Figure 

22, 23, 25). These results suggest that the higher ALDH protein activities detected in 

those plants leads to a scavenging effect of toxic by-products such as aldehyde molecules 

and their intermediates accumulating as a result of stress conditions. The transgenic 

plants with a reduced or a loss of ALDH function (transgenic ALDH3I1 antisense lines 

and ALDH3I1 knock-out mutants) were more sensitive to dehydration and salt stress than 

the wild-type and the overexpressing transgenic lines (Figure 19, Table 6). The relatively 

high level of lipid peroxidation recorded in the antisense and knock-out mutant plants 

indicated a higher accumulation of aldehyde by-products as a result of the loss of 

aldehyde dehydrogenase activity in comparison with the wild-type and the transgenic 

plants overexpressing ALDH genes. These results confirm the protective role of ALDH 

proteins against lipid peroxidation. Trans-4-hydroxy-2-nonenal (4-HNE) is one of the 

major aldehyde molecules produced during lipid peroxidative reactions. 4-HNE generally 

results from radical-initiated degradation of polyunsaturated fatty acids such as linoleic 

and arachidonic acids, two relatively abundant fatty acids in cells (Hu et al 2002). In 

addition, the aldehyde by-products can be further metabolised to an epoxide form that can 

interact with DNA to form exocyclic etheno-guanine, -adenine, and –cytosine adducts 

(Chung et al 1996). On the basis of reduced lipid peroxidation and ROS levels detected in 

transgenic plants overexpressing ALDH3I1, ALDH7B4, Cp-ALDH proteins, probably 

certain ALDH proteins of families 3 and family 7 can be regarded as highly efficient 
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enzymes in detoxifying aldehyde by-products and in the protection of macromolecules 

such as DNA and other proteins. 

 

4.4. ROS generation and antioxidative effects of ALDHs 

ROS are products of the normal cellular metabolism that can cause oxidative 

stress/damage to living tissues when produced in excess. Under stress conditions, the 

production of ROS is usually exacerbated, which subsequently leads to the disruption of 

electron transport systems (Kovtun et al 2000, Arora et al 2002). In such conditions, 

organelles with highly oxidizing metabolic activity or with sustained electron flows such 

as chloroplasts, and mitochondria are functionally disrupted by the production of 

excessive ROS (Wise and Naylor 1987, Goel and Sheoran 2003). Within the 

photosynthetic apparatus, photosystem II (PSII) is mostly affected by drought, 

particularly within the oxygen-evolving complex and the reaction centres (Toivonen and 

Vidaver 1988). Protection against oxidative stress is complex and includes both 

enzymatic and non-enzymatic components (Bowler et al 1992). The key enzymatic 

systems in cell defence against oxidative damage are superoxide dismutases (Baum and 

Scandalios 1979, Bowler et al 1992, Tertivanidis et al 2004), glutathione reductase and 

glutathione oxidase (Price et al 1994). The physiological and molecular correlations 

between elevated aldehyde dehydrogenase gene expressions in the presence of H2O2 and 

stress tolerance suggest that aldehyde dehydrogenase genes also might enhance the 

stress-defence potential of plants against oxidative damage. The transgenic plants (S-

A3Ps, C-A3Ps, and S-A7Ps) expressing increasing amounts of ALDH genes were highly 

tolerant to abiotic stress and accumulated reduced amounts of ROS. Bouché et al (2003) 
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has shown that a mitochondrial succinic-semialdehyde dehydrogenase belonging to 

family 5 Arabidopsis ALDH (ALDH5F1) is required to restrict levels of reactive oxygen 

intermediates in plants. Their report reveals that the mitochondrial succinic-semialdehyde 

dehydrogenase is essential for normal plant growth, at least in part by suppressing the 

accumulation of H2O2 generated under light and heat stresses. The potential of 

mitochondrial succinic-semialdehyde dehydrogenase to restrict the ROS accumulation is 

explained by its ability to supply NADH and succinate under conditions that inhibit the 

tricarboxylic acid (TCA) cycle and impair respiration (Bouché et al 2003). In addition, a 

mitochodrial Ä1-pyrroline-5-carboxylate dehydrogenase in Arabidopsis thaliana was 

revealed to protect against proline toxicity (Deuschle et al 2001). Proline toxicity in plant 

lead to production of ROS in plant (Madeo et al 1999), supporting the hypothesis that 

mitochodrial Ä1-pyrroline-5-carboxylate dehydrogenase in Arabidopsis thaliana could 

protect plants against oxidative stress (Deuschle et al 2001). 

The direct involvement of ALDH function in antioxidative processes is confirmed by the 

high accumulation of ALDH3I1 protein under exogenous application of H2O2 in wild-

type plants (Figure 5). In addition, the qualitative and quantitative estimation of H2O2 

content in leaves of plants exposed to salt stress (Figure 29, 30) clearly point to a direct 

function of ALDH enzymes as ROS (H2O2)-scavengers. Canuto et al (1996) 

demonstrated in animal cells that enhanced lipid peroxidation by cell enrichment with 

arachidonic acid and treatment using pro-oxidants inhibits the effect of class 3 ALDH 

due to a probable decrease of class 3 ALDH gene transcripts, and when such cell 

treatment resulted in the complete inhibition of the class 3 ALDH protein synthesis, cell 

death followed. Moreover, deficiency in a mitochondrial aldehyde dehydrogenase has 
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been reported to increase vulnerability to oxidative stress in PC12 cells (Ohsawa et al 

2003). Probably a similar antioxidative role of ALDHs may be effective in plants. 

Transgenic plants overexpressing ALDH genes were able to display a higher ALDH 

protein activity leading to an efficient detoxification process of toxic aldehyde molecules 

generated during stress conditions. It is therefore hypothesized that ALDH proteins not 

only have a role in detoxification of aldehyde molecules but also participate directly to 

ROS-scavenging and antioxidative processes in responses of plants to environmental 

stress. 

To study the ability of ALDH protein activity to protect cellular structures, plant cell 

viability in both wild-type and transgenic lines were investigated under stress conditions. 

Various rapid staining strategies such as protoplasmic streaming or cyclosis, plasmolysis 

and fluorescein diacetate (Wildholm 1972) have been used to detect viable plant cells in 

different experiments. In 1970, fluorescein diacetate was successfully used to detect 

viable pollen in plants (Heslop-Harrison and Heslop-Harrison 1970). Fluorescein 

diacetate was used here to detect cell viability in plants exposed to stress conditions. 

Transgenic plants overexpressing ALDH genes (S-A3P3, S-A7P1, 2, 3) showed a higher 

amount of fluorescent cells under 100 and 200 mM NaCl treatments (Figure 31). Wild-

type plants showed no fluorescence under 200 mM NaCl treatment, indicating that a 

higher activity of ALDH proteins in those transgenic plants leads to an efficient 

detoxification of aldehyde molecules, subsequent reduction of excessive ROS production 

and thus higher viability. This clearly explains the better protective status of plant tissues 

against oxidative damage in the transgenic plants and the higher amount of cell viability 

observed in those plants when compared to the wild-type plants under the same stress 
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conditions (Figure 31). The above results demonstrate that aldehyde dehydrogenases 

display a broad functional spectrum that includes toxic aldehyde detoxification, inhibition 

of lipid peroxidation, ROS-scavenging effects, and antioxidative properties in order to 

maintain plant tissue integrity under abiotic stress conditions. This could be the reason 

why transgenic plants expressing higher levels of ALDH proteins are more resistant to 

salt and drought stress than wild-type plants (Sunkar et al 2003). The findings discussed 

here contribute to our understanding about the role of plant-ALDH proteins as ROS-

scavengers and antioxidative enzymes to confer tolerance to abiotic stress. It is therefore 

suggested that results from thorough investigations of regulatory mechanisms of ALDH 

gene expression in plants could provide an excellent way to obtain transgenic plants that 

can cope with various environmental stresses. 

 

4.5. Concluding remarks 

From the above results, it is clear that understanding the molecular basis of aldehyde 

dehydrogenase action and the interaction of ALDHs with other stress-inducible proteins 

in plants could provide a broad basis of generating transgenic plants that cope with 

multiple stresses. Results of this work showed that some members of the ALDH protein 

superfamily (ALDH3I1, ALDH7B4) and Cp-ALDH are involved in antioxidative 

defence systems in plants exposed to abiotic stress. The perturbation of ALDH3I1 gene 

expression resulting in the loss of the corresponding protein functions correlates with 

vulnerability to oxidative stress. This work demonstrates that the overexpression or the 

silencing or knock-out expression of these genes greatly alters the process of abiotic 

stress adaptation in Arabidopsis thaliana. Overexpression of aldehyde dehydrogenase 
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genes may be crucial for plants to cope with environmental stresses such as drought and 

salt stress. It will be interesting to further investigate the overexpression of members of 

aldehyde dehydrogenase gene superfamily in various agronomically valuable crops with 

the aim of improving crop tolerance to multiple environmental stressors. Studies carried 

out in Arabidopsis thaliana have made a major contribution to the current understanding 

of ALDH involvement in molecular and biochemical basis of abiotic stress tolerance in 

plants (Busch and Fromm 1999, Deuschle et al 2001, Liu et al 2001, Kirch et al 2001, 

Bouché et al 2003, Sunkar et al 2003, Kirch et al 2004). The results presented here 

notably demonstrate that combinatory approaches of RNA silencing via antisense-RNA 

expression, T-DNA knock-out insertion and the overexpression of the same gene 

provides appropriate data to gain understanding of the biological function of the gene. 

Therefore, this work represents a valuable contribution in understanding the function of 

some members of aldehyde dehydrogenase gene superfamily and their potential to confer 

osmotic and oxidative stress tolerance in higher plants. It is believed that generating 

transgenic plants with double overexpression of member of class 3 and class 7 ALDH 

genes such as ALDH3I1 and ALDH7B4 could be a promising way to increase abiotic 

stress tolerance enhancement in higher plants. 
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5. APPENDICES 

5.1. Accession numbers of the ALDH genes 

ALDH3I1 gene:  

GenBank accession number: AJ30691 (Kirch et al 2001, Kirch et al 2004) 

ALDH3H1 gene: 

GenBank accession number: AY072122 (Kirch et al 2004) 

ALDH7B4 gene: 

GenBank accession number: AJ584645 (Kirch et al 2004) 

Cp-ALDH gene: 

GenBank accession number: Cp-ALDH AJ306960 (Kirch et al 2001). 

 

5.2. Promoter sequences of the ALDH genes 

The promoter sequences of the ALDH genes are here shown using the Vector NTITM Suite 

programme. The TATA boxes are shaded in grey. The G box like is shade in red. The DRE 

like core motif is in green and shaded in blue. The ACGT-like ABRE motif is in yellow and 

shaded in blue. The forward and reverse primers are shown in red arrows and the ATG start 

codon is boldfaced in black. 
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ALDH3I1 Promoter 
 

 3521 AGATTATTAT ACCCAGGAAC CATGGGGTAA TTAGACATGC CAAGATCATT TTTAGTTTGA TGAAGATCGG TGTGGCAGAT 

 TCTAATAATA TGGGTCCTTG GTACCCCATT AATCTGTACG GTTCTAGTAA AAATCAAACT ACTTCTAGCC ACACCGTCTA 

 3601 TCCACAGCAA ATGATTCTTA TGTTCACATC CTCTGGTCCA GTCTCTCTGT AATCAAAACA CACAAAAGAT GATGAAACTG 

 AGGTGTCGTT TACTAAGAAT ACAAGTGTAG GAGACCAGGT CAGAGAGACA TTAGTTTTGT GTGTTTTCTA CTACTTTGAC 

 3681 AAATAAATCA AAACAAAACA CAAAGATGTA AAAGAAGAGG AAACTAATTA AAAACCTAAG AGTGTAAGTG TAAGGAGAGA 

 TTTATTTAGT TTTGTTTTGT GTTTCTACAT TTTCTTCTCC TTTGATTAAT TTTTGGATTC TCACATTCAC ATTCCTCTCT 

 3761 GGATCCCAGA TGGGTCTCTG GCAGCCCAGC CTGTTGTTTT CCTCTCTGCC TCCATTATTC CCATTTTTTG ATGATTCTTT 

 CCTAGGGTCT ACCCAGAGAC CGTCGGGTCG GACAACAAAA GGAGAGACGG AGGTAATAAG GGTAAAAAAC TACTAAGAAA 

 3841 CTTCTTTCTT ATCTTGATCT GCTGCTTTCA CGCTTTTGCT GTTTATGTGT GTGTATTACT ATATATATAT ATAGAGAAAG 

 GAAGAAAGAA TAGAACTAGA CGACGAAAGT GCGAAAACGA CAAATACACA CACATAATGA TATATATATA TATCTCTTTC 

 3921 TTGGAAACGT AACGTATGCG TATGTGTGAT GAAATAATTG GTGTTTCTGC ATAGCACACA TTTGATGGCT ATAATTGAGT 

 AACCTTTGCA TTGCATACGC ATACACACTA CTTTATTAAC CACAAAGACG TATCGTGTGT AAACTACCGA TATTAACTCA 

                                       HindIII 
                                       ~~~~~~~ 
 4001 GTAAATTTGT GTATATTATT GACAAAATTA GTCAAAAGCT TAAAATCTTT TTTAGTCGTT GAAAGATCCT TCTAGAAAAA 

 CATTTAAACA CATATAATAA CTGTTTTAAT CAGTTTTCGA ATTTTAGAAA AAATCAGCAA CTTTCTAGGA AGATCTTTTT 

 4081 GACATTTTTT TTCTTCTTCT TTTCATACGA TGGCTCATGG CTGTGTAGTT TATTAGAATT TTAGGTGAAA AAAATATTAG 

 CTGTAAAAAA AAGAAGAAGA AAAGTATGCT ACCGAGTACC GACACATCAA ATAATCTTAA AATCCACTTT TTTTATAATC 

 4161 AAGCCAACAA AACTTAAATG AAATTTATTT GCATTCATAA TTCATTTTAC CAGTTTATAA CAACAACGTA ATCCAAAAAG 

 TTCGGTTGTT TTGAATTTAC TTTAAATAAA CGTAAGTATT AAGTAAAATG GTCAAATATT GTTGTTGCAT TAGGTTTTTC 

 4241 TAAAATGAGA AAGAATGGAA TTTGTGTACT TTGAAAGGAA GAAAAACCAC TATTGACGTG GACACGTCGG CTAAAGGAGG 

 ATTTTACTCT TTCTTACCTT AAACACATGA AACTTTCCTT CTTTTTGGTG ATAACTGCAC CTGTGCAGCC GATTTCCTCC 

 4321 GTCCACGGGG GTTGGTGAAC AAACAATGTG GGGTCTAATC GTGTGTTTGC TTTGGTTTAA AATCATGGTT GGCCACGTGT 

 CAGGTGCCCC CAACCACTTG TTTGTTACAC CCCAGATTAG CACACAAACG AAACCAAATT TTAGTACCAA CCGGTGCACA 

 4401 TGATTCTTGA CCTCTCTCTG ACATGAAACT GTAGCATTGA CGGCCCAGAT CAGCTGCGAG AATACTTCCC ACAACCATGG 

 ACTAAGAACT GGAGAGAGAC TGTACTTTGA CATCGTAACT GCCGGGTCTA GTCGACGCTC TTATGAAGGG TGTTGGTACC 

 4481 AAATTTTACG GCCCAGATCA ACAAAGAATC GATTTGCTCT TTACTATTTC GAAGAACAAA GAGTGACAGT TATGAATAAT 

 TTTAAAATGC CGGGTCTAGT TGTTTCTTAG CTAAACGAGA AATGATAAAG CTTCTTGTTT CTCACTGTCA ATACTTATTA 

 4561 AGAAAAGAAG GACAAAGAGT GTGTGAATGG CTTCACATTA AAACAAAAGC CCATTATGAA TGACCCATTC ACATTTCACA 

 TCTTTTCTTC CTGTTTCTCA CACACTTACC GAAGTGTAAT TTTGTTTTCG GGTAATACTT ACTGGGTAAG TGTAAAGTGT 

 4641 CCCAGTTTGA AAAATCGACC GTCCAATTAA GTAACATTCA AAAACCCAAA AGATAAACCT CTAATTCACG AATCACAACA 

 GGGTCAAACT TTTTAGCTGG CAGGTTAATT CATTGTAAGT TTTTGGGTTT TCTATTTGGA GATTAAGTGC TTAGTGTTGT 

 4721 GCAGCATGAG CCGTTTCATC ACGACGTTAT CTCAGAGTTT CTTGGAAATA ATTTGTTGTA GCGGACTTGT GGCTGTAAAT 

 CGTCGTACTC GGCAAAGTAG TGCTGCAATA GAGTCTCAAA GAACCTTTAT TAAACAACAT CGCCTGAACA CCGACATTTA 

 4801 GGGGCCAATG CTTAAATTTA CTTGTCTCGT CTCTTCTACA CGTCTTCTCT TCCGACCACA CCCTTCATTC AATTCAACGT 

 CCCCGGTTAC GAATTTAAAT GAACAGAGCA GAGAAGATGT GCAGAAGAGA AGGCTGGTGT GGGAAGTAAG TTAAGTTGCA 

 4881 CTCCTCTCTG GCTCTCTCTC TCAAATATAT AAACACCAAT AATGTCTCCA ATTTGAGATT TTTAACTGAA CCCAAGTCAT 

 GAGGAGAGAC CGAGAGAGAG AGTTTATATA TTTGTGGTTA TTACAGAGGT TAAACTCTAA AAATTGACTT GGGTTCAGTA 

     HindIII  
     ~~~~~~~ 
 4961 GACGAAGCTT CTAGAGATTA                                                                   

 CTGCTTCGAA GATCTCTAAT                                                                   
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ALDH3H1 Promoter 

 

  881 CGACTTTTGA CAATTAAATC CGCACTACCA AAATTTACTT TAGATGATTT TTGTGTGCAT CACACAATGA CAACTTTACT 

 GCTGAAAACT GTTAATTTAG GCGTGATGGT TTTAAATGAA ATCTACTAAA AACACACGTA GTGTGTTACT GTTGAAATGA 

  961 CTTTATGCTA AAAAAAATCT ATAGATTTGT TCTATTAATC TACCATAAAT TCTAGTAATC AAACCCTGGA TCTAATATAG 

 GAAATACGAT TTTTTTTAGA TATCTAAACA AGATAATTAG ATGGTATTTA AGATCATTAG TTTGGGACCT AGATTATATC 

 1041 AAATATTAGT TAATCCTTAA TTTTCGAAAA ATATTTATAC TTTAATTTTG AGACTATCAA TCTGCCATAA TTCGTAATTT 

 TTTATAATCA ATTAGGAATT AAAAGCTTTT TATAAATATG AAATTAAAAC TCTGATAGTT AGACGGTATT AAGCATTAAA 

 1121 TCTAGTAATC AAACCTTAGT TCCGATATAC AAATATAAAT TAACCCCTAA TTTTGAAATA TATATATATA CTTTATTTCT 

 AGATCATTAG TTTGGAATCA AGGCTATATG TTTATATTTA ATTGGGGATT AAAACTTTAT ATATATATAT GAAATAAAGA 

 1201 CTAAAAAAAT TCTCTCAATT CAAAGTAAAA GATAAATTCA CCATTCTTTT TCTATTGGTA CACACACACT TGGAATAAAA 

 GATTTTTTTA AGAGAGTTAA GTTTCATTTT CTATTTAAGT GGTAAGAAAA AGATAACCAT GTGTGTGTGA ACCTTATTTT 

 1281 AATGTAATTC AACTATTTGA TTTTCTTCTA CTAATATCTT CCGGTCTCAC CCAACATATA TAAAGTAGAT AATATTAAAA 

 TTACATTAAG TTGATAAACT AAAAGAAGAT GATTATAGAA GGCCAGAGTG GGTTGTATAT ATTTCATCTA TTATAATTTT 

 1361 CGGAAGAAAC TCAAATTAAA ATAGAAATCT TGACCCAGCC CAACACTACC TAATATCTCA ATATAATACT ATGGCCAGTC 

 GCCTTCTTTG AGTTTAATTT TATCTTTAGA ACTGGGTCGG GTTGTGATGG ATTATAGAGT TATATTATGA TACCGGTCAG 

 1441 TTGCCTAATC GCAACTTCTC CCACCAACCC AAAACCTCAC GCGCTCATTT TCACGTGTTA AACACGCTAT CACACGTGAG 

 AACGGATTAG CGTTGAAGAG GGTGGTTGGG TTTTGGAGTG CGCGAGTAAA AGTGCACAAT TTGTGCGATA GTGTGCACTC 

 1521 TTGTGAGTTC GCTTATGCTC CGCGAGTAAT ACCCACACGC CTTTCTCTTC TCTTACATCA CTTATACGTT CACGTACATT 

 AACACTCAAG CGAATACGAG GCGCTCATTA TGGGTGTGCG GAAAGAGAAG AGAATGTAGT GAATATGCAA GTGCATGTAA 

 1601 CATTATCTTC CTTACCATTT TTAAATAATT CTATTCTTGT TTTGTCCTTA TTAAATTATT AAAAAACAAT ATTATTGTCC 

 GTAATAGAAG GAATGGTAAA AATTTATTAA GATAAGAACA AAACAGGAAT AATTTAATAA TTTTTTGTTA TAATAACAGG 

 1681 TTATTAAATT ATTTATTTCA CGTCTCTTCG TTTCATAAAT ATCTAATAAA ATATTTTAAT CATAATTTAT AGAAATAAAA 

 AATAATTTAA TAAATAAAGT GCAGAGAAGC AAAGTATTTA TAGATTATTT TATAAAATTA GTATTAAATA TCTTTATTTT 

                                        HindIII 
                                        ~~~~~~~ 
 1761 TATTTTATTC TTTTTTTTTG TCAATTGGTA TAAATTAAGC TTAAAAAAAC CAATTCTAAA ATATATTATT TATAAATATT 

 ATAAAATAAG AAAAAAAAAC AGTTAACCAT ATTTAATTCG AATTTTTTTG GTTAAGATTT TATATAATAA ATATTTATAA 

 1841 ATTCCTCTTT TTCTATATAA ATGTCGTTAA GAATTTTTTT TTTTAAAATA AGTATTGTTT TCAATTTTTT ATGTAAATAA 

 TAAGGAGAAA AAGATATATT TACAGCAATT CTTAAAAAAA AAAATTTTAT TCATAACAAA AGTTAAAAAA TACATTTATT 

 1921 TAAATATATT TAATATTTTT ATCGAATTAC ATTTAATTAT ATATTTTATT GGTTGAATTG ATTATAATAA ATGAAGTTTT 

 ATTTATATAA ATTATAAAAA TAGCTTAATG TAAATTAATA TATAAAATAA CCAACTTAAC TAATATTATT TACTTCAAAA 

 2001 TATATAAAAG AGGTAAATTA AGTTAGATTT TTATGATTTT TTAATATGTA TGTACAAACT TTAAATTACA ACTAATATGA 

 ATATATTTTC TCCATTTAAT TCAATCTAAA AATACTAAAA AATTATACAT ACATGTTTGA AATTTAATGT TGATTATACT 

 2081 AACTGAAGAA ATATATAGAA ATAAAATATT TTATTCTTAC TTTGTTGTAA TCAAATTATT TGTTTTGTTA AAAATTATCA 

 TTGACTTCTT TATATATCTT TATTTTATAA AATAAGAATG AAACAACATT AGTTTAATAA ACAAAACAAT TTTTAATAGT 

 2161 AAAAAAAAAT CTTTCTTGAT ATTCTCTTTT TGACGTTTCT TCATCTCTAT AAATATTGTA ACGCATGCTT TTTTTTATTA 

 TTTTTTTTTA GAAAGAACTA TAAGAGAAAA ACTGCAAAGA AGTAGAGATA TTTATAACAT TGCGTACGAA AAAAAATAAT 

 2241 TCAATTTCGA GGAATAAAAG TAAGAAACAT TGCGACAAAA AAAAAAAAAG TAAGAAACAT TTTTTTTCTT CTTTTTATGT 

 AGTTAAAGCT CCTTATTTTC ATTCTTTGTA ACGCTGTTTT TTTTTTTTTC ATTCTTTGTA AAAAAAAGAA GAAAAATACA 

 2321 GTTTTTAAAG AAACTTATCA CTTTTTATTT GGCACGAGCA ACGTCAATAT CTACGAAAAG AATATTTATT TTCTTGAATT 

 CAAAAATTTC TTTGAATAGT GAAAAATAAA CCGTGCTCGT TGCAGTTATA GATGCTTTTC TTATAAATAA AAGAACTTAA 

 2401 CAAGAAAAAT TCTCGGGATC CGAACTCAAT ATTTGTTCTC TTCTCTTCTC TCTCTCTTTG CCCGTGATTA CTGATTACTG 

 GTTCTTTTTA AGAGCCCTAG GCTTGAGTTA TAAACAAGAG AAGAGAAGAG AGAGAGAAAC GGGCACTAAT GACTAATGAC 

 2481 TGTTAATTAT TTTTATTCTG CGTACGTTAC GTAAGAGAGA TATTGAGGAA TGGCTGCGAA                       

 ACAATTAATA AAAATAAGAC GCATGCAATG CATTCTCTCT ATAACTCCTT ACCGACGCTT                       
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Cp-ALDH promoter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     HindIII 

                                     ~~~~~~~ 

    1 TAAGGGAACC CCCCGCCNGC CAGAATAGTA GGCAAGCTTT CTTGATATAT ATATNAGCAA CCCTCTNCAA ATTAATACCG 

 ATTCCCTTGG GGGGCGGNCG GTCTTATCAT CCGTTCGAAA GAACTATATA TATANTCGTT GGGAGANGTT TAATTATGGC 

                                                                      EcoRI 

                                                                      ~~~~~~~ 

   81 ATGAGNCCAC TAATTTTATT AACTTAATAT CGACAAATTA ATATTTTATT AATTGAAAGA TATGAATTCA ACTATCATCG 

 TACTCNGGTG ATTAAAATAA TTGAATTATA GCTGTTTAAT TATAAAATAA TTAACTTTCT ATACTTAAGT TGATAGTAGC 

  161 GGTCCATGCC AATGACGGAC TGAATCAAAT GAGAATATAA ATGTGTATAT ATCTTTATTA CGGCCCAATT AAATATTGTA 

 CCAGGTACGG TTACTGCCTG ACTTAGTTTA CTCTTATATT TACACATATA TAGAAATAAT GCCGGGTTAA TTTATAACAT 

  241 TATCAATACT TATATTCATC ATTTTATTCG TTGCAGTGAT CTTTTAAATA TTTGACATGG TGGTCGTAGC AAAGCCCATG 

 ATAGTTATGA ATATAAGTAG TAAAATAAGC AACGTCACTA GAAAATTTAT AAACTGTACC ACCAGCATCG TTTCGGGTAC 

  321 ATTATTTTAT AATTGCAATT TTAGCAAATT CATAATATTT ATATTTATAA TATTTATTAA TTATTAATTT AGAATTTTAA 

 TAATAAAATA TTAACGTTAA AATCGTTTAA GTATTATAAA TATAAATATT ATAAATAATT AATAATTAAA TCTTAAAATT 

  401 TGGGACTTAA TGTTATACGA AGTGAATTTC TGAAAAATTA TTATCTTATT ATCTTATCGA ATTTGATGAG TTTTTACAAA 

 ACCCTGAATT ACAATATGCT TCACTTAAAG ACTTTTTAAT AATAGAATAA TAGAATAGCT TAAACTACTC AAAAATGTTT 

  481 GGAAGCCGGG AGATTTTATT AATTATCTAT TAATTTATGG AGTATCAATT CATACATGTT TTATGTTAGA TAATGCAACA 

 CCTTCGGCCC TCTAAAATAA TTAATAGATA ATTAAATACC TCATAGTTAA GTATGTACAA AATACAATCT ATTACGTTGT 

  561 AAATTAATAT CTTTTATTCA ATTTATGCTA ATCCTATCCT AATCGATTTC GTTACATGTC CTCGTCTTAA AGGATGCTGA 

 TTTAATTATA GAAAATAAGT TAAATACGAT TAGGATAGGA TTAGCTAAAG CAATGTACAG GAGCAGAATT TCCTACGACT 

  641 GATAGAAAGA ACTAGATTGT GCATCTGATT TTACTTATGA CGAGGATTTT TCAGTCGTGA AGGAACGAAA CAATCTCCAA 

 CTATCTTTCT TGATCTAACA CGTAGACTAA AATGAATACT GCTCCTAAAA AGTCAGCACT TCCTTGCTTT GTTAGAGGTT 

  721 AACGTGTTGC AAACTTGGAA GTACACATAA CACCACATCC CATGAAGCCG ACGACATAAT AATATATCGA ACCAAAAGAA 

 TTGCACAACG TTTGAACCTT CATGTGTATT GTGGTGTAGG GTACTTCGGC TGCTGTATTA TTATATAGCT TGGTTTTCTT 

  801 AAGGATAAAT CACAATCGAA AAGATATATA TCAATCAAAG ATAAGCCAAA GACTCAATCT TGGTTCTATT TTGAGGAGTT 

 TTCCTATTTA GTGTTAGCTT TTCTATATAT AGTTAGTTTC TATTCGGTTT CTGAGTTAGA ACCAAGATAA AACTCCTCAA 

  881 TCTTCGGCTC ATAGCAAAAG AATAAAAGGA AG 

 AGAAGCCGAG TATCGTTTTC TTATTTTCCT TC 

 

   1 AAGGAAGCCG GGAGATTTTA TTAATTATCT ATTAATTTAT GGAGTATCAA TTCATACATG TTTTATGTTA GATAATGCAA 

 TTCCTTCGGC CCTCTAAAAT AATTAATAGA TAATTAAATA CCTCATAGTT AAGTATGTAC AAAATACAAT CTATTACGTT 

   81 CAAAATTAAT ATCTTTTATT CAATTTATGC TAATCCTATC CTAATCGATT TCGTTACATG TCCTCGTCTT AAAGGATGCT 

 GTTTTAATTA TAGAAAATAA GTTAAATACG ATTAGGATAG GATTAGCTAA AGCAATGTAC AGGAGCAGAA TTTCCTACGA 

  161 GAGATAGAAA GAACTAGATT GTGCATCTGA TTTTACTTAT GACGAGGATT TTTCAGTCGT GAAGGAACGA AACAATCTCC 

 CTCTATCTTT CTTGATCTAA CACGTAGACT AAAATGAATA CTGCTCCTAA AAAGTCAGCA CTTCCTTGCT TTGTTAGAGG 

  241 AAAACGTGTT GCAAACTTGG AAGTACACAT AACACCACAT CCCATGAAGC CGACGACATA ATAATATATC GAACCAAAAG 

 TTTTGCACAA CGTTTGAACC TTCATGTGTA TTGTGGTGTA GGGTACTTCG GCTGCTGTAT TATTATATAG CTTGGTTTTC 

  321 AAAAGGATAA ATCACAATCG AAAAGATATA TATCAATCAA AGATAAGCCA AAGACTCAAT CTTGGTTCTA TTTTGAGGAG 

 TTTTCCTATT TAGTGTTAGC TTTTCTATAT ATAGTTAGTT TCTATTCGGT TTCTGAGTTA GAACCAAGAT AAAACTCCTC 

  401 TTTCTTCGCT CATAGCAAAA GAATAAAAGG AAGAAGCACC ATGTCGCAGG TTGATGTAGG AGGAGTCGTC GATGAGCTGA 

 AAAGAAGCGA GTATCGTTTT CTTATTTTCC TTCTTCGTGG TACAGCGTCC AACTACATCC TCCTCAGCAG CTACTCGACT 

  481 GGCGAACGTA CGGCAGTGGG AAGACAAAGA CCTACGAATG GCGCGTTTCC CAGCTGAAAG CGCTACTTAA AATAACGACT 

 CCGCTTGCAT GCCGTCACCC TTCTGTTTCT GGATGCTTAC CGCGCAAAGG GTCGACTTTC GCGATGAATT TTATTGCTGA 

                         HindIII 

                         ~~~~~~~ 

  561 CACCACGACA GAGAAGTCGT GGAAGCTTTN TTGG             

 GTGGTGCTGT CTCTTCAGCA CCTTCGAAAN AACC             
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5.3. Map of the vectors with restriction enzyme positions 
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