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Abstract

The core of the work we present here is an algorithm that constructs a least
squares approximation to a given set of unorganized points. The approximation is
expressed as a linear combination of particular B-spline wavelets.

It implies a multiresolution setting which constructs a hierarchy of approxima-
tions to the data with increasing level of detail, proceeding from coarsest to finest
scales. It allows for an efficient selection of the degrees of freedom of the problem
and avoids the introduction of an artificial uniform grid. In fact, an analysis of
the data can be done at each of the scales of the hierarchy, which can be used to
select adaptively a set of wavelets that can represent economically the character-
istics of the cloud of points in the next level of detail. The data adaption of our
method is twofold, as it takes into account both horizontal distribution and vertical
irregularities of data. This strategy can lead to a striking reduction of the problem
complexity. Furthermore, among the possible ways to achieve a multiscale formula-
tion, the wavelet approach shows additional advantages, based on good conditioning
properties and level-wise orthogonality. We exploit these features to enhance the
efficiency of iterative solution methods for the system of normal equations of the
problem. The combination of multiresolution adaptivity with the numerical proper-
ties of the wavelet basis gives rise to an algorithm well suited to cope with problems
requiring fast solution methods.

We illustrate this by means of numerical experiments that compare the perfor-
mance of the method on various data sets working with different multi-resolution
bases.

Afterwards, we use the equivalence relation between wavelets and Besov spaces
to formulate the problem of data fitting with regularization. We find that the
multiscale formulation allows for a flexible and efficient treatment of some aspects of
this problem. Moreover, we study the problem known as robust fitting, in which the
data is assumed to be corrupted by wrong measurements or outliers. We compare
classical methods based on re-weighting of residuals to our setting in which the
wavelet representation of the data computed by our algorithm is used to locate the
outliers.

As a final application that couples two of the main applications of wavelets (data
analysis and operator equations), we propose the use of this least squares data fitting
method to evaluate the non-linear term in the wavelet-Galerkin formulation of non-
linear PDE problems.

At the end of this thesis we discuss efficient implementation issues, with a special
interest in the interplay between solution methods and data structures.
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Chapter 1

Introduction

1.1 Data Fitting

The problem of data fitting is formulated in the following way.

Problem 1.1.1. Given a cloud of unstructured, not coinciding points denoted by
P = {(zi,z)}im1..v, i € [0,1]4, d € {1,2,3}, 2z € R for alli = 1,...,N and
defined by the corresponding horizontal values X = {x;};i—1.. n and vertical values
Z ={2i}i=1...n, one seeks a function f : [0,1]¢ — IR that represents the information
contained in P. In our approach, we construct an f of the form

f= dyiy (1.1.1)

AEA

where the {1x}ren are B-spline wavelets and A stands for an appropriate set of
indices, and force it to approximate P in a Least Squares sense, by computing the
coefficients {dx}xrea so that

S (i f(@)’ (1.12)

i=1
attains its minimum.

The construction of surfaces approximating or interpolating both gridded and
scattered data sets finds a wide range of applications in science and engineering as
explained in the surveys [77], [110], [122], [133]. Different methods have been used.
From the vast amount of literature, we briefly comment on the main approaches.

Methods based on the Shannon Theorem and the Irregular Sampling Theorem
have a solid theoretical underpinning for the study of band limited functions (see
references in [18]) and have an extensive use in signal analysis. Practical algorithms
based on this theory work with bases of trigonometric functions and are not well
suited for problems requiring some extent of local adaptivity, see [70], [71], [129].

More popular are spline based methods. The application of splines in surface
and curve reconstruction has been studied early, [2], [57], [93]. Some extensions

1



2 CHAPTER 1. INTRODUCTION

of this technique envisage the enhancement of the efficiency by some kind of data
adaptivity. For instance [62] and [134] use different kinds of free-knot approaches
that try to place the splines in convenient positions. A closer connection to our work
are spline methods that operate on a multiscale orientation on structured grids. [76]
presents a first coarse-to-fine strategy with hierarchical splines, suited for gridded,
parameterized data. In [111], scattered functional data is increasingly approximated
by a hierarchy of grids, an idea extended in [113] by the use of nonuniform grids. A
higher adaptivity to data by means of local refinement is attained in [108] for func-
tional, scattered data and in [83] for topology-constrained 3D data. This direction
is also adopted in [126], where the local adaptive refinement of the grid is used to
generate an appropriate triangulation.

This last idea is used aside from the spline formulation in [130] or in [146],
where a binary tree structure allows for a coarse-to-fine, data-driven growth of the
triangulation. The opposite approach of starting on a fine level of the triangulation
and progressively simplify the mesh is also used, for instance, in [84] with gridded
data, or in [12] with an unstructured grid. This kind of procedure is frequently used
in terrain modeling related approaches, see [80].

The method of Radial Basis Functions provides good approximating properties,
[148], a rich theoretical characterization ([16], [127]) and a mesh free approach, which
appears quite natural when working with unorganized data, [24]. However, the data
reduction strategies (like thinning [73] or adaptive thinning [66]) that are necessary
to construct a multiscale formulation of the problem, as in [74] or [99], or simply to
make it tractable, usually enforce the construction of some auxiliary triangulation.

1.2 Wavelets

The basic elements of our approach are wavelets. The central idea of the wavelet
theory is the representation and analysis of data according to simultaneous location
in space and in the frequency domain.

This idea can be traced back to the beginnig of the last century, when Haar
presented the first known wavelet system [86]. We summarize now its basis elements
using current terminology: One defines a father function

é(x) == { L zel01) (1.2.1)

0 otherwise
whose translations and scalings
pin(z) = 22p(Px —k), >0, k=0,...,20 —1, (1.2.2)

called scaling functions, induce a multiresolution analysis of Ly(0,1). This means
that the scale of linear spaces {V;};>0, each defined by

Vi :=span{¢;;: k=0,...,27 — 1}, (1.2.3)
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are nested, i.e.
VocWVic...CV;C...CLy0,1) (1.2.4)

and their union is dense in L9(0,1). Now, one defines the so called mother function
as the particular linear combination of scaling functions

1 1
Y(x) = E%o(ﬂ?) G

which yields fol Y(z)p(x)dx = 1. The translations and scalings

¢1.1(7) (1.2.5)

Gin(@) =2 De—k), j>0,k=0,...,27—1, (1.2.6)

of the mother function are called wavelets. Rescaling (1.2.5), one easily sees that
the spans of all the wavelets on each dyadic level,

W; = span{¢;, : k=0,...,27 — 1} (1.2.7)

constitute orthogonal complements to the V; defined in (1.2.3) fulfilling Vj4; =
V; @ W;. We have an orthormal basis for L(0,1): Choosing a coarsest level j, > 0,
every f € Ly(0,1) has an unique wavelet expansion of the form

flay=">_ Cjo,k¢jo,k(x)+z > distela), (1.2.8)

k=0,...,270 —1 j>jo k=0,...,29 —1

where the expansion coefficients fulfill

1 1
Ciio,k =/ f(2)9jor(x)dr and djy, =/ f(@)Y;(z)dx. (1.2.9)
0 0

Although the main ideas are already present in this simple system, its poor
regularity has limited its application. The real breaktrough of wavelets starts in
the late 80’s, as the works of Mallat ([116]), Meyer ([119],[120]) and Daubechies
([53],[54]) showed the way to construct wavelet families satisfying more demanding
requirements on properties as symmetry, orthogonality, compact support, smooth-
ness and vanishing moments (a wavelet 1 is said to have n vanishing moments if
fol (x)z™dx is identically zero for m = 0,...,n — 1 but not for m = n). In particu-
lar, [54] presents a family of orthonormal wavelets in Lo(IR) with compact support
and arbitrary regularity. In any case, regularity is here acomplished at the expense of
introducing larger supports, that is, enworsening the spatial localization of wavelets.
A further step was the introduction of the concept of biorthogonality in [38], which
sacrifices orthogonality in order to construct wavelet families in Lo (IR) with a better
trade off between the other desirable properties. Instead of an orthogonal family
{Y; k}j>0kez that provides for every f € Ly(IR) a unique representation

fla) = Z Z(f» Vi)V (T) (1.2.10)

7>0 keZ
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with the property

. 1/2
1fllz, = <Z >, @/)j,k)Q) (1.2.11)

>0 keZ

where (-, -) is the standard scalar product in Ly(IR), one has a family {¢;x};>0kez
and its dual {1,k };>0kez, which meet the biorthogonality relation

<¢j,ka &j’,k’) = 5j,j’5k,k’7 j,j/ > 0, ]{?, K e Z (1212)

and every f € Ls(IR) has unique expansions

f(x) = Z Z(ﬂ ) sk(x) = Z Z(f, D)5 (). (1.2.13)

>0 keZ >0 keZ

Although (1.2.11) is no longer valid, a tight relation between the function and its
representation in wavelet coordinates is still ensured, as the coefficients of these
expansions fulfill

00 1/2 00 1/2
1 £llzs ~ (Z > (S wj,kf) ~ (Z > @z?j,kf) . (1.2.14)

j>0 keZ >0 keZ

This concept has been exploited by techniques as the lifting scheme [137] as a par-
ticular case of the stable completion method (see e.g. [23], [45]), to gain flexibility
in the construction of wavelets with desirable atributes. This has made possible the
introduction of wavelets on the interval ([48]) and hence on general domains (see
e.g. [22],[39],[50]).

From the vast amount of wavelet constructions now availabe, we have chosen
one particularly adapted to our data fitting problem. We want to recall shortly
its basic properties. First, we need to fix some notation. We index wavelets by
some parameter A which comprises information such as the resolution level or scale
|A| := j, the spatial location k, and possibly the type of wavelet in the bivariate or
trivariate case. In view of the finite domain €2, there is a coarsest level jo := 1. The
infinite set of all possible indices will be denoted by . We will use the convention
that the linear combination

f@) = dypa(x) (1.2.15)

AEA

for any set of indices A C I includes scaling functions at the coarsest level. That
is, we will not usually employ representations of the type (1.2.8) wich made explicit
the presence of a scaling function part and a wavelet part. We will employ (tensor
products of) the piecewise linear boundary adapted B—spline (pre)wavelets {1\ }rer
constructed in [136] which are a special case of the (pre)wavelets on the interval
constructed in [31]: In the univariate case, the scaling functions are B-splines defined
on the interval [0, 1]. The wavelets on higher levels are linear combinations of these
B-splines constructed in order to meet the following properties:
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(R) they constitute a Riesz basis for Ly(€2), i.e., their finite linear combinations
are dense in L(£2) and one can find two finite positive constants A, B such
that the norm equivalence

AY P <IIfIZ, < BY ldaf (1.2.16)

Xel Aell
holds for every f € Ly of the form f(x) = >, 5 dxtoa(x);

(O) they are semi-orthogonal, i.e., for |A| # |u| one always has
/ Ua(x) Yy () dx = 0; (1.2.17)
Q

(L) they are compactly supported and satisfy for each A

diam (supp ¢) ~ 271 (1.2.18)

The particular construction in [136] generates among all linear boundary adapted
B-spline (pre)wavelets that still satisfy (O) those wavelets with smallest support.
We have normalized the wavelets such that their Ly(€2)-norm is one. Plots of these
wavelets are displayed in Figures 3.1.5 and 3.1.6.

In view of the fact that finitely many data are to be approximated, one expects
that only finitely many indices from I are essential for the representation of f. We
will therefore usually work with an index set A C I, #A < oc.

1.3 Structure of this Work

This monograph is divided as follows. In Chapter 2 we describe our data fitting
algorithm. Chapter 3 discusses the properties of the multiscale bases and their rela-
tion to the numerical performance of our method, testing it on different model sets
of scattered data. Chapter 4 is devoted to the use of smoothness constraints in the
construction of surfaces or curves, emphasizing the benefits of the wavelet formu-
lation. In Chapter 5 we present the application of our method to cope with data
corrupted by wrong measurements. An application of the data fitting methodology
to the efficient numerical computation of solutions for non-linear PDE problems is
then demonstrated in Chapter 6. We end with a discussion about diverse issues
concerning the computational implementation of the method in Chapter 7.
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Chapter 2

Basic Algorithm

2.1 Choice of A

Determining for Problem 1.1.1 an appropriate index set A for a given P is a matter
of central importance. On the one hand A should be large enough to be able to
represent the features of P. On the other hand too large a A is not desirable as we
risk to overfit the cloud of points, and to process redundant information leading to
increasing the computation time unnecessarily.

To explain the phenomenon of overfitting, consider the following example. When
constructing an approximation to the points on the left of the Figure 2.1.1, we
certainly prefer a function like in the central plot to one like in the right plot.
The undesirable oscillations in this plot are due to the fact that in the A used some
wavelets have supports containing very few data points and can oscillate uncontrolled
in the space between them.

As for processing redundant information, consider the set of points P given on
the left of Figure 2.1.2. Although we have a large number of measurements (10000
points), the vertical values show a very simple structure. The function on the right
of the figure offers a good reconstruction, but the number of degrees of freedom we
used (8614 wavelets) is clearly unnecessarily high in view of the reconstruction in
the central plot, which with only 32 degrees of freedom can successfully reproduce

Figure 2.1.1: Overfitting.
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N: 10000 #A:33 #A:8614

Figure 2.1.2: Redundant information.

the features of P in the ’eye’ norm.

2.2 Normal Equations

We recall the computations we need to perform to get the approximating function

f. Once a set A of indices of basis functions is fixed, taking the % derivatives in

equation (1.1.2) for each A € A yields the normal equations of the problem, namely
ATAd = A"z <=: Md=b (2.2.1)
where d and z are the column vectors for coefficients and vertical values, and the

entries of the observation matriz A, the cross-product matriz (or coefficient matriz)

M = AT A and b are defined by

Ay = (), (2.2.2)
My = 3 a(m)tx (@), (2.2.3)
by = Zziwk(@). (2.2.4)

When we want to make explicit the concrete configuration A and the set of points
X, we will write the observation matrix of A with respect to X as A, x.

With direct solvers like the QR method, it is not easy to take advantage of the
sparsity structure of the matrix. We will therefore compute the solution of (2.2.1) by
a Conjugate Gradient procedure that works with the matrix A7 A once it has been
explicitly formed, or by some other related procedure that allows to work directly
with the matrix A, like the CGLS (Conjugate Gradient for Least Squares) or LSQR
(a method based on the Lanczos bidiagonalization), see [124].
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2.3 Description of the Algorithm

The place and scale localization properties of wavelets (property (L) mentioned in
Section 1) allow for a constructive algorithm that locates the relevant degrees of
freedom of the problem according to the two goals detailed in Subsection 2.1. The
idea is to recursively construct a series of A;,7 =1,...,J, so that each A; contains
adequate wavelets that represent compactly and without spurious oscillations the
features of P up to scale j. A; is then used to extract the information from P that
we need to predict a set A,y adequate for the features on the next natural scale
J+1

2.3.1 Horizontal Adaptivity

The overfitting effects can be partially avoided by an appropriate construction of
the set A so that wavelets that could introduce artifacts are not included. We use a
coarse-to-fine selection algorithm that picks the wavelets in whose support there is
indeed information to be represented. We start by constructing the set A, with all
the generator functions and wavelets of some prescribed coarsest level j, and then
consider the children of the wavelets. Recall that in one spacial dimension a wavelet
of index \ = (j, k) is said to be a child of a wavelet of index X = (j', k') if j = j'+1
and k = 2k’ or k = 2K’ +1, with a similar definition in the multivariate case.

We construct the set Aj 41 keeping only those children in whose support one can
find more than a prescribed number ¢ of points. That is, if we denote by d(A) the
children of the last-level-wavelets of some set A, and by 7,(A) the subset of a set A
whose components contain more than ¢ points in their support, the method can be
stated as follows.

Algorithm 2.3.1. Horizontal Thresholding
1. Fix jo and q.
2. Create Aj,.
3. For each j = jo,....
(a) Create d(A;).
(b) Retain T,(5(A;)).
(c) If T,(6(A;)) = 0 stop, else let Ajyq == A; UT,(0(A;)).
Locating points in the support of ¥, does not force to run a loop over the whole
set of points P, but only over those points that were already in the support of its
parent. This allows for an efficient implementation.

We see an application of this technique in Figure 2.3.1. The data points are
distributed in two areas with different sampling densities. Moreover, the vertical
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Different sampling densities in data Reconstruction with X-adapted A Selected A

49 s 4 213 4
o.:’.:.'..-:.:.:w

X
BRI

Figure 2.3.1: Choice of A adapting to horizontal distribution of data.

J:4 J5 Jb

Figure 2.3.2: Difficulties of the full grid approximation.

structure of the data requires a different maximal resolution on each of the two
domains. If we let Algorithm 2.3.1 work on this data set, the wavelet indexes given
on the right of the figure are automatically detected. Here the vertical axis displays
the refinement level j (the algorithm terminates for this example with j=6) while
the horizontal axis shows the location of wavelet indices. The level of darkness of
the boxes in the figure corresponds to their size as indicated in the column bar next
to the figure. The reconstruction corresponding to these coefficients is given in the
center of the figure.

The attempt of producing a full grid approximation, that is, using all the wavelets
up to some level J, does not give a satisfying solution. As we see in Figure 2.3.2, J=4
does not give enough resolution in the area of big oscillations while J =6 produces
overfitting in the lower sampling density area. Finally the agreement between these
two ends that we find with J = 5 is not really acceptable.

An example with real word data is provided in Figure 2.3.3. Its represents a set
of meteorological data collected by an aerial at the Meteorological Institute of the
University of Bonn. The radial sampling geometry is imposed by the measurement
conditions: the aerial rotates and makes equispaced measurements in each radial
direction in intervals of one degree. In cartesian coordinates, the density of mea-
surements is higher in the center of the domain and decreases gradually in the radial
direction. As we can see on the left of Figure 2.3.4, the supports of the wavelets
allowed in the configuration constructed by Algorithm 2.3.1 mimic this spatial dis-
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tribution. keeping wavelets of high resolution level in the center, whereas in the
boundaries only wavelets of low resolution are allowed.

2.3.2 Vertical Adaptivity

The coarse-to-fine growing algorithm described in Subsection 2.3.1 is able to con-
struct a set A that avoids including wavelets in places of the domain where not
enough information is available. But it cannot detect if the information is redun-
dant. This can be attained by extending this method by an additional control feature
in the step of creating the set A;;; according to the information we can extract from
A; and P. The idea is to construct an approximation up to level j+1 having already
solved for {d’,} Aeh; in

2
N

=1 )\GA]'

for each previous j. The magnitude of the coefficients can be interpreted as a local
smoothness estimator because of the norm equivalence property (R), so we can in-
terpret the presence of big wavelet coefficients as an indicator of potential need for
further local refinement. This suggests a level-by-level thresholding procedure that
eliminates those degrees of freedom that are detected not to make a significant con-
tribution. This idea can be implemented by a slight modification of the Horizontal
Thresholding Algorithm.

Algorithm 2.3.2. Vertical Thresholding

1. Fix jo, ¢ and € > 0.
2. Create Aj,.

3. For each j = jo,....

(a) Create d(A;).

(b) Select T,(86(A;)) and construct A;; = A; UT,(6(A;)).
N 2

(c) Compute {dfrl}/\dj+1 that solves Z 2z — Z B pa(z;) | — minl.
=1 )\G[\j+1

(d) Select AS = {\ € T,(5(A))) : [d5"] > €}

(e) If AS = stop, else let Aj 1 = A; UAS.
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Sampling geometry z values

Figure 2.3.3: Radar data set with ~ 50000 measurements. Courtesy of the Meteo-
rological Institute of the University of Bonn.

Wavelet configuration Reconstruction

Figure 2.3.4: Wavelet reconstruction of radar data from Figure 2.3.3 using a hori-
zontal thresholding with parameter ¢ = 40.
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Figure 2.3.5: Test data for Algorithm 2.3.2.

Selected A

T

]
S v s o o N ®

Figure 2.3.6: X-adapted fitting of data in Figure 2.3.5 by the Horizontal Thresholding
Algorithm.

Selected A

~ v o s oo N ® © D

Figure 2.3.7: Z-adapted fitting of data in Figure 2.3.5 by the Vertical Thresholding
Algorithm.
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Singularity resolution. As an example, let us consider the data in Figure
2.3.5. As to the sampling properties, it shows areas of different densities, including
one that concentrates 3000 points. The vertical structure of the data is smooth up to
a jump. Constructing an X-adapted approximation using Algorithm 2.3.1 gives the
results in Figure 2.3.6. It succeeds to avoid overfitting, but uses 666 wavelets, com-
puted using a coefficient matrix M with 35779 nonzero elements. The Z-adapted
fitting of Algorithm 2.3.2 performs a job of similar quality, see Figure 2.3.7, but
only 42 wavelets are selected, generating 601 nonzero matrix elements in M and
requiring much less computation time.

Multivariate data. The algorithm is easily extensible to multivariate data
(details of the construction are given in Section 3). In fact, adaptivity is bound to
pay off especially well in the case of high dimensional data: If we work with the
full grid, the addition of a new dyadic level to a configuration A; adds ~ 240U+
degrees of freedom (d being the dimension of the problem, i.e., the observations lie
on the domain [0,1]¢). Adding only those wavelets whose support contains a point
singularity, the number of new degrees of freedom scales like k2%, k depending on
the wavelet family. Thus, the ratio

# d.o.f.s by adaptive addition k24
# d.o.f.s by addition of full level — 2d(7+1)

= k2%

makes clear how the reduction of complexity in high dimensional data sets is going
to be more visible and computationally significant. Consider for instance the 3d
data in Figure 2.3.8. The reconstruction with the full grid up to level j = 3 gives
a good reconstruction in the smooth areas, but the high gradients appearing in the
proximity of the ring are not correctly solved, see Figure 2.3.10. The thresholding
algorithm chooses new wavelets of level j = 4 only in this area (see center of the
Figure), providing the necessary degrees of freedom for a more accurate reconstruc-
tion, on the right of the Figure. At this level, only 2107 new degrees of freedom of
the 35937 possible ones are chosen by the method.
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0.8 0.8

0.4 0.4

0.2 0.2

Original data. Section across y = 0.5.

Figure 2.3.8: The nucleon data set displays the results of a simulation of the two-
body distribution probability of a nucleon in the atomic nucleus 160 if a second
nucleon is known to be positioned in the neighborhood. Courtesy of VolVis and
SFB 382 of the German Research Council (DFG).
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Figure 2.3.9: Evolution of the tree created by the Vertical Thresholding Algorithm
on the nucleon data from Figure 2.3.8. For clarity, only coefficients of wavelets of

tensorial type e = (1,1,1) are depicted (see Section 3.5 for an explanation of this
indexing).
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Figure 2.3.10: Evolution of the reconstruction of the nucleon data at different dyadic

levels.



2.4. STABILITY OF THE ALGORITHM 17

2.4 Stability of the Algorithm

2.4.1 A Stable Variation

As explained in Section 2.2, the tree-growth approach requires the solution of the
normal equations

on index sets A;-s determined by the method. Here arises the question whether the
proposed algorithms generate a succession of invertible {M;};>;,. As a matter of
fact, the g-method described in Algorithm (2.3.1) does not assure that each M; is
non-singular. But a little variation of the method can indeed give us a constructive
algorithm that produces invertible matrices at each level j.

In the following exposition we will use the term “wavelet” referring to a member
of the family of the linear B-Spline Wavelet in one dimension, but the results and
corresponding proofs are easily generalizable to both higher smoothness degrees and
multivariate wavelets.

First of all we will introduce some definitions and nomenclature that will simplify
and motivate the further developments.

Definition 2.4.1. [Internodal spaces| For a wavelet ¥y, A = (j, k), we denote
the internodal spaces of this wavelet ¥y by

; 2(k—1)4+i—1 2(k—1)+1
I = [ S T (2.4.2)
fori=1,...,6. We introduce as well the notation I;’Hl for IL U ]i\“ fori=1,...,5.

See an illustration of this definition in Figure 2.4.1. The internodal spaces are
just the segments on which the wavelet is a linear function. We can then write any
arbitrary 1, as ' ' '

(dax4b, zelli=1..6
¥alz) = { 0 otherwise. (2:4.3)
The numerical values of these coefficients can be computed exactly ([136]). However
we will only need the following properties

a3y > a3 >ay >0 (2.4.4)
and

Note that for two interior wavelets A and X on the same dyadic level we have
ay=a\,i=1,...,6 (2.4.6)

by translation.
We introduce now a key concept, which will turn up to give an exact measure of
the relevancy of a wavelet to correctly describe a set of points.
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I! 12 [ I+ 2 N

=1

A A A A A A
- g4 P> K4 K4 >4 >a>
'_/‘}\“/.\“/\I
2 4
-

|1.2 |3,4 |5,6 |5.6
A A A A

L L L L L L L L L L L L L L
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

In an interior wavelet In a boundary wavelet
Figure 2.4.1: Internodal spaces.

Definition 2.4.2. [X-balanced wavelet| Given a cloud of points P with horizontal
values X, we say that the wavelet 1y 1s X -balanced or shortly balanced if there exist
three points x4, xp, r. € X so that x, € [i,xb € Ij\l and x. € [§’4.

We examine now the following variant of the Algorithm 2.3.1 which integrates
the concept of X-balanced wavelets.

Algorithm 2.4.3. Stable Growth with Horizontal Thresholding.

1. Fix jo and create the full grid A;, so that every 15, A € A, is X-balanced.

2. For each j = j9,....

(a) Create d(A;).
(b) Construct Tharancea(0(A;)) == {A € §(A;), A is X-balanced}.
(€) If Tharancea(6(A;)) = 0 stop, else let Ajq := Aj U Tharancea(0(A;)).

We will now devote the rest of this section to prove that this algorithm is stable
in the sense that all the matrices involved in it are indeed invertible.

Remark 2.4.4. We wish to point out an important feature of this characterization:
we have practically reduced the problem of the invertibility of the matrix, which is
global to the whole set of wavelets at hand at each moment, to a precise local check
of the information contain of each wavelet.

Other characterizations are possible, and the one that we propose in this algo-
rithm is not optimal. For instance, it is not necessary for every wavelet of a full grid
to be balanced in order to warrant the invertibility of the matrix. One can easily
use Theorem 2.4.5 below to see that it reaches if
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e just one wavelet on the top level is X-balanced, and

e all the others have two points in their support, one in the third and one in the
fourth internodal space.

These conditions are weaker than the one proposed in Algorithm 2.4.3, but their
verification requires a joint check of all the wavelets of the new level. The strategy
described in Algorithm 2.4.3 is better to the computational implementation, which
benefits from the possibility of making a definitive decision about accepting or re-
jecting an individual wavelet without having to locate on-line the data structures of
the other wavelets of the same level.

First we introduce an useful notation for the matrices that we are going to use.
As before, given a set of horizontal points X and a set of wavelets indexed by A, we
denote by A% the respective observation matrix, that is the matrix

U (o) - Uaga(@oq)
AL = : : : (2.4.7)

(o) Yrpa(Tom)

for some reordering 6 : {1,..., N} — {1,..., N} of the original point indices. We
will define no particular reordering, as it is of no consequence for our purposes. We
will be interested in the rank of the matrix, which is independent of the row or
column ordering.

We will use the same super and subscript notation to refer to the coefficient
matrices, that is, we will write M% := (A%)T A%.

A trivial, but important observation, is that if M is invertible, M% . is also
invertible for any additional set of points X’. This means: if we fix the wavelet
configuration, the addition of new observations cannot make the matrix singular.

We will use this fact in the inverse direction: if we are given a set of points X,
and we can extract a subset X C X of them so that the coefficient matrix M )/} is
invertible, than we know that the coefficient matrix M#% is invertible as well.

We start now with the analysis of the matrices arising in Algorithm 2.4.3. We
first need to recall a classic result ([132]) from the theory of interpolation with
splines.

Theorem 2.4.5. [Schoenberg-Whitney conditions| Let {t;};—1__n+m be an in-
creasing sequence of knots and {x;}i—1 . a strictly increasing sequence of points.
Let us denote by N; the j-th B-Spline of order m constructed on the knots {t;}, and
by ABS the collocation matriz of the problem, that is

AP = Nj(), fori,j=1,...,n. (2.4.8)
Then, ABS s invertible if and only if

tj <z; < tj+ma j=1...,n. (249)
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This result can be almost immediately transferred to the first step of Algorithm
2.4.3. We check that the coefficient matrix at level jy is invertible.

Lemma 2.4.6. The matriz M;, produced in the first step of Algorithm 2.4.3 is
wnvertible.

Proof:

This can be seen using the Schoenberg-Whitney theorem to check the invertibility
of a collocation matrix in a nodal basis and then transferring this invertibility to the
collocation matrix in the wavelet basis using the wavelet transform, which is known
to be non-singular.

In fact, as we have assured that all the wavelets in Aj; are balanced, we can
extract from X a subset of points X = {x?}izlwyou that together with the knots
{ti}

(t1, . taiogr) = 277°(0,0,1,2,...,2/00 — 1,270 2J0) (2.4.10)

met the interlacing condition (2.4.9) for order m = 2. This is so, because the
interval [0, 1] can be split as central internodal spaces of the wavelets of the level
Jjo, and in each of these intervals there must be at least one point, as the wavelets
are balanced. If we denote by {¢;} the family of splines constructed from the knot
sequence (2.4.10), As a result of Theorem 2.4.5 the collocation matrix AZS of this
family with respect to the points in XV is non-singular. Now, {¢;} are the scaling
functions of the (preorthogonal)-linear wavelets, that is, the wavelets indexed in A,
are linear combinations of elements of {¢;}, so that

A%o = TARS (2.4.11)

where the wavelet transformation matrix 7' is per construction non-singular (see

[136]). Thus Aﬁo is non-singular. Consequently M;;ﬁo is non-singular and so is
A

M, = M. .

Now we deal with the possibility that the subsequent steps of the algorithm do
not produce a full grid. Our strategy will be to check under which conditions on \’
and X we can add a new wavelet indexed by )\ to a previous set of wavelets known
to generate an invertible matrix, in a way that the resulting matrix is still invertible.

2.4.2 Randering of a Matrix

First we will interpret the addition of a wavelet to a set of wavelets as the randering
of the original matrix. We introduce first the following notation: given an arbitrary
set of points X and a set of indices A we will denote by

e U5 (X) the row vector in IRY containing the evaluation of ¢y on each of the
points in X with components ordered as in the rows of A%, and by



2.4. STABILITY OF THE ALGORITHM 21

e U, (%) the column vector in IR#* containing the evaluation of each v, \ € Ay,
at the point ¥ with components ordered as in the columns of A%,

Definition 2.4.7. [Randered matrix] Assume we are given a set of not coinciding
points X and a set of wavelet indices A so that the corresponding observation matriz
A% is a square and non-singular matriv. For T ¢ X and X\ € A, we call the matriz

A%%’:( Ay | X(X)).

the randering of A% with respect to X and .

We need two additional steps to insert this concept into our setting. First we
recall a result from Numerical Linear Algebra that gives general conditions for the
randering of a matrix to have full rank (Lemma 2.4.8). Then we will state a geo-
metrical interpretation of this result in our particular case (Proposition 2.4.10).

Lemma 2.4.8. If a matrix A € IR™*™ has full rank, the randered matrix

- [ Alp
A= (L),

has also full rank if and only if the matrix A, the vectors p,q € IR" and the scalar
w satisfy
w#q A p. (2.4.12)

Definition 2.4.9. Given a set of wavelet indices A, a set of points X = {x;}iz1,. ga

-----

the function that fulfills
Siasx;y] € Span{yn : A € A} (2.4.13)

and
S[A;X;y]<xi) = Y, 1= 1, cey #A (2414)

Note that this function exists and is uniquely defined.

Proposition 2.4.10. With the notation used in Definitions 2.4.7 and 2.4.9, we have
Siax,w,, (X)) (77) = Wa (2')T(A%) 10 (X). (2.4.15)

Proof:
As siaxw,,(x)) € Span{yy @ A € A}, we can write

sty () (7) = Y diga(x) (2.4.16)

AEA
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for some vector d® = {d)}rea. This vector must fulfill (2.4.14), that is

D din(mi) = dw(a), i =1, #A (2.4.17)

A€A

or in matrix-vector form

AL d® = Uy (X). (2.4.18)
Now, evaluating (2.4.16) at the point z’, we obtain

iAW, (X)) (T de% Wy (2 de. (2.4.19)
AeA
As A% is assumed to be invertible, (2.4.18) and (2.4.19) give (2.4.15). ]

2.4.3 Stability Theorems

We can now prove our main results.

Theorem 2.4.11. [Vertical Extension] We are given a set of points X, and a
set of wavelet indices \j, so that

o the wavelets complete a full grid at level jo, and

o cach P, A € Aj,, is X-balanced.

Then, if ¥y with N = (jo+1, k) for some k is X -balanced, the matriz M)/;jou’\
wnvertible.

Proof:
First, as the wavelets in A;; are X-balanced, we can extract from X a succession of

points )f(vo = {Ig}k:()’m,gjoﬁq_l’k#k/ fulfilling the inclusions:
NEL k=0, 20T 1 k£ (2.4.20)

(See Figure 2.4.2 for a visualization in a concrete example of the concepts used in
this proof). In the central segment of the wavelet of interest 1y, we will chose two
points, each in one different central internodal space: 9,5 € I3 and z,, € I3,.

Defining X, := Xo U {5,204}, we immediately see as a direct result of Lemma

2.4.6 that the matrix A;\(joo is invertible, as all the wavelets in A;; are X,—balanced.
Further, as vy is balanced we can find a third point 2/, lying in one of the two
central internodal spaces of 1.

Now, the interpolating function S[Asg:X0:¥ 5/ (Xo)] is an element of the span of
{¥x, A € A, }. But this span equals the space of the functions that are piece-

wise linear on the intervals I§’4 and continuous at the points QJO% Additionally,
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S5 Xo0i W (Xo)] CULS the wavelet ), at the points x2,73 and 932,74 per construction,

which determines sja; ;x,w,,(x,) on the internodal space I§}4.

But the points ¥ () 5), ¥x (2 4) and ¥y (zy) are not collinear, which implies
that sp, ;xo:w,, (x0)(7") cannot be identical to 1y (z'). Using Proposition 2.4.10 this

JOo?
is equivalent to

Wy, ()7 (AR) T W (X0) £ () (2.4.21)

which, in view of Lemma 2.4.8 leads us to conclude that the matrix
A

AA]-OU)\’ _ ( AXJ(.)O ‘ \I//\/(XQ> ) .

XoUz/! \PAJ'O (:E/)T ‘ )\/(:EI).

I . . AjOUA,
is invertible and so is A% .

- 0
%o X o ‘ez Y2 %3
_____________________________ X
0 0.1‘25 O.‘25 0.3‘75 0.‘5 0.6‘25 0.‘75 0.8‘75
y
An interpolant constructed with

elements linear on intervals of length
2770 cannot reproduce a oscillation of
frequency 270+,

The level j, = 1 is enlarged by the
wavelet 1 5.

Figure 2.4.2: Illustration of Theorem 2.4.11 proving the stability of the vertical
extension.

Theorem 2.4.12. [Horizontal Extension| If the matriz A;\(J;JOJ:\,/ for Ajo, N, Xo

and ' are like in Theorem 2.4.11, and ¥y, N = (jo+1, k"), k" = k'—1 is an interior,
X -balanced wavelet, then the matrix Al)x(jOU/\ N is invertible.

Proof:
Define X’ := Xy Ua' and A" := A;; UX. For ¢, we can choose a point 2" € X,
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v" ¢ X'. Now, the interpolant sjas x.w,, (x, which is well defined as a result of the
former theorem, will be shortly denoted as s. We illustrate the situation in Figure
2.4.3, following the concrete example proposed in Figure 2.4.2. Note the following
properties.

1. In the interval I3,, which is equal to I}, s cuts per construction two points of
Y, namely at x2,73 and z’. As both s and ¢~ are linear on I},, we have

s(z) = Yy (), Vo € I3, (2.4.22)

Furthermore, in the interval IS, or equivalently (I3,), s cuts 1)~ in the point
x?\,A and, because of (2.4.22), in the point where I}, and I}, overlap. Therefore,
as s and ¥y are linear on I$, we must have

s(z) = Yy (x), Y € IS, (2.4.23)

2. If s(2”) is required to be 1y (2”) than we would necessarily have
s(z) = Y (x), Vo € Iin (2.4.24)

as s cuts ¥y in a second point of I},, namely in the point where I3}, and I3,
overlap. Likely, we can expand the reasoning to conclude

S({L‘) = @UA//(ZL‘), Vx € ]i,,. (2425)

Now, s is an element of the span of {i)\,A € Ag UX}. The elements in Ay are
linear in Ii,’fl and 107, An element of this span fulfilling (2.4.22),(2.4.23),(2.4.24)
and (2.4.25) has to fulfill

’}/w}\/(l‘) + Az + B = 2/})\//(1’), Vx € Ii/’/4 (2426)

and
’}/'l/i)\/(l') +Cx+ D = Q/J,\//(x), YV € [)5\,’,6 (2.4.27)

for a set of real constants v, A, B,C, D. In view of (2.4.3) The conditions on the
pendants in (2.4.26) lead to the system

1 3
’}/a)\/ + A = CL)\N
")/ail + A= aé){// (2428>

and those on (2.4.27) lead to

f}/a?))\/ + C — ai//

’}/aé){/ -+ C = CL?\//. (2429)
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If we suppose for simplicity that both ), and 1y~ are interior we can omit the
subindices X and A" as noted in (2.4.6) and use the Cramer’s rule to solve the two
systems. (2.4.28) gives the value

a® — a
Using (2.4.4), this yields v > 1, and (2.4.29) gives
S —adb a — a2
’y = a3 — a4 = a3 _ a4’ (2431)

where we used (2.4.5). Using (2.4.4), we would have v < 1. That is, there is no
element of the span {Ay U X'} that can reproduce ¥~ on I:\q’}fi":”ﬁ. This means that
s(z") cannot be 1 (z”) and in consequence we can now invoke Proposition 2.4.10

and Lemma 2.4.8 to complete the proof.

L L L L L L L
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

The addition of 155 to A;, gives A/
the possibility of reproducing a
________ localized oscillation of frequency 270+,
but it cannot simultaneously
reproduce two of them: the one in
125”16 is correctly captured, but fails to

The configuration of Figure 2.4.3 is
enlarged by addition of the wavelet

which neighbors a previous one. 3.4
Y21, & P create 15, on I57.

Figure 2.4.3: Tlustration of Theorem 2.4.12 proving the stability of the horizontal
expansion.

Theorems 2.4.11 and 2.4.12 give us the way to construct any set of wavelets with
tree structure arising from Algorithm 2.4.3, by vertical or horizontal addition of
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individual wavelets. The restrictions in Theorem 2.4.12 imposing that the wavelets
are interior were made just in order to ease the readability of the proofs and the
general case can be easily inferred. The same can be said about the restriction
in Theorem 2.4.11 regarding the extension of a full level, as the generalization to
extend arbitrary lacunary levels is obvious. Thus, we have our main result.

Theorem 2.4.13. The matrices M; arising at each level j of the Algorithm 3. are
invertible.



Chapter 3

Numerical Performance

One motivation to work with wavelets are their ability to compress information, well
stated in Nonlinear Approximation Theory. This lets one hope that the degrees of
freedom involved in computations using a wavelets basis are likely to be fewer, and
so some advantage in terms of computational time is expectable.

The objective of this section is to point out that in addition to complexity reduc-
tion, the numerics involved in the described data fitting algorithm has inherently an
advantageous formulation in a wavelet basis. The additional advantages we could
expect are due to

e the good condition properties typically attached to wavelet bases and
e their level-to-level orthogonality, property (O).

We first explain why we should expect these two factors to yield numerical advan-
tages, and then we illustrate how they actually work by means of a series comparison
examples in which the same cloud of points P is fitted with two different bases. The
{¥r}ren are in one case the linear 2d tensor B-spline wavelet basis and in the other
a 2d hierarchical basis produced by tensor products of the 1d hierarchical basis. As
we will see, this latter basis provides also a multiscale setup but does not benefit
from the two above features.

3.1 Conditioning

In this section we explore some basic numerical properties of our setting. As ex-
plained in Section 2.2, we want to use iterative methods such as the Conjugate
Gradient Method (CG Method) on the system of normal equations (2.2.1). This
motivates the study of the behavior of the spectral condition numbers of the systems
arising during Algorithm 2.3.2, as they govern the speed of iterative techniques.
This issue relates to the stability properties of the basis involved, a subject that
has been deeply investigated in multilevel preconditioning techniques for PDEs, see
[47], from which we now recall a few concepts. To fix ideas, we will work with a

27
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Hilbert space H embedded in Ly. We give us a sequence of nested spaces {V;};>0
approximating H, that is

Wwcvic...cV,Cc...CH (3.1.1)
with N
Uvi=H (3.1.2)
>0

and each V; being spanned by a set of basis functions W; := {1s}rea,. As before,
the indices A € A; typically include information about the scale and position of the
corresponding function.

If the sets W; are nested as well, that is if

Vo, C...Cc¥;C...CV, (3.1.3)

then U := {¢y}ren, Aj C A for each j > 1, is a multiresolution basis of H. We
denote by W (resp. ;) both a set as well as a vector containing the elements of the
set. In this chapter we well work with uniform discretizations and ¥; corresponds
to the full grid approximation at level j. Only in this case comparison between
different bases makes sense.

Definition 3.1.1. Given a basis ¥ for a space H with inner product (-, )y, define
the Gramian matrix G’}p[ of U with respect to H as the matrixz with entries

(Gi)an = (a,ox)u, AN €A (3.1.4)

Definition 3.1.2. A basis ¥ for a space H is said to be stable if there exist positive
finite constants cq, co independent of j such that

crllulleyay < lu"Ulla < collul|eay (3.1.5)
holds for every u € ly(A).

Definition 3.1.3. A multiresolution basis ¥ for a space H is said to be uniformly
stable, if there exist positive finite constants ci,cs such that

cilluillenn, <l sl < collusllea,) (3.1.6)
holds for every u; € ¢2(A;) and for every j > 0.
Now, we can formulate a simple but useful consequence of (3.1.5).

Lemma 3.1.4. Let U, be a basis for a subspace V; of a Hilbert space H with Gramian

matriz G‘\I;j. If W; s stable according to Definition 3.1.2 with constants ¢ and ca,

then .
cond(G‘\I;jj) <=2 (3.1.7)

C1

and equality occurs when ¢y and cy are tight in (3.1.5).



3.1. CONDITIONING 29

Proof:
We just note that
T 2 T T TAY5,
luj W5l (w5 w5 ¥5)u 4Gy U (3.18)

uill2, uj U uj u,

Recall that the condition of a matrix is defined as the ratio of its extreme eigenvalues

cond(G‘q;j’) =5 (3.1.9)

For symmetric positive definite matrices it is well known that the biggest and small-
est eigenvalues meet

T ~Y; T Y
ut G us, ut G us;
Amax = max ]T—V]]’ Amin = min ]T—VJJ7 (3110)
Uj Uj Uj Uj Uj Uj
and therefore v
T~Y;
u: G us
Amin <~ < Ao (3.1.11)
with tight bounds. "

This lemma states that the sequence of Gramian matrices {sz }i>0 has uni-
formly bounded condition numbers if ¥ is uniformly stable.

Now, if go back to our setting in (2.2.1), we find at each level of the tree growth
the coefficient matrix M;. For dense distributions of points, its elements approximate
those of the G}I;j except for a constant factor. Therefore, the properties of the
{sz }j>0 can also help us gain some intuition about the properties of {M,};>¢.The
next two subsections are devoted to the study of some of these properties for the
cases of two different choices of U: the Standard Hierarchical Basis (HB) and the
Linear B-Spline Wavelet Basis (WB).

3.1.1 The Hierarchical Basis

The standard hierarchical basis of linear splines is constructed in the following
way. We choose V; in (3.1.1) to be the space of end-point interpolating linear splines
with knots {0, 2, 1}. This is the space of the functions that are continuous and linear

)92
in the each of the intervals [0, 3) and [3,1). Consider now a “hat” function

\IIHB

v ={, %, 1 9505

1
11—z 1<x<i? (3.1.12)

Defining the translations and contractions of this functions as

bk(a) =2z — k), (3.1.13)
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Vo112 Yoo Vo112

Figure 3.1.1: Standard hierarchical basis.

the basis of B-splines that span V; can be denoted by W8 := {wo,fé 110,11, %0,05 wo,% l0.1] }

The whole basis W7 is constructed by translations and contractions of the form
bin; 5> 0,k=0,...,27 (3.1.14)

by defining each V; in the scale (3.1.1) to be spanned by the set

, 1 1
uhB = {¢j,kij§J§ k=0,...,2" forj>0,/<:€{ O,—}, forj:O}.

2772

(3.1.15)
The first few members of this basis are depicted in Figure 3.1.1. The properties of
this basis with respect to Hj are well known in the theory of multilevel precondi-
tioning for PDEs. This basis is uniformly stable (after appropriate rescaling) in 1d,
[150] and unstable in two dimensions [149]. But in our data fitting approach we
have to turn our attention to the uniform stability in Ls. And it turns out that this
basis is mot Lg-stable. This result can be considered as a particular case of some
deeper theorems [123]. We give now a simple proof that illustrates clearly how the
mechanism of instability works.

Theorem 3.1.5. The standard hierarchical basis is not stable in Ly([0,1]).

Proof:
We are going to prove by providing a counterexample that the lower estimate in
equation (3.1.6) cannot be fulfilled for every j by any fixed constant ¢;. Consider a
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Figure 3.1.2: Sequence of functions with decreasing Lo energy.

sequence of functions f7 for j =0, 1,... defined as
. 1— 27 + 27ty 3 — 3 g:cg%,
f(x) = , , (3.1.16)
1+2 — 2ty s <z <3+ 57
These are hat functions centered at the point z = 2, with value 2 5 there, and with
support = 57, see a few in Figure 3.1.2. One can compute the L, norm of each member
as
1Pl =55 (3.1.17)
L2 3 2] . .
These functions are constructed so that f/ € V; for each j = 0,1,.... They have

therefore an expansion in terms of the elements of ¥, which we denote by dT\I!],
where d; € IR#. We can take a look at the coefficients of these expansions. f°
is clearly o0, and hence dy = (0,1,0)". f! can be constructed by subtracting
from f° the half of the two hat functions around the point x = % Hence d; =
(0,1,0, -3, —3)". We can likewise construct the following f7 in our sequence by the

recursion formula

, , 1
fi = it 5 (Vg1 + Wj00-141) - (3.1.18)

The result of this mechanism is the following. The coefficient vector of each f7
extends the coefficient vector of f/~! by adding 2/ new components, from which
exactly two are not zero and have the value —%, that is, for each J > 0
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Figure 3.1.3: Recursive construction of the sequence f7.

J=0 Jj=1 Jj=2 j=J

‘ 11T 11 - T 1 N
d;'=0,10, - = —=.0,————0,....0....0,—=,—=.0,....0). (3.1.19
J (77 ) 27 27 ) 27 27 ) ) ) b 27 277 7) ( )

The ¢ norm of each of the coefficient vectors is clearly bigger at each scale j. On
the other hand, by (3.1.17) the Ly norm of the corresponding function decays as 2%
Therefore the stability condition cannot be met. "

Numerical computations show that the condition numbers of the Gramian ma-
trices effectively grow like 27. In the two dimensional case, the Gramian matrix with
respect to Ly([0, 1] % [0, 1]) can be written as the tensor product of two Gramian ma-
trices with respect to Ly([0,1]) (note that this construction is only valid for L, and
not for smoother spaces). Consequently, the condition number in two dimensions
will grow like 2%. Note that the condition number is only a very coarse information
about the complete spectral properties of a matrix. Let us turn our attention to
the whole spectrum of these matrices, as depicted in the Figure 3.1.4 for 7 = 1 to
5. We should note that the explosion of the condition number is due to decreasing
minimal eigenvalues, that accumulate around zero.

3.1.2 The Wavelet Linear B-Spline Basis

Wavelets are a special case of a multiresolution basis constructed in the following
way. Each subspace V; in the nested sequence (3.1.1) has an orthogonal complement
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Figure 3.1.4: Eigenvalues of the Gramian matrix G%;HB of the standard hierarchical
basis in 2d.

in V41, which we denote by W, such that
Vi@ W; = Vji1. (3.1.20)

Let S; be a set spanning W;. We fix a basis Wy for Vj and construct a basis ¥}"7
of V; of the form

J
v =, Sy (3.1.21)

3’20

for each 5 > 1. The wavelet linear B-spline basis W"'# arises when applying this
kind of construction to the scale of spaces associated to the hierarchical basis W#5
presented in the precedent subsection. Henceforth, \IffB and \I/}fVB span the same
space for each j > 0. The first levels are depicted in Figure 3.1.5. We can see in
Figure 3.1.6 that wavelets that overlap the boundary are no longer translations of
wavelets in the interior of the domain. The requirement of orthogonality between
levels enforces the loss of this property.

The different levels are orthogonal w.r.t. Lo, so that the Gramian matrices turn
out to be block diagonal. The eigenvalues are those of the individual blocks. In
the case of the linear B-splines wavelets in 1d these blocks are tridiagonal matrices,
except for a slight perturbation at the boundary, whose eigenvalues are symbolically
computable. The Gramian matrix in the two dimensional case is a tensor product
of two matrices of the diagonal case. We can see the eigenvalues for levels j = 1 to
5 in Figure 3.1.7 and observe how the condition numbers are uniformly bounded.
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Figure 3.1.5: Wavelets on the interval.

3.2 Nesting Strategy

In Algorithm 2.3.2, one system like (2.2.1) has to be solved at each j = 1,...,J.
This series of systems are nested, that is, the system matrix and the right hand side
at a level j contain as restriction the system matrix and the right hand side of the
level 5 — 1. This naturally rises the question whether and to which extent one can
exploit having solved the system on j—1 to facilitate solving on level j.

Let us consider the following model problem. For the first level 7 = 1 one has
the inner system

My dY = by (3.2.1)

with dﬁl), by € IR™ , M; € IR™*™, ny = #A,. The notation dg-i) indicates that the
vector relates to functions of scale 7, having been computed on a system including
components up to level i.

Now, the next level j = 2 has ny = #(A2\A;) new components. The extended
system arising at this level can be written as an extension of the former,

M, M, a4\ /b
<le’.l:2 M2 ) <d§2) - b2 9 (3.2.2)

where d§2) € ]R"l,dg),bg € R™ M, € IR™*" My, € IR™*". The rectangular
matrix M 5 represents the coupling between the two levels. We write (3.2.2) in the
more compact way

Md=b, (3.2.3)

where b,d € IR" |, M, € IR™", i, = ny + ny = #Ay. When we solve (3.2.3) for d
after having solved (3.2.2) for dgl), our first attempt could be to simply extend with
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Figure 3.1.6: Interior wavelets and boundary wavelets.

zeros the solution for the first level, and to use the so constructed vector

& = < d((l)l) ) (3.2.4)

as starting value for the solution of (3.2.3) in the iterative method.

But this strategy is not guaranteed to be useful. We recall shortly how the
Conjugate Gradient Method would proceed to seek for the solution of (3.2.3). Denote
by {vi}iz1..7 and {w;}i—1, 5 the eigenvalues and eigenvectors of M, and by #; the
projection of the initial error on the i-th eigenvector, that is,

m=(d—d°, w)emn, i =1,.... 7 (3.2.5)

The CG creates a series of approximating solutions {dl}lzl,m whose distance to the
true solution is given by the expression

|d dl |€2 anpl Vz (326)

P, is a polynomial of degree [ fulfilling P, (0) = 1. This B, is precisely the one
that minimizes the right hand side of (3.2.6) among all the polynomials of degree
[ meeting P(0) = 1. This property is the key of the rapid convergence of CG in
comparison to other iterative methods.

Let us explore the structure of the terms 7; in (3.2.6) defined by (3.2.5). Denote
by ul|; the vector in IR™ resulting from the extraction of the n; first components of
u € IR™ and by uly the vector in IR™ formed by the last ny components of u. We
can now write (3.2.5) as

ni = (dli—d, wil)emay + (da — s, wl2)e(mne)
= (d] —d\", U)oy + (dl2 = 0, Uil2) () (3.2.7)
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Figure 3.1.7: Eigenvalues of the Gramian matrix G%’:VB of the linear B-spline wavelet
basis in 2d.

This expression helps to clear how the nesting works. If we work with wavelets, the
Gramian matrix corresponding to M is a block diagonal matrix. The level-coupling
matrix M 5 is zero. The consequence of this fact is twofold.

1. The solution of the inner system is clearly independent of the outer system
and hence

d; = dV. (3.2.8)

2. The eigenvectors of M are padded versions of the eigenvectors of M; and Ms,
that is, denoting the eigenvalues and eigenvectors of M; by {l/i(l)}izl

.....

..........

the eigenvectors of M can be written as

1)
U, )
i = L ,i=1,...,
U < 0 ) 1 ny

0 . .
u; = ( (2)>,@:n2+1,...,n (3.2.9)
u

We can use the observations leading to (3.2.8) and (3.2.9) to simplify (3.2.7) to
n; = (0, ui|1)g(]Rn1) + (d‘Q , O)g(]Rng), 1=1,...,nq. (3.2.10)

The expression in (3.2.6) can be now written as

n1+n2

Hd—le@: Z n:P(vi), (3.2.11)

i=ni1+1
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showing that we only have error contributions stemming from the outer degrees of
freedom. The error contributions of the inner degrees of freedom have already been
accounted for and will no longer appear.

The former argumentation would be however of no use if we could directly work
with the Gramian matrix, as (3.2.3) would be decoupled into two independent sys-
tems, and there would be no point in solving both of them together. But in the data
fitting application we do not work with the Gramian matrix but with the coefficient
matrix in (2.2.1), whose entries only approximate those of the Gramian matrix, and
so the M » matrix for the wavelet basis is not exactly zero. We actually do have a
coupling. Anyway, if this coupling is weak, we can still expect (3.2.8) and (3.2.9) to
be approximately fulfilled, and use the former argumentation to expect some kind
of improvement the error reduction rate when using this nesting procedure.

In the standard hierarchical basis, this analysis fails. The matrix Mo is not
zero even for the Gramian matrix and we cannot expect to benefit from the nesting
strategy up to same extent as when working with the wavelet basis.

3.3 Case Study

In this subsection we illustrate the features described in the above sections with a
fitting experiment involving synthetically produced and real data.

In our example we consider the function in the left hand side of Figure 3.3.1,
sampled in the points in the right of the figure, and we compute a full grid approx-
imation both for the WB and the HB so that the number of degrees of freedoms is
comparable. We are then interested in comparing the performance of a numerical
method, as explained in following subsections, working with each of the two bases.

Error Decay . Our algorithm produces a series of A;, one for each resolution
scale, and solves equation (2.2.1) at each level. That is, we solve a series of systems

Mid; =b;, j=1,...,J (3.3.1)

0 01 02 03 04 05 06 07 08 09 1

Figure 3.3.1: Testing data.
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Figure 3.3.2: Error decay rate at the top level J in A for WB and HB.

that produces a series of level approximations { fj,,..., fs}. As we employ an iter-
ative method, we generate at each resolution level j a sequence of approximating
functions f;o), f;l), ey f;k), ..., that converge to the f; formed with the d; coeffi-
cients that exactly solve the corresponding system in (3.3.1).

A crucial question to measure the efficiency of the fitting procedure is the number
of iterations we have to perform at each level j to obtain f;.

In Figure 3.3.2 we see how the error per CG iteration, defined as

(i (z o (%))2) (3.3.2)

i=1

decays with the number k£ of CG iterations k both in the Wavelet and Hierarchical
Bases when computing the solution at the corresponding top level J = 4, starting
with an initial value of zero.

As expected, we observe that we need less iterations when working with wavelets.
Although we are referring here only to the reconstruction of points from Figure 3.3.1,
this effect can be generally observed for sets of points of different characteristics. It
is worth mentioning that the convergence of the CG procedure or its derivations is
very sensitive to scalings, which must be taken into account in any statement about
convergence. That is why the present results were made choosing the best decay
rates both for the WB and the HB after running a series of tests for each basis.

Nesting
The Vertical Thresholding Algorithm proposed in Section 2.3.2 creates the se-
quence {A;};—;,. . level by level by solving the system of equations (3.3.1) for each

VE
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Figure 3.3.3: Comparison of the error decay used nesting on WB and HB.
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Figure 3.3.4: Error decay by nesting.



40 CHAPTER 3. NUMERICAL PERFORMANCE

1000

900

800

700

600

500

400

1300

1200

1100

Figure 3.3.5: Typical structure of a coefficient matrix M; in a wavelet basis. The
elements in the fingers that couple wavelets on different levels are not zero like in the
Gramian matrix G%’QWB. Nevertheless, they are several orders of magnitude below
the elements coupling neighboring wavelets on the same dyadic level. As a result,
the matrix is strongly diagonal dominant.

In fact, it needs to solve for the coefficients d; at each scale to get some infor-
mation about the properties of the data that allows for a right choice of the set
of indexes A;;; at the next level. However, we can try to reuse these partial level
solutions to accelerate the error decay by proposing the coefficients computed at
level 7 as starting value for the computation of the coefficients at the next level j+1.

If we repeat the experiment of the former section giving this time the solution
computed at the previous level instead of zero as starting value for the iterative
method, we get the error decay rate given in Figure 3.3.3. We observe that the
advantage of wavelets has become more striking.

This can be interpreted in terms of the orthogonality of wavelets between levels,
which makes them a natural choice for the algorithm we propose, based on level by
level growth.

Every time we extend a set A; with new elements corresponding to the next scale
to form A4, the coupling between old and new degrees of freedoms is going to be
weak. Looking for instance at the structure of a typical AT A matrix like in Figure
3.3.5 we observe that off-diagonal blocks, representing interactions between levels,
contain small elements in comparison to elements in diagonal blocks, representing
interaction between elements on the same level. Because of this weak coupling, the
CG acts as if it was looking for fast independent solutions on each scale. This means
that the coefficient values computed for the scales up to level j by minimization on
the set of indexes A; are not severely affected when minimizing on a larger set
Aj4; that includes new higher frequencies. So, if we feed the CG on Aji; with a
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starting value d§°+’1 that includes a good guess for the degrees of freedoms in A;, the
work corresponding to this subset of A;;; has been already done and only minor
corrections are needed to cope with the new higher frequencies, that act like a
perturbation.

In the Hierarchical Basis all the degrees of freedoms are strongly coupled and
stay in the way of each other during the CG process. That can be observed on the
left of Figure 3.3.4 comparing the decay error rates obtained with the Hierarchical
basis, with and without. We observe that the nesting does not give any help, as
attaining the global minimums involves as many iterations in the two cases. On the
right of the same figure we see the results for wavelets in the analogous experiment.
The nesting does really allow for a reduction of the iterations we need to reach the
minimum.

This trend is obviously going to be the more noticeable the higher the maximal
resolution level is, as the conditioning of matrices arising from a hierarchical basis
ansatz is going to be worse, whereas it remains bounded in the case of wavelets. For
instance, we give in Figure 3.3.6 the results of a data fitting experiment with the
data depicted on the left of the Figure, stemming from a Digital Elevation Model
of the Earth ([85]) and including more than 160000 points. A maximal resolution
level J = 7 was employed, involving more than 65000 degrees of freedom working
with a full grid.

~

— Wavelet Basis 34 --- Wavelet Basis
’g —— Hierarchical Basis ’g 3 _ -~ Hierarchical Basis
< b
1 \: [\) H
N— N— \
3 N IITTTitrzzzocazasss
20 . 5(?0 35 . 590
CG iterations CG iterations
Geophysical data set Without nesting With nesting

Figure 3.3.6: Performance at high resolution data sets.

Also a higher dimensionality of the data enhances this effect: when fitting the 3d
data on the left plot of Figure 3.3.7, corresponding to the simulation of the spatial
probability distribution of the electron in an hydrogen atom residing in a strong
magnetic field (courtesy of the project SFB 352 of the German Research Council),
the faster convergence of wavelets is already visible at lower resolution levels, as
seen in the central and right plots, depicting the error decay with the number of
iterations.



42 CHAPTER 3. NUMERICAL PERFORMANCE

— Wavelets
— Wavels 3 N 9 .
o 3 —_ Hi:::rceéswcal basis o —— Hierarchical basis
e e
< £
N N
S S
< <
/
2.4 2|
9 i 1(_)0 12 i 3(_)0
CGq iterations CGq iterations
Original data J=2 J=3

Figure 3.3.7: Performance on multivariate data.

3.4 Irregular Distribution of Measurements

Our considerations so far have been based on an extrapolation of the good properties
of the Gram matrices approximating the experimental coefficient matrices M;. This
extrapolation is obviously not always possible, as the closeness of the entries of both
matrices relies on the local distribution of measurements. One can expect that a
variation of the density of observations on the domain should have an effect on the
spectral properties of the coefficient matrix.

In any case, experiments typically show that the effect of these factors may
indeed alter the eigenvalue distributions, but the good properties observed with
regular distributions partially remain.

Typical results correspond to those computed with the fitting experiment de-
scribed in detail in this section, done on the function of the case study from the
previous section, plotted on the left of Figure 3.3.1. The function is sampled on
three different sampling geometries, each comprising 20000 points, and conceived
merely in order to construct a sort of scale of increasing irregularity.

e grid data set: the measurement points are located on a regular grid.

e random data set: the measurement points were randomly generated following
a uniform distribution.

e cluster data set: a fraction of the observations is located on a regular grid,
while the rest was generated concentrating on four spots (clusters).

Firstly, we explore the behavior of the eigenvalues of the coefficient matrices at
increasing different levels: see the results in Figure 3.4.1.

e grid data set: the condition numbers of different levels remain close to the
condition number of the Gram matrix, worsening in a fast inappreciable way.

e random data set: At lower levels, the condition number approximates the
theoretical value, but for higher levels, where the number of points of the
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support of the wavelets gets rarer, the summations of the elements of the
coefficient matrix corresponding to high-frequency wavelets differ from the
integrals of the Gram matrix.

e cluster data set: The divergence of the spectrum in relation to the those of the
Gram matrix starts already at small frequencies: wavelets on these levels have
certainly a large support and the number of measurements on it is certainly
big, but the irregular distribution across the support prevents the summation
from approaching the integral.

o5 k(M) =9.06 k(M) =249 k(M) =608
9.02 11.07 196

J=4
9.01 9.4 139

J=3
9.01 9.1 o7

J=2

:ug'm :urcr:za:r Mgzn :u’gax :ug'm :U’nGlax

grid data set random data set cluster data set

Figure 3.4.1: Spectra at different dyadic levels of the coefficient matrices for different
horizontal distributions. Each distribution comprises 20000 points. The dotted lines
mark the location of the smallest (1€, ,) and largest (uS,,) eigenvalues of the Gram
matrix.

Although the difference in condition numbers could let think that irregular dis-
tributions destroy the capacity of wavelets to generate normal equations with good
convergence properties, the iteration count shows that it is not the case: In Figure
3.4.2 we see the iteration count at the maximal resolution level J = 4. The error
decay rate deteriorates in the case of clustered data, but it convergence still occurs
in a few iterations (we point out that at level J = 4 matrices involve 1089 degrees of
freedom). Moreover, the capacity of reducing iterations by a nesting strategy is still
available. Still more interesting are the results depicted in Figure 3.4.3, where itera-
tion counts for Wavelet and Hierarchical Basis functions are given. The performance
of the Hierarchical Basis does not suffer much under the effect of irregularity, as the
shape of the error decay curve remains similar in all three cases. The good per-
formance properties of wavelets relay on their delicate construction, which assures
orthogonality between levels. This fine property obviously suffers under discretiza-
tion. The hierarchical basis displays the opposite side: it acts kind of “stable in
its stability”. As their functions have a simpler structure and smaller supports, the
effect of discretization is weaker.
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Nevertheless, in all three cases, the wavelet basis still manages to outperform the
hierarchical basis.
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Figure 3.4.2: Error reduction per CG-iteration for the different point distributions

referred to in Figure 3.4.1 with and without the nesting strategy. The resolution
level is J = 4, involving 1089 degrees of freedom.
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Figure 3.4.3: Error reduction per CG-iteration for the different point distributions
referred to in Figure 3.4.1 using a linear wavelet basis and a linear hierarchical basis,

in both cases using a nesting strategy. The resolution level is J = 4, involving 1089
degrees of freedom.

The results on the next dyadic levels, represented in Figures 3.4.4 and 3.4.5
confirm the trend: in spite of a certain deterioration of convergence properties, the
capacity of the wavelets to take profit of the nesting strategy remains, as well as the

advantage on the hierarchical basis, in which the effect of the irregular distribution
starts to be more noticeable.
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Figure 3.4.4: Error reduction per CG-iteration for the different point distributions
referred to in Figure 3.4.1 with and without the nesting strategy. The resolution
level is J = 5, involving 4212 degrees of freedom.
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Figure 3.4.5: Error reduction per CG-iteration for the different point distributions
referred to in Figure 3.4.1 using a linear wavelet basis and a linear hierarchical basis,
in both cases using a nesting strategy. The resolution level is J = 5, involving 4212
degrees of freedom.



46 CHAPTER 3. NUMERICAL PERFORMANCE

This kind of results is also encountered with sets of irregularly distributed ob-
servations typically appearing in actual data analysis scenarios, as those depicted in
Figure 3.4.6:

e sea data set: 13361 points. The data represents the depth of a sector of the
Caribbean around Puerto Rico. Most observations lie along lines, as it is
frequently the case in bathymetrical data sets. Data available at [128].

e factory data set: 19920 points. The cloud of points represents an industrial
facility. This set was produced by Prof. Steiger (G.H. Essen) using a match-
ing procedure. In this photogrammetric technique, several views of a point
are required to determine its tridimensional position. The matching of these
several stereo images frequently results in an irregular pattern of successfully
matched points, as shown in the Figure.

e radar data set: 28800 points, measured as explained in Section 2.3.1.

e glacier data set: 8614 points. This glacier contour data is proposed by Franke
among other model sets for fitting of scattered data, [78].

sea factory radar glacier

Figure 3.4.6: Data sets with different patterns of irregular data.

Iteration counts are offered on Figure 3.4.7. Again, wavelets appear to offer a
more rapid convergence, although (depending on the data distribution) the error
decay is less clean: as an effect of the spreading of the spectrum caused by the lack
of irregularity, convergence slows down in the proximity of the minimum.
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Figure 3.4.7: Error reduction per CG-iteration for the different point distributions
referred to in Figure 3.4.6 using a linear wavelet basis and a linear hierarchical basis.

3.5 Construction of Tensor Products

There are several ways to describe bivariate functions with tensor product con-
structions of monovariate wavelets. The most direct way, as explained above, is to
consider the wavelet decomposition of the original space of interest V

V] - ‘/jo @ Wjo @ VVjOJrl @ “e @ WJ,1 (351)

and to work with bases for each of these spaces, that is, the set of scaling functions
D; := {Bjo.k Fk=0.... 200 _1+m> Where m is the order of the spline-wavelets, for the space
Viy, and the set of wavelets ¥; := {1, }x—o__2i_1 for each W;. One construction is
to develop V; ® V; using the formula (3.5.1), yielding

VJ@VJ = (VJ'OEBW]'O@MGO+1€B"'@WJ*1)®(‘GOEBVVJ’O@WJOH@'“@WJfl)'

(3.5.2)
Taking tensor products of the bases on each of the summands in (3.5.2) gives rise
to the anisotropic basis , which with the shorthand

b, @D, = {dj, k() - j, ik, (y)}kxzorn,gm_Hm; ky=0,...29014m (3.5.3)

and similarly for the other combinations of @; and ¥;, can be written as

2,00, |J 2.0v, U weo, | weop, (3.5.4)
Jjz=jo Jo<jz<J-1 Jo<jz<J-1
Jo<jy<J-1 Jy=3o Jo<jy<J-1

Thus, in this construction, a basis element of V; ® V; consist of the tensor product
of two functions of possibly different scales. This difference can range between 0 and
J — jo, and consequently, bivariate functions whose support has a rather elongated
shape are included in this basis. This kind of functions might not be desirable when
performing local refinements.

In an alternative construction, we can consider the spline space V; just as the
sum of the spline space on the previous dyadic level and its orthogonal complement
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spanned by wavelets V; = V;_1 & W;_; and write

VJ & VJ - (V]_l S>) WJ_l) ® (VJ_l b Wj_l) (355)
= (ViqaeViy)e (VW 4)a (3.5.6)
W@ Vi) e (Wi @Wi_y). (3.5.7)

Now, iterating on (V;_; ® V;_1) back to level j, we find the following isotropic
decomposition of V; ® V;

ViV, = (Vjo Y Vjo) S (3.5.8)
Vio ® Wjy) & (W), ® Vjo) & (W), ® W) (3.5.9)
... (3.5.10)
(VJ_l Y Wj_l) 7] (Wj_l ® Vj_l) SP) (Wj_l ® Wj_l) . (3.5.11)

Recalling (3.5.3), we can write the full isotropic basis as

2,20, |J #ey |J wee |J wew (3.5.12)

Jo<j<J—1 Jo<j<J—1 Jo<j<J—1

As each term is orthogonal to all the others, the Gram matrix of this basis is merely
a diagonal concatenation of the Gram matrices of each term, which in turn is the
Kronecker product of the Gram matrices of the two factors.

Now, we introduce a notation simplification: in customary compact notation for
wavelet tensor product constructions, the multiindex A that identifies an individual
wavelet is to be understood as A := (j,k, #), with k = (k;, k,) and e = (e, e,), so
that

Vike(T,y) = Vi3, (@)Y, (¥)- (3.5.13)
where the superindex distinguishes between scaling functions and wavelets: ¢§) g () =
Gjk, () and Yj, (x) = b, (2). With this motivation, we will write ¥ = &; and
le = ¥;. We further simplify the notation defining G% := G". Now, the Gram
matrix of the isotropic basis (3.5.12) of the space V; ® V; is block diagonal, with the
following set of blocks:

Geod | ec | ¢ed) | Ged) (3.5.14)

Jo<j<J—1 Jo<j<J—1 Jo<j<J—1

The spectrum of the Gram matrix in isotropic constructions is therefore

pol e ) et | e | pert,  (3.5.15)

Jo<j<J—1 Jo<j<J—1 Jo<j<J-1

77777777

of Gjl..
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The condition number of the Gramian matrices in the bivariate case is the same,
as both the minimal and the maximal eigenvalue appear in the block G?O ® G?O
representing the scaling functions on the coarsest level, common to both isotropic
and anisotropic constructions.

Further, there is a large overlapping of eigenvalues, corresponding to the blocks
G} ® G]l, also common to both constructions (and which carry the majority of
eigenvalues). Moreover, p/0 and p/' are similar values, as the G9 and G have
similar structures.

The spectra of both matrices are depicted on the right plot of Figure 3.5.1.
In practice, this all translates into very similar convergence properties, as we can
see in the central and right plots of Figure 3.5.1, where the error decays of both
tensor product constructions are hardly distinguishable from each other, both for a
gridded and clustered data set. Still in the case of the irregular distributions from
Figure 3.4.6 both constructions yield remarkably similar spectral structures, as we
can observe in Figure 3.5.2. As explained in Section 3.4, the eigenvalues spread
out in presence of scattered data, which can blow up the spectral condition number
while the bulk of eigenvalues remains clustered in their original environment. The
histograms show how this spreading has very similar features in both bases: both
data sets glacier and sea maintain their spectral structures close to the one of the
Gramian, and the same holds for factory and sea. The spreading occurs in both
tensorial constructions.

Note that this can lead to very different condition numbers of the Gramian
matrices in the two bivariate bases for one data set, on account on one isolated
eigenvalue, but for convergence purposes it makes no real difference, as the eigenvalue
density shows a similar profile in both cases.

— isotropical
— anisotropical

— isotropical : isotropical |
—— anisotropical anisotropical

v
log(error)

1 1089 10 1 40

Eigenvalues of the Error decay for Error decay for
Gram Matrix in both gridded data clustered data
basis

Figure 3.5.1: KEigenvalues of the Gram matrix with different tensor product con-
structions.
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Figure 3.5.2: Eigenvalue histograms of the coefficient matrices for the different
point distributions described in Figure 3.4.6, computed with an isotropic and an
anisotropic basis of wavelets. For factory and radar, isolated eigenvalues induce the
spectrum to spread, but the bulk of the eigenvalues is still concentrated in the same
area as in sea and glacier. This spectral behavior is in accordance with the ones of
the Gramian matrices for both isotropic and anisotropic constructions.



Chapter 4

Regularization

4.1 Smoothing with Wavelets

A classical way to extend least squares fitting methods to force them to produce
smooth surfaces is to add a smoothing term in terms of a Sobolev norm to the
functional

N
I =3 (= fl@)), (4.1.1)
i=1
see e.g. [62] for general splines, [134] for splines with variable knots, [83] for multiscale
splines, [94] for splines on triangulations, or [82] in a wavelet reformulation of the
spline problem. This yields a cost functional of the form

N

Tf) =Y (2= (@) + vIIfI5 (4.1.2)

i=1

where v > 0 balances the fidelity of the data and the smoothness requirement, and
Y is usually chosen as the Sobolev space H' or H2.

In this chapter we use the fact that the collection {¢, : A € I'} constitutes
a Riesz basis for Ly(Q2) and, moreover, one has norm equivalences for functions in
Sobolev spaces H* = H%(2) (or even more general in Besov spaces [61]) in the range
a € [0,7) of the form

| Z Ay PrlFrai) ~ ZQZajZ|dj7k,e|2~ (4.1.3)
k.,e

A=(j,k,e)el 3>jo

The parameter v depends on the smoothness of the wavelet family which is, for
instance, v = % for piecewise linear wavelets and accordingly higher for smoother
wavelets.

In view of (4.1.3), the wavelet formulation allows to represent functions in
Sobolev norms in terms of sequence norms of weighted coefficients from their wavelet
expansions. Accordingly, replacing |- ||y by the corresponding sequence norm on the

51
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right hand side of (4.1.3), the minimization of the resulting functional is equivalent
to the solution of the normal equations

(ATA+vR)d = ATz (4.1.4)

Here A is shorthand for Ay, j being the actual level of computation, and the
diagonal matrix R has the structure

92ado [
R= . (4.1.5)
22aj]

This illustrates some interesting properties of the representation of the smoothing
term in the wavelet context (4.1.3):

(I) The different dyadic scales are decoupled. This is interesting in two ways.

(i) It keeps the weak decoupling between levels of the matrix AT A, which is
explicitly used to speed up the efficient numerical solution of the normal
equations as seen in Chapter 3.

(ii) It gives an insight into the way regularization works. In fact, the effect
of the regularization term boils down to a penalization of the higher
frequencies. As v controls the balance between fidelity and regularization,
a controls the relative penalization across scales.

(IT) One has easy access to the entire scale of fractional Sobolev spaces {H*},=0
which reduces to a simple diagonal scaling in the wavelet framework.

(ITI) The formulation is independent of the wavelet family. Only the smoothness of
the family imposes a limit on the upper bound v of « for which (4.1.3) holds.

We illustrate an example of the application of property (II) when fitting the data in
Figure 4.1.1. We freeze v and perform the regularized fitting for several fractional
Sobolev spaces ranging between H' and H2. One can observe in the results in Figure
4.1.2 a smooth transition between the hardly controlled oscillations at the borders
of the plateau in the H' case and their over-smoothing in the H? case.

4.2 Cross Validation

The formulation of (4.1.2) opens the question of the choice of the parameter v
controlling the balance between approximation quality and smoothness of the fitting
function, and of the space X, that is, of the « in the scale H¢.

Different ways have been proposed and currently used, see for example [68, 88,
141] for surveys of several methods. We will now concentrate in one of the most
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Original function Horizontal distribution of
measurements

Figure 4.1.1: Example data set: Irregular sampling of a function showing sharp
features.

popular methodologies: the use of some leave-one-out criterion, leading to the Or-
dinary Cross Validation (OCV) method, or to the less expensive Generalized Cross
Validation method (GCV), see e.g. [142].

The general concept in this kind of approach is that a good model should predict
any new datum. The choice of the regularization parameters should generate a model
that succeeds to predict all the data points.

To this end, one denotes for each ¢ = 1,..., N by fy] the approximation to
the whole set of data with exception of the point x,, with respect to a regularizing
parameter v, that is:

F4 minimizes Z 2 v|If|I%- (4.2.1)
1£L

The Ordinary Cross Validation merit figure for v is then defined as

=

OCV(v)=> (2 — fix )”. (4.2.2)

(=1

The functional illustrates the idea behind these methods, namely to find the regu-
larization parameter leading to the reconstruction that is least affected by any single
data point. In any case, the form of (4.2.2) is not suited for computational use. The
direct application of this formula would involve the computation of fy] for every /£ in
the cloud of points and for every v which we would test during the minimization of
(4.2.2). Fortunately the computations can be strongly simplified making use of the
so called leave-one-out Lemma stated by Craven and Wahba ([41]) in the framework
of regression with smoothing splines, which we can formulate for our case. The use
of the leave-one-out Lemma leads immediately to the following OCV identity:
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a=1.6 a=1.8 oa=2

Figure 4.1.2: Smoothing of data in Figure 4.1.1 (cross sections) for v = 100 and
different choices of a for Y = H* in (4.1.2).

Theorem 4.2.1.

N

a _ _ 1 (2 — fu(xi))Q
; — (@) =0CV(v) = NE;W (4.2.3)

where f, is the function whose wavelet expansion satisfyes (4.1.4). In this ex-
pression we get rid of the fl terms, paying the price of having to compute the
diagonal elements of the influence matriz defined in (4.2.5) below. The computation
cost would still be unaffordable. This motivates the construction of the General-
1zed Cross Validation method, in which one takes the v that minimizes the GCV
functional

Mz

— fu(®3))
GOV (v) = —- - )= (4.2.4)

=1

where H € RV*N with entries h; ; is the influence matriz of the problem, defined
as
H:=A(ATA+vD) ™" AT (4.2.5)

and f, is the solution obtained by solving (4.1.4) for d with a given v and letting
fv = > ea dxtha. One should note the intensive computational effort required by
this approach, as a linear system has to be solved each time the GCV of a v is
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computed. Moreover, a real computation of the trace of the influence matrix for
each v by computing the individual elements would be unfeasible.

Fortunately, the trace can be stochastically estimated in a relatively cheap way
as tr(H(v)) = u H(v)u, u being a random vector with entries 1 and —1, see [98].

Statistical meaning of General Cross Validation As explained by Wahba in
[143], the GCV is not only easier to compute. It also shows important theoret-
ical properties that one could not prove with ordinary cross validation, although
experiments show that the results attained by the two methods are very close. In
particular, one can prove the “weak cross validation theorem”, see [140], that states
the asymptotic optimality of the GCV in presence of data corrupted by white noise.
The validity of this theory developed for splines can be translated verbatim for the
wavelets employed here. As an example, consider the data set of Figure 4.2.1. The
left plot is the popular Franke function, see [77], on which we take a discrete regular
sampling adding white noise to obtain the right plot.

‘ w '»v‘
\\ \r ‘i /‘a»x ﬂ
{ YA“

Original function. Original function corrupted by
white noise

Figure 4.2.1: The Franke function and a discrete sampling corrupted by white noise.

The computation of GC'V(v) in the case a = 2 gives the left plot of Figure
4.2.2, where one can distinguish a clear minimum. Moreover, the shape of this
curve is interestingly similar to the one of the curve on the middle, which represents
the ¢y error of the approximation produced with a smoothing parameter v, that

1

is, the quantity (vazl(fy(xl) - f(ml))2> * where f stands for the original Franke
function without noise. This plot would be obviously not available in a real denoising
experiment, where the original function is not known and is given here as reference
function.

The structures of the two plots is the same, that is, a first flat region for small
values v, where regularization is inactive, a transition area, and a second flat region
for large values of v, where regularization has completely smoothed the resolution.
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But the coincidence is not only qualitative in these coarse features as the two tran-
sition areas are quite similar, with the order of magnitude of the two minima being
similar.

Several remarks are in order in view of these plots:

e This concordance visualizes the suitability of the GCV functional as merit
figure.

e The minimum in the GCV is flatter than the minimum of the error plot. The
consequence is a high parameter sensibility. See Figure 4.2.3 to appreciate
how the reconstruction quality decreases away from the detected minimum.

s E
a° o
TR T
GCV functional for {5 error of the Reconstruction at the v
different values of v reconstruction f, for that minimizes GCV (v).

different values of v

Figure 4.2.2: Denoising corrupted Franke data set from Figure 4.2.1 using the GCV.

Obviously, a further question is the influence of the regularization space. This
can be easily analyzed in the wavelet framework and we illustrate it by computation
of the GCV using different choices of a. A few reconstructions can be seen in Figure
4.2.4. One can see that the correct choice of the space is a capital issue in order to
assure reconstruction quality, as we will discuss thoroughly in Section 4.3. In this
constructed case, a rough interpretation of these results is possible: as the noise is
located at the highest level of frequencies, spaces H® with larger a that penalize
these frequencies stronger, are going to work better. In any case, the GCV attains
to locate a v providing a reconstruction close to the best possible at each «.

Overfitting Moreover, although the original application of this technique appears
in a denoising scenario [143], its interpretation as leave-one-out balancing method
provides a heuristics to construct a merit function for the parameter v which can
work in other data fitting situations requiring some amount of regularization. For
instance, this occurs for data sets with a highly varying point distribution or with
holes in the domain, which typically produce overfitting artifacts. To describe this,
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V = Vpin 10! V = Vpin 102 V = Vpin ° 103

Figure 4.2.3: Reconstruction quality around the GCV minimum for o = 2.

consider the data set in Figure 4.2.5. The area in the lower right corner is not
densely populated, and a merely least—squares driven reconstruction would produce
large oscillations in this area in order to minimize the distance of the surface to the
surrounding points, which will act as a leverage.

We see in the reconstruction computed with cubic spline wavelets for three val-
ues of v in Figure 4.2.6 that the GCV criterion provides some kind of order of
magnitude information, as the minimal value v = 1y,;, succeeds to reproduce the
features of the original data without artifacts. Away from this minimum, the value
v = (50)7! v, provides too weak a regularization as it does not eliminate the os-
cillation that one can expect for the poorly populated area. We further illustrate
this behavior in Table 4.2.2, where we have listed in the first row the approximation

1/2
errors (Zf\il(zz — f (xz))2) for different values of v. In this case of synthetically

generated data, we can also compare the approximation error of the reconstructions
with the true approximation error. In the second and third row, we have listed the
sum of the absolute values of all wavelet coefficients with respect to level 1 and level
2, respectively. We see that the reconstruction for v = (50)~1 vy, slightly overesti-
mates the /5 norm of the wavelet coefficients on level j = 2. The opposite situation
occurs for v = 50 v, which is too strong a regularization. Wavelets on level j = 2
are underestimated, as one can see from the third row in Table 4.2.2, yielding that
high-frequency details are not reconstructed properly. In fact, the height of the
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Figure 4.2.4: Denoising of the corrupted Franke data from Figure 4.2.1 by the GCV
method for different choices of a.

peaks has been reduced (see the cross section of the different reconstructions in
Figure 4.2.7) and in flat areas, oscillations of frequency j = 1 are not compensated
with contributions of higher frequency. Correspondingly, this reconstruction yields
a larger approximation error.

We give a further example, this time using linear spline wavelets, in Figure 4.2.8,
corresponding to sea floor elevation data from Puerto Rico [128]. This geophysical
data set includes a strong irregularity in the horizontal distribution of measurements,
as seen in the graphic on the right. In fact, clusters, lines and holes are present.

Again, the GCV succeeds to provide a good orientation value for the order of
magnitude of the regularizing parameter v. Compare in Figure 4.2.9 the spiky recon-
struction attained with v = (100) " !vyi, on the left, and the over-smoothed surface
generated with v = 200v,,;, with the reconstruction provided by the value v = vy;,.
Table 4.2.3 displays the same trends as in the previous example. Again, the over-
smoothed surface presents a higher approximation error, and the poorly regularized
reconstruction differ from the others at higher frequencies; compare the ¢, norm of
the wavelet coefficients at levels j = 3 and j = 4 for the three regularizations.
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@ || Vimin - 1072 | Unin - 1072 | Vpin - 1075 || Vinin || Vinin - 10 | Vpnin - 10?2 | Vppin - 103
1 5.069 4.712 3.926 2.140 4.534 13.323 19.156
2 4.425 3.146 2.008 1.378 2.816 9.294 17.794
3 2.787 2.120 1.508 1.170 2.040 6.593 15.979
4 2.142 1.666 1.313 1.087 1.688 5.171 14.341
) 1.770 1.544 1.210 1.070 1.344 3.601 11.404
6 1.670 1.414 1.108 1.080 1.223 2.865 9.378
7 1.540 1.208 1.069 1.097 1.226 2.872 9.398
8 1.342 1.081 1.089 1.102 1.227 2.878 9.4195
9 1.150 1.076 1.101 1.104 1.220 2.885 9.440
10 1.070 1.096 1.105 1.104 1.230 2.892 9.460

Table 4.2.1: /5 error of the reconstruction for different values of v surrounding the
minimum v,,;, of the GCV for different choices of «.

Data: Gaussian peaks. Sampling points.

Figure 4.2.5: Synthetic data with two zones of different density distributions.

4.3 A Multilevel Version of Generalized Cross—
Validation

The main idea presented in this Section is the simultaneous use of the GCV with
the hierarchical growth of the wavelet tree as the levels become higher. The basis
for this is the observation made above that the wavelet representation penalizes the
different dyadic levels separately with the same weight 22%9. Instead, we propose
the following approach. In view of the form of (4.1.5), we prescribe a diagonal
penalizing matrix with the same values for all entries of each level. Instead of the
particular weights 22*/, we propose here to use some quantities v; > 0, which are to
be computed independently following a GCV criterion. That is, at each level j the
normal equations attain the form

(AR, An; + Rj)d = A} 2, (4.3.1)
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v = (50)"! vpin V = Vmin v = 50 Vmin

Figure 4.2.6: Regularized reconstruction of data from Figure 4.2.5 with different v.
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Figure 4.2.7: Cross sections of the peaks for the three reconstructions given in Figure
4.2.6. Straight and tightly dashed lines corresponding to v = (50) 'ty and v = v
nearly coincide, whereas the loosely dashed line corresponding to v = 50 vy, gives a
different shape.

where the diagonal matrix R; is defined componentwise as (R;)xx := 0y vv)y for
some set of scalars {v; },<;j/<;. These scalars are computed inductively at each level
following a GCV criterion. At level jo, we define the influence matrix to be

H(vj) := A, (A}, An,, + Rj) AR, S

and v, is obtained by minimization of the corresponding GCV potential (4.2.4). At
any subsequent level j we define the influence matrix

H(vj;vjy,...,vj_1) = AAJ_(AXJ_AAJ_ +Rj)—1A:Kj

to have v; as only variable and take the v, from previous levels j, < j' < j as
parameters. v; is then likewise computed based on minimizing (4.2.4).

Note that the penalizing term can no more be interpreted as coming from a
Sobolev norm of the function in the scale H®, as we do not prescribe any relation
between the penalizing terms {v;};>j,.

This approach offers some interesting advantages:

1. The procedure is easily built into the coarse—to—fine growth of the tree.
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Origipal v=>0 = (50)" " Viin | ¥ = Vi | ¥ = 50 Vinin
function

approximation - 0.705 0.705 0.707 0.969
error

> ke |1 kel 5.0e-2 5.0e-2 4.4e-2 4.8e-2 5.1e-2

> ke ld2xel? 1.1e-2 5.1e-2 1.4e-2 1.1e-2 1.7e-3

Table 4.2.2: Approximation error and £ norm of wavelet coefficients at different levels for
the reconstructions given in Figure 4.2.6. As additional reference, we provide values corre-
sponding to the original function, whose wavelet coefficients are analytically computable.
The columns for different v’s give the numbers for the reconstructions.

Depth map

Figure 4.2.8: Puerto Rico seafloor data.

2. One can attain a higher flexibility for the smoothing effect.

17089 sampling points.

3. Overfitting artefacts are typically localized in scale. This makes a method
which is able to disentangle the several scales a natural choice.

4. Computationally, the method is much cheaper, as we will see below at the end

of Section 4.3.1

We discuss these points by means of two examples.

4.3.1 Case Study 1: Complexity Reduction

We continue the example with the synthetic data in Figure 4.2.5. We first propose
the value & = 1/2 and get the reconstruction on the left of Figure 4.3.1 at the GCV
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v =(100)"" Viin | ¥ = Vinin | ¥ = 200 Vpnin
approximation 7.403 7.503 3.45¢8
CeIror
> ke ldikel’ 5.6e6 5.6e6 5.6e6
> ke ld2xel? 1.0e5 1.0e5 7.1led
> ke A3 xel? 4.4e4 4.2¢5 7.4e3
> ke ldaxel? 1.7e4 1.0e4 2.3e3

Table 4.2.3: Approximation error and 5 norm of wavelet coefficients at the different
levels for the reconstructions given in Figure 4.2.9.
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Figure 4.2.9: Regularized reconstruction of the geophysical data from Figure 4.2.8
with different choices of v.

minimum. We observe that we do not get rid of the undesired oscillation in the
right corner of the figure. A new choice for o = 5/2 gives the plot on the right side
of Figure 4.3.1. In spite of the fact that for this choice of o the norm equivalence
(4.1.3) is no longer valid, the reconstruction is better in this case.

The reason for the fact that two different choices of « yield different results can
be easily understood in view of the plot on the left side of Figure 4.3.2. The surface
represents the GCV as a function of v and a. We can now see what happens: the
values of the GCV function on the line corresponding to a fixed a = 1/2 are clearly
higher than the ones on the line corresponding to o« = 5/2. As there is no clear way
to predict which o will give the best result, one should perform a minimization of
the GCV simultaneously in the two parameters o and v in order to ensure to get
the best GCV reconstruction.

However, this procedure increases considerably the computation time, as it re-
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Figure 4.3.1: Regularized fitting of data from Figure 4.2.5 with v chosen in the
minimum of the GCV for different choices of a.

quires many more GCV function evaluations, each of which involves the solution
of two systems with the dimension of the one system in (4.1.4). In contrast, the
multilevel GCV only needs to perform two one-dimensional GCV minimizations,
one for each dyadic level, but attains comparable quality. This method found the
parameters 1y = 0.12 and v = 3.16. Such a stronger weighting of 7 = 2 in relation
to 7 = 1 cannot be attained by small values of o on the Sobolev scale, independently
of whichever v one may use.

For the present example, the result is given in Figure 4.3.2, middle and right

plots. Some numbers on approximation errors and sizes of wavelet coefficients are
provided in Table 4.3.1.

1/2

a 9/2 v

Dependence of GCV ~ Reconstruction at Reconstruction with

surface on « and ¥ the minimum of the multilevel GCV
GCV surface

Figure 4.3.2: Multilevel Reconstruction.

4.3.2 Case Study 2: Scale—Localization of Noise

We apply the algorithm described above to the data set in Figure 4.3.3, which
corresponds to a bathymetrical study of part of the sea floor of the Dominican
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Q= % o= % a = 3.1 | multilevel GCV

approximation error | 0.914 | 0.707 | 0.707 0.709
> ke |01 kel 5.0e-2 | 4.9e-2 | 4.8e-2 4.8¢-2
> ke [ d2xel” 5.1e-2 | 1.4e-2 | 1.1e-2 1.1e-2

minimal v 0.05 2.5e-3 | 7.9e-4 —
penalization at
i1 0.09 0.08 0.06 0.13
penalization at
0.20 2.57 4.29 3.16

J=2

Table 4.3.1: Approximation error and 5 norm of wavelet coefficients at the different
levels for the reconstructions given in Figures 4.3.1 and 4.3.2. a = 3.1 corresponds to the
global minimum of the GCV. The penalization at level j corresponds to ©22% in the first
three columns, and to v; in the last column.

Republic. The data also stems from [128]. Measurements of the sea floor depth
are irregularly distributed, forming lines, clusters and holes, as seen on the left in
Figure 4.3.3. The central plot shows a visualization of the depth of the full set of
data points using piecewise linear interpolation.

We see on the right of Figure 4.3.4 the effect of an unregularized multiscale
reconstruction. In fact, the general shape is correctly caught but it fails to reproduce
the high—frequency details of the data in areas of very irregular distribution, making
evident the need of some smoothing mechanism.

In order to tune this smoothing we inspect the structure of the artefacts that
one wants to prevent. In Figure 4.3.4 we see a view from above of the unregularized
reconstruction of the data in Figure 4.3.3 for different dyadic levels. We note that
the reconstruction does not present any undesirable structure when the maximal
level is J = 3. However, at this level not all the features of the data are present in
the reconstruction, and further refinement is required. When we add the following
level J = 4 with wavelets with a correspondingly smaller support, some of them do
not contain enough data points and can oscillate without control, giving rise to the
oscillations located in a few critical areas, in the plot in the center. Addition of the
new dyadic level J = 5 creates overall little noisy spots.
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Figure 4.3.3: Bathymetry of part of the Dominican Republic.

Figure 4.3.4: Least squares reconstruction without regularization with increasing
maximal resolution level J.

Clearly the problem is located at scales j = 4 and j = 5. As we see from
formula (4.1.5), a Sobolev penalization touches necessarily all the scales, letting
only the parameter « free to weight them. Like in the former case the result of the
regularization is highly dependent on the right choice of «.

In Figure 4.3.5 we see two reconstructions attained with the GCV method. With
a = 1, on the left, the GCV minimum does not prevent most artifacts to appear,
whereas o = 2 provides a much better reconstruction, which is, on the other hand,
perhaps too smooth. But there is no obvious way to predict which « is going to give
a good reconstruction. In contrast, the multilevel GCV algorithm as explained above
circumvents this lack of information and gives an apparently correct reconstruction
on the right of Figure 4.3.6.

4.4 Other Regularization Strategies

4.4.1 Cutting Off the Iterative Procedure

As explained in [143] in the framework of data fitting with splines or by [87] for
more general inverse problems, a regularizing effect can be attained by premature
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Figure 4.3.5: GCV-Regularization of data in Figure 4.3.3 for different Sobolev
spaces.

linear piecewise Reconstruction with
interpolation multilevel GCV

Figure 4.3.6: Results of multilevel GCV regularization of the data from Figure 4.3.3.

cutting off the iterating procedure in the minimizing process. The heuristic reason
is that the CG tends to project the solution first onto the coarsest scales. This effect
can be observed when analyzing the data of Figure 4.2.5.

A reasonable smoothness quality can be attained by cutting the minimizing
procedures after a few iterations, even in absence of an additional regularizing term
in the normal equations (with v = 0) . The result can be seen in the left hand
of Figure 4.4.1. At the right hand, we observe that further iterations damage the
reconstruction as high frequencies switch on.

In spite of the simplicity of the idea, the automatic selection of an adequate num-
ber of iterations poses a problem by itself, which has been envisaged by different
approaches, see [144] for a discussion on the use of GCV techniques for a simulta-
neous tuning of smoothing parameter v and number or iterations, or [25] where the
L-Curve method (to be explained in the next subsection) is used.

Note the connection of this regularizing approach with methods based on Singu-
lar Value Decomposition, that also use a controlled damping of big frequencies and
are popular in the image restoration community (see [105] and references herein).
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20 iterations, v=0

400 iterations, v=0

Reconstruction after 20 CG Reconstruction after 400 CG
iterations iterations

Figure 4.4.1: Smoothing by cutting off the iterations in the CG method.

We recall it now briefly. The solution of the problem
min ||Ad — z||, (4.4.1)

can be expressed in terms of the Singular Value Decomposition of A € IRNV*L that
is A =UXVT, where U € RN*Y and V € IRF*F are orthogonal and ¥ is a diagonal
matrix whose entries are the singular values of A, {o;}iz1. ., if r = rank(A). We
can now write the solution to (4.4.1) in terms of the basis {v;};—1, n given by the
columns of V. If we expand the data vector z in terms of the basis {u;};—1_ n given
by the columns of U as

N
z = g, with & =ulz, i=1,...,N 4.4.2
Zf Y é 1 ) ) ) Y

=1

the solution of (4.4.1) can be written as

~ 1
i=1

This representation allows for introducing a regularizing effect by frequency-dependent
filtering, that is, one constructs a regularized approximation d,., to the solution of
(4.4.1) by multiplying each eigenvalue contribution with a filter factor ¢;

1
dreg = Z ;qb@vz (444)
i=1 "

From the analytic point of view the Tikhonov regularization can be understood as a
special form of this technique, as it boils down to the selection of one specific form
of filters. As this methods requires the Singular Value Decomposition of the matrix
A, its application is conditioned to availability of techniques to compute or at least
approximate it easily, as it involves heavy computations.
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4.4.2 L-Curve Method

We use now another popular method of automatic selection of the smoothing pa-
rameter, namely the L-Curve method, used in inverse problems comparable to the
data fitting scenario in fields as geophysics [28] or medical tomography [106].

The method operates by fixing a set A/ of regularizing parameters v, and com-
puting the corresponding approximations {d”},cy. Then one compares the norm of
the residuals and the norm of the approximations by plotting ||d” ||, versus ||z— f"||s,
for the selected range of v. The motivation is the following: one expects that big
values of the smoothing parameters will flatten the reconstruction so as to generate
big residuals, whereas too small values of v allow for solutions with big structure
and consequently big norms of the coefficients. The L-Curve tries to visualize the
trade-off of this two quantities. In particular, a straightforward order of magnitude
analysis of the singular value representation of the solutions and residuals (see [68]
or [91] for details) shows that in the case of data corrupted by white noise, for
medium-big values of v the norm of the solution varies little with increasing v so
that the locus of (||z — f¥|le,,]|d”||¢,) appears in general very flat. Inversely, in the
area in which v is small, the dominance of the noise to an increase of the approxi-
mation norm while the residuals change comparatively little, creating a steep slope
in the (|[z = f¥|le,,]|d”||e,) curve. These two effects conform an L-shaped curve. The
L-Curve criterion is to pick the parameter value lying the corner of this curve, which
is usually defined as the value of v that maximizes the curvature defined as

_ L) = ')
(&) +7(v)?)?

where {(v) = ||z — f||s, and n(v) = ||d”||e, Although the mathematical background
of the L-Curve does not sound as solid as the one of GCV, comparisons of both
methods report comparable results [89].

We represent in Figure 4.4.2 the L-diagrams created by the method when ana-
lyzing the data from Figure 4.2.1 with @ = 1, 2,4, 10, as done before by the means
of the GCV. The diagrams are indeed L-shaped and the order of magnitude of the
v lying at the corner provide acceptable reconstructions, being close to the value of
the v predicted by the GCV (marked in red on the same diagram). The correspond-
ing reconstructions are given in Figure 4.4.3 and an analysis of the quality of the
minimum for the different choices of o can be seen in Table 4.4.1.

K(v)

(4.4.5)
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(07 vy, - 10_3 vy, '10_2 vy, - 10_1 vy, vy, 10 149 '102 vy, '103
1 4.993 4.352 2.855 2.409 | 7.396 | 16.632 | 19.780
2 4.808 3.841 2.516 1.589 | 1.688 5.139 14.301
4 2.594 2.085 1.631 1.278 | 1.092 1.858 5.850
10 1.205 1.070 1.099 1.105 | 1.107 1.359 3.645
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Table 4.4.1: ¢? error of the reconstruction for different values of v surrounding the
maximum curvature point vy, of the L-curve for different choices of a.
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Figure 4.4.2: Coefficient norm / residual plots illustrating the applicability of the
L-curve method to the corrupted Franke data as given in Figure 4.2.1. The red
marked quantities correspond to the v that minimizes the GCV.
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Figure 4.4.3: Reconstructions of the corrupted Franke data from Figure 4.2.1 by the
L-curve method for the choices of o detailed in Figure 4.4.2. Compare these results
with those in Figure 4.2.3, attained by the GCV method.



Chapter 5

Robust Regression

We point out possible extensions of our method to cope with data distributions
corrupted with bad measurements.

5.1 Classical Robust Regularization

The M-estimator method (see e.g. [97]) proposes a revision of the classical Least
Squares method of finding a function f = f(6y,...,0,,) that approximates the data
points {(z;, 2;) }1...~ by finding the set of parameters 6y, ..., 6, that minimizes

J() =Y () (5.1.1)

i=1

where r; := z; — f(z;) is the residual of the i-th measurement. This strategy causes
problems when some outlying points have vertical values that, possibly as a result of
a bad measurement, are very different from the ones of the neighboring data. They
typically produce a large residual. The contribution of these points is still amplified
by the square function in (5.1.1). This means that the global minimization of (5.1.1)
is highly influenced precisely by these erroneous points.

A possible cure is an alternative weighting for the residuals. One replaces (-)?,
which enhances large residuals, by some other function p that does not increase so
rapidly with large values of the argument, and considers the f that minimizes

N
T(f) =3 p (i = f(w:)) — min! (512)
i=1
for a fixed p. The M-estimator is now given by the set of parameters 64, ..., 6,, that
solves
al or;
> (r)o,m =0 for j=1,....m, (5.1.3)
00,

i=1

71
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Input Data ‘ Least Squares Regression Robust Regression: p(t)=1/(1 +t2)1°°

. .
D
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Figure 5.2.1: Successful application of M-Estimator techniques.

where v is called the influence function, defined as ¥(t) := 1) We can now define

dt
a weight function w(t) = @ and write (5.1.3) as

87”1' .
Zw(ri)n% =0 forj=1,...,m. (5.1.4)

=1 J

The parameters that solve these equations can be identified (under adequate condi-
tions on p) as the solution of a Least Squares problem with weights:

N

Zw(ri)(ri)2 — min! (5.1.5)

i=1
and can be computed iterating on k

N

Z w(rgk_l))(rf)Q — min! (5.1.6)

=1

until consistency is reached.
2
Popular choices are p(t) = [t| (giving w(t) = |t| ) or p(t) = 2L

142

5.2 Wavelets and M-Estimators

An example of application can be seen in Figure 5.2.1. The classical Least Squares
approximation tries to adapt to the outliers, while the robust one ignores them,
because they produce big residuals and contribute only slightly to (5.1.2). Note
that the method recognizes the other local features present in the plot, the peak
pointing downward located at x = 0.3. This actual peak is not deleted.

However, the performance of the method is conditioned to the assumption that
outliers indeed produce big residuals. This is not certain to occur, especially when
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Input Data Least Squares Regression Robust Regression, p=100
15— 1 1
05
, .
-05
-15
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 0‘5 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
. . . . 1 .
Figure 5.2.2: Problems of M-estimator techniques. The function w(t) = ey s
used as weighting.
Robust Regression, p=1000 Robust Regression, p=3000 Robust Regression, p=4000
15 ‘ﬂ'
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1

Figure 5.2.3: Increasing robustness varying the parameter p in w(t)
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Regularized Reconstruction v=1 a=1 Regularized, Robust Regression, p=100
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Figure 5.2.4: Interplay of regularization and robustness.

we work with wavelets, or with some other locally-adapting method, as the out-
liers are treated as local irregularities, and the method can be flexible enough to
produce a high local oscillation that reproduce the data. The data in Figure 5.2.2
is a slight modification of the one in Figure 5.2.1. This modification is enough to
generate a reconstruction in which outliers are not automatically signalized by their
big residuals. A moderate p does not detect the outliers.

Changing p to produce more and more aggressive robustness by bigger and bigger
penalization to the big residuals, produces results like in Figure 5.2.3. Some outliers
are detected, but one of them remains undetected. It is in fact undetectable, as
its initial residual was zero. Still worse, some regular points are erroneously con-
sidered as outliers, as the reconstruction give them a small, non zero residual. An
amplification of this effect can be seen on the right of the figure.

Let us end this subsection noting that this effect could be solved by a requlariza-
tion technique. As the problem seems to be that the flexibility of the wavelets do
not allow for big residuals to be formed, one can think of adding some regularizing
term to (5.1.1), so that the approximating f not only tries to cut the data points but
to simultaneously keep a smooth appearance. Experiments show that this procedure
is indeed able to mark outliers with big residuals (see the left hand side of Figure
5.2.4) that are detected by the nonlinear functional in (5.1.2). However it causes
the additional problem that points forming some local structure tend to be marked
with residuals as well as outliers, leading to a deletion of that local structure, as
seen on the right of the figure.

5.3 Residual-free Methods

Diverse approaches (see [15], [107]) have proposed robust methods of regression
based on wavelets. These methods do not work with L-estimator techniques but with
adaptations of the thresholding procedure, and rely on the wavelet transformation
of the data.
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Figure 5.3.1: Corrupted data and wavelet coefficients of the reconstructing function.
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Figure 5.3.2: Outlier detection by wavelet-driven data inspection.
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Figure 5.3.3: Local variation in conflict areas.
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We could think of an alternative procedure where we take direct advantage of
the adaptivity of wavelets. If we just accept that the wavelet reconstruction will try
to reproduce every local feature of the data, we end up with a set of coefficients that
can give us a clue about the location of the outliers. Intuitively, an outlier will cause
in its vicinity a severe oscillation of the approximating function. This will cause
some local wavelet coefficients to attain a high value. We can therefore expect the
outliers to be in the supports of wavelets showing a big coefficient, and locate them
by an adequate inspection of the points lying in the supports of those wavelets.

Once we know which data areas are likely to present corrupted measurements,
we locally analyze the data and determine for each point if it is likely to be an
outlier. This requires constructing some criterion that decides this likeliness using
only the local characteristics of the data.

We could complete this method with a complementary inspection on the points
selected in the previous step, comparing the likeliness to be an outlier received by a
point when inspected in the support of a wavelet and when inspected in the support
of other wavelets.

Let us fix ideas and notation by considering the following algorithm:

1. Construct a Least Squares approximation f =, . dx ¥x.

2. Select the set of indices A, of wavelets of the maximal level J that are bigger
than some threshold

Ac:={X:[d]x > ¢ |\ =T} (5.3.1)
3. For each A\ € A, pick the set of points that could be considered as outliers

and denote them by O,. This can be attained in the following steps:

(a) Consider the set Py of indices of points lying in the support of 1)y
Py :={i:z; €supp ¥} (5.3.2)

(b) Compute the local variance and mean value of the vertical coordinates of
these points
oy :=var({z}), i € P, (5.3.3)

zy = mean({z;}), ¢ € P. (5.3.4)

(¢) Mark as possible outliers the points in Py that deviate too much from
the general local trend. That is, for a fixed parameter tol, select

i € Oy < {|zi — 2\| > tol - 0,}. (5.3.5)

4. For each detected 7 in some Oy, check whether or not other wavelets also mark
this point as an outlier. This can be done as follows:
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(a) Denote by A?};t“e’" the indexes of wavelets including the point z; that mark
it as an outlier,

Az =X € Ae ¢ i € Py,z; € Oz} (5.3.6)

(b) Denote by AL¥"*" the indexes of wavelets including the point z; that do
not mark it as an outlier,

A:;Qular = {)\ - A6 1€ P)\, 7 ¢ O)\} (537)

(c) Compute a wavelet-weighted criterion to definitively classify the point as
an outlier or not, i.e.,

i is an outlier <= Z |dy| > Z |dy]. (5.3.8)

AeAgf;tlier )\EA:eigular

Step 4 of the previous algorithm is to be understood as an attempt to prevent
getting ride of actual, valuable information. Consider Figure 5.3.1. The synthetic
data presents four actual outliers, located at x = 0.1,0.5,0.7,0.8 and a little cusp
located at x = 0.3. This cusp is formed by several points forming a local trend in
the data. The spectrum of the reconstruction is given at the right of the figure. (By
the way, note that the ramification of the wavelet-coefficient-tree caused by the cusp
looks very similar to the ones caused by the outliers. It does not seem easy to track
outliers only by inspecting the wavelet coefficients).

The use of the former algorithm without Step 4 produced the result on the
left of Figure 5.3.2. Local checking on the supports of the wavelets with the highest
coefficients selected the points marked with a circle. Outliers are effectively selected,
but a real-feature point in the cusp was also marked. This is inconvenient, because
the sampling has very few data points in the proximities of the cusp, where we would
like to have a better resolution. We would like to keep precisely these data points,
and not those in the smooth areas, where the information is redundant.

This mistake would be detected by the additional Step 4. A look at Figure 5.3.3
gives us a clearer insight into what is happening. The deepest point of the cusp is
marked by the wavelet j = 6,k = 20 as an outlier (right of the figure, point marked
by a circle). But wavelets k = 18, k = 19 (left and center), whose support includes
the point as well, consider it as regular data.

The reason is that the wavelet 7 = 6, k = 20 includes in its support many well
behaved points, and only a point coming from the cusp. Hence, the local tolerance
(given by the local variance) is bound to be stricter as for the other two wavelets,
which include other points in the cusp and therefore “know better” what is really
happening. The translation of this “better knowing” is they let a wider tolerance
area around the local mean value, as the variance is bigger, and the conflict point
is inside the tolerance range. Therefore, we see that it is useful to involve several
wavelets to decide the final deletion of a point out of the data.
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The point 4.c of the algorithm is included trying to help that this final decision
is made penalizing those wavelets that have less to do with the artifact. Shortly,
this means that the more affected a wavelet is by a local structure (outlier or cusp),
the larger is its coefficient, in comparison to the wavelets in the neighborhood, and
also the more entitled is the wavelet to “judge about the outlierness” of the point.

Several advantages of this way to inspect the data using simultaneously the data
itself and its wavelet coefficients can be mentioned:

e We can construct criteria to control the size and location of the analyzing
windows and their interplay.

e Most importantly for unorganized distribution of points, the method allows
to restrict the inspection to some areas of the domain. The required data
structures coincide with the ones needed to construct the Least Squares re-
construction and do not require additional grid operations.

5.4 A Least Squares Specific Methodology

We try to develop an outlier-detection procedure that exploits our Least Squares
procedure.

How can one define an outlier? Before we try to construct a mathematical
definition which one can plug in an algorithm, we just try to mimic the process in
which the eye tells us what an outlier is: The presence of an outlier must create a
“cusp” in the approximating function. That is: an artifact extremely well located in
space and frequency. That is why the wavelet framework naturally suits the outlier
location problem.

Several frameworks separate in fact the removal of outliers and the wavelet anal-
ysis of the data. We rather want to build the outlier detection into the wavelet
representation, and take advantage of it. As the end product of the data fitting pro-
cedure is the construction of a function f that represents the data, it seems natural
to transfer the problem of the outlier definition from the point of view of the raw
data to the point of view of this approximating f.

If the approximating function correctly catches the data features, the presence
of an outlier must create a local jump in the approximating function. Otherwise, if
f is not affected by the outlier, there is no point in worrying about it.

This leads to reformulate the problem into the following questions:

1. how one can define these jumps in a rigorous mathematical way that is simul-
taneously easy to use, and

2. how one can distinguish jumps created by outliers and jumps really contained
in the data.
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Figure 5.4.1: Model data set 1.

To fix ideas in this issue, let us consider in the data set in Figure 5.4.2, where

we have marked four areas representing different prototype situation.

1. In the area marked as 1 we find a point that is definitely classifiable as an

outlier. Or to put it another way: we fix the criterion that a well performing
method should mark the point (190, ¥100) as an outlier.

. This area would represent a cusp really represented in the data. The points

in this area are not to be marked as outliers. Moreover, they are the rep-
resentatives of a high frequency phenomenon on the data. The accidental
removal of points in this area would eliminate significant information of this
local structure.

. Like in the previous zone, the data presents a spatially located high frequency

feature. In this case the frequency is lower as in zone 2, so that more points
from the data set are involved in the representation of the local structure. This
could represent a non critical area of the domain. No outlier is present, and
anyway wrong removal of points on this area does not necessarily eliminate
significant information, as the remaining points would certainly reproduce the
local features of the data.

. The point (g0, Ysoo) is an outlier embedded in a highly energetic zone. These

kind of points pose the hardest difficulties to outlier detection algorithms.
For one side the neighborhood can mask the effect of the outlier. On the
other hand, neighboring points carry significant information about the local
structure on the data, and false removal in this area should be avoided.

The wavelet representation of the data allows for an extremely practical answer

to both questions.
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e Concerning the identification of jumps, there is a rich literature. The basic
idea is that the presence of a jump is reflected by large wavelet coefficients.

e Outlier caused jumps cannot be distinguished by data inherent jumps only by
inspection of the wavelet representation of the data: one has to go back to
the point themselves and analyze how individual points influence the wavelet
representation. This task can be easily done after having constructed the
Least Squares approximation to the data, see Figure 5.4.2, as all the informa-
tion needed to perform this analysis has been already processed in the data
structures.

Adaptive Reconstruction with 190 Wavelet Coeflicients
Wavelets.

Figure 5.4.2: Reconstruction of example data set 1 from Figure 5.4.1.
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5.5 Basics of the Approach

At the end of the least squares data fitting algorithm we end up with two objects:

1. the coefficients {d)} ep of the constructed approximation, as main product,
and

2. an efficient encoding of the observation matrix A, which was used and updated
in the process.

The main computational effort has been done in the construction of A, which
contains implicitly a very complete analysis of the data. We obviously would like to
envisage to a method that reuses all this information.

In our approach we separate the outlier finding procedure into two steps:

1. Locate the areas in which an outlier can be present.

As explained previously, this can be done by simple inspection of the coeffi-
cients {d}aea, as the presence of outliers must cause large wavelet coefficients
at high levels. One evident possibility could be to choose a thresholding param-
eter € and a jgep, that models the expected penetrating depth of the outliers
and identify a set of wavelets indexes

= {)\ < A; |d)\’ > €, ’)\| > jdepth} (551)

Evjdepth

Now we extract out of the original N points those embedded in the support

of some wavelet in A ; depth and record their indexes in the set S:

1e€S—dNeA so that x; € supp,. (5.5.2)

evjdepth

This step serves only to reduce the number of points in outlier-affected areas.

2. Test all the points in the areas identified in the first steps.
Basically, a merit figure is computed for each point included in S, some kind of
outlierness coefficient w(7), and points whose w is above a predefined threshold
7 are discarded from the data. That is the decisive part of the algorithm, as
the concrete mathematical translation of the outlier concept has to be built
into the computation of the merit figure. In the next sections we describe and
analyze several ways to construct meaningful outlierness profiles w(7), i € S.

5.6 Global Refitting Criterion

We have a set S of indices of points that have been identified as possible outliers
by the first step, as they lie in the support of wavelets with large coefficients. Let
us take one of these points, (z;,y;) ¢ € S, and test if it is an outlier. As mentioned
before, in our approach, the basis of this check would be to measure to which extent
its presence alters the shape of the approximation. This goal can be attained in two
steps:
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1. Construct an approximation to the whole data set.

2. Construct an approximation to the whole set of data except the point to

be checked. To do so we use the same configuration of wavelets as used to
compute the approximation to the whole data set.

We compute therefore

. 2
;= ar min 21— g(x 5.6.1
Ju = arg _ min IE# (2 = g(x1)) (5.6.1)

. Compare the behavior of f and f};) in the neighborhood of z;.

As explained above, this can be done in a natural way using the wavelet
coefficients. First of all we need an interpretation of the neighborhood concept.
To do that, we define the influence set of a point (z;,y;) up to level j., in
the index set A as the subset of A that includes indexes of the wavelets whose
support overlap x;. We denote it as

Ajcut,i = {)\ S A7 ‘)\‘ 2 ’jcut‘ﬂ T; € Supp?ﬂx} (562>

or shortly A; when the subscript j.. is clear or irrelevant.

Now, we want to compare the local behavior of f and f;. We define the
local energy of a function by means of a weighted summation of a subset of its
wavelet coefficients. That is, for a function g = Y, _, daty and a set A’ C A,
we define

ASEE
Q=

Eg”p J(9) = Z 9j(a+1/2-1/p) Z EAAL (5.6.3)

J ke, (j.k,e)eN

This definition relies obviously in the norm equivalence relation between Besov
seminorm and wavelet coefficients, see pag. 123 of [92]. In view of this inter-
pretation, if (x;,y;) is indeed an outlier, in the neighborhood of x; the local
energy of fi; should be much smaller than the local energy of f. This moti-
vates the following definition. We define the merit profile of point i according
to a global criterion as

Eay
wglobal(i) = lOg (EA+Q(;JC))> . (564)
a.p,q 7]

With this definition, typical good performing 7 thresholding values are ex-
pectable in the order of magnitude of unity. This would mean that in our
model, we expect the presence of an outlier to cause a noticeable increase of
the local energy.
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We revisit now our example data set and explore in detail how this method
would work on the different situations represented in the data. If we take the outlier
(2100, Y100) and compute the global approximations f and fro0), we get the wavelet
coefficients pictured in Figure 5.6.1. As expected, no difference is visible outside the
red line, which encloses the local wavelet coefficients. The presence of the outlier
does really act locally.

Wavelet Coefficients of f. Wavelet Coefficients of fj190)

Figure 5.6.1: Global removal criterion on (109, ¥100)-

We describe this action in more detail in Figure 5.6.2. In the first plot we can
compare f (dashed line) and fipo (solid line) in the neighborhood of (z100, Y100)-
The former does obviously not need to create the jump that tries to reproduce the
point (2100, Y100). This is reflected in the coefficients of the wavelets in Ajq, as one
can see in the following plots of the same Figure: the energy content of the set
Aqqo is practically empty after subtracting (100, y100) from the data. In the energy
computation, the cutting level j.,; of the influence set in (5.6.2) was taken as j = 3
and the local measure of energy has parameters @ = 5/2, p = 2. The criterion (5.6.4)
would give a merit figure of wyippe(100) = 7.02 for this point.

The same computation for the regular neighboring point (212, Y102) gives Wyiopar (102) =
0.0078, as its removal does not critically vary the local energy, as one can appreciate
in Figure 5.6.2.

Furthermore, the point (xa51, y251) is located in the middle a fine structure feature
of the data. The removal of the point damages but does not destroy the structure,
as can be seen in Figure 5.6.4. The similarity of the two approximations gives an
outlierness coefficient of wyepei(251) = —0.27, so that the algorithm will mark it as
a regular point, preventing the loss of information.

Finally we consider the outlier (zgg, ysoo). As it is located in a high energetic
environment, it is more complicated to disentangle its effects from those of the data
features, as one can see in Figure 5.6.4, where one can appreciate that the local
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Approximation with X100 Approximation excluding X100

: | SE

N
0098 o1 0102 0108 0106 Local Energy:  4e+06 Local Energy:  5e-01

Local view of f and f1og. Coefficients of wavelets in Coefficients of wavelets in
Aqo0 Ayo0

Figure 5.6.2: Global removal criterion on (109, Y100)-

Approximation with X102 Approximation excluding x, 02
10

WV
0098 o1 0102 0108 0106 Local Energy:  4e+06 Local Energy:  4e+06

Local view of f and fj109. Coefficients of wavelets in Coefficients of wavelets in
Ajo2 Aqo2

Figure 5.6.3: Global removal criterion on (z102, y102)-

energy decay caused by the subtraction of the point is not so dramatic as in the case
of the outlier in a flat background (compare with Figure 5.6.2).

Still, (2500, Ysoo) attains a merit figure of wyppe(800) = 1.2, so that the method
would classify the point correctly as an outlier.

5.6.1 Removal of Points in Normal Equations

The former strategy has an obvious drawback. It requires the computation of f;
for every suspicious i. This amounts to construct and solve a different set of normal
equations for every 1.

Anyway, the structure of the problem allows for some possible simplifications. If
the normal equations of the original problem are

Md = b, (5.6.5)
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Approximation with Xog1 . Approximation excluding Xo51

0762 023 02¢ 025 026 027 028 Local Energy:  5e+05 Local Energy: 1e+06

Local view of f and fjs1;. Coeflicients of wavelets in Coefficients of wavelets in
Aosy Agsy

Figure 5.6.4: Global removal criterion on (2251, ya51)-

Approximation with x, . Approximation excluding xg,

Local Energy:  3e+07 Local Energy:  26+06

Local view of f and fjsoo). Coeflicients of wavelets in Coefficients of wavelets in
Agoo Agoo

Figure 5.6.5: Global criterion on (zsoo, ¥soo)-

and the normal equations of the problem with the point ¢ removed are
the relation between them can be expressed as
My =M - a; a;, (5.6.7)

and
by =b—aj z, (5.6.8)

where a; is the i-th row of the observation matrix A.
This structure makes the construction of the new normal equations a trivial task,
and allows for two possible ways two simplify the solution process:

1. Under our assumption of an outlier having only an effect local in scale and
space, one expects d to be a good approximation to dj;, so that an iterative
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method needs only few iterations to find dj; having d as starting guess, espe-
cially if the matrix M is good conditioned, as it is the case when working with
wavelet bases.

2. The inverse of My, is available from the inverse of M by means of the Sherman-
Morrison formula

M~tala; M1

]\471:]\4—4Ti71:]\471 _—t
( a; ai) + 1—a;M~'al

B (5.6.9)
The direct application of this formula is any case not generally advisable,
as it requires the inversion and storage of the inverse or M (or of its QR
factorization). This carries a complexity of O(L?*log(L)) (recall L = #A) for
the sparsity structure of M. In any case, this computation would indeed pay
off in cases in which adaptivity also pays off, that is, in cases where a big
amount of data is describable with a small number of wavelets: L << N.

Although we are not bound to always find suitable conditions to apply directly
the Sherman-Morrison formula, we still can adapt it to make applicable even
in more general conditions, as we explain in Section 5.8.

5.7 Local Criterion

The method described in the above section seems to give a very reliable characteri-
zation of outliers. It attains high outlier detection rates in all our experiments. The
drawbacks of this method are therefore not in the conceptual sphere, but merely
computational, as it can involve a severe cost when recomputing a new approximat-
ing function f; for every point (z;,7;) to be checked.

In this section we present a modification of the above algorithm that uses the
orthogonality property of the wavelet basis to simplify the computations.

The basics of the outlier detection was the comparison of f and fj). This com-
parison is done locally in space (selecting wavelets located around the location of
the outlier) and frequency (picking the higher scales). According to this implicit
characterization of outliers based on local features, the idea now is to replace the
comparison of f and fj; with a comparison of functions that approximate f and
f1iy only locally. To this end, we consider an approximation to the data up to some
coarse level 7 < J, where J is the maximal resolution level included in the original
set A, by simple restriction of the original function f

Fr= > das (5.7.1)

AEA; A<

Now, we construct local approximations to f and fj; in the neighborhood of x; by
keeping the coefficients of f up to level j and adding only local wavelets to describe
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higher detail features. These local wavelets are the ones that we included in the set
A, defined in (5.6.2).

We parallel now the method of the previous section by building two approxima-
tions, one that takes into account the point, f7* and one that does not, f[]z]l That
is, we define

f]’l = Z dAZZJ)\ + Z dj)\’ZZZJ)\. (572)

AEA; [N<j A€A;q
where the vector d = {d}"} ep,, is so computed that

N

ST (= i) (5.7.3)

=1

attains its minimum. Note that the locality of wavelets included in A;; forces the

most terms in the summation to be zero, and the non zero elements are directly

accessible from the sparsity pattern in which we have coded the observation matrix.
Likewise we define

fif= 22 dat Y (di)an, (5.7.4)

AEA; A< ACA; i

where the vector d{lf]i = {(dfl]’ Jataen,, is so that

Z (zl - fml(xl))2 — minl. (5.7.5)

1#i

Now, we can define a merit figure based on this local refitting criterion:

A ..
EQN 7,0
wlocal(i) = log M . (576)
A, i
Eajpa(fi])

One can see this process as “freezing” f7 and “gluing” onto it a local approx-
imation to the set {(x, z; — f7(x;))}i=1..n. The implicit assumption behind it is
that “freezing” and “gluing” will maintain a similar spectrum of local energies. As
pointed out above, the assumption is justified by our use of a wavelet basis. The
semi-orthogonality property allows us to operate this level surgery, treating the dif-
ferent scales separately.

We can see now an example of this procedure in Figure 5.7.1. On the left,
the black line represents the global approximation to the data f and the red line
represents the local approximation to the data f3%%. We observe that the degrees
of freedom used in the construction of f7 seems to perfectly fit our purposes, as
the local approximation near the outlier artifact is nearly indistinguishable from the
global approximation, obviously diverging from it outside of this narrow area.
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£3,800

Local view of f and Removal of point in global and

local approximations.
Figure 5.7.1: Global and local reconstructions near (s, ¥soo)-

On the right we see a closer view of the different functions near the point. Solid
lines include information of the point and dashed lines do not. We observe that
global (black) and local (red) approximations yield similar results (dashed and solid
lines diverge near the outlier and approach each other away from it) and, as one
could expect in view of the plot, the two outlierness coefficients are correspondingly
similar (Wyiobat(800) = 1.2, wipeqr(800) = 1.7). These coefficients reflect a decrease of
more than one order of magnitude in the respective local energies by removal of the
point (s00, ¥s00)-

The merit figures for the regular neighboring point (zso2, ¥so2) are wyopa(802) =
—0.15 and wyeper(802) = —0.13 by the local criterion, indicating that the presence
of this point causes just a minor readjustment of the local reconstruction (see Figure
5.7.2), amounting only a slight local energy variation.

— global

— local

09 . 09F . - - - global/removed
- - - local/removed

o L L L L L L L L L , 06 L L L L L L L L L ,
075 076 077 078 079 08 081 08 08 084 085 079 0792 0794 079 0798 08 0802 0804 0806 0808 081

f3:802, Removal of point in global and

local approximations.

Local view of f and

Figure 5.7.2: Global and local reconstructions near (g2, ¥soz2)-
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This procedure eases obviously the computation costs of the global method, as
the number of degrees of freedom involved on the computation of 7 and f[]z]l is just
#A;;, a fraction of the total number of wavelets #A.

A further implicit supposition in this procedure is that the coarse scale projection
f7 is in fact not affected by the outlier. That is, the effect of every outlier is restricted
to dyadic levels higher than j. This makes the selection of j an important issue. In
the global algorithm, the importance of a good selection of j is relative, as it only
concerns the way in which the functions f and f};, are compared, not the functions
themselves.

5.8 Local Corrected Criterion

At the end of the previous section we pointed out the main drawback of the local
relaxation method: the possibility of the effect of outliers filtering down to the coarse
frequencies, so that a local approximation to the data by constructing upon frozen
coarse levels cannot unmask the outliers.

The obvious way to circumvent this problem is to construct a coarse level ap-
proximation that is not influenced by the point. We seek for a

= > diiyy (5.8.1)
AEA; [N[<]
so that

i( - xz) — min!. (5.8.2)

=1
The next step is as in the previous section: extend locally the degrees of freedom
and compute on this configuration an approximation to the data with and without
the point (z;, z;),

D dba+ ) Ay, (5.8.3)
AeA; N5 AEA;,;
where the vector @ = {d}'}sea,, is so computed that
o 2
Z (zl — f“(wﬂ) — minl. (5.8.4)
I

Likewise we define

fi= Z dA¢A+ Z dfl’] AU (585)

)\EA ‘)\|S] )\EAJ 7
where the vector J{Z]l = {(cffl]’ Jataea,, is so that

> (Zl - f[ﬁi(fﬁz))2~ (5.8.6)

I#i
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Then one can compute the local energies and state a merit figure based in this
local corrected fitting of the data like in the previous sections

Aji

Wiocars (1) = log (M) . (5.8.7)

Aji i

See the plots in Figure 5.8.1. They represent the approximations for the environment
of (2100, Y100) required by the three methods presented so far, that is global, local
and local-corrected from left to right. In the two former j.,; is fixed to 7.

The global approximation criterion yields wgjopa(100) = 8.4. The local approx-
imation criterion gives a much smaller value, wjyeq(100) = 1.7. The reason can be
inferred from the central plot of the figure: the red line, which ideally should not be
affected by the outlier, is clearly affected by the presence of it, as it is constructed
starting from a coarse-scale approximation to the whole data, also including the
outlier. We could formulate this effect saying that the prescribed j.,, = 7 does not
correspond to the actual penetration depth of the outlier. One possible solution
could be to vary this j.,;. The other one is the one presented in this section: the use
of an outlier-free coarse-scale approximation. The result is given in the right plot.
The red line does not get any undesirable influence from (x00,¥100) and succeeds
not to produce artifacts in its environment. The outlier coefficient arising from this
criterion is 8.3.

98 0099 01 0101 0102 0103 0104 0105 0095 009 0097 009 009 01 0101 0102 0103 0104 0105 0095 009 0097 0098 0099 01 o1 02 0103 0104 0105

Global criterion Local criterion Local corrected criterion

Figure 5.8.1: Comparison of criteria for (100, ¥100) With jeu = 7.

Obviously, we are re-introducing some amount of computational overhead, as now
a f[{.] has to be computed for every ¢ € S. The point is that this overhead is much
more affordable, as it affects a reduced number of coefficients. The observations
made in Section 5.6 about point removal procedures become now especially relevant.
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5.9 Robust Approximation in High Energetic En-
vironments

In this section we want to envisage some extremal cases of the methods. These
refer to the very definition of the outlier. The basic intuition supporting the outlier
concept is to be a point whose presence in the data creates an outburst of the local
energy of the approximating functions.

This perspective carries the obvious consequence that outliers lying in domain
areas where regular other points also can produce similar energy variations would be
masked, so that some further refinement might be necessary in the outlier defining
criterion.

There are several situations in which this effect may occur:

e Qutliers embedded in areas of rapid spacial variability.
e Simultaneous presence of other noise sources.

e High rate of outlier contamination.

5.9.1 Presence of Noise

We illustrate this with the following experiment. We add to the data in Figure 5.4.1
some quantity of random noise, whose amplitude is controlled by the parameter o.
We obtain the data distributions of Figure 5.9.1 for different noise amplitudes.

In cases 0 = 0.01 and o = 0.05 the two outliers (2100, y100) and (Zgoo, Ysoo) are
perfectly distinguishable from the noisy background, and it is expected that the
criteria mentioned above will give good estimations. In the case o = 0.1 (2100, Y100)
is embedded into the noise and a correct outlier finding criterion should not point it
out as an outlier, whereas (g, ysoo) should be marked. Finally, in the case o = 0.2
both original outliers are included in the point cloud and no outlier identification
would make sense.

noise amplitude: 0.01 noise amplitude: 0.05 noise amplitude: 0.1 noise amplitude: 0.2

~

c=0.01 c=10.05 c=0.1 c=20.2

Figure 5.9.1: Noisy data.

Correspondingly with the above description of rough features of the data we get
the global criterion given in Figure 5.9.2 for the whole bunch of points. We see
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that in the two extreme cases the criteria works well. o = 0.01 works out well,
discrimination of outliers is not so clear as in the previous case. The results for
the case ¢ = 0.2 also fit the idea of outlierness as the criterion does not recognize
any special feature in the marked points, accordingly to their inclusion in the noisy
background.

noise amplitude: 0.01 noise amplitude: 0.05 noise amplitude: 0.1 noise amplitude: 0.2

Global Criterion Global Criterion Global Criterion Global Criterion

c=20.01 o =0.05 oc=20.1 oc=20.2

Figure 5.9.2: wgopq for data sets in Figure 5.9.1.

The intermediate cases also work: At o = 0.05 both outliers are marked, where
as at 0 = 0.1 point (x99, Y100) is correctly ignored by the criterion, as it is embedded
in the surrounding noise, and (zsgo, ¥soo) is also successfully provided with a large
value of wgiopai-

However in these cases the discrimination of outliers is not so clear as in the
previous case: observe that a number of regular data points also attain a large
outlierness coefficient. It is not a mayor problem, by very definition a false detection
amounts to eliminate from the data a point that carries redundant information. As
long as the remaining points still reproduce the whole set of significant data features,
the loss of a moderate number of data points can be admissible. This issue is revisited
in the following Sections.

Anyway, the criterion can be refined in order to reduce the loss of actual in-
formation. In this case, false detections affect points whose removal of the data
originates a noticeable decrease of the local energy. As our criterion measures this
decrease in relation to the original energy, in areas where this is very small, the local
reconfiguration of the wavelet spectrum after removal of a data point can happen
to produce a still lower local energy, without this decrease being significant.

We can cope with this situation in different ways. Firstly, we can impose stricter
thresholding policies in the processing step of Section 5.5 to rule out points lying
in flatter areas. In the present case, where the data is corrupted by high-frequency
noise one should filter it with classical wavelet smoothing procedure, as long as one
has a statistical model for this noise.

A second strategy would be to simply build the local energy factor into the
criterion.

Let us denote by e,.(2) the local energy defined in (5.6.3) for the influence set
of the point z;. In 5.9.3 we see the values of this local energy, for each point of the
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noise amplitude: 0.01 noise amplitude: 0.05 noise amplitude: 0.1 noise amplitude: 0.2

Local Energy Local Energy

c=0.01 o =0.05 c=0.1 oc=20.2

Figure 5.9.3: ¢, profile for data sets in Figure 5.9.1.

Local Energy x global criterion Local Energy x global criterion Local Energy x global criterion Local Energy x global criterion

noise amplitude: 0.01 noise ampltude: 0.05 noise ampltude: 0.1 noise ampltude: 0.2

c=10.01 o =0.05 oc=20.1 c=20.2

Figure 5.9.4: Profile of the product wyiopai - €10c for data sets in Figure 5.9.1.

data set in the four level-of-noise situations.

If we multiply the global criterion profile with the local energy profile we get the
plots of Figure 5.9.4, where the discrimination of outliers appears much clearer than
in Figure 5.9.2.

5.9.2 Large Number of Outliers

Other possible source of problems is the outlier density. The capability of the method
to disentangle an outlier from the surrounding signal lies at the end in a characteri-
zation of the local energy of this surrounding signal. If further outliers are present in
the surroundings, this characterization fails, and consequently the outlier marking
criterion as well.

We see an example in Figure 5.9.5. We add to the original data a new outlier
by imposing the value y19o = 1.1. This represents an outlier in the immediate
neighborhood of the original outlier (x99, y100). If we compute now the outlierness
profile for each of these points, we find that the outlierness coefficient of (109, y100)
in this data set is 0.3, computed by both global and local criteria. Recall that this
point attained an outlierness coefficient of 7.2 when it was isolated. The reason
for these low values can be read from the reconstructions given in the figure: the
suppression of the outlier (100, y100) does not relax locally the approximation, as
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the remaining outlier (x192, y102) still twists the approximation toward himself.

1.4
12
1
oz
5 s 5|
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o2

Local view behavior Coefficients of Coefficients of
of approximants wavelets in Ajgo wavelets in Ajgo after
removal of (.fl()o, y100)

Figure 5.9.5: Proximity of outliers: analysis on (2100, Y100)-

There is indeed some energy decay, as one can deduce from the wavelet spectrum
in the central and right plots of the same Figure, but not as severe as when no further
outlier corrupted the background: compare Figure 5.9.5 with Figure 5.6.1.

3

Local view behavior Coefficients of Coefficients of
of approximants wavelets in Ajpg wavelets in Ajpe after
removal of (13102, y102)

Figure 5.9.6: Proximity of outliers: analysis on (2102, ¥102)-

This means that the number of outliers that can be present in a data set without
corrupting it depends (evidently as well as on the data set) on their distribution
profile, as it is the proximity of outliers to each other which drives the method to
fail.

We perform the following series of experiment: we corrupt the original data by
a fixed number M of outbursts for two different designs. In one design, the outliers
are equidistantly placed and in the other one, outliers are randomly distributed. We
run then our outlier finding procedure for different choices of M.

In Table 5.9.1 we give the percentages of successful outlier detection for different
choices of 7 and different number of outliers in equidistant design. The same infor-
mation for randomly distributed outliers is given in Table 5.9.2. The percentages of
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false detection for the same choices of M and 7 are given in Table 5.9.3 (equidistant
design) and Table 5.9.4 (random design).

7 || M=10 | M=20 | M=50 | M=100 | M=200 | M=300 | M=500
0.1 || 100.0 | 100.0 | 100.0 98.0 42.0 4.3 0.2
0.2 || 100.0 | 100.0 | 100.0 98.0 38.5 1.0 0.2
0.3 || 100.0 | 100.0 | 100.0 97.0 17.5 0.3 0.0
0.4 | 100.0 | 100.0 | 100.0 96.0 3.0 0.0 0.0
0.5 | 100.0 | 100.0 | 96.0 96.0 0.5 0.0 0.0

Table 5.9.1: Outlier detection percentage in equidistant design.

7 || M=10 | M=20 | M=50 | M=100 | M=200 | M=300 | M=500
0.1 80.0 70.0 82.0 70.0 45.5 46.0 16.4
0.2 70.0 70.0 72.0 61.0 35.5 30.3 8.2
0.3 || 60.0 65.0 64.0 95.0 26.0 21.3 3.2
041 60.0 65.0 60.0 47.0 20.0 15.7 2.2
0.5 || 60.0 65.0 52.0 41.0 16.5 11.3 1.8

Table 5.9.2: Outlier detection percentage in random design.

7 || M=10 | M=20 | M=50 | M=100 | M=200 | M=300 | M=500
0.1 0.3 0.5 1.2 0.0 2.7 18.0 0.0
0.2 0.0 0.0 0.0 0.0 0.9 11.7 0.0
0.3 0.0 0.0 0.0 0.0 0.0 6.8 0.0
0.4 0.0 0.0 0.0 0.0 0.0 9.5 0.0
0.5 0.0 0.0 0.0 0.0 0.0 4.3 0.0

Table 5.9.3: False detection percentage in periodic design.

The results are quite expectable. In the equidistant case the outliers are located
quite well when they are distanced (low values of M), up to the critical distance in
which every outlier suffers the influence of two neighbors and the method collapses
abruptly. In the random design, the outlier detection rate is not so successful for
the small concentration of outliers. This is caused by the number of outliers that
result to occur close to each other, in spite of a low total number of outliers. In
compensation, the method attains a higher detection rate when the total number of
outliers is larger, as a number of outliers occurs isolated from the others.
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7 || M=10 | M=20 | M=50 | M=100 | M=200 | M=300 | M=500
0.1 0.0 0.7 1.4 1.5 3.1 3.4 6.4
0.2 0.0 0.0 0.2 0.6 1.0 1.4 3.0
0.3 0.0 0.0 0.1 0.3 0.3 0.5 1.4
0.4 0.0 0.0 0.1 0.2 0.2 0.3 0.7
0.5 0.0 0.0 0.1 0.1 0.1 0.1 0.3

Table 5.9.4: False detection percentage in random design.

5.10 Energy Criterion

The three methods explained until now are based on the construction of a couple of
functions (one that sees the whole action of the possible point, and one that mollifies
it) and its comparison.

At the end, the rational for this criteria is provided by the Riesz Basis property
of wavelets, that leads the description of the norm of a wide range of spaces in terms
of the wavelet coefficients, as exploited in the definition (5.6.3). In the criteria
(global, local and local corrected) explained so far we compared ey (f) and €;,c(fi),
for some appropriate definition of f;. We call these “direct” criteria. However we
could use the same rational provided by the Riesz Basis property to propose the use
of eloe(f — fi) as an outlier finding criteria. This is also a natural choice, and we
call them “residual criteria”, according to choice of f;. In any case, there are some
differences to the previous strategy.

e Variable order of magnitude of adequate thresholding parameters.

In direct methods the order of magnitude of the 7 parameter appears to be
quite intuitive: the energy change must be numerically noticeable. In the
residual methods, on the contrary, one usually finds appropriate values for 7,
but they are obviously very sensitive to the data and the underlying function.

e Different performance.

If the addition of an outlier imposes a redistribution of local energy rather that
an increase of it (see Section 5.9 for situations in which this may occur), the
direct methods will fail to detect it, as explained above, but residual methods
do still have a chance. The prize for it is a higher risk to eliminate correct
data.

Consider for instance the function on the right of Figure 5.10.1. We add a back-
ground noise overall and a 5% of outliers randomly distributed of diverse amplitude,
as plotted in the center of the Figure. The Least Squares method without outlier
detection gives the reconstruction on the right.
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If we compute our full set of criteria on our reconstruction, we get the successful
detection and wrong elimination percentages given in Table 5.10.1 for direct meth-
ods, and in Table 5.10.2 or residual methods, whose figures confirm our expectations.
Also the reconstructions given in Figure 5.10.2 behave as expected. Direct methods
fail to find the full set of outliers. Residual methods filter more outburst but cannot
avoid throwing away more data points and possibly relevant information. Compare
the reconstruction of the high energetic feature located at x = 0.8, which appears
much more damaged in the right plot than in the left.

As a final remark, note that the use of f — f;, that is, residual methods, would
entitle us to use splines as ansatz basis, as the measure of f — f; in Ly could be
reasonably understood as an indicator for outlier presence, whereas direct methods
are only meaningful in a wavelet ansatz.

Data Distribution Wavelet reconstruction

Original function Irregular sampling with ~ Wavelet reconstruction
noise and outliers

Figure 5.10.1: Model data set 2.

% detected outliers % eliminated data
T Global Local Local + Global Local Local +
0.000 75.0 73.1 75.0 34.7 35.7 35.0
0.050 69.2 67.3 67.3 11.1 9.6 9.4
0.100 65.4 59.6 63.5 5.9 5.6 5.6
0.200 63.5 51.9 51.9 2.5 3.1 3.3
0.300 57.7 46.2 44 .2 1.7 2.0 1.6
0.400 42.3 40.4 36.5 1.2 1.3 1.0

Table 5.10.1: Performance of direct methods in the analysis of the outlier-corrupted
data from Figure 5.10.1.
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% detected outliers % eliminated data
T Global Local Local + Global Local Local +
1.0e+05 100.0 100.0 100.0 75.7 76.9 77.5
5.0e+06 96.2 98.1 08.1 28.5 29.3 29.5
1.0e+07 92.3 90.4 92.3 22.4 23.1 23.6
1.5e+07 90.4 8.5 88.5 19.5 19.2 19.4
5.0e+07 76.9 65.4 69.2 10.6 10.5 10.8
1.0e+08 65.4 57.7 61.5 6.7 6.3 7.3
1.5e+08 57.7 46.2 50.0 5.3 4.7 5.5
2.0e+08 42.3 36.5 38.5 4.6 3.9 4.8

Table 5.10.2: Performance of residual methods in the analysis of the outlier-
corrupted data from Figure 5.10.1.

5.11 Several Dimensions

The method can be extended naturally to higher dimensions. We see an example of
the procedure with the data in Figure 5.11.1. At the right plot we see a view of the
well known Franke function. We will try to reconstruct it from the 2000 scattered
random sampling points given in the central plot. In the 20 points marked in red we
will add a constant value, creating thereby a random distribution of outliers in the
original data. We see in the right plot a wavelet reconstruction found by the Least
Squares method, where we can observe how the presence of the outbursts creates
local oscillations in the surface in the proximity of each outlier.

To assert the performance of the method in this data set we compute the percent-
age of found outliers and false detections for the several criteria we have discussed.

In Table 5.11.1 we see the results obtained by the direct methods. The results
assert the likeliness of the three criteria. The three of them give a successful rate
of outlier finding with minor losses of non-corrupted data-points. Note, however,
that the method does not attain the complete detection of outliers, as the outlier
interaction effect described in Section 5.9 attain to mask a couple of them. A second
run of this method on the data after removal of the outliers detected in the first run
detects successfully the remaining outliers.

According to our argumentation in Section 5.10, the residual methods can dis-
entangle better this interaction and consequently do detect all the outliers in just
one run. The price of it is a slightly higher rate of false detections.

A further example is provided in the analysis of a geophysical data set from [85].
The set includes 18634 points ordered in a square grid, plotted in the right of Figure
5.11.2. We add 1000 randomly distributed outbursts to this data, yielding the data
on the left of the same Figure.

In the left of Figure 5.11.3 we can see visually the performance of the method
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Direct method reconstruction
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Residual method reconstruction
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Data cleaned following a direct
method
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Data cleaned following a residual
method

Figure 5.10.2: Reconstructions of example data set 2 after removal of points marked

as outliers.
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W 7,205\ &
SR
(S II

Franke data

Sampling geometry with
outliers (red points)

Wavelet reconstruction
without outlier detection

Figure 5.11.1: Outlier distribution in a scattered sampling of the Franke data.

with one run. A first run eliminates 75% of the outliers, while the data eliminated
by false detection does not appear to damage the reconstruction. A second run of
the method, that is, a run on the cleaned data, offers the reconstruction on the right
of the Figure. As we start from a situation where the density of outliers has been
reduced, further outliers that were previously masked by neighboring ones have been

now successfully detected.
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% detected outliers % eliminated data
T Global Local Local + Global Local Local +
0.000 90.0 90.0 90.0 34.2 35.1 34.5
0.025 90.0 90.0 90.0 1.2 2.0 2.0
0.050 85.0 85.0 85.0 0.5 0.4 0.4
0.075 85.0 85.0 85.0 0.3 0.2 0.2
0.100 85.0 85.0 85.0 0.1 0.1 0.1
0.125 75.0 80.0 80.0 0.1 0.1 0.1
0.150 70.0 75.0 80.0 0.1 0.0 0.0
0.175 70.0 70.0 70.0 0.0 0.0 0.0
0.200 65.0 70.0 70.0 0.0 0.0 0.0

Table 5.11.1: Performance of direct criteria in the analysis of the outlier-corrupted
data from Figure 5.11.1.

% detected outliers % eliminated data
T Global Local Local + Global Local Local +
0.000 100.0 100.0 100.0 99.0 99.0 99.0
0.500 100.0 95.0 100.0 3.1 1.1 1.9
1.000 95.0 90.0 95.0 0.9 0.4 0.8
2.000 85.0 80.0 90.0 0.6 0.2 0.4
3.000 75.0 70.0 0.0 0.5 0.1 0.4
4.000 75.0 60.0 75.0 0.4 0.1 0.4
5.000 65.0 55.0 70.0 0.4 0.1 0.4

Table 5.11.2: Performance of residual criteria in the analysis of the outlier-corrupted
data from Figure 5.11.1.
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2 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 ] 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 d.

Vertical view. Data set corrupted with 1000 outliers (%
5.6 of the data)

Figure 5.11.2: Geophysical data set: 18605 points.

0.4 0.5 06 0.7 0.8

First run Second run

Figure 5.11.3: Reconstruction of data in Figure 5.11.2 after robust cleaning.
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Chapter 6

Application to PDEs: Evaluation
of Nonlinear Terms

In this chapter we propose the application of the data fitting methodology to the
numerical solution of certain nonlinear PDE problems.

In the first section, we will briefly discuss the use of adaptive wavelet strategies
in operator equations, with a special emphasis in some recent methods which show
optimal approximation rates and optimal complexity, in a sense to be explained
later.

The application of these recent developments to nonlinear problems requires the
evaluation of terms of the type {(¢x, G(u)) }aca, where u is a finite linear combination
of wavelets, A is a finite set of wavelet indices, G is a nonlinear function, and (-, -) :
H x H' — IR is a duality product for a Hilbert space H and its dual H'. We will
describe how the data fitting algorithm provides a simple method to perform the
computation of these terms.

In the second section, we use this technique of evaluation of nonlinearities in
wavelet coordinates by Least Squares approximation in a numerical study of the
behavior of the solution of a nonlinear evolution equation, the well known Burgers’
equation, by means of a wavelet discretization.

6.1 Wavelets and Differential Operator Equations

In the last years the use of wavelets in scientific computing has spread beyond
Signal Analysis and Image Processing and became a subject of intense research
of the PDE community as some properties of wavelets find special relevance in the
Numerical Analysis: the possibility to characterize a wide variety of functional spaces
(see e.g. [58],[119]), the good conditioning of systems arising in stationary elliptic
problems (see e.g. [47],[102]), and specially the simultaneous locality in frequency
and space, a property that makes wavelets a natural choice for construction of
adaptive algorithms. We will focus on this last point and describe in the following
the most relevant facts for the monovariate case.

103
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All along this chapter, we will be using the notational convention of C' being any
positive constant independent of any indexing variables. We will also write A < B
to indicate that such a C' can be found for the relation A < C'B. Moreover, we will
write A ~ B meaning that A < Band B < A

6.1.1 Approximation of Functions in Wavelet Bases

We shall briefly recall some results from the theory of nonlinear approximation which
will help us gaining understanding about what exactly are the benefits that one can
expect from an adaptive approximation of a PDE problem.

Linear and Nonlinear Approximation

We consider first approximation in linear spaces. Consider, for instance, a uniform
discretization of the interval (0,1) into subintervals of diameter h and denote by
V}, the space of piecewise linear continuous functions defined with respect to this
partition. The best approximation u, to a function u from the Sobolev space H“

— = inf — 6.1.1
|u — un||L, githHU gnllL, (6.1.1)

fulfills the following classical estimate for the rate of approximation as A tends to
zero (see [13] or [32])

P 1 P (6.1.2)
for « < 2. For h = 277, 5 = 1,..., the (preorthogonal linear spline-) wavelets

described in Chapter 1 provide bases for these spaces,
Va-i = span{tatren;, Ay ={A: A e I, |\ < 5} (6.1.3)
As the number N of basis elements in each V,—; is proportional to 2/, one can write
[ —up=ille, < N™*ullae- (6.1.4)

The approximation rate is thus governed by the Sobolev regularity o of the
target function v € H®. This constitutes a weakness of this type of approximation
for functions with singularities (i.e., localized areas of the domain where the function
or its gradient tend to infinity) which have small Sobolev regularity regardless of
their possible smoothness away from the singularities.

This motivates the introduction of other finer tools for measuring smoothness:
the Besov spaces By, introduced in [139], which are endorsed with the norm

I, = I Fllz, + (Z (2%wn(f, 2j))q> q (6.1.5)

j>0
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with m € IN,m > «. Here, w,,(f, 1), is the L, modulus of smoothness of m-th order,

defined as .
S () vt -

k=0

Wi (f,t)p == sup (6.1.6)

|h|<t

Lp

As we advanced in Section 4.1, this norm can be represented by a norm equivalence
that relates the norm of a function f =37, <y ikt in By, with the coefficients
of its wavelets expansion by

TR
Q=

; 11
1fllBg, ~ 22”("*2 ) > il , (6.1.7)

>0 k=0,...,27 -1

which generalizes the norm equivalence (4.1.3) seen in the context of regularization
in Sobolev spaces. Roughly speaking, this equivalence relation essentially holds
when the members of the wavelet family themselves have regularity r > o measured
in L,. Details can be found in e.g. [33], [58] or [59].

We define now the best N-term approximation to an element u of the Hilbert
space H with a basis {1\ }rer as an element uy from the nonlinear manifold

YN = {Zd)ﬂﬂ)\; A C I, §N} (618)

A€A

that realizes the best N-term error
on(u) ;= inf ||u— g||n- (6.1.9)
geEXN

A rich theory (see e.g. [58],[60]) develops the intimate connection between wavelets,
Besov spaces and this kind of approximation. We will present in the following the
two main points: the characterization of approrimation spaces by means of the
norm equivalence relations and the thresholding technique.

Characterization of Approximation Spaces

The use of the norm equivalence relations is a powerful tool to characterize the classes
of functions that can be approximated with a given accuracy. For a simple example,
consider the behavior of the best N-term error oy measured in Lo, and assume for
simplicity that {1, }xer is a orthonormal basis. The best N-term approximation of a
function f is in this case achieved by keeping the N largest coefficients of its wavelet
expansion ), ., d\¥y. Now we introduce an indexing {d,, }n>1 that represents an
decreasing rearrangement of the absolute values of {d)}aer, so that d,, is the m-th
largest |dy|. With this rearrangement, the error fulfills

1/2
on(f) = (Z d3n> : (6.1.10)

m>N
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Moreover, we can bound each component by

md, <> di <> d; (6.1.11)

k=1 k>1

for all m = 1,... and for all 7 > 1. If f € B?
equivalence relation (6.1.7) yields

1/7
1/l Be, ~ <Z ’d)\|7> (6.1.12)

el

with 1/7 = 1/2 + «, the norm

T

and we get the decay rate
d < m77| || e, (6.1.13)

for the rearranged coefficients. We get thus the following bound for the approxima-
tion error

1/2
_2 N1 o
(Zm ) 1fllBe, < N="7(fllge, ~ N~ flle,.  (6.1.14)

m>N

In fact, one can extend this result to measure the error in Sobolev norms. Defining

ont(g) := inf { lg — Zd,\w,\HHt, #A < N} : (6.1.15)

AEA

one can get a full characterization of the best N-term approximation of a function
in terms of its Besov regularity:

Proposition 6.1.1. ([43]) Under adequate assumptions on the wavelet family used
in (6.1.15), and assuming % = a—t—i—%, the best N -term approximation to a function
v relative to || - || gt fulfills

- ;1
Z (N*toy (v N < 00 (6.1.16)
N=1

if and only if v € B,

Thresholding

For usual error norms like L,, W*? or B the use of a wavelet basis allows to get
near optimal approximations by simple thresholdlng in the following sense: For a
u = Y \cp by, the approximation Ty (u) := ) largest [layps | A¥a constructed
by selecting the N largest contributions of the wavelet expansion is comparable to
the best N-term approximation uy

lu =Tyl < llu—unll (6.1.17)
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Adaptivity

If we compare (6.1.4) obtained with a linear approximation technique with (6.1.14),
obtained with the best N-term approximation by redistribution of degrees of freedom
with respect to a nonuniform grid, we see that both techniques yield the same
approximation rate. The difference is the space to which the target function is
required to belong in order to attain the corresponding approximation rate. This
is the point in using Besov spaces, as Besov spaces of smoothness index « are
substantially larger than the corresponding H® spaces (see [58]). For instance,
functions in H® are necessarily continuous for a > 1/2, whereas the Besov space
B2, with 1/7 = 1/2 + a contains discontinuous functions for arbitrary values of .
In such situations, Besov regularity is a much more appropriate tool to measure
smoothness. The basic idea is that functions with singularities typically have small
Sobolev regularity but still offer a high Besov regularity ([44], [58]). This is the case,
for instance, of the solution of scalar elliptic problems with singularities on the right
hand side, or defined on a polygonal shaped domain, as explained in [42] and [44].

6.1.2 Adaptive Wavelet Schemes

The results of the nonlinear approximation theory express the ideal approximation
rate that one can attain using an adaptive scheme. They constitute the benchmark
to which one should measure the performance of such an approach. We discuss now
how usual adaptive strategies work in a wavelet setting.

A unified point of view

In the numerical treatment of stationary problems of the form

F(u)=0 (6.1.18)
or even evolution problems like

Ju

—=F 6.1.19

L~ F(u) (6.1.19)
one typically constructs a succession of approximations u” = . dy\"9, that

converges to u as n goes to infinity. As noted in [37], the usual setting for the
construction of an approximation u™*! and its wavelet configuration A"*! from the
previous ones are dynamically adaptive schemes introduced in [115], which exploit
the fact that wavelet coefficients convey fine information on the local regularity of
a function, (see e.g. [1], [8], [9], [21], [40], [49], [121]). Generally, this task is done
in three steps:

e Refinement: use an a-posteriori analysis to enlarge the old configuration A"
to an extended configuration A.

e Computation: compute a new solution @ on the enlarged configuration A.
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e Coarsening: threshold the smallest coefficients of 4 to produce the new ap-
proximation u" 1.

Note that this methodology follows the same strategy as in the data fitting algo-
rithms presented in Chapter 2 of this work. We will be using this strategy later in
Section 6.2.3 in the context of a nonlinear evolution equation.

An optimal algorithm

A special mention deserves the methodology explained in [34] for it describes a
constructive way to find approximative solutions for elliptic operator equations of
the type (6.1.18) that recover asymptotically the best approximation rate attainable
by a wavelet scheme. We will sketch now how this methodology works.

As a guiding example, consider the boundary value problem

F(u)=—Au— f=0in (0,1), u(0) = u(l) =0, (6.1.20)

whose variational formulation in H} is

1 1
/ Vu - Vudz —/ fodx (6.1.21)
0 0

for all v € H}. Defining the linear operator A by (Vuv, Vu) = (v, Au), where (-, ) is
to be understood as the dual form on Hj x H~' induced by the standard La-inner
product, the boundary problem (6.1.20) can be expressed as the equivalent operator
equation

Au = f (6.1.22)

where the homogeneous boundary conditions have been incorporated into A. We
stop here to discuss the well-possedness of the problem in the following sense:

Definition 6.1.2. An operator equation of the form (6.1.22), with A mapping H
onto H' is called well posed, if there exist two finite constants c4,C 4 > 0 such that

callvllx < [JAv|w < Callv||n Vo € H. (6.1.23)

Obviously, (6.1.23) ensures that for any right hand side f € H’, there is a unique
solution u to (6.1.22) which depends continuously on the data f. The problem
(6.1.22) is well-posed in this sense, which can be easily checked.

Now, one can transform (6.1.22) into an equivalent operator equation in ¢, which
is also well posed. To this end, we recall that a family W := {1, }rer of wavelets is
said to have the Riesz basis property for a Hilbert space H if every element v € H
possesses a unique expansion in terms of ¥ and there exist finite positive constants
cy,Cy > 0 such that

cyl[vlle, < vlln < Cullvle, Vv € H (6.1.24)
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holds. An important remark is that, wherever (6.1.24) holds, one has for the dual
product (-,-) : H x H' — IR the equivalence

Cy (%, v)lley < vl < 3" (¥, 0)lle, Yo € H (6.1.25)

where the A-th component of the vector (¥, v) is the dual form (y,v).

Recall that the family of preorthogonal spline-wavelets presented in Chapter 1
has the Riesz basis property for H = Ls. In fact, an intense research (see e.g.
[22],[39],]50],[52]) has been devoted to the construction of families of wavelets that
use the Riesz basis property for L, as an anchor to establish the validity of this
property for a wider scale of Sobolev spaces. For such families, one can find positive
constants 7y, such that the norm equivalence

He (6.1.26)

[Vlle ~ [lv]

holds for s € (%,v) under the assumption that the wavelets have been normalized
in || - ||gs. Here, for t <0, H' is the dual of the space H".
Now, we define the wavelet representation of (6.1.22) as

F(u):=Au—-f=0, (6.1.27)

where u is the vector in /5 that contains the coefficients {u,} of the wavelet expan-
sions of u, f € ¢5 contains the terms {(iz, f)}rer and the wavelet representation A
of A is an infinite matrix with components A := {(¢x, AYn) }aver. All along this
chapter we will using the boldface notation v for vectors in /5.

Theorem 6.1.3 ([34]). Provided that the Riesz basis property (6.1.24) holds, the
problem (6.1.22) is equivalent to its wavelet representation (6.1.27) in the basis W
and there exist finite positive constants ca, Ca such that

callvlle, < ||AV]|e, < Callv|le, VV € €5, (6.1.28)

Proof:

Let v € /5 contain the coefficients of the wavelet expansion of v € H. Then

6.1.24 6.1.23 6.1.25 _, o

Vi, < cpllvlln < ey [Avlle < g’y [((Wn, Av)rerlle, = cy”cy [[AV]e,.
(6.1.29)

The converse follows analogously. "

In contrast to typical finite element discretizations, the strategy in [34] is to start
out with the formulation of a convergent iteration on the infinite-dimensional system
in wavelet coordinates (6.1.27). The numerical stage will be envisaged only after the
analysis of the full infinite-dimensional problem is done. This methodology works
along the following lines.
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1. Remain in the infinite dimensional space of wavelet coordinates where the
transformed problem is still well posed and consider the iteration

u"t! = u" — w(Au" —f) (6.1.30)

which converges to the solution u with fixed error reduction rate p < 1 for a
suitable w.

2. Construct a particular coarsening-thresholding policy for each step n that pre-
serves convergence under approximate application of the operators in (6.1.30).
That is, one constructs finitely supported approximations [Au”]. and [f]. that
fulfill

I[Au"] — Au"||,, <€ and ||[f] — £l <€ (6.1.31)

and performs the finite dimensional iteration
u"tt = u" — w([Au"], - [f].) (6.1.32)

which converges with reduction rate p until the error is of order e. In particular,
the construction of [Au"], follows by matrix compression techniques analyzed
in [34] and implemented in [6], which neglect small entries of A in the matrix-
vector multiplication.

The construction of these approximations is not related on any a-priori chosen
discretization, but dynamically adapted to yield at each step the required
accuracy at the expense of possibly few parameters.

The results in [34] state therefore that the construction of optimal wavelet ap-
proximations to the solution of operator equations is indeed possible just by updating
the solution at each iteration with a thresholding procedure driven by a-posteriori
error estimators. Here, optimal is to be understood in the two following senses:

e Optimal order. For every required tolerance ¢ > 0 one can find a n(e) that
fulfills
lu —u™||L, <€ n>n(e). (6.1.33)

Moreover, from the computational point of view, optimality of order a > 0 is
attained: If the solution belongs to the Besov space BZ | with 7 := (a+1/2)7",
then

#hno S Nulle e/, (6.1.34)

being A, () the index configuration of u". Moreover, the realization of this rate
does not require the knowledge of the Besov regularity of the solution.

e Optimal complexity. The number of arithmetic operations needed to compute
u” is proportional to #A,). The number of sorting operations originally
required by the algorithm in [34] scales as # A, log(#An)). However it has
been shown (see [5]) that this log term can be in fact removed.
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6.1.3 Nonlinear Variational Problems

This strategy has been extended ([35]) to cope with the numerical treatment of
nonlinear variational problems, showing the same optimality properties under ap-
propriate assumptions. Let us recover the example (6.1.20) of the linear case and
add to it a nonlinear term to get the boundary value problem

F(u)=—-Au+G(u)— f=0, in (0,1), u(0) = u(1) = 0. (6.1.35)

For a G mapping H} onto H~!, we can write its variational formulation in H] as

1 1 1
/ Vu - Vodr + / G(u)vdx = / fodx (6.1.36)
0 0 0

for all v € H}. Under adequate assumptions on G, this problem has an unique
solution u and the Riesz basis property allows to transform this problem into an
equivalent one in wavelet coordinates which is well posed, see [35] for details. We
look now for a u € ¢, that meets

Fuy=A+G(u)—-f=0, (6.1.37)

where the infinitely dimensional vector G(u) € ¢, represents the nonlinearity in the
wavelet coordinates and contains the elements {(1y, G(u))}rer. Like in the linear
case, in view of the well posedness of (6.1.37), the iteration in infinite dimension

u"tt =u" - B,F(u") (6.1.38)

converges to the solution u for adequate choices of the infinite matrix B,,. For
instance, the choice B,, = wl is the Richardson iteration, and to get the Newton’s
method, which can be shown to converge quadratically for a good starting value
u’, we should plug B,, = DF(u")"!. Here, the action of the Jacobian DF(u) on a
v € Uy is defined as {(¢x, DF(u)(w)) }rea, where DF(u) is the Frechét derivative of
F at u.

Like in the linear case, the iteration (6.1.38) will be evaluated in an approximative
way.

Evaluation of nonlinear terms As the authors note, the implementation of
this optimal algorithm requires an efficient method to compute or approximate the
quantities {(1,G(u"))} cin for some configuration A" and for u™ = 3", . uthy.
This task is split into two steps:

1. Construction of a wavelet configuration. Find a finite set of wavelet indices en-
suring that the restriction of G(u") to this configuration approximates G(u")
within a given tolerance. In fact, a constructive way to select an index config-
uration 7 that fulfills

IG(u") = G(u")|7]l,, <€ (6.1.39)
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for whichever ¢ > 0 needed to ensure convergence, is provided in [36] for the
class of nonlinearities that satisfies growth conditions at infinity of the type

G () < A4z e R, n=0,1,...,7 (6.1.40)

for some p > 0 and n. This includes G(u) = w? for all i if p is an integer and
with n the integer part of p.

The prediction of a structure is based in estimations that relates locally the
size of the wavelet coefficients of u™ to the decay rate of the wavelet coefficients
of G(u). Denoting by S\ the support of a wavelet 1), these estimates are of
the type

GuMy < sup [|ul[277 =YD (6.1.41)

SANS, #0

where 7 depends on the nonlinearity and the wavelet family. This induces
the construction of the predicted configuration 7 by selecting the relevant
coefficients in A™ and gathering their descendants in a tree structure whose
depth is governed by 7.

2. Efficient computation of coefficients. Once the configuration of interest 7 is
known, [51] and more recently [11] explain how to use local transformation
techniques to get an interpolation to the function G(u™) in terms of scal-
ing functions. Suitable quadrature techniques are then used to approximate
the numerical value of the wavelet coordinates. As the exact coefficients of
G(u")|r are not computed, but only an approximation w, this introduces an
approzimation error ||w — G(u")|z||,,. This error is shown to be controlled
by the truncation error made in (6.1.39), that is |[w — G(u")|7[|,, < e which
is enough to ensure the overall convergence of the algorithm by the triangle
inequality ||lw — G(u,)l[,, < (1+C)e.

The methodology developed in [36] and [51] states the feasibility of optimal
adaptive wavelet schemes for a wide range of nonlinear problems. Nevertheless, its
numerical implementation based on local transformations is rather involved. More-
over the predicted configuration 7 is based on a worst case estimation and is usually
larger than actually required to represent G(u) up to required tolerance. Numeri-
cally, one has to assemble and allocate an oversized structure, with the corresponding
damage to performance and storage issues.

6.1.4 LS Approach

We discuss in the following an alternative way to evaluate nonlinear terms of the
form {(¢x, G(u))}ren, where u is a known function that can be expressed as a finite
linear combination of wavelets and A is a given set of wavelet indices. For instance,
A can be the set 7 in (6.1.39) if we envisage the use of the converging algorithm
given in [35].
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The knowledge of the wavelet representation of G(u)

Gu) = gaihy, (6.1.42)

el

or in vector form g := { gy} er, would allow to evaluate G(u) ezactly by noting that

/0 G (u(z)) da(z) dz = / S gavtba (@)in () da

0 Ner
1
= ZQA’/ Y (@)Pa(r) dx (6.1.43)
Nel 0
= ng M v, (6.1.44)
Nel

where M)y are the entries of the mass matrix M of the problem. We would then
simply have:
G(u) = Mg. (6.1.45)

In principle, we need infinitely many wavelets to represent G(u) exactly. However,
we are interested only in those that are not orthogonal in Ly to the wavelets indexed
by the given set A, as only they can contribute in 6.1.43. We can henceforth work
with a maximal set of indexes A := AUAJA. Here, A stands for the set of indices of
the wavelets that are not orthogonal to the ones in A. For preorthogonal wavelets

in Ly, OA includes just the neighbors on the same resolution level of the wavelets in
A

ON={Nel:3IN €A |N=I|N|, supp ¥ N supp ¥y # 0} (6.1.46)

and henceforth, if A is finite, so is A as well.
At this stage one can think of constructing an approximation to g|;z by means
of a Least Squares technique, just by selecting some appropriate set of points X ,
evaluating G(u(x;)) at each z; € X, and using Algorithm 2.3.2 of Chapter 2 to get
the configuration A C A and the coefficients {9»}\ea of the approximation §(z) :=
Y sei 9ata(x). Here arises the question of how to choose the set of points. First,
note that the stability results given in Section 2.4 provide us with a constructive way
to select an appropriate set of points X. Let us introduce the following definitions.

Definition 6.1.4 (Point representation of a wavelet). We define the point
representation X' of order m,m € IN, of a wavelet 1y, with A = (j, k) as the set

X0 = {1: c T € {2_(j+m)k:}k:071,,__, T € supp @/},\} ) (6.1.47)

Definition 6.1.5 (Point representation of a set of wavelets). We define the

point representation X/(\m) of order m of a set A of wavelet indices as the union of
the point representations of all wavelets indexed by A excluding repetitions:

X3 :=A{z: 3N € A such that x € X'} (6.1.48)
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One can easily check that point representations of order m > 0 generate invertible
systems.

Proposition 6.1.6. If m > 0, the matrix AK,X}@A&X% where Ap xp is the obser-
vation matriz of A with respect to X' as defined in (2.2.2), is nonsingular.

Proof:
For m > 1, the point distribution X7* with A = (j, k) includes the three points
{279k, 279 (k+1/2),277 (k+1)}. Recalling the Definition 2.4.1 of the internodal spaces

]y),i =1,...,6 of a wavelet, we can check that
27k e IV, 27 (k+1/2) € I and 279 (k+1) € I\, (6.1.49)

Thus, 1, is balanced with respect to X' (recall Definition 2.4.2). This holds for
all A € A and the invertibility of A} xpAnxp follows using the same argumentation
leading to Theorem 2.4.13. "

Thus, one could simply consider taking the point representation of the maximal
configuration X7" for some m > 0 as the set of sampling points to be used as input
for the Algorithm 2.3.2 to construct g|;. Nevertheless, such a choice has a clear
flaw in relation to the complexity, as it does not fully benefit from the adaptivity
of the Least Squares method. The reason is that the configuration A found by the
LS algorithm may indeed contain much less degrees of freedom than the predicted
maximal configuration A, but the number of sampling points, and in consequence the
overall complexity of the algorithm, still scales linearly with #A. On the other side,
a selection of X should not risk to miss sampling points on local important features
of G(u), for instance jumps or high gradients supported on small subintervals of the
domain, whose location is not known a priori. Such an undersampling would result
in a wrong estimation of the tree structure.

The need to balance these two factors motivates an adaptive way to select the
configuration and also the sampling points during the growth of the tree in the LS
algorithm.

We modify correspondingly Algorithm 2.3.2 in order to take up these consid-
erations: First, as we can determinate ourselves the observation points, we will
obviously eliminate the horizontal thresholding. Further, we adapt the set of obser-
vations to the current configuration, so that the number of used samples scales with
the number of wavelets actually used. Finally, as we are given a maximal configura-
tion A in which relevant coefficients are to be found, we will not consider wavelets
not belonging to this index set.

With these modifications, and recalling the notation d(A) for the children of the
last-level-wavelets of a set A as in Section 2.3.1, the resulting algorithm reads
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Algorithm 6.1.7. LS - Evaluation of nonlinearities

1. Fix maximal configuration A, starting level j, order m of the point represen-
tations and thresholding parameter € > 0.

2. Create Ajo.
3. For each j = jo,....

(a) Create 6(A;).
(b) Construct A = A; U (6(A;) N A).

~j+1

(c) Compute {g3" }\ci,,, that solves

Z Z B () | — minl. (6.1.50)

m
TeXT 1 AEA 41

(d) Select A%, = (A € 6(A) A+ |57 > e},
(e) If A, = 0 stop, else let A =AU ASy

Note that this approach differs from the one in [36] and [51] explained in Section
6.1.3. In the LS approach the construction of the wavelet configuration A and the
computation of the corresponding coefficients {g,} occur simultaneously, as it works
creating a hierarchy of configurations AJ0 C A]o+1 C ... C A by using the coefficients
on each level j to predict the significant ones on the next level 741. The use of
the information about G(u) gained at each level might allow for a possible ending
of the algorithm at some early level before having computed the full configuration
A, so that #A < #A. Note that the size of the trial configuration A can have been
overestimated by the algorithms described in [51], as A is ensured to be large enough
to fulfill the approximation requirement, but not necessarily to contain the smallest
possible number of parameters.

Remark 6.1.8. A correction of the algorithmic drawbacks of [51] and [36] has been
envisaged recently in [7].  Although the strategy operates in a sweep from fine to
coarse scales and is therefore opposite to our LS approach, it also relays on reusing
the information gained in the analysis of each level.

Reproduction Properties

The exact wavelet representation of the function G(u) in (6.1.42) contains infinitely
many terms. In order to discuss the effect of cutting the infinite expansion and
keeping a finite configuration A we split G(u(x)) into two terms

g(z) = G(u(x)) = g*(z) + ¢" (2) (6.1.51)
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with
g (x) = Zg,\wA(x) and ¢g"(z) := Z aoa(z) (6.1.52)

AEA AeA+

where A* := I/A. The error made by using ¢"(z) as approximation to G(u(x))
neglecting g*(z) is the truncation error, denoted by

ea(G(u)) = (Z 9§> = lIgla+leyas) (6.1.53)

AEAT

or simply by ey when the referred function is clear. Now, an approximation to the
true coefficients of the configuration A is computed by an LS method using some
given set X of sampling points, that is, we approximate ¢" by the function §, whose
wavelet expansion are contained in the vector g§ € 5. Its components {gy}ren are
nonzero only on a finite A and solve

#X 2
>, (g(u(xi)) - Zﬁx%(%)) — min!. (6.1.54)

i=1 AEA

This introduces an approximation error, which in this context is defined as

énx(G(u)) = (Z(Qx - 9A)2) = [18la — &lallea)- (6.1.55)

AEA

We will denote it by €5 x when the reference to the function is not necessary. We
show now that the approximation error can be controlled by the truncation error.
The vector ¢ fulfills

A} xAnx§ = A} x7, (6.1.56)

where the observation matrix is defined componentwise as usual as
(Aax)in = ¥a(x), forz; € X, A € A (6.1.57)

and the vector z € IR** has components

z=G(u(z:) = Y gata(). (6.1.58)

el

Separating in (6.1.58) the components from A from those from A™ one gets the
representation
7= Anx8|a + An+ x8[a+ (6.1.59)

If A} yAj x is invertible, inserting (6.1.59) into (6.1.56) and taking norms in £, we
get the expression

18]a — glalleaa) = || (AR xAnx) T AR x Axe x8la+ [l 0, - (6.1.60)
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which tells us that under suitable selection of the set of samples X, the LS error
can be indeed controlled by the truncation error: In the trivial case where the
truncation error is zero, that is, if the approximated function is actually a finite
linear combination of the wavelets indexes by A, the LS method recovers it exactly,
independently of how the sampling points X are chosen, as long as their distribution
makes (A} xAxx)~! invertible. Otherwise, the effect of the truncation error will be
modulated through the term (Af x Aa x) " A} xAa+ x, which is due to the sampling
geometry. We will analyze it first for uniform distributions of sampling points, which
we will denote by

om. (6.1.61)

Ve

We will say that m is the order of the grid X"

Theorem 6.1.9. Let G(u(x)) be a function with a possibly infinite wavelet expansion
contained in the vector g € lo(I) and A € I a finite configuration of wavelets that
realizes a given maximal truncation error € > 0, that is, for AT = I /A, we have

Igla+lea(my = €a(G(w)) < e (6.1.62)

Then, for m large enough, the approximation error éx xm is bounded by a multiple
of the mazimal truncation error €. One has

lim &y xp < Ce, (6.1.63)

where the constant C' > 0 depends only on the used wavelet family and not on the
particular structure A used to meet (6.1.62). An upper bound for C' is given by
C < V254,02, (6.1.64)

where oy 1S the smallest eigenvalue of the mass matriz M of the used wavelet family
W, and Cy is the smallest constant that ensures a norm equivalence of the type

(6.1.24) for H = Ls.

Proof:
As seen in the previous discussion, the coefficients g € 05(), (gx = 0 if A € A), of
the LS approximation to G(u(z)) computed using the wavelets from the index set A
and the set of points X" for any m fulfills

AK,XyAA,X;"<g|A - g|A) = AK,XyAA+,X?g|A+' (6‘1‘65)

The term Ax+ xmg[a+ € IR#X*" contains the evaluations of g™ () = Y, 4+ datha(2)
at all the points in X", so that the right hand side of (6.1.65) is the following vector
in gQ(A)

2m
> (@) ()
1=0
Apxm Ane xpglar = : : (6.1.66)

Zg+(%)%1 (1)
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Each component can be writen as

2m
Zg Ty @D)\ xz Zg X w/\ xz i =2m Zg+(xl>w)\<xl)Al (6167)
1=0

being A; := 27™. As the points are equispaced, A; is the length between two
measurements and in the limit

lim_ Z g (@) () Ay = /0 gt (@) (x)da. (6.1.68)

Hence, for any A € A and any tolerance 1; > 0, one can always find a finite uniform
grid of order m(n;) such that for all m > my(n)

ZQJF(%‘)@/)A(%) - Qm/ g (x)a(x)dx

<
0
- 1 (6.1.69)
127 1D g ()i A —/ g (@)a(z)dz| < 27
i=0 0
holds with {;};—o, _on = X" Selecting
ma () = max iy (1), (6.1.70)

XM is the coarsest grid that can ensure (6.1.69) for the whole set A and for a

given n;. For the points of any uniform grid of order m > m;(n;) we can write

(Z 9+($z)¢A($z)) < 2.2%m (/0 g+(x)¢)\($)dx) + 2. 2%m? (6.1.71)

and summing on A € A for all the squared components of the vector in (6.1.66) we
get

2
IAR xm An+ xp&la+ I, < 2- 22mz </ NG )dx) +2.22"H An? (6.1.72)
AEA

for m > my(n;). The norm equivalences (6.1.24) and (6.1.25) applied on H = Lo
allow to bound the sum of integrals in (6.1.72) with a multiple of the maximal
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= L emend

truncation error,

N emen] |,

(I
6.1.2 .
§ Cu Hg HL2
(6.1.24)
<
- e ‘e (I
- C\IJGA S C\If67
and one finally gets the bound
IAR xom Ant xr8lar 7,00y < 222" (Cy)te® +2- 24 An} (6.1.73)

provided m > my(n;). This gives us an upper estimate on the right hand side
of (6.1.65) in terms of the maximal truncation error where the tree dependence no
longer appears explicitely. The tree is however still present, as the order of refinement
m1(n1) required to guarantee (6.1.73) for a given 7; depends on the particular tree
structure A.

We proceed now in the other direction and get in a similar way a lower bound
for the left hand side of (6.1.73) in terms of known quantities. The structure of the
elements of the coefficient matrix A;"; xmAp xm, suggests comparing it with the mass
matrix M. Denoting by M, the restriction [M], of the infinite matrix M to the
finite configuration A, one can write for all v € ¢3(A) and for all m € IR

127 Mavllesay < [1AR xp An xpvllea) + 1127 Mav — AR xmAn xpllea)- - (6.1.74)

We will see now that [|2™ Myv — AY ym Ax xm0l|e,a) can be controlled by suitable
choices of m. To this end, we study the relation between the individual entries of
AK xmAnxm and My. For every couple of wavelets indexed by A, X" € A and for
every tolerance 7, > 0, one can find an order of refinement m, v (72) < oo meeting

2m 1

Z Ua(@i)a () — 2 /0 Ux(z)Yy(x)dz| <

P (6.1.75)
2™ th ) (z / Ua(x)thw (z < 2Mp,

for the points of all X" with m > 1 x(72). Selecting

mo = ma(1n) = max max (n2), (6.1.76)
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follows the uniform bound for all the components of 2™ M, — Ai xm AN xm

2" 1
max Z¢A(%‘)¢N(Ii) - Qm/ () (x)dx|, < 2™y, m > ma(ng).  (6.1.77)
i=0 0

ISV

This uniform estimation for the components can be translated into an estimation
for the matrix norm || - ||¢,(rr)—r(mn), Which we need to bound the second term on
the right hand side of (6.1.74). Indeed, for any matrix B € IR"*", n € IN, with
components (b; ;), one can check that max; ; |b; ;| is a matrix norm with the property
(see [81])

max by | < || Bllex(re) o) < momax by, (6.1.78)

and consequently for B = 2" Mpv — Af xm Ap xmv

127 Mpv — AR xmAn xr0llepny < 1127My — A o Ap xp
< HA 27| gya)

(A=) [V ][ £20)

(6.1.79)
holds for all v € l5(A) and m > ma(n2). Now, by the Rayleigh Ritz Theorem
| Mav||g,(a) can be bounded from below using the smallest eigenvalue of My, denoted

by oy,
Ty l[vlleaa) < N1 Mav|ena)- (6.1.80)

This lower bound still depends on A, as M, is the restriction of M to the particular
configuration A. However,

as M, is a principal submatrix of M, the interlacing theorem of Cauchy (see for
instance [81]) shows that the smallest eigenvalue of M, denoted by &, fulfills

on < Oy (6.1.81)
giving a bound independent of A. With (6.1.80), this yields
[Vlleaa) < g [1Mavlleaay < Gpg 271127 Ml a),s (6.1.82)

for all v € l5(A) and for all m € IR. For m > my(n) we can put (6.1.74), (6.1.79)
and (6.1.82) together and obtain

[0lleaa) < 0pp 2™ (JAR xm An xp0llesa) + #A - 2™ 0|0l y()) - (6.1.83)
If we choose 7, small enough to meet
1 — Gy #An >0 (6.1.84)
this can be written as

~ — _1 ~ — —m
[Vlleaay < (1 — o #A - 12)  opg 2772 (| AR yma Ap xm20llesa) (6.1.85)
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provided m > ma(n2). We can now glue together the upper and lower bounds for
(6.1.65). For arequired tolerance n := min{ny, 7.} we select an m(n) = max{m,(n), m2(n)}.
For this choice, (6.1.65) and (6.1.73) yield

IAX xp Axxp (812 — gla)lI7, ) < 227" (Cu)'e” + 2 274’ (6.1.86)

for all m > m(n). Now, we can select v = g|s — g|a, where the LS approximation
gl is computed using X" as sampling points. For this choice ||v||¢,a) = € xm and
(6.1.86) together with (6.1.85) yields

éi,m < (1 -6y #An)

As we can select an arbitrarily small  and still find a order of refinement m large
enough to meet (6.1.87), in the limit  — 0, we get the simple bound

lim éy xm < V203 Cae. (6.1.88)

522 (CLe + #An%) ,m > m(n). (6.1.87)

Note that according to the discussion at the end of Section 6.1.3, this theorem
states that the LS data fitting procedure can be reliably inserted as technique for
evaluation of nonlinearities in the methodology described in [35] as long as the
distribution of sampling points is dense enough. This requirement is also present in
quadrature based methods, see [7].

Theorem 6.1.9 applies for a lacunary tree A sampled on a uniform grid of
points. In the adaption of the proof for adaptive samplings of the type X} one
finds the difficulty that the terms of the type ZZ ot g (x)a(z;) (respectively
Z#XA %ZJ,\(!BZ)Zﬁ,\/(IEz)) are no longer comparable in the limit to integrals of the type
fo r)dr (respectively fo ¥a(z)Yn(x)dz), as the point distribution is no
longer equlspaced To compensate for the irregular distribution, one must introduce
in the computations some density function to measure the inverse of the distance
between to neighboring samples of the point distribution X}*. Accounting for this
term makes the analysis rather clumsy. A more direct way to translate the results
of Theorem 6.1.9 to the adaptive sampling point sets X' actually used in compu-
tations of Algorithm 6.1.7 is to consider that for any A and any m, one can always
find two uniform grids X", X*? fulfilling

X™CXTCX™, (6.1.89)

If we assume that the approximation error for a given configuration obtained with
some set of sampling points X decreases if we add further observation points to X,
we have

Eaxme S enxp S €y xm (6.1.90)

and the asymptotics lim,, .o € xp S €x follows from this and (6.1.88) .

Y

In the practice, moderate choices of m do assure the behavior (6.1.88) even for
adaptive point distributions X}*. We illustrate this with the following example.
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Example 6.1.10.

, G(-) = 4sin(2). (6.1.91)

Figure 6.1.1 shows the energy distribution of u(z) and G(u(z)). In order to have
access to the true errors, we have computed an accurate approximation @ to u
projecting it onto a fine grid (131073 points). We project then G(@) on the same
grid to get an accurate approximation é(a) We will use the so computed coefficients
as reference values.

)
N
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==
Level j
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- M W A O N ® ©

k k

Spectrum of u Spectrum of G(u)

Figure 6.1.1: Wavelet coefficients of the functions in Example 6.1.91. For levels
j > 6, only wavelet coefficients with absolute value above 10~ are displayed.

We take now a series of wavelet configurations A, of decreasing truncation error
e with respect to G(u) and for each ¢ we construct a Least Squares approximation
using its point representation of order m, X}' for several values of m. The so
obtained approximation errors €, x,,](G(u)) are given in Table 6.1.1 for several
values of € and m . As a first observaztion, we see that the point representation of
order 0 does not improve the approximation error as the truncation error decreases.
As we remarked before, this type of sampling does not provide an invertible system.

For point representations of higher order, enlarging the configuration A. does
improve the approximation error provided by Least Squares. This effect can be
better appreciated in Figure 6.1.2.

Theorem 6.1.9 assures that the LS approximation error € corresponding to a given
truncation error € has to lie in the shadowed area under the line € = \/561(,[10\%6
assuming that m is large enough. The figure shows that moderate choices of m
already attain the asymptotic behavior. A further observation is that asymptotics
occurs the sooner, the larger is the truncation error, in the left side of the plot.
As we move to the right, we need a larger m to get both into the shadowed area
predicted by theory, and into the domain where the approximation error effectively
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grows linearly with the truncation error. This effect is expectable: m is the order of
the coarsest refinement that, roughly speaking, allows to approximate integrals with
summatories within an uniform tolerance 7 for all the configuration. The simpler is
the configuration, the smallest is the required m.

€ #A, [ €O ¢ ¢2) ¢®3) @) ¢(10) ¢(x)
le-01 41 1.3 | 6.1e-02 | 3.3e-02 | 2.1e-02 | 1.8e-02 | 1.8e-02 || 1.8e-02
le-02 | 116 2.2 | 1.3e-02 | 4.1e-03 | 2.6e-03 | 2.5e-03 | 2.2e-03 || 2.0e-03
le-03 | 215 2.2 | 2.3e-03 | 5.3e-04 | 2.5e-04 | 2.2e-04 | 1.9e-04 || 1.8e-04
le-04 | 358 2.3 | 1.2e-03 | 1.7e-04 | 2.3e-05 | 1.6e-05 | 1.3e-05 || 1.3e-05
1le-05 | 683 2.3 | 1.3e-03 | 1.6e-04 | 6.9e-06 | 1.2e-06 | 9.2e-07 || 9.1e-07
1e-06 | 1592 || 2.3 | 1.4e-03 | 2.1e-04 | 6.7e-06 | 8.0e-08 | 6.1e-08 || 6.0e-08
1e-07 | 4059 | 2.3 | 9.6e-04 | 8.1e-05 | 1.5e-06 | 8.0e-09 | 3.8e-09 || 3.7e-09
1e-08 | 12574 || 2.3 | 3.4e-04 | 2.4e-05 | 4.2e-07 | 1.0e-09 | 2.3e-10 || 2.3e-10
Table 6.1.1: Approximation error é™ := ¢, x,p](G(u)) attained approximating

G(u) from Example 6.1.10 with configurations A. decreasing truncation error € and
with points representations of increasing order m. é*) represents the use of the full
reference grid as sampling geometry.

¢ | #A [ #X] [#XL [ #X | #X5 | #XL | #X0 [ # full grid
le-01 41 35 64 127 253 505 26625 131073
le-02 | 116 88 160 319 625 1185 | 40961 131073
le-03 | 215 140 260 519 985 1849 | 61441 131073
le-04 | 358 210 401 801 1517 | 2857 | 93185 131073
le-05 | 683 371 724 1447 | 2777 | 5297 | 102401 131073
1le-06 | 1592 836 1647 | 3293 | 6425 | 12497 | 106497 131073
1e-07 | 4059 2063 | 4104 | 8207 | 16205 | 31961 | 110593 131073
1e-08 | 12574 || 6320 | 12618 | 25235 | 44849 | 59193 | 114689 131073

Table 6.1.2: Number of sampling points used when approximating the function
composition G(u) from Example 6.1.10 with decreasing truncation error and with
increasingly denser sampling sets .

Remark 6.1.11. As a short comment about the number of sampling points used
at each configuration, given in Table 6.1.2, we recall from Chapter 2, that check-
ing if every wavelet is X —balanced gives sufficient but not necessary conditions to
ensure the nonsingularity of the normal equations. In view of Proposition 6.1.6,
m = 1 is the first m that guarantees that the use of a point representation of this
order provides stable normal equations, but not necessarily that this point represen-
tation contains the minimal number of observations necessary for the invertibility
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Iog(e"s)

~log(e)

Figure 6.1.2: Decay rate of the Least Squares approximation error of the function
G(u) with G and u defined in Example 6.1.10 for increasing larger configuration A..
The abscissas represent (minus logarithm of the) truncation error € of a configuration
Ac. G(u)|a, is approximated in a Least Squares sense yielding the approximation
error €% represented in the vertical values. Each line represents a different order of
the point representation of A, employed as set of sampling points in the LS algorithm.

Here, X* represents the full grid of 217 = 131072 points used as a benchmark.

of AKXAA’X (which must be equal to the number of degrees of freedom, #A ). How-
ever, in the practice the order m = 1 s tightly related to the minimal conditions of
invertibility, as m = 0 gives indeed rise to singular equations, and the cardinality of
point representations X' of order m =1 is only slightly larger than #A, see Table
6.1.2.

6.2 The Burgers’ Equation

The Burgers’ equation, formulated as

Problem 6.2.1. Burgers' Equation

%—I—% (%) =0on Qr:=(0,7) x (0,1), (6.2.1)
u(0,t) = u(1,t) in (0,7) and u(x,0) = g in (0, 1) (6.2.2)

with appropriate boundary and initial conditions, was introduced as a simplified
model for fluid flow [17] and provides an interesting benchmark to test the ap-
proach described above. Certain features of its numerical behavior make the use of
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a wavelet-ansatz, as done by several authors (see e.g. [29], [95], [112], [145]), a very
favorable choice:

e Singularity formation. Depending on initial conditions, the solutions are
known to develop sharp structures which may give rise to discontinuities, re-
maining smooth away from these areas. This makes adaptive methods capable
to concentrate degrees of freedom in the neighborhood of the shock a natural
way for the numerical treatment of this problem.

e Gibbs Oscillations. Spectral solutions induce Gibbs oscillations near a dis-
continuity, which causes the method to show poor convergence, unless some
post-processing is performed in order to smooth the Gibbs artifacts out. Post
processing schemes can be enhanced by locating the discontinuities (as in [79]),
which can be easily done in the wavelet representation.

e Frequency localized regularization. The treatment of the Burger’s equa-
tion using classical Galerkin finite element methods causes strong numerical
instabilities. Often a stabilizing term in the form of a diffusion operator is
artificially added to the equation, along the lines of the elliptic regularization
theory. This procedure sacrifices too much accuracy. Better results are at-
tained by spectral viscosity methods, in which the diffusion is added only to
the highest frequencies (see [138]).

Of particular interest for the wavelet framework are recent analytical conver-
gence techniques ([19],[20]) envisaging the characterization of solutions com-
puted with bases of multiscale finite elements. In principle, the regularization
can be restricted to the highest frequencies and to the spatial proximity of the
singularity.

In the remainder of this chapter, we will adapt the formulation given on [19]
and [20] to construct a converging wavelet-based method to solve numerically the
Burgers’ equation.

We will then operate an elementary smoothing on the attained solution based
on elementary properties of the wavelet description of singularities.

After having studied in these two points the quality attainable in the wavelet
formulation, we will turn our attention to its efficiency by proposing and testing an
adaptive algorithm that aims to concentrate the degrees of freedom in the neighbor-
hood of the singularity, following it as it evolves with time.

6.2.1 Convergence of the Restricted Viscosity Method

First, we recall in a simplified way the main result attained in [19] and [20] about the
convergence of approximations to the solution of (6.2.1) constructed with uniform
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grids of hierarchical finite elements. In the monovariate case, the ansatz function of
the approach can be written as

gz t) = Y (O (x), (6.2.3)

)\EAJ

where the {1)f}\ca, are the hierarchical basis defined in Section 3.1.1 for the space
V; of continuous functions piecewise linear on each subinterval 2= [i, i+1] for i =
0,...,27 —1 (see Figure 3.1.1).

The hierarchical basis approximation of (6.2.1) is thus given by a u;(z,t), u;(-,t) €
Vi, uy(+,0) = g; that meets the regularized weak formulation

L1 0 (u} 1o 0
/0{%—1—%(%)] de—l—uJ/O [%( f,“tuj)a—;] vdr =0 (6.2.4)

for every v € V;. Here, the operator Q?}C“t eliminates the components whose scale is
smaller than j.,, that is

Qy( Y duiy = > (6.2.5)

AEAJ )\GAJ7|A‘chut

and g, is a projection of g on V;. With these ingredients, we can state the following
convergence result.

Theorem 6.2.2. (/20]) Let {u;}52; denote a sequence of hierarchical basis approz-
imations determined by 6.2.4. Assume that wy is uniformly bounded in Lo.(Qr) and
that

vy —0as J— oo, (6.2.6)
v;2) > C, (6.2.7)
0
N o (I = Qy)uy] N ||UJ||L2(0,1), (6.2.8)
L L2(0,1)
N {(I - Q)5 < ‘ — ,and  (6.2.9)
Oz Ot [l Ly0,) It | L, 0,1)
d dg.s
—(Q9.) < = : (6.2.10)
H dx L2(0,1) dz {1, 0,1

Then there exists a subsequence of {u;}32; that converges strongly in La(Qr) to a
solution u € Lo(27) of 6.2.1.
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Note that in the full grid approximation the convergence results expressed in
Theorem 6.2.2 are directly applicable to a wavelet formulation. A wu; satisfying
(6.2.4) can be expressed as

up(z,t) =Y di(t)n(x), (6.2.11)

)\EAJ

where the {1} AcA, 18 the linear spline—wavelet basis of V;, as noted in Section 3.1.1.
The operator Q7" that kills oscillations on scales smaller than j., has the same
form as in (6.2.5)

(> daa(x) = Y dyha(x). (6.2.12)

AEAJ AEAJv‘)‘|Zqut

Particularly, we can make a simple choice of parameters that guarantee asymp-
totic convergence of the (Petrov-) Galerkin method in the wavelet basis.

Proposition 6.2.3. With the choices v; = C277 and jou < %, the assumptions
(6.2.6) to (6.2.9) on a function uy of the form (6.2.11) satisfying the regularized

weak formulation (6.2.4) are met.

Proof:
For all v € V; we have

(I-QF =Y dy (6.2.13)
)\EA,l)\‘<jcut
As
Yo P <) lda (6.2.14)
XEA N <Feut AEA

by the Riesz property Y, |gr[* ~ ||9||2L2(0,1) that holds for all g = ), _; g\¥» we
can write

I = Q5 olla00) S Nollzay- (6.2.15)
Now, (I — @’*)v is linear on intervals of length 2-Ueut*1) 50 that
O 11— @i < 2 |[(1 = Q% 6.2.16
or {( —Qy )U} ~ H( —Qy )UHL2(0,1)' (6.2.16)
L2(0,1)

Multiplying by 2-% and using (6.2.15), we have

9 Jeut
or [([ —Qy )U}

[N

2" < 277 o)l ) (6.2.17)

L»(0,1)

Since we have chosen jo, < Z, taking v € {uy, 24}, conditions (6.2.8) and (6.2.9)
are satisfied. n
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6.2.2 Smoothing of Gibbs Phenomenon

As model problem, we consider the following form of the Burgers’ equation (6.2.1)
with particular boundary and initial conditions.

Problem 6.2.4. Stationary Shock

at o\ 2
uw(0,t) = u(1,t) for all t € (0,7).
u(z,0) =sin(2rx) for z € (0,1),

Ou 9 <UQ) =0 on (0,1) x (0,T),
(6.2.18)

which gives rise to a stationary shock: As time increases, the derivative of u grows
larger in a decreasing neighborhood of z = 0.5, becoming a sharp jump. After this
singularity is formed, the solution’s amplitude starts to decrease.

We see in Figure 6.2.3 on the left the solution computed with a slight modification
of our (preorthogonal spline—)wavelets. In order to meet the periodic conditions, we
have substituted the boundary adaption with a periodization of the basis ensuring
that ¥,(0) = 1 (1) for all A € A. We have used the full grid for increasing maximal
level of resolution J at time ¢ = 0.5, where the sharp shock has been formed and is
about to start reducing its amplitude.

As expected, numerical instability appears if no viscosity is added, see Figure
6.2.1 and no convergence occurs by refining the ansatz space. Results of Section
6.2.1 ensure convergence if viscosity is added at least to the uppest J/2 levels of a
discretization with a maximal level of resolution J. This is confirmed by Figure 6.2.2.
An importat point is that the frequency-restricted viscosity method operates beyond
the convergence results from Section 6.2.1: Numerical experiments (see 6.2.3) show
that adding viscosity only to the highest resolution level does already stabilize the
computed solution. This yields better accuracy away from the singularity, as less
artificial diffusion is introduced into the original problem. However, an oscillation
due to the Gibbs phenomenon still concentrates around the singularity. Although
its support decreases as we improve the resolution, this artifact remains for every J.

Wavelets and singularities

Description and detection of singularities by wavelet analysis has been envisaged
(see [96], [100], [101], [103], [117], [118]) by numerous authors even since their intro-
duction in the late 80’s. Typical results herein relate the local Holder or Lipschitz
regularity of a function with the decay across scales of its local wavelet coordinates.

Now, in order to gain a look on the qualitative behavior to which one should
compare the behavior of coefficients of the reconstructions in Figure 6.2.3, we briefly
provide an example of the representation of a discontinuity in the wavelet basis that
we are using. This will help us to disentangle the effects of the discontinuity from the
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J =38 J=9 J =10

Figure 6.2.1: Wavelet solution for the Stationary Shock Problem 6.2.4 using different
resolutions. No viscosity is applied.

jcut:37J:8 jcut:47J:9 jcut:57J:10

Figure 6.2.2: Wavelet solution for the Stationary Shock Problem 6.2.4 using different
resolutions. At each resolution J, a j., that meets the requirements of Theorem
6.2.2 for convergence of the Galerkin methode is applied.

effects of the Gibbs phenomenon by inspection of the coefficients in the proximity
of the jump at z = 0.5.

Example 6.2.5. Decay profile of wavelet coefficients across a singularity. Let f(z)
be a linear function except for a discontinuity located at xy = 1/2, that is

flz) = { T, &S, (6.2.19)

z—1, x> xg.

We denote its wavelet expansion as

flz) = > d; k(). (6.2.20)

7>0; k=0,...,29 —1

In view of the preorthogonal spline—wavelets employed here, the Ly(0,1) scalar prod-
uct of the function against all wavelets from level j are on each level zero except
for the two wavelets whose support cuts the point xo = 1/2, see the left graphic in
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jcut:87J:8 jcut:97<]:9 jcutleaJ:]-O

Figure 6.2.3: Wavelet solution for the Stationary Shock Problem 6.2.4 using different
resolutions. Viscosity is applied only on the maximal resolution level.

Figure 6.2.4 for the case j = 10. Taking scalar products in Ly of (6.2.20) against
each wavelet on level j', we obtain

(f, 1) = > dig (Vi Vyae), K =0,...,2" —1, (6.2.21)

j>0; k=0,...,29 —1

One can solve now for the wavelet coefficients {djix}—o. o1 of the expansion in
(6.2.20) and obtain the right plot in Figure 6.2.4. Note that multiplication of the

wavelet coefficients by the entries of the mass matriz (; j, Vi 1) introduces a smooth
decay.

13.5316

10.41671

Nk
K

Behavior of | fol f(2)Y) p(x)dx] Behavior of |d; ;| against k at
against k at level j=10. level 7=10

Figure 6.2.4: Behavior of wavelet coefficients of a given level (5 = 10) across a
discontinuity in a linear function.
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Post Processing

In the following, we describe an elementary technique of smoothing applied to the
reduction of Gibbs’ artifacts on the basis of (preorthogonal spline-)wavelets: one
identifies the areas in which this phenomenon is active, eliminates the responsible
wavelet coefficients and recomputes the remaining ones.

This identification is based on the inspection of the decay of wavelet coefficients
at each scale, as represented in Figure 6.2.5. The shape of the decay of the wavelet
coefficients |d; | across kin j =7, j = 8 and j = 9 is similar to the decay shown by
wavelet coeflicients representing a singularity. In contrast to this, the decay of |dyq |
at level 10 across k is qualitatively different: since it is too wide, it does not match
the decay expected from a clean discontinuity, as seen in Example 6.2.5. Let us
denote by Agins the set indices of wavelets whose coefficients appear to be affected
by the Gibbs phenomenon. The decay across k of the wavelets coefficients signalizes
an energy concentration along an extended interval Igims = Uxeagi,. SUPP Ui
We assume that it marks approximately the support of the artifact, and that the
reconstruction on this interval is henceforth of no use. Now, one simply performs
a local smooth re-sampling of the signal using only points lying outside Ig;ms and
computes the wavelet coefficients with respect to this new re-sampling. A possible
choice is Xl(xm) / X/(\ngbbg for any m > 0, being A the original wavelet configuration.
The right plot in Figure 6.2.6 shows the reconstruction attained by this elementary
technique for the solution of highest resolution in Figure 6.2.3. Figure 6.2.7 shows
that this strategy yields different results from simply discarding coefficients of the
higher scales: the coefficients on levels j = 9,10 do indeed disappear (and they are
not depicted), but also coefficients of the remaining levels are changed. In fact, if
one just threw out wavelet coefficients from higher scales, one would just rescale the
Gibbs phenomenon and get a wider Igs (see Figure 6.2.3).

We see therefore that the Gibbs phenomenon is not located exclusively on the
two upper levels (j = 9,10). It leaks down through the lower scales. The correction
is henceforth stronger for higher levels and fades away as we move down in the
dyadic scale of resolution (compare plots for j =5 and j = 8).

Obviously, this procedure decreases the sharpness of the peak: the final resolution
in the example is j = 8 after this post—processing. This does not mean however,
that the work done to resolve the discontinuity at level j = 10 is lost. In fact, if
we started with a signal resolved at level j = 8, the smoothing would not take into
account the information coming from the two last levels and we would just produce
a rescaled version of the Gibbs phenomenon.

Remark 6.2.6. Starting with a given finest level j, if one wants to suppress the
artifacts and simultaneously wants to keep a sharp resolution of the discontinuity up
to some level, one would need more involved techniques. Among powerful strategies
from Image Processing, there is minimization of Total Variation [64, 65]), or the
so—called footprint location [63], which are aimed at squeezing out the last drop of
information from the given set of available points. As we are working with the
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Jg=1 J=38 j=9 j = 10.

Figure 6.2.5: Decay of coefficients on the last four levels before any smoothing
technique is applied.
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Figure 6.2.6: Smoothing the solution of level J=10 of the Stationary Shock (6.2.4).

output of a PDFE problem, we could gain additional information by simply producing
solutions of higher resolution by locally adding degrees of freedom.

This analysis works for singularities arising in other situations: The following
Problem develops a sharp shock that travels from left to right.

Problem 6.2.7. Traveling Shock

ou 0 [u?
a‘l—a(— =0 on (O,]_)X(O,T),

2
uw(0,t) =wu(1,t) for all t € (0,7), (6.2.22)

t)
u(z,0) =1+ isin(r(2z—1)) forze (0,1).
This is the same example as in [20]; exact solution is implicitly given by solving a

nonlinear equation [19]. The numerical solution is computed here with (preorthog-
onal spline-)wavelets (uniform discretization) and explicit Euler’s method for time
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Figure 6.2.7: Decay of coefficients on the last four levels after smoothing compared
to their original values.

discretization which yields qualitatively the same results as more involved schemes
provided that the time step is small enough. The results at time ¢ = 0.5 using
diffusion on finest level only are displayed in Figure 6.2.9 for different values of J,
illustrating the convergence of the method as the resolution level increases. Figure
6.2.9 shows the instabilities that appear in absence of viscosity.
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Figure 6.2.8: Wavelet solution with the full grid for Traveling Shock. The upper row
shows the results at T=0.5 for different resolution levels. The lower row shows the

results after smoothing, compared to the real solution.
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J=10,T =05

Figure 6.2.9: Instabilities arising in absence of viscosity when solving Traveling
Shock.

6.2.3 Adaptive Solution

Although the convergence results of Section 6.2.1 apply for a full grid discretization,
we have found that also adaptive schemes benefit from the frequency-located ad-
dition of viscosity, as numerical instabilities do indeed disappear, as the numerical
evidence shows.

We have implemented a slight modification of the adaptive algorithm proposed
in [104]. The approximation of the solution u(mdt,-) at time mdt is given by a
U =\ cpm dy"*19)5. The configuration A™ is updated by a dynamically adaptive
scheme as described in Section 6.1.2, and the time evolution is computed by an
Adams-Basforth scheme of second order.

Algorithm 6.2.8. Adaptive Wavelet-Galerkin Scheme

Fiz a thresholding €(j) possibly dependent on the resolution level. Given an initial
solution u° expanded in the wavelets of some set A°, define A° by thresholding A°,
i.e. A% :={X e A%:|d\| > e(0)} and perform for each m =0,...,:

1. Refinement

(a) Vertical Expansion

The configuration at the next time step may require wavelets of a higher
level. We construct a set A})' containing the wavelets in A™ plus all their
children.

(b) Horizontal Expansion

We extend the configuration with the horizontal neighbors of the wavelets
of the previous set and form A™*!,

Amtl {A — (k) e A™: 3(,K) € A, K € {k—2,k—1,k,k+1,k+2}} .
(6.2.23)
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2. Computation

We look now for a function

u™tt =N Ay, (6.2.24)
AeAm+1
that solves
1 +1 10 9 0 0 ~
— m O _ m — _ . my 7 Am+1
(7_ (u u )+28$ (’LL*) 7w)\ v axQJ(u* )7axw)\ ) fOT‘)\E )
(6.2.25)
with w™ = 3u™ — 2u™=t (or u™ = u™ for m = 0).

3. Coarsening
Compute A1 by thresholding A™!

AT {A e Am 1 |dy) > e(|)\|)} . (6.2.26)

We have solved the Burgers’ equation with the two different initial conditions
proposed in the previous section with Algorithm 6.2.8. In both cases we use the
following parameter set: Jyu, = 10, v = 2/ma==1 ¢(j) = 1076 . 227, We let the
viscosity act only on the elements with 5 > 6. The results, in Figure 6.2.10 for the
Stationary Shock and 6.2.11 for the Traveling Shock, appear to catch perfectly the
dynamics of the solution.

In both cases, the initial wavelet structure expands itself to solve the forming
shock, as the method selects wavelets in its neighborhood of the shock. The pre-
scribed thresholding policy prevents the method to accumulate wavelets of higher
resolution as 7 = 8. In the stationary case, the shocks remains at + = 0.5 and
vanishes, leading to a simplification of the wavelet structure. In the traveling case,
the wavelet structure travels with the shock.
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t=20 t=0.12 t=0.24 t=1.17

Figure 6.2.10: Evolution of the wavelet configuration selected by the adaptive
method applied to the Stationary Shock Problem 6.2.4. Corresponding solutions
are displayed below.
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Figure 6.2.11: Evolution of the wavelet configuration selected by the adaptive
method applied to the Traveling Shock Problem 6.2.7. Corresponding solutions are
displayed below.



Chapter 7

Implementation and Data
Structures

The computations involved in the data fitting algorithms described in Chapter 2 re-
quire managing sparse matrices, as both observation and coefficient matrices present
this kind of structure. Any computations with these objects should be based on ade-
quate data structures that can favorably use this fact. The structure of the matrices
is determined by the superposition of two effects.

e First, we have the deterministic sparsity induced by the locality of wavelets,
that prevents every wavelet to be coupled to every other wavelet in the AT A
matrix. This is the sparsity that appears already when working with the
full grid. The completeness of the grid allows for a very efficient managing
with static or semi-static data structures, as the ordering by indices (j, k) or
(4, kg, ky, ) induces easily a well defined indexing to represent in memory the
degrees of freedom arising in the problem and their coupling.

e Secondly, the final sparsity structure of the arising matrices is determined by
two sources of indetermination:

— the input data is unstructured, and

— the identity of the involved wavelets is decided on-line in view of the data
and the partial analysis of it performed at each growing stage of the tree.

The two factors in the second point (partly related to each other, as the selec-
tion of new wavelets relates both to the local smoothness of vertical values and the
distribution of horizontal coordinates of the points) introduce two kinds of indeter-
minations.

e a point-in-wavelet uncertainty, derived from the irregularity of the data set.
This means that given a wavelet indexed by A, we cannot find out how many
points and which ones are in its support, that is, the set of point indices

Py:={iel,...,N : x; € supp(¥,)}, (7.0.1)

137
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without traversing the entire data set P.

e a wavelet-in-point uncertainty, derived from the on-line formation of A. Given
the x; coordinates of a point, it would be a trivial task to find the set of
wavelets out of a full grid whose supports cross the point. But in our case, as
we do not know beforehand how many wavelets and which ones are going to
be selected by the method, we cannot determine beforehand the corresponding
set of wavelet indices defined by

Ay, i ={A €A : x; €supp (V»)} (7.0.2)
by accessing the point x;.

As the main interest of the method is precisely the analysis of sets of highly
irregularly distributed points that can foreseeable produce A trees which are very
different to full grid trees, special attention should be paid to the use of data struc-
tures that harmonize the need to dynamical management with efficiency.

7.1 Observation Matrix A

Recall the basic growth algorithm, which intends to select the wavelets containing
less than ¢ points, ¢ being a fixed parameter. We start at a root level composed
by all the wavelets of the full grid for some fixed scale j = jy (in our experiments
usually selected as jo = 1). The indices of this level are

Avoot =\ = (jo, k) : k=0,...,20-1} (7.1.1)
or
ANroot = N = (jo, kus kyy€) ¢ Ky ky =0,...,20—1 e {0,1}*} (7.1.2)

for two dimensions. Each node A = {(j,k) : j = jo, every k} is represented as an
object containing the identification of the wavelet and an array indexing the points
of P that appear on A. This initial configuration is created in an initial loop on all
the points in P, creating a pointer to the position of point z; only in the nodes that
actually cut the point, that is for A € A, so that A € A,,. This performs a kind
of binning of the points at the scale jo. Note that this operation has a complexity
proportional to the number of points N.

At the next tree growing stage, we want to further bin the data in relation to
the children of the nodes A,,,;. With this goal, we perform a binning loop on the
N, many points in Py for each A\ € A,, checking for each x € Py in which children
of X should be created a pointer to x. As the support of each of the children of A is
necessarily included in the support of A, at the end of the loop, every child \,,, of
A € Aot has gotten his Py = set constructed, and the level jp+1 can be constructed
by rejection of the sons that do not attain to contain g-many points at their support.
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And we carry on this procedure till having finished the construction of A, coding it
in a tree structure.

The important thing to note is that this process constructs automatically an
optimal bookkeeping of the sparsity structure for the matrix A: As every A € A gets
its array of indices Py connecting to the points in its support, traversing the nnz(A)-
many nonzero elements of A amounts to traverse the tree, stopping at each node A
to traverse the corresponding points indexed by P,. This allows for a fast matrix-
vector multiplication naturally adapted to the sparsity structure of A. Moreover, it
is done without significant overhead in memory allocation.

7.1.1 Complexity

The complexity of the whole process is proportional to N, as we just accumulate
levels containing pointers to a maximum of N points.

This favorable characteristic of the method is due to the fact that relative posi-
tions between points never need to be computed. The point-point type information
is for us already accounted for in the ordering of the points to different wavelets
of A and in the fact that the relative position between wavelets is already coded
implicitly in their indices. Shortly, we need to extract less information from the
unstructured cloud of points (than, for instance, when creating a triangulation) be-
cause the representation we want to create aims more to catch structures underlying
in the collection of points, rather than structuring the cloud of individual points.

7.1.2 Evaluation of Matrix Elements

Once each P, is detected and coded in the node A, one should evaluate the wavelet
1 at the corresponding points and store the values. The option of computing them
at every call to each individual element is not advisable as

e the execution of the program is severely slowed down, as every element of the
matrix is bound to be used several times, mainly the elements corresponding
to the coarse levels, and

e the attained memory gain is rather modest. The bookkeeping of the integers in
P, for each X in order to control the sparsity structure is anyway not avoidable.
Its amounts to store nnz(A) integers. Now, renouncing to store the nnz(A)
float or double variables with the wavelet values brings a gain factor of 2:1 or
3:1 respectively.

7.2 Coefficient Matrix AT A

The numerical inconveniences that could arise if one chooses to solve the normal
equations by actually forming M = AT A instead of working with A and A7 are dis-
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cussed in [27]. Now we discuss some issues concerning the practical implementation
of the AT A approach.

Note that the elements of this matrix should not be computed at each time they
are requested when operating a matrix-vector multiplication. Each element codes
the result of some analysis of the interplay between the tree and the data. We want
to reuse this analysis, not to repeat it continuously.

The tree structure as explained up to now contains the point-in-wavelet informa-
tion. This is not appropriate for the assembly of the AT A matrix. New structures
have to be tailored to this task. Ideally, the formation of this matrix should follow
the schema: For every 1,..., N:

1. Compute A,, = {\ : x; € supp(¥,)}.

2. For every A € A,,,
compute or fetch the wavelet value at point z;.

3. For every A\ € A,
accumulate the product ¥, (x;) ¥y (z;) in some memory place accessible to
every other point of the list.

This procedure is optimal as it requires uniquely the arithmetic operations con-
tained in the elements of the AT A matrix. That is, formally these elements are

defined as N
My =Y ala) (),
i=1

but only few elements of the sum do actually contribute with nonzero summands.
In fact, the sum could be written as

My n = Z Ua(zi) Yar ().

iEP/\UP)\/

The above procedure eliminates the bottleneck of search and sort operations that
would occur when repeatedly examining the data looking for the points common
to each pair A\, \' € A. In the following section we develop the structures that can
mimic this procedure.

7.2.1 Construction of A,

The tree structure is constructed over the wavelets. It only gives us the point-in-
wavelet information. We have a direct access to an element \ and can then consult
the set P, indexing those data points attached to it. Extracting A,, for each
1,..., N requires the creation of an additional structure that could give us direct
access to the points. We need a point look up table.

This can be accounted for at the binning stage of each level. Every time a point
is accepted in a wavelet node, that is, every time a reference to this point is created
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in the memory area of the node, the node has to be correspondingly accepted by
the point, that is, a pointer or index that locates the node has to be created in the
memory area accessible by the point.

This operation opens the question of how to preallocate enough memory at each
point z; in order to contain the pointers/indices to the nodes A,,. In some situation
the following immediate solutions can work:

1. Static allocation of memory for all the A of the full grid that could possibly
overlap the point of interest. At each scale j, this quantity is a constant de-
pending of the wavelet family.

Depending on the characteristics of the data distribution this policy of sys-
tematical overestimation can lead to a satisfactorily moderate overhead or to
a fantastic waste of memory.

2. Dynamical linking of every new A\ accepted into a point x;. This reduces the
overhead at the prize of slowing down both construction and performance of
the table by adding the costs of continuous redirecting. Worse, each piece of
the linked list is created while inspecting a different wavelet. This means that
at each point x; we can expect a very poor locality. Each piece of the chain is
very likely to lie in a position of memory lying very far away of the previous
and the next one. Traversing the list multiplies the possibilities of generating
a page fault at every memory access.

Again it is impossible to predict the performance of its approach. It can
work just fine or create a bottleneck, depending of the degree of memory
fragmentation introduced by the linking.

Although one could think of some hybrid strategy (dynamical linking of blocks
containing several addresses), one can use a safer way. One runs a first loop on the
points stored at the last level of the tree. We keep track of the number of apparitions
of each point in a counter located in the point. We can then dimension an array,
which is later filed in a second loop, with exactly the right number of wavelet entries
for each point. The performance overhead is always the duplication of the loop.

7.2.2 Accumulation of Point Contributions

The last step of the procedure presents the hardest difficulties. The individual
elements of the matrix M) y are to be computed by accumulating the individual
contributions 1, (x;)¥ (z;) of the points z; common to Py and Py. Traversing the
points of the above described data structure assures us to produce efficiently the
Ua(x;) Yy (x;) terms. Now, we have the problem of how to accumulate then.

This is a common problem in computational linear algebra. One is given two
sparse matrices, in our case AT and A, and is confronted with the task of multiplying
them efficiently with insight to performance, memory and storage.
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e The performance efficiency amounts to create an algorithm that directly ac-
cesses only those pairs of elements of the factor matrices that produce nonzero
elements of the product matrix.

e Under memory efficiency we mean not to preallocate much more memory than
actually required by the nonzero elements of the matrix. Recall that the
product of two sparse matrices does not have a foreseeable sparsity structure.

e Storage efficiency amounts to adopt a data structure that allows for a coherent
access to every one of the accumulators when required by different points.

The problem has not been investigated as extensively as the one matrix-vector
multiplication, and one does not have an optimal solution procedure for the general
case. A different one has to be tailored for each situation, making use of the special
characteristics of the matrices. In our case, the efficiency in the performance is
attained by the table structure. When we traverse the available points in the table
structure defined above, we access exactly and directly the elements of A and AT
that pairwise contribute to the nonzero entries of M.

The memory efficiency requires a new extension of the data structures mentioned
so far. Most matrix multiplication packages that allow for sparse matrix matrix
multiplication like MATLAB, SPARSKIT, SparseLib++ or SMMP make a previous
global memory allocation that cover every position of the target matrix or preallocate
for only a column or row at a time and then fill it, with forces to time consuming
loops on the elements of the factor matrices looking for the corresponding elements.

In our case global preallocation can lead to memory overflow when working with
data showing rich structures.

The biggest difficulty consists in arranging the location of the accumulators so
that they remain equally well accessible when called by different points.

In our setting, each wavelet node A\ € A will contain a static array with as many
positions as overlapping neighbors of A are in the full grid, up to the last level of
the tree. Each one of these positions will act as an accumulator for the coupling of
¥y with the corresponding ).

The static definition allows for these accumulators to be ordered following some
natural indexing of the (j, k) indices, independently of the presence of the corre-
sponding wavelets in the tree structure. This makes these accumulators directly
accessible to each point, without searching, sorting, hashing or redirecting.

The prize is a memory overhead as some X' & A will actually be represented in
some nodes of the structure. This overhead is anyway affordable for three reasons.

e The arrays are created only in actual nodes of the tree. This bounds the
memory to be preallocated to scale linearly with the actual degrees of freedom,
not with the full grid complexity.

e Wavelets neighboring a wavelet present in the tree are anyway likely to be also
present.
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e After having run over all the points of the table structure, the matrix elements
of M need no further to be represented by accumulators. They are not ac-
cepting any summands any more, and do not need to be individually accessed.
Therefore, once a level is completed the part of the matrix coded in this level
can be extracted and stored in a usual way. The arrays can then be freed.

In short, by static managing of arrays kept in dynamically created nodes, we
combine the access efficiency provided by deterministic structures with the com-
plexity reduction provided by the data adaptivity of the algorithm, which has to be
represented with on-line constructed structures.

7.2.3 Performance Comparison between A and A7 A Meth-
ods

As we have seen, operating with the matrix A requires only to use the tree struc-
ture that arises naturally in the binning of the data, while the use of AT A needs the
addition of new nontrivial data structures in order not to generate memory over-
flows. The interest in working with AT A is the expectable enhancement of efficiency
at the Conjugate Gradient stages that take place when extending the tree with a
new level. As pointed out before, the individual entries of this matrix code more
operations on the data that the entries of A do. In some sense, the result is that
the matrix A7 A shows some kind of compression of the information. The dimension
of Ais N x #A, while ATA has a dimension #A x #A. As we expect to have
much less degrees of freedom than points (especially on the first levels of the tree;
compare a typical input of 10* points with the 25 wavelets of the first level for the
linear wavelets), a matrix-vector multiplication runs much faster in the A7 A matrix.

This advantage balances with the overhead of having to assemble the matrix.
Note however that the numerical complexity of computing AT A scales with N,
exactly as computing A . Depending on the number of iterations we need to attain
an acceptable minimum, assembling A7 A will pay off or not. Numerical experiences
show some general trends:

e Typically wavelets need much less iterations than other hierarchical basis to
converge. Moreover, in the case of wavelets the nesting strategy allows for
the number of iterations needed to attain some reasonable minimum to grow
only moderately with the number of levels of the tree. In the hierarchical
basis the interference between levels causes this number of iterations to grow
much faster from level to level, so that at the highest levels the A” A method
outperforms clearly the A method. In fact, it is often the case that we need
so many iterations that the A method is not even affordable.

e Anyway, in regularization problems in which GCV or similar methods are used
to find favorable smoothing parameters, one solves a series of systems which
are merely translations from each other. That is, we have to solve
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(ATA+vD)d = A"z (7.2.1)

for different choices of v, being D a fixed diagonal matrix. In this case one
should always use the AT A matrix, as the overhead of assembling it is done
only once for one parameter v, with the benefit of having it available to be
re-used for every choice on v of interest.



Chapter 8

Conclusions and Outlook

In this work we have studied the use of wavelets as ansatz functions for fitting
scattered data by construction of least squares approximations. This task is done
in an adaptive way, avoiding the introduction of uniform grids to perform a Fast
Wavelet Transform.

As initial motivation, we have derived from classical properties of wavelets po-
tential advantages of wavelet-based methods for different aspects of the data fitting
problem, and constructed specifically tailored algorithms intended to exploit them.

In order to ascertain their relevance for actual numerical applications, these
algorithms have been tested on different data sets, both synthetic and stemming
from data sets used in diverse scientific disciplines (as meteorology, photogrammetry,
geophysics and quantum chemistry).

The results of this study, regarding the different aspects envisaged in this work
can be stated as follows:

e Performance.

We have presented and tested an adaptive coarse-to-fine algorithm that ex-
ploits the capacities of wavelets to structure detention performing a fast anal-
ysis of the data at each scale that allows to extract efficiently the relevant
degrees of freedom of the problem. We have proven its stability and showed
how the good conditioning of wavelet bases provides a better numerical per-
formance than other multiscale bases.

e Regularization.

The norm equivalence that relates the norm of a function in a wide range of
function spaces with a weighted summation of the coefficients of its wavelet
expansion can be used to define the classical minimization functional that
balances approximation and smoothness with extended flexibility and without
additional computational costs.

Standard regularization techniques such as Generalized Cross Validation can
be significantly enhanced by the use of the wavelets, whose multiscale nature
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allows for a direct access to the different resolution levels. In fact, the heuristics
provided by this multiscale description of the data allows to go beyond the
usual regularization terms constructed on norms in Sobolev spaces, and we
have shown how this approach proves itself useful to locate (and eliminate)
frequency localized artifacts.

¢ Robust fitting.

The capacity of wavelets to measure local accumulations of energy, widely
exploited to detect singularities, has been used to derive an outlier finding
procedure. This procedure relays on the data fitting algorithm, inheriting its
good performance properties and providing in consequence an efficient schema.

e Application on PDEs.

The data fitting algorithm provides a compact and easy to implement way
to approximate the composition of a function with a linear combination of
wavelets. This approach provides a straightaway method to cope with the
nonlinear term in the Wavelet-Galerkin formulation of the Burgers’ equation.
This problem benefits strongly from a wavelet formulation, because of the
development of singularities and the possibility of simultaneously in frequency
and space located viscosity.

The general conclusion to be extracted from these results is that we can con-
sider wavelets as a valuable tool for data analysis, beyond their traditional use in
processing of gridded data by means of the Fast Wavelet Transform.

The positive results attained in this work encourage us to further research espe-
cially in the following areas of interest:

e Characterization of the algorithm.

Although extensive numerical evidence of the performance of different aspects
of the method has been provided, a deeper characterization of the spectral
behavior of the spectrum of the coefficient matrices in presence of very irregular
point distributions is still desirable.

Further, an extension of the stability results for bivariate data and higher
approximation orders is also possible.

e Application in electron density computations

Electronic density computations are an active field of research in Quantum
Chemistry and Solid State Physics.

The physics of the problem leads itself quite naturally to a multiscale, adaptive
formulation, as the electronic density has high variability in the neighborhood
of atomic cores and quite stable values in the bulk of the elementary cell.
Thus, a high resolution is only necessary in small areas of the domain.
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The classical (pseudopotential)-solution of modeling separately core neighbor-
hoods and the space between the core locations needs intensive experimental
characterization of fitting parameters and a large amount of expertise. For this
reason, ab initio computations have been introduced, which try to minimize
the need of experimentally fitted parameters, [125].

In order to made these numerically practicable, diverse adaptive settings have
been introduced, including wavelets: since the first experimental works in the
early 90’s ([30]) and later works that develop and consolidate the model on
simple problems ([4],[114]), the technique has been extended and now recent
works report successful application to real problems outperforming classical
formulations [56],[67].

Precisely, a main obstacle for the implementation of the wavelet formulation
has been the treatment of the nonlinear term. This requires a continuous
switching between wavelet and real space coordinates. The traditional tool
for this task is the Fast Wavelet Transformation, which is not well suited
to efficient transforms on lacunary sets, as the representation of functions is
compact in wavelet coordinates, but conserves its full complexity in real space
coordinates (that is, in the scaling function coefficients), and consequently,
this procedure cannot benefit from the adaptivity of the wavelet formulation.

We intend to circumvent this problem by working entirely in wavelet coordi-
nates, using the LS-evaluation of the nonlinear term as explained above. In
this way, the lacunarity of the set is no more a problem and its treatment does
not require any special techniques. Not only a simpler formulation is envis-
aged. A higher flexibility can be also attained, as special families of wavelets
can be constructed in order to adapt to the operator, not the possibility of
performing adaptive transformations.
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Appendix A

Documentation

A.1 Preface

In the last years we have been researching the use of wavelets in the scattered data
fitting framework. Being a non explored field of research, (for which no tailored
software was previously available), very different aspects had to be intensively ex-
plored. That led to a large number of numerical experiments of extremely variable
design. This clearly causes a stark need for flexible computational tools.

On the other side, as the method is intended to work with large amounts of data,
the velocity of execution is also an important issue.

In order to suit these two requirements, we have written the code fit3 .

1. Flexibility

The code has the format of a Matlab script. It can be called as a normal
Matlab command, and provides the user with an easy-to-use output of Matlab
variables which can be fatherly used according to current interests, from the
Matlab workspace.

2. Efficiency

To compensate the performance weaknesses of Matlab, the kernel of the com-
putations is performed in C++, with specially tailored data structures.

The communication between Matlab and C++ is made via MEX files, so that
all the interchange of values occurs in rapid-access memory areas.

A.2 Adaptive Least Squares Fitting with Wavelets

We have proposed an adaptive method of least squares data fitting based on certain
wavelets that works on a coarse-to—fine basis, which we recall briefly now, along
with some properties of the wavelets we employ here.
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Consider the set X = {z;},—1n consisting of irregularly spaced and pairwise
disjoint points z; € Q := [0,1]", n € {1,2}, denoting by z; € IR for each i the
corresponding data assembled in the set Z. The problem of scattered data fitting
can be formulated as finding a function f : {2 — IR that approximates the cloud of
points (X, Z) in a least squares sense, that is, f minimizes the functional

J(f) =3 (i = flwi))” (A.2.1)

=1

Specifically, we want to construct an expansion of f of the form

fl@) =) dyir(z), zeQ (A.2.2)

Here the set {¢)}rea consists of tensor products of certain boundary adapted B—
Spline—(pre)wavelets, shortly called wavelets in the remainder of this paper, and A is
an appropriately determined lacunary set of indices which results from an adaptive
coarse—to—fine procedure which will further be explained below.

The indices A € A will typically be of the form A = (j,k,e), where j =: ||
denotes the level of resolution or refinement scale, k is a spatial location, and e €
{0, 1}? distinguishes further types of wavelets in the bivariate case which are induced
by tensor products, see e.g. [46]. The infinite set of all possible indices will be denoted
by I. In view of the finite domain, there is a coarsest level jg, so that f(z) in (A.2.2)
can be split into a scaling function term an a wavelet term:

flz) = Y daa(e) + > daa(). (A.2.3)

AEA;j=jo;e=(0,0) AEA;5>jo,e#(0,0)

The basis elements with multiindex e = (0,0) occur only on level j, and are called
“scaling functions”. In our implementation, they are tensor product of the B-splines
constructed on the knot succession

m+1 times m+1 times
27000,...,0 ,1,...,2%0—1,2% . 200) (A.2.4)

Here, m stays for the smoothness order of the constructed wavelet basis.

The basis functions of the second term, which add details of higher frequencies,
are constructed as linear combinations of B-Splines.

Specifically, we work here with the wavelets {1y : A € I'} described in [136]
which have the following properties. Each 1) is the tensor product of a certain linear
combination of linear B—splines. This is very advantageous computationally since
one can work with piecewise polynomials. In particular, the wavelets are compactly
supported and satisfy for each A € I the relation diam (supp) ~ 271 where
a ~ b means that a can be estimated from above and below by a constant multiple
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of b independent of all parameters on which a or b may depend. The collection
{» : X\ € I} constitutes a Riesz basis for L(2) and, moreover, one has norm
equivalences for functions in Sobolev spaces H* = H*()) (or even more general in
Besov spaces [58]) in the range a € [0,3/2) of the form

I Y. dtalie@ ~ D2 djke

)‘:(j7k7e)eﬂ Jj=jo k,e

2, (A.2.5)

The property of characterizing such smoothness spaces together with their compact
support suggests wavelets as a powerful analysis tool for many purposes, see e.g.
[46]. In addition, the wavelets we employ here are semi-orthogonal with respect to
Ly(Q), i.e., for [\ # |u| we always have [, ()Y, (x) dz = 0.

Returning to the least squares fitting problem (A.2.1), the adaptivity to the data
is performed in the construction of the index set A C I. In our implementation,
we start with the coarse level jo = 1 and take here the set Aj, of indices of all
scaling functions and wavelets on this level. An initial fitting function f’(x) :=
Y e Ay dﬂo ¥(z) is constructed on this set by minimizing J(f7) or, equivalently,
solving the normal equations

AR, An, d° = AR 2, (A.2.6)
Here the observation matriz AAjo has entries
(AAjO)i)\ = Qﬂ)\(l’i), 1=1,...,N, A\ € Ajm (A27)

and z and d’° are vectors comprising the right hand side data {#zi}iz1,...v and the
expansion coefficients {d{\o} xeh;,- Note that the superindex jo identifies the maximal
resolution of the whole configuration, not the scale of individual wavelets, which is
contained inside of the multi-index \.

In view of the norm equivalence (A.2.5) for & = 0 and the locality of the ),
the absolute value of a coefficient dio is a measure of the spatial variability of 7% on
supp ¥: a large value of dio is understood to be an indicator that further resolution
in this area of the domain might be required. Similarly, in order to keep control over
irrelevant coefficients, if dio is below a certain threshold, this coefficient is discarded
from the approximation and the index set is modified accordingly.

This motivates to construct a refined index set Aj ;1 by including those chil-
dren of the wavelets indexed by Aj, whose coefficients are above some prescribed
thresholding value and in whose support there are more than a fixed number of
data points. Note that this strategy generates an approximation on a tree as index
structure.

The procedure is repeated until at some dyadic highest resolution level J all
the computed coefficients are smaller than the thresholding value, or none of the
children whose supports shrinks with each refinement step contains enough points
on their support. If one of these condition is fulfilled, the algorithm stops growing
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the tree. Note that as the data set is finite, the algorithm finishes in finitely many
steps, and the level J is solely determined by the data.

In the following, we will extend this strategy to include also a regularizing term
in the least squares functional (A.2.1) to enforce a smooth approximation.

Multiscale data fitting which may or may not include a smoothing term has been
discussed also in the following references. On structured grids, in [76] a coarse-to—
fine strategy has been presented with hierarchical splines which is suited for gridded,
parameterized data. In [111] scattered functional data is approximated by multilevel
B-Splines.

A.3 Program features
Basically, the program offers the possibility of creating in the Matlab workspace a
observation matrix with relation to a set of wavelets dynamically adapted to a data

distribution, jointly with an ease-to-use indexing system, so that the user can easily
integrate these objects in his own computations.

A.3.1 Call of the Program

The way between a unstructured set of points and its representation as a vector of
wavelet coefficients is done in four steps:

1. Creation of an appropriately formated data file.
2. Set up of parameters.

3. Creation and use of an adaptive tree structure.

Creation of a file.

Row (x,y, z) data has to be stored in an ASCII file with the right format. This
format needs the following elements:

1. An arbitrary number of lines with comments.
2. A line with at least six stars to delimit the comment area
3. The number of points to be read

4. Three columns with the z, y and z coordinates of the data.
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Parameter Selection.

The type of wavelet is fixed by the selection of the working directory. Currently five
options are possible.

1.
2.

d.
6.

Linear Wavelets with isotropic refinement.

Linear Wavelets with anisotropic refinement.

. Linear Hierarchical Basis with isotropic refinement.

Linear Hierarchical Basis with anisotropic refinement.
Quadratic Wavelets with isotropic refinement.

Cubic Wavelets with isotropic refinement.

Once in the directory of interest, the rest of relevant parameters are fixed editing
the ASCII file driver.txt. This edition can be done by hand or with the appli-
cations update, updateite, updatethres. They are called from the Matlab shell
with the following syntax:

1.

Input data file.

update (’input_file’,<file_name>)

Maximal number of levels.

update (’max number levels’,<parameter_value>)

. Type of thresholding.

update (’threshold. d’,<parameter_value> ) jparameter_value; can have the
following values:

0 The thresholding is done retaining wavelets whose coefficient is above the
corresponding threshold.
1 The thresholding is done refining wavelets in whose support the [, error of
the data w.r.t. the created function is above the corresponding threshold.
Thresholding value at each level.

updatethres (’max number_levels’,<parameter_vector>) The i-th position
of the vector defined by the user sets the thresholding value for level the 7.
Default value is 0.

. Number of iterations at each level.

updateite (<parameter_vector>) The i-th position of the vector defined by
the user sets the number of iterations that the LSQR algorithm will perform
at level 7. Default value is 20.
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6. Tolerance. update(’tol’ ,<parameter_value > )

Sets the tolerance for the LSQR algorithm. Default value is 0.

7. q parameter.

update(’q’,<parameter_value > )

A.3.2 Creation and Use of the Tree Structure.

Once driver.txt contains the desired values, one just calls £it3 from the Matlab
shell.

This produces a Matlab structure called t (from tree) whose fields code the tree
structure A. The order of this set A = {\; ..., Axr}, where a general A is equivalent
to a 4-tuple (7, ks, ky, €) is lexicographical with order j, e, k;, ky.

e t.vj is a vector containing the j indices of the wavelets included in the con-
structed set A.

e t.vkx is a vector containing the k, indices of the wavelets included in the
constructed set A.

e t.vky is a vector containing the k, indices of the wavelets included in the
constructed set A.

e t.ve is a vector containing the e indices of the wavelets included in the con-
structed set A.

That means that the indices (j, k;, ky, €) corresponding to the i — th multiindex
A; in A are represented and available to the Matlab workspace by the array -
[t.vj(i),t.vkx(i),t.vky(i),t.ve(i)].

In addition to the tree structure, two additional fields are provided to allow the
user to make further computations from the Matlab workspace.

e t.ais a sparse matrix containing the computed observation matrix. Rows are
ordered following the order of the data points in their original file and columns
are ordered according to the indexation of the other fields of t .

t.sol is a vector containing the coefficient values of the solution as computed
by £it3 at the top level with the number of iterations and tolerance pre-
scribed by driver.txt.
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A.4 Implementation Details

The bulk of the program is the creation on line of a structure that characterizes and
administrates the lacunary structure of the connectivity of the elements in A. The
representation of the structure as the user gets it on the Matlab workspace once
the minimization has been operated, explained in the last section, differs notably
from the one used by the computing kernel, where the principal functionality of the
structure is no more user-friendliness but suitableness to efficiently reproduce the
evolution of A.

This part of the program is performed in C++. We describe now in pseudocode
the structures and procedures implemented in this area of the program, and how
they correspond to mathematical objects and operations.

A.4.1 Class Hierarchy

The tree class

A is represented with a structure tree. We will denote by tree(A) the representation
of a particular tree of wavelet-indices A. The tree structure comprises fundamen-
tally a list of pointers to level structures.

The level class
This structure quite naturally represents a dyadic level of wavelets included in A.
that is

tree.level[j] « Ay :={A: X e A |A\| =4} (A4.1)

Remark: we use the notation A; for the whole configuration of a tree when it has
grown up to level j’, and reserve the notation Aj;j for the members of A whose scale
location index is j’, as explicited in (A.4.1). A level contains a list of pointers to
the node structures that represent the wavelets indices included at the level A):

tree.level[jlmode[l] <= N, Ny € Ay, [ =1,...,#Ay. (A.4.2)

The order of the elements in A[; is lexicographical. Note that A can be lacunary
if the minimization algorithm causes but the node list in the corresponding level
is not.

The node class

Each element of the basis present in A is represented by an element of the class node
. Each instance of this class is provided with fields serving three different purposes:

1. Wavelet identification: Wavelet indices: j,kx,ky,e.
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2. Data storage: Dynamically allocated array containing primarily the index
of the points found to lye in the support of the wavelet.

3. Tree connectivity: Pointers to those children determined to belong to A.

A.4.2 Creation of the Tree
Horizontal Thresholding

Accommodating unstructured data into a structured set of basis functions consti-
tutes an important problem with regard to the implementation efficiency, as the set
of data points that lyes on each wavelet in the tree has to be determined simulta-
neously to the set of wavelets that actually belong to the tree.

In our implementation this simultaneity is simulated by a bootstrapping con-
struction, so that the two aspects of the problem are treated sequentially at each
level.

We distinguish between the first level and all the subsequent ones.

Creation of the first level

e Binning

In this first part, a loop on the data points creates the nodes of wavelets that
overlap the data and stores locally the indices of the corresponding data points.

e Closure of level

The binning creates correspondences between points and all the wavelets at
the basis level A, . Part of this information is useless as not all these wavelets
are to be included in A, as far as both vertical and horizontal thresholding may
exclude some (or all) of them.

After the whole data has been explored, the ¢ criterion is used to rule not
densely populated wavelets out of tree.

The flow of this program is done following the Algorithm 1.

Extending to further levels At subsequent steps, the binning step of the cre-
ation can be done locally, only on the points lying at each of the wavelets included
in the last current level of the tree, according to Algorithm 2.

For the implementation of this scheme one needs a definition of the index set
A, of the children of a given wavelet ¢,. A valid definition has to include the two
following properties:

Y € Ay = supp Yy C Py (A.4.3)

and
V@ZJ)\/ S Aj, E||/\ S A[j+1] so that ¢)\/ € A)\. (A44)
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In the section (A.4.3) we specify how this is done in the two different refinement
schemes we work with.

Algorithm 1 Creation of basic level
1: Create a level instance for Aj
{Global Binning}
:fori=1,...,N do
Determine A% := {\ : z; € suppty,, |A| = jo}
for VA € A,, do
if A € A then
create a node instance node(\) for ;.
end if
store 7 in the data area of node(\)
end for
end for
{Closure of the level}
11: for A € A do
12:  if #indices stored in node(\) > ¢ then

>—~
e

13: insert node(\) in tree.level|jo]
14:  end if
15: end for

Vertical thresholding

There are two types of vertical thresholding policies to be operated at each level,
chosen by the user as explained in section A.3.1. Both of them need the construction
of an approximation f7(z) = Doen, dapx(z) to the data points with the maximum
available resolution level.

Approximation on level j. The construction of this temporary reconstruction is
performed by an implementation of the LSQR method, whose tolerance and maximal
number of iterations are fed into the procedures as explained in the previous section.

The basis of this method are the matrix-vector multiplications involving the
observation matrix A and its transpose.

As tree (A) contains exactly the sparsity pattern of A, these operations are
constructed as procedures of the tree class and can be performed with no further
overhead.

Once the numerical values of the coefficients {d)}yca are available, the chosen
thresholding policy can be implemented. The simplest one is the thresholding ac-
cording to size of the wavelet coefficients, which is just as shrinking of the last level
of the tree .
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Algorithm 2 Level expansion

1: Create a level instance for Ajj 14 {Local Binning}
2: for V node(\) in level[j] do
3:  Create a node instance for each chil of ¥y

4:  for i € data area of node(\) do
5: for N € A, x; € suppyy do

6: store 7 in data area of node(\)
7: end for

8: end for

{Closure of the level}
9: if #indices stored in node(\') < ¢ then

10: insert node(\’) in tree.level[j+1]
11:  end if
12: end for

Algorithm 3 Vertical Thresholding of level j, first policy

: Given ¢;
: for Vnode()\) in level[j] do
if |d)| <¢; then
eliminate tree.level[j].node(\)
end if
end for

AN >

Algorithm 4 Level expansion with thresholding

1: Given ¢;
3: Create a level instance for Ajj4q) {Local Binning}
4: for V node()\) in level[j] do
5. Create a node instance for each children )/ of 1y
6:  Initialize error counter on each \ € A,
7. for ¢ € data area of node .()\) do
8 for YN € A, x; € suppyy do
9: store i in data area of node(\)
10: node (\).error+ = (f7(z;) — z;)?
11: end for
12:  end for
{Insertion of the children A" € A in level}
13:  if #indices stored in node(\') < ¢ then

14: if node()\).error > ¢; then

15: insert node()\’) in tree.level[j+1]
16: end if

17:  end if

18: end for
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In this case, node instances already inserted in a level are eliminated. This
involves the deallocation of the memory of the node and the restructuring of the
pointer list of the level .

The thresholding according to the [ approximation error is performed simultane-
ously with the horizontal thresholding, following the scheme presented in Algorithm
4. This policy avoids the elimination of node instances already inserted in the last
level of the tree .

A.4.3 Implementation of Refinement Schemes

There are two main refinement schemes, corresponding to the two standard ways to
create a bivariate basis with tensor operations on elements of a basis.
Anisotropic refinement

The supports of the elements of the bivariate basis with anisotropic refinement are
as represented in Figure A.4.1.
The refinement Schema for this basis is as follows:

e nodes with j, # j, refine in two children, see Figure A.4.3.
e nodes with j, = j, refine in three groups of children.

1. Four isotropic children, like in the left of Figure A.4.2.

2. Two anisotropic children, elongated in the vertical direction like in the
central plot of Figure A.4.2.

3. Two anisotropic children, elongated in the horizontal direction like in the
right plot of Figure A.4.2.

The arising structure is not a -lacunary- quad-tree.

Isotropic Refinement

The nodes representing each type of wavelet are refined independently. The arising
structure is a vector with three lacunary quad-trees, one for each type of wavelets.
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Figure A.4.1: Supports of the functions of an anisotropic linear hierarchical ba-
sis. The points are placed on the function’s pinnacle. The arrows represent the
refinement schema as the program operates it.

I[sotropic. anisotropic along x anisotropic along y

Figure A.4.2: Refinements of an isotropic node.
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Refinement for Refinement for
Jz > Jy nodes. Jy > Jz nodes.

Figure A.4.3: Refinements of different anisotropic nodes
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