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Abstract 
 

Congenital myasthenic syndromes (CMS) are inherited disorders due to presynaptic, synaptic, 

or postsynaptic defects of neuromuscular transmission. Some previously described kinships 

with typical signs of postsynaptic CMS showed a marked deficiency of nicotinic 

acetylcholine receptors (AChRs) as well as biochemical and morphological changes at the 

neuromuscular junctions (Shen et al., 2003; Engel et al., 1996a,b; Ohno et al., 1997; Ohno et 

al., 1998a; Abicht et al., 1999; Middleton et al., 1999; Croxen et al., 1999; Sieb et al., 

2000a,b; Shen et al., 2002). Recently, five truncating (ε911delT, ε1030delC, ε1101insT, 

ε1206ins19, and ε1293insG) and one missense mutation (εV448L) in the muscular AChR ε-

subunit gene (CHRNE) were identified in patients with CMS symptoms (Engel et al., 1996a; 

Ohno et al., 1998b; Sieb et al., 2000a,b). We introduced the six mutations into the human ε-

subunit and investigated their functional consequences by the means of patch-clamp technique 

after co-expression with human α, β and δ-subunits in HEK 293 cells.  

Whole-cell recordings revealed that with the exception of εV448L AChR all mutants 

exhibited altered biophysical properties, with acceleration of the macroscopic current decay 

and enhanced degree of desensitization, similar to –ε receptor. Furthermore, the receptors 

carrying the truncating mutations showed a significantly reduced current density. Mutant 

εV448L exhibited biophysical properties similar to those of wt receptor.  

Single-channel recordings revealed that mutants ε911delT and ε1101insT opened with brief 

and isolated events, similarly to –ε receptor. In contrast, mutant ε1030delC switched between 

two distinct gating modes, one resembling the gating pattern of wt AChR, with bursts of 

single-channel openings and a second one with very low probability of opening, as observed 

with –ε receptor. Mutant εV448L exhibited gating kinetics that were similar to wt receptor.  

From whole-cell- and single-channel studies, we conclude that the missense mutation εV448L 

is very unlikely to alter the receptor function significantly. Only mutation ε911delT, located at 

the end of the third transmembrane domain, completely prevented formation of functional 

receptors at the neuromuscular junction. All the other mutations result in functional channels, 

however, with altered biophysical properties and reduced current density. Furthermore, our 

data suggest that the low open probability observed with the receptors carrying the ε-

truncating mutations is most probably the main factor that results in the drastic reduction of 

their current density. The changes in receptor function associated with the truncating 

mutations are very likely to result in the defects in neuromuscular transmission observed in 

postsynaptic CMS.  
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1 Introduction 
 

1.1 Neurological diseases. Congenital myasthenic syndromes. General 

remarks 
 

Congenital mysthenic syndromes (CMSs) are inherited disorders that cause muscle weakness 

(myasthenia) by affecting the connection between nerve cells and muscle cells, called the 

neuromuscular junction (NMJ). The origins and symptoms of CMS sometimes resemble those 

of two other NMJ disorders, myasthenia gravis (MG) and Lambert-Eaton myasthenic 

syndrome (LEM). While these disorders occur when the immune system attacks the NMJ, 

CMS is caused by defects in genes that are essential at the NMJ, at presynaptic, synaptic, or 

postsynaptic level. For example, mutations in the ε-acetylcholine receptor (ε-AChR) subunit 

gene cause congenital myasthenic syndromes (CMS) with postsynaptic neural transmission 

defects. The myasthenic symptoms vary with the type of CMS and the specific genetic defect, 

but in general, CMS has its onset after birth or during early childhood, and involves ocular, 

facial, bulbar, and limb muscles. Some CMSs are sporadic or appear later in life (Croxen et 

al., 2002). Clinically, the most typical symptoms are: generalized weakness (unusual fatigue 

that worsen with activity), weakness in the muscles of the eyes and face, inducing partial 

paralysis of eye movements (ophthalmoparesis), facial diplegia, droopy eyelids (ptosis), and 

an open-mouthed expression. There also can be weakness in the mouth and throat, causing in 

neonates feeble cry and feeding difficulties due to poor sucking and swallowing (dysphagia). 

In some children, there can also be weakness in the respiratory muscles that may lead to 

sudden respiratory insufficiency often precipitated by infections, fever, excitement or 

vomiting. In contrast to autoimmune myasthenia gravis, tests for AChR antibodies are 

negative. Most patients with postsynaptic transmission defects respond well to treatment with 

acetylcholinesterase (ACHE) inhibitors (Engel, 1994; Engel et al., 2003a,b,c; Middleton, 

1996). The clinical phenotypes of CMS are often similar; therefore, precise diagnosis requires 

correlation of clinical (serologic tests, electromyographic – EMG – stimulation studies), in 

vitro electrophysiological (microelectrode studies, patch-clamp recordings), morphological 

(immunocytochemical localizations of ACHE, AChR at the endplate, α-bungarotoxin binding 

studies), and, whenever possible, molecular genetic studies (mutation analysis, expression 

studies). The corroboration of all these studies has made it possible to identifying defects in 

the endplate-associated proteins (Beeson et al., 1998; Engel, 1994; Engel, 1999a).  
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To date, genetically identified defects include mutations in a gene encoding the choline 

acetyltransferase (CHAT) (Ohno et al., 2001), which were classified as ‘presynaptic CMS’ 

(see also Fig. 1). This type of CMS accounts for 7 % of all CMS cases, and is due to 

decreased synthesis or release of ACh at the NMJ. Secondly, there are defects in the ColQ 

gene that encodes for the collagenic tail subunit of acetylcholinesterase (ACHE) (Donger et 

al., 1998; Ohno et al., 1998a), the enzyme that breaks down ACh molecules in the synaptic 

space. This form of CMS was termed as ‘synaptic CMS’, and represents approximately 14 % 

of the cases. Finally, but not the least, there are also mutations at the postsynaptic level in the 

genes encoding the acetylcholine receptor (AChR) subunits (Engel et al., 1999; Kraner et al., 

2002; Sieb et al., 2000a,b), as well as in a gene encoding RAPSYN (Receptor-associated 

Protein at the Synapse; Ohno et al., 2002), the protein responsible for clustering of AChRs at 

the postsynaptic membrane. This so-called ‘postsynaptic CMS’ accounts for about 79 % of all 

CMS cases, and is caused mainly by mutations in the AChR (Engel et al., 2003b).  

 

Na+

K+

ACh release

ACHE

CHAT

 
(Modified from Bear et al., 2001) 

 

Fig. 1 The neuromuscular endplate and the three different levels of occurrence of defects 
underlying CMS: presynaptic defects (in the ACh synthesis by CHAT or ACh release), 
synaptic defects (in the ACh cleavage by ACHE), and postsynaptic defects (in the AChR or 
RAPSYN).  
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The majority of mutations underlying postsynaptic CMS have been reported for the gene 

encoding the ε-subunit of the AChR (ε-AChR). Some missense mutations of the AChR ε gene 

lead to kinetic abnormalities of the channel, e.g. the so-called slow-channel congenital 

myasthenic syndrome (SCCMS). SCCMSs are inherited in autosomal-dominant traits. 

However, most ε-AChR mutations reported to date are frameshifting, missense, nonsense, 

splice site or promoter mutations that result in a deficiency of functional AChR at the 

postsynaptic membrane. Severe deficiency of the adult AChR at the neuromuscular junction 

as a result of decreased or absent protein expression leads to the clinical phenotype of CMS 

and is usually inherited in autosomal-recessive traits (Croxen et al., 2001; Engel et al., 1999; 

Vincent et al., 2000). Genotype-phenotype correlations carried out in CMS patients suggested 

some peculiar clinical and electrophysiological findings as the diagnostic hints at certain 

forms of CMS (Engel et al., 2003a,b,c; Middleton, 1996). For example, a selective weakness 

of cervical and wrist extensor muscles has been reported in patients with SCCMS (Engel et 

al., 2003b). Furthermore, a frequent mutation of the ε-subunit of AChR found in South-

Eastern European Gypsy populations (ε1267delG) usually results in ophthalmoplegia and a 

relatively mild phenotype (Abicht et al., 1999; Croxen et al., 1999). However, many CMS 

patients carry “private” mutations in one of the above-mentioned candidate genes, detected in 

few or single kinships, only. The clinical phenotype that they produce may vary largely. 

 

1.2 Ligand-gated ion channels of fast chemical synapses 
 

The ligand-gated ion channels are channels specialized for mediating fast chemical synaptic 

transmission. These channels gate ion movements and generate electrical signals in response 

to a specific chemical neurotransmitter, such as acethylcholine, glutamate, glycine, or γ-

aminobutyric acid.  

The superfamily of ligand-gated ion channels is also known as the class of Cys-loop receptors 

because all family subunits contain in their amino-terminal extracellular halves a pair of 

disulphide-bonded cysteines, which are separated by 13 residues (Kao and Karlin, 1986; 

Karlin and Akabas, 1995; Ortells and Lunt, 1995; Tsunoyama and Gojobori, 1998). The 

superfamily includes muscle-type and neuronal-type nicotinic ACh receptors, 5-

hydroxytryptamine type 3 (5-HT3) receptors, γ-aminobutyric acid type A (GABAA) and 

GABAC receptors, glycine receptors, and invertebrate glutamate (Cully et al., 1994) and 

histidine (Zheng et al., 2002) receptors.  
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1.2.1 Nicotinic acetylcholine receptors (AChRs) 

 

Nicotinic acetylcholine receptors (AChRs) are the first and the best characterized ligand-gated 

ion channels and have served as an archetype for studying other ligand-gated ion channels. 

Binding of the small-molecule neurotransmitter acetylcholine to two sites on the extracellular 

surface of the AChR protein triggers a concerted conformational change in the AChR. This 

causes a cation-specific channel through the center of the protein to flicker open repeatedly 

for a millisecond or two at a time. If exposure to acetylcholine or other nicotinic agonists 

persists for seconds or minutes, AChRs assume a desensitized conformation characterized by 

a closed ion channel and high affinity for agonists. The passive flow through activated AChRs 

of Na+ ions into the cell and K+ ions out results in a net excitatory depolarization of the cell. 

This can trigger an action potential (AP) that can be conducted along a nerve cell, trigger 

contraction in a muscle cell or facilitate transmitter release from a nerve ending. Some types 

of AChRs are especially permeable to Ca2+ ions. Entry of Ca2+ ions to the cell may, for 

example, further facilitate transmitter release at nerve endings, activate inhibitory or 

excitatory Ca2+-sensitive ion channels in the postsynaptic membrane, or trigger signaling 

cascades that can regulate gene transcription in the cell nucleus. The ACh receptors are 

impermeable to all anions (Takeuchi and Takeuchi, 1960; Sine et al., 1990). 

AChRs of the type found in skeletal muscle are the best characterized. These receptors form a 

critical link in signaling between spinal motor neurons and skeletal muscles to produce all 

voluntary movements. Inhibition of their function by toxins, such as curare or cobra venom 

toxins, by autoantibodies in the disease myasthenia gravis (MG), or by mutations in 

congenital myasthenic syndromes causes weakness or death. The homogeneity and 

accessibility of AChRs at neuromuscular junctions have permitted electrophysiological, 

pharmacological, and developmental studies that are difficult or impossible in the central 

nervous system. The relatively huge amounts of AChRs at the modified neuromuscular 

junctions that form the electric organs by which electric eels and rays produce their electrical 

discharges have provided a unique source of AChRs for structural studies.  

AChRs of types found in neurons are widely distributed in the nervous system. However, in 

contrast to the peripheral skeletal neuromuscular system and autonomic ganglia where AChRs 

are the dominant receptors, in the central nervous system of mammals, AChRs play a minor 

role and receptors for glutamate function represent the major excitatory receptors. Genetic 

deficits in AChRs have been found to cause rare forms of epilepsy. Autoantibodies to AChRs 

have been implicated in causing rare dysautonomias. Loss of AChRs is associated with 
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Alzheimer's disease and Parkinson disease. AChR dysregulation is associated with 

schizophrenia, and nicotinic investigational drugs have been found to have beneficial effects 

on Tourette syndrome and chronic pain, among other possible benefits including cognitive 

enhancement and weight loss (Lindstrom, 2001).  

 

1.2.1.1 Subtypes of nicotinic muscle AChR 

 

The muscle-type ACh receptor is a glycoprotein complex (~ 290 kDa), which consists of five 

subunits arranged around a central membrane-spanning pore. In electrolytes (Reynolds and 

Karlin, 1978) and fetal muscle, the receptor composition is (α1)2 β1 γ δ, whereas in adult 

muscle (Mishina et al., 1986), the γ-subunit is replaced by an ε-subunit. The subunits are 

arranged in the circular order of α ε α β δ (Fig. 2), like barrel staves around a central channel 

(Karlin et al., 1983; Stroud et al., 1990; Unwin, 1993; Miyazawa et al., 1999).  

 

 

(Modified from Lindstrom, 2001) 

 

Fig. 2 The muscle (embryonic and adult) subtypes of nicotinic AChR.  

 

1.2.1.2 Size and shape of the receptor molecule 

 

Electron-crystallographic studies of Torpedo californica electric organ AChRs have achieved 

resolutions of 9 Å (Unwin, 1993), and 4.6 Å (Miyazawa et al., 1999). The AChR is about 80 

Å in diameter and 120 Å long with 65 Å extending on the extracellular surface, 40 Å crossing 

the lipid bilayer, and 15 Å extending beneath the bilayer into the cytoplasm. The extracellular 

vestibule of the channel is about 25 Å in diameter, surrounded by walls about 25 Å thick. The 

gate of the channel is thought to be at its cytoplasmic end. The acetylcholine-binding sites, 
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which control the opening of the channel, are thought to be halfway up the sides of the 

extracellular domain, about 35 Å from the bilayer (see Fig. 3 C).  

 

1.2.1.3 The AChR topology  

 

All AChR subunits share a high degree of homology, and have the same topology (Karlin and 

Akabas, 1995; Lindstrom, 2000; Corringer et al., 2000). The transmembrane topology of the 

AChR has been inferred from hydrophobicity plot analysis and secondary structure prediction 

of the primary sequence (Schofield et al., 1987). So-called hydropathy plots indicate the 

grouping of five hydrophobic stretches in the sequences that are identified as spanning the 

membrane, usually in the form of α-helices. The first peak is a leading signal sequence (LSS) 

that is cleaved off during synthesis. During protein synthesis from this N-terminal end, the 

initial signal sequence guides the nascent peptide chain across the endoplasmic reticulum 

(ER) to the luminal side so that the mature N-terminus of these subunits ends up on the 

extracellular side of the cell membrane (Anderson et al., 1983). The orientation of the receptor 

within the postsynaptic membrane has been modeled as having the large N-terminal domain 

outside the cell facing the synaptic cleft. The N-terminal extracellular domain consists of 

about 220 amino acids and contains a disulfide bond between Cysteines C192 and C193. 

These residues form part of the extracelullar binding sites for agonist and competitive 

antagonists including α-bungarotoxin. In most AChR subunits, there is an N-glycosylation 

site at asparagine 141, and some subunits contain additional glycosylation sites in the large 

extracellular domain. All subunits contain at least one such site. Three transmembrane 

domains (M1 – M3) extend between the large extracellular domain and the large cytoplasmic 

domain (Fig. 3 A). These are closely spaced, highly conserved, and largely α-helical. A fourth 

transmembrane domain (M4), also of about 20 amino acids, is not especially conserved in 

sequence. It extends between the large cytoplasmic domain and a short extracellular C-

terminal tail of 10 – 20 amino acids (Fig. 3 A). The large cytoplasmic domain of 110 – 127 

amino acids is the most variable region in sequence between subunits. The N-terminal third of 

M1 and one side of M2 comprise each subunit’s contribution to the lining of the channel. Each 

of the five subunits of the receptor contributes its M2 segment to the channel thus forming a 5-

fold symmetry. In cryo images, this is visible as five rod-like densities lining the pore. The 

rods slope towards the axis of the pore and then are kinked in a knee halfway through the 

membrane (Fig. 3 C). Thus, the actual lumen of the channel through the lipid bilayer is quite 

narrow but sufficiently wide to permit the rapid passage of hydrated cations. Almost 50 Å 
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away, the rode-like knees at the membrane level turn so they no longer point so directly into 

the pore axis (Unwin, 1993, 1995). The inner vestibule of the channel does not open up as an 

axial hole directly to the cytoplasm. Instead, it ends in a colonnade of five rods that converge 

and are covered by a cupola (Miyazawa et al., 1999). This results in a lattice containing acidic 

amino acids that contribute to the cation selectivity of the AChR. The rods of the colonnade 

are thought to derive from the major cytoplasmic loop (M3-4 loop) of the receptor subunits, 

whereas the distal part of the cupola seems to represent the receptor-aggregating protein 

RAPSYN attaching to the receptor complex (Fig. 3 C). RAPSYN is a 43000 Da peripheral 

membrane protein that links AChRs to the cytoskeleton and contributes to the normal tight 

packing of muscle AChRs at the tips of folds in the postsynaptic membrane which are 

adjacent to sites of acetylcholine release from the presynaptic terminal.  

Opening of the channel occurs upon binding of ACh to both α-subunits at sites that are at, or 

close to, the interfaces made with neighboring ε- (or γ- in fetal muscle) and δ-subunits (αε (γ) 

and αδ; see Fig. 3 B; Karlin, 1993; Sine et al., 1995; Xie and Cohen, 2001).  

 

(ε)

A

B

C

 
(Modified from Karlin, 2002) 

 

Fig. 3 The structure of the nicotinic acetylcholine receptor (AChR); A: The threading pattern 
of receptor subunits through the membrane; each subunit is composed by a large extracellular 
N-terminus, four membrane-spanning segments, a long cytoplasmic loop, and a short 
extracellular C-terminus; B: Schematic representation of the pentameric structure, showing the 
arrangement of the subunits in the muscle-type receptor, the location of the two acetylcholine 
(ACh)-binding sites (between α- and ε-subunits (or γ-subunit in the embryonic muscle), and α- 
and δ-subunits), and the axial cation-conducting channel; C: Cross-section through the 4.6-Å 
structure of the receptor determined by electron microscopy of tubular crystals of Torpedo 
membrane embedded in ice.  
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1.2.1.4 Mechanisms of ACh receptor activation 

 

The structural transition from the closed to the open-channel state of the receptor has been 

analyzed at 9 Å resolution (Unwin, 1995). Since the ACh-binding sites are distant from the 

pore itself, ACh binding must trigger channel-opening via propagated conformational 

changes. Indeed, Unwin has shown that binding of ACh initiates two interconnected events in 

the extracellular domain. One is a local disturbance, involving all five subunits, in the region 

of the binding sites, and the other an extended conformational change, involving 

predominantly the two α-subunits, which communicates to the transmembrane portion. 

However, this describes the receptor in either of the two states, in the closed and in the open 

states, but does not take into account the possibility that binding to one site might affect 

binding to the other before the channel opens (Hatton et al., 2003).  

A simple mechanistic picture is as follows: first, ACh triggers a localized disturbance in the 

region of the binding sites. Second, the effect of this disturbance is communicated by axial 

rotations, involving mainly the α-subunits, to the M2 helices in the membrane. Third, the M2 

helices transmit the rotations to the gate-forming side-chains, drawing them away from the 

central axis; the mode of association near the middle of the membrane is thereby disfavored, 

and the helices switch to the alternative side-to-side mode of association, creating an open 

pore. The first attempts to investigate the mechanism of action of acetylcholine (ACh) were 

made by Colquhoun and Sakmann (1981; 1985). Single-channel measurements showed that 

the channel could open, though much less efficiently, with only one ACh molecule bound. 

This cannot be detected from whole-cell measurements.  

Two reaction schemes that have been widely used to represent the activation of the nicotinic 

receptor are shown in Figure 4. The first proposed activation mechanism of AChR (Fig. 4 A) 

assumes that the two ACh binding sites are equivalent before ACh binds, and when two 

agonist molecules are bound they have equal rates of dissociation. The closed channel R can 

bind ACh molecules in two steps of relatively low affinity but with high forward rate 

constants almost at the diffusion limit. Agonist binding profoundly increases the probability 

that the channel will become open (R*). However, there may be cooperativity in the process 

of binding to the shut receptor, and binding of the second ACh molecule may not have the 

same rate constants as binding of the first. The doubly occupied closed receptor (A2R) opens 

with a rate of β2, and the doubly occupied open receptor (A2R*) closes with a rate of α2, while 

the singly occupied closed receptor (AR) opens with a rate of β1, and AR* closes with a rate 

of α1. The closed  open reaction ("gating") of the diliganded AChR is much more favorable 
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than that of the unliganded receptor (Jackson, 1986, 1988; Grosman and Auerbach, 2000). 

The affinity of the AChR for ACh has to be ~ 1500 – 5000-fold higher in the open than in the 

closed conformation.  

 

A B

 
(B from Hatton et al., 2003) 

 

Fig. 4 Mechanisms of AChR activation when the ACh binding sites are equivalent (A) or 
different (B). R represents the inactive (shut) receptor, R* the active (open) receptor, and A 
the agonist. The rate constants for the individual reaction steps are denoted k (for association 
and dissociation), or α (for shutting), and β (for opening). Agonist (A) binds to the two sites on 
the closed receptor, R, with association and dissociation rates of k+1, k+2, k–1 and k–2.  

 

When ACh is bound to both α-domains, a central ion channel opens, yielding a current of ~ 2 

– 5 pA (Dionne and Leibowitz, 1982; Colquhoun et al., 1990). However, the protein can then 

exit the A2R state by either two routes: it can lose the agonist molecule to form AR with rate 

constant k-2, or it can reopen with rate constant β2. If k-2 is much greater than β2, then usually 

the agonist will dissociate before the channel reopens. However, if β2 is similar or larger than 

k-2, the channel may reopen several times before losing the agonist, giving rise to a longer 

composite event, a burst with several gaps (Sakmann et al., 1980; Hamill and Sakmann, 

1981). For skeletal muscle AChRs, the rate constants k-2 and β2 are about equal: 30 – 60 / ms. 

The open state also can give rise to the desensitized conformation (A2D). Thus, if agonist is 

steadily present, most receptors will eventually end up doubly liganded and desensitized. 

Rates into and out of the desensitized state (A2D) are assigned as βD and αD, respectively. 

Desensitization of AChR channels is analogous to inactivation of Na+ channels. In the 

desensitized state, the agonist is still bound to the channel, but the channel is closed in a 

conformation distinct from that of the (unliganded) shut-channel form. The receptor is 

unresponsive to added ACh and recovers its sensitivity only some milliseconds or even 

minutes after the ACh is removed. Because agonist binding favors desensitization, 
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thermodynamics requires that desensitized states will bind agonists more tightly than closed 

states. The affinity increases by more than 1000-fold here. Desensitization is a complex and 

ill-understood phenomenon, because it develops on many different time scales, from 

milliseconds to minutes (Katz and Thesleff, 1957; Cachelin and Colquhoun, 1989; Butler and 

McNamee, 1993; Franke, et al 1993), with fast- and slow-desensitized states, and therefore it 

is hard to describe an adequate reaction mechanism for it. Recently, it has been shown by 

single-channel methods (Elenes and Auerbach, 2002) that there are multiple desensitized 

states, but there is nothing yet known about the structural differences between these states.  

The second proposed activation mechanism of AChR (Fig. 4 B), which in most cases is more 

realistic, assumes that the two binding sites for ACh are different from the start; so, two 

distinguishable open mono-liganded states exist: ARa-Rb* and Ra-ARb*. This mechanism 

allows for cooperativity of the binding reaction, because the rates for binding to site a may 

depend on whether or not site b is occupied (and vice versa). Different studies (Jackson, 1986; 

Grosman and Auerbach, 2000) showed that the unliganded, singly-liganded, and doubly-

liganded states all can indeed open.  

When looking at the structure-function relationships of proteins, the difference between the 

two ACh binding sites is of great interest. However, from the physiological point of view it is 

not very important. It is clear that the two ACh binding sites differ, and this has been found to 

be the case for most subtypes of the receptor. Binding of a single ACh molecule is sufficient 

to produce very brief openings of the channel, though with very low efficacy (Colquhoun and 

Sakmann, 1981). In the adult human receptor, the most obvious sign that the sites differ lies in 

the fact that two classes of singly-liganded openings are detectable, one much briefer than the 

other (Hatton et al., 2003). However, singly-liganded openings contribute next to nothing to 

the endplate current that is responsible for neuromuscular transmission. From the 

physiological point of view, the rates that matter most are the open and closed rate constants 

for the doubly-liganded channel (α2 and β2) and the total rate at which agonist dissociates from 

the doubly-liganded receptor (k-2a + k-2b; see Fig. 4 B). After exposure to the transient high 

concentration of ACh released from a nerve ending, most receptor molecules will be in the 

doubly-liganded states, and these three values determine the length of each individual 

opening, the number of reopenings and the lengths of the short shut periods that separate each 

opening. In conclusion, they are sufficient to determine the characteristics of the predominant 

doubly-liganded bursts of openings (channel ‘activations’) that are responsible for 

neuromuscular transmission  (Colquhoun et al., 2003).  
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Because the different conformations of the muscle AChR interconvert and the ACh-

association / dissociation rate constants are exceedingly fast, there is no prospect of being able 

to measure directly (that is, with binding assays) the kinetics of the agonist-binding steps in a 

conformation-specific manner. A reasonable alternative is to postulate an appropriate kinetic 

model and to estimate the agonist-association / dissociation rate constants from single-channel 

recordings. Both desensitization and ACh dissociation from the open state significantly 

contribute to the time course of the endplate current decay in patients with congenital 

myasthenic syndrome (Grosman and Auerbach, 2001).  

 

1.3 The neuromuscular junction (NMJ) 
 

1.3.1 From nerve action potential to muscle action potential 

 

To understand the mechanism underlying congenital myasthenic syndrome (CMS), it is of 

great importance to know how the neuromuscular junction (NMJ) functions in healthy 

individuals. Thus, an action potential, having propagated along the axon of the α motor nerve, 

from the ventral horn of the spinal chord to the muscle, invades the pre-junction membrane or 

endplate. The depolarization (voltage changing from negative towards zero and even 

becoming positive to zero) caused by the invading action potential is detected by voltage-

gated Ca2+ channels which open, admitting Ca2+ ions, raising the concentration of Ca2+ within 

the endplate and causing release (Ca2+-dependent mechanism) of the neurotransmitter vesicles 

(Aidley, 1989; Hille, 2001). The neurotransmitter diffuses from the pre-junction release site to 

the post-junctional membrane, a distance of some 20 nm. After exocytotic release from the 

nerve terminal, some acetylcholine (ACh) molecules are hydrolyzed by acethylcholinesterase 

(ACHE) before they bind to the AChR and the remaining ACh molecules are hydrolyzed by 

ACHE after dissociation from AChR. Choline is transported into the nerve terminal by a high-

affinity choline transporter (HACHT). ACh is resynthesized from choline and acetyl-

coenzyme A (AcCoA) by choline acetyltransferase (CHAT) and is then transported into the 

synaptic vesicle by the vesicular ACh transporter (VACHT) in exchange for protons delivered 

to the synaptic vesicle by a proton pump (Fig. 5).  
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A

B

 
(Modified from Engel et al., 2003b)  

 

Fig. 5 The neuromuscular junction (NMJ); A: Schematic diagram of an endplate region 
showing the general locations of the acetylcholinesterase (ACHE), the acetylcholine receptor 
(AChR) (green), and the voltage-gated Na+ channels of the Nav 1.4 type (red); B: After 
exocytotic release from the nerve terminal, some acetylcholine (ACh) molecules are 
hydrolyzed by ACHE before they bind to the AChR and the remaining ACh molecules are 
hydrolyzed by ACHE after dissociation from AChR. Choline is transported into the nerve 
terminal by a high-affinity choline transporter (HACHT). ACh is resynthesized from choline 
and acetyl-coenzyme A (AcCoA) by choline acetyltransferase (CHAT) and is then transported 
into the synaptic vesicle by the vesicular ACh transporter (VACHT) in exchange for protons 
delivered to the synaptic vesicle by a proton pump.  

 

ACh binds to receptor (2 molecules of ACh per AChR), causing it to open. The channels can 

pass both K+ and Na+ ions, but in reality, the ions of only one species move in any quantity. 

One AChR opens and allows 1.5 x 104 Na+ ions / ms of open time. The channel opens on 

average 1 ms, and therefore one open channel causes a depolarization of about 0.3 µV. The 

amount of neurotransmitter contained in one vesicle causes a postsynaptic potential of ~ 1 

mV. Therefore, one vesicle contains enough neurotransmitter to open ~ 3000 receptors, and 

because two molecules of ACh are needed to open one receptor, there must be a minimum of 

~ 6000 molecules of ACh per vesicle. If the average depolarization generated at a NMJ of a 

muscle fiber is 40 mV then there must be at least 40 vesicles released and in the order of 

133000 receptors activated at the NMJ (Aidley, 1989; Hille, 2001). The movement of ions 

tends to push the membrane potential of the post-junctional membrane towards 0 mV, and this 
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triggers an endplate potential (EPP) that activates the voltage-gated Na+ channels of the Nav 

1.4 type (Flucher and Daniels, 1989; Ruff, 1996), which are higher in density in the bottom of 

the synaptic folds. The interior of a resting muscle fiber has a resting potential of about -95 

mV. If the EPP reaches the threshold voltage (approximately -50 mV), Na+ ions flow in with 

a rush and an action potential is generated, which then propagates away from the NMJ to 

depolarize the entire muscle fiber. In the NMJ, the AChR density is highest at the tops of the 

synaptic folds, ~ 7500 – 10000 / µm2 = 1 AChR / 100 – 133 nm2. This gives a spacing of ~ 10 

– 12 nm between each AChR molecule. The AChR density drops off sharply as one reaches 

the bottoms of the folds. A high concentration of AChRs on the crests of the synaptic folds 

(Salpeter, 1987) and of Nav 1.4 in the depth of the folds (Flucher and Daniels, 1989; Ruff, 

1996) ensures that excitation is propagated beyond the endplate (Martin, 1994; Wood and 

Slater, 2001). The safety margin of neuromuscular transmission is a function of the difference 

between the depolarization that is caused by the EPP and the depolarization that is required to 

activate Nav 1.4 channels. All CMSs that have been identified so far have been traced to one 

or more factors that render the EPP subthreshold for activating Nav 1.4 channels (Engel et al., 

1999b). No visible change occurs in the muscle fiber during (and immediately following) the 

action potential. This period, called the latent period, lasts from 3 – 10 ms. Before the latent 

period is over, the enzyme acetylcholinesterase breaks down the ACh in the neuromuscular 

junction (at a speed of 25000 molecules per second), the voltage-gated Na+ channels close, 

and the field is cleared for the arrival of another nerve impulse. The resting potential of the 

fiber is restored by an outflow of K+ ions. The brief (1 – 2 ms) period needed to restore the 

resting potential is called the refractory period.  

In each CMS, the safety margin of neuromuscular transmission is impaired by one or more 

specific mechanisms. Thus, the factors that govern the safety margin can be grouped into the 

following main categories: factors that affect the number of acetylcholine (ACh) molecules 

per synaptic vesicle, factors that affect neurotransmitter release mechanisms, and factors that 

affect the efficacy of individual quanta (Wood and Slater, 2001; Katz, 1966). Therefore, a 

clear understanding of the mechanisms that operate in the CMS requires an analysis of the 

different ways in which these synaptic properties can be modified. They include variations in 

the number of AChRs per endplate, in the synaptic localization of AChR and 

acetylcholinesterase (ACHE), in the fine structure of the endplate, in the amplitude of 

miniature endplate potentials (MEPPs), in the number of quanta released by nerve impulse, in 

the number of readily releasable quanta, in the probability of release and in the kinetic 

properties of single AChRs. Combined electrophysiological and morphological tests can 
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probe the involvement of these different mechanisms in CMSs. If these tests point to a 

candidate molecule, then genetic analysis becomes feasible. If a mutation is discovered in the 

candidate gene, then expression studies with the recombinant mutant molecule can be used to 

confirm its involvement in pathology and to analyze the properties of the abnormal molecule 

(Engel, 1993a; Engel et al., 1993b). The candidate-gene approach has pointed to defects in 

choline acetyltransferase (CHAT), ACHE, AChR and the postsynaptic molecule RAPSYN as 

causes of CMS (Fig. 5). These defects lead to failure of neuromuscular transmission. In 

humans, the extent to which the EPP normally exceeds the threshold, the ‘safety factor’, is 

quite small and neuromuscular transmission is sensitive to pathological changes. By contrast, 

in mice the safety factor appears higher, and mouse models of neuromuscular diseases do not 

always demonstrate obvious weakness (Vincent et al., 1997; Bhattacharyya et al., 1997). 

However, in two studies by Gomez and co-workers (1997 and 2002), transgenic mice 

expressing different mutations that induce severe forms of SCCMS in humans also developed 

myasthenic symptoms highly reminiscent to those of the patients. Therefore, such transgenic 

animal models are actively contributing to our understanding of the complex genotype-

phenotype relationship in CMS.  

 

1.3.2 CMS caused by defects in AChR 

 

Our study focuses on mutations in the AChR channel, which are genetic defects that induce 

postsynaptic CMS. Such mutations have now been discovered in all AChR subunits and in 

different domains of the subunits (Engel et al., 2003a,b,c). The mutations fall into two groups: 

mutations that alter the kinetic properties of AChR and mutations that reduce its expression 

(low-expressor mutations). The kinetic mutations can be further divided into two types: slow-

channel mutations that increase the synaptic response to ACh, and fast-channel mutations that 

decrease it. The slow- and fast-channel mutations represent physiological opposites in both 

their phenotypic consequences and alterations of fundamental steps that underlie receptor 

activation.  

 

1.3.2.1 Slow-channel CMS 

 

It was recognized two decades ago by its distinct phenotypic features. Five patients showed 

dominant inheritance and selective weakness of cervical, scapular and finger extensor 

muscles, mild ophthalmoparesis and variable weakness of other muscles. Single-nerve 
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stimulation evoked a repetitive compound muscle action potential (CMAP), rather than the 

expected single CMAP, and the normally constant amplitude of the CMAP attenuated with 

repetitive nerve stimulation. Synaptic potentials decayed abnormally slowly, showing normal 

or reduced amplitudes, but the evoked ACh release was normal. The disease left an 

anatomical trace – termed endplate myopathy – which is associated with postsynaptic Ca2+ 

accumulation, as well as focal degeneration of the junctional folds with corresponding loss of 

AChRs, and degenerating membranous organelles and small vacuoles in junctional fiber 

regions (Engel and Biesecker, 1982; Engel et al., 2003b). The repetitive CMAP was attributed 

to the EPP outlasting the absolute refractory period of the muscle fiber, and the endplate 

myopathy was credited to excessive Ca2+ influx into the postsynaptic region during prolonged 

episodes of synaptic activation. The slow decay of the synaptic potentials was attributed to 

prolonged openings of the AChR channel (Anderson and Stevens, 1973). The presence of 

normal amounts and activity of the enzyme at the synapse excluded the alternative 

explanation that a defect in ACHE prolonged the lifetime of ACh in the synaptic space. 

However, formal proof of a kinetic defect in AChR came only in the mid of ‘90s, with the 

recording of markedly prolonged synaptic and single-channel currents from the endplate of 

other patients with slow-channel CMS (Ohno et al., 1995; Engel et al., 1996b). 

 

1.3.2.2 Fast-channel CMS 

 

The name 'fast-channel CMS' originates from the abnormally fast decay of the synaptic 

response, which is caused by abnormally brief channel-opening events. The disorder was first 

recognized in 1993 in a patient with moderately severe myasthenic symptoms from birth, 

which responded partially to cholinesterase inhibitors. Endplate studies showed a normal 

structure, no deficiency of ACHE or AChR, a normal neurotransmitter release by nerve 

impulse, but small miniature endplate potentials (MEPPs) (Uchitel et al., 1993a,b). Analysis 

of the ACh-induced current noise pointed to a normal conductance of the AChR channel but 

with abnormally short-lived openings. The diminished synaptic response, in face of normally 

abundant AChRs, indicated a decreased ACh content of the synaptic vesicles, ACHE 

overactivity or an abnormality in AChR. Morphometric analysis showed that synaptic vesicles 

were of normal size, pointing away from reduced vesicular ACh content (Jones and 

Kwanbunbumpen, 1970a,b), and ACHE overactivity seemed unlikely, as cholinesterase 

inhibitors did not fully restore the synaptic response. The findings therefore implied a kinetic 
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defect in AChR in which opening of the channel was impaired and its closing was enhanced 

(Uchitel et al., 1993a,b; Shen et al., 1999, 2000, 2001; Maselli et al., 2002; Sine et al., 2002).  

 

1.3.2.3 CMS caused by low-expressor mutations 

 

In this category, most of the CMS cases that have been identified so far are caused by 

homozygous or heterozygous low-expressor mutations in AChR subunit genes, and these 

mutations are concentrated in the ε-subunit of the receptor (for a detailed table with low-

expressor mutations in AChR subunits, please refer to Engel et al., 2003a). Patients harboring 

low-expressor or even homozygous null mutations in the ε-subunit might have mild 

symptoms. Conversely, patients with low-expressor mutations in non-ε-subunits are severely 

affected, and so far, no patients with null mutations in both alleles of a non-ε-subunit have 

been observed. A probable explanation is that persistent low-expression level of fetal AChR 

harboring γ-subunit can partially compensate for the absence of the ε-subunit (Milone et al., 

1998b; Engel et al., 1996a,b; Ohno et al., 1997). Null mutations in subunits other than ε-

subunit might be lethal, presumably owing to the lack of a substituting subunit. In patients 

with null mutations of both ε-alleles, all AChR channels recorded from the endplate have the 

reduced conductance and prolonged time course that are typical of γ-subunit-containing 

AChRs (Ohno et al., 1997), and immunostaining confirms the presence of the γ-subunit at the 

endplate (Engel et al., 1996a,b). Targeted deletion of the ε-subunit in mice showed that either 

the γ- or ε-subunit is essential for survival. Thus, the AChR ε -/- mice express the γ-subunit 

instead of the ε-subunit at birth (as in human fetus), but die two to three months later when the 

γ-subunit mRNA is no longer transcribed (Witzemann et al., 1996). Humans, however, 

continue to express low-levels of the γ-subunit at the endplate (Croxen et al., 2001), and so 

this subunit rescues the ε-null phenotype.  

Morphological studies of endplates with low-expressor mutations show an increased number 

of endplates distributed over an increased span of individual muscle fibers. The integrity of 

the junctional folds is preserved, but some endplate regions are simpler and smaller than 

normal. The distribution of AChRs on the junctional folds is patchy, and the density of the 

receptors is reduced. The immunocytochemical reaction for RAPSYN, the molecule that 

clusters the AChRs at the postsynaptic membrane, is decreased in proportion to the decreased 

expression of AChR. The quantal response at the endplate is reduced, but neurotransmitter 

release by nerve impulse is frequently higher than normal. Different types of recessive 
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mutations that cause severe endplate AChR deficiency have been identified in the gene 

encoding the ε-subunit of the receptor (Engel et al., 2003a; see Fig. 6).  
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Fig. 6 Sites of occurrence of different types of ε-mutations (frameshifting, missense, and 
splice-site) identified in patients with postsynaptic CMS. The ε-mutations assigned with stars 
are the object of the present study.  

 

Some mutations cause premature termination of the translational chain. These mutations are 

frameshifting (Shen et al., 2003; Engel et al., 1996a,b; Ohno et al., 1997; Ohno et al., 1998a; 

Abicht et al., 1999; Middleton et al., 1999; Croxen et al., 1999; Sieb et al., 2000a,b; Shen et 

al., 2002), occur at a splice site (Ohno et al., 1998a; Middleton et al., 1999) or produce a stop 

codon (Ohno et al., 1997). All these mutations can reduce the AChR cell surface expression 

by causing premature termination of the translational chain, and thus resulting in a truncated 

protein product. A second type of recessive mutations are point mutations in the Ets binding 

site, or N-box, of the promoter region of the ε-subunit gene (Abicht et al., 2002; Ohno et al., 

1999; Nichols et al., 1999). In addition to these mutations, there are also missense mutations 

in a signal-peptide region (Ohno et al., 1996; Middleton et al., 1999), and missense mutations 

that involve residues that are essential for the assembly of the pentameric receptor (Fig. 6).  
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1.4 The goal of the study 
 

Recently, several mutations within the ε-subunit of the human muscle AChR have been 

described that impair the normal function of the neuromuscular synaptic transmission. While 

there is considerable amount of information on morphological changes in the neuromuscular 

synapse associated with these mutations, little is known about the functional alterations of the 

mutations.  

The aim of this study was to investigate the molecular mechanism underlying postsynaptic 

CMS, in the presence of two frameshifting mutations, ε911delT and ε1030delC, and a 

missense mutation εV448L (Sieb et al., 2000a; see Fig. 6). Additionally, three related CMS-

linked mutations all located within the ε-cytoplasmic loop of AChR, namely the insertion 

mutations ε1101insT (Engel et al., 1996a), ε1206ins19 (Ohno et al., 1998b), and ε1293insG 

(Engel et al., 1996a; Sieb et al., 2000b; see Fig. 6) were also included in the study to identify 

the role of specific regions in the TM3-4 loop for the functionality of the receptor.  

The approach we took was to express recombinant wild-type and ε-mutant AChRs in HEK 

293 cells and characterize the functional properties of these receptors with 

electrophysiological techniques.  

We asked the following questions:  

Do the mutations influence the affinity of the receptor for its natural ligand? 

Do the mutations alter the kinetic properties of ACh-induced current responses, e.g. alter 

speed and degree of receptor activation and desensitization? 

Do the mutations impair the cell surface expression of the AChR channel? 

The mutation(s) that showed in whole-cell recordings functional changes were further 

investigated on the single-channel level. 

There we determined the size of the ion flux through the open channel (the single-channel 

conductance), the frequency of opening events (the open probability), and the open and close 

lifetimes of the AChR.  

The combined results from whole-cell- and single-channel recordings from these ε-mutants 

should provide insight into the mechanism underlying postsynaptic CMS.  
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2 Materials and Methods 
 

2.1 Cell culture 
 

Human Embryonic Kidney 293 cells (HEK 293), kindly provided by Prof. Dr. T. Schneider 

(Institute of Neurophysiology, Köln), were used as expression system for the present study. 

Cells were grown in Dulbecco's Modified Eagle Medium (DMEM; Invitrogen) supplemented 

with 10 % bovine calf serum (BCS), 100 µg/ml of streptomycin, and 100 U/ml of penicillin. 

For plating-out the HEK 293 cells, confluent cells were collected from 25 cm2 Petri dishes by 

pipetting up and down, and after a 3 min centrifugation at 1000 rpm, they were resuspended 

in DMEM HEK medium, and replated on 8 cm2 dishes. Cells were incubated at 37°C for ~ 48 

h, and they were approximately 70 % confluent on the day of the transfection.  

 

2.2 Transient transfection 
 

Dr. S. Kraner (Institute of Human Genetics, Bonn) generated AChR ε-subunit mutations: 

εV448L, ε911delT, ε1030delC, ε1293insG, ε1206ins19, and ε1101insT (Sieb et al., 2000a,b; 

Engel et al., 1996a; Ohno et al., 1998b) by „QuikChangeTM Site-Directed Mutagenesis“ 

(Stratagene). The resultant ε-subunit cDNAs were sequenced to check for the presence of the 

mutations and absence of any additional sequence changes (Kraner et al., 2003). The cDNAs 

were subcloned into the CMV-based expression vector pCDNA 3.1 (+) (5.4 kbp) (Invitrogen).  

HEK 293 cells were transiently cotransfected with cDNAs encoding the wild-type (α, β, δ, 

and ε), ε-lacking (α, β, and δ), and ε-mutated AChR subunits by TransFastTM transfection 

reagent (Promega) together with green fluorescence protein (GFP) using a subunit ratio of 

2:1:1:1 (α: β: δ: ε). Initial experiments using Ca2+ - phosphate precipitation method had lower 

transfection efficiency on our HEK 293 cell line, and therefore TransFastTM transfection was 

further used. This method has some advantages being faster (it takes round about 1 h), easy-

to-use (after resuspending the reagent in water, freezing, thawing, and mixing with DNA, 

everything is simply added to cells), more efficient (high-efficiency transfection – transient 

and stable – in many cell lines), and, finally, more robust (it requires less optimization than 

other systems). Additionally, it allows transfection of cell types such as primary cell cultures 

that require continuous exposure to serum, as it can be used in the presence of serum (see 

TransFastTM transfection reagent technical bulletin at www.promega.com).  
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Transfection was started two days after plating-out the HEK 293 cells on 8 cm2 Petri dishes, 

by pipetting the AChR cDNAs and the GFP cDNA together. GFP (green fluorescent protein; 

Invitrogen) was used to identify transfected cells for electrophysiological studies. It followed 

a dilution of the cDNAs in DMEM HEK medium, on which thawed TransFast™ reagent was 

added, and this mixture was vortexed for a short time. After a 10 – 15 min incubation of the 

cDNAs / TransFast™ reagent mixture, and after the removal of the old growth medium from 

the 70 % - confluent HEK 293 cells on the 8 cm2 Petri dishes, the transfection mixture was 

added onto the cells, and cells were incubated at 37°C for ~ 48 – 96 h. After this period, the 

transfected cells were plated in fresh DMEM HEK medium on poly-D-lysine-coated glass 

coverslips (Labomedic). For this purpose, cells were collected from 8 cm2 Petri dishes by 

pipetting up and down, and after a 3 min centrifugation at 1000 rpm, they were resuspended 

in DMEM HEK medium. A small volume (usually 20 µl) was mixed with the same amount of 

Tripan Blue for counting the cells. Cell suspension was diluted in a way that 1 ml of it always 

contained a density of 1 x 106 cells on average. A small volume of transfected cells (30 µl) 

was used for plating the cells on coverslips in 8 cm2 Petri dishes. After 30 min of incubation 

at 37°C, 2 ml of DMEM HEK medium were added over the coverslips in 8 cm2 Petri dishes. 

Four coverslips were used for each 8 cm2 Petri dish. Whole-cell- and cell-attached patch-

clamp recordings were started 2 – 3 h after plating the cells on coverslips.  

 

2.3 Patch-clamp recordings 
 

Whole cell currents were recorded using an EPC 9 patch-clamp amplifier and Pulse Software 

(HEKA Elektronik). Recordings were filtered at 5 kHz (Bessel, 4-pole), digitized using an 

ITC-16 AD / DA interface (HEKA Elektronik) at a rate of 25 kHz, and stored on hard disk. 

Patch pipettes were pulled from borosilicate capillary tubes (Kimble Products), on a 

horizontal programmable puller (Zeitz-Instrumente), and had resistance between 1.5 and 3 

MΩ, when filled with internal solution. The pipette solution contained (in mM): 2.5 NaCl, 

110 KCl, 0.5 CaCl2, 10 EGTA, and 10 HEPES (pH = 7.3, adjusted with KOH). The external 

solution contained (in mM): 145 NaCl, 2.5 KCl, 2 CaCl2, 1.3 MgCl2, 10 HEPES, and 20 

Glucose (pH = 7.3, adjusted with NaOH). ACh-induced currents were elicited by application 

of ACh (a 2 sec pulse of 0.03, 0.1, 0.3, 0.5, 1, 3, 10, 30, 100 or 300 µM ACh) using a fast 

pressure-application system (ALA Scientific Instruments). Flow from the pressurized 

reservoirs was computer-controlled via Lee solenoid valves. The output from the valves was 

connected via FEP tubing (Fluorinated Ethylene Propylene Tubing) to the micromanifold. 
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The application system consisted of quartz glass tubes (8 or 12 x 100 µm application tubes + 1 

x 200 µm flush tube) that communicated with the application tip of 100 µm. The agonist 

solution was applied at intervals of 3 – 5 min. ACh solutions were prepared daily from a 100 

mM stock solution. All whole-cell recordings were performed at a holding potential of –60 

mV.  

Cell-attached patch-clamp recordings were performed at room temperature (19 – 24°C), using 

an EPC 9 patch-clamp amplifier (HEKA Elektronik). Recordings were filtered at 10 or 5 kHz 

(Bessel, 4-pole), digitized using an ITC-16 AD / DA interface (HEKA Elektronik) at a rate of 

25 kHz, and stored on hard disk. Patch pipettes were pulled from borosilicate capillary tubes 

(Kimble Products) and coated with Sylgard 184 (Dow Corning) to reduce the noise 

interference during recordings. The pipette resistance ranged from 5 to 10 MΣ. In the cell-

attached experiments, the pipette solution contained (in mM): 0.001, 0.01, 0.03 or 0.1 ACh in 

142 KCl, 5.4 NaCl, 10 HEPES, 1.8 CaCl2, 1.7 MgCl2, pH = 7.3. The external solution 

contained (in mM): 142 KCl, 5.4 NaCl, 10 HEPES, 1.8 CaCl2, 1.7 MgCl2, pH = 7.3. In cell-

attached recordings, the holding potential was –100 mV, unless otherwise indicated. Slope 

conductance curves were determined from continuous recording protocol performed at 

various membrane potentials (from –60 to –220 mV).  

(For a detailed description of the patch-clamp technique, see also the Appendix section!) 

 

2.3.1 Data analysis of the patch-clamp recordings 

 

2.3.1.1 Analysis of whole-cell recordings 

 

2.3.1.1.1 Dose-response curves 

 

Analysis of the macroscopic currents was carried out using Pulse + PulseFit software (HEKA 

Elektronik) and GraphPad Prism software (GraphPad Software Inc.). Using Pulse + PulseFit 

software, the macroscopic currents (Imax) were manually measured at different ACh 

concentrations ranging from 0.03 to 300 µM, for wt, ε-lacking, and ε-mutant AChRs. To 

construct dose-response curves, the currents were normalized to the maximum response and 

plotted as a function of log of the agonist concentration (in M). Making use of GraphPad 

Prism software, EC50 values and Hill slopes were obtained by fitting the data points to a 

logistic equation in the form: y = ymin + [(ymax - ymin) / 1+ (x / EC50)n].  
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2.3.1.1.2 AChR desensitization kinetics and current density 

 

Analysis of the desensitization process was carried out using PulseFit, IGOR Pro 

(Wavemetrics), and GraphPad Prism software. The time course of the current decay was fitted 

using the following exponential function: y = A + y0*exp (-x / TauD) in the IGOR Pro and 

PulseFit software. The values obtained for the time constants of desensitization (TauD, in 

seconds) were plotted as a function of the ACh concentration in the GraphPad Prism software. 

The fraction of residual current (y0 = IACh residual, pA) was also obtained by this fit and 

plotted vs. the ACh concentration in the GraphPad Prism software. In the text, values are 

given as degree of desensitization: 100 % - X % residual current.  

To correct for variation in current magnitude due to differences in cell size, we normalized 

current responses to the cell surface and expressed them as current density in pA / pF. Current 

density was deducted from the peak current response obtained at 30 or 100 µM ACh 

concentration, by dividing the maximum current amplitude (Imax, pA) to the slow component 

of the membrane capacitance (Cs, pF) in the GraphPad Prism software. Values are given as 

mean ± SEM, and n represents the number of cells taken in analysis.  

 

2.3.1.2 Analysis of single-channel recordings 

 

Single-channel recordings were first inspected visually and corrected for baseline drift. Noisy 

sections and those containing simultaneous openings of two or more channels were excluded 

from analysis. Single-channel events were automatically or manually fitted using the TAC 

software (Bruxton), being detected by the fixed threshold criterion and using a rise time of 

0.08 ms. Amplitude histograms were built by plotting the single-channel current (i, pA) vs. 

the number of events (bin counts), and mean amplitude values were obtained for wt and ε-

mutant AChRs, at 1, 10, 30, and 100 µM ACh, between –60 and –220 mV. Slope conductance 

curves of single channels were constructed from linear regression of single-channel current (i, 

pA) vs. membrane potential (Vmp, mV). Bursts of channel-openings from single receptors 

elicited at high concentrations of agonist (Sakmann et al., 1980) were defined as a series of 

openings separated by close intervals shorter than a critical duration and followed by long 

closings corresponding to dwells in the desensitized state. Typically, the analysis focused on 

close and open intervals within clusters, the durations of which reflect agonist binding and 

channel-gating processes. The limit duration of the shut times within clusters of events was 

estimated by selecting multiple stretches with bursts of openings (with > 5 events and lasting 
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more than 100 ms) and after fitting them, a mean value of 30 ms was determined. We assume 

that periods longer than 30 ms represent intervals when all of the channels in the patch were 

desensitized. Therefore, two datasets called “bursts analysis” and “total recording time 

analysis” were obtained by including only opening events between 0.04 and 30 ms duration or 

by including all the events longer than 0.04 ms, respectively. In some experiments, for 

example, at low ACh concentrations (1 µM, in the case of wt receptor), the currents were not 

clustered and all open intervals in the record were measured. Open and close duration 

histograms were constructed using a logarithmic abscissa of the duration (in seconds) and a 

square root ordinate of the number of events, and fitted to the sum of exponentials by 

maximum likelihood (Sigworth and Sine, 1987), using TACFit software (Bruxton). After a 

visual inspection, we built histograms by merging similar open and close time distributions 

obtained at different holding potentials (between –60 and –220 mV), and at the same ACh 

concentration (1, 10, 30 or 100 µM). Mean open and close time values were extracted for wt, 

ε-lacking, and ε-mutant AChRs.  

Open and close probability values (PO and PC) in bursts and within the total recording time 

were obtained in the TACFit software from each individual cell, and subsequently they were 

averaged at each ACh concentration tested, and at –100 mV holding potential. The percentage 

of cells that responded to ACh application was also estimated from whole-cell- and single-

channel recordings.  
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2.4 Materials and suppliers 
 

Chemicals Supplier 

Acetylcholine chloride 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 

Trypan Blue 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 

Sylgard 184  Dow Corning Co., Midland, MI, USA 

NaCl Merck KGaA, Darmstadt, Germany 

KCl Merck KGaA, Darmstadt, Germany 

CaCl2 Merck KGaA, Darmstadt, Germany 

EGTA 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 

HEPES 

Sigma-Aldrich Chemie GmbH, Munich, 

Germany 

MgCl2  Merck KGaA, Darmstadt, Germany 

Glucose Merck KGaA, Darmstadt, Germany 

 

Reagents and kits Supplier 

Green fluorescent protein (GFP) Invitrogen Ltd., San Diego, CA, USA 

CMV-based expression vector 

pCDNA3.1 (+) (5.4 kbp)  

Invitrogen Ltd., San Diego, CA, USA 

QuikChangeTM Site-Directed 

Mutagenesis kit 

Stratagene Co., La Jolla, CA, USA 

TransFastTM transfection reagent  Promega Co., Madison, WI, USA 

 

Medium and Supplements Supplier 

Dulbecco's Modified Eagle Medium 

(DMEM) 

Invitrogen Ltd., San Diego, CA, USA 

Bovine Calf Serum (BCS) Invitrogen Ltd., San Diego, CA, USA 

Streptomycin, Penicillin Invitrogen Ltd., San Diego, CA, USA 
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Other materials Supplier 

Poly-D-lysine-coated glass coverslips  Labomedic GmbH, Bonn, Germany 

Counting chamber Fuchs-rosenthal, Germany 

8, 25 cm2 Petri dishes Becton, Dickinson and Co., NJ, USA 

10, 50 ml Polypropylene conical tubes Becton, Dickinson and Co., NJ, USA 

10, 20 ml serological pipettes Sarstedt AG and Co., Nümbrecht, Germany 

10 – 1000 µl Pipettes Eppendorf AG, Hamburg, Germany 

10, 200, 500 µl Pipette tips Eppendorf AG, Hamburg, Germany 

0.5, 1.5 ml Eppendorf tubes Eppendorf AG, Hamburg, Germany 

Pipette boy Integra Biosciences AG, Chur, Switzerland 

0.2 µm Syringe filters Nalge Nunc International Co., NY, USA 

1, 5, 10 ml Syringes B. Braun Melsungen AG, Melsungen, Germany 

Gloves Kimberly-Clark Co., GA, USA 

Parafilm M American National CanTM, Chicago, IL, USA 

 

Apparatuses Supplier 

Laminar flow hood Kojair® Tech Oy, Vilppula, Finland 

MGW M20 Water bath Lauda-Königshofen, Germany 

Carl Zeiss IM35 microscope Carl Zeiss, Göttingen, Germany 

Refrigerator LiebHerr Premium LiebHerr-Holding GmbH, Germany 

Megafuge 1.0R centrifuge Kendro Laboratory Products GmbH, Germany 

HERACell CO2 incubator Kendro Laboratory Products GmbH, Germany 

 

Patch-clamp setup component Supplier 

EPC 9 patch-clamp amplifier 

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

ITC-16 AD / DA interface  

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

Computer system: Power Mac G4 Apple Computer Inc., CA, USA 

Head-stage (or probe) 

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

Axiovert 135 or 200 microscope Carl Zeiss, Göttingen, Germany 

Cell chamber Custom made 
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Micromanipulator LN mini25 Luigs and Neumann GmbH, Ratingen, Germany 

Ag / AgCl recording electrode  

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

Pipette holder 

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

Vibration isolation table Technical Manufacturing Co., MA, USA 

Perfusion pump Ismatec SA, Glattbrugg, Switzerland 

Faraday cage Custom made 

HBO 100 W Fluorescence lamp Carl Zeiss, Göttingen, Germany 

Borosilicate capillary tubes  

Kimble Products, KIMAX-51®, New Jersey, 

USA 

Fast pressure-application system  

DAD-VM-8SP Superfusion System, ALA 

Scientific Instruments, NY, USA 

DMZ-Universal pipette puller 

Zeitz-Instrumente Vertriebs GmbH, Augsburg, 

Germany 

Oscilloscope Tektronix Inc., OR, USA 

 

Analysis Software Supplier 

Pulse + PulseFit Software 

HEKA Elektronik Dr. Schulze GmbH, 

Lambrecht, Germany 

GraphPad Prism 3.03 Software  GraphPad Software Inc. 

IGOR 4.01 Pro Software  Wavemetrics, Lake Oswego, OR, USA 

TAC X 4.1.3 + TACFit X 4.1.3 Software  Bruxton Corporation 
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3 Results 
 

3.1 Pharmacological and biophysical properties of wild-type, ε-subunit 

lacking, and ε-mutant AChRs inferred from whole-cell recordings 
 

3.1.1 Introduction to whole-cell recordings 

 

Mutations of the ε-subunit (εV448L, ε911delT, ε1030delC, ε1101insT, ε1206ins19, and 

ε1293insG), identified in patients with CMS symptoms were introduced in ε-subunit of adult 

human muscle nicotinic acetylcholine receptor (AChR). We transiently expressed the ε-

subunits in HEK 293 cells together with α, β, and δ-subunits, and investigated functional 

properties of the ε-mutated AChRs using the patch-clamp technique, with two of its 

approaches: whole-cell- and single-channel recordings.  

In the whole-cell recording mode, a so called “whole-cell current” (or macroscopic current; 

Imax) is obtained (Fig. 7), which is a measure of the total number of functional channels (N), 

the probability that a channel is open (PO), and the ionic current through each individual 

channel (i), according to the formula Imax = N ·PO · i (see also section 3.2.1).  

 
Agonist application

Desensitization

Residual current

Maximum ionic current

Activation phase

 
 

Fig. 7 Idealized representation of a whole-cell current. 
 

The whole-cell current elicited by ACh application consists of an activation phase, until a 

maximum ionic current is reached, and an exponential current decay over time, in the 

continuous presence of the agonist, which represents the desensitization process. The fraction 

of ionic current that remains at the end of the agonist application period is the residual current 
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representing the fraction of receptors that have not desensitized yet (Fig. 7). These properties 

of wt and ε-mutant receptors were first addressed by whole-cell recordings.  

To resolve fast ACh responses during whole-cell recordings, we used a fast pressure-

application system that allowed applications within milliseconds. ACh-induced currents were 

elicited every 3 – 5 min by 2 sec-applications of different concentrations of agonist (between 

0.03 and 300 µM ACh). The agonist was applied in random order. The inter-pulse interval of 

3 – 5 min ensured that the receptors fully recovered from desensitization (data not shown).  

 

3.1.2 The properties of wild-type receptor 

 

First, we investigated the properties of wt AChR by applying ACh at concentrations between 

0.3 and 100 µM. A representative set of current responses is shown in Figure 8. At lower 

concentrations (0.3 – 3 µM), the onset of the current response was initially fairly slow and 

became increasingly faster at higher ACh concentrations. At higher concentrations (10 – 100 

µM), the desensitization of the receptor was most pronounced, and was visible as current 

decay in the continuous presence of ACh (Fig. 8 and 10 A). However, the desensitization was 

incomplete and after 2 sec application of ACh at 100 µM, the residual current fraction was 

21.5 ± 5.17 % (n = 6). This indicates that ~ 21.5 % of the wt AChRs were still available after 

2 sec application of 100 µM ACh and ~ 78.5 % (100 – 21.5%, represents the degree of 

desensitization) have entered the desensitized state (Fig. 8 and 10 B).  
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Fig. 8 Whole-cell currents obtained from wt AChRs transiently expressed in a HEK 293 cell, 
at different concentrations of ACh (between 0.3 and 100 µM ACh). The bar on the top of each 
trace indicates the ACh application period (2 sec). The holding potential was –60 mV.  



                                                                                                                                      RESULTS 

 39

The maximum ionic current at the highest concentration tested (300 µM; not shown) was -

5445 ± 450.54 pA (n = 24).  

We also studied the pharmacological properties of wt receptor and from the concentration-

dependence of the ionic current (shown in Fig. 11) we constructed dose-response relationships 

from each individual cell recorded. After fitting the curves, a mean EC50 value of 1.42 ± 1.11 

µM, with a Hill slope of 1.05 ± 0.098 (n = 9) was extracted.  

 

3.1.3 The properties of ε-subunit lacking receptor 

 

We next characterized receptors lacking the ε-subunit. In the absence of the ε-subunit (–ε 

AChR), the receptor showed a significantly altered biophysical profile. The most prominent 

features were the acceleration in the desensitization kinetics and the increase in the degree of 

desensitization (Fig. 9).  
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Fig. 9 Whole-cell currents obtained from a single cell expressing ε-subunit lacking AChRs. 
Currents were elicited by the indicated ACh concentrations.  

 

Currents elicited at ACh concentrations of 0.03 and 1 µM declined with a time course that 

could be fitted to a single exponent function with a time constant (TauD) of 1.14 ± 0.04 s (n = 

3), and 0.46 ± 0.02 s (n =5), respectively. At low ACh concentrations (0.03 and 1 µM), there 

was a 3-fold, and, respectively, a 2-fold speed-up of the current decay compared to wt 

receptor (3.4 s, n = 1, and 0.98 ± 0.06 s, n = 9, respectively). However, at larger ACh 

concentration (30 to 300 µM), the time constants for desensitization were similar for wt and –

ε receptors (Fig. 10 A).  
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The degree of desensitization was ~ 2.5-fold increased in the absence of the ε-subunit. At 

ACh concentrations of 0.03 and 1 µM, the desensitization for –ε AChR was 69.3 ± 0.64 % (n 

= 3), and 80.25 ± 0.87 % (n = 7), whereas for wt receptor the desensitization was only 19.83 ± 

3.88 % (n = 5) and 44.05 ± 5.61 % (n = 8), respectively (Fig. 10 B).  
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Fig. 10 Desensitization kinetics of wt and –ε AChRs. The time constant for desensitization 
(TauD, A) and the fraction of residual current (IACh residual, B) for wt (black circles) and –ε 
(red squares) were plotted as a function of the ACh concentration. TauD and IACh residual were 
obtained by fitting the current decay in Fig. 8 and 9 to an exponential equation in the form: y 
= A + y0 * exp (– x / TauD).  
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In contrast to the large differences in kinetic properties, sensitivity to ACh for –ε AChR was 

similar to wt receptor, with values for EC50 and Hill slope of 1.65 ± 1.05 µM (n = 3), and 1.11 

± 0.05, respectively (Fig. 11). This data suggests that omitting the ε-subunit of AChR does not 

alter affinity to ACh of the receptor but rather its kinetic properties, namely time course and 

degree of desensitization.  
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Fig. 11 Dose-response relationships obtained for wt and –ε AChRs. The ionic currents elicited 
by the different ACh concentrations were normalized to the maximal response and plotted as a 
function of log of the agonist concentration (in M). The data points were fitted to a logistic 
equation in the form: y = ymin + [(ymax – ymin) / 1 + (x / EC50)n ], and mean EC50 and Hill slope 
values were extracted. Best fits are represented by dashed lines.  

 

The maximum current magnitude elicited by 300 µM (not shown) was about 9-fold smaller 

for –ε AChR than for wt receptor: –598.4 ± 166.04 pA (n = 8), vs. -5445 ± 450.54 pA, n = 24 

(P < 0.0001), respectively.  

To correct for variation in current magnitude due to differences in cell size, we normalized 

current responses to the cell surface and expressed them as current density in pA / pF.  

A comparison of the AChR current density (pA / pF) for wt and –ε AChRs is illustrated in 

Figure 12. The current density was ~ 8-fold reduced (P < 0.0001) for –ε compared to wt 

receptor: 36.5 ± 9.1 pA / pF (n = 24) vs. 292.5 ± 2.64 pA / pF (n = 58), respectively. The 

reduction in the current density might be the result of a decrease in cell surface expression, 

and / or altered gating properties of the individual –ε AChR.  
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Fig. 12 Comparison of current density for wt and –ε AChRs.  

 

3.1.4 The properties of ε-mutant receptors 

 

First, we addressed the functional consequences of missense εV448L mutation. Mutant 

εV448L exhibited gating properties that were similar to wt receptor: little desensitization at 

low concentrations (0.5 µM), and at increase of ACh concentration, faster but incomplete 

desensitization (Fig. 13).  

 

3.02.01.0
s

3.02.01.0
s

3.02.01.0
s

3.02.01.0
s

2 nA

1000 ms

0.5 µΜ 3 µΜ

30 µΜ10 µΜ

 
 

Fig. 13 Representative whole-cell currents obtained from a single cell expressing εV448L 
AChRs. Currents were elicited by the indicated ACh concentrations.  
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The time constant for desensitization (TauD) had values that were similar to those obtained for 

wt receptor (Fig. 16 A). The degree of desensitization was somewhat increased at higher ACh 

concentrations (10 to 100 µM) compared to wt, with values of: 83 ± 1.4 % (n = 5), and 91 % 

(n = 1) vs. 59 ± 4.47 % (n = 11), and 21.5 ± 5.17 % (n = 6), respectively (Fig. 16 B).  

The maximum current density for mutant εV448L was 223.3 ± 30 pA / pF (n = 14). This 

value is similar to that obtained with wt AChR (P = 0.364; Fig. 17), suggesting that εV448L 

mutation is very unlikely to impair cell surface expression of the receptor.  

 

In contrast to εV448L mutation, the properties of the receptor were altered by mutation at 

position 1030 (ε1030delC). Mutation ε1030delC leads to a shift in the reading frame and 

produces after 20 residues a stop codon. The resulting protein carries only 1/3 of the 

cytoplasmic loop between TM3 and TM4. This may underlie the 2-fold increase in receptor 

desensitization (TauD: 1.86 ± 0.11 s, n = 2, and 0.53 ± 0.01 s, n = 3) compared to wt, at ACh 

concentrations between 0.03 and 1 µM, respectively (Fig. 14 and 16 A). At larger agonist 

concentration (1 to 300 µM), the desensitization process became faster, with values for TauD 

similar to those of –ε AChR (Fig. 16 A).  
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Fig. 14 Whole-cell currents obtained from a single cell expressing ε1030delC AChRs. 
Currents were elicited by the indicated ACh concentrations.  

 

Mutation ε1030delC not only altered the kinetic of the time course of the desensitization 

process but also affected the degree of desensitization. Thus, between 0.03 and 1 µM there 

was a 2-fold increase of desensitization in comparison to wt receptor (54.9 ± 3.5 %, n = 3, and 

68.4 ± 1.1 %, n = 5, respectively). However, at higher ACh concentrations (10 to 300 µM), 
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the degree of desensitization was similar to –ε receptor (Fig. 16 B). Mutant ε1030delC 

exhibited 3.5-fold reduced current density compared to wt receptor (82.85 ± 11.2 pA / pF, n = 

25; P = 0.0003; Fig. 17), and therefore, unlike εV448L, the ε1030delC mutation is likely to 

affect the cell surface expression of AChR.  

 

The deletion mutation ε911delT, as well as the three insertion mutations ε1101insT, 

ε1206ins19, and ε1293insG caused acceleration of the desensitization process (time course 

and degree of desensitization). The properties of these receptors were similar in all cases to 

those observed with –ε AChR (Fig. 15 and 16).  
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Fig. 15 Representative whole-cell currents in response to the indicated ACh concentrations 
obtained from single cells expressing ε911delT (A), ε1101insT (B), ε1206ins19 (C), and 
ε1293insG AChRs (D), respectively.  
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Fig. 16 Desensitization kinetics: current decay (A) and residual current fraction (B) of ε-
mutant AChRs in comparison to wt and –ε receptors.  

 

The maximum current amplitude (Imax) observed with these mutants was significantly reduced 

compared to wt receptor, with values similar to those observed in AChR lacking the ε-subunit 

(P > 0.05 vs. –ε receptor; compare Fig. 15 A-D vs. Fig. 9).  

Mutant ε911delT exhibited ~ 2.5-fold reduced current density compared to –ε receptor (13.57 

± 1.83 pA / pF, n = 17; P = 0.009 vs. –ε AChR), whereas all three insertion mutations 

(ε1101insT, ε1206ins19, and ε1293insG) resulted in slight, but statistically not significant, 

increase in current density (see Fig. 17). Thus, the very likely reduction in cell surface 

expression observed with these mutants suggests a loss of function of AChR at the 

neuromuscular junction.  
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Fig. 17 Comparison of current density for wt, –ε, and ε-mutant AChRs.  

 

We also studied the affinity for ACh of these ε-mutant AChRs in comparison to wt and –ε 

receptors. Except for mutant ε1293insG, which resulted in 5-fold increase in the EC50 value 

(17.71 ± 1.14 µM with a Hill slope of 1.29 ± 0.20, n = 2; P < 0.05), all the other mutant 

AChRs had EC50 and Hill slope values similar to wt and –ε AChRs (P > 0.05), ranging from 

1.01 to 3.7 µM ACh, with Hill slopes between 0.85 and 1.07 (Fig. 18).  

In summary, these findings suggest that only ε1293insG mutation shows its effects by both 

decreasing sensitivity to ACh and altering desensitization kinetics of the receptor.  
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Fig. 18 Dose-response relationships obtained for ε-mutant AChRs in comparison to wt and –ε 

receptors.  
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3.1.5 Summary of the whole-cell data 

 

With the exception of εV448L receptor, all investigated ε-mutant AChRs exhibited 

acceleration of the macroscopic current decay and enhanced degree of desensitization, 

compared to wt receptor. Furthermore, their current density was significantly reduced, 

suggesting that these receptors might be expressed at low levels at the cell surface. Statistical 

analysis also indicated that the EC50 value obtained with mutant ε1293insG was significantly 

different from the value exhibited by wt AChR, and thus mutation ε1293insG is also likely to 

affect the ACh affinity of the receptor. The other mutations had no effect on the sensitivity to 

agonist of AChR.  
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3.2 Single-channel recordings 
 

3.2.1 Introduction to single-channel recordings and data kinetic analysis 

 

From whole-cell recordings, one can extract only average properties of large populations of 

ion channels in the membrane (Hille, 2001). The whole-cell current is described by formula 

Imax = N ·PO · i, where Imax represents the macroscopic current, N is the number of functional 

channels, PO the probability that a channel is open, and i represents the ionic current through 

one single channel. It is possible to obtain this information from one individual channel by 

performing single-channel recordings.  

In a single-channel recording, each opening event is a transition from the closed state (zero 

current) to the open state and has defined unitary current (i, pA) and duration (time, ms). An 

example of such recordings from wt AChR is illustrated in Figure 19 A.  
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Fig. 19 Single-channel bursts of openings recorded from a wt AChR at –100 mV and 30 µM 
ACh; A shows few clusters with channel-opening events (bursts of openings) separated by 
periods with no channel activity when all AChRs are desensitized. Channel-openings are 
presented as downward deflections of the membrane current; B represents the magnification 
of a cluster of opening events, when the AChR undergoes many cycles of agonist association / 
dissociation. The horizontal bars on the right of B represent the closed and the open states of 
the receptor.  
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Channel-openings and ionic flux through these channels are represented by the rapid transient 

changes in the membrane current in the order of several picoampere (pA). The channel-

openings in Figure 19 are visible as downward deflections. Upon closing of the channel, the 

membrane current returns to its baseline value, and these transitions are visible as upward 

deflections in Figure 19. The transitions between the closed and the open states occur in the 

microsecond range. In the record, channel-openings occur in clusters followed by periods 

with no channel activity. This clustering of channel-openings and closings has been termed 

“bursts” (Sakmann et al., 1980).  

Binding of the agonist to the channel results initially in opening of the channel. However, the 

channel undergoes further conformational changes in the continued presence of the agonist 

that result in closing of the channel. In this state, the agonist can no longer activate the 

channel. This condition has been described as desensitization of the receptor (Katz and 

Thesleff, 1957). The long-lived closed intervals between the bursts of openings reflect times 

when all AChRs in the patch are desensitized (Fig. 19 A). A cluster starts when one AChR 

spontaneously recovers from desensitization, and continues with the protein molecule 

undergoing many cycles of agonist association / dissociation (Fig. 19 B). A cluster ends when 

that receptor again becomes desensitized.  

The process of opening and closing of single-channels is termed as channel-gating and 

reflects conformational changes of the AChR. Gating of one channel is a stochastic process, 

and to derive information from such measurements requires analysis of many open-close 

events using statistical methods. Major parameters that are unique to an individual ion 

channel are the amplitude of the unitary current (i) and the mean lifetime (duration) of the 

open or the close state. The open lifetime is the time between the opening of one channel and 

its next closing, whereas the close lifetime represents the time between two opening events in 

succession. The binding of the two agonists brings the receptor into an equilibrium state 

between the closed and the open channel. This equilibrium is described by the open 

probability (PO), a measure that an ion channel will be open under given conditions.  

To understand whether for example the reduction in current density observed with the 

insertion / deletion mutations (see Fig. 17) is due to changes in any of the above-described 

parameters, we performed single-channel recordings in cell-attached configuration and 

analyzed the properties of individual receptors.  
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3.2.2 Unitary current and slope conductance 

 

The ionic current that flows through an individual channel depends on the driving force 

(VEMF) for the ions passing through the channel. According to Ohm’s law: I = V / R, the size 

of the unitary current (i) can be calculated as i = VEMF x g, where VEMF = Vmp – VREV (VEMF is 

the electromotive force, Vmp is the membrane potential, VREV represents the reversal potential 

of the permeating ion, and g, the conductance of the ion channel). The differences in whole-

cell current densities between wt and ε-mutant AChRs may be caused by alteration in levels 

of expression of functional channels and / or by alteration in their single-channel properties 

(e.g. changes in the conductance of the AChR and / or channel-gating).  

We first evaluated the unitary current size (i) and the slope conductance (g) of these 

receptors. The unitary current of wt receptor was -7.24 ± 0.22 pA (n = 22), at a membrane 

potential of –100 mV. A similar value for the unitary current was obtained for the AChR 

lacking the ε-subunit (P > 0.05). In contrast, mutations εV448L, ε911delT, and ε1030delC 

exhibited different unitary current values, thus suggesting an alteration of the permeation 

properties of the channel (Table 1). However, the changes in the unitary current size observed 

with the mutants were statistically not different from that observed with wt receptor.  

 

T yp e i (p A) g (p S ) n
W T -7 .24  ±  0 .22 60 .92  ±  1 .32 22
− ε -7 .73  ±  0 .31 63  ±  0 .97 12

ε V448L -6 .56  ±  0 .35 61 .94  ±  1 .88 6
ε 1030de lC -8 .01  ±  0 .31 63 .13  ±  0 .9 9
ε 911de lT -6 .44  ±  0 .23 63 .21  ±  0 .74 7

 
 

Table 1 Unitary current (i; pA) and slope conductance (g; pS) values for wt, –ε, and ε-mutant 
AChRs. The unitary current values are given at a membrane potential of –100 mV. Data 
represent mean ± SEM. n represents the number of cells.  

 

We obtained the slope conductance for these receptors from linear regression fit to the 

current-voltage relationship of the individual receptors (Fig. 20). The slope conductances for 

wt, –ε, and ε-mutant receptors were very similar, with values ranging from 60.92 to 63.21 pS 

(Table 1 and Fig. 20). The values for wt, as well as for the ε-mutant AChRs are similar to 

those reported previously by Newland et al. (1995; 62 pS) or Ohno et al. (1997; 60 pS) for 

human ACh receptors. These data suggest that the mutations within the ε-subunit have no 

measurable effect on the size of the ion flux through the open receptors. We next investigated 

the gating kinetic properties of the ε-mutant AChRs.  
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Fig. 20 Slope conductance curves were constructed for wt, –ε, and ε-mutant AChRs by 
plotting the unitary current (i; pA) vs. the membrane potential (Vmp; mV).  

 

3.2.3 Kinetic analysis 

 

3.2.3.1 Gating-kinetics of wild-type receptor 

 

We analyzed the gating properties of the receptors by analysis of the channel-opening events 

within the bursts of openings. Bursts were defined as a series of openings with closing 

intervals shorter than a critical duration of 30 ms (see Materials and Methods section 2.3.1.2). 

Periods longer than 30 ms very likely represent intervals when all of the channels in the patch 

are desensitized. The kinetic analysis focused on close and open intervals within clusters 

(termed as “Burst analysis”). Only stretches of bursts that contained more than 5 events of 

channel-openings were selected one by one and analyzed (see also Fig. 19 B). However, at 

low ACh concentrations (1 µM, for wt receptor), we observed mostly isolated channel-

openings and only very rarely a burst of openings (Fig. 21 A).  

Using burst analysis, we addressed the gating parameters open and close lifetime, and open 

probability of wt, –ε, and ε-mutant AChRs.  

The gating pattern of wt AChR, at different agonist concentrations (between 1 and 100 µM) is 

shown in Figure 21. At concentration of 1 µM, the channel-opening events occurred only 

infrequently and for brief periods, followed by long closing intervals (Fig. 21 A). With 

increasing agonist concentration (10 – 100 µM) the frequency of channel-opening events 

increased (Fig. 21). The opening events occurred mainly in bursts, and the receptor exhibited 

a dose-response increase in the open probability (PO), because the time required for binding of 
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the agonist reduced, thus shortening the close time durations. The PO values were: 0.30 ± 

0.025 (n = 3), 0.44 ± 0.026 (n = 7), 0.66 ± 0.021 (n = 9), and 0.82 ± 0.043 (n = 4), at 1, 10, 30, 

and, 100 µM, respectively. In contrast, the open duration of the channel remained similar at 

all agonist concentrations (Fig. 21 A-D and 22 A).  
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Fig. 21 Single-channel bursts of openings of wt AChR recorded at the indicated ACh 
concentrations. Currents are shown at bandwidth of 10 kHz, with channel-openings as 
downward deflections. Holding potential: –100 mV.  

 

The distribution of the open and close time durations from several recordings obtained at 

different ACh concentrations are shown in Figure 22. The fit of open duration revealed two 

major components with time constants for opening of ~ 1 and 3 ms (Tauopen1 and Tauopen2). 

For example, at an ACh concentration of 30 µM, Tauopen1 and Tauopen2 had values of 1.25 ± 

0.17 ms, and 2.7 ± 0.4 ms (n = 9), respectively (Fig. 22 A). The fractions of channel-openings 

associated with the two open time constants were: 64 ± 2.3 %, and 36 ± 2.3 %, respectively. 

Similar values were obtained at concentrations of 10 and 100 µM ACh. However, at agonist 

concentration of 10 µM, the opening events occurred at about equal levels at the two open 

time constants. At lower concentrations (1 µM), there was a shift towards shorter openings 

(Tauopen1 : 0.52 ± 0.06 ms; Tauopen2 : 1.74 ± 0.26 ms; n = 3). However, the major open 

duration was similar to those observed at higher concentrations (Fig. 22 A).  
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Fig. 22 Summary of open (A) and close (B) time distributions obtained for wt AChR at the 
indicated agonist concentrations. Histograms were constructed using a logarithmic abscissa 
(log of duration, s) vs. the square root ordinate of the number of events (bin counts); n 
represents the number of cells.  
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In contrast, the distribution of the channel close times shifted in a concentration-dependent 

manner towards shorter close time durations. The fastest component (Tauclose1) had an average 

value of 0.2 ± 0.02 ms (n = 4), and described more than 95 ± 0.8 % of channel-closing 

duration at 100 µM (Fig. 22 B). At lower concentrations (10 and 30 µM), the dominant close 

time constants (Tauclose2) were 3.6 ± 0.18 ms (n = 7) and 0.75 ± 0.04 ms (n = 9), respectively. 

They accounted for about 75 % of the closing intervals exhibited by wt receptor, at both 

concentrations. At the lowest concentration tested (1 µM), Tauclose1 had a value of 0.12 ± 

0.009 ms (n = 3), and represented only a small fraction of 8.4 ± 1.5 % of all shut times (Fig. 

22 B). The majority of the closings were longer than 30 ms, reflecting low open probability at 

this concentration (0.30 ± 0.025, n = 3).  

 

3.2.3.2 Gating-kinetics of ε-subunit lacking receptor 

 

The AChR lacking the ε-subunit exhibited a different gating kinetic pattern, consisting of 

fewer and briefer opening events than wt receptor, and longer intervals with no channel 

activity (Fig. 23 A-D).  
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Fig. 23 Single-channel opening events of –ε AChR recorded at the indicated ACh 
concentrations. Holding potential: –100 mV.  
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The absence of the ε-subunit resulted in a drastic reduction of the open probability of the 

receptor. For example, at a concentration of 30 µM the open probability of –ε receptor within 

the total recording time was ~ 40-fold reduced compared to wt AChR (9.8 ± 3.5 · 10-4, n = 6 

vs. 432 ± 52.2 · 10-4, n = 9; see Table 3 and Fig. 32). This is also illustrated by the reduction 

in the overall number of channel-openings (Fig. 23).  

The drastic changes in the gating kinetics are also reflected in the open and close time 

distributions for the ε-subunit lacking receptor (Fig. 24). The most visible change was the 

increase in the close time distribution, with a large increase in the number of long-lasting 

closings (> 30 ms) compared to wt receptor (Fig. 24 B vs. 22 B).  

Fitting the open time distribution revealed a fast component (Tauopen1) with a time constant of 

~ 0.2 ms (Fig. 24 A). At an agonist concentration of 1 µM, this fast component had a value of 

0.14 ms (n = 1) and was the only gating component observed. At higher agonist 

concentrations, the values for Tauopen1 were very similar (10 µM: 0.21 ± 0.014 ms, n = 4; 30 

µM: 0.18 ± 0.02 ms, n = 6; 100 µM: 0.24 ± 0.022 ms, n = 7) and were associated with ~ 85 % 

of all channel-openings. In addition to the fast component, two slower gating components 

(Tauopen2 and Tauopen3) were observed at agonist concentrations between 10 and 100 µM, with 

values of ~ 0.8 and ~ 5 ms, respectively. The fraction of opening events associated with 

Tauopen2 was ~ 10 % and that associated with Tauopen3 was ~ 5 % (Fig. 24 A).  

As observed, in the AChR lacking the ε-subunit there is a 5-fold shortening of the major open 

time constant (Tauopen1), in comparison to wt receptor. At all concentrations, most of the 

closings were longer than 30 ms (Fig. 24 B), reflecting a low open probability for –ε receptor. 

Furthermore, the fraction of channel close times that occurred during the burst of openings, at 

agonist concentration of 30 µM was only 7.4 ± 2.7 %, and 12 ± 4.8 % (n = 6), for Tauclose1 and 

Tauclose2, respectively (Tauclose1 : 0.45 ± 0.13 ms; Tauclose2 : 2.55 ± 0.36 ms). Similar values 

were observed at agonist concentrations of 10 and 100 µM (Fig. 24 B). At the lowest 

concentration tested (1 µM), Tauclose1 weighted only 3% of all close times, whereas Tauclose2 

was not observed.  

Together, these findings indicate that the AChR lacking the ε-subunit is still functional, 

however, it is less functional than the wt receptor. This suggests that mutations that truncate 

the ε-subunit are likely to generate a receptor with similarly altered gating properties as 

observed with –ε AChR.  
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Fig. 24 Summary of open (A) and close (B) time distributions obtained for –ε AChR at the 
indicated agonist concentrations.  
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3.2.3.3 Gating-kinetics of ε-mutant receptors 

 

To investigate the gating properties of AChR containing mutated ε-subunit, we performed 

recordings only at an agonist concentration of 30 µM. This concentration is optimal to 

eliciting bursts of channel-openings from single receptors, and, at the same time, does not 

induce desensitization of AChR (Sakmann et al., 1980).  

As predicted by the properties observed at whole-cell level (see also section 3.1.4), mutant 

εV448L exhibited open and close time distributions similar to wt receptor (Fig. 25).  
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Fig. 25 Single-channel bursts of openings recorded at –100 mV from a εV448L AChR, 
elicited by 30 µM ACh (A), and summary of open (B) and close (C) time distributions.  

 

The open time constants, Tauopen1 and Tauopen2, had values of 1.4 ± 0.15 ms, and 4.48 ± 0.24 

ms (n = 10), respectively. The opening events occurred at about equal levels at the two open 

time constants (Fig. 25 B). Furthermore, the majority of closings occurred in clusters (Fig. 25 
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A), as indicated by the fastest component of the close time distribution, Tauclose1 (Fig. 25 C), 

which had a value of 0.71 ± 0.04 ms (n = 7). This close time constant described more than 

75.3 ± 3.5 % of channel-closing duration. These values were similar in all cases to those 

obtained with wt receptor. The open probability in clusters was high (PO : 0.68 ± 0.022, n = 

10, at 30 µM). This value is statistically not different from that obtained for wt AChR (P > 

0.05; see also Fig. 31). In conclusion, the gating kinetics of AChR were not altered by the 

εV448L mutation located within the fourth transmembrane domain of the ε-subunit.  

 

The deletion mutation ε911delT, located in the third membrane-spanning segment of the ε-

subunit, is predicted to truncate the entire M3-M4 – cytoplasmic loop of the subunit (see also 

Introduction section 1.3.2.3, Fig. 6). Recordings from ε911delT-containing receptors revealed 

gating kinetics similar to those observed with –ε AChRs (Fig. 26 vs. Fig. 23 and 24).  
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Fig. 26 Single-channel opening events recorded from a ε911delT AChR, elicited by 30 µM 
ACh (A and B), and summary of open (C) and close (D) time distributions; B represents the 
magnification of the encircled area of A. Holding potential: –100 mV.  

B 
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The mutant showed only rarely openings that were very brief in duration (Tauopen1 : 0.17 ± 

0.01 ms; n = 12) in 78 ± 3.5 % of the apparent open time (Fig. 26 A-C). A second open time 

constant (Tauopen2) was similar to that observed with –ε receptor at a concentration of 30 µM. 

Additionally, ~ 9 % of the openings were longer than 10 ms (Tauopen3, Fig. 26 C).  

The distribution of the channel close times exhibited a reduction in the fraction of closings 

during burst gating (see Tauclose1 in Fig. 26 D), and the majority of the closings were longer 

than 30 ms. The open probability within the total recording time for mutant ε911delT was 11 

± 3.8 · 10-4 (n = 12, at 30 µM; see Fig. 32). Compared to wt receptors, this is almost a 40-fold 

reduction in the open probability, however, this value is similar to that observed in receptors 

lacking the ε-subunit (P > 0.05).  

 

Mutant ε1030delC exhibited only few and brief channel-openings at an agonist concentration 

of 1 µM (recording not shown), and spent long periods in the closed state (see Fig. 28). At 

higher agonist concentrations (30 and 100 µM ACh), the frequency of opening / closing 

events increased. During prolonged recordings, we observed in 3 out of 8 recordings a distinct 

switch in the gating mode of the receptor, as illustrated in Figure 27.  
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Fig. 27 Single-channel bursts of openings elicited by 30 µM ACh from a ε1030delC AChR. 
The recording shows the switch between the two distinct gating modes during a recording 
time of 60 s. Holding potential: –100 mV. 

 

The first gating mode (termed as ‘a’) resembled the gating pattern of –ε receptor with brief 

channel-openings. This had a major open time constant, Tauopen1, of 0.14 ± 0.01 ms (n = 5, at 

30 µM; Fig. 28 A). The second gating mode (termed as ‘b’) resembled the gating pattern 

observed with wt AChR, where channel-openings occurred mainly in clusters, with a major 

open time constant, Tauopen2, of 1.9 ± 0.62 ms (n = 3; Fig. 28 A). The fractions of channel-

openings associated to the two dominant open time constants were similar in all cases to those 

observed in recordings with either –ε or wt AChRs, respectively.  
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Fig. 28 Summary of open (A) and close (B) time distributions obtained for the ε1030delC 
AChR at the indicated ACh concentrations; (a) stands for gating pattern with brief events, 
whereas (b) represents the gating mode with bursts of openings.   
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However, the ε1030delC-containing AChR exhibited in bursts an additional faster open time 

constant (Tauopen1 : 0.16 ± 0.04 ms), which represented 22 ± 5 % of all apparent open times at 

30 µM (Fig. 28 A). As mutation caused transient switches between two gating modes in the 

same recording, it was no surprise to observe the additional faster open time constant in the 

open time distribution histogram.  

The close time distribution of the first gating mode (‘a’) revealed few closings in bursts, the 

majority of them being longer than 30 ms (82.54 ± 4.39 %, n = 5), as observed with –ε 

receptor (Table 2).  

 
Type % Closings > 30 ms No. of Closings No. of Openings Rec. time (min) n Comments
WT 1.76 ± 0.46 40407 40528 50 9
−ε 73.87 ± 5.18 2250 2228 48 6

ε1030delC 82.54 ± 4.39 167 172 24 5 (a)
ε1030delC 11.25 ± 1.64 3334 3342 27 3 (b)

 

Table 2 Percentage of closings between bursts (% Closings > 30 ms) for wt, –ε, and 
ε1030delC AChRs, respectively; (a) stands for gating pattern with brief events, whereas (b) 
represents the gating mode with bursts of openings. ACh concentration: 30 µM. Holding 
potential: –100 mV.  

 

In contrast, the gating mode in bursts (‘b’) exhibited mainly brief channel close times 

occurring in clusters (~ 80 %), and with increasing of ACh concentration from 30 to 100 µM, 

the major close time constant shifted towards shorter durations, from 0.64 ms to 0.39 ms, 

respectively (Fig. 28 B). Only 11.25 ± 1.64 % (n = 3) were interburst closings (Table 2). In 

this mode (‘b’), the receptor exhibited a high open probability that was similar to the one 

obtained with wt AChR at an agonist concentration of 30 µM: 0.553 ± 0.06 (n = 3) vs. 0.66 ± 

0.021 (n = 9; Fig. 31). However, the overall number of channel-openings was reduced by ~ 9-

fold compared to wt AChR, during a total recording time of 51 min (Table 2).  

 

Mutant ε1101insT exhibited a gating pattern with very brief and infrequent channel-openings 

(Fig. 29 A and B). The open time distribution revealed a major open time constant, Tauopen1, 

of 0.14 ± 0.04 ms, which represented 97.6 ± 0.2 % of all apparent open times (n = 4; Fig. 29 

C). In the close time distribution, only 2 ± 0.9 % (n = 2) and 3 % (n = 1) were closings within 

bursts (Tauclose1 : 0.29 ± 0.16 ms; Tauclose2 : 3.69 ms; Fig. 29 D). The majority of the closing 

intervals were longer than 30 ms, and the distribution exhibited a dominant component at ~ 

600 ms that accounted for ~ 50 % of all close time durations (Fig. 29 D). The open probability 

within the total recording time for mutant ε1101insT was very low: 1.2 ± 0.32 · 10-4 (n = 4, at 

30 µM; see Fig. 32).  
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Fig. 29 Single-channel opening events recorded from a ε1101insT AChR (A and B), and 
summary of open (C) and close (D) time distributions, obtained at an agonist concentration of 
30 µM; B represents the magnification of the encircled area of A. Holding potential: –100 mV.  

 

3.2.3.4 The spontaneous activity of AChR 

 

Spontaneous openings of AChR in the absence of ACh have been reported in the literature for 

mouse, rat, and bovine AChRs (Jackson, 1984, 1986; Jaramillo et al., 1988; Jackson et al., 

1990; Zhou et al., 1999a,b; Grosman et al., 2000). To test whether these spontaneous channel-

openings also occur in human AChR and to estimate their contribution in our recordings, we 

performed recordings in the absence of ACh, for wt and ε-subunit lacking AChRs.  

In the absence of the agonist and within the total recording time, wt and –ε AChRs exhibited 

very low open probability values of 1.6 ± 0.6 · 10-4 (n = 5) and 1.3 ± 0.6 · 10-4 (n = 5), 

respectively (see Table 3 and Fig. 32). These values were in any case smaller than the values 

obtained at low ACh concentrations (1 – 10 µM) for both types of receptors (Table 3).  

B
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The channel-openings were very brief and had a duration of ~ 0.23 ms in ~ 84 % of all open 

times (Fig. 30 A-C). Furthermore, twice as many opening events were recorded from –ε 

AChR than from wt receptor (630 vs. 315; see also Fig. 30 C).  
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Fig. 30 Spontaneous single-channel opening events recorded from wt (A) and –ε AChRs (B), 
respectively. Below, are given the corresponding open (C) and close (D) time distributions. 
Holding potential: –100 mV.  
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Interestingly, in the absence of ACh, ~ 32 % of the total close times were short closings with 

a duration of ~ 0.7 ms, in the case of wt receptor (Fig. 30 D). Some 68 % were closing 

intervals longer than 1 s. Similar values were obtained for –ε AChR as well (P > 0.05; see Fig. 

30 D).  

Taken together, these findings suggest that the spontaneous opening events in wt and –ε 

receptors occur even in the absence of ACh, however these openings occur very rarely, and 

therefore disturb very little our observations at very low ACh concentrations.  

 

Type [ACh; µM] Po total rec. time SEM n Total rec. time (min)
WT 0 1.60E-04 6.00E-05 5 17
WT 1 7.31E-03 4.46E-03 3 30
WT 10 2.93E-02 4.20E-03 7 24
WT 30 4.32E-02 5.22E-03 9 50
WT 100 2.28E-01 1.06E-01 4 30
−ε 0 1.30E-04 6.00E-05 5 20
−ε 10 4.56E-04 1.65E-04 4 16
−ε 30 9.80E-04 3.50E-04 6 48
−ε 100 5.09E-03 1.71E-03 7 39  

 
Table 3 Open probability (PO) values within the total recording time obtained for wt, and –ε 
AChRs, in the absence or presence (at the indicated concentrations) of agonist. Holding 
potential: –100 mV.  
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Fig. 31 Open probability (PO) within bursts (between 0.04 and 30 ms) exhibited by wt, 
εV448L, and ε1030delC AChRs at an ACh concentration of 30 µM. Holding potential: –100 
mV. In the case of mutant ε1030delC AChR, the PO value is given for the gating mode with 
bursts of openings (‘b’; n = 3 cells).  
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Fig. 32 Open probability (PO) within the total recording time exhibited by wt, –ε, and ε-mutant 
AChRs at an agonist concentration of 30 µM ACh. Holding potential: –100 mV. The PO 
values were plotted on a logarithmic ordinate. In the case of ε1030delC AChR, the PO value 
represents the overall open probability when the receptor switched between the two distinct 
gating modes (‘a’ + ‘b’; n = 8 cells), during a total recording time of 51 min.  

 

3.2.4 The correlation between the whole-cell- and the single-channel data 

 

As mentioned in Materials and Methods section 2.3.1.1.2, we introduced the current density 

(pA / pF) parameter, as a normalization of current responses to the cell surface. We did this, 

to correct for variation in current magnitude due to differences in cell size. On examining the 

data, we observed that the current density values obtained for –ε, and ε-mutant AChRs were 

significantly reduced in comparison to wt receptor (Table 4 A and Fig. 17).  

In whole-cell configuration, the recordings are taken from large populations of channels (Imax 

= N ·PO · i, see section 3.1.1). It was therefore difficult to tell if the reduction in the current 

density was a contribution of one or a combination of the parameters, number of functional 

channels (N), open probability (PO) and / or unitary current (i).  

To address this question, we have further investigated the ε-mutant receptors at single-channel 

level. A comparison of the data obtained in whole-cell- and single-channel mode is shown in 

Table 4.  

The number of cells transfected with wt and ε-mutant AChRs, which responded to ACh 

application in whole-cell configuration was very similar to the values calculated from single-

channel recordings (compare Table 4 A with 4 B). These data indicate that the ε-mutations 
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from our study did not reduce the current density by altering the number of functional 

channels that responded to agonist application. Furthermore, the unitary current values were 

similar in all cases, suggesting that mutations did not affect the size of the ion flux through the 

open channel (see Results section 3.2.2).  
 
 

Type % of cells resp. to ACh No. of cells tested Current density (pA / pF)
WT 53 160 292.53 ± 9.08
 −ε 29 95 36.46 ± 2.64

εV448L 50 24 223.29 ± 29.96
ε1030delC 41 70 82.85 ± 11.2
ε911delT 19 74 13.57 ± 1.83
ε1101insT 28 36 65.47 ± 14.81  

 

Type % of cells resp. to ACh No. of cells tested Po total rec. time Po bursts i (pA) Imax bursts

WT 68 246 0.0432 0.66 7.24 4.77
 −ε 39 134 0.0010 - 7.73 -

εV448L 64 33 0.0241 0.68 6.56 4.49
ε1030delC 45 186 0.0030 0.55 8.01 4.43
ε911delT 36 73 0.0011 - 6.44 -
ε1101insT 36 22 0.0001 - 8.54 -  

 

Table 4 The correlation between the whole-cell- and the single-channel data. The current 
density (pA / pF ± SEM) values inferred from whole-cell recordings are given in A. The 
macroscopic current (Imax, pA) values calculated from single-channel recordings are given in 
B. PO and i (pA) values were obtained at an ACh concentration of 30 µM and a holding 
potential of – 100 mV.  

 

In terms of the last analyzed parameter, PO, mutants ε911delT and ε1101insT showed during 

the total recording time similar low open probabilities (PO total rec. time) as the –ε receptor (Table 

4 B, and also Fig. 32). Most of the opening events recorded from both occurred as isolated 

events and very few of them were clustered. This is why in their case we could not calculate 

the open probability in bursts (PO bursts).  

Additionally, the mutant εV448L opened mainly in bursts with a gating pattern similar to wt 

receptor (Table 4 B, and Fig. 31), and therefore its current density value was statistically not 

different from that of the latter (Table 4 A). The mutant ε1030delC, which switched between 

bursts and isolated opening events, exhibited a PO total rec. time ~ 15-fold smaller than that of wt 

AChR, and ~ 3-fold larger than observed with –ε receptor (Table 4 B).  

In conclusion, our findings suggest that the drastic reduction of the current density with the 

AChRs carrying the ε-truncating mutations is very likely to be the result of the low 

probability of channel-opening.  

(A) 

(B) 
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3.2.5 Summary of the single-channel data 

 

As observed, the mutants expanded to some extent the distributions for channel-opening and 

closing time constants. Thus, inspection of the open and close time distributions revealed 

briefer opening events and prolonged closings for ε-mutant receptors compared to wild-type 

receptors. Only mutant εV448L showed gating kinetics similar to wt receptor. Mutant 

ε1030delC exhibited kinetic components of both, the individual wt and the ε-subunit lacking 

AChRs. Mutants ε911delT and ε1101insT showed gating kinetics similar to –ε AChR.  

The low open probability exhibited by the individual receptors carrying the ε-truncating 

mutations is most probably responsible for the significant reduction of their current density 

observed in whole-cell recordings.  
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4 Discussion 
 

4.1 CMS mutations and their localization 
 

Mutations in the AChR ε-subunit gene are the most common cause of congenital myasthenic 

syndrome (CMS) characterized by deficiency of AChR at the motor endplate (Engel et al., 

1996a; Ohno et al., 1997; Ohno et al., 1998a,b; Middleton et al., 1999; Croxen et al., 1999; 

Abicht et al., 1999; Abicht et al., 2000; Sieb et al., 2000a,b; Croxen et al., 2001). The 

mutations are found along the length of the ε-subunit gene, including the promoter region 

(Nichols et al., 1999; Ohno et al., 1999; Abicht et al., 2002), and result in frameshifts or 

nonsense codons that truncate the subunit polypeptide chain. This results in loss of residues 

essential for AChR assembly or function.  

In the present study, we investigated two recently by Sieb and colleagues (2000a) identified 

mutations in the ε-subunit gene, ε911delT, and ε1030delC. These mutations are located at the 

end of the M3 transmembrane domain and in the cytoplasmic loop between TM3-4, 

respectively. We were interested in investigating the molecular mechanism underlying AChR 

deficiency in these cases since ε-subunits expressed from these mutant alleles contain 

domains thought to be essential for AChR function.  

The functional consequences of these mutations were investigated using patch-clamp 

recordings in whole-cell- and cell-attached configuration. Three related CMS-linked 

mutations all located in the TM3-4 cytoplasmic region, ε1101insT, ε1206ins19 and 

ε1293insG, were included in the study to identify the role of specific regions in TM3-4 loop 

in AChR function. All mutations are frameshifting and are predicted to truncate the ε-subunit 

of AChR, generating a protein product with impaired functionality.  

A common finding for all mutations located within the TM3-4 loop was a functional 

reduction of the underlying receptor via two mechanisms: reduction in number of receptors 

expressed on the cell surface and interference with channel-gating. In addition, mutant 

ε1030delC introduced a switch in the gating mode of the receptor with characteristics 

resembling those of wt, as well as ε-subunit lacking AChR, while mutation ε911delT, located 

at the end of TM3, completely prevented formation of functional receptors.  
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4.2 Structure, formation and membrane insertion of the AChR 
 

The AChR belongs to the ligand-gated ion channel superfamily that shares many structural 

features. These pentameric receptors are usually comprised of several different subunits 

arranged in a circle like structure to form a central pore, the ion channel (Karlin, 2002; see 

Introduction section 1.2.1.1). Within the endoplasmic reticulum (ER), the different subunits of 

the receptor are assembled and processed to the mature protein. The ability to distinguish 

between correctly assembled receptors and intermediate-building steps is of utmost 

importance to ensure reliable and stable signal transduction processes. Incorrectly folded 

proteins cannot be assembled and are retained and degraded within the ER, and only 

physiological active complexes with the correct stoichiometry are transported to the cell 

surface (Smith et al., 1987; Verrall et al., 1992; Blount et al., 1990; Gu et al., 1991). The 

AChR is comprised of four different subunits with a stoichiometry of 2α1,β1,γ,δ for the fetal 

form, and 2α1,β1,ε,δ for the adult form of the receptor. Within the ER, the receptor is 

assembled in a step-like fashion where the α1-δ, α1-γ and α1-ε subunits form heterodimers that 

interact with the β1 subunit to form the final pentameric structure. In skeletal muscle, 

assembly of AChR is an inefficient process and more than 90 % of newly synthesized AChR 

subunits are incorrectly folded (Smith et al., 1987; Gu et al., 1991). Single or incomplete 

associated subunits are retained within the ER and degraded (Smith et al., 1987; Merlie et al., 

1983; Blount et al., 1990). Further, transport of all subunits to the cell surface is prevented if 

transcript for the α-subunit is erroneous (Black et al., 1987; Gu et al., 1989). A vital point for 

regulation of cell surface expression is the control of exit from the ER, however, currently 

little is known about the regulation of these steps. Recently, Wang et al. (2002) identified a 

conserved signal sequence (PLYFxxN motif) within the M1 domain of all AChR subunits that 

controls incorporation of the mature functional protein into the cell membrane. In fully 

assembled pentamers, the signal sequence is hidden inside the protein (close to the pore-

forming region) and allows transport to the cell surface. In contrast, if the signal sequence is 

accessible to the lumen, these subunits will not be assembled and are subject to degradation. 

The signal sequence therefore serves as quality control in the process of receptor formation 

and membrane insertion.  

Several structural elements within the ε-subunit have been identified that may influence 

function of the receptor by controlling interaction with other subunits or translocation to the 

cell membrane. Recent studies on the AChR ε-subunit resulted in the proposal that the N-

terminal domain mediates the initial subunit associations, whereas signals in its C-terminus 
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half are required for subsequent subunit interactions (Eertmoed and Green, 1999). In addition, 

studies of a three amino acid deletion in the β-subunit have identified a region in the 

cytoplasmic loop between M3 and M4 where the secondary structure is crucial for interaction 

between the β- and δ-subunits (Quiram et al., 1999).  

A single cysteine residue within the carboxyl-terminal region at position 470 was recently 

identified by Ealing and co-workers (2002) and has been suggested to play a crucial role in 

surface expression of adult AChR. Robust surface expression was seen only when the ε-

subunit contained the C470 residue but was completely lost when C470 was deleted or 

mutated to serine (S470). Fluorescent labeling of the ε-subunit showed that the mutant ε-

subunits 1369delG or C470S are retained within the ER. The interaction partner(s) of the C-

terminus εC470 are currently not known. The authors suggested that the loss of εC470 

partially reduces the efficiency of the steps involved in the initial α–ε subunit association and 

affect subsequent steps in pentamer assembly, transfer from the ER and incorporation into the 

plasma membrane. It is further possible that C470 might be involved in formation of a 

disulphide bond in addition to that of the N-terminal extracellular cysteine-loop structure that 

is common to all members of this ion channel superfamily. Ealing et al. (2002) concluded that 

all truncating mutations that occur before position C470 would lead to a complete loss of the 

AChR protein. The findings from the present study do not support this hypothesis.  

 

4.3 Mutation ε911delT in the M3 segment leads to loss of function  
 

Aim of the work was to gain insights into the molecular mechanism underlying AChR 

deficiency in postsynaptic CMS due to truncating mutations of the ε-subunit. The initial 

characterization of human wild-type muscle AChR (2α1,β1,ε,δ) and the ε-subunit lacking 

AChR (2α1,β1,δ) set the framework that allowed the interpretation of functional effects of the 

CMS mutations.  

AChRs lacking the ε-subunit could be easily distinguished from wt receptors based on their 

biophysical properties (largely reduced current density, rapid desensitization kinetics, 

complete desensitization). On the single-channel level, the AChR lacking the ε-subunit 

exhibited a different gating pattern compared to wt receptor. The number of opening events 

was about 40-fold reduced and the open channel duration was only 1/5 of that observed with 

wt AChR (see Results section 3.2.3.2). In contrast, the single-channel conductances for wt 

and –ε AChRs were very similar, with a value of 61 pS. Similar values have been previously 

reported for wt human muscle AChR (Newland et al., 1995; Ohno et al., 1997). A larger 
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conductance of 78 pS has been reported for mouse AChR (Ohno et al., 1995) and it is very 

likely to be due to species differences (but see below section 4.4.1).  

The AChR that contained the frameshifting mutation in transmembrane domain 3 - ε911delT - 

exhibited biophysical properties that resembled those observed with AChR lacking the ε-

subunit. The current density of ε911delT-containing receptors was below that seen with ε-

lacking AChR, suggesting a severe interference with cell surface expression of the receptor. 

Single-channel recordings further revealed biophysical properties for ε911delT similar to 

those observed with ε-lacking AChR, indicating a loss of function of the receptor containing 

the mutated ε-subunit. The deletion ε911delT leads to a frameshift in the predicted amino acid 

sequence, causing a premature stop codon after 60 missense codons, and would preserve only 

the first 15 amino acids of the large intracellular loop. This would indicate that critical 

elements controlling receptor formation / expression are located downstream of position 911. 

The data suggest that homozygous expression of ε911delT is very likely to result in a loss of 

function. To date, no case report of a homozygous presence of mutation ε911delT has been 

published.  

Patients that are heterozygous for mutation ε911delT show marked reduction in the number of 

secondary synaptic clefts in association with reduced AChR density at the neuromuscular 

junctions with signs of a myasthenic syndrome (Sieb et al., 1998). Affected family members 

were heteroallelic for the ε911delT and εIVS4 + 1G → A, a splice-site mutation at the 

junction between exon 4 and intron 4 (Sieb et al., 2000a). The latter produces a stop codon at 

the N-terminal loop that results in loss of all four transmembrane segments of the ε-subunit. 

These findings would support the idea that homozygous expression of ε911delT is very likely 

to result in a severe myasthenic phenotype.  

 

4.4 Mutations within the TM3-4 cytoplasmic loop  
 

4.4.1 Mutation ε1101insT  

 

Mutation ε1101insT leads to a shift in the reading frame and the production of a stop codon 

that truncates 2/3 of the cytoplasmic loop between TM3 and TM4, as well as the remaining C-

terminus part. The AChRs containing the ε1101insT mutation were functional but showed a 

reduction in current density to ~ 22 % of wt receptor level. This finding is in line with 

previous studies, showing an approximately 4-fold reduction in α-bungarotoxin binding to 

AChR carrying the ε1101insT mutation compared to wt receptor (Engel et al., 1996a; Sieb et 
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al., 2000b). In single-channel recordings, ε1101insT AChR exhibited very short open 

lifetimes, and long closing intervals, as well as reduced open probability compared to wt 

AChR. Our findings appear to be in contrast to a previous study by Engel et al. (1996a) on the 

same mutation ε1101insT, which had apparently no influence on the kinetic properties of the 

receptor. The discrepancy between the results of the two studies of mutant ε1101insT could 

arise from species differences, as in the study by Engel et al. (1996a) the mutation was 

investigated in mouse AChR. In fact, the same group showed that human and mouse AChR 

containing εL296F exhibit significant differences in single-channel gating properties (Engel et 

al., 1996b). The ε-subunit mutation L296F, when introduced in mouse AChR, resulted in an 

approximately 3-fold reduction in channel open duration compared to that obtained from 

human AChR. Similarly, species-related functional differences have been described for 

epithelial Na+ channels. In a structure-function study of human epithelial Na+ channels 

(ENaC), Snyder and co-workers (1999) performed a cysteine screen of the pore-lining regions 

of α, β and γ-subunits. For position βG520C, they reported a strong inhibition by a 

thioreactive agent (MTSET) that resulted from covalent modification of the introduced 

cysteine. In contrast, mouse epithelial Na+ channels carrying the corresponding cysteine 

modification (βG525C) showed no modulation by MTSET (Li et al., 2003).  

The findings with ε1101insT AChR provide evidence that the C-terminus, that includes 

residue C470, is not crucial for maturation and functional expression of the AChR as 

proposed by Ealing et al. (2002). In the study by the latter, truncation of the C-terminus up to 

amino acid 470 resulted in retention of the protein within the ER. These truncated proteins 

still contained the full TM3-4 loop and the complete TM4 segment. As ε1101insT-containing 

AChRs form functional channels, it is possible that parts of the TM4 segment or the TM3-4 

loop, that are still present in the C470 mutant, allow interaction with structural elements 

within the ER that case the retention of the receptor.  

 

4.5 Structural elements within the TM3-4 loop that influence channel-gating 
 

4.5.1 Role of mutations ε1293insG and ε1206ins19 

 

The M3-M4 cytoplasmic loop of the ε-subunit is the least conserved structure of all AChR 

subunits. Several studies have investigated the role of an amphipathic α-helix (HA) that is 

located at the C-terminus of the M3-M4 cytoplasmic loop (Finer-Moore and Stroud, 1984; 

Bouzat et al., 1994; Milone et al., 1998a; Akk and Steinbach, 2000; Wang et al., 2000). The 
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HA region extends from residues 376 to 435 of the homologous human ε-subunit, and 

displays stripes of hydrophobic and positively and negatively charged residues along its 

length. The actual location of the HA region with respect to the membrane or the rest of the 

cytoplasmic loop is not known. Recently, a projection from the cytoplasmic side of each 

subunit has been identified that has helical content, so it may be that the HA region projects 

into the cytoplasm and interacts with the intracellular loops from other subunits as well 

(Miyazawa et al., 1999).  

This region has significant impact on the gating properties of the associated receptor. First 

evidence was presented by Bouzat et al. (1994) showing that the gating properties of AChR 

could be modulated by the HA region of the ε-subunit. Gating of AChR could be switched 

from “adult” (short opening, fast channel-closing) to “fetal” (long opening, slow channel-

closing) gating pattern, when the HA region within the ε-subunit was replaced by that of the 

γ-subunit. Two additional fast-channel mutations that have been identified in CMS patients 

are located in HA region. One of these is an in-frame duplication of the six residues, 

STRNQE (ε1154ins18; Milone et al., 1998a), and the other is a point mutation, εA411P 

(Wang et al., 2000). Both mutations corrupt the fidelity of gating of the receptor channels so 

that they open and close with irregular kinetics. The tandem duplication causes abrupt 

switches between efficient and inefficient channel-gating with individual activation modes. 

Such changes in gating modes are very uncommon and usually not observed in normal 

receptors. In contrast, mutation εA411P does not cause mode switching within individual 

activation episodes, but instead results in activation episodes with a large range of open 

probabilities. These mutants show, in addition to the loss in gating fidelity, a marked 

reduction in receptor expression (Milone et al., 1998a; Wang et al., 2000), and both features 

jeopardize the safety margin of neuromuscular transmission.  

Two of the truncating mutations investigated in the present study, ε1206ins19 and ε1293insG, 

are located within the HA region of the long cytoplasmic loop. Similar to the changes in 

gating properties described above, the two mutations showed in whole-cell recordings altered 

biophysical properties with speed-up in the time course, as well as enhanced degree of 

receptor desensitization. As neither one of the mutations has been characterized on the single-

channel level, it remains speculative what the underlying mechanism for the observed kinetic 

changes might be.  

In addition to the alterations in channel-gating, the two mutants also caused a marked 

reduction in current density, however, significantly above the level observed with ε-subunit 

lacking AChR. If the reduction in current density is the result of alteration in channel-gating 
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or reduction in the number of receptors expressed on the cell surface is unclear. Previous 

studies showed an approximately 4-fold reduction in α-bungarotoxin binding of ε1206ins19 

and ε1293insG AChR, respectively (Ohno et al., 1998b; Engel et al., 1996a; Croxen et al., 

2001), suggesting a reduction in surface expression. This might be the reason why no single-

channel activity could be recorded from cells expressing ε1293insG AChRs (Engel et al., 

1996a).  

In addition to changes in channel-gating and surface expression, mutant ε1293insG also 

reduced the receptor sensitivity to ACh by approximately 5-fold. It is likely that the observed 

change in ACh affinity is due to a change in ACh association or dissociation constant. 

Previous studies from CMS patients with slow-channel syndrome identified two mutations 

within the α-subunit that enhance ACh affinity of the receptor (Engel et al., 1996b; Milone et 

al., 1997). The mutations N217K and V249F are located within TM1 and TM2 of the α-

subunit, respectively, quite distant to the ACh binding site. The increase in ACh affinity by 

these mutations is mainly due to a reduction in the ACh dissociation rate constant (Engel et 

al., 1996b; Milone et al., 1997). The location of ε1293insG within the TM3-4 loop is even 

further away from the ACh binding site and would suggest that these mutations may exert 

their effect through structures that link the channel gate to the binding site.  

 

4.6 Mutation ε1030delC elicits switch in gating pattern 
 

Mutation ε1030delC leads to a shift in the reading frame and produces after 20 residues a stop 

codon. The resulting protein carries only 1/3 of the cytoplasmic loop between TM3 and TM4. 

Similar to the above-described mutants, ε1030delC also affected gating properties and current 

density of the underlying receptors. The latter was reduced to ~ 1/3 of wt receptor level.  

In the whole-cell mode, the mutant exhibited gating kinetics with two patterns. At low agonist 

concentrations (< 1 µM), the time course of desensitized receptors was substantially slower 

than that of ε-lacking receptors (see Fig. 16 A), whereas at higher agonist concentrations the 

time course was indistinguishable from that of the latter. This change in speed of 

desensitization was even more pronounced for wt AChR, whereas for –ε receptor only 

marginal. In single-channel recordings, mutant ε1030delC exhibited switches in the gating 

kinetics between two distinct modes within individual activation episodes. The two modes 

resembled properties observed with wild-type (channel-openings that occurred in bursts with 

high open probability) and ε-lacking AChRs (brief and isolated opening events), respectively. 

This switch in the gating mode might explain the different kinetic pattern in desensitization 
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kinetics. It is very likely that at higher agonist concentrations, the gating mode corresponding 

to the –ε receptor is prevailing, whereas at lower concentrations a mixture between wt and –ε 

receptor gating is prevailing.  

Switches in gating mode have so far only been reported for mutations located within the HA 

motif of the TM3-4 cytoplasmic loop (see above). The findings with ε1030delC suggest that 

also other regions within the TM3-4 loop may influence the gating properties of the receptor. 

The overall changes in TM3-4 structure that are caused by these mutations are presently 

unclear. Taken together, the findings suggest that part(s) of the cytoplasmic loop are able to 

interact with the gating machinery of the receptor and influence the gating process. A 

systematic study of the individual residues within the TM3-4 loop may enhance our 

understanding in the contribution of individual TM3-4 regions in channel-gating.  

To date, there is no report of a patient found to express ε1030delC homozygous. The 

functional consequences of ε1030delC would predict loss of function in the underlying 

AChR. The identified affected patient was heterozygous for ε1030delC and a mutation 

εR64X, a truncating mutation within the first third of the N-terminus (Ohno et al., 1997). 

Muscle biopsies from this patient showed reduction in ACh binding sites, paucity of the 

secondary synaptic clefts, as well as reduced endplate size (Sieb et al., 2000a). The parents, 

each of them carrying one mutation, neither were affected nor exhibited morphological 

changes. This would suggest that in a heterozygous situation the predicted loss of function by 

either ε1030delC or εR64X could be compensated by the healthy allele. However, when both 

alleles carry predicted loss of function mutations, the inherent rescue by the fetal γ-subunit is 

not sufficient to compensate for the functional loss.  

 

4.7 Outlook for treatment of CMS patients  
 

In patients carrying such CMS truncating mutations, the number of AChRs available at the 

postsynaptic regions of the motor endplate drastically decreases upon sustained muscular 

activity, as the mutant receptors desensitize more rapidly and in greater numbers, during 

prolonged exposure to ACh. Additionally, because of the low open probability, the markedly 

attenuated postsynaptic response to ACh compromises the safety margin of the neuromuscular 

transmission. All this finally leads to generalized weakness and fatigability of voluntary 

muscles including those controlling movement, eye movement, swallowing, and breathing. 

Increasing the postsynaptic response is therefore a suitable therapy. Indeed, these CMS 

patients generally respond well to the combined use of 3,4-diaminopyridine (3,4-DAP), which 
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increases the number of quanta released by nerve impulse, and to anticholinesterases, which 

increase the availability of ACh in the synaptic cleft. The synaptic transmission is enhanced as 

follows: 3,4-DAP selectively blocks the voltage-gated K+ channels, and that prolongs the 

nerve action potentials. As a result, the voltage-gated Ca2+ channels remain activated for 

longer periods, and that allows greater influx of Ca2+ at the presynaptic terminal. 

Theoretically, this chain of physiological events results in additional ACh release. 

Pyridostigmine (Mestinon) is the most commonly used acethylcholinesterase inhibitor. It 

reversibly binds to acethylcholinesterase enzyme and slows the breakdown of ACh, raising its 

concentration at the junctional folds and increasing its probability of remaining attached to 

functional receptors. This leads to endplate potentials (EPPs) with a more rapid rise time, 

higher amplitude and thus a greater likelihood of generating action potentials in previously 

blocked muscle fibers. Patients with a normal density of AChRs on the junctional folds 

respond best, as a decreased density of receptors on the folds entails a proportionate reduction 

in the number of AChRs that can be activated by any given quantum (Engel et al., 2003b). All 

these demonstrate how understanding of fundamental mechanistic steps that are altered in the 

disease can lead to rational clinical therapies.  

 

4.8 Summary 
 

In summary, with one exception, namely εV448L AChR, all the investigated mutants 

exhibited acceleration of the desensitization decay and increase in the degree of 

desensitization, as well as reduced current density compared to wt receptor. Furthermore, the 

mutations did not affect the size of the ion flux through the open receptors (the slope 

conductance), and only slightly reduced the percentage of cells expressing individual AChRs. 

Receptors carrying the ε-truncating mutations opened mainly with brief and isolated events, 

similar to ε-lacking receptor, and exhibited very low probability of opening in clusters. Only 

mutant ε1030delC induced switches between the kinetic modes of wt and –ε AChRs, however 

the majority of the events were brief and isolated. The reduction in the overall number of 

opening events is very likely to be the main factor that accounts for the reduced current 

density observed with the ε-mutant receptors from the present study.  

From all mutations, only deletion mutation ε911delT, located at the end of TM3, completely 

prevented formation of functional receptors, whereas in the presence of the other truncating 

mutations, the AChRs were still functional but exhibited altered kinetic properties as 

described above.  
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The present findings are consistent with the notion that mutations causing postsynaptic CMS 

due to AChR deficiency are concentrated in the ε-subunit of the receptor. There are two 

possible reasons for that: one likely reason is that persistent low-expression level of the 

embryonic γ-subunit-containing AChR can partially compensate for the absence of the ε-

subunit (Engel et al., 1996a,b; Ohno et al., 1997; Milone et al., 1998b; Croxen et al., 2001). 

Patients harboring null mutations in subunits other than ε might not survive due to the lack of 

a substituting subunit. In addition, the gene encoding the ε-subunit, and especially exons 

encoding the long cytoplasmic loop, has a high GC content (61.2 %) that could predispose to 

DNA rearrangements (Middleton et al., 1999).  
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Appendix 
 

The patch-clamp technique 
 

i. General remarks 

 

The patch-clamp technique is an extremely powerful and versatile method that allows the 

recording of macroscopic whole-cell- or microscopic single-channel currents flowing across 

biological membranes through ion channels. With no other technique, it is possible to observe 

the functioning of a single protein molecule in a lipid bilayer. Neher and Sakmann applied 

this technique (starting with 1976) to record for the first time ion currents through single 

channels in cell membranes, in the pico-Ampere range (1 pA = 10-12 A). Since then, several 

developments improved its applicability to virtually all biological preparations such as animal 

and plant cells, bacteria, yeast and cell organelles. Others had measured similar single-channel 

events in reconstituted lipid bilayers. For their discovery and development of this technique 

and its vast applicability, Neher and Sakmann were awarded the 1991 Nobel Prize in 

Physiology or Medicine (see the Nobel Lectures: Neher, 1992; Sakmann, 1992). In patch-

clamp experiments, a small patch of membrane is tightly sealed to a 1 µm diameter glass 

micropipette tip, allowing the measurement of membrane potential or membrane current 

across the patch of membrane (Fig. I).  

 

 
 
Fig. I A simple scheme of a patch-clamp experiment.  

 



                                                                                                                                  APPENDIX 

 80

If the piece of membrane contains a single channel, then the currents through that individual 

channel dominate the measured current across the membrane patch. Observations of single-

channel recordings give insight into the mechanisms responsible for transmembrane currents. 

Paired with cell and molecular biological approaches, the patch-clamp technique constitutes 

an indispensable pillar of modern cell biology. There are two approaches of this technique: 

one is the voltage-clamp procedure, that applies a voltage across the cell membrane and the 

resulting current is a direct measure of ion movements across a known membrane (Fig. I). The 

second approach is the current-clamp procedure, in which a current is applied as a stimulus 

and the ensuing changes in membrane potential are measured.  

 

ii. Five patch-clamp measurement configurations 

 

Neher and Sakmann and their co-workers soon discovered a simple way to improve the patch-

clamp recording technique. They used glass pipettes with super-clean ("fire-polished") tips in 

filtered solutions and applied slight under-pressure in the pipette. This procedure caused tight 

sealing of the membrane against the pipette tip measured in terms of resistance: GΩ sealing, 

(giga = 109). This measurement configuration is called cell-attached patch (CAP) (Fig. II), 

which allowed the recording of single-channel currents from the sealed patch with the intact 

cell still attached. The cell-attached measurement leaves the cell largely intact, and allows one 

to observe channels open and close, or to record action potentials extracellularly.  

 

 
(Modified from Hamill et al., 1981) 

 
Fig. II Patch-clamp configurations.  

 

This giga-seal procedure allowed Neher and Sakmann and their co-workers to obtain three 

other measurement configurations, including one for intracellular voltage- and current-clamp: 
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while maintaining the tight seal, a short pulse of suction or voltage breaks the membrane 

patch between the pipette solution and the cytoplasm (Hamill et al., 1981), without loss of the 

glass-to-membrane seal. Thus, an electrical connection is established between measuring 

pipette and cell, with the pipette-cell assembly well insulated against the outside bath. In this 

so-called whole-cell (WC) configuration (Fig. II), the applied pipette potential extends into 

the cell to voltage-clamp the plasma membrane. There is rapid diffusional exchange and 

equilibration between patch pipette and cell (Neher et al., 1983; Pusch and Neher, 1988). This 

provides control over the composition of the medium inside the cell. A cell can easily be 

loaded with ions, chelators, second messengers, fluorescent probes, etc., simply by including 

these substances in the measuring pipette (Neher, 1992). However, this exchange also implies 

that the internal milieu is disturbed, and that signaling cascades may be disrupted, because the 

contents of the recording pipette solution will begin to alter the composition of the cell 

cytoplasm (Hille, 2001). Alternatively, the amplifier could be used to inject current into the 

cell to current-clamp the cell membrane and to record voltage, for example to study action 

potentials of small excitable cells. Another achievement of the WC-configuration was the 

possibility to perfuse the intracellular compartment with the defined pipette solution. 

Although the WC-clamp configuration is no longer a clamp of a small membrane patch, 

electrophysiologists continued to refer to the WC-clamp configuration as a variant of the 

patch-clamp technique, probably because the WC-clamp starts with giga-sealing a small 

membrane patch. The giga-seal cell-attached patch, sometimes called an "on-cell" patch, can 

be excised from the cell by suddenly pulling the pipette away from the cell. Often the cell 

survives this hole-punching procedure by resealing of the damaged membrane, so that the 

excision can be repeated on the same cell. The excised patch is called an inside-out patch 

(IOP) (Fig. II), because the inside of the plasma membrane is now exposed to the external salt 

solution. In the excised patches, membrane patches are removed from their natural 

environment for optimal control of solution composition on both sides of the membrane. For 

example, this allows one to expose the cytoplasmic side to defined solutions in order, for 

example, to test for intracellular factors that control membrane channel activity. Another type 

of excised patch can be obtained, but now from the WC-configuration rather than the cell-

attached configuration. It is the outside-out patch (OOP), which is excised from the WC-

configuration by slowly pulling the pipette away from the WC (Fig. II). This maneuver first 

defines a thin fiber that eventually breaks to form a vesicle at the tip of the pipette. The 

configuration obtained is a micro-WC configuration, which allows one to study small 

populations of channels or single channels and to readily manipulate the “tiny cell” to 
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different bathing solutions for rapid perfusion. The fifth configuration is the permeabilized-

patch WC-configuration (ppWC) (not shown), in which the CAP is not actually ruptured 

for direct access to the inside of the cell, but made permeable by adding artificial ion channels 

(monovalent cation channel-forming antibiotics) via the pipette solution (Horn and Marty, 

1988). Examples of such antibiotics are amphotericin and nystatin, both produced by 

microorganisms. The great advantage of this configuration is that it allows intracellular 

voltage- and current-clamp measurements on relatively intact cells, i.e. cells with a near 

normal cytoplasmic composition. This is in contrast to the perfused WC-configuration.  

 

iii. The patch-clamp setup 

 

A patch-clamp setup consists of the amplifier main unit (1, in Fig. III), with the integrated 

interface board, the computer system (2), the head-stage (or probe; 3), and the microscope (4) 

with the cell chamber (5). The amplifier main unit contains the power supply, the signal 

processing electronics, the analog / digital and digital / analog converters and the connectors 

for analog and digital input / output. The probe is contained in a small enclosure, designed to 

be mounted on a micromanipulator (6) and directly attached to the recording electrode 

through a pipette holder (7). The recording electrode, which will advance inside a glass-

pipette (that contains the intracellular recording solution), is an Ag / AgCl electrode allowing 

ionic currents flowing in the pipette solution to be seen as electrical currents by the amplifier 

head-stage. A second Ag / AgCl electrode in the bath solution is connected to the head-stage 

ground terminal that is directly connected to the signal ground of the main unit. The 

micromanipulator and the micromanipulator unit – consisting of the keypad (8) and the 

control system (9) – control the movement of the pipette holder in the submicrometer range. 

The microscope is mounted on an appropriate vibration isolation table (10), to dump out 

undesired microscopic movements and vibrations. The cell chamber (or cell bath) is mounted 

onto the stage of the microscope, and will contain the extracellular solution that will feed the 

cells patched during experiments. A perfusion pump (not with this setup) may be used for 

continuously running the extracellular solution through the cell chamber during recordings. 

The microscope and the vibration isolation table are placed into a Faraday cage (11), used as a 

shield against the electromagnetic radiation present in the environment. Because of the 

extreme sensitivity of the setup components, all surfaces that will be near the probe input are 

grounded, in order to minimize the noise interference during recordings. The microscope and 

its stage are also grounded, because they constitute typical conducting surfaces nearest the 
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pipette and holder. In experiments that deal with fluorescent cells, a fluorescence lamp (12) is 

also used. In experiments in which a fast application of a certain drug is desired, the setup is 

additionally equipped with a fast-pressure application system (13), directly controlled by a 

voltage command valve control system (14). To continuously monitoring recordings, an 

oscilloscope is usually used (15, in Fig. III).  

 

 
 

Fig. III Patch-clamp setup. 
 

iv. The main steps during a patch-clamp experiment 

 

Initially, the electrode is brought down and introduced into the bath with positive pressure 

applied to the pipette. The cell is then approached carefully, and, as the pipette tip presses the 

cell, the positive pressure is removed and gentle suction is applied, until the giga-seal is 

formed. After the formation of the giga-seal, which represents the cell-attached configuration, 

the suction is removed. If single-channel currents (in the range of a few pA) are the object of 

the study, the procedure stops here, and the recording is started. When ion currents of the 

entire cell are desired, after the cell-attached configuration is attained, by applying short 

pulses of suction or voltage to the interior of the pipette, the cell membrane is ruptured and 

the whole-cell mode is obtained. The recording can be started, and an average response of all 

channels present into the cell membrane can be obtained (usually, in the range of hundreds or 

thousands of pA). 
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