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2 ABSTRACTS 
 

2.1 PLP-CGT TRANSGENIC MICE 
 

Galactosylceramide (GalC) and its sulfated derivative (sulfatide) are major lipid 

components of the myelin membrane constituting about 30% of its lipid 

content. They fulfill essential functions in oligodendrocyte differentiation, 

formation and maintenance of myelin. Transgenic mice overexpressing UDP-

galactose: ceramide galactosyltransferase (CGT) in oligodendrocytes under 

the control of the proteolipid protein (PLP) promoter were generated. Elevated 

CGT activity led to a significant increase in non-hydroxy fatty acid 

galactosylceramide. In contrast, however, a substantial decrease in the 

normally predominant �-hydroxy fatty acid form of GalC was observed. As a 

consequence, total GalC levels were only marginally elevated in the transgenic 

mice. These mice exhibit deficits in motor behavior and develop a progressive 

hind limbs paralysis. In vitro study of oligodendrocyte development indicates 

an increase in oligodendrocyte number. This result was confirmed in vivo, 

where a significant increase of PLP positive cells was observed in the corpus 

callosum of PLP-CGT mice. Surprisingly, more cells expressing the MBP 

protein in vitro did not have the morphology of a myelin-forming 

oligodendrocyte, indicating a possible inhibition of the synthesis of the myelin 

membrane in vitro. Ultrastructural analysis revealed severe impairment in the 

formation of compact myelin and a progressive demyelination in the central 

nervous system, accompanied by axonal degeneration, vacuolation and 

massive astrogliosis. The composition of myelin proteins was unchanged with 

the exception of a significant progressive up regulation of the raft-associated 

MAL protein. MAL up regulation was not due to an increase in mRNA 

expression, suggesting reduced degradation of MAL. Taken together these 

results strongly suggest that the HFA- to NFA-GalC ratio is an important factor 

in the formation and maintenance of compact myelin. 
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2.2 PLP-PST TRANSGENIC MICE 
 

Oligodendrocyte differentiation and myelin formation are two subsequent 

cellular mechanisms timely separated. During development, oligodendrocyte 

progenitor cells migrate from their place of origin to their destination, 

expressing a high level of the polysialic acid (PSA). PSA is a long linear 

homopolymer of sialic acid. In the vertebrate embryo, PSA appears exclusively 

attached covalently to a cell surface protein called neural cell adhesion 

molecule (NCAM). In this context, PSA has been shown to be an important 

modulator of cell interactions during development, for example, in axonal 

pathfinding and branching, response of axons to loss of synaptic activity and in 

the migration of muscle cells. The function of PSA has been proposed to 

influence not only interactions mediated by NCAM itself, but cell-cell 

interactions in general. PSA is also known to be involved in the migration, 

proliferation and differentiation of oligodendrocyte precursors (OPCs). 

In order to investigate potential physiological consequences of increased level of 

polysialic acid (PSA) in oligodendrocytes, we generated transgenic mice that 

overexpress polysialyltransferase (PST/ST8Sia IV) under the control of the proteolipid 

protein (PLP) promoter. In the central nervous system of PLP-PST mice (PLP-PST), 

PST was overexpressed by oligodendrocytes. Furthermore, increase of PSA 

concentration in the CNS induces no behavioral deficit of PLP-PST mice. Most 

importantly, elevation of PSA concentration induces increase of differentiated 

oligodendrocytes of the spinal cord and brainstem, but a reduction of oligodendrocyte 

numbers in the corpus callosum. The number of oligodendrocyte progenitor cells was 

unchanged in all the brain regions investigated. Moreover, biochemical analysis 

indicates reduction of MBP level during myelination but normal expression of other 

oligodendrocyte/myelin specific proteins. Structural analysis of the myelin sheath 

indicates a normal myelination in the CNS and PNS of PLP-PST transgenic mice. 

Importantly, PLP-PST mice demyelinate at adult age. Demyelination was 

accompanied by redundant myelinated axons and axonal degeneration leading to 

vacuolation. 
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3 INTRODUCTION 
 

The mammalian brain develops as a tube containing a fluid-filled ventricular 

compartment. As the development of the brain proceeds, new zones, among 

which the subventricular zone (SVZ), appears and gives rise to many glial cells 

(Lois and Alvarez-Buylla, 1993; Doetsch and Alvarez-Buylla, 1996; Barres, 

1999). Oligodendrocyte precursor cells (OPCs) develop from the 

neuroepithelial precursors that line the lumen of the spinal cord and the 

ventricles of the brain. OPCs from the spinal cord and brainstem are 

generated in the sub-domain of the VZ near the floor plate and those from the 

optic nerve are generated in a specialized part of the ventricular zone (VZ) (Yu 

et al., 1994; Ono et al., 1995, 1997). In all cases, OPCs migrate from their 

place of birth to their destination, where they differentiate. Migrating OPCs 

express markers such as platelet derived growth factor (PDGF), basic 

fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) that 

stimulates their motility and polysialic acid (PSA) (Milner et al., 1997). PSA is 

constituted of long chains of α-2,8 sialic acid which is negatively charged and 

posttranslationally modifies the neural cell adhesion molecule (NCAM). 

Furthermore, PSA is involved in axon guidance, interferes with the adhesive 

forces, thus promoting changes in cell interactions, and thereby facilitates 

plasticity in the structure and function of the nervous system (Rutishauser et 

al., 1988; Rutishauser and Landmesser, 1996; Eckhardt et al., 2000). At the 

destination, OPCs settle along fiber tracts of the future white matter of the 

CNS and acquire the capacity to differentiate. Differentiated oligodendrocytes 

are characterized by the change of their morphology, the expression of 

different markers such as proteins and lipids and the synthesis of the myelin 

membrane, which comprises 30% of galactosylceramide and sulfatide (Taylor 

et al., 2002). The high level of GalC and sulfatide in the myelin sheath leads to 

the prediction that they play an important role in OL and myelin biology. GalC 

and sulfatide regulate oligodendrocyte differentiation (Bansal and Pfeiffer, 

1989; Bansal et al., 1999; Hirahara et al., 2004) and participate in the 
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synthesis of a compact myelin sheath. Mice lacking GalC and sulfatide are 

able to form apparently normal myelin, which, however, exhibits subtle 

structural abnormalities (Bosio et al., 1996; Coetzee et al., 1996). Myelin of 

these mice is thinner and unstable (Bosio et al., 1998a; Dupree et al., 1998; 

Honke et al., 2002). Disorganized paranodal regions and multiple myelinated 

axons in CGT knock-out mice suggest altered axo-glial interactions (Marcus 

and Popko, 2002). A functional consequence of these alterations is a 

significantly reduced nerve conduction velocity (Coetzee et al., 1996). 

Compensatory upregulation of HFA-glucosylceramide in CGT deficient mice, 

which is normally undetectable, seems to prevent more severe symptoms 

(Coetzee et al., 1996). 

To investigate the effects due to an increase of GalC and PSA concentration 

on the oligodendrocyte behavior and myelin formation, transgenic mice 

overexpressing PST or CGT in the CNS have been generated under the 

control of the proteolipid protein (PLP) promoter. Transgenic mice over 

expressing PST in the CNS show a significant increase of the level of 

oligodendrocytes in the spinal cord and brain stem during myelination. 

Biochemically, PST mice show no changes in the myelin protein concentration, 

except MBP, for which a mild decrease in the protein and mRNA level was 

observed. Structurally, mice overexpressing PST in the CNS develop normal 

myelin content and structure during myelination and show demyelination and 

aberrant myelin structure at the adult age. 

Concerning PLP-CGT transgenic mice, inversion of the HFA:NFA-GalC ratio 

were observed. This inversion of lipids ratio was accompanied by formation of 

apparently unstable and uncompacted myelin, and a progressive 

demyelination. This results strongly suggest that the HFA:NFA-GalC ratio is a 

critical factor in the formation and maintenance of compact myelin. In addition 

to the change of the HFA:NFA-GalC ratio, a significant upregulation of the 

MAL protein was observed in these mice. In vitro, transgenic CGT cells show 

an increase of oligodendocyte number, but a low amount of the myelin forming 

cells according to morphological analysis, indicating that cells overexpressing 

CGT were not able to differentiate fully. This result was confirmed in vivo by in 
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situ hybridization where a significant increase in PLP positive cells was 

observed in the corpus callosum. 
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4 LITERATURE REVIEW 
 

During development, directed migration of oligodendrocyte and neuron 

precursor cells is essential for myelin formation in the central nervous system 

(CNS). Progenitors expressing high amount of PSA are generated in the 

ventricular zone and migrate to their destinations (Lee et al., 2000). Cell 

adhesion molecules such as integrins, cadherins and NCAM, in particular its 

embryonic polysialylated isoform (PSA-NCAM), have also been shown to be 

implicated in the control of the migration (Wang et al., 1994; Blaschuk et al., 

2000).  

At their destination, migrated cells start to differentiate by synthesizing different 

antigens (proteins and lipids) at each stage and finally the myelin membrane. 

 

4.1. Genomic organization and molecular characteristics of mouse 
polysialyltransferase (PST-1/ST8SiaIV) and rat UDP-galactose: 
ceramide galactosyltransferase (CGT). 
4.1.1 Description of the polysialyltransferases 
 

The addition of polysialic acid residues to the terminus of glycoprotein 

oligosaccharides is a developmentally and posttranslationally regulated 

process (Kiss and Rougon, 1997; Mühlenhoff et al., 1998). In the CNS, two 

enzymes are responsible for the polysialylation of NCAM: α-2,8- 

polysialyltransferases ST8Sia IV/PST-1 and ST8Sia II/STX (Brett et al., 2001; 

Franceschini et al., 2001; Mühlenhoff et al., 1996). ST8Sia II (STX) and 

ST8Sia IV (PST-1) are polysialic acid synthases that catalyze polysialic acid 

formation on NCAM in vivo and in vitro (Kitazume-Kawaguchi, 2001) (Fig. 1). 

Genotypically, ST8Sia IV is composed of 5 exons separated from each other 

by 4 introns that contribute to the expression of a 5.2 kb mRNA after splicing. 

Two non-coding regions are situated in exon 1 and 5. The expression of PST 

mRNA is regulated by a promoter that lacks TATA- and CCAAT-like 

sequences. Analysis of this promoter indicates that the region between 
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nucleotide –443 and –162 is sufficient for expression (Eckhardt and Gerady- 
Schahn, 1998). cDNA synthesized by reverse transcription, indicated a size of 
2026 base pairs (bp) with an open reading frame (ORF) of 1080 bp encoding a 
protein of 359 amino acids with a predicted molecular weight of about 41.2 kD 
(Eckhardt et al., 1995). Primary structure shows characteristic features of the 
sialyltransferase family, containing two motifs as described by Drickamer 
(1993). The presence of 13 hydrophobic amino acids at its N-terminal domain 
suggests that PST is retained in the Golgi (Eckhardt et al., 1995). Amino acid 
analysis demonstrates that PST shares 59% homology with STX/ST8Sia II 
(Livingston and Paulson, 1993), the sialyltransferase of unknown specificity, 
and 28% with GD3 synthase (Blackman et al., 1991). 
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Fig.1 Reaction of the polymerization of the polysialic acid on NCAM. The scheme represents the 
animal structure of oligosaccharides of the NCAM molecule recognized by PST-1, and the  
composition of the polysialylated cores as described by Mühlenhoff et al., 1996 
 
4.1.2 Description of UDP-galactose: ceramide galactosyltransferase and 
the fatty acid 2-hydroxylade 
 
The myelin sheaths of both CNS and peripheral nervous system (PNS) are a 
multilayer membrane system consisting of 70 to 85% lipids and 15 to 30% 
proteins (Morell et al., 1994). Myelin synthesis requires the co-ordinated 
expression of genes encoding the myelin structural proteins, lipids and 
biosynthetic enzymes such as UPD-galactose: ceremide galactosyltransferase 
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(CGT). CGT transfers galactose to ceramide to form the galactolipids 

galactosylceramide (GalC) (fig. 2), which is composed of two isoforms, 

differing from each other by the presence or absence of a hydroxy group on 

the fatty acid. The 2-hydroxylation of the fatty acid occurs during de novo 

ceramide synthesis and is catalyzed by the fatty acid 2-hydroxylase (FA2H). 

The mammalian FA2H is a 42.8 kDa protein containing 372 amino acids 

sharing 36 % identity and 46 % similarity with the yeast Fah1 protein 

(Anderson et al. 2004). FA2H is co-localized with CGT to the endoplasmic 

reticulum (Eckhardt et al., 2005), indicating that these two enzymes work in 

concert in the synthesis of the two isoforms of GalC, since ceramide is the 

substrate of CGT. Until recently, it was not clear whether the FA2H adds the 

hydroxyl group on a free fatty acid or on the ceramide. In his article, Anderson 

et al. (2004) have demonstrated that the hydroxyl group is added on the free 

fatty acid during de novo synthesis of ceramide. 
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Analysis of mouse genome has shown that CGT occupies the band E3-F1 of 

chromosome 3. Structurally, the mouse CGT gene is composed of 6 exons 

that span a minimum of 70 kb of DNA. The 5´-untranslated region is encoded 

by an exon located 25 kb upstream of the first protein-encoding exon. Protein 

analysis coupled to DNA analysis shows that the first exon is non-coding and 

the remaining five exons contain the coding region and the 3´-UTR. Exon 2 

(822 nt) is the one which codes for about half of the protein (Coetzee et al. 

1996). 

Promoter analysis of myelin-specific genes has shown many ubiquitous and 

specific cis- and trans-acting factors that regulate tissue specificity. Analysis of 

CGT promoter indicates that only a few hundred base pairs spanning from –

527 to – 98 were able to direct the specificity of the CGT expression in 

oligodendrocytes (Yonemasu et al., 1998). Luciferase reporter data 

(Yonemasu et al., 1998) show that this region (–527 to –98) contains putative 

positive regulatory sequences such as an Olf-1 binding site (at –492) 

[(Kudrycki et al., 1993); the olfactory-specific factor contributes to the specific 

expression of an olfactory-specific gene. The Olf-1-binding consensus 

sequence was defined as TCCCC (A/T) NGGAG], Krox20/24 binding site (at –

119 GAGGGGGCG –111, –113 GCGGGCG –106) [Chavier et al., 1990; Taira 

and Baraban, 1997. Krox20 is a mouse zinc finger gene expressed in a 

segment-specific manner and restricted to the early PNS and Krox24 is 

expressed both in the CNS and PNS]. The CGT promoter also contains a 

purine-rich region (–127 to –116), which is important for the regulation of CGT 

gene expression because of its extraordinary high conservation among many 

myelin-specific gene promoters. For example: In PLP gene promoter, two sites 

were found to be conserved at the same position (–75 to –63) in the mouse, 

rat and human. Homologous sequences have been found in other myelin 

genes such as 2´,3´-cyclic nucleotide 3´-phosphodiesterase (CNPase) at –173 

and –160 in human, MBP at –51, for both human and mouse, myelin-

associated glycoprotein (MAG) at –25 and +103 in mouse and rat, myelin 

oligodendrocyte glycoprotein (MOG) at –293 (Hudson et al. 1996). As in the 

other myelin-specific gene promoters [mouse MAG promoter (69% in –169 to 
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–5) and PLP promoter (60% in –87 to –41)], a GC rich domain is also found in 

the CGT promoter (Yonemasu et al. 1998). 

The CGT promoter is also characterized by the presence of sequences 

containing negative regulatory elements. These sequences are characterized 

by the binding site for the suppressed-cyclic AMP-inducible-protein (SCIP) (He 

and Rosenfeld, 1991) (–709 to –527). The rat CGT promoter controls the 

expression of a 4.6 kb mRNA, which gives rise to a cDNA with an ORF of 

1623 bp which codes for a protein of 541 amino acids with a molecular mass 

of 61.126 kDa (Stahl et al., 1994). CGT is a class I integral membrane protein 

containing three putative glycosylation sites, a hydrophobic carboxy-terminus, 

and localized in the endoplasmic reticulum (Schulte and Stoffel, 1993; Schulte 

and Stoffel, 1995; Sprong et al., 1998). 

 

4.2 Functions and structures of both polysialic acid and CGT 
products. 

4.2.1 Functions and structure of PSA. 
 

In mammalian cells, the expression of PSA is developmentally regulated and 

is found at highest levels in the embryonic and neonatal brain attached to 

NCAM (Finne et al. 1987). PSA is also expressed in other embryonic and 

neonatal tissues such as heart and kidney (Finne et al., 1987; Roth et al., 

1987). In the adult animal brain, the level of PSA is decreased and maintained 

in selected areas such as hippocampus and olfactory system (Seki and Arai 

1993; Cremer et al., 2000). PSA is also expressed on the surface of cancer 

cells such as lung carcinoma (Kibbelaar et al. 1989; Komminoth et al., 1991), 

Wilm´s tumor (Roth et al., 1988) and neuroblastomas (Livingstone et al., 1988; 

Hildebrandt et al., 1998; Figarella-Branger et al., 1990), where it may play an 

anti-adhesive role and promote cell growth and metastasis (Fukuda, 1996; 

Scheidegger et al., 1994). In general, PSA has an anti-adhesive role in the 

CNS, promotes plasticity in cell interactions, is critical for axon guidance and 

pathfinding, neurite outgrowth, and cell migration (Bruses and Rutishauser, 

2001; Rutishauser and Landmesser, 1996; Rutishauser, 1996; Durbec and 
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Cremer, 2001; Kiss and Rougon, 1997). Data from either NCAM or 

PST/ST8Sia IV knockout mice indicates that, PSA promotes long term 

potentiation (Cremer et al., 1994; Eckhardt et al. 2000) and others have shown 

that polysialylated NCAM modulates cellular signal transduction by organizing 

cell surface receptors and sequestering ligands (Durbec and Cremer, 2001). 

Structurally, PSA is composed of monomers of derivatives of nine carbon 

sugar neuraminic acid. The three major building units of PSA are 5-N-

acetylneuraminic acid (Neu5Ac), 5-N-glycolylneuraminic acid (Neu5Gc) and 5-

deamino-3, 5-dideoxyneuraminic acid (2-keto-3-deoxynonulosonic acid, Kdn) 

(fig. 3). 

In mammals, PSA has exclusive homopolymeric structures of sialic acids 

joined by α-2,8-glycosidic bonds and the predominant unit is shown to be the 

Neu5Ac and Kdn. Readily synthesized PSA chain form a large, negatively and 

highly hydrated structure (Mühlenhoff et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3: Structure of the three major building units of polysialic acid: 5-N-acetylneuraminic acid 
(Neu5Ac), 5-N-glycolylneuraminic acid (Neu5Gc) and 5-deamino-3, 5-dideoxyneuraminic acid (2-keto-
3-deoxynonulosonic) acid, (Kdn) (Mühlenhoff et al., 1998). 
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4.2.2 Functions and structures of GalC and MGDG. 
 

Galactosylation of ceramide and 1,2-diacylglyceride occurs in the endoplasmic 

reticulum lumen by a galactosyltransferase that uses UDP-galactose to form 

both GalC and monogalactosyldiacylglycerol (MGDG). GalC and its sulfated 

derivative (sulfatide) are galactolipids synthesized by oligodendrocytes in the 

CNS and Schwann cells in the PNS and comprise 20 and 7% of total myelin 

lipids, respectively, in the CNS (Taylor et al., 2003). In the last 20 years, GalC 

function was intensively investigated, both in vitro and in vivo. In vitro data 

indicate that GalC and sulfatide play a role in the mediation of calcium 

responses in oligodendrocytes (Dyer and Benjamins, 1991), in the cellular 

events like cell-axon interaction (Ranscht et al., 1987), in oligodendrocyte 

differentiation (Bansal and Pfeiffer, 1989) and the membrane sheath outgrowth 

(Dyer and Benjamins, 1990). The isolation of the gene encoding CGT has 

enabled the genetic analysis of its function. Particularly, Coetzee et al. (1996) 

and Bosio et al. (1996) used a gene targeting approach in embryonic stem 

cells to generate mutant mice with an inactive CGT gene. Analysis of CGT-null 

mice suggests that GalC plays an important role in the myelin structure and 

function, notably in the paranodal formation, in positioning of the myelinated 

internodal segment, the interaction of myelinated cells with axons and the 

stability of myelin structure. 

Structurally, GalC is constituted of the sphingosine backbone, which is 

synthesized by the condensation of the serine with palmitate. The addition of a 

fatty acid to the sphingosine gives rise to ceramide, which is the substrate 

used to generate GalC. GalC occurs in two isoforms with a ratio of about ½, 

respectively, for NFA-GalC and HFA-GalC (Koul et al., 1988; Nonaka and 

Kishimoto, 1979; Shimomura et al., 1984). The structural analysis shows that 

differences between the two isoforms reside in the hydroxylation of the fatty 

acids. Cell fractionation data show a relative higher activity of CGT for the 

synthesis of HFA-GalC in the fraction enriched in Golgi markers than the one 

enriched in the endoplasmic reticulum markers. In contrast, the activity of CGT 

for the synthesis of NFA-GalC was higher in the ER-fraction (Vos et al., 1994). 
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In addition, the activity of CGT for the synthesis of the HFA-GalC is found in 

the myelin membrane (Costantino-Ceccarini and Suzuki, 1975; Koul et al., 

1980), which contains in contrast a negligible activity for the synthesis of NFA-

GalC (Koul et al., 1980). 

MGDG [1,2-diacyl-0-(β-D-galactopyranosyl)-sn-glycerol] is formed by the 

transfer of galactose from UDP-galactose to 1,2-diacylglycerol (for structure, 

see Fig. 4). in the presence of the microsomal fraction of rat brain (Wenger et 

al., 1968; Inoue et al., 1971). Knocking out the CGT gene completely depletes 

the myelin membrane not only from GalC and sulfatide, but also from MGDG 

(Stoffel and Bosio, 1997), indicating that CGT is the enzyme responsible for 

the synthesis of GalC and MGDG. Wenger et al. (1968) and Inoue et al. 

(1971), also demonstrated that MGDG biosynthesis by the microsomal fraction 

of brain was non existent before 10 days of age, reaches a higher level at 17 

days of age, and decreased to lower levels with age. Deshmukh et al (1971) 

also demonstrated that the accumulation of MGDG correlated with the 

myelination period. Further data (Schmidt and Althaus, 1994) indicate that 

MGDG is a marker of myelination and activates the protein kinase C during the 

formation of myelin. 

 

 

 

 

 

 

 

 
Fig. 4: Structure of the monogalactosyldiacylglycerol. 
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homogenous cell mass by a process named gastrulation in which the 

ectoderm is generated (Odell et al. 1981; Wilt 1987). By a process called 

neurulation, which occurs during the early embryogenesis, the dorsal midline 

of the ectoderm rolls itself into a tube and its edges stick together and form the 

neural tube, a dorsal hollow nerve cord that constitutes the rudiment of the 

entire adult CNS (Colas and Schoenwolf, 2001). During the next stage of 

development, called “histogenesis” (formation of tissues), cells of the nervous 

system proliferate, migrate from the center of the neural tube to the peripheral 

location, mature by growth of the processes, myelinate and develop synapses 

with the other cells. 

 

4.3.1 Neurons 
 

The development of the brain after birth is due to an increase of the number of 

neurons, and supporting cells (glia), the development of neural processes and 

synapses, and the generation of myelin. Morphologically, mature neurons are 

constituted of the cell body, dendrites and axons. Each part plays a specific 

role in the neuronal function. For example, dendrites carry impulses to the 

main part of the neuron (cell body), while axons send impulses away from the 

neuron. Axons can be distinguished from dendrites by their smooth surface, 

and branches that appear farther from the cell body than those of dendrites. In 

addition, there is usually only one axon per cell body, whereas there are 

multiple dendrites. Different types of neurons have different morphologies. 

Also in the communicating role, neurons transmit signals to neighboring 

neurons via specialized connections called synapses. During transmission of a 

specific signal, impulses are sent from one neuron to the next throughout 

axons by migration of neurotransmitter-filled vesicles to the pre-synaptic 

membrane, followed by membrane fusion and release of neurotransmitters. In 

general, the fundamental task of the neuron is to receive, conduct, and 

transmit signals (Ramón y Cajal, 1937). 
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4.3.2 Glial cells 
 

As the development of the brain proceeds, a new zone appears right beneath 

the ventricular zone, the sub ventricular zone (SVZ), which gives rise to many 

glial cells. Some of these cells migrate into the olfactory bulb where they give 

rise to neurons (Lois and Alvarez-Buylla, 1993; Doetsch and Alvarez-Buylla, 

1996). In addition to neurons, the nervous system contains five major different 

types of non-neuronal cells, or “glia” cells. Glial cells actually form a bulk of 

cells of the nervous system, comprising over 90% of the total cells. Glial cell 

types include astrocytes, microglia, Schwann cells, oligodendroglia and 

satellite cells. 

 

4.3.2.1 Astrocytes 
 

Astrocytes can easily be distinguished morphologically by their star shape and 

are found in primary cultures of brain cells. Astrocytes have been classified as 

glial cell according to various criteria such as structures, locations, origins, 

antigenic profile and functions. On the basis of structure and function, two 

types of astrocytes can be identified: (1) fibrous astrocytes – these are 

predominantly present in the white matter and have small cell bodies with 

numerous extensions. A large number of microfilaments are characteristically 

present in the cytoplasm of these cells. (2) Protoplasmic astrocytes – these 

are predominantly present in the gray matter and have few microfilaments in 

their cytoplasm. These two types of astrocytes express different antigens and 

originate from two distinct precursor cells. A unique type of astrocyte, called 

the radial cells, appears transiently during embryogenesis of the cerebral 

cortex. A functionally distinct class of astrocytes called reactive astrocytes can 

be identified at the site of injury in the CNS (Ridet et al., 1997). 

Functionally, astrocytes provide support during neural development, 

embryogenesis of the cerebral cortex, aid in maintaining the ionic 

homeostasis, clear the extracellular K+, prevent K+ accumulation during 

neuronal stimulation, provide nutritional support to neurons and help in 
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maintaining the blood brain barrier by extending “foot process” that may almost 

completely surround the brain capillaries. Furthermore, astrocytes are known 

to preserve host tissue following injury by secreting neurotrophic factors that 

protect neurons from damaging and also several proteases and protease 

inhibitors that modulate growth of neurites (Powell and Geller, 1999). 

 

4.3.2.2 Microglia 
 

Among glial cell types of the CNS, microglia are macrophage-like cells of the 

brain that are capable of serving typical phagocytic functions. Although it is 

generally accepted that they are derived from mesoderm (del Rio-Hortega, 

1932; for a contrary view, see Schelper and Adrian, 1986; Fedoroff, 1995), 

their developmental origin remains debatable (Theele and Streit, 1993; 

Altman, 1994). The two major views being that they derive either from 

neuroepithelial cells (Lewis, 1968; Neuhaus and Federoff, 1994) or from 

hematopoietic cells (ex. monocytes) (Perry and Gordon, 1988; Ling and Wong, 

1993; Ling, 1979; Streit et al., 1988). Considering the last point of view, it is not 

clear whether they entered the fetal brain directly from a distinct pool of 

myelomonocyte stem cells or first entered the blood stream as circulatory 

monocytes (reviewed in Ling and Wong, 1993). However, the essential 

function of the ameboid microglia is considered to phagocytise dead cells, 

including neurons which undergo apoptosis in late embryonic to early 

postnatal stages (Nakajima and Kohsaka, 2001). As the brain develops 

ameboid microglia, decrease in number and appear to be replaced by 

increasing numbers of ramified microglia, which have small cell bodies with 

long branched processes. Although amoeboid microglia is generally believed 

to transform into ramified microglia during brain development, the exact 

relationship between these two types of microglia is still unclear. Ramified 

microglia is thought to be functionally inactive or in a resting state and are 

called “resting microglia”. As long as the brain is maintained in healthy 

condition, the microglia cell density and ramified morphology is sustained (see 

Nakajima and Kohsaka, 2001). 
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4.3.2.3 Oligodendrocytes 
 

During development of the vertebrate CNS, oligodendrocytes, the myelin-

forming cells in the CNS, originate from the neuroepithelial cells of the neural 

tube. As mentioned above, during the development of the neural tube, two 

new zones appear: the ventricular zone and the sub ventricular zone (SVZ), 

which is the germinal matrix of the forebrain (Doetsch et al., 1997). Lineage 

tracing studies of perinatal SVZ cells using stereotactically injected retrovirus 

support the view that the majority of progenitors within this germinal matrix are 

glial precursors, that generate astrocytes and oligodendrocytes (Luskin et al., 

1988; Levison and Goldman, 1993; McKerracher et al., 1994). Although the 

majority of cells give rise to homogeneous progeny, some SVZ cells give rise 

to both oligodendrocytes and astrocytes, and rare cells will develop into both 

neurons and glia (Levison and Goldman, 1993). Nevertheless, according to 

other data, it doesn’t seem that all oligodendrocytes originate from the same 

area of the SVZ. In the neonatal rat cerebrum, oligodendrocytes arise 

postnatally from the lateral ventricles of the SVZ (Levison and Goldman, 1993; 

Zerlin et al., 1995). Similarly, several studies using transgenic mice (plp-LacZ) 

(Spassky et al., 1998), the 5-bromo-2´-deoxyuridine (BrdU) incorporation 

assay (McMahon and MacDermott, 2001) and a special dye (Dil) associated 

with specific markers of the oligodendrocytes lineage (Warf et al. 1991), 

demonstrate that oligodendrocytes of the spinal cord arise from the ventral and 

dorsal VZ after birth and migrate to the peripheral regions of the cord. 

However, glial precursors use radial glia to migrate from their onset sites to the 

sites of the differentiation and maturation (O´Rourke et al., 1992). The most 

important function of oligodendrocytes in the CNS and Schwann cells in the 

PNS is to synthesize the myelin sheath which wraps axons at certain positions 

in order to increase the nerve conduction velocity in a saltatory manner. 
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4.3.2.3.1 Differentiation and maturation of oligodendrocyte progenitors 
 

Oligodendrocyte appear subsequently along the spinal cord in a rostrocaudal 

wave of differentiation, first in the ventral funiculus and later in the dorsal and 

lateral funiculi, the large axonal bundles that become the white matter tracts of 

the spinal cord (Yu et al., 1994). Post mitotic oligodendrocytes appear in the 

forebrain only after birth. Apart from their origin, differentiation and maturation 

of oligodendrocytes proceeds through distinct stages, which can be identified 

by dramatic changes in cell morphology and by various markers, some of 

which are characteristic myelin components. Numerous stages have been 

reported (Fig. 5), but they can be simplified and placed into two main groups: 

an immature stage (also called premyelinating stage), where oligodendrocytes 

are post mitotic but do not myelinate yet, and a mature myelinating stage. Note 

that differentiation of mouse oligodendrocytes is similar to that of rat after the 

stage at which O4 is acquired, whereas mouse progenitors show greater 

variety at the level of progenitor and pre-oligodendrocytes stages, both in their 

morphology and in the expression of markers, such as A2B5 and GD3 

(Fanarraga et al., 1995). 
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Fig. 5: Schematic representation of oligodendrocyte development: Schematic drawing of the 
morphological and antigenic progression from precursor cells to myelinating matures 
oligodendrocytes, through progenitors, pre-oligodendrocytes, and immature non-myelinating 
oligodendrocytes in the rat. Stage-specific markers are boxed. RNA is in italics. Scheme was adapted 
from Baumann and Pham-Dinh, 2001. 
 
In all cases, at the progenitor stages, oligodendrocytes express different cell 

surface or intracellular markers like gangliosides, which are recognized by the 

A2B5 antibody (Eisenbarth et al. 1979), ganglioside GD3, platelet-derived 

growth factor α-receptor and polysialylated neural cell adhesion molecule 

(PSA-NCAM) for example (Grinspan and Franceschini, 1995; Hardy and 

Reynolds, 1991). 

During the next phase of differentiation, the progenitors loose their migratory 

capacity and some intracellular markers such as A2B5, ganglioside GD3 
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(Rettig and Old, 1989) and finally are not more able to react with growth 

factors like FGF and PDGF (Fok-Seang and Miller, 1994). At this stage of 

differentiation, oligodendrocytes are called pre-oligodendrocytes (Hardy and 

Reynolds, 1993), which are morphologically characterized by the loss of 

bipolar shape, acquisition of multi-process shape and also featured by the 

expression of new kinds of antigenic markers which are important for their 

maturation and survival. The cellular markers appearing at this stage are O4, 

RIP, GalC, DM-20 and CNPase. Following this stage of differentiation, 

oligodendrocytes are characterized by an increase in the process number and 

the expression of the terminal markers such MBP, PLP, MAG, which are 

important in the synthesis of the myelin membrane. 

 

4.4 Myelination 
 

Myelination is a developmentally regulated process involving the co-ordination 

of expression of genes encoding both myelin proteins and the enzymes 

involved in myelin lipid metabolism (Campagnoni and Macklin, 1988). This 

process is undertaken by oligodendrocytes and Schwann cells in the CNS and 

PNS, respectively. It also includes the process of neuron-glia cell recognition, 

molecular assembly of myelin components (lipids and proteins) and 

compaction of membranes to form lamellar structures called myelin (Fig. 6). 

During the nervous system development, myelinogenesis starts in rodents 

after birth and within a couple of days large amounts of plasma membranes 

are synthesized by oligodendrocytes and Schwann cells, respectively, in the 

CNS and PNS (Frank et al., 1999). The myelinating cells extend processes to 

recognize neuronal axons by cell surface receptors. The receptors generate 

intracellular signals in oligodendrocytes (Umemori et al., 1999) and Schwann 

cells, which enable them to wrap around axons to form myelin. The 

mechanism of myelin formation comprises sequential steps involving migration 

of oligodendrocytes to the axons that are to be myelinated, the adhesion of the 

oligodendrocyte process to the axon and the spiraling of the membrane 
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around axons, with a predetermined number of myelin sheaths and the 

recognition of the space not to be myelinated (the node of ranvier). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Myelination of PNS and CNS axon. The principal function of oligodendrocytes is to provide 
support to axons and to produce the myelin sheath, which insulates axons.  Myelin consists of 80% 
lipid and 20% protein and allows for the efficient conduction of action potentials down the axon.  
Oligodendrocytes unlike Schwann cells of the PNS, form segments of myelin sheaths of numerous 
neurons simultaneously. As can be seen in the above illustration, the processes of a given 
oligodendrocyte wrap themselves around portions of the surrounding axons.  As each process wraps 
itself around, it forms layers of myelin. Each process thus becomes a segment of the axon's myelin 
sheath (Schematic diagram from J. Martin Collinson., School of Medical Sciences, University of 
Aberdeen, Scotland, UK. m.collinson@abdn.ac.uk). 
 
The signal indicating which axon should be myelinated remains unclear. 

Studies in the CNS support the idea of a critical diameter for myelination, but 

individual axons are not myelinated along their entire length simultaneously, 

indicating that other factors are involved (Suzuki and Raisman, 1994). Axons 

probably participates in the regulation of this event, since it is known that 

axons regulate myelin thickness and that single oligodendrocyte myelinates, 

simultaneously, axons with different diameters (Waxman and Sims, 1984). The 

relation of astrocytes with myelination has been described by studying mice 

carrying a null mutation for the glial fibrilary acidic protein (GFAP) (Liedtke et 

al., 1996). Investigators have demonstrated that these mice display abnormal 

myelination, and non-myelinated axons are numerous in the optic nerve and 

spinal cord. The altered white matter vascularization, possibly linked to the 

abnormal astrocytic processes, may be related to the dysmyelination 
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observed. Moreover, transgenic mice carrying several copies of the human 

GFAP gene die by the second postnatal day from a fatal encephalopathy 

(Brenner et al., 2001). These data and others show that astrocyte as well as 

neuron and other oligodendrocyte markers represent factors that regulate the 

myelin formation. 

 

4.5 Myelin components and functions 
 

Differentiated oligodendrocytes synthesize large amounts of myelin 

membrane, which is made up of proteins and lipids. In contrast to most plasma 

membranes, myelin has a specialized lipid composition and contains a 

restricted set of proteins. The lipid contents of the myelin membrane 

represents about 70 to 80% of the myelin dry weight (Dupree et al., 1998) and 

is constituted mostly cholesterol, complex phospholipids and 

glycosphingolipids. 

 

4.5.1 Myelin sphingolipids and their functions 
 

The lipid molecules that show the most striking and consistent asymmetry in 

their distribution in the plasma membranes of vertebrate cells are some 

oligosaccharide-containing lipid molecules called glycosphingolipids. 

Glycolipids are glycosyl derivatives of lipids such as acylglycerols, ceramides 

and their sulfated derivatives. They are collectively part of a large family of 

substances known as glycoconjugates. A subclass of glycolipids called 

glycosphingolipids which is synthesized from ceramide exists in animals. 

These glycosphingolipids have a general structure that is similar to that of the 

glycerol-based lipids, having a polar head group and two hydrophobic fatty 

acid chains. One of the fatty acid chains is initially coupled to serine to form 

sphingosines, to which a second fatty acid chain is then ligated to form 

ceramide (Hakamori, 1986) by a reaction catalyzed by sphinganine synthases 

and acyl-CoA transferase, respectively. 
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Sphingolipids are typically found in eukaryotic cells, where they comprise a 

small but vital fraction of the membrane lipids. Based on the type of head-

group attached to the C1, sphingolipids are classified as phosphosphingolipids 

or glycosphingolipids. The phosphosphingolipid sphingomyelin (SPM) in 

animals and inositol phosphoceramide (IPC) in plants and fungi carry the polar 

head group’s phosphocholine and phosphoinositol, just like the major 

glycerolipids phosphatidylcholine (PC) and phosphatidylinositol (PI). In 

glycosphingolipids, the head group can contain a variety of monosaccharides 

linked by glycosidic bonds. 

The function of sphingolipids has been investigated by in vitro and in vivo 

studies using cell transfection experiments or knockout mice. It is in this way 

that yeast and Chinese hamster ovary cell mutants lacking the first committed 

enzyme in sphingolipid biosynthesis, serine palmitoyl-transferase, die in the 

absence of externally added sphingoid base (Hanada et al., 1992; Wells and 

Lester, 1983). Sphingomyelin fulfill a vital role in mammalian cells, since the 

mutant could be rescued by exogenous sphingomyelin (Hanada et al., 1998; 

Hanada et al., 1992). In vivo studies using gene knockout mice have also 

provided substantial insight into the importance of the sphingolipids in the 

mammalian kingdom. Hence, mice lacking GlcCer and all complex 

glycosphingolipids were found to be embryonically lethal at the gastrulation 

stage just after the formation of the primitive germ layers (Yamashita et al., 

1999). Furthermore, knockout mice lacking a functional CGT were not able to 

breed and displayed a compromised nerve function (Bosio et al., 1996; 

Coetzee et al., 1996), indicating a function of glycolipids in the 

spermatogenesis and myelin structure. Analysis of epithelial cells lining the 

gastrointestinal and part of the urogenital tract (Simons and van Meer, 1988) 

shows high concentration of GlcCer (murine) and/or GalC (bovine, human) 

and derivatives in the apical plasma membrane domain, indicating the 

implication of glycosphingolipids in the mechanical stability of the plasma 

membrane, especially in the gut, protection against harmful, hydrolytic 

enzymes such as phospholipases. Other data indicate that glycosphingolipids 

could be involved in specific recognition events between cells and between 
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cells and the extracellular matrix via their carbohydrate moiety and the 

modulation of plasma membrane signal processing (Sheikh et al., 1999; 

Takamiya et al., 1996). 

 

4.5.2 Myelin specific proteins and their functions 
 

Myelin proteins are among the most abundant in the nervous system, and 

generally, they have been considered to be expressed only in myelin-forming 

cells. The major myelin proteins, representing 70 to 80% of the protein content 

of the membrane are separated into two classes: the basic proteins and the 

proteolipid proteins. Many researchers have attempted to determine the 

patterns of myelin protein gene expression in the developing brain from 

several species. In vivo studies indicate that the developmental profile of PLP 

synthesis peaks a few days later than that of MBP synthesis in the mouse 

brain, i.e., 21 or 22 days for PLP against 18 for MBP (Campagnoni and 

Hunkeler, 1980). These proteins classes consist of multiple polypeptide chains 

derived from alternative splicing of a single gene (Campagnoni and Macklin, 

1988). In mice, the myelin basic proteins are composed of at least six isoforms 

in mice (deFerra et al., 1985; Newman et al., 1987a, b) with a molecular 

weight of 14, 17, 18.5, 20, 21.5 kDa, and four in humans (Kamholz et al., 

1986; Roth et al., 1986, 1987). Other names such as SBP (for the 14 kDa 

MBP), LBP (for the 18.5 kDa), prelarge (for the 21.5 kDa) and presmall (for the 

17 kDa) also appear in the literature. MBP is hydrophilic, membrane 

associated protein with isoelectric point greater than 10.6, making them more 

basic than histones (Lees and Brostoff, 1984). MBP is localized to the major 

dense line (MDL) of myelin, which is formed by apposition of the cytoplasmic 

surfaces of the extruded oligodendroglial plasma membrane during 

myelinogenesis, and appears to be associated with the cytoplasmic side of the 

unit bilayer (Campagnoni et al., 1980; Omlin et al., 1982). Functionally, MBP 

plays a crucial role in the compaction of the opposing cytoplasmic surfaces of 

the plasma membrane (Omlin et al., 1982; Campagnoni and Skoff, 2001). 
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In contrast to MBP, PLP is constituted of two isoforms: the proteolipid protein 

with a molecular mass of 30 kDa and the DM20 with a molecular mass of 26 

kDa (Spörkel et al., 2002). DM20 differs from PLP by an internal deletion of 35 

amino acids (Trifilieff et al., 1986) and genetic studies established the location 

of these amino acids deletion in exon 3B of the PLP gene (Nave et al., 1987). 

The amino acid sequence of PLPs has been deduced from their corresponding 

cDNA in many species, and their strong conservation among species was 

noted by many researchers (Macklin, 1992; Hudson, 1992). The proteolipid 

proteins are integral membrane proteins, constituting about 50% of the total 

protein content of myelin. They are extremely hydrophobic and aggregate 

easily under a variety of experimental manipulations (Agrawal and Hartman, 

1980; Lees, 1982). Functionally, PLP has been shown to have a structural role 

in the myelin sheath.  

Several other proteins and enzymes are associated to myelin, making up the 

remainder of 20 to 30 % of its protein content (Lees and Sapirstein, 1983). 

MAG is the glycoprotein associated with CNS, has a molecular mass of 

around 100 kDa on SDS gels and constitutes nearly 1 % of the total myelin 

proteins (Quarles, 1979; Quarles et al., 1983). MAG expression occurs in a 

time-specific manner and yields the L-MAG (72 kDa) isoform predominantly 

expressed at an early and S-MAG (67 kDa) isoform at a late stage of 

myelination (Lai et al., 1987; Tropak et al., 1988; Inuzuka et al., 1991; Pedraza 

et al., 1991). A significant portion of MAG is localized at the extracellular 

surface of the membrane and shares a carbohydrate determinant with a 

number of molecules such as NCAM, L1, J1, which mediate cell-cell 

interactions in the nervous system. MAG is also known to mediate axon-glial 

contact during myelin assembly (Holley and Yu, 1987; 1987; Trapp, 1990).  

CNPase is a myelin minor protein that catalyses the hydrolysis of several 2´, 

3´cyclic nucleotide monophosphates. The activity of this enzyme is very high in 

the CNS and is mostly localized in myelin (Olafson et al., 1969). Structurally, 

CNPase is composed of two polypeptide chains (Sprinkle et al., 1980a) with a 

molecular weight between 46 and 48 kDa. This protein was also found in 

mammalian photoreceptor cells, testis and lymphocytes. Although the 
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biological function of CNPase is unknown, it is thought to play a significant role 

in the maintenance of axon-glia interactions at nodes of Ranvier in the CNS, 

where it comprises 4% of total protein (Kozlov et al., 2002; Rasband et al., 

2005). 

 

4.5.3 Myelin structure and functions 
 

Myelin is a tightly compacted multilamellar sheath that surrounds axons to 

promote saltatory conduction of nerve impulses, thus increasing the speed of 

the nerve conduction. This membrane, which is produced by oligodendrocytes 

in the CNS and Schwann cells in the PNS, is a specialized extension of the 

plasma membrane of these two glial cell types (Wright et al., 1997). Myelin, as 

well as many of its morphological features, such as nodes of Ranvier, can be 

seen readily in light microscopy. However, much of our understanding of the 

organization of the myelin sheath has been derived from biophysical 

techniques (polarized light, X-ray diffraction and electron microscopy). Myelin, 

examined by polarized light, exhibits both a lipid-dependent and a protein-

dependent birefringence (Raine, 1984). 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Schematic diagram of a nerve and myelinated axon. Pictures show a neuron with its 
myelinated axon and a detailed structure of the myelin displaying intraperiod lines and major dense 
lines. For reference, see www.thirdage.com/adam/ency/article/000737trt.htm 
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This suggests that myelin is build up of layers where lipid components are 

oriented radially to the axis of the nerve fibers (Hirano and Dembitzer, 1967). 

X-ray diffraction analysis suggests a repeated unit of dark and clear lines in 

the myelin structure (Norton, 1977). Taken together, these results suggest that 

proteins and lipids have an alternative “protein-lipid-protein-lipid-protein” 

disposition. During the recent years, the myelin structure has been 

investigated and is known to be compatible with the “fluid mosaic” model of the 

membrane structure, including the intrinsic transmembrane proteins as well as 

extrinsic proteins (Kirchner and Blaurock, 1991). Electron microscopic analysis 

of the myelin sheath, visualizes myelin as a series of alternating dark and less 

dark lines (protein area), separated by unstained areas (lipid area) (Morell at 

al., 1994) (fig. 7). Furthermore, Myelin segments are separated by uncovered 

regions: the so called nodes of Ranvier. At these regions, Hirano and 

Dembitzer (1967) have demonstrated that the cytoplasmic surfaces of myelin 

are not compacted, and Schwann cells or oligodendrocyte cytoplasm is 

included within the sheath. 

 

4.6 Myelin-related diseases 
 
Diseases of myelination, whether acquired or inherited, are severe disorders of 

nervous system. The integrity of myelin sheaths is dependent on the normal 

functioning of myelin-forming oligodendrocytes in the CNS and Schwann cells 

in the PNS as well as on the viability of the axons that they wrap. Deficiencies 

of myelin can result from multiple causes, including viral infections, inherited 

disorders, toxic agents, malnutrition, and mechanical trauma that affect myelin, 

myelin-forming cells, or myelinated axons (Quarles et al., 1994). In some 

acquired disorder of myelin, the causes are external. In most of the cases, the 

lesions are disseminated in the nervous system and are characterized by 

periventricular demyelination and inflammation, macrophage activity, 

sudanophilic deposits consisting of myelin degradation products, and relative 

sparing of axons (Morell, 1984; Vinken et al., 1985). 
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The most commonly acquired disorder of myelin is multiple sclerosis (MS), 

causes of which are not well established. Nevertheless, researchers believe 

the combination of heredity, immune system, and possibly a virus may play a 

role in a person developing MS (http://www.bandagainstms.org/msinfo_cause.html). 

The clinical aspects of MS are highly variable both in symptoms and clinical 

course. The most typical form of the disease begins during the third or fourth 

decade of life, and characterized by exacerbations, and remissions over many 

years (Morell, 1984; Martin et al., 1992; Rodriguez, 1989). Structurally, 

patients show lesions in the white matter with a breakdown of the blood brain 

barrier (BBB). Biochemical analysis of MS patients shows an increase of 

catabolic enzymes and a severe loss of myelin proteins and lipid components 

(Morell et al., 1984). 

Storage diseases or lysosomal enzymopathies are rare degenerative disorders 

which, in the majority of cases result from a genetically-determined defect of a 

specific lysosomal enzyme. Most storage diseases have an autosomal 

recessive mode of inheritance, affecting both males and females. The onset of 

the disease manifests diffuse neurological dysfunction, and have progressive, 

inexorable course, leading to death. 

Among the disorders of myelin, leukodystrophies are a large group of inherited 

disorders of the CNS and are characterized by a severe deficiency of myelin. 

Biochemically, some leukodystrophies are characterized by a sphingolipidosis 

in which some specific lipid accumulates, due to a genetic lesion in an enzyme 

that is involved in its catabolism, as already described in the Metachromatic 

leukodystrophy (MLD: demyelinating disease) and Krabbe´s disease (Globoid 

Cell Leukodystrophy: dysmyelinating disease) which are two classic genetic 

myelin disorders. 

MLD is a recessively inherited disease characterized by intralysosomal 

storage of sulfatide resulting from a complete or partial deficiency of 

arylsulfatase A (ASA) activity. A number of clinical variants of MLD have been 

described, including late-infantile, juvenile, and adult forms (Kihara et al., 

1982; Gieselmann et al., 1991). Genetic heterogeneity within MLD is indicated 

by both absence and presence of ASA polypeptides in fibroblast from patients 
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(von Figura et al., 1983; Bach and Neufeld, 1983). The mutation in MLD can 

affect the apparent rate of synthesis, stability and the catalytic properties of 

ASA (von Figura et al., 1986). In some cases of MLD, ASA is normal and the 

impaired degradation of sulfatide results from a deficiency of the activator 

protein saposin B (Stevens et al., 1981). 

Krabbe's disease is a rare, inherited degenerative disorder of the nervous 

system in which a specific enzyme deficiency (Galactosylceramide beta-

galactosidase) leads to the destruction of myelin. Two types based on the age 

of onset are recognized: (a) Infantile-onset Krabbe disease is featured by the 

appearance of symptoms at 3 to 6 months of age and (b) the adult type. The 

biochemical characteristic is the abnormal turnover of the myelin sheath. 

Enzyme deficiency blocks degradation of cerebrosides and its deacylated 

derivative galactosylsphingosine (psychosine), resulting in their increased 

concentration, which contributes to degeneration of the white matter of the 

brain, and the elevation the protein level of the cerebrospinal fluid (Kolodny et 

al., 1991). 
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5 MATERIALS AND METHOS 
 

5.1 Generation of the targeting constructs 
5.1.1 Generation of the rat CGT and PST-1/ST8SiaIV cDNA 
 

pcDNA3/CGT (10 ng) (a kind gift of Dr. Popko) were mixed with 10 U Pfu 

polymerase (Qiagen. Hilden, Germany) in the presence of a mixture containing 

0.2 mM dNTPs, 1X Pfu buffer [20 mM Tris-HCl pH 8.8, 2 mM MgSO4, 10 mM 

(NH4)2SO4, 10 mM KCl, 0.1% Triton X-100, 1 mg/ml BSA]. The following 

nucleotide sequences, harboring the AscI and PacI restriction sites, 

respectively, were used as primers: (forward) 5´-

CATGGGCGCGCCATGAAGTCTTACACTCC-3´ and (reverse) 5´-

CATGATTAATTAATCATTTCACTTTCTTTTCATG-3´ (Sigma, Germany). 

Amplification was performed using the following conditions: 1 cycle at 94°C for 

2 min.; 35 cycles (94°C 30 seconds, 55°C 30 seconds, 68°C 2minutes) 1 cycle 

68°C 7 minutes. PCR products were separated from the primers by gel 

isolation. 

Polysialyltransferase (PST-1/ST8SiaIV) cDNA was released from a 

recombinant pBS (SK)-PST using HindIII and XbaI and treated with Klenow 

enzyme (fill in reaction). 

 

5 1.2 Ligation, transformation and sequencing 
 

The rat UDP-galactose:ceramide galactosyltransferase (CGT) PCR fragment 

was ligated into the PacI/AscI sites present in the PLP promoter cassette using 

a mixture containing 10 ng of the rat CGT cDNA, 2.5 ng of the PacI/AscI 

linearized PLP promoter cassette in the presence of 5U T4 DNA ligase (MBI 

Fermentas, Germany) at 16°C overnight. 

For the mouse PST-1/ST8SiaIV, PLP promoter cassette was linearized with 

PmeI enzyme, blunt ended as described above and dephosphorylated using 

alkaline phosphatase. Finally, the blunt ended PST-1/ST8SiaIV cDNA was 
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ligated in the PLP promoter cassette as described above and the orientation 

determined by sequencing and restriction digestion. 

4 µl of the ligation solution were used to transform the DH5α bacterial strain. 

Colonies were picked, cultured overnight and screened for the presence of the 

recombinant plasmid.  

Automatic Taq DyeDeoxy Terminator Cycle sequencing of both strands of rat 

CGT and mouse PST-1/ST8SiaIV cDNA was performed on plasmid templates 

and an ABI Model 310 prism system (Applied Biosystems) was used to read 

the sequence. Primers listed in the table below were used for sequencing 

(PLP-CGT) and the PCR program was: 2 min. at 96°C, 25 cycles (10 sec. 

96°C, 5 sec. 50°C, 4 min. 60°C). 

 

Primer 

name 

Rat CGT 

HCGT6 5´-CGCTGTCCATCAGATCTCC-3´ 

Rat CGT2 5´-AACTGTGCTGTGCGTACTCC-3´ 

CGT AscI 5´-CATGGGCGCGCCATGAAGTCTTACACTCC-

3´ 

Hu CGT3 . 5´-CTTCTGGTAGTGGGCTGG-3´ 

RatCGT1 5´-ATGTACTGACGTAGCACTGG-3´ 

RatCGT2 5´-AACTGTGCTTGTGGGTACTCC-3´ 

RatCGT3 5´-AGGGTCAACCAGTAGCAGG-3´ 

RatCGT4 5´-CCTCTCTCGTGCAAGGC-3´ 

RatCGT5 5´-AATGGAATCCTCAATGGCAG-3´ 

RatCGT6 5´-CAGCCCTTGCTATTCCAACA-3´ 

RatCGT7 5´-CCTGCCTAACGTTGTATATG-3´ 

RatCGT8 5´-GTGATTTGGAGGTTTTCTGG-3´ 

RatCGT9 5´-ACTACATTCTTCGCCACGAC-3´ 
 

Table 1. Primers list used to sequence the rat CGT cDNA. 
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5.2 Activity test of the PCR amplified rat CGT cDNA. 
 

The activity test of the PST/ST8Sia IV cDNA was performed during the 

generation of the ThyI/PST/STSia IV transgenic mice. 

 

5.2.1 Sub-cloning of the rat CGT into pcDNA 3.1 
 

In order to determine if the PCR amplified rat CGT cDNA generated is active, 

CGT cDNA was released from the PLP-CGT plasmid using the PacI/AscI 

enzymes, blunt ended using the Klenow enzyme and ligated into the HindIII 

site in the pcDNA3.1 vector. The orientation of CGT insert in the pcDNA3.1 

vector was 5´→3´and was determined both by sequencing and restriction 

digestion of the generated pcDNA3.1-CGT plasmid. A large amount of the 

recombinant plasmid was prepared according to Qiagen DNA MIDI 

preparation method and the concentration determined spectrophotometrically 

(Beckman). 

 

5.2.2 Cell culture and transfection 
 

The day before the transfection, cells (CHO wild type and stably transfected 

CHO-CGT) were trypsinized and seeded on poly-L-lysine (0.1 mg/ml) coated 

coverslips at a concentration of 40,000 cells per coverslip. After 24 hours, 

transfection was performed as follows: 2 µg of the plasmid DNA was mixed to 

50 µl NaCl (150 mM). At the same time, 6.6 µl Exgen500 reagents were mixed 

to 43.4 µl sterile NaCl (150 mM). DNA and Exgen500 solutions were then 

mixed and incubated for 10 min. at RT. During RT incubation of the previous 

mixture, cells were washed with phosphate buffered saline (PBS) in order to 

deplete the cells from the FCS. Transfections were finally undertaken by 

incubating the cells with 250 µl of the Exgen500-DNA complex per ml serum 

free RPMI medium for 3 hours at 37°C and under 5% CO2. The transfection 

was terminated by changing the medium to DMEM supplemented with 5% 
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serum, 2 mM glutamine, and 100 U/ml penicillin 100 U/ml streptomycin and 

cultured for 48 hours at 37°C under 5% CO2. 

 

5.2.3 Analysis of the transfected cells. 
 

48 hours after transfection, the cells grown on the poly-L-lysine coated 

coverslips were washed with phosphate-buffered saline (PBS: 137 mM NaCl, 

2.7 mM KCl, 4.3 mM Na2HPO4 7H2O, 1.4 mM KH2PO4 pH 7.4), treated for 7 

min. at -20°C with 100% methanol, and fixed in 4% PFA for 30 min. at RT. Non 

specific binding sites were blocked using 1% BSA in PBS for one hour at RT. 

Cells were finally labeled using the rabbit anti-GalC diluted (1/200) in PBS 

containing 1% BSA for 2 hours at RT, followed by 3 times 5 min. washing with 

PBS. Immunofluorescence analysis was terminated by incubating the cells 

with a FITC-labeled goat anti-rabbit antiserum for 1 hour at RT and followed by 

3 times washing as described above. Coverslips were mounted on the 

microscopic slide using gelatin and positive cells documented by fluorescence 

microscopy on an Axiovert M instrument (Carl Zeiss, Halbergmoos, Germany). 

 

5.3 Generation and identification of the founder mice 
5.3.1 Purification of DNA for microinjection 
 

Recombinant bluescript plasmid (30 µg) was linearized at 25°C for 12 hours in 

the presence of 25 U ApaI in 20 mM Tris-acetate pH 7.9 containing 10 mM 

magnesium acetate, 1 mM dithiothreitol and 1% BSA. After 12 hours of 

digestion, linearized plasmids were further digested in the presence of 25 U 

NotI at 37°C for 12 hours. DNAs fragments were separated onto 0.8% agarose 

gel in TAE (40 mM Tris-acetate pH 8.5, 2 mM Na2EDTA 2H2O) buffer at 80 

volts for 2 hours. The band of interest was visualized (UV light 360 nm) and 

excised. DNA was extracted from the gel by electroelution at 100 volts for 45 

min. in dialysis bags [preparation of the bag: (1) boil the bag for 10 minutes in 

2% (w/v) Na2CO3 containing 1 mM EDTA, (2) wash with distilled water, (3) boil 

in 1 mM EDTA solution for 10 minutes, (4) wash with water and store it at 4°C], 
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using 0.2X TBE (2.2 g of Tris, 1.1 g of Boric acid, 0.8 ml of 0.5 M EDTA pH 

8.0. add 1000 ml H2O) as elution buffer. Eluted DNA was further precipitated 

as described [mix DNA solution to 1/10 (v/v) 3 M NaAc, add 2.5 volumes of 

100% ethanol, mix it and incubate at –20°C overnight]. The pellet collected by 

centrifugation (20,800 xg at 4°C) was dissolved in low salt buffer (20 mM Tris-

HCl pH 7.4, 0.2 M NaCl, 1 mM EDTA). 

For Elutrap (Schleicher & Schuell, Germany) purification, DNA previously re-

suspended in low salt buffer was bound to the mini column by passing it 

through the activated matrix (Activation of the matrix: wash matrix two times 

with 5 ml of the low-salt buffer through a matrix at approximately 0.5-1.0 

ml/min.) at approximately 1-2 drop/second. Matrix was washed twice with 2 ml 

of the same buffer and DNA eluted using 0.5 ml high salt buffer (1.0 M NaCl, 

20 mM Tris-HCl, and 1.0 mM EDTA). Finally, DNA was precipitated as 

described above, resuspended in the microinjection buffer (10 mM Tris-HCl pH 

7.5, 0.1 mM EDTA and sterilize by filtration using a 0.2 µm filter) and quantified 

by comparing the band intensity on an ethidium bromide (0.5 µg/ml) agarose 

gel to the one of the lambda HindIII marker (MBI Fermentas, Steinheim, 

Germany). 

 

5.3.2 Microinjection and oocytes transfer 
 

PLP-CGT and PST-1/ST8SiaIV transgenic mice were generated at the 

Karolinska Center for transgene technology (Stockholm, Sweden). Briefly, a 

11.362 kb (PLP-CGT) or 10.86 kb (PLP-PST) ApaI-NotI (New England Biolabs, 

Frankfurt, Germany) fragments containing the PLP promoter fused to the rat 

CGT cDNA or mouse PST was gel isolated, purified using the Elutrap system 

(Schleicher & Schuell, Germany) and injected into the fertilized mouse eggs 

from F2 C57BL/6xCBA strain. 
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5.3.3 Southern blot identification of the transgenic founder mice 
 

In order to determine which founder mouse carry the transgene, southern blot 

analysis of genomic DNA extracted from mouse tail was performed. After 

overnight digestion of the mouse tails at 56°C using 100µg proteinase K 

solution [proteinase K solution: 10 µg/µl in 10 mM Tris-HCl (pH 8.0), 25 mM 

EDTA, 150 mM NaCl and 1% SDS (Roche Diagnostic, Mannheim, Germany)], 

genomic DNA was extracted by the phenol/chloroform method, followed by 

precipitation of DNA with 100% ethanol, washing in 70% ethanol, drying at RT 

and re-suspension in water. DNA fragments generated by SspI (1.9 kb for 

PLP-CGT) and AccI (0.8 kb for PLP-PST) digestions of genomic (10 µg) DNA, 

were separated on 1% agarose gel and transferred onto HybondN+ 

(Amersham Pharmacia Biotech., Germany) nylon membranes. After transfer, 

DNA was immobilized on the membrane by heating for 2 hours at 80°C. 

A 2.4 kb of the rat CGT and 1 kb of the mouse PST-1/ST8SiaIV cDNA 

fragments were used as template for the synthesis of the 32P-labeled DNA, as 

follows: 

   DNA    25 ng 

   Random primers  5 µl 

   Water to a final volume of 50 µl was added, incubated at 

100°C for 5 min. and at RT for 10 min. 

   Buffer (5X)   10 µl 

   [32P]dCTP (10µCi)  5 µl 

   Klenow (1U/µl)  2 µl incubate the mixture for 10 

min. at 37°C. Labeled-probes were purified using G-25 sephadex column by 

centrifugation for 5 min.at 240 xg. 

Membranes were prehybridized for one hour at 42°C using a mixture of 50% 

formamide, 4.8X SSC, 10 mM Tris HCl pH 7.5, 1% SDS, 1X Denhardt´s 

solution, 10 % Dextransulfate (Sigma-Aldrich, Steinheim, Germany) 

supplemented with 100 µg/ml heat denatured salmon sperm DNA (Sigma-

Aldrich, Steinheim, Germany). Following prehybridization, hybridization was 

carried out overnight in the same solution and at the same temperature, using 
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2 x 106 cpm/ml heat denatured 32P-labeled DNA probes. Membranes were 

washed twice for 10 min. at RT with 2X SSC containing 0.1% SDS and twice 

for 20 min. at 65°C using 0.2X SSC containing 0.1% SDS. Membranes were 

finally packed in plastic bags and exposed Membranes were exposed to pre-

flashed Fuji Bioimager screen and subsequently to X-ray film at -80°C. 

 

5.4 UDP-galactose:ceramide galactosyltransferase assay 
 

The CGT activity assay used was based on the protocol described by Sprong 

et al. (2000) with some modifications. Briefly, brains were homogenized in 250 

mM sucrose, 10 mM Hepes/NaOH (pH 7.2), 1 mM EDTA, and 1 mM PMSF. A 

postnuclear supernatant was prepared by centrifugation at 500×g for 10 min. 

at 4°C and stored at –80°C. Protein concentration was determined using the 

DC protein assay (Biorad, München, Germany). The homogenate was 

adjusted to a protein concentration of 4 mg/ml and incubated with 0.4% 

saponin on ice for 30 min. One volume (30 µl) of the homogenate was mixed 

with one volume of the reaction buffer containing 200 µM [14C]-UDP-galactose 

(30 kBq/ml) (Amersham Bioscience, Freiburg, Germany), 30 µM C6-ceramide 

(Biomol, Hamburg, Germany), 2% bovine serum albumin, 4 mM MgCl2, 4 mM 

MnCl2, 250 mM sucrose, 10 mM Hepes (pH 7.2), 1 mM EDTA and incubated 

at 37°C for 30 min. Control reactions were done in the absence of C6-

ceramide. Reactions were stopped by addition of 500 µl chloroform/methanol 

(2:1) and 100 µl, 150 mM NaCl. The aqueous phase was washed once with 

chloroform and the combined organic phases were dried and separated by 

TLC on silica gel 60 plates using chloroform/methanol/water (70:30:4) as the 

solvent system. Radioactivity was detected using a Fuji Bioimager BAS 1000. 

Differences were tested for significance using Student’s t-test. 
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5.5. Northern blot analysis 
5 5.1 RNA isolation by CsCl and trizol solutions 
 

All solutions are prepared in diethylpropyl pyrocarbonate treated water (DEPC. 

Sigma-Aldrich, Steinheim, Germany) prepared as follows: mix overnight 1 ml 

DEPC per ml double distilled water was mixed overnight at RT and autoclave. 

Mouse brains at different ages (PLP-CGT: 2, 4, 12 weeks; PLP-PST: 2, 4, 24 

weeks) from transgenic and wild type littermates mice were collected, frozen in 

liquid nitrogen, and stored at –80°C. Total RNA was purified by the cesium 

chloride (CsCl) method as described by Chirgwin et al. (1979). Briefly, frozen 

mouse brain was homogenized in GIT buffer [4 M guanidiniumisothiocyanate 

(Sigma, Germany), 25 mM sodium acetate pH 4.8, 0.1 M β-mercaptoethanol] 

for 1 min. at 4°C using the Ultra Turrax (IKA T25). Homogenate was depleted 

from tissue debris by centrifugation (30,000 xg at 4°C for 30 minutes; SS34 

rotor). Supernatant was then laid onto 3 ml 5.7 M CsCl and centrifuged at 

92,500 xg (SW41 Ti) overnight at 12°C. The supernatant was carefully 

removed and the RNA pellet was re-suspended in DEPC-treated water. RNA 

solution was depleted from proteins by phenol/chloroform precipitation [mix 

one volume of RNA solution to 0.5 volume of phenol/chloroform and centrifuge 

at 15,700 xg (Eppendorf centrifuge 5415 D) for 5 minutes at RT. Mix one 

volume of the previous supernatant to one volume chloroform and centrifuge 

at the same speed and conditions]. RNA was finally precipitated in alcohol as 

described above, dried at RT, re-suspended in DEPC-treated water, quantified 

at 260 nm and stored at –80°C. 

Alternatively, Trizol (sigma, Germany) solution was used for RNA isolation and 

the protocol is described by the manufacturer. 

 

5.5.2 Description of the northern blot 
5.5.2.1 Separation and transfer of RNA on the nylon membrane 
 

Purified RNA (20µg) was denatured (65 °C), separated on 1% agarose gel 

containing 20 mM MOPS (pH 7.0), 5 mM sodium acetate, 1 mM EDTA, and 
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2.2 M formaldehyde and transferred overnight to HybondN+ nylon membranes 

(Schleicher & Schuell, Germany) using 20X sodium citrate buffer (SSC) 

according to standard protocols (Sambrook et al., 1989). RNA was 

immobilized on the membrane by heating at 80°C for 2 hours. 

 

5.5.2.2 Detection of the expressed mRNA 
5.5.2.2.1 Preparation of DNA templates 
 

A 223 bp mouse CGT specific DNA of the 3´-noncoding region of the mouse 

CGT was generated by RT-PCR follows: 

5 µg of total RNA was mixed to 100 pmole RNase free oligo-dT primer (5´-

AACCCGGCTCGAGCGGCCGCTTTTTTTTTTTTTTTT-3´) and denatured for 

5 min. at 70°C. Single strand DNA was generated at 42°C for 1 hour by 

incubating the denatured RNA mixture with 1 mM dNTPs in 25 mM Tris-HCl 

pH 8.3 supplemented with 25 mM KCl, 4 mM MgCl2, 10 mM DTT, 20U of 

ribonuclease inhibitors and 40 U reverse transcriptase (MBI Fermentas, 

Steinheim, Germany). RNA was depleted from the mixture by hydrolysis in the 

presence of 5U RNAse H for 20 minutes at 37°C. 1µl of the single strand DNA 

solution was used to generate the 223 bp double strand fragment of the rat 

CGT cDNA as previously described using the following reagents: forward (5´-

AAATGATCCAACAGCCCAGGTG-3´) and reverse ( 5´-

GGCTTCTAAATGGTTCACTGCC-3´). PCR conditions were : 2 min. at 94°C, 

30 cycles (30 s. at 94°C, 30 s. 55°C, 1 min. 70°C) and 10 min. 70°C. PCR 

product was gel purified, quantified using lambda HindIII marker as reference 

and used as template for the synthesis of radioactive probe for the detection of 

endogenous mouse CGT mRNA. 

The rat CGT cDNA was obtained by PCR as described above. The mouse 

PST/ST8Sia IV (1.09 kb) was released from the plasmid Bluescript using 

HindIII/XbaI. The mouse MBP (1.3 kb) cDNA was released from a pCMV-

sport6 plasmid using BstxI enzyme. HindIII/BamHI enzymes were used to 

digest the PLP (800 bp) cDNA from a pEGFP plasmid and the MAL (600 bp) 

insert was removed from a dsRed2 plasmid using EcoRI/SalI. The CST coding 
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region (1.3 kb) was amplified by PCR using the following primers: forward: (5´-

ATGACTCTGCTGCCAAAGAAGC-3´) and Reverse: (5´-

CCACCTTAGAAAGTCCCTAAGG-3´). PCR conditions were: 2 min. 94°C, (30 

seconds 94°C 30 seconds 55°C 1 min. 72°C) 35 cycles, 10 min. 72°C. 

 
5.5.2.2.2 Synthesis of 32P-labeled probes and detection of the expressed 
mRNA 
 

The synthesis of 32P-labeled DNA probes was carried out as follows: 

   DNA    25 ng 

   Random primers  5 µl 

   Add water to a final volume of 50 µl. incubate at 95°C for 5 

min. and at RT for 10 min. 

   Buffer (5X)   10 µl 

   [32P]dCTP (10µCi)  5 µl 

   Klenow (1U/µl)  2 µl incubate the mixture for 10 

min. at 37°C. Labeled-probes were purified using G-25 sephadex column by 

centrifugation at 1500 rpm for 5 minutes. Labeled DNA fragments were 

denatured at 95°C for 5 min., ready for membrane hybridization. 

Membranes were pre-hybridized for 1 hour at 42°C (0.2 ml hybridization 

solution per cm² of the membrane) in the presence of 100 µg heat denatured 

salmon sperm DNA per ml hybridization solution and hybridized overnight at 

the same temperature and in the same solution supplemented with 2 million 

cpm/ml hybridization solution of 32P-labeled mouse CGT 3´-UTR, rat CGT, 

PST, MBP, MAL or CST. Following hybridization, membranes were washed 

twice for 10 min. at room temperature in 2X SSC/0.1% SDS and twice for min. 

at 65°C in 0.2X SSC/0.1% SDS. Membranes were packed in plastic bags and 

exposed on pre-flashed Fuji Imager screen (Fuji Photofilm Co., Kanagawa, 

Japan), and when higher sensitivity was required, X-ray films were used at –

80°C. Before re-probing, the membranes were stripped for 30 minutes at 65°C 

in 0.1 M Tris-HCl, pH 8.0, 1% SDS and 50% formamide. 
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5.6 Purification of myelin 
 
Myelin was prepared from mouse brains at different age (2, 4, 8, 12 and 32 

weeks old for PLP-CGT and 2, 4 12 and 24 weeks old for PLP-PST) as 

described by Norton and Poduslo (1973). Briefly, brains were homogenized for 

1 min. at 4°C in 10.5% sucrose using the ultra-turrax T25 (IKA), and 

centrifuged for 45 min. at 17,000 xg. The resulting pellet was homogenized in 

30% sucrose, overlaid with 10.5% sucrose and centrifuged for 50 min. at 

68,000 xg. Myelin was collected from the 10.5%:30% inter-phase and washed 

twice with cold water to remove axolemma. After a second 10.5%/30% 

sucrose gradient centrifugation, the myelin fraction was washed twice with cold 

water to remove sucrose, frozen at –80°C and lyophilized overnight. The 

myelin powder obtained was weighed, resuspended in 500 µl ice-cold ddH2O 

and stored at –80°C. 

 

5.7. Lipid extraction and thin layer chromatography 
 

Lipids were isolated from brain or purified myelin as described (van Echten-

Deckert, 2000). Briefly, brains or myelins were homogenized in 10 volumes of 

chloroform/methanol (2:1; v/v) and lipids extracted for 4 hours at 50°C under 

constant stirring. Insoluble material was removed by filtration and lipids were 

dried at 45°C under a stream of nitrogen. Lipids were dissolved in 

chloroform/methanol (1:1; v/v) and stored at –80°C. In some experiments, 

glycerophospholipids were removed by mild alkaline hydrolysis for two hours 

at 37°C using 100 mM NaOH in methanol. Lipids were separated by thin layer 

chromatography on silica gel 60 HPTLC plates (Merck) in 

chloroform/methanol/water (60:27:4). Lipid standards were obtained from 

Sigma (galactosylceramide, sulfatide, sphingomyelin) and Matreya 

(monosialo- and disialo-gangliosides), respectively. Lipids were visualized by 

spraying TLC plates with cupric sulfate in aqueous phosphoric acid as 

described (Yao and Rastetter, 1985). Quantification of lipid bands was 
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performed by densitometry using Advanced Image Data Analyser (AIDA) 

(Raytest, Straubenhardt, Germany) and lipid standards as reference and the 

results of three independent experiments are given as an average ±SEM. 

 

5.8 Preparation of mixed cells from new born mouse brains 
 

Primary culture of mixed brain cells was performed as described by Pesheva 

et al. (1997). Briefly, mouse brains (PND 1 or 2) were removed from the 

cranial cavity and the forebrain cut in small pieces and incubated in trypsin-

DNAseI (Sigma) solution for 10 min. at RT. Cell homogenate was mixed to 

Hank balanced salt solution (HBSS) and pelleted by centrifugation at 4°C at 

600 xg for 10 minutes. Pellet was further dissociated in DNAse I solution on 

ice bath using flamed Pasteur pipette. Dissociated cells were mixed with 7 ml 

HBSS and pelleted as described above. Pellet was re-suspended in DMEM 

containing 10% fetal calf serum, 2 mM Glutamine, 100 U/ml penicillin 100 U/ml 

streptomycin and plated at a concentration of 50,000 cells per 18 mm poly-L 

lysine (0.1 ml/ml) coated coverslip and cultured for 24 hours in the same 

medium at 37°in the presence of 5% CO2 as described by Bansal et al. 

(1999). Differentiation of oligodendrocyte progenitors were induced by 

culturing the cells in SATO medium [DMEM containing 10 µg/ml insulin, 16.1 

µg/ml putrescine, 62 ng/ml progesterone, 0.34 µg/ml TIT, 6,66 µg/ml 

Selenium, 0.4 µg/ml L-Thyroxin, 0.1 mg/ml transferrin, 0.1% BSA, 25 µg/ml 

Gentamycin, 2 mM L-glutamine, 100 units/ml penicillin, 100 units/ml 

streptomycin supplemented with 4.5 g/l glucose] supplemented with 1% fetal 

calf and 1% horse serum for 10 and 20 days at 37°C and 5% C02. 

 

5.9 In vitro differentiation of oligodendrocytes 
 

Primary cultured cells from transgenic [line 2615 (n=5), line 2620 (n=3)] and 

wild type littermates (n=5) were analyzed for oligodendrocyte differentiation at 

10 and 20 days of culture. Cells were washed twice with PBS and fixed for 7 

minute at -20°C in 100 % methanol, followed by fixation at RT 10 minutes in 4 
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% (w/v) paraformaldehyde. After incubating with 50 mM NH4Cl in PBS for 

20min, non-specific binding sites were blocked with 1% (w/v) BSA in PBS. To 

detect intracellular antigens, cells were permeabilized using 0.1% (v/v) Triton 

X- 100. Cells were stained with rabbit anti-MBP (1/200) monoclonal antibody, 

followed by anti-rabbit Ig–Cy3 (1/300). Nucleus was detected using DAPI 

(1/500). MBP positive cells and nucleus were counted and the percentage of 

MBP positive cells calculated. The result of is given as an average ±SME. 

Differences were tested for significance using Anova. 

 

5.10 Delayed extraction matrix-assisted laser desorption ionization-
time-of-flight analysis (DE MALDI-TOF) 
 

Myelin lipids were separated on the HPTLC plate and regions containing the 

lipid of interest were cut out from TLC plates and extracted with 

chloroform/methanol (2:1), dried under nitrogen, and dissolved in 

chloroform/methanol (1:1). One µl of the sample was mixed with one µl of 2,5-

dihydroxybenzoic acid (10 mg/ml in 70% acetonitril). One µl of the mixture was 

loaded into a well of a 100-well sample plate. Mass spectra were recorded with 

a Voyager-DE STR mass spectrometer (PE Biosystems) in positive (detection 

of monogalactosyldiacylglycerol, galactosylceramide and sphingomyelin) or 

negative (sulfatide) ion mode/reflector mode. 

 

5.11 Psychosine assay. 
 

The measurement of psychosine contents in tg2615 line and wild type 

littermates was performed at the Group of Dr. Marie Vanier in Lyon (France). 

Briefly, adult mice were killed by cervical dislocation and the brain was 

removed and frozen at –80°C. Brain psychosine (galactosylsphingosine) was 

determined on aliquots of tissue homogenates corresponding to 2-2.5 mg of 

protein using a HTPLC procedure. The extraction procedure and the general 

conditions have been previously described (Rodrigue-Lafrasse et al. 1994; 
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Matsumoto et al. 1997). The analysis of the orthophtalaldehyde derivatives 

was conducted on a 20 cm Spherisorb 5 µm OSD2 C18 column with a 5 cm 

Spherisorb OSD2 C18 guard column. The mobile phase was methanol/5 mM 

sodium phosphate buffer (89:11), pH 7.0 with 50 mg/l sodium octylsulphate as 

an ion-pairing agent. 

 

5.12 SDS-PAGE and Western blot analysis 
 

Brains or myelin were homogenized in 20 mM Tris-HCl pH 8.0, 5 mM EDTA, 1 

mM PMSF, 20 µg/ml aprotinin, 1 µg/ml leupeptin, 50 mM NaCl, 0.5% SDS. 

Protein content was determined using the Biorad DC protein assay. Protein 

samples from brain or myelin and homogenates were denatured at 95°C for 5 

min. in Laemmli sample buffer in (4X: 4% SDS, 0.5% bromophenol blue, 1% β-

mercaptoethanol, 50 % glycerol, 0.5 M Tris-HCl pH 6.8), separated on 12.5% 

SDS-PAGE and blotted onto nitrocellulose membranes using the semidry 

blotting technique. Bound proteins were detected using the following primary 

antibodies: mouse monoclonal anti-MBP (1/5000)(Serotec, Düsseldorf, 

Germany), rabbit polyclonal anti-MBP (1/5000) (Chemicon, Hofheim, 

Germany), mouse anti-PLP (1/10,000) (a kind gift of J. Trotter, Heidelberg), 

mouse anti-2’,3’-cyclic nucleotide 3’-phosphohydrolase (1/200) (CNPase; 

Chemicon), mouse anti-fyn kinase (1/400) (Chemicon), rabbit anti-L-MAG 

(1/500) (Erb et al., 2003), and mouse anti-GFAP (1/1000) (Sigma, Taufkirchen, 

Germany). Secondary antibodies used were peroxidase-labeled anti-mouse Ig 

(Amersham Bioscience, Freiburg, Germany) and anti-rabbit Ig (Dianova, 

Hamburg, Germany). Bound antibodies were visualized using 

chemiluminescence. Membranes were incubated for 1 min in 2.7 mM H2O2, 

1.25 mM 3-amino-pthalhydrazide, 0.2 mM p-coumaric acid, 100 mM Tris-HCl 

(pH 8.5) and exposed to X-ray film. The anti-MAL rabbit antiserum was raised 

against a recombinant GST-coupled polypeptide comprising the 53 N-terminal 

amino acids of MAL and affinity purified. For immuno-detection of MAL, SDS-

PAGE was performed in 15% acrylamide gel and Western blot analysis was 

carried out as described previously (Erne et al., 2002). 
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5.12.1 Western blot of NCAM and PSA 
 

For NCAM western detection, myelin samples (50 µg) was diluted in sodium 

acetate buffer (50 mM sodium acetate pH. 5.5, 1 mM EDTA, 20 µg/ml 

Aprotinin, 1 µg/ml leupeptin, and 1 mM PMSF) and incubated at 37°C for 4 

hours in the presence of 1 µl of 11.7 U/ml neuraminidase (Vibrio Cholerae 

Type II) (Sigma, St. Louis, USA). The reaction was stopped by adding SDS at 

final concentration of 0.5 %. Proteins were finally extracted, quantified, and 

separated on 7.5 % SDS-PAGE. NCAM expression was investigated by 

Western blot analysis using rat anti-NCAM (1/200) (Chemicon) as described 

above. To investigate the expression PSA, proteins were extracted as 

described above and 50 µg of protein from brain or myelin homogenate was 

separated on 7.5 % SDS-PAGE and and blotted onto nylon membrane. PSA 

was finally detected using the mouse anti-PSA (2.5 µg/ml) (a kind gift of Dr 

Gerardy-Schahn University of Hannover, Germany) as described above. 

 

5.13 In situ hybridization analysis 
5.13.1 Synthesis of DIG-labeled probes 
 

A 760 bp rat CGT cDNA fragment (harboring 50 bp of the 5’-untranslated 

region and 710 bp of the coding region), a 1 kb mouse PST (containing the 

whole coding region) or a 800 bp mouse PLP cDNA (containing the coding 

region of the PLP gene) or PDGF α-R ORF was cloned into pBluescript SK(-) 

(Stratagene) and used as the template for transcription of digoxigenin-11-UTP-

labeled (0.35 mM) antisense and sense CGT, PST, PLP or PDGF alpha-

receptor cRNA probes using T3 and T7 RNA polymerase (Roche Diagnostic, 

Mannheim, Germany). Transcription efficiency of cRNAs was controlled on 

DNA-agarose gel. 
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5.13.2 Preparation of the mouse brain 

 

Mice were anaesthetized using 2.5 % tribromoethanol (Fluka, Germany) 

diluted in 0.9% NaCl and the skin cut in a T-shaped form at the middle 

abdomen to the cervix and at the caudal edge to both sides. The peritoneum 

below the lower thoracic aperture and the thoracic cage was opened. Mice 

were then perfused by inserting a sharp needle (26G X ½”) into the left 

ventricle, first using the Ringer’s solution (140 mM NaCl, 2.7 mM KCl, 11.9 mM 

NaHCO3, 1.5 mM CaCl2) for the time and the rate given below, then with 

fixative (4 % paraformaldehyde). Brains were separated from the cranial cavity 

and post fixed for the time given below. Brains were washed as described in 

the table below, dehydrated in an increasing concentration of ethanol (30%, 

40%, 50%, 70%) for 1 to 2 hours per alcohol concentration at RT. Brains were 

finally paraffinated, and embedded. 

Age Amount 

anesth

etics µl 

Perfusion 

rate 

(ml/min) 

Perfusion 

time, Ringer 

(min) 

Perfusion 

time, fixative 

(min) 

Time of 

post 

fixation 

Time of 

tap water 

washing 

P0 50 - 

100 

7 ml/min 1 min 2 min 16 hours 2 days 

P3 100 8 ml/min 1 min 2 min 24 h 2 d 

P5 100 8 ml/min 1 min 2 min 24 h 2 d 

P7 150 10 ml/min 1 min 2 min 24 h 2 d 

P9 150 10 ml/min 1 min 2 min 36 h 3 d 

P11 200 10 ml/min 1 min 2 min 36 h 3 d 

P15 300 12 ml/min 1 min 2 min 48 h 3 d 

Adult 500 17 ml/min 1 min 5 min 48 h 3 d 

Table 2 Schematic protocol for the perfusion of mice 
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5.13.3 General description of the hybridization 
 

In situ hybridization analysis of mice brains was performed as described by 

Baader et al. (1998). Briefly, brain slices were deparaffinated in xylol (Merk), 

rehydrated, fixed in 4% PFA and permeabilized at RT in proteinase K (10 

µg/ml) and triton X-100 (0.25%). Hybridization was performed with 1/500 

diluted Digoxigenin-11-UTP-labeled antisense or sense cRNA probes at 65°C 

in 50 % formamide, 1 % Denhardt´s solution, 0.2 % SDS, 0.25 mg/ml ssDNA, 

0.25 mg/ml tRNA and 10 % hybridization salt (3 M NaCl, 0.1 M PIPES, 0.1 M 

EDTA) overnight in humid chamber. To remove unspecific hybridized probes, 

sections were washed twice with 2X SSC for 5 and 30 min. and 0.1X SSC for 

45 min. The sections were finally equilibrated in maleic acid buffer (100 mM 

maleic acid, 150 mM NaCl, pH.7.5) before blocking the unspecific binding sites 

using the same buffer containing 2% blocking reagent (Boehringer-Mannheim) 

for 1 hour at room temperature and then incubated overnight in the blocking 

buffer containing 1/5000 diluted anti-DIG-alkaline phosphatase (Roche 

Diagnostic GmbH, Mannheim, Germany) at 4°C in a humid chamber. After 

incubation, sections were washed with Tris buffer (100mM Tris-HCL pH 9.5, 

containing 100 mM NaCl, 50 mM MgCl2) at room temperature for 5 hours and 

stained using 165µg/ml BCIP and 330µg/ml Nitro Blue Tetrazolium (NBT) in 

100mM Tris/HCl, pH9.5, containing 100mM NaCl, 5mM MgCl2. Staining was 

12 hours for CGT and PST mRNA, 1 hour for PLP mRNA and 4 days for 

PDGF α-receptor mRNA. Positive cells were documented as described above. 

Concerning PLP and PDGF alpha receptor staining, positive cells were 

counted and normalized to the mm2 of the counted region. Differences were 

tested for significance using Anova. 

 

5.14 Immunohistochemical analysis 
 

Immunohistochemical analysis was performed as described by Baader et al. 

(1998). Briefly, transgenic and wild type littermates mice were perfused and 

post fixed in paraformaldehyde as describe above. After washing, brains were 
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stored at 4°C in PBS. 40 µm vibratome (Leica HM 355 S) slices were fixed in 

paraformaldehyde for 30 min. at RT before permeabilization in the same 

conditions using PBS containing 0.5 % triton X-100. Permeabilized slices were 

washed three times 5 min. with PBS and unspecific binding sites were blocked 

for 30 min. at RT using 2 % goad serum prepared in PBS. Blocking binding 

sites were followed by overnight incubation of slices at 4°C in PBS containing 

2 % goad serum and antibodies [anti GFAP (sigma) and anti MBP (1/1000)]. 

Unbound antibodies were removed by washing the slices three times 5 min. at 

RT in PBS. After washing, sections were incubated for 2 hours at RT with cy3-

labelled goad anti mouse IgG antibody, washed and the nucleus stained with 

DAPI (4, 6-diamidino-2-phenylindole) for 2 min. at RT and mounted on the 

microscopic slide with gelatin. Sections were finally imaged with a Zeiss 

Axiophot 2 fluorescence microscope (Carl Zeiss, Oberkochen, Germany). 

 

5.15 Electron microscopy 
 

Electron microscopic analysis was performed by the group of Professor 

Büssow at the Institute of anatomy of the University of Bonn. Briefly, four and 

twelve weeks old transgenic and wild type littermates from 2615 and 2620 

mice line were perfused with 6% glutaraldehyde via left cardiac ventricle. The 

optic, cervical, spinal cord and sciatic nerve were isolated and post fixed in 

phosphate-buffered OSO4 in sucrose, and embedded in Epon 812. The semi 

thin sections were stained with toluidine/pyronin and the ultra thin sections 

were contrasted with uranyl acetate and lead citrate and examined as 

previously described (Büssow, 1978). 

 

5.16 Rotarod 
 

Rotarod test was performed as described by Kuhn et al. (1995) and Uschkureit 

et al. (2000). Briefly, animals (8 male transgenic mice of the transgenic line 

tg2615 and 8 wild-type mice) 4 weeks of age were trained on two consecutive 

days by placing them on a rotating rod (10 rpm) for 180 sec. Thereafter, mice 
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were tested at 4, 6, and 8 weeks at 6 and 10 rpm. The test was performed on 

four consecutive days by placing the mice on the rotating rod and the time the 

mice stayed on the rod was recorded (cut-off time 180 sec). The percentage of 

mice able to stay on the rotating rod for 180 sec was calculated and 

differences in the time interval during their stay on the rod were tested for 

significance using Kolmogorov-Smirnov test. 
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D C 
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PART I 
 

6.1 Activity test of CGT transgenic construct and genotyping the 
founder mice  
6.1.1 Activity test of the transgenic construct. 
 

Before the generation of transgenic mice, the CGT cDNA of the transgenic 

construct was investigated by transfection experiments for enzymatic function 

to exclude cloning artifacts. Rat CGT cDNA (2.4 kb) harboring the open 

reading frame (ORF), 50 bp of the 5´-untranslated region and 689 bp of the 3´-

untranslated regions was excised from the transgenic cassette using PacI/AscI 

restriction enzymes and inserted in the pcDNA3.1 expression vector. The 

recombinant plasmid constructed was then used for transient transfection of 

CHO cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 GalC expression in CGT-transfected CHO cells. The rat CGT cDNA was introduced into the 
CHO wild type cells (C & D) using Exgen500. Both transiently (C & D) and stably (A & B) CGT 
transfected CHO cells were labeled with (A & C) or without (B & D) anti-GalC antibody. (A) CGT stably 
transfected CHO labeled with rabbit anti-GalC antibody and FITC-conjugated goat anti rabbit 
antiserum, (B) CGT transiently transfected CHO labeled with rabbit anti-GalC antibody and FITC-
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conjugated goat anti rabbit antiserum, (B) stable and transient (D) transfected CHO only labeled with 
FITC-conjugated goat anti-rabbit antiserum. GalC positive cells are documented using fluorescence 
microscopy on an Axiovert M instrument (Carl Zeiss, Hallbergmoos, Germany).  Scale bar 50 µm 
 

Following transfection, cells were inmmunofluorescently labeled using an 

antibody against galactosylceramide. Results show a membrane staining of 

the cells (fig. 8). This result indicates that the CGT fragment used to generate 

transgenic mice can be transcribed and translated to an active protein. 

 

6.1.2 Identification of PLP-CGT transgenic founder mice 
 

To target the expression of CGT in the CNS, we have exploited the PLP 

expression cassette (Fig. 9A) developed by Fuss et al. (2001), which contains 

a 2.4 kb PLP promoter, exon1, intron1 (8.5 kb), the first 37 bp of the exon2, 

where the translation start site was mutated in order to allow the transcription 

to start at the transcription start site present in the rat CGT cDNA and the 

SV40 polyadenylation site. By inserting a 2.4 kb rat CGT cDNA between the 

PacI and AscI sites, the PLP-CGT recombinant plasmid was constructed (fig. 

9A). Following the micro-injection of 11.362 kb DNA fragment into the fertilized 

mouse oocytes obtained by the crossing of CBA and C57/Bl6 mouse strains, 

twenty mice (12 females and 8 males) were obtained. Founder mice were 

screened for the presence of the transgenic construct both by PCR (data not 

shown) and Southern blot (fig.9B) analysis of the genomic DNA isolated from 

mouse tail. Results indicate four transgenic mice [one female (2604) and three 

males (2615, 2619, 2620)]. One founder mouse (2619) died at three months of 

age. Among the three remaining lines, two transmitted the transgene in the 

Mendelian fashion (2604, 2620) and the third one did not (2615), indicating a 

multiple integration site. 
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Fig.9 Diagram of PLP-CGT transgene construct and Southern blot analysis of founder mice. (A) 
The diagram represents the DNA region derived from the PLP promoter gene (2.4 kb) including the 
transcription start site as well as the whole PLP intron1. The white boxes represent the PLP exon1 and 
37bp of the exon2. The black box represents the rat CGT cDNA including 50bp 5´-untranslated region, 
the whole ORF and 689bp 3´-untranslated region. Finally, the red box represents the SV40 
polyadenylation signal. (B) Southern blot analysis of the founder mice. Genomic DNA (10 µg) was 
digested overnight using the Ssp1 enzyme (Ssp1 generates a 1.9 kb fragment by digesting the rat 
CGT cDNA at nucleotides 343 and 2280), separated onto 1% agarose gel, transferred to the 
HyBondN+ membrane. The membranes were finally hybridized with [32P]-labeled DNA probe 
generated by using the whole rat cDNA as template. Bands were visualized on phosphoimager after 
exposure on pre-flashed Fuji Imaging plate. (1) Transgenic fragments generated by partial digestion of 
the inserted rat CGT. (2) 1.9 kb fragment generated from the rat CGT cDNA by the SspI enzyme. 
 

6.2 Down regulation of endogenous CGT mRNA expression in PLP-
CGT transgenic mice 
 

CGT mRNA overexpression was assessed by Northern blot analysis of total 

RNA from mouse brains. Total RNA was extracted from the brain of 6 weeks 

old transgenic and wild type littermate mice. Total RNA (20 µg) was separated 

in a formaldehyde agarose gel, transferred onto HybondN+ membrane and 

hybridized with [32P]-labeled DNA probe using the whole rat cDNA as 

template. Fig. 10A demonstrates that CGT transgenic mRNA was 

overexpressed in mice brains and that the amount was different among the 

different transgenic lines (2604<2620<2615). 

Using a probe specific for the mouse CGT mRNA, Northern blot analysis 

demonstrates in contrast that the endogeneous CGT mRNA was reduced. 
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Reduction was only observed in the lines 2615 and 2620 (Fig. 10A), whereas 

no change of the expression was observed in the line 2604 (Fig. 10A). This 

observation is reminiscent of the down regulation of CGT mRNA in twitcher 

mice (Taniike et al., 1998), indicating a feedback inhibition of CGT expression. 

Also, down regulation of CGT mRNA expression was found in twitcher mice 

(C57BL/6J-twi: twi/twi), which is an authentic murine model for the genetic 

demyelinating disease, globoid cell leukodystrophy (Suzuki et al., 1995) and is 

characterized by the deficiency of the lysosomal enzyme, 

galactosylceramidase, which catalyzes the degradation of galactosylceramide. 

To determine whether the increase of transgenic mRNA (Fig. 10A) induces the 

increase of the activity of CGT, an activity assay was performed using mouse 

brain extracts and C6-ceramide as acceptor of [14C]-labeled galactose as 

described by Sprong et al. (2000). As expected, CGT activity in transgenic 

mice was significantly elevated (p<0.01, t-test). A 2.5-fold (25 days of age) and 

4-fold (6 months of age) increase was observed in the line 2615, compared to 

wild-type mice (Fig. 10B). In the transgenic line 2604, CGT activity was 

significantly increased by about 40% (p<0.01, t-test) in 6 months old animals. 

This results correlate to the Northern and Southern blot results. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Assessments of CGT overexpression and enzyme activity in PLP-CGT transgenic mice. 
The transgene expression in the mouse brain was assessed by Northern blot analysis of total RNA. 
Total RNA (20 µg) was separated on a 1 % agarose gel, transferred onto HybondN+ membrane. CGT 
mRNA was detected on the membrane by hybridization using the [32P]-labeled rat CGT and mouse 3´-
UTR CGT (A). Quantity and integrity of mRNA present on the membrane was verified by the ethidium 
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bromide staining. (B) Determination of CGT activity using C6-ceramide as acceptor of the [14C]-
galactose. One volume of the brain homogenate was mixed to one volume reaction buffer containing 
[14C]-UDP-galactose and C6-ceramide and incubated for 30 min. at 37°C. Lipids were extracted in 
chloroform/methanol (2:1), separated on silica gel plates using chloroform/methanol/water (70:30:4) 
and quantified. The transgenic lines 2615 and 2604 showed 4-fold and 1.4-fold, respectively, increase 
in activity in adult mice and a 2.5-fold increase in mouse line 2615 at 25 days of age. Asterisks 
indicate significant differences between transgenic and wild-type mice (p<0.01; t-test). 
 

6.3 Overexpression of the CGT mRNA is restricted to the white 
matter regions of brain 
 

Myelin formation starts around birth in the brainstem and the ventral and 

dorsal funiculi of the cervical spinal cord (Rozeik and Von Keyserlingk, 1987; 

Schwab and Schnell, 1989). To determine the localization of CGT mRNA and 

its expression pattern in the brains of transgenic mice, in situ hybridization on 

paraffin sections of ten (PLP-CGT) weeks old mice brains have been 

performed. 8 µm slices from transgenic and wild type littermate mouse brains 

were hybridized using the DIG-labeled sense and antisense rat CGT cRNA. 

Fig. 11 shows that transgenic mRNA overexpression was restricted to the 

white matter regions of the brain, indicating that the targeted cells might be 

oligodendrocytes present in the white matters of cerebellum and corpus 

callosum. mRNA overexpression as evaluated by in situ hybridization also 

correlates with the transgene copy number inserted in the chromosome. 

Hence, CGT mRNA is higher in the line 2615 (Fig. 11C & D) than in line 2620 

(fig. 11E & F) which expresses a higher amount of CGT mRNA than the line 

2604 (Fig. 11A & B). 

The expression pattern described in this study correlates to the one already 

demonstrated by Schulte and Stoffel (1993) and Dong Hong et al. (1999) in 

the developing rat brain, indicating that the overexpression of the rat CGT is 

restricted to the oligodendrocytes. 
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Fig. 11. White matter specific expression of CGT mRNA in mouse brains. In situ hybridization in 
brain sections (8 µm) of transgenic mice. Sagittal brain sections (10weeks of age) of the transgenic 
lines 2604 (A, B), 2615 (C, D), 2620 (E, F), and wild-type mice (G, H) were hybridized with a 
digoxigenin-labeled rat CGT cRNA probe and the mRNA expression documented using microscopic 
analysis on an Axiovert M instrument (Zeiss, Jena, Germany). Hybridization signals revealed strong 
transgene expression in the white matter of the forebrain (C, E) and cerebellum (D, F) in transgenic 
lines 2615 (C, D) and 2620 (E, F), and relatively weak expression in 2604 mice. Scale bar 50 µm. 
 

6.4 Expression of the myelin and oligodendrocyte specific proteins 
in PLP-CGT mice: up-regulation of MAL expression 
 

To investigate the impacts of CGT overexpression on the expression of myelin 

and oligodendrocyte proteins, Northern and Western blot analysis of proteins 

and total RNA from mouse brains were performed. Western blot analysis of 

proteins from purified myelin and brain did not reveal any reduction of the 

levels of PLP, L-MAG, CNPase, and Fyn kinase in PLP-CGT mice compared 

to wild-type controls (Fig. 12A & B). In contrast to the previous proteins cited, a 

dramatic reduction in the amount of MBP protein in purified myelin (Fig. 12A & 

B) and in total brain homogenates (data not shown) was observed in the 

transgenic line 2615. MBP levels were, however, normal in lines 2620 and 

2604 (Fig. 12A) at 12 weeks of age. Because MBP down regulation was only 

observed in one line, it can not be excluded that it is the result of a transgene 
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insertion artifact. Northern blot analysis did not reveal differences in the MBP 

mRNA level in transgenic mice and wild type controls at 6 weeks of age (Fig. 

13C), although MBP protein was reduced from 2 to 12 weeks of age (Fig. 

12B). Thus, decrease of MBP in transgenic mice (2615) occurred 

posttranscriptionally. In contrast to MBP, the MAL protein was increased in the 

myelin of 12 week old animals in lines 2615 and 2620 but not in the line 2604 

(Fig. 12A). Although the MAL mRNA concentration was unchanged at 6 weeks 

of age in all lines of PLP-CGT transgenic mice (Fig. 13C), Northern blot 

hybridization showed 50% increase of MAL mRNA level in 12 week old 2615 

and 2620 mice lines (Fig. 13A & B). Thus, increase in MAL protein occurs at 

least in part at the transcriptional level. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.12 Expression of myelin/oligodendrocyte proteins in PLP-CGT transgenic mice. Wild type 
littermates were used as control mice in all experiments. Myelin protein fraction was extracted in buffer 
containing 0.5% SDS and separated onto 12.5%. For the MAL Western blot, myelin samples were 
treated as described by (Erne et al., 2002), separated onto 15% (MAL) polyacrylamide gel (MAL 
Western blot was performed by the group of Dr. Schaeren-Wiemers). In all cases, separated proteins 
were blotted onto nitrocellulose membrane using a semidry blotting technique. Bound proteins were 
detected using anti-MBP, anti-Fyn, anti-L-MAG, PLP, CNPase, and MAL sera. PLP, MBP and MAL 
expression in the line 2604, 2615 and 2620 at 12 weeks of age (A) and age dependent PLP, MBP, 
CNPase, Fyn, and L-MAG levels in the line 2615 (B). 
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Fig.13 Expression of MBP and MAL mRNA in PLP-CGT transgenic mice. The expression of MBP 
and MAL mRNA in transgenic mice (n=3 per line) and wild type littermate (n=3) mouse brain was 
assessed by Northern blot analysis of total RNA at 6 and 12 weeks of age. Total RNA was purified 
from mouse brains by CsCl and 20 µg were separated in 1% RNAse free agarose gel and transferred 
onto HybondN+ membrane. Membranes were hybridized using [32P]-labeled 600 bp MAL or 1.3 kb 
MBP cDNA fragments. Visualization of the bands was performed by exposing the membrane to pre-
flashed Fuji Bioimager screen and subsequently to X-ray films. MAL expression was quantified using 
AIDA software. MAL mRNA signals in 12 weeks old wild-type and transgenic mice (B) were 
normalized to β-actin. The same increase in mRNA expression was observed in both lines (2615 and 
2620), therefore quantification data from 2615 and 2620 mice were combined (A). The observed 
difference is statistically significant (p<0.05; t-test). (C), MBP and MAL mRNA expression at 6 weeks 
of age in PLP-CGT transgenic and wild type littermate mouse brains. 
 

6.5 Consequences of the CGT overexpression on the lipid 
metabolism in the nervous system of PLP-CGT mice 
 

It has already been shown that CGT is responsible for the synthesis of the two 

isoforms (NFA and HFA-GalC) of GalC (Schulte and Stoffel, 1993; Stahl et al., 

1994). Furthermore, it has also been demonstrated in vitro that CGT has a 

high affinity for the hydroxy-fatty acid substituted ceramide (HFA-ceramide). 

Therefore, explaining the differences in the concentration of hydroxy-fatty acid 

GalC (HFA-GalC) and non-hydroxy-fatty acid GalC (NFA-GalC) observed, 

respectively (Schaeren-Wiemers et al. 1995). 
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6.5.1 Reversal of non-hydroxy:α-hydroxy fatty acid galactosylceramide in 
the brain of PLP-CGT mice 
 

To examine the influence of CGT overexpression on lipid metabolism in the 

CNS, lipids from myelin and whole brain were analyzed by HPTLC and 

quantified densitometrically. GalC and GalC isoform levels were quantified in 

myelin samples using the AIDA software. We noticed on one hand, an 

increase of NFA-GalC concentration in both myelin (Fig. 14A) and saponified 

brain lipid extracts (Fig.14B). In the other hand, a decrease of HFA-GalC level 

was observed in both lipid homogenates (Fig. 14A & B). Quantitatively, the 

decrease of HFA-GalC was approximately 0.3 fold in both lines (Fig. 15A & D), 

whereas the increase of NFA-GalC was around 0.4 and 1.3 fold (Fig. 15B & 

E), in myelin from lines 2620 and 2515, respectively at 12 weeks of age. In 

lines 2615 and 2620, the increase or decrease in GalC isoforms was 

developmentally observed. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14 HPTLC analysis of lipids from transgenic mouse brains. Myelin was purified from 
transgenic and wild type littermate mouse brains at different ages according to Norton and Poduslo 
(1973). Myelin and brain lipids were extracted using C/M (2:1). Lipid quantity corresponding to 100µg 
myelin dry weight or brain wet weight was spotted, separated on HPTLC plates using C/M/W (60:27:4) 
as mobile phase. Lipid bands were visualized on the CuSO4/H3PO4 sprayed plate by heating at 170 °C 
for 2 minutes. (A) HPTLC profile of transgenic and wild type littermates from the three lines at 2 and 
12 weeks of age. (B) HPTLC analysis of total brain lipid extracts at three months of age. NFA-Sulf 
(non hydroxy-fatty acid sulfatide), HFA-Sulf (hydroxy-fatty acid sulfatide), SPM (sphingomyelin), 
VLCFA-SPM (very long chain fatty acid containing-sphingomyelin), Chol (cholesterol), MGDG 
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(monogalactosyldiacylglycerol), NFA-GalC (non hydroxy-fatty acid galactosylceramide), HFA-GalC 
(hydroxyl-fatty acid galactosylceramide), PC (phosphatidyl choline), PE (phosphatidyl ethanolamine). 
 

In general, GalC concentration in PLP-CGT transgenic mice was significantly 

increased only in the line 2615 (0.5 fold), whereas in the other lines (2604 and 

2620) no significant increase was be observed (Fig. 15C & F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 Levels of GalC and its isoforms in PLP-CGT transgenic mice. Total lipid was isolated 
independently from myelin from 3 transgenic mice per line and 9 wild type mice using 
chloroform/methanol (2:1). The volume of the lipid solution corresponding to 100µg myelin dry weight 
was spotted and separated on the HPTLC plate and separated using C/M/W (60:27:4) as mobile 
phase. Plates were finally stained as described and the lipid concentrations determined, using lipid 
standards as reference. Each lipid sample was analyzed 5 times independently by TLC. The results of 
five independents experimentation [2604 (n=3), 2615 (n=6), 2620 (n=3), and wild-type (n=9)] are given 
as an average ±SME. Asterisks indicate that differences are statistically significant (t-test; p<0.05) 
compared to wild type mice. (A) Comparison of HFA-GalC level at 12 weeks of age between the three 
lines and wild type littermates, (B) comparison of NFA-GalC levels at 12 weeks of age in the three 
lines and wild type littermates, (C) comparison of GalC level in the three lines and wild type littermates 

0

2

4

6

8

10

12

14

w t 2604 2615 2620

G
al

C
 (µ

g/
10

0 
µg

 m
ye

lin
 d

ry
 w

ei
gh

t)

0

1

2

3

4

5

6

7

H
FA

-G
al

C
 (µ

g/
10

0 
µg

 m
ye

lin
 d

ry
 w

ei
gh

t)

0
1
2
3
4
5

6
7
8
9

10

N
FA

-G
al

C
 (µ

g/
10

0µ
 m

ye
lin

 d
ry

 w
ei

gh
t)

0
1

2
3

4
5
6

7
8

9
10

N
FA

-G
al

C
 (µ

g/
10

0µ
g 

m
ye

lin
 d

ry
 w

ei
gh

t)

0

1

2

3

4

5

6

7

8

H
FA

-G
al

C
 (µ

g/
10

0µ
g 

m
ye

lin
 d

ry
 w

ei
gh

t)

0

2

4

6

8

10

12

14

0 5 10 15

G
al

C
 (µ

g/
10

0µ
g 

m
ye

lin
 d

ry
 w

ei
gh

t)

tg2615

Wild type

Age (weeks) 

A

B

C

D

E

F

* *
*

*

* *
*

* * *



PARTI: RESULTS   

 68

at 12 weeks of age (D) age dependent HFA-GalC level in the line 2615 and wild type littermates, (E) 
age dependent NFA-GalC level in the line 2615 and wild type littermates, and, (F) age dependent 
GalC level in the line 2615 and wild type littermates. 
 

6.5.2 Increase of the monogalactosyldiacylglycerol level at the adult age 
in the CNS of PLP-CGT transgenic mice 
 

CGT is not only involved in the synthesis of GalC, but also in the conversion of 

sphingosine to psychosine (galactosylsphingosine) and 1,2-diacylglycerol to 

monogalactosyldiacylglycerol (Inoue et al. 1971). For this reason, we 

confirmed the identity of the monogalactosyldiacylglycerol (MGDG) by MALDI-

TOF analysis (Fig. 17) and quantified it using the AIDA software. It is known 

that in the rat brain, MGDG expression is almost undetectable before 10 days 

of age, and then reaches a peak at 17 or 18 days of age and finally decreases 

to lower levels with increasing age (Wenger et al., 1968; Wenger et al., 1970). 

In the present study, we noticed an increase of MGDG (for TLC analysis see 

Fig. 14A) in the myelin fraction, which reaches a peak at 12 weeks of age and 

slightly decreases at 32 weeks (data not shown). Quantitatively, increase in 

MGDG levels were almost 0.6, 4.8 and 2 fold when compared to the wild type 

littermates and for the lines 2604, 2615 and 2620, respectively (Fig. 16B & D). 

Furthermore, MGDG signal was not detectable in saponified lipid fraction from 

the whole brain (Fig. 14B). 

 

6.5.3 Decrease in sulfatide level in the CNS of PLP-CGT transgenic mice 
 

Since lipid metabolisms (synthesis and degradation) are closely related in a 

living organism, we looked also for the level of other brain lipids involved in the 

myelination. In the CNS, sulfatide and GalC metabolisms are closely related. 

GalC is synthesized by CGT and is used as a substrate for the synthesis of 

sulfatide. HPTLC analysis (Fig. 14A & B) and densitometric quantification (Fig. 

16A & C) of sulfatide shows a decrease in sulfatide content at 12 weeks of age 

in lines 2615 and 2620. Surprisingly, overexpression of the NFA-GalC does 

not lead to an increase of NFA-sulfatide concentration, indicating that factors 
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other than NFA-GalC limit the synthesis of NFA-Sulf in the Golgi apparatus. 

Moreover, only the HFA-sulfatide level was decreased, a phenomenon which 

is logical, since the HFA-GalC level was also decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 Level of sulfatide and MGDG in PLP-CGT transgenic mice. Myelin and brain lipids were 
extracted using C/M (2:1). Lipid quantity corresponding to 100µg myelin dry weight was spotted, 
separated on HPTLC using C/M/W (60:27:4) as mobile phase. Plates were finally stained as described 
and the lipid concentration determined, using lipid standards as reference. The results of five 
independent experiments [2604 (n=3), 2615 (n=6), 2620 (n=3), and wild-type (n=9)] are given as an 
average ±SEM. Asterisks indicate that differences are statistically significant (p<0.05, Anova) 
compared to wild type mice. (A) Age dependent sulfatide level in the line 2615, (B) age dependent 
MGDG level in the line 2615, (C) comparison of sulfatide level in the three lines and wild type 
littermates at 12 weeks of age, (D) comparison of MGDG level in the three lines and wild type 
littermates at 12 weeks of age  
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Fig. 17 DE MALDI-TOF mass spectrum of the myelin lipid fraction. Myelin lipid was extracted 
using C/M (2:1). Lipid quantity corresponding to 100µg myelin dry weight was spotted, separated on 
HPTLC using C/M/W (60:27:4) as mobile phase. The position of MGDG was identified, cut and re-
extracted using C/M (1:1). Extracted sample was finally analyzed by DE MALDI TOF and the MGDG 
peaks identified by reference to the one already published (Tamotsu et al., 2001). Note the expanded 
mass spectrum between m/z 610 and 5495 and the MGDG peaks. 
 
6.5.4 Psychosine is not responsible for the demyelination observed in 
PLP-CGT mice 
 

Galactosylceramidase is the enzyme that catalyze the degradation of 

galactosylceramide and psychosine (D-galactosyl-β-1,1´-sphingosine) to 

ceramide and galactose and to sphingosine to and galactose respectively 

(Austin et al., 1970; Kobayashi et al., 1985). The deficiency of 

galactosylceramidase leads in the accumulation of psychosine (essentially not 

detectable in healthy brain) in the brain of patient suffering from globoid cell 

leukodystrophy (Suzuki and Suzuki, 1978). Furthermore, accumulation of 

psychosine correlates with apoptosis of oligodendrocytes, globoid cell 

formation by microglia, and degeneration of axons (Suzuki et al., 1995). 

Cytotoxicity of psychosine in vitro and the fatal effect of injected psychosine 

led to the conclusion that progressive accumulation of psychosine is the critical 

biochemical pathogenetic mechanism of cell death in krabbe brain (Sweet, 

1986; Luzi et al., 1996; Sugama et al., 1990; Tanaka et al., 1993: Ida and Eto, 

1990). Because PLP-CGT transgenic mice show a loss of axons and 

oligodendrocytes, it was not clear, whether demyelination was caused by the 

loss of oligodendrocytes due to the increase of the level of psychosine or a 

defect in myelin function. For this reason, psychosine concentration was 

measured in the brain extract of transgenic mice and wild type littermates. 

HPLC results indicate no change of the psychosine concentration in transgenic 

mouse brains extract when compared to the wild type littermates. Psychosine 

values in transgenic mice were ranged between 25 and 31 pmole/mg protein 

compared to 31 pmole/mg proteins in wild type littermates. These values are in 

accordance with the one of Matsuda et al. (2001). These data indicate that 

psychosine is not responsible for the loss of oligodendrocytes observed by 

electron microscopy analysis of brain and optic nerve. 
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6.5.5 Specific down-regulation of the very long chain fatty acid (VLCFA)-
containing sphingomyelin 
 

In addition to cerebrosides, the other myelin lipids such as cholesterol and 

sphingomyelin have been analyzed. Sphingomyelin is synthesized by the 

transfer of phosphocholine from phosphatidylcholine to ceramide backbone, 

yielding diacylglycerol as a side product (Futerman et al., 1990; Jeckel et al., 

1990). Since this reaction uses the same substrate as CGT, it was of great 

importance to look for its metabolism when CGT is overexpressed. VLCFA-

sphingomyelin was identified in the myelin lipid homogenate by MALDI-TOF 

(data not shown). HPTLC analysis of myelin lipids (Fig. 14A) shows decrease 

in its level in the transgenic mouse lines 2620 and 2615. No change in 

sphingomyelin was observed in the line 2604. Cholesterol and phospholipids 

were also unchanged. 

 

6.5.6 Reversal of non-hydroxy:α-hydroxy fatty acid galactosylceramide 
level of the spinal cord and PNS in PLP-CGT transgenic mice 
 

The nervous system is composed of the CNS (brain and spinal cord) and PNS. 

Spinal cord was isolated from the vertebral column of transgenic mice and 

wild-type controls and total lipid extracted. The peripheral nerve was the sciatic 

and pectoral nerve and lipids were extracted as previously described. Results 

from HPTLC analysis (Fig. 18A) of lipids from the spinal cord and PNS shows 

the same reversibility in the HFA:NFA-GalC ratio as the one already observed 

the brain of PLP-CGT mice (Fig. 18A & B). As in the brain of PLP-CGT mice, 

sulfatide and the very long chain fatty acid sphingomyelin levels were also 

reduced in the spinal cord (Fig. 18A). 
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Fig. 18 HPTLC analysis of spinal cord and PNS lipid extracts. Lipids were extracted from spinal 
cord and PNS of transgenic and wild type littermate at 12 weeks of age according to Norton and 
Poduslo (1973). The volume of lipid corresponding to 100 µg (wet weight) spinal cord or PNA tissues 
lipids was spotted and separated on HPTLC plates using C/M/W (60:27:4). Lipid Bands were 
visualized on the CuSO4/H3PO4 sprayed plate by heating at 170 °C for 2 minutes. (A) HPTLC profile of 
transgenic and wild type littermate from the three lines at 12 weeks of age in the spinal cord. (B) 
HPTLC profile of transgenic and wild type littermate from the three lines at 12 weeks of age in the 
PNS. For abbreviations, see Fig. 15. 
 

6.6 Functional effects of transgenic overexpression of CGT on the 
development of oligodendrocytes 
 
The high percentage of the galactolipids GalC and its sulfated form in the 

myelin sheath suggest that these lipids play an important role in 

oligodendrocyte and myelin physiology. During development, OL progenitors 

are characterized by changes in their morphology, proliferation and migratory 

capacities and the regulated expression of myelin-specific proteins and lipids 

such as GalC and sulfatide (Pfeiffer et al, 1993). 

 

6.6.1 Increase in MBP and PLP positive cells in PLP-CGT transgenic mice 
 

Previous studies have shown that GalC and sulfatide appears at the immature 

stage during oligodendrocyte differentiation (Bansal et al., 1992; Bauman and 
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Pham-Dinh, 2001). It was previously demonstrated that GalC and sulfatide 

plays important role in the regulation of oligodendrocyte differentiation (Bansal 

et al., 1988, 1999; Boggs and Wang, 2001; Hirahara et al., 2004). For this 

reason, it was logic to ask whether increased activity of CGT have an effect on 

the differentiation of oligodendrocyte. In present study, we did not examine the 

intermediate markers that appear during oligodendrocyte development, but 

only the MBP expression which is the marker of the mature oligodendrocyte. 

Oligodendrocyte maturation in wild type and PLP-CGT mixed culture was 

analyzed as the function of time by immunofluorescence microscopy (Fig. 19 

and 20). The expression of MBP was assayed as the marker for 

oligodendrocyte maturation in vitro. The results indicate that a significant 

increase of MBP positive cells number in the mixed culture of brain cells from 

PLP-CGT transgenic mouse compared to wild type after 10 and 20 days of 

culture (Fig. 21A). In addition, less MBP positive cells from the PLP-CGT 

culture exhibited the morphology of a mature oligodendrocyte after 20 days of 

culture (Fig 21B). In contrast, an elevated number of MBP positive cells in 

PLP-CGT culture did exhibited the morphology of an immature 

oligodendrocyte, compared to the cells from the wild-type culture (Fig. 21C). 

The morphological classification in this study was similar to the one already 

published by Baumann and Pham-Dinh (2001) (for schematic classification, 

see Fig. 5). In our study, any MBP positive cell having a morphology 

resembling to the one of the pre-oligodendrocyte or immature oligodendrocyte 

stages was classified in one group as immature oligodendrocyte. 

To test further the impact of CGT overexpression on the development of 

oligodendrocytes, MBP immunolabeling was performed on vibratome sections 

from PLP-CGT transgenic mice and wild type controls. As observed in vitro, an 

increase of the MBP immunostaining was observed in the striatum (Fig. 22A) 

and the corpus callosum (Fig. 22B) of PLP-CGT mouse brains, compared to 

the wild-type controls (Fig. 22C and D), respectively. 
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Fig.19 Morphology of oligodendrocytes after 10 days of the culture of cells from PLP-CGT 
mouse brains. Mixed primary cultures of neonatal mouse brain (PND 1-2)  were prepared from 
transgenic lines [line 2620 (6-10), line 2615 (11-15)] and wild type littermates (1-5) as described by 
Pesheva et al. (1997) and culturte as described by Bansal et al. (1999). Differentiated cells were 
visualized by immunofluorescence after the labeling of the cells with rabbit anti-MBP and anti-rabbit 
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Cy3-labelled second antibody. Nucleus was visualized by DAPI staining. Note that some cells 
expressing MBP do not have the morphology of a mature oligodendrocyte. Scale bar 20µm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.20 Morphology of oligodendrocytes after 20 days of the culture of cells from PLP-CGT 
mouse brains. Mixed primary cultures of neonatal mouse brain (PND 1-2)  were prepared from 
transgenic lines [line 2620 (21-25), line 2615 (26-30)] and wild type littermates (16-20) as described by 
Pesheva et al. (1997) and culturte as described by Bansal et al. (1999). Differentiated cells were 
visualized by immunofluorescence after the labeling of the cells with rabbit anti-MBP and anti-rabbit 
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Cy3-labelled second antibody. Nucleus was visualized by DAPI staining. Note that some cells 
expressing MBP do not have the morphology of a mature oligodendrocyte. Scale bar 20µm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21 Enhencement of MBP positive cells in the primary cultures from PLP-CGT Transgenic 
mouse brains. Mixed primary culture of neonatal mouse (PND 1-2) fore brains were prepared from 
transgenic lines 2615, and 2620 and wild-type controls. After 10 and 20 days of culture, cells were 
analyzed for the expression of MBP by immunofluorescence microscopy. Cells probed with antibody 
against MBP were visualized using Cy3-labelled anti-rabbit antiserum. Total number of the cells was 
visualized by the nuclear staining (DAPI). Total (700-30000) and MBP positive cells were counted and 
the percentage of the MBP positive cells calculated. Cells were classified as total MBP positive cells 
(A), mature OL (B) and immature OL (C) according to their morphology. Error bars represent SEM 
(n=3-5). Asterisks indicate significant differences between transgenic mice and wild type controls. 
(p<0.01; ANOVA). In our study, any MBP positive cell having a morphology resembling to the one of 
the pre-oligodendrocyte or immature oligodendrocyte stages was classified in one group as immature 
oligodendrocyte. 
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Fig. 22 MBP expression in PLP-CGT transgenic mice. Vibratome slices were prepared from 6 
weeks old transgenic mice and wild-type controls as described by Baader et al. (1998). Slices were 
probed with anti-MBP antibody and finally with the appropriated Cy3-labeled second antibody. Positive 
cells were documented by microscopic analysis. (B) MBP staining in the striatum of the line 2615 of 
PLP-CGT mice. (B) MBP staining in the corpus callosum of the line 2615 of PLP-CGT mice, (C) MBP 
staining in the striatum of wild type littermate, and (D) MBP staining in the corpus callosum of wild-type 
mouse. 
 

During in vivo analysis of oligodendrocytes differentiation, a reliable 

quantification of MBP positive cells in the vibratome slices was impossible 

because of a highly immuno-labeled fiber. This problem was overcome by 

counting PLP positive cells obtained by in situ hybridization of microtome brain 

slices from transgenic and wild type controls at 4 weeks of age. When parallel 

sections from control and transgenic mice were counted, no significant 

difference was observed in the brainstem of transgenic mice compared to 

controls, except the line 2615 where a significant reduction of cells expressing 

the PLP mRNA was observed (Fig.23A-C, for quantification see Fig 23G). In 

contrast to brainstem, a significant increase in PLP mRNA-positive cells was 
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noticed in the corpus callosum of the two line at 4 weeks of age (Fig. 23D-F, 

see Fig. 23G for quantification). 
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Fig. 23 Enhancement of oligodendrocyte in vivo in the corpus callosum of PLP-CGT transgenic 
mice. Expression of PLP mRNA, as marker of the mature oligodendrocyte was assessed by in situ 
hybridization in the sagittal sections of the PND 28 brains taken from parallel regions from PLP-CGT 
transgenic and wild type littermate mice. PLP mRNA positive cells in the brain stem (A-C) and corpus 
callosum (D-E) are shown. Sections show a significant higher number of PLP mRNA positive cells in 
the corpus callosum (E & F) of PLP-CGT transgenic mice and a significant reduction in the brainstem 
of the line 2615 (B) , but no for the line 2620 (B & C) when compared to the wild type littermates (A & 
D). Difference between transgenic mice and wild type littermates were obtained by counting the cells 
(G). The result is given as a number of PLP positive cells per mm² of the counted regions. Each value 
represents the mean ± SEM of 3 animals per group. Asterisks indicate significant differences between 
transgenic mice and wild type controls. (p<0.01; ANOVA). Scale bar 50 µm. 
 

6.7 Behavioral deficits in PLP-CGT transgenic mice 
 

Three lines of transgenic mice overexpressing CGT in the CNS were 

produced. One of these lines expresses only low doses of transgene and did 

not show any clinical or morphological changes (Line 2604). In contrast, the 

two other lines (Lines 2615 and 2620), carry several copies of transgene per 

haploid genome (Fig. 9B). Hemizygous PLP-CGT mice develop severe 

behavioral abnormalities. At around 8 weeks of age, offspring mice from the 

line 2615 start to display uncoordinated gait and splaying of the hind limbs 

during locomotion, which continuously aggravate over time. Mice of the line 

2620 later showed the same phenotype. At the adult age, transgenic mice 

displayed a complete paralysis of the hind limbs and were incapable of 

movement. Mice presenting this phenotype were unable to live more than one 

year. 

To reveal exactly the time of the onset of motor impairments in PLP-CGT 

transgenic mice, mice of the line 2615 (n=8) and wild type littermates mice 
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(n=8) were subjected to rotarod analysis at different age (4, 6 and 8 weeks), at 

two different speeds (6 and 10 rpm), respectively. Results show no difference 

between transgenic and wild type littermate at 4 weeks of age, both at 6 and 

10 rpm (fig. 24A & B). At 10 rpm, and at 6 weeks of age, only 40% of 

transgenic mice were able to stay on the rotating rod compared to the 80% of 

wild type controls (fig. 24B), whereas at 6 rpm transgenic mice scored the 

same performance as wild type (fig. 24A). At 8 weeks of age and at both 

speeds, a clear difference was observed (see Fig. 24). Taking together, these 

results indicate that the onset of the motor impairment started at around 8 

weeks of age. 

 

 

 

 

 

 
 
 
 
Fig. 24 Motor-coordination capacities of PLP-CGT transgenic mice. Animals (n=8 per group) at 
different age were placed on a rotating rod at 6 and 10 rpm. The time interval during that the mice 
stayed on the rod was measured. A maximal time of the staying on the rod was fixed to 180 second. 
The test was one time a day over a period of 5 days. The percentage of animals able to stay on the 
rotarod in a maximal time of 180 second. Results are given as an average ± SD. (A) Rotarod 
experiment at 6 rpm and (B) 10 rpm. Asterisks indicate significant differences between transgenic and 
wild type mice (p<0.01; t-test). 
 

6.8 Astrogliosis in PLP-CGT transgenic mice 
 

Astrogliosis is a generalized response of glial cells to CNS injury and trauma 

(Mucke and Eddleson, 1993). In multiple sclerosis (MS), reactive astrocytes 

are found in the scar-like regions of demyelinated axons (Mckhann, 1982). The 

sign of the reactive astrocytes is the increase of the glial fibrilary acidic protein 

level (GFAP), the major glial intermediate filament protein. In order to 

determine if reactive gliosis occurs in the CNS of PLP-CGT mice, GFAP levels 

were examined both by Western blot and immunohistochemistry. Western blot 
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analysis of proteins homogenate from the brains of transgenic mice and wild 

type controls showed a marked increase in the GFAP level in PLP-CGT 

transgenic mice (Fig. 25B). 

Immunohistochemical analysis on sagittal sections from brains of 6 weeks old 

mice also revealed a significant increase in GFAP immunoreactivity signals in 

cerebellum, hippocampus, forebrain and brainstem of transgenic mice 

compared to wild type controls (Fig. 25A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.9 Consequences of CGT overexpression on the myelin structure 
 

A myelinated fiber appears as myelinated membrane segments, termed 

internodes, separated by regions of ensheathed nerve membrane (Allard et 

al., 1998). It is this disposition by segments that induces the major 

characteristic of the so-called “saltatory conduction” of nerve impulses in 

myelinated tracts. The normal myelin sheath has a high resistance and low 

A

Fig. 25 GFAP immunoreactivity in the CNS of PLP-
CGT transgenic mice. Astrocyte reactivity was
determined both by immunuhistochemical and Western
blot analysis using antibody directed to GFAP. GFAP
immunoreactivity of Vibratome slices of the line 2615 of
PLP-CGT mice and wild type littermates at 6 weeks of
age (A) and Western blot analysis of total brain protein
from the line 2615 of PLP-CGT transgenic and wild
type controls at different age (4, 8 and 19 weeks) (B).
Scale bar 50 µm. 
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capacitance that makes the current tend to flow down the fiber to the next 

node rather than leak back across membrane. 
 

6.9.1 Demyelination and myelin destabilization in PLP-CGT transgenic 
mice 
 

The optic nerve and spinal cord from transgenic mice were examined for 

structural changes by electron microscopy. At 5 weeks of age, transgenic mice 

from the three lines showed apparently normal myelination as revealed by the 

cross section of the optic nerve of the line 2615 (fig. 26A). Between 4 and 6 

months, transgenic mice display a massive loss of myelin membranes as 

shown in Fig. 26C and 26E. Hence, in relation to the severe pathological 

behavior observed in the transgenic line 2615, axonal demyelination occurred 

earlier in the line 2615 than in the line 2620 of the PLP-CGT transgenic mice. 

No demyelination was observed in the line 2604 that expresses a low amount 

of GalC mRNA, has a low CGT activity, and shows no deficit of the motor 

locomotion.  

Electron microscopy analysis of the optic nerve from the line 2615 at 18 weeks 

of age show an almost complete depletion of axons of the myelin sheath (Fig. 

26C), whereas a substantial number of myelinated axons were still found at 28 

weeks of age in the transgenic mouse line 2620 (Fig. 26E). Similar results 

were obtained by electron microscopic analysis of the spinal cord (Fig. 26D). 

Transgenic mice exhibited vacuolation in the optic nerve (Fig. 26 see arrow in 

E) and more extensive decompaction in the spinal cord (Fig. 26 see arrow D). 

Electron microscopy analysis also show thinner and less compacted myelin 

sheath in the line 2615 at 5 weeks of age (Fig. 26A) and 2620 (Fig. 26E) when 

compared to the wild type littermate (Fig. 26B). Axonal degeneration was also 

observed in the optic nerve of transgenic mice of adult age (Fig. 26 see arrow 

in A) and the spinal cord (data not shown). 

In contrast to the CGT-/- mice, the electron micrographs of a longitudinal 

section from the spinal cord tissue of PLP-CGT mice, show no abnormal 

formation of the paranodal junction (Fig 27B low magnification, Fig. 27A 
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enlarged area) when compared to the wild type littermates (data no shown). 

Beside the abnormal structure of myelin observed in the CNS, PNS axons are 

correctly ensheathed by compacted peripheral myelin in all transgenic mice, 

with no sign of demyelination, or degenerating Schwann cells (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26 Utrastructural analysis of myelin of
the optic nerve and spinal cord from PLP-
CGT transgenic mice. Cross sections of the
optic nerve of adult (13 weeks) wild-type (B), 5
week old (A) and adult (18 weeks) from the line
2615 mice (C), (E) and the line 2620 (28 weeks)
mice. (D) Electron microscopy of spinal cord
from the line 2615 (18 weeks). Apparently,
normal amounts of myelin were present in
young animals, almost no myelin is detectable
in 18 week old from the line 2615 and a
massive demyelination was evident in the line
2620. Note the vacuolation (see arrow in E),
axonal degeneration (see arrow in A) and
uncompacted myelin sheath (see arrow in E).
A-E (X16,800). Scale bar 1 µm. 
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Fig. 27 Utrastructural analysis of the paranode in the spinal cord of PLP-CGT transgenic mice. 
Longitudinal sections from 18 weeks old transgenic mice from the line 2615 of the PLP/CGT 
transgenic mice. The node paranodal junction appears to be normal. B (X5,600) and (A) area 
enlarged. Scale bar 1 µm. 
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7 DISCUSSION 
 

One aim of this study was to increase GalC and sulfatide synthesis by 

transgenic overexpression of CGT, in order to study the effect of increasing 

levels of these lipids on oligodendrocyte lipid metabolism and myelin stability. 

Surprisingly, despite a significant increase in CGT enzyme activity, there was 

only a marginal increase in total GalC in one out of three transgenic lines, 

moreover, sulfatide levels were reduced. Increase in MGDG, which is an 

alternative product of CGT, indicates that CGT activity was indeed increased 

in vivo and that the supply of UDP-galactose probably was not limiting 

galactosylation of ceramide. While NFA-GalC increased in good correlation 

with the increased CGT activity, we unexpectedly observed a decrease in the 

major GalC species, HFA-GalC. α- hydroxylation occurs in the microsomal 

fraction though it is not clear whether the free fatty acid, ceramide, or an 

unidentified intermediate product is the substrate for the mammalian fatty acid 

2-hydroxylase (FA2H) (Singh and Kishimoto, 1979). The mammalian FA2H is 

a 42.8 kDa protein, located in the endoplasmic reticulum and that catalyzes 

the hydroxylation of the fatty acid present on the ceramides (Eckhardt et al., 

2005). Nevertheless, strong evidence has been obtained for direct α-

hydroxylation of ceramide in lower eukaryotes (Kaya et al., 1984; Haak et al., 

1997: for contrary view see Anderson et al., 2004). Therefore, competition 

between α-hydroxylation and galactosylation of ceramide is likely being 

responsible for the decrease in HFA-GalC in CGT transgenic mice. In line with 

this, absence of GalC and sulfatide in CGT deficient mice is accompanied by a 

dramatic upregulation of HFA-glucosylceramide and HFA-sphingomyelin, 

which become the major sphingolipids in purified myelin (Coetzee et al., 1996; 

Bosio et al., 1996). The reduction of HFA-ceramide upon increased 

galactosylation of NFA ceramide suggests that ceramide availability may be 

limited. This is also in accordance with the finding that total GalC levels do not 

significantly increase and allows the conclusion that ceramide availability and 

not CGT activity limits GalC synthesis in vivo. Predominance of HFA-GalC in 
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myelin of wild type mice has been attributed to an increased activity of CGT 

towards HFA-ceramide. Our results demonstrate that the differential affinities 

of CGT for HFA and NFA-ceramide (Schaeren-Wiemers et al. 1995a) are not 

the only determinant of the ratio of these two lipid species in vivo. In fact, 

predominantly the level of CGT activity may determine how much of the 

ceramide is galactosylated and thus unavailable for hydroxylation. Thus, the 

predominance of HFA-GalC in vivo may be due to the low level of CGT relative 

to ceramide hydroxylation. Interestingly, whereas HFA-sulfatide was reduced 

in parallel with HFA-GalC in transgenic mice, NFA-sulfatide was not increased, 

leading to an overall decrease of sulfatide. Thus, HFA-GalC levels limit HFA-

sulfatide whereas NFA-GalC is not limiting NFA-sulfatide synthesis. In the 

mammalian brain, more than 50% of the GalC and sulfatide contain α-

hydroxylated fatty acids. α-hydroxylase activity reaches a maximum during the 

active period of myelination (Svennerholm and Stallberg-Stenhagen, 1968; 

Nonaka and Kishimoto, 1979), similar to the expression of CGT and other 

myelin-related genes, e.g. MBP, PLP, and MAL (Garbay and Cassagne, 1994; 

Muse et al., 2001; Frank et al., 1999; Schaeren-Wiemers et al., 1995b; Sorg et 

al., 1987; Gardinier et al., 1986). α-hydroxylation of sphingolipids has been 

implicated in the stability of the myelin sheath (Shah et al., 1995; Koshy et al., 

1999; Graf et al., 2002). There is, however, no direct experimental evidence 

for a functional role of sphingolipid α-hydroxylation in vivo. Transgenic mice 

overexpressing CGT have essentially normal levels of GalC. In myelin, the 

only major alteration of lipid composition is the significantly reduced HFA:NFA-

GalC ratio. At the same time there seem to be no major changes in protein 

composition of myelin of transgenic mice. Thus, it seems likely the HFA:NFA-

GalC ratio is responsible for unstable and uncompacted myelin, suggesting an 

important role of sphingolipid α-hydroxylation in the stability and maintenance 

of the myelin membrane. The total amount of HFA-sphingolipids was reduced 

to a similar degree in CGT transgenic and deficient mice. The massive myelin 

decompaction, however, observed in CGT transgenic mice was not observed 

in the CGT knockout mice (Bosio et al., 1998a; Coetzee et al., 1996; Coetzee 

et al., 1998). This suggests that destabilization of the myelin in CGT transgenic 
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mice is not due to reduced levels in HFA-sphingolipids, but that the HFA:NFA-

GalC ratio is the relevant factor in the stabilization of the myelin sheath. α-

hydroxylation of sphingolipids might increase lateral interaction between 

sphingolipids and it could facilitate formation of ion complexes (Graf et al., 

2002) and therefore stabilize the membrane by increasing lateral interactions 

within the compact myelin. In the absence of GalC in CGT knockout mice, the 

distribution of several proteins between lipid-rafts and non-raft fractions is 

affected (Kim and Pfeiffer, 2002). Thus, GalC is important in the formation of 

myelin lipid rafts and it is tempting to speculate that alterations in the 

HFA:NFA-GalC ratio might interfere with the assembly of functional rafts in the 

myelin membrane. An indication for alterations in myelin microdomain 

structure is the accumulation of MAL in CGT transgenic mice. Although we 

observed upregulation of MAL mRNA levels in PLP-CGT transgenic mice, 

upregulation of MAL protein was much more pronounced. This raises the 

possibility that there is also an accumulation of MAL in the myelin membrane. 

MAL is a four transmembrane domain protein, which also has been identified 

in epithelial cells of kidney and stomach (Schaeren-Wiemers et al., 1995; 

Frank et al., 1998). Thus, MAL is expressed in tissues with exceptionally high 

amounts of GalC and sulfatides. In line with this, Frank et al. (1998) showed 

that MAL binds sulfatide. Expression of MAL correlates with myelination and 

the protein is found in compact myelin, where it associates with sphingolipid-

rich membrane microdomains or rafts (Frank et al., 1998, 1999; Erne et al., 

2002). MAL is required for efficient vesicular transport to the apical surface in 

MDCK cells (Cheong et al., 1999; Martin-Belmonte et al., 2001). Recently, it 

has been shown that MAL is also an important factor in the clathrin-mediated 

endocytosis at the apical surface in MDCK cells (Martin-Belmonte et al., 2003), 

and its presence in the Schmidt-Lanterman incisures (Erne et al., 2002) 

suggests that MAL might be involved in the turnover of myelin membrane 

components as well. Thus apparent accumulation of MAL protein in the myelin 

of CGT transgenic mice (lines 2615 and 2620) might be explained by impaired 

recycling of MAL via the endosomal pathway (Martin-Belmonte et al., 2003). 

Other myelin proteins e.g. PLP or MAG, however, are not enriched in the 
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myelin of CGT transgenic mice, indicating that their turnover is not affected. 

This suggests localization of MAL and PLP in different membrane 

microdomains. In line with this, differences in detergent solubility between MAL 

and PLP and other membrane proteins suggest the existence of different types 

of membrane microdomains (Erne et al., 2002; Kim and Pfeiffer, 2002; Taylor 

et al., 2002). Interestingly, we recently observed that sulfatide accumulation in 

arylsulfatase A deficient mice leads to severe reduction in MAL mRNA and 

protein level as well as mistargeting of MAL (Saravanan et al., 2004). In 

sulfatide storing kidney cells, MAL was redistributed to the 

endosomal/lysosomal compartment, supporting the hypothesis that altering the 

sphingolipid composition affects MAL protein transport. 

Overexpression of transgenic CGT led to a specific decrease in the 

endogenous murine CGT mRNA, suggesting feedback inhibition. Whether this 

occurs at the transcriptional or posttranscriptional level remains to be 

determined. Negative regulatory elements have been found in the promoter 

region of both human and mouse CGT gene, though their functional relevance 

in vivo has not been investigated (Yonemasu et al., 1998; Tencomnao et al., 

2001). Similar to CGT transgenic mice, downregulation of CGT mRNA has 

been observed in twitcher mice (Taniike et al., 1998). Twitcher mice lack a 

functional galactosylceramidase and are unable to degrade GalC and 

psychosine (Wenger et al., 2001). Interestingly, these mice as well as humans 

suffering from globoid cell leukodystrophy (Krabbe disease) do not accumulate 

substantial amounts of GalC (Wenger et al., 2001), which at least in part may 

be explained by the reduced CGT mRNA level. Similarly, in metachromatic 

leukodystrophy and in arylsulfatase A deficient mice accumulation of sulfatide 

is accompanied by a significant reduction in GalC, although it has not been 

investigated whether this is due to downregulation of CGT expression (Von 

Figura et al., 2001). Psychosine is dramatically increased in globoid cell 

leukodystrophy (Igisu and Suzuki, 1984) and could potentially be the signaling 

molecule responsible for CGT mRNA downregulation. This can, however, be 

excluded in the case of CGT transgenic mice, where psychosine concentration 

was normal. Our data shows that the HFA:NFA-GalC ratio is an indicator of 
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CGT activity. Changes in this ratio might affect membrane micro domain 

organization and consequently signal transduction in oligodendrocytes, 

resulting in CGT mRNA reduction. Alternatively, the reduction in VLCFA-

sphingomyelin might affect the formation of ceramide, sphingosine or 

sphingosine-1-phosphate and thereby modify signal transduction processes 

leading to CGT mRNA downregulation. In any case, the existence of a 

feedback control of CGT expression emphasizes the necessity of a tight 

control of CGT expression/activity in formation and maintenance of a 

functional myelin sheath. Further, the apparent devastating consequences of 

altering the HFA:NFA-GalC ratio without altering GalC concentration in myelin 

is remarkable, and supports the crucial role that these lipids have in myelin 

stability and maintenance. 

Understanding the mechanisms that regulated differentiation of 

oligodendrocytes is important for an understanding the myelin formation and 

maintenance processes. GalC and sulfatide synthesized in the ER and Golgi, 

respectively, are transported to the outer leaflet of oligodendrocyte plasma 

membrane at a specific time during differentiation (Raff et al., 1978; Hardy and 

Reynolds, 1991). Antibody perturbation studies demonstrated that GalC and 

sulfatide plays critical role in oligodendrocytes differentiation (Bansal and 

Pfeiffer, 1989). GalC-/- and sulfatide knockout mice shows increase of 

oligodendrocyte differentiation both in vivo and in vitro, suggesting that GalC 

and sulfatide are important factors of oligodendrocyte development and myelin 

formation (Bansal et al., 1999; Hirahara et al. 2004).  

Mature oligodendrocytes are characterized by the expression of MBP and 

PLP, which therefore serve as markers for terminal differentiation. Moreover, 

differentiated oligodendrocytes are characterized by a change in their 

morphology. In the present study, we found in vitro, an increase of MBP 

positive cells in the primary culture of cells from PLP-CGT transgenic mouse 

brains. Furthermore, a significant increase of PLP positive cells was observed 

in vitro in the corpus callosum of transgenic mice (lines 2615 and 2620). This 

increase could not be due to the overexpression of CGT in the mouse brain, 

but to the decrease of sulfatide content observed in PLP-CGT transgenic mice, 
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since sulfatide is known as a negative regulator of oligodendrocyte 

differentiation (Hirahara et al. 2004). Morphologically, low amount of MBP 

positive cells from PLP-CGT transgenic mice displays the morphology of a 

mature oligodendrocyte in vitro. This data could suggest an impairment of the 

terminal stage during the development of oligodendrocytes in PLP-CGT 

transgenic mice in vitro. 
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8 CONCLUSION 
 

In any event, the observation presented in the first part of this thesis establish 

a relationship between the ratio of HFA:NFA-GalC and the stability of the 

myelin sheath in the CNS. Mice with altered ratio of HFA:NFA-GalC 

demyelinate at the adult age. In addition, myelin in these mice is 

uncompacted, with signs of vacuolation and axonal degeneration. 

Furthermore, elevation of the level of NFA-GalC did not induce the increase of 

NFA-sulfatide level, suggesting that NFA-GalC is not a limited factor for the 

NFA-sulfatide synthesis. Examination of the longitudinal section of PLP-CGT 

optic nerve indicates no alteration of the paranode structure. In contrast to 

CNS, PNS myelin was not altered, suggesting that change of HFA:NFA-GalC 

ratio have no effect on the stability of PNS myelin. Moreover, increased 

concentration of the MAL protein in myelin of PLP-CGT mice suggests a 

possible alteration of the rafts microdomain. Although the HFA:NFA-GalC ratio 

was altered, and HFA-sulfatide level reduced in these mice, oligodendrocyte 

numbers were elevated both in vitro and in vivo. The increase of 

oligodendrocyte numbers could not be affected to the change of HFA:NFA-

GalC ratio, but to the decrease of sulfatide level in PLP-CGT mice, since 

sulfatide is a negative regulator of oligodendrocytes differentiation. In contrast 

to increased amount of oligodendrocytes in PLP-CGT mice, an impairment of 

the terminal stage of oligodendrocytes development was observed, indicating 

that a normal HFA:NFA-GalC ratio is required for an efficient maturation of 

oligodendrocytes. 
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PART II 
 

9.1 Identification of the PLP-PST founder mice and their behavior 
 

The transgene (Fig. 28A) was constructed by inserting a 1.09 kb of the mouse 

PST/ST8Sia IV cDNA into the PmeI site present in the PLP promoter cassette 

(a kind gift of Dr. Macklin). The PLP promoter cassette contains a 2.4 kb PLP 

promoter, exon1, intron 1 (8.5 kb), the first 37 bp of the exon 2, where the 

translation start site was mutated in order to allow the transcription to start at 

the transcription start site present in the PST cDNA, and the SV40 

polyadenylation site. By digesting (ApaI/NotI) a 10.86 kb DNA fragment, the 

PLP-PST construct was released from the bluescript plasmid and 

microinjected into the fertilized mouse oocytes obtained by the crossing of 

CBA and C57/Bl6 mice strain. Sixty founder mice (33 females and 27 males) 

were obtained. Founder mice were screened for the presence of the 

transgenic construct both by PCR (data not shown) and Southern blot (fig.28B) 

analysis of the genomic DNA from mouse tails. Results indicate four 

transgenic founder mice (224, 244, 266, 281), which transmitted the transgene 

in the Mendelian fashion. 

 

 

 

 

 

 

 
Fig.28 Transgene construction and identification of the PLP-PST mice. (A) The scheme 
represents the DNA region derived from the PLP promoter gene (2.4 kb) including the transcription 
start site as well as the whole PLP intron 1. The white boxes represent the PLP exon1 and 37bp of the 
exon 2. The black box represents the mouse PST cDNA including the translation start site ATG and 
the stop codon and the ORF (1095 bp) and the red box represents the SV40 polyadenylation signal. 
10 µg of the genomic DNA was digested overnight using AccI [AccI digests the mouse PST cDNA at 
nucleotide 57 and 868 and generates a 811 bp fragment], separated onto 1% agarose gel, transferred 
to the HyBondN+ membrane. The membrane was finally hybridized with [32P]-labeled DNA probe 
generated by using the full length mouse PST (B) ORF as template. Bands were visualized on 
phosphoimager after exposure on pre-flashed Fuji imaging plate. 
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Among the four founder mice produced, only the offspring mice from the line 

246 and 281 were fully analyzed. One of these lines displays only a low copy 

number of transgene (281). In contrast, the second line (246) carries several 

copies of transgene per haploid genome (Fig. 28B). Less than 5% of the mice 

from this line develop severe behavioral abnormalities, characterized by 

tremor and paralysis of the hind limbs. Mice with these phenotypes were not 

able to live more that eight months. 

 

9.2 PST mRNA expression and PSA level in PLP-PST mouse brains 
 

PST mRNA overexpression was investigated by Northern blot analysis of total 

RNA isolated from mouse brains. Total RNA was purified from 10 weeks old 

PLP-PST transgenic mice and wild type littermates. RNA (10 µg) was 

separated on formaldehyde agarose gel, transferred onto HybondN+ 

membrane and hybridized with [32P]-labeled PST cDNA probe. Fig. 29A 

demonstrates that transgenic mRNA was overexpressed in the brains of 

transgenic mice and that the expressed amount was related to the transgene 

copy number inserted to the chromosome (258<273<281<246). 

To determine whether the increase in transgenic mRNA induces the increase 

in PSA concentration, Western blot analysis of 24 weeks old PLP-PST 

transgenic and wild type littermates were performed. As expected, a significant 

increase of PSA concentration was observed in transgenic mice brain and 

myelin (Fig. 29B) when the membrane was probed by the rabbit anti-PSA 

antibody. 

Cell adhesion molecules expressed by both axons and glial cells are known to 

play a crucial role in the establishment of axon-glial contact and subsequent 

signaling to oligodendrocyte, driving the process of myelination (Doyle and 

Colman, 1993; Notterpek and Rome, 1994). Moreover, oligodendrocyte cells 

adhesion molecule is the NCAM-120 (Bhat and Silberberg, 1988) and is post-

translationally modified by the addition of PSA. Because in the normal case 

the PSA concentration on the NCAM is barely detectable at the adult age, it 

was of great importance to investigate the level of the NCAM-120 in PLP-PST 
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mice, since these mice expresses a higher amount of the PSA at the adult 

age. During myelination, NCAM expression in the myelin fraction from PLP-

PST mice was unchanged (Fig. 29C). At the adult age, no change in the 

concentration of the NCAM-120 was also observed (Fig. 29D: neuraminidase 

treated myelin samples). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 29 Assessment of the level of PST, PSA and NCAM in PLP-PST mice. The transgene 
expression in 10 weeks old mouse brains was assessed by Northern blot analysis of total RNA. Total 
RNA (20 µg) was separated onto 1 % agarose gel, transferred onto HybondN+ membrane. (A) PST 
mRNA expression was detected on the blot by hybridization using the [32P]-labeled mouse PST cDNA 
probe. Quantity and integrity of mRNA was verified by the ethidium bromide staining of the agarose 
gel and β-actin hybridization. Overexpression was also assessed at the PSA level by Western blot 
analysis of proteins from myelin and brain homogenates. SDS-extracted myelin and brain proteins 
were separated on 7.5% polyacrylamide gel and transferred onto nitrocellulose membrane using the 
semi-dry technique. PSA expression was then detected using mouse anti-PSA antibody and anti-
mouse Ig couple to HRP (B). To investigate the expression of NCAM, 50µg of myelin was diluted in 
the buffer and treated for 4 hours using neuraminidase enzyme at 37°C. Proteins were then extracted 
from the neuraminidase treated myelin samples and investigated for NCAM expression as previously 
described using anti-NCAM antibody and the appropriate HRP-labeled second antibody. (C) NCAM 
expression in neuraminidase treated myelin samples from PLP-PST mice at 2 and 4 weeks of age. (D) 
NCAM expression in neuraminidase treated and un-treated myelin samples from PLP-PST mice at 24 
weeks of age. Note that the low signal of the NCAM-120 is not because of the downregulation of the 
NCAM-120 expression, but because of the low accessibility of the NCAM antibody to the NCAM-120 
molecule, due to the abundance of the PSA molecule at the surface of this NCAM isoform. 
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To determine whether the PSA overexpression is targeted to the NCAM-120, 

Western blot analysis of the NCAM expression was performed on 

neuraminidase untreated myelin samples from 24 weeks old PLP-PST mice. 

As expected, only the NCAM-120 shows a reduced signal on the blot (Fig. 

29D: neuraminidase untreated myelin samples). This reduction of the NCAM-

120 signals is not due to the downregulation of its expression, but to the low 

accessibility of the antibody to the NCAM-120 molecule, due to the abundance 

of the PSA molecule at the surface of this NCAM isoform. 

 

9.3 PST mRNA overexpression is restricted to the white matter 
regions of brain 
 

Myelin formation starts around birth in the brain stem and the ventral and 

dorsal funiculi of the cervical spinal cord (Rozeik and Von Keyserlingk, 1987; 

Schwab and Schnell, 1989). To determine the localization of PST mRNA and 

its expression pattern in the transgenic mouse brains, in situ hybridization on 

paraffin sections of 8 weeks old PLP-PST transgenic mice and wild type 

controls was performed. When the brain slices were hybridized with DIG-

labeled PST cRNA, a significant staining was observed in the white matter 

region of the transgenic mice brain compared to the wild type controls (Fig. 

30), suggesting that overexpression of PST mRNA could be restricted to the 

oligodendrocyte present in the white matter. 

In situ hybridization also demonstrated that PST mRNA was not expressed at 

the same level in each transgenic line. Hence, the line 246 (Fig. 30C & D) was 

expressing a higher amount than the line 281 (fig. 30E & F) in the white matter 

of the forebrain and cerebellum. 
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Fig. 30 White matter specific expression of PST mRNA in mouse brain. In situ hybridization was 
performed as described by Baader et al. (1998). Paraffin sections of the brains wild type and 
transgenic mice (8 weeks old) were hybridized with a DIG-labeled riboprobe for PST transcripts. PST 
expression was finally documented by microscopic analysis (Zeiss, Germany). Hybridization signals 
revealed strong transgene expression in the white matter of the forebrain [line 246 (D) and 281 (F), 
wild type (B)] and cerebellum [line 246 (C) and 281(D)] of transgenic mice compared to the expression 
in wild-type mice (A, B). Scale bar 50 µm. 
 

9.4 Effects of PST overexpression on the level of myelin and 
oligodendrocyte specific proteins 
 

To investigate the effects of PST overexpression on the concentration of the 

myelin/oligodendrocyte proteins, Lipid, Western and Northern blot analysis 

were performed. 

CNPase is a protein which is expressed at all stages during the development 

of oligodendrocytes and represents 4% of the total myelin proteins (Baumann 

and Pham-Dinh, 2001). To investigate the level of CNPase in PST transgenic 

mouse brains, myelin of transgenic mice and wild type controls was purified 

and analyzed by Western blot as the function of age. The level of CNPase was 

unchanged during myelination and at the adult age in PLP-PST transgenic 

mice (Fig. 31A). 

Fyn is one of nine known members of the Src family of protein tyrosine 

kinases, which are highly similar in amino acid sequence (Brown and Cooper, 
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1996). Fyn is expressed in oligodendrocytes and is known to modulate 

myelination and oligodendrocyte differentiation (Krämer et al., 1999; Osterhout 

et al., 1999). Therefore, we sought to determine whether the increase of PSA 

concentration disturbs Fyn expression. Fyn level was unchanged in the myelin 

of PLP-PST mice, as indicated by Western blot analysis (Fig. 31A). In contrast 

to Fyn and CNPase, MBP protein level was reduced in the brain homogenate 

from the line 246 of PLP-PST mice at 2 weeks of age (Fig. 31B). The line 281 

shows no reduction of the MBP protein level at all age. To determine whether 

the reduction of MBP protein occurs at the transcriptional level, northern blot 

analysis of RNA from brain of 2 and 4 weeks old mice was performed. As 

expected, MBP mRNA level was also reduced in PLP-PST mice at the same 

age (Fig. 32A). Quantitatively, reduction of MBP mRNA level was 15 and 30% 

(p<0.05), respectively in the lines 281 and 246 at 2 weeks of age. At 4 weeks 

of age, 7% reduction (Fig. 32B) of MBP mRNA was observed in the line 246 

and no reduction in the line 281. It seems that 7 % MBP mRNA reduction in 

the line 246 was not able to drive a visible reduction of MBP protein at 4 weeks 

of age (Fig. 31B). The same effect was already observed in the line 281 at 2 

weeks of age, where MBP mRNA was reduced (Fig. 32B), but not the protein 

(Fig. 31B). 

Previous studies have shown that CST mRNA and activity appears at the 

embryonic day 11.5 during the mouse brain development (Hirahara et al., 

2000, 2004). During oligodendrocyte differentiation, sulfatide first appears at 

the immature stage of the oligodendrocyte lineage together with GalC (Bansal 

et al., 1992). Northern blot analysis of the CST gene expression in the PLP-

PST mouse brain shows no change in the CST mRNA level compared to wild 

type control at 2 and 4 weeks of age (Fig. 32A). Consistent with this data, 

sulfatide and other myelin lipid levels were unchanged in the myelin fraction of 

PLP-PST mice at 24 weeks of age as shown by TLC analysis (Fig. 31C). 
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Fig. 31 Protein and lipid levels in myelin and brains of PLP-PST transgenic mice. Wild type 
littermates were used as control mice in all experiments. Myelin and brain protein fractions were SDS-
extracted, separated onto 12.5% polyacrylamide gel and blotted onto nitrocellulose membrane using a 
semidry blotting technique. Bound proteins were detected using anti-MBP, anti-fyn and anti-CNPase 
antibodies and the appropriate HRP-labeled Ig. In some cases membranes were re-probed with 
antibody against beta-actin as control of loading. (A) Western blot analysis of Fyn and CNPase levels 
in the myelin samples at 2, 4 and 24 weeks of age. (B) Western blot analysis of MBP level in the 
protein homogenate from transgenic mice and wild-type controls at 2, 4 and 24 weeks of age. For lipid 
analysis, myelin was purified from transgenic mice and wild type controls at 24 weeks of age 
according to Norton and Poduslo (1973). Lipids were extracted from myelin using C/M (2:1) and the 
volume of lipids solution corresponding to 100 µg myelin dry weight was spotted and separated using 
C/M/W (60:27:4). Lipid Bands were visualized using CuSO4/H3PO4 at 170 °C for 2 minutes. (C) HPTLC 
profile of transgenic and wild type littermates. 
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Fig.32 Myelin specific mRNA expression in PLP-PST transgenic mice. The expression of CST 
and MBP mRNA in the brain of transgenic mice (n=3 per line) and wild type controls (n=3) was 
assessed by Northern blot analysis of total RNA. Total RNA from 2 and 4 weeks old mouse brains was 
purified by the Trizol reagents and 20 µg were separated in 1% RNAse free agarose gel and 
transferred onto HybondN+ membrane. Membrane was finally hybridized with [32P]-labeled 1.3 kb 
coding regions of MBP or 1.2 kb coding region of the CST cDNA (A). Detection was performed by 
exposing the membrane to pre-flashed Fuji Bioimager screen and subsequently to X-ray film. MBP 
expression was quantified and the results are given as an average ±SEM (B). Asterisks indicate 
significant differences between transgenic and wild type mice (p<0.05: t-test). 
 

9.5 Effects of the elevation of the PSA concentration on the 
development of oligodendrocytes during myelination 
 

During development, oligodendrocyte precursor cells, generated in the 

ventricular zone, proliferate and migrate over considerable distances to their 

destinations (Lee et al. 2000), where they differentiate. Differentiation 

processes are controlled by the expression of different proteins or lipids at 

different stages. Differentiated oligodendrocytes are characterized by the 

change of their morphology and expression of terminal markers such as MBP 
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and PLP. In contrast, Platelet derived growth factor alpha-receptor (PDGFRα-

R) is one of the best-studied and earliest markers for oligodendrocyte 

progenitors in the CNS. Previous studies have demonstrated that PDGFRα-R 

positive cells are oligodendrocytes progenitors. Furthermore, purified 

progenitors from the late embryonic rat spinal cord and brain by 

immunoselection, differentiate into oligodendrocyte under appropriate culture 

conditions (Hall et al., 1996; Tekki-Kessaris et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

Because MBP concentration was reduced in the brain of PLP-PST transgenic 

mice, we sought to determine whether this reduction is caused by the 

reduction of oligodendrocyte numbers or inhibition of oligodendrocyte 

differentiation. To investigate these issues, oligodendrocyte numbers were 

analyzed in selected areas of CNS in PLP-PST transgenic mice and wild type 

controls during myelination. To facilitate identification and accurate counting of 

progenitors and differentiated oligodendrocytes, we used both PDGFRα-R and 

PLP DIG-labeled cRNA.  

Hybridization of the brain slices with DIG-labeled PLP cRNA shows that 

differentiated oligodendrocyte numbers were decreased in the corpus 

callosum of PLP-PST transgenic mice compared to the wild type controls at 

one week of age (Fig. 34). Quantitatively, reductions were 36 and 54% 

(p<0.01) (Fig. 34J), respectively, in the lines 281 and 246. At two (Fig. 35) and 

four (Fig 36) weeks of age, and in the corpus callosum of PLP-PST mice, 

246

281

wt

Fig. 33 Expression of PLP mRNA in 1 
week old mouse brains from PLP-PST 
mice. In situ hybridization analysis of mouse 
brain, showing the dorsal and ventral staining 
in the spinal cord from transgenic mice 
compared to the wild type littermates. Note 
also the difference in the staining in the brain 
stem and corpus callosum. Results are 
documented using logitec webcam. 
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decreases of oligodendrocyte numbers were also found. Decreases were 

around 25% (p<0.05) in the line 246 (Fig. 37B). In the line 281 and in the 

corpus callosum, a significant decrease (27%) of oligodendrocyte numbers 

was observed at two weeks of age (Fig. 37B). 

In contrast to the corpus callosum of one week old transgenic mice, a 

significant increase of differentiated oligodendrocyte number was observed in 

the brainstem and spinal cord (Fig. 34). Increases were 69 and 92% (p<0.01) 

in the spinal cord (Fig. 34J) and 41 and 84% (p<0.01) in the brainstem (Fig 

37A), respectively, in the lines 246 and 281. In the two lines and at two and 

four weeks of age, significant increases [at 2 weeks 45% (246) and 36% (281), 

and at 4 weeks of age 29% (246) and 41% (281)] of oligodendrocyte numbers 

was observed in the brainstem (Fig. 37A). 

At this stage of investigation, it was impossible to draw a conclusion. It was not 

possible to determine whether the regional increase other decrease of 

differentiated oligodendrocyte numbers, was due to the changes in the 

differentiation or proliferation mechanisms in these mice. Therefore, 

investigation of the number of cells expressing the PDGF alpha-receptor 

mRNA was important. The expression of the PDGFRα-R in the sagittal 

sections from transgenic mice and wild type controls was essayed at one and 

four weeks of age. In contrast to the increase or decrease of differentiated 

oligodendrocyte (PLP mRNA positive cells) numbers, no change in the number 

of oligodendrocyte progenitors was observed in the brain of PLP-PST mice 

compared to the wild-type controls (Fig. 38 and 39, for staining). The number 

of the PDGFRα-R positive cells counted in three regions (spinal cord, 

brainstem and corpus callosum) of the brain of transgenic mice was 

unchanged when compared to the one of the wild-type littermates (Fig. 38J, K 

& L and 39G & H, for quantity). This result together with the one concerning 

the expression of the PLP mRNA, allow us to conclude that elevation of the 

PSA concentration induces the increase of oligodendrocyte differentiation in 

the spinal cord and brainstem and its decrease in the corpus callosum. 
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Fig. 34 PLP mRNA expression in the brain of PLP-PST mice. Distribution of the PLP mRNA-
positive cells in the corpus callosum (A-C), brainstem (D-F), and spinal cord (G-I). Tissue sections (8 
µm) from transgenic mice and wild type controls of 1 week of age were hybridized with DIG-labeled 
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PLP cRNA probe and visualized after 1 hour staining with BCIP/NBT. Quantification of PLP-mRNA 
positive cells in the spinal cord (J) of one weeks old mouse was performed by counting. Three slices 
were counted per microscopic slide and three mice were analyzed per group (n=3). Counted cells 
were normalized to the mm² of the spinal cord and the result is given as the mean ± SEM of 9 counts. 
Asterisks indicate significant differences between transgenic mice and wild type controls. (p<0.01; 
Anova). Scale bar 100 µm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 35 PLP mRNA-positive cells in the corpus callosum and brainstem of two weeks old PLP-
PST mice. Distribution of the PLP mRNA-positive cells in the corpus callosum (A, C & E) and brain 
stem (B, D & F). Tissue sections (8 µm) from transgenic and wild type littermate mice of 2 weeks of 
age were hybridized with DIG-labeled PLP cRNA probe. Slices were stained for 1 hour using BCIP 
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and NBT. Positive cells were documented using microscopic analysis on an Axiovert M instrument 
(Zeiss, Germany). Scale bar 100 µm 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 36 Oligodendrocyte differentiation in the corpus callosum and brainstem of weeks old 
PLP-PST mice. Distribution of the PLP mRNA-positive cells in the corpus callosum (A-C) and brain 
stem (D-E). Tissue sections (8 µm) from transgenic mice and wild type controls of 4 week of age were 
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hybridized with DIG-labeled PLP cRNA probe. Positive cells were visualized using BCIP/NBT and 
documented by electron microscopy (Zeiss, Germany). Scale bar 100 µm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 37 Oligodendrocyte levels in the corpus callosum and brainstem PLP-PST transgenic 
mice. 8µm brain slices of PLP-PST and wild-type mice were analyzed as a function of time by in situ 
hybridization. The PLP mRNA expression was assayed as a marker of oligodendrocyte maturation. 
Tissue sections were hybridized with DIG-labeled PLP cRNA probe and visualized by BCIP/NBT (1 
hour) staining. Positive cells were analyzed by electron microscopy and the number of PLP mRNA-
positive cells counted. Three brain slices were counted per mouse and per microscopic slide and three 
mice were analyzed per group (n=3). Counted cells were normalized to the mm² of the counted region 
and the result is given as the mean ± SEM of 9 counts. (A) PLP-mRNA positive cells in the brainstem 
and (B) PLP mRNA-positive cells in the corpus callosum. Asterisks indicate significant differences 
between transgenic mice and wild type controls. (p<0.01; Anova). 
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Fig.38 Expression of PDGF alpha-receptor in PLP-PST transgenic mouse brains. The expression 
of the PDGF alpha-receptor in transgenic mice brain was investigated at 2 weeks of age by in situ 
hybridization using DIG-labeled PDGF α-receptor cRNA. No change is observed in the expression of 
PDGF α-receptor level in the corpus callosum of (C & E) and brainstem (D & F) of transgenic mice 
brain compared to the wild type littermates (A) corpus callosum and brainstem (B). Quantification [(J) 
corpus callosum, (K) spinal cord, (L) brainstem] was performed by counting cells in each region. Three 
brain slices were counted per mouse and per microscopic slide and three mice were analyzed per 
group (n=3). Counted cells were normalized to the mm² of the counted region and the result is given 
as the mean ± SEM of 9 counts. Differences are not significant (p>0.05, Anova). Scale bar 50 µm 

0

20

40

60

80

100

120

w t 246 281

PD
G

F-
al

ph
a 

re
ce

pt
or

 
ex

pr
es

si
on

 p
er

 m
m2  o

f 
th

e 
co

rp
us

 c
al

lo
su

m

0

50

100

150

200

250

w t 246 281

PD
G

F-
al

ph
a 

re
ce

pt
or

 
ex

pr
es

si
on

 p
er

 m
m2  o

f
 th

e 
sp

in
al

 c
or

d

0

50

100

150

200

250

w t 246 281

PD
G

F-
al

ph
a 

re
ce

pt
or

 
ex

pr
es

si
on

 p
er

 m
m2  o

f 
th

e 
br

ai
ns

te
m

J K L

246 281 wt 
A 

B 

C 

D

E

F

G

H

I

Corpus callosum Corpus callosum Corpus callosum

Brainstem Brainstem Brainstem

Spinal cord Spinal cordSpinal cord



PART II: RESULTS   

 107

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BrainstemCorpus callosum
BA

C D

E F

wt 

281 

246 

wt 

246 

281 



PART II: RESULTS   

 108

 

 

 

 

 

 

 

 
Fig.39 Expression of PDGFαR in PLP-PST transgenic mice a 4 weeks of age. The expression of 
the PDGF α-receptor in transgenic mouse brains was investigated at 4 weeks of age by in situ 
hybridization using DIG-labeled PDGF α-receptor cRNA. No change is observed in the expression of 
PDGF α-receptor in the corpus callosum of (C & E) and brainstem (D & F) of transgenic mice brain 
compared to the wild type littermates (A) corpus callosum and brainstem (B). Quantification [(G) 
corpus callosum, (H) brainstem] was performed by counting the cells in each region and three brain 
slices were counted per mouse and per microscopic slide and three mice were analyzed per group 
(n=3). Counted cells were normalized to the mm² of the counted region and the result is given as the 
mean ± SEM of 9 counts. Differences are not significant (P>0.05, Anova). Scale bar 50 µm 
 

9.6 Myelin structure in PLP-PST transgenic mice 
 

To determine whether myelin structure is compromised in PLP-PST animals, 

we analyzed the transgenic mice myelin at 4, 23 and 28 weeks old in two 

separate areas of the nervous system. PNS axons are correctly ensheathed 

by compacted peripheral myelin in all PLP-PST transgenic mice lines, with no 

sign of demyelination or degenerating Schwann cells (Fig. 40A).  

In the CNS, to ensure that similar regions were analyzed in each animal, we 

focused our analysis on discrete location. At four weeks of age, electron 

microscopy of the optic nerve from transgenic mice show a normal myelination 

profile with no sign of hypo or demyelination (Fig. 40C) when compared to the 

optic nerve from wild type mice of 13 weeks old (Fig. 40B). In the same area of 

the optic nerve, and at the adult age, substantial loss of myelin was observed 

in transgenic mice (Fig. 40E2 & D3). Furthermore, the myelin sheath appears 

thinly in the myelinated regions of the optic nerve (Fig. 40D3). Beside the 

demyelination process observed, redundant myelinated axons were observed, 

but rarely (Fig. 40D & D4). Another abnormal myelin structure observed in 

PLP-PST transgenic mice was vacuolated fibers, which arise from the axonal 
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degeneration due to the reduction of the contact between the myelin sheath 

and axons (Fig. 40D and E1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 40 Ultrastructure of myelin in the nervous system of PLP-PST transgenic mice. Semithin 
cross-sections of the PNS (A) from the line 246 (28 weeks) and optic nerve of adult (13 weeks) wild-
type (B), 4 weeks old (C) and adult (28 weeks) from the lines 246 mice (D), and 281 (23 weeks) (E), 
was analyzed by electron microscopy. Normal amounts of myelin were present in young animals. 
Demyelination is detectable in adult mice from the lines 246 and 281. Note the axonal degeneration 
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(E1, asterisk point to area enlarged in E), demyelination (E2 and D3, asterisk points to area enlarged 
in D and E), and redundant myelination (D4, asterisk point to area enlarged in D) observed in PLP-
PST transgenic mice. D and F with indices indicate the picture from which the magnification has been 
done. A and B (X16,800); B, C and D (X5,600). Scale bar 1 µm 
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10 DISCUSSION 
 

Oligodendrocytes development and myelin maintenance are processes 

controlled by the expression of different cellular markers. At the progenitor 

stage, oligodendrocytes expresses different molecules such as PSA which 

help them in their migration to their destinations. Expression of the highly 

sialylated form of NCAM is developmentally down-regulated, and, in the optic 

nerve of the mouse, PSA-NCAM progressively disappears from retinal 

ganglion cell axons during the first two postnatal weeks, with a time course 

that parallels myelination (Bartsch et al., 1990). In oligodendrocyte, PST 

(ST8Sia IV) is responsible for the polysialylation of NCAM-120 molecule (Bhat 

and Silberberg, 1988). Moreover, NCAM-120 carry out functions attributed to 

oligodendrocyte adhesion molecules and co-localizes together with signal 

transduction molecules such as F3 and Fyn in rafts (Schachner and Martini, 

1995; Krämer et al., 1999). Because PSA level is developmentally down-

regulated, transgenic overexpressing PST in oligodendrocyte was generated 

in order to study the effect of increased concentrations of PSA on 

oligodendrocyte development and myelin stability. 

In the present study, we analyzed oligodendrocytes development, myelination 

and myelin stability in the presence of an elevated PSA concentration. We 

demonstrated by in situ hybridization that increased levels of PSA affect the 

development of oligodendrocyte in vivo. A substantial increase of 

oligodendrocyte numbers in the spinal cord and brainstem of PLP-PST mice 

were observed during myelination. This elevation of the level of 

oligodendrocytes could suggest a relation to elevated amount of PSA with the 

proliferation, since it has been demonstrated in vitro and in vivo that neuronal 

cells undergoing division are those which exhibit highest amounts of PSA (Hu 

et al, 1996; Wang et al., 1996: Hildebrandt al., 1998). Furthermore, another 

neuroblastoma line, which predominantly expresses PSA during division, fails 

to divide if pretreated with endoneuraminidase (Hildebrandt al., 1998). In 

contrast to data supporting a direct role of PSA on the neuroblastoma cells, no 
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direct evidence supports the relation of the PSA expression and the 

proliferation of oligodendrocytes. In the case of a possible relation between the 

proliferation of oligodendrocytes of the spinal cord and brainstem with an 

increased amount of PSA, it is unclear why the increased amount of PSA 

causes reduction of differentiated oligodendrocyte numbers in the corpus 

callosum of PLP-PST mice. Because myelination and oligodendrocytes 

development are closely related, and because the initiation of myelination 

occurs in the spinal cord at a much earlier time than in the corpus callosum 

(Sperber et al., 2001), this difference could be attributed to the regional 

variability of oligodendrocyte development. Interestingly, mice deficient in Fyn 

also exhibit a different pattern of regional proliferation: Fyn null mice have 

reduced oligodendrocyte numbers in the corpus callosum and an unchanged 

number in the spinal cord (Sperber et al., 2001), the same result obtained in 

our study. 

The other possible explanation for the regional differences in the development 

of oligodendrocytes is that, oligodendrocytes of the spinal cord and brainstem 

could require PSA for their development, whereas those of the corpus 

callosum do not. Consistent with this point of view, it had been proposed that 

there are distinct subpopulations of oligodendroglial (Del Rio Hortega (1928). 

Furthermore, forebrain and spinal cord or brainstem oligodendrocytes have 

distinct morphologies in neuron-free cultures (Bjartmar, 1998). Evidence has 

also been presented for two independent populations of oligodendrocyte 

precursors, one characterized by expression of PDGFα-receptors and the 

other by expression of mRNA for the myelin protein DM20 (Spasky et al., 

1998, 2000; Fruttiger et al., 1999). In the case of separate lineages of 

oligodendrocytes, they may differ in the growth factors and signaling pathways 

that regulate their development and function.  

The second hypothesis could be that the increased amount of PSA in the CNS 

inhibits the differentiation of oligodendrocytes in the corpus callosum but not in 

the spinal cord and brainstem. In this case, PSA could be a negative regulator 

of the differentiation of oligodendrocytes in the corpus callosum and a positive 

regulator in the spinal cord and brain stem. However, evidence that support 
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the positive role of PSA on the differentiation of oligodendrocytes has already 

been presented in vitro. Hence, removal of PSA from NCAM moderately 

reduced the migration of oligodendrocyte progenitors and induces their 

differentiation in GD3+, OP and GFAP+ astrocytes (Decker et al., 2000). 

Moreover, NCAM-120, the carrier of PSA in oligodendrocytes, co-localizes 

with the GPI-anchored proteins Fyn and F3 in the raft microdomain (Krämer et 

al., 1999). Consistent with this idea, overexpression of PSA at the adult age, in 

oligodendrocytes, could disturb the proper organization of the rafts micro 

domain and disturb the signal transduction processes implicated in the 

development of oligodendrocytes. 

In addition to the regional change of the development of oligodendrocytes in 

PLP-PST mice, biochemical analysis shows a marked downregulation of MBP 

at the protein and mRNA levels during myelination and a rescue of MBP level 

at the adult age. MBP reduction in these mice was more severe in the line with 

high copy number of transgene insertion (line 246), indicating that MBP 

reduction correlates with the elevation of PSA concentration, since the line 281 

(express low level of PSA) shows also a reduction of MBP mMRNA. It seems 

like 15% reduction of MBP mRNA in PLP-PST mice was not able to trigger a 

significant reduction of MBP protein (Fig. 31 and 32). Moreover, a severe MBP 

reduction was also observed in Fyn-/- mice, (Sperber et al., 2001). 

Myelination in the nervous system involves sequential stages of interaction 

between the myelinating glial cell, the oligodendrocyte, and the neuronal 

process, the axon. Initial recognition and adhesion, results in wrapping of the 

glial process around the axon, followed by the laying down of the multilamellar 

sheath. In the peripheral nervous system of mice overexpressing PST, 

myelination was normal with no sign of degeneration at the adult age. The 

myelin thickness was also normal and the axons diameter was unchanged. 

Despite the elevation of PSA concentration in the CNS, the myelin sheath 

forms normally, with no sign of dys- or hypomyelination. This result is in 

contradiction with the one already published (Charles et al., 2000). At the adult 

age, a significant myelin deficit was observed in the optic nerve of PLP-PST 

mice. Demyelination in the optic nerve of mice overexpressing PST was 
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accompanied by axonal degeneration. A possible explanation of this could be 

the disturbance of the rafts microdomain, which contains molecules such as 

GPI-anchored proteins Fyn and NCAM-120. However, it is shown that Fyn 

kinase and F3 are tightly associated with NCAM-120 in rafts (Krämer et al., 

1999) and at the adult age, the NCAM-120 does not contain PSA. Although 

the level of Fyn kinase was unchanged in the myelin fraction of PLP-PST 

mice, it could be possible that increased amount of PSA on the NCAM-120 at 

the adult age may disturb the proper organization of the rafts and the signal 

transduction processes related to the myelin maintenance. Fyn protein and 

more specific its kinase activity plays crucial role in the myelination and myelin 

maintenance (Sperber et al., 2001). Does the normal level of Fyn suggest no 

change of its kinase activity? This question has to be answered. However, Fyn 

null mice hypomyelinate and show axonal degeneration in the optic nerve at 

the adult age (Biffiger et al., 2000; Umemori et al., 1999). In addition to the 

demyelination and axonal degeneration observed in PLP-PST mice, redundant 

myelinated axons were also observed. This kind of myelin impairment could be 

explained by the compromised axo-glial recognition and the delay in the 

mechanism that is required to “inform” glial cells where to lay down myelin, 

and how much myelin sheath should be laid down. Consistent with this 

hypothesis, previous research have indicated that MAG modulates glial-axons 

contact in vivo (Li et al., 1998). Evidence suggests that MAG, NCAM-120 

(carrier of PSA in oligodendrocyte), F3 and Fyn may acts as receptors couple 

to Fyn (Umemori et al., 1994; Krämer et al., 1999). 
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11 CONCLUSION 
 

A decrease in polysialylated NCAM on the surface of oligodendrocytes when 

matured has been reported previously using immunohistochemical methods 

(Trotter et al. 1989; Grinspan and Franceschini, 1995). Based on the results 

presented in the second part of this thesis, it could be concluded that, PSA 

level is crucial for the normal development of oligodendrocytes during 

myelination. Furthermore, the molecules that regulate the development of 

oligodendrocytes together with PSA in the forebrain might be different to those 

that regulate the same development in the brainstem and spinal cord, since 

increased level of PSA had different effects on the development of 

oligodendrocytes of the corpus callosum and those of the brainstem and spinal 

cord. Moreover, a barely detectable level of PSA at the adult age might be 

important for an efficient maintenance of the myelin sheath, since increased 

amount of PSA at the adult age induces demyelination. PSA is a spacer that 

negatively regulates the adhesion of the myelin sheath to axons. Therefore, it 

is understandable to conclude that, an elevated concentration of the PSA at 

the adult age may disturb the signal transduction molecules that regulated an 

efficient maintenance of the myelin structure, by disturbing the rafts 

organization. This hypothesis is supported by data that confirm the presence 

of NCAM-120 in the rafts microdomains (Krämer et al., 1999). 
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