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SUMMARY 

 

 

 

The study presents a regional approach for the quantification of rockglacier creep in a high 

mountain geosystem (Turtmann valley, Swiss Alps). 

By a combination of different methods, rockglacier movements were analysed qualitatively and 

quantitatively on various spatial and temporal scales. The application of digital photogrammetry 

and terrestrial geodetic survey enabled the quantification of horizontal velocities and vertical 

changes. The photogrammetric results demonstrate that small-scale aerial photographs are highly 

useful to measure changes in rockglacier geometry. Also the combination with high resolution 

imagery (from HRSC-A), which was applied for the first time in rockglacier studies, has been 

successful. Thus, displacements were investigated in a large area (meso-scale) and over a time 

span of 26 years (1975 – 2001). Against that, terrestrial geodetic survey enabled the annual 

quantification of block displacements on two rockglaciers between 2001 and 2004. The first-time 

application of dendrogeomorphic techniques for the determination of permafrost creep provided 

preliminary results for two rockglaciers. 

The applied techniques and especially the combination of geomorphic mapping and digital 

photogrammetry allowed the reliable assessment of the state of activity for 45 rockglaciers. 

Horizontal and vertical surface changes were analysed on 34 rockglaciers and a clear activity was 

revealed on 18 of them. Most of the permafrost bodies indicated above-average horizontal 

velocities compared to other rockglaciers in the Alps. In addition, conspicuous spatio-temporal 

variations in horizontal velocities and vertical changes were observed. Regarding the temporal 

variations, a distinct increase in horizontal velocity – probably from the beginning of the 1990s – 

was ascertained for all investigated active rockglaciers. 

The described findings were discussed by consideration of probable controls, such as terrain 

parameters and climatic influences. Although the data on decisive forcing factors and the 

knowledge on rockglacier dynamics is limited, it is assumed that the observed speed-up is linked 

to climatic changes and an increase in ground temperatures, respectively. Thus, the investigated 

kinematics supports the role of rockglaciers as sensitive indicators for changes in the high 

mountain geosystem. 



 

ZUSAMMENFASSUNG 

 

 

 

Im Zentrum der hier vorgestellten Studie steht die regionale Analyse der Blockgletscherbewegung 

in einem hochalpinen Geosystem (Turtmanntal, Schweizer Alpen). 

Mit Hilfe mehrerer Methoden wurde die Blockgletscherkinematik auf unterschiedlichen Raum- 

und Zeitskalen sowohl qualitativ als auch quantitativ untersucht. Die Anwendung der digitalen 

Photogrammetrie und der terrestrischen Vermessung ermöglichte die Messung von horizontalen 

Geschwindigkeiten und vertikalen Veränderungen. Dabei zeigten die Ergebnisse der 

Photogrammetrie, dass analoge hochgeflogene Luftbilder für die Analyse von Veränderungen der 

Blockgletschergeometrie durchaus geeignet sind. Auch die Kombination mit digitalen 

hochauflösenden Daten (der High Resolution Stereo Camera – Airborne; HRSC-A), die erstmalig 

in der Blockgletscherforschung eingesetzt wurden, war erfolgreich. Dadurch konnten 

Blockgletscherbewegungen auf großer räumlicher Skale (Mesoskale) und über einen Zeitraum 

von 26 Jahren (1975 – 2001) quantifiziert werden. Die Anwendung der terrestrischen 

Vermessung ermöglichte zusätzlich die jährliche Quantifizierung von Bewegungen zwischen 2001 

und 2004 auf zwei ausgewählten Blockgletschern. Dendrogeomorphologische bzw. 

holzanatomische Techniken wurden erstmalig für die Bestimmung der Blockgletscherkinematik 

eingesetzt und lieferten für zwei Untersuchungsobjekte vorläufige Ergebnisse. 

Mit den verwendeten Methoden und besonders durch die Kombination von geomorphologischer 

Kartierung und digitaler Photogrammetrie konnte der Aktivitätsgrad von 45 Blockgletschern 

abgeschätzt werden. Horizontale und vertikale Bewegungen wurden dann für die 34 intakten 

Blockgletscher quantifiziert, von denen 18 eine eindeutige Aktivität zeigten. Viele der 

untersuchten Permafrostkörper wiesen, im Vergleich zu anderen Blockgletschern der Alpen, 

überdurchschnittliche horizontale Geschwindigkeiten auf. Außerdem zeigten sowohl die 

horizontalen als auch die vertikalen Bewegungen deutliche raum-zeitliche Variationen. Bezüglich 

der zeitlichen Variationen wurde für alle aktiven Blockgletscher eine eindeutige Zunahme der 

horizontalen Geschwindigkeit – vermutlich ab den 1990er Jahren – bestimmt. 

Die geschilderten Ergebnisse wurden unter Einbezug möglicher Kontrollgrössen, wie Relief- und 

Klimaparametern, diskutiert. Obwohl die Datenlage zu entscheidenden Einflussgrößen und das 

Wissen über Blockgletscherdynamik limitiert ist, wurde die beobachtete Beschleunigung den 

klimatischen Veränderungen und dem damit verbundenen Anstieg der Oberflächentemperatur 

zugewiesen. Folglich stützen die Ergebnisse die Rolle von Blockgletschern als sensitive 

Indikatoren für Veränderungen im hochalpinen Geosystem. 
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1 INTRODUCTION 

 

 

 

Geomorphology will achieve its fullest development 
only when the forms and processes are related in 

terms of dynamic systems and the transformations 
of mass and energy are considered as functions 

of time.  (Strahler 1952: 935) 
 

This quotation unites in one sentence both foundation and objective of the current 

geomorphological research. It gives a clear definition of ‘geomorphology’ within the context of 

the systems approach building the conceptual and methodological basis. In addition to that it 

aims at the heart of the here presented study: the analysis of dynamic systems by determination 

of mass and energy fluxes. Regarding the focus of this study, the high mountain geosystem which 

is characterised by an extensive transfer of mass and energy, it is also well reflected in this 

statement. 

 

1.1 Motivation 

The increasing interest in recent climatic change and its impact on geosystems confirms the 

significance of high-mountain environments as sensitive key areas, and not only since the events 

during the hot summer of 2003. Global environmental change is the result of interactions and 

feedbacks among the earth’s different subsystems at a wide range of spatial and temporal scales. 

General circulation models predict the major temperature changes in high latitudes (polar region) 

and high altitudes (high mountains) since horizontal and vertical gradients of the atmospheric 

variables are more extensive and thus small changes in environmental conditions are noted earlier 

(Slaymaker & Spencer 1998). This is confirmed for example by a temperature increase, which 

occurred more intensely in the Alps than elsewhere (e.g., Böhm 2003). 

Within the high mountain system, landforms (e.g., glaciers) or ecological boundaries (e.g., lower 

boundary of permafrost occurrence, tree line) are monitored systematically and act as important 

indicators for environmental changes (e.g., IPCC 2001a, b). While the sensitivity of periglacial 

landscapes (in high latitudes as well as in high altitudes) was often considered (e.g., Lachenbruch 

& Marshall 1986; Anisimov & Nelson 1996), the indicative role of rockglaciers in this context 

was emphasised only recently (e.g., Harris & Haeberli 2003). 

 

1.2 Objectives 

In the 80-year history of rockglacier research, movements were often described and quantified 

(see appendix 1), but the processes behind and thus the dynamics of the permafrost bodies are 

still not known in detail. Apart from the measurements at the rockglacier surface (e.g., Kääb et al. 

2003), borehole studies (e.g., Hoelzle et al. 1998; Arenson et al. 2002) and laboratory tests (e.g., 
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Davies et al. 2001) improved the knowledge during the last decade. But, these investigations are 

often concentrated on single rockglaciers, due to methodological and financial limitations. 

For further investigations of rockglacier creep, several research needs and objectives arise: 

§ High accuracy techniques and data with high spatial and temporal resolution are required 

for the quantification of rockglacier movement. 

§ Long monitoring series on rockglacier kinematics are demanded on large spatial scales 

(several neighbouring rockglaciers) to analyse spatio-temporal variations reliably. 

§ In order to deepen the knowledge on rockglacier dynamics, influencing parameters (e.g., 

temperature, snow cover characteristics, debris supply, etc.) need to be included in the 

analysis of spatial and temporal variations. 

§ The sensitivity of rockglaciers has to be determined in order to use these landforms as 

indicators for changing environmental conditions in high mountain geosystems 

 

The high density of rockglaciers in the Turtmann valley (Swiss Alps) and the existing data on 

their characteristics and distribution (Nyenhuis 2001; Roer 2001) suggested the area-wide 

quantification of rockglacier creep for the characterisation of this high mountain geosystem. 

Some data on rockglacier movements already existed for the study site (Elverfeldt 2002), but they 

were not sufficient for the analysis of spatial and temporal variations. Therefore, rockglacier 

kinematics, which is defined as the quantification of movement without considering the forcing 

factors (in contrast to dynamics), is investigated by the application of different methods. 

From the given objectives and in view of the current state of the art (cf., chapter 2), the following 

research questions are compiled for the here presented study: 

§ Are the applied methods and the available data suited to the quantification of rockglacier 

creep in high mountain environments? Which advantages, limitations, resolutions and 

accuracies are revealed by the different methods? 

§ Do the applied techniques allow the reliable assessment of the state of activity? 

§ What are the mean and maximum values of horizontal as well as vertical displacements; 

also in comparison to other rockglaciers in the Alps? 

§ Do the movements reflect spatio-temporal variations? Is it possible to distinguish 

seasonal and interannual variations from longterm trends? 

§ To what extent are the horizontal velocities and vertical changes conditional upon terrain 

parameters or climatic influences? 

§ Is it possible to assess the sensitivity of rockglaciers and thus evaluate their geomorphic 

and environmental significance in the high mountain geosystem? 

 

1.3 Conceptional background 

As part of the Research Training Group ‘Landform – a structured and variable boundary layer’ 

(Graduiertenkolleg 437) the focus of the study is given on landforms, their characteristics and 

spatial distribution as well as their changes in time. In general, landform is characterised by 
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certain structures or patterns, since it is not distributed arbitrarily in space. Penck (1894) was the 

first who designed a hierarchy of landforms which was later modified by Kugler (1974) who 

introduced the term ‘complexity’ in this context and by Büdel (1977) who considered nested 

hierarchies. For a review of these classical concepts in geomorphology as well as the 

parameterization of landform, it is referred to Rasemann (2004). 

In the study presented here, landform is considered as a boundary layer or interface, respectively, 

between the atmosphere/hydrosphere/cryosphere and the pedosphere/lithosphere and thus 

represents both control factor and result (form, shape) of processes, acting on different spatial 

and temporal scales. The boundary layer or landform is regarded as a 2-dimensional object in the 

4-dimensional space with certain geometrical characteristics, which can be considered in a 

geomorphodynamic context (Dikau & Schmidt 1999). Here, focus is given on one specific 

landform (rockglacier), its distribution in space, its activity, its temporal changes in geometry as 

well as the probable reasons for its change. The repeated measurement of the object geometry 

allows the quantification of corresponding process rates. Thus, the temporal scale is explicitly 

included. By consulting the model of the boundary condition (cf., chapter 2.3.5.4) a quasi - 4D-

consideration of the rockglaciers is enabled. 

Related to the phenomena such as permafrost and rockglacier creep, landform is of significance 

on various scales. Permafrost is a thermally controlled phenomenon, which can be considered on 

macro or meso-scale with parameters like mean annual air temperature (MAAT) or solar 

radiation. But on the micro-scale, different parameters such as latent heat fluxes, snowcover or 

properties of the substratum are of major importance (cf., chapter 2.2.2). Thus, the scale of 

consideration influences the determination of relevant parameters decisively. The interconnexion 

of different scales can be resolved by upscaling- and downscaling techniques. This multiscale 

approach is based on the consideration of systems in a hierarchical configuration: a system is part 

of a larger system and can itself be composed of several smaller systems. The systems theory 

found application in geomorphology by the contributions of Strahler (1952), Hack (1960) and 

Chorley (1962) and developed into a unifying concept in physical geography by the book: Physical 

geography: a systems approach (Chorley & Kennedy 1971). 

Regarding the four system types stated by Chorley & Kennedy (1971) the here presented study 

depicts a simple process-response system, “which is formed by the intersection of morphological and 

cascading systems and involving emphasis upon processes and the resulting forms” (Gregory 2000: 88). This is 

based on an empirical as well as on a conceptional dynamic model. It is part of the more 

comprehensive cascading system which is considered in the Turtmann valley to describe the 

sediment budget of a high mountain geosystem (Nyenhuis 2005). 

Different scales are considered in this study, depending on the relevant scale of the phenomenon 

and the available data. According to the classification by Dikau (1989), the landform ‘rockglacier’ 

analysed in this study belongs to the microrelief and is thus regarded on the micro-scale (Figure 

1.1). But, due to the applied techniques, the rockglacier kinematics is quantified by the repeated 

measurement of single blocks at the rockglacier surface. Therefore, the data scale is established in 

the nanorelief-level, whereas results and conclusions are aggregated and compiled on a micro- 
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to mesorelief level (scale of phenomenon). Regarding the temporal scale, the data scale is 

restricted to a period of 29 years by the application of different methods with diverse resolutions. 

Against that, the scale of the phenomenon (permafrost creep) is referred to the entire Holocene, 

as the rockglaciers formed during that period and thus depict complex archives of climatic 

history. Since for rockglaciers reaction times to climatic changes are far from known, the 

interpretations refer to the last century including the warming after the little ice age (LIA). Thus 

the temporal scale of the data and the one of the interpretation are not identical and therefore 

conclusions on relevant forcing factors are probably limited. 

 

 
 

 

Figure 1.1: Hierarchical level and size of relief units (modified, after Dikau 1989). Bold face 
indicates relief units considered in this study. 
 

 

The presented study outlines the scientific background of permafrost and rockglacier research in 

high mountain geosystems and focuses on the recent developments (chapter 2); it gives a 

thorough compilation of published data on rockglacier kinematics (appendix 1); it presents the 

advantages and limitations of the applied methods and the corresponding spatial and temporal 

resolution of the data (chapter 3); it introduces the study area (chapter 4); presents the results 

and interpretation of rockglacier kinematics (chapter 5); gives a discussion on the findings 

including rheological considerations (chapter 6) and ends with conclusions and perspectives 

(chapter 7, 8). 
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2 SCIENTIFIC BACKGROUND 

 

 

 

2.1 High mountain geosystems 

2.1.1 Definition & characteristics 

The description of mountain environments had its beginning in the documentation by Alexander 

von Humboldt and Aimé Bonpland who described altitudinal belts in a cross-section of the 

Andes linking physical parameters with biological observations (Humboldt 1807; Messerli & Ives 

1997). Later, most classifications applied single geomorphological parameters such as altitude or 

steepness of slope to describe high mountains in a quantitative way (Penck 1894; Passarge 1921). 

But, comparing mountains all over the world, the approaches were inadequate for a unifying 

definition. Thus, combinations of several parameters were suggested in order to represent high 

mountain characteristics; Rathjens (1982), Gerrard (1990), Bishop & Shroder (2004), as well as 

Owens & Slaymaker (2004) provide useful reviews of these classifications. Barsch & Caine (1984) 

proposed four criteria to determine mountain terrain: 

- elevation, 

- steep gradients, 

- rocky terrain and 

- the presence of snow and ice. 

Additionally, they depicted a relative relief (i.e., the difference between the maximum elevation of 

a peak and the elevation of the surrounding terrain) of 500 m/km2 as a criterion of high 

mountain systems (Barsch & Caine 1984: 288). 

Parallel to these morphological approaches, Troll (1941, 1966, 1973) and Höllermann (1973) 

followed the geoecological attempt of Humboldt and compiled a comprehensive description of 

high mountain nature. Troll studied various mountain ranges in order to find characteristics 

which are applicable all over the world. Finally, he described a high mountain ecosystem as one 

which extends above: 

- the Pleistocene snowline (indicating the variety of glacial landforms), 

- the lower boundary of recent periglacial dynamics (lower limit of solifluction, conditioned 

upon freeze and thaw cycles) and 

- the upper timberline. 

These ‘lines’ are more or less close to each other and build up a transition belt that marks the 

lower margin of the high mountain area. Following this concept, “high-mountains are mountains which 

reach such altitudes that they offer landforms, plant cover, soil processes, and landscape character which in the 

classical region of mountain geography in the Alps is generally perceived as high-alpine” (Troll 1972, in 

Höllermann 1973). 
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Based on this definition, Troll (1966, 1973) documented an additional subdivision of high 

mountains into three characteristic subbelts: 

- a lower subbelt with a close plant cover and with hampered solifluction, 

- a middle subbelt of debris cover with a scanty pioneer vegetation and free solifluction, 

and 

- the nival belt above the climatic snow line. 

Recently, more holistic descriptions of mountain environments are formulated, e.g. by Messerli & 

Ives (1997) who integrate and emphasise the role of human beings within this system: “Mountains, 

obviously, are regions of accentuated relief and altitude, which influence climate, soil fertility, vegetation, slope 

instability, and accessibility.”. 

 

As it is apparent from the literature, a rigorous and representative description of high mountains 

is hard to define, since morphological, climatic as well as biological parameters interact in a 

complex system and thus lead to a great variability in shape and structure of mountain 

geosystems. Hence, although this study is concentrated on landforms, the consideration of high 

mountain geosystems in a pure geomorphological context would be restrictive. Thus, the 

approach of Troll is emphasised in this investigation. Especially the second ‘line’ described by 

Troll directly refers to the purpose of this study; i.e., the measurement of rockglacier kinematics 

as part of the periglacial dynamics. These landforms are considered as significant indicators for 

changes at the lower limit of high mountain geosystems. In general, the sensitivity and thus the 

significance of these systems need to be considered. Regarding mountain geomorphology, Barsch 

& Caine (1984) stated that it deserves special attention within geomorphology, since due to 

criteria like steep gradients, environmental changes may occur on shorter time-scales and with 

lasting consequences. Thus, in spite of a great complexity and variability these changes need to be 

monitored and sensitivities as well as thresholds need to be identified. They are of great 

importance if geomorphology is to be useful in prediction. 

 

2.1.2 High mountain geomorphology 

High mountain geomorphology is characterised by steep rock walls (> 60°) and steep slopes (35-

60°), forming a high-energy environment (Barsch & Caine 1984). Thus, a strong correlation exists 

between erosion rate and relief (Gerrard 1990). Low relief can only be found on mountain 

plateaus or on the floor of valleys, since they are filled with sediment of glacial, periglacial and 

fluvial processes. 

In most high mountain areas the topography is dominated by glacigenetic bedrock forms 

(nunataks, cirques, glacial troughs), as evidence of former (Pleistocene) glacial activity (glacial 

erosion). These macro- to mesorelief-forms are superimposed by meso- to microrelief-forms 

(moraines, solifluction-lobes, talus cones, fans), which are due to diverse process-domains 

(glacial, periglacial, gravitational) acting more recently (cf. Anderson & Burt 1981) (postglacial 

accumulation) (Figure 2.1). This apparent disparity between present landforms and 
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contemporary processes seems to be especially evident in high mountain areas (Barsch & Caine 

1984). 

 

 

 
 

Figure 2.1: Some basic elements of high mountain landforms (modified, after Barsch & Caine 
1984). Black lines and type: glacial erosive forms; grey lines and type: postglacial accumulative 
forms. 
 

 

Another characteristic is the hypsometric sequence of typical landforms (Lautensach 1952). 

These are due to process domains (Thornes 1979) resulting from particular environmental 

parameters, e.g. slope, aspect, climatic conditions. Together with other phenomena such as 

vegetation, these sequences enable a subdivision in mountain belts: montane, subalpine, alpine, 

nival. The alpine belt, for example, is defined by the occurrence of solifluction (cf., Rathjens 

1982). Concerning the processes operating and their significance as sediment transport systems, 

rate and intensity at which the processes operate need to be considered and discussed in the 

context of magnitude and frequency (Wolman & Miller 1960; Gerrard 1990). 

 

2.2 Periglacial & Permafrost 

2.2.1 Definition & characteristics 

In general, the periglacial belt in mountains as well as in subpolar zones is characterised by freeze 

and thaw processes (cf., French 1996). Within high mountains it was defined by Troll (1973) as 

the area between the upper timberline and the snow line. Concerning a definition of the lower 

periglacial limit, the geomorphologic effectiveness of the cryogenic processes needs to be 

considered (cf., Hagedorn 1980). This was detailed by Troll, who subdivided the belt in two 

subbelts of different periglacial dynamics: 
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- “a lower subbelt beyond the timberline, where a close carpet of vegetation … exists and where the frost 

action and the cryoturbation is hampered by and in competition with the growing plant cover…” 

(hampered or bound solifluction (cf., Büdel 1948; Höllermann 1985)) 

- “an upper substage … with bare scree- and debris-soils and a very scanty pioneer vegetation …” (free 

or unbound solifluction (cf., Höllermann 1985)). 

In the Alps, a wide area above the timberline is influenced by the occurrence of permafrost, 

which is defined as lithospheric material with temperatures < 0° C during at least one year (e.g., 

Haeberli 1975). Thus, the phenomenon permafrost is closely related to the periglacial belt. But, as 

it is the same in subpolar regions, there is no obligatory overlap between periglacial and 

permafrost areas. The occurrence of permafrost is an indicator for periglacial conditions but it is 

not an essential attribute of the periglacial (Karte 1979; Thorn 1992).  

 

 
 

Figure 2.2: Schematic mean annual temperature profile through the surface boundary layer, 
showing the relation between air temperature and permafrost temperature (modified, after Smith 
& Riseborough 2002: 5). MAAT = Mean Annual Air Temperature; MAGST = Mean Annual 
Ground Surface Temperature; TTOP = mean annual Temperature at the Top Of Permafrost. 
 

 

2.2.2 Influencing factors 

As defined, the occurrence of permafrost is characterised by temperature and time and is 

primarily a function of direct solar radiation, air temperature, as well as the characteristics of soil, 

vegetation- and snowcover (Haeberli 1990). A typical temperature profile through the surface 

boundary layer of a permanently frozen ground is depicted in figure 2.2. In order to get a better 

understanding of the processes within, a lot of recent investigations deal with monitoring and 

modelling of vertical energy fluxes between permafrost body, active layer, ground surface and 

Snowcover/Vegetation 

Permafrost Table 

Permafrost 

Active Layer 

Boundary Layer 

 

TTOP 

MAGST 

MAAT 

Mean Annual Temperature 

Thermal 
Offset 

Geothermal
Gradient 

Surface 
Offset 

Lapse Rate 

Mean Annual Temperature Profile 

De
pt

h-
He

ig
ht

 (m
) 

Ground Surface 



SCIENTIFIC BACKGROUND   9

atmosphere (e.g., Humlum 1998c; Stocker-Mittaz et al. 2002). The energy balance at the ground 

surface is expressed quantitatively in the following equation (Hoelzle et al. 1993; Hoelzle 1994): 

Qr ± Qh ± Qle ± Qg ± Qm = 0 

Where Qr is the radiation balance, Qh the sensible and Qle the latent heat flux, Qg the conduction 

of heat into the ground and Qm the heat of fusion of the ice (Hoelzle 1994). These components 

discussed in Hoelzle (1994) and Mittaz (1998) in more detail, are variable in space and time since 

they are influenced by climatic and topographic parameters (Hoelzle et al. 1993). Therefore, the 

permafrost occurrence is very complex - especially in high mountains, where the permafrost 

distribution varies strongly due to varying topography. Here, the radiation seems to be the 

dominating factor (e.g., Hoelzle 1992; Funk & Hoelzle 1992; Hoelzle 1994; Schrott 1994; 

Krummenacher et al. 1998). Additionally, also the thickness, redistribution and duration of the 

snowcover (e.g., Hoelzle 1992; Keller 1994; Krummenacher et al. 1998; Harris 2001; Mittaz et al. 

2002; Hanson & Hoelzle 2004; Luetschg et al. 2004) as well as the characteristics of the surface 

material (Humlum 1998a; Herz et al. 2003; Hanson & Hoelzle 2004) play an important role. The 

knowledge on interrelationships of temperatures and permafrost occurrence on the local scale 

needs then to be applied to sophisticated models of permafrost distribution on a more regional 

scale (see below). 

 

2.2.3 Prospecting methods 

In order to get to know if permafrost is present in the ground or not, the best method is the 

direct measurement of temperatures in the ground (e.g., in boreholes) (e.g., Vonder Mühll 1993; 

Isaksen et al. 2001). Since this is a very expensive prospecting method, indirect means such as 

geophysical soundings (refraction seismics and DC-resistivity) are used for the determination of 

permafrost and its distribution (e.g., Dikau 1978; Haeberli & Epifani 1986; Barsch & King 1989; 

Vonder Mühll 1993; Vonder Mühll et al. 2001; Hauck 2001; Kneisel 2004). Additionally, in the 

seventies, the significance of the Bottom Temperature of the Snow cover (BTS) was detected as a 

reliable indicator for permafrost conditions (Haeberli 1973, 1975). Later, the development of 

miniature data loggers allowed longterm and continuous temperature measurements and 

improved the data dramatically (Hoelzle 1992; Hoelzle et al. 1993; Hoelzle et al. 1999; Imhof et 

al. 2000). Best interpretation is enabled by the combined application of different techniques. 

 

2.2.4 Permafrost distribution, modelling & sensitivity 

The permafrost distribution in the Alps is controlled by the spatial distribution of energy balance 

factors (see above) and is thus a function of topographic and climatic parameters (Hoelzle et al. 

1993; Keller 1994). In view of these parameters and by considering the rules of thumb for 

permafrost distribution (Haeberli 1975) which build an important empirical basis, the probability 

of permafrost occurrence can be calculated using empirical-statistical or process-oriented models 

(Funk & Hoelzle 1992; Keller 1992; Hoelzle 1994; Imhof 1996; King 1996; Frauenfelder 1998; 

Gruber & Hoelzle 2001; Hoelzle et al. 2001; Stocker-Mittaz et al. 2002; Guglielmin et al. 2003). 

Concerning permafrost distribution models, the following spatial scales have been proposed 
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within the PACE project: a micro or patch scale with a spatial resolution of � 25 m, a meso scale 

with a resolution of 25 to 200 m and a macro scale with a resolution > 250 m (Hoelzle et al. 

2001: 55). Depending on the methodology applied and thus on the spatial and temporal scale 

considered, processes and the relative importance of influencing parameters are variable (e.g., De 

Boer 1992; Thorn 2003). E.g., on a local scale the permafrost distribution is influenced by snow 

distribution, vegetation cover, etc. while on a wider scale Mean Annual Air Temperature (MAAT) 

and solar radiation are consulted as the relevant factors. In this context, it is generally accepted 

that a MAAT of -2° C indicates discontinuous permafrost whereas a MAAT below -6° C shows 

continuous permafrost. In areas with mean annual air temperatures warmer than -2° C 

permafrost occurs only sporadically. 

The increase in temperature within the last century has major consequences for the glacial and 

periglacial belt. The so far observed changes are mostly obvious reactions of the alpine 

environment on changing climate conditions (Haeberli 1992a, b; Haeberli 1995) and thus are 

important environmental indications. Additionally to the signal function, the resulting changes in 

mountain permafrost lead to problems in slope stability of rock and unconsolidated material 

(moraines, talus cones) (e.g., Haeberli et al. 1997; Nötzli et al. 2003). As a consequence, more data 

is demanded in order to deepen the knowledge on the ongoing processes and the reaction times 

of the system. Then, more sophisticated models can be developed to quantify mass fluxes and 

thus enable assessments on possible natural hazards (e.g., Kääb & Haeberli 1996). 

The ‘system’ permafrost reacts dynamically to environmental changes, whereas the reaction time 

of permafrost bodies is relevant for the understanding of the system (Haeberli 1990; Hoelzle 

1994; Humlum 1998b; Frauenfelder & Kääb 2000). Although the response of permafrost to 

climatic changes is not known in detail, one can consider that permafrost is very sensitive; even if 

it shows a delayed reaction to changes in the energy balance. The response time of permafrost 

depends primarily on the thickness of the permafrost body, the thermal conductivity, the ice 

content as well as on the amount of unfrozen water (e.g., Haeberli et al. 1993; Osterkamp 1983; 

Osterkamp & Romanovsky 1999). Direct and delayed reactions and adjustments can be 

distinguished, since direct response occurs at the permafrost table and results in the increasing 

thickness of the active layer. Against that, the delayed reaction affects the permafrost base and 

induces the thinning of the permafrost body. Concerning the relatively warm discontinuous 

permafrost in the Alps, a response time of several decades to centuries is assumed (cf., Haeberli 

1990; Osterkamp & Romanovsky 1999). Haeberli (2000) stated that the permafrost thickness is 

presently not in equilibrium with the actual - in general warmer - ground surface temperatures. 

Thus it is assumed, that the actual permafrost occurrence reflects the climatic conditions of the 

Little Ice Age (LIA) (Etzelmüller & Hoelzle 2001). 

The problems in permafrost research arise from the fact that the weighting of single factors 

(aspect, slope, snow cover, substrate, vegetation, etc.) and their significance within the energy 

balance is not sufficiently known. Therefore, actual permafrost studies concentrate on the filling 

of this gap. E.g., in order to get a better understanding of the relation between temperatures and 

the ground surface, the knowledge on rock temperatures, which show direct reactions since no 
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‘buffer’ layers (snow, vegetation, debris or talus) are present, is of major importance (Gruber et al. 

2003; Gruber et al. 2004). Further improvements are claimed by the modelling of the former 

permafrost distribution (palaeopermafrost and palaeoclimate) (e.g., Frauenfelder & Kääb 2000) 

and possible developments in the future. 

 

2.3 Rockglaciers 

2.3.1 History of rockglacier research 

In the beginning of the twentieth century so-called “Rock Glaciers” were described for the Rocky 

Mountains (Howe 1909) as well as for Alaska (Capps 1910) (from Pillewizer 1957). In Europe, 

Emil Chaix (1918; from Eugster 1973) was the first to call attention to these peculiar landforms 

he observed in the Swiss National Park. He started geomorphological investigations which were 

continued by André Chaix. By measuring stone lines on the rockglaciers Val Sassa and Val dell’ 

Acqua, André Chaix (1923) delivered the first evidence on the movement of these features. Later, 

Heinrich Jäckli (1957) was concerned with the rockglaciers in this area. By 1920, in Austria E. de 

Martonne was the first to report on “Blockgletscher” in the Doisental (from Pillewizer 1957). In 

1938, Pillewizer started investigations on rockglacier movement by means of terrestrial 

photogrammetry. The measurements were interrupted by the Second World War, but in the 

fifties he continued with detailed studies on the Hochebenkar rockglacier which until now 

provides the longest series on rockglacier movement (Pillewizer 1957; Vietoris 1972; Haeberli & 

Patzelt 1982). In recent times, rockglaciers are monitored in many places and by diverse methods 

(see Matsuoka & Humlum 2003 for summary). 

 

2.3.2 Rockglacier origin & nomenclature 

Since the second half of the twentieth century, rockglaciers were studied in diverse regions all 

over the world. At the same time, a wide discussion on the origin of these landforms started and 

two main positions evolved. One position focused on the glacial origin of rockglaciers (e.g., 

Outcalt & Benedict 1965; Potter 1972; Whalley 1974; Humlum 1982, 1988, 1996; Evans 1993; 

Whalley et al. 1994; Hamilton & Whalley 1995) while the others argued with a general periglacial 

origin (e.g., Wahrhaftig & Cox 1959; Haeberli 1985; Barsch 1977, 1988, 1992). Even some claim a 

polygenetic formation of rockglaciers as combination of periglacial, glacial and catastrophic mass 

movement processes (cf., Whalley & Martin 1992). Thus, rockglaciers may reflect geomorphic 

equifinality. Detailed discussions on rockglacier origin and nomenclature are given in several 

publications (e.g., Johnson 1983; Haeberli 1985; Corte 1987; Martin & Whalley 1987; Barsch 

1987a, 1987b, 1992, 1996; Humlum 1988, 1996, 2000; Whalley & Martin 1992; Hamilton & 

Whalley 1995; Clark et al. 1998). The view that most rockglaciers are of periglacial origin has 

remained dominant since the comprehensive study on rockglaciers in Alaska by Wahrhaftig and 

Cox (1959). 

The existing study follows the reasoning of Barsch and Haeberli. But, the influence of glaciers 

may not be denied in individual cases (see chapter 5.1.6). In general the terminology of the 

phenomenon (rockglacier) is a mistake, since the nomenclature implicitly relates to classical 
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glaciers. But, the latter belong to the hydrosphere, whereas rockglaciers with their debris-ice 

mixture are subordinated to the lithosphere. In order to emphasise the autonomy of the 

phenomenon, the term ‘rockglacier’ is written in one word according to Barsch (1988). 

 

2.3.3 Rockglacier definition 

Today, rockglaciers as well as ice-cored moraines are considered as morphological indicators for 

the presence of permafrost in high mountains (e.g., Haeberli 1985; Barsch 1996; Humlum 2000). 

In order to indicate the recent occurrence of permafrost, the considered rockglaciers need to be 

in an active status. Following Barsch (1992, p.176), “active rockglaciers are lobate or tongue-shaped bodies 

of perennially frozen unconsolidated material supersaturated with interstitial ice and ice lenses that move downslope 

or downvalley by creep as a consequence of the deformation of ice contained in them and which are, thus, features of 

cohesive flow”. Haeberli (1985) focused on the process and described the phenomenon as “visible 

expression of steady-state creep of ice-supersaturated mountain permafrost bodies in unconsolidated materials. They 

display the whole spectrum of forms created by cohesive flow” (from Barsch 1992). The existing definitions 

give fundamental information on form, material and process, although the knowledge on the 

ongoing processes is still limited. A multiplicity of influencing parameters exists, but the 

interrelationships are often not known in detail. 

 

2.3.4 Rockglacier distribution, morphology & stratigraphy 

Detailed information on rockglacier occurrence, distribution and environmental conditions is 

given in Höllermann (1983), Haeberli (1985), Barsch (1992, 1996), and Humlum 2000. Large 

scale climatological boundary conditions can be compiled with mean annual air temperatures 

(MAAT) below -1°C to -2°C and annual precipitation of less than 2500 mm (Haeberli 1985), but 

on a local scale, the topographic and meteorological controls on rockglacier initiation and growth 

are still not known in detail (Humlum 1998b, 2000). Kirkbride & Brazier (1995) discussed 

rockglacier formation on a regional scale using qualitative conceptual models and concluded, that 

the timing of the formation more likely follows the rules of deterministic chaos than corresponds 

to climatic cooling. 
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Figure 2.3: Model of the development of talus rockglaciers (below mountain talus slopes) in 
discontinuous mountain permafrost environments (from Barsch 1996: 186). 
 

 
Figure 2.4: Model of the development of a debris rockglacier in mountain permafrost 
environments (from Barsch 1996: 187). 
 

 

Rockglaciers are typically situated at the foot of free rock faces (talus rockglacier, figures 2.3, 2.8, 

2.10) or below moraines (debris rockglacier, figures 2.4, 2.9) and form tongue- or lobe-shaped 

bodies with a typical length of 200 – 800 m (Barsch 1996). Normally they are 20-100 m thick; 

direct means such as coring or indirect means such as geophysical soundings delivered a typical 

rockglacier thickness of about 50 m (cf., Humlum 2000). A special characteristic are steep lateral 

and frontal slopes standing at the angle of repose with an apron of coarse blocks at the foot of 

the slope built by the rockglacier creep (Haeberli 1985). Often, several lobes are superimposed on 
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each other building a complex topography from different rockglacier generations. These types are 

called polymorphic bodies, while monomorphic rockglaciers are features without marked surface 

relief (cf., Frauenfelder et al. 2004). 

The rockglacier stratigraphy is described by several authors (e.g., Haeberli 1985; Barsch 1992, 

1996; Burger et al. 1999; Humlum 2000; Ikeda & Matsuoka 2002) as a sequence of three main 

layers: the uppermost 1-5 meters consist of big boulders and are riding on an ice-rich permafrost 

layer - with 50-70 % of ice and about 30 % of finer-grained material (Barsch 1996) - which is 

creeping downslope. Below, the third layer consists again of larger rocks, which were deposited at 

the rockglacier front and subsequently overrun by the other layers. This characteristic sorting of 

the rockglacier material becomes visible at the rockglacier front. More detailed studies on 

stratigraphy are delivered by indirect means such as geophysical soundings (e.g., Vonder Mühll 

1993; Hauck et al. 2001; Vonder Mühll et al. 2001) or by direct observation in borehole-cores (e. 

g., Vonder Mühll & Haeberli 1990; Haeberli et al. 1998; Arenson et al. 2002). Burger et al. (1999: 

108-109) compiled a comprehensive reference-list of locations, where the internal structure of 

rockglaciers was investigated. 

As derived from four boreholes drilled in 1999, figure 2.5 shows the complex internal structure 

of the Muragl rockglacier (Arenson et al. 2002). Despite this valuable data, one needs to take into 

account, that this depicts only local information! The variable distribution of ice layers all over 

the rockglacier remains speculation. 

 

 
 

Figure 2.5: Internal structure of the Muragl rockglacier (from Arenson et al. 2002: 122). 
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The top layer of the permafrost body is typically composed of coarse (0.2 – 5 m) rock fragments 

(cf., Humlum 1998a) and builds a “surface relief” (Humlum 1982) of ridges and furrows which are 

related to the flow processes, thus, indicating the complex history of rockglacier deformation 

(Haeberli 1985; Johnson 1992). A detailed description of ‘microrelief on rock glaciers’ is given in 

Wahrhaftig & Cox (1959). Field measurements and laboratory tests on the development of 

transverse ridges are discussed in Kääb & Weber (2004). In general, it is supposed that transverse 

ridges and furrows result from compression flow (e.g., Haeberli 1985; Kääb et al. 1998). 

According to Wahrhaftig & Cox (1959) and Barsch (1977), also variations in material supply may 

lead to the formation of a complex surface topography. Below the furrows subsurface running 

water is often audible during summer (cf., Elconin & LaChapelle 1997). Other striking but 

currently not explicable features are small-scale bumps of fine material, probably related to the 

rockglacier movement. 

Additionally, some rockglaciers depict crevasse-like features perpendicular to the flow direction; 

probably resulting from fast movement such as in steep terrain (e.g., Haeberli & Patzelt 1982). 

Wahrhaftig & Cox (1959) described these features as tension cracks built by the lateral spreading 

of the moving mass. 

 

 
 

Figure 2.6: Schematic profiles of active, inactive and relict rock glaciers (from Ikeda & Matsuoka 
2002: 158). 
 

 

Due to their ice content and flow behaviour, rockglaciers are classified into the following types: 

active, inactive and relict. Often they are situated one over the other, forming a sequence of 

active rockglaciers in higher altitudes to relict rockglaciers in lower altitudes (cf., figure 2.11). A 

Active rock glacier 
MAST � 0° C  
BTS < -3° C 

Inactive rock glacier 
MAST > 0° C 
BTS � -2° C 

Relict rock glacier 
MAST > 0° C 
BTS > -2° C 

Longitudinal profile 

Transverse profile 
AL: active layer 
PF: permafrost 
SF: seasonal frost 

Permafrost creep 
Solifluction 
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comparison of morphology, structure and thermal conditions for active, inactive and relict 

rockglaciers is given in figure 2.6 by Ikeda & Matsuoka (2002). In a strict sense, the activity of 

rockglaciers is determined e.g., by geodetic survey or photogrammetry, which gives information 

on their movement. But, in several studies the state of activity has been assessed by 

morphological characteristics (cf., Wahrhaftig & Cox 1959; Haeberli 1985; Krummenacher et al. 

1998; Barsch 1996; Burger et al. 1999; Ikeda & Matsuoka 2002; Nyenhuis et al. in press). Thus, a 

steep terminal front (> 35°) with loose boulders and without vegetation indicates the activity of 

the feature, whereas inactive rockglaciers, which still contain ice but actually do not move, have a 

gentler front with stable boulders and partial or full vegetation. Because of their ice content, 

active and inactive rockglaciers are grouped together as ‘intact’ rockglaciers (cf., Haeberli 1985). 

In addition to the morphological approach, the BTS (Bottom Temperature of the winter Snow 

cover) method is used for the determination of intact rockglaciers and consequently the 

occurrence of permafrost (Hoelzle 1992; Hoelzle et al. 1999; see chapter 3.5). 

Regarding the inactivity of rockglaciers, Barsch (1996) emphasised two causes for inactivation, 

depending on thermal and mechanical factors (figure 2.7). On one hand the climatic induced 

inactivity, which is characterised by a thickening of the active layer due to melting of the frozen 

core and therefore is related to the lower limit of the discontinuous permafrost belt (cf., Ikeda & 

Matsuoka 2002). In comparison to that, the dynamic induced inactivity results from a reduction 

in shear stress due to a reduced incorporation of debris and ice or a downslope decrease in slope 

gradient (Barsch 1996). This kind of inactivation was related only to rockglaciers in continuous 

permafrost, although a change in debris- and ice-input may occur also in discontinuous 

permafrost. Olyphant (1987, from Ikeda et al. 2003) made a numerical simulation and confirmed 

that a decrease in debris input leads to a deceleration of rockglacier advance. 

Relict rockglaciers show a collapsed surface due to the melting of the ice. The furrows and ridges 

are still visible, but the front has a lower angle and the rockglacier surface depicts a dense 

vegetation cover – at least in areas with fine material (Roer 2001). Relict rockglaciers are valuable 

indicators for the former permafrost distribution and therefore they are consulted for 

paleoclimatic reconstructions (cf., Kerschner 1985; Tatenhove & Dikau 1990; Konrad et al. 1999; 

Frauenfelder & Kääb 2000; Frauenfelder et al. 2001). In addition to reconstructions from 

landform characteristics, different attempts had been made to date rockglaciers with absolute and 

relative age-determination methods (e.g., Barsch & King 1975; Kirkbride & Brazier 1995; 

Humlum 1996; Frauenfelder & Kääb 2000; Haeberli et al. 2003; Frauenfelder et al. 2004). 

Generally, the ecological significance of rockglaciers is reflected in their influence on the water 

cycle (cf. Haeberli 1985; Krainer & Mostler 2002) as well as in their contribution to sediment 

transport (cf., Höllermann 1983; Barsch 1996). Barsch (1977) stated that about 20 % of all alpine 

mass wasting is done by rockglaciers. Additionally, due to their thermal dependency, they depict 

sensitive indicators for environmental changes. 
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Figure 2.7: Model of inactive rockglaciers. A: Model of a climatic inactive rockglacier. B: Model 
of a dynamic inactive rockglacier (from Barsch 1996: 193). 
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Figure 2.8: Talus rockglacier in discontinuous permafrost at Grüeobtälli (Turtmann valley, 
Switzerland). Underlying orthophoto of 20.08.1993 (flight-line 16, aerial photographs taken by 
Swisstopo). Plait-like ridge and furrow topography in the upper part of the rockglacier seems to 
result from sediment input of two different source areas. 
 

 

 
 
Figure 2.9: Debris rockglacier in discontinuous permafrost at Pipjitälli (Turtmann valley, 
Switzerland). Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
Swisstopo). Former lateral moraines form the margins of the rockglacier. 
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Figure 2.10: Talus rockglacier in continuous permafrost at Templet (western Svalbard 
Archipelago, Norway). Photograph taken in September 2004. 
 

 

 
 
Figure 2.11: Rockglacier sequence in the Hungerlitälli (Turtmann valley, Switzerland); A = active, 
Ia = inactive and R = relict. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial 
photographs taken by Swisstopo). 
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2.3.5 Rockglacier kinematics 
Kinematics [greek: kínema = movement] is defined as the quantification of movement (velocity, 

acceleration) without considering the forcing factors (in contrast to dynamics). The velocity is 

generally described as a vector in a four-dimensional field v = (vx, vy, vz)
T, where x and y 

represent the coordinates and z depicts the altitude. The horizontal components at the surface 

are determined by Äx/Ät = vx
s and Äy/Ät= vy

s. Thus, the velocity includes temporal aspects 

(velocity between the times of the measurements) as well as spatial aspects (velocity between the 

corresponding points) (Kääb 1996). Against that, dynamics [greek: dýnamis = force] involves 

forces and their interactions as well as the resulting changes in physical systems (based on the 

second axiom of Newton). 

 

2.3.5.1 Rockglacier movement 

For the quantification of rockglacier movement which results from permafrost creep, in general 

three different components are considered: horizontal velocities, vertical changes and the front 

advance. Regarding horizontal displacements, rockglaciers move from a few centimetres to one 

meter per year (Haeberli 1985), generally well below one meter (Whalley & Martin 1992), i.e. at a 

considerably slower rate than normal glaciers. Barsch (1996) described horizontal velocities 

between 1-2 cm (minimum) and 100-200 cm (maximum). Higher movements are rare and mostly 

result from specific topographic conditions (extremely steep gradients). A comprehensive review 

of published data on rockglacier kinematics (horizontal velocities, vertical velocities and front 

advance) is given in the appendix 1. In general, the velocities are within the spectrum given by 

Barsch (see above). Exceptionally fast-moving rockglaciers with velocities of up to 100 m/a are 

reported from the Andes (Corte 1987) and from Asia (Gorbunov et al. 1992). In the Alps, the 

highest horizontal velocities (almost 7 m/a) were documented by Chesi et al. (1999) and Krainer 

& Mostler (2000) for the rockglacier Inneres Reichenkar (Austria). Also the rockglacier Äusseres 

Hochebenkar (Austria) showed maximum velocities of 5-6 m/a (Vietoris 1972; Schneider 2001). 

In Switzerland, mean velocities of 2 m/a were measured on Val da l’ Aqua rockglacier (Chaix 

1943; Jäckli 1978, from Barsch 1992) in Grisons. Highest mean velocities in the Valais are 

described by Krummenacher et al. (1998) for the Furggentälti rockglacier (1.35 m/a) and by 

Strozzi et al. (2004) for the Gruben rockglacier (2 m/a). 

Vertical movements may result from diverse processes like 3-dimensional straining (compression, 

extension), input of debris, formation of ice from snow or water, climatic influences or the 

advance of individual lobes (for summary see Kääb et al. 2003). All these influences are reflected 

in the thickening or thinning, respectively, at the rockglacier surface (see chapter 2.3.5.4). The 

rates are mostly very low and thus often below the level of significance (cf., reference-list in 

appendix 1). A typical vertical movement of -0.06 m/a was measured by Barsch & Hell (1975) on 

Murtèl rockglacier (Grison) by means of photogrammetry. 

The front advance of rockglaciers is many times lower than the horizontal movement, due to the 

vertical velocity profile which is indicated by the boulder apron in front of the terminus. 

Velocities between 0.01 m/a (Murtèl), 0.05 m/a (Muragl) and 0.15 m/a (Gruben) were 
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monitored by Kääb (1996, 1997) (cf., reference-list in appendix 1). Thus, the values are around 10 

% of the corresponding horizontal velocity. 

Comparisons of rockglaciers in the European Alps and the polar regions show clear differences 

in horizontal and vertical velocities as well as front advance, which result from the differences in 

ground thermal conditions (Kääb et al. 2002, 2003). 

 

2.3.5.2 Spatial variation of movement (surface & depth) 

The spatial variation of horizontal velocities mostly reveals highest horizontal velocities in the 

central flowline while to the borders of the rockglacier the displacement often decreases abruptly 

(e.g., Barsch 1992, 1996; Roer et al. 2005). Regarding the root zone, it is suggested that the 

velocities are lower due to a smaller thickness of the deforming layer (Kääb et al. 2003). At the 

other margins, this phenomenon is due to increased friction which leads to compressing flow 

(Haeberli 1985). The latter is reflected in the small-scale topography (cf., figure 2.18). In parts 

where horizontal creep compression takes place, the velocities are in general lower than in parts 

with extensive flow. Due to mass balance effects horizontal compressive flow is accompanied by 

vertical extension, which becomes visible in ogive-like transverse ridges. Their downslope 

movement approximately equals that of the creeping mass (Kääb et al. 1998). In areas of 

horizontal extension, vertical compression takes place (e.g., Gorbunov et al. 1992). Thus, a close 

correlation between spatial variations of horizontal and vertical movement exists. Apart from 

these flow effects, losses and gains of material may influence the mass balance. Kääb et al. (1998) 

documented changes in rockglacier surface elevation with distinct losses on perennial ice banks 

and gains in areas with debris accumulation. Due to topographic reasons, these gains and losses 

are mostly concentrated in the upper part of the rockglacier. 

Beside the mass balance effects, the vertical movement is regarded in different ways. On one 

hand the flow component due to movement parallel to the surface, which amounts to 10-60 % of 

the horizontal displacement (Haeberli 1985: 87). On the other hand the profile of the movement 

in depth, where velocity varies according to a parabolic function (Burger et al. 1999). Within the 

profile, highest velocities occur at the rockglacier surface, thus indicating the cumulative 

movement of the whole body. But, about 2/3 of the movement is concentrated in a thin - a few 

metres thick - layer in a certain depth, while the remaining deformation is distributed regularly in 

the matrix above. This phenomenon is well investigated by borehole deformation measurements 

(e.g., Vonder Mühll & Haeberli 1990; Wagner 1992; Arenson et al. 2002). Deformation profiles 

of different rockglaciers are given in figure 2.12. 
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Figure 2.12: Horizontal downslope borehole deformation. a) Mutèl-Corvatsch, borehole 2/1987: 
1987-1995; b,c) Pontresina-Schafberg, boreholes 1/1990 and 2/1990: 1991-2000, 1994-1999; d, 
e) Muragl, boreholes 3/1999 and 4/1999: 1999-2000 (from Arenson et al. 2002: 124). 
 

 

On complex rockglaciers where several lobes in different states of activity are situated one over 

the other, also the surface movement appears complex. In some cases, actively creeping lobes can 

be distinguished from passively moving lobes (influenced by active lobes on top or at the side) by 

looking at the orientation of the horizontal flow vectors. Normally, they indicate the direction of 

the flowing mass following the general slope (Haeberli 1985: 88). Due to overriding or pushing 

by other lobes, they may be oriented in other directions or reveal a non-uniform pattern. 

Another structure of surface velocities is given in situations where rockglaciers flow over a terrain 

threshold onto a steep slope. In this case highest velocities are found in the frontal part of the 

tongue, sometimes accompanied by transverse crevasses resulting from increased stress (Barsch 

1992, 1996). Vietoris (1972) described this flow behaviour for the Hochebenkar rockglacier. 

 

2.3.5.3 Temporal variation of movement (surface & depth) 

In most publications, rockglaciers are suggested to show steady-state flow behaviour with stable 

velocities and therefore temporal variations are rarely discussed in the context of rockglacier 

kinematics. Nevertheless, it is mostly suggested that changes in deformation rates are related to 

changes in climatic parameters (Kääb et al. 1997; Kääb & Frauenfelder 2001). Since these 

relations are still not known in detail and appropriate data are mostly lacking, different 

assumptions and specifications were made. Concerning an increase in temperature and its impact 

on rockglaciers, Barsch (1996: 258) summarised four possible consequences: first the increase in 

thickness of the active layer, second the increase in thickness of the unfrozen layer at the 

rockglacier front, third the penetration of heat into the rockglacier by circulating meltwater and 

last the variations of creep rates. 

Temporal variations were first mentioned by White (1971, from Haeberli 1985) and later 

discussed by Barsch & Hell (1975), who described seasonal changes in horizontal and vertical 
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velocities on the rockglaciers Murtèl and Muragl (Grisons, Switzerland). The same phenomenon 

was monitored by Haeberli (1985) also on Muragl rockglacier and on Gruben rockglacier (Valais, 

Switzerland). Recent geodetic measurements on Muragl showed seasonal variations between 0.01 

and 1 m/a with maximum velocities in late autumn and minimum values in spring and early 

summer (Kääb & Vollmer 2000). Different phases of movement were also investigated on the 

rockglacier Macun I (Zick 1996). Beside the seasonal changes, longterm degradation of 

rockglaciers was observed. Barsch (1988) reported on a decrease from 1 m/a around 1920 

(measured by Chaix 1923) to nearly zero today at Val Sassa rockglacier (Grisons, Swiss Alps). 

Gorbunov et al. (1992) documented on rockglaciers in the Karakorum with a distinct decrease in 

velocity (e.g., from 7.75 to 1.28 m/a) and others with increased velocities over a 15 year period 

(Whalley & Azizi 1994). In the recent past, some authors presented data on rockglacier 

acceleration in the Alps which seem to be linked to changes in climatic conditions (e.g., Zick 

1996; Schneider & Schneider 2001; Ikeda et al. 2003; Lambiel & Delaloye 2004). Schneider & 

Schneider (2001) discussed rockglacier surface velocities in relation to morphological and climatic 

parameters on the Äusseres Hochebenkar rockglacier and concluded a direct influence of Mean 

Annual Air Temperatures (MAAT) on surface velocities. The same conclusion was already drawn 

from borehole data at the rockglacier Pontresina-Schafberg (Grisons, Switzerland), where 

Hoelzle et al. (1998) depicted a connection between surface velocities and annual temperatures. 

Ikeda et al. (2003) compared information on rockglacier deformation with temperature data and 

DC resistivity soundings and observed an increased horizontal surface velocity with rising Mean 

Annual Surface Temperature (MAST) and low resistivities. They concluded a permafrost 

situation close to the melting point with high sensitivity to changes in ground temperatures. 

Recently, Lambiel & Delaloye (2004) reported on the horizontal acceleration (10-50 %) between 

2000 and 2003 on rockglaciers in the western Swiss Alps. Regarding probable reasons, also they 

refer to the general temperature increase without giving details on reaction times. Finally, 

Arenson et al. (2002) described changes in horizontal deformation rates within several boreholes 

in Switzerland. They measured seasonal changes (with clearly higher deformation rates during the 

winter months) in shallow shear zones, while greater depths are more affected by long-term 

variations (cf., Kääb et al. 2003). Regarding probable controls, they described an ongoing 

warming at greater depth of Murtèl rockglacier, resulting in higher deformations rates. Thus, also 

they concluded degrading permafrost, represented by temperatures very close to the melting 

point and fast movements in shallow shear zones. The same signal was revealed by Kääb et al. 

(2002), who emphasised rockglaciers with thermal and spatial proximity to melting conditions as 

sensitive indicators for spatio-temporal changes of boundary conditions. Thus, a direct link 

between changing permafrost temperatures and changing deformation rates appears probable 

from different studies. But, in most observations one critical fact exists: “no correlation could be seen 

between changes of one rock glacier and corresponding changes of a nearby rock glacier during the same period” 

(Haeberli 1985: 95). 

Therefore, in order to relate such local observations to overall climatic trends, investigations of 

creep variations are required on a more regional scale and long monitoring series are needed to 
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depict interannual variations and long-term trends (e.g., Barsch & Zick 1991). In order to find 

out driving forces for the prevailing behaviour, Barsch (1996) demands to discuss short- and 

long-term variations separately. 

Temporal variation in vertical movement is strongly connected to the horizontal velocities and 

their variations due to a mass balance effect. Thus, increased horizontal velocities may result in 

areas with a thinning of the rockglacier body, whereas in other parts a thickening occurs. Vertical 

losses can also reflect the melting of ice. 

 

2.3.5.4 Rockglacier rheology 

Measurements of rockglacier kinematics mostly demonstrate changes in surface geometry and do 

not reveal direct information on internal deformation processes (Arenson et al. 2002). But, since 

the surface velocity (vs) reflects the internal deformation of the permafrost body (vd), the sliding 

on shear horizons (vg) and the deformation at the rockglacier base (vu) (figure 2.13), processes 

below the surface are to be considered, e.g. in statistical, empirical and process-oriented models 

(Kääb 1996). 

 

Figure 2.13: Components of rockglacier movement: internal deformation (vd), sliding (vg) and 
deformation at the base (vu), which are reflected in the surface velocity (vs) (from Kääb 1996: 65). 
Sliding and deformation at the base are subsumed into basal velocity (vb). 
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In order to make conclusive interpretations of surface movements and their variations and thus 

deal with dynamic considerations, knowledge on the rheological behaviour of permafrost bodies 

is required. 

In a simple conceptual model, Barsch (1996) summarised the parameters influencing rockglacier 

deformation (figure 2.14). From that, it becomes clear how many data are needed to calculate 

shear stress and strain for a rock/ice-mixture and model the ongoing processes. 

 

 
Figure 2.14: Conceptual model of the parameters affecting the deformation of ice-super-
saturated mountain permafrost bodies (from Barsch 1996: 169). 
 

 

Detailed investigations, reviews and discussions on rockglacier rheology are given in Wahrhaftig 

& Cox (1959), Haeberli (1985), Whalley & Martin (1992) and Barsch (1996). But, since the 

internal composition is mostly unknown and the thermal regime is poorly understood, no 

appropriate rheological model for rockglaciers exists up to now (Whalley & Azizi 1994). At first, 

flow laws for uniform materials like ice (Glen’s flow law) and rocks (Coulomb equation) were 

suggested to study rockglacier creep (e.g., Whalley & Azizi 1994). In general it is assumed, that 

rockglacier movement follows the creep law for pure ice formulated by Glen (1952, cf. 

Wahrhaftig & Cox 1959; Haeberli 1985; Barsch 1996). His flow law describes the relation 

between shear strain rate åxy and shear stress ôxy : 

n
xyxy τε Α= , 

where n is a constant but A depends on ice temperature, crystal orientation, impurity content and 

other factors (Paterson 1994: 85). Transferred to rockglaciers, which consist of a rock/ice - 

mixture, the deformation rate under the same stress is smaller than that of a pure ice body (e.g., 

Barsch 1992). 

Based on Wahrhaftig & Cox (1959), Haeberli (1985: 118) calculated the rockglacier basal shear 

stress ô from: 

αρτ sin⋅⋅= pp ghf , 

where f is a shape factor, pρ  is the average density, g is the acceleration due to gravity, ph is the 

thickness of the permafrost body and α  is the surface slope (cf., Whalley & Azizi 1994). 

In summary, rockglaciers show long term steady state (secondary) creep behaviour under 

constant temperatures, stresses and strain rates (Haeberli 1985: 113). It is supposed, that the flow 

results from the plastic deformation of the ice inside the supersaturated permafrost body in 
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response to gravity and is controlled mainly by the internal structure (e.g., Barsch 1977, 1992). 

Sliding in shear horizons may play an additional role; this can be supposed since measurements in 

the Murtèl borehole showed that 75% of the movement takes place in a thin layer between 28 

and 30 m depth (shear planes) where reduction in viscosity enabled the higher deformation 

(Wagner 1992). In creep models this component is neglected so far (Whalley & Azizi 1994; 

Barsch 1996). 

Currently, investigations concentrate on laboratory or in situ tests of mechanical properties (shear 

strength and creep susceptibility of rockglacier material), and thus improve the models on 

temperature dependent soil behaviour (Davies et al. 2001; Arenson et al. 2003a, b). Davies et al. 

(2001) showed in several laboratory tests that temperature is an important parameter in the 

strength of ice/rock-mixtures. They proved, that a rise in temperature leads to reduction in shear 

capacity of ice-bonded discontinuities and thus may lead to slope failure. Arenson et al. (2003a, b) 

combined in situ pressuremeter tests with laboratory test and concluded, that due to the 

extremely heterogeneous content of ice, unfrozen water and air, as well as different grain sizes, 

unique frozen soil properties were hard to determine (Arenson et al. 2003b). 

Regarding rockglacier dynamics, Kääb et al. (2002) discussed potential controls of deformation. 

By applying different values for the factor A in Glen’s flow law, they described non-linear effects 

of ice temperature on the deformation rate factor of massive ice, which is also expected for ice-

rock mixtures. They concluded that temperature has an influence on rockglacier deformation, but 

other factors like ice-content, etc. should not be excluded. 

Additionally to rheological characteristics, considerations of mass balances support decisively the 

interpretation of multitemporal information on rockglacier movement. In order to calculate 

rockglacier mass balances, the model of the ‘kinematic boundary condition at the surface’ can be 

applied (Paterson 1994; Kääb 1996, 2004; Kääb & Funk 1999; Kääb et al. 1998). Thus, 

information on surface kinematics is used to get two- or three-dimensional information on the 

permafrost body, since in dynamic systems a change in surface geometry is always related to mass 

gains/losses or internal shifting of mass. 

2-dimensional: 

The two-dimensional case is expressed as: 

x
q

b
t
h

∂
∂

−=
∂
∂

  [1] 

where 
t
h

∂
∂

 is the change in surface elevation with time, b is the mass balance at the surface and 

x
q

∂
∂

 is the divergence in horizontal flow q. 

The equation is valid for any surface point and indicates that any change in surface elevation 

results from changes in mass balance (e.g., gains and losses of snow and debris) (figure 2.15 A) 

and/or flow balance (change in horizontal flow) (figure 2.15 B). One restriction of this model 

results from the assumption that the density of the material is constant. 
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Figure 2.15: Change in surface elevation: A) resulting from a change in mass balance; divergence 
of flow = 0. B) resulting from a change in flow balance; mass balance = 0. (from: 
http://www.geo.unizh.ch/~kaeaeb/e&mhtml/kinbed.html). 
 

 

The flow balance is described by the difference of in- and outcoming mass within a vertical 

column or as the change in flow into flow direction x. Thus, a reduction in flow leads to a rise 

(figure 2.15 B) while the increase in flow leads to a lowering of the surface. The divergence in 

flow may result from a change in cross-section or from a change in flow velocity in direction of 

the flow. The first case is depicted in figure 2.16, where a narrowed cross-section causes an 

increase of mass within a vertical column by constant flow velocity. The influence of a change in 

cross-section can be determined by the surface slope in flow direction 
x
h

∂
∂

 and the local 

horizontal flow velocity vx
s, as well as from the basal slope of the moving mass 

x
z b

∂
∂

 and the local 

horizontal velocity vx
b (see [2]) (http://www.geo.unizh.ch/~kaeaeb/e&mhtml/kinbed.html). 

 

 

 

 

 

 

 

 

 

Figure 2.16: Influence of a narrowed cross-section on the divergence of the flow and a change in 
surface elevation (from http://www.geo.unizh.ch/~kaeaeb/e&mhtml/kinbed.html). 
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The second case is displayed in figure 2.17 where a decrease in velocity in flow direction causes a 

rise in surface elevation, due to compression of the mass. Extension of the mass would result 

from an increase in flow velocity. Assuming, that the mass is incompressible, an extension or a 

compression of the mass directly affects the geometry: 
t
h

z
q

x
q

∂
∂

=
∂
∂

=
∂
∂

. In order to determine the 

total flow balance, the velocity change in flow direction 
x
vx

∂
∂

 for the whole thickness of the 

moving mass (from zb to h) needs to be considered (see [2]). 

By integrating both cases, the divergence in flow is described in the following equation: 
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If the mass is incompressible the following is valid for the two-dimensional case: 
z
v

x
v zx
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∂

=
∂
∂

. 

The last two terms of equation [2] describe the vertical velocity of a particle in the moving mass 

at or near the surface (vz
s): 
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Figure 2.17: Influence of a change in velocity on the divergence of flow and a change in surface 
elevation (from http://www.geo.unizh.ch/~kaeaeb/e&mhtml/kinbed.html). 
 

 

3-dimensional: 

As compiled by Kääb et al. (1998), for the three-dimensional case the kinematic boundary 

condition at any surface point is: 
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with mass balance at the surface b, surface altitude h, change in surface elevation with time 
t
h

∂
∂

, 

the horizontal surface velocity components vx and vy of the three-dimensional velocity vector v = 

vx (x1) 

vx (x2) 
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(vx, vy, vz)
T, the surface slope components 

x
h

∂
∂

 and 
y
h

∂
∂

 and the vertical velocity at the surface vz
s 

(cf., Paterson 1994). Concerning equation [4] Kääb et al. (1998) stated, that all terms on the right 

hand side, except the vertical velocity at the surface vz
s, can be determined by photogrammetrical 

investigations. 

The vertical velocity at the surface is: 
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with the vertical velocity at the basal layer vz
b where v = 0 for z < zb. Thus, with the vertical strain 

rate 
z
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=ε  , equation [5] can be written as: 
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Assuming incompressibility of permafrost: 

0=++ zzyyxx εεε   [7] 

the vertical velocity at surface vz
s can be written as: 
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That means that horizontal compression is compensated by vertical extension and vice versa 

(e.g., Haeberli 1985). Vertical extension indicates a velocity reduction in the surface flow field, 

while vertical compression reflects horizontal acceleration (cf., chapter 2.3.5.2). 

In equation [6] the basal velocities vx
b and vy

b, and zzε  are estimated or determined by the 

measurement of ice deformation or basal sliding (Kääb 1996). For the equations [7] and [8] the 

incompressibility may not be fulfilled when dealing with structured permafrost instead of massive 

ice or supersaturated permafrost (Kääb et al. 1998). 

The mass balance described in equation [4] represents the sum of all mass changes which are 

reflected in a corresponding change in surface elevation. Thus, internal mass variations without 

influence on surface elevation or flow regime are not considered by the kinematic boundary 

condition (Kääb et al. 1998). In general, interpretations on rockglacier mass balances need to be 

conducted carefully since changes in surface elevation may result from climatic influences 

(mass/gain of ice and debris) or internal dynamics. Kääb et al. (1998) concluded, that short-term 

variations of surface elevation are mostly caused by mass balance changes (climatic impact), while 

spatial variations of 
t
h

∂
∂

 are noticeably influenced by spatial variations of the flow regime. 

Haeberli (1985: 86) stated, that the only possible source of major volume changes result from 

melting or formation of ice. 

For the rockglacier Murtèl (Grisons, Swiss Alps), Kääb et al. (1998) calculated the mass balance b 

at a well investigated borehole site. Thus, the limited use of the model due to lacking data on the 

vertical velocity of other rockglaciers becomes apparent. From their investigations on Murtèl they 
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summarised in a complex figure (2.18) the concluding links between horizontal velocity and small 

scale topography, which is characterised by furrows and ridges resulting from horizontal 

compression. Thus, a close correlation between 
t
h

∂
∂

 and vx
s

x
h

∂
∂  is indicated. 

 
 
Figure 2.18: Longitudinal profile of rockglacier surface, surface velocities and derived kinematic 
quantities 1987-1996. The photogrammetric profile measurements have a spatial resolution of 1 
m. Surface topography depicted with two times exaggeration. Small scale topography is defined 
as difference between surface topography at each point and a running average over 200 m (four 
times exaggeration). (from Kääb et al. 1998: 534). 
 

 

2.3.5.5 Methods to monitor rockglacier kinematics 

In the 80-year history of rockglacier monitoring, first simple methods like remeasurement of 

painted stone-lines were used to detect rockglacier movements (e.g., Chaix 1923; Pillewizer 1957). 

Then, geodetic techniques were applied (e.g., Wahrhaftig & Cox 1959; Vietoris 1972; Barsch & 

Zick 1991; Francou & Reynaud 1992; Lambiel & Delaloye 2004), while later more and more 

different air- and space-borne remote sensing methods were exploited (e.g., Messerli & 

Zurbuchen 1968; Barsch & Hell 1975; Kääb & Vollmer 2000; Kaufmann & Ladstädter 2003; 

Kenyi & Kaufmann 2003a; Strozzi et al. 2004). Corresponding applications of the mentioned 

techniques in various regions, together with the quantified displacements, are compiled in a 

detailed list (appendix 1). 

Air- and space-borne methods are in particular useful to monitor remote areas that are difficult to 

access for in situ measurements, and to cover large areas within regional-scale studies. Therefore, 
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and with increasing spatial and temporal resolution and accuracy, remote sensing techniques offer 

highly suitable tools for rockglacier studies (Kääb et al. 2003; Kääb 2004). Up to now, these 

methods were rarely applied for deriving rockglacier movement on a regional scale. Frauenfelder 

et al. (2004) derived surface velocity fields from repeated aerial photographs for a number of 

rockglaciers in the Swiss Alps. Strozzi et al. (2004) compared an in situ inventory with airborne 

and spaceborne remote sensing data to analyse mountain permafrost creep in the Simplon/Saas 

valley region. 

In the study presented here, digital photogrammetry is applied to quantify rockglacier creep for 

an entire valley (i.e., following a regional approach). Therefore, small-scale aerial photographs are 

combined for the first time with digital pushbroom imagery from the High Resolution Stereo 

Camera – Airborne (HRSC-A) (Roer et al. 2005). Such high-resolution digital camera data was 

adopted in high mountains (Hauber et al. 2000), but not in the context of monitoring rockglacier 

creep. The analogue processing of conventional photographs is still time consuming unlike the 

application of digital photogrammetric cameras, which are believed to form the future data 

acquisition technique in photogrammetry (Hauber et al. 2000; Baltsavias et al. 2001). 

On the local scale, the results derived from digital photogrammetry are compared to high-

resolution data from terrestrial geodetic survey covering a three - year period (2001 – 2004). 

In addition, a new approach was designed by using dendrogeomorphological methods. In 

permafrost science, and especially in rockglacier studies, dendrogeomorphology was carried out 

rarely. This results mainly from the position of rockglaciers above the timberline. Since 

rockglaciers consist of coarse material, the vegetation cover is generally sparse (e.g., Giardino et 

al. 1984; Roer 2001). Zoltai (1975) was the first to report on reaction wood in different Picea-

species related to gelifluction in the Subarctic. He took slices from 157 trees and was able to 

illustrate different phases of activity between 1847 and 1943. Additionally, he tried to correlate 

the activity phases with climatic parameters. Giardino et al. (1984) studied reaction wood, tree-

ring variations and tilting at 283 trees on a rockglacier complex and conducted different periods 

of movement since the 15th century. Jakob (1995) monitored dwarf-shrubs in the Canadian 

Arctic, which were run over by gelifluction lobes. He was able to quantify movement rates 

between 1.9 and 3.5 cm/a. Bachrach et al. (2004) used dendrogeomorphological methods, to 

document the long-term development of a rockglacier in Alberta, Canada. In this case, trees (Picea 

engelmannii and Abies lasiocarpa) were covered by an advancing rockglacier. By the comparison of 

death-dates of different trees, a front advance of 1.6 cm/a was estimated. Recent studies on cell 

structures in tree rings ascertained the great potential of wood-anatomical investigations. 

Regarding geomorphic processes, the analysis of anatomical changes in exposed roots enabled 

the reconstruction of erosion rates (Gärtner et al. 2001; Gärtner 2003a, b). Annual ring width 

variations and related growth variations in shrubs due to environmental stress are rarely studied 

(e.g., Gers et al. 2001). Investigations on wood anatomy of trees or shrubs influenced by 

rockglaciers do not exist up to now. 

Basic principles and measurement design of the applied methods are detailed in chapter 3. 
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3 METHODS 

 

 

 

3.1 Geomorphic mapping 

Since geomorphic mapping is the fundamental method in geomorphology, it serves also in this 

study as an important basis for all following investigations and interpretations. Therefore, 

mapping was conducted directly in the field and by stereoscopic interpretation of aerial images at 

the photogrammetric workstation. The latter allowed an easy and area-wide examination and 

interpretation of landforms in an often inaccessible terrain. Additionally, geomorphometric 

terrain parameters as well as temporal changes were quantified in a commercial GIS software 

(ArcGIS) using a high-resolution DTM. 

The mapping was concentrated on the geomorphic setting of rockglaciers within their periglacial 

and glacial environment. Thus, the study focuses on two process regimes, while other landforms 

and processes are neglected. The geomorphogenesis was indirectly derived from landforms and 

their distribution in the landscape based on an actualistic approach. That means that a recent or 

sub-recent consideration, respectively, leads to a genetic interpretation by a ‘sorting’ of landforms 

in space and a description of processes-activity in time. 

The emphasis of the interpretation was laid on rockglacier distribution and characteristics. They 

were identified by morphological, sedimentological and biological (vegetation cover) 

characteristics and with the before mentioned techniques, several parameters (situation, size, 

slope, surface relief) were compiled for each feature. Finally, the rockglacier activity (active, 

inactive, relict) was assessed by a combined analysis of geomorphometric and ecological 

characteristics. Since inactive rockglaciers are transition forms, their definition holds the highest 

uncertainty. The data are summarised in overview maps and rockglacier parameters are compiled 

in an inventory list (according to Hoelzle 1989). 

Rockglaciers are important indicators for the former and present occurrence of permafrost (e.g., 

Haeberli 1985) and thus the detailed mapping of these landforms enables the determination of 

permafrost distribution (cf., Hoelzle 1989; Nyenhuis 2001; Nyenhuis et al. in press). Additionally, 

rockglaciers are important mass transport systems (e.g., Barsch 1977), connecting talus slopes and 

glaciers to other systems. These fluxes are only partially discussed in this study. Detailed 

descriptions of sediment cascades, combined with a comprehensive geomorphic map, are 

depicted for the study area by Otto & Dikau (2004). 

 

3.2 Digital photogrammetry 

3.2.1 Basic principles 

The general objective of photogrammetry is based on the fact that for any object point 

represented in at least two photographs it is possible to calculate the three-dimensional terrain 

coordinates. With the development from analogue via analytical to digital photogrammetry, 
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several photogrammetric steps are meanwhile automated and thus, the technique is no more 

restricted to specialists only. 

Concerning the geometric basics in photogrammetry, it is referred to the relevant core literature 

(e.g., Konecny 1984; Kraus 1996, 1997). The main parameters of aerial photogrammetry (flying 

height, focal length) and their importance for the image orientation are indicated in figure 3.1 and 

are detailed in chapter 3.2.3. 

Since the quantification of changes in surface geometry is based on the comparison of 

multitemporal Digital Terrain Models (DTMs) and orthoimages, their generation from stereo 

aerial photographs is one of the major tasks in digital photogrammetry (e.g., Baltsavias 1996; 

Chandler 1999). The principle of photogrammetric DTM generation is depicted in figure 3.1. 

 

 

 
 

Figure 3.1: Principle of photogrammetric DTM generation from a monotemporal stereo model 
composed of two overlapping images taken from different positions (from Kääb 2004: 23). c = 
focal length; rxy = the horizontal (radial) distance of a terrain point from the sensor nadir; r’xy = 
radial distance between the image centre and the projection of a terrain point into the image.   , f  
and ?  are the rotation angles, decisive for the exterior orientation of the images. The terrain point 
P is determined by the intersection of oriented rays, fixed by the known projection centres (O1, 
O2) and the projections (P’1, P’2). 

   2 
  1 

   2     1 

   2    1 
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Concerning the monitoring of creeping permafrost, different software packages based on block-

matching techniques using multitemporal orthoimages were developed (Vollmer 1999; Kääb & 

Vollmer 2000; Kaufmann & Ladstädter 2000, 2003). The CIAS-software applied in this study 

(chapter 3.2.4) enables the calculation of 2D horizontal flow vectors from multitemporal 

orthoimagery while vertical changes are computed from DTM differences (Vollmer 1999; Kääb 

& Vollmer 2000). Against that, Kaufmann & Ladstädter (2000, 2003) measure 3D surface flow 

vectors using ‘quasi-orthoimages’ (calculated from coarse DTMs) as intermediate products. Both 

programs track the displacement of greyscale image features on the rockglacier surface within 

multi-temporal digital images. A comparison of these approaches is detailed in Kääb (2004). 

 

3.2.2 Data 

3.2.2.1 Aerial photography 
The basic data applied here are small-scale black and white aerial photographs from the Swiss 

Federal Office of Topography (Swisstopo) with average scales ranging from 1:19,500 – 1:23,000. 

For the study site, analogue aerial stereo photographs are available for the years 1975, 1981, 1987, 

1993. They were taken with a Wild/Leica – Camera type RC 5 / RC 8 (1975), RC 10 (1981, 1987) 

and RC 30 (1993). The photographs of the years 1975 and 1993 were found to be best suited for 

the displacement measurement. Only one rockglacier was additionally monitored in 1981 and 

1987. Concerning the purpose of this study, the date of recording is a significant fact (table 3.2). 

The objects of interest are situated at around 2600 – 2800 m a.s.l. and to measure the 

displacement of single rocks on the rockglacier surface, these areas need to be free of snow. 

 

3.2.2.2 HRSC-A data 
To extend the monitoring period for another eight years, the Turtmann valley was covered by an 

airborne survey with a digital linear array sensor (pushbroom) in September 2001. This system, 

implemented in the High Resolution Stereo Camera – Airborne (HRSC-A), was developed at the 

German Aerospace Center (DLR) and was originally designed for the planet Mars exploration. 

For airborne earth operations the system was moderately changed. The camera records 

simultaneously with nine CCD (Charge Coupled Devices) line sensors mounted in parallel on the 

focal plane of the camera (Hoffmann et al. 2000). Four CCD arrays are used for multispectral 

imagery (colour channels in red, green, blue and infrared) and five CCD arrays for multi-stereo 

capabilities (providing stereo angles of ± 18.9°, ± 12.8° and high resolution at 0°) (Neukum 

1999). The latter are decisive for the photogrammetric processing and the DTM derivation. A 

software system was developed by the DLR in cooperation with the Technical University of 

Berlin for the radiometric and geometric correction of the raw data as well as the automatic 

processing of the DTMs and the orthophotos. In this context, calibration data for camera- and 

image orientation are needed. Therefore, orientation and position were measured continuously 

during the flight by means of differential GPS and a strap-down inertial navigation system (INS) 

(Neukum 1999). For this purpose, a GPS reference station has to be placed in the area of 

interest, forming the only non-remote step within this procedure. 
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The photogrammetric accuracy of the scan data amounts to +/-15-20 cm in lateral and vertical 

direction, with regard to the exterior orientation (Hoffmann 2000). The ground resolution lies 

within decimetres (10 – 40 cm), depending on the camera height above ground. Details on the 

general survey realisation and the processing of the photogrammetric data are described in 

Hoffmann (2000) and Gwinner et al. (1999). Since the camera fulfils the radiometric and 

geometric requirements of an operational photogrammetric camera system, i.e. precise geometric 

calibration, high resolution (10 cm/pixel resolution on ground from an altitude of 2500 m) 

(Neukum 1999), the data are useful for any photogrammetric or remote sensing application. 

By order of the Research Training Group (GRK 437), the flight campaign was performed in 

September 2001. The automated digital photogrammetric processing system delivered a DTM 

with a horizontal ground resolution of 1 m for the Turtmann valley. Multispectral orthoimages 

with a resolution of 0.5 m had been derived by orthoprojection using the DTM. In table 3.1 an 

overview is given on the system characteristics, compared to aerial photography. The main 

difference consists in the principle of data recording and the degree of automatisation. 

Obviously, using the HRSC-data there is no possibility for the scientists to control single steps 

within the automated processing (figure 3.2). 

 

Table 3.1: Sensor parameters of aerial photography and HRSC-A data (modified, after 
Hoffmann 2000). 

 Aerial photographs HRSC-A 

Spectral properties black/white multispectral 

System passive passive 

Focal length f ˜  150 mm f = 175 mm 

Aperture angle 75-100° 11,8° 

Mode of recording single photos image strips (continuous recording) 

Image size 23*23cm2 
length of strip variable, width of strip 

depending on flight altitude 

Image overlap 60 % along-track, 20-30 % cross-track 
9*100% (9 CCD lines), cross-track 

strip overlap 30-50 % 

Spatial resolution 
12-32 cm (altitude of flight 2500m), 

(depending on scan resolution) 
10 cm (altitude of flight 2500m) 

Exterior orientation 
reconstruction of the camera position 
for the old photographs using ground 

control and tie points 

direct measurement of the camera 
position using GPS/INS systems 

Accuracy x/y ± 5 cm (altitude of flight 2500m) ± 12-15 cm (altitude of flight 2500m) 

Accuracy z ± 7,5 cm (altitude of flight 2500m) ± 15-20 cm (altitude of flight 2500m) 

Basis for orthophoto 
generation 

DTM DTM 
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Table 3.2: Flight parameters and properties of aerial photography and HRSC-A data for the 
Turtmann valley. 

 Aerial photographs HRSC-A 

Date of flight 
11.8./20.8./1.9. 1993 

20.8./6.10. 1975 28.9.2001 

Altitude of flight 5500-6000m a.s.l. 6350m a.s.l. 

Scale 1:19,500 – 1:23,000 1:22,000 

Relative orientation 0.65 pixel RMS - 

Accuracy x/y ˜  4.3 m RMS ˜  0.25 m RMS 

Accuracy z ˜  1.5 m RMS ˜  0.20 m RMS 

 

 

3.2.3 DTM & orthophoto generation 

For the photogrammetric analyses the analogue data were scanned with 800 dots per inch (dpi; 

approximately 30 µm) using a commercial scanner. The use of commercial scanners is considered 

to be crucial (Kaufmann & Ladstädter 2003), but the quality and resolution of the scan data is 

sufficient for this purpose, where the relative accuracy between the images is of highest priority 

(cf. Kääb & Vollmer 2000). 

Image orientation, automatic DTM generation and digital orthoprojection were performed within 

the commercial software SOCET SET (version 4.4.0) by LH-Systems (San Diego, California, 

USA) at a digital photogrammetric workstation. Firstly, interior orientation was calculated from 

the fiducial marks given in the image and the camera calibration reports, which are available at 

the Swiss Federal Office of Topography (Swisstopo). With this information, the software was 

able to calculate the relation between the camera-internal coordinate system and the pixel 

coordinate system. Secondly, the relative orientation within the multi-temporal image block was 

computed from tie-points connecting all overlapping images irrespective of their acquisition data. 

By that procedure a high relative accuracy between the multi-temporal images is ensured. For 

measuring changes in geometry relative accuracy is more important than the absolute position of 

the images (Kääb 2002). In this context it is significant, that the tie-points are set in non-moving 

areas in order to improve the data for the investigation of changes in permafrost creep. Finally, 

the entire multi-temporal image block was as a whole transformed into ground coordinates (i.e. 

absolute orientation) using ground control points (GCPs) from field survey and topographic 

maps. After setting the ground control points, an automatic tool (residual error report) checked 

and evaluated the quality of the GCPs and the outer orientation, respectively, in order to detect 

blunders. Partly, more tie-points or ground control points were added to improve the connection 

of the images. 

Subsequently, the digital terrain models (DTMs) were automatically generated from mono-

temporal stereo-models. To eliminate errors, the control by the operator was an important step 

for deriving high-quality DTMs (Kääb & Vollmer 2000). Finally, the orthophotos were calculated 

with the resampling-method nearest neighbour (Vollmer 1999). They were saved in GeoTIFF-
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format with an additional TFW-file containing the georeferenciation (coordinate of the upper left 

pixel as well as the pixel resolution). From the 1975 and 1993 digital imagery DTMs with 10 m 

spacing and orthophotos with 0.5 m ground resolution were generated. 

An accuracy assessment was not explicitly performed in this study, since Kääb and Vollmer 

(2000) made several tests and compared operator-measured and automatically-extracted DTMs. 

Under favourable conditions, the comparison of the data delivered a standard deviation of 

approximately ± 0.6m and maximum differences in the range of approximately ± 1.5 m (Kääb & 

Vollmer 2000). With the subsequent generation of the orthophotos, errors in elevation of the 

DTMs are transformed into horizontal deviations in pixel location (cf., Kraus 1997; Kääb 1996). 

Generally, systematic errors have to be expected at the edge of the aerial photographs and image 

blocks, respectively. Additionally, in areas with steep terrain or low contrast (e.g., due to snow 

cover), the accuracy is reduced. Therefore, measuring is best suited in the centre of the images 

and in areas with good contrast. The photogrammetric accuracy for this study is estimated to be 

roughly three times higher than the values given by Kääb and Vollmer (2000), since they worked 

with 1:6’000 scale images, whereas about 1:20’000 scale images were used in the study presented 

here. Thus, the general accuracy of the DTMs derived from small-scale aerial stereo-photography 

is estimated to lie within the range of two pixels RMS (Root Mean Square Error) (i.e. here: +/-1 

m). 

 

Figure 3.2: Processing schema for digital measurement of rockglacier flow-fields (from Roer et 
al. 2005). Comparison of different input data, processing steps and resulting output data using 
analogue aerial photographs and digital aerial images. The ellipses mark steps, where the operator 
can influence the processing to increase the quality of the output data. 
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Different input and output data using analogue aerial photographs and digital aerial images are 

summarised in figure 3.2 together with controlling steps, where the operator can influence the 

processing in order to increase the quality of the output data. The recording and the processing 

of the frame imagery and the pushbroom data showed major differences (table 3.1, figure 3.2), 

but the output data (DTMs and orthophotos) had similar characteristics. For details on the 

procedures used see Kääb & Vollmer 2000, and Kääb 2002. 

 

3.2.4 Measurement of horizontal velocities 

For the analysis of horizontal displacements on rockglaciers, the software CIAS (Correlation 

Image Analysis) has been used, which was developed at the Department of Geography, 

University of Zürich by M. Vollmer (1999). It is written in IDL (Interactive Data Language, 

Research Systems Inc, USA). In order to derive horizontal surface displacements, this software 

compares multi-temporal digital orthophotos by the identification of corresponding image-

blocks. 

 

 
 

Figure 3.3: Schema of measuring surface displacements from repeated digital orthoimages by 
block-correlation techniques (from Kääb & Vollmer 2000: 319). A reference block in the 
orthoimage at time 1 is searched for in a test area in the orthoimage at time 2. The horizontal 
shift between the reference-block location and corresponding test block gives the surface 
displacement. 
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First, the size of the reference and the test block as well as the size of the test area has to be 

adjusted. The formers depend on surface characteristics, while the latter is estimated by the 

expected maximum displacement, so that the test block which corresponds with the reference 

block is included within the test area (Kääb & Vollmer 2000). In this study, the reference block 

mostly had a size of 16 × 16 pixel and the test area a size of 100 × 100 pixel. Second, some well-

distributed points are measured in both images in immobile areas around the rockglaciers to 

assess systematic errors. With these data, systematic shifts, rotations and scale differences 

between the multi-temporal images are corrected using a Helmert similarity transform. Finally, 

the measurement starts with the selection of a sharply contrasting reference block in the 

orthoimage of time 1 (figure 3.3). The ground coordinates of its central pixel are given by the 

orthophoto georeference (Kääb & Vollmer 2000). Within the test area determined before, the 

corresponding test block is then searched in the orthoimage of time 2. The identification of the 

corresponding image blocks is performed by a double cross-correlation function based on grey 

values (Kääb & Vollmer 2000): 
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The equation depicts the coordinates of the test block (i,k) and of the reference block (j,l), 

respectively. s describes the spatial grey value function of the test block, while s(i,k) is the 

corresponding grey value at location (i,k). m is the appropriate spatial grey value function of the 

reference block and m(j,l) the corresponding grey value at location (j,l). T indicates the sum of 

grey values of the test or reference block, while N denotes the number of pixels of the test or 

reference block (Nref = Ntest) (Kääb & Vollmer 2000). The value of the double cross-correlation 

function F (i,k) lies between -1 and +1. If the value is +1, the reference and the test block show 

total equivalence (Vollmer 1999). The T / N terms in the equation normalise the grey values of 

the test and reference blocks and ensure that differences in overall grey value do not affect the 

correlation result (Kääb & Vollmer 2000). 

If the measurement is successful, the differences in central pixel coordinates directly reveal the 

horizontal displacement between time 1 and time 2, indicated by a displacement vector (figure 

3.3). The results are stored in a *.dat-file. Then, within a special program (cia2arc) the *.dat-file is 

transformed into a *.txt-file in order to import the data into a GIS. In this context the difference 

in time, the correlation coefficient (min), the displacement (min and max) and the azimuth (min 

and max) is called up. The program outputs the coordinates of the reference block (x,y), the 

changes in x and y, the velocity, the direction and the correlation coefficient. 

From high precision aerial photographs, the measurement of 2D flow vectors can be done 

automatically, generating a dense scatter-plot. In this study the program operated semi-
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automatically. The user directly selects the terrain point of interest and controls the measurement. 

An experienced user is able to identify measurements, which are obviously mismatches, and is 

able to delete them directly. That leads to an improvement of the resulting vector field. 

Nevertheless a large amount of blocks (sometimes up to 1000, depending on rockglacier size) 

was measured to get a statistical quantity and to display complete flow fields on the rockglacier. 

Regarding the accuracy assessment, Kääb and Vollmer (2000) compared the digitally-derived 

displacements (CIAS) with the velocity field created by an analytical plotter. The average 

difference in speed was 0.02 m a-1 ± 0.03 m a-1. Since the average speed of the investigated 

rockglacier amounted to 0.2 m a-1, the results represent an error of 10%. Thus, the results depict 

a similar accuracy as the operator-derived data (estimated error c. 10-15%) (Kääb & Vollmer 

2000). Also here, one has to be aware that the tests were made in 1:6’000 scale images whereas 

this study works with 1:20’000 scale images. Kääb (2002) gives a rule of thumb, that an accuracy 

(one-sigma level) for photogrammetrically-derived horizontal velocities and thickness changes of 

about one image pixel size can be expected for favourable conditions in mountain terrain, i.e. in 

this study 0.5 m.  

The application of the before estimated accuracy of two pixels (RMS) for the DTMs and the 

orthoimages used in this study results in an accuracy of the horizontal velocities of 5.5 cm/a (for 

1975-1993) and 12.5 cm/a (for 1993-2001). 

For the displacement measurement, snow patches or shadows in the images inhibited the 

measurement of terrain displacements, as it is visible in figure 3.4. Especially in the 2001 

orthoimage, where fresh snow had fallen before the data acquisition, some rockglaciers are at 

least partially covered by snow. Thus, at some part of the rockglaciers, no results or mismatches 

were produced by the program, due to poor results of the corresponding grey-value correlation. 

The same problem is given, when major changes on the rockglacier surface – probably due to a 

shifting process regime – lead to a loss of coherence. This phenomenon becomes apparent on 

rockglacier Grueo1 (figure 3.4), where the lower part of the rockglacier is much faster than the 

upper part, resulting in transverse cracks of several meters depth. Thus, the vectors show a 

chaotic feature, since the blocks were shifted into the cracks and were superimposed by other 

blocks. Additionally, snow patches and shadows limit the measurement of displacement vectors 

in the root zone. Against that a coherent field of velocities around 2 m per year is depicted in the 

middle part of the rockglacier. 



METHODS   41 

 

 
 

Figure 3.4: Annual horizontal displacements (raw data) on rockglacier Grueo1 between 1993 and 
2001 (underlying orthoimage of 2001). Due to major changes on the surface in the lower part of 
the rockglacier, there is a strong loss of coherence resulting in a chaotic vector field, while snow 
patches and shadows inhibited the measurement of displacement vectors in the root zone. 
 

 

3.2.5 Computation of thickness changes 

For the quantification of vertical changes in rockglacier geometry, the DTMs were compared 

using a commercial GIS software (ArcGIS). Cumulative and annual changes in surface elevation 

are derived by subtraction of the multi-temporal DTMs. Also here, Kääb and Vollmer (2000) 

made an accuracy assessment by the comparison of operator-measured thickness changes and the 

automatically-derived ones. The difference in elevation changes amounted to 0.06 m a-1 on 
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average, with a standard deviation of ± 0.13 m a-1 and maximum errors of 1 m a-1 and more at 

rockwalls (Kääb & Vollmer 2000). 

The before mentioned accuracy of the applied DTMs results in an accuracy of the vertical 

changes similar to that stated for the horizontal displacements. Thus annual values of 5.5 cm/a 

(for 1975-1993) and 12.5 cm/a (for 1993-2001) depict the range of uncertainty. In areas with 

steep walls or snowcover, the errors in the DTMs are often depicted by extraordinary vertical 

changes. 

 

One objective of the study is to evaluate, to what extent small-scale aerial photographs and 

digitally acquired airborne data can be used for monitoring and quantification of rockglacier 

creep. The recording and the processing of the frame imagery and the pushbroom data show 

differences (table 3.1), but the output data (DTMs and orthoimages) have similar characteristics. 

An overview of the main processing steps in digital photogrammetry as well as the further 

applications (computation of horizontal velocities and thickness changes) is compiled in figure 

3.5. 
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Figure 3.5: Main processing steps for the generation of DTMs and orthophotos (A), horizontal 
velocities (B) and the computation of thickness changes (C) (modified, after Vollmer 1999). 
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3.3 Terrestrial geodetic survey 

3.3.1 Total-station 

With a total-station (tachymeter), which allows high accuracy, selected blocks at the rockglacier 

surface were repeatedly surveyed. Today’s electronic total-stations are characterised by an opto-

electronic distance meter (EDM) and electronic angle scanning. Horizontal distances, height 

differences and coordinates are calculated automatically and all measurements and additional 

information are recorded (cf., Kahmen 1997). Some instruments are additionally equipped with 

an automatic target-recognition system (ATR), completely integrated into the telescope. With this 

function it is sufficient to point the telescope approximately at the reflector; a touch on the 

corresponding button then automatically triggers the fine pointing and the angle- and distance 

measurements, and records all of the values (Zeiske 2000). Thus, a fast and easy targeting is 

combined with a constant measuring accuracy, which is independent of the operator. For the 

Leica tachymeter (TCA 1800L, Leica Geosystems AG, Heerbrugg, Switzerland) used in this study 

(figure 3.7), the technical details are summarised in table 3.3. Regarding the physical and 

mathematical basics of geodetic survey, it is referred to the core literature of geodesy (e.g., 

Kahmen 1997; Torge 2001). 

 

Table 3.3: Technical details of the Leica tachymeter TCA 1800L (cf., Kahmen 1997). 

Range* 1 km 

Standard deviation position 2 mm 

Standard deviation of measurement in both 
telescope faces 0.3 mgon 

telescope 30x 

Shortest range 1.7 m 

Tracking 0.3 s 

Weight 6.4 kg 

Characteristics dual-axes compensator, ATR (Automatic Target-
Recognition) 

* circular prism, average atmospheric conditions 

 

 

One important aspect is the maintenance of the instrument, since this is decisive for the 

measuring accuracy. Thus, every two years the total-station used in this study was sent to the 

producer (Leica Geosystems) in order to inspect the mechanics, electronics and optics. 

Additionally, the instrument errors are checked before every measurement, since the equipment 

is sensitive against shaking during the transport and is influenced by temperature variations. With 

the programmable check the following errors are identified and automatically stored. 
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Figure 3.6: Instrument errors of a total-station. A = vertical axis tilt; B = height-index error (i) 
(V index); C = line-of-sight error (c) (Hz collimation); D = tilting-axis error (a) (from Zeiske 
2000: 25). 
 

 

The vertical axis tilt (figure 3.6 A) depicts the angle between plumb line and vertical axis. This 

error is not an instrument error; it arises because the instrument has not been adequately levelled 

up, and measuring in both faces cannot eliminate it. But, its influence on the measurement of the 

horizontal and vertical angles is automatically corrected by the dual-axes compensator (Zeiske 

2000: 24). 

The height-index error i is the angle between the zenith direction and the zero reading of the 

vertical circle (figure 3.6 B). By measuring in both faces and then averaging the data, the index 

error is eliminated; it can also be determined and stored. 

The line-of-sight, or collimation error c is the deviation from the right angle between the line of 

sight and the tilting axis (figure 3.6 C), while the tilting-axis error a is the deviation from the right 

angle between the tilting axis and the vertical axis (figure 3.6 D). These errors can be determined 

and stored. Thus, they are taken into consideration automatically whenever an angle is measured. 

Additionally these errors are eliminated by taking measurements in both telescope faces. 

The instrument errors can actually be indicated as follows: 

• Error of dual-axes compensator: 
last survey (08/2004): alongside: 0.0001°, diagonal -0.0003° 

tolerance limit: 0.09° 

• Height-index error (i): 
last check by Leica Geosystems: -0.00009° 

last survey (08/2004): 0.0014° 

tolerance limit: 0.9° 

A B C D 
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• Line-of-sight-error (c): 
last check by Leica Geosystems: -0.00153° 

last survey: -0.0011° 

tolerance limit: 0.09° 

• Tilting-axis error (a): 
last check by Leica Geosystems:< 0.0018/60 ° in tolerance 

last survey (08/2004): 0.0003° 

tolerance limit: 0.09° 

 

By determination and storage of all these errors, accuracies of around 1 cm in height and 1 cm in 

position are calculated for a maximum distance of 600m. The additional measuring in both 

telescope faces and with the help of the dual-axes compensator, the measurement is practically 

free of systematic error. Further errors due to positioning of the instrument and the reflectors is 

limited by the measurement design (see chapter 3.3.2). Thus, in consideration of divergences 

resulting from the curvature of the earth and from refraction (both not quantified in this study), a 

maximum range of uncertainty of 2-3 cm was compiled for the velocity vectors. This range is 

comparable to accuracies given in other studies (cf., Berthling et al. 1998; Ødegard et al. 2003). 

 

3.3.2 Measurement design 

A geodetic network was established respectively in 2001 and 2002 for two rockglaciers (figure 

3.9), consisting of reference points in non-moving terrain and observation points on the 

rockglacier surface. Since the terrestrial survey with a total-station was applied to get some high 

precision data on spatio-temporal changes in rockglacier geometry, high accuracy is one of the 

main objectives for the application of this method. Therefore, the reference points were selected 

under the following conditions (cf., Kaufmann & Heiland 1998): 

- good visual connection to other reference points and to the observation points on the 

rockglacier, 

- stability of the ground (not affected by gravitational and other processes), 

- possibility of a resistant marking. 

The observation points were distributed regularly on the rockglacier surface (in some places 

arranged in profiles) and were fixed on big blocks embedded in the matrix of the active layer, 

probably reaching the permafrost. Thus, superimposed processes acting on the rockglacier 

surface (e.g., gelifluction) are excluded and the displacement measured is truly reflecting the creep 

of the rockglacier mass. The position of the observation points was measured from reference 

points situated on a latepleistocene moraine and on bedrock. One orientation point to the official 

geodetic net was established by static measurement using differential GPS (Global Positioning 

System) in 2000 in the lowermost part of the moraine (cf. Rasemann 2004). 

One main problem with terrestrial geodetic measurements is the exact positioning of the target 

(Haeberli 1985). Thus, in order to re-survey the points with high accuracy, steel dowels - where 

the prisms can directly be screwed into the threads - were drilled into the boulders and bedrock, 
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respectively (figure 3.8). Therefore, centring errors are nearly eliminated (cf. Berthling et al. 1998, 

2001). Additionally, on some very big boulders two dowels were fixed to measure individual 

rotations. 

 

 
 

Figure 3.7: Total-station on one of the reference points situated on a latepleistocene moraine 
with an overview of the research object (rockglacier in the background). 
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Figure 3.8: Steel dowels were drilled into the blocks for high-accuracy re-measurement. The 
thread, where the prism can directly be screwed into for the measurement, is protected by a 
plastic screw throughout the year. 
 

 

For the first installation of the geodetic network, the total-station was set up on a known point in 

a local coordinate system. Then a second prominent point was selected for the purposes of 

orientation; after this has been targeted the horizontal circle was set to zero. With this so-called 

polar method, three-dimensional positions are determined by measuring angles and distances (cf., 

Kahmen 1997). For following readings in the existing network, the instrument is set up on a 

known point and the horizontal circle is lined up with a second known point. In order to check 

the positions of the reference points and therefore exclude their movement, all reference points 

were measured from two known positions during each survey campaign. 

In case of rockglacier HuHH1, the distances between the position of the instrument and the 

uppermost observation points were too long to require high accuracy data. Thus, free-station 

survey was applied. With this program, the position of the instrument is calculated from 

measurements to at least two known points. The advantage of this method is the free selection of 

favourable positions for the instrument. 

During the survey, every reference point was measured repeatedly in both telescope faces of the 

instrument. Also the observation points on the rockglaciers were measured in both faces in order 

to check the measurements and to guarantee high accuracy data. The measured distances and 

angles are then calculated as the average of the repeated readings. 
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Figure 3.9: Terrestrial geodetic survey in the Hungerlitälli: reference and observation points. 
Underlying orthoimage of 20.08.1975 (flight-line 22, aerial photographs taken by Swisstopo). 
 

 

The survey of 15 blocks on rockglacier huhh1 (figure 3.9) was started in September 2001. These 

blocks were remeasured in June 2002. In August 2002, the network was expanded on huhh1 by 

another 11 boulders in the upper part and was also installed on rockglacier huhh3 in September 

2002. Then, all blocks on both rockglaciers were repeatedly measured in Juli 2003, August 2003 

and Juli/August 2004. Due to snow cover and avalanches, measurement in winter, spring and 

early summer was generally not feasible. Through the two measurement-campaigns conducted at 

the beginning and end of summer in 2002, it was possible to determine summer displacement-

rates in comparison to displacements during the rest of the year (autumn, winter and spring) 

(Roer 2003). 

As stated before, the accuracy of the applied technique is in the range of 2-3 cm at most. Since 

the investigated rockglaciers are definitely active and show relatively high surface velocities, the 

recorded data are far beyond the level of uncertainty. 

The terrestrial monitoring serves as validation for the results from digital photogrammetry, even 

if the two methods do not cover the same period. Geodetic survey was carried out in the years 

2001 – 2004 and thus expands the length of the overall monitoring series. Regarding the vertical 

changes, it has to be considered that there are differences between the photogrammetric data and 

the data from geodetic survey. The DTM-comparison gives area-wide information on changes in 

elevation and thus allows the interpretation of mass- and flow-balance changes. Against that, the 
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position of selected blocks is measured by terrestrial geodetic survey. Hence, a decrease in 

elevation results automatically from the downslope movement of the blocks. This vertical 

component due to movement parallel to the surface amounts to 10 - 60 % of the horizontal 

displacement (Haeberli 1985). 

Terrestrial survey is a very accurate method to measure geometries, but the application is 

laborious in terms of rough weather conditions and limited accessibility, in particular in high 

mountain environments. Nevertheless, since the network was established with numerous 

orientation-points and well-fixed observation-points it is appropriate for annual measurement 

over long time scales, at least over the next decade. 

 

3.4 Dendrogeomorphology 

3.4.1 Basic principles 

Dendrochronology is one of the classical dating methods (e.g., Lang et al. 1999; Schweingruber 

1996). The ability of dating (annual) rings in stems of trees is given in areas, where the growth of 

a tree is annually interrupted by the seasonality of the climate. The boundary between tree rings is 

depicted in a contrast of flattened cells with thick cell walls in the latewood (build at the end of 

the vegetation period) and bigger, thin walled cells in the earlywood (build in the beginning of the 

following vegetation period) (Schweingruber 1983; Bräuning 1995). Thus, the development and 

history of the tree and the plant, respectively, is reflected in the pattern of tree rings (e.g., 

variability of ring width) as a chronology. Variations in ring width result from variable 

environmental conditions influencing the growth. 

The application of tree-ring analysis in geomorphology (Dendrogeomorphology, Alestalo 1971) 

enables the reconstruction and dating of gravitational processes (e.g., Schweingruber 1983, 1996). 

The basic principle of the ‘process-event-response-chain’ (cf., Shroder 1978) represents the link 

between geomorphic processes, their influences on the tree and the corresponding reaction in 

tree growth. These reactions include not only variations in tree-ring width (e.g., sudden reduction 

in growth), but also changes in the structure of the cells, like e.g., the development of 

compression or tension wood (Gärtner et al. 2004; Fantucci & McCord 1995) caused by the 

tilting of the stem. 

In order to analyse the wood, samples need to be taken from the trees. This is done with an 

increment corer, which enables the extraction of a core (ø 5 mm) from the stem. The outermost 

tree ring (directly below bark and cambium), taken from a living tree, shows the cells which were 

build last and thus allow an exact dating. Working with dwarf shrubs, the extraction of cores is in 

most cases not possible. Thus, a slice of the stem needs to be taken to count and analyse the 

rings. Since the plant is destroyed by this kind of sampling, the number of samples needs to be 

limited. 

After the preparation of the samples (cores and slices), the tree rings are counted and are 

compiled and compared in so-called skeleton-plots (Stokes & Smiley 1968; Schweingruber et al. 

1990). This visual comparison allows the depiction of sudden growth changes and the evidence 

of missing tree rings in individual samples. Afterwards, the tree-ring width is measured with an 



METHODS   51 

accuracy of 1/100 mm. The resulting tree-ring-width-curve (chronology) is proved and dated 

using the crossdating-method (Douglass 1941). 

For the analysis of structural changes in wood anatomy, the preparation of micro-sections 

(thickness ~15 µ) of tree-ring sequences using a sledge-microtome is required. These micro-

sections are stained and embedded in Canada balsam. (Schweingruber 1990; Gärtner 2003b). 

From the resulting slides, digital micro photos are taken and further analysed using image 

analyses software (cf., Gärtner 2003b). 

 

3.4.2 Measurement design 

During different field campaigns, some small trees (Pinus cembra, Larix decidua) and dwarf shrubs 

(Juniperus nana, Salix helvetica) were found on rockglaciers in the Turtmann valley (cf., Roer 2001). 

Several samples (discs or whole plants) were taken from two active rockglaciers (HuHH3, 

Grueo1). Additionally, trees and shrubs in the surrounding areas, not affected by rockglacier 

creep, were sampled. With this strategy, climatic signals in the tree rings can be distinguished 

from indications of geomorphic activity (e.g., movement of the ground). Thus, anatomical 

variations resulting from mechanical and/or climatic stress conditions are analysed in the 

samples. 

Regarding the analysis of shrubs, reaction wood is hard to investigate due to the lack of a main 

stem. The single branches of shrubs often show reaction wood caused by individual mechanical 

stresses. Against that, the root collar and especially the roots of the shrubs are fixed and 

distributed in the soil. Therefore, and in view of the purpose of this study, they are best suited for 

the investigation of possible influences of ground movements. Changes in the close environment 

of the roots lead to stress conditions and result in changes of the (anatomical) structure of their 

rings (Gärtner 2003a, 2003b; Garcia Gonzales & Eckstein 2003). 

In order to study these potential changes, eight Salix helvetica shrubs were taken from an active 

rockglacier lobe (Grueo1) as well as from an adjacent inactive rockglacier. The whole root system 

of these shrubs was unearthed and taken to the lab (figure 3.10) to analyse anatomical variations 

in the respective rings. 
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Figure 3.10: Salix helvetica shrub taken from rockglacier Grueo1. White rectangles (1 and 2) 
indicate the positions of the taken root samples for the analysis of anatomical variations. 
 

 

In the lab, 20 samples (discs) were taken from the individual roots of the shrubs. The small size 

of the roots (~1.5 cm) enabled the preparation of micro-sections of whole cross sections using a 

sledge microtome. These micro-sections were stained with Safranin and Astrablue to distinguish 

between lignified (Safranin) and not lignified (Astrablue) parts of the rings and to get a better 

contrast for the ongoing image analysis procedure. For dehydration, the samples were rinsed with 

alcohol, immersed in Xylol, imbedded in Canada-Balsam and dried at 60° C in the oven for about 

24 hours (Gärtner et al. 2001).  

The resulting micro slides were then placed under a microscope and digital photos, with 40 times 

magnification, were taken. Hence, the anatomical structure of the rings is clearly visible (figure 

3.11). In addition to the micro-sections, micro scales were photographed using the same 

magnification to guarantee correct image analysis. The micro photos were than used to analyse 

the size of vessels and probable variations in the annual rings of stressed (active rockglacier) and 

unstressed (inactive rockglacier) roots using the image analysis program WinCELL (Regents 

Instruments, Canada). This program enables automated measuring of the size (length, width, 

area) of single cells. The setting of special filters allows the separation of vessels from cells of the 

ground tissue. 

 

1 2 
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Figure 3.11: Digital micro photo (40x magnification) of a lateral root micro slide showing annual 
rings and the surrounding bark. Shrub-ID: Isa_W04 (Salix helvetica). 
 

 

3.5 Temperature monitoring 

3.5.1 Basic principles 

Since permafrost is a thermally defined phenomenon, the determination of ground temperatures 

is one of the best suited methods for the evidence of its occurrence. Permanently frozen ground 

is indicated by a Mean Annual Ground Surface Temperature (MAGST) of < 0° C. This 

temperature corresponds theoretically to the temperature at the Zero Annual Amplitude (ZAA), 

which is normally described as permafrost temperature (Haeberli 1975). In discontinuous 

permafrost, this temperature lies between 0°C and -5°C (Haeberli 1992a). 

In the 70s, the method of the Bottom Temperature of the winter Snow cover (BTS) was 

developed by Haeberli (1973) for the Alps and was later transferred to Scandinavia (e.g., King 

1983). The precondition for this method is a snow cover of about 0.8 to 1 m thickness, which 

then isolates the active layer thermally from the atmosphere (cf., Haeberli 1973; Hoelzle 1992, 

1994). Thus, the BTS-temperatures are very constant and reflect the thermal state of the ground 

below. This condition is normally given in spring (February - April). Therefore, BTS-

measurements are restricted to this period (cf., Haeberli & Patzelt 1982). 

On the basis of well investigated areas, the following limiting values for the occurrence of 

permafrost were compiled for the Alps and Scandinavia (Haeberli 1973; Hoelzle 1994; Hoelzle et 

al. 1993, 1999; Keller 1994): 

0 0,25 0,5 mm 
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< -3° C:   permafrost probable 

between -2° C and -3° C: permafrost possible 

> -2° C:   no permafrost 

 

3.5.2 Measurement design 

The temperature monitoring was performed in one hanging valley (Hungerlitälli) over the period 

2001-2004. Temperatures were measured continuously over the year at the active layer - surface 

using Universal Temperature Loggers (UTL) (Krummenacher et al. 1998). These thermistors are 

characterised by a small and robust body with an integrated temperature sensor. The precision of 

the instrument is +/- 0.1° C within the operating range of -29° C to +39° C. Due to the 

memory-resolution of 8 bit, the data are stored with a resolution of 0.27° C only 

(http://www.utl.ch/geotest.html). The temporal resolution of the measurement is unrestricted. 

For the study site a measurement-interval of 1 h was selected, which enables the recording of up 

to 331 days. Then the memory needs to be read out. For this purpose the program BoxCar 

(Onset Computer Corporation, Version 3.7) was applied. The data-loggers were calibrated before 

their placement in 2001 and are indirectly calibrated in the following years by the zero curtain in 

spring (cf., Hanson & Hoelzle 2004). 

About 45 thermistors were placed in various situations (on rockglaciers and surrounding terrain) 

between 2500 and 2780 m a.s.l. Thus, temperatures on and beyond the permafrost bodies can be 

compared. The resulting data serve to determine the extent of the permafrost occurrence by the 

calculation of MAGST as well as the interpretation of the BTS-values (cf., Nyenhuis 2005.). 

 

3.6 Summary 

The range of methods applied in this study reaches from geomorphic mapping to digital 

photogrammetry, terrestrial geodetic survey, dendrogeomorphological techniques, and 

temperature monitoring. 

Classical geomorphic mapping in the field and on aerial photographs is used for the selection of 

the terrain features subsequently investigated. Digital photogrammetry and terrestrial geodetic 

survey serve to quantify horizontal and vertical displacements at rockglacier surfaces on different 

temporal and spatial scales. The former combines for the first time small-scale aerial photography 

and digital airborne pushbroom imagery for the investigation of rockglacier kinematics. 

The application of dendrogeomorphology in this context enters new scientific paths. For the first 

time, anatomical variations in the roots of dwarf shrubs were related to rockglacier movement. 

In addition, a temperature monitoring was conducted in one hanging valley in order to determine 

the local permafrost occurrence and to analyse possible climatic controls on rockglacier 

kinematics. 
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4 STUDY SITE 
 

 

 

4.1 General characteristics 

The Turtmann valley is located in the southern part of Switzerland, in the Canton of Valais, in-

between the Matter valley and the Anniviers valley (figure 4.1). The southern tributary of the river 

Rhone covers a catchment area of 110 km2 and extends over 15 km from 4506 m a.s.l. at the top 

of Weisshorn to 620 m a.s.l. in the Rhone valley. The valley head is dominated by the two glaciers 

Turtmann and Brunnegg. Further down, the morphology of the valley is structured into the 

glacial trough descending slightly from 2200 m a.s.l. at the glacier tongue to 1800 m a.s.l. and a 

steep gorge at the outlet to the Rhone valley. Above the shoulders of the trough the valley is 

subdivided into fourteen east-west and west-east striking hanging valleys, so called Tällis, with 

several small glaciers and glacierets. The summits of Bella Tola (3025m a.s.l.), Turtmannspitze 

(3080m a.s.l.) and Les Diablons (3609m a.s.l.) in the west, Signalhorn (2911m a.s.l.), Schwarzhorn 

(3201m a.s.l.) and Stellihorn (3409m a.s.l.) in the east, as well as the Tête de Milon (3676m a.s.l.), 

the Bishorn (4135m a.s.l.) and the Brunegghorn (3833m a.s.l.) in the south mark the boundaries 

of the catchment (figure 4.2). The photographs shown in figure 4.2 give an impression of the 

Turtmann glacier in the valley head (nr. 5), the hanging valleys (nr. 1-3) and the valley floor (nr. 

4). 

 
 
Figure 4.1: Location of the Turtmann valley (square in Figure C) within the Valais (© Luzi 
Bernhard, WSL), Switzerland and the Alps (http://www.scilands.de). 
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Figure 4.2: Shaded relief visualisation of the Turtmann valley and impressions of different 
subsystems. The numbers and arrows in the map mark the corresponding photograph and its 
direction of sight. 
 

 
4.2 Geology 

The whole area of the southern Valais, in-between the Simplon area, the Rhone valley and the 

Great St. Bernhard, is formed by the penninic nappes Bernhard and Monte Rosa (Labhart 1998). 

They consist nearly exclusively of metamorphic rocks, which developed from the crystalline base 

as well as from sedimentary rocks. The Bernhard nappe depicts different tectonic units, which are 

arranged in overlapping layers (figure 4.3). 

 

 

 
 

Figure 4.3: Geological profile through the Valais Alps with the position of the study site 
(Labhart 1998: 94, modified). 
 

 

The Turtmann valley is characterised by the Siviez-Mischabel-nappe (figure 4.4), where 

metamorphic rocks such as two-mica gneisses and muscovite phyllades dominate. Additionally, at 

some places these are superimposed by sedimentary rocks of the Barrhorn-serie, which consist of 

Mesozoic and Tertiary limes, marbles and sandstones (Bearth 1980). For instance, these rocks 

form the southern slopes of the Pipjitälli and can clearly be distinguished from the former by 

bright colors and small-grained weathering. More rarely, quartzites, marbles and dolomites (Perm 

to Cretaceous) – relicts of the Mont-Fort-nappe - are exposed in the western part of the 

Turtmann valley (Hsü & Briegel 1991; Sartori 1990). In the south of the valley, rocks of the 

Dent-Blanche nappe appear in the great summits of Les Diablons, Bishorn and the Weisshorn 

(Gilliéron 1946). 
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Figure 4.4: Tectonic map of the middle and upper Penninic in the southern Valais (Sartori 1990, 
modified). 
 

 

4.3 Climate 

The study area is characterised by an inner-alpine continental-type climate. The surrounding 

topography isolates the valley from precipitation, coming predominantly from the west. 

Therefore, the Turtmann valley is situated in one of the most arid regions in the Alps (cf., figure 

4.5). 

Since no meteorological station exists in the area itself, records of neighbouring stations are 

consulted to assess the climatic conditions (table 4.1). In some places the values – especially the 

precipitation data – shows distinct differences (e.g., station Grächen). Hypsometric temperature 

gradients were calculated for the neighbouring Matter valley in the east (Visp – Grächen, Visp – 

Zermatt) and for the Hérens valley in the west (Sion – Evolène) and were transferred to the 

Turtmann valley (cf., Elverfeldt 2002; Otto 2001; Roer 2001). The gradient between the stations 

in Visp (640 m a.s.l.) and Grächen (1617 m a.s.l.) result in a value of 0.37° C / 100 m, while the 
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gradient between Visp and Zermatt (1638 m a.s.l.) amounts to 0.47° C / 100 m. Between Sion 

(482 m a.s.l.) and Evolène (1825 m a.s.l.) it reveals 0.36° C / 100 m. In comparison to 

hypsometric temperature gradients for the whole of Switzerland (0.57° C / 100m) (Ozenda 1988) 

and for the Valais (0.55° C / 100 m) (Escher 1970, after Pfeffer 2000) there are great differences. 

The latter was determined between Grächen and the mountain rescue hut at Testa Grigia (3479 

m a.s.l.). From these gradients, a mean temperature reduction of 0.49° C / 100 m was calculated 

for the Matter valley. Furthermore, all the calculated temperature gradients allow a first 

assumption of the location of the 1° and 2° C annual isotherm in order to determine the lower 

boundary of the discontinuous permafrost. Transferring the gradients Visp – Grächen and Sion – 

Evolène to the Turtmann valley reveals the 1° C annual isotherm at 3087 m a.s.l. and 3156 m 

a.s.l., respectively. This appears to be unlikely, since numerous glacial and periglacial landforms 

occur in lower altitudes. Probably, the fall in temperature between the valley outlet and a ‘middle’ 

station in the valley is lower than the gradient in higher altitudes, resulting in an overestimation of 

the prevailing location of the isotherm. Taking the gradient for the Valais (0.55° C / 100 m) into 

account, the 1° C isotherm in the Turtmann valley would be at 2300 m a.s.l., resulting in an 

underestimation. Therefore, the mean temperature gradient for the southern hanging valleys of 

the Rhone valley is suspected to lie between 0.36° and 0.55° C / 100 m. Hence, the lower 

boundary of the discontinuous permafrost in the Turtmann valley is situated between 2498 m 

and 2854 m a.s.l. 

 

Table 4.1: Elevation, mean annual precipitation and mean annual air temperature for selected 
stations in the Rhone valley (1-7), the Matter valley (8-11), the Anniviers valley (12, 13) and the 
Hérens valley (14, 15). Apart from station Evolène, the SMA-values represent mean values of the 
period 1901 – 1960. 

Nr. Station 
Elevation 

(m) 
Precipitation 

(mm) Temperature (° C) Reference 

1 Martigny 471 759 9.5 Werner 1994 

2 Sitten/Sion 549 592 9.9 Werner 1994 

3 Sitten/Sion 482 575 8.5 SMA 

4 Siders/Sierre 565 587 9.3 Werner 1994 

5 Visp 658 625 8.4 Werner 1994 

6 Visp 640 710 8.2 SMA 

7 Brig 671 723 9.0 Werner 1994 

8 Grächen 1617 512 4.6 Werner 1994 

9 Grächen 1617 611 4.6 SMA 

10 Zermatt 1638 694 3.9 Werner 1994 

11 Zermatt 1638 694 3.5 SMA 

12 Vissoie 1260 617 - Werner 1994 

13 Zinal 1678 728 - Werner 1994 

14 Evolène 1378 940 - Werner 1994 

15 Evolène 1825 - 3.6 SMA 
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The determination of precipitation conditions is even more difficult, since they are more 

influenced by local effects. Table 4.1 shows, that precipitation rates are low, even in elevations of 

1600 m a.s.l.. Tatenhove and Dikau (1990) estimated the annual precipitation in the Turtmann 

valley at 2000 m a.s.l. to lie between 600 and 900 mm/a. Against that, figure 4.5 depicts the 

precipitation in the Turtmann valley to lie between 900 and 1600 mm/a. Thus, one can conclude 

that all these calculations and values remain estimations of the climatic conditions in the 

Turtmann valley. In future, these uncertainties will be reduced, since an automatic weather station 

was installed in 2002 in one of the hanging valleys (Hungerlitälli). 

 

 
 

Figure 4.5: Mean annual precipitation values (1971 – 1990, corrected) in the Valais 
(Hydrologischer Atlas der Schweiz 2001, © Bundesamt für Landestopographie). The white 
rectangle marks the study area. 
 

 

4.4 Geomorphology 

The glacigenous character of the Turtmann valley becomes visible in the glacial trough, the 

trough shoulders at about 2400 m a.s.l. as well as the superimposed hanging valleys. The 

geomorphology of these Tällis (= small valleys) is dominated by glacial and periglacial processes. 

Therefore they are filled with glacial and periglacial sediments. Several moraine ridges indicate the 

former glacial activity and enable an approximate explanation of the geomorphogenetic 

development. Recently, in three hanging valleys on the east side of the Turtmann valley small 

glaciers exist with equilibrium-line altitudes between 2900 and 3260 m a.s.l. (Tatenhove & Dikau 
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1990), while the hanging valleys on the west side show no glaciation. Altogether, glaciers cover 

around 14 % of the valleys area (Otto & Dikau 2004). 

The periglacial process domain is – in general - limited by the lower boundary of solifluction 

(treeline) and the climatic snowline (Rathjens 1982). By transferring this to the Turtmann valley, 

the periglacial belt extends between 2300 and approximately 3200 m a.s.l. Because of the climatic 

characteristics, the periglacial belt is very distinct and typical landforms, e.g. rockglaciers, 

gelifluction lobes, ploughing boulders, are numerous. Approximately 80 rockglaciers in all 

degrees of activity can be found in the catchment (Nyenhuis 2001). This validates the assumption 

of Messerli & Zurbuchen (1968) and Barsch (1996) that the Turtmann valley is located in an area 

of high rockglacier concentration. Typically, they are situated in the hanging valleys, arranged in 

sequences from active to inactive and relict. The existence of several active rockglaciers coincides 

well with the regional distribution of discontinuous permafrost with a lower boundary of around 

2620 m a.s.l., where MAAT is approximately -1.5° C. 

The lower part of the valley is characterised by a steep gorge, which was cut into the bedrock by 

the creek Turtmänna. By following the creek for approximately four kilometres through the 

gorge, it passes the 50 m waterfall at the village of Turtmann and reaches the bottom of the 

Rhone valley. 

The geomorphology of the hanging valleys on the east side of the Turtmann valley is detailed in 

chapter 5.1. For more information on landforms and processes in the Turtmann valley, it is 

referred to the geomorphic maps by Broccard (1998) and Otto (2001), Otto & Dikau (2004). 
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5 RESULTS 

 

 

 

5.1 Geomorphic mapping 

All hanging valleys or so-called ‘Tällis’ (= little valley) on the orographic right side of the 

Turtmann valley (figure 5.1) were analysed by direct geomorphological mapping in the field and 

by interpretation of aerial photographs. Due to the purpose of this study, the mapping was 

concentrated on glacial and periglacial landforms and related processes allowing a better 

interpretation of rockglacier occurrence and activity. In the following, the structure of each 

hanging valley is described shortly. Rockglacier distribution is depicted on aerial images and 

parameters are detailed in corresponding tables. 

 

Figure 5.1: Orographic right side of the Turtmann valley with investigated hanging valleys 
(Tällis). Underlying DTM of 2001. 
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5.1.1 Hungerlitälli 

This hanging valley will be described first, since most data on landforms and processes are 

available in this area. Similar structures and phenomena can thus be transferred to the other 

hanging valleys which resemble the Hungerlitälli. 

The Hungerlitälli is, as seen from the Turtmann glacier, the third hanging valley on the 

orographic right side (figure 5.1). It spreads from Jungpass (2990m a.s.l.) over 2.3 km to the 

shoulder of the glacial trough (at about 2400 m a.s.l.) and over 1.7 km from Gigi-ridge (2850 m 

a.s.l.) in the north to the ridge between Rothorn (3278 m a.s.l.) and Hungerlihorli (3007 m a.s.l.) 

in the south (figure 5.2). The landforms within the valley are dominated by moraines and 

rockglaciers. A big moraine (probably of late glacial origin (Egesen)) extends straight through the 

valley, embracing three small cirques of the Hungerlihorli / Rothorn-massiv (figure 5.2). The area 

within this lateglacial moraine is recently covered by a small glacier in the uppermost cirque, some 

smaller moraines, two talus-cones on the north-exposed flank of the Hungerlihorli and several 

rockglaciers in different states of activity. Further down, where the lateglacial moraine is lying on 

the shoulder of the trough, a formerly active rockglacier has broken through the moraine ridge 

and crept down further for another 500 meters. Moraines of Holocene age are visible as 

remnants in the valley bottom directly in front of the inactive rockglaciers as well as in the recent 

glacier forefield (figure 5.2). The last-mentioned can be divided into a north-south directed lateral 

moraine (probably indicating the maximum size of the little ice age advance (1850)) and a small 

terminal moraine (probably indicating the glacial position around 1920). But, since the described 

landform pattern does not agree with the Siegfried map (sheet 500, St. Niklaus (1891)), the 

argumentation needs to be considered carefully. The map depicts the Rothorn-glacier covering 

the whole cirque including the area where recently active rockglaciers (nr. 13, 15) are situated. 

But, a glacial retreat of around 500 meters and the development of a rockglacier of 330 meters 

length within 100 years is unlikely. 

The other half of the Hungerlitälli (south-exposed) shows quite different landforms and 

processes. It has a lower relief and spreads gentler from the Gigi-ridge to the lateglacial moraine. 

The surface is covered by block fields, often vegetated, and is structured by two relict 

rockglaciers, which descended from the north and overflowed the Egesen-moraine. In the north-

east, another rockglacier is situated in a cirque below the Furggwanghorn. Additionally in the 

valley head below the pass, a rockglacier is situated. With two lobes it extends over 400 m and the 

terminus is also creeping over the lateglacial moraine. 
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Figure 5.2: Geomorphological map of the Hungerlitälli (from Roer 2003). Legend based on 
Kneisel et al. (1998). Basic map: Pixelkarte 1:25.000 (© Swiss Federal Office of Topography). 
 

 
 

Figure 5.3: Rockglacier occurrence and activity in the Hungerlitälli. Red line = active rockglacier, 
yellow line = inactive rockglacier, green line = relict rockglacier. Given numbers correspond to 
the inventory table (table 5.1). Underlying orthophoto of 20.08.1975 (flight-line 22, aerial 
photographs taken by Swisstopo). 

scale 1:20.000 
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Table 5.1: Rockglacier inventory of the Hungerlitälli. 
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9 Hungerli Gigigrat 1, 
Hugg1 2580 2750 530 120 4.42 16 S W clear relict 1308 

1975:6222,6223 
1993:4321-

4323 

10 Hungerli Gigigrat 2, 
Hugg2 2610 2720 530 220 2.41 14 SW SW some relict 1308 “ 

11 Hungerli Furggwang-
horn, Hufh 2780 2890 300 100 3 21 W W few active 1308 “ 

12 Hungerli Jungpass, 
Hujp 2680 2850 450 100 4.5 22 W WSW few active 1308 “ 

13 Hungerli Rothorn 1, 
Hurh1 2640 2690 150 80 1.87 20 WNW W no active 1308 “ 

14 Hungerli Rothorn 2, 
Hurh2 2600 - 190 120 1.58 12 NW NW some inactive 1308 “ 

15 Hungerli Hungerlihorli 
1, Huhh1 2630 2780 330 130 2.54 26 NNW N clear active 1308 “ 

16 Hungerli Hungerlihorli 
2, Huhh2 2550 - 300 170 1.76 12 W NW some inactive 1308 “ 

17 Hungerli Hungerlihorli 
3, Huhh3 2515 2650 310 140 2.21 27 NW NW clear active 1308 “ 

18 Hungerli Hungerlihorli 
4, Huhh4 2270 2490 700 180 3.89 18 W NW clear relict 1308 “ 

19 Hungerli 
Protalus 
rampart, 

Hupr 
2500 2530 70 350 0.2 15 NW NW no inactive 1308 “ 

 

The rockglaciers in the Hungerlitälli reveal different states of activity (figures 5.2, 5.3). While 

relict rockglaciers are found in lower and in south-exposed situations, the active ones occur in 

higher altitudes and on north- or north-west exposed slopes. Inactive rockglaciers, which are 

morphologically not easy to distinguish from active ones, are concentrated in the valley bottom. 

The inactive feature below the talus cones can be defined as an embryonic rockglacier or protalus 

rampart (as defined by Haeberli 1985) which did not develop further. Independent of their 

activity, some rockglaciers show distinct creep structures. Thus, these characteristics simplify the 

mapping of rockglaciers in general, but they do not allow a thorough differentiation in the state 

of activity. The active rockglaciers below cirques (nr. 11, 15 and 17) show great similarities in 

shape and size, even though they are situated in different altitudes. Their surface topography is 

often characterised by compressive structures on the lower part and by extending flow features in 

the upper part of the tongue. In the last summers (2002-2004) the occurrence of permafrost was 

confirmed on rockglacier Huhh1 (nr. 15) by exposed clear ice (probably segretation ice) at an 

eroded ridge. 

The comparison of DTMs of the years 1975 and 2001 allows the interpretation of vertical 

changes within the Hungerlitälli (figure 5.4). The speckled high values in the middle of the image 

reflect errors in the DTM resulting from shadows in the aerial photographs (visible in figure 5.3), 
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but the high values at the lower right margin display the loss in thickness at the Rothorn-glacier. 

In general, slight losses occur at the slopes, while in other parts like the area between the Egesen 

moraine and the rockglaciers a gain occurs. 

 

 
 

Figure 5.4: Vertical surface changes in the Hungerlitälli between 1975 and 2001 (DTM 
comparison). 
 

 

5.1.2 Grüobtälli 

The Grüobtälli borders in the north on the Hungerlitälli and spreads over 2.75 km from the 

Augstbordpass (2894 m a.s.l.) in the east to the trough shoulder of the main valley and over 2 km 

from Grüob-ridge (at about 2800 m a.s.l.) in the north to the Gigi-ridge in the south. The valley 

shows a quite similar geomorphology to the Hungerlitälli. Recently it has not been glaciated, but a 

big moraine situated in the centre of the valley indicates a former glaciation of the north exposed 

part. Additionally, a small moraine in the north, directly below the Grüob-ridge, reflects a 

previous glaciation also on this side of the valley. This moraine partially shows creep structures 

indicating a reactivation by permafrost creep. Recently, this feature seems to be relict (figure 5.5). 

The valley head and the north-exposed side are dominated by several active and inactive 

rockglaciers. Some of them (table 5.2, nr. 22, 26) arise from high elevated cirques. The latter (nr. 

26) reaches a great length due to overrunning of a step slope. The former (nr. 22) depicts a 

complex topography with a plait-like pattern. This results from debris supply out of separated 

rock faces. A different pattern is displayed in the surface topography of rockglacier Grueo7 (nr. 

27), which is also of great length. The cascade of lobes (polymorphic body) does not reflect a 

spatial variation in material input rather than a temporal sequence of active phases. Another 

striking feature is the relatively thick rockglacier Grueo1 (nr. 21) which showed a smooth surface 
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topography in 1975 (figure 5.5) and developed deep crevasses until 2001. The inactive features, 

which are again concentrated on the valley floor, are characterised by lower slope angles and by a 

lack of surface structures. An exception is Grueo4 (nr. 24), where an active lobe is creeping over 

an older, inactive generation. The relict rockglaciers (nr. 20, 29) are less striking than in the 

Hungerlitälli, but their position and extent is comparable. Nr. 29 is either interpreted as a small 

moraine which started creeping in the form of a small debris rockglacier, or as a protalus rampart 

comparable to the feature in the Hungerlitälli. The comparison of multitemporal DTMs (figure 

5.6) shows a general slight thickening in the valley floor (very homogeneous on the meadows) 

and a slight loss on the steeper slopes. The high values at the upper and lower margin of the 

image result from errors in the DTMs. The linear structure at the relict rockglacier (nr. 20) 

exposes the avalanche dam, which was built in 1997/1998. The mass flux depicted on rockglacier 

Grueo 1 (nr. 21) is detailed in chapter 5.2.4.1. 

 

 
 

Figure 5.5: Rockglacier occurrence and activity in the Grüobtälli. Red line = active rockglacier, 
yellow line = inactive rockglacier, green line = relict rockglacier. Given numbers correspond to 
the inventory table (table 5.2). Underlying orthophoto of 20.08.1975 (left) and 6.10.1975 (right) 
(flight-line 22 (left), 21 (right); aerial photographs taken by Swisstopo). 
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Table 5.2: Rockglacier inventory of the Grüobtälli. 
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20 Grüob Grueo0 2240 2430 660 200 3.3 12 NW WNW few relict 1308 
1975:6220,6221; 

6459,6460 
1993:4321,4322 

21 Grüob Grueo1 2420 (in 
2001!) 2650 500 200 2.5 16 NNW NNW few active 1308 “ 

22 Grüob Grueo2 2755 2950 610 90 6.8 21 W NW clear active 1308 “ 

23 Grüob Grueo3 2435 2550 220 120 1.83 18 WNW NNW few inactive 1308 “ 

24 Grüob Grueo4 2500 2620 340 140 2.43 25 NW N few active 1308 “ 

25 Grüob Grueo5 2855 2970 270 90 3 12 NW WNW no active 1308 “ 

26 Grüob Grueo6 2585 2930 1100 100 11 14 NNW WNW few active 1308 “ 

27 Grüob Grueo7 2630 2930 760 160 4.75 12 W W clear active 1308 “ 

28 Grüob Grueo8 2805 2830 150 170 0.88 10 W W no active 1308 “ 

29 Grüob Grueo9 2605/2660 2650/2750 150 850 0.18 13 WSW SW few relict 1308 “ 
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Figure 5.6: Vertical surface changes in the Grüobtälli between 1975 and 2001 (DTM 
comparison). 
 

 

5.1.3 Niggelingtälli 

This Tälli is again the adjoining hanging valley to the north (cf., figure 5.1). It extends from the 

Dreizehntenhorn (3052 m a.s.l.) over 2.7 km to the west and over 2 km from the Schwarze Blatte 

(2975 m a.s.l.) in the north to the Grüob-ridge in the south. In contrast to the before described 

hanging valleys, the Niggelingtälli shows no clear moraines. But some peculiar landforms exist, 

which are interpreted as moraines reactivated by permafrost creep and relict at present (nr. 30). A 

ridge (Roti Ritze) divides the valley into two parts, which are both geomorphologically dominated 

by rockglaciers. Rockglacier Niggel2 (nr. 32) occurs in a similar position like Grueo7 (nr. 27) and 

also shows a similar multi-lobe surface structure indicating a complex history (figure 5.7). Above 

the ridge, a massive but relatively small permafrost body (nr. 35) of the monomorphic type is 

situated in the south-east. Some rockglaciers (nr. 31, 34) developed in narrow valleys with small 

root zones. Inactive rockglaciers again lie in the valley bottom (nr. 33, 34) or as protalus rampart 

below a crest (nr. 36). Relict rockglaciers are identified on the south-exposed slope (nr. 38) and in 

the lower part of the valley (nr. 30, 39). Their fronts are situated in the same altitude of about 

2375 m a.s.l.  

The analysis of vertical changes between 1975 and 1993 (figure 5.8) displays again the overall 

losses on the slopes and gains in the flatter areas. High values in the right side of the image result 

from shadows in the aerial photographs. 
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Table 5.3: Rockglacier inventory of the Niggelingtälli. 
Nr

. i
nv

en
to

ry
 

Na
m

e 
of

 h
an

gi
ng

 v
al

le
y 

Na
m

e 
of

 ro
ck

gl
ac

ie
r, 

ab
br

ev
ia

tio
n 

Al
tit

ud
e 

of
 ro

ck
gl

ac
ie

r f
ro

nt
 

(fo
ot

) [
m

 a
.s

.l.
] 

Al
tit

ud
e 

of
 ro

ot
in

g 
zo

ne
 [m

 
a.

s.
l.]

 

Le
ng

th
 (L

) [
m

] 

W
id

th
 (W

) [
m

] 

Q
uo

tie
nt

 le
ng

th
/w

id
th

 
(L

/W
) 

Av
er

ag
e 

slo
pe

 [°
] 

As
pe

ct
 o

f f
ro

nt
 

As
pe

ct
 o

f r
oo

tin
g 

zo
ne

 

Vi
sib

le
 c

re
ep

 s
tru

ct
ur

es
? 

St
at

e 
of

 a
ct

ivi
ty

 (m
ap

pi
ng

 
re

su
lt)

 

Nr
. o

f m
ap

 s
he

et
 

(1
:2

5´
00

0)
 

Ae
ria

l p
ho

to
gr

ap
h:

 y
ea

r, 
nr

. 

30 Niggeling Niggel0 2380 - 680 270 2.52 10 NW WSW some relict 1308 

 

1975:6219,6220; 

6458,6459 
1993:3720,3721 

31 Niggeling Niggel1 2580 2690 260 60 4.3 20 NW NW clear active 1308 “ 

32 Niggeling Niggel2 2550 2760 880 170 5.18 15 NW WNW clear active 1308 “ 

33 Niggeling Niggel3a 2555 2600 180 380 0.47 10 NW NW few inactive 1308 “ 

34 Niggeling Niggel3b 2600 2790 470 110 4.27 24 W NW some inactive 1308 “ 

35 Niggeling Niggel4 2750 2840 350 250 1.4 10 NW NNW no active 1308 “ 

36 Niggeling Niggel5 2790/2850 
2840/ 

2870 
80 500 0.16 12 W W few inactive 1308 “ 

37 Niggeling Niggel6 2650 2740 330 300 1.1 17 SW SW few active 1308 “ 

38 Niggeling Niggel7 2600 2670 130 440 0.3 10 SW S clear relict 1308 “ 

39 Niggeling Niggel8 2370 2620 670 170 3.94 18 W SW some relict 1308 “ 
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Figure 5.7: Rockglacier occurrence and activity in the Niggelingtälli. Red line = active 
rockglacier, yellow line = inactive rockglacier, green line = relict rockglacier. Given numbers 
correspond to the inventory table (table 5.3). Underlying orthophoto of 11.08.1993 (flight-line 20, 
aerial photographs taken by Swisstopo). 
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Figure 5.8: Vertical surface changes in the Niggelingtälli between 1975 and 2001 (DTM 
comparison). 
 

 

5.1.4 Chummetjitälli 

This northernmost hanging valley is not clearly west-east oriented like all the other valleys. With a 

length of about 2 km and a width of 1.3 km it is also smaller. Prevailing landforms are 

rockglaciers in the valley bottom and gelifluction lobes on the north-east exposed slope. In some 

places it was even difficult to distinguish between small rockglaciers and gelifluction lobes. The 

most striking rockglacier (nr. 40) is situated in the uppermost cirque, which was probably 

glaciated in former times (figure 5.9). This becomes apparent in the surprisingly fine material and 

is confirmed by the Siegfried map (sheet 500, St. Niklaus (1891)) which depicts a small glacier on 

the north exposed slope. Another tongue-shaped rockglacier (nr. 43) occurs directly to the west 

of the cirque. Due to its vegetation cover it was mapped as inactive. The rockglaciers on the 

south-west exposed slope are lobate-shaped talus rockglaciers. In the valley bottom which is now 

densely vegetated, ridges and a front at the valley outlet are interpreted as a relict rockglacier (nr. 

44). Additionally, in a position which strictly speaking does not belong to the Chummetjitälli, 

another rockglacier tongue (nr. 45) is situated below the crest. 

The multitemporal comparison of DTMs (figure 5.10) depicts an overall increase in height, 

beside a few slopes with losses. The high values in the middle of the image and at the front of the 
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relict rockglacier (nr. 44) are due to shadow-related errors. 

 

 
 

Figure 5.9: Rockglacier occurrence and activity in the Chummetjitälli. Red line = active 
rockglacier, yellow line = inactive rockglacier, green line = relict rockglacier. Given numbers 
correspond to the inventory table (table 5.4). Underlying orthophoto of 20.08.1975 (flight-line 22, 
aerial photographs taken by Swisstopo). 
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Table 5.4: Rockglacier inventory of the Chummetjitälli. 
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40 Chummetji Chu1 2650 2780 500 140 3.57 18 N NE few active 1308 
1975:6217,6218 
1993:3720,3721 

41 Chummetji Chu2 2615 2650 70 230 0.3 16 SW SW no inactive 1288 “ 

42 Chummetji Chu3 2470/2540 2500/2570 150 750 0.2 16 
WNW 
/WSW 

WNW 
/WSW 

few inactive 1288 “ 

43 Chummetji Chu4 2545 2645 350 170 2.06 22 N N few inactive 1308 “ 

44 Chummetji Chu5 2245 2470 750 150 5 12 WNW NNW some relict 1288 “ 

45 Chummetji Chu6 2470 2550 150 105 1.43 22 W W No inactive 1308 “ 

 

 

 
Figure 5.10: Vertical surface changes in the Chummetjitälli between 1975 and 2001 (DTM 
comparison). 
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5.1.5 Brändjitälli 

The Brändjitälli is situated south of the Hungerlitälli and it spreads over 2.5 km in west-east 

direction and over 1.7 km from the Hungerlihorli in the north to the Längi Egga in the south. It 

is divided into the Verlorus Tälli with the Brändji-glacier and the real Brändjitälli. The latter is 

completely filled by rockglacier sediments, apart from the small Holestei-glacier in the valley 

head. A spatulate rockglacier (nr. 6) with a distinct ridge-and-furrow topography occurs in the 

glacier-forefield (figure 5.11). Additionally, a lobate shaped rockglacier (nr. 7) with a relatively flat 

and unstructured surface built at the orographic left side of the glacier. A former glaciation of this 

part of the cirque is indicated in the Siegfried map (sheet 500, St. Niklaus (1891)) and is also 

reflected in the DTM comparison (figure 5.12). The two rockglaciers developed separately due to 

an outstanding rock in the middle of the valley. Below the front of the spatulate rockglacier, 

another tongue (nr. 8) is situated, which is rooting in the talus of the north exposed slope. No 

relict rockglacier was identified in this hanging valley. But since the valley outlet is dammed by a 

ridge forming a small lake, probable indicators may be covered. Vertical surface changes between 

1975 and 2001 are depicted in figure 5.12. The melting of the Brändji-glacier (upper right corner) 

with up to -40m is most conspicuous. Also the other glaciers show great losses, whereas the 

forefields reveal slight gains. Some areas on the rockglaciers and in the rockglacier-forefield are 

very stable. Some high values correspond to shaded areas in the orthophoto and thus reflect 

errors in the DTMs. 

 

Table 5.5: Rockglacier inventory of the Brändjitälli. 
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Holestei 1, 
Brho1 

2615 2870 650 170 3.82 22 NW NW clear active 1308 
1975:6223,6224 
1993:4539-4541 
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Holestei 2, 

Brho2 
2820 2870 250 260 0.96 10 NW WNW few active 1308 “ 

8 Brändji 
Längi Egga, 

Brle 
2560 2660 230 75 3.06 13 NW N 

at 
the 

front 
active 1308 “ 
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Figure 5.11: Rockglacier occurrence and activity in the Brändjitälli. Red line = active rockglacier. 
Given numbers correspond to the inventory table (table 5.5). Underlying orthophoto of 
20.08.1975 (flight-line 22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.12: Vertical surface changes in the Brändjitälli between 1975 and 2001 (DTM 
comparison). 
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5.1.6 Pipjitälli 

The Pipjitälli is the southernmost hanging valley and shows a lot of differences compared to the 

other valleys, which becomes most apparent in the different lithology. While the before 

mentioned rockglaciers are all composed of the same rock type (gneisses and schists), the 

landforms in the Pipjitälli consist of marbles and sandstones. The colour of this rock is much 

lighter and the material is finer grained. The valley extends over 2.5 km from the trough shoulder 

to the Inneres Stellihorn (3409 m a.s.l.) and over 1 km from the Längi Egga in the north to the 

Barrwang in the south. The latter is a huge rock face (relief of about 200 m) which casts shadow 

to the valley. Thus, beside the Pipji-glacier in the east, a debris-covered glacier exists below the 

rock face in the south. It reveals distinct thermokarst occurrence (figures 5.13, 5.14). Both 

glaciers are directly connected to rockglaciers filling the valley bottom. The terminal moraine of 

the Pipji-glacier developed into a polymorphic rockglacier with 3 tongues (nr. 2, 3, 5) indicating 

different generations. The rooting zone of the rockglacier is hard to determine. The other debris 

rockglacier (nr. 4) is distinguished from the glacier or dead-ice body by the clear thermokarst 

depressions. The Barrwang-rockglacier (nr. 1) was identified as a talus rockglacier, but since in the 

Siegfried map (sheet 500, St. Niklaus (1891)) a glacier was mapped directly at the foot of the rock 

face, it is also possible that it consists of debris. DTM comparison of the years 1975 and 2001 

(figure 5.14) clearly demonstrates the changes within this hanging valley, which refer mainly to 

the melting of the glacier ice. Due to their mass loss, the extents of the glaciers as well as the 

thermokarst areas become clearly apparent. The unsorted high values result from errors in the 

DTMs due to steep slopes or shadows (below the rock face) and margin-effects. 

 

Table 5.6: Rockglacier inventory of the Pipjitälli. 
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1 Pipji 
Barrwang, 

pibw 
2650 2760 295 274 1.08 18 NW N few active 1308 

1975:6224,6225 
1993:4539-4541 

2 Pipji Pipp1 2665 2800 1120 230 4.87 10 W W 
at 

the 
front 

active 1308 “ 

3 Pipji Pipp2 2635 - 97 173 0.56 10 W - - inactive 1308 “ 

4 Pipji Pipp3 2650 2700 200 150 1.34 6 NW N few active 1308 “ 

5 Pipji Pipp4 2560 - 260 150 1.73 13 W - - inactive 1308 “ 
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Figure 5.13: Rockglacier occurrence and activity in the Pipjitälli. Red line = active rockglacier, 
yellow line = inactive rockglacier. Given numbers correspond to the inventory table (table 5.6). 
Underlying orthophoto of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.14: Vertical surface changes in the Pipjitälli between 1975 and 2001 (DTM comparison). 
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5.1.7 Summary 

The geomorphic mapping of all hanging valleys (Tällis) on the orographic right side of the 

Turtmann valley by direct inspection in the field, interpretation of aerial images and the analysis 

of DTMs, enabled the deduction of rockglacier activity in a geosystematic context. 

There is no doubt that rockglaciers are the prevailing landforms; they occur in all Tällis and take 

up a large part of the area. Considering their activity, 51 % of the rockglaciers are active, 29 % are 

inactive and 20 % are identified as relict. Although some rockglaciers are mapped with different 

activities, these values are comparable to the rockglacier mapping of the whole Turtmann valley 

conducted by Nyenhuis et al. (in press). They classified 46 % of the rockglaciers as active, 29 % 

as inactive and 25 % as relict. About 55 % of the here investigated rockglaciers occur on north 

and north-west exposed slope, while 31 % are situated in west exposed and about 13 % in south 

and south-west facing aspects. Again these data fit very well with the comprehensive inventory by 

Nyenhuis et al. (in press), who ascertained 53 % of all rockglaciers in north-exposed areas (N, 

NW, NE), 24 % in southern aspects and 23 % in orientation to the west and the east. 

Regarding their spatial distribution, the pattern reflects the difference in radiation which is 

emphasised by the clear west-east orientation of the hanging valleys. Vertically, the rockglaciers 

are typically arranged in sequences of different generations. In general, the active rockglaciers are 

concentrated in altitudes between 2600 and 2800m a.s.l. (front altitude) and on north- and north-

west exposed slopes. The rockglaciers Huhh3 (2525m a.s.l.) and Grueo1 (2420m a.s.l.) are the 

exception. Inactive rockglaciers are often situated off the active ones, with a front altitude below 

2600 m a.s.l. Some occur in the base of the hanging valleys (p.e., Hungerlitälli, Grüobtälli), 

probably due to lower slope-angles or damming landforms like moraines. This kind of inactivity 

is not controlled by climatic influences or by changes in sediment supply and therefore it is 

proposed to introduce the new term ‘morphologically inactive’. Relict rockglaciers were identified 

in the northern hanging valleys (Hungerlitälli to Chummetjitälli) and occur in comparable 

positions. In each of the mentioned valleys, one big rockglacier reached the valley outlet (front 

altitude between 2240 and 2380m a.s.l.) while others are situated on south exposed slopes (front 

altitude between 2580 and 2600m a.s.l.). Since no relict rockglacier was mapped in the southern 

Tällis, this phenomenon seems to be related to the duration of the deglaciation or the ice-free 

period, respectively. In the Hungerlitälli, where a small glacier is still present, the relict rockglacier 

(nr. 18), which overruns the Egesen moraine, is more apparent than in the other valleys. Thus, 

regarding the hanging valleys from north to south, a kind of sequence is visible in the 

geomorphology: increasing glaciation, decreasing variety and probable age of landforms, etc. A 

combined consideration of rockglaciers and glaciers allows a temporal organisation of landforms 

and their genesis, at least in some places. This was detailed for the Hungerlitälli, where the 

pattern of landforms and their activity depict an asymmetry of the valley, which give rise to the 

assumption that the Pleistocene glaciation was confined to the north exposed side of the hanging 

valley. Beside the difference in radiation, this phenomenon may also result from a greater 

humidity in this area, e.g., due to snow drift. 

Regarding the recent vertical changes in the hanging valleys over a period of 26 years (1975 – 
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2001), the glaciers indicate a conspicuous loss in thickness, whereas changes in the remaining area 

were much lower, apart from rockglacier Grueo1 (nr. 21). Considering the landforms described 

above in the context of the sediment budget, all sediments (except solution) seem to be stored in 

the hanging valleys for several hundreds or thousands of years (cf., Höllermann 1983; Barsch & 

Caine 1984). 
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5.2 Digital photogrammetry 

Based on the rockglacier inventory (chapter 5.1) all features mapped as inactive or active are 

investigated by digital photogrammetry. Thus the multitemporal DTMs and orthoimages derived 

from stereo-imagery are used to determine horizontal velocities as well as vertical changes. First 

of all, horizontal displacements were quantified over the whole measurement period (1975 – 

2001) in order to prove whether the rockglacier is active or not. On the features which are 

confirmed to be active, horizontal and vertical changes are then measured for both periods (1975 

– 1993 and 1993 – 2001) in order to describe spatio-temporal variations. On rockglaciers with 

high surface velocities often more blocks were matched in the shorter periods than for the entire 

period, which is probably influenced by the chosen size of the test area in the CIAS-program. 

Regarding the illustration of horizontal changes in this chapter, on each rockglacier every single 

matched block is depicted by a velocity vector indicating the magnitude as well as the direction of 

the displacement. The magnitude is given by the length of the vector as well as by its colour. 

Depending on maximum values, the vectors are divided into 3 – 6 classes. The intervals of the 

classes are normally identical in order to compare velocityfields of different rockglaciers. Since 

the estimated accuracy of the horizontal velocities lies in the range of 0.06 m/a (for 1975 – 1993) 

and 0.13 m/a (for 1993 – 2001), the first class (0 – 0.15 m) reflects the range of uncertainty. The 

second (0.15 – 0.3 m) and the third class (0.3 – 0.5) represent magnitudes which are often 

measured on rockglaciers (cf., appendix 1) while velocities around 1.0 m and more are rarely 

quantified. 

 

5.2.1 Pipjitälli 

5.2.1.1 Rockglacier Pipp1 
Horizontal velocities 
The displacement of about 1000 blocks was quantified on rockglacier Pipp1 (nr. 2 of the 

inventory) in both measurement periods (figures 5.15, 5.16). Between 1975 and 1993 small but 

uniform velocities of about 0.06 – 0.1 m/a are depicted in the glacier forefield as well as in the 

central part of the rockglacier. Against that, velocities of 0.3 – 0.6 m/a are measured on the 

orographic right side of the rockglacier respectively the lateral moraine. Here the vectors are 

directed to the central flowline of the rockglacier, and - with decreasing slope – the displacements 

become smaller again. Closer to the front, the velocities increase again showing a gradient from 

0.08 – 0.14 – 0.23 m/a and depict highest velocities (0.35 – 0.7 m/a) in the centre of the lobe, 

directly above the front. In the second period (1993 – 2001) Pipp1 shows a similar pattern of 

velocityfields, but the values are slightly higher, especially in the lower part of the rockglacier 

(figure 5.16). Due to snow cover in the 2001 orthoimage and the corresponding loss in 

coherence, measurements were inhibited in the upper orographic left part of the rockglacier. On 

the opposite slope, i.e. on the lateral moraine, high velocities (1.0 – 2.0 m/a) are quantified in the 

upper part near the current glacier tongue. Further down (to the west) velocities become smaller 

(at about 0.1 m/a) and the vectors are clearly directed to the glacier. With changing orientation of 

the vectors (in direction to the rockglacier front) the velocities increase again (0.22 – 0.34 m/a) 
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and display a small area with values up to 0.6 m/a. In the lower part of the rockglacier a gradient 

from 0.26 – 0.5 – 1.0 m/a is measured in the central flowline, while to the margins the velocities 

are below 0.1 m/a. At the front, values are quite high with velocities between 0.45 and 0.7 m/a. 

 

Vertical changes 
On rockglacier Pipp1 the cumulative vertical change, quantified by comparison of multitemporal 

DTMs, shows different patterns in the two investigated periods. Between 1975 and 1993 a 

thinning of -2 - -5 m, i. e. of -0.1 - -0.3 m/a, is depicted on the orographic right side of the 

rockglacier (figure 5.17). The lower part of the tongue reveals no significant vertical changes. 

Against that, a widespread thickening (2 – 5 m; 0.25 – 0.6 m/a) occurred between 1993 and 2001 

(figure 5.18), apart from the middle part of the rockglacier tongue, where horizontal velocities 

showed the highest values. 

 

The debris rockglacier Pipp1 depicts a very interesting and unique feature in the study area. It is 

clearly an active rockglacier, which shows increased velocities in the second period. The 

combined analysis of horizontal and vertical displacements indicates a shifting of mass in the 

lower part of the rockglacier resulting from changes in flow balance (cf., chapter 2.3.5). 

A differentiation between the rockglacier area and the glacier forefield is not clearly indicated in 

the velocityfield. Thus, the root zone of the rockglacier is hard to define and seems to be 

represented in a transition zone. Probably the ‘real’ rockglacier occurs only in the lower part of 

the investigated object. Hence the movements on the orographic right lateral moraine either 

reflect permafrost creep probably not connected to the rockglacier mass or another continuous 

process (e.g. landsliding). 
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Figure 5.15: Mean annual surface velocities between 1975 and 1993 on the rockglaciers Pipp1 
and Pipp2. Underlying orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by 
Swisstopo). 
 

 
 

Figure 5.16: Mean annual surface velocities between 1993 and 2001 on the rockglaciers Pipp1 
and Pipp2. Underlying orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by 
Swisstopo). 
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Figure 5.17: Cumulative vertical change on rockglacier Pipp1 between 1975 and 1993 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 

 
Figure 5.18: Cumulative vertical change on rockglacier Pipp1 between 1993 and 2001 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
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5.2.1.2 Rockglacier Pipp2 
Horizontal velocities 
Rockglacier Pipp2 (nr. 3 of the inventory) is situated off rockglacier Pipp1 and is therefore 

integrated in the figures 5.15 and 5.16. In spite of the small size of the feature, about 50 blocks 

were matched at its surface in each measurement period. In both periods most vectors depict 

uniform velocities below 0.1 m/a. Between 1993 and 2001 single blocks moved with slightly 

higher velocities. More distinct differences are indicated in the orientation of the vectors. While 

in the first period (1975 – 1993) they are often arranged in a whirl and thus underline the 

inactivity of the feature, they show a clear downslope orientation in the second period (1993 – 

2001). 

 

Vertical changes 
Regarding the vertical component, rockglacier Pipp2 depicts no changes in the first period (1975 

– 1993), whereas a widespread thickening (2 - 5 m; 0.25 – 0.6 m/a) is indicated between 1993 and 

2001 (figures 5.17, 5.18). 

 

Rockglacier Pipp2, which was mapped as inactive, shows no clear behaviour in the investigated 

period. Generally an inactive state seems to be appropriate due to the low velocities, which are at 

least in the second period below the level of significance (0.13 m/a). But, a possible ‘activation’ is 

indicated between 1993 and 2001. Probably this ‘activation’ results from the increased velocities 

on rockglacier Pipp1. Thus, the lobe is pushed by the other rockglacier and a passive movement 

is reflected in the horizontal displacements as well as in the vertical thickening. 

 

5.2.1.3 Rockglacier Pipp3 
Rockglacier Pipp3 (nr. 5 of the inventory) is situated below the before described rockglaciers and 

like the lobe of Pipp2 it represents an older generation of Pipp1. A simple comparison of 

orthoimages (by flickering of the images 1975 and 2001) revealed no movements on this feature. 

Thus, the inactivity of the rockglacier was confirmed and the block-matching program (CIAS) as 

well as the DTM comparison was not applied. 

 

5.2.1.4 Rockglacier Pipp4 
Horizontal velocities 
Also on this rockglacier (nr. 4 of the inventory), which was mapped as an active one, the 

comparison of orthoimages by flickering showed no significant displacements. Apart from that, 

surface changes occur in the thermokarst areas and movements are revealed in the root zone 

which is probably affected by a glacier. Therefore, CIAS was applied to quantify these 

movements over the entire period 1975 – 2001. Due to shadows and snow cover, especially in 

the orthoimage of 2001, only a few blocks were matched by the program. The vectors depicted in 

figure 5.19 show very diverse magnitudes and directions. In the centre of the vectorfield some 

blocks depict a flowline with creep rates between 0.17 and 0.29 m/a and thus indicate activity. 
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Vertical changes 
Regarding the vertical changes between 1975 and 2001, great losses (up to 20 m; 0.8 m/a) are 

depicted in figure 5.14, which result from thermokarst occurrence and the melting glacier in the 

root zone. 

 

Since a clear differentiation of the rockglacier and the glacial affected area is not possible, the 

measured horizontal velocities in the root zone are not included in the activity assessment of 

Pipp4. Probably, the small terminal lobe depicts the only part affected by permafrost creep. Since 

this lobe revealed no significant horizontal displacements and only small vertical changes it seems 

to be inactive. 

 

 
Figure 5.19: Mean annual surface velocities 1975 – 2001 on the rockglacier Pipp4. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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5.2.1.5 Rockglacier Pibw 
 

 
Figure 5.20: Mean annual surface velocities 1975 – 1993 on the rockglacier Pibw. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.21: Mean annual surface velocities 1993 – 2001 on the rockglacier Pibw. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Horizontal velocities 
Over the first investigated period (1975 – 1993) a lot of blocks were matched on the surface of 

rockglacier Pibw (nr. 1 of the inventory) apart from the root zone which is situated in the shadow 

of the Barrwang-wall in the south. The vectors present a uniform flowfield (figure 5.20). At the 

margins of the rockglacier (orographic left and right parts) the velocities are in the range of 

uncertainty (up to 0.06 m/a), whereas they amount to 0.15 m/a in the central part. 

Against that, only a few blocks were matched between 1993 and 2001 (figure 5.21) due to snow 

in the orthoimage of 2001. The middle part of the lobe reveals velocities between 0.06 and 0.15 

m/a with up to 0.3 m/a in a central flowline. At the orographic left margin small displacements 

(< 0.06 m/a) with an upslope orientation are depicted, probably indicating the inactivity of this 

part. 

 

Vertical changes 
The cumulative vertical changes on Pibw between 1975 and 1993 show a slight thickening at the 

front and a slight thinning on the orographic right side, while the major part of the rockglacier 

depicts no significant changes (figure 5.22). Due to errors of the DTMs in shaded and snow-

covered areas, the root zone of the rockglacier is not included in the interpretation. This is also 

valid for the second period (1993 – 2001), where the whole permafrost body shows an increase in 

thickness between 2 and 5 m (0.25 – 0.6 m/a) and up to 10 m (1.25 m/a) in the central part 

(figure 5.23). 

 

The lobe-shaped rockglacier Pibw is a clearly active feature, which reveals increased velocities in 

the second period. The vertical change shows a distinct gain in mass between 1993 and 2001 

probably resulting from debris input out of the steep wall above the root zone. 
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Figure 5.22: Cumulative vertical change on rockglacier Pibw between 1975 and 1993 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 

 
Figure 5.23: Cumulative vertical change on rockglacier Pibw between 1993 and 2001 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
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5.2.2 Brändjitälli 

5.2.2.1 Rockglacier Brho1 
Horizontal velocities 
On rockglacier Brho1 (nr. 6 of the inventory) the displacement of more than 1000 blocks was 

quantified in both investigated periods (figures 5.24, 5.25). Due to snowpatches in the root zone 

the data are limited in this area. In the first period (1975 – 1993) a large part of the rockglacier 

depicts small movement rates. In the lower part, on both lobes of the divided tongue, the 

velocities are below 0.06 m/a and thus in the range of uncertainty. Additionally, the vectors are 

oriented in diverse directions and in some places are arranged in a whirl. Therefore, inactivity is 

assumed for the lower part of rockglacier Brho1. Against that, the upper part shows clear activity 

indicated in uniform velocityfields including a distinct direction of the creeping mass. At the 

margins the velocities are low (0.08 – 0.12 m/a) but outside the range of uncertainty. To the 

centre of the rockglacier the rates increase significantly in concentric fields with highest values 

between 0.5 and 0.6 m/a. A second high-velocityfield (0.6 – 1.0 m/a) is depicted at the 

orographic left part of the upper front while the right part shows rates of about 0.2 m/a. 

In the second investigated period (1993 – 2001) some differences are depicted in the 

velocityfields (figure 5.25). Again, the lower part of the rockglacier mostly shows movement rates 

below 0.15 m/a (range of uncertainty) and diverse directions. But, at the lowermost front a 

uniform field with higher rates (between 0.18 and 0.32 m/a) occurs. In the upper part, velocities 

are significantly higher than in the first period. The central flowline shows values at about 1.0 

m/a while the upper front (orographic left) reveals maximum velocities of 2.0 m/a. 

 

Vertical changes 
By comparison of multitemporal DTMs, vertical changes are quantified on rockglacier Brho1 

between 1975 and 2001. In the first period (1975 – 1993) a cumulative thinning of -2 - -5 m (-0.1 

- -0.3 m/a) is indicated in the orographic right part of the lower lobe (figure 5.26). A comparable 

thinning is also depicted on the orographic left side directly at the upper front while further down 

an increase in elevation is revealed. Thus, the advance of the clearly active front is shown in the 

vertical changes. Between 1993 and 2001 (figure 5.27) again a decrease in elevation (-2 - -5 m; -

0.25 - -0.6 m/a) is quantified at the upper front on the orographic left side and in a small area on 

orographic right side of the lower lobe. The rest of the rockglacier surface reveals nearly no 

changes. In the ‘reactivated’ area at the lowermost front a slight thinning is indicated, probably 

resulting from a change in flow balance. 

 

Brho1 is a very complex and interesting rockglacier. The flat lower part depicts inactivity, apart 

from the lowermost front showing a reactivation between 1993 and 2001. Regarding the vertical 

changes, the surface is very stable and shows only partial thinning, which may result from mass 

balance changes. Against that, the upper lobe is clearly active and reveals a distinct speed-up in 

the second period. Thus, the vertical changes at the upper front emphasise the change in flow 

balance, at least in the first period. 
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Figure 5.24: Mean annual surface velocities 1975 – 1993 on the rockglacier Brho1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.25: Mean annual surface velocities 1993 – 2001 on the rockglacier Brho1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.26: Cumulative vertical change on the rockglaciers Brho1 and Brle between 1975 and 
1993 (smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 
(flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.27: Cumulative vertical change on the rockglaciers Brho1 and Brle between 1993 and 
2001 (smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 
(flight line 22, aerial photographs taken by Swisstopo). 
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5.2.2.2 Rockglacier Brho2 

Horizontal velocities 
The rockglacier Brho2 (nr. 7 of the inventory) displayed only small movements in the 

comparison of orthoimages (flickering). Therefore, velocities were quantified over the entire 

period (1993 – 2001), but due to poor coherence (snow on the orthoimage of 2001) only a few 

blocks were matched by the program. They indicate velocities between 0.3 and 0.45 m/a at the 

front and values between 0.05 and 0.15 m/a in the upper part. Since the range of uncertainty is 

determined to lie below 0.04 m/a for the entire period, the velocities confirm the activity of the 

feature. 

 

Vertical changes 
Vertical changes on Brho2 are displayed in figure 5.12 for the entire period 1975 - 2001. While 

the upper part of the rockglacier is influenced by melting of glacier ice (-2 – 10 m; -0.08 - -0.4 

m/a), the lower part depicts a cumulative increase of the surface (2 – 10 m; 0.08 – 0.4 m/a). 

 

5.2.2.3 Rockglacier Brle 
Horizontal velocities 
On rockglacier Brle (nr. 8 of the inventory) creep rates were quantified for both measurement 

periods (figures 5.28, 5.29). In the first period (1975 – 1993) velocities in the lowermost part are 

below 0.05 m/a and are arranged irregularly. Further up they show rates between 0.1 and 0.16 

m/a combined with a uniform orientation. Single blocks depict higher velocities. 

Between 1993 and 2001 velocities increased significantly in the middle part of the rockglacier and 

show a uniform vectorfield of about 0.3 m/a. In the steep upper part rates between 0.12 and 0.15 

m/a are depicted. At the front the displacements are in the range of uncertainty, but in 

comparison to the first investigated period they show a clear direction. 

 

Vertical changes 
Between 1975 and 1993 cumulative vertical changes are very scattered (figure 5.26). A small field 

in the middle part of the rockglacier indicates a slight thickening (2 – 5 m; 0.1 – 0.3 m/a). Against 

that, a distinct increase in thickness (in some places up to 10 m; 1.25 m/a) is depicted in great 

parts of the rockglacier in the second period (1993 - 2001) (figure 5.27). 

 

Concerning the horizontal velocities, a distinct speed-up is monitored on rockglacier Brle in the 

second period. This coincides well with the reactivation at the front of Brho1, which is directly 

adjoining. The displacements show very similar magnitudes and directions and therefore seem to 

build one creeping mass. Thus, even if the two permafrost bodies are separated at the surface by 

the steep front of rockglacier Brho1, they are probably connected in depth. The vertical changes 

reveal a distinct thickening between 1993 and 2001. In this pattern probably different processes 

are revealed. While the upper part shows mass gains (e.g., by debris input), changes in flow 

balance are likely to occur in the lower part. 
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Figure 5.28: Mean annual surface velocities 1975 – 1993 on the rockglacier Brle. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.29: Mean annual surface velocities 1993 – 2001 on the rockglacier Brle. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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5.2.3 Hungerlitälli 

5.2.3.1 Rockglacier Hufh 
Horizontal velocities 
On rockglacier Hufh (nr. 11 of the inventory) a high number of blocks was matched in the first 

period (figure 5.30). On the orographic right side as well as in the root zone of the permafrost 

body a measurement was impossible due to snowpatches. The vectorfield shows velocities in the 

range of uncertainty (up to 0.06 m/a) on the orographic left side of the lower lobe. Partially, 

these vectors are arranged in a whirl probably indicating vertical changes. Against that, velocities 

between 0.1 and 0.26 m/a are depicted on the other side of the lobe. Above, on the second lobe, 

constant values between 0.3 and 0.4 m/a are quantified. Both in the root zone and at the margins 

rates are again lower. 

In the second period (1993 – 2001) the quantification of horizontal velocities was limited due to 

snow cover in one orthoimage (2001), which inhibited the measurement of corresponding grey-

values. The depicted vectors indicate velocities between 0.1 and 0.2 m/a in the orographic left 

part of the lower lobe, while the right part and the upper lobe show rates up to 1.8 m/a (figure 

5.31). 

 

Vertical changes 
The vertical surface changes on rockglacier Hufh are shown in figure 5.32 for the first 

investigated period (1975 – 1993). A cumulative increase in thickness of 2 – 5 m, which 

corresponds to a rate of 0.1 – 0.3 m/a, is indicated for a part of the lower lobe. Against that, a 

slight decrease is depicted above the front of the upper lobe. The orographic right side of the 

rockglacier has to be excluded in the interpretation, since the snowpatch causes errors in the 

measurement. 

In the second period (1993 – 2001) a vertical increase (2 – 5 m; 0.25 – 0.6 m/a) is again revealed 

on the lower half of the rockglacier, while a decrease (partially up to -10 m; -1.25 m/a) is 

displayed in the root zone (figure 5.33). 

 

Rockglacier Hufh is clearly active in the investigated period (1975 – 2001) and shows an increase 

in horizontal velocity in the second period. The topography of the feature with its two lobes 

situated one over the other is well reflected in the horizontal displacements. On the lower lobe 

movement is concentrated on the orographic right side, while the other side depicts small rates. 

The upper lobe reveals higher values and is overriding the lower lobe. Therefore, the vertical 

changes probably indicate mass balance effects with a thickening in the lower part and a thinning 

in the upper part of the rockglacier. 
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Figure 5.30: Mean annual surface velocities 1975 – 1993 on the rockglacier Hufh. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.31: Mean annual surface velocities 1993 – 2001 on the rockglacier Hufh. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.32: Cumulative vertical change on rockglacier Hufh between 1975 and 1993 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
 

 
Figure 5.33: Cumulative vertical change on rockglacier Hufh between 1993 and 2001 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
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5.2.3.2 Rockglacier Hujp 
Horizontal velocities 
Also on rockglacier Hujp (nr. 12 of the inventory) a high number of blocks was matched, at least 

in the first period (1975 - 1993). The velocities display a very uniform vectorfield with only slight 

differences (figure 5.34). From the root zone to the centre of the rockglacier the values are low 

(0.06 – 0.08 m/a) but beyond the range of uncertainty. On the lower lobe rates are mainly 

between 0.1 and 0.12 m/a. More distinct differences are given at the front; while the orographic 

right part moves with about 0.2 m/a, the left part depicts values at about 0.02 m/a (within the 

range of uncertainty). 

A similar pattern, although with clearly higher velocities, is shown for the period 1993 – 2001 

(figure 5.35). The fast movement seems to spread from the front, since highest values (0.51 – 1.8 

m/a) occur there, followed by a concentric field with rates between 0.31 and 0.5 m/a. The main 

part of the lobe depicts velocities between 0.16 and 0.3 m/a while lower rates are quantified at 

the margins and on the orographic left side of the front. In the upper part of the rockglacier a 

measurement was inhibited by snow cover in 2001. 

 

Vertical changes 
Between 1975 and 1993 changes in thickness on Hujp reveal negative values (-2 - -5 m; -0.1 - -0.3 

m/a) in some parts of the lower lobe as well as in the middle of the rockglacier (figure 5.36). 

Against that, an increase in elevation (2 - 10 m; 0.1 – 0.6 m/a) occurs in the root zone.  

In the second period an opposite pattern is indicated (figure 5.37). A thickening (2 – 5 m; 0.25 – 

0.6 m/a) is indicated in major parts of the permafrost body, while a thinning (-5 - -10 m; -0.6 – -

1.25 m/a) is depicted in the root zone. 

 

Rockglacier Hujp is a monomorphic landform, which is overrunning the Egesen moraine and 

therefore has a very steep terminus. Between 1975 and 1993 it depicts only small movements 

slightly above the range of uncertainty as well as some higher rates at the front which probably 

result from the sliding or falling of individual blocks. Against that, a distinct increase in velocity is 

reflected in the second period (1993 – 2001), indicating the activity of the feature. Highest rates 

occur again at the front and seem to penetrate to the upper part. Vertical surface changes reveal 

diverse patterns in the two periods. The thickening in the lower part between 1993 and 2001 

seems to be related to the high horizontal velocities. 
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Figure 5.34: Mean annual surface velocities 1975 – 1993 on the rockglacier Hujp. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.35: Mean annual surface velocities 1993 – 2001 on the rockglacier Hujp. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.36: Cumulative vertical change on rockglacier Hujp between 1975 and 1993 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
 

 
Figure 5.37: Cumulative vertical change on rockglacier Hujp between 1993 and 2001 (smoothed 
by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 22, aerial 
photographs taken by Swisstopo). 
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5.2.3.3 Rockglacier Hurh1 
On rockglacier Hurh1 (nr. 13 of the inventory) which was mapped as active, several blocks were 

matched in both measurement periods in order to quantify horizontal velocities. All of them 

depict values in the range of uncertainty, apart from single rocks at the front. Additionally, the 

vectors reveal a great variety of directions. Thus, the inactivity of the feature is indicated by the 

photogrammetric data. Regarding the vertical changes, only a slight thickening occurred over the 

investigated period 1975 – 2001. 

 

 

5.2.3.4 Rockglacier Hurh2 
Horizontal velocities 
Also on this rockglacier (nr. 14 of the inventory) which was mapped as inactive, the velocity 

vectors are clearly in the range of uncertainty in both investigated periods. Therefore, the 

inactivity of this rockglacier is confirmed. Changes in elevation were quantified over the entire 

period 1975 – 2001 (figure 5.4). A small area in the middle of the rockglacier depicts a decrease in 

elevation, while a slight thickening is indicated at the front as well as in the root zone. 

 

 

5.2.3.5 Rockglacier Huhh1 
Horizontal velocities 
The velocity pattern of rockglacier Huhh1 (nr. 15 of the inventory) displays distinct fields of 

uniform movements between 1975 and 1993 (figure 5.38). At the rockglacier margins as well as 

on the orographic right part of the lower lobe rates between 0.04 and 0.1 m/a are quantified. 

Against it, the left part of the lower lobe depicts velocities up to 0.3 m/a. Further up, above a 

second steep front, an extensive area reveals velocities at about 0.45 m/a while only single blocks 

show higher values. 

Between 1993 and 2001 the vectorfield is less uniform than in the first period, especially in the 

upper part of the rockglacier (figure 5.39). On the orographic right side of the lower lobe 

velocities between 0.1 and 0.15 m/a are depicted directly at the front while further up values are 

in the range of uncertainty and the vectors show a whirl-like orientation. To the left the rates 

increase and show a central flowline of up to 0.3 m/a and values at about 0.4 m/a at the 

orographic left margin. The upper lobe displays high velocities of mostly more than 1.0 m/a. 

Only in the root zone a small field of uniform velocities (0.51 - 1.0 m/a) is revealed. 

In comparison to the first period the mass seems to creep no more as a whole, since the blocks 

move individually with diverse magnitudes and in slightly different directions. 
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Figure 5.38: Mean annual surface velocities 1975 – 1993 on the rockglacier Huhh1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 



RESULTS   103

 
Figure 5.39: Mean annual surface velocities 1993 – 2001 on the rockglacier Huhh1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 

Vertical changes 
Vertical surface changes on rockglacier Huhh1 depict for the first period an increase in elevation 

of 2 – 5 m (0.1 – 0.3 m/a) on the orograpic right side (figure 5.40). Directly below the cirque, a 

thickening is also revealed on the orographic left side. The rest of the feature shows no changes 
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in elevation. Between 1993 and 2001 (figure 5.41) again a large part of the rockglacier indicates 

no surface changes, but some areas on the lower lobe and below the cirque indicate an increase in 

thickness (up to 5 m; 0.6 m/a).  

 

Rockglacier Huhh1 depicts a complex ridge-and-furrow topography and two lobes which are 

arranged over each other. The horizontal movements quantified between 1975 and 2001 confirm 

the activity of the feature. Additionally, a distinct acceleration is reflected in the data of the 

second period (1993 – 2001). Regarding the vertical changes, the thickening of the orographic 

right side in the first period is difficult to interpret. Between 1993 and 2001 at least the thickening 

below the second front can be explained by the high horizontal velocities and the advancing 

front. 

 
Figure 5.40: Cumulative vertical change on rockglacier Huhh1 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Figure 5.41: Cumulative vertical change on rockglacier Huhh1 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 

5.2.3.6 Rockglacier Huhh2 
Horizontal velocities 
The large complex of rockglacier Huhh2 (nr. 16 of the inventory) was mapped as inactive and 

thus, displacements were expected to be low respectively in the range of uncertainty. In both 

investigated periods this assumption appeared to be right (indicated both by the low magnitudes 

and the diverse directions of the vectors), apart from a slope in the root zone of Huhh2, directly 

below the front of rockglacier Huhh1. In the first period this slope depicts velocities between 

0.07 and 0.13 m/a in the upper part, while the lower part is in the range of uncertainty but shows 

a distinct direction of the movement (figure 5.42). This pattern is similar between 1993 and 2001, 

but the rates increased significantly (up to 0.3 m/a) in the upper part (figure 5.43). 
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Figure 5.42: Mean annual surface velocities 1975 – 1993 on the rockglacier Huhh2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.43: Mean annual surface velocities 1993 – 2001 on the rockglacier Huhh2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.44: Cumulative vertical change on rockglacier Huhh2 between 1975 and 1993 

(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 

22, aerial photographs taken by Swisstopo). 

 
Figure 5.45: Cumulative vertical change on rockglacier Huhh2 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Vertical changes 
Regarding the vertical change on rockglacier Huhh2, no clear signal is revealed between 1975 and 

1993 (figure 5.44). Apart from an increase in elevation (2 – 5 m; 0.1 – 0.3 m/a) below the front of 

rockglacier Huhh1 and in the contact zone to the protalus rampart (orographic left), some small 

areas show a vertical decrease (-2 - -5 m; -0.1 - -0.3 m/a). Against that, a thickening (2 – 5 m; 0.25 

– 0.6 m/a) occurs all over the rockglacier apart from the fronts between 1993 and 2001 (figure 

5.45). 

 

Rockglacier Huhh2 is a complex landform in the bottom of the hanging valley, which was 

mapped as inactive. The photogrammetric data confirm the inactivity of the feature, apart from a 

slope in the root zone adjacent to rockglacier Huhh1. Probably the slope is influenced by the 

advance of Huhh1, but since a relatively large area depicts the movements actively creeping 

permafrost has to be assumed. Concerning the vertical changes, the pattern of the first period 

seems to emphasise the inactivity of the feature. Against that, the changes between 1993 and 

2001 are hard to explain. 

 

 

5.2.3.7 Rockglacier Huhh3 
Horizontal velocities 
On rockglacier Huhh3 (nr. 17 of the inventory) a high number of blocks was matched in both 

investigated periods (figures 5.46, 5.47). Between 1975 and 1993 velocities up to 0.15 m/a are 

depicted in the root zone, at the rockglacier margins as well as in the lower lobes. The main lobe 

(above the third front) reveals uniform rates between 0.16 and 0.3 m/a with two small fields in 

the central flow line showing velocities up to 0.5 m/a. 

In the second period (1993 – 2001) a slight increase in velocities is depicted at the rockglacier 

margins and on the lower lobes whereas the main lobe shows a distinct speed-up. Maximum rates 

(1.0 – 2.5 m/a) occur in the upper part, directly below the cirque. Further down a uniform field 

of values between 0.5 and 1.0 m/a spreads to the front. This field is surrounded by velocities up 

to 0.5 m/a. 

 

Vertical changes 
Between 1975 and 1993, vertical changes occur only in small areas on rockglacier Huhh3 (figure 

5.48). A cumulative thickening (2 – 5 m; 0.1 – 0.3 m/a) is indicated in the upper part (directly 

below the cirque) and above the uppermost front. Punctually, thinning (-2 - -5 m) is depicted at 

the front on the orographic left side. In the second period (figure 5.49) the elevation changes are 

slightly different. A thickening (2 – 5 m; 0.25 – 0.6 m/a) occurs in the cirque and in the lower 

part of the rockglacier, while a thinning in the same order of magnitude is indicated in the upper 

part, directly below the cirque.  
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Rockglacier Huhh3 is again a complex rockglacier with several lobes indicating different 

generations. This pattern is well reflected in the velocityfields of the clearly active feature. High 

velocities represent the upper lobe which is overriding the lower one. This part of the rockglacier 

depicts a distinct acceleration in the second period, whereas the lowermost lobes show small 

movements in both periods. Concerning the vertical component, especially the changes between 

1993 and 2001 fit well with the horizontal velocities. A distinct thinning occurs in the area of 

highest horizontal movements and results in a thickening in the lower part of the lobe. Thus, a 

change in flow balance in indicated. Due to the high velocities in the upper part, the creeping 

mass seems to lose connection to the source area. This becomes apparent in the clear boundary 

between thickening in the cirque (probably due to accumulation) and thinning in the root zone of 

the rockglacier. 

 

 
Figure 5.46: Mean annual surface velocities 1975 – 1993 on the rockglacier Huhh3. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.47: Mean annual surface velocities 1993 – 2001 on the rockglacier Huhh3. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.48: Cumulative vertical change on rockglacier Huhh3 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Figure 5.49: Cumulative vertical change on rockglacier Huhh3 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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5.2.4 Grüobtälli 

5.2.4.1 Rockglacier Grueo1 
Horizontal velocities 
This rockglacier (nr. 21 of the inventory) is one of the most striking landforms in the Turtmann 

valley. By visual interpretation of the orthoimages of the years 1975, 1993 and 2001 it shows 

major changes in its geometry (figure 5.50). Beside the outstanding advance of its front (~ 60 m 

in 26 years), the ripped surface is conspicuous. The crevasse-like features in the middle of the 

rockglacier are up to 12 metres deep. Due to these characteristics, its kinematics is quantified 

over four shorter periods (1975 – 1981; 1981 – 1987; 1987 – 1993; 1993 – 2001). A lot of blocks 

were matched in each period, apart from the root zone where a perennial snowfield inhibited the 

measurement. 

In the first period (1975 – 1981), where the rockglacier topography was relatively smooth, the 

horizontal velocityfield was very uniform, but revealed already quite high speeds (figure 5.51). On 

the upper part of the rockglacier as well as at the margins velocities between 0.51 and 1.0 m/a are 

depicted while the lower part moves with rates up to 2 m/a. Single blocks, especially at the front, 

show even higher values up to 5 m/a. The gap in the vectorfield results from a wide snowpatch 

on the orthoimage of 1981. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.50: Change in surface geometry of rockglacier Grueo1. Underlying orthoimages of 
20.08.1975, 20.08.1993 (aerial photographs taken by Swisstopo) and 28.09.2001 (HRSC-A 
survey). 
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Figure 5.51: Mean annual surface velocities 1975 – 1981 on the rockglacier Grueo1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.52: Mean annual surface velocities 1981 – 1987 on the rockglacier Grueo1. Underlying 
orthoimage of 16.08.1987 (flight line 34, aerial photographs taken by Swisstopo). 
 

 

Also between 1981 and 1987 the vectorfield is clearly divided in two parts (figure 5.52). The 

surface of the root zone and the middle part moves with 1-2 m/a downwards, while the frontal 

part accelerates to up to 5 m/a. Additionally, a clearer differentiation of velocities is given at the 

margins of the rockglacier and reveals a nice gradient, especially on the orographic left side. 
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Figure 5.53: Mean annual surface velocities 1987 – 1993 on the rockglacier Grueo1. Underlying 
orthoimage of 20.08.1993 (flight line 16, aerial photographs taken by Swisstopo). 
 

 

For the third investigated period (1987 – 1993) a nice sequence of velocityfields is depicted in 

figure 5.53. Relatively small values (up to 0.5 m/a) are indicated in the root zone and at the 

margins of the rockglacier. In the upper section, directly below the snowpatch, uniform velocities 

between 0.51 and 1.0 m/a are measured, while movements up to 2.0 m/a occur in the centre. 

The lower part of the rockglacier tongue shows the highest velocities between 2.0 and nearly 5.0 

m/a. Even around the crevasse-like features the movement reveals no significant gradients. 
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Figure 5.54: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo1. Underlying 
orthoimage of 28.09.2001 (HRSC-A data). 
 

 

The last period (1993 – 2001) displays a drastically different behaviour (figure 5.54). While the 

upper half of the rockglacier shows horizontal velocities of 1.0 to more than 2 m/a, the 

vectorfield in the lower half is chaotic due to the ripped topography. Blocks were displaced 

individually into the crevasses and superimposed by other blocks. That process results in a loss of 

coherence in optical contrast, which inhibits the measurement of corresponding grey-value 

features. 
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Figure 5.55: Cumulative vertical change on rockglacier Grueo1 between 1975 and 1981 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 

Vertical changes 
The elevation changes on rockglacier Grueo1 depict different developments over the investigated 

period 1975 - 2001. Between 1975 and 1981, the surface appears to be stable in the root zone as 

well as in most parts of the front. Against that, a widespread decrease in thickness of -2 - -5 m, 

which corresponds to a rate of -0.3 - -0.8 m/a, is revealed in the middle part of the rockglacier 

(figure 5.55). 
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Over the period 1981-1987, the centre of the permafrost body depicts no vertical changes (figure 

5.56). The front shows a cumulative thickening (2 – 5 m; 0.3 – 0.8 m/a), while a thinning occurs 

in the root zone, especially on the orographic left side of the rockglacier. 

Between 1987 and 1993 the vertical changes reveal again a different pattern (figure 5.57). While 

the centre depicts still an unchanged surface, a uniform increase in thickness (2 – 5 m) occurs in 

the upper as well as in the lower part of the rockglacier. At the orographic right side of the front, 

a distinct thickening of 5 – 10 m or 0.8 – 1.7 m/a, respectively, is indicated. 

During the last period (1993 – 2001) the rockglacier shows the strongest vertical changes (figure 

5.58). These are concentrated in the lower part and depict an increase in thickness of up to 15 m 

(2.5 m/a) at the front, which is due to the advance of the permafrost body. Directly above the 

front, a distinct thinning in the same order of magnitude is revealed. This occurs in the area of 

the deepest crevasse. In the root zone, a slight thinning is depicted, which results probably from 

the reduction of the snowpatch (compare figures 5.53, 5.54). 

In 1997/1998 two avalanche dams were constructed directly below the rockglacier, without 

directly affecting it. Regarding the change in elevation, the dams give a good opportunity to 

validate the measurements of vertical movements (cf., Roer et al. 2005). 
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Figure 5.56: Cumulative vertical change on rockglacier Grueo1 between 1981 and 1987 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Figure 5.57: Cumulative vertical change on rockglacier Grueo1 between 1987 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Figure 5.58: Cumulative vertical change on rockglacier Grueo1 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 

The exceptional horizontal velocities and vertical changes on Grueo1 underline the conspicuous 

development of the rockglacier. By the combined analysis of horizontal and vertical changes over 

four investigated periods, further details on the ongoing processes are hoped for. 

The distinct increase in elevation at the front results from the advance of the permafrost body. 

Only in the last period (1993 – 2001) a corresponding thinning above the front depicts the shift 

of mass. In this part of the rockglacier, marked signs of instability, such as e.g. development of 

crevasses and surface destruction, indicate a probable change in process regime. Against that, the 

middle part of the rockglacier shows no significant losses or gains after 1981 and therefore a 
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uniform permafrost creep can be assumed here. Regarding the upper part of the rockglacier, it 

astonishes that in spite of the high horizontal rates and the corresponding flow of rockglacier 

mass, only a slight thinning occurs in the root zone. Thus, a regular input of mass has to be 

suspected. This can at least partly be confirmed, since debris-flow deposits were mapped - on 

orthoimages (1975, 1987) and in the field (2002, 2003) – in the root zone. Additional influence 

from avalanches can be assumed. 

 

 

5.2.4.2 Rockglacier Grueo2 
Horizontal velocities 
On rockglacier Grueo2 (nr. 22 of the inventory) the displacement of a high number of rocks was 

measured in the first period (1975 – 1993). The vectors depict a uniform field of velocities below 

0.15 m/a clearly indicating the creep direction (figure 5.59). In comparison, an adjacent debris-

covered slope shows small movements without a clear orientation. In the middle part of the 

rockglacier higher velocities of up to 0.3 m/a occur. 

Between 1993 and 2001 the movement of fewer blocks was quantified, but nevertheless they 

clearly reveal the acceleration of the rockglacier (figure 5.60). Velocities below 0.15 m/a are 

indicated by single vectors in the upper part of Grueo2. Against that, the middle part of the 

rockglacier shows rates mostly between 0.31 and 1.0 m/a. To the front, the velocities are again 

smaller (0.16 – 0.3 m/a). 
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Figure 5.59: Mean annual surface velocities 1975 – 1993 on the rockglacier Grueo2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.60: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.61: Cumulative vertical change on rockglacier Grueo2 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 

 
Figure 5.62: Cumulative vertical change on rockglacier Grueo2 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Vertical changes 
The elevation change between 1975 and 1993 depicts a general lowering of the surface (-2 - -5 m; 

-0.1 – -0.3 m/a), except for the lowermost part of the rockglacier (figure 5.61). Against that, 

nearly no changes occur in the second investigated period (figure 5.62). 

 

Because of its shape and the distinctive surface topography, this rockglacier represents an 

interesting landform. Its activity is depicted by a uniform flowfield with higher velocities only in 

the steeper part of the rockglacier and by a clear speed-up in the second period. Corresponding 

possible changes in flow balance are not indicated in the vertical changes. 

 

 

5.2.4.3 Rockglacier Grueo3 
Horizontal velocities 
In the first period (1975 – 1993), velocities in the range of uncertainty (0.06 m/a) are measured 

all over rockglacier Grueo 3 (nr. 23 of the inventory). Only individual blocks at the front show 

higher movements (figure 5.63). 

Between 1993 and 2001, the velocities are again in the range of uncertainty (0.13 m/a) apart from 

single blocks (figure 5.64). Thus, the inactivity of the feature has to be assumed, even if the 

orientation of the vectors indicates a uniform direction in both periods. 
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Figure 5.63: Mean annual surface velocities 1975 – 1993 on the rockglacier Grueo3. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.64: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo3. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.65: Cumulative vertical change on rockglacier Grueo3 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.66: Cumulative vertical change on rockglacier Grueo3 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Vertical changes 
Between 1975 and 1993 rockglacier Grueo3 shows an increase in thickness (2 – 5 m; 0.1 – 0.3 

m/a) which is widespread in the orographic right part (figure 5.65). In contrast to that, a decrease 

in thickness (-2 - -5; -0.25 - -0.6 m/a) is revealed in some parts at the rockglacier margin over the 

second period (figure 5.66). 

 

 

5.2.4.4 Rockglacier Grueo4 
Horizontal velocities 
This rockglacier (nr. 24 of the inventory) is situated in a similar position like Grueo3 and shows a 

similar vectorfield. In the first period (1975 – 1993) the rockglacier reveals velocities in the range 

of uncertainty apart from one lobe which is superimposed on the main body of the rockglacier. 

This lobe depicts speeds mostly between 0.07 and 0.15 m/a (figure 5.67). 

In the second period (1993 – 2001) a similar pattern is given in the data (figure 5.68). The main 

part of the rockglacier shows again rates in the range of uncertainty (0.13 m/a), but the 

aforementioned lobe depicts clearly higher values. Especially in the upper part of this lobe, some 

blocks move up to 1.0 m/a. 
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Figure 5.67: Mean annual surface velocities 1975 – 1993 on the rockglacier Grueo4. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.68: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo4. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.69: Cumulative vertical change on rockglacier Grueo4 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.70: Cumulative vertical change on rockglacier Grueo4 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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Vertical changes 
In a small area in the central part of the rockglacier Grueo4 and at the front of the superimposed 

lobe an increase in thickness is depicted in the first period (figure 5.69). Between 1993 and 2001 

wider areas on the mentioned lobe as well as on the orographic right side reveal a cumulative 

thickening (2 – 5 m; 0.25 – 0.6 m/a). Thinning occurs in the area of the snowpatch. Additionally, 

the high values in the root zone of the rockglacier result from measurement errors due to 

shadows (figure 5.70). 

 

 

Grueo3 and Grueo4 depict typical lobe-shaped rockglaciers situated in the bottom of a hanging 

valley. They reveal inactivity or small movements, apart from single lobes moving on top of the 

older lobes. 

 

 

5.2.4.5 Rockglacier Grueo5 
Horizontal velocities 
On this rockglacier (nr. 25 of the inventory) the velocities were predominantly in the range of 

uncertainty in the first period (1975 – 1993). Additionally, measurements were impossible in the 

second period (1993 – 2001) due to snow on the 2001 orthoimage. Thus, the state of activity of 

this rockglacier is hard to determine, but inactivity has to be assumed due to the low rates in the 

first period. 

 

Vertical changes 
Regarding the elevation changes over the entire period 1975 – 2001 (figure 5.6), decrease in 

thickness is depicted in the root zone while an increase occurs in the lower part of the 

rockglacier. Due to the before mentioned snow on the orthoimage of 2001 and the possible 

measurement errors, the vertical changes are not included in the activity assessment of Grueo5. 

 

 

5.2.4.6 Rockglacier Grueo6 
Horizontal velocities 
Rockglacier Grueo6 (nr. 26 of the inventory) is a large feature with the main part of the 

permafrost body situated in a cirque, while the frontal part is creeping over a steep slope into the 

hanging valley. Between 1975 and 1993 the movement of a lot of blocks was quantified (figure 

5.71). On the main body the velocities are completely below 0.15 m/a, but above the front rates 

between 0.16 and 0.5 m/a are depicted. At the foot of the front movements are in the range of 

uncertainty. 

In the second period (1993 – 2001) only a few blocks were matched, again due to a loss in optical 

contrast resulting from snow on the orthoimage of 2001 (figure 5.72). The vectors indicate again 
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velocities below 0.15 m/a on the main body and values up to 0.5 m/a above the front. Directly at 

the front and at its foot, higher rates up to 2.0 m/a are depicted. 

 

Vertical changes 
Over the first period the elevation changes on Grueo6 reveal an increase in thickness (2 – 5 m; 

0.1 – 0.3 m/a) on the orographic right side as well as in the steep part at the rockglacier front 

(figure 5.73). The distinct decrease in elevation indicated in the orographic right part of the front 

probably result from errors in the measurements due to shadows in the orthoimages. The rest of 

the permafrost body depicts an unchanged surface. 

Between 1993 and 2001, some patchy thickening (2 – 5 m; 0.25 – 0.6 m/a) occurs in the upper 

part of the rockglacier, while to the front the surface appears to be stable (figure 5.74). Again, the 

distinct lowering depicted at both sides of the front results from measurement errors. 

 

Rockglacier Grueo6 is a very interesting landform because of its shape and the extraordinary 

position. The front depicts no signs of instability, although it is situated on a very steep slope. In 

the upper part of the rockglacier (around the large snowpatch) a new lobe seems to develop. This 

is indicated in the orientation of the vectors and by a thickening in both investigated periods. 

Unfortunately, only very few blocks were matched in the second period and thus it is not clear 

how this part of the rockglacier developed. 
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Figure 5.71: Mean annual surface velocities 1975 – 1993 on the rockglacier Grueo6. Underlying 
orthoimage of 06.10.1975 (flight line 21, aerial photographs taken by Swisstopo). 

 
Figure 5.72: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo6. Underlying 
orthoimage of 06.10.1975 (flight line 21, aerial photographs taken by Swisstopo). 



RESULTS   135

 
Figure 5.73: Cumulative vertical change on rockglacier Grueo6 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 06.10.1975 (flight line 
21, aerial photographs taken by Swisstopo). 
 

 
Figure 5.74: Cumulative vertical change on rockglacier Grueo6 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 06.10.1975 (flight line 
21, aerial photographs taken by Swisstopo). 
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5.2.4.7 Rockglacier Grueo7 
Horizontal velocities 
Grueo7 (nr. 27 of the inventory) is a complex rockglacier situated in the bottom of the hanging 

valley. In the first investigated period (1975 – 1993) it shows a uniform velocityfield with rates up 

to 0.15 m/a (figure 5.75). Only single blocks reveal higher values. 

Between 1993 and 2001 the rockglacier shows a distinct increase in speed (figure 5.76). While 

rates are below 0.15 m/a on the lowermost lobe, they depict a uniform field between 0.16 and 0.3 

m/a in the middle part of the rockglacier with a small field of high velocities (up to 1.9 m/a) in 

the central flowline (above the fourth front). In the root zone, measurements were not possible. 

 

Vertical changes 
Between 1975 and 1993 the vertical changes on Grueo7 reveal an increase in thickness (2 – 5 m; 

0.1 – 0.3 m/a), which occurs mostly at the margin of the rockglacier (figure 5.77). Against that, 

the rockglacier surface depicts only a patchy thickening (2 – 5 m; 0.25 – 0.6 m/a) in the second 

period (figure 5.78). A decrease in thickness of up to -10 m (-1.25 m/a) is indicated at the 

rockglacier front. The noisy pattern at the border of the image results from errors due to 

shadows and snowcover. Therefore, mass gains or losses can not be determined for the root 

zone of the rockglacier. 

 

Grueo7 is a complex tongue-shaped rockglacier situated in the bottom of the hanging valley. But, 

compared to other rockglaciers in a similar position, it depicts a clear activity and a very distinct 

speed-up in the second period. 
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Figure 5.75: Mean annual surface velocities 1975 – 1993 on the rockglacier Grueo7. Underlying 
orthoimage of 06.10.1975 (flight line 21, aerial photographs taken by Swisstopo). 

 
Figure 5.76: Mean annual surface velocities 1993 – 2001 on the rockglacier Grueo7. Underlying 
orthoimage of 06.10.1975 (flight line 21, aerial photographs taken by Swisstopo). 
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Figure 5.77: Cumulative vertical change on rockglacier Grueo7 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 06.10.1975 (flight line 
21, aerial photographs taken by Swisstopo). 
 

 
Figure 5.78: Cumulative vertical change on rockglacier Grueo7 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 06.10.1975 (flight line 
21, aerial photographs taken by Swisstopo). 
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5.2.4.8 Rockglacier Grueo8 
On this feature (nr. 28 of the inventory) velocities in the range of uncertainty were measured in 

both periods. Therefore, inactivity is assumed for this rockglacier. Additionally, vertical changes 

seemed to be strongly influence by the occurrence of snow and thus are not included in the 

interpretation. 
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5.2.5 Niggelingtälli 

5.2.5.1 Rockglacier Niggel1 
Horizontal velocities 
Rockglacier Niggel1 (nr. 31 of the inventory) is a very small rockglacier situated below a small 

cirque. Between 1975 and 1993 the measured displacements are mostly in the range of 

uncertainty and the vectors show differences in their orientation (figure 5.79). Some blocks in the 

upper part and in the central flowline depict slightly higher velocities (up to 0.15 m/a). 

Over the second period (1993 – 2001) a uniform vectorfield is displayed in figure 5.80. Rates are 

mostly in the range of uncertainty but some blocks in the central flowline and at the lower front 

depict velocities up to 0.3 m/a. Thus, it is suspected that the rockglacier is active or was rather 

reactivated. 

 

Vertical changes 
The elevation changes over the period 1975 – 1993 reveal only a small decrease in the root zone, 

while the most part of the rockglacier depicts an unchanged surface (figure 5.81). Between 1993 

and 2001 an increase in thickness (2 – 5 m; 0.25 – 0.6 m/a) is observed in large parts of the 

permafrost body (figure 5.82). 
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Figure 5.79: Mean annual surface velocities 1975 – 1993 on the rockglacier Niggel1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.80: Mean annual surface velocities 1993 – 2001 on the rockglacier Niggel1. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.81: Cumulative vertical change on rockglacier Niggel1 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 

 
Figure 5.82: Cumulative vertical change on rockglacier Niggel1 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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5.2.5.2 Rockglacier Niggel2 
Horizontal velocities 
Niggel2 (nr. 32 of the inventory) depicts the most complex rockglacier since at least 5 lobes are 

situated one over the other indicating different generations. A lot of blocks were matched in the 

first period (1975 – 1993) but in the middle part of the rockglacier shadows and snowpatches 

inhibited more measurements (figure 5.83). For the most part of the rockglacier, the horizontal 

creep rates at the surface amount to 0.15 m/a. Only in the central flowline of the upper lobe 

some individual blocks depict higher values. The lowermost lobe as well as the adjacent lobe in 

the root zone reveal velocities in the range of uncertainty and show diverse directions. 

Over the period 1993 – 2001 a uniform vectorfield is given in figure 5.84. Again, the velocities 

depict mainly rates up to 0.15 m/a. But in the middle of the rockglacier several blocks show 

higher values (0.16 - 0.3 m/a). The lowermost and the adjacent lobe indicate again inactivity by 

small displacements and diverse directions of the vectors. 

 

Vertical changes 
The elevation changes on Niggel2 reveal for the most part a stable surface. Between 1975 and 

1993 an increase in thickness (2 – 5 m; 0.1 – 0.3 m/a) is indicated on the adjacent lobe as well as 

in the root zone of the rockglacier (figure 5.85). Further down, similar changes occur in some 

places at the lateral fronts. On the lowermost lobe, a decrease in thickness (-2 - -5 m; -0.1 - -0.3 

m/a) is depicted directly below the second front. Over the second investigated period (1993 – 

2001) a lowering of the surface is indicated in the root zone and on the adjacent lobe (figure 

5.86). Against that, an increase in thickness is again shown at the different fronts, which is most 

apparent on the second lobe. 

 

The complex rockglacier Niggel2 reveals a distinct activity and an increase in horizontal velocity, 

which appears less distinctive in comparison to the other rockglaciers. 
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Figure 5.83: Mean annual surface velocities 1975 – 1993 on the rockglacier Niggel2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.84: Mean annual surface velocities 1993 – 2001 on the rockglacier Niggel2. Underlying 
orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.85: Cumulative vertical change on rockglacier Niggel2 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.86: Cumulative vertical change on rockglacier Niggel2 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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5.2.5.3 Rockglaciers Niggel3-7 
All of these rockglaciers (nr. 33 - 37 of the inventory) indicated no significant movement. 

Velocities were quantified for Niggel3 (nr. 33), Niggel4 (nr. 34) and Niggel5 (nr. 35) and depicted 

rates in the range of uncertainty in both investigated periods. On Niggel 6 (nr. 36) and Niggel7 

(nr. 37) a simple comparison of orthoimages (by flickering) revealed no displacements. Thus, the 

inactivity of all these rockglaciers is determined. 
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5.2.6 Chummetjitälli 

5.2.6.1 Rockglacier Chummet1 
Horizontal velocities 
On rockglacier Chummet1 (nr. 40 of the inventory) relatively few blocks were matched by the 

CIAS program since snowpatches cover large parts of the feature. Over the first period (1975 – 

1993), a uniform field of movements up to 0.15 m/a is indicated in the uppermost part of the 

rockglacier (figure 5.87). Further down, a gradient of higher values (0.25 – 0.57 – 0.8 m/a) is 

depicted by several blocks in the central flowline. The lower lobe shows an irregular velocityfield 

with rates between 0.16 and 1.0 m/a. 

Between 1993 and 2001 non-uniform velocities of up to 1.0 m/a are indicated on the upper lobe, 

while the lower part of the rockglacier depicts a uniform vectorfield with rates mostly in the 

range of 0.23 – 0.27 m/a (figure 5.88). Higher rates occur individually at the front. 

 

Vertical changes 
Regarding the vertical surface changes on rockglacier Chummet1 (figure 5.89) a cumulative 

increase in thickness (2 – 5 m; 0.1 – 0.3 m/a) is depicted on the lower lobe between 1975 and 

1993. Against that, the upper part of the rockglacier shows only patchy changes which are mainly 

negative (-2 - -5 m; -0.1 - -0.3 m/a). In the second period (1993 – 2001) thickening is revealed on 

the whole feature (figure 5.90). Apart from two areas with higher values (5 – 10 m; 0.6 – 1.25 

m/a) the vertical changes are generally in the range of 2 to 5 m (0.25 – 0.6 m/a). 

 

Chummet1 is a polymorphic rockglacier with two distinct lobes. Although the data on horizontal 

velocities are limited, the activity of the feature is indicated. Whether this rockglacier shows also 

higher creep rates in the second period is difficult to determine. Regarding the vertical changes, 

possible mass balance effects are difficult to assess, especially in the second period. 
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Figure 5.87: Mean annual surface velocities 1975 – 1993 on the rockglacier Chummet1. 
Underlying orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 

 
Figure 5.88: Mean annual surface velocities 1993 – 2001 on the rockglacier Chummet1. 
Underlying orthoimage of 20.08.1975 (flight line 22, aerial photographs taken by Swisstopo). 
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Figure 5.89: Cumulative vertical change on rockglacier Chummet1 between 1975 and 1993 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
 

 
Figure 5.90: Cumulative vertical change on rockglacier Chummet1 between 1993 and 2001 
(smoothed by a median-filter, window size 3x3). Underlying orthoimage of 20.08.1975 (flight line 
22, aerial photographs taken by Swisstopo). 
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5.2.6.2 Rockglaciers Chummet2-4 
The other rockglaciers in the Chummetjitälli (nr. 41, 42 and 43 of the inventory), which are 

partially very small, showed velocities in the range of uncertainty over both investigated periods. 

Therefore, the mapped inactivity of these features is confirmed by the measurements. 

Considering the vertical changes nearly no differences are quantified in the first period, whereas a 

general increase (2 – 5 m; 0.25 – 0.6 m/a) is revealed between 1993 and 2001 (figure 5.10). 

Perhaps this general thickening may result from errors in one of the DTMs. 
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5.2.7 Summary 

On the east flank of the Turtmann valley the surface kinematics of 33 rockglaciers was 

investigated on the basis of photogrammetric products (DTMs and orthoimages). Horizontal 

velocities were quantified by digital image matching in the CIAS program, while vertical changes 

were derived from comparison of multitemporal DTMs. The accuracy of the horizontal and 

vertical displacements is estimated to lie within a range of 2 pixels (RMS) or 5.5 cm/a (for 1975 - 

1993) and 12.5 cm/a (for 1993 – 2001) for the small-scale aerial photographs applied here. 

For most of the rockglaciers, the state of activity was determined with good confidence, since 

displacement for a large number of surface blocks was measured reliably. The horizontal surface 

velocityfields often display single lobes situated one over the other and terminating with steep 

fronts. Inactive lobes, indicating former activity, are found in the lower part of most rockglaciers. 

To the borders of the rockglaciers, the displacement often decreases abruptly due to lateral 

friction. In parts where horizontal creep compression takes place, the velocities are in general 

lower than in parts with extensional flow. Hence, spatial variations in horizontal velocities agree 

with certain patterns in surface topography 

For 18 of the 33 studied rockglaciers, a current activity was ascertained. Apart from rockglacier 

Brho2, which was investigated over the entire period (1975-2001), as well as rockglacier Grueo1, 

which was studied over four phases due to its extraordinary behaviour, the individual rockglaciers 

were monitored over two time periods (1975-1993 and 1993-2001) (table 5.7). Therefore, it was 

possible to deduce temporal changes in surface displacements. An overview of the temporal 

changes in the entire hanging valleys is illustrated in appendix 3. From the measurements it was 

ascertained, that the horizontal velocities on all active rockglaciers depict a distinct increase 

between 1993 and 2001, compared to the period 1975-1993. This signal is given in the mean 

values, while the median-values are slightly different and reveal, for instance, on rockglacier hufh 

a decrease in velocity (table 5.7). This difference results from the small number of measured 

blocks in the second period. In general, between 1993 and 2001 fewer blocks were matched on 

most rockglaciers because of snowcover in the orthoimage of 2001. Mean-, median- and 

maximum values of horizontal displacements as well as the acceleration are given in figure 5.91 – 

5.93, and emphasise the enormous differences between the two investigated periods. 

Rockglacier Grueo1 depicted extraordinarily large displacements over all investigated periods 

(table 5.8). Regarding the temporal changes, an increase in velocity is revealed in the second 

period (1981-1987), while a decrease occurs in the third period (1987-1993), followed by a slight 

increase between 1993 and 2001. 

 

Vertical changes showed less uniform signals on most rockglaciers. This is due to the diverse 

components influencing the mass- and the flow balance (cf., chapter 2.3.5.4). Because of its 

striking development, rockglacier Grueo1 affords a good opportunity to show vertical changes in 

geometry. The conspicuous increase in thickness at the rockglacier front (up to 20 m over the 

period 1993-2001) results from the advance of the feature. In parallel, a thinning in the same 

order of magnitude is revealed in the centre of the permafrost body. Thus, an enormous transfer 
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of mass is depicted by the vertical changes. On other rockglaciers vertical thinning or thickening 

occurred more individually on single lobes. 

 

Table 5.7: Comparison of horizontal velocities (mean, median, maximum) between 1975-1993 
and 1993-2001 of all investigated active rockglaciers. 

 1975 - 1993 1993 - 2001  

Nr. Name of 
rockgl. 

Number 
of 

measured 
blocks 

Mean 
velocity 
(m/a) 

Median 
velocity 
(m/a) 

Max 
velocity 
(m/a) 

Number of 
measured 

blocks 

Mean 
velocity 
(m/a) 

Median 
velocity 
(m/a) 

Max 
velocity 
(m/a) 

Acceleration 
mean/median 

1 Pibw 348 0.09 0.08 1.21 97 0.14 0.11 0.65 55% / 37 % 

2 Pipp1 986 0.18 0.09 1.19 939 0.3 0.18 2.19 66% / 100 % 

6 Brho1 1185 0.15 0.05 1.21 737 0.19 0.07 2.0 26 % / 40 % 

8 Brle 97 0.15 0.1 1.14 172 0.2 0.17 1.83 33 % / 70 % 

11 Hufh 432 0.21 0.22 0.85 27 0.49 0.19 1.92 133 % / -14 % 

12 Hujp 403 0.07 0.06 0.9 323 0.27 0.22 1.8 286 % / 266 % 

15 Huhh1 515 0.24 0.23 1.48 339 0.5 0.32 2.83 108 % / 39 % 

16 Huhh2 458 0.04 0.03 0.13 375 0.08 0.06 1.78 100 % / 100 % 

17 Huhh3 529 0.16 0.14 0.84 573 0.55 0.43 2.55 244 % / 207 % 

22 Grueo2 701 0.1 0.09 0.7 100 0.49 0.35 1.88 390 % / 289 % 

24 Grueo4 525 0.05 0.04 0.6 545 0.11 0.09 2.34 120 % / 125 % 

26 Grueo6 689 0.08 0.04 0.87 140 0.27 0.09 2.09 238 % / 125 % 

27 Grueo7 500 0.09 0.07 1.12 329 0.25 0.18 1.89 178 % / 157 % 

31 Niggel1 107 0.05 0.04 0.34 177 0.1 0.09 0.71 100 % / 125 % 

32 Niggel2 696 0.08 0.06 0.76 1144 0.11 0.1 2.15 38 % / 67 % 

40 Chu1 316 0.26 0.14 1.4 197 0.41 0.25 2.26 58 % / 79 % 

 

 

Table 5.8: Comparison of horizontal velocities (mean, median, maximum) of rockglacier Grueo1 
over four investigated periods. 

 1975 - 1981 1981 - 1987  

Nr. 
Name of 

rockgl. 

Number 

of 

measured 

blocks 

Mean 

velocity 

(m/a) 

Median 

velocity 

(m/a) 

Max 

velocity 

(m/a) 

Number of 

measured 

blocks 

Mean 

velocity 

(m/a) 

Median 

velocity 

(m/a) 

Max 

velocity 

(m/a) 

Acceleration 

mean/median 

21 Grueo1 420 1.34 1.24 5.07 503 1.67 1.83 4.83 25 % / 48 % 

 1987 - 1993 1993 - 2001  

21 Grueo1 688 1.6 1.61 4.82 509 1.76 1.76 3.76 10 % / 10 % 

 



Results   153

0

0.1

0.2

0.3

0.4

0.5

0.6

Pibw
Pipp

1

Brh
o1 Brle

Huf
h

Hujp

Huh
h1

Huh
h2

Huh
h3

Gru
eo

2

Gru
eo

4

Gru
eo

6

Gru
eo

7

Nigg
el1

Nigg
el2

Chu
1

rockglacier ID

m
ea

n
 a

n
n

u
al

 h
o

ri
zo

n
ta

l d
is

p
la

ce
m

en
t 

(m
/a

)
Mean velocity (1975-1993)

Mean velocity (1993-2001)

 
Figure 5.91: Comparison of mean annual horizontal velocities (m/a) between 1975-1993 and 
1993-2001. 
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Figure 5.92: Comparison of median values of annual horizontal velocities (m/a) between 1975-
1993 and 1993-2001. 
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Figure 5.93: Comparison of maximum annual horizontal velocities (m/a) between 1975-1993 
and 1993-2001. 
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5.3 Terrestrial geodetic survey 

Two rockglaciers in the Hungerlitälli were monitored by terrestrial geodetic survey during the 

years 2001 to 2004. The measurement campaign depended on suitable weather conditions and 

thus was not conducted at a certain time. But, the survey at approximately annual intervals was 

strived for. Additionally, seasonal differences in rockglacier kinematics were documented in some 

years by a further survey in early summer (June or July, depending on the duration of the snow 

cover). A measurement during winter was not feasible due to snow cover and avalanches. 

The ‘annual’ data are not really comparable since they cover not a whole year (the period is 

mostly reduced to about 3 weeks) and since they cover slightly different periods of each year. 

Thus, the interpretation of similarities and differences in the velocities needs to be conducted 

carefully. At least the data gives an impression of the magnitude of the displacements as well as 

their spatial pattern. 

All velocities measured on the rockglaciers are clearly beyond the range of uncertainty (2-3 cm) of 

the method (see chapter 3.3). Thus they show significant displacements and ascertain the activity 

of the features. 

 

5.3.1 Rockglacier Huhh1 

For rockglacier Huhh1, data on horizontal and vertical changes as well as the direction of the 

displacement are summarised in table 5.9 for the periods 2001/2002 and 2002/2003 while the 

following table 5.10 contains the data of the year 2003/2004 and includes ‘seasonal’ values of the 

early summer 2003 (5.7.-10.8.2003). Velocities of the entire period (2001 – 2004) are compiled in 

table 5.11 by the calculated changes in coordinates (left columns) and for comparison by simple 

addition of the values in tables 5.9 and 5.10 (right columns). 

 

The survey was started in September 2001 with 15 prominent blocks on the lower half of the 

rockglacier and was expanded in the following summer (August 2002). At that time, two blocks 

(106 and 114) were still covered by snow. Therefore, values are missing in table 5.9. 

As depicted in figure 5.94, where the magnitude of movement is illustrated both by the length 

and the colour of the vector, the first data (10.9.2001 – 30.8.2002) show small displacements 

(0.05 – 0.12 m) on the orographic right side of the lower lobe while the velocities on the left part 

are significantly higher (0.38 – 0.48 m). Above the second steep front highest movements (0.62 – 

0.84 m) occur. The pattern described is additionally emphasised by the vertical changes (figure 

5.95), which show positive values between 0.7 and 1.0 m on the upper lobe and between 1.0 and 

1.2 m on the lower lobe. Thus, the surface topography with its different lobes is clearly reflected 

by the respective horizontal and vertical velocities. 
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Table 5.9: Velocities of blocks at the surface of rockglacier HuHH1 in the period 2001/2002 
and 2002/2003. 

  10.09.2001 - 30.08.2002 30.08.2002 - 10.08.2003 

Block direction 

horizontal change 

(m) 

vertical change 

(m) direction 

horizontal change 

(m) 

vertical change 

(m) 

101 45.978 0.099 1.169 217.557 0.451 0.125 

102 35.653 0.119 1.178 293.946 0.079 0.123 

103 -13.665 0.056 1.211 195.995 0.047 0.152 

104 62.606 0.387 1.105 276.368 0.392 0.049 

105 54.734 0.484 1.113 266.793 0.508 0.019 

106             

107 53.741 0.619 0.819 134.181 1.735 -0.097 

108 52.827 0.623 0.817 103.716 2.583 -0.417 

109 54.131 0.762 0.855 262.330 0.868 -0.311 

110 54.571 0.756 0.826 260.600 0.838 -0.298 

111 65.769 0.839 0.788 269.926 0.985 -0.331 

112 63.355 0.776 0.800 209.603 3.515 -1.426 

113 63.692 0.771 0.781 179.136 2.905 0.851 

114             

115 66.840 0.458 0.988 282.152 0.475 -0.099 

116       277.714 0.328 -0.070 

117       291.948 1.037 -0.433 

118       285.879 0.917 -0.306 

119       283.312 0.854 -0.352 

120       286.668 0.889 -0.490 

121       289.972 0.566 -0.306 

122       250.411 1.406 -0.212 

123       110.634 0.607 -0.324 

124       132.693 0.228 -0.009 

125       243.033 2.026 -0.306 
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Table 5.10: Velocities of blocks at the surface of rockglacier HuHH1 in the period 2003/2004 
and between July and August of 2003. 

  10.08.2003 - 31.07.2004  5.7.2003 - 10.8.2003 

Block direction 

horizontal change 

(m) 

vertical change 

(m)  direction 

horizontal change 

(m) 

vertical change 

(m) 

101 191.332 0.477 0.042  269.593 0.896 -0.200 

102 272.829 0.130 0.035  294.427 0.812 -0.198 

103 279.115 0.015 0.115  268.395 0.682 -0.209 

104 268.653 0.487 -0.052  288.086 1.070 -0.208 

105 259.992 0.585 -0.072  285.528 1.251 -0.224 

106 262.390 0.662 -1.969  281.512 1.233 0.499 

107 262.409 2.247 -2.147  265.886 1.265 -0.247 

108 256.186 0.796 -0.407  266.442 1.210 -0.237 

109 257.537 0.960 -0.400  256.720 1.349 -0.337 

110 253.571 3.611 -0.436  250.724 1.303 -0.292 

111 255.641 2.405 -0.523  246.688 1.289 -0.270 

112 267.536 1.030 -0.455  194.728 2.946 -7.653 

113 268.780 0.990 -0.438  174.957 2.473 0.891 

114 201.209 0.816 -0.478  242.994 2.548 -0.258 

115 279.167 0.483 -0.191  239.263 0.920 -2.286 

116 279.947 0.337 -0.187  228.593 1.056 -2.660 

117 294.727 1.250 -0.645  226.708 1.307 -0.311 

118 286.807 1.218 -0.558  225.745 1.362 -0.250 

119 282.696 1.011 -0.580  228.438 1.397 -0.282 

120 285.204 1.078 -0.672  234.498 1.480 -0.363 

121 291.171 0.626 -0.447  103.451 3.766 -0.324 

122 209.541 1.209 -0.300  236.648 2.785 -0.352 

123 105.966 0.606 -0.424  243.990 1.706 -5.980 

124 145.813 0.177 -0.062  234.591 1.650 -0.292 

125 201.846 1.969 -0.397  228.179 3.395 -0.475 
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Figure 5.94: Horizontal surface velocity (m) of blocks on rockglacier Huhh1 between 10.9.2001 
and 30.8.2002. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.95: Vertical change (m) of blocks on rockglacier Huhh1 between 10.9.2001 and 
30.8.2002. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.96: Horizontal surface velocity (m) of blocks on rockglacier Huhh1 between 30.8.2002 
and 10.8.2003. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.97: Vertical change (m) of blocks on rockglacier Huhh1 between 30.8.2002 and 
10.8.2003. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.98: Horizontal surface velocity (m) of blocks on rockglacier Huhh1 between 10.8.2003 
and 31.7.2004. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.99: Vertical change (m) of blocks on rockglacier Huhh1 between 10.8.2003 and 
31.7.2004. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Regarding the data of the second year (30.8.2002 – 10.8.2003) (figure 5.96), the horizontal 

displacements on the lower lobe indicate similar values as before, apart from block 101 which 

accelerated from 0.1 to 0.45 m. On the upper lobe, the velocities are very high (1.0 – 3.5 m) at the 

front and between 0.8 and 1.0 m at the centre. At the orographic right margin of the second 

front, the velocities are clearly smaller (0.3 – 0.5 m). The vertical changes (figure 5.97) depict a 

slight increase in altitude (0 – 0.3 m) on the lower lobe and a uniform decrease (mostly between -

0.2 and -0.5 m) on the upper lobe. 

The results of the third year (10.8.2003 – 31.7.2004) reveal a very similar pattern to the previous 

year, with slightly higher velocities in the rooting zone (figure 5.98). Against that, differences 

appear in the vertical displacements (figure 5.99). The orographic right side of the lower lobe 

shows positive values up to 0.2 m. The rest of the rockglacier depicts uniform negative values 

(between -0.05 and -0.5 m) with more significant losses (-0.5 - -1.0 m) in the orographic right side 

of the rooting zone. At the front of the upper lobe two blocks show a reduction in altitude at 

about -2.0 m. 

In addition to the ‘annual’ velocities the total changes between 2001 and 2004 were measured and 

were compared to the added values of the single years (table 5.11). By the combined analysis of 

horizontal and vertical changes, the previously described pattern is confirmed. On the lower lobe 

the horizontal velocities are small, especially on the orographic right side, and they are 

accompanied by a vertical thickening between 1.0 and 1.5 m. On the upper lobe the horizontal 

displacements are significantly higher, apart from blocks at the rockglacier margin, and reveal 

vertical thinning, which is at least partly due to the horizontal movement parallel to the surface. 

Comparing the measured with the added values, most blocks reach a good agreement. Deviations 

in horizontal velocities result from changes in the direction of the movement over the years. 

Thus, the added values overestimate the total displacement in some cases. 
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Table 5.11: Measured velocities of blocks at the surface of rockglacier HuHH1 for the entire 
period 2001/2004 (only for the blocks measured in 2001) and addition of the single periods (as 
check). 

 10.09.2001 - 31.7.2004 check (t1+t2+t3) 

Block direction 
horizontal change 

(m) 
vertical change 

(m) 
horizontal change 

(m) 
vertical change 

(m) 
101 291.224 0.255 1.336 1.027 1.336 

102 264.581 0.306 1.336 0.327 1.336 

103 223.618 0.014 1.478 0.118 1.478 

104 269.185 1.262 1.102 1.267 1.102 

105 260.578 1.573 1.060 1.577 1.060 

106 264.367 1.710 -1.117 0.662 -1.969 

107 220.235 2.685 -1.425 4.602 -1.425 

108 286.679 3.734 -0.007 4.002 -0.007 

109 258.139 2.586 0.144 2.590 0.144 

110 254.842 5.201 0.092 5.205 0.092 

111 260.982 4.209 -0.066 4.229 -0.066 

112 228.075 4.866 -1.081 5.321 -1.081 

113 141.367 3.087 1.194 4.665 1.194 

114 270.848 2.520 0.103 0.816 -0.478 

115 276.191 1.407 0.698 1.415 0.698 

116       0.666 -0.257 

117       2.287 -1.078 

118       2.135 -0.864 

119       1.865 -0.932 

120       1.967 -1.162 

121       1.192 -0.753 

122       2.615 -0.512 

123       1.213 -0.748 

124       0.405 -0.071 

125       3.995 -0.703 

 
 
On rockglacier Huhh1 an additional survey allowed the calculation of displacements during one 

month (5.7.-10.8.) in the summer of 2003 (table 5.10). The results show overall high horizontal 

velocities (0.7 – 3.7 m) exceeding the ‘annual’ displacements (30.8.2002 – 10.8.2003). The vertical 

changes reveal a general lowering of the surface. Such high velocities are quite possible; especially 

in the summer of 2003 which was extraordinarily warm. But, since the high values are not 

reflected in the ‘annual’ velocities, this phenomenon is hard to explain. Either displacements into 

an opposite direction occur in the rest of the year (which is unlikely, since this would be an 

upslope movement) or, an error occurred during the survey in July 2003 (this was checked and 

can be excluded). 



RESULTS   166

5.3.2 Rockglacier Huhh3 

The ‘annual’ data on direction, horizontal and vertical change of blocks on rockglacier Huhh3 are 

compiled in table 5.12 and visualised in figures 5.100 – 5.103. In order to check the data, 

corresponding values of the entire period (2.09.2002 – 1.08.2004) as well as the added values of 

t1 (2.09.2002 – 13.08.2003) and t2 (13.08.2003 – 1.08.2004) are given in table 5.13. 

 

Table 5.12: Velocities of blocks at the surface of rockglacier Huhh3 between 2002-2003 and 
2003-2004. 

  2.09.2002 - 13.08.2003 13.08.2003 - 1.08.2004 

Block direction 
horizontal change 

(m) 
vertical change 

(m) direction 
horizontal change 

(m) 
vertical change 

(m) 
201 274.523 0.275 1.242 261.768 0.223 0.300 

202 259.026 0.130 1.224 195.298 0.094 0.275 

203 256.160 0.271 1.176 246.652 0.311 0.178 

204 286.438 0.364 1.284 241.933 0.482 0.155 

205 269.553 0.524 1.072 262.645 0.627 0.059 

206 168.282 1.700 0.878 264.313 1.234 -0.207 

207 264.277 1.208 0.562 267.075 1.563 -0.631 

208 268.822 0.963 0.721       

209 198.663 1.375 1.064 159.115 1.664 0.017 

210 238.880 1.111 1.000 241.453 1.450 -0.098 

211 267.971 1.630 0.827 270.823 2.163 -0.375 

212 265.003 0.551 0.991 277.841 0.756 -0.104 

213 253.173 1.124 0.792 261.910 1.654 -0.346 

214 252.769 1.634 0.455 256.970 2.236 -0.794 

215 252.211 1.700 0.412 256.995 2.359 -0.844 

216 249.936 1.722 0.439 258.957 2.333 -0.870 

217 236.872 0.601 1.015 263.089 0.301 0.175 

218 248.767 1.649 0.251 256.467 2.281 -1.029 

219 250.786 1.863 0.275 257.464 2.560 -1.090 

220 245.978 1.830 0.284 251.643 2.587 -1.045 

221 239.051 1.469 0.276 253.486 2.116 -1.244 

222 230.326 0.667 0.782 261.809 1.530 -1.087 

223 248.800 1.243 0.265 246.049 3.948 -3.749 

224 213.604 0.306 1.120 110.163 0.359 0.085 

225 218.262 0.275 1.169 294.652 0.286 0.140 

226 200.509 0.259 1.208 295.701 0.207 0.177 

227 191.207 0.247 1.208 103.669 0.156 0.257 

228 183.271 0.285 1.229 116.473 0.176 0.261 

229 200.828 0.239 1.207 278.941 0.176 0.202 

230 207.352 0.208 1.137 281.621 0.172 0.250 

231 213.117 0.205 1.178 100.370 0.172 0.194 
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Figure 5.100: Horizontal surface velocity (m) on rockglacier Huhh3 between 2.9.2002 and 
13.8.2003. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
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Figure 5.101: Horizontal surface velocity (m) on rockglacier Huhh3 between 13.8.2003 and 
1.8.2004. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by 
swisstopo). 
 

 

The horizontal and vertical changes measured on rockglacier Huhh3 show great spatio-temporal 

variations within the considered period. The observation points near the front (blocks 201 – 205) 

and those in the rooting zone (224 - 231) depict horizontal changes between 0.1 and 0.6 m in 

both years. Against that, the blocks in the centre of the rockglacier mostly show horizontal 

displacements between 1.0 and 1.8 m in the year 2002/2003 and about 2.0 m and up to 3.9 m in 

the year 2003/2004 (figures 5.100, 5.101). In general, the displacements follow the direction of 

the slope with some deviations in the rooting zone at the border of the cirque, where velocities 

are low. 
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Regarding the vertical changes, a similar pattern is given. In the period 2002/2003 (figure 5.102) 

the blocks in the lower part of the rockglacier (201 – 210) indicate a thickening of about 1.0 m, 

while the increase is much lower (0.2 – 0.4 m) in the centre of the rockglacier. In the rooting 

zone (224 – 231) again a distinct thickening (1.0 – 1.3 m) is quantified. In the year 2003/2004 this 

division into three fields remains, but with totally different values (figure 5.103). A slight 

thickening of about 0.05 – 0.3 m occurs in the lower part and in the rooting zone, while the 

blocks in the centre show a vertical thinning which is very distinct (-1.0 - -3.7 m) in the area 

below the cirque, resulting from the high horizontal velocities. In total (2002 - 2004) the upper 

and the lower part of the rockglacier show horizontal compression, while the middle part depicts 

extensional creep (table 5.13). This pattern is additionally supported by the horizontal velocities 

of the whole period (2002 – 2004). Like in the single years, values are low at the front and on the 

lower lobe as well as in the rooting zone. Against that, values of 1.2 m to more than 5 m are 

reached in the centre of the rockglacier. Comparisons of measured displacements and added data 

of the single years show good agreements (table 5.13). 

 
Figure 5.102: Vertical change (m) on rockglacier Huhh3 between 2.9.2002 and 13.8.2003. 
Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by swisstopo). 
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Figure 5.103: Vertical change (m) on rockglacier Huhh3 between 13.8.2003 and 1.8.2004. 
Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by swisstopo). 
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Table 5.13: Velocities of blocks on Huhh3 over the whole period 2002-2004 and for comparison 
check of horizontal and vertical changes by addition of the values 2002-2003 (t1) and 2003-2004 
(t2). 

  2.09.2002 - 1.08.2004 check: t1 + t2 
Block direction horizontal change (m) vertical change (m) horizontal change (m) vertical change (m) 

201 268.822 0.495 1.542 0.498 1.542 

202 232.692 0.197 1.499 0.224 1.499 

203 251.095 0.580 1.354 0.582 1.354 

204 260.961 0.796 1.439 0.846 1.439 

205 265.803 1.149 1.131 1.151 1.131 

206 126.954 2.037 0.671 2.933 0.671 

207 265.852 2.771 -0.069 2.772 -0.069 

208           

209 176.937 2.895 1.081 3.039 1.081 

210 240.351 2.560 0.902 2.561 0.902 

211 269.593 3.792 0.452 3.793 0.452 

212 272.431 1.301 0.887 1.308 0.887 

213 258.375 2.772 0.446 2.778 0.446 

214 255.191 3.868 -0.339 3.870 -0.339 

215 254.977 4.056 -0.432 4.059 -0.432 

216 255.138 4.045 -0.431 4.055 -0.431 

217 245.581 0.885 1.190 0.902 1.190 

218 253.230 3.922 -0.778 3.929 -0.778 

219 254.653 4.417 -0.815 4.423 -0.815 

220 249.292 4.413 -0.761 4.417 -0.761 

221 247.589 3.563 -0.968 3.585 -0.968 

222 252.359 2.141 -0.305 2.198 -0.305 

223 246.688 5.190 -3.484 5.191 -3.484 

224 266.650 0.484 1.205 0.665 1.205 

225 257.292 0.463 1.309 0.561 1.309 

226 241.613 0.344 1.385 0.466 1.385 

227 230.377 0.266 1.465 0.404 1.465 

228 225.151 0.249 1.490 0.461 1.490 

229 233.029 0.341 1.409 0.415 1.409 

230 240.475 0.318 1.387 0.381 1.387 

231 252.152 0.293 1.372 0.377 1.372 

 

 

As on the other rockglacier, an additional survey in July 2003 enabled the deduction of ‘summer’ 

- movement rates for a five-week period (8.7. – 13.8.2003). Horizontal velocities up to 0.15 m 

occur on the lowermost lobe and at the border of the cirque while the rest of the rockglacier 

depicts velocities between 0.15 and 0.9 m (table 5.14, figure 5.104). The comparison with the 

‘annual’ horizontal velocities (2.9.2002 – 13.8.2003) reveals contributions mostly between 13 and 

21 % (table 5.14). Some blocks at the orographic left front (209, 210) and in the upper part (223 

– 230) show contributions of 46 - 80 % to the annual displacement. The 190 % value is assumed 
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to be incorrect. If the rockglacier would creep with a steady movement, the contributions of a 

five-week period would lie at about 10 %. Thus, at least at the centre of the rockglacier the 

presented results indicate intraannual variations with maximum velocities during summer. 

The vertical displacements show a general lowering of the surface with values between -0.1 and -

0.3 m in the marginal areas and up to -0.8 m in the central part of the rockglacier (figure 5.105). 

Since the ‘annual’ values depict a general rise of the surface, the main vertical movements seem to 

occur during another period of the year. 

 

Table 5.14: Direction, horizontal and vertical change of blocks on Huhh3 between 8.07. and 
13.08.2003 as well as contribution to the ‘annual’ displacement (2.9.2002 – 13.8.2003) in percent. 

  8.07.2003 - 13.08.2003  % of period 2.9.02-13.8.03 

Block direction horizontal change (m) vertical change (m) horizontal change 

201 128.506 0.056 -0.257 20.36 

202 134.449 0.019 -0.238 14.62 

203 102.456 0.027 -0.258 9.96 

204 157.435 0.130 -0.183 35.71 

205 270.509 0.072 -0.274 13.74 

206 274.687 0.428 -0.314 25.18 

207 260.254 0.165 -0.343 13.66 

208 255.377 0.131 -0.798 13.60 

209 178.851 0.654 -0.27 47.56 

210 271.386 0.893 -0.297 80.38 

211 254.842 0.240 -0.312 14.72 

212 216.372 0.118 -0.297 21.42 

213 231.669 0.199 -0.305 17.70 

214 238.965 0.266 -0.344 16.28 

215 242.722 0.273 -0.368 16.06 

216 230.527 0.314 -0.352 18.23 

217         

218 236.334 0.279 -0.779 16.92 

219 237.580 0.306 -0.402 16.43 

220 230.477 0.322 -0.391 17.60 

221 223.894 0.295 -0.41 20.10 

222 211.646 0.208 -0.349 31.18 

223 235.009 0.576 -0.676 46.34 

224 185.065 0.241 -0.298 78.76 

225 194.160 0.153 -0.267 55.64 

226 180.805 0.154 -0.246 59.46 

227 174.795 0.164 -0.258 66.40 

228 240.185 0.542 -0.247 190.18 

229 183.093 0.114 -0.27 47.70 

230 181.387 0.097 -0.3 46.63 

231         
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Figure 5.104: Horizontal surface velocity (m) on rockglacier Huhh3 between 8.7. and 13.8.2003. 
Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by swisstopo). 
 

 



RESULTS   174

 
Figure 5.105: Vertical change (m) on rockglacier Huhh3 between 8.7. and 13.8.2003. Underlying 
orthophoto of 20.08.1975 (flight-line 22, aerial photographs taken by swisstopo). 
 

 

5.3.3 Summary 

The compiled high-resolution data on rockglacier kinematics derived from terrestrial geodetic 

survey contain valuable information on spatio-temporal variations. Distinct activity was deduced 

on the rockglaciers Huhh1 and Huhh3, even on the lowermost lobes which appeared inactive. 

Interannual variations were investigated on both rockglaciers and indicated a general acceleration 

of horizontal velocities in the last years. This speed-up combined with a vertical thinning is most 

conspicuous in the central part of the rockglaciers. 

Regarding intraannual variations in both horizontal and vertical velocities, the results from 

Huhh3 showed different components. While a large part of the annual horizontal displacement 
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occurred during summer, the majority of the vertical movement seems to happen in another 

period of the year. 

On both rockglaciers the surface topography is clearly reflected in the pattern of horizontal and 

vertical velocities. Additionally, a strong link between horizontal and vertical displacements was 

observed. This is due to the general downslope movement of the blocks. Thus, a vertical 

component (normally negative) is automatically associated with the horizontal displacement. 

Additionally, great influence is given by the gradient. On gentle slopes (e.g., on the lower lobes of 

the rockglaciers or in the rooting zone at the cirque) the horizontal velocities are generally lower 

and the vertical component is mostly positive due to compression. Against that, horizontal 

velocities are higher on steep slopes and cause vertical thinning (extension). This pattern is clearly 

visible on the investigated rockglaciers. But, on both features an overall thickening was quantified 

in the corresponding first year of the measurement (2001/2002 on Huhh1, 2002/2003 on 

Huhh3). This phenomenon is not easy to explain but may be influenced by the timing of the first 

survey in September. If thinning is at least partially influenced by loss of mass, e.g. melting of ice, 

this occurs within a very short period in summer (probably in August or September). Therefore, 

if melting occurred before the first survey (September) and after the second survey (August of 

following year) it was left out and was not quantified. In the following years the survey was 

carried out earlier and thickening was quantified on the lower lobes while the main part of the 

permafrost bodies depicted thinning. Another reason for the thickening in the first periods may 

be the overall lower horizontal velocity in comparison to the following years. But, since 

movement takes place it must have been associated by at least a minimal decrease in height 

resulting from the before mentioned downslope movement. Thus, the argumentation is weak. 

Especially on rockglacier Huhh3 the thinning in the upper part is very distinct in the year 

2003/2004. The inspection in the field revealed very loose blocks in this area and the 

development of a spoon-like depression. Thus, the material is transported with high movement 

rates while the creeping mass loses connection to the debris supply from the cirque. Melting of 

ice may play an additional role by the thinning. 

This dynamic interpretation of the rockglacier kinematics quantified in the years 2001 – 2004 

gives an interesting insight but is unsatisfactory so far. Due to the shortness of the monitoring, 

inter- and intraannual variations are difficult to analyse and extraordinary values are hard to 

differentiate from ‘normal’ rates. Therefore, the survey is to be continued. 
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5.4 Dendrogeomorphology 

5.4.1 Reaction wood in Pinus cembra stem 

At the front of rockglacier Huhh3, a Pinus cembra tree was cropped in 2000 (cf., Roer 2001). The 

tree, which had an age of 34 years, showed distinct reaction wood indicating the tilting of the 

stem (figure 5.106). After a stable growing between 1966 and 1969, compression wood, which is 

directed upslope, occurred in 1970 for the first time. From 1990 it appeared more distinct and in 

the outermost rings (1997 – 2000) it depicted major influences. In addition, the occurrence of 

resin ducts in the late wood of the rings 1987, 1988, 1990 as well as 1997-1999 indicated strong 

mechanical stresses on the stem in the end of the growing season (Schweingruber 1996). 

The observations include different signals: on the one hand, the front of the rockglacier had to be 

rather stable, due to the growing of the tree, while on the other hand, the data revealed 

mechanical stresses resulting from ground movement. In comparison with the photogrammetric 

results (figures 5.46, 5.47), the change in horizontal velocity is even indicated in the compression 

wood. Thus, the speed-up on rockglacier Huhh3 probably started in 1990 and appeared to be 

very distinct between 1997 and 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.106: Compression wood in Pinus cembra stem and inferred movement of the ground. 
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5.4.2 Anatomical variations in Salix helvetica roots 

In a first phase, the micro photos taken from the different root micro-sections of the eight Salix 
helvetica shrubs were analysed for variations observable visually. No obvious differences in ring 

width variations between the samples from the unstressed, inactive rockglacier lobe (Ref) and the 

stressed, active lobe (BG) were found. This also applies to differences in tracheid structure of the 

ground tissue, which is mainly formed to stabilize the plant. But comparing the vessels within the 

rings of the stressed and unstressed samples revealed general differences in size (figure 5.107). 

The vessels in roots taken from the inactive rockglacier tend to be larger than the ones from the 

stressed site. 

To analyse this visual impression further, vessel sizes of all micro-sections (stressed and 

unstressed) were quantified using the image analysis program WinCELL. First results showed 

that it was possible to apply an automated, comparable measurement of vessel sizes within the 

rings of the Salix helvetica roots. In addition, a filter which excluded all cells with an area smaller 

than 0.0002 mm2 was applied. These cells are defined to be tracheids, cells of the ground tissue of 

the rings. All cells larger than 0.0002 mm2 were identified as vessels. As a result, an average of 

1000 vessels was measured per micro-section. As a consequence from the filtering technique, the 

data do not have a normal but skewed distribution (compare figure 5.108). 

In order to analyse the data from table 5.15 visually, box-plots are presented (figure 5.108), that 

is, for each measurement the median, maximum and minimum values as well as their statistical 

spread are determined (table 5.15). Within the box plot diagrams, the scale was manually adjusted 

to a maximum value of 0.004 mm2 for better visualisation. 

A detailed quality control of the cell measurements showed, that maximum values up to 0.0098 

mm2 for single vessels were caused by errors in defining cell wall boundaries of vessels within the 

micro photos. Nevertheless, maximum sizes of about 0.006 mm2 for single vessels were proven 

as correct. 

The vessel-size measurements confirm the visual impression. Although no obvious differences in 

ring-width variation are revealed, the size of vessels in stressed roots from the active rockglacier 

compared to those from roots of the inactive lobe is reduced. The calculated median for vessel 

sizes in roots of all plants taken from the active part are in average 60% lower than the values in 

roots of the inactive rockglacier. Even the statistical spread of about 75% to the related median 

values is lower in each of these plants (yellow boxes in figure 5.108). 

The box-plots of the averaged data (diagram (C) in figure 5.108) are overlapping in the upper 

parts of the stressed roots and the lower parts of the unstressed roots, hence, the differences are 

not statistically significant. Nevertheless, the visual differences are still obvious. Vessels, formed 

to support the plant by transporting nutrients, are known to be variable in size (at least in stems) 

due to environmental stress (Kozlowski 1979). Although the difference is not statistically 

significant in this dataset, the findings fit to physiological patterns described for vessels in stems 

of trees (Lindorf 1994), but this has not been described for roots of shrubs yet. 

As the most obvious reason for the differences in vessel size growth stresses in the ground are 

assumed, since the same topographic and climatic conditions exist at both sites. Thus, either 
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temperature conditions in the permafrost body or mechanical stresses due to rockglacier creep 

caused the changes in the wood-anatomy. Obviously, this argumentation is weak and further 

analyses need to be conducted. But the first-time application of this technique in rockglacier 

studies appears to be feasible and the preliminary results are promising. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.107: Micro sections of Salix helvetica roots from an inactive rockglacier (Ref) (A) and an 
active rockglacier (BG) (B); Black arrows indicate vessels (magnification: 40x). The differences in 
size of the vessels of unstressed (A) and stressed (B) roots are remarkable. 
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Table 5.15: Median, maximum, minimum values of vessel sizes and their statistical spread (Salix 
helvetica roots); inactive (Ref) and active (BG) rockglacier. 

 Shrub ID (Ref) 
  Isa1_W09_1 Isa1_W09_2 Isa2a_W10_2 Isa2_W15_1 Average_Ref 
Median 0.0014 0.0015 0.0009 0.0012 0.00125 

Upper Quant. 0.0023 0.0029 0.0016 0.0022 0.00225 

Max 0.0059 0.0098 0.0063 0.0064 0.0071 

Min 0.0002 0.0002 0.0002 0.0002 0.0002 

Lower Quant. 0.0006 0.0005 0.0004 0.0005 0.0005 

 Shrub ID (BG) 
  Isa_W02_1 Isa_W03_1 Isa_W03_2 Isa_W04 Average_BG 
Median 0.0005 0.0006 0.00055 0.0006 0.0005625 

Upper Quant. 0.0007 0.001 0.0009 0.0009 0.000875 

Max 0.0072 0.0043 0.0053 0.0056 0.0056 

Min 0.0002 0.0002 0.0002 0.0002 0.0002 

Lower Quant. 0.0003 0.0004 0.0003 0.0003 0.000325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.108: Boxplot visualisation of vessel size data (compare table 5.15): (A) active; (B) 
inactive rockglacier; (C) average values of vessel sizes (A) and (B). The skewed distribution is due 
to the exclusion of all cells < 0.0002 mm2 (tracheids), the scale was adjusted to a max. value of 
0.004 mm2 for better visualisation. 
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5.5 Temperature monitoring: 

A temperature monitoring was started in 2001 using Universal Temperature Loggers (UTL) (cf., 

Krummenacher et al. 1998). About 45 thermistors were placed in one hanging valley 

(Hungerlitälli) in various situations (on rockglaciers and surrounding terrain) between 2500 and 

2780 m a.s.l. The data serve to determine the distribution of permafrost by the calculation of 

Mean Annual Ground Surface Temperatures (MAGST) as well as the interpretation of the 

Bottom Temperature of the winter Snow cover (BTS) (cf., Nyenhuis 2005) and to compare 

temperatures on different rockglaciers. 

 

5.5.1 Active rockglacier Huhh1 

 
Figure 5.109: Bottom Temperatures of the winter Snow cover (BTS) on rockglacier Huhh1 in 
three successive years. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs 
taken by swisstopo). 
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As depicted in figure 5.109, the monitored BTS values on rockglacier Huhh1 were quite steady 

over the years. All thermistors on the upper lobe and at the terminal front (orographic left side) 

indicate clear permafrost temperatures (< -3°C), while clearly no-permafrost (temperatures > -

2°C) is monitored in the orographic right part of the lower lobe and in the furrow beside the 

rockglacier. At the front, two loggers measured possible permafrost in the winter 2002/2003, 

while it was probable in the other winters. Of interest is the front of the upper lobe; at its 

orographic left side, permafrost was probable in the first winter (2001/2002), whereas it was only 

possible in the following winters. 

 

5.5.2 Active rockglacier Huhh3 

 
Figure 5.110: Bottom Temperatures of the winter Snow cover (BTS) on rockglacier Huhh3 in 
three successive years. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial photographs 
taken by swisstopo). 
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On rockglacier Huhh3, all thermistors revealed clear permafrost temperatures over the 

monitoring period, even on the lower lobes which are mapped as inactive (figure 5.110). In the 

last winter (2003/2004) one exception is observed near the active front, where the BTS value was 

only -2.3°C (possible). 

 

5.5.3 Inactive rockglacier Hurh2 

 
Figure 5.111: Bottom Temperatures of the winter Snow cover (BTS) on the inactiverockglacier 
Hurh2 in three successive years. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial 
photographs taken by swisstopo). 
 

On rockglacier Hurh2, bottom temperatures of the snow cover between -3° and -2°C (possible 

permafrost) were measured in the lower part of the tongue (figure 5.111). Thus, the values 

confirm the inactivity of the feature. Against that, in the rooting zone and thus in the vicinity to 

the terminus of Hurh1, the BTS values are clearly deeper and display probable permafrost 

conditions. 

 

5.5.4 Inactive rockglacier Huhh2 

Figure 5.112 shows, that on the inactive rockglacier Huhh2 only a few data loggers were placed in 

the winters 2002/2003 and 2003/2004. In most cases they showed a probable permafrost 

occurrence, apart from one thermistor which depicted a BTS value of – 2.8°C in the winter 

2003/2004 and thus indicate only possible permafrost. 
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Figure 5.112: Bottom Temperatures of the winter Snow cover (BTS) on the inactive rockglacier 
Huhh2 in three successive years. Underlying orthophoto of 20.08.1975 (flight-line 22, aerial 
photographs taken by swisstopo). 
 

 

5.5.5 Summary 

The thermistor data depicted permafrost conditions on all investigated rockglaciers over a period 

of three winters (2001 – 2004), independent of their state of activity. Probably this results from 

the distribution of coarse debris, which favours the penetration of deep temperatures into the 

ground. Nyenhuis (2005) ascertained this assumption by a comparison of BTS values on and 

beyond rockglaciers. Thus, areas with small-grained material (e.g., moraines, glacier forefield) 

reveal mostly temperatures > -2°C, even directly next to a rockglacier with clear permafrost 

temperatures, and therefore are permafrost unfavourable. This phenomenon is visible on 

rockglacier Huhh1, where a thermistor was situated beside the rockglacier during the winter 

2001/2002. 

Probable permafrost was ascertained everywhere on rockglacier Huhh3 and at the front as well as 

on the upper lobe of Huhh1. On the inactive rockglacier Hurh2, the permafrost occurrence 

appeared a little bit patchy. Statements about the permafrost distribution on Huhh2 are limited 

due to the small number of thermistors. 

In a few positions, a slight – but not significant – warming trend is reflected in initially monitored 

probable-permafrost conditions and later depicted possible-permafrost conditions (cf., Huhh2, 

Huhh3).  
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Since BTS values may vary in time, measurements over at least 3 years and better over 5 years are 

required for reliable interpretations (Matsuoka 2004, personal communication). Thus, with the 

existing data conclusions on permafrost occurrence are possible. For the analysis of temporal 

variations the temperature monitoring is to be continued. 
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6 DISCUSSION 

 

 

 

Applied methods 
By a combination of different methods, rockglacier movements in the Turtmann valley were 

analysed qualitatively and quantitatively on various spatial and temporal scales. Geomorphic 

mapping allowed the estimation of the degree of activity and served as base for the application of 

the other methods. By the use of digital photogrammetry and terrestrial geodetic survey the 

quantification of horizontal velocities and vertical changes was enabled. The photogrammetric 

results (chapter 5.2) demonstrate that the small-scale aerial photographs are highly useful to 

measure changes in rockglacier geometry. Also the combination with high resolution imagery 

(from HRSC-A), which was applied for the first time in rockglacier studies, has been successful 

(Roer et al. 2005). Thus, displacements were investigated in a large area (meso-scale) and over a 

time span of 26 years (1975 – 2001). Regarding the life-time of rockglaciers of some thousand 

years (cf., Frauenfelder & Kääb 2000) this period covers not a long time, but compared to other 

studies this is quite a long data series. The accuracy of the horizontal and vertical displacements is 

estimated to lie in the range of 6 – 13 cm/a, depending on the considered interval. Against that, 

the terrestrial geodetic survey enabled the quantification of block displacements on two 

rockglaciers over a period of 3 years. Due to the high accuracy of this technique and the temporal 

resolution of the measurements, inter- and intraannual changes of the displacements were 

recorded. Hence, even if the survey is restricted to the snow free period, movements during 

summer were distinguished from movements during the rest of the year. The determination of 

permafrost creep using dendrogeomorphic techniques, which strongly depend on the occurrence 

of trees or shrubs, was applied on two rockglaciers. With the investigated plants, a period of 30 to 

40 years is covered. On one permafrost body, the increase in horizontal velocity in the beginning 

of the 1990s is clearly reflected in the reaction wood. On the other rockglacier, anatomical 

variations were investigated in the roots of shrubs. Due to the first-time application in rockglacier 

research and therefore low experiences in interpretation, it was not possible to conclude whether 

the observed growth variations result from low temperature conditions or from movements of 

the ground. 

The combination of the described methods allows the thorough description of rockglacier 

kinematics and a careful interpretation of the findings in the Turtmann valley. 

 

Rockglacier activity 
Rockglacier activity was investigated and quantified by different methods (appendix 2). While the 

geomorphic mapping covered all rockglaciers (45) on the eastside of the Turtmann valley, digital 

photogrammetry was applied on all intact rockglaciers (34). For 85 % of the investigated features, 

the mapped activity or inactivity was confirmed by the photogrammetric data (appendix 2). Thus, 

the more qualitative mapping represents a valuable base for the determination of rockglacier 
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activity. Regarding the intact rockglaciers, an active state was ascertained for 53 % of them. 

Inactivity was sometimes hard to define due to the range of uncertainty of the displacements in 

digital photogrammetry. In addition, one rockglacier (Huhh2) revealed large areas with velocities 

below the level of significance, apart from a small area in the root zone, which showed a clear 

activity. In such a case the state of activity is hard to define. By the use of terrestrial geodetic 

survey, two rockglaciers (Huhh1, Huhh3) were monitored with high temporal resolution, and the 

activity of the permafrost bodies was again confirmed. Due to the high accuracy of this method 

(~ 3 cm), small displacements were quantified on the lower lobe of Huhh3, which was found to 

be inactive by photogrammetric measurements. Therefore, it is assumed that some of the inactive 

rockglaciers are possibly active, but reveal only very small displacements. The application of 

dendrogeomorphic techniques allowed the determination of activity on rockglacier Huhh3, while 

the data from rockglacier Grueo1 gave no clear evidence. 

 

Horizontal velocities 
Most of the rockglaciers in the Turtmann valley indicate above-average horizontal velocities 

compared to other rockglaciers in the Alps, which show normal rates in the range of centimetres 

to one meter per year (Haeberli 1985). Highest velocities are described for the Inneres 

Reichenkar (Austria) with max. 6.94 m/a (Chesi et al. 1999) and for the Äusseres Hochebenkar 

rockglacier (Austria) with up to 5 m/a (Vietoris 1972) (appendix 1). In Switzerland (Grisons) 

maximum horizontal velocities of 2 m/a are documented for the Val da l’ Aqua rockglacier 

(Jäckli 1978, from Barsch 1992) and for the Suvretta rockglacier (Kääb 2000). Values in the same 

order of magnitude are also determined on the Gruben rockglacier in the Valais (Strozzi et al. 

2004.). In the study presented here, maximum horizontal displacements in the range of 3 – 5 m/a 

were observed on several rockglaciers, e.g. Huhh1, Huh3, Grueo1. 

 

Vertical changes 
Regarding the vertical changes, no uniform signal is depicted on the rockglaciers. This is due to 

the diverse factors, such as 3-dimensional straining, climate forcing, debris supply, formation of 

ice from snow or water, etc. influencing this component (cf., chapter 2.3.5). Thus, differing 

processes may have occurred during the investigated periods. On some rockglaciers vertical 

changes are clearly correlated with the horizontal velocities (e.g., Grueo1, Huhh3). In these cases, 

high horizontal movements cause a thinning (vertical compression) in the upper part and a 

thickening (vertical extension) in the lower part of the rockglacier and thus indicate the shifting 

mass. It is presumed that if this creep behaviour continues for a while, the rockglacier body will 

loose connection to the sediment source in the root zone, since the sediment supply can not 

compensate the high velocities (cf., Lambiel & Delaloye 2004). On rockglacier Huhh3 this 

became, for instance, visible in a spoon-shaped depression directly below the cirque. Hence, the 

probably climatically driven speed-up might be followed by dynamic inactivation. 
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Over the period 1975-1993, in three hanging valleys (Pipjitälli, Brändjitälli, and Hungerlitälli) 

rockglacier kinematics was already investigated by the application of digital photogrammetry 

(Elverfeldt 2002). This affords the opportunity for a comparison of the measured velocities. 

Although a relatively small number of blocks was measured in this previous study, they 

correspond well in the horizontal as well as in the vertical displacements. Thus, the state of 

activity of the individual rockglaciers can be assessed with a small number of measured blocks 

and thus with less expenditure. But, for the investigation of single flowfields on a rockglacier and 

the interpretation of spatio-temporal variations in permafrost creep, a dense data pool is required. 

 

Spatial variations 
On the individual rockglaciers (micro-scale), spatial variations in horizontal velocities and vertical 

changes mostly emphasize the rockglacier topography or rather vice versa. As it was described 

also for other rockglaciers, horizontal velocities are highest in the central flowline of the 

individual lobes and depict a distinct decrease toward the margins, which is caused by increased 

friction (Haeberli 1985). In areas with transverse ridges and furrows indicating horizontal 

compression, speeds are in general smaller than in areas with extending flow (cf., chapter 2.3.5.2). 

As it was described by Kääb et al. (2003), the root zones often depict a continuous transition 

zone (with small displacements) to the bordering slopes. Therefore it is hard to define the upper 

border or the initiation line of the feature. On some rockglaciers below cirques (Huhh1, Huhh3) 

a distinct increase in velocity over a distance of a few meters was observed directly at the border 

of the cirque. A similar pattern is revealed for permafrost bodies which creep over steep slopes 

(e.g., border of a cirque, moraine) and therefore depict highest velocities at the front (Hujp, 

Grueo6). These observations emphasise the significance of the slope for small-scale variations in 

permafrost creep. In addition, in some places active lobes are superimposed on inactive ones and 

thus indicate a younger generation and the reactivation of the permafrost bodies (e.g., Brho1, 

Grueo4). 

Considering all investigated rockglaciers (meso-scale), spatial variations reveal only slight 

regularities. In general, the active rockglaciers are concentrated in altitudes between 2600 and 

2800 m a.s.l. (front altitude) and on north and north-west exposed slopes. The two rockglaciers 

showing the highest maximum velocities (Grueo1, Huhh3) indicate the lowermost positions of 

the investigated active rockglaciers. Thus, they are situated close to the lower boundary of the 

discontinuous permafrost occurrence. Regarding mean horizontal velocities, high or low rates, 

respectively, are depicted in diverse altitudes and aspects as well as on different slopes. By the 

classification of different types or settings of rockglaciers, it became apparent that the highest 

velocities are revealed on those below cirques (Hufh, Huhh1, Huhh3, Grueo2, Grueo6, Chu1). 

Apart from Grueo7, generally lower values are measured on rockglaciers which are situated in the 

bottom of a hanging valley (Huhh2, Grueo4, Niggel2). Against that, the permafrost bodies below 

glaciers (Pipp1, Brho1) showed no comparable behaviour. 
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Temporal variations 
An increase in horizontal velocity within 26 years of photogrammetric monitoring was 

ascertained for all investigated active rockglaciers (figure 5.91). Since the results were averaged 

over the measurement periods of 18 and 8 years, respectively, it is not possible to date the 

beginning of the acceleration exactly. It is assumed, that the speed-up started in the beginning of 

the 1990s. At least, this is indicated by dendrogeomorphic data from Huhh3, which revealed a 

distinct reaction to mechanical stress from 1993, caused by an increase in rockglacier movement. 

Using geodetic survey between 2001 and 2004 on two rockglaciers (Huhh1, Huhh3), continued 

high velocities are confirmed. In addition, even within this short period an increase in horizontal 

velocity was quantified on both rockglaciers. Since the general speed-up appears to be the most 

distinct signal given in the data, probable controls are later discussed in more detail. In most 

cases, the changes in thickness also showed distinct temporal variations. But due to the diverse 

processes influencing the vertical component, a uniform signal is not indicated in the data. 

Inraannual variations in horizontal velocities and vertical changes are recorded by terrestrial 

geodetic survey. For instance, the findings of rockglacier Huhh3 give rise to the assumption that 

most of the horizontal displacements occur in late summer and autumn, while most of the 

vertical changes seem to occur during another period of the year. 

 
Rheological considerations 
According to the current knowledge of rockglacier rheology, several parameters may cause a 

change in flow. Regarding the flow law, differences in ice content and thickness, ice temperature 

as well as changes in slope or a combination thereof, are possible explanations (Kääb et al. 1997). 

These parameters are influenced by the input of water (precipitation, meltwater), debris supply, 

snowcover characteristics (duration, thickness, etc.), and temperature variations. One parameter 

recently often stressed is the increase in ground temperature, which results in a warming of the 

ice, a subsequent decrease in ground ice viscosity and thus leads to higher deformation rates 

(Kääb et al. 2003). For instance, this is concluded by Arenson et al. (2002), who documented 

degrading permafrost with a decrease in ice content, an increase in creep velocity and rise of 

shear zones towards the surface. This observation is contrary to the assumption by Barsch 

(1996), who described the reaction of rockglaciers to an increase in temperatures by a distinct 

decrease in velocity and a subsequent inactivation. It should be noted, however, that the above 

hypotheses, that apparently contradict each other, could both apply if different time scales are 

considered. In addition to a rise in temperature, also other factors like an increase in ice content, 

for instance by refreezing meltwater, or an increased debris supply may cause higher deformation 

rates. The effectiveness of all these individual parameters on different spatial and temporal scales 

is to a large extent unknown. 

 

Probable controls on the investigated rockglacier speed-up 
In order to interpret the observed speed-up of rockglaciers in the Turtmann valley, some 

geomorphic and climatic parameters are investigated for their individual influence on rockglacier 
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movement. Obviously, these simple correlations will not allow a deduction of ongoing processes 

or dynamics within this complex system, but probably they help to get a better idea of major 

controls. 

 

- Geomorphic controls 
Different terrain parameters are correlated with mean annual horizontal displacements to 

ascertain geomorphic controls on rockglacier creep. 

First of all, the relation between average slope (°) and mean annual horizontal velocity is 

investigated for both periods (1975 – 1993 and 1993 – 2001). As depicted in figure 6.1, very 

different trends are revealed for the two periods. Hence, the slope seems to be of greater 

importance in the second period, where velocities are in general higher. With r-values of 0.15 

(1975-1993) and 0.31 (1993-2001) and a corresponding level of significance (r*95 = 0.497), the 

relation between slope angle and horizontal velocity is statistically not significant. A similar 

correlation was determined by Frauenfelder et al. (2003) for rockglaciers from the European Alps 

and the Rocky Mountains. Thus, it is indicated that in general the influence of stress on the 

magnitude of flow is less important than other factors (Frauenfelder et al. 2003). 
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Figure 6.1: Relation between average slope (°) and mean annual horizontal velocity (m/a) of all 
active rockglaciers (apart from Grueo1) for both investigated periods. � = mean velocity 1975 – 
1993; Ä = mean velocity 1993 – 2001. Total sample size n = 16.Thus, r* 95 = 0.497, r* 99 = 
0.623, r*99.9 = 0.742. 
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Figure 6.2: Relation between rockglacier length (m) and mean annual horizontal velocity (m/a) 
of all active rockglaciers (apart from Grueo1) for both investigated periods. � = mean velocity 
1975 – 1993; Ä = mean velocity 1993 – 2001. Total sample size n = 16. 
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Figure 6.3: Relation between altitude of rockglacier front (m a.s.l.) and mean annual horizontal 
velocity (m/a) of all active rockglaciers (apart from Grueo1) for both investigated periods. � = 
mean velocity 1975 – 1993; Ä = mean velocity 1993 – 2001; � = Huhh3 mean velocity 1975 – 
1993 (not included in the trendline – analysis); � = Huhh3 mean velocity 1993 – 2001 (not 
included in the trendline-analysis). 
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Second, the correlation of rockglacier length and mean annual horizontal velocity is analysed 

(figure 6.2). Again, great differences are revealed for the two periods and for both of them the 

relation is statistically not significant. This is in contrast to the findings by Frauenfelder et al. 

(2003), who revealed a clear correlation (r = 0.63) between the two parameters. 

Third, the velocity is correlated with the altitude at the rockglacier front and thus with the 

minimum altitude of the rockglaciers (figure 6.3). Also here, the trendlines depict major 

differences for the two time spans. Surprisingly, the values indicate that velocities increase with 

increasing altitude. Regarding all investigated rockglaciers, a weak correlation is given by r-values 

of 0.37 (1975 - 1993) and 0.49 (1993 – 2001) with r*95 = 0.497. By excluding the outlier Huhh3 

(marked by � and �) still a weak correlation (r-value = 0.45, r*95 = 0.514) is depicted for the first 

period (1975-1993). But, a distinct correlation with an r-value of 0.78 is revealed for the second 

period (1993 – 2001). Thus, the relation between the altitude and the increased velocities of the 

second period is even included in r*99.9 = 0.76 and therefore depicts a high statistical 

significance. By this correlation, the influence of air temperature (as a function of altitude) is 

indicated. Therefore, further analyses concentrate on temperature conditions and changes on 

different spatial scales (meso- and micro-scale). 

 

- Climatic controls 
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Figure 6.4: Relation between MAAT (°C) at rockglacier front and mean annual horizontal 
velocity (m/a) of all active rockglaciers (apart from Grueo1) for both investigated periods. � = 
mean velocity 1975 – 1993; Ä = mean velocity 1993 – 2001; � = Huhh3 mean velocity 1975 – 
1993 (not included in the trendline – analysis); � = Huhh3 mean velocity 1993 – 2001 (not 
included in the trendline-analysis). 
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In order to correlate surface velocities with temperature data and due to the lack of 

meteorological data for the study site, the mean annual air temperatures (MAAT) at the 

rockglacier fronts were calculated by the application of a regional temperature gradient (cf., 

chapter 4). Since the estimated temperature data are conditional upon altitude, great similarities 

are depicted in the figures 6.3 and 6.4. The correlation of velocity and MAAT shows that – again 

by exclusion of the outlier Huhh3 (marked by � and �) - especially the velocities between 1993 

and 2001 are clearly correlated to the MAAT with an r-value of 0.76 (r*99.9 = 0.76). The 

velocities of the first period (1975-1993) reveal only a weak correlation with the MAAT (r = 0.42; 

r*95 = 0.514), which is statistically not significant.  

Interesting is the depicted trend, which indicates an increasing horizontal velocity with decreasing 

temperatures. This finding is contrary to the observation made by Frauenfelder et al. (2003), who 

described a decrease in mean surface velocity with decreasing temperatures (r = 56) for 

rockglaciers all over Europe and from the Rocky Mountains. In this context it has to be 

considered, that the mentioned study included also rockglaciers from high latitudes and thus 

from cold environments. Regarding the great number of features with a MAAT between 0 and -

2°C, great differences in mean velocities are also revealed (Frauenfelder et al. 2003: 256). On the 

other hand it has to be considered, that in the here presented study one rockglacier (Huhh3), 

which is situated in a low altitude and depicts high velocities, was excluded in the analysis. 

 

Increasing horizontal velocities were not only ascertained for all investigated active rockglaciers in 

the Turtmann valley, but were currently also observed on other rockglaciers in the Alps (e.g., 

Schneider & Schneider 2001; Ikeda et al. 2003; Lambiel & Delaloye 2004). Due to the dimension 

of this signal, it is suspected to be caused by changes on a corresponding scale (e.g., climatic 

changes such as a rise in air temperature). Therefore, the regional (meso-scale) signal of 

rockglacier acceleration is compared to the general temperature development in the Alps (meso- 

to macro-scale), which is detailed by Böhm et al. (2001) and Böhm (2003). In homogenised data 

from around 100 climatic stations in the Alps he observed a distinct warming trend, starting in 

1890 (with two peaks in the 1950s and in the 1990s). This alpine warming since the middle of the 

19th century is twice as high as the global value. Reactions of the high mountain system are 

described by Böhm (2003) for example in the rise of the 0°C isotherm of about 250m since 1890 

in the western Alps (Monte-Rosa/Mont-Blanc area); 150m of the total 250m occurred in the last 

20 years! 

For the study area, temperature data from the nearby ‘Sion’ station (distance to the Turtmann 

valley is about 26 km) is given in figure 6.5. Beside the mean annual temperatures, summer (June-

August) and winter (December-February) temperatures are displayed separately. The series 

indicates a general warming trend since the end of the 19th century. Especially the strong increase 

in winter temperatures, from -1.2° C to 0.9° C over the investigated period, is depicted in the 

trendline. Similar trends are also revealed in data from high altitude stations such as Jungfraujoch 

(3576 m a.s.l., ~ 40 km distance to the Turtmann valley) and Grosser St. Bernhard (2472 m a.s.l., 

~ 65 km distance to the Turtmann valley). The rockglacier speed-up fits well with the general rise 
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in temperature (long time scale) and also with the warming starting in the early 1990s (short time 

scale). Since rockglacier sensitivity is not known in detail and depends on several parameters, 

both scales need to be considered. 
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Figure 6.5: Mean annual air temperatures (black line), mean summer air temperatures (upper 
grey line) and mean winter air temperatures (lower grey line) at the Sion station (482 m a.s.l.) 
between 1864 and 2002 (according to Böhm et al. 2001). The distance to the Turtmann valley is 
about 26 km. The depicted trendline demonstrates the positive trend of the temperature. 
 

 

Since the MAAT values represent only estimated values and since the alpine data set gives only 

regional information, a validation on the local scale is required. Thus, in order to link rockglacier 

movement to ground thermal conditions on the micro-scale, a comparison of horizontal 

velocities and BTS-values is given in the figures 6.6 and 6.7. The velocity pattern depicted in 

figure 6.6 A (1993-2001) displays lowest rates at the margins and at the front. Especially in the 

lower orographic right side of the rockglacier the velocities are close to the measurement error 

and thus may indicate inactivity. High velocities between 0.5 and more than 2.0 m/a represent 

the upper lobe which is overriding the lower one. Comparing the distribution of BTS-values 

(figure 6.6 B) to the horizontal velocities, the described pattern is well reflected. Low BTS values 

strongly suggesting the presence of permafrost are measured at the lowermost front of the 

rockglacier and on the upper lobe. The inactive area in the lower right part of the rockglacier 

yields BTS temperatures > -2°C. The front of the upper lobe is of interest, since permafrost was 

present in the first winter (2001/2002) and was only ‘possible’ in the following winters. 
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Figure 6.6: Comparison of flow fields (A) and BTS-temperatures (B) on rockglacier Huhh1 
(front orientation to the north). A: Mean annual horizontal velocity (m/a) of the period 1993-
2001 measured by digital photogrammetry, summarised in several flow fields. B: BTS-values of 
the winters 2001/2002, 2002/2003 and 2003/2004 on rockglacier Huhh1 (from: Roer et al. in 
press). 
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Figure 6.7: Comparison of flow fields (A) and BTS-temperatures (B) on rockglacier Huhh3 
(front orientation to the northwest). A: Mean annual horizontal velocity (m/a) of the period 1993 
– 2001 measured by digital photogrammetry, summarised in several flow fields. B: BTS-values of 
the winters 2001/2002, 2002/2003 and 2003/2004 on rockglacier Huhh3. 
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On rockglacier Huhh3, the differences in horizontal velocities (1993 – 2001) are not reflected in 

the BTS-temperatures, since low BTS values indicating the presence of permafrost are measured 

by all thermistors (figure 6.7). Only at one site on the active front, possible permafrost is 

suggested during the winter 2003/2004. In contrast to rockglacier Huhh1, low BTS values are 

even revealed on the lowermost lobe which depicts very small displacements. Also in the centre 

of the rockglacier, where velocities up to 2.55 m/a and a distinct thinning indicate possible 

‘warm’ permafrost, low BTS –temperatures were determined. 

 

 

Summary 
The increase in horizontal velocities is difficult to explain as a large number of parameters 

influence rockglacier rheology and corresponding data are limited. Since the increase was 

ascertained on all investigated active rockglaciers in diverse positions, parameters operating on 

the micro-scale (e.g., change in slope, debris supply) are probably not decisive for the general 

speed-up. In order to get a better idea of major controls, some parameters are correlated with 

annual horizontal velocities. Obviously, it has to be considered that different scales are regarded 

in the interpretation and therefore, conclusions are probably limited. 

Concerning geomorphic controls, both surface slope and length of the rockglaciers showed no 

significant correlations, while the altitude (of the front) revealed a clear correlation with the mean 

annual horizontal velocity (1993-2001). The latter parameter indicated the influence of air 

temperature, since it is a function of altitude. 

The comparison of calculated MAAT and surface velocities showed a distinct trend of increasing 

velocities with an increase in altitude. But, it has to be considered that the rockglaciers Grueo1 

and Huhh3, which are situated in the lowermost positions of the active rockglaciers and depict 

the highest velocities, were not included in the correlation. Therefore, greatest changes seem to 

occur on the lowermost as well as on the uppermost rockglaciers. Thus, a complex set of forcing 

factors which is not reflected in simple correlations is indicated. 

The link between the meso-scale signal of rockglacier speed-up and the increase in alpine 

temperatures is general in nature, but at least it suggests one probable explanation for the velocity 

increase in the 1990s and supports the hypothesis by Schneider & Schneider (2001), who 

observed rockglaciers reacting directly to temperature changes. Another possibility is a delayed 

reaction to long-term climatic trends. But in this context, the sudden increase in surface 

movement within a few years (beginning of the 1990s), which was ascertained on all investigated 

active rockglaciers, is not explicable. 

The comparison of horizontal velocities and BTS-values on the micro-scale reveals a different 

result than the study by Ikeda et al. (2003). In the here presented study, areas with high velocities 

show clear permafrost-temperatures over a period of 3 winters, while Ikeda et al. (2003) 

described BTS-values of > -3°C indicating a marginal condition of permafrost presence. Thus, 

the results do not fit with the observation that rockglaciers with high surface velocities show 

ground surface temperatures close to the thawing point (e.g., Arenson et al. 2002; Ikeda et al. 
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2003; Kääb et al. 2003). Since the finding was confirmed for two rockglaciers in the Turtmann 

valley, probably the interpretation needs to be reconsidered. 

In addition, the atypical flow behaviour of rockglacier Grueo1 raises other aspects. This 

permafrost body indicates the lowermost position of an active rockglacier in the Turtmann valley  

(2420 m a.s.l.) and revealed already in the first investigated period (1975-1981) mean velocities of 

1.34 m/a. The apportioned flowfield of the rockglacier depicts uniform deformation rates in the 

upper part and chaotic deformation in the lower part, which becomes clearly visible in the surface 

topography (especially from 1987). It is assumed that in the root zone permafrost creep is still the 

decisive process, while the occurrence of sliding cause the movements at the lower part of the 

rockglacier and thus indicate a shift in process regime. A similar surface topography as well as 

deformation behaviour was only described for the rockglacier Hinteres Langtalkar, Austrian Alps 

(Kaufmann & Ladstädter 2003). In this case, an abrupt change in base topography, e.g. a bedrock 

dam, was determined as reason for the cracks as well as the acceleration. Such conditions do not 

apply for rockglacier Grueo1. From the position of the permafrost body it is assumed that it is 

actually situated at or below the lower limit of the discontinuous permafrost, which is also 

confirmed by the permafrost distribution modelling from Nyenhuis et al. (in press). Therefore, 

marginal or degrading permafrost conditions are indicated and stress the hypothesis of Kääb et 

al. (2002) that ‘warm’ rockglaciers (i.e. permafrost temperatures close to 0° C) creep, in general, 

faster than ‘cold’ rockglaciers. Thus, the described flow behaviour probably reflects the final stage 

of an active rockglacier. Similar conditions can also be assumed for rockglacier Huhh3, which is 

situated in a comparable position (altitude of front at 2515 m a.s.l.) and also reveals high 

horizontal velocities. But, as mentioned before, measured BTS values do not indicate marginal 

permafrost conditions. Thus, it has to be questioned to what extend the BTS values are indicators 

for permafrost occurrence at every scale. 

Due to a lack of observations on internal structures, temperatures and velocities, further 

suggestions on the observed rockglacier acceleration can only be evaluated at a qualitative level. 

Since borehole measurements show most of the deformation to be concentrated within narrow 

shear horizons at several meters depth (e.g., Arenson et al. 2002), it is possible that dynamic 

changes are concentrated to such horizons and result in increased surface velocities. Generally it 

is assumed that rockglaciers react gradually to changes in the system, mainly affected by long-

term climatic trends (e.g., Barsch 1996; Kääb et al. 1997). Thus, it is supposed that it takes a long 

time (decades or centuries) till a change in temperature reaches the base of the rockglacier body 

and leads to an adjustment of the movement (rheological response). Although it is not clear how 

the temperature penetrates into the ground, such effects would indicate a gradual adaptation to 

changes in air temperature. Hence, the here observed speed-up possibly reflects the temperature 

increase after the little ice age. But nevertheless it seems surprising, that the acceleration occurs 

within a very short period and parallel on all active rockglaciers, independent of their thickness. 

Another aspect would be the occurrence of different processes in various depths of the 

rockglacier body. For instance, this was also described by Arenson et al. (2002), who measured 

seasonal changes in shallow shear zones, while greater depths are more affected by longterm 
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variations (cf., Kääb et al. 2002, 2003). Perhaps, a large part of the movement is limited to the 

upper layer or even the active layer. Another explanation would be the crossing of a certain 

internal threshold due to some changes, which leads to a uniform reaction in all rockglaciers. 

The ‘kinematic boundary condition on the surface’ enables the distinction of internal mass 

balance effects and external influences, by the combined analysis of horizontal and vertical 

changes in rockglacier geometry (chapter 2.3.5.4). The observed thickening of some permafrost 

bodies may reflect an increased material supply (ice or debris) which can be a local driving force 

for the horizontal acceleration. Other rockglaciers in the Turtmann valley show a distinct 

thinning in the root zone and thickening in the lower part, indicating that the sediment supply 

can not compensate the high velocities (cf., Lambiel & Delaloye 2004). Thus, the significance of 

material supply – which is also climatically driven – seems to play an important role and needs to 

be monitored in detail. 

In addition, also short-term climatic variations in the snow cover (thickness, duration, etc.), the 

summer temperatures controlling the thickness of the active layer or the amount of melt water 

may play an important role. Since all these types of information are not available for the study 

area, further research is required to clarify this. 

 

Although the acceleration took place at rockglaciers in diverse altitudes and different topographic 

situations, it is assumed that the increase in air temperature and the corresponding changes in 

ground thermal conditions indicate the prevailing reason for the observed changes. Greatest 

displacements were revealed on rockglaciers in the lowermost positions and in high elevations. 

Thus, either the changes in boundary conditions are effective in the entire system, or diverse 

parameters or combinations thereof are decisive in the different altitudes. Since all of the 

rockglaciers showed a distinct increase in horizontal velocity, local parameters are probably not 

decisive. It is assumed that all features seem to indicate ‘warm’ permafrost conditions and are 

therefore very sensitive. 

 

As it becomes apparent in the discussion, conflicting interpretations and conclusions arise from 

the given findings. Probably, this results from the high complexity of the considered system as 

well as the limited data and knowledge on the prevailing processes. The latter are conditional 

upon diverse parameters acting on different spatial and temporal scales. Therefore, the individual 

scale dependency makes the correlation of single parameters more difficult. 
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7 CONCLUSIONS 

 

 

 

In view of the research questions for the here presented study (chapter 1) and from the given 

findings (chapter 5) and discussions (chapter 6), the following conclusions are compiled: 

� The applied methods enabled the thorough investigation of kinematics on 45 

rockglaciers in the Turtmann valley. Especially the use of small-scale aerial 

photography and the first-time combination with digital airborne pushbroom 

imagery (HRSC-A), appeared to be highly useful for the area-wide measurement 

of changes in rockglacier geometry. Thus, horizontal velocities and vertical 

changes were determined over a period of 26 years. The application of terrestrial 

geodetic survey, allowed the evaluation of the findings on the micro-scale, due to 

the higher accuracy of the technique and the measurement at annual intervals. 

The first-time application of dendrogeomorphology regarding rockglacier 

kinematics gave preliminary results but appeared to be feasible. 

� The applied techniques and especially the combination of geomorphic mapping 

and digital photogrammetry allowed the reliable assessment of the rockglacier 

activity. 

� Some rockglaciers revealed exceptionally high horizontal velocities (up to several 

meters per year) and also distinct vertical changes, compared to other rockglaciers 

in the Alps. 

� One rockglacier (Grueo1) showed a conspicuous flow behaviour, which is 

probably not related to permafrost creep alone. Very high surface velocities (2-5 

m/a) extend from the front upwards to the root zone and cause deep crevasses at 

the surface. The front revealed an advance of about 60 m in 26 years. 

� Clear spatio-temporal variations in horizontal velocities and vertical changes were 

observed on most rockglaciers. On the micro-scale the spatial variations indicated 

to be mostly influenced by the surface slope, while on the meso-scale no clear 

signal was revealed. Regarding the temporal variations, a distinct increase in 

horizontal velocities – probably from the beginning of the 1990s - was ascertained 

on all active rockglaciers. 

� The correlations of increased horizontal velocities with terrain parameters as well 

as with general temperature data and ground surface temperatures showed 

different signals, partially contradicting each other. High movement rates occur in 

low as well as in high altitudes. On rockglaciers close to the lower limit of the 

discontinuous permafrost distribution, where marginal or degrading permafrost 

conditions are assumed, low BTS values strongly suggesting the presence of 

permafrost were measured. Due to the limited knowledge on rockglacier 

dynamics it is far from known, how a change in forcing factors is translated into a 
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rheological response and therefore the drawing of conclusions is limited. But, 

since the speed-up was ascertained on all investigated active rockglaciers in the 

Turtmann valley and was also observed on other rockglaciers in the Alps, it is 

assumed that it is linked to climatic changes and an increase in ground 

temperatures, respectively. But, the relation between temperature and rockglacier 

dynamics seems to be much more complex and is not easily described by simple 

correlations. 

� Considering geomorphodynamics, the described findings emphasise the 

significance of rockglaciers in the geomorphology of the Turtmann valley. 

� In addition, even if the probable controls and corresponding reaction times are 

not known in detail, the sudden increase in permafrost creep within a few years 

supports the role of rockglaciers as sensitive indicators for changes of boundary 

conditions in the high mountain geosystem. 
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8 PERSPECTIVES 

 

 

 

Spatio-temporal variations in rockglacier kinematics were described elaborately for the Turtmann 

valley by means of different methods. Beside the methodological novelties, the area-wide 

determination of rockglacier speed-up reveals the most interesting finding of the presented study. 

Thus, the perspectives target on the better understanding of rockglacier dynamics. 

 

Although more data on rockglacier kinematics will not automatically improve the knowledge on 

rockglacier dynamics, statements on rheological driving forces may be derived from observed 

spatio-temporal variations, since changes are related either by changes in input of ice or debris or 

by warming/cooling effects. Parallel to this, suspected influencing parameters need to be 

quantified on their relevant scale and need to be included in the analysis of rockglacier 

kinematics, in order to understand the mechanism by which a change in forcing factors is 

translated into a rheological response. Therefore, an intensified monitoring including data on 

internal structures, temperatures and velocities as well as climatic changes is demanded to get a 

profound knowledge on the underlying processes. In this context a combination of different 

methods (field investigations, laboratory tests as well as modelling) is required. In addition, the 

investigation of system immanent or self-organised developments as possible reasons for 

rheological changes is suggested. 

Since most investigations are concentrated on single rockglaciers, meso-scale information on 

rockglacier and permafrost development is limited. As a consequence, selected and representative 

rockglaciers from all over the Alps are to be investigated by a uniform monitoring program in 

future. Additionally, long-term observations are necessary to distinguish inter-annual variations 

from long-term trends. 

Concerning the investigations in the Turtmann valley, the measurement of rockglacier movement 

should definitely be continued. Additional investigations on rockglaciers close to the lower limit 

of the discontinuous permafrost, e.g., by using drillings or geophysical soundings, would be 

appreciated to analyse in detail the debris-ice mixture at boundary conditions. In particular, 

rockglacier Grueo1 should be monitored carefully in order to prevent the nearby constructions 

from slope failure. 

 

Regarding the distinct changes in permafrost creep within the last decade and considering the 

suspected changes in thermo-dynamics, one has to be aware of related hazards in regions with 

mountain permafrost. This became apparent in the large number of rockfalls during the hot 

summer of 2003. Depending on their position in the terrain, also rockglaciers may be a source 

area or initiation zone for rockfall – or debris flow events (Kääb 2004). Therefore, rockglaciers in 

certain positions as well as those with indications for instabilities (e.g., Grueo1) should be 

monitored in at least annual intervals. 
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From the given observations, a high sensitivity of rockglaciers was concluded. In this context, it 

should be investigated in future, to what extent the depicted changes are also visible in other 

processes (e.g., gelifluction), in order to evaluate the sensitivity of the high mountain geosystem 

in terms of environmental changes. 
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APPENDIX 1A 

PUBLISHED DATA ON HORIZONTAL VELOCITIES 

Region/Location Horizontal velocity [m*a-1] 
(mean, if not indicated) Measuring period Method Reference 

Europe     

Austria     

Austria, Kaunsertal, Ölgruben-
Rg 

0.04-0.55 1938-1939 terrestrial photogrammetry Pillewizer (1957) 

Austria, Kaunsertal, Ölgruben-
Rg 0.35-0.75 1938-1953 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar 0.75 1938-1953 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 3) 

0.85 (max) 1953-1955 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 3) 

0.84 (max) 1954-1955 
terrestrial geodetic survey (line 

of rocks) 
Vietoris, in Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 2) 

1.53 (max) 1953-1955 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 2, rock 

3) 
1.61 1951-1952 terrestrial geodetic survey (line 

of rocks) 
Vietoris, in Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 2, rock 

3) 
1.84 1952-1953 terrestrial geodetic survey (line 

of rocks) 
Vietoris, in Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 1) 

3.57 (max) 1953-1955 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar (profile 1) 

3.3 (max) 1955-1956 
terrestrial geodetic survey (line 

of rocks) 
Vietoris, in Pillewizer (1957) 



 

ii

Austria, Ötztal, Inneres 
Hochebenkar 

1.1 1953-1955 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar, profile 1 3.35 (max) 1954-1962 

line of rocks, terrestrial 
geodetic survey Vietoris (1972) 

Austria, Ötztal, Äusseres 
Hochebenkar, profile 2 0.95, 1.48 (max) 1951-1970 

line of rocks, terrestrial 
geodetic survey Vietoris (1972) 

Austria, Ötztal, Äusseres 
Hochebenkar, profile 3 

0.75 (max) 1954-1970 
line of rocks, terrestrial 

geodetic survey 
Vietoris (1972) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2540 

3.57 1952/1953 photogrammetry Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2540 

0.32 1985-1990 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2540 0.57 1990-1995 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2630 1.80 1952/1953 photogrammetry Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2630 

0.49 1985-1990 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2630 

0.65 1990-1995 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2680 

0.75 1952/1953 photogrammetry Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2680 0.36 1985-1990 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg, profile 2680 0.48 1990-1995 terrestrial geodetic survey Kaufmann (1996) 

Austria, Ötztal, Hochebenkar-
Rg 

1.25 (max) 1977-1986 terrestrial photogrammetry Kaufmann (1996) 

Austria, Dösen Tal, Dösen-Rg, 
region A (front) 

0.18 1954-1993 
photogrammetry + terrestrial 

geodetic survey 
Kaufmann (1996) 



 

iii

Austria, Dösen Tal, Dösen-Rg, 
region B 

0.21 1954-1993 
photogrammetry + terrestrial 

geodetic survey 
Kaufmann (1996) 

Austria, Dösen Tal, Dösen-Rg, 
region C (rootzone) 0.17 1954-1993 

photogrammetry + terrestrial 
geodetic survey Kaufmann (1996) 

Austria, Ötztal, Ölgruben-Rg 0.5 1923-1924 ? 
Finsterwalder (1928), in 

Kaufmann (1996) 

Austria, Stubaier Alpen, 
Inneres Reichenkar 

2.0 (mean), 6.94 (max.) 1997-1998 differential GPS 
Chesi et al. (1999); Krainer & 

Mostler (2000) 

Austria, Stubaier Alpen, 
Inneres Reichenkar 

0.64 1954-1990 
comparison of aerial 

photographs (front advance) 
Chesi et al. (1999); Krainer & 

Mostler (2000) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg 

1.8 (max) 1953 - 1969 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg 1.1 (max) 1969 - 1979 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg „slight decrease“ - 1990 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg 

1.1 (max) 1990 - 1997 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Inneres 
Hochebenkar-Rg 

0.55 (max) 1953-1969 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Inneres 
Hochebenkar-Rg 

0.3 (mean) 1969 - 1979 digital photogrammetry Kaufmann & Ladstädter (2000) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg > 0.8 (max) 1981-1990 digital photogrammetry Kaufmann & Ladstädter (2002) 

Austria, Ötztal, Äusseres 
Hochebenkar-Rg 1.31 (max) 1953-1997 digital photogrammetry Kaufmann & Ladstädter (2003) 

Austria, Ötztal, Inneres 
Hochebenkar-Rg 

0.55 (max) 1953-1969 digital photogrammetry Kaufmann & Ladstädter (2002) 

Austria, Ötztal, Inneres 
Hochebenkar-Rg 

0.35 (max) 1953-1997 digital photogrammetry Kaufmann & Ladstädter (2003) 



 

iv

Austria, Hohe Tauern National 
Park, Hinteres Langtalkar 

0.9 (max) 1969-1991 digital photogrammetry Kaufmann & Ladstädter (2002) 

Austria, Hohe Tauern National 
Park, Hinteres Langtalkar 1.8 (max) 1991-1997 digital photogrammetry Kaufmann & Ladstädter (2002) 

Austria, Hohe Tauern National 
Park, Hinteres Langtalkar 1.5 (max) 1999-2000 terrestrial geodetic survey Kaufmann & Ladstädter (2003) 

Austria, Hohe Tauern National 
Park, Hinteres Langtalkar 

2.8 (max) 1997-1998 digital photogrammetry Kaufmann & Ladstädter (2003) 

Austria, Dösen valley, Dösen-
Rg 

0.006/35 days (mean), 
0.018/35 days (max) 

1992 (35 days) D-InSAR 
Kenyi & Kaufmann (2003a, 

2003b) 

Austria, Ötztal, Äusseres 
Hochebenkar 

3.9 (mean), 6.6 (max) (1950s, 
1960s); 

1.5 (mean), 2.0 (max) (1990s) 
1938-1999 

(terrestrial-photogrammetric 
profiles (1938-1951)); terrestrial 

geodetic survey 
Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar 

3.9 1954-1962 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar (alongside) 

0.54/0.51 1997-1998/1998-1999 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar (across) 

0.53(line 0), 1.06 (line 1), 1.02 
(line 2), 0.75 (line 3) 1997-1998 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar (across) 

0.54(line 0), 1.1 (line 1), 1.16 
(line 2), 0.84 (line 3) 1998-1999 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar (across) 

0.53 (line 1), 0.67 (line 2), 0.49 
(line 3) 

1981-1999 terrestrial geodetic survey Schneider & Schneider (2001) 

France     

France, Haute-Ubaye, Marinet 0.1-0.3 ? terrestrial geodetic survey Evin et al. (1990) 

France, Haute Ubaye, Haut-
Vallon du Loup, Petit Loup 0.16 1948-1979 photogrammetry Evin & Assier (1983) 

France, Haute Ubaye, Haut-
Vallon du Loup, Loup 

principal 
0.19 1948-1979 photogrammetry Evin & Assier (1983) 



 

v

France, Haute Ubaye, Haut-
Vallon du Loup, Asti 

0.08 1948-1979 photogrammetry Evin & Assier (1983) 

France, French Alps, 
Laurichard 0.25 (line A), 0.6-0.9 (line B, C) 1979-1984 terrestrial geodetic survey Francou & Reynaud (1992) 

France, French Alps, 
Laurichard 0.56 1983-1991 terrestrial geodetic survey Francou & Reynaud (1992) 

Iceland     

North Iceland, Nautadalur 0.025 ? ? 
Martin & Whalley (1987), in 

Whalley & Martin (1992) 

Italy     

Italy, Adamello Presanella 
Group 

A37, Genova valley 
0.05 (min) – 0.21 (max) 1 year terrestrial geodetic survey Seppi et al. (2003) 

Italy, Adamello Presanella G42, 
Amola valley 

0.02 (min) – 0.16 (max) 1 year terrestrial geodetic survey Seppi et al. (2003) 

Norway     

Norway, Svalbard, NW coast, 
Kongsfjord area 0.03-0.1 1986-1990 ? Sollid & Sørbel (1992) 

Norway, Svalbard, Hiorthfjellet 0.083 (min) – 0.095 (max) 1994 – 1998 terrestrial geodetic survey Isaksen et al. (2000) 

Norway, Svalbard, Birkafjellet 0.041 – 0.056 1995 - 1997 terrestrial geodetic survey Isaksen et al. (2000) 

Norway, Svalbard, 
Nordenskiöldkysten-Rg 

0.0 – 0.01 1969 - 1990 digital photogrammetry Kääb et al. (2002) 

Norway, Svalbard, 
Brøggerbreen-Rg 0.04 (max) 1971 – 1995 digital photogrammetry Kääb et al. (2002) 

Norway, Svalbard, 
Hiorthfjellet-Rg 0.095 – 0.108 1994 - 2002 terrestrial geodetic survey Ødegard et al. (2003) 



 

vi

Norway, Svalbard, Prins Karls 
Forland, Nr. 12 + 15 

0.02-0.04 1996-2000 
terrestrial geodetic survey + 

differential GPS 
Berthling et al. (2003) 

Switzerland     

Grisons      

Switzerland, Grisons, Val Sassa 1.3-2.0 1918-1919 painted line of rocks Chaix (1923) 

Switzerland, Grisons, Val Sassa 1.05-1.37 1919-1921 painted line of rocks Chaix (1923) 

Switzerland, Grisons, Val dell’ 
Acqua 

1.55 1918-1919 painted line of rocks Chaix (1923) 

Switzerland, Grisons, Val dell’ 
Acqua 1.35 1919-1921 painted line of rocks Chaix (1923) 

Switzerland, Grisons, Val Sassa 1.36 1921-1942 painted line of rocks Chaix (1943) 

Switzerland, Grisons, Val dell’ 
Acqua 

1.58 1921-1942 painted line of rocks Chaix (1943) 

Switzerland, Grisons, Macun I 0.16 1965-1967 terrestrial geodetic survey Barsch 1969 

Switzerland, Grisons, Val Sassa 1.05-3.95 (cumulative) 1952-1959 terrestrial geodetic survey Eugster (1973) 

Switzerland, Grisons, Val Sassa 0.8-2.8 (cumulative) 1954-1959 terrestrial geodetic survey Eugster (1973) 

Switzerland, Grisons, Val Sassa 0.47-0.52 ? ? 
Girsperger (1973), in Whalley 

& Martin (1992) 

Switzerland, Grisons, Murtèl 0.07 1932-1955 photogrammetry Barsch & Hell (1975) 

Switzerland, Grisons, Murtèl 0.03 1955-1971 photogrammetry Barsch & Hell (1975) 



 

vii

Switzerland, Grisons, Murtèl 0.04 1971-1973 terrestrial geodetic survey Barsch & Hell (1975) 

Switzerland, Grisons, Muragl 0.21 1972-1973 terrestrial geodetic survey Barsch & Hell (1975) 

Switzerland, Grisons, Albana 
Rg 0.05 1932-1952 photogrammetry Pröhl (1977), in Barsch (1996) 

Switzerland, Grisons, Albana 
West Rg 

0.1 1932-1952 photogrammetry Pröhl (1977), in Barsch (1996) 

Switzerland, Grisons, Val da 
l’Acqua 

0.46; 0.5-1 (50-100m above 
snout); 1.5-2 (200-300m above 

snout) 
1921-1979 ? Jäckli (1978), in Barsch (1992) 

Switzerland, Grisons, Val da 
l’Acqua 

0.4-0.45 1920-1980 ? Jäckli (1978), in Barsch (1996) 

Switzerland, Grisons, Macun I 0.14 1967-1988 terrestrial geodetic survey Barsch & Zick (1991) 

Switzerland, Grisons, Macun I 0.27 (max) 1965-1994 terrestrial geodetic survey Zick (1996) 

Switzerland, Grisons, Murtèl 0.15 (max) 1987, 1988, 1991, 1995, 1996 photogrammetry 
Kääb (1996); Kääb (1997); 

Kääb et al. (1998) 

Switzerland, Grisons, Muragl 0.5 (max) 
1981, 1985, 1990, 1994, 1998, 

1999 photogrammetry Kääb (1997); Kääb (2002) 

Switzerland, Grisons, 
Schafberg 

0.08 (max) 1971-1991 photogrammetry Kääb (1997) 

Switzerland, Grisons, Murtèl 0.05 – 0.15 1987-1996 digital photogrammetry Kääb et al. (1998) 

Switzerland, Grisons, 
Pontresina-Schafberg, BH1 

0.02 – 0.04 1990–1997 
borehole deformation (point 

information!) 
Hoelzle et al. (1998) 

Switzerland, Grisons, 
Pontresina-Schafberg, BH2 0.01  

borehole deformation (point 
information!) Hoelzle et al. (1998 

Switzerland, Grisons, 
Pontresina-Schafberg 0.02 – 0.03 1971 – 1991 photogrammetry Hoelzle et al. (1998 



 

viii

Switzerland, Grisons, Muragl 0.5 (max) 1981–1994 photogrammetry Kääb & Vollmer (2000) 

Switzerland, Grisons, Suvretta 2.0 (max) 1992, 1997 photogrammetry Kääb (2000) 

Switzerland, Grisons, Suvretta 2.0 (max) 1992-1997 digital photogrammetry 
Kääb & Frauenfelder (2001); 

Frauenfelder et al. (2004) 

Switzerland, Grisons, Murtèl-
Corvatsch 

0.07 1987-1995 
borehole deformation (point 

information!) 
Arenson et al. (2002) 

Switzerland, Grisons, 
Pontresina-Schafberg1 

0.03 1991-2000 
borehole deformation (point 

information!) 
Arenson et al. (2002) 

Switzerland, Grisons, 
Pontresina-Schafberg2 

0.02 1994-1999 
borehole deformation (point 

information!) 
Arenson et al. (2002) 

Switzerland, Grisons, Muragl3 0.3 1999-2000 
borehole deformation (point 

information!) Arenson et al. (2002) 

Switzerland, Grisons, Muragl4 0.15 1999-2000 
borehole deformation (point 

information!) Arenson et al. (2002) 

Switzerland, Grisons, Büz 
North (upper) 

0.5-0.8 1998-1999 terrestrial geodetic survey Ikeda et al. (2003) 

Switzerland, Grisons, Büz 
North (upper) 

0.6-0.96 1999-2000 terrestrial geodetic survey Ikeda et al. (2003) 

Switzerland, Grisons, Büz 
North (upper) 

1.1-1.45 2000-2001 terrestrial geodetic survey Ikeda et al. (2003) 

Switzerland, Grisons, Büz 
North (lower) 0.02-0.2 1998-1999 terrestrial geodetic survey Ikeda et al. (2003) 

Switzerland, Grisons, Gianda 
Grischa 0.4-0.5 (average), 0.8 (max) 1971-1998 digital photogrammetry Frauenfelder et al. (2004) 

Switzerland, Grisons, Suvretta 0.06-1.6 1971-1998 digital photogrammetry Frauenfelder et al. (2004) 

Switzerland, Grisons, 
Munteratsch 

0-0.1 1971-1998 digital photogrammetry Frauenfelder et al. (2004) 



 

ix

Switzerland, Grisons, Albana 0.05-0.19 1971-1998 digital photogrammetry Frauenfelder et al. (2004) 

Valais      

Switzerland, Valais, Weissmies 0.7 (max) 1958-1964 photogrammetry Messerli & Zurbuchen (1968) 

Switzerland, Valais, Grosses 
Gufer 

0.75 (max) 1950-1962 photogrammetry Messerli & Zurbuchen (1968) 

Switzerland, Valais, Gruben 0.63 1979-1982 terrestrial geodetic survey Haeberli (1985) 

Switzerland, Valais, Gruben 1.0 (max) 1970-1995 photogrammetry Kääb 1996; Kääb et al. (1997) 

Switzerland, Valais, 
Furggentälti 0.5 1960-1974 photogrammetry Krummenacher et al. (1998) 

Switzerland, Valais, 
Furggentälti 0.8 1974-1985 photogrammetry Krummenacher et al. (1998) 

Switzerland, Valais, 
Furggentälti 

0.7 1985-1992 photogrammetry Krummenacher et al. (1998) 

Switzerland, Valais, 
Furggentälti 

1.35 1994-1996 terrestrial geodetic survey Krummenacher et al. (1998) 

Switzerland, Valais, Turtmann 
valley 

0.65 (max) 1975-1993 digital photogrammetry Elverfeldt (2002) 

Switzerland, Valais, Turtmann 
valley, HuHH1 0.84 (max) 10.9.2001-30.8.2002 terrestrial geodetic survey Roer (2003) 

Switzerland, Valais, Mont Gelé 
rock glaciers 0.05 (min) - 1.25 (max) 2000–2001 differential GPS Lambiel et al. (2003) 

Switzerland, Valais, Yettes 
Condjà, rgB 

1.35 (max) 2000-2003 differential GPS Lambiel & Delaloye (2004) 

Switzerland, Valais, Yettes 
Condjà, rgC 

0.35 (max) 2000-2003 differential GPS Lambiel & Delaloye (2004) 



 

x

Switzerland. Valais, Réchy, 
Becs-de-Bosson Rg, L1 

>0.05 2001-2003 differential GPS Lambiel & Delaloye (2004) 

Switzerland. Valais, Réchy, 
Becs-de-Bosson Rg, L2 1.2 (max) 2001-2003 differential GPS Lambiel & Delaloye (2004) 

Switzerland, Valais, Gruben 2.0 (max) 1975-1999 photogrammetry Strozzi et al. (2004) 

Switzerland, Valais, Gruben ? 1995 (1 day) + 1998 (35 days) D-InSAR Strozzi et al. (2004) 

Switzerland, Valais, Rothorn 0.3 (max) 1975-1999 photogrammetry Strozzi et al. (2004) 

Switzerland, Valais, Rothorn 0.5 (max) 
1996 (88 days) + 1999 (70 

days) 
D-InSAR Strozzi et al. (2004) 

Switzerland, Valais, Jegi 0.5 (max) 1975-1999 photogrammetry Strozzi et al. (2004) 

Switzerland, Valais, Jegi 0.5 (max) 
1996 (88 days) + 1998 (35 

days) D-InSAR Strozzi et al. (2004) 

Switzerland, Valais, Mattwald 0.22 (max) 1975-1999 photogrammetry Strozzi et al. (2004) 

Switzerland, Valais, Mattwald 0.5 (max) 
1996 (88 days) + 1998 (35 

days) 
D-InSAR Strozzi et al. (2004) 

Switzerland, Valais, Findletälli 0.3-0.6 (average), 1.2 (max) 1975-1999 digital photogrammetry Frauenfelder et al. (2004) 

Comparisons (Ch, Ö, Svalbard) - - different methods Kääb et al. (2003) 

Asia     

Middle Asia, Zailijskiy Alatau, 
Gorodetskiy Rg 

1.1 1923-1977 ? Gorbunov (1983) 

West China, Kunlun Shan, Rg1 0.02-0.03 ? ? 
Cui (1983), in Whalley & 

Martin (1992) 



 

xi

Nepal, Khumbu Himalaya, 
Lingten Rg 

0.1-0.2 - 
calculated via length and mean 

age 
Barsch & Jakob (1998) 

Nepal, Khumbu Himalaya, 
Kongma Rg 0.1-0.2 - 

calculated via length and mean 
age Barsch & Jakob (1998) 

Nepal, Khumbu Himalaya, 
Dugla Rg 0.04-0.085 - 

calculated via length and mean 
age Barsch & Jakob (1998) 

Nepal, Khumbu Himalaya, 
Nuptse Rg 

0.1-0.2 - 
calculated via length and mean 

age 
Barsch & Jakob (1998) 

North America     

USA, Alaska Range, Clear 
Creek Rg (upper line) 

0.4-0.73 1949-1952 painted line of rocks Wahrhaftig & Cox (1959) 

USA, Alaska Range, Clear 
Creek Rg (upper line) 0.4-0.61 1952-1957 painted line of rocks Wahrhaftig & Cox (1959) 

USA, Alaska Range, Clear 
Creek Rg (lower line) 0.52-0.76 1949-1952 painted line of rocks Wahrhaftig & Cox (1959) 

USA, Alaska Range, Clear 
Creek Rg (lower line) 

0.49-0.7 1952-1957 painted line of rocks Wahrhaftig & Cox (1959) 

USA, Colorado, Front Range, 
Arapaho Rg 

0.09-0.19 ? terrestrial photogrammetry Outcalt & Benedict (1965) 

USA, Galena Creek Rg ML A 0.01 (min) – 0.45 (max) 1966 - 1995 terrestrial geodetic survey Potter et al. (1998) 

USA, Galena Creek Rg ML B 0.04 (min) – 0.80 (max) 1964 - 1995 terrestrial geodetic survey Potter et al. (1998) 

USA, Galena Creek Rg ML C 0.03 (min) – 0.14 (max) 1963 - 1995 terrestrial geodetic survey Potter et al. (1998) 

USA, Colorado, Front Range, 
Arapaho Rg 

0.06 1961-1966 ? White (1971), in Barsch (1996) 

USA, Colorado, Front Range, 
Taylor Rg 

0.066 ? ? 
White (1971), in Whalley & 

Martin (1992) 



 

xii

USA, Colorado, Front Range, 
Fair Rg 

0.097 ? ? 
White (1971), in Whalley & 

Martin (1992) 

USA, Colorado Front Range, 
Cascade Creek Valley 0.1 ? ? White (1981) 

Canada, Front Range, King’s 
Throne Rg 0.056 1988 - 1996 terrestrial geodetic survey Koning & Smith (1999) 

USA, Alaska, Wrangell 
Mountains, Fireweed Rg 

3.8 (max) 1994-1996 ? Elconin & LaChapelle (1997) 

USA, Alaska, Brooks Range, 
Jaeger Rg 

0.4 1978-1983 ? 
Calkin et al. (1987), in Barsch 

(1996) 

USA, Alaska, Brooks Range, 
Pika Rg 

0.1 1978-1983 ? 
Calkin et al. (1987), in Barsch 

(1996) 

Canada, N.W.T., Tungsten Rg 
(central part) 2.5 1963-1980 ? 

Jackson & McDonald (1980), 
in Barsch (1996) 

South America     

Argentina, Mendoza, Plomo 
River 

100 1963-1973 terrestrial photogrammetry Corte (1976), in Corte (1987) 

New Zealand     

New Zealand, Ben Ohau 
Range, Ferintosh Creek 

0.14 (max) 1989 - 1994 ? Brazier et al. (1998) 

Rg= Rockglacier 
? = no details 
 
If not specified: 
photogrammetry = aerial photogrammetry 
terrestrial geodetic survey = survey using theodolite or total station 
GPS = Global Positioning System 
D-InSAR = Differential SAR (Synthetic Aperture Radar)-Interferometry 
 



 

xiii
APPENDIX 1B 
 

PUBLISHED DATA ON VERTICAL CHANGES 

Region/Location Vertical change [m*a-1] Measuring period Method Reference 

Europe     

Austria     

Austria, Kaunsertal, Ölgruben-
Rg + 0.19-0.23 1922- terrestrial photogrammetry 

Pillewizer (1957), in Barsch 
(1996) 

Austria, Ötztal, Äusseres 
Hochebenkar 0.17 1936-1953 terrestrial photogrammetry 

Pillewizer (1957), in Barsch 
1996 

Austria, Ötztal, Äusseres 
Hochebenkar 

0.18 1953-1997 photogrammetry Kaufmann & Ladstädter (2000) 

Norway     

Norway, Svalbard, 
Nordenskiöldkysten-Rg 0.0 1969 - 1990 digital photogrammetry Kääb et al. (2002) 

Norway, Svalbard, 
Brøggerbreen-Rg <0.01 1971 – 1995 digital photogrammetry Kääb et al. (2002) 

Switzerland     

Switzerland, Grisons, Murtèl -0.06 1932-1955 photogrammetry Barsch & Hell (1975) 

Switzerland, Grisons, Murtèl +0.02 1955-1971 photogrammetry Barsch & Hell (1975) 

Switzerland, Grisons, Murtèl -0.02 1971-1973 terrestrial geodetic survey Barsch & Hell (1975) 



 

xiv

Switzerland, Grisons, Muragl -0.1 1972-1973 terrestrial geodetic survey Barsch & Hell (1975) 

Switzerland, Grisons, 
Pontresina-Schafberg <0.02 1971-1991 photogrammetry Kääb (1997) 

Switzerland, Grisons, Murtèl -0.04 1987-1996 photogrammetry Kääb (1997) 

Switzerland, Grisons, 
Pontresina-Schafberg 

0.005-0.015 1990-1997 
borehole deformation (point 

information!) 
Hoelzle et al. (1998) 

Switzerland, Valais, Weissmies -0.3 1958-1964 photogrammetry Messerli & Zurbuchen (1968) 

Switzerland, Valais, Grosses 
Gufer 

-0.08 (max) 1950-1962 photogrammetry Messerli & Zurbuchen (1968) 

Switzerland, Valais, Gruben Rg -0.05 1970-1995 photogrammetry Kääb (1996); Kääb et al. (1997) 

Switzerland, Valais, Yettes 
Condjà, rgB -0.32 2000-2001 differential GPS Lambiel & Delaloye (2004) 

Switzerland, Valais, Yettes 
Condjà, rgC 

-0.1 2000-2001 differential GPS Lambiel & Delaloye (2004) 

North America     

USA, Alaska, Brooks Range, 
Jaeger Rg 

- 0.11 1978-1983 ? 
Calkin et al. (1987), in Barsch 

(1996) 

USA, Alaska, Brooks Range, 
Pika Rg - 0.1 1978-1983 ? 

Calkin et al. (1987), in Barsch 
(1996) 

Canada, Front Range, King’s 
Throne Rg -0.025 1988 - 1996 terrestrial geodetic survey Koning & Smith (1999) 

 



 

xv
APPENDIX 1C 
 

PUBLISHED DATA ON FRONT ADVANCE 

Region/Location Front advance [m*a-1] Measuring period Method Reference 

Europe     

Austria     

Austria, Ötztal, Äusseres 
Hochebenkar 

3-4 1936-1953 terrestrial photogrammetry Pillewizer (1957) 

Austria, Ötztal, Äusseres 
Hochebenkar 

2.4-2.7 1936-1997 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar 

1.1 1977-1997 terrestrial geodetic survey Schneider & Schneider (2001) 

Austria, Ötztal, Äusseres 
Hochebenkar 5.0 1953-1969 terrestrial geodetic survey Schneider & Schneider (2001) 

Denmark     

Greenland, Disko Island, 
Mellemfjord 

0.1 ? ? Humlum (1996) 

France     

France, French Alps, 
Laurichard 

0.3 1983-1991 terrestrial geodetic survey Francou & Reynaud (1992) 

Norway     

Norway, Svalbard, 
Hiorthfjellet-Rg 0.03 1994 - 2002 

terrestrial geodetic survey + 
photogrammetry Ødegard et al. (2003) 
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Switzerland     

Switzerland, Grisons, Val Sassa 0.39 1921-1942 painted line of rocks Chaix (1943) 

Switzerland, Grisons, Val dell’ 
Acqua 0.43 1921-1942 painted line of rocks Chaix (1943) 

Switzerland, Valais, 
Furggentälti 

0.4 1960-1995 photogrammetry Krummenacher et al. (1998) 

Switzerland, Grisons, Murtèl 0.01 1987-1996 photogrammetry Kääb (1997) 

Switzerland, Grisons, Muragl 0.05 1981-1994 photogrammetry Kääb (1997) 

Switzerland, Valais, Gruben 0.15 1970-1995 photogrammetry Kääb (1996) 

Asia     

Middle Asia, Zailijskiy Alatau, 
Gorodetskiy Rg 

0.4-0.9 
0.9 
0.7 

1923-1946 
1946-1960 
1960-1977 

? Titkov (1979), in Gorbunov 
(1983) 

North America     

Canada, Alberta, Banff 
National Park 

0.3-0.6 ? ? 
Osborn (1975), in Koning & 

Smith (1999) 

Canada, Front Range, King’s 
Throne Rg 

0.016 1988 - 1996 terrestrial geodetic survey Koning & Smith (1999) 

USA, Alaska Range, Clear 
Creek Rg 

0.48 (mean) 1949-1957 painted line of rocks Wahrhaftig & Cox (1959) 

USA, Colorado Front Range 0.05-0.2 ? ? 
White (1971, 1987), in Burger 

et al. (1999) 

USA, Alaska, Brooks Range 0.1/0.4 ? ? 
Calkin et al. (1987), in Burger 

et al. (1999) 
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Appendix 2 
 
Rockglacier activity compiled from geomorphic mapping, digital photogrammetry, terrestrial 
geodetic survey and dendrogeomorphology: 
 

Nr.  
Rock- 
glacier 

State of activity 
(geomorphic 

mapping) 

State of activity 
(digital 

photogrammetry) 

State of activity 
(terrestrial geodetic 

survey) 

State of activity 
(dendrogeomorphology) 

1 pibw active active - - 

2 Pipp1 active active - - 

3 Pipp2 inactive inactive - - 

4 Pipp3 active active - - 

5 Pipp4 inactive inactive - - 

6 Brho1 active active - - 

7 Brho2 active active - - 

8 Brle active active - - 

9 Hugg1 relict - - - 

10 Hugg2 relict - - - 

11 Hufh active active - - 

12 Hujp active active - - 

13 Hurh1 active inactive - - 

14 Hurh2 inactive inactive - - 

15 Huhh1 active active active - 

16 Huhh2 inactive partly active - - 

17 Huhh3 active active active active 

18 Huhh4 relict - - - 

19 Hupr inactive - - - 

20 Grueo0 relict - - - 

21 Grueo1 active active - ? 

22 Grueo2 active active - - 



 xviii

23 Grueo3 inactive inactive - - 

24 Grueo4 active active - - 

25 Grueo5 active inactive - - 

26 Grueo6 active active - - 

27 Grueo7 active active - - 

28 Grueo8 active inactive - - 

29 Grueo9 relict - - - 

30 Niggel0 relict - - - 

31 Niggel1 active active - - 

32 Niggel2 active active - - 

33 Niggel3
a 

inactive inactive - - 

34 Niggel3
b 

inactive inactive - - 

35 Niggel4 active inactive - - 

36 Niggel5 inactive inactive - - 

37 Niggel6 active inactive - - 

38 Niggel7 relict - - - 

39 Niggel8 relict - - - 

40 Chu1 active active - - 

41 Chu2 inactive inactive - - 

42 Chu3 inactive inactive - - 

43 Chu4 inactive inactive - - 

44 Chu5 relict - - - 

45 Chu6 inactive - - - 
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