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Preface

Quantum computing was not invented at once all of a sudden. Disciplines that split

and specialized last hundred years converge again today. That was how computer

scientists came about to think physically, or, perhaps, physicists – computationally.

Hopefully, this common tendency of the contemporary science will lead to a better

and simpler description of the world we live in.

In 1994, Peter Shor discovered polynomial time quantum algorithms for factoring

integers and for computing discrete logarithms [Sho94]. It was this discovery that put

the field of quantum computations in the public spotlight. Later, in 1997, Lov Grover

introduced a quantum search algorithm, that could find a ”needle” in a ”haystack” of

size n in only square root of n queries [Gro97]. Clearly, even a randomized algorithm

would need to make at least n/2 queries in order to achieve reasonably high probability

to find the ”needle”.

The hearts of computer scientists were won over. They massively read physics text-

books, and spend their spare time performing Fourier transforms, involved in the

Shor’s algorithm. However, the quantum algorithms demanded people to ”think dif-

ferent”, as Apple� has been suggesting in their promotion campaign. Not only was

it difficult to design efficient quantum algorithms, but also engineering of quantum

devices proved hard. The most elaborate quantum computer designed so far operates

only five qubits of memory. Using this computer, the IBM� Almaden Research Center

group lead by Isaac Chuang successfully factored 15 into 5× 3.

The intrinsic hardness of quantum computers caused the research efforts shift to

more restricted models of computation. Those that would be less demanding in

formal implementation. Ambainis and Freivalds already in 1998 speculated that first
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quantum computers would perhaps have relatively simple quantum mechanical part

connected to a full-functional classical computer [AF98].

In this work we consider one of the most popular restricted computational model

called a quantum branching program.

The branching program model has been around for half a century. But it was not be-

fore 1986, that R. Bryant [Bry86] improved the model to introduce what is now called

the Oblivious Ordered Read-once Branching Program, or more recognizably OBDD

(Ordered Binary Decision Diagram). Apart from that it is a computational paradigm,

OBDD turned out to be a very useful type of boolean functions representation. There

are several reasons for that.

1. Standardized OBDD provide a canonical representation of Boolean functions;

2. Logical operations can be efficiently performed over Boolean functions repre-

sented by reduced OBDD;

3. Most of practically useful Boolean function have concise OBDD representations.

No surprise that OBDD proved extremely useful in CAD/CAM (Computer Aided

Design/Manufacturing) applications. Nowadays there can be no VLSI (Very Large

Scale Integration) production imagined, where OBDD based technology would not be

applied. The book of Ch. Meinel and Th. Theobald [MT98] is dedicated solely to the

OBDD role in the VLSI design. Branching programs are presented as an established

mathematical subject in the monograph of I. Wegener [Weg00].

In 1996 F. Ablayev and M. Karpinski introduced Randomized Branching Programs

[AK96]. They constructed a function computed by a polynomial size Randomized

Branching Program, such that no polynomial size Deterministic Branching Program

existed for the function. Five years later, after Randomized Branching Programs be-

come a classical paradigm, the same authors and A. Gainutdinova introduced Quan-

tum Ordered Binary Decision Diagram [AGK01]. They demonstrated that the quan-

tum model can be exponentially more efficient than its classical counterpart for an

explicit function.

We chose the model of quantum OBDD for our research, because
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� Quantum branching programs describes actual physical processes;

� The model is also more adequate than other approaches to the current state-

of-the-art in the fabrication of quantum computatinal devices;

� The quantum system used for computation is allowed to consist of only a sub-

linear number of qubits, which is impossible for quantum circuits ;

� This model allows construction of efficient algorithms;

� It is one of the most important classes of restricted computational models.

Comparing its power to that of OBDD we better understand advantages over

conventional approaches that quantum mechanics offers.

In the context of quantum branching programs, we study several computational prob-

lems. We start by presenting an algorithm for the Equality function. Then we show

how to extend our results, gradually advancing towards the algorithm that computes

the decision version of the hidden subgroup problem. Our proofs use the fingerprinting

technique that dates back to 1979 [Fre79]. It was used for quantum automata in the

1998 paper by A. Ambainis and R. Freivalds [AF98].

We prove lower bounds for all the problems we consider. The lower and the upper

bounds match for all of the functions except for the hidden subgroup test. In the

latter case the lower bounds asymptotically equal the upper bounds in the worst-case

choice of the function parameters. Performance of the algorithm we present, in turn,

does not depend on the internal structure of the considered group. Our lower bound

proofs are based on the communication complexity approach and results of Ablayev,

Gainutdinova and Karpinski [AGK01].

The choice of the problems was motivated by the fact that the factoring and discrete

logarithm problems, we mentioned earlier, can be formulated in terms of the hidden

subgroup problem. All those problems are efficiently solved by quantum computers

but no efficient classical, even randomized, algorithm is known for them so far. Thus,

these problems are the best candidates for the witnesses of quantum computers supe-

riority over the classical counterparts. As Scot Aaronson put it in his theses [Aar04a]:

v



Either the Extended Church-Turing Thesis is false, or quantum mechanics

must be modified, or the factoring problem is solvable in classical poly-

nomial time. All three possibilities seem like wild, crackpot speculations

but at least one of them is true!

The thesis given by Aaronson provides one more motive to study quantum computers.

Whatever ultimately will be discovered concerning quantum computers, it will exert

tremendous influence on the whole Science!

Our little research falls short in making that ultimate discovery. However, it is novel

in several ways.

� None of the problems we study was considered in the context of quantum branch-

ing programs before.

� We prove original lower and upper bounds for all of the considered computa-

tional problems.

� Additionally a tight communication complexity lower bound is proved for the

hidden subgroup problem test function.

� This research unveils an interesting connection of a simple function, like Equal-

ity, to the more elaborate hidden subgroup problem.

� All algorithms of our research are shown to work with relatively ”simple” quan-

tum states, that have already been demonstrated experimentally.

� We consider unrestricted non-abelian version of the hidden subgroup problem,

thus, we also solve the graph isomorphism within the same complexity bounds.

� This research also offers rich opportunities for generalization of the obtained

results by means of the reductions that we discuss.

Let us briefly review the structure of this thesis, and give a list of the chapters.
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Introduction to computer science

In this chapter we tell a story of emergence and evolution of what we now call an

algorithm. Then we introduce basic notions and concepts that belong to the computer

science ”common speech”.

Classical models of computations

The Turing machine is the most fundamental, and maybe famous, mathematical

definition of an algorithm. We use it to define basic complexity measures. We also

present the linear speedup theorem that is crucial to how we treat the complexity

measures in this research. Later we use the development of the Turing machine

to show how other classical computational models evolved into their non-classical

variants.

Done with the deterministic Turing machine, we define the branching program, the

computational model of central interest in this thesis. We define its most important

subclasses and introduce relevant complexity measures. Finally, we consider the com-

munication model. We apply the one-way communication complexity techniques to

prove the lower bounds later in the thesis.

Nondeterministic and randomized models

We describe how to formalize a computation that makes errors with a certain probabil-

ity. That is, probabilistic models of computation. We first demonstrate the approach

on the Turing machines. There, we introduce important probabilistic techniques.

We also define probabilistic complexity classes. Eventually we apply the approach to

the branching programs. We obtain different classes of randomized branching pro-

grams and define corresponding complexity classes. That prepares us to the ”main”

computational model of this research – the quantum branching programs.

Quantum computations

First we take a detour to make a glance at the fascinating history of the quantum

mechanics creation. Then we introduce the postulates of quantum mechanics and
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basic techniques. At last, we present the quantum branching programs, the main tool

of this research.

The hidden subgroup related problems

This chapter tells about results we obtained for several fundamental functions, on

our quest to identify the complexity of the hidden subgroup problem for the quantum

branching programs. We start with Equality function and proof linear upper and lower

bounds on the width of the read-once quantum branching programs that represent

this function. We extend this result to Periodicity and simplified Simon function.

Gradually generalizing the technique in order to apply it to the hidden subgroup test,

the decision version of the hidden subgroup problem, in the next chapter.

The hidden subgroup problem

At length, we are able to tackle the main motivation of this research – the hidden

subgroup problem. First we prove linear upper bound on the width of read-once

quantum branching programs that represent the hidden subgroup test. Then we prove

that this upper bound is almost tight. Apart from the quantum OBDD lower bound,

a one-way communication complexity lower bound is also proved. The multiple lower

bounds from this chapter are intended to provide possibly complete picture of the

hidden subgroup test complexity.

We conclude this chapter by showing that our algorithms use only the quantum states

that have already been demonstrated in a laboratory. This contrasts, for example,

to the original Shor’s algorithm, where quantum states are a matter of controversy

concerning feasibility of the algorithm.

Reducibility theory

In this chapter we give several possibilities to generalize the results obtained in this

thesis. We consider two different reduction concepts: rectangular reductions and

polynomial projections suitable for that purpose.
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Appendices

Here, the most frequent notation is presented. Also one can find a note on Chernoff

bound met more than once in the thesis. A standard illustration of the complexity

classes relations is also given.
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Chapter 1

Computer Science Essentials

Computer Science is no more about

computers than astronomy is about

telescopes.

E. W. Dijkstra

1.1 Introduction

A central notion of computer science is Algorithm. The word is taken from the name

of 9th century Arabian mathematician called Muhammad ibn Musa abu Abdallah

al-Khorezmi al-Madjusi al-Qutrubulli. Medieval Europeans learnt arithmetics from

his books. However, the idea of algorithm preceded him at for millennia. The Euclid’s

algorithm for finding largest common divisor dates back to 300 BC.

Despite of its long history the notion eluded rigorous mathematical definition until

1936 when Alan Turing introduced a model that later was given his name – the

Turing machine [Tur36]. Around the same time, another famous mathematician,

Alonzo Church proposed the notion of recursive functions [Chu36] for capturing the

essence of what an algorithm is. A thesis later dubbed as Church-Turing Principle

was proposed.
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2 CHAPTER 1. COMPUTER SCIENCE ESSENTIALS

A Turing Machine (recursive function) concept captures what an algo-

rithm performed by any physical device is.

It was this statement that established the foundations of computer science as a rig-

orous mathematical discipline. Yet it was to be taken as an axiom, although one

generally agreed upon. There could be no proof of its validity. A whole new field of

theory of computability branched out starting off with Church-Turing Principle. But

something was missing. Computer scientists began to recognize that it was not suffi-

cient for a problem to have a solution, in order to be actually solved. The solution had

to be feasible. Initially, problems shown to be intractable fell short of practical value.

In mid 1960’s Hartmanis and Stearns [HS65] provided first artificially constructed

decidable intractible problems. That is problems that being decidable in principle

(Turing machine decidable) had no algorithm that would decide them in reasonable

time. The reasonable time was proposed to be a polynomial of the input length.

Only in early 1970’s Meyer and Stockmeyer [MS72], Fischer and Rabin [FR74], and

later others finally provided ”natural” examples of intractable problems that were

decidable. Namely the ”intractability” here essentially meant the problems could not

be decided by a nondeterministic Turing machine in polynomial time, although they

could be decided given more time resources. Those problems came mostly from the

automata theory, the theory of formal languages and mathematical logic.

However great that leap from undecidability to intractability was, the concept failed to

catch hardness of numerous practical problems that had polynomial nondeterministic

Turing-machine algorithms. But a polynomial time real-world computer solutions

had ever eluded researchers. Those problems had to be regarded ”intractable” just

as well! The time has come to bring up a new kind of thinking. The idea was

already floating in the air. In 1971 Stephen Cook [Coo71] introduced the concept of

NP-completeness.

The class NP of problems solvable in polynomial time by the nondeterministic Turing

machines had been known before. Cook proved that a particular problem in NP, the

Boolean formula satisfiability, had a property that every problem in NP could be

reduced to it. That is, for every problem in NP there is a polynomial algorithm for

a deterministic Turing machine that transforms instances of that problem to those of



1.1. INTRODUCTION 3

the Satisfiability. Moreover, the reduction fn is such that that X is a solution of the

initial problem if and only if, fn(X) is a solution for the satisfiability.

Later, in 1972 Richard Karp showed that the decision problem versions of many well

known combinatorial problems, like the traveling salesman problem, are just as hard

as satisfiability [Kar72]. The set of all these ”hardest” problems in NP has been

given a name: NPC - the class of NP-complete problems.

Importance of this approach to intractability was later nicely illustrated by Garey

and Johnson [GJ79]. A puzzled software engineer that fails to find both an effi-

cient algorithm and a proof that no polynomial-time algorithm is possible for some

problem. But he manages to show that a problem from NPC is reduced to the

problem he’s been struggling to find an efficient algorithm for. Given a concept of

NP-completeness, now the engineer can boldly claim:

I can’t find an efficient algorithm, but neither can all these famous

people.

It is still an open question whether the class of problems solvable in polynomial

time on a deterministic Turing machine called P equals NP. A million of dollars is

promised for the answer on P
?
= NP [fM]. Whatsoever, we can tell with certainty

that NPC problems are the ”hardest” in NP.

The progress in understanding ”intractability” and ”efficiency” did not leave un-

changed even the corner stone of the computer science. The Church-Turing thesis,

that earlier gave raise to the commputability theory, failed to provide a rigorous ground

to study complexity. In the time when NPC was introduced, problems that could

be solved ”efficiently” were also noticed to be solved efficiently by a Turing machine.

The observation was fixed in the strong Church-Turing thesis.

A Turing machine can simulate efficiently any physical process of com-

putations.

That day of early 1970s the Complexity Theory was born. Since then it’s been growing

tall and thick. Set out with NP-completeness, the complexity classes compendium
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now accounts over 300 classes [Aar]. Experts still argue about which classes are ”nat-

ural” and deserve their existence and which are just mathematical ”monsters” that

must be given to the Occam’s razor1. There are several well-written, now considered

classical, textbooks on the subject [BDG88, BDG90, Pap94, GJ79].

However, even the ”strong” Church-Turing thesis did not look strong enough any-

more when Robert Solovay and Volker Strassen came up with a polynomial-time

probabilistic algorithm for primality test that after a few repetitions gave correct an-

swer with nearly certainty. It was only in 2002 that Agrawal, Kayal and Saxena

discovered a determinstic polynomial time algorithm for primality testing [AKS02].

In 1976, the Solovay-Strassen algorithm implied that a computer with an access to

a random number generator could outperform deterministic Turing machines. That

indefiniteness put under controversy the very basis of complexity theory – the strong

Church-Turing thesis. It was hastily amended to meet the challenge.

A probabilistic Turing machine can simulate efficiently any physical

process of computations.

From then on, the class BPP – ”a Probabilistic Bounded error Polynomial time”,

the probabilistic analog of P , established itself as the formalization for the class of

”efficiently” solvable problems.

After the parade of the Church-Turing principles, followed on by the parade of the

complexity classes, as it was rightfully noted in Nielsen and Chuang [NC00],

This ad hoc modification of the strong Church-Turing thesis should

leave you feeling rather queasy. Might it not turn out at some later date

that yet another model of computation allows one to efficiently solve prob-

lems that are not efficiently soluble within Turing model of computation?

Indeed, in 1985 David Deutsch, motivated by the very same question, came up with a

natural idea that surprisingly enough had been escaping mathematicians. If we look

at the second part of the Church-Turing principle, we can see there: ”any physical

1William of Ockham (Occam) English scholastic philosopher and assumed author of Occam’s
Razor (1285-1349)
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process of computation”. In the same time, physics had been left out of considera-

tion for nearly half a century, since the first version of the principle was proposed!

Instead of adopting new intuitive hypothesis, Deutsch attempted to define a model

of computation that would be capable of simulating efficiently any arbitrary physical

theory. Thus, a quantum mechanical analogue of the Turing machine was proposed.

Deutsch also considered a simple example suggesting that quantum computers could

have stronger computational power than their classical counterparts. This intuition

was further strengthened by later results of Grover [Gro97] and Shor [Sho94, Sho97].

Let’s name the following conjecture ”the quantum Church-Turing thesis”.

A quantum Turing machine can simulate efficiently any physical pro-

cess of computations.

We don’t know whether quantum Turing machine is a more powerful device than its

classical analogue. However, discovery of the quantum computations has far going

implications. First of all, the quantum version of the Church-Turing principle is

a provable conjecture that depends on the validity of the given physical theory, of

quantum mechanics. This is a better situation than building up a theory based on

the pure intuition only very indirectly related to the physical reality!

It is yet an open question if class QBP (Quantum Bounded-error Polynomial) should

be taken for the rigorous definition of ”efficient”. But what is apparent is that quan-

tum computational models, and subsequently quantum complexity do not represent

revolution in computer science. Instead they turn out to be logical consequences of

the long evolutionary development of the understanding what an algorithm is and

what makes the algorithm ”efficient”. In fact, as the open question concerning QBP

exhibits it, the evolution is not yet over. It is still under way. I believe, thus, it would

be appropriate to begin this work on quantum computers with an introduction to

classical complexity.
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1.2 Describing a problem to a computer

It is not trivial to describe a problem to a human, neither it is trivial to describe

a problem to a machine. There must be some common speech, we formulate the

problems in, that the ”solver” would understand. What is more, we first should agree

what we call a computational problem! In this subsection we describe the common

speech mentioned above, and define the notion of a computational problem.

We start with the basics of the computer science ”vocabulary” listed below.

1. Alphabets
(
e.g. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {a, b, c, d, e, f, g}

)
;

2. Words
(
e.g. 123210, 23145, abba, fade, dgdg

)
;

3. Languages
(
e.g. A = {123, 1234, 12345, 123456, . . .}, B = {abba, fade},

C = {000, 111, 222, 333, 444}
)
;

4. Classes
(
e.g. {A, B}, {C}

)
;

The definitions we are going to present are mostly standart across computational

complexity, mathematical logic and formal languages theory literature. They were

adopted by complexity theorists as well as the formulation of a computational problem

was borrowed from the computability theory.

Definition 1.2.1. An alphabet is any non-empty, finite set. We shall use upper case

Greek letters to denote alphabets. The cardinality of alphabet Σ is denoted |Σ|. The

elements of Σ are assumed to be indivisible symbols.

Definition 1.2.2. A word (or a chain, a string) over Σ is a finite sequence of symbols

from Σ.

Let Σ∗ denote the set of all finite-length strings over Σ, and Σn denote the set of all

n-length strings over Σ. Let’s define the operation of concatenation.

Definition 1.2.3. For any x, y ∈ Σ∗, result of the binary operation of concatenation

is the new word xy.
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Example 1. Let Σ = {0, 1} and x = 010, y = 1 then xy = 0101 and yx = 1010

Definition 1.2.4. We shall need a special symbol, which is denoted λ. It is called

the empty symbol.

Next proposition will clarify significance of the empty symbol.

Proposition 1.2.1 ([Har78]). For any given alphabet Σ, the set Σ∗ is a monoid

under concatenation and λ is the identity element.

The definition of a language as it is given here probably will be not precise enough

for the theory of formal languages. But it is good enough for our purposes.

Definition 1.2.5. Given an alphabet Σ, a language over Σ is a subset of Σ∗.

There is a traditional notation of operations over languages. It is found in all subfields

across the scope of the computer science. That’s why it is worth to mention it here.

Definition 1.2.6 ([Hro97]). Let A be a language over an alphabet Σ, and B be a

language over an alphabet Γ. We define

1. For any homomorphism h : Σ∗ → Γ∗

h(A) := {h(w)|w ∈ A}

2. We define the complement of the language A according to the alphabet Σ as

AcΣ := Σ∗ − A.

If the alphabet Σ = {0, 1}, we use the conventional complement notation Ac.

3. We define the concatenation of the languages A and B as

AB = A ·B := {w|w = xy, x ∈ A, y ∈ B},

where xy means concatenation of words.
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4. We further generalize the concept of concatenation of languages.

B0 := {λ},

Bi+1 := B ·Bi for any i ∈ N,

B+ := ∪∞i=1B
i,

B∗ := ∪i∈NB
i = B+ ∪ {λ}.

5. Finally, we define the level n of the language B as

B[n] := B ∩ Γn = {x ∈ B| |x| = n} for any n ∈ N.

A language is a set. Being so, all set operations, like union, intersection, complemen-

tation etc., are well defined for languages. We shall use the term class to denote a set

whose elements are also sets. Thus, naturally introducing classes of languages. We’ll

use calligraphic capital latin letters do denote classes of languages (A,B, C). The no-

tion of class of complements is one of the most widely used in structural complexity

theory.

Definition 1.2.7. Given a class C, we define its class of complements denoted by

coC:
coC = {L|L̄ ∈ C}.

Let’s proof a very simple ”folklore” lemma from computer science. This lemma usually

is not even mentioned by structural complexity researchers.

Lemma 1. Given classes of languages C1 and C2 over Σ∗, C1 ⊆ C2 if and only if

coC1 ⊆ coC2. In particular, C1 ⊆ coC1 if and only if C1 = coC1.

Proof. Let C1 ⊂ C2 and A ∈ coC1. This implies that Ā ∈ C1. Subsequently, Ā ∈ C2.
Finally, A ∈ coC2. The convers follows from the fact that co(coC) = C.

We have expected to understand the way a computational problem is rigorously de-

fined in computer science. Instead we have plunged into the field of abstract lan-

guages. Surprisingly, at least at the first glance, a language is exactly the notion used
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Input: 
  1) a possible solution 

of the PROBLEM, 
2) input data for the 
PROBLEM solution 

algorithm 
(both encoded in some 

fixed alphabet)
Decides if the 

input is a solution
of the PROBLEM 

Output: "Yes, it is 
a solution of the 
PROBLEM", or 
"No, it's not a 

solution".

Figure 1.1: An imaginary device that decides the PROBLEM.

to capture what a computational problem is.

Let us imagine a device that knows how to solve a given problem. It would expect a

possible solution, an instance, of this problem at the input. Received the input, the

device would let us know if the solution we gave was correct or wrong (See fig. 1.1).

Assume that the problem instances at the input are encoded in some alphabet Σ,

thus, the instances are simply words in Σ∗. Let’s take all the words that represent

correct solutions of the problem, and define a set of words PROBLEM ⊂ Σ∗:

PROBLEM = {w|w ∈ Σ, wis a correct solution of the problem}. (1.1)

The set PROBLEM is a language, a subset of Σ∗. This is exactly the most funda-

mental way a computational problem concept is captured in computer science. This

kind of problems is called decision problems. Any computational problem can be

formulated as a decision problem, there will be a language (over some alphabet)

corresponding to it.

Example 2 (PRIMES). Consider the problem of primality test. The question of

the computational problem is:

For a given number N , decide is it a prime number?
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Input: a string X 
of function 

arguments in 
the appropriate 

alphabet

Computes the 
function f of the input

Output: Value f(X) 
encoded using 

some fixed 
alphabet

Figure 1.2: An imaginary device that computes a function f(x).

Let’s fix Σ = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Define language PRIMES = {w|w ∈
Σ∗, w is a prime number}.

Apart form decision problems, we may like to consider functions (See fig. 1.2), i.e.

problems that require computing a solution, rather than just a ”YES/NO” sort of

answer.

This new implementation of the computational problem concept does not encom-

pass any more computational problems that can be studied using decision problems

paradigm. However, it does allow us examine more of different computational models.

It is models of computation that we shall be concerned with in the next chapter.



Chapter 2

Classical Models of Computation

I do not fear computers, I fear the

lack of them.

Isaac Asimov

So far we presented only the mathematical abstraction for the concept of computa-

tional problem. Although, we have mentioned mysterious ”imaginary devices”, we

still don’t have a mathematical definition for a computer! According to the widely

accepted strengthened Church-Turing thesis, the mathematical notion of the Turing

machine captures substantial features of any conceivable real-world computer (See

the introduction section, or [Tur36]). Let’s define the Turing machine first.

2.1 Turing machine

Definition 2.1.1 ([Pap94]). Formally, a Turing machine is a quadruple M =

(K,Σ, δ, s).

1. Here K is a finite set of states, s ∈ K is the initial state;

2. Σ is the alphabet of M . We assume that K and Σ are disjoint sets. Σ always

contains the special symbols t and B: the blanc and the first symbol.

11
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3. Finally, δ is a program, or the transition function, which maps K × Σ to (K ∪
{h, ”yes”, ”no”})×Σ×{←,→,−}. We assume that h (the halting state), ”yes”

(the accepting state), ”no” (the rejecting state), and the cursor directions ←
for ”left”, → for ”right”, and − for ”stay”, are not in K ∪ Σ.

A Turing machine works in discrete time. On each step we can consider a complete

description of the current state of the machine, including all information contained

in the string. The string, naturally, will be finite in any given finite moment of time.

We intuitively described a configuration of a Turing machine. Let’s give its formal

definition.

Definition 2.1.2. A configuration of a Turing machine M is a triple (q, w, u), where

q ∈ K is a state, and w, u – strings in Σ∗, w is a string to the left of the cursor,

including the symbol scanned by the cursor, and u is the string to the right of the

cursor, possibly empty, q is the current state. We shall use ε to denote the empty

string. We shall also use the notation (q, w, u)
Mt

→ (q′, w′, u′), if there are configurations

(q1, w1, u1), . . . , (qt−1, wt−1, ut−1), such that the transitions (q, w, u) → (q1, w1, u1) →
. . . → (qt−1, wt−1, ut−1) are legitimate according to the program δ. We say that the

configuration (q, w, u) yields the configuration (q′, w′, u′) in t steps. If (q, w, u)
Mt

→
(q′, w′, u′) for some t, we simply say (q, w, u) yields (q′, w′, u′).

Working time of every Turing machine always has a beginning. It is a natural assump-

tion, since we don’t have perpetual computers, that could had been working infinitely

long prior to a fixed moment of time. We already defined a special state s ∈ K that is

called a starting state (See Definition 2.1.1). But only fixing a state is not enough

to describe a Turing machine completely in the beginning of the computation.

Definition 2.1.3. Initial configuration of a Turing machine is always (s,B, x), where

x is the input, possibly empty.

As we mentioned earlier, a Turing machine is an abstraction of a computational device.

So far we have had only the device, but not the rigorous notion of a computation it

performs. Now, that we have notions of configuration and initial configuration, we

can define the notion of computation of a Turing machine.
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Definition 2.1.4 ([BDG88]). Given a machine M = (K,Σ, δ, s) and an input string

x, a partial computation of M on x is a (finite or infinite) sequence of configurations of

M , in which each step from a configuration to the next obeys the transition function

δ. A computation is a partial computation which starts with the initial configuration

of M on x, and ends in a configuration in which no more steps can be performed.

Remark 1. Sometimes a transition function δ is allowed to be a partial function. Then

any configuration for which δ is not defined is assumed equivalent to a configuration

with ”no” (or h if a function is computed) state of the final state control.

A Turing machine transits from one configuration to another, until it reaches one of

the halting states from the set {h, ”yes”, ”no”}. If it halts in the state h, then we

write M(x) = y, where y is the result of the computation contained on the string.

More precisely, before it halted M worked finite amount of time, thus, it managed to

fill the string with a finite number of symbols. We take y to be the sequence right

to B whose last symbol is not a t, possibly followed by a string of t. If M halts

in the ”yes” or the ”no” state we write M(x) = ”yes” or M(x) = ”no” respectively.

However, for some input x a machine M may never halt, we denote this case by

writing M(x) =↗.

Remark 2. We require that if for some states p and q δ(q,B) = (p, ρ,D), then ρ = B

and D =→. In other words we don’t allow the cursor to fall off the left end of the

string (the symbol B). However, the cursor may move right without restriction. We

agree that right of the input the string contains empty symbols t, that can be, of

course, overwritten.

Allowing the head move left we don’t add any computational power, rather we in-

troduce some unnecessary complexity to the algorithm. For example, having deleted

the left endmark, we have to remember where was the input on the string: to the

left from the cursor, or to right. Otherwise, we’ll have to traverse the string in both

directions!

Figure 2.1 demonstrates a graphical representation of a Turing machine. The picture

contains three structural elements:
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Finite state 
control

String Cursor

Figure 2.1: A Turing machine.

� A finite state control unit, that resides in any of the valid states from the set

K, the states are changed according to the transition function δ;

� A string of symbols from the alphabet Σ, the machine can read and write

symbols of that string;

� A cursor that points to a symbol of the string the machine currently observes,

at any time it can observe only one symbol, initial conditions (see the Definition

2.1.1) and the transition function δ define which symbol is currently scanned

and where the cursor moves next.

The Turing machine is our first mathematical abstraction of a computational device.

Computers solve problems, and in our world problems are represented by languages.

What does it mean for a Turing machine to decide a language?

Definition 2.1.5 ([Pap94]). Let L ⊂ (Σ−{t})∗ be a language. Let M be a Turing

machine such that , for any string x ∈ {Σ− {t}}∗ if x ∈ L then M(x) = ”yes” and,

if x /∈ L then M(x) = ”no”. Then we say that M decides L.

If L is decided by some Turing machine M , then L is called recursive language.

We say that M simply accepts L whenever, for any string x ∈ (Σ − {t})∗, if x ∈ L
then M(x) = ”yes”; however, if x /∈ L then M(x) =↗.

If L is accepted by some Turing machine M , L is called recursively enumerable.

Let’s define a language, and try to see if it is recursive, or at least recursively enu-

merable. In other words, we shall try to construct a Turing machine, that decides, or
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at least accepts the language.

Definition 2.1.6. We define a language O2 over alphabet {1, 0}∗ as a set of words

that contain equal number of zeros and ones.

It turns out that O2, also known as the language of balanced words, is recursive!

Example 3 (A Turing machine that decides O2). We define the Turing machine

M = (K,Σ′, δ, s)

1. The finite control states: K = {s, q0, q1, q}

2. The alphabet: Σ = {B,t, 0, 1, �}

3. The transition function δ is defined in the Figure 2.2.

p ∈ K σ ∈ Σ δ(p, σ)
s, B, (s,B,→)
s, 0, (q0, �,→)
s, 1, (q1, �,→)
s, �, (s, �,→)
q0, 0, (q0, 0,→)
q0, 1, (q, �,←)
q0, �, (q0, �,→)
q1, 1, (q1, 1,→)
q1, 0, (q1, �,←)
q1, �, (q, �,→)
q, 0, (q, 0,←)
q, 1, (q, 1,←)
q, �, (q, �,←)
q, B, (s,B,→)
s, t, (”yes”,t,→)
q0, t, (”no”,t,←)
q1, t, (”no”,t,←)

1. s, B011t
2. s, B011t
3. q0, B � 11t
4. q, B� � 1t
5. q, B � �1t
6. s, B� � 1t
7. s, B � �1t
8. s, B � �1t
9. q1, B � � � t
10. ”no”, B � ��t

Figure 2.2: Turing machine and example of computation for O2

Example 3 of the Turing machine deciding O2 demonstrates the use of all concepts we

have introduced so far. It also exhibits importance of the Remark 2, that demanded



16 CHAPTER 2. CLASSICAL MODELS OF COMPUTATION

a Turing machine head to never cross the left margine mark B of the string. Indeed,

the algorithm could have been less elegant, had we ignored that ”rule of thumb”!

Apart from deciding languages, Turing machines can compute string functions.

Definition 2.1.7 ([Pap94]). Suppose that f is a function from (Σ − {t})∗ to Σ∗,

and let M be a Turing machine with alphabet Σ. We say that M computes f if, for

any string x ∈ (Σ− {t})∗,M(x) = f(x). If such an M exists, f is called a recursive

function.

Note that for a Turing machines computing a string function, its output defined by

the string content rather than by the state it halted with (see page 13). Next example

demonstrates how Turing machine can compute a string function.

Example 4 (A Turing machine that computes a string function). For a binary

string x ∈ {0, 1}∗, let n = |x| be the length of the string. Define a function

f(x) = 2n − 1− x,

where x is interpreted as a number in binary. A short thought shows that this function

is simply a bitwise negation of x. We define the Turing machine M = (K,Σ, δ, s)

1. The finite control states: K = {s}

2. The alphabet: Σ = {B,t, 0, 1, }

3. The transition function δ is defined in the Figure 2.3.

p ∈ K σ ∈ Σ δ(p, σ)
s, B, (s,B,→)
s, 0, (s, 1,→)
s, 1, (s, 0,→)
s, t, (h,t,←)

1. s, B011t
2. s, B011t
3. s, B111t
4. s, B101t
5. s, B100t
6. s, B100t

Figure 2.3: Turing machine and example of computation for a string function
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We have introduced mathematical abstractions for both decider and transducer types

of computers. That means we have now got everything we need to study computa-

tional complexity of different problems. But why should we take a Turing machine as

the ultimate mathematical tool to represent a computational device? We know that

it was not the only model proposed along with a plenty of others. Though, they were

all equivalent in respect of the computability of problems. In the following sections,

we shall introduce some different computational paradigms that will help us to see

more complexity ”faces” of computational problems.

2.2 Turing machine with multiple strings

First natural improvement could be adding more tapes to a Turing machine. What

advantage would we then gain? Let’s address this question.

Definition 2.2.1 ([Pap94]). A k-string Turing Machine, where k ≥ 1 is an integer,

is a quadruple M = (K,Σ, δ, s), where K,Σ, and s are exactly as in ordinary Turing

machines. Similarly, δ defines program of the machine. Formally, δ is a function from

K ×Σk to (K ∪ {h,′′ yes′′,′′ no′′})× (Σ× {←,→,−})k. Initially all strings start with

a B symbol read. The input is contained on the first string left to the symbol B. If

the k-string Turing machine computes a string function the output is read from the

last kth string when the machine halts.

Semantically, δ(q, σ1, . . . , σk) = (p, ρ1, D1, . . . , ρk, Dk) means that:

� From the state q with k cursors (of the respective strings) scanning symbols

σ1, σ2, . . . , σk respectively, the machine transites into state p;

� Then all symbols σ1, σ2, . . . , σk are overwritten with ρ1, ρ2, . . . , ρk respectively;

� Finally, all k cursors are moved according to the respective directions

D1, D2, . . . , Dk.

Remark 3. Similarly to the ordinary Turing machines we require the B symbol still

can not be overwritten or passed on the left! If σi = B, then ρi = B, and Di =→.
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Notions of configuration, initial configuration are simply natural extensions of those

defined for conventional Turing machines.

Definition 2.2.2 ([Pap94]). A configuration of a k-string Turing machine M is a

(2k + 1)-tuple (q, w1, u1, . . . , wk, uk, ), where q ∈ K is a state, the ith string reads

wiui, and the last symbol of wi is holding the ith cursor.

Definition 2.2.3. Initial configuration of a k-string Turing machine is always

(s,B, x,B, ε, . . . , ε), where x is the input, possibly empty, and ε denotes the empty

string.

The notion of computation of a k-string Turing machine is defined exactly as it was

done for the one-string Turing machines.

In the next example a two-string Turing machine elegantly computes bitwise addition

modulo two.

Example 5 (Addition modulo two). Let input be defined as x⊕ y, where x, y ∈
{0, 1}n, n is an arbitrary natural number. We want to compute a string function

f(x ⊕ y) = x ⊕ y, where x and y are interpreted as numbers represented in binary

encoding.

Let us define the two-string Turing machine M = (K,Σ, δ, s) that computes f .

1. The finite control states: K = {s, l}

2. The alphabet: Σ = {B,⊕,t, 0, 1, }

3. The partial transition function δ is defined in the Figure 2.4.

Note, that the additional string allowed the Turing machine save some computational

steps in the example above. Perhaps, it is a good time to introduce our first complexity

measure. It will be the number of steps a Turing machine expends on the computation.

In other words, our first complexity measure corresponds to the most natural resource

utilized by computers (and wasted by their users), to the time.
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Definition 2.2.4 ([Pap94]). If for a k-string Turing machine M and input x we have

(s,B, xB, ε, . . . ,B, ε)
Mt

→ H,w1, u1, . . . , wk, uk for some H ∈ {h, ”yes”, ”no”}, then the

time required by M on input x is t. That is, the time is simply the number of steps

to halting. If M(x) =↗, then the time required by M is thought to be ∞.
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p ∈ K σ1 ∈ Σ σ2 ∈ Σ δ(p, σ1, σ2)

s, B, B, (s,B,→,B,→)

s, 0, t, (s, 0,→, 0,→)

s, 1, t, (s, 1,→, 1,→)

s, ⊕, t, (l,⊕,−,t,←)

l, ⊕, 0, (l,⊕,−, 0,←)

l, ⊕, 1, (l,⊕,−, 1,←)

l, ⊕, B, (s,⊕,→,B,→)

s, 0, 0, (s, 0,→, 0,→)

s, 0, 1, (s, 0,→, 1,→)

s, 1, 0, (s, 1,→, 1,→)

s, 1, 1, (s, 1,→, 0,→)

s, t, t, (h,t,−,t,−)

1. s, B011⊕ 100t
Bt

2. s, B011⊕ 100t
Bt

3. s, B011⊕ 100t
B0t

4. s, B011⊕ 100t
B01t

5. s, B011⊕100t
B011t

6. l, B011⊕100t
B011t

7. l, B011⊕100t
B011t

8. l, B011⊕100t
B011t

8. l, B011⊕100t
B011t

9. l, B011⊕100t
B011t

10. s, B011⊕ 100t
B011t

11. s, B011⊕ 100t
B111t

12. s, B011⊕ 100t
B111t

13. s, B011⊕ 100t
B111t

13. h, B011⊕ 100t
B111t

Figure 2.4: Two-string Turing machine that computes bitwise addition modulo two.
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However, in reality we need a measure defined on the problems, in other words,

on languages. The definition above provides a complexity measure defined only for

specific instances of problems, that is, on the pairs consisting of a word and a Turing

machine. In order to abstract from particular instances, next we define the time

measure on Turing machines alone.

Definition 2.2.5 ([Pap94]). Let f be a function from the nonnegative integers to

the nonnegative integers. We say that a Turing machine M operates within time f(n),

if for any input string x, the time required by M on x is at most f(|x|), where |x| is
the length of the string x. We call f(n) the time bound for M .

Finally, we abstract even from a specific Turing machine. What left is the language,

characterized according the complexity of the problem it corresponds to.

Definition 2.2.6 ([Pap94]). Suppose that a language L ⊂ (Σ\{t})∗ is decided by a

multistring Turing machine operating in time f(n). We say that L ∈ TIME (f(n))).

That is, TIME (f(n)) is a set of languages. It contains exactly those languages that

can be decided by Turing machines with multiple strings operating within the time

bound f(n).

It is easy to see, that the Turing machine in Figure 2.4 works in linear time. This

implies, that the string function defined in Example 5 can be computed in time

O(n), where n is the input length. Thus, a decision problem defined as the middle

bit of the addition modulo two would belong to TIME (O(n)). We have just defined

our first complexity class TIME (O(n)) = ∪k∈RTIME (kn) , for the input length

n. Another interesting complexity class is P := ∪k∈NTIME
(
nk
)
. We say that an

algorithm is time efficient if it operates within polynomial time. Thus, the class P

contains problems that can be efficiently solved by Turing machines. This is why P

stands out of the plethora of the complexity classes. Complexity classes and their

relations are studied in Structural complexity theory.

Now it may be a good time to ask a justified question. Why do we choose the multiple

string Turing machines as our standard for the time consumption? It well may be

unjustified by the possibility of a huge performance gap between the multiple and
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single string machines. It also may be incorrect due to the possibility of significant

performance gaps between multiple string machines with different number of strings.

We are now to resolve these issues, and justify our choice.

Theorem 1 ([Pap94]). Given any k-string Turing machine M operating within

time f(n), we can construct a single string Turing machine M ′ operating within time

O(f(n)2) and such that, for any input x, M(x) = M ′(x).

Sketch of the proof. For a machine M = (K,Σ, δ, s) we describe a machine M ′ =

(K ′,Σ′, δ′, s). The machine M ′ will contain all k strings of M on its single string, and

it will simulate the action of M .

We accomplish this by choosing an apropriate alphabet Σ′ := Σ ∪ Σ ∪ {B′,C,C′},
where Σ := {σ|σ ∈ Σ} will be used to store the k heads positions of M on its k strings.

Any configuration (q, w1, u1, . . . , wk, uk) of M can be simulated by the configuration

of M ′ (q,B, w′
1u1 C w′

2u2 C . . . w′
ku

′
k C C). Here w′

i is wi with the leading B replaced

by B′, and the last symbol σi by σi. The last pair CC signals the end of the string

of M ′.

The simulation starts shifting the head to the right, writing B′, the input string of

M , and the string C(B′C)k−1. The latter for the k − 1 initially empty strings.

The simulation goes in two phases. First, the whole string is scanned for needed

changes, according to the program δ of M . Then, the string of M ′ is traversed second

time in order to apply the changes. It takes only linear overhead to simulate every

step, including the initial preparation, unless a symbol must be added to one of the

strings of M . In this case, the whole content of the string possibly has to be shifted in

order to free the space. Since Turing machines can not expend more space than time,

the latter procedure would not take more than O(kf(|x|)) steps. The one position

shift right of a string x can be done in 4|x| steps. There are exactly f(|x|) steps of

M to simulate. Since k is a constant independent on the input length, M ′ does not

waste more than O(f(|x|)2) steps.

We have extensively used asymptotic notation so far. However, we have not yet jus-

tified our neglecting of the constant factors! The reason is that an elegant complexity
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theory emerges only if we consider rates of growth, rather than particular functions, in

order to define complexity measures. It is also consistent with the real world, where

the ”Moore’s Law” governs the technology advance rates. Originally, the statement

was made by Gordon E. Moore, one of the co-founders of Intelr corporation, in 1965.

[Moo65]:

The complexity for minimum component costs has increased at a rate of

roughly a factor of two per year ... Certainly over the short term this rate

can be expected to continue, if not to increase. Over the longer term,

the rate of increase is a bit more uncertain, although there is no reason to

believe it will not remain nearly constant for at least 10 years. That means

by 1975, the number of components per integrated circuit for minimum

cost will be 65,000. I believe that such a large circuit can be built on a

single wafer.

The law ever held since then, doubling the number of transistors per chip every 18

months. However, by the year 2020 the silicon wafer technology would approach its

limits. The transistor size will have to be a couple of atoms in size, in order to keep

in pace with the ”Moore’s Law”. That is why we are off for search of alternative tech-

nologies. Their mathematical abstractions are known as non-classical computational

models.

But before we look on for new models, there’s a question left unresolved. Is the

multiple strings Turing machine, being our standard classical model, consistent with

our aspirations for an elegant theory, and the practical ”Moore’s Law”? The linear

speedup theorem addresses the question.

Theorem 2 (Linear Speedup Theorem [Pap94]). Let L ∈ TIME (f(n)). Then

for any ε > 0, L ∈ TIME (f ′(n)) , where f ′(n) = εf(n) + n+ 2

Sketch of the proof. Let M = (K,Σ, δ, s) be a k-string Turing machine that de-

cides L and operates in time f(n). We construct a k′-string Turing machine M ′ =

(K ′,Σ′, δ′, s′) operating within time bound f ′(n), and which simulates M . The num-

ber k′ = k + 1.
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A simple idea is used to compress the computation. The alphabet Σ′ = Σ ∪ Σm. We

use m-tuples to encode m symbols of Σ. The value of m will be specified later.

The simulation starts with encoding the input string content of M on the second

string of M ′. Then, the machine M ′ simulates m steps of M by at most 6 steps. It

moves all cursors to the left, then twice to the right, then back to the left. After that,

M ′ has enough information to predict behavior of further m steps of M . Two more

steps of M ′ may be needed to implement the actions of M . The output of M ′ will

be identical to that of M , but it will use m/6 times less of steps for every simulated

computation. Finally, setting m := 6/ε we prove the desired speed-up.

We have made it fair and square with the time measure. However, time is not the

only resource used by a Turing machine. Should we not also count the the strings

length of Turing machines?

In order to define the space complexity of a Turing machine for a given input x, we

could simply count all non-empty symbols written on the strings. However, this mea-

sure would not be relevant to very economical machines that don’t write more than |x|
symbols. In the latter case all their complexities would be asymptotically identified

due to the predominant additive factor of |x|. Consider the following example.

Example 6 (Logarithmic space Turing machine). LetM1 andM2 be two Turing

machines that recognize the language EQUALITY = {x = y|x, y ∈ {0, 1}∗ and x =

y}.

1. The machine M1 simply copies the x part to its second string and compares it

with the y part. All done in one scan of the input string.

2. The machine M2 compares the symbols of x and y one-by-one, storing in the

second string only the symbol position and its value. The same part of the sec-

ond string will be used each time, rewriting the previous content. This machine

would utilize only log2 |x = y| + 1 positions of the second string. Although,

this machine is less efficient in the time utilization, it saves space significantly,

compared to M1.

Notably, none of the two machines of the Example 6 changed the input string.
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Definition 2.2.7 ([Pap94]). Let k > 2 be an integer. A k-string Turing machine

with input and output is an ordinary k-string Turing machine, with a restriction on

the program δ:

Whenever δ(q, σ1, . . . , σk) = (p, ρ1, D1, . . . , ρk, Dk), then

1. ρ1 = σ1;

2. Dk 6=←;

3. if σ1 = t then D1 =←.

In other words, M has a read-only input string, a write-only output string, and the

head of the read-only string is not allowed to wander off the input.

Observe that we don’t weaken our standard computation model by switching to the

Turing machines with input and output.

Proposition 2.2.1. For any k-string Turing machine M operating within time bound

f(n), there exits a k+2-string Turing machine with input and output, recognizing the

same language, and operating within a time bound O(f(n)).

The proof of the proposition is trivial. We can finally define the space complexity

measure.

Definition 2.2.8 ([Pap94]). Suppose that for a k-string Turing machine M and

an input x it holds that (s,B, x, . . . ,B, ε) → (H,w1, u1, . . . , wk, uk), where H ∈
{h, ”yes”, ”no”} is a halting state. Then the space required by M on input x is

Σk
i=1|wiui|. If, however, M is a machine with input and output, then the space re-

quired by M on input x is Σk−1
i=2 |wiui|. Suppose now that f is a function from N to

N. We say that a Turing machine operates within space bound f(n) if, for any input

x, M requires space at most f(|x|).

Analogously to the time classes we can define space complexity classes of languages.

Definition 2.2.9 ([Pap94]). Let L be a language. We say that L is in the space

complexity class SPACE (f(n)) if there is a Turing machine with input and output

that decides L and operates within space bound f(n).
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The Turing machine M2 from the Example 6 shows that

EQUALITY ∈ SPACE (log2 n+ 1)

As a matter of fact, a space analogue of Linear Speedup Theorem allows us discard

constants for space complexity too. Thus, implying

EQUALITY ∈ SPACE (log2 n) =: L.

As another example of space complexity class we define PSPACE.

Example 7 (PSPACE). A class of all problems that can be solved by a Turing

machine within polynomial space is called PSPACE.

PSPACE := ∪k∈NSPACE
(
nk
)

Theorem 3 ([Pap94]). Let L be a language in SPACE (f(n)). Then for any ε > 0,

L ∈ SPACE (2 + εfn) .

Proof. The proof is an easy modification of the proof of Theorem 2.

We have established the fundamentals – the standard model of the complexity the-

ory. However, computational problem arise in many different settings. Sometimes

it is easier to consider a specific computational model than stick to the Turing ma-

chines. Those new models give rise to new complexity classes. The latter, in turn,

help us better understand complexity of the studied problems. The multiplicity of

computational abstractions is also the source of diversity and beauty of the structural

complexity theory. Far more complexity classes, than we present as examples, are

found in Scot Aaronson’s Complexity Zoo [Aar] that deserves a separate tribute. We

present some of the alternative models of computation in coming subsections.
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2.3 Branching programs

We have seen that a Turing machine can be modified in order to better fit our research

purposes. However, for some complexity research areas Turing machines have to be

modified so far that they can be considered a different computational model. The

area of our research lays in the complexity of Boolean functions.

Definition 2.3.1. A class of functions consists of finite functions if the common

domain and the common image of the functions are finite sets. The elements of the

domain and the image can be encoded by binary strings of fixed length, the resulting

functions are called Boolean functions.The class of Boolean functions f : {0, 1}n →
{0, 1}m is denoted Bn,m. The class Bn,1 is denoted simply as Bn.

As we mentioned earlier, a Turing machine is a universal abstraction of the algo-

rithm. Thus, it is not impossible to study families of Boolean functions using Turing

machines. But recall how far Turing machine programs are from the comfort of the

higher level computer languages! One can hardly advance any far trying to develop

a complex database using the Turing machine model. It’s just not a right abstrac-

tion for the purpose! Similarly, branching programs offer us better tools for studying

Boolean functions complexity than Turing machines. Furthermore, branching pro-

grams allow us proving non-trivial lower bounds, that has always been difficult in

theoretical computer science. Even furthermore, a branching program also can be

considered as a representation of a Boolean function. There is even a way to provide

canonical representations for Boolean functions using branching programs. Thus, the

model offers quite a bit of tools to study even more than only complexity of Boolean

functions!

The model of branching programs was first systematically studied by W. Masek in

his Master’s thesis [Mas76].

Definition 2.3.2 ([MT98]). A branching program or a binary decision diagram is

a directed acyclic graph with exactly one root, whose

� sinks are labeled by the Boolean constants 0, 1, and whose
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� internal nodes are labeled by a variable xi and have exactly two outgoing edges,

a 0-edge and a 1-edge.

A branching program represents a Boolean function f ∈ Bn in the following way.

Each assignment to the input variables xi defines a uniquely determined path from

the root to one of the sinks of the graph. The label of the reached sink is set to be

the function’s value on the input.

x1

x2 x2

x3 x3 x3

0 1

x1

x2 x2

x3 x3

0 1

Figure 2.5: Ordered Binary Decision Diagrams of addition modulo two.

There is a certain agreement on the graphical representation of the branching pro-

grams. The nodes are usually shown as circles with the corresponding variables

within. The 0-edges are drawn as dashed lines, while the 1-edges are represented

by solid lines. The sinks are usually shown as squares with corresponding values in

them. The Figure 2.5 demonstrates branching programs that represent the function

g(x1, x2, x3) := x1 ⊕ x2 ⊕ x3.

Definition 2.3.3. We define BP to be the class of all branching programs.

The size of a given branching program is a relevant complexity measure on the class

of the branching programs.
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Definition 2.3.4. The size of a branching program is number of its internal nodes.

Our first example of the branching program complexity class is given next.

Example 8. The class of functions represented by polynomial size branching pro-

grams is called P-BP.

However, the size can be decomposed into more elementary complexity measures.

We achieve that by introducing the notions of the level and the width of a branching

program. Imposing restrictions on the width or the length of a branching program, we

may arrive at interesting restricted classes of branching programs. In fact, nontrivial

restricted computational models are one of the most attractive features that branching

programs offer.

Definition 2.3.5 ([MT98]). Let P be a branching program.

1. The kth level of P denotes the set of all nodes which can be reached from the

root by a path of length k − 1.

2. The width of P is the maximal cardinality width (P ) over all levels of P .

The most general kind of branching programs are hard to prove nontrivial statements

about. It was imposing restrictions that made the interesting proofs possible.

Definition 2.3.6 ([MT98]). Let P be a branching program.

1. P is called bounded-width k if each level of P is of cardinality at most k: w(P ) ≤
k.

2. P is called synchronous if for each node v of P , all paths from the root to v are

of the same length.

3. P is called oblivious if it is synchronous and all non-sink nodes within a level

are labeled with the same variable.

4. P is read-k-times-only branching program if each variable occurs on every path

at most k times.
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The definition above can be used to introduce several subclasses of the class of all

branching programs BP .

Definition 2.3.7. 1. BPwidth−k = {P |P ∈ BP,w(P ) ≤ k};

2. sBP = {P |P ∈ BP,P is synchronous};

3. oBP = {P |P ∈ BP,P is oblivious};

4. BPk = {P |P ∈ BP,P is read-k-times-only}.

Let us also introduce several well-known types of branching programs, that have their

own names.

Definition 2.3.8. 1. A Free BDD (FBDD) is a read-once branching program.

2. An ordered BDD (OBDD) is a FBDD, where on all paths variables are read

according to the same ordering.

3. A k-OBDD consists of k layers of OBDDs respecting the same ordering of

variables.

4. A k-IBDD (Indexed BDD) consists of k layers of OBDDs respecting perhaps

different orderings.

Consider an OBDD P . Each internal node of the graph can be treated as an OBDD

of certain subfunction of the function g represented by P .

Definition 2.3.9. For an OBDD P , we say that a function f is represented by the

node labeled xi if the subgraph rooted in this node is an OBDD that represents f .

In fact, for a given OBDD P , for any internal node xi that represents a Boolean

function f ∈ Bn the Shannon’s decomposition rule holds:

f = xif1 + xif0

with the cofactors

f0 = f(x1, . . . , xi−1, 0, xi+1, . . . xn)andf1 = f(x1, . . . , xi−1, 1, xi+1, . . . xn).
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Consequently, it is clear that the OBDD model is based on the Shannon’s decompo-

sition of Boolean functions. Is it not possible to define a branching program based

on a different decomposition type? The answer is ”Possible!”. Below we define Reed-

Muller and Davio decompositions.

Theorem 4 ([MT98]). Let f ∈ Bn be a switching function in n variables. For the

functions f0, f1, f2 defined by

f0(x1, . . . , xn) = f(x1, . . . , xn−1, 0),

f1(x1, . . . , xn) = f(x1, . . . , xn−1, 1),

f2(x1, . . . , xn) = f0(x1, . . . , xn)⊕ f1(x1, . . . , xn)

the following holds true:

Reed-Muller decomposition or positive Davio decomposition:

f = f0 ⊕ xnf2;

Negative Davio decomposition:

f = f1 ⊕ xnf2.

This decomposition holds, in analogous manner, for each variable xi, 1 ≤ i ≤ n.

Proof. Due to Shannon’s decomposition, with respect to the addition modulo two

operation ⊕, we have for x ∈ Bn

f(x) = xnf0(x)⊕ xnf1(x) (xn = 1⊕ xn)

= f0(x)⊕ (xnf0(x)⊕ xnf1(x))

= f0(x)⊕ xnf2(x).
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Analogously,

f(x) = xnf1(x)⊕ xnf0(x) (xn = 1⊕ xn)

= f1(x)⊕ (xnf1(x)⊕ xnf0(x))

= f1(x)⊕ xnf2(x).

A new kind of branching programs was introduced by Kebschull, Schubert and Rosen-

tiel in 1992 [KSR92]. They defined a ordered functional decision diagram based on

the Reed-Muller decompositon.

Definition 2.3.10 ([MT98]). An ordered functional decision diagram (OFDD) is

defined like an OBDD with one difference: the function fv which is computed in a

node v of the graph is now defined by the following inductive rules:

1. If v is a sink with label 1 (0), then fv = 1 (fv = 0);

2. If v is a node with label xi whose 1- and 0- successor nodes represent the

functions h and g, respectively, then

fv = g ⊕ xih.

Analogously to the construction of FBDD, a free functional decision diagrams can be

defined.

Definition 2.3.11. A free functional decision diagram is a read-once functional de-

cision diagram.

In all their varieties, decision diagrams can be well represented by graphs. In turn,

the graphs remind us networks of communications. Indeed, we shall later see an

interesting connection between ordered binary decision diagrams and communication

complexity that is presented next.
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2.4 Communication model

Whenever two or more parties (computers, humans, parts of a device) perform a

task that can not be accomplished by a single participant, a communication gets at

handy. A mathematically rigorous study of this setting was first done by A. Yao in

1979 [Yao79].

Let us list several real life examples well described by the communication model.

� An airplane and the ground control. Here we obviously have two parties.

� The Global Positioning System (GPS). This example represents multiparty com-

munication where the end-user and the satellite grouping is involved.

� Very Large Scale Integration (VLSI, microchip) devices. If we cut the chip we

obtain two parties, or simply ”parts”, that communicate exchanging date. The

microchip complexity measure can be derived based on this approach. It is

widely in use.

� A personal computer as a system of its components. Clearly, it is a multiparty

communication. As a matter of of fact, it is narrow communication channels,

rather than a slow CPU (Central Processing Unit) or a GPU (Graphics Pro-

cessing Unit), that cause performance drops in the computers of today.

The intuition behind all these examples is that the parties involved must exchange

information in order to achieve their goals. Left alone, none of the parties can suc-

cessfully accomplish their tasks in every example above.

This intuition boils down to a significant theoretical assumption. In communication

complexity, we assume that each of the parties possesses the ultimate computational

power. In other words, it is only lack of the information that doesn’t let the parties

come up with the desired solution at once. That’s why the parties have to communi-

cate. Apart from communication all kinds of computation is free of charge.

The most basic kind of communication is where exactly two parties are involved.

If these two parties, say Alice and Bob, decide to compute a Boolean function

f(x1, . . . , xn) ∈ Bn they would, obviously, split the input. Otherwise, there’s nothing
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to communicate about, since each of them, Alice and Bob, is an ultimate computing

”superpower”.

Definition 2.4.1 ([Hro97]). Let X = {x1, x2, . . . , xn} be a set of input variables.

Any function Π : X → 1, 2 is called a partition of X. Define two sets: ΠL,X :=

{x ∈ X| Π(x) = 1} and ΠR,X := {x ∈ X| Π(x) = 2}. Obviously, ΠL,X ∪ ΠR,X =

X and ΠL,X ∩ ΠR,X = ø.

In the context of communications the set ΠL,Xrepresents variables assigned to the

”left” party Alice, while ΠR,Xrepresents variables assigned to the ”right” party Bob

(See Figure 2.6).

We shall have to handle input assignments partitioned between the two computers.

In order to be able to make it in elegant fasion we introduce following definition.

Definition 2.4.2 ([Hro97]). Let Π be a partition of X = {x1, . . . , xn}. Let α :

X → {0, 1} be an input assignment. We denote by αΠL,X
an assignment αΠL,X

:

ΠL,X → {0, 1}, such that αΠL,X
preserves α. Analogously, αΠR,X

is an assignment

αΠR,X
: ΠR,X → {0, 1}. We denote by Π−1(αΠL,X

, αΠR,X
) the original assignment α.

The notion of protocol provides the abstraction of the algorithm concept in commu-

nication complexity theory. We shall consider only the protocols computing Boolean

functions fn(X) = fn(x1, x2, . . . , xn) ∈ Bn. This kind of protocols is the ”corner

stone” of the communication complexity theory. Although, analogously to the Tur-

ing machines, this model can also be generalized for arbitrary functions.

An informal description of the two-party many round communication protocol mostly

coincides with our intuitive picture of a communication.

Let Alice and Bob be two parties that jointly compute a Boolean function

fn(X), X ∈ Bn. A partition Π : X → 1, 2 of the input defines how the

input is divided between the two parties. Let Alice read only the values for

the variables from ΠL,X and let Bob read only the values for the variables

from ΠR,X .

We the following set of rules describes a two-party communicational pro-

tocol Φ.
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Alice Bob

c1

c2

ΠL,X ΠR,X

fn(X)

...

Figure 2.6: A two-party communication protocol.

Alice starts the computation reading the values for ΠL,X .

Alice sends Bob a message c1 ∈ Bl1 .

Bob receives both the input values for ΠR,X and the message c1 sent by

Alice.

If, having c1 and values for ΠR,X , Bob can calculate fn(X),

then Bob gives the output fn(X);

else Bob sends Alice a message c2 ∈ Bl2

Alice If now Alice is able to determine the value of fn(X)

then Alice sends Bob the answer and Bob will output it;

else Alice sends Bob another message c3 ∈ Bl2 . Alice and Bob keep

to exchange messages until they can determine the value fn(X)

Bob Finally outputs the answer: fn(X).

The description above can be formalized to a a strict mathematical definition pre-

sented next. It is strongly based on the formalism proposed by J. Hromkovč [Hro97].

Another approach, based on binary trees can be found in the book of E. Kushilevitz
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and N. Nisan [KN97]. The latter is close to the original definition given by A. Yao

[Yao79].

Definition 2.4.3. Let fn(X) ∈ Bn be a Boolean function with the set of input

variables X = {x1, x2, . . . , xn} . A protocol computing function f for the input X is

a pair Dn = 〈Π,Φ〉.

1. Π is a partition of X;

2. Φ is a communication function.

Φ : {0, 1}m × {0, 1, $}? ∪ {0, 1}k × {0, 1, $}? → {0, 1}+ ∪ {0, 1},

where m = {ΠL,X}, k = {ΠR,X} = n−m.

There are three conditions that we demand to hold for the function Φ:

(a) Prefix-freeness. No message is a prefix of another message, so that no

special delimiter symbol is needed. That is, for each c ∈ {0, 1, $}? and

any two different α, β ∈ {0, 1}m [{0, 1}k], Φ(α, c) is not a proper prefix of

Φ(β, c);

(b) Single output party property. The output value is always computed by the

same party independently of the input assignment. That is, if Φ(α, c) ∈
{0, 1} for an α ∈ {0, 1}m, c ∈ ({0, 1}+$)

2p
for some p ∈ N [for an α ∈

{0, 1}k, c ∈ ({0, 1}+$)
2p+1

], then ∀q ∈ N, ∀γ ∈ {0, 1}k, ∀d ∈ ({0, 1}+$)
2q+1

[∀q ∈ N, ∀γ ∈ {0, 1}m, ∀d ∈ ({0, 1}+$)
2q

] it holds that Φ(γ, d) /∈ {0, 1}

(c) End message property. If computer A computes the output for an input

assignment, then computer B knows that, and does not wait for further

communication. The latter is achieved by demanding the function Φ to

satisfy the following expressions. Φ(α, c) ∈ {0, 1} for some α ∈ {0, 1}m,

then Φ(β, c) /∈ {0, 1}+ for any β ∈ {0, 1}m, and Φ(α, c) ∈ {0, 1} for some

α ∈ {0, 1}k, then Φ(β, c) /∈ {0, 1}+ for any β ∈ {0, 1}k. For any given

communication function Φ, only one of the two expressions above is needed,

dependent on the choice of the output party.
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We shall discuss all three conditions from the definition quite soon. But first, we

introduce some complexity measures for the communications. Complexity, or resource

utilization, is the central point of interest in complexity theory. That is why complexity

measures we are going to define shall explain the definition of the communication

protocol.

2.4.1 Complexity measure

We mentioned above that all computations made by Alice or Bob alone are free of

charge. The only resource utilized by the communication protocol is that needed

to transfer the messages. Naturally, it is the length of the communicated messages

that we call complexity of the two-party deterministic communication protocol that

computes fn(X).

First we formalize the notion of the ”communicated messages”. According to the

definition of the protocol, messages are determined by the communication function

Φ. Thus, any message ci is in {0, 1}+ ∪ {0, 1}

Definition 2.4.4 ([Hro97]). Let fn ∈ Bn be a Boolean function of n variables in

X = {x1, . . . , xn}. Let Dn = 〈Φ,Π〉 be a two-party communication protocol over

X. A computation of Dn on an input assignment α ∈ {0, 1}n is a string c(Dn, α) =

c1$c2 . . . $ck$ck+1, where

1. k ≥ 0; c1, . . . , ck ∈ {0, 1}+, ck+1 ∈ {0, 1};

2. for each integer l, 0 ≤ l ≤ k, we have

(a) if l is even, then cl+1 = Φ(αΠL,X
, c1$c2 . . . $cl$);

(b) if l is odd, then cl+1 = Φ(αΠR,X
, c1$c2 . . . $cl$).

Indeed, this definition of computation is consistent with the informal description we

gave earlier in this section. The party, that reads ”left” part of the partition Π starts

the communication. Messages are sent synchronously, the parties alternate while

communicating. Finally, the output is given.
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Definition 2.4.5 ([Hro97]). Let fn ∈ Bn be a Boolean function of n variables in

X = {x1, . . . , xn}. Let Dn = 〈Φ,Π〉 be a two-party communication protocol over X.

We say that Dn computes fn, if for each α ∈ {0, 1}n, the computation of Dn on the

input assignment α is finite and ends with 1 if, and only if fn(α) = 1. In this case we

also say that the computation is accepting, otherwise we would call the computation

rejecting.

Length of a computation c is the total length of all communicated messages excluding

$ symbols and the output value.

Definition 2.4.6. For a protocol Dn, and an appropriate input α, we define length

of the computation c(Dn,α) = c1$c2 . . . $ck$ck+1 as follows

|c(Dn, α)| := Σk
i=1|ci|.

Finally, we define the communication complexity of a two-party protocol as the max-

imum length of its computation over all inputs.

Definition 2.4.7. Let Π be a partition of X = {x1, . . . , xn}. Let Dn = 〈Φ,Π〉 be

a protocol over X. The communication complexity CC (Dn) of the protocol Dn is

defined as follows.

CC (Dn) := max
α∈Bn
|c(Dn, α)|.

The smallest complexity of a protocol that computes a Boolean function defines for

the function its communication complexity.

Definition 2.4.8. Let fn ∈ Bn be a Boolean function of n variables, let Π be a

partition of X = {x1, . . . , xn}. Define CC (fn,Π) the communication complexity of

fn according to the fixed partition Π as follows.

CC (fn,Π) := min{CC1 (〈Φ,Π〉) | for a 〈Φ,Π〉 computing fn}.

Consider a function fn communication complexity according to a partition Π. It is

worth to mention, that CC (fn,Π) ≤ n. In the protocol, that achieves this complexity
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bound, the computer A simply sends its part of the input to the computer B. The

latter, being an ”almighty” supercomputer calculates the function value.

We can also consider defining a communication complexity measure independent from

any partition. The reason is it is this measure that has important applications in

parallel and distributed computations.

It doesn’t make sense to define this measure as the minimum communication com-

plexity over all partitions. There are trivial partitions that would make the measure

irrelevant to a problem complexity. We shall consider a class of reasonable partitions,

that has following properties.

1. No input variables enter both parts;

2. The number of variables entering one part is not ”substantially different” from

the number of variables entering the other part.

This thinking leads us to the definition of balanced and almost balanced partitions.

Definition 2.4.9 ([Hro97]). Let Π be a partition of X = {x1, x2, . . . , xn}. We say

that Π is balanced if ||ΠL,X | − |ΠR,X || ≤ 1. We say that Π is almost balanced if

n/3 ≤ |ΠL,X | ≤ 2n/3 (Obviously, this implies n/3 ≤ |ΠR,X | ≤ 2n/3). We also define

two sets.

Bal (X) := {Π|Π is a balanced partition of X};

Abal (X) := {Π|Π is an almost balanced partition of X}.

We define communication complexity of a function as the minimum over all balanced

or almost balanced partitions.

Definition 2.4.10 ([Hro97]). Let fn ∈ Bn be a Boolean function of n variables

x1, . . . , xn,. Let the set X = {x1, . . . , xn}. The communication complexity of Boolean

function fn is

CC (fn) := min{CC (fn,Π) |Π ∈ Bal (X)}.
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The a-communication complexity of Boolean function fn is

ACC (fn) := min{CC1 (fn,Π) |Π ∈ Abal (X)}.

2.4.2 Properties of communication function

Let us now discuss the conditions we set for communication protocol (See page 36).

We consider all three conditions of the communication function separately.

Prefix-freeness

The first condition is based on a famous fact concerning so-called prefix codes, also

known as instantaneous codes. We recall some basic coding theory first.

First, we should agree on what we call ”codes” in general.

Definition 2.4.11. Let us call a code a partial function g : A → B∗ that maps

symbols from the alphabet A to words over the alphabet B.

There is a kind of codes that allow unique decodability of the initial message. Cer-

tainly, this is the most useful sort of codes.

Definition 2.4.12. For A,B – some alphabets, we call a code g : A → B∗ uniquely

decodable, if g is a surjection.

Definition 2.4.13. A uniquely decodable code with no codeword being a prefix of

some other codeword is called prefix code.

The name ”prefix code” is quite misleading, in fact, it is a ”prefix-free code”. However

that’s the settled terminology. It is easy to see that this kind of codes can be decoded

”instantly”. As soon as the codeword transmission is over the decoder doesn’t need

any end-of-message sign to map the codeword to a corresponding symbol of the initial

source alphabet.

What has the coding theory to deal with communication? In communication theory,

the parties exchange messages. The messages must be encoded using some uniquely

decodable code. It turns out, that we can always opt for prefix codes without losing

much. Here’s the fact.
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The Kraft inequality tells when the lengths of the code words permit

forming an instantaneous code. McMillan proves that the same inequality

applies to all uniquely decodable codes [Ham80].

Informally, prefix codes can encode messages as good as arbitrary uniquely decodable

codes. In other words, we don’t loose in communication complexity. Additionally, the

prefix freeness offers some technical advantages that can be utilized in proves where

communication protocols are considered. Finally, we abstract from the detals of mes-

sage encoding. The complexity measure of communication protocols (See Definition

2.4.7, 2.4.8) is set to reflect resource utilization of the algorithm rather than that of

message encoding. The latter is studied by the theory of codes.

Single output party property.

Initially defined by A. Yao [Yao79], communication protocol did not have this prop-

erty. It is straightforward how to modify a protocol, so that for all input strings the

output value is given by the same computer. It takes just one bit plus perhaps a spe-

cial message to send in addition to the communication of the initial protocol. Thus,

complexity of protocols is not really affected. In the sense of complexity, Definition

2.4.3 is equivalent to that of Yao’s. However, the single output property allows us to

formalize the End message property without further complicating the definition of the

communication protocol. Finally, this property of communication protocols serves for

convenience of uniform appearance of the protocols. In fact, often a stronger property

is assumed. It demands that for all protocols, and for all inputs, the output is always

given by the same computer B that reads the ΠR,X part of the input X.

End message property

The property ensures that both parties halt, when the output is computed. This is a

natural assumption for the model. This property is useful when we define restricted

communication models later in this section. Earlier we introduce the single output

property in order to elegantly formalize the end message property.
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2.4.3 One-way communications

A restriction of the general two-party communication model allows only one commu-

nication round. Alice sends Bob a message c, and that’s all about the communication

they make.

Study of this model is worthwhile because of the following facts:

1. We later shall see its application to the branching programs complexity;

2. It provides lower bounds for VLSI circuits;

3. In many cases it’s essentially higher than the communication complexity.

Alice Bobc

fn(X)

Π L,X ΠR,X

Figure 2.7: A one-way two-party communication protocol.

The informal description of the one-way communication protocol is significantly sim-

pler than the general case described earlier.

Let Alice and Bob be two parties that jointly compute a Boolean function

fn(X), X ∈ Bn. A partition Π : X → 1, 2 of the input defines how the

input is divided between the two parties. Let Alice receive values for the

variables from ΠL,X and let Bob receive values for the variables from ΠR,X .
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The following set of rules describes a one-way two-party communicational

protocol 〈Φ,Π〉

Alice starts the computation reading the values for ΠL,X .

Alice sends Bob a message c ∈ Bl.

Bob receives both the input values for ΠR,X and the message c sent by

Alice. He must now output the function value fn(X).

Let us formally define k-round protocol, and the one-way protocol as a special case.

This definition is strongly based on the definition presented by Hromkovič [Hro97].

Definition 2.4.14. Let Dn = 〈Φ,Π〉 be a protocol computing a Boolean function

fn ∈ Bn. For every k ∈ N a k-round computation of Dn is any computation of

Dn of the form c = c1$c2$ . . . $ck$ck+1, where ci ∈ {0, 1}+ for i = 1, . . . , k, and

ck+1 ∈ {0, 1}+. That is, the computation contains exactly k messages sent.

We also say that the computation c has k rounds. The protocol Dn is called a k-round

protocol if each computation of Dn has at most k rounds. A one-round protocol is

also called a one-way protocol.

Notice, that a one-way protocol, computing a Boolean function, has either one-round

or zero-round computations. But not both kinds. It follows from the end message

property of communication function (See Definition 2.4.3).

Analogously to the general case, we define one-way communication complexity.

Definition 2.4.15 ([Hro97]). Let fn be a Boolean function of n variables in X

for some n ∈ N \ {0}. The one-way communication complexity of fn according to a

partition Π is

CC1 (fn,Π) := min{CC (〈Φ,Π〉) |〈Φ,Π〉 is a one-way protocol computing fn}.

The one-way communication complexity of fn is

CC1 (fn) := min{CC1 (fn,Π) |Π ∈ Bal (X)}.
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The one-way a-communication complexity of fn is

ACC1 (fn) := min{CC1 (fn,Π) |Π ∈ Abal (X)}.

The next proposition is an easy to prove relation between different complexity mea-

sures we established so far.

Proposition 2.4.1. For every Boolean function fn ∈ Bn, n ∈ N \ {0} following

relations hold.

ACC1 (fn) ≤ CC1 (fn)

ACC (fn) ≤ ACC1 (fn)

CC (fn) ≤ CC1 (fn) .

Although, simple and useful, this proposition is not the only tool we have for estab-

lishing communication complexity of a function.

2.4.4 Lower bounds

One of the most useful instruments in communication complexity is the notion of

communication matrix. It allows proving nontrivial lower bounds on general and

one-way communication complexity of Boolean functions.

Definition 2.4.16. Let fn(X) ∈ Bn be a Boolean function. Let X = {x1, . . . , xn}
be the set of input variables. For a partition Π of the set X, define a communication

matrix of the function f to be a zero-one 2|ΠL,X | × 2|ΠR,X | matrix CM .

CMi,j := fn

(
Π−1 (αi, βj)

)
;

i = 1, . . . , |ΠL,X |; j = 1, . . . , |ΠR,X |;

where αi is ith word from lexicographically ordered set {0, 1}|ΠL,X |, βj is jth word

from lexicographically ordered set {0, 1}|ΠR,X |, αi defines an assignment on ΠL,X , and

βj – an assignment on ΠR,X .
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Two powerful lower bound theorems conclude our section on communication com-

plexity.

Theorem 5 ([Hro97]). Let f be an arbitrary Boolean function with a set X of input

variables. For any partition Π of X

CC (f) ≥ dlog2 Rank (CM (f,Π))e .

Similarly to many-round protocols, we can link complexity of a one-way protocol to

the communication matrix of the function computed by the protocol. But this time

the complexity can be calculated exactly!

Theorem 6. For a Boolean function f defined over a set X of input variables, for a

partition Π of the input X

CC1 (f,Π) = dlog2NRow (CM (f,Π))e ,

where NRow (f) is the number of different rows in CM (f,Π).

Proof. We shall argue by contradiction. Let CM be the communication matrix of f

according to the partition Π. Without loss of generality, let the rows CM1 and CM2

are not equal. However, we assume that the communications corresponding to the

two rows coincide. Let 〈Φ,Π〉 be a protocol computing f .

Φ(bin (i) , λ) = Φ(bin (j) , λ)⇒

∀γ an assingnment of ΠR,X Φ(γ,Φ(bin (i) , λ)) = Φ(γ,Φ(bin (j) , λ))⇒

since 〈Φ,Π〉 computes f

⇒ f(Π−1(bin (i) , γ)) = f(Π−1(bin (j) , γ)),

where λ is the empty symbol.

The last expression, however, contradicts the fact that CMi 6= CMj. The theorem

follows.



46 CHAPTER 2. CLASSICAL MODELS OF COMPUTATION

We shall recall one of these theorems later on, providing yet another evidence of how

useful, yet simple and elegant the communication model is.



Chapter 3

Nondeterministic and Randomized

Models

I am always doing that which I can

not do, in order that I may learn

how to do it.

Pablo Picasso

Up to this moment, we have considered models that made deterministic choices on

each step of their programs. The Turing machines, the branching programs, even the

communication protocols. Their output could always be predicted having the input

and the algorithm. Now we are up to add some juice to this boring behavior!

3.1 Nondeterministic Turing machines

Unlike it has been the case with all other models, there is no real life device behind

the notion of the nondeterministic Turing machine. Instead, there is a plenty of real-

life problems, that have one common feature. It is not always clear whether there is

an efficient, that is polynomial time and space, solution of the problem. But given

a candidate solution, we can efficiently check whether it is correct. As we shall see

later, classical Turing machines can always offer an exponential time algorithm for

47
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an arbitrary problem of this kind. However, it is an open question whether they can

fare better. Thus, the classical Turing machines offer a poor means to characterize

the class of the problems.

What kind of computational problems have we been talking about? Let’s give some

examples.

Example 9 (Easily checkable solutions). A very short list of problems that have

easily checkable solutions, but that may be very hard to solve.

� Proofs in logic. It is hard to come up with a proof for a logical statement.

However, we can usually efficiently check the proof for correctness.

� Combinatorial optimization problems. Finding a solution may involve an ex-

tensive search of the notorious needle in the notorious haystack. But it is easy

to check if an instance satisfies the search criterions, or the linear programming

constraints.

� Knowledge base, or database applications. For the same reason as for combina-

torial optimization problems.

All these problems can be nicely put in one complexity class defined based on the

notion of the nondeterministic Turing machine.

Definition 3.1.1. A nondeterministic Turing machine is a quadruple (K,Σ,∆, s),

where K,Σ, s are defined the same way as for classical Turing machines. The program

∆ is a relation, also called a transition relation, ∆ ⊂ (K×Σ)×[(K∪{h,′′ yes′′,′′ no′′})×
Σ× {←,→,−}]. That is, for each configuration of the nondeterministic Turing ma-

chine there can be more than one configurations it could be in the next step!

Definitions of a configuration, an initial configuration and a computation of the Turing

machine remain the same for the nondeterministic machines (See Def. 2.1.2, Def.

2.1.4, p. 12). However, now more than one computation may correspond to a given

input. In fact, for every input, there is a computation tree, where the paths from the

root to the leafs are the appropriate computations.
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Definition 3.1.2 ([Pap94]). We say that a nondeterministic Turing machine N =

(K,Σ,∆, s) decides a language L if for any x ∈ Σ∗ x ∈ L if and only if there is

a computation of N on the input x that ends in the accepting state ”yes”, that is

(s,B, x)
N∗
→ (”yes”, w, u), for some strings w and u.

A nondeterministic Turing machine accepts the input if there exists an accepting

computation. It rejects the input if all computations on the input end in the rejecting

state. The asymmetry is due to our desire to define the classes of problems, according

to the difficulty of checking their solutions, rather than the difficulty of computing an

actual solution. Definition of the time complexity reinforces this observation.

Definition 3.1.3 ([Pap94]). Let f be a function from the nonnegative integers

to the nonnegative integers. We say that a nondeterministic Turing machine N =

(K,Σ,∆, s) decides a language L within time bound f(n) if N decides L, and on

every input x ∈ Σ∗, every computation of N contains less than f(|x|) steps, that is

(s,B, x)
Nk

→ (q, w, u) ⇒ k ≤ f(|x|). We use NTIME (f(n)) to denote the nondeter-

ministic complexity class of problems decided by nondeterministic Turing machines

within time f(n).

The most famous of nondeterministic complexity classes is NP := ∪k∈NNTIME
(
nk
)
.

The abbreviation ”NP” stands for ”Nondeterministic Polynomial”. This is exactly

the complexity class we started this section with. It contains all problems, such that,

given a solution, we can efficiently check whether it is correct or not, but nothing is

said about how difficult it may be to actually calculate the solution. Let’s give an

example.

Example 10 (Quadratic congruences). Instance: Positive integers a, b, and c.

Question: Is there a positive integer x < c such that x2 ≡ a( mod b)?

Given a, b, c and x we can check whether x2 ≡ a( mod b) in polynomial time with a

Turing machine. But it is absolutely not clear how to find such x < c efficiently!

We should notice, that the Turing machine is a special case of the nondeterministic

Turing machine where the relation ∆ happens to be a function. Next proposition is

the consequence of this reasoning.
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Proposition 3.1.1.

P ⊆ NP.

Finally, we show that nondeterministic Turing machines do not offer extra power in

terms of computability. However, simulating a nondeterministic Turing machine by

classical Turing machines can be exponentially hard.

Theorem 7. For a function f : N+ → N+, and some constant c

NTIME (f(n)) ⊆ TIME
(
cf(n)

)
Proof. Let L be a language from NTIME (f(n)). There is a nondeterministic Turing

machine N = (K,Σ,∆, s) that decides this language within time f(n). For each pair

(q, σ) consider a set of choices Cq,σ := {(q′, σ′, D)|((q, σ), (q′, σ′, D)) ∈ ∆}. Let d :=

maxq∈K,σ∈Σ{|Cq,σ|} be the degree of nondeterminism of N . Now, consider sequences

(c1, c2, . . . , ct) of integers ci ≤ d in the order of increasing t.

We shall describe a Turing machine M , simulating N . The simulation starts with

storing current sequence (c1, c2, . . . , ct) on a separate string. Then M simulates t steps

of N . If an accepting configuration is encountered, M accepts the input. If a halting

configuration is encountered, M proceeds with the next choices sequence of the same

length. If all t-element choice sequences lead to a halting configuration, M stops the

simulation and rejects the input. According to the definition of the nondeterministic

Turing machine, M will halt. Also it will decide the same language L. It remains to

notice that M will need at most
∑f(n)

t=1 d
t = O(df(n)+1).

We shall get back to the Earth in the next section, where we consider a wired, but a

realistic, computational model

3.2 Randomized Turing machines

The nondeterministic Turing machine is unrealistic, because it can perform arbitrarily

many computations with no extra resource utilization. In real world we have to pay



3.2. RANDOMIZED TURING MACHINES 51

for everything. If we accept the probability of false output as a price we pay for the

multitude of possible computation, we can define a randomized Turing machine. For

example, let us toss a coin every time we confront a nondeterministic choice. There

will be a certain probability assigned to each computation. We also may limit the

number of accepting computations from below. This model is totally realistic, just due

to the fact that we actually described its implementation. First step towards formally

describing randomized Turing machines is introducing a standard nondeterministic

machine.

Definition 3.2.1. Let N be a polynomial p(n)-time bounded nondeterministic Tur-

ing machine. Without lost of generality we can assume that, for all inputs x, all

computations of N are of the same length p(|x|). We also assume that on each step

there are exactly two non-deterministic choices. We call N a standard nondetermin-

istic Turing machine.

Next we define our first randomized model of computation.

Definition 3.2.2. Let N be a standard nondeterministic Turing machine. Let p(n)

be the polynomial time bound of N . Let also for any input x, either at least half of

the 2p(|x|) computations of N on x halt in accepting state ”yes”, or all of them halt in

the rejecting state ”no”. Then N is called a polynomial Monte Carlo Turing machine.

We say that N accepts a word x if there is an accepting computation of N on x,

otherwise we say that N rejects x. A language L is recognized by N if x ∈ L ⇐⇒ N

accepts x.

The class of all languages recognized by polynomial Monte Carlo Turing machines is

called RP (for randomized polynomial time).

First note, that any arbitrary polynomial time nondeterministic Turing machine can

be transformed into the standard form. Then, the definition above, indeed, captures

the intuitive notion of the Monte Carlo algorithm:

� A fair coin flip is made on each step of the computation.

� The probability of accepting a word not in the recognized language L is zero.
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� The probability of rejecting a word in L is less than one half.

Due to the equal probabilities of the coin flip procedure, outcomes on each step, for

every input x, every valid computation has the same probability 1/2f(|x|). In our

definition, for any x ∈ L, at least half of the computations end up in the accepting

state ”yes”. Thus, the accepting probability is indeed at lest one half!

It is clear that the definition of a language recognized by a Monte Carlo Turing

machines is consistent with the definition of a language decided by a nondeterministic

Turing machine. Thus, following proposition is true.

Proposition 3.2.1.

RP ⊆ NP.

Recall the definition of compliment class of languages (Def. 1.2.7, p. 8). It is

natural to define a class coRP of languages that can be recognized by a ”flipped”

Monte Carlo Turing machine, where the accepting and the rejecting configurations

are interchanged. Next proposition follws from the Proposition 3.2.1 and Lemma

1 (Page 8).

Proposition 3.2.2.

coRP ⊆ coNP.

The purpose of ”flipping” the Monte Carlo Turing machine was to continue our casino

tradition. Now we can easily describe Las Vegas algorithms. We start with the

appropriate complexity class definition.

Definition 3.2.3.

ZPP := RP ∩ coRP.

For a language L ∈ ZPP there are two Monte Carlo Turing machines: a machine

N1 that accepts L and a machine N2 that accepts L. A Las Vegas algorithm LV

runs both of the machines on the input x. The output of the Las Vegas algorithm is

chosen according to the following rule.

� If N1 accepts x then LV accepts x,
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� if N2 accept x, then LV rejects x,

� if both N1 and N2 reject the input, then it is not clear if x ∈ L or x /∈ L. So

the algorithm simply halts in the h state. The latter case is equivalent to the

”don’t know” output.

One can run the Las Vegas algorithm LV until one of the definitive answers ”yes”

for L or for L is obtained. In this sense the algorithm is Zero error Probabilistic, and

Polynomial due to N1 and N2 are polynomial machines. That gives the abbreviation

”ZPP”. The ”Las Vegas” stands for the fact that the algorithm is never wrong. Just

like the casino always wins.

3.3 Unrealistic probabilistic Turing machines

Previously, we introduced probability to nondeterminism in order to obtain a fea-

sible kind of nondeterministic Turing machine. However, it can work all the way

around. We next introduce a probabilistic computation that is more general than the

nondeterministic computation.

As all unrealistic computational abstractions, this one also doesn’t come from the

real-life devices. Instead, just like the nondeterministic Turing machine, it originates

in a nontrivial problem given in the example below.

Example 11 (MAJSAT). Instance: A Boolean expression with n free binary vari-

ables.

Question: Is it true that majority of the 2n assignments satisfy the formula?

Is there a polynomial time nondeterministic Turing machine for MAJSAT? There

is no obvious answer to this question. However, there is a generalization of the

standard (polynomial time) nondeterministic Turing machine that decides MAJSAT

by majority.

Definition 3.3.1. Let N be a standard nondeterministic Turing machine. If more

than half of the computations of N accept the word x, then we say that N accepts x



54 CHAPTER 3. NONDETERMINISTIC AND RANDOMIZED MODELS

by majority. Let L be a language. If, for any word x over the input alphabet x ∈ L
if, and only if, the machine N accepts x by majority, we say that N decides L by

majority.

The class of all languages decided by majority is called PP (for probabilistic polyno-

mial).

Why is this model unrealistic? One reason is that it actually tests an exponential

amount of truth assignments of MAJSAT in polynomial time! The other reason is

that this model is more powerful than the nondeterministic Turing machine.

Theorem 8.

NP ⊆ PP.

Proof. Let N be a nondeterministic polynomial time Turing machine that decides a

language L. We shall construct a standard nondeterministic machine N ′ that will

decide L by majority.

Let N ′ start the computation from a nondeterministic choice between the two parts:

1. A standardized version of N .

2. A computation with the same number of steps as the other part, but here all

computations end up in the accepting state. This part must also have exactly

two nondeterministic choices on every step, because we construct a standard

nondeterministic Turing machine.

The total number of different computations of N ′ will be 2p(n)+1, where p(n) is the

polynomial time bound of the standardized version of N . The machine N ′ would

accept a word x by majority if and only if there is an accepting computation of N on

x, because exactly 2p(n) computations of N ′ are always accepting.

It is somewhat exciting how little we change to obtain may be the most ”compre-

hensive yet plausible” [Pap94] notion of the realistic computation introduced next.

Another surprise, it is probabilistic too!
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3.4 Realistic yet probabilistic Turing machines

Let us slightly modify the definition from the previous section.

Definition 3.4.1. Let N be a standard nondeterministic Turing machine. For all

inputs x, N has either 3/4 of all its computations in the accepting state, or 3/4 of all

its computations in the rejecting state.

� If for some x at least 3/4 of all of the computations of N accept x, we say that

N accepts x by clear majority.

� If for some x at least 3/4 of all of the computations of N reject x, we say that

N rejects x by clear majority.

Let L be a language, such that x ∈ L implies N accepts x by clear majority, and x /∈ L
implies N rejects x by clear majority. We say that N decides L by clear majority.

The class of all languages decided by clear majority is called BPP (for bounded error

probabilistic polynomial).

The following proposition must be absolutely clear.

Proposition 3.4.1.

RP ⊆ BPP ⊆ PP.

Although, we gave several reasons for PP to be unrealistic, we have never shown

why BPP, in contrast, is feasible. We already gave several examples of computations

where an error probability was involved. However, we did not discuss how we can

make use of a computer that may give an erroneous output!

Let N be a standard nondeterministic Turing machine deciding a language L by

majority, that is L ∈ PP. Can we for any x ∈ L arbitrarily reduce the probability of

N rejecting it?

Consider a standard nondeterministic machine N ′ that simply makes log2 t nonde-

terministic choices. There will be exactly t different computations of N ′. Append a

copy of N to the end of each of the t computations of N ′ to get another standard

nondeterministic Turing machine N ′′. By the definition of the deciding by majority,
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N ′′ would accept a word x by majority if, and only if, N accepted the word x by

majority. What is the probability of N ′′ to reject a word x ∈ L?

Consider a word x ∈ L. Let p := 1/2 + ε be the probability of N to end up in the

accepting state on the input x. Then by the Chernoff bound (See p. 153, Cor. 5),

the probability that more than half of the t copies of N reject x is at most e−ε2t. That

is, the probability that N ′′ rejects x is at most e−ε2t.

Now if we have to arbitrarily reduce the error probability for a Turing machine N

that decides L by clear majority we need to take t ≥ 1
ε2

= 16. The margin ε equals

1/4 in this case. Moreover, if we want the error to decrease linearly with |x|, we can

achieve that combining t = |x| copies of N . However, if N did not have to decide L

by clear majority, ε could be as small as 2−p(n) for the polynomial time bound p(n) of

the machine N . That implies that we need O(2p(n)2) number t of copies of N in order

to achieve at least constant small error probability. And that’s why this is infeasible!

Class PP is so ”big” that contains almost all classes that we defined so far. However,

a Turing machine can not use asymptotically more space than time. This statement

follows from the observation that a Turing machine writes only a constant number

of symbols on each step of its computation. For nondeterministic Turing machines

we stick to the same principle. We count only space used by the worst computation

consistent with the program. Thus, following statement is evident.

Proposition 3.4.2.

PP ⊆ PSPACE.

As we can see, a polynomial space Turing machine with unbounded time is at least as

powerful as a nondeterministic Turing machine that decides by majority. The conclu-

sion follows: a model does not have to be nondeterministic to be infeasible. On the

other hand, even nondeterministic models can be feasible, just like a nondeterministic

Turing machine that decides by clear majority is!

The first model of the probabilistic Turing machines was introduced in the middle

of the XX century. Current definition of the probabilistic Turing machine was given

by Gill in 1972. He also defined all polynomial time probabilistic complexity classes

presented in this chapter [Gil72, Gil77].
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3.5 Randomized branching programs

As we can see, randomized computations have been around as long as branching

programs. Both introduced in the late 1970s [Gil77, Mas76]. However, it was not

before 1996 that first randomized branching program was introduced by Ablayev and

Karpinski [AK96].

Recall how we defined a branching program (Def. 2.3.2, p. 27). If we add to this

definition that unlabeled nodes with two outgoing edges are allowed, we obtain the

nondeterministic branching programs.

Definition 3.5.1. A nondeterministic branching program or a nondeterministic bi-

nary decision diagram is a directed acyclic graph with exactly one root, whose

� sinks are labeled by the Boolean constants 0, 1, and whose

� internal nodes are of two kinds:

1. labeled by a variable xi, and have exactly two outgoing edges, a 0-edge

and a 1-edge.

2. unlabeled and have exactly two outgoing edges. The latter are called

guessing nodes.

Each assignment to the input variables xi corresponds to several computation paths

that connect the root with one of the sinks. There may be several paths due to the

guessing nodes.

A nondeterministic branching program represents a Boolean function g in the follow-

ing way. For each input assignment to the variables xi the function g(x1, . . . , xn) = 1

if, and only if, there is a computation path corresponding to this assignment that

leads to the 1-sink.

We give an example to illustrate this definition.

Example 12. Consider a Boolean function defined below.

g(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4).
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The nondeterministic branching program that represents this function is shown in

Figure 3.1.

Is there a deterministic branching program that is as succinct as the nondeterministic

counterpart? It could be a very good way to occupy quite a bit of the vacant time

attempting to answer that question.

x1

x3

x2

x2

x4

01

x3

Figure 3.1: A nondeterministic branching program for g(x).

Let us define size – the complexity measure of branching programs – for the nonde-

terministic case. It agrees with the definition of the size in the deterministic case.

Definition 3.5.2. The size of a nondeterministic branching program is the number

of its internal nodes, that is, the sum of the number of computational nodes and the

number of guessing nodes.
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Example 13. The class of functions that can be represented by some nondetermin-

istic branching program of polynomial size is called NP-BP

Let us define probabilistic versions of the branching program. We could do it in the

same manner as we did it for the Turing machine, avoiding ever mention about proba-

bility. In that case, we would have to ”pad” some computation paths with additional

guessing nodes before connecting them to the sinks. However, branching programs

are as much a computational model as they are a representation type. Introducing

probabilities in the definition leads to reduced size of the representations. That is,

graphs of smaller sizes. Nevertheless, the parallel with the corresponding definitions

of the probabilistic Turing machine computations must be apparent.

Definition 3.5.3. Let P be a nondeterministic branching program on n variables. We

assign a probability 1/2 to each outcome of the nondeterministic choices that P does.

Let P (x) be the random variable that represents the sink value of the computation

path P takes on x.

1. We say that P represents a Boolean function f ∈ Bn with one-sided error if for

every input assignment

(a) the value f(x) = 1 implies that Pr[P (x) = 1] ≥ 1/2,

(b) and f(x) = 0 implies that all of the computation paths corresponding to

the assignment lead to the 0-sink.

2. We say that P represents a Boolean function f ∈ Bn with one-sided error for

0-sink if for every input assignment

(a) the value f(x) = 0 implies that Pr[P (x) = 0] ≥ 1/2,

(b) and f(x) = 1 implies that all of the computation paths corresponding to

the assignment lead to the 1-sink.

3. We say that P represents a Boolean function f ∈ Bn with unbounded error if

for every input assignment to x the probability Pr[P (x) = f(x)] > 1/2.
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4. We say that P represents a Boolean function f ∈ Bn with bounded error if for

every input assignment to x, the probability Pr[P (x) = f(x)] ≥ 3/4.

We can now define branching program versions of already familiar probabilistic time

complexity classes RP,ZPP,PP and BPP.

Definition 3.5.4. 1. The class of functions represented by nondeterministic branch-

ing programs of polynomial size with one-sided error is called RP-BP.

2. The class of functions represented by nondeterministic branching programs of

polynomial size with one-sided error for 0-sink is called coRP-BP.

3. The class of zero error polynomial size probabilistic branching programs is called

ZPP-BP := RP-BP ∩ coRP-BP.

4. The class of functions represented by nondeterministic branching programs of

polynomial size with unbounded error is called PP-BP.

5. The class of functions represented by nondeterministic branching programs of

polynomial size with bounded error is called BPP-BP.

Let us note that a standard procedure of error reduction is applicable to the nonde-

terministic branching programs as well. We introduced it earlier when discussing the

feasibility of PP and BPP (See page 56).

The relation between general branching probabilistic programs complexity classes is

somewhat surprising. It gives us the lesson that analogy is indeed a reasoning of

probability.

Theorem 9 ([Weg00]). P-BP=ZPP-BP=RP-BP=BPP-BP.

We can introduce restricted versions of the nondeterministic branching programs

similar to the definitions for the classical case (Def. 2.3.6, 2.3.8, p. 29). Ordered

binary decision diagrams are of particular interest for us in this study. Notice, that

the branching program of the Figure 3.1 is, in fact, a nondeterministic ordered

binary decision diagram. We present the relations between polynomial size OBDD

probabilistic complexity classes next.

Clearly, the following proposition is true.
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Proposition 3.5.1.

NP-OBDD ⊆ PP-OBDD.

Next statement is a special case of the theorem proved by Sauerhoff [Sau99]. It shows

that probabilistic OBDD complexity classes exhibit behavior similar to that found in

Turing machines.

Theorem 10 ([Sau99]).

RP-OBDD ⊆ BPP-OBDD.

Proof. Let P be a nondeterministic branching program that represents a function f

with one-sided error. We can build a new nondeterministic program P ′ following way.

The program P ′ starts with a subroutine P ′
1 - a complete binary tree that consists

entirely of guessing nodes. We shall use it to generate desired probabilities of two

further tracks of the computation.

Let w be the number of leaves in P ′
1. Let t be any integer, such that 3

4
w ≤ t ≤ w. We

replace t of the leaves with the root of P , and the remaining leaves we replace with

the 1-sink.

The two cases below follow directly from the definition of P .

� If f(x) = 0 then

Pr [P ′(x) = 0] = 1− w − t
w
≥ 3

4
;

� If f(x) = 1 then

Pr [P ′(x) = 1] ≥ w − t
w

+
3t

4w
=

4w − t
4w

≥ 3

4
.

Thus, P ′ represents f with bounded error.

Notice that the size of the tree of P ′
1 is polynomial in the size of the input. The reason

is that the number of its leaves w is polynomial, which is in turn, implied by P had

a size polynomial in the length of the input.
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In 1999 Karpinski and Mubarakzjanov proved a beautiful and surprizing result

[KM99]. We introduce it next.

Theorem 11 ([KM99]).

P-OBDD = ZPP-OBDD.

As we can see, the complexity classes structure may vary for different models. It is

this versatility, that helps us to understand true ”hardness” of the problems. Perhaps,

otherwise it is too coarse of a measure only to relate a problem to a single complexity

class, and assume that would completely reflect complexity of the problem.

There are more relationships between OBDD complexity classes, that can be seen

without difficulty.

Proposition 3.5.2.

BPP-OBDD = coBPP-OBDD ⊆ PP-OBDD = coPP-OBDD;

The models we have introduced so far, have all had a purpose. Either we captured

complexity of a class of problems, or formalized existing computational device. How-

ever, we haven’t yet paid enough of attention to the physical reality. The latter obeys

the laws of quantum mechanics, and so should we. Next chapter is only a small

introduction to the mind boggling field. The Quantum computations.



Chapter 4

Quantum Computations

God doesn’t play dice with the

Universe

Albert Einstein,

in the letter to Max Born

4.1 Invention of quantum mechanics

The Universe is a remarkably intricate creation. Live mathematics. Like a schoolchild

at arithmetics lesson, the mankind strived to understand it. But like a good teacher, it

always had more exercises to offer. The history goes back to Max Plank, who in 1900

introduced the constant h that was later named the Planck’s constant . For example,

the energy E that can be carried by a beam of light with a constant frequency ν can

take only discrete set of values!

E = nhν, n ∈ N

h ≈ 6.6260693(11)× 10−34J · s.

In 1913 a similar discrete behavior was discovered by Niels Bohr, a professor at

Copenhagen, for the radiation emission and absorption spectra of atoms. Just a

63
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few years earlier Rutherford introduced his planetary model of atom. Bohr linked the

quantum hypothesis of Plank to the planetary model of Rutherford. He explained that

there were stationary orbits where electrons could remain without emitting radiation,

and that they could make quantum leaps instantly moving from one stationary orbit

to another. The electrons either emitted or absorbed energy during quantum leaps.

Then the planetary model could be explained by the only countable set of the energy

values that an electron could take. Each of the values was called ”quantum” that

comes from latin ”quantus” for ”how much”.

A mathematician, Arnold Sommerfeld was a student of Felix Klein in Göttingen. In

1906 Röntgen persuaded him to take the Theoretical Physics chair in Munich. There

he came in contact with the special theory of relativety of Albert Einstein. However,

since 1911 he grew interested in the foundations of the theory began in the works of

Niels Bohr and Max Plank.

Apart from his talent in mathematics, physics and teaching, Sommerfeld had a mag-

netic personality. Max Born told a story about a graduate zoologist who switched

to theoretical physics after a lecture of Sommerfeld. Maybe this explains the numer-

ous Nobel prize winners that happend to be students of this teacher. One of them

was Wolfgang Pauli. In 1918 he left his home in Vienna in order to study physics in

Munich. At that time, the eighteen years old Pauli already new the works of Einstein.

Another great student of Sommerfeld was to be Werner Heisenberg. His fate to

become a scientist of some sort was determined already when he was born. His

father was a professor of Byzantine literature in Munich, his grandfather specialized

in Homer, and his godfather was Ernst Mach.

In 1920 Werner was going to enter the University of Munich. His father arranged him

a meeting with a mathematician Ferdinand von Lidenmann. To the total distress

of whole family, the famous mathematician said that the young man ”was lost for

mathematics”. That determined the future of one of the greatest physicists of the

XX century. He decided to try himself in physics. It had some mathematics, didn’t

it?

In his first conversation with Heisenberg, Pauli called the atomic theory taught by

Sommerfeld ”atomystique”. So novel and unexplored remained the theory of Niels



4.1. INVENTION OF QUANTUM MECHANICS 65

Bohr. But both of the young physicists found it intriguing enough to seek for a

meeting with Bohr himself. In 1921 Heisenberg went to attend lectures that Bohr

gave in Göttingen. Pauli spend the autumn of 1922 in Copenhagen. There was the

cradle of the ”atomystique”. The term quantum mechanics did not yet exist. As did

not yet the quantum mechanics.

Since his time in Munich, Heisenberg worked on a theory that would depend only on

observable values. Thus, he hoped to resolve difficulties with interpretation of the

early ”quantum theory”. A question disturbed him: ”Is there such a thing like orbits

of electrons?”. In may 1924, suffering from the hey fever, Heisenberg moved to an

island in the North of Germany. There he worked on theory that would depend only

on observable values. Finally he managed to find an analog of the Bohr-Sommerfeld

conditions on the shapes of electron orbits. Remember, there was to be no mention

of orbits in the new theory!

The first draft of the article went to Hamburg, to the old pal Pauli. They stayed in

an active correspondence for two more weeks. Finally, Pauli called the result ”das

Morgenröte der Quantentheorie”. After that, on the 25th of June 1925 Heisenberg

submitted the article [Hei25]. That date is now widely considered as the Birthday

of quantum mechanics. The term was already coined in by Max Born in 1924

[Bor24]. The article found its way to Paul Dirac in Cambridge. There he improved

the result of Heisenberg so that the new theory did not need classical mechanics for

its definition anymore [Dir25]. Another response came from Max Born who noticed

that the formalism of Heisenberg is identical to the matrix calculus. The same year

he published a paper [BJ25] in collaboration with young Pascual Jordan, who just

had got his PhD in Göttingen. There they presented the ”matrix mechanics”.

Pauli was not very fond of the ”Gelehrsamkeitsschwall der Göttingen”, a sample of

what the ”matrix mechanics” was. In order to settle the growing intolerance of his

position by Heisenberg, in 1926 he published an article of his own [Pau26]. As Max

Born noticed in his Nobel Lecture in 1954:

From this moment onwards there could no longer be any doubt about the

correctness of the theory.
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The new theory creation was finished. It was accepted by Bohr and always skeptical

Pauli. However, Einstein was not happy with the new kind of physics his discoveries

provided an inspiration for. In a discussion with Heisenberg he said:

Principally, it is an absolute nonsense to build a theory based only on

observable values. Because in reality, it is, in fact, all the way arround.

Only theory decides, what exactly can be observed.

Very timely Erwin Schrödinger published his article [Sch26b], where he returned hope

for the continuity in the atom world. That was the first attempt to kill the just born

quantum mechanics. Schrödinger himself did not intend his discovery that way, but

there were many older generation physicists, who did. Including Einstein. However,

already about two months later [Sch26a] Schrödinger noticed that:

A close internal relationship is found between Heisenberg’s quantum me-

chanics and my wave mechanics. Formally, it should be considered as the

equivalence of the bouth theories.

In 1926, to the further distress of Albert Einstein, Max Born gave the now standard

probabilistic interpretation of quantum mechanics [Bor26]. Till the 1950s the old

friends argued about this interpretation. In 1954 Born won the Nobel Prize for

something that Einstein could not agree with.

The year 1926 Heisenberg was an assistant of Niels Bohr in Copenhagen. Schrödinger

visited them before joining Max Plank in Berlin. The three tried to agree on a common

interpretation of the atomic events that would explain the observed reality. Unfor-

tunately their positions were different enough for them to arrive at no conclusion.

Eventually Schrödinger caught severe cold. Mrs. Bohr took care after the young

man, but Mr. Bohr would sit at his bad and continue the unfinished argument.

One of the issues that Bohr and Heisenberg had to deal with was the Wilson’s cam-

era experiment. There one vividly could see the trajectory of an electron. In con-

trast to that the new theory pictured an electron more like a cloud surrounding the

atom nucleus. The cloud simply was not supposed to have a particle-like trajectory!

Heisenberg reasonably observed that the bubbles of water in Wilson’s camera are
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much larger than an electron should be. Perhaps, it was not the trajectory but a

discrete set of not completely certain positions of the electron that was observed in

the experiment. He came up with a question:

Can we describe a situation where an electron is approximately in a certain

place, that is with some fixed inaccuracy, and also has approximately cer-

tain speed with some fixed inaccuracy? Could we make these inaccuracies

small enough to explain the Wilson’s camera experiment?

This reasoning lead him to the famous uncertainty principle [Hei27]. Let a physical

system is described by its position and momentum. Let ∆x be the standard deviation

of the position measurement, and ∆p be the standard deviation of the momentum

measurement. Then it holds that

∆x∆p ≥ ~
2
,

where ~ =
h

2π
, and h is the Plank’s constant.

Or as Heisenberg himself formulated it:

The more precisely the position is determined, the less precisely the mo-

mentum is known in this instant, and vice versa.

This principle additionally set a bridge between the ”wave mechanics” of Schrödinger

and the theory of Heisenberg-Born-Jordan. Indeed, if we consider a wave, we can

either determine its exact position at a moment of time, or its frequency. But not

the both, since we need time at least as long as the period of the wave in order to

measure the frequency! In the second case, exact position has no sense, that’s why

we can not measure it. In fact, the uncertainty principle is an absolutely natural and

intuitive.

In 1928 Niels Bohr discovers his complementarity principle. The essence of this prin-

ciple is that such phenomena as light and electrons behave sometimes wavelike and

sometimes particle-like. It is impossible to observe both the wave and the particle

aspects at the same time. However, full knowledge of the small-scale phenomena

consists of the both parts, and it is incomplete otherwise.
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The latter two discoveries laid ground to the so called Copenhagen interpretation of

the quantum mechanics. It is the most widely accepted point of view. However,

other interpretations also exist. As well as a specific point of view famous due to

Feynman. He proposed: ”shut up, and calculate!” – indeed, why would we need any

interpretation in the first place?

Finally, in 1932 von Neumann formulated the rigorous mathematical basis for the

Quantum mechanics as the theory of linear operators in Hilbert spaces [vN32]. We

shall give an introduction to this simple, despite of its reputation, mathematical

framework in the next section.

4.2 Introduction to quantum mechanics

Earlier we learnt that Heisenberg and Schrödinger both arrived at the same theory.

But they presented it in different ways. If Heisenberg’s formalism was identical to

matrix calculus, the ”wave mechanics” of Schrödinger was formulated in differential

calculus. We shall choose Heisenberg-Born-Jordan’s representation of quantum me-

chanics. Essentially, quantum mechanics is a set of simple rules in the language of

linear algebra. However, the subject possesses its own notation, different from stan-

dard mathematical. This notation was introduced by Paul Dirac in 1930 [Dir30] in

order to simplify the routine calculations that had to be done in plenty by physi-

cists. It turned out so convenient that it was immediately adopted. The notation is

presented in the Table 4.1, courtesy of Nielsen and Chuang [NC00].

Let us introduce the postulates of quantum mechanics. Unlike in most of the physical

theories, these postulates do not define laws of a particular physical system. They

rather represent a mathematical framework that allows development of valid phys-

ical theories. We began this chapter with the comparison of mathematics and the

Universe. If there is indeed some kind of mathematics intertwined in the fabric of

the Universe, then, up to the current knowledge, this mathematics is the quantum

mechanics.

Postulate 1 ([NC00]). Associated to any isolated physical system is a complex

vector space with inner product (that is, a Hilbert space) known as the state space
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Notation Description
z∗ Complex conjugate of the complex number z.
|ψ〉 Column vector called ket.
〈ψ| Vector dual to |ψ〉. Also known as bra.
〈φ|ψ〉 Inner product ”bra-ket”.

|φ〉 ⊗ |ψ〉 Tensor product of |φ〉 and |ψ〉
A∗ Complex conjugate of the matrix A.
AT Transpose of the matrix A.
A† Hermitian conjugate or adjoint of the matrix A: A† = (AT )∗.

〈φ|A|ψ〉 Inner products between |φ〉 and A|ψ〉.
Equivalently, inner product between A|φ〉 and |ψ〉.

Table 4.1: Elements of linear algebra in quantum mechanics

of the system. The system is completely described by its state vector, which is a unit

vector in the state space of the system.

The simplest quantum mechanical system is a qubit. It is described by a complex

vector in two dimensional Hilbert space. Suppose |0〉 and |1〉 form an orthonormal

basis, then the state of the qubit system ψ is described by the vector

|ψ〉 = a|0〉+ b|1〉.

By the first postulate, vector |ψ〉 must satisfy the normalization condition 〈ψ|ψ〉 = 1.

The latter is equivalent to |a|2 + |b|2 = 1, because a, b ∈ C. It must be clear that

the state space of the qubit is a two dimensional sphere (See Figure 4.1). We call

the coefficient a the amplitude of the state |0〉, analogously, b is the amplitude of the

state |1〉. In general, Σn
i=1ai|ψi〉 is a superposition of the states |ψi〉 with amplitudes

ai.

How does the state change in time? It turns out that the Universe is reversible on

the small scale.

Postulate 2 ([NC00]). The evolution of a closed quantum system is described by

a unitary transformation. That is, the state |ψ〉 of the system at time t1 is related to

the state |ψ′〉 at time t2 by a unitary operator U which depends only on the times t1
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|0〉

|1〉

|y〉

Figure 4.1: The state space of the qubit

and t2:

|ψ′〉 = U |ψ〉.

Recall that a matrix U is unitary if, and only if, UU † = I. That means that for any

unitary transformation U there is an inverse operator U †. The reason that we don’t

deliberately travel back and forth in time is found in the thermodynamics. According

to Hawking [Haw88], our individual arrow of time always points in the direction of

the increasing entropy. The argumentation he gives is simple as it is. If we perform

a computation (and human brain is a computer of some sort), then we start from a

disordered state and finish in a state with a higher degree of order, that corresponds

to the result of the computation. We need to spend some energy, that would be

dissipated as heat, to achieve that. That’s why the entropy of the Universe must

increase after the computation is finished. That’s why we don’t time-travel at will.

Let us give an example of a unitary evolution of our two dimensional system called

qubit.
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Example 14 (The Pauli matrices). Suppose

|0〉 =

(
1

0

)
; |1〉 =

(
0

1

)
;

then we can represent |ψ〉 = a|0〉+ b|1〉 as

|ψ〉 =

(
a

b

)
;

define matricies

X =

(
0 1

1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0

0 −1

)
;

clearly X, Y and Z are unitary. For example, the action of X on |ψ〉 is a swap of the

amplitudes of |0〉 and |1〉. The actions of the Pauli matrices on two-dimensional state

vectors are shown below.

X|ψ〉 =

(
0 1

1 0

)(
a

b

)
=

(
b

a

)
;

Y |ψ〉 =

(
−i 0

0 i

)(
a

b

)
=

(
−ia
ib

)
;

Z|ψ〉 =

(
1 0

0 −1

)(
a

b

)
=

(
a

−b

)
.

The second postulate requires the system to be closed in order to be a subject of

exclusively unitary evolutions. In reality, set aside the Universe as whole, most of

the systems are not closed. That is, they interact with other systems to an extent.

Nevertheless, it turns out that the unitary evolutions can very well approximate many

of the interesting systems. Also there is a way to consider a system as a part of a

larger system which is closed, and there always is such a system – the Universe.



72 CHAPTER 4. QUANTUM COMPUTATIONS

The systems that evolve according to their unitary evolutions are of limited interest

if they can never be observed. The observation is an intrusion in the closed system

that reveals some information about it. Next postulate formalizes the measurement.

Postulate 3 ([NC00]). Quantum measurements are described by a collection {Mm}
of measurement operators. These are operators acting on the state space of the system

being measured. The index m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is |ψ〉 immediatly before the

measurement then the probability that result m occurs is given by

Pr(m) = 〈ψ|M †
mMm|ψ〉

and the state of the system after the measurement is

M |ψ〉√
〈ψ|M †

mMm|ψ〉
.

The measurement operators satisfy the completeness equation,

ΣmM
†
mMm = I.

The completeness equation simply expresses the fact that all measurement outcome

probabilities sum up to one. The following expression considered for arbitrary states

|ψ〉 imply the completeness equation.

1 = Σm Pr(m) = Σm〈ψ|M †
mMm|ψ〉.

In the next example we introduce a simple yet useful kind of measurement.

Example 15 (Measurement of a qubit in the computational basis). We define

a two outcomes measurement on a single qubit. Let |ψ〉 = a|0〉 + b|1〉 be a qubit

system in the basis {|0〉, |1〉}. We define measurement operators M0 = |0〉〈0| for

the measurement outcome 0, and M1 = |1〉〈1| for the measurement outcome 1.
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Observe that the measurement operators are Hermitian, that is, M †
i = Mi. Moreover,

M2
i = Mi. Thus, the completeness relation is obeyed:

I = M †
0M0 +M †

1M1 = M0 +M1.

now consider the two possible outcomes of the measurement. The state |ψ′〉 is the

state of the system after the measurement.

0:

Pr(0) = 〈ψ|M †
0M0|ψ〉 = 〈ψ|M0|ψ〉 = |a|2

|ψ′〉 =
M0|ψ〉
|a|

=
a

|a|
|0〉 ∼ |0〉.

1:

Pr(1) = 〈ψ|M †
1M1|ψ〉 = 〈ψ|M1|ψ〉 = |a|2

|ψ′〉 =
M1|ψ〉
|a|

=
a

|a|
|1〉 ∼ |1〉.

It is easy to see that the states eiθ|ψ〉 and |ψ〉 have the same measurement statistics.

That’s why we should further regard them as identical. That’s why we ignore global

phase factors.

We introduced the most general definition of measurements. Sometimes a simple

special case of measurement operators is used.

Definition 4.2.1 ([NC00]). A projective measurement is described by an observable

M , a Hermitian operator on the state space of the system being observed. The

observable has the spectral decomposition

M = ΣmmPm,

where Pm is the projector onto the eigenspace of M with eigenvalue m. The possible

outcomes of the measurement correspond to the eigenvalues, m, of the observable.
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Upon measuring the state |ψ〉, the probability of getting result m is given by

Pr(m) = 〈ψ|Pm|ψ〉.

Given that outcome m occurred, the state of the quantum system immediately after

the measurement is
Pm|ψ〉√
Pr(m)

.

Sometimes even projective measurement are not convenient enough. If an orthonor-

mal basis |m〉 is given, we can measure in a basis |m〉. That simply means a projective

measurement with projectors Pm := |m〉〈m|.
We know how to describe evolution of a quantum system. Then measurement defines

how we obtain some information about the system. We mentioned, that some systems

can be parts of larger systems. But, we haven’t yet explained how composite systems

are treated in quantum mechanics. The last postulate of the quantum mechanics

defines the composite state space is related to its components.

Postulate 4 ([NC00]). The state space of a composite physical system is the tensor

product of the state spaces of the component physical systems. Moreover, if we have

systems numbered 1 through n, and system number i is prepared in the state |ψi〉,
then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉

Let us give a beautiful example of an application of the quantum mechanics.

Example 16 (Superdense coding). Suppose |ψ〉 = |φ1〉 ⊗ |φ1〉 is a two-qubit

quantum system prepared by a third party so that

|ψ〉 =
|00〉+ |11〉√

2
.

The third party then distributes the qubits of |ψ〉 between Alice and Bob before the

communication takes place. In other words, Alice possesses |φ1〉, while Bob owns

|φ2〉. Thus, Alice and Bob share a pair of qubits in the entangled state |ψ〉. It turns

out that Alice can communicate two bits of classical information by sending a single

qubit |φ1〉. The setup is shown on Figure 4.2.
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Alice Bob

|φ2〉|φ1〉|ψ〉=

|φ1〉

Third Party
⊗

Figure 4.2: Communicating two classical bits by sending one qubit

Consider four possible two-bit combinations that Alice can send to Bob. The actions

of Alice would be different in each of the case.

00: Alice does nothing to its qubit.

|ψ〉 =
|00〉+ |11〉√

2
= |β00〉.

01: Then Alice applies the NOT operator to |φ1〉.

|ψ〉 := (X|φ1〉)⊗ |φ2〉 =
|10〉+ |01〉√

2
= |β01〉.

10: In this case Alice applies the phase flip Z operator to |φ1〉.

|ψ〉 := (Z|φ1〉)⊗ |φ2〉 =
|00〉 − |11〉√

2
= |β10〉.
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11: Finally, if this is the message to send, Alice applies iY operator to |φ1〉.

|ψ〉 := (iY |φ1〉)⊗ |φ2〉 =
|01〉 − |10〉√

2
= |β11〉.

Observe that {|β01〉, |β10〉, |β10〉, |β11〉} is an orthonormal basis for the state space of ψ.

This states basis is called Bell basis, and the states are called Bell states or EPR pairs.

After performing described preparations, Alice sends her qubit φ1 to Bob. It remains

for Bob to measure the system ψ, he is in possession, in the Bell basis. As a result of

the measurement Bob finds out which of the four possible two-bit combinations Alice

meant to communicate.

In the example above we mentioned that the Bell states are also called EPR pairs.

What is ”EPR”? The abbreviation stands for the initials of Albert Einstein, Boris

Podolsky and Nathan Rosen. In 1935 they published a paper called ”Can quantum-

mechanical description of physical reality be considered complete?” [EPR35]. The

authors rightfully notice that two questions can be used to judge upon success of a

theory:

1. Is the theory correct?

2. Is the theory complete?

To that date Einstein already spent ten years in futile attempts to prove the quan-

tum mechanics wrong in a direct way. At this time he decided to address the second

question in connection with the quantum mechanics. The group of authors consid-

ered a thought experiment, where a system was described by the state |β11〉 from

the Example 16. This state has an interesting feature: whenever the first qubit is

measured in some basis, the value of the second qubit is also collapses to the other

basis state. It is clearly so, for example, in the basis {|0〉, |1〉}. The team lead by

Einstein considered a projective measurement where the only two possible outcomes

corresponded to operators that did not commute. By the generalized uncertainty

principle, we can measure with certainty only one of the two values. Just like it was

for the momentum and the position of a particle. However, whatever different values
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reveal the measurement of the first qubit, the second qubit ”knows” the outcome.

Although, no interaction between the particles happens during or after the measure-

ment. Thus, the authors argued, both values measured represent, according to the

quantum mechanics, essential elements of reality. That, in turn, implies either

� both of the values can be measured with certainty, invalidating the general

uncertainty principle of the quantum mechanics,

� or the quantum mechanics fails to represent with certainty some essential ele-

ments of reality, giving only probabilistic explanation instead.

In both cases, conclude the authors, the quantum mechanics is incomplete!

However, in order to construct such an experiment, Einstein and colleagues had to

made certain assumptions on the nature of the physical reality. It appears that Nature

does not like when we impose it some rules to obey. Nearly thirty years later it was

experimentally proved that the Nature obeys rather the quantum mechanics than the

common thought of Einstein, Podolsky and Rosen.

The Universe does not have to be reasonable, despite of the beliefs of the greatest

explorers of its secrets. The quantum mechanics, like a phoenix, raised from the

ashes every time it was thought to have passed away. Getting a better ground after

each blow. Decades long scrutiny undertaken by Einstein did not unearth significant

flows in the theory. The experimental results agree with it so far. It has even went

to technology! All that does not proof it is correct. But we could hope, with high

probability of success, that quantum mechanics is the theory sound enough to base our

computational models upon. We present the main computational model considered

in this work in the next section.

4.3 Quantum branching programs

Quantum branching programs were first introduced independently by Ablayev, Gain-

utdinova and Karpinski [AGK01] and by Nakanishi, Hamaguchi and Kashiwabara

[NHK00]. The quantum branching program can be defined in a very similar way to
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the randomized branching programs. This approach is taken by Sauerhoff and Sieling

[SS04]. We only slightly modify their definition.

Definition 4.3.1. A quantum branching program over the input x = {x1, . . . , xn} is

a directed acyclic multigraph G = (V,E) with exactly one root (a node with indegree

zero), such that

� the sinks are labeled by the Boolean constants 0, 1,

� the internal nodes are labeled by a variable xi and have always two kinds of

outgoing edges, 0-edges and 1-edges (labeled by 0 and 1 respectively),

� every edge (v, w, b) is labeled additionally by a transition amplitude δ(v, w, b),

where v, w are the two nodes connected by the b-edge (b is the Boolean label of

the edge). We assume there is at most one b-edge between a pair of nodes for

every Boolean constant b.

� the transition function must satisfy the following conditions.

1. For all (v, e) /∈ E δ(v, w, b) = 0.

2. The transition function must be well formed. That is, for all internal

nodes v labeled by xi, and w, labeled by xj, and any assignment of the

input variables x

Σw∈V δ
∗(u,w, xi)δ(v, w, xj) =

{
1, if u = v;

0, otherwise.

An example of the quantum branching program is shown in Figure 4.3. The well-

formedness condition allows us to define computation of the branching program in

terms of quantum mechanics.

Definition 4.3.2. Let G = (V,E) be a quantum branching program over the input

x = {x1, . . . , xn}. Let s ∈ V be the root node. We use F ⊆ V to denote the set of

the sink nodes. For any fixed assignment of x we define the computation of G on x

as follows.
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x1

x2 x2

x3 x3 x3

1/√2

1/√2

1

1

0 1

1/√2

x2

1/√2

1
1

x3

1/√2
-1/√21

Figure 4.3: Quantum branching program

� The state space of P is H|V |. We identify the nodes of G with the basis vectors

of H|V |.

� Let L(x) be a linear operator L(x) : V \ F → V , such that for all |v〉 ∈ V \ F

L(x)|v〉 = Σw∈V δ(v, w, xi)|w〉,

where xi is the label of v. The well-formedness condition implies that L(x) can

be extended to a unitary operator U(x) on H|V |.
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� Define projection operators

Econt = Σv∈V \F |v〉〈v|;

Er = |r-sink〉〈r-sink|.

� For t ∈ N0 and r ∈ {0, 1} we define the probability that G outputs r on the

input x in t steps:

PrG,r(x, t) = Σt
k=0

∣∣∣∣Er(U(x)Econt)
t|s〉
∣∣∣∣2

and

PrG,r(x) := PrG,r(x,∞).

� Then we can defined the running time, or the length of the quantum branching

program on the input x.

TG(x) = min{t| t ∈ N0 ∪ {∞},PrG,0(x, t) + PrG,1(x, t) = 1}.

Notice, that the running time can be finite, infinite or undefined.

Unfortunately, there hasn’t been a powerful lower bounds method invented for the

unrestricted branching program model, defined above. In this thesis we consider,

perhaps, the most ”popular” restricted class of branching programs - OBDD (See

p. 30). The definition for the quantum case is absolutely identical to the classical

Definition 2.3.8.

The quantum OBDD were first introduced and studied by Ablayev, Gainutdinova and

Karpinski [AGK01]. They called it 1QBP for one way quantum branching program.

The definition chosen by these authors for the unrestricted quantum branching pro-

gram is a special case of the Definition 4.3.1. Historically prior to it, the definition
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of Ablayev, Gainutdinova and Karpinski also offers certain economy in space com-

plexity. The state space is now related to a level of the branching program. Thus, the

width of the branching program corresponds to the space complexity and the length

– to the time complexity. In the definition of Sauerhoff and Sieling, both length and

width defined the space complexity and the time complexity was defined separately.

However, both approaches lead to equivalent OBDD models up to at most factor

(n + 1)2 increase in size, where n is the length of the input. But we strive to come

up with linear complexity bounds in this research. Therefore, we take the approach

of Ablayev, Gainutdinova and Karpinski.

Definition 4.3.3 ([AGK01]). A Quantum Branching Program P of width d and

length l (a (d, l)−QBP ) based on a quantum system in Hd is defined as a triple.

P = 〈T, |ψ0〉, F 〉,

where T is a sequence (of length l) of d-dimensional quantum transformations on Hd:

T = (ji, Ui(0), Ui(1))
l
i=1

The initial configuration of P is |ψ0〉. F ⊆ {1, . . . , d} is the set of accepting states.

We define a computation on P for an input σ = σ1, . . . , σn ∈ {0, 1}n as follows:

1. A computation of P starts in the state |ψ0〉. On the i-th step, 1 ≤ i ≤ l, of the

computation, P performs a transformation |ψ〉 −→ Ui (σji
) |ψ〉

2. After the l-th (last) step of the transformations P measures its configuration

|ψσ〉 = Ul (σjl
)Ul−1

(
σjl−1

)
. . . U1 (σj1) |ψ0〉. The measurement is represented by

a diagonal zero-one projection matrix M , where Mii = 1 if i ∈ F and Mii = 0

if i /∈ F . The probability Praccept(σ) of P accepting the input σ is defined by

the following equation.

Praccept(σ) = ||M |ψσ〉||2.

The program P from the definition above can be considered as a special case of linear
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programs. That is, sequences of linear transformation in a vector space. The approach

is illustrated in Figure 4.4.

ψ0 M(ψl)ψ1 ψ2 ψl...

U0(σ) U1(σ) U2(σ) Ul(σ) M

ψi ∈ H d

Figure 4.4: Quantum linear program

Definition 4.3.4. We say a function f is ε-accepted by a quantum branching program

P if its error probability is at most 1/2−ε and its correct answer probability is at least

1/2+ε. We can define acceptance with one-sided error analogously to the randomized

case (See Def. 3.5.3, p. 59).

Observe, that the quantum branching program according to Definition 4.3.3 is

naturally oblivious (See Def. 2.3.6, p. 29). This justifies the use of the term Read-

Once Quantum Branching Program. Indeed, oblivious read-once branching program

is an OBDD, according to the Definition 2.3.8 from the page 30. We give the

following definition.

Definition 4.3.5. We call an oblivious Quantum Branching Program P an (oblivi-

ous) Read-Once Quantum Branching Program (Quantum Ordered Binary Decision

Diagram) if each variable x ∈ {x1, . . . , xn} occurs in the sequence T of the quantum

transformation of the program P at most once.

We shall use the notation 1QBP for the class of all Read-Once Quantum Branching

Program (Quantum Ordered Binary Decision Diagram). We usually omit ”oblivious”

when it does not cause confusion, since the model we consider is naturally oblivious

(See Definition 4.3.3).



4.3. QUANTUM BRANCHING PROGRAMS 83

Let us mention that we can describe oblivious randomized branching programs as

linear programs of stochastic linear operators, analogously to the Definition 4.3.3.

Like it was the case with quantum branching programs, we do not arrive at some new

kind of computational model. At least, unless we require probabilities specified up to

asymptotically more than log T bits of precision, where T is the size of the program.

However, log T bits of precision is also a natural restriction for quantum amplitudes.

It is natural to assume, that, during the computation, we can generate probabilities

(or amplitudes) up to 1 part in 2T where T is the size of the branching program.

Better precision is not obviously achievable. The early discussion for the quantum

setting can be found in the work of Bernstein and Vazirani [BV97].

It is not difficult to see that the new definition is simply a special case of the more

general Definition 3.5.3 on the page 59, written down in the language of linear

algebra.

Definition 4.3.6. An oblivious Randomized Branching Program P of width d and

length l (a (d, l)−RBP ) can be defined as a triple.

P = 〈T, s0, F 〉,

where T is a sequence (of length l) of d× d stochastic matrices:

T = (ji, Li(0), Li(1))
l
i=1

The initial configuration of P is s0. The configurations are described by d-dimensional

stochastic vectors. F ⊆ {1, . . . , d} is the set of accepting states.

We define a computation on P for an input σ = σ1, . . . , σn ∈ {0, 1}n as follows:

1. A computation of P starts with s0. On the i-th step, 1 ≤ i ≤ l, of the compu-

tation P performs a transformation s −→ Li (σji
) s

2. After the l-th (last) step of the transformations, P stops in the configuration

sσ = Ll (σjl
)Ll−1

(
σjl−1

)
. . . L1 (σj1) s0. The output probability is described by

a diagonal zero-one projection matrix M , where Mii = 1 if i ∈ F and Mii = 0
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if i /∈ F . The probability Praccept(σ) of P accepting input σ is defined by the

following equation.

Praccept(σ) = |Msσ|.

Despite of the apparent similarities, the two linear program definitions given above

underline very important differences of the randomized and quantum models:

1. The unitary transformations in quantum branching programs are replaced by

the stochastic matrices in the randomized setting.

2. The ”nonlinear” l2 norm of the acceptance probability in quantum case is re-

placed by ”linear” l1 norm in the randomized computation.

Note also, that the deterministic branching programs are a special case of the ran-

domized linear programs defined above. There, all stochastic matrices are restricted

to the zero-one matrices, and all configuration vectors are also zero-one.

Thus, we arrive at a very interesting mixture of similarities and differences. It will

have rather surprising consequences in the next section, where we introduce several

interesting complexity classes inspired by the quantum branching programs, and show

curious relationships of these classes.

4.4 Quantum branching programs complexity

We introduced several complexity measures on quantum branching programs in the

previous section. The size being the most influential of them. One of the most

interesting results about quantum branching programs complexity is due to Ablayev,

Moore and Polette [AMP02]. They showed that quantum branching programs of

constant width 2 are as powerful as the circuits of polynomial size and logarithmic

depth! Let us define the complexity classes we shall later relate to each other.

Definition 4.4.1 ([Aar]). Class NCi is the class of decision problems solvable by

a uniform family of Boolean circuits, with polynomial size, depth O(logi(n)), and
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fan-in 2. Then NC is the union of NCi over all nonnegative i. NC stands for ”Nick’s

Class”.

The Boolean circuit is a circuit of usual logical gates (AND, OR, NOT) that connected

using wires. Fan-in is the maximal number of input wires that a gate can have. In

the definition above we mention a notion of buniform family.

Definition 4.4.2. A computational model is called uniform if a single algorithm is

used for inputs of different length. A family of algorithms is called uniform if, for

every input length, appropriate algorithm can be generated within polynomial in the

input length resources.

We shall mostly deal with uniform families when consider nonuniform models, such

as branching programs. We define next the bounded width branching program com-

plexity classes.

Definition 4.4.3. 1. k−P-BP is the class of functions represented by polynomial-

length branching programs of width k. We denote BWP-BP = ∪kk −P-BP.

2. k − BPP-BP is a subclass of BPP-BP that consists of all functions that

can be represented by a polynomial size nondeterministic branching program of

polynomial size and width k. We denote BWBPP-BP = ∪kk −BPP-BP.

3. BQP-BP is a class of all functions that ε-accepted by some polynomial-size

quantum branching program, for some constant ε ∈ (0, 1/2).

4. k − BQP-BP is a subclass of BQP-BP that consists of all functions that ε-

accepted by some polynomial-size quantum branching program of width k, for

some constant ε ∈ (0, 1/2). We denote BWBQP-BP = ∪kk −BQP-BP.

5. EQP-BP is a class of all functions that computed by some polynomial-size

quantum branching program exactly, that is with zero error.

6. k − EQP-BP is a subclass of EQP-BP that consists of all functions that

computed by a polynomial size quantum branching program of width k exactly.

We denote BWEQP-BP = ∪kk − EQP-BP.
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In 1988 Barrington [Bar85] showed that 5−P-BP = NC1. Moreover, for determin-

istic branching programs, width 5 is necessary, unless NC1 = ACC0 [BT88].

Definition 4.4.4 ([Aar]). Class ACC0 is the class of decision problems solvable by

a uniform family of Boolean circuits with additional MOD m gates for any m, with

polynomial size, constant depth, unbounded fan-in.

It was not before the turn of the century that Ablayev, Moore and Pollette showed

that 2−EQP-BP = NC1. This is still one of the most remarkable results concerning

quantum branching programs known so far. It is also interesting to notice that all

the plethora of classes that we defined above, actually, collapses!

Theorem 12 ([AMP02]).

2− EQP-BP = 2−BQP-BP = EQP-BP = BQP-BP

= BPP-BP = BWP-BP = NC1.

Unrestricted branching programs are generally unexplored due to the lack of powerful

proof methods. The bounded width restriction brought up some non-trivial insights

into the power of quantum branching programs. However it did not led to an inter-

esting structure of complexity classes, that simply collapsed... What is the situation

with OBDD?

It turns out, for OBDD the situation is quite different! Let us first introduce some

interesting OBDD complexity classes that we shall deal with.

Definition 4.4.5. 1. BQP-OBDD is the class of all functions ε-accepted by

some polynomial-size quantum OBDD, for some constant ε ∈ (0, 1/2).

2. EQP-OBDD is the class of all functions computed by some polynomial-size

quantum OBDD exactly, that is with

3. RQP-OBDD is the class of all functions ε-accepted with one-sided error by

some polynomial-size quantum OBDD, for some constant ε ∈ (0, 1/2).



4.4. QUANTUM BRANCHING PROGRAMS COMPLEXITY 87

4. The class of zero error quantum OBDD is defined as

ZQP-OBDD = RQP-OBDD ∩ coRQP-OBDD.

5. The class of all reversible programs from P-OBDD is called Rev-OBDD.

The last deterministic class defined above is a natural deterministic subclass of

BQP-OBDD, just like P-OBDD is a subclass of BPP-OBDD. We mentioned

the second inclusion in the end of the previous section.

Let us start from something similar to the bounded-width branching programs com-

plexity classes hierarchy collapse. Next result is due to Sauerhoff and Sieling [SS04].

Theorem 13 ([SS04]). Rev-OBDD=EQP-OBDD=ZQP-OBDD.

However, the rest of the complexity classes do not simply collapse for quantum OBDD.

In 2001 Ablayev, Gainutdinova and Karpinski [AGK01] presented an explicit func-

tion that proved an exponential gap between stable randomized and stable quantum

OBDD. Stability is a rather strong restriction on OBDD.

Definition 4.4.6. Consider an OBDD P , where T = (ji,Mi(0),Mi(1))
n
i=1 is the

appropriate sequence of transformations, and n is the length of the input. Then P
is called stable if Mi(0) = Mj(0) and Mi(1) = Mj(1) for all i, j ∈ {1, . . . , n}. In other

words transformation do not depend on the level of P .

Definition 4.4.7 ([AGK01]). MODp: On input σ = σ1, . . . , σn ∈ {0, 1}n we have

MODp(σ) = 1 if and only if the number of ones in σ is divisible by p.

Theorem 14 ([AGK01]). The function MODp can be presented by a stable, read-

once, width-O(log p) quantum branching program with one-sided error ε > 0.

Any stable probabilistic OBDD computing MODp has width at least p.

With this result a hope was born, that quantum computers can be rigorously proved

to be more powerful than the randomized computers in the OBDD setting. The latter,
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such as those used to define various BPP complexity classes, are widely accepted to

be a practical model of computation. Alas! In 2004 Sauerhoff and Sieling showed

that quantum and classical OBDD are incomparable [SS04]! They used two following

functions as witnesses.

Definition 4.4.8. The permutation matrix test function PERMn is defined on n×n
Boolean matrix that is arranged in a string. For an input σ ∈ {0, 1}n2

PERMn(σ) = 1

if, and only if, σ corresponds to a permutation matrix. That is, a zero-one matrix

where each row and column contains exactly one entry 1.

It is well known that unrestricted nondeterministic read-once branching programs

for PERMn have exponential size (See [KMW88, Juk89]). However, it has also been

known that this function is not hard for randomized OBDDs [Sau97, Weg00].

Theorem 15 ([Sau97]). The function PERMn can be computed with a one-sided

ε(n)-error by a randomized read-once ordered branching program of size

O
(
ε(n)−2n5 log3 n

)
.

Additionally Sauerhoff and Sieling define a beautifully simple neighboring ones func-

tion.

Definition 4.4.9 ([SS04]). The neighboring ones function NOn is defined on the

Boolean variables x1, . . . , xn. It takes the value 1 if, and only if, there are two neigh-

bored variables with value 1. That is, if there is an integer i ∈ {1, . . . , n − 1}, such

that xi = xi+1 = 1.

It is obvious how to construct a deterministic OBDD of size O(n) that would compute

NOn. Now the separation of deterministic and quantum OBDD is shown by the

following results.

Theorem 16 ([SS04]). There are quantum OBDDs for ¬PERMn with one sided

error 1/n and size O(n6 log n). Thus, it follows

BQP-OBDD * P-OBDD.
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Theorem 17 ([SS04]). The size of each quantum OBDD G with bounded error for

NOn is at least 2Ω(n). Thus, it follows

P-OBDD * BQP-OBDD.

Some of the known class relations are shown in the Figure 4.5. Note that, although

BPP-OBDD * BQP-OBDD,

it remains an open question whether

BQP-OBDD ⊆ BPP-OBDD.

Rev-OBDD
EQP-OBDD
ZQP-OBDD

P-OBDD

BQP-OBDD

BPP-OBDD

Figure 4.5: OBDD complexity classes hierarchy

So far we have considered quantum OBDD model, which is the same as read-once

oblivious quantum branching programs. However, general Definition 4.3.2 allows

also construction of read-once quantum non-oblivious branching programs. Does this

opportunity promise any advantage in terms of computational power? It proves it

does, as it was noticed by Sauerhoff and Sieling [SS04]. We follow their presentation.
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Definition 4.4.10. Let n = 2k, for the input consisting of y = {y0, . . . , yk−1} and

x = {x0, . . . , xn−1} we define the indirect storage access function ISAn(x, y) in the

following way. The string y is interpreted as a binary number s(y). If s(y) ≤ b :=

bn/kc then the k-bit sequence xks, . . . , xks+k−1 is also interpreted as a binary number

xs ≤ n− 1 and the output is xxs(y). Otherwise, if s(y) > b the output is 0.

The definition of the indirect storage access function is practically a definition of a

decision tree of size O(2k ·b) = O(n2/ log2 n). This decision tree can also be considered

as a read-once quantum branching program, since it represents a reversible process.

However, any quantum ZQP-OBDD that computes ISAn has to be of size 2Ω(n/ log2 n)

[SS04].

Recently Sauerfhoff showed the separation also for non-oblivious branching programs

[Sau05]. There, Sauerhoff used the well-known function set disjointness and a func-

tion he constructed for the purpose.

Definition 4.4.11. Let x = (y1, . . . , yn), y = (y1, . . . , yn) ∈ {0, 1}n. We define set

disjointness function

DISJn(x, y) = ¬(x1y1 ∨ · · · ∨ xnyn).

Definition 4.4.12 ([Sau05]). For a positive integer n and x = (x1, . . . , xn) ∈ {0, 1}n,

let p(n) be the smallest prime larger than n and let sn(x) = (Σn
i=1i · xi) mod p(n).

Define the weighted sum function by WSn(x) = xsn(x) if sn(x) ∈ {1, . . . , n} and 0

otherwise.

For a further input y = (y1, . . . , yn) ∈ {0, 1}n define the mixed weighted sum function

by MWSn(x, y) = xi ⊕ yi if i = sn(x) = sn(y) ∈ {1, . . . , n} and 0 otherwise.

The separation results are presented in the next two statements.

Theorem 18 ([Sau05]). Each randomized read-once branching program computing

MWSn with two-sided error bounded by an arbitrary constant smaller than 1/2 equires

size 2Ω(n) while MWSn can be computed by an error free quantum read-once branching

program of size O(n3).



4.5. OCCAM’S RAZOR AND QUANTUM COMPUTERS 91

Theorem 19 ([Sau05]). Each quantum read-once branching program computing

DISJn with two-sided error bounded by a constant smaller than 1/2−2
√

3/7 (≈ 0.005)

has size 2Ω(n)

The set disjointness is trivially computed by deterministic OBDD with an appropriate

ordering.

The several incomparability results presented in this section unfortunately destroy

the hopes to prove quantum computations superiority in the OBDD setting. The

best we can hope for is to come up with good algorithms for particular important

problems, or to show the best possible complexity for those problem. We take this

approach in the next chapters.

4.5 Occam’s Razor and quantum computers

In this chapter we introduced the quantum computers, the model of quantum branch-

ing programs, that would be of central interest in the next chapters. But before we

proceed, it’s good to say a pair of words to justify our interest in quantum computa-

tional models. We arrange them in the list below.

� First of all the quantum version of the Church-Turing thesis is a provable con-

jecture that depends on the validity of the given physical theory – of quantum

mechanics. As we mentioned in the first chapter, this is a better situation than

building up a theory based on the pure intuition only very indirectly related to

the physical reality.

� Now physicists learn to think computationally. It is not only that any compu-

tational process is a kind of a physical process. It also works all the way around.

Namely, an arbitrary physical process can be considered as a process of compu-

tation. The Universe is the largest Turing machine available, and it is doing a

computation. Only we don’t know what it is computing exactly.

� Quantum computing gave raise to the quantum cryptography. Those cipher ma-

chines produce unbreakable cryptographic protocols. The situation of perfect
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security was first considered by Claud Shannon [Sha49]. But prior to quantum

cryptography protocols were insured to be of perfect security only if they were

symmetric block-ciphers with the key size equal to the size of the cipher text.

They also had to be pad ciphers, in other words they had to use different ran-

dom keys for encoding each new message. All those demands were impractical

as well as the assumption that the eavesdropper could use unrestricted compu-

tational power, for which the very notion of perfect security was necessary. Now

there’s no need of unrealistic assumptions of the malevolent party. The ”perfect

security” of quantum cryptographic protocols doesn’t need those assumptions

for justifying ridiculous resource demands. For a single reason – there are no

those demands!

That’s why we consider it worthwhile to spend our time and energy studying quantum

computations. The engineering difficulties that yet prevent construction of full-scale

quantum computers encourage us in our research. Here we consider computational

models that utilize very restricted resources. They are easy to implement. However,

they are powerful enough to solve some very important and hard computational

problems. This topic is uncovered in the next chapters.



Chapter 5

Connections to the Hidden

Subgroup Problem

All animals are equal but some

animals are more equal than others.

George Orwell,

”Animal Farm”

5.1 Introductions

One of the problems we consider in this chapter is Equality. It is one of the most fun-

damental problems in the computer science. Therefore, it is not surprising it has been

extensively studied. One of the recent results somewhat related to our own is due to

Høyer and de Wolf [HW02]. They prove that quantum communication complexity of

the Equality is n+1 for exact, one-sided error and non-deterministic protocols, where

n is the input length. The authors also gave a short review of the subject as well

as they stated some open problems. The explicit connection between quantum com-

munication complexity and quantum branching programs was established by Ablayev

[Abl05]. The second result, combined with the first can provide alternative prove for

the lower bounds presented in this chapter. However, it does not provide us with the

93
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explicit quantum OBDD for Equality. The latter is the crucial construction element

of our upper bound algorithms.

We define several boolean functions that we investigate in the first part of this work.

Definition 5.1.1. Let us define the Equality function EQn(x, y).

EQn(x, y) ≡ [x = y]

Definition 5.1.2. For a binary sequence σ ∈ {0, 1}n, s – the period parameter, we

define the Periodicity function Periods,n (σ).

Periods,n (σ) =

{
1 if σi = σi+s mod n, i = 0, n− 1;

0 otherwise.

Before we tackle the real Simon problem, let’s define a function that is similar but

somewhat simpler. This function is intended to exhibit similarities and differences of

finding period and solving Simon problem.

Definition 5.1.3. For n = 2l, l ∈ N s ∈ {0, . . . n − 1} and for σ ∈ {0, 1}n, a binary

sequence, we define the Semi-Simon function Semi-Simons,n (σ).

Semi-Simons,n (σ) =

{
1 σi = σi⊕s, i = 0, n− 1;

0 otherwise.

Note that ⊕ is a bitwise addition modulo 2.

We present a weak upper bound for Equality first. Its aim is to present one more proof

technique as well as smoothly give an intuition for Quantum Branching Programs.

Theorem (Weaker Equality Upper Bound). The function EQn(x, y) can be com-

puted with constant error δ < 1
2

by a 1QBP of width O (n log n) for n large enough.

Eventually, we obtain linear upper bounds for all three Boolean functions. First, for

the Equality.
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Theorem (Stronger Equality Upper Bound). The function EQn(x, y) can be

computed with one-sided error o(1) ≤ 1
7
, (n→∞) by a 1QBP of width O (n), where

n = |xy| is the length of the input.

Similar result holds for the Periodicity. It establishes linear, over the parameter size,

upper bound. The program size is obviously constant over the input sequence size.

Theorem. For all s ∈ (0, n] and ∀σ ∈ {0, 1}n the function Periods,n (σ) can be

computed with one-sided error o(1) < 0.4, (s→∞) by a 1QBP of width O (s).

The theorem for the Semi-Simon problem is a corollary of the result for the Equality

function.

Theorem. For all s ∈ (0, n] and ∀σ ∈ {0, 1}n the function Semi-Simons,n (σ) can be

computed with one-sided error o(1) < 1/7, (s→∞) by a 1QBP of width O(n).

We conclude this chapter by proving linear lower bound on of the considered problems.

Thus, we obtain asymptotic characterization of their quantum OBDD complexity.

5.2 Missing an important function

This section is dedicated to the function fn defined by F. Ablayev, M. Karpinski

[AK96].

Definition 5.2.1. Consider the finite alphabet Σ. For σ1, σ2 ∈ Σ, x ∈ Σ∗ define

Projσ1,σ2
(x) to be a subsequence x′ of the sequence x that consists only of the symbols

σ1 and σ2.

Define funnction fn : σ2n → {0, 1} as follows. Function fn(x) = 1 if, and only if two

conditions are satisfied.

1. Proj0,1(x) and Proj0̂,1̂(x) have the same length;

2. For all indicies i the i-th symbol in Proj0,1(x) is σi if, and only if the i-th symbol

in Proj0̂,1̂(x) is σ̂i.
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Informally fn essentially is an equality function for two binary words. First word

written using {0, 1}, and second word – using {0̂, 1̂}. Having the input encoded in

binary (say 0→ 00, 1→ 01, 0̂→ 10, 1̂→ 11), function fn can be easily defined as a

boolean function over B4n.

f ′n : {0, 1}4n → {0, 1}. (5.1)

Once this function made a contribution to Structural Complexity. It was fn and

PERM defined in [Sau97] that were used to demonstrate classes AC0 and BPP −
OBDD are incomparable [AK97].

The function fn is a generalization of the function EQn(x, y) that we consider in the

next section. In fact, only slightly modified proof for Equality would lead to the

theorem below.

Recall that a 1QBP Q is called stable if transformations applied on each level do not

depend on the position of the corresponding argument but depend only on its value

(See Def. 4.4.6, p. 87).

Theorem 20. The function fn can be computed with one-sided error o(1) ≤ 1
7
, (n→

∞) by a stable 1QBP of width O (n).

Notice that the Read Once Branching Program, computing fn in this case is stable!

A lower bound is also valid for fn. Similarly to the lower bound for Equality, the linear

lower bound on the width of quantum OBDD for fn follows from the exponential

deterministic read-once branching program lower bound. This lower bound was first

shown in the same paper where the the function was initially introduced [AK96].

Theorem 21 ([AK96]). Any deterministic read-once branching program that com-

putes the function fn has the size of no less than 2n.

We have already mentioned that fn has some history. Apart from the lower bound

shown above, a polynomial upper bound on randomized branching program complex-

ity was shown for fn.

Theorem 22 ([AK96]). Function fn can be computed with one-sided error ε(n) by a
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randomized read-once ordered branching program P so that following holds. size(P ) ∈
O
(

n6

ε3(n)
log2 n

ε(n)

)
.

Next statement was originally given as a corollary in [AK97] for function f ′n. Natu-

rally, it remains true for fn.

Theorem 23. Function fn can not be computed by a nondeterministic ordered read-

k-times branching program in polynomial size for k = o(n/ log n).

In other words, quantum setting offers significant polynomial advantage over corre-

sponding known probabilistic algorithms. The complexity gap between the determin-

istic and the quantum OBDD is super-polynomial for fn.

Other than what was mentioned, we don’t prove statements for fn. Despite of the

function being a beautiful generalization encapsulating three other problems we con-

sider, it lacks elegancy of presentation when several different problems are considered.

Thus, in sake of clarity from now on we deal only with Boolean functions (images of

{0, 1}n → {0, 1}, for some integer n). Nevertheless, we should keep in mind that fn

is an important function we also have non-trivial results about.

5.3 The upper bound for the equality function

First we present the weaker upper bound.

Theorem 24 (The Weaker Upper Bound). The function EQn(x, y) can be com-

puted with constant error δ < 1
2

by a 1QBP of width O (n log n) for n large enough.

Proof. To prove the statement, we shall build a 1QBP that computes EQn (x, y)with

requested properties.

Definition 5.3.1.

EQn,p(x, y) ≡ [x ≡ y mod p]

Lemma 2. EQn,p(x, y) can be computed by a 1QBP of width 2 with one-sided error

Θ

(
1− 1

p

)
. (5.2)
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To prove this lemma, we conceive a one qubit (acting in 2-dimensional Hilbert space)

1QBP Ap = 〈T, |ψ0〉, F 〉. Let |0〉 and |1〉 be two orthonormal fixed states to form a

basis of the H2. Now we construct Ap:

1. The QOBDD receives input σ = xy;

2. |ψ0〉 = |0〉;

3. F = {|0〉};

4. (a) On the x-part of the input σ:

Ui(σi) =

(
cos π2i+1σi

p
sin π2i+1σi

p

− sin π2i+1σi

p
cos π2i+1σi

p

)
;

(b) On the y-part of the input σ:

Ui(σi) =

(
cos π2i+1σi

p
− sin π2i+1σi

p

sin π2i+1σi

p
cos π2i+1σi

p

)
.

This program performs a rotation of |ψ0〉 by the angle x2π
p

while reading x and then

a rotation in opposite direction of the resulting vector by the angle y 2π
p

. Clearly, the

program will end up in the state from F if and only if x ≡ y mod p. Otherwise

(x− y)2π
p
≥ 2π

p
. Thus, the statement of the lemma follows.

Lemma 3. EQn(x, y) can be computed by a 1QBP of width Θ(n) with one-sided

error

O

((
1− 1

n log n

)cn)
. (5.3)

for some constant c.

The proof of the lemma is based on combining 1QBPs computing

EQn,pk
(x, y), k = 1, . . . , d in order to build up a 1QBP B that computes EQn(x, y),

where d = cn, c is a constant, pk is the kth prime number. Indeed, it is clear that

for any x 6= y EQn,pk
(x, y) = 1 for at most n different pk, since x, y ≤ 2n, and they

can’t contain more than n different prime factors. Thus, we combine d 1QBPs Apk

as they were defined in Lemma 2. Let the set FB of accepting states consists of a

single vector.
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FB = {|0〉d}. (5.4)

Thus, for every input xy = σ ∈ {0, 1}n and every fixed prime number pk, the error

probability for this program B is bounded as it is shown below.

Prerr(σ,B) ≤ Perr(σ,Apk
)d−n 4

(
1− 1

p

)(c−1)n

(5.5)

From the Chebishev’s theorem [HW79] it easily follows that if p is a n-th prime

number then p ∈ O(n log n).

Prerr(σ,B) 4

(
1− 1

n log n

)(c−1)n

(5.6)

Since selection of the constant c was not fixed, the statement of the lemma

follows.

Now we are to finish the proof of the theorem

We construct yet another 1QBP C, building it up from log n
c

copies of program B.

The final set is again defined to contain a single vector.

FC = {|0〉
d log n

c }. (5.7)

Since we still have a program that computes the function with one-sided error, it

follows from Lemma 3 that the error probability is bounded for every input σ.

Prerr(σ, C) ≤ Perr(σ,B)
log n

c 4

(
1− 1

n log n

)n log n

−→
n→∞

1

e
<

1

2
. (5.8)

The total witdth of the resulting 1QBP C is 2cn log n
c

= 2n log n. Thus, the theorem

follows.

Next we present the main result about Equality function.

Theorem 25 (The Stronger Upper Bound). The function EQn(x, y) can be

computed with one-sided error o(1) ≤ 1
7
, (n→∞) by a 1QBP of width O (n), where
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n = |xy| is the length of the input.

Proof. We shall build an (O(n))−1QBP C.
Let us first introduce one qubit (acting in 2-dimensional Hilbert space) 1QBPs Ak =

〈Tk, |ψ0〉,Ψk, F 〉, where k ∈ {1, . . . , p− 1}. Let |0〉 and |1〉 be two orthonormal fixed

states to form a basis of the H2. Now we construct Ak for a p ∈ (σ, 2σ)∩PRIMES.

According to Bertrand’s postulate there’s always such p [Nag51].

1. The QOBDD receives input σ = xy;

2. |ψ0〉 = |0〉;

3. F = {|0〉};

4. Ψk = {|0〉, |1〉}

5. Tk = (i, Ui(0), Ui(1))n
i=1

(a) On the x-part of the input σ:

Ui(σi) =

(
cos 2πkσi2

i

p
sin 2πkσi2

i

p

− sin 2πkσi2
i

p
cos 2πkσi2

i

p

)
;

(b) On the y-part of the input σ:

Ui(σi) =

(
cos 2πkσi2

i

p
− sin 2πkσi2

i

p

sin 2πkσi2
i

p
cos 2πkσi2

i

p

)
.

Clearly if x = y then Ak accepts σ with probability 1,

Definition 5.3.2. Call Ak ”good” for input σ = xy, x 6= y if Ak rejects σ with

probability at least 1/2.

Lemma 4. For any σ = xy, x 6= y, at least (p − 1)/2 of all Ak for different k are

”good”.
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Our branching program is defined so that, reading the input σ = xy, it first rotates

the state vector (initially |ψ0〉) by the angle θk(x) = 2kπ
p
x in the direction towards |1〉

axis, and then backwards while reading y by the angle θk(y) = −2kπ
p
y

After reading the input σ = xy (x 6= y) the branching program ends up in the state

ψk.

|ψk〉 = (cos θk) |0〉+ (sin θk) |1〉, (5.9)

θk = θk(x) + θk(y) =
2kπ

p
x− 2kπ

p
y =

2kπ(x− y)
p

(5.10)

Since k ∈ {1, . . . , p−1}, it is co-prime with p, thus, θk would constitute a finite cyclic

additive group of residues modulo p. Clearly, the elements of the set of the angles

I = {θk|k ∈ {1, . . . , p− 1}} are uniformly distributed on the circumference of a unit

circle.

Now θk is ”good” if and only if θk ∈
[

π
4
, 3π

4

]
∪
[

5π
4
, 7π

4

]
, for only then have we cos2 θk <

1
2

that means a θk to be ”good”. We conclude the proof.∣∣∣∣I ∩ ([π4 , 3π4
]
∪
[
5π

4
,
7π

4

])∣∣∣∣ ≥ ⌊p2⌋ ≥ p− 1

2
. (5.11)

Thus, the lemma follows.

Definition 5.3.3. We call a set of quantum programs S = {Ai1 , . . . ,Ait} ”good” for

σ = xy, x 6= y, if at least 1/4 of all its elements are ”good” for this σ.

Lemma 5. There is a set S of width-2 quantum branching programs with |S| = t =

d24 log pe which is ”good” for all inputs σ = xy, that have x 6= y.

We shall construct a ”good” set S that will prove the lemma.

The construction is trivial: for a fixed input σ ≤ p − 1 a branching program from

{A1, . . . ,Ap−1} is selected uniformly and randomly and added to initially empty set

S.

Consider a sum X = Σn
i=1Xi, where Xi = [Ai is not

′′good′′]. By the definition of

the set S and previous lemma, probability that every given program Ai ∈ S is not
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”good” equals q = 1
2
. Now set parameter θ = 1

2
and apply Chernoff’s bound.

Pr [X ≥ (1 + θ)qt] ≤ e−
θ2

3
qt, (5.12)

that after substitution gives

Pr

[
X ≥ 3

4
t

]
≤ e− log p =

1

p
. (5.13)

That is the probability of constructing a set S with less than 1
4

of ”good” (for any

given σ < p) entries is not greater than 1
p
. Thus, the probability Pr [S is not ”good”]

that the set S is not ”good” for at least one σ < p is at most the following positive

fraction.

Pr [S is not ”good”] ≤ p− 1

p
. (5.14)

Therefore, there exists a set which is ”good” for all inputs σ < p. Recalling that

|S| = t = d24 log pe the lemma follows.

To finish the proof of the theorem we describe the 1QBP C accepting σ = xy with

probability 1 for x = y and rejecting the input with probability 1− o(1), (|σ| → ∞),

at least 6
7
, for x 6= y.

C = 〈T, |ψ0〉,Ψ, F 〉:

1. The QOBDD receives input σ = xy;

2. |ψ0〉 = |0〉;

3. F = {|0〉};

4. For each program Ai ∈ S we introduce corresponding state |i〉, which is |1〉 is

replaced in each respective program for, when we combine them to result into

C. Thus, Ψ = {|0〉, . . . , |t〉}, where t is from the Lemma 5.

5. T - the transition function is defined as a weighted with equal amplitudes su-

perposition of the corresponding transformation for the programs Ai ∈ S.
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Notice that for inputs σ = xy, x = y C never errs, the reason is that every Ai ends

up in the accepting state |0〉. On the other hand, if x 6= y, the following lemma holds.

Lemma 6. For program C constructed above, if input σ = xy is such that x 6= y, the

input is rejected with probability Prej(σ) at least 1 − o(1), (|σ| → ∞). Furthermore,

for such σ Prej(σ) is never less than 6
7
.

Let us define ψn be the state of the program C after having read the input σ = xy,

where x 6= y.

ψn =
t∑

i=0

ai|i〉 (5.15)

According to the Lemma 5, at least 1
4

of the programs Ai would reject it with

probability at least 1
2
. Without loss of generality let all ”good” programs constituting

the ”good” sequence of C correspond to basis vectors of HC , the Hilbert space

assigned to C, with indicies in G =
{
1, . . . ,

⌊
t
4

⌋}
. By the definition of C, for all

0 < i ≤ t on each subspace HAi
= Span(|0〉, |i〉) of the space HC , the program C

behaves just like Ai. Now let’s call a subspace of HAi
”good” if it corresponds to

a ”good” program Ai. By the definition of ”goodness”, projection ψi
n, i ∈ G of the

vector ψn on any of the ”good” subspaces HAi
would satisfy the equation.

ψi
n =

ai√
a2

i + a2
0

|i〉+ a0√
a2

i + a2
0

|0〉, (5.16)

where ai are coefficients from the original representation of the vector ψn, and∣∣∣∣∣ ai√
a2

i + a2
0

∣∣∣∣∣ ≥ 1√
2
. (5.17)

Subsequently

a2
i ≥ a2

0; (5.18)

Let Pacc(σ) = a2
0, by the definition of program C, be the probability of accepting the

input σ.
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1 = Pacc(σ) + Prej(σ) = a2
0 +

t∑
i=1

a2
i = a2

0 +

dt/4e∑
i=1

a2
i +

t∑
i=dt/4e+1

a2
i . (5.19)

Now combining the two lines above we obtain following inequalities.

1 ≥ a2
0 +

t

4
a2

0, (5.20)

a2
0 ≤

4

t+ 4
; (5.21)

Prej(σ) = 1− a2
0 ≥ 1− 4

t+ 4
= 1− 4

d24 log pe+ 4
� (5.22)

(where last equality follows from the Lemma 5)

� 1− 4

d24 log 2ne+ 4
= 1− 4

24n+ 4
≥ 6/7, (5.23)

where last inequality obviously follows from n > 0. Thus, the statement of the

lemma follows.

The error can be reduced arbitrarily running d = d(ε) copies of the program C taken

and run uniformly at random. Clearly, the width of the program C is O(log p) =

O(log 2n) = O(n), thus, completing the proof.

5.4 The upper bound for the Periodicity function

The next theorem is inspired by the proof of the Theorem 25.

Theorem 26. For all s ∈ (0, n] and ∀σ ∈ {0, 1}n the function Periods,n (σ) can be

computed with one-sided error o(1) < 0.4, (s→∞) by a 1QBP of width O (s).

Proof. The main idea of the proof is to divide the input sequence into words of length

s, and utilize the elementary 2-state branching programs for equality to compare all
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resulted subsequences with some chosen subsequence of the set.

Periods,n (σ) = 1 ⇐⇒ ∀i, 1 ≤ i ≤ n (σi = σi+s mod n). Thus, Periods,n (σ) = 1 ⇐⇒
the elements of the input sequence form a cyclic group of size s over addition of their

indicies modulo n. Subsequently the input having been split into words of length s

would consist only of equal words if, and only if Periods,n (σ) = 1.

The only obstacle on the way is that the input length might be not divisible by s.

Following lemma adresses the question.

Lemma 7. Given a binary sequence X = {x}ks+r
i=1 , k, r ∈ N ∪ {0}, s ∈ N, r < s,

consider a sequences of s-element subsequences of X with corresponding tails:

W =
(
x1 . . . xs, xs+1 . . . x2s, · · · , x(k−1)s+1 . . . xks, x(k−1)s+r+1 . . . xks+r

)
;

tleft = x1 . . . xs,

tright = x(k−1)s+r+1 . . . xks+r.

Then following statement holds.

∀w,w′ ∈ W, ∀i, 1 ≤ i ≤ n(xi = xi+s mod n ⇐⇒ w = w′),

where n = ks+ r.

We prove the lemma.

⇒ This direction is straightforward.

⇐ Suppose that ∀w,w′ ∈ W and tleft = tright. Clearly, for all indicies i such that

1 ≤ i ≤ (k − 1)s+ r it holds that xi = xi+s. Now, if there is a number i0, (k − 1)s+

r + 1 ≤ i0 ≤ ks + r such that xi0 6= xi0+s mod n, it would contradict to what follows

from that tleft = tright.

Thus, we have proved the lemma.

It remains to present the 1QBP computing Periods,n (σ) with desired properties. It

is done by cascading 2-state elementary programs from Theorem 25 that compute

equality, and then applying the same, as in previously mentioned theorem, technique

to amplify correct answer probability.

Just like we did in the proof of the Theorem 25, we start by defining an elementary

branching program that we shall use in following construction. Although this time

we shall use three slightly different types of 2-state branching programs. Clearly,
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σ can be considered as a sequence of words of length s, like in Lemma 7, σ →
w1w2 . . . wdn/se, w1 = tleft and wdn/se = tright. Then first type program (j = 1) would

compute EQs (wi, wi+1), second type (j = 2) program compute EQs (wi+1, wi+2),

i = 1, dn/se − 2, and the third (j = 3) would check for equality only of the first and

the last words: EQs (tleft, tright).

Now we construct Dkj, j ∈ {1, 2, 3} for a p ∈ (2s, 2s+1) ∩ PRIMES. Bertrand’s

postulate assures us again there’s always such p [Nag51].

1. The 1QBP receives input σ;

2. |ψ0〉 = |0〉;

3. F = {|0〉};

4. Ψkj = {|0〉, |1〉}

5. Tkj = (i, Ui(0), Ui(1))n
i=1, n = |σ|. We define the transition function explicitly

only for j = 1, two other cases are easily derived from this one.

(a) On the left part of the corresponding 2s-symbol segment of σ:

Ui1(σi) =

(
cos

2πkpdi/seσi2
i

p
sin

2πkpdi/seσi2
i

p

− sin
2πkpdi/seσi2

i

p
cos

2πkpdi/seσi2
i

p

)
;

(b) On the right part of the corresponding 2s-symbol segment of σ:

Ui1(σi) =

(
cos

2πkpdi/seσi2
i

p
− sin

2πkpdi/seσi2
i

p

sin
2πkpdi/seσi2

i

p
cos

2πkpdi/seσi2
i

p

)
.

Here pdi/se 6= p, i = 1, n are prime numbers.

According to Lemma 7, if σ is so that Periods,n (σ) = 1 then Dk accepts σ with

probability 1. Moreover, the program attempts to check the chain of equalities w1 =

w2 = . . . = wdn/se in order to reject all σ that have Periods,n (σ) = 0.

Let us write down the state, first of the three elementary programs would be in after

having read the input. It is similarly easy to do for the rest of the three. We can
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obtain the explicit expression for θk in the given above notation.

|ψk
1〉 = (cos θk) |0〉+ (sin θk) |1〉, (5.24)

θk =
2πk

p

dn/se−1∑
l=1

(wl − wl+1)pl (5.25)

k, wl < p, l = 1, dn/se; p - pl. (5.26)

Thus, a result analogous to the Lemme 4 holds for this case as well. Subsequently,

since construction of the Theorem 25 does not depend on the particular matter of

the angles as far as Lemma 4 holds, we can apply the same technique here.

We combine each of the three elementary programs analogously to the construction

of the Theorem 25. Thus, for each of them we obtain a program of width O(s) that

computes its sub-chain of equalities with the probability of correct answer at least

6/7. Finally, we take the direct sum of the three to obtain the program D. Clearly,

error probability for that program would not exceed 127/343 < 0.4. Asymptotically,

the error probability would be bounded as we claimed (see the proof of the Theorem

25 for details).

Perr ≤ 1−
(

1− 4

24s+ 4

)3

� 3/s− 3/s2 + 1/s ∈ o(s), (s→∞). (5.27)

We present the formal description of the 1QBP D that computes Periods,n (σ).

D = 〈T, |ψ0〉,Ψ, F 〉:

1. The QOBDD receives input σ;

2. |ψ0〉 = |0〉;

3. F = {|0〉};

4. Ψ = {|0〉, . . . , |s′〉}, where s′ ∈ O(s).
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5. T = (i, Ui(0), Ui(1))n
i=1 The transition function definition is clear from the dis-

cussion presented above.

The theorem follows.

5.5 The upper bound for the Semi-Simon function

This result is essentially a corollary of the Theorem 25 in contrast to the previous

theorem that was based on the same proof technique, but was not directly derived

from the earlier statement.

Theorem 27. For all s ∈ (0, n], and for all σ ∈ {0, 1}n the function Semi-Simons,n (σ)

can be computed with one-sided error o(1) < 1/7, (s→∞) by a 1QBP of width O(n).

Proof. Computing of the equality function will be again in the core for the proof.

Definition 5.5.1. Denote Sn = {i|1 ≤ i ≤ n, i ⊕ s 6= i}. A set defined for all

n-element binary sequences. Clearly, S does not depend on any particular function

σ.

Lemma 8. Set Sn can be partitioned into two sets of the same cardinality Sn = S1
n+S2

n

so that for l = 1, 2 ∀i, j ∈ Sl
n(j 6= i⊕ s).

First, we show that following statement holds. For any i ∈ Sn, if i⊕ s = j then there

is no k ∈ Sn, k 6= j so that k = i⊕ s.
Clearly, k 6= i, since it would yield i = i ⊕ s that contradicts i ∈ Sn. Moreover if

k = i⊕ s, and j = i⊕ s, then j ⊕ s = i = k ⊕ s, that is j = k.

It is also clear, that if i 6= i ⊕ s, j = i ⊕ s is contained in Sn. Since j ∈ {0, . . . , n},
and {0, . . . , n} = Sn + Sc

n. So if i does not equal its bitwise sum modulo two with s,

i.e. not in Sc
n, it must be in Sn.

Now we take any i ∈ Sn and add it to initially empty S1
n, j = i ⊕ s we add to also

initially empty S2
n. Then we remove i and j from Sn. Since the latter set is finite

and contains even number of elements that can be coupled into pairs i, i⊕ s we will

eventually exceed all elements of Sn. Note that the two new sets contain exactly the
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same number of elements, by construction. Thus, desired partitioning is achieved.

We showed the lemma holds.

Let us introduce two binary sequences, the two arguments to use in the equality

computation that will finish our proof.

Definition 5.5.2.

Sleft(σ) = {σi}i∈S1
n
,

Sright(σ) = {σj}j∈S2
n
,

where Sright(σ) is ordered so that Sright(σ)i = σj and j = i⊕ s.

Now it is straightforward that

Semi-Simons,n (σ) = 1 ⇐⇒ EQn (Sleft(σ), Sright(σ)) = 1. (5.28)

We already know how to compute equality efficiently, only here we shall have to

rearrange rotation angles according to the permutation of the elements in Sright(f).

Clearly |Sleft(σ)| = |Sright(σ)| ∈ O(n), thus, Theorem 25 gives us exactly what we

claimed to achieve. We proved the linear upper bound for Semi-Simon problem.

5.6 The lower bounds for Equality, Periodicity and

Semi-Simon

We prove lower bounds in two steps. First, we find the lower bound of the problems

for deterministic OBDD. Then we use a general lower bound theorem for quantum

OBDD (1QBP):

Theorem 28 ( [AGK+05]). Let ε ∈ (0, 1/2). Let fn(x1, . . . , xn) be a Boolean func-

tion which is ε-accepted (accepted with a margin ε) by a 1QBP Q. Then it holds

that

width (Q) = Ω (log2width (P )) , (5.29)

where P is a deterministic OBDD of minimal width computing fn(x1, . . . , xn).
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Let’s start with the lower bound for the Equality function.

Theorem 29. Let ε ∈ (0, 1/2) . If the function EQn(x, y) is ε-accepted by a 1QBP Q

then width (Q) ∈ Ω (n), where n = |xy| is the length of the input.

Proof. As we described in the beginning of the section, first we consider deterministic

OBDD complexity for the function.

Lemma 9. If the function EQn(x, y) is computed by a deterministic OBDD P then

width (P ) ∈ Ω (2n), where n = |xy| is the length of the input.

We shall prove the lemma by contradiction. Let xy be the input, |xy| = n = 2m.

Suppose that there’s a program P of width (P ) < 2m. Denote by Vertex (x) the

vertex that the path defined by the assignment to x leads to. There are 2m possible

assignments to x. On the other hand, by the hypothesis, there are at most 2m − 1

states on each level of the OBDD. That is, there exist two different binary sequences

σ1 and σ2 – assignments to x – such that Vertex (σ1) = Vertex (σ2), by the ”pigeon

hole” principle. Now whatever input for y would follow in our read-once leveled

(oblivious) branching program, the two comparisons

σ1
?
= y

and

σ2
?
= y,

for any fixed y, could not be distinguished by the program. Thus, having an input

y = σ1, the program would either accept both of the combinations σ1σ1, σ1σ2 or

reject them, thus, contradicting the fact it was computing function EQn(x, y) (see

Definition 5.1.1). The lemma follows.

Final step of the proof is to refer to the Theorem 28. Which assures every 1QBP Q

computing EQn(x, y) would satisfy relation 5.29:

width (Q) ∈ Ω (log2 2n) = Ω(n), (5.30)

for some constant c. That concludes the proof.
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In order to prove a lower bound for the Periodicity function, we reduce Equality to

Periodicity.

Theorem 30. Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n the function Periods,n (σ) is

ε-computed by a 1QBP Q then width (Q) ∈ Ω (s), where s is the period parameter.

Proof. We simply reduce EQn(x, y) to Periods,n (xy). Indeed, let |xy| = 2s = n and

σ = xy is a concatenation of words x and y. It is straightforward that the following

holds.

EQn(x, y) = Periods,n (σ) . (5.31)

Thus, the lower bound for the Periodicity follows from the lower bound for the Equal-

ity. This proves the theorem.

Similarly, we prove the lower bound for the Semi-Simon problem.

Theorem 31. Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n the function Semi-Simons,n (σ)

is ε-computed by a 1QBP Q then width (Q) ∈ Ω (n).

Proof. In order to reduce EQn(x, y) to Semi-Simons,n (σ) we notice that the latter is

essentially an equality computation. But its argument bits are mixed up according

to the permutation defined by s. Let’s once more write down the definition for Semi-

Simon function.

Semi-Simons,n (σ) = 1 ⇐⇒ ∀i ∈ [1, n] (σi = σi⊕s) . (5.32)

For an arbitrary input σ and a positive s, computing function Semi-Simons,n (σ) is

equivalent to evaluating following equality.

σ1...σn
?
= σ1⊕s...σn⊕s. (5.33)

Now let us define s as shown below.

s =

n︷ ︸︸ ︷
10 . . . 0 (5.34)
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For s defined above, Expression 5.33 turns into the desired Equality evaluation.

σ1...σn/2σn/2+1σn
?
=σn/2+1...σnσ1 . . . σn/2 ∼

∼ σ1...σn/2
?
=σn/2+1...σn ∼

∼ EQn(x, y), for σ = xy.

(5.35)

Finally, we notice that for σ = xy n would be even, and our reduction goes as follows.

EQn(x, y) = Semi-Simons,n (xy) , where s = n/2. (5.36)

That concludes the proof.

In the next chapter we generalize our techniques to prove a linear upper bound and

provide lower bounds for the hidden subgroup test function.



Chapter 6

The Hidden Subgroup Problem

I hate quotations, tell me what you

know.

Ralph Waldo Emerson

6.1 Introduction

The functions considered in the previous chapter were invented in order to get closer

to the hidden subgroup problem. Finally, we consider the Hidden Subgroup Problem

itself. This problem is the one that factoring integers and discrete logarithm can

be reduced to. There is no efficient solution of these problems for non-quantum

computers known so far. That is, although these problems belong to BQP, the

class of efficient quantum algorithms, it is still an open question whether they are in

BPP, the class of efficient algorithms (non-quantum). The RSA [RSA78] open-key

cryptographic system relies on the assumption that those problems are not in BPP.

The system is used in banking, secure Internet transactions etc. This is where the

main drive of the interest to the hidden subgroup problem comes from.

The first quantum polynomial time algorithm for the abelian stabilizer, which is a

special kind of the hidden subgroup problems, was found by Kitaev in 1995, there

the author also generalized the results of Shor for descrete logarithm and factoring

113
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integers [Sho97]. The results of Shor and Kitaev were carefully studied by Jozsa

[Joz97]. He analyzed how all that problems can be reduced to the Abelian hidden

subgroup problem. Since then many more research works were dedicated to the hidden

subgroup problem. Interesting positive and negative results for the non-abelian hidden

subgroup problem were obtained by Grigni, Schulman, Monica and Umesh Vazirani

[GSVV01]. We also mention remarkable results obtained by Friedl, Magniez, Santha

and Sen [FMSS03]. They considered property testers, where the computational device

is allowed to read only a small fraction of the input. For several related to the hidden

subgroup problem properties, like Periodicity, efficient quantum testers were found.

A comprehensive review of the hidden subgroup problem related research with open

problem is recently presented by Lomont [Lom04].

Already in one of the early works where the hidden subgroup problem was considered,

Høyer [Høy97] noticed that the graph isomorphism (See p. 154) was easily reduced to

the non-abelian ”unknown group problem”. In the results we prove below, we consider

a non-abelian version of the hidden subgroup problem. Although, the algorithm of

this chapter is of linear width in the group size, the latter is exponential in the size

of the considered graphs in the graph isomorphism problem. Thus, it is too early to

celebrate an efficient solution of a NPI (See p. 154) problem by a quantum computer.

Nevertheless, our algorithm has no match so far, and it is a good candidate for at

least a polynomial speed-up over classical counterparts.

The lower bounds, that conclude this chapter, show that our upper bound is ”almost”

tight. The communication complexity lower and upper bounds we prove show that

our quantum OBDD lower bound can not be improved using the same communication

complexity technique. Thus, any improvement is a matter of a separate research, when

possible.

In order to investigate the hidden subgroup problem complexity in Quantum Branching

Programs setting, we define its decision version.

Remark 4 (Important remark!). We say simply coset everywhere below. However, we

actually mean either left cosets or right cosets. The choice is not crucial, but once

we make it, it must be read either left coset or right coset everywhere!
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Definition 6.1.1. Let G be a finite group of order n = |G|. Let K be a subgroup of

G. Let X be a finite set. For a binary sequence x ∈ {0, 1}|G| log2 |X| let σ ∈ X |G| be a

sequence of length n over X encoded by x in binary.

HSPG,K,X (σ) =


1, if ∀a ∈ G ∀i, j ∈ aK (σi = σj)

and ∀a, b ∈ G ∀i ∈ aK ∀j ∈ bK
(aK 6= bK ⇒ σi 6= σj);

0, otherwise.

aK

bK

cK

...

K

X

G σ

Figure 6.1: Hidden subgroup problem

The hidden subgroup test function asks to decide whether f : G → X ”hides” the

subgroup K in the group G, where X is a finite set. Our program receives G, K, and

X as parameters, and function f as an input string containing values of f it takes on

X. The values are arranged in the lexicographical order of their binary encodings.

See Definition 6.1.1. The ”proper” Simon test function defined below is a special

case of the hidden subgroup test function.

Definition 6.1.2. For n = 2lc (l, c ∈ N), s ∈ {0, . . . n−1} and for σ ∈ {0, . . . 2c−1}n,

a sequence, we define the Simon function Simons,n (σ).

Simons,n (σ) =

{
1 σi = σj ⇐⇒ (i− j) ∈ {0, s}, i, j = 0, n− 1;

0 otherwise.
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Where ⊕ is a bitwise addition modulo 2.

It is easy to reduce Simon function to the Hidden Subgroup function.

Lemma 10. Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n the function HSPG,K,X (σ) is

ε-computed by a 1QBP Q then width (Q) = Ω ((G : K) log |X|).

Proof. Let K = {0, s} and X = B. Let group G = (Z2l ,⊕), the group operation

⊕ is from the definition of the Simon function (See Definition 5.1.3). Let’s notice

several truth statements:

aK = {a, a⊕ s},

aK 6= bK ⇐⇒ (a− b) /∈ K, ∀i ∈ a, a⊕ s ∀j ∈ b, b⊕ s (σi 6= σj) ⇐⇒

σa 6= σb and σa 6= σb⊕s and σa⊕s 6= σb and σa⊕s 6= σb⊕s. (6.1)

Then by the definition of HSPG,K,X (σ):

HSPG,K,X (σ) =


1, if ∀a ∈ {0, . . . n− 1}(σa = σa⊕s)

and ∀a, b ∈ {0, . . . n− 1}
(a− b /∈ {0, s} ⇒ σa 6= σb);

0, otherwise.

(6.2)

n = |G| = 2l. (6.3)

It remains to compare the expression above with the definition of the Simon test

function.

First in this chapter we present the upper bound for the most general problem of its

family – the Hidden Subgroup Problem.

Theorem. The function HSPG,K,X (σ) can be computed with two-sided error o(1) ≤
0.4, (|σ| → ∞) by a 1QBP of width O (|G/K| log |X|).

Finally, we prove several lower bound theorems that represent the problems complex-

ity related to different parameters of the problem. The worst-case parameter lower
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bound asymptotically matches the parameter independent upper bound presented

above.

6.2 The upper bound for the hidden subgroup test

function

Theorem 32. The function HSPG,K,X (σ) can be computed with two-sided error

o(1) ≤ 0.4, (|σ| → ∞) by a 1QBP of width O ((G : K) log |X|).

Proof. In order to prove the upper bound we shall construct a linear width 1QBP

that computes the desired function.

Lemma 11. In order to compute function HSPG,K,X (σ) it is enough to perform the

following computations.

1. For each coset compute equalities of all values from the input string that have

indicies from this coset;

2. For each coset take a representative, and compute equality for all of the repre-

sentatives, then take a negation of the answer.

Let’s prove the lemma. Indeed, if HSPG,K,X (σ) = 1 then by the definition following

holds:

1. For any coset of K, all its elements are equal;

2. The function values on any two elements taken from different cosets are not

equal.

Thus, one direction of the lemma follows.

Now suppose the two conditions of the lemma hold. Does it follow that HSPG,K,X (σ) =

1?

First conditions of the lemma and the hidden subgroup test function definition are

identical. It remains to check if it is enough to test the inequalities among arbitrary

representatives taken one from each coset, if we want to output HSPG,K,X (σ).
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If the function indeed takes different values on different cosets, the algorithm would

not produce a wrong output. On the other hand, when the function values coincide for

some arguments taken from different cosets, there still can be elements that actually

have different images over f . However, it doesn’t turn to be a problem! Let aK and

bK be the two different cosets that contain elements d ∈ aK and c ∈ bK respectively,

such that:

σd = σc.

Let’s fix the element c ∈ bK. There can be only two possible cases.

1. For all d ∈ aK(σd = σc);

2. There exits d′ ∈ aK(σd 6= σc).

Clearly, in the first case our algorithm can select any element of aK to check for

inequalities, as it is proposed in the second condition of the lemma.

In the second case aK apparently contains elements that have different images over

the function f encoded by σ. That means, the first condition of the lemma would fail

to be satisfied.

The argument for bK are totally symmetric.

Thus, indeed, the two conditions of lemma are satisfied if, and only if HSPG,K,X (σ) =

1. We have proved the lemma.

As a matter of fact, Lemma 11 gives us a model of the algorithm that we are

about to build. It will consist substantially of two parts. First, for every coset,

compute equalities of images of its elements over function f , given as the input.

Second, for every coset, take an arbitrary element, calculate the equality of all cosets

representatives, and take a negation of the result. Finally, the result of the algorithm

is the conjunction of the results of the first and the second stages.

We should fix some notation that will also determine the structure of our algorithm.

� Denote A the subroutine, encompassing Ai for all i ∈ G/K, that computes the

first statement of the Lemma 11.

� Denote Ai the subroutine that calculates equalities for the coset i ∈ G/K.
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� Denote Ai,s, s = 1, 3 the subroutines used in computation of the equalities for

the coset i ∈ G/K.

� Denote Ai,s,k, s = 1, 3 the subroutines the program Ai,s consists of. The param-

eter k will be specified later, as we did in the proof of Theorem 25

� Denote B the subroutine that calculates negation of the equality of the repre-

sentatives of different cosets. We can fix particular representatives arbitrarily.

Say, for a coset aK take always an element a as a representative, if aK does

not equal to a coset that has already been considered.

Let’s first show how to compute the function of σ defined below for a given coset aK

and for all i, j ∈ aK. ∧
i,j∈aK,i6=j

σi = σj. (6.4)

We already know how to compute each of the the equalities within the widthO(log |X|)
(See Theorem 25)! In order to compute this sequence of equalities we shall construct

three slightly different types of branching programs. Then we combine them like we

did in the proof of Theorem 25 before.

Let’s introduce integer indicies for the sequence Σ = {σi}i∈aK ordered lexographicaly

(consistently with the input) Σ = {σ′l}m1 , where m = |aK|. Then we can define the

three sorts of programs we shall use to compute the chain of equalities 6.4 by the

type of computation we assign to each of them.

1. σ′l = σ′l+1 only for odd values of l < k;

2. σ′l = σ′l+1 only for even values of l < k;

3. σ′1 = σ′k.

Now we show how to construct Ai,s,k, s ∈ {1, 2, 3} for a p ∈ (|X|, 2|X|)∩ PRIMES.

Bertrand’s postulate [Nag51] assures us such there’s always such p.

1. The 1QBP receives input x = bin (σ);

2. |ψ0〉 = |0〉;
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3. F = {|0〉};

4. Ψi,s,k = {|0〉, |1〉}

5. Ti,s,k = (i, Ui(0), Ui(1))n
i=1, n = |σ|. We define the transition function explicitly

only for s = 1, two other cases are easily derived from this one. Also Ui(0) =

Ui(1) = I for all σi, i /∈ aK. Now consider only the transformations applied

upon consecutive reading the sequence Σ.

(a) On the left part of the corresponding 2 log |X|-symbol segment of the input:

Ui,1,k(σi) =

(
cos

2πkpiσ
′
i2

i

p
sin

2πkpiσ
′
i2

i

p

− sin
2πkpiσ

′
i2

i

p
cos

2πkpi/σ′
i2

i

p

)
;

(b) On the right part of the corresponding 2 log |X|-symbol segment of the

input:

Ui,1,k(σi) =

(
cos

2πkpiσ
′
i2

i

p
− sin

2πkpiσ
′
i2

i

p

sin
2πkpiσ

′
i2

i

p
cos

2πkpi/σ′
i2

i

p

)
;

Here pi 6= p, i = 1, n are prime numbers.

If all σi, i ∈ aK are indeed equal then Ak,i accepts σ with probability 1. Moreover,

the program attempts to check the chain of equalities σ1 = σ2 = . . . = σm in order to

reject all σ that don’t satisfy the equalities.

Let us write down a state, the first of the three elementary programs would be in

after having read the input. It is similarly easy to do for the other two programs. In

the given above notation we can obtain equation for θk.

|ψk
1〉 = (cos θk) |0〉+ (sin θk) |1〉, (6.5)

θk =
2πk

p

m∑
l=1

(σ′l − σ′l+1)pl (6.6)

k, σ′l < p, l = 1,m; p - pl. (6.7)
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Thus, a result analogous to the Lemma 4 holds for this case as well. Subsequently,

since construction of the Theorem 25 does not depend on the particular matter of

the angles as far as Lemma 4 holds, we can apply the same technique here.

We combine each of the three elementary programs analogously to the construction

of the Theorem 25. Thus, for each of them we obtain a program of width O(log |X|)
that computes its sub-chain of equalities with the probability of correct answer at least

6/7. Finally, we take the direct sum of the three programs to obtain the program Ai

for all i ∈ G/K. This program will not exceed one-sided error probability 127/343.

Then we take direct sum of all programs Ai to obtain the program A. Clearly, the

error probability for that program would not exceed (127/343)|G/K| < 0.4|G/K|.

Analogously to what we did computing the chain 6.4 for programs Ai, we can compute

the chain for program B:

σi1 = σi2 = . . . = σi|G/K| . (6.8)

We can do this within one-sided error probability 0.4, as we have stated earlier. In or-

der to obtain the result claimed for program B, we need to take the complementation

of the result that computation of the chain 6.8 would give us.

We combine the two subroutines A and B in order to obtain our final program. We

use the same direct sum method of combining elementary branching programs into

more complex ones. Thus, ending up with a program that, according to the Lemma

11, hidden subgroup test function within two-sided error 0.4.

Asymptotically, the error probability would be bounded as we claimed (see the proof

of the Theorem 25 for details).

That finishes the proof of the theorem.
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6.3 The lower bound for the hidden subgroup test

function

Let us refresh here the definition of the decision version of the hidden subgroup

problem.

Definition 6.3.1. Let G be a finite group of order n = |G|. Let K be a finite

subgroup of G. Let X be a finite set, such that |X| ≥ (G : K). For a binary sequence

x ∈ {0, 1}|X||G| let σ ∈ X |G| be a sequence of length n over X encoded by x in binary.

HSPG,K,X (σ) =


1, if ∀a ∈ G ∀i, j ∈ aK (σi = σj)

and ∀a, b ∈ G ∀i ∈ aK ∀j ∈ bK
(aK 6= bK ⇒ σi 6= σj);

0, otherwise.

We develop a simple language to be used to formulate our technique of proving the

lower bound.

First, we notice that an assignment to the string σ from the definition above is also

an assignment to the input variables for any program computing HSPG,K,X (σ). That

is, a string σ = (σ1, σ2, . . . , σ|G|), σi ∈ X, i = 1, . . . , |G| defines the input variables set

(σ1, σ2, . . . , σ|G|) that we shall denote with the same letter σ.

The indices i = 1, . . . , |G| are in one-to-one correspondence with the group elements

of G. We shall further refer to the indices as to the elements of G. Naturally, if we

mention a group structure on the set of indices, we mean the group structure of G,

and not the structures of the semi-ring N.

In the hidden subgroup problem we have sets of the algebraic structure of the group

G. On the other hand, the communication model (See pages 34, 36) has its own sets.

Namely, for an input σ we consider a partition Π (See Definition 2.4.1, page 34),

that defines the two sets: ΠL,σ and ΠR,σ. In order to keep the two systems of sets

separate, yet to be able to make statements containing the input partition and the

algebraic properties of G, we present the following definitions.
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Definition 6.3.2. For a group G, its subgroup K, and a set A ⊂ G, we define

CG,K (A) := {C| ∃a ∈ A(C is a coset of K ∧ a ∈ C)}

A set of cosets that have elements in both of the two disjoint sets is called the set of

common cosets.

Definition 6.3.3. For a group G, a subgroup K, and two disjoint sets A,B ⊂ G,

define the set of common cosets.

CCG,K (A;B) := {C| ∃a ∈ A, b ∈ B(C is a coset of K ∧ a, b ∈ C)}.

We can obviously define the set of the common cosets of a partition Π of the input σ.

CCG,K (Π) := CCG,K (ΠL,σ; ΠR,σ) .

We call #CCG,K (A;B) = |CCG,K (A;B) | the common cosets number of the sets A

and B. Analogously, we say #CCG,K (Π) is the common coset number of the partition

Π.

As well as there are common cosets for a pair of given subsets of the group G, there

can be cosets, that are not common for the two subsets.

Definition 6.3.4. For a group G, a subgroup K and two disjoint sets A,B ⊂ G

define the set of independent cosets of B with respect to A.

ICG,K,A (B) := CG,K (B) \ CCG,K (A;B) .

For a partition Π of the input σ, the set of the independent cosets of the partition Π

is defined as follows.

ICG,K (Π) := ICG,K,ΠL,X
(ΠR,X) ∪ ICG,K,ΠR,X

(ΠL,X) .

We call #ICG,K,A (B) = |CCG,K (Π) | the independent cosets number of the set B with

respect to the set A. Analogously, the independent cosets number of the partition Π
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is #ICG,K (Π) = |ICG,K (Π) |.

We shall consider a special kind of partitions that we call cuts.

Definition 6.3.5. A partition Π of the input variables σ is a cut if there is an integer

k such that for all integer i < k σi ∈ ΠL,X and for all j ≥ k σj ∈ ΠR,X . We shall call

this integer k the cuting point.

Finally, we present an exclusively technical definition. Its purpose is to simplify

reading of the proof.

Definition 6.3.6. We say that a coset C takes a value x for a string σ if all variables

with their indexes in C are assigned the value x.

This is a valid notion for all input strings σ, to which the function HSPG,K,X (σ)

assigns the value one. For any given coset, all its member variables are assigned the

same input value in any of that strings.

The proof of the lower bound would mainly consists of the three steps:

1. We begin by proving a theorem that establishes connection between one-way

communication complexity and one-way quantum branching program complexity

of a problem;

2. Next, we prove bounds on the one-way communication complexity of the func-

tion HSPG,K,X (σ);

3. Finally, we obtain our desired lower bound as a corollary of the two previous

theorems.

Theorem 33. Let ε ∈ (0, 1/2) be a constant. Let Qf be a one-way quantum branching

program that (1/2+ε)-computes (computes with the margin ε) function fn ∈ Bn. Then

for any partition Π of the input, following holds.

width (Qf ) = Ω(CC1 (f,Π)).
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Proof. We prove this theorem in two steps. First we show how to relate communi-

cation complexity to the width of branching programs. Then we apply the general

lower bound theorem to translate this relation to the quantum branching programs.

Lemma 12. For any deterministic OBDD P representing a Boolean function f ∈ Bn,

let Π be a cut of the input variables, and let k be the cutting point of Π. Then P

defines a two party one-way communication protocol Φ.

width (P ) ≥ 2CC1(f)−1,

where CC1 (f) is the deterministic one-way two-party communication complexity of

the function f .

The proof is done in one step. Let X ∈ Bn be the input of the program P . For the

program P that represents the function f , we define a one-way two-party communica-

tion protocol 〈Φ,Π〉 computing the very same function (See Definition 2.4.14). Let

Alice read the variables in ΠL,X . Let Bob read the variables in ΠR,X . The program

P is represented by a leveled (See Definition 2.3.5) directed graph. Now let us

number all the vertices on the kth level of P .

Alice simulates computation of the program P on the first k input variables. Any

computation apart from sending messages to the parties is ”free of charge” in com-

munication complexity. Let the message c that Alice is supposed to send Bob be the

number of the vertex of the kth level, where the path in P defined by the first k input

variables ends.

Bob can obviously continue the simulation of P having received the message from

Alice. Finally, Bob will output the desired value f(X). The idea is illustrated on the

Figure 6.2.

This correctly defines the protocol 〈Φ,Π〉.
There can not be more than width (P ) vertices on the kth level of P . Thus, it is

enough to send the blog2width (P )c+ 1 bits long message s, as it is described in the

protocol. The lemma is evident.

For the conditions of this theorem, Theorem 28 implies following relation.
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width (Qf ) = Ω (log2width (P )) , (6.9)

where P is a deterministic OBDD of minimal width computing fn.

width (Qf ) = Ω (log2width (P )) Lemma 12 implies

⇒ width (Qf ) = Ω (CC1 (f)) . (6.10)

This proves the statement.

x1

x2

x2

x2

x2

x2

x2

1

0

x3

x3

x3

x3

...

...

........
Alice Bob

Figure 6.2: Communication protocol simulating OBDD

Now we state the communication complexity lower bound for the hidden subgroup

function.

Theorem 34. Let K be a non-trivial subgroup of a finite group G. Let X be any

finite set, such that |X| ≥ (G : K). For any partition Π, one-way communication
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complexity according to Π of the hidden subgroup test function is bounded as follows.

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ

(ΠR,σ) > 0
]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ
(ΠL,σ)

))
.

Proof. Our combinatorial proof relies on the concept of communication matrix (See

Definition 2.4.16 introduced on the page 44). It is more elegant to use short notation

CM := CM (HSPG,K,X (σ) ,Π), where it can cause no confusion, what function, and

according to what partition, is considered. We shall use common notation CMi to

denote the ith row of the matrix CM .

Other shorthands used throughout the proof are presented in the list below.

l := |X|; (6.11)

d := #CG,K (ΠL,σ) ; (6.12)

n := #ICG,K,ΠR,σ
(ΠL,σ) , notice that n = (G : K)− d; (6.13)

m := #CCG,K (Π) , notice that m ≤ d ≤ l. (6.14)

The function HSPG,K,X (σ) = 1 if, and only if, the values of the input variables with

indices from the same coset equal but never equal if the variables have indices from

different cosets.

Obviously, for all strings δ that fail to satisfy the two conditions, corresponding rows

of CM must consist only of zero entries. Let EΠ be the set of all ”bad” row indices

for a given partition Π.

EΠ =
{
δ| ∀γ ∈ X |ΠR,σ |

(
δ ∈ X |ΠL,σ | ∧ HSPG,K,X (δ; γ) = 0

)}
. (6.15)

Lemma 13. Let CM be a communication matrix of HSPG,K,X (σ) according to a

partition Π of input σ. Let M(δ) be a submatrix of CM that consists only of rows

CMi, i /∈ EΠ, such that i assigns values to all cosets from CCG,K (Π) according to the
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string δ ∈ Xm. For strings δ1, δ2 ∈ Xm we claim the following.

δ1 6= δ2 ⇒M(δ1) ∩M(δ2) = ø. (6.16)

Let δ1, δ2 ∈ Xm be two different strings defining assignments to the variables in

CCG,K (Π). Now let i1, i2 ∈ X |ΠL,σ | be row indices such that CMi1 ∈ M(δ1), and

CMi2 ∈ M(δ2), clearly i1, i2 /∈ EΠ. It is also clear that there is a column index

j ∈ X |ΠR,σ | that assigns the elements of CCG,K (Π) values defined by δ1 and the rest

of the values so that HSPG,K,X (Π−1(i1, j)) = 1. According to the definition of hidden

subgroup function, δ1 6= δ2 ⇒ HSPG,K,X (Π−1(i2, j)) = 0. Thus, CMi1 6= CMi2 . We

proved the lemma.

In the next lemma we count the number of different rows in a submatrix M(δ) for

some δ ∈ Xm.

Define a set of available assignments to the cosets in CCG,K (Π).

W l−m
n (Π) =

{
{x0, . . . , xn−1}|∀i, j, 0 ≤ i, j ≤ n− 1 (6.17)

(xi ∈ X \ CCG,K (Π) ∧ i 6= j ⇒ xi 6= xj)
}
; (6.18)

|W l−m
n (Π)| =

(
l − n
m

)
. (6.19)

Lemma 14. Let σ be the input in X |G|. Let δ ∈ Xm be a string that defines an

assignment for the variables in ΠL,σ. Let M(δ) be a submatrix of CMas defined in

the lemma above. If #ICG,K,ΠL,σ
(ΠR,σ) > 0 (note that it is not the same as n > 0)

then for any two row indices i1, i2 ∈ X |ΠL,σ | such that they assign values from different

sets from W l−m
n (Π) to the cosets in CCG,K (Π),

CMi1 6= CMi2 .

Let U, V be two different sets in W l−m
n (Π). Let i1, i2 be two row indices that corre-

spond to the rows in M(δ). Assume, i1 assigns the cosets in ICG,K (Π) values from

U , and i2 assign the cosets in ICG,K (Π) values from U .
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Since U 6= V there is a value x ∈ X \ CCG,K (Π), such that x ∈ U and x /∈ V . By

assumption, ICG,K,ΠL,σ
(ΠR,σ) > 0. Consider a column index j that assigns value x to

one of its independent cosets, but HSPG,K,X (Π−1(i2, j)) = 1. Such an index j exisits,

by the definition of HSPG,K,X (σ). Also, by the definition of the hidden subgroup test

function, it is clear that HSPG,K,X (Π−1(i1, j)) = 0. This proves the lemma.

Let’s bring together the results of the two previous lemmas and estimate the number

of unequal rows.

There are exactly
(

l
m

)
m! different ways to choose assignments for the cosets in the set

of common cosets CCG,K (Π). According to the Lemma 13, rows, that have indices

with different assignments of the values of the common cosets, never equal.

If ICG,K,ΠL,σ
(ΠR,σ) > 0, then there are exactly

(
l−m

n

)
ways to assign values to the

independent cosets. According to the Lemma 14, rows with indices that assign to

independent cosets values from different sets from W l−m
n (Π) never equal.

That means there are at least (
l

m

)
m!

(
l −m
n

)
(6.20)

unequal rows in the communication matrix CM . By the Theorem 6

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
l

m

)
m!+

[
#ICG,K,ΠL,σ

(ΠR,σ) > 0
]
log2

(
l −m
n

))
.

(6.21)

Now substitute the values for l,m and n to obtain the statement of the theorem.

In fact, our lower bound is actually tight. In other words, it coincides with the best

algorithm that we can construct. That means we could not prove a statement about

the lower bound of the communication complexity, according to the considered kind

of partitions, any stronger than we already did.

Theorem 35. Let K be a non-trivial subgroup of a finite group G. Let X be any

finite set, such that |X| ≥ (G : K). For any partition Π, one-way communication
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complexity according to Π of the hidden subgroup test function is bounded as follows.

CC1 (HSPG,K,X (σ) ,Π) = Θ

(
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ

(ΠR,σ) > 0
]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ
(ΠL,σ)

))
.

Proof. The lower bound is already proved in the Theorem 34. In order to prove the

upper bound we give an informal description of the protocol computing HSPG,K,X (σ)

according to the partition Π.

Let us use the same short-hand notation as in the Theorem 34.

The protocol is straightforward. There is just one round of communication. The

computer A sends message c1c2, if ICG,K,ΠL,σ
(ΠR,σ) is positive, and sends only c1

otherwise. The message parts c1 ∈ {0, 1}a, c2 ∈ {0, 1}b, where

a := log2

(
l

m

)
m!, (6.22)

b := log2

(
l −m
n

)
. (6.23)

First part c1 of the message specifies the submatrix corresponding to the assignment

of the common cosets values. Second part c2 corresponds to the assignment of the

independent cosets of ΠL,σ. The latter part allows the computer B choose values for

its independent cosets of ΠR,σ so that they do not coinside with the values of ΠL,σ.

By the definition of the hidden subgroup function, information sent by A to B is

enough to compute the function value for any assignment of ΠR,σ.

Note, that we can encode the message sent using a prefix code without loss of the

efficiency (See page 41).

We have considered communication complexity only according to a fixed partition

so far. But our results hold for an arbitrary partition of the input. That is why,

one-way communication complexity of the hidden subgroup test function is a direct

consequence of the proven results.
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Corollary 1. Let K be a non-trivial subgroup of a finite group G. Let X be any finite

set, sch that |X| ≥ (G : K). Let σ be the input. One-way communication complexity

of the hidden subgroup test function is bounded as follows.

CC1 (HSPG,K,X (σ)) = Θ

(
min

Π∈Bal(σ)

{
log2

(
|X|

#CCG,K (Π)

)
#CCG,K (Π)!

+
[
#ICG,K,ΠL,σ

(ΠR,σ) > 0
]
log2

(
|X| −#CCG,K (Π)

#ICG,K,ΠR,σ
(ΠL,σ)

)})
.

Proof. By the definition of one way communication complexity (See Definition

2.4.14, page 43), and as a consequence of Theorem 35 the statement follows.

The bounds, we have proved so far, hold for arbitrary partitions. However, in order

to prove the ”best” quantum lower bound, we need to find the ”worst” partition for

the hidden subgroup problem. Let’s recall our tactics. Essentially, we prove a lower

bound for a classical branching program, that we then use to obtain the quantum

bounds. According to the classical branching program width definition, it is in our

interest to find a cut that corresponds to the maximum width of the leveled branching

program of our lower bound. What kind of cuts could be good candidates for this job?

With this question in mind, we define a new kind of ”balanced” partitions, designed

specifically for a given instance of the hidden subgroup problem.

Definition 6.3.7. Let G be a finite group. Let K be a non-trivial proper subgroup

of G. A partition Π of the input σ is called (G,K)-coset balanced, if

#CG,K (ΠL,σ) = b(G : K)/2c.

If Π is a cut, then we call it (G,K)-coset balanced cut.

It is not difficult to see that for any finite group G, and for any its non-trivial proper

subgroup K, there exists a (G,K)-balanced cut. For this kind of cuts we state the

next result.

Theorem 36. Let K be a non-trivial proper subgroup of a finite group G. Let X

be any finite set such that |X| ≥ (G : K). For any (G,K)-coset balanced cut Π of
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σ, one-way communication complexity of the hidden subgroup function is bounded as

follows.

CC1 (HSPG,K,X (σ) ,Π) = Ω
(
#CCG,K (Π) log2 |X|+ #ICG,K,ΠR,σ

(ΠL,σ)
)
.

Proof. We shall use the short-hand notation from the proof of Theorem 34.

The partition Π is (G,K)-balanced by assumption. It implies that

#ICG,K,ΠL,σ
(ΠR,σ) =

(G : K)−#CCG,K (Π)−#ICG,K,ΠR,σ
(ΠL,σ) =

(G : K)−#CG,K (ΠL,σ) ≥ (G : K)/2 > 0. (6.24)

According to Theorem 34

CC1 (HSPG,K,X (σ) ,Π) = Ω

(
log2

(
l

m

)
m!

(
l −m
n

))
. (6.25)

We break the expression into parts and estimate the parts separately.

N1 :=

(
l

m

)
m! =

l!

(l −m)!
= l · (l − 1) · . . . · (l −m+ 1) ≥ lm

2m
, (6.26)

because m ≤ #CG,K (ΠL,σ) = b(G : K)/2c.

N2 :=

(
l −m
n

)
=

(l −m)!

(l −m− n)!n!
. (6.27)

Now we consider two cases:

1. Suppose n = o(l). Since m+ n ≤ (G : K)/2 ≤ l/2, we may apply the Stirling’s

approximation:
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N2 �
(l −m)l−m

(l −m)l−m−nenn!
=

(l −m)n

enn!
≥ (l −m)n

ennn
≥ ln

ennn2n
, (6.28)

because m ≤ l/2. Thus, it follows

log2N1N2 �m log2 l + n log2 l −m− n(log2 e+ 1)− n log2 n � (6.29)

recall that n = o(l)

�m log2 l + n log2 l ≥ m log2 l + n. (6.30)

2. Suppose that l = O(n).

N2 =
(l −m− n+ 1) · . . . · (l −m)

n!
� (6.31)

using Stirling’s approximation for n!

�(l −m− n+ 1) · . . . · (l −m)en

nn
≥ lnen

2nnn
. (6.32)

note that m+ n ≤ l/2. Thus, it follows

log2N1N2 �m log2 l + n log2 l/n+ n(log2 e− 1) ≥ (6.33)

≥m log2 l + n log2 e � m log2 l + n. (6.34)

The statement of the theorem follows after the substitution.

Finally, we obtain the quantum read-once branching program lower bound as a simple

corollary.
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Corollary 2. Let K be a non-trivial subgroup of a finite group G. Let X be any finite

set, such that |X| ≥ (G : K). Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n the function

HSPG,K,X (σ) is ε-computed by a 1QBP Q then for any coset-balanced partition Π

of the input σ

width (Q) = Ω
(
#ICG,K,ΠL,σ

(ΠR,σ) log2 |X|+ #ICG,K,ΠR,σ
(ΠL,σ)

)
.

Proof. The statement follows as a corollary of Theorem 33 and Theorem 36.

A less precise, lower bound can also be shown. This time we make the statement in

terms of the group order, or equally, the length of the input string bin (σ) (See Def-

inition 6.3.1, page 122). This bound shows that our upper bound (See Theorem

32, page 117) is quite tight. In fact, since the upper bound does not depend on the

structure of G/K, the lower bound may simply reflect the complexity deviations for

different choices of the parameters.

Corollary 3. Let G be a finite group. Let K be be a non-trivial proper subgroup of

G. Let X be a finite set, such that |X| ≥ (G : K). Let t := (G : 1) log2 |X| be the

length of the binary input bin (σ). Let ε ∈ (0, 1/2). If for all σ ∈ {0, 1}n the function

HSPG,K,X (σ) is ε-computed by a 1QBP Q then for any coset-balanced partition Π

of the input σ

width (Q) =

CC1 (HSPG,K,X (σ)) =

{
Ω(|X|) = Ω(t/log(t)) if CCG,K (Π) = o((G : 1))

Ω((G : K) log2 |X|) = Ω(t) otherwise

(6.35)

Proof. Consider the input bin (σ) of the length g. See the HSPG,K,X (σ) definition

for details (Page 122). We want to establish an asymptotical lower bound on the

quantum and communication complexity of HSPG,K,X (σ) for g →∞.

The ”hidden subgroup” K is a parameter in the function HSPG,K,X (σ). As such, it

has a cardinality k := (K : 1), that we assume constant.

We shall again use the short-hand notation from the proof of Theorem 34.
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From Theorem 36 it follows that

CC1 (HSPG,K,X (σ) ,Π) = (6.36)

Ω
(
#ICG,K,ΠL,σ

(ΠR,σ) log2 |X|+ #ICG,K,ΠR,σ
(ΠL,σ)

)
. (6.37)

Consider two cases:

1. Suppose CCG,K (Π) = m = o((G : 1)). Then by the definition of the coset-

balanced partition (See Definition 6.3.7),

n+m = Θ((G : 1))⇒ n = Θ((G : 1))⇒ (6.38)

CC1 (HSPG,K,X (σ) ,Π) = Ω (o((G : 1)) log2 l + (G : 1)) = Ω((G : 1)). (6.39)

On the other hand

(G : 1) = Θ(|X|), (6.40)

thus,

t = Θ((G : 1) log2 (G : 1))⇒ Ω((G : 1)) = Ω(t/ log2 t). (6.41)

Finally,

CC1 (HSPG,K,X (σ) ,Π) = Ω(t/ log2 t). (6.42)

2. Suppose (G : 1) = O(m). We directly obtain the desired result:

CC1 (HSPG,K,X (σ) ,Π) = Ω((G : 1) log2 l) = Ω(t). (6.43)

The generalization of the result for the width of the quantum branching program

follows from Corollary 2.
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6.4 Sure states remark

There is an ongoing controversy about quantum mechanics and lately about quantum

computing. We already mentioned Albert Einstein being maybe the most famous

opponent of quantum mechanics. Emergence of quantum computing did not bring

peace into the world. Contrary, it lead to further escalation of the conflict. The cri-

tique of quantum computing recently received a rigorous treatment by Scot Aaronson

[Aar04a, Aar04b]. He addressed the question of unfeasibility of quantum computers

by introducing complexity measure over quantum states. Let us shortly introduce here

his approach.

Aaronson suggests to consider a separator set S that consists of all quantum states

that have been demonstrated experimentally, ”Sure states”, but contains no states

sufficient for non-trivial factoring, ”Shor states”.

Such a separator set would allow us discuss feasibility of a quantum algorithm based

on rigorous ground. However, what should one choose as a ”Sure states” set? There

are demonstrated states with very small amplitudes, as well as states that involve

entanglement across of hundreds of thousands of particles. Aaronson proposed a very

good candidate for the separator set. He called it the set of ”Tree states”.

Definition 6.4.1 ([Aar04b]). A quantum state tree over H⊗n
2 is a rooted tree where

each leaf vertex is labeled with α|0〉+β|1〉 for some α, β ∈ C, and each non-leaf vertex

(called a gate) is labeled with either + or ⊗. Each vertex v is also labeled with a set

S(v) ⊆ {1, . . . , n}, such that

1. If v is a leaf then |S(v)| = 1,

2. If v is the root then S(v) = {1, . . . , n},

3. If v is a + gate and w is a child of v then S(v) = S(w),

4. If v is a ⊗ gate, and w1, . . . , wk are the children of v, then S(w1), . . . , S(wk) are

pairwise disjoint and form a partition of S(v).

Finally, if v is a + gate then the outgoing edges of v are labeled with complex numbers.

For each v, the subtree rooted at v represents a quantum state of the qubits in S(v)
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in the obvious way. We require this state to be normalized for each v.

The tree is called orthogonal if it satisfy the further condition that if v is a + gate, then

any two children w1, w2 of v represent states |ψ1〉, |ψ2〉 with inner product 〈ψ1|ψ2〉 = 0.

If the condition 〈ψ1|ψ2〉 = 0 can be replaced by a stronger condition that for all

basis states |x〉, either 〈ψ1|x〉 = 0 or 〈ψ2|x〉 = 0, then we sat the tree is manifestly

orthogonal.

The quantum state tree provides a natural complexity measure over the quantum

states.

Definition 6.4.2 ([Aar04b]). We define the size (T ) size of the tree T to be the

number of leaf vertices. Then given a state |ψ〉 ∈ H⊗n
2 , the tree size TS(|ψ〉) is the

minimum size of a tree that represents |ψ〉. The orthogonal tree size OTS(|ψ〉) and

manifestly orthogonal tree size MOTS(|ψ〉) are defined similarly.

With the state tree concept in mind, following quantum state complexity classes can

be defined.

Definition 6.4.3 ([Aar04b]). Define the quantum state complexity classes :

Classical is the set of the classical basis sets of the form |x〉 for some x ∈ {0, 1}n;

⊗1 is the set of separable states of the form (α1|0〉+ β1|1〉)⊗ · · · ⊗ (αn|0〉+ βn|1〉);

Σ1 is the state of all states that are superpositions of at most p(n) classical states,

where p is some plynomial;

⊗i contains the states that can be written as a tensor product of Σi−1 states, with

qubits permuted arbitrarily, where i > 1;

Σi contains the states that can be written as linear combinations of a polynomial

number of ⊗i−1 states, where i > 1;

TSH is the tensor sates hierarchy class is defined as TSH := ∪kΣk = ∪k⊗k.

Tree is the class of all states expressible by a polynomial-size tree of additions and

tensor products nested arbitrarily.
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OTree is the class of all states |ψn〉 ∈ H⊗n
2 such that OTS(ψn) = p(n), for some

polynomial p(n).

MOTree is the class of all states |ψn〉 ∈ H⊗n
2 such that MOTS(ψn) = p(n), for some

polynomial p(n).

We would like to analyze the states involved in our upper bound proofs. The basic

subroutine used by all of the upper bound algorithms is that computing Equality. We

consider the upper bound algorithm for Equality. Conclusions concerning the rest of

the algorithms will follow. The more elaborate algorithms include tensor products

of not more than linear (over the input size) number of the states used to compute

Equality.

A state |ψ〉 in the state space HC of the Equality algorithm (See Thm. 25, p. 99)

is described as

|ψ〉 = Σt
i=0αi|i〉, (6.44)

where

|i〉 ∈ H⊕ log2 t
2 . (6.45)

The expression above is a linear combination of separable states , that is, states from

⊗1. As such, |ψ〉 is in Σ2. Although, already Σ2 * MOTree [Aar04b]. Note, that

in more complex algorithms presented here, the states may even belong to ⊗3. It is

also clear, that whole tensor states hierarchy is contained in Tree.

Nevertheless, the states involved in our algorithms are Sure states. This is remarkable,

because we, in fact, solve a decision version of the problem that is more general than

those considered by P. Shor. However, we don’t use Shor states!



Chapter 7

Reducibility Theory

Somewhere, something incredible is

waiting to be known.

Blaise Pascal

7.1 Introduction

We say that a problem A can be reduced to a problem B if solving B, we can also solve

A. An example of reduction is the so-called polynomial time many to one reduction,

also known as Karp reduction.

Definition 7.1.1. [BDG88] Given two sets A1 and A2, we say that A1 is polynomial

time many-one reducible to A2 if and only if there exists a function f : Σ∗ → Σ∗,

computable in polynomial time, and such that x ∈ A1 if and only if f(x) ∈ Σ∗. In

this case we write A1 ≤m A2.

This reduction can be used to define already mentioned class of NP-complete prob-

lemes.

Definition 7.1.2. Class NPC consists of all problems A2 ∈ NP, such that, for all

A1 ∈ NP A1 ≥m A2.
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There are many more reductions defined for different purposes. In the next section we

present one that suits the best to our case. That is, it can be used to define the class

of problems that can be efficiently solved by application of the methods presented in

the two previous chapters.

7.2 Rectangular reduction

An analog of the Karp’s reduction in the communication complexity is called rectan-

gular reduction.

Definition 7.2.1 ([Weg00]). Let f(x, y) ∈ Bn+m and g(x, y) ∈ Bk+l. A pair (φA, φB)

of functions φA : {0, 1}n → {0, 1}k and φB : {0, 1}m → {0, 1}l is called a rectangular

reduction from f to g if f(a, b) = g(φA(a), φB(b)) for all (a, b) ∈ {0, 1}n × {0, 1}m.

We write f ≤� g if f is reduced to g.

The reduction is called rectangular because if f ≤� g, the monochromatic rectangles

of communication matrix of f are mapped to those of g. See Definition 2.4.16 on

the page 44 for communication matrix.

According to the definition of communication complexity (Definition 2.4.7, p. 38),

only the communicated messages are counted. The rest computations that the com-

municating parties may do on their own are ”free of charge” (See page 33 for the

discussion). Thus, each of the party can compute corresponding function φA(a) and

φB(b). Having that done, they can proceed communication according to the protocol

for g! We just proved a proposition.

Proposition 7.2.1. If for a partition ΠX of the variables set X = {x1, . . . , xn} and

for a partition ΠY of the variables set Y = {y1, . . . , ym} f(X) ≤� g(Y ) then

CC (f,ΠX) ≤ CC (g,ΠY ) ;

CC1 (f,ΠX) ≤ CC1 (g,ΠY ) .

Next statement follows from the Theorem 33 (See page 124) and the proposition

above.
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Corollary 4. Let ε ∈ (0, 1/2) be a constant. Let Qf be a one-way quantum branching

program that (1/2 + ε)-computes (computes with the margin ε) function fn ∈ Bn. Let

g be a function in Bn.

If for a partition ΠX of the variables set X = {x1, . . . , xn} and for a partition ΠY of

the variables set Y = {y1, . . . , ym} f(X) ≤� g(Y ) then

width (Qf ) = Ω(CC1 (g,ΠY )).

Thus, we show that the rectangular reductions provide a good tool to generalize results

of this thesis to more computational problems. An interesting alternative reduction

concept is presented in the next section.

7.3 Polynomial projections

This type of reduction was intensively studied by Skyum and Valiant [SV85]. It was

carefully investigated by Billig and Wegener [BW96] in the formal circuit verification

context. The most basic polynomial projection is defined below.

Definition 7.3.1 ([BW96]). The sequence of functions f = (fn) is a (polynomial)

projection of g = (gn), f ≤proj g, if

fn(x1, . . . xn) = gp(n)(y1, . . . , yp(n))

for some polynomially bounded function p and yj ∈ {x1, x1, . . . , xn, xn, 0, 1}. For

functions with many outputs, each output of fn has to equal one output of gp(n). The

number of j such that yj ∈ {xi, xi} is called multiplicity of xi. The projection is

monotone, f ≤mp g, if yj ∈ {x1, . . . , xn, 0, 1}.

It turns out that polynomial projections is a reduction concept too general for de-

terministic branching programs. Next theorem shows that f ≤proj g doesn’t imply

existence of a polynomial-size program for f even if there’s one for g!
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Theorem 37 ([BW96]). 1. There exist functions f and g, where f ≤proj g for

projections of multiplicity two, g has OBDDs of linear size but f has only FB-

DDs and k-OBDDs (for constant k) of exponential size.

2. There exist functions f ∗ and g∗, where f ∗ ≤proj g
∗, g∗ has OBDDs of linear size

but f ∗ has for constant k only k-IBDD of exponential size.

This theorem shows that general projections can not yield any sensible complexity

theory for OBDDs, k-OBDDs, k-IBDDs or FBDDs. Already for multiplicity two a

projection may have exponentially larger OBDD (FBDD, k-OBDD) than the original

function! Therefore, we define read-once projections.

Definition 7.3.2 ([BW96]). A projection is called read-once, f ≤rop g, if the mul-

tiplicity of each variable is bounded by one. Additionally, ≤mrop denotes monotone

read-once projections.

Read-once projection turns out to be an appropriate reduction concept for determin-

istic branching programs.

Theorem 38 ([BW96]). 1. Read-once projection ≤rop is reflexive and transitive.

2. If f ≤rop g and g has polynomial OBDD (FBDD, k-OBDD, k-IBDD) size, then

f has polynomial OBDD (FBDD, k-OBDD, k-IBDD) size.

3. There exist functions f and g such that f ≤mrop g, g has polynomial OFDD size

and f has exponential FFDD size.

This reduction has very nice properties, indeed, suitable to describe the OBDD com-

plexity theory. However, consider the functions studied in this thesis.

1. Equality;

2. Periodicity;

3. Semi-Simon;

4. Hidden subgroup problem test;
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5. Simon test;

Observe that for any function f ∈ Bn from the list above it holds that

f ≤2mp (EQn (x1, y1))
σ1 ∧ (EQn (x2, y2))

σ2 ∧ · · · ∧ (EQn (xk, yk))
σk

where ≤2mp is a polynomial monotone projection of the multiplicity 2, σi ∈ {0, 1},
xi, yi ∈ {0, 1}s, k, sN, ks ≥ n, and

(EQn (xi, yi))
0 = EQn (xi, yi) , and (EQn (xi, yi))

1 = ¬EQn (xi, yi) .

The next statement follows from the construction we undertake in the proof of the

Theorem 32 (See page 117).

Proposition 7.3.1. If a function f ∈ Bn is a monotone polynomial projection of

multiplicity 2 of

(EQn (x1, y1))
σ1 ∧ (EQn (x2, y2))

σ2 ∧ · · · ∧ (EQn (xk, yk))
σk ,

where σi ∈ {0, 1}, xi, yi ∈ {0, 1}s, k, sN, ks ≥ n. Then f can be computed with

two-sided error o(1) by a 1QBP of linear over n width.

The proof of the Theorem 37 [BW96] shows that for multiplicity 2 there are functions

f ∗ and g∗, f ∗ ≤proj g∗ so that deterministic OBDD complexity of f∗ is exponentially

larger then that of g∗. This is not surprising, since we know that deterministic and

quantum branching programs are incomparable (See page 89).

On the other hand, it is not obvious whether all the functions listed above can be read-

once polynomial projections of the same function. This is one of the open questions

that can be considered in further research.

There are many more question that this research project left open. In this chapter

we gave but just few tools to generalize results presented in this thesis. This chapter

may also suggest some new methods, or insights that could lead to a new research.





Chapter 8

Conclusion

In this research we investigated complexity of the hidden subgroup problem in the

context of quantum branching programs. We started with a very basic though funda-

mental Equality function. We proved non-trivial linear quantum oblivious read-once

branching programs upper and lower bounds for this function. We then generalized

the technique to prove similar bounds for Periodicity, and the simplified version of

the Simon problem, which we called Semi-Simon.

The central objective of the research was achieved when we were able to prove linear

upper bounds for the hidden subgroup test. Remarkably, our algorithm does not need

the group to be Abelian. Thus, it also generalizes the famous graph isomorphism

problem. It is also, to our knowledge, the first quantum algorithm that tackles the

hidden subgroup problem by means different from Fourier sampling or Eigenvalue

estimation.

When proving the quantum OBDD lower bounds for the function, as a byproduct,

we obtained additionally the one-way communication complexity lower bounds. We

also proved that the communication bounds are tight!

The upper bounds algorithms of this thesis use only so-called Tree states that have

been demonstrated experimentally. The programs don’t require creation of more

elaborate quantum states required for the Shor’s algorithm that raise controversy

over feasibility of such algorithms.

Finally, our research provides various opportunities to generalize obtained results.
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We can briefly list some further directions of investigation:

� Consider the test of integer multiplication. This problem is as hard as fac-

toring integers for deterministic branching programs. An efficient randomized

algorithm is known due to Ablayev and Karpinski [AK98].

� Define a necessary condition for a function to have a quantum OBDD of lin-

ear size. We provide several reduction concepts that can be used as sufficient

conditions.

� A connection between the Fourier transform and fingerprinting can be investi-

gated, as both those techniques can be used to tackle hidden subgroup problem

related algorithms. The evidences are provided by the Shor’s algorithm and

this research.

� Lower bounds for the randomized OBDD of the problems considered in this

thesis can be proved. For the Equality function, an upper bound n2 log2 n on

the randomized OBDD width can be found in the book of Wegener [Weg00].

� The reduction concepts we presented can be applied to prove upper and lower

bounds for new problems that are not considered in this work.

The problems we studied had not been considered in the branching programs setting

prior to this research. We apply different techniques to create our own. The approach

we take to prove lower bounds of the hidden subgroup test, establishes direct connec-

tion between the width of quantum OBDD and deterministic one-way communication

complexity. This can be further used to simplify proofs of the quantum lower bounds.

Ultimately, this research was about making sense of why quantum algorithms are so

powerful when it comes to solving Hidden Subgroup related problems (see e.g. [ME99]

or [NC00] for details). Famous instances of those problems are factoring and descrete

logarithm. They were effectively solved by P.Shor [Sho97]. Our starting point was to

translate Shor’s technique into language of Branching Programs. The functions we

define for Periodicity and Simon were taken as other well-known Hidden Subgroup

problem instances. Finally, solution boiled down to Equality computation. In turn,
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the latter function can be considered as a special case of the artificial function fn

defined in [AK96]. There was already some research done for both fn and Equality

[AF98, AK97, AK96, AGK01]. Modifying existed Branching Program and One-Way

Finite Automata techniques we obtained what may be the translation of Shor’s tech-

nique. There is still a number of open questions. That means a lot of research for

physicists, mathematicians and computer scientists to be done. Hopefully, this work

will be of some help for them.





Appendix A

The list of notation

The most frequently used notation presented in the list below. Every notation in-

stance that has been defined in the text is provided a references. Otherwise, informal

in-place definition is presented.

Table A.1: List of most frequently used notation

∧ Conjunction, logical AND ;

∨ Disjunction, logical OR;

¬ Negation, logical NOT ;

⊕ Exclusive OR, or bitwise addition modulo 2;

⊗ Tensor product;

f = O(g) Means there is a constant c such that |f(x)| ≤ c|g(x)|
for all x;

f = Ω(g) is the same as g=O(f);

f = Θ(g) f = O(g) and g = O(f);

f = o(g) limx→∞
f(x)
g(x)

= 0;

f � g f = Θ(g);

f ≺ g f = O(g);

f � g f = Ω(g);

Bn The set of Boolean functions (p. 27, Definition 2.3.1)

over n variables;
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Hn The same as H⊗ log2 n
2 the n-dimensional Hilbert space;

#A The cardinality of the set A, the same as |A|;
G/K The factor group of G by K;

(G : K) The left index of the subgroupK on the group G, equals

the number of left cosets of K in the group G;

(G : 1) The order of the group G;

Pr(X) This is how we denote probability of X;

ProjF (|ψ〉) Projection of the vector |ψ〉 onto space F .

[n] {1,. . . , n};
bxc the greatest integer less or equal to x;

dxe the least integer larger or equal to x;

λ empty word, p. 7, Definition 1.2.1

B0 {λ} p. 7, Definition 1.2.6;

B+ p. 7, Definition 1.2.6;

B∗ B+ ∪ {λ} p. 7, Definition 1.2.6;

|ψ〉 Ket-vector (column vector), p. 69;

〈ψ| Bra-vector (row vector, dual to |ψ〉), p. 69;

bin (σ) Binary representation of σ;

width (P ) The width of the branching program P , p. 29, Defini-

tion 2.3.5;

ΠL,X Left part of the partition Π over X, p. 34, Definition

2.4.1;

ΠR,X Right part of the partition Π over X, p. 34, Definition

2.4.1;

Bal (X) Set of all balanced partitions of X, p. 39, Definition

2.4.9;

Abal (X) Set of all almost balanced partitions of X, p. 39, Def-

inition 2.4.9;

0,1 Just some extra symbols we occasionally use, see for

example p. 36;
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CM (f,Π) Full notation for communication matrix of the function

f defined according to the partition Π, p. 44, Defini-

tion 2.4.16;

CM Short notation for communication matrix adopted

where it does not cause confusions, see proof of the

Theorem 34, p. 126;

CC1 (f) Deterministic one-way communication complexity of

the function f according to a fixed partition Π, p. 43,

Definition 2.4.15;

CC (f) Deterministic many-round communication complexity

of the function f according to a fixed partition Π, p.

39, Definition 2.4.10;

1QBP oblivious Read-once Quantum Branching Program, p.

81, Definition 4.3.3;

EQnx,y(x, y) Equality function notation, p. 94, Definition 5.1.1;

Periods,n (σ) Periodicity function notation, p. 94, Definition 5.1.2;

Semi-Simons,n (σ) Semi-Simon function notation, p. 94, Definition

5.1.3;

Simons,n (σ) Simon function notation, p. 115, Definition 6.1.2;

HSPG,K,X (σ) Hidden Subgroup function notation, p. 114, Definition

6.1.1;

CG,K (A) Number of different cosets members in the set A, p.

122, Definition 6.3.2;

CCG,K (A,B) Common cosets number of the sets A and B, p. 123,

Definition 6.3.3;

ICG,K,A (B) Independent cosets number of the set B with respect to

the set A, p. 123, Definition 6.3.4;

NRow (M) Number of unequal rows in the matrix M , see p. p. 45,

Theorem 6;

≤� Rectangular reduction, p. 140, Definition 7.2.1;

≤proj Polynomial projection, p. 141, Definition 7.3.1;
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≤rop Polynomial read-once projection, p. 142, Definition

7.3.2;

≤mrop Polynomial monotone read-once projection, p. 142,

Definition 7.3.2;



Appendix B

Additional material

B.1 On Chernoff bound

We dedicate this chapter to the Chernoff bound. A theorem from the theory of

probability that is widely used in computer science.

Proposition B.1.1 ([Pap94]). Suppose that x1, x2, . . . , xn are independent random

variables taking the values 1 and 0 with probabilities p and 1 − p, respectively, and

consider their sum X = Σn
i=1xi. Then for all 0 ≤ Θ ≤ 1, probability Pr[X ≥

(1 + Θ)pn] ≤ e−
Θ2

3
pn.

It is easy to obtain a simple corollary of this statement.

Corollary 5. Let x1, x2, . . . , xn are independent random variables taking the values

1 and 0 with probabilities 1/2 + ε and 1/2− ε respectively. Then the following holds.

Pr[Σn
i=1xi ≤ n/2] ≤ eεn

Proof. We use x denote the negation of x.

Σn
i=1xi ≤ n/2 ⇐⇒ Σn

i=1xi ≥ n/2.
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Thus

Pr[Σn
i=1xi ≤ n/2] = Pr[Σn

i=1xi ≥ n/2] ≤

by the Chernoff bound, where p(1 + Θ) = 1/2 and p = 1/2− ε

≤ e
− (ε)2(1/2−ε)n

(1/2−ε)2 =

the latter due to (1/2− ε)(1 + Θ) = 1/2⇒ Θ = ε
1/2−ε

. Finally

= e−
ε2n

1/2−ε ≤ e−ε2n.

That completes the proof.

B.2 Complexity classes

In Figure B.1 a graphical representation of the relations between some basic com-

plexity classes is shown. The representation of the complexity classes hierarchy is due

to José L. Balcázar, Josep Dı́az and Joaquim Gabarró [BDG88].

B.3 NP-Intermediate problems

If the two classes P and NP are indeed unequal, then there exist problems that neither

NP−complete nor they are in P [GJ79]. We call al those problems NP-Intermediate,

and denote the class of such problems as NPI.

Since P
?
= NP was an open question to the moment of writing of this thesis, it is not

clear whether NPI even exists. However, problems that could be good candidates to

represent this class are long since known. One of them is called graph isomorphism.

Example 17 (GRAPH ISOMORPHISM, [GJ79]).
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P ZPP NP∩coNP BPP PP PSPACE

RP

coRP

NP

coNP

Figure B.1: Plethora of complexity classes.

Instance: Graphs G = (V,E), G′ = (V ′, E ′).

Question: Are G and G′ isomorphic, that is, is there a one-to-one function f : V →
V ′ such that {u, v} ∈ E if and only if {f(u), f(v)} ∈ E ′?

Another long standing candidate for NPI, the problem of deciding whether a given

number is composite was dismissed in 2002. It was discovered that PRIMES ∈ P

[AKS02].
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NPC

P
NPI

NP

Figure B.2: Class NP-Intermediate
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