Untersuchungen an Pyridinderivaten mit mehrzähnigen phosphaethenyl- / iminophosphanyl-Zentren

Synthese und komplexchemisches Verhalten

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt

von

Diplom-Chemiker

Corvin Volkholz

aus Wolfenbüttel

Bonn 2005

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

- 1. Referent: Prof. Dr. E. Niecke
- 2. Referent: Prof. Dr. D. Hänssgen

Tag der Promotion: 26.08.2005

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.unibonn.de/diss_online elektronisch publiziert.

Die vorliegende Arbeit entstand in der Zeit von Februar 2001 bis Juni 2005 am Institut für Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Herrn Universitätsprofessor Dr. rer. nat. Edgar Niecke danke ich, für die Aufnahme in seinen Arbeitskreis, die anregenden und vielfältigen Gespräche, für die tatkräftige Unterstützung und all die Erfahrungen, die ich in diesem Zeitraum sammeln durfte. Ich danke ihm zudem für die Übernahme des Referats.

Herrn Universitätsprofessor Dr. rer. nat. D. Hänssgen danke ich für die Übernahme des Korreferates.

Ich danke den weiteren Mitgliedern der Prüfungskommission, Herrn Prof. Dr. K. Maier und Herrn Prof. Dr. S. R. Waldvogel für die Bereitschaft die Prüfung abzuhalten.

Allen Institutskollegen, die durch ihre Hilfe und ihren persönlichen Einsatz zum Gelingen dieser Arbeit beigetragen haben, möchte ich meinen Dank aussprechen.

Für das angenehme Arbeitsklima im Laboratorium und die gute Zusammenarbeit gilt mein herzlicher Dank Fr. M. Özmen.

Besonders bedanken möchte ich mich für die Ausführung der zahlreichen NMR-Messungen bei Frau K. Procknicki. Herrn Dr. J. Tirreé danke ich für die Aufnahmen der Massenspektren und Herrn Dr. M. Nieger sei für die Messung und Auflösung der Röntgeneinkristallstrukturen gedankt. Herrn Prof. Dr. D. Gudat danke ich für seine Ratschläge bezüglich der Tieftemperatur-NMR-Messung. Herr Dr. W. Hoffbauer sei für die Durchführung der Festkörper-NMR-Messungen gedankt.

Bedanken möchte ich mich bei Sebastian Burck, Dr. Sahir Ekici, Dr. Michael Raab, Dr. Manuel Sebastian und Zsolt Török für zahlreiche interessante Diskussionen, Anregungen, Hilfestellungen und das freundschaftliche Arbeitsklima.

Ein großes Dankeschön gilt meinen Eltern für ihre langjährige Unterstützung.

Verzeichnis der Abkürzungen

Ar	Aryl	THF	Tetrahydrofuran
BuLi	Butyllithium	TPP	Triphenylphosphan
Ср	Cyclopentadienyl	δ	chem. Verschiebung
d	Bindungsabstand	Δ	Wärme
D	Donorfunktion	$\Delta G_{\rm B}$	freie Reaktionsenthalpie
DME	1,2-Dimethoxyethan	ΔH_B	Reaktionsenthalpie
EI	Electron impact	σ	Abschirmung
Et	Ethyl	ν	Frequenz
Ether	Diethylether	UV	Ultraviolett
eV	Elektronenvolt	V	Volt
НОМО	highest occupied molecule orbital	Ζ	Labile Donorfunktion
Hz	Hertz		
Iν	Ionisationsenergie		
IE	Ionisierungsenergie		
K _B	Stabilitätskonstante		
k _D	Gleichgewichtskonstante		
LUMO	lowest unoccupied molecule orbital		
Mes*	2,4,6-Tri(<i>t</i> -butyl)phenyl		
MO	Molecule Orbital		
n-Buli	<i>n</i> -Butyl		
NMR	Nuclear Magnetic Resonance		
pKa	Säurekonstante		
Ph	Phenyl		
pm	Picometer		
ppm	parts per million		
Ру	Pyridin		
P^O	$\kappa^2 P$, O koordinierter P, O-Ligand		
RT	Raumtemperatur		
S.	siehe		
SiMe ₃	Trimethylsilyl		
$\Delta S_{\rm B}$	Reaktionsentropie		
Т	Temperatur		

Inhaltsverzeichnis

Geschichte der Streichhölzer	1
1 Einleitung	3
2 Alkylidenphosphane	6
2.1 Historie der Alkylidenphosphane	7
2.2 Synthesestrategien	11
2.3 Reaktivität	13
2.3.1 Funktionalisierung der Alkylidenphosphane	15
2.4 Koordinationschemie von Alkylidenphosphanen	16
3 Iminophosphane	17
3.1 Synthesemethoden	19
3.2 Reaktivität von Iminophosphanen	21
3.3 Koordination von Iminophosphanen	23
4 Ligand-Systeme	26
4.1 Phosphan-Liganden	26
4.2 Chelat-Effekt	28
4.3 Einfluss des Pyridinrestes	32
4.4 Pyridylphosphane	33
5 Zielsetzung	44
6 P-funktionalisiertes 2,6-Bismethylenpyridin	46
6.1 Tripyridindimethan (TPDM)	46
7 P-funktionalisierte Aminopyridine	49
7.1 Synthesewege	49

8 A	xmino(imino)phosphane	52
8.1	NMR-chemische Verschiebung von Iminophosphanen	52
8.2	Einkristallstrukturanalyse von 72	54
8.3	Festkörper- und Tieftemperatur-NMR-Untersuchungen von 72	56
8.4	Umsetzungen mit Nickeltetracarbonyl	59
9 A	minomethylenphosphane	62
9.1	Tieftemperatur-NMR-Untersuchungen von 71a	64
9.2	Einkristallstrukturanalyse von 71a	65
9.3	Umsetzung mit 1,5 Bisnickel-(0)-cyclooctadien	67
9.4	Umsetzung mit Nickeltetracarbonyl	68
9.5	Kupplungsreaktionen	69
9.6	Bildung eines neuen 1-Aza-2-phosphaallyl-Anions	71
9.7	Einkristallstruktur von 81	73
9.8	Vergleich des 1-Aza-2-phosphaallyl- und 2-Phosphaallylanions	75
9.9	Reaktionen des 1-Aza-2-Phosphaallylanions 81	77
9.10	Röntgenkristallographische Untersuchung von 83	79
10	Komplexe von Heteroallylanionen	83
10.1	Allylanionen	83
10.2	Pentadienylanionen und Heteropentadienylanionen	84
10.3	2,6-Bis(trimethylsilylmethyl)iminophosphan-pyridin	86
10.4	1-Aza-2-phosphaallylanionen	88
10.5 Strukturanalyse von 93		89
10.6	1,3-Diaza-2-phosphaallylanionen	97
10.7	Synthese eines Dilithiumheteroallyl-systems	98
10.8	Röntgenstrukturanalyse des Dianions 97	99

11 Zusammenfassung

102

12 Experimenteller Teil	104
12.1 Arbeitsbedingungen	104
12.2 Chemikalien	104
12.3 Analytische Untersuchungen	105
12.4 Umsetzungen	107
13 Anhang	134
14.1 Cyclovoltametrische Messergebnisse	134
14.2 Kristallographischer Anhang	136
14 Verbindungsindex	213
15 Literatur und Anmerkungen	

Geschichte der Streichhölzer^[1]

Eine zündende Idee

Die ersten Streichhölzer wurden schon im antiken Rom verwendet. Diese nicht selbst zündenden Hölzer wurden an einem Ende in flüssigen Schwefel getaucht und an einer heißen Fläche oder glühender Asche entzündet. Im achtzehnten Jahrhundert begann die systematische Erforschung des schnellen und sicheren Feueranzündens. Es wurden etliche unterschiedliche Methoden erfunden. Eine Variante erarbeitete der französische Chemiker *Claude Berthollet* (1749-1822). Er experimentierte mit dem soeben entdeckten Chlorgas, das er in Kalilauge einleitete. Das so entstandene Kaliumchlorat bildete mit Zucker ein explosives Gemisch, welches durch Reibung spontan detonierte. Als trockene Paste war die Mischung stabil und konnte mit einem Tropfen Schwefelsäure in Brand gesetzt werden. Die um 1805 käuflichen "Tunkfeuerzeuge" hatten Köpfe aus Kaliumchlorat, Zucker und Gummi arabicum. Sie wurden aber weiterhin durch Eintunken in Schwefelsäure entzündet.

Die ersten Versuche, mittels Phosphor Feuer zu machen, gehen auf den Turiner Chemiker *Peyla* zurück. Die "*Peyla*-Kerzen" bestanden aus einem verschlossenen, zehn Zentimeter langen Glasrohr. Darin befand sich eine Wachskerze, deren Docht am oberen Ende ein kleines Stück Phosphor berührte. Diese Glasröhre wurde in warmes Wasser getaucht, woraufhin der Phosphor schmolz und den Docht tränkte. Das Glas wurde geöffnet und die Kerze fing innerhalb weniger Sekunden Feuer.

Zündhölzer, die an einer Reibfläche angestrichen werden konnten, wurden erstmals von *John Walker* (1781-1857) hergestellt. Aus der Analyse der Zündköpfe ging hervor, dass sie aus fünf Teilen Kaliumchlorat, fünf Teilen Antimonsulfat, drei Teilen Gummiarabikum und einem Teil Eisenoxid zusammengesetzt waren. *Samuel Jones* brachte um 1830 die berühmten "Lucifers" auf den Markt. Diese Hölzer bestanden aus gleichen Teilen Antimonsulfid, Kaliumchlorat und Klebstoff.

Der Erfinder der ersten Streichholzköpfe, die durch den darin enthaltenen Phosphor gezündet wurden, ist geschichtlich nicht gesichert. Anspruch auf diese Erfindung machten der Franzose *Charles Sauria*, der deutsche *Jakob Kammerer* und der Österreicher *Stephan Rómer* geltend. Die Zündmasse der ersten "*Congreve*-Hölzer" (benannt nach *William Congreve*, Pionier der Raketentechnik) enthielt 20 Prozent weißen Phosphor, 15 Prozent Schwefel, 30 Prozent Kaliumchlorat, 10 Prozent Kreide und 25 Prozent Klebstoff.

Der Entwicklungsschritt hin zum Sicherheitszündholz unter Verwendung von rotem Phosphors gelang dem Stockholmer Professor *G. Pasch.* Er erkannte, dass sich der rote Phosphor, aufgrund der luftstabilen Eigenschaften nicht im Zündkopf, sondern ebenso gut auf einer möglichst rauen Fläche an der Seite des Behälters, befinden konnte. Nachdem *Albright* nach langwierigen und gefährlichen Untersuchungen ein sicheres Verfahren zur Herstellung von qualitativ zuverlässigem rotem Phosphor etablieren konnte, welches in den Grundzügen auch heute noch praktiziert wird, waren es die Gebrüder *Lundström* aus Schweden, die den ersten kommerziellen Erfolg der neuen Sicherheitszündhölzer erzielten.

1 Einleitung

In den 50er Jahren des 20. Jahrhunderts entdeckte *Ziegler*^[2] die übergangsmetallkatalysierte Polymerisation von Ethen und *Natta*^[3] die stereoselektive Polymerisation von Propen. Ursprüngliche Ziegler-Natta-Katalysatoren sind heterogene Systeme, in denen der Katalysator aus einer Übergangsmetallverbindung der III. bis VIII. Nebengruppe und einer metallorganischen Verbindung oder einem Hydrid der I. bis IV. Hauptgruppe besteht^[4]. Beide Pioniere der koordinativ gestützten Polymerisation wurden im Jahr 1963 mit dem Nobelpreis für Chemie ausgezeichnet. Die weitere Entwicklung auf dem Gebiet der homogenen Katalyse mündete Anfang der 80iger Jahre im Einsatz von Cokatalysatoren wie Aluminiumoxanen z. B. MAO mit Metallocenverbindungen der Titan-Gruppe^[5] (Abb.1.1). *Brintzinger* führte erstmalig chirale Metallocene ein^[6].

Dass auch Phosphan-Liganden eine herausragende Stellung für die Polymerisation von Ethen einnehmen können, zeigt ihre industrielle Bedeutung zur Herstellung von längerkettigen α -Olefinen mittels SHOP-Prozess. Bei diesem von *Keim*^[9] entwickelten Prozess kommt ein P^O-Nickelchelatkomplex (Abb. 1.2) zum Einsatz, der Ethen hochselektiv zu linearen α -Olefinen oligomerisiert.

Abb. 1.2: Neutraler 4 und kationischer 5 Chelatligand.

In den 90iger Jahren untersuchte *Brookhart*^[10] sperrige Diiminliganden, die zu schwach verzweigten Polymeren führten. Parallel zu *Brookhart's* Untersuchungen setzte *Grubbs*^[11] Katalysatoren mit Salicylaldimin Liganden zur Polymerisation ein.

Dass die Erforschung und Entwicklung neuartiger Ligandsysteme mit unterschiedlichsten Eigenschaften an Aktualität nicht verloren hat, zeigt die Nobelpreisverleihung an *Noyori*, *Knowles* und *Sharpless* im Jahr 2001 für Liganden, die in der chiralen Synthese zum Einsatz kommen^[12]. Besonders erfolgreich wird das bereits im Jahr 1976 synthetisierte 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP, Abb. 1.3) als kationischer Metallkomplex (Rh, Ru) in der Katalyse eingesetzt.

(R)-BINAP

Abb. 1.3: Chirales Diphosphan.

Weitere Forschungen betrafen sterische Faktoren (z. B. Ligandengröße) und die Frage, wie die π -Akzeptorfähigkeit der P=C-Doppelbindung zur Stabilisierung niedriger Oxidationsstufen elektronenreicher Übergangsmetalle in der Katalyse genutzt werden kann. Ein gegenwärtiger Forschungsschwerpunkt liegt in der Synthese von tripodalen Liganden mit niederkoordiniertem Phosphor. Der formale Ersatz des Stickstoffatoms in **6** durch Phosphor führt z. B. zu den 2,6-Bis(phosphaalkenyl)-Liganden von *Geoffroy*^[13] (Abb. 1.4). Derartige Liganden sind durch die Phosphorsubstituenten sterisch sehr anspruchsvoll.

Durch die planare Anordnung des Molekülgerüstes wird eine effektive Komplexierung durch Übergangsmetalle erschwert.

Abb. 1.4: Multidentater Ligand mit zwei Alkylidenphosphan-Einheiten.

Um diesen Nachteil zu kompensieren war es notwendig, flexiblere und sterisch weniger abgeschirmte Ligandsysteme zu konstruieren, mit den Strukturmerkmalen einer P=E-Bindung (E = C, N), die über ein aromatisches Ringsystem verfügen. Der aromatische Ring dient dabei als planares Grundgerüst, an dem die P=E-Synthesebausteine über Brückenatome verknüpft werden. Ferner sollte das Molekül die Möglichkeit zur Bildung von Anionen, vorzugsweise über ein Allylsystem, besitzen.

Die nachfolgenden Kapitel zeigen den Kenntnisstand der Forschung der für diese Arbeit relevanten Alkyliden- und Iminophosphane und deren theoretische Grundlagen.

2 Alkylidenphosphane

Eine zentrale Rolle der Hauptgruppenelementchemie nehmen (p-p)- π -Bindungen zwischen Phosphor und Elementen der Gruppe 14, 15, 16 (Abb. 2.1) ein^[14-23].

Abb. 2.1: Beispiele für Phosphor-Element-Kombinationen.

Die Existenz dieser Phosphor-Element (p-p)- π -Bindungen liegt gegenüber der elektronischen, häufig in der kinetischen Stabilisierung durch sterisch anspruchsvolle Substituenten begründet. In den letzten Jahren konnte mit Hilfe des so genannten Supermesityl-Restes zum Beispiel das Bis(2,4,6-tri-*tert*.-butylphenyl)diphosphen^[24] (Abb. 2.2) realisiert werden.

Abb. 2.2: Bis(2,4,6-tri-*tert*.-butylphenyl)diphosphen 7.

Eine herausragende Stellung der Untersuchungen der letzten Jahrzehnte solcher nichtklassischen Doppelbindungssysteme kommt dabei den PC-(p-p)- π -Bindungssystemen zu.

2.1 Historie der Alkylidenphosphane

Theoretische Arbeiten von *Pitzer* und *Mulliken* negierten lange Zeit die Möglichkeit stabile $(p-p)-\pi$ -Mehrfachbindungen auszubilden^[25, 26], sofern Elemente der dritten und höheren Perioden beteiligt waren.

 $Gier^{[27]}$ gelangte zu ersten Hinweisen auf die Existenz einer P/C-(p-p)- π -Mehrfachbindung. Beim Durchleiten von Phosphorwasserstoff durch einen Lichtbogen konnte er ein, bei tiefen Temperaturen beständiges, Phosphaacetylen nachweisen. Die Arbeiten von *Märkl* (Synthese des 2,4,6-Triphenylphosphabenzols)^[28] und die strukturelle Charakterisierung eines mesomeriestabilisierten Phosphamethincyanin-Kations durch *Dimroth* und *Hoffmann* ^[29,30] werden als Wegbereiter auf dem Gebiet der Phosphor-Kohlenstoff (p-p)- π -Bindungen betrachtet. Die auf *Becker*^[23,31] zurückgehende Reaktion von Bis(trimethylsilyl)phosphanen mit Carbonsäurechloriden ermöglichte einen einfachen und variablen Zugang zu P/C-(p-p)- π -Bindungen (Abb. 2.10).

Ein weiterer Entwicklungssprung wurde durch die Einführung sterisch überladener Substituenten (z. B. 2,4,6-Tri-*tert*.-butylphenyl, Abb. 2.3) erreicht^[32], die das Phosphoratom gegenüber einem nucleophilen Angriff schützen. Ein Beispiel hierfür ist das Alkylidenphosphan **8**, in dem das Kohlenstoffatom lediglich zwei Wasserstoff-Atome trägt^[33].

Abb. 2.3: 2,4,6-Tri-*tert*.-butylphenyl(methylen)phosphan 8.

In der Folgezeit konnte gezeigt werden, dass die Chemie der Alkylidenphosphane weitgehende Analogien zur klassischen Olefinchemie aufweist, die auf eine Isolobalanalogie zwischen der P=C- und der C=C-Bindung beruht^[34]. Dies wird in der in der Literatur durch eine Reihe von Beispielen belegt zu der *Diels-Alder* Reaktionen^[35] (Abb. 2.4), dipolare [2+3]-Cycloadditionen^[36], photochemisch induzierte *E/Z*–Isomerisierungen^[37], *Cope*-Umlagerungen^[38] (Abb. 2.5), En-Reaktionen^[39] (Abb. 2.6) und 1,2-Additionsreaktionen^[40] gehören.

Abb. 2.4: Phospha Diels-Alder Reaktion.

Abb. 2.5: Phospha-Cope-Umlagerung.

Abb. 2.6: Phospha-En-Reaktion.

Die Phosphor-Kohlenstoff-Isolobalanalogie (Abb. 2.7) beruht auf der Tatsache, dass beide Elemente ähnliche Elektronenakzeptor- und Elektronendonoreigenschaften aufweisen^[41].

Abb. 2.7: Isolobalanalogie zwischen CH und Phosphor.

Anhand der UV-Adsorption und des magnetischen Circulardichroismus von Phosphininderivaten konnte experimentell gezeigt werden, dass Phosphor zwar eine etwas geringere σ -Elektronegativität als Kohlenstoff aufweist, seine effektive π -Elektronegativität aber vergleichbar oder etwas höher ist^[42]. Dieser Befund spiegelt sich in den theoretischen Berechnungen wider. Die π -Komponente der Doppelbindung in Phosphaethylen (HP=CH₂) ist nahezu apolar, die σ -Komponente dagegen polar (P^{δ+}- C^{δ-})^[43].

Es sind ebenfalls Phosphaalkene mit inverser Elektronenverteilung ($P^{\delta-}$ - $C^{\delta+}$) bekannt^[44]. Die Umkehrung der Polarität kann z. B. durch die Gegenwart starker π -Donorsubstituenten am Kohlenstoffatom induziert werden^[45]. Die berechnete Energie der P=C- π -Bindung im HP=CH₂ beträgt 43 kcal/mol und ist damit geringer als die der C=C- π -Bindungenergie von 65 kcal/mol im Ethylen^[46]. Dem UV-Photoelektronenspektrum zufolge bildet die π -Bindung das HOMO von HP=CH₂ (- 10,3 eV) und das freie Elektronenpaar bei (- 10,7 eV)^[47]. Die Ionisierungsenergie der π -Bindung im Ethylen beträgt 10,51 eV^[41].

Photoelektronische Untersuchungen an dem 1,2-*Di-tert.*-butylmethylenphosphan, das in seinen elektronischen Eigenschaften ein vergleichbares Modell zur den Stammverbindungen darstellt^[48a], zeigen eindrucksvoll die Isolobalität des Alkylidenphosphans mit dem Olefin bei Gegenüberstellung der Werte der vertikalen Ionisationsenergien (Iv) für das *E-'*BuP=CH'Bu und *E-'*BuCH=CH'Bu^[48b] (Abb. 2.8).

Das nicht-bindende Orbital am Phosphoratom und das HOMO liegen energetisch nahe beieinander, so dass die P=C-Bindung nahezu unpolar ist, aber durch Substituenteneffekte beeinflusst werden kann^[44]. Dieser Tatbestand zeigt die Analogie der P=C- zur C=C-Bindung^[51], wobei die Reaktivität der P=C-Bindung signifikant höher ist.

Abb. 2.8: Vergleich der vertikalen Ionisationsenergien ($Iv_{1,2}$) der Heteroolefine: $E^{-t}Bu$ -HC= $CH^{-t}Bu$, $E^{-t}Bu$ -N= $CH^{-t}Bu$, $E^{-t}Bu$ -P= $CH^{-t}Bu$.

Grundsätzlich lassen sich Alkylidenphosphane auf drei unterschiedlichen Wegen gegenüber Folgereaktionen stabilisieren^[23,33,40,45]. Abbildung 2.9 zeigt die räumlich anspruchsvolle Abschirmung am Phosphor **8** durch Mes*, wobei das Kohlenstoffatom kleine Substituenten tragen kann. Dem gegenüber wird bei der Konjugation **9** die Stabilisierung durch geeignete Gruppen, die freie Elektronenpaare besitzen, erreicht. Im Fall der Komplexierung **10** kann die Reaktivität des Alkylidenphosphan durch Bildung von Übergangsmetallkomplexen verringert werden. Die P=C-Bindungslänge typischer Alkylidenphosphane liegt zwischen 160 und 170 pm^[40].

Abb. 2.9: Stabilisierung von Alkylidenphosphanen.

2.2 Synthesestrategien

Im Folgenden wird eine repräsentative Auswahl zur Bildung der Alkylidenphosphane^[44,49-60] vorgestellt:

Silatropie

Becker^[23] konnte 1976 ausgehend vom Bis(trimethylsilyl)phosphan, den ersten acyclischen, bei Raumtemperatur stabilen Phosphor-Kohlenstoff-Vertreter **12** synthetisieren.

Die raumerfüllenden Siloxy- und *tert*.-Butylgruppen stabilisieren die P=C-Doppelbindung.

Die Triebkraft der [1,3]-Silylwanderung ist auf die Oxophilie des Siliziumatoms (Abb. 2.10) zurückzuführen.

11
 Abb. 2.10: Synthese des ersten Alkylidenphosphans über [1,3]-Silylwanderung nach *Becker*^[23].

[1,2]-Elimination

Ausgehend von β -(σ -*push/pull*) substituierten Organophosphanen ist die [1,2]-Elimination ein weiterer Zugang zu Alkylidenphosphanen. Organophosphan-Verbindungen mit Substituenten unterschiedlicher Polarität bilden eine thermodynamisch begünstigte Abgangsgruppe XY (Abb. 2.11) und das entsprechende Akylidenphosphan. Die Abspaltung kann thermisch bzw. durch Base induziert werden^[40,59,60].

X = Halogen $Y = H, Cl, SiMe_3$

Abb. 2.11: Alkylidenphosphane durch [1,2]-Elimination.

Kondensationsrektionen

Die Knüpfung einer P=C-Doppelbindung lässt sich ebenfalls durch eine Kondensationsreaktion in Gegenwart von wasserentziehenden Reagenzien oder der thermischen Abspaltung von Halosilanen und Disiloxanen^[45c] oder Wasser^[61-63] erreichen (Abb. 2.12). Diese Methode wird bei solchen Verbindungen bevorzugt verwendet, in denen die P=C-Doppelbindung in resonanzstabilisierten Ringen, wie z. B. bei 1,3-Benzazaphospholen^[64], 1,3-Benzoxaphospholen^[64], Benzthiaphospholen^[65] erzeugt wird. Des Weiteren können bissilylierte Phosphane durch Reaktion mit Bis(dialkylamino)difluormethan zu Alkylidenphosphanen umgesetzt werden^[66,67].

Abb. 2.12: Alkylidenphosphandarstellung mittels Kondensationsreaktionen.

Carben-Addition

Die Darstellung von Alkylidenphosphanen durch Reaktion primärer Phosphane mit Halogenalkanen gelingt, analog zur Isonitril-Synthese, in Gegenwart einer Base (Abb. 2.13). Als primärer Reaktionsschritt dieser Reaktion wird eine Carben-Additionsreaktion postuliert.^[35,68]

$$Mes^{*-}PH_{2} + CH_{2}Cl_{2} \xrightarrow{2 \text{ KOH}} P = C H$$

$$- 2 \text{ KCl} + 2 \text{ H}_{2}O$$

$$Mes^{*} P = C H$$

$$H$$

Abb. 2.13: Alkylidenphosphan 8 via Carben-Addition.

Phospha-Peterson-Reaktion

Ein weiterer effektiver Syntheseweg zu Alkylidenphosphanen kann durch Verwendung von Lithio-Silylphosphid **13** beschritten werden (Abb. 2.14)^[13f].

Abb. 2.14: Alkylidenphosphan 15 über Phospha-Peterson-Reaktion.

2.3 Reaktivität

Reaktionen am Phosphoratom

Sowohl das *"lone pair"* am Phosphoratom als auch die π -Bindung sind Reaktionszentren der Alkylidenphosphane. Im Fall der Alkylidenphosphane wird beispielsweise durch Reaktionen mit Ozon, Schwefel, Selen^[69a], aber auch Carbenen^[69b], die oxidative Addition am Phosphoratom (Abb. 2.15) unter Beibehaltung der Doppelbindung erreicht .

Abb. 2.15: Oxidative Addition am Phosphoratom.

Die erhaltenen Bis(methylen)phosphorane besitzen eine trigonal-planare Koordination des Phosphoratoms.

Die sterischen Effekte verhindern eine thermodynamisch begünstigte Ringbildung im Falle des Schwefel- (Selen) bzw. Methylenderivats. Die durch die Staudinger-Reaktion mit Alkylaziden erhaltenen Imin(methylen)phosphorane haben vergleichbare Strukturen mit trigonal-planar koordiniertem Phosphoratom.

Reaktionen an der (P=C)π-Bindung

1,2-Additionsreaktionen verlaufen entsprechend den Elektronegativitäten von Phosphor und Kohlenstoff unter Addition des elektronegativeren Elements bzw. Molekülfragments an den Phosphor.

Als Beispiele seien die 1,2-Addition von Halogenwasserstoff unter Bildung eines Halogenphophans bzw. einer 1,2 Cycloadditon von Schwefel zum Thiaphosphiran genannt^[69c] (Abb. 2.16).

Abb. 2.16: 1,2-Additionsreaktionen an der P=C-Doppelbindung.

2.3.1 Funktionalisierung der Alkylidenphosphane

Eine *C*-Funktionalisierung des Alkylidenkohlenstoffatoms ist für präparative Zwecke von großer Bedeutung. Geeignete Ausgangsverbindungen stellen die von $Appel^{[70]}$ beschriebenen *C*-Halogenphosphaalkene dar^[71], die, wie im Fall des Dihalogenphophaalkens gezeigt werden konnte, den Zugang zu dem Carbonsäurederivat **18** ermöglichten.

Im Falle des Dihalogenphosphaalkens (Mes*P=CCl₂) wurde durch Halogen-Lithium-Austauschreaktion unter Ausbildung des Phosphavinyliden-Carbenoids $16^{[72]}$ ein weiterer funktioneller Substituent eingeführt. Abbildung 2.17 zeigt die Bildung des Carbonsäurederivates $18^{[73,74]}$.

Abb. 2.17: Funktionalisierung via Halogen-Lithium-Austauschreaktion und nachfolgende Reaktion des Carbenoids.

Eine gut zugängliche Ausgangsverbindung zum Aufbau *P*-funktionalisierter Alkylidenverbindungen ist das chlorsubstituierte Alkylidenphosphan $ClP=C(SiMe_3)_2^{[75,76]}$ **19** (Abb. 2.18), welches zunächst durch β -Eliminierung gebildet wird. Weiter Umsetzung mit Alkyl/Aryllithiumverbindung liefert ein breites Spektrum der *P*-funktionalisierten Alkylidenverbindungen.

R = Aryl, Alkyl

Abb. 2.18: Reaktion von Organolithiumverbindung mit Chlormethylenphosphan 19.

2.4 Koordinationschemie von Alkylidenphosphanen

Für Alkylidenphosphane wurden fünf unterschiedliche (A-E) Koordinationsmodi beobachtet. (Abb. 2.19).

Abb. 2.19: Koordinationsmodi der Alkylidenphosphane.

Alkylidenphosphane sind in der Regel als schlechte σ -Donor- und gute π -Akzeptorliganden anzusehen^[41]. Bei σ-Komplexen^[74] des Typs A (Abb. 2.19) bleibt die P=C-Doppelbindung für weitere Reaktionen erhalten^[77], die Phosphor-Metallbindung wird durch das o-Donor Verhalten des Phosphoratoms bestimmt. Die ausgeprägte Tendenz des Phosphors seine Koordinationszahl von 3 auf 4 zu erhöhen zeigt der Typ $\mathbf{B}^{[78]}$. Bei der π -Koordination (Typ C) kann von einer dativen π -Bindung gesprochen werden. Im Gegensatz zum Typ A kommt es in diesem Koordinationsmodus zu einer Rückbindung aus den d-Orbitalen des Metalls in die leeren π^* -Orbitale der Doppelbindung. Dadurch wird die Metall- π -Bindung gestärkt (kurzer interatomarer Abstand) und die P=C-Doppelbindung geschwächt (Besetzung antibindender Molekülorbitale). Aufgrund des Ligand \rightarrow Metall-Elektronentransfers aus dem bindenden π -Orbital (P=C) und der Metall \rightarrow Ligand-Rückbindung in das π^* -Orbital (P=C) ist die P=C-Doppelbindung in C gegenüber der in A verlängert. Das Phosphoratom ähnelt im Komplex in seinen elektronischen Eigenschaften eher einem Phosphan. Charakteristisch für π -Komplexe ist eine signifikante ³¹P-NMR-Hochfeldverschiebung gegenüber der des freien Liganden. Die Abnahme der $|^{1}J_{PM}|$ -Kopplungskonstanten beim Übergang von einem σ - zu einem π -Komplex ist eine Folge einer schwachen σ -Wechselwirkung^[79]. 4-Elektronen-Komplexe des Typs **D** und $\mathbf{E}^{[80,81]}$ werden in η^4 -1- und η^4 -2-Phosphabutadienkomplexen beobachtet^[82,83].

3 Iminophosphane

Aufgrund der Elektronegativitätsdifferenz und der Möglichkeit einer konjugativen Wechselwirkung zum aminosubstituierten Phosphor-Element (p-p)- π -System^[84] stellt der Stickstoff in iminosubstituierten Phosphanen einen interessanten Bindungspartner des niedervalenten Phosphors dar.

Niecke und *Flick*^[18] konnten 1973 durch Kombination von elektronischen und kinetischen Effekten den ersten elektroneutralen, resonanzstabilisierten, acyclischen Phosphor-Stickstoff-Vertreter, das persilylierte Amino(imino)phosphan **20**, erhalten (Abb. 3.1).

Abb. 3.1: Resonanzstabilisierung von 20.

zeigt im Das Reaktionsverhalten von Iminophosphanen Vergleich zu den Alkylidenphosphanen wenige Analogien zu Olefinen bzw. Diazenen. In der Literatur wird nur vereinzelt von Dimerisierung, [2+2]-Selbstadditionen^[85] und 1.2-Additionen an die p- π -Bindung berichtet^[86]. Die überwiegenden Reaktionen verlaufen unter oxidativer Addition P=N-Doppelbindung^[87]. am Phosphor und Erhalt der Dagegen zeigen Amino(imino)phosphane, aufgrund der geänderten Grenzorbitalabfolge, starke Analogie zu Olefinen, was das Reaktionsverhalten betrifft.

Das unterschiedliche Reaktionsverhalten von Imino- und Alkylidenphosphanen konnte von *Schoeller*^[88] durch theoretische Untersuchungen an den Stammverbindungen HP=NH und HP=CH₂ auf deren unterschiedliche Grenzorbitalsequenz zurückgeführt werden. Das Reaktionsverhalten von Alkylidenphosphanen^[89] wird durch die für Olefine typischen Grenzorbitale $\pi_{P=C}$ (HOMO) und $\pi^*_{P=C}$ (LUMO) bestimmt. Iminophosphane {(*E*)-H-P=N-H} weisen dagegen ein Orbital des Typs σ_P als HOMO auf, daher werden Iminophosphane als anorganische "Carben-Analoga" bezeichnet^[88,90,91].

Durch Photoelektronen- sowie UV-spektroskopischen Untersuchungen von isolierten Iminophosphanen lassen sich die vertikalen Ionisationsenergien der Grenzorbitale (HOMO und LUMO) miteinander vergleichen.^[88]

Abb. 3.2: Vergleich der vertikalen Ionisationsenergien ($Iv_{1,2}$) für: E-^tBu-P=N-^tBu und E-R₂N-P=N-^tBu.

Im Vergleich zu den Alkylidenphosphanen (Kap. 2) ist im System P=N, das HOMO das $\sigma_{(P)}$ -Orbital und nicht das π -P=N-Orbital; erst durch Substitution mit geeigneten π -Donatoren (NH₂) wird eine Umkehr der energetischen Lage dieser beiden besetzten Orbitale erreicht. Dieses "orbital crossing" beruht auf der dann höheren Energie des π -Orbitals, während die Lage des σ -Orbitals nahezu unverändert bleibt^[92] (Abb. 3.2). Daraus resultiert, dass Iminophosphane bei der Substitutution mit π -Donoren (z. B. R = NⁱPr₂) eine olefinartige HOMO/LUMO-Abfolge (π/π^*) besitzen^[93].

3.1 Synthesemethoden

In Analogie zu den üblichen Verfahren zur Erzeugung von Olefinen oder Heteroolefinen ist die effektivste Synthesemethode für Iminophosphane die [1,2]-Eliminierung von β -funktionalisierten Aminophosphanen (Abb. 3.3)^[18]. Die Bildung der Doppelbindung unter Abspaltung eines Moleküls XY aus Aminophosphanen kann dabei thermisch oder baseninduziert herbeigeführt werden.

Abb. 3.3: [1,2]-Eliminierung von β-funktionalisierten Aminophosphanen.

Ein alternativer Zugang zu Iminophosphanen gelang durch Umsetzung von Phosphorhalogeniden mit Lithiumamid und anschließender thermischer Abspaltung von Chlortrimethylsilan aus den *N*-silylierten Diaminohalogenphosphanen (Abb. 3.4)^[94]. Auf diesem Weg konnte erstmalig das persilylierte Amino(imino)phosphan **20** mit einem P-N-(p-p)- π -Bindungssystem erhalten werden.

Abb. 3.4: Eintopfsynthese zur Bildung eines Amino(imino)phosphans 20.

Die Synthese von Iminophosphanen ist prinzipiell auch durch [1,1]-Eliminierung aus Iminophosphoran-Vorstufen möglich (Abb. 3.5). Zum Beispiel durch reduktive Debromierung des Dibromiminophosphorans^[95].

Abb. 3.5: Iminophosphane 21 via [1,1]-Eliminierung entsprechender Iminophosphorane.

Die Bildung des Iminophosphans **21** mit einer lokalisierten Doppelbindung^[96] gelingt auch durch Einsatz von lithiierten Aminohalogenphosphanen (Abb. 3.6)^[96].

Abb. 3.6: Unterschiedliche Reaktionsbedingung bei der Bildung von 21.

Neben den vorgestellten Eliminierungs- werden auch Umlagerungsreaktionen sowie Cycloreversionen als Iminophosphanquelle genutzt. Die Erzeugung einer P=N-Doppelbindung durch [1,3]-Verschiebung einer *P*-ständigen Silylgruppe zu einem α -ständigen, doppelt gebundenen Sauerstoffatom^[22] zeigt Abbildung 3.7.

Abb. 3.7: Iminophosphanbildung durch [1,3]-Silylverschiebung.

Aufgrund der Reversibilität der [2+1]-Cyclodimerisierung von Iminophosphanen können aus den alkyl- bzw. arylsubstituierten λ^3 , λ^5 -Azadiphosphiridinen thermisch oder photochemisch

die Monomere erzeugt werden^[96,97]. Im Fall von *N*-silylsubstituierten λ^3 , λ^5 -Azadiphosphiridinen erfolgt die Cycloreversion erst bei wesentlich höheren Temperaturen. Die Reversibilität der [2+1]-Cyclodimerisierung beschreibt Abbildung 3.8.

Abb. 3.8: Azadiphosphiridine als Iminophosphanquelle.

3.2 Reaktivität von Iminophosphanen

Die unterschiedlichen Reaktionsmöglichkeiten der Iminophosphane (Abb. 3.9) erschließen eine Vielzahl verschiedener Reaktionsprodukte.

Abb. 3.9: Reaktivität der Iminophosphane.

Die für die vorliegende Arbeit wesentlichen Reaktionsprodukte werden näher vorgestellt.

Das *P*-funktionalisierte Iminophosphan **22** (CIP=NMes*)^[98] (Abb. 3.10) ist ein gut zugänglicher Synthesebaustein. Die Bildung wird durch den hohen sterischen Anspruch des *N*-ständigen Substituenten begünstigt. Das *P*-funktionalisierte Iminophosphan **22** ist der Schlüsselbaustein für die Erzeugung eines großen Spektrums *P*-funktionalisierter Iminophosphane^[98-102].

Abb. 3.10: Synthese und Umsetzung von 22.

Darüber hinaus lieferten Umsetzungen mit Chloriminophosphan **22** und *N*-lithiierten Aminoiminophosphanen (Abb. 3.11) die 1,3,5-Triaza-2,4-diphosphapenta-1,4-dienen^[101,103].

Abb. 3.11: Substitutionsreaktion zu den 1,3,5-Triaza-2,4-diphosphapenta-1,4-diene.

Ausgehend von *NH*-funktionalisierten Amino(imino)phosphanen **23** (Abb. 3.12) können ferner die synthetisch wertvollen 1,3-Diaza-2-phosphaallyl-Anionen **24** isoliert werden^[103-105].

Abb. 3.12: Darstellung von 1,3-Diazaphosphallyl-Lithiumverbindungen.

3.3 Koordination von Iminophosphanen

Iminophosphane können, wie Alkylidenphosphane, als σ - und seltener π -Liganden von Übergangsmetallen fungieren^[106]. Viele Koordinationsmodi der Alkylidenphosphane finden sich in der Koordinationschemie von Iminophosphanen wieder. So können 2e-, 4e- und sogar 6e-Donorliganden auftreten. Eine weitere Klassifizierung wird anhand der Koordinationsmodi vorgenommen^[101,106] (Abb. 3.13-3.14):

2e-Donorligand:

4e-Donorligand:

Abb. 3.13: Koordinationsmodi der 2e-, 4e-Donorliganden.

2e-Donorligand:

- a) Die verbrückende Koordination oder μ -P-Koordination stellt einen seltenen Koordinationsmodus dar^[101,107-109].
- **b)** *End-on*-Koordination oder η^1 -**P-Koordination**:

Die terminale *P*-Koordination von Iminophosphanen ist seit langem bekannt^[106] und der bevorzugten Koordinationmodus von 2e-Donorliganden.

Die η^1 -P-Koordination wurde mit vielen unterschiedlichen Resten R und Metallfragmenten [M] realisiert ^[110-113].

c) Side-on-Koordination oder η^2 -(PN)-Koordination:

Dieser Koordinationmodus ist im Vergleich zu der η^1 -P-Koordination energetisch ungünstiger und benötigt Metallzentren die in der Lage sind, eine d $\rightarrow \pi^*$ -Rückbindung zu bilden. In diesem Koordinationsmodus treten oft Isomerengemische von *end-on-* und *side-on-*Komplexen oder auch eine 4e-Donorligandvariante mit η^1, η^2 -Koordination^[112,113] auf.

4e-Donorligand:

- d) μ₃, η²-(PN)-Koordination wurde durch Reaktion eines Amino(imino)phosphans mit [Ni(CN^tBu)₄(μ-CN^tBu)₃] realisiert^[114].
- e) μ, η¹, η¹-(PN)-Koordination konnte durch die Reaktion von [Re(CO)₃(μ-Br)(THF)]₂
 mit [(SiMe₃)₂NP=N^tBu] realisiert werden^[115]. Eine analoge Koordination für Alkylidenphosphane konnte bisher nicht beobachtet werden.

6e-Donorligand

Abb. 3.14: Beispiel für besondere μ , η^2 -(PN)-Koordination von Iminophosphan.

f) μ , η^2 -(PN)-Koordination diese Art der Koordination stellt eine spezielle Koordinationsart für Iminophosphane dar, die sich mit Alkylidenphosphanen nicht realisieren lässt^[116].

4 Ligand-Systeme

4.1 Phosphan-Liganden

Die Effekte von Phosphan-Liganden in der Katalyse sind seit den Arbeiten von *Reppe*^[117] bekannt. Die Anwendung und der Kenntnisstand haben sich, getrieben durch den Wunsch der Industrie, billigere und homogenere Stoffe herzustellen, schon in den 50iger und 60iger Jahren des vorherigen Jahrhunderts rasch weiter entwickelt, wenn auch für lange Zeit Triphenylphosphan (TPP) der klassische Ligand für die kommerzielle Anwendung blieb. Shell setzte erstmals ein Triethylphosphan in der Hydroformulierung als Ligand eines Kobalt-Katalysators industriell ein^[118]. Die extensiven Untersuchungen am DuPont- Prozess zur Herstellung von Adiponitril^[119] führten erst zum Begriff "Ligand-Effekt", der heute so gebräuchlich ist.

Wilkinson und seine Mitarbeiter^[120] untersuchten katalysierte Hydrierungen am RhCl(TPP)₃-System und stimulierten damit weitere Arbeiten. Elektronische und sterische Effekte wurden beobachtet: Elektronendonatoren am aromatischen Ring beeinflussten die Umsatzraten positiv^[121].

Tolman fasste in einem Review Artikel 1977 den damaligen Kenntnisstand über sterische Effekte von Phosphan-Liganden zusammen und führte zur Vereinfachung der Betrachtung einen elektronischen Faktor v (basierend auf der A1 Bande der CO-Moleküle im Komplex Ni(CO)₃L) und einen sterischen Faktor θ ein, für den er den Begriff "cone angle" (Kegelwinkel) prägte (Abb. 4.1)^[122].

Abb. 4.1: Tolman-Kegelwinkel von Phosphan-Liganden.
Dieser sterische Faktor wurde eingeführt, weil mit rein elektronischen Effekten nicht erklärt werden konnte, weshalb die Bildung eines Ni(TPP)₄ nicht möglich war (Tab. 1).

Für sterisch anspruchsvolle Liganden gilt folgende Korrelation der Reaktionsgeschwindigkeit mit der Gleichgewichtskonstante k_D (Abb. 4.2), wobei k_D von der Größe der Liganden L abhängig ist:

Abb 4.2: Gleichgewicht von NiL₄ und NiL₃/L

Tabelle 1: Tolman Winkel und Gleichgewichtskonstanten sterisch anspruchsvoller Liganden

Ligand	P(OEt) ₃	$P(O-p-tolyl)_3$	$P(O-i-Pr)_3$	P(O-o-tolyl) ₃	TPP
Tolman-Winkel	109°	128°	130°	141°	145°
k _D	<10 ⁻¹⁰	$6 * 10^{-10}$	$2.7 * 10^{-5}$	$4 * 10^{-2}$	-

Parallel dazu wurden Anfang der 60iger Jahre bidentate Phosphan-Liganden synthetisiert. Einer der ersten Chelatliganden war das 1,2-Bisdiphenylphosphanethan (DPPE, Abb. 4.3) im Jahre 1959^[123].

Abb. 4.3: Erste bidentate Phosphan-Liganden.

Als Liganden in der Katalyse brachten diese Bidentaten zunächst in den ersten Untersuchungen keine Verbesserung^[124]. In vielen Fällen war die Aktivität von DPPE schlechter als die des TPP, was dem Chelatcharakter dieser Verbindungen zugeschrieben wurde. So hatten Untersuchungen gezeigt, dass im *Wilkinson*-Katalysator eine Stufe der Reaktionssequenz die Dissoziation eines der Monophosphan Liganden erfordert^[125-127].

4.2 Chelat-Effekt

Zweizähnige Liganden mit einer CH₂CH₂-Brücke wie DIPHOS, GLYME und EN (Abb. 4.4) weisen eine hohe Flexibilität auf.

Ein weiterer wesentlicher Vorteil dieser Brücke ist die Ausbildung besonders stabiler fünfgliedriger Chelatringe. Neben den fünfgliedrigen Ringen weisen sechsgliedrige Chelatringe ebenfalls nur eine geringe Ringspannung auf und zeigen eine hohe Bildungstendenz.

Der Chelat-Effekt ist im Wesentlichen Entropie bestimmt, sofern den Donoratomen in den ein- und mehrzähnigen Liganden eine vergleichbare Lewis-Basizitäten hinsichtlich des betrachteten Metallions zukommt. Der Chelat-Effekt beruht auf einem thermodynamischen und einem kinetischen Effekt^[128]:

- (i) Thermodynamisch bedeutet das, dass die Zahl der auf der Edukt- bzw. Produktseite beteiligten Reaktanden (z. B. Komplexion, Wasser, Liganden) bei Chelatbildungsreaktionen zunimmt, während die Zahl bei Umsetzungen ohne Chelatbildung im Allgemeinen gleich bleibt. Der in der Vermehrung der Reaktionspartner zum Ausdruck kommende Gewinn an Bewegungsfreiheit (Entropie) des Systems führt für den Chelat-Komplex zu einer negativeren freien Bildungsenthalpie $\Delta G_B = \Delta H_B - T\Delta S_B$ gegenüber dem Normalkomplex (bei jeweils gleichem ΔH_B), was gemäß K_B = exp(- $\Delta G_B/RT$) eine größere Stabilitätskonstante K_B zur Folge hat.
- (ii) Kinetisch gesehen lässt sich der Chelat-Effekt nach Schwarzenbach wie folgt erklären: Bei gleicher Konzentration eines einzähnigen Liganden L bzw. eines zweizähnigen Liganden L^L ist die Wahrscheinlichkeit (Geschwindigkeit) für die Besetzung der ersten Koordinationsstelle eines Metallions näherungsweise gleich groß. Die Wahrscheinlichkeit (Geschwindigkeit) der Besetzung der zweiten Koordinationsstelle ist aber für L^L höher als für L, weil die effektive Konzentration des Zweitdonators

am Komplexzentrum im Falle von L^L wegen seiner chemischen Verknüpfung mit dem Erstdonator in der Regel viel höher ist als im Fall von L.

Die Größe des Chelat-Effektes wird u. a. durch den Biss, die Beweglichkeit, die Ladung, die Zähnigkeit und den räumlichen Bau der Liganden bestimmt. Die Abnahme der Komplexstabilität mit wachsender Gliederzahl des Chelatliganden lässt sich im Sinne der kinetischen Deutung des Chelat-Effektes durch die abnehmende effektive Konzentration des Zweitdonators am Zentrum des Komplexes M \leftarrow L^L mit wachsendem Abstand (Biss) der Donoratome in L^L erklären. So konnte *Sanger* zeigen, dass durch vier und mehr Kohlenstoffatome verbrückte Diphosphane bimetallische Komplexe bilden^[129].

Im Sinne der thermodynamischen Deutung des Chelat-Effektes beruht die betreffende Stabilitätsabnahme auf einer Verminderung des Entropiegewinns bei der Komplexbildung. Mit zunehmender Gliederzahl im Chelatliganden geben diese bei ihrer Koordination in wachsendem Maße Bewegungsfreiheit auf. Demgemäß bilden sich mit "unbeweglicheren Chelatliganden" (z. B. R₂P-CH=CH-PR₂) stabilere Komplexe als mit "beweglicheren" (R₂P-CH-CH-PR₂) und mit "ungeladenen" Chelatliganden (z. B. EN) stabilere Komplexe als mit "geladenen" und deshalb stärker solvatisierten.

Kagan^[130] verwandte 1971 DIOP (Abb. 4.5) mit Erfolg in der Hydrierung von N-Acetylphenylalanin und DIPAMP (Abb. 4.5) wurde von *Knowles*^[131] zur asymmetrischen Hydrierung erfolgreich verwandt.

R,R-DIPAMP

Abb. 4.5: Chirale Phosphan Liganden.

Dies wurde von Monsanto zur industriellen Herstellung von *L*-DOPA (Abb. 4.6), einem Wirkstoff gegen die Parkinson-Krankheit, genutzt. Der Vorteil des eingesetzten [RhDIPAMP]⁺ Katalysators liegt in der hohen Selektivität bei der Bildung des *L*-Isomers^[132].

Abb. 4.6: Monsanto-Prozess zur L-Dopa-Herstellung.

Das Interesse wandte sich auch anderen Brückenatomen zu (Abb. 4.7), als Beispiel seien Bisphosphinoamine **26** genannt, die *N*-Analoga der Methylendiphosphane **25**. Hierbei wird die Koordination zum Metall von den Phosphoratomen ermöglicht, allerdings bilden sich sterisch ungünstige Vierringe aus. Die Ausweitung der Verbrückung über starre Systeme, wie z. B. im 2,6 Bis-diphosphanylpyridin **27** war ein nächster Schritt der Erforschung neuartiger Ligandensysteme.

Abb. 4.7: Unterschiedlich verbrückte Phosphan-Liganden.

Der Ursprung der multidentaten phosphorhaltigen aromatischen PCP-Liganden wird den Arbeiten von *B. L. Shaw*^[133] in den Jahren 1974 und 1976 zugeschrieben^[134]. Diese Liganden stellen die Ursprung einer großen Gruppe von PCP-Liganden dar (Abb. 4.8). Der Begriff "Pincer" (Pinzetten-Ligand) wurde durch *van Koten*^[135] geprägt und beschreibt Organometallverbindungen die durch einen tridentaten monoanionischen Liganden der Form $[2,6(ECH_2)_2C_6H_3]^-$ (E = N, P, As, O, S) komplexiert werden.

Abb. 4.8: Modifikationsmöglichkeiten an Pincer Liganden^[135].

Aufgrund der verschiedenartiger "Stellschrauben" an Pincer Liganden konnte in der Folgezeit eine sehr große Anzahl Verbindungen synthetisiert werden. Allein die Anzahl chiraler Pincer-Ligand-Systeme überschreitet heute die Zahl 1000^[136]. Es wurden zahlreiche Beispiele der Koordinationschemie von Metallen an solche Systeme berichtet^[134,135]. Viele dieser Liganden zeichnen sich wiederum durch ihre katalytische Effizienz, z. B. in der Arylierung von Olefinen (Heck-Katalyse)^[136], aus.

Im Verlauf der weiteren Forschungen wurden die ursprünglichen (ECE)-Pincer-Liganden weiter modifiziert und besitzen neue Strukturmodifikationen^[134,135,137,138] (Abb. 4.9).

Zum einen wurden in das Grundgerüst andere Aromaten, wie z. B. Pyridin anstelle des Phenylringes eingebaut, zum anderen wurden in der 2- und 6-Position andere Brückenatome als Kohlenstoff verwendet. Gemeinsam ist den Liganden, dass sie mindestens einen Phosphorsubstituenten tragen und somit hemilabil sind.

 $D = z.B. NR^2, SR^2$

Abb. 4.9: Modifizierte aromatische PCP- und PNP-Liganden.

4.3 Einfluss des Pyridinrestes

Pyridin kann formal von Benzol abgeleitet werden, indem eine CH-Gruppe durch ein Stickstoffatom ausgetauscht wird (Abb. 4.10). Es resultiert ein aromatischer Heterozyklus, dessen Reaktivität sich von der des Benzols durch den Einfluss des Heteroatoms deutlich unterscheidet^[139].

Die höhere Elektronegativität des Stickstoffatoms gegenüber dem Kohlenstoffatom führt zu einer Polarisierung der C-Atome in C2-, C4- und C6-Stellung. Molekularorbitalberechnungen bestätigen eine verminderte π -Elektronendichte an den genannten Atomen. Die Verringerung der π -Elektronendichte bedingt die Zuordnung des Pyridins zu den Elektronenmangel-Heteroaromaten. Abbildung. 4.10 zeigt die polaren Grenzformeln des Pyridins.

Abb. 4.10: Mesomere Grenzformeln des Pyridins.

Ein weiterer Unterschied zu Benzol ist die Tatsache, dass Pyridin eine schwache Base ist^[140] und elektrophile Reagenzien (z. B. RX, H⁺, H₂O₂) sind in der Lage, das N-Atom unter Bildung von Pyridiniumsalzen zu quarternisieren. Die hohe Elektronegativität des N-Atoms hat zur Folge, dass die elektrophile Substitution (3, 5-Position) erschwert, die nukleophile (2, 4, 6-Position) dagegen erleichtert wird. Grund für das unterschiedliche Reaktionsverhalten ist die Stabilisierung der negativen Ladung am Pyridinstickstoff in den gebildeten Übergangszuständen (Abb. 4.10).

Die Deprotonierung von Alkylsubstituenten (z. B. Methyl) in 2/6-Stellung, wie in den Pincer-Liganden vorhanden, und in 4-Stellung ist mit dem beschriebenen Reaktionsverhalten der nukleophilen Substitution erklärbar. Die Acidität der Methylgruppen im Pyridin ist eine Folge des -M-Effektes des N-Atoms. Dabei sind α - und γ -alkylsubstituierte Pyridine erheblich acider (pK_a-Werte: 29.5 und 27) als β -alkylsubstituierte Pyridine, die in ihrer Acidität mit Toluol vergleichbar sind (pK_a-Werte: 34 bzw. 35 für Toluol)^[141,142]. Die hohe C-H-Acidität der Methylarylverbindungen ist der Grund für eine erfolgreiche Metallierung mit Lithiumorganischen-Verbindungen. Für das resultierende Anion werden drei Grenzformeln diskutiert (Abb. 4.11). Ein C-zentriertes Carbanion **31a**, ein delokalisiertes Aza-Allylanion **31b** und ein N-zentriertes Enamidion **31c**^[143].

Abb. 4.11: Grenzformeln des Picolylanions^[143].

4.4 Pyridylphosphane

Ein vorrangiges Ziel des Liganden Design war es, harte und weiche Donoren in einem Molekül einzubauen, in der Hoffnung, dass durch chemisch unterschiedliche oder gar gegensätzliche Koordinationsstellen des Liganden der resultierenden Metallkomplexe neuartige interessante Eigenschaften aufweist.

Ein wesentliches Merkmal hemilabiler Liganden zu denen Pyridylphosphane zählen ist die Anwesenheit einer labilen Donorfunktion Z, die leicht am Metallzentrum substituiert werden kann, während eine oder mehrere Donorgruppen D an dem Metallzentrum bzw. den Metallzentren gebunden bleiben (Abb. 4.13)^[144].

Ein erster Vertreter dieser Substanzklasse war das Pyridylphosphan **32** (Abb. 4.12), das von *Davies* und *Mann* im Jahr 1944 aus Pyridylmagnesiumbromid und Phenyl-(4-bromphenyl)chlorphosphan synthetisiert wurde^[145].

Abb. 4.12: Erster Vertreter eines Pyridylphosphans.

Der Unterschied zu homofunktionellen Liganden (vgl. Kapitel 4.1) liegt darin, dass durch die Einführung des Pyridinringes zwei unterschiedliche funktionelle Gruppen, die als Koordinationsstellen für Metallzentren fungieren können, resultieren. Derartige Liganden werden in der Regel als Hybridliganden bezeichnet^[144] (Abb. 4.13).

Abb. 4.13: Hybridligand mit zwei unterschiedlichen Donorfunktionen^[144].

Die Gruppen werden oft so gewählt, dass eine bessere Differenzierung zwischen ihren Wechselwirkungen mit dem Metallatom und damit ihrer Chemoselektivität möglich ist. Somit werden auch die Bindung und die Reaktivität anderer Liganden beeinflusst, besonders derjenigen in *trans*-Stellung^[144].

In weiteren Verlauf der Forschung konnte eine Vielzahl solcher und verwandter Systeme aufgebaut werden. Abbildung 4.14 zeigt die Synthese von Bis-pyridylphosphanen **33**^[146].

Abb. 4.14: Verbrückte Pyridylphosphane.

Mitte der 60iger Jahre wurden durch direkte nukleophile Substitution zahlreiche Pyridylphosphane synthetisiert. Einen einfachen Zugang zu monosubstituierten Pyridiylphosphanen beschrieben *Later* und *Balch*^[147] (Abb. 4.15).

Abb. 4.15: Monosubstituiertes Pyridylphosphan 35.

Einen weiteren Zugang (Abb. 4.16) zu polydentaten Liganden ermöglichte die nukleophile Substitution an α -Chlormethylheteroaromaten **36**.

Abb. 4.16: Synthese der PNP-Liganden.

Diese methylenverbrückten Liganden **37** konnten erstmals von *Dahlhoff* und *Nelson*^[137] im Jahr 1971 erschlossen werden. *Nelson* konnte die ethylenverbrückten PNP-Liganden aus 2,6-Bis(2-hydroxyethylpyridinen) durch Umsetzung von Thionylchlorid und anschließender nukleophiler Substitution mit NaPPh₂ erhalten^[148].

Zahlreiche einkernige Komplexe mit hemilabilen Liganden sind bekannt, aber das Phänomen der Hemilabilität kann leicht auf zweikernige Komplexe^[149] und Metallcluster^[150,151] übertragen werden, in denen die labile Koordinationsstelle sich nicht unbedingt am selben Zentrum befinden muss, an das der Donor D koordiniert ist, sondern auch an einem benachbarten Metallzentrum positioniert sein kann (Abb. 4.17).

Abb. 4.17: Koordinationsmodi von Hybridliganden^[144].

Das Konzept der Hemilabilität von Liganden geht auf Arbeiten von *T.B. Rauchfuss* zurück^[152]. Ursprünglich war es auf Phosphan/Amin- und Phosphan/Ether-Liganden beschränkt. Das unterschiedliche Donor- und Akzeptorvermögen der Phosphor- und Stickstoff- bzw. Sauerstoffatome führt zu unterschiedlich starken Bindungen zum

Metallzentrum. Das Phosphoratom bildet in P[^]O-Liganden relativ stabile Bindungen zu späten Übergangsmetallen, dagegen ist die Metall-Sauerstoff-Bindung in der Regel eher schwach^[153]. Für eine Chelatkoordination des Liganden heißt dies, dass die P[^]O-Chelatliganden auf verschiedene Arten an das Metall koordiniert werden können (Abb. 4.18).

Abb. 4.18: Hemilabilität von P^O-Liganden.

Die Koordination zum Metall kann über Phosphor und Sauerstoff erfolgen. Die Sauerstoff tragende Gruppe kann aber durch andere Substrate oder Lösungsmittelmoleküle reversibel verdrängt werden, so dass der Ligand nur über die Phosphangruppe koordiniert. Dies wird als Hemilabilität des Liganden bezeichnet^[154]. Ausnahmen sind harte Metallionen wie Zr⁴⁺ oder Ti⁴⁺, die im Normalfall auch nur O- koordinierte Komplexe bilden können^[155]. Weitere Forschungen haben gezeigt, dass dieses Hemilabilitäts-Konzept auf unterschiedliche Hybridliganden übertragbar ist (Abb. 4.19)^[144,156,157,158].

38

39

40

41

42

Die P-N-Liganden **38**, **39** zeichnen sich als hemilabile Liganden durch eine erhöhte Aktivität in der Katalyse gegenüber reinen PCP-Liganden aus^[156]. Diese Forschungsergebnisse stimulierten in jüngster Zeit ein immer größeres Interesse an Imin/Phosphor-Ligand-Systemen. Ein für die Ethenpolymerisation mit Metallen der Gruppe 8, 9 bedeutender tridentater Ligand ist der 2,6-Bis(imino)pyridylligand **43** (Abb. 4.20). Es konnte gezeigt werden, dass das Substitutionsmuster ein "fine tuning" der Katalyseaktivität ermöglicht^[159].

 $R_1 = H, CH_3; R_2 = CH_3, C(CH_3)_3$

43

Abb. 4.20: Der 2,6-Bis(imino)pyridylligand (N,N,N-Ligand).

Aufgrund der Tatsache, dass Imine und Pyridine in der homogenen Katalyse (z. B. der enantioselektiven Hydrid-Transfer-Reaktion von Ketonen) erfolgreich eingesetzt werden^[160], gab es Überlegungen, Phosphoranaloga in Form von Alkylidenphosphanen und Phosphininen^[136] darzustellen^[13,161-164]. Ein Vorteil dieser Spezies ist die hervorragende π -Akzeptoreigenschaft, die sie als Ligand für elektronenreiche Übergangsmetall-Komplexe prädestinieren^[165].

Erste Schritte machte *Geoffroy* im Jahr 1992 mit der Synthese von Pyridylmonoalkylidenphosphanen **15** (vgl. Kapitel 2).

Geoffroy gelang ebenfalls die Synthese von **6** (vgl. Einleitung) dem Phosphoranalogen zu **43**. In den letzten zwanzig Jahren konnten aromatische und heteroaromatische Mono- und Bisalkylidenphosphane hergestellt werden, die eine Anwendung in homogen-katalytischen Prozessen gefunden haben.

Abbildung 4.21 gibt einen Überblick über diese neuartigen Liganden^[13,74,161].

Abb. 4.21: Mono- und Bisalkylidenphosphane.

Yoshifuji und Mitarbeiter konnten zeigen, dass der aus 44 zugängliche Palladiumkomplex 51 (Abb. 4.22)^[161a] eine hohe Aktivität in der Sonogashira-Kupplungsreaktion von p-Bromnitrobenzol und Trimethylsilylacetylen zu p-Nitro(trimethylsilylethinyl)benzol aufweist.

Abb. 4.22: Komplexierung von 44 mittels Bis(acetonitril)palladiumdichlorid.

Die Umsetzung von 44 mit Me₂Pd(COD) liefert einen Komplex, der als kationischer Monomethyl-Palladium-Komplex Ethen polymerisiert ^[165].

Untersuchungen an Palladium-Komplexen der Liganden 6, 45, 46 und 47 ergaben Hinweise für eine katalysierte Copolymerisation von CO und Alkenen^[13,163]. Dies wurde ebenfalls für den Pd-Komplex des Pyridin substituierten Alkylidenphosphans 15 beobachtet^[74].

Mathey konnte zweizähnige Phosphinin-Liganden, wie das 3,3'-Dimethyl-2,2'-bi- **52** und das 4,5-Dimethyl-2-(2-pyridyl)phosphinin **53** (Abb. 4.23), über eine C-C-Verknüpfung von 2-Bromphosphinin mit entsprechenden Zinnverbindungen erhalten. Hervorzuheben ist der erfolgreiche Einsatz des 3,3'-Dimethyl-2,2'-biphosphinin in der industriellen *L*-Dopa Produktion^[166].

Abb. 4.23: Phosphoranaloga 52 und 53 des Bipyridins.

Einen weiteren chiralen Liganden konnte *Mathey* aus 1-Phosphanorbornadienen erhalten. Zentraler Schritt dieser Synthese ist die [1,5]-Umlagerung der Phosphole (Abb. 4.24)^[167].

Abb. 4.24: Synthese von BIPNOR^[167].

Die Trennung der Diasteromere gelingt durch Komplexierung mit PdCl₂ und anschließender Säulenchromotographie über Kieselgel.

Als kationischer Rh(I)-Komplex zeigt (-)BIPNOR ähnlich hohe Enantioselektivität, wie BINAP in der asymmetrischen Hydrierung von funktionalisierten Alkenen.

Breit konnte zeigen, dass die Phosphabenzole **54** und **55** (Abb. 4.25) aktive Spezies als Hydrierungskatalysator ausbilden. Das Phosphabenzol **55** weist in der regioselektiven Hydroformulierung von Styrol doppelt so hohe Aktivität auf wie der industriell eingesetzte Rh/PPh₃-Katalysator^[165].

Abb. 4.25: Phosphabenzol-Liganden.

Jüngste Entwicklungen zur tripodalen Ligandsynthese auf dem Gebiet der Bisalkylidenphosphane beinhalten ein aromatisches Grundgerüst, wie z. B. das 9,9'-Dimethylxanthen mit zwei substituierten Alkylidenphosphangruppen **56** (Abb. 4.26)^[168] und Liganden, die ein aromatisches Dibenzofuran/-thiophengerüst sowie zwei substituierte Phosphaneinheiten in 1,8-Position aufweisen **57**^[168]. Diese Liganden sind im Aufbau den in der Katalyse eingesetzten Xantphos-Komplexen ähnlich^[169,170].

Abb. 4.26: Die Bisalkylidenphosphane 56 und 57.

Des Weiteren konnten die Pyridinderivate **58** und **59** erfolgreich synthetisiert werden (Abb. 4.27)^[171].

Abb. 4.27: Liganden 58 und 59.

Im Gegensatz zu dem 2,6-Bis(phosphaalkenyl)-Liganden 6 von *Geoffroy*, zeichnet sich der Bisalkylidenphosphan-Ligand 59 dadurch aus, dass die P=C-Doppelbindung nicht mehr direkt am *C*-Brückenatom gebunden ist, sondern durch eine Methyleneinheit vom Heteroaromaten getrennt ist, was eine höhere Flexibilität des Liganden bedingt. Neben freier Drehbarkeit um den Methylenkohlenstoff ist durch das Einbringen der Trimethylsilylgruppen am Kohlenstoffatom der P=C-Doppelbindung eine geringere sterische Abschirmung des *"lone pairs"* des Phosphoratoms zu erwarten, die eine Metall-Koordination erleichtern sollte. Besonders hervorzuheben ist die gute Donor/Akzeptor-Fähigkeit der Trimethylsilylgruppen, die in der Lage sind, carbanionische Zentren zu stabilisieren^[172]. Der aus dem anionischen Makrozyklus 60 (Abb. 4.28) zugängliche neutrale Ligand 61 (Abb. 4.28) zeichnet sich durch

seine vielseitige Koordination an Übergangsmetalle aus^[173]. Wie jüngste Studien gezeigt haben erwies sich der Ru(II)-Komplex **62** als hocheffizienter Katalysator (Abb. 4.29) für die Hydrierung von Ketonen^[174].

Abb 4.28: Anionischer 60 und neutraler 61 Makrozyklus.

62

Abb. 4.29: Der Ru(II)-Komplex 62.

5 Zielsetzung

Ziel dieser Arbeit war es, aus dem Pyridinfragment sowie Aminoimino-, Methylenimino- und Aminomethylen-Bausteinen neuartige bi- oder polydentate Ligandensysteme vom Typ I bzw. II (Abb. 5.1) aufzubauen.

Abb. 5.1: Schematische Darstellung der Ligandsysteme.

Die Einführung weiterer N-Donorzentren in der Seitenkette (Abb. 5.2) gegenüber den Kohlenstoffanaloga **58** und **59** (Abb. 4. 28) sollte eine zusätzliche Funktionalisierung schaffen.

Abb. 5.2: Substitutionsmuster der N-Donorzentren.

Zentrale Fragestellungen galten hier dem Wechselspiel zwischen N- bzw. P-Koordination.

Ein Ziel war es Ligandsysteme zu entwickeln, die in der Lage waren, Komplexe zu bilden, deren Eigenschaften sich von den bisher bekannten signifikant unterschieden.

Weiterhin sollte geprüft werden, ob das System II durch Abspaltung entsprechender Reste Anionen (Abb. 5.3), ausbilden kann.

Abb. 5.3: Anionen III der Ligandsysteme II.

Einen weiteren Aspekt befasst sich mit der Frage inwieweit derartige Ligandsysteme zum Aufbau neuartiger Makrozyklen **IV** (Abb. 5.4) herangezogen werden können.

IV

Abb. 5.4: Schematischer Aufbau eines Makrocyclus **IV** (X = NR).

6 P-funktionalisiertes 2,6-Bismethylenpyridin

Aufbauend auf der Synthese des Bisalkylidenphosphans **59** wurde versucht, an der 2,6-Methylfunktion des Pyridins jeweils ein weiteres Pyridin als N-Donor einzuführen. Hierzu wurde ebenfalls als Ausgangsstoff das 2,6-Dimethylpyridin verwendet.

Für die Zwischenstufe der Lithium-Komplexe liefert die Aza-allyl Form den größten Beitrag zur Stabilisierung des anionischen Systems (s. Abb. 4.11).

6.1 Tripyridindimethan (TPDM)

Kürzlich wurde Pyridin als Substituent zur Stabilisierung des Picolyl-Anions beschrieben^[175], die zu polydentaten Chelat N-Donor-Liganden führte.

Der Schlüssel zum Erfolg dieser Synthese nach *Vedernikov* liegt in einer Variation der *Chichibabin*-Reaktion^[175a]. Durch nukleophile Substitution am elektrophilen Kohlenstoffatom in Position 2 oder 6 des Pyridinringes **63** mit Organolithium-Verbindungen **64** (Abb. 6.1) lassen sich gewünschten Kondensationsprodukte (2-Alkyl-, 2-Aryl-, 2,6-Dialkyl-, 2,6-Diaryl-substituierten Pyridine) erhalten. Die Reaktion wird durch den pk_a-Wert der eingesetzten Pyridine begrenzt. Der Unterschied des pk_a-Wertes der Reaktanden sollte nicht kleiner als 10 pk_a-Einheiten sein^[175a,c].

Ende 2004 wurde von *Dyker*^[175b] eine alternative Syntheseroute beschrieben, die wesentlich höhere Ausbeuten lieferte (> 90 %). Der Unterschied besteht in der Verwendung von in 2 bzw. 2,6- Position fluorierten Pyridinen.

Abb. 6.1: Synthese von Tripyridindimethan 65 (TPDM) nach Vedernikov^[175a].

Das TPDM-Molekül bildet ein stabiles Radikal-Anion, wie elektrochemische Untersuchungen zeigen (s. Kap. 14). Bei Raumtemperatur wird die Bildung des entsprechenden Dianions bei -2.2 V als reversibler Prozess beobachtet.

Aus Diethylether kristallisiert TPDM in Form gelber Einkristalle. Diese gehören dem orthorhombischen Kristallsystem und der Raumgruppe Pccn (No.56) an. Die Dimensionen der Elementarzelle betragen a = 1392.23(5) pm, b = 787.00(3) pm, c = 1250.30(5) pm mit $\alpha = \beta = \gamma = 90.0^{\circ}$. Abbildung 6.2 zeigt das stick und ball Modell.

Abb. 6.2: Molekülstruktur von TPDM im Festkörper. Wasserstoffatome der Heteroaromaten sind aus Gründen der Übersichtlichkeit vernachlässigt.

Die zentrale planare Pyridineinheit trägt zwei weitere Pyridine, die oberhalb bzw. unterhalb dieser Ebene angeordnet sind. Der Torsionswinkel des C6 zur Ebene N1-C2-C5 beträgt -82.2(11)°, das heißt, die terminalen Pyridine stehen nahezu senkrecht zur Ebene. Das Molekül ist drehsymmetrisch in der Achse N1/C4. Die Bindungslängen und Bindungswinkel der beiden Molekülhälften sind identisch (Tab. 2).

Bindung	Bindungslänge [pm]	Winkel	Bindungswinkel [°]
C2-C5	151.1(14)	N1-C2-C5	116.4(9)
C5-C6	151.1(17)	C2-C5-C6	111.7(9)
C2-N1	134.1(11)	N7-C6-C5	116.0(9)
C6-N7	134.2(15)		

 Tabelle 2: Ausgewählte Bindungslängen und Bindungswinkel im TPDM.

Durch Lithiierung der beiden Methylenbrücken in **65** und nachfolgender Umsetzung mit Chlormethylenphosphan (Abb. 6.3) wurde das 2,6-Bis-[2-pyridylmethyl-di-(trimethylsilyl)phosphaethen]-pyridin **66**, ein multidentater P,N-Donor mit zwei zusätzlichen N-Donorfunktionen gegenüber dem Ligand **59**, erhalten.

Abb. 6.3: Synthese von 66.

Die ³¹P-NMR-chemische Verschiebung von **66** zeigt, wie der Ligand **59**, zwei Signale bei 387.5 ppm und 386.5 ppm, was auf die asymmetrischen Kohlenstoffatome zurückzuführen ist (rac/meso). Die ¹³C-NMR-Signale zeigen eine ¹J_{PC} -Kopplungskonstante mit 57.0 Hz bei 64.0 ppm (CH) und die signifikante ¹J_{P=C}-Kopplungskonstante von 88.4 Hz bei 191.1 ppm. Diese Werte stimmen gut mit denen im Arbeitskreis *Niecke* hergestellten 2,6-Bis-(trimethylsilylmethyl)pyridin-methylenphosphanen überein^[171-173]. Verbindung **66** zeigt im CV bei -30° und -1,8 V die reversible Bildung eines Radikalanions und bei -1.93 V die Bildung des Dianions.

Strukturuntersuchungen von *Schleyer*^[176] am TMEDA stabilisierten 2,6-Bis(lithiumtrimethylsilylmethyl)pyridin (F) (Abb. 6.4), welches intermediär bei der Synthese von **59** entsteht, zeigen, dass zwei elektropositive Metalle zu einer Geometrie mit alternierender (C⁻/Li⁺/N⁻/Li⁺/C⁻)-Ladungsabfolge führen. Das Energieminimum wird dabei durch eine η^3 -Azaallyl-Koordination der Lithium-Kationen oberhalb bzw. unterhalb des Pyridinringes erreicht. Eine zusätzliche Stabilisierung der carbanionischen Zentren erfolgt durch die Silylgruppen durch Polarisation der C-Si-Bindung^[176].

F

Abb. 6.4: η³-Azaallyl-Koordination des Zwischenproduktes.

7 P-funktionalisierte Aminopyridine

Weitere Modifikationen von **59** betrafen die Einführung einer Aminogruppe anstelle der Methylenfunktion in 2,6-Position, sowie den Ersatz des Alkylidenphosphanrestes durch ein Iminophosphan. Es wurde schrittweise vorgegangen. Nach monosubstituierten Pyridinen wurden 2,6-Bis-substituierte-Spezies dargestellt. Im Folgenden werden die Reaktionen beschrieben, die hierzu durchgeführt wurden und die Ergebnisse diskutiert.

7.1 Synthesewege

Durch Lithiierung der entsprechenden Aminopyridinderivate 67a-c mit *n*-BuLi und nachfolgende Umsetzung mit Chlormethylenphosphan 19 bzw. Chloriminophosphan 22 werden die monosubstituierten Aminopyridine erhalten (Abb. 7.1).

Abb. 7.1: Reaktionswege zu monosubstituierten *P*-funktionalisierten Aminopyridinen.

Neben den vorgestellten monosubstitutierten Derivaten **68a, b, c** – **69a, b, c** standen tripodale 2,6-Bis-substituierte *P*-funktionalisierte Aminopyridine im Vordergrund der eigenen Untersuchungen. N,N'-Bis(diphenylphosphino)-2,6-diaminopyridine **30** sind durch Untersuchungen von $Haupt^{[138]}$ bekannt, der ebenfalls Untersuchungen zu ihrer Koordinationschemie durchgeführt hat.

Gegenüber dem Liganden **30** sollten Phosphorzentren in den 2,6-Bis-substituierten *P*-funktionalisierten Alkyliden- und Iminophosphanen eine gesteigerte Akzeptorfähigkeit aufweisen, die aus der Anwesenheit von zwei sp²-hybridisierten Phosphoratomen in einem $(p-p)\pi$ -System resultiert.

Wie in **30** stellt das in Position 1 sp²-hybridisierte Pyridin-N-Atom einen harten Donor dar und vervollständigt das hemilabile System. Durch den Aufbau hemilabiler Systeme wird eine unterschiedlich stabile Wechselwirkung zu Metallatomen bewirkt (vgl. Kapitel 4).

Zweifache Metallierung der Bisaminopyridine **70a-c**^[177] mit *n*-Butyllithium (Abb. 7.2) und nachfolgende Umsetzung mit Chlormethylenphosphan **19** liefern die 2,6-Bis(1-amino-2-phosphaethenyl)pyridine **71a-c**. Für das gelingen der Reaktion ist die Ausbildung eines stabilen Intermediates wichtig^[178], analog dem des auf Seite 50 beschriebenen Zwischenproduktes **F**. Während die Reaktion zur Bildung von **71a** praktisch quantitativ

abläuft, sinkt die Ausbeute in der Reihe 71a < 71b< 71c auf 25 %, was als Folge einer nicht hinreichenden Stabilisierung der intermediär gebildeten Dilithiokomplexe interpretiert werden kann. Die geringer Stabilisierung der Dianionen in Fall von R = Ph, Py erklärt möglicherweise das Fehlschlagen einer erfolgreichen Umsetzung mit Chloriminophosphan 22. So wurde nur das gewünschte 2,6-Bis(1-amino-3-iminophosphanyl)pyridin 72 erhalten. Das Reaktionsschema zeigt Abbildung 7.2.

Abb. 7.2: Darstellung der 2,6-Bis-P-substituierten-Aminopyridine.

8 Amino(imino)phosphane

8.1 NMR-chemische Verschiebung von Iminophosphanen

Die chemischen Verschiebungen der Vertreter dieser Substanzklasse werden maßgeblich vom paramagnetischen Beitrag zum Abschirmungstensor bestimmt, welcher in erster Näherung umgekehrt proportional zum HOMO/LUMO-Abstand ist^[103]. Bei einer Grenzorbitalabfolge $n(P)/\pi^*(P=N)$ bewirkt ein σ -Donor eine Anhebung des HOMO's und damit eine Entschirmung, während ein σ -Akzeptor und π -Donor durch eine Vergrößerung des HOMO/LUMO-Abstandes eine Abschirmung hervorrufen^[103]. Bezüglich der P=N-Doppelbindung treten *E/Z*-Konformere auf, von denen das *E*-Isomer energetisch günstigerer ist. Die Überführung der Isomere ineinander kann durch Inversion oder Rotation erfolgen, wobei die Inversion die geringere Energie erfordert^[179].

Die ³¹P-NMR-Resonanzen bekannter Iminophosphane liegen in einem weiten Bereich von $\delta = 787$ ppm für Mes*-N=P-Fe(CO)₂Cp*^[180] bis $\delta = 55$ ppm für Mes*-N=P-OSO₂CF₃^[99,181]. Für Iminophosphane mit Kohlenstoffsubstituenten des Typs R-P=N-R'(R, R'= Alkyl/Aryl) liegt der Bereich von ³¹P-NMR-Verschiebungen zwischen 335-520 ppm^[97,183,184,185]. Cp* substituierte Derivate zeigen eine signifikante Hochfeldverschiebung (294-138 ppm)^[182]. Durch die Einführung eines Aminosubstituenten an der Phosphorposition erfahren die ³¹P-NMR-chemischen Verschiebungen als Folge σ -Akzeptor, π -Donor-Funktion des Substituenten eine Hochfeldverschiebung (³¹P: 396-185 ppm^[182]), wobei *Z*-konfigurierte Iminophosphane gegenüber den *E*-Form eine stärkere Abschirmung erfahren (Tab. 3).

	R/R`	δ ³¹ P	17 f* 4*
	Mes*-N=PNRR`	[ppm]	Konfiguration
72	SiMe ₃ / PyN(SiMe ₃)P=NMes*	271	
69c	SiMe ₃ / PyN(H)SiMe ₃	270	
69a	SiMe ₃ / Py	251	
69b	Py / Py	228	
G ₁	SiMe ₃ / SiMe ₃	327	$E^{[186]}$
G ₂	SiMe ₃ [/] N(SiMe ₃) ₂	325	$E^{[187]}$
G ₃	Mes* / SiMe ₃	318	[185a]
G ₄	N(SiMe3) / ^t Bu	313	[185]
G ₅	H / Mes*	272	$E^{[188]}$
G ₆	H / ^t Bu	210	$Z^{[104]}$
G ₇	Ph / Ph	195	$Z^{[103]}$

 Tabelle 3: ³¹P-NMR-chemische Verschiebung von Amino(imino)phosphanen des Typs Mes*-N=PNRR`

Wird G_1 als Ausgangspunkt für die Betrachtung des Substituenteneinflusses am Aminostickstoff auf das ³¹P-NMR-Signal in Amino(imino)phosphanen genommen, so zeigt sich folgendes: Durch Substitution eines SiMe₃-Restes tritt immer eine Abschirmung des Phosphors auf. Monosubstitution mit sterisch anspruchsvollen Gruppen wie Mes* und ^{*t*}Bu zeigen einen geringen Abschirmungseffekt auf 318 bzw. 313 ppm. Dieser Effekt wird stärker, wenn weniger raumerfüllende Substituenten eingeführt werden. Bei Pyridinsubstitution erfährt der Phosphor eine Abschirmung auf 251 ppm (**69a**). Mit Donorgruppen substituiertes Pyridin schirmt hingegen weniger ab, 270 ppm für **69c**. Die zweifache Substitution mit Pyridyl (228 ppm, **69b**) oder Phenyl (195 ppm, **G**₇) zeigt, wie erwartet, noch größere Abschirmung des Phosphors.

Diese Werte zeigen den starken Einfluss der Substituenten basierend auf ihren sterischen (^{*t*}Bu, Mes*, SiMe₃) und elektronischen (Ph, Py, SiMe₃) Eigenschaften. Phenyl schirmt besser ab als Pyridin, da sein aromatisches System ein besserer Akzeptor ist, als das des Pyridins, welches über das "*lone pair"* des Stickstoffes noch Donoreigenschaften besitzt.

69a liegt in der Z-Konfiguration vor basierend auf den in der Literatur beschriebenen Kriterien von δ^{13} C-NMR für die (*o*-C^{Me}) < 32.2 ppm und ⁵J_{PC} > 1 Hz^[185a]. Für **69a** wurde eine entsprechende Verschiebung von 30.9 ppm und eine ⁵J_{PC} = 3.2 Hz beobachtet.

8.2 Einkristallstrukturanalyse von 72

Von 72 konnten aus Pentan rote, für eine Röntgenstrukturanalyse geeignete Einkristalle gewonnen werden. Abbildung 8.1 zeigt die Festkörperstruktur von 72. Die Kristalle gehören dem triklinischen Kristallsystem und der Raumgruppe P-1 (No.2) an. Die Dimensionen der Elementarzelle betragen a = 1124.86(7) pm, b = 1419.63(8) pm, c = 1710.67(12) pm mit $\alpha = 98.74(2)^{\circ}$, $\beta = 103.49(2)^{\circ}$ und $\gamma = 97.62(3)^{\circ}$.

Wie die Molekülstruktur von 72 zeigt, sind die Iminophosphanreste oberhalb bzw. unterhalb der Pyridinringebene angeordnet und stehen *trans* zueinander. Die Arylliganden stehen orthogonal zur NPN-Ebene, so dass keine Konjugation der jeweiligen π -Systeme möglich ist.

Die koplanaren NPNC-Einheiten zeigen eine lange P=N-Bindung und eine kurze PN-Einfachbindung.

Die Bindungslängen der PN_{Imin} -Bindungen betragen 156.2(2) pm (N3-P2) und 155.2(3) pm (N5-P1). Die Bindungsabstände (Tab. 4) in den PN_{Amino} Strukturelementen betragen für P2-N2 167.0(3) pm und für P1-N4 167.7(3) pm. Damit entsprechen diese Werte ungefähr denen, die in der Verbindung Mes*-N=P-NSiMe₃(NSiMe₃) (Tab. 5) beobachtet wurden.

Die Bindungswinkel (Tab. 4) zeigen, dass das Amino(imino)phosphan **72** in der *E*-Konfiguration vorliegt. Der Winkel (N3-P2-N2) ist mit 108.3(12)° etwas größer als der Winkel im (N4-P1-N5)-Fragment mit 107.2(13)°. Das Molekül ist nicht symmetrisch, da der Winkel P1-N5-Mes* mit 122.4°(19) um 7.5° gegenüber dem Winkel P2-N3-Mes* erweitert ist. Dies findet sich alternierend in den Winkeln des P-N-Gerüstes wieder: \angle N4-P1-N5 ist um 1.1° kleiner als der \angle N2-P2-N3 und der \angle N1-C6-N4 ist um 1.7° größer als der \angle N1-C2-N2. Eine Erklärung liegt in der größeren Wechselwirkung des "*lone pairs*" am P1 mit den *tert.*-Butylgruppen des Mes*.

Abb. 8.1: Molekülstruktur von 72 im Festkörper. Wasserstoffatome sind aus Gründen der Übersichtlichkeit vernachlässigt.

Bindung	Bindungslänge [pm]	Winkel	Bindungswinkel [°]
N3-P2	156.2 (2)	N3-P2-N2	108.3 (12)
P2-N2	167.0 (3)	N4-P1-N5	107.2 (13)
N4-P1	167.7 (3)	P2-N3-CMes*	115.9 (19)
P1-N5	155.2 (3)	P1-N5-CMes*	122.4 (19)
N2-C2	144.2 (3)	N2-C2-N1	115.4 (2)
N4-C6	144.2 (3)	N1-C6-N4	117.1 (2)

 Tabelle 4: Ausgewählte Bindungslängen und Winkel von Verbindung 72.

Theoretische Berechnungen am Stammsystem, $HN=P-NH_2$, zeigen, dass die *E*-Form geringfügig ($\Delta E = 4,2 \text{ kJ/mol}$) stabiler ist als die isomere *Z*-Form. In Übereinstimmung damit liegt der überwiegende Teil der strukturell charakterisierten Amino(imino)phosphane in der *E*-Konfiguration vor^[101,102]. Im Fall der *NH*-funktionellen Iminophosphane gelang die Synthese von Amino(imino)phosphanen mit sterisch weniger anspruchsvollen Aminogruppen, die laut Röntgenstrukturanalyse in der die *Z*-Form vorliegen (Tab. 5).

Ein Vergleich der PN-Bindungslängen von E/Z-Isomeren zeigt, dass sich bei vergleichbarer *N*-Substitution die P-N_{imin} und P-N_{amin} Bindungslängen im *E*-Isomer annähert, was auf eine Erhöhung der Heteroallylanion Wechselwirkung zurückgeführt werden kann.

	P=N	P-N	E-N=P	N-P=N	C-N-P	Konfiguration
	[pm]	[pm]	[°]	[°]	[°]	
H-N=P-NH ₂	153.6	164.8	113.6	104.7		E
H-N=P-NH ₂	152.4	166.5	124.5	111.5		Ζ
R/R′			Mes	*-N=P-NRF	κ ′	
H, Mes*	157.6	161.3	127.0	104.1	127.3	$E^{[188]}$
SiMe ₃ , SiMe ₃	156.6	166.8	117.6	109.3		$E^{[186]}$
SiMe ₃ ,N(SiMe ₃) ₂	155.8	167.3	115.3	107.3		E ^[187]
H, ^t Bu	154.5	163.2	128.0	110.4	130.3	$Z^{[104]}$
Ph, Ph	151.1	170.9	151.6	117.6		$Z^{[103]}$
72	156.2	167.0	122.4	108.3	117.1	E
12	155.2	167.7	115.9	107.2	115.4	E

Tabelle 5: Ausgewählte Bindungslängen und Winkel von Amino(imino)phosphanen des TypsMes*-N=P-NRR' und des Stammsystems H-N=PNH2^[*] im Vergleich zu 72.

^[*] Theoretische Berechnungen^[101]

8.3 Festkörper- und Tieftemperatur-NMR-Untersuchungen von 72

Untersuchungen zur Konformationsisomerie von Molekülen mit zwei Amino(imino)phosphan Einheiten sind rar. Für Verbindung **72** lässt sich bei Raumtemperatur nur ein einziges Singulett-Signal im ³¹P-NMR-Spektrum

 $(\delta = 270.8 \text{ ppm})$ beobachten (Abb. 8.2). *Detsch* konnte zeigen, dass symmetrisch substituierte 1,3,5-Triaza-2,4-diphospha-1,4-pentadiene ebenfalls nur ein scharfes Singulett im ³¹P-NMR-Spektrum aufweisen. Ausschließlich im Fall der mesitylsubstituierten Verbindung erfolgte im ³¹P-NMR-Tieftemperatur-Experiment

Abb. 8.2: ³¹P-NMR-Spektrum von **72**.

eine Aufspaltung in zwei Singuletts ($\delta = 308/236 \text{ ppm}$)^[103]. Die NMR-spektroskopische Äquivalenz der Mes*NP-Fragmente bei Raumtemperatur ist durch einen gekoppelten Rotations-Inversions-Mechanismus zu verstehen (Abb. 8.3).

Abb. 8.3: Rotations- und Inversions-Mechanismus.

Eine für das Amino(imino)phosphan **72** durchgeführte Tieftemperaturmessung (Abb. 8.4) zeigt diese Aufspaltung des Singulett-Signals bei -60 °C.

Abb. 8.4: ³¹P-NMR-Tieftemperaturmessung von 72.

Die Festkörper-NMR-Messung liefert zwei Signale für **72** bei 289 und 301 ppm. Diese Werte korrelieren gut mit der in der Struktur beobachteten *E/E*-exo/exo Anordnung.

Unter der Annahme, dass **72** wie die symmetrisch substituierten 1,3,5-Triaza-2,4-diphospha-1,4-pentadiene^[103,105] in Lösung in der *S*-Form vorliegt, zeigt Abbildung 8.5 jeweils ein Beispiel für die *N*-Inversion bzw. *N*-Rotation mit den jeweiligen Konfomeren:

Abb. 8.5: Eingefrorene Konformere von 72.

In Lösung beobachtet man bei Raumtemperatur ein Signal bei 271 ppm im ³¹P-NMR-Spektrum. Wird die Lösung sukzessive auf - 80° C abgekühlt, fallen die Signale bei der Koaleszenztemperatur von ca. - 40° C zusammen. Bei - 80° C zeigt das Spektrum drei Signale bei 310 ppm, 256 ppm und 236 ppm für die eingefrorenen Konformere.

Das im Festkörper vorliegende E/E-Konformer kann in Lösung nicht beobachtet werden.

Das Z/Z-endo/endo-Konformer des Liganden 72 (**B**) liegt mit einer ³¹P-NMR-Verschiebung von 236 ppm im Bereich Z-konfigurierter Amino(imino)phosphane (Tab. 5). Die ³¹P-NMR-Verschiebung von 310 ppm entspricht dem E/E-exo/endo-Konfomer (**A**). Das Signal bei 256 ppm wird einem Z/E-Rotamer zugeordnet. Nicht alle Rotations- und Inversionsisomere können im Spektrum bei - 80° C eingefroren werden bzw. die Signale fallen übereinander, was an den Schultern der jeweiligen Signale ersichtlich ist.

8.4 Umsetzungen mit Nickeltetracarbonyl

Die Umsetzung von 72 mit zwei Äquivalenten Ni(CO)₄ resultiert in einem neuartigen Bisnickelkomplex 73 (Abb. 8.6).

Abb. 8.6: Reaktion von 72 mit Ni(CO)₄.

Die ³¹P-NMR-Verschiebung liegt bei 303.4 ppm und damit lediglich ca. 30 ppm tiefer als im Edukt **72**. Das Resonanzsignal im für Iminophosphane typischen Tieffeldbereich spricht dafür, dass eine η^1 -Koordination des Metallfragments vorliegt. Die Carbonylresonanzen, die keine Wechselwirkung mit den Phosphoratomen zeigen, werden im ¹³C-NMR-Spektrum bei 189.7 ppm und 190.3 ppm beobachtet. und liegen damit im Erwartungsbereich für Ni(CO)₃-Komplexe^[189a].

Vom Bisnickelkomplex **73** konnten aus Toluol gelbe, für die Röntgeneinkristallstrukturanalyse geeignete Kristalle gewonnen werden^[190]. Abbildung 8.7 zeigt die Molekülstruktur im Festkörper von **73** als stick and ball Ansicht. Die Kristalle gehören dem monoklinischen Kristallsystem und der Raumgruppe P-1 21/n1 (No.14) an. Die Dimensionen der Elementarzelle betragen a = 1014.11(2) pm, b = 2087.70(6) pm, c = 3072.08(9) pm mit β = 95.75(0)°.

Wie in **72** liegen die Iminophosphansubstituenten ober- und unterhalb der Ebene des zentralen Pyridins, wobei die beiden Phosphoratome im Komplex **73** jeweils ein Nickeltricarbonylfragment tragen. Die Substituenten stehen *trans* zueinander. Die Nickelatome sind tetraedrisch von einem Phosphoratom und drei Carbonylgruppen umgeben. Der Tetraeder ist leicht verzerrt. Die Arylliganden stehen orthogonal zur NPN-Ebene.

Die Bindungslängen (Tab. 6) im Bisnickelkomplex **73** sind denen vom Edukt **72** vergleichbar. Der Bindungsabstand N3-P1 und N2-P2 beträgt 167.1 pm, P1-N5 und P2-N4 beträgt 155.5/155.4 pm. Gegenüber dem Edukt **72** ist die Abweichung in den einzelnen Bindungsabständen der Iminophosphane noch geringer geworden. Das Nickelatom ist mit 215.6 pm (P1-Ni1) respektive 215,2 pm (P2-Ni2) vom jeweiligen Phosphor-Atom gleich weit entfernt und der gemessene Abstand liegt im Rahmen der bisher beobachteten Werte für diese Elementkombination. Dies trifft auch auf den mittleren Bindungsabstand der CO-Bindungen zu der mit 181.4 pm ermittelt wurde^[189b].

Abb. 8.7: Molekülstruktur des Bisnickelkomplexes 73 im Festkörper. Wasserstoffatome sind aus Gründen der Übersichtlichkeit vernachlässigt.

Die Röntgenstrukturanalyse zeigt weiter, dass die Unterschiede der Bindungswinkel (Tab. 6) in den Iminophosphansubstituenten kleiner als im nicht komplexierten Liganden sind, so z. B. beim \angle NPN mit 106.3° bzw. 106.8°. Der Winkel vom Iminostickstoff zum Metallfragment liegt für N5-P1-Ni1 bei 129.7° und für N4-P2-Ni2 bei 130.6°. Die Winkelsumme an beiden Phosphoratomen beträgt ~ 360° und zeigt die Planarität. Durch die Komplexierung des Metallfragmentes wird der Einfluss des *"lone pairs"* auf die Molekülstruktur aufgehoben. Das Nickeltricarbonyfragment selbst ist nicht so raumerfüllend, dass es zu einer Verzerrung der Molekülstruktur des Liganden kommt, was im Folgenden gezeigt wird.

Bindung	Bindungslänge [pm]	Winkel	Bindungswinkel[°]
Ni2-P2	215,2	N4-P2-N2	106,3
N4-P2	155,4	N3-P1-N5	106,8
P2-N2	167,1	N2-P2-Ni2	122,7
N3-P1	167,0	N3-P1-Ni1	123,3
P1-N5	155,5	N4-P2-Ni2	130,6
P1-Ni1	215,6	N5-P1-Ni1	129,7

 Tabelle 6: Bindungslängen und –winkel in Verbindung 73.

Werden die reduzierten Kristallstrukturen des Eduktes 72 und die des Bisnickelkomplex 73 in der Ebene des Pyridinringes projiziert, zeigt sich, dass die Nickeltricarbonyl-Fragmente die zentrale Geometrie des Eduktes 72 nur marginal verändern. Dies zeigt sich eindeutig bei einer Spiegelung der Verbindung 73 in der Ebene des Pyridins, bei der sich die Geometrie der Strukturen einander annähert (Abb. 8.8). Der Unterschied besteht in der Stellung der Phosphoratome die über die Torsionswinkel definiert wird (Tab. 7).

 Tabelle 7: Torsionswinkel in Verbindung 72 und 73

Ebene	72	73
N1-C6-N3-P1	-98.4	64.21
N1-C2-N2-P2	-115.2	64.6

Abb. 8.8: 73 gespiegelt an der Pyridinebene, ohne ^{t-}Bu-Gruppen.

Auf entsprechende Weise wird durch Reaktion des monosubstituierten Amino(imino)phosphans **69a** mit einem Äquivalent Nickeltetracarbonyl (Abb. 8.9) der Nickelkomplex **74** erhalten.

Abb. 8.9: Reaktion von 69a mit Ni(CO)₄ zu Komplex 74.

Die Verbindung 74 zeigt im ³¹P-NMR-Spektrum eine Phosphor-Verschiebung bei 303.7 ppm (³¹P-NMR-Verschiebung für **69a**: 251 ppm) und im ¹³C-NMR-Spektrum Signale zwischen 190 - 191 ppm für die Carbonyl-Kohlenstoff-Atome. Diese Werte zeigen eine gute Übereinstimmung mit den vergleichbaren Daten des Bisnickelkomplexes **73**.

9 Aminomethylenphosphane

Das Verhältnis von *E-/Z*-Isomeren in Aminomethylenphosphanen wird durch das Substitutionsmuster am Kohlenstoffatom sowie durch die Art der Substituenten am Phosphorzentrum bestimmt. Das zentrale (-P=C<)-Strukturelement besitz eine planare Geometrie. Substituenten am *P/C*-Atom mit freien Elektronenpaaren, wie z. B. N< Gruppen, sind bei coplanarer Anordnung zu einer π -Konjugation mit der P=C-Doppelbindung in der Lage. Dieser Effekt wird durch eine *push-pull*-Substitution (>N/SiMe₃) weiter verstärkt. Zudem bestimmen die elektronischen Eigenschaften der Substituenten die chemischen Verschiebungen von Alkylidenphosphanen. Diese variieren im ³¹P-NMR-Spektrum von -100^[191] bis 740 ppm^[192]. σ -Akzeptor/ π -Donor-Liganden bewirken eine Hochfeld- und π -Akzeptor/ σ -Donor-Liganden eine Tieffeld-Verschiebung. Die ³¹P-NMR-Werte von
Alkylidenphosphanen des Typs $(SiMe_3)_2C=P-NR^1R^2$ liegen im Bereich von 300 - 400 ppm^[89] (Tab. 8). Neben diesen typischen Verschiebungswerten für Aminoalkylidenphosphane stellt die ¹J_{PC}-Kopplungskonstante im ¹³C-NMR-Spektrum mit 70-95 Hz ein weiteres signifikantes Merkmal für die P=C-Bindung dar^[89].

Die ³¹P-NMR-Verschiebungen in dieser Arbeit beschriebenen Alkylidenphosphane (s. Tab. 8) liegen im Bereich für Aminoalkylidenphosphane^[101].

Für die ¹³C-NMR-chemische Verschiebungen werden für **68a** – **68c** und **71a** – **71c** Werte im Tieffeldbereich beobachtet, die für eine orthogonale Anordnung des planaren Amingerüst bezüglich des PC- π -Systems sprechen. Zumindest zeigen Amino(imino)phosphane mit bislang untersuchter coplanarer Anordnung der Aminogruppe um ca. 50 ppm Hochfeld verschobene ¹³C-NMR-Resonanzsignale^[89].

Diese Interpretation wird auch durch die ³¹P-NMR-Spektren mit Verschiebungen > 330 ppm untermauert. Die Substituenten-Einflüsse auf die ¹J_{PC}-Kopplungskonstante sind gering. Verbindungen mit SiMe₃-Gruppen (**68a**, **68c**, **71a**) am Aminostickstoff zeigen Kopplungskonstanten um 90 Hz. Fehlt die SiMe₃-Gruppe (**68b**, **71b**, **71c**) sinkt dieser Wert auf < 86 Hz.

	(SiMe ₃) ₂ C=P-NR ¹ R ²			δ ¹³ C	¹ J _{PC}	Literatur
				[ppm]	[Hz]	
	R^1	\mathbb{R}^2				
71a	SiMe ₃	$PyN(R^1)PC(SiMe_3)_2$	358.5	184.8	91.2	diese Arbeit
71b	Ph	$PyN(R^1)PC(SiMe_3)_2$	345.5	173.8	83.0	>>
71c	Ру	$PyN(R^1)PC(SiMe_3)_2$	340.9	170.1	85.3	>>
68c	SiMe ₃	PyNHSiMe ₃	362.3	182.5	91.2	>>
68a	SiMe ₃	Ру	350.1	185.8	90.8	>>
68b	Ру	Ру	341.0	169.0	85.4	"
	Н	^t Bu	306.7	128.8	70.6	[89]
	Н	SiMe ₃	322.8	139.9	75.5	[89]
	Et	Et	328.8	129.0	79.9	[89]
	ⁱ Pr	ⁱ Pr	309.4	125.5	83.1	[89]
	^t Bu	SiMe ₃	391.3	182.8	-	[89]
	SiMe ₃	SiMe ₃	384.0	187.5	-	[89]

Tabelle 8: ³¹P- und ¹³C-NMR-Daten von *push/pull* substituierten Alkylidenphosphanen.

9.1 Tieftemperatur-NMR-Untersuchungen von 71a

Für das Bisalkylidenphosphans **71a** wird bei Raumtemperatur ein Resonanzsignal im ³¹P-NMR-Spektrum bei 360 ppm beobachtet. (Abb. 9.1). Dieses spaltet, wie durch temperaturabhängige Untersuchungen im Bereich 25 °C < T > - 80° C gezeigt werden konnte, in zwei Signallagen δ = 364. 0 und 347.8 ppm auf (Abb. 9.1).

Abb. 9.1: ³¹P-NMR-Tieftemperaturmessung von 71a.

Beide *C*-Atome tragen identische Substituenten und eine E/Z-Isomerie wirkt sich daher im ³¹P-NMR-Spektrum nicht aus. Eine PN-Konjugation kann aufgrund der Tieffeldlage des ³¹P-NMR-Signals ausgeschlossen werden. Bei -60° ist die Koaleszenztemperatur erreicht und bei -70° wird die Rotation um die C-N-Bindung eingefroren. Daraus resultieren zwei ³¹P-NMR chemische Verschiebungen für die *S*-Form (Abb. 9.2) des Moleküls **71a**.

Abb. 9.2: S-Form von 71a.

9.2 Einkristallstrukturanalyse von 71a

Im Fall des Alkylidenphosphans, Mes*-P=CH-Ph^[193,194] gelang es sowohl das *E*-Konformer als auch das *Z*-Konformer röntgenkristallographisch zu charakterisieren. Die gegenseitige Umwandlung beider Isomere wird durch eine hohe Energiebarriere erschwert^[195].

Das Alkylidenphosphan **71a** konnte aus Pentan in Form gelber Kristalle isoliert werden. Die Kristalle gehören dem triklinischen Kristallsystem und der Raumgruppe P-1 (No.2) an. Die Dimensionen der Elementarzelle betragen a = 910.19(3) pm, b = 1348.47(4) pm, c = 1691.18(5) pm mit α = 107.23(2)°, β = 100.18(2)° und γ = 92.18(2)°. Die Molekülstruktur im Festkörper von **71a** als stick and ball zeigt Abb. 9.3.

Die Molekülstruktur im Festkörper liegt in der *S*-Form vor. Die Stickstoffatome des Pyridins und der Substituenten liegen in einer Ebene, in der gleichen liegen auch die Phosphoratome. Die Kohlenstoffatome der P=C-Doppelbindungen liegen jeweils ober- bzw. unterhalb dieser Ebene. Das P=CSi₂-Skelett ist planar und die P=C-Bindungslänge liegt mit 165.6 bzw. 166.1 pm (Tab. 9) im Bereich bekannter Alkylidenphosphane^[50].

Die jeweiligen Bindungsabstände der Aminostickstoff-Atome N2 bzw. N3 zu ihren P1-/P2-Bindungspartnern mit 175.8(2) pm (P1-N2) bzw. 174.3(2) pm (P2-N3) liegen im Bereich für aminosubstituierte Alkylidenphosphane^[50].

Abb. 9.3: Molekülstruktur im Festkörper von 71a. Wasserstoffatome sind nicht angegeben.

Die Bindungswinkel (Tab. 9) an den Atomen P2 bzw. P1 sind mit 108.8(12)° (C1-P1-N2) bzw. 108.9° (C2-P2-N3) identisch. Im Gegensatz dazu unterscheiden sich die Winkel an den Aminostickstoffatomen N2 und N3 deutlich voneinander [(C3-N2-P1) 117.7(16)° und (C4-N3-P2) 122.9(17)°]. Dies kann auf die sterische Hinderung durch die Trimethylsilylgruppen zurückgeführt werden.

Bindung	Bindungslänge [pm]	Winkel	Bindungswinkel [°]
C4-N3	139.1(3)	N3-P2-C2	108.9(12)
N3-P2	174.3(2)	P2-C2-Si6	110.9(14)
P2-C2	166.1(3)	P2-C2-Si5	129.0(14)
C2-Si6	189.8(2)	C4-N3-P2	122.9(17)
C2-Si5	188.2(3)	C3-N2-P1	117.7(16)
C3-N2	141.1(3)	N2-P1-C1	108.8(12)
N2-P1	175.8(2)	P1-C1-Si2	129.3(16)
P1-C1	165.6(3)	P1-C1-Si3	111.7(15)

Tabelle 9: Ausgewählte Bindungswinkel und Bindungslängen von 71a.

In Abbildung 9.4 sind die mittleren Bindungslängen von 71a und 72 im Festkörper zum Vergleich angegeben. Im Falle der NPNC-Anordnung wird kurze P-N-Einfach und eine lange P=N-Doppelbindung erhalten. Dies wird durch die koplanare Anordnung hervorgerufen.

Im Fall der CPNC-Anordnung findet sich eine lange P-N-Einfachbindung mit einer normalen P=C-Doppelbindung und einer kurzen N-C-Bindung. Letztere steht nicht in Konkurrenz mit dem P=C-System. Die Anordnung ist in diesem Fall nicht koplanar. Die P=C-Einheit steht orthogonal zur Aminogruppe und eine Konjugation findet nicht statt. Dies gilt auch für das Iminophosphan.

Abb. 9.4: Mittlere Bindungsabstände in den Verbindungen 71a und 72.

9.3 Umsetzung mit 1,5 Bisnickel-(0)-cyclooctadien

Die Umsetzung des Bisalkylidenphosphans **71a** mit einem Äquivalent Ni(COD)₂ liefert als Hauptprodukt eine Verbindung die sich im ³¹P-NMR-Spektrum durch ein Signal bei $\delta = 214$ ppm äußert. Die Koordination des NiCOD-Fragmentes setzt die Elektronendichte im bindenden π -Orbital herab. Die Rückbindung in das π^* -Orbital verlängert die P=C-Bindung^[128].

Abb. 9.5: Bildung des Ni(COD)-Komplexes 75.

Die Hochfeldverschiebung von ca. 150 ppm gegenüber dem Edukt (360 ppm) ist in Übereinstimmung mit einer π -Koordination des Ni-Fragmentes. Ni(COD)₂ sollte demzufolge unter Verlust eines COD-Liganden (Abb. 9.5) sich umgesetzt haben. So zeigt das ¹H-NMR-Spektrum die charakteristischen Signale des verbleibenden COD-Liganden bei 2.2 (CH₂) und 5.5 ppm (CH)^[189a].

Im ¹³C-NMR-Spektrum des Komplexes ist das Signal der Methylen-*C*-Atome gegenüber **71a** um 22 ppm zu hohem Feld verschoben (**71a**: δ = 184 ppm vs. **75**: δ = 162 ppm). Weiterhin wird eine drastische Änderung der ¹J_{PC}-Kopplungskonstante von 91.2 Hz (**71a**) auf 290 Hz (**75**) beobachtet, die den Verlust des "freien Elektronenpaars" am Phosphor anzeigt. Die ¹³C-NMR-Signale des COD-Liganden weisen eine Kopplungskonstante zu den beiden P-Atomen von **71a** auf. So sind die CH₂-Gruppen (δ = 19.5 ppm) zu einem Septett mit einer ³J_{PC}-Kopplungskonstante von 19.2 Hz aufgespalten. Für die CH-Gruppen finden sich im ¹³C-NMR-Spektrum drei Signale, die bei 127.9 ppm (t, ²J_{PC} = 23.8 Hz), 127.01 ppm (t, ²J_{PC} = 24.0 Hz) und 124.2 ppm (t, ²J_{PC} = 24.3 Hz) liegen. Die Triplettstruktur zeigt, dass beide P-Atome koppeln und zwar mit gleicher Kopplungskonstante.

9.4 Umsetzung mit Nickeltetracarbonyl

Die Umsetzung des monosubstituierten *P*-funktionalisierten Alkylidenphosphans **68a** mit Nickeltetracarbonyl liefert entsprechend den Erwartungen den Komplex **76** (Abb. 9.6).

Abb. 9.6: Bildung des Nickelcarbonylkomplexes 76.

Das ³¹P-NMR-Signal des Komplexes **76** ist mit 113.2 ppm um ca. 240 ppm zum hohem Feld verschoben. Die ¹³C-NMR-Resonanzen der Carbonylsignale liegen bei 203.0 ppm (${}^{2}J_{PC} = 6.8 \text{ Hz}$) und 193.0 ppm (${}^{2}J_{PC} = 11.3 \text{ Hz}$). Das ¹³C-NMR-Spektrum des Edukts **68a** zeigt eine chemische Verschiebung von 185.9 ppm mit einer ${}^{1}J_{PC}$ -Kopplungskonstante von 90.8 Hz. Die beobachtete Hochfeldverschiebung beim Übergang von **68a** nach **76** ist in Übereinstimmung mit der π -Koordination des Ni-Fragments. Diese wird im Komplex **76** bei 66.6 ppm (${}^{1}J_{PC} = 121.9 \text{ Hz}$) beobachtet. Die Trimethylsilylgruppen zeigen drei Resonanzsignale, die als Folge einer ${}^{3}J_{PC}$ -Wechselwirkung eine Duplettstruktur zeigen.

Im ¹H-NMR-Spektrum von **76** zeigen sich aufgrund der Komplexierung deutliche Einflüsse auf die Verschiebungen der Protonen am Pyridinring und der Trimethylsilylgruppen. Die Trimethylsilylgruppen werden um 0.1-0.2 ppm hochfeld verschoben. Im Pyridinring zeigen insbesondere die Protonen an C3 und C5 Hochfeldverschiebungen von 0.5 und 0.4 ppm.

Eine mit 76 vergleichbare Molekülstruktur zeigt der Komplex 77 (Abb. 9.7). Die ³¹P-, ¹³C-NMR-chemischen Verschiebungen (77: ³¹P-NMR: $\delta = 91.5$ ppm; ¹³C-NMR $\delta = 58.1$ ppm, ¹J_{PC} = 56.3 Hz)^[171] sind denen von 76 sehr ähnlich.

77

Abb. 9.7: Nickeldicarbonylkomplex 77.

9.5 Kupplungsreaktionen

Wie kürzlich gezeigt eignen sich tripodale Alkylidenphosphane zum Aufbau neuartiger PN-Cavitanden, die durch eine Templatsynthese realisiert werden konnten^[171-173]. Hierbei handelt es sich um die Kupplungsreaktion zwischen zwei geometrisch fixierten carbanionischen Zentren I_a und zwei elektrophilen Phosphor(III)-Donorzentren II_a (in Form von zwei spezifisch verknüpften Methylenphosphaneinheiten) sowie deren nachfolgende Umwandlung in den metallfreien, neutralen Makrozyklus IV_a^[172] (Abb. 9.8).

Abb. 9.8: Konzept der Synthese von Makrozyklen mit P,N-Donor.

Die erfolgreiche Makrozyklen Synthese von *Ekici*^[172] stimulierte durch Umsetzung von 2,6-Dilithiomethyl-pyridin **78** und 2,6-Bis(1-amino-2-phosphaethenyl)pyridin **71a** einen neuen Makrozyklus **79** aufzubauen.

Die Reaktion verläuft indes unter Spaltung die P-N-Bindungen von **71a** (Abb. 9.9) und einer Übertragung der beiden $P=C(SiMe_3)_2$ -Einheiten auf das 2,6-Dilithiomethylpyridin **78** unter Bildung des bekannten Bis(methylenphosphan)-Bausteins **59**^[171-173]. Diese Verbindung kann in Form eines rac/meso-Gemisches durch ³¹P-NMR-spektroskopische Untersuchungen mit Signalen bei 399.1/401.2 ppm zweifelsfrei identifiziert werden. Die ³¹P-NMR-Untersuchungen zeigen ferner, dass bei dieser Reaktion der bereits beschriebene Makrozyklus **60** in geringen Mengen als Nebenprodukt entsteht^[171-173].

Abb. 9.9: Reaktionsprodukte 59 und 60.

Dieses Reaktionsverhalten lässt sich dadurch erklären, dass durch den positiv polarisierten Phosphor in **71a** durch Lithiumaustausch mit dem Carbanion **78** bevorzugt **59** gebildet wird, welches im Verlauf der Reaktion in zunehmender Konzentration vorliegt. Deswegen kann daraus mit **78** in geringen Mengen **60** entstehen.

9.6 Bildung eines neuen 1-Aza-2-phosphaallyl-Anions

Wird anstelle des 2,6-Dilithiomethylpyridins **78** das 2,6-Dilithioaminopyridin **80** als Templat verwendet, um gegebenenfalls eine Spaltung der P-N Bindung zu verhindern, wird ein anderer Reaktionsweg eingeschlagen (Abb. 9.10).

Abb. 9.10: Bildung des 1-Aza-2-phophaallylanions 81.

Auch in diesem Falle wird die Bildung des gewünschten P_2N_6 -Cavitanden nicht beobachtet. Stattdessen entsteht in glatter Reaktion der Lithiumkomplex eines 1-Aza-2-phosphaallylsystem **81** (Abb. 9.10). Der Unterschied zwischen **81** und dem im Kapitel 10 beschriebenen 1-Aza-2-phospha-allylsystem **93** ist der inverse Aufbau der Heteroallyleinheit (Py)C-P-N in **93** und (Py)N-P-C in **81**. Bei der Synthese des 2,11-Diphospha[3,3]-(2,6)pyridinophans **60** kann ebenfalls die Bildung eines Lithium-2-Phosphaallyanions **82** beobachtet werden^[172], was auf die Anwesenheit von Donor-Solventien zurückgeführt wurde^[196].

Ein denkbarer Reaktionsverlauf bei der Bildung von **81** ist im ersten Schritt ein Angriff des 2,6-Dilithioaminopyridins **80** am positiv polarisierten Phosphor-(III)-atom des Alkylidenphosphans **71a**. Nachfolgend kommt es zur Spaltung einer P-N-Bindung unter gleichzeitiger Neuausbildung einer anderen P-N Bindung. Abschließend kommt es zu einer Silylwanderung und dem Ladungsausgleich (Abb. 9.11).

Abb. 9.11: Vorgeschlagener Reaktionsmechanismus zur Bildung von 81.

Im ³¹P-NMR-Spektrum wird ein Singulett-Signal bei 372.1 ppm für das Anion **81** beobachtet. Dies ist gegenüber dem Bisalkylidenphosphan **71a** um 13 ppm zum tiefen Feld verschoben. Im ¹H-NMR-Spektrum wird die Äquivalenz der Pyridin H3/H5, die im Edukt **71a** bei 6.3 ppm vorliegt, aufgehoben. Für das Heteroallylanion **81** wird die ¹H-Resonanz für H3 bei 5.9 ppm und für H5 bei 6.5 ppm gefunden. Das ¹³C-NMR-Spektrum von **81** zeigt die signifikante P=C-Resonanz bei 144.2 ppm mit einer ¹J_{PC}-Kopplungskonstante von 66.3 Hz. Im Edukt **71a** liegt dieser Wert bei 184.8 ppm mit einer ¹J_{PC} -Kopplungskonstante von 91.2 Hz.

Für das Heteroallylanion **81** lassen sich unterschiedliche Grenzformeln (Abb. 9.12) diskutieren^[143,168,171,197-203].

Ergebnisse und Diskussion

Abb. 9.12: Mesomere Grenzformeln für 81.

Eine röntgenkristallographische Untersuchung konnte Aufschluss darüber geben, welche der Grenzstrukturen im Festkörper vorliegt.

9.7 Einkristallstruktur von 81

Vom 1-Aza-2-phosphaallylanion **81** konnten aus Diethylether röntgenkristallographisch verwertbare Kristalle erhalten werden. Die Kristalle gehören dem triklinischen Kristallsystem und der Raumgruppe P-1 (No.2) an. Die Dimensionen der Elementarzelle betragen $a = 991.74(3) \text{ pm}, b = 1290.68(3) \text{ pm}, c = 1496.68(5) \text{ pm} \text{ mit } \alpha = 106.65(2)^{\circ}, \beta = 102.52(2)^{\circ}$ und $\gamma = 95.68(2)^{\circ}$. Abbildung 9.13 zeigt die Festkörperstruktur von **81** als Lithiumkomplex. Im Festkörper wird das Lithiumatom durch die beiden TMEDA-Stickstoffe, den Pyridinstickstoff und den allylischen Stickstoff koordiniert. Die beiden letzteren bilden mit dem Lithiumatom einen planaren Vierring aus. Die planare Struktur des Liganden ist die Vorraussetzung für die Ausbildung eines delokalisierten 4e-3z-p\pi-Systems.

Werden die Bindungslängen (Tab. 10) von **81** mit Bis(amino)methylenphosphanpyridin **71a** verglichen, erkennt man, dass die P=C-Bindung in **81** (d(P1-C8) = 167.9(2) pm) gegenüber **71a** (d(P-C = 166.1 bzw. 165.8 pm) nur wenig verlängert ist. An der im Vergleich zu **71a**

drastisch verkürzten P1-N2-Bindung in **81** (164.9(17) pm gegenüber 176.4 pm in **71a**) lässt sich der allylanionische Charakter der Verbindung **81** erkennen. Die Bindungslänge von N2 zum Pyridinkohlenstoff in **81** ist ca. 3 pm kürzer als in Verbindung **71a**. Auch das bestärkt die Annahme des allylanionischen Charakters. Die Bindungsabstände des Lithium-Ions zum Stickstoffatom des Pyridinringes (212.8(4) pm) und zum Aminostickstoffatom (202.8(4) pm) liegen in etwa im Bereich des Dilithiumheteroallyl-Systems **97** mit 206.9 pm/203.0 pm (vgl. Kapitel 10). Zusätzlich wird das Lithiumion durch ein TMEDA-Molekül koordiniert (d(Li1-N1D) = 213.8(5) pm und d(Li1-N2D) = 211.9(4) pm).

Abb. 9.13: Molekülstruktur von 81 im Festkörper. H-Atome sind aus Gründen der Übersichtlichkeit nicht abgebildet.

Die Betrachtung der Bindungswinkel von **81** (Tab. 10) ergibt, dass die Geometrie von **71a** erhalten bleibt. Der N-P-C-Winkel am Phosphoratom ist mit 109.5(10)° nahezu identisch mit dem im neutralen Bis(amino)methylenphosphan **71a** (109,1°).

Der Winkel N1-Li1-N2 mit 67.1(14)° wird auch in Verbindung 97 mit 67.2° beobachtet.

Bindung	[pm]	Bindung	[pm]			
P1-C8	167.9(2)	P1-N2	164.9(17)			
Li1-N1	212.8(4)	Li1-N1D	213.8(5)			
Li1-N2	202.8(4)	Li1-N2D	211.9(4)			
N2-C6	137.2(3)	N3-C2	144.6(3)			
C6-N1	136.9(3)	N1-C2	134.6(3)			
	Bindungswinkel [°]					
N1-Li1-N2	67.1(14)	N2D-Li1-N1D	85.9(17)			
N2-P1-C8	109.5(10)	P1-N2-Li1	133.3(16)			

Tabelle 10: Bindungslängen und Bindungswinkel von 81:

Die Daten aus der Röntgenstrukturanalyse von **81** belegen, dass die Grenzstruktur des 1-Aza-2-phosphaallylsystems vorliegt, die methanidische Grenzstruktur kann ausgeschlossen werden.

9.8 Vergleich des 1-Aza-2-phosphaallyl- und 2-Phosphaallylanions

Der direkte Vergleich der Kristallstrukturen (Abb. 9.14) der Lithiumkomplexe der Allylanionen **81** und **82**^[171] zeigt die unterschiedliche Koordination der Lithiumkationen und stützt die Interpretation, das beide Verbindungen Allylanionen darstellen.

Abb. 9.14: Unterschiedliche Koordination der Lithium-Heteroallyle 81 und 82.

Im Fall des Aza-phosphaallyls **81** ist der kleinere planare Vierring favorisiert (Fünfring im Phosphaallyl **82**). Der planare Vierring kann als Metalla-Diaza-phosphetan^[204] bezeichnet werden. In Folge der unterschiedlichen Ringgröße variieren die Bindungslängen zum Lithiumkation. Die Li1-N7 Bindung in **81** beträgt 202.8 pm. Der Li1-P1 Bindungsabstand in Verbindung **82** ist mit 257.4 pm wesentlich länger. Grundsätzlich sind die Bindungslängen im N-koordinierten Anion gleichmäßiger. Die Bindungslänge P1-C8 in **81** ist mit 167.0 pm vergleichbar mit der P1-C15 in **82** mit 169.7 pm. Die P1-N7 Bindungslänge in **81** ist mit 164.9 pm um 3 pm kürzer als im Edukt **71a**. Dies bestärkt die Existenz einer heteroallylanionischen Bindung wie in **82**.

Die Strukturparameter für beide Verbindungen sind in Tabelle 11 zusammengefasst.

81		82		
Bindung	[pm]	Bindung	[pm]	
Li1-N1	212.8	Li1-N1	205.2	
Li1-N7	202.8	Li1-P1	257.7	
Li1-N1D	213.8	Li1-N2	222.5	
Li1-N2D	211.9	Li1-N3	209.2	
P1-C8	167.0	P1-C15	169.7	
P1-N7	164.9	P1-C14	171.6	
Winkel des Azapho	sphaallylanions in [°]	Winkel des Phosphaallylanions in [°]		
N2D-Li-N1	118.1	N1-Li1-N3	110.1	
N1D-Li-N1	128.3	N1-Li1-N2	141.4	
N2-Li-N1D	85.85	N3-Li1-N2	85.9	
N1-Li1-N7	67.10	N1-Li1-P1	81.4	
N1D-Li1-N7	109.2	N3-Li1-P1	102.3	
N1D-Li1-N7	156.3	N2-Li1-P1	130.7	
P1-N7-Li	133.3	C15-P1-Li1	146.1	
C8-P1-N7	109.4	C15-P1-C14	115.2	

 Tabelle 11: Bindungslängen und Bindungswinkel von 81 und 82.

Weitere Eigenschaften für **81** und **82** zeigt Tabelle 12. Neben dem Farbunterschied der beiden Verbindungen - das Azaphosphaallyl- (**81**) ist gelb, das Phosphaallylanion (**82**) ist rot - zeigen sich Unterschiede vor allem in den ³¹P-NMR-Daten. Für das Azaphosphaallyl-Anion **81** wird

ein δ = 372.1 ppm ermittelt. Im Phosphaallylanion **82**, das über Phosphor koordiniert und demzufolge eine höhere Abschirmung erfährt liegt dieser bei 277.0 ppm. Die Koordination über den Stickstoff in Verbindung **81** kann mit der höheren Ladungsdichte am Stickstoff erklärt werden.

Unterschiede der Allyl-Anionen							
	Li-P	N1-Li	PC(SiMe ₃) ₂	$\delta^{31}P$	Ring	N1-Li-N7	C8-P1-N7
	Li-N [ppm] N1-Li-P1 C15-P1-C1					C15-P1-C14	
81	202 pm	213 pm	167 pm	372	4	67 °	109 °
82	257 pm	202 pm	169 pm	277	5	81 °	115 °

 Tabelle 12: Zentrale Unterschiede der Heteroallyl-Systeme 81 und 82.

9.9 Reaktionen des 1-Aza-2-Phosphaallylanions 81

Phosphorstabilisierte Carbanionen sind seit zwei Jahrzehnten ein zentrales Forschungsfeld in der Synthesechemie. Mono, Di und Tri-Phosphinomethanide konnten in verschiedenen Koordinationsmodi, in Abhängigkeit vom Metall und den Substituenten am Phosphor bzw. Kohlenstoff-Atom synthetisiert und strukturell charakterisiert werden. In der Literatur werden Phosphinomethanide als monodentate C-Donor^[197], η²-CP-Donor^[198], bidentate PP-Donor^[199], Heteroallyl-Liganden^[200], Liganden^[201] verbrückende und aminofunktionalisierte Phosphinomethanide^[202] beschrieben. Insbesondere die Folgereaktionen mit phosphorstabilisierten Carbanionen führen zu ungewöhnlichen Verbindungen.

Die Umsetzung des Lithiumkomplexes **81** mit einem Äquivalent Chlormethylenphosphan **19** war von besonderem Interesse, da durch die negative Ladungsdichte am Aminostickstoffatom ein Zugang zu einem neuartigen Bisalkylidenphosphan-Liganden **83** (Abb. 9.15) ermöglicht wird. Das von *Appel* einzig beschriebene *N*-Propylamino-bis-{[phenyl(trimethylsilyl)-methylen]phosphan} **84** ist bereits bei Raumtemperatur nicht stabil^[205].

Abb. 9.15: Synthese des Bisalkylidenphosphans 83.

Das 3-Aza-2,4-diphospha-1,4-pentadien **83** konnte zweifelsfrei anhand seiner NMR-Daten sowie der massenspektrometischen Analyse identifiziert werden.

Das ³¹P-NMR-Spektrum zeigt bei Raumtemperatur ein Singulett (δ = 336.1 ppm), das bei einer ³¹P-NMR-Tieftemperaturmessung (- 60°) in zwei Signale (δ = 340.5 und 328.9 ppm) aufspaltet und damit die *S*-Form des 3-Aza-2,4-diphospha-1,4-pentadiens belegt. Eine Erhöhung des sterischen Anspruchs des Aminosubstituenten wie in **85** (Mes*) führt bereits bei Raumtemperatur zur Nichtäquivalenz der beiden Phosphoratome im ³¹P-NMR-Spektrum (328.4/328.5 ppm)^[206]. Für das 1,3,5-Triaza-2,4-diphospha-1,4-pentadien **86** konnte die *S*-Form durch eine Kristallstrukturananlyse belegt werden^[103] (Abb. 9.16)

Abb. 9.16: Konfigurationen bekannter Heteropentadiene und 83.

9.10 Röntgenkristallographische Untersuchung von 83

Das 3-Aza-2,4-diphospha-1,4-pentadien **83** lieferte aus Diethylether gelbe Einkristalle. Die Kristalle gehören dem monoklinischen Kristallsystem und der Raumgruppe P2(1)/c (No.14) an. Die Dimensionen der Elementarzelle betragen a = 1488.28(2) pm, b = 1577.16(2) pm, c = 3077.65(4) pm mit α = 90 β = 93.07(1)° und γ = 90°. Die röntgenkristallographische Analyse lieferte die angegebenen Strukturparameter in Tabelle 13. Abbildung 9.17 zeigt die Molekülstruktur im Festkörper von **83**. Ausgehend vom planaren Pyridinring liegen die PCSi₂-Einheiten ober- und unterhalb dieser Ebene und stehen orthogonal zu N2. Das Molekül liegt im Festkörper in der *S*-Form vor.

Abb. 9.17: Molekülstruktur 83 im Festkörper. Wasserstoffatome sind aus Gründen der Übersicht nicht abgebildet.

Bindung	[pm]	Bindung	[pm]				
C2-P1	165.8(2)	C3-P2	166.1(2)				
P1-N2	174.6(16)	N2-P2	176.4(17)				
N2-C1	139.8(2)	N1-C1	135.1(2)				
N1-C6	135.2(2)	C6-N3	140.6(2)				
	Bindungswinkel in [°]						
P2-N2-P1	116.8(9)	N2-P2-C3	109.8(9)				
P1-N2-C1	119.6(13)	C2-P1-N2	109.1(9)				
P2-N2-C1	116.7(13)						

Tabelle 13: Bindungslängen und Bindungswinkel in 83.

Die Bindungslängen N2-P1 mit 174.6(16) pm und N2-P2 mit 176,4(17) pm sind nicht sehr unterschiedlich und liegen im Bereich bekannter P-N-Einfachbindungen^[101]. Der Bindungsabstand von P1-C2 und P2-C3 beträgt 165.8(2) bzw. 166.1(2) pm. Dieser Abstand spiegelt das Bindungsverhältnis bekannter Alkylidenphosphane wider^[50]. Für die Bindungswinkel P2-N2-P1, P1-N2-C1 und P2-N2-C1 werden Werte von 116,8(9)°, 119,6(13)° und 116,7(13)° ermittelt, die Winkelsumme beträgt ~ 360°. Die Winkel C3-P2-N2 und C2-P1-N2 betragen 109.8(9)° bzw. 109.1(9)° und zeigen die symmetrische Substitution an N2.

Die Atome N1-C1-N2 spannen eine Ebene zu den Phosphoratomen P1 und P2 auf mit Torsionswinkeln von 154.6(14)° (P1) und 4.6(2)°. Das bedeutet, dass P2 nahezu in der Ebene N1-C1-N2 und P1 oberhalb dieser Ebene liegt. Die Verbindung liegt in der *S*-Form vor, wenn man die Lage der P=C-Doppelbindungen, der *"lone pairs"* und der Trimethylsilylgruppen an der P=C-Doppelbindung betrachtet.

Verbindung **83** repräsentiert somit das erste 3-Aza-2,4-diphospha-1,4-pentadien, das zweifelsfrei durch NMR-Daten und Röntgenkristallographie charakterisiert werden konnte.

Bemerkenswert ist die Tatsache, dass **83** ein Isomer von **71a** ist. Beide Verbindungen unterscheiden sich durch die Anordnung einer Alkylidenphosphan- und Trimethylsilyl-Einheit. Es stehen somit zwei Verbindungen als Ligand zur Verfügung, deren Koordinationswinkel sehr unterschiedlich sind. Das auch Liganden mit kleinen Winkeln bei entsprechender Metallkoordination ein hohes Potential zur Polymerisation von Ethen aufweisen, zeigen folgende katalytisch aktive Liganden (Abbildung 9.18)^[207-209].

Abb. 9.18: Katalytisch aktive Liganden mit kleinem "bite angle".

Aus diesem Grund wurde versucht, einen entsprechenden Nickelkomplex von **83** darzustellen. Die Umsetzung von **83** mit einem Äquivalent Nickeltetracarbonyl liefert den Komplex **91** (Abb. 9.19). Im ³¹P-NMR-Spektrum von **91** zeigen sich zwei Signale bei 96.1 ppm und 66.9 ppm. Die Kopplungskonstante beträgt 8.9 Hz.

Im ¹H-NMR-Spektrum werden die folgenden chemischen Verschiebungen beobachtet: 6.2 ppm (Pyridin-H3), 6.7 ppm (Pyridin-H4), 7.0 ppm (Pyridin H5). Das H5 Proton ist gegenüber **83** zu tiefen Feld verschoben, was auf die Koordination des Nickels zum Pyridinring zurückzuführen ist. Der Einfluss der Koordination führt ferner zu einer Verschiebung des Resonanzsignals der Protonen H3 und H4 zu hohem Feld um 0.2 ppm.

Im ¹³C-NMR-Spektrum werden vier chemische Verschiebungen im Carbonylbereich $(\delta = 192.2 \text{ ppm}, 192.3 \text{ ppm}, \text{ sowie } 202.0 \text{ ppm und } 202.9 \text{ ppm})$ beobachtet. Diese Bereiche werden auch für Verbindung 76 gefunden. Die chemische Verschiebung der P=C-Doppelbindung findet sich stark hochfeldverschoben bei 45.6 ppm mit einer Kopplungskonstante von 103.4 Hz und bei 75.7 ppm mit einer Kopplungskonstante von 108.3 Hz.

Die NMR-spektroskopischen Daten sind in Übereinstimmung mit zwei unterschiedlichen Koordinationen des Nickelatoms. Ein Koordinationsmodus ist vergleichbar dem im Komplex 76. Der andere Koordinationsmodus ist eindeutig keine terminale Phosphorkoordination. Da nur noch eine P=C-Doppelbindung als Koordinationsstelle zur Verfügung steht, muss ein weiteres Nickelcarbonylfragment hierüber koordinieren.

91

Abb. 9.19: Reaktionsprodukt 91.

10 Komplexe von Heteroallylanionen

10.1 Allylanionen

Das Allylanion ist die kleinste denkbare, π -delokalisierte Spezies^[210,211-213]. Als Komplex-Ligand spielt das Allylsystem aufgrund seiner Fähigkeit zum Haptizitätswechsel $[\eta^1(\sigma) \leftrightarrow \eta^3(\pi)]$ eine bedeutende Rolle bei Prozessen der homogenen Katalyse^[210]. Die Bindungssituation im π -System des Allylanions^[214] wird durch drei Molekülorbitale $(\Psi^1-\Psi^3)$ beschrieben, wobei im Anion die beiden energetisch tiefer liegenden Orbitale $(\Psi^1-\Psi^2)$ doppelt besetzt sind. Im HOMO (Ψ^2) liegt das zentrale Atom auf einer Knotenfläche, weshalb die negative Ladung überwiegend an den terminalen Positionen lokalisiert ist. Mit Hilfe der MO-Betrachtung des Allylanions^[214] lässt sich die Wechselwirkung des π -Systems mit einem Metallkation erklären. Grundsätzlich werden drei verschiedene Wechselwirkungen diskutiert: eine σ -Hinbindung des Allylanions aus dem Ψ^1 , eine π -Hinbindung vom HOMO (Ψ^2) in ein leeres Metallorbital entsprechender Symmetrie sowie eine mögliche π -Rückbindung aus einem besetzten p- oder d-Metallorbital mit geeigneter Symmetrie in das LUMO (Ψ^3) des Allylanions. Im Falle eines Lithium-Kations sind mangels besetzter p-Orbitale nur die beiden Hinbindungen $\Psi^1 \rightarrow 2s(Li)$ und $\Psi^2 \rightarrow 2p(Li)$ möglich. *Ab initio* Berechnungen^[215] ergaben für monomere, nicht solvatisierte Allyllithium ein Energieminimum bei einer das zentrosymmetrischen Position des Lithiumatoms über der Ebene des Allylanions. In Lösung hingegen sind für die Allvlanionen zusätzliche Assoziations- und Solvatationseffekte zu berücksichtigen. In Diethylether bildet Allyllithium höhere Aggregate, während im stärker polaren THF überwiegend Monomere vorliegen^[216]. Durch den Einfluss der Polarität des Lösemittels kann ein fließender Übergang zwischen Aggregaten, Kontaktionenpaaren und solvensseparierten Ionenpaaren herbeigeführt werden (Abb. 10.1)^[210].

Dielektrizitätskonstante und Koordinationsfähigkeit des Solvens

Abb. 10.1: Solvenseinflüsse auf die Bindungsverhältnisse im Allyllithium.

10.2 Pentadienylanionen und Heteropentadienylanionen

Mit 6-π-Elektronensystem weist das acyclische Pentadienylanion seinem enge Verwandtschaft mit dem 4- π -Elektronensystem des Allylanions und zu seinem cyclischen Pendant, dem Cyclopentadienylanion, auf. Das Potential dieser Verbindungsklasse wird in seinem vielseitigen Einsatz in der metallorganischen Synthese sichtbar^[217,218]. Die Strukturformen des Pentadienylanions sind charakteristisch. Ausgehend vom planaren Pentadienylanion sind idealisierte U-, S-, W- Konfigurationen vorstellbar (Abb. 10.2)^[219]. Theoretische Berechnungen des Stammsystem (C₅H₇)⁻ in der Gasphase ergaben, dass die W-Form das Energieminimum darstellt. In Lösung ist allerdings eine Isomerenvielfalt in den Bindungsverhältnissen zu beobachten^[220,221]. Die Koordinationsmodi, die aus den unterschiedlichen Wechselwirkungen der Kationen mit den Pentadieniden hervorgehen^[221], sind aber weitaus vielfältiger als bei dem Allylanion.

Abb. 10.2: Mögliche Koordinationen von Pentadienylanionen.

Als Beispiel für ein η^1 -gebundenes Metall sei der Zink-Komplex $[(C_5H_7)ZnCl * TMEDA]^{[222]}$ und für einen η^5 -gebundenen Pentadienylliganden der Komplex $[({}^{t}Bu_2C_2H_5)Ca * THF]^{[223]}$ genannt. Lithiumkationen bevorzugen die η^3 -Koordination in der *W*-Form, wobei ein dynamisches Gleichgewicht zwischen den beiden η^3 -Koordinationmöglichkeiten besteht^[220]. Die Wechselwirkungen zwischen Metallkation und Pentadienylanion lassen sich mittels MO-Schema^[224] des freien Systems erklären (Abb. 10.3). Dabei besetzen die 6- π -Elektronen des Pentadienylanions die beiden nichtbindenden π -MO (Ψ^1, Ψ^2) und das nichtbindende HOMO (Ψ^3). Dadurch wird die vom Lithiumkation bevorzugte η^3 -Koordination durch eine π -Hinbindung des HOMO's (Ψ^3) in ein vakantes p-Orbital des Lithiumkations erklärt^[222].

Abb. 10.3: MO-Schema des Pentadienylanions.

Heteropentadienyle treten in den in Abbildung 10.4 dargestellten *U*-, *S*- und *W*-Formen auf. Heteroatome wie Stickstoff und Phosphor beeinflussen wegen des resultierenden Dipolmomentes aufgrund des Elektronegativitätsunterschiedes und der Anwesenheit von *"lone pairs"* die Geometrie. In der Literatur finden sich Beispiele für die folgenden Vertreter (Abb. 10.4)^[206,225-228].

Abb. 10.4: Beispiele für Heteropentadienylanionen.

Daneben finden sich einige wenige Beispiele für Dianionen (Abb. 10.5). Ausgehend von bekannten Dithiolenverbindungen wurde erfolgreich versucht, den Schwefel durch Phosphor zu ersetzen^[229].

Abb. 10.5: Dianionische Phosphorliganden.

Die Fähigkeit, Anionen zu bilden, haben auch die Verbindungen 72 und 92 (Abb. 8.5). Beide Verbindungen besitzen Gruppen, die entfernbar sein sollten. Ferner sind heteroallylische Strukturelemente vorhanden, die eine Stabilisierung der resultierenden negativen Ladung ermöglichen. Im Folgenden wird aufgezeigt auf welchem Wege und mit welchen Erfolgen dies möglich war.

10.3 2,6-Bis(trimethylsilylmethyl)iminophosphan-pyridin

Die Bildung der *P*-funktionalisierten-Aminopyridine (Kapitel 7) führende Reaktion verläuft bei Verwendung des zweifach lithiierten 2,6-Bis(trimethylsilylmethyl)pyridins in Gegenwart

von zwei Äquivalenten Chloriminophosphan 22 zum methylenverbrückten Liganden 92 (Abb. 10.6).

Abb. 10.6: Bildung von 92.

Der ³¹P-NMR-Shift von **92** liegt mit 475 ppm im Tieffeldbereich. Aufgrund der leichten Abspaltbarkeit des Methylen-Protons wandelt sich **92**, in Gegenwart von LiCl * TMEDA, in einen erstmalig isolierten Bis-1-aza-2-phosphaallyl Lithium-Komplex **93** um (Abb. 10.7).

Abb. 10.7: Bildung vom Lithium-Komplex 93.

Diese Umwandlung von 92 nach 93 ist möglicherweise durch eine Umsalzungsreaktion zu erklären. In der Reaktionslösung befindet sich das bei der Synthese von 92 anfallende [Li*TMEDA]Cl, so dass folgende schematische Reaktionen zur Bildung von 93 plausibel erscheinen:

 $92 \rightarrow H^{+} + [92]^{-}$ $H^{+} + [Li^{*}TMEDA]Cl + [92]^{-} \rightarrow [HTMEDA]Cl + Li^{*}92$ $Li^{*}92 \rightarrow H^{+} + [Li92]^{-}$

Stöchiometrisch gilt:

8 [Li*TMEDA]Cl + [92]
$$\rightarrow$$
 [Li₇Cl₆ * 6 TMEDA]⁺ [Li92]⁻ + 2 [HTMEDA]Cl

10.4 1-Aza-2-phosphaallylanionen

Erstmalig wurde das 1-Aza-2-phosphaallyl-Gerüst in der zwitterionischen Verbindung des Imino(phosphoranylidenmethyl)phosphans (Abb. 10.8) von *Grützmacher* beschrieben^[230].

Abb. 10.8: Mesomere Grenzstrukturen des Imino(phosphoranylidenmethyl)phosphans.

Einen einfachen Zugang zu 1-Aza-2-phosphaallyanionen ermöglichen *NH*-funktionalisierte Amino(methylen)phosphane^[89,206,231].

Die Stabilisierung der beiden möglichen Grenzstrukturen I_b bzw. II_b der 1-Aza-2phosphaallylanionen (Abb. 10.9) ist abhängig von den sterischen und elektronischen Einflüssen der Substituenten der Amino(methylen)phosphane. Besonders stabilisierend wirken Trimethylsilylgruppen.

Abb. 10.9: Grenzformeln für 1-Aza-2-phosphaallylanionen.

In Tabelle 14 sind die NMR-chemischen Verschiebungen des Phosphoratoms und des Allylkohlenstoffatoms sowie die ${}^{1}J_{PC}$ -Kopplungskonstanten verschieden substituierter 1-Aza-2-phosphaallylanionen denen des Bis-1-aza-2-phosphaallyl Lithium-Komplexes **93** gegenübergestellt.

$\mathbb{R}^{\text{N}} \xrightarrow{P} \mathbb{C}^{\text{N}} \mathbb{S}^{\text{i}Me_3}$ $\begin{bmatrix} \text{Li}(\text{DME})_x \end{bmatrix}^{\bigoplus} \mathbb{R}^{\text{N}}$	δ ³¹ P-NMR [ppm]	δ ¹³ C-NMR [ppm]	¹ J _{PC} [Hz]
93	321.4	120.6 (d)	70.8
$R = Mes^*, R' = SiMe_3$	354.1	97.3 (d)	76.1
$R = Mes^*, R' = Ph (exo)$	291.7	128.3 (d)	92.3
$R = Mes^*, R' = Ph (endo)$	339.1	-	-
$R = {}^{t}Bu, R' = Ph$	317.1	118.6 (d)	65.2

 Tabelle 14: Ausgewählte NMR-Daten von Lithium-1-aza-2-phosphaallylanionen.

Ein Vergleich der ³¹P-NMR-Daten zeigt, dass der Pyridinring eine stärkere Hochfeldverschiebung des ³¹P-NMR-Signals verursacht als der Phenylsubstituent (bei gleichem Rest am Stickstoff und gleicher Konfiguration). Ferner treten Konfigurationsisomere auf. Die in der Literatur beschriebene Entschirmung am terminalen C-Atom^[206] wird ebenfalls beobachtet.

Diese NMR-Verschiebungswerte waren ein Indiz dafür, dass es sich bei der Verbindung **93** um ein Dianion mit zwei 1-Aza-2-phosphaallyleinheiten handelt. Der endgültige Beweis blieb der Röntgenstrukturanalyse vorbehalten.

10.5 Strukturanalyse von 93

Die aus Pentan isolierten gelben Kristalle waren für die Röntgenstrukturanalyse geeignet und ihre Untersuchung ergab die folgenden Strukturparameter. Die Kristalle gehören dem triklinischen Kristallsystem und der Raumgruppe P-1 (No.2) an. Die Dimensionen der Elementarzelle betragen a = 1644.82(4) pm, b = 1688.69(4) pm, c = 2510.08(7) pm mit $\alpha = 71.97(2)^{\circ}$, $\beta = 81.57(2)^{\circ}$ und $\gamma = 89.56(2)^{\circ}$. Abbildung 10.10 zeigt die Molekülstruktur von **93** im Festkörper.

Das Salz besteht aus einem At-Komplex und einem Kation in Form eines Lithiumchlorid-Cluster. Im Anion ist das Lithium trigonal-planar durch drei Stickstoffatome koordiniert.

Das zentrale Lithium-Ion zeigt ähnliche Bindungsabstände zu den drei koordinierenden Stickstoffatomen mit N1-Li1 194.7(11) pm, N2-Li1 194.9(11) pm und N3-Li1 mit 196.5(10) pm (Tab. 15). Das Lithium-Atom ist quasi in einem "Kelch" eingefangen.

Abb. 10.10: Molekülstruktur von 93 im Festkörper. H-Atome und Gegenion sind aus Gründen der Übersichtlickeit nicht abgebildet.

Die Bindung P2-N3 ist mit 162.4(5) pm etwas länger als die entsprechende P1-N2-Bindung mit 160.8(5) pm. Beide Bindungabstände liegen außerhalb des typischen P=N-Bindungsabstands (vgl. Tab. 5). Die Bindungslänge von P1-C7 ist mit 168.4(6) pm kürzer als die im korrespondierenden Paar P2-C29 (171.9(6) pm). Sie sind vergleichbar mit den Bindungsabständen bekannter Alkali-1-aza-2-phosphapropenide, deren Bindungsabstände bei 169.7 und 170.9^[206] liegen. Diese Strukturparameter sprechen für den heteroallylischen Charakter der beiden N-P-C-Bausteine. Die Struktur ist nicht symmetrisch, da weder eine Drehung um 180° noch eine Spiegelung (N1-Li1-Ebene) diese ineinander überführt.

Ergebnisse und Diskussion

Abb. 10.11: Molekülstruktur von 93 in unterschiedlicher Perspektive; H-Atome und Gegenion sind aus Gründen der Übersichtlichkeit nicht abgebildet.

Bindung	[pm]	Bindung	[pm]
N1-Li1	194.7(11)	P1-C7	168.4(6)
N2-Li1	194.9(11)	C29-P2	171.9(6)
N3-Li1	196.5(10)	C29-C2	146.5(8)
N2-P1	160.8(5)	C7-C6	148.0(8)
P2-N3	162.4(5)		

 Tabelle 15: Bindungslängen von 93.

Tabelle 16: Bindungswinkel von 93.

Bindungswinkel	[°]	Bindungswinkel	[°]
C7-P1-N2	112.8(3)	P2-N3-Li1	110.1(4)
C29-P2-N3	112.2(3)	P1-N2-Li1	111.3(4)
N2-Li1-N3	155.9(6)		

Eine Projektion in Richtung der Pyridinebene (Abb. 10.11) und der C-Atome C7 und C29 der beiden CPN Heteroallylsysteme zeigt, dass die beiden Allyl-Fragmente jeweils oberhalb bzw. unterhalb der Ebene des Pyridins das Lithiumion koordinieren. Die Winkel (Tab. 16) am P1 bzw. P2 Atom sind nahezu identisch (112.8(3)° bzw. 112.2(3)°). Auch die Winkel der koordinierenden Stickstoffatome N2 bzw. N3 zum Lithiumion sind mit 111.3(4)° (P1-N2-Li1) und 110.1(4)° (P2-N3-Li1) einander ähnlich. Der Winkel des Lithiumions zu seinen Koordinationspartnern liegt bei 155.9(6)° (N2-Li1-N3). Die ermittelten Torsionswinkel finden sich in Tabelle 17.

Ebene	Atom	Torsionswinkel [°]
C29-C2-N1	Li1	-2.5(7)
N1-C6-C7	Li1	3.1(7)
N1-C2-C29	P2	35.5(8)
N2-P1-C7	Li1	-27.5(4)
N1-C6-C7	P1	33.1(7)
N3-P2-C29	Li1	-32.1(5)

Tabelle 17: Torsionswinkel des Bis-1-aza-2- phosphaallyl Lithium-Komplexes 93.

Es zeigt sich, dass das Lithiumatom praktisch in der Ebene des Pyridinringes liegt, die jeweiligen Phosphoratome P1/P2 nahezu symmetrisch oberhalb und unterhalb der Ringebene liegen. Der Winkel beträgt ~ 34 °. Der Torsionswinkel des Lithiums zu den Allyleinheiten liegt bei - 27.5(4) (P1-Allyl) und - 32.1(5) (P2-Allyl).

Mehrere Versuche, das Lithiumion durch Salzeliminierungsreaktionen (z. B. TiCl₄, Cu^II, CrCl₃ * (THF)₃ oder ein anderes Metallion - Bildung eines "inneren Salzes" mit M^{2+} (z. B. Cu^{II}Tfl) bzw. Metallfragment - auszutauschen, schlugen fehl. Entweder verhindert die sterische Abschirmung der Supermesityl-Reste eine Reaktion, oder das Molekül reagiert in diverse, nicht isolierbare Folgeprodukte. Dieses Reaktionsverhalten kann im ungewöhnlichen [Li₇Cl₆]⁺ * 6 TMEDA Gegenkation liegen (Abb. 10.12), das ebenfalls zu Austauschreaktionen fähig sein sollte.

Abb. 10.12: Molekülstruktur des Gegenion von 93 im Festkörper; ohne H-Atome und TMEDA - Moleküle.

Das Kation von **93** ist ein Lithium-Cluster. Die Struktur zeigt ein verzerrtes Oktaeder mit den Lithiumatomen im Zentrum (Li2) und an den Eckpunkten. Zwei der sechs Chloratome koordinieren zu je zwei äquatorialen Lithiumatomen auf den gegenüberliegenden Kanten. Die restlichen vier Chloratome sind tetraedrisch verzerrt um das zentrale Lithiumatom (Li2) angeordnet. Sie liegen ober- und unterhalb der Äquatorialebene auf jeweils zwei Oktaederflächen und koordinieren neben dem Zentralatom zu zwei weiteren Chloratomen. Jedes der peripheren Lithiumatome wird durch TMEDA koordiniert. Ferner bilden die Einheiten Li2-Li1-Li3 und Li2-Li4-Li7 mit den jeweiligen Chlorbrücken Sechsringe aus, die in Wannenform vorliegen. Die Bindungsabstände sind in Tabelle 18 zusammengefasst und reichen von 226.6(11) pm (Li4-Cl6) bis zu 240.5(10) pm (Li2-Cl3). Die Bindungsabstände zu den Stickstoffen der TMEDA-Liganden betragen 207.5 - 216.3 pm.

Bindung	Bindungsabstand [pm]	Bindung	Bindungsabstand [pm]
Li2-Cl1	239.2(10)	Li2-Cl3	240.5(10)
Li2-Cl2	235.8(9)	Li2-Cl4	236.1(11)
Li3-Cl5	231.0(11)	Li3-Cl3	234.7(10)
Li4-Cl4	235.0(11)	Li4-Cl6	226.6(11)
Li5-Cl3	231.7(11)	Li5-Cl4	235.8(11)
Li6-Cl1	228.9(9)	Li6-Cl2	231.1(10)
Li7-Cl2	233.1(10)	Li7-Cl6	227.9(11)
Li8-Cl1	232.1(10)	Li8-Cl5	228.2(10)

Tabelle 18: Bindungsabstände des Gegenions zu 93.

Tabelle 19: Bindungswinkel des Gegenions zu 93.

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
Cl3-Li2-Cl4	98.5(3)	Cl2-Li2-Cl1	96.0(3)
Cl2-Li2-Cl4	109.7(4)	Cl1-Li2-Cl3	110.1(4)
Cl3-Li3-Cl5	120.0(5)	Li3-TMEDA	87.1(4)
Cl6-Li4-Cl4	124.1(5)	Li4-TMEDA	86.0(4)
Cl3-Li5-Cl4	101.1(4)	Li5-TMEDA	87.3(4)
Cl1-Li6-Cl2	100.2(4)	Li6-TMEDA	88.2(4)
Cl2-Li7-Cl6	117.4(4)	Li7-TMEDA	87.7(4)
Cl1-Li8-Cl5	115.1(4)	Li8-TMEDA	87.7(5)
Li2-Cl1-Li8	106.4(4)	Li2-Cl2-Li7	109.8(3)

Die Bindungswinkel des Kations sind in Tabelle 19 angegeben. Die Bindungswinkel zum TMEDA sind auffällig konstant, ihr Mittelwert beträgt $87.2^{\circ} \pm 1^{\circ}$. Die ermittelten Winkel am Li2 zu den Chloratomen zeigen, dass die Chloratome die Eckpunkte eines verzerrten Tetraeders einnehmen. Die oben erwähnten Sechsringsysteme weisen unterschiedliche Winkel an den sich gegenüberliegenden Atomen Li4 und Cl2 sowie Li3 und Cl1 auf. Die

Winkel an den Lithiumatomen zu den benachbarten Chloratomen betragen $124.1(5)^{\circ}$ und $120.0(5)^{\circ}$, wohingegen die Winkel an den Chloratomen zu den benachbarten Lithiumatomen $109.8(3)^{\circ}$ und $106.4(4)^{\circ}$ betragen. Die Geometrie der Sechsringe ist somit ebenfalls verzerrt. Abbildung 10.13 zeigt Anion und Kation.

Abb. 10.13: Verbindung 93 mit seinen Gegenkation [Li₇Cl₆ * 6TMEDA]⁺.

Eine strukturell mit **93** vergleichbare Koordination des Lithiums findet man in dem 2,6-pyridylverbrückte Komplexe **94**^[232,233] (Abb. 10.14). Der Komplex wird aus 2,6-Dilithiomethylpyridin und Isocyaniden hergestellt^[232,233,234,235].

Abb. 10.14: Lithium Komplex des 2,6-Pyridylverbrückten Bis(1-azaallyl)-Systems und Struktur-Plot.

Die vergleichbaren Bindungsabstände 94 in Tabelle 20 gelten für die korrespondierenden Atome in 93.

Bindung	93 [pm]	94 [pm]
N1-Li1	194.7(11)	190.7(6)
N2-Li1	194.9(11)	199.5(2)
N3-Li1	196.5(10)	199.5(2)
P2-N3	162.4(5)	136.2(3)
C29-P2	171.9(6)	140.0(3)
C29-C2	146.5(8)	142.0(3)
Bindungswinkel	[°]	[°]
C7-P1-N2	112.8(3)	127.9(2)
N2-Li1-N3	155.9(6)	152.1(3)
P2-N3-Li1	110.1(4)	112.5(2)

 Tabelle 20: Ausgewählte Bindungsabstände und Winkel der Verbindungen 93 und 94.

Es zeigt sich, dass die Bindungsabstände in **93** und **94** der Stickstoffe zum Lithiumion im Bereich 190 - 200 pm gut übereinstimmen.

Die Bindungswinkel verdeutlichen die geometrische Ähnlichkeit beider Molekülanionen. Auffällig ist nur die Aufweitung des Winkels der Seitenkette um 15°. Dies ist auf den kürzeren Bindungsabstand zwischen C5-N2 in **94** im Gegensatz zu P1-N2 in **93** zurückzuführen, was eine höhere Aufweitung bei der Komplexierung bedingt.

Einen mit **93** vergleichbaren Koordinationsmodus eines s-Block-Elements zeigt auch das Bis(phosphoranimin) **95** (Abb. 10.15) Dabei wird im Fall des Mg-Komplexes **96** ein "inneres Salz" eines 2,6-Lutedin-funktionalisiertem Bis(phosphoranimines) ausgebildet^[236].

Abb. 10.15: Magnesiumsalz des Bis(phosphoranimines) 96.

In dem Mg-Komplex **96**, der strukturelle Ähnlichkeiten mit **93** aufweist, wird das Metall ebenfalls im "Kelch" zentral durch die Stickstoffatome koordiniert. Die Mg-N-Bindungslängen liegen bei 206.1 pm und 209.7 pm (N-Pyridin). Die P-N-Bindungslängen entsprechen mit 162.0 pm und 163.0 pm denen in **93**. Der Bindungswinkel N-Mg-N (123.9°) ist kleiner als der für N-Li-N in **93** mit (155.9°). Die C-P-N-Bindungswinkel der Phosphoratome des Komplexes **96** (113.1° bzw. 115.3°) liegen in der gleichen Größenordnung wie die von **93** (112.8° bzw. 112.2°)^[236].

10.6 1,3-Diaza-2-phosphaallylanionen

Entsprechend den in Kapitel 10.4 vorgestellten 1-Aza-2-phosphaallylanionen lassen sich 1,3-Diaza-2-phosphaallylanionen^[105,237] durch einfache Metallierung der *NH*-funktionalisierten Amino(imino)phosphane synthetisieren. Als Beispiel ist das symmetrisch substituierte 1,3-Diaza-2-phosphaallylsystem aufgeführt^[237] (Abb. 10.16). In Abhängigkeit von den Donoreigenschaften des Lösungsmittels liegt dieses 1,3-Diaza-2-phosphaallylsystem als solvenssepariertes Ionenpaar (15K5*THF), bzw. Kontaktionenpaar (THF) vor^[237].

Abb. 10.16: 1,3-Diaza-2-phosphaallylsysteme.

10.7 Synthese eines Dilithiumheteroallyl-systems

Versuche, *NH*-funktionalisierte Amino(imino)phosphane bzw. *NH*-funktionalisierten Amino(methylen)phosphane aus 2,6-Lutedin- sowie den 2,6-Diaminopyridin-Verbindungen aufzubauen, blieben aufgrund nachfolgender [2+2]-Cycloaddition, erfolglos^[166].

Somit war der einfache Zugang zu den Aza-Phosphaallylsystemen durch eine direkte Metallierung nicht gegeben.

Mit der im Kapitel 7 vorgestellten Synthese der trimethylsilylsubstituierten Verbindung 72 stand indes ein Edukt zur Verfügung, das durch Desilylierung der beiden Trimethylsilylgruppen in das erwünschte Heteroallylsystem überführt werden konnte.

Das zur Desilylierung von trimethylsilylsubstituierten Amino(imino)phosphanen häufig verwendete Lithium-tris(trimethylsilyl)silan erwies sich hier als ungeeignet. Versuche, über starke Basen, wie LiN(SiMe₃)₂ oder Trimethylamin eine Abspaltung der Trimethylsilylgruppen zu erreichen, führten ebenfalls nicht zum Ziel, was im Einklang mit der Beobachtung von *O. J. Scherer* steht^[206].

Ein erfolgreicher Reaktionsweg zur Bildung des Dilithiumheteroallylsystems **97** wurde in der Verwendung von Lithiumtrimethylsilanolat (LiOSiMe₃) gefunden (Abb. 10.17). Die Reaktion liefert eine gelbe Lösung aus der das Dilithiumheteroallylsystem **97** isoliert werden konnte.

Abb. 10.17: Bildung des Dianions eines P-funktionalisierten Aminopyridins.

Im ³¹P-NMR-Spektrum beobachtet man für **97** ein breites Signal bei 350 ppm, was für den Erhalt der Koordinationzahl an den Phosphorzentren spricht.
10.8 Röntgenstrukturanalyse des Dianions 97

Gelbe Einkristalle der Verbindung **97** wurden aus THF erhalten. Sie gehören dem triklinischen Kristallsystem mit der Raumgruppe P-1 (No.2) an. Die Dimensionen der Elementarzelle betragen a = 1386.92(5) pm, b = 1621.48(5) pm, c = 1723.74(6) pm mit $\alpha = 71.67(3)^{\circ}$, $\beta = 72.77(2)^{\circ}$ und $\gamma = 80.96(2)^{\circ}$. Die Molekülstruktur geht aus Abb. 10.18 hervor. Das Molekül liegt als Bislithiumallylkomplex vor. Am zentralen Pyridin befinden sich in 2,6-Stellung zwei 1,3-Diaza-2-phophaallylgruppen. Durch die Konjugation ist das Molekül bis auf die Mes*- Substituenten, die zu dieser Ebene orthogonal und exo/endo zum zentralen Pyridin stehen, planar. Das Molekül liegt in der *W*-Form vor.

Die Lithiumatome koordinieren über eine η^3 -Koordination zu N3/N5 und N1/N2. Letztere Koordination findet sich auch im Komplex **81**. Ferner tragen beide Lithiumatome noch Donormoleküle, im Fall Li1 zwei THF-Moleküle und Li2 ein TMEDA-Molekül.

Ein Vergleich mit bekannten 1,3-Diaza-2-phosphaallylsystemen^[103,105,204,237] zeigt, dass die Bindungslängen (Tab. 21) der PN-Bindungen mit 157.9 – 161.3 pm gut mit den veröffentlichten Werten^[237] (156.4 – 160.1 pm) übereinstimmen. Die Li-N-Abstände sind im Falle des NCNLi-Ringes mit 206 und 209 pm relativ gleich und vom Lithiumkomplex **81** (202/212 pm) verschieden, im NPNLi-Ring jedoch stark unterschiedlich (200/222 pm). Diese Bindungsverlängerung wird in der Literatur als Übergangsstadium zum solvensseparierten Ionenpaar beschrieben^[237].

Im Vergleich zum nicht koordinierten Liganden **72** wird erwartungsgemäß eine Verkürzung der ursprünglichen P-N-Einfachbindung um ca. 8 pm und eine leichte Vergrößerung der P=N-Doppelbindung um ca. 1 pm beobachtet. Auch die C-N-Bindungen in 2,6-Position erfahren eine Verkürzung um ca. 4 - 5 pm. Diese Befunde stützen die Annahme eines vollständig über neun Atome konjugierten Systems.

Die Bindungswinkel der Lithiumatome zu den Stickstoffen sind in beiden Fällen spitz, 71.9° für N5-Li2-N3 und 67.2° für N1-Li1-N2 und liegen im Bereich bekannter 1,3-Diaza-2-phosphaallyl-lithiumkomplexe^[103,105,204,237]. Der (N5-P2-N3) Winkel in der Heteroallyl-Einheit wird durch die chelatartige koordinative Wechselwirkung der Stickstoffatome zum Metall beeinflusst (Abb. 10.18). Dieser (N3-P2-N5) Winkel verkleinert sich von 107.2° (**72**) auf 101.6(14)° (**97**), während gleichzeitig die Bindungswinkel zu den peripheren Substituenten aufgeweitet werden.

Abb. 10.18: Molekülstruktur von 97 im Festkörper, ohne Abbildung der Wasserstoffatome aus Gründen der Übersichtlichkeit.

Bindung	[pm]	Bindung	[pm]				
N5-P2	159.0(3)	N2-P1	159.6(3)				
P2-N3	161.6(3)	P1-N4	157.9(3)				
N3-Li2	200.4(6)	N2-Li1	203.0(6)				
Li2-N5	221.8(7)	Li1-N1	206.9(6)				
N3-C6	138.3(4)	N2-C2	139.5(4)				
C6-N1 136.3(4)		N1-C2	134.7(4)				
Bindungswinkel in [°]							
N5-P2-N3	101.6(14)	P2-N5-Li2	89.5(19)				
N5-Li2-N3	71.9(2)	N4-P1-N2	113.8(15)				
P2-N3-Li2 96.8(2)		N2-Li1-N1	67.2(2)				

 Tabelle 21: Bindungslängen und Bindungswinkel der Verbindung 97.

In der Literatur finden sich 2,6-Pyridylverbrückte Bis(1-azaallyl)-Verbindungen **98**^[232,233] (Abb. 10.19) und ein entsprechendes phenylverbrücktes Kontaktionenpaar **99**^[239]. Ein Vergleich der Verbindung **97** mit **99** zeigt Gemeinsamkeiten und Unterschiede.

Auffällig ist der zu **97** unterschiedliche Koordinationsmodus, aufgrund fehlender *N*-Koordinationszentren. Die Lithiumatome werden in **99** verschieden gebunden. Das Lithium Li1 wird über Stickstoff und einen Kohlenstoff gebunden, dass Lithium (Li2) von drei C-Atomen und einem N-Atom (Abb. 10. 19). In **97** hingegen liegen beide Lithiumatome in Koordination zu jeweils zwei Stickstoffatomen vor. Die Bindungslängen für Li1-N1 und Li1-C10 betragen 192.4(5) bzw. 256.3(6). Für das Li2 finden sich folgende Bindungsabstände: Li2-N2 199.3(5) pm, Li2-C1 239.6(5) pm, Li2-C2 248.6(5) pm und Li2-C3 254.4(5) pm^[239].

Abb. 10.19 Pyridyl- und phenylverbrückte Bis(1-Azaallyl)-Metallkomplexe 98, 99.

11 Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Synthese und Koordination neuer multidentater Liganden. Die Besonderheit der neuen Liganden liegt in der Verknüpfung von bekannten Strukturelementen wie Pyridin mit niedervalenten Phosphor(III)bausteinen. Die Synthesen erfolgten durch Lithiierung der entsprechenden Pyridinderivate und nachfolgende Umsetzung mit den Chlormethylenphosphan (CIP=C(SiMe_3)₂ bzw. Chlor(imino)phosphan (CIP=NMes*). Entscheidend für die Synthese war dabei die Ausbildung eines Azaallylanionen-Systems als Intermediat. Auf diesem Weg gelingt es, ausgehend vom CPC-System, die Kohlenstoffe des Bisalkylidenphosphans **59** schrittweise durch Stickstoff zu ersetzen, wobei die CPE-Verküpfung (E = C, N) zu neuartigen, chiralen, multidentaten Liganden (**66**, **92**) führt.

Ausgehend von den neuartigen Ligandensystemen gelang die Verifizierung neuartiger Komplexe von s- und d-Block Elementen. Der Zugang zu den Lithiumkomplexen der Heteroallylanionen erfolgte einerseits durch die Eliminierung des aciden Wasserstoffs in 92 \rightarrow 93 und anderseits durch gezielte Desilylierung der Trimethylsilylgruppen im Amino(imino)phosphan 72 \rightarrow 97 und im Aminomethylenphosphan 71a \rightarrow 81. Im Komplex 93, der sich aus 92 bildet, wird das Lithiumion zentral durch drei N-Donorzentren des gebildeten Bis-1-aza-2-phosphaallylanions koordiniert. Das Heteroallylsystem 97 stellt ein neues, über neun Atome konjugiertes Dianion dar, in dem die Lithiumionen ebenfalls durch Stickstoffatome koordiniert werden.

Die Umsetzung von 2,6 Dilithio(amino)pyridin 80 mit dem Bisalkylidenphosphan 71a führt nicht zur Bildung eines P_2N_6 -Cavitanden, sondern zu dem Lithiumkomplex des 1-Aza-2-phosphaallylanions 81. Analoge Umsetzungen des 2,6 Dilithiomethylenpyridins 78 mit 71a ergaben als Reaktionsprodukt das Bisalkylidenphosphan 59. Der Lithiumkomplex 81 kann seinerseits mit einem Äquivalent 19 in den neuartigen multidentaten Liganden 83 überführt werden, wobei 83 ein Isomer von 71a darstellt.

Weiterhin konnten mit den Nickel-Komplexen 73, 75, 76 und 91 zum Teil ungewöhnliche Koordinationsverhältnisse realisiert werden.

Abbildung 11.1 zeigt die Synthese der neuen Verbindungen und deren Reaktionen.

Abb. 11.1: Ausgewählte Reaktionsbeispiele.

12 Experimenteller Teil

12.1 Arbeitsbedingungen

Aufgrund der Hydrolyse- und Oxidationsempfindlichkeit der Verbindungen wurden die Umsetzungen unter Feuchtigkeitsausschluss in einer Schutzgasatmosphäre durchgeführt. Das verwendete Argon (Reinheitsgrad 4.6) wurde über eine Model *1000 Oxygen Trap* (Fa. Aldrich) und anschließend über Siccapent (P_4O_{10} mit Feuchtigkeitsindikator der Fa. Merck) geleitet. Kleine Flüssigkeitsmengen wurden mittels Kunststoffinjektionsspritzen dosiert, die Substanzzugabe und -entnahme erfolgte im Argon-Gegenstrom entsprechend der gebräuchlichen Schlenk-Technik^[240]. Die verwendeten Lösemittel wurden nach den üblichen Verfahren gereinigt^[241] und in einer Argonatmosphäre über Na/K-Legierung jeweils frisch destilliert. Dichlormethan wurde über P_4O_{10} absolutiert.

12.2 Chemikalien

Folgende Chemikalien wurden nach Literaturangaben dargestellt:

1-Chlor-2,2-bis(trimethylsilyl)phosphaethen^[242]

1-Chlor-2-(2,4,6-Tri-tert.-butylphenyl)iminophosphan^[243]

Tetracarbonyl-norbornadien-chrom^[244]

(2,4,6-Tri-*tert*.-butylphenyl)amin^[245]

- 2,4,6-Tri-tert.-butylbenzol^[246]
- 2,6 Bis(trimethylsilylamino)pyridin^[176]
- 2,6 Bis(phenylamino)pyridin^[247]
- 2,6 Bis(trimethylsilylmethyl)pyridin^[177]
- 2,6-Dibenzyl-pyridin^[248]
- 2-Trimethylsilylaminopyridin^[249]
- 2,6 Bis(pyridylamino)pyridin^[250]

Folgende Chemikalien wurden käuflich im Handel erworben oder aus vorhandenen Beständen entnommen:

2,6-Lutedin 99%, Acros

2,6 Diaminopyridin 98%, Aldrich

- 2,2 Dipyridylamin 99%, Aldrich
- 2-Aminopyridin 99+% Aldrich

Phenylether p.a., Acros

Bis(1,5-cyclooctadien)nickel (0) 98%, ABCR *n*-BuLi 1,6 molar, Merck Tetracarbonyl-norbornadien-wolfram Tetracarbonyl-norbornadien-molybdän Silber-, Kupfer (I)- Trifluormethansulfonat 99%, ABCR Lithiumtrimethylsilanoat 98%, Acros

12.3 Analytische Untersuchungen

Kernresonanzspektren

Die Angabe der chemischen Verschiebung erfolgt in δ -Werten in ppm, wobei ein negatives Vorzeichen eine Hochfeldverschiebung relativ zum Standard des Nullpunktes bedeutet. Spinmultiplizitäten werden folgenderweise angegeben: s-Singulett, d-Dublett, t-Triplett, q-Quartett, m-Multiplett. Soweit nicht anders angegeben, wurden alle Messungen bei 303 K (25° C) mit Hilfe eines AMX-300-Spektrometers der Firma Bruker durchgeführt.

¹H-NMR: 300 MHz, interner Standard: deuterietes Lösemittel
 ³¹P-NMR: 121.49 MHz, externer Standard: 85%ige *ortho*-Phosphorsäure
 ¹³C-NMR: 75.47 MHz, interner Standard: deuterietes Lösemittel
 ²⁹Si-NMR: 59 MHz, externer Standard: Tetramethylsilan

Massenspektrometrie

VG Masslab 12-250 Massenspektrometer (Elektronenstoßionisation mit Direkteinlaßsystem). Die angegebenen Molmassen beziehen sich auf das jeweils häufigste Isotop eines Elementes.

Schmelzpunkte

Die Bestimmung erfolgte in abgeschmolzenen Glaskapillaren mit einem Gerät der Firma Büchi, Flawil (Schweiz). Die Schmelzpunkte sind nicht korrigiert.

Cyclovoltametrische Messungen wurden mit einem Potentiostat-Galvanostat der Fa. Autolab gemessen. Als Arbeitselektrode diente eine Glas-Carbon Elektrode (GCE), als Bezugselektrode ein Pt-Draht. Als Referenzelektrode wurden 0.004 mol Decamethylferrocenium/Decamethylferrocen (DMFe⁺/DMFe) in 0.2 molarer Tetra-*n*butylammoniumtetrafluoroborat in Acetonitril verwendet. Das als Leitsalz eingesetzte *n*- Bu_4NPF_6 hatte in der Messlösung eine Konzentration von ca. 0.2 mol/l. Weitere Messungen wurde mit einem Potentiostat-Galvanostat EG&G Parc Modell 173 + Modell 276, der Fa. Princeton Applied Research durchgeführt. Als Arbeitselektrode diente ein Pt-Draht, als Bezugselektrode eine gesättigte Kalomelelektrode. Das als Leitsalz eingesetzte Tetra-*n*butylammoniumtetrafluoroborat hatte in der Messlösung eine Konzentration von ca. 0.1 mol/l.

Röntgenstrukturanalysen wurden auf einem Nonius Kappa CCD Diffraktometer (Mo Ka-Strahlung, $\lambda = 0.71069$ Å) durchgeführt. Die Strukturen wurden mittels Direkter Methoden gelöst (SHELXS-97)^[251] und nach den Kleinste-Fehler-Quadraten gegen F^2 verfeinert (SHELXL-97)^[252]. Alle nicht H-Atome wurden anisotrop und die H-Atome mittels eines Reitermodells verfeinert. Empirische Absorptionskorrekturen wurden durchgeführt.

UV/VIS Spektren wurden auf einem UVIKON 860-Spektrometer der Fa. Kontron Instruments aufgenommen.

IR-Spektren wurden auf einem Gerät von Bruker (Vector 22) aufgenommen. Benutzte Software Opus 3.1. Gemessen in KBr-Küvetten (d = 0.2 cm), Lösungsmittel Nujol. Kennzeichnung der relativen Bandenintensitäten wie folgt: vs (sehr stark), s (stark), m (mittel), w (schwach).

Festkörper-NMR-Spektren wurden auf einem Infinity Plus (Doppelresonanzprobenkopf, 9.4 Tesla) der Fa. Varian Inc. gemessen. Es wurde ein 2,5 mm Rotor verwendet. Alle NMR-Verschiebungswerte werden auf der δ -Skala in ppm angegeben. Positive Vorzeichen bedeuten eine Verschiebung zu tieferem Feld und Kopplungskonstanten werden als absolute Werte angegeben.

12.4 Umsetzungen

Veränderung der Arbeitsvorschrift für TPDM:

Aufgrund der starken Schaumbildung beim Entfernen des Diethylethers wurde ein von der

Publikation^[175] abweichender Apparateaufbau
(Abb. 11.1) gewählt. Es sollte mindestens ein 1 L
Dreihalskolben bei der Synthese des TPDM verwendet werden. Auch der Einsatz von leistungsstarken
Pumpen bis 10⁻⁴ mbar ist notwendig, da das Gelingen der Reaktion von der Lösemittelfreiheit stark abhängig ist.

Abb. 12.1: Apparateaufbau zur Synthese von TPDM

Arbeitsvorschrift zu TPDM substituierten Alkylidenphosphanen [66]:

Zu 0,13 g (0,5 mmol) TPDM und 0,08 mL (0,5 mmol) TMEDA gelöst in 15 mL Diethylether, wahlweise auch THF, werden bei -78 °C 0,66 mL (1 mmol) einer 1,6 molar *n*-BuLi-Lösung getropft. Nach 5h Rühren wird die rote Suspension zu dem chlorsubstituierten Alkylidenphosphan $CIPC(SiMe_3)_2$ 0,24 g (1 mmol) zugegeben. Nach Einengen des Lösemittels und Filtration über eine G-4 Fritte kann das Produkt als Öl isoliert werden.

2,6-Bis-[2-pyridylmethyl-di-(trimethylsilyl)-phosphaethen]-pyridin

Summenformel: C₃₁H₄₉P₂N₃Si₄ Molmasse: 637 Ausbeute: 0.25 g; 80% UV/Vis: 450 nm

MS (125-175 °C, 16 eV): m/z (%) = 369 (3) M-[Py-(P=CSiMe₃)₂]⁺; 297 (5) M-[Py-(P=CSiMe₃)₂-SiMe₃]⁺; 260 (100) M-[2-PC(SiMe₃)₂]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 387.5; 386.5

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.1-0.44$ (s, C-SiMe₃); 2.12 (s, 12H, TMEDA); 2.16 (s, 4H, TMEDA); 4.37 (d, ²J_{PH} = 34.8 Hz, 2H, CH); 6.09 (dd, ³J_{HH} = 7.46 Hz, ⁴J_{HH} = 3.40 Hz, 2H, py-H3/5-zentral); 6.51 (ddd, ³J_{HH} = 7.65 Hz, ³J_{HH} = 4.83 Hz, ⁴J_{HH} = 1.13 Hz, 2H, py-H3-terminal); 6.99 (t, ³J_{HH} = 8.69 Hz, 1H, py-H4); 7.01-7.10 (m, 2H, py-H4-terminal); 7.37 (dt, ³J_{HH} = 7.93 Hz, ⁴J_{HH} = 1.0 Hz, 2H, py-H5-terminal); 8.37-8.40 (m, 2H, py-H6 -terminal)

¹³C-NMR (C₆D₆, 25°C): $\delta = 2.6$ (d, ³J_{PC} = 15.5 Hz CH₃, CSi(CH₃)₃); 3.1 (d, ³J_{PC} = 3.7 Hz, CH₃, CSi(CH₃)₃); 44.7 (s, CH₃, TMEDA); 56.6 (s, CH₂, TMEDA); 64.0 (d, ¹J_{PC} = 57.0 Hz, CH); 121.5 (s, 2CH, C5-terminal); 121.9 (d, ³J_{PC} = 4.2 Hz, CH, py-C3/C5); 124.7 (d, ³J_{PC} = 5.0 Hz, CH, py-C3-terminal); 136.5 (d, ³J_{PC} = 3.2 Hz, CH, py-C4-terminal); 137.7 (s, 1CH, py-C4); 149.9 (d, ²J_{PC} = 3.2 Hz, 2CH, py-C6-terminal); 161.7 (d, ²J_{PC} = 7.5 Hz, 2CH, py-C2-terminal); 161.9(d, ²J_{PC} = 6.7 Hz, 2CH, py-C2); 191.1 (d, ¹J_{PC} = 88.4 Hz, C, P=C[Si(CH₃)₃]₂)

Allgemeine Arbeitsvorschrift zur Darstellung der 2-Amino-alkyliden-/iminophosphane [68a], [69a], [68b], [69b]:

2,6 mL (4,16 mmol) einer 1,6 M n-BuLi-Lösung werden bei -0 °C zu 4 mmol des entsprechenden 2-Bis(amino)pyridins in 10 ml Diethylether getropft. Nach 3 h Rühren bei Raumtemperatur wird diese Lösung in einen Tropftrichter überführt und bei -78 °C entweder zu 0,9 g (4 mmol) ClP=C(SiMe₃)₂ oder zu 1,3 g (4 mmol) ClP=NMes* getropft, die jeweils in 10 mL Diethylether gelöst sind. Nach der Reaktion wird das Lösemittel bei Raumtemperatur abgezogen. Der entstehende Schaum wird in n-Pentan aufgenommen, der resultierende Feststoff über eine G-4-Fritte entfernt. Die 2-Amino-alkyliden-/iminophosphane werden nach dem Abziehen des Lösemittels als Öle erhalten.

2-[1, 3, 3-Tri-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin

[68a]

Summenformel: C₁₄H₃₁N₂PSi₃ Molmasse: 354 Ausbeute: 0.9 g; 64% **MS** (16 eV, RT): m/z (%) = M⁺= 354 (3); 339 (3) M-[Me]⁺; 281 (100) M-[SiMe₃]⁺; 151 (10) M-[PC(SiMe₃)₂-CH₃]⁺; 73 (6) M-[PyNPC(SiMe₃)₃]⁺.

³¹**P-NMR** (C₆D₆, 25°C): δ = 350.1 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.13$ (s, 9H, N-SiMe₃); 0.37 (d, 9H, C-SiMe₃); 0.46 (d, 9H, C-SiMe₃); 6.31(ddd, ³J_{HH} = 7.22 Hz, ³J_{HH} = 4.96 Hz, ⁴J_{HH} = 0.85 Hz, 1H, py-H5); 6.75 (d, ³J_{HH} = 8.12 Hz, 1H, py-H3); 6.97 (ddd, ³J_{HH} = 8.36 Hz, ³J_{HH} = 7.22 Hz, ⁴J_{HH} = 2.03 Hz, 1H, py-H4); 8.05 (ddd, ³J_{HH} = 4.72 Hz, ⁴J_{HH} = 2.18 Hz, ⁵J_{HH} = 0.8 Hz, 1H, py-H6)

¹³C-NMR (C₆D₆, 25°C): $\delta = 2.2$ (d, ³J_{PC} = 5.2 Hz, NSi(CH₃)₃); 2.3 (d, ³J_{PC} = 3.2 Hz, CH₃, CSi(CH₃)₃); 2.7 (d, ³J_{PC} = 15.5 Hz CH₃, CSi(CH₃)₃); 112.9 (d, ³J_{PC} = 7.4 Hz, CH, py-C3); 114.0 (s, CH, py-C5); 136.9 (d, ⁵J_{PC} = 1.3 Hz, CH, py-C4); 147.8 (s, CH, C6); 159.6 (s, C, py-C2); 185.9 (d, ¹J_{PC} = 90.8 Hz, C, P=C[Si(CH₃)₃]₂)

²⁹Si-NMR (C₆D₆, 25°C): δ = - 8.7 (d, ²J_{PSi} = 9.5 Hz, NSi(CH₃)₃); - 4.3 (d, ²J_{PSi} = 42.0 Hz, CSi(CH₃)₃); 3.6 (d, ²J_{PSi} = 5.3 Hz, CSi(CH₃)₃)

2-[1-Trimethylsilyl-3-(2, 4, 6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl]-pyridin [69a]

Summenformel: C₂₆H₄₂N₃PSi Molmasse: 455 Ausbeute: 1.3 g; 71% **MS** (16 eV, 100-150 °C): m/z (%) = M⁺ = 455 (11); 379 (12) M-[SiMe₃]⁺; 364 (16) M-[SiMe₃ -CH₃]⁺; 290 (5) M-[PyN-SiMe₃]⁺; 246 (100) M-[PyNPN-SiMe₃]⁺; 209 (8) M-[Mes*]⁺; 196 (4) M-[Mes*-N]⁺; 165 (27) M-[Mes*-PN]⁺; 150 (85) M-[Mes*-PN-CH₃]⁺.

³¹**P-NMR** (C₆D₆, 25°C): δ = 251.1 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.25$ (d, 9H, NSiMe₃); 1.35 (s, 9H, p-C-CMe₃); 1.54(s, 18H, o-C-CMe₃); 6.0 (d, ³J_{HH} = 8.31 Hz,1H, py-H3); 6.43 (ddd, ³J_{HH} = 7.37 Hz, ³J_{HH} = 4.82 Hz, ⁴J_{HH} = 1.04 Hz, 1H, py-H5); 6.96 (ddd, ³J_{HH} = 8.31 Hz, ³J_{HH} = 7.46 Hz, ⁴J_{HH} = 2.03 Hz, 1H, py-H4); 7.41 (s, 2H, Mes* H3/5); 8.14 (ddd, ³J_{HH} = 4.89 Hz, ⁴J_{HH} = 2.01 Hz, ⁵J_{HH} = 0.87 Hz, 1H, py-H6)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.5$ (d, CH₃, NSiMe₃, ³J_{P,C} = 9.1 Hz); 30.6 (s, CH₃, p-^tBu); 30.9 (d, ⁵J_{PC} = 3.2 Hz, CH₃, o-^tBu); 33.2 (s, t-C, p-^tBu); 35.0 (d, ⁴J_{PC} = 0.9 Hz, t-C, o-^tBu); 111.8 (s, py-C5); 118.9 (s, CH, C3/5-Mes*); 120.2 (d, ³J_{PC} = 1,9 Hz, CH, py-C3); 135.3 (s, CH, py-C4); 135.5 (s, C, C2/C6-Mes*); 140.5 (d, ²J_{PC} = 2.3 Hz C, Mes*-C1); 143.0 (s, C, C4-Mes*); 146.9 (s, CH, py-C6); 154.6 (d, ²J_{PC} = 4.5 Hz, C, py-C2)

2-[1-(2-Pyridyl)-3, 3-tri-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin [68b]

Summenformel: C₁₇H₂₆N₃PSi₂ Molmasse: 359 Ausbeute: 1.2 g; 84% **MS** (16 eV, 100 °C): m/z (%) = M⁺= 359 (3); 286 (60) M-[SiMe₃]⁺; 271 (7) M-[SiMe₃-Me]⁺; 189 (30) M-[Py₂N]⁺; 170 (100) M-[PC(SiMe₃)₂]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 341.0 ppm

¹**H-NMR** (C₆D₆, 25°C): δ = -0.02 (s, 9H, SiMe₃); 0.35 (s, 9H, SiMe₃); 6.43 (ddd, ³J_{HH} = 7.03 Hz, ³J_{HH} = 4.96 Hz, ⁴J_{HH} = 1.09 Hz, 2H, py-H5/H5′); 7.04 (ddd, ³J_{HH} = 8.36 Hz, ³J_{HH} = 7.08 Hz, ⁴J_{HH} = 1.89 Hz, 2H, py-H4/H4′); 7.12 (d, ³J_{HH} = 8.30 Hz, 2H, py-H3/H3′); 8.1 (,,d", ³J_{HH} = 4.86 Hz, ⁴J_{HH} = 0.9 Hz, 2H, py-H6/H6′)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.02$ (d, ³J_{PC} = 2.9 Hz, CH₃, SiMe₃); 0.9 (d, ³J_{PC} = 15.5 Hz, CH₃, SiMe₃); 113.1 (s, CH, py-C5/C5'); 115.9 (s, CH, py-C3/C3'); 135.6 (s, CH, py-C4/C4'); 146.5 (s, CH, py-C6/C6'); 155.5 (d, ²J_{PC} = 2.6 Hz, C, py-C2/C2'); 169.0 (d, ¹J_{PC} = 85.4 Hz, P=C[Si(CH₃)₃]₂)

2-[1-(2-Pyridyl)-3-(2, 4, 6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl]-pyridin [69b]

Summenformel: C₂₈H₃₇N₄P Molmasse: 460 Ausbeute: 1.3 g; 70%

MS (16 eV, 100 °C): m/z (%) = M^+ = 460 (3); 290 (100) M-[(Py)₂N]⁺; 260 (16) M-[(Py)₂N-2CH₃]⁺; 170(20) M-[PN-Mes*]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 228.0 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 1.33$ (s, 9H, p-C-CMe₃); 1.54 (s, 9H, o-C-CMe₃); 6.44 (ddd, ³J_{HH} = 7.34 Hz, ³J_{HH} = 4.89 Hz, ⁴J_{HH} = 0.92 Hz, 2H, py-H5/H5'); 6.6 (d, ³J_{HH} = 8.12 Hz, 2H, py-H3/H3'); 6.91(ddd, ³J_{HH} = 8.05 Hz, ³J_{HH} = 7.48 Hz, ⁴J_{HH} = 1.91 Hz, 2H, py-H4/H4'); 7.36 (s, 2H, Mes* H3/5); 8.09 (ddd, ³J_{HH} = 4.89 Hz, ⁴J_{HH} = 1.91 Hz, ⁵J_{HH} = 0.73 Hz, 2H, py-H6/H6')

¹³C-NMR (C₆D₆, 25°C): δ = 30.6 (s, CH₃, p-^tBu); 30.8 (d, ⁵J_{PC} = 2.9 Hz, CH₃, o-^tBu); 33.0 (s, t-C, p-^tBu); 35.0 (d, ⁴J_{PC} = 1.0 Hz, t-C, o- ^tBu); 116.9 (s, py-C5); 119.0 (s, CH, C3/5-Mes*); 120.1 (d, ³J_{PC} = 1.9 Hz, CH, py-C3); 135.3 (d, ³J_{PC} = 9.7 Hz C, Mes*-C2/C6); 136.2 (s, CH, py-C4); 140.9 (d, ⁴J_{PC} = 2.6 Hz, CH, py-C6); 142.7 (d, ²J_{PC} = 5.5 Hz, C, Mes*-C1); 147.6 (s, C, Mes*-C4); 154.7 (d, ⁴J_{PC} = 3.2 Hz, C, py-C2)

Allgemeine Arbeitsvorschrift der Mono-Alkyliden- bzw. Iminophosphan-substituierten Aminopyridine [68c], [69c] :

1 mmol des entsprechenden 2,6 Diaminopyridinderivates wird in 10 mL THF (R = Ph, Py) suspendiert bzw. in 10 mL Et₂O (R = SiMe₃) gelöst. Bei -78 °C werden 0,65 mL (1,04 mmol) einer 1,6 M *n*-BuLi-Lösung zu getropft. Nach 4 h Rühren bei Raumtemperatur wird diese Lösung in einen Tropftrichter überführt und zu 0,22 g (1 mmol) ClP=C(SiMe₃)₂ in 5 mL Et₂O, bei -78 °C getropft [bzw. 0,32 g (1 mmol) ClP=NMes*]. Man lässt auf Raumtemperatur erwärmen und entfernt die flüchtigen Bestandteile im Vakuum. Der Rückstand wird in n-Pentan aufgenommen und der resultierende Feststoff über eine G-4-Fritte abgetrennt. Nach Abzug des Pentans fallen die Produkte als Öle an.

2-[1,3,3 Tri-(trimethylsilyl)-1-aminophosphaethenyl]-6-amino-trimethylsilyl-pyridin [68c]

Summenformel: C₁₈H₄₀N₃PSi₄

Molmasse: 441

Ausbeute: 0.3 g; 68%

MS (16 eV, 100 °C): m/z (%) = $M^+ = 441$ (2); 426 (3) M-[Me]⁺; 368 (9) M-[SiMe₃]⁺; 253 (55) M-[PC(SiMe₃)₂]⁺; 238 (100) M-[PC(SiMe₃)₂-Me]⁺; 222 (3) M-[PC(SiMe₃)₂-Me-CH₄]⁺ 146 (4) [(SiMe₃)₂]⁺; 72 (3) [SiMe₂CH₂]⁺; 58 (2) [SiMe₂]⁺.

³¹**P-NMR** (C₆D₆, 25°C): δ = 362.3 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.13$ (s, 9H, C-SiMe₃); 0.17 (s, 9H, C-SiMe₃); 0.21 (s, 9H, N-SiMe₃); 0.35 (d, 9H, ⁴J_{HH} = 2.46 Hz, NH(SiMe₃); 3.69 (s(br), 1H, NH); 5.63 (d, ³J_{HH} = 7.84 Hz, 1H, py-H5); 6.0 (d, ³J_{HH} = 7.55 Hz, 1H, py-H3); 6.96 (t, ³J_{HH} = 7.93 Hz, 1H, py-H4)

¹³C-NMR (C₆D₆, 25°C): δ = 1.0 (s, NHSi(CH₃)₃); 1.6 (d, ³J(P,C) = 3.6 Hz, NSi(CH₃)₃); 2.3 (d, ³J_{PC} = 3.2 Hz, CH₃, CSi(CH₃)₃); 2.5 (d, ³J_{PC} = 15.5 Hz CH₃, CSi(CH₃)₃); 98.8 (s, CH, py-C5); 100.7 (s, CH, py-C3); 138.2 (s, CH,py-C4); 158.5 (s(br), C, py-C2); 158.8 (s, C, C6); 182.5 (d, ¹J_{PC} = 91.2 Hz, C, P=C[Si(CH₃)₃]₂)

²⁹Si-NMR (C₆D₆, 25°C): δ = -9.1 (d, ²J_{PSi} = 7.8 Hz, NSi(CH₃)₃); -5.1 (d, ²J_{PSi} = 43 Hz, CSi(CH₃)₃); 2.6 (s, NHSi(CH₃)₃); 3.3 (d, ²J_{PSi} = 4.4 Hz, CSi(CH₃)₃)

2-[1-Trimethylsilyl-3-(2,4,6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl]-6-amino-trimethylsilyl-pyridin [69c]

Summenformel: C₂₉H₅₁N₄PSi₂ Molmasse: 542 Ausbeute: 0.31 g; 57%

MS (16 eV 150°C): m/z (%)= $M^+= 542$ (1); 441 (11) M-[SiMe_3-2CH_2]^+; 383 (5) M-[SiMe_3-2CH_2-SiMe_2]^+; 368 (12) M-[SiMe_3-2CH_2-SiMe_3]^+; 310 (4) M-[SiMe_3-2CH_2-SiMe_3^+Bu]^+; 253 (37) M-[Mes*-NP]^+; 238 (76) M-[Mes*-NP-Me]^+ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 270.2 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.21$ (s, 9H, NSi(Me₃)₃); 0.36 (s (br), 9H, NHSi(Me₃)₃); 1,37 (s, 9H, p-^tBu); 1.57 (s, 18H, o-^tBu); 3.75 (s (br), 1H ,NH); 5.68 (d, ³J_{HH} = 7.84 Hz, 1H, py-H5); 6.48 (dd, ³J_{HH} = 7.46 Hz, ⁴J_{HH} = 0.47 Hz 1H, py-H3); 7.02 (t, ³J_{HH} = 7.84 Hz, 1H, py-H4); 7.46 (s (br), 2H, H3/5-Mes*)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.0$ (s, NHSi(CH₃)₃); 1.7 (d, ³J(P,C) = 6.5 Hz, NSi(CH₃)₃); 31.7 (s, CH₃, p-^tBu); 32.4 (d, ⁵J_{PC} = 3.2 Hz, CH₃, o-^tBu); 34.4 (s, CCH₃, p-^tBu,); 36.1 (s, CCH₃, o- ^tBu,); 98.9 (s,py-C5); 107.1 (s, CH, py- C3); 112.5 (d, ⁴J_{PC} = 3.2 Hz, CH, Mes* C3/C5); 136.8 (d, ³J_{PC} = 9.7 Hz, CH, Mes* C2/C6); 138.0 (s, CH, py-C4); 144.36 (d, ²J_{PC} = 8,08 Hz, CH, Mes* C1); 153.8 (s, CH, py-C6); 159.12 (s, CH, Mes*-C4); 159.4 (s, CH, py-C2)

²⁹Si-NMR (C₆D₆, 25°C): δ = 2.8 (s, NSi(CH₃)₃); 12.8 (d, ²J_{PSi} = 15.8 Hz)

Allgemeine Arbeitsvorschrift zur Darstellung der Bisaminoalkylidenphosphane [71a-c]

5,6 mL (9 mmol) einer 1,6 M *n*-BuLi-Lösung wird bei -78 °C zu 4,5 mmol des entsprechenden 2,6 Bis(amino)pyridins und 0,52 g (4,5 mmol) TMEDA in 30 ml Diethylether getropft. Nach 5 h Rühren bei Raumtemperatur wird diese Lösung in einen Tropftrichter überführt und zu 2,02 g (9 mmol) ClP=C(SiMe₃)₂ in 30 ml Et₂O bei -78 °C getropft. Die Lösung wird über Nacht rühren gelassen, wobei sie sich auf Raumtemperatur erwärmt. Danach wird das Lösemittel evakuiert. Der Rückstand wird in n-Pentan aufgenommen, der resultierende Feststoff über eine G-4-Fritte abgetrennt. Die Bisaminoalkylidenphosphane werden nach dem Einengen des Lösemittels als Feststoff [**71a**, **71b**] bzw. Öl [**71c**] erhalten.

2, 6-Bis-[1, 3, 3-tri-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin

[71a]

Summenformel: C₂₅H₅₇N₃P₂Si₆ Molmasse: 629 Ausbeute: 2.8 g; 100% Schmelzpunkt: 78 °C

MS (16 eV; 200 °C): m/z (%) = M^+ = 629 (1); 556 (65) M-[SiMe₃]⁺; 483 (4) M-[(SiMe₃)₂]⁺; 468 (10) M-[Si(Me₃)₄]⁺; 368 (6) M-[PC(SiMe₃)₂-SiMe₃]⁺; 352 (100) M-[PC(SiMe₃)₂-SiMe₄]⁺; 294 (10) M-[PC(SiMe₃)₂-2-Si(Me)₃]⁺; 280 (3) M-[NPC(SiMe₃)₂-2-Si(Me)₃]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 358.5 ppm ³¹**P-NMR** (d-Toluol, -80°C): δ = 363.9 und 347.8 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.12$ (s, 18H, N-SiMe₃); 0.351 (9H, C(SiMe₃); 0.36 (9H, C(SiMe₃); 0.38 (s, 18H, CSi(Me₃)₂); 2.12 (s, 12H, TMEDA); 2.16 (s, 4H, TMEDA); 6.25 (d, ³J_{HH} = 7.55 Hz, 2H, py-H3/H5); 6.90 (t, ³J_{HH} = 7.98 Hz, 1H, py-H4)

¹³C-NMR (C₆D₆, 25°C): $\delta = 3.6$ (d, ³J(P,C) = 4.8 Hz CH₃, NSi(CH₃)₂); 3.7 (d, ³J_{PC} = 4.8 Hz CH₃, NSi(CH₃)₂); 3.9 (d, ³J_{PC} = 2.9 Hz, CH₃, Si(CH₃)₂); 4.1 (d, ³J_{PC} = 15.5 Hz CH₃, Si(CH₃)₂); 47.4 (s, CH₃, TMEDA); 58.9 (s, CH₂, TMEDA); 106.6 (d, ³J_{PC} = 4.2 Hz CH, py-C3/C5); 139.7 (s, CH, py-C4); 160.7 (s, C, py-C2/C6); 184.8 (d, ¹J_{PC} = 91.2 Hz, C, P=C[Si(CH₃)₃]₂) Struktur s. Anhang

2,6-Bis-[1-phenyl-3,3-di-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin

[71b]

Summenformel: C₃₁H₄₉N₃P₂Si₄ Molmasse: 637 Ausbeute: 1.3 g; 45%

Schmelzpunkt: 85 °C

MS (16 eV; 350 °C): m/z (%) = M⁺ = 637 (2); 564 (88) M-[SiMe₃]⁺; 521 (12) M-[PCSiMe₃]⁺; 448 (100) M-[PC(SiMe₃)₂]⁺; 432 (28) M-[PC(SiMe₃)₂-CH₄]⁺; 375 (24) M-[PC(SiMe₃)₂-SiMe₃]⁺; 360 (75) M-[PC(SiMe₃)₂-SiMe₄]⁺; 333 (12) M-[PC(SiMe₃)₂-PCSiMe₃]⁺ und weitere. ³¹**P-NMR** (C₆D₆, 25°C): δ = 345.5 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.03$ (s, 9H, C-Si(Me₃); 0.16 (9H, CSi(Me₃); 0.33 (s, 18H, C(SiMe₃) ₂); 6.24 (d, ³J_{HH} = 8.0 Hz, 2H, ph-H2/H6-terminal); 6.80 (t, ³J_{HH} = 7.97 Hz, 1H, py-H4-zentral); 6.88 (tt, ³J_{HH} = 7.37 Hz, ⁴J_{HH} = 1.75 Hz, ⁴J_{HH} = 1.2 Hz, 2H, H4-terminal); 7.03 (dt, ³J_{HH} = 8.07 Hz, ⁴J_{HH} = 1.4 Hz, 2H, H3/5-zentral); 7.29 (dd, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 0.9 Hz, 4H, H3/5-terminal)

¹³C-NMR (d-THF, 25°C): $\delta = 0.0$ (s, CH₃, CSi(CH₃)₂); 0.6 (sbr, CH₃, CSi(CH₃)₂); 1.6 (d, ³J_{PC} = 15.8 Hz CH₃, Si(CH₃)₂); 103.4 (CH, py-C3/C5-zentral); 124.4 (s, CH, C2/6-terminal); 126.1 (CH, C3/C5-terminal); 128.6 (CH,C4-terminal); 138.2 (C, py-C2/6-zentral); 144.1(C, py-C4-zentral); 157.8 (d, ²J_{PC} = 3.9 Hz, C1-terminal); 173.8 (d, ¹J_{PC} = 83 Hz, C, P=C[Si(CH₃)₃]₂)

Summenformel: C₂₉H₄₇N₅P₂Si₄ Molmasse: 639 Ausbeute: 0.6 g; 22%

MS (16 eV, 125 °C): m/z (%) = $M^+ = 639$ (3); 566 (100) M-[SiMe_3]⁺; 450 (17) M-[PC(SiMe_3)_2]⁺; 378 (72) M-[PC(SiMe_3)_2-SiMe_3]⁺; 281 (63) M-[(Py)_2NPC(SiMe_3)_2]⁺; 263 (73) [PyNHPyNHPy]⁺; 221 (50) PyNPC(SiMe)_2]⁺; 209 (33) [PyNHPCSiMe_3]⁺; 190 (12) [HPC{(Si(Me)_3)_2]⁺; 147 (97) [(CH_3)_2SiPSi(CH_3)_2]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C): δ = 340.9 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.07$ (s, 18H, C(SiMe₃)₂); 0.26 (s, 9H, C(SiMe₃); 0.38 (s, 9H, C(SiMe₃); 2.12 (s, 12H, TMEDA); 2.16 (s, 4H, TMEDA); 6.38 (ddd, ³J_{HH} = 7.33 Hz, ³J_{HH} = 4.96 Hz, ⁴J_{HH} = 0.94 Hz, 2H, py-H3-terminal); 6.78 (d, ³J_{HH} = 8.03 Hz, 2H, py-H3/H5-zentral); 6.99 (dd, ³J_{HH} = 8.5 Hz, ³J_{HH} = 7.46 Hz, 1H, py-H4 -zentral); 7.08 (ddd, ³J_{HH} = 8.43 Hz, ³J_{HH} = 7.25 Hz, ⁴J_{HH} = 1.96 Hz, 2H, py-H5-terminal); 7.32 (dt, ³J_{HH} = 8.4 Hz, ⁴J_{HH} = 0.9 Hz, 2H, py-H4 -terminal); 8.10 (dd, ³J_{HH} = 5.0 Hz, ⁴J_{HH} = 1.3 Hz, 2H, py-H6 -terminal)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.0$ (s, CSiCH₃); 0.5 (d, ³J_{PC} = 3.2 Hz CH₃, CSi(CH₃)₃); 1.3 (d, ³J_{PC} = 15.8 Hz CH₃, CSi(CH₃)₃); 44.7 (s, CH₃, TMEDA); 56.6 (s, CH₂, TMEDA); 107.3 (d, ³_{JPC} = 1.6 Hz CH, py-C3/C5-zentral); 114.1 (s, 2CH, C5-terminal); 116.2 (s, 2CH, C3-terminal); 135.9 (s, 2CH, C4-terminal); 137.5 (s, CH, py-C4-zentral); 146.9 (s, 2CH, C6-terminal); 154.3 (d, ²J_{PC}= 2.6 Hz, C, py-C2/6-zentral); 156.0 (d, ²J_{PC}= 2.6 Hz, C, C2-terminal); 170.1 (d, ¹J_{PC}= 85.3 Hz, C, P=C[Si(CH₃)₃]₂)

Darstellung des 2,6-Bis-[1-trimethylsilyl - 3 - (2,4,6-tri*-tert*.-butylphenyl)amino(imino)phosphanyl]-pyridin [72]

0,506 g (2 mmol) 2,6 Bis(aminotrimethylsily)pyridin in 15 ml Diethylether und 0,62 ml (4mmol) TMEDA werden auf - 40 °C gekühlt. Die Lösung wird nach Zutropfen von 2,6 ml (4,16 mol) n-BuLi leicht gelb. Nach 3,5 h Rühren bei RT wird die Lösung in einen Tropftrichter überführt und zu 1,3 g (4 mmol) Chloriminophoshan in 15 mL Diethylether bei - 80 °C zugetropft. Die flüchtigen Bestandteile werden im Vakuum entfernt, der Rückstand in Pentan aufgenommen und über eine G4–Fritte abgefrittet. Nach 3 Tagen bei RT können Kristalle aus der rot-braunen Lösung gewonnen werden.

2,6-Bis-[1-trimethylsilyl-3-(2,4,6-tri-tert.-butylphenyl)-amino(imino)phosphanyl]-pyridin

[72]

Summenformel: C₄₇H₇₉N₅P₂Si₂ Molmasse: 831 Schmelzpunkt: 86 °C Ausbeute: 1.5 g; 90%

MS (16 eV): m/z (%) = M^+ = 831 (3); 541 (14) M-[Mes*PN]⁺; 526 (8) M-[Mes*PN-CH₃]⁺; 378 (15) M-[Mes*PNSiMe₃PyN]⁺; 363 (19) M-[Mes*PNSiMe₃PyNMe]⁺; 290 (41) [Mes*NP]⁺; 245 (100)[Mes*]⁺; 209 [PyNSiMe₃PN]⁺.

³¹**P-NMR** (C₆D₆, 25°C): δ = 271.7 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.35$ (s, 18H, N-SiMe₃); 1.35 (s, 18H, p-^tBu); 1.52 (s, 36H, o-^tBu); 6.46 (d, ³J_{HH} = 7.9 Hz, 2H, py-H3/5); 6.91 (t, ³J_{HH} = 6.5 Hz, 1H, py-H4); 7.44 (s, 4H, Mes*)

¹³C-NMR (C₆D₆, 25°C): $\delta = 1.9$ (d, ³J_{PC} = 6.5 Hz CH₃, NSi(CH₃)₂); 29.8 (s, CH₃, p-^tBu); 30.6 (d, ⁵J_{PC} = 3.2 Hz, CH₃, o-^tBu); 32.5 (s, t-C, p-^tBu); 34.2 (s, t-C, o-^tBu); 117.8 (d, ³J_{PC} = 2.3 Hz, CH, py-C3/C5); 119.6 (s, CH, C3/5-Mes*); 135.0 (d, ³J_{PC} = 9.5 Hz, C, Mes*-C2/C6); 136.2 (s, CH, py-C4); 142.0 (d, ²J_{PC} = 8.1 Hz, C, C1, Mes*); 152.4 (s, CH, py-C2/6); 157.4 (s, C, Mes*-C4)

Struktur s. Anhang

Arbeitsvorschrift für [73] :

Zu 1 g (1,2 mmol) von Verbindung [72] in 10 mL Toluol werden bei -78 °C zwei Äquivalente Nickeltetracarbonyl (0,31 ml (2,4 mmol, d = 1,32 [g/ml]) bei -78 °C langsam zugetropft. Die ursprüngliche orangerote Lösung wird im Verlauf der Reaktion tief rot. Gelbe Kristalle fallen bei -28 °C nach mehreren Tagen aus.

2,6-Bis-[1-trimethylsilyl-(2,4,6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl-Nickeltricarbonyl]-pyridin [73]

Summenformel: C₅₃H₇₉N₅Ni₂O₆P₂Si₂ Molmasse: 1116.42 Ausbeute: 0.7 g; 53%; gelber Feststoff Schmelzpunkt: 70 °C

MS (16 eV, 300° C): m/z (%)= M^+ = 1116,4 (nicht aufgelöst); 939 (1) M-[Ni(CO)₃-Me-CH₄]⁺; 832 (3) M-[2 Ni(CO)₃]⁺; 542 (16)) M-[2 Ni(CO)₃-Mes*PN]⁺; 527 (6) M-[2 Ni(CO)₃-Mes*PN-CH₃]⁺; 379 (11) M-[2 Ni(CO)₃-Mes*PNSiMe₃PyN]⁺; 364 (19) M-[2 Ni(CO)₃-Mes*PNSiMe₃PyNMe]⁺und weitere.

IR (Nujol, KBr): v(CO) 2028 (vs), 1936 (s), 1889 (s) cm⁻¹

³¹**P-NMR** (C₆D₆, 25°C): δ = 303.4 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.47$, 0.50, 0.57 (18H, cis-NSiMe₃); 0.27 (s, 18H, N-SiMe₃); 1.30, 1.33, 1.36 (s, p-CCH₃); 1.45, 1.47, 1.50 (s, o-CH₃); 6.61 ("t", 1H, py-H4); 7.38 (s, Mes*-H5); 7.46 ("d", py-H3/H5); 7.50 (s, Mes*-H3)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.0$ (s, CH₃, NSi(CH₃)₃); 0.9 (s, NSi(CH₃)₃); 27.8 (s, p-CH₃); 29.3 (s, o-CH₃); 30.1 (s, p-^tCCH₃); 30.6 (s, o-^tCCH₃); 119.4 (s, CH, Mes*-C5); 120.0 (s, CH, Mes*-C3); 120.2 (s, C, Mes*-C2); 123.2 (s, CH, py-C3/5); 126.8 (s, C, Mes*-C6); 136.3 (s, C, Mes*-C1); 136.5 (s, CH, py-C4); 142.4 (s, C, Mes*-C4); 153.2 (s, C, py-C2/6); 189.7, 190.2, 190.3 (CO) Struktur s. Anhang

Arbeitsvorschrift zur Darstellung von [74] und [76]:

Jeweils 1 mmol der Verbindungen [**68a**] (0,35 g) bzw. [**69a**] (0,45 g) werden in Toluol gelöst. Bei -30 °C wird 1 mmol (0.13 ml) Nickeltetracarbonyl zugetropft. Die Reaktionsmischung wird auf Raumtemperatur gebracht, wobei sich CO entwickelt. Nach Abzug des Lösungsmittels fallen die Verbindungen als Öle an.

2-[1-Trimethylsilyl-3-(2,4,6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl]-pyridin-Nickel-tricarbonyl [74]

Summenformel: C₂₉H₄₂N₃NiPO₃Si

Molmasse: 597.7

Ausbeute: nicht bestimmt

MS (16 eV, 100-150 °C): m/z (%) = M⁺= 597 (1); 569 (1) M-[CO]⁺; 364 (16) M-[SiMe₃ -CH₃ -Ni(CO)₃]⁺; 290 (5) M-[PyN-SiMe₃-Ni(CO)₃]⁺; 246 (90) M-[Ni(CO)₃-PyNPN-SiMe₃]⁺ und weitere.

IR (Nujol, KBr): v(CO) 2036 (vs), 1949 (s), 1908 (s) cm⁻¹

³¹**P-NMR** (C₆D₆, 25°C): δ = 303.0 ppm

¹**H-NMR** (C₆D₆,25°C): $\delta = 0.43$ (s, 9H, NSiMe₃); 1.39 (s, 9H, p-C-CMe₃); 1.60 (s, 18H, o-C-CMe₃); 6.71 (d, ³J_{HH} = 8.03 Hz,1H, py-H3); 6.52 (t, ³J_{HH} = 6.04, 1H, py-H5); 6.98 (m, 1H, py-H4); 7.46 (s, 2H, Mes* H3/5); 8.21 (m, ³J_{HH} = 3.87, 1H, py-H6)

¹³C-NMR(C₆D₆ 25°C): $\delta = 0.0$ (s, CH₃, NSiMe₃); 29.1 (s, CH₃, p-^tBu); 30.5 (s, CH₃, o-^tBu); 31.7 (s, t-C, p-^tBu); 35.4 (s, t-C, o- ^tBu); 120.8 (s, C, C2/C6-Mes*); 121.1 (s, CH, C3/5-Mes*); 124.3 (s, py-C5); 124.5 (m, CH, py-C3); 136.5 (s, CH, py-C4); 137.9 (d, ²J_{PC} = 13.25 Hz C, Mes*-C1); 143.5 (s, C, C4-Mes*); 148.6 (s, CH, py-C6); 158.0 (s, C, py-C2), 190.0, 191.0 (CO)

2-[1, 3, 3-Tri-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin-Nickeldicarbonyl

Summenformel: C₁₆H₃₁N₂NiPO₂Si₃ Molmasse: 496,7 Ausbeute: nicht bestimmt MS (16 eV, 300-400°C): m/z (%) = M^+ = nicht aufgelöst, M = 412 (8) M-[(CO)₂-Et]⁺; 368 (2) M-[Ni(CO)₂-Me]⁺; 297 (6) M-[Ni(CO)₂-CSiMe₃]⁺; 281 (11) M-[Ni(CO)₂(SiMe₃)-Me-NSiMe₃]⁺; 221 (31) M-[Ni(CO)₂(SiMe₃)₂-Me]⁺; 151 (31) M-[Ni(CO)₂(SiMe₃)₃-C]⁺ und weitere.

IR (Nujol, KBr): v(CO) 2172 (s), 21586 (s) cm⁻¹

³¹**P-NMR** (C₆D₆, 25°C): δ = 113.2 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.07$ (s, 9H, N-SiMe₃); 0.269 (s, 9H, C-SiMe₃); 0.29 (s, 9H, C-SiMe₃); 5.97 (ddd, ³J_{HH} = 7.03 Hz, ³J_{HH} = 5.62 Hz, ⁴J_{HH} = 1.09 Hz, 1H, py-H5); 6.23 (ddd, ³J_{HH} = 8.62 Hz, ⁴J_{HH} = 0.87 Hz, ⁵J_{HH} = 0.87 Hz, 1H, py-H3); 6.98 (ddd, ³J_{HH} = 7.22 Hz, ³J_{HH} = 1.32 Hz, ⁴J_{HH} = 0.61 Hz, 1H, py-H4); 7.85 (ddd, ³J_{HH} = 5.52 Hz, ⁴J_{HH} = 1.94 Hz, ⁵J_{HH} = 0.76 Hz, 1H, py-H6)

¹³C-NMR (C₆D₆, 25°C): δ = -0.1 (d, ³J_{PC} = 11.0 Hz, CH₃, N-SiMe₃); 2.2 (d, ³J_{PC} = 13.6 Hz, CH₃, C-SiMe₃); 3.0 (d, ³J_{PC} = 1.3 Hz, CH₃, C-SiMe₃); 66.6 (d, ¹J_{PC} = 121.9 Hz, P=C); 112.1 (d, ³J_{PC} = 3.9 Hz, CH, py-C3); 113.5 (s, CH, py-C5); 135.4 (s, CH, py-C4); 149.8 (d, ⁴J_{PC} = 1.94 Hz, py-C6); 162.8 (d, ²J_{PC} = 2.9 Hz, CH, py-C2); 193.1 (d, C, ²J_{PC} = 11.3 Hz, CO); 203.0 (d, C, ²J_{PC} = 6.8 Hz, CO)

²⁹Si-NMR (C₆D₆, 25°C): δ = -4.6 (s, NSi(CH₃)₃); -3.9 (s, CSi(CH₃)₃); 8.7 (s, CSi(CH₃)₃)

Arbeitsvorschrift für Verbindung [75]:

Zu 0,63 g (1 mmol) der Verbindung [**72**], in Toluol gelöst, werden 0,27 g (1 mmol) Ni(COD)₂, ebenfalls in Toluol gelöst, bei - 30 °C zugegeben und unter Rühren auf Raumtemperatur gebracht. Nach Abzug des Lösemittels wird [**75**] als Öl erhalten.

2, 6-Bis-[1, 3, 3-tri-(trimethylsilyl)-1-amino-2-phoshpaethenyl]-pyridin-η² - η² -1,5cyclooctadien-nickel (0) [75]

Summenformel:C₃₃H₆₉N₃NiP₂Si₆ Molmasse: 795,7 Ausbeute: 0.56 g, 70 %

MS (16 eV, 75-200 °C): m/z (%) = M^+ = nicht aufgelöst; 533 (1): M-[PC(SiMe_3)_2-SiMe_3]^+; 474 (2): M-[PC(SiMe_3)_2-SiMe_3-SiMe_2H]^+; 460 (2) M-[PC(SiMe_3)_2- 2 Si(Me_3)]^+; 312 (11) M-[PC(SiMe_3)_2-CSiMe_3-SiMe-NiCOD]^+; 297 (33) M-[PC(SiMe_3)_2-CSiMe_3-SiMe_2-NiCOD]^+; 151 (2) [NiCOD-Me]^+; 147 (9) [(CH_3)_2SiPSi(CH_3)_2]^+; 73 (31) [SiMe_3]^+; 58 (100) [Ni]^+.

³¹**P-NMR** (C₆D₆, 25°C): 214.7 ppm

¹**H-NMR** (C₆D₆, 25°C): δ = 0.12-0.44 (8s, 54H, N-,C-SiMe₃); 2.23 (s(br), CH₂, COD); 5.50 (s(br), CH, COD); 6.02 (d, ³J_{HH} = 8.12 Hz, 1H, py-H3); 6.94 (t, ³J_{HH} = 8.12 Hz, 1H, py-H4); 7.11 (t, ³J_{HH} = 7.32 Hz, 1H, py-H5)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.4$, 1.1, 4.2 (s, NSi(CH₃)₂); -0.50, (t, ⁴J_{PC}= 3.6 Hz, CH₃, Si(CH₃)₂); -0.0 (t, ⁴J_{PC} = 3.1 Hz, CH₃, Si(CH₃)₂); 3.2 (t, ⁴J_{PC} = 2.1 Hz, CH₃, Si(CH₃)₂); 3.8 (t, ⁴J_{PC} = 6.0 Hz, CH₃, Si(CH₃)₂); 19.5 (sept., ⁴J_{PC} = 19.2 Hz, CH₂, COD); 104.5 (s, CH, py-C3/C5); 124.2 (t, ³J_{PC} = 24.2 Hz, CH, COD); 127.0 (t, ⁴J_{PC} = 24.0 Hz, CH, COD); 127.9 (t, ⁴J_{PC} = 23.8 Hz, CH, COD); 136.8 (s, CH, py-C4); 137.8 (s, C, py-C2/C6); 162.5 (t, ¹J_{PC} = 290.3 Hz, ³J_{PC} = 2.4 Hz, 2C, P=C[Si(CH₃)₃]₂)

Arbeitsvorschrift für Verbindung [81]:

Zu 1 g (1,5 mmol) von Verbindung [**71a**], in Diethylether gelöst, werden 0,38 g (1,5 mmol) Dilithioaminopyridin* TMEDA bei -78 °C getropft. Die orangerote Lösung wird auf RT erwärmen gelassen und danach 2 Wochen bei -30° C gelagert. Es bilden sich orange Kristalle.

2-[1-Aza-2-phosphaallyl-bis(trimethylsilyl)-1-aminopyridinato-Lithium * TMEDA]-6-(bis-trimethylsilyl)-amino-pyridin [81]

Summenformel:C₂₄H₅₅LiN₅PSi₄ Molmasse: 563 Ausbeute: 0.8 g; oranger Feststoff; 95 % Schmelzpunkt: 120 °C UV/Vis: 400 nm

³¹**P-NMR** (C₆D₆, 25°C) δ = 372.1

¹**H-NMR** (C₆D₆, 25°C): δ = 0.12 (s, 18H, NSiMe₃); 0.44 (s, 9H, SiMe₃); 0.57 (d, ⁴J_{PH} = 1.69 Hz , 9H, (SiMe₃)₂); 1.86 (s, 4H, TMEDA); 2.03 (s, 12H, TMEDA); 5.86 (dd, ³J_{HH} = 7.27 Hz, ⁴J_{HH} = 0.75 Hz 1H, py-H3); 6.54 (dd, ³J_{HH} = 8.12 Hz, ⁴J_{HH} = 0.56 Hz, 1H, py-H5); 6.99 (t, ³J_{HH} = 7.36 Hz, 1H, py-H4)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.38$ (s, CH₃, NSi(CH₃)₃); 1.8 (d, ³J_{PC} = 13.3 Hz, CH₃, Si(CH₃)₃); 2.2 (d, ³J_{PC} = 2.6 Hz, CH₃, Si(CH₃)₃); 44.2 (s, CH₃, TMEDA), 55.7 (s, CH₂, TMEDA); 105.0 (d, ³_{PC} = 24.9 Hz, py-C3); 107.0 (s, CH, py-C5); 136.6 (d, ⁴J_{PC} = 3.2 Hz CH, py-C4); 144.2 (d, ¹J_{PC} = 76.3 Hz, C-q, Tms₂C=P); 156.5 (d, ⁴J_{PC} = 2.3 Hz C, py-C6); 165.5 (d, ²J_{PC} = 12.3 Hz C, py-C2)

Struktur s. Anhang

Arbeitsvorschrift für Verbindung [83]:

Zu 0,5 g der Verbindung [**81**] (0,8 mmol) werden bei -78 °C 0,18 g (0,8 mmol) Chlormethylenphosphan in Diethylether getropft. Das Produkt kann nach der Aufarbeitung als gelbes Öl isoliert werden.

2-[Amino-bis-(di-trimethylsilyl)-phosphaethenyl]-6-(bis-trimethylsilyl)-amino-pyridin

Summenformel: C₂₅H₅₇N₃P₂Si₆ Molmasse: 629 Ausbeute: 0.5g; 100% Schmelzpunkt: 75 °C

MS (16 eV, 100 °C): m/z (%) = $M^+ = 629$ (5); 614 (2) M-[Me]⁺; 556 (7) M-[SiMe₃]⁺; 470 (21) M-[N(SiMe₃)₂]⁺; 441 (20) M-[PC(SiMe₃)₂+H]⁺; 426 (50) M-[PC(SiMe₃)₂-CH₂]⁺; 368 (31) M-[PC(SiMe₃)₂-SiMe₃]⁺; 310 (27) M-[N(SiMe₃)₂-(SiMe₃)₂-CH₂]⁺; 281 (99) M-[N(SiMe₃)₂-PC(SiMe₃)₂]⁺ und weitere.

³¹**P-NMR** (C₆D₆, 25°C) δ = 336.1 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.23$ (s, 18H, NSiMe₃); 0.29 (s, 18H, SiMe₃); 0.37 (s, 18H, SiMe₃); 2.15 (s(br), 16H, TMEDA); 6.19 (dd, 1H, ³J_{HH} = 7,55 Hz, ⁴J_{HH} = 0.5 Hz, py-H5); 6.4 (d(br), ³J_{HH} = 7.55 Hz, 1H, py-H3); 6.96 (t, ³J_{HH} = 7.84 Hz, 1H, py-H4)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.01$ (s, CH₃, NSi(CH₃)₃); 1.1-1.3 (mehrere s, CSi(CH₃)₃); 44.2 (s, CH₃, TMEDA); 55.7 (s, CH₂, TMEDA); 104.3 (t, ³J_{PC} = 5.7 Hz CH, py-C3); 111.7 (s, CH, py-C5); 137.2 (s, CH, py-C4); 155.2 (t, ³J_{PC} = 4.7 Hz, C, py-C2); 160.0 (s, CH, py-C6); 182.6 (d, ¹J_{PC} = 90.2 Hz C, P=C Si[CH₃)₃]₂) Struktur s. Anhang

Die Darstellung der Verbindung [91] erfolgt analog zur Darstellung von [76] (Ansatz: 1 mmol).

Bis-{2-[amino-bis-(di-trimethylsilyl)-phosphaethenyl-η²-Nickeldicarbonyl]-6-(bis-trimethylsilyl)-amino-pyridin}-η²-Nickelcarbonyl [91]

Summenformel: C₃₀H₅₇N₃Ni₂P₂O₅Si₆ Molmasse: 885 Ausbeute: 0.3 g Öl, 34 %

 $MS (16 \text{ eV}, 200 \text{ °C}): m/z (\%) = (M^{+}) 883/882 (2) \text{ M-}[\text{H}_2]^{+}; 723 (2) \text{ M-}[\text{N}(\text{SiMe}_3)_2]^{+}; 663 (2) \text{ M-}[\text{PC}(\text{SiMe}_3)_2-\text{Me}_2]^{+}; 547 (41) \text{ M-}[\text{Ni}-5\text{CO}-\text{C}(\text{SiMe}_3)(\text{SiMe}_2)\text{CH}]^{+}, 443 (3) \text{ M-}[2\text{Ni}-5\text{CO}-\text{Me}-(\text{PC}(\text{SiMe}_3)_2]^{+}; 384 (20) \text{ M-}[\text{PC}(\text{SiMe}_3)_2-2\text{Ni}-5\text{CO}-\text{SiMe}_2\text{CH}]^{+}; 369 (53) \text{ M-}[\text{PC}(\text{SiMe}_3)_2-2\text{Ni}-5\text{CO}-\text{SiMe}_2\text{CH}]^{+}; 369 (53) \text{ M-}[\text{PC}(\text{SiMe}_3)_2-2\text{Ni}-5\text{CO}-\text{SiMe}_2\text{CH}-\text{SiMe}_3]^{+}; 281 (60) \text{ M-}[-\text{CH}_3,-\text{CH}_2 \text{ PC}(\text{SiMe}_3)_2-2\text{Ni}-5\text{CO}-\text{SiMe}_2\text{CH}-\text{SiMe}_3]^{+} \text{ und weitere.}$

IR (Nujol, KBr): v(CO) 2176 (s), 2138 (s), 2044 (vs), 1892 (s), 1860 (s) cm⁻¹

³¹**P-NMR** (C₆D₆, 25°C) δ = 96.1, 66.9 ppm (d, ²J_{PP} = 8.9 Hz)

¹**H-NMR**: δ = 0.06-0.42 (m, 54H, N-, C-SiMe₃); 6.15 (d, 1H, ³J_{HH} = 6.70 Hz, py-H3); 6.25 (d, 1H, ³J_{HH} = 8.03 Hz, py-H3); 6.73 (t, ³J_{HH} = 7.79 Hz, 1H, py-H4); 6.94 (t, ³J_{HH} = 7.79 Hz, 1H, py-H4); 6.98 (t, 1H, ³J_{HH} = 7.18 Hz, py-H5); 7.10 (t, 1H, ³J_{HH} = 7.47 Hz, py-H5)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0,0$ (s, CH₃, NSi(CH₃)₃); 1.3 (d, ³J_{PC} = 15.5 Hz, CH₃, CSi(CH₃)₃); 1.6 (s, CH₃, NSi(CH₃)₃); 1.8 (d, ³J_{PC} = 13.3 Hz, CH₃, CSi(CH₃)₃); 1.8 (dd, ³J_{PC} = 13.3 Hz, CH₃, CSi(CH₃)₃); 1.8 (dd, ³J_{PC} = 13.3 Hz, CH₃, CSi(CH₃)₃); 2.6 (t, ⁴J_{PC} = 1.94 Hz, CH₃, CSi(CH₃)₃); 3.4 (dd, ⁴J_{PC} = 6.8 Hz, ⁴J_{PC} = 1.94 Hz, CH₃, CSi(CH₃)₃); 3.7 (dd, ⁴J_{PC} = 2.9 Hz, ⁴J_{PC} = 1.6 Hz, CH₃, CSi(CH₃)₃); 45.6 (d, ¹J_{PC} = 103.5 Hz, P=C[Si(CH₃)₃]₂); 75.7 (d, ¹J_{PC} = 108.3 Hz, P=C[Si(CH₃)₃]₂); 104.5 (dd, ³J_{PC} = 13.9 Hz, ³J_{PC} = 1.94 Hz, CH, py-C3); 113.4 (s, CH, py-C5); 136.5 (s, CH, py-C6); 137.0 (d, ⁴J_{PC} = 1.3 Hz, CH, py-C4); 160.3 (dd, ²J_{PC} = 4.2 Hz, ²J_{PC} = 1.0 Hz, CH, py-C2); 192.2 (d, C, ²J_{PC} = 18.1 Hz, CO); 192.30 (d, C, ²J_{PC} = 19.4 Hz, CO); 201.9 (d, C, ²J_{PC} = 8.7 Hz, inter-CO); 202.0 (d, C, ²J_{PC} = 9.1 Hz, CO); 202.9 (d, C, ²J_{PC} = 9.05 Hz, CO)

Arbeitsvorschrift zu 2,6-Bis(trimethylsilylmethyl)pyridin substituierte Iminophosphane [92]:

Es werden 0,52 g (2 mmol) 2,6-Bis(trimethylsilylmethyl)pyridin und 0,62 ml (4 mmol) TMEDA in 15 ml THF gelöst. Nach dem Zutropfen von 2,6 ml *n*-BuLi (4,16 mmol) wird die dunkelrote Lösung für 4 h weiter bei RT gerührt. Danach wird die Lösung zu 1,3 g (4 mmol) Chloriminophosphan getropft. Das Zwischenprodukt [104] konnte nur spektroskopische charakterisiert werden. Nach der Aufarbeitung, dem Einengen im Vakuum und Abfiltrieren des Lithiumchlorids fällt die Verbindung [**93**] als gelber Feststoff an.

2,6-Bis-[(trimethylsilylmethyl)methyl-N-(2,4,6-tri-*tert*.-butylphenyl)-iminophosphanyl]pyridin [92]

Summenformel: C₄₉H₈₁N₃P₂Si₂

Molmasse: 829

³¹**P-NMR** (C₆D₆, 25°C): δ = 474.9 ppm

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.15 - 0.25$ (s, 18H, C-SiMe₃, 1:2:1); 1.30 (s, CH₃, p-^tBu); 1.34 (s, CH₃, p-^tBu); 1.47 (s, CH₃, o-^tBu); 1.48 (s, CH₃, o-^tBu); 2.12 (s, 12H, TMEDA); 2.16 (s, 4H, TMEDA); 6.51 (d, ³J_{HH} = 7.55 Hz, py-H3/H5); 6.73 (d, ³J_{HH} = 7.74 Hz, 2H, py-H3/H5,); 7.04 (t, ³J_{HH} = 7.55 Hz, 1H, py-H4); 7.46 (s, H, C3/5-Mes*); 7.55 (s, H, C3/5-Mes*)

Hepta-Lithium-hexachloro-hexa-tetramethylethylendiamin-

2,6 Bis [1trimethylsilyl-2-phospha-3-aza-(2, 4, 6-tri-tert.-butyl-phenyl) Lithium]-pyrinid

[93]

Summenformel: Anion: C₄₉H₇₉LiN₃P₂Si₂ Molmasse: 1793.26, Anion: 834 , Kation: 959.26 Ausbeute: nicht bestimmt; gelber Feststoff Schmelzpunkt: 105 °C

³¹**P-NMR** (C₆D₆, 25°C): δ = 321.4 ppm

⁷Li-NMR (C₆D₆, 25°C): δ = 1.98 ppm (7 Li); 3.63 ppm (1 Li)

¹**H-NMR** (C₆D₆, 25°C): $\delta = 0.11$ (s, 18H, C-SiMe₃); 1.30 (s, CH₃, p-^tBu); 1.38 (s, CH₃, o- ^tBu); 2.09 (s, 12H, NMe₃-TMEDA); 2.27 (s, 4H, CCH₂-TMEDA); 6.82 (d, ³J_{HH} = 7.84 Hz, 2H, py-H3/H5); 7.26 (d, ³J_{HH} = 7.74 Hz, 1H, py-H4); 7.37 (s, 2H, H3/H5-Mes*)

¹³C-NMR (C₆D₆, 25°C): $\delta = 0.0$ (s, CH₃, CSi(CH₃)₃); 30.0 (s,CH₃, p-^tBu,); 31.1 (s, CH₃, o- ^tBu,); 31.8 (s, t-C4,p- ^tBu); 33.1 (s, t-C2/6, o-^tBu); 44.3 (s, CH₃, TMEDA); 56.4 (s, CH₂, TMEDA); 120.6 (d, ¹J_{PC} = 70.8 Hz, P-C); 124.1 (d, ³J_{PC} = 2.3 Hz, 2CH, py-C3/5-); 128.5 (s, 2CH, C1-Mes*); 132.0 (s, 4C, C2/6-Mes*); 137.0 (s, CH, py-C4); 139.0 (s, 2C, py-C2/6); 146.0 (s, C, C4-Mes*) Struktur s. Anhang

Arbeitsvorschrift zur Bildung des Bis -1-Aza-2-phosphaallyl-Anions [97]:

Zu 0,23 g (2,4 mmol) Lithiumtrimetylsilanolat in 10 ml THF werden bei RT 1g (1,2 mmol) von [72], in 5 mL THF gelöst, getropft. Es wird mehrere Tage gerührt, wobei eine gelbe Lösung entsteht. In Gegenwart geringer Mengen an TMEDA lassen sich aus dieser Lösung gelbe Einkristalle erhalten.

2-[3-(2, 4, 6-Tri-*tert*.-butylphenyl)-1, 3-diaza-2-phosphaallyl-Lithium * 2 THF]-6-[3-(2, 4, 6-tri-*tert*.-butylphenyl)-1, 3-diaza-2-phosphaallyl-1-aminopyridinatolithium* TMEDA]-pyridin [97]

Summenformel: C₅₅H₈₅Li₂N₇O₂P₂ Molmasse: 935 Ausbeute: 0.45 g; 40%

³¹**P-NMR** (C₆D₆, 25°C): δ = 350.1 ppm (breites Signal)

⁷Li-NMR (C₆D₆, 25°C): $\delta = 1.1$ (breit) ppm

¹**H-NMR** (C₆D₆, 25°C): δ = 1.38-1.41 (singuletts, 54H, p-^tBu, o-^tBu); 1.72 (m, 4H, THF); 2.04 (s, 12H, N(Me)₂-TMEDA); 2.13 (s, 4H, CH₂-TMEDA); 3.54 (t, 4H, THF); 6.99 (t, ³J_{HH} = 8.55 Hz, ⁴J_{HH} = 4,9 Hz 2H, py-H3/5); 7.10 (t, ³J_{HH} = 7,5 Hz, 1H, py-H4); 7.37-7.60 (4H, Mes*-H3/H5) ¹³C-NMR (C₆D₆, 25°C): δ = 23.0 (s, CH₂, THF); 28.4 (s, CH₃, p-^tBu); 30.0 (s,CH₃, o-^tBu); 32.6 (s, t-C, p-^tBu); 34.3 (s, t-C, o-^tBu); 44.5 (s, CH₃, TMEDA); 55.1 (s, CH₂, TMEDA); 119.5 (d, ³J_{PC} = 0.9 Hz, 2CH, py-C3/C5); 119.7 (s, 4CH, C3/5-Mes*); 131.8 (s, 4C, C2/6-Mes*); 137.3 (s, 1CH, py-C4); 157.5 (s, C, C4-Mes*)

Struktur s. Anhang

13 Anhang

13.1 Cyclovoltametrische Messergebnisse

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Verb.	ν	Ера	Epk	δΕρ	Ipa	Ipk	Ipk/	$E_{1/2} =$	EP-EP/2	W/2	IR-Kompensation(Ohm)
Image: Second		(mV/s)	(mV)	(mV)	(mV)	(µA)	(µA)	Ipa	(Epk	(mV)	(mV)	Konzentration (C:mM)
66 200 1010 -1060 50 0.299 -4 0.75 -1035 - - - IR = -, - mg/10 ml THF = -mM - Lösung, RT 66 200 - -1571.8 - - - - - - IR = -, - mJ - Lösung, RT 66 200 - -1560.9 - IR = 500, Oxidations- Bereich RT 66 100 76.5 663.5 102 5.08 -5.28 0.94 714.7 - - IR = 6300, Pr-quasi Ref. 66 100 720 656 64 9.78 -10.07 1.03 688 - - IR = 2000,									+Epa) /2			Temperatur in $(-50^{\circ} = 248^{\circ} \text{ K})$
66 200 1010 -1060 50 0.299 -4 0.75 -1035 - - IR = -, - mg/10 ml THF = - mM - Lösung, RT 66 200 - -1571.8 - - -3 - - - RT Reduktions-Bereich 66 50 748.7 666.8 81.9 4.43 -4.34 0.98 707.7 - - IR = 5500, Oxidations-Bereich RT 66 100 765.9 663.5 102 5.08 -5.28 0.94 714.7 - - IR = 6300, Pt-quasi Ref. 66 100 765.9 662 104 12.9 -12.7 0.985 714 - - IR = 2000 66 100 720 656 64 9.78 -10.07 1.03 688 - - IR = 2000, Calomel -31C ⁰ 66 100 655.3 570.6 84.7 9.2 -9.58 1.05 613 - - IR = 600;31C ⁰ ; Calomel -31C ⁰ 66 100 -1850 -1933 83 +16									(mV)			
66 200 - -1571.8 - - -3 - Reduktions-Bereich 66 100 765.9 663.5 102 5.08 -5.28 0.94 714.7 - - IR = 5500, Oxidations-Bereich RT Bereich RT - IR = 6400 766 662 104 12.9 -12.7 0.985 714 - - IR = 2000, DMFe+/DMeFe, - -31C ⁰ - IR = 2000, Calomel -31C ⁰ - - IR =	66	200	1010	-1060	50	0.299	-4	0.75	-1035	-	-	IR = -, - mg/10 ml THF
66 200 - -1571.8 - - -3 - R = -, RT Reduktions-Bereich 66 100 765.9 663.5 102 5.08 -5.28 0.94 714.7 - - IR = 6300, Pt-quasi Ref. - 66 400 766 662 104 12.9 -12.7 0.985 714 - - IR = 2000, DMeFe+/DMeFe, - -31C ⁰ - -31C ⁰ - - -31C ⁰ - - -31C ⁰ - - - - -31C ⁰ - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>= - mM – Lösung, RT</td></t<>												= - mM – Lösung, RT
2.Peak 200 - -1960.9 - - -39.3 - - - - Reduktions-Bereich 66 50 748.7 666.8 81.9 4.43 -4.34 0.98 707.7 - - IR = 5500, Oxidations-Bereich RT 66 100 765.9 663.5 102 5.08 -5.28 0.94 714.7 - - IR = 6300, Pt-quasi Ref. 66 200 749.9 672 77.9 6.8 -5.79 0.852 711 - - IR = 2000 66 400 766 662 104 12.9 -12.7 0.985 714 - - IR = 2000, DMeFe+/DMeFe, - 66 100 720 656 64 9.78 -10.07 1.03 688 - - IR = 2000, Calomel -31C ⁰ 66 100 655.3 570.6 84.7 9.2 -9.58 1.05 613 - - IR = 600;31C ⁰ ; Calomel 66 100 -1870 -1945 75 +50 -51<	66	200	-	-1571.8	-	-	-3	-	-	-	-	IR = -, RT
6650748.7666.881.94.43-4.340.98707.7IR = 5500, Oxidations-Bereich RT66100765.9663.51025.08-5.280.94714.7IR = 6300, Pt-quasi Ref.66200749.967277.96.8-5.790.852711IR = 20006640076666210412.9-12.70.985714IR = 380066100720656649.78-10.071.03688IR = 2000, DMeFe+/DMeFe, - -31C°66100655.3570.684.79.2-9.581.05613IR = 2000, Calomel -31C°66100-1850-194575+50-510.981907IR = 600;31C°66100-1850-193383+16-170.94-1896IR = 1000;31C° ; Calomel7PDM400-2092-202666-14.6+14.5099-2059a2210 a205281IR = 500 ; Ref. Pt-Draht. RT2. Peak200-2210-226551-1.3+0.62090-2085-IR = 6007PDM200-221651-1.3+0.62090-2085-IR = 6002. Peak200-221651-1.3+0.6-<	2.Peak	200	-	-1960.9	-	-	-39.3	-	-	-	-	Reduktions-Bereich
66100765.9663.51025.08-5.280.94714.7IR = 500, OR Mathinster66100765.9663.51025.08-5.280.94714.7IR = 6300, Pt-quasi Ref.66200749.967277.96.8-5.790.852711IR = 38006640076666210412.9-12.70.985714IR = 380066100720656649.78-10.071.03688IR = 2000, DMcFe+/DMeFe, - -31C°66100655.3570.684.79.2-9.581.05613IR = 600;31C°; Calomel -31C°66100-1866194983+60-660.91-1908IR = 1000;31C°; Calomel66100-1850-193383+16-170.94-1896IR = 1000;31C°; Calomel7PDM400-2092-202666-2.5+.52070-2092-IR = 500 ; Ref. Pt-Draht. RT2.Peak400-2229-211058-2.5+.52090-2085-IR = 500; Ref. Pt-Draht. RT7PDM200-2110-206551-1.3+0.62090-2085-IR = 6002.Peak200-2268<	66	50	748 7	666.8	81.9	1 13	-1 31	0.98	707.7		-	IR = 5500 Oxidations
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	50	/ 40.7	000.0	01.9	т.т5	4.54	0.70	101.1			Bereich RT
66200749.967277.96.8-5.790.852711IR = 20006640076666210412.9-12.70.985714IR = 380066100720656649.78-10.071.03688IR = 2000, DMeFe+/DMeFe, -66100655.3570.684.79.2-9.581.05613IR = 2000, Calomel662000-1870-194575+50-510.981907IR = 600;31C ⁰ ; Calomel66100-1866194983+60-660.91-1908IR = 1000;31C ⁰ ; Calomel7PDM400-1930-187555-2.62.30.88-1902-1933-IR = 500, RT; Calomel2.Peak400-2092-202666-14.6+14.5099-2059a2052937PDM200-2110-206551-1.3+0.62070-2092-IR = 500; Ref. Pt-Draht. RT2.Peak200-2110-206551-1.3+0.62221a2210817PDM200-2110-206551-1.3+0.62232-222890IR = 600	66	100	765.9	663.5	102	5.08	-5.28	0.94	714.7	-	-	IR = 6300, Pt-quasi Ref.
6640076666210412.9 -12.7 0.985 714 $ -$ IR = 38006610072065664 9.78 -10.07 1.03 688 $ -$ IR = 2000, DMeFe+/DMeFe, $-$ 66100655.3570.684.7 9.2 -9.58 1.05 613 $ -$ IR = 2000, Calomel662000 -1870 -1945 75 $+50$ -51 0.98 1907 $ -$ IR = 600; $-31C^0$; Calomel664000 -1866 1949 83 $+60$ -66 0.91 -1908 $ -$ IR = 1000; $31C^0$; Calomel66100 -1850 -1933 83 $+16$ -17 0.94 -1896 $ -$ IR = 1000; $31C^0$; CalomelTPDM400 -1930 -1875 55 -2.6 2.3 0.88 -1902 -1933 $ -$ IR = 500; Ref. Pt-Draht. RT2.Peak400 -2092 -2041 58 -2.5 $+.5$ $ -2070$ -2092 $-$ IR = 500; Ref. Pt-Draht. RT2.Peak200 -2210 62 -51 $+6.46$ 1 -2221 $a.2210$ 81 $a.2210$ $B1$ TPDM200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $ IR = 600$ 2.Peak200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 <td>66</td> <td>200</td> <td>749.9</td> <td>672</td> <td>77.9</td> <td>6.8</td> <td>-5.79</td> <td>0.852</td> <td>711</td> <td>-</td> <td>-</td> <td>IR = 2000</td>	66	200	749.9	672	77.9	6.8	-5.79	0.852	711	-	-	IR = 2000
66100720656649.78 -10.07 1.03688IR = 2000, DMeFe+/DMeFe, - $-31C^0$ 66100655.3570.684.79.2 -9.58 1.05613IR = 2000, Calomel $-31C^0$ 662000 -1870 -1945 75 $+50$ -51 0.981907IR = 600; $-31C^0$; Calomel664000 -1866 194983 $+60$ -66 0.91 -1908 IR = 1000; $-31C^0$; Calomel66100 -1850 -1933 83 $+16$ -17 0.94 -1896 IR = 1000; $-31C^0$; CalomelTPDM400 -1930 -1875 55 -2.6 2.3 0.88 -1902 -1933 -IR = 500; RT; CalomelTPDM400 -2092 -2026 66 -14.6 $+14.5$ 099 -2059 $a2052$ 93 IR = 500; Ref. Pt-Draht. RT2.Peak400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ 81 IR = 500; Ref. Pt-Draht. RT2.Peak200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -228 $-$ IR = 6002.Peak200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -228 $-$ IR = 600	66	400	766	662	104	12.9	-12.7	0.985	714	-	-	IR = 3800
66100655.3570.684.79.2-9.581.05613 $-31C^0$ 662000-1870-194575+50-510.981907IR = 2000, Calomel $-31C^0$ 664000-1866194983+60-660.91-1908,,,,66100-1850-193383+16-170.94-1896IR = 1000;31C^0; CalomelTPDM400-1930-187555-2.62.30.88-1902-1933-IR = 500, RT; CalomelTPDM400-2092-202666-14.6+14.5099-2059a205293IR = 500; Ref. Pt-Draht. RT2.Peak400-2252-219062-6.5+6.461-2221a2210 b222981TPDM200-2110-206551-1.3+0.62090-2085-IR = 6002.Peak200-2268-219771-4.8+4.50.94-2232-222890IR = 600	66	100	720	656	64	9.78	-10.07	1.03	688	-	-	IR = 2000, DMeFe+/DMeFe, -
66100655.3570.684.79.2-9.581.05613IR = 2000, Calomel -31C0662000-1870-194575+50-510.981907IR = 600;31C°; Calomel664000-1866194983+60-660.91-1908IR = 1000;31C°; Calomel66100-1850-193383+16-170.94-1896IR = 1000;31C°; CalomelTPDM400-2092-202666-14.6+14.50.99-2059IR = 500, RT; CalomelTPDM400-2092-202666-14.6+14.5099-2059IR = 500; Ref. Pt-Draht. RT2.Peak400-2252-219062-6.5+6.461-2221a2210 b202781TPDM200-2110-206551-1.3+0.62090-2085-IR = 6002.Peak200-2268-219771-4.8+4.50.94-2232-222890IR = 600												-31C ⁰
662000 -1870 -1945 75 $+50$ -51 0.98 1907 $ IR = 600;31C^0$; Calomel664000 -1866 1949 83 $+60$ -66 0.91 -1908 $ IR = 600;31C^0$; Calomel66100 -1850 -1933 83 $+16$ -17 0.94 -1896 $ IR = 1000;31C^0$; CalomelTPDM400 -1930 -1875 55 -2.6 2.3 0.88 -1902 -1933 $ IR = 500$, RT; CalomelTPDM400 -2092 -2026 66 -14.6 $+14.5$ 099 -2059 $a2052$ 93 $IR = 500$; Ref. Pt-Draht. RT2.Peak400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ $b2229$ 81 TPDM200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $ IR = 600$ 2.Peak200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90 $IR = 600$	66	100	655.3	570.6	84.7	9.2	-9.58	1.05	613	-	-	IR = 2000, Calomel
66 2000 -1870 -1945 75 $+50$ -51 0.98 1907 $ IR = 600;31C^{\circ}; Calomel$ 66 4000 -1866 1949 83 $+60$ -66 0.91 -1908 $, , , , , , , , , , , , , , , , , , , $		2000	1050	10.45		. 50		0.00	1007			-31C ⁶
664000-1866194983+60-660.91-1908,,,,66100-1850-193383+16-170.94-1896IR = 1000;31C°; CalomelTPDM400-1930-187555-2.62.30.88-1902-1933-IR = 500, RT; Calomel2.Peak400-2092-202666-14.6+14.5099-2059a205293IR = 500; Ref. Pt-Draht. RT2.Peak400-2252-219062-6.5+5.52070-2092-IR = 500; Ref. Pt-Draht. RT2.Peak400-2252-219062-6.5+6.461-2221a2210 b222981TPDM200-2110-206551-1.3+0.62090-2085-IR = 6002.Peak200-2268-219771-4.8+4.50.94-2232-222890IR = 600	66	2000	-1870	-1945	75	+50	-51	0.98	1907	-	-	$IR = 600;31C^{\circ}; Calomel$
66100 -1850 -1933 83 $+16$ -17 0.94 -1896 $ IR = 1000;31C^0$; CalomelTPDM400 -1930 -1875 55 -2.6 2.3 0.88 -1902 -1933 $ IR = 500$, RT; Calomel2.Peak400 -2092 -2026 66 -14.6 $+14.5$ 099 -2059 $a2052$ 93 $IR = 500$, RT; CalomelTPDM400 -2099 -2041 58 -2.5 $+.5$ $ -2070$ -2092 $-$ 2.Peak400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ $b2229$ 81 TPDM200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $-$ 2.Peak200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90	66	4000	-1866	1949	83	+60	-66	0.91	-1908	-	-	»» »»
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	100	-1850	-1933	83	+16	-17	0.94	-1896	-	-	$IR = 1000;31C^0; Calomel$
2.Peak 400 -2092 -2026 66 -14.6 $+14.5$ 099 -2059 a. -2052 93 TPDM 400 -2099 -2041 58 -2.5 $+.5$ $ -2070$ -2092 $-$ IR = 500; Ref. Pt-Draht. RT 2.Peak 400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 a. -2210 81 TPDM 200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $-$ IR = 600 2.Peak 200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90	TPDM	400	-1930	-1875	55	-2.6	2.3	0.88	-1902	-1933	-	IR = 500, RT; Calomel
TPDM 400 -2099 -2041 58 -2.5 $+.5$ $ -2070$ -2092 $-$ IR = 500; Ref. Pt-Draht. RT 2.Peak 400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ 81 TPDM 200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $-$ 2.Peak 200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90	2 Peak	400	-2092	-2026	66	-14.6	+14.5	099	-2059	a2052	93	
TPDM 400 -2099 -2041 58 -2.5 $+.5$ $ -2070$ -2092 $-$ IR = 500; Ref. Pt-Draht. RT 2.Peak 400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ 81 TPDM 200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $-$ 2.Peak 200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90	2.1 Cuk									b2067		
2.Peak 400 -2252 -2190 62 -6.5 $+6.46$ 1 -2221 $a2210$ 81 TPDM 200 -2110 -2065 51 -1.3 $+0.6$ $ -2090$ -2085 $-$ IR = 600 2.Peak 200 -2268 -2197 71 -4.8 $+4.5$ 0.94 -2232 -2228 90	TPDM	400	-2099	-2041	58	-2.5	+.5	-	-2070	-2092	-	IR = 500; Ref. Pt-Draht. RT
TPDM 200 -2110 -2065 51 -1.3 +0.6 - -2090 -2085 - IR = 600 2.Peak 200 -2268 -2197 71 -4.8 +4.5 0.94 -2232 -2228 90	2.Peak	400	-2252	-2190	62	-6.5	+6.46	1	-2221	a2210	81	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TDDM	200	2110	20(5	51	1.2	10.6		2000	D2229		ID (00
2. Peak 200 -2208 -2197 71 -4.8 ± 4.5 0.94 -2252 -2228 90	IPDM	200	-2110	-2065	51	-1.5	+0.6	-	-2090	-2085	-	IR = 600
	2.Peak	200	-2268	-2197	/1	-4.8	+4.5	0.94	-2232	-2228	90	
TPDM 600 -2089 -2012 77 -3.3 +.72050 -2086 - IR =500	TPDM	600	-2089	-2012	77	-3.3	+.7	-	-2050	-2086	-	IR =500
2 Peak 600 -2250 -2190 60 -11 +11.3 1.02 -2220 a2198 94	2 Peak	600	-2250	-2190	60	-11	+11.3	1.02	-2220	a2198	94	
b2225	2.1 0411									b2225		
TPDM 800 -2109 -2036 73 -3.5 1.5 - 2072 -2092 - $IR = 500$	TPDM	800	-2109	-2036	73	-3.5	1.5	-	-2072	-2092	-	IR = 500
2.Peak 800 -2250 -2190 60 -8.3 +8.6 1.02 -2220 $a2199$ 83	2.Peak	800	-2250	-2190	60	-8.3	+8.6	1.02	-2220	a2199	83	
TRUM 1200 2110 2040 64 4.2 11 2081 2089 ID = 200	TDDM	1200	2110	2040	64	4.2	+ 1		2001	02227		IR = 200
11 DIVI 1200 -2110 -2049 04 -4.5 TI - 22081 -2008 - IK = 300 -1000 - 1500 - 2000	TFDM	-1200	-2110	-2049	69	-4.5	+10.7	1.02	-2081	-2000	82	IK = 300
$\begin{bmatrix} -1200 \\ -2202 \\ -2195 \\ 09 \\ -10.5 \\ 10.7 \\ 1.02 \\ -2227 \\ h-2245 \\ h-2245 \end{bmatrix}$		-1200	-2202	-2195	09	-10.5	10.7	1.02	-2221	h -2245	02	
TPDM 600 -2374 -2239 135 -8.5 +8.6 1.01 -2306 -2310 - IR = 8000	TPDM	600	-2374	-2239	135	-8.5	+8.6	1.01	-2306	-2310	-	IR = 8000

Tabelle: 22:	Cyclovoltametrische	Untersuchungen von	TPDM und	66].
--------------	---------------------	--------------------	----------	--------------

Hier sind Pt-Draht, Calomel – Elektrode und 0.004M (DMFe⁺/DMFe) /0.2M (Bu)₄NPF₆/ACN als Referenzelektrode verwendet und 0.2M (Bu)₄NPF₆ /LSM als Elektrolyte, und 0.2M (Bu)₄NPF₆ /ACN als Brücken -Elektrolyte eingesetzt.

AE [GCE = $2-3mm(\phi)$]; GE(Pt-Draht); C: 2 mM Substanz.

Ep. = Peak Potential; Ip. = Peakstrom; A. = Anode; K. = Kathode; v = Potentialvorschubs Geschwindigkeit (mV/s). W/2 – Halbbreite der Convolutions - Kurve.
Verb.	v (mV/s)	Epk (mV)	Epa (mV)	δEp (mV)	Ipk (IIA)	Ipa (IIA)	Ipa/Ip k	E ½ Epa+	E ¹ / ₂ dI/dE	IR-Kompensation(Ohm)
	(111 (13)		((111 V)	(µ23)	(µ23)	, n	Epk/2	(mV)	Konzentration (C:mM)
								(mV)		(K^0)
71a	200	-2043	-1919	124	-6.62	1.92	0.3	-1981	-	$IR. = 4400, 298 (K^0)$
2.	200	-2291	-	-	+1.5	-	-	-	1964	20 mg/10 ml THF =
									-	0.32 mM - Lösung
									2229	
71a	200	-2026	-1922	-104	-7.02	+2.1	0.31	-1974	-	
2.	200	-2289	-	-	-1.2	8	-	-	1964	
						-			-	
	1000	2002	1024	70	0.4	2.07	0.20	10(2	2247	ID 5000 200 (KB)
71a	1000	-2002	-1924	/8 70	-8.4	3.27	0.39	-1963	-	$IR. = 5000, 298 (K^*)$
2.	1000	2214	-2144	70	-2	-	-	-21925	1941	0.02 g/10 ml 1HF =
									-	0.52 11111
719	200	_	814	_	_	34	-	-	-	
2.	200	1103	1231	128	3.3	13.4	0.24	1167	1162	
72	200	-2352—	-	-	-	-	-	-	-	$IR_{.} = -, 233 (K^{0})$
		(-2753)								
		Bauch								
72	200	-1535—	-	-	-	-	-	-	-	-
		(-2353)								
	•	Bauch			10.1					
2.	200	-2898	-	-	-10.1	-	-	-	-	
Dof C	alom c1/	$0.1M_{(Der)}$	NDE /	ACN /	Elalete	alveta —	0.1M/			ſ
AE(G	a IOMEL/	44^{-6} m^2): (BU)	$4 NPF_6/$	AUN, / raht): (Elektronomedia	Substa	0.1M (BU)4NPF	6/LSIV	l
Fn = 1	CE – I. Peak Po	++ III J, C tential: In	= Peaks	trom.	$\Delta = \Delta r$	ode K	uiz. = Kat	hode		
Lp. – I cak i olenuai, ip. – I caksuolii, A. – Alloue, K. – Kalloue										

 Tabelle: 23: Cyclovoltametrische Untersuchungen von [71a] und [72].

13.2 Kristallographischer Anhang

<u>م</u> 0 СЗ \cap C2 N1 N7 С)C5 0 C6 C8) C11 C C9 ⁾C10 9

2,6-Bis(2-pyridylmethyl)pyridin/Tripyridindimethan (TPDM)

Table 1	Crystal	data	and	structure	refinement	for	nk358
	Crystar	uata	anu	Suuciuic	remement	101	IIKJ50.

Identification code	nk358
Empirical formula	C17 H15 N3
Formula weight	261.32
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pccn (No.56)
Unit cell dimensions	a = 13.9223(5) A alpha = 90 deg.
	b = 7.8700(3) A beta = 90 deg.
	c = 12.5030(5) A gamma = 90 deg.
Volume	1369.94(9) A^3
Z, Calculated density	4, 1.267 Mg/m^3
Absorption coefficient	0.077 mm^-1
F(000)	552
Crystal size	0.50 x 0.30 x 0.20 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	3.26 to 27.47 deg.
Limiting indices	-13<=h<=18, -10<=k<=9, -15<=l<=16
Reflections collected / unique	7251 / 1554 [R(int) = 0.0346]
Completeness to theta = 27.47	98.7 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1554 / 0 / 92
Goodness-of-fit on F ²	0.998
Final R indices [I>2sigma(I)]	R1 = 0.0373, $wR2 = 0.0897$
R indices (all data)	R1 = 0.0550, wR2 = 0.0958
Largest diff. peak and hole	0.258 and -0.218 e.A^-3

				0 3
	X	У	Ζ	U(eq)
N(1)	2500	2500	4057(1)	20(1)
C(2)	1733(1)	3052(1)	4604(1)	20(1)
C(3)	1706(1)	3057(2)	5718(1)	25(1)
C(4)	2500	2500	6279(1)	27(1)
C(5)	900(1)	3712(2)	3948(1)	23(1)
C(6)	1054(1)	5535(2)	3609(1)	22(1)
N(7)	1160(1)	6668(1)	4403(1)	27(1)
C(8)	1325(1)	8286(2)	4128(1)	31(1)
C(9)	1388(1)	8851(2)	3082(1)	29(1)
C(10)	1268(1)	7682(2)	2269(1)	28(1)
C(11)	1095(1)	6003(2)	2535(1)	25(1)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A ⁴)	2
x 10^3 for nk358. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.	

Table 3. Bond lengths [A] and angles [deg] for nk358.

N(1)-C(2)#1	1.3414(11)
N(1)-C(2)	1.3414(11)
C(2)-C(3)	1.3926(14)
C(2)-C(5)	1.5113(14)
C(3)-C(4)	1.3813(13)
C(4)-C(3)#1	1.3813(13)
C(5)-C(6)	1.5112(17)
C(6)-N(7)	1.3423(15)
C(6)-C(11)	1.3939(15)
N(7)-C(8)	1.3389(17)
C(8)-C(9)	1.3840(17)
C(9)-C(10)	1.3807(17)
C(10)-C(11)	1.3834(17)
C(2)#1-N(1)-C(2)	118.61(11)
N(1)-C(2)-C(3)	122.18(9)
N(1)-C(2)-C(5)	116.42(9)
C(3)-C(2)-C(5)	121.39(9)
C(4)-C(3)-C(2)	119.04(10)
C(3)-C(4)-C(3)#1	118.93(13)
C(6)-C(5)-C(2)	111.71(9)
N(7)-C(6)-C(11)	122.13(12)
N(7)-C(6)-C(5)	116.03(9)
C(11)-C(6)-C(5)	121.83(11)
C(8)-N(7)-C(6)	117.48(10)
N(7)-C(8)-C(9)	123.95(12)
C(10)-C(9)-C(8)	118.29(13)
C(9)-C(10)-C(11)	118.73(11)
C(10)-C(11)-C(6)	119.40(11)
Symmetry transformations used to generate	equivalent atoms:
#1 -x+1/2,-y+1/2,z	

C(2)#1-N(1)-C(2)-C(3)	-0.51(8)
C(2)#1-N(1)-C(2)-C(5)	178.10(11)
N(1)-C(2)-C(3)-C(4)	1.02(15)
C(5)-C(2)-C(3)-C(4)	-177.53(9)
C(2)-C(3)-C(4)-C(3)#1	-0.48(7)
N(1)-C(2)-C(5)-C(6)	-82.16(11)
C(3)-C(2)-C(5)-C(6)	96.46(12)
C(2)-C(5)-C(6)-N(7)	-59.85(12)
C(2)-C(5)-C(6)-C(11)	119.40(10)
C(11)-C(6)-N(7)-C(8)	-1.11(15)
C(5)-C(6)-N(7)-C(8)	178.14(10)
C(6)-N(7)-C(8)-C(9)	0.22(17)
N(7)-C(8)-C(9)-C(10)	0.50(18)
C(8)-C(9)-C(10)-C(11)	-0.34(16)
C(9)-C(10)-C(11)-C(6)	-0.49(16)
N(7)-C(6)-C(11)-C(10)	1.26(15)
C(5)-C(6)-C(11)-C(10)	-177.94(9)
Symmetry transformations use	d to generate equivalent atoms:
#1 -x+1/2,-y+1/2,z	· · · · · · · · · · · · · · · · · · ·

Table 4. Torsion angles [deg] for nk358.

Table 5	. Hvdrogen	bonds for	nk358	[A and	deg.].
		001140 101			

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
C(4)-H(4)N(1)#2	0.95	2.52	3.4729(18)	180.0		
C(5)-H(5B)N(7)#3	0.99	2.56	3.5457(14)	175.5		
C(10)-H(10)N(7)#4	0.95	2.69	3.6238(15)	166.6		
Symmetry transformations used to generate equivalent atoms:						
#1 -x+1/2,-y+1/2,z #2	y+1/2,z+1/2	#3 -x,-y+	1,-z+1			
Х,-						
#4 x,-y+3/2,z-1/2						

2,6 -Bis-[1, 3, 3-tri-(trimethylsilyl)-1-amino-2-phosphaethenyl]-pyridin [71a]

Identification code	nk359
Empirical formula	C25 H57 N3 P2 Si6
Formula weight	630.22
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1 (No.2)
Unit cell dimensions	a = 9.1019(3) A alpha = 107.228(2) deg.
	b = 13.4847(4) A beta = 100.184(2) deg.
	c = 16.9118(5) A gamma = 92.184(2)
	deg.
Volume	1942.27(10) A^3
Z, Calculated density	2, 1.078 Mg/m^3
Absorption coefficient	0.315 mm^-1
F(000)	684
Crystal size	0.30 x 0.15 x 0.05 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	3.04 to 27.48 deg.
Limiting indices	-11<=h<=9, -17<=k<=16, -21<=l<=14
Reflections collected / unique	9228 / 7199 [R(int) = 0.0229]
Completeness to theta $= 25.00$	88.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7199 / 0 / 325
Goodness-of-fit on F^2	0.875
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.0843
R indices (all data)	$R1 = 0.09\overline{03}, WR2 = 0.0942$
Largest diff. peak and hole	0.296 and -0.326 e.A^-3

<u>10 5) 101 IIR55</u>	<i>(</i>). O(eq) is define			nogonanzea erj tensor
	Х	у	Z	U(eq)
N(1)	2635(2)	5319(2)	2096(1)	25(1)
C(2)	3746(3)	5812(2)	1878(2)	26(1)
C(3)	4398(3)	5347(2)	1194(2)	37(1)
C(4)	3845(4)	4352(2)	709(2)	42(1)
C(5)	2666(3)	3844(2)	895(2)	37(1)
C(6)	2109(3)	4348(2)	1612(2)	29(1)
N(7)	4192(2)	6821(2)	2414(1)	26(1)
P(8)	3079(1)	7368(1)	3153(1)	28(1)
C(9)	4013(3)	7463(2)	4110(2)	26(1)
P(10)	5831(1)	7531(1)	2411(1)	32(1)
C(11)	5395(3)	8360(2)	1869(2)	26(1)
N(12)	979(2)	3846(2)	1871(1)	30(1)
Si(13)	7120(1)	9222(1)	1905(1)	30(1)
C(131)	6711(3)	10613(2)	2105(2)	38(1)
C(132)	8696(3)	9183(2)	2763(2)	45(1)
C(133)	7772(4)	8735(2)	886(2)	50(1)
Si(14)	3508(1)	8541(1)	1292(1)	41(1)
C(141)	2198(3)	7326(2)	806(2)	55(1)
C(142)	2626(3)	9505(3)	2061(2)	57(1)
C(143)	3742(4)	9047(3)	400(2)	74(1)
Si(15)	5736(1)	6836(1)	4429(1)	32(1)
C(151)	5924(3)	5599(2)	3609(2)	39(1)
C(152)	7463(3)	7753(2)	4692(2)	42(1)
C(153)	5562(3)	6455(2)	5386(2)	44(1)
Si(16)	3072(1)	8281(1)	4964(1)	34(1)
C(161)	1616(3)	9017(2)	4532(2)	50(1)
C(162)	4527(3)	9237(2)	5781(2)	42(1)
C(163)	2103(3)	7466(2)	5475(2)	50(1)
Si(17)	-495(1)	4575(1)	2179(1)	47(1)
C(171)	-2229(3)	3651(2)	1913(2)	56(1)
C(172)	-52(4)	5308(3)	3327(2)	73(1)
C(173)	-859(4)	5489(3)	1548(2)	70(1)
Si(18)	1316(1)	2619(1)	1996(1)	33(1)
C(181)	275(3)	1541(2)	1080(2)	41(1)
C(182)	3369(3)	2481(2)	2125(2)	43(1)
C(183)	729(3)	2523(3)	2968(2)	55(1)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for nk359. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for nk359.

N(1)-C(6)	1.338(3)
N(1)-C(2)	1.353(3)
C(2)-C(3)	1.386(4)
C(2)-N(7)	1.391(3)
C(3)-C(4)	1.371(4)
C(4)-C(5)	1.382(4)
C(5)-C(6)	1.395(4)
C(6)-N(12)	1.411(3)

N(7) P(10)	1 7/2(2)
N(7)-P(8)	1.745(2)
P(8) - C(0)	1.656(3)
C(9)-Si(15)	1.880(3)
C(9)-Si(16)	1.808(3)
P(10) - C(11)	1.656(5)
C(11) Si(14)	1.882(3)
C(11) - Si(14)	1.002(3)
N(12)-Si(17)	1.050(2)
N(12)-Si(18)	1.755(2)
$S_{i}(12) - S_{i}(13)$	1.701(2)
Si(13) - C(133) Si(13) - C(132)	1.865(3)
Si(13) - C(132) Si(13) - C(131)	1.805(5)
Si(13) - C(131) Si(14) - C(142)	1.870(3)
Si(14) - C(142) Si(14) - C(141)	1.864(3)
Si(14) - C(141) Si(14) - C(142)	1.808(5) 1.871(2)
Si(14)-C(145) Si(15) C(151)	1.6/1(5) 1.862(2)
SI(15) - C(151) Si(15) - C(152)	1.803(3)
SI(15) - C(152) Si(15) - C(152)	1.804(5)
Si(15) - C(155) Si(16) - C(161)	1.807(2)
Si(10) - C(101) Si(16) - C(162)	1.801(3)
SI(10) - C(103)	1.808(3)
SI(10)-C(102)	1.809(3)
SI(17)-C(173)	1.857(3)
Si(17) - C(172)	1.803(3)
SI(17)-C(171)	1.8/5(3)
S1(18) - C(183)	1.853(3)
S1(18) - C(181)	1.858(3)
S1(18)-C(182)	1.866(3)
V(0)- $N(1)$ - $V(2)$	118.2(2)
N(1) - C(2) - C(3)	123.1(3)
N(1)-C(2)-N(7)	<u>113.5(2)</u>
C(3)-C(2)-N(7)	123.3(2)
C(4)-C(3)-C(2)	117.6(2)
C(3)-C(4)-C(5)	120.6(3)
C(4)-C(5)-C(6)	118.3(3)
N(1)-C(6)-C(5)	122.0(2)
N(1)-C(6)-N(12)	116.7(2)
C(5)-C(6)-N(12)	121.3(2)
C(2)-N(7)-P(10)	122.91(17)
C(2)-N(7)-P(8)	117.76(16)
P(10)-N(7)-P(8)	119.27(13)
((9)-P(8)-N(7))	108.//(12)
P(8)-C(9)-Si(15)	129.33(16)
P(8)-C(9)-Si(16)	111./0(15)
S1(15)-C(9)-S1(16)	118.89(13)
C(11)-P(10)-N(7)	108.92(12)
$P(10)-C(11)-S_1(14)$	128.98(14)
$P(10)-C(11)-S_1(13)$	110.91(14)
$S_1(14)-C(11)-S_1(13)$	120.10(13)

C(6)-N(12)-Si(17)	116.90(18)
C(6)-N(12)-Si(18)	116.62(18)
Si(17)-N(12)-Si(18)	125.83(12)
C(133)-Si(13)-C(132)	107.33(14)
C(133)-Si(13)-C(131)	110.37(13)
C(132)-Si(13)-C(131)	107.28(14)
C(133)-Si(13)-C(11)	109.03(12)
C(132)-Si(13)-C(11)	111.59(12)
C(131)-Si(13)-C(11)	111.16(12)
C(142)-Si(14)-C(141)	108.93(15)
C(142)-Si(14)-C(143)	109.74(16)
C(141)-Si(14)-C(143)	105.60(14)
C(142)-Si(14)-C(11)	107.57(13)
C(141)-Si(14)-C(11)	115.01(13)
C(143)-Si(14)-C(11)	109.92(13)
C(151)-Si(15)-C(152)	110.53(13)
C(151)-Si(15)-C(153)	105.34(13)
C(152)-Si(15)-C(153)	108.22(13)
C(151)-Si(15)-C(9)	112.18(12)
C(152)-Si(15)-C(9)	111.37(12)
C(153)-Si(15)-C(9)	108.93(13)
C(161)-Si(16)-C(163)	106.36(14)
C(161)-Si(16)-C(162)	108.49(14)
C(163)-Si(16)-C(162)	109.39(13)
C(161)-Si(16)-C(9)	111.71(12)
C(163)-Si(16)-C(9)	112.12(13)
C(162)-Si(16)-C(9)	108.69(12)
N(12)-Si(17)-C(173)	109.28(13)
N(12)-Si(17)-C(172)	111.20(14)
C(173)-Si(17)-C(172)	110.31(17)
N(12)-Si(17)-C(171)	107.97(13)
C(173)-Si(17)-C(171)	107.18(15)
C(172)-Si(17)-C(171)	110.79(14)
N(12)-Si(18)-C(183)	109.89(13)
N(12)-Si(18)-C(181)	111.41(11)
C(183)-Si(18)-C(181)	108.84(13)
N(12)-Si(18)-C(182)	109.23(12)
C(183)-Si(18)-C(182)	107.40(13)
C(181)-Si(18)-C(182)	109.99(14)

Table 4. Torsion angles [deg] for nk359.

C(6)-N(1)-C(2)-C(3)	-2.2(4)
C(6)-N(1)-C(2)-N(7)	179.0(2)
N(1)-C(2)-C(3)-C(4)	2.0(4)
N(7)-C(2)-C(3)-C(4)	-179.3(3)
C(2)-C(3)-C(4)-C(5)	0.9(4)
C(3)-C(4)-C(5)-C(6)	-3.4(4)
C(2)-N(1)-C(6)-C(5)	-0.5(4)
C(2)-N(1)-C(6)-N(12)	178.3(2)

C(4)-C(5)-C(6)-N(1)	3.2(4)
C(4)-C(5)-C(6)-N(12)	-175.5(3)
N(1)-C(2)-N(7)-P(10)	166.70(16)
C(3)-C(2)-N(7)-P(10)	-12.0(4)
N(1)-C(2)-N(7)-P(8)	-10.6(3)
C(3)-C(2)-N(7)-P(8)	170.7(2)
C(2)-N(7)-P(8)-C(9)	109.9(2)
P(10)-N(7)-P(8)-C(9)	-67.48(15)
N(7)-P(8)-C(9)-Si(15)	-14.5(2)
N(7)-P(8)-C(9)-Si(16)	168.89(11)
C(2)-N(7)-P(10)-C(11)	100.1(2)
P(8)-N(7)-P(10)-C(11)	-82.65(15)
N(7)-P(10)-C(11)-Si(14)	-2.2(2)
N(7)-P(10)-C(11)-Si(13)	176.18(12)
N(1)-C(6)-N(12)-Si(17)	45.6(3)
C(5)-C(6)-N(12)-Si(17)	-135.6(2)
N(1)-C(6)-N(12)-Si(18)	-125.7(2)
C(5)-C(6)-N(12)-Si(18)	53.0(3)
P(10)-C(11)-Si(13)-C(133)	102.32(16)
Si(14)-C(11)-Si(13)-C(133)	-79.15(19)
P(10)-C(11)-Si(13)-C(132)	-16.06(19)
Si(14)-C(11)-Si(13)-C(132)	162.46(15)
P(10)-C(11)-Si(13)-C(131)	-135.78(14)
Si(14)-C(11)-Si(13)-C(131)	42.74(18)
P(10)-C(11)-Si(14)-C(142)	88.2(2)
Si(13)-C(11)-Si(14)-C(142)	-89.98(17)
P(10)-C(11)-Si(14)-C(141)	-33.3(2)
Si(13)-C(11)-Si(14)-C(141)	148.47(16)
P(10)-C(11)-Si(14)-C(143)	-152.3(2)
Si(13)-C(11)-Si(14)-C(143)	29.5(2)
P(8)-C(9)-Si(15)-C(151)	-26.0(2)
Si(16)-C(9)-Si(15)-C(151)	150.43(13)
P(8)-C(9)-Si(15)-C(152)	98.5(2)
Si(16)-C(9)-Si(15)-C(152)	-85.07(16)
P(8)-C(9)-Si(15)-C(153)	-142.25(18)
Si(16)-C(9)-Si(15)-C(153)	34.21(18)
P(8)-C(9)-Si(16)-C(161)	-13.28(19)
S1(15)-C(9)-S1(16)-C(161)	169.67(15)
P(8)-C(9)-S1(16)-C(163)	106.00(16)
$S_1(15)-C(9)-S_1(16)-C(163)$	-71.06(18)
P(8)-C(9)-S1(16)-C(162)	-132.95(14)
S1(15)-C(9)-S1(16)-C(162)	50.00(17)
$\frac{C(6)-N(12)-Si(17)-C(173)}{Si(12)-$	32.8(2)
$\frac{Si(18)-N(12)-Si(17)-C(173)}{Si(12)-Si(17)-C(173)}$	-156./5(16)
C(6)-N(12)-Si(17)-C(172)	-89.2(2)
S1(18)-N(12)-S1(17)-C(172)	81.24(19)
$\frac{C(6)-N(12)-Si(17)-C(171)}{Si(12)-Si(12)-Si(12)-Si(121)}$	149.05(19)
$\frac{Si(18) - N(12) - Si(17) - C(171)}{Si(12) - Si(12) - C(122)}$	-40.5(2)
<u> C(6)-N(12)-S1(18)-C(183)</u>	137.70(19)

Si(17)-N(12)-Si(18)-C(183)	-32.77(19)
C(6)-N(12)-Si(18)-C(181)	-101.6(2)
Si(17)-N(12)-Si(18)-C(181)	87.93(18)
C(6)-N(12)-Si(18)-C(182)	20.1(2)
Si(17)-N(12)-Si(18)-C(182)	-150.35(15)

2,6-Bis-[1-trimethylsilyl-3-(2,4,6-tri-tert.-butylphenyl)-amino(imino)phosphanyl]-pyridin

[72]

Table 1. Crystal data and structure refinement for nk303.

Identification code	nk303
Empirical formula	C47 H79 N5 P2 Si2
Formula weight	832.27
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1 (No.2)
Unit cell dimensions	a = 11.2486(7) A alpha = 98.736(2) deg.
	b = 14.1963(8) A beta = 103.494(2) deg.
	c = 17.1067(12) A gamma = 97.615(3)
	deg.
Volume	2585.1(3) A^3
Z, Calculated density	2, 1.069 Mg/m^3
Absorption coefficient	0.165 mm^-1
F(000)	908
Crystal size	0.50 x 0.35 x 0.30 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	2.95 to 25.03 deg.
Limiting indices	-13<=h<=13, -12<=k<=16, -20<=l<=19

Reflections collected / unique	17659 / 8225 [R(int) = 0.0395]
Completeness to theta $= 25.03$	90.0 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8225 / 0 / 505
Goodness-of-fit on F ²	0.992
Final R indices [I>2sigma(I)]	R1 = 0.0520, WR2 = 0.1281
R indices (all data)	R1 = 0.0984, WR2 = 0.1448
Largest diff. peak and hole	0.632 and -0.270 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for nk303. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
N(1)	1825(2)	3024(2)	4957(2)	25(1)
C(2)	2492(2)	3899(2)	5317(2)	26(1)
C(3)	2173(3)	4755(2)	5108(2)	29(1)
C(4)	1111(3)	4703(2)	4494(2)	31(1)
C(5)	402(3)	3813(2)	4106(2)	28(1)
C(6)	801(2)	2991(2)	4358(2)	25(1)
N(7)	48(2)	2052(2)	3998(2)	25(1)
Si(1)	-920(1)	1572(1)	4584(1)	29(1)
C(8)	-1709(3)	2534(2)	4981(2)	38(1)
C(9)	-2104(3)	561(2)	3896(2)	39(1)
C(10)	91(3)	1217(2)	5466(2)	39(1)
P(1)	136(1)	1404(1)	3115(1)	31(1)
N(2)	1320(2)	1885(2)	2912(2)	29(1)
C(11)	1620(2)	1578(2)	2159(2)	26(1)
C(12)	2255(2)	783(2)	2045(2)	28(1)
C(13)	2438(3)	503(2)	1263(2)	30(1)
C(14)	2076(2)	959(2)	610(2)	29(1)
C(15)	1545(2)	1779(2)	775(2)	30(1)
C(16)	1325(2)	2121(2)	1523(2)	26(1)
C(17)	2743(3)	208(2)	2716(2)	35(1)
C(18)	3702(3)	-405(2)	2487(2)	52(1)
C(19)	1691(3)	-516(2)	2828(3)	53(1)
C(20)	3430(4)	875(2)	3533(2)	60(1)
C(21)	2228(3)	608(2)	-243(2)	38(1)
C(22)	3035(3)	1400(3)	-497(3)	61(1)
C(23)	2796(5)	-295(3)	-296(3)	97(2)
C(24)	948(3)	409(3)	-868(3)	75(1)
C(25)	779(2)	3067(2)	1631(2)	30(1)
C(26)	1633(3)	3811(2)	2361(2)	36(1)
C(27)	690(3)	3548(2)	874(2)	43(1)
C(28)	-548(3)	2893(2)	1739(2)	41(1)
N(29)	3617(2)	3902(2)	5929(2)	25(1)
Si(2)	4727(1)	3238(1)	5610(1)	34(1)
C(30)	4657(3)	3399(2)	4552(2)	39(1)
C(31)	6274(3)	3805(3)	6301(2)	51(1)

C(32)	4358(3)	1955(2)	5705(2)	51(1)
P(2)	3895(1)	4363(1)	6926(1)	30(1)
N(3)	2802(2)	4888(2)	7057(2)	26(1)
C(33)	2836(2)	5263(2)	7894(2)	25(1)
C(34)	3493(2)	6203(2)	8286(2)	26(1)
C(35)	3654(2)	6458(2)	9131(2)	28(1)
C(36)	3164(2)	5864(2)	9593(2)	27(1)
C(37)	2396(2)	5004(2)	9161(2)	27(1)
C(38)	2200(2)	4677(2)	8323(2)	25(1)
C(39)	4048(2)	6956(2)	7841(2)	28(1)
C(40)	3168(3)	6984(2)	7014(2)	34(1)
C(41)	5308(3)	6747(2)	7720(2)	40(1)
C(42)	4269(3)	7991(2)	8339(2)	42(1)
C(43)	3430(3)	6126(2)	10525(2)	33(1)
C(44)	2229(3)	6206(3)	10780(2)	58(1)
C(45)	3983(3)	5286(3)	10898(3)	62(1)
C(46)	4358(4)	7034(3)	10898(3)	70(1)
C(47)	1298(3)	3722(2)	7905(2)	30(1)
C(48)	366(3)	3841(2)	7125(2)	39(1)
C(49)	523(3)	3377(2)	8472(2)	43(1)
C(50)	1986(3)	2886(2)	7679(2)	39(1)

Table 3. Bond lengths [A] and angles [deg] for nk303.

N(1)-C(2)	1.338(3)
N(1)-C(6)	1.341(3)
C(2)-C(3)	1.385(4)
C(2)-N(29)	1.442(3)
C(3)-C(4)	1.380(4)
C(4)-C(5)	1.379(4)
C(5)-C(6)	1.397(4)
C(6)-N(7)	1.442(3)
N(7)-P(1)	1.677(3)
N(7)-Si(1)	1.781(3)
Si(1)-C(10)	1.847(3)
Si(1)-C(8)	1.853(3)
Si(1)-C(9)	1.862(3)
P(1)-N(2)	1.552(3)
N(2)-C(11)	1.426(4)
C(11)-C(12)	1.426(4)
C(11)-C(16)	1.430(4)
C(12)-C(13)	1.407(4)
C(12)-C(17)	1.547(4)
C(13)-C(14)	1.383(4)
C(14)-C(15)	1.397(4)
C(14)-C(21)	1.525(5)
C(15)-C(16)	1.388(4)
C(16)-C(25)	1.553(4)
C(17)-C(19)	1.529(4)

	1.500(1)
C(17)-C(20)	1.532(4)
C(17)-C(18)	1.555(4)
C(21)-C(23)	1.506(5)
C(21)-C(22)	1.529(5)
C(21)-C(24)	1.542(5)
C(25)-C(26)	1.539(4)
C(25)-C(28)	1.539(4)
C(25)-C(27)	1.542(5)
N(29)-P(2)	1.670(3)
N(29)-Si(2)	1.795(2)
Si(2)-C(30)	1.842(4)
Si(2)-C(32)	1.855(3)
Si(2)-C(31)	1.859(3)
P(2)-N(3)	1.562(2)
N(3)-C(33)	1.440(4)
C(33)-C(34)	1.419(4)
C(33)-C(38)	1.420(4)
C(34)-C(35)	1.398(4)
C(34)-C(39)	1.551(4)
C(35)-C(36)	1.386(4)
C(36)-C(37)	1.390(4)
C(36)-C(43)	1.528(4)
C(37)-C(38)	1 393(4)
C(38)-C(47)	1 543(4)
C(39)-C(40)	1 535(4)
C(39)-C(41)	1 539(4)
C(39)-C(42)	1.559(1) 1 540(4)
C(43)- $C(46)$	1.97(4)
C(43) - C(44)	1.57(4)
C(43) - C(45)	1.527(4)
C(43) - C(43)	1.500(5)
C(47) - C(48)	1.557(5) 1 540(4)
C(47) - C(48)	1.540(4)
C(47)-C(50)	1.349(4) 117 1(2)
V(1) C(2) C(3)	117.1(2) 122.6(2)
N(1) - C(2) - C(3) N(1) - C(2) - N(20)	125.0(3)
N(1)-C(2)-N(29)	115.4(2)
C(3)-C(2)-IN(29)	120.9(2)
C(4)-C(3)-C(2)	118.3(3)
C(3)-C(4)-C(3)	117.8(3)
C(4)-C(5)-C(6)	117.8(3)
N(1)-C(6)-C(5)	123.5(2)
N(1)-C(0)-N(7)	11/.1(2)
C(5)-C(6)-N(7)	119.4(2)
C(6)-N(7)-P(1)	122.8(2)
C(6)-N(7)-Si(1)	116.0(2)
P(1)-N(7)-Si(1)	121.08(13)
N(7)-Si(1)-C(10)	107.68(13)
N(7)-Si(1)-C(8)	109.04(13)
C(10)-Si(1)-C(8)	108.13(15)

N(7)-Si(1)-C(9)	108.13(14)
C(10)-Si(1)-C(9)	114.34(14)
C(8)-Si(1)-C(9)	109.41(14)
N(2)-P(1)-N(7)	107.15(13)
C(11)-N(2)-P(1)	122.35(19)
C(12)-C(11)-N(2)	121.8(3)
C(12)-C(11)-C(16)	119.9(3)
N(2)-C(11)-C(16)	118.3(3)
C(13)-C(12)-C(11)	117.2(3)
C(13)-C(12)-C(17)	118.1(3)
C(11)-C(12)-C(17)	124.7(3)
C(14)-C(13)-C(12)	124.6(3)
C(13)-C(14)-C(15)	115.7(3)
C(13)-C(14)-C(21)	123.4(3)
C(15)-C(14)-C(21)	120.9(3)
C(16)-C(15)-C(14)	124.5(3)
C(15)-C(16)-C(11)	117.7(3)
C(15)-C(16)-C(25)	119.0(3)
C(11)-C(16)-C(25)	123.3(3)
C(19)-C(17)-C(20)	110.6(3)
C(19)-C(17)-C(12)	111.1(3)
C(20)-C(17)-C(12)	112.1(2)
C(19)-C(17)-C(18)	105.6(3)
C(20)-C(17)-C(18)	105.2(3)
C(12)-C(17)-C(18)	111.9(3)
C(23)-C(21)-C(14)	112.6(3)
C(23)-C(21)-C(22)	108.9(3)
C(14)-C(21)-C(22)	110.2(3)
C(23)-C(21)-C(24)	109.2(3)
C(14)-C(21)-C(24)	109.3(3)
C(22)-C(21)-C(24)	106.4(3)
C(26)-C(25)-C(28)	110.1(3)
C(26)-C(25)-C(27)	106.4(2)
C(28)-C(25)-C(27)	105.7(2)
C(26)-C(25)-C(16)	110.2(2)
C(28)-C(25)-C(16)	112.7(2)
C(27)-C(25)-C(16)	111.4(3)
C(2)-N(29)-P(2)	125.25(19)
C(2)-N(29)-Si(2)	116.81(19)
P(2)-N(29)-Si(2)	117.55(13)
N(29)-Si(2)-C(30)	105.90(13)
N(29)-Si(2)-C(32)	109.86(14)
C(30)-Si(2)-C(32)	113.51(16)
N(29)-Si(2)-C(31)	106.80(13)
C(30)-Si(2)-C(31)	110.52(17)
C(32)-Si(2)-C(31)	109.97(17)
N(3)-P(2)-N(29)	108.32(12)
C(33)-N(3)-P(2)	115.93(19)
C(34)-C(33)-C(38)	120.3(3)

C(34)-C(33)-N(3)	120.7(3)
C(38)-C(33)-N(3)	119.0(3)
C(35)-C(34)-C(33)	117.4(3)
C(35)-C(34)-C(39)	118.3(3)
C(33)-C(34)-C(39)	124.3(3)
C(36)-C(35)-C(34)	123.8(3)
C(35)-C(36)-C(37)	116.3(3)
C(35)-C(36)-C(43)	122.9(3)
C(37)-C(36)-C(43)	120.9(3)
C(36)-C(37)-C(38)	124.0(3)
C(37)-C(38)-C(33)	117.3(3)
C(37)-C(38)-C(47)	119.4(3)
C(33)-C(38)-C(47)	123.3(3)
C(40)-C(39)-C(41)	110.0(3)
C(40)-C(39)-C(42)	105.0(2)
C(41)-C(39)-C(42)	107.5(2)
C(40)-C(39)-C(34)	112.3(2)
C(41)-C(39)-C(34)	110.4(2)
C(42)-C(39)-C(34)	111.5(3)
C(46)-C(43)-C(44)	109.7(3)
C(46)-C(43)-C(36)	113.9(3)
C(44)-C(43)-C(36)	110.5(3)
C(46)-C(43)-C(45)	106.8(3)
C(44)-C(43)-C(45)	107.3(3)
C(36)-C(43)-C(45)	108.4(3)
C(49)-C(47)-C(48)	106.4(3)
C(49)-C(47)-C(38)	111.3(3)
C(48)-C(47)-C(38)	111.7(2)
C(49)-C(47)-C(50)	106.1(3)
C(48)-C(47)-C(50)	108.7(3)
C(38)-C(47)-C(50)	112.4(2)

Table 4. Torsion angles [deg] for nk303.

C(6)-N(1)-C(2)-C(3)	0.6(4)
C(6)-N(1)-C(2)-N(29)	-177.1(3)
N(1)-C(2)-C(3)-C(4)	-0.2(5)
N(29)-C(2)-C(3)-C(4)	177.4(3)
C(2)-C(3)-C(4)-C(5)	-0.1(5)
C(3)-C(4)-C(5)-C(6)	-0.1(5)
C(2)-N(1)-C(6)-C(5)	-0.7(4)
C(2)-N(1)-C(6)-N(7)	-176.9(2)
C(4)-C(5)-C(6)-N(1)	0.5(5)
C(4)-C(5)-C(6)-N(7)	176.6(3)
N(1)-C(6)-N(7)-P(1)	-98.4(3)
C(5)-C(6)-N(7)-P(1)	85.2(3)
N(1)-C(6)-N(7)-Si(1)	77.4(3)
C(5)-C(6)-N(7)-Si(1)	-98.9(3)
C(6)-N(7)-Si(1)-C(10)	-71.9(2)

P(1)-N(7)-Si(1)-C(10)	104.04(17)
C(6)-N(7)-Si(1)-C(8)	45.2(2)
P(1)-N(7)-Si(1)-C(8)	-138.86(16)
C(6)-N(7)-Si(1)-C(9)	164.1(2)
P(1)-N(7)-Si(1)-C(9)	-19.99(19)
C(6)-N(7)-P(1)-N(2)	12.6(2)
Si(1)-N(7)-P(1)-N(2)	-163.03(14)
N(7)-P(1)-N(2)-C(11)	-173.7(2)
P(1)-N(2)-C(11)-C(12)	-84.1(3)
P(1)-N(2)-C(11)-C(16)	99.1(3)
N(2)-C(11)-C(12)-C(13)	176.2(2)
C(16)-C(11)-C(12)-C(13)	-7.0(4)
N(2)-C(11)-C(12)-C(17)	-3.3(4)
C(16)-C(11)-C(12)-C(17)	173.5(2)
C(11)-C(12)-C(13)-C(14)	1.8(4)
C(17)-C(12)-C(13)-C(14)	-178.7(2)
C(12)-C(13)-C(14)-C(15)	3.0(4)
C(12)-C(13)-C(14)-C(21)	-176.8(3)
C(13)-C(14)-C(15)-C(16)	-2.7(4)
C(21)-C(14)-C(15)-C(16)	177.1(2)
C(14)-C(15)-C(16)-C(11)	-2.3(4)
C(14)-C(15)-C(16)-C(25)	177.5(2)
C(12)-C(11)-C(16)-C(15)	7.3(4)
N(2)-C(11)-C(16)-C(15)	-175.8(2)
C(12)-C(11)-C(16)-C(25)	-172.5(2)
N(2)-C(11)-C(16)-C(25)	4.4(4)
C(13)-C(12)-C(17)-C(19)	-101.0(3)
C(11)-C(12)-C(17)-C(19)	78.5(4)
C(13)-C(12)-C(17)-C(20)	134.7(3)
C(11)-C(12)-C(17)-C(20)	-45.8(4)
C(13)-C(12)-C(17)-C(18)	16.8(4)
C(11)-C(12)-C(17)-C(18)	-163.7(3)
C(13)-C(14)-C(21)-C(23)	0.9(4)
C(15)-C(14)-C(21)-C(23)	-178.9(3)
C(13)-C(14)-C(21)-C(22)	-121.0(3)
C(15)-C(14)-C(21)-C(22)	59.2(4)
C(13)-C(14)-C(21)-C(24)	122.4(3)
C(15)-C(14)-C(21)-C(24)	-57.4(4)
C(15)-C(16)-C(25)-C(26)	-123.9(3)
C(11)-C(16)-C(25)-C(26)	56.0(3)
C(15)-C(16)-C(25)-C(28)	112.7(3)
C(11)-C(16)-C(25)-C(28)	-67.5(4)
C(15)-C(16)-C(25)-C(27)	-6.0(3)
C(11)-C(16)-C(25)-C(27)	173.9(2)
N(1)-C(2)-N(29)-P(2)	-115.2(3)
C(3)-C(2)-N(29)-P(2)	67.1(4)
N(1)-C(2)-N(29)-Si(2)	57.5(3)
C(3)-C(2)-N(29)-Si(2)	-120.3(3)
C(2)-N(29)-Si(2)-C(30)	36.1(2)

P(2)-N(29)-Si(2)-C(30)	-150.69(15)
C(2)-N(29)-Si(2)-C(32)	-86.9(2)
P(2)-N(29)-Si(2)-C(32)	86.36(18)
C(2)-N(29)-Si(2)-C(31)	153.9(2)
P(2)-N(29)-Si(2)-C(31)	-32.9(2)
C(2)-N(29)-P(2)-N(3)	-6.4(3)
Si(2)-N(29)-P(2)-N(3)	-179.03(13)
N(29)-P(2)-N(3)-C(33)	175.10(19)
P(2)-N(3)-C(33)-C(34)	87.3(3)
P(2)-N(3)-C(33)-C(38)	-92.8(3)
C(38)-C(33)-C(34)-C(35)	10.2(4)
N(3)-C(33)-C(34)-C(35)	-169.9(2)
C(38)-C(33)-C(34)-C(39)	-170.4(2)
N(3)-C(33)-C(34)-C(39)	9.5(4)
C(33)-C(34)-C(35)-C(36)	-3.0(4)
C(39)-C(34)-C(35)-C(36)	177.5(2)
C(34)-C(35)-C(36)-C(37)	-5.1(4)
C(34)-C(35)-C(36)-C(43)	175.4(3)
C(35)-C(36)-C(37)-C(38)	6.4(4)
C(43)-C(36)-C(37)-C(38)	-174.1(3)
C(36)-C(37)-C(38)-C(33)	0.5(4)
C(36)-C(37)-C(38)-C(47)	-178.4(2)
C(34)-C(33)-C(38)-C(37)	-9.0(4)
N(3)-C(33)-C(38)-C(37)	171.1(2)
C(34)-C(33)-C(38)-C(47)	169.9(2)
N(3)-C(33)-C(38)-C(47)	-10.0(4)
C(35)-C(34)-C(39)-C(40)	-138.7(3)
C(33)-C(34)-C(39)-C(40)	41.8(4)
C(35)-C(34)-C(39)-C(41)	98.1(3)
C(33)-C(34)-C(39)-C(41)	-81.4(3)
C(35)-C(34)-C(39)-C(42)	-21.3(3)
C(33)-C(34)-C(39)-C(42)	159.2(3)
C(35)-C(36)-C(43)-C(46)	-5.4(4)
C(37)-C(36)-C(43)-C(46)	175.1(3)
C(35)-C(36)-C(43)-C(44)	118.6(3)
C(37)-C(36)-C(43)-C(44)	-60.9(4)
C(35)-C(36)-C(43)-C(45)	-124.1(3)
C(37)-C(36)-C(43)-C(45)	56.4(3)
C(37)-C(38)-C(47)-C(49)	12.3(4)
C(33)-C(38)-C(47)-C(49)	-166.5(3)
C(37)-C(38)-C(47)-C(48)	131.0(3)
C(33)-C(38)-C(47)-C(48)	-47.8(4)
C(37)-C(38)-C(47)-C(50)	-106.5(3)
C(33)-C(38)-C(47)-C(50)	74.6(4)

2,6-Bis-[1-trimethylsilyl-(2,4,6-tri-*tert*.-butylphenyl)-amino(imino)phosphanyl-Nickeltricarbonyl]-pyridin [73]

Crystal data		Formula Ni8 C-12 O24	P8 Si8 N20 H-408
Formula weight	1050.76	Crystal system	monoclinic
Space group	<i>P</i> 1 21/n 1 (no. 14)	Unit cell dimensions	a = 10.1411(2) Å
	b = 20.8770(6) Å		c = 30.7208(9) Å
	$\beta = 95.75(0)^{\circ}$	Cell volume	6471.33(72) Å ³
Density, calculated	0.270 g/cm^3	Pearson code	mP704
Formula type	NOPQ3R30	Wyckoff sequence	e ¹⁷⁶

Atomic coordinates and isotropic	e displacement parameters (in	ıÅ ²	<u>'</u>)
----------------------------------	-------------------------------	-----------------	------------

Atom	X	У	Z	U
NI1	1.11534	0.30912	0.63585	
C1A	1.24798	0.25990	0.66316	
O1A	1.33472	0.23054	0.67779	
C1B	1.04683	0.26883	0.58664	
O1B	1.00131	0.24262	0.55615	
C1C	1.17788	0.38862	0.62791	
O1C	1.21882	0.43885	0.62366	
NI2	0.49020	0.31937	0.54709	
C2A	0.54914	0.28157	0.59854	
O2A	0.58863	0.25633	0.62998	
C2B	0.35072	0.27468	0.52043	
O2B	0.25946	0.24776	0.50569	

C2C	0.44982	0.40378	0.55007	
O2C	0.42455	0.45650	0.54961	
P1	0.95821	0.31515	0.67801	
P2	0.64886	0.31260	0.50575	
SI1	0.70954	0.38723	0.70593	
SI2	0.90829	0.37022	0.47550	
N1	0.80725	0.36317	0.59101	
N2	0.78656	0.35680	0.51370	
N3	0.82821	0.36409	0.66851	
N4	0.65765	0.27556	0.46224	
N5	0.94544	0.28247	0.72286	
C1	0.82266	0.39833	0.62774	
C2	0.83298	0.46464	0.62741	
H2	0.85060	0.48768	0.65403	-1.2000
C3	0.81743	0.49638	0.58824	
H3	0.82132	0.54181	0.58727	-1.2000
C4	0.79599	0.46115	0.55020	
H4	0.78060	0.48182	0.52262	-1.2000
C5	0.79742	0.39486	0.55315	
C6	1.05883	0.40161	0.50867	
H6A	1.09210	0.36929	0.53016	-1.5000
H6B	1.03597	0.44070	0.52391	-1.5000
H6C	1.12743	0.41133	0.48934	-1.5000
C7	0.95835	0.29657	0.44794	
H7A	0.88160	0.27872	0.43006	-1.5000
H7B	0.99190	0.26508	0.46998	-1.5000
H7C	1.02806	0.30691	0.42917	-1.5000
C8	0.84329	0.43031	0.43417	
H8A	0.76440	0.41311	0.41708	-1.5000
H8B	0.91133	0.43987	0.41461	-1.5000
H8C	0.81986	0.46963	0.44903	-1.5000
С9	0.54970	0.23567	0.44597	
C10	0.44780	0.26025	0.41558	
C11	0.33962	0.22084	0.40317	
H11	0.26982	0.23761	0.38351	-1.2000
C12	0.32824	0.15875	0.41785	
C13	0.43338	0.13463	0.44556	
H13	0.42814	0.09175	0.45560	-1.2000
C14	0.54573	0.17017	0.45930	
C15	0.45500	0.32764	0.39402	
C16	0.45028	0.38374	0.42641	
H16A	0.36947	0.38066	0.44131	-1.5000
H16B	0.45040	0.42438	0.41045	-1.5000
H16C	0.52798	0.38186	0.44808	-1.5000
C17	0.58102	0.33226	0.37034	
H17A	0.65901	0.32570	0.39141	-1.5000
H17B	0.58573	0.37471	0.35697	-1.5000
H17C	0.57875	0.29934	0.34755	-1.5000
C18	0.33711	0.33884	0.35924	

H18A	0.25416	0.33653	0.37301	-1.5000
H18B	0.33701	0.30590	0.33651	-1.5000
H18C	0.34513	0.38123	0.34605	-1.5000
C19	0.20709	0.11692	0.40397	
C20	0.14169	0.10069	0.44663	0.0489
H20A	0.20647	0.07900	0.46741	-1.5000
H20B	0.06524	0.07257	0.43944	-1.5000
H20C	0.11240	0.14035	0.45975	-1.5000
C21	0.25277	0.05412	0.38574	0.0476
H21A	0.31869	0.03422	0.40705	-1.5000
H21B	0.29244	0.06223	0.35846	-1.5000
H21C	0.17670	0.02534	0.37994	-1.5000
C22	0.10654	0.14924	0.37321	0.0587
H22A	0.03205	0.12007	0.36564	-1.5000
H22B	0.14639	0.16123	0.34661	-1.5000
H22C	0.07466	0.18779	0.38705	-1.5000
C20'	0.20274	0.10595	0.35288	0.0489
H20D	0.20173	0.14747	0.33798	-1.5000
H20E	0.12263	0.08189	0.34261	-1.5000
H20F	0.28117	0.08168	0.34642	-1.5000
C21'	0.07938	0.15238	0.40996	0.0476
H21D	0.08108	0.19461	0.39609	-1.5000
H21E	0.07086	0.15762	0.44125	-1.5000
H21F	0.00379	0.12780	0.39640	-1.5000
C22'	0.20753	0.05226	0.42394	0.0587
H22D	0.12647	0.02943	0.41300	-1.5000
H22E	0.21149	0.05631	0.45582	-1.5000
H22F	0.28493	0.02831	0.41618	-1.5000
C23	0.66394	0.13537	0.48538	
C24	0.78568	0.14072	0.46092	
H24A	0.76521	0.12462	0.43104	-1.5000
H24B	0.85773	0.11532	0.47594	-1.5000
H24C	0.81298	0.18568	0.45992	-1.5000
C25	0.69664	0.16073	0.53224	
H25A	0.61761	0.15790	0.54807	-1.5000
H25B	0.72520	0.20549	0.53117	-1.5000
H25C	0.76793	0.13494	0.54734	-1.5000
C26	0.63672	0.06328	0.49042	
H26A	0.55785	0.05746	0.50601	-1.5000
H26B	0.71312	0.04303	0.50704	-1.5000
H26C	0.62186	0.04349	0.46142	-1.5000
C27	0.78727	0.44836	0.74378	
H27A	0.81882	0.48406	0.72689	-1.5000
H27B	0.86223	0.42927	0.76185	-1.5000
H27C	0.72196	0.46414	0.76265	-1.5000
C28	0.56481	0.42355	0.67246	
H28A	0.52321	0.39131	0.65235	-1.5000
H28B	0.59495	0.45966	0.65564	-1.5000
H28C	0.50027	0.43874	0.69181	-1.5000

C29	0.64747	0.31824	0.73589	
H29A	0.60736	0.28677	0.71489	-1.5000
H29B	0.58087	0.33311	0.75460	-1.5000
H29C	0.72134	0.29835	0.75403	-1.5000
C30	1.04835	0.23994	0.74018	
C31	1.15368	0.26382	0.76971	
C32	1.25922	0.22337	0.78240	
H32	1.33118	0.23967	0.80136	-1.2000
C33	1.26435	0.16002	0.76860	
C34	1.15446	0.13654	0.74263	
H34	1.15469	0.09287	0.73396	-1.2000
C35	1.04483	0.17359	0.72879	
C36	1.15392	0.33221	0.79037	
C37	1.02622	0.34271	0.81200	
H37A	0.94972	0.33801	0.79008	-1.5000
H37B	1.02651	0.38587	0.82455	-1.5000
H37C	1.02060	0.31096	0.83525	-1.5000
C38	1.17263	0.38583	0.75677	
H38A	1.10137	0.38340	0.73280	-1.5000
H38B	1.25838	0.38041	0.74509	-1.5000
H38C	1,16998	0.42765	0.77114	-1.5000
C39	1.26740	0.34041	0.82653	
H39A	1.35218	0.33424	0.81434	-1.5000
H39B	1 25865	0 30866	0.84956	-1 5000
H39C	1 26421	0 38359	0.83889	-1 5000
C40	1 38255	0 11549	0.78110	1.0000
C41	1 33505	0.05472	0.80313	
H41A	1 26669	0.03353	0.78337	-1 5000
H41B	1 29814	0.06640	0.83033	-1 5000
H41C	1 41006	0.02552	0.80972	-1 5000
C42	1 44080	0.02332	0.73901	1.5000
H42A	1 37183	0.07377	0.71937	-1 5000
H42R	1 51399	0.06473	0 74634	-1 5000
H42C	1 47372	0.13246	0.71051	-1 5000
C43	1.17372	0.13210	0.81129	1.5000
H43A	1.45329	0.14745	0.83833	-1 5000
H43R	1.43327	0.18540	0.05055	-1.5000
H43C	1.52217	0.10340	0.81824	-1.5000
	0.92282	0.11/43	0.70389	-1.5000
C45	0.92282	0.14022	0.7050	
Н45А	0.90012	0.13931	0.63011	-1 5000
1145A 1145D	0.97990	0.14975	0.65275	1 5000
	0.88089	0.20320	0.03273	-1.5000
C16	0.02311	0.15530	0.04000	-1.5000
	0.79007	0.13330	0.72507	1 5000
	0.70300	0.20180	0.72032	-1.5000
	0.00/38	0.12520	0.73304	-1.3000
П40U	0.72145	0.13320	0.70419	-1.3000
U4/	0.93822	0.000/6	0.70418	1 5000
H4/A	1.01795	0.05505	0.69043	-1.5000

Anhang

H47B	0.86036	0.04731	0.68786	-1.5000
H47C	0.94616	0.05122	0.73443	-1.5000
C1T	0.32143	0.11117	0.57921	
H1T	0.37259	0.14481	0.56861	-1.2000
C2T	0.19314	0.10470	0.56237	
H2T	0.15737	0.13355	0.54036	-1.2000
C3T	0.11421	0.05723	0.57657	
НЗТ	0.02461	0.05234	0.56471	-1.2000
C4T	0.17094	0.01664	0.60904	
H4T	0.11842	-0.01622	0.61996	-1.2000
C5T	0.30181	0.02285	0.62586	
H5T	0.33838	-0.00600	0.64775	-1.2000
C6T	0.38041	0.07119	0.61089	
C7T	0.51823	0.07931	0.62860	
H7T1	0.57598	0.07406	0.60511	-1.5000
H7T2	0.54086	0.04710	0.65133	-1.5000
H7T3	0.53050	0.12224	0.64127	-1.5000

Anisotropic displacement parameters (in Å 2)

Atom	<i>U</i> ₁₁	U22	U33	<i>U</i> 12	<i>U</i> 13	U23
NI1	0.02762	0.03863	0.02948	0.00154	0.00339	0.00460
C1A	0.03741	0.05093	0.03755	0.00236	0.01314	0.01037
O1A	0.03554	0.08447	0.05510	0.02058	0.01123	0.02857
C1B	0.03102	0.04116	0.03539	0.00332	0.01009	0.00414
O1B	0.04580	0.05188	0.03911	0.00122	0.00470	-0.00380
C1C	0.03912	0.05121	0.03451	-0.00024	0.00001	0.00621
O1C	0.06430	0.05070	0.06219	-0.01463	0.00209	0.00734
NI2	0.02554	0.03606	0.03007	-0.00131	0.00324	-0.00289
C2A	0.03263	0.04375	0.03843	-0.00897	0.00742	-0.00578
O2A	0.04894	0.06409	0.03404	-0.00744	0.00026	0.01200
C2B	0.03160	0.04030	0.03653	0.00168	0.00664	-0.00286
O2B	0.02812	0.05897	0.05091	-0.00933	0.00462	-0.00800
C2C	0.03546	0.04718	0.04650	-0.00056	0.00521	-0.00886
O2C	0.06479	0.04012	0.09299	0.00784	0.01133	-0.01050
P1	0.02404	0.03245	0.02505	0.00210	-0.00037	0.00045
P2	0.02223	0.02725	0.02448	-0.00275	-0.00017	0.00076
SI1	0.03228	0.05042	0.03145	0.01086	0.00161	-0.00378
SI2	0.02888	0.03824	0.02771	-0.00874	0.00023	0.00283
N1	0.02463	0.02851	0.02467	-0.00032	-0.00085	0.00083
N2	0.02571	0.02732	0.02282	-0.00430	-0.00160	-0.00102
N3	0.02873	0.03571	0.02417	0.00542	-0.00273	-0.00095
N4	0.02208	0.02764	0.02780	-0.00115	0.00034	0.00071
N5	0.02390	0.03275	0.02491	-0.00030	-0.00091	-0.00053
C1	0.02528	0.03137	0.02966	0.00090	-0.00426	0.00010
C2	0.03297	0.03529	0.03224	-0.00027	-0.00440	-0.00772
C3	0.03528	0.02478	0.04651	0.00119	-0.00257	-0.00180
C4	0.03040	0.02927	0.03360	0.00018	-0.00374	0.00499
C5	0.02176	0.03122	0.02739	-0.00284	-0.00389	-0.00191

C6	0.03040	0.03949	0.03748	-0.00860	-0.00182	0.00637
C7	0.02990	0.05164	0.03398	-0.00806	0.00432	-0.00174
C8	0.04611	0.04517	0.03396	-0.01304	0.00106	0.00583
C9	0.01935	0.03028	0.02284	-0.00202	0.00361	-0.00380
C10	0.02413	0.03172	0.02736	0.00011	0.00127	-0.00387
C11	0.02276	0.03778	0.02835	-0.00053	-0.00188	-0.00456
C12	0.02313	0.03638	0.03033	-0.00471	0.00204	-0.00634
C13	0.02472	0.02649	0.03271	-0.00163	0.00163	-0.00126
C14	0.02347	0.02899	0.02682	-0.00093	0.00207	-0.00356
C15	0.02737	0.03137	0.03077	0.00033	-0.00103	0.00293
C16	0.03971	0.03152	0.03589	0.00629	-0.00190	0.00021
C17	0.03941	0.03864	0.03487	-0.00703	0.00392	0.00087
C18	0.04569	0.04554	0.04259	-0.00435	-0.01384	0.01564
C19	0.02308	0.03828	0.04348	-0.00910	-0.00207	-0.00760
C23	0.02426	0.02911	0.03246	-0.00056	-0.00173	0.00131
C24	0.03077	0.03789	0.05810	0.00705	0.00831	0.01176
C25	0.04501	0.03687	0.03486	0.00481	-0.00944	0.00037
C26	0.03587	0.03334	0.05143	-0.00151	-0.00257	0.00617
C27	0.05178	0.05565	0.04041	0.01211	-0.00057	-0.00936
C28	0.03689	0.06924	0.04427	0.01694	0.00247	-0.00199
C29	0.03440	0.06783	0.03917	0.00782	0.00969	0.00453
C30	0.02084	0.03101	0.02586	0.00048	0.00252	0.00133
C31	0.02698	0.03116	0.02306	-0.00174	0.00044	0.00077
C32	0.02600	0.03718	0.02332	-0.00295	-0.00043	0.00091
C33	0.02980	0.03284	0.02616	0.00359	0.00088	0.00475
C34	0.03153	0.02755	0.03395	-0.00227	0.00328	-0.00291
C35	0.02827	0.03134	0.02629	-0.00353	0.00070	0.00082
C36	0.03339	0.02946	0.03015	0.00066	-0.00647	-0.00050
C37	0.04339	0.04198	0.03190	0.00366	0.00351	-0.00716
C38	0.05119	0.03315	0.03925	-0.00686	0.00028	-0.00015
C39	0.04492	0.04066	0.04699	-0.00098	-0.01689	-0.01104
C40	0.03168	0.04298	0.04043	0.01013	-0.00177	0.00132
C41	0.05090	0.05249	0.05805	0.01973	0.00455	0.00913
C42	0.04509	0.06773	0.06550	0.01940	0.01510	0.00325
C43	0.05032	0.06579	0.09990	0.01550	-0.03082	-0.01202
C44	0.02975	0.03259	0.03450	-0.00684	0.00051	-0.00037
C45	0.04990	0.04834	0.03584	-0.01551	-0.01033	-0.00399
C46	0.03227	0.06127	0.05518	-0.01375	0.00572	-0.01140
C47	0.04913	0.03756	0.05258	-0.01164	-0.00941	-0.00329
C1T	0.08617	0.04931	0.08624	0.00502	0.02468	0.01361
C2T	0.08368	0.06561	0.10653	0.01608	0.01440	0.00630
C3T	0.09478	0.04465	0.09142	0.00089	0.01920	-0.00889
C4T	0.08993	0.05478	0.08117	-0.01705	0.01460	-0.00750
C5T	0.09197	0.04295	0.06640	-0.01651	0.01206	-0.00442
C6T	0.07493	0.05342	0.05982	-0.00204	0.01985	-0.00491
C7T	0.08034	0.08089	0.08014	-0.00583	0.01484	0.00955
	·		-	·		·

2-[1-aza-2-phosphaallyl-bis(trimethylsilyl)-1-aminopyridinato-lithium*TMEDA]-6-(bis-trimethylsilyl)-amino-pyridin [81]

Tal-1a	1	Current al	data	~	atmastre		ant fam	-1-225
Table	Ι.	Crystar	uata	ana	structure	rennen	ient for	NK323.

uble 1. Crystal data and structure refinement	101 IIK525.
Identification code	nk325
Empirical formula	C24 H55 Li N5 P Si4
Formula weight	564.00
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1 (No.2)
Unit cell dimensions	a = 9.9174(3) A alpha = 106.654(2) deg.
	b = 12.9068(3) A beta = 102.524(2) deg.
	c = 14.9668(5) A gamma = 95.684(2) deg.
Volume	1764.93(9) A^3
Z, Calculated density	2, 1.061 Mg/m^3
Absorption coefficient	0.234 mm^-1
F(000)	616
Crystal size	0.60 x 0.50 x 0.40 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	2.93 to 25.03 deg.
Limiting indices	-11<=h<=11, -15<=k<=15, -17<=l<=17
Reflections collected / unique	13387 / 6187 [R(int) = 0.0327]
Completeness to theta $= 25.03$	99.1 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6187 / 0 / 316
Goodness-of-fit on F ²	1.099
Final R indices [I>2sigma(I)]	R1 = 0.0462, WR2 = 0.1194
R indices (all data)	R1 = 0.0661, wR2 = 0.1272
Largest diff. peak and hole	0.676 and -0.612 e.A^-3

	w			LI(ag)
) (1)	X	y	Z	
N(1)	3481(2)	4691(1)	2636(1)	20(1)
C(2)	3430(2)	3670(2)	2701(2)	22(1)
C(3)	4561(2)	3131(2)	2724(2)	30(1)
C(4)	5799(2)	3643(2)	2630(2)	33(1)
C(5)	5861(2)	4656(2)	2508(2)	27(1)
C(6)	4690(2)	5188(2)	2524(2)	21(1)
N(7)	4608(2)	6190(2)	2392(1)	23(1)
P(1)	6031(1)	7128(1)	2722(1)	24(1)
C(8)	5814(2)	7977(2)	2056(2)	25(1)
Si(1)	4365(1)	7676(1)	947(1)	36(1)
C(9)	4776(3)	8466(2)	138(2)	47(1)
C(10)	3988(5)	6216(3)	180(2)	86(1)
C(11)	2722(3)	8054(4)	1265(3)	87(2)
Si(2)	7140(1)	9251(1)	2519(1)	26(1)
C(12)	8220(3)	9473(2)	3774(2)	37(1)
C(13)	8392(3)	9232(2)	1745(2)	40(1)
C(14)	6269(3)	10486(2)	2582(2)	46(1)
N(15)	2083(2)	3126(2)	2701(1)	24(1)
Si(3)	1155(1)	2281(1)	1538(1)	30(1)
C(16)	1469(3)	2973(2)	647(2)	45(1)
C(17)	1732(3)	923(2)	1203(2)	51(1)
C(18)	-758(3)	2042(2)	1458(2)	47(1)
Si(4)	1887(1)	2995(1)	3796(1)	40(1)
C(19)	3116(3)	4112(2)	4797(2)	53(1)
C(20)	78(3)	3091(4)	3921(3)	96(2)
C(21)	2240(4)	1630(3)	3907(3)	87(1)
Li(1)	2719(4)	6189(3)	2707(3)	28(1)
C(1D)	3772(5)	7357(4)	4775(3)	113(2)
C(2D)	3448(4)	8634(3)	3924(3)	77(1)
N(1D)	2871(2)	7559(2)	3955(2)	39(1)
C(3D)	1437(3)	7560(3)	4035(2)	60(1)
C(4D)	392(3)	7158(3)	3133(3)	81(1)
N(2D)	524(2)	6151(2)	2431(2)	36(1)
C(5D)	52(3)	5207(3)	2683(4)	111(2)
C(6D)	-329(3)	6080(4)	1505(3)	94(1)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for nk325. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for nk325.

N(1)-C(2)	1.346(3)
N(1)-C(6)	1.369(3)
N(1)-Li(1)	2.128(4)
C(2)-C(3)	1.377(3)
C(2)-N(15)	1.446(3)
C(3)-C(4)	1.389(3)
C(4)-C(5)	1.368(3)
C(5)-C(6)	1.407(3)
C(6)-N(7)	1.372(3)

C(6)-Li(1)	2.469(4)
N(7)-P(1)	1.6486(17)
N(7)-Li(1)	2.028(4)
P(1)-C(8)	1.679(2)
C(8)-Si(2)	1.854(2)
C(8)-Si(1)	1.860(2)
Si(1)-C(10)	1.856(4)
Si(1)-C(11)	1.866(3)
Si(1)-C(9)	1.873(2)
Si(2)-C(13)	1.870(3)
Si(2)-C(12)	1.876(3)
Si(2)-C(14)	1.876(3)
N(15)-Si(4)	1.7434(19)
N(15)-Si(3)	1.756(2)
Si(3)-C(17)	1.863(3)
Si(3)-C(18)	1.864(3)
Si(3)-C(16)	1.865(3)
Si(4)-C(19)	1.852(3)
Si(4)-C(20)	1.857(3)
Si(4)-C(21)	1.876(3)
Li(1)-N(2D)	2.119(4)
Li(1)-N(1D)	2.138(5)
C(1D)-N(1D)	1.459(4)
C(2D)-N(1D)	1.464(4)
N(1D)-C(3D)	1.452(3)
C(3D)-C(4D)	1.432(5)
C(4D)-N(2D)	1.456(4)
N(2D)-C(6D)	1.432(4)
N(2D)-C(5D)	1.439(4)
C(2)-N(1)-C(6)	118.19(19)
C(2)-N(1)-Li(1)	154.56(17)
C(6)-N(1)-Li(1)	86.98(15)
N(1)-C(2)-C(3)	123.23(19)
N(1)-C(2)-N(15)	116.31(19)
C(3)-C(2)-N(15)	120.39(19)
C(2)-C(3)-C(4)	118.5(2)
C(5)-C(4)-C(3)	119.6(2)
C(4)-C(5)-C(6)	119.5(2)
N(1)-C(6)-N(7)	113.98(19)
N(1)-C(6)-C(5)	120.71(19)
N(7)-C(6)-C(5)	125.26(19)
N(1)-C(6)-Li(1)	59.40(14)
N(7)-C(6)-Li(1)	55.19(13)
C(5)-C(6)-Li(1)	175.0(2)
C(6)-N(7)-P(1)	120.18(15)
C(6)-N(7)-Li(1)	91.07(16)
P(1)-N(7)-Li(1)	133.33(16)
N(7)-P(1)-C(8)	109.45(10)
P(1)-C(8)-Si(2)	114.49(13)

D(1) C(0) C(1)	102 17(12)
P(1)-C(8)-SI(1)	123.17(13)
SI(2)-C(6)-SI(1) C(10) Si(1) C(9)	122.34(12) 112.50(14)
C(10) - Si(1) - C(8)	108.4(2)
C(10)-S1(1)-C(11)	108.4(2)
C(8)-Si(1)-C(11)	110.46(15)
C(10)-S1(1)-C(9)	104.//(15)
C(8)-Si(1)-C(9)	112.09(11)
C(11)-Si(1)-C(9)	107.30(14)
$C(8)-S_1(2)-C(13)$	111.79(12)
$C(8)-S_1(2)-C(12)$	112.49(11)
$C(13)-S_1(2)-C(12)$	106.81(12)
C(8)-Si(2)-C(14)	110.61(11)
C(13)-Si(2)-C(14)	108.87(12)
C(12)-Si(2)-C(14)	106.00(13)
C(2)-N(15)-Si(4)	117.01(14)
C(2)-N(15)-Si(3)	111.52(15)
Si(4)-N(15)-Si(3)	127.07(10)
N(15)-Si(3)-C(17)	112.36(12)
N(15)-Si(3)-C(18)	110.12(12)
C(17)-Si(3)-C(18)	108.31(13)
N(15)-Si(3)-C(16)	108.83(11)
C(17)-Si(3)-C(16)	107.72(14)
C(18)-Si(3)-C(16)	109.44(13)
N(15)-Si(4)-C(19)	109.01(11)
N(15)-Si(4)-C(20)	111.82(13)
C(19)-Si(4)-C(20)	108.37(18)
N(15)-Si(4)-C(21)	111.38(15)
C(19)-Si(4)-C(21)	109.65(15)
C(20)-Si(4)-C(21)	106.5(2)
N(7)-Li(1)-N(2D)	156.3(2)
N(7)-Li(1)-N(1)	67.10(14)
N(2D)-Li(1)-N(1)	118.17(18)
N(7)-Li(1)-N(1D)	109.27(19)
N(2D)-Li(1)-N(1D)	85.85(17)
N(1)-Li(1)-N(1D)	128.3(2)
C(3D)-N(1D)-C(1D)	112.1(3)
C(3D)-N(1D)-C(2D)	109.2(2)
C(1D)-N(1D)-C(2D)	107 7(3)
C(3D)-N(1D)-Li(1)	104 4(2)
C(1D)-N(1D)-Li(1)	107 3(3)
C(2D)-N(1D)-J(1)	116 2(2)
C(2D) - C(3D) - N(1D)	114.6(3)
C(3D)-C(4D)-N(2D)	117 8(3)
C(6D) - N(2D) - C(5D)	108 9(3)
C(6D)-N(2D)-C(4D)	108.4(3)
C(5D)-N(2D)-C(4D)	110.7(3)
C(5D) - N(2D) - C(4D)	122 5(2)
C(0D) - N(2D) - LI(1)	122.3(2) 102 5(2)
$\frac{U(3D)-N(2D)-LI(1)}{U(2D)-L(1)}$	102.3(2) 102.5(2)
U(4D)-N(2D)-L1(1)	103.3(2)

Table 4. Torsion angles [deg] for nk325.

C(6)-N(1)-C(2)-C(3)	4.4(3)
Li(1)-N(1)-C(2)-C(3)	-166.6(4)
C(6)-N(1)-C(2)-N(15)	-172.77(19)
Li(1)-N(1)-C(2)-N(15)	16.3(5)
N(1)-C(2)-C(3)-C(4)	-3.1(4)
N(15)-C(2)-C(3)-C(4)	173.9(2)
C(2)-C(3)-C(4)-C(5)	-0.7(4)
C(3)-C(4)-C(5)-C(6)	2.9(4)
C(2)-N(1)-C(6)-N(7)	175.33(19)
Li(1)-N(1)-C(6)-N(7)	-8.5(2)
C(2)-N(1)-C(6)-C(5)	-2.0(3)
Li(1)-N(1)-C(6)-C(5)	174.2(2)
C(2)-N(1)-C(6)-Li(1)	-176.1(2)
C(4)-C(5)-C(6)-N(1)	-1.6(4)
C(4)-C(5)-C(6)-N(7)	-178.6(2)
C(4)-C(5)-C(6)-Li(1)	88(2)
N(1)-C(6)-N(7)-P(1)	152.55(16)
C(5)-C(6)-N(7)-P(1)	-30.3(3)
Li(1)-C(6)-N(7)-P(1)	143.6(2)
N(1)-C(6)-N(7)-Li(1)	9.0(2)
C(5)-C(6)-N(7)-Li(1)	-173.9(2)
C(6)-N(7)-P(1)-C(8)	154.10(18)
Li(1)-N(7)-P(1)-C(8)	-80.6(2)
N(7)-P(1)-C(8)-Si(2)	166.84(11)
N(7)-P(1)-C(8)-Si(1)	-13.07(19)
P(1)-C(8)-Si(1)-C(10)	-40.0(2)
Si(2)-C(8)-Si(1)-C(10)	140.15(19)
P(1)-C(8)-Si(1)-C(11)	82.0(2)
Si(2)-C(8)-Si(1)-C(11)	-97.91(19)
P(1)-C(8)-Si(1)-C(9)	-158.41(16)
Si(2)-C(8)-Si(1)-C(9)	21.7(2)
P(1)-C(8)-Si(2)-C(13)	107.80(15)
Si(1)-C(8)-Si(2)-C(13)	-72.29(18)
P(1)-C(8)-Si(2)-C(12)	-12.37(18)
Si(1)-C(8)-Si(2)-C(12)	167.54(14)
P(1)-C(8)-Si(2)-C(14)	-130.69(15)
Si(1)-C(8)-Si(2)-C(14)	49.22(19)
N(1)-C(2)-N(15)-Si(4)	-106.7(2)
C(3)-C(2)-N(15)-Si(4)	76.1(3)
N(1)-C(2)-N(15)-Si(3)	95.2(2)
C(3)-C(2)-N(15)-Si(3)	-82.1(2)
C(2)-N(15)-Si(3)-C(17)	81.38(17)
Si(4)-N(15)-Si(3)-C(17)	-74.08(17)
C(2)-N(15)-Si(3)-C(18)	-157.79(16)
Si(4)-N(15)-Si(3)-C(18)	46.74(18)
C(2)-N(15)-Si(3)-C(16)	-37.83(19)
Si(4)-N(15)-Si(3)-C(16)	166.70(15)
C(2)-N(15)-Si(4)-C(19)	26.2(2)

Si(3)-N(15)-Si(4)-C(19)	-179.51(15)
C(2)-N(15)-Si(4)-C(20)	146.0(2)
Si(3)-N(15)-Si(4)-C(20)	-59.7(2)
C(2)-N(15)-Si(4)-C(21)	-94.9(2)
Si(3)-N(15)-Si(4)-C(21)	59.4(2)
C(6)-N(7)-Li(1)-N(2D)	-113.9(6)
P(1)-N(7)-Li(1)-N(2D)	110.9(5)
C(6)-N(7)-Li(1)-N(1)	-5.70(14)
P(1)-N(7)-Li(1)-N(1)	-140.85(18)
C(6)-N(7)-Li(1)-N(1D)	118.7(2)
P(1)-N(7)-Li(1)-N(1D)	-16.4(3)
P(1)-N(7)-Li(1)-C(6)	-135.1(2)
C(2)-N(1)-Li(1)-N(7)	177.8(4)
C(6)-N(1)-Li(1)-N(7)	5.72(14)
C(2)-N(1)-Li(1)-N(2D)	-27.9(6)
C(6)-N(1)-Li(1)-N(2D)	160.1(2)
C(2)-N(1)-Li(1)-N(1D)	80.7(5)
C(6)-N(1)-Li(1)-N(1D)	-91.3(2)
C(2)-N(1)-Li(1)-C(6)	172.0(5)
N(1)-C(6)-Li(1)-N(7)	-170.5(2)
C(5)-C(6)-Li(1)-N(7)	97(2)
N(1)-C(6)-Li(1)-N(2D)	-35.0(4)
N(7)-C(6)-Li(1)-N(2D)	135.5(4)
C(5)-C(6)-Li(1)-N(2D)	-128(2)
N(7)-C(6)-Li(1)-N(1)	170.5(2)
C(5)-C(6)-Li(1)-N(1)	-93(2)
N(1)-C(6)-Li(1)-N(1D)	112.7(2)
N(7)-C(6)-Li(1)-N(1D)	-76 8(2)
C(5)-C(6)-Li(1)-N(1D)	20(2)
N(7)-Li(1)-N(1D)-C(3D)	172.7(2)
N(2D)-Li(1)-N(1D)-C(3D)	11.3(2)
N(1)-Li(1)-N(1D)-C(3D)	-111 7(3)
C(6)-Li(1)-N(1D)-C(3D)	-152 4(2)
N(7)-Li(1)-N(1D)-C(1D)	-68 2(3)
N(2D)-Li(1)-N(1D)-C(1D)	130 5(3)
N(1)-Li(1)-N(1D)-C(1D)	7 4(4)
C(6)-Li(1)-N(1D)-C(1D)	-33 2(3)
N(7)-Li(1)-N(1D)-C(2D)	52 4(3)
N(2D)-Li(1)-N(1D)-C(2D)	-108 9(2)
N(1)-Li(1)-N(1D)-C(2D)	128.0(3)
C(6)-Li(1)-N(1D)-C(2D)	87 4(3)
C(1D)-N(1D)-C(3D)-C(4D)	-1474(4)
C(2D)-N(1D)-C(3D)-C(4D)	93 3(4)
$L_{i}(1) N(1D) C(3D) C(4D)$	-31 6(4)
N(1D)-C(3D)-C(4D)-N(2D)	45 6(5)
C(3D) - C(4D) - N(2D) - C(6D)	-162 4(3)
C(3D) - C(4D) - N(2D) - C(5D)	78 2(4)
C(3D) - C(4D) - N(2D) + I(1)	-30.9(A)
$N(7) I_{i}(1) N(2D) C(4D)$	-50.7(4)
$ 1 \times (7 - L) \times (1 - 1 \times (2 L) - C \times (0 L)$	

N(1)-Li(1)-N(2D)-C(6D)	-96.6(3)
N(1D)-Li(1)-N(2D)-C(6D)	131.6(3)
C(6)-Li(1)-N(2D)-C(6D)	-75.5(5)
N(7)-Li(1)-N(2D)-C(5D)	122.7(6)
N(1)-Li(1)-N(2D)-C(5D)	25.7(3)
N(1D)-Li(1)-N(2D)-C(5D)	-106.1(3)
C(6)-Li(1)-N(2D)-C(5D)	46.8(5)
N(7)-Li(1)-N(2D)-C(4D)	-122.1(6)
N(1)-Li(1)-N(2D)-C(4D)	140.8(3)
N(1D)-Li(1)-N(2D)-C(4D)	9.1(3)
C(6)-Li(1)-N(2D)-C(4D)	161.9(4)

2-[amino-bis-(di-trimethylsilyl)-phosphaethenyl]-6-(bis-trimethylsilyl)-amino-pyridin

[83]

Table 1.	Crystal	data and	structure	refinement	for	nk338
----------	---------	----------	-----------	------------	-----	-------

Identification code	nk338
Empirical formula	C25 H57 N3 P2 Si6
Formula weight	630.22
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c (No.14)
Unit cell dimensions	a = 14.8828(2) A alpha = 90 deg.
	b = 15.7716(2) A beta = 93.074(1) deg.
	c = 32.7765(4) A gamma = 90 deg.
Volume	7682.41(17) A^3
Z, Calculated density	8, 1.090 Mg/m^3
Absorption coefficient	0.319 mm^-1
F(000)	2736

Crystal size	0.40 x 0.30 x 0.20 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	2.95 to 25.03 deg.
Limiting indices	-16<=h<=17, -17<=k<=18, -37<=l<=39
Reflections collected / unique	32964 / 13495 [R(int) = 0.0410]
Completeness to theta $= 25.00$	99.5 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	13495 / 0 / 649
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0361, wR2 = 0.0901
R indices (all data)	R1 = 0.0533, wR2 = 0.0955
Largest diff. peak and hole	0.370 and -0.285 e.A^-3

Table 2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parame	ters (A^2
x 10 ^{3}) for nk338. U(eq) is defined as one third of the trace of the orthogonalized U	j tensor.

	Х	у	Z	U(eq)
N(1)	10948(1)	3193(1)	5653(1)	18(1)
C(2)	11436(1)	3913(1)	5696(1)	18(1)
C(3)	11044(1)	4713(1)	5662(1)	24(1)
C(4)	10134(1)	4765(1)	5567(1)	26(1)
C(5)	9631(1)	4040(1)	5506(1)	25(1)
C(6)	10055(1)	3256(1)	5560(1)	19(1)
N(2)	9586(1)	2491(1)	5511(1)	20(1)
Si(1)	10160(1)	1513(1)	5612(1)	21(1)
C(7)	10637(1)	1492(2)	6148(1)	29(1)
C(8)	9303(1)	647(1)	5592(1)	28(1)
C(9)	10994(1)	1326(1)	5217(1)	27(1)
P(1)	8439(1)	2514(1)	5598(1)	22(1)
C(10)	7859(1)	2223(1)	5175(1)	19(1)
Si(2)	8253(1)	2143(1)	4639(1)	21(1)
C(11)	9181(1)	2903(1)	4546(1)	30(1)
C(12)	7299(1)	2407(2)	4270(1)	33(1)
C(13)	8624(2)	1049(1)	4508(1)	33(1)
Si(3)	6665(1)	1934(1)	5289(1)	22(1)
C(14)	6518(1)	1901(2)	5852(1)	34(1)
C(15)	6420(2)	856(2)	5076(1)	37(1)
C(16)	5826(1)	2705(2)	5067(1)	38(1)
N(3)	12362(1)	3791(1)	5784(1)	18(1)
Si(4)	13163(1)	4610(1)	5737(1)	23(1)
C(17)	13135(2)	5378(1)	6166(1)	33(1)
C(18)	12975(2)	5169(2)	5238(1)	35(1)
C(19)	14298(1)	4113(2)	5743(1)	38(1)
P(2)	12709(1)	2725(1)	5751(1)	18(1)
C(20)	12998(1)	2357(1)	6214(1)	17(1)
Si(5)	12827(1)	2865(1)	6724(1)	23(1)
C(21)	11837(1)	3598(2)	6720(1)	33(1)
C(22)	12607(2)	2032(2)	7109(1)	35(1)
C(23)	13873(1)	3448(2)	6897(1)	33(1)

Si(6)	13556(1)	1282(1)	6195(1)	20(1)
C(24)	14585(1)	1276(2)	6549(1)	29(1)
C(25)	12807(1)	398(1)	6345(1)	35(1)
C(26)	13918(1)	1034(1)	5673(1)	29(1)
N(1')	1002(1)	3372(1)	3339(1)	20(1)
C(2')	1491(1)	4081(1)	3400(1)	22(1)
C(3')	1103(1)	4878(1)	3444(1)	29(1)
C(4')	174(1)	4925(1)	3424(1)	30(1)
C(5')	-337(1)	4212(1)	3357(1)	25(1)
C(6')	97(1)	3436(1)	3306(1)	20(1)
N(2')	-369(1)	2679(1)	3217(1)	21(1)
Si(1')	169(1)	1678(1)	3260(1)	23(1)
C(7')	742(1)	1537(2)	3775(1)	30(1)
C(8')	-748(2)	869(2)	3202(1)	36(1)
C(9')	943(1)	1495(1)	2842(1)	30(1)
P(1')	-1539(1)	2716(1)	3142(1)	25(1)
C(10')	-1821(1)	3012(1)	2668(1)	21(1)
Si(2')	-1101(1)	3195(1)	2219(1)	23(1)
C(11')	47(1)	3615(2)	2343(1)	31(1)
C(12')	-1023(2)	2158(2)	1949(1)	37(1)
C(13')	-1644(2)	3982(2)	1856(1)	37(1)
Si(3')	-3088(1)	3093(1)	2590(1)	26(1)
C(14')	-3420(2)	4230(2)	2553(1)	42(1)
C(15')	-3483(2)	2530(2)	2113(1)	40(1)
C(16')	-3681(1)	2602(2)	3019(1)	44(1)
N(3')	2430(1)	3962(1)	3416(1)	22(1)
Si(4')	3156(1)	4784(1)	3264(1)	28(1)
C(17')	3257(2)	5652(2)	3649(1)	37(1)
C(18')	2732(2)	5182(2)	2756(1)	40(1)
C(19')	4292(2)	4315(2)	3209(1)	46(1)
P(2')	2752(1)	2917(1)	3305(1)	20(1)
C(20')	3173(1)	2477(1)	3735(1)	19(1)
Si(5')	3764(1)	1450(1)	3636(1)	22(1)
C(21')	3874(2)	1273(2)	3076(1)	34(1)
C(22')	4929(1)	1505(2)	3879(1)	34(1)
C(23')	3169(2)	507(1)	3834(1)	38(1)
Si(6')	3126(1)	2915(1)	4265(1)	26(1)
C(24')	3229(2)	2026(2)	4640(1)	42(1)
C(25')	4093(2)	3657(2)	4363(1)	38(1)
C(26')	2052(2)	3482(2)	4365(1)	42(1)

Table 3. Bond lengths [A] and angles [deg] for nk338.

N(1)-C(6)	1.351(2)
N(1)-C(2)	1.352(2)
C(2)-C(3)	1.391(3)
C(2)-N(3)	1.406(2)
C(3)-C(4)	1.376(3)
C(4)-C(5)	1.376(3)
C(5)-C(6)	1.395(3)

C(6)-N(2)	1.398(2)
N(2)-P(1)	1.7458(16)
N(2)-Si(1)	1.7853(17)
Si(1)-C(7)	1.860(2)
Si(1)-C(9)	1.864(2)
Si(1)-C(8)	1.867(2)
P(1)-C(10)	1.658(2)
C(10)-Si(2)	1.887(2)
C(10)-Si(3)	1.8904(19)
Si(2)-C(12)	1.863(2)
Si(2)-C(11)	1.866(2)
Si(2)-C(13)	1.868(2)
Si(3)-C(16)	1.864(2)
Si(3)-C(15)	1.867(2)
Si(3)-C(14)	1.871(2)
N(3)-P(2)	1.7639(17)
N(3)-Si(4)	1.7714(16)
Si(4)-C(17)	1.860(2)
Si(4)-C(19)	1.861(2)
Si(4)-C(18)	1.864(2)
P(2)-C(20)	1.661(2)
C(20)-Si(5)	1.882(2)
C(20)-Si(6)	1.890(2)
Si(5)-C(22)	1.863(2)
Si(5)-C(23)	1.869(2)
Si(5)-C(21)	1.872(2)
Si(6)-C(26)	1.864(2)
Si(6)-C(25)	1.866(2)
Si(6)-C(24)	1.872(2)
N(1')-C(2')	1.343(3)
N(1')-C(6')	1.348(2)
C(2')-C(3')	1.393(3)
C(2')-N(3')	1.409(2)
C(3')-C(4')	1.382(3)
C(4')-C(5')	1.369(3)
C(5')-C(6')	1.399(3)
C(6')-N(2')	1.403(3)
N(2')-P(1')	1.7466(16)
N(2')-Si(1')	1.7732(17)
$S_1(1)-C(7)$	1.861(2)
$S_1(1) - C(9')$	1.862(2)
Si(1')-C(8')	1.8/0(2)
P(1')-C(10')	1.657(2)
$C(10')-S_1(2')$	1.889(2)
C(10')-S1(3')	1.893(2)
S1(2')-C(11')	1.856(2)
S1(2')-C(12')	1.86/(2)
$S_1(2^{-})-C(13^{-})$	1.8/1(2)
S1(3')-C(14')	1.862(2)

Si(3')-C(15')	1.866(2)
Si(3')-C(16')	1.868(2)
N(3')-P(2')	1.7598(17)
N(3')-Si(4')	1.7766(17)
Si(4')-C(18')	1.858(2)
Si(4')-C(19')	1.862(2)
Si(4')-C(17')	1.862(2)
P(2')-C(20')	1.662(2)
C(20')-Si(6')	1.875(2)
C(20')-Si(5')	1.878(2)
Si(5')-C(23')	1.865(2)
Si(5')-C(22')	1.870(2)
Si(5')-C(21')	1.872(2)
Si(6')-C(24')	1.866(2)
Si(6')-C(25')	1.868(2)
Si(6')-C(26')	1.876(2)
C(6)-N(1)-C(2)	118.58(17)
N(1)-C(2)-C(3)	122.17(18)
N(1)-C(2)-N(3)	114.91(17)
C(3)-C(2)-N(3)	122.90(18)
C(4)-C(3)-C(2)	118.45(19)
C(3)-C(4)-C(5)	120.24(19)
C(4)-C(5)-C(6)	118.69(19)
N(1)-C(6)-C(5)	121.76(18)
N(1)-C(6)-N(2)	116 17(17)
C(5)-C(6)-N(2)	122.05(18)
C(6)-N(2)-P(1)	116 73(13)
C(6)-N(2)-Si(1)	119 56(13)
P(1)-N(2)-Si(1)	116 78(9)
N(2)-Si(1)-C(7)	110 14(9)
N(2)-Si(1)-C(9)	109 79(9)
C(7)-Si(1)-C(9)	114 76(10)
N(2)-Si(1)-C(8)	107.82(9)
C(7)-Si(1)-C(8)	104.20(10)
C(9)-Si(1)-C(8)	109.80(10)
C(10)-P(1)-N(2)	109.11(9)
P(1)-C(10)-Si(2)	128 58(11)
P(1)-C(10)-Si(3)	110 79(11)
Si(2)-C(10)-Si(3)	120.62(11)
C(12)- $Si(2)$ - $C(11)$	107 17(11)
C(12) Si(2) C(11) C(12) Si(2) C(13)	106.34(11)
C(12)-Si(2)-C(13)	100.94(11) 108.96(10)
C(12)-Si(2)-C(10)	100.20(10)
C(12) - S(12) - C(10)	112 26(10)
C(11)-S(2)-C(10) C(13) S(2) C(10)	112.20(10)
C(15) - S(2) - C(10)	112.70(10) 100 56(12)
C(16) = S(3) = C(13)	107.30(12)
C(10)-SI(3)-C(14) C(15) Si(2) C(14)	100.77(11) 108.10(11)
C(15) - S((5)) - C(14)	100.19(11) 112.52(10)
[0,10]- $[3](3]$ - $(10]$	112.32(10)

C(15)-Si(3)-C(10)	108.26(9)
C(14)-Si(3)-C(10)	111.23(10)
C(2)-N(3)-P(2)	113.91(13)
C(2)-N(3)-Si(4)	122.58(13)
P(2)-N(3)-Si(4)	119.27(9)
N(3)-Si(4)-C(17)	111.41(9)
N(3)-Si(4)-C(19)	107.84(9)
C(17)-Si(4)-C(19)	108.86(11)
N(3)-Si(4)-C(18)	110.62(9)
C(17)-Si(4)-C(18)	110.38(11)
C(19)-Si(4)-C(18)	107.61(11)
C(20)-P(2)-N(3)	109.83(9)
P(2)-C(20)-Si(5)	128.40(12)
P(2)-C(20)-Si(6)	112.06(11)
Si(5)-C(20)-Si(6)	119.54(11)
C(22)-Si(5)-C(23)	108.35(11)
C(22)-Si(5)-C(21)	105.83(10)
C(23)-Si(5)-C(21)	109.95(11)
C(22)-Si(5)-C(20)	109.67(10)
C(23)-Si(5)-C(20)	109.25(9)
C(21)-Si(5)-C(20)	113.63(10)
C(26)-Si(6)-C(25)	106 91(11)
C(26)-Si(6)-C(24)	107 51(10)
C(25)-Si(6)-C(24)	108 31(11)
C(26)-Si(6)-C(20)	111 60(9)
C(25)-Si(6)-C(20)	113.06(9)
C(24)-Si(6)-C(20)	109 24(10)
C(2')-N(1')-C(6')	118 72(17)
N(1')-C(2')-C(3')	122 80(18)
N(1')-C(2')-N(3')	115 01(17)
C(3')-C(2')-N(3')	122 19(18)
C(4')-C(3')-C(2')	117 6(2)
C(5')-C(4')-C(3')	120.6(2)
C(4')-C(5')-C(6')	118 81(19)
N(1)-C(6)-C(5)	121 41(19)
N(1')-C(6')-N(2')	115 71(17)
C(5')-C(6')-N(2')	122 88(18)
C(6')-N(2')-P(1')	118 61(13)
C(6')-N(2')-Si(1')	121 66(13)
P(1')-N(2')-Si(1')	118 91(10)
N(2')-Si(1')-C(7')	111 25(9)
N(2')-Si(1')-C(9')	111.25(5)
C(7')-Si(1')-C(9')	112 18(10)
N(2')-Si(1')-C(8')	106 02(9)
C(7')-Si(1')-C(8')	107.98(11)
C(9')-Si(1')-C(8')	107 16(10)
C(10')-P(1')-N(2')	109 96(9)
P(1')-C(10')-Si(2')	130 44(12)
P(1')-C(10')-Si(3')	110.24(11)

Si(2')-C(10')-Si(3')	119.19(11)
C(11')-Si(2')-C(12')	109.68(11)
C(11')-Si(2')-C(13')	105.31(11)
C(12')-Si(2')-C(13')	108.41(12)
C(11')-Si(2')-C(10')	115.96(10)
C(12')-Si(2')-C(10')	106.73(10)
C(13')-Si(2')-C(10')	110.58(10)
C(14')-Si(3')-C(15')	109.55(12)
C(14')-Si(3')-C(16')	108.28(12)
C(15')-Si(3')-C(16')	106.99(12)
C(14')-Si(3')-C(10')	109.41(10)
C(15')-Si(3')-C(10')	110.34(10)
C(16')-Si(3')-C(10')	112.20(10)
C(2')-N(3')-P(2')	113.48(13)
C(2')-N(3')-Si(4')	120.65(13)
P(2')-N(3')-Si(4')	116.71(9)
N(3')-Si(4')-C(18')	108.37(10)
N(3')-Si(4')-C(19')	107.85(10)
C(18')-Si(4')-C(19')	108.33(12)
N(3')-Si(4')-C(17')	112.00(10)
C(18')-Si(4')-C(17')	111.71(11)
C(19')-Si(4')-C(17')	108.44(11)
C(20')-P(2')-N(3')	108.17(10)
P(2')-C(20')-Si(6')	126.85(12)
P(2')-C(20')-Si(5')	111.85(11)
Si(6')-C(20')-Si(5')	121.28(11)
C(23')-Si(5')-C(22')	109.56(11)
C(23')-Si(5')-C(21')	106.88(11)
C(22')-Si(5')-C(21')	107.26(10)
C(23')-Si(5')-C(20')	113.07(10)
C(22')-Si(5')-C(20')	108.54(10)
C(21')-Si(5')-C(20')	111.37(10)
C(24')-Si(6')-C(25')	108.78(11)
C(24')-Si(6')-C(20')	109.11(10)
C(25')-Si(6')-C(20')	108.90(10)
C(24')-Si(6')-C(26')	106.50(12)
C(25')-Si(6')-C(26')	109.09(11)
C(20')-Si(6')-C(26')	114.32(10)

Table 4. Torsion angles [deg] for nk338.

C(6)-N(1)-C(2)-C(3)	2.7(3)
C(6)-N(1)-C(2)-N(3)	-178.67(16)
N(1)-C(2)-C(3)-C(4)	-2.7(3)
N(3)-C(2)-C(3)-C(4)	178.84(18)
C(2)-C(3)-C(4)-C(5)	-0.1(3)
C(3)-C(4)-C(5)-C(6)	2.6(3)
C(2)-N(1)-C(6)-C(5)	0.0(3)
C(2)-N(1)-C(6)-N(2)	178.73(17)
C(4)-C(5)-C(6)-N(1)	-2.6(3)
$Q(A) = Q(f) = Q(f) \rightarrow V(A)$	170 (0(10)
---------------------------------------	-------------
C(4)-C(5)-C(6)-N(2)	178.68(19)
N(1)-C(6)-N(2)-P(1)	154.58(14)
V(5)-V(6)-N(2)-P(1)	-26./(3)
N(1)-C(6)-N(2)-Si(1)	4.6(2)
C(5)-C(6)-N(2)-Si(1)	-1/6.62(15)
C(6)-N(2)-Si(1)-C(7)	58.72(17)
P(1)-N(2)-Si(1)-C(7)	-91.22(12)
$C(6)-N(2)-S_1(1)-C(9)$	-68.59(17)
$P(1)-N(2)-S_1(1)-C(9)$	141.47(11)
C(6)-N(2)-Si(1)-C(8)	171.82(15)
P(1)-N(2)-Si(1)-C(8)	21.88(13)
C(6)-N(2)-P(1)-C(10)	119.86(15)
Si(1)-N(2)-P(1)-C(10)	-89.33(12)
N(2)-P(1)-C(10)-Si(2)	-15.11(17)
N(2)-P(1)-C(10)-Si(3)	163.78(9)
P(1)-C(10)-Si(2)-C(12)	-147.40(14)
Si(3)-C(10)-Si(2)-C(12)	33.81(15)
P(1)-C(10)-Si(2)-C(11)	-28.81(18)
Si(3)-C(10)-Si(2)-C(11)	152.40(12)
P(1)-C(10)-Si(2)-C(13)	94.73(16)
Si(3)-C(10)-Si(2)-C(13)	-84.06(14)
P(1)-C(10)-Si(3)-C(16)	111.64(13)
Si(2)-C(10)-Si(3)-C(16)	-69.37(15)
P(1)-C(10)-Si(3)-C(15)	-127.13(12)
Si(2)-C(10)-Si(3)-C(15)	51.86(15)
P(1)-C(10)-Si(3)-C(14)	-8.39(15)
Si(2)-C(10)-Si(3)-C(14)	170.60(12)
N(1)-C(2)-N(3)-P(2)	8.4(2)
C(3)-C(2)-N(3)-P(2)	-173.01(16)
N(1)-C(2)-N(3)-Si(4)	165.01(14)
C(3)-C(2)-N(3)-Si(4)	-16.4(3)
C(2)-N(3)-Si(4)-C(17)	75.91(17)
P(2)-N(3)-Si(4)-C(17)	-128.66(11)
C(2)-N(3)-Si(4)-C(19)	-164.70(15)
P(2)-N(3)-Si(4)-C(19)	-9.26(14)
C(2)-N(3)-Si(4)-C(18)	-47.27(17)
P(2)-N(3)-Si(4)-C(18)	108.16(12)
C(2)-N(3)-P(2)-C(20)	-110 59(14)
Si(4)-N(3)-P(2)-C(20)	91 94(12)
N(3)-P(2)-C(20)-Si(5)	9 94(16)
N(3)-P(2)-C(20)-Si(6)	-170 62(8)
P(2)-C(20)-Si(5)-C(22)	145 82(14)
Si(6)-C(20)-Si(5)-C(22)	-33 58(14)
P(2)-C(20)-Si(5)-C(23)	-95 57(15)
Si(6)-C(20)-Si(5)-C(23)	85 03(13)
P(2)-C(20)-Si(5)-C(21)	27 61(17)
Si(6)-C(20)-Si(5)-C(21)	-151 79(12)
$P(2)_{C}(20)_{Si(6)_{C}(26)}$	1524(14)
$S_i(5) - C(20) - S_i(6) - C(26)$	-165 26(11)
$51(5) = (20)^{-51}(0)^{-5}(20)$	102.20(11)

P(2)-C(20)-Si(6)-C(25)	-105.33(12)
Si(5)-C(20)-Si(6)-C(25)	74.17(14)
P(2)-C(20)-Si(6)-C(24)	134.00(11)
Si(5)-C(20)-Si(6)-C(24)	-46.51(14)
C(6')-N(1')-C(2')-C(3')	2.1(3)
C(6')-N(1')-C(2')-N(3')	-177.79(17)
N(1')-C(2')-C(3')-C(4')	0.2(3)
N(3')-C(2')-C(3')-C(4')	-179.92(19)
C(2')-C(3')-C(4')-C(5')	-1.0(3)
C(3')-C(4')-C(5')-C(6')	-0.5(3)
C(2')-N(1')-C(6')-C(5')	-3.6(3)
C(2')-N(1')-C(6')-N(2')	176.07(18)
C(4')-C(5')-C(6')-N(1')	2.9(3)
C(4')-C(5')-C(6')-N(2')	-176.8(2)
N(1')-C(6')-N(2')-P(1')	-176.66(13)
C(5')-C(6')-N(2')-P(1')	3.0(3)
N(1')-C(6')-N(2')-Si(1')	13.9(2)
C(5')-C(6')-N(2')-Si(1')	-166.41(16)
C(6')-N(2')-Si(1')-C(7')	53.19(17)
P(1')-N(2')-Si(1')-C(7')	-116.24(11)
C(6')-N(2')-Si(1')-C(9')	-73.17(17)
P(1')-N(2')-Si(1')-C(9')	117.41(12)
C(6')-N(2')-Si(1')-C(8')	170.33(16)
P(1')-N(2')-Si(1')-C(8')	0.91(14)
C(6')-N(2')-P(1')-C(10')	82.40(17)
Si(1')-N(2')-P(1')-C(10')	-107.85(12)
N(2')-P(1')-C(10')-Si(2')	6.33(18)
N(2')-P(1')-C(10')-Si(3')	-177.92(9)
P(1')-C(10')-Si(2')-C(11')	-33.07(19)
Si(3')-C(10')-Si(2')-C(11')	151.49(12)
P(1')-C(10')-Si(2')-C(12')	89.44(17)
Si(3')-C(10')-Si(2')-C(12')	-86.00(14)
P(1')-C(10')-Si(2')-C(13')	-152.84(15)
Si(3')-C(10')-Si(2')-C(13')	31.72(15)
P(1')-C(10')-Si(3')-C(14')	107.71(13)
Si(2')-C(10')-Si(3')-C(14')	-75.99(14)
P(1')-C(10')-Si(3')-C(15')	-131.69(12)
Si(2')-C(10')-Si(3')-C(15')	44.61(15)
P(1')-C(10')-Si(3')-C(16')	-12.49(16)
Si(2')-C(10')-Si(3')-C(16')	163.81(13)
N(1')-C(2')-N(3')-P(2')	5.4(2)
C(3')-C(2')-N(3')-P(2')	-174.43(17)
N(1')-C(2')-N(3')-Si(4')	151.25(15)
C(3')-C(2')-N(3')-Si(4')	-28.6(3)
C(2')-N(3')-Si(4')-C(18')	-49.73(18)
P(2')-N(3')-Si(4')-C(18')	95.02(12)
C(2')-N(3')-Si(4')-C(19')	-166.80(16)
P(2')-N(3')-Si(4')-C(19')	-22.05(15)
C(2')-N(3')-Si(4')-C(17')	73.95(18)

P(2')-N(3')-Si(4')-C(17')	-141.30(11)
C(2')-N(3')-P(2')-C(20')	-109.54(15)
Si(4')-N(3')-P(2')-C(20')	103.23(12)
N(3')-P(2')-C(20')-Si(6')	10.68(16)
N(3')-P(2')-C(20')-Si(5')	-167.76(9)
P(2')-C(20')-Si(5')-C(23')	-111.86(13)
Si(6')-C(20')-Si(5')-C(23')	69.60(15)
P(2')-C(20')-Si(5')-C(22')	126.37(12)
Si(6')-C(20')-Si(5')-C(22')	-52.18(14)
P(2')-C(20')-Si(5')-C(21')	8.51(14)
Si(6')-C(20')-Si(5')-C(21')	-170.03(12)
P(2')-C(20')-Si(6')-C(24')	155.77(14)
Si(5')-C(20')-Si(6')-C(24')	-25.92(15)
P(2')-C(20')-Si(6')-C(25')	-85.62(15)
Si(5')-C(20')-Si(6')-C(25')	92.69(14)
P(2')-C(20')-Si(6')-C(26')	36.66(18)
Si(5')-C(20')-Si(6')-C(26')	-145.03(13)

Hepta-Lithium-hexachloro-hexa-tetramethylethylendiamin- 2,6 Bis [1-trimethylsilyl-2-phospha-3-aza-(2, 4, 6-tri-tert.-butyl-phenyl) Lithium]-pyrinid [93]

Table 1.	Crystal	data an	d structure	refinement	for nk280

Identification code	nk280
Empirical formula	C95 H199 Cl6 Li8 N15 P2 Si2
[C49 H79 Li N3 P2 Si2]-	
[Li7 Cl6 (C6 H16 N2)6]+	
2 C5 H12	
Formula weight	1938.03
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1 (No.2)

Unit cell dimensions	a = 16.4482(4) A alpha = 71.968(2) deg.		
	b = 16.8869(4) A beta = 81.565(2) deg.		
	c = 25.1008(7) A gamma = 89.557(2) deg.		
Volume	6552.6(3) A^3		
Z, Calculated density	2, 0.982 Mg/m^3		
Absorption coefficient	0.215 mm^-1		
F(000)	2116		
Crystal size	0.40 x 0.15 x 0.10 mm		
Diffractometer	Nonius KappaCCD		
Theta range for data collection	2.31 to 25.03 deg.		
Limiting indices	-19<=h<=17, -20<=k<=19, -23<=l<=29		
Reflections collected / unique	31041 / 21798 [R(int) = 0.0528]		
Completeness to theta $= 25.03$	94.1 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	21798 / 1033 / 1103		
Goodness-of-fit on F^2	0.899		
Final R indices [I>2sigma(I)]	R1 = 0.0804, WR2 = 0.2082		
36% observed			
R indices (all data)	R1 = 0.2188, wR2 = 0.2514		
Largest diff. peak and hole	1.328 and -0.493 e.A^-3		

Table 2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (A	<u>^2</u>
x 10 ³) for nk280. U(eq) is defined as one third of the trace of the orthogonalized Uij tenso	or.

	v	V	7	U(ea)
N(1)	10222(2)	y 10(5(2)	$\frac{2}{7(70(2))}$	22(1)
N(1)	10233(3)	1065(3)	7670(2)	32(1)
C(2)	10975(4)	1334(4)	7337(2)	35(1)
C(3)	11613(4)	788(4)	7355(2)	43(2)
C(4)	11502(5)	-29(4)	7707(3)	52(2)
C(5)	10747(4)	-283(4)	8033(2)	42(2)
C(6)	10106(4)	257(4)	8015(2)	34(1)
C(7)	9289(4)	-26(4)	8358(2)	33(1)
Si(1)	9223(1)	-876(1)	9050(1)	43(1)
C(8)	10070(4)	-710(4)	9433(3)	54(2)
C(9)	9257(5)	-1953(4)	8985(3)	57(2)
C(10)	8238(5)	-868(5)	9527(3)	69(2)
P(1)	8352(1)	282(1)	8202(1)	38(1)
N(2)	8388(3)	1152(3)	7700(2)	31(1)
C(11)	7691(4)	1498(4)	7445(2)	31(1)
C(12)	7665(4)	1497(4)	6876(2)	34(1)
C(13)	7049(4)	1923(4)	6598(3)	35(2)
C(14)	6446(4)	2331(4)	6837(3)	38(2)
C(15)	6475(4)	2288(4)	7398(3)	38(2)
C(16)	7074(4)	1904(4)	7701(2)	34(2)
C(17)	8311(4)	1068(4)	6548(2)	38(2)
C(18)	9176(4)	1473(4)	6453(2)	44(2)
C(19)	8334(4)	132(4)	6860(3)	54(2)
C(20)	8113(4)	1138(5)	5956(3)	59(2)
C(21)	5793(5)	2817(4)	6520(3)	54(2)

C(22)	5746(6)	3684(5)	6567(4)	100(3)
C(23)	5802(7)	2795(7)	5950(4)	157(5)
C(24)	4902(6)	2464(7)	6853(5)	148(4)
C(25)	7032(4)	1951(4)	8319(2)	41(2)
C(26)	6627(4)	1130(4)	8745(2)	51(2)
C(27)	7868(4)	2127(4)	8482(2)	44(2)
C(28)	6473(4)	2667(4)	8406(3)	55(2)
C(29)	11099(4)	2195(4)	6961(2)	37(2)
Si(2)	11759(1)	2430(1)	6260(1)	46(1)
C(30)	11596(4)	1617(4)	5924(3)	55(2)
C(31)	12887(4)	2508(5)	6282(3)	69(2)
C(32)	11506(5)	3450(4)	5760(3)	70(2)
P(2)	10699(1)	3081(1)	7077(1)	38(1)
N(3)	9955(3)	2870(3)	7609(2)	29(1)
C(33)	9662(4)	3523(4)	7826(2)	30(1)
C(34)	9857(4)	3512(4)	8364(2)	31(1)
C(35)	9574(4)	4153(4)	8574(2)	34(2)
C(36)	9123(4)	4798(4)	8289(3)	37(2)
C(37)	8925(4)	4782(4)	7777(2)	36(2)
C(38)	9156(4)	4153(4)	7536(2)	34(1)
C(39)	10370(4)	2831(4)	8725(2)	37(2)
C(40)	10437(4)	2960(4)	9291(2)	47(2)
C(41)	9948(4)	1963(4)	8870(3)	52(2)
C(42)	11241(4)	2821(4)	8425(3)	51(2)
C(43)	8832(4)	5516(4)	8528(3)	52(2)
C(44)	7905(5)	5492(7)	8642(5)	128(4)
C(45)	9179(6)	5515(5)	9047(4)	98(3)
C(46)	9084(6)	6353(5)	8090(4)	106(3)
C(47)	8830(4)	4243(4)	6963(2)	37(2)
C(48)	9392(5)	4876(4)	6478(3)	66(2)
C(49)	8759(4)	3440(4)	6813(2)	42(2)
C(50)	7963(4)	4555(5)	6990(3)	66(2)
Li(1)	9351(6)	1840(6)	7668(4)	37(2)
Li(2)	5861(7)	2892(6)	2451(4)	40(2)
Li(3)	6797(7)	2699(7)	1079(4)	46(2)
Li(4)	3974(7)	2254(7)	3556(4)	47(2)
Li(5)	4821(7)	1739(7)	2080(4)	49(2)
Li(6)	6980(6)	4042(6)	2786(4)	37(2)
Li(7)	5863(7)	1515(6)	3987(4)	40(2)
Li(8)	6037(7)	4678(7)	1085(4)	45(2)
Cl(1)	6576(1)	4191(1)	1927(1)	41(1)
Cl(2)	6278(1)	2809(1)	3326(1)	43(1)
Cl(3)	6240(1)	1857(1)	1993(1)	44(1)
Cl(4)	4418(1)	2696(1)	2573(1)	45(1)
Cl(5)	6046(1)	3761(1)	581(1)	74(1)
Cl(6)	4492(1)	1166(1)	4179(1)	46(1)
C(1T)	8299(4)	2741(5)	1621(3)	59(2)
C(2T)	8213(5)	3852(5)	767(3)	70(2)
N(1T)	8049(3)	2961(3)	1062(2)	47(1)

	0.471(4)	0.407(5)	742(2)	$\langle 0 \rangle \langle 0 \rangle$
C(3T)	8471(4)	2427(5)	742(3)	68(2)
C(4T)	8023(5)	2312(6)	313(3)	82(2)
N(2T)	7186(4)	1960(4)	547(2)	56(2)
C(5T)	7202(7)	1081(5)	853(3)	102(3)
C(6T)	6/34(5)	2087(6)	73(3)	95(3)
C(7T)	4362(5)	3186(5)	4347(3)	70(2)
C(8T)	4088(5)	4051(4)	3440(3)	74(2)
N(3T)	3857(3)	3263(3)	3899(2)	49(1)
C(91)	2981(5)	3215(6)	4137(4)	84(3)
C(10T)	2435(5)	2974(6)	3785(4)	99(3)
N(41)	2644(3)	2193(3)	3676(2)	53(1)
C(11T)	2341(5)	1471(5)	4140(3)	83(2)
C(12T)	2272(5)	2185(6)	3169(4)	89(3)
C(13T)	4476(7)	1995(7)	910(4)	132(4)
C(14T)	3436(7)	2492(8)	1435(4)	157(5)
N(5T)	4041(4)	1855(4)	1463(2)	64(2)
C(15T)	3639(9)	1055(7)	1676(5)	197(6)
C(16T)	3753(6)	418(5)	2087(3)	80(2)
N(6T)	4443(4)	484(3)	2401(2)	54(2)
C(17T)	4117(5)	279(4)	3005(3)	64(2)
C(18T)	5091(5)	-93(5)	2319(3)	82(2)
C(19T)	6379(5)	5715(5)	2759(3)	81(3)
C(20T)	6370(4)	4784(5)	3681(3)	66(2)
N(7T)	6808(3)	5038(3)	3108(2)	45(1)
C(21T)	7645(4)	5324(4)	3097(3)	57(2)
C(22T)	8210(4)	4616(5)	3236(3)	58(2)
N(8T)	8228(3)	4126(3)	2840(2)	43(1)
C(23T)	8626(4)	3334(4)	3074(3)	61(2)
C(24T)	8694(4)	4598(4)	2281(3)	61(2)
C(25T)	6782(4)	2246(4)	4704(3)	54(2)
C(26T)	5854(5)	1093(4)	5200(3)	57(2)
N(9T)	6445(3)	1453(3)	4691(2)	46(1)
C(27T)	7126(5)	896(5)	4644(3)	79(2)
C(28T)	6932(6)	260(5)	4402(3)	85(3)
N(10T)	6611(3)	549(3)	3862(2)	49(1)
C(29T)	6168(6)	-129(6)	3766(5)	118(4)
C(30T)	7301(5)	883(5)	3409(3)	74(2)
C(31T)	7168(6)	6192(5)	878(3)	87(3)
C(32T)	7051(5)	5881(5)	31(3)	82(3)
N(11T)	6603(3)	5868(3)	594(2)	49(1)
C(33T)	5892(6)	6353(5)	513(4)	100(3)
C(34T)	5215(6)	6170(5)	952(4)	102(3)
N(12T)	4952(3)	5283(3)	1195(2)	53(1)
C(35T)	4590(5)	5123(5)	1793(3)	76(2)
C(36T)	4342(5)	5049(6)	896(4)	98(3)
C(1P)	12089(7)	5493(8)	4727(5)	163(4)
C(2P)	11721(7)	5890(8)	5090(5)	149(4)
C(3P)	10958(6)	6265(7)	4978(5)	144(4)
C(4P)	10694(8)	6745(8)	5358(5)	158(4)

C(5P)	9947(8)	7085(9)	5278(6)	203(5)	
C(6P)	13122(7)	1686(7)	8022(4)	144(4)	
C(7P)	13523(10)	1934(8)	8395(5)	194(5)	
C(8P)	13712(9)	1276(8)	8857(5)	174(4)	
C(9P)	14053(10)	1391(8)	9306(6)	195(5)	
C(10P)	14151(9)	715(9)	9750(5)	194(5)	

Table 3. Bond lengths [A] and angles [deg] for nk280.

N(1)-C(2)	1.367(7)
N(1)-C(6)	1.369(7)
N(1)-Li(1)	1.947(11)
C(2)-C(3)	1.388(8)
C(2)-C(29)	1.465(8)
C(3)-C(4)	1.385(9)
C(4)-C(5)	1.374(9)
C(5)-C(6)	1.386(8)
C(6)-C(7)	1.480(8)
C(7)-P(1)	1.684(6)
C(7)-Si(1)	1.868(6)
Si(1)-C(10)	1.871(7)
Si(1)-C(8)	1.875(6)
Si(1)-C(9)	1.876(6)
P(1)-N(2)	1.608(5)
P(1)-Li(1)	2.942(10)
N(2)-C(11)	1.427(7)
N(2)-Li(1)	1.949(11)
C(11)-C(16)	1.409(8)
C(11)-C(12)	1.436(7)
C(12)-C(13)	1.385(8)
C(12)-C(17)	1.560(8)
C(13)-C(14)	1.374(8)
C(14)-C(15)	1.395(8)
C(14)-C(21)	1.515(8)
C(15)-C(16)	1.369(8)
C(16)-C(25)	1.567(8)
C(17)-C(19)	1.534(8)
C(17)-C(20)	1.536(8)
C(17)-C(18)	1.537(8)
C(21)-C(23)	1.441(10)
C(21)-C(22)	1.504(9)
C(21)-C(24)	1.597(12)
C(25)-C(26)	1.547(8)
C(25)-C(27)	1.548(8)
C(25)-C(28)	1.563(8)
C(29)-P(2)	1.719(6)
C(29)-Si(2)	1.856(6)
Si(2)-C(30)	1.861(6)
Si(2)-C(31)	1.871(7)
Si(2)-C(32)	1.876(7)

P(2)-N(3)	1 624(5)
P(2)-Li(1)	2.948(10)
N(3)-C(33)	1 424(7)
N(3)-Li(1)	1.965(10)
C(33)-C(34)	1 427(7)
C(33)-C(38)	1 429(8)
C(34)-C(35)	1 394(7)
C(34)-C(39)	1 555(8)
C(35)-C(36)	1.382(8)
C(36)-C(37)	1 378(8)
C(36)-C(43)	1.554(8)
C(37)-C(38)	1.401(7)
C(38)-C(47)	1.571(8)
C(39)-C(42)	1.521(8)
C(39)-C(40)	1.523(7)
C(39)-C(41)	1.541(8)
C(43)-C(45)	1.496(9)
C(43)-C(44)	1 509(10)
C(43)-C(46)	1.513(10)
C(47)-C(50)	1.516(9)
C(47)-C(49)	1.525(7)
C(47)-C(48)	1.535(9)
Li(2)-Cl(2)	2.358(9)
Li(2)-Cl(4)	2.361(11)
Li(2)- $Cl(1)$	2.392(10)
Li(2)-Cl(3)	2.405(10)
Li(2)-Li(5)	3.038(14)
Li(2)-Li(6)	3.064(13)
Li(3)-N(1T)	2.102(13)
Li(3)-N(2T)	2.127(11)
Li(3)-Cl(5)	2.310(11)
Li(3)-Cl(3)	2.347(10)
Li(4)-N(3T)	2.130(11)
Li(4)-N(4T)	2.163(12)
Li(4)-Cl(6)	2.266(11)
Li(4)-Cl(4)	2.350(11)
Li(4)-Li(7)	3.531(15)
Li(5)-N(6T)	2.083(12)
Li(5)-N(5T)	2.115(12)
Li(5)-Cl(3)	2.317(11)
Li(5)-Cl(4)	2.358(11)
Li(5)-C(15T)	2.735(13)
Li(6)-N(7T)	2.081(11)
Li(6)-N(8T)	2.086(11)
Li(6)-Cl(1)	2.289(9)
Li(6)-Cl(2)	2.311(10)
Li(6)-C(22T)	2.772(11)
Li(7)-N(9T)	2.106(11)
Li(7)-N(10T)	2.109(11)

Li(7)-Cl(6)	2.279(11)
Li(7)-Cl(2)	2.331(10)
Li(7)-C(28T)	2.790(12)
Li(8)-N(12T)	2.075(13)
Li(8)-N(11T)	2.140(12)
Li(8)-Cl(5)	2.282(10)
Li(8)-Cl(1)	2.321(10)
Li(8)-C(33T)	2.774(13)
C(1T)-N(1T)	1.456(8)
C(2T)-N(1T)	1.463(8)
N(1T)-C(3T)	1.489(8)
C(3T)-C(4T)	1.451(9)
C(4T)-N(2T)	1.467(9)
N(2T)-C(5T)	1.446(9)
N(2T)-C(6T)	1.453(8)
C(7T)-N(3T)	1.467(8)
C(8T)-N(3T)	1.474(8)
N(3T)-C(9T)	1.470(9)
C(9T)-C(10T)	1.487(11)
C(10T)-N(4T)	1.456(9)
N(4T)-C(11T)	1.432(9)
N(4T)-C(12T)	1.493(9)
C(13T)-N(5T)	1.415(10)
C(14T)-N(5T)	1.453(11)
N(5T)-C(15T)	1.419(10)
C(15T)-C(16T)	1.275(11)
C(16T)-N(6T)	1.496(8)
N(6T)-C(17T)	1.466(8)
N(6T)-C(18T)	1.473(9)
C(19T)-N(7T)	1.457(8)
C(20T)-N(7T)	1.445(8)
N(7T)-C(21T)	1.456(8)
C(21T)-C(22T)	1.494(9)
C(22T)-N(8T)	1.473(7)
N(8T)-C(23T)	1.476(8)
N(8T)-C(24T)	1.480(8)
C(25T)-N(9T)	1.464(8)
C(26T)-N(9T)	1.453(8)
N(9T)-C(27T)	1.473(8)
C(27T)-C(28T)	1.445(10)
C(28T)-N(10T)	1.466(8)
N(10T)-C(30T)	1.460(8)
N(10T)-C(29T)	1.462(9)
C(31T)-N(11T)	1.455(8)
C(32T)-N(11T)	1.491(8)
N(11T)-C(33T)	1.425(9)
C(33T)-C(34T)	1.409(11)
C(34T)-N(12T)	1.473(9)
N(12T)-C(36T)	1.462(9)

N(10T) C(25T)	1 474(0)
N(121)-C(351)	1.4/4(8)
C(1P)- $C(2P)$	1.303(9)
C(2P)-C(3P)	1.428(9)
C(3P)- $C(4P)$	1.451(8)
C(4P)- $C(5P)$	1.367(9)
C(6P)-C(7P)	1.383(9)
C(7P)- $C(8P)$	1.406(9)
C(8P)- $C(9P)$	1.394(9)
C(9P)-C(10P)	1.354(9)
C(2)-N(1)-C(6)	120.8(5)
$C(2)-N(1)-L_1(1)$	120.0(5)
C(6)-N(1)-Li(1)	119.3(5)
N(1)-C(2)-C(3)	119.8(6)
N(1)-C(2)-C(29)	120.2(5)
C(3)-C(2)-C(29)	119.9(6)
C(4)-C(3)-C(2)	120.4(7)
C(5)-C(4)-C(3)	118.5(6)
C(4)-C(5)-C(6)	121.5(6)
N(1)-C(6)-C(5)	119.0(6)
N(1)-C(6)-C(7)	119.8(5)
C(5)-C(6)-C(7)	121.1(6)
C(6)-C(7)-P(1)	128.8(4)
C(6)-C(7)-Si(1)	119.2(4)
P(1)-C(7)-Si(1)	111.9(3)
C(7)-Si(1)-C(10)	111.8(3)
C(7)-Si(1)-C(8)	109.4(3)
C(10)-Si(1)-C(8)	106.3(3)
C(7)-Si(1)-C(9)	114.1(3)
C(10)-Si(1)-C(9)	105.1(3)
C(8)-Si(1)-C(9)	109.8(3)
N(2)-P(1)-C(7)	112.8(3)
N(2)-P(1)-Li(1)	38.1(3)
C(7)-P(1)-Li(1)	78.5(3)
C(11)-N(2)-P(1)	123.7(4)
C(11)-N(2)-Li(1)	121.8(5)
P(1)-N(2)-Li(1)	111.3(4)
C(16)-C(11)-N(2)	123.5(5)
C(16)-C(11)-C(12)	118.7(5)
N(2)-C(11)-C(12)	117.5(5)
C(13)-C(12)-C(11)	118.2(5)
C(13)-C(12)-C(17)	118.3(5)
C(11)-C(12)-C(17)	123.5(5)
C(14)-C(13)-C(12)	124.0(5)
C(13)-C(14)-C(15)	115.9(6)
C(13)-C(14)-C(21)	123.3(5)
C(15)-C(14)-C(21)	120.8(5)
C(16)-C(15)-C(14)	124.2(6)
C(15)-C(16)-C(11)	118.9(5)
C(15)-C(16)-C(25)	117.4(5)

Q(11) $Q(10)$ $Q(25)$	102 7(5)
C(11)-C(16)-C(25)	123.7(5)
C(19) - C(17) - C(20)	106.0(5)
C(19)-C(17)-C(18)	109.5(5)
C(20)-C(17)-C(18)	106.0(5)
C(19)-C(17)-C(12)	111.4(5)
C(20)-C(17)-C(12)	112.2(5)
C(18)-C(17)-C(12)	111.5(4)
C(23)-C(21)-C(22)	113.3(7)
C(23)-C(21)-C(14)	116.2(6)
C(22)-C(21)-C(14)	111.6(5)
C(23)-C(21)-C(24)	106.0(8)
C(22)-C(21)-C(24)	98.5(7)
C(14)-C(21)-C(24)	109.7(6)
C(26)-C(25)-C(27)	109.7(5)
C(26)-C(25)-C(28)	106.5(5)
C(27)-C(25)-C(28)	105.3(5)
C(26)-C(25)-C(16)	109.1(5)
C(27)-C(25)-C(16)	115.0(5)
C(28)-C(25)-C(16)	110.8(5)
C(2)-C(29)-P(2)	128.2(4)
C(2)-C(29)-Si(2)	120.0(4)
P(2)-C(29)-Si(2)	111.8(3)
C(29)-Si(2)-C(30)	110.6(3)
C(29)-Si(2)-C(31)	114.5(3)
C(30)-Si(2)-C(31)	107.3(3)
C(29)-Si(2)-C(32)	111 4(3)
C(30)-Si(2)-C(32)	106.8(3)
C(31)-Si(2)-C(32)	105.8(4)
N(3)-P(2)-C(29)	112 2(3)
N(3)-P(2)-Li(1)	38.8(2)
$C(29)-P(2)-I_1(1)$	78.6(3)
C(33)-N(3)-P(2)	118 9(4)
C(33)-N(3)-I(2)	127 2(5)
$D(2) N(2) L_{2}(1)$	127.2(3) 110 1(4)
N(3) C(33) C(34)	110.1(4) 117.0(5)
N(3) - C(33) - C(34)	122 2(5)
$\Gamma(3)$ - $C(33)$ - $C(38)$	122.2(5) 110.0(5)
C(34)-C(35)-C(38)	117.9(5)
C(35)-C(34)-C(33)	117.8(5)
C(35)-C(34)-C(39)	118.3(5)
C(33)-C(34)-C(39)	123.8(5)
C(36)-C(35)-C(34)	123.6(5)
C(37)-C(36)-C(35)	117.3(5)
C(37)-C(36)-C(43)	120.2(6)
C(35)-C(36)-C(43)	122.5(5)
C(36)-C(37)-C(38)	123.7(6)
C(37)-C(38)-C(33)	117.5(5)
C(37)-C(38)-C(47)	114.8(5)
C(33)-C(38)-C(47)	127.7(5)
C(42)-C(39)-C(40)	107.2(5)

C(42) = C(39) = C(41)	109 1(5)
C(42) - C(33) - C(41)	105.9(5)
C(42) C(30) C(34)	112 2(5)
C(42)-C(39)-C(34)	111.2(5)
C(40) - C(30) - C(34)	110.5(5)
C(41) - C(33) - C(34)	110.3(3)
C(45) - C(45) - C(44)	10.2(7)
C(43)-C(43)-C(40)	105.2(7)
C(44)-C(43)-C(46)	105.7(8)
C(45)-C(45)-C(36)	114.4(6)
C(44)- $C(43)$ - $C(36)$	109.5(6)
C(46)-C(43)-C(36)	110.4(5)
C(50)- $C(47)$ - $C(49)$	104.3(5)
C(50)-C(47)-C(48)	109.0(6)
C(49)-C(47)-C(48)	108.8(5)
C(50)-C(47)-C(38)	109.7(5)
C(49)-C(47)-C(38)	115.8(5)
C(48)-C(47)-C(38)	109.0(5)
N(1)-Li(1)-N(2)	102.1(5)
N(1)-Li(1)-N(3)	102.0(5)
N(2)-Li(1)-N(3)	155.9(6)
N(1)-Li(1)-P(1)	82.1(4)
N(2)-Li(1)-P(1)	30.6(2)
N(3)-Li(1)-P(1)	158.4(5)
N(1)-Li(1)-P(2)	82.4(4)
N(2)-Li(1)-P(2)	153.8(5)
N(3)-Li(1)-P(2)	31.2(2)
P(1)-Li(1)-P(2)	164.2(4)
Cl(2)-Li(2)-Cl(4)	109.8(4)
Cl(2)-Li(2)-Cl(1)	96.0(3)
Cl(4)-Li(2)-Cl(1)	123.4(4)
Cl(2)-Li(2)-Cl(3)	120.9(4)
Cl(4)-Li(2)-Cl(3)	98.5(3)
Cl(1)-Li(2)-Cl(3)	110.1(4)
Cl(2)-Li(2)-Li(5)	133.0(5)
Cl(4)-Li(2)-Li(5)	49.9(3)
Cl(1)-Li(2)-Li(5)	131.0(4)
Cl(3)-Li(2)-Li(5)	48.7(3)
Cl(2)-Li(2)-Li(6)	48.3(3)
Cl(4)-Li(2)-Li(6)	132.7(4)
Cl(1)-Li(2)-Li(6)	47 7(3)
Cl(3)-Li(2)-Li(6)	128 7(5)
$L_i(5) - L_i(2) - L_i(6)$	177 3(5)
N(1T)-Li(3)-N(2T)	87 1(4)
$N(1T) - L_i(3) - C_i(5)$	117 5(5)
N(2T)-Li(3)-Cl(5)	107 4(4)
N(1T) - I i(3) - CI(3)	109.0(4)
N(2T) - I i(3) - CI(3)	110.9(5)
$C_{1}(5) - L_{1}(3) - C_{1}(3)$	120.0(5)
N(3T) - I i(4) - N(4T)	86 0(4)
	00.0(T)

N(2T) L(4) C(1)	100.5(5)
N(31)-L1(4)-C1(6)	108.5(5)
N(41)-LI(4)-CI(0)	112.3(3)
N(31)-L1(4)-C1(4)	$\frac{112.7(5)}{10(.7(5))}$
N(41)-L1(4)-C1(4)	106.7(5)
CI(6)-L1(4)-CI(4)	124.1(5)
N(31)-L1(4)-L1(7)	98.8(4)
$N(41)-L_1(4)-L_1(7)$	151.1(5)
Cl(6)-L1(4)-L1(7)	39.2(3)
Cl(4)-Li(4)-Li(7)	97.8(4)
$N(6T)-L_1(5)-N(5T)$	87.3(4)
N(6T)-Li(5)-Cl(3)	109.3(5)
N(5T)-Li(5)-Cl(3)	131.0(5)
N(6T)-Li(5)-Cl(4)	122.1(5)
N(5T)-Li(5)-Cl(4)	108.1(5)
Cl(3)-Li(5)-Cl(4)	101.1(4)
N(6T)-Li(5)-C(15T)	56.9(4)
N(5T)-Li(5)-C(15T)	30.8(3)
Cl(3)-Li(5)-C(15T)	139.8(6)
Cl(4)-Li(5)-C(15T)	118.3(6)
N(6T)-Li(5)-Li(2)	135.1(5)
N(5T)-Li(5)-Li(2)	137.2(5)
Cl(3)-Li(5)-Li(2)	51.2(3)
Cl(4)-Li(5)-Li(2)	50.0(3)
C(15T)-Li(5)-Li(2)	165.1(6)
N(7T)-Li(6)-N(8T)	88.2(4)
N(7T)-Li(6)-Cl(1)	117.4(5)
N(8T)-Li(6)-Cl(1)	119.7(5)
N(7T)-Li(6)-Cl(2)	115.9(5)
N(8T)-Li(6)-Cl(2)	116.6(5)
Cl(1)-Li(6)-Cl(2)	100.2(4)
N(7T)-Li(6)-C(22T)	58.4(3)
N(8T)-Li(6)-C(22T)	31.5(2)
Cl(1)-Li(6)-C(22T)	139.8(5)
Cl(2)-Li(6)-C(22T)	117.7(4)
N(7T)-Li(6)-Li(2)	135.6(5)
N(8T)-Li(6)-Li(2)	136.1(5)
Cl(1)-Li(6)-Li(2)	50.6(3)
Cl(2)-Li(6)-Li(2)	49.7(3)
C(22T)-Li(6)-Li(2)	162.1(5)
N(9T)-Li(7)-N(10T)	87.7(4)
N(9T)-Li(7)-Cl(6)	116.0(5)
N(10T)-Li(7)-Cl(6)	113.7(5)
N(9T)-Li(7)-Cl(2)	105.4(4)
N(10T)-Li(7)-Cl(2)	112.7(5)
Cl(6)-Li(7)-Cl(2)	117.4(4)
N(9T)-Li(7)-C(28T)	57.7(3)
N(10T)-Li(7)-C(28T)	31.0(2)
Cl(6)-Li(7)-C(28T)	117.2(5)
Cl(2)-Li(7)-C(28T)	124.4(5)
	\sim

N(9T)-Li(7)-Li(4)	134.8(4)
N(10T)-Li(7)-Li(4)	133.2(4)
Cl(6)-Li(7)-Li(4)	38.9(2)
Cl(2)-Li(7)-Li(4)	78.6(3)
C(28T)-Li(7)-Li(4)	153.4(5)
N(12T)-Li(8)-N(11T)	87.7(5)
N(12T)-Li(8)-Cl(5)	116.8(5)
N(11T)-Li(8)-Cl(5)	113.2(5)
N(12T)-Li(8)-Cl(1)	111.2(5)
N(11T)-Li(8)-Cl(1)	109.6(5)
Cl(5)-Li(8)-Cl(1)	115.1(4)
N(12T)-Li(8)-C(33T)	58.2(4)
N(11T)-Li(8)-C(33T)	30.4(3)
Cl(5)-Li(8)-C(33T)	117.7(4)
Cl(1)-Li(8)-C(33T)	123.9(5)
Li(6)-Cl(1)-Li(8)	164.5(4)
Li(6)-Cl(1)-Li(2)	81.7(3)
Li(8)-Cl(1)-Li(2)	106.4(4)
Li(6)-Cl(2)-Li(7)	165.4(4)
Li(6)-Cl(2)-Li(2)	82.0(3)
Li(7)-Cl(2)-Li(2)	109.8(3)
Li(5)-Cl(3)-Li(3)	110.4(4)
Li(5)-Cl(3)-Li(2)	80.1(4)
Li(3)-Cl(3)-Li(2)	101.1(4)
Li(4)-Cl(4)-Li(5)	121.6(4)
Li(4)-Cl(4)-Li(2)	106.0(4)
Li(5)-Cl(4)-Li(2)	80.1(4)
Li(8)-Cl(5)-Li(3)	101.8(4)
Li(4)-Cl(6)-Li(7)	101.9(4)
C(1T)-N(1T)-C(2T)	110.2(5)
C(1T)-N(1T)-C(3T)	109.3(5)
C(2T)-N(1T)-C(3T)	112.7(6)
C(1T)-N(1T)-Li(3)	113.8(5)
C(2T)-N(1T)-Li(3)	107.6(5)
C(3T)-N(1T)-Li(3)	103.0(5)
C(4T)-C(3T)-N(1T)	113.5(6)
C(3T)-C(4T)-N(2T)	112.6(6)
C(5T)-N(2T)-C(6T)	110.5(6)
C(5T)-N(2T)-C(4T)	110.7(7)
C(6T)-N(2T)-C(4T)	107.3(6)
C(5T)-N(2T)-Li(3)	113.3(5)
C(6T)-N(2T)-Li(3)	114.0(5)
C(4T)-N(2T)-Li(3)	100.5(5)
C(7T)-N(3T)-C(9T)	109.9(6)
C(7T)-N(3T)-C(8T)	109.3(5)
C(9T)-N(3T)-C(8T)	111.8(6)
C(7T)-N(3T)-Li(4)	113.2(5)
C(9T)-N(3T)-Li(4)	103.4(5)
C(8T)-N(3T)-Li(4)	109.1(5)

N(3T)-C(9T)-C(10T)	113.2(6)
N(4T)-C(10T)-C(9T)	113.6(7)
C(11T)-N(4T)-C(10T)	113.4(7)
C(11T)-N(4T)-C(12T)	108.8(6)
C(10T)-N(4T)-C(12T)	107.2(6)
C(11T)-N(4T)-Li(4)	109.6(6)
C(10T)-N(4T)-Li(4)	102.6(5)
C(12T)-N(4T)-Li(4)	115.3(5)
C(13T)-N(5T)-C(15T)	111.4(9)
C(13T)-N(5T)-C(14T)	107.8(7)
C(15T)-N(5T)-C(14T)	109.6(10)
C(13T)-N(5T)-Li(5)	113.2(6)
C(15T)-N(5T)-Li(5)	99.6(6)
C(14T)-N(5T)-Li(5)	115.1(6)
C(16T)-C(15T)-N(5T)	131.1(8)
C(16T)-C(15T)-Li(5)	81.6(6)
N(5T)-C(15T)-Li(5)	49.7(4)
C(15T)-C(16T)-N(6T)	117.0(7)
C(17T)-N(6T)-C(18T)	109.6(6)
C(17T)-N(6T)-C(16T)	108.6(6)
C(18T)-N(6T)-C(16T)	110.7(6)
C(17T)-N(6T)-Li(5)	109.5(5)
C(18T)-N(6T)-Li(5)	114.3(6)
C(16T)-N(6T)-Li(5)	104.0(5)
C(20T)-N(7T)-C(21T)	110.5(5)
C(20T)-N(7T)-C(19T)	108.8(6)
C(21T)-N(7T)-C(19T)	109.3(6)
C(20T)-N(7T)-Li(6)	112.1(5)
C(21T)-N(7T)-Li(6)	103.1(5)
C(19T)-N(7T)-Li(6)	112.9(5)
N(7T)-C(21T)-C(22T)	111.9(6)
N(8T)-C(22T)-C(21T)	111.6(5)
N(8T)-C(22T)-Li(6)	47.6(3)
C(21T)-C(22T)-Li(6)	75.4(4)
C(22T)-N(8T)-C(23T)	109.0(5)
C(22T)-N(8T)-C(24T)	110.1(5)
C(23T)-N(8T)-C(24T)	109.6(5)
C(22T)-N(8T)-Li(6)	100.9(5)
C(23T)-N(8T)-Li(6)	116.5(5)
C(24T)-N(8T)-Li(6)	110.4(5)
C(26T)-N(9T)-C(25T)	109.3(5)
C(26T)-N(9T)-C(27T)	111.7(6)
C(25T)-N(9T)-C(27T)	108.9(6)
C(26T)-N(9T)-Li(7)	107.9(5)
C(25T)-N(9T)-Li(7)	115.7(5)
C(27T)-N(9T)-Li(7)	103.3(5)
C(28T)-C(27T)-N(9T)	113.2(7)
C(27T)-C(28T)-N(10T)	116.3(6)
C(27T)-C(28T)-Li(7)	76.8(5)

N(10T)-C(28T)-Li(7)	47.9(3)
C(30T)-N(10T)-C(29T)	111.1(6)
C(30T)-N(10T)-C(28T)	108.3(6)
C(29T)-N(10T)-C(28T)	110.8(7)
C(30T)-N(10T)-Li(7)	110.6(5)
C(29T)-N(10T)-Li(7)	114.3(6)
C(28T)-N(10T)-Li(7)	101.1(4)
C(33T)-N(11T)-C(31T)	112.3(7)
C(33T)-N(11T)-C(32T)	109.0(6)
C(31T)-N(11T)-C(32T)	107.6(6)
C(33T)-N(11T)-Li(8)	100.2(5)
C(31T)-N(11T)-Li(8)	114.1(5)
C(32T)-N(11T)-Li(8)	113.5(5)
C(34T)-C(33T)-N(11T)	118.7(8)
C(34T)-C(33T)-Li(8)	76.5(5)
N(11T)-C(33T)-Li(8)	49.4(4)
C(33T)-C(34T)-N(12T)	115.3(7)
C(36T)-N(12T)-C(34T)	112.2(7)
C(36T)-N(12T)-C(35T)	108.8(6)
C(34T)-N(12T)-C(35T)	108.5(6)
C(36T)-N(12T)-Li(8)	110.5(5)
C(34T)-N(12T)-Li(8)	103.0(6)
C(35T)-N(12T)-Li(8)	113.7(5)
C(1P)-C(2P)-C(3P)	117.4(9)
C(2P)-C(3P)-C(4P)	110.9(10)
C(5P)-C(4P)-C(3P)	112.4(9)
C(6P)-C(7P)-C(8P)	114.4(10)
C(9P)-C(8P)-C(7P)	123.7(12)
C(10P)-C(9P)-C(8P)	118.7(11)

Table 4. Torsion angles [deg] for nk280.

C(6)-N(1)-C(2)-C(3)	-1.1(8)
Li(1)-N(1)-C(2)-C(3)	177.6(5)
C(6)-N(1)-C(2)-C(29)	178.8(5)
Li(1)-N(1)-C(2)-C(29)	-2.5(7)
N(1)-C(2)-C(3)-C(4)	0.3(8)
C(29)-C(2)-C(3)-C(4)	-179.7(5)
C(2)-C(3)-C(4)-C(5)	0.2(9)
C(3)-C(4)-C(5)-C(6)	0.2(9)
C(2)-N(1)-C(6)-C(5)	1.5(7)
Li(1)-N(1)-C(6)-C(5)	-177.2(5)
C(2)-N(1)-C(6)-C(7)	-178.1(5)
Li(1)-N(1)-C(6)-C(7)	3.1(7)
C(4)-C(5)-C(6)-N(1)	-1.1(8)
C(4)-C(5)-C(6)-C(7)	178.6(5)
N(1)-C(6)-C(7)-P(1)	33.1(7)
C(5)-C(6)-C(7)-P(1)	-146.6(5)
N(1)-C(6)-C(7)-Si(1)	-150.3(4)
C(5)-C(6)-C(7)-Si(1)	30.1(7)

C(6)-C(7)-Si(1)-C(10)	158.7(4)
P(1)-C(7)-Si(1)-C(10)	-24.0(4)
C(6)-C(7)-Si(1)-C(8)	41.3(5)
P(1)-C(7)-Si(1)-C(8)	-141.5(3)
C(6)-C(7)-Si(1)-C(9)	-82.1(5)
P(1)-C(7)-Si(1)-C(9)	95.1(4)
C(6)-C(7)-P(1)-N(2)	-17.7(6)
Si(1)-C(7)-P(1)-N(2)	165.5(2)
C(6)-C(7)-P(1)-Li(1)	-34.6(5)
Si(1)-C(7)-P(1)-Li(1)	148.6(3)
C(7)-P(1)-N(2)-C(11)	172.6(4)
Li(1)-P(1)-N(2)-C(11)	-160.0(6)
C(7)-P(1)-N(2)-Li(1)	-27.5(4)
P(1)-N(2)-C(11)-C(16)	77.1(7)
Li(1)-N(2)-C(11)-C(16)	-80.8(7)
P(1)-N(2)-C(11)-C(12)	-108.8(5)
Li(1)-N(2)-C(11)-C(12)	93.3(6)
C(16)-C(11)-C(12)-C(13)	2.4(8)
N(2)-C(11)-C(12)-C(13)	-172.0(5)
C(16)-C(11)-C(12)-C(17)	-179.9(6)
N(2)-C(11)-C(12)-C(17)	5.7(8)
C(11)-C(12)-C(13)-C(14)	-1.8(9)
C(17)-C(12)-C(13)-C(14)	-179.6(6)
C(12)-C(13)-C(14)-C(15)	-0.9(9)
C(12)-C(13)-C(14)-C(21)	178.0(6)
C(13)-C(14)-C(15)-C(16)	3.0(9)
C(21)-C(14)-C(15)-C(16)	-175.9(6)
C(14)-C(15)-C(16)-C(11)	-2.3(9)
C(14)-C(15)-C(16)-C(25)	177.3(6)
N(2)-C(11)-C(16)-C(15)	173.5(5)
C(12)-C(11)-C(16)-C(15)	-0.5(9)
N(2)-C(11)-C(16)-C(25)	-6.0(9)
C(12)-C(11)-C(16)-C(25)	179.9(5)
C(13)-C(12)-C(17)-C(19)	-122.9(6)
C(11)-C(12)-C(17)-C(19)	59.4(7)
C(13)-C(12)-C(17)-C(20)	-4.4(8)
C(11)-C(12)-C(17)-C(20)	178.0(6)
C(13)-C(12)-C(17)-C(18)	114.4(6)
C(11)-C(12)-C(17)-C(18)	-63.3(7)
C(13)-C(14)-C(21)-C(23)	3.4(11)
C(15)-C(14)-C(21)-C(23)	-177.8(8)
C(13)-C(14)-C(21)-C(22)	-128.5(7)
C(15)-C(14)-C(21)-C(22)	50.3(9)
C(13)-C(14)-C(21)-C(24)	123.5(8)
C(15)-C(14)-C(21)-C(24)	-57.7(9)
C(15)-C(16)-C(25)-C(26)	98.7(7)
C(11)-C(16)-C(25)-C(26)	-81.7(7)
C(15)-C(16)-C(25)-C(27)	-137.6(6)
C(11)-C(16)-C(25)-C(27)	42.0(8)

C(15)-C(16)-C(25)-C(28)	-18.3(8)
C(11)-C(16)-C(25)-C(28)	161.3(6)
N(1)-C(2)-C(29)-P(2)	35.5(8)
C(3)-C(2)-C(29)-P(2)	-144.6(5)
N(1)-C(2)-C(29)-Si(2)	-144.5(4)
C(3)-C(2)-C(29)-Si(2)	35.4(7)
C(2)-C(29)-Si(2)-C(30)	39.3(6)
P(2)-C(29)-Si(2)-C(30)	-140.6(3)
C(2)-C(29)-Si(2)-C(31)	-82.0(5)
P(2)-C(29)-Si(2)-C(31)	98.0(4)
C(2)-C(29)-Si(2)-C(32)	158.0(5)
P(2)-C(29)-Si(2)-C(32)	-22.0(5)
C(2)-C(29)-P(2)-N(3)	-13.9(6)
Si(2)-C(29)-P(2)-N(3)	166.0(3)
C(2)-C(29)-P(2)-Li(1)	-33.7(5)
Si(2)-C(29)-P(2)-Li(1)	146.2(4)
C(29)-P(2)-N(3)-C(33)	168.5(4)
Li(1)-P(2)-N(3)-C(33)	-159.5(6)
C(29)-P(2)-N(3)-Li(1)	-32.1(5)
P(2)-N(3)-C(33)-C(34)	-108.1(5)
Li(1)-N(3)-C(33)-C(34)	96.3(7)
P(2)-N(3)-C(33)-C(38)	74.9(6)
Li(1)-N(3)-C(33)-C(38)	-80.7(7)
N(3)-C(33)-C(34)-C(35)	179.6(5)
C(38)-C(33)-C(34)-C(35)	-3.3(8)
N(3)-C(33)-C(34)-C(39)	0.1(8)
C(38)-C(33)-C(34)-C(39)	177.1(5)
C(33)-C(34)-C(35)-C(36)	-0.5(9)
C(39)-C(34)-C(35)-C(36)	179.1(6)
C(34)-C(35)-C(36)-C(37)	2.1(9)
C(34)-C(35)-C(36)-C(43)	-178.5(6)
C(35)-C(36)-C(37)-C(38)	0.1(9)
C(43)-C(36)-C(37)-C(38)	-179.3(6)
C(36)-C(37)-C(38)-C(33)	-3.7(9)
C(36)-C(37)-C(38)-C(47)	177.5(6)
N(3)-C(33)-C(38)-C(37)	-177.8(5)
C(34)-C(33)-C(38)-C(37)	5.2(8)
N(3)-C(33)-C(38)-C(47)	0.8(9)
C(34)-C(33)-C(38)-C(47)	-176.2(5)
C(35)-C(34)-C(39)-C(42)	-116.9(6)
C(33)-C(34)-C(39)-C(42)	62.6(7)
C(35)-C(34)-C(39)-C(40)	3.4(7)
C(33)-C(34)-C(39)-C(40)	-177.0(5)
C(35)-C(34)-C(39)-C(41)	121.0(6)
C(33)-C(34)-C(39)-C(41)	-59.4(7)
C(37)-C(36)-C(43)-C(45)	-172.6(7)
C(35)-C(36)-C(43)-C(45)	8.1(9)
C(37)-C(36)-C(43)-C(44)	63.2(9)
C(35)-C(36)-C(43)-C(44)	-116.2(8)

C(37)-C(36)-C(43)-C(46)	-52.9(9)
C(35)-C(36)-C(43)-C(46)	127.8(7)
C(37)-C(38)-C(47)-C(50)	-38.5(7)
C(33)-C(38)-C(47)-C(50)	142.8(6)
C(37)-C(38)-C(47)-C(49)	-156.2(5)
C(33)-C(38)-C(47)-C(49)	25.1(9)
C(37)-C(38)-C(47)-C(48)	80.8(7)
C(33)-C(38)-C(47)-C(48)	-97.9(7)
C(2)-N(1)-Li(1)-N(2)	140.7(5)
C(6)-N(1)-Li(1)-N(2)	-40.6(6)
C(2)-N(1)-Li(1)-N(3)	-37.5(6)
C(6)-N(1)-Li(1)-N(3)	141.2(4)
C(2)-N(1)-Li(1)-P(1)	164.0(4)
C(6)-N(1)-Li(1)-P(1)	-17.3(5)
C(2)-N(1)-Li(1)-P(2)	-13.1(5)
C(6)-N(1)-Li(1)-P(2)	165.6(4)
C(11)-N(2)-Li(1)-N(1)	-149.3(4)
P(1)-N(2)-Li(1)-N(1)	50.3(5)
C(11)-N(2)-Li(1)-N(3)	26.4(16)
P(1)-N(2)-Li(1)-N(3)	-134.0(13)
C(11)-N(2)-Li(1)-P(1)	160.4(6)
C(11)-N(2)-Li(1)-P(2)	-51.9(13)
P(1)-N(2)-Li(1)-P(2)	147.7(9)
C(33)-N(3)-Li(1)-N(1)	-150.4(5)
P(2)-N(3)-Li(1)-N(1)	52.3(5)
C(33)-N(3)-Li(1)-N(2)	33.9(17)
P(2)-N(3)-Li(1)-N(2)	-123.4(14)
C(33)-N(3)-Li(1)-P(1)	-51.6(16)
P(2)-N(3)-Li(1)-P(1)	151.0(12)
C(33)-N(3)-Li(1)-P(2)	157.3(7)
N(2)-P(1)-Li(1)-N(1)	-130.6(5)
C(7)-P(1)-Li(1)-N(1)	23.7(3)
C(7)-P(1)-Li(1)-N(2)	154.3(4)
N(2)-P(1)-Li(1)-N(3)	126.9(15)
C(7)-P(1)-Li(1)-N(3)	-78.8(14)
N(2)-P(1)-Li(1)-P(2)	-120.0(15)
C(7)-P(1)-Li(1)-P(2)	34.3(13)
N(3)-P(2)-Li(1)-N(1)	-128.7(5)
C(29)-P(2)-Li(1)-N(1)	21.3(3)
N(3)-P(2)-Li(1)-N(2)	129.4(13)
C(29)-P(2)-Li(1)-N(2)	-80.6(11)
C(29)-P(2)-Li(1)-N(3)	149.9(4)
N(3)-P(2)-Li(1)-P(1)	-139.2(15)
C(29)-P(2)-Li(1)-P(1)	10.7(13)
Cl(2)-Li(2)-Li(5)-N(6T)	-18.5(12)
Cl(4)-Li(2)-Li(5)-N(6T)	-98.1(8)
Cl(1)-Li(2)-Li(5)-N(6T)	159.1(6)
Cl(3)-Li(2)-Li(5)-N(6T)	78.2(8)
Li(6)-Li(2)-Li(5)-N(6T)	98(10)

Cl(2)-Li(2)-Li(5)-N(5T)	151.5(7)
Cl(4)-Li(2)-Li(5)-N(5T)	71.9(8)
Cl(1)-Li(2)-Li(5)-N(5T)	-30.8(11)
Cl(3)-Li(2)-Li(5)-N(5T)	-111.8(8)
Li(6)-Li(2)-Li(5)-N(5T)	-92(10)
Cl(2)-Li(2)-Li(5)-Cl(3)	-96.7(6)
Cl(4)-Li(2)-Li(5)-Cl(3)	-176.3(5)
Cl(1)-Li(2)-Li(5)-Cl(3)	80.9(6)
Li(6)-Li(2)-Li(5)-Cl(3)	20(10)
Cl(2)-Li(2)-Li(5)-Cl(4)	79.6(6)
Cl(1)-Li(2)-Li(5)-Cl(4)	-102.8(6)
Cl(3)-Li(2)-Li(5)-Cl(4)	176.3(5)
Li(6)-Li(2)-Li(5)-Cl(4)	-164(10)
Cl(2)-Li(2)-Li(5)-C(15T)	121(2)
Cl(4)-Li(2)-Li(5)-C(15T)	41(2)
Cl(1)-Li(2)-Li(5)-C(15T)	-61(2)
Cl(3)-Li(2)-Li(5)-C(15T)	-142(2)
Li(6)-Li(2)-Li(5)-C(15T)	-122(10)
Cl(2)-Li(2)-Li(6)-N(7T)	-87.3(7)
Cl(4)-Li(2)-Li(6)-N(7T)	-9.2(10)
Cl(1)-Li(2)-Li(6)-N(7T)	90.8(7)
Cl(3)-Li(2)-Li(6)-N(7T)	173.1(5)
Li(5)-Li(2)-Li(6)-N(7T)	154(10)
Cl(2)-Li(2)-Li(6)-N(8T)	87.9(7)
Cl(4)-Li(2)-Li(6)-N(8T)	166.0(6)
Cl(1)-Li(2)-Li(6)-N(8T)	-94.0(7)
Cl(3)-Li(2)-Li(6)-N(8T)	-11.7(10)
Li(5)-Li(2)-Li(6)-N(8T)	-31(10)
Cl(2)-Li(2)-Li(6)-Cl(1)	-178.0(5)
Cl(4)-Li(2)-Li(6)-Cl(1)	-99.9(6)
Cl(3)-Li(2)-Li(6)-Cl(1)	82.3(5)
Li(5)-Li(2)-Li(6)-Cl(1)	63(10)
Cl(4)-Li(2)-Li(6)-Cl(2)	78.1(6)
Cl(1)-Li(2)-Li(6)-Cl(2)	178.0(5)
Cl(3)-Li(2)-Li(6)-Cl(2)	-99.7(6)
Li(5)-Li(2)-Li(6)-Cl(2)	-119(10)
Cl(2)-Li(2)-Li(6)-C(22T)	49.6(14)
Cl(4)-Li(2)-Li(6)-C(22T)	127.7(13)
Cl(1)-Li(2)-Li(6)-C(22T)	-132.4(15)
Cl(3)-Li(2)-Li(6)-C(22T)	-50.0(17)
Li(5)-Li(2)-Li(6)-C(22T)	-69(10)
N(3T)-Li(4)-Li(7)-N(9T)	33.1(8)
N(4T)-Li(4)-Li(7)-N(9T)	-64.6(12)
Cl(6)-Li(4)-Li(7)-N(9T)	-75.6(7)
Cl(4)-Li(4)-Li(7)-N(9T)	147.6(6)
N(3T)-Li(4)-Li(7)-N(10T)	-177.8(6)
N(4T)-Li(4)-Li(7)-N(10T)	84.5(11)
Cl(6)-Li(4)-Li(7)-N(10T)	73.5(6)
Cl(4)-Li(4)-Li(7)-N(10T)	-63.3(7)

N(3T)-Li(4)-Li(7)-Cl(6)	108.7(5)
N(4T)-Li(4)-Li(7)-Cl(6)	11.0(8)
Cl(4)-Li(4)-Li(7)-Cl(6)	-136.8(5)
N(3T)-Li(4)-Li(7)-Cl(2)	-67.3(4)
N(4T)-Li(4)-Li(7)-Cl(2)	-165.0(9)
Cl(6)-Li(4)-Li(7)-Cl(2)	-176.0(5)
Cl(4)-Li(4)-Li(7)-Cl(2)	47.2(3)
N(3T)-Li(4)-Li(7)-C(28T)	140.7(8)
N(4T)-Li(4)-Li(7)-C(28T)	43.0(15)
Cl(6)-Li(4)-Li(7)-C(28T)	32.1(9)
Cl(4)-Li(4)-Li(7)-C(28T)	-104.8(9)
N(7T)-Li(6)-Cl(1)-Li(8)	-4.9(18)
N(8T)-Li(6)-Cl(1)-Li(8)	-109.7(14)
Cl(2)-Li(6)-Cl(1)-Li(8)	121.5(13)
C(22T)-Li(6)-Cl(1)-Li(8)	-77.5(17)
Li(2)-Li(6)-Cl(1)-Li(8)	123.0(14)
N(7T)-Li(6)-Cl(1)-Li(2)	-128.0(6)
N(8T)-Li(6)-Cl(1)-Li(2)	127.3(6)
Cl(2)-Li(6)-Cl(1)-Li(2)	-1.5(4)
C(22T)-Li(6)-Cl(1)-Li(2)	159.4(7)
N(12T)-Li(8)-Cl(1)-Li(6)	-37.7(17)
N(11T)-Li(8)-Cl(1)-Li(6)	57.7(16)
Cl(5)-Li(8)-Cl(1)-Li(6)	-173.4(11)
C(33T)-Li(8)-Cl(1)-Li(6)	27.5(18)
N(12T)-Li(8)-Cl(1)-Li(2)	82.4(5)
N(11T)-Li(8)-Cl(1)-Li(2)	177.8(4)
Cl(5)-Li(8)-Cl(1)-Li(2)	-53.3(6)
C(33T)-Li(8)-Cl(1)-Li(2)	147.6(5)
Cl(2)-Li(2)-Cl(1)-Li(6)	1.5(4)
Cl(4)-Li(2)-Cl(1)-Li(6)	119.9(5)
Cl(3)-Li(2)-Cl(1)-Li(6)	-124.6(5)
Li(5)-Li(2)-Cl(1)-Li(6)	-176.8(6)
Cl(2)-Li(2)-Cl(1)-Li(8)	-165.0(4)
Cl(4)-Li(2)-Cl(1)-Li(8)	-46.5(6)
Cl(3)-Li(2)-Cl(1)-Li(8)	69.0(5)
Li(5)-Li(2)-Cl(1)-Li(8)	16.8(7)
Li(6)-Li(2)-Cl(1)-Li(8)	-166.5(4)
N(7T)-Li(6)-Cl(2)-Li(7)	-86.0(15)
N(8T)-Li(6)-Cl(2)-Li(7)	15.7(16)
Cl(1)-Li(6)-Cl(2)-Li(7)	146.5(12)
C(22T)-Li(6)-Cl(2)-Li(7)	-19.8(16)
Li(2)-Li(6)-Cl(2)-Li(7)	144.9(13)
N(7T)-Li(6)-Cl(2)-Li(2)	129.0(5)
N(8T)-Li(6)-Cl(2)-Li(2)	-129.3(5)
Cl(1)-Li(6)-Cl(2)-Li(2)	1.5(4)
C(22T)-Li(6)-Cl(2)-Li(2)	-164.7(5)
N(9T)-Li(7)-Cl(2)-Li(6)	27.8(16)
N(10T)-Li(7)-Cl(2)-Li(6)	-66.3(15)
Cl(6)-Li(7)-Cl(2)-Li(6)	158.6(11)

C(28T)-Li(7)-Cl(2)-Li(6)	-33.3(16)
Li(4)-Li(7)-Cl(2)-Li(6)	161.5(13)
N(9T)-Li(7)-Cl(2)-Li(2)	170.6(4)
N(10T)-Li(7)-Cl(2)-Li(2)	76.6(5)
Cl(6)-Li(7)-Cl(2)-Li(2)	-58.6(5)
C(28T)-Li(7)-Cl(2)-Li(2)	109.5(5)
Li(4)-Li(7)-Cl(2)-Li(2)	-55.7(4)
Cl(4)-Li(2)-Cl(2)-Li(6)	-130.2(4)
Cl(1)-Li(2)-Cl(2)-Li(6)	-1.5(4)
Cl(3)-Li(2)-Cl(2)-Li(6)	116.3(5)
Li(5)-Li(2)-Cl(2)-Li(6)	176.7(7)
Cl(4)-Li(2)-Cl(2)-Li(7)	58.6(5)
Cl(1)-Li(2)-Cl(2)-Li(7)	-172.6(3)
Cl(3)-Li(2)-Cl(2)-Li(7)	-54.9(6)
Li(5)-Li(2)-Cl(2)-Li(7)	5.6(7)
Li(6)-Li(2)-Cl(2)-Li(7)	-171.2(4)
N(6T)-Li(5)-Cl(3)-Li(3)	128.8(5)
N(5T)-Li(5)-Cl(3)-Li(3)	25.0(8)
Cl(4)-Li(5)-Cl(3)-Li(3)	-101.2(4)
C(15T)-Li(5)-Cl(3)-Li(3)	67.7(9)
Li(2)-Li(5)-Cl(3)-Li(3)	-98.3(4)
N(6T)-Li(5)-Cl(3)-Li(2)	-132.9(5)
N(5T)-Li(5)-Cl(3)-Li(2)	123.3(7)
Cl(4)-Li(5)-Cl(3)-Li(2)	-2.9(4)
C(15T)-Li(5)-Cl(3)-Li(2)	165.9(9)
N(1T)-Li(3)-Cl(3)-Li(5)	170.1(4)
N(2T)-Li(3)-Cl(3)-Li(5)	-95.7(5)
Cl(5)-Li(3)-Cl(3)-Li(5)	30.5(6)
N(1T)-Li(3)-Cl(3)-Li(2)	86.7(5)
N(2T)-Li(3)-Cl(3)-Li(2)	-179.1(5)
Cl(5)-Li(3)-Cl(3)-Li(2)	-52.9(6)
Cl(2)-Li(2)-Cl(3)-Li(5)	122.1(5)
Cl(4)-Li(2)-Cl(3)-Li(5)	2.9(4)
Cl(1)-Li(2)-Cl(3)-Li(5)	-127.5(5)
Li(6)-Li(2)-Cl(3)-Li(5)	-178.8(6)
Cl(2)-Li(2)-Cl(3)-Li(3)	-128.9(5)
Cl(4)-Li(2)-Cl(3)-Li(3)	111.9(4)
Cl(1)-Li(2)-Cl(3)-Li(3)	-18.5(5)
Li(5)-Li(2)-Cl(3)-Li(3)	109.0(4)
Li(6)-Li(2)-Cl(3)-Li(3)	-69.7(6)
N(3T)-Li(4)-Cl(4)-Li(5)	169.8(4)
N(4T)-Li(4)-Cl(4)-Li(5)	-97.5(5)
Cl(6)-Li(4)-Cl(4)-Li(5)	35.4(7)
$L_1(7)-L_1(4)-Cl(4)-Li(5)$	66.8(5)
N(3T)-L1(4)-Cl(4)-Li(2)	81.6(5)
N(4T)-Li(4)-Cl(4)-Li(2)	174.3(4)
Cl(6)-L1(4)-Cl(4)-Li(2)	-52.8(6)
L1(7)-L1(4)-Cl(4)-Li(2)	-21.3(4)
$ N(6T)-L_1(5)-Cl(4)-L_1(4) $	21.5(8)

N(5T)-Li(5)-Cl(4)-Li(4)	120.0(5)
Cl(3)-Li(5)-Cl(4)-Li(4)	-99.9(5)
C(15T)-Li(5)-Cl(4)-Li(4)	88.3(6)
Li(2)-Li(5)-Cl(4)-Li(4)	-102.9(4)
N(6T)-Li(5)-Cl(4)-Li(2)	124.4(6)
N(5T)-Li(5)-Cl(4)-Li(2)	-137.2(5)
Cl(3)-Li(5)-Cl(4)-Li(2)	3.0(4)
C(15T)-Li(5)-Cl(4)-Li(2)	-168.9(6)
Cl(2)-Li(2)-Cl(4)-Li(4)	-9.9(5)
Cl(1)-Li(2)-Cl(4)-Li(4)	-121.5(5)
Cl(3)-Li(2)-Cl(4)-Li(4)	117.4(4)
Li(5)-Li(2)-Cl(4)-Li(4)	120.2(4)
Li(6)-Li(2)-Cl(4)-Li(4)	-60.8(6)
Cl(2)-Li(2)-Cl(4)-Li(5)	-130.1(5)
Cl(1)-Li(2)-Cl(4)-Li(5)	118.2(5)
Cl(3)-Li(2)-Cl(4)-Li(5)	-2.8(4)
Li(6)-Li(2)-Cl(4)-Li(5)	178.9(6)
N(12T)-Li(8)-Cl(5)-Li(3)	-141.0(5)
N(11T)-Li(8)-Cl(5)-Li(3)	119.3(5)
Cl(1)-Li(8)-Cl(5)-Li(3)	-7.8(6)
C(33T)-Li(8)-Cl(5)-Li(3)	152.7(5)
N(1T)-Li(3)-Cl(5)-Li(8)	-67.2(6)
N(2T)-Li(3)-Cl(5)-Li(8)	-163.1(5)
Cl(3)-Li(3)-Cl(5)-Li(8)	69.1(6)
N(3T)-Li(4)-Cl(6)-Li(7)	-80.9(5)
N(4T)-Li(4)-Cl(6)-Li(7)	-174.3(4)
Cl(4)-Li(4)-Cl(6)-Li(7)	55.0(6)
N(9T)-Li(7)-Cl(6)-Li(4)	130.2(5)
N(10T)-Li(7)-Cl(6)-Li(4)	-130.2(5)
Cl(2)-Li(7)-Cl(6)-Li(4)	4.4(5)
C(28T)-Li(7)-Cl(6)-Li(4)	-164.5(4)
N(2T)-Li(3)-N(1T)-C(1T)	-123.4(5)
Cl(5)-Li(3)-N(1T)-C(1T)	128.5(5)
Cl(3)-Li(3)-N(1T)-C(1T)	-12.3(7)
N(2T)-Li(3)-N(1T)-C(2T)	114.2(5)
Cl(5)-Li(3)-N(1T)-C(2T)	6.0(6)
Cl(3)-Li(3)-N(1T)-C(2T)	-134.7(5)
N(2T)-Li(3)-N(1T)-C(3T)	-5.1(5)
Cl(5)-Li(3)-N(1T)-C(3T)	-113.2(6)
Cl(3)-Li(3)-N(1T)-C(3T)	106.0(5)
C(1T)-N(1T)-C(3T)-C(4T)	153.7(7)
C(2T)-N(1T)-C(3T)-C(4T)	-83.4(8)
Li(3)-N(1T)-C(3T)-C(4T)	32.3(8)
N(1T)-C(3T)-C(4T)-N(2T)	-56.8(9)
C(3T)-C(4T)-N(2T)-C(5T)	-74.8(8)
C(3T)-C(4T)-N(2T)-C(6T)	164.5(7)
C(3T)-C(4T)-N(2T)-Li(3)	45.2(8)
N(1T)-Li(3)-N(2T)-C(5T)	97.5(7)
Cl(5)-Li(3)-N(2T)-C(5T)	-144.6(6)

Cl(3)-Li(3)-N(2T)-C(5T)	-11.7(8)
N(1T)-Li(3)-N(2T)-C(6T)	-135.0(6)
Cl(5)-Li(3)-N(2T)-C(6T)	-17.1(8)
Cl(3)-Li(3)-N(2T)-C(6T)	115.7(6)
N(1T)-Li(3)-N(2T)-C(4T)	-20.6(6)
Cl(5)-Li(3)-N(2T)-C(4T)	97.3(6)
Cl(3)-Li(3)-N(2T)-C(4T)	-129.8(6)
N(4T)-Li(4)-N(3T)-C(7T)	131.4(5)
Cl(6)-Li(4)-N(3T)-C(7T)	19.2(7)
Cl(4)-Li(4)-N(3T)-C(7T)	-122.2(6)
Li(7)-Li(4)-N(3T)-C(7T)	-19.9(6)
N(4T)-Li(4)-N(3T)-C(9T)	12.5(6)
Cl(6)-Li(4)-N(3T)-C(9T)	-99.7(6)
Cl(4)-Li(4)-N(3T)-C(9T)	118.9(6)
Li(7)-Li(4)-N(3T)-C(9T)	-138.8(5)
N(4T)-Li(4)-N(3T)-C(8T)	-106.6(5)
Cl(6)-Li(4)-N(3T)-C(8T)	141.2(5)
Cl(4)-Li(4)-N(3T)-C(8T)	-0.2(7)
Li(7)-Li(4)-N(3T)-C(8T)	102.1(5)
C(7T)-N(3T)-C(9T)-C(10T)	-158.6(7)
C(8T)-N(3T)-C(9T)-C(10T)	79.8(8)
Li(4)-N(3T)-C(9T)-C(10T)	-37.5(9)
N(3T)-C(9T)-C(10T)-N(4T)	55.4(10)
C(9T)-C(10T)-N(4T)-C(11T)	79.9(9)
C(9T)-C(10T)-N(4T)-C(12T)	-160.0(7)
C(9T)-C(10T)-N(4T)-Li(4)	-38.2(9)
N(3T)-Li(4)-N(4T)-C(11T)	-107.5(6)
Cl(6)-Li(4)-N(4T)-C(11T)	0.9(7)
Cl(4)-Li(4)-N(4T)-C(11T)	140.0(5)
Li(7)-Li(4)-N(4T)-C(11T)	-6.5(12)
N(3T)-Li(4)-N(4T)-C(10T)	13.2(6)
Cl(6)-Li(4)-N(4T)-C(10T)	121.7(6)
Cl(4)-Li(4)-N(4T)-C(10T)	-99.3(6)
Li(7)-Li(4)-N(4T)-C(10T)	114.2(10)
N(3T)-Li(4)-N(4T)-C(12T)	129.4(6)
Cl(6)-Li(4)-N(4T)-C(12T)	-122.2(6)
Cl(4)-Li(4)-N(4T)-C(12T)	16.9(7)
Li(7)-Li(4)-N(4T)-C(12T)	-129.7(9)
N(6T)-Li(5)-N(5T)-C(13T)	-110.6(7)
Cl(3)-Li(5)-N(5T)-C(13T)	2.9(10)
Cl(4)-Li(5)-N(5T)-C(13T)	126.5(7)
C(15T)-Li(5)-N(5T)-C(13T)	-118.4(11)
Li(2)-Li(5)-N(5T)-C(13T)	76.5(10)
N(6T)-Li(5)-N(5T)-C(15T)	7.8(9)
Cl(3)-Li(5)-N(5T)-C(15T)	121.2(10)
Cl(4)-Li(5)-N(5T)-C(15T)	-115.2(9)
Li(2)-Li(5)-N(5T)-C(15T)	-165.2(10)
N(6T)-Li(5)-N(5T)-C(14T)	124.8(8)
Cl(3)-Li(5)-N(5T)-C(14T)	-121.7(9)

Cl(4)-Li(5)-N(5T)-C(14T)	1.8(9)
C(15T)-Li(5)-N(5T)-C(14T)	117.0(11)
Li(2)-Li(5)-N(5T)-C(14T)	-48.2(11)
C(13T)-N(5T)-C(15T)-C(16T)	114.3(18)
C(14T)-N(5T)-C(15T)-C(16T)	-126.5(18)
Li(5)-N(5T)-C(15T)-C(16T)	-5(2)
C(13T)-N(5T)-C(15T)-Li(5)	119.6(8)
C(14T)-N(5T)-C(15T)-Li(5)	-121.1(8)
N(6T)-Li(5)-C(15T)-C(16T)	5.2(8)
N(5T)-Li(5)-C(15T)-C(16T)	175.9(16)
Cl(3)-Li(5)-C(15T)-C(16T)	86.0(12)
Cl(4)-Li(5)-C(15T)-C(16T)	-106.5(10)
Li(2)-Li(5)-C(15T)-C(16T)	-142(2)
N(6T)-Li(5)-C(15T)-N(5T)	-170.7(11)
Cl(3)-Li(5)-C(15T)-N(5T)	-89.9(11)
Cl(4)-Li(5)-C(15T)-N(5T)	77.6(9)
Li(2)-Li(5)-C(15T)-N(5T)	43(3)
N(5T)-C(15T)-C(16T)-N(6T)	-3(2)
Li(5)-C(15T)-C(16T)-N(6T)	-6.8(10)
C(15T)-C(16T)-N(6T)-C(17T)	125.6(12)
C(15T)-C(16T)-N(6T)-C(18T)	-114.0(12)
C(15T)-C(16T)-N(6T)-Li(5)	9.1(13)
N(5T)-Li(5)-N(6T)-C(17T)	-125.1(5)
Cl(3)-Li(5)-N(6T)-C(17T)	102.1(6)
Cl(4)-Li(5)-N(6T)-C(17T)	-15.4(8)
C(15T)-Li(5)-N(6T)-C(17T)	-120.4(7)
Li(2)-Li(5)-N(6T)-C(17T)	48.1(9)
N(5T)-Li(5)-N(6T)-C(18T)	111.5(6)
Cl(3)-Li(5)-N(6T)-C(18T)	-21.3(7)
Cl(4)-Li(5)-N(6T)-C(18T)	-138.8(6)
C(15T)-Li(5)-N(6T)-C(18T)	116.2(7)
Li(2)-Li(5)-N(6T)-C(18T)	-75.3(9)
N(5T)-Li(5)-N(6T)-C(16T)	-9.3(6)
Cl(3)-Li(5)-N(6T)-C(16T)	-142.0(5)
Cl(4)-Li(5)-N(6T)-C(16T)	100.5(6)
C(15T)-Li(5)-N(6T)-C(16T)	-4.5(6)
Li(2)-Li(5)-N(6T)-C(16T)	164.0(7)
N(8T)-Li(6)-N(7T)-C(20T)	-109.4(5)
Cl(1)-Li(6)-N(7T)-C(20T)	127.8(6)
Cl(2)-Li(6)-N(7T)-C(20T)	9.5(7)
C(22T)-Li(6)-N(7T)-C(20T)	-98.5(5)
Li(2)-Li(6)-N(7T)-C(20T)	67.3(8)
N(8T)-Li(6)-N(7T)-C(21T)	9.4(5)
Cl(1)-Li(6)-N(7T)-C(21T)	-113.4(6)
Cl(2)-Li(6)-N(7T)-C(21T)	128.3(5)
C(22T)-Li(6)-N(7T)-C(21T)	20.3(4)
Li(2)-Li(6)-N(7T)-C(21T)	-173.9(6)
N(8T)-Li(6)-N(7T)-C(19T)	127.3(6)
Cl(1)-Li(6)-N(7T)-C(19T)	4.5(8)

Cl(2)-Li(6)-N(7T)-C(19T)	-113.9(6)
C(22T)-Li(6)-N(7T)-C(19T)	138.2(6)
Li(2)-Li(6)-N(7T)-C(19T)	-56.0(9)
C(20T)-N(7T)-C(21T)-C(22T)	83.5(6)
C(19T)-N(7T)-C(21T)-C(22T)	-156.7(6)
Li(6)-N(7T)-C(21T)-C(22T)	-36.4(7)
N(7T)-C(21T)-C(22T)-N(8T)	58.2(7)
N(7T)-C(21T)-C(22T)-Li(6)	26.6(5)
N(7T)-Li(6)-C(22T)-N(8T)	-158.7(6)
Cl(1)-Li(6)-C(22T)-N(8T)	-62.3(7)
Cl(2)-Li(6)-C(22T)-N(8T)	96.4(6)
Li(2)-Li(6)-C(22T)-N(8T)	55.4(15)
N(7T)-Li(6)-C(22T)-C(21T)	-19.9(4)
N(8T)-Li(6)-C(22T)-C(21T)	138.8(7)
Cl(1)-Li(6)-C(22T)-C(21T)	76.4(8)
Cl(2)-Li(6)-C(22T)-C(21T)	-124.8(6)
Li(2)-Li(6)-C(22T)-C(21T)	-165.8(15)
C(21T)-C(22T)-N(8T)-C(23T)	-166.4(6)
Li(6)-C(22T)-N(8T)-C(23T)	-123.2(6)
C(21T)-C(22T)-N(8T)-C(24T)	73.3(7)
Li(6)-C(22T)-N(8T)-C(24T)	116.6(6)
C(21T)-C(22T)-N(8T)-Li(6)	-43.3(7)
N(7T)-Li(6)-N(8T)-C(22T)	18.0(5)
Cl(1)-Li(6)-N(8T)-C(22T)	138.9(5)
Cl(2)-Li(6)-N(8T)-C(22T)	-100.2(5)
Li(2)-Li(6)-N(8T)-C(22T)	-158.6(6)
N(7T)-Li(6)-N(8T)-C(23T)	135.8(5)
Cl(1)-Li(6)-N(8T)-C(23T)	-103.4(6)
Cl(2)-Li(6)-N(8T)-C(23T)	17.6(7)
C(22T)-Li(6)-N(8T)-C(23T)	117.8(6)
Li(2)-Li(6)-N(8T)-C(23T)	-40.8(8)
N(7T)-Li(6)-N(8T)-C(24T)	-98.4(5)
Cl(1)-Li(6)-N(8T)-C(24T)	22.4(7)
Cl(2)-Li(6)-N(8T)-C(24T)	143.4(5)
C(22T)-Li(6)-N(8T)-C(24T)	-116.4(6)
Li(2)-Li(6)-N(8T)-C(24T)	85.0(8)
N(10T)-Li(7)-N(9T)-C(26T)	-108.9(5)
Cl(6)-Li(7)-N(9T)-C(26T)	6.5(7)
Cl(2)-Li(7)-N(9T)-C(26T)	138.1(5)
C(28T)-Li(7)-N(9T)-C(26T)	-100.6(5)
Li(4)-Li(7)-N(9T)-C(26T)	49.0(8)
N(10T)-Li(7)-N(9T)-C(25T)	128.3(5)
Cl(6)-Li(7)-N(9T)-C(25T)	-116.2(6)
Cl(2)-Li(7)-N(9T)-C(25T)	15.4(7)
C(28T)-Li(7)-N(9T)-C(25T)	136.6(6)
Li(4)-Li(7)-N(9T)-C(25T)	-73.7(8)
N(10T)-Li(7)-N(9T)-C(27T)	9.5(6)
Cl(6)-Li(7)-N(9T)-C(27T)	124.9(6)
Cl(2)-Li(7)-N(9T)-C(27T)	-103.5(6)

C(28T)-Li(7)-N(9T)-C(27T)	17.8(5)
Li(4)-Li(7)-N(9T)-C(27T)	167.4(7)
C(26T)-N(9T)-C(27T)-C(28T)	83.0(7)
C(25T)-N(9T)-C(27T)-C(28T)	-156.3(6)
Li(7)-N(9T)-C(27T)-C(28T)	-32.8(8)
N(9T)-C(27T)-C(28T)-N(10T)	52.0(10)
N(9T)-C(27T)-C(28T)-Li(7)	24.1(6)
N(9T)-Li(7)-C(28T)-C(27T)	-18.1(5)
N(10T)-Li(7)-C(28T)-C(27T)	145.6(8)
Cl(6)-Li(7)-C(28T)-C(27T)	-123.0(6)
Cl(2)-Li(7)-C(28T)-C(27T)	68.9(6)
Li(4)-Li(7)-C(28T)-C(27T)	-145.0(10)
N(9T)-Li(7)-C(28T)-N(10T)	-163.8(7)
Cl(6)-Li(7)-C(28T)-N(10T)	91.3(6)
Cl(2)-Li(7)-C(28T)-N(10T)	-76.8(6)
Li(4)-Li(7)-C(28T)-N(10T)	69.3(10)
C(27T)-C(28T)-N(10T)-C(30T)	78.5(8)
Li(7)-C(28T)-N(10T)-C(30T)	116.3(6)
C(27T)-C(28T)-N(10T)-C(29T)	-159.4(7)
Li(7)-C(28T)-N(10T)-C(29T)	-121.6(7)
C(27T)-C(28T)-N(10T)-Li(7)	-37.8(9)
N(9T)-Li(7)-N(10T)-C(30T)	-100.9(5)
Cl(6)-Li(7)-N(10T)-C(30T)	141.6(5)
Cl(2)-Li(7)-N(10T)-C(30T)	4.8(7)
C(28T)-Li(7)-N(10T)-C(30T)	-114.6(7)
Li(4)-Li(7)-N(10T)-C(30T)	100.5(7)
N(9T)-Li(7)-N(10T)-C(29T)	132.8(6)
Cl(6)-Li(7)-N(10T)-C(29T)	15.3(8)
Cl(2)-Li(7)-N(10T)-C(29T)	-121.5(7)
C(28T)-Li(7)-N(10T)-C(29T)	119.1(8)
Li(4)-Li(7)-N(10T)-C(29T)	-25.8(9)
N(9T)-Li(7)-N(10T)-C(28T)	13.7(6)
Cl(6)-Li(7)-N(10T)-C(28T)	-103.8(6)
Cl(2)-Li(7)-N(10T)-C(28T)	119.4(6)
Li(4)-Li(7)-N(10T)-C(28T)	-144.9(7)
N(12T)-Li(8)-N(11T)-C(33T)	-12.6(6)
Cl(5)-Li(8)-N(11T)-C(33T)	105.7(7)
Cl(1)-Li(8)-N(11T)-C(33T)	-124.4(6)
N(12T)-Li(8)-N(11T)-C(31T)	107.6(6)
Cl(5)-Li(8)-N(11T)-C(31T)	-134.1(6)
Cl(1)-Li(8)-N(11T)-C(31T)	-4.2(8)
C(33T)-Li(8)-N(11T)-C(31T)	120.2(8)
N(12T)-Li(8)-N(11T)-C(32T)	-128.7(5)
Cl(5)-Li(8)-N(11T)-C(32T)	-10.4(7)
Cl(1)-Li(8)-N(11T)-C(32T)	119.6(6)
C(33T)-Li(8)-N(11T)-C(32T)	-116.0(7)
C(31T)-N(11T)-C(33T)-C(34T)	-86.6(10)
C(32T)-N(11T)-C(33T)-C(34T)	154.2(9)
Li(8)-N(11T)-C(33T)-C(34T)	34.9(10)

C(21T) N(11T) C(22T) I(0)	101 E(0)
C(311)-N(111)-C(331)-L1(8)	-121.5(6)
C(32T)-N(11T)-C(33T)-Li(8)	119.3(6)
N(12T)-Li(8)-C(33T)-C(34T)	16.2(6)
N(11T)-Li(8)-C(33T)-C(34T)	-148.9(10)
Cl(5)-Li(8)-C(33T)-C(34T)	122.1(8)
Cl(1)-Li(8)-C(33T)-C(34T)	-79.4(8)
N(12T)-Li(8)-C(33T)-N(11T)	165.1(7)
Cl(5)-Li(8)-C(33T)-N(11T)	-89.0(7)
Cl(1)-Li(8)-C(33T)-N(11T)	69.6(7)
N(11T)-C(33T)-C(34T)-N(12T)	-48.2(13)
Li(8)-C(33T)-C(34T)-N(12T)	-21.6(7)
C(33T)-C(34T)-N(12T)-C(36T)	-89.4(10)
C(33T)-C(34T)-N(12T)-C(35T)	150.3(8)
C(33T)-C(34T)-N(12T)-Li(8)	29.5(10)
N(11T)-Li(8)-N(12T)-C(36T)	112.1(6)
Cl(5)-Li(8)-N(12T)-C(36T)	-2.8(8)
Cl(1)-Li(8)-N(12T)-C(36T)	-137.7(6)
C(33T)-Li(8)-N(12T)-C(36T)	104.7(6)
N(11T)-Li(8)-N(12T)-C(34T)	-7.9(6)
Cl(5)-Li(8)-N(12T)-C(34T)	-122.8(6)
Cl(1)-Li(8)-N(12T)-C(34T)	102.2(6)
C(33T)-Li(8)-N(12T)-C(34T)	-15.4(5)
N(11T)-Li(8)-N(12T)-C(35T)	-125.1(5)
Cl(5)-Li(8)-N(12T)-C(35T)	120.0(6)
Cl(1)-Li(8)-N(12T)-C(35T)	-14.9(7)
C(33T)-Li(8)-N(12T)-C(35T)	-132.6(6)
C(1P)-C(2P)-C(3P)-C(4P)	-173.1(13)
C(2P)-C(3P)-C(4P)-C(5P)	-177.5(13)
C(6P)-C(7P)-C(8P)-C(9P)	-174.6(14)
C(7P)-C(8P)-C(9P)-C(10P)	175.0(16)

2-[3-(2, 4, 6-tri-*tert*.-butylphenyl)-1, 3-diaza-2-phosphaallyl-Lithium * 2 THF]-6-[3-(2, 4, 6-tri-*tert*.-butylphenyl)-1,3-diaza-2-phosphaallyl-1-aminopyridinato-Lithium* TMEDA]-pyridin [97]

Table 1. Crystal data and structure refinement for nk331.

Identification code	nk331
Empirical formula	C65 H113 Li2 N7 O4.50 P2
C55 H93 Li2 N7 O2 P2 - 2.5 thf	
Formula weight	1140.44
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1 (No.2)
Unit cell dimensions	a = 13.8692(5) A alpha = 71.674(3) deg.
	b = 16.2148(5) A beta = 72.773(2) deg.
	c = 17.2374(6) A gamma = 80.962(2) deg.
Volume	3506.0(2) A^3
Z, Calculated density	2, 1.080 Mg/m^3
Absorption coefficient	0.110 mm^-1
F(000)	1248
Crystal size	0.70 x 0.60 x 0.50 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	2.97 to 24.99 deg.
Limiting indices	-12<=h<=16, -19<=k<=19, -20<=l<=20
Reflections collected / unique	24017 / 11593 [R(int) = 0.0355]
Completeness to theta $= 24.99$	93.9 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	11593 / 1086 / 723
Goodness-of-fit on F^2	1.056
Final R indices [I>2sigma(I)]	R1 = 0.0761, wR2 = 0.2214
R indices (all data)	$R1 = 0.10\overline{44}, WR2 = 0.2456$
Largest diff. peak and hole	1.706 (in disordered thf) and -0.641 e.A^-3

	Х	у	Z	U(eq)
N(1)	3369(2)	2558(2)	4239(2)	31(1)
C(2)	3066(3)	1981(2)	3959(2)	33(1)
C(3)	3253(3)	1092(2)	4293(3)	46(1)
C(4)	3749(3)	794(3)	4929(3)	49(1)
C(5)	4042(3)	1377(2)	5236(2)	40(1)
C(6)	3837(3)	2264(2)	4878(2)	33(1)
N(7)	4058(2)	2948(2)	5101(2)	39(1)
P(1)	4559(1)	3019(1)	5798(1)	40(1)
N(8)	4914(2)	2111(2)	6352(2)	33(1)
C(9)	5359(2)	2081(2)	6998(2)	29(1)
C(10)	6425(2)	2001(2)	6842(2)	29(1)
C(11)	6845(3)	2076(2)	7456(2)	31(1)
C(12)	6257(3)	2194(2)	8235(2)	32(1)
C(13)	5218(3)	2188(2)	8394(2)	35(1)
C(14)	4743(2)	2104(2)	7813(2)	31(1)
C(15)	7144(3)	1795(2)	6030(2)	35(1)
C(16)	6872(3)	932(2)	5991(2)	42(1)
C(17)	8254(3)	1689(3)	6049(3)	53(1)
C(18)	7083(3)	2507(3)	5203(2)	49(1)
C(19)	6771(3)	2306(3)	8866(2)	39(1)
C(20)	7322(4)	3146(3)	8483(3)	58(1)
C(21)	6005(4)	2389(5)	9690(3)	96(2)
C(22)	7531(4)	1551(3)	9066(4)	76(2)
C(23)	3572(3)	2063(3)	8103(2)	40(1)
C(24)	3214(3)	1647(3)	9074(2)	56(1)
C(25)	3178(3)	1485(3)	7724(3)	51(1)
C(26)	3060(3)	2988(3)	7883(3)	65(1)
N(27)	2561(2)	2273(2)	3321(2)	35(1)
P(2)	2301(1)	3296(1)	2908(1)	30(1)
N(28)	1763(2)	3267(2)	2222(2)	31(1)
C(29)	1410(2)	4063(2)	1706(2)	31(1)
C(30)	2051(2)	4498(2)	922(2)	33(1)
C(31)	1713(3)	5321(2)	479(2)	37(1)
C(32)	769(3)	5721(2)	741(2)	35(1)
C(33)	122(3)	5237(2)	1482(2)	37(1)
C(34)	396(2)	4422(2)	1960(2)	33(1)
C(35)	3102(3)	4108(3)	505(2)	37(1)
C(36)	3914(3)	4144(3)	933(3)	54(1)
C(37)	3492(3)	4609(3)	-434(2)	59(1)
C(38)	3045(3)	3165(3)	523(3)	49(1)
C(39)	397(3)	6617(3)	248(3)	45(1)
C(40)	35(3)	7214(3)	834(3)	55(1)
C(41)	-488(3)	6509(3)	-65(3)	60(1)
C(42)	1229(3)	7063(3)	-523(3)	54(1)
C(43)	-434(3)	3927(2)	2725(2)	36(1)
C(44)	-1499(3)	4383(3)	2748(3)	46(1)
~~ ` ` ' /	1 1 1 / / / / /			1

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for nk331. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

An	hang

C(45)	-491(3)	3017(3)	2660(3)	48(1)
C(46)	-244(3)	3850(3)	3585(2)	51(1)
Li(1)	3508(4)	3831(4)	4176(4)	36(1)
C(1D)	1383(3)	4842(3)	4425(3)	64(1)
C(2D)	2502(3)	4893(3)	5228(2)	52(1)
N(1D)	2453(2)	4844(2)	4405(2)	38(1)
C(3D)	2891(3)	5584(2)	3720(2)	45(1)
C(4D)	4006(3)	5577(3)	3557(3)	46(1)
N(2D)	4542(2)	4749(2)	3378(2)	42(1)
C(5D)	4598(4)	4782(3)	2508(3)	64(1)
C(6D)	5546(3)	4626(3)	3534(3)	65(1)
Li(2)	2072(5)	1832(4)	2551(4)	41(1)
O(1E)	3151(2)	1142(2)	1971(2)	45(1)
C(1E)	3105(3)	545(3)	1524(3)	48(1)
C(2E)	4180(3)	299(3)	1108(3)	57(1)
C(3E)	4758(3)	407(3)	1682(3)	55(1)
C(4E)	4197(3)	1194(3)	1938(3)	48(1)
O(2E)	952(2)	1078(2)	2948(2)	56(1)
C(5E)	413(4)	808(4)	3828(3)	76(1)
C(6E)	-487(4)	400(4)	3887(4)	96(2)
C(7E)	-606(4)	663(5)	3022(4)	95(2)
C(8E)	424(3)	834(4)	2466(3)	69(1)
O(3E)	96(4)	3098(4)	5869(3)	126(2)
C(9E)	864(6)	2491(6)	5585(4)	125(2)
C(10E)	1292(6)	1974(6)	6248(4)	136(2)
C(11E)	544(6)	2120(6)	7071(5)	139(2)
C(12E)	165(6)	2988(5)	6710(4)	125(2)
O(4E)	6381(5)	1738(5)	1935(4)	158(2)
C(13E)	6026(7)	2442(6)	2262(6)	147(2)
C(14E)	6414(8)	2369(6)	2977(6)	163(2)
C(15E)	6547(9)	1449(6)	3356(6)	168(3)
C(16E)	6555(9)	1041(6)	2733(7)	166(2)
O(5E)	9040(15)	80(18)	10731(14)	290(11) s.o.f.= 0.50
C(17E)	9673(15)	513(14)	10944(12)	162(5) s.o.f.= 0.50
C(18E)	10652(13)	247(14)	10520(11)	150(5) s.o.f.= 0.50
C(19E)	10679(15)	79(17)	9720(12)	147(5) s.o.f.= 0.50
C(20E)	9595(16)	39(18)	9875(13)	$167(6)$ s.o.f.= $0.5\overline{0}$

Table 3. Bond lengths [A] and angles [deg] for nk331.

N(1)-C(2)	1.347(4)
N(1)-C(6)	1.363(4)
N(1)-Li(1)	2.069(6)
C(2)-C(3)	1.388(5)
C(2)-N(27)	1.395(4)
C(3)-C(4)	1.384(5)
C(4)-C(5)	1.380(5)
C(5)-C(6)	1.395(5)
C(6)-N(7)	1.383(4)
C(6)-Li(1)	2.482(7)

N(7)-P(1)	1.596(3)
N(7)-Li(1)	2.030(6)
P(1)-N(8)	1.579(3)
N(8)-C(9)	1.409(4)
C(9)-C(10)	1.415(5)
C(9)-C(14)	1.420(5)
C(10)-C(11)	1.395(4)
C(10)-C(15)	1.557(4)
C(11)-C(12)	1.404(5)
C(12)-C(13)	1.385(5)
C(12)-C(19)	1.533(4)
C(13)-C(14)	1.400(5)
C(14)-C(23)	1.556(5)
C(15)-C(17)	1.532(5)
C(15)-C(16)	1.532(5)
C(15)-C(18)	1.543(5)
C(19)-C(22)	1.509(6)
C(19)-C(20)	1.529(6)
C(19)-C(21)	1.531(6)
C(23)-C(25)	1.537(5)
C(23)-C(26)	1.539(6)
C(23)-C(24)	1.550(5)
N(27)-P(2)	1.616(3)
N(27)-Li(2)	2.004(6)
P(2)-N(28)	1.590(3)
P(2)-Li(2)	2.719(6)
N(28)-C(29)	1.427(4)
N(28)-Li(2)	2.218(7)
C(29)-C(30)	1.414(5)
C(29)-C(34)	1.430(5)
C(30)-C(31)	1.400(5)
C(30)-C(35)	1.555(5)
C(31)-C(32)	1.381(5)
C(32)-C(33)	1.402(5)
C(32)-C(39)	1.532(5)
C(33)-C(34)	1.384(5)
C(34)-C(43)	1.560(5)
C(35)-C(38)	1.534(5)
C(35)-C(36)	1.535(5)
C(35)-C(37)	1.538(5)
C(39)-C(41)	1.532(5)
C(39)-C(42)	1.538(6)
C(39)-C(40)	1.541(6)
C(43)-C(45)	1.530(5)
C(43)-C(44)	1.540(5)
C(43)-C(46)	1.544(5)
Li(1)-N(1D)	2.075(6)
Li(1)-N(2D)	2.093(7)
Li(1)-C(3D)	2.768(7)

C(1D)-N(1D)	1.475(5)
C(2D)-N(1D)	1.467(5)
N(1D)-C(3D)	1.455(5)
C(3D)-C(4D)	1.487(6)
C(4D)-N(2D)	1.504(5)
N(2D)-C(5D)	1.463(5)
N(2D)-C(6D)	1.467(5)
Li(2)-O(1E)	1.945(6)
Li(2)-O(2E)	1.953(7)
O(1E)-C(1E)	1.433(4)
O(1E)-C(4E)	1.450(4)
C(1E)-C(2E)	1.502(5)
C(2E)-C(3E)	1.509(6)
C(3E)-C(4E)	1.506(5)
O(2E)-C(8E)	1.428(5)
O(2E)-C(5E)	1.437(5)
C(5E)-C(6E)	1.464(7)
C(6E)-C(7E)	1.469(7)
C(7E)-C(8E)	1.478(7)
O(3E)-C(9E)	1.416(7)
O(3E)-C(12E)	1.435(7)
C(9E)-C(10E)	1.415(8)
C(10E)-C(11E)	1.552(8)
C(11E)-C(12E)	1.432(9)
O(4E)-C(13E)	1.388(8)
O(4E)-C(16E)	1.536(9)
C(13E)-C(14E)	1.449(9)
C(14E)-C(15E)	1.435(10)
C(15E)-C(16E)	1.425(10)
O(5E)-C(17E)	1.395(14)
O(5E)-C(20E)	1.465(14)
C(17E)-C(18E)	1.412(13)
C(18E)-C(19E)	1.475(13)
C(19E)-C(20E)	1.456(13)
C(2)-N(1)-C(6)	119.5(3)
C(2)-N(1)-Li(1)	150.3(3)
C(6)-N(1)-Li(1)	90.2(3)
N(1)-C(2)-C(3)	120.8(3)
N(1)-C(2)-N(27)	120.1(3)
C(3)-C(2)-N(27)	119.0(3)
C(4)-C(3)-C(2)	119.6(3)
C(5)-C(4)-C(3)	120.1(4)
C(4)-C(5)-C(6)	118.1(3)
N(1)-C(6)-N(7)	111.2(3)
N(1)-C(6)-C(5)	121.8(3)
N(7)-C(6)-C(5)	127.0(3)
N(1)-C(6)-Li(1)	56.5(2)
N(7)-C(6)-Li(1)	54.8(2)
C(5)-C(6)-Li(1)	177.3(3)
	· · · · /

C(6)-N(7)-P(1)	134.6(3)
C(6)-N(7)-Li(1)	91.3(3)
P(1)-N(7)-Li(1)	134.1(2)
N(8)-P(1)-N(7)	113.82(15)
C(9)-N(8)-P(1)	119.6(2)
N(8)-C(9)-C(10)	119.9(3)
N(8)-C(9)-C(14)	120.3(3)
C(10)-C(9)-C(14)	119.8(3)
C(11)-C(10)-C(9)	118.5(3)
C(11)-C(10)-C(15)	118.8(3)
C(9)-C(10)-C(15)	122.7(3)
C(10)-C(11)-C(12)	122.9(3)
C(13)-C(12)-C(11)	116.7(3)
C(13)-C(12)-C(19)	123.4(3)
C(11)-C(12)-C(19)	120.0(3)
C(12)-C(13)-C(14)	123.6(3)
C(13)-C(14)-C(9)	117.8(3)
C(13)-C(14)-C(23)	117.4(3)
C(9)-C(14)-C(23)	124.8(3)
C(17)-C(15)-C(16)	107.7(3)
C(17)-C(15)-C(18)	106.1(3)
C(16)-C(15)-C(18)	109.0(3)
C(17)-C(15)-C(10)	111.8(3)
C(16)-C(15)-C(10)	108.2(3)
C(18)-C(15)-C(10)	113.8(3)
C(22)-C(19)-C(20)	108.6(4)
C(22)-C(19)-C(21)	109.4(4)
C(20)-C(19)-C(21)	106.6(4)
C(22)-C(19)-C(12)	110.5(3)
C(20)-C(19)-C(12)	109.5(3)
C(21)-C(19)-C(12)	112.0(3)
C(25)-C(23)-C(26)	109.6(3)
C(25)-C(23)-C(24)	104.3(3)
C(26)-C(23)-C(24)	108.6(3)
C(25)-C(23)-C(14)	113.8(3)
C(26)-C(23)-C(14)	109.7(3)
C(24)-C(23)-C(14)	110.6(3)
C(2)-N(27)-P(2)	122.0(2)
C(2)-N(27)-Li(2)	140.9(3)
P(2)-N(27)-Li(2)	96.8(2)
N(28)-P(2)-N(27)	101.61(14)
N(28)-P(2)-Li(2)	54.67(17)
N(27)-P(2)-Li(2)	47.06(16)
C(29)-N(28)-P(2)	119.3(2)
C(29)-N(28)-L1(2)	151.0(2)
$P(2)-N(28)-L_1(2)$	89.52(19)
C(30)-C(29)-N(28)	120.4(3)
C(30)-C(29)-C(34)	119.0(3)
N(28)-C(29)-C(34)	120.7(3)

	110 4(0)
C(31)-C(30)-C(29)	118.4(3)
C(31)-C(30)-C(35)	117.5(3)
C(29)-C(30)-C(35)	124.0(3)
C(32)-C(31)-C(30)	123.9(3)
C(31)-C(32)-C(33)	116.0(3)
C(31)-C(32)-C(39)	123.7(3)
C(33)-C(32)-C(39)	120.2(3)
C(34)-C(33)-C(32)	123.8(3)
C(33)-C(34)-C(29)	118.4(3)
C(33)-C(34)-C(43)	118.0(3)
C(29)-C(34)-C(43)	123.6(3)
C(38)-C(35)-C(36)	109.6(3)
C(38)-C(35)-C(37)	105.9(3)
C(36)-C(35)-C(37)	106.0(3)
C(38)-C(35)-C(30)	111.1(3)
C(36)-C(35)-C(30)	112.0(3)
C(37)-C(35)-C(30)	111.9(3)
C(32)-C(39)-C(41)	109.0(3)
C(32)-C(39)-C(42)	112.5(3)
C(41)-C(39)-C(42)	108.5(3)
C(32)-C(39)-C(40)	109.5(3)
C(41)-C(39)-C(40)	109.2(4)
C(42)-C(39)-C(40)	108.1(3)
C(45)-C(43)-C(44)	105.8(3)
C(45)-C(43)-C(46)	109.5(3)
C(44)-C(43)-C(46)	106.2(3)
C(45)-C(43)-C(34)	110.3(3)
C(44)-C(43)-C(34)	112.5(3)
C(46)-C(43)-C(34)	112.2(3)
N(7)-Li(1)-N(1)	67.2(2)
N(7)-Li(1)-N(1D)	122.6(3)
N(1)-Li(1)-N(1D)	132 7(3)
N(7)-Li(1)-N(2D)	112.7(3)
N(1)-Li(1)-N(2D)	132.8(3)
N(1D)-Li(1)-N(2D)	89 1(3)
N(7)-Li(1)-C(6)	33.86(14)
N(1)-Li(1)-C(6)	33 32(14)
N(1D)-Li(1)-C(6)	137 9(3)
N(2D)-Li(1)-C(6)	128 9(3)
N(7)-Li(1)-C(3D)	139 1(3)
N(1)-Li(1)-C(3D)	150.3(3)
$N(1D)_{-L}i(1)_{-C}(3D)$	30.98(14)
N(2D) - Li(1) - C(3D)	50.76(10)
C(6) Li(1) C(3D)	168 2(3)
C(3D)-N(1D)-C(2D)	111 5(3)
C(3D) N(1D) C(1D)	108 6(2)
C(3D) - N(1D) - C(1D)	108.8(3)
C(2D) = N(1D) - C(1D)	100.0(3)
C(3D) = N(1D) + L(1)	101.0(3)
C(2D)-IN(1D)-LI(1)	103.8(3)

C(1D)-N(1D)-Li(1)	122.1(3)
N(1D)-C(3D)-C(4D)	113.2(3)
N(1D)-C(3D)-Li(1)	47.2(2)
C(4D)-C(3D)-Li(1)	76.2(2)
C(3D)-C(4D)-N(2D)	112.1(3)
C(5D)-N(2D)-C(6D)	112.1(3)
C(5D)-N(2D)-C(4D)	109.4(3)
C(6D)-N(2D)-C(4D)	109.6(3)
C(5D)-N(2D)-Li(1)	106.9(3)
C(6D)-N(2D)-Li(1)	116.5(3)
C(4D)-N(2D)-Li(1)	101.6(3)
O(1E)-Li(2)-O(2E)	101.3(3)
O(1E)-Li(2)-N(27)	110.5(3)
O(2E)-Li(2)-N(27)	123.4(3)
O(1E)-Li(2)-N(28)	129.0(3)
O(2E)-Li(2)-N(28)	119.9(3)
N(27)-Li(2)-N(28)	71.9(2)
O(1E)-Li(2)-P(2)	125.6(3)
O(2E)-Li(2)-P(2)	132.1(3)
N(27)-Li(2)-P(2)	36.18(13)
N(28)-Li(2)-P(2)	35.80(11)
C(1E)-O(1E)-C(4E)	109.2(3)
C(1E)-O(1E)-Li(2)	130.1(3)
C(4E)-O(1E)-Li(2)	120.6(3)
O(1E)-C(1E)-C(2E)	106.5(3)
C(1E)-C(2E)-C(3E)	102.9(3)
C(4E)-C(3E)-C(2E)	102.1(3)
O(1E)-C(4E)-C(3E)	105.2(3)
C(8E)-O(2E)-C(5E)	108.8(3)
C(8E)-O(2E)-Li(2)	129.1(3)
C(5E)-O(2E)-Li(2)	121.3(3)
O(2E)-C(5E)-C(6E)	107.4(4)
C(5E)-C(6E)-C(7E)	105.5(5)
C(6E)-C(7E)-C(8E)	104.8(5)
O(2E)-C(8E)-C(7E)	105.9(4)
C(9E)-O(3E)-C(12E)	102.9(5)
C(10E)-C(9E)-O(3E)	110.9(6)
C(9E)-C(10E)-C(11E)	105.2(6)
C(12E)-C(11E)-C(10E)	97.7(6)
C(11E)-C(12E)-O(3E)	110.9(6)
C(13E)-O(4E)-C(16E)	100.0(7)
O(4E)-C(13E)-C(14E)	111.3(7)
C(15E)-C(14E)-C(13E)	104.5(7)
C(16E)-C(15E)-C(14E)	106.3(8)
C(15E)-C(16E)-O(4E)	109.5(7)
C(17E)-O(5E)-C(20E)	103.4(14)
O(5E)-C(17E)-C(18E)	103.3(13)
C(17E)-C(18E)-C(19E)	112.7(12)
C(20E)-C(19E)-C(18E)	97.5(12)
C(19E)-C(20E)-O(5E)

111.9(13)

Table 4. Torsion angles [deg] for nk331.

C(6)-N(1)-C(2)-C(3)	-2.1(5)
Li(1)-N(1)-C(2)-C(3)	177.2(5)
C(6)-N(1)-C(2)-N(27)	178.3(3)
Li(1)-N(1)-C(2)-N(27)	-2.5(7)
N(1)-C(2)-C(3)-C(4)	0.6(6)
N(27)-C(2)-C(3)-C(4)	-179.7(4)
C(2)-C(3)-C(4)-C(5)	0.9(6)
C(3)-C(4)-C(5)-C(6)	-1.0(6)
C(2)-N(1)-C(6)-N(7)	-177.7(3)
Li(1)-N(1)-C(6)-N(7)	2.6(3)
C(2)-N(1)-C(6)-C(5)	2.0(5)
Li(1)-N(1)-C(6)-C(5)	-177.6(4)
C(2)-N(1)-C(6)-Li(1)	179.6(4)
C(4)-C(5)-C(6)-N(1)	-0.5(6)
C(4)-C(5)-C(6)-N(7)	179.2(4)
C(4)-C(5)-C(6)-Li(1)	-49(6)
N(1)-C(6)-N(7)-P(1)	178.0(3)
C(5)-C(6)-N(7)-P(1)	-1.7(6)
Li(1)-C(6)-N(7)-P(1)	-179.3(4)
N(1)-C(6)-N(7)-Li(1)	-2.7(3)
C(5)-C(6)-N(7)-Li(1)	177.6(4)
C(6)-N(7)-P(1)-N(8)	1.8(4)
Li(1)-N(7)-P(1)-N(8)	-177.1(3)
N(7)-P(1)-N(8)-C(9)	-179.3(2)
P(1)-N(8)-C(9)-C(10)	-97.7(3)
P(1)-N(8)-C(9)-C(14)	84.2(4)
N(8)-C(9)-C(10)-C(11)	172.5(3)
C(14)-C(9)-C(10)-C(11)	-9.3(5)
N(8)-C(9)-C(10)-C(15)	-10.1(5)
C(14)-C(9)-C(10)-C(15)	168.1(3)
C(9)-C(10)-C(11)-C(12)	2.5(5)
C(15)-C(10)-C(11)-C(12)	-175.0(3)
C(10)-C(11)-C(12)-C(13)	3.3(5)
C(10)-C(11)-C(12)-C(19)	-177.7(3)
C(11)-C(12)-C(13)-C(14)	-2.4(5)
C(19)-C(12)-C(13)-C(14)	178.6(3)
C(12)-C(13)-C(14)-C(9)	-4.2(5)
C(12)-C(13)-C(14)-C(23)	177.1(3)
N(8)-C(9)-C(14)-C(13)	-171.8(3)
C(10)-C(9)-C(14)-C(13)	10.1(5)
N(8)-C(9)-C(14)-C(23)	6.9(5)
C(10)-C(9)-C(14)-C(23)	-171.3(3)
C(11)-C(10)-C(15)-C(17)	1.0(5)
C(9)-C(10)-C(15)-C(17)	-176.4(3)
C(11)-C(10)-C(15)-C(16)	119.5(3)
C(9)-C(10)-C(15)-C(16)	-57.9(4)

C(11)-C(10)-C(15)-C(18)	-119.2(4)
C(9)-C(10)-C(15)-C(18)	63.4(4)
C(13)-C(12)-C(19)-C(22)	123.5(4)
C(11)-C(12)-C(19)-C(22)	-55.4(5)
C(13)-C(12)-C(19)-C(20)	-116.9(4)
C(11)-C(12)-C(19)-C(20)	64.2(4)
C(13)-C(12)-C(19)-C(21)	1.2(6)
C(11)-C(12)-C(19)-C(21)	-177.7(4)
C(13)-C(14)-C(23)-C(25)	-146.9(3)
C(9)-C(14)-C(23)-C(25)	34.4(5)
C(13)-C(14)-C(23)-C(26)	89.9(4)
C(9)-C(14)-C(23)-C(26)	-88.8(4)
C(13)-C(14)-C(23)-C(24)	-29.9(5)
C(9)-C(14)-C(23)-C(24)	151.4(4)
N(1)-C(2)-N(27)-P(2)	-1.2(4)
C(3)-C(2)-N(27)-P(2)	179.2(3)
N(1)-C(2)-N(27)-Li(2)	170.6(4)
C(3)-C(2)-N(27)-Li(2)	-9.0(6)
C(2)-N(27)-P(2)-N(28)	178.8(3)
Li(2)-N(27)-P(2)-N(28)	4.0(2)
C(2)-N(27)-P(2)-Li(2)	174.8(4)
N(27)-P(2)-N(28)-C(29)	-179.9(2)
Li(2)-P(2)-N(28)-C(29)	-176.3(3)
N(27)-P(2)-N(28)-Li(2)	-3.6(2)
P(2)-N(28)-C(29)-C(30)	90.0(3)
Li(2)-N(28)-C(29)-C(30)	-82.4(6)
P(2)-N(28)-C(29)-C(34)	-91.7(3)
Li(2)-N(28)-C(29)-C(34)	95.9(6)
N(28)-C(29)-C(30)-C(31)	-173.3(3)
C(34)-C(29)-C(30)-C(31)	8.4(4)
N(28)-C(29)-C(30)-C(35)	8.4(5)
C(34)-C(29)-C(30)-C(35)	-169.9(3)
C(29)-C(30)-C(31)-C(32)	-3.2(5)
C(35)-C(30)-C(31)-C(32)	175.2(3)
C(30)-C(31)-C(32)-C(33)	-2.3(5)
C(30)-C(31)-C(32)-C(39)	-179.1(3)
C(31)-C(32)-C(33)-C(34)	2.5(5)
C(39)-C(32)-C(33)-C(34)	179.5(3)
C(32)-C(33)-C(34)-C(29)	2.7(5)
C(32)-C(33)-C(34)-C(43)	-174.7(3)
C(30)-C(29)-C(34)-C(33)	-8.2(5)
N(28)-C(29)-C(34)-C(33)	173.5(3)
C(30)-C(29)-C(34)-C(43)	169.0(3)
N(28)-C(29)-C(34)-C(43)	-9.3(5)
C(31)-C(30)-C(35)-C(38)	-131.7(3)
C(29)-C(30)-C(35)-C(38)	46.6(4)
C(31)-C(30)-C(35)-C(36)	105.4(4)
C(29)-C(30)-C(35)-C(36)	-76.3(4)
C(31)-C(30)-C(35)-C(37)	-13.5(4)

C(29)-C(30)-C(35)-C(37)	164.7(3)
C(31)-C(32)-C(39)-C(41)	114.5(4)
C(33)-C(32)-C(39)-C(41)	-62.3(4)
C(31)-C(32)-C(39)-C(42)	-5.8(5)
C(33)-C(32)-C(39)-C(42)	177.4(3)
C(31)-C(32)-C(39)-C(40)	-126.1(4)
C(33)-C(32)-C(39)-C(40)	57.2(4)
C(33)-C(34)-C(43)-C(45)	126.6(3)
C(29)-C(34)-C(43)-C(45)	-50.6(4)
C(33)-C(34)-C(43)-C(44)	8.7(4)
C(29)-C(34)-C(43)-C(44)	-168.5(3)
C(33)-C(34)-C(43)-C(46)	-111.0(4)
C(29)-C(34)-C(43)-C(46)	71.8(4)
C(6)-N(7)-Li(1)-N(1)	1.8(2)
P(1)-N(7)-Li(1)-N(1)	-178.9(3)
C(6)-N(7)-Li(1)-N(1D)	128.9(4)
P(1)-N(7)-Li(1)-N(1D)	-51.8(5)
C(6)-N(7)-Li(1)-N(2D)	-126.7(3)
P(1)-N(7)-Li(1)-N(2D)	52.5(5)
P(1)-N(7)-Li(1)-C(6)	179.3(4)
C(6)-N(7)-Li(1)-C(3D)	164.2(4)
P(1)-N(7)-Li(1)-C(3D)	-16.5(7)
C(2)-N(1)-Li(1)-N(7)	178.8(5)
C(6)-N(1)-Li(1)-N(7)	-1.8(2)
C(2)-N(1)-Li(1)-N(1D)	64.9(7)
C(6)-N(1)-Li(1)-N(1D)	-115.8(4)
C(2)-N(1)-Li(1)-N(2D)	-80.7(7)
C(6)-N(1)-Li(1)-N(2D)	98.6(4)
C(2)-N(1)-Li(1)-C(6)	-179.3(7)
C(2)-N(1)-Li(1)-C(3D)	22.3(10)
C(6)-N(1)-Li(1)-C(3D)	-158.3(6)
N(1)-C(6)-Li(1)-N(7)	177.0(4)
C(5)-C(6)-Li(1)-N(7)	-133(6)
N(7)-C(6)-Li(1)-N(1)	-177.0(4)
C(5)-C(6)-Li(1)-N(1)	50(6)
N(1)-C(6)-Li(1)-N(1D)	99.0(5)
N(7)-C(6)-Li(1)-N(1D)	-78.0(4)
C(5)-C(6)-Li(1)-N(1D)	149(6)
N(1)-C(6)-Li(1)-N(2D)	-111.2(4)
N(7)-C(6)-Li(1)-N(2D)	71.8(4)
C(5)-C(6)-Li(1)-N(2D)	-61(6)
N(1)-C(6)-Li(1)-C(3D)	116.7(14)
N(7)-C(6)-Li(1)-C(3D)	-60.3(13)
C(5)-C(6)-Li(1)-C(3D)	167(6)
N(7)-Li(1)-N(1D)-C(3D)	132.8(4)
N(1)-Li(1)-N(1D)-C(3D)	-139.4(4)
N(2D)-Li(1)-N(1D)-C(3D)	16.1(3)
C(6)-Li(1)-N(1D)-C(3D)	173.1(4)
N(7)-Li(1)-N(1D)-C(2D)	16.9(4)

N(1)-Li(1)-N(1D)-C(2D)	104.7(4)
N(2D)-Li(1)-N(1D)-C(2D)	-99.8(3)
C(6)-Li(1)-N(1D)-C(2D)	57.2(5)
C(3D)-Li(1)-N(1D)-C(2D)	-115.9(3)
N(7)-Li(1)-N(1D)-C(1D)	-106.2(4)
N(1)-Li(1)-N(1D)-C(1D)	-18.3(6)
N(2D)-Li(1)-N(1D)-C(1D)	137.2(3)
C(6)-Li(1)-N(1D)-C(1D)	-65.9(5)
C(3D)-Li(1)-N(1D)-C(1D)	121.1(4)
C(2D)-N(1D)-C(3D)-C(4D)	68.8(4)
C(1D)-N(1D)-C(3D)-C(4D)	-171.4(3)
Li(1)-N(1D)-C(3D)-C(4D)	-41.3(4)
C(2D)-N(1D)-C(3D)-Li(1)	110.2(3)
C(1D)-N(1D)-C(3D)-Li(1)	-130.0(3)
N(7)-Li(1)-C(3D)-N(1D)	-71.0(5)
N(1)-Li(1)-C(3D)-N(1D)	74.9(6)
N(2D)-Li(1)-C(3D)-N(1D)	-161.2(3)
C(6)-Li(1)-C(3D)-N(1D)	-23.3(13)
N(7)-Li(1)-C(3D)-C(4D)	70.4(5)
N(1)-Li(1)-C(3D)-C(4D)	-143.8(6)
N(1D)-Li(1)-C(3D)-C(4D)	141.3(4)
N(2D)-Li(1)-C(3D)-C(4D)	-19.9(2)
C(6)-Li(1)-C(3D)-C(4D)	118.0(13)
N(1D)-C(3D)-C(4D)-N(2D)	56.0(4)
Li(1)-C(3D)-C(4D)-N(2D)	26.1(3)
C(3D)-C(4D)-N(2D)-C(5D)	77.5(4)
C(3D)-C(4D)-N(2D)-C(6D)	-159.1(3)
C(3D)-C(4D)-N(2D)-Li(1)	-35.2(4)
N(7)-Li(1)-N(2D)-C(5D)	130.1(3)
N(1)-Li(1)-N(2D)-C(5D)	50.8(5)
N(1D)-Li(1)-N(2D)-C(5D)	-104.7(3)
C(6)-Li(1)-N(2D)-C(5D)	95.0(4)
C(3D)-Li(1)-N(2D)-C(5D)	-95.1(3)
N(7)-Li(1)-N(2D)-C(6D)	3.8(4)
N(1)-Li(1)-N(2D)-C(6D)	-75.5(5)
N(1D)-Li(1)-N(2D)-C(6D)	129.0(3)
C(6)-Li(1)-N(2D)-C(6D)	-31.3(5)
C(3D)-Li(1)-N(2D)-C(6D)	138.6(3)
N(7)-Li(1)-N(2D)-C(4D)	-115.3(3)
N(1)-Li(1)-N(2D)-C(4D)	165.4(4)
N(1D)-Li(1)-N(2D)-C(4D)	9.9(3)
C(6)-Li(1)-N(2D)-C(4D)	-150.4(3)
C(3D)-Li(1)-N(2D)-C(4D)	19.5(2)
C(2)-N(27)-Li(2)-O(1E)	-50.3(6)
P(2)-N(27)-Li(2)-O(1E)	122.8(3)
C(2)-N(27)-Li(2)-O(2E)	69.6(6)
P(2)-N(27)-Li(2)-O(2E)	-117.4(4)
C(2)-N(27)-Li(2)-N(28)	-176.0(4)
P(2)-N(27)-Li(2)-N(28)	-2.97(17)

$(1/2)$ $N(27)$ $L^{1}(2)$ $D(2)$	172.0(5)
C(2)-N(2/)-L1(2)-P(2)	-1/3.0(5)
C(29)-N(28)-Li(2)-O(1E)	/4.2(/)
P(2)-N(28)-L1(2)-O(1E)	-99.1(4)
C(29)-N(28)-Li(2)-O(2E)	-64.9(7)
P(2)-N(28)-L1(2)-O(2E)	121.7(3)
$C(29)-N(28)-L_1(2)-N(27)$	176.4(5)
P(2)-N(28)-Li(2)-N(27)	3.00(17)
C(29)-N(28)-Li(2)-P(2)	173.4(6)
N(28)-P(2)-Li(2)-O(1E)	109.2(4)
N(27)-P(2)-Li(2)-O(1E)	-75.6(4)
N(28)-P(2)-Li(2)-O(2E)	-84.0(4)
N(27)-P(2)-Li(2)-O(2E)	91.2(4)
N(28)-P(2)-Li(2)-N(27)	-175.2(3)
N(27)-P(2)-Li(2)-N(28)	175.2(3)
O(2E)-Li(2)-O(1E)-C(1E)	31.6(5)
N(27)-Li(2)-O(1E)-C(1E)	164.0(3)
N(28)-Li(2)-O(1E)-C(1E)	-113.1(4)
P(2)-Li(2)-O(1E)-C(1E)	-158.4(3)
O(2E)-Li(2)-O(1E)-C(4E)	-149.1(3)
N(27)-Li(2)-O(1E)-C(4E)	-16.7(5)
N(28)-Li(2)-O(1E)-C(4E)	66.2(5)
P(2)-Li(2)-O(1E)-C(4E)	20.9(5)
C(4E)-O(1E)-C(1E)-C(2E)	-6.9(4)
Li(2)-O(1E)-C(1E)-C(2E)	172,4(4)
O(1E)-C(1E)-C(2E)-C(3E)	27 6(4)
C(1E) - C(2E) - C(3E) - C(4E)	-36 8(4)
C(1E) - O(1E) - C(4E) - C(3E)	-16.8(4)
$L_{i}(2)-O(1E)-C(4E)-C(3E)$	163.8(3)
C(2E)-C(3E)-C(4E)-O(1E)	33 2(4)
O(1E) - U(2E) - O(2E) - O(2E)	-67 2(5)
N(27)-Li(2)-O(2E)-C(8E)	168 7(4)
N(28)-Li(2)-O(2E)-C(8E)	81 6(5)
P(2) - I(2) - O(2E) - O(8E)	123.7(A)
O(1E) I i(2) O(2E) C(5E)	123.7(4) 124.8(4)
$N(27) L_{i}(2) O(2E) C(5E)$	0.7(6)
N(27)- $Ei(2)$ - $O(2E)$ - $O(5E)$	86 5(5)
$P(2) \downarrow i(2) \cap (2E) \cap (5E)$	-80.3(5)
$\Gamma(2)$ -LI(2)-O(2E)-C(3E) C(2E) Q(2E) C(5E) C(6E)	-44.3(0)
$C(\delta E) - C(2E) - C(\delta E) - C(\delta E)$	-1.1(0)
D(2E) - C(5E) - C(5E) - C(5E)	109.1(4)
O(2E)- $O(5E)$ - $O(6E)$ - $O(7E)$	-13.8(7)
C(5E) - C(6E) - C(7E) - C(8E)	20.1(7)
U(3E)-U(2E)-U(8E)-U(7E)	1/.3(0)
L1(2)-O(2E)-C(8E)-C(7E)	-151./(4)
C(6E)-C(7E)-C(8E)-O(2E)	-26.9(6)
C(12E)-O(3E)-C(9E)-C(10E)	6.5(10)
O(3E)-C(9E)-C(10E)-C(11E)	14.9(11)
C(9E)-C(10E)-C(11E)-C(12E)	-29.4(10)
C(10E)-C(11E)-C(12E)-O(3E)	35.5(9)
C(9E)-O(3E)-C(12E)-C(11E)	-28.2(9)

C(16E)-O(4E)-C(13E)-C(14E)	27.3(10)
O(4E)-C(13E)-C(14E)-C(15E)	-30.2(12)
C(13E)-C(14E)-C(15E)-C(16E)	18.1(12)
C(14E)-C(15E)-C(16E)-O(4E)	-2.2(13)
C(13E)-O(4E)-C(16E)-C(15E)	-15.1(11)
C(20E)-O(5E)-C(17E)-C(18E)	-32(2)
O(5E)-C(17E)-C(18E)-C(19E)	32(2)
C(17E)-C(18E)-C(19E)-C(20E)	-15(2)
C(18E)-C(19E)-C(20E)-O(5E)	-6(3)
C(17E)-O(5E)-C(20E)-C(19E)	25(3)

R = Me = dmpmR = Et = depmR = Ph = dppm

 PR_2

R

 R^1

 $R = Tms, R^1 = H$

31a

Θ

31c

34

 $R_1 = H, CH_3; R_2 = CH_3, C(CH_3)_3$

IIIIIII

P

15 Literatur und Anmerkungen

- [1] J. Emsley, "Phosphor-ein Element auf Leben und Tod", Wiley-VCH, Weinheim 2001.
- [2] K. Ziegler, E. Holzkamp, H. Breil, H. Martin, *Angew. Chem.*, **1955**, *76*, 545.
- [3] G. Natta, Angew. Chem., **1956**, 68, 393.
- [4] W. Keim, A. Behr, G. Schmitt, "Technische Produkte und Prozesse", 1. Aufl., Verlag Salle-Sauerländer, Frankfurt/Main, 1986.
- [5] W. Kaminsky, Spektrum der Wissenschaft, Digest 1/2000, 55-59.
- [6] H. H. Brintzinger, D. Fischer, R. Mühaupt, B. Rieger, R. Waymouth, *Angew. Chem.* 1995, 107, 1255.
- [7] W. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chem., 1985, 97, 507.
- [8] W. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chem. Int. Ed. Engl., 1985, 24, 507.
- K. Weissermel, H.-J. Arpe, "Industrielle Organische Chemie: Bedeutende Vor- und Zwischenprodukte", 4., überarb. und erw. Aufl., VCH Verlagsgesellschaft, Weinheim, 1994.
- [10] L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc., 1995, 117, 6414.
- [11] T.R. Younkin, E.F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, D.A. Bansleben, Science, 2000, 287, 460.
- [12] a) R. Noyori, Angew. Chem. Int. Ed., 2002, 41, 2008-2022.
 b) K. B. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 2024-2032.
- [13] a) A. Jouaiti, A. A. Badri, M. Geoffroy, G. Bernardinelli, J. Organometal. Chem., 1997, 529(1-2), 143-149.
 b) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Chem. Comm., 1996, 3, 437-8.
 c) A. Jouaiti, M. Geoffroy, G. Terron, G. Bernardinelli, J. Am. Chem. Soc., 1995, 117(8), 2251-8.
 d) A. Jouaiti, M. Geoffroy, G. Bernardinelli, J. Chem. Soc. Dalt. Trans., Inorg. Chem.(1972-1999), 1994, 11, 1685-8.
 e) A. Jouaiti, M. Geoffroy, G. Bernardinelli, Tetrahedron Lett., 1993, 34(21), 3413
 - f) A. Jouaiti, M. Geoffroy, G. Bernardinelli, *Tetrahedron Lett.*, **1992**, *33(35)*, 5071-4.

16.

- [14] a) R. Appel, F. Knoll, I. Ruppert, *Angew. Chem.*, **1981**, *93*, 771.
 b) P. Jutzi, *Chemie in unserer Zeit*, **1981**, *15*, 149.
- [15] C. N. Smit, F. M. Lock, F. Bickelhaupt, *Tetrahedron Lett.*, **1984**, *25*, 3011.
- [16] J. Escudie, C. Couret, J. Satge, M. Adrianarison, J. D. Andriamizaka, J. Am. Chem. Soc., 1985, 107, 3378.
- [17] C. Couret, J. Escudie, J. Satge, M. Adrianarison, J. D. Andriamizaka, J. Am. Chem. Soc., 1985, 107, 8280.
- [18] a) E. Niecke, W. Flick, *Angew. Chem.*, **1973**, *85*, 586.
 b) E. Niecke, O. J. Scherer, Nachr. Chem. Techn., **1975**, *23*, 395.
- [19] a) M. Yoshifuji, I. Shima, N. Inamoto, J. Am. Chem. Soc., 1981, 103, 4587.
 b) A. H. Cowley, Polyhedron, 1984, 389.
- [20] a) A. B. Burg, J. Inorg. Nucl. Chem., 1971, 1575.
 b) E. Fluck, *Top. Phosphorus Chem.*, 1980, *10*, 194.
 c) A. Schmidpeter, G. Burget, Angew. Chem., 1985, *97*, 602.
- [21] a) J. Escudie, C. Couret, H. Ranaivonjatovo, J.-G. Wolf, *Tetrahedron Lett.*, 1983, 24, 3625.
 - b) A. H. Cowley, Polyhedron, 1984, 389.
 - c) L. N. Markovskii, V. P. Romanenko, E. O. Klebansky, Zh. Obshch. Khim., 1985, 55, 2141.

d) A. H. Cowley, J. G. Lasch, N. C. Norman, M. Pakulski, B. R. Whittlesey, J. Chem. Soc. Chem. Commun., 1983, 881.

- [22] F. Zurmühlen, M. Regitz, Angew. Chemie, 1987, 99, 65.
- [23] G. Becker, Z. Anorg. Allg. Chem., 1976, 423, 242.
- [24] M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587.
- [25] R. S. Mulliken, J. Am. Chem. Soc., 1950, 72, 4493.
- [26] K. S. Pitzer, J. Am. Chem. Soc., 1948, 70, 2140.
- [27] T. E. Gier, J. Am. Chem. Soc., 1961, 83, 1769.
- [28] G. Märkl, Angew. Chem., **1966**, 78, 907.
- [29] K. Dimroth, P. Hoffmann, Angew. Chem., 1964, 76, 433.
- [30] K. Dimroth, P. Hoffmann, *Chem. Ber.*, **1966**, *99*, 1325.
- [31] G. Becker, G. Gresser, W. Uhl, Z. Naturforsch., 1981, 36b, 16.
- [32] M. Yoshifuji, K. Toyota, K. Shibajama, N. Inamoto, *Tetrahedron Lett.*, 1984, 25, 1809.

- [33] R. Appel, C. Cassar, M. Immenkeppel, F. Knoch, *Angew. Chem.*, **1984**, *96*, 905.
- [34] L. Nyulaszi, T. Veszpremi, J. Reffy, J. Phys. Chem., 1993, 97, 4011.
- [35] R. Appel, R. Zimmermann, *Tetrahedron Lett.*, **1983**, *24*, 3591.
- [36] Th. Van der Knaap, Th. C. Klebach, P. Visser, R. Lourens, F. Bickelhaupt, *Tetrahedron Lett.*, **1984**, *25*, 991.
- [37] M. Yoshifuji, K. Toyota, N. Inamoto, *Tetrahedron Lett.*, **1985**, *26*, 1727.
- [38] R. Appel, V. Barth, F. Knoll, I. Ruppert, Angew. Chem., 1979, 91, 936.
- [39] T. Mackewitz, M. Regitz, *Synthesis*, **1998**, 125
- [40] Th. C. Klebach, R. Lourens, F. Bickelhaupt, J. Am. Chem. Soc., 1978, 100, 4886.
- [41] F. Mathey, *Angew. Chem.*, **2003**, *115*, 1616-1643.
- [42] J. Waluk, H.-P. Klein, A.J. Asche III, J. Michl, Organometallics, 1989, 8, 2804.
- [43] W.W. Schoeller, J. Chem. Soc. Chem. Commun., 1985, 334.
- [44] L. Weber, Eur. J. Inorg. Chem., 2000, 2425.
- [45] a) E. P. O. Fuchs, H. Heydt, M. Regitz, W. W. Schoeller, T. Busch, *Tetrahedron Lett.*, **1989**, *30*, 5111.
 - b) H. Oehme, E. Leissring, H. Meyer, Tetrahedron Lett., 1980, 21,1141.
 - c) G. Becker, O. Mundt, Z. Anorg. Allg. Chem., 1980, 462,130.
 - d) B. Dechamps, F. Mathey, J. Chem. Soc. Chem. Commun., 1985, 1010.
 - e) B. Dechamps, F. Mathey, J. Organomet. Chem., 1988, 354, 83.
- [46] a) M. W. Schmidt, P. N. Truong, M. S. Gordon, J. Am. Chem. Soc., 1987, 109, 5217.
 b) P. v. R. Schleyer, D. Kost, J. Am. Chem. Soc., 1988, 110, 2105.
- [47] S. Lacombe, D. Goubeau, J.-L. Laboich, B. Pellerin, J. M. Denis, G. Pfister-Guillouzo, J. Am. Chem. Soc., 1988, 110; 6964.
- [48] a) Peyerimhoff, *Can. J. Chem.*, **1985**, 63, 1594.
 b) P. Masclep, *J. Electron. Spec.*, **1973**, 2, 25.
- [49] L. N. Markovski, V.D. Romanenko, *Tetrahedron*, **1989**, *45*, 6019.
- [50] R. Appel in "Multiple Bonds and Low Coordination in Phosphorus Chemistry", (Hrsg.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, 1990, 157-269.
- [51] K. B. Dillon, F. Mathey, J. F. Nixon, "Phosphorus: The Carbon Copy", Wiley, Chichester, **1998**.
- [52] F. Mathey, Acc. Chem. Res., 1992, 25, 90.
- [53] E. Niecke, A. Ruban, M. Raab, *Science of Synthesis*, 27.22 Alkylidenephosphines, 937-968, Thieme Verlag, 2004.
- [54] a) R. Appel, V. Barth, *Angew. Chem.*, **1979**, *91*, 497.

b) R. Appel, V. Barth, M. Halsstenberg, G. Huttner, J. von Seyerl, Angew. Chem., 1979, 91, 935.

- [55] R. Appel, B. Laubach, M. Siray, *Tetrahedron Lett.*, 1984, 25, 4447.
- [56] a) G. Becker, G. Gresser, W. Uhl, Z. Anorg. Allg. Chem., 1980, 463, 144.
 b) R. Appel, P. Fölling, L. Krieger, M. Siray, F. Knoch, Angew. Chem., 1984, 96, 981.
- [57] a) K. Issleib, H. Schmidt, H. Meyer, J. Organomet. Chem., 1978, 160, 47.
 b) R. Appel, B. Laubach, *Tetrahedron Lett.*, 1980, 21, 2497.
- [58] K. Issleib, H. Schmidt, H. Meyer, J. Organomet. Chem., 1980, 192, 33.
- [59] M. J. Hopkinson, H. W. Kroto, J. F. Nixon, N. P. C. Simmons, J. Chem. Soc. Chem. Commun., 1976, 513.
- [60] H. E. Eshtiagh-Hosseini, H. W. Kroto, J. F. Nixon, J. Chem. Soc. Chem. Commun., 1979, 653.
- [61] K. Issleib, H. Schmidt, E. Leißring, Z. Chem., 1986, 26, 406.
- [62] V. D. Romanenko, A. W. Ruban, M. I. Powolowski, L. K. Pojatschenko, L. N. Markovskii, Z. Obshch. Khim., 1986, 56, 1186.
- [63] M. Immenkeppel, Dissertation, Universität Bonn, **1987**, 42.
- [64] K. Issleib, R. Vollmer, H. Oehme, H. Meyer, *Tetrahedron Lett.*, **1978**, *19*, 441.
- [65] K. Issleib, R. Vollmer, *Tetrahedron Lett.*, **1980**, *21*, 3483.
- [66] L. N. Markovski, V. P. Romanenko, Z. Obshch. Khim., 1982, 52, 1925.
- [67] L. N. Markovski, V. P. Romanenko, A.V. Kirsanov, *Phosphorus Sulfur*, 1983, 18, 31.
- [68] R. Appel, M. Immenkeppel, Z. Anorg. Allg. Chem., 1987, 553, 7.
- [69] a) R. Appel, F. Knoch, H. Kunze, Angew. Chem. 1984, 96, 159. T. Knaap v. d., T. C. Klebach, R. Lourens, M. Vos, M. Bickelhaupt, J. Am. Chem. Soc., 1983, 105, 4026. E. Niecke, D. Wildbredt, J. Chem. Soc. Chem. Commun., 1981, 72. M. Cairo, R.H. Neilson, W.H. Watson, P. Wisian-Neilson, Ze-Min Xia, J. Chem. Soc. Chem. Commun., 1984, 698.
 - b) R. Appel, J. Peters, A. Westerhaus, Angew. Chem., 1982, 94, 76.
 - c) A. Merien, J. P. Majoral, M. Revel, J. Navech, Tetrahedron Lett. 1983, 24, 1975.
- [70] R. Appel, C. Cassar, M. Immenkeppel, *Tetrahedron Lett.*, **1985**, *26*, 3551.
- [71] A. A. Prishchenko, I. F. Lutsenko, Zh. Obshch. Kim., 1981, 51, 2630.
- [72] a) E. Niecke, M. Nieger, O. Schmidt, D. Gudat, W. W. Schoeller, J. Am. Chem. Soc., 1999, 121, 2389.

b) T. Baumgartner, D. Gudat, M. Nieger, E. Niecke, T.J. Schiffer, J. Am. Chem. Soc., 1999, 121(25), 5953-5960.

- [73] M. Van der Sluis, F. Bickelhaupt, N. Veldmann, H. Kooigman, A. L. Spek, W. Eisfeld, M. Regitz, *Can. J. Chem.*, 1995, *128*, 465.
- [74] M. van der Sluis, Dissertation, Vrije Universiteit te Amsterdam, 1997.
- [75] R. Appel, A. Westerhaus, Angew. Chem., 1980, 92, 578.
- [76] R. Appel, A. Westerhaus, Angew. Chem. Ed. Engl. 1980, 99, 556.
- [77] T. C. Klebach, R. Lourens, F. Bickelhaupt, C. H. Stam, A. van Herk, J. Organomet. Chem., 1981, 210, 211.
- [78] J.-P. Lorenz, W. Pohl, H. Nöth, M. Schmidt, J. Organomet. Chem., 1994, 475, 211.
- [79] D. Gudat, M. Nieger, K. Schmitz, L. Szarvas, *Chem. Commun.*, 2002, 1820.
- [80] R. Appel, C. Cassar, F. Knoch, J. Organomet. Chem., 1985, 293, 213.
- [81] K. Knoll, G. Huttner, M. Wasiucionek, L. Zsolnai, Angew. Chem., 1984, 96,
- [82] A. Marinetti, L. Ricard, F. Mathey, *Organometallics*, **1990**, *9*, 788.
- [83] a) N. H. Tran Huy, J. Fischer, F. Mathey, J. Am. Chem. Soc., 1987, 109, 3475.
 b) A. Marinetti, S. Bauer, L. Ricard, F. Mathey, J. Chem. Soc. Dalton Trans., 1991, 597.
- [84] a) S. Fleming, M. K. Lupton, K. Jekot, *Inorg. Chem.*, 1972, *11*, 2534.
 b) B. E. Marayanoff, R. O. Hutchins, *J. Org. Chem.*, 1972, *37*; 3475.
- [85] E. Niecke, W. Flick, S. Pohl, Angew. Chem., 1976, 88, 305.
- [86] E. Niecke, W. Bitter, Angew. Chem., 1975, 87, 34.
- [87] a) E. Niecke, W. Bitter, *Chem. Ber.*, **1976**, *109*, 415.
 b) G. V. Roeschenthaler, K. Sauerbrey, R. Schmutzler, *Chem. Ber.*, **1978**, *111*, 3105.
- [88] W. W. Schoeller, E. Niecke, J. Chem. Soc. Chem. Commun., 1982.
- [89] D. Gudat, E. Niecke, W. Sachs, P. Rademacher. Z. Anorg. Allg. Chem., 1987, 545, 7-23.
- [90] D. Gudat, Dissertation, Universität Bielefeld, **1987**.
- [91] E. Despagnet, H. Gornitzka, A.B. Rozhenko, W. W. Schoeller, D. Bourissou, G. Betrand, *Angew. Chem., Int. Ed.*, 2002, 41, 2835-2837.
- [92] A. N. Chernega, A. A. Korkin, M. Yu. Antipin, Yu. T. Struchkov, A. V. Ruban, V. D. Romanenko, *Zh. Obshch. Khim.*, 1989, 59, 2243-2253.
- [93] a) E. Niecke, D. Gudat, W.W. Schoeller, P. Rademacher, J. Chem. Soc. Chem. Commun., 1985, 1050-1051.

b) E. Niecke, J. Böske, D. Gudat, W. Güth, M. Lysek, E. Symalla, Nova Acta Leopoldina, 1985, 59, 83.

- [94] O. J. Scherer, N. Kuhn, *Chem. Ber.*, **1974**, *107*, 2123.
- [95] E. Niecke, D. Gudat, E. Symalla, Angew. Chem. 98, 1986, 817.
- [96] a) E. Niecke, R. Rüger, W. W. Schoeller, *Angew. Chem.* 1981, 93, 1110.
 b) V. D. Romanenko, A. V. Ruban, L. N. Markovski, *J. Chem. Soc. Chem. Commun.*, 1983, 187.
- [97] E. Niecke, M. Lysek, E. Symalla, *Chimia*, **1986**, *40*, 202.
- [98] E. Niecke, M. Nieger, F. Reichert, Angew. Chem., 1988, 100, 1781.
- [99] F. Reichert, Dissertation, Universität Bonn, **1990**.
- [100] A. M. Caminade, C. Roques, N. Dufour, D. Colombo, F. Gouce, J. P. Majoral, *Tetrahedron Lett.*, 30, **1989**, 6869.
- [101] E. Niecke in "Multiple Bonding and Low Coordination in Phosphorus Chemistry", Eds.: M. Regitz, O. J. Scherer, Thieme Verlag, Stuttgart, 1990.
- [102] E. Niecke, D. Gudat, Angew. Chem., 1991, 103, 251-270.
- [103] R. Detsch, Dissertation, Universität Bonn, 1992.
- [104] R. Detsch, E. Niecke, M. Nieger, F. Reichert, Chem. Ber., 1992, 125, 321-330.
- [105] E. Niecke, R. Detsch, M. Nieger, Chem. Ber., 1990, 123, 797-799.
- [106] O. J. Scherer, Angew. Chem., 1985, 97, 915-917.
- [107] O. J. Scherer, R. Konrad, E. Guggolz, M. L. Ziegler, Angew. Chem., 1982, 94, 309.
- [108] O. J. Scherer, R. Konrad, E. Guggolz, M. L. Ziegler, *Chem. Ber.*; 1985, 118, 1.
- [109] E. Niecke, B. Kramer, M. Nieger, Organometallics, 1991, 10(1), 10-11.
- [110] S. Pohl, J. Organomet. Chem., 1977, 142, 185.
- [111] O. J. Scherer, R. Walter, W. S. Sheldrick, Angew. Chem., 1985, 97, 525.
- [112] O. J. Scherer, R. Walter, P. Bell, Chem. Ber., 1987, 120, 1885.
- [113] D. Gudat, E. Niecke, J. Chem. Soc. Chem. Commun., 1987, 10.
- [114] O. J. Scherer, R. Walter, W. S. Sheldrick, Angew. Chem., 1985, 97, 132.
- [115] O. J. Scherer, J. Kerth, R. Anselmann, W. S. Sheldrick, Angew. Chem., 1983, 95, 1003.
- [116] A. Arif, A. H. Cowley, M. Pakulski, J. Am. Chem. Soc.; 1985, 107, 2553
- [117] W. Reppe, W.J. Schweckendiek, Annalen, 1948, 104, 560.
- [118] a) L. H. Slaugh, R. D. Mullineaux, U. S. Pat. 3,239, 569 und 3,239,570, 1966, Shell.
 b) J. Organomet. Chem., 1968, 13, 469.
- [119] W. C. Drinkard, R. V. Lindsey, U. S. Pat., 3,655,723, 1970, DuPont.

- [120] J.F. Young, J. A. Osborn, F. A. Jardine, G. Wilkinson, J. Chem. Soc., Chem. Commun., 1965, 131.
- [121] C. O'Connor, G. Wilkinson, *Tetrahedron Lett.*, **1969**, 18, 1375.
- [122] C. A. Tolman, Chem. Rev., 1977, 77, 3.
- [123] K. Issleib, D. W. Müller, Chem. Ber., 1959, 92, 3175.
- [124] R. F. Heck, D. S. Breslow, J. Am. Chem. Soc., 1962, 84, 2499.
- [125] a) T. P. Dang, H. B. Kagan, *Chem. Commun.*, 1971, 481.
 b) W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauf, *J. Am. Chem. Soc.*, 1975, 97, 2567.
- [126] R. R. Schrock, J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 3089.
- [127] D. L. Thorn, R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 2567.
- [128] A. F. Holleman, N. Wiberg, 101. Auflage, Walter de Gruyter, 1995.
- [129] A. R. Sanger, J. Chem. Soc., Dalton Trans., 1979, 1971
- [130] J. C. Poulin, T. P. Dang, H. B. Kagan, J. Organomet. Chem., 1975, 84, 87.
- [131] W. S. Knowles, M. J. Sabacky, J. Chem. Soc., Chem. Commun., 1971, 481.
- [132] B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, 3. Edition, J. Wiley & Sons, Inc., 1994.
- [133] a) H. D. Empshall, E. M. Hyde, C. E. Jones, B. L. Shaw, J. Chem. Soc. Dalton Trans., 1974, 480.
 b) B. L. Shaw, M. F. Uttley, J. Chem. Soc. Chem. Commun., 1974, 918.
 c) C. Crocker, R. J. Errington, W. S. McDonald, K. J. Odell, B. L. Shaw, R. J. Goodfellow, J. Chem. Soc. Chem. Commun., 1979, 498.
 - d) C. J. Moulton, B. L. Shaw, J. Chem. Soc. Dalton Trans., 1976, 1020.
- [134] M. E. van der Boom, D. Milstein, *Chem. Rev.*, **2003**, *103*, 1759-1792.
- [135] G. van Koten, M. Albrecht, Angew. Chem., Int. Ed., 2001, 40, 3750-3781.
- [136] a) I. P. Beletskaya, A. V. Cheprakov, *Chem. Rev.*, 2000, *100*, 3009.
 b) S. Sjovall, O. F. Wendt, C. Andersson, *Chem. Soc., Dalton Trans.*, 2002, *2*, 1287.
 c) G. T. Crisp, *Chem. Soc. Rev.*, 1998, *27*, 427.
- [137] W. V. Dahlhoff, S. M. Nelson, J. Chem. Soc., 1971, 2184.
- [138] a) W. Schirmer, U. Flörke, H. J. Haupt, Z. Anorg. Allg. Chem., 1987, 545, 83-97.
 b) W. Schirmer, U. Flörke, H. J. Haupt, Z. Anorg. Allg. Chem., 1989, 239-55.
- [139] C. Kolczewski, R. Püttner, O. Plashkevych, H. Algren, V. Stämmler, M. Martins, G. Snell, A. S. Schlachter, M. Sant'Anna, G. Kaindl, L.G.M. Petterson, J. Chem. Physics, 2001, 115, 14, 6426-6437.

- [140] E. Breitmeier, G. Jung, *Organische Chemie II*, Thieme Verlag, 2. Auf., **1983**.
- [141] A. Fischer, M. W. Morgan, J. Organomet. Chem., 1977, 136, 323-332.
- [142] J. March, Adv. Org. Chem., Int. Student Ed., Mc Graw-Hill Ins., 4. Auf., 1992.
- [143] P.C. Andrews, D. R. Armstrong, C. L. Raston, B. A. Roberts, B. W. Skelton, A. H. White, *J. Chem. Soc. Dalton Trans.*, 2001, 996-1006.
- [144] P. Braunstein, F. Naud, Ang. Chem. Int. Ed., 2001, 40, 680-699.
- [145] W. C. Davies, F.G. Mann, J. Chem. Soc., 1944, 276.
- [146] P. H. M. Budzelaar, J. H. G. Frijns, A. G. Orpen, Organometallics, 1990, 9, 1222
- [147] A. Maisonnet, J. P. Farr, M. M. Olmstead, C. T. Hunt, A. L. Balch, Inorg. Chem., 1982, 21, 3961.
- [148] G. N. Newkome, *Chem. Rev.*, **1993**, 93, 2067-2089.
- [149] P. Braunstein, M. Knorr, C. Stern, *Coord. Chem. Rev.*, **1998**, 178-180, 908.
- [150] N. Lugan, F. Laurent, G. Lavigne, T. P. Newcombe, E. W. Liimatta, J. J. Bonnet, J. Am. Chem. Soc., 1990, 112, 8607.
- [151] N. Lugan, F. Laurent, G. Lavigne, T. P. Newcombe, E. W. Liimatta, J. J. Bonnet, Organometallics, 1992, 11, 1351.
- [152] J. C. Jeffrey, T. B. Rauchfuss, *Inorg. Chem.*, **1979**, 18, 2658.
- [153] J. Podlahova', B. Kratochvil, V. Langer, *Inorg. Chem.*, **1981**, 20, 2160.
- [154] A. Bader, E. Lindner, Coord. Chem. Rev., 1991, 108, 27.
- [155] L. Miquel, M. Basso-Bert, R. Choukroun, R. Madhouni, B. Eichhorn, M. Sauches, M. R. Mazieres, J. Jaud, J. Organomet. Chem., 1995, 490, 21-28.
- [156] a) J.-X Gao, T. Ikariya, R. Noyori, *Organometallics*, 1996, *15*, 1087.
 b) P. Crochet, J. Gimeno, S. Garcia-Granada, J. Borge, *Organometallics*, 2001, *20*, 4369-4377.
- [157] P. Espinet, K. Soulantica, Coord. Chem. Rev., 1999, 499-556, 193-195.
- [158] W. Keim, S. Killat, C. F. Nobile, G. P. Suranna, U. Englert, R. Wang, S. Mecking, D. L. Schröder, J. Organom. Chem., 2002, 150-171, 662.
- [159] a) C. M. Killian, L. K. Johnson, M. Brookhart, Organometallics, 1997, 16, 2005.
 b) B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am. Chem. Soc., 1998, 120, 4049.
 c) G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White, D. J. Williams, J. Chem. Soc., Chem. Commun., 1998, 849.
- [160] G. Zassinovich, G. Mestroni, S. Gladiali, *Chem. Rev.*, **1992**, *92*, 1051.

- [161] a) K. Toyota, K. Masaki, T. Abe, M. Yoshifuji, *Chem. Lett.*, 1995, 221.
 b) M. Yoshifuji, K. Toyota, N. Inammoto, *J. Chem. Soc., Chem. Commun.*, 1984, 689.
- [162] a) P. Le Floch, D. Carmichael, L. Ricard, F. Mathey, J. Am. Chem. Soc., 1993, 115, 10665
 b) H. Tauner, P. Le Floch, M. Lefour, L. Ricard, F. Mathey, Synthesis, 1995, 717
 c) F. Mathey, P. Le Floch, Chem. Ber., 1996, 129, 236.
- [163] a) M. van der Sluis, V. Beverwijk, A. Termaten, E. Gavrilova, F. Bickelhaupt, H. Kooijman, N. Veldman, A. L. Spek, *Organometallics*, 1997, *16(6)*, 1144-1152.
 b) M. van der Sluis, V. Beverwijk, A. Termaten, F. Bickelhaupt, H. Kooijman, A. L. Spek, *Organometallics*, 1999, *18(8)*, 1402-1407.
 c) M. van der Sluis, A. Klootwijk, J. B. M. Wit, F. Bickelhaupt, N. Veldman, A. L. Spek, P.W. Jolly, *J. Organomet. Chem.*, 1997, *529(1-2)*, 107-119.
- [164] K. B. Dillon, H.P. Goodwin, J. Organomet. Chem., 1994, 469, 125.
- [165] L. Weber, Angew. Chem. Int Ed., 2002, 41, 563.
- [166] S. Ekici, Diplomarbeit, Universität Bonn, 2000.
- [167] F. Mathey, F. Mercier, F. Robin, L. Ricard, J. Organometallics, 1998, 117-120, 577.
- [168] M. S. Boskurt, Dissertation, Universität Bonn, 2004.
- [169] T. Kaiser, D. C. M. Warth, F. Lu, S. Franz, F. Rominger, P. Hofmann, SFB 624 & SFB 623, List of Poster, 7.Juni-8. Juni 2004, Bonn.
- [170] P. W. N. M. van Leeuwen, P. Dierkes, J. Chem. Soc. Dalton Trans., 1999, 1519.
- [171] S. Ekici, Dissertation, Universität Bonn, 2005.
- [172] S. Ekici, D. Gudat, M. Nieger, L. Nyulaszi, E. Niecke, *Angew. Chem.*, 2002, 114, 18.
- [173] S. Ekici, M. Nieger, R. Glaum, E. Niecke, Angew. Chem., 2003, 115, 4.
- [174] E. Niecke, persönliche Mitteilung.
- [175] a) A. N. Vedernikov, R. Miftakhov, S. V. Borisoglebski, K.G. Caulton, B. N. Solomonov, *Chem. Het. Comp.*, 2002, 38, 4.
 - b) G. Dyker, O. Muth, Eur. J. Org. Chem., 2004, 4319-4322.
 - c) A. N. Vedernikov, M. Pink, K. G. Caulton, *J.Org. Chem.*, 2003, 68, 4806-4814.
 A. N. Vedernikov, M. Pink, K. G. Caulton, *Inorg. Chem.*, 2004, 43(14), 4300-4305.
- [176] R. Hacker, P. v. R. Schleyer, G. Reber, G. Müller, L. Brandsma, J. Organomet. Chem., 316, 1986, C4-C8.
- [177] B. Wrackmeyer, G. Kehr, H. Zhou, S. Ali, *Magnetic Resonance in Chemistry*, **1996**, *34(11)*, 921-928.

- [178] a) M. Pfeiffer, T. Stey, H. Jehle, B. Klüpfel, W. Malisch, V. Chandrasekhar, D. Stalke, J. Soc. Chem., Chem. Commun., 2001, 337-338
 b) H. Gornitzka, D. Stalke, Eur. J. Inorg. Chem., 1998, 311.
- [179] M. T. Nguyen, M. A. McGinn, A. F. Hegarty, J. Am. Chem. Soc, 1985, 107, 8029.
- [180] E. Niecke, J. Hein, M. Nieger, Organometallics, 1989, 8, 2290-2291.
- [181] M. Nieger, Dissertation, Universität Bonn, 1989.
- [182] E. Niecke, D. Gudat, in "³¹P-NMR-Spectroscopic Investigation of Low-Coordinated Multiple Bonded PN Systems", Hrsg. L. P. Quin, J. G. Verkade, VCH, 1994, 159.
- [183] E. Niecke, M. Link, M. Nieger, Chem. Ber., 1992, 125, 2635.
- [184] M. Lysek, Dissertation, Universität Bielefeld, **1987**.
- [185] V. D. Romanenko, A. V. Ruban, A. B. Drapailo, L. N. Markovski, *Zh. Obshch. Khim.*, **1986**, *56*, 714.
- [185a] A. B. Rozhenko, M. I. Povolotskii, V. V. Polovinko, Mag. Res. Chem., 1996, 34, 269-275.
- [186] L. N. Markovskii, V. D. Romanenko, A. V. Ruban, Zh. Obshch. Khim., 1987, 57, 1433-1464.
- [187] E. Niecke, O. Altmeyer, M. Nieger, Angew. Chem., 1991, 103, 1158-1159.
- [188] P. B. Hitchcock, M. F. Lappert, A. K. Rai, H. D. Williams, J. Chem. Soc. Chem., Commun., 1986, 1633-1634.
- [189] a) H. O. Kalinowski, S. Berger, S. Braun, "¹³C-NMR-Spektroskopie", G. Thieme Verlag, 1984.
 b) J. Tyler, L. H. Sommer in *Handbuch der Anorganischen Chemie*, Vol. Bd. 57 Ni
 [B] (Ed.: Gmelin), 821.
- [190] Daten konnten nur mittels Diamond ermittelt werden.
- [191] J. Grobe, D. Le Van, D. Lange, Z. Naturforsch. 1983, 48b, 58.
- [192] E. Niecke, H. J. Metternich, M. Nieger, D. Gudat, P. Wenderoth, W. Malisch, C. Hahner, W. Reich, *Chem. Ber.*, 1993, 126, 1299.
- [193] R. Appel, J. Menzel, F. Knoch, P. Volz, Z. Anorg. Allg. Chem., 1986, 534, 100.
- [194] M. Yoshifuji, K. Toyota, N. Inamoto, *Tetrahedron Lett.*, **1985**, *26* 1727.
- [195] C. Thomson, J. Chem. Soc. Chem. Commun., 1977, 322.
- [196] persönliche Mitteilung S. Ekici.
- [197] H. H. Karsch, K. Zellner, P. Mikulcik, J. Lachmann, G. Müller, Organometallics, 1990, 9, 190.

- [198] H. H. Karsch, B. Deubelly, J. Hoffmann, U. Pieper, G. Müller, J. Am. Chem. Soc., 1988, 110, 3654.
- [199] H. H. Karsch, G. Grauvogl, P. Mikulcik, P. Bissinger, G. Müller, J. Organomet. Chem., 1994, 465, 65.
- [200] H. H. Karsch, A. Appelt, G. Müller, Angew. Chem. Int. Ed. Engl., 1986, 25, 823.
- [201] H. H. Karsch, G. Ferazin, P. Bissinger, J. Chem. Soc. Chem. Comm., 1994, 505.
- [202] a) W. Clegg, S. Doherty, K. Izod, P. O'Shaughnessy, *Chem. Comm.*, 1998, 1129.
 b) W. Clegg, K. Izod, P. O'Shaughnessy, *Organometallics*, 1999, *18*; 2939.
 c) K. Izod, W. Clegg, S. T. Liddle, *Organometallics*, 2001, *20*, 367.
- [203] N. Poetscke, M. Nieger, M. A. Khan, E. Niecke, M. T. Ashby, *Inorg. Chem.*, 1997, 36(18), 4087-4093.
- [204] a) M. Sebastian, 1. Staatsexamensarbeit, Universität Bonn, 2000.b) O. Dellschau, Diplomarbeit, Universität Bonn, 1999.
- [205] R. Appel, U. Kündgen, F. Knoch, Chem. Ber. 1985, 118, 1352-1370.
- [206] V. Zota, Dissertation, Universität Bonn, 1999.
- [207] J. N. L. Dennett, A. L. Gillon, K. Heslop, D. J. Hyett, J. S. Fleming, C. E. Lloyd-Jones, A. G. Orpen, P. G. Pringle, D. F. Waas, J. N. Scutt, R. H. Weatherhead, *Organometallics*, 2004, 23(26), 6077-79.
- [208] S. M. Aucott, M. L. Clarke, A. M. Z. Slawin, J. D. Woollins, J. Chem. Soc. Dalton Trans., 2001, 972-976.
- [209] N. A. Cooley, S. M. Green, D. F. Waas, K. Heslop, A. G. Orpen, P. G. Pringle, Organometallics, 2001, 20(23), 4769-4771.
- [210] C. Elschenbroich, A. Salzer, "Organometallchemie", B.G. Teubner Stuttgart, 1988.
- [211] G. Decher, G. Boche, J. Organomet. Chem. 1983, 259, 31-36.
- [212] I. Eidenschink, T. Kaufmann, Angew. Chem. 1972, 84, 292-293.
- [213] P. Jutzi, Adv. In Organomet. Chem., 1986, 26, 217-295.
- [214] I. Flemming, "Grenzorbitale und Reaktionen organischer Verbindungen", VCH, Weinheim New York, 1979.
- [215] T. Clark, C. Rohde, P. v. .R. Schleyer, *Organometallics*, **1983**, *2*, 1344-1351.
- [216] a) G. R. Brubaker, P. Beak, J. Organomet. Chem. 1977, 136, 147-159.
 b) P. West, R. Waak, J. I. Purmont, J. Am. Chem. Soc. 1970, 92, 840-845.
- [217] J. E. Mahler, R. Pettit, J. Am. Chem. Soc., 1962, 84, 1551-1553.
- [218] S. R. Wilson, A. Shedrinsky, S. M. Haque, *Tetrahedron*, **1983**, *39*, 895-897.
- [219] R. D. Ernst, *Structure and Bonding*, **1984**, *57*, 1-25.

- [220] W. T. Ford, M. Newcomb, J. Am. Chem. Soc., 1974, 106, 309-311.
- [221] P. Powell, Adv. Organomet. Chem., 1986, 26, 125-164.
- [222] H. Yasuda, Y. Ohnuma, A. Nakamura, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn.; 1980, 53, 1101-1102.
- [223] J. S. Overby, T. P. Hanusa, Angew. Chem., 1994, 106(21), 2300-2302.
- [224] R. J. Bushby, A. S. Patterson, J. Organomet. Chem., 1977, 132, 163-171.
- [225] A. Krol, R. Fröhlich, E.-U. Würthwein, Chem. Commun. 1998, 485-486.
- [226] R. Schmid, J. Beck, J. Strähle, Z. Naturforsch., 1988, 43b, 529-532.
- [227] G. Becker, G. Ditten, K. Hübler, U. Hübler, K. Merz, M. Niemeyer, N. Seidler, M. Westerhausen, "Organosilicon Chemistry- From Molecules to Materials", Vol. 2, 1995, VCH, Weinheim.
- [228] W. Schuhn, Dissertation, Universität Bonn, 1987.
- [229] C. Tirla, N. Mezailles, L. Ricard, F. Mathey, P. Le Floch, *Inorg. Chem.*, 2002, 41, 6023-6037.
- [230] H. J. Grützmacher, U. Krüger, H. Pritzkow, Chem. Ber., 1991, 124, 329-331.
- [231] A. N. Chernega, A. V. Ruban, V. D. Romanenko, L.N. Markovski, *Het. Chem.*, 1991, 2, 229-241.
- [232] W. P. Leung, H. L. Hou, H. Cheng, O. C. Yang, H. W. Li, T. C. W. Mak, *Dalton Transactions*, 2003, 8,1505-1508.
- [233] W.-P. Leung, H. Cheng, H. L. Hou, Q. C. Yang, Q.-G. Wang, T. C. W. Mak, Organometallics, 2000, 19, 5431-5439.
- [234] R. J. Bowen, M. A. Fernandes, M. Layh, J. Orgmet. Chem., 2004, 689, 1230-1237.
- [235] a) P. B. Hitchcock, M. F. Lappert, M. Layh, J, Chem. Soc., Dalton Trans., 2001, 2409-2416.

b) P. B. Hitchcock, M. F. Lappert, W. P. Leung, D. S. Liu, T. C. M. Mak, Z. X. Wang, J. Chem. Soc. Dalt. Trans. Inorg. Chem., 1999, 8, 1263-1270.

- [236] W. P. Leung, Q. W. Y. Ip, S. Y. Wong, T. C. W. Mak, Organometallics, 2003, 22, 4604-4609.
- [237] M. Frost, Dissertation Universität Bonn, 1994.
- [238] R. Kempe, *Eur. J. Inorg. Chem.*, **2003**, 791-803.
- [239] a) W. P. Leung, H. Cheng, D.-S. Liu, Q.-G Wang, T. C. W. Mak, Organometallics, 2000, 19(16), 3001-3007.
 b) W. P. Leung, Q. W. Y. Ip, T. W. Lam, T. C. W. Mak, Organometallics, 2004, 23(6), 1284-1291.

- [240] D. F. Shriver, M. A. Dredzon, "The Manipulation of Air-Sensitive Compounds", Wiley, New York, 1986.
- [241] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, "Purification of Laboratory Chemicals", Pergamon Press, Oxford, 1982.
- [242] E. Niecke, D. Schmidt, in W. A. Herrmann, G. Brauer: Synthetic Methods of Organometallic and Inorganic Chemistry, 1996, Vol. 3, Georg Thieme Verlag, Stuttgart, 34-36.
- [243] E. Niecke, J. Hombeuel, M. Blättner, V. von der Gönna, A. Ruban, in W. A. Herrmann, G. Brauer: Synthetic Methods of Organometallic and Inorganic Chemistry, 1996, Vol. 3, Georg Thieme Verlag, Stuttgart, 28.
- [244] W. P. Fehlhammer, W. A. Herrmann, K. Öfele in Handbuch der Präperative Anorg.
 Chemie, Band 3, Hrsg. G. Brauer, Ferdinand Enke Verlag Stuttgart, 1981, 3,. Auf., 1884.
- [245] L. Ross, C. Barclay, E.E. Betts, *Can. J. Chem.*, 33, **1955**, 672.
- [246] S. R. Ditto, R. J. Card, P. D. Davies, D. C. Neckers, J. Org. Chem, 1979, 44, 894.
- [247] a) F. A. Cotton, L. M. Daniels, P. Lei, C. A. Murillo, X. Wang, *Inorg. Chem.*, 2001, 40(12), 2778-2784.
 b) M. Klinda, M. Polamo, M. Leskela, *Acta Crystallographica, Section C: Crystal Structure Commun.*, 1994, C50(12), 2051-4.
- [248] D. Jerchel, S. Noetzel, K. Thomas, *Chem. Ber.*, **1960**, 93, 2966-70.
- [249] S. T. Liddle, W. Clegg, J. Chem. Soc., Dalton Trans., 2001, 4, 402-408.
- [250] F. A. Cotton, L. M. Daniels, T. Lu, C. A. Murillo, X. Wang, J. Chem. Soc., Dalton Trans., 1999, (4), 517-518
- [251] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution, Acta Crystallogr., 1990, A 46, 467-473.
- [252] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, 1997, Universität Göttingen.

Lebenslauf:

Persönliche Daten

Name	Corvin Volkholz
Geboren am	1974 in Wolfenbüttel
Familienstand	ledig
Staatsangehörigkeit	deutsch
Schulausbildung	
8/1981-1/1984	Grundschule Aachen-Laurensberg
2/1984-7/1985	Grundschule Eppstein/Taunus
8/1985-12/1989	Gymnasium Freiherr vom Stein Eppstein/Taunus
1/1991-5/1994	Cusanus Gymnasium Erkelenz
1.06.1994	Allgemeine Hochschulreife
Hochschulreife	
WS 1994/1995	Beginn des Chemiestudiums an der Ernst-Moritz-Arndt Universität Greifswald
9/1997	Diplom-Chemiker Vorprüfung
8/1999	Diplom-Chemiker Hauptprüfung
11/1999-10/2000	Diplomarbeit bei Prof. Dr. J. Heinicke
02.10.2000	Erhalt des Akademischen Grades Diplom Chemiker
2/2001	Beginn der Dissertation im Arbeitskreis von Prof. Dr. E. Niecke

Berufliche Tätigkeiten

2/2001-7/2001	Studentische Hilfskraft
8/2001-	Wissenschaftlicher Angestellter an der Rheinischen-Friedrich- Wilhelms Universität Bonn