Entwicklung neuer Syntheseverfahren für biologisch aktive Ureide und Hydantoine

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Manuela Meusel

aus

Chemnitz

Bonn 2005

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

- 1. Referent: Herr Professor Dr. Michael Gütschow
- 2. Referent: Frau Professor Dr. Christa E. Müller

Tag der Promotion: 23. September 2005

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.unibonn.de/diss_online elektronisch publiziert. Die vorliegende Arbeit wurde in der Zeit von Dezember 2001 bis September 2005 am Pharmazeutischen Institut (Poppelsdorf) der Rheinischen Friedrich-Wilhelms-Universität Bonn unter der Leitung von Herrn Professor Dr. Michael Gütschow durchgeführt.

An dieser Stelle möchte ich Herrn Professor Dr. Michael Gütschow sehr herzlich für die Überlassung meines Wunschthemas, vor allem aber auch für die zahllosen Stunden reger Diskussion, die Hilfe bei der Lösung von schwierigen Fragestellungen und die hervorragende Zusammenarbeit und Betreuung danken. Herausheben möchte ich dabei besonders die Unterstützung von Tagungsteilnahmen im In- und Ausland, die wertvolle Impulse für diese Arbeit erbrachten.

Frau Professor Dr. Christa E. Müller möchte ich ganz herzlich für die Übernahme des Korreferates und die freundliche Aufnahme am Poppelsdorfer Institut danken.

Ebenso möchte ich vielmals Herrn Professor Dr. Stefan Bräse danken, der mir zusammen mit allen Mitgliedern seiner "Bonner" Arbeitsgruppe den Einstieg in die Festphasensynthese wesentlich erleichtert hat und mit hilfreichen Tipps zur Seite stand.

Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung in Form eines Doktorandenstipendiums im Rahmen des Graduiertenkollegs 804 "Analyse von Zellfunktionen durch kombinatorische Chemie und Biochemie".

Meinen Eltern

und allen, die mir so enorm wichtig sind

INHALTSVERZEICHNIS

1	EINLI	EITUNG	5			
1.1	Fest	phasensynthese und kombinatorische Chemie in der Wirkstof	f-			
	forse	chung	5			
1	.1.1	Euphorische Anfänge	5			
1	.1.2	Enttäuschte Hoffnungen und Richtungswandel1	1			
1	1.1.3 Prinzip der Festphasensynthese					
1.2	Stan	nd der Forschung in der Lösungs- und Festphasensynthese von Ureide	n			
	und	Hydantoinen1	5			
1	.2.1	Bekannte Lösungssynthesen von Ureiden und Hydantoinen 1	5			
1	.2.2	Bekannte Festphasensynthesen von Ureiden und Hydantoinen 1	7			
1.3	Ziele	e der Arbeit 1	8			
2	UNTE	ERSUCHUNGEN ZUR AMINOBARBITURSÄURE-HYDANTOIN	1-			
	UMLA	AGERUNG1	9			
2.1	Dars	stellung von tri- und tetrasubstituierten 5-Carbamoylhydantoine	n			
	mitte	els Aminobarbitursäure-Hydantoin-Umlagerung 1	9			
2	2.1.1	Synthese der Barbitursäuren und Brombarbitursäuren1	9			
2	2.1.2	Synthese der 5-Aminobarbitursäuren	0			
2	2.1.3	Umlagerung der 5-Aminobarbitursäuren zu 5-Carbamoylhydantoinen 2	5			
2.2	Mecl	hanistische Untersuchungen zur Aminobarbitursäure-Hydantoir	1-			
	Umla	agerung2	8			
2.3	Unte	ersuchungen zur Analytik von Barbitursäuren und Hydantoinen mitte	ls			
	Kup	fer(II)- und Kobalt(II)-Komplexen3	4			
3	UNTE	ERSUCHUNGEN ZUR ÜBERTRAGUNG AUF DIE FESTE PHASE. 4	5			
3.1	PS-Is	socyanat-Harz 4	6			
3	5.1.1	Vorüberlegungen	6			
3	5.1.2	Versuche in Lösung	7			
	3.1.2.1	Ein-Topf-Synthese der Modellsubstanz 5-Benzylcarbamoyl-5-methy	1-			
		hydantoin4	7			
	3.1.2.2	Decarbamoylierungsversuche von 1,3-unsubstituierten Hydantoinen in	m			
		sauren Milieu5	1			

Inhaltsverzeichnis

	3.1.2.3	Untersuchungen zur Alkylierung von Hydantoinen	und
		Decarbamoylierungsversuche mit HMDS	55
	3.1.3	Versuche an fester Phase	60
3.2	Rink	-Amid-Harz	64
	3.2.1	Vorüberlegungen	64
	3.2.2	Versuche in Lösung I	65
	3.2.3	Versuche an fester Phase I	71
	3.2.3.1	Beladung und Entschützung des Rink-Fmoc-Harzes	71
	3.2.3.2	Darstellung des Rink-Harnstoff-Harzes	74
	3.2.3.3	Versuche zur Darstellung festphasengebundener Barbitursäuren	77
	3.2.4	Versuche in Lösung II	78
	3.2.4.1	Ureide aus Benzylharnstoff und Carbonsäuren mit Acetanhydrid	als
		Kupplungsreagenz	78
	3.2.4.2	Ureide aus Benzylharnstoff und Anhydriden	83
	3.2.4.3	Ureide aus Benzylharnstoff und Carbonsäuren mit Boronsäuren	als
		Kupplungsreagenz	86
	3.2.5	Versuche an fester Phase II	87
	3.2.5.1	Bohdan MiniBlock [®] -Synthesemaschine	87
	3.2.5.2	Festphasensynthese von Ureiden am Rink-Amid-Harz	89
4	UNTE	RSUCHUNGEN ZUR BIOLOGISCHEN AKTIVITAT U	ND
	PHAR	MAKOLOGISCHEN WIRKSAMKEIT	95
4.1	Unte	rsuchungen zur antikonvulsiven Wirksamkeit von Ureiden	97
4	4.1.1	Epilepsien und Wirkmechanismen von Antiepileptika	97
2	4.1.2	Verwendete Tiermodelle und Testsysteme	100
4	4.1.3	Ergebnisse	104
4	4.1.4	Struktur-Wirkungs-Beziehungen	115
4.2	Unte	rsuchungen zur analgetischen Wirksamkeit von Ureiden	118
4.3	Weit	ere biologische Testreihen	120
4	4.3.1	Testung an CB ₁ -Rezeptoren des Rattenkortex	120
	4.3.1.1	CB-Rezeptoren und ihre Liganden	120
	4.3.1.2	Ergebnisse	122
4	4.3.2	Modulatoren des P-Glykoproteins	124
4	4.3.3	Zytotoxizitätsuntersuchungen	127
4	4.3.4	Inhibitoren der Cysteinprotease Papain	129

5	ZUSAMMENFASSUNG UND AUSBLICK131							
5.1	Zusammenfassung13							
5.2	Ausblick							
6	EXPE	RIMENTELLER TEIL	133					
6.1	Allge	meines	133					
6	.1.1	Geräte zur chemischen Synthese	133					
	6.1.1.1	Geräte zur Festphasensynthese	133					
	6.1.1.2	Sonstige syntheserelevante Geräte	133					
6	.1.2	Geräte zur chemischen Charakterisierung	133					
	6.1.2.1	NMR-Spektroskopie	133					
	6.1.2.2	Massen-Spektroskopie	134					
	6.1.2.3	IR-Spektroskopie	134					
	6.1.2.4	UV-Spektroskopie	134					
	6.1.2.5	Röntgenkristallstrukturanalyse	134					
	6.1.2.6	HPLC-Chromatographie	134					
	6.1.2.7	Dünnschichtchromatographie / Säulenchromatographie	135					
	6.1.2.8	Elementaranalyse	135					
	6.1.2.9	Schmelzpunkt	135					
	6.1.2.10) Mikroskopie / Fotographie	135					
6	.1.3	Substanzen zur chemischen Charakterisierung	135					
	6.1.3.1	Trocknung von Lösungsmitteln	136					
	6.1.3.2	Verwendete Sprühreagenzien für die Dünnschichtchromatographie.	136					
	6.1.3.3	Farbtests an fester Phase	136					
6	.1.4	Pharmakologische Testungen	137					
6.2	Syntl	hesevorschriften aller dargestellten Verbindungen	138					
7	RÖNT	GENKRISTALLSTRUKTURDATEN	311					
7.1	Rönt	genkristallstrukturdaten von Verbindung (39)	311					
7.2	Rönt	genkristallstrukturdaten von Verbindung (30)	318					
		6						
8	LITEF	RATURVERZEICHNIS	327					
9	ABKÜ	RZUNGSVERZEICHNIS	343					

1 EINLEITUNG

1.1 Festphasensynthese und kombinatorische Chemie in der Wirkstoffforschung

1.1.1 Euphorische Anfänge

Innerhalb der letzten 10 bis 15 Jahre hat sich die Festphasensynthese zur Darstellung von strukturell diversen, nicht-peptidischen Heterozyklen, die ein oder Stickstoffe enthalten immer stärker etabliert. **Besonders** mehrere die pharmakokinetische Überlegenheit solch kleiner organischer Moleküle gegenüber den seit Merrifield's Versuchen von 1963 via "solid-phase peptide synthesis" (SPPS) zugänglichen Peptiden,¹ die gute Automatisierbarkeit des Verfahrens sowie dessen Anwendbarkeit auf kombinatorische Ansätze trieben die Entwicklung dieser Synthesemethode weiter voran. Bedingt wurde dieser Fortschritt auch durch ein starkes Aufkommen von Robotertechnologien in den 80-er Jahren, vor allem in der Testung von Substanzen an ihren biologischen Zielstrukturen. Mittels Hochdurchsatzscreening (high-throughput screening, HTS) war man in der Pharmaindustrie Mitte der 90-er Jahre in der Lage etwa 60 000 Verbindungen pro Tag zu untersuchen, bis heute nahm diese Zahl auf unglaubliche 200 000 Substanzen pro Tag zu und man spricht deshalb seit wenigen Jahren vom sogenannten Ultra-High-Throughput Screening (UHTS, 1536-Format).^{2,3} "New Combinations pay off" titelte die Zeitschrift "Science" im Jahr 1998 und spricht bei der Betrachtung der rapiden Entwicklung der kombinatorischen Chemie sogar von einem "meteoric climb".⁴ Waren es ehemals die Verfügbarkeit und der Zeitaufwand zur Durchführung der biologischen Assays, die die Anzahl der als potentielle Wirkstoffkandidaten in Frage kommenden Verbindungen limitierte, entstand nunmehr die Situation, dass die Darstellung von Verbindungen deren Testung nicht Dieses Dilemma konnte erst durch die kombinatorische folgen konnte. Festphasensynthese behoben werden. Als Vorreiter auf dem Gebiet der multiplen Festphasensynthesen müssen vor allem drei Personen erwähnt werden. Erstens der Ungar Arpád Furka, der Anfang der 80-er Jahre, ausgehend von der Herstellung von Peptiden aus Aminosäuren, erstmals einen chemisch-kombinatorischen Ansatz formulierte und diesen mit Merrifield's Festphasen-Idee verband ("split-and-mix" Technologie, Abb. 1).⁵

Abb. 1: Split-and-Mix Methode nach Furka.⁵

Das Harz wird dabei gleichmäßig auf verschiedene Gefäße aufgeteilt, danach werden diverse Reagenzien eines Satzes A zugegeben und so der erste Reaktionsschritt gestartet. Nach dessen Beendigung werden alle Harzkügelchen (beads) wieder zusammengefügt, gründlich gemischt und erneut in gleiche Teile aufteilt. Nun beginnt dasselbe Prozedere mit Zugabe diverser Reagenzien eines Satzes B wieder von vorn. So werden bei z.B. 4 verschiedenen Reagenzien pro Satz und einer 5-stufigen Synthese $4^5 = 1024$ unterschiedliche Verbindungen synthetisiert, wobei gewährleistet wird, dass nach Ende der Sequenz an jedem Kügelchen nur eine einzige Substanz aufgebaut wurde ("One-bead-one-compound"-Prinzip).

Zweiter Vorreiter ist Richard Houghten, der 1985 die Split-and-mix Methode auf vorportionierte Harze in "Teebeuteln" ("Tea-bag" Methode, Abb. 2) übertrug, welche einfach beschriftet oder mit Tags codiert werden können.⁶ Allerdings ist diese Methode nicht gut mit Robotertechnologien kompatibel und sehr arbeitsintensiv.

Abb. 2: Aufbau eines "Teebeutels" nach Houghten.⁶

Die Festphasensynthesen von Furka⁵ und Houghten⁶ beruhen also auf der Darstellung von Mischungen verschiedener Substanzen durch jeweils räumliche Abgrenzung der Harzkügelchen, deren einzelne, ggf. wirksame Mitglieder im Nachhinein durch verschiedene Decodierungs- oder Taggingstrategien detektiert werden müssen.

Abb. 3: Polyethylenstäbchen für die Parallelsynthese nach Geysen.⁷

Im Gegensatz dazu steht die vom dritten Pionier, H. Mario Geysen, 1984 erstmals durchgeführte parallele Peptidsynthese an Polyethylenstäbchen ("Pins", Abb. 3).⁷ Die parallele Synthese von Substanzen ist vor allem zur Generierung von Assays geeignet und verlangt daher die Fixierung der beads. Die genaue Positionierung der Produkte an den entsprechenden Pins ist zu jedem Zeitpunkt der Synthese eindeutig definiert und es bedarf keiner Tagging- oder Decodierungsschritte. Neben Geysen's Pin-Synthesen ist u.a. die spätere Spot-Synthese (Punkt-Synthese) von Hydantoinen an Cellulosemembranen eine weiteres Beispiel für parallele eine solche Festphasenchemie.⁸

Die hier aufgeführten Methoden wurden anfangs nur für die Synthese von Peptiden entwickelt. Bahnbrechend für die kombinatorische Festphasensynthese niedermolekularer organischer Verbindungen, sog. SPOS (<u>Solid-Phase Organic</u> <u>Synthesis</u>), waren die Arbeiten von Bunin und Ellman⁹ zur Synthese von 1,4-Benzodiazepin-Bibliotheken unter Anwendung der o.g. Pin-Strategie. R. Hoffmann¹⁰ hat eine sehr interessante und kritische Betrachtung zur Verwendung des Begriffes "Bibliothek" in der kombinatorischen und Festphasenchemie vorgenommen. Trotzdem wird dieser etablierte Begriff in der vorliegenden Arbeit weiterverwendet.

Wie eben beschrieben, beruhen Verfahren zur Herstellung großer Substanzbibliotheken auf der Synthese von Mischungen von Verbindungen oder auf parallelsynthetischen Ansätzen. Besonders im ersten Fall muss spätestens nach der Testung die aktive Substanz aus dem Gemisch identifiziert werden.¹¹ Man unterscheidet generell zwischen Codierungs-/ Decodierungs- bzw. Screeningverfahren, bei denen die Substanzen noch an ihrem polymeren Träger gebunden sind ("on-bead") und solchen, die mit Abspaltungen vom Polymer einhergehen.

Codierungs- und Testmethoden f ür harzgebundene Verbindungen

Während der Synthese gibt es verschiedene Möglichkeiten, die Harze zu codieren. Die einfachste Methode hierbei die farbliche Markierung, wie sie z.B. bei den sog. SynPhase Lanterns[®] realisiert ist. Hier werden durch simples Aufstecken verschiedenfarbiger Ringe die unterschiedlichen Reagenzien kodiert (z.B. Aminosäure (AS) 1 rot, AS 2 gelb, AS 3 blau usw.). Für Synthesen mit Harzen, die in irgendeiner Form portioniert sind, wie z.B. den "Tea-bags" oder den Irori Kans,¹²⁻¹⁴ bieten sich zur Codierung auch Radiofrequenzen an.^{15,16} Dabei wird bei jeder chemischen Reaktion ein Signal gesendet, von einem Chip gespeichert und bei der Decodierung wieder abgerufen. Anhand der Radiofrequenzen können diese portionierten Harze auch während der Synthese sehr leicht mit Hilfe von entsprechenden Geräten sortiert¹³ und immer dem richtigen nachfolgenden Schritt zugeführt werden. Ähnlich funktionieren Synthesechips, die aus dem Polymer für die Festphasensynthese und einem keramischen Grundkörper bestehen.¹⁷ Mittels eines Lasers wird in den keramischen Teil des Chips ein Barcode eingeritzt, der später jederzeit wieder abgelesen werden kann.

Auf einem polymeren Träger kann die Position einer bestimmten Substanz aber auch durch das Licht-Maskierungsverfahren determiniert werden. Durch die

8

Anwendung verschiedener Masken, die nur die Bestrahlung einiger gezielter Bereiche auf der Polymeroberfläche zulassen, kann die Synthese nur an bestimmten Stellen mit Reagenz X weitergeführt werden. Um etwa benachbarte Stellen mit Reagenz Y umzusetzen, bedarf es einer erneuten Bestrahlung mit einer anderen Maske. Indem man die Reihenfolge der einzelnen Masken registriert, kann die Struktur an jedem Punkt der Oberfläche genau verfolgt werden.¹⁸

Nicht nur bei der Synthese,¹⁹ sondern auch bei der Testung von polymergebundenen Substanzen,²⁰ haben sich kolorimetrische und fluorimetrische Verfahren bewährt. Bei der Testung von harzgebundenen Produkten besteht allerdings immer die Gefahr, dass sich falsch positiv oder negative Resultate ergeben, die mit der konformativen Einschränkung der an Linker und polymeren Träger gebundenen Moleküle erklärt werden können.

Codierungs- und Testmethoden f ür Substanzmischungen in L ösung

Erhält man bei biologischen Testungen von Substanzmischungen positive Resultate, ist es notwendig, die jeweilige Verbindung zu identifizieren. Dies kann einmal durch systematische Resynthese oder durch die Anwendung von Markern, sog. Tags, erreicht werden. Beispiele für den ersten Fall sind das Scannen einzelner Diversitätspositionen und die iterative Entschlüsselung (Abb. 4a und 4b).²¹

Am Beispiel der in Abbildung 1 dargestellten Split-and-Mix-Methode soll die iterative Entschlüsselung erklärt werden: Zunächst bestimmt man die Aktivitäten der durch Umsetzung mit den letzten Reagenzien C1-C3 erhaltenen drei Subbibliotheken in den drei entsprechenden Gefäßen, ermittelt die aktivste und synthetisiert diese unter Verwendung des entsprechenden Reagenzes C nach (z.B. A1-3 B1-3 C2). Damit ist diese Diversitätsposition nun determiniert. Nun wird die Aktivität der drei Subbibliotheken mit der nächsten nichtdeterminierten Diversitätsposition (in diesem Beispiel B1-3) bestimmt, wiederum die aktivste ausgewählt und resynthetisiert (z.B. A1-3 B1 C2). Schlussendlich werden die Subbibliotheken der letzten Diversitätsposition (hier A) untersucht, die aktivste bestimmt und diese gesuchte aktive Substanz (z.B. A3 B1 C2) hergestellt. Analog ist die in Abbildung 4a dargestellte Vorgehensweise. Durch die vielen Resyntheseschritte ist diese Methode sehr mühsam und für Reaktionen mit noch mehr Stufen kaum praktikabel.

Abb. 4a: Iterative Entschlüsselung von Diversitätspositionen. (P. = Position)

Abb. 4b: Entschlüsselung über Scannen einzelner Diversitätspositionen. (P. = Position)

Auch die Entschlüsselung über das Scannen einzelner Diversitätspositionen benötigt eine Reihe von Syntheseschritten. Man stellt sich zunächst so viele Subbibliotheken her, wie man Diversitätspunkte im Molekül hat (drei in Abb. 4b). Diese kleineren Bibliotheken werden in einer bestimmten Position (P. 1-3, Abb. 4b) untersucht und die jeweils aktivsten herausgefiltert. Exakt nach diesem Muster wird schließlich die aktivste Verbindung nachsynthetisiert.

Bei den Tags sind bisher vor allem die Oligonukleotid-²²⁻²⁴ und die Halogenaromaten-Tags²⁵ zur Anwendung gekommen. Die Halogenaromaten-Tags sind Chlorfluorphenole mit unterschiedlichem Substitutionsmuster, die über eine Abstandsgruppe einen photospaltbaren Linker gebunden an sind. Die Chlorfluorphenole Abspaltung die können nach über Elektroneneinfang-Gaschromatographie (EC-GC) detektiert werden. Die Substanzen können über eine binären Codierung verschlüsselt werden, d. h. die An- und Abwesenheit eines spezifischen Halogenaromatentags wird bewertet (mit "0" bzw. "1").

Oligonukleotid-Tags finden vor allem in der SPPS ihre Anwendung. Nach jeder Ankopplung einer Aminosäure an das Harz werden die entsprechenden Tags, hier einzelne Nukleotide, an einer anderen Reaktionsstelle am Harzkügelchen angebracht. Mit jedem Schritt verlängert sich auf diese Art und Weise nicht nur das eigentliche Peptid, sondern auch das codierende Oligonukleotid-Tag. Soll nach erfolgter Selektion das funktionelle, noch harzgebundene Peptid dann identifiziert werden, kann man gezielt nur das Oligonukleotid-Tag abspalten. Durch Primer, die bereits an fester Phase an das Tag angefügt wurden, kann der Oligonukleotidcode nun durch die Polymerase-Ketten-Reaktion (PCR) amplifiziert, geklont und sequenziert werden und man erhält die Sequenz des gesuchten Peptides.²³

1.1.2 Enttäuschte Hoffnungen und Richtungswandel

Nachdem man bis zum Ende der 90-er Jahre die Mehrzahl der großen Bibliotheken der Pharmafirmen gescreent und nicht, wie erhofft, die unermessliche Zahl an neuen Leitstrukturen gefunden hatte, machte sich Enttäuschung über das Potential der kombinatorischen Synthese im Allgemeinen und das Versagen der Zufallsbibliotheken ("random libraries") im Speziellen breit. Man erkannte, dass es geschickter war, sogenannte "focused" oder "targeted" libraries ("gezielte" Bibliotheken) zu entwickeln, die stärker diversitätsorientiert ausgerichtet waren und die "Wirkstoffähnlichkeit" ihrer Verbindungen als Parameter heranzogen. Dazu wurden verschiedene Strategien entwickelt.

Ein Konzept zur gezielten Auffindung von Leitstrukturen stellen dynamische kombinatorische Bibliotheken (dynamic combinatorial libraries, DCL's) dar. Die Zielstruktur, z.B. ein Rezeptor oder ein Enzym, selektiert dabei selbst einen Liganden aus einer adaptiven Bibliothek und reichert diesen an. In einer solchen adaptiven Bibliothek sind geeignete Bausteine reversibel kovalent oder nichtkovalent miteinander verknüpft und die entstehenden Addukte stehen miteinander in einem thermodynamisch kontrollierten Austausch. Die Zugabe eines Templates, das mit dem Addukt stabile Komplexe bilden kann, führt zu dessen Anreicherung.²⁶ Die Synthese und Funktion solcher DCLs konnte u.a. am Beipiel von Oligonukleotiden²⁷ bzw. Zuckeraminosäuren²⁸ gezeigt werden.

Evans et al.²⁹ wählten einen anderen Ansatz und deklarierten sogenannte "privilegierte Strukturen" zum Ziel weiterer kombinatorischer Chemie. Dabei definierten sie eine "privilegierte Struktur" als "ein einziges molekulares Grundgerüst, das in der Lage ist, Liganden für verschiedene Rezeptoren zu liefern". Neben zahlreichen anderen Verbindungsklassen³⁰ können insbesondere Hydantoine zu solch "privilegierten Strukturen" gezählt werden, da an ihrem heterozyklischen Ring verschiedene Seitenketten angebracht werden können, die dann ihrerseits die resultierende Substanz dazu befähigen, an die unterschiedlichsten Zielstrukturen zu binden. Dies kann mit der Vielzahl biologischer Wirkungen und pharmakodynamischer Effekte von Hydantoinen belegt werden (siehe Kapitel 4).³¹ Hierbei sind neben dem klassischen antiepileptischen Phenytoin, dem antibakteriellen Nitrofurantoin und dem muskelrelaxierenden Dantrolen auch das 1996 durch die FDA zugelassene Nilutamid mit seiner antiandrogenen Wirkung zu nennen, dass in der Therapie des metastasierenden Prostatakarzinoms eingesetzt wird. Hydantoine und Barbitursäuren repräsentieren zwei Klassen der zyklischen 5- bzw. 6-gliedrigen Acylharnstoffderivate (Ureide), daneben findet sich natürlich auch die entsprechende azyklische Einheit in Arzneistoffen und Pestiziden (s. Kap. 4).³² Die Acylharnstoffstruktur kann dabei einmal wirkungsbestimmend sein (z.B. im Hypnotikum Carbromal), oder aber andererseits die Wirkstoffeigenschaften in Bezug auf Pharmakokinetik oder Stabilität beeinflussen (z.B. beim Aminoacylpenicillin-Antibiotikum Mezlocillin³³). Privilegierte Strukturen müssen typische physikochemische Eigenschaften besitzen, die ihnen die Bindung an eine Vielzahl von Rezeptoren ermöglichen.³⁴ Obwohl die Natur dieser Charakteristika noch nicht voll verstanden ist, gilt die Einhaltung der sog. "Fünferregel" von Lipinski (Lipinski's "Rule of Five")³⁵ in der pharmazeutisch-medizinischen Wirkstoffentwicklung als weithin anerkanntes Mittel zum Zweck. Neben einem niedrigen Molekulargewicht jeder einzelnen Verbindung (MG < 500 Dalton), einem

logP-Wert unter 5, sowie dem Vorhandensein von weniger als fünf Wasserstoff-Bindungsdonoren und weniger als zehn Wasserstoff-Bindungsakzeptoren, haben sich besonders zyklische Strukturen aufgrund ihrer besseren Bioverfügbarkeit und ihrer molekularen Rigidität als günstig erwiesen.

1.1.3 Prinzip der Festphasensynthese

Abb. 5: Vereinfachte Darstellung einer Synthese an fester Phase.

Die Festphasensynthese kann als eine Synthesemethode definiert werden, bei der das aufzubauende Molekül über eine Ankergruppe (sog. Linker) an einen polymeren Träger (sog. Harz) gebunden ist (Abb. 5). Diese Immobilisierung erlaubt eine einfache Abtrennung von Intermediaten und Reaktionsprodukten von Reagenzien und löslichen Nebenprodukten. Erreicht wird dies durch Filtration des Harzes und mehrfaches Waschen mit Lösungsmitteln unterschiedlicher Polarität, bevor die Abspaltung der (Zwischen)Produkte vom Polymer vorgenommen wird. Das einfache "Auswaschen" von noch anhaftenden Reagenzien macht es möglich, mit diesen im Überschuss zu arbeiten, und damit die Reaktion zur vollständigen Umsetzung zu bringen. Um den Erfolg der Methode zu garantieren, müssen Polymer und Ankergruppe unter allen Reaktionsbedingungen stabil sein. Des Weiteren muss die Bindung zwischen dem Zielprodukt und der Ankergruppe selektiv unter milden Bedingungen gespalten werden können, ohne das Endprodukt zu zerstören (Abb. 5).³⁶

Als polymere Träger sind außer dem häufig genutzten, quervernetzten Polystyrol (PS), das nur mit unpolaren Lösungsmitteln wie DCM, THF, DMF, oder Toluol³⁷ zur Anwendung kommen kann, auch die PEGylierten Polystyrol-Hybrid-Harze (Tentagel[®], ArgoGel[®], NovaGel[®]) gängige Materialien, die aber polarerer Natur sind. Daneben gibt es zahlreiche Neuentwicklungen von Polymeren, die entweder auf eine bessere mechanische oder thermische Stabilität oder eine höhere Beladung der Harze (Dendrimer-Harze³⁸) abzielen. Außerdem sei an dieser Stelle auf eine ganze Reihe

löslicher polymerer Träger (z.B. MeO-PEG) hingewiesen, die ihren Einsatz in der sog. "Liquid-phase synthesis" finden (für eine Definition "Liquid-phase synthesis" siehe MacLean *et al.*³⁹).

Zur Anbindung und Abspaltung der Produkte vom Harz sind in der Vergangenheit verschiedenartige Linkersysteme entwickelt worden. Übersichten über Aufbau und Funktionsweise dieser Linker können in zahlreichen Übersichtartikeln⁴⁰⁻⁴³ sowie in Büchern über Festphasenchemie^{44,45} gefunden werden. Wegen der Bedeutung von benzylischen Linkern für die vorliegende Arbeit, sollen diese hier etwas näher betrachtet werden.

Benzylische Linker leiten sich direkt vom Merrifield- bzw. vom Wang-Harz ab (Abb. 6) und können mittels Säuren gespalten werden, die eine Protonierung des Linkers mit nachfolgender Eliminierung des Produktes verursachen. Das dabei gebildete resonanzstabilisierte Kation wird dann nukleophil abgefangen.

Abb. 6: Benzylische Spaltung von Merrifield- und Wang-Harzen.

Durch Stabilisierung dieses Intermediates kann die Empfindlichkeit gegenüber schwächeren Säuren erhöht werden. Das führte zunächst zur Entwicklung von SASRIN (*super a*cid *s*ensitive *resin*) und HAL (*hypersensitive a*cid *l*abile)-Harzen, später auch zu den Rink-Acid- bzw. Rink-Amid-Harzen.⁴⁶ Allen ist gemeinsam, dass der Phenylring des Linkers in ortho- und/oder para-Stellung mit Methoxygruppen substituiert ist (Abb. 7).

Abb. 7: Beispiele für benzylische Linker.

1.2 Stand der Forschung in der Lösungs- und Festphasensynthese von Ureiden und Hydantoinen

1.2.1 Bekannte Lösungssynthesen von Ureiden und Hydantoinen

Es gibt unterschiedliche Ansätze, um Hydantoine und Ureide herzustellen. Ausgehend von verschiedenen Synthesebausteinen, sind die wichtigsten Prinzipien des Aufbaus von Acylharnstoffen und Hydantoinen in den Abbildungen 8 bzw. 9 aufgezeigt.

Abb. 8: Synthesebausteine in der Darstellung von Acylharnstoffen.

Die Acylharnstoffstruktur kann entweder aus Aminen (hervorgehoben) und Acylisocyanaten (Abb. 8a),⁴⁷ aus Isocyanaten (hervorgehoben) und Carbonsäureamiden (Abb. 8b)⁴⁸ oder aber aus Harnstoffen (hervorgehoben) und Carbonsäuren⁴⁹ bzw. Carbonsäurechloriden^{50,51} (Abb. 8c) aufgebaut werden. Bei der Umsetzung von Harnstoffen mit Carbonsäuren ist ein Kupplungsreagenz nötig, welches die Acylierung erleichtern soll (z.B. Oleum^{49,52}, Arylboronsäuren⁵³ oder Acetanhydrid^{54,55}).

Harnstoffen (hervorgehoben) Hydantoine können aus und Carbonylverbindungen hergestellt werden (Abb. 9a). Solche Synthesen schließen auch die bekannte Biltz-Synthese ein. N-1 und N-3 unsubstituierte Hydantoine können durch Reaktion von Carbonylverbindungen mit anorganischen Cyaniden und Einführung des zweiten Stickstoffs sowie einer Carbonyleinheit durch Ammoniumcarbonat (hervorgehoben) dargestellt werden (Abb. 9b). Weiterhin liefert die Read-Reaktion zwischen Aminosäuren oder Aminosäureestern und anorganischen Iso(thio)cyanaten (hervorgehoben) Hydantoine, die an N-3 unsubstituiert sind (Abb. 9c). Der Einsatz von Alkyl- oder Aryliso(thio)cyanaten resultiert in einer Substitution an N-3 (Abb. 9d). Aminosäureamide als Bausteine (Abb. 9e) enthalten dagegen schon vier von fünf Ringatomen und die Einführung einer weiteren C-1 Einheit (hervorgehoben) vervollständigt den Hydantoinring. Bringt man α-Halogenamide mit anorganischen Iso(thio)cyanaten (hervorgehoben, Abb. 9f) zur Reaktion, werden N-1 unsubstituierte Hydantoine gebildet. Die Möglichkeiten und Wege zur Darstellung von Hydantoinen wurden anhand der Literatur zwischen 1985 und 2004 in einem Review dargelegt.³¹

Abb. 9: Synthesebausteine in der Darstellung von Hydantoinen.

1.2.2 Bekannte Festphasensynthesen von Ureiden und Hydantoinen

Bisher wurden bereits zahlreiche Publikationen, die Festphasensynthese von Hydantoinen betreffend, veröffentlicht und in dem oben genannten Übersichtsartikel bereits zusammengefasst.³¹ Viele der darin erwähnten Hydantoin-Festphasensynthesen beruhen auf der Zyklisierung von (synthetisch modifizierten) harzgebundenen Aminosäurederivaten. Dabei erfolgt die Zyklisierung entweder in einem Cyclo-Eliminierungs-Mechanismus, d.h. der Ringschluss und die Abspaltung des Hydantoins vom Polymer verlaufen in einem Schritt, oder aber Zyklisierung und Abspaltung benötigen separate Schritte.⁵⁶

Während Darstellungen von substituierten Harnstoffen durch Festphasenchemie oft praktiziert wurden,⁵⁷⁻⁶⁵ sind derzeit nur eine Synthese von multisubstituierten azyklischen *N*-Acylharnstoffen (Schema 1)⁶⁶ sowie eine Synthese von azyklischen *N*-Acylthioharnstoffen⁶⁷ an fester Phase bekannt.

Schema 1: a) i) Fmoc-Aminosäure, DIC, DMAP, DMF, 20°C, 16 h. ii) 5% Ac₂O, DCM, 20°C, 15 min. b) i) Piperidin/NMP, 20°C, 20 min. ii) DPT, DCM, 20°C, 4 h. c) sek. od. tert. Amin, NMP, 20°C, 16 h. d) C_2Cl_6 , PPh₃, THF, 20°C, 5 h. e) Carbonsäure, Et₃N, Dioxan, 20°C, 16 h. f) TFA/DCM, 20°C, 1 h.

1.3 Ziele der Arbeit

In einem ersten Projekt (s. Kap. 2) sollte die von Gütschow *et al.*⁶⁸ entdeckte Umlagerung von Aminobarbitursäuren zu Hydantoinen durch Darstellung einer Vielzahl von Imidazolidin-2,4-dionen ausgebaut und deren Mechanismus aufgeklärt werden. Ebenso wurden im Rahmen dieses Projektes vergleichende Studien zur Analytik von Barbitursäuren und Hydantoinen mittels Farbkomplexreaktionen durchgeführt.

Im zweiten Teil (s. Kap. 3) sollte anschließend versucht werden, diese Umlagerungsreaktion auf feste Phase zu übertragen, um so in Zukunft in kurzer Zeit zahlreiche Hydantoinderivate großer Diversität herstellen zu können. Da bisher keine Festphasensynthesen von Barbitursäuren bekannt sind, soll in dieser Arbeit die Entwicklung von festphasenkompatiblen Lösungsmodellen zur Darstellung solcher Substanzen und deren Transformation auf die Festphasensynthese, u. a. mit Hilfe einer MiniBlock[®]-Synthesemaschine, im Vordergrund stehen. Für diese Untersuchungen wurden zunächst Ureide als Vorläufer von Barbitursäuren gewählt und eine Methode zur Herstellung monosubstituierter Acylharnstoffe am Polymer entwickelt.

Einige der hergestellten Verbindungen sollten biologisch-pharmakologischen Testungen (z.B. auf antiepileptische Wirksamkeit) unterzogen werden (s. Kap. 4).

2 UNTERSUCHUNGEN ZUR AMINOBARBITURSÄURE-HYDANTOIN-UMLAGERUNG

2.1 Darstellung von tri- und tetrasubstituierten 5-Carbamoylhydantoinen mittels Aminobarbitursäure-Hydantoin-Umlagerung

Aufbauend auf einer Publikation von Gütschow et al.68 sollte eine neue Umlagerungsreaktion von Aminobarbitursäuren zu Hydantoinen eingehender untersucht werden. In der genannten Arbeit⁶⁸ konnten einige 5,5-disubstituierte Imidazolidin-2,4dione aus den 5,5-disubstituierten Aminobarbitursäuren hergestellt werden. Nun sollte dieser neue Syntheseweg auch zur Darstellung trisubstituierten von 5-Carbamoylhydantoinen benutzt werden, um Substanzen mit höherer Diversität zu Zunächst sollten hierfür eine Reihe neuer 1,5,5-trisubstituierter erzeugen. Aminobarbitursäuren ausgehend von den entsprechenden (Brom)Barbitursäureverbindungen hergestellt und danach zu den 5-Carbamoylhydantoinen umgelagert werden.

2.1.1 Synthese der Barbitursäuren und Brombarbitursäuren

In Anlehnung an bekannte Literaturmethoden⁶⁹⁻⁷² wurden drei substituierte Malonsäurediethylester mit jeweils drei unterschiedlichen Harnstoffen in Natriumethanolat/Ethanol unter Rückfluss umgesetzt (Schema 2).

Schema 2: Synthese der Barbitursäuren (1) und Brombarbitursäuren (2).

Damit konnten auf einfache, kombinatorische Weise neun Barbitursäuren in guten Ausbeuten (50-80%) erhalten werden (Tab. 1). Die Barbitursäuren **1** wurden in einem nachfolgenden Schritt einer Bromierung unterzogen. Für die Bromierung der 5-monosubstituierten Barbitursäuren **1a-i** wurde eine 20%-ige Brom-Essigsäure-Lösung verwendet, um die entsprechenden 5-Brombarbitursäurederivate **2a-i** zu erhalten (Schema 2, Tab. 1).

1 bzw. 2	\mathbf{R}^1	\mathbf{R}^2	Ausbeute (%) 1	Ausbeute (%) 2
а	Me	Me	51	78
b	Me	Et	52	84
с	Me	Ph	69	82
d	Et	Me	60	77
e	Et	Et	64	88
f	Et	Ph	80	92
g	Ph	Me	50	95
h	Ph	Et	55	89
i	Ph	Ph	60	89

Tab. 1: Dargestellte Barbitursäuren (1) und Brombarbitursäuren (2).

Von allen Brombarbitursäuren wurden die Massenspektren aufgenommen. Dabei konnten neben dem typischen Isotopenverhältnissen von bromhaltigen Fragmenten (⁷⁹Br:⁸¹Br = 100:98) vor allem die Abspaltung von M⁺ - Br beobachtet werden. Außerdem bilden Brombarbitursäuren mit R¹ = Me, Et (**2a**, **2c**, **2e**, **2f**) ein charakteristisches Fragment der Struktur R¹(Br)C-C=O⁺.

2.1.2 Synthese der 5-Aminobarbitursäuren

Die Brombarbitursäuren 2 wurden dann einer nukleophilen Substitution unterworfen, um 5-Aminobarbitursäuren 3 als erste Vertreter dieser Art von Verbindungen zu synthetisieren (Schema 3). Als geeignete Reaktionsbedingung wurde der Einsatz von zwei Äquivalenten des primären Amins in Acetonitril unter Eiskühlung gefunden. Andere Lösungmittel als Acetonitril (etwa Dichlormethan) erwiesen sich als nicht geeignet für die Synthese. Es kamen drei primäre Amine zum Einsatz: Allylamin, Benzylamin und Cyclohexylamin.

Schema 3: Synthese der trisubstituierten 5-Aminobarbitursäuren (3).

In Tabelle 2 sind alle dreizehn auf diese Weise dargestellten 5-Aminobarbitursäuren **3** mit ihren Ausbeuten aufgelistet.

Während der Aufarbeitung wurde der Reaktionsansatz zunächst mit Wasser verdünnt und die Produkte anschließend durch Extraktion isoliert, um entsprechende Ammoniumbarbituratsalze zu entfernen, die unter anderen Aufarbeitungsbedingungen beobachtet wurden. Eine nähere Untersuchung zur Natur solcher Ammoniumsalze ist in Kapitel 3.2.2 zu finden.

3	R ¹	R ²	R ³	Ausbeute (%) 3
а	Me	Me	Allyl	23 ^a
b	Me	Me	Bn	82 ^b
с	Me	Me	Cyclohexyl	60^{a}
d	Me	Et	Allyl	52 ^b
e	Me	Et	Bn	66 ^a
f	Me	Et	Cyclohexyl	92 ^b
g	Me	Ph	Allyl	24 ^a
h	Me	Ph	Cyclohexyl	74 ^a
j	Ph	Me	Bn	55 ^a
k	Ph	Me	Cyclohexyl	26 ^a
1	Ph	Et	Bn	51 ^a
m	Ph	Ph	Bn	67 ^a

Tab. 2: Dargestellte trisubstituierte 5-Aminobarbitursäuren (3).

^a Ausbeuten beziehen sich auf umkristallisierte oder anders gereinigte Produkte.

^b Ausbeuten beziehen sich auf reine Rohprodukte.

Von den 5-Brom-5-ethylbarbitursäuren **2d-f** konnten auf diesem Weg keine 5-Aminobarbitursäuren erhalten werden. Daher wurde für Brombarbitursäure **2e** eine Methode angewandt, die zur Herstellung von 5-Aminobarbitursäuren sekundäre Amine und als Lösungsmittel Wasser nutzt.⁶⁹ Zunächst sollte untersucht werden, ob **2e** erfolgreich mit Pyrrolidin umgesetzt werden kann. Die gewünschte 5-Pyrrolidinobarbitursäure **3n** konnte mit einer Ausbeute von nur 1% hergestellt werden (Schema 4). Dieses Resultat wurde auch bei Umsetzung von 2e mit Benzylamin als primärem Amin bestätigt; die 5-Benzylamino-1,5-diethylbarbitursäure 30 (Schema 4) wurde mit 11% als Reinprodukt erhalten. Es sei an dieser Stelle schon vorweggenommen, dass 30 nicht umgelagert werden konnte.

Schema 4: Darstellung der Aminobarbitursäuren 3n und 3o.

Der Versuch, die Brombarbitursäure **2c** unter denselben wässrigen Bedingungen (und leicht veränderter Aufarbeitung) mit Cyclohexylamin zur entsprechenden Aminobarbitursäure umzusetzen, führte zur basischen Hydrolyse der intermediär resultierenden Aminobarbitursäure (am C-6)^{73,74} und zur Decarboxylierung. Es wurde das ringoffene Ureid **4** erhalten (Schema 5), das durch ¹H-, ¹³C-NMR und EIMS vollständig charakterisiert wurde.

Schema 5: Bildung des Ureides (4).

Die Auswertung der NMR-Spektren der Aminobarbitursäuren 3 (Schema 3) zeigten charakteristische chemische Verschiebungen und Aufspaltungsmuster, die sich von denen der nachfolgend gebildeten Hydantoine gut unterscheiden ließen.⁷⁵ Während im ¹H NMR die chemischen Verschiebungen für die NH-Signale der Seitenketten im Bereich von ca. 2 bis 3 ppm liegen, erscheinen die NH-Signale des Barbitursäuredurch die benachbarten Ringes, bedingt beiden Carbonylgruppen, stark tieffeldverschoben zwischen 11 und 12 ppm. Diese Ergebnisse wurden durch beispielhafte Austauschexperimente (etwa 3d und 3l) mit D_2O bestätigt. Im ¹³C-NMR findet man das C-2 der Aminobarbitursäuren typischerweise bei 149-150 ppm und die beiden anderen Carbonyl-Kohlenstoffe, C-4 und C-6, nah beieinander zwischen 170-173 ppm (Abb. 10). Als signifikant erwiesen sich die chemischen Verschiebungen der C-5 Kohlenstoffe im ¹³C-NMR. In Abhängigkeit vom Substitutionstyp, der an diesem Kohlenstoff vorlag, fanden sich bei einer Alkylsubstitution Verschiebungen zwischen 62-64 ppm, bei einer Phenylsubstitution dagegen zwischen 71-72 ppm (Abb. 10).

Abb. 10: ¹³C-NMR Daten für Aminobarbitursäuren (3).

Von den Verbindungen **3a-m** wurden Massenspektren aufgenommen. Obwohl die Fragmentierung der Aminobarbitursäuren nicht einheitlich verläuft, lässt sich doch eine Abhängigkeit vom Aminorest in Position 5 erkennen (Schema 6).⁷⁵

Schema 6: Charakteristische Fragmentierungen von Allyl-, Benzyl- und Cyclohexylaminobarbitursäuren (3).

2.1.3 Umlagerung der 5-Aminobarbitursäuren zu 5-Carbamoylhydantoinen

In einer früheren Arbeit konnte gezeigt werden, dass 5-NH₂ substituierte Barbitursäuren einer Ringkontraktion zu 5,5-disubstituierten Hydantoinen unterliegen.⁶⁸ Diese Umwandlung wurde durch Einwirkung von Natriumethanolat auf die Aminobarbitursäuren erreicht. Während die wässrig-alkalische Hydrolyse von Barbitursäuren schon häufig Gegenstand von Untersuchungen war, ist über die Spaltung von Pyrimidin-2,4,6-trionen mit Alkoholaten recht wenig bekannt.⁷⁵ Die Ursache ist darin zu suchen, dass genau dies die gängigen Bedingungen zur Bildung solcher Substanzen sind. Gegenüber der alkalischen Hydrolyse wird unter Bedingungen der Alkoholyse die Decarboxylierung der ringoffenen Produkte zurückgedrängt und alternative Ringschlüsse - andere als die Rezyklisierung zur Ausgangsbarbitursäure werden möglich.

Acht Aminobarbitursäuren **3** wurden erfolgreich in Hydantoine **5** überführt (Schema 7, Tabelle 3) und die Ringkontraktion unter verschiedenen Bedingungen untersucht. Zur Umlagerung der 1-Phenylaminobarbitursäuren (**3**, $R^2 = Ph$) wurden diese 3 Stunden unter Rückfluss in Ethanol in der Anwesenheit von vier Äquivalenten Natriumethylat (0.3 M) erhitzt (Methode A, Tabelle 3). Um die Umlagerung mit 1-Alkylamino-barbitursäuren (**3**, $R^2 = Me$, Et) erfolgreich durchzuführen, bedurfte es härterer Reaktionsbedingungen. Diese Barbitursäuren wurden in einem Autoklaven für 5 Stunden bei 120°C mit einer 0.8 M Lösung von Natriumethylat (vier Äquivalente) in Ethanol (Methode B) behandelt.

Schema 7: Umlagerung der Aminobarbitursäuren (3) zu Hydantoinen (5).

Darüber hinaus wurde die Umlagerung in Abwesenheit eines nukleophilen Ko-Reaktanten mit Natriumhydrid (vier Äquivalente) in DMF bei 78°C und einer Reaktionszeit von 3 bzw. 5 Stunden untersucht (Methoden C bzw. D). Unter diesen Bedingungen wurden die Hydantoine **5a** und **5e** erhalten, und es konnte gezeigt werden, dass sie identisch mit den Produkten der Umsetzungen mit Natriumethylat waren.

Edukt 3	Produkt 5	\mathbf{R}^1	\mathbf{R}^2	R ³	Methoden ^a	Ausbeute (%) 5
b	a	Me	Me	Bn	В	43^{c}
					D	21 ^b
с	b	Me	Me	Cyclohexyl	В	56 ^c
e	С	Me	Et	Bn	В	81 ^c
f	d	Me	Et	Cyclohexyl	В	36 ^b
h	e	Me	Ph	Cyclohexyl	А	35 ^b
					С	56 [°]
j	f	Ph	Me	Bn	В	38 ^b
1	g	Ph	Et	Bn	В	28 ^b
m	h	Ph	Ph	Bn	А	85 ^b

Tab. 3: Umlagerung von Aminobarbitursäuren (3) zu Hydantoinen (5).

^a Alle Reaktionen wurden unter einer Argonatmosphäre durchgeführt. Methode A: Reaktionen wurden in Ethanol in der Anwesenheit von Natriumethylat (4 Äquiv., 0.3 M) für 3 Stunden unter Rückfluss durchgeführt. B: Reaktionen wurden in Ethanol in der Anwesenheit von Natriumethylat (4 Äquiv., 0.8 M) für 5 Stunden in einem Autoklaven bei 120°C durchgeführt. C: Reaktionen wurden in der Anwesenheit von Natriumhydrid in DMF (4 Äquiv.) für 3 Stunden bei 78°C durchgeführt. D: Reaktionen wurden in Anwesenheit von Natriumhydrid in DMF (4 Äquiv.) für 5 Stunden bei 78°C durchgeführt.

^b Ausbeuten beziehen sich auf umkristallisierte oder anders gereinigte Produkte.

^c Ausbeuten beziehen sich auf reine Rohprodukte.

Die Struktur aller 5-Carbamoylhydantoine **5** wurde durch spektroskopische Daten gesichert. Im ¹³C-NMR findet sich das C-5 der Hydantoine (Abb. 11) – wiederum in Abhängigkeit vom Substituenten R¹ – zwischen 69 und 71 ppm für Methylsubstituenten (**5a-e**), und zwischen 75 und 77 ppm für Phenylsubstitution (**5f-h**). Die chemischen Verschiebungen am C-5 der Carbamoylhydantoine liegen also im Vergleich zum entsprechenden C-5 der Aminobarbitursäuren (Abb. 10) bei tieferem Feld. Weiterhin zeigen die ¹³C-NMR-Spektren der Hydantoine **5** (Abb. 11) drei unterschiedliche Signale für die Carbonyl-Kohlenstoffe: bei 155-157 ppm (C-2), 163-167 ppm (exocyclisches CO) und 170-174 ppm (C-4). Dabei sind die Werte für C-2 und C-4 charakteristisch für das Hydantoingerüst.⁷⁶

Abb. 11: ¹³C-NMR Daten für Hydantoine (5).

Die Massenspektren der 5-Carbamoylhydantoine **5** weisen als signifikante Fragmentierung die Eliminierung von R²NCO auf. Dieser Befund steht in Einklang mit der Literatur.^{77,78}

Schema 8: Methylierung der Hydantoine (5).

An einigen Beispielen sollte schließlich die Alkylierung der Hydantoine **5** an der verbleibenden Position N-3 demonstriert werden. Die Umsetzung mit Methyliodid lieferte die tetrasubstituierten Hydantoine **6a-d** (Schema 8, Tab. 4). Alkylierungen an Position 3 sind gegenüber denen an Position 1 bzw. 5 bevorzugt, allerdings ist die Datenlage bezüglich der Reaktionsbedingungen und Ausbeuten sehr uneinheitlich.³¹ Weitere eigene Untersuchungen zu Alkylierungen von Hydantoinen finden sich in Kap. 3.1.2.3 dieser Arbeit.

Edukt 5	Produkt 6	\mathbf{R}^1	R ²	R ³	Ausbeute (%) 6
С	а	Me	Et	Bn	21 ^a
e	b	Me	Ph	Cyclohexyl	55 ^a
f	с	Ph	Me	Bn	35 ^a
h	d	Ph	Ph	Bn	56 ^a

Tab. 4: Methylierung der Hydantoine (5) zu Hydantoinen (6).

^a Ausbeuten beziehen sich auf umkristallisierte oder anders gereinigte Produkte.

Zusammenfassend lässt sich feststellen: Durch die Umlagerung wird die Diversität an Position 1 (\mathbb{R}^3) der Hydantoine **5** und **6** über die unterschiedlichen primären Aminen, die für die Herstellung der Ausgangsaminobarbitursäuren **3** verwandt wurden, bestimmt (Abb. 12). Das Substitutionsmuster am C-5 der Hydantoine rührt dagegen von den eingesetzten Harnstoffen (\mathbb{R}^2) und Dialkylmalonaten (\mathbb{R}^1) her. Mit Alkylhalogeniden kann schließlich auch noch die letzte freie Position 3 (\mathbb{R}^4) substituiert werden. Die beschriebene Umlagerung ermöglicht also die regioselektive Einführung von Substituenten in das Hydantoingrundgerüst. Primäre Amine, Harnstoffe und Dialkylmalonate stellen preiswerte Ausgangsstoffe bzw. Synthesebausteine (building blocks) dar, die in großer Zahl käuflich erworben werden können. Daher bietet sich diese Umlagerung besonders für einen kombinatorischen Ansatz an.

Abb. 12: Diversitätspunkte und Synthesebausteine für tetrasubstituierte 5-Carbamoylhydantoine.

2.2 Mechanistische Untersuchungen zur Aminobarbitursäure-Hydantoin-Umlagerung

Für die Aminobarbitursäure-Hydantoin-Umlagerung sind zwei Mechanismen denkbar. Ein Mechanismus schließt die Addition eines Nukleophiles, Ringöffnung, und Ringschluss (sogenannte ANRORC-Reaktion)^{79,80} ein. Dabei würde die Spaltung des Heterozyklus aus einem nukleophilen Angriff von Ethylat an einem der Carbonyl-Kohlenstoffe der Substrate **3** resultieren, wobei die Intermediate **I-IV** diskutiert werden müssten (Abb. 13).

Abb. 13: Mögliche Intermediate und Produkte entstanden durch einen Angriff von Ethylat auf Aminobarbitursäuren (3).

Die Ester-Intermediate I könnten zu den Aminobarbitursäuren 3 (Schema 3) rezyklisieren oder eine intermolekulare Reaktion eingehen, jedoch nicht Hydantoine 5 bilden. Dies gilt auch für die Ester-Intermediate II. Nukleophile Addition von Ethylat an C-2 und nachfolgende Spaltung entweder der 1,2-Bindung oder der 2,3-Bindung würde die Carbamat-Intermediate III und IV liefern. Beide sind in der Lage, 5-Carbamoylhydantoine über einen Ringschluss zu bilden. Die möglichen Produkte dieser Ringtransformationen wären 5 bzw. V (Abb. 13). Zumindest für die 1-alkyl-substituierten Aminobarbitursäuren 3 sollten die Intermediate IV und damit deren Produkte V in Betracht gezogen werden. Im Zuge der Untersuchungen zur Ethylat-katalysierten Umlagerung wurden die Hydantoine V jedoch nie isoliert. Die Hauptprodukte waren immer Verbindungen 5. Diese Ergebnisse zeigen, dass die Aminobarbitursäure-Hydantoin-Umlagerung nicht nach einem ANRORC-Mechanismus verläuft.

Alternativ kann die Bildung der Hydantoine **5** mit Hilfe eines Eliminierungs-Additions-Mechanismus erklärt werden (Schema 7). Dabei bewirkt eine initiale Deprotonierung der Aminobarbitursäuren **3** eine Ringöffnung und Eliminierung der Amidgruppe. Das intermediär gebildete Isocyanat wird dann intramolekular von der Aminogruppe nukleophil angegriffen, und der Ringschluss schließt die Umlagerung ab. Es wurde daher postuliert, dass die Reaktion auch in Abwesenheit von Ethylat dem Eliminierungs-Additions-Mechanismus folgt. Deshalb wurde die Umlagerung in Anwesenheit von Natriumhydrid durchgeführt (Methoden C und D, Tab. 3). Tatsächlich wurden die entsprechenden Hydantoine 5 gebildet, und es konnte ein Beweis für den Eliminierungs-Additions-Mechanismus geliefert werden.

Des Weiteren sollten zum Verständnis der Umlagerungsreaktion beispielhaft tetrasubstituierte Aminobarbitursäuren als Substrate untersucht werden. Wie in Schema 9 gezeigt, wurden dafür zunächst die tetrasubstituierten Barbitursäuren **7a** und **7b** hergestellt. Im Gegensatz zu den 1,5-disubstituierten Barbitursäuren **1** waren für die Bildung dieser 1,3,5-trisubstituierten Barbitursäuren **7** aus den entsprechenden Malonsäurediethylestern und Dimethylharnstoff weitaus härtere Bedingungen nötig.⁷⁰ Im nachfolgenden Schritt wurden die Barbitursäuren **6** bromiert und die beiden Brombarbitursäuren **8a** und **8b** erhalten.

Schema 9: Synthese der Barbitursäuren (7), Brombarbitursäuren (8) und Aminobarbitursäure (9).

Verbindung **8a** wurde mit zwei Äquivalenten Benzylamin in Acetonitril zur Reaktion gebracht und so die tetrasubstituierte Aminobarbitursäure **9** erzeugt (Schema 9). Diese wurde zunächst mit Natriumethylat den Bedingungen unterworfen, unter denen die trisubstituierten Aminobarbitursäuren umgelagert werden konnten (Methoden A und B, Tabelle 3).

Schema 10: Umlagerung der tetrasubstituierten Aminobarbitursäure (9).

Überraschenderweise führte die Reaktion mit vier Äquivalenten Natriumethylat zu dem 1,3,5-trisubstituierten Hydantoin 10 (Schema 10). Dies kann nur durch eine schrittweise Umwandlung über das 1,3,5,5-tetrasubstituierte Hydantoin 6c erklärt werden, das einer Decarbamoylierung unterliegt. Verbindung 6c, die durch Alkylierung des Hydantoins 5f (Schema 8, Tab. 4) zugänglich war, wurde unter genau denselben Bedingungen in Ethylat umgesetzt, und wiederum wurde das Hydantoin 10 erhalten. Es bleibt anzumerken, dass das 1-Benzyl-5-methylcarbamoyl-5-phenylhydantoin (5f) bei seiner Herstellung sehr viel härteren Bedingungen) (unter keiner Decarbamoylierungsreaktion unterlag. Eine Erklärung für die unterschiedliche Stabilität der Carbamovlhydantoine kann über die verschiedene Qualität der Abgangsgruppen erfolgen.⁸¹ In Verbindung **6c** fungiert die neutrale Hydantoineinheit als bessere Abgangsgruppe als der negativ geladene Hydantoinrest in 5f. Es ist eine ähnliche Reaktion bekannt, bei der 1,3,5-Triaryl-5-arylcarbamoylhydantoine durch thermische Eliminierung ein Arylisocyanat abspalten.⁷⁷ Solche Decarbamoylierungsreaktionen wurden auch bei anderen α -akzeptorsubstituierten Amiden unter Bedingungen der Pyrolyse⁸² und Alkoholyse beobachtet.⁸³ Auch bei der Abspaltung einer α-akzeptorsubstituierten Amid-Seitenkette bestimmter Penicilline, wurde die Eliminierung eines Isocyanates vorgeschlagen.⁸⁴

In einem nächsten Schritt waren wir nun daran interessiert, **6c** aus der tetrasubstituierten Aminobarbitursäure **9** zu erhalten und eine nachfolgende Decarbamoylierung zu Hydantoin **10** zu verhindern (Schema 10). Unter Anwendung von katalytischen Mengen Natriumethylat und einer sehr viel längeren Reaktionszeit gelang die Isolierung von **6c**. Bei Abwesenheit von Ethylat, und unter Beibehaltung aller anderen Reaktionsbedingungen, wurde keine Reaktion von **9** zu **6c** beobachtet. Für die Umlagerung von Aminobarbitursäuren des Typs **9** muss ein ANRORC-Mechanismus zum Tragen kommen. Da bei dem Substrat **9** keine Deprotonierung an N-3 möglich ist, wird Ethylat an den C-2 Carbonyl-Kohlenstoff addiert, der heterozyklische Ring öffnet sich, und es erfolgt anschließend der Ringschluss zum Hydantoin durch Angriff der Aminogruppe auf den Carbamat-Kohlenstoff.

Eine Decarbamoylierungsreaktion ähnlich der von 9 zu 10 wurde auch bei der Ein-Topf-Reaktion von 2-Acetamido-2-methylmalonsäuredieethylester 11 mit Intermediäre Ausbildung einer tetrasubstituierten Dimethylharnstoff beobachtet. 5-Acetylaminobarbitursäure, Abspaltung des Acetylrestes, Angriff von Ethylat am C-2 mit Carbamatbildung, Ringschluss zum Hydantoin und abschließende Decarbamoylierung sind die postulierten Schritte in der Bildung von 12 (Schema 11). Da es sich um eine (intermediäre) 5-Acetylamino-5-methylbarbitursäure handelte, wurden vier Äquivalente Natriumethanolat in Ethanol (0.8 M Lösung) eingesetzt und 6 Stunden bei 120°C im Laborautoklaven⁶⁸ erhitzt. Durch den eingesetzten dialkylierten Harnstoff erfolgt automatisch eine Substitution am Stickstoff in Position 3 des Hydantoinringes.

Weitere Decarbamoylierungsreaktionen konnten bei Umlagerungsversuchen der Aminobarbitursäuren **3b** und **3m** beobachtet werden (Schema 12). Setzt man für deren Umwandlung zu Carbamoylhydantoinen härtere Bedingungen als die in Tabelle 3 beschriebenen ein, erhält man auch in diesen Fällen - zumindest als Nebenprodukte die entsprechenden 1,5-disubstituierten Hydantoine **13** und **14** (Schema 12).

Weite Teile der Kapitel 2.1 und 2.2 wurden veröffentlicht.⁷⁵

Schema 11: Ein-Topf-Synthese von (12).

Schema 12: Einstufige Umlagerungs- und Decarbamoylierungsreaktion.

2.3 Untersuchungen zur Analytik von Barbitursäuren und Hydantoinen mittels Kupfer(II)- und Kobalt(II)-Komplexen

Im Zuge der bisherigen Untersuchungen zur Darstellung mehrfach substituierter Hydantoine aus Aminobarbitursäuren entstand das Interesse, solche zyklischen Acylharnstoffe mit Hilfe von einfachen und schnell durchführbaren Farbreaktionen nachzuweisen. Die bekannteste Nachweisreaktion für Barbitursäurederivate und Hydantoine ist die Komplexierung mit Schwermetallsalzen.³¹ Bereits im Jahr 1924 war es Walter Parri gelungen, eine solche Reaktion mit Kobalt(II)chorid, Ammoniak und absoluten Ethanol durchzuführen.⁸⁵ Sieben Jahre später modifizierte Zwikker diese Reaktion und wendete Kupfer(II)sulfat zusammen mit Ba(OH)₂ oder Pyridin an.⁸⁶ In den Folgejahren wurden durch Bodendorf Kobalt(II)nitrat,⁸⁷ durch Dille und Koppanyi Kobalt(II)acetat⁸⁸ und durch de Faubert Maunder Kobalt(II)thiocyanat⁸⁹ in die analytische Chemie von Barbituraten und Hydantoinen eingeführt. Dabei wurden vielfältige anorganische und organische Basen sowie eine ganze Reihe verschiedener Lösungsmittel getestet. Auch der Einfluss des Wassergehaltes in den entsprechenden Lösungsmitteln war Gegenstand der Untersuchungen. Es wurden einige vergleichende Studien veröffentlicht,⁹⁰⁻⁹² deren Resultate teilweise widersprüchlich waren. So beschreibt Bult⁹³ z.B. eine negative Reaktion für Phenytoin, wenn es mit Kobalt(II)nitrat und Cyclohexylamin in Methanol umsetzt wird, wogegen Lang⁹⁰ für Phenytoin mit dem gleichen Schwermetallsalz und Piperidin als Base eine positive Reaktion berichtet. Aus dieser verwirrenden Situation heraus sollten verschieden substituierte Amino- und Acetamidobarbitursäuren und Hydantoine, einschließlich pharmazeutisch bedeutsamer Substanzen wie Phenytoin (15), Phenobarbital (21) und dessen Natriumsalz 22 (Abb. 14), in einer vergleichenden Studie auf ihre Fähigkeit derartige Komplexe zu bilden, untersucht werden. Neben der sehr subjektiven Beobachtung der Farben der Kobalt(II)- und Kupfer(II)-Komplexe, sollten auch qualitative UV-Vis-Messungen durchgeführt werden. Zusätzlich sollte die Methode des Europäischen Arzneibuches (Version 5.0, 01/2005), die eine Identifikationsreaktion N-unsubstituierte Barbiturate beschreibt, auf diese ausgewählten Substanzen angewandt werden.

Abb. 14: Strukturen der Testverbindungen.

 Cu^{2+} (3d⁹) und Co^{2+} (3d⁷) sind in Abhängigkeit von den gebundenen Liganden in der Lage, tetraedrische und/oder oktaedrische Komplexe auszubilden. Für Co^{2+} ist bekannt, dass dessen oktaedrische Komplexe sowohl high- als auch low-spin Komplexe Dies ist abhängig von den Liganden, und damit von der darstellen können Dagegen ist für Cu²⁺ nur ein oktaedrischer Ligandenfeldstabilisierungsenergie. Co²⁺ ist eines der Übergangsmetallionen, dass die meisten Komplex möglich. tetraedrische Komplexe bildet.⁹⁴ Nach Bult⁹³ haben tetraedrische Kobalt(II)-Komplexe der Zusammensetzung CoBarb₂X₂ (Barb=Barbiturat, X=neutraler Ligand, z.B. Amin) eine höhere molare Extinktion und eine höhere Farbintensität (violette Färbungen) als oktaedrische Komplexe (rosa Färbungen). Die Verlagerung von oktaedrischen zu tetraedrischen Strukturen kann durch überschüssiges Amin erreicht werden, welches zugleich das Ureid-NH deprotonieren und als Ligand agieren kann. Wenn jedoch das Lösungsmittel Methanol als Ligand zum Einsatz käme, würde ein oktaedrischer Komplex resultieren. Diese Überlegungen wurden bei der Planung der Experimente mit in Betracht gezogen.

An der Durchführung der Experimente war Herr Maxim Frizler im Rahmen einer Famulatur beteiligt.

Arzneibücher enthalten Verschiedene Parrioder Zwikker ähnliche Identitätsreaktion für Barbiturate und/oder Hydantoine.⁹⁵ Die allgemeine Vorschrift für N-unsubstituierte Barbitursäuren des Europäischen Arzneibuches (Version 5.0)^{95a} umfasst die Reaktion der Testverbindungen mit Kobalt(II)nitrat (10% in Methanol) und einer anorganischen Base. Zur Durchführung der Methode des Ph. Eur. wurden eine Lösung aus 10% (m/V) Kobalt(II)nitrat und 10% (m/V) Calciumchlorid sowie eine Lösung von 8.5% (m/V) NaOH, beide in Wasser, hergestellt. Dieser Test wurde mit allen Verbindungen aus Abbildung 14 durchgeführt und mit den anderen 36 gewählten Methoden (Tab. 6) verglichen. Wie erwartet, reagierten am Stickstoff unsubstituierte Barbitursäuren (17, 21, 22) positiv und ergaben einen violetten Niederschlag des Kobaltkomplexes. Barbitursäuren, die an einem oder an beiden Stickstoffen einen Substituenten trugen, lieferten ebenso wie alle Hydantoine ein negatives Testergebnis. Sie konnten durch diese Methode nicht detektiert oder gar voneinander unterschieden werden. Im Europäischen Arzneibuch kann eine dem allgemeinen Barbituratnachweis ähnliche Reaktion in der Monographie von Ethosuximid gefunden werden,^{95a} die Kobaltchlorid und Natriumhydroxid verwendet. Ein Test, der Kupfersulfat (5%-ig in Wasser) und Ammoniak verwendet, dient im Europäischen Arzneibuch^{95a} als Identitätsnachweis für Phenytoin.

In Anlehnung an diese Methoden des Ph. Eur. wurden die Konzentrationen der Kobalt(II) und Kupfer(II)-Salzlösungen auf 10% bzw. 5% festgelegt. Ebenso wurden die Mengen und die Zusammensetzungen der anderen 36 Tests, wie in Tabelle 6 gezeigt, fixiert. Um die Beurteilung der beobachteten Farben einfacher und objektiver zu gestalten, wurde eine Farbpalette definiert (Tab. 5). Darin wurden sieben Farben festgelegt. Jede Farbe ist durch einen eindeutigen Hexadezimalcode charakterisiert, der den Rot-, Gelb- und Blauanteil durch jeweils zwei Buchstaben oder Zahlen wiedergibt.

Name der Farbe	Hexadezimalcode	Farbe
yellow	#FFFF00	
lightgreen	#90EE90	
hotpink	#FF69B4	
darkviolet	#9400D3	
mediumslateblue	#7B68EE	
deepskyblue	#00BFFF	
blue	#0000FF	

Tab. 5: Verwendete Farbpalette für die visuelle Farbbeobachtung.

Die Testverbindungen wurden in einer Konzentration von 1.67 g/l in Methanol (HPLC-Qualität) gelöst. Die wässrigen Lösungen der Kupfer(II)-Salze und die methanolischen Lösungen der Kobalt(II)-Salze besaßen Konzentationen von 5% (m/V) bzw. 10% (m/V). Von allen Basen (Isopropylamin, *tert*-Butylamin, Cyclohexylamin, Piperidin, Morpholin) wurden 5%-ige und 10%-ige methanolische Lösungen hergestellt. Von Pyridin wurde nur eine 10%-ige methanolische Lösung benötigt.

Zu 3.0 ml der Lösung der Testverbindung (oder 3.0 ml Methanol im Falle der Blindlösungen) wurden 0.1 ml Schwermetallsalzlösung und 0.1 ml der Lösung der Base zugegeben (entsprechend Tab. 6). Das Gemisch wurde geschüttelt und sofort die Farbe unter Zuhilfenahme der Farbpalette (Tab. 5) visuell beurteilt.⁹⁶ Im Fall von Morpholin benötigte die Einstellung einer konstanten Farbe etwas Zeit. Daher wurde die Farbbeurteilung 5 min nach Zugabe der Base vorgenommen. Falls eine Niederschlagsbildung eintrat, wurde das Gemisch filtriert. Ein Volumen von 0.5 ml der klaren Lösung (oder des Filtrates) wurden mit 0.5 ml Methanol verdünnt und ein UV-Spektrum aufgenommen ($\lambda = 400 - 800$ nm). Beispielhaft sind in Tabelle 7 alle Ergebnisse des Tests Nr.1 abgebildet.

		Schwer-		
Test	Zusammensetzung der Tests	metall-		
Nr.		colz		
		Salz		
1	methanolische $Co(NO_3)_2$ -Lösung (10% m/V), methanolische			
	Piperidin-Lösung $(10\% \text{ m/V})$	_		
2	methanolische Co(NO ₃) ₂ -Lösung (10% m/V), methanolische Dingridin Lögung (5% m/V)			
	$\frac{\text{Piperium-Losung (5% m/v)}}{\text{mathemalisaha}}$	_		
3	Cyclohexylamin-Lösung (10% m/V)			
	methanolische Co(NO ₃) ₂ -Lösung (10% m/V), methanolische	_		
4	Cyclohexylamin-Lösung (5% m/V)			
5	methanolische Co(NO ₃) ₂ -Lösung (10% m/V), methanolische	rat		
5	Isopropylamin-Lösung (10% m/V)	tmit		
6	methanolische Co(NO ₃) ₂ -Lösung (10% m/V), methanolische	bal		
	Isopropylamin-Lösung (5% m/V)	\mathbf{K}_{0}		
7	methanolische Co(NO ₃) ₂ -Lösung (10% m/V), methanolische <i>tert</i> -			
	Butylamin-Lösung (10% m/V)	_		
8	methanolische Co(NO ₃) ₂ -Losung (10% m/V), methanolische <i>tert</i> -			
	Butylamin-Losung $(5\% \text{ m/v})$	_		
9	Morpholin-Lösung (10% m/V)			
	$\frac{Morpholin-Losung (10\% m/v)}{methanolische}$			
10	Morpholin-Lösung (5% m/V)			
	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische Piperidin-			
11	Lösung (10% m/V)			
12	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische Piperidin-			
12	Lösung (5% m/V)	_		
13	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische			
	Cyclohexylamin-Lösung (10% m/V)	_		
14	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische	at		
	Cyclohexylamin-Lösung (5% m/V)			
15	methanolische Co(Ac) ₂ -Losung (10% m/V), methanolische Lopropylamin Lögung (10% m/V)	alta		
	$\frac{1000}{1000} \frac{1000}{1000} $	- obî		
16	Isopropylamin-I ösung (5% m/V)	K		
	Isopropylamin-Losung $(5\% \text{ m/v})$ methanolische Co $(A_c)_{c-1}$ ösung $(10\% \text{ m/V})$ methanolische <i>tert</i> -			
17	Butylamin-Lösung (10% m/V)			
10	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische <i>tert</i> -			
18	Butylamin-Lösung (5% m/V)			
10	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische	_		
19	Morpholin- Lösung (10% m/V)			

Tak	6.	7	1		dermak asfiikent	Tombtooto
I AD.	0:	Zusannenseizung	uer	verschiedenen	amrcngenunrie	en rardiesis.
	~.				and on Borner of	

20	methanolische Co(Ac) ₂ -Lösung (10% m/V), methanolische	
20	Morpholin- Lösung (5% m/V)	
21	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
21	Piperidin- Lösung (10% m/V)	
22	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
	Piperidin- Lösung (5% m/V)	
23	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
23	Cyclohexylamin-Lösung (10% m/V)	
24	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
24	Cyclohexylamin-Lösung (5% m/V)	nat
25	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	yaı
23	Isopropylamin-Lösung (10% m/V)	ioc
26	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	ltth
20	Isopropylamin-Lösung (5% m/V)	bal
27	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische tert-	Ko
27	Butylamin-Lösung (10% m/V)	
20	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische tert-	
28	Butylamin-Lösung (5% m/V)	
20	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
29	Morpholin-Lösung (10% m/V)	
20	methanolische Co(SCN) ₂ -Lösung (10% m/V), methanolische	
30	Morpholin-Lösung (5% m/V)	
21	wäßrige Cu(Ac) ₂ -Lösung (5% m/V), methanolische Isopropylamin-	
31	Lösung (10% m/V)	etal
20	wäßrige Cu(Ac) ₂ Lösung (5% m/V), methanolische <i>tert</i> -Butylamin-	ace –
32	Lösung (10% m/V)	lfei
22	wäßrige Cu(Ac) ₂ -Lösung (5% m/V), methanolische Pyridin-Lösung	- duž
33	(10% m/V)	ي ك ر
24	wäßrige CuSO ₄ -Lösung (5% m/V), methanolische Isopropylamin-	
34	Lösung (10% m/V)	fat
25	wäßrige CuSO ₄ -Lösung (5% m/V), methanolische <i>tert</i> -Butylamin -	– flus
35	Lösung (10% m/V)	fer
36	wäßrige CuSO ₄ -Lösung (5% m/V). methanolische Pvridin-Lösung	I dn
	(10% m/V)	K

Tab. 7: Dokumentationsliste für Test Nr. 1: 10% (m/V) methanolische Co(NO₃)₂-Lösung und 10% methanolische Piperidin-Lösung.

DI. 11"	Farbe des	filtriert	Farbe des	λ_{max}	Б
Blindlosung	Vergleichs	ja/nein	Filtrates	[nm]	E
Methanol	yellow	ja	farblos	405,0	0,0025
Vorbindung	Farbe des	filtriert	Farbe des	λ_{max}	F
verbindung	Tests	ja/nein	Filtrates	[nm]	L
9	yellow	ja	farblos	410,0	0,0048
15	hotpink	nein	-	520,0	0,0657
16	hotpink	nein	-	520,1	0,0748
17	darkviolet	ja	hotpink	535,0	0,0094
18	yellow	ja	farblos	400,1	0,0077
19	hotpink	ja	hotpink	515,0	0,0560
20	hotpink	nein	-	495,0	0,0762
21	darkviolet	ja	farblos	405,0	0,0019
22	darkviolet	ja	farblos	405,1	0,0024

Zuerst wurden die Daten dahingehend analysiert, dass nach einer Korrelation zwischen dem erhaltenen λ_{max} und der beobachteten Farbe gesucht wurde. Die Resultate sind in Abb. 15 dargestellt. Im Falle klarer Lösungen wurde ein λ_{max} -Wert detektiert, der der Komplementärfarbe der visuell beobachteten Lösung entspricht. Es konnte gezeigt werden, dass zwei Gruppen von Farben nur durch die Bestimmung von λ_{max} unterschieden werden können: Färbungen von hotpink/darkviolet (495 - 540 nm) und von blue/deepskyblue/lightgreen (575 - 750 nm). Wenn eine Filtration notwendig war, korrelierte die maximale Wellenlänge des Filtrates nicht mit der Farbe. Eine Erklärung hierfür könnte sein, dass der Niederschlag der Suspension die Farbe verleiht, und diese daher nach Filtration mehr oder weniger verschwindet.

Abb. 15: Wellenlängenbereiche in Abhängigkeit von der Farbe.

Als Nächstes sollte die Farbbeobachtung evaluiert werden. Ein Test wurde als positiv gewertet, wenn die Testlösung eine andere Farbe als die Blindlösung hatte. Von sieben Testverbindungen wurde erwartet, dass sie positiv reagieren (**15**, **16**, **17**, **19**, **20**, **21**, **22**) und von zwei Verbindungen, dass sie ein negatives Resultat geben (**9**, **18**). Das Ergebnis aller Testfärbungen ist in Tabelle 8, Spalten 2 und 3 dargestellt. Die Tests Nr. 1-8 sowie 31 und 34 gaben korrekte Resultate für positive und negative Reaktionen und sind daher für die visuelle Beurteilung geeignet. Tests Nr. 9 und 10 gaben für alle Verbindungen einen positiven Ausgang und in den Tests Nr. 11-30, 32-33 und 35-36 konnten keine Farbunterschiede zwischen Testlösung und Blindlösung beobachtet werden. Ausgehend von diesen Daten konnten die 36 Tests in drei Gruppen unterteilt

werden. Die erste Gruppe lieferte immer falsch negative Resultate, die zweite immer falsch positive und Tests der dritten Gruppe konnten zwischen den Substanzen unterscheiden, indem sie korrekt positive und negative Ergebnisse lieferten. Dies war auch ein Beweis für die gute Wahl der Zusammensetzung der Farbpalette (Tab. 5), die vor der Durchführung der Versuche aufgestellt wurde.

Nun wurde die gemessene Extinktion E bei der Wellenlänge λ_{max} analysiert. Da keine Korrelation zwischen der Farbe und der Wellenlänge λ_{max} im Falle einer Filtration bestand, wurden in dieser Analyse nur die nicht-filtrierten Lösungen betrachet (Tab. 8, Spalte 4). Ein Test wurde als positiv gewertet, wenn die Extinktion bei λ_{max} der Testlösung doppelt so hoch wie die Extinktion bei λ_{max} der Blindlösung war ($E_{Test} \ge$ 2×E_{Blind}; Tab. 8, Spalten 5 und 6). Da die Blindlösung ihre höchste Extinktion bei der Wellenlänge λ_{max} erreicht, ist im Spektrum der Blindlösung der Extinktionswert vom λ_{max} der Testlösung sicherlich niedriger. Das erlaubte den Vergleich zweier Extinktionswerte an verschiedenen λ_{max} . In 21 Tests (Nr. 10-16, 18-30, 33) mussten die Testlösungen in keinem Falle filtriert werden. Es ergaben sich bei der Auswertung der Extinktionen dieser 21 Gemische für alle Verbindungen negative Resultate, selbst in Fällen, in denen die Substanzen positiv reagieren sollten. Dies entsprach aber den falsch negativen Resultaten, die schon in den vorangegangenen visuellen Beobachtungen gefunden wurden. Betrachtet man die Schwermetallsalze, die in diesen Tests verwendet wurden, so kann geschlussfolgert werden, dass Kobalt(II)acetat und Kobalt(II)thiocyanat keine geeigneten Reagenzien sind, um die Verbindungen 9 und 15-22 korrekt zu detektieren. In Fällen, wo die visuelle Beurteilung richtig war, mussten einige Testlösungen filtriert werden (z.B. Test Nr. 31). Dies waren oft Lösungen von Verbindungen, die negativ hätten reagieren sollen. Bei den meisten filtrierten Lösungen erbrachte das Kriterium $E_{Test} \ge 2 \times E_{Blind}$ eine richtige Schlussfolgerung in Bezug auf ein positives oder negatives Testresultat.

Zusammenfassend lässt sich sagen, dass der beste Test in dieser Serie Nr. 31 (5% (m/V) Cu(Ac)₂, 10% (m/V) Isopropylamin) war, der in allen visuellen Beobachtungen richtige Ergebnisse lieferte und auch das höchste Verhältnis von korrekten zu analysierbaren UV-Vis Daten (7/9) besaß. Die verbleibenden nichtanalysierbaren Daten sind auf Niederschläge der Testlösungen und auf die Notwendigkeit einer Filtration zurückzuführen.

T	F		Anzahl nicht-			
Test	Far	btest	filtrierter	$E_{\text{Test}} \ge$	2×E _{Blind}	
1 1	positiv		Losungen			
2	7/7	2/2	5	5/5	0/0	
3	7/7	2/2	3	3/3	0/0	
4	7/7	2/2	5	5/5	0/0	
5	7/7	2/2	3	3/3	0/0	
6	7/7	2/2	3	3/3	0/0	
7	7/7	2/2	3	3/3	0/0	
8	7/7	2/2	3	3/3	0/0	
9	7/7	0/2	5	0/5	0/0	
10	7/7	0/2	9	0/7	2/2	
11	0/7	2/2	9	0/7	2/2	
12	0/7	2/2	9	0/7	2/2	
13	0/7	2/2	9	0/7	2/2	
14	0/7	2/2	9	0/7	2/2	
15	0/7	2/2	9	0/7	2/2	
16	0/7	2/2	9	0/7	2/2	
17	0/7	2/2	8	0/6	2/2	
18	0/7	2/2	9	0/7	2/2	
19	0/7	2/2	9	0/7	2/2	
20	0/7	2/2	9	0/7	2/2	
21	0/7	2/2	9	0/7	2/2	
22	0/7	2/2	9	0/7	2/2	
23	0/7	2/2	9	0/7	2/2	
24	0/7	2/2	9	0/7	2/2	
25	0/7	2/2	9	0/7	2/2	
26	0/7	2/2	9	0/7	2/2	
27	0/7	2/2	9	0/7	2/2	
28	0/7	2/2	9	0/7	2/2	
29	0/7	2/2	9	0/7	2/2	
30	0/7	2/2	9	0/7	2/2	
31	7/7	2/2	7	7/7	0/0	
32	0/7	2/2	6	6/6	0/0	
33	0/7	2/2	9	0/7	0/2	
34	7/7	2/2	7	2/6	1/1	
35	0/7	2/2	5	5/5	0/0	
36	0/7	2/2	8	0/6	2/2	

Tab. 8: Auswertung der Ergebnisse der Farbtests, λ_{max} und Extinktionswerte.

Diesen Ergebnissen zufolge sind UV-Vis-Messungen bei Zwikker-/Parri-Nachweisreaktionen keine geeignete Alternative zur visuellen Bestimmung der Farben der Komplexe. Da sich nur klare Testlösungen durch richtige Ergebnisse als hilfreiches Werkzeug in qualitativen Untersuchungen erwiesen haben, müssen Niederschläge vermieden werden. In weiterführenden Experimenten sollte daher versucht werden, durch den Zusatz organischer Lösungsmittel (z.B. DMF) eine Auflösung der Niederschläge zu erreichen und in allen Fällen zu klaren Lösungen zu gelangen. Auf die visuelle Farbbeurteilung kann weiterhin nicht verzichtet werden. Durch die Benutzung der hier vorgestellten, siebenfarbigen Palette kann das Urteil jedoch auf eine einfache Ja-Nein-Entscheidung zurückgeführt werden. Neben den Schwermetallsalzen erwiesen sich auch die anderen untersuchten Komponenten als entscheidende Faktoren für ein fehlerloses Testresultat.

Die Ergebnisse dieser Studie werden zur Veröffentlichung vorbereitet.⁹⁷

3 UNTERSUCHUNGEN ZUR ÜBERTRAGUNG AUF DIE FESTE PHASE

In diesem Teilprojekt sollte der Versuch unternommen werden, die Aminobarbitursäure-Hydantoin-Umlagerung⁷⁵ auf die feste Phase zu übertragen, um so zukünftig in kürzerer Zeit zahlreiche Hydantoinderivate großer Diversität herstellen zu können (Abb. 16). Ziel war es, zunächst geeignete Harze zu finden, dann mit Hilfe von vorher entwickelten, einfachen Lösungsmodellen Synthesestrategien für die feste Phase zu entwerfen und schließlich kleine Substanzbibliotheken durch Festphasenchemie herzustellen.

Abb. 16: Idee der Übertragung der Aminobarbitursäure-Hydantoin-Umlagerung auf feste Phase.

Grundvoraussetzung für die Übertragung der Umlagerung auf die feste Phase ist das Vorhandensein eines Harzes, dass einen der Bausteine trägt, die für die Synthese der Ausgangsbarbitursäure benötigt werden. Das bedeutet, dass entweder der Harnstoff oder aber der Malonsäureester harzgebunden zur Verfügung stehen müssen. Solche Harze sind kommerziell nicht erhältlich. Hier wurde der Weg über die Erzeugung eines Harnstoffharzes verfolgt, das im Anschluss erst zu Barbitursäuren oder gleich einstufig⁶⁸ zu Hydantoinen umgesetzt werden könnte.

3.1 PS-Isocyanat-Harz

3.1.1 Vorüberlegungen

Das Polystyrol(PS)-methylisocyanat-Harz (Abb. 17), im folgenden nur noch als Isocyanatharz bezeichnet, besteht aus Polystyrol, dass mit 2% Divinylbenzol (DVB) quervernetzt und mit Isocyanatgruppen funktionalisiert ist. Die Beladung des Harzes mit diesen Isocyanatgruppen liegt zwischen 1.5 und 2.5 mmol/g.

Abb. 17: PS-methylisocyanat-Harz.

Das Isocyanatharz ist ein sog. "Scavenger"-Harz. Das bedeutet, es wurde für das Abfangen von überschüssigen Reagenzien, insbesondere in Lösungsreaktionen, entwickelt. Im speziellen Fall sollen nukleophile Agenzien, wie etwa Amine,98 mit Das Harz soll somit der einfachen dem harzgebundenen Isocyanat reagieren. Aufreinigung von Reaktionen in flüssiger Phase dienen, indem es nach der Reaktion durch einfaches Abfiltrieren von der Lösung getrennt wird.^{99,100} Da ein solches Scavengerharz seine Umsetzungsprodukte natürlich nicht wieder freisetzen soll, existiert kein Linkermolekül, an dem eine Abspaltung vorgenommen werden könnte. Arbeiten mit dem Isocyanatharz bedeutet also ein Arbeiten in einer Art "Black Box", da keine Zwischenprodukte isoliert oder in Lösung charakterisiert werden können. Die Vorteile, die dieses Harz trotz allem mit sich bringt, sind zum einen die leichte Erzeugung eines Harnstoffharzes durch Umsetzung des Isocyanates mit Ammoniak, und zum anderen die Möglichkeit, Hydantoine über eine Decarbamoylierungsreaktion, wie sie in Kapitel 2.2 beschrieben ist, zu synthetisieren. Der letzte Punkt birgt einen effektiven und ökonomischen Gedanken in sich - das Ausgangsharz könnte rückgewonnen und für erneute Synthesen in einer Art Kreislaufprozess wiederverwendet werden (Abb. 18). Da die basen-katalysierte Decarbamoylierung bei 1,3-disubstituierten Hydantoinen erleichtert ist (s. Kap. 2.2), muss sich der einstufigen Bildung der Aminobarbitursäure und Umlagerung zum Hydantoin noch ein Alkylierungsschritt anschließen. Möchte man bereits die 5-Carbamoylhydantoine VII' $(R^3 = H \text{ oder } R^3 \neq H)$ vom Isocyanatharz abspalten, kann dies, wenn überhaupt, nur unter stark sauren Bedingungen gelingen - Bedingungen, unter denen Hydantoine gewiss nicht stabil sein werden.^{31,101,102}

Abb. 18: Idee eines Kreislaufprozesses zur Herstellung von 1,3,5-trisubstituierten Hydantoinen.

3.1.2 Versuche in Lösung

3.1.2.1 Ein-Topf-Synthese der Modellsubstanz 5-Benzylcarbamoyl-5-methylhydantoin

Um die Ein-Topf-Reaktion⁶⁸ von **IX** zu **VII'** und die anschließende Alkylierung zu **VIII'** (Abb. 18) am Harz durchführen zu können, sollte die Reaktion vorab in Lösung studiert werden. Als Modellsubstanz wurde 5-Benzylcarbamoyl-5-methylhydantoin **23** (Schema 13) gewählt, da der Benzylrest den polymeren Träger (Polystyrol) mit der Methylenbrücke imitieren sollte.

Zunächst sollte **23** unter den von Gütschow *et al.*⁶⁸ beschriebenen Bedingungen dargestellt werden. Dazu wurden je ein Teil 2-Acetamido-2-methylmalonsäurediethylester **11** und Benzylharnstoff in einer Lösung von vier Teilen Natrium in trockenem Ethanol (0.8 M) 6 Stunden bei 120°C in einem Laborautoklaven erhitzt. Jedoch erwies sich dieser Weg als verbesserungswürdig. Neben den DC-Chromatogrammen deuteten auch die niedrigen Ausbeuten der Produkte nach langwieriger Aufreinigung darauf hin, dass die Synthese nicht einheitlich verlief, sondern vielmehr ein komplexes Stoffgemisch entstand. HPLC-Untersuchungen (Abb. 19) bestätigten die Anwesenheit einer Reihe unbekannter Verunreinigungen. Daher wurde versucht, die Synthese zu optimieren (Tab. 9).

3 Untersuchungen zur Übertragung auf die feste Phase

min 0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5 20,0

Abb. 19: HPLC-Chromatogramm eines Rohproduktes erhalten nach Methode A. Eluent: Gemisch aus 80 Teilen Wasser:Phosphorsäure 85% = 300:1 und 20 Teilen Methanol, $\lambda = 210$ nm, Flussrate: 1 ml/min. Die Probe wurde in Borat/KCl-Puffer pH 9.0 gelöst.¹⁰³

Schema 14)	•			
Methode	Verhältnis Malonsäureester: Harnstoff:	Verhältnis unpolares LM : EtOH	Konz. Ethanolat (M) ^c	Reaktionszeit (h) / Temperatur (°C)

Tab. 9: Bedingungen der Synthesenoptimierung f
ür Verbindungen (23, Schema 13) und (26,Schema 14).

Malonsäureester: Harnstoff: Natrium	unpolares LM : EtOH	Ethanolat (M) ^c	Reaktionszeit (h) / Temperatur (°C)
1:1:4	0:100	0.8	6 / 120
1:1:4	0:100	0.8	1 / 120
1:1:4	0:100	0.8	3 / 120
1:1:4	0:100	0.8	5 / 120
1:1:4	0:100	0.8	7 / 120
1:1:4	0:100	0.3	3 / 78
1:1:1.2	$50:50^{a}$	0.24	3 / 68
1:1:4	$50:50^{a}$	0.4	5 / 120
1:1:4	$50:50^{a}$	0.8	5 / 120
1:1:4	$75:25^{a}$	0.8	5 / 120
1:1:4	$50:50^{b}$	0.8	5 / 120
1:1:4	75 : 25 ^b	0.8	5 / 120
	Malonsäureester: Harnstoff: Natrium1:1:4	Malonsäureester: Harnstoff: Natriumunpolares LM : EtOH1 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 40 : 1001 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°1 : 1 : 450 : 50°	Malonsäureester: Harnstoff: Natriumvernatins unpolares LM : EtOHEthanolat (M)c $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $0:100$ 0.8 $1:1:4$ $50:50^a$ 0.24 $1:1:4$ $50:50^a$ 0.8 $1:1:4$ $75:25^a$ 0.8 $1:1:4$ $75:25^b$ 0.8

^a unpolares Lösungsmittel (LM): THF

^b unpolares Lösungsmittel (LM): 1,4-Dioxan

^c Angabe bezieht sich auf die Ethylatkonzentration im Gesamtvolumen der Lösung.

-100

In Schema 13 ist gezeigt, mit welchen Produkten bei der Umsetzung mit vier Äquivalenten Ethylat im Laborautoklaven bei 120°C (Methoden A-E, Tab. 9) zu rechnen ist. Die Produkte wurden aus dem Ansatz durch Säulenchromatographie mit Ethylacetat isoliert und Verbindungen 23-25 durch spektroskopische Methoden (NMR, MS) charakterisiert. Alle Stoffe (23-25, 16) konnten mittels DC getrennt und identifiziert werden (Laufmittel: Ethylacetat, Detektion: 0.2%-ige ethanolische Ninhydrinlösung). Dabei wurde nachstehende Reihenfolge der Substanzen gefunden (Rf-Wert, Färbung nach Ansprühen): 24 (0.15, dunkelviolett) < Benzylharnstoff (0.21, rotviolett) < 16 (0.38, orange) < 23 (0.55, rosa) < 25 (n.d., hellviolett). Die Bildung von 16 und 25 ist auf eine Decarbamoylierungsreaktion durch Angriff von Ethylat an der Seitenketten-Carbonylgruppe von 23 zu erklären, während 24 nur durch Ringöffnung an C-4 des Hydantoinringes und anschließender Dealkoxycarbonylierung entstehen kann. Bei steigenden Reaktionszeiten konnte mehr 24 aus dem Produktgemisch gewonnen werden, während die Ausbeute an 23 sank. Bei zu kurzen Reaktionszeiten wurde zusätzlich zu allen anderen Nebenprodukten noch unumgesetzter Benzylharnstoff gefunden.

Schema 13: Synthese von (23) und erhaltene Nebenprodukte (16, 24, 25).

Verzichtet man auf die hohen Reaktionstemperaturen, die nur im Autoklaven erreicht werden können, und erhitzt ein Gemisch aus vier Äquivalenten Natriumethylat in Ethanol (0.3 M) drei Stunden unter Rückfluss (Methode F, Tab. 9), so ergab sich eine Situation, wie sie in Schema 14 dargestellt ist. Nun lieferte die Reaktion aber nicht Substanz 23, sondern erwartungsgemäß⁶⁸ die entsprechende Aminobarbitursäure 26 und ferner das Produkt 27. Verbindung 27 kann nur durch Ringöffnung an C-6 entstanden sein.

Schema 14: Synthese von (26).

Da sich die Synthese von Verbinung 23 durch Veränderung von Reaktionszeit und -temperatur nicht verbessern ließ, wurden für weitere Reaktionen die folgenden Bedingungen angewandt: Malonsäureester/Harnstoff/Natrium = 1/1/4, 0.8 M ethanolische Natriumethanolatlösung, 5 Stunden, 120°C, Laborautoklav.

Reaktionen am Isocyanatharz bedürfen jedoch eines unpolaren Lösungsmittels, das eine Quellung des polymeren Trägers verursacht und damit auch die Umsetzung von funktionellen Gruppen im Inneren der Harzkügelchen garantiert. Daher ist es sinnvoll, der Natriumethanolatlösung ein solches unpolares Lösungsmittel zuzusetzen. Dieses Lösungsmittel muss verschiedene Voraussetzungen erfüllen: Es muss trocken sein, mit Ethanol mischbar und die eben beschriebene Quellung des Harzes verursachen. Lösungsmittel wie Tetrahydrofuran, 1,4-Dioxan und DMF vereinen all diese Eigenschaften in sich und sind daher geeignete Zusätze. In den Methoden H bis M (Tab. 9) fanden Gemische unterschiedlicher Zusammensetzung Anwendung. Beide Verbindungen, **23** (Methoden I, K, M) und **26** (Methode G), konnten auch auf diese Weise erhalten werden (Schema 15). Lediglich Methoden H und L erwiesen sich als ungünstig. Ein weiterer Versuch, **23** durch Umsetzung des 2-Acetamido-2methylmalonsäureesters **11** mit Benzylharnstoff in NaH/DMF bei 78°C im Autoklaven zu erhalten, erbrachten ebenfalls nicht das gewünschte Ergebnis.

Schema 15: Bildung von (23) und (26) unter Zusatz von THF oder Dioxan.

3.1.2.2 Decarbamoylierungsversuche von 1,3-unsubstituierten Hydantoinen im sauren Milieu

Wie schon in Kapitel 2.2 beschrieben, lassen sich 1,3-unsubstituierte Hydantoine, wie beispielsweise 23, im basischen Milieu aufgrund der schlechten Eigenschaften des deprotonierten Hydantoinrestes als Abgangsgruppe nur schwer decarbamoylieren. Vielmehr sollte man für eine solche Substanz eine klassische, saure Hydrolyse der Amidgruppe mit nachfolgender Decarboxylierung in Betracht ziehen (Schema 16). Diese Überlegung könnte von Hydantoinen des Typs 23 auf harzgebundene Hydantoine VII' (Abb. 18) übertragen werden.

Erste Versuche, die Carbamoylseitenkette von 1,3-unsubstituierten Hydantoinen zu entfernen, um so eine Abspaltung vom Harz zu simulieren, wurden deshalb mit HCl vorgenommen. Die Benutzung von wässriger Salzsäure für Abspaltungsreaktionen vom Harz ist bereits in der Literatur beschrieben worden, wenn auch im Zusammenhang mit sauren Cyclo-Eliminierungen.^{104,105}

Schema 16: Additions-Eliminierungs-Mechanismus der sauren Hydrolyse des Seitenkettenamids in (23).

Der Erfolg der Decarbamoylierung sollte mittels HPLC beurteilt werden. Um die gleichzeitige Anwesenheit vom Edukt **23** und Decarbamoylierungs-produkt **16** (Schema 16) prüfen zu können, wurde dieselbe HPLC-Methode¹⁰³ angewendet, die bereits für das 5-Benzylcarbamoyl-5-methylhydantoin **23** genutzt wurde (Abb. 19). Vorab war es jedoch notwendig zu wissen, bei welcher Retentionszeit 5-Methylhydantoin eluiert wird, und es musste eine Kalibrierung vorgenommen werden. Die Ergebnisse sind in Abbildungen 20 und 21 aufgezeigt.

Abb. 20: Eichgerade für 5-Methylhydantoin (16).

Eluent: Gemisch aus 80 Teilen Wasser:Phosphorsäure 85%=300:1 und 20 Teilen Methanol, $\lambda=210$ nm, Flussrate: 1 ml/min. Die Probe wurde in Borat/KCl-Puffer pH 9.0 gelöst.¹⁰³

Von allen nun nachfolgend getesteten Reaktionsbedingungen für die Abspaltung der Carbamoylseitenkette, erwies sich nur zweistündiges Erhitzen von Verbindung **23** in 6N HCl als erfolgreiche Methode (Schema 16). Weder der Zusatz von DCM oder Ethanol zur Salzsäure noch der Einsatz verdünnterer HCl-Lösungen (2N, 3N, 4N) oder anderer Säuren (TFA, AcOH) führten zum gewünschten Ergebnis. Anhand der beiden abgebildeten Chromatogramme erkennt man deutlich, dass mit 2N HCl (Abb. 22) das Edukt **23** mit ca. 63% noch die Hauptkomponente bildet, während mit 6N HCl (Abb. 23) das gewünschte 5-Methylhydantoin mit 36% den größten Einzelanteil im Gemisch besitzt (die unterschiedlichen, aber unbekannten, spezifischen Extinktionen der einzelnen Komponenten bleiben bei dieser Betrachtungsweise unberücksicht).

Abb. 22: HPLC-Chromatogramm der Umsetzung von (23) mit 2N HCl, 2h, Rückfluss. Eluent: Gemisch aus 80 Teilen Wasser:Phosphorsäure 85%=300:1und 20 Teilen Methanol, $\lambda=210$ nm, Flussrate: 1 ml/min.¹⁰³

Abb. 23: HPLC-Chromatogramm der Umsetzung von (23) mit 6N HCl, 2h, Rückfluss. Eluent: Gemisch aus 80 Teilen Wasser:Phosphorsäure 85%=300:1 und 20 Teilen Methanol, $\lambda=210$ nm, Flussrate: 1 ml/min.¹⁰³

Das Erhitzen von 23 mit 3N HCl für zwei Stunden lieferte neben dem gewünschten Hauptprodukt 16 (Schema 16) bemerkenswerter Weise auch zu einem geringen Anteil (7%) das decarbamoylierte Hydantoin 28, welches über eine weitere Umlagerung gebildet werden kann, deren Mechanismus in Schema 17 postuliert wird.

Schema 17: Umlagerung von (23) zu (28).

3.1.2.3 Untersuchungen zur Alkylierung von Hydantoinen und Decarbamoylierungsversuche mit HMDS

In einem zweiten Schritt sollte die basenkatalysierte Decarbamoylierung von 5-Benzylcarbamoylhydantoinen eingehender untersucht werden. Wie bereits dargelegt, müssen die Hydantoine dazu an N-1 und N-3 alkyliert werden. Die in der Literatur beschriebenen Möglichkeiten, Hydantoine selektiv an N-1 bzw. N-3 oder an beiden Stickstoffen zu alkylieren, sind mannigfaltig (s. auch Kap. 2.1.3)³¹ und schließen neben Umsetzungen mit elektrophilen Reagenzien¹⁰⁶⁻¹¹¹ auch N-Alkylierungen durch ein.¹¹²⁻¹¹⁵ Mitsunobu-Kopplung Da sich bereits die Methylierung der 1,5,5-trisubstituierten Hydantoine 5 zu den 1,3,5,5-tetrasubstituierten Derivaten 6 als problematisch herausgestellt hat (Schema 8, Tab. 4), sollte zunächst eine verbesserte Methode zur N-3 Alkylierung (bei vorhandener N-1 Substitution) gesucht werden.

Tab. 10: Alkylierung von trisubstituierten Hydantoinen.

^a Die Umlagerung der korrespondierenden Aminobarbitursäure zum Hydantoin und anschließende Methylierung wurden in einer Ein-Topf-Synthese mit NaH/DMF vorgenommen.

^b Methode nach Ooms *et al.*¹¹⁶

^c Methode nach Hecker.¹¹⁷

^d Ausbeuten nach Umkristallisation bzw. Säulenchromatographie.

Auch bei diesen Experimenten (Tab. 10) zeigte keine Methode eine deutliche Überlegenheit. Lediglich die Cyanomethylierung von **14** zu **31** verlief mit einer guten Ausbeute von 49%.

Die besten Methylierungsbedingungen (K_2CO_3 , MeI, DMF) wurden auf die 1,3unsubstituierten Hydantoine angewandt. Wie in Tabelle 11 dargestellt, konnten bei einfachen 5-monosubstituierten Hydantoinen nur die N-3 methylierten Verbindungen isoliert werden. Im Fall der 5-Phenylsubstitution (**32**) trat, bedingt durch die hier erhöhte Acidität des C-5, eine N-und C-Methylierung auf.

Edukt	Methoden	Ausbeute (%)	Produkt
	K ₂ CO ₃ (4 Äquiv.), MeI (16 Äquiv.), DMF RT, 24h	6 ^b	$ \begin{array}{c} $
$H_{3}C - CH_{3} - NH - O - O - NH - O - O - O - O - O - O - O - O - O - $	K ₂ CO ₃ (4 Äquiv.), MeI (16 Äquiv.), DMF RT, 24h	12 ^b	$H_{3}C - CH_{3} - NH - O - NH - O - CH_{3} - C$
	K ₂ CO ₃ (4 Äquiv.), MeI (16 Äquiv.), DMF RT, 24h	8 ^b	-NH O-NH CH ₃ 37
	K ₂ CO ₃ (4 Äquiv.), MeI (16 Äquiv.), DMF RT, 15h	22 ^c	O CH ₃ CH ₃
	K ₂ CO ₃ (3 Äquiv.), MeI (2 Äquiv.), TEBA (0.1 Äquiv.), Aceton ^a Rückfluss, 4h	_	СH, СH
23	NaH (4 Äquiv.), MeI (16 Äquiv.), DMF 78°C, 4h	83 ^d	$H_{3}CON $
	DIEA (4 Äquiv), MeI (16 Äquiv), NMP 45°C, 6h	_	39

Tab. 11: Alkylierungen von 1.3-unsubstituierten Hydantoinen

^a Methode nach Kieć-Kononowicz und Zejc.¹¹⁸
^b Ausbeuten nach Umkristallisation bzw. Säulenchromatographie.
^c Aufreinigung des Rohproduktes mit Aktivkohle lieferte 38 als Öl.
^d Ausbeute des Rohproduktes, das ein Gemisch von 38 und 39 darstellte.

Bei dem als Modellsubstanz gewählten 5-Benzylcarbamoyl-5-methylhydantoin (23) konnte mit Kaliumcarbonat/Methyliodid die gewünschte Diakylierung zu 38 erfolgreich durchgeführt werden. Mit Natriumhydrid/Methyliodid konnte sogar das permethylierte Derivat 39 erhalten werden, ohne dass eine Decarbamoylierung eintrat.

Die Struktur von **39** wurde ebenso wie die von Verbindung **30** neben NMR- und Massenspektroskopie auch durch Röntgenkristallstrukturanalyse gesichert (Abb. 24 und 25).^{119,120} Die ausführlichen Kristallstrukturdaten beider Verbindungen finden sich in Kapitel 7.

Abb. 24: Röntgenkristallstruktur von Hydantoin (39).

Im Molekül von **39** (Abb. 24) finden sich drei unterschiedliche Ebenen. Die erste wird durch die Atome des Hydantoinringes mit seinen Stickstoffsubstituenten (N1, C2, N3, C4, C5, C6, O7, C8, O21) beschrieben. Die zweite Ebene wird durch die Benzylgruppe definiert (C14-C20) und ist zur ersten Ebene in einem Winkel von 66.8° angeordnet. Beide Ebenen sind durch C10 und N12 miteinander verknüpft. Diese beiden Atome gehören zusammen mit C4, C9, O11, C13 und C14 zu einer fast planaren dritten Ebene, die gegenüber der ersten um 85.1° und gegenüber der zweiten um 63.4° geneigt ist.¹¹⁹

Die Röntgenkristallstruktur von Verbindung **30** (Abb. 25) zeigt dagegen vier planare Ebenen. Wieder bildet der Hydantoinring (N1, C2, N3, C4, C5, C6, O7, O21) die erste Ebene, die beiden Benzylgruppen definieren nun die Ebenen zwei und drei

(C8-C14 bzw. C19-C25). Die Ebenen eins und drei sind durch die Amidgruppe (C16, O17 und N18) miteinander verbunden und zusammen mit C4, C15 und C19 bildet diese Amidgruppe eine vierte Ebene, die zur ersten in einem Winkel von ca. 90° geneigt ist. Kürzeste intermolekulare Bindung ist eine schwache Wasserstoffbrückenbindung zwischen O21 und dem Wasserstoffatom am N18.¹²⁰

Abb. 25: Röntgenkristallstruktur von Hydantoin (30).

Da alle hier vorgestellten Methoden, einen Substituenten an N-3 einzuführen, um damit die basische Decarbamoylierung zu vereinfachen, nicht generell anwendbar waren und recht unterschiedliche Ergebnisse lieferten, wurde weiter nach einem anderen Weg gesucht. Wie könnte eine Decarbamoylierung ohne vorherige Alkylierung erreicht werden ? Eine Möglichkeit ist die O-Silylierung eines 1,3-unsubstituierten 5-Carbamoylhydantoins. Solche Silylierungen von Hydantoinen^{121,122} zum Zwecke ihrer Alkylierung sind ebenso wie die Silylierung von Uracilen^{54,123,124} in der Literatur beschrieben worden. Allerdings verspricht im vorliegenden Fall schon eine alleinige Silylierung Erfolg, da durch Verschiebung der Lactam-Lactim-Tautomerie im Hydantoinring keine deprotonierbaren Strukturen vorliegen (Schema 18). Die Reaktionen zur Bildung der Silvlverbindungen müssen unter Ausschluss von Wasser und unter Argonatmosphäre durchgeführt werden, um die frühzeitige Abspaltung der Silylgruppen zu verhindern. Erst zur Aufarbeitung wurde Wasser verwendet. Von der wässrigen Lösung wird dann ein Dünnschichtchromatogramm in reinem Ethylacetat entwickelt. Aufgetragen wurden zusätzlich

Edukt **40** (Synthese s. Gütschow *et al.*⁶⁸) und 5-Methylhydantoin als Referenzsubstanz. Die Detektion von **16** erfolgte durch Ansprühen mit einer 1% Nitroprussid-Natrium-Lösung (in EtOH/2N NaOH = 1:1) und anschließendem Erhitzen der Platte, wobei sich 5-Methylhydantoin und Produkt **16** gelb färbten.

Schema 18: Decarbamoylierung durch Silylierung.

Dieser Versuch wurde als besonders attraktiv für die Festphase angesehen, da HMDS Lösungsmittel und Reagenz in einem darstellt.

3.1.3 Versuche an fester Phase

Erste Versuche eine Harnstofffunktionalität an fester Phase zu generieren, gingen von einem Isocyanatharz aus, das bei Raumtemperatur in Dichlormethan mit Ammoniakgas umgesetzt wurde (Schema 19).¹²⁵ Da das Isocyanatharz hochreaktiv ist, muss unter absolutem Feuchtigkeitsausschluss gearbeitet werden, d.h. dass vor allem getrocknetes Dichlormethan einzusetzen ist. Die notwendige gründliche Durchmischung und Umwälzung des Harzes im Reaktionsgefäß wird durch den

eingeleiteten Gasstrom gewährleistet, der nicht zu schwach sein sollte (ca. 100 Blasen/min). Die Reaktionskontrolle kann durch IR-Spektroskopie erfolgen, indem das Verschwinden der charakteristischen NCO-Bande bei 2250 cm⁻¹ beobachtet wird (vgl. Abb. 26 und 27).

Schema 19: Herstellung des Hydantoinharzes (42) aus dem Isocyanatharz.

Im nächsten Schritt wurde das so gewonnene Harnstoffharz mit 2-Acetamido-2-methylmalonsäurediethylesters (**11**) in einem Gemisch von Natriumethanolat/ Ethanol/THF 5 Stunden bei 120°C in einem Laborautoklaven umgesetzt (Schema 19). Die Reagenzien wurden wie folgt im Verhältnis zur Beladung des Harnstoffharzes eingesetzt: vier Äquivalente Natrium, fünf Äquivalente des Malonsäureesters. Wiederum sollte sich der THF-Zusatz vorteilhaft auf die Quellung des Harzes auswirken. Die Reaktion wurde gewählt, um auf schnellem und einfachem Weg zu testen, ob die Aminobarbitursäure-Hydantoin-Umlagerung auch an fester Phase durchführbar ist. Die Analogie zu der zuvor besprochenen Modellsubstanz 5-Benzylcarbamoyl-5-methylhydantoin (**23**) wird nun in Struktur **42** deutlich. Harz **42** gab keine positive Reaktion auf einen herkömmlichen Zwikker-Test (CoNO₃, MeOH, Piperidin). Allerdings ist eine solche Reaktion für harzgebundene Hydantoine (bzw. für harzgebundene Barbitursäuren) auch noch nicht beschrieben worden.

3 Untersuchungen zur Übertragung auf die feste Phase

Abb. 26: IR-Spektrum des kommerziellen Ausgangs-PS-Methylisocyanatharzes.

Abb. 27: IR-Spektrum des resultierenden Harnstoffharzes (41).

Schließlich wurden die in den Kapiteln 3.1.2.2 und 3.1.2.3 gefundenen Decarbamoylierungsbedingungen (6N HCl bzw. Silvlierung) als Abspaltungsbedingungen für das gebildete Hydantoin getestet (Schema 20). Refluxieren des Harzes 42 in HCl (6N) über 2 Stunden hinweg – Bedingungen, die bei der sauren Decarbamoylierung von 5-Benzylcarbamoyl-5-methylhydantoin in Lösung erfolgreich waren (Kap. 3.1.2.2) - führte zur Zerstörung des wahrscheinlich intermediär abgespaltenen 5-Methylhydantoins und lieferte Alaninhydrochlorid (43). Dies konnte auch durch einen Lösungsversuch bestätigt werden, in dem 5-Methylhydantoin (16) in 6N HCl für 3 Stunden unter Rückfluss erhitzt wurde, und Alaninhydrochlorid mit 23% Ausbeute erhalten wurde. Wie bereits vermutet, ist 16 unter diesen Bedingungen nicht stabil.

Allerdings konnte 5-Methylhydantoin durch Silylierung erfolgreich vom Harz abgespalten werden. Dazu wurde Harz **42** mit HMDS mehrstündig in einem Laborautoklaven bei 180°C unter einer Argonatmosphäre erhitzt. Das Schutzgas war notwendig, um die frühzeitige Abspaltung der Silylgruppen zu vermeiden. Anschließend wurde das HMDS im Vakuum entfernt und dem Rückstand Wasser zugesetzt, um nun die Schutzgruppen an den Sauerstoffatomen zu entfernen. Hydantoin **16** wurde in einer Ausbeute von 16% erhalten.

Schema 20: Produkte der Abspaltungen vom Hydantoinharz (42).

16 kann nur durch Reaktion des 2-Acetamido-2-methylmalonsäureesters mit dem PS-Harnstoffharz 41 (Schema 19) entstanden sein, wobtei die intermediär gebildete 5-Acetylaminobarbitursäure im basischen Milieu der Umsetzung die Acetylgruppe verliert⁶⁸ und dann zum 1,3-unsubstituierten Hydantoin umlagert. Somit stellt die Reaktion von 42 zu 16 (Schema 20) ein erstes Beispiel für eine erfolgreiche Aminobarbitursäure-Hydantoin-Umlagerung an fester Phase dar. Es bleibt Ziel weiterführender Arbeiten, mehrere Verbindungen mit Hilfe dieser Ein-Topf-Festphasensynthese herzustellen und das Potential von HMDS als neues Reagenz für Abspaltungsreaktionen von fester Phase zu erforschen.

3.2 Rink-Amid-Harz

3.2.1 Vorüberlegungen

Das Rink-Amid-Harz (Abb. 29), im folgenden nur noch als Rink-Harz bezeichnet, besteht aus Polystyrol, das mit 1% Divinylbenzol (DVB) quervernetzt und mit dem Rink-Linker¹²⁶ funktionalisiert ist. Aufgrund seines Polystyrolgerüstes sollte auch das Rink-Harz vorzugsweise mit unpolaren Lösungsmitteln angewandt werden, die eine entsprechende Quellung der Harzkügelchen bewirken. Abbildung 28 zeigt eigene mikroskopische Aufnahmen zum Quellverhalten des Harzes. Die Porengröße der eingesetzten Harzchargen liegt zwischen 100 und 200 mesh, die Beladung zwischen 0.3 und 0.7 mmol/g.

Abb. 28: Unterschiedliches Quellverhalten von Rink-Amid-Harz in DCM (links) und MeOH (rechts).

Die Aminogruppe des Rink-Linkers ist Fmoc-geschützt. Da das Rink-Amid-Harz also einen Linker besitzt, ist es im Gegensatz zum Isocyanatharz hier jederzeit möglich, Intermediate bzw. Endprodukte abzuspalten und der weiteren klassischen Charakterisierung zuzuführen. Wie bereits in Kapitel 1.1.3 dargestellt, können Moleküle vom Rink-Linker unter mild sauren Bedingungen abgetrennt werden (5-50% TFA). Das Rink-Harz färbt sich durch die Bildung des Kations im Abspaltungsprozess weinrot. Bei Behandlung mit sehr hohen Konzentrationen an TFA kann es zur Abspaltung des Linkers selbst kommen, da der Linker auch über eine benzylische Phenyletherstruktur an das Polystyrol angebunden ist. Die dabei freigesetzten Nebenprodukte führen zu einer Färbung des Abspaltungsmediums. Das Rink-Harz ist im besonderen Maße dazu geeignet, Substanzen mit Carbamoylstrukturen freizusetzen,^{127,128} die z.B. neuartige Kaliumkanalblocker¹²⁹ oder Opoid-Rezeptor-Antagonisten¹³⁰ sind.

Abb. 29: Aufbau des Fmoc-geschützten Rink-Amid-Harzes.

Eine Harnstoffstruktur am Rink-Amid-Harz aufzubauen, ist ungleich schwieriger als bei dem eben dargestellten Isocyanatharz. Um das Harnstoffharz für die Aminobarbitursäure-Hydantoin-Umlagerung einsetzen zu können, muss der harzgebundene Harnstoff eine freie NH₂-Gruppe besitzen. Ausgehend vom entschützten Rink-Harz könnte man einen solchen Harnstoff mit Phosgen und Ammoniak erzeugen, allerdings wird dies aufgrund der Toxizität des Phosgens kaum die Methode der Wahl sein. Einfacher scheint es dagegen, die Aminogruppe des Linkers mit einem geeigneten Isocyanat umzusetzen, um einen Harnstoff herzustellen. Allerdings sollte das Isocyanat mit einer Art "Schutzgruppe" substituiert sein, die nach der Harnstoffbildung abgespalten werden kann und man so einen Harnstoff der Struktur -NH-CO-NH₂ erhält. Das Entfernen der "Schutzgruppen" sollte nicht im sauren Milieu vorgenommen werden, da dies ja zur frühzeitigen Abspaltung vom Harz führen würde. Als Isocyanate bieten sich daher vor allem acylsubstituierte Derivate wie Benzoyl- oder Trichloracetylisocyanat an, die kommerziell erhältlich sind (nicht jedoch Acetylisocyanat).

3.2.2 Versuche in Lösung I

Abgeleitet aus der Struktur des Rink-Linkers sollten wiederum zunächst Strategien zur Darstellung eines Rink-Harnstoffharzes in Lösung entwickelt und getestet werden. Hierzu bieten sich Benzylamin oder - noch etwas besser -Benzhydrylamin an (Abb. 30).

Abb. 30: Strukturen des Rink-Linkers und des Benzhydrylamins.

Daher sollte ausgehend von diesen beiden Aminen versucht werden, durch Umsetzung mit Acylisocyanaten acylgeschützte Harnstoffe zu gewinnen. Aus einer anschließenden Abspaltung der Acylgruppe soll dann der freie Benzyl- bzw. Benzhydrylharnstoff gewonnen werden. Während Benzylharnstoff für weitergehende Lösungssynthesen günstig kommerziell erhältlich ist, kann Benzhydrylharnstoff nur in geringen Mengen und zu hohen Preisen erworben werden.

Benzyl- und Benzhydrylamin wurden in einem ersten Schritt mit Benzoyl- bzw. Trichloracetylisocyanat über 12-16 Stunden in getrocknetem THF bei Raumtemperatur umgesetzt (Schema 21). Es konnten die entsprechenden Benzylureide 44a bzw. $45a^{125}$ und Benzhydrylureide 44b bzw. 45b in guten Ausbeuten erhalten werden. Nun wurde versucht, durch langes Erhitzen der Ureide in reinem Methanol^{131,132} die Benzoyl- und Trichloracetylgruppen zu entfernen. Im Fall N-Benzhydryl-N'des trichloracetylharnstoffs (45b)verlief diese Reaktion erfolgreich und Benzhydrylharnstoff (46) wurde in guter Ausbeute (63%) erhalten. N-Benzhydryl-N'benzoylharnstoff (44b) erbrachte hier keinen Umsatz. Nach diesem eindeutigen Ergebnis wurden auf die Umsetzungen von 44a und 45a verzichtet.

Nun wurde untersucht aus **44b** in der Ein-Topf-Synthese einerseits eine 5-Acetylaminobarbitursäure, andererseits ein 5-Carbamoylhydantoin herzustellen. Unter Literaturbedingungen⁶⁸ waren beide Synthesen erfolgreich (Schema 22). Es konnte gezeigt werden, dass bei Umsetzung in einer Ethanolatlösung (0.24 M) unter Rückfluss die 5-Acetylamino-1-benzhydryl-5-methylbarbitursäure (**47**) gebildet wurde, im Autoklaven bei 120°C und in einer 0.8 M Ethanolatlösung jedoch das entsprechende 5-Benzhydrylcarbamoyl-5-methylhydantoin (**48**) Der Benzoylrest wurde wie erhofft im Zuge der Zyklisierung abgespalten.

Schema 22: Ein-Topf-Synthese der 5-Acetylaminobarbitursäure (47) und des 5-Benzhydrylcarbamoylhydantoins (48).

Bei der Aufarbeitung von **48** konnte auch der Benzhydrylcarbaminsäureethylester (**49**) in einer beachtlichen Ausbeute von 55% isoliert werden. Daher wurde **44b** allein in einer 0.8 M Natriumethanolatlösung 6 Stunden bei 120°C in einem Autoklaven erhitzt, um zu prüfen, ob es sich unter diesen Bedingungen zersetzt. Tatsächlich wurde als Produkt eine Mischung aus Ausgangsharnstoff und Benzhydrylurethan **49** erhalten.¹³³ Da dieser Ablauf auch an fester Phase denkbar ist und dort zu einer erheblichen Minderung der Hydantoinbildung führen würde, sollte dieser Weg am Polymer nicht beschritten werden.

Eine im Rahmen dieser Arbeit später entwickelte, effektive Methode, um zu Benzhydrylharnstoff (**46**) zu gelangen, ist der Einsatz von Trimethylsilylschutzgruppen⁵¹ (Schema 23). Erzeugt man aus Benzhydrylamin mittels Trimethylsilylisocyanat intermediär den *N*-Benzhydryl-*N*'-trimethylsilylharnstoff und unterwirft ihn einer wässrigen Aufarbeitung, so erhält man Benzhydrylharnstoff (**46**).

Schema 23: Alternativer Weg zur Bildung von Benzhydrylharnstoff (46).

Im nächsten Schritt sollten Barbitursäuren, Brom- und Aminobarbitursäuren sowie Hydantoine synthetisiert werden, die an der späteren Harzanbindungsstelle mit einer Benzylgruppe als Imitation des Rink-Linkers versehen sind. Entsprechend der Methoden, die bereits für die anderen Barbitursäuren und Hydantoinen (s. Kapitel 2.1.1 bis 2.1.3) beschrieben sind, wurden die 1-benzylsubstituierten Verbindungen **19** und **52** hergestellt (Schema 24). Die Aminobarbitursäure **19** wurde schließlich zu dem Hydantoin **29** umgelagert. Die Methylierung zum tetrasubstituierten Hydantoin **30** wurde bereits in Kapitel 3.1.2.3 beschrieben.

Schema 24: Darstellung und Umlagerung der 1-benzylsubstituierten Barbitursäuren und Hydantoine.
Die aufgezeigten Synthesen sind noch nicht den Anforderungen der festen Phase angepasst worden. Daher sollten sowohl Barbitursäuren als auch Brombarbitursäuren unter Bedingungen hergestellt werden, die später kompatibel mit der Festphasenchemie sind. Die Idee zur Darstellung der Barbitursäuren beinhaltete den Zusatz von trockenem THF zur Ethanolatlösung, ähnlich der Synthesen des 5-Benzylcarbamoyl-5-methylhydantoins **23** (Schema 15, Kap. 3.1.2.1). Diese Synthesen verliefen erfolgreich und brachten die Barbitursäuren **53** und **54** in guter Ausbeute hervor (Schema 25).

Schema 25: Darstellung von Barbitursäuren unter festphasenkompatiblen Bedingungen.

Schwieriger gestaltete sich die Planung einer Bromierung unter festphasenkompatiblen Bedingungen. Die bisher bekannten Bromierungen an fester Phase schließen oxidative Halogenierungen von Alkanen und Alkenen sowie die Umwandlung von harzgebundenen benzylischen und allylischen Alkoholen in halogenierte Verbindungen ein.^{134,135} Polystyrol selbst kann unter Zuhilfenahme eines Thallium(III)-Katalysators mit Br₂/CCl₄ einfach bromiert werden. Bei der Anwendung von Essigsäure als Lösungsmittel in dieser Reaktion wurde interessanterweise eine langsame Depolymerisierung des Harzes beobachtet.¹³⁶ Die Literatur zur Bromierung von Aromaten und Heteroaromaten an fester Phase ist dagegen begrenzt. Sie beschränkt sich auf Bromierungen von Thiophenen mit N-Bromsuccinimid (NBS),^{137,138} von Purinen mit einem Brom-Lutidin-Komplex¹³⁹ und von Indolen mit NBS¹⁴⁰ und Pyridiniumbromid-perbromid (PBP).¹⁴¹ Daher wurden NBS und PBP als Reagenzien ausgewählt, um neue Bromierungsmethoden für Barbitursäuren zu entwickeln. Als "festphasentaugliche" Lösungsmittel kamen DMF und DCM zum Einsatz.

Schema 26: Darstellung von Brombarbitursäuren unter festphasenkompatiblen Bedingungen.

Während der Synthese von **2c** fiel ein Niederschlag aus, der als ein Brombarbitursäure-Pyridiniumsalz identifiziert werden konnte. Da das Problem der Bildung von Barbitursäuresalzen im Zuge der Bromierung und/oder Aminierung schon früher auftrat (s. Kap. 2.1.2), sollte eine Untersuchung dieses Phänomens vorgenommen werden. Verschiedene Pyridinium-Barbitursäure-Zwitterionen waren in der Literatur schon von der Umsetzung der 1,3-Dimethylbarbitursäure mit 2-Pyridincarbaldehyd bekannt.¹⁴² Neben den beiden bereits aufgenommenen NMR-Spektren der Barbitursäure **1c** und der Brombarbitursäure **2c** wurden hier auch noch die der hergestellten Pyridiniumsalze **55** und **56** aufgenommen (Abb. 31).

Abb. 31: Charakteristische ¹H- und ¹³C-Werte für 1-Phenyl-5-methyl-(brom)barbitursäuren und deren Pyridiniumsalzen (in DMSO- d_6).

Die chemischen Verschiebungen der Methylgruppe im ¹H- und ¹³C-NMR sowie die des C-5 Kohlenstoffs im ¹³C-NMR wurden beobachtet. Außerdem wurde die Multiplizität der Methylgruppe betrachtet. Signifikante Veränderungen konnten in der Verschiebung des C-5 Kohlenstoffs festgestellt werden: bei den Salzen lag der Wert bei 72 bzw. 76 ppm, während er bei den freien Säuren bei 44 bzw. 48 ppm zu finden war. Auch die chemische Verschiebung der Methylgruppen war unterschiedlich, wobei im ¹³C-NMR der Barbitursäure **1c** und ihres Salzes **55** die Tieffeldverschiebung deutlicher ausgeprägt war als bei den Bromoderivaten. Auch die ¹H-NMR-Werte der Methylgruppen zeigten diese klare Tieffeldverschiebung der entsprechenden Salze **55** und **56** gegenüber ihren freien Säuren **1c** und **2c**.

3.2.3 Versuche an fester Phase I

3.2.3.1 Beladung und Entschützung des Rink-Fmoc-Harzes

Zunächst sollte die vom Hersteller angegebene Beladung des Rink-Amid-Harzes überprüft werden. Dies kann zum einen natürlich über die Elementaranalyse erfolgen. Vergleiche zwischen der Beladung, die vom Hersteller angegeben (z.B. 0.57 mmol/g, N-Gehalt 0.80%) war, mit der Beladung, die aus dem Stickstoffgehalt der Elementaranalyse des Harzes berechnet wurde (0.55 mmol/g, N-Gehalt 0.77%), ergaben gute Übereinstimmungen. Man hat durch die Fmoc-Schutzgruppe des Harzes allerdings die Möglichkeit, die Überprüfung zusätzlich UV-spektrophotometrisch vorzunehmen (Schemata 27 und 28).

Schema 27: UV-Bestimmung der initialen Beladung des Rink-Amid-Harzes.

Schema 28: Mechanismus der Fmoc-Abspaltung nach Sewald und Jakubke.¹⁴³

Das Verfahren beruht auf der Absorptionsbestimmung des Fmoc-Piperidin-Adduktes **58** ($\epsilon = 7800$)¹⁴⁴⁻¹⁴⁶ im Plateau der kinetischen Kurve (Abb. 32) und Berechnung der neuen Beladung nach folgender Formel, die sich aus dem Lambert-Beerschen Gesetz herleitet:

 $\mathbf{A} = \mathbf{\varepsilon} \times \mathbf{c} \times \mathbf{d} \text{ und } \mathbf{n} = \mathbf{c} \times \mathbf{V}$ $\mathbf{n} = (\mathbf{A} \times \mathbf{V}) / (\mathbf{\varepsilon} \times \mathbf{d} \times \mathbf{m}_{\text{Harz}})$ mit $\mathbf{\varepsilon} = 7800 \text{ mmol/cm}^2$, $\mathbf{V} = 1 \text{ cm}^3$, $\mathbf{d} = 1 \text{ cm}$ **Beladung (mol/g)** = <u>Absorption A × 1 cm³ × mmol</u> 7800 cm² × m_{\text{Harz}} mg × 1 cm

Aus der in Abbildung 32 dargestellten kinetischen Kurve der Fmoc-Abspaltung ergibt sich z.B. eine Absorption von max. 2.11 bei einer Harz-Einwaage von 0.54 mg und damit eine Beladung von 0.50 mmol/g. Aus den Mittelwerten von drei separaten Messungen wurde eine Beladung von 0.53 mmol/g ermittelt. Diese stimmt recht gut mit der vom Hersteller angegegeben Beladung von 0.57 mmol/g überein. Aufgrund dieser Beobachtung wurde nun bei allen nachfolgenden Harzchargen immer von der vom Hersteller angegebenen Beladung ausgegangen.

Abb. 32: Kinetik der Fmoc-Abspaltung vom geschützten Rink-Harz.

Aussagen über die Zeit, in der alle Fmoc-Gruppen abgespalten sind, können aus dieser Kinetik nicht abgeleitet werden. Der Grund dafür ist in der Durchführung dieser Kinetik zu suchen. Das Harz (nur sehr wenige Kügelchen) wird in eine Quarzküvette gegeben, wobei die Harzkügelchen auf den Boden der Küvette sinken und der Lichtstrahl im Photometer nicht gestört wird. Mit der Zugabe von 1 ml einer 20%-igen Piperidin/DMF-Lösung wird die Entschützung gestartet. Allerdings findet keine adäquate Durchmischung statt, so dass die Reaktionszeit bei Durchmischung des Harzes sicherlich wesentlich kürzer sein wird.

Der Erfolg der Entschützung kann durch verschiedene Farbreaktionen überprüft werden. Mit dem Kaiser-Test wird auf die Anwesenheit von primären Aminogruppen mittels Ninhydrin getestet. Ein positiver Test nach erfolgter Entschützung liefert blauviolette Harzkügelchen (Abb. 33). Auch mit Trinitrobenzolsulfonsäure (TNBS) kann die Abspaltung der Fmoc-Schutzgruppe nachgewiesen werden. Eine positive Reaktion wird durch eine Rotfärbung der Kügelchen (Abb. 34) angezeigt. In beiden Fällen ist auf die Färbung des Harzes, nicht etwa auf die der umgebenden Lösung zu achten, um zu einer verlässlichen Aussage zu gelangen. Hinzu kommt, dass beide Reaktionen recht empfindlich sind, d.h. auch bei unvollständiger Entschützung eine positive Reaktion geben. So sollten die Tests nach Umsetzung der freien Aminogruppe mit Reagenzien wiederholt werden, da nur dann ein spezifischer Hinweis für eine vollständige Umsetzung durch das komplette Ausbleiben der Farbgebung vorliegt.

Abb. 33: Färbungen der Harzkügelchen im Kaiser-Test im geschützten (links) und entschützten Zustand (rechts).

Abb. 34: Färbungen der Harzkügelchen im TNBS-Test im geschützten (links) und entschützten Zustand (rechts).

3.2.3.2 Darstellung des Rink-Harnstoff-Harzes

Nach Entfernung der Fmoc-Schutzgruppe wurde das Amino-Harz **57** (Schema 29) mit Benzoylisocyanat zum Benzoylharnstoff-Harz (**59**) umgesetzt. Dies konnte durch Abspaltung von Benzoylharnstoff (**61**) vom Harz belegt werden. Die Abspaltung der Benzoylgruppe vom Benzoylharnstoff-Harz mittels eines Methanol/Dioxan-Gemisch scheiterte jedoch. Daher wurde zu Trichloracetylisocyanat gewechselt. Die Bildung des Trichloracetylharnstoff-Harzes (**60**) verlief ebenfalls erfolgreich und durch Behandlung mit 5% TFA/DCM¹⁴⁷ über 2 Stunden bei Raumtemperatur wurde Trichloracetylharnstoff (**62**) erhalten. Als Vergleich wurde **62** auch in Lösung durch Umsetzung von Trichloracetylisocyanat mit Ammoniakgas in trockenem DCM

hergestellt.¹⁴⁸ Nun konnte auch die Abspaltung der Trichloracetylgruppe durch 48-stündiges Erhitzen in Methanol/Dioxan erreicht werden. Es entstand das gewünschte Harnstoff-Harz **63**. Tatsächlich konnte nach saurer Abspaltung vom Rink-Linker Harnstoff selbst als Produkt erhalten werden (Schema 29). Ein neuer, von Urabe *et al.* beschriebener Weg, um einen Trichloracetylrest aus dem entsprechenden Amid abzuspalten, beinhaltet die Anwendung von Cs₂CO₃ in DMF oder DMSO bei 100° C.¹⁴⁹ Im Rahmen dieser Arbeit wurden diese Bedingungen allerdings noch nicht am Trichloracetylharnstoff-Harz untersucht.

Die Reinheit der Festphasenprodukte 61 und 62 wurde mittels HPLC bestimmt und lag bei beiden Verbindungen über 90%. Als Fließmittel für die isokratische Elution diente ein Gemisch aus Wasser:MeCN = 1:1. Die Detektion erfolgte bei einer Wellenlänge von 210 nm, die Retentionszeiten betrugen für 61 $t_R = 3.47$ min und für 62 $t_{R} = 4.13$ min. Um die Reinheit des Harnstoffs zu bestimmen, musste die für die beiden Ureide entwickelte Methode wegen der Polarität von Harnstoff etwas variiert werden. Zum Einsatz kam hier ein Fließmittel bestehend aus 95 Teilen Wasser und 5 Teilen Acetonitril. Die Retentionszeit des Harnstoffs betrug unter diesen Bedingungen $t_{R} =$ 2.85 min. Harnstoff konnte deutlich von Trichloracetylharnstoff (62), dessen Peak unter diesen Elutionsbedingungen bei $t_R = 3.11$ min erscheint, getrennt werden. Die über eine Eichkurve (aufgenommen mit vier verschiedenen Konzentrationen an Harnstofflösungen, Abb. 35) ermittelte Reinheit des Harnstoffs lag bei 56%.¹²⁵ Außerdem wurden 61, 62 und 64 durch NMR- und EIMS-Spektren charakterisiert. In den ¹H-NMR-Spektren von **61** und **62** fällt auf, dass man drei verschiedene NH-Signale findet: bei 7.34, 8.03 und 10.49 ppm (61) bzw. bei 7.28, 7.52 und 10.99 ppm (62). Aus der Literatur ist bekannt, dass die jeweils ersten beiden Signale zur NH₂-Gruppe gehören.^{150,151} Aufgrund einer gebildeten Wasserstoffbrücke eines der beiden NH₂-Wasserstoffatome zum Acyl-Carbonyl-Kohlenstoff ergeben sich für die zwei Wasserstoffatome unterschiedliche chemische Verschiebungen.

Ein weiterer Weg, um zum Harnstoff-Harz (63) zu gelangen, ging wiederum beinhaltete Rink-NH₂-Harz 57 aus und dessen Umsetzung mit vom Trimethylsilylisocyanat in trockenem THF unter Argonatmosphäre zum intermediären Trimethylsilylharnstoff-Harz. Durch die anschließende Zugabe von Wasser zum Reaktionsansatz wurden die Silylgruppen abgespalten und so das freie Harnstoff-Harz (63) erhalten. Auch hier konnte im nachfolgenden Schritt Harnstoff (64) vom Harz abgespalten werden.

Abb. 35: Eichgerade für verschiedene Konzentrationen von Harnstofflösungen.

Schema 29: Darstellungswege für das Rink-Amid-Harnstoff-Harz (63).

Auf diesen Wegen konnte erfolgreich ein harzgebundener Harnstoff mit einer NH₂-Funktionalität zugänglich gemacht werden. Dabei wurde der Harnstoff an einem Rink-Amid-Harz aufgebaut, wodurch die Abspaltung des Harnstoffs und aller später daraus abgeleiteten Produkte möglich wird. Dieses neue Harnstoff-Harz auf Polystyrol-Basis verspricht daher ein wertvolles Ausgangsmaterial für all jene Heterozyklensynthesen zu sein, die von Harnstoff ausgehen.^{152,153}

3.2.3.3 Versuche zur Darstellung festphasengebundener Barbitursäuren

Die erste und einzige Publikation, die eine festphasengebundene Barbitursäure beschreibt, stammt von Tsukamoto *et al.* aus dem Jahr 2003.¹⁵⁴ Ausgehend von einem an das Rink-Amid-Harz angebundenen Glycin, das erst mit *n*-Propylisocyanat und dann mit Malonsäure und *N*,*N*'-Dicyclohexylcarbodiimid (DCC) umgesetzt wurde, konnte hier eine Barbitursäure am Harz hergestellt werden. Die Autoren erwähnen, dass sich andere Bedingungen klassischer Barbitursäure-Lösungssynthesen (z.B. Diethylmalonat/NaOEt, Malonsäure/Ac₂O) als ungeeignet für die feste Phase erwiesen.

In der vorliegenden Arbeit wurde daher zunächst versucht, entsprechend dieser Veröffentlichung Barbitursäure selbst durch Umsetzung des Rink-Harnstoffharzes mit Malonsäure und DCC in getrocknetem THF bei einer Temperatur von 0°C bis zu Raumtemperatur ansteigend über 4 Stunden hinweg darzustellen, und sie anschließend vom Harz abzuspalten. Jedoch konnte keinerlei 2,4,6-Pyrimidintrion erhalten werden stattdessen enthielt das Produkt 1,3-Dicyclohexylbarbitursäure. Die Bildung dieser Barbitursäure ist darauf zurückzuführen, dass die durch DCC-aktivierte Malonsäure noch bevor sie eine Reaktion mit dem weniger reaktiven, harzgebundenen Harnstoff eingeht - mit dem Dicyclohexylharnstoff den Ringschluss vollführt.^{155,156} Dicyclohexylharnstoff entsteht bei jeder Reaktion von DCC-aktivierter Malonsäure. Obwohl die Autoren der oben genannten Publikation¹⁵⁴ diese Reaktion mit in ihre Betrachtungen einbezogen, konnten sie keine 1,3-Dicyclohexylbarbitursäure isolieren oder identifizieren. Selbst wenn diese Barbitursäure in Lösung gebildet wird und gleichzeitig die gewünschte Kondensation am Harz abläuft, so stellt zumindest die Abtrennung der schwerlöslichen unpolaren Dicyclohexylbarbitursäure vom Polystyrolharz im Zuge des Waschens des Harzes eine schwierige Aufgabe dar.

In den nächsten Versuchen sollten die in Kapitel 3.2.2, Schema 25 gefundenen Bedingungen für eine festphasenkompatible Synthese von Barbitursäuren nun auch an fester Phase angewandt werden. Die Bildung der 5-Phenylbarbitursäure (**53**) durch Erhitzen des Rink-Harnstoffharzes mit Phenylmalonsäurediethylester in einem Natriumethylat/EtOH/THF-Gemisch misslang jedoch. Auch ein Versuch diese Umsetzung in einem Laborautoklaven bei 100°C über 24 Stunden hinweg erfolgreich durchzuführen, schlug fehl.

An dritter Stelle sollte anstatt Malonsäure oder Malonsäurediethylestern das reaktivere Malonyldichlorid¹⁵⁷ zur Kopplung an das Rink-Harnstoffharz verwendet werden. Es ist zu bedenken, dass im Laufe dieser Reaktion zwei Äquivalente Salzsäure freigesetzt werden, die eine frühzeitige Abspaltung der Verbindungen vom säurelabilen Rink-Linker bewirken können. Daher ist der Zusatz einer Hilfsbase notwendig. Es wurde jeweils die doppelte Anzahl Äquivalente Hilfsbase bezogen auf Malonyldichlorid eingesetzt. Als Ergebnis muss auch hier festgehalten werden, dass eine Kondensation bei Raumtemperatur über 7 Stunden hinweg weder in Gegenwart von DIEA noch von Pyridin gelang.

3.2.4 Versuche in Lösung II

3.2.4.1 Ureide aus Benzylharnstoff und Carbonsäuren mit Acetanhydrid als Kupplungsreagenz

Da die Kondensation verschiedener Malonsäurederivate an das Harnstoffharz zu 2,4,6-Pyrimidintrionderivaten nicht gelang, sollte zunächst versucht werden, ringoffene Ureide der Malonsäure herzustellen und diese in einem separaten Schritt dann zur Barbitursäure zu zyklisieren. Ähnliche Vorgehensweisen wurden für die Darstellung von 5,6-Dihydropyrimidin-2,4-dionen¹⁵⁸ und Imidazolonen¹⁵⁹ an fester Phase berichtet.

Auch hier sollte diese Reaktion vorab in Lösung mit Benzylharnstoff als Modellsubstanz für das Harz untersucht werden. In ersten Experimenten sollten Carbonsäuren mit Acetanhydrid an den Harnstoff gekoppelt werden,¹⁶⁰ um die entsprechenden Ureide zu erhalten (Schema 30). Für die Reaktion von *N*monosubstituierten Harnstoffen mit Cyanessigsäure wurde mehrfach eine erfolgreiche Umsetzung beschrieben.^{54,55,124}

Schema 30: Darstellung von Benzylureiden mit Acetanhydrid als Kupplungsreagenz.

Die Reaktion wurde mittels Dünnschichtchromatographie (Detektion: 0.2% ethanolische Ninhydrid-Lösung) verfolgt, indem auf die Abwesenheit des Ausgangsharnstoffs geprüft wurde. Dabei wurde festgestellt, dass neben Benzylharnstoff auch die Ureid-Produkte mit Ninhydrin eine Färbung ergeben.

Bei der in Schema 30 aufgezeigten Reaktion muss ein gemischtes Anhydrid zur Aktivierung der Säure konstatiert werden (Schema 31). Unter den gewählten Bedingungen findet keine Reaktion statt, wenn Acetanhydrid allein, ohne die Carbonsäure, mit Benzylharnstoff umgesetzt wird.

Schema 31: Möglichkeiten der Reaktion des intermediären, gemischten Anhydrids mit Benzylharnstoff.

Ob Weg A oder B beschritten wird, ist von der Carbonylreaktivität der Carbonsäure abhängig. Es konnte gezeigt werden, dass nur Carbonsäuren, deren Rest R eine Aktivierung der benachbarten Carbonylgruppe in **71** bewirken, "richtige" Ureide **65-69** liefern. Ist allerdings der aus dem Acetanhydrid stammende Teil in **71** der reaktivere, wird *N*-Acetyl-*N*'-benzylharnstoff (**72**) gebildet. So reagieren reaktive Säuren wie Phenyl- oder Cyanessigsäure hauptsächlich nach Weg B. Dagegen erhält man mit Benzoesäure keinerlei *N*-Benzoyl-*N*'-benzylharnstoff. Ausbeuten und Reaktionszeiten für die Bildung der Ureide **65-70** sind in Tabelle 12 dargestellt.

Nr.	R	Reaktions- zeit (h)	Ausbeute (%) 65-70	Ausbeute (%) 72
65	CH ₂ Ph	67	20 ^a	-
66	CH ₂ COOEt	120	58 ^b	-
67	CH ₂ CN	24	44 ^b	-
68	CH ₂ Cl	144	12 ^b	9 ^b
69	CH ₂ CH ₂ =CH ₂	115	6 ^b	8 ^b
70	Ph	64	-	8 ^b

Tab. 12: Produkte der Umsetzung von Benzylharnstoff mit Carbonsäuren und Ac₂O.

^a Ausbeute nach Umkristallisation aus Wasser:MeOH:THF.

^b Ausbeute nach Säulenchromatographie mit Petrolether:Ethylacetat.

Da die Umsetzung mit dem kommerziell erhältlichen Malonsäuremonoethylester in guter Ausbeute gelang (66), wurde diese Reaktion in DCM als Option für angesehen. die feste Phase Allerdings können keine 2-substituierten Malonsäuremonoethylester käuflich erworben werden. Deshalb sollte an dieser Stelle werden, geprüft ob eine gezielte Esterspaltung der entsprechenden Malonsäuredieethylester möglich ist, um den substituierten zu Malonsäuremonoethylestern zu kommen, die ihre Anwendung in der eben beschriebenen Kupplung bzw. einem späteren kombinatorischen Ansatz finden könnten. Schema 32 zeigt die Bedingungen für eine solche erfolgreiche Reaktion. In Variation zu literaturbeschriebenen Methoden^{161,162} wurde mit einem EtOH/THF Gemisch gearbeitet. Es konnten die Derivate 73 erhalten werden (Tabelle 13).

Schema 32: Synthese der 2-substituierten Malonsäuremonoethylester (73).

73	R	Ausbeute (%)
а	CH ₃	57
b	CH ₂ CH ₃	31
c	CH ₂ Ph	60
d	CH ₂ CH ₂ =CH ₂	33

Tab. 13: substituierte Malonsäuremonoethylester (73).

Die Verbindung **66** (Tab. 12) konnte anschließend wie geplant in basischer Lösung zyklisiert werden (Schema 33). Dafür wurden zwei Methoden gefunden, die beide festphasenkompatible Bedingungen darstellen. Zum Einsatz kamen einerseits Natriumhydrid in DMF, andererseits Natriumethylat in einem Gemisch aus absolutem Ethanol und THF. Neben den Lösungsmitteln, die hier für das Harz günstig gewählt sind, ist auch die Durchführung bei Raumtemperatur für die feste Phase (bzw. später die MiniBlock[®]-Maschine) auf jeden Fall von Vorteil. Versuche, Verbindung **66** mit NaH in THF oder mit DIEA in THF zu zyklisieren, führten dagegen nicht zum Erfolg.

Zu Vergleichszwecken wurde die resultierende 1-Benzylbarbitursäure (74) auf klassische Weise aus Benzylharnstoff und Malonsäuredieethylester in Natriumethylat unter Rückfluss hergestellt (Schema 33).

Schema 33: Wege zur Darstellung von 1-Benzylbarbitursäure (74).

Nach Abspaltung vom Rink-Harz würde allerdings nicht *N*-Benzylbarbitursäure (**74**) vorliegen, sondern die Barbitursäure selbst (benzylische Spaltung!). Da das entsprechende ringoffene Ureid **75a** bisher weder synthetisch noch kommerziell zugänglich war, sollte hierfür zunächst eine Methode zur Darstellung gefunden werden.

Schema 34: Produkte der Umsetzung von Trichloracetylharnstoff mit Malonsäuremonoethylester.

Die anfängliche Strategie, **75a** über Umsetzung des Malonsäuremonoesters mit Trichloracetylharnstoff und Ac₂O herzustellen und im Anschluss daran die Trichloracetylgruppe abzuspalten, misslang und lieferte nach der Aufreinigung durch Säulenchromatographie eine Reihe interessanter Nebenprodukte (Schema 34). Da diese Nebenprodukte Acetylgruppen enthielten, wurde versucht, das gemischte Anhydrid besser mit Trichloracetanhydrid zu generieren. Auch hierbei konnte **75a** nicht erhalten werden. Einzig erfolgreiche Methode war die Umsetzung des Malonsäurechloridmonoethylesters mit reinem Harnstoff in Toluol unter Rückfluss (Schema 35).¹⁶³ Aber selbst dann wurden nach Säulenchromatographie nur geringe Mengen an **75a** gewonnen, die für weitere Zyklisierungsversuche nicht ausreichend waren. Die Methode kann außerdem nicht an fester Phase angewandt werden, da die freiwerdende HCl wieder zur frühzeitigen Abspaltung vom Harz führen würde. Für Vergleichszwecke war die Substanzmenge allerdings ausreichend.

Schema 35: Synthese der Vergleichssubstanz (75a).

3.2.4.2 Ureide aus Benzylharnstoff und Anhydriden

Die Umsetzung der Carbonsäuren mit dem Benzylharnstoff nach Schema 30 bietet aus den erklärten Gründen nur eine begrenzte Möglichkeit, eine größere Bibliothek an Ureiden an fester Phase herzustellen. Daher wurde weiter nach alternativen Wegen gesucht, eine größere Anzahl an Benzylureiden zu gewinnen. Für künftige Synthesen wurden deshalb Anhydride als Reagenzien ausgewählt. Da bei Umsetzung von Benzylharnstoff mit Acetanhydrid unter den in Schema 30 aufgeführten Konditionen (DCM, RT) nur der Ausgangsharnstoff rückgewonnen wurde, musste eine neue Methode entwickelt werden. Weder der Zusatz von Essigsäure oder Natriumacetat zum Ac2O/DCM-Gemisch lieferte N-Acetyl-N'benzylharnstoff als alleiniges Produkt. Erst Erhitzen von Benzylharnstoff in reinem Essigsäureanhydrid über 30 min lieferte mit 77% Ausbeute das gesuchte Produkt 72. Da aber am Harz nicht mit reinem Acetanhydrid gearbeitet werden sollte, wurde ein geeignetes Lösungsmittel mit ähnlich hohem Siedepunkt wie Ac2O (Siedepunkt ca. 140°C) gesucht und mit Toluol (Siedepunkt ca. 110°C) gefunden. Die Ergebnisse mit einer ganzen Reihe anderer Anhydride bestätigten die Tauglichkeit dieser Reaktionsbedingungen (Schema 36).

Schema 36: Darstellung von Benzylureiden mit Anhydriden.

Die Anhydride wurden im 8-fachen Überschluss eingesetzt, um die Situation an fester Phase zu simulieren. Alle dargestellten Ureide **72**, **76-83** sind in Tabelle 14 mit den entsprechenden Reaktionszeiten und den Ausbeuten aufgeführt.

Nr	D	р,	Reaktions-	Ausbeute
141.	K	К	zeit (h)	(%)
72	CH ₃	CH ₃	32	100
76	CH ₂ CH ₃	CH ₂ CH ₃	48	83
77	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃	48	83
78	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	20	74
79	$CH_2CH_2CH_2CH_2CH_3$	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	20	37
80	CH(CH ₃) ₂	CH(CH ₃) ₂	38	13
81	C(CH ₃) ₃	C(CH ₃) ₃	72	16
82	$RR = -CH_2CH_2 -$	CH ₂ CH ₂ COOH	81	26
83	$RR = -CH_2 = CH_2$ -	CH=CHCOOH	16	22

Tab. 14: Produkte der Umsetzung von Benzylharnstoff mit Anhydriden.

Im Vergleich zu **83** entstand bei der Umsetzung von Benzylharnstoff mit Dimethylmaleinsäureanhydrid nicht das analoge offenkettige Ureid, sondern das neue Imid **84** (Schema 37), dessen Struktur durch MS sowie ein- und zweidimensionalen NMR-Spektren bestätigt werden konnte.

Schema 37: Bildung des zyklischen Imides (84).

Entsprechend der oben gefundenen Methode (Schema 36, Tab. 14) sollte nun auch Verbindung **66** (Struktur in Schema 33) ausgehend von dem Anhydrid des Malonsäuremonoethylesters mit Benzylharnstoff synthetisiert werden. Dieses Anhydrid sollte gemäß Literaturvorschriften¹⁶⁴ gewonnen werden und ohne Aufarbeitung gleich mit Benzylharnstoff umgesetzt werden. Die Darstellung des Anhydrids beinhaltete die Umsetzung von Malonsäuremonoethylester mit DCC in wasserfreiem DCM bei 0°C bis Raumtemperatur für eine Stunde. Der entstandene und abgetrennte Dicyclohexylharnstoff (**85**) (Abb. 36) wurde zunächst als Zeichen der gelungenen Umsetzung gesehen. Die Mutterlauge wurde 18 Stunden bei Raumtemperatur mit Benzylharnstoff zur Reaktion gebracht. Neben dem Edukt Benzylharnstoff und anstelle des gewünschten Produktes wurde allerdings Dicyclohexylbarbitursäure (**86**) (Abb. 36) isoliert. Deshalb muss auch hier angenommen werden, dass Dicyclohexylharnstoff schneller mit einem aktivierten Malonsäuremonoethylester zur Barbitursäure **86** reagierte, als die Kopplung mit dem Benzylharnstoff erfolgte.

Abb. 36: Dicyclohexylharnstoff und Dicyclohexylbarbitursäure.

Laut Tabelle 14 sind die Reaktionszeiten für die Umsetzung des Benzylharnstoffs mit den verschiedenen Anhydriden verhältnismäßig lang. Dies wurde mit der moderaten Reaktionstemperatur von 80°C begründet, die gut auf das Arbeiten mit dem Harz und am MiniBlock[®] übertragbar wären. Beispielhaft sollte aber gezeigt werden, dass bei höheren Temperaturen sowohl die Reaktionszeiten verkürzt als auch die Ausbeuten erhöht werden könnten. Unter Beibehaltung aller anderen Parameter wurden die Ansätze bei 180°C in der Mikrowelle erhitzt (Schema 38) und das Ende der Reaktion wieder mittels DC über die Abwesenheit des Ausgangsharnstoffs ermittelt. Bereits nach 15 min war in den beiden untersuchten Fällen die Reaktion erfolgreich beendet. Die Ausbeute von **80** konnte von 13% (Tab. 14) auf 32% verbessert werden (Tab. 15).

Schema 38: Darstellung von Benzylureiden in der Mikrowelle.

Nm	$\mathbf{D} = \mathbf{D}^{\prime}$	Reaktions-	Т	max. Leistung	Ausbeute
INF.	K = K	zeit (min)	(°C)	(W)	(%)
80	$CH(CH_3)_2$	15	180	200	32
87	CH(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃	15	180	200	9

Tab. 15: Produkte der Umsetzung von Benzylharnstoff mit Anhydriden in der Mikrowelle.

Generell sollte die Umsetzung mit Anhydriden (ohne MW) auch am Harz zum Erfolg führen. Literaturrecherchen zeigen, dass auch mit dem Rink-Harz Mikrowellenreaktionen durchgeführt werden können.¹²⁷ Die in Lösung gefundenen Reaktionszeiten lassen vermuten, dass die Reaktionen am Harz noch länger dauern könnten.

3.2.4.3 Ureide aus Benzylharnstoff und Carbonsäuren mit Boronsäuren als Kupplungsreagenz

Die Diversität der kommerziell erhältlichen Anhydride ist zwar schon recht hoch, allerdings wird eine noch größere Auswahl an Carbonsäuren als Synthesebausteine angeboten. Um diese Vielfalt auch für die Ureidsynthese nutzen zu können, sollte die Kupplung einer Carbonsäure mit dem Benzylharnstoff unter Zuhilfenahme eines Boronsäurekatalysators versucht werden.⁵³ Als besten Katalysator fanden Maki *et al.* die 3,5-Bis(trifluormethyl)phenylboronsäure, die deshalb auch in den hier durchgeführten Experimenten verwendet wurde (Schema 39).

Schema 39: Darstellung von Benzylureiden unter Boronsäure-Katalyse.

So muss als eigentliches acylierendes Agens der Boronsäurekomplex **90** (Abb. 37) angesehen werden, der dem gemischten Anhydrid **71** in Schema 31, Kapitel 3.2.4.1, entspricht.

Abb. 37: Acylierender Boronsäurekomplex.

Dieser Boronsäurekomplex ist nun in der Lage nicht nur Amine, sondern auch die weit weniger nukleophilen Harnstoffe zu acylieren.⁵³ Tatsächlich konnten auf diese Weise beispielhaft zwei Ureide in guter Ausbeute erhalten werden (Tab. 16). Die eingesetzten Carbonsäuren, die 4-Oxo-4-phenylbuttersäure und die 2-Phenylbuttersäure, waren dabei keine "aktivierten Carbonsäuren" im Sinne von Kapitel 3.2.4.1, so dass diese Reaktion auf jegliche Carbonsäuren anwendbar zu sein scheint. Der Gebrauch von Toluol als Lösungsmittel macht die Reaktion für die feste Phase einsetzbar; lediglich das Erhitzen unter Rückfluss stellt eine Reaktionsbedingung dar, die insbesondere für die Anwendung der Reaktion am MiniBlock[®] noch als ungeeignet erscheint.

Tab.	16:	Produkte	der	Umsetzung	von	Benzylharnstoff	mit
Carbo	onsäur	en unter Bo	ronsäi	ure-Katalyse.			

Nr.	R	Ausbeute (%)	Reaktions- zeit (h)
88	CH ₂ CH ₂ COPh	53	26
89	CH(Ph)CH ₂ CH ₃	56	22

3.2.5 Versuche an fester Phase II

3.2.5.1 Bohdan MiniBlock[®]-Synthesemaschine

Die MiniBlock[®]-Synthesemaschine besteht aus einem Orbitalschüttler, auf dem maximal 6 Miniblöcke befestigt werden können. Sowohl die Schüttelzeit als auch die Schüttelgeschwindigkeit können variiert werden. Über einen zentral angebrachten Heiz-/Kühlblock sowie einen extern angeschlossenen Thermostaten können alle Miniblöcke über Verteilerkabel und sog. Heat-Transfer-Blocks beheizt (max. +120°C) oder gekühlt (min. -5 bis -10°C) werden (Abb. 38, Miniblock vorn links). Die hier verwendeten vier Miniblöcke bestanden aus je 6 Positionen, in denen die Reaktionen in Glasfritten mit einem Maximalvolumen von 30 ml parallel durchgeführt werden konnten.

Abb. 38: Bohdan MiniBlock[®]-Synthesemaschine zur parallelen Festphasensynthese.

Der Frittenhals besteht aus einem Teflonschlauch, der benötigt wird, um die Fritten über ein Ventilsystem während der Reaktion geschlossen zu halten und nach Reaktionsende das Waschen des Harzes auf dieser Station zu ermöglichen (Abb. 39).

Abb. 39: Ventilsystem eines MiniBlocks[®] (entnommen aus: http://www.mt.com).

Nach oben hin werden die Fritten mit einem Deckel und Septen abgedichtet. Dieser Aufsatz ermöglicht im verschlossenen Zustand das Zuspritzen von Reagenzien durch das Septum hindurch (Abb. 38, Miniblock vorn rechts) und er kann auch so gewählt werden, dass eine Inertbegasung durchgeführt werden kann (Abb. 38, Miniblock hinten rechts). Aus der eigenen Erfahrung heraus lässt sich jedoch sagen, dass der Deckel mit den Septen die Fritten nicht so dicht abschließt, dass ein Erhitzen von Lösungsmitteln unter Rückfluss möglich wäre. Deshalb sollte z.B. beim Refluxieren von Methanol die Temperatur im Miniblock ca. 50°C nicht übersteigen, da sonst das Lösungsmittel verdampft. Außerdem sei angemerkt, dass der Wärmeverlust zwischen dem externen Thermostaten und der Fritte im Miniblock mit ca. 10 bis 15°C in einer beträchtlichen Größenordnung rangiert und dies bei der Wahl der am Thermostaten eingestellten Temperatur beachtet werden muss.

3.2.5.2 Festphasensynthese von Ureiden am Rink-Amid-Harz

Die einfachste Methode, Ureide an fester Phase herzustellen, ist die Umsetzung des entschützten Fmoc-Rink-Amid-Harzes mit Acylisocyanaten in getrocknetem THF bei Raumtemperatur (Schema 40). Dabei erhält man die harzgebundenen Ureide **59-60** (analog Schema 29, Kap. 3.2.3.2) und **91-93**.

Schema 40: Festphasensynthese einer Ureid-Matrix am Rink-Amid-Harz mittels Acylisocyanaten.

Die Acylharnstoffe **61-62**, **94-96** konnten nachfolgend mit 5% TFA/DCM sowohl in sehr guter Ausbeute als auch exzellenter Reinheit abgespalten werden. Die so entstandene Serie von Produkten, sog. Matrix, ist in Tabelle 17 dargestellt. Weitere Ureide wurden auf diese Weise nicht hergestellt, da andere Acylisocyanate kommerziell nicht zur Verfügung stehen.

Ureid- Harz	Produkt	R	X	Rohprodukt- ausbeute (%)	Reinheit (%) ^a
59	61	Ph	0	100	96
60	62	CCl ₃	0	72	96
91	94	CH ₂ Cl	0	95	93
92	95	Ph	S	73	91
93	96	2,5-difluor- phenyl	0	100	97

17: Urei	d-Matrix
17: Urei	d-Matrix

^a RP18-HPLC, Eluent: $H_2O:MeCN = 1:1$, Flussrate: 1 ml/min, $\lambda = 210$ nm.

Daher sollten Ureide nun am Rink-Harnstoff-Harz ausgehend von der zuvor entwickelten Synthese in Lösung hergestellt werden. Dazu wurde das Rink-Harnstoff-Harz im Miniblock bei 80°C mit verschiedenen Anhydriden in Toluol umgesetzt (Schema 41). Um die Reaktion in den Miniblöcken durchführen zu können, bedurfte es einer einheitlichen Reaktionszeit. Bereits in Lösung benötigten manche Umsetzungen dieser Art 2-3 Tage. Es zeigte sich, dass mit Acetanhydrid am Rink-Harnstoff-Harz bei Raumtemperatur auch nach 3 Tagen noch keinerlei Reaktion zu beobachten war und nach 89 Stunden bei 50°C das Verhältnis von abgespaltenem Harnstoff zu gewünschtem Acetylharnstoff nur 6:1 betrug. Daher wurden für die Umsetzung wesentlich härtere Reaktionsbedingungen benötigt. Erst wenn das Rink-Harnstoff-Harz 129 Stunden (ca 5.5 Tage) bei 80°C in Toluol erhitzt wurde, erhielt man vollständig das gewünschte Produkt 108. Da davon auszugehen war, dass insbesondere längerkettige, und damit weniger reaktive Anhydride, unter diesen Bedingungen nur teilweise umgesetzt würden, wurde in der MiniBlock[®] Synthesemaschine eine einheitliche Reaktionszeit von 14 Tagen gewählt. Bei einer am Julabo-Thermostaten eingestellten Temperatur von 85°C resultierten 73°C in den Fritten des MiniBlocks[®].

Schema 41: Festphasensynthese von monosubstituierten Ureiden durch Umsetzung des Rink-Harnstoff-Harzes mit Anhydriden.

Vorteil der Festphasenchemie ist, dass Reagenzien im Überschuss eingesetzt werden können und die Umsetzungen so vollständig ablaufen. Nach Ende der Reaktion kann man die überschüssigen Reagenzien einfach auswaschen. Der Überschuss an Anhydriden sollte daher zunächst am Beispiel des Buttersäureanhydrids in Bezug auf Ausbeute und Reinheit des resultierenden Butyrylharnstoffs (**110**) optimiert werden.

Aus den Abbildungen 40 und 41 geht hervor, dass beim Einsatz von 15 Äquivalenten Anhydrid ein Optimum in der Ausbeute gefunden wurde; bei weiterer Erhöhung des Anhydrid-Anteils nahm zwar die Reinheit des Rohproduktes noch zu, aber die Ausbeute sank drastisch ab. Für die Synthesen im Miniblock wurden daher zukünftig 15-16 Äquivalente Anhydrid eingesetzt.

Abb. 40: Rohprodukt-Reinheiten von (110) bei Steigerung des Anhydridüberschusses. RP18-HPLC, Eluent: H₂O:MeCN = 74:26, Flussrate: 1 ml/min, $\lambda = 210 \text{ nm.}^{165}$

Abb. 41: Erzielte Ausbeute an (110) bei Steigerung des Anhydridüberschusses.

In Tabelle 18 sind alle Mitglieder der Bibliothek mit ihrer Rohproduktausbeute und –reinheit aufgeführt. Neben Derivaten mit gesättigtem unverzweigtem Alkylrest (108-113) konnten auch Verbindungen mit verzweigter (114, 116, 117) oder ungesättigter Kette (115) sowie halogenhaltige Substanzen (94) dargestellt werden. Neben flüssigen Anhydriden konnte auch ein festes Anhydrid erfolgreich umgesetzt werden (118). Als wenig aussichtsreich erwiesen sich Versuche, zyklische Anhydride mit dem Rink-Harnstoff-Harz zur Reaktion zu bringen. Auch der Einsatz fluorierter Anhydride, etwa Perfluorbuttersäureanhydrid, war nicht erfolgreich. Vermutet wird hier, dass unter den angewendeten Bedingungen durch die während der Reaktion freigesetzte starke Perfluorbuttersäure eine frühzeitige Abspaltung des Produktes vom Harz bewirkt wurde (Rotfärbung der Harzkügelchen).

Ureid- harz	Produkt	R	Rohprodukt- ausbeute (%)	Reinheit (%) ^a
91	94	CH ₂ Cl	24	82 ^b
97	108	CH ₃	50	95
98	109	CH ₂ CH ₃	74	87
99	110	CH ₂ CH ₂ CH ₃	43	92
100	111	CH ₂ CH ₂ CH ₂ CH ₃	97	87
101	112	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	47	93
102	113	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	47	86
103	114	CH(CH ₃) ₂	52	85
104	115	CH ₂ CH ₂ CH=CH ₂	55	83
105	116	CH(CH ₃)CH ₂ CH ₃	47	81
106	117	$CH(CH_2CH_3)_2$	39	81
107	118	CH ₂ OPh	36	80

Tab. 18: Festphasensynthese einer Ureidbibliothek am Rink-Harnstoff-Harz mittels Anhydriden.

^a RP18-HPLC, Eluent: H₂O:MeCN = 74:26, Flussrate: 1 ml/min, λ = 210 nm.¹⁶⁵

^b RP18-HPLC, Eluent: $H_2O:MeCN = 1:1$, Flussrate: 1 ml/min, $\lambda = 210$ nm.

Abbildung 42 zeigt ein Dünnschichtchromatogramm der nach Abspaltung vom Harz erhaltenen Ureide **108** bis **112** (Laufmittel: Ethylacetat, Detektion: 0.2%-ige ethanolische Ninhydrinlösung). Deutlich erkennbar sind die ansteigenden Rf-Werte der Ureide durch die mit zunehmender Kettenlänge steigende Lipophilie.

Abb. 42: Dünnschichtchromatogramm einiger Ureide, die durch SPOS gewonnen wurden. (v.l.n.r.: Acetylharnstoff-Referenz, (108), (109), (110), (111), (112))

In den NMR-Spektren aller hergestellten Ureide, mit Ausnahme von 91, 108, 109 und 118, ließen sich isomere Formen feststellen. Die in Ureiden vorhandenen Amidgruppen weisen ebenso wie einfache Amide partiellen einen Doppelbindungscharakter auf (Abb. 43). Dadurch sind die Rotationen um diese Bindungen eingeschränkt. Die Höhe der Rotationsbarriere wird vom Ausmaß des Doppelbindungscharakters der Amidbindung beeinflusst, und dieses wiederum von der Art der Substituenten. Unsymmetrisch N-substituierte Amide liegen in einem Gleichgewicht von cis-/trans- bzw. E-/Z-Formen vor. Da aber keine echte Doppelbindung und damit keine echte Konfigurationsisomerie vorliegt, sollten diese Isomere besser als Rotamere bezeichnet werden.

Abb. 43: Ausbildung von partiellen C-N-Doppelbindungen bei Ureiden.

Wie in Abbildung 44 am Beispiel von Verbindung **110** dargestellt sind hier theoretisch vier isomere Formen vorstellbar. Da im ¹³C NMR alle Signale doppelt erscheinen (mit Ausnahme der Carbonylgruppe des Harnstoffs bei 153-154 ppm), kann man davon ausgehen, dass tatsächlich nur zwei der vier Rotamere vorliegen. Ohne weitere energetische Berechnungen bleibt allerdings offen, welche Rotamere dies sind. Nach jetzigem Kenntnisstand sind auch keinerlei Untersuchungen darüber veröffentlicht. Es sei noch darauf hingewiesen, dass jede der in Abbildung 44 gezeigten Isomere **a-d** noch in verschiedenen tautomeren Formen vorliegen kann, wodurch sich die Problematik noch komplexer darstellt. 3 Untersuchungen zur Übertragung auf die feste Phase

Abb. 44: Denkbare Rotamere des Butyrylharnstoffs (110).

Zur Herstellung von **75a** (Schema 42) stand weder das Acylisocyanat noch das Anhydrid der Säure **119** zur Verfügung, so dass sie selbst eingesetzt wurde. Die Kopplung der Carbonsäure **119** an das Rink-Harnstoff-Harz mit Hilfe von Acetanhydrid konnte zwar realisiert werden (Schema 42), allerdings war das in mäßiger Ausbeute (24%) erhaltene Rohprodukt laut HPLC-Untersuchung noch stark verunreinigt. Die NMR-Daten belegen jedoch eindeutig, dass das Produktgemisch **75a** enthält, was insbesondere auch durch Vergleich mit dem Spektrum der in Lösung hergestellten Substanz deutlich wurde.

Schema 42: Festphasensynthese von (75a).

Durch Optimierung der hier gefundenen aussichtsreichen Bedingungen muss in weiteren Synthesen die Reinheit und die Ausbeute des Produktes verbessert werden. Erst dann kann (120) zur harzgebundenen Barbitursäure zyklisiert werden.

4 UNTERSUCHUNGEN ZUR BIOLOGISCHEN AKTIVITÄT UND PHARMAKOLOGISCHEN WIRKSAMKEIT

Wie in Abbildung 45 aufgezeigt, haben Hydantoine vielfältige biologische Aktivitäten. Obwohl die krampflösenden und antiarrhythmischen Wirkungen des Phenytoins in der Therapie im Moment noch im Vordergrund stehen, sind eine ganze Reihe weiterer Derivate mit anderen pharmakologischen Effekten in der Erforschung.³¹

Abb. 45: Biologische und pharmakologische Wirkungen von Hydantoinen. (Literaturverweise: 1 - 106, 107, 166-168; 2 - 108, 109, 112, 113, 169; 3 - 170; 4 - 171; 5 - 116; 6 - 114, 172; 7 - 173; 8 - 174; 9 - 122, 176; 10 - 111, 177; 11 - 115; 12 - 110; 13 - 178; 14 - 157, 179; 15 - 180; 16 - 181; 17 - 182; 18 - 183; 19 - 184; 20 - 185)

Acylharnstoffe weisen herbizide Wirkungen¹⁸⁶ auf und werden seit langem in der Landwirtschaft als sog. insect growth regulants (IGRs) angewendet,³² die über die Hemmung der Chitinbildung insektizid wirken. So werden Hexaflumuron und Chlorfluazuron gegen die Larven des Baumwollkapselwurmes (*Helicoverpa armigera*) eingesetzt,¹⁸⁷ Triflumuron gegen die Kohlschabe (*Putella xylotella*), einen Kreuzblütlerschädling, und die Derivate **121** und **122** gegen den Krenblattkäfer (*Phaedon cochleariae*) bzw. den sog. Fall Armyworm (*Spodoptera frugiperda*), einen Gräser-, Reis- und Getreideschädling (Abb. 46).

Abb. 46: Fluorierte Acylharnstoffderivate, die als Pestizide eingesetzt werden.

Acyclische Ureide sind seit langer Zeit auch wichtiger Bestandteil in der Pharmakotherapie von Schlafstörungen.^{188,189} Die beiden sedativ wirkenden, bromhaltigen Wirkstoffe Carbromal und Bromisoval (Abb. 47)^{190,191} sind aufgrund ihrer Nebenwirkungen (Bromid-Intoxikation) seit einigen Jahren in Deutschland obsolet, jedoch nicht in allen europäischen Ländern (z.B. ist Bromisoval in Österreich und Polen noch auf dem Markt). Außerdem gibt es Berichte über eine fungizide⁴⁸ und lokalanästhetische¹⁹² Wirkung von Ureiden.

Abb. 47: Strukturen der sedativ-wirkenden Ureide Carbromal und Bromisoval.

Eine Einführung in die bedeutsame antikonvulsive und analgetische Wirksamkeit von Ureiden sowie Ergebnisse von Untersuchungen selbst hergestellter Ureide in diesen Tests sind im Folgenden dargelegt.

4.1 Untersuchungen zur antikonvulsiven Wirksamkeit von Ureiden

Sowohl monosubstituierte^{52,163,193-196} als auch disubstituierte^{50,197-201} Acylharnstoffe wurden und werden auf ihre antikonvulsive Aktivität hin erforscht. Bei einigen Derivaten wurden das Auftreten von aplastischen Anämien oder hepato- bzw. nephrotoxischen Effekten berichtet.¹⁹⁷ Trotz allem finden z.B. Pheneturid in der Schweiz, in Polen und Belgien oder Phenacetamid in Frankreich, den Niederlanden und den USA noch ihre Anwendung.

4.1.1 Epilepsien und Wirkmechanismen von Antiepileptika

Unter Epilepsien werden verschiedene anfallsartig auftretende, chronisch rezidivierende Krankheiten zusammengefasst, die auf einer gesteigerten Erregbarkeit (Übererregbarkeit) zentraler Neurone und damit einer Erniedrigung der Krampfschwelle beruhen und mit abnormen motorischen Reaktionen, Bewusstseinsstörungen und/oder -verlust sowie auch teilweise verstärkten vegetativen Reaktionen einhergehen.²⁰²

Anfälle, die in einer spezifischen Hirnregion entstehen, werden als fokal bezeichnet und äußern sich klinisch als unwillkürliche Bewegungen einzelner umschriebener Muskelgruppen.²⁰² Treten während eines solchen Anfalls Bewusstseinsstörungen auf, spricht komplex-fokalen man von Anfällen. Kennzeichnend für generalisierte Anfälle ist die von Beginn an diffuse Ausprägung der epileptischen Aktivität über beiden Großhirnhemisphären. Klinisch ist der gesamte Körper in das Anfallsgeschehen einbezogen. Fokale Anfälle können sekundär generalisieren, d.h. vom initialen Fokus findet eine Ausweitung der epileptogenen Entladungen über das gesamte Gehirn statt. Primär und sekundär generalisierte Anfälle werden anhand der klinischen Symptomatik in Absencen (Bewusstseinsminderung mit nachfolgender Amnesie), myoklonische (Muskelzuckungen ohne Bewegungseffekt), tonische (Streckkrämpfe), klonische (Ruderkrämpfe), tonisch-klonische und atonische (Erschlaffung der Muskulatur) Anfälle eingeteilt. Die Epilepsie wird als symptomatisch bezeichnet, wenn die spontanen Anfälle Folge einer eindeutig feststellbaren Grunderkrankung sind. Dem stehen die idiopathischen Epilepsien gegenüber, die auf keiner erkennbaren Ursache beruhen. Neben den fokalen und generalisierten Epilepsien werden noch spezielle Syndrome, wie z.B. der Status epilepticus unterschieden. Als solcher wird ein anhaltender epileptischer Zustand oder eine Anfallsserie ohne Wiedererlangung des Bewusstseins über einen längeren Zeitraum bezeichnet.²⁰²

Wichtigste bekannte Wirkmechanismen für Antiepileptika sind (a) die Blockade spannungsabhängiger Natriumkanäle (z.B. Phenytoin,¹⁷⁴ Carbamazepin, Valproinsäure, Lamotrigin) und (b) die Verstärkung GABAerger Effekte (z.B. Barbiturate, Benzodiazepine, Vigabatrin, Tiagabin).²⁰³ Daneben wird auch eine Beeinflussung von Adenosinrezeptoren²⁰⁴ (hauptsächlich A₁ und A_{2A}) sowie Calciumkanälen (z.B. für Ethosuximid) und Glutamatrezeptoren (z.B. für Felbamat und Topiramat) diskutiert.²⁰⁵

Abb. 48: Aufbau einer α -Untereinheit des Natriumkanals mit dem für die Funktion wichtigen Linker zwischen Domäne III und IV.

Natriumkanäle sind heterotrimere Proteine, die aus einer α -, β_1 - und β_2 -Untereinheit bestehen, wobei sich die α -Untereinheit nochmals in vier homologe Domänen gliedern lässt (Abb. 48).^{168,205} Der Natriumkanal besitzt zwei Tore (Abb. 49): ein sog. "m-gate" und ein sog. "h-gate". Eine spannungsabhängige Aktivierung durch Depolarisation führt zur Öffnung des Kanals. Innerhalb von 1-2 ms kommt es zum Verschluss des "h-gates". Die nachfolgende Repolarisierungsphase bewirkt dann eine Konformationsänderung, d.h. den Verschluss des "m-gates". Nun sind beide Tore geschlossen, wodurch das "h-gate" veranlasst wird, sich in 2-5 ms wieder zu öffnen (refraktäre Periode) und so den Ruhezustand des Kanals wiederherzustellen.

Abb. 49: Zustände eines Natriumkanals im offenen, inaktivierten und geschlossenen Zustand (* = Linkerstruktur, vgl. Abb. 48).

Charakteristisch für Wirkstoffe, die spannungsabhängige Natriumkanäle blockieren, ist ihre sog. "use dependence". Darunter versteht man die Abhängigkeit der Wirkung von der Öffnungswahrscheinlichkeit eines Kanals, d.h. je häufiger dieser pro Zeiteinheit geöffnet wird, umso stärker wird er durch das Antiepileptikum blockiert. So lässt sich erklären, warum Neurone mit hoher Entladungsfrequenz stärker beeinflusst werden als solche mit normaler.²⁰³ Die Verstärkung GABAerger Effekte ist neben der Hemmung des GABA-Abbaus (z.B. Hemmung der GABA-Transaminase durch Vigabatrin) und der Hemmung der Wiederaufnahme von GABA in die Synapsen (z.B. durch Tiagabin) im Wesentlichen auf die Wechselwirkung von Substanzen mit dem GABA_A-Rezeptor-Chloridkanal-Komplex zurückzuführen.²⁰⁵ Der GABA_A-Rezeptor ist ein Chloridkanal, bestehend aus fünf Untereinheiten, der außer für GABA auch Bindungsstellen für verschiedene andere Liganden (z.B. Benzodiazepine, Pikrotoxin, Barbiturate) besitzt (Abb. 50). Über allosterische Interaktionen bewirken diese anderen Liganden eine höhere Affinität der GABA zu deren Bindungsstelle und erhöhen somit die Öffnungswahrscheinlichkeit des Chloridkanals. Es kommt zu einer Hyperpolarisation und so zu einer verminderten Erregbarkeit der Zelle.²⁰³

Abb. 50: Schematische Darstellung des GABA_A-Rezeptor-Chloridkanal-Komplex.

Da sich die komplexen Prozesse des Gehirns *in vitro* bisher nur unvollständig darstellen lassen, spielen Tiermodelle in der Epilepsieforschung eine entscheidende Rolle.

4.1.2 Verwendete Tiermodelle und Testsysteme

Die Experimente wurden durch Herrn Dr. Tadeusz Librowski am Department of Pharmacodynamics der Jagiellonian Universität Krakau, Polen durchgeführt.

Die in diesen Untersuchungen verwendeten Albino Swiss Mäuse (18-24 g) wurden in Typ II-1290-Käfigen in Gruppen von 15 Tieren bei Raumtemperatur ($22 \pm 2^{\circ}$ C)

und einem Tag/Nacht-Zyklus von je 12 Stunden gehalten. Die Mäuse hatten vor jedem Experiment freien Zugang zu Futter (Standard Laborpellets, Bacutil, Motycz, Polen) und Wasser. Jede experimentelle Gruppe bestand aus 10 Tieren / Dosis. Alle Testverbindungen, Referenzsubstanzen sowie das Kontrollvehikel (0.5% Methylcellulose) wurden intraperitoneal (*ip*) verabreicht. Die Testverbindungen sowie Pikrotoxin, Pentylentetrazol (PTZ) und Ethosuximid wurden in 0.9% NaCl gelöst, Phenytoin und Diazepam wurden als 1 bzw. 5%-ige wässrige Lösung gegeben.

Die Tiere wurden neben der Prüfung der spontanen lokomotorischen Aktivität, dem Pikrotoxin-, PTZ- und MES (Maximal electroshock seizure)-Test unterzogen. Außerdem wurde mit dem Kamintest die Neurotoxizität der Verbindungen getestet.

Spontane Lokomotorische Aktivität

Die spontane lokomotorische Aktivität jeder einzelnen Maus wurde in einem Photoresistor Actometer (Einzelkäfige, 30 cm Durchmesser, ausgestattet mit zwei Photozellen und verbunden mit einem Impulszähler) in einem Zeitraum von 30 min gemessen. Die Experimente wurden 60 und 90 min nach Verabreichung der Testsubstanz vorgenommen.

Neurotoxizität

Im Kamintest wurden zuvor trainierten und ausgewählten Mäusen 60 min vor dem Versuch zwei Dosen jeder Testverbindung verabreicht (100 und 200 mg/kg). Dann wurden die Tiere in ein 25 cm langes, vertikal gelagertes Rohr mit einem Durchmesser von 3 cm gesetzt und dieses so arrangiert, dass die Mäuse dieses Rohr nur verlassen konnten, indem sie rückwärts darin hochklettern. Die Fähigkeit der Tiere, diesen Versuch in weniger als 1 min zu absolvieren, zeigte, dass die entsprechende Testsubstanz keine neurotoxischen Eigenschaften aufwies.²⁰⁶ Diazepam in einer Dosis von 10 mg/kg Körpergewicht (ED₅₀) diente als Referenz und verursachte bei 50% der Tiere einen Verlust der o.g. Fähigkeit.

Der MES-, PTZ- und Pikrotoxin-Test gehören zur Gruppe der induzierten Anfallsmodelle. Je nach Art der Anfallsinduktion lassen sich Tiermodelle mit chemischer Induktion (z.B. PTZ, Pikrotoxin) und solche mit elektrischer Induktion (z.B. MES) unterscheiden.

MES-Test:

Das Modell ist prädiktiv für Substanzen, die gegen generalisierte tonischklonische Anfälle wirksam sind. Über Ohrelektroden werden die Tiere alternierenden Stimuli von 50 Hz und 150 mA über eine Zeit von 0.2 ms ausgesetzt. Die Testverbindungen (bzw. Methylcellulose) wurden 60 min vor Durchführung des MES-Tests verabreicht. Kurz vor dem Test wurden den Mäusen einige Tropfen 0.9% NaCl-Lösung ins Ohr geträufelt. Die tonische Extension der Hinterpfoten, der Prozentsatz der Anfälle und der Schutz vor Mortalität wurden beobachtet und ausgewertet.²⁰⁷

PTZ-Test:

Das Modell ist prädiktiv für Substanzen, die gegen generalisierte, klonische Abscencen wirksam sind. Den Mäusen wird 45 min nach Verabreichung der Testverbindungen eine konvulsive Dosis Pentylentetrazol (70 mg/kg) *ip* injiziert (Abb. 51) und die Tiere in Einzelkäfigen nun über die nächsten 30 min beobachtet. Dabei wird der Zeitpunkt des Auftretens von Krämpfen, die Anzahl der Attacken und die Mortalität gemessen. Pentylentetrazol selbst verursachte in der o.g. Dosis zwar Krämpfe, führte aber nicht zum Tod der Tiere.

Abb. 51: Pentylentetrazol (PTZ).

Pikrotoxin-Test:

Pikrotoxin ist ein Gemisch zweier Sesquiterpen-Dilactone, die aus den Früchten, den sog. Coccelskörnern, der indonesischer Scheinmyrthe *Anamirta cocculus*, gewonnen werden (Abb. 52). Es ist ein kompetitiver Antagonist am GABA_A-Rezeptor, wirkt in geringen Dosen atemanaleptisch, in größeren Dosen hingegen als Krampfgift.²¹¹

Abb. 52: Strukturen des Sesquiterpen-Dilacton-Gemisches Pikrotoxin.

Eine Stunde nach *ip* Verabreichung der Testverbindungen erhielten die Tiere subkutan (*sc*) 3.2 mg/kg Pikrotoxin. Diese Dosis erzeugte in 100% der nichtvorbehandelten Mäuse Krämpfe, führte aber nicht zum Tod. Während der folgenden 90 min wurden die Tiere auf klonische und tonische Krämpfe hin beobachtet, der Zeitpunkt des Eintretens der Krämpfe und die Anzahl wurden aufgenommen.

Alle Tests wurden statistisch ausgewertet (t-Test, U-Mann-Whitney Test). Differenzen zwischen Kontroll- und Behandlungsgruppe wurden als signifikant angesehen, wenn p < 0.05 war.

4.1.3 Ergebnisse

In Abbildung 53 sind die Strukturen aller Testsubstanzen gezeigt.

Abb. 53: Strukturen der Testsubstanzen.

<u>Neurotoxizität</u>

Verbindungen 44a, 44b, 62, 65, 67 und 77 erwiesen sich in den getesteten Dosen als nicht neurotoxisch (Abb. 54). Hier waren alle Tiere in Lage, das Rohr innerhalb einer Minute zu verlassen. Leicht neurotoxisch waren hingegen die Verbindungen 45b und 79. In der Dosis von 200 mg/kg wiesen Verbindungen 72, 76, 78 und 80 ein verstärktes neurotoxisches Potential auf.

Abb. 54: Neurotoxizität der Testverbindungen im Kamintest. K = Kontrolle; jede Gruppe bestand aus 10 Tieren; 72 (200 mg/kg): 2 von 10 Tieren starben bei Verabreichung; 45a (200 mg/kg): die Testgruppe bestand nur aus 9 Tieren.

Spontane lokomotorische Aktivität

Verbindung **62** hatte keinen Einfluss auf die lokomotorische Aktivität, **44a** und **65** verursachten keine signifikanten Änderungen (Abb. 55 und 56, Tab. 19). Substanz **78** steigerte die lokomotorische Aktivität der Mäuse in einer Dosis von 100 mg/kg und senkte sie signifikant bei Verabreichung von 200 mg/kg.

Alle anderen Testverbindungen bewirkten eine verringerte Aktivität der Mäuse in diesem Test, die in vielen Fällen signifikant war. Eine höhere Dosis bewirkte bei diesen Substanzen auch eine deutlich geringere lokomotorische Aktivität (Abb. 56). Die geringste lokomotorische Aktivität wurde mit Verbindung **76** in beiden Dosen gefunden (Abb. 55 und 56).

Abb. 55: Lokomotorische Aktivität bei einer Dosis von 100 mg/kg Testsubstanz.

Abb. 56: Lokomotorische Aktivität bei einer Dosis von 200 mg/kg Testsubstanz.

Tab. 19: Ergebnisse und Wirksamkeit der Verbindungen auf die spontane lokomotorische Aktivität. Werte im Vergleich zur Kontrollgruppe, die nur 0.9% NaCl verabreicht bekam.

	Dogig	Lokomotorische	Lokomotorische
Nr.		Aktivität (%) ^a	Aktivität (%) ^a
	(mg/kg)	nach 60 min ^b	nach 90 min ^b
449	100	-6.61	+15.51
44a	200	-10.39	+15.87
44b	100	-21.32	-16.22
440	200	-69.08****	-28.84
459	100	-12.21	-39.22
u	200	-46.42***	-67.63
45b	100	-31.80	-48.92***
100	200	-29.84*	-56.99***
62	100	-8.58	+3.68
	200	+2.93	+5.85
65	100	-21.31	-23.20
65	200	-20.50	+15.05
67	100	-23.80	-20.21
	200	-49.29	-61.13***
72	100	-41.75**	-42.75**
	200	-62.17****	-74.29****
76	100	-63.12****	-66.14***
	200	-71.90****	-86.22****
77	100	-26.80	-39.99***
	200	-68.10***	-63.35***
78	100	+18.53	+12.72
10	200	-49.03***	-70.27***
79	100	-13.54	-35.67***
.,	200	-11.55	-51.92***
80	100	-10.28	-29.46
00	200	-46.70***	-71.61****

^a Es wurden die Bewegungen in einem Zeitraum von 30 min gezählt.

^b Es wurden die Bewegungen 60 bzw. 90 min nach Substanzgabe gezählt. * p<0.05; **p<0.02; ***p<0.01, ****p<0.001

MES-Test

Verbindungen 67, 72 und 78 waren bei Gabe einer Dosis von 200 mg/kg in der Lage mehr als 50% der Tiere vor dem Auftreten von tonischen Krämpfen zu schützen (Tab. 20, Abb. 57). Die Testsubstanzen 77 und 80 vermochten dies in beiden Konzentrationen und bewirkten bei 200 mg/kg sogar eine komplette Anfallsfreiheit der Tiere. Keines der Tiere starb infolge der Krämpfe, wenn zuvor Verbindung 67, 77 oder 78 verabreicht worden war (Tab. 20, Abb. 58).

Abb. 57: Aufgetretene tonische Krämpfe nach Verabreichung der Testsubstanzen im MES-Test. MC = Methylcellulose-Träger, Kontrolle; PHE = Phenytoin, Referenzsubstanz

Abb. 58: Beobachtete Mortalität nach Verabreichung der Testsubstanzen im MES-Test. MC = Methylcellulose-Träger, Kontrolle; PHE = Phenytoin, Referenzsubstanz

Na	Dosis	Tonische	Krämpfe	Mor	talität
111.	(mg/kg)	X/Y	X (%)	Z/Y	Z (%)
Methylcellulose	-	10/10	100	0/10	0
Phenytoin	5	0/10	0	0/10	0
44a	100	9/10	90	2/10	20
Tiu	200	9/10	90	1/10	10
44a	100	9/10	90	2/10	20
	200	9/10	90	1/10	10
45a	100	8/10	80	1/10	10
-5u	200	9/10	90	0/10	0
45b	100	8/10	80	0/10	0
150	200	6/10	60	1/10	10
62	100	10/10	100	3/10	30
02	200	10/10	100	4/10	40
65	100	10/10	100	3/10	30
00	200	9/10	90	1/10	10
67	100	9/10	90	0/10	0
07	200	4/10	40	0/10	0
72	100	6/10	60	3/10	30
	200	1/10	10	0/10	0
76	100	6/10	60	2/10	20
	200	1/10	10	0/10	0
77	100	5/10	50	0/10	0
	200	0/10	0	0/10	0
78	100	9/10	90	0/10	0
10	200	4/10	40	0/10	0
79	100	9/10	90	1/10	10
.,	200	10/10	100	0/10	0
80	100	5/10	50	1/10	10
00	200	0/10	0	0/10	0

Tab. 20: Ergebnisse und Wirksamkeit der Verbindungen im MES-Test.

X: Anzahl der Mäuse mit tonischen Krämpfen

Y: Gesamtzahl der im Experiment untersuchten Mäuse

Z: Anzahl der gestorbenen Mäuse

PTZ-Test

Alle Testverbindungen zeigten einen antikonvulsiven Effekt in diesem Test (mit Ausnahme der Anzahl der Anfälle bei **44b** und **65** in einer Dosis von 100 mg/kg, Tab. 21). Sie verzögerten das Auftreten von Anfällen erheblich und reduzierten auch die Anzahl der Anfälle. Der Effekt war in vielen Fällen signifikant (Tab. 21).

Die Zeit bis zum Auftreten eines ersten Anfalls stieg bei Verbindungen **62**, **67** und **77** konzentrationsabhängig an (Abb. 59, Tab. 21). Dabei wurden mit Verbindung **77** in den Dosen von 160 und 200 mg/kg eine größere Latenzzeit als mit der Referenzsubstanz Ethosuximid bei 130 mg/kg gefunden. Aber auch Substanzen **62** und **67** verzögerten in den höchsten getesteten Dosen (200 mg/kg) den ersten epileptischen Anfall ähnlich gut wie Ethosuximid. Für Substanzen **45a** und **45b** wurde in diesem Test keine antikonvulsive Wirkung gefunden.

Bezogen auf die Reduktion der Zahl der Anfälle erwiesen sich im PTZ-Test Verbindungen **77** und **80** als besonders gut (Abb. 60, Tab. 21), da sie in Dosen von 160 und 200 mg/kg zur kompletten Anfallsfreiheit führten und damit besser als die Referenzsubstanz Ethosuximid bei 130 mg/kg wirkten. Eine mit Ethosuximid vergleichbare Reduktion der Anfälle wurde auch durch Verbindungen **62**, **67**, **72**, **76** und **78** erzeugt (jeweils in einer Dosis von 200 mg/kg). Bei **67** und **77** konnte wieder eine mit zunehmender Dosis ansteigende Aktivität beobachtet werden.

Abb. 59: Latenz des Auftretens des ersten epileptischen Anfalls im PTZ-Test. ES = Ethosuximid, Referenzsubstanz.

Tab. 21: Ergebnisse und Wirksamkeit der Verbindungen im PTZ-Test. Werte im Vergleich zur Kontrollgruppe, die nur PTZ und 0.5% Methylcellulose verabreicht bekam. In der Kontrollgruppe traten erste Krämpfe nach 113-288 s auf, und pro Tier kam es zu 1.00-1.25 Anfällen in 30 min.

Nr.	Dosis (mg/kg)	Latenz des Auftretens des ersten Anfalls (%)	Anzahl der Anfälle pro Gruppe (%)	Mortalität (%)
Ethosuximid	130	+951.83****	-87.5**	0
44a	100	+562.80***	-20.00	0
114	200	+481.50***	-50.00***	0
44h	100	+537.73**	+80.00	0
	200	+389.01**	-40.00*	0
45 a	100	+102.61	-20.00	0
	200	+158.58	-36.00	0
45h	100	+1.73	0	0
	200	+187.30	-30.00	0
	100	+348.93****	-54.54	0
62	170	+680.65****	-50.00***	0
	200	+831.96****	-75.00***	0
65	100	+161.82****	+20.00	0
	200	+319.91**	-30.00	0
	100	+247.88**	0.00	0
67	150	+725.32****	-50.00***	0
	200	+846.58****	-75.00***	0
72	100	+186.59*	-30.00	0
	200	+505.23****	-80.00****	0
76	100	+188.08*	-30.00	0
	200	+532.52****	-84.00****	0
	100	+292.85***	-45.45	0
77	130	+861.75****	-70.00****	0
	160	+1068.83****	-100.00****	0
	200	+1118.68****	-100.00****	0
78	100	+167.98*	-20.00	0
	200	+501.87****	-84.00****	0
79	100	+353.79***	-54.54***	0
	200	+270.10**	-45.45**	0
80	100	+193.50	-36.36*	0
80	200	+654.71****	-100.00****	0

*p<0.05; **p<0.02; ***p<0.01, ****p<0.001

Abb. 60: Anzahl der aufgetretenen epileptischen Anfälle im PTZ-Test. ES = Ethosuximid, Referenzsubstanz.

Pikrotoxin-Test

Alle Testverbindungen verzögerten das Auftreten von Krampfanfällen, allerdings in sehr unterschiedlichem Ausmaß (Tab. 22, Abb. 61). Verbindungen **44a/b** und **45a/b** sowie **65** verzögerten das Auftreten des ersten epileptischen Anfalls nicht bzw. nur sehr gering. Dagegen zeigten besonders **72** und **77** eine deutlich verzögernde Wirkung bei Gabe von 200 mg/kg.

In Bezug auf die Anzahl der Anfälle (Abb. 62) erwiesen sich Verbindungen **44b** und **65** ähnlich wie im PTZ-Test auch im Pikrotoxin-Test als prokonvulsiv (vgl. **44b** in der Dosis von 100 mg/kg, allerdings nicht signifikant). Am besten wurden die Anfälle durch Verbindungen **72**, **76** und **77** reduziert (um ca. 50-75%). Fast keinen Effekt auf die Anzahl der Anfälle hatten die Substanzen **45b**, **67** und **78** (Abb. 62).

Tab. 22: Ergebnisse und Wirksamkeit der Verbindungen im Pikrotoxin-Test. Werte im Vergleich zur Kontrollgruppe, die nur Pikrotoxin und 0.5% Methylcellulose verabreicht bekam. In der Kontrollgruppe traten erste Krämpfe nach 862-1597 s auf, und pro Tier kam es zu 1.00-1.50 Anfällen in 30 min.

Nr.	Dosis (mg/kg)	Latenz des Autretens des ersten Anfalls (%)	Anzahl der Anfälle pro Gruppe (%)
Diazepam	1.5	+424.27****	-100
440	100	+41.06	-23.08
448	200	+68.35	-23.08
44b	100	+8.16	+117.00
440	200	+12.90	+83.00
45a	100	+13.77	+40.00
icu	200	+75.97	-10.00
45b	100	+52.90	-26.23
	200	+16.27	-18.03
62	100	+170.73*	+20.00**
	200	+190.54**	-46.67
65	100	+37.03	+69.23
	200	+65.10	+43.08
67	100	+47.32	+9.09
0.1	200	+139.70*	0.00
72	100	+103.64*	-50.82**
	200	+253.36****	-70.66***
76	100	+173.67****	-70.00***
	200	+136.88***	-56.00*
77	100	+208.56***	-75.45
	200	+336.87****	-72.73***
78	100	+83.68	+10.00
	200	+143.67*	-20.00
79	100	+121.72*	-50.00
	200	+141.11**	-60.00**
80	100	+137.54*	-46.66*
00	200	+185.77****	-40.00

*p<0.05, **p<0.02, ***p<0.01, ****p<0.001

Abb. 61: Latenz des Auftretens des ersten epileptischen Anfalls im Pikrotoxin-Test. DZ = Diazepam, Referenzsubstanz.

Abb. 62: Anzahl der aufgetretenen epileptischen Anfälle im Pikrotoxin-Test. DZ = Diazepam, Referenzsubstanz.

Die Substanzen **62**, **76**, **77** und **80**, die eine gute Wirksamkeit entweder im elektrisch oder im chemisch induzierten Tiermodell(en) aufwiesen, werden zur Zeit im Arbeitskreis von Frau Professor Dr. C. E. Müller, Pharmazeutisches Institut der Universität Bonn, in Radioligandbindungsstudien am Benzodiazepinrezeptor^{208,209} untersucht.

4.1.4 Struktur-Wirkungs-Beziehungen

Aus den gewonnenen Ergebnissen sollen nun Struktur-Wirkungs-Beziehungen abgeleitet werden. Einerseits soll dazu zunächst die Substitution an Position 1 der Harnstoffe verglichen werden: NH_2 (62) vs. Benzyl- (44a, 45a) oder Benzhydrylgruppen (44b, 45b), zum anderen soll der Einfluss der Benzoyl- (44a/b) bzw. Trichloracetylsubstituenten (45a/b) in Position 3 der Harnstoffe bewertet werden.

Während Trichloracetylharnstoff (62) keinen Einfluss auf die lokomotorische Aktivität zeigte, war diese sowohl bei Verbindungen 44b und 45a/b verringert, bei Verbindungen 45a/b (Trichloracetylderivate) nach 90 min tendenziell etwas stärker als bei Verbindungen 44b (Benzoylderivat). Von allen getesteten Verbindungen war 62 diejenige mit der geringsten Neurotoxizität. Im MES-Test konnte 62 im Vergleich zu allen anderen Substanzen die Mortalität am wenigsten senken, 44 und 45 etwa im gleich guten Ausmaß. Auch das Auftreten tonischer Krämpfe konnte durch 44a/b, 45a/b und 62 nicht wesentlich reduziert werden. Allerdings scheint es bei 62 einen starken Wirksamkeitsunterschied in elektrisch und chemisch induzierten Modellen zu geben. Während 62 in MES-Test keinen Effekt zeigte, verringert es sowohl im PTZ- als auch im Pikrotoxin-Test die Zahl der Anfälle deutlich, vermag auch das Auftreten der Anfälle signifikant zu verzögern und erwies sich in dieser Vergleichsreihe als beste Substanz. Im Gegensatz dazu steigert 1-Benzhydryl-3-benzyolharnstoff (44b) die Anfallshäufigkeit drastisch, wirkte also prokonvulsiv.

Eine andere Reihe von Verbindungen (**72-76-77-80-78-79**) sollte Aufschluß über den Einfluss der Kettenlänge und –verzweigung der Acylreste auf die antiepileptische Wirksamkeit geben. Mongrovius⁵² fand bei Untersuchungen mit monosubstituierten Acylharnstoffen, dass solche mit 7 Kohlenstoffatomen eine besonders hohe zentral dämpfende Aktivität aufwiesen, wobei die Aktivität isomerer Derivate mit Verzweigung der Alkylkette stieg. Bei Betrachtung der lokomotorischen Aktivität, deren Senkung als eine Auswirkung einer zentralen Dämpfung angesehen werden kann, konnte die folgende Reihenfolge der Dämpfung der Substanzen hinsichtlich ihrer Acylreste gefunden werden: Hexanoyl (**79**) < Pentanoyl (**78**) \cong Isobutyryl (**80**) < Acetyl (**72**) \cong Butyryl (**77**) < Propionyl (**76**) (200 mg/kg, Abb. 56). Das widerspricht den Befunden von Mongrovius, ⁵² der allerdings NH₂-substituierte Ureide betrachete. Die Fähigkeit, im MES-Test die Anfallshäufigkeit zu reduzieren, stieg in der Reihenfolge: Hexanoyl (79) < Pentanoyl (78) << Acetyl (72) \cong Propionyl (76) < Butyryl (77) \cong Isobutyryl (80) (200 mg/kg, Abb. 57).

In den PTZ- und Pikrotoxin-Tests ergeben sich folgende Reihenfolgen (bei 200 mg/kg):

a) für die Verzögerun	ig des Auftretens von Anfällen
PTZ-Test:	Hexanoyl (79) < Acetyl (72) \cong Propionyl (76) < Pentanoyl (78) <
	Isobutyryl (80) << Butyryl (77) (Abb. 59).
Pikrotoxin-Test:	Hexanoyl (79) \cong Pentanoyl (78) \cong Propionyl (76)< Isobutyryl (80)
	< Acetyl (72) << Butyryl (77) (Abb. 61).

b) für die Reduktion der Krampfanfälle

PTZ-Test:	Hexanoyl (79) < Pentanoyl (78) \cong Propionyl (76) \cong Acetyl (72) <
	Isobutyryl (80) \cong Butyryl (77) (Abb. 60).
Pikrotoxin-Test:	Pentanoyl (78) < Isobutyryl (80) < Hexanoyl (79) \cong Propionyl
	$(76) < \text{Acetyl} (72) \cong \text{Butyryl} (77) (Abb. 62).$

Aus diesen Aufstellungen wird die gute Wirksamkeit des 1-Benzyl-3-butyrylharnstoffs (77) deutlich, der zudem keinerlei Neurotoxizität aufwies. Sowohl in Modellen mit elektrisch wie auch in solchen mit chemisch induzierten Krämpfen ist 77 den anderen Verbindungen weit überlegen. Eine generell gute Wirksamkeit von Butyrylharnstoffen als Antiepileptika wird schon von Zirvi *et al.* berichtet (PTZ-Test), allerdings in Dosen von 1000 mg/kg, d.h. dem 5- bis 10-fachen der in diesen Untersuchungen verabreichten Mengen.⁵⁰ Der hier als sehr gut antiepileptisch wirksam gefundene 1-Benzyl-3-butyrylharnstoff (77) ist außerdem nicht Gegenstand der Experimente von Zirvi *et al.* Lediglich Kulev und Dobychina²⁰⁰ erwähnen die antiepileptische Wirksamkeit von 77 gegen Strychnin-induzierte Krämpfe im Meerschweinchen, ohne jedoch konkrete pharmakologische Testdaten darzustellen.

Bei längerer oder kürzerer Kettenlänge fiel die Aktivität meist ab, auch war der 1-Benzyl-3-isobutyrylharnstoff (80) nicht wirksamer als 77, in einigen Dosen und Tests aber äquipotent.

Weiterhin sollte die Acetylverbindung (72) mit den Phenacetyl- und Cyanoacetylderivaten, 65 bzw. 67, in Hinblick auf ihre Wirkung verglichen werden. 65 und 67 wiesen keine Neurotoxizität auf. 1-Acetyl-3-benzylharnstoff (72) bewirkte in dieser Reihe bei einer Dosis von 200 mg/kg die stärkste Reduzierung der lokomotorischen Aktivität vor 1-Benzyl-3-cyanoacetylharnstoff (**67**) und 1-Benzyl-3phenacetylharnstoff (**65**) (Abb. 56). Die Anzahl der Anfälle nahm sowohl im MES, als auch im PTZ und Pikrotoxin-Test von **65** über **67** nach **72** ab (Abb. 57, 60 und 62). Es lässt sich also ableiten, dass das antikonvulsive Potential dieser Untergruppe bei **72** am stärksten ausgeprägt war, diese Verbindung aber auch die deutlichsten Nebenwirkungen aufwies.

4.2 Untersuchungen zur analgetischen Wirksamkeit von Ureiden

Seit mehr als 30 Jahren werden Antidepressiva und Antikonvulsiva in der Behandlung neuropathischer Schmerzen eingesetzt.²¹⁰ So werden etwa klassische Antiepileptika wie Phenytoin oder Carbamazepin gegen Trigeminusneuralgie angewendet.¹⁷⁴ Die durch Antikonvulsiva hervorgerufene Analgesie ist fast ausschließlich auf den Bereich der neuropathischen Schmerzen begrenzt. Für *N*-Acyl-*N*'-hetarylharnstoffe wurde bereits eine herabgesetzte Schmerzempfindlichkeit von Ratten nachgewiesen.²¹² Es werden zahlreiche Mechanismen diskutiert, allerdings scheint der inhibitorische Effekt dieser Substanzen auf den GABA_A-Rezeptor und dem damit verbundenen Anstieg des inhibitorisch wirkenden Neurotransmitters GABA eine Rolle zu spielen.

Da einige der in Kapitel 4.1. untersuchten Substanzen antikonvulsive Aktivität aufwiesen, die zumindest in einigen Fällen auf die Hemmung des GABA_A-Rezeptor-Komplexes zurückzuführen sind, sollte das analgetische Potential der Substanzen (Abb. 53 und 63) im sog. Hot-Plate Test nach Eddy und Leimbach²¹³ untersucht werden. Dabei wird die Reaktion der Mäuse auf einen schmerzhaften Stimulus gemessen. Eine halbe Stunde vor Durchführung des Experimentes wurden den Tieren intraperitoneal bzw. peroral die verschiedenen Testverbindungen verabreicht. Die Mäuse wurden auf eine 52 ± 0.4 °C heisse Metallplatte gesetzt und mit einem Glaszylinder (25 cm Höhe, 15 cm Durchmesser) abgedeckt. Der Zeitpunkt, an dem das jeweilige Tier eine erste Reaktion auf den Stimulus zeigte (Hochspringen oder Lecken der Pfoten), wurde mit einer Stoppuhr bestimmt.

Die Experimente wurden durch Herrn Dr. Tadeusz Librowski am Department of Pharmacodynamics der Jagiellonian Universität Krakau, Polen durchgeführt.

Die Ergebnisse sind in Tabelle 23 und Abbildung 63 dargestellt. Nach peroraler Gabe zeigten Verbindungen **44b**, **65** und **77** das höchste analgetische Potential bei einer Dosis von 200 mg/kg, während eine Dosis von 100 mg/kg nur einen geringen Effekt aufwies. Verbindung **77** zeigte dieses hohe analgetische Potential auch bei intraperitonealer Gabe und in beiden Dosierungen.

Abb. 63: Analgetisches Potential der Testverbindungen im Hot-Plate Test. K = Kontrolle.

Nr.	Dosis	Reaktion	nszeit (s)	
	(mg/kg)	ро	ip	
Kontrolle	-	11.27 ± 0.72	11.03 ± 1.07	
440	100	22.58 ± 4.60	24.36 ± 3.46	
	200	25.03 ± 2.41	19.46 ± 3.05	
44b	100	16.27 ± 2.24	20.71 ± 2.51	
	200	33.53 ± 6.77	26.09 ± 4.06	
62	100	24.86 ± 4.55	23.68 ± 2.23	
	200	25.35 ± 2.44	19.02 ± 1.96	
65	100	19.65 ± 1.82	22.49 ± 2.45	
	200	31.23 ± 4.32	21.42 ± 2.47	
67	100	29.41 ± 4.44	22.86 ± 1.70	
0.	200	22.64 ± 1.94	22.98 ± 2.65	
77	100	19.30 ± 2.73	29.49 ± 3.60	
	200	34.44 ± 4.82	31.78 ± 5.05	

4.3 Weitere biologische Testreihen

4.3.1 Testung an CB₁-Rezeptoren des Rattenkortex

4.3.1.1 CB-Rezeptoren und ihre Liganden

Der CB₁-Rezeptor wurde 1988 von Devane *et al.* identifiziert.²¹⁴ Cannabinoid-Rezeptoren sind definitionsgemäß Rezeptoren, die auf cannabinoide Wirkstoffe reagieren, wie etwa auf die Inhaltsstoffe der Hanfpflanze *Cannabis sativa* oder auf biologisch aktive, synthetische Derivate. CB₁-Rezeptoren kommen vor allem im ZNS vor, die höchsten Dichten finden sich im Hippocampus, der cerebralen Cortex, dem Cerebellum und den Basalganglien. Sie wurden auch in peripheren Geweben, etwa in der Hypophyse, den B-Zellen und natürlichen Killerzellen gefunden, allerdings ist hier die Dichte wesentlich geringer als in den Gehirnarealen.²¹⁵ Die CB-Rezeptoren gehören zu den G-Protein-gekoppelten Rezeptoren (GPCRs), und der CB₁-Rezeptor ist über G_{i/o}-Proteine mit verschiedenen Typen von Calcium- und Kalium-Kanälen verbunden. Die Signaltransduktionswege von CB-Rezeptoren schließen eine Hemmung der Adenylatcyclase, der cAMP Produktion und des Calciumeinstroms, die Aktivierung von Kaliumkanälen und der MAPK (mitogen activated protein kinase)-Kaskade ein.

Neben den klassischen tricyclischen Dibenzopyran-Derivaten als Cannabinoid-Rezeptor-Agonisten der 1. Generation (z.B. Δ^9 -THC, Cannabinol, HU-210; Abb. 64), wurden in der Folgezeit Cannabinoid-Rezeptor-Agonisten der 2. Generation entwickelt. Zu diesen nicht-klassichen Cannabinoiden gehört auch das in diesen Experimenten verwendete bicyclische Derivat CP55,940 (Abb. 64), das weniger lipophil als THC ist, aber mit gleicher Affinität an den CB-Rezeptoren bindet. Radioaktiv mit Tritium markiert, stellt CP55,940 einen häufig benutzten Radioliganden zur Untersuchung des CB-Rezeptorsystems dar.²¹⁶ Weitere Agonisten sind die Aminoalkylindole und die endogenen Agonisten mit ihrer Leitstruktur, dem Anandamid.

Abb. 64: Einige wichtige Cannabinoid-Rezeptor-Agonisten.

Der Prototyp eines CB₁-selektiven Liganden ist das Diarylpyrazol SR141716A, das antagonistische und invers-agonistische Effekte auslöst.²¹⁴ Ausgehend von gefundenen Struktur-Wirkungs-Beziehungen²¹⁷, dargestellt in Abb. 65, sollten eine Reihe eigener (5-Carbamoyl)-Hydantoine am Rezeptor getestet werden.

Abb. 65: Struktur-Wirkungs-Beziehungen des SR141716A.

In ersten Berichten wurde gezeigt, dass einige 3-Alkyl-5-arylimidazolidindione mit K_i-Werten zwischen 70 und 100 nM potentielle CB₁-Rezeptor-Antagonisten darstellen (Abb. 66).¹¹⁶ Eine neuere Arbeit von Muccioli *et al.*²¹⁸ belegt eine Affinität für Thiohydantoine am CB₁-Rezeptor, auch wenn die besten dieser Schwefelanaloga

höhere K_i -Werte (zwischen 600-700 nM) als die oben genannten Oxo-Verbindungen aufwiesen.

Abb. 66: Struktur von Hydantoinen, die am CB₁-Rezeptor antagonistisch wirken; nach Ooms *et al.*¹¹⁶

Die eigenen Carbamoylhydantoine wiesen eine unsubstituierte Amidstruktur in der Seitenkette auf (Tab. 24), ähnlich wie SR141716A. In Position 5 befand sich entweder eine Methyl- oder Phenylgruppe. Einige Derivate waren am N-3 methyl- oder benzylsubstituiert. Aus den Literaturdaten^{116,218} wurde geschlussfolgert, dass lipophile Gruppen die Affinität erhöhen. Daher wurden generell Hydantoine mit Phenyl-und/oder Benzylsubstituion ausgewählt (Tab. 24).

4.3.1.2 Ergebnisse

Die Radioligand-Bindungsstudien wurden im Arbeitskreis von Frau Professor Dr. C. E. Müller von Frau K. Grießmeier durchgeführt. Der Assay²¹⁵ wurde wie folgt vorgenommen:

- 25 µl 10 µM Testsubstanz in DMSO gelöst
- 775 μl 50 mM Tris-HCl-Puffer, pH 7.4, 3 mM MgCl₂, 0.1% BSA
- 100 μl [³H]CP55,940 in 50 mM Tris-HCl-Puffer, pH 7.4, 0.1% BSA
- 100 μl Rattenkortex-Gewebe-Suspension in 50 mM Tris-HCl-Puffer, pH 7.4 (Proteinkonzentration ~ 50 μg/ml)

Der Reaktionsansatz wurde zwei Stunden bei 23°C im Wasserbad inkubiert und schließlich über einen GF/C-Filter unter Verwendung eines Harvesters filtriert. Es folgten einige Waschschritte, dann wurde der Filter 90 min bei 50°C getrocknet. Im Anschluss wurden die Filterscheiben ausgestanzt, der Szintillationscocktail UltimaGold[®] zugegeben und nach einer Inkubationszeit von mind. 6 Stunden im LS-Counter 1 min gezählt.

Die besten Verbindungen **6d** und **31** bewirkten eine schwache Hemmung von 20-25% bei einer Konzentration von 10 μ M. Alle anderen Derivate zeigten keinerlei inhibitorische Wirkung. Strukturell gesehen, war **6d** sicherlich das lipophilste Molekül der Testreihe und **31** fällt durch seine Cyanogruppe auf.

Tab. 24: Ergebnisse von Radioligand-Bindungsstudien einiger Hydantoine an Cannabinoid-1 (**CB**₁) **Rezeptoren des Rattencortex.** Radioligand: [³H]CP55,940.

Nr.	R ¹	\mathbf{R}^2	R ³	R ⁴	% Hemmung bei 10 µM (n=3)	K _i [µM] (n=3)
5e	Cyclohexyl	Н	CONHPh	Me	1 ± 3*	n.d.
5f	Bn	Н	CONHMe	Ph	-2 ± 3*	n.d.
5h	Bn	Н	CONHPh	Ph	9 ± 3	n.d.
6b	Cyclohexyl	Me	CONHPh	Me	10 ± 4	n.d.
6c	Bn	Me	CONHMe	Ph	2 ± 2	n.d.
6d	Bn	Me	CONHPh	Ph	24 ± 3	n.d.
23	Н	Н	CONHBn	Me	6 ± 4	n.d.
28	Н	Bn	Ме	Η	6 ± 4	n.d.
29	Bn	Н	CONHBn	Me	8 ± 3	n.d.
30	Bn	Me	CONHBn	Me	6 ± 3	n.d.
31	Bn	CH ₂ CN	Ph	Н	22 ± 2	n.d.
48	Н	Н	CONHCHPh ₂	Me	3 ± 3	n.d.

* Standardfehler übersteigt aufgrund der Schwankung den Messwert (bei n=3). Negative Werte für die Hemmung sind theoretisch nicht möglich.

4.3.2 Modulatoren des P-Glykoproteins

Als Multidrug Resistance (MDR) wird die Resistenz von Tumorzellen gegen zytostatische oder zytotoxische Wirkungen einer Vielzahl strukturell diverser und funktionell divergenter Wirkstoffe mit häufiger Anwendung in der Chemotherapie von Tumoren bezeichnet.²¹⁹ Diese MDR wird von einer Reihe von Proteinen verursacht, wie etwa dem P-gp (P-glycoprotein),^{220,221} den MRP1 und MRP2 (multidrug resistanceassociated protein-1/2) sowie dem BCRP (breast cancer resistance protein). All diese Proteine gehören zu einer Familie ATP-bindender Transporter für Ionen oder kleine Moleküle, der sog. ABC-Familie (ATP-binding cassette). Diese ABC-Transporter sind Bestandteil in Plasmamembranen bzw. anderen intrazellulären Membranen. Das P-Glykoprotein ist eine 170 kDa ATP-abhängige Effluxpumpe, deren physiologische Funktion im Schutz von Organismen gegen toxische Xenobiotika liegt. Das Protein ist besonders in der Leber, den Nieren, dem Darm und der Blut-Hirn-Schranke vorhanden. P-gp besitzt eine breite Substratspezifität. Zahlreiche antiepileptische Arzneistoffe interagieren mit P-gp.²²² Für das P-gp Substrat Phenytoin^{171g,223} wurde eine Verstärkung der Toxizität von Vincristin und Vinblastin in multiresistenten Tumorzellen berichtet.^{171c,d}

Die in Tabelle 25 aufgeführten Verbindungen, eine Aminobarbitursäure und acht Hydantoine, wurden im sog. Calcein-Fluoreszenz-Assay untersucht (Abb. 68). Dabei simuliert der Calcein-Acetoxymethylester (CAL-AM) ein Zytostatikum, da der Ester selbst Substrat von P-gp ist. Der Ester ist lipophil, damit membrangängig, selbst fluoreszenzinaktiv und wird von Esterasen vitaler Zellen gespalten. Wird nun P-gp durch Modulatoren gehemmt, kann CAL-AM nicht mehr aus der Zelle geschleust werden und wird stattdessen durch die Esterasen hydrolysiert. Das Hydrolyseprodukt ist das fluoreszenzaktive Calcein (CAL), das bei physiologischem pH-Wert anionisch vorliegt und die Membranbarriere nicht mehr überwinden kann. CAL verbleibt also in der Zelle und zeigt Fluoreszenz, die gemessen wird.

Abb. 67: Verwendeter Standard Verapamil.

Die Testung einiger ausgewählter Verbindungen als P-gp Modulatoren wurde im Arbeitskreis von Herrn Professor Dr. M. Wiese von Herrn H. Müller durchgeführt. Der Calcein-Assay²²⁴ wurde wie folgt durchgeführt:

- Humane Ovarialkarzinom-Zellen A2789Adr (überexprimiert mdr1 und Adriamycin-resistent) werden in einer 96-Lochplatte ausgesät.
- Zusatz der Testsubstanzen bzw. des Standards Verapamil (Abb. 67); Endkonzentration jeweils 10 µM.
- Zellen bei 37°C und 5% CO₂ 30 min inkubieren
- Calcein-AM zugeben
- Die Fluoreszenz wird bei 37°C in konstanten Intervallen (120 s) über 2760 s hinweg mit Hilfe des Gerätes BMG FLUOstar gemessen. Anregungswellenlänge: 485 nm, Emissionswellenlänge: 520 nm
- Der Pufferwert wird von allen Werten subtrahiert.

Abb. 68: Schematisches Prinzip des Calcein-Fluoreszenz-Assays.

Die untersuchten Verbindungen zeigten nur eine sehr schwache P-gp modulatorische Aktivität, verglichen mit dem in gleicher Konzentration (10 μ M) eingesetzten Verapamil (Tab. 25, Abb. 69).

Nr.	Response (rel. Einheiten)	Response (rel. Einheiten)
	1. Messung	2. Messung
Puffer	0,000	0,000
3m	6,186	7,361
5f	2,306	1,430
5e	2,894	2,528
5h	2,251	2,916
6b	8,470	6,951
6с	4,490	4,911
23	2,616	6,663
29	5,809	7,894
31	4,978	5,953
Verapamil	55,000	58,400

Tab. 25: Ergebnisse der P-gp Testung einiger Verbindungen.

Abb. 69: Ergebnisse der Evaluierung der Testverbindungen als Modulatoren von P-gp. Aufgetragen sind jeweils die Mittelwerte der beiden in Tab. 25 gezeigten Messungen.

4.3.3 Zytotoxizitätsuntersuchungen

Es sind verschiedene Wege bekannt, über die Hydantoine gegen Tumore und Karzinome wirken können. Neben der Steigerung der Toxizität von bekannten Zytostatika über die Hemmung von P-gp (s. Kap. 4.2.2),^{171c,d} wurden Hydantoine mit einem Semicarbazon- bzw. einem Semithiocarbazon-Substituenten an C-5 als neue Inhibitoren der Thymidinphosphorylase (TP) identifiziert.^{171h} Komplexe von Cisplatin²²⁵ mit Hydantoinliganden (Abb. 70) haben sich ebenso als zytotoxisch erwiesen²²⁶ wie Aplysinopsine.^{171a,e} Letzere sind Alkaloide, in denen eine Hydantoinstruktur zu finden ist.³¹

Abb. 70: Zytotoxischer Platin(II)-Komplex mit Hydantoinligand.

In neueren Studien^{227,228} wurde das zytotoxische Potential von Hydantoinen an humanen Brustkrebskarzinom-Zelllinen (MCF-7) geprüft. Dabei wurden neben Spirohydantoinen, die eine Naphthochinon-Einheit enthielten, auch einfache 3,5disubstituierte Hydantoine als aktive Verbindungen gefunden (Abb. 71).

Abb. 71: Hydantoine mit zytotoxischer Wirkung auf Mammakarzinom-Zelllinien.^{227,228}

Daher sollten auch eigene Substanzen in einem entsprechenden Zytotoxizitätsassay untersucht werden. Die Testung der Verbindungen 5c, 5e, 6c, 10, 23, 29, 31, 33 und 84 an MCF-7 Zellen wurde an der Freien Universität Berlin im Arbeitskreis von Herrn Professor Dr. R. Gust von Frau Sandra Dettmann durchgeführt. Der Assay beinhaltete folgende Schritte (Angaben pro Well einer 96-Lochplatte):

- 100 µl Zellsuspension der MCF-7 Zellen in EMEM-Zellmedium pro Well
- Platten f
 ür 48 Stunden bei 37°C und 5% CO₂ im Brutschrank inkubieren, Zellmedium absaugen
- Testwerte: 200 µl einer 10 µM Lösung der Testsubstanz pro Well zugeben (hergestellt aus 20 µl einer 10 mM Stammlösung der Substanz in DMF und 20 ml Zellmedium)
- Blindwert: Lösung von 20 µl DMF in 20 ml Zellmedium
- Positivkontrolle: 0.5, 1 und 5 µM Lösungen von Cisplatin
- Negativkontrolle: nur Zellsuspension in Medium ohne Substanzzugabe
- Inkubation der Platten für 240 Stunden (10 Tage) bei 37°C und 5% CO₂
- Abstoppen mit Glutardialdehyd in PBS bei RT über 20 min
- Anfärben mit 100 µl (pro Well) einer 0.02% Kristallviolett-Lösung, Überschuss abschütteln, mit Wasser waschen, trocknen → vitale Zellmasse wird angefärbt
- 180 µl Ethanol 70% zusetzen und 3 Stunden schütteln (Kristallviolett wird wieder herausgelöst)
- Extinktion der ethanolischen Lösung bei 590 nm mit Plattenreader messen (Mittelwert und Standardabweichung aus 16 Einzelwerten)

Bei allen Verbindungen waren die gemessenen Extinktionen in den Testlösungen gleich der Extinktion des Blindwertes. Aus diesem Grund wurde auf die Berechnung der relativen prozentualen Wachstumshemmung verzichtet. Als Ergebnis lässt sich festhalten, dass die getesteten Hydantoine in einer Konzentration von 10 μ M in diesem Assay nicht zytotoxisch wirkten.

4.3.4 Inhibitoren der Cysteinprotease Papain

Verbindungen **31** und **67** wurden durch Herrn Reik Löser in einem Assay als Inhibitoren von Papain getestet. Papain ist eine in *Carica papaya* vorkommende pflanzliche Cysteinprotease (E.C. 3.4.22.2), die aus 212 Aminosäuren aufgebaut ist und drei Disulfidbrücken (Cys22-Cys63, Cys56-Cys95, Cys153-Cys200) besitzt. Das aktive Zentrum wird vom Cys25 und His159 gebildet. Papain wird aus dem Zymogen Propapain gebildet. Isoliert wird Papain in der inaktiven Form, in der das Cys25 durch eine Disulfidbrücke zum Cys22 geschützt ist und Cys63 als Thiol vorliegt. Aktiviert werden kann Papain durch Thiolreagenzien wie Dithiothreitol (DTT), die einen intramolukularen Disulfidaustausch bewirken.²²⁹

Abb. 72: Testsubstanzen.

Peptidylnitrile haben sich als Papain-Inhibitoren erwiesen.^{229,230} Hierbei greift das Cystein-SH im aktiven Zentrums des Enzyms den Nitril-Kohlenstoff nukleophil an, und bildet ein Thioimidat (Abb. 73). Ein ähnlicher Mechanismus wurde für die Cyano-Verbindungen **31** und **67** postuliert.

Abb. 73: Inhibition von Papain durch Peptidylnitrile.

Der Assay wurde wie folgt durchgeführt:

- Puffer: 100 mM Natriumphosphat pH 6.50, 2.5 mM EDTA-Na₂
- Substrat: Z-Phe-Arg-pNA 200 µM
- 12% DMSO (50 μl 4 mM Z-Phe-Arg-pNA in DMSO; 70 μl DMSO bzw.
 60 μl DMSO und 10 μl Testlösung (10 mM) in DMSO)
- 0.3 mM DTT
- Start mit 20 μl Enzym (10 μg/ml Papain (Sigma), zuvor durch Inkubation in 15 mM DTT (1h, 25°C) aktiviert.
- Endvolumen: 1 ml

Das freigesetzte *p*-Nitroanilin (Schema 43) wurde bei 405 nm über einen Zeitraum von 10 min bei 25°C UV-spektrophotometrisch erfasst (Auftragung der Absorption gegen die Zeit) und das Ausmaß der Hemmung über den Anstieg der erhaltenen Geraden ermittelt.²³⁰

Schema 43: Schematische Darstellung des Papainassays.

Im Ergebnis bleibt allerdings festzuhalten, dass beide Substanzen in Konzentrationen von 100 μ M keine Änderung des Anstiegs bewirkten und damit keine Hemmung von Papain zu verzeichnen war (Tab. 26).

Tab. 26: Ergebnisse der Testung an der Cysteinprotease Papain.

SUBSTANZ (KONTROLLE)	ANSTIEG (ABS/MIN)	Standardabweichung		
31 (blank)	0.0198 (0.0194)	0.00035 (0.0006)		
67 (blank)	0.01795 (0.0185)	0.00035 (0.0005)		

5 ZUSAMMENFASSUNG UND AUSBLICK

5.1 Zusammenfassung

In der vorliegenden Arbeit wurden mit Hilfe der Aminobarbitursäure-Hydantoin-Umlagerung eine Reihe neuartiger trisubstituierter 5-Aminobarbitursäuren und 5-Carbamoylhydantoine dargestellt. Dadurch wurde das synthetische Potential dieser Reaktion evaluiert. Zusätzlich konnte gezeigt werden, dass für die Umlagerung von tri- und tetrasubstituierten Aminobarbitursäuren zu den entsprechenden Hydantoinen unterschiedliche Mechanismen zum Tragen kommen müssen (Additions-Eliminierungs-Mechanismus vs. ANRORC).

Mit einigen der synthetisierten Barbitursäuren und Hydantoine wurden 36 Zwikker-/Parri-Nachweisreaktionen mit verschiedener Zusammensetzung der Testkomponenten durchgeführt und mit Hilfe einer vorher definierten Farbpalette und UV-Vis Messungen ausgewertet. Es zeigte sich, dass UV-Vis keine geeignete Alternative zur visuellen Bestimmung der Farben der Kupfer- bzw. Kobaltkomplexe darstellt. Nur einige Schwermetallsalze erwiesen sich als vorteilhaft. Auch die Wahl der anderen Komponenten war ein entscheidender Faktor für fehlerlose Testresultate.

Zur Übertragung der Aminobarbitursäure-Hydantoin-Umlagerung auf die Festphasenchemie wurden zunächst Lösungsreaktionen an zwei verschiedenen Polymeren erprobt. Am Isocyanatharz konnte die Umlagerungsreaktion erstmals erfolgreich durchgeführt und ein Hydantoin abgetrennt werden. Durch die Verwendung von Hexamethyldisilazan konnte dabei auch ein neuartiger Abspaltungsweg für Harze ohne Linker aufgezeigt werden.

Für eine Festphasensynthese Barbitursäuren spätere von und Brombarbitursäuren am Rink-Amid-Harz konnten in Lösung die entsprechenden Bedingungen gefunden werden. An fester Phase wurde dann zunächst ein unsubstituierter Harnstoff aufgebaut. Um die Nutzung dieses neuen Rink-Harnstoff-Harzes als Ausgangsmaterial für Synthesen kleiner organischer Moleküle zu demonstrieren, wurde erstmalig eine Bibliothek monosubstituierter, azyklischer Acylharnstoffe an fester Phase mit Hilfe der MiniBlock[®]-Synthesemaschine hergestellt. Die hierfür notwendigen Reaktionsbedingungen wurden zuvor in Lösung an Benzylureiden getestet und optimiert. Einige der synthetisierten Ureide zeigten beachtliche antikonvulsive Wirkungen im Tiermodell.

5.2 Ausblick

Am Isocyanat-Harz scheint es erstrebenswert, weitere Hydantoine im Sinne der Ein-Topf-Reaktion mit Acetylamidomalonsäureestern herzustellen und so eventuell zu einer kleinen Matrix an Hydantoinen zu gelangen. Ist dieser Weg erfolgreich, und wurde die hier vorgestellte neuartige Abspaltungsmethode mit HMDS näher untersucht und an einer größeren Anzahl von Hydantoinen getestet, so ist es durchaus denkbar, dass auch die mehrstufige Aminobarbitursäure-Hydantoin-Umlagerung am Isocyanat-Harz durchgeführt werden kann. Durch Silylierung könnten dann die harzgebundenen trisubstituierten Hydantoine abgespalten werden (Schema 20). Dagegen sollten Versuche, harzgebundene 1,3-unsubstituierte Hydantoine für eine basenkatalysierte Decarbamoylierung alkylieren zu wollen, fallengelassen werden, da sich dies schon in Lösung als äußerst problematisch, wenn auch nicht völlig erfolglos, herausstellte. Auch der Weg über die saure Hydrolyse der exocyclischen Amidbindung sollte wegen der Gefahr der Zersetzung des Hydantoins vermieden werden.

Am Rink-Amid-Harz erscheinen verschiedene Wege lohnend, um zukünftig zu harzgebundenen Barbitursäuren zu gelangen. Zunächst sollte versucht werden, die Synthese von **75a** (H₂NCONHCOCH₂COOEt, Schema 42) aus dem Harnstoff-Harz und Malonsäuremonoethylester zu optimieren. Dazu bieten sich einerseits andere Kupplungsreagenzien (neben dem hier getesteten Ac₂O) an. So könnten z.B. gemischte Anhydride des Malonsäuremonoethylesters mit Chlorameisensäureestern hergestellt und dann mit dem Harnstoff-Harz umgesetzt werden. Ebenso könnte man in Anlehnung an die Erfolge in Lösung erwägen, die Kupplung mit Boronsäuren unter Mikrowellenbedingungen an fester Phase zu versuchen. Zwar existieren Berichte darüber, dass der Rink-Linker unter den hohen Temperaturen des Mikrowellensynthese zerstört wird (und damit die Beladung des Harzes drastisch sinkt), andererseits lieferten erste Vorversuche mit dem Rink-Harz in der Mikrowelle hoffnungsvolle Ergebnisse.

Andererseits sollte die Zyklisierung des harzgebundenen Derivates **120** (-NHCONHCOCH₂COOEt, Schema 42) versucht werden, zunächst unter den festphasenkompatiblen Bedingungen, die in dieser Arbeit in Lösung gefunden wurden. Durch den Einsatz selbst herstellbarer substituierter Malonsäuremonoethylester könnte dann erstmals eine kleine Bibliothek von Barbitursäuren an fester Phase hergestellt werden. Gelingt die Zyklisierung, könnten außerdem die hier in Lösung erforschten Methoden zur Bromierung der Barbitursäuren an fester Phase erprobt werden.

6 EXPERIMENTELLER TEIL

6.1 Allgemeines

6.1.1 Geräte zur chemischen Synthese

6.1.1.1 Geräte zur Festphasensynthese

Zur parallelen Festphasensynthese wurden Bohdan MiniBlöcke der Firma Mettler Toledo GmbH verwendet, als kombinierte Schüttel- und Waschstation diente ein Gerät der Firma New Brunswick Scientific (Edison, New Jersey, USA). Beheizt wurden die MiniBlöcke über einen Thermostaten F32 MW der Firma Julabo.

6.1.1.2 Sonstige syntheserelevante Geräte

Für Mikrowellensynthesen wurde die Mikrowelle "CEM Discover" eingesetzt. Weitere eingesetzte Geräte in der Synthese waren ein Eppendorf Thermomixer comfort sowie ein Sonorex Super RK512H Ultraschallgerät der Firma Bandelin electronics.

6.1.2 Geräte zur chemischen Charakterisierung

6.1.2.1 NMR-Spektroskopie

Die NMR-Spektren wurden entweder auf einem Bruker "Avance 500" Spektrometer (¹H-NMR-Spektren bei 500 MHz, die ¹³C-NMR-Spektren bei 125 MHz) am Pharmazeutischen Institut Poppelsdorf der Universität Bonn oder aber auf einem Varian "Gemini 300" (¹H NMR bei 300 MHz; ¹³C NMR bei 75 MHz) bzw. einem Varian "Gemini 200" (¹H NMR bei 200 MHz; ¹³C NMR bei 50 MHz) am Pharmazeutischen Institut der Universität Leipzig aufgenommen. Werden keine weiteren Angaben gemacht, wurde zur Aufnahme der NMR-Spektren das 500 MHz Gerät von Bruker verwendet.

Wenn nicht anders vermerkt, wurde DMSO- d_6 als Lösungsmittel verwendet, wobei die Lösungsmittelsignale gleichzeitig als interner Standard dienten: ¹H: $\delta = 2.49$ ppm bzw. ¹³C: $\delta = 39.70$ ppm. Teilweise wurden zur Auswertung auch APT, DEPT-Spektren und zweidimensionale Spektren (HSQC, HMQC, HMBC) herangezogen. Die Kopplungskonstanten (*J*) werden in Hertz (Hz), die chemischen Verschiebungen (δ) in parts per million (ppm) angegeben. Die Signalmultiplizitäten werden wie folgt abgekürzt: s = Singulett, d = Duplett, dd = Duplett von Duplett, dt = Duplett von Triplett, t = Triplett, q = Quartett, dq = Duplett von Quartett, quin = Quintett, sex = Sextett, sept. = Septett, m = Multiplett, br = breites Signal.

6.1.2.2 Massen-Spektroskopie

Die Massenspektren wurden in der Zentralanalytik des Kekulé-Institutes für Organische Chemie und Biochemie der Universität Bonn aufgenommen. Für die Elektronenstoßionisation (EI, 70 eV Beschleunigungsspannung) wurde ein A.E.I. "MS 50" Massenspektrometer verwendet, für Fast-Atom-Bombardment-Spektren (FAB) das Gerät "Concept H" der Firma Kratos.

6.1.2.3 IR-Spektroskopie

Die (FT)IR-Spektren wurden auf einem IR Spektrometer Perkin Elmer 298 bzw. den FT-IR-Spektrometern Perkin Elmer 1600 am Pharmazeutischen Institut Poppelsdorf der Universität Bonn und Perkin Elmer 16 PC am Pharmazeutischen Institut der Universität Leipzig aufgenommen. Für die Herstellung der Presslinge wurde wasserfreies Kaliumbromid verwendet. Angegeben sind lediglich die Wellenzahlen (v in cm⁻¹) einiger wichtiger Valenz- und Deformationsschwingungen (v bzw. δ).

6.1.2.4 UV-Spektroskopie

Die UV-Spektren wurden auf einem Cary 50 Bio der Firma Varian unter Verwendung von Einmal-UV-Küvetten (PMMA, mikro, 1.5ml) der Firma Brandt oder Präzisionsquarzküvetten Suprasil[®] Firma Hellma aufgenommen.

6.1.2.5 Röntgenkristallstrukturanalyse

Die Röntgenkristallstrukturanalysen wurden an einem Vierkreisdiffraktometer AFC-6R mit Drehanodenröntgengenerator RU200 der Firma RIGAKU, Japan, am Mineralogisch-Petrologischen Institut der Friedrich-Wilhelms-Universität Bonn (Hr. Dr. Euler) sowie an dem Gerät X8APEX der Firma BRUKER-AXS in Karlsruhe (Hr. Dr. Euler, Fr. Dr. Dix) durchgeführt.

6.1.2.6 HPLC-Chromatographie

Die HPLC-Chromatogramme wurden an einem HPLC-Gerät der Firma Dionex (Pumpensystem P580) mit UV-Detektor und RP18-Säule (Vydac C18 bzw. Phenomenex Luna C18, beide 250×4.60 mm) aufgenommen.

6.1.2.7 Dünnschichtchromatographie / Säulenchromatographie

Die Dünnschichtchromatographie der Substanzen wurde mit DC-Alufolien, beschichtet mit Kieselgel 60 F_{245} , der Firma Merck durchgeführt und, wenn nicht anders angegeben, mit UV-Licht der Wellenlänge 254 nm detektiert. Für die Säulenchromatographie wurde Kieselgel 60 für die Säulenchromatographie (70-230 mesh) der Firma Fluka verwendet. Die entsprechenden Eluenten sind unter den einzelnen Substanzen angegeben.

6.1.2.8 Elementaranalyse

Die CHN-Analysen wurden am Pharmazeutischen Institut Endenich durchgeführt. Es wurde das Gerät "VarioEL" der Firma Elementar Analysensysteme GmbH verwendet.

6.1.2.9 Schmelzpunkt

Die unkorrigierten Schmelzpunkte wurden mit Hilfe des Schmelzpunktmessgerätes B-510 der Firma Büchi bestimmt.

6.1.2.10 Mikroskopie / Fotographie

Die mikroskopischen Fotographien wurden an einem Eschenbach Kurs-Mikroskop 3470 (10-fache Vergrößerung) mit einer Kamera Praktica MTL3 (Belichtungszeit: 1 s) durchgeführt.

6.1.3 Substanzen zur chemischen Charakterisierung

Das Fmoc-Rink-Amid Harz wurde von Novabiochem (Schwalbach/Ts., Deutschland) PS-methylisocyanat Harz von Novabiochem bezogen, das (Schwalbach/Ts., Deutschland) und Aldrich (Steinheim. Deutschland). Alle anderen Synthesechemikalien und Analytiksubstanzen wurden von den Firmen Acros (Geel, Belgien), Fluka (Taufkirchen, Deutschland), Merck (Darmstadt, Deutschland), Lancaster (Mühlheim a. M., Deutschland), Aldrich (Steinheim, Deutschland) und Synopharm (Barsbüttel, Deutschland) erworben. Die in der HPLC eingesetzten Lösungsmittel wurden von der Firma Fluka (Taufkirchen, Deutschland) bezogen und hatten HPLC-Qualität.

Der verwendete Borat/KCl-Puffer, pH 9.0 wurde laut Ph. Eur. 4.00 hergestellt, indem 6.18 g Borsäure in KCl-Lösung (0.1 N) ad 1000.0 ml gelöst und zu dieser Lösung 420.0 ml NaOH (0.1 N) zugesetzt wurden.

U	U				
Acetonitril (MeCN)	Refluxieren	über	Phosphorpentoxid	und	Destillation,
	Lagerung üb	er Mol	sieb und Argon		
Dichlormethan (DCM)	Refluxieren	über	Phosphorpentoxid	und	Destillation,
	Lagerung üb	er Mol	sieb und Argon		
Ethanol (EtOH)	Refluxieren über Natrium und Destillation, Lagerung über				
	Molsieb und	Argon			
Tetrahydrofuran (THF)	Refluxieren	über N	atrium und Destillat	ion, L	agerung über
	Molsieb und	Argon			
Toluol	Refluxieren	über N	atrium und Destillat	ion, L	agerung über
	Molsieb und	Argon			

6.1.3.1 Trocknung von Lösungsmitteln

6.1.3.2 Verwendete Sprühreagenzien für die Dünnschichtchromatographie

- 0.2% Ninhydrin-Lösung: 0.2 g Ninhydrin werden in Ethanol zu 100 ml gelöst.
- 1% Nitroprussid-Natrium-Lösung: 1 g Nitroprussid-Na werden in einem 1:1 Gemisch aus Ethanol und 2N NaOH zu 100 ml gelöst.
- Iod-Kaliumiodid-Lösung: 3.25 g Iod und 5 g KI werden in 25 ml Ethanol angelöst und dann wird mit Wasser auf 250 ml aufgefüllt.

6.1.3.3 Farbtests an fester Phase²³¹

 TNBS-Test: unten genannte Lösungen mischen und Farbe der Harzkügelchen (nicht der Lösung!) beurteilen. Rotfärbung zeigt einen positiven Test an.

Lösung 1: 2 Tropfen DMF Lösung 2: 1 Tropfen einer 1% Trinitrobenzolsulfonsäurelösung in DMF Lösung 3: 2 Tropfen DIEA

 Kaiser-Test:²³² je 2 Tropfen unten genannter Lösungen zum Harz geben und Gemisch 5 min bei 97°C erhitzen und sofort die Farbe der Harzkügelchen (nicht der Lösung!) beurteilen. Violettfärbung zeigt einen positiven Test an.

Lösung 1: 5% Ninhydrin in EtOH Lösung 2: 40 g Phenol in 20 ml EtOH (unter Erhitzen lösen) Lösung 3: 2 ml einer wässrigen 10 mM KCN-Lösung mit reinem Pyridin ad 100 ml

 Chloranil-Test:²³³ je 2 Tropfen unten genannter Lösungen zum Harz geben und nach 5 min bei Raumtemperatur die Farbe der Harzkügelchen (nicht der Lösung!) beurteilen. Blaufärbung zeigt einen positiven Test an.

Lösung 1: 2% Chloranil in DMF Lösung 2: 2% Acetaldehyd in DMF

6.1.4 Pharmakologische Testungen

Die Radioligand-Bindungsstudien am CB₁-Rezeptor wurden im Arbeitskreis von Frau Professor Dr. C. E. Müller durch Frau Dipl.-Pharm. K. Grießmeier am Pharmazeutischen Institut der Universität Bonn durchgeführt. Die Zytotoxizitätstestungen an MCF-7 Zellen wurden im Arbeitskreis von Herrn Professor Dr. R. Gust durch Frau Apothekerin S. Dettmann am Institut für Pharmazie, FB Chemie, Biologie und Pharmazie, Freie Universität Berlin ausgeführt. Die antikonvulsiven und analgetischen Wirksamkeit einer Reihe von Verbindungen wurde am Department of Pharmacodynamics der Jagiellonian Universität Krakau, Polen durch Herrn Dr. T. Librowski geprüft. Die Substanzen wurden im Arbeitskreis von Herrn Professor Dr. M. Wiese am Pharmazeutischen Institut der Universität Bonn durch Herrn Dipl.-Pharm. H. Müller als Modulatoren von P-gp getestet. Das inhibitorische Potential einiger Verbindungen an Papain wurde im eigenen Arbeitskreis durch Herrn Dipl.-Biochem. R. Löser untersucht.

6.2 Synthesevorschriften aller dargestellten Verbindungen

Barbitursäuren (1a-i)

Allgemeine Synthesevorschrift:

200 mmol (4.60 g) Natrium werden in 120 ml absolutem Ethanol gelöst und je 200 mmol des entsprechenden Malonsäurediethylesters und Harnstoffs zugegeben. Die Mischung wird 5 Stunden unter Rückfluss gekocht. Das Lösungsmittel wird im Vakuum entfernt, der Rückstand in 100 ml Wasser gelöst und mit 50 ml Salzsäure (3N) angesäuert. Der entstandene Niederschlag wird abgesaugt, umkristallisiert und anschließend im Vakuum getrocknet.

1,5-Dimethylbarbitursäure (1a)

 $C_6H_8N_2O_3$ M = 156.14 g/mol

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 16.2 g, 51%.

Fp (Lit.-Fp): 174-175°C (172-173°C)²³⁴

EA ber. (EA gef.): $C_6H_8N_2O_3 \times 0.1 H_2O$ C 45.63 (45.27) H 5.23 (5.04) N 17.73 (17.52)

IR (**KBr**): v (cm⁻¹) 3228 (v, NH), 2845 (v, CH_{alkyl}), 1702, 1682 (v, CO).

¹**H NMR (300 MHz)** δ (ppm) 1.32 (d, 3H, *J* = 7.00 Hz, 5-CH₃), 3.04 (s, 3H, 1-CH₃), 3.70 (q, 1H, *J* = 7.00 Hz, CH), 11.27 (s, 1H, NH).

1-Ethyl-5-methylbarbitursäure (1b)

 $C_7H_{10}N_2O_3$ M = 170.17 g/mol

Das Rohprodukt wird aus Ethanol umkristallisiert. Ausbeute: 18.0 g, 52%.

Fp (Lit.-Fp): 145-147°C (146.8-147.5°C)²³⁵

EA ber. (EA gef.): $C_7H_{10}N_2O_3 \times 0.1 H_2O$ C 48.89 (48.90) H 5.98 (5.86) N 16.29 (16.21)

FT-IR (**KBr**): v (cm⁻¹) 3210, 3108 (v, NH), 2986, 2874 (v, CH_{alkyl}), 1683 (v, CO).

¹H NMR (300 MHz) δ (ppm) 1.06 (t, 3H, J = 7.04 Hz, CH₂CH₃), 1.34 (d, 3H, J = 7.35 Hz, 5-CH₃), 3.60-3.80 (m, 3H, CH, CH₂), 11.23 (s, 1H, NH). ¹³C NMR (75 MHz) δ (ppm) 11.60, 12.92 (CH₃), 35.41 (CH₂), 43.42 (C-5), 150.88 (C-2), 169.62, 169.67 (CO). 5-Methyl-1-phenylbarbitursäure (1c)

 $C_{11}H_{10}N_2O_3 \quad M=218.21 \ g/mol$

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 30.1 g, 69%.

Fp (Lit.-Fp): 172–173°C (172-173°C)²³⁶

EA ber. (EA gef.): C 60.55 (60.57) H 4.62 (4.57) N 12.84 (12.65)

IR (**KBr**): v (cm⁻¹) 3216 (v, NH), 3090 (v, CH_{aryl}), 1690 (v, CO).

¹**H NMR (300 MHz**) δ (ppm) 1.39 (d, 3H, *J* = 7.4 Hz, CH₃), 3.91 (q, 1H, *J* = 7.2 Hz, CH), 7.22-7.46 (m, 5H, Ph), 11.40 (s, 1H, NH).

¹³C NMR (75 MHz) δ (ppm) 11.54 (CH₃), 44.05 (C-5), 128.35 (C-4'), 128.88, 129.11 (C-2', C-3', C-5', C-6'), 135.49 (C-1'), 151.19 (C-2), 169.92, 170.09 (CO).
5-Ethyl-1-methylbarbitursäure (1d)

 $C_7H_{10}N_2O_3$ M = 170.17 g/mol

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 20.8 g, 60%.

Fp (**Lit.-Fp**): 100-101°C (100-102°C)²³⁷

EA ber. (EA gef.): $C_7H_{10}N_2O_3 \times 0.2 H_2O$ C 48.38 (48.30) H 6.03 (5.63) N 16.12 (16.11)

IR (**KBr**): v (cm⁻¹) 3206, 3087 (v, NH), 2980, 2843 (v, CH_{alkyl}), 1690 (v, CO).

¹**H** NMR (**300** MHz) δ (ppm) 0.84 (s, 3H, J = 7.40 Hz, CH₂CH₃), 1.95-1.99 (m, 2H, CH₂CH₃), 3.09 (s, 3H, 1-CH₃), 3.61 (t, 1H, J = 5.09 Hz, CH), 11.41 (s, 1H, NH).

1,5-Diethylbarbitursäure (1e)

 $C_8H_{12}N_2O_3$ M = 184.19 g/mol

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 23.9 g, 64%.

Fp (Lit.-Fp): 85–92°C (89.2–91.5°)²³⁴

EA ber. (EA gef.): $C_8H_{12}N_2O_3 \times 0.1 H_2O$ C 51.66 (51.56) H 6.61 (6.45) N 15.06 (14.88)

IR (**KBr**): v (cm⁻¹) 3495, 3218, 3094 (v, NH), 2987, 2939 (v, CH_{alkyl}), 1702 (v, CO).

¹**H** NMR (300 MHz) δ (ppm) 0.81 (t, 3H, J = 7.4 Hz, 5-CH₂C<u>H₃</u>), 1.05 (t, 3H, J = 7.2 Hz, 1-CH₂C<u>H₃</u>), 1.87-2.02 (m, 2H, 5-C<u>H₂</u>CH₃), 3.58 (t, 1H, J = 5.1 Hz, CH), 3.71 (q, 2H, J = 7.1 Hz, 1-C<u>H₂</u>CH₃), 11.40 (s, 1H, NH).

5-Ethyl-1-phenylbarbitursäure (1f)

 $C_{12}H_{12}N_2O_3$ M = 232.24 g/mol

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 37.2 g, 80%.

Fp (Lit.-Fp): 182–190°C (185–186.5°C)²³⁸

EA ber. (EA gef.): C 62.06 (61.81) H 5.21 (5.14) N 12.06 (11.85)

IR (**KBr**): v (cm⁻¹) 3206 (v, NH), 3088 (v, CH_{aryl}), 2976 (v, CH_{alkyl}), 1681 (v, CO).

¹**H** NMR (**300** MHz)δ (ppm) 0.95 (t, 3H, J = 7.4 Hz, CH₃), 1.96-2.10 (m, 2H, CH₂), 3.75 (t, 1H, J = 5.2 Hz, CH), 7.23-7.47 (m, 5H, Ph), 11.58 (s, 1H, NH).

¹³C NMR (75 MHz) δ (ppm) 10.68 (CH₃), 22.16 (CH₂), 49.84 (C-5), 128.31 (C-4'), 128.81, 128.91 (C-2', C-3', C-5', C-6'), 135.02 (C-1'), 150.84 (C-2), 169.33, 169.56 (CO).

1-Methyl-5-phenylbarbitursäure (1g)

 $C_{11}H_{10}N_2O_3 \qquad \qquad M=218.21 \ g/mol$

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 21.8 g, 50%.

Fp (Lit.-Fp): 247-248°C (240-242°C)²³⁹

FT-IR (**KBr**): v (cm⁻¹) 3109 (v, NH), 2973 (v, CH_{aryl}, CH_{alkyl}), 1704 (v, CO).

EA ber. (EA gef.): $C_{11}H_{10}N_2O_3 \times 0.1 H_2O$ C 60.05 (59.69) H 4.67 (4.66) N 12.73 (12.38)

¹**H NMR (300 MHz)** δ (ppm) 3.14 (s, 3H, CH₃), 4.93 (s, 1H, CH), 7.26-7.36 (m, 5H, Ph), 11.62 (s, 1H, NH).

1-Ethyl-5-phenylbarbitursäure (1h)

 $C_{12}H_{12}N_2O_3$ M = 232.24 g/mol

Das Rohprodukt wird aus Ethanol umkristallisiert. Ausbeute: 26.5 g, 55%.

Fp: 175-179°C

IR (**KBr**): v (cm⁻¹) 2987, 2936, 2876 (v, CH_{alkyl}), 1701, 1627 (v, CO).

EA ber. (EA gef.): $C_{12}H_{12}N_2O_3 \times 0.5 H_2O$ C 59.74 (59.20) H 5.43 (4.66) N 11.61 (11.60)

¹**H NMR** (**300 MHz**) δ (ppm) 1.09 (t, 3H, J = 6.90 Hz, CH₃), 3.77 (m, 2H, CH₂), 4.88 (s, 1H, CH), 7.16-7.42 (m, 5H, Ph), 11.54 (s, 1H, NH).

1,5-Diphenylbarbitursäure (1i)

 $C_{16}H_{12}N_2O_3 \qquad \qquad M=280.28 \ g/mol$

Das Rohprodukt wird aus Methanol umkristallisiert. Ausbeute: 34.2 g, 60%.

Fp (Lit.-Fp): 184–185°C (189–190°C)²³⁹

EA ber. (EA gef.): $C_{16}H_{12}N_2O_3 \times 0.2 H_2O$ C 67.69 (67.68) H 4.40 (4.33) N 9.87 (9.63)

IR (**KBr**): v (cm⁻¹) 3435, 3287, 3056 (v, CH_{arvl}), 1732, 1700 (v, CO).

¹**H NMR (300 MHz)** δ (ppm) 5.09 (s, 1H, CH), 7.20-7.50 (m, 10 H, Ph), 11.77 (s, 1H, NH).

Brombarbitursäuren (2a-i)

Allgemeine Synthesevorschrift

20 mmol Barbitursäure **1** werden in 300 ml Essigsäure 96 % gelöst. Zu dieser Lösung werden über 20 Minuten hinweg 20 mmol Brom (16 g einer 20%-igen Brom-Essigsäure 96%-Lösung) zugetropft und danach eine Stunde bei Raumtemperatur gerührt. Anschließend wird die Essigsäure abrotiert. Der erhaltene ölige Rückstand wird in Ether gelöst und diese Lösung über Kieselgel in eine Abdampfschale mit dem gleichen Volumen n-Hexan filtriert. Man lässt die Lösungsmittel an der Luft verdampfen. Den entstandenen Niederschlag nimmt man in etwas n-Hexan auf, saugt ab und trocknet ihn im Vakuum.

5-Brom-1,5-dimethylbarbitursäure (2a)

 $C_6H_7N_2O_3Br$ M = 235.04 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 3.7 g, 78%.

Fp (Lit.-Fp): 119-122°C (94-95°C)⁷²

EA ber. (EA gef.): C 30.66 (30.56) H 3.00 (3.04) N 11.92 (11.82)

IR (KBr): v (cm⁻¹) 3518, 3481, 3206 (v, NH), 1698 (v, CO).

EIMS (*m/z*, Intensität %): 236 (M⁺, ⁸¹Br, 36), 234 (M⁺, ⁷⁹Br, 36), 155 (M⁺-Br, 25), 136 (CH₃C(Br)CO⁺, ⁸¹Br, 97), 134 (CH₃C(Br)CO⁺, ⁷⁹Br, 100).

¹H NMR (CDCl₃): δ (ppm) 2.08 (s, 3H, 5-CH₃), 3.33 (s, 3H, 1-CH₃), 8.48 (s, 1H, NH).
¹³C NMR (CDCl₃): δ (ppm) 21.7 (5-CH₃), 28.9 (1-CH₃), 45.1 (C-5), 148.7 (C-2), 165.6, 167.1 (CO).

5-Brom-1-ethyl-5-methylbarbitursäure (2b)

 $C_7H_9N_2O_3Br$ M = 249.06 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 4.2 g, 84%.

Fp (Lit.-Fp): 121–123°C (121-123°C)⁶⁹

EA ber. (EA gef.): C 33.76 (33.73) H 3.64 (3.55) N 11.25 (11.08)

FT-IR (**KBr**): v (cm⁻¹) 3257 (v, NH), 2981, 2935, 2874 (v, CH_{alkyl}), 1716,1674 (v, CO).

EIMS (*m/z*, Intensität %): 250 (M⁺, ⁸¹Br, 21), 248 (M⁺, ⁷⁹Br, 22), 169 (M⁺-Br, 100), 136 (CH₃C(Br)CO⁺, ⁸¹Br, 67), 134 (CH₃C(Br)CO⁺, ⁷⁹Br, 70). HRMS [M⁺ ber. (gef.)]: 247.9797 (247.9801)

¹**H NMR (CDCl₃)** δ (ppm) 1.21 (t, 3H, J = 7.0 Hz, CH₂CH₃), 2.07 (s, 3H, 5-CH₃), 3.87-4.01 (m, 2H, CH₂), 8.52 (s, 1H, NH).

¹³C NMR (CDCl₃) δ (ppm) 12.6 (CH₂<u>C</u>H₃), 21.5 (5-CH₃), 37.7 (CH₂), 45.4 (C-5), 148.4 (C-2), 165.7, 166.6 (CO).

5-Brom-5-methyl-1-phenylbarbitursäure (2c)

 $C_{11}H_9N_2O_3Br$ M = 297.11 g/mol

a)

Das nach der allgemeinen Synthesevorschrift gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 4.9 g, 82%.

b)

5 mmol Barbitursäure **1c** (1.09 g) werden in 50 ml Dichlormethan unter Eiskühlung gelöst. Es wird über 15 Minuten hinweg eine Lösung von 5 mmol Pyridiniumbromidperbromid 90% (1.76 g) in 5 ml trockenem Pyridin zugetropft. Die Lösung entfärbte sich anfangs und blieb nach Beendingung des Zutropfens gelbbraun. Die Lösung wird weitere 4 Stunden gerührt. Nach 2 Stunden fällt ein Niederschlag aus. Dieser wurde nach Ende der Reaktion abgesaugt und als Brombarbitursäure-Pyridiniumsalz identifiziert. Die Dichlormethan-Mutterlauge wird mit $6 \times$ HCl (0.1N) und $1 \times$ HCl (1N) gewaschen, bis die Waschsalzsäure sauer bleibt und durch das Pyridin nicht mehr neutralisiert wird und die Dichlormethanphase nicht mehr nach Pyridin riecht. Anschließend trocknet man die organische Phase über wasserfreiem Natriumsulfat, filtiert und engt zur Trockne ein. Es bildete sich ein beigefarbener Schaum. Ausbeute: 0.59 g, 40%.

Die Produkte von a) und b) sind identisch.

Fp: 125-126°C

EA ber. (EA gef.): C 44.47 (44.56) H 3.05 (3.10) N 9.43 (9.28)

IR (**KBr**): v (cm⁻¹) 3199 (v, NH), 3089 (v, CH_{aryl}), 2883 (v, CH_{alkyl}), 1727, 1698 (v, CO).

EIMS (*m/z*, **Intensität %):** 298 (M⁺, ⁸¹Br, 38), 296 (M⁺, ⁷⁹Br, 40), 217 (M⁺-Br, 100), 136 (CH₃C(Br)CO⁺, ⁸¹Br, 49), 134 (CH₃C(Br)CO⁺, ⁷⁹Br, 51), 119 (C₆H₅NCO⁺, 75).

¹H NMR (CDCl₃) δ (ppm) 2.14 (s, 3H, CH₃), 7.22-7.54 (m, 5H, Ph), 8.48 (s, 1H, NH).
¹³C NMR (CDCl₃) δ (ppm) 21.2 (CH₃), 45.8 (C-5), 128.0, 129.6, 129.6 (CH-Ph), 133.3 (C-1'), 148.3 (C-2), 165.4, 166.8 (CO).

¹**H NMR (DMSO-***d*₆) δ (ppm) 1.98 (s, 3H, CH₃), 7.20-7.51 (m, 5H, Ph), 11.91 (s, 1H, NH).

¹³C NMR (DMSO-*d*₆) δ (ppm) 21.27 (CH₃), 45.13 (C-5), 128.52, 128.86, 129.25 (CH-Ph), 134.76 (C-1'), 149.66 (C-2), 167.04, 167.48 (CO).

5-Brom-5-ethyl-1-methylbarbitursäure (2d)

 $C_7H_9N_2O_3Br$ M = 249.06 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 3.8 g, 77%.

Fp (**Lit.-Fp**): 127-130°C (130-134°C)⁶⁹

EA ber. (EA gef.): C 33.76 (33.88) H 3.64 (3.60) N 11.25 (11.42)

FT-IR (**KBr**): v (cm⁻¹) 3267, 3134 (v, NH), 2950 (v, CH_{alkyl}), 1721, 1694 (v, CO).

EIMS (*m/z*, Intensität %): 250 (M⁺, ⁸¹Br, 1), 248 (M⁺, ⁷⁹Br, 1), 222 (M⁺-CH₂=CH₂, ⁸¹Br, 99), 220 (M⁺-CH₂=CH₂, ⁷⁹Br, 99), 169 (M⁺-Br, 10).

¹**H** NMR (CDCl₃) δ (ppm) 1.14 (t, 3H, *J* = 7.4 Hz, CH₂CH₃), 2.85 (q, 2H, *J* = 7.3 Hz, CH₂CH₃), 3.62 (s, 3H, NCH₃), 9.10 (s, 1H, NH).

5-Brom-1-ethyl-5-ethylbarbitursäure (2e)

 $C_8H_{11}N_2O_3Br$ M = 263.09 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 4.6 g, 88%.

Fp (**Lit.-Fp**): 92–102°C (101-103°C)⁶⁹

EA ber. (EA gef.): C 36.52 (36.75) H 4.21 (4.22) N 10.65 (10.67)

IR (**KBr**): v (cm⁻¹) 3206, 3089 (v, NH), 2985, 2941, 2877 (v, CH_{alkyl}), 1690 (v, CO).

EIMS (*m/z*, Intensität %): 264 (M⁺, ⁸¹Br, 3), 262 (M⁺, ⁷⁹Br, 4), 236 (M⁺-CH₂=CH₂, ⁸¹Br, 99), 234 (M⁺-CH₂=CH₂, ⁷⁹Br, 100), 183 (M⁺-Br, 32), 148 (C₂H₅C(Br)CO⁺, ⁷⁹Br, 35), 146 (C₂H₅C(Br)CO⁺, ⁸¹Br, 34).

¹**H NMR (CDCl₃)** δ (ppm) 0.87 (t, 3H, J = 7.3 Hz, 5-CH₂CH₃), 1.22 (t, 3H, J = 7.2 Hz, 1-CH₂CH₃), 2.58 (q, 2H, J = 7.5 Hz, 1-CH₂CH₃), 3.97 (dq, 2H, $J_1 = 2.4$ Hz, $J_2 = 7.1$ Hz, 5-CH₂CH₃), 9.18 (s, 1H, NH).

5-Brom-5-ethyl-1-phenylbarbitursäure (2f)

 $C_{12}H_{11}N_2O_3Br$ M = 311.13 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 5.7 g, 92%.

Fp (Lit.-Fp): 128-134°C (133-134°C)⁷²

EA ber. (EA gef.): C 46.32 (46.68) H 3.56 (3.63) N 9.00 (9.01)

IR (KBr): v (cm⁻¹) 3247 (v, NH), 1725, 1697 (v, CO).

EIMS (*m/z*, Intensität %): 312 (M⁺, ⁸¹Br, 41), 310 (M⁺, ⁷⁹Br, 43), 284 (M⁺-CH₂=CH₂, ⁸¹Br, 39), 282 (M⁺-CH₂=CH₂, ⁷⁹Br, 43), 231 (M⁺-Br, 91), 150 (C₂H₅C(Br)CO⁺, ⁸¹Br, 69), 148 (C₂H₅C(Br)CO⁺, ⁷⁹Br, 70), 119 (C₆H₅NCO⁺, 100).

¹**H NMR (CDCl₃)** δ (ppm) 0.97 (t, 3H, *J* = 7.3 Hz, CH₃), 2.63 (q, 2H, *J* = 7.3 Hz, CH₂), 7.21-7.58 (m, 5H, Ph), 8.72 (s, 1H, NH).

5-Brom-1-methyl-5-phenylbarbitursäure (2g)

 $C_{11}H_9N_2O_3Br$ M = 297.10 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 5.6 g, 95%.

Fp (**Lit.-Fp**): 109-110°C (128-129°C)²⁴⁰

EA ber. (EA gef.): C 44.47 (45.35) H 3.05 (3.36) N 9.43 (9.94)

IR (**KBr**): v (cm⁻¹) 3209, 3104 (v, NH), 2855 (v, CH_{alkyl}), 1757, 1705 (v, CO).

EIMS (*m/z*, Intensität %): 298 (M⁺, ⁸¹Br, 0.1), 296 (M⁺, ⁷⁹Br, 0.1), 231 (M⁺-Br, 100).

¹H NMR (CDCl₃) δ (ppm) 3.37 (s, 3H, CH₃), 7.38-7.53 (m, 5H, Ph), 8.44 (s, 1H, NH).
¹³C NMR (CDCl₃) δ (ppm) 29.28 (CH₃), 56.16 (C-5), 128.31, 128.87 (C-2', C-3'), 129.98 (C-4'), 132.61 (C-1'), 148.333(C-2), 164.81, 166.42 (CO).

5-Brom-1-ethyl-5-phenylbarbitursäure (2h)

 $C_{12}H_{11}N_2O_3Br$ M = 311.13 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 5.8 g, 89%.

Fp: 158-159°C

EA ber. (EA gef.): $C_{12}H_{11}N_2O_3Br \times 0.8 H_2O$ C 44.27 (44.00) H 3.90 (3.65) N 8.61 (8.64)

IR (**KBr**): v (cm⁻¹) 3215, 3114 (v, NH), 1758, 1702 (v, CO).

EIMS (*m/z, Intensität %*): 311 (M⁺, ⁸¹Br, 1), 309 (M⁺, ⁷⁹Br, 1), 231 (M⁺-Br, 100).

¹**H NMR (CDCl₃**) δ (ppm) 1.24 (t, 3H, *J* = 7.2 Hz, CH₃), 3.99 (q, 2H, *J* = 7.2 Hz, CH₂), 7.39-7.52 (m, 5H, Ph), 8.43 (s, 1H, NH).

¹³C NMR (CDCl₃) δ (ppm) 12.8 (CH₃), 38.2 (CH₂), 56.4 (C-5), 128.3, 128.8 (C-2', C-3'), 129.9 (C-4'), 132.6 (C-1'), 148.0 (C-2), 164.8, 165.9 (CO).

5-Brom-1,5-diphenylbarbitursäure (2i)

 $C_{16}H_{11}N_2O_3Br$ M = 359.18 g/mol

Das gewonnene Produkt wird nicht weiter aufgereinigt. Ausbeute: 6.4 g, 89%.

Fp (**Lit.-Fp**): 157-158°C (156.5-158°C)²⁴⁰

EA ber. (EA gef.): C 53.50 (53.47) H 3.09 (3.15) N 7.80 (7.76)

IR (**KBr**): v (cm⁻¹) 3211 (v, NH), 3066, 2864 (v, CH_{aryl}), 1762, 1707 (v, CO).

EIMS (*m/z, Intensität* %): 360 (M⁺, ⁸¹Br, 1), 358 (M⁺, ⁷⁹Br, 1), 279 (M⁺-Br, 100), 119 (C₆H₅NCO⁺, 19).

¹H NMR (CDCl₃) δ (ppm) 7.16-7.61 (m, 10H, Ph), 8.54 (s, 1H, NH).
¹³C NMR (CDCl₃) δ (ppm) 55.8 (C-5), 128.1, 128.4, 129.0, 129.6, 129.7, 130.1 (CH-Ph), 132.3, 133.3 (C-Ph), 148.1 (C-2), 164.6, 166.0 (CO).

Aminobarbitursäuren (3a-m)

Allgemeine Synthesevorschrift

10 mmol Brombarbitursäure 2 werden in 25 ml wasserfreiem Acetonitril gelöst und langsam unter Eiskühlung eine Lösung von 20 mmol primären Amins in 5 ml getrocknetem Acetonitril zugetropft und anschließend eine Stunde bei Raumtemperatur gerührt. Der Ansatz wird mit 250 ml gesättigter Natriumchlorid-Lösung verdünnt und mit 4×100 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Die Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben und erfolgte entweder durch Umkristallisation oder durch Säulenchromatographie. 5-Allylamino-1,5-dimethylbarbitursäure (3a)

 $C_9H_{13}N_3O_3$ M = 211.22 g/mol

Das Rohprodukt wird aus Methanol / Diethylether umkristallisiert, abgesaugt und im Vakuum getrocknet. Ausbeute: 0.49 g, 23%.

Fp: 132-134°C

EA ber. (EA gef.): $C_9H_{13}N_3O_3 \times 0.1 H_2O$ C 50.75 (50.70) H 6.25 (6.31) N 19.73 (19.60)

IR (KBr): v (cm⁻¹) 3322, 3187 (v, NH), 3051(v, CH_{aryl}), 2864 (v, CH_{alkyl}), 1748, 1686 (v, CO).

EIMS (*m/z*, *Intensität* %): 211 (M⁺, 1), 168 (M⁺- HNCO, 1), 156 (M⁺- CH₂=CH-CH=NH, 4), 56 (CH₂=CH-CH=NH₂⁺, 100).

¹**H NMR (300 MHz)** δ (ppm) 1.42 (s, 3H, 5-CH₃), 2.78 (s, br, 1H, NH), 2.98 (s, br, 2H, NHC<u>H</u>₂), 3.08 (s, 3H, NCH₃), 4.95-5.11 (m, 2H, CH=C<u>H</u>₂), 5.64-5.81 (m, 1H, CH), 11.47 (s, 1H, NH).

¹³C NMR (75 MHz) δ (ppm) 24.95 (5-CH₃), 27.52 (1-CH₃), 47.25 (NHCH₂), 62.93 (C-5), 115.62 (CH=<u>C</u>H₂), 136.80 (<u>C</u>H=CH₂), 150.14 (C-2), 171.45, 172.36 (CO).

5-Benzylamino-1,5-dimethylbarbitursäure (3b)

 $C_{13}H_{15}N_3O_3$ M = 261.28 g/mol

Das Rohprodukt wird in Ether aufgenommen, abgesaugt und im Vakuum getrocknet. Ausbeute: 2.19 g, 82%.

Fp: 139-142°C

EA ber. (EA gef.): $C_{13}H_{15}N_3O_3 \times 0.3 H_2O$ C 58.55 (58.80) H 5.90 (5.86) N 15.76 (15.40)

IR (**KBr**): v (cm⁻¹) 3269 (v, NH), 3007 (v, CH_{aryl}), 2834 (v, CH_{alkyl}), 1721, 1693 (v, CO).

EIMS (*m/z*, *Intensität* %): 261 (M⁺, 2), 156 (M⁺- C₇H₇N, 5), 106 (C₆H₅CH=NH₂⁺, 100).

¹H NMR δ (ppm) 1.46 (s, 3H, 5-CH₃), 3.03 (s, 3H, 1-CH₃), 3.00-3.10 (m, 1H, N<u>H</u>CH₂), 3.44-3.53 (m, 2H, CH₂), 7.18-7.29 (m, 5H, Ph), 11.77 (s, br, 1H, NH).
¹³C NMR δ (ppm) 25.1 (5-CH₃), 27.7 (1-CH₃), 48.5 (CH₂), 63.6 (C-5), 126.9 (C-4'), 128.1, 128.2 (C-2', C-3'), 140.0 (C-1'), 150.3 (C-2), 171.5, 172.4 (CO).

5-Cyclohexylamino-1,5-dimethylbarbitursäure (3c)

 $C_{12}H_{19}N_3O_3$ M = 253.30 g/mol

Die entstandenen Kristalle werden aus Ethylacetat/Cyclohexan umkristallisiert, abgesaugt und im Vakuum getrocknet. Ausbeute: 1.52 g, 60%.

Fp: 198-199°C

EA ber. (EA gef.): C 56.90 (56.80) H 7.56 (7.82) N 16.59 (16.50)

IR (**KBr**): v (cm⁻¹) 3208, 3124 (v, NH), 2930, 2854 (v, CH_{alkyl}), 1719, 1693 (v, CO).

EIMS (*m/z*, *Intensität* %): 253 (M⁺, 11), 210 (M⁺- HCNO, 100), 98 (C₆H₁₂N⁺, 53).

¹**H NMR** δ (ppm) 0.90-1.60 (m, 10H, CH₂), 1.40 (s, 3H, 5-CH₃), 2.28-2.44 (m, 2H, NHCH); 3.09 (s, 3H, 1-CH₃), 11.47 (s, br, 1H, NH).

¹³C NMR δ (ppm) 24.7, 25.5, 34.1, 34.1 (CH₂), 26.2 (5-CH₃), 27.8 (1-CH₃), 53.2 (CH), 63.3 (C-5), 150.3 (C-2), 172.2, 173.1 (CO).

5-Allylamino-1-ethyl-5-methylbarbitursäure (3d)

 $C_{10}H_{15}N_3O_3$ M = 225.25 g/mol

Das Rohprodukt wird in Ether aufgenommen, abgesaugt und im Vakuum getrocknet. Ausbeute: 1.19 g, 52%.

Fp: 121-122°C

EA ber. (EA gef.): $C_{10}H_{15}N_3O_3 \times 0.1 H_2O$ C 52.90 (52.70) H 6.75 (7.21) N 18.51 (19.20)

IR (**KBr**): v (cm⁻¹) 3414, 3184 (v, NH), 3028 (v, CH_{aryl}), 2986, 2941, 2866 (v, CH_{alkyl}), 1703, 1686 (v, CO).

EIMS (*m/z*, *Intensität* %): 225 (M^+ , 25), 170 (M^+ - CH₂=CH-CH=NH, 40), 56 (CH₂=CH-CH=NH₂⁺, 100).

¹**H** NMR (300 MHz) δ (ppm) 1.09 (t, 3H, J = 7.0 Hz, CH₂CH₃), 1.44 (s, 3H, NCH₃), 2.80-3.10 (m, 3H, NHCH₂), 3.75 (q, 2H, J = 7.0 Hz, CH₂CH₃), 4.97-5.12 (m, 2H, CH=CH₂), 5.67-5.90 (m, 1H, CH=CH₂), 11.49 (s, 1H, NH).

¹³C NMR (75 MHz) δ (ppm) 12.90 (CH₂<u>C</u>H₃), 25.07 (5-CH₃), 35.87 (<u>C</u>H₂CH₃), 47.27 (NHCH₂), 62.95 (C-5), 115.87 (CH=<u>C</u>H₂), 136.78 (<u>C</u>H=CH₂), 149.62 (C-2), 171.33, 171.90 (CO).

5-Benzylamino-1-ethyl-5-methylbarbitursäure (3e)

 $C_{14}H_{17}N_3O_3$ M = 275.31 g/mol

Die entstandenen Kristalle werden aus Methanol/Ether umkristallisiert, abgesaugt und im Vakuum getrocknet. Ausbeute: 1.82 g, 66%.

Fp: 118-120°C

EA ber. (EA gef.): C 61.08 (61.29) H 6.22 (6.18) N 15.26 (15.32)

IR (**KBr**): v (cm⁻¹) 3273 (v, NH), 2980, 2794 (v, CH_{alkyl}), 1708, 1694 (v, CO).

EIMS (*m/z*, *Intensität* %): 275 (M⁺, 1), 170 (M⁺- C₇H₇N, 3), 106 (C₇H₈N⁺, 100).

¹**H** NMR δ (ppm) 1.05 (t, 3H, J = 7.1 Hz, CH₂CH₃), 1.46 (s, 3H, 5-CH₃), 3.01-3.12 (m, 1H, N<u>H</u>CH₂), 3.43-3.55 (m, 2H, NHC<u>H₂</u>), 3.69 (q, 2H, J = 7.1 Hz, CH₂CH₃), 7.18-7.29 (m, 5H, Ph), 11.47 (s, 1H, NH).

¹³C NMR δ (ppm) 13.1 (CH₂<u>C</u>H₃), 24.9 (5-CH₃), 35.9 (<u>C</u>H₂CH₃), 48.3 (NHCH₂), 63.5 (C-5), 126.8 (C-4'), 128.0 (C-2'), 128.1 (C-3'), 139.8 (C-1'), 149.7 (C-2), 171.3, 171.8 (CO).

5-Cyclohexylamino-1-ethyl-5-methylbarbitursäure (3f)

 $C_{13}H_{21}N_3O_3$ M = 267.33 g/mol

Das Rohprodukt wird in Ether aufgenommen, abgesaugt und im Vakuum getrocknet. Ausbeute: 2.59 g, 92%.

Fp: 110-113°C

EA ber. (EA gef.): $C_{13}H_{21}N_3O_3 \times 0.8 H_2O$ C 55.42 (55.25) H 8.09 (7.50) N 14.91 (15.05)

IR (**KBr**): v (cm⁻¹) 3440, 3158 (v, NH), 2933, 2857 (v, CH_{alkyl}), 1705, 1651 (v, CO).

EIMS (*m/z*, *Intensität* %): 267 (M⁺, 4), 24 (M⁺- HCNO, 52), 98 (C₆H₁₂N⁺, 100).

¹**H NMR** δ (ppm) 0.90-1.65 (m, 10H, CH₂), 1.06 (t, 3H, J = 7.1 Hz, CH₂CH₃), 1.45 (s, 3H, 5-CH₃), 2.28-2.42 (m, 1H, CH), 3.74 (q, 2H, J = 7.1 Hz, CH₂CH₃), 11.51 (s, 1H, NH).

¹³**C NMR** δ (ppm) 12.9 (5-CH₃), 23.8, 24.6, 25.4, 30.5, 34.0 (CH₂), 26.2 (CH₂CH₃), 35.9 (<u>C</u>H₂CH₃), 53.2 (CH), 61.2 (C-5), 149.8 (C-2), 172.1, 172.7 (CO).

5-Allylamino-5-methyl-1-phenylbarbitursäure (3g)

 $C_{14}H_{15}N_3O_3$ M = 273.29 g/mol

Die entstandenen Kristalle werden aus Methanol/Ether/n-Hexan umkristallisiert. Die Lösungsmittel lässt man bis auf wenige Milliliter bei Raumtemperatur abdampfen und stellt die Lösung dann kühl. Es fallen farblose Kristalle aus, die abgesaugt und im Vakuum getrocknet werden. Ausbeute: 0.66 g, 24%.

Fp: 178-179°C

EA ber. (EA gef.): C 61.53 (61.70) H 5.53 (5.66) N 15.38 (15.20)

IR (**KBr**): v (cm⁻¹) 3431, 3307 (v, NH), 3018 (v, CH_{aryl}), 2853 (v, CH_{alkyl}), 1698 (v, CO).

EIMS (*m/z*, *Intensität* %): 273 (M⁺, 3), 218 (M⁺- CH₂=CH-CH=NH, 16), 56 (CH₂=CH-CH=NH₂⁺, 100).

¹**H NMR** (**300 MHz**) δ (ppm) 1.57 (s, 3H, CH₃), 2.95 (s, br, 1H, N<u>H</u>CH₂), 3.13 (s, br, 2H, C<u>H</u>₂CH=CH₂), 5.04-5.21 (m, 2H, CH=C<u>H</u>₂), 5.77-5.83 (m,1H, C<u>H</u>=CH₂), 7.29-7.31 (m, 2H, Ph), 7.43-7.51 (m, 3H, Ph), 11.65 (s, 1H, NH).

¹³C NMR + APT (**75** MHz) δ (ppm) 24.54 (CH₃), 47.23 (NHCH₂), 63.35 (C-5), 115.83 (CH=<u>C</u>H₂), 128.37, 128.81, 128.88 (CH-Ph), 135.03 (C-1'), 136.99 (<u>C</u>H=CH₂), 149.78 (C-2), 171.34, 172.12 (CO).

5-Cyclohexylamino-5-methyl-1-phenylbarbitursäure (3h)

 $C_{17}H_{21}N_3O_3$ M = 315.37 g/mol

Das Rohprodukt wird aus Toluol umkristallisiert. Es entstehen farblose Kristalle. Ausbeute: 2.39 g, 74%.

Fp: 201-203°C

EA ber. (EA gef.): $C_{17}H_{21}N_3O_3 \times 0.4 H_2O$ C 63.30 (63.69) H 6.81 (6.70) N 13.03 (13.00)

IR (**KBr**): v (cm⁻¹) 3427, 3290 (v, NH), 2959, 2935, 2848 (v, CH_{alkyl}), 1728, 1694 (v, CO).

EIMS (*m/z, Intensität* %): 315 (M⁺, 14), 272 (M⁺- HNCO, 86), 98 (C₆H₁₂N⁺, 100).

¹H NMR (DMSO-*d*₆) δ (ppm) 0.96-1.70 (m, 10H, CH₂), 1.52 (s, 3H, CH₃), 2.43-2.50 (m, 1H, CH), 7.21-7.26 (m, 2H, Ph), 7.40-7.52 (m, 3H, Ph), 10.83 (s, br, 1H, NH).
¹³C NMR (DMSO-*d*₆) δ (ppm) 24.8, 24.8, 25.5, 34.3, 34.3 (CH₂), 25.6 (CH₃), 53.1 (CH), 62.6 (C-5), 128.6 (C-4'), 129.0, 129.1 (C-2', C-3', C-5', C-6'), 135.2 (C-1'), 150.0 (C-2), 172.2, 172.9 (CO).

5-Benzylamino-1-methyl-5-phenylbarbitursäure (3j)

 $C_{18}H_{17}N_3O_3$ M = 323.35 g/mol

Die entstandenen Kristalle werden aus Ethanol/Cyclohexan umkristallisiert, abgesaugt und im Vakuum getrocknet. Ausbeute: 1.82 g, 55%.

Fp: 147-148°C

EA ber. (EA gef.): $C_{18}H_{17}N_3O_3 \times 0.4 H_2O$ C 65.40 (65.47) H 5.43 (5.27) N 12.71 (12.64)

IR (**KBr**): v (cm⁻¹) 3324 (v, NH), 2959, 2777 (v, CH_{alkyl}), 1710, 1687 (v, CO).

EIMS (*m/z*, *Intensität* %): 323 (M⁺, 3), 218 (M⁺- C₇H₇N, 16), 106 (C₇H₈N⁺, 100).

¹**H NMR** δ (ppm) 3.15 (s, 3H, CH₃), 3.26-3.32 (m, 1H, N<u>H</u>CH₂), 3.60-3.69 (m, 2H, CH₂), 7.20-7.49 (m, 10H, Ph), 11.73 (s, 1H, NH).

¹³C NMR + APT δ (ppm) 28.1 (CH₃), 48.7 (CH₂), 71.2 (C-5), 126.5, 126.9, 128.2, 128.2, 128.9, 129.0 (CH-Ph), 138.2, 140.3 (C-Ph), 150.2 (C-2), 169.7, 171.0 (CO).

5-Cyclohexylamino-1-methyl-5-phenylbarbitursäure (3k)

 $C_{17}H_{21}N_3O_3$ M = 315.37 g/mol

Das entstandene Öl werden aus Methanol/Ether umkristallisiert, abgesaugt und im Vakuum getrocknet. Ausbeute: 0.85 g, 26%.

Fp: 157-159°C

EA ber. (EA gef.): $C_{17}H_{21}N_3O_3 \times 0.3 H_2O$ C 63.65 (63.52) H 6.79 (6.59) N 13.10 (13.29)

IR (**KBr**): v (cm⁻¹) 3352, 3211 (v, NH), 2930, 2856 (v, CH_{alkyl}), 1720, 1689 (v, CO).

EIMS (*m/z, Intensität %*): 315 (M⁺, 24), 272 (M⁺- HCNO, 100), 98 (C₆H₁₂N⁺, 100).

¹**H NMR** (**DMSO**-*d*₆) δ (ppm) 0.96-1.80 (m, 10H, CH₂), 2.57-2.80 (m, 1H, CH), 3.17 (s, 3H, CH₃), 3.18-3.35 (m, 1H, N<u>H</u>CH), 11.50 (s, br, 1H, NH).

¹³C NMR (DMSO-*d*₆) δ (ppm) 27.94 (CH₃), 24.79, 25.34, 34.25, 34.29 (CH₂), 53.30 (CH), 69.96 (C-5), 126.23, 128.56, 128. 68 (CH-Ph), 139.07 (C-1'), 150.02 (C-2), 170.16, 171.66 (CO).

5-Benzylamino-1-ethyl-5-phenylbarbitursäure (3l)

 $C_{19}H_{19}N_3O_3$ M = 337.19 g/mol

Das resultierende Öl wird aus Ether/Petrolether umkristallisiert, die gebildeten Kristalle abgesaugt und im Vakuum getrocknet. Ausbeute: 1.73 g, 51%.

Fp: 133-139°C

EA ber. (EA gef.): $C_{19}H_{19}N_3O_3 \times 0.1 H_2O$ C 67.28 (67.20) H 5.71 (6.19) N 12.39 (12.60)

IR (**KBr**): v (cm⁻¹) 3424, 3309, 3256 , 3111 (v, NH), 2982 (v, CH_{alkyl}), 1753, 1690 (v, CO).

EIMS (*m/z*, *Intensität* %): 337 (M^+ , 1), 232 ($M^+ - C_7H_7N$, 6), 106 ($C_6H_5CH=NH_2^+$, 100).

¹**H NMR** δ (ppm) 1.08 (t, 3H, J = 6.9 Hz, CH₃), 3.28-3.35 (m, 1H, N<u>H</u>CH₂), 3.59-3.85 (m, 4H, CH₂), 7.20-7.47 (m, 10H, Ph), 11.78 (s, 1H, NH).

¹³C NMR + APT δ (ppm) 13.1 (CH₃), 36.5 (<u>C</u>H₂CH₃), 48.6 (NHCH₂), 71.1 (C-5), 126.4, 127.0, 128.2, 128.3, 129.0, 129.1 (CH-Ph), 138.0, 140.2 (C-Ph), 149.7 (C-2), 169.6, 170.5 (CO).

5-Benzylamino-1,5-diphenylbarbitursäure (3m)

 $C_{23}H_{19}N_3O_3$ M = 385.42 g/mol

Der gebildete Schaum wird aus Methanol umkristallisiert. Ausbeute: 2.58 g, 67%.

Fp: 205-210°C

EA ber. (EA gef.): C 71.67 (71.97) H 4.97 (5.04) N 10.90 (10.94)

IR (KBr): v (cm⁻¹) 3323, 3203 (v, NH), 3089 (v, CH_{aryl}), 2856 (v, CH_{alkyl}), 1760, 1686 (v, CO).

EIMS (*m/z*, *Intensität* %): 385 (M⁺, 4), 280 (M⁺-C₇H₇N, 11), 106 (C₇H₈N⁺, 100).

¹**H** NMR δ (ppm) 3.37-3.40 (t, 1H, J = 7.4 Hz, N<u>H</u>CH₂), 3.69-3.79 (m, 2H, CH₂), 7.22-7.61 (m, 15H, Ph), 11.95 (s, 1H, NH).

¹³**C NMR** δ (ppm) 48.7 (CH₂), 71.7 (C-5), 126.6, 126.9, 128.2, 128.8, 128.9, 129.1, 129.2 (CH-Ph), 134.9, 137.8, 140.4 (C-Ph), 149.8 (C-2), 169.6, 170.6 (CO).

1,5-Diethyl-5-pyrrolidin-1-ylbarbitursäure (3n)

 $C_{12}H_{19}N_3O_3$ M = 253.34 g/mol

Zu 0.1 mol 5-Brom-1,5-diethylbarbitursäure (**2e**, 26.31 g) werden 1.5 mol Wasser (27 g, 27 ml) und 0.4 mol Pyrrolidin (28.45 g, 33.39 ml) gegeben und die Lösung unter Rühren 3 Stunden auf 50°C erhitzt. Nach dem Abkühlen wird mit verdünnter Essigsäure pH 7 eingestellt und der entstandene klebrige Feststoff aus MeOH/Wasser umkristallisiert. Ausbeute: 0.25 g, 1%.

Fp (**Lit.-Fp**): 135-140°C (134–136°C)⁶⁹

EA ber. (EA gef.): C 56.90 (56.92) H 7.56 (7.64) N 16.59 (16.66)

FT-IR (**KBr**): v (cm⁻¹) 2980, 2882, 2825 (v, CH_{alkyl}), 1716 (v, CO).

EIMS (*m/z*, *Intensität* %): 253 (M⁺, 4), 224 (M⁺- CH₂=CH₂, 28), 70 (C₄H₈N⁺, 100).

¹**H NMR** (200 MHz) δ (ppm) 0.69 (t, 3H, J = 7.5 Hz, CH₂CH₃), 1.06 (t, 3H, J = 7.1 Hz, NCH₂CH₃), 1.58-1.64 (m, 4H, CH₂CH₂), 1.99 (q, 2H, J = 7.4 Hz, CH₂CH₃), 2.55-2.80 (m, 4H, CH₂NCH₂), 3.76 (q, 2H, J = 7.1 Hz, NCH₂CH₃). Ein NH Signal fehlt. ¹³C NMR + APT (75 MHz) δ (ppm) 9.26 (CH₂CH₃), 13.97 (NCH₂CH₃), 23.72 (CH₂NCH₂), 29.17 (CH₂CH₃), 36.59 (NCH₂CH₃), 47.37 (CH₂CH₂), 69.46 (C-5), 150.69 (C-2), 170.71, 171.00 (CO).

5-Benzylamino-1,5-diethylbarbitursäure (30)

 $C_{15}H_{19}N_3O_3$ M = 289.34 g/mol

Zu 8 mmol 5-Brom-1,5-diethylbarbitursäure (**2e**, 1.47 g) werden 120 mmol Wasser (2.2. g, 2.2. ml) und 32 mmol Benzylamin (3.43 g, 3.50 ml) gegeben. Die Lösung wird unter Rühren 3 Stunden bei 50°C gerührt. Nach dem Abkühlen wird mit verdünnter Essigsäure pH 7 eingestellt. Die wässrige Phase wird mit 4×25 ml Essigester ausgeschüttelt, die organischen Phasen vereinigt, über Natriumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das verbleibende Öl wird mit einem Gemisch aus Petrolether und Ethylacetat = 4:1 versetzt und über Nacht bei Raumtemperatur stehengelassen. Es bildete sich ein Niederschlag, der abgesaugt und getrocknet wurde. Ausbeute: 0.26 g, 11%.

Fp: 90-98°C

EA ber. (EA gef.): $C_{15}H_{19}N_3O_3 \times 0.4 H_2O$ C 60.76 (61.02) H 6.73 (6.54) N 14.17 (13.74)

FT-IR (**KBr**): v (cm⁻¹) 3188 (v, NH), 2978, 2866, 2817 (v, CH_{alkyl}), 1704 (v, CO).

EIMS (*m/z, Intensität* %): 288 (M⁺-H, 1), 106 (C₇H₇N⁺, 100).

¹**H** NMR δ (ppm) 0.76 (t, 3H, J = 7.6 Hz, CH₂CH₃), 1.06 (t, 3H, J = 7.3 Hz, NCH₂CH₃), 1.85-1.91 (m, 2H, CH₂CH₃), 2.95-3.25 (m, 1H, NHCH₂Ph), 3.45–3.54 (m, 2H, NHCH₂Ph), 3.65-3.77 (m, 2H, NCH₂CH₃), 10.73 (s, br, 1H, NH).

¹³C NMR δ (ppm) 8.02 (CH₂<u>C</u>H₃), 13.97 (NCH₂<u>C</u>H₃), 33.19 (<u>C</u>H₂CH₃), 36.04 (N<u>C</u>H₂CH₃), 48.60 (<u>C</u>H₂Ph), 68.26 (C-5), 126.97 (C-4'), 128.13, 128.31 (C-2', C-3', C-5', C-6'), 139.86 (C-1'), 149.74 (C-2), 170.93, 171.55 (CO).

1-(2-Cyclohexylamino-propionyl)-3-phenylharnstoff (4)

 $C_{16}H_{23}N_3O_2$ M = 289.37 g/mol

Zu 12.5 mmol 5-Brom-5-methyl-1-phenylbarbitursäure (**2c**, 3.71 g) werden 187.5 mmol Wasser (3.38 g, 3.38 ml) und 50 mmol Cyclohexylamin (4.96 g, 5.69 ml) gegeben. Die Lösung wird unter Rühren 3 Stunden bei 50°C gerührt. Es bildete sich ein Niederschlag, der abgesaugt und gut getrocknet wurde. Ausbeute: 0.94 g, 26%.

Fp: 76-78°C

EIMS (*m/z*, *Intensität* %): 289 (M⁺, 5), 126 (C₆H₁₁NHCHCH₃⁺, 100).

¹**H** NMR (200 MHz) δ (ppm) 0.64-1.32 (m, 6H, CH₂), 1.18 (d, 3H, J = 6.77 Hz, CH₃), 1.32-2.48 (m, 6H, (CH₂)₂CHNH), 3.44 (q, 1H, J = 6.95 Hz, C<u>H</u>CH₃), 7.00-7.20 (t, 1H, J = 7.50 Hz, 4'-H), 7.20-7.44 (t, 2H, J = 7.79 Hz, 3'-H, 5'-H), 7.44-7.68 (d, 2H, J = 7.69 Hz, 2'-H, 3'-H), 10.49 (s, 1H, CONHCO). Ein NH-Signal fehlt.

¹³C NMR (50 MHz) + APT δ (ppm) 20.08 (CH₃), 25.01, 25.20, 26.54, 33.25, 34.44 (CH₂), 55.37, 55.62 ((CH₂)₂<u>C</u>H, <u>C</u>HCH₃), 120.59, 129.93 (C-2', C-3', C-5', C-6'), 124.67 (C-4'), 138.48 (C-1'), 151.41 (CHCO), 179.87 (NHCONH).

5-Carbamoylhydantoine (5a-h)

Allgemeine Synthesevorschriften für die Umlagerung:

Methode A: Zu einer Lösung von 8 mmol Natrium (0.18 g) in 27 ml wasserfreiem Ethanol werden 2 mmol Aminobarbitursäure **3** gegeben. Die Mischung wird 3 Stunden unter Rückfluss und einer Argonatmosphäre erhitzt. Das Lösungsmittel wird anschließend im Vakuum entfernt, der Rückstand in wenig Wasser aufgenommen, filtriert und das Filtrat mit kalter Salzsäure (1N) angesäuert. Der entstandene Niederschlag wird abgesaugt und getrocknet. Die Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben und erfolgte entweder durch Umkristallisation oder durch Säulenchromatographie.

Methode B: Zu einer Lösung von 8 mmol Natrium (0.18 g) in 10 ml wasserfreiem Ethanol werden 2 mmol Aminobarbitursäure **3** gegeben. Die Lösung wird in einer Laborautoklaven 5 Stunden bei 120°C unter Argon erhitzt. Das Lösungsmittel wird anschließend im Vakuum entfernt, der Rückstand in wenig Wasser aufgenommen, filtriert und das Filtrat mit kalter Salzsäure (1N) angesäuert. Der entstandene Niederschlag wird abgesaugt und getrocknet. Die Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben und erfolgte entweder durch Umkristallisation oder durch Säulenchromatographie.

Methode C: Zu einer Lösung von 8 mmol Natriumhydrid (95%, Pulver, 0.02 g) in 26.7 ml wasserfreiem DMF werden 2 mmol Aminobarbitursäure **3** gegeben. Die Lösung wird 3 Stunden bei 78°C unter Argon erhitzt. Die Lösung wird anschließend in 100 ml Salzsäure (1N) gegossen und gekühlt. Die Wasserphase wird mit 4×25 ml Ethylacetat extrahiert. Man vereinigt die organischen Phasen, trocknet sie (Na₂SO₄) und entfernt das Lösungsmittel im Vakuum. Das erhaltene ölige Rohprodukt wird in Diethylether gelöst, für mindestens 5 Tage kühlt gestellt und die gebildeten reinen Kristalle abgesaugt und getrocknet. Der Rückstand in wenig Wasser aufgenommen, filtriert und das Filtrat mit kalter Salzsäure (1N) angesäuert. Das Produkt wird abgesaugt, mit Wasser gewaschen und unter Vakuum getrocknet.

Methode D: Zu einer Lösung von 8 mmol Natriumhydrid (95%, Pulver, 0.02 g) in 10 ml wasserfreiem DMF werden 2 mmol Aminobarbitursäure **3** gegeben. Die Lösung wird 5 Stunden bei 78°C unter Argon erhitzt. Die Lösung wird anschließend in 100 ml Salzsäure (1N) gegossen und gekühlt. Die Wasserphase wird mit 4×25 ml Ethylacetat extrahiert. Man vereinigt die organischen Phasen, trocknet sie (Na₂SO₄) und entfernt

das Lösungsmittel im Vakuum. Das erhaltene ölige Rohprodukt wird in Diethylether gelöst, für mindestens 5 Tage kühlt gestellt und die gebildeten reinen Kristalle abgesaugt und getrocknet. entfernt, der Rückstand in wenig Wasser aufgenommen, filtriert und das Filtrat mit kalter Salzsäure (1N) angesäuert. Der entstandene Niederschlag wird abgesaugt und getrocknet.

1-Benzyl-5-methyl-5-methylcarbamoylhydantoin (5a)

 $C_{13}H_{15}N_3O_3$ M = 261.28 g/mol

Das nach Methode B gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 0.22 g, 43%.

Das nach Methode D gewonnene Rohprodukt wird mit MeOH/Ether verrieben und die entstehenden Kristalle abgesaugt und getrocknet. Ausbeute: 0.11 g, 21%.

Fp: 177-182°C

EA ber. (EA gef.): C 59.76 (59.85) H 5.76 (5.76) N 16.08 (15.85)

IR (**KBr**): v (cm⁻¹) 3286 (v, NH), 1709, 1669 (v, CO).

EIMS (*m/z Intensität* %): 261(M⁺, 5), 204 (M⁺-CH₃NCO, 35), 113 (M⁺-CH₃NCO-C₇H₇, 8), 91 (C₇H₇⁺, 100).

¹**H** NMR δ (ppm) 1.36 (s, 3H, 5-CH₃), 2.49 (d, 3H, J = 4.6 Hz, NHC<u>H₃</u>), 4.14 (d, 1H, J = 15.9 Hz,CH₂), 4.60 (d, 1H, J = 15.9 Hz, CH₂), 7.23-7.34 (m, 5H, Ph), 7.99 (q, 1H, J = 4.6 Hz, N<u>H</u>CH₃), 11.16 (s, 1H, NH).

¹³**C NMR** δ (ppm) 18.8 (5-CH₃), 26.7 (NHCH₃), 44.1 (CH₂), 69.9 (C-5), 127.5 (C-4'), 128.2, 128.6 (C-2', C-3'), 137.9 (C-1'), 156.9 (C-2), 166.1 (<u>C</u>ONHCH₃), 173.1 (C-4).

1-Cyclohexyl-5-methyl-5-methylcarbamoylhydantoin (5b)

$$C_{12}H_{19}N_3O_3$$
 M = 253.30 g/mol

Das nach Methode B gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 0.29 g, 56%.

Fp: 240-242°C

EA ber. (EA gef.): $C_{12}H_{19}N_3O_3 \times 0.5 H_2O$ C 54.95 (55.04) H 7.69 (7.32) N 16.02 (15.72)

IR (**KBr**): v (cm⁻¹) 3410 (v, NH), 1719, 1702, 1681 (v, CO).

EIMS (*m/z, Intensität %*): 253 (M⁺, 4), 196 (M⁺-CH₃NCO, 100), 114 (M⁺-CH₃NCO-C₆H₁₀, 88).

¹**H NMR** δ (ppm) 1.00-1.77 (m, 10H, CH₂), 1.53 (s, 3H, 5-CH₃), 2.58 (d, 3H, J = 4.6 Hz, NHC<u>H₃</u>), 2.70-3.05 (m, 1H, CH), 8.01 (q, 1H, J = 4.6 Hz, N<u>H</u>CH₃), 10.87 (s, 1H, NH).

¹³**C NMR** δ (ppm) 19.0 (5-CH₃), 25.1, 25.7, 25.8, 30.2, 30.4 (CH₂), 26.6 (NHCH₃), 53.4 (CH), 69.7 (C-5), 155.2 (C-2), 166.7 (CONHCH₃), 173.0 (C-4).

1-Benzyl-5-ethylcarbamoyl-5-methylhydantoin (5c)

 $C_{14}H_{17}N_3O_3$ M = 275.31 g/mol

Das nach Methode B gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 0.47 g, 81%.

Fp: 154-159°C

EA ber. (EA gef.): $C_{14}H_{17}N_3O_3 \times 0.8 H_2O$ C 58.04 (57.93) H 6.47 (5.98) N 14.50 (14.16)

IR (**KBr**): v (cm⁻¹) 1702, 1663 (v, CO).

EIMS (*m/z, Intensität %*): 275 (M⁺, 2), 204 (M⁺- C₂H₅NCO, 69), 113 (M⁺- C₂H₅NCO - C₇H₇, 18), 91 (C₇H₇⁺, 100).

¹**H NMR** δ (ppm) 0.90 (t, 3H, J = 7.3 Hz, CH₂CH₃), 1.33 (s, 3H, 5-CH₃), 2.94-3.00 (m, 2H, CH₂CH₃), 4.10 (d, 1H, J = 16.1 Hz, CH₂Ph), 4.59 (d, 1H, J = 16.1 Hz, CH₂Ph), 7.21-7.32 (m, 5H, Ph), 8.01-8.04 (t, 1H, J = 5.5 Hz, NHCH₂), 11.11 (s, br, 1H, NH). ¹³C NMR δ (ppm) 14.4 (CH₂CH₃), 18.7 (5-CH₃), 34.4 (CH₂CH₃), 43.9 (CH₂Ph), 69.7 (C-5), 127.3 (C-4'), 128.0, 128.4 (C-2', C-3', C-5', C-6'), 137.8 (C-1'), 157.0 (C-2), 165.2 (CONHCH₂), 173.1 (C-4).
1-Cyclohexyl-5-ethylcarbamoyl-5-methylhydantoin (5d)

 $C_{13}H_{21}N_3O_3$ M = 267.32 g/mol

Das nach Methode B gewonnene Rohprodukt wird getrocknet, in Ether aufgenommen und abgesaugt. Ausbeute: 0.20 g, 36%.

Fp: 168-175°C

EA ber. (EA gef.): $C_{13}H_{21}N_3O_3 \times 0.3 H_2O$ C 57.25 (57.60) H 7.98 (8.40) N 15.41 (14.80)

IR (**KBr**): v (cm⁻¹) 3414 (v, NH), 2941 (v, CH_{alkyl}), 1768, 1706 (v, CO).

EIMS (*m/z*, *Intensität* %): 267 (M⁺, 4), 196 (M⁺ - C₂H₅NCO, 83), 114 (M⁺ - C₂H₅NCO - C₆H₁₀, 100).

¹**H NMR** δ (ppm) 1.01 (t, 3H, J = 7.1 Hz, CH₂CH₃), 1.00-2.05 (m, 10H, CH₂), 1.53 (s, 3H, 5-CH₃), 2.95-3.20 (m, 2H, CH₂CH₃, CH), 8.07-8.12 (m, 1H, NHCH₂), 10.85 (s, 1H, NH).

¹³**C NMR** + **APT** δ (ppm) 14.36 (CH₂<u>C</u>H₃), 18.86 (5-CH₃), 24.94, 25.47, 25.63, 30.15, 30.29 (CH₂), 34.21 (<u>C</u>H₂CH₃), 53.29 (CH), 69.55 (C-5), 155.01 (C-2), 165.70 (<u>C</u>ONHCH₂), 172.81 (C-4). 1-Cyclohexyl-5-methyl-5-phenylcarbamoylhydantoin (5e)

 $C_{17}H_{21}N_3O_3$ M = 315.37 g/mol

Das nach Methode A gewonnene Rohprodukt wird aus Ethanol/Cyclohexan umkristallisiert. Ausbeute: 0.23 g, 35%.

Das nach Methode C gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 0.36 g, 56%.

Fp: 133-137°C

EA ber. (EA gef.): $C_{17}H_{21}N_3O_3 \times 0.5 H_2O$ C 62.95 (62.72) H 6.84 (6.81) N 12.95 (12.85)

IR (**KBr**): v (cm⁻¹) 1769, 1712, 1690 (v, CO).

EIMS (*m/z*, *Intensität* %): 315 (M^+ , 3), 196 (M^+ - C_6H_5NCO , 100), 114 (M^+ - C_6H_5NCO - C_6H_{10} , 83).

¹**H NMR** δ (ppm) 1.01-1.99 (m, 10H, CH₂), 1.64 (s, 3H, CH₃), 3.10-3.17 (m, 1H, CH), 7.07-7.12 (m, 1H, 4'-H), 7.29-7.35 (m, 2H, 3'-H, 5'-H), 7.56-7.61 (m, 2H, 2'-H, 6'-H), 9.81 (s, 1H, N<u>H</u>Ph), 10.98 (s, 1H, NH).

¹³C NMR δ (ppm) 19.7 (CH₃), 25.1, 26.6, 25.8, 30.1, 30.7 (CH₂), 53.6 (CH), 70.5 (C-5), 121.1, 124.4 (C-2', C-3'), 128.7 (C-4'), 138.2 (C-1'), 155.3 (C-2), 165.1 (<u>C</u>ONHPh), 172.6 (C-4).

1-Benzyl-5-methylcarbamoyl-5-phenylhydantoin (5f)

 $C_{18}H_{17}N_3O_3$ M = 323.35 g/mol

Das nach Methode B gewonnene Rohprodukt wird aus Methanol/Ether umkristallisiert. Ausbeute: 0.25 g, 38%. Für analytische Zwecke kristallisiert man zusätzlich aus Ethanol um.

Fp: 182-189°C

EA ber. (EA gef.): C 66.86 (66.51) H 5.30 (5.30) N 13.00 (12.76)

IR (**KBr**): v (cm⁻¹) 3348 (v, NH), 1769, 1720, 1702 (v, CO).

EIMS (*m/z*, *Intensität* %): 323 (M⁺, 4), 266 (M⁺ - CH₃NCO, 59), 175 (M⁺ - CH₃NCO - C₇H₇, 19), 91 (C₇H₇⁺, 100).

¹**H NMR** δ (ppm) 2.45 (d, 3H, J = 4.6 Hz, CH₃), 4.45 (d, 1H, J = 16.3 Hz, CH₂), 4.64 (d, 1H, J = 16.3 Hz, CH₂), 6.97-7.38 (m, 10H, Ph), 7.77 (q, 1H, J = 4.6 Hz, N<u>H</u>CH₃), 11.38 (s, 1H, NH).

¹³C NMR δ (ppm) 26.5 (CH₃), 44.9 (CH₂), 76.1 (C-5), 126.7, 127.3, 127.9, 128.0, 128.9, 129.0 (CH-Ph), 134.2, 137.4 (C-Ph), 156.5 (C-2), 165.5 (<u>C</u>ONHCH₃), 171.5 (C-4).

1-Benzyl-5-ethylcarbamoyl-5-phenylhydantoin (5g)

 $C_{19}H_{19}N_3O_3$ M = 337.19 g/mol

Das nach Methode B gewonnene Rohprodukt wird aus Ethylacetat/Petrolether umkristallisiert. Ausbeute: 0.19 g, 28%.

Fp: 132-133°C

EA ber. (EA gef.): $C_{19}H_{19}N_3O_3 \times 0.5 H_2O$ C 65.88 (66.19) H 5.82 (5.60) N 12.13 (12.00)

IR (**KBr**): v (cm⁻¹) 1775, 1712, 1678 (v, CO).

EIMS (*m/z, Intensität* %): 337 (M⁺, 5), 266 (M⁺ - C₂H₅NCO, 79), 175 (M⁺ - C₂H₅NCO – C₇H₇, 24), 91 (C₇H₇⁺, 100).

¹**H NMR** δ (ppm) 0.87 (t, 3H, J = 7.3 Hz, CH₃), 2.90-3.03 (m, 2H, CH₂CH₃), 4.48 (d, 1H, J = 16.2 Hz, CH₂Ph), 4.61 (d, 1H, J = 16.2 Hz, CH₂Ph), 6.97-7.39 (m, 10H, Ph), 7.80 (t, 1H, J = 5.4 Hz, NHCH₂), 11.33 (s, br, 1H, NH).

¹³C NMR δ (ppm) 14.1 (CH₃), 34.5 (<u>C</u>H₂CH₃), 44.9 (<u>C</u>H₂Ph), 76.1 (C-5), 126.7, 127.2, 127.9, 128.0, 128.9, 129.0 (CH-Ph), 134.4, 137.5 (C-Ph), 156.6 (C-2), 164.7 (<u>C</u>ONHCH₂), 171.6 (C-4).

1-Benzyl-5-phenyl-5-phenylcarbamoylhydantoin (5h)

 $C_{23}H_{19}N_3O_3$ M = 385.42 g/mol

Das nach Methode A gewonnene Rohprodukt wird aus Ethanol/Diethylether/ Cyclohexan umkristallisiert. Ausbeute: 0.69 g, 85%.

Fp: 185-195°C

EA ber. (EA gef.): $C_{23}H_{19}N_3O_3 \times 1.1 H_2O$ C 68.17 (67.91) H 5.27 (5.01) N 10.37 (9.99)

IR (**KBr**): v (cm⁻¹) 1670 (v, CO).

EIMS (*m/z, Intensität %*): 385 (M⁺, 2), 266 (M⁺- C₆H₅NCO, 97), 175 (M⁺- C₆H₅NCO - C₇H₇, 17), 91 (C₇H₇⁺, 100). HRMS [M⁺ ber.(gef.)]: 385.1426 (385.1431) MS (FAB): 386 (MH⁺).

¹H NMR δ (ppm) 4.39 (d, 1H, J = 16.0 Hz, CH₂), 4.56 (d, 1H, J = 16.0 Hz, CH₂), 7.02-7.46 (m, 15H, Ph), 10.21 (s, 1H, NH). Ein NH Signal erscheint nicht.
¹³C NMR δ (ppm) 45.3 (CH₂), 76.3 (C-5), 120.3, 124.2, 125.1, 127.4, 127.6, 127.6, 128.3, 128.8, 128.8 (CH-Ph), 136.9, 137.8, 139.3 (C-Ph), 165.6 (CONHPh). Zwei

Carbonyl-Signale erscheinen nicht.

Methylierte 5-Carbamoylhydantoine (6a-d)

Allgemeine Synthesevorschrift:

Zu einer Lösung von 1 mmol des entsprechenden Hydantoins **5** in 45 ml Aceton 90% werden 2 mmol Natriumcarbonat (0.21 g) und 4 mmol Methyliodid (0.57 g, 0.25 ml) zugegeben. Das Gemisch wird 90 Minuten unter Rückfluss erhitzt und filtriert. Das Filtrat wird zur Trockne eingeengt. Die weitere Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben.

1-Benzyl-3,5-dimethyl-5-ethylcarbamoylhydantoin (6a)

 $C_{15}H_{18}N_3O_3$ M = 289.33 g/mol

Das Rohprodukt wird mittels Säulenchromatographie (Eluent: Ethylacetat/Petrolether = 2:1) gereinigt und es entsteht ein farbloses Öl. Ausbeute: 60.7 mg, 21%.

EA ber. (EA gef.): C 62.27 (61.98) H 6.62 (6.72) N 14.52 (14.16)

EIMS (*m/z, Intensität %*): 289 (M⁺, 1), 218 (M⁺- C₂H₅NCO, 100), 127 (M⁺- C₂H₅NCO - C₇H₇, 75), 91 (C₇H₇⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 289.1426 (289.1430).

¹**H** NMR δ (ppm) 0.88 (t, 3H, J = 7.2 Hz, CH₂CH₃), 1.37 (s, 3H, 5-CH₃), 2.91 (s, 3H, 3-CH₃), 2.92-2.98 (m, 2H, CH₂CH₃), 4.22 (d, 1H, J = 16.1 Hz, CH₂Ph), 4.59 (d, 1H, J = 16.1 Hz, CH₂Ph), 7.21-7.31 (m, 5H, Ph), 7.98 (t, 1H, J = 5.4 Hz, NH).

¹³C NMR δ (ppm) 14.3 (CH₂CH₃), 18.5 (5-CH₃), 25.2 (3-CH₃), 34.4 (CH₂CH₃), 44.2 (CH₂Ph), 68.6 (C-5), 127.4, 128.0, 128.3 (CH-Ph), 137.4 (C-Ph), 156.5 (C-2), 164.9 (CONH), 171.7 (C-4).

1-Cyclohexyl-3,5-dimethyl-5-phenylcarbamoylhydantoin (6b)

$$C_{18}H_{23}N_3O_3$$
 M = 329.40 g/mol

Die Umkristallisation des Rohproduktes aus Ethanol liefert farblose Kristalle. Ausbeute: 0.18 g, 55%.

Fp: 140-141°C

EA ber. (EA gef.): $C_{18}H_{23}N_3O_3 \times 0.3 H_2O$ C 64.57 (64.37) H 7.11 (7.04) N 12.55 (12.43)

FT-IR (**KBr**): v (cm⁻¹) 3298 (v, NH), 3039, 3021 (v, CH_{aryl}), 2938, 2857 (v, CH_{alkyl}), 1763, 1694 (v, CO).

EIMS (*m/z, Intensität %*): 329 (M⁺, 4), 210 (M⁺- C₆H₅NCO, 100), 128 (M⁺- C₆H₅NCO - C₆H₁₀, 83).

¹**H NMR** δ (ppm) 1.03-2.03 (m, 10H, CH₂), 1.64 (s, 3H, 5-CH₃), 2.88 (s, 3H, 3-CH₃), 3.13-3.20 (m, 1H, CH), 7.08-7.13 (m, 1H, Ph), 7.29-7.35 (m, 2H, Ph), 7.51-7.57 (m, 2H, Ph), 9.76 (s, 1H, NH).

¹³**C NMR** δ (ppm) 19.5 (5-CH₃), 25.0 (3-CH₃), 25.1, 25.5, 25.6, 30.3, 30.7 (CH₂), 53.9 (CH), 69.4 (C-5), 121.2, 128.8 (C-2', C-3, C-5', C-6'), 121.5 (C-4'), 138.1 (C-1'), 154.9 (C-2), 164.8 (CONH), 171.3 (C-4).

1-Benzyl-3-methyl-5-methylcarbamoyl-5-phenylhydantoin (6c)

$C_{19}H_{19}N_3O_3$ M = 337.37 g/mol

a) Bildung von 6c aus 5f

Entsprechend der allgemeinen Synthesevorschrift wird **6c** aus **5f** hergestellt. Die Umkristallisation des Rohproduktes aus Ethanol liefert farblose Kristalle. Ausbeute: 0.12 g, 35%.

b) Bildung von 6c aus 9

Zu einer Lösung von 1 mmol 5-Benzylamino-1,3-dimethyl-5-phenylbarbitursäure (9, 0.34 g) in 12 ml absolutem Ethanol wird 1 ml einer 0.2 M Stammlösung von Natriumethanolat in absolutem Ethanol zugesetzt. Das Gemisch wird in einem Autoklaven 120 Stunden bei 120°C unter einer Argonatmosphäre erhitzt. Nachdem die Lösung einige Tagen gekühlt wurde, werden die entstandenen farblosen Kristalle abgesaugt und getrocknet. Ausbeute: 0.19 g, 55%.

c) Bildung von 6c aus 3j

7 mmol 5-Benzylamino-1-methyl-5-phenylbarbitursäure (**3j**, 2.26 g) werden in einer Lösung von 28 mmol NaH (0.70 g, Pulver, 95%) in waserfreiem DMF gelöst und unter Argonatmosphäre 5 Stunden bei 78°C erhitzt. Nach dem Abkühlen werden 28 mmol Methyliodid (3.97 g, 1.74 ml) zugegeben nd das Gemisch weitere 90 min bei 78°C erhitzt. Die Lösung wird filtriert und anschließend 75 ml Wasser zugegeben und mit 3×25 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, man filtriert und engt die Lösung im Vakuum zur Trockne ein. Der resultierende Rückstand wird aus 10 ml EtOH umkristallisiert und kühl gestellt. Man erhält wenige farblose Kristalle, die abgesaugt und getrocknet werden. Ausbeute: 24.2 mg, 1%.

Die Produkte von a), b) und c) sind identisch.

Fp: 148-150°C

EA ber. (EA gef.): $C_{19}H_{19}N_3O_3 \times 0.5 H_2O$ C 65.88 (65.95) H 5.82 (5.58) N 12.13 (11.98)

IR (KBr): v (cm⁻¹) 3367 (v, NH), 3031, 3057 (v, CH_{aryl}), 2940 (v, CH_{alkyl}), 1767, 1684 (v, CO).

EIMS (*m/z, Intensität %*): 337 (M⁺, 1), 280 (M⁺ - CH₃NCO, 100), 189 (M⁺ - CH₃NCO - C₇H₇, 25), 91 (C₇H₇⁺, 35).

¹**H** NMR δ (ppm) 2.45 (d, 3H, J = 4.6 Hz, NHC<u>H</u>₃), 2.98 (s, 3H, 3-CH₃), 4.49 (d, 1H, J = 16.1 Hz, CH₂), 4.72 (d, 1H, J = 16.1 Hz, CH₂), 6.99-7.40 (m, 10H, Ph), 7.88 (q, 1H, J = 4.6 Hz, NH).

¹³C NMR δ (ppm) 25.6 (3-CH₃), 26.7 (NHCH₃), 45.4 (CH₂), 75.3 (C-5), 127.1, 127.7, 128.1, 128.4, 129.1, 129.3 (CH-Ph), 134.2, 137.3 (C-Ph), 156.4 (C-2), 165.4 (CONH), 170.5 (C-4).

1-Benzyl-3-methyl-5-phenyl-5-phenylcarbamoylhydantoin (6d)

 $C_{24}H_{22}N_3O_3$ M = 399.44 g/mol

Umkristallisation des Rohproduktes aus Ethanol liefert farblose Kristalle. Ausbeute: 0.23 g, 56%.

Fp: 64-66°C

EA ber. (EA gef.): $C_{24}H_{21}N_3O_3 \times 0.5 H_2O$ C 70.57 (70.91) H 5.43 (5.24) N 10.28 (10.37)

IR (**KBr**): v (cm⁻¹) 3331 (v, NH), 3060, 3031 (v, CH_{aryl}), 1772, 1717 (v, CO).

EIMS (*m*/*z*, **Intensität %):** 399 (M⁺, 4), 280 (M⁺- C₆H₅NCO, 92), 189 (M⁺- C₆H₅NCO - C₇H₇, 39), 91 (C₇H₇⁺, 100).

¹**H NMR** δ (ppm) 3.02 (s, 3H, CH₃), 4.59 (d, 1H, J = 16.2 Hz, CH₂), 4.77 (d, 1H, J = 16.2 Hz, CH₂), 6.95-7.12 (m, 6H, Ph), 7.22-7.45 (m, 9H, Ph), 9.65 (s, 1H, NH). ¹³**C NMR** δ (ppm) 25.4 (CH₃), 45.1 (CH₂), 75.7 (C-5), 121.3, 124.6, 126.7, 127.3, 127.8, 128.2, 128.4, 128.8, 129.1 (CH-Ph), 133.7, 136.9, 137.4 (C-Ph), 156.0 (C-2), 163.4 (CONH), 169.9 (C-4).

Trisubstituierte Barbitursäuren (7a-b)

Allgemeine Synthesevorschrift:

250 mmol Natrium (5.75 g) werden in 100 ml absolutem Ethanol gelöst und je 100 mmol Malonsäurediethylester und *N*,*N*'-Dimethylharnstoff (8.8 g) zugegeben. Die Mischung wird 24 Stunden unter Rückfluss gekocht. Nach Beendigung der Reaktion werden 600 g Eis zugegeben und die Lösung mit 40 ml konz. Salzsäure angesäuert. Die weitere Aufarbeitung und Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben.

1,5-Dimethyl-5-phenylbarbitursäure (7a)

 $C_{12}H_{12}N_2O_3$ M = 232.24 g/mol

Die saure Lösung wird dann mit 4×50 ml Dichlormethan ausgeschüttelt, die organischen Phasen vereinigt, über wasserfreiem Natriumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Bei mehrtägiger Kühlung kristallisiert das Öl aus. Die Kristalle werden mit Ether aufgenommen, abgesaugt, noch mehrmals mit Ether gewaschen und getrocknet. Ausbeute: 9.8 g, 42%.

Fp (**Lit.-Fp**): 140-141°C (139-140°C)²⁴¹

EA ber. (EA gef.): C 62.06 (61.91) H 5.21 (5.14) N 12.06 (11.90)

FT-IR (**KBr**): v (cm⁻¹) 1702, 1684 (v, CO).

EIMS (*m/z*, *Intensität* %): 232 (M⁺, 41), 118 (M⁺-C₄H₆N₂O₂,100). **HRMS** [M⁺ ber. (gef.)]: 232.0848 (232.0858).

¹H NMR δ (ppm) 3.17 (s, 6H, CH₃), 5.00 (s, 1H, CH), 7.23-7.39 (m, 5H, Ph).
¹³C NMR δ (ppm) 28.46 (CH₃), 55.39 (C-5), 127.98 (C-4'), 128.75, 129.36 (C-2', C-3', C-5', C-6'), 134.79 (C-1'), 151.89 (C-2), 167.74 (CO).

5-Benzyl-1,5-dimethylbarbitursäure (7b)

 $C_{13}H_{14}N_2O_3$ M = 246.27 g/mol

Es bildet sich ein massiver Niederschlag, der abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet wird. Ausbeute: 15.0 g, 58%.

Fp (Lit.-Fp): 109-110°C (106-107°)²⁴²

EA ber. (EA gef.): $C_{13}H_{14}N_2O_3 \times 0.8 H_2O$ C 59.90 (59.63) H 6.03 (5.29) N 10.75 (10.47)

FT-IR (**KBr**): v (cm⁻¹) 3436 (v, NH), 2949 (v, CH_{alkyl}), 1684 (v, CO).

¹**H** NMR δ (ppm) 3.01 (s, 6H, CH₃), 3.27 (d, 2H, J = 5.0 Hz, CH₂), 4.01 (t, 1H, J = 5.0 Hz, CH), 7.01-7.26 (m, 5H, Ph).

¹³**C NMR** δ (ppm) 28.01 (CH₃), 35.63 (CH₂), 50.41 (C-5), 127.05 (C-4'), 128.44, 128.78 (C-2', C-3', C-5', C-6'), 137.05 (C-1'), 151.46 (C-2), 168.61 (CO).

Tetrasubstituierte Brombarbitursäuren (8a-b)

Allgemeine Synthesevorschrift:

20 mmol Barbitursäure 7 werden in 300 ml Essigsäure 96 % gelöst. Zu dieser Lösung werden über 20 Minuten hinweg 20 mmol Brom (16 g einer 20%-igen Brom-Essigsäure 96%-Lösung) zugetropft und danach eine Stunde bei Raumtemperatur gerührt. Anschließend wird die Essigsäure abrotiert. Die weitere Aufarbeitung und Aufreinigung der Rohprodukte ist unter den einzelnen Substanzen angegeben.

5-Brom-1,5-dimethyl-5-phenylbarbitursäure (8a)

 $C_{12}H_{11}N_2O_3Br$ M = 311.22 g/mol

Der erhaltene ölige Rückstand wird mit 40 ml Wasser verdünnt und mit dreimal 40 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden mit Aktivkohle gerührt und über wasserfreiem Natriumsulfat getrocknet. Die Lösung wird filtriert und im Vakuum zur Trockne eingeengt. Man erhält ein Öl, dass nach NMR-Charakterisierung sofort weiter umgesetzt wird. Ausbeute: 3.5 g, 57%.

¹**H NMR** (**CDCl**₃) δ (ppm) 3.39 (s, 6H, CH₃), 7.36-7.50 (m, 5H, Ph).

¹³C NMR (CDCl₃) δ (ppm) 30.0 (CH₃), 57.0 (C-5), 128.1, 128.8, 129.8 (CH-Ph), 133.4 (C-Ph), 149.8 (C-2), 165.8 (CO).

5-Brom-5-benzyl-1,5-dimethylbarbitursäure (8b)

 $C_{13}H_{11}N_2O_3Br$ M = 325.17 g/mol

Der erhaltene ölige Rückstand wird mit Ether aufgenommen und auf über Aktivkohle in eine Abdampfschale mit dem gleichen Volumen Petrolether gegossen. Man lässt die Lösungsmittel an der Luft verdampfen, nimmt den Niederschlag mit etwas Ether auf, saugt ihn ab und trocknet ihn gut im Vakuum. Ausbeute: 5.4 g, 81%.

Fp: 63-65°C

EA ber. (EA gef.): $C_{13}H_{11}N_2O_3Br \times 0.5 H_2O$ C 47.01 (47.08) H 3.64 (4.00) N 8.43 (8.45)

FT-IR (KBr): v (cm⁻¹) 1699, 1677 (v, CO).

EIMS (*m/z, Intensität* %): 326 (M⁺, ⁸¹Br, 0.02), 324 (M⁺, ⁷⁹Br, 0.02), 245 (M⁺-Br, ⁸¹Br, 80), 91 (C₇H₇⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 324.0110 (324.0116).

¹H NMR (CDCl₃) δ (ppm) 3.09 (s, 6H, CH₃), 3.72 (s, 2H, CH₂), 7.05-7.27 (m, 5H, Ph).
¹³C NMR (CDCl₃) δ (ppm) 29.16 (CH₃), 43.71 (CH₂), 52.28 (C-5), 127.97 (C-4'), 128.67, 130.03 (C-2', C-3', C-5', C-6'), 133.97 (C-1'), 149.32 (C-2), 165.82 (CO).

5-Benzylamino-1,3-dimethyl–5-phenylbarbitursäure (9)

	M = 227.27	~1
$10\Pi 10 N_3 U_3$	W = 22/22/8/10	OI
	111 00000 g m	~ -

Eine Lösung von 16 mmol Benzylamin (1.71 g, 1.75 ml) in 4 ml kaltem, wasserfreiem Acetonitril wird langsam unter Rühren bei 0°C zu einer Lösung von 8 mmol 5-Brom-1,3-dimethyl-5-phenylbarbitursäure (**8a**, 2.60 g) in 20 ml kaltem, wasserfreiem Acetonitril zugetropft. Die Lösung wird 1 Stunde bei Raumtemperatur gerührt, mit 50 ml gesättigter Natriumchloridlösung verdünnt und mit 4 \times 25 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und das Filtrat im Vakuum zur Trockne eingeengt. Nach Umkristallisation des Rohproduktes aus Ethylacetat erhält man einen weißen Feststoff. Ausbeute: 1.97 g, 73%.

Fp: 156-157°C

EA ber. (EA gef.): C 67.65 (67.25) H 5.67 (5.63) N 12.56 (12.28)

FT-IR (**KBr**): v (cm⁻¹) 3309 (v, NH), 3035 (v, CH_{alkyl}), 2933, 2859 (v, CH_{alkyl}), 1657 (v, CO).

EIMS (*m/z*, *Intensität* %): 336 (M⁺- H, 1), 232 (M⁺- C₇H₇N, 19), 106 (C₆H₅CH=NH₂⁺, 100).

¹**H** NMR δ (ppm) 3.18 (s, 6H, CH₃), 3.39 (t, 1H, J = 7.3 Hz, NH), 3.64 (d, 2H, J = 7.3 Hz, CH₂), 7.20-7.46 (m, 10H, Ph).

¹³C NMR δ (ppm) 29.0 (CH₃), 48.7 (CH₂), 71.2 (C-5), 126.6, 126.9, 128.2, 128.3, 128.9, 129.0 (CH-Ph), 138.2, 140.2 (C-Ph), 150.7 (C-2), 169.7 (CO).

1-Benzyl-3-methyl–5-phenylhydantoin (10)

$C_{17}H_{16}N_{3}O_{3} \qquad \qquad M=280.32 \ g/mol$

a) Bildung von 10 aus 6c

Zu einer Lösung von 8 mmol Natrium (0.18 g) in 26 ml absolutem Ethanol werden 2 mmol 1-Benzyl-3-methyl-5-methylcarbamoyl-5-phenylhydantoin (**6c**, 0.67g) zugegeben und das Gemisch 3 Stunden unter einer Argonatmosphäre unter Rückfluss erhitzt. Die Lösung wird zur Trockne eingeengt. Der Rückstand wird mit wenig Wasser aufgenommen und mit kalter Salzsäure (1N) angesäuert. Die entstandenen farblosen Kristalle werden gekühlt, abgesaugt und im Vakuum getrocknet. Ausbeute: 0.44 g, 74%.

b) Bildung von 10 aus 9

Zu einer Lösung von 8 mmol Natrium (0.18 g) in 26 ml absolutem Ethanol werden 2 mmol 5-Benzylamino-1,3-dimethyl-5-phenylbarbitursäure (**9**, 0.67g) zugegeben und das Gemisch 3 Stunden unter einer Argonatmosphäre unter Rückfluss erhitzt. Die Lösung wird zur Trockne eingeengt. Der Rückstand wird mit wenig Wasser aufgenommen und mit kalter Salzsäure (1N) angesäuert. Die entstandenen farblosen Kristalle werden gekühlt, abgesaugt und im Vakuum getrocknet. Ausbeute: 0.43 g, 72%.

Die erhaltenen Substanzen von a) und b) sind identisch.

Fp (Lit.-Fp): 103-105°C (120-121°C)²⁴³

EA ber. (EA gef.): $C_{17}H_{16}N_2O_2 \times H_2O$ C 68.44 (68.50) H 6.08 (5.58) N 9.39 (9.46)

EIMS (*m/z*, *Intensität* %): 280 (M⁺, 100), 91 (C₇H₇⁺, 30).

¹**H NMR** δ (ppm) 2.95 (s, 3H, CH₃), 3.90 (d, 1H, J = 15.8 Hz, CH₂), 4.78 (d, 1H, J = 15.8 Hz, CH₂), 4.98 (s, 1H, CH), 7.10-7.40 (m, 10H, Ph). ¹³**C NMR** δ (ppm) 25.0 (CH₃), 44.6 (CH₂), 63.6 (C-5), 127.6, 127.9, 128.1, 128.6, 129.0, 129.0 (CH-Ph), 133.5, 136.2 (C-Ph), 156.6 (C-2), 171.4 (C-4).

2-Acetylamino-2-methylmalonsäuredieethylester (11)

 $C_{10}H_{17}NO_5$ M = 231.25 g/mol

165 mmol Natrium (3.8 g) werden in 300 ml absolutem Ethanol gelöst. Dann werden 150 mmol 2-Acetamidomalonsäurediethylester (32.6 g) und 165 mmol Methyliodid (23.4 g, 10.3 ml) zugegeben und 6 Stunden unter Rückfluss gekocht. Das Lösungsmittel wird anschließend abrotiert und zum Rückstand werden 300 ml Dichlormethan gegeben. Man filtriert die ungelösten Anteile ab und rotiert das Dichlormethan ab. Das entstandene Öl wird aus 55 ml Wasser umkristallisiert und die Lösung kühl gestellt. Die gebildeten farblosen Nadeln werden abgesaugt und gut getrocknet. Ausbeute: 29.1 g, 84%.

Fp (**Lit.-Fp**): 84-84°C (88-90°C)²⁴⁴

EA ber. (EA gef.): C 51.94 (51.85) H 7.41 (7.29) N 6.06 (6.08)

¹**H NMR** δ (ppm) 1.44 (t, 6H, J = 7.10 Hz, CH₂CH₃), 1.54 (s, 3H, CH₃), 1.87 (s, 3H, COCH₃), 4.12 (q, 2H, J = 6.93 Hz, CH₂), 8.27 (s, 1H, NH).

¹³C NMR δ (ppm) 13.92 (CH₂CH₃), 21.37 (CH₃), 22.33 (CO<u>C</u>H₃), 61.61 (CH₂), 62.68 (C-2), 168.42 (CO), 169.15 (<u>C</u>OCH₃).

3,5-Dimethylhydantoin (12)

 $C_5H_8N_2O_2$ M = 128.06 g/mol

5 mmol 2-Acetamido-2-methylmalonsäurediethylester (**11**, 1.15 g) und 5 mmol *N*,*N*'-Dimethylharnstoff (0.44 g) werden in einer Lösung von 20 mmol Natrium (0.46 g) in 25 ml absolutem Ethanol gelöst und 6 Stunden bei 120°C unter Argonatmosphäre in einem Autoklaven erhitzt. Nach Beendigung der Reaktion wird der Ethanol wird abrotiert, der Rückstand mit wenig Wasser aufgenommen, angesäuert und anschließend mit 4 × 25 ml Ethylacetat ausgeschüttelt. Die organischen Phasen werden vereinigt, über Natriumsulfat getrocknet, filtriert und im Vakuum zur Trockne eingeengt. Das gelbe Öl wird aus 10 ml Ethanol umkristallisiert, wobei sich farblose Kristalle bildeten. Ausbeute: 51.2 mg, 8%.

Fp (**Lit.-Fp**): 112-116°C (110-112°C)⁷⁶

EA ber. (EA gef.): C 46.87 (46.81) H 6.29 (6.45) N 21.86 (20.93)

EIMS (*m*/*z*, Intensität %): 128 (M⁺, 100), 113 (M⁺- CH₃, 16), 100 (M⁺- C₂H₄, 51). **HRMS** [M⁺ ber. (gef.)]: 128.0586 (128.0591)

¹**H NMR** δ (ppm) 1.22 (d, 3H, J = 6.95 Hz, 5-CH₃), 2.80 (s, 3H, 3-CH₃), 4.05 (dq, 1H, $J_1 = 7.1$ Hz, $J_2 = 1.25$ Hz, CH), 8.11 (s, br, 1H, NH). ¹³**C NMR** δ (ppm) 17.23 (5-CH₃), 24.10 (3-CH₃), 52.24 (C-5), 156.85 (C-2), 175.25 (C-4).

1-Benzyl-5-methylhydantoin (13)

 $C_{11}H_{12}N_2O_2$ M = 204.23 g/mol

2 mmol 5-Benzylamino-1,5-dimethylbarbitursäure (**3b**, 0.52 g) werden in einer Suspension von 16 mmol NaH (0.33 g, Pulver, 95%, 1.6 M Suspension) in 10 ml Dimethylformamid zur Spektroskopie unter Argonatmosphäre 5 Stunden unter Rückfluß gekocht. Nach Ende der Reaktionszeit wird das gesamte Gemisch auf 100 ml eiskalte Salzsäure (1N) gegeben und zusätzlich noch 100 ml Wasser zugesetzt. Diese wässrige Lösung wird zuerst mit einmal 50 ml und danach mit jeweils viermal 25 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann mit Aktivkohle gerührt, filtriert und das Lösungsmittel abrotiert. Das entstandene Öl kristallisierte im Kühlschrank aus. Die Kristalle werden dann in etwas Ether aufgenommen und abgesaugt. Ausbeute: 0.12 g, 29%.

Fp: 159-160°C

EA ber. (EA gef.): $C_{11}H_{12}N_2O_2 \times 0.1 H_2O$ C 64.13 (64.09) H 5.97 (5.88) N 13.60 (13.20)

IR (KBr): v (cm⁻¹) 3148 (v, NH), 3063 (v, CH_{aryl}), 1755, 1710 (v, CO).

EIMS (*m/z, Intensität %*): 204 (M⁺, 100), 132 (M⁺- C₆H₅, 63), 106 (C₆H₅CH=NH₂⁺, 38), 91 (C₇H₇⁺, 66).

HRMS [**M**⁺ **ber.** (**gef.**)]: 204.0899 (204.0902)

¹**H** NMR δ (ppm) 1.19 (d, 3H, J = 6.95 Hz, CH₃), 3.89 (q, 1H, J = 6.95 Hz, CH), 4.29 (d, 1H, J = 15.75 Hz, CH₂), 4.59 (d, 1H, J = 15.8 Hz, CH₂), 7.27-7.35 (m, 5H, Ph), 10.85 (s, 1H, NH).

¹³**C NMR** δ (ppm) 15.12 (CH₃), 43.71 (CH₂), 56.29 (C-5), 127.49 (C-4'), 127.73, 128.72 (C-2', C-3', C-5', C-6'), 137.29 (C-1'), 156.49 (C-2), 174.99 (C-4).

1-Benzyl-5-phenylhydantoin (14)

$C_{16}H_{14}N_{2}O_{2}$	M = 266.30 g/mol
	111 2 00.00 g/mor

Zu einer Lösung von 16 mmol Natrium (0.37 g) in 20 ml absolutem Ethanol werden 4 mmol 5-Benzylamino-1,5-diphenylbarbitursäure (**3m**, 1.54 g) gegeben und unter Argonatmosphäre 5 Stunden bei 120°C im Autoklaven gekocht. Nach Ende der Reaktionszeit wird der Ethanol abrotiert und der Rückstand mit eiskalter Salzsäure (1N) angesäuert. Dem Gemisch werden 50 ml Wasser zugesetzt. Diese wässrige Lösung wird mit 3×50 ml Ethylacetat ausgeschüttelt, die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und zur Trockne eingeengt. Es bildet sich ein weißer Feststoff. Ausbeute: 0.77 g, 70%.

Fp (Lit.-**Fp**): 205-210°C (213-215°C)²⁴⁵

EA ber. (EA gef.): $C_{16}H_{14}N_2O_2 \times 0.4 H_2O$ C 70.26 (70.20) H 5.45 (4.83) N 10.24 (9.82)

IR (**KBr**): v (cm⁻¹) 3188 (v, NH), 3064 (v, CH_{aryl}), 1755, 1713 (v, CO).

EIMS (*m/z*, Intensität %, 150°C): 266 (M⁺, 100), 132 (C₆H₅CH=NH-CO⁺, 38), 118 (C₆H₅CHCO⁺, 83), 106 (C₆H₅CH=NH₂⁺, 26), 91 (C₇H₇⁺, 48).

¹H NMR (300 MHz) δ (ppm) 3.84 (d, 1H, J = 15.63 Hz, CH₂), 4.42 (d, 1H, J = 15.60 Hz, CH₂), 4.97 (s, 1H, CH), 7.10-7.50 (m, 10H, Ph), 11.16 (s, 1H, NH).
¹³C NMR (75 MHz) + APT δ (ppm) 43.89 (CH₂), 64.31 (C-5), 127.37, 128.77 (C-4', C-4''), 127.69, 128.50, 128.94 (C-2', C-2'', C-3', C-5', C-5'', C-6', C-6''), 133.52, 136.23 (C-1', C-1''), 156.67 (C-2), 172.44 (C-4).

5-Methylhydantoin (16)

M = 114.10 g/mol

 $C_4H_6N_2O_2$

a)

Zu 1 mmol 5-Methyl-5-phenylcarbamoylhydantoin (0.23 g) werden 7.5 ml HMDS gegeben und das Gemisch 24 Stunden bei 180°C im Laborautoklaven unter einer Argonatmosphäre erhitzt. Nach Ende der Reaktion wird das HMDS abrotiert, und dann werden dem gebildeten gelben Öl 10-15 ml Wasser zugesetzt. Man rührt 30 min bei Raumtemperatur und schüttelt die wässrige Lösung mit 3×15 ml Ethylacetat aus. Die Ethylacetatphasen werden verworfen. Die wässrige Phase wird einrotiert und man erhält einen weissen Feststoff. Ausbeute: 73.5 mg, 64%. Im Dünnschichtchromatogramm werden das Ausgangshydantoin, die Referenzsubstanz 5-Methylhydantoin sowie die wässrige Phase und die Ethylacetatphase aufgetragen und in reinem Ethylacetat entwickelt. Detektiert wird durch Besprühen mit einer 1%-igen Nitroprussid-Natrium Lösung in 2N NaOH/EtOH=1:1 und anschliessendem Erhitzen der Platte. Die Referenzsubstanz 5-Methylhydantoin sowie das Hauptprodukt der wässrigen Phase besitzen den gleichen Rf-Wert und färben sich gelb. Bei Detektion mit einer 0.2%-igen ethanolischen Ninhydrinlösung färben sie sich dagegen orange.

b)

Zu 0.50 g Harz **42** (1.15 mmol) werden 10 ml HMDS zugegeben und im Laborautoklaven 40 Stunden bei 180°C unter einer Argonatmosphäre erhitzt. Nach Ende der Reaktion wird das HMDS abrotiert und ca. 10 ml Wasser zugegeben. Dieses lässt man über mehrere Tage an der Luft abdampfen und trocknet schließlich die erhaltenen weißen Kristalle gut. Ausbeute: 21 mg, 16%.

Fp. (Lit-Fp): 147-148°C (150-152°C)²⁵⁶

¹**H NMR** δ (ppm) 1.21 (d, 3H, J = 6.90 Hz, CH₃), 4.01 (dq, $J_1 = 0.78$ Hz, $J_2 = 6.93$ Hz, CH), 7.82 (s, br, 1H, CHN<u>H</u>), 10.52 (s, 1H, NH).

 ^{13}C NMR δ (ppm) 17.36 (CH_3), 53.40 (C-5), 157.25 (C-2), 176.94 (C-4).

1-Benzyl-5-benzylamino-5-methylbarbitursäure (19)

 $C_{19}H_{19}N_3O_3$

M = 337.38 g/mol

10 mmol 1-Benzyl-5-brom-5-methylbarbitursäure (51, 3.11 g) werden in 25 ml wasserfreiem Acetonitril gelöst und langsam unter Eiskühlung 20 mmol Benzylamin (2.14 g, 2.18 ml) in 5 ml getrocknetem Acetonitril zugetropft und anschließend eine Stunde bei Raumtemperatur gerührt. Der Ansatz wird mit 250 ml gesättigter NaCl-Lösung verdünnt und mit 4×50 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das resultierende Öl wird mit Ether versetzt, einige Zeit stehen gelassen und anschließend wieder im Vakuum zur Trockne eingeengt. Es entsteht ein gelber Schaum. Die Elementaranalyse lieferte keine korrekten Werte. Ausbeute: 3.13 g, 93%.

Fp: 50-53°C

EA ber. (EA gef.): C 67.64 (61.38) H 5.68 (6.48) N 12.46 (13.73)

FT-IR (KBr): v (cm⁻¹) 3568, 3283, 3197 (v, NH), 3034 (v, CH_{arvl}), 2967, 2783 (v, CH_{alkvl}), 1751, 1723 (v, CO).

EIMS (*m/z*, Intensität): 336 (M⁺-H, 1), 106 (C₇H₇N⁺, 100), 91 (C₇H₇⁺, 39).

¹**H** NMR δ (ppm) 1.49 (s, 3H, CH₃), 3.47 (m, 2H, NHC<u>H₂</u>), 4.87 (s, 2H, NC<u>H₂</u>), 7.18-7.33 (m, 11H, Ph, NHCH₂), 11.35 (s, 1H, NH).

¹³C NMR δ (ppm) 24.88 (5-CH₃), 44.02 (NH<u>C</u>H₂), 48.43 (N<u>C</u>H₂), 63.87 (C-5), 126.99, 127.38, 127.49, 128.19, 128.26, 128.55 (CH-Ph), 137.06, 139.91 (C-Ph), 150.27 (C-2), 171.45, 172.30 (CO).

5-Benzylcarbamoyl-5-methylhydantoin (23)

 $C_{12}H_{13}N_3O_3$ M = 247.25 g/mol

a) Methode D (Tab. 9, Kap. 3.1.2.1)

20 mmol Natrium (0.46 g) werden in 25 ml absolutem Ethanol gelöst, 5 mmol 2-Acetamido-2-methylmalonsäurediethylester (11, 1.15 g) und 5 mmol Benzylharnstoff (0.75 g) zugesetzt und unter Argonatmophäre 5h bei 120°C im Autoklaven gekocht. Anschließend wird der Ethanol abrotiert, sehr wenig Wasser zugegeben und das Gemisch mit kalter Salzsäure (2N) angesäuert und die Lösung mit 4×25 ml Ethylacetat Die organischen Phasen werden vereinigt, über Natriumsulfat ausgeschüttelt. getrocknet, filtriert und zur Trockne eingeengt. Das entstandene Öl wird mit Ether/Petrolether = 2:1 versetzt und im Ultraschallbad behandelt. Es fällt ein weißer Niederschlag aus, der abgesaugt und getrocknet wird (Nebenprodukt 24). Der noch verbleibende Rückstand wird mittels Säulenchromatographie (Eluent: Ethylacetat) aufgereinigt. Dabei konnten das gewünschte 5-Benzylcarbamoyl-5-methylhydantoin (23) und sowie Nebenprodukt 25 isoliert werden. Das Lösungsmittel wird im Vakuum entfernt und die erhaltenen Öle und Feststoffe gut getrocknet. Ausbeute: 0.22 g, 18%. Methoden A-C und E unterscheiden sich von der hier beschriebenen Synthese nur in den Reaktionszeiten (s. Kap. 3.1.2.1, Tab. 9).

b) Methode K (Tab. 9, Kap. 3.1.2.1)

20 mmol Natrium (0.46 g) werden in 18.75 ml absolutem Ethanol und 6.25 ml wasserfreiem THF gelöst, 5 mmol 2-Acetamido-2-methylmalonsäurediethylester (**11**, 1.15 g) und 5 mmol Benzylharnstoff (0.75 g) zugesetzt und unter Argonatmophäre 5h bei 120°C im Autoklaven gekocht. Anschließend wird der Ethanol abrotiert, sehr wenig Wasser zugegeben und das Gemisch mit kalter Salzsäure (1N) angesäuert und die Lösung mit 3×25 ml Ethylacetat ausgeschüttelt. Die organischen Phasen werden vereinigt, über Natriumsulfat getrocknet, filtriert und zur Trockne eingeengt. Das entstandene Öl wird mit wenig Ether verrieben, über Nacht gekühlt und das Lösungsmittel im Vakuum entfernt. Es bildet sich ein Schaum, der nicht weiter aufgereinigt wird. Ausbeute: 0.68 g, 55%.

Der Schaum lieferte identische NMR-Daten wie das Produkt von a).

Methoden H-I und L-M unterscheiden sich von der hier beschriebenen Synthese nur in den Mischungsverhältnissen von abs. Ethanol und abs. THF bzw. Dioxan (s. Kap. 3.1.2.1, Tab. 9).

Fp: 145-147°C

EA ber. (EA gef.): C 58.29 (58.13) H 5.30 (5.30) N 17.00 (16.90)

IR (**KBr**): v (cm⁻¹) 3400 (v, NH), 3040 (v, CH_{aryl}), 2940 (v, CH_{alkyl}), 1740 (v, CO).

EIMS (*m/z*, *Intensität* %): 247 (M⁺, 1), 149 (51), 114 (M⁺- C₆H₅CH₂NCO, 62), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 55).

¹**H NMR** δ (ppm) 1.49 (s, 3H, CH₃), 4.23 (dd, 1H, J_1 = 15.2 Hz, J_2 = 6.0 Hz, CH₂), 4.29 (dd, 1H, J_1 = 15.1 Hz, J_2 = 6.3 Hz, CH₂), 7.19-7.32 (m, 5H, Ph), 8.29 (s, 1H, 1-NH), 8.57 (t, 1H, J = 6.0 Hz, CH₂N<u>H</u>), 10.79 (s, 1H, 3-NH).

¹³C NMR δ (ppm) 21.16 (CH3), 42.73 (CH2), 66.05 (C-5), 126.82 (C-4'), 127.08, 128.29 (C-2', C-3', C-5', C-6'), 139.37 (C-1'), 156.78 (C-2), 166.92 (CO), 174.02 (C-4).

Analytik der Nebenprodukte (min. und max. Ausbeuten der Methoden A-E angegeben):

N-Benzyl-2-ureido-propionamid (24)

 $C_{11}H_{15}N_3O_2$ M = 221.26 g/mol

Ausbeuten: 7-22%

Fp: 157-160°C

¹**H** NMR δ (ppm) 1.23 (d, 3H, J = 7.3 Hz, CH₃), 4.11 (quint, 1H, J = 7.4 Hz, CH), 4.19 (d, 2H, J = 6.3 Hz, CH₂), 6.21 (d, 1H, J = 7.9 Hz, CHN<u>H</u>), 6.45 (t, 1H, J = 6.0 Hz, CH₂NH), 7.19-7.31 (m, 5H, Ph), 12.44 (s, 1H, NH). Ein NH-Signal fehlt.

¹³C NMR + HSQC δ (ppm) 18.49 (CH₃), 42.92 (CH₂), 48.30 (CH), 126.69 (C-4'), 127.11, 128.32 (C-2', C-3', C-5', C-6'), 140.82 (C-1'), 157.64 (NHCONH), 175.32 (CH<u>C</u>O).

Benzylcarbaminsäureethylester (25)

 $C_{10}H_{13}NO_2$ M = 179.22 g/mol

Ausbeuten: 4-17%

Fp (**Lit.-Fp**): Öl (48°C)²⁴⁶

¹**H NMR** δ (ppm) 1.15 (t, 3H, J = 7.1 Hz, CH₃), 3.99 (q, 2H, J = 7.0 Hz, C<u>H</u>₂CH₃), 4.16 (d, 2H, J = 6.3 Hz, C<u>H</u>₂Ph), 7.19-7.35 (m, 5H, Ph), 7.58 (s, 1H, NH). ¹³C **NMR** δ (ppm) 14.80 (CH₃), 43.83 (<u>C</u>H₂Ph), 59.3 (<u>C</u>H₂CH₃), 126.83, 127.10, 128.35 (CH-Ph), 140.04 (C-Ph), 156.65 (CO).

5-Acetylamino-1-benzyl-5-methylbarbitursäure (26)

 $C_{14}H_{15}N_3O_4$ M = 289.29 g/mol

a) Methode F (Tab. 9, Kap. 3.1.2.1)

20 mmol Natrium (0.46 g) werden in 66 ml absolutem Ethanol gelöst (0.3 M Lösung), und 5 mmol 2-Acetylamino-2-methylmalonsäureester (**11**, 1.15 g) und 5 mmol Benzylharnstoff (0.75 g) zugesetzt und diese Mischung 3 Stunden unter Rückfluss und Argonatmosphäre gekocht. Danach wird das Lösungsmittel abrotiert. Der gebildete Niederschlag wird in 5 ml Wasser aufgenommen und mit HCl (3N) angesäuert. Nach Kühllagerung über mehrere Tage bildet sich ein weißer Niederschlag, der abgesaugt und gut im Vakuum getrocknet wird. Ausbeute: 0.14 g, 10%.

b) Methode G (Tab. 9, Kap. 3.1.2.1)

12 mmol Natrium (0.28 g) werden in 25 ml absolutem Ethanol gelöst (0.48 M Lösung), anschließend werden 25 ml wasserfreies THF zugegeben und 10 mmol 2-Acetylamino-2-methylmalonsäureester (**11**, 2.31 g) und 10 mmol Benzylharnstoff (1.5 g) zugesetzt und diese Mischung 3 Stunden unter Rückfluss und Argonatmosphäre gekocht. Danach werden die Lösungsmittel abrotiert. Der gebildete Niederschlag wird in 5 ml Wasser aufgenommen und mit HCl (1N) angesäuert. Es bildet sich ein klebrig gelber Niederschlag, der sich nach Kühllagerung in einen feineren, leicht gelblichen Niederschlag umwandelte. Man saugt ab und trocknet gut. Das Rohprodukt wird aus Ethanol umkristallisiert. Ausbeute: 1.19 g, 41%. Außerdem konnte in manchen Fällen ein Nebenprodukt **27** isoliert werden. Ausbeute: 0.45 g, 17%.

Fp: 248-252°C

EA ber. (EA gef.): C 58.13 (58.07) H 5.23 (5.20) N 14.53 (14.30)

IR (KBr): v (cm⁻¹) 3380 (v, NH), 3080 (v, CH_{arvl}), 1730, 1690, 1660 (v, CO).

EIMS (*m/z, Intensität* %): 289 (M⁺, 100), 247 (M⁺ - CH₃CO), 230 (M⁺ - CH₃CON, 52), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 60).

¹**H** NMR δ (ppm) 1.53 (s, 3H, 5-CH₃), 1.86 (s, 3H, CO<u>C</u>H₃), 4.83 (d, 1H, J = 15.1 Hz, C<u>H</u>₂Ph), 4.93 (d, 1H, J = 15.1 Hz, C<u>H</u>₂Ph), 7.20-7.31 (m, 5H, Ph), 9.16 (s, 1H, NHCOCH₃), 11.64 (s, 1H, NH).

¹³**C NMR** δ (ppm) 21.24 (5-CH₃), 22.53 (COCH₃), 44.18 (<u>C</u>H₂Ph), 58.94 (C-5), 126.80, 128.42 (C-2', C-3', C-5', C-6'), 127.10 (C-4'), 136.82 (C-1'), 149.88 (C-2), 170.05, 170.19, 171.11 (CO).

Nebenprodukt zu Syntheseweg b)

N-[2-(3-Benzylureido)-1-methyl-2-oxo-ethyl]acetamid (27)

 $C_{13}H_{17}N_3O_3$ M = 263.30 g/mol

Fp: 193-194°C

EA ber. (EA gef.): C 59.30 (59.27) H 6.51 (6.54) N 15.96 (15.87)

EIMS (*m/z*, *Intensität* %): 263 (M⁺, 44), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 54). **HRMS** [M⁺ ber. (gef.)]: 263.1270 (263.1267)

¹**H** NMR δ (ppm) 1.22 (d, 3H, J = 7.3 Hz, CHC<u>H</u>₃), 1.82 (s, 3H, COCH₃), 4.27 (quint., 1H, J = 6.70 Hz, CH), 4.36 (d, 2H, J = 5.95 Hz, CH₂), 7.20-7.34 (m, 5H, Ph), 8.12 (d, 1H, J = 6.65 Hz, N<u>H</u>CH), 8.63 (t, 1H, J = 5.70 Hz, N<u>H</u>CH₂), 10.36 (s, 1H, CONHCO).

¹³C NMR + HMQC δ (ppm) 17.35 (CO<u>C</u>H₃), 22.32 (CH<u>C</u>H₃), 42.76 (CH₂), 49.04 (CH), 127.09 (C-4'), 127.40, 128.53 (C-2', C-3', C-5', C-6'), 139.28 (C-1'), 153.39 (NHCONH), 169.51 (CH<u>C</u>O), 175.23 (<u>C</u>OCH₃).

3-Benzyl-1-methylhydantoin (28)

 $C_{11}H_{12}N_2O_2$

M = 204.23 g/mol

4 mmol 5-Benzylcarbamoyl-5-methylhydantoin (**23**, 1.0 g) werden in 20 ml HCl (3N) zwei Stunden unter Rückfluss erhitzt. Anschließend wird die gesamte Lösung aus 25 ml Wasser und mit 5 \times 25 ml Ethylacetat ausgeschüttelt, die Ethylacetatphasen werden vereinigt, getrocknet (Na₂SO₄) und die Lösung einrotiert. Es entsteht ein gelbes Öl, das aus 10 ml EtOH 96% umkristallisiert wird. Nach drei Tagen im Tiefkühlschrank fällt ein weißer Niederschlag aus, der abgesaugt und getrocknet wird. Ausbeute: 0.06 g, 7%.

Fp (**Lit.-Fp**): 104-106°C (112-114°)⁷⁶

EA ber. (EA gef.): $C_{11}H_{12}N_2O_2 \times 0.1 H_2O$ C 63.57 (63.21) H 6.01 (5.93) N 13.48 (13.42)

IR (**KBr**): v (cm⁻¹) 3246 (v, NH), 2933 (v, CH_{alkvl}), 1724 (v, CO).

EIMS (*m/z*, Intensität %): 204 (M⁺, 77), 91 (C₇H₇⁺, 40), 44 (H₂NCO⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 204.0899 (204.0895)

¹**H NMR (CDCl₃)** δ (ppm) 1.41 (d, 3H, J = 6.95 Hz, CH₃), 4.07 (dq, 1H, $J_1 = 0.95$ Hz, $J_2 = 6.93$ Hz, CH), 4.61 (d, 1H, J = 14.5 Hz, CH₂), 4.65 (d, 1H, J = 14.5 Hz, CH₂), 5.98 (s, br, 1H, NH), 7.24-7.37 (m, 5H, Ph).

¹³C NMR (CDCl₃) δ (ppm) 17.60 (CH₃), 42.15 (CH₂), 52.95 (C-5), 127.89, 128.43, 128.65 (CH-Ph), 135.98 (C-Ph), 157.11 (C-2), 174.30 (C-4).

1-Benzyl-5-benzylcarbamoyl-5-methylhydantoin (29)

 $C_{19}H_{19}N_3O_3$ M = 337.38 g/mol

2 mmol 1-Benzyl-5-benzylamino-5-methylaminobarbitursäure (19, 0.67 g) werden zu einer Lösung von 8 mmol Natrium (0.18 g) in 10 ml absolutem Ethanol gegeben (0.8 M Lösung) und im Autoklaven 5 Stunden bei 120°C unter Argonatmosphäre gekocht. Nach Beendigung der Reaktion werden 50 ml Wasser zugesetzt und das Gemisch mit 4×25 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, dabei wird Aktivkohle zugefügt und das Gemisch ca. 30 min gerührt. Es wird abfiltriert und Ethylacetat abrotiert. Alternativ kann ohne Zufügen von Aktivkohle getrocknet und das Rohprodukt anschließend mit Dichlormethan:MeOH = 50:1 gesäult werden. Es entsteht ein farbloses Öl, welches getrocknet wird und dabei langsam auskristallisiert. Ausbeute: 0.38 g, 56%.

Fp: 149-150°C

EA ber. (EA gef.): $C_{19}H_{19}N_3O_3 \times 0.3 H_2O$ C 66.58 (66.38) H 5.76 (5.69) N 12.26 (12.26)

FT-IR (KBr): ν (cm⁻¹) 3323 (v, NH), 3063, 3031 (v, CH_{aryl}), 2929 (v, CH_{alkyl}), 1779, 1713, 1664 (v, CO), 1532 (δ, NH).

EIMS (*m/z*, Intensität %): 204 (M⁺- C₆H₅CH₂NCO, 100), 134 (C₆H₅CH₂NH-C=O⁺, 14), 106 (C₆H₅CH=NH₂⁺, 13), 91 (C₇H₇⁺, 47).

FAB-MS (*m*/*z*, Intensität %): 338 (MH⁺, 100).

¹**H** NMR δ (ppm) 1.37 (s, 3H, CH₃), 4.06 (d, 1H, J = 16.05 Hz, NCH₂), 4.19 (dq, 2H, $J_1 = 5.93$ Hz, $J_2 = 14.78$ Hz, NHCH₂), 4.66 (d, 1H, J = 15.8 Hz, NCH₂), 7.16-7.31 (m, 10 H, Ph), 8.63 (t, 1H, J = 5.93 Hz, NHCH₂), 11.16 (s, 1H, NH).

¹³**C NMR** δ (ppm) 18.82 (CH₃), 42.90, 44.06 (NCH₂, NHCH₂), 69.91 (C-5), 126.88, 127.11, 127.32, 127.92, 128.33, 128.39 (CH-Ph), 137.66, 139.12 (C-Ph), 156.73 (C-2), 165.63 (CO), 172.78 (C-4).

1-Benzyl-5-benzylcarbamoyl-3,5-dimethylhydantoin (30)

 $C_{20}H_{21}N_3O_3$

M = 351.41 g/mol

a)

0.29 mmol 1-Benzyl-5-benzylcarbamoyl-5-methylhydantoin (**29**, 0.10 g) werden in 10 ml wasserfreiem DMF gelöst und anschließend 1.16 mmol wasserfreies K₂CO₃ (0.16 g) und 0.35 mmol Methyliodid (0.050 g, 21.8 µl) bei Raumtemperatur über Nacht gerührt. Dann wird die Lösung filtriert und 100 ml Wasser zugegeben. Der gesamte Ansatz wird nun mit 3×50 ml DCM ausgeschüttelt, die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Produkt wird durch präparative Dünnschichtchromatographie (Kieselgel G_{F254}, Laufmittel: Petrolether / Ethylacetat = 2:1) gereinigt. Ausbeute: 30 mg, 29%.

b)

Zu einer Suspension von 1.39 mmol NaH (0.033 g, Pulver, 95%) in 11.6 ml abs. EtOH werden 1.16 mmol 1-Benzyl-5-benzylcarbamoyl-5-methylhydantoin (**29**, 0.39 g) gegeben und nach Beendigung der Wasserstoffentwicklung werden 1.74 mmol Methyliodid (0.25 g, 0.11 ml) zugesetzt. Das Gemisch wird 1.5 h unter Rückfluss erhitzt. Anschließend wird EtOH abrotiert und das entstandene Öl mit Wasser versetzt, wobei wenige weiße Kristalle ausfallen, die abgesaugt und getrocknet werden. Ausbeute: 12.2 mg, 3%.

Die Kristalle wurden in DMSO gelöst und anschließend das Lösungsmittel über mehrere Monate hinweg abgedampft. Dabei wurden schöne Kristalle erhalten, die durch <u>Röntgenkristallstrukturanalyse</u> untersucht werden konnten.

Fp: 100-101°C

EA ber. (EA gef.): C 68.36 (65.16) H 6.02 (6.15) N 11.96 (12.93)

EIMS (*m/z*, Intensität %): 351 (M⁺, 0.32), 218 (M⁺-C₆H₅CH₂-NCO, 100), 127 (M⁺-C₆H₅CH₂-NCO – C₆H₅CH₂, 24), 91 (C₇H₇⁺, 54). **HRMS** [M⁺ ber. (gef.)]: 351.1583 (351.1585).

¹**H** NMR δ (ppm) 1.10 (s, 3H, 5-CH₃), 2.92 (s, 3H, 3-CH₃), 4.12-4.19 (m, 3H, NHC<u>H₂</u>, NC<u>H₂</u>), 4.66 (d, *J* = 15.8 Hz, 1H, NCH₂), 7.14-7.32 (m, 10 H, Ph), 8.63 (t, *J* = 5.78 Hz, 1H, N<u>H</u>CH₂).

¹³**C NMR** δ (ppm) 18.71 (5-CH₃), 25.21 (3-CH₃), 42.94, 44.34 (NCH₂, NHCH₂), 68.77 (C-5), 126.92, 127.15, 127.41, 128.00, 128.36, 128.37 (CH-Ph), 137.34, 138.96 (C-Ph), 156.47 (C-2), 165.47 (CO), 171.61 (C-4).

1-Benzyl-3-cyanomethyl-5-phenylhydantoin (31)

 $C_{18}H_{15}N_3O_2$ M = 305.34 g/mol

Zu einer Suspension von 1 mmol 1-Benzyl-5-phenylhydantoin (14, 0.27 g) in 45 ml Aceton 90 % werden 2 mmol Natriumcarbonat (0.21 g) und 4 mmol Bromacetonitril (0.49 g, 0.28 ml) zugesetzt und die Lösung 90 Minuten unter Rückfluss erhitzt, anschließend heiß filtriert und kühl gestellt. Das Lösungsmittel wird abrotiert und der Rückstand aus 20 ml Wasser und 2×15 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann zur Trockne eingeengt. Das erhaltene braune Öl kristallisiert bei Trocknung im Vakuum aus. Man löst das Öl in Diethylether, wobei weiße Kristalle ausfallen, die abgesaugt und getrocknet werden. Ausbeute: 0.15 g, 49%.

Fp: 105-110°C

EA ber. (EA gef.): $C_{18}H_{15}N_3O_2 \times 0.1 H_2O$ C 70.39 (70.11) H 4.99 (5.00) N 13.68 (13.40)

IR (KBr): v (cm⁻¹) 3031 (v, CH_{aryl}), 2986, 2949, 2918 (v, CH_{alkyl}), 2318 (v, C≡N), 1772, 1716 (v, CO).

EIMS (*m/z*, Intensität %): 305 (M⁺, 32), 106 (C₆H₅CH=NH₂⁺, 28), 91 (C₇H₇⁺, 100).

¹**H NMR** δ (ppm) 3.97 (d, 1H, J = 15.8 Hz, C<u>H</u>₂Ph), 4.64 (s, 2H, CH₂CN), 4.75 (d, 1H, J = 15.8 Hz, C<u>H</u>₂Ph), 5.16 (s, 1H, CH), 6.99-7.46 (m, 10 H, Ph). ¹³**C NMR** δ (ppm) 26.75 (<u>C</u>H₂CN), 44.83 (<u>C</u>H₂Ph), 63.84 (C-5), 115.37 (CN), 121.62, 127.65, 128.01, 128.19, 128.60, 129.16, 129.29 (CH-Ph), 132.76, 135.80 (C-Ph), 154.48 (C-2), 170.16 (C-4).

3,5-Dimethyl-5-phenylhydantoin (33)

 $C_{11}H_{12}N_2O_2$

5 mmol 5-Phenylhydantoin (0.88 g) werden in 50 ml getrocknetem DMF gelöst und mit 20 mmol wasserfreiem Kaliumcarbonat (2.8 g) und 80 mmol Methyliodid (11.4 g, 4.98 ml) versetzt und 24 h bei Raumtemperatur gerührt. Nach Beendigung der Reaktion wird der gesamte Ansatz vorsichtig mit HCl (2N) neutralisiert und mit 5×50 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat und Aktivkohle getrocknet und zur Trockne einengt. Das entstandene Öl wird aus Petrolether/Ethylacetat umkristallisiert, es bildet sich ein Niederschlag, der abgesaugt wird. Der Niederschlag wird anschließend mit Petrolether:Ethylacetat = 1:1 als Eluent gesäult. Man erhält einen weißen Feststoff. Ausbeute: 60 mg, 6%.

Fp (Lit.-**Fp**): 178-190°C (187-188°C)²⁴⁷

EA ber. (EA gef.): $C_{11}H_{12}N_2O_2 \times 0.2 H_2O$ C 63.57 (63.65) H 6.01 (5.66) N 13.48 (13.77)

IR (**KBr**): v (cm⁻¹) 3261 (v, NH), 2988, 2950 (v, CH_{alkyl}), 1784, 1709 (v, CO).

EIMS (*m/z*, Intensität %): 204 (M⁺, 17), 189 (M⁺-CH₃, 100), 104 (C₆H₅C(CH₃)⁺, 58). **HRMS** [M⁺ ber. (gef.)]: 204.0899 (204.0901)

¹**H NMR** δ (ppm) 1.66 (s, 3H, 5-CH₃), 2.84 (s, 1H, 3-CH₃), 7.28-7.47 (m, 5H, Ph), 8.86 (s, 1H, NH).

¹³C NMR δ (ppm) 24.43 (5-CH₃), 25.11 (3-CH₃), 63.02 (C-5), 128.02 (C-4'), 125.53, 128.62 (C-2', C-3', C-5', C-6'), 139.85 (C-1'), 155.98 (C-2), 175.53 (C-4).

5-Isobutyl-3-methylhydantoin (35)

 $C_8H_{14}N_2O_2$ M = 170.22 g/mol

5 mmol 5-Isobutylhydantoin (0.78 g) werden in 50 ml getrocknetem DMF gelöst und mit 20 mmol wasserfreiem Kaliumcarbonat (2.8 g) und 80 mmol Methyliodid (11.4 g, 4.98 ml) versetzt und 24 h bei Raumtemperatur gerührt. Nach Beendigung der Reaktion wird der gesamte Ansatz vorsichtig mit HCl (2N) neutralisiert und mit 5×50 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat und Aktivkohle getrocknet und zur Trockne eingeengt. Das entstandene Öl wird mit Wasser aufgenommen und der Niederschlag abgesaugt, gut mit Wasser gewaschen und anschließend im Vakuum gut getrocknet. Ausbeute: 0.10 g, 12%.

Fp (Lit.-Fp): 132-133°C (129-130°C)²⁴⁸

EA ber. (EA gef.): C 56.21 (56.13) H 8.29 (8.16) N 16.46 (6.16)

IR (**KBr**): v (cm⁻¹) 3236 (v, NH), 2954, 2881 (v, CH_{alkyl}), 1769, 1718 (v, CO).

¹**H NMR** δ (ppm) 0.87 (d, 6H, J = 6.6 Hz, CH(C<u>H</u>₃)₂), 1.34-1.54 (m, 2H, CH₂), 1.72-1.81 (m, 1H, C<u>H</u>(CH₃)₂), 2.80 (s, 3H, 3-CH₃), 4.00-4.03 (m, 1H, C<u>H</u>CH₂), 8.24 (s, 1H, NH).

¹³C NMR δ (ppm) 21.61, 23.16, 24.22 (CH(CH₃)₂, NCH₃), 40.80 (CH₂), 55.08 (C-5), 157.14 (C-2), 174.92 (C-4).

5-Benzyl-3-methylhydantoin (37)

 $C_{11}H_{12}N_2O_2$

5 mmol 5-Benzylhydantoin (0.95 g) werden in 50 ml getrocknetem DMF gelöst und mit 20 mmol wasserfreiem Kaliumcarbonat (2.8 g) und 80 mmol Methyliodid (11.4 g, 4.98 ml) versetzt und 24 h bei Raumtemperatur gerührt. Nach Beendigung der Reaktion wird der gesamte Ansatz vorsichtig mit HCl (2N) neutralisiert und mit 5×50 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat und Aktivkohle getrocknet und zur Trockne einengt. Das entstandene Öl wird mit Wasser aufgenommen und der Niederschlag abgesaugt, gut mit Wasser gewaschen und anschließend im Vakuum gut getrocknet. Ausbeute: 80 mg, 8%.

Fp (**Lit.-Fp**): 146-149°C (166-167°C)²⁴⁹

EA ber. (EA gef.): $C_{11}H_{12}N_2O_2 \times 0.1 H_2O$ C 64.13 (63.97) H 5.97 (5.87) N 13.60 (13.49)

IR (**KBr**): v (cm⁻¹) 3317 (v, NH), 3025 (v, CH_{aryl}), 1757, 1709, 1695 (v, CO).

EIMS (*m/z*, Intensität %): 204 (M⁺, 26), 91 (C₇H₇⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 204.0899 (204.0907)

¹**H NMR** δ (ppm) 2.64 (s, 3H, 3-CH₃), 2.91 (dd, 1H, $J_1 = 5.2$ Hz, $J_2 = 14.18$ Hz, CH₂), 2.98 (dd, 1H, $J_1 = 5.2$ Hz, $J_2 = 13.88$ Hz, CH₂), 4.34 (dt, 1H, $J_1 = 1.25$ Hz, $J_2 = 5.2$ Hz, CH), 7.15-7.27 (m, 5H, Ph), 8.16 (s, 1H, NH).

¹³**C NMR** δ (ppm) 23.91 (CH₃), 36.73 (CH₂), 57.43 (C-5), 126.82 (C-4'), 128.20, 129.67 (C-2', C-3', C-5', C-6'), 135.69 (C-1'), 156.83 (C-2), 173.74 (C-4).
5-Benzylcarbamoyl-1,3,5-trimethylhydantoin (38)

 $C_{14}H_{17}N_3O_3$ M = 275.13 g/mol

Zu 0.5 mmol 5-Benzylcarbamoyl-5-methylhydantoin (**19**, 0.13 g) werden 2.5 ml wasserfreiem DMF und 2 mmol K₂CO₃ (0.28 g) und 8 mmol Methyliodid (0.5 ml) gegeben und 15 Stunden bei Raumtemperatur gerührt. Nach Ende der Reaktion filtriert man und entfernt das DMF im Vakuum. Es werden 10 ml Wasser zugesetzt und die Lösung mit 4×10 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Na₂SO₄ getrocknet, dann mit Aktivkohle gerührt, filtriert und das Lösungsmittel anschließend im Vakuum entfernt. Man erhält ein gelbliches Öl. Ausbeute: 30 mg, 22%.

¹**H NMR** δ (ppm) 1.55 (s, 3H, 5-CH₃), 2.76, 2.87 (s, je 3H, NCH₃), 4.22 (dd, 1H, J_1 = 6.35 Hz, J_2 = 15.25 Hz, 1H, CH₂), 4.33 (dd, 1H, J_1 = 5.63 Hz, J_2 = 15.10 Hz, 1H, CH₂), 7.19-7.32 (m, 5H, Ph), 8.71 (t, 1H, J = 5.90 Hz, NH).

¹³**C NMR** δ (ppm) 17.61, 25.06, 25.78 (CH₃), 42.91 (CH₂), 68.25 (C-5), 126.94, 127.11, 128.40 (CH-Ph), 139.19 (C-Ph), 155.83 (C-2), 165.32 (CO), 171.54 (C-4).

5-(N-Methyl)-benzylcarbamoyl-1,3,5-trimethylhydantoin (39)

 $C_{15}H_{19}N_3O_3$ M = 289.14 g/mol

Zu 7.5 ml einer Suspension von 2 mmol NaH (48 mg, Pulver, 95%) in wasserfreiem DMF werden 0.5 mmol 5-Benzylcarbamoyl-5-methylhydantoin (**19**, 0.13 g) und 8 mmol Methyliodid (1.14 g, 0.5 ml) zugesetzt und 4 Stunden bei 78°C erhitzt. Nach Ende der Reaktion filtriert man und entfernt das DMF im Vakuum. Es werden 10 ml Wasser zugesetzt und die Lösung mit 4×15 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Na₂SO₄ getrocknet, dann mit Aktivkohle gerührt, filtriert und das Lösungsmittel anschließend im Vakuum entfernt. Man erhält ein gelbliches Öl. Ausbeute: 0.12 g, 83% (Gemisch von **38** und **39**). Das Öl wurde in DMSO gelöst und anschließend das Lösungsmittel über mehrere Monate hinweg abgedampft. Dabei wurden schöne Kristalle erhalten, die durch

Monate hinweg abgedampft. Dabei wurden schöne Kristalle erhalten, die durch <u>Röntgenkristallstrukturanalyse</u> untersucht werden konnten.

¹**H NMR** δ (ppm) 1.55 (s, 3H, 5-CH₃), 2.69, 2.76, 2.91 (s, je 3H, NCH₃), 4.45 (d, 1H, CH₂, 1H fehlt), 7.16-7.35 (m, 5H, Ph).

¹³**C NMR** δ (ppm) 20.98, 21.71, 25.02, 25.63 (CH₃), 52.66 (CH₂), 67.75 (C-5), 127.40, 128.69 (CH-Ph), 136.97 (C-Ph), 155.12 (C-2), 164.65 (CO), 171.78 (C-4).

PS-Methylharnstoffharz (41)

0.50 g PS-Methylisocyanat-Harz (1.15 mmol) werden in einem 25 ml Zweihalsspitzkolben mit Trockenrohr und Gaseinleitungsrohr in 12 ml wasserfreiem DCM suspendiert und ca. 10 min. vorgequollen. Anschließend wird bei Raumtemperatur NH₃-Gas mit einer Geschwindigkeit von ca. 100 Blasen/min (gemessen mit einem Blasenzähler) 1-2 Stunden eingeleitet. Mit der Zeit verdampfte etwas Dichlormethan und wurde unter fortlaufender NH₃-Begasung nachgefüllt.

Waschprozedur: $20 \times$ im Wechsel abs. DCM und abs. EtOH

Danach wird das Harz an einer Ölpumpe gut getrocknet (P < 0.3 mbar).

PS-Methyl-5-methylhydantoinharz (42)

Parallel werden 4.6 mmol Natrium (0.11g, 4 Äquiv.) in 5.8 ml abs. EtOH und 5.75 mmol 2-Acetamido-2-methylmalonsäurediethylester (1.33 g, 5 Äquiv.) in 5.8 ml wasserfreiem THF gelöst. 0.50 g Harz (1.15 mmol) werden in einem kleinen 25 ml Laborautoklaven gegeben und zuerst mit der THF-Lösung und anschließend mit der Ethanolatlösung versetzt. Um das System vor Feuchtigkeit zu schützen, lässt man Argongas in den Autoklaven einströmen, verschließt ihn gut und kocht die Suspension (ohne Magnetrührer!) 5 Stunden bei 120°C im Ölbad. Es tritt kein Siedeverzug auf. Nach Ende der Reaktion wird das Harz mit einer Fritte abgesaugt.

Waschprozedur: MeOH 3×, Wasser 1×, MeOH 2×, DCM 2×, THF 2×, EtOH 1×, DCM 2×, MeOH 2×, THF 2×, DCM 1×, DMF 2×, MeOH 1×, abs. EtOH 1×, abs. DCM 3×.

Das Harz wird an der Ölpumpe gut getrocknet.

IR (**KBr**): v (cm⁻¹) 3312 (v, NH), 2920 (v, CH_{alkyl}), 1700, 1684 (v, CO).

Alaninhydrochlorid (43)

 $C_{3}H_{8}NO_{2}$ M = 125.55 g/mol

0.50 g Harz **42** (1.15 mmol) werden in 27 ml HCl (6N) 2 Stunden unter Rühren (sehr kleiner Rührfisch) und Rückfluss erhitzt. Dann wird das Harz abgesaugt und das Filtrat im Vakuum zur Trockne eingeengt. Es entsteht ein weißer Feststoff. Ausbeute: 31.8 mg, 22%.

¹**H NMR** δ (ppm) 1.41 (d, 3H, J = 7.25 Hz, CH₃), 3.84-3.91 (m, 1H, CH), 8.52 (s, 3H, NH₃⁺).

¹³C NMR δ (ppm) 15.88 (CH₃), 47.95 (CH), 171.50 (CO).

1-Benzyl- und 1-Benzhydryl-3-acylharnstoffe (44-45)

Allgemeine Synthesevorschrift:

3 mmol Amin werden in 20 ml trockenem THF mit 4.5 mmol Acylisocyanat versetzt und 12-16 Stunden bei Raumtemperatur gerührt. Wenn eine Aufreinigung der Rohprodukte notwendig war, ist sie unter den einzelnen Substanzen angegeben und erfolgte durch Umkristallisation.

1-Benzoyl-3-benzylharnstoff (44a)

 $C_{15}H_{14}N_2O_2$ M = 254.29 g/mol

Die Hälfte des Lösungsmittel wird abrotiert, die Lösung gekühlt und der gebildete Niederschlag abgesaugt und gut getrocknet. Das gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 0.53 g, 70%.

Fp (Lit.-Fp): 158-160°C (166-167°C)²⁵⁰

EA ber. (EA gef.): C 70.85 (70.60) H 5.55 (5.58) N 11.02 (10.96)

FT-IR (**KBr**): v (cm⁻¹) 3251, 3159 (v, NH), 3064, 3025 (v, CH_{aryl}), 1698, 1694 (v, CO), 1600, 1581, 1504, 1472 (v, C_{aryl}=C_{aryl}), 1530 (δ, NH).

EIMS (*m*/*z*, Intensität %): 254 (M⁺, 3), 121 (M⁺-C₆H₅CH₂NCO, 68), 105 (C₆H₅C \equiv O⁺, 100), 77 (C₆H₅⁺, 63)

¹**H NMR** δ (ppm) 4.45 (d, 2H, J = 6.0 Hz, CH₂), 7.24-7.97 (m, 10H, Ph), 9.05 (t, 1H, J = 6.0 Hz, CH₂N<u>H</u>), 10.73 (s, br, 1H, NH).

¹³**C NMR** δ (ppm) 42.89 (CH₂), 127.08, 127.38, 128.27, 128.55, 128.60, 132.72 (CH-Ph), 132.87, 139.34 (C-Ph), 153.76 (NHCONH), 168.41 (CO).

1-Benzhydryl-3-benzoylharnstoff (44b)

 $C_{21}H_{18}N_2O_2$ M = 330.39 g/mol

Das Lösungsmittel im Vakuum entfernt und der erhaltene Niederschlag gut getrocknet. Der gebildete Feststoff wird aus Ethanol umkristallisiert. Ausbeute: 0.78 g, 79%.

Fp (Lit.-**Fp**): 202-203°C (208-209°C)²⁵¹

EA ber. (EA gef.): C 76.34 (76.21) H 5.49 (5.60) N 8.48 (8.45)

FT-IR (**KBr**): ν (cm⁻¹) 3350, 3302 (ν, NH), 3031 (ν, CH_{aryl}), 2947 (ν, CH_{alkyl}), 1691, 1664 (ν, CO), 1539 (δ, NH).

EIMS (*m*/*z*, **Intensität %):** 330 (M⁺, 40), 182 (Ph₂C=NH₂⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 330.1368 (330.1371)

133.03, 142.33 (C-Ph), 152.86 (NHCONH), 168.98 (CO).

¹**H NMR** δ (ppm) 6.12 (d, 1H, J = 7.55 Hz, CH), 7.25-7.99 (m, 15 H, Ph), 9.58 (d, 1H, J = 7.55 Hz, CHN<u>H</u>), 10.88 (s, 1H, NH). ¹³**C NMR** δ (ppm) 57.18 (CH), 126.89, 127.39, 128.35, 128.63 (CH-Ph), 132.52, 1-Benzyl-3-(2,2,2-trichloracetyl)harnstoff (45a)

 $C_9H_{10}N_2O_2Cl_3$ M = 295.55 g/mol

Das Lösungsmittel im Vakuum entfernt und der erhaltene Niederschlag gut getrocknet. Das Rohprodukt wird aus Petrolether/Ethylacetat umkristallisiert. Ausbeute: 0.89 g, 95%.

Fp (Lit.-Fp): 83-89°C (106°C)^{47,252}

EA ber. (EA gef.): $C_9H_{10}N_2O_2Cl_3 \times 0.9 H_2O$ C 38.53 (37.98) H 3.49 (2.99) N 8.99 (9.38)

FT-IR (KBr): v (in cm⁻¹) 3355, 3244, 3184 (v, NH), 3107, 3004 (v, CH_{aryl}), 1742, 1687 (v, CO).

EIMS (*m*/*z*, Intensität %): 294 (M⁺, 2), 132 (C₆H₅CH=N-C=O⁺, 100), 106 (C₆H₅CH=NH₂⁺, 40), 91 (C₆H₅N⁺, 58).

¹**H** NMR δ (ppm) 4.39(d, 2H, J = 6.0 Hz, CH₂), 7.23-7.35 (m, 5H, Ph), 8.33 (t, 1H, J = 5.8 Hz, CH₂N<u>H</u>), 11.17 (s, br, 1H, NH).

¹³C NMR δ (ppm) 43.28 (CH₂), 92.33 (CCl₃), 127.16, 127.44, 128.52 (CH-Ph), 138.90 (C-Ph), 151.63 (NHCONH), 161.04 (CO).

1-Benzhydryl-3-(2,2,2-trichloracetyl)harnstoff (45b)

 $C_{16}H_{13}N_2O_2Cl_3$ M = 371.65 g/mol

Das Lösungsmittel im Vakuum entfernt und der erhaltene Niederschlag gut getrocknet. Das gewonnene Rohprodukt wird nicht weiter aufgereinigt. Ausbeute: 1.11 g, 98%.

Fp (Lit.-**Fp**): 110-115°C (135°C)²⁵³

EA ber. (EA gef.): $C_{16}H_{13}N_2O_2Cl_3 \times 0.3 H_2O$ C 50.97 (50.69) H 3.63 (3.23) N 7.43 (7.71)

EIMS (*m*/*z*, Intensität %): 370 (M⁺, 4), 208 (Ph₂C=N-CO⁺, 100). **HRMS** [M⁺, ber. (gef.)]: 370.0043 (370.0044)

¹**H** NMR δ (ppm) 6.01 (d, 1H, J = 7.65 Hz, CH), 7.25-7.38 (m, 10 H, Ph), 8.53 (d, 1H, J = 7.60 Hz, CHN<u>H</u>), 11.10 (s, 1H, NH). ¹³C NMR δ (ppm) 57.56 (CH), 92.32 (CCl₃), 127.04, 127.45 (C-4', C-4''), 128.35, 128.78 (C-2', C-2'', C-3', C-3'', C-5', C-5'', C-6', C-6''), 141.89 (C-1', C-1''), 150.47

(NHCONH), 160.60 (CO).

Benzhydrylharnstoff (46)

 $C_{14}H_{14}N_2O$

M = 226.28 g/mol

a)

1.54 mmol 1-Benzhydryl-3-(2,2,2-trichloracetyl)harnstoff (**45b**, 0.57 g) werden in 15.5 ml Methanol 16 Stunden unter Rückfluss erhitzt. Das Methanol wird abrotiert und der Rückstand an der Ölpumpe gut getrocknet. Die Aufreinigung erfolgte mittels Säulenchromatographie mit DCM:MeOH = 9:1 als Fließmittel. Ausbeute: 0.22 g, 62%.

b)

5 mmol Benzhydrylamin (0.92 g, 0.86 ml) werden in 15 ml getrocknetem Tetrahydrofuran gelöst und anschließend 7.5 mmol Trimethylsilylisocyanat (0.86 g, 1.02 ml) zugegeben und bei Raumtemperatur gerührt. Nach 24 Stunden Reaktionszeit werden 15 ml Wasser zugesetzt und weitere 48 Stunden bei Raumtemperatur gerührt. Danach wird das THF abrotiert, wobei ein weißer Niederschlag ausfällt, der abgesaugt und aus Wasser/THF umkristallisiert wird. Ausbeute: 0.15 g, 13%.

Fp (Lit.-Fp): 128-131°C (143-144°C)²⁵⁴

EA ber. (EA gef.): $C_{14}H_{14}N_2O \times 0.3 H_2O$ C 72.58 (72.44) H 6.35 (6.10) N 12.09 (12.13)

EIMS (*m*/*z*, Intensität %): 226 (M⁺, 100), 182 (Ph₂C=NH₂⁺, 82). **HRMS** [M⁺ ber. (gef.)]: 226.1106 (226.1110)

¹**H NMR** δ (ppm) 5.52 (s, 2H, NH₂), 5.86 (d, 1H, J = 7.9 Hz, CH), 7.02 (d, 1H, J = 8.5 Hz, CHN<u>H</u>), 7.19-7.34 (m, 10 H, Ph). ¹³**C NMR** δ (ppm) 56.88 (CH), 126.79 (C-4', C-4''), 127.08, 128.43 (C-2', C-2'', C-3', C-3'', C-5'', C-5'', C-6', C-6''), 143.90 (C-1', C-1''), 157.95 (CO).

5-Acetylamino-1-benzhydryl-5-methylbarbitursäure (47)

 $C_{20}H_{19}N_3O_4$ M = 365.39 g/mol

2 mmol 2-Acetamido-2-methylmalonsäurediethylester (11, 0.48 g) und 2 mmol N-Benzhydryl-N'-benzoylharnstoff (44b, 0.64 g) werden in einer Lösung von 8 mmol Natrium (0.18 g) in 33 ml absolutem Ethanol gelöst und 3 Stunden unter Rückfluss und Argonatmosphäre erhitzt. Nach Beendigung der Reaktion wird der Ethanol abrotiert, der Rückstand mit 20 ml Wasser aufgenommen, wobei unumgesetzter Ausgangsharnstoff ungelöst zurückbleibt und abfiltriert wird. Das Filtrat wird mit HCl (2N) angesäuert. Es fällt ein massiver, weißer Niederschlag aus (Ausbeute: 36%), der aus Ethanol umkristallisiert wird. Ausbeute: 7.3 mg, 1%.

Fp: 254-255°C

EA ber. (EA gef.): C 65.74 (64.91) H 5.24 (5.15) N 11.50 (11.40)

FT-IR (**KBr**): ν (cm⁻¹) 3374 (ν, NH), 3073 (ν, CH_{aryl}), 2868, 2827 (ν, CH_{alkyl}), 1725, 1710, 1642 (ν, CO), 1539 (δ, NH).

EIMS (*m/z*, Intensität %): 365 (M⁺, 100), 306 (M⁺-CH₃CONH₂, 47), 182 (Ph₂C=NH₂⁺, 43), 167 (Ph₂CH⁺, 39).

¹**H NMR** δ (ppm) 1.44 (s, 3H, CH₃), 1.86 (s, 3H, COCH₃), 6.96 (s, 1H, CH), 7.16-7.36 (m, 10H, Ph), 9.10 (s, 1H, N<u>H</u>COCH₃), 11.63 (s, 1H, NH).

¹³**C NMR** δ (ppm) 21.25 (CH₃), 22.01 (CO<u>C</u>H₃), 59.43 (C-5, CH), 127.08, 127.40, 127.95 (C-4', C-4''), 128.25, 128.27, 128.36 (C-Ph), 137.53, 138.79 (C-1', C-1''), 149.68 (C-2), 169.92, 170.10, 170.54 (CO).

5-Benzhydrylcarbamoly-5-methylhydantoin (48)

 $C_{18}H_{17}N_3O_3$ M = 323.25 g/mol

0.5 mmol 2-Acetamido-2-methylmalonsäurediethylester (**11**, 0.12 g) und 0.5 mmol *N*-Benzhydryl-*N*'-benzoylharnstoff (**44b**, 0.16 g) werden in einer Lösung von 2 mmol Natrium (0.05 g) in 2.5 ml absolutem Ethanol gelöst und 6 Stunden bei 120°C unter Argonatmosphäre in einem Autoklaven erhitzt. Nach Beendigung der Reaktion wird der Ethanol wird abrotiert, der Rückstand mit wenig Wasser aufgenommen, wobei ein weißer, unlöslicher Niederschlag entsteht, der abgesaugt wird. Analytische Daten zeigten, dass es sich bei dem Niederschlag um Benzhydrylcarbaminsäureethylester (**49**) handelt. Das Filtrat wird mit HCl (2N) angesäuert und anschließend mit 4×25 ml Ethylacetat ausgeschüttelt. Die organischen Phasen werden vereinigt, über Natriumsulfat getrocknet, filtriert und im Vakuum zur Trockne eingeengt. Das gelbe Öl wird aus 10 ml Ethanol umkristallisiert, wobei sich farblose Kristalle bildeten. Ausbeute: 10 mg, 6%.

Fp: 85-87°C

EA ber. (EA gef.): $C_{18}H_{17}N_3O_3 \times 0.9 H_2O$ C 63.67 (63.36) H 5.58 (5.75) N 12.37 (12.20)

FT-IR (**KBr**): v (cm⁻¹) 3375 (v, NH), 3072 (v, CH_{aryl}), 1725, 1709 (v, CO).

EIMS (*m/z*, Intensität %): 323 (M⁺, 11), 182 (Ph₂C=NH₂⁺, 49), 167 (Ph₂CH⁺, 100). **HRMS** [M⁺, ber. (gef.)]: 323.1270 (323.1279)

¹**H NMR** δ (ppm) 1.52 (s, 3H, CH₃), 6.12 (d, 1H, *J* = 8.65 Hz, CH), 7.23-7.34 (m, 10H, Ph), 8.28 (m, 1H, 1-NH), 8.73 (d, 1H, *J* = 8.45 Hz, CHN<u>H</u>), 10.80 (s, 1H, 3-NH).

¹³C NMR δ (ppm) 21.69 (CH₃), 56.60 (CH), 66.06 (C-5), 127.16, 127.25 (C-4'), 127.61, 127.84, 128.40, 128.43 (C-Ph), 141.73, 141.91 (C-1'), 156.76 (C-2), 166.28 (<u>C</u>ONHCH), 174.02 (C-4).

Benzhydrylcarbaminsäureethylester (49)

 $C_{16}H_{17}NO_2$ M = 255.32 g/mol

Ausbeute: 7.0 mg, 55%.

Fp (Lit.-Fp): 113-115 °C (125-127 °C)²⁵⁵

EA ber. (EA gef.): $C_{16}H_{17}NO_2 \times 0.1 H_2O$ C 74.74 (74.42) H 6.74 (6.76) N 5.45 (5.94)

EIMS (*m/z*, Intensität %): 255 (M⁺, 40), 226 (M⁺ - C₂H₅, 84), 209 (M⁺ - C₂H₅OH, 53), 182 (Ph₂C=NH₂⁺, 100), 167 (Ph₂CH⁺, 60), 104 (C₇H₆N⁺, 84), 77 (C₆H₅⁺, 43). **HRMS** [M⁺ ber. (gef.)]: 255.1259 (255.1267)

¹**H NMR** δ (ppm) 1.16 (t, 3H, J = 6.93 Hz, CH₃), 4.01 (q, 2H, J = 7.13 Hz, CH₂), 5.85 (d, 1H, J = 9.45 Hz, CH), 7.19-7.35 (m, 10H, Ph), 8.19 (d, 1H, J = 8.2 Hz, NH). ¹³**C NMR** δ (ppm) 14.77 (CH₃), 58.26 (CH), 60.04 (CH₂), 126.98 (C-4', C-4''), 127.23, 128.42 (C-Ph), 142.92 (C-1', C-1''), 155.98 (CO).

1-Benzyl-5-methylbarbitursäure (50)

 $C_{12}H_{12}N_2O_3Br$ M = 232.34 g/mol

100 mmol Natrium (2.3 g) werden in 60 ml absolutem Ethanol gelöst und je 100 mmol Methylmalonsäurediethylester (17.42 g, 17.1 ml) und Benzylharnstoff (15.02 g) zugegeben. Die Mischung wird 5 Stunden unter Rückfluss gekocht, wobei ein massiver weißer Niederschlag ausfällt. Das Lösungsmittel wird im Vakuum entfernt, der Rückstand in 100 ml Wasser gelöst, filtriert und mit 50 ml Salzsäure (3N) angesäuert. Der entstandene Niederschlag wird abgesaugt und anschließend im Vakuum getrocknet. Ausbeute: 19.3 g, 83%.

Fp: 116-117°C

EA ber. (EA gef.): C 62.06 (61.74) H 5.21 (5.23) N 12.06 (12.01)

FT-IR (**KBr**): v (cm⁻¹) 3193 (v, NH), 3077 (v, CH_{aryl}), 2859 (v, CH_{alkyl}), 1724, 1682 (v, CO).

¹**H NMR** δ (ppm) 1.36 (d, 3H, *J* = 7.35 Hz, CH₃), 3.86 (q, 1H, *J* = 7.18 Hz, CH), 4.84 (d, 1H, *J* = 15 Hz, CH₂), 4.89 (d, 1H, *J* = 15 Hz, CH₂), 7.20-7.30 (m, 5H, Ph), 11.34 (s, 1H, NH).

¹³**C NMR** δ (ppm) 11.63 (CH₃), 43.59, 43.75 (CH₂, C-5), 127.17 (C-4'), 127.48, 128.36 (C-2', C-3', C-5', C-6'), 137.15 (C-1'), 151.37 (C-2), 169.72, 170.22 (CO).

1-Benzyl-5-brom-5-methylbarbitursäure (51)

 $C_{12}H_{11}N_2O_3Br \qquad \qquad M=311.14 \ g/mol$

a)

30 mmol 1-Benzyl-5-methylbarbitursäure (**50**, 9.33 g) werden in 450 ml Essigsäure 96% gelöst. Zu dieser Lösung werden über 20 Minuten hinweg 30 mmol Brom (24.15 g einer 20%-igen Brom-Essigsäure 96%-Lösung) zugetropft und danach eine Stunde bei Raumtemperatur gerührt. Anschließend wird die Essigsäure abrotiert. Der erhaltene ölige Rückstand wird mit Ether aufgenommen und auf über Aktivkohle in eine Abdampfschale mit dem gleichen Volumen Petrolether gegossen. Man lässt die Lösungsmittel an der Luft verdampfen, nimmt den Niederschlag mit etwas Ether auf, saugt ihn ab und trocknet ihn gut im Vakuum. Ausbeute: 8.96 g, 96%.

b)

10 mmol 1-Benzyl-5-methylbarbitursäure (**50**, 2.32 g) werden in 25 ml wasserfreiem DMF gelöst und mit 10 mmol *N*-Bromsuccinimid (1.78 g) versetzt und die Lösung 5.5 Stunden bei Raumtemperatur gerührt. Das Gemisch wird anschließend aus 50 ml Dichlormethan und 3×25 ml Wasser ausgeschüttelt. Die organische Phase wird mit Aktivkohle gerührt und über wasserfreiem Natriumsulfat getrocknet und anschließend einrotiert. Das gebildete farblose Öl kristallisiert langsam aus. Ausbeute: 1.24 g, 40%.

Die Produkte der Methoden a) und b) sind identisch.

Fp: 84-87°C

EA ber. (EA gef.): C 46.32 (45.23) H 3.56 (3.86) N 9.00 (8.84)

EIMS (*m/z*, Intensität %): 312 (M⁺, ⁸¹Br, 1), 310 (M⁺, ⁷⁹Br, 1), 231 (M⁺-Br, ⁸¹Br, 100), 188 (M⁺-Br-HNCO, ⁸¹Br, 59), 132 (M⁺-⁸¹Br-CH₃CHCONCO, 23), 106 (C₆H₅CH=NH₂⁺, 36), 91 (C₇H₇⁺, 43).

HRMS [**M**⁺ **ber.** (gef.)]: 309.9953 (309.9941)

¹**H** NMR δ (ppm) 2.06 (s, 3H, CH₃), 4.98 (d, 1H, J = 14.2 Hz, CH₂), 5.06 (d, 1H, J = 14.2 Hz, CH₂), 7.22-7.42 (m, 5H, Ph), 8.58 (s, 1H, NH).

¹³C NMR δ (ppm) 21.50 (CH₃), 45.43, 45.45 (CH₂, C-5), 128.22 (C-4'), 128.64, 128.91 (C-2', C-3', C-5', C-6'), 135.09 (C-1'), 148.55 (C-2), 165.59, 166.70 (CO).

1-Benzyl-5-cyclohexylamino-5-methylbarbitursäure (52)

 $C_{18}H_{23}N_3O_3$ M

M = 329.40 g/mol

10 mmol 1-Benzyl-5-brom-5-methylbarbitursäure (**51**, 3.11 g) werden in 25 ml wasserfreiem Acetonitril gelöst und langsam unter Eiskühlung 20 mmol Cyclohexylamin (1.98 g, 2.29 ml) in 5 ml getrocknetem Acetonitril zugetropft und anschließend 1 Stunde bei Raumtemperatur gerührt. Der Ansatz wird mit 250 ml gesättigter NaCl-Lösung verdünnt und mit 4mal 50 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das resultierende Öl wird zweimal mittels Säulenchromatographie gereinigt (1. Eluent: Petrolether/Ethylacetat = 2:1, 2. Eluent: Dichlormethan/Methan = 20:1). Nach Entfernen der Lösungsmittel im Vakuum entsteht ein Schaum. Ausbeute: 0.69 g, 21%.

Fp: 57-62°C

EA ber. (EA gef.): C 65.63 (64.22) H 7.04 (6.95) N 12.76 (12.39)

¹**H NMR** δ (ppm) 0.83-1.52 (m, 10H, CH₂), 1.43 (s, 3H, CH₃), 2.21-2.25 (m, 2H, NHCH), 4.88 (d, 1H, J = 14.75 Hz, CH₂Ph), 4.91 (d, 1H, J = 14.75 Hz, CH₂Ph), 7.23-7.34 (m, 5H, Ph), 11.58 (s, 1H, NH).

¹³**C NMR** δ (ppm) 24.88 (CH₃), 44.02 (NH<u>C</u>H₂), 48.43 (N<u>C</u>H₂), 63.87 (C-5), 126.99, 127.38, 127.49, 128.19, 128.26, 128.55 (C-Ph), 137.06, 139.91 (C-1', C-1''), 150.27 (C-2), 171.45, 172.30 (CO).

5-Phenylbarbitursäure (53)

 $C_{10}H_8N_2O_3$ M = 204.19 g/mol

Zu 100 mmol Natrium (2.3 g), in 30 ml absolutem Ethanol und 30 ml trockenem THF gelöst, werden 100 mmol Phenylmalonsäuredieethylester (23.6 g, 21.5 ml) und 100 mmol Harnstoff (6.0 g) gegeben und anschließend 5 Stunden unter Rückfluss gekocht. Nach 5 Minuten entsteht ein massiver, weißer Niederschlag. Nach Reaktionsende wird der Rückstand in 100 ml Wasser gelöst und mit 80 ml HCl (2N) angesäuert, es fällt ein massiver weißer Niederschlag aus, der über Nacht kühlgestellt wird. Dann wird der Niederschlag abgesaugt, mit 3×25 ml Wasser gewaschen und aus Wasser/Methanol umkristallisiert. Ausbeute: 5.31 g, 26%.

Fp (**Lit.-Fp**): 252-254°C (260-263°C)⁷²

EA ber. (EA gef.): C 58.82 (58.50) H 3.95 (3.95) N 13.72 (13.57)

FT-IR (**KBr**): v (cm⁻¹) 3164 (v, NH), 3052 (v, CH_{arvl}), 1699 (v, CO).

¹H NMR δ (ppm) 4.79 (s, 1H, CH), 7.24–7.36 (m, 5H, Ph), 11.35 (s, 1H, NH).
¹³C NMR δ (ppm) 55.15 (C-5), 127.86 (C-4'), 128.77, 129.33 (C-2', C-3', C-5', C-6'), 134.65 (C-1'), 151.05 (C-2), 169.26 (CO).

1-Benzyl-5-phenylbarbitursäure (54)

 $C_{17}H_{14}N_2O_3$ M = 294.31 g/mol

Zu 100 mmol Natrium (2.3 g), in 30 ml absolutem Ethanol und 30 ml trockenem THF gelöst, werden 100 mmol Phenylmalonsäuredieethylester (23.6 g, 21.5 ml) und 100 mmol Benzylharnstoff (15 g) gegeben und anschließend 5 Stunden unter Rückfluss gekocht. Es werden 100 ml Wasser zugegeben und die Lösung mit 80 ml Salzsäure (2N) angesäuert, es fällt ein weißer Niederschlag aus, der über Nacht kühlgestellt wird. Man saugt ab und umkristallisiert aus Wasser/Methanol um. Ausbeute: 16.2 g, 55%.

Fp (**Lit.-Fp**): 160-162°C (163-165°C)²⁵⁶

EA ber. (EA gef.): $C_{17}H_{14}N_2O_3 \times 0.1 H_2O$ C 68.96 (68.74) H 4.83 (4.68) N 9.46 (9.34)

FT-IR (**KBr**): v (cm⁻¹) 3229, 3137 (v, NH), 2972 (v, CH_{alkyl}), 1750, 1717, 1678 (v, CO).

¹**H NMR** δ (ppm) 4.92 (s, 2H, CH₂), 5.03 (s, 1H, CH), 7.24-7.36 (m, 10H, Ph), 11.66 (s, 1H, NH).

5-Methyl-1-phenylbarbitursäure, Pyridiniumsalz (55)

 $C_{16}H_{15}N_{3}O_{3} \hspace{1cm} M = 297.31 \hspace{0.1 cm} g/mol$

5 mmol 5-Methyl-1-phenylbarbitursäure (**1c**, 1.09 g) werden in 50 ml Dichlormethan unter Kühlung im Eisbad gelöst und langsam 5 ml Pyridin zugetropft. Die Mischung wird 4 Stunden bei Raumtemperatur gerührt. Nach Reaktionsende werden 300 ml n-Hexan zugesetzt, wobei ein Niederschlag ausfällt, der abgesaugt und getrocknet wird. Ausbeute: 1.17 g, 79%.

¹H NMR δ (ppm) 1.60 (s, 3H, CH₃), 6.39 (s, 1H, CH), 7.23-7.26 (m, 2H, Ph/Pyr), 7.36-7.48 (m, 4H, Ph/Pyr), 7.75-7.79 (m, 0.3H, Ph/Pyr), 8.55-8.58 (m, 0.7H, Ph/Pyr), 11.51(s, 1H, NH⁺). 3 H-Signale vom Pyridin bzw. vom Aromaten fehlen.
¹³C NMR δ (ppm) 25.05 (CH₃), 72.08 (C-5), 124.05, 128.55, 128.99, 129.00, 135.16, 136.30, 149.71 (Ph, Pyr), 150.14 (C-2), 171.49, 171.97 (C-4, C-6).

5-Brom-5-methyl-1-phenylbarbitursäure, Pyridiniumsalz (56)

 $C_{16}H_{14}N_3O_3Br$ M = 376.20 g/mol

1 mmol 5-Brom-5-methyl-1-phenylbarbitursäure (**2c**, 0.30 g) werden in 10 ml Dichlormethan unter Kühlung im Eisbad gelöst und langsam 0.5 ml Pyridin zugetropft. Die Mischung wird 4 Stunden bei Raumtemperatur gerührt. Nach 2 Stunden fällt ein Niederschlag aus, der nach Reaktionsende abgesaugt und getrocknet wird. Ausbeute: n.b.

¹**H NMR** δ (ppm) 2.67 (s, 3H, CH₃), 7.43-7.53 (m, 5H, Ph), 8.36 (t, 2H, *J* = 7.23 Hz, 3'-H, 5'-H), 8.86 (t, 1H, *J* = 7.75 Hz, 4'-H), 9.50 (d, 2H, *J* = 6.05 Hz, 2'-H, 6'-H), 12.77 (s, 1H, NH⁺).

¹³**C NMR** δ (ppm) 24.27 (CH₃), 76.15 (C-5), 128.36, 128.83, 129.22, 129.36, 134.06, 145.48, 148.82 (Ph, Pyr), 148.91 (C-2), 166.57, 167.01 (C-4, C-6).

Rink-Amid-NH₂-Harz (57)

Zur Darstellung dieses Harzes siehe Verbindung 61.

Rink-Trichloracetylharnstoff-Harz (60)

Zur Darstellung dieses Harzes siehe Verbindung 62.

1-Benzoylharnstoff (61)

 $C_8H_8N_2O_2$

Im MiniBlock[®] werden 0.5 g Fmoc-Rink-Amid-Harz (Beladung: 0.35 mmol) mit 10 ml einer 20% Piperidin/DMF-Lösung 1 Stunde bei Raumtemperatur unter Schütteln (300 rpm) entschützt und das erhaltene Harz **57** wie folgt mit getrockneten Lösungsmitteln gewaschen:

Waschprozedur 1: 2×DMF, 2×DCM, 1×DMF, 1×DCM, 1×EtOH und 3×THF.

Anschließend werden 10 ml getrocknetes THF und 3.5 mmol Benzoylisocyanat (0.51 g) zugegeben. Der Ansatz wird 24 Stunden bei Raumtemperatur bei 300 rpm geschüttelt. Nach Reaktionsende wird das Harz gründlich gewaschen:

Waschprozedur 2: 2×DCM, 2×EtOH, 1×Wasser, 1×EtOH, 2×THF, 2×DCM, 1×DMF, 1×Toluol, 2×THF, 1×Aceton, 1×MeOH, 1×Wasser, 2×Dioxan, 3×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1h bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 57.5 mg, 100%.

Fp (Lit.-**Fp**): 208-209°C (215°C)¹⁴⁸

EA ber. (EA gef.): C 58.53 (58.61) H 4.91 (4.88) N 17.06 (16.30)

FT-IR (**KBr**): v (cm⁻¹) 3366, 3226 (v, NH), 1709 (v, CO).

EIMS (*m*/*z*, Intensität %): 164 (M⁺, 47), 105 (C₆H₅-C \equiv O⁺, 100), 77 (C₆H₅⁺, 49). **HRMS** [M⁺ ber. (gef.)]: 164.0586 (164.0585).

¹**H NMR** δ (ppm) 7.34 (s, 1H, N<u>H</u>₂), 7.47-7.51 (m, 2H, C-3', C-5'), 7.58-7.62 (m, 1H, C-4'), 7.94-7.96 (m, 2H, C-2', C-6'), 8.03 (s, 1H, N<u>H</u>₂), 10.49 (s, 1H, NH).

¹³**C NMR** δ (ppm) 128.24, 128.58 (CH-Ph), 132.78 (C-Ph), 154.26 (NHCONH), 168.24 (<u>C</u>OPh).

HPLC (H₂O:MeCN = 1:1, 1 ml/min, 210 nm): $t_R = 3.47$ min, Reinheit: 96%.

1-(2,2,2-Trichloracetyl)harnstoff (62)

a)

30 mmol Trichloracetylisocyanat (5.65 g, 3.55 ml) werden in 60 ml getrocknetem Dichlormethan gelöst und anschließend solange Ammoniakgas eingeleitet, bis sich der entstehende weisse Niederschlag nicht weiter verdickt. Der Niederschlag wird abgesaugt, 2-3 mal mit Dichlormethan gewaschen und gut getrocknet. Ausbeute: 5.79 g, 94%.

b)

Im MiniBlock[®] werden 0.5 g Fmoc-Rink-Amid-Harz (Beladung: 0.35 mmol) mit 10 ml einer 20% Piperidin/DMF-Lösung 1 Stunde bei Raumtemperatur unter Schütteln (300 rpm) entschützt und wie das erhaltene Harz **57** folgt mit getrockneten Lösungsmitteln gewaschen:

Waschprozedur 1: 2×DMF, 2×DCM, 1×DMF, 1×DCM, 1×EtOH und 3×THF.

Anschließend werden 10 ml getrocknetes THF und 3.5 mmol Trichloracetylisocyanat (0.67 g, 0.42 ml) zugegeben. Der Ansatz wird 24 Stunden bei Raumtemperatur bei 300 rpm geschüttelt. Nach Reaktionsende wird das Harz **60** gründlich gewaschen:

Waschprozedur 2: 2×DCM, 2×EtOH, 1×Wasser, 1×EtOH, 2×THF, 2×DCM, 1×DMF, 1×Toluol, 2×THF, 1×Aceton, 1×MeOH, 1×Wasser, 2×Dioxan, 3×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1h bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 51.8 mg, 72%.

Fp (**Lit.-Fp**): 152-153°C (150°)²⁵⁷

EA ber. (EA gef.): C 17.54 (17.50) H 1.47 (1.54) N 13.64 (13.65)

FT-IR (KBr): v (cm⁻¹) 3371, 3323, 3237 (v, NH), 1709 (v, CO), 1601 (δ, NH₂), 1381 (δ, NH), 680, 668 (v, CCl).

EIMS (*m/z*, Intensität %): 205 (MH⁺, 2), 87 (MH⁺ - CCl₃, 100).

¹**H NMR** δ (ppm) 7.28 (s, 1H, NH₂), 7.52 (s, 1H, NH₂), 10.99 (s, 1H, NH).

 $^{13}{\rm C}$ NMR δ (ppm) 92.39 (CCl3), 152.25 (NHCONH), 161.19 (CO).

HPLC (H₂O:MeCN = 1:1, 1 ml/min, 210 nm): $t_R = 4.13$ min, Reinheit: 96%.

Rink-Harnstoff-Harz (63)

Zur Darstellung dieses Harzes siehe Verbindung 64.

Harnstoff (64)

 $H_2N \bigvee_{O} NH_2$ CH₄N₂O M = 60.05 g/mol

a)

1.0 g Trichloracetylharnstoff-Harz **60** (Beladung: 0.47 mmol/g) werden in einem Gemisch aus 50 ml Methanol und 50 ml Dioxan 48 Stunden unter Rückfluss erhitzt. Diese Reaktion wird in 21-Rundkolben unter Zugabe von Siedesteinen durchgeführt. Das Erhitzen wird mit einem entsprechend großen Heizpilz erreicht, wobei darauf zu achten ist, dass das Lösungsmittelgemisch nur "ruhig" kocht. Nach Ende der Reaktion lässt man abkühlen, saugt das Harz **63** ab, wäscht es und trocknet es gut.

Waschprozedur: THF 3×, MeOH 3×, THF 1×, DCM 3×, THF 1×, MeOH 1×, THF 1×, n-Pentan 3×.

Nach Zugabe von 30 ml einer 5% TFA in DCM Lösung wird das Harz zur Abspaltung 2 Stunden bei Raumtemperatur mittels KPG-Rührer gerührt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen bräunlichen Feststoff. Rohproduktausbeute: 26.5 mg, 94%.

b)

2.0 g Rink-NH₂-Harz **57** (Beladung: 0.47 mmol/g) werden mit 40 ml getrocknetem THF und 9.4 mmol Trimethylsilylisocyanat (10 Äquiv., 1.08 g, 1.27 ml) versetzt und 24 Stunden bei RT mittels KPG-Rührer gerührt. Danach werden zu dem Gemisch 40 ml Wasser gegeben und wiederum 24 Stunden bei RT gerührt. Das erhaltene Harz **63** wird nun abgesaugt, gewaschen und gut getrocknet.

Waschprozedur: THF 3×, MeOH 3×, THF 1×, DCM 3×, THF 1×, MeOH 1×, THF 1×, n-Pentan 3×.

0.5 g des Harzes werden zur Abspaltung 2 Stunden mit 15 ml einer 5% TFA in DCM Lösung bei Raumtemperatur geschwenkt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält ein braunes Öl. Rohproduktausbeute: 14.1 mg, 100%.

Lt. NMR-Spektren sind die Produkte von a) und b) identisch.

Fp (**Lit.-Fp**): 110-113°C (132-133°C)²⁵⁶

FT-IR (KBr): v (cm⁻¹) 3447 (v, NH), 1669 (v, CO).

EIMS (*m/z*, Intensität %): 60 (M⁺, 100).

¹H NMR δ (ppm) δ 4.79 (s, br, 4H, NH₂). ¹³C NMR δ (ppm) δ 160.00 (CO).

HPLC (H₂O:MeCN = 95:5, 1 ml/min, 210 nm): $t_R = 2.85$ min, Reinheit: 56%.

1-Benzyl-3-phenylacetylharnstoff (65)

 $C_{16}H_{16}N_2O_2$ M = 268.32 g/mol

10 mmol Phenylessigsäure (1.36 g) werden 5 Minuten lang mit 80 mmol Acetanhydrid (8.2 g, 7.6 ml) in 15 ml trockenem Dichlormethan vorinkubiert und anschließend 10 mmol Benzylharnstoff (1.5 g) zugesetzt und 67 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird abrotiert, es bildet sich viel weißer Niederschlag, der abgesaugt und aus Wasser/MeOH/THF umkristallisiert wurde. Ausbeute: 0.54 g, 20%.

Fp: 187-189°C

EA ber. (EA gef.): C 71.62 (71.73) H 6.01 (6.21) N 10.44 (10.63)

EIMS (*m*/*z*, Intensität %): 268 (M⁺, 100), 106 (C₇H₇N⁺, 70), 91 (C₇H₇⁺, 68) **HRMS** [M+ ber. (gef.)]: 268.1212 (268.1215)

¹H NMR δ (ppm) 3.62 (s, 2H, CH₂CO), 4.34 (d, 2H, J = 6.05 Hz, C<u>H₂NH</u>), 7.21-7.32 (m, 5H, Ph), 8.66 (s, br, CH₂N<u>H</u>), 10.57 (s, 1H, CONHCO).
¹³C NMR δ (ppm) 42.56, 42.68 (<u>C</u>H₂NH, <u>C</u>H₂CO), 126.94, 127.05, 127.32, 128.47, 128.50, 129. 39 (CH-Ph), 134.83, 139.28 (C-Ph), 153.46 (NHCONH), 173.01 (<u>C</u>OCH₂).

3-(3-Benzylureido)-3-oxopropionsäureethylester (66)

 $C_{13}H_{16}N_2O_4$ M = 264.28 g/mol

10 mmol Malonsäuremonoethylester (1.32 g, 1.18 ml) werden 5 Minuten lang mit 80 mmol Acetanhydrid (8.2 g, 7.6 ml) in 15 ml trocknetem Dichlormethan bei Raumtemperatur vorinkubiert und anschließend 10 mmol Benzylharnstoff (1.5 g) zugegeben. Nach 1.5 Stunden bildet sich ein Niederschlag und nach 5 weiteren Stunden wird das Lösungsmittel im Vakuum entfernt und der entstandene Niederschlag aus Petrolether / Ethylacetat umkristallisiert. Ausbeute: 1.53 g, 58%.

Fp: 94-96°C

EA ber. (EA gef.): C 59.08 (59.15) H 6.10 (6.06) N 10.60 (10.82)

EIMS (*m/z*, Intensität %): 264 (M⁺, 48), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 28). **HRMS** [M⁺ ber. (gef.)]: 264.1110 (264.1111)

¹**H NMR** δ (ppm) 1.18 (t, 3H, J = 7.1 Hz, CH₃), 3.46 (s, 2H, COCH₂), 4.09 (q, 2H, J = 7.1 Hz, CH₂CH₃), 4.36 (d, 2H, J = 6.05 Hz, CH₂NH), 7.22-7.34 (m, 5H, Ph), 8.56 (s, br, 1H, CH₂N<u>H</u>), 10.50 (s, 1H, CONHCO).

¹³**C NMR** δ (ppm) 14.10 (CH₃), 42.72, 43.15 (CH₂NH, CO<u>C</u>H₂), 60.92 (<u>C</u>H₂CH₃), 127.07 (C-4'), 127.33, 128.50 (C-2', C-3', C-5', C-6'), 139.29 (C-1'), 153.06 (NHCONH), 167.04, 167.99 (<u>C</u>OCH₂<u>C</u>O).

1-Benzyl-3-(2-cyanoacetyl)harnstoff (67)

 $C_{11}H_{11}N_3O_2$ M = 217.23 g/mol

10 mmol Cyanessigsäure (0.85 g) werden 5 Minuten lang mit 80 mmol Acetanhydrid (8.2 g, 7.6 ml) in 15 ml getrocknetem Dichlormethan bei Raumtemperatur vorinkubiert und anschließend 10 mmol Benzylharnstoff (1.5 g) zugegeben. Zunächst entsteht eine klare Lösung, nach 10 Stunden bildet sich ein Niederschlag. Das Lösungsmittel wird im Vakuum entfernt. Der feste Rückstand wird aus Petrolether/Ethylacetat umkristallisiert und der Niederschlag abgesaugt und getrocknet. Ausbeute: 0.96 g, 44%.

Fp (Lit.-Fp): 168-171°C (172°C)²⁵⁸

EA ber. (EA gef.): C 60.82 (60.91) H 5.10 (5.13) N 19.34 (19.08)

EIMS (*m*/*z*, Intensität %): 217 (M⁺, 16), 105 (C₇H₇N⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 217.0851 (217.0848).

¹**H NMR** δ (ppm) 3.92 (s, 2H, COCH₂), 4.36 (d, 2H, J = 6.05 Hz, C<u>H</u>₂NH), 7.22-7.34 (m, 5H, Ph), 8.39 (s, br, 1H, CH₂N<u>H</u>), 10.58 (s, 1H, CONHCO). ¹³**C NMR** δ (ppm) 26.87 (<u>C</u>H₂CN), 42.81 (<u>C</u>H₂NH), 115.16 (CN), 127.07 (C-4'), 127.31, 128.48 (C-2', C-3', C-5', C-6'), 139.22 (C-1'), 152.59 (NHCONH), 165.10 (<u>C</u>OCH₂).

1-Benzyl-3-(2-chloracetyl)harnstoff (68)

 $C_{10}H_{11}N_2O_2Cl$ M = 226.66 g/mol

10 mmol Chloressigsäure (0.94 g) werden 5 Minuten lang bei Raumtemperatur mit 80 mmol Acetanhydrid (8.2 g, 7.6 ml) in 15 ml getrocknetem Dichlormethan vorinkubiert und anschließend 10 mmol Benzylharnstoff (1.5 g) zugegeben. Es entsteht eine klare Lösung, die nach insgesamt 6 Tagen Rühren bei Raumtemperatur im Vakuum zur Trockne eingeengt wird. Der Rückstand wird zunächst aus Petrolether / Ethylacetat umkristallisiert und der entstandene Niederschlag nochmals mittels Säulenchromatographie mit Petrolether / Ethylacetat = 1:1 gereinigt und gut getrocknet. Ausbeute: 0.27 g, 12%. Als ein Nebenprodukt konnte dabei 1-Acetyl-3-benzylharnstoff (**72**) isoliert werden.

Fp: 151-153°C

EA ber. (EA gef.): C 52.99 (52.97) H 4.89 (4.92) N 12.36 (12.25)

EIMS (*m*/*z*, **Intensität %**): 226 (M⁺, 45), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 39). **HRMS** [M⁺, ber. (gef.)]: 226.0509 (226.0512)

¹**H NMR** δ (ppm) 4.27 (s, 2H, COCH₂), 4.37 (d, 2H, J = 6.0 Hz, C<u>H</u>₂NH), 7.22-7.34 (m, 5H, Ph), 8.49 (s, br, 1H, CH₂N<u>H</u>), 10.60 (s, 1H, CONHCO). ¹³**C NMR** δ (ppm) 42.80 (<u>C</u>H₂NH), 43.16 (<u>C</u>H₂Cl), 127.07 (C-4'), 127.32, 128.50 (C-2', C-3', C-5', C-6'), 139.24 (C-1'), 152.81 (NHCONH), 168.16 (<u>C</u>OCH₂).

1-Benzyl-3-but-3-enoylharnstoff (69)

 $C_{12}H_{14}N_2O_2$ M = 218.26 g/mol

10 mmol Vinylessigsäure 90% (0.95 g, 0.94 ml) werden 5 Minuten lang bei Raumtemperatur mit 80 mmol Acetanhydrid (8.2 g, 7.6 ml) in 15 ml trockenem Dichlormethan vorinkubiert und anschließend 10 mmol Benzylharnstoff (1.5 g) zugegeben. Es entsteht eine klare Lösung, die nach insgesamt 5 Tagen Rühren bei Raumtemperatur im Vakuum zur Trockne eingeengt wurde. Der Rückstand wird mittels Säulenchromatographie mit Petrolether / Ethylacetat = 1:1 gereinigt. Ausbeute: 0.13 g, 6%. Als Nebenprodukt konnte dabei 1-Acetyl-3-benzylharnstoff (**72**) in einer Ausbeute von 7% (0.13 g) isoliert werden.

Fp: 131-133°C

EA ber. (EA gef.): C 66.04 (66.40) H 6.47 (7.00) N 12.84 (11.31)

EIMS (*m*/*z*, Intensität %): 218 (M⁺, 44), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 45) **HRMS** [M⁺ ber. (gef.)]: 218.1055 (218.1055)

¹**H NMR** δ (ppm) 3.10 (td, 2H, $J_1 = 1.34$ Hz, $J_2 = 6.95$ Hz, COCH₂), 4.36 (d, 2H, J = 6.0 Hz, CH₂NH), 5.13 (m, 2H, CH=CH₂), 5.85 (m, 1H, CH=CH₂), 7.22-7.34 (m, 5H, Ph), 8.66 (s, br, 1H, CH₂NH), 10.37 (s, 1H, CONHCO). ¹³**C NMR** + **DEPT** + **HSQC** δ (ppm) 40.74 (CH₂CO), 42.65 (CH₂NH), 118.58 (CH=CH₂), 131.27 (CH=CH₂), 127.04 (C-4'), 127.29, 128.51 (C-2', C-3', C-5', C-6'), 139.36 (C-1'), 153.43 (NHCONH), 172.83 (COCH₂).

1-Acetyl-3-benzylharnstoff (72)

 $C_{10}H_{12}N_2O_2$ M = 192.21 g/mol

a)

5 mmol Benzylharnstoff (0.75 g) werden mit 15 ml Acetanhydrid versetzt und 30 min unter Rückfluss erhitzt. Danach rotiert man das Acetanhydrid ab, nimmt den kristallinen, aber leicht gelblichen Rückstand in Ethylacetat auf, setzt wasserfreies Natriumsulfat und Aktivkohle zu und rührt diese Suspension ca. 30 min. Danach wird filtriert und das Filtrat am Rotationsverdampfer zur Trockne eingeengt. Der erhaltene Rückstand wird getrocknet. Ausbeute: 0.74 g, 77%.

b)

5 mmol Benzylharnstoff (0.75 g) werden in 7.5 ml getrocknetem Toluol suspendiert und anschließend 40 mmol Acetanhydrid (4.1 g, 3.8 ml) zugesetzt und 32 Stunden bei 70°C erhitzt. Man engt die Lösung zur Trockne ein und trocknet den erhaltenen Rückstand gut. Ausbeute: 0.96 g, 100%.

Die Produkte von a) und b) waren identisch.

Fp (Lit.-Fp): 129-131°C (130-131°C)⁴⁷

EA ber. (EA gef.): C 62.49 (62.16) H 6.29 (6.31) N 14.57 (14.44)

EIMS (*m/z*, Intensität %): 192 (M⁺, 42), 106 (C₆H₅CH=NH₂⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 192.0899 (192.0902)

¹**H NMR** δ (ppm) 2.00 (s, 3H, CH₃), 4.36 (d, 2H, J = 6.0 Hz, CH₂), 7.21-7.33 (m, 5H, Ph), 8.70 (s, br, N<u>H</u>CH₂), 10.33 (s, 1H, CONHCO). ¹³**C NMR** δ (ppm) 23.65 (CH₃), 42.59 (CH₂), 127.03 (C-4'), 127.28, 128.50 (C-2', C-3', C-5', C-6'), 139.42 (C-1'), 153.50 (NHCONH), 172.42 (COCH₃).

Malonsäuremonoethylester (73)

Allgemeine Synthesevorschrift:

3 mmol des entsprechenden Malonsäurediethylesters werden in 12 ml Ethanol und 6 ml THF gelöst. Es werden 3 mmol Natriumhydroxid (1N, 3.04 ml) zugesetzt und die Lösung 24 Stunden bei Raumtemperatur gerührt. Anschließend werden die Lösungsmittel im Vakuum entfernt und das resultierende Öl mit 20 ml Wasser versetzt und mit Petrolether (2×20 ml) ausgeschüttelt, um unumgesetzten Ausgangsstoff zu entfernen. Die Petroletherphasen werden verworfen. Die wässrige Phase mit HCl (2N) angesäuert und dann mit Dichlormethan (3×20 ml) ausgeschüttelt. Die organischen Phasen werden vereinigt, über Natriumsulfat getrocknet und zur Trockne eingeengt.

2-Methylmalonsäuremonoethylester (73a)

 $C_6H_{10}O_4$ M = 146.06 g/mol

Das gebildete farbloses Öl wird nicht weiter aufgereinigt. Ausbeute: 0.25 g, 57%.

¹**H** NMR δ (ppm) 1.17 (t, 3H, J = 7.08 Hz, CH₂C<u>H</u>₃), 1.23 (d, 3H, J = 7.25 Hz, CHC<u>H</u>₃), 3.40 (q, 1H, J = 7.13, C<u>H</u>CH₃), 4.09 (q, 2H, J = 7.13 Hz, CH₂CH₃), 12.76 (s, br, 1H, COOH).

¹³**C NMR** δ (ppm) 13.66 (CH<u>C</u>H₃), 14.07 (CH₂<u>C</u>H₃), 45.69 (CH), 60.76 (<u>C</u>H₂CH₃), 170.30 (<u>C</u>OOC₂H₅), 171.34 (COOH).

2-Ethylmalonsäuremonoethylester (73b)

 $C_7H_{12}O_4$ M = 160.17 g/mol

Das gebildete leicht gelbliches Öl wird nicht weiter aufgereinigt. Ausbeute: 0.15 g, 31%.

¹**H** NMR δ (ppm) 0.87 (t, 3H, J = 7.40 Hz, CHCH₂C<u>H</u>₃), 1.17 (t, 3H, J = 7.10 Hz, OCH₂C<u>H</u>₃), 1.69-1.77 (m, 2H, CHC<u>H</u>₂), 3.24 (t, 1H, J = 7.40 Hz, CH), 4.10 (q, 2H, J = 7.13 Hz, OC<u>H</u>₂CH₃), 12.69 (s, br, 1H, COOH).

¹³C NMR δ (ppm) 11.79 (CHCH₂<u>C</u>H₃), 14.07 (OCH₂<u>C</u>H₃), 22.00 (CH<u>C</u>H₂CH₃), 53.11 (CH), 60.76 (<u>C</u>H₂CH₃), 169.67 (<u>C</u>OOC₂H₅), 170.65 (COOH).

2-Benzylmalonsäuremonoethylester (73c)

 $C_{12}H_{14}O_4$ M = 222.24 g/mol

Das gebildete farbloses Öl wird nicht weiter aufgereinigt. Ausbeute: 0.40 g, 60%.

¹**H NMR** δ (ppm) 1.10 (t, 3H, J = 7.08 Hz, CH₂CH₃), 3.06 (m, 2H, CH₂Ph), 3.69 (m, 1H, CH), 4.05 (q, 2H, J = 7.03 Hz, CH₂CH₃), 7.19 - 7.30 (m, 5H, Ph), 12.87 (s, br, 1H, COOH).

¹³**C NMR** δ (ppm) 14.73 (CH₂<u>C</u>H₃), 35.04 (<u>C</u>H₂Ph), 54.04 (CH), 61.53 (<u>C</u>H₂CH₃), 169.73 (<u>C</u>OOC₂H₅), 170.65 (COOH).
2-Allylmalonsäuremonoethylester (73d)

 $C_{8}H_{12}O_{4} \hspace{1.5cm} M = 172.18 \hspace{0.1 cm} g/mol$

Das gebildete farbloses Öl wird nicht weiter aufgereinigt. Ausbeute: 0.17 g, 33%.

¹**H NMR** δ (ppm) 1.17 (t, 3H, J = 7.10 Hz, CH₂CH₃), 2.42-2.48 (m, 2H, CHCH₂), 3.41 (t, 1H, J = 7.43 Hz, CHCH₂), 4.09 (q, 2H, J = 7.15 Hz, CH₂CH₃), 4.99-5.10 (m, 2H, CH=CH₂), 5.70-5.79 (m, 1H, CH=CH₂), 12.83 (s, br, 1H, COOH). ¹³C **NMR** δ (ppm) 14.14 (OCH₂CH₃), 32.65 (CHCH₂), 51.17 (CH), 60.86 (CH₂CH₃), 117.28 (CH=CH₂), 134.88 (CH=CH₂), 169.08 (COOC₂H₅), 170.03 (COOH).

1-Benzylbarbitursäure (74)

 $C_{11}H_{10}N_2O_3$ M = 218.21 g/mol

a)

Zu 50 mmol Natrium (1.15 g) in 30 ml absolutem Ethanol werden 50 mmol Malonsäurediethylester (8 g, 8.4 ml) und 50 mmol Benzylharnstoff (7.5 g) gegeben und 5 Stunden unter Rückfluss gekocht, wobei nach einiger Zeit ein starker weißer Niederschlag entsteht. Anschließend wird der Ethanol abrotiert und der Rückstand in 50 ml Wasser gelöst und mit 40 ml Salzsäure (2N) angesäuert, es fällt ein weißer Niederschlag aus, der über Nacht kühlgestellt wird. Dann wird der Niederschlag abgesaugt und aus Methanol/Wasser umkristallisiert, abgesaugt und gut über Phosphorpentoxid getrocknet. Ausbeute: 6.98 g, 64%.

b)

Zu 3 mmol Natrium (0.07 g) in 7.5 ml absolutem Ethanol und 7.5 ml getrocknetem THF werden 2 mmol 3-(3-Benzylureido)-3-oxopropionsäureethylester (**66**, 0.53 g) gegeben und das Gemisch 14 Stunden bei Raumtemperatur gerührt. Aus der orangegelben Lösung fällt ein weißer Niederschlag aus. Die Lösungsmittel werden abrotiert, der Rückstand in wenig Wasser aufgenommen und mit HCl (2N) angesäuert, wobei sich ein klebriger orangefarbener Niederschlag bildet. Das Gemisch wird aus 4×20 ml Ethylacetat ausgeschüttelt und über wasserfreiem Natriumsulfat und Aktivkohle mindestens 30 min gerührt, abfiltriert und zur Trockne eingeengt. Das so gebildete gelbe Öl wird sofort aus Wasser/MeOH umkristallisiert und die Lösung über Nacht in den Kühlschrank gestellt. Die entstandenen gelben Kristalle werden abgesaugt und getrocknet, und erwiesen sich als identisch mit der unter a) erhaltenen Substanz. Ausbeute: 21.8 mg, 5%.

c)

Zu 3 mmol Natriumhydrid (72 mg, Pulver, 95%) in 10 ml trockenem DMF werden 2 mmol 3-(3-Benzylureido)-3-oxopropionsäureethylester (**66**, 0.53 g) gegeben und das Gemisch 5 Stunden bei Raumtemperatur gerührt. Aus der orangegelben Lösung fällt

nach ca. 1.5 Stunden ein weißer Niederschlag aus, der abgesaugt, danach in Wasser gelöst und schließlich angesäuert wird. Aus dieser Lösung fällt über Nacht im Kühlschrank ein Niederschlag aus, der abgesaugt und getrocknet wird.

Zusätzlich wird die Mutterlauge im Vakuum zur Trockne eingeengt und der Rückstand ebenfalls in Wasser aufgenommen und angesäuert, wobei sich ein klebriger Niederschlag bildet. Das Gemisch wird aus 4×20 ml Ethylacetat ausgeschüttelt und über wasserfreiem Natriumsulfat getrocknet, abfiltriert und zur Trockne eingeengt. Das Öl wird 5-10 mal in Ether aufgenommen und im Vakuum zur Trockne eingeengt, wobei sich ein Feststoff bildet. Beide erhaltene Feststoffe sind identisch mit der unter a) erhaltenen Substanz und werden daher vereinigt. Ausbeute: 0.25 g, 57%.

Fp (**Lit.-Fp**): 150-151°C (148-150°C)²⁵⁹

EA ber. (EA gef.): C 60.55 (60.43) H 4.62 (4.63) N 12.84 (12.71)

FT-IR (**KBr**): v (cm⁻¹) 3253 (v, NH), 3064 (v, CH_{aryl}), 2972, 2907 (v, CH_{alkyl}), 1732, 1705, 1674 (v, CO).

¹**H NMR** δ (ppm) 3.69 (s, 2H, C<u>H</u>₂Ph), 4.87 (s, 2H, C<u>H</u>₂CO), 7.21-7.31 (m, 5H, Ph), 11.39 (s, 1H, NH).

¹³**C NMR** δ (ppm) 40.11 (C-5), 43.22 (CH₂), 127.86 (C-4'), 128.77, 129.33 (C-2', C-3', C-5', C-6'), 137.09 (C-1'), 151.87 (C-2), 166.59, 167.07 (C-4, C-6).

3-Oxo-3-ureidopropionsäureethylester (75a)

 $C_6H_{12}N_2O_4$ M = 174.16

a)

10 mmol Harnstoff (0.6 g) und 20 mmol (3.01 g, 2.53 ml) Malonsäuremonoethylesterchlorid werden 25 Stunden in trockenem Toluol unter Rückfluss erhitzt. Das Lösungmittel wird abrotiert und das entstandene gelb-braune Öl mittels Säulenchromatographie (Eluent: Ethylacetat, sehr lange Säule) gereinigt. Ausbeute: 11%. Der erhaltene weiße Feststoff wird nochmals aus Wasser umkristallisiert. Ausbeute: 52.2 mg, 3%.

b)

Im Miniblock werden zu 0.5 g Rink-Harnstoff-Harz (**63**) (Beladung: 0.305 mmol) 15 ml getrocknetes Dichlormethan, 24.4 mmol Acetanhydrid (80 Äquiv., 2.49 g, 2.31 ml) und 3.05 mmol Malonsäuremonoethylester (10 Äquiv., 0.40 g, 0.36 ml) gegeben und das Gemisch bei Raumtemperatur über 2 Wochen bei 250 rpm geschüttelt. Danach wird das Harz wie folgt gewaschen und getrocknet:

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 10 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 2 Stunden bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen gelblichen Feststoff. Ausbeute: 12.6 mg, 24%. Die NMR-Daten stimmen mit denen von Methode a) überein.

Fp: 128-131°C

¹**H NMR** δ (ppm) 1.18 (t, 3H, J = 7.10 Hz, CH₂CH₃), 3.44 (s, 2H, COCH₂CO), 4.09 (q, 2H, J = 7.15 Hz, CH₂CH₃), 7.25 (s, 1H, NH₂), 7.53 (s, 1H, NH₂), 10.25 (s, 1H, NH). ¹³**C NMR** δ (ppm) 14.10 (CH₂CH₃), 43.17 (COCH₂CO), 60.89 (CH₂CH₃), 153.55 (NHCONH), 167.08, 167.87 (COCH₂). **HPLC** (H₂O:MeCN = 76:24, 1 ml/min, 210 nm, Methode a): $t_R = 5.17$ min, Reinheit: 96%. (aufgenommen von dem nach Methode a) erhaltenen Produkt)

3-(3-Acetylureido)-3-oxo-propionsäureethylester (75b)

 $C_8H_{12}N_2O_5$ M = 216.20 g/mol

5 mmol Malonsäuremonoethylester (0.66 g, 0.59 ml) werden mit 40 mmol Acetanhydrid (4.08 g, 3.77 ml) 5 Minuten bei Raumtemperatur vorinkubiert und dann mit 5 mmol Trichloracetylharnstoff versetzt und 3 Tage bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und das Öl mit einer sehr langen Säule mit Petrolether/Ethylacetat = 1:1 gesäult. Es bildet sich nicht der gewünschte 3-Oxo-3-[3-(2,2,2-trichloracetyl)ureido]propionsäureethyhleser, sondern oben gezeigtes Produkt. Ausbeute: 0.19 g, 18%. Als Nebenprodukt konnte *N*-Acetylmalonamsäureethylester (**75c**) als Öl isoliert werden. Ausbeute: 77.9 mg, 9%.

Fp: 121-125°C

EA ber. (EA gef.): C 44.45 (44.73) H 5.59 (5.60) N 12.96 (12.64)

EIMS (*m*/*z*, Intensität %): 216 (M⁺, 13), 201 (M⁺-C₂H₅, 38), 129 (CH₃CONHCONHCO⁺, 100).

HRMS [M⁺ ber. (gef.)]: 216.0746 (216.0738)

¹H NMR δ (ppm) 1.17 (t, 3H, J = 7.08 Hz, CH₂CH₃), 2.16 (s, 3H, COCH₃), 3.70 (s, 2H, COCH₂CO), 4.09 (q, 2H, J = 7.05 Hz, CH₂CH₃), 10.77, 10.96 (NH).
¹³C NMR δ (ppm) 14.08 (CH₂CH₃), 24.43 (COCH₃), 44.31 (COCH₂CO), 60.89 (CH₂CH₃), 149.86 (NHCONH), 166.76, 167.87 (COCH₂), 172.90 (COCH₃).

N-Acetylmalonamsäureethylester (75c)

 $C_7H_{11}NO_4$ M = 173.17 g/mol

¹**H NMR** δ (ppm) 1.17 (t, 3H, J = 7.10 Hz, CH₂CH₃), 2.10 (s, 3H, COCH₃), 3.58 (s, 2H, COCH₂CO), 4.08 (q, 2H, J = 7.03 Hz, CH₂CH₃), 10.84 (NH).

¹³**C NMR** δ (ppm) 13.40 (CH₂<u>C</u>H₃), 23.85 (CO<u>C</u>H₃), 43.63 (CO<u>C</u>H₂CO), 59.98 (<u>C</u>H₂CH₃), 166.34, 166.55 (<u>C</u>OCH₂), 170.32 (<u>C</u>OCH₃).

1-Benzyl-3-propionylharnstoff (76)

 $C_{11}H_{14}N_2O_2$ M = 206.25 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Propionsäureanhydrid (5.21 g, 5.13 ml) und 7.5 ml getrocknetem Toluol 48 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der feste, kristalline Rückstand mittels Säulenchromatographie (Eluent: Petrolether / Ethylacetat = 2:1) gereinigt. Ausbeute: 0.85 g, 83%.

Fp (Lit.-**Fp**): 109-114°C (118-119°C)²⁰⁰

EA ber. (EA gef.): C 64.06 (64.04) H 6.84 (6.82) N 13.58 (13.56)

EIMS (*m*/*z*, Intensität %): 206 (M⁺, 172), 106 (C₆H₅CH=NH₂⁺, 100). **HRMS** [M⁺, ber. (gef.)]: 206.1055 (206.1055)

¹**H NMR** δ (ppm) 1.00 (t, 3H, J = 7.57 Hz, CH₂CH₃), 2.29 (q, 2H, J = 7.57 Hz, CH₂CH₃), 4.36 (d, 2H, J = 6.0 Hz, CH₂NH), 7.22-7.35 (m, 5H, Ph), 8.74 (s, br, 1H, CH₂N<u>H</u>), 10.29 (s, 1H, CONHCO).

¹³**C NMR** + **DEPT** δ (ppm) 8.92 (CH₂<u>C</u>H₃), 29.11 (<u>C</u>H₂CH₃), 42.63 (<u>C</u>H₂NH), 127.03 (C-4'), 127.30, 128.51 (C-2', C-3', C-5', C-6'), 139.41 (C-1'), 153.57 (NHCONH), 175.88 (<u>C</u>OCH₂).

1-Benzyl-3-butyrylharnstoff (77)

 $C_{12}H_{16}N_2O_2$ M = 220.27 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Buttersäureanhydrid (6.33 g, 6.57 ml) und 7.5 ml getrocknetem Toluol 48 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der feste, kristalline Rückstand mittels Säulenchromatographie mit Petrolether / Ethylacetat = 2:1 als Eluent gereinigt. Ausbeute: 0.91 g, 83%.

Fp (Lit.-Fp): 109-114°C (111-112°C)²⁰⁰

EA ber. (EA gef.): C 65.43 (65.11) H 7.32 (7.21) N 12.72 (12.46)

EIMS (*m/z*, Intensität %): 220 (M⁺, 29), 106 (C₆H₅CH=NH₂⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 220.1212 (220.1216)

¹**H** NMR δ (ppm) 0.86 (t, 3H, J = 7.4 Hz, CH₃), 1.51 (m, 2H, CH₂CH₃), 2.26 (t, 2H, J = 7.25 Hz, CH₂CH₂CH₃), 4.36 (d, 2H, J = 6.0 Hz, CH₂NH), 7.22-7.34 (m, 5H, Ph), 8.75 (s, br, 1H, CH₂NH), 10.30 (s, 1H, CONHCO).

¹³C NMR δ (ppm) 13.54 (CH₃), 17.99 (<u>C</u>H₂CH₃), 37.68 (<u>C</u>H₂CH₂CH₂CH₃), 42.63 (<u>C</u>H₂NH), 127.04 (C-4'), 127.31, 128.51 (C-2', C-3', C-5', C-6'), 139.40 (C-1'), 153.55 (NHCONH), 175.09 (<u>C</u>OCH₂).

1-Benzyl-3-pentanoylharnstoff (78)

 $C_{13}H_{18}N_2O_2$ M = 234.29 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Valeriansäureanhydrid (7.45 g, 7.91 ml) und 15 ml trockenem Toluol 20 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der feste, kristalline Rückstand mit Petrolether / Ethylacetat = 2:1 gesäult. Ausbeute: 0.19 g, 16%.

Fp (Lit.-Fp): 128-129° (119-120°)²⁰⁰

EA ber. (EA gef.): C 66.64 (66.66) H 7.74 (7.74) N 11.96 (11.94)

EIMS (*m/z*, Intensität %): 234 (M⁺, 32), 106 (C₆H₅CH=NH₂⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 234.1368 (234.1373)

¹**H NMR** δ (ppm) 0.85 (t, 3H, J = 7.4 Hz, CH₃), 1.22-1.30 (m, 2H, C<u>H</u>₂CH₃), 1.46-1.52 (m, 2H, C<u>H</u>₂CH₂CH₃), 2.28 (t, 2H, J = 7.4 Hz, COC<u>H</u>₂), 4.36 (d, 2H, J = 6.0 Hz, C<u>H</u>₂NH), 7.22-7.34 (m, 5H, Ph), 8.75 (s, br, 1H, CH₂N<u>H</u>), 10.30 (s, 1H, CONHCO). ¹³**C NMR** δ (ppm) 14.48 (CH₃), 22.47 (CH₂CH₃), 27.38 (CH₂CH₂CH₃), 36.24 (COCH₂), 43.37 (CH₂NH), 127.78 (C-4'), 128.06, 129.26 (C-2', C-3', C-5', C-6'), 140.14 (C-1'), 154.30 (NHCONH), 175.99 (COCH₂).

1-Benzyl-3-hexanoylharnstoff (79)

 $C_{14}H_{20}N_2O_2$ M = 248.32 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Hexansäureanhydrid (8.57 g, 9.26 ml) und 15 ml trockenem Toluol 33 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der feste, kristalline Rückstand zweimal mit Petrolether / Ethylacetat = 4:1 gesäult. Ausbeute: 0.76 g, 61%.

Fp (**Lit.-Fp**): 128-129°C (119-120°)²⁰⁰

EA ber. (EA gef.): C 67.71 (67.82) H 8.12 (8.09) N 11.28 (11.22)

EIMS (*m/z*, Intensität %): 248 (M⁺, 22), 106 (C₆H₅CH=NH₂⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 248.1525 (248.1525)

¹**H NMR** δ (ppm) 0.85 (t, 3H, J = 7.08 Hz, CH₃), 1.19-1.30 (m, 4H, C<u>H₂CH₂CH₃</u>CH₃), 1.48-1.54 (m, 2H, C<u>H₂CH₂CH₂CH₃</u>), 2.27 (t, 2H, J = 7.4 Hz, COC<u>H₂</u>), 4.36 (d, 2H, J = 6.0 Hz, C<u>H₂NH</u>), 7.22-7.34 (m, 5H, Ph), 8.75 (s, br, 1H, CH₂N<u>H</u>), 10.30 (s, 1H, CONHCO).

¹³**C NMR** δ (ppm) 13.89 (CH₃), 21.90 (<u>C</u>H₂CH₃), 24.18 (<u>C</u>H₂CH₂CH₂CH₃), 30.77 (<u>C</u>H₂CH₂CH₂CH₃), 35.74 (CO<u>C</u>H₂), 42.62 (<u>C</u>H₂NH), 127.03 (C-4'), 127.31, 128.50 (C-2', C-3', C-5', C-6'), 139.40 (C-1'), 153.55 (NHCONH), 175.25 (<u>C</u>OCH₂).

1-Benzyl-3-isobutyrylharnstoff (80)

 $C_{12}H_{16}N_2O_2$ M = 220.27 g/mol

a)

10 mmol Benzylharnstoff (1.5 g) werden in 30 ml getrocknetem Toluol suspendiert und anschließend 40 mmol Isobuttersäureanhydrid (6.33 g, 6.63 ml) zugegeben. Der Ansatz wird 39 Stunden bei 80 °C erhitzt. Danach engt man im Vakuum zur Trockne ein und reinigt den erhaltenen Rückstand durch dreimalige Säulenchromatographie (Eluenten: 1. DCM / MeOH = 9:1; 2. Petrolether / Ethylacetat = 2:1, 3. Petrolether / Ethylacetat = 4:1). Ausbeute: 0.29 g, 13%.

b)

Zu einer Suspension von 1.5 mmol Benzylharnstoff (0.23 g) in 5 ml getrocknetem Toluol werden 3 mmol Isobuttersäureanhydrid (0.47 g, 0.49 ml) zugegeben. Der Ansatz wird in der Mikrowelle 15 min lang mit 200W bei 180°C erhitzt. Die Reaktionskontrolle wird mittels DC durchgeführt und so auf Abwesenheit des Ausgangsharnstoffs geprüft. Die Lösungen von 13 solcher Ansätze werden vereinigt, das Lösungsmittel im Vakuum entfernt und der erhaltene Rückstand durch Säulenchromatographie gereinigt (Eluent: Petrolether / Ethylacetat = 4:1). Ausbeute: 1.37 g, 32%.

Fp (**Lit.-Fp**): 114-116°C (114-115°C)²⁰⁰

EA ber. (EA gef.): C 65.43 (65.46) H 7.32 (7.31) N 12.72 (12.40)

EIMS (*m*/*z*, Intensität %): 220 (M⁺, 30), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 47). **HRMS** [M⁺ ber. (gef.)]: 220.1212 (220.1219)

¹**H** NMR δ (ppm) 1.03 (d, 6H, J = 6.95 Hz, CH₃), 2.57 (sept., 1H, J = 6.87 Hz, CH), 4.36 (d, 2H, J = 6.00 Hz, CH₂), 7.16-7.34 (m, 5H, Ph), 8.77 (t, 1H, J = 5.50 Hz, CH₂N<u>H</u>), 10.31 (s, 1H, NH).

¹³**C NMR** δ (ppm) 19.03 (CH₃), 34.52 (CH), 42.67 (CH₂), 127.06 (C-4'), 127.37, 128.53 (C-2', C-3', C-5', C-6'), 139.72 (C-1'), 153.72 (NHCONH), 179.05 (CO).

1-Benzyl-3-(2,2-dimethylpropionyl)harnstoff (81)

 $C_{13}H_{18}N_2O_2$ M = 234.29 g/mol

5 mmol Benzylharnstoff (0.75 g) werden mit 40 mmol Pivalinsäureanhydrid (7.45 g, 8.12 ml) in 7.5 ml getrocknetem Toluol 72 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der halbfeste Rückstand mit Petrolether / Ethylacetat = 2:1 gesäult. Ausbeute: 0.20 g, 16%.

Fp: 98-100°C

EA ber. (EA gef.):
$$C_{13}H_{18}N_2O_2 \times 0.8 H_2O$$

C 62.78 (62.69) H 7.94 (7.43) N 11.26 (11.04)

EIMS (*m/z*, Intensität %): 250 (M⁺, 22), 106 (C₇H₇N⁺, 100).

¹**H NMR** δ (ppm) 1.15 (s, 9H, CH₃), 4.37 (d, 2H, J = 6.0 Hz, C<u>H</u>₂NH), 7.22-7.35 (m, 5H, Ph), 8.89 (t, 1H, J = 5.8 Hz, CH₂N<u>H</u>), 9.87 (s, 1H, CONHCO). ¹³**C NMR** δ (ppm) 26.55 (CH₃), 27.15 (<u>C</u>(CH₃)₃), 42.76 (<u>C</u>H₂NH), 127.07 (C-4'), 127.41, 128.54 (C-2', C-3', C-5', C-6'), 139.34 (C-1'), 153.98 (NHCONH), 180.33 (CO).

4-(3-Benzylureido)-4-oxobuttersäure (82)

 $C_{12}H_{14}N_2O_4$ M = 250.10 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Bernsteinsäureanhydrid (4.00 g) und 15 ml getrocknetem Toluol 81 Stunden bei 80°C erhitzt, wobei sich die Ausgangsstoffe erst nach 4-5 Stunden in der Wärme lösten und nach 6 Stunden ein massiver weisser Niederschlag ausfiel. Nach Beendigung der Reaktion wird das restliche Lösungsmittel im Vakuum entfernt und der feste Rückstand durch Säulenchromatographie (Eluent: Dichlormethan/Ethanol/Eisessig = 100:5:1) gereinigt. Ausbeute: 0.33 g, 26%.

Fp: 185-191°C

EA ber. (EA gef.): C 57.59 (57.33) H 5.64 (5.71) N 11.19 (11.01)

EIMS (*m*/*z*, Intensität %): 250 (M⁺, 22), 106 (C₇H₇N⁺, 100).

¹**H** NMR δ (ppm) 2.43-2.47 (m, 2H, CH₂), 2.51-2.54 (m, 2H, CH₂), 4.35 (d, 2H, J = 6.0 Hz, CH₂NH), 7.22-7.34 (m, 5H, Ph), 8.66 (s, br, 1H, CH₂NH), 10.37 (s, 1H, CONHCO), 12.13 (COOH).

¹³**C NMR** δ (ppm) 28.21, 30.73 (CH₂), 42.65 (<u>C</u>H₂NH), 127.03 (C-4'), 127.32, 128.50 (C-2', C-3', C-5', C-6'), 139.39 (C-1'), 153.39 (NHCONH), 173.60, 174.07 (<u>C</u>OCH₂, COOH).

4-(3-Benzylureido)-4-oxobut-2-ensäure (83)

 $C_{12}H_{12}N_2O_4$ M = 248.23 g/mol

5 mmol Benzylharnstoff (0.75 g) werden in 40 mmol Maleinsäureanhydrid (3.92 g) und 15 ml getrocknetem Toluol 16 Stunden bei 80°C erhitzt. Nach Beendigung der Reaktion wird das Lösungsmittel im Vakuum entfernt und der halbfeste Rückstand mit Dichlormethan/Ethanol/Eisessig = 90:10:5 gesäult. Ausbeute: 0.27 g, 22%.

Fp (Lit.-Fp): 152-154°C (152-153.5°C)²⁶⁰

EA ber. (EA gef.): C 58.06 (57.94) H 4.87 (4.88) N 11.29 (11.06)

EIMS (*m/z*, Intensität %): 248 (M⁺, 2), 106 (C₆H₅CH₂NH⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 248.0797 (248.0798)

¹**H NMR** δ (ppm) 4.37 (d, 2H, J = 6.3 Hz, C<u>H</u>₂NH), 6.36 (s, 2H, CH=CH), 7.22-7.34 (m, 5H, Ph), 8.63 (s, br, 1H, CH₂N<u>H</u>), 10.63 (s, 1H, CONHCO), 12.82 (COOH). ¹³**C NMR** + **HMQC** δ (ppm) 42.76 (<u>C</u>H₂NH), 127.06 (C-4'), 127.32, 128.51 (C-2', C-3', C-5', C-6'), 129.50, 132.36 (CH=CH), 139.33 (C-1'), 153.29 (NHCONH), 166.20, 167.05 (<u>C</u>OCH, COOH). 3,4-Dimethyl-2,5-dioxo-2,5-dihydropyrrol-1-carbonsäurebenzylamid (84)

 $C_{14}H_{14}N_2O_3$ M = 258.27 g/mol

4.80 mmol Benzylharnstoff (0.71 g) werden in 15 ml getrocknetem Toluol suspendiert und anschließend 38.3 mmol 2,3-Dimethylmaleinsäureanhydrid (4.83 g) zugegeben. Der Ansatz wird 1 Woche lang bei 80°C erhitzt. Danach engt man die klare Lösung im Vakuum zur Trockne ein, reinigt den erhaltenen Rückstand durch Säulenchromatographie (Eluent: Petrolether/Ethylacetat = 2:1) und erhält weiße Kristalle. Ausbeute: 0.12 g, 10%.

Fp: 113-115°C

EA ber. (EA gef.): C 65.11 (64.77) H 5.46 (5.54) N 10.85 (10.52)

EIMS (*m*/*z*, **Intensität %):** 258 (M⁺, 85), 126 (-CO-(CH₃)C=C(CH₃)-CO-NH₂-⁺, 95), 106 (C₇H₈N⁺, 100), 91 (C₇H₇⁺, 40).

FAB MS (*m/z*, Intensität %): 259 (MH⁺, 100).

¹**H NMR** δ (ppm) 1.92 (s, 6H, CH₃), 4.39 (d, 2H, J = 7.25 Hz, CH₂), 7.23-7.28 (m, 1H, Ph), 7.31-7.35 (m, 4H, Ph), 8.53 (t, 1H, J = 5.5 Hz, CH₂N<u>H</u>).

¹³C NMR + HSQC + HMBC + DEPT δ (ppm) 8.63 (CH₃), 43.33 (CH₂), 127.12 (C-4'), 127.25, 128.45 (C-2', C-3', C-5', C-6'), 137.98 (<u>C</u>(CH₃)=<u>C</u>(CH₃)), 138.50 (C-1'), 147.76 (NHCONH), 169.25 (CO).

1,3-Dicyclohexylharnstoff (85)

 $C_{13}H_{24}N_2O$ M = 224.34 g/mol

Fp (**Lit.-Fp**): 205-209°C (232-234°C)²⁶¹

EA ber. (EA gef.): C 69.60 (66.23) H 10.78 (10.36) N 12.49 (11.09)

¹H NMR δ (ppm) 1.04-1.75 (m, 22H, CH₂, CH), 5.44 (d, 2H, *J* = 7.65 Hz, NH).
¹³C NMR + HMQC δ (ppm) 25.19 (C-4', C-4''), 24.20 (C-3', C-3''), 33.12 (C-2', C-2''), 47.48 (C-1', C-1''), 156.59 (CO).

1,3-Dicyclohexylbarbitursäure (86)

 $C_{16}H_{24}N_2O_3$ M = 292.38 g/mol

Fp (Lit.-Fp): 190-192°C (199-200°)¹⁵⁵

EA ber. (EA gef.): C 65.73 (65.20) H 8.27 (8.38) N 9.58 (9.57)

¹**H** NMR δ (ppm) 3.67 (s, 2H, COCH₂), 1.07-1.28 (m, 6H, Cyclohexyl-CH₂), 1.55-1.77 (m, 10H, Cyclohexyl-CH₂), 2.09-2.17 (dq, J_1 = 3.45 Hz, J_2 = 12.5 Hz, 4H, Cyclohexyl-CH₂), 4.40-4.47 (tt, J_1 = 3.65 Hz, J_2 = 12.1 Hz, 2H, Cyclohexyl-CH).

¹³C NMR + HSQC δ (ppm) 25.18 (C-4', C-4''), 26.07 (C-3', C-3''), 28.79 (C-2', C-2''), 41.36 (C-1', C-1''), 53.90 (C-5), 151.63 (C-2), 166.01 (C-4, C-6).

1-Benzyl-3-(2-ethyl-hexanoyl)harnstoff (87)

 $C_{16}H_{24}N_2O_2$ M = 276.37 g/mol

1.5 mmol Benzylharnstoff (0.23 g) werden in 5 ml getrocknetem Toluol suspendiert und anschließend 3 mmol 2-Ethylhexansäureanhydrid (0.99 g, 0.82 ml) zugegeben. Der Ansatz wird in der Mikrowelle 15 min lang mit 200W bei 180°C erhitzt. Danach engt man die klare Lösung im Vakuum zur Trockne ein, reinigt den erhaltenen Rückstand durch zweifache Säulenchromatographie (Eluent: Petrolether/Ethylacetat = 2:1), nimmt den Niederschlag anschließend nochmals in Wasser/Cyclohexan auf und fällt durch Ultraschallbehandlung rein weiße Kristalle aus. Ausbeute: 37.3 mg, 9%.

Fp: 88-92°C

EA ber. (EA gef.):
$$C_{16}H_{24}N_2O_2 \times 0.1 H_2O$$

C 69.08 (69.08) H 8.77 (8.87) N 10.07 (9.14)

EIMS (*m/z*, Intensität %): 276 (M⁺, 21), 106 (C₇H₈N⁺, 100), 91 (C₇H₇⁺) **HRMS** [M⁺ ber. (gef.)]: 276.1838 (276.1833)

¹**H** NMR δ (ppm) 0.80 (t, 3H, J = 7.72 Hz, CH₃), 0.83 (t, 3H, J = 7.25 Hz, CH₃), 1.09-1.53 (m, 8H, (CH₂)₃CH₃, CH₂CH₃), 2.30-2.37 (m, 1H, CH), 7.22-7.34 (m, 5H, Ph), 8.85 (t, 1H, J = 5.35 Hz, CH₂NH), 10.36 (s, 1H, NH).

¹³C NMR δ (ppm) 11.68, 13.93 (CH₃), 22.20, 25.31, 29.15, 31.47 (CH₂), 42.66 (<u>C</u>H₂Ph), 47.51 (CH), 127.06 (C-4'), 127.29, 128.53 (C-2', C-3', C-5', C-6'), 139.34 (C-1'), 153.53 (NHCONH), 178.20 (<u>C</u>OCH₂).

1-Benzyl-3-(4-oxo-4-phenylbutyryl)harnstoff (88)

 $C_{18}H_{18}N_2O_3$ M = 310.35 g/mol

2.2 mmol Benzylharnstoff (0.33 g) werden in 10 ml getrocknetem Toluol suspendiert und anschließend 2 mmol 4-Oxo-4-phenylbuttersäure (0.36 g) und 0.1 mmol 3,5-Bis-(trifluormethyl)phenylboronsäure (25.79 mg) zugegeben. Der Ansatz wird 26 Stunden unter Rückfluss erhitzt. Danach entfernt man das Lösungsmittel im Vakuum und reinigt den erhaltenen Rückstand durch Säulenchromatographie (Eluent: Petrolether/ Ethylacetat = 2:1). Ausbeute: 0.36 g, 53%.

Fp: 146-148°C

EA ber. (EA gef.): C 69.66 (69.57) H 5.85 (6.12) N 9.03 (8.96)

EIMS (*m/z*, Intensität %): 310 (M⁺, 2), 240 (89), 161 (PhCOCH₂CH₂CO⁺, 6), 149 (C₆H₅CH=NH-C(OH)=NH₂⁺, 21), 106 (C₆H₅CH=NH₂⁺, 100), 91 (C₇H₇⁺, 37). **HRMS** [M⁺ ber. (gef.)]: 310.1317 (310.1321)

¹**H NMR** (**CDCl**₃) δ (ppm) 2.76 (t, 2H, *J* = 6.3 Hz, CH₂), 3.33 (t, 2H, *J* = 6.3 Hz, CH₂), 7.21-7.32 (m, 5H, Ph), 7.44-7.47 (m, 2H, Ph), 7.54-7.58 (m, 1H, Ph), 7.95-7.97 (m, 2H, Ph), 8.63 (s, br, 2H, NH).

¹³C NMR (CDCl₃) δ (ppm) 30.77, 32.91 (CH₂), 43.73 (<u>C</u>H₂Ph), 127.40, 127.58, 128.08, 128.63, 128.69, 133.48 (CH-Ph), 136.21, 137.94 (C-Ph), 153.52 (NHCONH), 173.56 (<u>C</u>OCH₂), 197.86 (COPh).

1-Benzyl-3-(2-phenylbutyryl)harnstoff (89)

 $C_{18}H_{20}N_2O_2$ M =

M = 296.36 g/mol

2.2 mmol Benzylharnstoff (0.33 g) werden in 10 ml getrocknetem Toluol suspendiert und anschließend 2 mmol 2-Phenylbuttersäure (0.33 g) und 0.1 mmol 3,5-Bis(trifluormethyl)-phenylboronsäure (25.79 mg) zugegeben. Der Ansatz wird 22 Stunden unter Rückfluss erhitzt. Danach engt man die Lösung im Vakuum zur Trockne ein und reinigt den erhaltenen Rückstand durch Säulenchromatographie (Eluent: Petrolether/Ethylacetat = 1:2). Ausbeute: 0.37 g, 56%.

Fp: 197-200°C

EA ber. (EA gef.): $C_{18}H_{20}N_2O_2 \times 0.1 H_2O$ C 72.51 (73.31) H 6.83 (7.05) N 9.40 (8.87)

EIMS (*m/z*, Intensität %): 296 (M⁺, 1), 253 (58), 119 (31), 91 (C₇H₇⁺, 100). **HRMS** [M⁺ ber. (gef.)]: 296.1525 (296.1537)

¹**H NMR** δ (ppm) 0.80 (t, 3H, J = 7.25 Hz, CH₃), 1.62-1.71 (m, 1H, C<u>H</u>₂CH₃), 1.94-2.03 (m, 1H, C<u>H</u>₂CH₃), 3.60 (t, 1H, J = 7.55 Hz, CH), 1.70 (m, 2H, NHC<u>H</u>₂), 7.13-7.34 (m, 10H, Ph), 8.71 (t, 1H, J = 5.35 Hz, N<u>H</u>CH₂), 10.31 (s, 1H, NH).

¹³C NMR δ (ppm) 12.06 (CH₃), 25.79 (CH), 42.72 (NHCH₂), 53.15 (<u>C</u>H₂CH₃), 127.07, 127.26, 127.37, 127.90, 128.52, 128.59 (CH-Ph), 139.21, 139.37 (C-Ph), 153.43 (NHCONH), 175.51 (CO).

Festphasensynthese der monosubstituierter Ureide im MiniBlock[®]

Chloracetylharnstoff (94)

 $C_{3}H_{5}N_{2}O_{2}Cl$ M = 136.54 g/mol

a)

Im MiniBlock[®] werden 0.5 g Fmoc-Rink-Amid-Harz (Beladung: 0.35 mmol) mit 10 ml einer 20% Piperidin/DMF-Lösung 1 Stunde bei Raumtemperatur unter Schütteln (300 rpm) entschützt und das so erhaltene Harz **57** mit folgenden getrockneten Lösungsmitteln gewaschen:

Waschprozedur 1: 2×DMF, 2×DCM, 1×DMF, 1×DCM, 1×EtOH und 3×THF.

Anschließend werden 10 ml getrocknetes THF und 3.5 mmol Chloracetylisocyanat (10 Äquiv., 0.42 g, 0.30 ml) zugegeben. Der Ansatz wird 24h bei Raumtemperatur bei 300 rpm geschüttelt. Nach Reaktionsende wird das Harz gründlich gewaschen:

Waschprozedur 2: 2×DCM, 2×EtOH, 1×Wasser, 1×EtOH, 2×THF, 2×DCM, 1×DMF, 1×Toluol, 2×THF, 1×Aceton, 1×MeOH, 1×Wasser, 2×Dioxan, 3×DCM.

Nach Zugabe von 15 ml einer 5% TFA/DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 45.4 mg, 95%.

b)

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**) (Beladung: 0.305 mmol) in 10 ml getrocknetem Toluol mit 4.88 mmol Chloressigsäureanhydrid (16 Äquiv., 0.83 g) 14 Tage bei RT (Erhitzen führt zu Rotfärbung des Harzes, evt. vorzeitige Abspaltung!) und 250 rpm geschüttelt.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 10 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 2 Stunden bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am

Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 10 mg, 24%.

Fp (**Lit.-Fp**): 175-183°C (181-182°C)¹⁴⁸

EA ber. (EA gef.): C 26.39 (27.23) H 3.69 (3.64) N 20.54 (17.54)

¹**H NMR** δ (ppm) 4.25 (s, 2H, CH₂), 7.31 (s, 1H, N<u>H</u>₂), 7.46 (s, 1H, N<u>H</u>₂), 10.36 (s, 1H, NH).

 ^{13}C NMR δ (ppm) 43.23 (CH_2), 153.34 (NHCONH), 168.10 (COCH_2).

269

Benzoylthioharnstoff (95)

 $C_8H_8N_2OS$ M

M = 180.23 g/mol

Im MiniBlock[®] werden 0.5 g Fmoc-Rink-Amid-Harz (Beladung: 0.35 mmol) mit 10 ml einer 20% Piperidin/DMF-Lösung 1 Stunde bei Raumtemperatur unter Schütteln (300 rpm) entschützt und das so erhaltene Harz **57** mit folgenden getrockneten Lösungsmitteln gewaschen:

Waschprozedur 1: 2×DMF, 2×DCM, 1×DMF, 1×DCM, 1×EtOH und 3×THF.

Anschließend werden 10 ml getrocknetes THF und 3.5 mmol Benzoylisothiocyanat zugegeben. Der Ansatz wird 24 Stunden bei Raumtemperatur bei 300 rpm geschüttelt. Nach Reaktionsende wird das Harz gründlich gewaschen:

Waschprozedur 2: 2×DCM, 2×EtOH, 1×Wasser, 1×EtOH, 2×THF, 2×DCM, 1×DMF, 1×Toluol, 2×THF, 1×Aceton, 1×MeOH, 1×Wasser, 2×Dioxan, 3×DCM.

Nach Zugabe von 15 ml einer 5% TFA/DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Rohproduktausbeute: 46.5 mg, 73%.

Fp (Lit.-**Fp**): 168-169°C (174-176°C)²⁵⁶

EA ber. (EA gef.): $C_8H_8N_2OS \times 0.1 H_2O$ C 52.79 (52.65) H 4.54 (4.44) N 15.39 (13.86) ¹**H NMR** δ (ppm) 7.48-7.52 (m, 2H, C-3', C-5'), 7.60-7.64 (m, 1H, C-4'), 7.90-7.93 (m, 2H, C-2', C-6'), 9.52 (s, 1H, N<u>H</u>₂), 9.83 (s, 1H, N<u>H</u>₂), 11.19 (s, 1H, NH).

¹³C NMR δ (ppm) 128.51, 128.68 (C-2', C-3', C-5', C6'), 132.41, 133.08 (C-1', C-4'), 167.89 (CO), 182.23 (CS).

HPLC (H₂O:MeCN = 1:1, 1 ml/min, 210 nm): $t_R = 5.29$ min, Reinheit: 91%.

No.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	1,75	n.a.	50,86	19,30	1,23
2	2,53	n.a.	19,71	6,95	0,44
3	3,14	n.a.	140,26	30,02	1,91
4	3,47	n.a.	110,93	33,73	2,14
5	4,61	n.a.	13,90	3,81	0,24
6	5,29	Benzoylthioharnstoff	2368,39	1438,16	91,30
7	5,75	n.a.	0,00	43,27	2,75
Total:			2704,05	1575,24	100,00

2,6-Difluorbenzoylharnstoff (96)

 $C_8H_6N_2O_2F_2$ M = 200.14 g/mol

Im MiniBlock[®] werden 0.5 g Fmoc-Rink-Amid-Harz (Beladung: 0.175 mmol) mit 10 ml einer 20% Piperidin/DMF-Lösung 1 Stunde bei Raumtemperatur unter Schütteln (300 rpm) entschützt und das so erhaltene Harz **57** mit folgenden getrockneten Lösungsmitteln gewaschen:

Waschprozedur 1: 2×DMF, 2×DCM, 1×DMF, 1×DCM, 1×EtOH und 3×THF.

Anschließend werden 10 ml getrocknetes THF und 3.5 mmol 2,6-Difluorbenzoylisocyanat zugegeben. Der Ansatz wird 24 Stunden bei Raumtemperatur bei 300 rpm geschüttelt. Nach Reaktionsende wird das Harz gründlich gewaschen:

Waschprozedur 2: 2×DCM, 2×EtOH, 1×Wasser, 1×EtOH, 2×THF, 2×DCM, 1×DMF, 1×Toluol, 2×THF, 1×Aceton, 1×MeOH, 1×Wasser, 2×Dioxan, 3×DCM.

Nach Zugabe von 15 ml einer 5% TFA/DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Rohproduktausbeute: 35 mg, 100%.

Fp: 179-185°C

EA ber. (EA gef.): C 48.01 (48.63) H 3.02 (3.27) N 14.00 (13.83)

IR (**KBr**): v (cm⁻¹) 3380, 3320, 3230 (v, NH), 1670 (v, CO).

EIMS (*m*/*z*, **Intensität**): 200 (M⁺, 42), 141 (M⁺-NHCONH₂, 100). **HRMS** [M⁺ ber. (gef.)]: 200.0397 (200.0401).

¹**H NMR** δ (ppm) 7.16-7.21 (m, 2H, 3'-H, 5'-H), 7.47 (s, br, 1H, NH₂), 7.53-7.65 (m, 2H, NH₂, 4'-H), 10.91 (s, 1H, NH).

¹³C NMR + HSQC δ (ppm) 112.14 (dd, ${}^{2}J_{C,F}$ = 24.04 Hz, ${}^{4}J_{C,F}$ = 3.88 Hz, C-3', C-5'), 114.06 (t, ${}^{2}J_{C,F}$ = 21.31 Hz, C-1'), 132.91 (t, ${}^{3}J_{C,F}$ = 9.18 Hz, C-4'), 153.01 (NHCONH), 158.73 (dd, ${}^{1}J_{C,F}$ = 247.95 Hz, ${}^{3}J_{C,F}$ = 7.32 Hz, C-2', C-5'), 161.85 (PhCO).

HPLC (H₂O:MeCN = 1:1, 1 ml/min, 210 nm): $t_R = 3.58$ min, Reinheit: 97%.

Acetylharnstoff (108)

 $C_{3}H_{6}N_{2}O_{2}$ M = 102.09 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.285 mmol) in 10 ml getrocknetem Toluol mit 4.54 mmol Essigsäureanhydrid (16 Äquiv., 2.16 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 14.5 mg, 50%.

¹**H NMR** δ (ppm) 1.98 (s, 3H, CH₃), 7.12 (s, 1H, N<u>H</u>₂), 7.69 (s, 1H, N<u>H</u>₂), 10.09 (s, 1H, NH).

 ^{13}C NMR δ (ppm) 23.67 (CH_3), 153.99 (NHCONH), 172.20 (COCH_3).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 2.63$ min, Reinheit: 95%.

No.	RetZeit	Peak Name	Höhe	Fläche	Rel.Fläche
	min		mAU	mAU*min	%
1	2,63	Acetylharnstoff	719,72	143,22	94,92
2	2,77	n.a.	58,84	5,36	3,55
3	3,26	n.a.	4,29	0,72	0,48
4	3,45	n.a.	3,62	1,58	1,04
Total:			786,464	150,884	100,00

Propionylharnstoff (109)

$$H_{3}C \xrightarrow{H} NH_{2}$$

$$C_{4}H_{8}N_{2}O_{2} \qquad M = 116.12 \text{ g/mol}$$

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.235 mmol) in 10 ml getrocknetem Toluol mit 3.53 mmol Propionsäureanhydrid (15 Äquiv., 0.46 g, 0.45 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

. .

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 20.1 mg, 74%.

EIMS (*m*/*z*, Intensität %): 116 (M⁺, 76), 73 (M⁺-HNCO,100), 57 (CH₃CH₂C≡O⁺,82). **HRMS** [M⁺ ber. (gef.)]: 116.0586 (116.0576)

¹**H NMR** δ (ppm) 0.99 (t, 3H, *J* = 7.43 Hz, CH₃), 2.27 (q, 2H, *J* = 7.57 Hz, CH₂), 7.12 (s, 1H, NH₂), 7.73 (s, 1H, NH₂), 10.04 (s, 1H, NH).

 ^{13}C NMR δ (ppm) 8.96 (CH_3), 29.16 (CH_2), 154.10 (NHCONH), 175.70 (COCH_2)

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 2.83$ min, Reinheit: 87%.

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	1,98	n.a.	7,59	0,66	0,18
2	2,44	n.a.	147,00	21,58	5,99
3	2,83	Propionylharnstoff	1121,28	311,90	86,62
4	3,27	n.a.	205,11	13,49	3,75
5	5,25	n.a.	12,31	6,21	1,73
6	5,69	n.a.	8,12	2,10	0,58
7	7,58	n.a.	7,48	4,13	1,15
Total:			1508,894	360,060	100,000

Butyrylharnstoff (110)

 $C_5H_{10}N_2O_2$ M = 130.15 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.175 mmol) in 10 ml getrocknetem Toluol mit 3.50 mmol Buttersäureanhydrid (20 Äquiv., 0.55 g, 0.57 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen bis bräunlichen Feststoff. Ausbeute: 22.8 mg, 43%.

¹**H** NMR δ (ppm) 0.84 (groß) und 0.85 (klein) (t, 3H, J = 7.25 Hz und J = 7.55 Hz, CH₃), 1.44-1.54 (m, 2H, CH₂CH₃), 2.00 und 2.24 (t, 2H, J = 7.40 Hz und J = 7.55 Hz, im Verhältnis 1.3 : 0.7, COCH₂), 6.63, 7.13, 7.74, 10.05 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 13.53 (klein) und 13.79 (groß) (CH₃), 18.00 (klein) und 18.61 (groß) (<u>CH₂CH₃)</u>, 37.23 (groß) und 37.74 (klein) (CO<u>C</u>H₂), 154.06 (NHCONH), 174.27 und 174.89 (<u>C</u>OCH₂).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 4.34$ min, Reinheit: 92%.

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	1,87	n.a.	7,96	2,30	1,35
2	2,03	n.a.	7,25	1,30	0,76
3	2,50	n.a.	16,20	2,85	1,68
4	2,92	n.a.	21,55	1,24	0,73
5	2,99	n.a.	26,80	3,16	1,85
6	4,34	Butyrylharnstoff	327,87	155,72	91,52
7	5,09	n.a.	3,95	1,37	0,80
8	5,81	n.a.	4,45	1,37	0,81
9	14,71	n.a.	2,02	0,84	0,49
Total:			418,059	170,147	100,000

Pentanoylharnstoff (111)

 $C_6H_{12}N_2O_2$ M = 144.17 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.285 mmol) in 10 ml getrocknetem Toluol mit 4.56 mmol Valeriansäureanhydrid (16 Äquiv., 0.85 g, 0.90 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 40.0 mg, 97%.

¹**H** NMR δ (ppm) 0.85 (t, 3H, J = 7.40 Hz, CH₃), 1.21-1.29 (m, 2H, CH₂CH₃), 1.42-1.51 (m, 2H, CH₂CH₂CH₃), 2.02 und 2.26 (t, 2H, J = 7.58 Hz und J = 7.40 Hz, im Verhältnis 1:1, COCH₂), 6.65, 7.12, 7.74 und 10.05 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 13.75 und 13.85 (CH₃), 21.77 und 22.00 (<u>C</u>H₂CH₃), 26.71 und 27.43 (<u>C</u>H₂CH₂CH₃), 34.98 und 35.61 (CO<u>C</u>H₂), 154.15 (NHCONH), 174.59 und 175.09 (<u>C</u>OCH₂).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 7.61$ min, Reinheit: 87%.

6 Experimenteller Teil

No.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	1,77	n.a.	38,59	8,86	2,83
2	2,51	n.a.	2,69	0,36	0,12
3	2,62	n.a.	2,37	0,10	0,03
4	2,71	n.a.	18,89	5,00	1,60
5	4,53	n.a.	17,60	6,81	2,17
6	5,36	n.a.	3,03	0,75	0,24
7	5,82	n.a.	1,17	0,28	0,09
8	7,61	Pentanoylharnstoff	377,97	272,99	87,22
9	7,98	n.a.	0,00	2,32	0,74
10	9,08	n.a.	36,20	15,53	4,96
Total:			498,52	313,00	100,00

Hexanoylharnstoff (112)

 $C_7H_{14}N_2O_2$ M = 158.20 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.285 mmol) in 10 ml getrocknetem Toluol mit 4.56 mmol Hexansäureanhydrid (16 Äquiv., 0.98 g, 1.05 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 21.3 mg, 47%.

¹**H** NMR δ (ppm) 0.85 (t, 3H, J = 7.08 Hz, CH₃), 1.18-1.30 (m, 4H, CH₂CH₂CH₃), 1.45-1.53 (m, 2H, CH₂CH₂CH₂CH₃), 2.01 und 2.25 (t, 2H, J = 7.58 Hz und J = 7.43 Hz, im Verhältnis 0.4 : 1.6, COCH₂), 6.62, 7.12, 7.75, 10.06 (jeweils, s, br, NH-Signale).

¹³**C NMR** δ (ppm) 13.90 (groß) und 13.98 (klein) (CH₃), 21.93 (groß) und 22.01 (klein) (<u>CH₂CH₃), 24.23</u> (groß) und 24.91 (klein) (<u>CH₂CH₂CH₃), 30.80</u> (groß) und 31.09 (klein) (<u>CH₂CH₂CH₂CH₂CH₃), 35.23</u> (klein) und 35.82 (groß) (CO<u>C</u>H₂), 154.10 (NHCONH), 174.47 (klein) und 175.05 (groß) (<u>C</u>OCH₂).

123,80

119,34

100,00

Total:

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 15.28$ min, Reinheit: 93%.

Heptanoylharnstoff (113)

 $C_8 H_{16} N_2 O_2 \qquad \qquad M = 172.22 \ g/mol$

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.35 mmol) in 10 ml getrocknetem Toluol mit 5.25 mmol Heptansäureanhydrid (15 Äquiv., 1.27 g, 1.38 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen beigen Feststoff. Ausbeute: 28.3 mg, 47%.

¹**H** NMR δ (ppm) 0.85 (t, 3H, J = 6.95 Hz, CH₃), 1.21-1.28 (m, 6H, C<u>H₂CH₂CH₂CH₂CH₃), 1.43-1.51 (m, 2H, C<u>H₂CH₂CH₂CH₂CH₃), 2.01 und 2.25 (t, 2H, J = 7.40 Hz und J = 7.40Hz, im Verhältnis 1.4 : 0.6, COCH₂), 6.63, 7.11, 7.74, 10.05 (jeweils s, br, NH-Signale).</u></u>

¹³**C NMR** δ (ppm) 14.02 (klein) und 14.05 (groß) (CH₃), 22.08 (klein) und 22.15 (groß) (<u>CH₂CH₃), 24.53</u> (klein) und 25.23 (groß) (<u>CH₂CH₂CH₃), 28.27</u> (klein) und 28.53 (groß) (<u>CH₂CH₂CH₂CH₂CH₂CH₃), 31.07</u> (klein) und 31.20 (groß) (<u>CH₂CH₂CH₂CH₂CH₂CH₃), 35.28 (groß) und 35.89 (klein) (CO<u>C</u>H₂), 154.11 (NHCONH), 174.54 (groß) und 175.08 (klein) (<u>C</u>OCH₂).</u>

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 31.37$ min, Reinheit: 86%.

6 Experimenteller Teil

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	2,51	n.a.	5,97	0,85	0,94
2	5,15	n.a.	2,01	0,62	0,69
3	6,01	n.a.	1,08	0,38	0,42
4	10,48	n.a.	1,33	1,57	1,73
5	14,29	n.a.	17,07	8,49	9,37
6	22,50	n.a.	0,66	0,41	0,45
7	31,37	Heptanoylharnstoff	88,86	78,24	86,40
Total:			116,98	90,56	100,00

Isobutyrylharnstoff (114)

 $C_{5}H_{10}N_{2}O_{2} \hspace{1cm} M = 130.15 \hspace{.1 cm} g/mol$

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.215 mmol) in 10 ml getrocknetem Toluol mit 3.23 mmol Isobuttersäureanhydrid (15 Äquiv., 0.51 g, 0.54 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen weissen Feststoff. Ausbeute: 14.6 mg, 52%.

¹**H** NMR δ (ppm) 0.98 und 1.02 (d, 6H, J = 6.90 Hz und J = 6.90 Hz, im Verhältnis 1.06 : 0.94, CH₃), 2.30 und 2.55 (sept., 1H, J = 6.88 Hz und J = 6.88 Hz, im Verhältnis 0.54 : 0.46, CH), 6.59, 7.14, 7.77, 10.06 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 19.05 und 19.64 (CH₃), 33.86 und 34.56 (CH), 154.29 (NHCONH), 178.37 und 178.87 (<u>C</u>OCH).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 4.30$ min, Reinheit: 85%.

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	2,41	n.a.	78,22	12,15	5,34
2	2,80	n.a.	13,39	2,39	1,05
3	3,53	n.a.	0,00	7,01	3,08
4	4,30	Isobutyrylharnstoff	315,76	193,01	84,80
5	5,13	n.a.	12,95	5,77	2,53
6	5,54	n.a.	9,21	3,43	1,51
7	7,26	n.a.	4,39	2,74	1,20
8	9,43	n.a.	1,54	0,75	0,33
9	10,14	n.a.	0,84	0,38	0,17
Total:			436,305	227,620	

Pent-4-enoylharnstoff (115)

 $C_6H_{10}N_2O_2$ M = 152.15 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.35 mmol) in 10 ml getrocknetem Toluol mit 5.25 mmol 4-Pentensäureanhydrid (15 Äquiv., 0.96 g, 0.96 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen rosafarbenen Feststoff. Ausbeute: 29.3 mg, 55%.

¹**H** NMR δ (ppm) 2.11 und 2.37 (t, 2H, J = 8.03 Hz und J = 7.43 Hz, im Verhältnis 0.85 : 1.15, COCH₂), 2.19-2.29 (COCH₂C<u>H₂</u>), 4.92-5.04 (m, 2H, CH=C<u>H₂</u>), 5.74-5.83 (m, 1H, C<u>H</u>=CH₂), 6.68, 7.14, 7.22, 7.71, 10.09 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 28.37 (groß) und 29.20 (klein) (COCH₂<u>C</u>H₂), 34.38 (klein) und 34.98 (groß) (CO<u>C</u>H₂), 114.96 (klein) und 115.52 (groß) (CH=<u>C</u>H₂), 137.23 (groß) und 138.02 (klein) (<u>C</u>H=CH₂), 153.99 (NHCONH), 173.67 (klein) und 174.26 (groß) (<u>C</u>OCH₂).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 5.50$ min, Reinheit: 83%.

6 Experimenteller Teil

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	2,41	n.a.	185,11	44,31	8,37
2	2,92	n.a.	27,97	18,00	3,40
3	3,80	n.a.	26,64	7,91	1,49
4	5,50	Pent-4-enoylharnstoff	715,56	441,04	83,30
5	7,23	n.a.	12,23	9,97	1,88
6	9,30	n.a.	7,41	8,23	1,56
Total:			974,92	529,46	100,00

2-Methyl-butyrylharnstoff (116)

 $C_6H_{12}N_2O_2$ M = 144.17 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.35 mmol) in 10 ml getrocknetem Toluol mit 5.25 mmol 2-Methylbuttersäureanhydrid (15 Äquiv., 0.98 g, 1.05 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen leicht bräunlichen Feststoff. Ausbeute: 23.7 mg, 47%.

¹**H** NMR δ (ppm) 0.80 (t, 3H, J = 7.55 Hz, CH₂CH₃), 0.96 und 1.00 (d, 3H, J = 6.95 Hz und J = 6.60 Hz, im Verhältnis 2.21 : 0.79, CHCH₃), 1.22-1.37 und 1.43-1.57 (m, 2H, im Verhältnis 1.08 : 0.92, CH₂), 2.07-2.14 und 2.35-2.42 (m, 1H, im Verhältnis 0.73 : 0.27, CH), 6.62, 7.15, 7.80, 10.08 (jeweils s, br, NH-Signale).

¹³C NMR δ (ppm) 11.55 (klein) und 11.88 (groß) (CH₂CH₃), 16.93 (klein) und 17.56 (groß) (CHCH₃), 26.46 (klein) und 26.82 (groß) (CH₂), 41.17 (groß) und 41.58 (klein) (CH), 154.22 (NHCONH), 177.78 (groß) und 178.40 (klein) (COCH).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 6.04$ min, Reinheit: 81%.

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	2,31	n.a.	6,82	1,11	1,69
2	3,71	n.a.	8,15	4,17	6,35
3	4,24	n.a.	15,94	4,73	7,20
4	4,94	n.a.	2,13	0,62	0,95
5	6,04	2-Methyl-butyrylharnstoff	139,16	53,20	81,03
6	8,61	n.a.	2,60	1,52	2,32
7	12,34	n.a.	0,65	0,30	0,46
Total:			175,45	65,65	100,00

2-Ethyl-butyrylharnstoff (117)

 $C_7H_{14}N_2O_2$ M = 158.20 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.215 mmol) in 10 ml getrocknetem Toluol mit 3.23 mmol 2-Ethylbuttersäureanhydrid (15 Äquiv., 0.69 g, 0.75 ml) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen beigen Feststoff. Ausbeute: 13.3 mg, 39%.

¹**H** NMR δ (ppm) 0.79 und 0.80 (t, 6H, J = 7.40 Hz und J = 7.55 Hz, CH₃), 1.28-1.53 (m, 4H, CH2), 1.90-1.95 und 2.23-2.28 (m, 1H, im Verhältnis 0.59 : 0.41, CH), 6.67, 7.17, 7.85, 10.12 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 11.66 (klein) und 12.02 (groß) (CH₃), 24.84 (klein) und 25.20 (groß) (CH₂), 49.00 (groß) und 49.13 (klein) (CH), 154.06 (NHCONH), 176.93 und 177.84 (<u>C</u>OCH).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 10.24$ min, Reinheit: 81%.

Nr.	Retzeit	Peak Name	Höhe	Fläche	Rel. Fläche
	min		mAU	mAU*min	%
1	2,54	n.a.	31,59	4,94	5,30
2	2,71	n.a.	24,36	3,34	3,58
3	4,25	n.a.	5,22	2,51	2,69
4	5,38	n.a.	8,48	3,12	3,34
5	6,71	n.a.	3,71	1,81	1,94
6	7,87	n.a.	5,04	2,07	2,22
7	10,24	2-Ethyl-butyrylharnstoff	179,18	75,46	80,92
Total:			257,58	93,25	100,00

2-Phenoxy-acetylharnstoff (118)

 $C_9H_{10}N_2O_3$ M = 194.19 g/mol

Im MiniBlock[®] werden 0.5 g Rink-Harnstoff-Harz (**63**, Beladung: 0.235 mmol) in 10 ml getrocknetem Toluol mit 3.52 mmol Phenoxyessigsäureanhydrid (15 Äquiv., 1.01 g) 14 Tage bei einer Temperatur von 73°C (am Julabo 85°C eingestellt) und 250 rpm geschüttelt. Man wäscht das Harz wie nachfolgend angegeben und trocknet es dann gut.

Waschprozedur: 3×DCM, 2×MeOH, 2×Wasser, 1×MeOH, 1×EtOH, 3×DCM, 3×THF, 1×MeOH, 2×Wasser, 1×EtOH, 1×THF, 1×MeOH, 1×Wasser, 1×EtOH, 3×MeCN, 2×THF, 2×Dioxan, 2×Aceton, 2×DCM, 2×Ether und 2×DCM.

Nach Zugabe von 15 ml einer 5% TFA in DCM Lösung wird zur Abspaltung 1 Stunde bei Raumtemperatur und 250 rpm geschüttelt. Man sammelt das Filtrat, engt es am Rotationsverdampfer zur Trockne ein und erhält einen rosa Feststoff. Ausbeute: 16.5 mg, 36%.

EIMS (*m*/*z*, Intensität %): 194 (M⁺, 15), 101 (M⁺-C₆H₅O, 100), 77 (C₆H₅⁺, 42). **HRMS** [M⁺ ber. (gef.)]: 194.0691 (194.0697)

¹**H NMR** δ (ppm) 4.64 und 4.70 (s, 2H, im Verhältnis 0.2 : 0.8, CH₂), 6.88-6.97 (m, 3H, Ph), 7.26-7.30 (m, 2H, Ph), 7.49 und 10.16 (jeweils s, br, NH-Signale).

¹³**C NMR** δ (ppm) 64.57 (klein) und 66.26 (groß) (CH₂), 114.61 (groß) und 114.83 (klein) (C-3', C-5'), 121.11 (klein) und 121.32 (groß) (C-4'), 129.58 (groß) und 129.64 (klein) (C-2', C-6'), 153.37 (NHCONH), 157.80 und 157.89 (C-1'), 170.10 und 170.31 (<u>C</u>OCH₂).

HPLC (H₂O:MeCN = 76:24, 1 ml/min, 210 nm): $t_R = 18.26$ min, Reinheit: 80%.

7 RÖNTGENKRISTALLSTRUKTURDATEN

7.1 Röntgenkristallstrukturdaten von Verbindung (39)

 Tabelle 27:
 Kristalldaten und Strukturverfeinerung f
 ür Verbindung (39).

Identification code	Meu85		
Empirical formula	C15 H19 N3 O3		
Formula weight	289.33		
Temperature	295(2) K		
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	P $2_1/c$ No. 14		
Unit cell dimensions	a = 16.837(8) Å	$\alpha = 90.000(6)^{\circ}.$	
	b = 7.368(4) Å	$\beta = 111.005(4)^{\circ}.$	
	c = 13.070(7) Å	$\gamma = 90.000(5)^{\circ}.$	
Volume	1513.7(14) Å ³		
Z	4		
Density (calculated)	1.270 Mg/m ³		
Absorption coefficient	0.090 mm ⁻¹		
F(000)	616		
Crystal size	0.48 x 0.38 x 0.38 mm ³		
Theta range for data collection	2.59 to 25.05°.		
Index ranges	-20<=h<=18, -8<=k<=8, -14<=	=l<=15	
Reflections collected	8997		
Independent reflections	2681 [R(int) = 0.0717]		
Completeness to theta = 25.05°	100.0 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	2681 / 0 / 267		
Goodness-of-fit on F ²	0.990		
Final R indices [I>2sigma(I)]	R1 = 0.0501, $wR2 = 0.0963$		
R indices (all data)	R1 = 0.1308, wR2 = 0.1197		
Extinction coefficient	0.0016(14)		
Largest diff. peak and hole	0.124 and -0.123 e.Å ⁻³		

	x	у	Z	U(eq)
N(1)	8645(1)	5100(3)	4175(2)	51(1)
N(3)	8865(1)	2722(3)	5268(2)	50(1)
N(12)	6999(1)	1914(3)	4632(2)	50(1)
O(7)	9606(1)	2910(3)	4094(2)	72(1)
O(11)	7318(2)	2728(4)	6382(2)	99(1)
O(21)	7658(1)	6677(3)	4647(2)	77(1)
C(2)	9098(2)	3487(4)	4485(2)	51(1)
C(4)	8277(2)	3860(4)	5571(2)	46(1)
C(5)	8120(2)	5389(4)	4743(2)	51(1)
C(6)	8718(3)	6289(7)	3325(4)	84(1)
C(8)	9160(3)	970(6)	5760(4)	79(1)
C(9)	8705(2)	4709(6)	6704(3)	69(1)
C(10)	7473(2)	2784(4)	5542(2)	54(1)
C(13)	7102(2)	1991(6)	3570(3)	64(1)
C(14)	6330(2)	651(5)	4683(3)	61(1)
C(15)	5444(2)	1358(4)	4132(2)	53(1)
C(16)	5083(3)	2508(5)	4673(4)	73(1)
C(17)	4252(3)	3121(5)	4160(5)	94(1)
C(18)	3788(3)	2561(7)	3116(6)	102(2)
C(19)	4136(3)	1423(6)	2578(4)	92(1)
C(20)	4956(2)	813(5)	3079(3)	70(1)

 Tabelle 28: Atomkoordinaten (x 10⁴) und äquivalente isotropische Temperaturfaktoren (Å²x 10³)

 für Verbindung (39).

N(1)-C(5)	1.360(3)
N(1)-C(2)	1.393(3)
N(1)-C(6)	1.454(4)
N(3)-C(2)	1.344(3)
N(3)-C(8)	1.449(4)
N(3)-C(4)	1.457(3)
N(12)-C(10)	1.335(3)
N(12)-C(13)	1.459(4)
N(12)-C(14)	1.481(3)
O(7)-C(2)	1.219(3)
O(11)-C(10)	1.216(3)
O(21)-C(5)	1.205(3)
C(4)-C(5)	1.518(4)
C(4)-C(9)	1.529(4)
C(4)-C(10)	1.558(4)
C(6)-H(061)	0.98(5)
C(6)-H(062)	0.94(5)
C(6)-H(063)	0.91(4)
C(8)-H(081)	0.88(4)
C(8)-H(082)	1.01(4)
C(8)-H(083)	0.93(5)
C(9)-H(091)	1.05(4)
C(9)-H(092)	0.96(3)
C(9)-H(093)	1.02(4)
C(13)-H(131)	0.95(3)
C(13)-H(132)	0.97(4)
C(13)-H(133)	0.96(5)
C(14)-C(15)	1.499(4)
C(14)-H(141)	1.01(3)
C(14)-H(142)	0.95(3)
C(15)-C(16)	1.377(4)
C(15)-C(20)	1.386(4)
C(16)-C(17)	1.393(6)
C(16)-H(161)	0.92(3)
C(17)-C(18)	1.371(7)
C(17)-H(171)	0.96(3)
C(18)-C(19)	1.355(6)

Tabelle 29: Bindungslängen [Å] und Winkel [°] in Verbindung (39).

0.94(5)
1.373(5)
1.00(5)
0.96(3)
111.8(2)
124.9(3)
123.3(3)
124.4(3)
112.2(2)
123.4(3)
126.3(2)
118.8(2)
114.7(3)
127.8(3)
124.7(3)
107.4(2)
101.2(2)
111.6(2)
106.8(3)
111.7(2)
115.6(2)
109.6(2)
126.0(3)
126.9(3)
107.0(2)
112(2)
108(3)
117(4)
105(3)
99(4)
115(4)
107(3)
110(2)
116(3)
110(3)
113(4)
100(3)
109.0(19)

C(4)-C(9)-H(092)	111.2(17)
H(091)-C(9)-H(092)	112(3)
C(4)-C(9)-H(093)	106.7(19)
H(091)-C(9)-H(093)	111(2)
H(092)-C(9)-H(093)	107(2)
O(11)-C(10)-N(12)	122.3(3)
O(11)-C(10)-C(4)	117.5(3)
N(12)-C(10)-C(4)	120.2(2)
N(12)-C(13)-H(131)	108.9(18)
N(12)-C(13)-H(132)	113(2)
H(131)-C(13)-H(132)	106(3)
N(12)-C(13)-H(133)	107(3)
H(131)-C(13)-H(133)	113(3)
H(132)-C(13)-H(133)	108(3)
N(12)-C(14)-C(15)	113.7(3)
N(12)-C(14)-H(141)	104.4(18)
C(15)-C(14)-H(141)	111.2(17)
N(12)-C(14)-H(142)	105.2(18)
C(15)-C(14)-H(142)	112.3(19)
H(141)-C(14)-H(142)	110(3)
C(16)-C(15)-C(20)	118.3(3)
C(16)-C(15)-C(14)	120.9(3)
C(20)-C(15)-C(14)	120.7(3)
C(15)-C(16)-C(17)	120.3(4)
C(15)-C(16)-H(161)	115.4(18)
C(17)-C(16)-H(161)	124.3(18)
C(18)-C(17)-C(16)	119.8(4)
C(18)-C(17)-H(171)	125(2)
C(16)-C(17)-H(171)	115(2)
C(19)-C(18)-C(17)	120.3(4)
C(19)-C(18)-H(181)	116(3)
C(17)-C(18)-H(181)	124(3)
C(18)-C(19)-C(20)	120.2(5)
C(18)-C(19)-H(191)	119(3)
C(20)-C(19)-H(191)	121(3)
C(19)-C(20)-C(15)	121.0(4)
C(19)-C(20)-H(201)	121(2)
C(15)-C(20)-H(201)	118(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	51(1)	54(2)	51(1)	5(1)	19(1)	0(1)
N(3)	49(1)	54(2)	49(1)	7(1)	19(1)	10(1)
N(12)	51(1)	59(2)	41(1)	-4(1)	18(1)	-9(1)
O(7)	60(1)	89(2)	77(1)	-13(1)	38(1)	5(1)
O(11)	92(2)	166(3)	53(1)	-26(2)	44(1)	-48(2)
O(21)	70(2)	62(2)	93(2)	0(1)	21(1)	22(1)
C(2)	44(2)	62(2)	43(2)	-6(2)	13(1)	-2(2)
C(4)	43(2)	56(2)	37(2)	-7(1)	13(1)	3(1)
C(5)	46(2)	48(2)	52(2)	-5(2)	10(1)	5(2)
C(6)	81(3)	97(3)	72(3)	33(2)	26(2)	-1(3)
C(8)	74(3)	69(3)	99(3)	25(2)	37(3)	18(2)
C(9)	62(2)	92(3)	47(2)	-19(2)	11(2)	-13(2)
C(10)	51(2)	75(2)	41(2)	-2(2)	21(1)	-1(2)
C(13)	64(2)	86(3)	41(2)	-14(2)	16(2)	-19(2)
C(14)	60(2)	57(2)	64(2)	5(2)	22(2)	-9(2)
C(15)	53(2)	44(2)	65(2)	1(2)	25(2)	-13(1)
C(16)	73(3)	63(2)	92(3)	-12(2)	42(2)	-20(2)
C(17)	83(3)	64(3)	165(5)	5(3)	79(4)	-2(2)
C(18)	54(3)	76(3)	166(5)	42(3)	26(3)	-8(2)
C(19)	67(3)	83(3)	111(4)	20(3)	13(3)	-14(2)
C(20)	64(2)	66(2)	75(3)	-2(2)	20(2)	-9(2)

 Tabelle 30: Anisotropische Temperaturfaktoren (Å²x 10³) für Verbindund (39).

	х	У	Z	U(eq)
H(061)	8250(30)	6120(50)	2620(40)	121(15)
H(062)	9270(30)	6180(60)	3320(40)	148(19)
H(063)	8580(30)	7410(60)	3500(40)	140(20)
H(081)	9550(30)	590(50)	5500(30)	118(16)
H(082)	8660(30)	140(60)	5640(30)	112(13)
H(083)	9360(30)	1060(70)	6520(50)	170(20)
H(091)	8270(20)	5550(50)	6870(30)	108(13)
H(092)	9210(20)	5350(40)	6750(20)	72(10)
H(093)	8890(20)	3660(50)	7250(30)	90(12)
H(131)	6560(20)	1890(40)	3010(30)	85(11)
H(132)	7340(20)	3130(50)	3440(30)	100(12)
H(133)	7490(30)	1030(60)	3550(40)	145(19)
H(141)	6464(19)	460(40)	5490(30)	94(11)
H(142)	6426(18)	-450(40)	4360(20)	77(10)
H(161)	5429(17)	2840(40)	5370(20)	59(9)
H(171)	4040(20)	3850(40)	4620(30)	90(12)
H(181)	3220(30)	2900(50)	2740(40)	127(15)
H(191)	3790(30)	1050(60)	1810(40)	152(19)
H(201)	5210(20)	10(50)	2710(30)	91(12)

Tabelle 31: Wasserstoffkoordinaten (x 104) und isotropische Temperaturfaktoren ($Å^2x$ 103)für Verbindung (39).

7.2 Röntgenkristallstrukturdaten von Verbindung (30)

Tabelle 32: Kristalldaten und Strukturverfeinerung für Verbindung (30).

Identification code	Meu74			
Empirical formula	C20 H21 N3 O3			
Formula weight	351.40			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 2 ₁ No. 4			
Unit cell dimensions	a = 9.806(3) Å	α= 90°.		
	b = 8.850(2) Å	β=113.816(5)°.		
	c = 11.479(3) Å	$\gamma = 90^{\circ}$.		
Volume	911.3(4) Å ³			
Z	2			
Density (calculated)	1.281 Mg/m ³			
Absorption coefficient	0.088 mm ⁻¹			
F(000)	372			
Crystal size	0.30 x 0.25 x 0.10 mm ³			
Theta range for data collection	1.94 to 28.40°.			
Index ranges	-13<=h<=11, 0<=k<=11, 0<=l<	<=15		
Reflections collected	2808			
Independent reflections	2808			
Completeness to theta = 28.40°	97.7 %			
Absorption correction	None			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2808 / 1 / 320			
Goodness-of-fit on F ²	0.834			
Final R indices [I>2sigma(I)]	R1 = 0.0292, $wR2 = 0.0568$			
R indices (all data)	R1 = 0.0422, $wR2 = 0.0584$			
Absolute structure parameter	1.5(12)			
Largest diff. peak and hole	0.140 and -0.212 e.Å ⁻³			

	Х	У	Z	U(eq)
N(1)	5630(2)	2263(2)	8869(2)	22(1)
N(3)	3330(2)	2752(2)	7425(2)	24(1)
N(18)	2330(2)	3050(2)	9436(2)	22(1)
O(7)	5306(2)	4171(2)	7378(2)	30(1)
O(17)	1283(2)	714(2)	8886(2)	28(1)
O(21)	5176(2)	258(2)	9962(2)	30(1)
C(2)	4784(2)	3194(3)	7819(2)	24(1)
C(4)	3163(2)	1414(3)	8118(2)	23(1)
C(5)	4769(2)	1207(3)	9114(2)	24(1)
C(6)	7216(3)	2521(3)	9626(3)	29(1)
C(8)	2176(3)	3286(3)	6212(2)	30(1)
C(9)	920(2)	4095(3)	6408(2)	26(1)
C(10)	-371(3)	3338(3)	6277(2)	33(1)
C(11)	-1474(3)	4063(4)	6550(3)	41(1)
C(12)	-1290(3)	5567(4)	6920(3)	44(1)
C(13)	-9(3)	6343(3)	7040(3)	43(1)
C(14)	1091(3)	5621(3)	6786(2)	35(1)
C(15)	2636(3)	4(3)	7271(3)	34(1)
C(16)	2144(2)	1693(3)	8848(2)	22(1)
C(19)	1539(2)	3445(3)	10237(2)	25(1)
C(20)	2592(2)	3669(2)	11632(2)	20(1)
C(21)	3855(2)	2767(3)	12201(2)	26(1)
C(22)	4759(2)	2931(3)	13489(2)	30(1)
C(23)	4433(3)	4011(3)	14219(2)	35(1)
C(24)	3177(3)	4914(3)	13651(2)	32(1)
C(25)	2254(3)	4737(3)	12365(2)	25(1)

 Tabelle 33: Atomkoordinaten (x 10⁴) und äquivalente isotropische Temperaturfaktoren (Å²x 10³)

 für Verbindung (30).

N(1)-C(5)	1.362(3)
N(1)-C(2)	1.418(3)
N(1)-C(6)	1.462(3)
N(3)-C(2)	1.368(3)
N(3)-C(4)	1.472(3)
N(3)-C(8)	1.473(3)
N(18)-C(16)	1.353(3)
N(18)-C(19)	1.465(3)
N(18)-H(18)	0.91(2)
O(7)-C(2)	1.215(3)
O(17)-C(16)	1.222(3)
O(21)-C(5)	1.224(3)
C(4)-C(15)	1.538(3)
C(4)-C(5)	1.539(3)
C(4)-C(16)	1.561(3)
C(6)-H(6A)	0.98(3)
C(6)-H(6B)	1.02(3)
C(6)-H(6C)	1.02(4)
C(8)-C(9)	1.518(3)
C(8)-H(8A)	1.01(3)
C(8)-H(8B)	0.94(3)
C(9)-C(10)	1.386(3)
C(9)-C(14)	1.408(4)
C(10)-C(11)	1.397(3)
C(10)-H(10)	1.10(2)
C(11)-C(12)	1.388(4)
C(11)-H(11)	1.02(3)
C(12)-C(13)	1.388(4)
C(12)-H(12)	0.88(3)
C(13)-C(14)	1.383(4)
C(13)-H(13)	0.99(3)
C(14)-H(14)	0.96(3)
C(15)-H(15A)	1.01(3)
C(15)-H(15B)	1.01(3)
C(15)-H(15C)	1.02(2)
C(19)-C(20)	1.528(3)
C(19)-H(19A)	1.01(2)

 Tabelle 34: Bindungslängen [Å] und Winkel [°] in Verbindung (30).
C(19)-H(19B)	1.05(2)
C(20)-C(25)	1.391(3)
C(20)-C(21)	1.394(3)
C(21)-C(22)	1.391(3)
C(21)-H(21)	0.91(2)
C(22)-C(23)	1.391(4)
C(22)-H(22)	1.03(2)
C(23)-C(24)	1.390(3)
C(23)-H(23)	0.95(3)
C(24)-C(25)	1.395(4)
C(24)-H(24)	1.05(2)
C(25)-H(25)	0.96(2)
C(5)-N(1)-C(2)	112.08(18)
C(5)-N(1)-C(6)	125.7(2)
C(2)-N(1)-C(6)	122.1(2)
C(2)-N(3)-C(4)	112.32(18)
C(2)-N(3)-C(8)	121.43(19)
C(4)-N(3)-C(8)	123.9(2)
C(16)-N(18)-C(19)	121.74(19)
C(16)-N(18)-H(18)	118.3(13)
C(19)-N(18)-H(18)	119.9(13)
O(7)-C(2)-N(3)	128.6(2)
O(7)-C(2)-N(1)	124.6(2)
N(3)-C(2)-N(1)	106.78(18)
N(3)-C(4)-C(15)	113.18(18)
N(3)-C(4)-C(5)	101.17(17)
C(15)-C(4)-C(5)	110.79(19)
N(3)-C(4)-C(16)	113.46(17)
C(15)-C(4)-C(16)	110.04(19)
C(5)-C(4)-C(16)	107.76(17)
O(21)-C(5)-N(1)	127.2(2)
O(21)-C(5)-C(4)	125.4(2)
N(1)-C(5)-C(4)	107.35(19)
N(1)-C(6)-H(6A)	109.2(18)
N(1)-C(6)-H(6B)	112.0(16)
H(6A)-C(6)-H(6B)	112(2)
N(1)-C(6)-H(6C)	111(2)
H(6A)-C(6)-H(6C)	108(3)

H(6B)-C(6)-H(6C)	104(2)
N(3)-C(8)-C(9)	111.78(19)
N(3)-C(8)-H(8A)	106.9(14)
C(9)-C(8)-H(8A)	111.1(14)
N(3)-C(8)-H(8B)	110.8(17)
C(9)-C(8)-H(8B)	108.2(16)
H(8A)-C(8)-H(8B)	108(2)
C(10)-C(9)-C(14)	119.2(2)
C(10)-C(9)-C(8)	121.1(2)
C(14)-C(9)-C(8)	119.7(2)
C(9)-C(10)-C(11)	120.6(3)
C(9)-C(10)-H(10)	117.5(11)
C(11)-C(10)-H(10)	121.8(11)
C(12)-C(11)-C(10)	119.5(3)
C(12)-C(11)-H(11)	119.7(15)
C(10)-C(11)-H(11)	120.8(15)
C(11)-C(12)-C(13)	120.3(3)
C(11)-C(12)-H(12)	118(2)
C(13)-C(12)-H(12)	122(2)
C(14)-C(13)-C(12)	120.2(3)
C(14)-C(13)-H(13)	122.1(16)
C(12)-C(13)-H(13)	117.7(16)
C(13)-C(14)-C(9)	120.1(3)
C(13)-C(14)-H(14)	113.5(18)
C(9)-C(14)-H(14)	126.3(18)
C(4)-C(15)-H(15A)	113.5(17)
C(4)-C(15)-H(15B)	104.6(14)
H(15A)-C(15)-H(15B)	108(2)
C(4)-C(15)-H(15C)	109.6(13)
H(15A)-C(15)-H(15C)	109(2)
H(15B)-C(15)-H(15C)	112.9(19)
O(17)-C(16)-N(18)	124.5(2)
O(17)-C(16)-C(4)	120.5(2)
N(18)-C(16)-C(4)	114.89(19)
N(18)-C(19)-C(20)	112.56(17)
N(18)-C(19)-H(19A)	102.7(13)
C(20)-C(19)-H(19A)	114.2(14)
N(18)-C(19)-H(19B)	113.3(12)
C(20)-C(19)-H(19B)	108.5(12)

H(19A)-C(19)-H(19B)	105.5(16)
C(25)-C(20)-C(21)	119.3(2)
C(25)-C(20)-C(19)	119.77(19)
C(21)-C(20)-C(19)	120.9(2)
C(22)-C(21)-C(20)	120.1(2)
C(22)-C(21)-H(21)	117.6(15)
C(20)-C(21)-H(21)	122.2(15)
C(21)-C(22)-C(23)	120.6(2)
C(21)-C(22)-H(22)	121.5(12)
C(23)-C(22)-H(22)	117.9(12)
C(24)-C(23)-C(22)	119.2(2)
C(24)-C(23)-H(23)	120.1(16)
C(22)-C(23)-H(23)	120.7(16)
C(23)-C(24)-C(25)	120.4(2)
C(23)-C(24)-H(24)	120.1(11)
C(25)-C(24)-H(24)	119.5(11)
C(20)-C(25)-C(24)	120.4(2)
C(20)-C(25)-H(25)	118.2(13)
C(24)-C(25)-H(25)	121.2(13)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	18(1)	24(1)	24(1)	-2(1)	7(1)	1(1)
N(3)	22(1)	28(1)	22(1)	3(1)	9(1)	4(1)
N(18)	20(1)	24(1)	22(1)	-1(1)	10(1)	-4(1)
O(7)	37(1)	27(1)	32(1)	1(1)	20(1)	-2(1)
O(17)	24(1)	24(1)	38(1)	1(1)	13(1)	-4(1)
O(21)	28(1)	29(1)	32(1)	9(1)	12(1)	9(1)
C(2)	28(1)	23(1)	23(1)	-3(1)	13(1)	4(1)
C(4)	22(1)	24(1)	23(1)	2(1)	9(1)	2(1)
C(5)	25(1)	26(1)	24(1)	-4(1)	12(1)	4(1)
C(6)	18(1)	31(2)	32(2)	-6(1)	5(1)	-1(1)
C(8)	30(1)	38(2)	19(1)	4(1)	8(1)	6(1)
C(9)	22(1)	35(1)	16(1)	6(1)	3(1)	8(1)
C(10)	26(1)	42(2)	24(1)	0(1)	2(1)	7(1)
C(11)	23(1)	62(2)	34(2)	-2(2)	6(1)	4(1)
C(12)	34(2)	58(2)	33(2)	-4(2)	7(1)	25(2)
C(13)	44(2)	36(2)	38(2)	-2(1)	5(1)	18(1)
C(14)	35(1)	30(2)	32(2)	6(1)	6(1)	4(1)
C(15)	31(2)	30(2)	38(2)	-10(1)	14(1)	0(1)
C(16)	20(1)	21(1)	21(1)	4(1)	6(1)	3(1)
C(19)	19(1)	32(1)	23(1)	-3(1)	8(1)	0(1)
C(20)	17(1)	23(1)	21(1)	1(1)	10(1)	-3(1)
C(21)	24(1)	28(1)	30(1)	3(1)	15(1)	2(1)
C(22)	22(1)	40(2)	30(1)	11(1)	11(1)	7(1)
C(23)	26(1)	58(2)	20(1)	2(1)	9(1)	-1(1)
C(24)	29(1)	44(2)	22(2)	-6(1)	11(1)	-1(1)
C(25)	23(1)	29(1)	25(1)	3(1)	12(1)	4(1)

 Tabelle 35:
 Anisotropische Temperaturfaktoren (Å²x 10³) für Verbindung (30).

	Х	У	Z	U(eq)
H(18)	2970(20)	3720(20)	9332(19)	18(6)
H(6A)	7360(30)	3560(40)	9950(30)	68(10)
H(6B)	7840(30)	2290(30)	9130(30)	53(8)
H(6C)	7610(40)	1800(50)	10380(40)	102(13)
H(8A)	2690(30)	3980(30)	5810(20)	36(7)
H(8B)	1770(30)	2480(30)	5650(30)	54(9)
H(10)	-470(20)	2150(30)	5980(20)	29(6)
H(11)	-2410(30)	3490(30)	6490(20)	46(8)
H(12)	-1990(30)	6000(40)	7090(30)	58(10)
H(13)	90(30)	7400(40)	7340(30)	57(9)
H(14)	1950(30)	6250(40)	6930(30)	67(10)
H(15A)	3220(30)	-200(30)	6740(30)	49(8)
H(15B)	2820(30)	-860(30)	7890(30)	34(7)
H(15C)	1540(30)	120(20)	6670(20)	24(6)
H(19A)	820(20)	2570(30)	10080(20)	27(6)
H(19B)	870(20)	4410(30)	9920(20)	25(6)
H(21)	4130(20)	2070(30)	11750(20)	28(7)
H(22)	5690(20)	2260(30)	13930(20)	24(6)
H(23)	5050(30)	4130(30)	15100(30)	37(7)
H(24)	2900(20)	5720(20)	14193(19)	15(5)
H(25)	1330(20)	5280(30)	11980(20)	29(7)

Tabelle 36: Wasserstoffkoordinaten (x 104) und isotropische Temperaturfaktoren (Å2x 103)für Verbindung (30).

8 LITERATURVERZEICHNIS

- 1. Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154.
- Hüser, J., Mundt, S., Allin, C., Meyer-Almes, F.-J., Meininghaus, M., Bechem, M. *BIOspektrum* 2002, 8, 301-306.
- Köbberling, J., Vortrag: "Solid Phase Combinatorial Chemistry in Pharma Research at Bayer HealthCare", Novabiochem Seminar, Universität Karlsruhe, 29.09.2004.
- 4. Beitrag in: *Science* **1998**, 282, 2156-2161.
- a) Furka, A., Sebestyén, F., Asgedom, M., Dibó, G. Int. J. Peptide Protein Res.
 1991, 37, 487-493. b) Furka, A. DDT 2002, 7, 1-4.
- a) Houghten, R. A. Proc. Natl. Acad. Sci. USA 1985, 82, 5131-5135. b) Pinilla,
 C., Appel, J. R., Houghten, R. A. Methods Molec. Biol. 1996, 66, 171-179.
- Geysen, H. M., Meloen, R. H. Barteling, S. J. Proc. Natl. Acad. Sci. USA 1984, 81, 3998-4002.
- 8. Heine, N., Germeroth, L., Schneider-Mergener, J., Wenschuh, H. Tetrahedron Lett. 2001, 42, 227-230.
- 9. Bunin, B. A., Ellman, J. A. J. Am. Chem. Soc. 1992, 114, 10997-10998.
- 10. Hoffmann, R. Angew. Chem. 2001, 113, 3439-3443.
- 11. Czarnik, A. W. Proc. Natl. Acad. Sci. USA 1997, 94, 12738-12739.
- 12. http://www.irori.com
- Krämer, T.; Antonenko, V. V., Mortezaei, R., Kulikov, N. V. In *Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials;* Nicolaou, K. C., Hanko, R., Hartwig, W., Eds. Encoding Technologies. Wiley-VCH: Weinheim, 2002; S. 185-186.
- Kohane, B. J., Vortrag: "IRORI-Kan Technology", NSF-Workshop "Solid Phase Synthesis and Combinatorial Chemistry" Wright State University, Dayton/Ohio, USA, 01.08.-06.08.2004.
- 15. Nicolaou, K. C., Xiao, X.-Y., Parandoosh, Z., Senyei, A., Nova, M. Angew. Chem. Int. Ed. Engl. 1995, 34, 2289-2291.
- Moran, E. J., Sarshar, S., Cargill, J. G., Shahbaz, M. M., Lio, A., Mjali, A. M. M., Armstrong, R. W. J. Am. Chem. Soc. 1995, 117, 10787-10788.
- Xiao, X.-Y., Zhao, C., Potash, H., Nova, M. P. Angew. Chem. 1997, 109, 799-801.

- Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., Solas, D. Science 1991, 251, 767-773.
- a) Yan, B., Martin, P. C., Lee, J. J. Comb. Chem. 1999, 1, 78-81. b) Sun, Y., Chan, B. C., Ramnarayanan, R., Leventry, W. M., Mallouk, T. E., Bare, S. R., Willis, R. R. J. Comb. Chem. 2002, 4, 569-575. c) Pina-Luis, G., Badía, R., Díaz-García, M. E., Rivero, I. A. J. Comb. Chem. 2004, 6, 391-397.
- Miller, T. C., Mann, G., Havrilla, G. J., Wells, C. A., Warner, B. P., Baker, R. T. J. Comb. Chem. 2003, 5. 245-252.
- 21. Nefzi, A., Ostresh, J. M., Houghten, R. A. Chem. Rev. 1997, 97, 449-472.
- 22. Brenner, S., Lerner, R. A. Proc. Natl. Sci. USA 1992, 89, 5381-5383.
- 23. Nielson, J., Brenner, S., Janda, K. D. J. Am. Chem. Soc. 1993, 115, 9812-9813.
- Needels, M. C., Jones, D. G., Tate, E. H., Heinkel, G. L., Kochersperger, L. M., Dower, W. J., Barrett, R. W., Gallop, M. A. Proc. Natl. Sci. USA 1993, 90, 10700-10704.
- Ohlmeyer, M. H. J., Swanson, R. N., Dillard, L. W.; Reader, J. C., Asouline, G., Kobayashi, R., Wigler, M., Still, W. C. *Proc. Natl. Sci. USA* **1993**, *90*, 10922-10926.
- 26. Wittmann, V. Nachr. Chem. 2002, 50, 724-727.
- Bugaut, A., Bathany, K., Schmitter, J.-M., Rayner, B. *Tetrahedron Lett.* 2005, 46, 687-690.
- Bornaghi, L. F., Wilkinson, B. L., Kiefel, M. J., Poulsen, S.-A. *Tetrahedron Lett.* 2004, 45, 9281-9284.
- Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P., Hirshfield, J. J. Med. Chem. 1988, 31, 2235-2246.
- Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G.-Q., Barluenga, S., Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939-9953.
- 31. Meusel, M., Gütschow, M. Org. Prep. Proced. Int. 2004, 36, 391-443.
- 32. Jeschke, P. ChemBioChem 2004, 5, 570-589.
- 33. Graber, H. Árr, M, Csiba, A. Ludwig, E., Magyar, T. Int. J. Clin. Pharm. Ther. Tox. **1981**, 19, 539-546.
- 34. Horton, D. A., Bourne, G. T., Smythe, M. L. Chem. Rev. 2003, 103, 893-930.
- 35. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44, 235-249.

- Coffen, D. L.; Luithle, J. E. A. In *Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials;* Nicolaou, K. C., Hanko, R., Hartwig, W., Eds. Introduction to Combinatorial Chemistry. Wiley-VCH: Weinheim, 2002; S. 16.
- 37. Rana, S., White, P., Bradley, M. J. Comb. Chem. 2001, 3, 9-15.
- 38. Haag, R., Sunder, A., Stumbé, J.-F. J. Am. Chem. Soc. 2000, 122, 2954-2955.
- MacLean, D., Baldwin, J. J., Ivanov, V. T., Kato, Y., Shaw, A., Schneider, P. Gordon, E. M. Pure Appl. Chem. 1999, 71, 2349-2365.
- 40. Blackburn, C., Albericio, F., Kates, S. A. Drugs Fut. 1997, 22, 1007-1025.
- 41. Gordon, K., Balasubramanian, S. J. Chem. Technol. Biotechnol. 1999, 74, 835.
- 42. Guillier, F., Orain, D., Bradley, M. Chem. Rev. 2000, 100, 2091-2157.
- 43. Krchňák, V., Holladay, M. W. Chem. Rev. 2002, 102, 61-91.
- Bräse, S.; Dahmen, S. In *Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials;* Nicolaou, K. C., Hanko, R., Hartwig, W., Eds. Linkers for Solid-phase Synthesis. Wiley-VCH: Weinheim, 2002; S. 59-169.
- Dörwald, F. Z. Organic Synthesis on Solid Phase: Supports, Linkers, Reactions; Wiley-VCH: Weinheim, 2002; S. 39-159.
- Bräse, S.; Dahmen, S. In Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials; Nicolaou, K. C., Hanko, R., Hartwig, W., Eds. Linkers for Solid-phase Synthesis. Wiley-VCH: Weinheim, 2002; S. 65.
- Deng, M.-Z., Caubere, P., Senet, J. P., Lecolier, S. *Tetrahedron*, **1988**, *19*, 6079-6086.
- Baraldi, P. G., Guarneri, M., Manfredini, S., Simoni, D., Zanirato, V. *Farmaco*, 1989, 44, 391-398.
- 49. Kravchenya, N. A., Burov, V. I. Khim. Promyshl. 1981, 6, 334-335.
- Zirvi, K. A., Fakouhi, T. Farmaco Ed. Sc., 1978, 37, 335-342.Kozyukov, V. P., Orlov, G. I., Mironov, V. F. Zhur. Obsh. Khim. 1980, 50, 1899-1900.
- 52. Mongrovius, R. Eur. J. Med. Chem. 1975, 5, 474-479.
- 53. Maki, T., Ishihara, K., Yamamoto, H. Synlett 2004, 1355-1358.
- Roegler, C. *Diplomarbeit*, Rheinische Friedrich-Wilhelms-Universität Bonn, 2003.
- 55. Papesch, V., Schroeder, E. F. J. Org. Chem. 1951, 16, 1879-1890.
- 56. Vásquez, J., Royo, M., Albericio, F. Lett. Org. Chem. 2004, 1, 224-226.
- 57. Chong, P. Y., Petillo, P. A. Tetrahedron Lett. 1999, 4501-4504.
- 58. Migawa, M. T., Swayze, E. E. Org. Lett. 2000, 2, 3309-3311.

- 59. Bräse, S., Dahmen, S., Pfefferkorn, M. J. Comb. Chem. 2000, 2, 710-715.
- 60. Nefzi, A., Ong, N. A., Houghten, R. A. Tetrahedron Lett. 2000, 41, 5441-5446.
- 61. Huang, W. Q., Cheng, S. L., Sun, W. M. Tetrahedron Lett. 2001, 42, 1973-1974.
- 62. Zheng, C., Combs, A. P. J. Comb. Chem. 2002, 4, 38-43.
- 63. Whitehead, D. M., Jackson, T., McKeown, S. C., Routledge, A. *React. Funct. Polym.* **2002**, *52*, 81-87.
- 64. Fattori, D., D'Andrea, P., Porcelloni, M. Tetrahedron Lett. 2003, 44, 811-814.
- 65. Martinez-Teipel, B., Green, R. C., Dolle, R. E. *QSAR Comb. Sci.* **2004**, *23*, 854-858.
- Ravn, J., Ankersen, M., Begtrup, M., Lau, J. F. *Tetrahedron Lett.* 2003, 44, 6931-6935.Cheng, Z., Yang, G., Zhang, Z., Wang, D. *Synthesis* 2001, 1483-1486.
- 68. Gütschow, M., Hecker, T., Eger, K. Synthesis 1999, 410-414.
- 69. Knabe, J., Reinhardt, J., Arch. Pharm. (Weinheim) 1982, 315, 706-715.
- 70. Knabe, J., Schmitt, W. Arch. Pharm. (Weinheim) 1984, 317, 789-796.
- 71. Senda, S., Hirota, K., Banno, K. Tetrahedron Lett. 1974, 35, 3087-3088.
- 72. Tóth, G., Makleit, S. Acta Chim. Acad. Sci. Hung. 1981, 107, 139-145.
- 73. Bojarski, J. T., Mokrosz, J. L., Bartoń, H. J., Paluchowska, M. H. *Adv. Heterocycl. Chem.* **1985**, *38*, 229-297.
- 74. Garrett, E. R., Bojarski, J. T., Yakatan, G. J. J. Pharm. Sci. 1971, 60, 1145-1154.
- Meusel, M., Ambrożak, A., Hecker, T. K., Gütschow, M. J. Org. Chem. 2003, 68, 4684-4692.
- 76. Cortes, S., Kohn, H. J. Org. Chem. 1983, 48, 2246-2254.
- 77. Moskal, J., Moskal, A. Synthesis 1979, 794-797.
- 78. Moskal, J., Moskal, A., Milart, P. Monatsh. Chem. 1984, 115, 187-195.
- 79. van der Plas, H. C. Acc. Chem. Res. 1978, 11, 462-468.
- 80. Maiboroda, D. A., Babaev, E. V., Jug, K. J. Org. Chem. 1997, 62, 7100-7105.
- 81. Hegarty, A. F., Hegarty, C. N., Scott, F. L. J. Chem. Soc., Perkin Trans. 2 1974, 1258-1268.
- Mukaiyama, T., Tokizawa, M., Nohira, H., Takei, H. J. Org. Chem. 1961, 26, 4381-4384.
- 83. Matoba, K., Ishigami, E., Takahata, H., Yamasaki, T. *Chem. Pharm. Bull.* **1981**, *29*, 651-656.
- 84. Guest, A. W., Milner, P. H. Tetrahedron Lett. 1984, 25, 4845-4848.
- 85. Parri, W. Boll. Chim. Farm. 1924, 63, 401-404.

- 86. Zwikker, J. J. L. Pharm. Weekbl. 1931, 69, 975-983.
- 87. Bodendorf, K. Arch. Pharm. (Weinheim) 1932, 270, 290-291.
- 88. Dille, J. M., Koppanyi, T. J. Am. Pharm. Ass. 1934, 23, 1079-1084.
- 89. de Faubert Maunder, M. J. Analyst 1975, 100, 878-883.
- 90. Lang, W. Dtsch. Apoth. Ztg. 1956, 96, 734-735.
- 91. Schwenker, G. Dtsch. Apoth. Ztg. 1957, 97, 238-240.
- 92. Schmidt, F. Dtsch. Apoth. Ztg. 1978, 118, 443-444.
- 93. Bult, A. Pharm. Weekbl. 1975, 110,1161-1163.
- 94. Riedel, E. Anorganische Chemie; Walter de Gruyter: Berlin, **1994**, S.668-680.
- 95. a) European Pharmacopoiea 5.0, 1/2005, Directorate for the Quality of Medicines of the Council of Europe, Strasbourg, Frankreich. b) The British Pharmacopoiea 1993, Medicines Commission, London, Großbritannien. c) The United States Pharmacopoiea 28 (2005), United States Pharmacopeial Convention, Inc., Rockville/MD, USA.
- 96. http://www.tutorial.artems.de/help/photoshop/farbmodelle.htm
- 97. Meusel, M., Frizler, M., Gütschow, M. Manuskript in Vorbereitung.
- 98. Baindur, N., Chadha, N., Player, M. R. J. Comb. Chem. 2003, 5, 653-659.
- Kaldor, S. W., Siegel, M. G., Fritz, J. E., Dressman, B. A., Hahn, P. J. *Tetrahedron Lett.* **1996**, *37*, 7193-7196.
- Kaldor, S. W., Fritz, J. E., Tang, J., McKinney, E. R. *Bioorg. Med. Chem. Lett.* 1996, 24, 3041-3044.
- 101. López, C. A., Trigo, G. G. Adv. Heterocycl. Chem. 1985, 38, 177-227.
- Tellier, F., Acher, F., Brabet, I., Pin, J.-P., Azerad, R. Bioorg. Med. Chem. 1998, 6, 195-208.
- Sarhan, A. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn,
 2002.
- DeWitt, S. H., Kiely, J. S., Stankovic, C. J., Schroeder, M. C., Reynolds Cody, D. M., Pavia, M. R. Proc. Natl. Acad. Sci. USA 1993, 90, 6909-6913.
- 105. Park, K.-H., Kurth, M. J. Tetrahedron Lett. 2000, 41, 7409-7413.
- 106. Luer, M. S. Neurol. Res., 1998, 20, 178-182.
- Bosch, J., Roca, T., Domènech, J., Suriol, M. Bioorg. Med. Chem. Lett. 1999, 9, 1859-1862.

- Byrtus, H., Pawłowski, M., Charakchieva-Minol, S., Duszyńska, B., Mokrosz, M. J., Mokrosz, J. L., Zejc, A. Arch. Pharm. Pharm. Med. Chem. 1996, 329, 283-290.
- Byrtus, H., Pawłowski, M., Duszyńska, B., Wesołowska, A., Chojnacka-Wójcik,
 E., Bojarski, A. J. Pol. J. Pharmacol. 2001, 53, 395-401.
- Edmunds, J. J., Klutchko, S., Hamby, J. M., Bunker, A. M., Connolly, C. J. C., Winters, R. T., Quin III, J., Sircar, I., Hodges, J. C., Panek, R. L., Keiser, J. A., Doherty, A. M. *J. Med. Chem.* **1995**, *38*, 3759-3771.
- a) Zinczuk, J., Orazi, O. O., Corral, R. A., Roncaglia, H. J. Heterocycl. Chem. **1985**, 22, 1025-1028. b) Ravindranathan, T., Hiremath, S. V., Gosavi, K., Reddy, D. R. Synthesis **1989**, 38-39. c) Matsukura, M., Daiku, Y., Ueda, K., Tanaka, S., Igarashi, T., Minami, N. Chem. Pharm. Bull. **1992**, 40, 1823-1827. d) Oh, C.-H., Lee, K.-S., Roh, E.-J., Kwon, S.-K., Cho, J.-H. Arch. Pharm. Res. **1994**, 17, 281-283. e) Hudkins, R. L., DeHaven-Hudkins, D. L., Doukas, P. Bioorg. Med. Chem. Lett. **1997**, 7, 979-984. f) Schelkun, R. M., Yuen, P.-w., Serpa, K., Meltzer, L. T., Wise, L. D., Whittemore, E. R., Woodward, R. M. J. Med. Chem. **2000**, 43, 1892-1897. g) Chianelli, D., Kim, Y.-C., Lvovskiy, D., Webb, T. R. Bioorg. Med. Chem. **2003**, 11, 5059-5068.
- Moloney, G. P., Robertson, A. D., Martin, G. R., MacLennan, S., Mathews, N., Dodsworth, S., Sang, P. Y., Knight, C., Glen, R. J. Med. Chem. 1997, 40, 2347-2362.
- Moloney, G. P., Martin, G. R., Mathews, N., Milne, A., Hobbs, H., Dodsworth, S., Sang, P. Y., Knight, C., Williams, M., Maxwell, M., Glen, R. C. J. Med. *Chem.* 1999, 42, 2504-2562.
- 114. Raja, S. N. J. Label. Compd. Radiopharm. 2003, 46, 883-892.
- 115. Alcaraz, L., Baxter, A., Bent, J., Bowers, K., Braddock, M., Cladingboel, D., Donald, D., Fagura, M., Furber, M., Laurent, C., Lawson, M., Mortimore, M., McCormick, M., Roberts, N., Robertson, M. *Bioorg. Med. Chem. Lett.* 2003, 13, 4043-4046.
- Ooms, F., Wouters, J., Oscari, O., Happaerts, T., Bouchard, G., Carrupt, P.-A., Testa, B., Lambert, D. M. J. Med. Chem. 2002, 45, 1748-1756.
- 117. Hecker, T. K. Dissertation, Universität Leipzig, 2001.
- 118. Kieć-Kononowicz, K., Zejc, A. Pol. J. Chem. 1984, 58, 761-767.
- 119. Euler, H., Kirfel, A., Meusel, M., Gütschow, M. Z. Kristallogr. NCS, eingereicht.

- 120. Euler, H., Dix, I., Kirfel, A., Meusel, M., Gütschow, M., Manuskript in Vorbereitung.
- 121. El-Barbary, A. A., Khodair, A. I., Pedersen, E. B. J. Org. Chem. **1993**, 58, 5994-5999.
- 122. Kapadia, S. R., Spero, D. M., Eriksson, M. J. Org. Chem. 2001, 66, 1903-1905.
- 123. Müller, C. E. Tetrahedron Lett. 1991, 32, 6539-6540.
- 124. Fülle, F. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2004.
- 125. Meusel, M., Gütschow, M. Tetrahedron Lett. 2005, 46, 2231-2233.
- 126. Rink, H. Tetrahedron Lett. 1987, 28, 3787-3790.
- 127. Fînaru, A., Berthault, A., Besson, T., Guillaumet, G., Berteina-Raboin, S. Org. Lett. 2002, 4, 2613-2615.
- 128. Yun, W., Li, S., Wang, B., Chen, L. Tetrahedron Lett. 2001, 42, 175-177.
- Peukert, S., Brendel, J., Priard, B., Brüggemann, A., Below, P., Kleemann, H.-W., Hemmerle, H., Schmidt, W. J. Med. Chem. 2003, 46, 486-498.
- Le Bourdonnec, B., Belanger, S., Cassel, J. A., Stables, G. J., DeHaven, R. N., Dolle, R. E. *Bioorg. Med. Chem.* 2003, 13, 4459-4462.
- 131. Zobova, N. N., Nazyrova, A. Z. Zh. Org. Khim. 1993, 29, 1906-1908.
- Schnell, B., Krenn, W., Faber, K., Kappe, O. J. Chem. Soc., Perkin Trans. 1 2000, 4382-4389.
- 133. Das Verhalten von N-Acylharnstoffen gegenüber Nukleophilen (Aminen) war Gegenstand der Untersuchung in: Schweim, H. G. Arch. Pharm. (Weinheim) 1986, 319, 814-825.
- Dörwald, F. Z. Organic Synthesis on Solid Phase: Supports, Linkers, Reactions;
 Wiley-VCH: Weinheim, 2002; S. 205-209.
- 135. Zoller, T., Ducep, J.-B., Hibert, M. Tetrahedron Lett. 2000, 41, 9985-9988.
- 136. Farrall, M. J., Fréchet, J. M. J. J. Org. Chem. 1976, 41, 3877-3882.
- 137. Malenfant, P. R. L., Fréchet, J. M. J. Chem. Commun. 1998, 2657-2658.
- 138. Han, Y., Giroux, A., Lépine, C., Laliberté, F., Huang, Z., Perrier, H., Bayly, C. I., Young, R. N. *Tetrahedron* **1999**, *55*, 1169-11685.
- 139. Brill, W. K.-D., Riva-Toniolo, C. Tetrahedron Lett. 2001, 42, 6515-6518.
- 140. Zhang, H.-C., Ye, H., White, K. B., Maryanoff, B. E. *Tetrahedron Lett.* **2001**, *42*, 4751-4754.
- 141. Tois, J., Franzén, R., Aitio, O., Laako, I., Huuskonen, J., Taskinen, J. Comb. Chem. HTS 2001, 4, 521-524.

- 142. Jursic, B. S., Neumann, D. M., Moore, Z., Stevens, E. D. J. Org. Chem. 2002, 67, 2372-2374.
- Sewald, N., Jakubke, H.-D. *Peptides: Chemistry and Biology*; Wiley-VCH: Weinheim, 2002; S. 150-151.
- Stavrakoudis, A., Demetropoulos, I., Sakarellos, C., Sakarellos-Daitsiois, M., Tsikaris, V. Lett. Pept. Sci. 1997, 4, 481-487.
- 145. Lab-Report "Solid Phase Synthesis of Hydantoins", NSF-Workshop "Solid Phase Synthesis and Combinatorial Chemistry", Wright State University, Dayton/Ohio, USA, 01.08.-06.08.2004.
- Dean, T., Arbeitsmaterialien GlaxoWellcome R&D "A Practical Introduction to Solid-Phase Chemistry" 1998.
- Akkari, R., Calmes, M., Mai, N., Rolland, M., Martinez, J. J. Org. Chem. 2001, 66, 5859-5865.
- 148. Derkach, G. I., Gubnitskaya, E. S., Samarai, L. I. Zh. Obsh. Khim. 1966, 36, 1942-1944.
- 149. Urabe, D., Sugino, K., Nishikawa, T., Isobe, M. Tetrahedron Lett. 2004, 45, 9405-9407.
- 150. Masiero, S., Fini, F., Gottarelli, G., Spada, G. P. J. Chem. Res. (S) 1998, 634-635.
- 151. Jirman, J., Lyčka, A. Coll. Czech. Chem. Commun. 1987, 52, 2474-2481.
- Bakibaev, A. A., Yu Yagovkin, A., Vostretsov, S. N. Russ. Chem. Rev. 1998, 67, 295-314.
- 153. Patek, M., Weichsel, A. S., Drake, B., Smrcina, M. Synlett 2005, 1322-1324.
- 154. Tsukamoto, H., Suzuki, T., Kondo, Y. Synlett 2003, 1105-1108.
- 155. Bose, A. K., Garratt, S. Tetrahedron 1963, 19, 85-89.
- Resofszki, G., Huhn, M., Dvortsak, P, Kaloy, K. *Liebigs Ann. Chem.* 1976, 1343-1350.
- Kotani, T., Nagaki, Y., Ishii, A., Konishi, Y., Yago, H., Suehiro, S., Okukado, N.
 Okamoto, K. J. Med. Chem. 1997, 40, 684-694.
- 158. Kolodziej, S. A., Hamper, B. C. Tetrahedron Lett. 1996, 37, 5277-5280.
- Lee, S.-H., Clapham, B., Koch, G., Zimmermann, J., Janda, K. D. Org. Lett.
 2003, 5, 511-514.
- 160. Fuchikami, T., Yamanouchi, A., Ojima, I. Synthesis 1984, 766-768.
- 161. Carpino, L. A., Terry, P. H., Thatte, S. D. J. Org. Chem. 1966, 31, 2867-2873.

- Bellier, B., Million, M.-E., DaNascimento, S., Meudal, H., Kellou, S., Maigret, B., Garbay, C. J. Med. Chem. 2000, 43, 3614-3623.
- Spielman, M. A., Geiszler, A. O., Close, W. J. J. Am. Chem. Soc. 1948, 70, 4189-4191.
- 164. a) Bezuglyi, P. A., Treskach, V. I., Ukrainets, I. V., Grinenko, V. V., Bevz, N. Yu. *Zh. Org. Khim.* 1991, 27, 1410-1413. b) Ukrainets, I. V., Bezugly, P. A., Treskach, V. I., Taran, S. G., Gorokhova, O. V. *Tetrahedron* 1994, *50*, 10331-10338. c) Katagi, T., Aoki, M., Kashiwagi, M., Ohata, K., Kohno, S., Murata, T., Inoi, T. *Chem. Pharm. Bull.* 1985, *33*, 4878-4888.
- 165. Eichelbaum, M., Sonntag, B., Von Unruh, G. Arch. Toxicol. 1978, 41, 187-193.
- (a) Bhatnacar, S., Kamthan, D., Mehra, S. C., Tandan, S. K. Indian J. Pharmac. **1986**, 18, 235-238. (b) Chatterjie, N., Alexander, G. J. Med. Sci. Res. **1988**, 16, 387-388. (c) Brouillette, W. J., Brown, G. B., DeLorey, T. M., Liang, G. J. Pharm. Sci. **1990**, 79, 871-874. (d) Karolak-Wojciechowska, J., Kwiatokowski, W., Kieć-Kononowicz, K. Pharmazie **1995**, 50, 114-117. (e) Brown, M. L., Brown, G. B., Brouillette, W. J. J. Med. Chem. **1997**, 40, 602-607. (f) Brown, M. L., Zha, C. C., Van Dyke, C. C., Brown, G. B., Brouillette, W. J. J. Med. Chem. **1999**, 42, 1537-1545. (g) Thenmozhiyal, J. C., Wong, P. T.-H., Chui, W.-K. J. Med. Chem. **2004**, 47, 1527-1535. (h) Sutherland, J. J., Weaver, D. F. J. Chem. Inf. Comput. Sci. **2003**, 43, 1028-1036.
- 167. LeTiran, A., Stables, J. P., Kohn, H. Bioorg. Med. Chem., 2001, 9, 2693-2708.
- Anger, T., Madge, D. J., Mulla, M., Riddall, D. J. Med. Chem., 2001, 44, 115-137.
- 169. López-Rodríguez, M. L., Rosado, M. L., Benhamú, B., Morcillo, M. J., Fernández, E., Schaper, K.-J. J. Med. Chem. 1997, 40, 1648-1656.
- (a) Barraclough, P., Brockwell, M., Caldwell, A. G., Demaine, D. A., Harris, C. J., King, W. R., Stepney, R. J., Wharton, C. J., Whittle, B. J. R. Arch. Pharm. (Weinheim) 1994, 327, 307-317. (b) Barraclough, P., Bolofo, M. L., Giles, H., Gillam, J., Harris, C. J., Kelly, M. G., Leff, P., McNeill, A., Robertson, A. D., Stepney, R. J., Whittle, B. J. R. Bioorg. Med. Chem. 1996, 4, 81-90. (c) Stilz, H. U., Jablonka, B., Just, M., Knolle, J., Paulus, E. F., Zoller, G. J. Med. Chem. 1996, 39, 2118-2122.
- 171. (a) Guella, G., Mancini, I., Zibrowius, H., Pietra, F. *Helv. Chim. Acta* 1988, 71, 773-782. (b) Pettit, G. R., Herald, C. L., Leet, J. E., Gupta, R., Schaufelberger,

D. E., Bates, R. B., Clewlow, P. J., Doubek, D. L., Manfredi, K. P., Rützler, K., Schmidt, J. M., Tackett, L. P, Ward, F. B., Bruck, M., Camou, F. *Can. J. Chem.* **1990**, *68*, 1621-1624. (c) Ganapathi, R., Hercbergs, A., Grabowski, D., Ford, J. *Cancer Res.* **1993**, *53*, 3262-3265. (d) Kawamura, K.-I., Grabowski, D., Weizer, K., Bukowski, R., Ganapathi, R. *Br. J. Cancer* **1996**, *73*, 183-188. (e) Chezal, J. M., Delmas, G., Mavel, S., Elakmaoui, H., Métin, J., Diez, A., Blache, Y., Gueffier, A., Rubiralta, M., Teulade, J. C., Chavignon, O. *J. Org. Chem.* **1997**, *62*, 4085-4087. (f) Shamash, J., Salam, A. H., Davies, D. C., Williams, A., Joel, S., Lister, T. A. *Br. J. Cancer* **1998**, *77*, 1598-1603. (g) Schwab, M., Eichelbaum, M., Fromm, M. F. *Annu. Rev. Pharmacol. Toxicol.* **2003**, *43*, 285-307. (h) McNally, V. A., Gbaj, A., Douglas, K. T., Stratford, I. J., Jaffar, M., Freeman, S., Bryce, R. A. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3705-3709.

- 172. Hilpert, H. Tetrahedron, 2001, 57, 7675-7683.
- 173. (a) Groutas, W. C., Stanga, M. A., Castrisos, J. C., Schatz, E. J. *J. Enzyme Inhibition*, **1990**, *3*, 237-243. (b) Tremblay, M., Voyer, N., Boujabi, S., Dewynter, G. F. *J. Comb. Chem.* **2002**, *4*, 429-435.
- 174. Taylor, C. P. Curr. Pharm. Des. 1996, 2, 375-388.
- 175. Reagan, L. P., McKittrick, C. R., McEwen, B. S. Neuroscience **1999**, *91*, 211-219.
- 176. (a) Last-Barney, K., Davidson, W., Cardozo, M., Frye, L. L., Grygon, C. A., Hopkins, J. L., Jeanfavre, D. D., Pav, S., Qian, C., Stevenson, J. M., Tong, L., Zindell, R., Kelly, T. A. J. Am. Chem. Soc. 2001, 123, 5643-5650. (b) Frutos, R. P., Stehle, S., Nummy, L., Yee, N. Tetrahedron: Asymm. 2001, 12, 101-104. (c) E. Napolitano and V. Farina, Tetrahedron Lett., 42, 3231 (2001).
- 177. (a) Kieć-Kononowicz, K., Zejc, A., Chłon, G., Stypuła, E., Krupinska, J., Cebo, B. Acta Pharm. Jugosl. 1987, 37, 123-130. (b) K. Kieć-Kononowicz, K. Stadnicka, A. Mitka, E. Pękala, B. Filipek, J. Sapa, and M. Zygmunt, Eur. J. Med. Chem., 38, 555 (2003).
- 178. Daugan, A., Grodin, P., Ruault, C., Le Monnier de Gouville, A.-C., Coste, H., Kirilovsky, J., Hyafil, F., Labaudinière, R. *J. Med. Chem.* **2003**, *46*, 4525-4532.
- 179. (a) Sarges, R., Bordner, J., Dominy, B. W., Peterson, M. J., Whipple, E. B. J. *Med. Chem.* 1985, 28, 1716-1720. (b) Rizzi, J. P., Schnur, R. C., Hutson, N. J., Kraus, K. G., Kelbaugh, P. R. J. Med. Chem. 1989, 32, 1208-1213. (c) Sarges, R., Oates, P. J. Prog. Drug Res. 1993, 40, 99-159. (d) Murakami, N., Ohta, M.,

Kato, K., Nakayama, K., Mizota, M., Miwa, I., Okuda, J. *Drug Res.* 1997, 47, 1222-1225. (e) Oka, M., Matsumoto, Y., Sugiyama, S., Tsuruta, N., Matsushima, M. *J. Med. Chem.* 2000, 43, 2479-2483. (f) de la Fuente, C., Krülle, T. M., Watson, K. A., Gregoriou, M. G., Johnson, L. N., Tsitsanou, K. E., Zographos, S. E., Oikonomakos, N. G., Fleet G. W. J., *Synlett* 1997, 485-487. (g) Somsák, L., Kovács, L., Tóth, M., Ösz, E., Szilágyi, L., Györgydeák, Z., Dinya, Z., Docsa, T., Tóth, B., Gergely, P. *J. Med. Chem* 2001, 44, 2843-2848.

- 180. Kwon, S.-k., Park, M.-s. Arch. Pharm Res. 1992, 15, 251-255.
- 181. (a) Goubet, F., Teutsch, G. *Tetrahedron Lett.* 1996, *37*, 7727-7730. (b) Lamothe, M., Lannuzel, M., Perez, M. J. Comb. Chem. 2002, *4*, 73-78. (c) Anderson, J. *BJU Int.*, 2003, *91*, 455-461.
- 182. (a) Marchand-Brynaert, J., Arnadei, E., Ghosez, L. Bull. Soc. Chim. Belg. 1994, 103, 213-218. (b) Oh, C.-H., Kim, H. J., Hong, S.-Y., Lee, Y.-H., Cho, J. K., Cho, J.-H. Arch. Pharm. (Weinheim) 1995, 328, 385-387.
- 183. Elokdah, H., Sulkowski, T. S., Abou-Gharbia, M., Butera, J. A., Chai, S.-Y., McFarlane, G. R., McKean, M.-L., Babiak, J. L., Adelman, S. J., Quinet, E. M. J. Med. Chem. 2004, 47, 681-695.
- 184. Severinsen, R., Lau, J. F., Bondensgaard, K., Hansen, B. S., Begtrup, M., Ankersen, M. *Bioorg. Med. Chem. Lett.* 2004, *14*, 317-320.
- (a) Comber, R. N., Reynolds, R. C., Friedrich, J. D., Manguikian, R. A., Buckheit, R. W., Truss, J. W., Shannon, W. M., Secrist III., J. A. J. Med. Chem. 1992, 35, 3567-3572. (b) El-Barbary, A. A., Khodair, A. I., Pedersen, E. B. Arch. Pharm. (Weinheim) 1994, 327, 653-655. (c) El-Barbary, A. A., Khodair, A. I., Pedersen, E. B., Nielsen, C. J. Med. Chem. 1994, 37, 73-77. (d) Verlinden, Y., Cuconati, A., Wimmer, E., Rombaut, B. Antiviral Res. 2000, 48, 61-69. (e) Kim, D., Wang, L., Caldwell, C. G., Chen, P., Finke, P. E., Oates, B., MacCoss, M., Mills, S. G., Malkowitz, L., Gould, S. L., DeMartino, J. A., Springer, M. S., Hazuda, D., Miller, M., Kessler, J., Danzeisen, R., Carver, G., Carella, A., Holmes, K., Lineberger, J., Schleif, W. A., Emini, E. A. Bioorg. Med. Chem. Lett. 2001, 11, 3099-3102.
- 186. Nuridzhanyan, K. A., Nesterova, L. M, Bulanova, N. P., Stonov, L. D., Bakumenko, L. A., Usacheva, N. M., Bystrova, E. I. *Khimiya v Sel'skom Khozyaistve* 1968, 6, 374-378.

- Ascher, K. R. S., Eliyahu, M., Nemny, N. E. J. Plant Dis. Protect. 1991, 98, 391-397.
- 188. Weiss, H. Arch. Phys. Med. Rehabil. 1971, 52, 68-72.
- 189. Silverman, A. G., Okun, R. J. Clin. Pharmacol. 1971, 11, 215-219.
- Mongrovius, R. I., Gaff, G. A., Rand, M. J. Clin. Exp. Pharmacol. Phys. 1976, 3, 443-447.
- 191. Feinblatt, T. M., Feinblatt, H. M., Ferguson, E. A. J. Nerv. Ment. Dis. 1957, 125, 335-338.
- 192. Chiti, W. Farmaco, Ed. Sc. 1960, 15, 29-43.
- 193. Frommel, E., Radouco-Thomas, C. Helv. Physiol. Acta 1953, 11, 231-238.
- 194. Carraz, G., Emin, N. Thérapie 1967, 22, 641-652.
- 195. Polezhaeva, A. I. Farmakologiya i Toksikologiya 1966, 29, 278-281.
- Stoughton, R. W., Dickison, H. L., Fitzhugh, O. G. J. Am. Chem. Soc. 1939, 61, 408-410.
- 197. Khalil, M., Weaver, D. F. J. Pharm. Pharmacol. 1990, 42, 349-351 und darin zitierte Literatur.
- 198. Sobol, E., Bialer, M., Yagen, B. J. Med. Chem. 2004, 47, 4316-4326.
- 199. Beasley, Y. M., Petrow, Y., Stephenson, O. J. Pharm. Pharmacol. 1961, 13, 694-697.
- 200. Kulev, L. P., Dobychina, N. S. Zh. Vsesoyuznogo Khimicheskogo Obshchestva im. D. I. Mendeleeva 1963, 8, 701-702.
- 201. Bakibaev, A. A., Akhmedzhanov, R. R., Tignibidina, L. G., Novozheyeva, T. P., Shyrykova, V. V., Filimonov, V. D., Dobychina, N. S., Saratikov, A. S. *Khim.-Farm. Zh.* **1994**, 28, 30-31.
- 202. Glien, M. Dissertation, Tierärztliche Hochschule Hannover, 2002.
- 203. Mutschler, E., Geisslinger, G., Kroemer, H. K., Schäfer-Korting, M. Mutschler Arzneimittelwirkungen, Wissenschaftliche Verlags-Gesellschaft: Stuttgart, 2001, S. 304.
- 204. Drabczyńska, A., Müller, C. E., Schumacher, B., Hinz, S., Karolak-Wojciechowska, J., Michalak, G., Pękala, E., Kieč-Kononowicz, K. *Bioorg. Med. Chem.* 2004, 12, 4895-4908, und darin zitierte Literatur.
- 205. Rogawski, M. A., Löscher, W. Nat. Rev. Neurosci. 2004, 5, 553-564.
- 206. Boissier, J. R., Tardy, J., Diverres, J. C. Med. Exp. 1960, 3, 81-84.

- 207. Vogel, H. G., Vogel, W. H. Drug Discovery and Evaluation, Pharmacological Assay; Springer-Verlag: Berlin, **1997**, S. 260-261.
- 208. Kieč-Kononowicz, K., Müller, C. E., Pękala, E., Karolak-Wojciechowska, J., Handzlik, J., Łażwska, D. J. Heterocyclic Chem. 2002, 39, 243-253.
- 209. Kieč-Kononowicz, K., Karolak-Wojciechowska, J., Michalak, B., Pękala, E., Schumacher, B., Müller, C. E. *Eur. J. Med. Chem.* **2004**, *39*, 205-218.
- Collins, S. L., Moore, R. A., McQuay, H. J., Wiffen, P. J. Pain Symptom. Manage. 2000, 20, 449-458.
- Hänsel, R., Sticher, O., Steinegger, E. *Pharmakognosie Phytopharmazie*; Springer-Verlag: Berlin, Heidelberg, **1999**, S. 472.
- Arbuzov, B. A., Fedotova, H. R., Zobova, N. N., Nazyrova, A. Z., Anan'ev, E. V., Gorbunov, S. M. *Khim.-Farm. Zh.* **1988**, *23*, 682-683.
- 213. Eddy, N. B., Leimbach, D. J. Pharmacol. Exp. Ther. 1953, 107, 385-393.
- 214. Howlett, A. C., Barth, F., Bonner, T. I., Cabral, G., Casellas, P., Devane, W. A., Felder, C. C., Herkenham, M., Mackie, K., Martin, B. R., Machoulam, R., Pertwee, R. G. *Pharmacol. Rev.* 2002, *54*, 161-202.
- 215. Grießmeier, K. J. *Diplomarbeit*, Rheinische Friedrich-Wilhelms-Universität Bonn, 2003.
- 216. Pertwee, R. G. Pharmacol. Ther. 1997, 74, 129-180.
- 217. Reggio, P. H. Curr. Pharm. Des. 2003, 9, 1607-1633.
- 218. Muccioli, G. G., Martin, D., Scriba, G. K. E., Poppitz, W., Poupaert, J. H., Wouters, J., Lambert, D. M. J. Med. Chem. 2005, 48, 2509-2517.
- 219. Liscovitch, M., Lavie, Y. IDrugs 2002, 5, 349-355.
- 220. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Rmachandra, M., Pastan, I., Gottesman, M. M. Annu. Rev. Pharmacol. Toxikol. 1999, 39, 361-398.
- 221. Sauna, Z. E., Smith, M. M., Müller, M., Kerr, K. M., Ambudkar, S. V. J. Bioenerg. Biomembr. 2001, 33, 481-491.
- 222. Weiss, J., Kerpen, C. J., Lindenmaier, H., Dormann, S.-M. G., Haefeli, W. E. J. *Pharmacol. Exp. Ther.* **2003**, *307*, 262-267.
- 223. Schinkel, A. H. Wagenaar, E., Mol, C. A. A. M., van Deemter, L. J. Clin. Invest. 1996, 97, 2517-2524.
- 224. Müller, H., Klinkhammer, W., Kassack, M. U., Eckstein, N., Wiese, M. *Int. J. Clin. Pharmacol. Ther.* **2004**, *42*, 644-645 und darin zitierte Literatur.

- 225. a) Zisowsky, J., Becker, A., Weykam, S., Kassack, M., Jaehde, U. Int. J. Clin. Pharmacol. Ther. 2003, 41, 612-613. b) Garmann, D., Warnecke, A., Kratz, F., Jaehde, U. Int. J. Clin. Pharmacol. Ther. 2004, 42, 646-647.
- 226. Bakalova, A., Buyukliev, R., Tcholakova, I., Momekov, G., Konstantinov, S., Karaivanova, M. *Eur. J. Med. Chem.* **2003**, *38*, 627-632.
- 227. Gomez-Monterrey, I., Santelli, G., Campiglia, P., Califano, D., Falasconi, F., Pisano, C., Vesci, L., Lama, T., Grieco, P., Novellino, E. J. Med. Chem. 2005, 48, 1152-1157.
- Opačić, N., Barbarić, M., Zorc, B., Cetina, M., Nagl, A., Frković, D., Kralj, M., Pavelić, K., Balzarini, J., Andrei, G., Snoeck, R., De Clercq, E., Raić-Malić, S., Mintas, M. J. Med. Chem. 2005, 48, 475-482.
- 229. Otto, H.-H., Schirmeister, T. Chem. Rev. 1997, 97, 133-171.
- 230. Löser, R., Schilling, K., Dimmig, E., Gütschow, M. Manuskript in Vorbereitung.
- 231. a) Vászquez, J., Qushair, G., Albericio, F. *Methods Enzymol.* 2003, 369, 21-35.
 b) Gaggini, F., Porcheddu, A., Reginato, G., Rodriquez, M., Taddei, M. J. Comb. Chem. 2004, 6, 805-810. c) Kay, C., Lorthioir, O. E., Parr, N. J. Congreve, M. McKeown, S. C., Scicinski, J. J., Ley, S. V. Biotechnol. Bioeng. (Comb. Chem.) 2000/2001, 71, 110-118.
- 232. Kaiser, E., Colescott, R. L., Bossinger, C. D., Cook, P. I. Anal. Biochem. 1970, 34, 595-598.
- 233. Vojkovsky, T. Peptide Res. 1995, 8, 236-237.
- 234. Neville, G. A. Can. J. Chem. 1972, 50, 1253-1261.
- 235. Neville, G. A., Can. J. Chem. 1970, 48, 2274-2279.
- 236. Senda, S., Izumi, H., Fujimura, H. Drug Res. 1967, 17, 1519-1523.
- 237. Aspelund, H., Lindh, L. Acta Acad. Sci. Abo. Math. Phys. 1938, 11, 10, 3-14.
- 238. Schüssler, M., Pohloudek-Fabini, R. Pharmazie 1967, 22, 628-685.
- 239. Aspelund, H., Lindh, L. Acta Acad. Abo. Math. Phys. 1940, 12, 3-13.
- 240. Aspelund, H. Acta Acad. Abo. Math. Phys. 1939, 12, 3-33.
- 241. Lapachev, V., Stadlbauer, W., Kappe, T. Monatsh. Chem. 1988, 119, 97-102.
- 242. Sommer, A., Stamm, H. Liebigs Ann. Chem. 1992, 2, 99-102.
- 243. Saettone, M. F. J. Org. Chem. 1966, 31, 1959-1962.
- 244. Synder, H. R., Shekleton, J. F., Lewis, C. D. J. Am. Chem. Soc. 1945, 67, 310-312.
- 245. Zaugg, H. E., Arendsen, D. L. J. Heterocycl. Chem. 1974, 11, 803-806.

- 246. Schmidt, H., Hollitzer, O., Seewald, A., Steglich, W. *Chem. Ber.* **1979**, *112*, 727-733.
- 247. Knabe, J., Wunn, W. Arch. Pharm. (Weinheim) 1980, 313, 538-543.
- 248. Valentine, W. M., Amarnath, V., Amarnath, K., Graham, D. G. Chem. Res. Toxicol. 1995, 8, 254-261.
- 249. Lazarus, R. A. J. Org. Chem. 1990, 55, 4755-4757.
- 250. Nakagawa, Y., Wheelock, C. E., Morisseau, C., Goodrow, M. H., Hammock, B.G., Hammock, B. D. *Bioorg. Med. Chem.* 2000, *8*, 2663-2673.
- Pechenkin, A. G., Gorshkova, V. K., Tignibidina, L. G. *Khim.-Farm. Zh.* 1976, 10, 63-66.
- 252. Arbuzov, B. A., Mannanov, M. Izvest. Akademii Nauk SSSR, Ser. Chimiceskaja.
 1970, 3, 617-621.
- 253. L'abbe, G., Bosman, J., Toppet, S. J. Heterocycl. Chem. 1992, 29, 17-23.
- 254. a) Bakibaev, S. S., Akhmedzhanov, R. R., Filimonov, V. D., Novocheeva, T. P., Saratikov, A. S., Tignibidina, L. G., Pustovoitov, A. V. *Pharm. Chem. J.* 1993, 27, 631-634. b) Bakibaev, A. A., Akhmedzhanov, R. R., Novozheeva, T. P., Tignibidina, L. G., Filimonov, V. D., Saratikov, A. S., Shtrykova, V. V. *Pharm. Chem. J.* 1993, 27, 39-41.
- 255. Cheeseman, G. W. H., Poller, R. C. Analyst 1962, 87, 366-368.
- 256. Lancaster-Katalog. Forschungschemikalien, 2002/2003.
- 257. Pearl, I. A., Dehn, W. M. J. Am. Chem. Soc. 1939, 61, 1377-1378.
- 258. Karamouta, M. G., Miocque, A., Derdour, A., Gayral, P., Lafont, O. *Eur. J. Med. Chem. Chim. Ther.* **1989**, *24*, 547-549.
- 259. Birkofer, L., Lückenhaus, W. Liebigs Ann. Chem. 1984, 1193-1204.
- 260. Liu, K.-C., Shih, C.-Y. J. Chinese Chem. Soc. 1978, 25, 77-82.
- Nagasawa, H. T., Smith, W. E., Kwon, C.-H., Goon, D. J. W. J. Org. Chem. 1985, 50, 4993-4996.

9 ABKÜRZUNGSVERZEICHNIS

ABC	ATP-binding cassette		
abs.	absolut		
Ac	Acetyl		
Äquiv.	Äquivalente		
ANRORC	Addition of nucleophile, ring opening, ring closure		
APT	Attached proton test		
Arg	Arginin		
ATP	Adenosintriphosphat		
AUC	Area under the curve (Fläche unter der Kurve)		
BCRP	Breast cancer resistance protein		
Bn	Benzyl		
BSA	Bovines Serumalbumin		
cAMP	zyklisches Adenosinmonophosphat		
CB_1	Cannabinoid-Rezeptor 1		
Cys	Cystein		
DC	Dünnschichtchromatographie		
DCC	Dicyclohexylcarbodiimid		
DCL	Dynamic combinatorial library		
DCM	Dichlormethan		
DEPT	Distortionless Enhancement of Polarisation Transfer		
DIC	Diisopropylcarbodiimid		
DIEA	Diisopropylethylamin (Hünig Base)		
DMAP	4-Dimethylaminopyridin		
DMF	Dimethylformamid		
DMSO	Dimethylsulfoxid		
DPT	Di-2-pyridylthiocarbonat		
DVB	Divinylbenzol		
EA	Elementaranalyse		
EC-GC	Electron capture gas chromatography (Elektroneneinfang-		
	gaschromatographie)		
EDTA	Ethylendiamintetraessigsäure		
EIMS	Electron impact mass spectrometry (Elektronenstoßionisations-		
	Massenspektrometrie)		

EMES	Eagle's Minimum essential medium
Et	Ethyl
FDA	Food and Drug Administration
Fmoc	5-Fluorenylmethyloxycarbonyl
Fp	Schmelzpunkt
GABA	gamma-Aminobuttersäure
GPCR	G-protein coupled receptor
HDL	High Density Lipoprotein
His	Histidin
HLE	Humane Leukozytenelastase
HMDS	1,1,1,3,3,3-Hexamethyldisilazan
HMQC	Heteronuclear multiple quantum correlation
HPLC	High Performance Liquid Chromatography
HRMS	High Resolution Mass Spectrometry
	(hochauflösende Massenspektrometrie)
HSQC	Heteronuclear single quantum correlation
HT	5-Hydroxytryptamin
HTS	High-Throughput-Screening
ip	intraperitoneal
kat.	katalytisch
LS	Liquid Scintillation
MAOS	Microwave-Assisted Organic Synthesis
MAPK	Mitogen activated protein kinase
MCF7	humane Mammakarzinom-Zellinie
MDR	Multidrug Resistance
MES	Maximal Electroshock Seizure
MRP	Multidrug restistance-associated protein
Me	Methyl
MeCN	Acetonitril
MG	Molgewicht
MMP	Matrix-Metallo-Proteasen
MS	Massenspektrometrie
MW	Mikrowelle(n)
n.a.	nicht angegeben

n.b.	nicht bestimmt
NBS	N-Bromsucchinimid
NMP	N-Methylpyrrolidon
NMR	Nuclear Magnetic Resonance
PBP	Pyridiniumbromid-perbromid
PBS	potassium phosphate buffer saline
PCR	Polymerasekettenreaktion
PDE 5	Phosphodiesterase 5
PE	Polyethylen
PEG	Polyethylenglycol
Ph	Phenyl
Phe	Phenylalanin
Ph. Eur.	Europäisches Arzneibuch
pNA	para-Nitroanilin
ро	peroral
PP	Polypropylen
ppm	parts per million
PS	Polystyrol
PTZ	Pentylentetrazol
Ret.	Retention
Rf	Ratio of Fronts
RP	Reversed Phase
rpm	rounds per minute
RT	Raumtemperatur
sc	subkutan
SPPS	Solid-Phase Peptide Synthesis
SPOS	Solid-Phase Organic Synthesis
TFA	Trifluoressigsäure
THC	Tetrahydrocannabinol
THF	Tetrahydrofuran
TMS	Trimethylsilyl
TNBS	Trinitrobenzolsulfonsäure
UHTS	Ultra-High-Throughput-Screening
ZNS	Zentralnervensystem

Allgemeine Abkürzungen:

Abb.	Abbildung
ber.	berechnet
bzw.	beziehungsweise
ca.	circa
d.h.	das heisst
et al.	et altera (und andere)
gef.	gefunden
ggf.	gegebenenfalls
Kap.	Kapitel
max.	maximal
min.	minimal
Nr.	Nummer
0.g.	oben genannt
S .	siehe
S.	Seite
sog.	sogenannt
Tab.	Tabelle
u.a.	unter anderem
vgl.	vergleiche
v.l.n.r.	von links nach rechts
VS.	versus
z.B.	zum Beispiel

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbstständig und ohne unerlaubte fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die im Literaturverzeichnis angeführten Quellen benutzt und sämtliche Textstellen, die wörtlich oder sinngemäss aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien, Daten oder erbrachten Dienstleistungen als solche gekennzeichnet.

Bonn, den 27. Juni 2005

Manuela Meusel

Danksagung

"Tief im Westen wo die Sonne verstaubt ist es besser viel besser, als man glaubt Tief im Westen"

H. Grönemeyer, "Bochum"

Es ist schwierig in einigen kurzen Worten auszudrücken, wie vielen Leuten ich große Dankbarkeit schulde, da sie auf die unterschiedlichste Art und Weise zum Gelingen dieser Arbeit beigetragen haben.

An erster Stelle steht da natürlich meine Arbeitsgruppe. Allen vorweg möchte ich Reik, meinem langjährigen Kollegen im "Beauty Lab", danken, der nie müde wurde, mit mir über Probleme der organischen Chemie nachzusinnen und sich immer wieder mit mir zusammen nach erholsamen Urlaubstagen in das Abenteuer Forschung stürzte - wir waren ein gutes Team! Vergessen sind die unterschiedlichen Auffassungen über "gerade" DC-Platten, Labormusik oder die richtige Heizungstemperatur im Winter bei den Erinnerungen an unsere Exkurse zur Erlangung von Zusatzqualifikationen wie "Einzelhandelskaufmann/kauffrau für Gasventile", "Meister/in für höhere Vakuumtechnik", "Techniker/in für Abzugslautstärkenregulierung" (obwohl wir da nie Abschluss werden...), "Mechaniker/in", "Malermeister/in", einen erreichen "Flyerdrucker/in" – um nur einige zu nennen, die wir echt verdient hätten! Ein großes Dankeschön auch an die anderen beiden "Mitgezogenen": Markus, der immer da war, wenn mal Not an der Frau war und dessen blühende Phantasie mir noch immer unheimlich ist, doch stets zur Erheiterung und Belustigung im "grauen" (!) Alltag Und natürlich auch ein dickes Dankeschön meiner anfänglich einzigen beitrug. Leidensgenossin im weiblichen Lager der Arbeitsgruppe, die mir eine gute Freundin geworden ist – Agnieszka. Kein bisschen weniger möchte ich den rheinischen und spanischen Frohnaturen und "Gute-Laune-Verbreiterinnen" Sonja und Camino danken. Selbst ein Karnevalsmuffel wie ich kam gegen ein überschwengliches "Gute Freunde

Danksagung

steh'n zusammen" nicht an. Und natürlich Paul und Jürgen für tiefgehende, ja nahezu philosophische Diskussionen über das Studenten-Assistenten-Dasein, und für das Beschaffen der einen oder anderen Publikation. Ein riesiges Dankeschön geht an Stephanie H. für ihre Unterstützung bei "diesem und jenen", eine echte Bereichung für die Arbeitsgruppe! Und Dank auch an meinen Famulanten Maxim für die Durchführung der unendlichen Farbreaktionen. Vergessen möchte ich an dieser Stelle auch nicht die verschiedenen ausländischen Mitstreiter, die es über die Jahre immer mal mit uns aushalten mussten. Ich bin dankbar, Menschen wie Marta Chlupáčová und Silvia E. Asís kennengelernt und gute Freundinnen in ihnen gefunden zu haben. Durch ihre Hilfe und das entspannte Arbeitsklima haben sie alle geholfen, dass diese Arbeit ein Erfolg wird.

Im großen Maße haben dazu auch viele andere KollegInnen beigetragen, denen ich an dieser Stelle für ihren Einsatz danken möchte: ganz besonders Herrn Dr. Tadeusz Librowski (Universität Krakau/Polen) für die Bestimmung der antikonvulsiven und analgetischen Aktivität der von mir hergestellten Verbindungen, Herrn Dr. Euler (Mineralogisches Institut der Uni Bonn) für die röntgenkristallographischen Messungen, Kerstin Grießmeier für die CB₁-Rezeptortestung und Henrik Müller für die P-gp Testreihe. Sandra Dettmann (Freie Universität Berlin) sei mein größter Dank für die Zytotoxizitätstestungen ausgesprochen.

Marion, Sabine, Annette und Herrn Fischer sei der Dank für die Aufnahme unendlicher NMR-Spektren ausgesprochen, Frau Ulrike Degen für Aufnahme der "verflixten" Harz-FT-IR-Spektren, Herrn Passgang für die Bestimmung der Elementaranalysen und Herrn Dr. Eckhardt für die Aufnahme der MS-Spektren. Vielen Dank auch an die Mitarbeiter der Glas- und Chemikalienausgabe, Herrn Kriechel, Frau Spychala, Stefan und Michael W. Ein riesiger Dank geht an Herrn Belasin, ohne dessen handwerkliches Geschick die Laborarbeit anfangs gar nicht erst möglich geworden wäre. Für die Reparatur defekter Geräte und die Unterstützung in EDV-Angelegenheiten möchte ich Herrn Bosse danken.

Für das Anlernen des praktischen Labor-Know-hows, für die Inspiration zur Promotion, und für seine "apothekerliche" Freundschaft möchte Herrn Dr. Thomas Hecker ganz besonders danken. Weiterhin möchte ich mich bei (ehemaligen) KollegInnen bedanken, die mir nicht nur die Arbeit, sondern vor allem die wenige Zeit darüber hinaus verschönert haben:

Alex, Till, Camino und Ralf – nie war die Praktikumszeit schöner und lustiger als mit euch

Alex und Martina D., Heiko K., Marcus L. – ohne euch würde ich noch heute allein in der Sauna schwitzen.

Alex und Martina D., Steffi W. (+ Björn) und Mark – da wurden selbst verlorene Spielabende ein unvergessliches Erlebnis. Ich hoffe, wir halten den Kontakt, ihr seid mir gute Freunde geworden, die ich nichts um der Welt mehr missen möchte!

Martina K. und Sven – zum Feiern, Quatschen und "Ossi-Fachsimpeln" immer eine gute Adresse und natürlich auch in GRK-Fragen.

Meryem – Würzburg wird unvergessen bleiben. Gemeinsame Auftritte vor laufender Kamera verbinden!

Lenka – unübertroffene KKK-Treffs in Kölle!

Fritzi – besser ein Frosch im Hals vom vielen Reden als eine öde Heimfahrt ohne dich! Und danke fürs Korrekturlesen!

Karin, du hast in oft stundenlangen Telefonaten mit mir Freud und Leid geteilt, ohne teilweise auch nur annähernd einen Satz meines "Apothekerlateins" zu verstehen – dazu gehören jede Menge Ausdauer und Nerven! Unsere Freundschaft ist etwas ganz Besonderes und wird es wohl immer bleiben.

Sandra und Daniel, was wären die letzten 4 Jahre ohne euch gewesen: die Silvester, die Gröni-Konzerte, die Tagungen und Kooperationen, die Freundschaft. Vielen, vielen Dank.

Zum Schluss: Einen riesigen Dank an meine Eltern, die mir so unheimlich viel ermöglicht haben, mir zu jeder Zeit den Rücken gestärkt und freigehalten haben, immer Verständnis zeigten und ein offenes Ohr hatten. Ohne euch hätte ich dies alles nicht geschafft! Vieles kann ich einfach nicht in Worte fassen, außer nochmals:

Danke !

Publikationen, Poster, Vorträge:

Publikationen:

Meusel, M., Ambrożak, A., Hecker, T. K., Gütschow, M. "The Aminobarbituric Acid-Hydantoin Rearrangement" *J. Org. Chem.* **2003**, 68, 4684-4692.

Meusel, M., Gütschow, M. "Recent developments in hydantoin chemistry. A review." Org. Prep. Proced. Int. 2004, 36, 391-443.

Meusel, M., Gütschow, M. "Preparation of a novel polystyrene-based urea resin" *Tetrahedron Lett.* **2005**, 46, 2231-2233.

Euler, H., Kirfel, A., **Meusel, M.**, Gütschow, M. "The crystal structure of N-benzyl-N,1,3,4-tetramethyl-2,5-dioxo-4-imidazolidinecarboxamide, $C_{15}H_{19}N_3O_3$." *Z. Kristallogr. NCS*, eingereicht.

Entwurf, Design und Text eines Flyers zum Thema "Chemie heilt" aus Anlass des "Jahres der Chemie 2003", herausgegeben von der Fachgruppe Pharmazie der Universität Bonn.

(http://www.pharma.uni-bonn.de/pharmchem/pdf/guetschow_chemie_heilt.pdf)

Poster:

Gütschow, M., Hecker, T., Meusel, M., Eger, K. Arch. Pharm. Pharm. Med. Chem. 2000, 333 (Suppl. 2), 44.

Ambrożak, A., **Meusel, M.**, Gütschow, M. "Darstellung von 5-Carbamoylhydantoinen durch Umlagerung von 5-Aminobarbitursäuren". (DPhG-Doktorandentagung 2003, Düsseldorf)

Meusel, M., Gütschow, M. "Investigations on Mechanisms of the Aminobarbituric-Acid Rearrangement". (DPhG Jahrestagung 2003, Würzburg and Polish-Austrian-German-Hungarian-Italian Joint Meeting on Medicinal Chemistry 2003, Krakau, Polen)

Ambrożak, A., **Meusel, M.**, Gütschow, M. "A New Synthetic Route to 1,3,5,5tetrasubstituted Hydantoins via Rearrangement of 5-Aminobarbituric Acids". (Polish-Austrian-German-Hungarian-Italian Joint Meeting on Medicinal Chemistry 2003, Krakau, Polen)

Meusel, M., Gütschow, M. "Novel Syntheses of *N*-Acylureas. From Solution to Solid-Phase Chemistry". (DPhG Jahrestagung 2004, Regensburg)

Gütschow, M., **Meusel, M.**, Librowski, T., Kubacka, M. "The comparative investigations of analgesic activity of new ureide derivatives in some experimental models in rodents". (14th International Symposium 'Molecular and Physiological Aspects of Regulatory Processes of the Organism' 2005, Krakau, Polen)

Gütschow, M., **Meusel, M.**, Librowski, T., Kubacka, M. "The influence of new ureide derivatives on the central nervous system activity in mice" (14th International Symposium 'Molecular and Physiological Aspects of Regulatory Processes of the Organism' 2005, Krakau, Polen)

Vorträge:

Meusel, M., Gütschow, M. "Darstellung von N-Acylharnstoffen in Lösung und an fester Phase". (DPhG-Doktorandentagung 2005, Leipzig)