
Appearance Preserving Rendering of
Out-of-Core Polygon and NURBS Models

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inform. Michael Guthe

Bonn, 31. März 2005

Universität Bonn
Institut für Informatik II

Römerstraße 164, D-53117 Bonn

Appearance Preserving Rendering of
Out-of-Core Polygon and NURBS Models

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inform. Michael Guthe

Bonn, 31. März 2005

Universität Bonn
Institut für Informatik II

Römerstraße 164, D-53117 Bonn

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms Universität Bonn

1. Referent: Prof. Dr. Reinhard Klein
2. Referent: Prof. Dr. Thomas Ertl
3. Referent: Prof. Dr. Wolfgang Straßer

Tag der Promotion: 12. Oktober 2005

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.

Erscheinungsjahr: 2005

This work is dedicated to my wife Katharina for all the

patience and support.

ACKNOWLEDGEMENTS

The presented work has been produced within the scope of the Computer
Graphics group at the Institute of Computer Science II of the University of
Bonn. At this point I like to thank all people who were directly or indirectly
involved in the creation of this work.

My thanks belong primarily to Prof. Reinhard Klein without whose im-
pulses and willingness for discussion this work would not have been possible
and who was, as director of the group, a big aid not only in scientific aspects.

I thank all members of the group, especially Patrick Degener, Marcin
Novotni, Mirko Sattler, and Roland Wahl for helpful comments as well as
Ákos Balázs, Pavel Borodin, and Jan Meseth for the joint publications.

Additionally I thank Volkswagen, DaimlerChrysler, SGI, the Stanford 3D
Scanning Repository, and the Digital Michelangelo Project for the NURBS
and polygon models used in this work.

viii

ABSTRACT

In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used
due to their flexibility. For rendering and simulation however, piecewise lin-
ear representations of these objects are required. A relatively new field in
CAD is the analysis of long-term strain tests. After such a test the object
is scanned with a 3d laser scanner for further processing on a PC. In all
these areas of CAD the number of primitives as well as their complexity
has grown constantly in the recent years. This growth is exceeding the in-
crease of processor speed and memory size by far and posing the need for
fast out-of-core algorithms.

This thesis describes a processing pipeline from the input data in the form
of triangular or trimmed NURBS models until the interactive rendering of
these models at high visual quality. After discussing the motivation for this
work and introducing basic concepts on complex polygon and NURBS mod-
els, the second part of this thesis starts with a review of existing simplification
and tessellation algorithms. Additionally, an improved stitching algorithm to
generate a consistent model after tessellation of a trimmed NURBS model is
presented. Since surfaces need to be modified interactively during the design
phase, a novel trimmed NURBS rendering algorithm is presented. This algo-
rithm removes the bottleneck of generating and transmitting a new tessella-
tion to the graphics card after each modification of a surface by evaluating
and trimming the surface on the GPU.

To achieve high visual quality, the appearance of a surface can be pre-
served using texture mapping. Therefore, a texture mapping algorithm for
trimmed NURBS surfaces is presented. To reduce the memory requirements
for the textures, the algorithm is modified to generate compressed normal
maps to preserve the shading of the original surface. Since texturing is only
possible, when a parametric mapping of the surface – requiring additional
memory – is available, a new simplification and tessellation error measure
is introduced that preserves the appearance of the original surface by con-
trolling the deviation of normal vectors. The preservation of normals and
possibly other surface attributes allows interactive visualization for quality
control applications (e.g. isophotes and reflection lines).

x Abstract

In the last part out-of-core techniques for processing and rendering of
gigabyte-sized polygonal and trimmed NURBS models are presented. Then
the modifications necessary to support streaming of simplified geometry from
a central server are discussed and finally and LOD selection algorithm to
support interactive rendering of hard and soft shadows is described.

CONTENTS

Part I Introduction 1

1. Motivation . 3

2. Basics . 5
2.1 Complex Models . 5

2.1.1 Visibility Culling . 5
2.1.2 Image Based Techniques 6
2.1.3 Level of detail . 6
2.1.4 Shadows . 7

2.2 Trimmed NURBS Surfaces . 8
2.2.1 Bézier Curves . 8
2.2.2 Bézier Tensor Surfaces 9
2.2.3 B-Spline Curves and Surfaces 11
2.2.4 Rational Curves and Surfaces 12
2.2.5 Trimming . 13
2.2.6 Reparametrization and Texture Mapping 13
2.2.7 Standards and Data Exchange 14

Part II Generation of Mesh Levels of Detail 17

3. Previous Work: Simplification Algorithms 19
3.1 Triangle Mesh Decimation . 19
3.2 Vertex Clustering . 19
3.3 Simplification Envelopes . 20
3.4 Quadric Error Metrics . 20
3.5 Progressive Meshes . 21
3.6 Error Control . 22

4. Previous Work: Tessellation Algorithms 25
4.1 Efficient Tessellation . 27

4.1.1 Conversion of Trimming 28
4.1.2 Approximation . 29

xii Contents

4.1.3 Trimming . 32
4.1.4 Triangulation . 33
4.1.5 Evaluation . 34
4.1.6 Performance . 35

4.2 Gap Closing during Rendering 37
4.2.1 The Gap Filling Algorithm 38
4.2.2 Fat Border Construction 39
4.2.3 Application to NURBS Rendering 44
4.2.4 Results . 44

5. Stitching of Multiple Tessellated Surfaces 47
5.1 Representation and conversion of trimmed NURBS surfaces . . 48

5.1.1 Sewing . 48
5.2 Creation of a consistent model 49
5.3 Results . 50

6. GPU Based NURBS Rendering . 51
6.1 Trimming on the GPU . 52

6.1.1 Trimming Curve Conversion 53
6.1.2 Surface Evaluation . 54
6.1.3 Rendering . 55
6.1.4 Multiple Trimmed Patches 55

6.2 Sampling . 57
6.2.1 Trimming Curves . 57
6.2.2 Surfaces . 59
6.2.3 Trim-Texture . 60

6.3 Bi-cubic Approximation . 61
6.3.1 Approximation of a Single Bézier Patch 62
6.3.2 Simplification of Two Bi-cubic Patches 64

6.4 Rendering . 65
6.5 OpenGL API Integration . 66
6.6 Results . 67

Part III Appearance Preservation 73

7. Texturing . 77
7.1 Texturing NURBS models . 79
7.2 Flattening of a NURBS patch 79

7.2.1 Distortion measure . 79
7.2.2 Finding the minimal energy 80

Contents xiii

7.2.3 Fitting the NurbsTextureSurface 81
7.3 Chart generation . 82

7.3.1 Finding an initial placement 82
7.3.2 Alignment of the textures 83
7.3.3 Optimizing the placement 84
7.3.4 Acceleration . 85
7.3.5 Segmentation . 85
7.3.6 Remove overlappings 87
7.3.7 Adjusting parameterizations 87

7.4 Generation of texture atlas . 88
7.5 Results . 88

8. Compressed Normal Maps . 93
8.1 Parametrization of NURBS surfaces 93
8.2 Approximation by NURBS parameterization 94
8.3 Results . 95

9. Controlling Normal Deviation . 99
9.1 Simplification . 99

9.1.1 Point Generation . 101
9.2 Tessellation . 102

9.2.1 Modified Error Measure 102
9.3 Results . 104

9.3.1 Simplification . 105
9.3.2 Tessellation . 105
9.3.3 Performance . 106
9.3.4 Image Quality . 107
9.3.5 Deformable NURBS Models 110

9.4 Integration into the GPU-based tessellation 112

10. Visualization . 113
10.1 Environment Maps . 114
10.2 Results . 114

Part IV Out-of-Core Techniques 117

11. Polygonal HLODs . 123
11.1 HLOD generation . 124

11.1.1 Overall algorithm . 125
11.1.2 Out-of-core partitioning 126

xiv Contents

11.1.3 Simplification of a node 127
11.1.4 Compression of connectivity and geometry 128

11.2 Rendering . 129
11.2.1 Scene representation 129
11.2.2 Culling techniques . 130
11.2.3 Memory management 131

11.3 Results . 134

12. NURBS Models . 137
12.1 Hierarchy Generation . 137

12.1.1 Lazy octree data structure 138
12.1.2 Bounding box calculation 140
12.1.3 Tessellation . 140
12.1.4 Geometry optimization 141
12.1.5 Caching NURBS LODs 141

12.2 Rendering . 141
12.2.1 LOD selection and culling 142
12.2.2 Out-of-core management 142
12.2.3 Target frame rate mode 143

12.3 Selection and Editing . 143
12.4 Results . 144

12.4.1 Frame rates . 144
12.4.2 Image quality . 146
12.4.3 Target frame rate mode 147
12.4.4 Selection and editing 147

13. Streaming Techniques . 149
13.1 Rendering . 149
13.2 Streaming and Prefetching . 149
13.3 Results . 151

14. Shadows . 155
14.1 Shadow Generation . 156
14.2 Prefetching . 157
14.3 Results . 157

Part V Conclusion and Future Work 161

15. Conclusion . 163

16. Future Work . 165

Part I

INTRODUCTION

1. MOTIVATION

Computer Aided Design (CAD) is concerned with the representation and ap-
proximation of curves and surfaces when these objects have to be processed
by a computer. Parametric representations are widely used since they allow
considerable flexibility for shaping and design. The fundamental geometric
entities in such CAD systems are trimmed Non-Uniform Rational B-Splines
(NURBS) due to their ability to conveniently describe smooth surfaces of
almost any shape. Since current graphics hardware does not support direct
rendering of trimmed NURBS in their original representation – as sets of con-
trol points and knot vectors with B-Spline trimming curves – they need to be
transformed into a polygonal representation. This process is called tessella-
tion. The tessellation is often accompanied by a separate model preparation
phase in order to fulfill the high quality demands posed by different design
and quality control applications, e.g. surface interrogation.

As the industrial need for larger and more detailed models is ever increas-
ing, the CAD models are getting more and more complex, easily containing a
million trimmed NURBS patches or more. Keeping up with this continuous
growth is difficult both in the model preparation and in the rendering stages.
A major difficulty is that complete models may not fit into the main mem-
ory at once, which necessitates the use of out-of-core techniques. Additional
desirable properties of the rendering algorithm include high quality render-
ing (e.g. support appearance preserving tessellation and arbitrary precision
for zoom-ins), automatic preprocessing, accessability of the original object
hierarchy, and the ability to select and manipulate patches at runtime. Some
applications (e.g. quality control) have even stricter demands regarding the
quality of the rendering, for example a guaranteed screen space error not
only for the geometry but also for the shading may be required.

A relatively new field in CAD is the analysis of long-term strain tests.
After such a test the object is scanned with a 3d laser scanner for further
processing. Polygon models generated by such 3d scans are posing new chal-
lenges for the rendering of this data. First, due to the sheer size of models
which is often in the range of several gigabytes, out-of-core rendering tech-
niques are required. Second, the quality of the rendering has to reflect the
accuracy of the measured data. Third, additional visual effects like shadows

4 1. Motivation

that are commonly used to improve the perception of objects in computer
graphics should be applicable to these models and last but not least even
for complex models with several gigabytes all these requirements should be
fulfilled in real time.

To address all these requirements, this thesis is organized with respect to
the processing pipeline shown in figure 1.1.

AP Triangle
Mesh LODs

Trimmed NURBS
Model

Polygon
Model

AP Out-of-Core
Hierarchy

Shadows

Appearance
Preserving

Tessellation

Appearance
Preserving

Simplification

AP Triangle
Mesh LODs

Trimmed NURBS
Model

Polygon
Model

AP Out-of-Core
Hierarchy

Rendering with
Shadows

Appearance
Preserving

Tessellation

Appearance
Preserving

Simplification

AP Triangle
Mesh LODs

Trimmed NURBS
Model

Polygon
Model

AP Out-of-Core
Hierarchy Shadows

Appearance
Preserving

Tessellation

Appearance
Preserving

Simplification

Fig. 1.1: Processing pipeline

In spite of increasing bandwidth interactive 3D content is very seldomly
used for collaborative distributed work, although standard file formats for
transmission exist. Furthermore, only use of simple 3D models is possible
due to long download times. Since the performance of consumer level graphics
hardware and the network bandwidth is increasing, 3D content will become a
more and more important component of collaborative distributed work. With
presently available network bandwidths however, it is impossible to down-
load large models completely before they can be used. Since the size of 3D
models is increasing even faster than network bandwidth the only practical
way is to allow visualization of the model already during download. This can
be achieved with streaming techniques by only downloading the data that is
currently required. Therefore, this thesis also discusses the necessary modifi-
cations for a client-server based rendering algorithm to support collaborative
work with gigabyte sized NURBS or polygon models.

2. BASICS

In the first section of this chapter the approaches of rendering gigabyte-sized
models are discussed. In the second section the most widely used design prim-
itive – trimmed Non-Uniform Rational B-Splines (NURBS) – are introduced
and their most important properties are described.

2.1 Complex Models

To meet at least some of the challenges of interactive rendering of complex
models, many different approaches – like hierarchical geometry representa-
tions, point based rendering, visibility culling, and even image-based methods
– have been developed in the recent years. Most of these algorithms have in
common that additional data structures, like level of detail (LOD) structures,
multi-resolution representations, images, or occluder information, have to be
stored which further increases the memory requirements. While this can al-
ready lead to problems with medium sized objects, many of these algorithms
cannot be used for gigabyte-sized models without modification. Therefore,
current research efforts concentrate on the adaption of available in-core ap-
proaches to out-of-core algorithms that allow to restrict the memory footprint
at runtime. These extended methods only load the currently required parts
of the model – and of the additional data structures – into main memory
and employ prefetching and other latency hiding techniques to prevent load
stalls whenever interactivity is required.

2.1.1 Visibility Culling

Visibility culling algorithms try to quickly determine possibly visible and
definitely invisible objects. There are three basic methods to determine and
remove invisible parts of the scene. The first is view frustum culling which
removes all objects outside the view frustum. Typically bounding boxes or
spheres are used, but more complex bounding volumes are possible. The
second is backface culling that removes all polygons facing away from the
current view position. If normal cones are used, whole objects or subtrees of
a scene graph can be removed. The third approach is occlusion culling where

6 2. Basics

objects are removed from the scene that are hidden behind other objects.
This is supported by current graphics hardware, but for scenes with low
depth complexity the required overhead may even reduce the frame rate.

2.1.2 Image Based Techniques

Distant objects are replaced with previously rendered images, so called im-
posters. To decide if an object should be replaced by a imposter, the cost of
generating the image and the estimated number of frames for which it can
be used are calculated. Then, based on the rendering time of the geometry
compared to the image and the average generation cost per frame, either the
geometry itself is rendered or an impostor is generated and rendered for the
object. When combined with level of detail these impostors are mainly used
for mid range objects.

2.1.3 Level of detail

Level of detail techniques try to reduce the number of primitives while re-
stricting the error in screen space. In general, the screen space error ε depends
on all viewing parameters: the eye position E, the viewing direction ~ni, the
field-of-view φ and the screen resolution r. Since a precise calculation of the
screen space error is quite expensive, one approach is to establish only upper
bounds on the object space error δ. The screen-space error can then be easily
derived at runtime from the precomputed object space error. The intercept
theorems state that ε = δ · di

d
cos(α), where di = r

2
cot(φ) and d = (P −E) ·ni

(see figure 2.1).

Fig. 2.1: Relationship of errors depicted in 2D.

Early level of detail techniques can basically be divided into two ap-
proaches, static and view-dependent, where both have their advantages and
drawbacks. View-dependent simplification represents the geometry as series
of split/collapse operations that are only locally dependent on each other.

2.1. Complex Models 7

Therefore, they can be applied depending on the position of the viewer to gen-
erate an approximation that results in the same screen space error everywhere
on the model. A view-dependent LOD allows a smooth transition between
frames since split/collapse operations can be used to approximate geomor-
phing. However, recent graphics hardware is optimized for static geometry
and thus the performance of dynamic level of detail is low. In contrast to
this, static levels of detail are representations generated from the original
model, that have the same geometric error on the whole model. Since no
split/collapse operations are stored, no smooth transitions between different
LODs are possible.

A recent extension of static level of detail are the hierarchical LODs that
are build upon a bounding box hierarchy of the objects contained in the
scene for more effective simplification. To generate coarser levels of detail
whole subbranches of the bounding volume hierarchy are combined to a sin-
gle object and then simplified. If spatially large objects are partitioned hier-
archically, hierarchical levels of detail (HLODs) can be used to approximate
view-dependent level of detail.

For interactive rendering of complex models, these HLOD methods have
proven to be the most efficient approach, since they support out-of-core algo-
rithms in a straightforward way and allow an optimal balance between CPU
and GPU load during rendering. Each HLOD can either consist of a point- or
polygon-based approximation of a model part. While polygon-based HLODs
lead to a higher performance especially for models with large smooth sur-
faces, the point-based HLODs preserve small features like wrinkles or chisel-
marks much better. The reason for this is that in point-based approaches the
geometry is tightly coupled to appearance attributes like normal and color,
whereas in polygon-based out-of-core simplification algorithms this coupling
is generally neglected and therefore the polygon-based approximations tend
to generate less primitives but destroy the appearance of the model. A further
disadvantage of polygon-based approaches is that the continuity along the
node boundaries has to be maintained explicitly which increases the number
of primitives and thus reduces the performance.

2.1.4 Shadows

Generating shadows for out-of-core models requires both, an appropriate
LOD selection for shadow casters and the rendering of the shadows them-
selves. Unfortunately, the computational overhead on the CPU of the only
other so far existing out-of-core shadow algorithm is high. Therefore, it is
applicable with reasonable speed only on a multi processor system or on a
small cluster. Since it does not guarantee a low screen space error – i.e. one

8 2. Basics

pixel or less – for the shadows, disturbing popping artifacts occur during
movement. Furthermore, no soft shadows are supported and therefore, it is
only able to generate artificially looking hard shadow boundaries.

2.2 Trimmed NURBS Surfaces

Non-Uniform Rational B-Spline Surfaces are a CAD primitive defined on the
basis of Bézier curves [18, 19] and tensor product surfaces.

2.2.1 Bézier Curves

The explicit representation of a Bézier curve C(t) is defined as

C(t) =
n∑

i=0

Bn
i (t)Pi,

where Bn
i (t) are the Bernstein polynomials [17], which can explicitly be de-

fined by

Bn
i (t) =

(
n
i

)
ti(1− t)n−1,

with the binomial coefficients given by(
n
i

)
=

{
n!

i!(n−i)!
if 0 ≤ i ≤ n

0 else

One of the important properties of Benstein polynomials is that they
satisfy the following recursion:

Bn
i (t) = (1− t)Bn−1

i + tBn−1
i−1 (t), with

B0
0(t) = 1 and

Bn
i (t) = 0 for i < 0 ∧ i > n.

Another important property is that they are a partition of unity:

n∑
i=0

Bn
i (t) = 1 for all 0 ≤ t ≤ 1.

Properties

The important properties of Bézier curves are:

2.2. Trimmed NURBS Surfaces 9

Affine invariance Bézier curves are invariant under affine transformations –
however, this does not imply invariance under perspective transforma-
tions. This means that a transformation of the curve with an affine
matrix is identical to the transformation of the control points Pi with
this matrix.

Invariance under affine parameter transformations The curve is invariant
under reparametrization with any function f : [0, 1] 7−→ [0, 1].

C(t) = C(f(t))

Convex hull property The curve always lies within the convex hull of its
control points. This follows, since the Bernstein polynomials are always
nonnegative and a partition of unity.

Endpoint interpolation Since the Bernstein polynomials are {1, 0, . . . , 0} for
t = 0 and {0, . . . , 0, 1} for t = 1, the curve interpolates the endpoints
of the control point vector.

Symmetry Only the direction of the curve is reversed when the control point
vector is reversed. Since this is identical to a reparametrization with
f(t) = 1− t, the curve and the reversed are identical:

n∑
i=0

Bn
i (t)Pi =

n∑
i=0

Bn
i (t)Pn−i

Invariance under barycentric combinations The barycentric combination of
two curves can be expressed as barycentric combination of their control
points, since

n∑
i=0

Bn
i (t)(αPi + βTi) = α

n∑
i=0

Bn
i (t)Pn−i + β

n∑
i=0

Bn
i (t)Tn−i

Pseudo-local control The Bernstein polynomial Bn
i has only a signle max-

imum at t = i
n
. Therefore, a change of the control point Pj mostly

affects the curve at t = j
n
. However, since the Bernstein polynomials

are not local, the whole curve is affected.

2.2.2 Bézier Tensor Surfaces

The basic idea of Bézier tensor product surfaces is that a surface is swept
out by a moving and deforming curve (see figure 2.2).

10 2. Basics

Fig. 2.2: Creation of a tensor product surface

To formalize this definition, we assume that the moving curve is a Bézier
curve of constant degree m. At any time, this curve is then represented as
a set of control points moving through space. The next assumption is, that
each control point also moves on a Bézier curve and that all of these curves
have the same degree n.

Then the surface can be written as:

S(u, v) =
m∑

i=0

Bm
i (u)Ci(v), with

Ci(v) =
n∑

j=0

Bn
j (v)Pi,j.

We can now combine these two equations into a single tensor product:

S(u, v) =
m∑

i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pij.

Properties

Most of the properties of Bézier tensor product surfaces follow directly from
the properties of Bézier curves:

Affine invariance In order to be invariant under affine transformations, the
surface has to be a barycentric combination which means that:

m∑
j=0

n∑
i=0

Bm
i (u)Bn

j (v) = 1.

That this is the fact can easily be verified algebraically. Analogously to
Bézier curves, there is no invariance under projective transformations.

Convex hull property As well as the Bézier curve, the surface is a convex
combination of the control points since the Bernstein polynomials are
always nonnegative and a partition of unity.

2.2. Trimmed NURBS Surfaces 11

2.2.3 B-Spline Curves and Surfaces

Although Bézier curves and surfaces provide a powerful tool in computer
aided design, they have some severe limitations. If a complex shape is de-
signed, the Bézier representation will have a very high degree. Such complex
curves and surfaces can better be modelled as a composition of different
Bézier curves or surfaces. Such a composition is called B-Spline.

In order to connect a set of Bézier curves into a single B-Spline curve C,
a global parametrization of the resulting curve is required. A spline curve is
the continuous mapping of a collection of intervals t0 < . . . < tn into R3,
where each interval [ti, ti+1] is mapped onto a polygonal curve segment. Each
real number ti is called knot and the collection of all ti is called knot vector
or knot sequence. For each parameter value ut with t0 ≤ t ≤ tn there is a
corresponding point on the curve C. Let this value t be in the interval [ti, ti+1]
– we also say span(t) = i – the local parameter t′ is defined by:

t′ =
t− ti

ti+1 − ti
.

If the three control points Pi−1, Pi and Pi+1 at the connection of two
Bézier curves are collinear, the tangent line at this point is continuous and a
knot vector can be found such that the curve is C1 continuous.

If a designer is now satisfied with the first part of the curve and C1

continuity is required, he cannot change the control point Pi+1 arbitrarily.
An additional problem is that determining the knot vector and continuity
class of a curve requires much computation. Therefore, a representation is
desirable in the form:

C(t) =
n∑

i=0

fi(t)Pi,

where fi(t) are piecewise polynomial functions forming a basis for the vector
space of all piecewise polynomial functions of the desired degree and continu-
ity. If the continuity is defined by this basis functions, the control points can
be modified without altering the continuity of the curve. Further properties
of the functions fi(t) should be that they have the same properties as the
Bernstein polynomials, but have only local – i.e. be nonzero only inside a
small interval [ta, tb] – instead of global support. Therefore, moving a control
point only affects the curve inside this interval.

Basis Functions

The nondecreasing sequence of real numbers {t0, . . . , tn} is called knot vector.
The ith B-Spline basis function of degree d (order d + 1) for this knot vector

12 2. Basics

is defined by:

Bi,0(t) =

{
1 if ti ≤ t ≤ ti+1

0 otherwise

Bi,d(t) =
t− ti

ti+d − ti
Bi,d−1(t) +

ti+d+1 − t

ti+d+1 − ti+1

Bi+1,d−1(t)

Note that the first and last knot always have a multiplicity of d + 1
when the curve is constructed as a sequence of Bézier curves. The continuity
between the curve segments can also directly apparent from the knot vector:
the continuity between two knot intervals [ti, ti+1[and [tj, tj+1[with ti <
ti+1 = tj < tj+1 is at least Cd−m, where m is the multiplicity of the knot tj,
i.e. j + 1− i.

Since Bi,d(t) is only nonzero if t is in the interval [ti, ti+d+1] the equation
to evaluate a B-Spline curve can be written as:

C(t) =

span(t)+d+1∑
i=span(t)

Bi,d(t)Pi.

Surfaces

Similar the the Bézier tensor surface, a B-Spline tensor surface can be defined
as:

S(u, v) =

spanu(u)+du+1∑
i=spanu(u)

spanv(v)+dv+1∑
j=spanv(v)

Bdu
u,i(u)Bdv

v,j(v)Pij

2.2.4 Rational Curves and Surfaces

Assuming that the homogeneous control points of a curve or surface are
defined as [x y z w]T , the rational Bézier curve is the projection of the
4d pre-image of C(t) with the control polygon [wiPi wi]

T . The n-th degree
rational Bézier curve is then given by

C(t) =

∑n
i=0 Bn

i (t)wiPi∑n
i=0 Bn

i (t)wi

.

The wi are then called weights and the Pi form the control polygon of the
curve. Since singularities can occur when weights are negative, only positive
weights are used in actual applications. In this case the rational curve still has
the convex hull property. Furthermore, it also is symmetric, invariant under
affine transformations and interpolates the endpoints. An additional property

2.2. Trimmed NURBS Surfaces 13

of rational curves is that they are invariant under projective transformations.
Therefore, a projection can simply be applied to the homogeneous control
points.

By extending tensor surfaces and B-Splines to homogeneous control points
we can then define rational B-Spline curves and surfaces with similar prop-
erties.

2.2.5 Trimming

Although any surface can be modelled with NURBS, each NURBS surface
has always a genus of one since it is parameterized by a rectangle. Therefore,
a surface with a different genus can only be modelled using several NURBS
surfaces. To create a surface with holes using only a single NURBS, these
have to be cut out – trimmed – in parameter domain and then elevated to the
surface. This trimming is performed by placing 2d rational B-Spline curves
– which form a loop for each hole – in the parameter domain of the surface.
These define which part of the parameter domain and thus of the surface is
removed. By using this technique it is not only possible to create surfaces
with holes, but also more easy to build a surface with complex boundary.

Fig. 2.3: Trimming of a NURBS surface

Figure 2.3 shows the trimming process. The trimming curves in the pa-
rameter domain of the surface are shown in the left image and the resulting
trimmed NURBS surface is shown in the right image with the removed part
hatched in light-red.

2.2.6 Reparametrization and Texture Mapping

Since a NURBS surface is defined over a rectangular parameter domain,
it already has an inherent parametrization. This parametrization however
is seldomly suitable for texture mapping since it is not related to the 3d
shape of the surface, unless it was explicitly created this way. This becomes
even more apparent for models consisting of several NURBS surfaces, since

14 2. Basics

adjacent surfaces can have different parameterizations along their common
boundary. Therefore, a consistent reparametrization of all NURBS surfaces
for the whole model is required for texture mapping.

2.2.7 Standards and Data Exchange

So far only so-called clamped knot vectors were discussed, i.e. the multiplicity
of the first and last knot is d + 1 for a curve of degree d. However, it is also
possible to define so-called unclamped knot vectors with a lower multiplicity.
Note, that curves with unclamped knot vectors lose the endpoint interpola-
tion property. In addition to clamped and unclamped, many exchange format
also distinguish whether a knot vector is uniform or non-uniform.

As some data formats – and also some algorithms – do not support un-
clamped knot vectors, such curves often need to be clamped. The clamping
is basically a d-times knot insertion at ud+1 and un−d−1. Then the first and
last d knots and control points are removed.

File Formats

There are three main exchange formats for trimmed NURBS surfaces in
industrial applications:

IGES (Initial Graphics Exchange Specification) is an American National
Standard (ANS) which was used in many different CAD systems. It
supports curves, surfaces and solids, were a NURBS curves is defined
by: degree (p), number of control points (n + 1), Euclidean control
points (Pi), weights (wi), a knot vector with n + p + 2 knots, start
and end parameter values (s0 and s1) and other additional information
about the type of the curve (e.g. linear, circular, conic). Since the is
no concept of homogeneous control points, only positive weight greater
than zero are allowed.

STEP (Standard for the Exchange of Product Model Data) is an interna-
tional standard which is the used by most of the current CAD systems.
Similar to IGES it supports curves, surfaces and solids. The only dif-
ference in the definition of a NURBS curve compared to IGES is that
curve trimming by start and end parameter values is not supported.

PHIGS (Programmer’s Hierarchical Interactive Graphics System) is also an
international standard supporting curves and surfaces. It defines a
NURBS curve by: order (p + 1), number of control points, number

2.2. Trimmed NURBS Surfaces 15

of knots, a flag whether the curve is rational, Euclidean or homoge-
neous control points (with strictly positive weights), the knot vector
(only clamped are supported), and start and end parameter values.

While IGES and STEP are pure exchange formats, PHIGS is an inter-
national standard specifying a device-independent interactive graphics pro-
gramming interface. NURBS are incorporated as part of the PHIGS PLUS
extension. Note, that IGES and PHIGS allow discontinuous – C−1 continuous
– curves and surfaces.

In the scientific community the Open Inventor file format – with its
trimmed NURBS extension – is frequently used. This format has the ad-
vantage that it also supports textured NURBS surfaces. In Open Inventor a
NURBS curve is defined by: an array of Euclidean or homogeneous control
points and an array of knot values. For surfaces, the number of control points
in u- and v-direction is additionally specified.

16 2. Basics

Part II

GENERATION OF MESH LEVELS OF DETAIL

3. PREVIOUS WORK: SIMPLIFICATION ALGORITHMS

Geometric simplification algorithms generate an approximation of the orig-
inal model with reduced number of primitives. To give an overview of this
field a short summary of different simplification approaches related to this
work follows. However, since the main scope of this work is appearance pre-
serving error measures and rendering rather than the simplification process
itself, only a brief introduction is given. A more detailed discussion on the
advantages and drawbacks of the different techniques can be found at [125].

3.1 Triangle Mesh Decimation

One of the first algorithms for mesh simplification was by Schroeder et
al. [154] developed to work on meshes generated by the marching cubes iso-
surface extraction algorithm [123], since the output of this method is often
very overtessellated with coplanar triangles. The algorithm iterates several
times over the model and checks for each vertex, if it can be removed without
exceeding a user specified threshold. When a vertex is removed, the resulting
hole is retriangulated. Since the original method can only remove manifold
vertices, he modified it to also reduce non-manifold meshes [153].

3.2 Vertex Clustering

Another class of simplification algorithms – called vertex clustering – was
first proposed by Rossignac and Borrel [146]. A grid is laid over the object
and an importance – depending on curvature and size of adjacent triangles –
is assigned to each vertex. Then all vertices inside a grid cell are collapsed to
the one with the highest importance. When a triangle becomes degenerate
it is replaced by a line, merging them together when several lines connect
the same two vertices. When a line is collapsed it is replaced by a point and
again merged with points at the same position. In this algorithm the grid
resolution determines the tradeoff between quality and reduction rate. To
remove the orientation and placement dependency introduced by the grid
Low and Tan [124] replaced the grid by iteratively placing a cell around

20 3. Previous Work: Simplification Algorithms

the vertex with the highest priority that has not yet been processed and
collapsing all vertices within a sphere of user specified size to this vertex.

3.3 Simplification Envelopes

Cohen et al. developed simplification envelopes [38] to guarantee fidelity
bounds while enforcing local and global topology preservation. The simpli-
fication envelopes consist of two offset surfaces at some distance ε from the
original surface. Since these envelopes are not allowed to self intersect, ε is
decreased at high curvature regions. By keeping the simplified surface in-
side these envelopes, the algorithm can guarantee a geometric deviation of
at most ε. Additionally surface self-intersections are prevented during sim-
plification. While this algorithm has the advantage to guarantee a geometric
error bound, its capability for drastic simplification is low, since it preserves
the topology of the original mesh. Furthermore, for the construction of the
offset surfaces an orientable manifold is required.

3.4 Quadric Error Metrics

The quadric error metrics simplification algorithm [69] provides perhaps the
best balance between speed, fidelity and robustness. The algorithm works
by iteratively merging pairs of vertices which do not necessarily need to be
connected by an edge. Candidate pairs include all edges plus all vertices closer
than a user specified threshold t. The major contribution of this algorithm
was the way to represent the error and calculate a new vertex position using a
quadric. Another advantage besides speed and quality is that the algorithm
also performs topological simplification and therefore, does not require a
manifold input mesh. Since the number of candidate pairs approaches O(n2),
as t approaches the model size, Erikson and Manocha proposed an adaptive
threshold selection scheme [56] to improve the performance.

A generalization of the vertex pair contraction was developed by Borodin
et al. [24]. Instead of only collapsing vertices along the boundary an additional
operation shown in figure 3.1 is introduced to collapse a boundary vertex
with an edge. He further generalized the algorithm in [22] by adding two
more operations show in figure 3.2 to connect the closest parts of a model.

For the vertex-edge and vertex-triangle contraction the vertex is con-
tracted onto an intermediate vertex which is created on the corresponding
edge or triangle. In case of edge-edge contraction an intermediate vertex is
created on both edges and then these are contracted together. All these ad-
ditional operations perform no reduction – i.e. the total number of vertices

3.5. Progressive Meshes 21

v
1

v
2

v
i

v
new

v
0

v
1

v
2

v
i

v
0’

t
i1

t
i2

v
0

v
1

v
2

e

t
i

v
i

Fig. 3.1: Vertex-edge contraction for better control of topology modifications dur-
ing simplification.

v
1 v

2

v
3

v
0

t
1

t
3

t
2

v
0’

v
1 v

2

v
3

v
new

v
1 v

2

v
3

v
0

t

v
2i

v
1i

v
12

v
11

v
22

v
21

v
new

v
20

v
10

v
2i

v
1i

v
12

v
11

v
22

v
21

v
2i

v
1i

v
12

v
11

v
22

v
21

t
2i

t
1i

e
2

e
1

Fig. 3.2: Vertex-triangle and edge-edge contractions.

is not reduced – but they increase the connectedness of the mesh. There-
fore, this method allows to connect disjoint parts of the mesh already during
early stages of the simplification which improves the quality of the simplified
model.

3.5 Progressive Meshes

A progressive mesh is a representation of a polygonal model as sequence of
collapse operations. It was introduced as the first dynamic simplification al-
gorithm for manifold polygon meshes by Hoppe [92]. The progressive mesh
is composed of a simple base mesh created by a series of edge collapses and
the sequence of vertex split operations – the dual of the edge collapse – nec-

22 3. Previous Work: Simplification Algorithms

essary to reconstruct the original model. Although the original progressive
mesh used only edge collapses, adding other collapse operations is trivial.
The constructed sequence encodes the simplification process from the model
to the base mesh. Since the edge collapse and vertex split operation are rela-
tively fast, it is possible to apply them during runtime. Later Hoppe extended
the progressive meshes to support view-dependent simplification [93]. This
algorithm uses three criteria for view-dependent refinement. A view frustum
test aggressively simplifies regions outside the view frustum, a backfacing
test which also aggressively simplifies regions facing away from the viewer,
and a screen space error test that guarantees that the geometric error is less
than a user specified tolerance. Since the algorithm measures perpendicular
and tangent deviation separately, preservation of the silhouettes is naturally
supported by this algorithm. Although evaluation of these criteria is highly
optimized and takes only 230 CPU cycles on average [94], recent develop-
ment in graphics hardware limits the performance gain of view-dependent
progressive meshes, since transmitting the updated mesh over the graphics
bus has become the bottleneck.

3.6 Error Control

The distance d(p, S ′) between a point p on a surface S and another surface
S ′ is defined as:

d(p, S ′) = min
p′∈S′

d(p, p′),

where d(p, p′) is the Euclidian distance between two points in E3. The geo-
metric distance - also called one-sided or single-sided Hausdorff distance -
between two surfaces S and S ′ is then defined as:

D(S, S ′) = max
p∈S

d(p, S ′)

Note, that this distance is not symmetric in general, i.e. D(S, S ′) 6=
D(S ′, S). Therefore, the (symmetrical) Hausdorff distance is defined as:

H(S, S ′) = max (D(S, S ′), D(S ′, S))

This value gives a more accurate measure of the distance between two
surfaces by preventing the possible underestimation, which can occur if using
only one-sided distances.

The quadric error metric used in many simplification algorithms is a fast
technique that provides good results but it cannot control the precise geo-
metric error. Although it is possible to measure the geometric error after

3.6. Error Control 23

simplification using tools like Metro [34], MESH [6] or [82], guiding the sim-
plification process by controlling the error is more efficient as shown by Klein
et al. [104]. As a criterion for the choice of next contraction operation the
quadric error metric is used. Then all candidate contraction pairs are sorted
in a priority queue according to the quadric error that will arise after con-
tracting them. The new position of a contraction vertex is chosen in order to
minimize this error. Then the geometric error introduced by each operation
is measured and the collapse is performed or rejected on the basis of a user
specified threshold.

24 3. Previous Work: Simplification Algorithms

4. PREVIOUS WORK: TESSELLATION ALGORITHMS

Researchers have put a lot of effort into the visualization of trimmed NURBS
surfaces due to its industrial relevance. Different approaches emerged for
rendering, like ray-tracing the surfaces (e.g. [131]), pixel level subdivision
(e.g. [158]), or polygon tessellation. The tessellation algorithms can be di-
vided into two categories: uniform subdivision (e.g. [91, 111, 144, 149]), where
the surface is tessellated using a regular grid in parameter space and fully
adaptive subdivision (e.g. [65, 107]), where an error measure is evaluated
before each hierarchical subdivision step. On a multiprocessor system these
triangulated models can be rendered at interactive rates [13], but this re-
quires massive amounts of memory for storing the hierarchical static levels of
detail, since every vertex of the finest triangulation needs approximately 65
bytes of memory (including vertex normals) using an optimized progressive
mesh like in [63].

The first tessellation approaches dealt with individual curves or surfaces
and usually made little or no attempt to overcome the problems caused by
individual treatment of patches. Therefore, the resulting meshes contained
gaps between neighboring NURBS patches. To generate a consistent model
these crack had to be closed using mesh repair tools. Various techniques ex-
ist to repair such CAD models by e.g. converting them into a volumetric
representation, subsequently removing the topological noise by morphologi-
cal open and close operations and finally reconstructing the mesh from the
implicit function defined by the volumetric representation as in [132].

More recent tessellation approaches are able to render trimmed NURBS
surfaces at interactive frame rates by combining several patches to so-called
super-surfaces. An example for this group of algorithms is the work of Ku-
mar et al. [112], which introduced the notion of super-surfaces. Based on a
priori known connectivity information sets of trimmed NURBS patches are
clustered into such super-surfaces. An individual view-dependent triangula-
tion is generated at run-time for each super-surface and in a final step these
view-dependent triangulations are sewn together in order to avoid cracks.
The computationally complex sewing part is parallelized to achieve real-time
frame rates for more complex models. Another approach by Kumar et al. [110]
only deals with very specific configurations of trimmed NURBS surfaces that

26 4. Previous Work: Tessellation Algorithms

are stacked on top of each other. Barequet and Kumar [12] and Kahlesz et
al. [100] both determine corresponding edges of different patches and then
sew them together. While the algorithm of Barequet and Kumar can only
guarantee an approximate error bound since it works in parametric space,
the algorithm of Kahlesz et al. guarantees accurate sewing in euclidian space
and constructs a single manifold mesh for each part of the model.

Since accurate tessellations of complex NURBS models easily contain
millions of triangles, another recent approach of rendering highly complex
NURBS models is to generate a very fine and high quality tessellation as a
preprocessing step and apply state-of-the-art, distributed realtime-raytracing
(RTRT) techniques for the actual rendering [177]. However, since raytracing
is obviously fillrate limited it is usually not applicable to high resolution
display systems such as powerwalls and CAVEs. Another drawback of this
method is that interactive editing of the models is not possible due to the
required and computationally intensive preprocessing step.

Abi-Ezzi and Subramanian [1] and Bóo et al. [21] proposed an additional
adaptive tessellation unit at the front of the rendering pipeline for NURBS
and subdivision surfaces respectively. Bolz and Schröder [20] developed an
algorithm to evaluate Catmull-Clark subdivision surfaces on programmable
graphics hardware. After the transmission of the tessellation textures to the
GPU, only control points instead of triangles need to be send and thus the
fragment shader can be saturated with marginal bus bandwidth consumption.
With different tessellation textures this approach can also be used for bi-cubic
B-Spline surfaces since they are equivalent to this subdivision scheme on a
regular quad mesh. The algorithm generates an adaptive tessellation on a per-
patch basis, which is rendered into an offscreen buffer – a so called pixel buffer
or p-buffer – and then used as input for a second rendering pass. Theoretically
this method could achieve up to 24 million vertices per second on recent
GPUs, but the high number of p-buffer switches – at least one per patch is
required – reduces the performance by several orders of magnitude. Based on
this work, Kanai and Yasui [101] developed an algorithm to calculate accurate
per-pixel normals on a tessellated subdivision surface. Although the produced
images are very convincing, it is too slow for real time rendering of more than
about ten surfaces. In state-of-the-art CPU-based algorithms unstructured
meshes with a high number of triangles are generated (see figure 4.1). These
irregular mesh data structures so far prevented an efficient realization of
trimmed NURBS tessellation in hardware.

For surfaces of higher degree, a bi-cubic approximation is required. The
idea of approximating high degree Bézier curves using degree reduction al-
ready came up more than 30 years ago [64]. As shown by Park and Choi [134],
the error can be reduced greatly by subdividing the curve before degree re-

4.1. Efficient Tessellation 27

Fig. 4.1: Tessellation of planar surface with complex trimming (20 trimming loops)
by explicit meshing.

duction. They also discovered error bounds on the degree reduced curve,
which are used in this work. Using a standard degree reduction algorithm
however, the degree of continuity between the composite curves cannot be
controlled directly. Either, the continuity is preserved up to the maximum
for the current curve degree (e.g. [64]), or completely lost (e.g. [49]). There-
fore, Zheng and Wang [184] developed a method to explicitly control the
continuity classes of the curve at its endpoints. However, all these algorithms
preserve the parametric continuity which is not necessary when only deal-
ing with shape e.g. for surface design and rendering. In this case, geometric
continuity – a curve is nth-order geometrically continuous if it is n times
differentiable with respect to arc length – is more appropriate.

4.1 Efficient Tessellation

The currently most efficient – with respect to both, number of generated tri-
angles and runtime – trimmed NURBS tessellation algorithm was developed
by Balázs [9]. Since this method is the basis for the high quality tessella-
tion presented in chapter 9, a more detailed description is given. The overall
tessellation algorithm works as follows:

• The trimming curves are converted into sequences of 3d Bézier curves
(section 4.1.1).

• The 3d trimming loops are approximated with piecewise linear seg-
ments (section 4.1.2).

• The surface is approximated using hierarchical subdivision of bilinear
patches (section 4.1.2).

28 4. Previous Work: Tessellation Algorithms

• The surface approximation is cut with the approximated trimming
loops (section 4.1.3).

• The resulting polygons are triangulated (section 4.1.4).

• The surface is evaluated at generated mesh vertices (section 4.1.5).

4.1.1 Conversion of Trimming

In order to be able to guarantee an error in euclidian space the Hausdorff
distance between the 3d trimming curve and the current approximation has to
be measured. To provide a tighter upper bound for the approximation error of
the trimming curve by line segments than previous approaches (e.g. Kahlesz
et al. [100]) the trimming curves are elevated into euclidian space. To compute
this, the trimming curves are first converted into their Bézier representation
which is then degree reduced by the following algorithm from [59]:

• Calculate new control points with:

←−
P 0 = P0

←−
P i =

nPi+1 − (n− i)
←−
P i+1

n− 1
; i = 1, . . . , n− 1

−→
P n−1 = Pn

−→
P i =

nPi+1 − i
−→
P i+1

n− 1
; i = n− 2, . . . , 0

• If
←−
P i ≈

−→
P i for all 0 ≤ i < n then the curve was losslessly degree

reducible and the process is repeated with the new control points P̃i =
λi
←−
P i + (1−λi)

−→
P i with λi = 0 for i < n

2
, λ = 1

2
for i = n

2
and λ = 1 for

i > n
2
.

Since the elevation of a Bézier curve onto a surface [59] results in a 3d
Bézier curve only if it lies completely on a single Bézier tensor product sur-
face, the Bézier trimming loops are cut at the spans of the NURBS surface in
order to restrict them to one Bézier surface patch. The degree of a 3d Bézier
curve which is constructed by elevating a 2d Bézier curve of degree d2d with a
Bézier tensor product surface can be at most d3d = d2d(du+dv), where du and
dv are the degrees of the surface in the u and v-direction. Since a Bézier curve
of degree n can be represented as three polynomials of degree n, it is uniquely
defined by n + 1 arbitrary points on the curve together with their parame-
ter values. For numerical stability the 3d curve is constructed by evaluating

4.1. Efficient Tessellation 29

d3d + 1 equally distributed parameter values (0, 1
d3d

, 2
d3d

, . . . , d3d−1
d3d

, 1) on the
trimming curve and then calculating the Bézier curve defined by these points.
This leads to a linear system of equations with a nonsingular matrix [136]: Bn

0

(
0
n

)
· · · Bn

n

(
0
n

)
...

. . .
...

Bn
0

(
n
n

)
· · · Bn

n

(
n
n

)

 P0

...
Pn

 =

 C
(

0
n

)
...

C
(

n
n

)
 ,

where Bi are the basis functions, Pi the unknown control points of the 3d
Bézier curve, and C(i) are the evaluated points of the curve sampled at the
regularly distributed parameter values. In order to achieve numerical stability
singular value decomposition [139] can be used to find the solution. Since the
complexity of the SVD for an n× n matrix is O(n2 log n), using maximum a
degree (e.g. of 20) is reasonable to achieve good performance.

Finally the resulting 3d Bézier curve is degree reduced using the above de-
scribed algorithm and stored along with its corresponding (cut) 2d trimming
curve. To perform lossless degree reduction only a very small epsilon – in
the order of magnitude of the numerical error – is allowed when checking the
control points of the reduced curve with

←−
P i ≈

−→
P i for all 0 ≤ i < n. Note,

that the generated 3d Bézier curves exactly match the original trimming
curves – except for numerical inaccuracy – and are not an approximation.
Therefore, this conversion does not introduce an additional approximation
error and only needs to be performed once for each surface unless the surface
or its trimming loops are modified.

4.1.2 Approximation

The construction of 3d/2d trimming curve pairs allows the independent ap-
proximation of the trimming curves and the untrimmed surface. This dual
approximation technique reduces the total number of triangles generated for
a given error bound.

Trimming Loops

Since each trimming curve segment is restricted to one surface span, sub-
sequent curve segments (or curves) may be collinear in euclidian space. In
order to avoid redundant vertices a standard line simplification algorithm –
guaranteeing a given Hausdorff distance between the original and the sim-
plified line segments – is applied to each approximated trimming loop. Since
this introduces an additional error, the trimming curves are approximated
with a fixed portion γ of the desired error and then each complete trimming

30 4. Previous Work: Tessellation Algorithms

loop is simplified with 1 − γ of the error as maximum Hausdorff distance.
Several experiments have shown, that a good tradeoff between runtime and
number of edges is γ = 3

4
.

For the approximation the convex hull property of the 3d Bézier curve is
used which leads to the following error bound:

εline ≤
(

1− 1

2n−2

)
n−1
max
i=1

(‖(Pi − P0)− λ(Pn − P0)‖)

λ = max

(
0, min

(
1,

(Pi − P0) · (Pn − P0)

‖Pn − P0‖2

))
If an approximation by a line is not sufficient either the control point

Pj that has the largest distance to the linear approximation can be used
to subdivide at isubdiv = t

n
or a midpoint subdivision can be applied to the

curve. Theoretically using arbitrary subdivision should reduce the number
of points required to approximate the trimming curve (see figure 4.2), but
it turned out, that the midpoint subdivision produces slightly less trimming
edges. This is due to the fact that subdivision at control points only is not
fine grained enough.

Fig. 4.2: Curve approximation with midpoint (top) and arbitrary (bottom) subdi-
vision

Although in theory trimming curves should never intersect, in practice
due to modelling or other errors they often do. To handle such models a
correction step for the trimming loops has to be added. The algorithm works
similar to the line sweep algorithm [15]. At each intersection an intermediate
point is inserted and intersection free trimming loops are built from this
directed graph.

4.1. Efficient Tessellation 31

NURBS Surfaces

Previous runtime tessellation algorithms either used a grid or a quadtree
to subdivide the surface for approximation. Since even the quadtree is not
completely adaptive, a new approximation algorithm based on kd-tree sub-
division was developed. The approximation error for the current subdivision
can be calculated using the distance between the control points and the bilin-
ear surface approximation. Since the two triangles that would be generated
for this tree node cannot resemble a bilinear quad patch an additional ap-
proximation error needs to be taken into account which leads to the following
estimated error [100]:

εconvervative ≤ εbilin +
1

4
‖P00 − Pm0 − P0n + Pmn‖ , with

εbilin ≤
i≤m,j≤n
max

i=0,j=0

∥∥∥∥Pij − S̃

(
i

m
,
j

n

)∥∥∥∥ , where

S̃(a, b) = (1− b)((1− a)P00 + aPan) + b((1− a)Pm0 + Pmn)

Since this error measure is still a (sometimes significant) overestimation,
an approximate error measure can also be used if the approximation inside a
patch has not to be guaranteed. In order to calculate this approximate error
the above equations are still used, but the control point Pij is replaced with
S(αi, βj), where αi and βj) are the parameter values corresponding to the
control point Pij. If the estimated approximation error exceeds the desired
error for this NURBS surface the tree node needs to be subdivided.

If a quadtree is used, the node is split at the midpoint in the parameter
domain. On surfaces with high curvature in one direction of the parameter
domain and low curvature in the other direction (e.g. a cylindrical surface)
this leads to an unnecessary high subdivision in the low curvature direction.
As shown in figure 4.3, using a binary subdivision solves this problem, but
the problem that unnecessary subdivisions are applied if the curvature of the
surface is highly variant remains.

This can be solved by using arbitrary subdivision of the surface. Since a
NURBS surface can only be subdivided either in the u or in the v direction,
this leads to a kd-tree subdivision. The surface is subdivided at the parameter
value

(
k
m

, l
n

)
, for which the following holds:∥∥∥∥S (k

m
,

l

n

)
− S̃

(
k

m
,

l

n

)∥∥∥∥ =
i≤m,j≤n
max

i=0,j=0

∥∥∥∥Pij − S̃

(
i

m
,
j

n

)∥∥∥∥ ,

where 0 ≤ k ≤ m, l ≤ n and S̃ is the bilinear approximation of S. For the
direction of the subdivision that one is chosen, for which the line subdividing
the kd-tree node is closer to S

(
k
m

, l
n

)
(see figure 4.4).

32 4. Previous Work: Tessellation Algorithms

Fig. 4.3: Quadtree and binary subdivision on a cylindrical surface.

worst point

approximations

Fig. 4.4: Finding the subdivision direction and parameter for the kd-tree.

Since an appropriate approximation for the trimming loops of the surface
has already been constructed, the number of unnecessary subdivisions can
be reduced by restricting the parameter domain to the bounding box of the
trimming loop approximation in parameter space before approximating the
surface.

4.1.3 Trimming

To perform the actual trimming an extended version of the trimming algo-
rithm developed by Kahlesz et al. [100] is used. By inserting the approxima-
tion of trimming curves into the mesh as (directed) half-edges (the orientation
is the same as the direction of the original trimming curve) and replacing all
faces of the mesh with appropriate new faces, essentially a directed graph of
half-edges is created. This graph spans the whole parameter space of the sur-
face, and has directed edges where the trimming curves are in the parameter
space. The trimming is then performed by travelling along the half-edges.
The pseudo-code of the traversal is:

4.1. Efficient Tessellation 33

findDirectedEdge()
while there are directed edges left

while there is a valid edge
store start node
handleEdge()
getNextEdge()
if traversal back at the start node

handleEdge()
triangulate()
getOutGoingEdge()

findDirectedEdge()

The functions used in the pseudo code perform the following operations:

findDirectedEdge() Find an arbitrary directed edge in the graph.

handleEdge() If this edge was directed, delete it from the graph. Otherwise,
make it a directed edge, with the orientation being the opposite of the
one in which this edge is traversed.

triangulate() Given a sequence of nodes defining a polygon, triangulate it
(see section 4.1.4).

getNextEdge() Given a node and an edge, find the leftmost edge which is
not equal to the given edge.

getOutGoingEdge() Given a node, find the outgoing edge: that is, an edge
which is directed and is pointing out of this node. Note that the con-
struction of the graph guarantees that there can be at most one such
edge.

Whenever the graph traversal algorithm finds a closed polygon, it has to
be triangulated. Note that the polygon may be non-convex only if a trimming
curve is part of it.

This algorithm has the problem that it cannot handle holes inside a mesh
face. Therefore, each clockwise trimming loop is checked if it is contained
completely inside a leaf cell. If this is the case the cell is subdivided through
the center of the trimming loop along its longer edge.

4.1.4 Triangulation

As the constrained triangulation of point clouds is a non-trivial problem,
practically all NURBS tessellation algorithms generate the final triangulation
in the parameter domain of the surface. This is reasonable as long as the

34 4. Previous Work: Tessellation Algorithms

surface does not deform the polygon too much, which using this algorithm
cannot happen due to the geometric error control.

Since polygons created from kd-tree or octree cells are always convex (they
are essentially rectangles with additional points inserted along the edges), a
simple linear time triangulation algorithm can be used:

• Find the upper left vertex of the remaining polygon and build a triangle
with the left and right neighboring vertices.

• Iteratively take the current edge and build a triangle with the upper
left of the two adjacent vertices.

However, polygons containing trimming curve segments may be non-
convex, which has to be checked before triangulation. Since a polygon is
non-convex if at least one angle is greater than 180 degrees, a simple check
that has the complexity of O(n) can be performed. If the polygon is convex
the above triangulation algorithm can be applied as well. If this is not the
case, the O(n log n) algorithm developed by Garey et al. [68] is used to tri-
angulate the current polygon. To decide whether a polygon contains a part
of the trimming curve, all trimming half-edges are marked in the directed
edge graph during construction. During triangulation it is just checked if
the current polygon contains at least two marked edges and thus may be
non-convex.

4.1.5 Evaluation

There are a number of algorithms for the evaluation of a NURBS surface S
at a given parametric sample point (a, b).

S(a, b) =

spanu(a)+du+1∑
i=spanu(a)

Bu,i(a)

spanv(b)+dv+1∑
j=spanv(b)

Bv,j(b)Pij

The evaluation of the surface in its NURBS representation can either be per-
formed directly by calculating the Basis functions using the Horner Scheme
and multiplying them with the control points [136] or by using the de Boor
algorithm based on knot insertion (e.g. [44]). Furthermore, it is possible to
convert the surface into piecewise Bézier representation and then perform
the evaluation.

By simply estimating the total number of operations it is obvious that
the direct evaluation is faster than using knot insertion. As the conversion
into Bézier form requires additional knot insertion steps, it is also clear that

4.1. Efficient Tessellation 35

it will be even slower. The direct evaluation algorithm can be further im-
proved by exploiting the coherence between mesh vertices. If a vertex to be
evaluated has the same u or v coordinate as the previous, the corresponding
basis function does not have to be recalculated. If the v coordinate does not
change and the u coordinate lies in the same span as for the previous vertex
all inner sums in the evaluation equation can be reused. All together this
reduces the complexity from O(d2

u + d2
v) to O(d2

u + dudv) if the v basis func-
tions can be reused and to O(d2

u) if additionally the u span does not change
and therefore, the u sums can be reused. Since the vertices are already lexi-
cographically sorted by (v, u) no additional overhead is required. If du > dv

the surface is reparameterized by substituting u′ = v and v′ = −u. Note that
this optimization also works for regular grid tessellations with even better
results since the v sums can be reused more often.

4.1.6 Performance

To test the improvements made to the NURBS tessellation algorithm, dif-
ferent combinations of the optimizations are compared with the original
quadtree based algorithm. The computation times were obtained using an
Athlon 3000+ with 1 GB memory. Table 4.1 gives an overview of the models
used to compare the optimized algorithm with the previous approach. The
tessellated models are shown in figure 4.5.

Golf vent. con. Beetle
#NURBS 8, 036 4, 419 31, 040
εapprox 0.2mm 0.2mm 0.2mm

Tab. 4.1: Models used for evaluation

Fig. 4.5: Volkswagen Golf, Mercedes ventilation-console, and Volkswagen Beetle

The different algorithms which can convert the NURBS trimming curves
into polylines are compared in table 4.2. The superiority of the 3d Bézier

36 4. Previous Work: Tessellation Algorithms

curves with midpoint subdivision and line distance error measure is clearly
visible. Although the subsequent simplification slightly increases the approxi-
mation time, the number of generated edges is drastically reduced which leads
to faster triangulation and rendering. In table 4.2 εpoint refers to the approxi-
mation method used in [100] for approximating the 3d trimming curves, while
εline refers to the new method, with the optional simplification step added.
The top line refers to the original approximation method used in [100] which
tries to approximate the trimming curves in parameter space, while also tak-
ing into account the distortion that comes from the elevation into euclidian
space. Since this method sums up partial errors the overestimation is usually
large which explains the huge number of generated edges. Furthermore, the
method is not invariant under reparametrization of the curves which makes
it unstable for some real world industrial models.

conversion approx. #edges
2d Bézier 1.2sec 77.3sec 824, 791

3d Bézier curves, midpoint subdivision
εpoint 23.9sec 4.4sec 178, 475
εline 23.9sec 4.4sec 170, 484
εline + simpl. 23.9sec 5.9sec 151, 234

3d Bézier curves, arbitrary subdivision
εpoint 23.9sec 4.5sec 181, 280
εline 23.9sec 4.6sec 172, 925
εline + simpl. 23.9sec 6.2sec 153, 680

Tab. 4.2: Comparison of trimming curve approximation algorithms (Golf model)

Table 4.3 gives a comparison between the different surface approximation
algorithms: εconservative refers to the guaranteed geometric approximation er-
ror, while εapprox. refers to the approximate error. This table also shows the
superiority of the kd-tree based approach. Although the computation time
for the approximate error measure is slightly higher, this method generates
far less triangles and thus the higher computation time is compensated in
the subsequent steps by a lower triangulation and evaluation time.

Finally, the completely optimized algorithm is compared to the quadtree
based technique from [100] (table 4.4). All three models show both a signif-
icant speedup of tessellation time and a great reduction in the number of
generated triangles and boundary edges.

The resulting tessellations with 0.2mm accuracy for the models using the
optimized algorithm are shown in figure 4.6. A comparison between to the
tessellation generated by the quadtree based algorithm is shown in figure 4.7.

4.2. Gap Closing during Rendering 37

total time with coherence #triangles
quadtree

εconservative 183.6sec 175.2sec 1, 511, 056
εapprox. 191.7sec 184.6sec 1, 008, 457

kd-tree
εconservative 100.1sec 96.9sec 796, 438
εapprox. 101.3sec 97.3sec 464, 354

Tab. 4.3: Comparison of surface approximation algorithms (Golf model)

Golf vent. con. Beetle
quadtree based algorithm [100]

Time 348.3sec 64.9sec 547.3sec
#triangles 2, 058, 739 562, 949 3, 153, 954
#edges 824, 791 562, 434 2, 888, 198

kd-tree based algorithm [9]
Time 97.3sec 11.6sec 152.9sec
#triangles 464, 354 29, 113 593, 652
#edges 151, 234 34, 054 385, 767

Tab. 4.4: Comparison of the quadtree method with the kd-tree algorithm for dif-
ferent models

Fig. 4.6: Tessellation of the Golf car body and of the Beetle interior

4.2 Gap Closing during Rendering

All trimmed NURBS tessellation and rendering methods mentioned so far
have the common drawback that they either rely on connectivity informa-
tion to be supplied (e.g. [112]), and/or require significant preprocessing time
(e.g. [100]). Therefore, the connectivity information between patches can-

38 4. Previous Work: Tessellation Algorithms

Fig. 4.7: Tessellation of the ventilation-console with the optimized and the
quadtree based algorithm

not be changed at runtime, which makes these algorithms unsuitable for
deformable models or models with dynamic neighborhood relations.

Recently there has been some work concerning the rendering of silhouette
edges in connection with non-photo-realistic rendering (NPR) [142, 141]. The
“fat triangles” approach first presented in [142] concentrates on silhouette
edges and uses them to enhance the visual appearance of interactive NPR
applications. In [141] this approach is further investigated in the context of
rendering special features such as silhuettes, ridges and ravines, especially on
programmable graphics hardware. This approach however puts the empha-
sis on NPR of special features whereas the aim in the context of rendering
trimmed NURBS models is to hide simplification artifacts between uncon-
nected subparts. In this approach the thickness of the lines in model-space
has to be controlled precisely which is not of importance in NPR.

4.2.1 The Gap Filling Algorithm

In this gap filling algorithm the gaps between adjacent patches introduced by
independent triangulations are filled with appropriately shaded fat borders.
These fat borders consist of several triangles with predefined connectivity.
Their orientation and width as well as their colors are view-dependent and
calculated in each frame using a vertex program.

The input for the gap filling algorithm consist of an arbitrary number
N of LOD-sets Hi = {M̂i = Mni

, . . . ,M0i
}, i = 1, . . . , N, of independent

patches M̂i with border. The only requirement on these LOD-sets is, that
for each patch M̂i it is always possible to choose a LOD Mki

such that the

4.2. Gap Closing during Rendering 39

distance between the approximate surface Mki
and the original surface M̂i,

when projected onto the screen, is everywhere less than εimg pixel, especially
along the border of the patch.

As described in [104] this can be achieved by guaranteeing that the con-
dition H(M̂i, Mki

) ≤ r holds for the Hausdorff distance H, where r is chosen
in such a way that the screen-space projection of the sphere with radius r is
less than εimg pixels.

Note that the way in which the different LODs are represented and gen-
erated is irrelevant as long as the above conditions are satisfied. This implies
the current LOD can be gathered directly by tessellating a NURBS patch
guaranteeing the required error tolerance, by using a progressive mesh rep-
resentation [92], by loading a static level of detail of the patch from disk or
even by using a geometry image [73] with appropriate resolution to represent
the LOD of the patch.

4.2.2 Fat Border Construction

The required input for this algorithm is a set of polylines each representing
a boundary curve. For each line segment l a small surfaces sj perpendicular
to the current viewing direction is created by extending the line segment in
such a way that the projection of l onto image space extends the projected
line segment by εimg pixel in each direction, as shown in figure 4.8. In order
to shade the newly introduced triangles exactly like the adjacent surfaces the
shading parameters of the original vertices on the borderline is utilized for
the newly generated vertices.

i
s

i
t

1-i
s

1-i
s

i
t

i
s

1i
v

3i
v

4i
v 6i

v

5i
v

2i
v

Fig. 4.8: Concept of the vertex program. Vertices are moved to build a fat border.

This leads to the following algorithm, where iterating through the vertices
of polylines, each polyline is processed in the following manner:

1. Calculate the normalized orientation si−1 and si of the respective pre-
vious and the following line segment at the current vertex vi along with

40 4. Previous Work: Tessellation Algorithms

their negated counterparts si−1 = −si−1 and si = −si, respectively (see
figure 4.8).

2. Calculate the normalized tangent ti = si−1+si

||si−1+si|| of the poly line at the

current vertex, and its negated counterpart ti = −ti.

3. Generate six new vertices by displacing vi perpendicular to each of
the directions computed in the above steps and the viewing direction
di = c−vi

||c−vi|| (see figure 4.8), where c is the location of the camera:

vi1 = ε
(si × di)

||(si × di)||

vi2 = ε
(ti × di)

||(ti × di)||

vi3 = ε
(si−1 × di)

||(si−1 × di)||

vi4 = ε
(si × di)

||(si × di)||

vi5 = ε
(ti × di)

||(ti × di)||

vi6 = ε
(si−1 × di)

||(si−1 × di)||
,

where ε is the object space geometric error guaranteeing a screen space
error of εimg pixel.

4. Push the newly generated vertices away from the viewer along the
viewing direction again by ε.

5. Generate new triangles by connecting the resulting vertices as shown
in figure 4.8. Note, that due to the simple structure of the fat borders
a single quad strip can be defined for each boundary curve.

6. Calculate the color of each of the new vertices by assigning the shading
parameters of the original border vertices. Note, that the orientation
of the fat borders serves to fill the gaps, however they do not influence
the actual shading which is computed based on the original boundary
vertex normals.

Because the viewing direction changes from frame to frame, the position of
the new vertices has to be updated continuously. This can easily be achieved

4.2. Gap Closing during Rendering 41

using the vertex shader function shown in figure 4.9. The only prerequisite
for this is to provide six dummy vertices and their connectivity for each
border vertex. The vertex program should be executed only for the border
vertices. Therefore, its execution is disabled while rendering the patch itself.
The whole process is shown in figure 4.10.

uniform vec3 length;

vec4 construct fat border()
{

vec3 view, offset;
vec4 pos;

view = normalize(vec3(-1,-1,-1) * gl NormalMatrix[2]);
pos = gl Position;
offset = normalize(cross(view,gl MultiTexCoord0.xyz));
offset += gl MultiTexCoord0.xyz;
pos.xyz += length * offset;

return pos;
}

Fig. 4.9: Vertex program to render fat borders. The tangent vectors are stored as
texture coordinates and the approximation error is given as local program
parameter.

Fig. 4.10: a) Part of the wheel rim model rendered without fat borders (note the
gaps). b) The same part rendered with the fat borders superimposed. c)
Result: the fat borders cover up the gaps.

42 4. Previous Work: Tessellation Algorithms

Optimization

Note, that although six points are required to ensure the correct extend of
the borders even at sharp corners, in practice using only 4 or even 2 new
vertices delivers good results (only minor visible artifacts) and can have a
huge impact on the rendering performance since only one or two thirds of
the fat border triangles have to be rendered. The corresponding fat border
generation schemes for 6, 4 and 2 vertices are illustrated in figure 4.11. If 4
vertices are used, the vertices vi2 and vi5 are left out, and if 2 vertices are
used only vi2 and vi5 are generated.

i
t

i
s

i
t

1-i
s

1-i
s

i
t

i
s

1i
v

2i
v

3i
v

i
s

1-i
s

1-i
s

i
s

1i
v

3i
v

i
t

2i
v

5i
v4i

v 6i
v

6i
v

5i
v4i

v

Fig. 4.11: Different fat border generation algorithms. From left to right 6, 4, 2 new
vertices. The thick polyline is the boundary, and the polygons around it
represent the generated fat borders. Note how the fat borders become
thinner from left to right.

Also note, that as long as the tessellation itself is static (the LOD does
not change) the fat borders do not change either except for their orientation.
This property can be utilized to encapsulate the fat borders in a display list
and thus eliminate the need for sending this information over to the graphics
hardware in each frame. Therefore, the bandwidth requirement of the fat
borders is practically negligible.

When a screen space error of 0.5 pixel can be guaranteed, the fat border
width would be one pixel. In this case it is also possible to a simple line strip
along each trimming loop instead with little loss of quality. For higher screen
space errors this would also be possible using an appropriate line width, but
the loss of quality quickly becomes unacceptable.

Problems

Unfortunately, the fat borders of neighboring patches might intersect each
other. This does not cause any problems if their shading results in the same
color. But if their colors are different, for example due to different materials

4.2. Gap Closing during Rendering 43

or normals, aliasing artifacts occur as in figure 4.12. This artifact is greatly
reduced if the fat borders are pushed away from the viewer as shown in
figure 4.13. After this push operation the fat borders are only visible through
the gap. Since this is by LOD construction less than εimg the aliasing artifacts
are less noticeable.

Fig. 4.12: Left: Aliasing artifact due to partly intersecting fat borders. Right: Push-
ing back the fat borders reduces the artifact.

Fig. 4.13: Fat border intersection artifact.

A further problem is shown in figure 4.14, where at sharp angles of the
geometry a fat border intersects a neighboring patch. This artifact cannot
be avoided by repositioning the fat border since no information about the
location of the neighboring patch is available. Fortunately, the size of the
visible spike through is always less than εimg pixels.

Fig. 4.14: The spike through artifact.

Both artifacts introduced by this method are restricted to at most εimg

pixel in width. They become apparent since the hardware does discrete point
sampling introducing aliasing artifacts. Thus they can be reduced by using
standard super sampling. Using 6× super sampling, the artifacts are hardly
perceivable. The gaps however would still be visible as darker or brighter
lines between adjacent patches. In practice the artifacts introduced by using
fat borders are much less disturbing than the artifacts caused by gaps.

44 4. Previous Work: Tessellation Algorithms

A further problem is that for semi-transparent surfaces, the fat borders
introduces more artifacts than they remove, since some pixels become much
darker than they should be. Therefore, no fat borders are generated for semi-
transparent patches in the current implementation.

4.2.3 Application to NURBS Rendering

In order to ensure interactive frame rates the time available for re-tessellation
is restricted to a short period (e.g. 10ms) per frame. This implies that there
will possibly not be enough time to re-tessellate every patch. To overcome
this problem, first the number of patches considered is reduced by taking into
account only those patches that were rendered in the last frame. In addition
the remaining patches are inserted into a priority queue according to the
following weight function:

w =

{
(εact/εc)

2, εc < εact

εc/εact, εc > εact

where εact is the current error, and εc is the desired error.
This means patches for which the current error is higher than the desired

error (and thus are likely to cause visible artifacts) will have a much higher
priority than those for which the error is too low and they should only be re-
tessellated to conserve memory and rendering time. The experimental results
show that the screen-space error converges to one pixel with only a short
delay. It usually takes less than 3-4 seconds to have no noticeable visibility
errors on screen after fixing the camera parameters. Nevertheless, even in this
case where the screen-space error is relatively large (3-5 pixels) the method
works with εimg set to the known screen-space error and thus no gaps are
visible as shown in figure 4.15.

4.2.4 Results

The implementation used for evaluation generates 2 vertices for each bound-
ary vertex during the fat border generation, as described in section 4.2.2.
The desired screen space error εimg is set to 0.5 pixels which means the gaps
between patches can be at most one pixel wide. Nevertheless the method still
provides a considerable improvement in image quality.

Since it is very hard to compare the approach to others using static LODs
or applying runtime stitching on clusters it is only compared with simply
rendering the different patches independently and not preventing cracks in
the model at all. As shown in table 4.5 the performance penalty using fat
borders is low.

4.2. Gap Closing during Rendering 45

Fig. 4.15: 3 pixel screen-space error. Left: without fat borders. Right: with fat
borders.

Without fat borders With fat borders
Average FPS 16.23 14.37
Maximum triangles 55,366 149,235
Minimum triangles 17,592 58,122
Average triangles 37,626 107,117

Tab. 4.5: Summary of results.

In figure 4.16 an example of a car model consisting of 8036 trimmed
NURBS patches is shown. The individual patches are tessellated indepen-
dently on the fly, resulting in frame rates of about 14 frames per second on
an Athlon XP 3000+ with 1024 MB memory and an ATI Radeon 9700 Pro
without any visible artifacts. For comparison a camera path around the car
model was generated. The relatively high number of fat border triangles is
due to the high number of separate objects (NURBS patches) many of which
have no interior triangles meaning all vertices lie on the border and thus
generate at least two additional fat border triangles. Note that stitching the
patches together (as in previous methods) would introduce on average one
additional triangle per border vertex for closed objects. Since most of the
boundary vertices of the car model would need to be stitched the number of
added triangles would roughly be half of those generated by the fat border
method. Although almost three times the number of triangles is required
using fat borders, the frame rate does not change much. The reason is that
for each separate object there is one API call and therefore the large number
of separate objects decreases the rendering performance more than the total
number of triangles.

46 4. Previous Work: Tessellation Algorithms

Fig. 4.16: View-dependent rendering of a car model without fat borders (left) and
with fat borders (right).

The second example is an implosion animation of a wheel rim (figure 4.17).
In this example the neighborhood changes dynamically while the model is
assembled. No precomputation was performed to ensure crack free tessella-
tions, and still no artifacts become visible which is hardly achievable with
previous methods. In this example the frame rate is about 25 frames per
second on the same PC as above. In this case the retessellation of the in-
dividual patches is the bottleneck. Since the number of separate objects is
much smaller and most of these have interior triangles the maximum number
of fat border triangles (7444) is much less than of surface triangles (12012).

Fig. 4.17: Snap shot of an implosion of a wheel rim. The neighborhood informa-
tion changes dynamically. Nevertheless, no cracks are visible using fat
borders.

5. STITCHING OF MULTIPLE TESSELLATED SURFACES

While the fat borders are very efficient to close gaps for pure rendering,
several other applications (e.g. texturing or simulation systems) require a
consistent model for further processing. Therefore, an efficient and robust
stitching algorithm is required for these.

Given a soup of trimmed NURBS patches, the overall algorithm can be
divided into a preprocessing stage and an LOD creation stage possibly used
for interactive rendering.

The preprocessing stage itself consists of several phases:

1. reading a soup of trimmed NURBS patches

2. conversion of trimming curves into poly-lines guaranteeing an upper
approximation error bound

3. sewing of adjacent poly-lines with an error in order of magnitude of the
modelling tolerance

4. generation of the hierarchical Seam Graph

The conversion of the trimming curves and the sewing are the most time
consuming parts of the preprocessing. But the generated data can be stored
efficiently on disc, since it represents the Seam Graph without any LOD.

The LOD generation stage consists of four phases:

1. selection of the LOD in the Seam Graph

2. adaptive, tessellation of the NURBS surfaces

Note that most approaches from literature achieve adaptive LOD for
trimmed NURBS surfaces by adaptive tessellation only. If no scheme is used
to consistently adapt the LOD of the trimming curves, either cracks will
appear in simplified models or simplification of trimming curves becomes
impossible, resulting in far too many triangles along the trimming curves
compared to the interior of the patch’s surface.

48 5. Stitching of Multiple Tessellated Surfaces

5.1 Representation and conversion of trimmed NURBS
surfaces

This algorithm consists of three stages. First the trimming curves are con-
verted to poly-lines with a controlled approximation error. Then the poly-
lines are sewn together in 3D space. Finally every patch is triangulated with
an given approximation error to construct a level of detail. The first two
stages are realized as preprocessing steps and the third is applied whenever
a new level of detail is required. The trimming loops are converted into poly-
lines using the tessellation algorithm [9] described in chapter 4.

5.1.1 Sewing

To extract the pairwise sewing intervals the algorithm from Kahlesz et
al. [100] is improved to solve the reparametrization problem that occurred,
when a whole trimming loop of a thin patch was projected to a part of a
trimming loop of another surface (see figure 5.1).

(a) trimming loops

(b) sewing interval with [100]

(c) sewing intervals with the new algorithm

Fig. 5.1: Sewing interval problem with very thin patches

Instead of projecting every vertex to the nearest edge, it is projected to
every edge of the other poly-line as long as the distance between the original
and the projected point is smaller than the sewing error (see figure 5.2) to
apply an interval growth algorithm.

The algorithm then takes any projection as start point for a sewing in-
terval and expands it on both poly-lines. A point is added at the end of an
interval if it has a projection to any of the two edges of its corresponding end
point on the other poly-line. If the interval cannot grow further it is stored
and all projections of points inside this interval to an edge belonging to the
interval on the other poly-line are removed. To speed up the calculation of

5.2. Creation of a consistent model 49

Fig. 5.2: Projection of the vertices between two poly-lines

the distance between every vertex of one poly-line to every edge of the other,
a 3D grid is used similar to [100]. The intervals are then combined to non-
overlapping intervals which sew n surfaces together. This is accomplished by
pairwise subdivision and recombination of the intervals (see figure 5.3).

Fig. 5.3: Subdivision and recombination of sewing intervals

The trimming poly-lines are then sewn together using the non-overlapping
intervals. Foldovers are prevented using an arclength reparameterization.
Note that the sewing of multiple surfaces along a single seam creates non-
manifold super-patches. Therefore, the resulting mesh has to be split into
manifold parts if this is necessary for further processing.

5.2 Creation of a consistent model

First the trimmed NURBS patch is subdivided based on a maximal approx-
imation error depending on the current level of detail using the kd-tree al-
gorithm from [9] (see chapter 4). The next step is the trimming with the
sewn poly-lines in parameter space and the triangulation of the tree cells.
Although the poly-lines are simplified in 3D space there is no simplification
in parameter space to prevent overlapping of trimming curves. To avoid T-
vertices, the 3D position at an intersection of a sewing poly-line with the
border of a tree cell is not interpolated between the start and end of the line
segment, but the nearest neighbor is chosen instead.

Finally the parameter vertices are converted to 3D space and their nor-
mals are calculated. In the inner region of the patch these values are directly
calculated using the B-Spline tensor product surface. In the same manner

50 5. Stitching of Multiple Tessellated Surfaces

information like texture coordinates or the curvature and its derivatives can
be exactly calculated, which would enhance methods similar to [178]. Along
the trimming curves the 3D coordinates are taken directly from the simplified
poly-line. To achieve continuous normals, derivatives or texture coordinates
between two patches every boundary vertex stores its parameter coordinates
in adjacent patches.

5.3 Results

The algorithm was tested with several trimmed NURBS models on a 1.8
GHz Pentium 4 with 512 MByte memory. Table 5.1 gives an overview of the
computation results of three industrial models. The first model consists of
two wheel rims from a car, whereas the second model consists of the half car
body, and the third model is the assembled complete car including lights,
wheels and plastic parts. All models were sewn with an approximation error
of 0.2 mm resulting in a maximum reasonable LOD of 0.02 mm.

wheel rims car body complete car
NURBS patches 302 1,620 8,036
Bézier patches 3,702 1,753 17,736
triangles 380,379 637,370 3,618,822
vertices 251,128 462,784 2.514.315
preprocessing 43 sec 136 sec 436 sec
bound. edges 22,879 55,986 278,170
memory 8.1 MB 20.8 MB 103.1 MB

Tab. 5.1: Overview of computation results on a 1.8 GHz Pentium 4 with 512 MByte
memory.

The algorithm allocates between 33.8 and 47.1 Bytes per vertex at max-
imum LOD for the tested models. This memory requirement consists of ap-
prox. 320 Bytes per boundary edge, approx. 2200 Bytes per trimmed NURBS
patch (control points and knot vectors), 12 Bytes per triangle and 24 Bytes
per vertex.

6. GPU BASED NURBS RENDERING

Although tessellation algorithms running on the CPU can be used to generate
levels-of-detail for rendering, the number of dynamic surfaces is very limited
due to the high tessellation time. On the other hand, all previous approaches
to integrate the tessellation as part of the rendering pipeline and implement
it either in a separate unit (e.g. [1]) or on recent GPUs have failed due to the
arbitrary complexity of the trimming loops and the need for explicit triangu-
lation. The novel approach to solve this trimming problem is a GPU-based
algorithm that allows to represent the trimming region by an appropriate
black and white texture of sufficient resolution. For each texel the color de-
termines if it is inside or outside the trimmed region. Therefore, a one-bit
masking texture can be used for this purpose. While trimming by the use of
textures is a known technique, the challenge is to find a parallelizable algo-
rithm for the generation of this binary trim-texture that can be implemented
on the GPU and such an algorithm is not available up to date. Having such a
parallelizable algorithm, the following two questions must still be answered:
first, how to choose the resolution of the trim-texture to guarantee a pre-
scribed error (section 6.2.3) and second, how to choose the sampling rates of
the trimming curves and surfaces (section 6.2.1 and 6.2.2 respectively).

The overall workflow is shown in figure 6.1. First, the trimming curves are
sampled with sufficient accuracy and evaluated on the GPU (1). Then the
resulting polygons are rendered into a texture of appropriate size using the p-
buffer extension (2). In the second rendering pass, the patch is sampled using
a regular grid of sufficient resolution. The resolution is chosen in a way that a
given screen space error is guaranteed. Since generating an appropriate grid
on the CPU for each patch is contradictionary to a GPU-based approach,
predefined grids of different resolutions are stored on the graphics card in
advance. At runtime only the grid index is calculated on the CPU and then
sent to the GPU. For rendering of the patch, it is evaluated at all grid vertices
on the GPU (5). For the trimming, we simply bind the trim-texture and all
pixels outside the trimming region are removed in the fragment stage by a
lookup into this trim-texture (6).

When developing an algorithm for the GPU numerous restrictions have to
be taken into account. Due to the highly parallel architecture global hierar-

52 6. GPU Based NURBS Rendering

→

NURBS,
T-Spline

trimming
curves

trim-texture
generation

bi-cubic
approximation

culling &
LOD selection

bi-cubic
hierarchy

evaluation trimming

sampling
grid

CPU GPUgraphics bus 1st pass

2nd pass

evaluation

vertex shader fragment shader

3

1 2

4 5 6

1

2
3

1 2

3

0t =

1t =

3t =

4t =

1t∆ = 2t∆ =

1t∆ =

1
3

s =

3
4

s =

Fig. 6.1: Main workflow of the GPU based NURBS rendering.

chies or irregular data structures (e.g. for stitching) cannot be used. Instead,
each surface needs to be treated individually. As data dependent loops are
only supported by very recent GPUs, a conversion from NURBS or T-Spline
to piecewise rational Bézier representation is necessary, since the current
knot spans needed to calculate the sample points differ. Furthermore, for
cards not having texture access in the vertex shader, the amount of input
data for a vertex program is limited to 16 vertex attributes and 8 program
matrices and thus only low degree Bézier patches can be evaluated. Since we
want this algorithm to work with any graphics card supporting at least ver-
tex shader 1.0, the described algorithms is restricted to this extension that
only supports 12 temporary registers and thus limit the maximum degree
to bi-cubic. Thus, the overall algorithm first approximates each NURBS or
T-Spline surface and its trimming curves with a coarse hierarchy of rational
bi-cubic Bézier patches, or cubic rational Bézier curves respectively, on the
CPU (3). During rendering this hierarchy is traversed and patches with suf-
ficient accuracy are selected to guarantee a given screen space error (4). If
the traversal reaches a leaf node, additional bi-cubic patches are generated.
Then the control points of each patch are sent to the GPU before selecting
a grid of appropriate resolution for evaluation.

6.1 Trimming on the GPU

After converting the approximating cubic trimming curves into a suitable
polygonal representation (see section 6.1.1) the trim-texture is generated
from these polygons with holes, by an algorithm similar to the one used

6.1. Trimming on the GPU 53

for the area calculation of polygons. The main idea is, that when spanning
a triangle fan from the first vertex of each trimming loop, a point inside the
trimming region will be covered an odd number of times by the triangles
of these fans, while a point outside the trimming region will be covered by
an even number of times as shown in figure 6.2. Instead of counting the
coverages, it is possible to simply consider the lowest bit and toggle between
black and white. A major advantage of this approach is that taking care of
the orientation and nesting of trimming loops is not necessary and thus error
prone special case handling is avoided.

1
1 1 2

2
2

3 2

→

1
1 1 2

2
2

3 2

Fig. 6.2: Left: Concave polygon with hole. Right: Texel coverage (green regions are
inside and red outside).

6.1.1 Trimming Curve Conversion

The generation of the trim-texture is illustrated in figure 6.3. For each trim-
ming loop a triangle fan is generated. The vertices Ck(ti) at the parameter
values ti of this triangle fan are calculated using the control points of the
corresponding curve segment Ck. This is done by initializing the vertex at-
tributes with the control points Pj and then sending the sampling parameter
values t1, ..., tn as 1d vertices. These values are used by a vertex program
which takes the control points as constants and evaluates the correspond-
ing curve at the parameter values ti. This way the vertices of the triangle
fan are generated curve by curve and the resulting triangles are rasterized.
The toggling of the pixels is performed in the blending stage of the render-
ing pipeline. It is important to note, that this way the entire trim-texture
generation is performed in a single rendering pass.

Similarly to the bi-cubic approximation of the surfaces we approximate
the trimming curves with rational cubic Bézier curves. For evaluation the
deCasteljau algorithm is used since it only requires 12 assembly operations
while the direct evaluation needs 13. Figure 6.4 shows the vertex shader – in
the OpenGL shader language – used to evaluate the rational cubic curves on
the GPU.

54 6. GPU Based NURBS Rendering

 1 1 2 4, ,P P= 1 2,P

1 3,P1 4 2 1, ,P P=2 2,P

2 3,P

1C

2C

()1 1C t ()1 2C t
()1 3C t
()1 4C t

Fig. 6.3: Trim-texture generation.

uniform vec4 param scale, param offset;

vec4 evaluate curve()

{
vec4 temp1, temp2, temp3;

temp1 = mix(gl MultiTexCoord0,gl MultiTexCoord1,gl Vertex.x);

temp2 = mix(gl MultiTexCoord1,gl MultiTexCoord2,gl Vertex.x);

temp3 = mix(gl MultiTexCoord2,gl MultiTexCoord3,gl Vertex.x);

temp1 = mix(temp1,temp2,gl Vertex.x);

temp2 = mix(temp2,temp3,gl Vertex.x);

temp1 = mix(temp1,temp2,gl Vertex.x);

temp1 /= temp1.w;

temp1 = temp1 * param scale + param offset;

temp1 = temp1 * vec4(2,2,0,0) + vec4(-1,-1,1,1);

return temp1;

}

Fig. 6.4: Curve evaluation GL shading language function.

6.1.2 Surface Evaluation

In principle previous adaptive GPU based tessellation algorithms developed
for subdivision surfaces could be adopted to tessellate the rational bi-cubic
Bézier patches. However, these algorithms have the already mentioned draw-
back that for each patch a p-buffer switch is required as the tessellation is
performed in a fragment shader which makes them useless in practical ap-
plications. This switch can only be removed if the connectivity is already
defined before rendering, since then only the evaluation on the GPU is re-
quired which can already be performed in the vertex shader. Therefore, pre-
defined grids of different resolutions are stored on the graphics card. In order
to span a wide spectrum of grid resolutions we start with different types
of simple base grids that are subdivided in either of the two parameter di-
rections as required, yielding four hierarchies up to a maximum resolution
depending on the maximum screen resolution. To achieve a target resolution
of e.g. 17 × 350 we would use the 3 × 3 base grid and subdivide it three

6.1. Trimming on the GPU 55

times in x-direction and seven times in y-direction leading to a resolution of
(3 · 23)× (3 · 27) = 24× 384.

From the many different algorithms for evaluating Bézier patches, the one
that can be implemented most efficiently on current GPUs has to be cho-
sen. First of all, the power basis form is not reasonable since its numerical
instability is even more severe on low accuracy GPUs. This leaves the choice
between the deCasteljau algorithm and direct evaluation. For rendering, the
vertex normal required for shading needs to be calculated in addition to the
vertex position. The deCasteljau algorithm needs a total of 74 assembly oper-
ations, while the direct evaluation only requires 61 operations. Additionally
direct evaluation only requires 12 temporary registers while the deCasteljau
algorithm needs 17. To reduce the number of graphics driver calls the 16
control points of a bi-cubic patch in four 4× 4 program matrices. The code
of the surface evaluation vertex shader is shown in figure 6.5.

6.1.3 Rendering

After the trim-texture is constructed, it is bound and the trimming is per-
formed in the fragment shader. When the patch is rendered, simply all frag-
ments are killed for which the intensity of the trim-texture is lower than a
threshold value. If fragment shaders are not supported, the trim-texture is
used as alpha texture with an alpha test. Although using a p-buffer in com-
bination with the render target extension for the trim-texture is the fastest
possibility, the render target has to be changed – a so called p-buffer switch
occurs – twice for each patch. Since this requires a complete state reload and
is therefore a very expensive operation, reducing the number of such render
target changes as much as possible is necessary.

6.1.4 Multiple Trimmed Patches

In order to reduce the number of p-buffer switches a trim-texture atlas is gen-
erated for multiple patches, which contains all trim-textures of these patches.
When several trimmed patches are rendered at once, first the required sizes
of all stencil textures of the corresponding patches are calculated and sorted
by their height. Then the rectangular trim-textures are placed beside each
other at the bottom line of the atlas. When the next texture would exceed
the maximum texture width, a new row is started. Although this algorithm
is very simple it is sufficiently efficient for the rectangular textures used here.
After the texture atlas is filled (i.e. adding the next trim-texture would ex-
ceed the maximum texture height) or all trim-textures have been added, the
trim-textures are rendered into the atlas. For each patch only the viewport

56 6. GPU Based NURBS Rendering

uniform vec4 min param, delta param;

uniform mat4 control points1, control points2, control points3, control points4;

varying vec2 parameter;

struct PosNorm

{
vec4 pos;

vec4 norm;

};

PosNorm evaluate surface()

{
PosNorm pn;

vec4 weight d1, weight d2, weight d3;

vec4 weight1, weight2, weight3, weight4;

vec4 temp1, temp2, temp3;

temp1 = vec4(1,1,0,0) - gl Vertex;

weight d1 = temp1 * temp1;

weight d2 = gl Vertex * temp1;

weight d3 = gl Vertex * gl Vertex;

weight1 = weight d1 * temp1;

weight2 = weight d2 * temp1;

weight3 = weight d3 * temp1;

weight4 = weight d3 * gl Vertex;

weight d2 *= vec4(2,2,0,0);

weight2 *= vec4(3,3,0,0);

weight3 *= vec4(3,3,0,0);

temp1 = weight1.x * control points1[0] + weight2.x * control points1[1]

+ weight3.x * control points1[2] + weight4.x * control points1[3];

temp2 = weight1.x * control points2[0] + weight2.x * control points2[1]

+ weight3.x * control points2[2] + weight4.x * control points2[3];

temp3 = weight1.x * control points3[0] + weight2.x * control points3[1]

+ weight3.x * control points3[2] + weight4.x * control points3[3];

pn.norm = weight1.x * control points4[0] + weight2.x * control points4[1]

+ weight3.x * control points4[2] + weight4.x * control points4[3];

pn.pos = weight1.y * temp1 + weight2.y * temp2

+ weight3.y * temp3 + weight4.y * pn.norm;

temp1 = weight d1.y * temp1 + weight d2.y * temp2 + weight d3.y * temp3;

temp3.w = 1.0 / temp1.w;

temp1 *= temp3.w;

temp2 = weight d1.y * temp2 + weight d2.y * temp3 + weight d3.y * pn.norm;

temp3.w = 1.0 / temp2.w;

temp2 *= temp3.w;

pn.norm = temp2 - temp1;

temp1 = weight1.y * control points1[0] + weight2.y * control points2[0]

+ weight3.y * control points3[0] + weight4.y * control points4[0];

temp2 = weight1.y * control points1[1] + weight2.y * control points2[1]

+ weight3.y * control points3[1] + weight4.y * control points4[1];

temp3 = weight1.y * control points1[2] + weight2.y * control points2[2]

+ weight3.y * control points3[2] + weight4.y * control points4[2];

weight1 = weight1.y * control points1[3];

weight1 += weight2.y * control points2[3];

weight1 += weight3.y * control points3[3] + weight4.y * control points4[3];

temp1 = weight d1.x * temp1 + weight d2.x * temp2 + weight d3.x * temp3;

temp3.w = 1.0 / temp1.w;

temp1 *= temp3.w;

temp2 = weight d1.x * temp2 + weight d2.x * temp3 + weight d3.x * weight1;

temp3.w = 1.0 / temp2.w;

temp2 *= temp3.w;

temp1 = temp2 - temp1;

pn.norm.xyz = normalize(cross(vec3(temp1), vec3(pn.norm)));

temp1.w = 1.0 / pn.pos.w;

pn.pos *= temp1.w;

parameter = vec2(gl Vertex * delta param + min param);

return pn;

}

Fig. 6.5: Surface evaluation GL shading language function.

6.2. Sampling 57

needs to be set according to the position and resolution of its trim-texture.
When all trim-textures are generated, the algorithm switches back to the
screen buffer and renders all patches for which the trimming is contained in
the current texture atlas. Note that untrimmed patches can immediately be
rendered before generating the first trimming atlas. If the texture atlas was
filled before all trim-textures could be added, the algorithm continues with
the next texture atlas.

In industrial models trimming is often used to cut out small parts of large
surfaces. This means that after the conversion of the NURBS or T-Spline sur-
face to rational Bézier patches, some of these patches lie completely outside
the trimming region and only a small region of the trim-texture is used at all.
Therefore, the bounding box of the trimming region is calculated and knot
insertion is applied at the minimum and maximum u and v parameter values.
Finally, all Bézier patches outside this region are removed. If the trimming is
only used to cut out a rectangular region of the surface domain, no trimming
is necessary at all after removing the unused domain regions. This is the
case, if only a single loop exists and each trimming curve lies completely on
one side of the domain boundary. Then the patch can be rendered without
a trim-texture.

6.2 Sampling

As we approximate all curves with piecewise rational cubic curves and all
surfaces with rational bi-cubic patches, only this type of curves and surfaces
are discussed in this section, but a generalization to higher degree curves
and patches is possible. For the rendering of these cubic curves or bi-cubic
surfaces, the required sampling resolution to guarantee a specified error ε
needs to be calculated.

6.2.1 Trimming Curves

For a parameterized curve the algorithm uses the following theorem from
Filip et al. [61] which gives an upper bound for the distance between a func-
tion f(t) over the interval [a, b] (which is always [0, 1] for Bézier curves) and
its linear approximation l(t):

sup
a≤t≤b

‖f(t)− l(t)‖ ≤ 1

8
(b− a)2 sup

a≤t≤b
‖f ′′(t)‖

58 6. GPU Based NURBS Rendering

Using this equation, the required sampling density dmax can be calculated
with:

dmax =

√
8ε

supa≤t≤b ‖f ′′(t)‖

The number of required samples n is then:

n =

⌈
(b− a)

dmax

⌉

For the non-rational case it is simple to calculate a sharp upper bound
for the second derivative of a cubic Bézier curve. For this the Bézier curve
C(t) is written with substituted Bernstein polynomials:

C(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

With this representation it is clearly visible, that the second derivative
is:

C ′′(t) = 6 ((1− t)(P0 − 2P1 + P2) + t(P1 − 2P2 + P3))

Since this is a linear function, the maximum absolute value has to be
either at the start or end of the line segment. Therefore, the maximum is:

sup
0≤t≤1

‖C ′′(t)‖ = 6 max(‖P0 − 2P1 + P2‖, ‖P1 − 2P2 + P3‖)

A rational bi-cubic Bézier curve projected to the hyperplane w = 1 can
be written as

C(t) =
P (t)

w(t)
,

where P (t) and w(t) are polynomial functions of degree three. The second
derivative calculates to:

C ′′(t) =
P ′′(t)− w′(t)C ′(t)− w′′(t)C(t)

w(t)
,

with

C ′(t) =
P ′(t)− w′(t)C(t)

w(t)

Substituting C ′(t) and extending with w(t)2 leads to the following equa-
tion consisting only of polynomial functions:

C ′′(t) =
w(t)2P ′′(t)− w(t)w′(t)P ′(t) + (w′(t)2 − w(t)w′′(t))P (t)

w(t)3

6.2. Sampling 59

This can also be written as a rational Bézier curve with a degree
seven nominator P̌ (t) =

∑7
i=0 P̌iB

7
i (t) and a degree nine denominator

w̌(t) =
∑9

i=0 w̌iB
9
i (t). Since all wi are positive by construction, all w̌i are

also positive. Therefore, taking the absolute value of the second derivative
yields:

‖C ′′(t)‖ =
‖P̌ (t)‖
w̌(t)

An upper bound can then be found by using the convex hull properties
of both, the nominator and the denominator. This yields:

sup
0≤t≤1

‖C ′′(t)‖ ≤ max(‖P̌0‖, . . . , ‖P̌7‖)
min(w̌0, . . . , w̌9)

Note, that checking for rational/non-rational curves is only necessary for
performance reasons, since the result is identical when all wi are one.

6.2.2 Surfaces

To generate less rendering primitives (e.g. for cylindrical surfaces), the sam-
pling resolution in u- and v-direction is calculated independently. Accord-
ing to Filip et al. [61], the error when approximating a C2-continuous sur-
face with two triangles spanning the bilinear parameter space rectangle
D = [(u0, v0), (u1, v1)] is bounded by

sup
p∈D
‖f(p)− l(p)‖ ≤ 1

8
(∆u2Mu + 2∆u∆vMuv + ∆v2Mv),

with

Mu = sup
p∈D

∥∥∥∥∂2S(p)

∂u2

∥∥∥∥ , Muv = sup
p∈D

∥∥∥∥∂2S(p)

∂u∂v

∥∥∥∥ , and Mv = sup
p∈D

∥∥∥∥∂2S(p)

∂v2

∥∥∥∥
Now we can separate the sampling densities by exploiting the fact that
ab ≤ 1

2
(a2 + b2) and thus the approximation error is bound by

sup
p∈D
‖f(p)− l(p)‖ ≤ 1

8

(
∆u2(Mu + Muv) + ∆v2(Mv + Muv)

)
,

which is a simple addition the two approximation errors in u- and v-
directions. Thus ε is an upper bound for the approximation error if the error
in both directions is not greater than ε

2
.

When a patch has no trimming and the parameter value is not used for
texturing, it is not necessary to preserve its parametrization. In this case

60 6. GPU Based NURBS Rendering

an upper bound for the distance of a curve to an evenly parameterized line
segment is not required. Instead, any re-parametrization of this degree ele-
vated line segment can be used. This means that the middle control points
can freely move between the two end points of the line segment. Therefore,
the closest point on the line segment is calculated for each control point of
the curve. These points then define a re-parameterized line segment and the
difference vectors to the control points define the difference curve as shown
in figure 6.6.

→

1
1 1 2

2
2

3 2

Fig. 6.6: Construction of the difference curve.

Using the maximum second derivative of this difference curve the required
sampling resolution for a purely geometric approximation can be calculated
which is lower.

6.2.3 Trim-Texture

For trimmed NURBS or T-Spline surfaces the required trim-texture resolu-
tion has to be calculated additionally to the grid resolution. To guarantee a
desired error of ε along the trimming curves, both the surface and the trim-
ming curves need to be approximated with an accuracy of ε

2
. Therefore, the

distance between two neighboring pixels of the texture has to be at most ε
on the evaluated surface. Thus the texture resolution can be calculated from
the maximum absolute value of the first surface derivatives:

resu =

⌈
(u1 − u0)

ε
sup

p∈[(0,0),(1,1)]

∥∥∥∥∂S(p)

∂u

∥∥∥∥
⌉

and analogously for the v-resolution, where [(u0, v0), (u1, v1)] is the domain
interval of the current bi-cubic Bézier patch.

For non-rational curves a simple upper bound of the first derivative

C ′(t) = 3
(
(1− t)2(P1 − P0) + 2t(1− t)(P2 − P1) + t2(P3 − P2)

)
can again be found by using the convex hull property on the derivative curve
which yields:

sup
0≤t≤1

‖C ′(t)‖ ≤ 3 max(‖P1 − P0‖, ‖P2 − P1‖, ‖P3 − P2‖)

6.3. Bi-cubic Approximation 61

For rational surfaces the required curve derivatives can be written as
rational polynomial

C ′(t) =
w(t)P ′(t)− w′(t)P (t)

w(t)2

and similarly as for the upper bound for the absolute value of the second
derivative:

sup
0≤t≤1

‖C ′(t)‖ ≤ max(‖P̌0‖, . . . , ‖P̌5‖)
min(w̌0, . . . , w̌6)

A problem occurs, when the viewer moves very close to a surface. In this
case the patch size becomes much larger than the screen and therefore, the
required trim-texture resolution would exceed the maximum possible texture
resolution by orders of magnitude. To overcome this limitation, the traversal
of the bi-cubic patch hierarchy is continued until the trim-texture of each
patch is small enough. For this it is only necessary to modify the bi-cubic
approximation error. Note, that for trimmed surfaces only a trim-texture for
the domain region covered by visible patches needs to be generated. This
optimization does not only increase the rendering performance but also the
accuracy of trimming.

6.3 Bi-cubic Approximation

In order to approximate a given NURBS or T-Spline surface with rational bi-
cubic Bézier patches the surface is first converted into its piecewise rational
Bézier representation. For NURBS surfaces the Oslo algorithm [35] is used
and for the recently developed T-Spline surfaces the knot insertion algorithm
of Sederberg et al. [155] is applied. Afterwards each of these initial Bézier
patches which can be of arbitrary degree is approximated with a bi-cubic
patch as described in section 6.3.1. Since the error of this approximation may
exceed a desired error bound, a binary hierarchy of bi-cubic patches is built
during rendering by recursive subdivision of the initial Bézier patches (blue
subtrees in figure 6.7). To reduce the number of rendered bi-cubic patches
these separate hierarchies are also combined into a single binary tree (shown
in green in figure 6.7) using the median cut algorithm [90]. After the tree is
built, we hierarchically simplify the bi-cubic patches – approximate the two
child patches with a single bi-cubic patch – starting from the level of the
initial Bézier patches. This simplification process is performed once when
the surface is rendered for the first time. A detailed description is given in
section 6.3.2.

62 6. GPU Based NURBS Rendering

→

NURBS,
T-Spline

trimming
curves

trim-texture
generation

bi-cubic
approximation

culling &
LOD selection

bi-cubic
hierarchy

evaluation trimming

sampling
grid

CPU GPU graphics bus 1st pass

2nd pass

evaluation

vertex shader fragment shader

3

1 2

4 5 6

1

2
3

1 2

3

0t =

1t =

3t =

4t =

1t∆ = 2t∆ =

1t∆ =

1
3

s =

3
4

s =

Fig. 6.7: NURBS surface with its bi-cubic patch hierarchy.

6.3.1 Approximation of a Single Bézier Patch

To find a sensible bi-cubic approximation of a single rational Bézier patch
contained in a leaf node a novel constrained degree reduction is used. The ap-
proximation algorithm is derived completely from a generalized degree reduc-
tion. Therefore, it can simply be applied to rational curves by using the ho-
mogeneous representation of the control points Pi = [wixi wiyi wizi wi]T .

As Bézier surfaces are tensor product surfaces, degree reduction of the
surface in one direction is equal to degree reduction of all curves in this
direction. The degree reduction of a Bézier curve using the algorithm of
Forrest [64] preserves the continuity at the start and end point up to the
maximum possible degree. Therefore, using this algorithm, degree reduction
to three is equivalent to Hermite interpolation and preserves C1-continuity
between two adjacent Bézier patches which assures continuous shading. The
reduction can be written as:

P̃0 = P0

P̃1 = P0 +
n

3
(P1 − P0)

P̃2 = Pn +
n

3
(Pn−1 − Pn)

P̃3 = Pn

However, in the context of rendering, preserving G1-continuity would be
sufficient since only the direction of the tangent vector needs to be preserved.
This leads to the following definition of the new control points:

P̃0 = P0

P̃1 = P0 + λ0(P1 − P0)

P̃2 = Pn + λ1(Pn−1 − Pn)

P̃3 = Pn

6.3. Bi-cubic Approximation 63

The two free parameters λ0 and λ1 can now be used to minimize the
total approximation error. The distance between two Bézier curves C1(t) and
C2(t) of the same degree is bound by the maximum distance between their
corresponding control points. Therefore, the degree of the approximating
curve C̃(t) is elevated to that of the original curve C(t) to construct C̄(t)
and then minimize the control point distances:

n∑
i=0

‖Pi − P̄i‖2 → min

The degree elevation of the cubic curve constructs to the following control
points:

P̄i =
3∑

j=0

P̃j

(
n
j

) (
n− 3
i− j

)
(

2n− 3
i

) =
3∑

j=0

P̃jγi,j

To find the optimal values for λ0 and λ1 a linear equation system of the
following form needs to be set up: b0 c0

...
...

bm cm

(λ0

λ1

)
=

 a0
...

am

 ,

Therefore, the difference vectors between the control point Pi and that
of a degree elevated linear approximation are factorized into the base part
~ai which is independent of λ0 and λ1, the offset introduced by λ0 as ~bi, the
offset introduced by λ1 as ~ci:

~ai = Pi − P0(γi,0 + γi,1)− Pn(γi,2 + γi,3)

~bi = −(P1 − P0)γi,1

~ci = −(Pn−1 − Pn)γi,2,

Each of these is then written as 4(n− 1)-dimensional vector with

a = {~a1,x, . . . ,~an−1,w}
b = {~b1,x, . . . ,~bn−1,w}
c = {~c1,x, . . . ,~an−1,w},

and thus a minimization problem of a linear equation system is constructed:∥∥∥∥∥∥∥
 b0 c0

...
...

bm cm

(λ0

λ1

)
−

 a0
...

am

∥∥∥∥∥∥∥

2

→ min

64 6. GPU Based NURBS Rendering

Since this minimization should not be solved numerically for the reduction
of each curve, using e.g. a conjugate gradient method, the analytical solution
is calculated:

λ0 =
(
∑m

i=0 aibi) (
∑m

i=0 c2
i)− (

∑m
i=0 aici) (

∑m
i=0 bici)

(
∑m

i=0 b2
i) (
∑m

i=0 c2
i)− (

∑m
i=0 bici)

2

λ1 =
(
∑m

i=0 aici) (
∑m

i=0 b2
i)− (

∑m
i=0 aibi) (

∑m
i=0 bici)

(
∑m

i=0 b2
i) (
∑m

i=0 c2
i)− (

∑m
i=0 bici)

2

As the direction of the tangent vector flips when λ0 or λ1 becomes nega-
tive, a minimum value is used for each of them. In addition, when w1 < w0

or wn−1 < wn, a maximum value for λ0 and λ1 is given by w0

w0−w1
and wn

wn−wn−1

respectively, as only positive weights w̃1 and w̃2 should be produced.
After constructing the degree reduced curve an upper bound for the in-

troduced error needs to be calculated. Since the error after projection to the
hyperplane w = 1 is required, we need to calculate the difference curve

C̄(t) =

∑3
i=0 B3

i (t)w̃iP̃i∑n
i=0 Bn

i (t)w̃i

−
∑n

i=0 Bn
i (t)wiPi∑n

i=0 Bn
i (t)wi

=

∑n
i=0

∑3
j=0 Bn+3

i+j

(3
j)

(n
i)

wiw̃j

(
P̃j − Pi

)
∑n

i=0

∑3
j=0 Bn+3

i+j

(3
j)

(n
i)

wiw̃j

.

Then the convex hull property of the difference curves euclidian control
points P̄i gives an upper bound for the approximation error:

εc =
n+3
max
i=0

∥∥∥∥∥∥∥∥
∑3

j=0

(3
j)

(n
i−j)

wi−jw̃j

(
P̃j − Pi−j

)
∑3

j=0

(3
j)

(n
i−j)

wi−jw̃j

∥∥∥∥∥∥∥∥ .

As the approximation error εc is not known in advance, additional subdi-
visions are performed to extend the hierarchy until the approximation error
is low enough for the current screen space error.

6.3.2 Simplification of Two Bi-cubic Patches

To fill the upper part of the bi-cubic Bézier hierarchy described above pair-
wise approximation of two bi-cubic Bézier patches by a single bi-cubic patch
is performed. Similarly to the approximation of a single Bézier patch this
simplification is derived from subdivision and thus rational patches are ac-
counted for by using the homogeneous control points. Since the simplification

6.4. Rendering 65

of two Bézier patches into a single one can be viewed as the inverse of subdivi-
sion λ0 and λ1 can be calculated by considering a subdivision of the simplified
patch at the parameter value s. As this subdivision has to preserve the knot
intervals of the two child patches the parameter s is given by

s =
∆t1

∆t1 + ∆t2
,

where ∆t1 and ∆t2 are the lengths of the knot intervals of the two child
patches in the partition direction (see figure 6.7). Now the same minimization
problem as for the approximation of a single rational Bézier patch can be set
up. The γi,j are then defined by the subdivision matrix of s instead of the
degree elevation matrix:

1 0 0 0
(1− s) s 0 0
(1− s)2 2s(1− s) s2 0
(1− s)3 3s(1− s)2 3s2(1− s) s3

0 (1− s)2 2s(1− s) s2

0 0 (1− s) s
0 0 0 1

Finally, an upper bound of the error introduced by simplification is calcu-

lated by subdividing the simplified patch at s and then exploiting the convex
hull property of the difference curves.

6.4 Rendering

While the evaluation and rendering of the rational bi-cubic patches are per-
formed completely on the GPU, the selection of sufficiently accurate ratio-
nal bi-cubic Bézier patches is done on the CPU by traversing the hierarchy
associated with the surface starting at the root node. When a patch with
sufficient accuracy is found, it is rendered and the rest of the subtree is
skipped, similar to standard HLOD algorithms. During the traversal hierar-
chical view-frustum culling based on the bounding box of the current Bézier
patch is also performed. If the patch is visible, the required object space error
ε to guarantee a screen space error of εimg is calculated using the distance of
the viewer to this bounding box. This object space error is then split equally
between the bi-cubic approximation error and the sampling error (see sec-
tions 6.2 and 6.3). To increase the performance for very small surfaces, we
also check if ε is larger than the bounding box diagonal of the surface. In this

66 6. GPU Based NURBS Rendering

case a simple (untrimmed) quad is sent to the GPU instead of the possibly
trimmed surface.

The cracks between the Bézier patches introduced by independent
bi-cubic approximation and tessellation are filled using fat borders (see
chaper 4). For trimmed patches the trimming curves would need to be re-
stricted to the currently rendered bi-cubic patches which would increase the
CPU computation time significantly. Furthermore, the vertex shader would
need more than the 12 temporary registers available in the vertex shader 1.0
extension to calculate the position, normal and tangent vectors for a point
on the trimming curve. Therefore, a slightly different approach which fills
the cracks already when generating the trim-texture is used. After generating
the trim-texture with the algorithm described above, an additional line strip
is rendered along each trimming loop. The width of this line strip is always
one pixel since the accuracy of the trimming curves in texture space is 0.5
pixel.

6.5 OpenGL API Integration

The proposed API shown in figure 6.8 that is even simpler to use than the
original OpenGL NURBS rendering API.

int gluGenNurbsObjectsEXT(int count);
void gluControlPoints4fvEXT(int object, int usize, int vsize, float *cp);
void gluKnotVectorUfvEXT(int object, int size, float *knots);
void gluKnotVectorVfvEXT(int object, int size, float *knots);
int gluAddTrimmingLoopEXT(int object);
void gluAddTrimmingCurve3fvEXT(int object, int loop, int size, float *cp,

int knotsize, float *knots);
void gluDrawNurbsObjectEXT(int object, float error);
void gluDrawNurbsObjectsEXT(int first, int count, float error);
void gluDrawNurbsObjectsivEXT(int *objects, int count, float error);
void gluNurbsSpecialProgram(int specialprogram);
const char* gluGetNurbsEvaluateShader();
const char* gluGetNurbsTrimmingShader();

Fig. 6.8: Proposed API calls (for trimmed NURBS only).

One of the major advantages of this algorithm is the seamless integra-
tion into the rendering pipeline. When using the fixed function pipeline, the
integration is simple since the vertex and fragment shader can emulate it af-
ter tessellation and trimming. To provide a simple mechanism for combining
trimmed NURBS and T-Spline rendering with custom shaders using the GL
shading language, the programmer gets access to the Bézier evaluation vertex

6.6. Results 67

program function and the trimming fragment program function. Then any
shader can be used for trimmed NURBS and T-Spline rendering by simply
calling these functions at the beginning of the vertex and fragment program
and binding the new shader for the proposed extension. The code for such a
vertex and fragment program is shown in figure 6.9. Considering this simple
mechanism, an integration into the graphics driver is also possible and has
the further advantage that custom evaluation hardware can be used when
available.

void vertex shader()
{

PosNorm pn = evaluate surface();
custom vertex shader(pn.pos,pn.norm);

}

void fragment shader()
{

perform trimming();
custom fragment shader();

}

Fig. 6.9: Combination of trimmed NURBS rendering with a custom GL shading
language shader.

As examples the GPU based trimmed NURBS and T-Spline rendering
algorithm is combined with high dynamic range environment mapping [45]
and with light space perspective shadow maps [181].

6.6 Results

To evaluate the GPU-based algorithm all benchmarks were performed on
an Athlon 3000+ with 1.5 GByte memory and a GeForce 5900 Ultra at a
resolution of 1280× 1024 with 0.5 pixel screen space error.

First, the tessellation performance of the GPU-based method is compared
to the current OpenGL API using a single bi-cubic trimmed and untrimmed
patch (see figure 6.10). To investigate the tessellation performance these
patches are rendered at different screen-sizes where a larger screen-size im-
plies a higher sampling rate. For a pixel sized patch all algorithms simply
render a quad resulting in the same performance of about 0.01ms mainly
due to the pipeline flush. As shown by these results a performance gain of a
factor of about 1000 for bi-cubic patches is acieved across all other sampling

68 6. GPU Based NURBS Rendering

resolutions. The additional 1ms required by the GPU-based algorithm for
the rendering of trimmed patches is mainly due to the p-buffer switch.

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

m
s

Mpixel

OpenGL trimmed
OpenGL untrimmed

GPU-based trimmed
GPU-based untrimmed

Fig. 6.10: Tessellation performance in dependance of screen size for OpenGL and
the GPU-based algorithm. Note the logaritmic scale.

As second example the performance of the bi-cubic approximation for
surfaces of different degrees is evaluated. In figure 6.11 the performance for
a single animated trimmed NURBS surface with 100 control points and de-
grees of 3 × 3, 5 × 5, and 7 × 7 respectively is shown. The reason that the

6.1 7 × 7 degree surface renders faster than the one with 5 × 5 degree is that
it consists of 9 Bézier patches while the 5 × 5 degree surface consists of 25
Bézier patches. The additional time that the higher degree surfaces need
compared to the bi-cubic one is the time required for the bi-cubic approx-
imation, since they have the same screen size and need approximately the
same number of quads. The time required for the approximation scales with
O(4
√

n) (which is proportional to the number of necessary bi-cubic patches)
due to the excellent convergence of this bi-cubic approximation. Note, that if
a second rendering pass is required e.g. for the light space perspective shadow
map algorithm [181] (see figure 6.12) the approximation time is required only
once.

Finally the performance when rendering real world models, e.g. the Mini,
Golf, and C-Class models shown in figure 6.12 is evaluated.

6.2 If such models are rendered surface-by-surface the frame rate becomes too
low (∼ 2.6 fps for the Mini and ∼ 0.6 fps for the Golf). The reason for this
is the high number of p-buffer switches which need most of the average ren-
dering time as shown in figure 6.13). Rendering all non-transparent surfaces
of the same material with a single API call allows the algorithm to create
a single trim-texture atlas for several surfaces. This drastically reduces the
number of p-buffer switches and thus the rendering time.

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/06-1.avi
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/06-2.avi

6.6. Results 69

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

m
s

Mpixel

7 x 7
5 x 5
3 x 3

Fig. 6.11: Rendering performance of a single trimmed NURBS surface with 100
control points and of different degrees.

Fig. 6.12: Rendering of NURBS models: animated trimmed NURBS surface (de-
gree 5 × 5, 100 control points) with environment mapping; Mini model
consisting of 629 trimmed surfaceswith shadow maps; Golf model con-
sisting of 8, 138 trimmed surfaces; C-Class model consisting of 67, 571
trimmed surfaces.

70 6. GPU Based NURBS Rendering

 248 ms

 112 ms
 20 ms

 12 ms
 112 ms
 20 ms

 1470 ms

 164 ms
 22 ms

 15 ms
 164 ms
 22 ms

0 ms

500 ms

1000 ms

1500 ms

2000 ms

Mini: separate Mini: atlases Golf: separate Golf: atlases

error calc. + culling
rendering
p-buffer switches

Fig. 6.13: Average frame time with a trim-texture for each surface (left) and the
trim-texture atlas (right).

A comparison to existing methods is hardly useful, since they are either
too slow, cannot guarantee a certain screen space error and can easily produce
a high error especially when zooming in (see figure 6.14), or are limited to a
certain maximum accuracy in object space due to pre-computations.

Fig. 6.14: 5 pixel screen space error when using latency hiding (left) vs. accurate
rendering with the GPU based algorithm (right).

Table 6.1 shows the results of rendering the different car models ranging
from 600 to 70,000 surfaces of which 20% to 50% are trimmed. With the GPU-
based algorithm even complex NURBS models can be rendered interactively.
The frame rates for the Golf and the Mini model are similar although the
Golf has much more NURBS surfaces, because the bi-cubic representations of
both models contain approximately the same number of patches. The reason
for the relatively high performance of the C-Class model is the use of the
bi-cubic hierarchy described in Section 6.3 and thus only about 100,000 bi-
cubic patches are actually rendered. Note, that the frame rates shown in

6.6. Results 71

Mini Golf C-Class
NURBS surfaces 629 8,138 67,571

non-trivially trimmed 203 1,486 35,230
Bézier patches 25,648 17,936 396,535
GPU based 7 fps 6 fps 1 fps
OpenGL 0.04 fps 0.03 fps —

Tab. 6.1: Details of the static models and the performance of the different render-
ing algorithms.

table 6.1 are minimum frame rates and increase when zooming in due to the
view-frustum culling.

72 6. GPU Based NURBS Rendering

Part III

APPEARANCE PRESERVATION

75

In the field of appearance preserving level of detail, two main approaches
exist. The first approach is build on the fact that missing normal informa-
tion of simplified meshes needed for correct shading can be stored easily in
normal maps [37], which can be shaded efficiently in software or on pro-
grammable graphics hardware [168]. Recently, Cole applied normal maps to
view-dependent level of detail [41] and showed their efficiency. Using normal
maps dramatically reduces popping artifacts due to incorrect shading, but
generating a normal map texture with fixed size for every patch like [37]
needs too much memory. Using a normal texture of 128× 128 pixel for each
of the approx. 8, 000 patches of the Volkswagen Golf model would require
375MB of texture memory. Therefore, it is not possible to load all normal
maps into the texture memory of the graphics hardware and thus it has to
be send over the bus for every frame.

A few approaches to compress textures on polygonal models without loss
of quality have been proposed in the recent years. Sloan et al. [164] generate
an importance map for a given 2D parameterization and warp the square
texture to evenly distribute this scalar field. Another approach approximat-
ing a 2D image [170] uses a dynamic simulation, where grid edge weights
are set according to local image content. This method was extended to 3D
surfaces Balmelli et al. [11] and by Sander et al. [150] using a pre integrated
signal stretch metric. They have proven to dramatically reduce texture size
compared to a non specialized parameterization without loss of quality.

However, while the normal map texture size despite compression still re-
mains a problem in the context of rendering complex polygon models, there is
a further drawback: since for polygon models efficient LODs have to be gen-
erated using topology modifying simplification, consistent parameterizations
for the normal map textures of subsequent LODs are hard to generate.

The second, more general approach is to use appearance preserving level
of detail. Garland et al. modified their error quadrics [69] to preserve color,
texture coordinates and normals [70]. However, guaranteeing a certain error
of the geometry or the appearance during rendering is not possible using
these modified error quadrics. As a different error measure for appearance
preserving simplification, the curvature of the mesh can be used as in [122],
but similar to the modified error quadrics no absolute error can be guaran-
teed for this method. Another approach used for view-dependent refinement
of multi-resolution meshes was introduced by Klein et al. [106] which is able
to control the shading error by guaranteeing that for each point on screen
the distance to the next correctly shaded pixel is below a specified constant.
Unfortunately, this method cannot be used for static LODs, since the error
measure is view-point dependent and requires the exact position and orienta-
tion of the surface on the screen to be known. Furthermore, the derivatives are

76

calculated in screen-space which make it unapplicable to precomputed static
LODs. In the context of NURBS models a complete retessellation of almost
all surfaces would be necessary for each frame. Since all interactive NURBS
visualization systems rely on the fact that only a small portion of the surfaces
needs to be retessellated per frame, this error measure is not directly applica-
ble. A further specialization is perceptually driven simplification (e.g. [180]).
But again this method requires knowledge of all viewing parameters – even
for its basic features that produce results similar to appearance preserving
simplification – and additional movement information for velocity simplifica-
tion. Finally, peripheral simplification even requires tracking of the users eye
movements. Due to all these restrictions normal maps are used in practically
all existing applications since they are much simpler to handle.

Note, that the problem of preserving the appearance is not present in
point based rendering. However, while the quality of these methods is suf-
ficient, the performance of point based rendering covering the whole range
from very coarse up to the finest LOD is still too slow for gigantic models. To
overcome this problem, hybrid models combining point and polygon based
rendering have recently been introduced.

A hybrid point/polygon-based representation of objects was first used by
the POP rendering system [27], which uses polygons at the lowest level only
and a point hierarchy similar to QSplat [147] on higher levels. Simultaneously
a method for hybrid point polygon simplification based on edge collapse
operations was introduced by Cohen et al. [36]. In this approach points are
generated according to the error metric and the size of the triangle. This
algorithm however, allows a transition only from polygons to points and
not vice versa, and therefore, the transition point has a high impact on the
efficiency of the simplification. Another approach starting with a point cloud
representation of the model is PMR [48]. The point cloud is simplified using a
feature-based simplification algorithm and a triangulation of this point cloud
is generated for display at higher resolutions afterwards. During rendering
points or triangles are selected for display depending on their screen size. This
approach adjusts the point/polygon balance to achieve maximum rendering
performance, but due to the triangulation of the simplified points cloud, the
efficiency of the simplification algorithm is limited.

7. TEXTURING

Storing surface information in a texture requires a bijective mapping between
texture pixels and surface points. This mapping is called a texture atlas. The
generation of a texture atlas can be divided in three steps:

1. Segmentation: The model is decomposed into unconnected charts.

2. Parameterization: Each chart is flattened from E3 to E2.

3. Packing: The charts are placed in texture space.

Many algorithms for texture atlas generation from triangle meshes have been
proposed in the recent years, developing new methods for segmentation, para-
metrization and packing. But so far no special algorithms were proposed
that are suitable for trimmed NURBS models. Nevertheless, many ideas and
techniques of these previous algorithms are useful in the context of texturing
trimmed NURBS models.

Segmentation: The segmentation is the crucial part of all methods, since a
convenient placement of cuts can greatly reduce the distortion of angles
and area. A good choice for these cuts is along high curvature regions
of the model [159]. In early approaches [135, 109] the segmentation is
generated by the user, while Maillot et al. [128] group facets by their
normals to perform automatic segmentation. Several multiresolution
algorithms [114, 76] have been developed, which decompose the model
into charts representing the simplices of the base complex. Sander et
al. [151] use a region growing approach merging charts according to
compactness and planary criteria. Recently Lévy et al. [119] presented
a new segmentation algorithm to decompose the model into regions
homeomorphic to discs with a low deformation. To accomplish this,
edges of high curvature are detected and feature curves are grown from
these. Then the charts are generated with a greedy algorithm using the
distance to the feature edges. Another approach was made by Shef-
fer and Hart [160] by cutting the mesh at vertices of high distortion
and low visibility, after the genus of the mesh is reduced to zero by a

78 7. Texturing

genus reduction method. This approach is adopted in this work but the
visibility criterion is replaced by a feature based criterion.

Parameterization: The first parametrization algorithm was presented by
Maillot et al. [128] using a spring network analogy and minimizing its
energy with a conjugate gradient method. In the following years, most
algorithms used Discrete Harmonic Maps [50], that are approximations
of Continuous Harmonic Maps [51] and minimize a metric dispersion
criterion. As shown by Pinkall and Polthier [137] this criterion is linked
with an other one named conformality and both can be expressed in
terms of Dirichlet energy.

Using the theory on graph embedding, Tutte [171] introduced Barycen-
tric Maps guaranteeing the bijectivity of the parameterization. By using
specific weights Floater [62] improved the quality of the mapping, in
terms of area deformation and conformality. This method was extended
to take additional constraints into account by Lévy and Mallet [118].

So far the methods represented the deformation energy as an indirect
coupling between parameters and thus required boundary conditions,
i.e. the boundary needs to be fixed on a convex border in parameter
space. To overcome this problem non-linear methods like MIPS [95]
can be used. This however leads to time-consuming non-linear opti-
mizations that can get stuck local minima. It is also possible to use
circle packings [97] to approximate a conformal mapping, but building
these is quite expensive. Lévy et al. [119] introduced a fast method to
compute the least squares approximation of conformal maps. Addition-
ally Sheffer and Sturler [161] applied an overlay grid on a parameterized
surface to minimize the linear distortion.

Recently Desbrun et al. [47] presented an algorithm to generate in-
trinsic parameterizations from triangle meshes and showed that linear
combinations of two the base intrinsic parameterizations (conformal
and authalic) can be used to construct any intrinsic parameterization.

Packing: The problem of finding the optimal packing is known as the
bin packing problem and has been studied by several authors, like
Milenkovic [130], but since it is NP-complete all algorithms are very
expensive. Several heuristics have been developed to speed up this
process, e.g. for separate triangles [32] or by packing the bounding
boxes of charts [151]. An other method proposed by Lévy et al. [119]
is using horizon lines to pack charts more efficiently than using their
bounding boxes.

7.1. Texturing NURBS models 79

7.1 Texturing NURBS models

First of all, each NURBS patch is reparameterized independently from the
others as described in section 7.2. Second, based on the neighborhood graph
of the patches in the 3D model the stiff reparameterized 2D parameter do-
mains of the surface patches are connected by springs, where the weight of
each spring represents feature lines, in such a way that springs along these
feature lines have a lower weight. After a relaxation process, starting with
the longest spring, that was generated, one after the next is removed and
the position of the patches is recalculated. This process is described in sec-
tion 7.3. The reparameterization of the patches before sewing them together
is necessary, since patches should only be sewn at points where this intro-
duces a low distortion. If the patches are not parameterized correctly before
the sewing algorithm, these points cannot be identified. Finally, overlappings
in the generated sewing patterns are removed by an additional segmentation
step and the separate charts are packed into a texture atlas as described in
section 7.4.

7.2 Flattening of a NURBS patch

The overall algorithm for flattening the individual NURBS patches is as
follows. To apply the flattening procedure to a NURBS patch, first a piecewise
bilinear approximation of the patch is created using a regular grid. Then a
specialized spring network model is used to minimize area as well as angle
deformations. In section 7.2.1 the used distortion measure is described and
the specialized spring network is explained. Afterwards a method to find the
minimal energy of this network is proposed in section 7.2.2.

7.2.1 Distortion measure

To preserve the edge lengths when tessellating the NURBS patches, the
length of the springs are equal to the length of the edges in euclidean space.
Since the boundary as well as the inside of the patch should be optimized,
the following edge length energy function [161] E, which preserves the overall
edge length, is used:

E =
∑

ij∈Edges,Diagonals

(
‖ti − tj‖
‖pi − pj‖

− 1

)2

,

where pi is the position of the grid vertex i in euclidian space and ti its
texture coordinate.

80 7. Texturing

To preserve angles as well as area over the patch without introducing
another energy functional diagonal springs are added in every cell of the 2D
grid (see figure 7.1). This has the advantage that only one energy functional
needs to be minimized.

Fig. 7.1: Additional diagonal springs (red) to minimize area and angle deforma-
tions

Adding two diagonal springs instead of one has two main advantages:

• The parameterization becomes symmetric for mirrored patches and
models.

• Angle and area distortion as well as L2 and L∞ stretch [151] of the
tessellated model noticeably decreased in all experiments (for details
see table 7.1).

7.2.2 Finding the minimal energy

To find the minimum of the non-linear energy functional in combination with
the highly constrained spring network first a start parameterization that is
as close as possible to the global minimum needs to be set up. In order to
generate this parameterization the algorithm starts from the center of the
grid and incrementally calculates the 2D positions of the surrounding grid
points. These positions are calculated to preserve the edge length along the
u and v axis of the NURBS parameter domain (see figure 7.2).

It is possible to additionally preserve the edge length of the diagonal,
but the number of iterations needed to find the minimum is not reduced in
general.

After a start parameterization is found, the energy is minimized by itera-
tively finding the optimal placement for every vertex in respect with its 1-ring
similar to [47]. Note that although the energy functional does not explicitly
prevent foldovers they did not occur with the tested models.

7.2. Flattening of a NURBS patch 81

Fig. 7.2: Starting from the center of the grid a start parameterization is build
(added edges red).

Since the energy functional only depends on the ratio between the edge
lengths in the model and in the parameterization, moving one vertex in the
mesh only affects the directly attached springs (its 1-ring). If a vertex is
moved to minimize its local energy, the energy on the rest of the mesh does
not change. Thus reducing the energy of one vertex reduces the total energy
of the mesh. This means that the algorithm reduces the total energy in every
step and so always converges to a (eventually local) minimum.

7.2.3 Fitting the NurbsTextureSurface

After the mesh is parameterized the texture control points Tij are generated.
Since the NURBS cannot approximate the mesh exactly the least squares fit
is calculated by setting up the following linear equation system:

 B1,11 · · · B1,nm
...

. . .
...

Bl,11 · · · Bl,nm

 T11

...
Tnm

 =

 t1
...
tl

 ,

where tk is the texture coordinate of the grid vertex k and Bk,ij the basis
function values of the grid vertex and the control point Tij.

To solve the least squares approximation of this linear equation system
numerically stable a singular value decomposition is applied.

82 7. Texturing

7.3 Chart generation

In the next step the flattened NURBS patches are sewn together into charts.
This process corresponds to the segmentation in the mesh based approaches.
The algorithm has to determine which NURBS patches should be combined in
a chart and where a cut between patches must be introduced. To accomplish
this, the trimming curves are converted into poly-lines and sewn together in
3D space using the seam graph data structure described in chapter 5 first.
Note, that in some cases this leads to a non-manifold model. Nevertheless, the
connectivity guarantees that no T-vertices occur at sewn patch boundaries.

To reduce deformations on the model, a good placement for a cut is
through a region if high distortion. To identify these regions it is possible
to use a parameterization of the complete model and cut at high distortion
vertices that lie on patch boundaries (see e.g. [160]). In this method, instead of
generating a parameterization of the whole model, the patches are considered
to be stiff and springs are attached between boundary vertices which were
sewn together in the 3d model.

An additional criterion for the placement of a cut are features at the
boundary vertices of the model. A feature between NURBS patches can be
defined using the deviation between the normals of these patches. To take
the angle between normals into account, the following weight function that
reduces the strength of springs connecting feature vertices is used:

wij = 10
−→ni ·
−→nj (li + lj)‖ti − tj‖2

li =
∑

ik∈Edges

‖ti − tk‖

7.3.1 Finding an initial placement

To minimize the total energy of the springs the patches are first placed in
texture space. For this initial placement rotations of the patches are not
allowed. This means, that its energy Etrans is minimal if the barycenter of its
boundary vertices bp lies on the barycenter of their corresponding vertices in
adjacent patches bn. To be able to take features into account, the weight wij

for every pair i, j of sewn boundary vertices is used.

Etrans =
∑

ij∈Sewn∧i∈Patch

wij‖ti − tj‖2

∂Etrans

∂x
= 2

∑
ij∈Sewn∧i∈Patch

wij (tix − tjx)

7.3. Chart generation 83

= 2
∑

ij∈Sewn∧i∈Patch

wijtix − 2
∑

ij∈Sewn∧i∈Patch

wijtjx

= k (bpx − bnx)

∂Etrans

∂y
= k (bpy − bny) ,

where k = 2
∑

ij∈Sewn∧i∈Patch

wij.

Since the derivatives of the energy functional Etrans are linear, this leads
to a linear equation system that is solved using again a singular value de-
composition. Note however, that this may lead to overlappings of patches in
the chart.

7.3.2 Alignment of the textures

The given main texture direction defines the direction in which the texture
should be placed on the patch. This restricts the rotation of the parameteri-
zations. The alignment strictness on the rotation can have three adjustments
illustrated in figure 7.3.

Fig. 7.3: Effects of different alignment strictness (from left to right: without, weak
and strong rotation restriction)

Without rotation restriction: When using this setting, all surfaces are al-
lowed to rotate freely and thus the texture direction is ignored (fig-
ure 7.3 left).

Weak rotation restriction: The surface is sampled in the parameter domain.
For each sample the main texture direction is projected onto the sur-
face, where the length of the projected direction

−→
di equals the cosine

between the main texture direction and the surface. These directions
are weighted by the local area of the corresponding sample points and

84 7. Texturing

summed up to the total direction
−→
d of the patch. The length of

−→
d di-

vided by the area of the surface is then used to determine the maximum
angle α the surface is allowed to rotate with the following equation:

α = 2 arccos
‖−→d ‖
Area

Using this kind of strictness aligns the texture of the patch according
to the given direction (figure 7.3 middle). Note that the patches in the
center of the car seat are allowed to rotate because the main texture
direction is not parallel to the surface.

Strong rotation restriction: If the local texture direction
−→
di is normalized

before it is summed up into
−→
d the length of

−→
d increases for patches

that are not parallel to the given texture direction. For these patches α
decreases and the given direction is preserved more strictly (figure 7.3
right).

7.3.3 Optimizing the placement

To find the optimal placement for each NURBS patch inside a chart, the
patches are allowed to move freely and to rotate in a certain angle that
depends on the alignment strictness as described in section 7.3.2.

Since the energy of a patch is minimal if the barycenter of its boundary
vertices bp lies on the barycenter of their corresponding vertices in adjacent
patches bn, rotating around the barycenter does not chance the location of
the minimum of E and thus can be applied after moving the patch so that
bp = bn. This leads to the following energy function and its derivative:

Erot =
∑

ij∈Sewn∧i∈Patch

wij

∥∥∥∥(cos α − sin α
sin α cos α

)
∆ti −∆tj

∥∥∥∥2

∂Erot

∂α
= 2 cos α

∑
ij∈Sewn∧i∈Patch

wij(∆tjy∆tix −∆tjx∆tiy)

+ 2 sin α
∑

ij∈Sewn∧i∈Patch

wij(∆tjx∆tix −∆tjy∆tiy),

with ∆ti =

(
∆tix
∆tiy

)
= ti − bp.

7.3. Chart generation 85

Since this is a harmonic oscillation, the minima and maxima of the energy
function Erot are at:

γ = kπ − arctan

∑

ij∈Sewn∧i∈Patch

wij(∆tjx∆tix −∆tjy∆tiy)∑
ij∈Sewn∧i∈Patch

wij(∆tjy∆tix −∆tjx∆tiy)

Because this is not a linear function, the partial derivatives do not form

a linear equation system. Therefore, the energy for every patch is minimized
with respect to its direct neighbors to solve this nonlinear system. To prevent
patches from rotating further than their allowed angle without introducing
additional constraints, it is checked if |γ| > α and when this is the case γ is
set to α sign γ.

The energy functional E = Etrans + Erot minimizes the edge-length dis-
tortion along the patch boundaries, which gives priority to the minimization
of the area distortion. It would be possible to minimize the angle distor-
tions instead, but minimizing the edge-length preserves the overall area of
the model.

Since reducing the energy of a patch with respect to its 1-ring does not
change the energy between other patches, the total energy is reduced in every
step. Due to the same arguments as in section 7.2.2 the algorithm converges.

7.3.4 Acceleration

When a patch is moved, it changes the location and angle of the minimum
of the energy functional E of its neighbors. The magnitude of this change
corresponds to the distance the patch has moved. For this reason a priority
queue is used to speed up the convergence of the algorithm instead of moving
all patches in each iteration. If a patch moves, the maximum distance a point
on the patch has moved is added to the weight of its neighbors. In this way
the placement of the patches is optimized in regions of high distortion first
and thus unnecessary movement in already optimized regions is reduced.

7.3.5 Segmentation

To reduce the overall distortion on the model, the longest spring is now cut
since it represents a high distortion vertex on a feature of the model. After
applying the cut, the energy function E = Etrans + Erot of the adjacent
patches has changed and thus the minimization described in section 7.3.3
is restarted. In order to speed up this process, the cut patches are placed
at the start of the priority queue. The cutting procedure is repeated until

86 7. Texturing

the maximum deformation along the trimming curves is below the given
deformation threshold. It is necessary to apply the minimization process after
each cut to prevent undesired cuts as shown in figure 7.4.

Fig. 7.4: Undesired cuts (marked with a blue circles) if more that one spring is
cut between two placement processes

The whole process of placement and cutting is shown in figure 7.5.

Fig. 7.5: Placement and segmentation process

At the start many overlappings occur in the model and the gaps between
sewn patches are clearly visible (top left). As more and more springs are
cut, the patches move closer together and most overlappings vanish. This is
show in the subsequent pictures (top right to bottom left). At the end of

7.3. Chart generation 87

the segmentation algorithm the gaps between patches are almost closed and
only overlappings between larger parts of the model are left (bottom right).
This is due to the fact that the boundary of a chart can move freely and thus
intersect itself. Note that, as this is the actual output of the segmentation
algorithm, the springs are not visible in the pictures.

7.3.6 Remove overlappings

Since the generated sewing pattern contains overlappings, it has to be cut into
non overlapping charts. To overcome this, it is first determined which patches
are overlapping. Since the sewn boundary vertices of adjacent patches have
not been fitted to each other, the center of the spring that connects them is
used as vertex position. Then the algorithm starts with separate patches and
clusters pairs of charts with adjacent patches, as long as no two overlapping
patches would be combined into the same chart. Since this introduces new
cuts, that should be placed at feature edges, the total weight of the springs
between two adjacent patches is used as sorting criterion for the clustering.

7.3.7 Adjusting parameterizations

After clustering the sewn points need to be moved to their common barycen-
ter and the parameterizations of the corresponding patches have to be
changed slightly in order to interpolate the new barycentric positions. To
accomplish this the control points are moved in texture space to form a least
squares fit by setting up the following linear equation system: B1,11 · · · B1,nm

...
. . .

...
Bl,11 · · · Bl,nm

 ∆T11

...
∆Tnm

 =

 ∆t1
...

∆tl

 ,

where Tij are the texture control points and Bk,ij the basis function values
of the boundary vertex tk and the control point Tij.

In order to distribute the deformation also on the whole patch and not
only along the trimming curves, the following lines to are added the equations
system to link the movement of neighboring control points on the whole
patch:

D11,11 · · · D11,nm

D11,11 · · · D11,nm
...

. . .
...

Dn−1m−1,11 · · · Dn−1m−1,nm

Dn−1m−1,11 · · · Dn−1m−1,nm

 ∆T11

...
∆Tnm

 = 0

88 7. Texturing

Dkl,ij =

d : k = i ∧ l = j
−d : k = i + 1 ∧ l = j

0 : else

Dkl,ij =

d : k = i ∧ l = j
−d : k = i ∧ l = j + 1

0 : else,

where d is a given distribution value with d� 1.
This greatly reduces the overall area and angle deformations as shown

in figure 7.6. As this result shows the adjustment of the parametrization
increases the angle and area deformations of the original patches only slightly
demonstrating the suitability of this adjustment technique. The least squares
inversion of the matrix A is calculated using a singular value decomposition
to minimize the distance between the border points of the patch and the
centers of the spring connecting it to an other patch. After each iteration
the springs have changed and thus their centers have to be recalculated. The
process is stopped when the positions are within a given distance to their
barycenter, or all points further away cannot be sewn.

7.4 Generation of texture atlas

These charts are placed in a texture atlas to build the final sewing pattern.
Since the packing problem is known to be NP-complete, a heuristic is used
to pack the chart bounding boxes instead. The bounding boxes are sorted
by their height and inserted into the texture atlas one after an other while
trying to minimize the area of the texture atlas after each insertion [151].

Instead of packing the bounding boxes, horizon lines can be used to pack
the charts into the texture atlas [119]. The wasted space is reduced compared
to the bounding box packing, but there is still space left especially if objects
are concave or have holes. Since the texture atlas is generally generated for
further editing in a CAD system, packing the bounding boxes of the charts,
resulting in slightly larger texture atlas than with horizon lines, is sufficient.

7.5 Results

In all examples 10 percent of the average size of adjacent patches is used as
deformation threshold. Table 7.1 shows the computation times and results of
this method for different CAD models consisting of NURBS surfaces.

Note the reduced L2 and L∞ stretch when using two instead of one diag-
onal spring. The segmentation of the car seat model is more expensive than

7.5. Results 89

car seat wheel rim
surfaces 116 151
parameterization 114 sec 179 sec
segmentation 869 sec 23 sec
sewing 36 sec 42 sec
L2 stretch 1.004 1.019
L∞ stretch 5.269 7.472
L2 stretch (one spring) 1.006 1.052
L∞ stretch (one spring) 6.725 23.450

Tab. 7.1: Statistics and timings (grid size: 16× 16 cells)

that of the wheel rim, because more boundary vertices are sewn together and
thus the computation cost of the placement increases as well as the number
of cuts.

Figure 7.6 shows the angle and area deformation of the generated sewing
pattern for the car seat model before and after the sewing algorithm. Note
however, that most of the deformations are below the specified tolerance of
10 percent (marked by the vertical red lines).

Fig. 7.6: Angle and area deformation histograms of the car seat model (top: after
flattening, bottom: after sewing)

Note how well the angles and the area on the patches are preserved by
the flattening process. It is clearly visible, that most of the deformations are
introduced by the sewing algorithm.

Additionally, the results are compared with the least squares conformal
maps parameterization [119] (see figure 7.7 for the deformation histograms).
Since the segmentation algorithm described in [119] cannot be applied to
NURBS models, the segmentation algorithm described in this work is used

90 7. Texturing

instead and the parameterization is applied to the generated charts. It is
clearly visible that the specialized NURBS method preserves the area by far
better at the cost of a slightly higher angle distortion. For natural materials
like cloth or leather these slightly higher angle deformations are by far not
as disturbing as a high area deformation.

Fig. 7.7: Angle and area deformation histograms of the car seat model parame-
terized with least squares conformal maps

Some of the resulting texture atlases created with this method and the
corresponding textured models are shown in figures 7.8 and 7.9.

Fig. 7.8: Car seat model with associated texture atlas constructed by the NURBS
texturing algorithm. The model is covered with a grid texture to show
angle and edge length deformations.

The generated atlases can of course not only be used to store surface
information, but also to cover models with textured materials as shown in
figure 7.10, where the car seat is covered with a scanned cloth texture.

7.5. Results 91

Fig. 7.9: Wheel rim model with associated texture atlas constructed by the
NURBS texturing algorithm.

Fig. 7.10: Car seat model covered with a cloth texture.

92 7. Texturing

8. COMPRESSED NORMAL MAPS

For static models the use of normal maps is reasonable, if it is possible to
generate an appropriate parametrization over all levels of detail. Since this is
only the case for NURBS models, polygonal meshes are not discussed in this
chapter. Note, that a combination with the GPU based tessellation does not
make sense as well, since this tessellation was specially designed for dynamic
surfaces.

All previous compressed normal map methods have in common that they
generate a piecewise linear parameterization on a surface since they were
developed for meshes. This parameterization can be stored efficiently for
polygonal meshes as texture coordinates of the vertices. But storing this in-
formation in addition to the existing NURBS parameterization again results
in a high memory overhead. Since this parametrization should again be stored
as NurbsTextureSurface, a method similar to Sander et al. [150] is devised
which is modified to generate texture control points.

8.1 Parametrization of NURBS surfaces

In addition to the intrinsic parameterization of the NURBS patches, a spe-
cialized reparameterization t : Ω→ Ω′ of the normal texture is applied

n : Ω→ S2, (u, v)→ qu(u, v)× qv(u, v)

‖qu(u, v)× qv(u, v)‖

such that n = n′ ◦ t and

∥∥∥∥ ∂n′

∂u
∂n′

∂v

∥∥∥∥ = ‖∇n′‖ ≈ 1,

that is unit changes of the normals correspond to unit distances of the pa-
rameter values in Ω′. This behavior is resembled by the following discrete
energy:

E =
∑

i,j∈Edges

((
(u′i, v

′
i)− (u′j, v

′
j)
)2(

S
(
(u′i, v

′
i)− (u′j, v

′
j)
))2 − 1

)2

,

94 8. Compressed Normal Maps

which is similar to the edge length distortion energy [47]. This similarity is
due to the fact that S(a, b) can be interpreted as the arclength between two
normals on the unit sphere. To compute this reparameterization, a regular
grid in the parameter space of the patch is used as base geometry. To minimize
the energy the algorithm iterates through the vertices and minimizes the
local energy of every vertex with respect to each vertex of its 1-ring [47],
until a given threshold is reached. During this minimization the border of
the parameterization is fixed on a rectangle. Since this reduces the total
energy of the parameterization in every step, the algorithm converges [47].

To provide a good starting parameterization the maximum signal over the
patch in u- and v-direction (Sumax and Svmax, respectively) are calculated
first to determine the size of the normal texture. Afterwards, a simple 1D
signal stretch parameterization Pu and Pv in u and v direction are computed.

Sui,0 = 0 Sv0,j = 0
Sui,j = S(ai,j, ai,j−1) Svi,j = S(ai,j, ai−1,j)
Sui =

∑n
j=1 Sui,j Svj =

∑m
i=1 Svi,j

Sumax = maxi=1...m Sui Svmax =
∑

j=1...n Svj

Pui,j = Sumax

Sui

∑j
k=1 Sui,k Pvi,j = Svmax

Svj

∑i
k=1 Svk,j,

where i and j denote the indices of grid points on parameter domain. These
1D parametrizations Pu and Pv are combined to Pi,j = (Pui,jPvi,j) and the
minimization is started.

8.2 Approximation by NURBS parameterization

The problem with this piecewise linear signal stretch parameterization is that
it has to be stored on a per vertex basis, which results in additional storage
cost. To overcome this problem the piecewise linear parameterization is again
approximated by a higher order NURBS parameterization [136] over the
same knot vector as the surface patch itself similar to the NURBS texturing
algorithm. In this way two NURBS patches over the same parameter domain
are constructed.

This is reasonable, as the changes of the normals in general are smooth
on most NURBS models. However if a NURBS patch has discontinuities the
signal stretch in this area is high and thus the smoothing is hardly visible.
The advantage of this approximation is, that it reduces the storage costs and
furthermore, the evaluation of the texture coordinates can be done using the
same basis functions for both the geometric data and the texture data. In-
stead of 3D geometry vectors, 5D geometry and texture vectors used. To find

8.3. Results 95

this NURBS approximation of the signal stretch parameterization a standard
approximation algorithm for NURBS surfaces described in [136] is used.

8.3 Results

The quality of the approximation is calculated as the sum of square distances
weighted with the local area of the samples [150], where the deviation of the
normal signal between the signal stretch compressed normal map is calculated
in degree.

Since 8,192 discrete normals are used for software shading, leading to a
resolution of 2.8125◦, multiples of this resolution are chosen for the signal
stretch resolution in the normal map texture. Table 8.1 shows the signal
approximation error, with hardware shading (left of the slash) and software
shading (right), for different sampling resolutions using the grid directly and
its NURBS Texture Surface [76] approximation with the same knot vectors.
The grid resolution used is 16× 16 cells.

wheel rims car body complete car
materials 1 1 9
NURBS patches 302 1,620 8,036

signal stretch resolution: 5.625
texture size 97× 1024 195× 1024 1282× 1024
SAE grid 2.73◦ 2.07◦ 2.15◦

SAE NURBS 2.87◦ 2.07◦ 2.15◦

signal stretch resolution: 11.25
texture size 37× 1024 101× 1024 643× 1024
SAE grid 4.77◦ 2.76◦ 2.33◦

SAE NURBS 4.85◦ 2.75◦ 2.33◦

Tab. 8.1: Statistics of NURBS normal maps at different resolutions

Note that the NURBS approximation even leads to a lower signal approx-
imation error (SAE) than the grid in some cases. Storing the signal stretch
grid needs 2312 Bytes per surface (17.7MB for the complete car), while the
NURBS needs only approx. 200 Bytes per surface (1.5MB for the complete
car).

The minimization of the signal stretch grid takes 39.4 iterations on aver-
age per surface for the Volkswagen Golf model with a threshold of 0.1 pixel
and a resolution of 11.25◦ per pixel using the described start parametriza-
tion. Note that using a uniform grid as start parametrization leads to 56.6

96 8. Compressed Normal Maps

iterations per surface. The preprocessing times and rendering statistics for
the complete car model are shown in table 8.2.

OpenGL normal maps
preprocessing 436 sec 1348 sec
max. triangles 46,896 48,556
avg. fps 13.420 10.181
max. error 2.716 3.098
memory 103.1MB 107.1MB

Tab. 8.2: Results of different shading algorithms

The software shader can render approx. 1,000 materials per second. Fur-
thermore, some extra time is required to compute the texture coordinates.
The additional memory allocation is 200 Bytes per surface for signal stretch
parametrization and 3KByte per line of normal map textures (2556 KB) and
2 KByte per line used (1286 KB) for normal indices.

Figure 8.1 shows the visible geometric error and the frame rates of
OpenGL and hardware normal map shading while rendering the camera path.

When using hardware normal map shading the only computational over-
head is caused by computing the texture coordinates. Furthermore, the mem-
ory allocation is reduced compared to software shading, because only normal
map textures are needed, which require 3 KByte per line (2556 KB).

The difference in the visible error is low, since it is a geometric and not
a shading dependent error. Figure 8.2 shows a frame from the rendered an-

8.1 8.2 imation using OpenGL shading and with normal map shading. The visual
enhancement is clearly visible at high curvature regions like the curved parts
of the wheel rim.

Note that both images were rendered at a resolution of 1024 × 768 and
have a visible geometric error of 0.67 pixel.

When using OpenGL shading, the appearance of the patches is not con-
sidered leading to visible artifacts (see magnified region in figure 8.2a). The
normal map shading is appearance-preserving and thus renders visually cor-
rect shading (see magnified region in figure 8.2b).

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/08-1.avi
http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/08-2.avi

8.3. Results 97

(a) triangle statistics (standard shading) (b) triangle statistics (normal maps)

(c) visible error (standard shading) (d) visible error (normal maps)

(e) frame rates (standard shading) (f) frame rates (normal maps)

Fig. 8.1: Rendering of the complete car model

98 8. Compressed Normal Maps

(a) standard OpenGL shading

(b) normal map shading

Fig. 8.2: Comparison of shading algorithms

9. CONTROLLING NORMAL DEVIATION

Despite the efficiency and simplicity of normal maps, they are only applicable
for a static models that can be consistently parameterized. A more general
approach to preserve the appearance of the original model is to assume a
shading model based on normal interpolation (e.g. Blinn-Phong) and control
the normal deviation after interpolation during the simplification or tessella-
tion.

9.1 Simplification

To preserve additional information of the object (e.g. normals) during sim-
plification, the geometric Hausdorff error measure needs to be extended with
respect to appearance attributes as proposed by Klein et al. [106] for view-
dependent multi-resolution meshes. However, in contrast to this approach an
error measure that is independent of the viewing position is proposed in this
work.

When an edge is removed due to a collapse operation, the appearance
attributes of the removed points are interpolated during rendering. A screen
space error can now be defined as the distance between a shaded point of the
original model projected into screen space and the next pixel on screen with
the same color. For static LODs this distance can directly be transformed into
object space as the distance between a point on the approximated surface
and the next point on the original mesh with the same appearance attribute.

The normal preserving simplification error in object space is now defined
to be the distance of a point p on the original mesh and the closest point
on the simplified mesh with the same interpolated normal q (see figure 9.1).
Then it is possible to split the vector between the original point p and q
into the orthogonal vectors pq′ and q′q, where q′ is the closest point on the
simplified mesh. Therefore, the simplification error ε can be written as a
combination of the geometric Hausdorff error εH and the normal deviation
error on the simplified mesh εnorm:

ε2 = ε2
H + ε2

norm

100 9. Controlling Normal Deviation

original mesh

geometric error

normal deviation error

simplification error

simplified mesh

p

qq’

Fig. 9.1: Combination of error measures (mesh simplification).

The normal deviation error εnorm can be approximated using the normal
curvature of the surface. Now the choice has to be made whether the mini-
mum, maximum or mean curvature is used. The minimum curvature has the
advantage that it is conservative, but if it becomes zero even a slight normal
deviation totally prevents simplification no matter how high the maximum
curvature (and therefore how low the actual shading error) is. The mean cur-
vature seems to be a good compromise at first sight, but since the normal
deviation mainly occurs in the direction of the maximum curvature, the mean
curvature can lead to an unnecessarily high number of triangles. Therefore,
the normal maximum curvature κ1 is the most reasonable choice resulting in
the following equation:

εnorm ≈ arccos(~n · ~nint)

κ1

,

where ~nint is the interpolated normal at q′. The maximum curvature of a
point on a bi-linearly interpolated triangular patch with specified per vertex
normals can be approximated by:

κ1 ≈ max
(

arccos(~n1 · ~n2)
‖P1 − P2‖

,
arccos(~n1 · ~n3)
‖P1 − P3‖

,
arccos(~n2 · ~n3)
‖P2 − P3‖

)
.

For small angles, the computation of the inverse cosine can be saved, since
in this case arccos(~na · ~nb) ≈ ‖~na − ~nb‖.

To prevent aliasing artifacts in the shading, the normals of vertices that
are only adjacent to triangles smaller than enode

res
are smoothed before simpli-

fication. This also leads to a more efficient simplification.
While only normals are used in the given examples, the algorithm is able

to deal with arbitrary appearance attributes for which a distance is defined
that can be used to calculate the deviation and its derivative, e.g. per vertex
colors, BRDFs, etc.

9.1. Simplification 101

9.1.1 Point Generation

During the simplification process, arbitrary small triangles can remain due
to high normal deviation (i.e. they may be even smaller than the specified
simplification error). For rendering purposes however, using points instead of
small triangles has proven to increase the performance significantly. There-
fore, after performing all possible simplification operations, the constructed
level of detail is processed again replacing all small triangles with points.

To find an appropriate criterion for the transition point between triangles
and points the following observation is important: on modern graphics hard-
ware a point – using the GL POINTS primitive – can be rendered about
twice as fast as a pixel sized triangle. Since according to Euler’s formula,
the number of vertices in a mesh is approximately half the number of trian-
gles (Nt ≈ 2Nv), not more than 3 additional points per vertex can be used
without reducing the rendering performance.

Fig. 9.2: Points used to replace a triangle.

To determine which triangles are to be replaced with points, the algorithm
simply checks if the distance of the triangle vertices to the barycenter is at
most than 2ε pixel on screen (typically: ε = 0.5). If this is the case, the points
shown in Figure 9.2 cover the whole area of the triangle and the triangle is
replaced with up to 6 points. To avoid unnecessary points vertex clustering
with a grid size of ε is used afterwards. During this vertex clustering the
attributes are averaged similarly to [147].

This way the number of points used in each LOD is optimally adapted to
the features of the simplified object. It might even happen that it decreases
more with the coarser level than would be possible by simple clustering.

The main advantage of this technique is that due to the maximum size of
a node on screen the maximum number of pixels a triangle can cover can be
calculated. Therefore, the triangle to point transition can be applied during
the preprocessing and the points can be stored in the LOD representation.

102 9. Controlling Normal Deviation

9.2 Tessellation

similar to the simplification, the Hausdorff distance between the approxi-
mated and the original surface is not sufficient for normal preserving tessel-
lation. Since previous NURBS tessellation algorithms used an estimation of
the geometric distance as error measure for approximation, this has to be
modified accordingly.

9.2.1 Modified Error Measure

Because the tessellation algorithm approximates the surface using bilinear
quad patches, the maximum combined error over each quad patch had to be
estimated. Since the tessellation algorithm [9] described in chapter 4 already
uses discrete points on the surface to estimate the geometric error, it pro-
vides a straightforward basis for the approximation of the normal error. For
NURBS surfaces it can be generally assumed that the derivatives (−→nu and
−→nv) of the surface normal ~n are locally smooth around each of these sample
points. This leads to the following problem:

~n′(~d) = ~n +

 −→nux
−→nvx−→nuy
−→nvy−→nuz
−→nvz

 ~d

~nbilin ≈
~n′(~d)

‖~n′(~d)‖
,

where ~nbilin is the bilinear approximation of the normal on the quad patch
and ~d is the offset of the next correctly shaded pixel in the two dimensional
domain space. Since ~d can be assumed to be small, the denominator is close
to one. Therefore, a singular value decomposition can be used to find the
smallest ~d. Then the position of the correctly shaded pixel can be calculated
in Euclidian space and the distance between this point and the sample point
on the bilinear quad patch delivers a good estimation of the combined error.

However, while this method is fairly straightforward and provides a rel-
atively tight error bound, it suffers from high computational requirements.
This is simple to see, as the method first involves calculating the sample
point – as described for the tessellation algorithm – with partial derivatives.
Then the nearest correct pixel on the bilinear patch has to be found by solv-
ing the linear equation system, and finally the surface has to be evaluated
once more to calculate the distance between this new point and the original
point on the bilinear patch in order to decide whether further subdivisions
are necessary or not. In total the surface has to be evaluated twice, and

9.2. Tessellation 103

an additional eigenvalue problem must be solved. Since this would be com-
putationally too expensive for interactive visualization, a further simplified
version of the approximation method just introduced is used.

Therefore, the combined approximation error ε is again viewed as the
orthogonal combination of the geometric distance between the approximated
patch and the surface and the distance between the surface pixel and the
nearest correctly shaded surface pixel, as shown in figure 9.3, which can be
combined to:

ε2 = ε2
H + ε2

norm.

In this case it is possible to take advantage of the fact that the esti-
mation of the geometric approximation error remains the same as for the
non-appearance preserving tessellation and thus the shading error can be es-
timated without calculating the position of the closest correctly shaded point
in Euclidean space.

approximated point

geometric error

 normal error combined error

Fig. 9.3: Combination of error measures (NURBS tessellation).

For this estimation, the curvatures (cu and cv), which are defined for any
point on the surface as the magnitude of the normal derivatives divided by
the magnitude of the surface derivatives (δu and δv), are used:

cu =
‖−→nu‖
‖δu‖

, cv =
‖−→nv‖
‖δv‖

.

For a curve, the normal deviation error can then be written as:

εnorm ≈
‖~n− ~nlin‖

c
.

When transferring this approximation to a surface, again the choice needs
to be made whether to use the minimum, mean or maximum curvature. Anal-
ogously to the simplification, the maximum curvature is the most reasonable
choice resulting in the following equation:

εnorm ≈
‖~n− ~nbilin‖
max(cu, cv)

.

104 9. Controlling Normal Deviation

To save the costly computation of normal derivatives for each sample
point, the approach is simplified even further and only the maximum curva-
ture of the bilinear patch is calculated instead of the local curvatures for the
sample points. This leads to:

c1 =
‖~n(umin, vmin)− ~n(umin, vmax)‖
‖S(umin, vmin)− S(umin, vmax)‖

c2 =
‖~n(umin, vmin)− ~n(umax, vmin)‖
‖S(umin, vmin)− S(umax, vmin)‖

c3 =
‖~n(umax, vmax)− ~n(umin, vmax)‖
‖S(umax, vmax)− S(umin, vmax)‖

c4 =
‖~n(umax, vmax)− ~n(umax, vmin)‖
‖S(umax, vmax)− S(umax, vmin)‖

εnorm ≈ ‖~n− ~nbilin‖
max(c1, c2, c3, c4)

,

where ~n(u, v) is the normal of the surface S at (u, v). When using this method
to estimate the shading error, the surface has to be evaluated only once for
each sample point on the surface. Therefore, the only additional calculation
required per sample for the appearance preserving tessellation is only the
calculation of the vertex normal which needs little extra computation time.

The applicability of this error measure is again not limited to surface
normals, it can be employed to accurately visualize any other surface prop-
erty as well for example, texture coordinates, temperature distribution, or
curvature. The only modification is that instead of – or additionally to – the
normal the deviation of these attributes have to be taken into account. For
vector data, the error estimation is identical to the estimation of the normal
error and for scalar values the norm of the vector difference is simply replaced
by the absolute difference of the scalar values.

9.3 Results

First the simplified models generated by the normal preserving simplifica-
tion algorithm are compared with models generated by purely geometric
simplification and then a more detailed examination of the performance and
generated triangulations of the normal preserving tessellation algorithm is
given.

9.3. Results 105

9.3.1 Simplification

Figure 9.4 shows the effect of controlling the normal deviation during simpli-
fication. Both simplified models were created using the same error threshold
(1% of the bounding box diagonal). While the surface structure on the geo-
metrically simplified bunny is almost completely lost, on the normal deviation
controlled bunny only features smaller than the specified threshold have be
removed. This is especially visible in the ears of the bunny, above the eye,
and at its muzzle. The additional number of triangles for preserving the nor-
mals is relatively low. In this example the right bunny contains about 3, 500
triangles while the middle one contains about 2, 500.

Fig. 9.4: Stanford bunny (from left to right): original model; simplified controlling
the Hausdorff error; simplified controlling the normal deviation with the
same error threshold.

9.3.2 Tessellation

To show the efficiency of this method, a comparison with standard tessellation
guaranteeing only a geometric error – with and without using previously
generated normal map textures – is given. Then the applicability of this
approach to deformable NURBS models is described. For the evaluation of
the algorithm, the two trimmed NURBS models listed in table 9.1 are used.

model materials trimmed NURBS
wheel rim 1 151
golf 9 8036

Tab. 9.1: Trimmed NURBS models used for evaluation.

106 9. Controlling Normal Deviation

9.3.3 Performance

All performance tests were made using a PC with an Athlon 3000+, 512 MB
main memory and a Radeon 9800 Pro graphics card. As retessellation time,
20ms per frame are allowed, and the desired screen-space error is 0.5 pixels
unless explicitly stated otherwise.

Both table 9.2 and figure 9.5 show that the number of additionally re-
quired triangles for appearance preserving tessellation is marginal. Only
about 6% additional triangles are required on average.

standard normal maps app. pres.
Max. triangles 314,726 314,736 336,484
Min. triangles 136,153 139,163 143,737
Avg. triangles 245,857 245,960 260,773

Tab. 9.2: Number of triangles rendered for the golf video sequence using the dif-
ferent tessellation algorithms.

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70

tri
an

gl
es

sec

standard
normal maps
app. preserv.

Fig. 9.5: Number of triangles rendered for the golf video sequence using the differ-
ent tessellation algorithms.

The frame rates of the appearance preserving tessellation method are
almost identical compared to the geometric error only approach as shown
in table 9.3 and figure 9.6. The loss of performance is only about 2.7% on
average, in contrast to 10.6% when using normal maps. The relatively high
cost of the normal map method comes from the fact that whenever a material
changes, the normal map texture has to be changed as well and a texture
change is an expensive operation in OpenGL.

9.3. Results 107

standard normal maps app. pres.
max. fps 24.32 24.01 24.32
min. fps 10.26 8.27 11.09
avg. fps 18.52 16.74 18.02

Tab. 9.3: Frame rates for the golf video sequence using the golf video sequence
using the different tessellation algorithms.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

fp
s

sec

standard
normal maps
app. preserv.

Fig. 9.6: Frame rates for the golf video sequence using the different tessellation
algorithms.

9.3.4 Image Quality

The most important measure of image quality is the screen space error of the
approximation compared to the original. Table 9.4 and figure 9.7 show the
screen space error for the different tessellation algorithms.

standard normal maps app. pres.
Max. error 3.71 3.47 3.67
Min. error 0.50 0.50 0.50
Average error 1.27 1.06 1.32

Tab. 9.4: Screen space error for the golf video sequence using the different tessel-
lation algorithms (for the standard and normal map algorithms only the
geometric error).

Note that while the standard and normal map methods only calculate the
geometric error, the screen space error listed for the appearance preserving

108 9. Controlling Normal Deviation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

pi
xe

l

sec

standard
normal maps
app. preserv.

Fig. 9.7: Screen space error for the golf video sequence using the different tessella-
tion algorithms (for standard and normal map algorithm geometric error
only).

tessellation gives the combined geometric and shading error. Therefore, even
though the average error seems to be somewhat higher for the appearance
preserving method (due to the longer tessellation and rendering time) in
practice the visual quality of the normal preserving tessellation is slightly
higher, as can be seen in figure 9.8.

9.1 Note, that although the reflections seem to be correct for the normal map
method, they are all shifted due to the discretization of the normals leading
to false conclusions or even fake discontinuities.

In order to compare with the previous normal map based approach, a pixel
by pixel comparison of the approximated normals with the real normals from
the NURBS model in a frame is performed. The difference between the real
and approximated normals can be extracted using simple image processing
as shown in figure 9.9. It is clearly visible that the normal approximation
is better when using the appearance preserving tessellation. Using this tech-

normal maps app. pres.
Max. error 1.22o 1.01o

Min. error 0.48o 0.28o

Average error 0.76o 0.59o

Tab. 9.5: Normal deviation error for the golf video sequence using the different
visualization algorithms.

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/09-1.avi

9.3. Results 109

Fig. 9.8: A frame from the golf video sequence showing the results of standard
tessellation (top), normal maps (middle) and appearance preserving tes-
sellation (bottom).

nique , an average normal deviation error can be calculated for each frame of

110 9. Controlling Normal Deviation

7o

0o

7o

0o

Fig. 9.9: Normal deviation error for a frame of the rendered animation using nor-
mal maps method (top) and appearance preserving tessellation (bottom).

the video sequence. The average normal deviation is shown in table 9.5 for
the normal preserving tessellation and the normal maps method.

Although the normal preserving tessellation leads to a better normal
preservation and thus more accurate results, the more complex subdivision
criterion significantly reduces the tessellation performance. This leads to a
higher latency and thus a larger screen space error during movements. So
for static models that can be parameterized consistently, normals maps yield
lower latency at the cost of a higher normal deviation.

9.3.5 Deformable NURBS Models

To demonstrate the ability of the normal preserving tessellation to handle
deformable NURBS models, a simple animation of a single NURBS surface
where the control points are moved in every frame was created. The algorithm
achieves about 17 frames per second on average with a guaranteed screen
space error of one pixel for this animation. Figure 9.10 shows three frames

9.2 of the animation sequence.

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/09-2.avi

9.3. Results 111

Fig. 9.10: Three frames from an animation sequence showing a deformable
NURBS surface. The elevation in the middle frame is about 0.1% of
the edge length. Note that standard tessellation would only generate
two triangles in this case.

Due to the amount of preprocessing required, even this simple example
would be non interactive (much less then 1 frame per second) if the normal
map method is used.

112 9. Controlling Normal Deviation

9.4 Integration into the GPU-based tessellation

To integrate normal preservation into the GPU-based tessellation described
in chapter 6, an upper bound for the second derivatives of the surface normal
has to be found. Since the surface normal is the normalized cross product of
the first surface derivatives it can be written as rational Bézier surface. The
first derivatives are Bézier surfaces of degree n × (n − 1) and (n − 1) × n
respectively. Note that the length of the derivatives is irrelevant and thus
they can be written as non-rational Bézier surfaces for this purpose. The
un-normalized cross product of these derivatives is then a nonrational Bézier
surface of degree (2n− 1)× (2n− 1). The normalized surface is then of the
form:

N(u, v) =

∑5
i=0

∑5
j=0 B5

i (u)B5
j (v)Pij∥∥∥∑5

i=0

∑5
j=0 B5

i (u)B5
j (v)Pij

∥∥∥ .

If the normalization always reduces the length of the normal, i.e.∥∥∥∥∥
5∑

i=0

5∑
j=0

B5
i (u)B5

j (v)Pij

∥∥∥∥∥ ≥ 1,

an upper bound for the second order partial derivatives can be given:

∂2N(u, v)

∂u2
≤

∂2
∑5

i=0

∑5
j=0 B5

i (u)B5
j (v)Pij

∂u2

∂2N(u, v)

∂v2
≤

∂2
∑5

i=0

∑5
j=0 B5

i (u)B5
j (v)Pij

∂v2
.

Therefore, after dividing all control points by the length of the shortest,
the second order control point differences can be used to calculate an upper
bound for the second derivatives and thus a required sampling density for
normal preserving tessellation.

10. VISUALIZATION

The display of surface properties is an important topic for surface inter-
rogation and scientific visualization. Hagen et al. [88] give an overview of
different surface interrogation methods, like orthonomics, isophotes, reflec-
tion lines and focal surfaces. In the context of this work only isophotes and
reflection lines are discussed, since they can be visualized on the surface. Ad-
ditionally to these properties, the visualization of the curvature and curvature
regions [55, 54] deliver valuable information for surface design. For visualiza-
tion so called property surfaces are generated in this approach. However,
the calculation and rendering of these property surfaces are often computa-
tionally expensive and therefore, this method is not well suited for complex
and/or dynamic models.

Another important surface property for CAD and virtual prototyping is
the surface temperature generated by finite element simulations [108]. This
method however relies on a fine enough polygonal mesh representation for
visualization, but for complex models, a static tessellation which is indepen-
dent of the current temperature distribution quickly becomes too large for
interactive visualization. More recently van Wijk [173] employed flow visual-
ization techniques to surfaces based on triangular meshes in order to enhance
the visualization of the shape and features of such models. As the root of this
approach lies in flow visualization, it is more geared towards the visualiza-
tion of time-varying data on static models, while the method described in
this work is rather suited for the visualization of properties of deformable
parametric surfaces.

As already mentioned a shading model using normal vector interpolation
is assumed. On current graphics hardware the Blinn-Phong shading model
is supported using vertex and fragment programs. Furthermore, other shad-
ing models like Lafortune [113] or environment mapping can be used. For
the additional surface attributes, it is also assumed that these are linearly
interpolated over the surface, which is true for all vertex attributes.

114 10. Visualization

10.1 Environment Maps

For the environment mapping required for reflection lines, etc., prefiltered
environment maps are used. The prefiltering is basically achieved by folding
the environment with the kernel of the diffuse and specular part of the Blinn-
Phong shading model.

To speed up this folding process, two strategies are applied. Since the
kernel of the Blinn-Phong model covers half of the environment, it is cut off
using a threshold value (e.g. less than 10−8% of the contribution at the kernel
center). This greatly reduces the filtering time for high exponents without
reducing the quality of the generated environment. When prefiltering an en-
vironment with a low exponent (e.g. for the diffuse environment map), the
resolution of the environment cube is reduced before filtering using mipmap-
ping. To calculate the required resolution, first the radius of n% (90% in the
current implementation) contribution is determined and then such a reso-
lution is chosen for the filtered environment that this radius is between 1
and 2 pixel. This is reasonable since the kernel is a low pass filter and thus
only little information is lost. After the reduction of the kernel size and the
environment resolution, the kernel is simply multiplied with the environment
for each pixel. A fourier transformation cannot be used, since the kernel is
slightly different for each point due to the projection from the sphere onto the
cube. These optimizations allow the interactive prefiltering of environment
maps for models containing a couple of materials, as shown in the results
section.

10.2 Results

For interactive environment changes the prefiltering time with the diffuse and
specular Phong exponents has to be as low as possible. Using the described
optimizations, interactive environment switching is possible, as shown by the
timings in table 10.1. Even for large environments, the prefiltering is always
achieved in less that 2 seconds per material. Note that exponents ≥ 128 are
treated as∞, since this is the maximum exponent used in the actual trimmed
NURBS format (OpenInventor).

In order to demonstrate the surface property visualization capabilities of
the normal preserving tessellation algorithm, the visualization of isophotes
(figure 10.1) is implemented using the intensity value of each pixel after shad-
ing to perform a lookup into a striped one-dimensional texture. As shown in
figure 10.2 this method can also easily show important continuity charac-
teristics of the surface using isophotes. In this case a discontinuity at patch

10.2. Results 115

exponent 64× 64 128× 128 256× 256 512× 512
1 0.004 s 0.010 s 0.021 s 0.078 s
2 0.004 s 0.010 s 0.021 s 0.078 s
5 0.031 s 0.042 s 0.053 s 0.105 s
10 0.031 s 0.042 s 0.053 s 0.105 s
20 0.303 s 0.314 s 0.324 s 0.377 s
50 0.193 s 0.201 s 0.211 s 0.265 s
100 1.776 s 1.779 s 1.788 s 1.912 s
∞ 0.024 s 0.081 s 0.322 s 0.359 s

Tab. 10.1: Prefiltering times for different environment resolutions and exponents.

boundaries becomes visible. This is not possible in such a high quality using
the normal map approach.

Fig. 10.1: Wheel rim model rendered with isophotes (32 units).

The discontinuity shown in figure 10.2 becomes even more apparent with a
reflection lines environment as shown in figure 10.3. To visualize these reflec-
tion lines with this approach, only the environment map has to be generated.
No modifications to the algorithm itself are necessary.

116 10. Visualization

Fig. 10.2: Close up of the wheel rim model with standard tessellation (left) and
appearance preserving tessellation (right) using isophotes visualization.
The discontinuity is clearly visible only when using appearance preserv-
ing tessellation.

Fig. 10.3: The discontinuity becomes even more apparent with a reflection lines
environment.

Part IV

OUT-OF-CORE TECHNIQUES

119

The problem of rendering complex models was first addressed in terrain
rendering using view-dependent levels of detail [93]. Due to the increasing
speed of graphics cards – triangle can be rendered faster than send over the
bus – recent algorithms assemble pre-computed terrain patches run-time to
reduce the per-triangle computation cost on the CPU and shift the bottleneck
back to the GPU like [71] and the RUSTiC [138] and CABTT [115] data
structures. These methods were further improved by representing the patches
within the nodes as irregular triangulated patches in a quadtree [105] or
a binary tree domain [30]. Unfortunately these algorithms cannot be used
directly for arbitrary 3D models since they rely on a parametrization of the
mesh which is only trivial for terrain models.

Many methods have been developed for the visualization of large mod-
els. They are based on the three main approaches geometric simplification,
visibility culling and image based representations.

Geometric simplification uses either dynamic (view-dependent) progressive
meshes or a set of static (view-independent) levels of detail. As shown
by [57] static HLODs generated by partitioning are able to approximate
view-dependent progressive meshes.

Visibility culling algorithms try to quickly determine possibly visible and
definitely invisible (culled) objects. There are three general methods to
determine and remove invisible parts of the scene. The first is view frus-
tum culling which removes all objects outside the current view frustum.
The second is backface culling that removes all polygons facing away
from the current view position. If normal cones [162] are used, whole
objects or subtrees of a scene graph can be removed from rendering.
The third approach is occlusion culling where objects are removed from
the scene that are hidden behind other objects. Cohen-Or et al. [39]
give a good overview of different occlusion culling approaches.

Image based representations use impostors to replace distant objects with
previously rendered images [3, 4, 127, 152, 156]. In cell based approaches
they can be combined with geometric simplification as in [3].

In computational geometry and related areas a lot of work has been spent
on so called out-of-core or external memory algorithms [28, 175].

Based on the spatial subdivision of architectural models a real-time mem-
ory management algorithm to swap objects in and out of memory was devel-
oped by Funkhouser et al. [66, 67]. Aliaga et al. [3] developed a system for
interactive rendering of complex models than can easily be partitioned into
cells. However, there is no good algorithm known for partitioning a general

120

model into such cells. Furthermore, the image based methods used in this
work tend to produce severe popping artifacts.

A number of out-of-core simplification algorithms for large models have
been developed [16, 33, 121, 120, 157] that can be used to generate static
levels of detail. An out-of-core simplification algorithm for view-dependent
simplification was developed by El-Sana and Chiang [52] and tested for mod-
els with a few hundred thousand triangles. Although view-dependent simpli-
fication [53, 93, 126, 183] generates less triangles to be rendered and works
well for spatially large objects it has a significant overhead during visualiza-
tion. Instead of performing calculations at nodes inside a scene graph only it
has to query every active vertex or edge of all visible objects. Furthermore,
since the geometry of the objects changes frequently, it has to be sent to
the graphics card at almost every frame shifting the bottleneck from fill rate
limitations to bus speed.

A few out-of-core visualization methods including rendering of large
unstructured grids [58] and isosurface extraction [8, 29] have been devel-
oped. In [42, 172] application controlled segmentation and paging meth-
ods for the out-of-core visualization of computational fluid dynamics data
were presented. A number of techniques like indexing, caching and prefetch-
ing [46, 163] were developed to increase the performance for large en-
vironment walkthrough applications. The first out-of-core rendering algo-
rithm [174] used hierarchical levels of detail (HLODs) [57] based on an axis
aligned bounding box subdivision. As the triangles intersecting a subdivision
plane needed to be preserved, the performance broke down when rendering
more complex models. This problem was also addressed after the approach
presented in this work by Cignoni et al. [31] by using tetrahedral subdivision
and grouping tetrahedrons in a diamond for common simplification. How-
ever, the CPU overhead of this approach is high due to the binary hierarchy
of bounding volumes and the constraint that adjacent nodes can only be one
level coarser or finer. Additionally, spheres need to be used for culling instead
of the much tighter tetrahedrons which further reduces the performance.

To generate the required HLOD hierarchy a number of out-of-core simpli-
fication algorithms for large models have been developed [16, 33, 120, 157].
The currently most efficient out-of-core simplification algorithm [99] uses
processing sequences and out-of-core compression to simplify gigabyte-sized
models within a few hours. The main drawback of all these out-of-core sim-
plification algorithms is that they do not control the Hausdorff error during
simplification. This was solved by Borodin et al. [23], but none of these algo-
rithm supports appearance preserving simplification with guaranteed error
tolerance.

121

For out-of-core rendering of NURBS models no special algorithms were
developed, as the typical approach is to generate a very fine tessellation
and the use a polygon based approach for the out-of-core management and
rendering.

For transmission of 3D models over the network several approaches have
been proposed. The most simple transmits the whole model — either di-
rectly [176] or compressed [169] — and therefore the user has to wait until
the whole model is transmitted before it can be viewed. A better approach
is to transmit a low resolution model first and then progressively stream
higher resolution while the user is able to view the model [74]. A progressive
mesh [92] consists of a simple base mesh and a series of refinements using
a vertex split operation. Therefore, they are well suited for streaming [140]
and can be enhanced with compression algorithms [133]. As compression al-
gorithm wavelets [50] can be used by streaming the wavelet coefficients in
order of magnitude after transmitting the base mesh [102].

Some work has been spent to combine the advantages of view-
dependent out-of-core rendering with network streaming. The potentially-
visible sets [40] as well as the QSplat rendering system [148] where extended
to network streaming. In these approaches only the visible geometry on a
visually sufficient level of detail has to be held in the main memory of the
client allowing for the visualization of huge models over a network. Although
in general it should be possible to combine out-of-core hierarchical levels of
detail rendering [174] and out-of-core view-dependent level of detail algo-
rithms [46] with network streaming no attempts in this area were made so
far.

In the recent years several algorithms for interactive shadow generation
using graphics hardware have been developed. The two basic approaches
to this problem are shadow maps [179] and shadow volumes [43]. To re-
duce aliasing artifacts inherent in the image-based approach of the shadow
map algorithm, the perspective shadow map [165] was developed which takes
the perspective projection into account to generate a more evenly sampled
shadow map. Since this technique reduces sampling too much in distant re-
gions it was improved by Wimmer et al. [181].

Many improvements have been made to the shadow volume algorithm and
a detailed discussion is available at [129]. Due to advances in recent graph-
ics hardware developments, shadow volume computations can be completely
performed on the GPU [26]. Since the generation of these shadow volumes
is still too slow for complex scenes, a hybrid shadow map/shadow volume
algorithm has been developed [72] which combines the speed of the shadow
map with the accuracy of the shadow volumes. However, due to the compu-
tational overhead of this algorithm it is only applicable on a multi processor

122

system or a small cluster. In addition there is no control over the screen space
error of the shadows which leads to popping artifacts during movement.

Although enhancing the visual appearance, the hard shadows produced
by the methods mentioned above suffer from a lack of realism, since all
natural light sources produce soft shadows which depend on the size and
distance of the light source. Due to their higher computational complexity
compared to hard shadows they are even more challenging in the context of
gigabyte-sized models and have not been used for out-of-core rendering so
far. A recent survey on soft shadow algorithms has been made by Hasen-
fratz et al. [89]. The first methods for interactive soft shadows were image
based techniques like [2]. A straightforward approach is rendering the scene
with several shadow maps and then combining the image to generate soft
shadows e.g. on a cluster [98]. For shadow maps the first real-time algorithm
for a single GPU system was the penumbra maps [182]. Since this algorithm
renders only the outer half of the soft shadow (and a full shadow inside), the
visual quality can be improved by combining this method with the shadow
map [103] which only renders the inner half of the soft shadow. Recently an
algorithm capable of rendering both inner and outer penumbra at real-time
frame rates for moderately complex scenes using penumbra quads [5] was
developed. For higher quality and more precise soft shadow calculation, the
shadow volume algorithm was modified by Assarsson et al. [7]. Due to the
limited performance of shadow volumes this is not usable for complex scenes.

Although these shadow rendering algorithms can also be used for out-of-
core rendering, appropriate LODs have to be selected for the shadow cast-
ers. So far there is no explicit LOD selection and prefetching algorithm for
out-of-core models that guarantees a pixel correct location for the shadow
silhouettes. Furthermore, there is no LOD selection algorithm that exploits
the special requirements and restrictions of soft shadows.

11. POLYGONAL HLODS

Since a general scene graph (if provided with the scene) may not be op-
timized for rendering, culling and HLOD generation, it is neglected and a
spatial axis aligned bounding box hierarchy is build. In contrast to previous
approaches the whole scene is subdivided with an octree to create this hier-
archy. An octree has the advantage that it is one of the most efficient spacial
subdivisions for numerous culling techniques. The octree can only be used
efficiently for subdivision since the rendering algorithm does not require the
geometry to exactly fit together between two adjacent HLODs in contrast
to [174]. Therefore, no constraints preventing efficient simplification would
need to be minimized. Details of the HLOD generation are discussed in sec-
tion 11.1 and a detailed description on the culling techniques applied is given
in section 11.2.2

To fill the cracks between adjacent HLODs fat borders [10] described in
chapter 4 are rendered along the cuts of each inner HLOD node using two
vertices per boundary vertex. This has the big advantage that the HLOD of a
node can be replaced without changing anything in the geometry of adjacent
nodes and therefore, only information for the new node has to be send down
the AGP bus and the cracks are filled. Since the edges along a cut between
adjacent HLODs do not need to be preserved, the approximation of a view-
dependent level of detail is better and less triangles need to be rendered.
Figure 11.1 demonstrates this approximation and how the fat borders fill the
cracks between adjacent HLODs.

To reduce latency when new geometry needs to be loaded from disk, a
prefetching algorithm is used that runs parallel to the rendering thread. In
contrast to previous prefetching techniques the likeliness of the geometry to
be rendered is estimated not only using its approximation error and therefore
the distance the camera has to travel, but also the angle by which the viewer
has to rotate.

The geometry file format is described in section 11.1.4 and a detailed
description of the prefetching algorithm can be found in section 11.2.3.

124 11. Polygonal HLODs

Fig. 11.1: HLODs rendered for a specific view point (near the head). Note how the
HLODs approximate the continuous view-dependent level of detail and
the fat borders allow better simplification along cuts (left, fat borders
not rendered) compared to [57] (right).

11.1 HLOD generation

In this section the details of the HLOD generation algorithm are described.
To prevent material changes inside a node that are very costly, especially
when using textures, first all objects with the same material are clustered
into a single superobject. Then they are partitioned with a space partitioning
hierarchy, grouping subparts and simplifying them together. It generates a
HLOD (or LOD at leaf nodes) for every node of the hierarchy and stores
them on disk.

For a constant and good rendering performance, the number of rendering
primitives on screen should be output sensitive and bound by a reasonably
low constant. This is fulfilled, when the number of nodes on screen, as well as
the number of rendering primitives per node have a reasonable upper bound.

To restrict the number of nodes on screen, each node should have a min-
imum screen size, when it is selected for rendering. To achieve this, the ap-
proximation error εnode has to be less or equal than a predefined constant
fraction res of the nodes longest bounding box edge enode, where res is a
constant depending on the screen space error εscreen and the desired edge
length of a node on screen escreen. This constant is defined as res = escreen

εscreen
,

where escreen can be optimized for a specific PC system. If the approximation

11.1. HLOD generation 125

error is not less than enode

res
, the number of rendering primitives for each HLOD

representation remains approximately constant and is bound by 1
8
r3es.

When a binary space partitioning is used, the depth of the generated
binary tree becomes high very quickly. This has three disadvantages for ren-
dering:

• The memory requirements to store the hierarchy are high.

• Hierarchical LOD selection and culling algorithms have a high compu-
tational overhead.

• Many HLODs have to be generated and cached on disk.

The depth of the tree can be reduced by either collapsing several levels
of the hierarchy into a single level, or using an octree instead of the binary
tree. The octree has only a third of the depth of the binary tree and the
additional advantage, that its regular structure is optimal for hierarchical
culling. Since the length of the longest bounding box edge halves with each
level of the octree hierarchy, εnode also halves with each level, which yields a
good balance between AGP bus and GPU load.

11.1.1 Overall algorithm

After the combination of all objects with the same material these super-
objects are treated separately. Therefore, the subsequent algorithm is only
described for one such object.

The partitioning algorithm starts with the whole superobject in the root
node of an octree. The object is partitioned by cutting the geometry of each
inner node into eight subparts and storing them in its children if its geometry
contains more than Tmax triangles. The partitioning is repeated until no node
was cut. If no geometry is contained in a node it is marked and not partitioned
further.

The out-of-core partitioning algorithm is described in section 11.1.2.
After the partitioning the geometry contained in the leafs of the octree is

stored on disk. Starting from the geometry of these nodes the HLOD hierar-
chy is build recursively from bottom to top with the following algorithm:

• Gather the simplified geometry from all child nodes that are two levels
below the current node (or the original geometry if there is no HLOD
at this depth). Its approximation error εprev is then the maximum error
of the simplified geometry in these child nodes. Due to the hierarchical
simplification, the points are not generated when a node is simplified.

126 11. Polygonal HLODs

• Simplify resulting geometry as long as the Hausdorff distance εH to
the gathered geometry is less than εs = enode

res
− εprev, where enode is the

edge length of the currents nodes bounding cube and res is the desired
resolution in fractions of enode.

• Store ε = εH + εprev as approximation error in the current node.

By using the children at two levels below the actual node instead of its direct
children the simplified geometry contains less triangles, since the approxima-
tion of the real geometric error is better. This is due to the fact that the
difference between the estimated geometric error ε and the real geometric
error εreal is low, since:

εreal ≥ εs =
enode

res
− εprev

≥ enode

res
− enode

4 · res
=

3

4

enode

res
=

3

4
ε

and thus 3
4
ε ≤ εreal ≤ ε. After all HLODs are generated, each of them is

processed again to replace small triangles with points as described in chap-
ter 9.

Instead of this recursive out-of-core simplification it would also be pos-
sible to use a traditional out-of-core simplification algorithm to build the
HLODs of inner nodes directly from the original geometry during the parti-
tioning process. However, starting with the combination of already simplified
geometry greatly reduces the computation cost and still leads to high quality
drastic simplification. This is due to the fact that the number of triangles in
the gathered geometry remains almost constant independent from the depth
of the current node and therefore, the number of triangles in the base geom-
etry of this part of the object. This means that the total simplification time
depends only linearly on the number of leaf nodes and thus linearly on the
number of triangles in the base geometry.

During the simplification process the geometric error of each nodes geom-
etry is stored along with the bounding box of the contained simplified geom-
etry. Finally the geometry of each node is compressed and stored on disk.
Additionally the skeleton of the scene graph containing the bounding boxes
and the geometric error of the simplified geometry contained in each node,
but not the geometry itself, is stored.

11.1.2 Out-of-core partitioning

Since the whole geometry of an octree node does generally not fit into the
main memory, the vertices and normals of the mesh are stored in blocks and

11.1. HLOD generation 127

swaped in and out from disk using a last-recently-used (LRU) algorithm. The
indices of the triangles need not to be stored in memory and therefore, can
be streamed from the geometry file of the node to the files of its children.
This is accomplished by loading the actual triangle from the geometry file
of the node, cutting it and then saving the generated triangles in the child
geometry files. After the triangle is cut it is not needed any more. Therefore,
only the current triangle and the triangles generated from it are stored in
memory. When first saving all triangles in the root node, the vertex normals
are calculated.

At each partitioning step every triangle is cut with the three planes di-
viding the node into its children and the resulting triangles are stored in the
appropriate geometry files. When a triangle edge is cut, the normal of the
new point is calculated by linear interpolation. Note that new vertices may
have the same coordinates as existing vertices, but this is resolved when the
whole tree is build. After partitioning the triangles of a node and storing it
in its children, the geometry file of this node is not used any more and is
deleted.

When the partitioning is complete new indices for the leaf node triangles
are calculated and duplicate points are removed.

The total complexity of the partitioning algorithm is O(n log n), since on
each level of the octree all triangles need to be processed once.

11.1.3 Simplification of a node

Since disjoint parts of the superobject need to be combined during simplifi-
cation, the simplifier needs to be capable of performing topological simplifi-
cation in order to close the cracks introduced by the partitioning and inde-
pendent simplification in previous stages of the recursion. For this reason the
generalized pair contractions algorithm described by Borodin et al. [22] (see
also chapter 3) is used. Performing standard vertex pair contractions simplifi-
cation on such data could have undesirable results (figure 11.2, left). The use
of generalized pair contractions solves this problem by sewing disconnected
parts together (figure 11.2, right).

Since the input and output number of triangles generally remain constant,
the complexity of the simplification algorithm linearly depends on the num-
ber of nodes in the octree and thus is O(n). Therefore the complete HLOD
generation algorithm has a complexity of O(n log n). The whole partitioning
and simplification algorithm are parallelized. In the given examples eleven
PCs in a network were used for these preprocessing steps.

128 11. Polygonal HLODs

Fig. 11.2: Hierarchical simplification using only vertex pair contractions (left) and
generalized pair contractions (right).

11.1.4 Compression of connectivity and geometry

It would lead to no benefit if the geometry would be stored as a sequence of
simplification operations to construct it from its children two levels below,
since it contains only approximately 1

256
of their vertices and so the number

of operations exceeds the number of vertices in the geometry by a factor of
approximately 200.

For faster rendering the geometry is send as triangle strips to the graphics
card which are generated using a fast striping algorithm [14]. This algorithm
produces stripes of an average length of 6. Therefore, only 8 instead of 18
vertices need to be shaded and transformed. In the optimal case this should
double the frame rate. To compress the vertex positions the bounding cube
of the octree node is stored and the vertex coordinates of its geometry are
discretized relatively to the bounding cube. Since the geometry of inner nodes
is an approximation and already associated with a geometric error ε it does
not make sense to store the vertex positions with a much higher precision.
One bit more than required to encode with an error of ε is spent for inner
nodes (e.g. 8 bit for ε = enode

128
). When the geometry of such a node rendered

an error of ε is projected to at most the desired screen space error εscreen.
Therefore storing the vertices with an error of ε

2
projects on screen to at most

εscreen

2
. Since a screen space error of 1

2
pixel is used this is at most 1

4
pixel and

can thus be neglected.

11.2. Rendering 129

The normals are discretized to 8 bit per coordinate, which does in general
not lead to a loss if image quality. When for example res = 128 is chosen
the vertex coordinates as well as the normals require 3× 8 bit and therefore
48 bit = 12 bytes instead of 48 bytes when using float or even 96 bytes with
double values. Since the coordinates generally need much more space than
the connectivity this reduces the file to almost a third of the original size
even without additional compression techniques.

As a hybrid point-polygon approach is used, two well known compres-
sion schemes are employed. To compress the triangle mesh the Cut-Border
algorithm for non-manifold meshes [75] is used, but similar algorithms like
Edgebreaker [145] would work as well. In order to sufficiently compress the
point data, the approach of Botsch et al. [25] is utilized.

The input data for rendering the fat borders from the cutting and sim-
plification stage consists of all edges along the cuts that need to be filled and
the approximation error of the node. Since the fat border algorithm needs
edge loops or at least edge strips, they are generated when the geometry is
stored on disk.

The edge loops or strips are constructed by starting an edge strip with
the first boundary edge and adding adjacent boundary edges at the start
and end of this strip until no adjacent edge is left. Then the next strip
is started, again with the first remaining boundary edge. If all boundary
edges are concatenated to edge strips the tangent vectors are calculated as
described in chapter 4 with the exception that if an edge strip does not start
and end in the same vertex, only one tangent is generated at the start end
end of the strip.

11.2 Rendering

For rendering the OpenSG [143] scene graph is used which has a build in
support for view frustum and occlusion culling. Since disk access and render-
ing are able to run almost in parallel – even on a single processor system –
two threads are used. The first thread traverses the octree and then renders
the scene. During rendering, the prefetching thread loads geoemetry using a
priority queue described in section 11.2.3.

11.2.1 Scene representation

For scene graph traversal and culling a so called scene graph skeleton is
kept in memory. This skeleton stores parent child relationships, the bounding
box and simplification error for each node. Furthermore, the normal cone, a
pointer to the geometry (if in memory) and the status of the node are kept

130 11. Polygonal HLODs

in this skeleton. In total each node needs 32 bytes in memory as shown in
figure 11.3. Note, that empty nodes do not consume any memory. Using
Huffman compression [96] 120 bit (15 bytes) are needed on average per non-
empty octree node when stored on disk.

Normal cone

16 bytes

Geom. error

4 bytes

Tree struct.

6 bytes

Geom. file info

5 bytes

Status
1 byte

Fig. 11.3: Main memory node layout for out-of-core HLOD rendering.

Nevertheless, in contrast to previous algorithms the whole scene graph
skeleton is not kept in memory. At the point where the depth of the skeleton
reaches 5 (≤ 205 KB), the subtrees are stored on disk and only loaded on
demand. For faster loading these subtrees only have a depth of three before
they branch into different files again. During runtime the root skeleton and
the 100 last recently used subtrees (≤ 253 KB) are kept in memory.

The geometry is loaded on the fly into main memory when it is needed
for rendering. A memory footprint size can be given to the visualization
algorithm and it ensures that no more memory than specified is used by this
method. The only restriction to this footprint size is that the root of the
scene graph skeleton and of course the rendering buffers have to fit into this
amount of memory.

11.2.2 Culling techniques

Additionally to the built-in view frustum and occlusion culling [166], back-
face culling using normal cones [162] is added to the system. For this, the
normal cones of the child nodes are combined during the HLOD generation
to calculate the normal cone of an inner node.

To update the actual scene graph the skeleton is traversed and the fol-
lowing operation are performed:

Backface culling: The normal cone of the node is checked with the view di-
rection. If the normal cone is completely facing away from the viewer,
scene traversal is stopped.

View Frustum culling: The bounding box of the node is checked against the
view frustum and traversal is stopped when it is outside.

11.2. Rendering 131

Occlusion culling: The node is checked for occlusion using its bounding box.
Again traversal is stopped if the node is occluded.

HLOD selection: Based on the distance of the node to the viewer dviewer, the
camera field of view fovy and the window height in pixel hwindow, the
required approximation error εdes for a screen space error of εscreen is
calculated using the following equation:

εdes = dviewer2εscreen

tan fovy

2

hwindow

If the simplification error ε of the node is at most the desired error εdes

the geometry is rendered and traversal is stopped. If the node is not
already in memory, it has to be loaded. The desired error is calculated
by projecting the screen space error εscreen to the point on the bounding
box of the node which is closest to the viewer.

Note that the backface and occlusion culling are optional since they do not
make sense for all scenes (e.g backface culling for models consisting of double
sided triangles and occlusion culling for scenes with low depth complexity).

11.2.3 Memory management

A mutex lock is used to synchronize the rendering and prefetching thread
when the view changes. Additionally this lock is used to prevent the prefetch-
ing thread from using up CPU power during scene graph actualization and
culling. The workflow of the two threads is shown in figure 11.4.

Fig. 11.4: Workflow of the parallel rendering and prefetching thread for a single
processor system.

Two priority queues Qload and Qremove are used to determine which nodes
should be loaded from disk and which of the currently unused geometry nodes
are not needed in consecutive frames and thus can be removed from memory.

132 11. Polygonal HLODs

The priority p of a node in these queues represents the likeliness that
a node will be rendered in the next frame. In contrast to previous ap-
proaches [66, 174] not only the projected error of a node is used as base
for the likeliness while ignoring all nodes outside an extended view frustum.
Instead the minimum angle the viewer would need to rotate to be able to
see the node is calculated and then used to weight the likeliness depending
of the movement of the viewer.

To calculate the priority of a node the scene graph is traversed and the
priority p for all inactive nodes is calculated by the following formula:

pdetail =

{
εdes

εnode
: εdes < εnode

εparent

εdes,parent
: else

p =

{
pdetail : visible

pdetail · arccos α : culled

α = max(θ, γ),

where θ is the angle between the view frustum and the bounding box of the
node and γ the angle between the normal cone and the view plane if the node
is backfacing, otherwise zero. For the 2d case this is shown in figure 11.5.

Fig. 11.5: Angles θ and γ used for visibility prefetching: V represents the view
frustum, B the bounding box and N the normal cone of the current
node.

The priority queues are implemented using bins to speed up sorting, since
all priority values are between zero and one. If the currently used memory
is close to the user set maximum (e.g. 99%) memory is freed by iteratively
removing the geometry of a node from the bin with the lowest priority in
Qremove until enough space is free (e.g. 5% of the maximum). Note, that if
enough memory is free, Qremove does not need to be set up. Then the geometry
of the node from the bin with the highest priority in Qload is loaded. The
loading is repeated until either the view changes – since this changes the
priorities – or the bin index of the current node equals the bin index of the
last removed node.

11.2. Rendering 133

Since the number of nodes is very high for complex scenes the priority
is calculated by traversing the octree and traversal is stopped as soon as
p < pstop for a given pstop (in the actual implementation this is 0.5) and
εdes < εnode. All nodes of the hierarchy not reached by this traversal are then
assumed to have a priority of zero. Note that occlusion culling is not used to
calculate the priority of a note, because occlusion can change very abruptly
between frames.

To predict the motion of the viewer, the fact that natural movements
are continuous up to at least the second derivative is used. This movement is
approximated by quadratic functions using the view position and direction of
the last three frames. Based on this movement the view position and direction
of the next frame are predicted to perform a more efficient prefetching. This
leads to the following equation to estimate the position Pi+1 and direction
~di+1 in the next frame:

~vi − ~vi−1 = ~vi+1 − ~vi with ~vj =
Pj − Pj−1

tj − tj−1

~vi+1 = 2~vi − ~vi−1

Pi+1 − Pi

ti+1 − ti
= 2

Pi − Pi−1

ti − ti−1

− Pi−1 − Pi−2

ti−1 − ti−2

Pi+1 = Pi + (ti+1 − ti)

(
2
Pi − Pi−1

ti − ti−1

− Pi−1 − Pi−2

ti−1 − ti−2

)
~d∗i+1 = ~di + (ti+1 − ti)

(
2

~di − ~di−1

ti − ti−1

−
~di−1 − ~di−2

~di−1 − ~di−2

)

~di+1 =
~d∗i+1

‖~d∗i+1‖

Since it is not possible to predict the time ti+1 when the next frame will
be displayed, it can be assume that ti+1 − ti = ti−ti−2

2
.

This prediction works well as long as the user does not release the mouse
button and thus performs an abrupt stop or starts to press a button while
moving the mouse. The first case is no problem for the prefetching algorithm,
since the geometry for the current view position is already in memory. The
second case cannot be solved by any movement prediction algorithm since
there is no data available to predict the movement from when the viewer
does not perform movements.

Note, that it is not necessary to perform a prefetching for the subtrees of
the scene graph skeleton since they are already loaded during the geometry
prefetching.

134 11. Polygonal HLODs

11.3 Results

The performance of the system is evaluated with different models (see ta-
ble 11.1) from the Stanford Scanning Repository [117] (Armadillo, Happy
Buddha, Dragon and Lucy) and the Digital Michelangelo Project [116]
(David and St. Matthew) on an Athlon 3000+ PC with 512 MB memory
and an ATI Radeon 9800XP. As parameters for the partitioning algorithm a
maximum number of triangles per node of Tmax = 1024 and a ratio of error
to node size res = 256 (max. 128 pixel per node in image space) are chosen.
For rendering pstop = 0.5, εscreen = 0.5 at 1024×768 pixel and 256 megabytes
as memory footprint size are used. Since the depth complexity of the models
is low and occlusion culling has a significant overhead only view frustum and
backface culling were used for these models.

The camera paths used for testing are rotations of the object and zooms
to interesting parts. To evaluate the performance of the out-of-core render-
ing system it is compared to in-core rendering (if possible for the model) and
to out-of-core rendering without crack filling. For the in-core rendering all
geometry is loaded together with the scene graph skeleton and the memory
management thread is not started. Table 11.1 shows the frame rates for the
tested models at a resolution of 1024×768. Note that the recently developed
TetraPuzzles [31] can only achieve a comparable frame rate at the same res-
olution with an approximately five times higher screen space error (2.5 pixel)
for the St. Matthew model.

model #triangles original HLODs fat constrained
(raw data) (comp.) borders simplification

Armadillo 345.944 11.9 MB 1.1 MB 128 fps 123 fps
Dragon 871.414 29.9 MB 4.9 MB 99 fps 94 fps
Happy Buddha 1.087.716 37.3 MB 7.5 MB 81 fps 71 fps
David 2mm 8.254.150 283.4 MB 35.5 MB 64 fps 50 fps
Lucy 28.055.742 963.2 MB 148.4 MB 55 fps 27 fps
David 1mm 56.230.343 1.9 GB 321.3 MB 57 fps 12 fps
St. Matthew 372.422.615 12.5 GB 1566.2 MB 53 fps 5 fps

Tab. 11.1: Triangle numbers of models used for testing, their size on disk and frame
rates for different rendering algorithms.

Especially interesting here is the comparison between the two David mod-
els at different reconstruction resolutions since the same camera path is used
for both of them to show how excellent this method scales with the size of the
input model. For relatively small models the frame rates of this algorithm and
the constrained simplification [174] are almost identical. But as the number
of triangles increases, the performance drop due to the O(

√
n) complexity

11.3. Results 135

of the constrained simplification compared to the O(log n) complexity of the
presented approach becomes noticeable. Of course the achieved frame rates
also depend on the velocity of the viewer. For the recorded natural movement
of the object almost no cache misses occurred. Therefore, a reduction of the
velocity does not lead to higher framerates as approved by different tests.

Figure 11.6 shows the frame rates and memory management statistics
11.1of the St. Matthew statue in detail for a freehand movement of the model.

The memory management statistics show the memory needed for the actual
rendered geometry (visible bytes: black) the size of the prefetched geometry
(bytes prefetched: dark grey) and the size of the geometry that was loaded
during octree traversal (bytes missed: light grey).

Fig. 11.6: Frame rates for the out-of-core rendering (top) and memory management
statistics (bottom) of the 1

4mm St. Matthew statue.

The memory management statistics show that the prefetching works very
well and only few misses occurred during the movement. The algorithm pro-

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/11-1.avi

136 11. Polygonal HLODs

vides a good balance between GPU and CPU load since the GPU load is
almost 100% and the CPU load is 95% on average. Since only few geom-
etry is replaced between frames the AGP bus load is low, leaving enough
bandwidth for textures.

12. NURBS MODELS

A straightforward approach to render complex trimmed NURBS models
would now be to generate a very fine tessellation and then use the hierarchical
out-of-core simplification and rendering techniques described in the previous
chapter. However, this has the disadvantage that each time a finer level of
detail is required than what is available, the complete model has to be tessel-
lated again and a new hierarchy has to be built. Since during preprocessing it
is usually not possible to estimate the finest LOD needed, this is a significant
drawback. A second, more severe restriction, is that interactive modifications
are impossible, since any editing operation would require rebuilding of the
HLOD hierarchy. Even the fastest currently available out-of-core simplifica-
tion algorithm would already need hours to rebuild all HLODs, but it is not
able to guarantee a screen space error. High quality out-of-core simplification
guaranteeing a screen space error at least for the geometry however, needs
hours to days of preprocessing, which makes it totally unsuitable for editing.

A possible method to prevent repeated hierarchy generation would be
the runtime tessellation of the NURBS surfaces, but as already pointed out
earlier, tessellation algorithms that generate a reasonable amount of triangles
are too slow in practice for very complex models.

12.1 Hierarchy Generation

For out-of-core rendering with HLODs, a space partitioning hierarchy – i.e. a
bounding box hierarchy – is required to group objects together hierarchically.
For NURBS surfaces this grouping allows to combine several patches into a
single object during hierarchy generation and thus reduces the number of
triangles below the number of patches in coarse LODs.

Again, to prevent costly material changes during rendering – especially
when textures are used – all NURBS surfaces of each material are grouped
into a separate root node and then each of these groups is partitioned using
the novel lazy octree data structure described in section 12.1.1.

After the lazy octree is built for each material, the tessellations of the
root nodes are generated. The algorithm to build a HLOD representation
works by first generating a tessellation (see section 12.1.3) for each surface

138 12. NURBS Models

contained in the current node and then optimizing the collected geometry
for fast rendering (see section 12.1.4).

12.1.1 Lazy octree data structure

A traditional octree, as used to speed up ray tracing, subdivides the nodes
until a maximum number (e.g. 10) of objects (e.g. NURBS surfaces) intersect
with each node. An object is then stored in all leaf nodes which it intersects.
This is suitable – however, not optimal – for rendering, but it has the draw-
back that larger surfaces are stored in several leaf nodes.

In a HLOD hierarchy this would lead to the problem that patches need
to be tessellated for each of these leaf nodes they intersect. Additionally,
the HLOD hierarchy requires a renderable representation of each surface
contained in the child nodes for every level of the hierarchy. For larger surfaces
this becomes worse with each step down the hierarchy since they intersect an
increasing number of nodes. To support editing, parts of this hierarchy need
to be rebuild on the fly and therefore, a standard octree is not applicable in
this case.

To solve these problem, a lazy octree is build. Instead of storing a NURBS
surface in all child nodes it intersects, it is only stored in that child node, in
which its bounding box center is contained. To be able to still apply standard
cell based lod-selection and cell based culling, the cell hat to be extended
until it is of the same size as the bounding box of all contained patches. This
problem is solved by simply using the bounding box of all contained patches
to define the extent of the cell. This leads to a hierarchy of overlapping cells
of an octree which is called lazy octree (see figure 12.1).

 node bounding box

 octree subdivision

 patch midpoint

 child bounding box

Fig. 12.1: Subdivision of NURBS surfaces of an octree node into its children.

But still one problem remains. A node cannot become smaller than the
largest surface it contains (e.g. surface 1 in figure 12.2) and therefore the
longest bounding box edge cannot approximately halve with each step of the
hierarchy. This is solved by storing a surface for which any of the bounding
box edges is longer than half of the corresponding edge of current nodes

12.1. Hierarchy Generation 139

bounding box as direct NURBS child of this node instead of storing it in
the octree children. This means, that the maximum overlap can be at most
half of the desired child node size. Note, that due to their size these direct
NURBS children do not need to be grouped together in the nodes of the
hierarchy that are below their parent node.

Altogether, to store the hierarchy information, each node stores its eight
child nodes (HLODs) and an arbitrary number of direct NURBS children.

H0

H1 H2 N1

N2 N3 N4 N5

Fig. 12.2: Simple scene with corresponding HLOD hierarchy.

Since the octree is not complete, the memory requirements are reduced
by storing the number of HLOD children for each node and thus building
n-ary tree with n ≤ 8. If a child node would only contain a single NURBS
surface, the required memory can be further reduced by adding this surface
as a direct NURBS child. A simple example of the whole HLOD hierarchy is
shown in figure 12.2, where the large NURBS surface (number 1) is stored
as a direct child of the root node.

The algorithm to build the lazy octree first calculates the bounding box
of each trimmed NURBS surface as described in section 12.1.2. Then all
surfaces of each material are gathered to be processed for the material root
nodes. At each step of the lazy octree generation algorithm the following
steps are performed:

• Calculate the node bounding box as union of all surface bounding boxes
it contains and split this bounding box into eight child nodes.

• Add surfaces for which any bounding box edge is longer than half of
the corresponding nodes bounding box edge as direct NURBS children
to the current node and remove them from further processing.

• Distribute each NURBS surface that is not added as a direct NURBS
child to the child node in which its bounding box center is contained.

140 12. NURBS Models

• If a child node contains only a single surface, add this surface as a direct
NURBS child to the current node and remove it from the child node.

• Remove all empty child nodes to generate the n-ary tree.

• Continue building the lazy octree with the non-empty child nodes.

12.1.2 Bounding box calculation

To build the lazy octree, the bounding boxes of all patches need to be known.
The convex hull property of NURBS surfaces states, that the surface always
lies within the convex hull of its control points and therefore within their
bounding box. For trimmed NURBS surfaces – especially when they have
a high degree and/or they are heavily trimmed and thus consist only of a
fraction of their domain – this can be a significant overestimation. Therefore,
a more accurate bounding box is calculated by tessellating all surfaces at
a coarse approximation error εinit and extending the bounding box in each
direction by this εinit. If the bounding box diagonal (before the extension)
is larger than 100εinit the patch is tessellated again with an approximation
error of 1% of the bounding box diagonal to generate a tighter bounding
box. After this, the file offset position (in the original NURBS file) and the
averaged surface normal of each NURBS surface are stored – along with the
surface bounding box – into an out-of-core data file.

12.1.3 Tessellation

To generate a HLOD representation, the NURBS patches are tessellated in-
stead of simplifying a pre-generated very fine tessellation, since at a coarse
level of detail it is much faster to estimate the approximation error of a
NURBS surface, than calculating the Hausdorff distance to the very fine
base tessellation. This is due to the fact, that the approximation error of a
face to a NURBS patch with c1 × c2 control points can be calculated in the
constant time O(c1 · c2), independent of the final accuracy of the tessellation.
The computation of the Hausdroff distance on the other hand, requires to
consider all removed faces close to the currently processed triangle and is
therefore O(r), where r is the number of removed triangles that need to be
considered. If the generated tessellation contains n vertices, this leads to a
total time of O(n) for the tessellation and O(v0 log v0

n
), where v0 is the num-

ber of vertices in the base tessellation, for the simplification approach. Most
of the time, an approximation with an error orders of magnitude less that the
minimum approximation error is required. Therefore, the tessellation is much
faster, since it needs to generate less vertices than the simplification needs

12.2. Rendering 141

to remove and the time per vertex is constant. To generate as few triangles
as possible with high visual quality the already described normal preserving
tessellation algorithm is used.

If a surface is smaller than the approximation error, it does not make sense
to tessellate it, since it will only contribute to a single pixel on the screen.
Therefore, in this case exactly one 3D point in the center of the bounding
box of the surface is created. The average normal of the NURBS surface,
which is stored in the out-of-core data file during bounding box calculation,
is used as the normal for shading of this point.

12.1.4 Geometry optimization

After all surfaces contained in a node are tessellated with the desired approx-
imation error εdesired, all triangles smaller than or equal to three pixel are
replaced by points placed at their corners. Vertex clustering is also performed
in order to combine points that would contribute to the same pixel into a
single point with an averaged normal. Since for non leaf nodes the screen
space error is bound to be at most half a pixel, the width of the fat borders
is bound to be at most one pixel. Therefore, they are replaced with poly-lines
for faster rendering.

12.1.5 Caching NURBS LODs

When a direct NURBS child of a node is selected for rendering, the required
approximation error is less than the εnode of the parent node and can be
arbitrarily low. Therefore, it is impossible to use a single representation of the
surface for rendering. To prevent repeated tessellation of a NURBS surface,
each surfaces stores a set of tessellations (LODs) for different approximation
errors, where additional LODs are generated on the fly, when required. To
achieve a good balance between AGP bus and GPU load, the approximation
error halves with each additional LOD similar to that of the HLOD nodes.
For a smooth transition between HLOD and NURBS LOD, half of the parent
HLOD nodes approximation error is used for the coarsest LOD of the NURBS
surface.

12.2 Rendering

For rendering the lazy octrees corresponding to the different materials are
mapped onto a scene graph using the OpenSG scene graph API [143].

142 12. NURBS Models

12.2.1 LOD selection and culling

For level of detail selection and culling the following operations are performed
for each scene graph node, when the rendering action traverses the scene
graph hierarchy:

• If the node is outside the view frustum or occluded by already rendered
geometry – the build in occlusion culling [167] of OpenSG is used – the
node is not rendered and the subtree is skipped.

• The desired approximation error εdes for a screen space error of half a
pixel is calculated.

• If at least one child node is not currently in memory the node is
rendered. When the screen space error is above half a pixel – i.e.
εnode > εdes – fat borders are used to fill the gaps.

• If the approximation error of the node εnode is less or equal εdes, the
node is rendered with lines to fill the gaps and the subtree is skipped.
Otherwise an appropriate LOD for the direct NURBS children is se-
lected and rendered and the traversal continues with the child nodes.

Since the desired approximation error εdes becomes zero if the viewer is
inside the bounding box of NURBS surface, the minimum approximation
error is restricted to 1nm. Note, that this restriction is not used for the
HLOD nodes of the lazy octree, and can also be changed interactively during
runtime.

12.2.2 Out-of-core management

Since similar to the polygon based out-of-core rendering geometry has to be
streamed from disk, a priority based prefetching is used in order to load data
for subsequent frames. The prefetching again runs in a second thread parallel
to the rendering and uses the same priorities as in chapter 11.

Since not all levels of detail need to be generated during the preprocessing
stage, a HLOD or a NURBS LOD is build on demand, when it is requested for
loading and not already cached on disk. Since the tessellation of a trimmed
NURBS surface takes about 50ms on average, all HLODs for inner octree
cells and the first LOD for each NURBS surface should be generated during
preprocessing for interactive LOD response.

For each inner HLOD or leaf LOD, the generated geometry is saved to
disk after it is tessellated. For fast loading the vertex array and the indices
are simply stored on disk using Huffman compression.

12.3. Selection and Editing 143

12.2.3 Target frame rate mode

A very simple approach to attempt reaching a user specified target frame
rate is using a feedback loop to adjust the desired screen space error. If the
rendering time for the last frame was too long, the detail is reduced – i.e. the
desired screen space error is increased – by 5%. If the frame time was more
than 20% lower as the desired, the desired screen space error is decreased by
2%. The change to finer detail has to be faster than the change to coarser,
since the performance breaks down for a single frame, when the LOD/HLOD
currently selected for rendering changes. This is due to the fact, that the new
geometry needs to be send to the graphics card via the AGP bus.

12.3 Selection and Editing

When the user switches to editing mode and clicks on the model, the scene
graph hierarchy is traversed to find the first hit of the selection ray with
the scene. If this hit occurred on an inner HLOD, the traversal of the octree
is continued unto the leaf level of the lazy octree. During this traversal the
required HLODs and LODs are loaded or generated. Note, that if all HLODs
were generated during the preprocessing, the selected surface is found within
a fraction of a second.

To allow editing of the model the LOD selection algorithm needs to be
modified to not render a HLOD representation containing a selected surface.
The selected surfaces are then rendered using on the fly tessellation gen-
erating a new approximation whenever they are modified or the viewpoint
changes.

When a surface is deselected it is checked for modification. If a modi-
fication was applied, the modified trimmed NURBS surface is stored in a
separate file. Then all HLOD nodes containing the old surface are marked
for rebuilding. During traversal of the octree, a HLOD node that is marked
is not selected for rendering to prevent the old surface from being displayed.
Then the old surface is removed form the lazy octree, the bounding box and
the average normal of the surface are updated and the new surface is added
to the octree according to its midpoint. Additionally to the HLOD nodes
containing the old surface, all HLOD nodes containing the new surface are
marked for rebuilding.

Note, that the prefetching priority of the parent nodes of the modified
surface will be high which quickly increases the rendering time again after a
modification was made.

When the program exits, the modifications are saved to the original
NURBS file an the out-of-core data file is updated according to these changes.

144 12. NURBS Models

12.4 Results

To evaluate the performance and image quality of the out-of-core NURBS
rendering algorithm it is used for trimmed NURBS models of different com-
plexity (see table 12.1 and figure 12.3) using an Athlon 3000+ with 1 gigabyte
of memory and a Radeon 9800 XP. For a better comparison with algorithms
based on Bézier patches the number of these patches that would be generated
using knot insertion is also given. For the complexity however, the number
of control points is much more relevant, since this also reflects the degree of
the surfaces and the required memory to store the NURBS data.

mate- NURBS Bézier control model
model rials patches patches points size
Golf 9 8,036 17,736 324,358 29MB
C-Class 24 67,571 396,535 5,555,006 484MB
parking lot 24 1,081,136 6,344,560 88,880,096 7.6GB

Tab. 12.1: Models used for evaluation.

Note, that the model size refers to the pure NURBS data without storing
any tessellation.

The preprocessing times to generate the lazy octree hierarchy and the
HLOD representations are shown in table 12.2. After generation of the root
HLODs, the model can be rendered, but additional HLODs have to be built
during rendering, reducing the precision adaption time. Therefore, it is also
possible to generate all HLODs during the preprocessing and only tessellate
single surfaces on the fly.

model LOD hierarchy root HLODs all HLODs
Golf 1m 8s 1m 12s 9m 4s
C-Class 15m 30s 11m 56s 1h 24m 8s
parking lot 4h 9m 17s 2h 32m 44s 19h 26m 17s

Tab. 12.2: Preprocessing times.

The hierarchy and HLOD generation is required only once for each
NURBS model and then stored on disk. If the model is edited the modi-
fications are applied to the out-of-core data file as well.

12.4.1 Frame rates

To evaluate the average performance of the system, a previously recorded
camera path is used. Two pictures of this path are shown in figure 12.4.

12.4. Results 145

Fig. 12.3: Volkswagen Golf, DaimlerChrysler C-Class and parking lot models used
for evaluation. The lower right image shows a closeup of the C-Class
windscreen wiper.

The algorithm is compared to on the fly tessellation (when possible) and

12.1

rendering a tessellated model with a fixed accuracy of 1mm, for which the
parking lot scene needs to use instantiation since the whole geometry of all
16 cars cannot be kept in main memory and the graphics card.

Fig. 12.4: Two screenshots from the C-Class camera path used for evaluation.

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/12-1.avi

146 12. NURBS Models

model out-of-core on the fly 1mm accuracy
Golf 61.72 (31.25) 18.02 (11.09) 49.72 (41.67)
C-Class 34.92 (19.61) n.a. 26.24 (20.75)
parking lot 8.02 (5.79) n.a. 2.19 (1.48)

Tab. 12.3: Average frame rate along camera path (min. is given in parenthesis).

The average and minimum frame rates listed in table 12.3 show that this
method performs even better than rendering a pre-tessellated model with an
accuracy of only 1mm.

12.4.2 Image quality

To evaluate the quality of the generated tessellations, reflection lines and
isophotes images created using this algorithm are compared to those using a
fixed 1mm accuracy model in figure 12.5.

Fig. 12.5: Reflection lines and isophotes with fixed 1mm accuracy (left) and the
out-of-core rendering algorithm (right).

The image quality is also measured as the screen space error of the cur-
rently rendered LODs. Since a specific screen space error for arbitrarily fast

12.4. Results 147

movements cannot be guaranteed – especially when not all HLODs are pre-
generated – the image quality can decrease during movements. The screen
space error along the camera path is shown in table 12.4.

model out-of-core on the fly 1mm accuracy
Golf 0.51 (1.13) 1.32 (3.67) 0.86 (2.31)
C-Class 0.73 (6.09) n.a. 15.49 (44.42)
parking lot 1.33 (8.56) n.a. 15.49 (44.42)

Tab. 12.4: Average screen space error along camera path (max. is given in paren-
thesis).

Although the performance of the out-of-core NURBS rendering is even
higher than rendering the pre-tessellated models, the screen space error is
significantly lower.

12.4.3 Target frame rate mode

Since the frame rate for the Golf model is already always real-time with a
screen space error of 0.5 pixel, the target frame rate mode is only tested
for the C-Class model and parking lot scene. Table 12.5 shows the achieved
frame rate and screen space error for a target frame rate of 25 fps.

model frame rate screen space error
C-Class 35.19 (23.17) 0.73 (6.09)
parking lot 24.25 (19.23) 3.38 (8.56)

Tab. 12.5: Average frame rate (min. in parenthesis) and screen space error (max.
in parenthesis) when using a target frame rate of 25 fps.

Note, that the maximum screen space error does not change, since it is
caused by missing HLODs that could not be loaded fast enough.

12.4.4 Selection and editing

The response time of a selection is typically less than ten seconds when not
all HLODs are generated in the preprocessing stage. If the required HLODs
are cached on disk, the selected surface is found within a fraction of a second.
The modification of a NURBS surface is instantly applied to the model, since
the coarsest LOD of that surface is generated when the user exits edit mode.
The reduced performance until all HLOD containing the modified surface are
regenerated is hardly noticeable and therefore no drawback of this algorithm.

Figure 12.6 shows the interactive editing of the C-Class front light.
12.2

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/12-2.avi

148 12. NURBS Models

Fig. 12.6: Editing of the C-Class front light.

To support real-time editing the selected patches could be rendered using
the GPU based tessellation algorithm described in chapter 6.

13. STREAMING TECHNIQUES

In this chapter the modifications to the out-of-core rendering system are de-
scribed to support streaming and prefetching over a low bandwidth network.
No changes need to be made to the scene data structure since all informa-
tion necessary for streaming view-dependent out-of-core rendering is already
stored in the scene graph skeleton.

13.1 Rendering

Additionally to the culling and level of detail selection the rendering algo-
rithm has to check if all child nodes have been loaded over the network.
Therefore, it checks if all unculled child geometries are present in memory
when the geometric error of the currently traversed node is too high and it is
not culled. If child geometry files need to be loaded the rendering cannot wait
for them like the local out-of-core HLOD viewer, so the coarser approxima-
tion of the current node is rendered and traversal of the children is skipped.
Due to this, the screen space error will be higher than the desired threshold
until all required geometry has been streamed. Note that for the out-of-core
NURBS rendering algorithm this is already the case, as the rendering thread
cannot wait for the tessellation to finish.

13.2 Streaming and Prefetching

The out-of-core HLOD rendering framework already uses a priority based
prefetching. Therefore, the streaming of currently required geometry can be
integrated seamlessly.

Since no geometry is loaded during the traversal of the octree hierar-
chy to collect the currently rendered nodes, the streaming and prefetching
thread can operate completely asynchronously with the exception of remov-
ing geometry from memory. The modified workflow of the two threads is
shown in figure 13.1.

Note that due to long loading times is is possible that several frames
are rendered while the geometry of a single node is loaded. However, since

150 13. Streaming Techniques

 Rendering tread Streaming tread

Traverse Notify view change
Free lock Stream geom.

Render

Request lock

Free memory
Free lock

Stream geom.

Queue setup

Request lock

Normal cone

16 bytes

Geom. error

4 bytes

Tree struct.

6 bytes

Geom. file info

5 bytes

Status
1 byte

Fig. 13.1: Modified workflow of the parallel rendering and streaming thread.

the queue setup and memory freeing are very fast (< 1 ms) and are not
influenced by the network bandwidth, the display of a frame can only be
slightly delayed, because the octree cannot be traversed to set up rendering,
while geometry is removed from memory.

 Rendering tread Streaming tread

Traverse Notify view change
Free lock Stream geom.

Render

Request lock

Free memory
Free lock

Stream geom.

Queue setup

Request lock

Normal cone

16 bytes

Geom. error

4 bytes

Tree struct.

6 bytes

Geom. file info

5 bytes

Status
1 byte

rendered nodes

Prefetching

Streaming

Fig. 13.2: Nodes marked for prefetching with out-of-core rendering (black) and
streaming out-of-core rendering (black & grey).

Since the prefechting priority equation only fetches nodes in nearby octree
levels of the currently rendered HLODs (see figure 13.2) it has to be modified
slightly to load the geometry for the coarse octree nodes first because they
need to be rendered if a visible child of a node is missing. A simple solution
to this problem is to check for which nodes the geometry needs to be loaded
in order to reach the desired screen space error and then sort these nodes
depending on their depth in the octree (nodes close to the root node first).
Although this in general leads to a good iterative refinement of the currently

13.3. Results 151

visible part of the model the result can be improved by using the level of detail
and culling information of the nodes. The modified equation then looks as
follows:

pdetail =

{
2− εdes,parent

εparent
: εdes,parent < εparent

εparent

εdes,parent
: else

The rest of the equation remains as for the local case. Note that pdetail

is now between zero and one for nodes with finer geometry than required
and between one and two for nodes with coarser geometry. Therefore, the
prefetching only starts when all currently required geometry files have been
loaded. However, due to the non zero priority for culled coarse geometry
the refinement may become slightly slower for zoomed views, but the screen
space error is not as sensitive to movement as with the depth-based sorting,
since this streaming priority leads to a prefetching of coarse geometry.

The streaming for the out-of-core NURBS rendering system cannot only
be used to load tessellated nodes from a server, but also for selective trans-
mission of the original NURBS data. When required levels of detail are not
already stored on the server, the underlying NURBS surfaces can be streamed
and tessellated to produce the missing HLOD. This new node geometry can
then either be send back to the server, forming a common cache for several
work places, or kept in a local cache to reduce network traffic. Note, that it is
also possible to only provide pre-tessellated geometry for download and not
transmit the original NURBS data.

For the network communication the HTTP protocol version 1.1 including
persistent connection and byte-range reading [60] is used, since the data is
always requested as range from the concatenated geometry files. Due to this
it is possible to use any standard web server and no separate streaming server
is required.

13.3 Results

To demonstrate the robustness of the streaming HLOD viewer it is tested
with the Lucy model from the Stanford 3D Scanning Repository [117], the
1mm David model from the Digital Michelangelo Project [116], and the C-
Class model without local cache and NURBS file. For the first two model the
same recorded camera path as in chapter 11 and for the last the path as in
chapter 12 was used.

Figures 13.3 and 13.4 show that the screen space error is low even for a
standard ISDN modem and acceptable for a 56kbps voice modem. For both

152 13. Streaming Techniques

cases there are even situations where no further prefetching is required which
shows that the transmission bandwidth is sufficient.

Fig. 13.3: Network bandwidth and memory consumption of currently rendered
geometry (top) and screen space error (bottom) for the David 1mm
model using 56kbps network bandwidth (voice modem).

The maximum visible error and the rendering performance for the differ-
ent models and bandwidths are show in table 13.1. Note that the framerate
of the streaming HLOD rendering is always slightly higher than for the local
renderer since coarser geometry is rendered for some frames.

Figure 13.5 illustrates the view-dependent streaming. The upper left im-
age shows the initial geometry file for the whole model. Its resolution is
adapted to be displayed with 0.5 pixel screen space error at a size of 32 pix-
els and is transmitted first. The screenshots are taken immediately at the
start and after 1 second, 5 seconds and 20 seconds of streaming at 128kbps.
Rightmost is a zoomed out view showing the finest levels of detail available

13.3. Results 153

Fig. 13.4: Network bandwidth and memory consumption of currently rendered
geometry (top) and screen space error (bottom) for the David 1mm
model using 128kbps network bandwidth (ISDN modem).

after 20 seconds of streaming with the view fixed on the head. The level of
detail is color coded and shown for the zoomed out view. Note that outside
the current view frustum few geometry files are streamed over the network
as explained in section 13.2. Therefore, as shown in the rightmost image the
bottom of the statue was transmitted on the coarsest possible level. Never-
theless, its geometry is already a good approximation since it is generated to
be displayed with up to 128 pixel height on screen.

154 13. Streaming Techniques

Model, Bandwidth max. error avg. fps min. fps
Lucy, 56kbps 1.378 71.7 51.0
Lucy, 128kbps 0.848 67.1 45.0
Lucy, 768kbps 0.846 64.3 38.0
Lucy, local 0.500 55.0 31.0
David 1mm, 56kbps 1.393 63.2 38.0
David 1mm, 128kbps 0.967 58.3 37.0
David 1mm, 768kbps 0.660 57.4 37.0
David 1mm, local 0.500 57.0 36.0
C-Class, 56kbps 9.896 36.5 22.0
C-Class, 128kbps 9.135 36.1 20.0
C-Class, 768kbps 7.308 35.5 20.0
C-Class, local 6.090 34.9 19.0

Tab. 13.1: Maximum visible error and framerates for different models on an Athlon
3000+ PC with a Radeon 9800XP (after an initial streaming of 20
seconds).

Fig. 13.5: View-dependent streaming.

14. SHADOWS

Independently of the algorithm used to generate the shadow effect, the parts
of the scene casting shadows have to be determined and an appropriate level
of detail has to be selected.

For point or directional light sources, the level of detail required for a
shadow caster depends on quantities shown in figure 14.1 (left). Unfortu-
nately, for shadows the approximation error depends not only on the dis-
tances between light source, caster and receiver but also on the angle of the
incoming light and the surface normal of the receiver. If the incoming light
is nearly perpendicular to the surface normal even the slightest change of
the caster position leads to an arbitrarily high change in the shadow location
on the receiver. Fortunately, this is only a problem if the receiver is highly
specular since in all other cases the surface does not receive much irradiance
from the respective light source. Therefore, by guaranteeing an accuracy for
the shadow location for cases where the surface normal is nearly parallel to
the incoming light direction to be better than 1/2 a pixel the algorithm in-
herently guarantees the accuracy to be better than 1 pixel in image space
even for an angle of 60◦ between surface normal and incoming light. Please
note that this angle on the other hand leads to a decrease of the irradiance
from this light source by half, so the product of error and relative intensity
remains constant.

From figure 14.1 (left) the following maximum approximation error εh of
the shadow caster depending on the desired approximation error εr of the
corresponding shadow receiver can be derived:

εh =
εrdl

dl + dp

Note, that for directional light sources (i.e. dl =∞), εh equals εr.
When using an area light source, the required approximation accuracy

for a shadow caster depends on the relations shown in figure 14.1 (right).
If an intensity change of γi is allowed, this leads to the following projected
approximation error εp:

εp = γisp = γi
sldp

dl

156 14. Shadows

�h

dl

dp

�r

sl

dl

dp

�i

sp

� ���p i ps

Fig. 14.1: Shadow caster approximation error for hard shadows (left) and soft
shadows (right).

The corresponding approximation error εi is the back-projection of this offset
onto the shadow caster:

εi =
εpdl

dl + dp

= γi
sldp

dl + dp

To combine these error measures, εh and εi are simply added. This means,
the shadow edge is allowed to have an offset of at most εscreen pixel offset
on screen and an intensity change of at most γi. This is reasonable, since
for hard shadows (i.e. a very small light source) εi has to be zero. So the
maximum allowed approximation error εc for a shadow caster is:

εc =
εrdl

dl + dp

+ γi
sldp

dl + dp

=
εrdl + γisldp

dl + dp

14.1 Shadow Generation

During rendering the coarsest possible LOD is chosen for the shadow casters.
Since the appearance of an object is not relevant for shadow computation,
a purely geometrically simplified HLOD representation can be used without
loss of accuracy. The most general approach to effectively generate shadows
on a single CPU are the so called shadow maps. This algorithm uses the
hardware z-buffer to generate the required occlusion information. This tech-
nique however suffers from aliasing artifacts. To reduce artifacts that occur
if the user zooms in (perspective aliasing) perspective shadow maps can be

14.2. Prefetching 157

used, where the scene is first transformed by the perspective view projection
and then rendered from the position of the transformed light source.

Since the approximation error of all shadow receivers (i.e. all visible nodes)
has to be known for both types of light sources, the octree of the model is
traversed and level of detail selection and culling is performed. Then the
view-aligned bounding box for each hierarchy level of the visible nodes is
computed. These bounding boxes are tight due to the relation of error and
cell size and the regular octree structure. For each of these bounding boxes a
minimum view frustum containing the whole box is calculated from the light
source. These view frusta are then used for culling and level of detail selection
of the shadow casters. To estimate the distance between a shadow caster
and its first visible shadow receiver, the distance of the caster’s cell to the
current view frustum is used. This means that for all visible cells the shadow
caster approximation error εc is always less or equal to its approximation
error used for rendering εr. Therefore, the self-shadowing artifacts described
in [72] cannot occur.

To render the shadow the light space perspective shadow map algo-
rithm [181] with a sufficient resolution to guarantee at most 0.5 pixel screen
space error for shadow boundaries (on a surface orthogonal to the light direc-
tion, see the above section) is used. For soft shadows the penumbra quads [5]
combined with the distortion of the light space perspective shadow map ap-
proach is used.

Since the shadow map generation only requires a geometric approximation
of the model the normal preserving error measure is not required to generate
shadow caster LODs. This leads to a considerable speed-up of the shadow
map generation.

14.2 Prefetching

To support moving light sources, the same priorities as used to load geometry
for rendering are used for the view frusta of each light to prefetch shadow
caster geometry. Since both translation and rotation of the viewer result
in rotations and zooms of the view frusta of the light sources as shown in
figure 14.2, a modification of these priorities is not necessary to support
prefetching of shadow caster geometry for a moving viewer.

14.3 Results

In table 14.1 the frame rates of the out-of-core rendering algorithm without
shadow and with different types of light sources are compared, while fig-

158 14. Shadows

Fig. 14.2: Change of light sources view frusta due to rotation (left) and translation
(middle and right) of the viewer. To simplify matters only one light
source frustum is shown.

ure 14.3 shows the frame rates for the St. Matthew model without shadow
and with the two different light source types.

model no shadow point light area light
Dragon 99 fps 75 fps 20 fps
Happy Buddha 81 fps 70 fps 20 fps
David 2mm 64 fps 55 fps 21 fps
Lucy 55 fps 40 fps 15 fps
David 1mm 57 fps 45 fps 17 fps
St. Matthew 53 fps 37 fps 13 fps
Golf 62 fps 49 fps 18 fps
C-Class 35 fps 28 fps 10 fps

Tab. 14.1: Average frame rates for different shadow algorithms.

For hard shadows the frame rates are only reduced to 86% to 70% com-
pared to rendering without shadows and are on average well above real-time.
For soft shadows the generation of the inner and outer penumbra textures
require two additional rendering passes with the pure geometrically simpli-
fied geometry. During each of these rendering passes approximately twice the
number of primitives needs to be rendered to generate the penumbra quads.
With respect to this much higher total primitive count, a drop to only 33%
to 20% of the average frame rate is very good.

Figure 14.3 shows that the frame rate of the out-of-core rendering algo-
rithm is always real-time even with hard shadows, except for sequences with

14.3. Results 159

Fig. 14.3: Frame rate plot for the St. Matthew model with the three different types
of light source for a recorded camera path. The first third is shown in
the accompanying video.

very fast closeups like in the time between second 190 and 230 of the camera
path. With soft shadows the frame rate is interactive to real time since it is
always at least 3 frame per second and increases above 25 for distant views.

In figure 14.4 a screenshot from the camera path sequence of the
14.1St.Matthew model is shown with a point and an area light source.

Fig. 14.4: Screenshot from the camera path used for measurements with hard shad-
ows (left) and soft shadows (right).

Finally, figure 14.5 shows two trimmed NURBS models rendered with the
lazy octree out-of-core rendering algorithm combined with hard shadows.

http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2005/guthe_michael/videos/14-1.avi

160 14. Shadows

Fig. 14.5: Screenshots of trimmed NURBS models with hard shadows: Golf (left)
and C-Class (right).

Note that in contrast to [72] no additional PC in a cluster is required to
compute the shadows, but high quality hard shadows are achieved with only
a minor overhead. Even soft shadows can be rendered at interactive frame
rates with this method.

Part V

CONCLUSION AND FUTURE WORK

15. CONCLUSION

In chapter 5 an algorithm to build a consistent model from independently
tessellated trimmed NURBS surfaces was presented. It constructs a non-
manifold seam graph which can be used to generate different levels of detail
from the model.

A novel GPU based tessellation algorithm for trimmed NURBS surfaces
was presented in chapter 6. It allows real time rendering of deformable
NURBS surfaces using programmable graphics hardware. Its most impor-
tant advantage is the seamless integration into the rendering pipeline using
the OpenGL shading language.

In chapter 7 an algorithm for automatic texture atlas generation directly
from trimmed NURBS models without using a triangulated approximation
has been presented. This method preserves the original structure of the model
and thus the resulting texture atlas can be edited further in a CAD system.
The distortion measure allows to minimize angle as well as area deforma-
tions and the overall deformation can be controlled with a threshold value.
Furthermore the texture atlas is independent of the resolution and method
used to tessellate the patches. Although this can also be used to improve
the appearance of the model by storing normal information in the texture,
the memory requirements for accurate quality would be high. Therefore, an
algorithm to generate compressed normal map textures for trimmed NURBS
models was presented int chapter 8.

Since normal maps can only be used for static models and requires an
appropriate parametrization which is hard to generate for polygon models,
a novel normal prserving error measure was developed in chapter 9. This
error measure can be used for tessellation as well as for simplification of
polygon models. The application to surface interrogation, quality control
and rendering with high dynamic range environments has then been shown
in chaper 10.

In chapter 11 a simple but efficient out-of-core mesh rendering algorithm
using hierarchical levels of detail and a crack filling algorithm running on
graphics hardware was presented. An intelligent out-of-core simplification
technique, allowing vertex-edge, edge-edge and vertex-triangles collapses, al-
lows to merge parts of different nodes in the hierarchy in such a way that

164 15. Conclusion

gaps between adjacent parts are closed in a controlled manner. The num-
ber of triangles in each HLOD node generated by partitioning is much lower
compared to previous approaches, since the triangles at cuts do not need to
be preserved. Additionally the geometry is optimized for rendering and AGP
bus transfer.

The out-of-core NURBS rendering algorithm discussed in chapter 12 has
significant advantages over mesh based out-of-core approaches in the context
of trimmed NURBS rendering. It is fully automatic, allows for high quality
zoom-ins by supporting arbitrary precision tessellation and has the ability
to select and edit individual NURBS patches interactively. It is capable of
delivering higher quality images and yet it is faster than previous methods.
This is achieved by combining a fast, high-quality tessellation algorithm with
an octree-based hierarchical LOD structure – the lazy octree – for rendering.
The tessellation produces a geometry that is optimized for fast rendering by
combining different primitives (triangles, lines and points), while the HLOD
structure maintains the original parametric description of the NURBS sur-
faces. For editing however, tessellation on the GPU is much faster than any
existing CPU based algorithm, but it has the drawback that only geometric
error control is possible and therefore, high quality images cannot be gen-
erated. Therefore, a combination of GPU based tessellation and out-of-core
trimmed NURBS rendering is proposed in such a way that GPU is only used
to render those surfaces that are currently modified by the user.

In chapter 13 the necessary modifications to adapt the out-of-core visual-
ization systems to streaming out-of-core rendering have been discussed. The
algorithm works with a standard web server, does not cause any additional
run-time overhead on the client compared to local out-of-core rendering, and
due to the permitted temporarily higher screen space error the interactivity
is even better. An other advantage of this method is that no temporary disk
storage on the client is required.

To improve the comprehensiveness of the generated images, a LOD selec-
tion method to render pixel accurate hard and soft shadows of moving light
sources at interactive frame rates using perspective shadow maps and penum-
bra quads was presented in chapter 14. The visual quality of the rendering
is improved with only a small overhead compared to previous algorithms.

16. FUTURE WORK

A possible direction of future work would be to develop tighter upper bounds
for the normal deviation in the context of trimmed NURBS rendering on the
GPU. Since the rendering cost per primitive is as high as in the early years of
triangle rasterization, occlusion culling techniques are also promising to im-
prove the performance. Another topic of interest for industry are the recently
developed collision detection algorithms running on the GPU. Therefore, de-
veloping such a collision detection algorithm based on the presented GPU-
based NURBS rendering would be worthwhile. The GPU-based trimming
approach is also useful in other application areas such as geo-information-
systems, where surface data is augmented with 2d vector data. There the
trimming approach can be used to generate additional textures from the vec-
tor data that can then be rendered onto the terrain. In combination with
perspective shadow mapping techniques, the texture-memory requirements
and the rendering overhead can be minimized.

Additionally, a more efficient NURBS texturing algorithm would be of
interest to industry since the presented method becomes quite slow for more
complex models. Furthermore, a solution to texture out-of-core NURBS mod-
els has to be found, which involves developing an algorithm to efficiently
calculate least squares solutions for sparse equation systems with millions of
equations.

To support editing not of complex polygon and not only NURBS mod-
els a faster normal preserving simplification algorithm would be required.
An additional advantage would be the reduction of the long preprocessing
times. Such an algorithm would also be of interest for animations where a
complex model is deformed by e.g. a skeleton animation. In the context of
out-of-core NURBS editing improving the speed of the tessellation algorithm
would reduce both preprocessing time and the latency after applying an edit
operation.

For better compression and thus faster streaming, different compression
algorithms for the HLOD geometry files could be compared (e.g. surface
fitting) to improve the performance for low speed modems.

166 16. Future Work

BIBLIOGRAPHY

[1] S. S. Abi-Ezzi and S. Subramanian. Fast dynamic tessellation of
trimmed nurbs surfaces. Computer Graphics Forum, 13(3):107–126,
1994.

[2] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient
image-based methods for rendering soft shadows. In Proceedings of
the 27th annual conference on Computer graphics and interactive tech-
niques, pages 375–384, 2000.

[3] D. G. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erikson,
K. E. Hoff, T. Hudson, W. Stürzlinger, R. Bastos, M. C. Whitton,
F. P. Brooks, and D. Manocha. MMR: An interactive massive model
rendering system using geometric and image-based acceleration. In
Symposium on Intercative 3D Graphics, pages 199–206, 1999.

[4] D. G. Aliaga and A. Lastra. Automatic image placement to provide
a guranteed frame rate. In A. Rockwood, editor, ACM SIGGRAPH
99, Computer Graphics Proceeding, pages 307–316, Los Angeles, 1999.
ACM Press / ACM SIGGRAPH. Computer Graphics Proceedings,
Annual Conference Series.

[5] J. Arvo and J. Westerholm. Hardware accelerated soft shadows using
penumbra quads. Journal of WSCG, 12(1):11–18, 2004.

[6] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. MESH: measuring errors
between surfaces using the hausdorff distance. In Proceedings of the
IEEE International Conference on Multimedia and Expo, pages 705–
708, 2002.

[7] U. Assarsson, M. Dougherty, M. Mounier, and T. Akenine-Möller. An
optimized soft shadow volume algorithm with real-time performance.
In Siggraph/Eurographics Workshop On Graphics Hardware, pages 33–
40, 2003.

168 Bibliography

[8] C. Bajaj, V. Pascucci, D. Thomson, and X. Y. Zhang. Parallel ac-
celerated isocontouring for out-of-core visualization. In IEEE Parallel
Visualization and Graphics Symposium, pages 87–104, 1999.

[9] Á. Balázs, M. Guthe, and R. Klein. Efficient trimmed nurbs tessella-
tion. Journal of WSCG, 12(1):27–33, February 2004.

[10] Á. Balázs, M. Guthe, and R. Klein. Fat borders: Gap filling for efficient
view-dependent lod rendering. Computers & Graphics, 28(1):79–86,
2004.

[11] L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture
maps. Computer Graphics Forum (Eurographics 2002), 21(3):411–420,
2002.

[12] G. Barequet and S. Kumar. Repairing cad models. In IEEE Visualiza-
tion ’97, pages 363–370. IEEE, November 1997. ISBN 0-58113-011-2.

[13] W. V. Baxter, A. Sud, N. K. Govindaraju, and D. Manocha. Gigawalk:
Interactive walkthrough of complex environments. In Eurographics
Workshop on Rendering, pages 203–214, 2002.

[14] J. Behr and M. Alexa. Fast and effective striping. In 1st OpenSG
Symposium, 2002.

[15] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and count-
ing geometric intersections. IEEE Trans. Comput., C-28:643–647, 1979.

[16] F. Bernadini, J. Mittleman, and H. Rushmeier. Case study: Scanning
michelangelo’s florentine pieta. In ACM SIGGRAPH 99 Course Notes
Course 8, 1999.

[17] S. Bernstein. Démonstration du théorème de Weierstrass fondeé sur le
calcul des probabilités. Harkov Soobs. Matem ob-va, 13(1-2), 1912.

[18] P. Bézier. Définition numérique des courbes et surfaces I. Automatisme,
XI:625–632, 1966.

[19] P. Bézier. Définition numérique des courbes et surfaces II. Automa-
tisme, XII:17–21, 1967.

[20] J. Bolz and P. Schröder. Evaluation of subdivision surfaces on pro-
grammable graphics hardware, 2003.

Bibliography 169

[21] M. Bóo, M. Amor, M. Doggett, J. Hirche, and W. Straßer. Hardware
support for adaptive subdivision surface rendering. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-
ware, pages 33–40, 2001.

[22] P. Borodin, S. Gumhold, M. Guthe, and R. Klein. High-quality sim-
plification with generalized pair contractions. In Proceedings of Graph-
iCon’2003, pages 147–154, September 2003.

[23] P. Borodin, M. Guthe, and R. Klein. Out-of-core simplification with
guaranteed error tolerance. In T. Ertl, B. Girod, G. Greiner, H. Nie-
mann, H.-P. Seidel, E. Steinbach, and R. Westermann, editors, Vision,
Modeling and Visualisation 2003, pages 309–316. Akademische Verlags-
gesellschaft Aka GmbH, Berlin, November 2003.

[24] P. Borodin and R. Klein. Progressive meshes with controlled topology
modifications. In 1st OpenSG Symposium, 2002.

[25] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality ren-
dering of point sampled geometry. In Eurographics Workshop on Ren-
dering, pages 53–64, 2002.

[26] S. Brabec and H.-P. Seidel. Shadow volumes on programmable graphics
hardware. Computer Graphics Forum (Eurographics 2003), 22(3):433–
440, 2003.

[27] B. Chen and M. X. Nguyen. Pop: A hybrid point and polygon rendering
system for large data. In IEEE Visualization. IEEE, 2001.

[28] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Ven-
groff, and J. S. Vitter. External-memory graph algorithms. In Sympo-
sium on Discrete Algorithms, pages 139–149, 1995.

[29] Y.-J. Chiang and C. T. Silva. External memory techniques for isosur-
face extraction in scientific visualization. In AMS/DIMACS Workshop
on External Memory Algorithms and Visualization, 1998.

[30] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchino, and
R. Scopigno. Bdam - batched dynamic adaptive meshes for high per-
formance terrain visualization. Computer Graphics Forum, 22(3):505–
514, 2003.

[31] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Adaptive tetrapuzzles: Efficient out-of-core construction

170 Bibliography

and visualization of gigantic multiresolution polygonal models. ACM
Transactions on Graphics, 23(3):796–803, 2004.

[32] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. A general
method for preserving attribute values on simplified meshes. In Pro-
ceedings of the conference on Visualization ’98, pages 59–66. IEEE
Computer Society Press, 1998.

[33] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External mem-
ory simplification of huge meshes. Technical Report IEI:B4-02-00, IEI,
CNR, Pisa, March 2000.

[34] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on
simplified surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[35] E. Cohen, T. Lyche, and R. F. Riesenfeld. Discrete b-spline and subdi-
vision techniques in computer aided geometric design and computer
graphics. Computer Graphics and Image Processing, 14(2):87–111,
1980.

[36] J. Cohen, D. Aliaga, and W. Zhang. Hybrid simplification: Combining
multi-resolution polygon and point rendering. In IEEE Visualization
2001, pages 37–44, 2001.

[37] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving sim-
plification. In Siggraph 1998, Computer Graphics Proceeding, pages
115–122. Addison Wesley Longman, 1998.

[38] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,
F. Brooks, and W. Wright. Simplification envelopes. 30:119–128, 1996.

[39] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of visibility for
walkthrough applications. In Eurographics ’00, course notes, 2000.

[40] D. Cohen-Or and E. Zadicario. Visibility streaming for network-based
walkthroughs. In Graphics Interface, pages 1–7, 1998.

[41] F. Cole. View dependent appearance preserving simplification. In
Computer Graphics Special Topics), 2001.

[42] M. Cox and D. Ellsworth. Application-controlled demand paging for
out-of-core visualization. In IEEE Visualization, pages 235–244, 1997.

[43] F. C. Crow. Shadow algorithms for computer graphics. ACM SIG-
GRAPH Computer Graphics archive, 11(2):242–248, 1977.

Bibliography 171

[44] C. de Boor. On calculating with b-splines. Approximation Theory,
6(1):50–62, 1972.

[45] P. Debevec. Rendering synthetic objects into real scenes: bridging tra-
ditional and image-based graphics with global illumination and high
dynamic range photography. In Proceedings of ACM SIGGRAPH 98,
pages 189–198. ACM Press, 1998. Computer Graphics Proceedings,
Annual Conference Series.

[46] C. DeCoro and R. Pajarola. Xfastmesh: Fast view-dependent meshing
from external memory. In IEEE Visualization 2002, pages 363–370,
2002.

[47] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of
surface meshes. Computer Graphics Forum (Eurographics 2002), 21(2),
2002.

[48] T. K. Dey and J. Hudson. PMR: Point to mesh rendering, a feature-
based approach. In IEEE Visualization 2002, pages 155–162, 2002.

[49] M. Eck. Degree reduction of bézier curves. Computer Aided Geometric
Design, 10(3-4):237–252, 1993.

[50] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Pro-
ceedings of the 22nd annual conference on Computer graphics and in-
teractive techniques, pages 173–182. ACM Press, 1995.

[51] J. Eells and L. Lemaire. Another report on harmonic maps. Bull.
London Math. Soc., 20:385–524, 1988.

[52] J. El-Sana and Y.-J. Chiang. External memory view-dependent sim-
plification. Computer Graphics Forum, 19(3), 2000.

[53] J. El-Sana and A. Varshney. Generalized view-dependent simplifica-
tion. Computer Graphics Forum, 18(3):83–94, September 1999. ISSN
1067-7055.

[54] G. Elber and E. Cohen. Hybrid symbolic and numeric operators as tools
for analysis of freeform surfaces. In B. Falcidieno and T. Kurnii, editors,
Working Conference on Geometric Modeling in Computer Graphics,
pages 275–286, 1993.

172 Bibliography

[55] G. Elber and E. Cohen. Second-order surface analysis using hybrid
symbolic and numeric operators. ACM Transactions on Graphics,
12(2):160–178, 1993.

[56] C. Erikson and D. Manocha. Gaps: General and automatic polygonal
simplification. In Procceedings of 1999 Symposium on Interactive 3D
Graphics, pages 79–88. ACM Press, New York, 1999.

[57] C. Erikson, D. Manocha, and W. Baxter III. HLODs for faster display
of large static and dynamic environments. In ACM Symposium on
Interactive 3D Graphics, 2000.

[58] R. Farias and C. T. Silva. Out-of-core rendering of large unstructured
grids. In IEEE Compter Graphics and Applications, 2001.

[59] G. Farin. Curves and Surfaces for Computer Aided Geometric Design:
A Practical Guide. Academic Press Inc., 1993.

[60] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. Tech-
nical report, 1998.

[61] D. Filip, R. Magedson, and R. Markot. Surface algorithms using bounds
on derivatives. Computer Aided Geometric Design, 3(4):295–311, 1986.

[62] M. S. Floater. Parametrization and smooth approximation of sur-
face triangulations. Computer Aided Geometric Design, 14(4):231–250,
1997.

[63] L. D. Floriani, P. Magillo, and D. S. Enrico Puppo. A multi-resolution
topological representation for non-manifold meshes. In 7th ACM Sym-
posium on Solid Modeling and Applications, Saarbrucken, Germany,
2002.

[64] A. Forrest. Interactive interpolation and approximation by bézier poly-
nomials. The Computer Journal, 15(1):71–79, 1972.

[65] D. R. Forsey and R. V. Klassen. An adaptive subdivision algorithm
for crack prevention in the display of parametric surfaces. In Graphics
Interface ’90, pages 1–8. Canadian Information Processing Society, May
1990.

[66] T. A. Funkhouser. Database management for interactive display of
large architectural models. In W. A. Davis and R. Bartels, editors,

Bibliography 173

Graphics Interface ’96, pages 1–8. Canadian Human-Computer Com-
munication Society, 1996.

[67] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual envi-
ronments. Computer Graphics, 27(Annual Conference Series):247–254,
1993.

[68] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Tri-
angulating a simple polygon. Inform. Process. Lett., 7:175–179, 1978.

[69] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. Computer Graphics, 31(Annual Conference Series):209–
216, 1997.

[70] M. Garland and P. S. Heckbert. Simplifying surfaces with color and tex-
ture using quadric error metrics. In D. Ebert, H. Hagen, and H. Rush-
meier, editors, IEEE Visualization ’98, pages 263–270, 1998.

[71] T. Gerstner. Multiresolution compression and visualization of global
topographic data. SFB 256 report 29, Univ. Bonn, 1999 also in GeoIn-
formatica, 7(1): 7–32, 2003, 1999.

[72] N. K. Govindaraju, B. Lloyd, S.-E. Yoon, A. Sud, and D. Manocha. In-
teractive shadow generation in complex environments. In SIGGRAPH
2003, Computer Graphics Proceedings, pages 501–510. ACM Press /
ACM SIGGRAPH, 2003.

[73] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In Proceedings
of the 29th annual conference on Computer graphics and interactive
techniques, pages 355–361. ACM Press, 2002.

[74] A. Gueziec, G. Taubin, F. Lazarus, and B. Horn. A framework for
streaming geometry in vrml. IEEE Computer Graphics & Applications,
special issue on VRML, 19(2), 1999.

[75] S. Gumhold. Improved cut-border machine for triangle mesh compres-
sion. In Erlangen Workshop ’99 on Vision, Modeling and Visualization.
IEEE Signal Processing Society, Nov. 1999.

[76] I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder. Normal meshes.
In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 95–102. ACM Press/Addison-Wesley
Publishing Co., 2000.

174 Bibliography

[77] M. Guthe, Á. Balázs, and R. Klein. Interactive high quality trimmed
nurbs visualization using appearance preserving tessellation. In
O. Deussen, C. Hansen, D. A. Keim, and D. Saupe, editors, Data Vi-
sualization 2004 (Proceedings of TCVG Symposium on Visualization),
pages 211–220 + 348. EUROGRAPHICS - IEEE, May 2004.

[78] M. Guthe, Á. Balázs, and R. Klein. Real-time out-of-core trimmed
nurbs rendering and editing. In Vision, Modeling and Visualisa-
tion 2004, pages 323–330. Akademische Verlagsgesellschaft Aka GmbH,
Berlin, November 2004.

[79] M. Guthe, Á. Bálazs, and R. Klein. GPU-based trimming and tessella-
tion of NURBS and T-Spline surfaces. ACM Transactions on Graphics,
24(3):1016–1023, 2005.

[80] M. Guthe, P. Borodin, Á. Balázs, and R. Klein. Real-time appear-
ance preserving out-of-core rendering with shadows. In A. Keller and
H. W. Jensen, editors, Rendering Techniques 2004 (Proceedings of Eu-
rographics Symposium on Rendering), pages 69–79 + 409. Eurographics
Association, June 2004.

[81] M. Guthe, P. Borodin, and R. Klein. Efficient view-dependent out-
of-core visualization. In The 4th International Conference on Virtual
Reality and its Application in Industry (VRAI’2003), pages 428–438,
2003.

[82] M. Guthe, P. Borodin, and R. Klein. Fast and accurate hausdorff
distance calculation between meshes. Journal of WSCG, 13(2):41–48,
February 2005.

[83] M. Guthe, P. Borodin, and R. Klein. Real-time out-of-core rendering.
International Journal of Image and Graphics, to appear 2006.

[84] M. Guthe and R. Klein. Automatic texture atlas generation from
trimmed NURBS models. Computer Graphics Forum (Eurographics
2003), 22(3):453–461, September 2003.

[85] M. Guthe and R. Klein. Efficient nurbs rendering using view-dependent
lod and normal maps. Journal of WSCG, 11(2):205–212, February
2003.

[86] M. Guthe and R. Klein. Streaming hlods: An out-of-core viewer for net-
work visualization of huge polygon models. Computers and Graphics,
28(1):43–50, February 2004.

Bibliography 175

[87] M. Guthe, J. Meseth, and R. Klein. Fast and memory efficient view-
dependent trimmed nurbs rendering. In proceedings of Pacific Graphics
2002, pages 204–213. IEEE Computer Society, 2002.

[88] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wördenweber,
and P. Hollemann-Grundstedt. Surface interrogation algorithms. In
IEEE Visualization and Computer Graphics, pages 53–60, 1992.

[89] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sillion. A survey
of real-time soft shadows algorithms. In Eurographics State-of-the-Art
Reports, pages 1–20, 2003.

[90] P. Heckbert. Color image quantization for frame buffer display. Com-
puter Graphics (Proceedings of ACM SIGGRAPH 82), 16(3):297–307,
July 1982.

[91] B. V. Herzen and A. H. Barr. Accurate triangulations of deformed,
intersecting surfaces. Computer Graphics (Proceedings of ACM SIG-
GRAPH 89), 21(4):103–110, July 1987.

[92] H. Hoppe. Progressive meshes. Computer Graphics, 30(Annual Con-
ference Series):99–108, 1996.

[93] H. Hoppe. View-dependent refinement of progressive meshes. Computer
Graphics, 31(Annual Conference Series):189–198, 1997.

[94] H. Hoppe. Efficient implementation of progressive meshes. Computers
& Graphics, 22(1):27–36, 1998.

[95] K. Hormann and G. Greiner. MIPS: An efficient global parametrization
method. In P.-J. Laurent, P. Sablonnière, and L. L. Schumaker, editors,
Curve and Surface Design: Saint-Malo 1999, Innovations in Applied
Mathematics, pages 153–162. Vanderbilt University Press, Nashville,
2000.

[96] D. Huffman. A method for the construction of minimum redundancy
codes. Proc. IRE, 40(9), 1952.

[97] M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Sumners,
K. Rehm, K. Schaper, and D. A. Rottenberg. Quasi-conformally flat
mapping the human cerebellum. In MICCAI, pages 279–286, 1999.

[98] M. Isard, M. Shand, and A. Heirich. Distributed rendering of interac-
tive soft shadows. Parallel Computing, 29(3):322–323, 2003.

176 Bibliography

[99] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh
simplification using processing sequences. In IEEE Visualization 2003,
pages 465–472, 2003.

[100] F. Kahlesz, Á. Balázs, and R. Klein. Multiresolution rendering by
sewing trimmed nurbs surfaces. In K. Lee and N. M. Patrikalakis,
editors, The 7th ACM Symposium on Solid Modeling and Applications,
pages 281–288, June 2002.

[101] T. Kanai and Y. Yasui. Per-pixel evaluation of parametric surfaces
on gpu. In ACM Workshop on General Purpose Computing Using
Graphics Processors (also at SIGGRAPH 2004 poster session), August
2004.

[102] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry
compression. In K. Akeley, editor, Siggraph 2000, Computer Graphics
Proceedings, pages 271–278. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000.

[103] F. Kirsch and J. Doellner. Real-time soft shadows using a single light
sample. Journal of WSCG, 11(2):255–262, 2003.

[104] R. Klein, G. Liebich, and W. Straßer. Mesh reduction with error con-
trol. In R. Yagel and G. M. Nielson., editors, IEEE Visualization ’96,
pages 311–318, 1996.

[105] R. Klein and A. Schilling. Efficient multiresolution models. In
A. Schilling, editor, Festschrift zum 60. Geburtstag von Wolfgang
Straßer, pages 109–130, 2001.

[106] R. Klein, A. Schilling, and W. Straßer. Illumination dependent refine-
ment of multiresolution meshes. In Proceedings of Computer Graphics
International (CGI ’98), pages 680–687, Los Alamitos, CA, 1998. IEEE
Computer Society Press.

[107] R. Klein and W. Straßer. Large Mesh Generation from Boundary Mod-
els with Parametric Face Representation. In Proc. of ACM SIGGRAPH
Symposium on Solid Modeling, pages 431–440. ACM Press, 1995.

[108] M. Korzen, R. Schriever, K.-U. Ziener, O. Paetsch, and G. W. Zum-
busch. Real-time 3-D visualization of surface temperature fields mea-
sured by thermocouples on steel structures in fire engineering. In
J. Ziebs, J. Bressers, H. Frenz, D. R. Hayhurst, H. Klingelhöffer, and
S. Forest, editors, Proceedings of International Symposium Local Strain

Bibliography 177

and Temperature Measurements in Non-Uniform Fields at Elevated
Temperatures, pages 253–262. Woodhead Publishing, 1996.

[109] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense
polygon meshes. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 313–324. ACM Press,
1996.

[110] G. V. V. R. Kumar, P. Srinivasan, K. G. Shastry, and B. G. Prakash.
Geometry based triangulation of multiple trimmed NURBS surfaces.
Computer-Aided Design, 33(6):439–454, May 2001. ISSN 0010-4485.

[111] S. Kumar and D. Manocha. Interactive display of large scale trimmed
NURBS models. Technical Report TR94-008, 25, 1994.

[112] S. Kumar, D. Manocha, H. Zhang, and K. E. Hoff. Accelerated walk-
through of large spline models. In 1997 Symposium on Interactive 3D
Graphics, pages 91–102. ACM SIGGRAPH, April 1997. ISBN 0-89791-
884-3.

[113] E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg.
Non-linear approximation of reflectance functions. In Proceedings of
the 24th annual conference on Computer graphics and interactive tech-
niques, pages 117–126. ACM Press/Addison-Wesley Publishing Co.,
1997.

[114] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin.
Maps: Multiresolution adaptive parameterization of surfaces. Com-
puter Graphics Proceedings (SIGGRAPH 98), pages 95–104, 1998.

[115] J. Levenberg. Fast view-dependent level-of-detail rendering using
cached geometry. In IEEE Visualization, pages 259–266, 2002.

[116] M. Levoy. The Digital Michaelangelo Project – http://www-
graphics.stanford.edu/projects/mich.

[117] M. Levoy. The Stanford 3D Scanning Repository – http://www-
graphics.stanford.edu/data/3dscanrep.

[118] B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared
triangulated meshes. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 343–352. ACM
Press, 1998.

178 Bibliography

[119] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal
maps for automatic texture atlas generation. ACM Trans. Graph.,
21(3):362–371, 2002.

[120] P. Lindstorm and C. T. Silva. A memory insensitive technique for large
model simplification. In IEEE Visualization. IEEE, 2001.

[121] P. Lindstrom. Out-of-core simplification of large polygonal models. In
Proceedings of ACM SIGGRAPH 2000, pages 259–262. ACM Press,
2000. Annual Conference Series.

[122] P. Lindstrom. Out-of-core construction and visualization of multireso-
lution surfaces. In ACM SIGGRAPH 2003 Symposium on Interactive
3D Graphics, pages 93–102, 239, 2002.

[123] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. Computer Graphics (Proceedings of
SIGGRAPH 87), 21(4):163–169, 1987.

[124] K.-L. Low and T. S. Tan. Model simplification using vertex clustering.
In Procceedings of 1997 Symposium on Interactive 3D Graphics, pages
75–82. ACM Press, New York, 1997.

[125] D. Luebke. A developer’s survey of polygonal simplification algorithms.
In IEEE CG & A, pages 24–35. IEEE, May 2001.

[126] D. Luebke and C. Erikson. View-dependent simplification of arbitrary
polygonal environments. Computer Graphics, 31(Annual Conference
Series):199–208, 1997.

[127] P. W. C. Maciel and P. Shirley. Visual navigation of large environments
using textured clusters. In Symposium on Interactive 3D Graphics,
pages 95–102, 211, 1995.

[128] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 27–34. ACM Press, 1993.

[129] M. McGuire, J. F. Hughes, K. T. Egan, M. J. Kil-
gard, and C. Everitt. Fast, practical and robust shadows.
http://developer.nvidia.com/object/fast shadow volumes.html, 2003.

[130] V. J. Milenkovic. Rotational polygon containment and minimum en-
closure. In Proceedings of the fourteenth annual symposium on Com-
putational geometry, pages 1–8. ACM Press, 1998.

Bibliography 179

[131] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed
rational surface patches. Computer Graphics (Proceedings of ACM
SIGGRAPH 90), 24(4):337–345, August 1990. ISBN 0-201-50933-4.

[132] F. Nooruddin and G. Turk. Simplification and repair of polygonal
models using volumetric techniques. Technical Report GITGVU -99-
37, Georgia Institute of Technology, 1999.

[133] R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE
Transactions on Visualization and Computer Graphics, 6(1):79–93, /
2000.

[134] Y. Park and U. J. Choi. Degree reduction of bézier curves and its error
analysis. J. Austral. Math. Soc. Ser. B, 36:399–413, 1995.

[135] H. K. Pedersen. Decorating implicit surfaces. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques,
pages 291–300. ACM Press, 1995.

[136] L. Piegl and W. Tiller. The NURBS Book, 2nd Edition. Springer, 1997.

[137] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[138] A. A. Pomeranz. Roam using surface triangle clusters (rustic). Master’s
thesis, University of California at Davis, 2000.

[139] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical
recipes in C – The art of scientific computation. Cambride University
Press, 2nd edition, 1992.

[140] C. Prince. Progressive meshes for large models of arbitrary topology,
2000.

[141] R. Raskar. Hardware support for non-photorealistic rendering. In Pro-
ceedings of the ACM SIGGRAPH/ EUROGRAPHICS workshop on
Graphics hardware, pages 41–47. ACM Press, 2001.

[142] R. Raskar and M. Cohen. Image precision silhouette edges. In Proceed-
ings of the 1999 symposium on Interactive 3D graphics, pages 135–140.
ACM Press, 1999.

[143] D. Reiners, G. Voss, J. Behr, and M. Roth. OpenSG –
http://www.opensg.org, 2001.

180 Bibliography

[144] A. P. Rockwood, K. Heaton, and T. Davis. Real-time rendering of
trimmed surfaces. Computer Graphics (Proceedings of ACM SIG-
GRAPH 89), 23(3):107–116, July 1989.

[145] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 5(1):47–61, /1999.

[146] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for ren-
dering complex scenes. In Geometric Modeling in Computer Graphics,
pages 455–465. Springer-Verlag, Berlin, 1993.

[147] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point ren-
dering system for large meshes. In K. Akeley, editor, Siggraph 2000,
Computer Graphics Proceedings, pages 343–352. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[148] S. Rusinkiewicz and M. Levoy. Streaming QSplat: a viewer for net-
worked visualization of large, dense models. In Symposium on Interac-
tive 3D Graphics, pages 63–68, 2001.

[149] H. Sánchez, A. Moreno, D. Oyarzun, and A. Garćıa-Alonso. Evaluation
of nurbs surfaces: an overview based on runtime efficiency. Journal of
WSCG, 12(2):235–242, February 2004.

[150] P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe. Signal-specialized
parametrization. In Proceedings of the 13th Eurographics workshop on
Rendering, pages 87–98. Eurographics Association, 2002.

[151] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping
progressive meshes. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 409–416. ACM
Press, 2001.

[152] G. Schaufler and W. Stürzlinger. A three dimensional image cache for
virtual reality. Computer Graphics Forum, 15(3):227–236, 1996.

[153] W. J. Schroeder. A topology modifying progressive decimation algo-
rithm. In Proceedings of the 8th conference on Visualization ’97, pages
205–212, 1997.

[154] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. Computer Graphics (Proceedings of SIGGRAPH 92),
26(2):65–70, 1992.

Bibliography 181

[155] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng,
and T. Lyche. T-spline simplification and local refinement. ACM
Transactions on Graphics, 23(3):276–283, 2004.

[156] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder. Hi-
erarchical image caching for accelerated walkthroughs of complex en-
vironments. Computer Graphics, 30(Annual Conference Series):75–82,
1996.

[157] E. Shaffer and M. Garland. Efficient adaptive simplification of massive
meshes. In IEEE Visualization. IEEE, 2001.

[158] M. Shantz and S.-L. Chang. Rendering trimmed NURBS with adap-
tive forward differencing. Computer Graphics (Proceedings of ACM
SIGGRAPH 88), 22(4):189–198, August 1988.

[159] A. Sheffer. Spanning tree seams for reducing parameterization distor-
tion of triangulated surfaces. In Proceedings of the Shape Modeling
International 2002 (SMI’02), page 61. IEEE Computer Society, 2002.

[160] A. Sheffer and J. Hart. Seamster: Inconspicuous low-distortion texture
seam layout. In IEEE Visualization 2002, pages 291–298, 2002.

[161] A. Sheffer and E. Sturler. Smoothing an overlay grid to minimize linear
distortion in texture mapping. ACM Trans. Graph., 21(4):874–890,
2002.

[162] L. A. Shirman and S. S. Abi-Ezzi. The cone of normals technique
for fast processing of curved patches. Computer Graphics Forum,
12(3):261–272, 1993.

[163] L. Shou, J. Chionh, Z. Huang, R. Ruan, and K. L. Tan. Walking
through a very large virtual environment in real-time. In Proceedings
International Conference on Very Large Data Bases, pages 401–410,
2001.

[164] P.-P. J. Sloan, D. M. Weinstein, and J. D. Brederson. Importance
driven texture coordinate optimization. In N. Ferreira and M. Göbel,
editors, Computer Graphics Forum (Eurographics 1998), volume 17(3),
pages 97–104, 1998.

[165] M. Stamminger and G. Drettakis. Perspective shadow maps. In
J. Hughes, editor, Proceedings of ACM SIGGRAPH 2002. ACM Press/
ACM SIGGRAPH, July 2002.

182 Bibliography

[166] D. Staneker. A first step towards occlusion culling in OpenSG PLUS.
In 1st OpenSG Symposium, 2002.

[167] D. Staneker, D. Bartz, and W. Straßer. Occlusion Culling in OpenSG
PLUS. Computers & Graphics, 28(1):87–92, 2004.

[168] M. Tarini, P. Cignoni, C. Rocchini, and R. Scopigno. Real time, ac-
curate, multifeatured rendering of bump mapped surfaces. Computer
Graphics Forum (Eurographics 2000), 19(3), 2000.

[169] G. Taubin and J. Rossignac. Geometric compression through topolog-
ical surgery. ACM Transactions on Graphics, 17(2):84–115, 1998.

[170] D. Terzopoulos and M. Vasilescu. Sampling and reconstruction with
adaptive meshes. In Proceedings of the 1991 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 70–75,
Lahaina, HI, 1991.

[171] W. Tutte. Convex representation of graphs. London Math. Soc., 10,
1960.

[172] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core streamline visual-
ization on large unstructured meshes. IEEE Transactions on Visual-
ization and Computer Graphics, 3:370–380, 1997.

[173] J. J. van Wijk. Image based flow visualization for curved surfaces. In
G. Turk, J. van Wijk, and R. Moorhead, editors, IEEE Visualization,
pages 123–130, 2003.

[174] G. Varadhan and D. Manocha. Out-of-core rendering of massive geo-
metric environments. In IEEE Visualization 2002, 2002.

[175] J. S. Vitter. External memory algorothms and data structures. In
J. Abello and J. S. Vitter, editors, External Memory Algorithms and Vi-
sualization, pages 1–38. American Methemathical Society Press, Prov-
idence, RI, 1999.

[176] Virtual reality modeling language. ISO/IEC Standard 14772-1, 1997.

[177] I. Wald, T. J. Purcell, J. Schmittler, C. Benthin, and P. Slusallek.
Realtime Ray Tracing and its use for Interactive Global Illumination.
In Eurographics State of the Art Reports, 2003.

Bibliography 183

[178] K. Watanabe and A. G. Belyaev. Detection of salient curvature features
on polygonal surfaces. Computer Graphics Forum, 20(3), 2001. ISSN
1067-7055.

[179] L. Williams. Casting curved shadows on curved surfaces. ACM SIG-
GRAPH Computer Graphics archive, 12(3):270–274, 1978.

[180] N. Williams, D. Luebke, J. D. Cohen, M. Kelley, and B. Schubert.
Perceptually guided simplification of lit, textured meshes. In Proceed-
ings of the 2003 symposium on Interactive 3D graphics, pages 113–121.
ACM Press, 2003.

[181] M. Wimmer, D. Scherzer, and W. Purgathofer. Light space perspective
shadow maps. In A. Keller and H. W. Jensen, editors, Rendering Tech-
niques 2004 (Proceedings of Eurographics Symposium on Rendering),
pages 143–152. Eurographics Association, June 2004.

[182] C. Wyman and C. Hansen. Penumbra maps: Approximate soft shadows
in real-time. In Proceedings of the 2003 Eurographics Symposium on
Rendering, pages 202–207, 2003.

[183] J. C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-
detail based rendering for polygonal meshes. IEEE Transactions on
Visualization and Computer Graphics, 3(2):171–183, 1997.

[184] J. Zheng and G. Wang. Perturbing bézier coefficients for best con-
strained degree reduction in the l2-norm. Graphical Models, 65:351–368,
2003.

184 Bibliography

LEBENSLAUF MICHAEL GUTHE

7. Jun. 1976 geboren in Castrop-Rauxel

Aug. 1986 – Nov. 1986 Ernst-Barlach Gymnasium Castrop-Rauxel

Nov. 1986 – Jun. 1995 Jugenddorf-Christopherus Gymnasium Alten-

steig (Abitur)

Okt. 1995 – Mai 2000 Studium an der Eberhard-Karls-Universität

Tübingen

28. Mai 2000 Diplom Informatik

Jun. 2000 – Okt. 2001 Programmierer bei Ascaron SPV

seit 15. Nov. 2001 Mitarbeiter in der Arbeitsgruppe Computer

Graphik des Instituts für Informatik II an

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

31. Mär. 2005 Antrag auf Zulassung zum Promotionsver-

fahren beim Dekanat der Mathematisch-

Naturwissenschaftlichen Fakultät an der

Rheinischen Friedrich-Wilhelms-Universität

Bonn

	Part I Introduction
	Motivation
	Basics
	Complex Models
	Visibility Culling
	Image Based Techniques
	Level of detail
	Shadows

	Trimmed NURBS Surfaces
	Bézier Curves
	Bézier Tensor Surfaces
	B-Spline Curves and Surfaces
	Rational Curves and Surfaces
	Trimming
	Reparametrization and Texture Mapping
	Standards and Data Exchange

	Part II Generation of Mesh Levels of Detail
	Previous Work: Simplification Algorithms
	Triangle Mesh Decimation
	Vertex Clustering
	Simplification Envelopes
	Quadric Error Metrics
	Progressive Meshes
	Error Control

	Previous Work: Tessellation Algorithms
	Efficient Tessellation
	Conversion of Trimming
	Approximation
	Trimming
	Triangulation
	Evaluation
	Performance

	Gap Closing during Rendering
	The Gap Filling Algorithm
	Fat Border Construction
	Application to NURBS Rendering
	Results

	Stitching of Multiple Tessellated Surfaces
	Representation and conversion of trimmed NURBS surfaces
	Sewing

	Creation of a consistent model
	Results

	GPU Based NURBS Rendering
	Trimming on the GPU
	Trimming Curve Conversion
	Surface Evaluation
	Rendering
	Multiple Trimmed Patches

	Sampling
	Trimming Curves
	Surfaces
	Trim-Texture

	Bi-cubic Approximation
	Approximation of a Single Bézier Patch
	Simplification of Two Bi-cubic Patches

	Rendering
	OpenGL API Integration
	Results

	Part III Appearance Preservation
	Texturing
	Texturing NURBS models
	Flattening of a NURBS patch
	Distortion measure
	Finding the minimal energy
	Fitting the NurbsTextureSurface

	Chart generation
	Finding an initial placement
	Alignment of the textures
	Optimizing the placement
	Acceleration
	Segmentation
	Remove overlappings
	Adjusting parameterizations

	Generation of texture atlas
	Results

	Compressed Normal Maps
	Parametrization of NURBS surfaces
	Approximation by NURBS parameterization
	Results

	Controlling Normal Deviation
	Simplification
	Point Generation

	Tessellation
	Modified Error Measure

	Results
	Simplification
	Tessellation
	Performance
	Image Quality
	Deformable NURBS Models

	Integration into the GPU-based tessellation

	Visualization
	Environment Maps
	Results

	Part IV Out-of-Core Techniques
	Polygonal HLODs
	HLOD generation
	Overall algorithm
	Out-of-core partitioning
	Simplification of a node
	Compression of connectivity and geometry

	Rendering
	Scene representation
	Culling techniques
	Memory management

	Results

	NURBS Models
	Hierarchy Generation
	Lazy octree data structure
	Bounding box calculation
	Tessellation
	Geometry optimization
	Caching NURBS LODs

	Rendering
	LOD selection and culling
	Out-of-core management
	Target frame rate mode

	Selection and Editing
	Results
	Frame rates
	Image quality
	Target frame rate mode
	Selection and editing

	Streaming Techniques
	Rendering
	Streaming and Prefetching
	Results

	Shadows
	Shadow Generation
	Prefetching
	Results

	Part V Conclusion and Future Work
	Conclusion
	Future Work

