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Zusammenfassung

Schnelle optimierte Waveletmethoden für Kontrollprobleme unter

elliptischen PDG-Nebenbedingungen

Carsten Burstedde, Institut für Angewandte Mathematik

Die Betrachtung von Kontrollproblemen mit partiellen Differentialgleichungen (PDG) als Nebenbedingun-
gen hat in jüngster Zeit immens an Bedeutung gewonnen. Praktische Anwendungen reichen von Heiz- und
Kühlprozessen und Vorgängen der Strömungsmechanik in industrieller Fertigung und Medizin bis hin zu
Problemstellungen der Finanzmathematik. Während bei der Simulation partieller Differentialgleichungen
der Zustand eines Systems aus vorgegebenen Randbedingungen und äußeren Einflüssen zu berechnen ist,
tritt bei Kontrollproblemen die Fragestellung in den Vordergrund, durch welche Daten und Einstellungen
denn ein möglichst optimaler Zustand zu erzielen ist. Hier wird die PDG zur Nebenbedingung für das
neu hinzugekommene und übergeordnete Ziel der Optimierung. Vielfach wird die Berechnung derartiger
Optimierungsprobleme durch moderne und effiziente numerische Techniken überhaupt erst ermöglicht.

In der vorliegenden Arbeit wird erstmalig die systematische Realisierung eines effizienten numerischen
Waveletverfahrens für ein elliptisches Kontrollproblem vorgestellt. Der Waveletansatz wird hier gezielt
modifiziert und erweitert, um auf vereinheitlichte Weise die auf vielerlei Ebenen auftretenden prinzipiellen
numerischen Schwierigkeiten zu bewältigen. So werden zur Vorkonditionierung elliptischer Operatoren,
zur schnellen und getreuen numerischen Auswertung von Sobolevnormen, bei der Entwicklung eines
optimalen geschachtelten iterativen Lösungsverfahrens und der Einbindung eines adaptiven Diskretisie-
rungsansatzes neue Beiträge geleistet und aufeinander abgestimmt. Aus diesen Elementen wird schließlich
ein Algorithmus synthetisiert und implementiert, der optimale lineare Komplexität aufweist. Dieser wird
anhand einer Vielzahl numerischer Beispiele eingehend studiert.

Das untersuchte Kontrollproblem hat die folgende Form: Minimiere das Zielfunktional

J(y, u) =
1

2
‖Ty − y∗‖2Hs +

ω

2
‖u‖2(Ht)′ (J)

unter Beachtung der Nebenbedingung

(−∆ + 1)y = f +Eu in Ω ,

∂y

∂n
= 0 auf ∂Ω .

Hier seien f und y∗ vorgegebene Daten, y bezeichne die Zustandsvariable und u die Kontrollvariable auf
einem Gebiet Ω ⊂ Rn. Zur Messung von Zustand und Kontrolle sind Sobolevräume reeller Glattheit zu-
gelassen, parametrisiert durch s, t ∈ [0, 1]. Dieses sogenannte linear-quadratische elliptische Kontrollpro-
blem bildet die Basis für viele allgemeinere Fragestellungen, beispielsweise in Bezug auf nichtlineare und
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zeitabhängige PDG oder zusätzliche Beschränkungen von Zustand oder Kontrolle in Form von punktwei-
sen Ungleichungen. Jedoch mangelt es selbst für dieses fundamentale Problem an systematischen Studien
zum Einsatz effizienter numerischer Verfahren.

Der Grund liegt vor allem in der zusätzlichen Komplexität des Optimierungsansatzes gegenüber der
Lösung einer einzelnen PDG. Die schnelle numerische Simulation einer elliptischen PDG führt bereits auf
entscheidende Fragen nach der Wahl eines geeigneten iterativen Lösungsverfahrens und eines optimalen
Vorkonditionierungsschemas. Diese übertragen sich nun in besonderem Maße auf das Kontrollproblem,
da hier die Lösung der PDG-Nebenbedingung vielfach wiederholt als Unterproblem auftritt.

Darüberhinaus eröffnen sich weitere Problemfelder, für die ebenfalls geeignete Lösungen gefordert sind
und in dieser Arbeit auch aufgezeigt werden. Zunächst ist die Modellierung zu untersuchen, um die
Optimalität eines Zustandes flexibel und gleichzeitig möglichst genau definieren zu können. Die Opti-
malitätsbedingungen führen stets zu einem System von gekoppelten partiellen Differentialgleichungen,
das eine spezielle Sattelpunktstruktur aufweist. Dies läßt sich nicht direkt mit Standarditerationsverfah-
ren behandeln, so daß ein angepaßter Löser zu entwickeln ist. Weiterhin treten im Optimalitätssystem
zusätzlich zum Zustand y die Kontrolle u und die adjungierte Variable p auf. Die entsprechend erhöhte
Anzahl von Freiheitsgraden gegenüber der einzelnen PDG und das Auftreten unterschiedlicher Singula-
ritäten in diesen drei Variablen motivieren ganz besonders den Einsatz adaptiver Verfahren.

Wavelets als fortschrittliches Werkzeug der numerischen Analysis zeichnen sich dadurch aus, daß sie Anla-
gen zur Lösung aller oben angesprochenen Schwierigkeiten in sich bergen. Sie beruhen auf einem rigorosen
mathematischen Fundament in Gestalt der nichtlinearen Approximationstheorie und bieten trotz einer
nichttrivialen Konstruktion große Flexibilität in der Praxis. Jedoch ist dieser Ansatz noch vergleichsweise
jung, die Entwicklung ist lebhaft, und es gibt kaum vorgezeichnete Wege für die tatsächliche Realisierung
waveletbasierter numerischer Verfahren.

Wavelets sind nach der hier verwendeten Definition lokale Riesz-Basen für Sobolevräume. Gegenüber
Finite-Elemente-Diskretisierungen findet ein Paradigmenwechsel statt in dem Sinne, daß das zu lösende
Problem zunächst durch eine unendlich-dimensionale Darstellung von Waveletkoeffizienten äquivalent
ausgedrückt wird. Bei dieser Transformation geht keinerlei Information verloren, und sämtliche Untersu-
chungen finden im Unendlichdimensionalen statt, von der Konstruktion von Wavelets über Vorkonditio-
nierung und die Auswertung von Normen bis hin zum expliziten Entwurf eines idealen Lösers inklusive
aller Fehlerschranken und Abbruchkriterien.

Im Rahmen dieser Arbeit werden an allen wichtigen Stationen des Entwicklungszyklus’ Optimierungen
oder Neukonzeptionen vorgestellt mit dem Ziel, für das Gesamtproblem einen effizienten Algorithmus
von optimaler linearer Komplexität und mit optimierten Konstanten zu entwickeln. Dies beginnt mit der
Konstruktion geeigneter biorthogonaler Waveletbasen mit kompaktem Träger sowohl auf der primalen
als auch auf der dualen Seite. Am Beispiel von Finite-Elemente- und B-Spline-Wavelets werden Transfor-
mationen vorgeschlagen, die die Kondition der Basis verbessern, die Anzahl notwendiger arithmetischer
Operationen reduzieren und zu besseren Symmetrieeigenschaften führen. Von zentraler Bedeutung ist die
Eigenschaft von Wavelets, per Konstruktion eine asymptotisch optimale Vorkonditionierung elliptischer
PDG zu gestatten. Die absoluten Konditionszahlen lassen sich durch eine hier vorgestellte Technik noch
um ein Vielfaches weiter verbessern, was zu einer deutlichen Verkürzung der Programmlaufzeiten führt.

Weiter ermöglicht der Waveletansatz die Behandlung von Sobolevnormen im Kontrollfunktional (J),
die ganzzahlige oder fraktionale Glattheit im positiven und/oder negativen Bereich aufweisen. Finite-
Elemente-Techniken erlauben hier nur ganzzahlige Parameter s, t. Zusätzlich zum üblichen Regularisie-
rungsparameter ω, der eine globale Gewichtung zwischen dem Datenfit für den Zustand und der Stärke
der Kontrolle regelt, eröffnet dies die Möglichkeit, auf die Form der Funktionen einzuwirken. Insbesondere
läßt sich damit die Ausprägung von Singularitäten der Zielzustände und Kontrollen kontinuierlich beein-
flussen. Um dies auch algorithmisch korrekt realisieren zu können, wird in dieser Arbeit eine neuartige
waveletbasierte Konstruktion von Rieszoperatoren vorgestellt. Diese erlaubt auf vereinheitlichte Weise die
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schnelle numerische Auswertung von Sobolevnormen, die für ganzzahlige (auch negative) Normen und für
beliebige Normen konstanter Funktionen exakt ist und die allgemeineren Fälle äquivalent interpoliert.

Ausgehend von einer Reformulierung des Optimalitätssystems über die Kontrollvariable u wird systema-
tisch ein optimierter Algorithmus für das Kontrollproblem entwickelt. Die Kernidee besteht in der nu-
merischen Lösung des Systems von partiellen Differentialgleichungen durch verzahnte innere und äußere
iterative Verfahren, die jeweils auf der Methode der konjugierten Gradienten beruhen. Das äußere Ver-
fahren ist dabei als inexakt anzusehen. Das Zusammenspiel dieser beiden Lösungsebenen verlangt eine
genaue Abschätzung der Toleranzen und Abbruchkriterien aller beteiligten Unterroutinen. Die Kombina-
tion der Wavelet-Vorkonditionierung mit dem Prinzip der verschachtelten Iteration (

”
nested iteration“)

stellt schließlich sicher, daß der Algorithmus die asymptotisch optimale lineare Komplexität aufweist.

Die Implementierung wird durch das Programmpaket BWP realisiert, das im Rahmen dieser Arbeit konzi-
piert und in der Sprache C erstellt wurde. Zunächst werden mit einer uniformen Diskretisierung großskalige
Berechnungen in ein bis zu drei Raumdimensionen durchgeführt, wobei praktisch bis zu zwei Millionen
Unbekannte pro Funktionsvariable verwendet werden. Numerisch wird verifiziert, daß die im Rahmen
dieser Arbeit entwickelten Optimierungen zu einer erheblichen Reduktion der absoluten Iterationszahlen
führen. Diese sind levelunabhängig konstant, was die theoretisch vorhergesagte optimale Komplexität
bestätigt. Es werden umfangreiche Studien zu verschiedenen Parametern s, t, ω und Daten f , y∗ durch-
geführt. Das Konvergenzverhalten erweist sich auch für nichtzulässige Kombinationen als robust.

In einer Simulation sind Zustand, Adjungierte und Kontrolle oft unterschiedlich glatt und besitzen auch
unterschiedliche singuläre Stellen. Eine adaptive Waveletdiskretisierung erlaubt es hier, den verschiede-
nen Variablen unterschiedliche Auflösungsmuster zuzuweisen. Dies ist eine hervorstechende Eigenschaft
gegenüber Finite-Elemente-Methoden, die in der Regel mit einem Gitter für alle Variablen arbeiten.
Zudem existieren für adaptive Finite-Elemente-Ansätze für Kontrollprobleme bisher keine Aussagen zu
Konvergenz oder Konvergenzraten. In dieser Arbeit wird der Ansatz vorgeschlagen, bestimmte Routi-
nen, die als Bestandteile bereits existierender adaptiver Waveletverfahren konzipiert wurden, in das oben
beschriebene zweistufige Iterationsschema zu integrieren. Dessen Toleranzen werden dazu auf die durch
Vergröberungsoperationen und approximative Matrixanwendungen auftretenden zusätzlichen Approxi-
mationsfehler abgestimmt. So entsteht ein neuer Typ von Waveletverfahren, der Elemente uniformer und
adaptiver Diskretisierungsstrategien enthält. Dieses wird ebenfalls im Rahmen des Programmpakets BWP
umgesetzt. Anhand umfangreicher numerischer Experimente läßt sich experimentell beobachten, wie sich
die lokale Verteilung der Koeffizienten automatisch gemäß den Regularitätseigenschaften der Daten für
jede Variable individuell einstellt. Die asymptotisch levelunabhängige Anzahl an Iterationen wird wie
schon beim uniformen auch beim adaptiven Verfahren beobachtet. Zudem finden sich Hinweise auf eine
superlineare Konvergenzrate.

Insgesamt wird in der vorliegenden Arbeit ein weiter Bogen gespannt, um auf Basis einer optimierten
Waveletkonstruktion ein effizientes zweistufiges Iterationsverfahren zur numerischen Lösung des Kontroll-
problems zu konzipieren und umzusetzen. Dieses kombiniert einen nested-iteration Ansatz mit inexakten
konjugierten Gradientenverfahren. Der rigorose theoretische Hintergrund von Waveletmethoden wird da-
bei zur Gewinnung von Aussagen zu Modellierung, Vorkonditionierung, Adaptivität und Konvergenz
herangezogen. Anhand extensiver numerischer Experimente wird verifiziert, daß die benötigte Rechen-
leistung linear mit der Anzahl der Unbekannten skaliert und der hier vorgestellte Algorithmus somit die
theoretisch vorhergesagte optimale lineare Komplexität bietet. Die Freiheit in der Modellierung durch die
Einführung der waveletspezifischen Parameter s und t und deren neuentwickelte algorithmische Realisie-
rung schlägt sich in einer großen Vielfalt der numerisch berechenbaren und berechneten Ergebnisse nieder.
Zusätzlich wird eine deutliche Reduktion an verwendeten Koeffizienten durch die adaptive Weiterentwick-
lung des Verfahrens beobachtet. Abschließend läßt sich feststellen, daß die hier vorgestellte zielgerichtete
Anpassung, Verbindung und Erweiterung der auf verschiedenen Ebenen gegebenen inhärenten Vorzüge
einer Waveletdiskretisierung auf ein numerisches Verfahren von ganz eigener Art und überzeugender
Flexibilität, Effizienz und Leistungsfähigkeit führt.
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Chapter 1

Introduction

In this thesis, we develop a wavelet method for the numerical solution of an optimal control problem con-
strained by a linear elliptic partial differential equation. The particular challenge here lies in considering
and combining two areas of research. On the one hand, we have to deal with the efficient solution of an
elliptic partial differential equation. On the other, we face an optimisation problem specified by a target
functional and PDE constraints.

Wavelets constitute a sophisticated tool for analysis and numerics, which provides key features for both of
the above subjects. Consequently employing the unique properties of an optimised wavelet discretisation,
a synergy emerges which allows us to develop a fully specified fast iterative solution scheme of optimal
computational complexity. Let us now comment step by step on the relevant mathematical ideas.

Elliptic Partial Differential Equations

A large variety of phenomena in physics, engineering and mathematical finance are described by partial
differential equations or shortly PDEs. Famous examples are the Navier Stokes equation for general fluid
flow, which is reasonably accurate for water, or the heat equation which accounts for the distribution of
temperature over time in a solid medium, e.g. metal. The deformations of diverse elastic substances such
as glass, steel or plastic are modelled by a partial differential equation, as well as some relations in the
pricing of option derivatives in the stock market. There exists an abundance of further examples where
processes of nature can be modelled with this class of equations.

A partial differential equation describes the dependence of the state of a system on exterior forces. The
classical case is Laplace’s equation complemented by homogeneous Dirichlet boundary conditions,

−∆y = f in Ω , (1.1a)

y = 0 on ∂Ω . (1.1b)

Here y and f are functions of x ∈ Ω ⊂ Rn, where y denotes the unknown solution to be computed, while
f represents the data which is given a priori. Physically speaking, the state y is a function of the forces
or sources denoted by f . The partial differential operator ∆ is defined as

∆y =
n
∑

i=1

∂2y

∂x2
i

. (1.2)

Equation (1.1) is the prototype of an elliptic boundary value problem. It is stationary, that is, independent
of time.
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Chapter 1. Introduction

The mathematical discipline of numerical analysis is largely concerned with the development and study
of algorithms for problems of continuous mathematics. As such, it covers the numerical solution of
partial differential equations. Its history begins hundreds of years ago, far before the development of
mathematical automata and computing machines. Now, the use of modern computers allows to handle
quantities of mathematical information larger than ever imagined by humans at the early times, whereas
many central mathematical and algorithmic concepts have basically remained unchanged for centuries.
On the other hand, the availability of computers has tremendously inspired the mathematical community
and led to the development of a variety of recent numerical methods for a multitude of problems.

To handle equations such as (1.1) numerically, the continuous functions y and f have to be replaced by a
finite amount of mathematical information. This process is called discretisation, where major techniques
are finite differences or finite elements, see e.g. [22,36]. In these approaches, the domain Ω is divided into
a finite number of cells, where a constant amount of coefficients per cell locally characterises the function.
Naturally, this can only be an approximation. The discretisation error can be reduced by increasing the
number of cells while shrinking their size. A high resolution is thus necessary to achieve a sufficiently
realistic and physically meaningful simulation.

One straightforward way to discretise a partial differential equation is to employ a linear combination of
the type y =

∑N
i=1 ciφi with unknown coefficients ci ∈ R and a set of functions φi : Ω → R. Thereby,

a linear PDE is directly translated into a linear system of equations over the space of coefficients. For
nonlinear partial differential equations however, several problems arise. First of all, the superposition
principle no longer holds and consequently the conversion into a discrete system becomes more difficult.
Furthermore, existence and uniqueness of the solution need not be assured at all. For example, global
existence is unknown for the Navier Stokes equations in three dimensions.

Independent of the respective type of equation, we define the primary goal of numerical efficiency as
follows. First choose a discretisation with a total number of N coefficients which delivers a discretisation
error εd that is appropriate in the context of the problem. This selects the order of approximation d,
given by the relation εd = O(N−d). Then calculate the discrete solution with minimal computational
complexity, that is, use a possibly large N with a possibly small demand of computer memory and
computing time. Since all coefficients have to be evaluated at least once, the optimal complexity is
O(N).

Discretisations of linear elliptic partial differential equations generally lead to large linear systems of
equations. The system or stiffness matrix of elliptic problems has a special sparse structure which
depends on the discretisation, see e.g. [37]. The study of appropriate solvers is a large field, where
direct and iterative methods are distinguished. Direct solvers yield an exact solution but usually have a
complexity of at least O(N 2). Only iterative solvers can achieve optimal linear complexity. They deliver
the solution up to a prescribed error εs in a certain number of k steps, εs = O(ρk), with ρ < 1.

The convergence rate ρ of iterative solvers depends directly on the so-called condition number κ(A) of
the system matrix A, that is, the ratio of the largest and smallest eigenvalue. Optimal complexity can
be guaranteed for a uniform condition number κ(A) = O(1), independent of the amount of unknowns N .
However, naive approaches for the discretisation of Laplace’s operator yield a condition number which
grows exponentially with N . Therefore, a large effort of research has been dedicated to techniques for
preconditioning. The practically most successful concept today are multi-level methods.

By introducing a multi-level hierarchy of space decompositions, which separates the errors for different
frequencies, solvers for linear elliptic PDEs can be designed which guarantee optimal complexity. The
class of multigrid methods appeared first [85], and a large amount of literature exists on this topic, see
e.g. [22, 23, 26, 85, 138]. The idea of multi-level preconditioners has been examined and refined in many
ways, see e.g. [74, 144] and [24, 47, 102].

To further increase the numerical performance, additional important concepts have been developed,
namely adaptivity and parallelisation. Firstly, when a function consists of both smooth and rough parts,
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it may make sense to represent it adaptively. This means to spend most coefficients for the rough part,
while the smooth part is approximated accurately with very few coefficients. Consequently, a smaller
number of total coefficients is required for the same error of approximation than with a standard uniform
discretisation, and the computational cost can be drastically reduced depending on the smoothness of
the function.

Secondly, parallelisation denotes the distribution of the computational work among several identical
computers. In general, this requires non-trivial algorithmic concepts for the division of the data and the
communication between the computers. Ideally, the amount of coefficients to be handled, but also the
financial and environmental demands increase proportionally to the number of processors. Several indus-
trial applications naturally call for an amount of memory which necessitates the use of many thousands
of machines, and as such motivate the development of parallel algorithms. A parallel multigrid PDE
solver is for example described in [78]. Here, we concentrate on the reduction of the runtime and/or
the improvement of the accuracy of a numerical method for a given amount of computer memory and a
fixed core frequency. To this end, we focus on an adaptive strategy to eliminate unnecessary degrees of
freedom. An additional discussion of parallelisation would be beyond the scope of this work and may be
considered at a later stage. —

This thesis deals with wavelet methods for the solution of control problems constrained by linear elliptic
partial differential equations [28]. We choose a biorthogonal wavelet discretisation [49] precisely because
of its strong virtues with respect to the numerical treatment of such PDEs. Wavelets are local multi-scale
bases of functions which satisfy the Riesz basis property for a range of Sobolev spaces. This implies that
the stiffness matrix for Laplace’s equation is uniformly well-conditioned, and an iterative solver like the
method of conjugate gradients converges with optimal complexity [47]. Furthermore, wavelets provide a
solid theoretical fundament in nonlinear approximation theory [59]. They are thus particularly suited to
implement adaptivity, and permit a rigorous convergence theory not only for elliptic partial differential
equations [39], but also for the optimal control problem with elliptic PDE constraints [48].

Although the available literature on wavelet methods has grown considerably in the last decade, wavelets
can still be considered as a novel, advanced and progressive tool for the numerical solution of PDEs. There
is no such thing as a single best or standard wavelet basis, and the development of wavelet approaches
to various problems in mathematics and computer science is rapid. Therefore, we need to adapt the
practical construction of suitable wavelet bases and the choice of appropriate solvers specifically for the
type of application discussed in this thesis. Consequently, we discuss the subject of wavelets in some
detail. After the introduction of the notation and properties of wavelet bases in Chapter 2, we treat
two concrete constructions of wavelets explicitly in Chapter 3. For both of them, we propose additional
transformations which optimise important quantities such as the size of their support, the symmetry and
the condition number of the wavelet basis. The application to elliptic PDEs is covered in Chapter 4.
Here we develop a technique to further improve the condition number of the stiffness matrix in wavelet
representation by an adaption to the elliptic operator, and conclude with a fast and optimal iterative
solution scheme.

Optimal Control Problems

The subject of optimisation is an active field at the front of modern research. It deals with techniques to
find one element out of an admissible set such that a so-called objective or cost functional is minimised.
Thereby the admissible set is generally determined by constraints in the form of systems of equalities or
inequalities.

A primary motivation to examine this type of problem is to reduce the cost in manufacturing and
maintenance of industrial systems. Consider for example the following applications.
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Chapter 1. Introduction

• Optimise the shape of tubes and valves in industrial production plants to increase the throughput
of flow and the efficiency of chemical reactions [87, 113].

• Employ the injection or suction of air at the surface of aeroplane wings to inhibit drag and turbulence
and consequently reduce fuel consumption.

• Control heating and cooling processes to enhance material properties in steel or glass production
[64, 137].

In all of the above cases, the underlying physical system is described by a partial differential equation.
The control variables enter in the form of unknown boundary conditions or exterior forces. It is generally
necessary to repeatedly solve the PDE for different sets of control variables to find the optimal combi-
nation. Optimisation is thus a complex process which involves the solution of the PDE constraint as a
subproblem.

We concentrate here on the class of linear-quadratic elliptic optimal control problems. This means that
the state obeys a linear partial differential equation of elliptic type similar to (1.1). Specifically, we
consider the prototype

(−∆ + 1)y = f +Eu in Ω , (1.3a)

∂y

∂n
= 0 on ∂Ω . (1.3b)

In this situation, the control u enters the state equation on the right hand side. The extension operator
E is used to map u from the control space into the space of permissible sources f . It is thus possible
to implement both Neumann boundary and distributed control, i.e., u may be defined on ∂Ω or Ω,
respectively.

We examine the following type of cost functional,

J(y, u) =
1

2
‖Ty − y∗‖2Z +

ω

2
‖u‖2U , (1.4)

where norms on the spaces Z and U will be specified later. The first term is of tracking type, which
means that we wish to obtain a state y which is close to a pre-defined target state y∗. The operator
T is introduced to allow an observation of y on general submanifolds or traces. The second term is
often called regularisation with the parameter ω > 0. The functional only contains quadratic contribu-
tions. In particular, this implies that it is differentiable, which is useful to derive appropriate criteria for
minimisation.

The solution of optimal control problems with linear PDE constraints poses several major challenges
in addition to the above stated difficulties arising from the solution of one partial differential equation
alone. First of all, the necessary conditions for a minimisation of (1.4) under the constraints (1.3) lead to a
coupled system of linear systems of equations, the so-called optimality system. Additional unknowns such
as the control and the Lagrangian multiplier for the constraint enter the picture, leading to a threefold
increase in the amount of degrees of freedom. Moreover, the optimality system has a peculiar saddle
point structure, which means that the development of an optimal solver is a non-trivial task. Also the
fast and accurate evaluation of suitable norms on the spaces Z and U comes into play. For maximal
freedom of modelling, it is desirable to employ Sobolev norms of arbitrary real smoothness indices.

Nonlinearities generally give rise to additional issues with respect to discretisation and optimisation, such
as convexity, global uniqueness of the minimiser and well-posedness of the problem. In this situation,
additional techniques such as SQP methods are required [89,92,142]. An introduction is provided in [136],
covering also Karush-Kuhn-Tucker-theory in function spaces and regularity issues. An extension of this
thesis to nonlinear stationary constraints may be possible on the basis of [41]. Since nonlinear PDE
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constraints are often handled by linearisation at some point, the linear-quadratic case constitutes the core
problem for many more general applications. Still, even for this fundamental case systematic numerical
experiments lack behind theoretical investigations.

An overview on modern PDE-constrained optimisation is given in [11]. The optimal control of fluid
flow problems is maybe the most important area today. See [80] for a general survey, which also covers
different technical approaches via the optimality system, the analysis of sensitivities or adjoint-based
methods. The discussion of algorithmic concepts is very active, see e.g. [124,126,135]. Some applications
to the Navier Stokes equations are discussed in [83,95], and reaction diffusion systems have been treated
in [17].

Other attempts are concerned with novel ways to increase the numerical efficiency, for example model
reduction by proper orthogonal decomposition [65, 101,142], checkpointing techniques [79] which reduce
the requirements on computer memory, and algorithmic differentiation [44]. Adaptive finite element
approaches have been suggested using residual-based error estimators [108] and a framework based on
duality [8]. However, these do currently offer neither a convergence theory nor complexity estimates.

The multi-level ansatz becomes increasingly popular for the numerical solution of optimal control prob-
lems as well. Multigrid methods for elliptic constraints on uniformly refined grids have been proposed
early in [84]. Recently, multigrid optimisation for selected applications has been discussed [63], and spe-
cific multigrid algorithms for elliptic or parabolic constraints have been developed [15,16]. Lately, wavelet
methods have entered the scene [48, 103,104]. —

We demonstrate in this thesis that a wavelet ansatz for the linear-quadratic optimal control problem
allows for a systematic approach and a unified solution to all of the numerical difficulties mentioned
above. By a reformulation of the optimality system in terms of the control u as the principal variable,
we obtain a uniformly well-conditioned system of equations. Its iterative solution contains in each step
the numerical inversion of the stiffness matrix as a subproblem which is also uniformly well-conditioned.
By utilising the method of conjugate gradients in conjunction with a nested iteration strategy for this
two-layer approach, we obtain discretisation error accuracy with optimal computational complexity.

We also propose a concept to handle the numerical evaluation of integral and fractional Sobolev norms in
the wavelet framework. This allows for the modelling of the whole range of smoothness between −1 and 1
in a continuous manner. To consider negative norms is for example motivated by goal-oriented approaches,
which employ distributional formulations. Technically, Sobolev norms of functions are computed by the
evaluation of Riesz operators in wavelet discretisation. For fractional smoothness, this is possible up to
equivalence. We propose an enhanced version here which provides equality of the original Sobolev norm
and its discrete form for a larger class of functions than the standard wavelet approaches in [46, 48].

Furthermore we exploit the inherent potential of wavelet bases to implement adaptivity. The Riesz basis
property can be employed to choose the most significant coefficients, discarding small contributions in a
controlled fashion. As opposed to finite element techniques, it is not necessary to track the refinement
of triangular or quadrilateral grids, since all information lies exclusively in the index and magnitude of
the individual coefficients. In the adaptive context, the notion of asymptotically optimal complexity is
interpreted in the sense that the number of unknowns N to achieve a particular error εa depends on the
smoothness of the exact solution u measured in weak `τ sequence spaces,

N ≤ Cε−1/σ
a ‖u‖1/σ`wτ

, (1.5)

with the convergence rate σ > 0 [39]. Here we incorporate elements from the adaptive algorithm proposed
in [48] into our solver for the optimal control problem, and conduct numerical experiments to estimate
the rate.

The definition of the optimal control problem and its transformation into wavelet coordinates is covered
in Chapter 5. We discuss the reformulation of the optimality system and introduce the concept for the
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Chapter 1. Introduction

fast and accurate evaluation of Sobolev norms. In Chapters 6 and 7, we cover in detail the algorithm
nIIcG/2 using uniform refinement, and its adaptive enhancement δ-AnIIcG/2, respectively. We compute
the necessary error bounds and stopping criteria and provide a variety of numerical results.

Scope of this Thesis

Wavelets are a sophisticated tool in numerical analysis with enormous potential for both partial differential
equations and optimisation problems. We unify the specific capabilities of wavelets for preconditioning
elliptic operators, the evaluation of norms, fast iterative solvers on uniform grids and the realisation
of adaptivity in one large scale programming framework for the efficient numerical solution of linear-
quadratic elliptic optimal control problems with distributed or Neumann boundary control.

Technically, the discretisation is based on biorthogonal B-spline wavelets which we have optimised with
respect to symmetry and conditioning. We introduce an enhanced concept to evaluate integral and
fractional Sobolev norms of functions in wavelet discretisation, and propose and implement a novel inner-
outer nested iteration conjugate gradient solver which computes the solution up to discretisation error
with optimal computational complexity.

The implementation has been realised through the programme framework BWP written from scratch in
pure C. BWP has been employed for the computation of all sets of transformation matrices, condition
numbers and other constants and thresholds, and of course to create the main programmes implementing
the algorithms nIIcG/2 and δ-AnIIcG/2. Since all operations require a computational effort linear in the
number of unknowns, the size of the problems to be covered is only limited by the availability of main
memory.

This work constitutes the first systematic realisation of a fast and accurate wavelet method for an optimal
control problem constrained by linear elliptic PDEs. New concepts have been introduced with respect
to modelling, discretisation and implementation. The numerical experiments suggest that the proposed
optimised method is competitive with finite element approaches in terms of efficiency on simple domains,
and additionally offers a superior way to model norms of arbitrary smoothness and a natural adaptive
concept.

Outline

We now give a short summary of the chapters of this document. We structured them as self-consistent as
possible. Naturally, later chapters will make use of important definitions and results stated earlier, but
they usually do not require an especially detailed retrospection.

Chapter 2
First of all, we establish the basic properties of biorthogonal wavelet bases. This chapter is intended
for anyone not familiar with wavelets and to introduce notation which will be used throughout this
document.

Chapter 3
This chapter is dedicated to two different approaches to construct biorthogonal wavelet bases on the
interval. These are covered in some detail, and we also add a couple of improvements by the author.
This chapter may be skipped by anyone not interested in details concerning the construction, as the
subjects discussed in the following chapters can generally be understood in terms of the abstract
framework from Chapter 2.

Chapter 4
Discussing the solution of linear elliptic operator equations in wavelet discretisation, we derive the
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fundamental result that such systems are uniformly well-conditioned. We also develop a technique
to improve the absolute values of the condition number of the stiffness matrix, and propose a generic
nested iteration conjugate gradient solver.

Chapter 5
This chapter contains the definition of the full optimal control problem and its reformulation in
terms of wavelet coordinates. To assure that the minimisers of the continuous and the discrete
functional coincide for a possibly large variety of settings, we propose a framework for the accurate
evaluation of norms on Sobolev spaces of integral and fractional smoothness.

Chapter 6
In this chapter we specify a numerical method for the solution of the optimal control problem
and derive the necessary error bounds for several calculations and subroutines. We conclude with
various numerical examples for a uniform discretisation in one to three dimensions. We display the
solutions for the state and the control and corresponding convergence histories which confirm that
the computational work is proportional to the number of unknowns.

Chapter 7
The last chapter is devoted to the development of an adaptive algorithm for the optimal control
problem. We first summarise some results from nonlinear approximation theory and then describe
how to incorporate the corresponding additional subroutines into the existing algorithm. We close
the chapter with numerical results.

Chapter 8
Finally, we provide a summary and interpretation of the observations and results accumulated in
this thesis, and outline perspectives for future research.

Implementation

All computations have been performed within the newly contrived programme framework BWP, which is an
acronym for Burstedde’s Biorthogonal Wavelet Project. It provides a framework for general biorthogonal
wavelets with a strict focus on linear computational complexity. So far, it has been employed for the
numerical solution of linear-elliptic optimal control problems and a full weak space-time discretisation of
parabolic partial differential equations. The package is written in pure C and has been designed to be
self-consistent, non-redundant and modular. BWP comprises the following three structural layers.

General computations
This lowest layer realises generic vector and matrix operations and the assembling and indexing of
tensor products in arbitrary dimensions. Furthermore, it contains routines for the n-dimensional
integration and interpolation of functions, iterative solvers and forward and inverse power methods
to compute largest and smallest eigenvalues. It also provides capabilities for numerical file input
and output to interface with gnuplot and octave.

Wavelet toolbox
All operations which are specific to biorthogonal wavelets are concentrated here within a generic
multi-level framework. While I have included an implementation of the B-spline wavelets described
in Section 3.3, other wavelet families can be easily integrated by providing corresponding boundary
information and the primal and dual wavelet transforms. Moreover, this layer contains the exact
and approximate application of operators in wavelet representation, different variants of diagonal
scalings and hooks for the implementation of additional preconditioning techniques. It also realises
the concept of nested iteration and encapsulates several repeatedly used subalgorithms. Besides, it
offers an export filter for Postscript graphics.
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Chapter 1. Introduction

Execution layer
The topmost tier of BWP comprises auxiliary programmes for the computation of operator bounds
and condition numbers, and, of course, the main programmes in uniform and adaptive wavelet
discretisation, respectively. All of them make use of the extensive abstraction framework offered by
the two lower layers to avoid the overlap of code.

The C package uses the autoconf/automake framework. It is complemented by a collection of Perl

programmes for the analysis and postprocessing of the results.
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Chapter 2

About Wavelets

2.1 Introduction

This thesis is concerned with a wavelet method for optimal control problems constrained by an elliptic
partial differential equation. Since there exists a variety of different notions of wavelets, and the scope
of applications covers many areas including signal processing and image compression, we begin with a
specification of what we understand by wavelets here.

A wavelet basis Ψ for a Hilbert space H with inner product (·, ·)H and induced norm ‖·‖H := (·, ·)1/2H is
a collection of functions,

Ψ := {ψλ : λ ∈ II} ⊂ H , (2.1.1)

with some characteristic properties. First of all, the indices λ ∈ II contain information about both the
scale or frequency of each function, abbreviated as j := |λ|, and the location, which is denoted by k in
the simplest case. For multivariate bases, additional information such as a type of wavelet may also be
included in the index. The following three requirements are essential for the applications in Chapters 4
through 7.

Riesz basis property. The wavelets form a Riesz basis for H , which means that there exists a norm
equivalence,

‖v‖H ∼ ‖v‖`2 for all H 3 v = vTΨ :=
∑

λ

vλψλ . (R)

Here we have interpreted the expansion coefficients v = {vλ}λ and the collection of wavelet functions
Ψ as column vectors, since we always assume that the indices from II = {λ} are ordered in a fixed
manner. The coefficient vectors are measured in the space `2 of all square summable sequences with
norm ‖v‖`2 := (

∑

λ v2
λ)

1/2. The relation a ∼ b means that ca ≤ b ≤ Ca with constants c, C which are
independent of any parameters on which a or b may depend. Likewise, we introduce the notation a <∼ b
for a ≤ Cb, and a >∼ b is naturally defined as b <∼a.

Specifically, we will employ wavelets which satisfy the Riesz basis property for Sobolev spaces H := Hs :=
Hs(Ω), Ω ⊂ Rn, for a whole range of smoothness s ∈ (−γ̃, γ) ⊂ R, with γ, γ̃ > 0. This includes negative
order spaces, which we define by the dual H−s := (Hs)′.

Locality. The wavelets have compact support,

diam supp(ψλ) <∼ 2−|λ| . (L)
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Chapter 2. About Wavelets

It is often said that wavelets are localised in space and frequency at the same time. This distinguishes
them from Fourier decompositions, which satisfy (R) but violate (L), or classical finite element bases on
uniform grids, which satisfy (L) but do not fulfil (R).

Cancellation Property. The integration of a function v against a wavelet annihilates the smooth part
of the function,

|〈v, ψλ〉| <∼ 2−|λ|(d̃+ n
2
)‖v‖W d̃

∞
(suppψλ) , (CP)

where d̃ is the order of vanishing moments.

2.2 Theoretical Concepts

There exist by now very different constructions of wavelets [42, 54, 55, 68], and various extensions and
modifications for particular cases [53, 61, 107]. Introductions and surveys are available [56, 59, 112], and
also material which focuses on the application to partial differential equations [2, 38, 46]. However,
constructions which are optimised with respect to practical use in numerical analysis lack behind. In
particular, the constants implied in (R) directly influence the spectral condition numbers of stiffness
matrices. Therefore, we will propose improvements to existing constructions, which necessitates to present
the basic mathematical ideas in detail.

2.2.1 Multiresolution

The construction of wavelets can be based on the concept of a multiresolution analysis. This has been
introduced in [111], see also [55,112]. We will collect some basic facts here, largely based on [46,54,128].

Definition 2.1. Let H be a Hilbert space over the domain Ω ⊂ Rn with inner product (·, ·)H and norm

‖·‖H := (·, ·)1/2H . A multiresolution sequence S = {Sj}j≥j0 is a set of nested closed subspaces Sj ⊂ H
with the following properties,

Sj0 ⊂ Sj0+1 ⊂ . . . ⊂ H , closH





⋃

j≥j0

Sj



 = H , (2.2.1)

where j0 ∈ Z denotes the coarsest level of resolution.

Introducing the notation
S(Φ) := closH(spanΦ) (2.2.2)

for any countable collection of functions Φ ⊂ H , the subspaces Sj typically have the form

Sj = S(Φj) with Φj := {φj,k : k ∈ ∆j} , (2.2.3)

where φj,k are suitable basis functions for Sj over corresponding (possibly infinite) index sets ∆j with
cardinality

Nj := #∆j . (2.2.4)

Multivariate wavelets for dimensions n ≥ 2 require a slightly more sophisticated structure of the indices in
∆j . To keep notation as transparent as possible, we omit this generalisation here and refer to Section 2.3.3
for details.

The generator bases or single-scale bases {Φj}j≥j0 defined in (2.2.3) are chosen to be uniformly stable in
the sense that

‖c‖`2(∆j) ∼ ‖cTΦj‖H (2.2.5)
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for any coefficient vector c ∈ `2(∆j). In the following, we will drop the subscript on norms over the
sequence spaces `2, simply writing ‖·‖, unless we wish to emphasise the choice of the index set. This
applies equally to vectors and matrices. Furthermore, we only consider dyadic refinement, that is, the
number of basis functions grows geometrically between two levels,

Nj ∼ 2nj . (2.2.6)

For numerical purposes, it is important that the basis functions satisfy the locality condition

diam supp(φj,k) ∼ 2−j . (2.2.7)

As the spaces Sj are nested, the generator functions of adjacent scales obey the two-scale relations

ΦTj = ΦTj+1Mj,0 , (2.2.8)

which define certain Nj+1×Nj refinement matrices Mj,0 : `2(∆j) → `2(∆j+1). As a consequence of
locality (2.2.7), the number of entries per row and column is uniformly bounded by a constant. It follows
that the matrices Mj,0 are uniformly sparse, that is, the number of nonzero entries is proportional to the
number of unknowns.

The multiresolution framework presented up to this point applies equally well to standard finite element
bases. In the following, we move on to introduce wavelets as multi-scale bases which provide explicit
representations of complement spaces. To this end, we infer from (2.2.1) that there exist sequences
Ψj := {ψj,k : k ∈ ∇j} such that

S(Φj+1) = S(Φj)⊕ S(Ψj) , (2.2.9)

where the direct sum ⊕ is not necessarily meant to be orthogonal. This relation trivially implies #∆j+1 =
(#∆j) + (#∇j). For multivariate wavelets (n ≥ 2), the indices from ∇j have a slightly more general
form, just as those from ∆j (see Section 2.3.3). With

Wj := S(Ψj) (2.2.10)

and (2.2.3), the relation (2.2.9) can be abbreviated as

Sj+1 = Sj ⊕Wj . (2.2.11)

The complement basis Ψj is usually selected such that the collections Φj ∪ Ψj are uniformly stable in
the sense of (2.2.5) for all j ≥ j0. It follows further that there exist matrices Mj,1 : `2(∇j) → `2(∆j+1)
satisfying

ΨT
j = ΦTj+1Mj,1 . (2.2.12)

It is important for us that the basis Ψj also has compact support analogous to (2.2.7), which causes Mj,1

to be uniformly sparse as well. The complete two-scale relations now read

(ΦTj ,Ψ
T
j ) = ΦTj+1Mj with Mj := (Mj,0,Mj,1) : `2(∆j+1)→ `2(∆j+1) . (2.2.13)

From (2.2.9) it follows that Mj is invertible. Moreover, Φj ∪Ψj is uniformly stable if and only if

‖Mj‖ ∼ 1 , ‖M−1
j ‖ ∼ 1 . (2.2.14)

Definition 2.2. Any matrix Mj,1 for which the completed matrix Mj satisfies the relations (2.2.14) will
be called a stable completion of Mj,0.

Iterating the two-scale transformations up to a specific highest level J , we decompose the space SJ
according to

S(ΦJ) = S(Φj0)

J−1
⊕

j=j0

S(Ψj) . (2.2.15)
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Thus, the multi-scale basis Ψ(J) for SJ , as opposed to the single-scale basis ΦJ , can be assembled from
the generator basis at the coarsest level and all intermediate complement bases,

Ψ(J) = Φj0

J−1
⋃

j=j0

Ψj . (2.2.16)

As the union of subspaces Sj is dense in H , a basis for the full space H is given by

Ψ := Φj0

∞
⋃

j=j0

Ψj . (2.2.17)

Defining Ψj0−1 := Φj0 and ∇j0−1 := ∆j0 , (2.2.17) can be conveniently abbreviated

Ψ =
∞
⋃

j=j0−1

Ψj . (2.2.18)

Naturally, we wish to find a transformation matrix Wj : `2(∆J )→ `2(∆J ) between the single-scale basis
ΦJ and the multi-scale basis Ψ(J),

ΨT
(J) = ΦTJWJ . (2.2.19)

Such a matrix can indeed be obtained by iterating the two-scale transformations (2.2.13). Consequently,
the resulting multi-scale transformation WJ is composed of two-scale operators,

WJ := WJ,J−1 · · ·WJ,j0 with WJ,j :=

(

Mj 0
0 I

)

. (2.2.20)

It can be used to switch between single-scale and multi-scale representations of functions. To this end, let
the expansion coefficients of a function v ∈ SJ in the generator basis be denoted by c, and the coefficients
in the multi-scale basis by d, i.e.,

v = cTΦJ = dTΨ(J) . (2.2.21)

The coefficient vector d := (cTj0 ,d
T
j0
, . . . ,dTJ−1)

T contains contributions from all scales. The first part
holds the coefficients of the generator basis on the coarsest level which provides a rough approximation
of v. The following coefficients are ordered by scale and add successive layers of detail information to
the approximation. Inserting (2.2.19) into (2.2.21), the transformation from the detail coefficients to the
single-scale coefficients emerges as

c = WJd . (2.2.22)

The multi-scale transformation WJ can be applied to a vector d by successive applications of the two-level
transforms (2.2.20). This is visualised in the following pyramid scheme,

Mj0,0 Mj0+1,0 MJ−1,0

cj0 → cj0+1 → cj0+2 → · · · → cJ
Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ . . . ↗
dj0 dj0+1 dj0+2 dJ−1

, (2.2.23)

where c = cJ is the result. If each matrix Mj,e can be applied in O(Nj) operations, it follows by a
geometric series argument using (2.2.6) that the complete multi-scale transformation can be performed
in O(NJ ) operations, i.e., with linear complexity. The application of WJ is therefore called fast wavelet
transform, FWT.
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It is important for us to find a uniformly stable multi-scale basis where the inverse multi-scale transfor-
mation can also be applied in linear time. Let the inverse two-scale transformation matrices be defined
by

(

Gj,0

Gj,1

)

:= Gj := M−1
j . (2.2.24)

The blocking is performed according to the splitting (2.2.9). The inversion of WJ can be understood
through (2.2.20) and arranged in a pyramid scheme analogously to (2.2.23),

GJ−1,0 GJ−2,0 Gj0,0

cJ → cJ−1 → cJ−2 → · · · → cj0
GJ−1,1 GJ−2,1 Gj0,1

↘ ↘ ↘ . . . ↘
dJ−1 dJ−2 dj0

. (2.2.25)

It follows that W−1
J can be applied in linear time if the matrices Gj are uniformly sparse. In this case,

W−1
J is called inverse fast wavelet transform, IFWT. To achieve the sparsity of Gj is a crucial point in

both constructions of wavelets which we present in Chapter 3.

2.2.2 Biorthogonality

The concept of multiresolution analysis introduced in the previous section will now be expanded by
duality. This leads to biorthogonal space decompositions and biorthogonal wavelet bases, which offer
more flexibility for the envisaged applications than strictly orthogonal wavelets.

To emphasise the role of duality, we will write 〈v, ṽ〉 for the dual pairing of two functions v ∈ H , ṽ ∈ H ′,
where H denotes a general Hilbert space with dual H ′. (For the special case H = L2, this reduces to the
standard inner product.) For collections of functions Φ = {φ} ⊂ H , which we consistently interpret as
(possibly infinite) column vectors, and some single function f ∈ H ′, the term 〈Φ, f〉 is to be understood
as a column vector, and 〈f,Φ〉 as a row vector, according to

〈Φ, f〉 :=
(

〈φ, f〉
)

φ∈Φ
, 〈f,Φ〉 := 〈Φ, f〉T . (2.2.26)

Consequently, by-element dual pairings of two function sequences Φ ⊂ H and Φ̃ = {φ̃} ⊂ H ′ are written
as (not necessarily square and possibly infinite) matrices 〈Φ, Φ̃〉 with entries

〈Φ, Φ̃〉 :=
(

〈φ, φ̃〉
)

φ∈Φ,φ̃∈Φ̃
. (2.2.27)

It follows that linear transformations of two function sequences Φ, Φ̃ by (not necessarily square) matrices
A and B satisfy

〈AΦ,BΦ̃〉 = A〈Φ, Φ̃〉BT . (2.2.28)

Recall that we denote by Hs the Sobolev space of (possibly fractional) index of smoothness s ∈ R over
a domain Ω ⊂ Rn, and abbreviate its dual as H−s := (Hs)′ [1]. Using this notation, we formulate the
following theorem and corollary which contain the fundamental statements about biorthogonal space
decompositions, see e.g. [45, 49, 54].

Theorem 2.3. Let Sj0 ⊂ Sj0+1 ⊂ . . . and S̃j0 ⊂ S̃j0+1 ⊂ . . . be two sequences of nested subspaces of L2.

(a) Suppose that

inf
06=v∈Sj

sup
06=ṽ∈S̃j

|〈v, ṽ〉|
‖v‖L2

‖ṽ‖L2

>∼ 1 , (2.2.29)

and the analogous condition (2.2.29)∗ with interchanged roles of Sj and S̃j hold.
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Then there exists a sequence {Qj}j of uniformly bounded projectors Qj : L2 → L2 with Im(Qj) = Sj and

Im(I−Qj) = (S̃j)
⊥L2 . For the adjoint projectors (Q̃j)j holds analogously Im(Q̃j) = S̃j and Im(I−Q̃j) =

(Sj)
⊥L2 . Additionally, it follows that QjQj+1 = Qj and Q̃jQ̃j+1 = Q̃j , respectively.

(b) Under the extra assumptions that there exists 0 < γ < d such that

inf
w∈Sj

‖v − w‖L2
<∼ 2−js‖v‖Hs (2.2.30)

for v ∈ Hs, 0 ≤ s ≤ d (which is usually called a direct or Jackson estimate) and

‖v‖Hs <∼ 2js‖v‖L2
(2.2.31)

for v ∈ Sj , 0 ≤ s ≤ γ (which is usually referred to as inverse or Bernstein estimate), and that analogous

assumptions (2.2.30)∗, (2.2.31)∗ with constants 0 < γ̃ < d̃ hold for {S̃j}j, it follows (with the definitions

Qj0−1 := Q̃j0−1 := 0) that

∥

∥

∥

∞
∑

j=j0

vj

∥

∥

∥

2

Hs

<∼
∞
∑

j=j0

22js‖vj‖2L2
for vj ∈ Im(Qj −Qj−1), s ∈ (−d̃, γ) , (2.2.32)

and
∞
∑

j=j0

22js‖(Qj −Qj−1)v‖2L2
<∼‖v‖

2
Hs for v ∈ Hs, s ∈ (−γ̃, d) . (2.2.33)

Corollary 2.4. In particular, for s ∈ (−γ̃, γ), v 7→ ((Qj −Qj−1)v)j is a bounded mapping from Hs into
`2,s(Q), where

`2,s(Q) :=
{

(vj)j : vj ∈ Im(Qj −Qj−1), ‖(vj)j‖`2,s(Q) :=
(

∞
∑

j=0

22js‖vj‖2L2

)
1
2

<∞
}

, (2.2.34)

with bounded inverse (vj)j 7→
∑∞

j=0 vj . Therefore the symbols <∼ in (2.2.32) and (2.2.33) can be replaced
by ∼ symbols in this case. This leads to the norm equivalence

‖v‖2Hs ∼
∞
∑

j=j0

22js‖(Qj −Qj−1)v‖2L2
, v ∈ Hs, s ∈ (−γ̃, γ) . (2.2.35)

Analogous results hold for interchanged roles of (γ, d) and (γ̃, d̃), with Qj replaced by Q̃j .

These statements about projectors are connected to the multiresolution sequences introduced in the
previous section, with H = L2, by the following remark.

Remark 2.5. We can identify Wj = Im(Qj+1 − Qj), cf. (2.2.11), and its dual counterpart W̃j =

Im(Q̃j+1 − Q̃j). Consequently, we get

Wj = (S̃j)
⊥L2 ∩ Sj+1 and W̃j = (Sj)

⊥L2 ∩ S̃j+1 . (2.2.36)

It follows trivially that the Wj and W̃j are biorthogonal between levels,

Wj1 ⊥ W̃j2 for j1 6= j2 . (2.2.37)

Therefore, the collection of spaces Wj , W̃j is called a biorthogonal decomposition of L2. This includes

the spaces Wj0−1 := Sj0 and W̃j0−1 := S̃j0 . The functions in Wj and W̃j will be called primal and dual
wavelets.
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The prerequisites for Theorem 2.3 can be verified by the following considerations. When the spaces Sj
and S̃j are chosen as finite element spaces, direct and inverse estimates (2.2.30), (2.2.31) are standard
facts, see e.g. [22,54,117]. For functions which are dyadically refined (2.2.6) and local (2.2.7), the inverse
estimates (2.2.31) are satisfied with γ = t+ 3

2 and γ̃ = t̃+ 3
2 , provided that the functions from the spaces

Sj and S̃j are piecewise smooth and globally t, respectively t̃, times continuously differentiable. For the
case of discontinuous finite elements, this holds with t = t̃ = −1. The direct estimates (2.2.30) are usually
enforced by the requirement that, relative to their meshes, Sj and S̃j contain all t or t̃ times continuously

differentiable piecewise polynomials of degree d−1 and d̃−1, respectively. Considering (2.2.37), this also
implies that the wavelets have d̃, respectively d, vanishing moments,

〈v, (·)r̃〉 = 0 , v ∈ Wj , r̃ = 0, . . . , d̃− 1 , (2.2.38a)

〈ṽ, (·)r〉 = 0 , ṽ ∈ W̃j , r = 0, . . . , d− 1 . (2.2.38b)

Up to this point, we have dealt with statements about spaces Sj , Wj and general projectors Qj , and their
dual counterparts. Now we will provide a means to verify condition (2.2.29) by the choice of appropriate
bases. We first cite the following general lemma [54].

Lemma 2.6. Let Φj and Φ̃j be L2-stable bases of Sj and S̃j , respectively, with the common index set
∆j . Define the square matrix Bj : `2(∆j)→ `2(∆j) according to

Bj :=

(

〈φj,k, φ̃j,l〉
‖φj,k‖L2

‖φ̃j,l‖L2

)

k,l∈∆j

. (2.2.39)

Then (2.2.29) is equivalent to ‖Bjcj‖ >∼‖cj‖ for all cj = (cj,k)k∈∆j
∈ `2(∆j), and analogously (2.2.29)∗

is equivalent to ‖BT
j cj‖ >∼‖cj‖ for all cj .

When we demand in addition that Φj and Φ̃j are biorthogonal,

〈Φj , Φ̃j〉 = I , Ik,l := δk,l :=

{

1 if k = l,

0 else,
(2.2.40)

we can establish the following theorem which also provides concrete representations of the biorthogonal
projectors [29].

Theorem 2.7. Let Φj and Φ̃j be biorthogonal, uniformly stable bases of the nested spaces Sj and S̃j ,
respectively. Then, (2.2.29) is satisfied, and the projectors defined by

Qjv := 〈v, Φ̃j〉Φj , Q̃j ṽ := 〈ṽ,Φj〉Φ̃j (2.2.41)

fulfil the conditions from Theorem 2.3.

Summarising these results, we can ensure the norm equivalence (2.2.35) by the choice of biorthogonal
bases for the spaces Sj and S̃j which are uniformly stable and local and yield polynomial exactness of

orders d and d̃, respectively. We will discuss two independent constructions of bases which fulfil these
requirements in Chapter 3.

2.2.3 Riesz Bases for Sobolev Spaces

We will show here how wavelets as defined in Section 2.2.1 can be used to substitute the differences
(Qj −Qj−1)v from (2.2.35). This will in turn yield the Riesz basis property (R).
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Definition 2.8. A collection of functions Σ ⊂ H is called a Riesz system for H if

‖v‖H = ‖cTΣ‖H ∼ ‖c‖ , v = cTΣ ∈ H . (2.2.42)

A Riesz system is called a Riesz basis if it is also a basis of H. In other words, the norm of a function
v = cTΣ ∈ H can be estimated from below and above by the sequence norm of its expansion coefficients
c.

We have already encountered this form of equivalence in (2.2.5), which means that Φj forms a Riesz basis
for Sj . Here, we will extend the Riesz basis property to the full infinite multi-scale basis Ψ. To this end,

we make the additional assumption that the bases for the complement spaces Ψj ⊂Wj and Ψ̃j ⊂ W̃j as
defined in (2.2.10) are biorthogonal,

〈Ψj , Ψ̃j〉 = I . (2.2.43)

We will show a recipe for such a construction in Section 2.3.1. Together with (2.2.37), we deduce
biorthogonality of the full multi-scale basis Ψ, Ψ̃ as defined in (2.2.17),

〈Ψ, Ψ̃〉 = I . (2.2.44)

We can then obtain a discrete norm equivalence from (2.2.35) by replacing the projectors Qj with their
definition (2.2.41) and explicitly computing the differences (Qj −Qj−1)v [49].

Theorem 2.9. Let Ψ, Ψ̃ be a pair of uniformly stable, biorthogonal multi-scale bases in the sense of
(2.2.14) and (2.2.44), and let the direct and inverse inequalities (2.2.30) and (2.2.31) hold. Then it
follows that

‖v‖2Hs ∼
∞
∑

j=j0−1

22js‖〈v, Ψ̃j〉‖2 , v ∈ Hs, s ∈ (−γ̃, γ) , (2.2.45)

and the dual relation, obtained by switching the roles of Ψj and Ψ̃j , holds for s ∈ (−γ, γ̃).

By setting s = 0, we conclude that Ψ and Ψ̃ are Riesz bases for L2, and the expansion of a function
v ∈ L2 can be written as

v = 〈v,Ψ〉Ψ̃ = 〈v, Ψ̃〉Ψ , (2.2.46)

with
‖v‖L2

∼ ‖〈v,Ψ〉‖ ∼ ‖〈v, Ψ̃〉‖ . (2.2.47)

For general s, the formulation (2.2.45) suggests to absorb the scaling factors 2js into the wavelet basis.
To this end, we define

Ψs := D−sΨ = {2−jsψj,k}j≥j0−1,k∈∇j
, (2.2.48)

where D is the diagonal matrix consisting of entries 2j , j being the level of each function. For the
multivariate case, the index sets take a slightly more complicated form, see Section 2.3.3. The dual basis
is defined by

Ψ̃s := DsΨ̃ . (2.2.49)

In view of (2.2.44), these definitions imply

〈Ψs, Ψ̃s〉 = I . (2.2.50)

In summary, the main theorem characterising Sobolev spaces by wavelet expansions emerges as follows.

Corollary 2.10. Under the assumptions of Theorem 2.9 and for any s ∈ (−γ̃, γ), Ψs is a Riesz basis
for Hs, and Ψ̃s is a Riesz basis for H−s, namely,

‖·‖Hs ∼ ‖〈Ψ̃s, ·〉‖ and ‖·‖H−s ∼ ‖〈Ψs, ·〉‖ . (2.2.51)
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Thus, wavelets can be used to characterise function spaces in terms of expansion coefficients. This will
play an important role with respect to preconditioning of elliptic problems and the accurate evaluation of
Sobolev norms and Riesz operators later in this document. The transformation between Sobolev spaces
of different smoothness can be achieved through the definition of a shift operator as follows.

Corollary 2.11. Let the shift operator be defined by

Dt : Hs → Hs−t , v = cTs Ψs 7→ Dtv := (Dtcs)
TΨs = cTs Ψs−t . (2.2.52)

This is a well-defined operation for s, s− t ∈ (−γ̃, γ), v ∈ Hs, and it holds

‖Dtv‖Hs−t ∼ ‖v‖Hs . (2.2.53)

Analogous statements hold for the dual basis. In any case, a positive shift t decreases the smoothness of
a function, while a negative exponent smoothens a function.

To transform between the single-scale basis of L2 and a certain wavelet basis of smoothness s, the scaling
in terms of the diagonal matrix D can also be incorporated into the multi-scale transformation (2.2.19)
according to

(Ψs
(J))

T = ΦTJWs
J with Ws

J := WJD
−s . (2.2.54)

The following result relates the conditioning of Ws
J , which can be understood as a generalisation of

(2.2.14), to the Riesz basis property for Ψs [46].

Theorem 2.12. The transformations Ws
J are well-conditioned in the sense that

‖Ws
J‖ ∼ 1 , ‖(Ws

J)−1‖ ∼ 1 , (2.2.55)

if and only if Ψs is a Riesz basis of Hs.

As an orthogonal basis is by definition a self-dual Riesz basis, it fits into the framework described here.
However, orthogonality can be considered as a requirement which is too strong. Although compactly
supported orthogonal wavelet bases for the Sobolev spaces considered here have been constructed [55],
they have some disadvantages which make them harder to handle in numerical simulations. In particular,
they are not piecewise polynomials, and they are only implicitly defined.

The framework of biorthogonal bases offers much more flexibility to construct multi-scale bases which
are explicitly defined, well-conditioned in the sense of (2.2.55), and lead to multi-scale transformations
which can be applied with linear computational complexity.

In summary, biorthogonality is as far as one can deviate from orthogonality. Essential features of or-
thogonality are preserved: Biorthogonal wavelets satisfy the Riesz basis property for the Sobolev spaces
in question, and the expansion coefficients of a function can be computed by inner products with (dual)
basis functions.

2.3 Construction Principles

After the introduction of the basic theoretical concepts, we will now address some practical aspects. These
will mostly be related to the construction of biorthogonal bases for the complement spaces Wj and W̃j ,
that is, complement bases which satisfy (2.2.43). To prepare the optimisation of specific constructions of
wavelets for our numerical purposes, we need to recall and further develop the construction principles in
detail.
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2.3.1 Stable Completions

We will show next how to construct biorthogonal two-scale bases from a biorthogonal generator basis
(2.2.40) and an initial stable completion. The key ingredient is the use of biorthogonal projectors as
defined in (2.2.41). This recipe contains many degrees of freedom which can be used to tune the properties
of the resulting wavelet basis.

The starting point for the construction is the existence of one stable completion (2.2.12). From there,
the whole family of stable completions can be constructed according to the following scheme [29].

Theorem 2.13. Suppose that the bases Φj are uniformly stable with refinement matrices Mj,0 and

let M̌j,1 be any uniformly stable completion of Mj,0. Let Ǧj =

(

Ǧj,0

Ǧj,1

)

denote the inverse of M̌j =

(Mj,0, M̌j,1). Then Mj,1 is also a stable completion of Mj,0 if and only if there exist

Lj : `2(∇j)→ `2(∆j) , Kj : `2(∇j)→ `2(∇j) (2.3.1)

such that Lj , Kj and K−1
j are uniformly bounded as operators and

Mj,1 = Mj,0Lj + M̌j,1Kj . (2.3.2)

In this case, the inverse Gj =

(

Gj,0

Gj,1

)

of Mj = (Mj,0,Mj,1) is given by

Gj,0 = Ǧj,0 − LjK
−1
j Ǧj,1 , Gj,1 = K−1

j Ǧj,1 . (2.3.3)

In other words, once a stable completion M̌j,1 has been identified, any other possible stable completion can
be obtained by a specific choice of operators Lj and Kj , provided they satisfy the conditions formulated
in the theorem given above. For example, the particular case Kj = I corresponds to the lifting scheme
introduced in [131]. We will use this freedom to build biorthogonal primal and dual complement bases
Ψj and Ψ̃j .

An initial stable completion M̌j,1 corresponds to a matching basis Ξj for Wj , cf. (2.2.12),

ΞTj = ΦTj+1M̌j,1 . (2.3.4)

Intuitive choices for Ξj are for example variants of the nodal basis. To satisfy the biorthogonality
conditions (2.2.36), we can use a biorthogonal projection of the initial basis Ξj . Let

Sj = S(Φj) , S̃j = S(Φ̃j) , 〈Φj , Φ̃j〉 = I . (2.3.5)

Since the spaces Sj and S̃j are nested, the primal and dual refinement relations hold according to

ΦTj = ΦTj+1Mj,0 and Φ̃Tj = Φ̃Tj+1M̃j,0 . (2.3.6)

From these relations and (2.3.4), several identities between matrices and scalar products of function
sequences can be derived, for example,

Mj,0 = 〈Φ̃j+1,Φj〉 , M̃j,0 = 〈Φj+1, Φ̃j〉 , M̌j,1 = 〈Φ̃j+1,Ξj〉 . (2.3.7)

It follows that if the bases Φj , Φ̃j and Ξj are uniformly local, then the matrices Mj,0, M̃j,0 and M̌j,1 are
uniformly sparse.

To establish biorthogonality, we eliminate the part of Ξj which is not perpendicular to W̃j , defining the
projected basis Ψj by

Ψj := (I −Qj)Ξj = Ξj − 〈Ξj , Φ̃j〉Φj . (2.3.8)
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Inserting (2.3.4) and (2.3.6) into this equation, and using (2.2.12) and (2.3.7), the matching stable
completion is identified as

Mj,1 = (I−Mj,0M̃
T
j,0)M̌j,1 . (2.3.9)

This matrix is uniformly sparse if all matrices appearing in this expression are uniformly sparse. By
comparing it to (2.3.2), we recognise that this definition is precisely an application of the lifting scheme
with

Lj = −M̃T
j,0M̌j,1 , Kj = I . (2.3.10)

Finally, if we specify the basis for the dual complement spaces W̃j = S(Ψ̃j) as

Ψ̃T
j := Φ̃Tj+1M̃j,1 with M̃j,1 := ǦT

j,1 , (2.3.11)

it follows that

M̃j := (M̃j,0, M̃j,1) = GT
j = M−T

j . (2.3.12)

Under the assumptions of Theorem 2.13, M̃j,1 is guaranteed to be a stable completion of M̃j,0. By
comparison to (2.3.3) we gain the additional identity

M̃T
j,0 = Ǧj,0 + M̃T

j,0M̌j,1Ǧj,1 . (2.3.13)

After these preparations, we can state that the specific choice of lifting in (2.3.10) indeed yields a biorthog-
onal basis.

Theorem 2.14. The complement bases defined by (2.3.8) and (2.3.11) are biorthogonal.

Proof. The refinement relations for the primal and dual bases can be summarised as

(ΦTj ,Ψ
T
j ) = ΦTj+1Mj , (2.3.14a)

(Φ̃Tj , Ψ̃
T
j ) = Φ̃Tj+1M̃j . (2.3.14b)

Biorthogonality then follows from (2.3.5) and (2.3.12),

〈

(

Φj
Ψj

)

,

(

Φ̃j
Ψ̃j

)

〉

= 〈MT
j Φj+1, M̃

T
j Φ̃j+1〉 = MT

j M̃j = I , (2.3.15)

which completes the proof.

We can also conclude that the dual refinement matrix M̃j is uniformly sparse if both M̃j,0 and Ǧj,1 are
uniformly sparse. While the first matrix is generally sparse by locality, to establish the sparsity of Ǧj,1

(which is the lower half of the inverse of M̌j) is non-trivial. This problem is resolved in different ways
for the two constructions of wavelets which we describe in Chapter 3.

The dual multi-scale transformation W̃J is defined analogously to the primal WJ , see (2.2.20),

W̃J := W̃J,J−1 · · ·W̃J,j0 with W̃J,j :=

(

M̃j 0
0 I

)

. (2.3.16)

It can be applied with linear complexity when all matrices M̃j are sparse. As a consequence of (2.3.12)

we obtain the relation W−1 = W̃T .
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2.3.2 Change of Bases

The biorthogonal wavelet basis which resulted from the projection of an initial stable completion is not
unique. In view of (2.2.17), which states that the multi-scale basis Ψ consists of generator functions for the
coarsest space S(Φj0) and wavelets spanning the completion spaces S(Ψj), we will propose modifications
for each of these two parts, which transform one biorthogonal basis into another.

This change of bases may be used to reduce the absolute value of the condition number of the wavelet
transform, or to reduce the number of nonzero entries in the transformation matrices. In both construc-
tions of Chapter 3, we will propose suitable matrices Cj and Ǩj with exactly these effects.

Transformation of the Wavelets

The freedom in the choice of Lj and Kj has been used to implement the biorthogonal projection onto the
spacesWj , see (2.3.10). Using a uniformly bounded invertible matrix Ǩj , we introduce the transformation

Lj 7→ LjǨj , Kj 7→ KjǨj . (2.3.17)

This results in

Mj 7→ (Mj,0, Mj,1Ǩj) and M−1
j 7→

(

M̃T
j,0

Ǩ−1
j Ǧj,1

)

. (2.3.18)

An equivalent interpretation is to change the initial stable completion,

M̌j,1 7→ M̌j,1Ǩj . (2.3.19)

In order not to impair the sparseness of the whole construction, Ǩj needs to be chosen such that it and
its inverse are uniformly sparse. In view of (2.3.14) and (2.3.18), the modified multi-scale basis reads

Ψ 7→ Φj0

∞
⋃

j=j0

ǨT
j Ψj . (2.3.20)

We have thus transformed only the wavelets, while the single-scale basis Φj0 did not change. Biorthogo-
nality is preserved by the dual transformation

Ψ̃ 7→ Φ̃j0

∞
⋃

j=j0

Ǩ−1
j Ψ̃j . (2.3.21)

The effect on the multi-scale transformation WJ is the following: On each level, the two-scale matrix
WJ,j now contains the modified Mj,1 which is multiplied from the right with the matrix Ǩj .

Transformation of the Generator Basis

It is equally well possible to change the generator basis. Consider the transformation

Φj 7→ CT
j Φj (2.3.22)

with a uniformly bounded invertible matrix Cj . In order to guarantee efficient numerical schemes, the
application of Cj and C−1

j should be possible in linear time. To ensure biorthogonality, we define
analogously

Φ̃j 7→ C̃T
j Φ̃j with C̃j := C−T

j . (2.3.23)
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Considering (2.3.7), (2.3.9) and using the above definition of C̃j , this leads to the simultaneous transfor-
mations

Mj,0 7→ C−1
j+1Mj,0Cj , M̃j,0 7→ C̃−1

j+1M̃j,0C̃j (2.3.24)

and

M̌j,1 7→ C−1
j+1M̌j,1 , Mj,1 7→ C−1

j+1Mj,1 , M̃j,1 7→ C̃−1
j+1M̃j,1 . (2.3.25)

Thus, the transformed two-scale matrices are

Mj 7→ C−1
j+1(Mj,0Cj , Mj,1) , M̃j 7→ C̃−1

j+1(M̃j,0C̃j , M̃j,1) . (2.3.26)

Consequently, the resulting biorthogonal multi-scale basis is given by

Ψ 7→ CT
j0Φj0

∞
⋃

j=j0

Ψj , Ψ̃ 7→ C̃T
j0 Φ̃j0

∞
⋃

j=j0

Ψ̃j . (2.3.27)

We now study the effect on the wavelet transform. By inserting the new two-level matrices (2.3.26)
into the multi-scale transformations WJ (2.2.20) and W̃J (2.3.16), the matrices Cj , C̃j cancel out on
all intermediate levels. It only remains to apply them on the left and right of the complete multi-level
transform,

WJ 7→ C−1
J WJ

(

C0 0
0 I

)

, W̃J 7→ C̃−1
J W̃J

(

C̃0 0
0 I

)

. (2.3.28)

In view of the requirements on Cj and its inverse, this is a cheap operation which does not interfere with
the calculations on intermediate levels.

2.3.3 Multivariate Wavelet Bases

Up to this point, we have used the framework of general Hilbert spaces H = H(Ω). The central Theorem
2.3 is formulated without explicit reference to the dimension of the domain Ω ⊂ Rn. Indeed, there exist
explicit constructions of multivariate wavelets on arbitrary triangulations [54,128], satisfying locality (L),
the norm equivalence (R) for Hs and the cancellation property (CP). The numerical properties of one
such construction have been examined in [100].

A systematic way to construct multivariate wavelets on the unit cube is by building tensor products of
univariate wavelet bases on the unit interval. In particular, stability and locality of the wavelets and the
Riesz basis property are inherited from the univariate case.

We begin with the one-dimensional single-scale basis Φj which has been introduced in (2.2.3), spanning
the space Sj = S(Φj) over the domain Ω = R or Ω = (0, 1). We reuse this basis for each spatial dimension
l = 1, . . . , n by defining the multivariate collection

φj,k(x) := φj;k1 ,...,kn
(x1, . . . , xn) :=

n
∏

l=1

φj,kl
(xl) , Φnj := {φj,k : kl ∈ ∆j} . (2.3.29)

It forms a basis of the space Snj := S(Φnj ) over the n-dimensional domain Ωn. The indices of the new
collection belong to the set k ∈ ∆n

j := (∆j)
⊗n. The support of each basis function is approximately a

hypercube (up to boundary effects).

As hinted above, there is more than one way of deriving multivariate wavelet bases from this origin, using
only the building blocks from Section 2.3.1. The different approaches can be classified by the shape of the
support of the resulting tensor product wavelets. We present the procedure here for the primal wavelets,
as the dual wavelets are treated in perfect analogy.
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Anisotropic Construction

The simplest approach directly combines the univariate wavelet bases Ψ (2.2.16) by tensor products. The
resulting multivariate basis functions are then indexed by vectors in the following manner,

ψj,k(x) :=
n
∏

l=1

ψjl,kl
(xl) , Ψani := {ψj,k : jl ≥ j0 − 1, kl ∈ ∇jl} . (2.3.30)

Here functions on different scales jl are coupled. The combined functions generally have rectangular
support, which explains the notion anisotropic construction. The norm equivalences (2.2.51) can be
established analogously to the univariate case [70]. To this end, the definition of the Riesz basis for H s

via a diagonal matrix (2.2.48) is generalised to

Ψani,s := D−sΨani = {2−‖j‖∞sψj,k}jl≥j0−1,kl∈∇jl
. (2.3.31)

The restriction of the multivariate wavelet basis to a fixed level J is denoted by

Ψani
(J) := {ψj,k : jl = j0 − 1, . . . , J − 1, kl ∈ ∇jl} , (2.3.32)

which can be abbreviated as

Ψani
(J) =

n
⊗

l=1

Ψ(J) . (2.3.33)

Just as ΦnJ , this is a basis for SnJ . In strict analogy to (2.2.19), the multi-scale transformation follows as
the tensor product of the univariate transformation,

(Ψani
(J))

T = (ΦnJ)TWani
J with Wani

J :=

n
⊗

l=1

WJ . (2.3.34)

It can be expanded similarly to (2.2.20) as

Wani
J = Wani

J,J−1 · · ·Wani
J,j0 with Wani

J,j :=
n
⊗

l=1

(

Mj 0
0 I

)

. (2.3.35)

We see that the multiplicative cascading structure is preserved, while the two-level transformations on
each level are generalised to the tensor product. Therefore, additional transformations for the univariate
basis in the spirit of Section 2.3.2 can be integrated into the multivariate setting without modification.

The anisotropic combination of functions provides the basis for the construction of sparse grids [27].
Restricting the set (2.3.32) by the additional constraint ‖j‖1 < J + n, the number of coefficients drops
to O(NJ log(NJ)n−1). This becomes increasingly advantageous for higher spatial dimension n. On the
other hand, sparse grid bases require the stronger Hs

mix regularity for the same order of approximation
as provided by the full basis [70]. Since our main interest is the solution of an optimal control problem
in moderate spatial dimension n ≤ 3, which is formulated in terms of standard Sobolev spaces H s, we
do not investigate this approach any further here.

Isotropic Construction

A different way of combination which leads to an approximately square support of the tensor product
functions is the following. Define for e ∈ E := {0, 1},

ψj,k,e(x) :=

{

φj,k(x) for e = 0, k ∈ ∆j ,

ψj,k(x) for e = 1, k ∈ ∇j ,
∇j,e :=

{

∆j for e = 0,

∇j for e = 1.
(2.3.36)
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For the multivariate case let e ∈ En and define

ψj,k,e(x) :=

n
∏

l=1

ψj,kl,el
(xl) . (2.3.37)

The index e describes the newly introduced type of the wavelet. Setting e = 0 identifies a composition of
single-scale generators φj,k only. All other values of e select at least one wavelet component ψj,k. Thus,
the types of the composite wavelets are indexed by the set E∗ := En \ {0} with cardinality 2n − 1. For
fixed j and e, the location is indexed over

k ∈ ∇nj,e := ∇j,e1 ⊗ . . .⊗∇j,en
. (2.3.38)

The differences to the anisotropic construction are twofold: Firstly, the composed function carries only one
scale index j, which corresponds to an approximately square support. Secondly, in contrast to generators
from the coarsest scale only, generator functions φj,kfrom all levels can occur as tensor product component.

Analogously to the univariate case, these sets of basis functions are arranged level-wise into the multi-scale
basis Ψiso

(J), cf. (2.2.16),

Ψiso
(J) := {ψj0,k,e=0} ∪ {ψj0,k,e∈E∗} ∪ . . . ∪ {ψJ−1,k,e∈E∗} , (2.3.39)

which is also a basis for SnJ . The index e = 0 only occurs on the lowest level j0. The index sets for the
location k depend on the type e as in (2.3.38).

To formulate the multivariate two-level transform, we define its rectangular building blocks as

Mn
j,e :=

n
⊗

l=1

Mj,el
(2.3.40)

and construct the full isotropic two-level transform Miso
j : `2(∆

n
j+1)→ `2(∆

n
j+1) according to

Miso
j := (Mn

j,(0,...,0),M
n
j,(0,...,0,1),M

n
j,(0,...,0,1,0), . . . ,M

n
j,(1,...,1)) . (2.3.41)

In words, we count e in the binary system from 0 to 2n−1 and concatenate the rectangular block matrices
Mn

j,e. The result is the square matrix Miso
j . It is inherently n-dimensional and enters the multi-scale

transformation Wiso
J directly,

(Ψiso
(J))

T = (ΦnJ)TWiso
J (2.3.42)

with

Wiso
J := Wiso

J,J−1 · · ·Wiso
J,j0 and Wiso

J,j :=

(

Miso
j 0
0 I

)

. (2.3.43)

In contrast to (2.3.35), the isotropic multi-level transform is not a direct tensor product combination.
Instead, its structure is parallel to the univariate case (2.2.20) since Mj is transparently replaced by
Miso

j . Also the standard diagonal scaling D = {2j} can be used as opposed to the more complicated form
in (2.3.31).

We conclude to work with isotropic wavelets which are used in most approaches so far to apply wavelet
discretisations to operator equations [46]. In view of their square support and the structure of the multi-
level transformation (2.3.43), they maintain closer similarity to the univariate setting than anisotropic
wavelets.
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Chapter 3

Two Constructions on the Interval

3.1 Introduction

In the last chapter, we introduced the definition of biorthogonal wavelets, and described the important
construction principle of stable completions. While we condensed results from many years of recent
research to establish a theoretical foundation, we deliberately provided the most general formulation.

Here we will actuate this abstract framework exemplarily for two different concrete constructions of
wavelet bases. Since our main objective is the development of a fast numerical algorithm based on
wavelets, the constructions are on the one hand illustrative from the practical point of view. On the
other hand, we incorporate several novel optimisations with respect to structure and conditioning, which
exploit the theoretical framework in a more subtle way.

Specifically, we introduce the so-called finite element wavelets and biorthogonal B-spline wavelets. (We
will shortly write spline wavelets for the latter, stressing that we do not mean the spline prewavelets from
[35].) Both constructions yield compactly supported, biorthogonal wavelets on the interval Ω = (0, 1),
and allow for various orders of polynomial exactness. We will include explicit construction details for
primal and dual exactness of d = 2 and d̃ = 4, respectively, where the primal wavelet basis Ψ consists of
piecewise linear functions. This special case provides sufficient regularity for the discretisation of second
order differential equations, while being most effective computationally in the sense of a small size of the
support of the wavelets and possibly few nonzero coefficients in the transformation matrices.

There are two main differences between these two constructions. Firstly, the spline wavelets are transla-
tion invariant away from the boundary, while the finite elements consist of repeating blocks containing
four functions each. Secondly, the dual finite element wavelets are given by an explicit functional ex-
pression as piecewise polynomials, while the dual spline wavelets are only implicitly defined by recursion
formulas.

The construction of finite element wavelets is based on polynomial interpolation, and is thus rather
intuitive and self-contained. The main ideas for the optimisation of the numerical efficiency and the
condition numbers of wavelets which we develop in this thesis are motivated and carried out first in this
context. Biorthogonal B-Spline wavelets require a more elaborate theoretical background, since they are
built upon an existing multiresolution analysis in L2, which is constructed using Fourier techniques. In
view of the envisaged application to PDEs however, they are more adequate because of the translational
invariance in the interior and the flexibility of boundary conditions.

We deal with different types of boundary conditions here. The term free or inhomogeneous boundary
conditions applies to a basis which can represent functions with arbitrary function values at the ends
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of the interval, f(0), f(1) ∈ R. Specifying homogeneous boundary conditions means that only functions
with f(0) = f(1) = 0 can be represented. Since biorthogonal bases consist of a primal and a dual
set of functions, both sets may conform to different boundary conditions. We will indicate this where
appropriate.

Concerning the optimisations for numerical purposes, recall that wavelets have been characterised in
Chapter 2 as local bases which satisfy the Riesz basis property (R) for a range of Sobolev spaces H s.
The special case for L2 with an explicit specification of the constants reads

c‖v‖ ≤ ‖v‖L2
≤ C‖v‖ for L2 3 v = vTΨ . (3.1.1)

While the ratio of the constants c and C, the so-called the condition number of the basis, is not relevant
for the abstract introduction of wavelets, it is of great practical importance for applications in numerical
analysis. Notably, smaller values generally lead to faster convergence of iterative algorithms.

Definition 3.1. The condition number of the basis Ψ is defined as the ratio of the constants in (3.1.1),

κ(Ψ) :=
C

c
. (3.1.2)

An orthogonal basis satisfies c = C, which yields the optimal condition number of 1. For a biorthogonal
basis it holds generally that c < C, which implies that κ(Ψ) > 1. To compute the condition number
numerically, we insert the expansion of v into the L2 norm,

‖v‖2L2
= (v, v)L2

= (vTΨ,vTΨ)L2
= vTMv with M := 〈Ψ,Ψ〉 =

(

〈ψλ, ψµ〉
)

λ,µ∈II
. (3.1.3)

The Gramian matrix M is called the mass matrix of the basis Ψ. It is symmetric and positive definite.
By comparing (3.1.1) and (3.1.3), we obtain

κ(Ψ)2 = κ(M) :=
λmax(M)

λmin(M)
. (3.1.4)

Thus, the condition number of any given basis Ψ follows from the condition number of the corresponding
mass matrix.

In addition to the condition number, the absolute count of arithmetic operations and the structure of
a program with respect to the nesting and the fragmentation of loops determine the performance of a
numerical algorithm. Therefore, we formulate the following criteria for a numerically optimised wavelet
basis.

• The condition number κ(Ψ) should be small.

• The wavelet transformation matrices WJ as in (2.2.19) should have few nonzero entries.

• The pattern of nonzero entries of WJ should be of simple structure.

To improve the following two constructions in this sense, we employ the concept of stable completions
which we presented in Section 2.3.1, and use the change of bases via matrices Cj and Ǩj as introduced
in Section 2.3.2. Finally, we obtain the optimised refinement matrices in an exact representation using
rational numbers.

3.2 Finite Element Wavelets

In the following, we will cover our first example of a wavelet construction on the unit interval. We adopt
the derivation from [128] and add a few proofs of our own to clarify some details of the construction and
to support the development of our optimisations.

This construction comes from the family of so-called finite element wavelets [54,128]. The name is chosen
due to the fact that they are defined on dyadic refinements of a reference simplex in arbitrary spatial
dimensions. The construction is based on interpolating polynomials.

28



3.2. Finite Element Wavelets

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 x

φ
(0)
1 φ

(0)
2 φ

(0)
3 φ

(0)
4 φ

(0)
5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 x

φ̃
(0)
1 φ̃

(0)
2 φ̃

(0)
4 φ̃

(0)
5

Figure 3.1: The first stage of primal and dual generators. The left picture shows a piecewise linear nodal basis
for an interval which is uniformly subdivided into four parts. The right picture shows the cubic Lagrangian
interpolation polynomials on the nodes {0, 1/3, 2/3, 1}.

3.2.1 The Basic Setting

The first step in this construction of biorthogonal wavelets is the design of biorthogonal generator bases,
Φj ⊂ Sj , Φ̃j ⊂ S̃j with 〈Φj , Φ̃j〉 = I. We will assemble these bases from linear combinations of basic
piecewise polynomial functions.

The starting point are preliminary primal and dual nodal bases on the unit interval. Let

∆(d,m) :=
{

δ
(d,m)
k (x) : k ∈ {0, . . . , 2m(d− 1)}

}

(3.2.1)

be the collection of piecewise polynomials of order d which satisfy the following interpolation property
on an m-fold recursive subdivision of the unit interval,

δ
(d,m)
k

(

2−mi

d− 1

)

=

{

1 for i = k ,

0 for i 6= k ,
(3.2.2)

where i, k ∈ {0, . . . , 2m(d− 1)}. These sets induce nested function spaces S(∆(d,m)) ⊂ S(∆(d,m+1)),
where we introduced the abbreviation S(∆) := span∆ for any finite set of functions ∆. We fix the lowest
level j0 := 2 and define the first stages of primal and dual single-scale bases as

Φ
(0)
j0

:= {φ(0)
1 , . . . , φ

(0)
5 } := ∆(2,2) and Φ̃

(0)
j0

:= {φ̃(0)
1 , φ̃

(0)
2 , φ̃

(0)
4 , φ̃

(0)
5 } := ∆(4,0) . (3.2.3)

In words, the initial set on the primal side consists of five hat functions, and the dual set contains four cubic
Lagrangian interpolation polynomials. This choice is depicted in Figure 3.1. To satisfy biorthogonality,
both sets must eventually contain the same number of functions. Therefore we still need to specify the

missing function φ̃
(0)
3 which has been omitted in (3.2.3).

As we use the framework of multiresolution, we demand the existence of uniform refinement relations,

expressed by (2.3.6). The function φ̃
(0)
3 must therefore be representable by functions of the next higher

level ∆(4,1). At the same time, it should be zero at the boundary in order not to introduce overlap to
neighbouring intervals, so we restrict the basis set to

∆
(4,1)
0 := ∆(4,1) \ {δ(4,1)0 , δ

(4,1)
6 } . (3.2.4)

Additionally demanding symmetry with respect to x = 1/2 leads to the choice

φ̃
(0)
3 ∈ span{h1, h2, h3} , (3.2.5)
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Figure 3.2: This picture shows the functions from the set defined in (3.2.6). All three are symmetric with respect
to x = 1/2, which is also the point where they are not differentiable.

with

h1 := δ
(4,1)
1 + δ

(4,1)
5 , (3.2.6a)

h2 := δ
(4,1)
2 + δ

(4,1)
4 , (3.2.6b)

h3 := δ
(4,1)
3 . (3.2.6c)

These three functions are shown in Figure 3.2. Not only φ̃
(0)
3 but the whole set of first stage basis functions

is then symmetric with respect to x = 1/2 in the following sense,

φ
(0)
i (x) = φ

(0)
6−i(1− x) , φ̃

(0)
i (x) = φ̃

(0)
6−i(1− x) , i = 1, . . . , 5 . (3.2.7)

In order to orthogonalise the pair of preliminary basis functions Φ
(0)
j0
, Φ̃

(0)
j0

, we perform the following
steps [128].

(i) Accept φi := φ
(0)
i for i = 2, 3, 4.

(ii) Choose φ1 to be orthogonal to φ̃
(0)
2 , φ̃

(0)
4 and φ̃

(0)
5 . φ5 is then defined by symmetry (3.2.7).

(iii) Choose φ̃
(0)
3 from (3.2.5) to be orthogonal to φ1. There is some freedom in this operation.

(iv) Biorthogonalise the functions of Φ̃
(0)
j0

by inversion of the matrix 〈Φj0 , Φ̃
(0)
j0
〉.

All transformations preserve symmetry, the uniform locality of the bases and the sparse structure of the
refinement matrices. We will cover the last three steps of the construction in detail in the next section.

3.2.2 Construction of the Single-Scale Basis

We specify φ1 as a linear combination of the functions φ
(0)
1 to φ

(0)
5 . In order to preserve locality, we

demand that φ1(1) = 0 and consequently exclude the fifth function with φ
(0)
5 (1) 6= 0. The freedom in

normalisation is used to fix the value at the left boundary, φ1(0) := φ
(0)
1 (0) = 1. Considering (i), we set

φ1 = φ
(0)
1 +

4
∑

i=2

aiφi . (3.2.8)
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By taking the scalar product of this equation with functions φ̃
(0)
k from the dual side, and enforcing the

biorthogonality condition (ii), we obtain

0 = 〈φ1, φ̃
(0)
k 〉 = 〈φ

(0)
1 , φ̃

(0)
k 〉+

4
∑

i=2

ai〈φi, φ̃(0)
k 〉 , k = 2, 4, 5 . (3.2.9)

This leads to a 3× 3 linear system which has a unique solution for (a2, a3, a4), which determine φ1 and
φ5.

It remains to find the function φ̃
(0)
3 which is orthogonal to φ1. This in turn guarantees orthogonality to

φ5 by symmetry. Considering (3.2.5), we need to determine the parameters bi,

φ̃
(0)
3 =

3
∑

i=1

bihi . (3.2.10)

Normalisation and orthogonality to φ1 provide two conditions for the three unknowns b1 to b3. We will
show in the following that no loss of information occurs by arbitrarily specifying the third condition as
say b3 = 0. To this end, it is sufficient to show that h3 can be linearly combined from h1 and h2 and the

functions from S(∆4,1
0 ) which are already present in the dual basis, namely φ̃

(0)
2 and φ̃

(0)
4 .

Lemma 3.2. The set of functions {q := φ̃
(0)
2 + φ̃

(0)
4 , h1, h2, h3} is linearly dependent.

Proof. We will first reason that {h1, h2, h3} is a basis for the space of functions p(x) with the following
properties,

p|[0,1/2], p|[1/2,1] ∈ Π4 , (3.2.11a)

p(0) = p(1) = 0 , (3.2.11b)

p(x) = p(1− x) . (3.2.11c)

Since hi ∈ span ∆
(4,1)
0 , the functions hi|[0,1/2] form a basis for all cubic polynomials on [0, 1/2] with

p(0) = 0 (3.2.6). This establishes the first halves of (3.2.11a) and (3.2.11b). Their second halves and
(3.2.11c) follow by the symmetric construction of the hi. Finally, note that (3.2.11c) implies that p is
continuous at x = 1/2.

By (3.2.3) and (3.2.7), q fulfils all conditions (3.2.11). This means that

q ∈ span{h1, h2, h3} , (3.2.12)

and the proof is finished, implying in particular that also h3 ∈ span{h1, h2, q}.

Thus, no matter how we choose the third condition on the bi, and consequently alter the third dual

basis function φ̃
(0)
3 , the same space is spanned by Φ̃

(0)
j0

. The ambiguity in the third dual basis function

is eliminated by the inversion of 〈Φj0 , Φ̃
(0)
j0
〉, which yields a uniquely defined final dual basis Φ̃j0 . This

matrix has the following structure,

〈Φj0 , Φ̃
(0)
j0
〉 =













∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗













, (3.2.13)

which is inherited by its inverse. The transformation

Φ̃Tj0 := (Φ̃
(0)
j0

)T 〈Φj0 , Φ̃
(0)
j0
〉−1 (3.2.14)
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Figure 3.3: The biorthogonal generators Φj , Φ̃j for the construction of finite element wavelets on the coarsest level
j = j0 = 2. Φj consists of piecewise linear functions, while each φ̃i is composed of two cubic polynomials which
are continuously glued together at x = 1/2. For clarity not all functions are shown. The missing ones can be
inferred by symmetry (3.2.7).

x φ1(x) φ5(x)

0 1 0
1
4 − 23

60 − 3
100

1
2

23
150

23
150

3
4 − 3

100 − 23
60

1 0 1

∑3
i=0 cix

i c3, . . . , c0 for [0, 1
2 ] c3, . . . , c0 for [ 12 , 1]

φ̃1(x) − 160 296 − 138 50
3 − 160

3 136 −114 94
3

φ̃2(x)
1504
15 −4248

25
1404
25 0 32

15 − 568
25

852
25 −1012

75

φ̃3(x) − 1088
15

3024
25 − 712

25 0 1088
15 − 2416

25
104
25

1496
75

φ̃4(x) − 32
15 − 408

25
124
25 0 − 1504

15
3272
25 − 428

25 −1012
75

φ̃5(x)
160
3 − 24 2 0 160 − 184 26 44

3

Table 3.1: This table contains the exact representations of the primal and dual wavelets for j = j0 = 2. For
the primal basis, the values of the functions φ1 and φ5 are given at the nodes of the interval. For the dual
basis, the coefficients of the cubic polynomials are given, once for the first half of the interval and then for the
second. Technically, half of this information is redundant as it can be obtained by algebraic computations using
the symmetry (3.2.7).
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3.2. Finite Element Wavelets

1 0 0 0 0 0 0 0 0
2611
3750

1
2

3
100 0 − 13

1250 1 0 0 0

−3151
5625 1 − 23

150 0 − 301
5625 0 0 0 0

− 59
2250

1
2

53
60 0 271

2250 0 1 0 0
23
150 0 1 0 23

150 0 0 0 0
271
2250 0 53

60
1
2 − 59

2250 0 0 1 0

− 301
5625 0 − 23

150 1 −3151
5625 0 0 0 0

− 13
1250 0 3

100
1
2

2611
3750 0 0 0 1

0 0 0 0 1 0 0 0 0

1 0 0 0 0
139
128

3373
3200 − 627

1600
253
3200 − 1

128

− 11
32

237
200 − 13

100
7

200 − 1
32

− 51
128

1843
3200

1043
1600 − 477

3200
9

128
1
5 − 28

125
104
125 − 28

125
1
5

9
128 − 477

3200
1043
1600

1843
3200 − 51

128

− 1
32

7
200 − 13

100
237
200 − 11

32

− 1
128

253
3200 − 627

1600
3373
3200

139
128

0 0 0 0 1

Table 3.2: This table shows the initial primal two-level transform
√

2M̌j =
√

2(Mj,0, M̌j,1) for the coarsest level
j = j0 = 2 on the left, using the simple guess of the stable completion. On the right hand side, we display the
refinement matrix

√
2M̃j,0.

finally yields the biorthogonal pair satisfying 〈Φj0 , Φ̃j0〉 = I. The fact that only the diagonal element in
the first and last row of the inverse is nonzero guarantees to end up with uniformly local basis functions.
The two sets of piecewise polynomial functions are shown in Figure 3.3, where we have computed the
coefficients with rational numbers. The exact representations are listed in Table 3.1.

Now that we have constructed a biorthogonal generator basis for the coarsest level j0 = 2, we need
to derive generator bases for higher levels. The basic technique is a transformation of the coarse basis
functions,

φ(x) 7→
√

2φ (2x) . (3.2.15)

The complete process affects both the primal and the dual bases as follows.

(i) Append two copies of the basis to each other, forming a set of functions on (0, 2).

(ii) Merge the functions with do not vanish at x = 1 (one from the left and one from the right interval)
into one function crossing the border whose support is now doubled in length (and thus is its norm).
Multiply the function on the dual side by 1

2 to keep the set of functions biorthonormal.

(iii) Apply the transformation (3.2.15) to all functions. This yields again a basis on (0, 1) and ensures
uniform normalisation, ‖φj,k‖L2

, ‖φ̃j,k‖L2
∼ 1.

This procedure is repeated recursively, creating a hierarchy of sets of functions satisfying

#Φj = #Φ̃j = 2j + 1 , 〈Φj , Φ̃j〉 = I . (3.2.16)

3.2.3 A Standard Stable Completion

Having constructed a biorthogonal single-scale basis which obeys stability and locality conditions (2.2.5),
(2.2.7), it remains to set up the primal and dual refinement matrices Mj,0, M̃j,0 and an initial stable
completion M̌j,1 such that the inverse of M̌j = (Mj,0, M̌j,1) is sparse.

The refinement matrices can be obtained by elementary calculations. In [128], the stable completion
is guessed by the simplest ansatz possible, that is by putting ones on the slanted diagonal and zeros
elsewhere, which corresponds to the hierarchical basis ansatz. The matrices M̌j and M̃j,0 are shown in
Table 3.2. The symmetry properties of the functions are expressed by

Mj,0 = M
l
j,0 and M̃j,0 = M̃

l
j,0 . (3.2.17)

Here the expression Ml denotes the matrix M with reversed order of rows and columns.
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1 0 0 0 0 − 139
256

51
256 − 9

256
1

256
2611
3750

1
2

3
100 0 − 13

1250
3497
9600 − 47

3200
3

3200 − 53
9600

− 3151
5625 1 − 23

150 0 − 301
5625 − 81

320 −1669
4800

641
4800 − 41

960

− 59
2250

1
2

53
60 0 271

2250 − 727
9600

5363
9600 − 2167

9600
281
3200

23
150 0 1 0 23

150
29
256 − 77

256 − 77
256

29
256

271
2250 0 53

60
1
2 − 59

2250
281
3200 −2167

9600
5363
9600 − 727

9600

− 301
5625 0 − 23

150 1 − 3151
5625 − 41

960
641
4800 − 1669

4800 − 81
320

− 13
1250 0 3

100
1
2

2611
3750 − 53

9600
3

3200 − 47
3200

3497
9600

0 0 0 0 1 1
256 − 9

256
51
256 − 139

256

1 0 0 0 0 − 48
25 − 16

75 0 0
139
128

3373
3200 − 627

1600
253
3200 − 1

128 2 0 0 0

− 11
32

237
200 − 13

100
7

200 − 1
32 − 1 − 1 0 0

− 51
128

1843
3200

1043
1600 − 477

3200
9

128 0 2 0 0
1
5 − 28

125
104
125 − 28

125
1
5 − 16

75 − 48
25 − 48

25 − 16
75

9
128 − 477

3200
1043
1600

1843
3200 − 51

128 0 0 2 0

− 1
32

7
200 − 13

100
237
200 − 11

32 0 0 − 1 − 1

− 1
128

253
3200 − 627

1600
3373
3200

139
128 0 0 0 2

0 0 0 0 1 0 0 − 16
75 − 48

25

Table 3.3: We show the primal and dual two-level transformation matrices
√

2Mj and
√

2M̃j derived from the
simple stable completion from Table 3.2 on the coarsest level j = j0 = 2. They satisfy the biorthogonality condition
Mj = M̃−T

j .
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3.2. Finite Element Wavelets

The right parts of the final primal and dual two-level transforms are then obtained by (2.3.9) and (2.3.11).
Their representation with rational numbers on the coarsest level j0 = 2 is given in Table 3.3. We observe
that the right block of the primal matrix, Mj0,1, is fully populated, while the remaining three blocks
exhibit a block-banded structure. An examination of the next higher level j = j0 + 1 = 3, displayed in
Table 3.4, shows that there also the primal right block contains zeros in the top right and bottom left
corners, hinting at a block-banded structure. This can indeed be verified for all levels j ≥ 3 (we do not
print the matrices for higher levels here, since the entries are the same as for j = 3). Consequently, all
two-level transformations are uniformly sparse.

3.2.4 Improvements to the Stable Completion

In view of the almost fully populated part of the right half of M̃j for j = 3 in Table 3.4 and the large
absolute values in the denominators of the nonzero entries, we construct an improved stable completion.
To this end, we inspect the relation (2.3.9) and explicitly compare the involved matrices on the levels
j = j0 and j = j0 + 1. We find that the number of nonzero entries of I −Mj,0M̃

T
j,0 can be significantly

reduced by taking appropriate linear combinations of columns. This corresponds to a multiplication from
the right with a matrix Ľj , yielding the modified expression

Mj,1 = (I−Mj,0M̃
T
j,0)ĽjM̌j,1 , (3.2.18)

which corresponds to the substitution

M̌j,1 7→ M̌′
j,1 := ĽjM̌j,1 . (3.2.19)

To show that this additional matrix fits into the framework of Section 2.3.1, we formulate the following

Lemma 3.3. Given an initial stable completion M̌j,1 and a target completion M̌′
j,1, the transformation

matrices from (2.3.1) are determined by

L
(1)
j := Ǧj,0M̌

′
j,1 , K

(1)
j := Ǧj,1M̌

′
j,1 . (3.2.20)

M̌′
j,1 is again a stable completion if and only if L

(1)
j and K

(1)
j fulfil the assumptions of Theorem 2.13.

Proof. According to (2.3.2) and the definitions of Theorem 2.13, we have

M̌′
j,1 = Mj,0L

(1)
j + M̌j,1K

(1)
j = (Mj,0, M̌j,1)

(

L
(1)
j

K
(1)
j

)

= M̌j

(

L
(1)
j

K
(1)
j

)

. (3.2.21)

Multiplication with Ǧj = M̌−1
j leads to

(

L
(1)
j

K
(1)
j

)

= ǦjM̌
′
j,1 , (3.2.22)

which is equivalent to (3.2.20).

The improved initial stable completion M̌′
j,1 is presented in Table 3.5, together with the matrices K

(1)
j

and L
(1)
j from (3.2.20). These transformations are applied prior to the biorthogonalisation, which is then

performed by the matrices from (2.3.10),

L
(2)
j := −M̃T

j,0M̌
′
j,1 , K

(2)
j := I . (3.2.23)

Thus, we deal with a two-stage process here. To formalise the concatenation of two such transformations,
we derive the following
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1 0 0 0 0 0 0 0 0 − 139
256

51
256

− 9
256

1
256

0 0 0 0
2611
3750

1
2

3
100

0 − 13
1250

0 0 0 0 699439
1920000

− 9517
640000

1263
640000

− 16021
1920000

1807
640000

− 663
640000

117
640000

− 13
640000

− 3151
5625

1 − 23
150

0 − 301
5625

0 0 0 0 − 728699
2880000

− 334703
960000

44439
320000

− 164839
2880000

41839
2880000

− 5117
960000

301
320000

− 301
2880000

− 59
2250

1
2

53
60

0 271
2250

0 0 0 0 − 87511
1152000

215333
384000

− 30429
128000

138829
1152000

− 37669
1152000

4607
384000

− 271
128000

271
1152000

23
150

0 1 0 23
150

0 0 0 0 8677
76800

− 7631
25600

− 8091
25600

11897
76800

− 3197
76800

391
25600

− 69
25600

23
76800

271
2250

0 53
60

1
2

− 59
2250

0 0 0 0 101219
1152000

− 86857
384000

71841
128000

− 95441
1152000

8201
1152000

− 1003
384000

59
128000

− 59
1152000

− 301
5625

0 − 23
150

1 − 3151
5625

0 0 0 0 − 119849
2880000

118747
960000

− 93411
320000

− 1166989
2880000

437989
2880000

− 53567
960000

3151
320000

− 3151
2880000

− 13
1250

0 3
100

1
2

2611
3750

0 0 0 0 − 13211
1920000

8433
640000

− 53787
640000

1062329
1920000

− 362929
1920000

44387
640000

− 7833
640000

2611
1920000

0 0 0 0 1 0 0 0 0 1
512

− 9
512

51
512

− 139
512

− 139
512

51
512

− 9
512

1
512

0 0 0 0 2611
3750

1
2

3
100

0 − 13
1250

2611
1920000

− 7833
640000

44387
640000

− 362929
1920000

1062329
1920000

− 53787
640000

8433
640000

− 13211
1920000

0 0 0 0 − 3151
5625

1 − 23
150

0 − 301
5625

− 3151
2880000

3151
320000

− 53567
960000

437989
2880000

− 1166989
2880000

− 93411
320000

118747
960000

− 119849
2880000

0 0 0 0 − 59
2250

1
2

53
60

0 271
2250

− 59
1152000

59
128000

− 1003
384000

8201
1152000

− 95441
1152000

71841
128000

− 86857
384000

101219
1152000

0 0 0 0 23
150

0 1 0 23
150

23
76800

− 69
25600

391
25600

− 3197
76800

11897
76800

− 8091
25600

− 7631
25600

8677
76800

0 0 0 0 271
2250

0 53
60

1
2

− 59
2250

271
1152000

− 271
128000

4607
384000

− 37669
1152000

138829
1152000

− 30429
128000

215333
384000

− 87511
1152000

0 0 0 0 − 301
5625

0 − 23
150

1 − 3151
5625

− 301
2880000

301
320000

− 5117
960000

41839
2880000

− 164839
2880000

44439
320000

− 334703
960000

− 728699
2880000

0 0 0 0 − 13
1250

0 3
100

1
2

2611
3750

− 13
640000

117
640000

− 663
640000

1807
640000

− 16021
1920000

1263
640000

− 9517
640000

699439
1920000

0 0 0 0 0 0 0 0 1 0 0 0 0 1
256

− 9
256

51
256

− 139
256

Table 3.4: The primal two-level transform
√

2Mj at level j = 3, for the simple stable completion.
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3.2. Finite Element Wavelets

0 0 0 0

1 0 0 0

− 1
4 − 3

2 0 0

0 1 0 0

0 − 75
128 − 75

128 0

0 0 1 0

0 0 − 3
2 − 1

4

0 0 0 1

0 0 0 0

9
8

13
16

1
16 0

1
8

37
16

9
16 0

0 9
16

37
16

1
8

0 1
16

13
16

9
8

0 0 0 0

− 1
4 −407

256 − 23
256 0

0 − 75
128 − 75

128 0

0 − 23
256 −407

256 − 1
4

0 0 0 0

Table 3.5: The left table shows the new proposal for a modified stable completion
√

2M̌j,1 on the coarsest level
j = 2. It contains off-diagonal entries which induce linear combinations of the columns of Mj,1. It is trivially
extended to higher levels by repetition. In the middle and on the right we display the associated transformation
matrices K

(1)
j and L

(1)
j .

Lemma 3.4. Let K
(i)
j and L

(i)
j , i = 1, 2, denote the transformation matrices for two successive stable

completions. These two steps can be written as a single step with the matrices

Lj = L
(2)
j + L

(1)
j K

(2)
j , Kj = K

(1)
j K

(2)
j . (3.2.24)

Proof. We combine (2.3.2) and the left part of (3.2.21) and obtain

Mj,1 = Mj,0L
(2)
j + M̌′

j,1K
(2)
j = Mj,0L

(2)
j +

(

Mj,0L
(1)
j + M̌j,1K

(1)
j

)

K
(2)
j . (3.2.25)

The claim is verified by comparison with (3.2.24).

Using this result, we can now determine the structure of the complete transformation.

Theorem 3.5. With the definitions of Theorem 2.13, the transformation matrices for the stable comple-
tion modified according to (3.2.19) are given by

Lj =
(

−M̃T
j,0 + Ǧj,0

)

ĽjM̌j,1 , Kj = Ǧj,1ĽjM̌j,1 . (3.2.26)

By carrying out these calculations in our example we indeed achieve a reduction of the quantity of nonzero
entries in the right part of Mj by about a factor of 2. The improved transformation matrices on level
j = 2 are shown in Table 3.6. In contrast to the simple stable completion from Table 3.3, the block-
banded structure can be seen in all four parts of the matrices. The full effect only becomes apparent on
the next higher level j = 3. The corresponding primal matrix Mj is shown in Table 3.7, and the dual

matrix M̃j in Table 3.8. There are several benefits of the new construction.

• The number of arithmetic operations in the forward transformation (which is given by the number
of nonzero entries in the matrix) is reduced by a factor of almost two.

• The size of the support of the wavelets is reduced by a factor of two to four.

• The denominators in the fractions are significantly smaller, indicating less irrational numbers.

• The transformation matrices at level j = 2 contain the same entries as the matrices on higher levels
which facilitates the implementation.

• The pattern of nonzero entries is similar for the primal and dual matrices.
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1 0 0 0 0 − 75
128 0 0 0

2611
3750

1
2

3
100 0 − 13

1250
2611
6400

839
3200

39
3200 − 39

6400

− 3151
5625 1 − 23

150 0 − 301
5625 − 3151

9600 −4499
4800

301
4800 − 301

9600

− 59
2250

1
2

53
60 0 271

2250 − 59
3840

2129
1920 − 271

1920
271
3840

23
150 0 1 0 23

150
23
256 − 49

64 − 49
64

23
256

271
2250 0 53

60
1
2 − 59

2250
271
3840 − 271

1920
2129
1920 − 59

3840

− 301
5625 0 − 23

150 1 − 3151
5625 − 301

9600
301
4800 − 4499

4800 −3151
9600

− 13
1250 0 3

100
1
2

2611
3750 − 39

6400
39

3200
839
3200

2611
6400

0 0 0 0 1 0 0 0 − 75
128

1 0 0 0 0 − 128
75 0 0 0

139
128

3373
3200 − 627

1600
253
3200 − 1

128
139
75 − 8

75
2
75 − 1

75

− 11
32

237
200 − 13

100
7

200 − 1
32 − 44

75 − 32
75

8
75 − 4

75

− 51
128

1843
3200

1043
1600 − 477

3200
9

128 − 17
25

24
25 − 6

25
3
25

1
5 − 28

125
104
125 − 28

125
1
5

128
375 − 256

375 − 256
375

128
375

9
128 − 477

3200
1043
1600

1843
3200 − 51

128
3
25 − 6

25
24
25 − 17

25

− 1
32

7
200 − 13

100
237
200 − 11

32 − 4
75

8
75 − 32

75 − 44
75

− 1
128

253
3200 − 627

1600
3373
3200

139
128 − 1

75
2
75 − 8

75
139
75

0 0 0 0 1 0 0 0 − 128
75

Table 3.6: We show the new proposal for the primal and dual two-level transformation matrices on the coarsest
level,

√
2Mj and

√
2M̃j, derived from the modified stable completion from Table 3.5.
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1 0 0 0 0 0 0 0 0 − 75
128

0 0 0 0 0 0 0
2611
3750

1
2

3
100

0 − 13
1250

0 0 0 0 2611
6400

839
3200

39
3200

− 117
12800

39
12800

0 0 0

− 3151
5625

1 − 23
150

0 − 301
5625

0 0 0 0 − 3151
9600

− 4499
4800

301
4800

− 301
6400

301
19200

0 0 0

− 59
2250

1
2

53
60

0 271
2250

0 0 0 0 − 59
3840

2129
1920

− 271
1920

271
2560

− 271
7680

0 0 0
23
150

0 1 0 23
150

0 0 0 0 23
256

− 49
64

− 49
64

69
512

− 23
512

0 0 0
271
2250

0 53
60

1
2

− 59
2250

0 0 0 0 271
3840

− 271
1920

2129
1920

− 59
2560

59
7680

0 0 0

− 301
5625

0 − 23
150

1 − 3151
5625

0 0 0 0 − 301
9600

301
4800

− 4499
4800

− 3151
6400

3151
19200

0 0 0

− 13
1250

0 3
100

1
2

2611
3750

0 0 0 0 − 39
6400

39
3200

839
3200

7833
12800

− 2611
12800

0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 − 75
256

− 75
256

0 0 0

0 0 0 0 2611
3750

1
2

3
100

0 − 13
1250

0 0 0 − 2611
12800

7833
12800

839
3200

39
3200

− 39
6400

0 0 0 0 − 3151
5625

1 − 23
150

0 − 301
5625

0 0 0 3151
19200

− 3151
6400

− 4499
4800

301
4800

− 301
9600

0 0 0 0 − 59
2250

1
2

53
60

0 271
2250

0 0 0 59
7680

− 59
2560

2129
1920

− 271
1920

271
3840

0 0 0 0 23
150

0 1 0 23
150

0 0 0 − 23
512

69
512

− 49
64

− 49
64

23
256

0 0 0 0 271
2250

0 53
60

1
2

− 59
2250

0 0 0 − 271
7680

271
2560

− 271
1920

2129
1920

− 59
3840

0 0 0 0 − 301
5625

0 − 23
150

1 − 3151
5625

0 0 0 301
19200

− 301
6400

301
4800

− 4499
4800

− 3151
9600

0 0 0 0 − 13
1250

0 3
100

1
2

2611
3750

0 0 0 39
12800

− 117
12800

39
3200

839
3200

2611
6400

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 − 75
128

Table 3.7: The primal two-level transform
√

2Mj at level j = 3 constructed with our modified stable completion.
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1 0 0 0 0 0 0 0 0 − 128
75

0 0 0 0 0 0 0
139
128

3373
3200

− 627
1600

253
3200

− 1
256

0 0 0 0 139
75

− 8
75

2
75

− 1
75

0 0 0 0

− 11
32

237
200

− 13
100

7
200

− 1
64

0 0 0 0 − 44
75

− 32
75

8
75

− 4
75

0 0 0 0

− 51
128

1843
3200

1043
1600

− 477
3200

9
256

0 0 0 0 − 17
25

24
25

− 6
25

3
25

0 0 0 0
1
5

− 28
125

104
125

− 28
125

1
10

0 0 0 0 128
375

− 256
375

− 256
375

128
375

0 0 0 0
9

128
− 477

3200
1043
1600

1843
3200

− 51
256

0 0 0 0 3
25

− 6
25

24
25

− 17
25

0 0 0 0

− 1
32

7
200

− 13
100

237
200

− 11
64

0 0 0 0 − 4
75

8
75

− 32
75

− 44
75

0 0 0 0

− 1
128

253
3200

− 627
1600

3373
3200

139
256

0 0 0 0 − 1
75

2
75

− 8
75

139
75

0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 − 128
75

− 128
75

0 0 0

0 0 0 0 139
256

3373
3200

− 627
1600

253
3200

− 1
128

0 0 0 0 139
75

− 8
75

2
75

− 1
75

0 0 0 0 − 11
64

237
200

− 13
100

7
200

− 1
32

0 0 0 0 − 44
75

− 32
75

8
75

− 4
75

0 0 0 0 − 51
256

1843
3200

1043
1600

− 477
3200

9
128

0 0 0 0 − 17
25

24
25

− 6
25

3
25

0 0 0 0 1
10

− 28
125

104
125

− 28
125

1
5

0 0 0 0 128
375

− 256
375

− 256
375

128
375

0 0 0 0 9
256

− 477
3200

1043
1600

1843
3200

− 51
128

0 0 0 0 3
25

− 6
25

24
25

− 17
25

0 0 0 0 − 1
64

7
200

− 13
100

237
200

− 11
32

0 0 0 0 − 4
75

8
75

− 32
75

− 44
75

0 0 0 0 − 1
256

253
3200

− 627
1600

3373
3200

139
128

0 0 0 0 − 1
75

2
75

− 8
75

139
75

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 − 128
75

Table 3.8: The dual two-level transform
√

2M̃j at level j = 3 constructed with our modified stable completion.
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Figure 3.4: These graphs show the primal and dual wavelets for the coarsest complement space Wj (thus with
j = 2), obtained by the modified stable completion. Only two of the four functions in each set are displayed, as
the missing ones result by mirroring around x = 1/2. The primal wavelets on this level are piecewise linear with
mesh size 1/8, the dual wavelets are piecewise cubic with mesh size 1/4.

1 0 0 0 0

− 23
60 1 0 0 − 3

100
23
150 0 1 0 23

150

− 3
100 0 0 1 − 23

60

0 0 0 0 1

1 0 0 0 0
23
60 1 0 0 3

100

− 23
150 0 1 0 − 23

150
3

100 0 0 1 23
60

0 0 0 0 1

Table 3.9: This table shows the forward and backward transformation matrices between the single-scale basis Φj

and the nodal basis for j = j0 = 2. C−1
j is shown on the left (note that the values in the first and last columns

correspond to those from Table 3.1). Cj is shown on the right. Due to the special structure of these matrices, the
inversion reduces to a change in sign of the off-diagonal entries.

The only disadvantage lies in the fact that the dual transformation has gained in the number of nonzero
entries. Since the dual transform is rarely used in the context of partial differential equations, this is only
a minor issue which is outweighed by far by the positive effects. The wavelets for the primal and dual
spaces are finally shown in Figure 3.4.

The construction has so far been carried out for free boundary conditions. However, it is a straightforward
procedure to obtain a biorthogonal wavelet basis with homogeneous boundary conditions on both the
primal and dual side by simply deleting the two functions with nonzero value on the boundary. The
corresponding rows and columns are then removed from the transformation matrices, which conserves
biorthogonality.

3.2.5 Transformation to the Nodal Basis

The primal single-scale basis as shown in Figure 3.3 is identical to the nodal basis except for the func-
tions which cross interval boundaries. These interrupt the translational invariance of the nodal basis
and have larger support by a factor of 4. Both of these drawbacks can be resolved by an appropriate
backward transformation of the single-scale basis as described in Section 2.3.2. More precisely, we aim
at transformation matrices Cj as in (2.3.22), which transform Φj back into the nodal basis.

The necessary information has already been collected along the way in Section 3.2.2. The off-diagonal
entries of C−1

j0
are precisely the coefficients ai from (3.2.8). We display the transformation matrix and

its inverse in Figure 3.9. The matrices Cj and C−1
j for higher levels contain exactly the same additional

entries in every fourth column. As these matrices are uniformly sparse, their application does not spoil
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Chapter 3. Two Constructions on the Interval

the operation count which is linear in the number of unknowns. The wavelet transform is corrected
according to (2.3.28).

3.3 Spline Wavelets

In the previous section, we covered a construction of a wavelet basis where both primal and dual wavelets
are piecewise polynomials. We started from scratch with the construction of a biorthogonal single-scale
basis on the interval and concluded with proposals for optimisations.

The construction of B-spline wavelets in this section is conceptually different from the above since it is
assumed here that a biorthogonal single-scale basis of L2(R) is already available. Such a basis has been
constructed in [42] using Fourier techniques, where the primal basis is composed of B-splines and the
functions on the dual side are given implicitly.

Wavelets on the interval are then derived in several steps. The original basis is restricted to the interval,
corrections are introduced at the boundary to recover biorthogonality, and finally a stable completion is
constructed.

As in the case of finite element wavelets, we establish the necessary definitions and notation for the
construction, which we carry out explicitly with rational numbers, and subsequently spend some thoughts
on improvements. Based on the insights gained in the previous section, we again propose a transformation
to the nodal basis on the primal side to improve the condition number of the basis.

3.3.1 A Biorthogonal B-Spline Multiresolution on the Interval

We begin with the description of a B-spline multiresolution on the real line. A biorthogonal multires-
olution on the unit interval (0, 1) is then derived by restriction and subsequent modifications at the
boundary [49].

Biorthogonal B-Spline Multiresolution of L2(R)

The construction of B-spline wavelets which we describe here is based on the concept of refinable functions.
A function φ ∈ L2(R) is called refinable with mask a = {ak}k∈Z if

φ(x) =
∑

k∈Z

akφ(2x− k) . (3.3.1)

We say that two refinable functions φ, and φ̃ with mask ã = {ãk}k∈Z form a dual pair if

(

φ, φ̃(· − k)
)

L2
= δ0,k , k ∈ Z . (3.3.2)

We assume in the following that φ and φ̃ are normalised,
∫

R

φ(x) dx =

∫

R

φ̃(x) dx = 1 . (3.3.3)

The refinable function φ is used to generate the family of functions

φ[j,k] := 2j/2φ(2j · −k) , j, k ∈ Z . (3.3.4)

Defining
Φj := {φ[j,k] : k ∈ Z} and Φ̃j := {φ̃[j,k] : k ∈ Z} , (3.3.5)
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3.3. Spline Wavelets

we obtain a multiresolution basis for L2(R) as introduced in Section 2.2.1. If φ and φ̃ have compact
support, it follows that the bases Φj and Φ̃j are uniformly stable, and also that the number of nonzero
entries of the masks a and ã is finite.

The approximation power of the spaces Sj : = S(Φj) and S̃j : = S(Φ̃j) depends on their polynomial
exactness. We say that φ is exact of order d if all polynomials of degree of at most d−1 can be expressed
as a linear combination of the integer translates φ(·−k). Likewise, the dual order of exactness is denoted
by d̃. These properties are equivalent to the existence of the following representations of the monomials
xr,

xr =
∑

k∈Z

α̃k,rφ(x − k) , r = 0, . . . , d− 1 , (3.3.6a)

xr =
∑

k∈Z

αk,rφ̃(x− k) , r = 0, . . . , d̃− 1 , (3.3.6b)

with primal and dual expansion coefficients α̃k,r and αk,r.

We will choose the cardinal B-spline of order d as generator for the primal multiresolution. To this end,
we shortly review the associated definitions. Let [t0, . . . , td]f denote the d-th order divided difference of
f ∈ Cd(R) at the nodes t0 ≤ . . . ≤ td. With the setting xd+ := (max{0, x})d, the cardinal B-spline φd of
order d ∈ N is defined as

φd(x) := d[0, . . . , d]

(

· − x−
⌊d

2

⌋

)d−1

+

. (3.3.7)

Hence, φd is symmetric around µ(d)
2 with µ(d) := d mod 2,

φd(x+ µ(d)) = φd(−x) , x ∈ R , (3.3.8)

and its support is given by

suppφd = [`1, `2] with `1 := −
⌊d

2

⌋

, `2 :=
⌈d

2

⌉

. (3.3.9)

Thus, it is centred around x = 0 for even orders d and around x = 1
2 for odd d. Note the identities

d = `2 − `1 and µ(d) = `1 + `2 . (3.3.10)

The B-spline φd is an example of a refinable function according to (3.3.1) with mask

ak = 21−d

(

d

k + bd2c

)

, k = `1, . . . , `2 . (3.3.11)

Furthermore, φd is exact of order d. Thus, the generator for the primal multiresolution can be specified
using standard B-spline theory. However, the construction of a dual generator which satisfies (3.3.2) is
non-trivial. Such a result has been first obtained in [42] based on Fourier decompositions.

Theorem 3.6. For each d, and d̃ ≥ d, d̃ ∈ N, with d+ d̃ even, there exists a function φ̃d,d̃ ∈ L2(R) with
the following properties.

• The support is given by

supp φ̃d,d̃ = [˜̀1, ˜̀2] with ˜̀
1 := `1 − (d̃− 1) , ˜̀

2 := `2 + (d̃− 1) . (3.3.12)

• φ̃d,d̃ is refinable with a finitely supported mask ã = {ãk}
˜̀
2

k=˜̀
1

.
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Chapter 3. Two Constructions on the Interval

• φ̃d,d̃ has the same symmetry properties as φd, cf. (3.3.8).

• The functions φd and φ̃d,d̃ form a dual pair, cf. (3.3.2).

• φ̃d,d̃ is exact of order d̃, i.e., all polynomials of degree less than d̃ can be represented as linear

combinations of the translates φ̃d,d̃(· − k), k ∈ Z, see (3.3.6b).

In summary, primal and dual generators φ := φd and φ̃ := φ̃d,d̃ with respective finite masks a and ã and
polynomial exactness d and d̃ do exist. To explicitly construct a wavelet basis for L2(R), it remains to
calculate the coefficients α̃k,r and αk,r, and to specify the complement bases Ψj and Ψ̃j .

We infer from the biorthogonality condition (3.3.2) that the expansion coefficients from (3.3.6) have the
explicit form

α̃y,r =
(

(·)r , φ̃(· − y)
)

L2
, r = 0, . . . , d− 1 . (3.3.13)

Using the normalisation (3.3.3), we derive the coefficients for the case r = 0 as

α̃y,0 = 1 . (3.3.14)

The translated coefficients of higher order r > 0 for arbitrary y can be reduced to y = 0 via

α̃y,r =

∫

R

(x+ y)rφ̃(x) dx =
r
∑

i=0

(

r

i

)

yiα̃0,r−i , r = 0, . . . , d− 1 . (3.3.15)

Finally, α̃0,r can be determined recursively. We refer to [50,132] for the full derivation and only state the
result,

α̃0,r = (2r+1 − 2)−1

˜̀
2
∑

k=˜̀
1

ãk

r−1
∑

s=0

(

r

s

)

kr−sα̃0,s . (3.3.16)

The identities for the dual coefficients αy,r are analogous for r = 0, . . . , d̃− 1.

In [42], suitable bases Ψj and Ψ̃j for the complement spaces Wj and W̃j , cf. (2.2.10), are derived from

generator functions ψ and ψ̃,

Ψj := {ψ[j,k] : k ∈ Z} and Ψ̃j := {ψ̃[j,k] : k ∈ Z} . (3.3.17)

If the generators have the form

ψ(x) :=
∑

k∈Z

bkφ(2x− k) , ψ̃(x) :=
∑

k∈Z

b̃kφ̃(2x− k) (3.3.18)

with masks b = {bk}k∈Z and b̃ = {b̃k}k∈Z,

bk := (−1)kã1−k , b̃k := (−1)ka1−k , k ∈ Z , (3.3.19)

it follows that the biorthogonality conditions are satisfied,
(

φ, ψ̃(· − k)
)

L2
=
(

φ̃, ψ(· − k)
)

L2
= 0 ,

(

ψ, ψ̃(· − k)
)

L2
= δ0,k , k ∈ Z . (3.3.20)

Due to the refinability of φ and φ̃, the full wavelet bases Ψ and Ψ̃ as assembled in (2.2.17) are also
biorthogonal. Since φ̃ is exact of order d̃, we infer that ψ and therefore all wavelets ψ[j,k] have d̃ vanishing
moments,

∫

R

xrψ[j,k](x) dx = 0 , r = 0, . . . , d̃− 1 . (3.3.21)

Finally, the biorthogonality condition (2.2.44) and the finite masks a, ã and b, b̃ entail that Ψ and Ψ̃
are Riesz bases for L2(R).
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3.3. Spline Wavelets

Restriction to the Interval

The restriction of the collections Φj , Φ̃j to the interval (0, 1) poses two essential difficulties.

• Basis functions which contain x = 0 or x = 1 in their support are truncated, with the result that
the respective scalar products change their values.

• As the generators φ and φ̃ generally have supports of different lengths, the cardinalities of Φj and

Φ̃j are now finite but not equal.

As a result, biorthogonality is destroyed. In [49], this issue has been resolved by taking linear combinations
of the truncated original functions in such a way that the new functions are identical to monomials near
the boundary. We will describe this ansatz in the following.

Since the support of φ is bounded according to (3.3.9), the nonzero part of the mask is given by a =
{ak}`2k=`1 . For an arbitrary but fixed parameter ` ≥ −`1, we introduce the following function on the left
boundary,

φL
j,`−d+r :=

`−1
∑

m=−`2+1

α̃m,rφ[j,m]

∣

∣

∣

R+

, r = 0, . . . , d− 1 . (3.3.22)

It follows from (3.3.6a) that this function is identical to the monomial xr on the interval 2jx ∈ [0, `+ `1]
and then declines to zero. It is known from [43] that this function is refinable. The precise form of the
refinement relation reads

φL
j,`−d+r = 2−(r+ 1

2
)

(

φL
j+1,`−d+r +

2`+`1−1
∑

m=`

α̃m,rφ[j+1,m]

)

+

2`+`2−2
∑

m=2`+`1

β̃m,rφ[j+1,m] , r = 0, . . . , d− 1

(3.3.23)

with

β̃m,r := 2−
1
2

`−1
∑

q=d
m−`2

2
e

α̃q,ram−2q . (3.3.24)

At the right end of the interval, we define φR
j,`−d+r analogously to (3.3.22) and obtain a similar refinement

relation. On the dual side, we introduce the parameter ˜̀≥ −˜̀
1 and define the boundary functions φ̃L

j,˜̀−d̃+r

and φ̃R
j,˜̀−d̃+r

, indexed by r = 0, . . . , d̃− 1. With the definitions

α̃L
j,m,r := α̃m,r , α̃R

j,m,r := α̃2j−m−µ(d),r , r = 0, . . . , d− 1 , (3.3.25a)

αL
j,m,r := αm,r , αR

j,m,r := α2j−m−µ(d),r , r = 0, . . . , d̃− 1 , (3.3.25b)

the boundary functions read

φL
j,`−d+r :=

`−1
∑

m=−`2+1

α̃L
j,m,rφ[j,m]

∣

∣

∣

[0,1]

φR
j,2j−`−µ(d)+d−r :=

2j−`1−1
∑

m=2j−`−µ(d)+1

α̃R
j,m,rφ[j,m]

∣

∣

∣

[0,1]

r = 0, . . . , d− 1 (3.3.26)
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and

φ̃L
j,˜̀−d̃+r

:=

˜̀−1
∑

m=−˜̀
2+1

αL
j,m,rφ̃[j,m]

∣

∣

∣

[0,1]

φ̃R
j,2j−˜̀−µ(d)+d̃−r

:=

2j−˜̀
1−1

∑

m=2j−˜̀−µ(d)+1

αR
j,m,rφ̃[j,m]

∣

∣

∣

[0,1]

r = 0, . . . , d̃− 1 . (3.3.27)

The indexing of these functions was carefully chosen in [49] to allow for continuous numbering of all
functions left, middle and right. Assigning the indices as follows,

k ∈ ∆L
j for φL

j,k , k ∈ ∆0
j for φ[j,k] , k ∈ ∆R

j for φR
j,k , (3.3.28a)

k ∈ ∆̃L
j for φ̃L

j,k , k ∈ ∆̃0
j for φ̃[j,k] , k ∈ ∆̃R

j for φ̃R
j,k , (3.3.28b)

where

∆L
j := {`− d, . . . , `− 1} , (3.3.29a)

∆0
j := {`, . . . , 2j − `− µ(d)} , (3.3.29b)

∆R
j := {2j − `− µ(d) + 1, . . . , 2j − `− µ(d) + d} , (3.3.29c)

and likewise for the dual side with parameters d̃ and ˜̀, we can set

∆j := ∆L
j ∪∆0

j ∪∆R
j , ∆̃j := ∆̃L

j ∪ ∆̃0
j ∪ ∆̃R

j , (3.3.30)

and a first version of the single-scale bases for the spaces Sj and S̃j on the interval is given by

Φ
(0)
j := {φL

j,k} ∪ {φ[j,k]} ∪ {φR
j,k} , Φ̃

(0)
j := {φ̃L

j,k} ∪ {φ̃[j,k]} ∪ {φ̃R
j,k} . (3.3.31)

Note in particular that the functions adapted to the left and right borders are refinable, cf. (3.3.23).
Defining βm,r analogously to β̃m,r (3.3.24), and setting

β̃L
j,m,r := β̃m,r , β̃R

j,m,r := β̃2j+1−m−µ(d),r , r = 0, . . . , d− 1 , (3.3.32a)

βL
j,m,r := βm,r , βR

j,m,r := β2j+1−m−µ(d),r , r = 0, . . . , d̃− 1 , (3.3.32b)

we obtain the refinement relations

φL
j,`−d+r = 2−(r+ 1

2
)

(

φL
j+1,`−d+r +

2`+`1−1
∑

m=`

α̃L
j,m,rφ[j+1,m]

)

+

2`+`2−2
∑

m=2`+`1

β̃L
j,m,rφ[j+1,m] , r = 0, . . . , d− 1

(3.3.33a)

and

φR
j,2j−`−µ(d)+d−r = 2−(r+ 1

2
)



φR
j+1,2j+1−`−µ(d)+d−r +

2j+1−`−µ(d)
∑

m=2j+1−2`−`1−µ(d)+1

α̃R
j,m,rφ[j+1,m]





+

2j+1−2`−`1−µ(d)
∑

m=2j+1−2`−`2−µ(d)+2

β̃R
j,m,rφ[j+1,m] , r = 0, . . . , d− 1 .

(3.3.33b)

The dual relations are defined analogously. Writing these relations in matrix form produces the boundary

blocks of the refinement matrices M
(0)
j,0 and M̃

(0)
j,0 , while their interior blocks are given by the masks a

and ã, see Table 3.11.
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3.3. Spline Wavelets

Remark 3.7. The number of boundary functions on the primal side is always d, independent of the
length of their support which is controlled by `. The number of boundary functions on the dual side is d̃,
independent of ˜̀. It follows that a choice of

˜̀= `+ (d̃− d) (3.3.34)

leads to equal cardinality of the primal and dual bases on the interval, which is a prerequisite for biorthog-
onality.

Remark 3.8. Homogeneous boundary conditions on either the primal or the dual side, or on both sides,
and either on the right or the left end, or on both ends, in any combination, can be achieved by deleting
the monomial of degree 0 (corresponding to the constant x0 = 1) from the appropriate index set(s). If
different boundary conditions are to be fulfilled on the left and the right end, the parameters ` and/or ˜̀

might additionally need to be chosen differently on the left and the right end. Equal cardinality of the
primal and dual bases can always be reestablished by a suitable modification of (3.3.34).

Reestablishing Biorthogonality

In the previous paragraph, we have constructed primal and dual multiresolutions restricted to the interval

(0, 1). We still need to confirm that the collections of functions Φ
(0)
j and Φ̃

(0)
j are respectively linearly

independent. Secondly, biorthogonality has to be reestablished, which has been lost due to the restriction.
The route proposed in [49] is to introduce local transformations on the left and right boundaries which
lead again to a biorthogonal basis. Linear independence is then a trivial consequence.

As we have d ≤ d̃, the primal index set ∆L
j for the left boundary functions is generally smaller than

the dual set ∆̃L
j . By enlarging ∆L

j with the d̃ − d leftmost primal functions from the inner set ∆0
j , and

repeating the procedure analogously for the right end of the interval, we can define the square matrices

ΓL
j :=

(

(φj,k, φ̃j,k′ )[0,1]

)

k,k′∈∆̃L
j

, ΓR
j :=

(

(φj,k , φ̃j,k′)[0,1]

)

k,k′∈∆̃R
j

. (3.3.35)

We cite from [49] the following central

Theorem 3.9. The matrices ΓX
j , X ∈ {L,R}, are independent of j and symmetric with respect to the

left and right sides,
ΓL
j = ΓL = Γ , ΓR

j = ΓR = Γl . (3.3.36)

In the situation of Theorem 3.6, Γ is always nonsingular.

It follows that the bases defined by

Φj := Φ
(0)
j , Φ̃j := Γ−T

j Φ̃
(0)
j :=





ΓL

I#∆̃0
j

ΓR





−T

Φ̃
(0)
j (3.3.37)

are biorthogonal. The primal refinement relation is not affected by this transformation, while the dual
refinement matrix changes,

Mj,0 = M
(0)
j,0 , M̃j,0 = Γj+1M̃

(0)
j,0Γ

−1
j . (3.3.38)

However, an exact calculation of the entries of Γ requires some non-trivial calculations [49]. From (3.3.26)
and (3.3.27), we infer for r = 0, . . . , d− 1 and s = 0, . . . , d̃− 1

(

φL
`−d+r, φ̃

L
˜̀−d̃+s

)

[0,1]
=

`−1
∑

µ=−`2+1

˜̀−1
∑

ν=−˜̀
2+1

α̃µ,rαν,s

∫ ∞

0

φ(x− µ)φ̃(x− ν) dx , (3.3.39)
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and for r = d, . . . , d̃− 1 and s = 0, . . . , d̃− 1

(

φ[j,`−d+r], φ̃
L
j,˜̀−d̃+s

)

[0,1]
=

˜̀−1
∑

ν=−˜̀
2+1

αν,s

∫ ∞

0

φ(x − (`− d+ r))φ̃(x− ν) dx . (3.3.40)

Obviously, these expressions can be reduced to a calculation of

I(µ, ν) :=

∫ ∞

0

φ(x − µ)φ̃(x − ν) dx . (3.3.41)

From the length of the support of φ and φ̃, we deduce that

I(µ, ν) =

{

0 for µ ≤ −`2 or ν ≤ − ˜̀
2 ,

δµ,ν for −`1 ≤ µ or − ˜̀
1 ≤ ν .

(3.3.42)

It remains to determine the values for I(µ, ν) in the remaining range of µ, ν. We reformulate

I(µ, ν) =

µ+`2−1
∑

i=0

∫

R

χ[i,i+1](x)φ(x − µ)φ̃(x− ν) dx =

µ+`2−1
∑

i=0

z(µ− i, ν − i) , (3.3.43)

where we have used the definition

z(µ, ν) :=

∫

R

χ[0,1](x)φ(x − µ)φ̃(x− ν) dx =

∫ 1

0

φ(x − µ)φ̃(x− ν) dx . (3.3.44)

Inserting the refinement relations for χ, φ and φ̃ in the form of (3.3.1), we obtain the identity

z(β) =
∑

γ

cγz(2β + γ) =
∑

η

cβ,ηz(η) (3.3.45)

with the definition

cβ,η :=
1

2

(

αη1−2β1
α̃η2−2β2

+ αη1−2β1+1α̃η2−2β2+1

)

, (3.3.46)

where β, γ and η are two-dimensional indices. Due to the finite support of φ and φ̃, the index sets
are also finite. This leads to an eigenvector problem for z with eigenvalue 1, whose solution is uniquely
determined by the normalisation

∑

β

z(β) = 1 . (3.3.47)

We solve this eigenvector problem for z and insert the values into the equation for I(µ, ν) (3.3.43), which
in turn can be used to compute the entries of Γ. After these steps, the biorthogonalisation is complete [50].

3.3.2 Identifying a Stable Completion

In the construction of finite element wavelets we have built a stable completion by an initial guess and
suitable postprocessing. In [49], the initial stable completion M̌j,1 is deducted in a systematic way from
the entries of Mj,0. Additionally, this ansatz delivers an explicit form of the inverse Ǧj . We give a short
overview of this process.

The structure of the primal refinement matrix Mj,0 is shown on the left of Figure 3.5. The border
blocks, which are independent of j, are denoted by ML and MR. Their entries can be computed from
the refinement relations on the boundary (3.3.33). A closer look at these equations asserts that the left
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ML

Aj

MR

or
Ai
j

BT
j

Id

Id

Fj

IL

IR

Figure 3.5: On the left, we display the block structure of the primal refinement matrix Mj,0. The structure of the
matrices Âi

j and B̂T
j is shown in the middle, and F̂j on the right. All matrices have the dimensions #∆j+1×#∆j

except F̂j, which is of the size #∆j+1 × #∇j . The identity matrices inside of F̂j are defined as IL = I`+µ(d)−1

and IR = I`. The interior rectangular block has the same dimensions q(j) × p(j) for all matrices.

block is split vertically into two parts. The top block is made up of a scaled identity matrix while the
bottom block contains combinations of α̃L and β̃L. The right border block is specified by symmetry,

ML = M
l
R . (3.3.48)

The interior part contains repeated columns of the mask vector a,

(Aj)m,k =
1√
2
am−2k , 2`+ `1 ≤ m ≤ 2j+1 + `2 − 2(`+ µ(d)) , k ∈ ∆0

j . (3.3.49)

The dimensions of Aj are q(j)× p(j) with

p(j) := #∆0
j = 2j − 2`− µ(d) + 1 , (3.3.50a)

q(j) := 2p(j) + d− 1 = 2j+1 − 4`− 2µ(d) + d+ 1 . (3.3.50b)

To eventually find the initial completion M̌j,1 and also an explicit inverse of M̌j , we aim to find a
reversible transformation to reduce Mj,0 to a simple structure. The key idea is to perform Gaussian
elimination on Aj =:A0

j , which is the interior part of Mj,0, alternating from above and below, such that
after d steps the matrix contains only one constant nonzero entry per column, according to

(Ad
j )m,k = b δm−2k,µ(d) . (3.3.51)

This is accomplished by multiplication from the left with the cumulative product of d square transforma-
tion matrices Hi

j of dimension q(j), which we denote by Hj := Hd
j · · ·H1

j . Because of the special structure

of Ad
j , the matrix Bj := b−2(Ad

j )
T satisfies

BjA
d
j = Ip(j) . (3.3.52)

Additionally, we define the matrix Fj of the same dimension and pattern as Ad
j , except that all entries

are shifted up by one row,
(Fj)m,k = δm−2k,µ(d)−1 . (3.3.53)

This is done to ensure that BjFj = 0.
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ML

MR

I#∆j+1−2d

I`+`2

I`+`2

Hj

Figure 3.6: We show two square matrices of dimension #∆j+1. On the left hand side we display the extended
transformation matrix Ĥj , and on the right hand side we display Pj which is used to reconstruct Mj,0 from Â0

j .

Thus heaving dealt with the interior part of the refinement matrix, we extend the results to include the
original border blocks. To this end, we pad the newly introduced matrices with zeros and identity blocks.
As shown in the middle and on the right of Figure 3.5, we do this for

Ai
j 7→ Âi

j , BT
j 7→ B̂T

j , Fj 7→ F̂j . (3.3.54)

Similarly, the square transformation matrix Hj is embedded into a larger square matrix Ĥj . It is depicted
on the left hand side of Figure 3.6. This allows for the formulation

Â0
j = Ĥ−1

j Âd
j . (3.3.55)

Lemma 3.10. With above definitions, and for any r 6= 0, it holds that

(

B̂j

r−1F̂Tj

)

(Âd
j , rF̂j) =

(

I#∆j
0

0 I#∇j

)

= I#∆j+1
. (3.3.56)

Compared to [49], we have introduced the parameter r which will be selected based on numerical con-

siderations. In summary, we have completed Âd
j with the matrix rF̂j , which allows to specify an explicit

inverse. We now invert the linear transformation Hj to return to the formulation in terms of M̌j . To
this end, we define the square matrix Pj in such a way that

Mj,0 = PjÂ
0
j . (3.3.57)

The layout of Pj is shown on the right of Figure 3.6. After these preparations, we define the initial stable
completion by

M̌j := (Mj,0, M̌j,1) := PjĤ
−1
j (Âd

j , rF̂j) . (3.3.58)

It follows from (3.3.56) that the inverse of M̌j is then given by

Ǧj =

(

Ǧj,0

Ǧj,1

)

=

(

B̂j

r−1F̂Tj

)

ĤjP̂
−1
j . (3.3.59)

All matrices involved in this construction contain an interior part which is built from staggered repetitions
of one individual column, and whose entries are thus independent of the level j. It follows that the matrices
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Hi
j and consequently Hj also feature this kind of periodicity. Consequently, the matrices M̌j and Ǧj are

uniformly sparse. Ultimately, we obtain

‖M̌j‖, ‖Ǧj‖ ∼ 1 . (3.3.60)

We have thus identified a stable completion satisfying all requirements of Theorem 2.13. In addition, we
have obtained an explicit representation of Ǧj,1 which is uniformly sparse.

Remark 3.11. When d is odd, we have µ(d) = 1 and `2 6= −`1. It follows that in this case F̂j 6= F̂
l
j ,

which is inherited by Mj and Gj . Consequently, the wavelets are not symmetric. It has been shown
in [52] how to achieve a symmetric construction also for an odd d.

3.3.3 Construction Details and Modifications

In the previous section, we have covered the construction of an initial stable completion with an explicitly
given inverse. To complete the process of constructing biorthogonal wavelets, we apply the projection of
this stable completion precisely as described in Theorem 2.13.

We deviate from the original construction in two respects. First, we choose the minimal values for `,
˜̀ and j, in the case of free boundary conditions on the dual side and free or homogeneous boundary
conditions on the primal side. We define Ib := 0 for free and Ib := 1 for homogeneous primal boundary
conditions. Then the relation (3.3.34) between ` and ˜̀ is generalised to

˜̀= `+ (d̃− d) + Ib . (3.3.61)

There are two conditions for the smallest value of `.

(i) The support of the interior functions must be contained in [0, 1], which leads to

` ≥ −`1 , (3.3.62a)

˜̀≥ −˜̀
1 ⇐⇒ ` ≥ −`1 + (d− 1)− Ib . (3.3.62b)

(ii) The boundary functions must be linearly independent, which means that the sum in (3.3.26) must
contain enough entries,

` ≥ −`1 + 1− Ib . (3.3.63)

Together, this leads to the requirement

` ≥ −`1 + max{d− 1, 1} − Ib . (3.3.64)

In [49], the smallest level has been set to

j ≥ j′0 = dlog2(
˜̀
2 + ˜̀− 1) + 1e , (3.3.65)

which corresponds to the obligation that the supports of the left and right boundary functions should not
overlap. We propose to relax this to the extent that they may indeed overlap, but must still be contained
in [0, 1]. This means that

j ≥ j0 = dlog2(2
˜̀− 1 + µ(d))e . (3.3.66)

In the case of d = 2 and d̃ = 4, our formula allows for a lowest level of j0 = 3 in contrast to j′0 = 4.

Secondly, we set r =
√

2 in (3.3.58). This is done to account for the same factor in the definition of Aj
in (3.3.49). As a side effect, it is then possible to describe all matrices with entries from

√
2Q. As in

the example of finite element matrices in Section 3.2, this leads to a more natural formulation. We will
explicitly display the refinement matrices in the next section.
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1 0

1 1

1 2

1
2

1
2

1 −3 55
6 −57

2

1 −2 25
6 − 9

1 −1 7
6 − 3

2

1 0 1
6 0

1 1 7
6

3
2

1 2 25
6 9

1 3 55
6

57
2

61
64

29
16

1261
384

165
32

35
32

23
8

1499
192

177
8

77
64

241
64

4571
384

4851
128

1
2

51
32

485
96

1029
64

− 13
64 − 21

32 − 805
384 − 429

64

− 3
32 − 9

32 − 55
64 − 171

64
3
64

9
64

55
128

171
128

Table 3.10: We show on the left the matrices α̃ and
√

2β̃ which contain the primal coefficients for polynomial
exactness from (3.3.6a), and refinement from (3.3.24), respectively. They have d = 2 columns. On the right, we
display the matrices α and

√
2β, which play the same role for the dual generators and consequently have d̃ = 4

columns. The matrices α̃ and α may exhibit more rows than strictly necessary by (3.3.26), (3.3.27), as their
entries are also needed for the calculation of Γ in (3.3.36).

Construction with Rational Numbers

We will now provide explicit results for the case d = 2 and d̃ = 4. We have calculated them for both
homogeneous and free boundary conditions on the primal side. As the numbers occurring in both cases
are mostly similar, we display only results for the case of free boundary conditions, i.e., Ib = 0.

We begin with the coefficients α̃ and α which control the polynomial reconstruction (3.3.6), and β̃ and β
which contain the information about the refinement of the boundary functions (3.3.24). These matrices

are displayed in Table 3.10. The refinement matrix M
(0)
j,0 for the primal basis is derived from the values α̃,

β̃ and ak, while the dual matrix M̃
(0)
j,0 is derived from α, β and ãk. We display them both in Table 3.11.

Note that these refinement matrices correspond to the bases Φ
(0)
j and Φ̃

(0)
j , which are not yet biorthogonal

at the boundary.

In Table 3.12 we present the matrices needed for biorthogonalisation, Γ and its inverse Γ−1. They have
been calculated according to (3.3.39) and (3.3.40). The dual refinement matrix after the biorthogonal-
isation (3.3.37) is shown in Table 3.13. Note that only the boundary blocks have changed relatively to
Table 3.11, and the banded structure is clearly visible.

Then the initial stable completion is constructed as in (3.3.58), (3.3.59), and the lifting steps (2.3.2) and
(2.3.3) are performed. This produces the final transformation matrices Mj and M̃j = M−T

j . We display
them in Table 3.14 and Table 3.15, respectively. It becomes immediately obvious that both matrices
exhibit a banded structure of repeated staggered columns. The calculation with rational numbers and
our choice of r reveals a striking symmetry between the primal and the dual sides. The numbers on the
left of Mj are identical to those on the right of M̃j (irrespective of the sign), and vice versa.

3.3.4 Plotting of Representations in the Dual Basis

The dual generator functions from [42] are only given in implicit form. A function value for any given
x ∈ [0, 1] can be computed using recursion formulas. To plot the representation of a function f in the
dual single-scale basis,

f(j) = c̃Tj Φ̃j , (3.3.67)

we need to evaluate the basis functions repeatedly on a certain grid, which is computationally expensive.
Thus, we seek a way to evaluate the dual generators φ̃j,k only once to a prescribed accuracy and to
precalculate an approximate transformation from the dual single-scale basis to the piecewise linear nodal
basis Zj ,

f(j) ↔ zTj Zj , Zj := {ζj,k(x) : k ∈ ∆Z
j } , ζj,k(2

−j l) = δk,l . (3.3.68)
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1 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0
1
2

1
2

1
2 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1
2

1
2

1
2

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0 0

0 0 0 1
8 0 0 0 0 0

61
64

29
16

1261
384

165
32

3
64 0 0 0 0

35
32

23
8

1499
192

177
8 − 3

32 0 0 0 0
77
64

241
64

4571
384

4851
128 − 1

4
171
128

55
128

9
64

3
64

1
2

51
32

485
96

1029
64

19
32 − 171

64 − 55
64 − 9

32 − 3
32

−13
64 − 21

32 − 805
384 − 429

64
45
32 − 429

64 − 805
384 − 21

32 − 13
64

− 3
32 − 9

32 − 55
64 − 171

64
19
32

1029
64

485
96

51
32

1
2

3
64

9
64

55
128

171
128 − 1

4
4851
128

4571
384

241
64

77
64

0 0 0 0 − 3
32

177
8

1499
192

23
8

35
32

0 0 0 0 3
64

165
32

1261
384

29
16

61
64

0 0 0 0 0 1
8 0 0 0

0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 0 1

Table 3.11: We present the refinement matrices
√

2M
(0)
j,0 on the left and

√
2M̃

(0)
j,0 on the right, for the smallest level j = j0. They are both matrices of

dimension 17 × 9. The effect of the inhomogeneous boundary conditions can be seen on the top left and bottom right corners of Mj,0. For homogeneous

boundary conditions, the outmost rows and columns of M
(0)
j,0 must be deleted, yielding a translation invariant matrix of dimensions 15× 7. The change in

M̃
(0)
j,0 is more complicated, as ˜̀ must also be changed.
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3
2

7
6

5
4

31
20

1 1 7
6

3
2

1 2 25
6 9

1 3 55
6

57
2

25
6 − 415

72
23
36 − 1

8

−35
4

755
48 −79

24
11
16

5 − 119
12

19
6 − 3

4

− 5
6

125
72 −25

36
5
24

Table 3.12: We show the Gramian matrices ΓL and its inverse, which are needed for biorthogonalisation after the
restriction to the interval. They are of dimension d̃ = 4.

163
64 −1715

768 − 41
384

5
256 0 0 0 0 0

35
32 − 179

384 − 41
192

5
128 0 0 0 0 0

− 5
16

305
192 − 13

96
1
64 0 0 0 0 0

− 15
32

165
128

31
64 − 9

128 0 0 0 0 0
15
64 − 153

256
187
128 − 67

256
3
64 0 0 0 0

0 − 3
32

19
32

19
32 − 3

32 0 0 0 0

0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0

0 0 − 3
32

19
32

19
32 − 3

32 0 0 0

0 0 3
64 − 1

4
45
32 − 1

4
3
64 0 0

0 0 0 − 3
32

19
32

19
32 − 3

32 0 0

0 0 0 3
64 − 1

4
45
32 − 1

4
3
64 0

0 0 0 0 − 3
32

19
32

19
32 − 3

32 0

0 0 0 0 3
64 − 67

256
187
128 − 153

256
15
64

0 0 0 0 0 − 9
128

31
64

165
128 − 15

32

0 0 0 0 0 1
64 − 13

96
305
192 − 5

16

0 0 0 0 0 5
128 − 41

192 − 179
384

35
32

0 0 0 0 0 5
256 − 41

384 − 1715
768

163
64

Table 3.13: Here we display the dual refinement matrix
√

2M̃j,0 after biorthogonalisation. The middle column is
the same as that from the right of Table 3.11, while the boundary blocks have changed. At this point, they have
adopted the banded structure which can also be seen in the primal matrix.
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1 0 0 0 0 0 0 0 0 5
16

15
32 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 − 305

384 −165
256

3
64 0 0 0 0 0

1 1 0 0 0 0 0 0 0 139
192 −105

128
3
32 0 0 0 0 0

1
2

1
2

1
2 0 0 0 0 0 0 − 73

128
345
256 − 1

4
3
64 0 0 0 0

0 0 1 0 0 0 0 0 0 13
96 − 31

64 − 19
32

3
32 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 23

384 − 53
256

45
32 − 1

4
3
64 0 0 0

0 0 0 1 0 0 0 0 0 − 1
64

9
128 − 19

32 −19
32

3
32 0 0 0

0 0 0 1
2

1
2 0 0 0 0 − 1

128
9

256 − 1
4

45
32 − 1

4
3
64 0 0

0 0 0 0 1 0 0 0 0 0 0 3
32 −19

32 −19
32

3
32 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 1
4

45
32 − 1

4
9

256 − 1
128

0 0 0 0 0 1 0 0 0 0 0 0 3
32 −19

32 − 19
32

9
128 − 1

64

0 0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 1
4

45
32 − 53

256
23
384

0 0 0 0 0 0 1 0 0 0 0 0 0 3
32 − 19

32 − 31
64

13
96

0 0 0 0 0 0 1
2

1
2

1
2 0 0 0 0 3

64 − 1
4

345
256 − 73

128

0 0 0 0 0 0 0 1 1 0 0 0 0 0 3
32 − 105

128
139
192

0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 3

64 − 165
256 −305

384

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 15
32

5
16

Table 3.14: We show the full primal two-level transformation matrix
√

2Mj. The left part is identical to the refinement matrix (on the left in Table 3.11).
The right part is the result of the final stable completion.

5
5



C
h
a
p
te

r
3
.

T
w

o
C

o
n
st

ru
ct

io
n
s

o
n

th
e

In
te

rv
a
l

163
64 −1715

768 − 41
384

5
256 0 0 0 0 0 −1 − 1

2 0 0 0 0 0 0
35
32 − 179

384 − 41
192

5
128 0 0 0 0 0 −2 −1 0 0 0 0 0 0

− 5
16

305
192 − 13

96
1
64 0 0 0 0 0 1 0 0 0 0 0 0 0

− 15
32

165
128

31
64 − 9

128 0 0 0 0 0 0 1 0 0 0 0 0 0
15
64 − 153

256
187
128 − 67

256
3
64 0 0 0 0 0 − 1

2 − 1
2 0 0 0 0 0

0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0 0 0

0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 − 1

2 −1
2 0 0 0 0

0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0 0

0 0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 −1

2 −1
2 0 0 0

0 0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0

0 0 0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 −1

2 − 1
2 0 0

0 0 0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0

0 0 0 0 3
64 − 67

256
187
128 − 153

256
15
64 0 0 0 0 0 − 1

2 − 1
2 0

0 0 0 0 0 − 9
128

31
64

165
128 − 15

32 0 0 0 0 0 0 1 0

0 0 0 0 0 1
64 − 13

96
305
192 − 5

16 0 0 0 0 0 0 0 1

0 0 0 0 0 5
128 − 41

192 − 179
384

35
32 0 0 0 0 0 0 −1 −2

0 0 0 0 0 5
256 − 41

384 − 1715
768

163
64 0 0 0 0 0 0 − 1

2 −1

Table 3.15: We picture the full dual two-level transformation matrix
√

2M̃j . The left part is identical to the biorthogonalised refinement matrix (shown in
Table 3.13), which follows from (2.3.12). The right part is similar in structure to the left part from Table 3.14.
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Here we have introduced nodal basis functions ζj,k indexed by the set ∆Z
j . By the relation ↔ we mean

that equality holds on the grid xl = 2−jl, l ∈ ∆Z
j . The coefficients zj in the basis Zj then correspond to

the function values of f(j) at the grid points and can be directly used for plotting.

Remark 3.12. The implicitly given function φ̃(x) is approximated with piecewise linear functions. This
approximation is exact at the grid points. Thus we propose an interpolation procedure. For error estima-
tion, standard results on interpolation can be used.

To transform the dual basis Φ̃j into the nodal basis Zj , we use three intermediate steps. First, we invert

the biorthogonalisation (3.3.37) to return to the initial dual basis Φ̃
(0)
j . Then we reverse the adaption to

the interval boundaries from (3.3.27) to arrive at the translationally invariant basis {φ̃[j,k]}. Thus, these

first two transformations have already been specified before. Finally, we transform {φ̃[j,k]} into the nodal

basis by explicitly using uniformly spaced precalculated function values of the dual generator φ̃.

Theorem 3.13. To approximately plot representations of functions in the dual single-scale basis, we may
use a pipeline of three transformations,

{φ̃[j,k]} ↔ VT
j Zj , Φ̃

(0)
j = OT

j {φ̃[j,k]} , Φ̃j = Γ−T
j Φ̃

(0)
j . (3.3.69)

This leads to the expansion

Φ̃j ↔ Γ−T
j OT

j VT
j Zj ⇐⇒ zj = VjOjΓ

−1
j c̃j . (3.3.70)

Proof. First, we aim at identifying Vj . To this end, we evaluate the dual generator φ̃(x) at the integer
points x ∈ N of its support, defining the vector

ṽ := {vi}i , vi := φ̃(i) , i = ˜̀
1 + 1, . . . , ˜̀2 − 1 . (3.3.71)

As the support of φ̃ is larger than that of ζ0,k, the matrix Vj is rectangular. Its entries are given by

(Vj)k,l = 2j/2vk−l , k = 0, . . . , 2j , l = −˜̀
2 + 1, . . . , 2j − ˜̀

1 − 1 . (3.3.72)

The transformation matrix Oj implements the restriction to the interval as of (3.3.27) and (3.3.31). It
is again rectangular, and its contents are the dual coefficients of polynomial exactness,

Oj =





α
I#∆̃0

j

αl



 , (3.3.73)

where the range of the indices of αm,r is the same as in (3.3.27). The entries of Γj are already known
from Section 3.3.

To illustrate the procedure, we provide the upper left non-trivial part of the product OjΓ
−1
j in Table 3.16.

It is a rectangular matrix whose lower part passes into the identity matrix in the interior.

Remark 3.14. To adopt this process to homogeneous boundary conditions, suitable deletions of outmost
rows and/or columns in the matrices Vj and Oj have to be executed. Γj already incorporates these
boundary conditions by definition (3.3.35).
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100 −580
3

178
3 −15

50 −565
6

80
3 −13

2

20 −107
3

26
3 − 2

5 − 89
12

7
6 − 1

4

0 1 0 0

0 0 1 0

0 0 0 1

100 −280
3

178
3 −15

50 −265
6

80
3 −13

2

20 − 47
3

26
3 − 2

5 − 29
12

7
6 − 1

4

0 1 0 0

0 0 1 0

0 0 0 1

Table 3.16: We display the non-trivial section of the product OjΓ
−1
j for inhomogeneous boundary conditions. It can

be seen that the lower part passes into the identity matrix. We provide two versions, the left matrix corresponding to
our construction detailed in Section 3.3.3, while the right matrix is constructed with the additional transformations
from Section 3.3.5, see below.

3.3.5 Transformation to the Nodal Basis

As with finite element wavelets in Section 3.2, translational invariance of the primal basis can be estab-
lished by a transformation to the nodal basis. In our example of d = 2 and d̃ = 4, the case of homogeneous
boundary conditions already yields a scaled nodal basis. For inhomogeneous boundary conditions, we
have a scaled nodal basis in the interior, and only the boundary blocks have to be adapted. Again, the
corresponding transformation fits into the framework of Section 2.3.2, cf. (2.3.22), with the matrix

Cj :=















1
−1 1

. . .

1 −1
1















. (3.3.74)

The effect on the refinement matrix Mj can be seen in the left part of Table 3.17, which is now transla-

tionally invariant. A closer inspection of the right part of M̃j in Table 3.15 shows that it is translationally
invariant except for the border blocks. We address this issue by devising an additional transformation of
the wavelets according to (2.3.18), with the matrix

Ǩj :=















−2
−1 1

. . .

1 −1
−2















. (3.3.75)

The results of the simultaneous application of these two sparse transformations are shown in Table 3.17
for the primal matrix and Table 3.18 for the dual matrix. We consider the patterns on the left of Mj and

on the right of M̃j as being of the purest form, as they are translation invariant, including the boundary
functions. This is not only beneficial from the aesthetic point of view, but also advantageous numerically,
as the condition numbers of the wavelet transform are substantially improved, which we will confirm in
the next section. We will also see in Chapter 4 and Chapter 5 that the condition numbers of discretised
elliptic operators and Riesz matrices are significantly reduced, especially for higher dimensions.

Remark 3.15. As stated above, the use of Cj is not applicable for homogeneous boundary conditions.
Nonetheless, the matrix Kj from (3.3.75) can be used in this case with exactly the same effect as for
inhomogeneous boundary conditions.
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1 0 0 0 0 0 0 0 0 − 35
32

15
32 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0 0 875

768 − 45
256

3
64 0 0 0 0 0

0 1 0 0 0 0 0 0 0 − 241
384 −105

128
3
32 0 0 0 0 0

0 1
2

1
2 0 0 0 0 0 0 − 53

256
345
256 − 1

4
3
64 0 0 0 0

0 0 1 0 0 0 0 0 0 41
192 − 31

64 − 19
32

3
32 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 67

768 − 53
256

45
32 − 1

4
3
64 0 0 0

0 0 0 1 0 0 0 0 0 − 5
128

9
128 − 19

32 −19
32

3
32 0 0 0

0 0 0 1
2

1
2 0 0 0 0 − 5

256
9

256 − 1
4

45
32 − 1

4
3
64 0 0

0 0 0 0 1 0 0 0 0 0 0 3
32 −19

32 −19
32

3
32 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 1
4

45
32 − 1

4
9

256 − 5
256

0 0 0 0 0 1 0 0 0 0 0 0 3
32 −19

32 − 19
32

9
128 − 5

128

0 0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 1
4

45
32 − 53

256
67
768

0 0 0 0 0 0 1 0 0 0 0 0 0 3
32 − 19

32 − 31
64

41
192

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 1
4

345
256 − 53

256

0 0 0 0 0 0 0 1 0 0 0 0 0 0 3
32 − 105

128 −241
384

0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 3

64 − 45
256

875
768

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 15
32 − 35

32

Table 3.17: We show the full primal two-level transformation matrix
√

2Mj at level j = j0 = 3 for inhomogeneous boundary conditions, after the
transformations induced by (3.3.74) and (3.3.75). We have transformed the generator basis to the nodal basis, as can be seen from the typical structure in
the left part.
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93
64 − 241

768
41
384 − 5

256 0 0 0 0 0 −1
2 0 0 0 0 0 0 0

35
32

241
384 − 41

192
5

128 0 0 0 0 0 1 0 0 0 0 0 0 0

− 5
16

245
192 − 13

96
1
64 0 0 0 0 0 −1

2 − 1
2 0 0 0 0 0 0

− 15
32

105
128

31
64 − 9

128 0 0 0 0 0 0 1 0 0 0 0 0 0
15
64 − 93

256
187
128 − 67

256
3
64 0 0 0 0 0 − 1

2 − 1
2 0 0 0 0 0

0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0 0 0

0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 − 1

2 − 1
2 0 0 0 0

0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0 0

0 0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 − 1

2 −1
2 0 0 0

0 0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0 0

0 0 0 3
64 − 1

4
45
32 − 1

4
3
64 0 0 0 0 0 −1

2 −1
2 0 0

0 0 0 0 − 3
32

19
32

19
32 − 3

32 0 0 0 0 0 0 1 0 0

0 0 0 0 3
64 − 67

256
187
128 − 93

256
15
64 0 0 0 0 0 −1

2 − 1
2 0

0 0 0 0 0 − 9
128

31
64

105
128 − 15

32 0 0 0 0 0 0 1 0

0 0 0 0 0 1
64 − 13

96
245
192 − 5

16 0 0 0 0 0 0 − 1
2 − 1

2

0 0 0 0 0 5
128 − 41

192
241
384

35
32 0 0 0 0 0 0 0 1

0 0 0 0 0 − 5
256

41
384 −241

768
93
64 0 0 0 0 0 0 0 − 1

2

Table 3.18: We display the full dual two-level transformation matrix
√

2M̃j at level j = j0 = 3 for inhomogeneous boundary conditions, after the
transformations induced by (3.3.74) and (3.3.75). We have achieved a translation invariant structure in the right part. Note that M̃j = M−T

j from
Table 3.18.
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3.3. Spline Wavelets

Remark 3.16. To utilise the procedure for plotting the dual representations from Section 3.3.4, we have
to take into account the transformation

Γj 7→ CT
j Γj (3.3.76)

in (3.3.70). The difference to the original version can be seen in Table 3.16.

3.3.6 Numerical Properties

In this section we will show the results of numerical calculations of the condition numbers of the single-
scale and the wavelet basis. We list these properties for one, two and three dimensions and for several
levels of resolution, for both homogeneous and inhomogeneous boundary conditions. We also investigate
the effect of the transformations proposed in Section 3.3.5.

Because of biorthogonality, the condition numbers of the primal and dual bases are the same. To calculate
the condition numbers of the symmetric positive definite Gramian matrices for the respective combina-
tions of parameters, we have used power iterations to obtain the largest eigenvalue, and inverse power
iterations with an inner conjugate gradient routine to compute the smallest eigenvalue.

The results for inhomogeneous boundary conditions are shown in Table 3.19. It consists of four rows
for the spatial dimensions n = 1 to n = 4. Each row contains two tables. The table on the left hand
side corresponds to the basic construction specified in Section 3.3.3. The table on the right refers to the
transformation (3.3.74) of the generator basis to the nodal basis as described in Section 3.3.5. In each
table, we include the variant created by the additional transformation (3.3.75), denoted by a superscript
()K.

While the transformation for the primal generator functions reduces the condition numbers by a factor of
up to 2, the best results by far arise from the combination of both transformations. The transformation
of the wavelets alone does not lead to an overall improvement. We can reduce the condition number of
the wavelet basis from about 5.6n to 2.6n, and the condition number of the wavelet transform from about
7.3n to 3.1n.

The condition numbers for the homogeneous case are given in Table 3.20. While the condition number
of the single-scale basis is still better than the best inhomogeneous variant, the wavelet specific condition
numbers are worse. Moreover, the transformation (3.3.75) tends to even degrade the condition number
in this case.

We confirm in the numerical experiments that all bases and transformations have uniformly bounded
condition numbers. The case of homogeneous boundary condition does not seem to benefit from the
transformation (3.3.75) on the wavelet side. Quite the contrary, the condition numbers are generally
higher by a factor of up to 2 compared to the original construction. In contrast, the combination of both
transformations introduced in Section 3.3.5 constitutes a significant improvement for inhomogeneous
boundary conditions. The condition number of the final wavelet basis is only increased by a factor less
than 2 compared to the nodal single-scale basis. The condition numbers of the wavelet transformations
are also very low compared with the original constructions.

We conclude to use our transformations whenever we deal with inhomogeneous boundary conditions.
We will see in forthcoming chapters of this document that also the condition numbers of discretisa-
tions of elliptic operators and Riesz operators benefit from this decision, especially for increasing spatial
dimensions.
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j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 4.44 4.44 4.44 1.00 1.00

4 4.44 5.05 4.68 4.70 5.90

5 4.44 5.44 4.70 6.02 8.35

8 4.44 5.86 4.70 7.71 8.13

12 4.44 5.99 4.70 8.03 7.25

n = 1, original generators

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 1.98 1.98 1.98 1.00 1.00

4 1.99 3.74 2.45 2.83 2.10

5 2.00 4.34 2.59 3.75 2.61

8 2.00 4.84 2.67 5.27 3.17

12 2.00 4.97 2.68 5.89 3.29

n = 1, with Cj from (3.3.74)

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 19.7 19.7 19.7 1.00 1.00

4 19.7 25.5 21.9 22.1 34.8

5 19.7 28.6 22.1 34.1 64.0

8 19.7 30.9 22.1 52.4 58.7

n = 2, original generators

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 3.92 3.92 3.92 1.00 1.00

4 3.98 14.0 6.00 7.99 4.41

5 3.99 16.8 6.62 14.0 6.67

8 4.00 18.2 6.89 24.5 9.68

n = 2, with Cj from (3.3.74)

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 87.6 87.6 87.6 1.00 1.00

4 87.6 129 102 104 205

5 87.6 149 103 191 505

6 87.6 156 104 290 586

n = 3, original generators

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 7.77 7.77 7.77 1.00 1.00

4 7.93 52.4 14.7 22.6 9.24

5 7.98 66.3 16.9 52.6 17.2

6 7.99 69.0 17.4 85.1 23.5

n = 3, with Cj from (3.3.74)

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 389 389 389 1.00 1.00

4 389 649 479 488 1208

5 389 773 486 1076 4004

n = 4, original generators

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

3 15.4 15.4 15.4 1.00 1.00

4 15.8 196 36.0 63.9 19.5

5 15.9 266 42.9 197 44.1

n = 4, with Cj from (3.3.74)

Table 3.19: We list the condition numbers of single-scale bases Φj and wavelet bases Ψj and the wavelet trans-
formation Wj (2.2.20) for inhomogeneous boundary conditions. The spatial dimension n increases from top to
bottom. The tables on the left hand side refer to the original construction, while the right hand side includes
the transformation Cj (3.3.74). In each table, we also give results for the transformation Kj (3.3.75), which is
denoted by the superscript ()K. Both transformations are independent of each other. We can see that the best
results stem from their combination.
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j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

4 1.71 1.71 1.71 1.0 1.0
5 1.73 4.05 5.57 3.94 5.63
6 1.73 6.12 8.58 6.37 8.78
8 1.73 9.09 12.7 10.1 13.1

12 1.73 12.2 17.0 14.3 17.5
n = 1

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

4 2.92 2.92 2.92 1.0 1.0
5 2.98 16.4 31.0 15.5 31.7
6 2.99 33.2 59.1 37.5 66.3
8 2.99 59.0 102 78.6 127

n = 2

j κ(Φ) κ(Ψ) κ(Ψ)K κ(Wj) κ(Wj)
K

4 5.00 5.00 5.00 1.0 1.0
5 5.14 66.3 173 61.1 179
6 5.18 183 414 224 526

n = 3

Table 3.20: We show the condition numbers of single-scale and wavelet bases and the wavelet transform for
homogeneous boundary conditions. Here, only the transformation on the wavelets is applicable, which is again
denoted by the superscript ()K. In this case, it does not improve the condition number.
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Chapter 4

Wavelet Methods for Linear Elliptic

Partial Differential Equations

4.1 Introduction

In this thesis we deal with optimal control problems which are constrained by linear elliptic partial
differential equations. The efficiency of a numerical algorithm for the control problem as a whole depends
crucially on the efficient handling of these constraints. In fact, the character of the partial differential
equation determines for the most part the type of discretisation and solution scheme of the whole problem,
and its speed of convergence.

In our case, the constraints have the form of a linear elliptic PDE. Equations of this type describe several
basic physical phenomena, such as stresses in elastic materials, the distribution of temperature or the
concentration of chemical substances subject to diffusive processes. Furthermore, they occur as building
blocks in mathematical methods for structurally more complicated problems, for example in the solution
of nonlinear equations, as sub-step in the computation of fluid flow or in contact problems in medicine
and engineering. Effective numerical algorithms for this class of equations are thus of highest practical
relevance, and this need has distinctly and continuously shaped the research in numerical analysis, from
a time even before the existence of modern computing machines until now.

The prototypical elliptic boundary value problem reads as follows: Find y such that

∆y = f in Ω , (4.1.1a)

y = 0 on ∂Ω . (4.1.1b)

(The mathematical objects used here will be introduced below.) The numerical approach to such an
equation involves the process of discretisation which leads to a large linear system of equations. Since
the direct solution would be prohibitively expensive because of its size, iterative solvers are employed,
whose rate of convergence depends on the condition number of the system matrix. A solver is called fast
or asymptotically optimal if it computes the solution with a number of arithmetic operations which is
proportional to the number of unknowns. While finite element approaches require additional precondi-
tioners such as the BPX scheme or the use of multigrid methods to be asymptotically optimal, wavelet
discretisations of elliptic operators are inherently well-conditioned.

The present chapter is devoted to the proposition of a wavelet solver for linear elliptic partial differential
equations which is fast in the above sense, and for which we show that it is competitive in terms of
large scale computing. We provide an overview of the wavelet discretisation approach and a description
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of the solution process. The analytical derivations are then complemented with numerical results on
the condition numbers of the resulting stiffness matrices. In Section 4.3.3, a new operator-adapted
construction scheme is proposed which can result in significantly improved condition numbers.

4.2 Numerical Solution of Elliptic Boundary Value Problems

Many numerical methods for the solution of elliptic PDEs fall into one of two major classes, namely finite
differences or finite elements. In finite difference methods, the action of differential operators on functions
is approximated by taking combinations of point values [22, 86]. A famous example is the so-called five
point stencil for the Laplace operator in two dimensions,

∆v(x) ≈ v(x − he1) + v(x − he2) + v(x+ he1) + v(x+ he2)− 4v(x)

h2
. (4.2.1)

For this formulation, the function values of v(x) must be well defined at the grid points (ih, jh), where
h := 1/N and i, j ∈ 0, . . . , N , and e1 and e2 are the unit vectors. In contrast, finite element methods allow
for relaxed regularity requirements, since they are based on the weak formulation of partial differential
equations, a theory which can be formulated in terms of Lebesgue integrable functions.

A different ansatz are the so-called spectral methods, where the analytical framework is based on Fourier
decompositions [21]. In this case general functions are approximated by linear combinations of trigono-
metric functions, which provide two useful features for the solution of elliptic PDEs. Firstly, trigonometric
functions are eigenfunctions of the Laplace operator, which decouples the degrees of freedom of the spec-
tral representation. Secondly, they allow to evaluate fractional Sobolev norms up to equivalence, which
we regard as important in connection with optimal control problems. However, the treatment of non-
periodic or non-continuous functions by such expansions is difficult, which is a severe restriction from the
practical point of view.

Wavelet methods combine essential advantages of finite elements and spectral methods. They share with
spectral elements the ability for the numerical evaluation of Sobolev norms. The procedure itself however
is largely different, and will be discussed in detail in the next chapter. Conceptually, the wavelet method
proposed here is closer to finite elements in the sense that it is also based on the modern framework of
weak formulations of elliptic boundary value problems. This area of applied mathematics has been the
subject of extensive studies in for the past decades, and the fundamental theorems such as the one of
Lax-Milgram or Cea’s Lemma are by now widely known. Because of the importance for the theoretical
foundation of this work, and the finite element context in general, we will give here a short introduction
to the basic notions and definitions, largely based on [22].

4.2.1 Weak Formulation

Definition 4.1. Let H be a Hilbert space with norm ‖·‖H . A bilinear form a : H × H → R is called
continuous, if there exists CA > 0 such that for any v, w ∈ H

|a(v, w)| ≤ CA‖v‖H‖w‖H . (4.2.2)

A symmetric continuous bilinear form is called H-elliptic or coercive if there exists a cA > 0 such that

a(v, v) ≥ cA‖v‖2H , v ∈ H . (4.2.3)

It follows that every H-elliptic form induces a norm on H according to

‖v‖a :=
√

a(v, v) . (4.2.4)
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This norm is called the energy norm, and it is equivalent to the norm of H . The bilinear form a(·, ·)
induces a linear operator A : H → H ′ by the definition

〈v,Aw〉 := a(v, w) for all v, w ∈ H . (4.2.5)

A common example for an elliptic form over H1
0 (Ω) or H1(Ω), Ω ⊂ Rn (see e.g. [3] for an introduction to

these spaces), is given by the representation

a(v, w) :=

∫

Ω

(

∑

i,k

aik∂iv∂kw + a0vw

)

dx , (4.2.6)

where A(x) := (aik(x))
n
i,k=1 is a symmetric positive definite matrix with λmin(A) ≥ cA, λmax(A) ≤ CA,

and 0 ≤ a0(x) ≤ CA, almost everywhere on Ω. (For H1(Ω), we actually need to demand cA ≤ a0(x) ≤
CA.) Throughout this thesis, we always start out with such a symmetric, continuous and H-elliptic form
a(·, ·). This bilinear form is associated with an elliptic differential operator L of second order according
to

Ly := −
n
∑

i,k=1

∂i(aik∂ky) + a0y . (4.2.7)

With the notion ofH-elliptic forms, we can establish a class of variational problems and obtain statements
on existence and uniqueness of their solution.

Theorem 4.2 (Lax-Milgram). Let a(·, ·) be an H-elliptic form. For any f ∈ H ′, there exists exactly
one element y ∈ H which solves the variational problem

min
v∈H

J(v) , J(v) :=
1

2
a(v, v)− 〈f, v〉 (4.2.8)

The above statement on the minimisation of a quadratic functional is intimately connected to the concept
of weak solutions of elliptic boundary value problems. To establish this link, we describe first two standard
classical problems which differ only in the conditions specified on the boundary.

Definition 4.3 (Dirichlet problem). A function y ∈ H1
0 (Ω) is called a weak solution of the elliptic

boundary value problem with homogeneous Dirichlet boundary conditions specified by

Ly = f in Ω , (4.2.9a)

y = 0 on ∂Ω , (4.2.9b)

if it holds that
a(y, v) = (f, v)L2(Ω) for all v ∈ H1

0 (Ω) . (4.2.10)

For the second variant, we need an additional prerequisite. Let the boundary of Ω be denoted by
Γ = ∂Ω. We demand that there exists a bounded linear map γ : H1(Ω) → L2(Γ) such that γv = v|Γ
for all v ∈ C1(Ω̄), and that a0 ≥ cA a.e. on Ω. This can be guaranteed by a relaxed form of the trace
theorem [22]. Then we may define as follows.

Definition 4.4 (Neumann problem). A function y ∈ H1(Ω) is called a weak solution of the elliptic
boundary value problem with Neumann boundary conditions specified by

Ly = f in Ω , (4.2.11a)
∑

i,k

νiaik∂ky = g on Γ , (4.2.11b)

if it holds that
a(y, v) = (f, v)L2(Ω) + (g, v)L2(Γ) for all v ∈ H1(Ω) . (4.2.12)
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It turns out that weak solutions of both of these problems can be identified as solutions of an appropriate
variational problem of the type described in (4.2.8). To this end, we cite the following

Theorem 4.5. Let L be an elliptic operator as specified in (4.2.7). Then weak solutions to the problems
(4.2.9) and (4.2.11) do always exist and are unique. They are the minimisers of the corresponding
variational problems, which read

min
v∈H1

0 (Ω)
J(v) , J(v) :=

1

2
a(v, v) − (f, v)L2(Ω) (4.2.13a)

for the Dirichlet problem and

min
v∈H1(Ω)

J(v) , J(v) :=
1

2
a(v, v) − (f, v)L2(Ω) − (g, v)L2(Γ) (4.2.13b)

for the Neumann problem, respectively.

These weak formulations of elliptic boundary value problems are well-posed in the sense that the solution
y depends continuously on the data f . This is a consequence of coercivity, which leads to the relation

‖y‖H ≤ c−1
A ‖f‖H′ . (4.2.14)

We have thus established weak formulations of elliptic boundary value problems and provided criteria for
the existence, uniqueness and boundedness of their solution y ∈ H .

4.2.2 A-priori Estimates

In the last section, we have introduced a class of variational problems over Sobolev spaces. However,
for numerical computations we need to develop a strategy to cope with the finite amount of computer
memory. To this end, the infinite-dimensional variational problem is transformed into an approximate but
finite problem formulated in matrices and vectors. This is generally accomplished by choosing hierarchies
of finite-dimensional subspaces SΛj

⊂ H indexed by a level of resolution j, and appropriate sets of basis
functions. Replacing the original functions occurring in the variational problem by finite expansions
in SΛj

, a reformulation is achieved in terms of the expansion coefficients of the basis functions, which
leads to a linear system of equations. The general idea of this so-called Galerkin method is almost a
century old [119]. For historical reasons, the system matrix is often called stiffness matrix, motivated by
applications in elasticity theory [22].

It is then natural to ask how close the solution for the finite system is to the exact solution. An answer
is provided by the following

Theorem 4.6 (Cea’s Lemma). Let the bilinear form a(·, ·) be H-elliptic, and let the solutions of the
variational problem over the full space H and the subspace SΛ be denoted by y and yΛ, respectively. Then
it holds that

‖y − yΛ‖H ≤
CA
cA

inf
v∈SΛ

‖y − v‖H . (4.2.15)

This result is of central importance, as it shows that the quality of the discrete solution can be estimated
by the approximation properties of the subspaces SΛj

. These are usually designed in such a way that
they contain all piecewise polynomials of order d with a mesh size h := 2−j , and their dimension depends
on j as Nj := dimSΛj

∼ 2nj . For H = H1, at least piecewise linear functions (d ≥ 2), and y ∈ H2(Ω),
this allows to state the following result, see e.g. [117],

inf
v∈SΛj

‖y − v‖H1 <∼ 2−j |y|H2 . (4.2.16)
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Combined with (4.2.15), it follows that for j →∞ the H1-error of the discrete solution yΛj
is proportional

to h and thus of order 1.

These considerations imply that for a fixed order of approximation d, a high number of degrees of freedom
Nj is needed for sufficient accuracy. The linear systems resulting from the discretisation are thus too
large to employ direct solvers. Yet, the stiffness matrix has a special sparse structure which allows to
evaluate the matrix-vector product in O(Nj) operations, which motivates the use of iterative solvers.

The convergence speed of iterative solvers like the method of conjugate gradients depends on the spectral
condition number of the system matrix, which is proportional to h−2 = 22j for standard finite element
spaces. Hence the rate of convergence slows down with growing j. It is therefore essential to employ
techniques for preconditioning [36, 37]. Ideally, the numerical complexity should be proportional to the
number of unknowns. Most schemes make use of a multi-level approach by splitting the finite element
spaces into hierarchical subspaces [24,116,145]. The most prominent class of solvers in the finite element
setting is given by multigrid methods [23,26,84,138], which have been devised to treat a manifold variety
of problems [85]. Active research is undertaken on algebraic and parallel variants, see e.g. [72,78,122]. We
will not cover these approaches here as they are discussed in great detail in the finite element literature.
We will instead continue to describe the wavelet approach, which resolves the problem of preconditioning
by the design of appropriate Riesz bases for H .

4.3 A Wavelet Method for Elliptic Problems

Employing the Riesz basis property (2.2.51) which is satisfied by biorthogonal wavelets, we derive that
the condition number of the stiffness matrix is uniformly bounded. Thus, the wavelet approach inherently
resolves the issue of preconditioning which is crucial in finite element methods.

After this, we choose a specific family of wavelets and give concrete numerical results for selected condition
numbers of the stiffness matrix. Additionally, we introduce a novel technique to further improve this
condition number by an operator-adapted transformation. At last, we present a nested iteration strategy
to obtain discretisation error accuracy with linear computational complexity.

4.3.1 A Wavelet Galerkin Method

The wavelet framework differs from finite element techniques in the fact that the variational problem
from Section 4.2 is first reformulated as an equivalent infinite-dimensional problem over the sequence
space `2. This is accomplished by an expansion of the functions from the weak formulations (4.2.9) and
(4.2.11) in a Riesz basis of the Hilbert space H . This reformulation in terms of expansion coefficients
y ∈ `2 leads to an infinite linear system of equations for the discrete solution y.

Choosing a very particular basis for this procedure, namely biorthogonal wavelets, offers the principal
benefit that the condition number of the resulting system matrix is uniformly bounded, which lays the
foundation for the development of a fast algorithm for the numerical solution. A detailed survey on the
following facts can for example be found in [46, 102].

Let us consider either one of the problems from Section 4.2.1, that is, find y ∈ H such that

a(y, v) = 〈f, v〉 for all v ∈ H . (4.3.1)

Recall that depending on the type of problem we have H = H1
0 (Ω) or H = H1(Ω). Suppose now that

we have a biorthogonal wavelet basis Ψ1 of the Hilbert space H at our disposal, satisfying the norm
equivalence

‖v‖H = ‖vTΨ1‖H ∼ ‖v‖ , v = vTΨ1 ∈ H . (4.3.2)
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The equivalence constants are denoted by cH and CH ,

cH‖v‖ ≤ ‖v‖H ≤ CH‖v‖ . (4.3.3)

The theoretical foundations of such wavelet bases have been discussed in Chapter 2, and two specific
constructions have been covered in detail in Chapter 3. Expanding the functions y and v in this wavelet
basis,

y = yTΨ1 , y = 〈y, Ψ̃1〉 , (4.3.4a)

v = vTΨ1 , v = 〈v, Ψ̃1〉 , (4.3.4b)

and inserting this into (4.3.1), we obtain

a(yTΨ1,vTΨ1) = 〈f,vTΨ1〉 for all v ∈ `2 . (4.3.5)

With the expansion of the right hand side in the dual basis, f = fT Ψ̃1 and f = 〈f,Ψ1〉, this is equivalent
to the linear system of equations

Ay = f with Aλ,µ := a(ψ1
λ, ψ

1
µ) . (4.3.6)

The matrix A is called the system or stiffness matrix. Technically, the wavelet basis Ψ1 is deduced from
the anchor basis Ψ for L2 by a diagonal scaling matrix D (2.2.48), which leads to the derivation

A = a(Ψ1,Ψ1) = D−1a(Ψ,Ψ)D−1 . (4.3.7)

The stiffness matrix is symmetric and positive definite, which can be seen from

vTAv =
∑

λ,µ

vλAλ,µvµ = a(v, v) ≥ cA‖v‖2H ≥ cAc2H‖v‖2 , (4.3.8)

where we have used coercivity (4.2.3) and the norm equivalence (4.3.3). This relation effectively bounds
the smallest eigenvalue of A. Using the continuity (4.2.2), the largest eigenvalue is bounded by

vTAv = a(v, v) ≤ CA‖v‖2H ≤ CAC2
H‖v‖2 . (4.3.9)

Combining the knowledge on the smallest and largest eigenvalues, we have therefore proved the central
theorem of this section.

Theorem 4.7. The spectral condition number of the stiffness matrix is uniformly bounded,

κ(A) ≤ CA

cA
∼ 1 , (4.3.10)

with the definitions cA := cAc
2
H and CA := CAC

2
H .

Inspired by the representation on the right of (4.3.7), we can also replace the diagonal scaling by the
operator-adapted variant Da, defined as follows,

Da := (diag a(Ψ,Ψ))
1
2 . (4.3.11)

This replacement changes the wavelet basis for H . The resulting stiffness matrix Aa has exclusively
ones on the diagonal, which generally leads to a reduced condition number in comparison with A. For
completeness, we state the explicit definitions and conclusion,

Ψ1
a := D−1

a Ψ , Aa := a(Ψ1
a,Ψ

1
a) = D−1

a a(Ψ,Ψ)D−1
a , κ(Aa) ∼ 1 . (4.3.12)

Note the similarity to (4.3.7). We have thus established that the stiffness matrix in wavelet representation
has a uniformly bounded condition number, with some freedom in the choice of diagonal scaling.
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4.3.2 Fast Solution over Finite-Dimensional Subspaces

Up to this point, we have been working purely in the infinite-dimensional context, first discussing varia-
tional problems over Sobolev spaces and then switching to an equivalent wavelet formulation in `2. To
make this formulation accessible for computations, we need to identify finite-dimensional subproblems
which approximate the original problem. To this end, we present the concepts of uniform and adaptive
wavelet discretisations and comment on the implications on the expansions of functions in wavelet bases
and the structure of the stiffness matrix. We explain our notion of a fast solver, and demonstrate that
wavelet discretisations deliver all ingredients for the conception of such a fast method.

Finite Wavelet Discretisations

The wavelet bases introduced in Chapter 2 consist of an infinite collection of hierarchically ordered
functions which are indexed over `2(IIH) and span the full space H . Finite-dimensional subspaces are
selected by a reduction of the index set, i.e., by choosing a finite subset Λ ⊂ IIH . Hence, all wavelet
basis functions whose indices are not in Λ are discarded, and we obtain a finite basis ΨΛ spanning the
finite-dimensional subspace SΛ ⊂ H . Note that at this point the structure of Λ is arbitrary.

Consequently, all vectors of wavelet coefficients are truncated by deleting the entries which are not in Λ,
and similarly all matrices in wavelet representation are shrunk by deleting all rows and columns which
do not belong to Λ. For example, the solution y and the right hand side f are obtained as

yΛ = 〈y, Ψ̃1
Λ〉 , fΛ = 〈f,Ψ1

Λ〉 . (4.3.13)

The vectors yΛ and fΛ have NΛ = #Λ ∈ N entries. The truncated stiffness matrix is denoted by AΛ,
it has the dimensions NΛ × NΛ, it is still symmetric, and it inherits the uniformly bounded condition
number from the infinite-dimensional setting.

Corollary 4.8. The condition number of the truncated stiffness matrix is bounded by the condition
number of the infinite-dimensional problem,

κ(AΛ) ≤ κ(A) ≤ CA

cA
∼ 1 . (4.3.14)

Proof. Above relation follows from (4.3.8) and (4.3.9).

It remains to solve the finite and well-conditioned, symmetric linear system of equations over RNΛ ,

AΛyΛ = fΛ . (4.3.15)

The structure of the matrix AΛ depends on the strategy by which the finite number of wavelet coefficients
is selected. Since wavelet bases are built over a multiresolution analysis (see Definition 2.1), we may
choose a particular level of resolution j and define the subspace SΛj

:= Sj ⊂ H according to (2.2.3). To
this space corresponds the truncated wavelet basis Ψ(j) (2.2.16). We refer to this approach as uniform
discretisation, it is analogous to multi-level finite element methods.

Iterative solvers repeatedly apply the stiffness matrix Aj := AΛj
to a vector. Making use of the identities

(2.2.19) and (2.2.54) we obtain the representation

Aj = D−1WT
j a(Φj ,Φj)WjD

−1 . (4.3.16)

To compute the product Ajv, we can subsequently apply the matrices on the right hand side of (4.3.16).
The matrix a(Φj ,Φj) is the standard stiffness matrix in the finite element setting, which contains O(Nj)
nonzero elements. As the multi-scale transformations Wj (2.2.20) for both of the wavelet constructions
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that we have encountered in Chapter 3 may also be applied in linear time, we conclude that Aj as a
whole can be applied in O(Nj) arithmetic operations. When using the operator-adapted diagonal Da

instead (4.3.11), its entries can be precomputed in O(Nj) operations once at the beginning of the process.

While the subspaces of the uniform discretisation are selected level-wise, it is also possible to base the
choice of the active wavelet indices on other criteria. In view of the norm equivalence (4.3.2), we could
select only the N largest coefficients of the wavelet expansion, irrespective of their level. This is called
best N -term approximation and leads to the concept of adaptive discretisation. For solutions which do
not have the full regularity required by (4.2.16), it offers the potential to achieve the same accuracy as the
uniform procedure with less coefficients, which reduces memory and time requirements. We will develop
such a method in Chapter 7, including references to the necessary theory on adaptive wavelet methods.

A Fast Solver

For the solution of the finite system (4.3.15), we employ the method of conjugate gradients (CG), originally
conceived in [90] as a direct solver for symmetric positive definite matrices. It has been found later that
it can also be used as an efficient iterative method, see e.g. [22] for a discussion in the context of modern
numerical methods. Its convergence rate depends on the condition number of the system matrix,

‖y(k)
Λ − yΛ‖AΛ

≤ 2

(

√

κ(AΛ)− 1
√

κ(AΛ) + 1

)k

‖y(0)
Λ − yΛ‖AΛ

, (4.3.17)

where yΛ denotes the exact solution for (4.3.15), and y
(k)
Λ the iterative solution in step k. The type of

energy norm used here is defined as follows,

‖v‖2AΛ
:= vTAΛv ∼ ‖v‖2 , (4.3.18)

where the equivalence relation on the right follows from (4.3.14) and is thus specific to the wavelet setting.
This allows us to derive the following estimate in `2,

‖y(k)
Λ − yΛ‖ <∼ ρ(AΛ)k‖y(0)

Λ − yΛ‖ with ρ(AΛ) :=

√

κ(AΛ)− 1
√

κ(AΛ) + 1
≤ ρ(A) , (4.3.19)

which means that the convergence rate ρ(AΛ) is independent of the choice of the index set Λ. This
guarantees that the reduction of the error by a fixed proportion η requires a constant amount Kη of
iterations irrespective of the number of unknowns,

Kη <∼ − log(η) . (4.3.20)

To determine the overall computational cost of the iterative solver, it remains to quantify the effort of
one single iteration. We derive this for a uniform wavelet discretisation here, defining

yj := yΛj
, y

(k)
j := y

(k)
Λj

, Aj := AΛj
. (4.3.21)

The central step of one CG iteration consists in the multiplication of the matrix Aj with a vector, which
in view of (4.3.16) costs O(Nj) arithmetic operations. The memory consumption is thus proportional to
Nj , and the computation time for a reduction η is proportional to KηNj .

Hence, it is possible to solve the discrete system for a given level j to an arbitrary high accuracy of y
(k)
j by

increasing the number of iterations k. Yet we have to keep in mind that the discretisation error between
the exact full solution y and the exact discrete solution yj persists. Since the full error of the numerical
scheme is composed according to

‖y− y
(k)
j ‖ ≤ ‖y − yj‖+ ‖yj − y

(k)
j ‖ , (4.3.22)
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Algorithm Nested (A,b, J, ε) → x: Solves Ax = b up to accuracy ε ∼ 2−J .

(i) Initialisation for coarsest level

(1) Compute start value xj0 := A−1
j0

bj0 to machine precision.

(2) Set j := j0.

(ii) While j < J

(1) Prolongate xj → x0
j+1, Set j := j + 1.

(2) Solve Ajxj = bj iteratively, using the start value x0
j ,

up to accuracy 2−(j−J)ε.

(iii) Accept xj → x.

Algorithm 4.1: We display the nested iteration algorithm Nested for the solution of an elliptic boundary value

problem. The prolongation in the wavelet setting is trivially executed by padding the vector with zero coefficients.

This algorithm needs O(2J ) operations.

only the rightmost term tends to zero for k →∞. The left part is the discretisation error, which can be
derived from the wavelet norm equivalence (4.3.2), Cea’s Lemma (4.2.15) and (4.2.16) as

‖y− yj‖ ∼ ‖y − yj‖H1 <∼ inf
v∈Sj

‖y − v‖H1 <∼ 2−j |y|H2 . (4.3.23)

We conclude from this that to prescribe higher accuracies for the CG method than ηj := 2−j would be a
waste of computing power. In other words, a stopping criterion of ηj for the CG method is most efficient
to obtain a convergent series of discrete solutions,

‖y − y
(Kηj

)

j ‖ <∼ 2−j . (4.3.24)

Concluding from (4.3.20) that Kηj
<∼ − log(ηj) = j, we arrive at a computational cost of O(jNj), which is

not yet the optimal result which we ultimately aspire. To remove the logarithmic factor j ∼ log(Nj), we
use a strategy which is known as nested iteration, see e.g. [104], which works as follows (see Algorithm 4.1
for a complete listing). The system is solved to machine accuracy on the coarsest level. We then prolongate
the coarse solution to the next level j and use it as a start value for the iterative solver. The solver is
stopped at discretisation error accuracy 2−j , and the temporary solution is prolongated again to gain a
start value for the next level j + 1. This scheme is repeated until the highest level J is reached.

Theorem 4.9. The nested iteration algorithm features a memory and time complexity of O(NJ), where
J is the finest level of discretisation.

Proof. This result essentially follows from the summation of a geometric series, see (2.2.6),

O
( J
∑

j=j0

Nj

)

= O(NJ ) . (4.3.25)

where we use the fact that only a constant amount of iterations per level is required for a reduction of
the error by a factor of 2.

Since prolongation and restriction are trivial operations in the wavelet setting, there are no additional dif-
ficulties with respect to the implementation. We have thus constructed an iterative solver for the wavelet
discretisation of the elliptic boundary value problem which achieves optimal computational complexity.
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(−∆)0 (−∆ + 1)0 −∆ + 1
j D Da D Da D Da

3 232 229
4 103 103 93.7 93.7 350 244
5 166 118 151 107 393 255
6 207 129 188 117 433 262
8 244 137 221 125 493 271

10 263 141 239 128 531 276
12 274 144 249 130 557 278

n = 1

(−∆)0 −∆ + 1
j D Da D Da

3 532 519
4 51.7 51.7 697 627
5 175 101 739 646
6 570 337 768 664
8 1222 738 798 681

n = 2

(−∆)0 −∆ + 1
j D Da D Da

3 1238 1103
4 34.6 34.6 3410 1917
5 2956 1015 3930 2228
6 14600 5476 4330 2459

n = 3

Table 4.1: We show the condition numbers κ(A) (4.3.6). We provide three tables for the spatial dimensions
n = 1, 2, 3. The suffix ()0 refers to homogeneous boundary conditions, while D and Da designate the type of
diagonal scaling according to (2.2.48) and (4.3.11).

Condition Numbers in Uniform Discretisation

The convergence rate of the solution of (4.3.15) depends on the condition number of the stiffness matrix.
Although it is uniformly bounded and therefore independent of the level of resolution j, we are still inter-
ested in its actual values on the various levels, since smaller values generally induce shorter computation
times. These values depend on the choice of wavelet basis.

We have selected the construction of biorthogonal spline wavelets detailed in Section 3.3, with d = 2
and d̃ = 4. In Table 4.1, we have collected the condition numbers of the stiffness matrices for three
different situations, namely for the operators −∆ and −∆ + 1 with homogeneous boundary conditions
and the operator −∆ + 1 with inhomogeneous boundary conditions. We have devoted separate tables to
the spatial dimensions 1, 2 and 3. For each combination, we list the condition numbers with either the
classical diagonal scaling (2.2.48) or the operator-adapted scaling from (4.3.11).

First of all, the results confirm that the condition numbers are uniformly bounded. Secondly, we assert
that the use of Da is always superior to the standard diagonal scaling by a factor between about 1.6 and
2.7. Finally, the condition numbers increase exponentially with the spatial dimension as expected by the
tensor product approach.

In Table 4.2, we examine the effect of the transformations to the nodal basis from (3.3.74) and (3.3.75)
on the condition numbers. This transformation does not lead to reduced condition numbers with homo-
geneous boundary conditions. However, for inhomogeneous boundary conditions the improvements are
significant. In this scenario, the condition numbers of the stiffness matrix increase only with a factor less
than 2 with the spatial dimension. These results confirm the observation made in the previous chapter
that the transformation to the nodal basis is generally advantagous for free boundary conditions.

74



4.3. A Wavelet Method for Elliptic Problems

(−∆)K0 (−∆ + 1)K0 (−∆ + 1)CK

j D Da D Da D Da

3 280 256
4 103 103 93.7 93.7 376 263
5 369 143 335 130 473 289
6 489 154 444 140 540 301
8 599 162 544 147 635 319

10 639 165 580 150 695 330
12 658 167 598 152 735 337

n = 1

(−∆)K0 (−∆ + 1)CK

j D Da D Da

3 312 256
4 51.7 51.7 841 308
5 1171 143 871 372
6 1371 517 895 416
8 2503 1279 927 480

n = 2

(−∆)K0 (−∆ + 1)CK

j D Da D Da

3 337 256
4 34.6 34.6 1745 520
5 13100 1615 1897 557
6 60000 14400 1936 572

n = 3

(−∆ + 1)CK

j D Da

3 387 256
4 3229 816
5 3728 917

n = 4

Table 4.2: In this table, we present condition numbers of the stiffness matrix with the transformation to the nodal
basis from Section 3.3.5. The notation is the same as in Table 4.1. The transformation Cj (3.3.74) is only
applicable for free boundary conditions, while Kj (3.3.75) can be applied in any case.

4.3.3 Additional Preconditioning

We have so far reasoned and confirmed numerically that the wavelet discretisation described in the
previous section yields stiffness matrices with uniformly bounded condition numbers. Yet, it is tempting
to further examine the multi-level structure of the wavelet discretisation to gain additional improvements
with respect to conditioning.

We have developed an additional preconditioning technique which uses transformations on the coarsest
level. It is based on the observation that already the functions in the space Sj0 give rise to a strong
fraction of the full condition number. It is then only moderately enlarged further by the addition of
the wavelets functions from the spaces Wj . Consequently, we propose a correction on the level j0 which
indeed provides substantial improvements. These are preserved for higher levels. By this approach we
are able to reduce the condition number of the stiffness matrix by more than an order of magnitude.

We begin with an analysis of the stiffness matrix on the coarsest level, where the wavelet transformation
(2.2.20) reduces to the identity,

Aj0 = a(Φj0 ,Φj0) . (4.3.26)

As it is symmetric positive definite, we can diagonalise it according to

Aj0 = USUT , (4.3.27)

with a unitarian transformation matrix U and a diagonal S containing the positive eigenvalues. The
distribution of the eigenvalues of S (which are the same as those of Aj0 ) can then be analysed. Usually
we encounter only a small number of them which significantly spread the spectrum towards zero or
infinity. This motivates a transformation which clamps some extreme eigenvalues into a smaller range.
We thus replace the matrix S with a diagonal matrix Ŝ which exhibits a significantly smaller range of
eigenvalues, and hence a smaller condition number, according to

S 7→ Ŝ , Aj0 7→ Âj0 := a(CT
j Φj0 ,C

T
j Φj0) = UŜUT . (4.3.28)
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diag(S) 265 254 205 142 81.1 42.9 27.6 12.1 1.14

diag(Ŝ) 265 254 205 142 81.1 42.9 27.6 12.1 12.1

Table 4.3: We provide an example for the diagonal matrices S and Ŝ. We have chosen the case n = 1 with free
boundary conditions.

−∆ + 1 (−∆ + 1)CK

j 0 1 0 1
3 229 22.3 256 27.1
4 244 23.9 263 27.9
5 255 25.0 289 30.6
6 262 25.7 301 31.9
8 271 26.6 319 33.9

10 276 27.1 330 35.0
12 278 27.3 337 35.8

n = 1

−∆ + 1 (−∆ + 1)CK

j 0 1 4 5 0 1 3 4
3 519 78.2 76.0 49.5 256 27.8 17.3 9.64
4 627 129 128 124 308 33.4 20.9 11.8
5 646 149 149 147 372 40.4 25.3 14.3
6 664 165 165 165 416 45.1 28.2 16.0
8 681 179 179 179 480 52.1 32.6 18.4

n = 2

−∆ + 1 (−∆ + 1)CK

j 0 9 0 1 4
3 1103 269 256 28.5 18.3
4 1917 1913 520 57.8 37.1
5 2228 2222 557 62.0 39.8
6 2459 2443 572 63.6 40.9

n = 3

Table 4.4: We present condition numbers of the system matrix with applied preconditioning transformation on the
lowest level, as described in Section 4.3.3. The digit at the head of each column indicates the number of small
eigenvalues which have been shifted upward. The number 0 corresponds to no additional preconditioning at all and
is included for reference only. We have always used the exact diagonal Da.

As an example, we have provided the matrices S and Ŝ for a typical situation in Table 4.3. With a shift
of the smallest eigenvalue, we have improved the condition number by a factor of 10.6.

The change from S to Ŝ defines a transformed generator basis according to (2.3.22) with the symmetric
matrices

Cj0 = U(S−1Ŝ)
1
2 UT , Cj = I for j > j0 . (4.3.29)

This is a recipe which allows to adjust the eigenvalues on the coarsest level at will and thus provides
a means to systematically tune the condition numbers. We found that only very few small eigenvalues
occur, which are grouped in clusters, such that it is sufficient to correct a small number of them.

We confirmed by numerical experiments that this procedure improves the condition numbers for all levels
j. Table 4.4 shows several results for free boundary conditions. The improvement are largest when using
the nodal generator basis, where we gain a factor between 10 and 25.

Remark 4.10. The change of basis described here has side effects on other matrices, for example mass
matrices and Riesz operators, which may even lead to a degradation in their respective condition numbers.
In practise, this is not problematic if only a small number of eigenvalues is changed. In general however,
it is advisable to monitor the condition numbers of all matrices of interest.

Remark 4.11. The diagonalisation of the stiffness matrix occurs on the coarsest level and costs O(N 3
j0 )

operations. The application of the matrix Cj0 also affects the coarsest level only. Both cases involve a
computational effort which is sublinear with respect to the highest level NJ . Therefore, the overall runtime
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complexity O(NJ) is conserved by these additional computations. Furthermore, the decomposition needs
to be done only once and can be reused for all subsequent runs of the programme.

Conclusion 4.12. For the remainder of this thesis, we will work with B-spline wavelets of order d = 2 and
d̃ = 4 as constructed in Section 3.3, an internal scaling of r =

√
2 (3.3.58) and free boundary conditions.

In this case, the coarsest level of resolution is j0 = 3. Moreover, our numerical results suggest to always
use the diagonal matrix Da as defined in (4.3.11), and to employ the transformations (3.3.74), (3.3.75)
and an additional preconditioning via the shift of one eigenvalue for all spatial dimensions.

4.3.4 Pre- and Postprocessing

The complete solution process of one of the boundary value problems (4.2.9) or (4.2.11) involves additional
computations apart from the iterative solution of the linear system (4.3.15). As a first step, the right
hand side f and possibly the normal derivative on the boundary g need to be discretised to form the
vectors f and g. Depending on the nature of the wavelet basis, this must be done by interpolation or
integration. The discrete solution x computed by the iterative scheme then needs to be reported, in
general by plotting. To this end, function values need to be computed. These tasks require pre- and
postprocessing steps which we adress here.

The nodal basis will play an important role in this context. It is denoted by Zj , cf. (3.3.68). It is most
convenient for interpolation, integration and plotting. The iterative solver however uses the diagonally
scaled and possibly conditionally improved wavelet basis Ψs′ according to (2.2.48) and (4.3.29). Several
intermediate bases are involved according to the following scheme,

Zj
P←→ Φj

W←→ Ψj
D←→ Ψs

j
C←→ Ψs′

j . (4.3.30)

The transformations between these bases can be applied in linear time, so we ensure optimal complexity
for the complete algorithm.

P This step corresponds to the transformation used for plotting, and its inverse. It is the only step
which demands different implementations for the primal and the dual side.

For the primal basis, this is a straightforward operation, as the single-scale basis Φj in both con-
structions of wavelets from Chapter 3 is already piecewise linear. If the generator basis has not yet
been transformed to the nodal basis as suggested in Section 3.2.5 or Section 3.3.5, respectively, this
transformation comes in here. For higher polynomial order, a transformation to the corresponding
B-spline basis may be convenient.

For the dual spline wavelets, we have described in Section 3.3.4 an approximate transformation
which can be used at this point.

W Here we employ the transformation between single-scale and multi-scale basis as defined in (2.2.19),
(2.2.20) and (2.3.16). The primal and dual procedures are essentially symmetric by (2.3.12).

D The diagonal scaling is the vital step which performs the shift in the Sobolev scales as described
in (2.2.48), (2.2.49). It leads to a well-conditioned system, as has been discussed earlier in this
chapter. The diagonal matrix can be specifically adapted to improve the condition number of the
stiffness matrix (4.3.11).

C This transformation refers to the procedure developed in Section 4.3.3. It only applies to the
coarsest level and does not modify the wavelet coefficients on higher levels. The goal is to reduce
the constants in the equivalence relation (4.3.10), and thus to save time on the computation.

We can see from this description that the wavelet framework contains several types of transformations.
They reflect the way in which Riesz bases for the Hilbert space H are constructed. The result is an
inherently well-conditioned scheme of optimal computational complexity.
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Chapter 5

A Linear-Quadratic Elliptic Optimal

Control Problem in Wavelet

Coordinates

5.1 Introduction

For a multitude of physical phenomena, the appropriate mathematical formulation falls into the class
of partial differential equations. They describe the dependence of the state of a system on driving and
restraining forces, taking into account specific conditions on the boundary of the physical system. The
numerical solution of such a system is often called simulation, in the sense that for a given set of physical
conditions, the hypothetical action of reality is predicted computationally. Inherent is the idea of a
strict causal relationship: The forces and boundary conditions are fixed beforehand, and they uniquely
determine the state, which is unknown a priori and must be computed.

Recently, an increasingly active branch of research has emerged which follows a more general interpreta-
tion. While the PDE plays a central role, as it captures the physical principle that any given forces and
boundary conditions cause an associated state, the issue is brought up which state is actually desirable.
This question is meaningless in the context of physical causality alone. However, it immediately makes
sense when two additional premises hold.

• The context of application provides criteria for the quality of the state. For example, an industrial
product is rated ”good” when it is close to a target specification within certain error bounds. Or
the temperature distribution within a solid or liquid material may need to be adjusted to match a
given pattern to minimise heating and cooling costs.

• The physical system offers certain possibilities of input which permit deliberate adjustment, and
influence the state. Consider for example devices which can draw air through inlets in the surface
of an aeroplane wing and thus affect the total drag, or water valves which open selectively to cool
hot glass or steel.

The additional external influences are subsumed as unknown variable u, which control the state through
the PDE. The quality of any specific pair of control u and state y(u) is measured by a newly introduced
objective functional J(y, u), which must be minimised by finding the optimal control and its dependent
state. The overall goal has shifted from simulation to optimisation, which brings in an additional layer
of structural complexity.
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In the context of partial differential equations, several physically meaningful types of control are possible.
We might think of the control as determining material properties or electromagnetic influences which
locally change the differential operators. Another important example are parameter identification prob-
lems, where u models diffusion, convection or reaction rates. It is also intuitive to control the external
forces on the right hand side of the PDE, either on the whole domain or on parts of the boundary, which
is the case which we cover in this document. Specifically, the PDE takes the form

Ay = f +Eu (5.1.1)

with an elliptic operator A, see (4.2.5).

We consider an objective functional of tracking type, motivated by the engineering point of view where it
is often desirable to steer the state y close to a given target y∗, while the action of the control u should
be reasonably cheap and therefore small in magnitude. The general form reads

J(y, u) =
1

2
‖Ty − y∗‖2Z +

ω

2
‖u‖2U , (5.1.2)

where we will direct a special focus to the choice of the spaces Z and U . While they are commonly chosen
as L2, and sometimes the norm on U is selected as |·|H1 to enforce higher regularity of the control, we
employ the special ability of wavelet discretisations to model Sobolev norms of arbitrary smoothness in
R. We propose a novel construction here which contains the standard choices described above as special
cases and thus allows for greater flexibility in modelling.

The numerical solution of optimal control problems with partial differential equations as constraints
poses several major mathematical difficulties in addition to the simulation of the PDE alone. The goal
of minimising a functional subject to constraints leads to necessary and sufficient conditions on the
minimiser. Coupling the constraints to the functional by a Lagrangian multiplier, a coupled system of
equations arises which exhibits a specific saddle point structure. Since the diversity of physical systems
and approaches to modelling is far larger for the complete control problem as compared to the PDE alone,
numerical solvers are usually developed for specific cases, and attempts towards a unified formulation are
rare.

An overview on modern PDE-constrained optimisation is given in [11]. The optimal control of fluid flow
seems to be the practically most relevant area today. A general survey and a discussion of different
technical approaches via the optimality system, the analysis of sensitivities or adjoint-based methods
is provided in [80]. Generally, optimal control problems motivated from industrial applications involve
partial differential equations which are meant to describe realistic phenomena. This may involve large
amounts of data and necessitate parallel approaches [13, 14]. Moreover, these types of problem require
a relatively complex mathematical framework, and the control problem becomes even more difficult to
handle. Consequently, even fundamental questions such as existence and uniqueness of solutions often
remain unanswered.

Thus it makes sense to study algorithmic concepts for reasonably complex model problems. An overview
on several problem classes and techniques is given in [136]. The general discussion is very active, see
e.g. [89,92,135] for variants of the SQP method, [93,98] for primal-dual active set strategies, and various
other examples [81, 82, 88, 124, 126]. Some applications to the Navier Stokes equations are discussed
in [67,83,95], and reaction diffusion systems have been treated in [17]. The perhaps most general adaptive
algorithm we know of uses error estimators based on duality for the Navier Stokes equations [7,8]. While
a fairly large collection of mathematical tools and numerical algorithms exists for this class of control
problems, error estimators are often heuristic, and convergence results are usually not rigorously derived.

Solid mathematical results on error bounds and convergence rates have so far been obtained only for the
most basic model problems. Linear elliptic partial differential equations as constraints and an optimisation
functional which is quadratic in y and u have been theoretically studied in [109] in the context of L2
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spaces. This scenario can be summarised under the term linear-quadratic elliptic control problem. A
multigrid scheme for this restricted case has been devised in [84]. Recently, an adaptive wavelet approach
has been specified which allows for more general norms in the objective functional [48]. Still, large scale
numerical examples have not been presented in either case.

In this thesis we develop a general numerical wavelet scheme for a linear-quadratic optimal control
problem. It integrates the fast wavelet solver of elliptic PDEs described in the last chapter with the
specific demands of the optimisation process, providing asymptotically optimal complexity. We then
provide extensive numerical results computed with a newly written large scale implementation, for uniform
and adaptive discretisations.

Specifically, we introduce the following new mathematical and algorithmic concepts.

• We follow the wavelet framework from [48, 106]. This allows general Sobolev spaces instead of
L2 for the state and the control, which permits to treat all functions in their respective natural
spaces originating from the weak formulation. Additionally, the norms of the spaces used for the
observation of the state and the control can be tuned, which allows for greater freedom in modelling.
We explicitly include Sobolev spaces of fractional smoothness.

• We develop a numerical scheme which converges with a numerical effort proportional to the number
of unknowns. This can be derived from a generalisation of the ideas known for wavelet methods for
elliptic partial differential equations. In [48], two nested Richardson iterations have been proposed.
We accelerate this significantly by the introduction of two nested conjugate gradient schemes [28].

• In [28, 48], the original functional is transformed into an equivalent functional in an infinite-
dimensional wavelet representation over `2. Thus, the numerical solution does generally not con-
verge towards the exact solution, but to a different function. The magnitude of this deviation,
which determines the quality of the numerical solution, depends of the constants occurring in the
wavelet norm equivalences.

We propose a scheme which exactly reproduces Sobolev norms for integral smoothness indices.
Consequently, we have equality instead of equivalence for the discrete functional, which resolves
the discrepancy between the computed and the exact optimal control. For fractional smoothness,
we interpolate between integer cases in a continuous fashion, which again yields equivalence, with
presumably improved constants.

• We make use of the full adaptive potential of wavelets as proposed in [48], and apply it to our
numerical scheme which incorporates all modifications which we have just listed here.

5.2 Mathematical Formulation

We begin with the concrete mathematical definition of the specific class of optimal control problems
considered here. We mainly follow the notation from [28,48].

5.2.1 Definitions and Notation

Let Y denote the state space and U the control space. They are assumed to be closed subspaces of Hilbert
spaces, with topological duals Y ′, U ′ and associated dual forms 〈·, ·〉Y and 〈·, ·〉U . This is abbreviated
by 〈·, ·〉 when there is no risk of confusion. The norm in a Hilbert space X is defined as usual by
‖·‖X :=

√

(·, ·)X where (·, ·)X is the standard scalar product of X .

The objective functional J(y, u) (5.1.2) consists of two parts, namely the tracking term, which measures
the distance of the state y from a predefined target y∗, and the regularisation term, which ensures the
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well-posedness of the problem and is weighted with a parameter ω > 0. This functional is differentiable,
which will be used to derive the conditions for minimisation, also called optimality conditions.

The mathematical modelling envisages some kind of measurement process T in the control functional,
which operates on the state y and produces an observed value Ty ∈ Z. The observation space Z is again
a (closed subspace of) a Hilbert space with an associated dual form. The mapping from the state space
to the observation space is performed by the continuous linear operator T : Y → Z,

‖Ty‖Z <∼‖y‖Y . (5.2.1)

A typical situation is the case of observation on the boundary where the state y is defined on a domain
Ω and it is measured on the boundary ∂Ω or a part thereof. Then the observation is realised by a
trace operator, hence the operator has been named T . We adhere to this convention throughout this
document. Another special case is given when Y is embedded in Z, and it holds T = id with the
continuous embedding

‖v‖Z <∼‖v‖Y , v ∈ Y ⊂ Z . (5.2.2)

This is the setting which will be investigated more closely numerically in the forthcoming chapters.

As outlined above, the control u ∈ U enters on the right hand side of the partial differential equation
(5.1.1). As the source term is in the dual space of Y (which is denoted by Q),

f ∈ Y ′ = Q , (5.2.3)

we require a continuous linear operator E : U → Q to transport the control u into the space Q,

‖Ew‖Q <∼‖w‖U . (5.2.4)

In the case of boundary control, the control is defined on ∂Ω, and E is an extension operator, e.g. the
adjoint of a trace operator. There exists also the possibility of distributed control which is modelled by
E = id and the continuous embedding

‖w‖Q <∼‖w‖U , w ∈ U ⊂ Q . (5.2.5)

Our numerical experiments will cover the distributed case.

We consistently keep the operators T and E in all formulas even in cases where they reduce to the identity.
There are several reasons to do so.

• The flexibility obtained by assuming general T and E allows for a unified mathematical framework
which covers all relevant cases.

• The operators are used to distinguish functions in the space Y from those in Z on the one hand
and functions in U from those in Q on the other.

• When either operator is the identity, but its preimage and image are Sobolev spaces of different
regularity on the same domain, the operator in wavelet discretisation becomes a diagonal scaling
matrix which is naturally unequal to the identity matrix. This observation is of fundamental
importance for the numerical solution process.

To formulate the elliptic constraints in weak form, let a(v, w) : Y ×Y → R be a continuous and Y -elliptic
bilinear form as described in Chapter 4, i.e.,

a(v, v) ∼ ‖v‖2Y , v ∈ Y . (5.2.6)

This defines a linear operator A : Y → Y ′ by 〈v,Aw〉 = a(v, w). Relation (5.2.6) implies that A is
boundedly invertible as an operator from Y to Y ′, i.e.,

‖Av‖Y ′ ∼ ‖v‖Y , v ∈ Y . (5.2.7)
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We consider the following variational formulation of the PDE,

a(y, v) = 〈f +Eu, v〉 for all v ∈ Y , (5.2.8)

whose operator form is given by
Ay = f +Eu . (5.2.9)

The abstract control problem is then formulated as follows.

Problem 5.1 (ACP). For a given target observation y∗ ∈ Z, right hand side f ∈ Y ′ and weight
parameter ω > 0, minimise the functional

J(y, u) :=
1

2
‖Ty − y∗‖2Z +

ω

2
‖u‖2U (5.2.10)

over (y, u) ∈ Y × U subject to the linear operator equation (5.2.9).

Remark 5.2. If the data f is compatible to the target observation y∗, i.e,

y∗ = TA−1f , (5.2.11)

then the functional can be minimised trivially by setting y = A−1f and u = 0, yielding J(y, u) = 0.

The norms occuring in the objective functional (5.2.10) can be expressed as

‖v‖2V = 〈v,RV v〉V , v ∈ V , (5.2.12)

using a self-adjoint Riesz operator RV : V → V ′. A standard way to reformulate Problem 5.1 is to
append the constraints (5.2.8) to the functional via a Langrangian multiplier. To this end, we introduce
the variable p ∈ Y and define the Lagrangian functional as

L(y, u, p) :=
1

2
〈Ty − y∗, RZ(Ty − y∗)〉Z +

ω

2
〈u,RUu〉U + a(p, y)− 〈p, f +Eu〉Y . (5.2.13)

The function p is also called the adjoint variable or the costate. Differentiating with respect to p, y and
u and setting the derivatives to zero, we obtain the three equations

∂pL(v) = a(v, y)− 〈v, f +Eu〉Y = 0 , for all v ∈ Y , (5.2.14a)

∂yL(w) = 〈w, T ′RZ(Ty − y∗) + a(p, w)〉Y = 0 , for all w ∈ Y , (5.2.14b)

∂uL(q) = 〈q, ωRUu−E′p〉U = 0 , for all q ∈ U . (5.2.14c)

Here (5.2.14a) recovers the state equation (5.2.8), (5.2.14b) is denoted the adjoint equation and (5.2.14c)
the design equation. These are the first order necessary conditions for the solution of Problem 5.1.

5.2.2 Example Problems

We now provide several examples which are all covered by the framework introduced above. Let Ω ⊂ Rn

always denote a bounded Lipschitz domain with boundary ∂Ω as in Chapter 4. Choosing Z = U = L2(Ω)
in the objective functional is the classical case treated in [109]. In the wavelet framework however, it is
possible to employ Sobolev or Besov norms on Ω or (parts of) its boundary ∂Ω. Thus, we may use norms
which may be termed natural with regard to the underlying variational formulation. Examples are the
norms ‖·‖Y , ‖·‖Q and fractional trace norms in boundary observation and/or control [48].

The problems with distributed control or observation may be of less practical importance, however they
serve as good illustrations for the essential mechanisms and are particularly suited to study numerical
effects. Dirichlet boundary controls treated by saddle point formulations are investigated in [103,104,118].
Various combinations of boundary or distributed observations and controls under different boundary
conditions have been listed in [84] for the L2 case.
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Dirichlet Problem with Distributed Control

The prototype for a Dirichlet problem with distributed control appears for

a(v, w) :=

∫

Ω

∇v · ∇w dx , Y := H1
0 (Ω) , Q := Y ′ = H−1(Ω) = (H1

0 (Ω))′, (5.2.15)

which corresponds to the standard weak form of the elliptic boundary value problem

−∆y = f + u in Ω , (5.2.16a)

y = 0 on ∂Ω . (5.2.16b)

Choices for Z,U in (5.2.10) which are admissible according to (5.2.2), (5.2.5) are

Z := Hs
00(Ω) , 0 ≤ s ≤ 1 , (5.2.17a)

U := H−t(Ω) = (Ht
00(Ω))′ , 0 ≤ t ≤ 1 , (5.2.17b)

where Hs
00(Ω) is defined as the intersection of Hs(Ω) with the set of functions whose trivial extension by

zero is in Hs(Rn). The case s = 1 or t = 1 corresponds to choosing a natural norm for the observation
or control space while setting s = t = 0 leads to the classical case of norms on L2(Ω).

Neumann Problem with Distributed Control

Define

a(v, w) :=

∫

Ω

(∇v · ∇w + vw) dx , Y := H1(Ω) , Q := Y ′ = (H1(Ω))′ , (5.2.18)

and consider as constraint for given data f̃ ∈ (H1(Ω))′, g ∈ H−1/2(∂Ω),

a(y, v) := 〈f̃ , v〉+
∫

∂Ω

gv ds+ 〈u, v〉 for all v ∈ Y . (5.2.19)

This can be derived from the strong form of the standard non-homogeneous Neumann problem with
distributed control,

−∆y + y = f̃ + u in Ω , (5.2.20a)

∂y

∂n
= g on ∂Ω , (5.2.20b)

where ∂
∂n denotes the normal derivative in the direction of the outward normal. Abbreviating the data f

by 〈f, v〉 := 〈f̃ , v〉+
∫

∂Ω gv ds, the constraints (5.2.19) can then be formulated as an operator equation,

Ay = f + u , (5.2.21)

where A is indeed an isomorphism from Y to Y ′. Analogously to (5.2.17) we can take here

Z := Hs(Ω) , 0 ≤ s ≤ 1 , (5.2.22a)

U := (Ht(Ω))′ , 0 ≤ t ≤ 1 , (5.2.22b)

where again s = t = 1 corresponds to choosing the natural norms for y and u.

So far, both examples were characterised by T = id and E = id. This may be contrasted by an
observation on the boundary ∂Ω whereupon the natural observation space is Z = H1/2(∂Ω). Then
T : H1(Ω) → H1/2(∂Ω) coincides with the trace operator, and the control acts towards the match of y
with y∗ only on the boundary.
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Neumann Problem with Boundary Control

Next we consider the Neumann problem from above, but this time with E 6= id. To this end, let the
boundary Γ := ∂Ω be decomposed into two parts Γ = ΓN ∪ ΓC, the Neumann and the control boundary,
where ΓC has non-vanishing n − 1 dimensional measure. While the observation space Z is the same as
in the previous example, the constraints change to

a(y, v) := 〈f̃ , v〉+
∫

ΓC

gTC(v) ds+

∫

ΓC

uTC(v) ds for all v ∈ Y = H1(Ω) (5.2.23)

for given f̃ ∈ Y ′, g ∈ (H1/2(ΓC))′. The strong form is given by

−∆y + y = f̃ in Ω , (5.2.24a)

∂y

∂n
=

{

0 on ΓN ,

g + u on ΓC .
(5.2.24b)

The necessary condition for the right hand side of (5.2.23) to be well-defined demands that u ∈ U =
(Ht(ΓC))′ ⊂ (H1/2(ΓC))′. The extension operator E is then the adjoint of the trace operator TC :
H1(Ω)→ Ht(ΓC), t ≤ 1

2 , to the control boundary ΓC. It is defined as

〈Eu,w〉(H1(Ω))′×H1(Ω) =

∫

ΓC

uTC(w) ds . (5.2.25)

The strong form of the constraint then reads

Ay = f +Eu . (5.2.26)

Remark 5.3 (Dirichlet boundary control). For linear-quadratic elliptic problems with Dirichlet
boundary control, a standard way to handle the constraints are saddle point formulations [103]. These do
no longer satisfy the ellipticity condition (5.2.6). It is nonetheless possible to apply the methods described
in this document. For a discussion of this case, we refer to [40].

Remark 5.4 (Observation on the boundary). All cases described so far have used distributed
observation. Alternatively, the observation space can be chosen as a space defined on an observation
boundary ΓO ⊂ ∂Ω with strictly positive measure. The natural space in this case is H1/2(ΓO) which could
be relaxed by the more general ansatz Z = Hs(ΓO). The observation mapping is then given by a trace
operator with additional norm shift T : H1(Ω) → Hs(ΓO). The natural norm is chosen by s = 1

2 . The
classical case corresponds to the choice ΓO = ∂Ω and s = 0, which has been treated with adaptive finite
elements [8]. The case of general s is studied in [105,118].

5.3 Numerical Evaluation of Sobolev Norms

To evaluate the norms occurring in the functional J(y, u) (5.2.10) in the wavelet context, we introduce
Riesz matrices RV for Sobolev spaces V according to

‖v‖2V = vTRV v , V 3 v = vTΨV . (5.3.1)

They are related to the Riesz operators from (5.2.12) by

RV = 〈ΨV , RV ΨV 〉V . (5.3.2)

When ΨV is a Riesz basis for V , it follows that κ(RV ) ∼ 1. While for example the Riesz matrix for
V = L2 can be specified exactly, the general matrix RHs for arbitrary s ∈ R is usually not accessible to
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a numerical evaluation. For non-integer cases it has to be replaced by an approximate equivalent version
which is actually numerically computable.

We now examine to what extent these evaluations can be optimised in the framework of biorthogonal
wavelets. As there is no unique way of defining fractional Sobolev norms, equivalence is all that we should
reasonably expect anyway. However, we may demand that a discrete norm of fractional smoothness is
equal to the discrete L2 norm for all constant functions. For integral norms, exactness is a well-defined
notion, and consequently the scale of integers for which a given discrete norm is exact is a direct measure
of its practicability for numerical purposes. Our goal is thus a formulation of a discrete norm which fulfils
the following criteria.

• The discrete norm is equivalent to Sobolev norms on Hs for all s ∈ R.

• The discrete norm is equal to the Sobolev norm on Hs for s ∈ Z.

• The discrete norm for all s ∈ R is equal to the L2 norm for all constant functions.

• The discrete norm is computationally efficient for all s ∈ R.

Clearly the last requirement is guided by striving for numerical efficiency. It means that in the context
of a finite wavelet discretisation, the discrete norm can be evaluated with a computational cost which is
proportional to the number of unknowns. In this section, we propose a framework which satisfies all of
the above requirements. To our knowledge, this has not been formulated before.

In the following, we consider various expansions of different functions in different spaces. To simplify
notation, we call all of these functions v, and their coefficient vectors v. The same holds for different
trial functions which are all called w, with coefficient vectors w. It should become clear from the context
which functions are meant at any time.

5.3.1 Evaluation of Norms on L2 and H
1

Let a function be expanded in an unscaled wavelet basis according to L2 3 v = vTΨ. We understand by
(·, ·) the inner product in the L2 sense. The L2 norm can be evaluated by

‖v‖20 = (vTΨ,vTΨ) = vT (Ψ,Ψ)v = vTMv , (5.3.3)

where the mass matrix M is just the Riesz matrix RL2
from (5.3.1), defined as

M := (Ψ,Ψ) . (5.3.4)

Turning to the norm in H1, we can write

‖v‖21 = ‖v‖20 + |v|21 = vTMv + (∇vTΨ,∇vTΨ) = vT (M + L)v (5.3.5)

with the definition of the Laplace matrix

L := (∇Ψ,∇Ψ) . (5.3.6)

When we expand v in the natural wavelet basis for H1 according to (2.2.48), H1 3 v = vTΨ1 = vTD−1Ψ,
we can write the H1 norm as

‖v‖21 = vTD−1(M + L)D−1v =:vTB1v , (5.3.7)

where we have hidden the definition of B1, the Riesz matrix in the natural wavelet basis. Note that
due to Corollary 2.10, B1 is uniformly well-conditioned. Furthermore, M, L and B1 are symmetric and
positive definite.
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5.3.2 Evaluation of Dual Norms

In the framework of biorthogonal wavelets, the evaluation of dual norms is also done with relative ease.
As an example of the main technique, we first assure that L2 can be identified with its dual. To this end,
we apply the general definition of dual norms,

‖v‖V ′ := sup
06=w∈V

〈v, w〉
‖w‖V

, (5.3.8)

to the expansion L2
′ 3 v = vT Ψ̃ =:vT0 Ψ. For any L2 3 w = wTΨ, we may write

‖v‖L2
′ = sup

06=w∈L2

〈v, w〉
‖w‖L2

= sup
06=w∈`2

〈vT Ψ̃,wTΨ〉
(wTMw)

1
2

= sup
06=w∈`2

vT 〈Ψ̃,Ψ〉w
(wTMw)

1
2

= sup
06=w∈`2

vTw

(wTMw)
1
2

. (5.3.9)

Here we have used (5.3.3) and the biorthogonality condition (2.2.44). After all, the expression is for-

mulated in vectors and matrices on `2 and can be reduced further by the substitution g = M
1
2 w as

follows,

‖v‖L2
′ = sup

06=g∈`2

(M− 1
2 v)T g

(gTg)
1
2

= (vTM−1v)
1
2 = (vT0 Mv0)

1
2 = ‖v‖L2

. (5.3.10)

From this identity, we can derive the following conclusions.

• Biorthogonal wavelet expansions on L2 are consistent with the fact that L2 can be identified with
its dual, and the norms are identical.

• Even if the expansion v = vT0 Ψ is not available, the dual norm can be efficiently computed, as M
has uniformly bounded condition number, and its inverse can be easily applied.

• In the case of L2, these results hold for any other uniformly stable biorthogonal basis. The multi-
scale nature only becomes important for general Sobolev spaces.

After these preparations, we can discuss the norm of H−1 = (H1)′. We expand the function H−1 3
v = vT Ψ̃1, and the trial function H1 3 w = wTΨ1. The numerator of (5.3.8) is derived analogously to
(5.3.9),

〈v, w〉 = 〈vT Ψ̃1,wTΨ1〉 = vT 〈Ψ̃1,Ψ1〉w = vTw . (5.3.11)

We have used here the general biorthogonality relation (2.2.50). With a similar substitution as in the
derivation of (5.3.10), we arrive at

‖v‖2−1 = vTB−1
1 v . (5.3.12)

Remark 5.5. Due to the uniformly bounded condition number of B1, the norm ‖v‖H−1 can be evaluated
efficiently in the wavelet setting. In contrast, a standard finite element ansatz would lead to some critical
problems.

• As the Riesz basis property is in general not satisfied for finite elements, the supremum over `2 is
not equal to the supremum over L2, and (5.3.9) does not hold in this form.

• The condition number of the finite element analogon to B1 according to (5.3.7) is not bounded.
Additional preconditioning or multigrid techniques would need to be employed here.

• If a biorthogonal basis is not available, the numerator in (5.3.9) does not simplify, which would
necessitate the additional application of a mass matrix.

The framework of biorthogonal wavelets is thus particularly suited for the evaluation of positive and
negative integral Sobolev norms. Norms of higher order can be processed in the same fashion as exercised
here for H−1, H0 and H1, provided that the ansatz functions are sufficiently regular.
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5.3.3 Evaluation of Fractional Sobolev Norms

While the evaluation of integral norms is in principle also possible in the finite element context, the realm
of fractional norms is presently only accessible numerically by wavelet methods. We exclude spectral
elements here as we demand compact support of all basis functions and deal with generally non-periodic
boundary conditions. We have already demonstrated in Chapter 2 that wavelets can be used to construct
Riesz bases for Sobolev spaces of arbitrary smoothness. The evaluation of norms in this more general
context has to our knowledge not yet been systematically studied. This motivates us to propose a novel
unified formulation for the numerical evaluation of both integral and fractional Sobolev norms in the
wavelet framework.

State of the Art

We give here a very short review of the state of the art of the evaluation of general Sobolev norms in the
wavelet framework. We consider the expansion of a function v in the unscaled wavelet basis, v = vTΨ.
In [48], the norm used is

‖v‖(1)Hs := (vTD2sv)
1
2 . (5.3.13)

This norm is always equivalent to ‖·‖Hs , but never exact for s ∈ Z. It corresponds to the simplest
approximation RV := I. In [28], we have chosen

‖v‖(2)Hs := (vTDs
aMDs

av)
1
2 , (5.3.14)

which is always equivalent, but only exact for s = 0 (the L2 case). This conforms with the approximation
RV := RL2

and can be seen as a qualitative improvement compared to (5.3.13). For the sake of improved
preconditioning, the diagonal scaling derived from the stiffness matrix (4.3.11) has been used. Anyway,
both variants permit the evaluation of the corresponding dual norms up to equivalence, and they satisfy
the fundamental requirement of computational efficiency.

A New, Unified Method

In this section, we develop an interpolation technique which is exact for integral smoothness indices and
equivalent for fractional smoothness, and is at the same time computationally efficient. Note that this is
in no way trivial. Consider for example the ansatz

‖v‖(3)Hs :=
(

vTM
1−s
2 (M + L)sM

1−s
2 v
)

1
2 . (5.3.15)

This expression is motivated by the analogous definition for spectral elements, where it yields the norm
in the sense of a Fourier decomposition for all s ∈ R. In the context of wavelets, it is exact for s = 0
and s = 1, and equivalent in between. However, the fractional powers of matrices require a singular
value decomposition, which is too expensive in practise. The exponentiation of a matrix is only fast for
diagonal matrices. Thus, we believe that multiplicative interpolation with an exponent s is not sufficient
in this case.

Consequently, we also include additive interpolation. To this end, we start with a unified notation. Let
us assume that for any i ∈ N0 with 0 ≤ i ≤ S ∈ N0, there exists an exact representation written as

H i 3 v = vTΨi , ‖v‖2i = vTBiv . (5.3.16)

Examples are B0 = M from (5.3.4), and B1 as defined in (5.3.7). Higher orders can be derived from the
standard definition of Sobolev norms. We know that all Bi are symmetric positive definite and spectrally
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equivalent to the identity matrix. In the unscaled representation, these Riesz matrices transform according
to

H i 3 v = vTΨ , ‖v‖2i = vTDiBiD
iv . (5.3.17)

With the definition of the hat function hi(x) centred at x = i,

hi(x) :=











x− (i− 1) for i− 1 ≤ x < i ,

(i+ 1)− x for i ≤ x ≤ i+ 1 ,

0 else,

(5.3.18)

we can formulate our first proposal for a unified Riesz matrix.

Theorem 5.6. For s ∈ R with 0 ≤ s ≤ S, the norm defined by

Hs 3 v = vTΨ , ‖v‖2s :=
S
∑

i=0

hi(s)v
TDsBiD

sv , (5.3.19)

or alternatively written in the scaled wavelet basis as

Hs 3 v = vTΨs , ‖v‖2s =
S
∑

i=0

hi(s)v
TBiv = vT

(

S
∑

i=0

hi(s)Bi

)

v , (5.3.20)

is equal to the standard Sobolev norms for integral s and equivalent for fractional s. It can be computed
in linear time.

Proof. For s ∈ N0, only one summand survives with i = s, and it reduces to the expression given in
(5.3.16) or (5.3.17), respectively. For fractional s, the formulation on the right of (5.3.20) is a convex
combination of two summands which are both spectrally equivalent to the identity matrix. Consequently,
the whole sum is spectrally equivalent to the identity matrix, and the expression yields a norm which
is equivalent to the corresponding fractional Sobolev norm. Likewise, the computational efficiency is
inherited as a feature of the matrices Bi.

In the following, we denote our choice of Riesz matrix in the natural basis as

Rs :=

S
∑

i=0

hi(s)Bi , 0 ≤ s ≤ S . (5.3.21)

Just as the matrices Bi, the Riesz matrix Rs is spectrally equivalent to the identity matrix, which we
denote by Rs ∼ I, and thus uniformly well-conditioned. This implies the existence of constants cs and
Cs such that

cs‖v‖2 ≤ vTRsv ≤ Cs‖v‖2 . (5.3.22)

Corollary 5.7. For an expansion in the natural dual basis of H−s, s ∈ R≥0, the dual norm can be
computed by inverting Rs, i.e.,

H−s 3 v = vT Ψ̃s , ‖v‖2−s = vTR−1
s v . (5.3.23)

This expression can also be evaluated in linear time, as the condition number of Rs is uniformly bounded.

It is important not to confuse the diagonal matrix used in the norm equivalence in unscaled form,

Hs 3 v = vTΨ , ‖v‖s ∼ ‖Dsv‖ , (5.3.24)
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with the diagonal matrix from (2.2.48) which may be exchanged to improve the condition numbers of
operators in wavelet representation. The norm equivalence is part of the model and cannot be altered
without changing the results for fractional smoothness, while preconditioning must never change the
results of any given computation. Let us assume that we use the matrix Da from (4.3.11) in (2.2.48).
Carefully employing the appropriate semantics, we obtain the more general formulation

Ra,s =
S
∑

i=0

hi(s)P
s−i
a BiP

s−i
a with Pa := DD−1

a . (5.3.25)

When this representation is transformed into the unscaled basis Ψ, all occurrences of Da vanish, which
confirms the independence of the result from the choice of preconditioning. Furthermore, it is identical
to the special case from (5.3.21) for s ∈ Z.

For finite wavelet discretisations, all components of the proposed Riesz matrix are symmetric, positive def-
inite and uniformly well-conditioned by inheritance from the infinite-dimensional formulation as reasoned
in Section 4.3.2. Thus, the Riesz matrix as a whole can be applied and inverted with a computational
effort which is proportional to the number of unknowns.

We have computed the condition numbers of several Riesz matrices for a uniform discretisation with
biorthogonal spline wavelets for the range 0 ≤ s ≤ 1. They are listed in Table 5.1. At the extreme points
s = 0 and s = 1, the condition numbers coincide with those of the mass and stiffness matrices. Again, the
transformations to the nodal basis constitutes a significant improvement for free boundary conditions,
especially in more than one dimension.

5.3.4 Normalisation by Means of Constant Functions

The construction of the discrete Riesz operator for general Sobolev norms which we have developed in
the previous section yields a discrete norm which is equivalent to the continuous Sobolev norm. For
integral smoothness, it is exact by construction. For fractional smoothness, we do not have estimates of
the constants in the discrete norm equivalence. We could in principle multiply the Riesz operator with
any positive real number qs, as long as qi = 1 for i ∈ Z, and still satisfy the norm equivalence.

In this section, we choose a normalisation for our Riesz operator in such a way that the discrete norm is
exact for constant functions, for any smoothness s ∈ R. This is possible because all Sobolev norms for
constant functions are equal to the L2 norm. The normalisation factor qs emerges from the comparison
of the Riesz matrix in present form with the exact Riesz matrix for constant functions.

As all derivatives vanish for constant functions, the integral Riesz matrices in natural representation
simplify to

B̄i := D−iMD−i . (5.3.26)

We also know that the wavelet coefficients for constant functions are zero. Thus, the diagonal matrix
reduces to the scaling for the lowest level only,

D̄ := 2j0I . (5.3.27)

Applying these two changes to the general expression (5.3.21), our Riesz matrix for constant functions
becomes

R̄(1)
s :=

(

S
∑

i=0

hi(s)2
−2j0i

)

M . (5.3.28)

We can compare this expression to the exact norm for constant functions, expanded in the natural wavelet
basis for Hs,

Π1 3 v = vTΨs , ‖v‖2Hs = ‖v‖2L2
= vTD−sMD−sv , (5.3.29)
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s 0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

Rs 150 62.4 69.3 75.9 81.2 83.4 112 249

Ra,s 150 57.1 59.1 61.1 64.2 66.1 67.0 130

RK
a,s 288 75.1 62.9 60.5 63.9 68.5 71.5 151

homogeneous boundary conditions, n = 1, j = 12

s 0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

Rs 35.9 16.0 19.1 22.5 35.9 70.9 129 557

Ra,s 35.9 15.7 15.9 16.3 19.3 37.0 66.1 278

RCK
a,s 7.17 4.62 6.23 10.5 22.5 43.9 79.2 336

free boundary conditions, n = 1, j = 12

s 0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

Rs 958 265 238 237 238 239 240 798

Ra,s 958 240 198 185 180 179 179 681

RCK
a,s 47.4 16.2 12.3 13.4 30.6 61 112 480

free boundary conditions, n = 2, j = 8

s 0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

Rs 24300 5770 4780 4505 4390 4356 4342 4330

Ra,s 24300 4555 3270 2793 2552 2488 2469 2459

RCK
a,s 304 91.2 60.4 44.4 43.2 79.5 139 572

free boundary conditions, n = 3, j = 6

s 0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

RCK
a,s 1839 509 310 211 154 135 225 917

free boundary conditions, n = 4, j = 5

Table 5.1: We show the condition numbers of Riesz matrices according to (5.3.21) and (5.3.25) for n = 1 and
homogeneous boundary conditions, and for all dimensions from n = 1 to 4 for free boundary conditions. The level
of resolution is denoted by j. The smoothness index s of the Riesz matrix is listed in the first row of each table. We
provide results for three variants of wavelet bases, namely the classical choice from (2.2.48), the diagonally adapted
case according to (4.3.11), and additionally for the nodal generator basis with transformed wavelets denoted by the
superscripts ()C for the transformation (3.3.74) and ()K for (3.3.75).
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Figure 5.1: We display a graph of the normalisation factor qs over the range s ∈ [0, 1]. As required by the theory,
it attains the value qi = 1 at the endpoints of the interval. Its values are repeated periodically on the whole of R.

which corresponds to the exact Riesz matrix

R̄(2)
s := 2−2j0sM . (5.3.30)

After these preparations, we can formulate the central result of this section.

Theorem 5.8. Let the normalisation constant qs, s ≥ 0, be defined by

qs :=
2−2j0s

∑S
i=0 hi(s)2

−2j0i
. (5.3.31)

Then the Riesz matrix qsRs yields the exact norm for constant functions for any s ∈ R. Furthermore,
it inherits from Rs the fundamental properties of linear complexity, exactness for s ∈ Z and equivalence
for s ∈ R.

Proof. The numerator of (5.3.31) is given by the factor in (5.3.30), while the denominator comes from
(5.3.28). Therefore, the multiplication with qs exactly compensates for the error which we introduced by
the use of R̄(1) instead of R̄(2). The inheritance of linear complexity and equivalence is trivial, while the
exactness for integral smoothness follows from the fact that qi = 1 for all i ∈ Z.

Remark 5.9. Note that the condition numbers of Rs do not change by this scalar multiplication, thus
Table 5.1 remains accurate. From this point on, we always silently include the normalisation factor qs
when we write Rs.

We show a graph of the normalisation factor qs in Figure 5.1. Since it is periodic in s with period 1, it
is sufficient to draw it on the unit interval, where it is a convex function which attains its minimum of
about 0.17 at roughly s = 0.78.

To summarise our results, we have constructed a family of Riesz matrices which can be used to evaluate
primal and dual norms for arbitrary smoothness indices with linear complexity. In case of integral
smoothness indices, these norms coincide exactly with standard Sobolev norms, while they are equivalent
for fractional smoothness s. In the special case of constant functions, the norms are also exact for all
s ∈ R. This result is useful for the accurate treatment of problems in optimal control with wavelet
methods. Only when norms are evaluated exactly, the functional in wavelet coordinates is equal to the
original functional.
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5.4 Wavelet Representation

The abstract control problem formulated in Problem 5.1 is now transformed into wavelet coordinates.
We emphasise that the result is an equivalent, infinite-dimensional formulation. In contrast to finite
element discretisations, we do not restrict the space Y to a finite element space Yh, but keep all degrees
of freedom in this step. The general concept is derived according to [28]. We begin with the functional
analytic setting and end up with expressions containing wavelet coordinates in `2. The key mechanism
is the discrete formulation of norms which was proposed in the previous section.

As we are dealing with functions in different Sobolev spaces, care must be taken to expand each function
in the proper wavelet basis belonging exactly to this space. This is denoted by subscripts on the wavelet
bases, e.g., ΨV , Ψ̃W for the primal and dual basis of V andW , respectively. The corresponding numbering
conventions for the associated sequence spaces are denoted by `2(IIV ), `2(IIW ), etc., when the assignment
does not already become clear from the context.

For the expansion of operators, we use the following representation. Let V and W be Hilbert spaces
with wavelet bases ΨV , ΨW and corresponding dual bases Ψ̃V , Ψ̃W . Suppose that B : V → W ′ is a
linear operator with adjoint B′ : W → V ′ defined by 〈v,B′w′〉 := 〈Bv,w′〉 for all v ∈ V , w′ ∈ W .
Then Bv = w ∈ W ′ can be represented in the equivalent formulation Bv = w in terms of the wavelet
coefficients v for v (expanded in ΨV ) and w (in terms of Ψ̃W ), where

B := 〈ΨW , BΨV 〉 . (5.4.1)

The infinite matrix B is referred to as the standard representation of B with respect to the underlying
wavelet bases ΨV and ΨW .

The Riesz matrix RV introduced in (5.3.1) is thus the standard representation of the Riesz operator
RV : V → V ′ from (5.2.12) according to

‖v‖2V = 〈v,RV v〉 and RV = 〈ΨV , RV ΨV 〉 = (ΨV ,ΨV )V . (5.4.2)

Another example is the discretisation of the elliptic operator A : Y → Y ′ derived from (5.2.6). The
corresponding matrix in wavelet representation is

A = 〈ΨY , AΨY 〉 = a(ΨY ,ΨY ) . (5.4.3)

Embeddings and Traces

As it has been presumed that E and T are continuous linear operators, cf. (5.2.1) and (5.2.4), we can
derive that their discrete counterparts in wavelet representation are uniformly bounded,

‖T‖ <∼ 1 , ‖E‖ <∼ 1 . (5.4.4)

We now demonstrate their expansion in wavelet coordinates by means of two common examples which
have already been motivated earlier.

The first case arises in distributed observation by the definitions Y = H1(Ω), Z = Hs(Ω), 0 ≤ s ≤ 1,
T = id, i.e., T acts as an embedding. For the definition of the wavelet bases, we refer back to (2.2.48),
(2.2.49). Following the standard expansion technique (5.4.1), we infer

T = 〈Ψ̃s, TΨ1〉 = 〈DsΨ̃, TD−1Ψ〉 = Ds〈Ψ̃, id Ψ〉D−1 = Ds−1 . (5.4.5)

Analogous results are obtained for E in the case of distributed control.

The second case appears when T is a trace operator. Consider for example the quadratic domain Ω =
(0, 1)2, where the lower edge Γ is defined by y = 0. The matrix representation T0 is rectangular, since it
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is indexed by univariate functions on the left and bivariate functions on the right. For tensor products
of biorthogonal wavelet bases Ψ, Ψ̃, which are used to construct the wavelet bases for Ω and Γ, the
discretised trace operator is given by

(T0)i,kl := 〈Ψ̃Γ, TΨΩ〉i,kl =

∫ 1

0

ψ̃i(x)
[

ψk(x)ψl(y)
]

y=0
dx = δikψl(0) . (5.4.6)

The representation over the natural spaces T : H1(Ω)→ H
1
2 (Γ) can be derived by the use of the properly

scaled wavelet bases,

T = 〈Ψ̃
1
2

Γ , TΨ1
Ω〉 = 〈D

1
2

Γ Ψ̃Γ, TD−1
Ω ΨΩ〉 = D

1
2

ΓT0D
−1
Ω . (5.4.7)

The exponents 1
2 and 1 provided here may of course be replaced by other values as appropriate. Thus,

trace operators in wavelet discretisation on the unit cube are built from diagonal scaling matrices and
pointwise evaluations of wavelet basis functions on the boundary.

Remark 5.10. Embedding and trace operators in wavelet discretisation contain diagonal scaling matrices.
These are invertible, but the norm of the inverse is generally unbounded. The diagonals cancel with the
matrices from the wavelet basis (2.2.48) only in the situation of natural norms.

System and Riesz Matrices

By the Riesz basis property (2.2.42) and the ellipticity of the bilinear form a(·, ·) (5.2.6), we have already
established that the stiffness matrix A has the property

‖Av‖ ∼ ‖v‖ . (5.4.8)

The matrix A is thus uniformly well-conditioned in the wavelet representation, cf. (4.3.10). Choosing
biorthogonal wavelet bases ΨY for Y and ΨU for U , we obtain the expansions

y = yTΨY , y = 〈Ψ̃Y , y〉 , (5.4.9a)

f = fT Ψ̃Y , f = 〈ΨY , f〉 , (5.4.9b)

u = uTΨU , u = 〈Ψ̃U , u〉 , (5.4.9c)

and rewrite the constraint equation (5.2.9) as an equation over `2(IIY ),

Ay = f + Eu . (5.4.10)

Here we have again used the standard representation for the operators A and E. Note that U is a space
of non-positive Sobolev regularity, so ΨU has regularity not above L2, while Ψ̃U is a basis for a possibly
smoother space than L2. We use real, non-negative indices s and t to specify the observation and control
space,

Z = Hs(Ω) or Z = Hs(ΓO) , 0 ≤ s ≤ 1 , (5.4.11a)

U = (Ht(Ω))′ or U = (Ht(ΓC))′ , 0 ≤ t ≤ 1 , (5.4.11b)

depending on the choice of measuring or controlling on the whole domain or on a part of the boundary,
respectively. The target observation y∗ = yT∗ ΨZ is discretised in the same manner as the other variables
in (5.4.9). As we are dealing with non-positive norms for the space U , we take the inverse of the Riesz
operator. This is motivated by (5.3.10) and concretised in (5.3.23). The result is summarised as

‖v‖2Z 7→ vTRsv , ‖w‖2U 7→ wTR−1
t w , (5.4.12)

where v and w are the coefficient vectors of the functions v and w in their respective natural wavelet
basis. We know from Section 5.3 that this substitution is exact for s, t ∈ {0, 1}. For fractional indices,
we obtain equivalent norms.
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The Objective Functional in Wavelet Coordinates

With these tools at hand, we can now reformulate the control functional (5.2.10) as a functional again
over `2,

J̌(y,u) :=
1

2
‖R1/2

s (Ty − y∗)‖2 +
ω

2
‖R−1/2

t u‖2 . (5.4.13)

The discretised control problem is then formulated as follows.

Problem 5.11 (DCP). For a given target vector y∗ ∈ `2(IIZ), right hand side f ∈ `2(IIY ) and weight
parameter ω > 0, minimise the functional (5.4.13) over (y,u) ∈ `2(IIY ) × `2(IIU ) subject to the linear
equation (5.4.10).

Remark 5.12. The connection between Problem 5.1 and Problem 5.11 is established in the following
sense, where we have to differentiate two cases.

(i) Observation and control space are of integral smoothness. In this case, the functionals (5.2.10)
and (5.4.13) are equal, and the minimiser of the discrete functional converges to the minimiser of
the original functional with increasing resolution.

(ii) Either norm in the functional is fractional. Then the functionals (5.2.10) and (5.4.13) are
equivalent,

J̌(y,u) ∼ J(y, u) . (5.4.14)

This implies that in the case of compatible data, y∗ = TA−1f , the minimisers for both versions
of the functional coincide, yielding the result J̌(y,u) = J(y, u) = 0. Otherwise, the discrepancy
between the minimisers of the two problems depends on the constants in the norm equivalences. We
believe that our scheme for the evaluation of norms yields a tighter interval of these constants than
the standard wavelet approach in [48].

5.5 Optimality Conditions

In this section we reformulate the functional in wavelet coordinates (5.4.13), depending on the discrete
pair of variables y and u, by the elimination of the variable y, which yields a functional in u alone [48].
Then we show existence and uniqueness of the minimiser of the reduced functional. The necessary and
sufficient conditions result in a linear system of equations involving a symmetric positive definite matrix
Q of uniformly bounded condition number.

By introducing a Lagrangian multiplier for the problem in wavelet coordinates, we derive a system of
equations, customarily referred to as optimality system, which is equivalent to the formulation in only one
variable. We use it to find a recipe to apply the matrix Q to a vector in the course of an iterative solver.
We also establish equivalence to another two reformulations, namely by an elimination of u instead of y,
and the interpretation as a saddle point system.

5.5.1 Existence and Uniqueness

Once (5.4.13) is obtained, we eliminate y using (5.4.10) and insert this into the functional, arriving at a
functional only dependent on u,

J(u) :=
1

2
‖R1/2

s (TA−1Eu− (y∗ −TA−1f))‖2 +
ω

2
‖R−1/2

t u‖2 . (5.5.1)
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Employing the abbreviations

Z := R1/2
s TA−1E , (5.5.2a)

G := −R1/2
s (TA−1f − y∗) , (5.5.2b)

the functional simplifies to

J(u) =
1

2
‖Zu−G‖2 +

ω

2
‖R−1/2

t u‖2 , (5.5.3)

so that the following result can be immediately established, see [48] for the original version without Riesz
operators.

Theorem 5.13. The functional J(u) is twice differentiable with first and second variation given by

δJ(u) = (ZTZ + ωR−1
t )u− ZTG , δ2J(u) = ZTZ + ωR−1

t . (5.5.4)

In particular, J(u) is convex, which guarantees existence and uniqueness of the minimiser.

Proof. First, let us define
Q := ZTZ + ωR−1

t , g := ZTG . (5.5.5)

The matrix Q is often called the reduced system matrix. The minimisation condition can then be written
as

δJ(u) = 0 ⇐⇒ Qu = g . (5.5.6)

We conclude from (5.3.22), (5.4.4) and (5.4.8) that

Z <∼ I and thus Q ∼ I , (5.5.7)

which in particular implies that the second variation δ2J(u) = Q is positive definite and has a uniformly
bounded condition number.

Remark 5.14. The representation of Q in wavelet variables (5.5.5) reveals the role of the regularisation
parameter ω. For ω > 0, the solution u exists and is unique even in the degenerate cases that E or
T are not injective or even zero. For vanishing regularisation ω = 0, the problem is well-posed if and
only if ZTZ is uniformly well-conditioned. In view of (5.5.2a) and Remark 5.10, this can for example be
guaranteed for natural norms in conjunction with distributed control and observation.

Remark 5.15. The results which we have just derived suggest to choose the method of conjugate gradients
to solve (5.5.6) iteratively for the control Q. The central element of this method is the application of the
matrix Q to a vector. Equations (5.5.5) and (5.5.2) show that Q contains two occurrences of A−1 and
one occurrence of R−1

t . Consequently, Q cannot be applied directly, but each application involves the
solution of three elliptic systems, which are again well-conditioned.

To substantiate the above idea of choosing the method of conjugate gradients as our numerical solver,
we derive some additional relations in the following section which shed more light on the interrelations
between the overall solution for u and the intermediate inversions of A and Rt.

5.5.2 Formulation of the Optimality System

In this section, we characterise the minimisation of the control functional J̌(y,u) (5.4.13) by a Lagrangian
multiplier formulation [28, 48, 103, 104] to derive the optimality system. This can be used to develop an
efficient strategy to apply the reduced matrix Q. It also gives rise to two equivalent reformulations of
the control problem.
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Analogously to (5.2.13), where we have introduced the adjoint variable p ∈ Y as a Lagrangian multiplier,
we employ here its wavelet discretisation p ∈ `2. This leads to the functional

L(y,u,p) := J̌(y,u) + pT (Ay − f −Eu) . (5.5.8)

The first order Euler-Lagrange equations for δL(y,u,p) = 0 follow as

Ay = f + Eu , (5.5.9a)

ATp = −TTRs(Ty − y∗) , (5.5.9b)

ωR−1
t u = ETp . (5.5.9c)

This system of equations is called optimality system. The three components, called the state, adjoint
and design equations, are the wavelet representations of the variational formulations from (5.2.14). Note
that for consistency with more general problems, we keep the notation AT although in our situation A
is symmetric.

Remark 5.16. The order of differentiation and discretisation is much disputed in the finite element
context, since the approaches differentiate-then-discretise and discretise-then-differentiate lead to differ-
ent results for finite representations of functions. In the wavelet context however, where we deal with
infinite-dimensional representations, this order is irrelevant. Expanding the system (5.2.14) in wavelet
coordinates, which would correspond to differentiate-then-discretise, leads precisely to the equations from
(5.5.9), which have been obtained via the approach discretise-then-differentiate.

Application of the Reduced Matrix

We now use the optimality system (5.5.9) to obtain some additional identities. These will prove helpful in
the numerical realisation of the application of Q, which is the key ingredient for the numerical procedure
proposed in Remark 5.15.

Theorem 5.17. Let u ∈ `2(IIU ) be any given control vector. Inserting u into (5.5.9a) and solving for
y(u), and subsequently inserting this solution y(u) into (5.5.9b) and solving for p(y) = p(u), the residual
of (5.5.6) is

Qu− g = ωR−1
t u−ETp(u) . (5.5.10)

Proof. For the proof, we proceed in the opposite direction, resolving first the second equation for p(y),
and then the first equation for y(u). Using the definition of Z and g from (5.5.2) and (5.5.5), we obtain

ETp(u) = −ET
(

A−TTTRs(Ty(u) − y∗)
)

= −ZTR1/2
s

(

T(A−1f + A−1Eu)− y∗

)

= −ZTZu + g .

(5.5.11)

Using the definition of Q (5.5.5), the residual attains the form

Qu− g = (ZTZ + ωR−1
t )u− g = ωR−1

t u−ETp(u) , (5.5.12)

which is just the defect in the design equation (5.5.9c).

In the proof we have inverted the relations (5.5.9a) and (5.5.9b) to arrive at an expression of the residual
of (5.5.6). Concentrating on the calculation of Qu alone, we could shift the vector g to the right hand side
of (5.5.10). However, the result can be obtained slightly faster by the direct use of (5.5.5) and (5.5.2a).
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Corollary 5.18. Let u ∈ `2(IIU ) be any given control vector, and substitute f = 0 and y∗ = 0 into
(5.5.9a) and (5.5.9b) to obtain their homogeneous forms

Ay0(u) = Eu , (5.5.13a)

ATp0(u) = −TTRsTy0(u) , (5.5.13b)

hence defining y0(u) and p0(u). Then it holds that

Qu = ωR−1
t u−ETp0(u) . (5.5.14)

Using this route, we save three additions and subtractions of vectors, and eliminate the dependence on
the data. Equations (5.5.13) and (5.5.14) thus contain the final recipe for the computation of Qu.

Other Equivalent Formulations

To illustrate the connections between the variables y, p and u in more detail, we present two different but
equivalent formulations of the optimality system. These give rise to other classes of numerical algorithms,
which are applicable for selected special cases.

The first derivation consists in the elimination of the control. While in Section 5.5.1 we have eliminated
y from the functional, we can also use (5.5.9c) to eliminate u from the optimality system. Then only two
equations remain, namely

Ay = f + ω−1ERtE
Tp , (5.5.15a)

ATp = −TTRs(Ty − y∗) . (5.5.15b)

We can rewrite these in system form according to
(

TTRsT AT

A −ω−1ERtE
T

)(

y
p

)

=

(

TTRsy∗

f

)

. (5.5.16)

This so called saddle point formulation [25] shows that the problem is essentially symmetric with respect
to the state y and the adjoint p. However, it is no longer positive definite. Moreover, when the norms
used in the objective functional are not natural, the matrices T and E introduce a diagonal scaling which
lets the lowest eigenvalues of the contributions on the block diagonal go to zero.

Alternatively, we can formulate the optimality system (5.5.9) as one large block-matrix equation,




ωR−1
t 0 −ET

0 TTRsT AT

−E A 0









u
y
p



 =





0
TTRsy∗

f



 . (5.5.17)

The symmetric block system matrix again has the structure of a saddle point system. Defining

U :=

(

ωR−1
t 0

0 TTRsT

)

, F := (−E,A) , (5.5.18)

we rewrite this system as
(

U FT

F 0

)(

x
p

)

=

(

t
f

)

with x :=

(

u
y

)

, t :=

(

0
TTRsy∗

)

. (5.5.19)

When T has full rank (which is only possible for distributed observation), U is invertible, and we may
form the Schur complement H,

H := FU−1FT = ω−1ERtE
T + A(TTRsT)−1AT . (5.5.20)
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Because of the uniformly bounded condition numbers of Rs, Rt and A, this is spectrally equivalent to

H ∼ ω−1ETE + (TTT)−1 . (5.5.21)

While the right part is bounded from below because of (5.4.4), it is only bounded from above for natural
norms on the observation space, that is s = 1, and unbounded for s < 1.

In both of these equivalent formulations of the optimality system, the system matrix is not positive
definite, or it does in general not have a uniformly bounded condition number. Bounded condition
numbers can only guaranteed for the second example in the special case of natural norms. In contrast,
the matrix Q from (5.5.5) is symmetric positive definite and of uniformly bounded condition number
for all combinations of parameters. In this sense, an iterative method based on the application of Q is
general and robust.
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Chapter 6

A Fast Wavelet Algorithm for the

Control Problem

6.1 Introduction

The purpose of this thesis is to develop and implement a fast wavelet solver for a linear-quadratic elliptic
optimal control problem. In earlier chapters, we have addressed the practical importance of this class of
problems and motivated a discretisation with wavelets based on two specific qualities. Firstly, the wavelet
discretisation leads to well-conditioned systems of equations, which permits the fast iterative solution of
the problem and allows for several millions of unknowns on a standard PC. Secondly, wavelets offer a
unified framework for the numerical evaluation of Sobolev norms in the objective functional, which yields
greater freedom in modelling.

After we have proved in the preceding chapters that the matrices A, Rs and Rt occuring in the optimality
system, and the reduced matrix Q are uniformly well-conditioned, we provide here a detailed specification
of an algorithm for uniform discretisations, and a collection of systematic numerical results from one to
three spatial dimensions. We confirm that all involved constants are effectively controlled, and that the
algorithm is of optimal complexity in the sense that the numerical solution is computed with an effort
proportional to the number of unknowns.

In addition, we examine various combinations of modelling parameters, namely the regularisation param-
eter ω, and the smoothness indices s and t for the observation and control spaces, see (5.4.13). We study
their effects on the shape and character of the control u and the state y, and also their interplay with
each other, which gives rise to a diversity of results.

As discussed in detail in the previous chapter, the necessary and sufficient conditions for an optimal
discrete control u are formulated as the following linear system of equations,

Qu = g , (6.1.1)

where Q is symmetric positive definite. As pointed out before, the wavelet discretisation ensures that it
is also well-conditioned. Therefore we use an outer loop of conjugate gradient iterations on u, for which
the central operation consists in the application of the system matrix Q. Considering (5.5.2) and (5.5.5),
one such application of the matrix Q involves the solution of three elliptic systems of equations over the
matrices A, AT and Rt, respectively, which are again well-conditioned in the wavelet setting. This is also
accomplished by CG iterations, which constitute the inner layer of the algorithm. We have schematically
lined out this structure in Algorithm 6.1.
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Subroutine Apply-Q (u): Computes Qu.

(1) Perform CG method for u→ y0 (5.5.13a).

(2) Perform CG method for y0 → p0 (5.5.13b).

(3) Perform CG method for u→ R−1
t u.

(4) Compute Qu := ωR−1
t u−ETp0 (5.5.14).

Algorithm Control-Generic (f ,y∗) → u: Solves Qu = g.

(i) Initialisation: Compute g according to (5.5.5).

(1) Perform CG method for (f ,y∗)→ G (5.5.2b).

(2) Perform CG method for G→ g (5.5.2a), (5.5.5).

(ii) Outer CG method: Set k := 0, u0 := 0.

(1) Call Apply-Q (u0) to set d0 := −q0 := g−Qu0.

(2) Call Apply-Q (dk) → hk, Compute αk :=
qT

k qk

dT
k
hk

.

(4) Compute uk+1 := uk + αkdk, qk+1 := qk + αkhk.

(5) Compute βk :=
qT

k+1qk+1

qT
k
qk

, dk+1 := −qk+1 + βkdk.

(6) If not ready, set k := k + 1, continue with (2).

(iii) Accept uk → u.

Algorithm 6.1: We provide an overview of the generic solver Control-Generic for the optimal control problem in

wavelet coordinates. It consists of a CG method for the reduced matrix Q. Each application of Q is performed in

the subroutine Apply-Q and needs three inner CG methods, two to invert A and AT and one to invert Rt. We

have deliberately kept the infinite-dimensional formulation of matrices and vectors over `2, since it is most general

and the structure for arbitrary finite subspaces is analogous.
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Recall that this numerical scheme emerges from the combination and synergy of several ingredients which
have been adapted, improved or even newly developed in view of the overall goal, as discussed in the
preceding chapters.

• The abstract optimal control problem under consideration has been defined in Problem 5.1 and
then reformulated equivalently in terms of wavelets. Special emphasis has been put on the accurate
evaluation of Sobolev norms occurring in the objective functional.

• An asymptotically optimal numerical wavelet solver for linear elliptic PDEs has been established
in Chapter 4, using a nested iteration strategy and a technique to optimise the condition numbers.

• We have introduced the theoretical foundations in Chapter 2 and example constructions in Chapter 3
of suitable biorthogonal wavelet bases, including additional transformations to reduce the condition
numbers.

For the detailed specification of the numerical algorithm, we need to resolve the following three remaining
technical issues.

• As each outer iteration of our numerical scheme uses several inner invocations of iterative solvers
for different intermediate variables, the interplay of the error bounds for these various steps needs
to be analysed. The bounds on the lower and upper eigenvalues of the discretised operators come
in here, which have up to this point been treated as symbolic constants. Their absolute values
directly influence the choice of appropriate stopping criteria for the different instances of iterative
solvers. We deduce the necessary thresholds for all subproblems to arrive at the final estimate of
computational accuracy, frequently referencing the derivations from Section 5.5.

• The discrete solution y for the state should be computed up to discretisation error accuracy 2−j for
each level j. To render the convergence rate of the algorithm truly independent of the resolution,
we enhance both the outer and the inner iterative solvers with dedicated nested iteration strategies.

• Since all inner iterative solvers introduce an error for their respective solution vector, the application
of the system matrix Q in the outer iteration is perturbed. We need to discuss the effect of this
perturbation on the convergence of the conjugate gradient method. Doing this, we can resort to
some references on inexact Krylov subspace methods [69, 139, 140]. Generally, we can say already
at this point that convergence is not impaired if the error of the inner iterations matches with the
target accuracy for the outer system.

Eventually having integrated these additional considerations, we arrive at an asymptotically optimal
numerical algorithm with explicitly given error bounds.

6.2 An Inexact Conjugate Gradient Method

Reviewing the schematic structure of Algorithm 6.1, we find that there are several calls to inner conjugate
gradient methods. As these are iterative procedures, they in general do not deliver the exact solution of
the linear systems they are supposed to solve. This is why the outer iteration must more precisely be
called an inexact conjugate gradient method. In this section, we introduce estimates for all error bounds
and stopping criteria which occur in this algorithm.

The following derivations are mainly taken from [28]. They are slightly rearranged and extended in the
sense that they systematically use the general operators E and T, and add the estimate for the inversion
of the Riesz operator Rt.
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Subroutine Apply (M,x, η) →mη: Computes mη such that ‖Mx−mη‖ ≤ η.

Subroutine CG (M,b, ε) → xε: Computes xε such that ‖Mxε − b‖ ≤ ε.
(i) Set k := 0, Set d0 := −q0 := b.

(ii) While ‖qk‖ > θε

(1) Call Apply (M,dk, ηk) → hk, Compute αk :=
qT

k qk

dT
k
hk

.

(2) Compute xk+1 := xk + αkdk, qk+1 := qk + αkhk.

(3) Compute βk :=
qT

k+1qk+1

qT
k
qk

, dk+1 := −qk+1 + βkdk.

(4) Set k := k + 1.

(iii) Accept xk → xε.

Algorithm 6.2: We display the basic conjugate gradient algorithm CG. It solves the linear system up to residual

error ε. In the trivial case, when M can be applied exactly, we set θε = ε and ηk = 0 and recover the classical

conjugate gradient method. When M can only be applied approximately, the error bounds θε and ηk have to be

chosen in dependence on ε, resulting in an inexact CG algorithm.

6.2.1 Basic Algorithm and Error Bounds

Consider the linear system of equations
Mx = b (6.2.1)

with the symmetric positive definite matrix M, which is meant to be understood as a placeholder.
Examples are the stiffness matrix A and its transpose AT , or the matrix of the reduced formulation Q
(5.5.5). These are defined over the full infinite-dimensional space of wavelet coordinates, and we keep
this setting for the derivation of the error bounds below. As shown in Section 4.3.2, the results we obtain
are automatically valid for all finite submatrices created by a truncation of the index set in view of the
actual computations.

In an iterative procedure, we solve each such system (6.2.1) up to a certain residual error ε, i.e., the
approximate solution xε eventually satisfies

‖Mxε − b‖ ≤ ε . (6.2.2)

The tolerance ε should be tied to the accuracy of the discretisation, as will be discussed later. To derive
the error in the solution itself, we have to examine the eigenvalues of the matrix M more closely. To
this end, the smallest and largest eigenvalues are denoted by cM and CM, respectively, according to the
identity

cM‖x‖ ≤ ‖Mx‖ ≤ CM‖x‖ . (6.2.3)

The error in the solution can then be estimated by

‖x− xε‖ = ‖M−1(Mxε − b)‖ ≤ ‖M−1‖ ‖Mxε − b‖ ≤ ε

cM
. (6.2.4)

We show a generic conjugate gradient routine CG in Algorithm 6.2, which allows for approximate ap-
plications of the matrix M. It contains error bounds ηk that control the size of the residual. We will
discuss appropriate strategies to choose these error bounds in Section 6.2.2. When the matrix can be
applied exactly, which is the case for the stiffness matrix and Riesz operators in uniform discretisation,
the subroutine Apply is trivial and the bounds ηk are all set to 0.
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Subroutine RHS (A, f ,y∗, ζ) → gζ : Computes gζ such that ‖g− gζ‖ ≤ ζ.
(1) Call CG (A, f , cA

2CE

cA
C2

T
Cs
ζ) → g1.

(2) Call CG (AT ,−TTRs(Tg1 − y∗),
cA

2CE
ζ) → g2.

(3) Compute ETg2 → gζ.

Algorithm 6.3: We show the routine RHS for the computation of the right hand side according to (5.5.2) and

(5.5.5). It contains two calls to the conjugate gradient solver CG described in Algorithm 6.2, with appropriately

chosen bounds on the residual error.

We use this conjugate gradient method for the solutions of the primal and adjoint systems (5.5.9a) and
(5.5.9b), and to invert the Riesz operator in (5.5.10). These inversions constitute the inner layer of the
algorithm, and in this situation the respective matrices can be applied exactly.

The outer layer is given by the solution of the reduced equation (5.5.6). Here, we use (5.5.14) to approx-
imately apply the matrix Q to a vector. Additionally, we need to compute the right hand side g. Since
this requires two inversions of A, we do this approximately, too.

The application of Q and the calculation of g contain applications of different matrices. To derive reliable
stopping criteria for the inner systems of equations which need to be solved along the way, we have to
specify the bounds of all involved matrices. The estimates for the stiffness matrix and its transpose are
given analogously to (6.2.3). The Riesz operators from (5.5.1) are uniformly bounded, see also (5.3.22),
with constants

cs‖x‖ ≤ ‖Rsx‖ ≤ Cs‖x‖ , (6.2.5a)

ct‖x‖ ≤ ‖Rtx‖ ≤ Ct‖x‖ . (6.2.5b)

The upper bounds on the embedding and trace operators are denoted by

‖Ex‖ ≤ CE‖x‖ and ‖Tx‖ ≤ CT‖x‖ . (6.2.6)

We estimate the lowest eigenvalue of the reduced system matrix Q using (5.5.5) and (6.2.5b) as

cQ ≥
ω

Ct
, (6.2.7)

since ZTZ is generally not bounded from below.

The construction of the right hand side g is performed in the subroutine RHS, which we list in Algo-
rithm 6.3. It outputs a vector gζ , which is accurate up to an error ζ.

Proposition 6.1. The result gζ of the subroutine RHS (A, f ,y∗, ζ) satisfies upon completion

‖g− gζ‖ ≤ ζ . (6.2.8)

Proof. Steps (1) and (2) assert the following relations,

‖Ag1 − f‖ ≤ cA
2CE

cA
C2

TCs
ζ , (6.2.9a)

‖ATg2 + TTRs(Tg1 − y∗)‖ ≤
cA

2CE

ζ . (6.2.9b)
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Subroutine Apply (Q,u, η) →mη: Computes mη such that ‖Qu−mη‖ ≤ η.
(1) Call CG (A,Eu, cA

3CE

cA
C2

T
Cs
η) → y0.

(2) Call CG (AT ,−TTRsTy0,
cA

3CE
η) → p0.

(3) Call CG (Rt,u,
ct

3ωη) → q0.

(4) Compute ωq0 −ETp0 → mη.

Algorithm 6.4: This listing contains the routine Apply (Q). It calculates the approximate application of Q to a

vector u. The error bounds in the first two steps contain the same factors as in Algorithm 6.3.

By the respective definitions of g and gζ , and the successive insertion of (6.2.9b) and (6.2.9a), we derive

‖g− gζ‖ ≤ CE

∥

∥

∥A−T
(

−TTRs(TA−1f − y∗)−ATg2

)

∥

∥

∥

≤ CE

cA

(

∥

∥

∥TTRs(−TA−1f + Tg1)
∥

∥

∥+
cA

2CE

ζ

)

≤ CE

cA
C2

TCs‖A−1(f −Ag1)‖+
1

2
ζ ≤ ζ ,

(6.2.10)

which proves the claim.

The application of the matrix Q to a vector u is performed in the routine Apply from Algorithm 6.4. It
computes a vector mη with the following property.

Proposition 6.2. The result mη of the subroutine Apply (Q,u, η) obeys the inequality

‖Qu−mη‖ ≤ η . (6.2.11)

Proof. We first decompose the error into two terms. Using (5.5.14), we obtain

‖Qu−mη‖ =
∥

∥

∥

(

ωR−1
t u−ETp

)

−
(

ωq0 −ETp0

)

∥

∥

∥

≤ ω‖R−1
t u− q0‖+ CE‖p− p0‖ .

(6.2.12)

The first term can be estimated by

‖R−1
t u− q0‖ = ‖R−1

t (u−Rtq0)‖ ≤
1

ct
‖Rtq0 − u‖ ≤ η

3ω
, (6.2.13)

where we have used the error bound ct

3ωη from step (3). To estimate the second term, we introduce an
intermediate variable p′ as the exact solution of the equation

ATp′ = −TTRsTy0 . (6.2.14)

By the triangle inequality, we split the remaining error again,

‖p− p0‖ ≤ ‖p− p′‖+ ‖p′ − p0‖ , (6.2.15)

and analyse the two contributions separately. To this end, we recall the bounds ensured by the steps (1)
and (2) of the subroutine,

‖Ay0 −Eu‖ ≤ cA
3CE

cA
C2

TCs
η , (6.2.16a)

‖ATp0 + TTRsTy0‖ ≤
cA

3CE

η . (6.2.16b)
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Algorithm Control (f ,y∗, ε) → (yε,uε): Assures ‖y − yε‖ ≤ ε, ‖u− uε‖ ≤ ε.
(1) Set ζ := min{1, 2

3
cA
CE
}ε.

(2) Call RHS (A, f ,y∗,
cQ
2 ζ) → gε.

(3) Call CG (Q,gε,
cQ
2 ζ) → uε.

(4) Call CG (A, f + Euε,
cA
3 ε) → yε.

Algorithm 6.5: We list the full algorithm which solves the optimal control problem. It computes the state yε and

the control yε up to accuracy ε. It consists of three building blocks, namely the call to the subroutine RHS to

compute the reduced right hand side gε, and two calls to CG. The numerical inversion of Q in step (3) is the

expensive part here, as it invokes the outer layer of inexact CG iterations using the subroutine Apply (Q) from

Algorithm 6.4.

The first half of (6.2.15) can be processed as follows,

‖p− p′‖ = ‖A−T (ATp−ATp′)‖ ≤ C2
TCs
cA
‖y− y0‖ , (6.2.17)

where we have used the definitions (5.5.13b) and (6.2.14). We can now employ (5.5.13a) and (6.2.16a) to
derive

‖y − y0‖ = ‖A−1(Ay −Ay0)‖ ≤
1

cA
‖Eu−Ay0‖ ≤

1

3CE

cA
C2

TCs
η . (6.2.18)

Combining this result with (6.2.17), we see that most factors cancel, and we end up with

‖p− p′‖ ≤ 1

3CE

η . (6.2.19)

To handle the second half of (6.2.15), we can estimate

‖p′ − p0‖ = ‖A−T (ATp′ −ATp0)‖ ≤
1

cA
‖−TTRsTy0 −ATp0‖ ≤

1

3CE

η , (6.2.20)

where we have used (6.2.14) and (6.2.16b). Inserting these last two results into (6.2.15), and then into
(6.2.12), we confirm (6.2.11).

Remark 6.3. In Algorithm 6.3 and Algorithm 6.4, we have equilibrated the error into equal parts of
magnitude ζ/2 and η/3, respectively. To optimise the time spent on the computation, we could choose
to balance these weights more specifically, depending on the ratio of the condition numbers of A and Rt,
and the bounds of the operators involved.

Remark 6.4. In Algorithm 6.3 and Algorithm 6.4, the state equation in step (1) is solved more accu-
rately than the adjoint equation in step (2) by a factor of cA

C2
T
Cs

. Step (3) in Algorithm 6.4 requires an

independent accuracy of ct

3ω . These differences will lead to different iteration counts in the numerical
solution of the three systems.

The complete algorithm consists of three parts, where the first and third can be interpreted as pre- and
postprocessing, and the second part contains the main computations. We display it in Algorithm 6.5.
First, the right hand side g is computed approximately. Then, the inexact conjugate gradient routine for
the matrix Q is executed to calculate the optimal control uε. Finally, we calculate the state yε from uε.

All subroutines call various inner CG methods in turn, whose accuracy has been estimated before. To
estimate the error of the complete algorithm, we need to extend Propositions 6.1 and 6.2 by an argument
which takes care of the postprocessing.
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Theorem 6.5. The result (yε,uε) of the algorithm Control (f ,y∗, ε) satisfies

‖u− uε‖ ≤ ε , ‖y − yε‖ ≤ ε . (6.2.21)

Proof. We can confirm the first relation by the use of the error bounds in steps (2) and (3) of Control
as follows,

‖u− uε‖ ≤ ‖Q−1(Qu−Quε)‖ ≤
1

cQ

(

‖g− gε‖+ ‖Quε − gε‖
)

≤ ζ ≤ ε . (6.2.22)

The estimate for yε is verified by combining the definition of ζ from step (1) with the error bound in
step (4),

‖y− yε‖ ≤
1

cA
‖E(u− uε) + (f + Euε −Ayε)‖ ≤

1

cA

(

CEζ +
cA
3
ε
)

≤ 2

3
ε+

1

3
ε = ε , (6.2.23)

which finishes the proof.

Remark 6.6. We omit the description of the computation and error estimate of the adjoint pε here,
which is essentially analogous.

Remark 6.7. The results derived in this section hold under the assumption that the inexact conjugate
gradient method converges to the exact solution within the specified accuracy. We motivate appropriate
error bounds for the inexact evaluation of Q in the following section.

6.2.2 Inexact Outer Iterations

In the previous section, we have justified the error bounds inside the subroutines RHS and Apply (Q, η),
and for the overall algorithm Control. They guarantee that the approximate application of Q to a
vector u meets any given accuracy requirement η. We now turn to the inexact conjugate gradient routine
CG (Q, ε) from Algorithm 6.2 to examine the choice of the bounds θε and ηk.

In [69], the convergence of an inexactly preconditioned conjugate gradient method has been discussed. It
was found that the algorithm converges linearly as long as the errors ηk do not exceed a certain threshold.
In fact, this threshold turned out to be fairly large, meaning that a relatively low accuracy of the inner
solver is acceptable.

Our situation is more general in the sense that we do not presume a specific structure of the error in
the application of Q. Following [139], we know that the computed residual qk for a general matrix M is
different from the exact residual. It is therefore convenient to split the residual error in step k according
to

‖Mxk − b‖ ≤ ‖qk‖+ ‖qk − (Mxk − b)‖ . (6.2.24)

The first term on the right is directly accessible in the algorithm, where it is bounded by θε in the stopping
criterion. The second term, which is sometimes called the residual gap, still needs to be estimated. This
has been done for various algorithms, among others the Richardson and Chebyshev iterations, GMRES
and the conjugate gradient method [139,140].

The main result for the CG routine from Algorithm 6.2 reads

‖qk − (Mxk − b)‖ ≤
k−1
∑

i=0

ηi|αi| . (6.2.25)

Setting the stopping criterion in step (ii) to θε = ε/2, we can conclude from the triangle inequality that
the values of ηk have to be chosen in such a way that they satisfy

k−1
∑

i=0

ηi|αi| ≤ ε/2 . (6.2.26)
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Because αk is only computed after Apply (Q, ηk) has been called, it seems difficult to base the choice of
ηk on this estimate. However, this problem can be circumvented easily since intermediate results for hk
are available inside Apply, and the calculation of αk can be absorbed into the subroutine.

In summary, if and when the stopping criterion is fulfilled, the inexact CG algorithm guarantees the
prescribed upper bound of the residual. Convergence is confirmed in practice, as supported by numerical
evidence from [19,20,139], provided that the bounds ηk are of the same order of magnitude as ε. Moreover,
the term relaxation strategy has been proposed as generally only in the beginning the applications of the
matrix need to be computed to this high precision, whereas the accuracy requirements can be relaxed
progressively in the course of the algorithm, when the computed residual diminishes.

We have found in our experiments that setting ηk = ε, also suggested in [139], yields satisfying results,
even though this choice does not comply with (6.2.26). It appears as a good compromise between cheap
inner iterations and a fast overall convergence of the outer algorithm.

6.2.3 Nested Iteration

Using a uniform wavelet discretisation, we work with a hierarchy of nested spaces Sj . The level j is the
central parameter which specifies the resolution. The number of unknowns on a given level is Nj ∼ 2nj .
Since the wavelet basis on level j+1 consists of the wavelet basis for level j, complemented by additional
functions, the matrices Aj in wavelet representation are given by the upper left sub-block of size Nj×Nj
of the infinite matrix A. Hence, a matrix for a given resolution contains all smaller matrices for the lower
levels. Of course, we never compute the entries of these matrices explicitly, but use (4.3.16) instead.

The process of nested iteration as described in Algorithm 4.1 starts with the exact solution of the system
on the coarsest level. Then, the level of resolution is increased until it reaches the maximum predetermined
level J . Every solution on intermediate levels j constitutes a more accurate representation of the infinite-
dimensional problem by enlarging the system matrix, and the intermediate solutions are found in O(Nj)
operations. The total operation count is O(NJ ).

To integrate the principle of nested iteration with the general Algorithm 6.1, we implement the sweep
from coarse to fine levels around the conjugate gradient loop by means of an enhanced routine NICG. The
full nested iteration inexact conjugate gradient algorithm nIIcG/2 for the control problem is presented in
Algorithm 6.6. The routine NICG is called on the inner layer from within the routines RHS and Apply (Q).
The iterations on the outer layer are performed by calling NICG (Q) in the main programme. Both layers
only differ in the way the system matrix is applied.

Remark 6.8. The nested iteration routine NICG (Q, J) on the outer layer indirectly calls Apply (Q, j)
for all intermediate levels j0 ≤ j ≤ J , which in turn contains three inner calls to NICG (j). Numerical
experiments confirm that this twofold recursive sweep over the levels is indeed necessary to avoid loga-
rithmic factors in the runtime complexity. The idea of reusing start values obtained in previous outer
iterations is not as robust, since the right hand sides for the inner systems change in the process.

As reasoned in Section 4.3.2, the target accuracy of the numerical scheme should be balanced with the
discretisation error 2−J for piecewise linear wavelets. Here J is the finest level chosen a priori as a
compromise between high accuracy on the one hand and time and memory consumption on the other.
The factor ν can be used to compensate for constants which are introduced when the result needs to be
processed further, or to adapt to the magnitude of the data.

To initialise the procedure on the lowest level j0, we need exact inversions of the matrices Aj0 , (Rt)j0
and Qj0 . Since the method of conjugate gradients is an exact solver, it can also be applied on the lowest
level j0, provided that the number of iterations for each run equals Nj0 . We use this procedure for the
stiffness matrix Aj0 and its transpose, the Riesz matrix (Rt)j0 , and also for the reduced matrix Qj0 .
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Subroutine CG (M,b,x0, j, ε) → x (see Algorithm 6.2)

(i) Set d0 := −q0 := b−Mx0, Set k := 0.

(ii) While ‖qk‖ > θε

(1) Call Apply (M,dk, j, ηk) → hk.

(2) Compute αk, xk+1, qk+1.

(3) Compute βk, dk+1, Set k := k + 1.

(iii) Accept xk → x.

Subroutine NICG (M,b, J, ε) → xJ (see Algorithm 4.1)

(i) Call CG (M,b,0, j0, 10−6ε) → xj0 , Set j := j0.

(ii) While j < J

(1) Prolongate xj → x0
j+1, Set j := j + 1.

(2) Call CG (M,b,x0
j , j, 2

−(j−J)ε) → xj.

(iii) Accept xj → xJ .

Subroutine RHS (A, f ,y∗, j, ε) → g (see Algorithm 6.3)

(1) Call NICG (A, f , j, C1ε) → g1.

(2) Call NICG (AT ,−TTRs(Tg1 − y∗), j, C2ε) → g2.

(3) Compute ETg2 → g.

Subroutine Apply (Q,u, j, ε) →m (see Algorithm 6.4)

(1) Call NICG (A,Eu, j, C3ε) → y0.

(2) Call NICG (AT ,−TTRsTy0, j, C4ε) → p0.

(3) Call NICG (Rt,u, j, C5ε) → q0.

(4) Compute ωq0 −ETp0 → m.

Algorithm nIIcG/2 (J, ν) → (y,u) (see Algorithm 6.5)

(1) Set ε := ν2−J .

(2) Call RHS (A, f ,y∗, J, C6ε) → g.

(3) Call NICG (Q,g, J, C7ε) → u.

(4) Call NICG (A, f + Eu, J, C8ε) → y.

Algorithm 6.6: We list the full two-layer nested iteration inexact conjugate gradient algorithm nIIcG/2. All routines

are called with the parameter j or J, which determines the level of resolution on which it operates. The sweeps

over the hierarchy of levels are realised by the (twofold recursive) subroutine NICG.
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In the latter case, each of the Nj0 applications of Qj0 requires in turn the exact inversion of the three
inner systems. In practise, it is not even necessary to actually perform Nj0 iterations on the lowest level,
which could cause a substantial impact on the overall computation time for three or more dimensions,
but only a sufficient number to reduce the residual to a value below the target accuracy multiplied by a
small number of e.g. 10−6.

Consequently, the programme implements the exact solution on the coarsest level and the iterative
solution on all higher levels in much the same way. Only the maximum number of iterations per conjugate
gradient loop and the respective stopping criteria need to be adapted. This ansatz avoids redundancy
and permits the reuse of code.

6.3 Numerical Results

For the numerical experiments displayed here, we have chosen the Neumann problem with distributed
control as introduced in Section 5.2.2, defined on the unit cube, combined with distributed observation.
The normal derivative g (5.2.20b) on the boundary is set to zero. Since the numerical scheme is general
with respect to boundary conditions, we could also handle boundary control, or a Dirichlet problem with
distributed control. However already the distributed Neumann problem yields a diversity of results, which
we aim to discuss in detail here. Thus, it would be out of the scope of this thesis to consider numerical
results for different example problems as well.

We show the effect of several choices of right hand side f and target function y∗. Additionally, we examine
various combinations of the choice of observation and control spaces, characterised by the parameters
s and t. The influence of the regularisation parameter ω is also studied. We have collected numerical
results for one, two and three spatial dimensions and list convergence histories for various combinations
of data and parameters. Graphical displays of the results are presented for n = 1 and n = 2.

The Neumann problem requires the use of wavelets with free boundary conditions according to Con-
clusion 4.12. The Riesz operators have been computed as proposed in (5.3.25), see Section 5.3. All
newly developed techniques and optimisations covered in earlier parts of this document have thus been
incorporated.

We devote the next two sections to an in-depth inspection of several one-dimensional scenarios, since they
most clearly show a number of interesting features. We first confirm that the numerical method exactly
recovers the analytical solutions for constant data. Then we move on to a more general example in order
to inspect the influence of the smoothness parameters s and t in the objective functional. We discuss
the qualitative effect of s and t, which lead to the appearance of phenomena which do not occur by the
variation of ω alone. Next, we test the robustness of the method by means of two specific situations,
namely the cases ω = 0 and y∗ 6∈ Z, for which the problem is no longer well-posed.

We conclude this chapter with examples in two and three dimensions. Due to the tensor product struc-
ture, the implementation is completely general with respect to dimension. We assess that the effects
of parameters and data are similar to the one-dimensional case. Although the problem is linear, the
availability of three independent modelling parameters, namely s, t and ω, in combination with arbitrary
data f and y∗, gives rise to a wide variety of phenomena.

6.3.1 Conforming examples

We first explore the dependence of the state y and the control u on some basic combinations of parameters
and data in one dimension, which are conforming in the sense that ω > 0 and f ∈ Y ′, y∗ ∈ Z, see
Section 5.2.1. The domain is Ω = (0, 1), and the accuracy multiplier for the outer iterations has been set
to ν = 1

100 , cf. Section 6.2.3.
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s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
cs 0.19 0.25 0.22 0.18 0.13 0.087 0.059 0.041 0.030 0.027 0.031 0.073
Cs 8.5 5.3 3.3 2.1 1.3 0.80 0.51 0.43 0.41 0.51 0.73 2.5
CT 0.12 0.15 0.19 0.23 0.29 0.35 0.43 0.53 0.66 0.81 0.90 1.0

s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
cA

C2
T
Cs

0.60 0.61 0.61 0.66 0.67 0.74 0.77 0.60 0.41 0.22 0.12 0.029

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1
cA
CE

0.61 0.49 0.38 0.32 0.25 0.21 0.17 0.14 0.11 0.090 0.081 0.073

cQ 0.12 0.19 0.30 0.48 0.77 1.3 2.0 2.3 2.4 2.0 1.4 0.40

Table 6.1: The constants appearing in the inexact conjugate gradient algorithm are listed in this table. They are
computed in one dimension for the level J = 8. They depend on the smoothness parameters s and t. Note that
CT = CT(s) and CE = CE(t). We have not provided explicit values for CE since CE(r) = CT(r). The lower
bound for Q has been computed with ω = 1, see (6.2.7).

The detailed algorithm described in Section 6.2 uses several constants to balance the accuracies of inner
and outer computations. We have listed them in Table 6.1 for the applicable range of parameters,
computed for J = 8. The most important factors are cA

C2
T
Cs

, cA
CE

and cQ. The algorithm is expected

to converge fastest when these are large. This indicates that the L2 case is the most robust, while the
setting of natural norms with s = t = 1 requires the tightest tolerances and therefore the highest count
of total iterations. We will validate this observation with the numerical examples throughout the rest of
this chapter.

The results of the numerical computations are structured as follows. In a first step, we present graphical
displays to examine the qualitative effect of the parameters s, t and ω on the shape of the state and
the control, computed with a highest level of J = 8. In a second step, we analyse the convergence and
performance of the algorithm. To this end, we provide and interpret tables computed with J = 16,
containing iteration counts and various measurements of numerical errors.

Example 6.1 – Constant Data

The most basic case is of course given for constant data f and y∗, for which the smoothness indices s
and t have no effect. The control problem then simplifies to

y = f + u , (6.3.1a)

p = −(y − y∗) , (6.3.1b)

ωu = p , (6.3.1c)

which has the exact solution

y =
y∗ + ωf

1 + ω
, u =

y∗ − f
1 + ω

. (6.3.2)

The degenerate case of vanishing regularisation, i.e., ω = 0, leads to a well-defined solution here, namely
y = y∗ with p = 0. The data are compatible if and only if f = y∗, which is equivalent to u = p = 0.
Moreover, this formulation gives hints for the qualitative behaviour of the state and the control when the
data y∗ and f are not constant, or when ω is changed.

To demonstrate that our algorithm recovers the exact solutions in the case of constant data, we vary
ω and keep all other parameters unchanged. We display the corresponding results in Figure 6.1, where
we examine two scenarios, namely f = 1, y∗ = 0 and f = 0, y∗ = 1. We observe that the results are
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Figure 6.1: We display state, costate and control for constant data f and y∗ for varying regularisation parameter
ω, which is assigned to the x-axis. The exact solutions are known in this scenario, cf. (6.3.2), they are also
constant. Their dependence on ω is drawn with black lines. For our numerical experiments, we have changed ω
from 0 to 1 in steps of 1

10
. The left graph shows the numerical solutions for the data f = 1, y∗ = 0, while the

right graph corresponds to f = 0, y∗ = 1. (We have selected here the norms s = 0.6 and t = 0.4, yet the results
are the same for any values of these two parameters as predicted by the theory.)
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Figure 6.2: We show the right hand side f = h1 from (6.3.3) for our first set of examples in one dimension, and
the corresponding solution y0 of the elliptic PDE with zero control.

independent of the smoothness indices s and t and agree perfectly with the theoretical predictions (6.3.1c)
and (6.3.2).

Example 6.2 – Non-Constant Data

We now turn to non-trivial data, where the variation of s and t does affect the results. To this end, we
choose the non-smooth right hand side f = h1 with

h1(x) := 1 + e−10|x− 1
2
| . (6.3.3)

It exhibits a sharp peak at x = 1
2 . The solution y0 of the elliptic PDE with this right hand side and zero

control is smooth, with values close to 6
5 . We have plotted both functions in Figure 6.2.

First of all, we observe that the compatible setting y∗ = y0 leads to p ≡ 0 and u ≡ 0 for all combinations
of s and t, as predicted in Remark 5.2. For the following experiments, we select the target state y∗ ≡ 0,
which is clearly distinct from the natural solution y0. The weight ω = 1 is held fixed for this example,
and we concentrate solely on the variations of the two smoothness parameters s and t.
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Although f is singular, y0 is very smooth and still almost constant. Therefore, we can consult (6.3.2)
and try to predict the outcome of the numerical simulations as follows.

• The state y will be close to 1
2y0. This is a consequence of the inversion of the differential operator,

which acts as a smoothing just as in the situation with zero control. The choice of observation
space Hs will have only minor effects on the solution because of the smoothness of y0.

• Inserting the first equation from (6.3.2) into the second, we obtain an alternative representation for
the control u. Comparing both formulations,

u(0) =
y∗ − y
ω

, u(1) =
y∗ − f
1 + ω

, (6.3.4)

we can see that the control will shift between two extreme cases. In the L2 case, we expect an
almost constant u(0) ≈ − 1

2y0, while the natural norms will yield a sharply peaked u(1) ≈ − 1
2f .

These heuristic arguments provide good ideas for the outcome of the numerical computations. The
output of several examples is collected in Figure 6.3. We have made three series of experiments which
are displayed in three rows, with the graphs for the state y on the left and the control u on the right. In
the first row we keep t = 0 and vary s, while we vary s = t simultaneously in the middle row. The last
series deals with the case t = 1 and varying s.

The state y is indeed close in value and shape to 1
2y0 for all choices of parameters. It almost perfectly

coincides in the case of natural norms s = t = 1, while the amplitude of its bump is enlarged by a factor
of about 2 when the parameters approach s = 0, t = 1 or s = 1, t = 0. These mixed cases produce very
similar states, which are also very close to the standard setting s = t = 0.

For t = 0, the control is smooth for any value of s. It is almost constant for s = 0 and approaches
− 1

2y0 for s = 1. However, the picture changes completely when t is varied. For increasing t, the control
develops a sharp singularity and approaches − 1

2f for t = 1. In the extreme cases t = 0 and t = 1, the
control is smooth away from x = 1

2 , while it exhibits oscillations for intermediate values of t.

We interpret these oscillations of u for 0 < t < 1, which corresponds to control spaces of fractional
negative Sobolev smoothness, as artifacts induced by the inverse fractional Riesz operators from (5.3.23).
Looking more closely at the graphs, we make the following observations.

• The oscillations show up visibly for about t > 1
2 and attain their maximal amplitude for values of t

between 0.9 and 0.95. This behaviour could be altered by a rescaling of the interpolation parameter
in the definition of the Riesz operator, see (5.3.21).

• The oscillations are made up of peaks at dyadic divisions of the x-axis, i.e., they occur for x = 2−jk,
and get smaller with increasing j. The peaks are independent of the target accuracy ε and are also
unaffected by the presence of the operator-adapted preconditioning scheme. They are thus pure
effects of the space which is spanned by the choice of wavelet discretisation.

• The spikes are not punished by the weak norm in which the control u is measured. This means
that high frequencies are amplified, although the `2 norm of the wavelet coefficients is bounded.

• An averaging process could be invoked to eliminate the spikes. The resulting control would span
the space between the curves for t = 0 and t = 1 in a plausible manner.

We conclude that these results almost completely meet our predictions concerning shape and size of the
solution and the control. For fractional values of t, we expect a control in (H t)′, so the spikes do not
contradict the mathematical model. On the other hand, the construction of Riesz operators for this
special situation may be worth further studies.

To verify that our method has a numerical complexity of O(N), we present iteration histories in Table 6.2.
We provide detailed characteristics of several runs of the algorithm for different sets of parameters. This
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Figure 6.3: We show the results for the computations with y∗ ≡ 0 and right hand side f as in Figure 6.2, with
ω = 1. Each row contains a graph for the state y on the left and the corresponding control u on the right. In the
top row, we vary s between 0 and 1 while t = 0 is fixed. In the middle row, we vary s = t simultaneously, while
in the last row we fixed t = 1 and again only vary s.
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j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 8.87e-03 3.98e-07 1.63e-06
4 3.72e-06 1 1 0 1 1.01e-03 4.53e-03 1.63e-06 1.63e-06
5 3.76e-06 1 2 0 3 2.77e-04 2.26e-03 1.63e-06 1.63e-06
6 1.27e-06 2 2 0 3 7.73e-05 1.12e-03 5.23e-07 5.23e-07
7 1.29e-06 1 3 0 3 2.32e-05 5.61e-04 5.23e-07 5.23e-07
8 5.51e-07 2 2 0 3 7.64e-06 2.81e-04 3.00e-07 3.00e-07
9 3.25e-07 2 2 0 3 3.80e-06 1.40e-04 1.67e-07 1.67e-07

10 1.72e-07 2 2 1 3 8.46e-07 7.01e-05 1.07e-07 1.07e-07
11 1.09e-07 2 2 1 3 5.18e-07 3.50e-05 6.58e-08 6.58e-08
12 1.50e-08 3 2 1 3 3.82e-07 1.75e-05 1.26e-08 1.26e-08
13 1.51e-08 1 5 2 3 4.08e-08 8.69e-06 1.26e-08 1.26e-08
14 1.01e-08 2 2 1 3 2.92e-08 4.24e-06 5.42e-09 5.42e-09
15 4.14e-09 2 2 1 3 2.16e-08 1.90e-06 3.98e-09 3.98e-09
16 7.80e-10 3 2 1 3 1.71e-08 1.71e-08 1.16e-09 1.16e-09

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.17e-03 8.69e-03 2.01e-05 1.37e-04
4 1.43e-05 4 6 2 6 9.90e-04 4.45e-03 6.71e-06 2.05e-05
5 6.03e-06 3 5 2 6 2.73e-04 2.22e-03 3.29e-06 3.95e-06
6 1.47e-06 3 5 2 5 7.62e-05 1.11e-03 1.19e-06 1.22e-06
7 1.54e-06 1 12 6 6 2.31e-05 5.52e-04 1.21e-06 1.22e-06
8 7.80e-07 2 7 3 5 7.92e-06 2.76e-04 7.77e-07 7.77e-07
9 2.68e-07 3 5 2 4 4.15e-06 1.38e-04 4.04e-07 4.04e-07

10 1.27e-07 2 7 3 4 1.17e-06 6.89e-05 3.59e-07 3.59e-07
11 8.58e-08 3 5 2 4 6.98e-07 3.44e-05 1.75e-07 1.75e-07
12 5.34e-08 3 5 2 4 5.15e-07 1.72e-05 1.17e-07 1.17e-07
13 2.55e-08 4 4 2 4 5.64e-08 8.54e-06 2.25e-08 2.25e-08
14 1.39e-08 2 7 3 5 4.59e-08 4.17e-06 1.68e-08 1.68e-08
15 5.12e-09 3 5 2 4 3.48e-08 1.86e-06 1.12e-08 1.12e-08
16 3.25e-09 4 4 2 4 1.85e-08 1.85e-08 1.66e-09 1.66e-09

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 5.25e-03 1.02e-03 1.04e-03
4 2.24e-06 8 9 7 7 9.99e-04 2.42e-03 4.25e-04 4.28e-04
5 1.44e-06 9 12 9 9 2.80e-04 1.15e-03 1.32e-04 1.32e-04
6 5.97e-07 10 14 8 8 7.88e-05 5.67e-04 3.79e-05 3.79e-05
7 2.80e-07 10 14 9 9 2.25e-05 2.82e-04 1.07e-05 1.07e-05
8 1.04e-07 10 13 7 7 1.02e-05 1.41e-04 3.11e-06 3.11e-06
9 9.39e-08 9 13 7 7 2.13e-06 7.01e-05 9.57e-07 9.57e-07

10 7.80e-08 7 12 8 8 1.11e-06 3.51e-05 3.27e-07 3.27e-07
11 2.63e-08 7 11 7 7 7.70e-07 1.75e-05 1.08e-07 1.08e-07
12 2.04e-08 6 11 7 7 8.10e-08 8.75e-06 3.90e-08 3.90e-08
13 7.20e-09 6 11 7 7 4.46e-08 4.35e-06 1.38e-08 1.38e-08
14 2.46e-09 6 11 7 7 2.89e-08 2.12e-06 4.89e-09 4.89e-09
15 2.55e-09 5 11 7 7 2.29e-08 9.49e-07 1.77e-09 1.77e-09
16 8.78e-10 5 11 7 7 1.89e-08 1.89e-08 6.33e-10 6.33e-10

Table 6.2: For the case f = h1 and y∗ ≡ 0 in one dimension, we display the residuals, iteration numbers and
errors. We have fixed J = 16 and ω = 1. The topmost table contains the data for s = t = 0. In the middle, the
parameters are s = 1, t = 0, and the last table contains values for s = t = 1.
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includes the values for the control residual, iteration counts and error norms for all levels of resolution by
comparing the results of standard runs at ν = 1

100 with precalculated solutions of high precision, namely
ν = 10−5.

We have compiled three tables. The topmost corresponds to the values s = t = 0, the table in the middle
to s = 1, t = 0 and the last to s = t = 1. Each table is organised as follows. Every row corresponds
to a certain level of resolution, from the coarsest level j0 = 3 to the finest level J = 16, which is also
the level of the high accuracy solution. The columns contain first the control residual, i.e., the residual
in the vector u after the last of the outer iterations. The total count of outer iterations for each level
is provided next to it, namely in the column labelled #O. The next set of three columns contains the
rounded average number of inner iterations per outer iteration for the solutions of the elliptic system
(#E), the adjoint system (#A), and the inversion of the Riesz operator Rt (#R). As the inner iterations
also employ the nested iteration strategy from the lowest to the current level, we have chosen the most
conservative representation for these three columns, namely the maximum of inner iterations per level
between j0 + 1 and the current level. Note that for the coarsest level, the values for the control residual
and the iteration numbers are not listed, since all systems are solved to high accuracy for j = j0 = 3
at negligible cost. In the right part of each table, we provide the `2 norms of the error with respect to
the precalculated solution of high accuracy. This is done separately for the state y and the control u.
For each variable, we list the error of the current solution against the restriction of the high accuracy
solution. This error is denoted by εR. Secondly, we provide the error of the solution at the current level j
which is prolongated and compared to the full high accuracy solution, which is denoted by εP. It follows
that εR ≤ εP. Because of the tighter accuracy ν for the reference solution compared to the standard runs,
both of these errors do not vanish at the highest level J .

The quantity εR measures the discrepancy between the solution at a specific level j and the ideal ap-
proximation of the solution in the space Sj . It can thus be used to judge the accuracy and stability of
the algorithm. Since the solution of the control problem for u corresponds to a linear elliptic boundary
value problem, and all operators have a uniformly bounded condition number, we expect by Cea’s Lemma
that the error εP against the full high accuracy solution corresponds to the approximation error at the
respective level of discretisation. This error exists even for perfect accuracy of the solver for a specific
level j, and depends on the smoothness of the approximated function. This reasoning carries forward to
the state y, since the state is derived from the control by a single elliptic system.

We can see that the method converges as expected, with minor differences between the three runs. The
first two need only very few outer iterations, generally between 1 and 4, which seems to induce some
variations in the amount of inner iterations. We attribute these to the outer method of conjugate gradients
which does not seem to reach the asymptotic regime with only that few iterations. Note that an inner
iteration count of 0 means that the solution of the corresponding system has already been available to a
sufficient precision on the lowest level. For all three examples, the amount of iterations per level stays
constant with increasing resolution, which means that the computational cost is O(NJ ). In the last
example we can even see a reduction in the amount of outer iterations toward higher resolutions. The
overall cost increases from s = t = 0 to s = t = 1, which appears to be the numerically most expensive
case. However, this is in part due to the fact that the a-priori tolerances on the redisual in column 2
get tighter with increasing s and t. The iteration counts for the inner elliptic system are larger than for
the adjoint system, since it has to be solved for higher accuracy (this has been predicted in Remark 6.4).
The effort for the numerical inversion of the Riesz operator lies somewhere in between. Altogether, we
have asserted that the computational complexity is linear in the number of unknowns. We will further
substantiate this claim with more results in the remaining sections of this chapter.

We have included diagrams of the errors εP(y) and εP(u) versus the outer residual ‖rj‖ in Figure 6.4.
The errors in both y and u show a rate around 1, which matches the error of the discretisation. The
error in the control is generally smaller, which can be explained by the additional solution of an elliptic
system which is necessary to derive y from u. Only for natural norms (s = t = 1) the control exhibits an
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Figure 6.4: We show convergence plots for f = h1 and y∗ ≡ 0. The left hand picture contains the error εP(y) of
the state with respect to the highest level of resolution, and the right hand picture the error of the control εP(u),
both in dependence on the outer residual ‖rj‖.

average rate of about 1.6. Considering the shape of the corresponding graph in the right hand picture, it
is not quite clear if this is simply due to the steep preasymptotic reduction of εP(u).

The runtimes on a 3.2GHz Pentium IV computer (family 15, model 4, stepping 1, with 1MB L2 Cache)
are listed in the following table.

Parameters s = t = 0 s = 1, t = 0 s = t = 1
Runtime 4.2s 5.2s 9.9s

These numbers confirm that the case of natural norms is indeed the most demanding in terms of compu-
tation time.

Summarising the results for this series of numerical experiments, we find that the method meets all
expectations concerning the convergence rate and its time and memory requirements. The character and
shape of the results is also consistent with our heuristic predictions. The variation of the norms in the
functional, which is made possible by the wavelet discretisation, does indeed allow to study a range of
phenomena which are not available in the standard L2 case.

6.3.2 Further Characterisation of the Method

In this section, we fathom the robustness of our numerical method when the parameters or the data
lie outside their allowed ranges. To this end, we examine the quality of the computed functions and
convergence properties for two examples. The first deals with the limit ω → 0, while the second features
a target observation y∗ 6∈ Z. While discussing the latter configuration, we will also point out qualitative
differences in the results between varying ω and varying the smoothness parameters s and t. We will
find that the smoothness parameters indeed introduce a new and independent quality in modelling which
complements the freedom already present in the variation of ω alone.

Example 6.3 – Vanishing Regularisation

First, we conduct a further test for consistency of our numerical method, namely the limit ω → 0. To
this end, we continue to use the right hand side f = h1. The exact results for y∗ ≡ 0 and ω = 0 are
given by y ≡ 0 and u = −f . As has been pointed out in Remark 5.14, the problem is only well-posed for
s = t = 1. The numerical results for this case are shown in Figure 6.5. It can be seen that the resulting
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j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 3.32e-03 1.86e-03 1.90e-03
4 4.21e-07 10 9 8 6 1.01e-03 1.09e-03 7.74e-04 7.79e-04
5 6.89e-08 12 13 10 8 2.83e-04 3.48e-04 2.40e-04 2.40e-04
6 6.49e-08 13 15 11 7 7.98e-05 1.30e-04 6.90e-05 6.90e-05
7 4.45e-08 13 15 10 7 2.20e-05 5.56e-05 1.95e-05 1.95e-05
8 2.04e-08 13 15 10 6 8.79e-06 2.70e-05 5.65e-06 5.65e-06
9 1.40e-08 11 15 9 6 2.34e-06 1.30e-05 1.71e-06 1.71e-06

10 5.91e-09 11 14 8 6 1.51e-06 6.55e-06 5.41e-07 5.41e-07
11 3.20e-09 10 13 8 6 6.41e-07 3.25e-06 1.79e-07 1.79e-07
12 1.09e-09 10 12 8 6 5.19e-07 1.67e-06 6.11e-08 6.11e-08
13 3.72e-10 10 12 8 5 6.62e-08 7.93e-07 2.12e-08 2.12e-08
14 3.84e-10 8 12 8 6 2.43e-08 3.86e-07 7.53e-09 7.53e-09
15 2.65e-10 7 12 8 6 1.70e-08 1.73e-07 2.64e-09 2.64e-09
16 1.09e-10 7 12 8 5 1.45e-08 1.45e-08 1.41e-10 1.41e-10

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 3.23e-03 2.03e-03 2.07e-03
4 4.36e-08 11 9 8 6 9.69e-04 9.70e-04 8.43e-04 8.49e-04
5 2.34e-08 15 14 11 6 2.79e-04 2.80e-04 2.61e-04 2.62e-04
6 1.11e-08 16 16 12 6 7.83e-05 7.91e-05 7.51e-05 7.52e-05
7 2.71e-09 17 16 12 6 2.20e-05 2.27e-05 2.13e-05 2.13e-05
8 3.36e-09 16 16 11 5 6.20e-06 6.79e-06 6.16e-06 6.16e-06
9 1.38e-09 16 16 10 5 2.28e-06 2.67e-06 1.86e-06 1.86e-06

10 8.33e-10 14 16 11 5 1.30e-06 1.47e-06 5.90e-07 5.90e-07
11 2.23e-10 14 14 9 4 1.01e-06 1.07e-06 1.95e-07 1.95e-07
12 1.91e-10 13 14 9 5 2.06e-07 2.69e-07 6.65e-08 6.65e-08
13 5.77e-11 13 13 9 4 1.44e-07 1.68e-07 2.30e-08 2.30e-08
14 2.05e-11 13 13 8 4 7.59e-08 8.67e-08 8.05e-09 8.05e-09
15 2.11e-11 11 13 9 4 6.60e-08 6.86e-08 2.73e-09 2.73e-09
16 1.24e-11 11 13 9 4 1.09e-08 1.09e-08 3.34e-11 3.34e-11

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 3.23e-03 2.05e-03 2.09e-03
4 3.13e-10 12 9 9 5 9.75e-04 9.75e-04 8.51e-04 8.56e-04
5 2.29e-09 17 15 12 5 2.76e-04 2.76e-04 2.63e-04 2.64e-04
6 7.57e-10 19 17 13 5 7.57e-05 7.57e-05 7.58e-05 7.59e-05
7 4.56e-10 19 17 13 5 2.15e-05 2.15e-05 2.15e-05 2.15e-05
8 1.86e-10 19 17 12 4 6.79e-06 6.79e-06 6.21e-06 6.21e-06
9 7.20e-11 19 17 12 4 2.14e-06 2.15e-06 1.88e-06 1.88e-06

10 6.96e-11 18 17 12 4 8.93e-07 8.96e-07 5.95e-07 5.95e-07
11 2.56e-11 18 16 11 3 3.07e-07 3.09e-07 1.97e-07 1.97e-07
12 2.01e-11 16 16 11 4 1.87e-07 1.88e-07 6.71e-08 6.71e-08
13 4.87e-12 17 15 10 3 1.19e-07 1.19e-07 2.32e-08 2.32e-08
14 3.95e-12 15 15 10 3 7.72e-08 7.74e-08 8.12e-09 8.12e-09
15 1.79e-12 15 14 10 3 1.79e-08 1.80e-08 2.76e-09 2.76e-09
16 5.34e-13 15 14 9 3 1.29e-08 1.29e-08 3.19e-11 3.19e-11

Table 6.3: We show the iteration histories for ω → 0. The data are the same as in the previous experiments. We
use natural norms here (s = t = 1) and vary ω from top to bottom in the steps 0.1, 0.01 and 0.001.
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Figure 6.5: We show the graphs for y and u for the data y∗ ≡ 0 with smoothness indices s = t = 1. We varied
ω in four steps between 1 and 0. The curves appear well-defined and have the predicted shape. This includes the
case ω = 0, where the theoretical predictions y ≡ 0 and u = −f are realised.

j ‖rj‖ #O #E #A εR(y) εP(y) εR(u) εP(u)
3 3.23e-03 3.23e-03 2.05e-03 2.09e-03
4 2.17e-06 8 9 7 9.77e-04 9.77e-04 8.51e-04 8.56e-04
5 5.63e-06 8 12 8 2.76e-04 2.76e-04 2.64e-04 2.65e-04
6 2.29e-06 8 14 8 7.55e-05 7.55e-05 7.61e-05 7.62e-05
7 1.56e-06 8 14 8 2.11e-05 2.11e-05 2.18e-05 2.18e-05
8 8.95e-07 7 14 8 6.14e-06 6.14e-06 6.77e-06 6.78e-06
9 2.84e-07 7 13 7 1.88e-06 1.88e-06 2.06e-06 2.06e-06

10 1.81e-07 6 11 7 5.87e-07 5.87e-07 7.39e-07 7.40e-07
11 6.88e-08 6 11 8 1.93e-07 1.93e-07 2.56e-07 2.56e-07
12 4.32e-08 4 12 8 7.21e-08 7.21e-08 9.57e-08 9.57e-08
13 2.58e-08 4 11 7 2.72e-08 2.72e-08 4.19e-08 4.19e-08
14 1.23e-08 5 11 7 9.99e-09 9.99e-09 1.76e-08 1.76e-08
15 4.90e-09 5 11 7 3.50e-09 3.50e-09 7.23e-09 7.23e-09
16 3.46e-09 3 12 8 3.17e-09 3.17e-09 4.77e-09 4.77e-09

Table 6.4: These numbers correspond to the setting ω = 0. As before, the smoothness indices are s = t = 1. In
fact, the choice of t is irrelevant in this case as it drops out of the functional. The column #R disappears here
for the same reason.
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Figure 6.6: We show convergence plots for the example of vanishing regularisation with s = t = 1 and ω → 0.

state y and control u are again in good agreement with our expectations. The control steadily shifts from
about u = − 1

2f for ω = 1 to u = −f for ω = 0, while the state moves from about y = 1
2y0 to y = y∗ ≡ 0.

The iteration histories are listed in Table 6.3 for the values ω = 0.1 to ω = 0.001, and in Table 6.4 for the
special case ω = 0. The iteration counts only increase slightly from ω = 1 toward ω = 0.001, although
the bounds on the residual in column 2 get rapidly tighter for ω → 0, see (6.2.7). For the limit ω = 0,
we have used the ad-hoc setting cQ := 1. In this case the iterations need fewer steps than for ω = 1.
The occurrence of Rt drops out of the algorithm completely, which saves one complete inner inversion
of an elliptic system and leads to a slightly simpler numerical scheme. This case also yields the highest
accuracy for the state y, which appears plausible since we have chosen y∗ ≡ 0, which becomes the exact
solution in the limit ω = 0.

Figure 6.6 shows graphs of the errors versus the resolution. For decreasing ω, the rate in εP(y) grows
from just above 1 to almost 1.5 for ω = 1

1000 . We attribute this to the fact that for ω = 0 it holds y = y∗
(in this limit case the rate in y is 1.7), which seems to positively influence the convergence. The control
features a rate around 1.6 for all runs. The generally superlinear convergence for vanishing regularisation
is reflected in the steadily decreasing number of iterations with increasing resolution.

Our observations concerning the dependence of the total iteration counts on ω are reflected in the actual
times needed for the computations, which are provided in the following table.

ω 1 0.1 0.01 0.001 0
Runtime 9.9s 13s 18s 22s 4.3s

Additionally, this example demonstrates the ill-posedness of the problem for s = t = 0. The two images
in Figure 6.7 show that the computed control is not accurate in this case, but oscillating around the exact
value −f . The images on the left have been obtained without the additional preconditioning as described
in Section 4.3.3. Here the bests results are achieved in the range of ν ∈ [ 1

10 ,
1

100 ]. For target accuracies
outside this range, no matter if larger or smaller, the computed control is completely off target. This
effect is reversed with preconditioning in the right hand image, where these accuracies yield the worst
results, which get better, but still not good for larger or smaller accuracy. In fact, this is the only situation
which we encountered where the operator-adapted preconditioning influences the quality of the results.

Hence, these experiments confirm once more that the numerical scheme works as predicted when all
parameters have allowed values, and that it can indeed produce unpredictable results when we deliberately
choose an ill-posed combination.
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Figure 6.7: These graphics demonstrate the difficulties with ω = 0 for the parameters s = t = 0, when the problem
is not well-posed. In this case, we even get different results without (left) and with (right) operator-adapted
preconditioning. In the first case, for values of ν significantly above 1

10
or below 1

100
, the computed control lies far

off the exact function (those cases are not shown here). With preconditioning, we can see the opposite behaviour,
when the results with 1

10
and 1

100
are worst.
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Figure 6.8: We display the target y∗ = h2 as of (6.3.5) which is used for our non-conforming experiments.

Example 6.4 – Non-Conforming Target Observation

The second non-conforming example deals with the constant right hand side f ≡ 1 and a specific non-
constant target function y∗. We have chosen y∗ = h2 with

h2(x) :=

√

∣

∣

∣x− 1

3

∣

∣

∣ . (6.3.5)

This function is displayed in Figure 6.8. Note that this choice of y∗ does not comply with homogeneous
Neumann boundary conditions, and it is also not in H1. (Thus, for natural norms it holds that y∗ 6= Z.)
Therefore, this setting is rather far away from the trivial case of compatible data. We examine the results
for different norms on the spaces Z and U and also look at the interplay with the regularisation parameter
ω, which is kept nonzero here.

Our first collection of experiments deals with changes in the smoothness s of the observation space Z.
The control space U has been fixed to L2, which is equivalent to t = 0. We provide results for three
different strengths of regularisation, namely ω = 1, 1

10 ,
1

100 . They are shown in Figure 6.9. For each
setting of ω, we created one row with two graphs, again one for the state y on the left and one for the
control u on the right.
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Figure 6.9: We show the results for f ≡ 1 and y∗ as in Figure 6.8 for varying observation space Z = Hs and fixed
control space U = L2. The smoothness index s ranges from 0 to 1, where we have chosen 6 discrete values. The
state y is always shown on the left hand side, and the associated control u on the right. The three rows from top
to bottom correspond to three different settings for the regularisation, namely ω = 1 (top), ω = 1

10
(middle) and

ω = 1
100

(bottom).
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Figure 6.10: In this series of graphs we have fixed the observation space to Z = L2 (top row) and Z = H1 (bottom
row), respectively. The control space is varied between t = 0 and t = 1 in discrete steps, while the regularisation
is set to ω = 1. In each row, the state y is shown on the left hand side and the control u on the right. The small
picture on the bottom right shows a zoom of the region around the singularity. As the control u belongs to spaces
of negative order, it is generally not smooth. The spikes occur for t 6∈ Z with s = 0 (top), and for t > 0 with
s = 1 (bottom). The character of the oscillations is very different between the two examples, since the requirement
y∗ ∈ Z is violated for the bottom row.

These experiments nicely show that there is a qualitative difference between changing s and changing ω.
While for s = 0 a decrease in ω by several orders of magnitude is necessary to reproduce the kink towards
zero present in y∗, this is quite easily accomplished by increasing the smoothness of Z = Hs and keeping
a comparably large ω. Moreover, u is smooth for s near zero, while the sharp singularity at x = 1

3 only
shows up for about s > 1

2 , almost independent of ω.

In a second series of experiments, we fix the observation space Z and allow for control spaces U = (H t)′

with varying smoothness t. This means that the control u is generally contained in a negative order space,
and we should not expect any smoothness in the classical sense. Instead, we are prepared to observe the
same kind of spikes as in the earlier example of negative control smoothness. We made two runs, one for
Z = L2 and one for Z = H1, the results of which are displayed in Figure 6.10.

The state y is smooth in the case Z = L2, while it reproduces the kink for Z = H1. This could not be
accomplished with a control in L2 for reasonable ω. However, the most significant difference compared to
the previous examples with U = L2 can be seen in the character of the control. For fractional t ∈ (0, 1),
it exhibits the dyadically arranged spikes. Again, they are largest for t very close to 1 and independent of
the target accuracy ε of our numerical scheme. The most important observation regards the magnitude
of the oscillations. The spikes in the non-conforming example with s = 1 are significantly larger and
much less regular than in the case s = 0 or the example studied in the previous section. This indicates
that the numerical scheme is indeed forced to work outside its range of specifications here.
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Figure 6.11: Here we have varied Z and U simultaneously, i.e., we have fixed s = t. We have set ω = 1 in the
top graph and ω = 1

10
in the bottom graph. This experiment spans the whole range from L2 norms to the natural

norms. For s = t = 1, the shape of y resembles very much the target observation y∗. The control can only be
drawn reasonably for small to medium values of s and t, as it gets very large towards s = t = 1. The small
image in the control graph contains a zoom around the singularity. These results demonstrate very clearly that
the regularisation ω acts as a pure scaling factor and does not affect the character of the solution very much. In
fact, the control around the singularity looks exactly the same for both values of ω, apart from the scaling.

A second important observation concerns the comparison of the first rows of the examples in Figure 6.9
and Figure 6.10. Both have been created with the same ω = 1. In the first case, we fixed t = 0 and varied
s ∈ [0, 1], while the roles of s and t are reversed in the second case. The states y coincide perfectly for
equal s + t, and the control is also the same provided that the spikes in Figure 6.10 are removed by an
averaging process. This motivates the conjecture that only the difference between the smoothness indices
of Z and U matters, and not the absolute value. A similar behaviour has also been observed in [118].

Finally, we combine the variations in the observation and control spaces. To this end, we set Z = U ′

and traverse the whole spectrum s = t = 0, . . . , 1. We do this for the two values ω = 1 and ω = 1
10 ,

respectively. The graphs are displayed in the rows of Figure 6.11. This approach spans between the
two extreme cases, namely the classical setting with s = t = 0 and the natural norms with s = t = 1.
Consequently, the results also change rather extremely, from almost constant functions for L2 norms to a
sharply kinked state y and a very irregular control u for natural norms. The highly irregular control can
again be interpreted as a result of the deliberate violation of well-posedness with the selection y∗ 6∈ Z.

The two graphs in Figure 6.11 for different ω are very similar in shape, and differ mostly in the scal-
ing. Even the spikes around the singularity coincide. This illuminates the interplay between the scale-
independent regularisation ω and the role of the smoothness indices s and t. While the latter parameters
can be used to influence the character of state and control, variations in ω affect mostly the scaling.

We once more conclude the discussion of this series of experiments with selected iteration histories. They
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j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 1.62e-04 4.86e-04 1.50e-05 7.34e-05
4 8.48e-06 4 3 0 7 1.34e-04 2.61e-04 6.88e-06 1.14e-05
5 4.29e-06 3 4 2 6 2.68e-05 1.14e-04 3.22e-06 3.41e-06
6 2.90e-06 2 5 2 6 1.93e-05 5.82e-05 2.37e-06 2.37e-06
7 6.81e-07 3 3 2 5 4.07e-06 2.76e-05 4.23e-07 4.24e-07
8 6.84e-07 1 10 5 7 3.32e-06 1.40e-05 4.24e-07 4.24e-07
9 2.58e-07 2 5 2 5 2.82e-06 7.38e-06 2.27e-07 2.27e-07

10 1.78e-07 2 5 2 5 6.59e-07 3.47e-06 1.68e-07 1.68e-07
11 3.28e-08 3 3 2 4 5.54e-07 1.79e-06 5.26e-08 5.26e-08
12 3.21e-08 1 10 5 7 2.38e-07 8.82e-07 5.26e-08 5.26e-08
13 2.08e-08 2 5 2 5 2.03e-07 4.69e-07 4.58e-08 4.58e-08
14 1.20e-08 4 2 1 4 5.51e-08 2.13e-07 1.51e-08 1.51e-08
15 4.30e-09 3 3 2 4 4.47e-08 1.02e-07 1.02e-08 1.02e-08
16 2.72e-09 4 2 1 4 2.14e-08 2.14e-08 2.49e-09 2.49e-09

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 2.39e-03 7.05e-03 1.60e-03 2.81e-02
4 9.57e-06 9 10 5 9 6.92e-04 3.33e-03 9.42e-04 1.42e-02
5 4.18e-06 10 10 4 10 2.03e-04 1.63e-03 4.84e-04 7.10e-03
6 2.12e-06 10 8 3 10 6.20e-05 8.04e-04 2.42e-04 3.55e-03
7 6.83e-07 11 7 3 9 2.04e-05 4.00e-04 1.21e-04 1.78e-03
8 5.85e-07 10 6 3 9 6.78e-06 1.99e-04 6.06e-05 8.87e-04
9 2.64e-07 10 5 2 9 3.62e-06 9.96e-05 3.03e-05 4.43e-04

10 1.30e-07 10 5 2 9 8.06e-07 4.98e-05 1.51e-05 2.21e-04
11 6.47e-08 10 5 2 9 4.58e-07 2.49e-05 7.56e-06 1.10e-04
12 3.31e-08 10 4 2 9 3.05e-07 1.24e-05 3.76e-06 5.43e-05
13 1.63e-08 10 4 2 9 2.28e-07 6.17e-06 1.85e-06 2.61e-05
14 8.16e-09 10 4 2 9 1.44e-08 3.01e-06 8.37e-07 1.16e-05
15 3.62e-09 10 4 2 9 1.08e-08 1.35e-06 3.68e-07 4.53e-06
16 1.61e-09 10 4 2 9 7.64e-09 7.64e-09 1.19e-09 1.19e-09

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 5.18e-08 1.41e-00 1.34e-01 8.13e-01
4 2.39e-06 15 15 13 13 1.35e-04 1.35e-00 1.26e-01 7.78e-01
5 1.87e-06 18 19 15 15 5.72e-05 1.29e-00 1.19e-01 7.44e-01
6 1.21e-06 19 20 16 16 2.09e-05 1.22e-00 1.19e-01 7.10e-01
7 5.57e-07 21 21 16 16 5.78e-06 1.15e-00 1.19e-01 6.74e-01
8 2.79e-07 22 21 16 16 2.23e-06 1.08e-00 1.19e-01 6.37e-01
9 1.31e-07 23 21 16 16 9.91e-07 1.00e-00 1.19e-01 5.97e-01

10 8.81e-08 24 21 16 16 3.86e-07 9.21e-01 1.19e-01 5.55e-01
11 3.36e-08 25 21 16 16 1.60e-07 8.28e-01 1.18e-01 5.08e-01
12 1.58e-08 25 21 16 16 5.85e-08 7.24e-01 1.18e-01 4.58e-01
13 4.93e-09 28 21 15 15 4.54e-08 6.05e-01 1.15e-01 4.00e-01
14 4.47e-09 28 21 16 16 2.11e-08 4.61e-01 1.08e-01 3.31e-01
15 1.39e-09 29 21 16 16 2.89e-08 3.03e-01 7.90e-02 2.35e-01
16 8.57e-10 29 21 16 16 1.52e-08 1.52e-08 4.26e-10 4.26e-10

Table 6.5: We display the residuals, iteration numbers and errors for the non-conforming example f ≡ 1 and
y∗ = h2 in one dimension. We have fixed ω = 1. The topmost table contains the data for s = t = 0. In the
middle, the parameters are s = 1, t = 0, and the last table contains values for s = t = 1.
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Figure 6.12: These convergence plots correspond to f ≡ 1 and y∗ = h2. The examples with t = 0 show a rate of
1, while the example with s = t = 1 exhibits very slow convergence.

are listed in Table 6.5, for the choices (from top to bottom) s = t = 0, s = 1 and t = 0 and finally
s = t = 1. The first observation is that the L2 case is cheapest in terms of computing time, while the case
of natural norms is most demanding. We have presumed this at the beginning, and it has been confirmed
by all examples we have encountered so far.

The second important observation deals with the convergence rates. The first two tables show that the
number of iterations is indeed independent of the level of resolution, and even somewhat decreasing in
the first run, just as in all previous examples. As can also be seen in the convergence plots in Figure 6.12,
the errors in y and u reduce steadily with rate 1.

However the third example indicates a slowdown in convergence with increasing levels of resolution. The
number of outer iterations constantly increases with j here. Moreover, the error against the high accuracy
solution does not converge to zero but stays at about 0.1. The rates in both the state and the control are
below 0.2. This behaviour should not come as a surprise though since the functional (5.2.10) is no longer
well-defined in this particular case. Considering the shape of u for the most extreme case s = t = 1, the
errors seem to be caused by the higher frequencies, which explains the reasonable size of the restricted
error in the state εR(y), and of all errors for the highest level J = 16.

We interpret these results as an indication of the robustness of the method because of the following
observations.

• Already the case s = 1, t = 0 implies that the target observation is no longer in the observation
space, but still the convergence rate is perfectly linear.

• Although the case s = t = 1 corresponds to the most extreme setting for a non-conforming y∗, the
number of inner iterations remains asymptotically constant, while the increase in outer iterations
is only moderate.

Our algorithm is thus capable of handling non-conforming data in a rather stable manner.

Summary

From these experiments in one dimension, our main conclusions are the following.

(i) The algorithm yields exactly the predicted results for the special cases of constant data and com-
patible data. It also satisfies the runtime characteristics predicted by the theory for the general
case, namely an overall complexity of at most O(NJ ) in time and memory. The efficiency of the
inexact conjugate gradient algorithm in conjunction with the nested iteration strategy becomes
immediately obvious in all results.
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• The linear complexity is reflected in the amount of inner and outer iterations on each level,
which is asymptotically constant, and even slowly reducing with increasing resolution in some
examples.

• The standard case with s = t = 0 is computationally cheaper than the case of natural norms
with s = t = 1. The difference manifests in a constant factor only, not in the rate of conver-
gence.

• The numerical scheme deals well with the special case s = t = 1 and ω = 0, which is the
only allowed combination of smoothness indices for vanishing ω. For combinations inducing
ill-posed systems, the scheme still converges, but the results are not reliable.

• When the parameters and the data are chosen in a way which violates the prerequisites of the
general control problem discussed in Chapter 5, we observe a degradation in performance with
increasing level of resolution. The algorithm is robust in the sense that it still terminates with
reasonable results.

(ii) The parameters s and t, which are related to the smoothness of the state and the control, act in
a different manner than the regularisation ω, which acts as a pure weight which equally affects all
scales. Both approaches in modelling are largely independent.

• High regularity for Z (and also low regularity for U) leads to a good accordance in shape
between y and the target observation y∗. Conversely, low regularity for Z neglects most of the
features of the target y∗ and leads to an average tracking in the L2 sense.

• Negative regularity for U , i.e., values for t > 0, introduce oscillations in the control. These are
artifacts which stem from the wavelet discretisation of fractional negative order spaces. They
grow with t, as they are increasingly less penalised by the norms in (H t)′, with coefficients
which are always in `2.

• The solution y only depends on the difference between the observation and control spaces, i.e.,
the value of s + t. For the control, this holds only when the oscillations are removed by an
averaging process. From a practical point of view, this motivates a fixation U = L2, i.e., t = 0,
while only s is varied. Consequently, the oscillations for the control are avoided, however, the
maximal difference in smoothness between the state and the control is cut in half.

• The weight ω does not seriously affect the character of the solution, but merely acts as a global
scaling.

These facts demonstrate the relatively rich behaviour of the control problem, considering the fact that the
model is completely linear. We expect that the results in more than one dimension will be very similar
in tendency.

6.3.3 Higher Dimensions

We now discuss some results in more than one dimension. The algorithm is completely unchanged,
only the approximation and plotting of functions and the application of the various matrices needs to be
extended by tensor products. We also continue to work with homogeneous Neumann boundary conditions
and employ a similar right hand side f as in the previous experiments. We expect that the effects of
the various parameters on the character of the solution and control are similar to the results which we
discussed thoroughly in one dimension.

In the computations with uniform discretisation, the amount of available memory restricts the maximum
resolution of the numerical scheme. A second bottleneck is posed by the exact solution on the coarsest
level. This is no issue asymptotically, but the complexity of O(N 3

j0) becomes practically important already
in three dimensions. As discussed in Section 6.2.3, this can be alleviated by a sensible stopping criterion
on the conjugate gradient method in its function as an exact solver. However, even with the fully exact
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solution a standard PC permits simulations with several million unknowns in three dimensions, that is,
with 1283 degrees of freedom per variable.

Example 6.5 – Two Dimensions

For our calculations in two dimensions, we again choose the parameter ν = 1
100 . The choice of wavelet

basis is the same as in the one-dimensional case. A standard PC permits calculations up to the maximum
level J = 10, corresponding to roughly 106 degrees of freedom for each function, which we use for the
iteration histories. To demonstrate the qualitative behaviour and create the plots, the level J = 5 is
accurate enough.

Tested with constant data, our experiments indeed confirm the results from Figure 6.1. Thus, the method
is in perfect agreement with the theory for constant data also in two dimensions. For all subsequent
experiments, we selected f ≡ 1 and a generalisation of the target observation y∗ = h2 from (6.3.5),

y∗ =

√

∣

∣

∣x−
(1

3
,
1

3

)T ∣
∣

∣ . (6.3.6)

We present three collections of results. The first is meant to illustrate the general behaviour of the method
in two dimensions, and contains three different examples for standard parameter values. The second and
third set deal with varying ω, once for the L2 setting with s = t = 0, and secondly for the parameters
s = 1, t = 1

2 . In all cases, the method yields results which are analogous to the computations in one
dimension.

The first set of results deals with varying observation space Z and fixed control space U = L2, which
corresponds to t = 0. We have selected the standard cases s = 0 and s = 1, each with ω = 1, and also
s = 1, ω = 1

10 . The state and the control for each case are shown in Figure 6.13. As in the one-dimensional
case, the solution y is very smooth, and it only shows a very gentle deepening towards the singularity.
The kink downward in the control only shows up for s > 0. Again, the change in ω introduces a different
scaling and does not affect the shape of the functions y and u. The homogeneous Neumann boundary
conditions for the state y are reproduced.

Next, we examine different weights of the regularisation, namely ω = 1
10 ,

1
100 ,

1
1000 . As in the one-

dimensional case, we expect that effects on the shape of the state only show up for very small ω. Our
first set of experiments in this respect deals with the standard setting U = Z = L2, i.e., s = t = 0. The
results are displayed in Figure 6.14. Indeed, a qualitative change in the functions y and u can only be
seen for ω = 1

1000 . However, even for this nearly degenerate regularisation, the singularity in the target
observation y∗ is not reproduced, and we can only find a subtle and smooth bend downward. This picture
changes for the combination of parameters s = 1 and t = 1

2 , which is displayed in Figure 6.15. In this
scenario, the singularity does appear in the state y for small ω. This comes at the cost of a sharply spiked
control, which is also less regular along the boundary.

This comparison of different smoothness indices for a given range of ω demonstrates again that the shape
of the state and the control strongly depends on s and t, and only weakly on ω, while the overall scaling
is mainly controlled by ω. Furthermore, the measurement of u in H− 1

2 does not yet produce the spikes,
which only appear for spaces which are closer to H−1.

As in the one-dimensional case, we close the discussion of numerical results with the iteration histories for
the residuals, errors and iteration counts. The data are listed in Table 6.6, with a finest level of J = 10.
The results for the standard case, namely s = t = 0, are very similar to those in one dimension, showing
clear O(NJ) behaviour. We see that the number of inner iterations for the two state and adjoint equation
increases slightly, while the number of outer iterations reduces. The total computational cost given by
their product is constant.
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Figure 6.13: We display three sets of results in two dimensions. All were obtained with a resolution of J = 5, as
this is most sensible for the graphical representation. The first row shows the state and the control for s = t = 0
and ω = 1. The middle row belongs to the parameters s = 1, t = 0, ω = 1, while the last row corresponds to s = 1,
t = 0, ω = 1

10
. These results are largely analogous to the one-dimensional situation shown in Figure 6.9.
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Figure 6.14: We show three sets of results for s = t = 0. From top to bottom, we set ω = 1
10

, 1
100

, 1
1000

. With
decreasing ω, the state y gets larger in the L∞ norm, but does not mimic the singularity present in y∗. The control
is also very smooth.
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Figure 6.15: These graphs correspond to the setting s = 1, t = 1
2
. As in Figure 6.14, the three rows have been

obtained with (from top to bottom) ω = 1
10

, 1
100

, 1
1000

. The change in the regularisation leads to controls u which
are similar in shape, although they have different scales. The shape of the state y is only weakly influenced by the
drastic reduction in ω.
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j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 1.60e-04 3.73e-04 1.29e-05 3.51e-05
4 7.87e-06 6 4 1 18 1.41e-04 2.17e-04 5.11e-06 5.90e-06
5 3.89e-06 5 4 1 19 1.67e-05 8.34e-05 1.77e-06 1.79e-06
6 2.02e-06 4 4 2 17 1.43e-05 4.30e-05 7.68e-07 7.69e-07
7 1.13e-06 2 7 3 16 1.30e-05 2.39e-05 7.19e-07 7.19e-07
8 4.76e-07 5 3 1 15 1.42e-06 9.90e-06 1.85e-07 1.85e-07
9 2.25e-07 3 5 2 16 1.12e-06 4.51e-06 1.33e-07 1.33e-07

10 1.32e-07 3 5 2 16 9.48e-07 9.48e-07 1.10e-07 1.10e-07

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 2.32e-03 6.95e-03 2.56e-03 1.70e-02
4 4.00e-05 11 19 10 11 7.27e-04 3.39e-03 1.48e-03 1.04e-02
5 1.26e-05 12 18 9 12 2.55e-04 1.74e-03 7.56e-04 6.94e-03
6 6.71e-06 12 18 9 12 1.06e-04 9.12e-04 3.77e-04 4.64e-03
7 4.22e-06 12 17 9 13 5.17e-05 4.79e-04 1.86e-04 3.12e-03
8 1.95e-06 13 16 8 13 2.46e-05 2.45e-04 8.82e-05 2.02e-03
9 7.40e-07 14 15 8 13 1.19e-05 1.12e-04 3.44e-05 1.16e-03

10 5.98e-07 14 14 7 13 4.75e-07 4.75e-07 1.70e-07 1.70e-07

Table 6.6: We display the residuals, iteration numbers and errors for two dimensions. We have set J = 10, ω = 1
and chosen f ≡ 1 and y∗ = h2 from (6.3.6). The upper table contains the data for s = t = 0. The lower table
corresponds to the parameters s = 1, t = 1

2
.

The second setting with s = 1 and t = 1
2 has been chosen right in between the selections t = 0 and t = 1

which have been examined in one dimension. As a result, the state is still computed with about the same
accuracy as for the standard situation, while the error of the computed control u is larger with values
around 10−3. The numbers of outer iterations grow slightly in this example, indicating that the regularity
of the solutions lies outside the allowed range, which we interpret as a consequence of the singular choice
of y∗. The inner iteration counts are again asymptotically constant. The total amount of iterations is
larger than for the standard case, which we can also see from the computation times in the following
table.

Parameters s = t = 0 s = 1, t = 0.5
Runtime 177s 1042s

Example 6.6 – Three Dimensions

We complete this chapter with iteration histories computed in three dimensions at a resolution of J = 7,
as before with an extra accuracy of ν = 1

100 . This corresponds to roughly 2 million degrees of freedom
per variable. The target observation has been extended to three dimensions,

y∗ =
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We find that the results resemble closely those computed in two dimensions in the previous section. The
iteration histories are displayed in Table 6.7. Again, the total iteration numbers per level decrease in the
standard case s = t = 0, while they stay constant for s = 1, t = 1

2 . Although the asymptotic regime
is probably not yet reached with a highest level of 7, the complexity appears again to lie in O(NJ ).
An interesting observation which can be made here is that the number of inner iterations for the Riesz
operator becomes large compared to the two other inner systems in the case s = t = 0. This has already
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j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 1.41e-04 2.92e-04 1.13e-05 2.36e-05
4 6.09e-06 10 9 1 49 1.27e-04 1.78e-04 3.46e-06 3.79e-06
5 3.25e-06 10 7 1 58 1.11e-05 6.14e-05 9.47e-07 9.53e-07
6 1.71e-06 7 6 1 57 1.00e-05 2.86e-05 5.03e-07 5.03e-07
7 8.80e-07 6 6 1 53 9.19e-06 9.19e-06 3.72e-07 3.72e-07

j ‖rj‖ #O #E #A #R εR(y) εP(y) εR(u) εP(u)
3 2.04e-03 4.71e-03 1.01e-03 1.28e-02
4 1.75e-05 20 26 15 24 6.28e-04 2.31e-03 4.19e-04 8.48e-03
5 7.12e-06 22 27 14 29 2.03e-04 1.18e-03 1.49e-04 5.53e-03
6 4.77e-06 21 28 14 32 7.53e-05 5.42e-04 4.15e-05 3.20e-03
7 1.98e-06 23 26 14 31 5.88e-06 5.88e-06 4.50e-07 4.50e-07

Table 6.7: We list the iteration histories in three dimensions. The parameters were J = 7 and ω = 1 for both
runs. The top table corresponds to the standard case with s = t = 0, while the bottom table contains the results
for s = 1, t = 1

2
.

been visible to some extent in the two-dimensional case. We attribute this to dimension-dependent shifts
in the eigenvalues of the operators.

It seems that also in the three-dimensional case the `2 errors in the state and the control decrease with
order 1. As in all previous examples, the L2 setting is the cheapest in terms of computing time, whereas
the non-conforming case is much more expensive, as can be inferred from the numbers in the following
table.

Parameters s = t = 0 s = 1, t = 0.5
Runtime 3502s 12261s

Summary

We conclude with the perception that our results are largely independent of the dimension, both in quality
and in asymptotic behaviour. Due to the slight increase of the condition numbers of the matrices with
the dimension, the iteration counts get larger while the essential characteristics of solution and control
remain unchanged. We find independently of the dimension that the regime of optimal linear complexity
covers the full space of allowed parameters. In situations when the data are less regular than demanded
by the norms occurring in the functional, the convergence becomes slightly slower, and the accuracy of
the control degrades in some cases.

The outer-inner inexact conjugate gradient scheme in combination with the nested iteration approach
delivers optimal O(NJ ) performance in all cases conforming to the theory, and appears robust beyond.
We find in our experiments that the inexactness of the conjugate gradient solvers does not affect the
convergence rate which is strictly linear.

The introduction of fractional Sobolev norms in the target functional which is made possible by the
wavelet approach offers an additional freedom in modelling. The parameters s and t indeed act scale-
dependently and allow for a variation in the character of the tracking of the state and the smoothness
of the control. The standard L2 tracking enforces only a match on average which neglects most of
the features of the state. In contrast, increasing the smoothness in the norm of observation tends to
influence the shape of the solution much more effectively. The weight parameter ω clearly represents a
frequency-independent scaling without much influence on the shape of the state and the control.
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6.3. Numerical Results

The computational work is lowest for the standard case s = t = 0 and grows with increasing s and t.
This can be explained by the fact that the operators T and E act as smoothers for small s and t, and
gradually transform into the identity operator in the limit s = 1 or t = 1, respectively. In other words,
the case of natural norms can be interpreted as the most extreme in the sense that the full range between
the space Y and its dual Y ′ is exploited.

Enabling negative fractional norms for the control space introduces artifacts in the control in the form of
dyadically arranged spikes. When removed by an averaging process, we find that the smoothness indices
act merely via their sum s + t. Apart from these side effects of the construction of Riesz operators for
negative fractional order spaces, the method completely meets our expectations concerning the shape and
character of the results and the computational complexity. Our modifications and improvements with
respect to the construction of wavelets, the conditioning of operators and the numerical evaluation of
norms which we laid out in earlier parts of this document have proved highly beneficial with respect to
the quality of the results and led to a considerable reduction in overall computing time.
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Chapter 7

An Adaptive Wavelet Method for

the Control Problem

7.1 Introduction

In the previous chapters we have established a rigorous theoretical basis for the numerical solution of
linear-quadratic elliptic optimal control problems in uniform wavelet discretisation. We have then devised
an implementation and performed numerical computations for different sets of parameters and data. The
effort concerning computation time and memory usage is proportional to the number of degrees of freedom,
which can be two million for each of the state, the adjoint and the control variable on a standard PC.

On the one hand, developing a numerical scheme with these characteristics is challenging, and the amount
of data which can be processed by such a fast algorithm is impressive. On the other hand, the question
arises whether this large amount of computational variables is really necessary to produce results of a
certain accuracy. This motivates the investigation of adaptive strategies, which aim to use as few degrees
of freedom as possible, potentially selected non-uniformly over the space of coefficients, while obtaining
a sufficiently precise numerical solution. Thus adaptivity offers the perspective to save a large fraction of
computational resources without sacrificing accuracy.

In the finite element context, adaptive methods are based on the local refinement of triangles or rectangles
in two dimensions, depending on the choice of finite element basis, and tetrahedrons or cubes in three
dimensions. Typically, a-posteriori error estimators are used to determine which elements are refined in
each iteration of an outer loop. These should be reliable in the sense that they do not miss important
contributions to the error, and efficient in order not to refine where it is not needed. For a general survey
on this subject we refer to [141]. Examples from current research are estimators for parabolic PDEs [110]
and parameter identification problems [9] and a framework for the Navier Stokes equations based on
duality [7,8]. Obstacle problems and mixed finite element discretisations have been discussed in [96,97].
A conceptually different ansatz is pursued in meshless methods, where the degrees of freedom may be
arbitrarily distributed over the domain, see e.g. [76, 77, 127]. When the polynomial degree of the basis
functions is also varied adaptively, the so-called hp-methods come into play [75, 91, 123].

While adaptive finite element methods for the solution of partial differential equations have been inves-
tigated and used for many years, analytical results on convergence have been obtained only recently for
the case of a single elliptic PDE. Namely, algorithms have been proposed which guarantee that each cycle
of solution, estimation and local refinement actually reduces the error by a constant factor [62,114,115].
These convergence rates have been quantified in [12, 130], using ideas from nonlinear approximation.
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Wavelets inherently offer a rigorous approach to adaptivity which provides reliability, efficiency and
convergence in a unified framework, solidly based on nonlinear approximation theory. An adaptive
wavelet Galerkin method of this type has been proposed for elliptic problems [39], which has also been
verified to work in practise [5,6]. It has been extended to saddle point formulations [40] and a large class
of nonlinear variational problems [41].

The concept of adaptive wavelet approximations is rather flexible. It has been used in various numerical
procedures, for example for adaptive fitting of scattered data [33,34], which in turn can be employed for
the numerical solution of hyperbolic conservation laws [32]. A wavelet-based finite difference method for
the Navier Stokes equations has been developed in [71, 99].

A particular advantage of adaptive wavelet Galerkin methods for stationary variational problems is their
strong background in nonlinear approximation theory. This allows to prove convergence of the adaptive
algorithm, and to specify convergence rates. Moreover, these rates are provably optimal in the sense that
the effort for the numerical solution of the whole variational problem is proportional to the number of
degrees of freedom needed for the approximation of the solution. The rate of approximation, and hence
the rate of convergence is controlled by the Besov smoothness of the solution. Since Besov spaces are larger
than Sobolev spaces of equal smoothness, optimality of these adaptive wavelet methods can be proved
for a larger class of solutions, including strongly singular functions, than with uniform discretisations.
We call this the ideal adaptive wavelet approach.

Recently, the adaptive wavelet framework has been extended in [48] to the class of linear-quadratic
optimal control problems introduced in Chapter 5, providing proofs of optimal convergence rates. This
approach is unique in the sense that the three principal variables for the state, the adjoint and the control
are resolved with independent sets of coefficients. In particular, the adaptive finite element method for
the control of the Navies Stokes equations from [8] uses the same grid for all variables, and does not
contain statements on convergence or convergence rates.

In this chapter, we present a first realisation of a fast and fully adaptive method for such optimal control
problems. We achieve this by incorporating the algorithmic ideas from adaptive wavelet methods for
elliptic PDEs and control problems into our existing algorithm nIIcG/2 in uniform discretisation. Instead
of using residual-based error estimators in the outermost loop, we use the wavelet norm equivalences at
several crucial points in the innermost layer of the algorithm to control the errors of truncated wavelet
representations. In particular, we resolve different variables with different sets of coefficients. We retain
the two-layer conjugate gradient solver from Chapter 6, as it converges substantially faster than the
Richardson iterations which are used in the ideal adaptive wavelet strategies from [39, 48]. Since at
present the convergence rate of adaptive wavelet methods involving Krylov subspace methods is not
known theoretically, we undertake systematic numerical studies and examine the convergence behaviour
and the adaptive efficiency. We find experimentally that the resulting algorithm δ-AnIIcG/2 significantly
reduces the memory requirements compared to the uniform scheme, and converges with a superior rate
for several combinations of parameters and data.

7.2 Nonlinear Wavelet Approximation

The wavelet representation of a function is represented by a vector over an infinite-dimensional index
set. In numerical calculations, only a finite subset of this vector can be stored. Adaptivity in the wavelet
context is realised by choosing an index set of given cardinality N in such a way that the approximation
error is minimised. This is called (wavelet-best) N -term approximation, a technique from nonlinear
approximation theory which has drawn considerable attention recently. We provide a short introduction
here, largely following [39].

140



7.2. Nonlinear Wavelet Approximation

7.2.1 Weak `τ Spaces

Let Λ = {λi} denote a finite-dimensional set of wavelet indices. For any coefficient vector v ∈ `2, the
projector onto this index set is denoted by PΛ. The nonlinear space of vectors with at most N nonzero
entries is defined as ΣN := {`2(Λ) : #Λ ≤ N}, and the approximation error is given by

EN (v) := inf
w∈ΣN

‖v −w‖ . (7.2.1)

A best approximation to v from ΣN is obtained by taking a set ΛN with #ΛN = N on which the absolute
values of the entries |vλ| assume their N largest values. This set is generally not unique, but all such sets
yield best approximations from ΣN . The error can be formulated in terms of the projector,

EN (v) = ‖v−PΛN
v‖ . (7.2.2)

It follows from the definition (7.2.1) that the error EN (v) reduces as N gets larger. To quantify the rate
of approximation, we introduce the exponent σ ≥ 0 and let Aσ denote the set of all vectors v ∈ `2 such
that the norm

‖v‖Aσ := sup
N≥0

(N + 1)σEN (v) (7.2.3)

is finite, with the additional definition E0(v) := ‖v‖.
The set Aσ consists of all vectors which can be approximated with order O(N−σ) by the elements of ΣN .
It can be characterised by the decreasing rearrangement v∗ of v. For each N ≥ 1, let v∗N be the N -th
largest of the entries |vλ|, and let v∗ := (v∗N )∞N=1. Introducing a new parameter 0 < τ < 2, we let `wτ
denote the collection of all vectors v ∈ `2 for which the expression

|v|`wτ := sup
N≥1

N
1
τ v∗N (7.2.4)

is finite. In other words, we have v ∈ `wτ if and only if v∗N <∼N− 1
τ for all N ≥ 1, which means that the

entries of v, sorted by size, decay with O(N− 1
τ ). An alternative characterisation is given by

#{λ : |vλ| ≥ ε} <∼ ε
−τ . (7.2.5)

The smallest constant in these estimations is defined as |v|τ`wτ .

The space `wτ is called weak `τ . It is a special case of a Lorentz sequence space. It holds that `τ ( `wτ ( `2,
and we may define the quasi-norm

‖v‖`wτ := ‖v‖`2 + |v|`wτ . (7.2.6)

By trivially estimating N(v∗N )τ ≤∑N≥1(v
∗
N )τ ≤ ‖v‖τ`τ , we conclude that

‖v‖`wτ ≤ 2‖v‖`τ . (7.2.7)

The norms on `wτ are connected to the norms on Aσ by the following

Proposition 7.1. Given σ > 0, let τ be defined by

1

τ
=

1

2
+ σ . (7.2.8)

Then the sequence v belongs to Aσ if and only if v ∈ `wτ , and we have the equivalence

‖v‖Aσ ∼ ‖v‖`wτ . (7.2.9)

In particular, if v ∈ `wτ , then
EN (v) <∼‖v‖`wτ N

−σ , N ≥ 1 . (7.2.10)

The constants only depend on τ , which is linked to σ by (7.2.8).
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The proof can be found in [57,60]. We have thus provided a characterisation of vectors by their approx-
imation properties in the space Aσ , which is equivalent to the space `wτ .

In the limit case τ = 2, which corresponds to standard `2 spaces, we have σ = 0, which means that the
approximation error does not decay at all. In other words, nonlinear approximation delivers a better rate
than linear approximation if and only if the coefficient vector is in `wτ for 0 < τ < 2.

7.2.2 Connection to Besov Spaces

So far, we have considered general vectors over subsets of `2. To specialise to wavelet representations,
recall that in Section 2.2.2 we have established a norm equivalence between functions in Sobolev spaces
and vectors of wavelet coefficients in `2. We now generalise this concept to Besov spaces [1, 57, 134].

Adaptive methods are especially motivated when singularities come into play. Consider for example
functions which are smooth away from the singularities. These have may have very low Sobolev regularity,
which restricts their rate of approximation with uniform discretisations. The introduction of Besov spaces
provides a means to measure smoothness in a more general way, and to gain finer control of singularities.
To this end, we define the norm

‖f‖Bα
q,p

:=



‖f‖qLp
+
∑

j≥j0

(

2αjωmp (f, 2−j)
)q





1
q

(7.2.11)

with m ∈ N0, m > α. Here, ωmp (f,∆) is the Lp modulus of smoothness of m-th order,

ωmp (f,∆) := sup
|h|≤∆

∥

∥

∥

∥

∥

m
∑

k=0

(

m

k

)

(−1)kf(· − kh)
∥

∥

∥

∥

∥

Lp

. (7.2.12)

Note that for bounded domains Ω, we are only allowed to take the supremum of the norms over Lp(Ωm,h),
where Ωm,h = {x : x+ kh ∈ Ω, k = 0, . . . ,m}. The Besov space Bαq,p is defined as the set of all functions
in Lp for which the norm (7.2.11) is finite.

Similar to the description in Section 2.2.2, there exists a generalised wavelet norm equivalence. Let
f = cTΨ be the representation of a function f in an L2-stable wavelet basis Ψ. Then we can formulate
the following relation,

‖f‖Bα
q,p
∼







∞
∑

j=j0−1

2jq(α+ n
2
−n

p
)





∑

k∈∇j

|cj,k|p




q
p







1
q

. (7.2.13)

It reduces to (2.2.35) for the case p = q = 2, i.e., Hα = Bα2,2. Details on the definitions and proofs can
be found in [38, 57, 58]. Setting p = q = τ , α = σn+ β and considering (7.2.8), we obtain

‖f‖Bσn+β
τ,τ

∼ ‖Dβc‖`τ = ‖cβ‖`τ , (7.2.14)

where cβ denotes the coefficient vector in the wavelet expansion using the scaled basis Ψβ , f = cTβΨβ, cf.
(2.2.48). We have thus established the link between Besov spaces over Lτ and the `τ sequence spaces.
The weaker condition cβ = Dβc ∈ `wτ leads to slightly larger spaces, which contain precisely the functions
whose best N -term wavelet approximation in the energy norm produces an error in O(N−σ).

Note also that by the Sobolev embedding theorem we have the relation

Bσn+β
τ,τ ⊂ Hβ for

1

τ
≤ 1

2
+ σ , (7.2.15)
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Subroutine Coarse (v, η) → vη : Reduces the support of v such that ‖v − vη‖ ≤ η.
(1) Define N := #(suppv) and sort the nonzero entries of v into de-

creasing order, with sorted indices λ1, . . . , λN .

(2) Compute ‖v‖2`2 :=
∑N

i=1|vλi
|2.

(3) For k = 1, 2, . . ., form the sum Sk :=
∑k
i=1|vλi

|2 and find the smallest
k such that Sk ≥ ‖v‖2`2 − η2. With this k, set vη := P{λ1,...,λk}v.

Algorithm 7.1: This routine implements the coarsening step. It returns a vector vη whose support is made up of

the smallest subset of Λ which guarantees the error bound η. The sorting step can be replaced by a binary binning,

which removes the logarithmic factor in the runtime complexity, only increasing the error by a constant factor.

which means that Besov spaces with p = q = τ < 2 are larger than Sobolev spaces of the same smoothness
index. This permits an increasingly better resolution of singularities for smaller values of τ . In the context
of adaptive wavelet methods, this means that optimal convergence rates can be guaranteed for a larger
class of functions compared to uniform discretisations.

7.2.3 Coarsening Strategy

At this point, we can formulate the first ingredient for an adaptive wavelet algorithm, namely a routine to
reduce the number of nonzero coefficients in an adaptive wavelet representation in a controlled fashion.
Because of (7.2.14), the error made in the coarsening of the vector is equivalent to the error in the
corresponding function.

We propose the routine Coarse, originally described in [39], which utilises the concept of decreasing
rearrangement of a vector. It is displayed in Algorithm 7.1. Its purpose is to reduce the number of
nonzero entries in the index set Λ of a vector v as much as possible, under the constraint that the error is
bounded. In a naive implementation, the sorting operation introduces a logarithmic factor in the runtime
complexity. This can be removed by performing a binary binning instead [6], which increases the error
by at most a constant factor. The amount by which the support of a vector v can be reduced by this
routine depends on the class v ∈ `wτ to which it belongs. This is not only important for intermediate
steps of the algorithm, but also for the processing of input data.

The numerical method for the control problem refers to two input variables, namely the right hand side
of the partial differential equation f and the target observation y∗. In both cases we assume that all
wavelet coefficients f and y∗ are known or can be computed to any desired accuracy. Consequently,
we can approximate these functions to arbitrary accuracy by finite wavelet expansions f̄ and ȳ∗. This
happens in the routine Approx, which is conceptually similar to Coarse and therefore not displayed here.
The theory stated above implies that for any f ∈ `wτ , 0 < τ < 2, there exists an approximate finite wavelet
representation f̄ whose support is determined by the target accuracy η,

‖f − f̄‖`2 ≤ η , # supp f̄ <∼ η
−1/σ‖f‖1/σ`wτ

, (7.2.16)

where s and τ are related as in (7.2.8). An analogous relation holds for y∗.

7.2.4 Application of Quasi-Sparse Matrices

The iterative solver for the control problem relies entirely on matrix-vector products which can be com-
puted in linear time. For a uniform discretisation, the cost is O(N) with N ∼ 2nJ , since all operations
can be formulated as a product of uniformly sparse matrices.
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To ensure optimal computational complexity for our adaptive computations we can only accept a cost
of O(Nad), where Nad ≤ N is the current size of the support of the adaptive wavelet representation of
a function. Furthermore, the size of the support of the output vector must be controlled. To this end,
special modifications of the matrix-vector multiplications are required, which make use of the following
two properties.

• Stiffness and mass matrices in wavelet representation are quasi-sparse. They exhibit a decay of
entries away from the diagonal which can be quantified a-priori.

• It is not necessary to compute the exact matrix-vector product, which would result in an infinite
number of nonzero entries in the output vector. In the wavelet setting, estimates can be derived
which guarantee the required accuracy for an approximate product.

To quantify these two statements, we note that for a large class of elliptic operators B over Sobolev
spaces Hα the following decay property holds,

2−(|λ′|+|λ|)α|〈Bψλ, ψ′
λ〉| <∼ 2−||λ|−|λ′||γ(1 + r(λ, λ′))−β , (7.2.17)

with parameters γ > n
2 , β > n and

r(λ, λ′) := 2min{|λ|,|λ′|} dist(supp(ψλ), supp(ψλ′)) . (7.2.18)

This relation has been confirmed in various settings, see e.g. [10,46,133,143]. The constant γ depends on
the smoothness of the wavelets, whereas β is related to the approximation order of the dual multiresolution
and the order of the operator B.

A matrix B = (bλ,λ′)λ,λ′ is said to be quasi-sparse if it belongs to the class Aγ,β, defined as

Aγ,β :=
{

B : |bλ,λ′ | ≤ C(B)2−||λ|−|λ′||γ(1 + r(λ, λ′))−β
}

, (7.2.19)

with r(λ, λ′) defined as in (7.2.18). It follows from (7.2.17) that B ∈ Aγ,β holds for the expansion of an
operator B in a scaled wavelet basis for Hα. Matrices from Aγ,β are bounded operators on `2. They are
also compressible, where we refer to [10,51,125,129,143] for details on matrix compression. The reasoning
from [39] is based on the following

Proposition 7.2. For each γ > n
2 and β > n, let

σ∗ := min
{γ

n
− 1

2
,
β

n
− 1
}

(7.2.20)

and assume that B ∈ Aγ,β. Then, for any given σ < σ∗ and every j ∈ N, there exists a matrix Bj which
contains at most 2j nonzero entries in each row and column and provides the approximation efficiency

‖B−Bj‖ <∼ 2−σj . (7.2.21)

This result also holds for σ = σ∗ if γ − n
2 6= β − n.

Remark 7.3. For expansions of elliptic differential operators in the natural wavelet basis, which occur
in the discretisation of the control problem, the matrices Bj can be assembled according to

(Bj)λ,λ′ =

{

bλ,λ′ for ||λ| − |λ′|| ≤ j
n ,

0 else ,
(7.2.22)

for any σ ≤ γ
n − 1

2 . This means that the parameter β is not relevant in this case.
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7.2. Nonlinear Wavelet Approximation

Thus, stiffness matrices arising from wavelet discretisations of elliptic problems are compressible, and
allow finite approximations Bj in the above sense. For an optimal adaptive matrix-vector multiplication
we use the following slightly more general characterisation.

Definition 7.4. A matrix B is said to be in the class Bσ if there are two positive sequences (αj)j≥0 and
(βj)j≥0 that are both summable, and for every j ≥ 0 there exists a matrix Bj with at most 2jαj nonzero
entries per row and column such that

‖B−Bj‖ ≤ 2−σjβj . (7.2.23)

We further define

‖Bσ‖Bσ
:= min max







∑

j≥0

αj ,
∑

j≥0

βj







, (7.2.24)

where the minimum is taken over all such sequences (αj) and (βj).

With σ∗ defined as in (7.2.20), we haveAγ,β ⊂ Bσ for every 0 ≤ σ < σ∗. For B ∈ Aγ,β, the sequences (αj),
(βj) can be chosen to decay exponentially, which means that stiffness matrices in wavelet representation
belong to Bσ. The main result is then formulated as follows.

Proposition 7.5. For B ∈ Bσ, the matrix B is a continuous mapping over `wτ , i.e., for any v ∈ `wτ we
have

‖Bv‖`wτ <∼‖v‖`wτ . (7.2.25)

Furthermore, for each v ∈ `wτ and ε > 0, there exists a vector wε such that

‖Bv−wε‖ ≤ ε (7.2.26)

and
# suppwε <∼Nτ (v, ε) = ε−1/σ‖v‖1/σ`wτ

, (7.2.27)

with σ and τ related as in (7.2.8). The number of arithmetic operations to compute wε is also bounded by
a constant multiple of Nτ (v, ε). In all of these estimates, the constant depends only on ‖B‖ and ‖B‖Bσ

.

It remains to explain how wε can actually be computed. To this end, let v[j] ∈ Σ2j be a best 2j-term
approximation to v in `2 as introduced in Section 7.2.1, set v[−1] := 0, and let

wj := Bj(v[0] − v[−1]) + · · ·+ B0(v[j] − v[j−1]) . (7.2.28)

The error is computed according to

Bv −wj = B(v − v[j]) + (B−B0)(v[j] − v[j−1]) + · · ·+ (B−Bj)(v[0] − v[−1]) . (7.2.29)

By the triangle inequality, we can estimate this sum by quantities which are known, namely the matrix
norms abbreviated as b := ‖B‖, bj := ‖B − Bj‖ and the vector norms vj := ‖v[j] − v[j−1]‖ and v̄j :=
‖v− v[j]‖. This leads to

‖Bv −wj‖ ≤ Rj := bv̄j + b0vj + · · ·+ bjv0 . (7.2.30)

Using the estimates for the approximation of vectors in `wτ and inserting (7.2.23), we eventually obtain

‖Bv −wj‖ <∼ 2−σj‖v‖`wτ . (7.2.31)

The complete derivation can be found in [39]. We can see that the `2-error of the approximate matrix-
vector product decays with j if σ > 0. Algorithmically, we run through the levels j and construct the
vectors wj and norms v̄j and vj , starting with j = 0, and accept the first j for which the right hand
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Subroutine Ad-Apply (B,v, ε) → wε: Computes wε such that ‖Bv−wε‖ ≤ ε.
(1) Define N := #(suppv) and sort the nonzero entries of v into de-

creasing order. Form v[0] and v[j] − v[j−1], j = 0, . . . , dlog(N)e.

(2) Compute vj := ‖v[j] − v[j−1]‖, v̄j := ‖v − v[j]‖, j = 0, . . . , dlog(N)e.

(3) For j = 0, 1, . . ., compute the right hand side Rj of (7.2.30) and find
the smallest j such that Rj ≤ ε.

(4) For this j, compute wj as in (7.2.28), accept wj → wε.

Algorithm 7.2: This subroutine realises the adaptive approximate matrix-vector multiplication for elliptic operators.

It provides a runtime and memory complexity of order Nτ (v, ε), which is the optimal rate in the sense of `w
τ

approximation.

side of (7.2.30) is less or equal to ε. The subroutine Ad-Apply, which is listed in Algorithm 7.2, performs
exactly these actions. For efficient operation, we employ the trivial relations v̄2

j = ‖v‖2 − ‖v[j]‖2 and

‖v[j]‖2 =
∑j

l=0 v
2
l .

We have thus specified a subroutine which calculates an approximate matrix-vector product within given
error bounds (7.2.26). If the input vector v is in `wτ with 0 < σ < σ∗ and (7.2.8) satisfied, the size of
the output vector is bounded by a constant multiple of Nτ (v, ε). The number of arithmetic operations is
bounded by CNτ (v, ε) + 2N , and the output vector satisfies

‖wε‖`wτ <∼‖v‖`wτ . (7.2.32)

The subroutines Ad-Apply detailed above and Coarse described in Section 7.2.3 constitute the two main
ingredients in the conception of a fully adaptive wavelet algorithm.

7.3 An Adaptive Algorithm for the Control Problem

We build the adaptive wavelet algorithm for the optimal control problem by incorporating the adaptive
concepts described in the previous section into the wavelet solver presented in Algorithm 6.6, carefully
balancing errors from adaptive approximation with the errors from the inexact conjugate gradient routine.
Thereby we gain a fully adaptive solver and retain the superior convergence rate of the conjugate gradient
method for the uniformly well-conditioned systems.

7.3.1 Properties of the Original Richardson Algorithm

First, we shortly list the essential properties of the ideal adaptive wavelet algorithms for elliptic boundary
value problems [39], and for linear-elliptic control problems as proposed in [48]. We begin with the first,
simpler case. Here a H-elliptic system in natural wavelet coordinates Au = f as described in Section 4
has to be solved up to accuracy ε. The algorithm consists of Richardson iterations of the type

u(l+1) = u(l) − c(Au(l) − f) , (7.3.1)

where the constant c is determined by the eigenvalues of A. The application of A is realised by the
routine Ad-Apply described in Section 7.2.4. The subroutine Coarse from Section 7.2 is called at various
points in the algorithm to keep the size of the support of the involved vectors under control. The error
bounds for these routines are purposefully adjusted to guarantee the following convergence result.
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Theorem 7.6. Assume that A ∈ Bσ with 0 < σ < σ∗. Then for any ε > 0 and f ∈ `2, the computations
yield an approximation uε with Nε = # suppuε <∞ satisfying

‖u− uε‖`2 ≤ ε . (7.3.2)

If the exact solution satisfies u ∈ `wτ , where σ and τ are related by (7.2.8), then the algorithm is optimal
in the sense that

Nε <∼ ε
−1/σ‖u‖1/σ`wτ

, (7.3.3)

and the number of arithmetic operations is also bounded by a constant multiple of Nε.

Moreover, if we have A ∈ Aγ,β, f ∈ H−β, and the solution u belongs to the Besov space Bσn+β
τ,τ , then the

complexity can be estimated from above by

Nε <∼ ε
−1/σ‖u‖1/σ

Bσn+β
τ,τ

. (7.3.4)

In the optimal control problem, we have to deal with three variables, namely the state y, the costate p
and the control u. By solving the reduced equation for the control (5.5.6) with outer iterations similar
to (7.3.1), which in turn involves iterations on the inner equations (5.5.9a) and (5.5.9b), an additional
level of calculations is introduced which complicates the synchronisation of the various parameters for the
routines Ad-Apply and Coarse. Yet, the main techniques are the same as for the single elliptic equation,
and also the type of estimates used is similar. The following result on convergence can be derived [48].

Theorem 7.7. For any ε > 0 and f ,y∗ ∈ `2, the computations yield approximations (yε,pε,uε) with

‖y − yε‖`2 <∼ ε , ‖p− pε‖`2 <∼ ε , ‖u− uε‖`2 ≤ ε . (7.3.5)

If the exact solutions (y,p,u) of (5.5.9) all belong to the space `wτ for 0 < τ < 2, where σ and τ are
related by (7.2.8), it follows that

‖yε‖`wτ + ‖pε‖`wτ + ‖uε‖`wτ <∼‖y‖`wτ + ‖p‖`wτ + ‖u‖`wτ (7.3.6)

and
# suppyε + # supppε + # suppuε <∼ ε

−1/σ
(

‖y‖1/σ`wτ
+ ‖p‖1/σ`wτ

+ ‖u‖1/σ`wτ

)

. (7.3.7)

The number of arithmetic operations is also proportional to the right hand side of (7.3.7).

In summary, both of these algorithms are asymptotically optimal in the sense that the numerical effort
is proportional to the cost of approximation of the exact solutions in the `wτ sense. This is made possible
by investigating the properties of Richardson iterations (7.3.1) in the context of an adaptive wavelet
discretisation, using the techniques of coarsening and approximate matrix-vector products.

7.3.2 An Adaptive Conjugate Gradient Method for the Control Problem

We now propose a way to enhance Algorithm 6.6 with the adaptive techniques which have been introduced
in Section 7.2. This leads to an algorithm which is conceptually different from the ideal wavelet scheme
quoted above. Here, the investigation of error bounds is closely parallel to Section 6.2.1, where the wavelet
algorithm in uniform discretisation has been described in detail. It turns out that we can adopt its main
structure almost unchanged. More precisely, we carry out the following steps to obtain the adaptive
algorithm AnIIcG/2.

• All direct matrix-vector products previously realised in the routine Apply are replaced by calls to
the routine Ad-Apply. This introduces an error which makes the inner CG methods inexact.
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Subroutine Ad-RHS (A, f ,y∗, ζ) → gζ : Computes gζ such that ‖g− gζ‖ ≤ ζ.
(i) Set ζ1 := 1

3
cA

2CE

cA
C2

T
Cs
ζ.

(1) Call Approx (f , ζ1) → f̄ .

(2) Call CG (A, f̄ , ζ1) → g1.

(3) Call Coarse (g1,
ζ1
cA

) → g2.

(ii) Set ζ2 := 1
5
cA

2CE
ζ.

(1) Call Approx (y∗,
ζ2

CTCs
) → ȳ∗.

(2) Call Ad-Apply (Rs,Tg2 − ȳ∗,
ζ2
CT

) → v1.

(3) Call Coarse (v1,
ζ2
CT

) → v2.

(4) Call CG (AT ,−TTv2, ζ2) → g3.

(5) Call Coarse (g3,
ζ2
cA

) → g4.

(iii) Compute ETg4 → gζ.

Algorithm 7.3: We show the adaptive algorithm Ad-RHS for the computation of the right hand side. It contains

two calls to the routine Approx described in Section 7.2.3. To guarantee the overall accuracy, the error bounds

from the original version (Algorithm 6.3) are split for the several substeps.

• We insert a call to Coarse after each call to an inner conjugate gradient method.

• The Riesz matrix Rs is applied by the routine Ad-Apply. This affects the right hand side of the
adjoint equation, where the additional error must be considered.

• After each invocation of Ad-Apply, we insert a call to the routine Coarse to reduce the size of the
output vector. The coarsening error adds to the error in the approximate matrix-vector product.

• The right hand side g needs coarse versions of the data f and y∗. The corresponding errors from
the routine Approx are taken into account in the routine RHS, and in the reconstruction of yε at
the very end.

Note that the application of the matrices E and T does not need to be reconsidered, since both have an
explicitly known diagonal form.

In Section 6.2.2, we have considered the error in the application of the matrix Q during the outer iterations
and motivated the bound ηk = ε in the inexact conjugate gradient method. We carry over this strategy
to the inner level and take the same bounds for the combination of adaptive application and subsequent
coarsening step. More precisely, the routine Ad-Apply when called with the matrices A, AT and Rt, and
the routine Coarse on the respective results are each given the error bound ηk = ε

2 .

We now review the subroutines from the full Algorithm 6.6 and recalculate the error bounds where
necessary. We begin with the routine RHS, which has been described in original form in Algorithm 6.3.
The adaptive version Ad-RHS is displayed in Algorithm 7.3. Its structure has not changed much, we have
essentially split the steps (i) and (ii) into substeps, preserving the error bound from Proposition 6.1.

Proposition 7.8. The result gζ of the subroutine Ad-RHS (A, f ,y∗, ζ) satisfies upon completion

‖g− gζ‖ ≤ ζ . (7.3.8)
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Subroutine Ad-Apply (Q,u, η) → mη: Computes mη such that ‖Qu−mη‖ ≤ η.
(i) Set η1 := 1

2
cA

4CE

cA
C2

T
Cs
η.

(1) Call CG (A,Eu, η1) → y1.

(2) Call Coarse (y1,
η1
cA

) → y2.

(ii) Set η2 := 1
4
cA

4CE
η.

(1) Call Ad-Apply (Rs,Ty2,
η2
CT

) → w1.

(2) Call Coarse (w1,
η2
CT

) → w2.

(3) Call CG (AT ,−TTw2, η2) → p1.

(4) Call Coarse (p1,
η2
cA

) → p2.

(iii) Set η3 := 1
2
ct

4ωη.

(1) Call CG (Rt,u, η3) → q1.

(2) Call Coarse (q1,
η3
ct

) → q2.

(iv) Call Coarse (ωq2 −ETp2,
η
4 ) →mη.

Algorithm 7.4: This table contains the step from the adaptive version of Apply (Q). The error is divided into four

equal parts which are split again in the several substeps. Note that each call to an operation of type Ad-Apply or

CG is followed by a call to Coarse.

Proof. Considering step (i), we calculate

‖A−1f − g2‖ ≤ ‖A−1(Ag1 − f̄)‖+
ζ1
cA
≤ 1

cA

(

‖Ag1 − f‖+ ζ1
)

+
ζ1
cA
≤ 3

ζ1
cA

, (7.3.9)

where the estimates follow from the definition of the routines Approx and CG. Step (ii) is examined in a
similar way,

‖A−TTTRs(Tg1 − y∗) + g4‖ =
1

cA
‖TT (Rs(Tg2 − y∗)− v2) + TTv2 + ATg3‖+

ζ2
cA

≤ CT

cA
‖Rs(Tg2 − y∗)− v1 + v1 − v2‖+ 2

ζ2
cA

≤ CT

cA
‖Rs(Tg2 − ȳ∗ + ȳ∗ − y∗)− v1‖+ 3

ζ2
cA
≤ 5

ζ2
cA

.

(7.3.10)

After inserting the definitions of ζ1 and ζ2, a comparison with the tolerances from Proposition 6.1 confirms
that (7.3.8) is indeed satisfied.

We move on to the application of the reduced system matrix Q, which is performed by the routine
Ad-Apply (Q) presented in Algorithm 7.4. The modifications are analogous to those in the routine
Ad-RHS. This adaptive routine computes the same quantities as the original routine Apply (Q) in uniform
discretisation, to the same target accuracy, cf. Proposition 6.2.

Proposition 7.9. The result mη of the subroutine Ad-Apply (Q,u, η) obeys the inequality

‖Qu−mη‖ ≤ η . (7.3.11)
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Algorithm Ad-Control (f ,y∗, ε) → (yε,uε): Assures ‖y − yε‖ ≤ ε, ‖u− uε‖ ≤ ε.
(i) Set ζ := min{1, 2

3
cA
CE
}ε.

(ii) Call Ad-RHS (A, f ,y∗,
cQ
2 ζ) → gε.

(iii) Call CG (Q,gε,
cQ
2 ζ) → uε.

(iv) Set ε1 := 1
2
cA
3 ε.

(1) Call Approx (f , ε1) → f̄ .

(2) Call CG (A, f̄ + Euε, ε1) → yε.

Algorithm 7.5: The complete adaptive algorithm is presented here. It is very similar in structure to the uniform

version from Algorithm 6.5, since most adjustments occur inside subroutines. Only the last step is extended by an

approximation of the right hand side f of the elliptic constraint with a finitely supported coefficient vector f̄ .

The proof reuses the concepts and techniques from Proposition 7.8, and is therefore omitted. The substeps
of the routines Ad-RHS and Ad-Apply are all very similar, and so is the calculation of their accuracies.

The main routine Control listed in Algorithm 6.5 remains essentially unchanged. All adjustments are
accomplished inside its subroutines, with the exception that the final solution for the state yε requires
a coarse version of the right hand side f . For completeness, we display the complete adaptive scheme in
Algorithm 7.5. We drop the proof of the error bounds here, as it is analogous to (7.3.9).

With the replacement of the crucial routines of the algorithm in uniform discretisation by their adaptive
extensions, we have realised a complete conversion while preserving an operation count of O(Nad), where
Nad is the number of nonzero wavelet coefficients at any given point of the computations. The remaining
operations, namely additions, subtractions and the scaling of vectors, as well as scalar products, are also
of linear complexity. Having at this point completed the specification of our adaptive algorithm, we
attempt a comparison to the ideal approach followed e.g. in [39, 48, 105].

Conclusion 7.10. In our approach the level j of resolution is systematically increased in the outer loop,
determining the target accuracy 2−j. Only wavelet coefficients up to the current level can occur. In a
sense, the level dominates the accuracy. In contrast, the ideal wavelet method runs the outer loop over
the target accuracy, which is tightened from iteration to iteration. For each grade of accuracy, the wavelet
coefficients largest in magnitude are added to the set Λ, irrespective of the level. Thus, the accuracy
dominates the selection and hence the levels of the coefficients.

The ideal algorithm is solely designed to execute the process of nonlinear approximation. In our case,
we have two parallel and competing goals, namely the scheme of nested iteration to keep the iteration
numbers independent of the level, and the routines Coarse and Ad-Apply to control the number of nonzero
coefficients. This approach trades mathematical pureness for practically fast solution in the framework of
the nested iteration conjugate gradient solver. Consequently, the efficiency of our method is best studied
numerically. To this end, we dedicate the following section to an extensive presentation and discussion
of numerical experiments.

7.4 Numerical Results

The adaptive algorithm differs from Algorithm 6.6 in the addition of the subroutines Approx, Coarse
and Ad-Apply, and the recalculation of error bounds. When the accuracy thresholds for these adaptive
routines go to zero, Approx reduces to the standard expansion of a function in wavelet coefficients, the
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routine Coarse transforms into the identity, and Ad-Apply becomes the standard matrix-vector product.
Consequently, the adaptive variant of the algorithm is structurally similar to the uniform. On the other
hand, the following main differences exist.

• The adaptive application of the reduced system matrix Q as described in Algorithm 7.4 splits the
errors of the various substeps into equally sized parts. As a result, the stopping criterion for the
inner conjugate gradient methods is tightened by a factor between 2 and 4. This leads to a certain
amount of additional inner iterations to reach the increased accuracy.

• The inner conjugate gradient iterations, which have been exact up to roundoff error in the uniform
case, are now afflicted with systematic errors from the adaptive application of the matrix and the
subsequent coarsening step. This makes them inexact and thus inaccessible to standard convergence
theory. Yet the results from the previous chapter on inexact Krylov methods can be reused, so we
expect that the adaptive algorithm also features iteration numbers which are independent of the
level of resolution.

Technically, we modify our uniform algorithm to simulate adaptivity. This means that it is semantically
equivalent to the adaptive method AnIIcG/2, i.e., all computations are carried out with exactly the same
procedure as specified in Section 7.3.2. We achieve this by setting selected wavelet coefficients to zero
inside our uniform data structures, thus distinguishing active from inactive coefficients. Additionally, an
adaptive wavelet method may produce active coefficients with zero value, which are eliminated by calls to
the routine Coarse. Consequently, our simulation can correctly assess the portion of nonzero coefficients
at the end of this routine, which we use to analyse the convergence properties and estimate the cost and
savings compared to the algorithm in uniform discretisation.

To judge the saving of memory and computing time through the adaptive approach, recall that the
algorithm solves the elliptic equation Qu = g for the control, while state y and costate p are computed
in a postprocessing step. Consequently, the three inner CG methods inside the application of Q consume
most of the computation time. Since all involved variables have different sets of nonzero coefficients which
fluctuate in every inner iteration, the number of nonzero coefficients Nad ≤ NJ can only be determined
on average. The application of the system matrix and the additions and subtractions occurring in the
conjugate gradient method increase this number, while it is reduced by every invocation of the coarsening
routine. Moreover, the nested iteration ansatz for the solution of the inner systems of equations involves
a complete traversal of levels for each outer iteration. Finally, the outer iterations work on another,
different set of variables whose distribution of coefficients are also varying with each operation.

We use the following recipe to estimate the main computational work which is concentrated in the iterative
solution of the three inner systems of equations. The method of conjugate gradients works with the search
direction d, its approximate product with the system matrix h = Md, the residual q and finally the
solution x. For these four vectors, we acquire the respective counts of nonzero coefficients, which are then
averaged over all iterations per level to obtain the quantity Nad. The measurements occur at the end of
the respective coarsening operations. Additionally, we express the ratio Nad/Nj in percent, and examine
the percentage of nonzero coefficients in x after the final coarsening operation at the end of each inner
CG loop.

All results have been obtained with the same class of wavelets as in Chapter 6, with an accuracy factor
of ν = 1 (see Conclusion 4.12 and Section 6.3 for details).

7.4.1 The Solution of a Single Elliptic System

The algorithm for the optimal control problem contains a rather complex interplay between inner and
outer iterations, and nested sweeps from coarse to fine levels. Since even for a single elliptic PDE the
convergence of inexact Krylov methods is not proved rigorously, and there exists even less theory for our
adaptive variant, it is indispensable to undertake first studies of the adaptive method in this reduced
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j ‖rj‖ #O P V M S Nad

4 0.00e-00 0 0.0137% 0.0137% 0.0259% 52.9% 9
5 0.00e-00 0 0.0137% 0.0137% 0.0504% 27.2% 9
6 0.00e-00 0 0.0137% 0.0137% 0.0992% 13.8% 9
7 0.00e-00 0 0.0137% 0.0137% 0.197% 6.95% 9
8 0.00e-00 0 0.0137% 0.0137% 0.392% 3.49% 9
9 0.00e-00 0 0.0137% 0.0137% 0.783% 1.75% 9

10 0.00e-00 0 0.0137% 0.0137% 1.56% 0.878% 9
11 0.00e-00 0 0.0137% 0.0137% 3.13% 0.438% 9
12 0.00e-00 0 0.0137% 0.0137% 6.25% 0.219% 9
13 0.00e-00 0 0.0137% 0.0137% 12.5% 0.110% 9
14 0.00e-00 0 0.0137% 0.0137% 25% 0.0548% 9
15 0.00e-00 0 0.0137% 0.0137% 50% 0.0274% 9
16 0.00e-00 0 0.0137% 0.0137% 100% 0.0137% 9

j ‖rj‖ #O P V M S Nad εP(y)
4 5.27e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.87e-03
5 6.99e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.87e-03
6 2.80e-03 1 0.0137% 0.0763% 0.0992% 76.9% 50 8.87e-03
7 1.53e-03 2 0.0137% 0.172% 0.197% 87.3% 113 8.56e-03
8 8.17e-04 3 0.0137% 0.293% 0.392% 74.7% 192 8.38e-03
9 3.85e-04 4 0.0168% 0.638% 0.783% 81.5% 418 6.10e-03

10 1.54e-04 5 0.0259% 1.20% 1.56% 76.9% 786 3.30e-03
11 1.16e-04 4 0.0519% 2.36% 3.13% 75.4% 1547 1.65e-03
12 5.63e-05 4 0.0977% 4.76% 6.25% 76.2% 3120 8.39e-04
13 2.66e-05 4 0.195% 10.5% 12.5% 84.0% 6881 4.21e-04
14 1.31e-05 4 0.389% 20.1% 25% 80.4% 13173 2.14e-04
15 6.37e-06 4 0.777% 35.4% 50% 70.8% 23200 1.09e-04
16 3.55e-06 4 1.55% 69.7% 100% 69.7% 45679 5.78e-05

Table 7.1: We show the results for two solutions of one single elliptic system with different data. The case of
constant data with f ≡ 1 is given above. The second table displays a solution for the right hand side f = h1 as in
(6.3.3).

setting. To this end, we consider the solution of a single state equation with zero control, which means
that we deal with one run of the CG method CG (A, f , ε) as specified in Algorithm 6.2, combined with our
adaptation strategy and nested iteration. In the course of these experiments, we propose an additional,
heuristic ingredient to the adaptive conjugate gradient method which helps to save both memory and
computation time.

Example 7.1 – A Single Elliptic System

The simplest example is given by constant data f ≡ 1, with constant solution y ≡ 1. We expect in
this special case that the final result is already computed accurately on the coarsest level, and that no
additional wavelet coefficients are introduced on higher levels.

The results in one dimension are shown in the top half of Table 7.1. The first three columns are arranged
as in the previous chapter. The first column states the level of resolution j (on the lowest level j0 = 3 the
system is solved exactly, so it is not listed). The second holds the computed residual at the end of the
conjugate gradient loop and the third the number of iterations on this respective level. Then, the column
labelled P stands for the percentage of nonzero coefficients at the end of each loop, and the column V
contains the average percentage throughout the iterations which corresponds to the number of arithmetic
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Subroutine Ad-CG (M,b, ε) → xε: Computes xε such that ‖Mxε − b‖ ≤ ε.
(i) Set k := 0, Set d0 := −q0 := b.

(ii) While ‖qk‖ > θε

(1) Call Ad-Apply (M,dk,
ηk

2 ) → hk, Call Coarse (hk,
ηk

2 ),

Compute αk :=
qT

k qk

dT
k
hk

.

(2) Compute xk+1 := xk + αkdk, qk+1 := qk + αkhk.

(3) Compute βk :=
qT

k+1qk+1

qT
k
qk

, dk+1 := −qk+1 + βkdk.

Call Coarse (xk+1, δ
ηk

CM
), Coarse (qk+1, δηk). Coarse (dk+1, δηk),

(4) Set k := k + 1.

(iii) Accept xk → xε.

Algorithm 7.6: We show the modified conjugate gradient method for the adaptive algorithm δ-AnIIcG/2. Compared

to the original Algorithm 6.2, we replaced the matrix-vector product in step (1) with an adaptive application of

the operator M and a subsequent coarsening step with equally divided tolerances. Furthermore, three additional

coarsening steps are introduced in step (4), which are controlled by the parameter δ.

operations. Both percentages are measured with respect to the highest level. As predicted for constant
data, these come out as Nj0/NJ = 0.0137%. The last three columns are used to express the efficiency
of the adaptive method on each level. First, the column labelled M holds the percentage of coefficients
compared to the highest level, Nj/NJ , which is a known quantity included for comparison. The column
S displays the quotient of the average number of nonzero coefficients V to the full number M on the
respective level j. A value of 100% for S corresponds to no adaptation at all, while smaller numbers
indicate higher degrees of adaptive efficiency. Finally, the quantity Nad denotes the average number of
nonzero coefficients.

The basic situation of constant data constitutes a test case for every adaptive method. Since the problem
is already solved exactly on the lowest level, no additional coefficients should be introduced on higher
levels. Our algorithm AnIIcG/2 handles this case well, using the minimum count of degrees of freedom
Nad = 9.

For our next experiment, we select the non-smooth f = h1 from (6.3.3). The corresponding results are
listed in the lower half of Table 7.1. The first three columns are similar to the uniform situation, we can
see that the iteration numbers are asymptotically constant over the levels. The column P shows low values
up to 1.55% on the highest level, which hints at a potentially high efficiency of the adaptive method.
However, the next column V, which is a more significant measure of the computational work, goes up
to about 70%. The numbers in column S, which indicate the average number of nonzero coefficients per
level, stay between about 70% and 85%.

We have also included the column εP(y) to display the error of the solution compared to a reference
solution computed with uniform discretisation to high accuracy. This is the same quantity as introduced
in the previous chapter. Since the errors are already small on the lower levels, convergence starts relatively
late, that is only at level 9. From then convergence is linear, in agreement with the theory.

Example 7.2 – Introduction of Additional Coarsening Steps inside the CG Loop

Having established that convergence appears unharmed by the coarsening of the wavelet expansions, we
presume at this point that the efficiency of the adaptive algorithm can be further improved. Specifically,
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Figure 7.1: We display the distribution of wavelet coefficients of the solution y for three different choices of right
hand side f . The left picture corresponds to the smooth function f(x) = cos(πx). In the middle and on the right,
we have chosen the non-smooth functions from (6.3.3) and (6.3.5), respectively. All results have been obtained
with J = 8 and δ = 0.25.

the variables x, q and d in the CG method (see Algorithm 6.2) are so far allowed to evolve as in
the uniform scheme, which motivates the introduction of additional coarsening operations. We propose
a modified inner loop as given in Algorithm 7.6, where the coarsening threshold is modulated by an
additional parameter δ ≥ 0. This leads to the algorithm δ-AnIIcG/2. There are two points which should
be noted.

• Our basic adaptive CG method is recovered as a special case by setting δ = 0.

• Values of δ > 0 lead to a heuristic modification which might influence the convergence of the CG
method. We examine in numerical experiments what range of values of δ is applicable.

We repeat our previous numerical simulations for f = h1 with various parameters δ > 0. Results for the
values δ = 1

1000 , 1
100 and 1

10 are provided from top to bottom in Table 7.2. Firstly, we observe that the
convergence behaviour is completely unchanged. Iteration numbers, residuals and errors differ at most a
few percent from the previous results in the lower half of Table 7.1. The percentage of nonzero coefficients
in the solution as listed in the column P is also almost identical.

Examining column S, we see that already the small values δ = 1
1000 and δ = 1

100 gain about 10%
efficiency compared to δ = 0. We conclude that the auxiliary variables of the CG iterations indeed
contain a substantial number of nonzero coefficients of very small absolute value, which are effectively
eliminated by these small values of δ without any negative effect on the convergence. An additional 10%
is saved by δ = 1

10 .

These findings lead us to an examination of even larger values of δ. The results are listed in Table 7.3. We
have restricted ourselves to a more condensed representation here, showing only the iteration numbers
#O and the average percentage S for values of δ between 0.2 and 0.5. We observe that a reduction of
S to 40% is possible without affecting the convergence. An additional drop by 10% comes at the cost of
slower convergence, and the method does not converge any longer for δ = 0.6. We conclude that values
from about δ = 0.4 on affect the CG algorithm in a critical way. Summarising our experiments with this
choice of right hand side f , we can say that a sensible choice of δ almost doubles the efficiency of the
adaptive method in this case, by a reduction of nonzero coefficients from about 70% to 40%.

To obtain more information on appropriate choices of δ, we repeat the above experiments with a different
right hand side f = h2 as given in (6.3.5). The results are very similar to our first choice of f , hence
the corresponding table is omitted. Again, already very small values of δ lead to a reduction of the
computational costs by 10% to 15%. By increasing δ further, up to a value of 0.3, we achieve twice
the efficiency as for the original adaptive CG method, namely we come from 78% down to 37% without
affecting the convergence. However, the algorithm becomes very sensitive from there, and convergence
deteriorates rapidly from about δ = 0.4 on.

In Figure 7.1 we present graphical representations of the solution y for three different choices of the right
hand side. Each image contains a colour-coded array of wavelet coefficients, where the level j = j0 +
1, . . . , J is mapped to the y-axis, and the coefficients for each level are arranged horizontally corresponding
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j ‖rj‖ #O P V M S Nad εP(y)
4 5.27e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.87e-03
5 6.99e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.87e-03
6 2.80e-03 1 0.0137% 0.0694% 0.0992% 70.0% 45 8.87e-03
7 1.53e-03 2 0.0137% 0.136% 0.197% 69.0% 89 8.56e-03
8 8.17e-04 3 0.0137% 0.266% 0.392% 67.9% 174 8.38e-03
9 3.85e-04 4 0.0168% 0.568% 0.783% 72.5% 372 6.10e-03

10 1.54e-04 5 0.0259% 1.06% 1.56% 67.9% 695 3.30e-03
11 1.16e-04 4 0.0519% 2.13% 3.13% 68.1% 1396 1.65e-03
12 5.63e-05 4 0.0977% 4.37% 6.25% 69.9% 2864 8.39e-04
13 2.66e-05 4 0.195% 8.59% 12.5% 68.7% 5630 4.21e-04
14 1.31e-05 4 0.389% 19.1% 25% 76.4% 12518 2.14e-04
15 6.37e-06 4 0.777% 33.5% 50% 67.0% 21955 1.09e-04
16 3.55e-06 4 1.55% 61.4% 100% 61.4% 40240 5.79e-05

j ‖rj‖ #O P V M S Nad εP(y)
4 5.27e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.87e-03
5 6.99e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.87e-03
6 2.80e-03 1 0.0137% 0.0668% 0.0992% 67.3% 44 8.87e-03
7 1.54e-03 2 0.0137% 0.132% 0.197% 67.0% 87 8.56e-03
8 8.17e-04 3 0.0137% 0.253% 0.392% 64.5% 166 8.38e-03
9 3.86e-04 4 0.0168% 0.545% 0.783% 69.6% 357 6.10e-03

10 1.54e-04 5 0.0259% 1.01% 1.56% 64.7% 662 3.30e-03
11 1.16e-04 4 0.0519% 2.05% 3.13% 65.5% 1344 1.65e-03
12 5.62e-05 4 0.0977% 4.21% 6.25% 67.4% 2759 8.39e-04
13 2.66e-05 4 0.195% 8.29% 12.5% 66.3% 5433 4.21e-04
14 1.31e-05 4 0.389% 16.7% 25% 66.8% 10945 2.14e-04
15 6.37e-06 4 0.777% 32.6% 50% 65.2% 21365 1.09e-04
16 3.54e-06 4 1.55% 60.2% 100% 60.2% 39453 5.79e-05

j ‖rj‖ #O P V M S Nad εP(y)
4 5.27e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.87e-03
5 6.99e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.87e-03
6 2.80e-03 1 0.0137% 0.0473% 0.0992% 47.7% 31 8.87e-03
7 1.58e-03 2 0.0137% 0.0954% 0.197% 48.4% 63 8.56e-03
8 8.21e-04 3 0.0137% 0.188% 0.392% 48.0% 123 8.38e-03
9 3.95e-04 4 0.0168% 0.405% 0.783% 51.7% 265 6.10e-03

10 1.58e-04 5 0.0259% 0.745% 1.56% 47.8% 488 3.30e-03
11 1.17e-04 4 0.0519% 1.59% 3.13% 50.8% 1042 1.65e-03
12 5.70e-05 4 0.0992% 3.30% 6.25% 52.8% 2163 8.26e-04
13 2.57e-05 4 0.198% 6.40% 12.5% 51.2% 4194 4.14e-04
14 1.31e-05 4 0.397% 13.0% 25% 52.0% 8520 2.10e-04
15 6.49e-06 4 0.79% 25.7% 50% 51.4% 16843 1.08e-04
16 3.60e-06 4 1.58% 50.6% 100% 50.6% 33162 5.72e-05

Table 7.2: We list a series of experiments with f = h1 where we have varied the extra coarsening ratio δ from
0.001 (top) over 0.01 (middle) to 0.1 (bottom).
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δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5
j #O S #O S #O S #O S
4 0 52.9% 0 52.9% 0 52.9% 0 52.9%
5 0 27.2% 0 27.2% 0 27.2% 0 27.2%
6 1 41.1% 1 34.6% 1 29.2% 1 25.0%
7 2 40.9% 2 34.9% 2 30.0% 2 26.1%
8 3 41.1% 3 35.5% 3 31.1% 3 27.8%
9 4 44.3% 4 38.2% 4 34.2% 4 30.4%

10 5 40.8% 5 39.0% 5 35.0% 6 28.5%
11 4 45.0% 4 40.6% 5 34.2% 5 30.5%
12 4 46.9% 4 42.1% 5 32.2% 5 30.6%
13 4 45.1% 4 41.2% 5 32.2% 5 30.1%
14 4 45.2% 4 42.0% 5 32.2% 5 29.2%
15 4 44.8% 4 40.8% 4 37.6% 5 29.6%
16 4 44.6% 4 40.5% 4 36.7% 5 29.2%

Table 7.3: We show selected results for a further increase in the supplemental adaptation parameter δ. For each
value of δ given in the first row, we list the iteration numbers #O and the average percentage S, which are meant
to be compared against the equally labelled columns in Table 7.2. As before, we have fixed f = h1 from (6.3.3).
For a value of δ = 0.6 the algorithm diverges.

to the location k. Since the number of coefficients per level increases geometrically proportional to 2nj ,
the higher levels contain narrower rectangles. We have omitted the coefficients for the generators φj0,k,
since they contain no useful information for the adaptive scheme, and display the oscillatory parts instead,
namely the coefficients for the wavelets ψj,k.

First, we have selected the smooth function f(x) = cos(πx). The solution contains few significant
coefficients on the lowest level, and only small contributions from the second lowest, indicating that it
is indeed very smooth. The second and third examples have been obtained for peaked functions f from
(6.3.3) and (6.3.5), respectively. It can be seen that these right hand sides f indeed induce a locally higher
resolution around their singularities at x = 1

2 (left) and x = 1
3 (right), which is exactly the behaviour

which we expect from an adaptive numerical method.

Example 7.3 – Varying the Smoothness of the Right Hand Side

We now examine the influence of decreasing smoothness of the right hand side. To this end, we modify
the function h1 from (6.3.3) by the shift operator Dr : Hs → Hs−r (2.2.52). (We use a scaled version
here which preserves the function values on average.) Since h1 lies in a Sobolev space between H1/2 and
H1, a shift of r = 3

2 produces a function of a smoothness between H−1/2 and H−1. We display three
versions in Figure 7.2, roughened by the exponents r = 1

2 , 1 and 3
2 .

The results for the solution of the elliptic systems with the right hand sides f = D1/2h1, D1h1 and
h3 := D3/2h1 are listed in Table 7.4. It turns out that the decreasing smoothness of the right hand side
has negligible effects on the iteration numbers, the percentages and the errors. To investigate further in
what way the rough right hand side influences the solution, we compare the distributions of the wavelet
coefficients of y for the two cases f = h1 and f = h3, shown in Figure 7.3. While the general shape of
both distributions is similar, the diagram for f = h3 shows a stronger concentration of coefficients around
x = 1

2 , and higher absolute values on the levels 4 and 5. The oscillations in h3 are thus transferred to
the solution y, but with strongly reduced amplitude. Since the same target accuracy is achieved for this
irregular right hand side by an adequately adjusted set of coefficients, we assert the correct performance
of the adaptive scheme.
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Figure 7.3: We show the solution y of the single elliptic system for the right hand sides f = h1 (left) and f = h3

(right). We have set δ = 0.2.
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j ‖rj‖ #O P V M S Nad εP(y)
4 5.22e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.81e-03
5 6.98e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.81e-03
6 2.83e-03 1 0.0137% 0.042% 0.0992% 42.3% 28 8.81e-03
7 1.56e-03 2 0.0137% 0.0793% 0.197% 40.3% 52 8.49e-03
8 8.03e-04 3 0.0137% 0.159% 0.392% 40.6% 104 8.32e-03
9 4.20e-04 4 0.0168% 0.347% 0.783% 44.3% 227 6.10e-03

10 1.75e-04 5 0.0259% 0.641% 1.56% 41.1% 420 3.31e-03
11 1.19e-04 4 0.0504% 1.42% 3.13% 45.4% 931 1.69e-03
12 5.72e-05 4 0.0992% 2.94% 6.25% 47.0% 1927 8.33e-04
13 2.73e-05 4 0.201% 5.78% 12.5% 46.2% 3788 4.17e-04
14 1.35e-05 4 0.398% 11.7% 25% 46.8% 7668 2.12e-04
15 6.07e-06 4 0.801% 22.6% 50% 45.2% 14811 1.07e-04
16 3.25e-06 4 1.59% 45.1% 100% 45.1% 29557 5.62e-05

j ‖rj‖ #O P V M S Nad εP(y)
4 5.14e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.70e-03
5 6.93e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.70e-03
6 2.81e-03 1 0.0137% 0.0412% 0.0992% 41.5% 27 8.70e-03
7 1.57e-03 2 0.0137% 0.0792% 0.197% 40.2% 52 8.39e-03
8 7.77e-04 3 0.0137% 0.162% 0.392% 41.3% 106 8.22e-03
9 4.05e-04 4 0.0168% 0.342% 0.783% 43.7% 224 6.10e-03

10 1.72e-04 5 0.0259% 0.644% 1.56% 41.3% 422 3.31e-03
11 1.20e-04 4 0.0504% 1.44% 3.13% 46.0% 944 1.69e-03
12 5.78e-05 4 0.102% 2.95% 6.25% 47.2% 1933 8.31e-04
13 2.72e-05 4 0.204% 5.82% 12.5% 46.6% 3814 4.21e-04
14 1.31e-05 4 0.412% 11.5% 25% 46.0% 7537 2.11e-04
15 6.64e-06 4 0.815% 23.1% 50% 46.2% 15139 1.08e-04
16 3.61e-06 4 1.63% 45.8% 100% 45.8% 30016 5.74e-05

j ‖rj‖ #O P V M S Nad εP(y)
4 5.02e-03 0 0.0137% 0.0137% 0.0259% 52.9% 9 8.52e-03
5 6.95e-03 0 0.0137% 0.0137% 0.0504% 27.2% 9 8.52e-03
6 2.78e-03 1 0.0137% 0.042% 0.0992% 42.3% 28 8.52e-03
7 1.54e-03 2 0.0137% 0.079% 0.197% 40.1% 52 8.21e-03
8 7.41e-04 3 0.0137% 0.161% 0.392% 41.1% 106 8.05e-03
9 3.84e-04 4 0.0153% 0.338% 0.783% 43.2% 222 7.09e-03

10 1.96e-04 5 0.0259% 0.691% 1.56% 44.3% 453 3.35e-03
11 6.98e-05 5 0.0473% 1.27% 3.13% 40.6% 832 1.69e-03
12 5.67e-05 4 0.105% 2.84% 6.25% 45.4% 1861 8.38e-04
13 2.69e-05 4 0.204% 5.85% 12.5% 46.8% 3834 4.22e-04
14 1.35e-05 4 0.415% 11.6% 25% 46.4% 7602 2.10e-04
15 5.88e-06 4 0.821% 22.6% 50% 45.2% 14811 1.06e-04
16 3.20e-06 4 1.65% 45.0% 100% 45.0% 29492 5.46e-05

Table 7.4: These listings contain results obtained with the roughened right hand sides (from top to bottom) f =
D1/2h1, D1h1 and D3/2h1, and a coarsening parameter δ = 0.2.
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j ‖rj‖ #O P V M S Nad εP(y)
4 1.22e-02 0 0.00771% 0.00771% 0.0275% 28.0% 81 1.37e-02
5 3.48e-03 1 0.00771% 0.0602% 0.104% 57.9% 632 1.37e-02
6 2.34e-03 2 0.00771% 0.295% 0.402% 73.4% 3099 1.31e-02
7 1.22e-03 3 0.00771% 1.10% 1.58% 69.6% 11557 1.26e-02
8 7.16e-04 4 0.00771% 4.10% 6.29% 65.2% 43076 1.23e-02
9 4.16e-04 5 0.0109% 17.7% 25% 70.8% 185961 9.10e-03

10 2.05e-04 6 0.0304% 61.2% 100% 61.2% 642983 4.55e-03
δ = 0

δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4
j #O S #O S #O S #O S #O S
4 0 28.0% 0 28.0% 0 28.0% 0 28.0% 0 28.0%
5 1 39.2% 1 22.0% 1 18.4% 1 14.8% 1 12.9%
6 2 52.0% 2 33.8% 2 27.4% 2 23.3% 2 20.0%
7 3 49.3% 3 32.5% 3 26.6% 3 22.2% 3 19.1%
8 4 47.4% 4 32.6% 4 27.8% 4 24.3% 4 21.1%
9 5 49.2% 5 34.3% 5 28.5% 5 24.8% 7 16.3%

10 6 44.8% 6 30.9% 6 26.3% 7 21.2% 5 26.4%

j ‖rj‖ #O P V M S Nad εP(y)
4 1.17e-02 0 0.00771% 0.00771% 0.0275% 28.0% 81 1.32e-02
5 3.60e-03 1 0.00771% 0.0199% 0.104% 19.1% 209 1.32e-02
6 2.40e-03 2 0.00771% 0.108% 0.402% 26.9% 1135 1.25e-02
7 1.30e-03 3 0.00771% 0.409% 1.58% 25.9% 4297 1.21e-02
8 7.12e-04 4 0.00771% 1.74% 6.29% 27.7% 18281 1.18e-02
9 4.12e-04 5 0.00999% 7.03% 25% 28.1% 73859 9.58e-03

10 2.27e-04 6 0.0247% 27.6% 100% 27.6% 289973 4.77e-03
δ = 0.2

Table 7.5: We display the results for the elliptic system in two dimensions with right hand side f2,2 = h1 ⊗ h1 in
the top and middle tables, and D3/2f2,2 in the bottom table.

Example 7.4 – Efficiency in Higher Dimensions

We complement above results in one spatial dimension with calculations in two and three dimensions,
testing different scenarios with respect to the isotropic or anisotropic character and the smoothness of
the right hand side.

We begin with a right hand side of f2,2 := h1 ⊗ h1, with h1 as in (6.3.3). The results displayed in
Table 7.5 have similar structure as in the one-dimensional case, with generally reduced percentages S.
Again, a parameter of δ = 0.2 appears most sensible, reducing the number of nonzero coefficients by
more than a factor of 2. In the bottom table, we have changed the right hand side to the rough version
D3/2f2,2, which leads to almost identical percentages as in the middle table for δ = 0.2.

For Table 7.6 we have selected f2,1 := h1 ⊗ 1 and observe that the adaptive method indeed reacts to
the smoothness of the solution in one direction, as the number of nonzero coefficients goes down by a
factor of 5 for a supplemental adaptation parameter of δ = 0.3. For δ = 0, the effect of the anisotropy is
not nearly that strong, which confirms again that the introduction of δ is beneficial to obtain a greater
adaptive efficiency. The choice of the roughened function D3/2f2,1 in the bottom table produces about
the same percentages as in the middle table at δ = 0.2.

Finally, experiments in three dimensions are covered in an additional set of tables, which have the same
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j ‖rj‖ #O P V M S Nad εP(y)
4 6.39e-03 0 0.00771% 0.00771% 0.0275% 28.0% 81 8.04e-03
5 1.60e-03 1 0.00771% 0.0375% 0.104% 36.1% 394 8.04e-03
6 3.02e-03 1 0.00771% 0.256% 0.402% 63.7% 2690 8.04e-03
7 1.49e-03 2 0.00771% 0.653% 1.58% 41.3% 6861 7.68e-03
8 7.76e-04 3 0.00771% 2.93% 6.29% 46.6% 30783 7.40e-03
9 4.49e-04 4 0.00771% 14.3% 25% 57.2% 150239 7.23e-03

10 2.12e-04 6 0.0109% 51.9% 100% 51.9% 545274 4.52e-03
δ = 0

δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4
j #O S #O S #O S #O S #O S
4 0 28.0% 0 28.0% 0 28.0% 0 28.0% 0 28.0%
5 1 11.4% 1 6.40% 1 5.36% 1 5.29% 1 5.29%
6 1 23.7% 1 17.7% 1 15.1% 1 12.6% 1 10.3%
7 2 21.0% 2 15.2% 2 12.5% 2 10.6% 2 8.67%
8 3 20.2% 3 14.4% 3 12.1% 3 10.5% 3 9.25%
9 4 21.8% 4 15.5% 4 13.2% 4 11.4% 6 7.20%

10 6 21.8% 6 14.5% 6 11.9% 6 10.2% 5 9.98%

j ‖rj‖ #O P V M S Nad εP(y)
4 6.17e-03 0 0.00771% 0.00771% 0.0275% 28.0% 81 7.73e-03
5 1.80e-03 1 0.00771% 0.00602% 0.104% 5.79% 63 7.73e-03
6 2.95e-03 1 0.00771% 0.0602% 0.402% 15.0% 632 7.73e-03
7 1.46e-03 2 0.00771% 0.201% 1.58% 12.7% 2112 7.36e-03
8 7.44e-04 3 0.00771% 0.784% 6.29% 12.5% 8237 7.10e-03
9 4.20e-04 4 0.00771% 3.21% 25% 12.8% 33725 6.94e-03

10 2.11e-04 6 0.0106% 11.4% 100% 11.4% 119771 4.65e-03
δ = 0.2

Table 7.6: Here we have selected the anisotropic right hand sides f2,1 = h1⊗1 (top and middle tables) and D3/2f2,1

(bottom table). The percentages are lower than for the isotropic case.
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j ‖rj‖ #O P V M S Nad εP(y)
4 1.86e-03 1 0.0336% 0.102% 0.229% 44.5% 2190 2.87e-01
5 6.48e-03 5 0.0339% 1.12% 1.67% 67.1% 24043 1.45e-01
6 3.06e-03 6 0.034% 8.10% 12.8% 63.3% 173882 1.80e-02
7 1.38e-03 3 0.034% 58.4% 100% 58.4% 1253666 1.72e-02

δ = 0

δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4
j #O S #O S #O S #O S #O S
4 1 21.8% 1 10.3% 1 10.2% 1 10.2% 1 10.2%
5 5 40.4% 5 24.0% 5 19.6% 5 17.3% 5 14.5%
6 6 33.2% 6 17.3% 6 13.7% 6 11.6% 6 10.0%
7 3 33.9% 3 23.8% 3 20.8% 3 18.3% 3 16.5%

j ‖rj‖ #O P V M S Nad εP(y)
4 2.17e-03 1 0.0336% 0.0252% 0.229% 11.0% 541 2.87e-01
5 6.40e-03 5 0.0339% 0.321% 1.67% 19.2% 6891 1.44e-01
6 3.11e-03 6 0.034% 1.69% 12.8% 13.2% 36279 1.74e-02
7 1.47e-03 3 0.034% 21.0% 100% 21.0% 450805 1.66e-02

δ = 0.2

Table 7.7: Here we present the three-dimensional example with a tensor product right hand side f3,3 = h1⊗h1⊗h1,
and all other parameters unchanged. The bottom table corresponds to the roughened right hand side D3/2f3,3.

j ‖rj‖ #O P V M S Nad εP(y)
4 1.43e-02 0 0.0335% 0.0335% 0.229% 14.6% 719 2.74e-01
5 6.56e-03 5 0.0338% 0.908% 1.67% 54.4% 19492 1.50e-01
6 3.44e-03 6 0.034% 6.67% 12.8% 52.1% 143184 1.57e-02
7 1.41e-03 3 0.034% 43.7% 100% 43.7% 938103 1.43e-02

δ = 0

δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4
j #O S #O S #O S #O S #O S
4 0 14.6% 0 14.6% 0 14.6% 0 14.6% 0 14.6%
5 5 30.7% 5 19.2% 5 15.7% 5 13.3% 5 11.5%
6 6 23.9% 6 12.4% 6 9.92% 6 7.89% 6 6.96%
7 3 21.7% 3 15.0% 3 12.6% 3 10.7% 3 9.46%

j ‖rj‖ #O P V M S Nad εP(y)
4 1.43e-02 0 0.0335% 0.0335% 0.229% 14.6% 719 2.74e-01
5 6.93e-03 5 0.0338% 0.263% 1.67% 15.7% 5646 1.49e-01
6 3.45e-03 6 0.034% 1.27% 12.8% 9.92% 27263 1.52e-02
7 1.42e-03 3 0.034% 12.6% 100% 12.6% 270483 1.38e-02

δ = 0.2

Table 7.8: The top and middle table contain results for the right hand side f3,2 = h1 ⊗ h1 ⊗ 1. Just as in the
previous example, the bottom table corresponds to the roughened version D3/2f3,2.
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j ‖rj‖ #O P V M S Nad εP(y)
4 7.80e-03 0 0.0334% 0.0334% 0.229% 14.6% 717 2.96e-01
5 5.49e-03 6 0.0338% 0.92% 1.67% 55.1% 19750 1.46e-01
6 3.51e-03 6 0.0339% 6.71% 12.8% 52.4% 144043 7.40e-02
7 1.69e-03 7 0.034% 41.0% 100% 41.0% 880142 1.08e-02

δ = 0

δ = 0.01 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4
j #O S #O S #O S #O S #O S
4 0 14.6% 0 14.6% 0 14.6% 0 14.6% 0 14.6%
5 6 24.7% 6 16.0% 6 13.2% 6 11.1% 6 9.64%
6 6 15.5% 6 8.52% 6 6.5% 6 5.41% 6 4.58%
7 7 10.6% 7 4.9% 7 3.7% 7 3.03% 8 2.33%

j ‖rj‖ #O P V M S Nad εP(y)
4 7.80e-03 0 0.0334% 0.0334% 0.229% 14.6% 717 2.96e-01
5 5.89e-03 6 0.0338% 0.221% 1.67% 13.2% 4744 1.46e-01
6 3.40e-03 6 0.0339% 0.832% 12.8% 6.5% 17860 7.40e-02
7 1.76e-03 7 0.034% 3.7% 100% 3.7% 79427 1.09e-02

δ = 0.2

Table 7.9: Here the right hand side has been specified to f3,1 = h1 ⊗ 1 ⊗ 1, which is smooth with respect to the y
and z dimensions. The bottom table deals with the rough version D3/2f3,1.

layout as the tables for two dimensions. For Table 7.7, we have set the right hand side to f3,3 := h1⊗h1⊗h1,
which is isotropic and non-smooth in all dimensions. Table 7.8 contains results for the intermediate case
f3,2 := h1 ⊗ h1 ⊗ 1, and Table 7.9 corresponds to the anisotropic case f3,1 := h1 ⊗ 1 ⊗ 1, which is the
smoothest of these three examples. The last table on each page lists results for the roughened version
D3/2f3,i of the respective right hand side.

These tables consistently demonstrate that the isotropic and least smooth right hand side requires the
most degrees of freedom, while the smoothest and most anisotropic right hand side needs the fewest. The
intermediate right hand side yields values in between the two extreme cases. This demonstrates that the
adaptive strategy reacts to the smoothness in some of the three dimensions by a substantial elimination
of small coefficients. Altogether, the efficiency is substantially higher than for the above examples in two
dimensions.

The topmost tables on each page, which contain results for δ = 0, show only moderate differences in
percentage. The choice of δ = 0.2 however, for both the standard and the roughened right hand sides,
produces a greater variation of adaptive efficiency between the three examples. The percentage goes
down from around 20% over 13% to below 4%. This last example shows a gain in efficiency of a factor
10 by the introduction of the parameter δ. It is also the only one which exhibits a significant decrease
of the percentages with the level of resolution, which indicates superlinear convergence of the adaptive
approximation.

Conclusions

The numerical solution of a single elliptic system with our adaptive conjugate gradient method yields
the same convergence behaviour as the uniform discretisation scheme, with a significantly reduced count
of nonzero coefficients. The number of iterations on each level of resolution j stays constant, exactly as
in the uniform case. Convergence generally attains linear behaviour from about level j = 9 on, meaning
that the error in H1 is asymptotically proportional to 2−j .
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We have supplemented the adaptive algorithm with three additional coarsening steps in the inner loop of
the conjugate gradient routine, parametrised by δ ≥ 0. Values around δ = 0.2 have been found optimal
in the sense that they lead to a significant increase of efficiency without impairing the convergence. The
savings induced by this additional parameter become larger with higher spatial dimension.

We conclude that the adaptive method is most effective in two or three dimensions for several reasons.
Firstly, the cost in memory and computation time of uniform discretisations grows exponentially with the
dimension, making them unacceptably expensive already for relatively low levels of resolution. Secondly,
the potential to gain efficiency is larger compared to one dimension, since many samples of data may be
non-smooth in one direction, while exhibiting smoothness in another. Finally, the effect of the additional
coarsening parameter δ also grows with the dimension, enabling possibly large additional savings in the
computational cost.

7.4.2 Results for the Optimal Control Problem

After the studies of the solution of a single elliptic system with the adaptive conjugate gradient method
in the previous section, we finally discuss results of the full control problem in adaptive discretisation.
The supplemental adaption parameter δ is incorporated in both the inner as well as the outer elliptic
solvers just as specified in Algorithm 7.6. We continue to compare the unmodified case δ = 0 to the
setting δ = 0.2.

We examine combinations of data and parameters which have already been discussed in the context of
the uniform discretisation. Thereby we can compare the convergence behaviour of the adaptive algorithm
with the uniform case. The solutions of the adaptive computations are measured against the same uniform
high accuracy solutions which have been used as reference solutions in the previous chapter.

Additionally, we aim to measure the rate σ of error reduction with respect to the number of degrees of
freedom. In analogy to (7.3.3), it is defined by the relation

Nad ∼ ε−1/σ , (7.4.1)

where ε denotes the error in H1. For a uniform discretisation with piecewise linear wavelets, it holds that
N ∼ 2nj and ε ∼ 2−j , which yields a rate of σn = 1/n for smooth functions. In the following experiments,
we will determine the rate of the adaptive algorithm δ-AnIIcG/2 numerically.

Example 7.5 – One Dimension

We begin with results for the example problem 6.2 from the last chapter. Specifically, we choose f = h1

from (6.3.3), y∗ ≡ 0 and ω = 1. We compare the standard L2 case, that is s = t = 0, with natural norms,
defined by s = t = 1.

The results for U = Z = L2 are given in Table 7.10. We have added two columns which refer to the average
number of nonzero coefficients, namely the percentage S with respect to the uniform discretisation on
each level, and the absolute number Nad. As before, lower values of S stand for greater adaptive efficiency.

The iteration numbers are independent of the level, whereupon we observe slight fluctuations in the
amount of inner iterations and in the balance of iterations between the inner and outer loops. Up to level
12, we have one outer iteration per level which seems to reduce the residual far below the threshold of
2−j , with the effect that the residual only begins to change at level 13. The control exhibits the same
behaviour, the error already sets off rather low and stagnates until it begins to decrease further at level
13. The error in the state starts at a considerably higher value, but in contrast to the outer residual and
the control we can see a reduction by a factor 2 between levels almost from the coarsest level on. We
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j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 8.87e-03 1.63e-06
4 5.01e-06 1 0 0 0 0.0% 0 8.30e-03 1.63e-06
5 5.16e-06 1 0 0 0 0.0% 0 3.83e-03 1.63e-06
6 5.17e-06 1 0 0 0 0.0% 0 2.03e-03 1.63e-06
7 5.17e-06 1 1 0 0 54.7% 71 1.04e-03 1.63e-06
8 5.17e-06 1 1 0 1 21.9% 56 5.17e-04 1.63e-06
9 5.23e-06 1 2 0 4 66.3% 340 2.61e-04 1.63e-06

10 4.28e-06 1 4 0 4 51.7% 530 1.32e-04 1.63e-06
11 4.09e-06 1 5 0 4 52.6% 1079 6.79e-05 1.63e-06
12 4.01e-06 1 5 1 5 34.8% 1427 3.58e-05 1.63e-06
13 1.38e-06 2 4 0 4 43.0% 3521 1.66e-05 5.98e-07
14 6.42e-07 2 4 1 4 40.6% 6657 7.87e-06 3.33e-07
15 6.36e-07 1 5 3 5 28.7% 9400 4.14e-06 3.33e-07
16 8.52e-08 3 3 1 5 39.9% 26137 2.71e-06 8.45e-08

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 8.87e-03 1.63e-06
4 5.01e-06 1 0 0 0 0.0% 0 8.40e-03 1.63e-06
5 5.16e-06 1 0 0 0 0.0% 0 4.20e-03 1.63e-06
6 5.17e-06 1 0 0 0 0.0% 0 2.19e-03 1.63e-06
7 5.17e-06 1 1 0 0 21.5% 28 1.09e-03 1.63e-06
8 5.17e-06 1 1 0 1 15.9% 41 5.46e-04 1.63e-06
9 5.23e-06 1 2 0 4 11.7% 60 2.81e-04 1.63e-06

10 4.79e-06 1 4 0 4 15.1% 155 1.44e-04 1.63e-06
11 4.07e-06 1 5 0 5 15.1% 308 6.95e-05 1.63e-06
12 4.02e-06 1 5 1 5 12.8% 523 3.32e-05 1.63e-06
13 1.37e-06 2 4 0 6 6.4% 528 1.66e-05 1.60e-06
14 7.34e-07 2 4 1 5 7.3% 1196 8.27e-06 1.59e-06
15 4.81e-07 3 3 1 6 4.2% 1368 4.39e-06 1.59e-06
16 1.17e-07 4 4 1 5 3.9% 2563 2.73e-06 5.03e-07

σ ≈ 1.33

Table 7.10: We provide results for the adaptive control problem in one dimension with highest level J = 16, and
L2 norms for the state and the control. We have used the data f = h1 and y∗ ≡ 0. The regularisation has been
set to ω = 1. The top table corresponds to δ = 0, and the bottom table to δ = 0.2.
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attribute this behaviour to the strategy of nested iteration, which provides a sufficiently accurate solution
already at coarse levels at practically no cost, requiring only one outer iteration per level.

The effect of the parameter δ is twofold. Firstly, the iteration counts increase marginally on the higher
levels. Secondly, we find that the percentage of nonzero coefficients drops by a factor of 10 at the highest
level which is most significant with respect to numerical performance. This corresponds to a tenfold
reduction in memory and computing time compared to the unmodified version of the adaptive algorithm,
which is possible here since both y and u are smooth (see Figure 6.3 for graphs of these functions). The
rate σ is about 4

3 , which is significantly larger than the predicted value 1.

While L2 norms lead to smooth solution and control for these data, natural norms allow for singularities
in the control. The corresponding results are listed in Table 7.11. The top table uses ω = 1, and the
bottom table covers the case of vanishing regularisation ω = 0, which was inspected in the uniform setting
in Example 6.3.

The results are largely similar for both settings of ω. The iteration numbers increase in comparison
to L2 norms, notably the amount of inner iterations (this has been already observed for the uniform
discretisation). The error in the control starts at about the same order of magnitude as the error in
the solution, and both errors reduce in a more volatile manner than for the L2 case, still exhibiting an
average factor of reduction of 2 between levels. Only the error εP(y) for ω = 0 is close to zero, as the
state y converges to y∗ ≡ 0 here, and the coarsening operation truncates toward zero.

The introduction of the parameter δ reduces the average number of nonzero coefficients down to about
50%. For this case of natural norms, the control is less regular than for L2 norms, and hence more wavelet
coefficients on high levels are significant. The rate σ is still somewhat larger than 1, with values of about
1.1.

We have included additional results in Table 7.12, using the roughened right hand side f = h3 from
Figure 7.2 and a target y∗ = h2, with δ = 0.2. The top table contains data for s = t = 0, and the bottom
table for s = 1

2 , t = 0. The overall work in terms of iteration numbers lies between the previous two
examples of L2 norms and natural norms, respectively. As in the case for L2 norms and zero target, the
percentages reduce to values below 10%, with similar behaviour of the errors and iteration numbers. In
this example, the rates of convergence are largest with values close to 1.4.

Convergence plots for the one-dimensional results which have been obtained for the optimal control
problem up to this point are provided in Figure 7.4. The top two tables show the decay of the errors
εP(y) and εP(u). Here the graph for the state y for ω = 0 is not shown because it is very close to zero (see
above discussion). Also excluded is the control u for L2 norms, which already starts off at a very small
error, which does not decrease further during the simulation. The remaining graphs demonstrate the
theoretically predicted slope of 1. The last table displays the target error ηj = 2−j versus Nad, showing
the rates of adaptive approximation σ > 1.

In summary, we state that our adaptive algorithm for the optimal control problem converges with the
same rate of error reduction as the algorithm in uniform discretisation. The number of inner and outer
iterations are again constant on average, that is, independent of the level of resolution. The savings in
computational complexity compared to the full grid range from a factor of over 20 for smooth functions
and L2 norms to about 2 in the case of natural norms and singular control. The convergence rate σ of
the average number of nonzero coefficients Nad is superlinear in all examples.

To illustrate the distributions of coefficients, we have collected some graphical representations. Figure 7.5
deals with our well-known example with f = h1 from (6.3.3) and y∗ ≡ 0, for the L2 case and for natural
norms. It can be seen that the peak in the right hand side at x = 1

2 is reflected in the pictures. Moreover,
they demonstrate that the computational cost is indeed significantly reduced compared to the uniform
algorithm nIIcG/2, and that the wavelet approach utilises different distributions of coefficients for different
variables.
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j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 5.25e-03 1.04e-03
4 2.94e-04 4 10 10 7 90.4% 15 4.48e-03 5.64e-04
5 2.31e-04 4 13 10 8 88.2% 29 3.66e-03 3.01e-04
6 6.23e-05 6 13 9 8 83.8% 54 1.90e-03 9.59e-05
7 4.85e-05 4 12 9 8 82.1% 106 9.72e-04 6.21e-05
8 1.33e-05 6 11 8 7 82.2% 211 4.77e-04 3.54e-05
9 1.62e-05 5 11 9 9 76.3% 391 2.41e-04 1.26e-05

10 7.56e-06 5 11 10 9 73.2% 751 1.22e-04 1.16e-05
11 2.36e-06 6 11 9 9 66.0% 1352 6.30e-05 3.81e-06
12 1.94e-06 5 10 9 9 61.5% 2519 3.14e-05 1.86e-06
13 9.90e-07 5 11 9 9 59.5% 4871 1.68e-05 1.19e-06
14 2.63e-07 6 11 9 9 57.8% 9470 7.82e-06 4.66e-07
15 2.31e-07 4 12 9 9 52.4% 17185 3.99e-06 2.21e-07
16 1.34e-07 5 11 9 9 54.7% 35832 2.29e-06 6.35e-08

σ ≈ 1.08

j ‖rj‖ #O #E #A S Nad εP(y) εP(u)
3 3.23e-03 2.09e-03
4 1.05e-03 2 10 8 94.1% 16 2.24e-11 1.59e-03
5 5.83e-04 3 13 10 91.1% 30 2.24e-11 8.72e-04
6 2.03e-04 4 13 8 86.0% 56 2.24e-11 3.17e-04
7 1.70e-04 3 14 8 82.1% 106 2.24e-11 1.72e-04
8 9.10e-05 3 12 9 81.0% 208 2.24e-11 1.23e-04
9 2.38e-05 5 11 7 77.5% 398 2.24e-11 2.17e-05

10 2.19e-05 1 15 12 69.1% 708 2.24e-11 2.17e-05
11 1.11e-05 3 12 10 69.8% 1430 2.24e-11 1.32e-05
12 3.19e-06 5 10 9 62.8% 2571 2.24e-11 3.37e-06
13 1.78e-06 3 11 9 59.0% 4832 2.24e-11 2.33e-06
14 1.27e-06 3 10 10 55.1% 9025 2.24e-11 1.52e-06
15 4.99e-07 4 10 9 48.5% 15877 2.24e-11 5.32e-07
16 2.81e-07 3 10 9 52.3% 34281 2.24e-11 3.67e-07

σ ≈ 1.09

Table 7.11: These results have been obtained in the same scenario as those in the table on the previous page, but
with natural norms instead (s = t = 1). The top table has been computed with ω = 1, and the bottom table with
ω = 0. Both use the parameter δ = 0.2.
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j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 8.45e-03 7.34e-05
4 1.87e-04 1 2 1 3 60.3% 10 7.91e-03 7.34e-05
5 1.68e-04 1 5 1 5 65.5% 22 4.23e-03 7.34e-05
6 1.52e-04 1 7 2 5 61.2% 40 2.10e-03 7.34e-05
7 1.48e-04 1 7 3 5 58.4% 75 1.09e-03 7.34e-05
8 5.96e-05 2 4 2 6 41.4% 106 5.59e-04 7.26e-05
9 2.85e-05 3 5 3 5 28.7% 147 2.82e-04 7.20e-05

10 1.34e-05 4 6 2 6 23.7% 243 1.46e-04 1.70e-05
11 6.38e-06 3 5 3 5 20.2% 415 7.58e-05 1.69e-05
12 2.45e-06 4 6 2 5 14.0% 574 3.80e-05 1.69e-05
13 2.45e-06 4 6 2 5 15.3% 1252 1.85e-05 3.32e-06
14 1.39e-06 3 6 3 5 14.4% 2354 9.24e-06 3.20e-06
15 5.23e-07 4 6 2 5 10.3% 3380 4.83e-06 2.12e-06
16 1.99e-07 5 6 2 5 8.2% 5343 3.03e-06 7.02e-07

σ ≈ 1.36

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 8.41e-03 3.15e-04
4 3.77e-04 1 2 1 5 69.0% 12 7.87e-03 3.15e-04
5 3.84e-04 1 3 1 5 74.2% 24 4.19e-03 3.15e-04
6 2.37e-04 2 4 2 6 55.0% 36 2.09e-03 3.16e-04
7 1.41e-04 3 4 1 6 49.2% 63 1.10e-03 3.15e-04
8 6.11e-05 4 6 1 7 41.1% 106 5.58e-04 1.45e-04
9 2.21e-05 4 4 2 6 34.5% 177 2.86e-04 1.20e-04

10 2.05e-05 4 6 2 5 28.3% 290 1.47e-04 5.03e-05
11 7.55e-06 4 4 2 6 25.4% 520 7.70e-05 2.30e-05
12 4.24e-06 4 3 2 6 18.8% 769 3.78e-05 1.55e-05
13 2.55e-06 4 4 2 6 16.6% 1364 1.85e-05 8.24e-06
14 8.41e-07 5 3 2 5 10.7% 1745 9.26e-06 5.08e-06
15 5.10e-07 5 4 2 5 10.0% 3291 4.81e-06 2.46e-06
16 2.10e-07 5 4 2 5 7.7% 5038 3.08e-06 1.08e-06

σ ≈ 1.39

Table 7.12: These tables correspond to the data f = h3 and y∗ = h2, computed with δ = 0.2. The top table
contains results for s = t = 0, and the bottom table for s = 1

2
, t = 0.
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Figure 7.4: We show convergence plots for the experiments in one dimension, cf. Table 7.10, Table 7.11 and
Table 7.12. The top and middle pictures contain the errors εP(y) and εP(u) of the state and the control, respectively.
Both are plotted versus the outer residual ‖rj‖, exhibiting a slope slightly greater than 1 for the state, and slightly
less than 1 for the control. The bottom table shows the relation between the error ηj = 2−j and the average number
of nonzero coefficients Nad.
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Figure 7.5: We show distributions of wavelet coefficients with f = h1, shown in the topmost graph, and y∗ ≡ 0.
The left column of pictures corresponds to s = t = 0, and the right column to s = t = 1. The three rows contain
from top to bottom the state y, the adjoint p and the control u. The control on the left consists purely of generator
functions, hence no wavelet coefficients show up.
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Figure 7.6: We show graphics of wavelet coefficients for the combination of f = h1 and y∗ = h2 from (6.3.5) as
shown in the top picture. The three rows of pictures contain the state (top), the adjoint (middle) and the control
(bottom), for two combinations of regularities, namely s = t = 0 for the left column and s = t = 1

5
for the right.
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Figure 7.7: As in the previous figures, we display two sets of three images each, containing the state in the top
row, the adjoint in the middle and the control in the bottom row. These have been computed for the same f and
y∗ as in Figure 7.6. The regularity parameters s and t have been set to 1

2
(left) and 1 (right).

171



Chapter 7. An Adaptive Wavelet Method for the Control Problem

In Figure 7.6 and Figure 7.7, we have kept f = h1 as before and added y∗ = h2 from (6.3.5). We present
four sets of results, arranged column-wise, for the smoothness parameters s = t = 0, 1

5 , 1
2 and 1. The

increase of s and t has the effect that all variables develop a singular character, as has also been observed
with the uniform discretisation. Moreover, the patterns of coefficients become denser as the represented
functions get sharper, and spread to higher levels when s and t go to 1. The state and the adjoint
feature many small coefficients (coloured blue), which we explain with a pessimistic overestimation in the
postprocessing.

Furthermore we observe that the singularity of the target y∗ at x = 1
3 is mirrored by the coefficients of

the adjoint p. The state y shows the singularity of the right hand side f at x = 1
2 , except for natural

norms, where it is similar to p. The control acts as a sort of compromise between the state and adjoint
variables. The control also shows the strongest change in character for varying smoothness. For the L2

case, it is almost perfectly smooth, while it develops irregular patterns of coefficients around s = t = 1
2

and features the single peak from y∗ for natural norms.

The sets of coefficients differ characteristically, both among the three variables y, p and u of one run,
and also between runs with varying regularities. Thus, the type of wavelet algorithm presented here
inherently creates separate adjustments of the adaptive index sets for the different variables. To our
knowledge, this feature is unique to the wavelet ansatz, since in finite element methods all variables are
discretised on the same grid.

Example 7.6 – Two Dimensions

In two spatial dimensions, we first study the control problem in L2 norms for an isotropic and an
anisotropic tensor combination of the right hand side, and a target function y∗ ≡ 0. The maximum level
of resolution has been specified to J = 10.

The layout of the tables is the same for these and all following results, also in three dimensions. Each
type of right hand side f leads to a set of three tables, which contain from top to bottom the results for
the original f and y∗ ≡ 0, then for D3/2f and y∗ ≡ 0, and finally for D3/2f and a target y∗ built from a
tensor product of the function h2 (6.3.5) analogously to f . The first two tables use s = t = 0, and the
third s = 1

2 , t = 0. All of them are computed with δ = 0.2.

The results for the isotropic right hand side f2,2 := h1 ⊗ h1 are given in Table 7.13. The convergence
behaviour is very similar to the one-dimensional case which was presented in Table 7.10. Namely, the
state y exhibits a reduction of error by a factor 2 per level in agreement with the theory, while the error
in the control u is small from the lowest level on. In the first two simulations, one outer iteration suffices
to reduce the residual and the error in u to a value far smaller than the discretisation error. The number
of inner iterations for all tables and the number of outer iterations for the last increase with the level
shown here. We expect that the asymptotic regime of constant iteration counts begins around level 9 to
10, as it was the case in one dimension.

The effect of δ is also clearly visible in the first two tables, where the percentages of nonzero coefficients
are reduced below 10%. As before, the rough right hand side in the second table does not influence the
convergence behaviour. The case of non-smooth y∗ in the third table is the most expensive, as can be
seen from the iteration numbers and an end percentage of just below 30%. All tables exhibit the same
adaptive rate of 0.55, which is above 1/n = 1/2.

In Table 7.14, we have chosen the anisotropic right hand side f2,1 := h1 ⊗ 1. The convergence history is
much the same as for isotropic data, where also the residual and the error in the control already begin
with small values. The error in the state decays constantly by a factor of about 2 between levels. The
number of inner iterations increases also in this example, hinting that the asymptotic regime has not yet
been reached with J = 10.
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j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.37e-02 3.05e-06
4 8.95e-06 1 1 0 1 13.9% 40 1.03e-02 3.05e-06
5 9.24e-06 1 1 0 3 25.7% 280 5.20e-03 3.05e-06
6 9.40e-06 1 2 0 5 17.2% 725 2.58e-03 3.05e-06
7 9.44e-06 1 3 0 6 15.4% 2568 1.28e-03 3.05e-06
8 9.48e-06 1 5 0 7 14.7% 9715 6.44e-04 3.05e-06
9 8.16e-06 1 5 0 12 10.5% 27710 3.09e-04 3.05e-06

10 7.33e-06 1 6 1 12 9.8% 102851 1.18e-04 3.05e-06
σ ≈ 0.55

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.32e-02 3.36e-06
4 8.91e-06 1 1 0 1 13.9% 40 1.02e-02 3.36e-06
5 9.20e-06 1 1 0 3 25.6% 279 5.09e-03 3.36e-06
6 9.35e-06 1 2 0 5 17.0% 718 2.56e-03 3.36e-06
7 9.40e-06 1 3 0 6 15.4% 2568 1.31e-03 3.36e-06
8 9.44e-06 1 5 0 7 14.6% 9638 6.75e-04 3.36e-06
9 8.11e-06 1 5 0 12 10.4% 27447 3.24e-04 3.36e-06

10 7.28e-06 1 6 1 12 9.8% 103182 1.25e-04 3.36e-06
σ ≈ 0.55

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.31e-02 2.19e-04
4 3.09e-04 1 6 1 11 54.0% 156 1.02e-02 2.19e-04
5 3.55e-04 1 6 2 11 49.0% 534 5.08e-03 2.19e-04
6 1.80e-04 4 4 1 20 51.6% 2182 2.55e-03 2.19e-04
7 1.22e-04 6 6 1 21 43.1% 7169 1.31e-03 2.19e-04
8 5.61e-05 8 8 1 23 36.0% 23745 6.73e-04 2.19e-04
9 2.22e-05 10 9 1 23 30.6% 80525 3.33e-04 1.55e-04

10 1.15e-05 12 9 2 24 27.6% 289790 1.25e-04 1.07e-04
σ ≈ 0.55

Table 7.13: Results for the adaptive algorithm for the control problem in two dimensions are given here. The right
hand side for the top table has been set to the tensor product f2,2 = h1 ⊗ h1. The two lower tables use the rough
version D3/2f2,2. All tables have been computed with y∗ ≡ 0, s = t = 0 and δ = 0.2, with the exception of the last
which deviates in the parameter s = 1

2
and the non-smooth target y∗ = h2 ⊗ h2. The diagram above shows the

convergence history with respect to Nad, where examples 1 to 3 denote the three tables from top to bottom.
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10−4

0.001

0.01

ηj

10 100 1000 10000 100000 Nad

Ex. 1
Ex. 2
Ex. 3

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 8.04e-03 1.62e-06
4 5.31e-06 1 0 0 0 0.0% 0 7.24e-03 1.62e-06
5 5.47e-06 1 1 0 1 7.8% 85 4.42e-03 1.62e-06
6 5.48e-06 1 1 0 3 9.2% 389 2.15e-03 1.62e-06
7 5.57e-06 1 2 0 5 5.8% 960 1.07e-03 1.62e-06
8 5.64e-06 1 4 0 7 5.5% 3609 5.32e-04 1.62e-06
9 5.55e-06 1 5 0 10 4.8% 12720 2.53e-04 1.62e-06

10 4.73e-06 1 7 0 10 5.1% 53953 1.15e-04 1.62e-06
σ ≈ 0.55

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 7.72e-03 1.64e-06
4 5.29e-06 1 0 0 0 0.0% 0 7.07e-03 1.64e-06
5 5.44e-06 1 1 0 1 7.8% 84 4.27e-03 1.64e-06
6 5.46e-06 1 1 0 3 9.1% 386 2.16e-03 1.64e-06
7 5.54e-06 1 2 0 5 5.8% 960 1.07e-03 1.64e-06
8 5.61e-06 1 4 0 7 5.5% 3609 5.47e-04 1.64e-06
9 5.53e-06 1 5 0 10 4.8% 12720 2.67e-04 1.64e-06

10 4.70e-06 1 7 0 10 5.1% 53335 1.26e-04 1.64e-06
σ ≈ 0.55

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 7.66e-03 1.05e-04
4 2.18e-04 1 5 1 12 54.5% 158 7.02e-03 1.05e-04
5 2.12e-04 1 8 2 12 46.2% 503 4.30e-03 1.05e-04
6 2.03e-04 1 8 3 12 41.4% 1748 2.16e-03 1.05e-04
7 1.14e-04 3 5 1 18 32.6% 5431 1.06e-03 1.05e-04
8 5.08e-05 6 7 2 21 30.2% 19949 5.44e-04 1.04e-04
9 2.52e-05 8 9 1 20 23.1% 60790 2.71e-04 9.11e-05

10 1.14e-05 10 8 1 21 19.0% 199271 1.27e-04 5.37e-05
σ ≈ 0.58

Table 7.14: We list the results of the two-dimensional control problem, this time with an anisotropic right hand
side of f2,1 = h1 ⊗ 1. The target for the last run has been selected as y∗ = h2 ⊗ 1. All other parameters and data
for these three experiments are the same as in the previous table.

174



7.4. Numerical Results

Because of the smoothness of f in one direction, the effect of δ is strongest here. The percentage of
nonzero coefficients goes down to about 5% for this right hand side. This is only half the percentage
compared to the isotropic right hand side discussed above. Also the last row of the table, corresponding
to the target y∗ = h2 ⊗ 1, shows lower percentages of about 20%. The rates are again significantly over
1/2.

We have also created graphical representations of the arrangement of wavelet coefficients in two di-
mensions. For Figure 7.8, we have chosen the parameters s = 1, t = 0 and the tensor product data
f2,2 = h1⊗h1 and y∗ = 1⊗h2. As discussed in Section 2.3.3, n-dimensional tensor product wavelet bases
consist of 2n − 1 types of wavelets indexed by e. In two dimensions, we obtain three types e = (1, 0),
(0, 1) and (1, 1), which measure the oscillations in the coordinate directions x1 and x2 and the mixed
portion x1x2, respectively. To demonstrate the reaction of the adaptive wavelet scheme to the tensor
product structure of the data, we have displayed the type (1, 0) in the left column, and the type (0, 1) in
the right column. As in the one-dimensional figures, we have arranged the state y, the adjoint p and the
control u from top to bottom.

Because of the x2-dependence of the target y∗, the wavelets of the type (0, 1) are much more active in
this example. The singular line along x2 = 1

3 can be clearly seen in all pictures in the right hand column.
The dependence on the x1 coordinate is only weakly introduced through the right hand side f , causing
minor variations of the plots in the left column. The diagrams for the mixed type (1, 1) (not shown here)
are completely empty for all variables, an indication for the strong tensor product nature of the data.
This example is especially instructive with respect to the wavelet-specific resolution of not only different
functions, but also different types of wavelets for the same function via different index sets. In other
words, adaptive wavelet methods automatically include a dimension-adaptive concept.

For the last example, shown in Figure 7.9, we have selected a rotationally symmetric target with a circular
singularity. In this case, the graphs for the types (1, 0) and (0, 1) are identical subject to a rotation of 90
degrees. The wavelets of mixed type (1, 1) for the adjoint and the control are displayed in Figure 7.10,
they are both invariant under rotations of 90 degrees. Thus, the symmetry properties of the data directly
control the symmetries of the solution. Moreover, the circular line of the singularity shows up in both the
adjoint and the control for all types of wavelets. This is an instructive example of adaptive refinement, in
the sense that singularities are resolved locally for greater accuracy, while as few coefficients as possible
are spent on smooth parts of the solution.

Example 7.7 – Three Dimensions

As for the single elliptic system in three spatial dimensions, we cover the right hand sides f3,3 := h1 ⊗
h1⊗h1, f3,2 := h1⊗h1⊗ 1 and f3,1 := h1⊗ 1⊗ 1 to study the effect of anisotropy on the efficiency of the
adaptive method. The layout of the corresponding listings in Table 7.15, Table 7.16 and Table 7.17 is
the same as for the experiments in two dimensions. The top and middle table on each page correspond
to s = t = 0 and y∗ ≡ 0, and the bottom table to s = 1

2 , t = 0 and a target y∗ which is constructed by a
tensor combination of h2. The middle and bottom table have been computed with the rough right hand
sides D3/2f3,i, and we have used δ = 0.2 throughout our simulations.

The results show the same tendencies as for the two-dimensional case. Namely, the unmodified right hand
sides f3,i lead to very similar convergence behaviour as their rough versions, the case of non-smooth target
y∗ and s = 1

2 is several times as expensive as the setting y∗ ≡ 0, and smoother right hand sides generally
need fewer nonzero coefficients provided that all other parameters are equal. However, the maximum
level J = 7 in three dimensions does not allow to examine the asymptotic regime. Nonetheless we suppose
in accordance with previous results that the iteration numbers per level are eventually constant and that
the order of adaptive approximation is slightly higher than 1/n = 1/3.
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Figure 7.8: We show two-dimensional results for a right hand side f2,2 = h1 ⊗ h1 and an anisotropic target
y∗ = 1 ⊗ h2 using the one-dimensional function h2 from (6.3.5). The target is shown in the topmost graph. The
three rows contain the state y, the adjoint p and the control u as in the previous plots. The left column displays
the wavelets of type (1, 0), and the right column the type (0, 1).
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Figure 7.9: We have repeated the previous set of two-dimensional experiments with the rotationally symmetric
target function y∗ as shown above. Again, the rows hold the state, the adjoint and the control, and the columns
show the tensor product wavelets of types (1, 0) and (0, 1), respectively. The circular structure of the target is
mirrored in the arrangement of coefficients.
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0.001

0.01

ηj

1000 10000 100000 106 Nad

Ex. 1
Ex. 2
Ex. 3

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.80e-02 5.48e-06
4 1.43e-05 1 1 0 7 24.5% 1204 1.19e-02 5.48e-06
5 1.46e-05 1 5 0 14 20.7% 7450 5.82e-03 5.48e-06
6 1.46e-05 1 5 0 14 20.2% 55373 2.75e-03 5.48e-06
7 1.47e-05 1 6 0 17 17.3% 372031 1.02e-03 5.48e-06

σ ≈ 0.36

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.73e-02 5.54e-06
4 1.43e-05 1 1 0 11 25.2% 1236 1.17e-02 5.54e-06
5 1.46e-05 1 5 0 14 21.5% 7715 5.74e-03 5.54e-06
6 1.46e-05 1 5 0 14 19.0% 52135 2.75e-03 5.54e-06
7 1.46e-05 1 6 0 17 16.2% 347670 1.02e-03 5.54e-06

σ ≈ 0.37

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.72e-02 1.31e-04
4 2.17e-04 1 10 1 28 42.9% 2106 1.17e-02 1.31e-04
5 2.45e-04 1 10 2 34 28.3% 10167 5.73e-03 1.31e-04
6 1.66e-04 7 10 0 72 56.2% 154473 2.75e-03 1.30e-04
7 9.46e-05 14 10 0 78 55.0% 1180143 1.02e-03 1.30e-04

σ ≈ 0.32

Table 7.15: These results of the adaptive algorithm for the control problem in three dimensions have been obtained
with the isotropic and non-smooth right hand side f3,3. The first two tables use s = t = 0 and y∗ ≡ 0, while the
last table contains data for s = 1

2
, t = 0 and y∗ = h2 ⊗ h2 ⊗ h2. Tables two and three use the rough right hand

side D3/2f3,3. As in two dimensions, the convergence history is displayed in the top figure.
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0.001

0.01

ηj

100 1000 10000 100000 106 Nad

Ex. 1
Ex. 2
Ex. 3

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.22e-02 4.97e-06
4 9.73e-06 1 1 0 4 19.6% 961 9.69e-03 4.97e-06
5 1.01e-05 1 2 0 11 15.1% 5424 4.94e-03 4.97e-06
6 1.00e-05 1 5 0 13 11.8% 32314 2.32e-03 4.97e-06
7 1.00e-05 1 5 0 13 10.9% 234347 9.99e-04 4.97e-06

σ ≈ 0.38

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.17e-02 4.92e-06
4 9.69e-06 1 1 0 4 19.4% 952 9.56e-03 4.92e-06
5 9.98e-06 1 2 0 14 14.9% 5373 4.80e-03 4.92e-06
6 9.98e-06 1 5 0 14 11.6% 31813 2.35e-03 4.92e-06
7 9.97e-06 1 5 0 14 10.9% 233763 1.00e-03 4.92e-06

σ ≈ 0.38

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 1.16e-02 2.11e-04
4 3.21e-04 1 10 1 35 36.0% 1768 9.55e-03 2.11e-04
5 3.80e-04 1 11 2 35 26.8% 9648 4.79e-03 2.11e-04
6 1.65e-04 11 11 0 79 61.0% 167454 2.35e-03 2.10e-04
7 8.27e-05 16 11 1 81 56.3% 1209416 1.00e-03 2.10e-04

σ ≈ 0.31

Table 7.16: These results in three dimensions have been obtained with the right hand side f3,2 = h1 ⊗ h1 ⊗ 1.
The target for the last row has been selected as y∗ = h2 ⊗ h2 ⊗ 1. All other characteristics are the same as in the
previous table. In particular, the last two tables correspond to the rough right hand side D3/2f3,2.
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0.001

0.01

ηj

100 1000 10000 100000 Nad

Ex. 1
Ex. 2
Ex. 3

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 7.14e-03 2.60e-06
4 5.65e-06 1 1 0 3 12.3% 603 6.24e-03 2.60e-06
5 5.85e-06 1 2 0 5 8.4% 3003 4.30e-03 2.60e-06
6 5.90e-06 1 3 0 8 5.8% 15903 2.02e-03 2.60e-06
7 5.89e-06 1 6 0 13 3.7% 78976 9.63e-04 2.60e-06

σ ≈ 0.43

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 6.86e-03 2.56e-06
4 5.62e-06 1 1 0 3 12.4% 608 6.02e-03 2.56e-06
5 5.88e-06 1 2 0 8 7.4% 2674 4.27e-03 2.56e-06
6 5.88e-06 1 3 0 10 5.3% 14576 2.05e-03 2.56e-06
7 5.86e-06 1 6 0 12 3.6% 77281 9.65e-04 2.56e-06

σ ≈ 0.43

j ‖rj‖ #O #E #A #R S Nad εP(y) εP(u)
3 6.82e-03 4.58e-05
4 1.72e-04 1 9 2 29 40.6% 1996 5.90e-03 4.58e-05
5 1.39e-04 1 11 2 29 30.6% 11005 4.27e-03 4.58e-05
6 1.18e-04 1 11 4 29 25.1% 69024 2.05e-03 4.58e-05
7 7.41e-05 5 11 2 60 31.8% 681610 9.45e-04 4.45e-05

σ ≈ 0.36

Table 7.17: This table covers the anisotropic situation with right hand side f3,1 = h1 ⊗ 1 ⊗ 1. The target for the
first two tables is again y∗ ≡ 0, while the last table utilises y∗ = h2 ⊗ 1⊗ 1. All other settings are the same as for
the previous two sets of results in three dimensions. In particular, the last two tables utilise the function D3/2f3,1.

180



7.4. Numerical Results
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Figure 7.10: This figure shows the distribution of coefficients of the mixed type of wavelet e = (1, 1) for the adjoint
(left) and the control (right). The corresponding diagram for the state is not shown here, since it does not contain
any coefficients for j ≥ 4. These graphics belong to the experiment from Figure 7.9.

Conclusion

In this chapter we have briefly presented the theoretical background of adaptive wavelet methods. We
have then motivated the routines Coarse to reduce the number of coefficients of an adaptive wavelet ex-
pansion, and the routine Ad-Apply which computes an adaptive matrix-vector product. Both are derived
from nonlinear approximation theory and provide strict error control. We have then incorporated these
routines into our algorithm nIIcG/2 developed in the previous chapter, carefully combining the thresholds
from the two-layer conjugate gradient algorithm with the error bounds from the newly introduced adap-
tive routines. The result is the adaptive algorithm δ-AnIIcG/2, fully specified with rigorously derived
tolerances.

Adaptive finite element methods generally use repeated cycles comprised of the substeps solution, esti-
mation and refinement. Our method is different in the sense that these operations are essentially merged
in a unified way. The adaptive index sets of all involved variables fluctuate during the course of the inner
iterative solvers for the elliptic subproblems. For the solution of the optimal control problem, this ansatz
allows us to resolve all variables with individual, different sets of coefficients. This includes the principal
variables y, p and u, and also the auxiliary variables used in the method of conjugate gradients.

We found experimentally that the adaptive wavelet scheme δ-AnIIcG/2 retains the convergence behaviour
from nIIcG/2, that is, the H1 errors of the state reduce with the level of resolution as 2−j . Moreover,
the numbers of inner and outer iterations are constant across all levels of resolution in one dimension.
Although the asymptotic regime is not reached for two and three dimensions, the similarity of the iter-
ation histories to the one-dimensional case suggests that the computational complexity is also linear for
higher dimensions. Altogether, the results indicate that the two-layer nested iteration scheme originally
conceived for the uniform algorithm works with optimal complexity also in the adaptive context.

We have estimated the effective adaptive efficiency of our method via the average percentage of nonzero
coefficients with respect to the cardinality of the full uniform index set. Hereby the averaging process
comprises the solution of the three elliptic systems of equations in the inner loop of the scheme, which
accounts for the predominant fraction of the computational cost. We have found that this quantity could
be significantly reduced by the introduction of additional routines Coarse for the three auxiliary variables
of the inner conjugate gradient loop. The effect of these routines is controlled by the parameter δ ≥ 0.
While setting δ = 0 effectively disables the additional coarsening steps, higher values than about 0.3 to
0.5 impair the convergence of the scheme. Yet, in all situations we could find a sensible intermediate
choice of δ, yielding an increased adaptive efficiency with no impact on the speed of convergence. In
several non-trivial situations, the memory requirements were reduced by an order of magnitude. The
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convergence of the error with respect to the degrees of freedom has been found to be superlinear, with
strongest evidence for this fact in one dimension.

The qualitative behaviour of our method meets all expectations which we have deduced from general
wavelet theory and the experiments with the uniform algorithm from Chapter 6. Namely, constant data
are automatically handled by only the single-scale coefficients, and smooth functions are represented by
very few wavelet coefficients. L2 norms in the objective functional generally lead to a smooth solution
and control, requiring a small number of wavelet coefficients. When tuning the norms towards H1 for
the state and H−1 for the control, all variables including the adjoint exhibit locally higher resolutions
around the singularities induced by the data f and y∗. Finally, we can observe that the variables y,
p and u are resolved with clearly different index sets, which depend on the data and the smoothness
parameters s and t. The adaptive method also resolves anisotropic singularities, where smoothness is
given in one coordinate direction and not in the other. Thus, the adaptive wavelet scheme automatically
and effectively exploits the potential inherent in many practical selections of data, namely, to reduce the
number of coefficients without losing accuracy.

While the thoughtful combination of adaptive wavelet operations with a two-layer conjugate gradient
method and a nested iteration strategy has indeed proved successful for the examples considered here,
they also serve as motivation for further considerations and theoretical studies. On the one hand, the
analysis of the interplay of the solution of the inner and outer systems, and their dependence on the
various coarsening parameters, might lead to novel algorithmic improvements. On the other hand, the
following subjects of possible future research arise not only in the context of adaptive wavelet methods
for elliptic optimal control problems, but also for more general adaptive numerical schemes.

• Investigate inexact Krylov subspace methods, where an error is not only introduced in the applica-
tion of the matrix, but also for one or more auxiliary variables in the inner loop.

• Study adaptive wavelet approximation in the context of Krylov methods, and examine statements
on the convergence rate. In particular, establish connections between the smoothness of solutions
measured a-priori in `wτ and the error reduction rate N−σ .

• Examine in which way and under which circumstances the convergence rates predicted by the ideal
wavelet algorithm from Section 7.3.1 can be reproduced by the algorithm δ-AnIIcG/2.

Altogether, we have collected various results which indicate that adaptive wavelet discretisations provide
a sophisticated, powerful and flexible tool for the efficient large-scale numerical solution of the type of
PDE-constrained control problem considered in this thesis.
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Chapter 8

Conclusion and Outlook

In this thesis we have developed a wavelet method for the fast numerical solution of linear-quadratic
elliptic optimal control problems, this is, the solution is computed with a computational effort which is
proportional to the number of unknowns NJ on the highest level of resolution J . We have then provided
extensive numerical results in one to three spatial dimensions for various combinations of parameters and
data, analysing both a uniform and an adaptive discretisation strategy.

The starting point has been the reformulation of the control problem following the wavelet paradigm.
Here the key mechanism is the systematic use of norm equivalences, which lead to an equivalent, infinite-
dimensional multi-scale representation of the problem in terms of vectors in `2. Specifically, we have used
an optimised construction of biorthogonal B-spline wavelets. The norm equivalence guarantees uniformly
bounded condition numbers of all elliptic operators, and allows the fast numerical evaluation of Sobolev
norms of arbitrary smoothness s ∈ R by appropriate Riesz matrices Rs. We have designed a novel
unified construction of these Riesz matrices, which is exact for positive and negative integral orders of
smoothness, and for arbitrary norms of constant functions. For the general fractional case, we interpolate
the norms equivalently between the nearest integers with a continuous dependence on the smoothness s.

Based on the wavelet formulation, we have devised the two-layer nested iteration inexact conjugate gra-
dient scheme nIIcG/2, shown in Algorithm 6.6. All error bounds and stopping criteria for its subroutines
have been rigorously derived from the bounds of the involved operators in wavelet representation. The
nested iteration approach allows to compute the solution up to discretisation error accuracy with a
constant amount of iterations per level of resolution, yielding an optimal computational complexity of
O(NJ).

We have accelerated the numerical solution process by several optimisations which considerably reduce
the condition numbers of wavelet bases and elliptic operators. In particular, we have introduced transfor-
mations of the generator and wavelet bases to the nodal basis to derive a translationally invariant form of
the refinement matrices Mj , and we use the diagonal Da of the stiffness matrix in wavelet representation
for the scaling of the wavelets. Furthermore, we have devised an additional preconditioning technique by
analysing and shifting the eigenvalues of the stiffness matrix on the coarsest level. —

The first set of results in Chapter 6 has been obtained with the numerical wavelet scheme in uniform
discretisation. Out of the variety of possible combinations of the independent modelling parameters s, t
and ω with different choices of data f and y∗, we have inspected several exemplary cases, for one to three
spatial dimensions. First of all, we find that the theoretically predicted convergence behaviour of the
inexact conjugate gradient scheme is confirmed in all situations for which the problem is well-posed. That
is, we observe iteration counts which are constant across all levels of resolution. Moreover, the absolute
iteration numbers have been substantially reduced by means of our optimised wavelet construction.
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We also confirm that the introduction of the parameters s and t, which is made possible within the
wavelet framework, leads to a much richer behaviour of the model compared to the standard approach
with L2 norms in the objective functional and the single parameter ω. While ω acts as a global scaling
between the state y and the control u, the parameters s and t govern the smoothness of y and u, and
thus affect the character of these functions. Varying for example s between 0 and 1, the state transforms
continuously from an average tracking of the target y∗ towards a qualitative match of its shape.

When the regularity of the data is less than required by the objective functional, convergence slows
down slightly, but is otherwise unharmed, which indicates that the method is robust with respect to non-
conforming choices of parameters and data. Only the inadmissible combination of vanishing regularisation
ω = 0 and non-natural norms of smoothness s, t 6= 1 has been observed to provoke a deviation of the
solution.

The model contains the possibility of using negative fractional Sobolev norms for the control u. For
these cases we observe that u develops small systematic oscillations, which we interpret as effects of the
discretisation introduced by the construction of inverse Riesz operators. Applying an averaging process,
the shape of the control would interpolate continuously between the situations with integer norms on L2

and H−1. —

In Chapter 7, we have designed an adaptive wavelet algorithm by incorporating techniques from adaptive
wavelet methods for stationary variational problems into the algorithm nIIcG/2. The newly introduced
adaptive routines are designed to guarantee strict error bounds for their output variables. We systemati-
cally integrate these bounds with the tolerances of the original algorithm to specify the adaptive algorithm
AnIIcG/2. Analogously to the uniform discretisation scheme, we predict the independence of the iteration
numbers on the level of resolution by reusing results on inexact Krylov methods.

Thereafter, we introduce additional coarsening operations in the inner loop of the conjugate gradient
scheme, leading to the final adaptive algorithm δ-AnIIcG/2. On the one hand, this is the key to a
significant gain in the adaptive efficiency. On the other hand, it complicates the mathematical analysis of
adaptive wavelet schemes in conjunction with Krylov subspace methods, for which presently no theoretical
results on convergence and convergence rates exist. To inspect the qualitative and quantitative behaviour,
and to judge the practical suitability of the adaptive algorithm, it is therefore indispensable to undertake
extensive numerical studies with respect to convergence and adaptive efficiency.

We observe in our accordingly designed experiments that the iteration numbers on each level are constant.
This is clearly visible in one dimension, and suggested by preasymptotic evidence for two and three
dimensions. Thus, the convergence behaviour of the uniform wavelet scheme is essentially reproduced.
The savings in memory consumption with respect to the full uniform grid range from a factor of 2 for
natural norms and irregular data to more than 10 for L2 norms and smooth data. The convergence rate
with respect to the number of degrees of freedom is found to be superlinear in several examples, most
obviously in one dimension.

In contrast to adaptive finite element methods, our algorithm inherently resolves different variables with
different sets of nonzero coefficients. This offers additional potential to enhance the adaptive efficiency.
We observe in all simulations that the three principal variables y, p and u are indeed represented with
different distributions of coefficients. Moreover, also the wavelet coefficients of each variable alone have
different resolutions in the coordinate directions depending on the possibly anisotropic structure of the
data. Thus, the wavelet approach is inherently dimension-adaptive. —

In summary, for the development of the algorithm δ-AnIIcG/2 we have enhanced techniques from wavelet
construction and wavelet methods for stationary variational problems. We have studied the modelling
of linear-quadratic control problems and the behaviour of inexact nested iteration conjugate gradient
solvers, and integrated results from nonlinear approximation theory. By shaping the wavelet framework
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for the uniform preconditioning of operators and the optimisation of constants, and the proposition of a
general recipe for the evaluation of Sobolev norms and the design of a two-layer nested iteration strategy,
we have achieved a numerical scheme of optimal computational complexity.

The wavelet algorithms nIIcG/2 and δ-AnIIcG/2 have been implemented within the newly developed
programme framework BWP. Providing a wide collection of numerical results from one to three spatial
dimensions, using a resolution of up to two million unknowns per function variable, we have demonstrated
the convergence and convergence rate of our method, the richness of the modelling ansatz using the
additional wavelet-specific parameters s and t and the efficiency of the adaptive discretisation scheme.
These results indicate that the wavelet ansatz indeed provides a competitive tool for the computational
treatment of optimal control problems constrained by elliptic PDEs.

Our results and observations motivate various directions of future research. From the practical point of
view, it would be desirable to improve the construction of fractional Riesz operators of negative order to
remove the oscillations. More importantly, we realise a need for dedicated theoretical studies on inexact
conjugate gradient methods, notably in conjunction with adaptive wavelet discretisations. Another route
towards the development of an adaptive wavelet algorithm for the control problem could use a fixed set
of active coefficients during the solution of each inner system. This would circumvent the perturbation of
the inner Krylov solvers by coarsening operations, and facilitate the exact measurement of the number of
active coefficients. For the structural design of such an algorithm, the handling of different distributions
of coefficients for the principal variables and the integration of appropriate error estimators would have
to be investigated. The key ingredient would consist in accurate adaptive quadrature rules and the
corresponding application of mass and stiffness matrices with respect to arbitrary distributions of wavelet
indices. The realisation of such schemes in linear time is a non-trivial subject of current research, see
e.g. [4].

Furthermore, the unique properties of wavelets offer promising perspectives for a wider range of appli-
cations. A first step could be to include nonlinear PDEs as constraints as well as additional conditions
on the control in the form of pointwise inequalities. There exist studies of these topics in the finite
element context, see e.g. [18, 93, 94, 136]. In principle, wavelets are capable of treating pointwise control
constraints by local transformations to the generator basis and e.g. the use of projected gradient meth-
ods. — Time-dependent PDE constraints in two or three spatial dimensions require a large amount of
degrees of freedom when discretised uniformly with finite elements. To reduce the number of unknowns
which need to be stored simultaneously, checkpointing techniques may be employed. Yet, there exist at
least two possible ways to tackle this problem on a more fundamental level, namely, using space-time
sparse grids [66,73] and adaptive space-time wavelet discretisations, which are currently under investiga-
tion. — The handling of state constraints is somewhat more involved mathematically since the adjoint
then needs to be formulated in terms of Borel measures. Several theoretical studies have been undertaken
e.g. in [30, 31, 120,121]. This class of problems is much more difficult to handle numerically.

In conclusion, wavelets were demonstrated to provide a powerful and flexible tool for the numerical
solution of optimal control problems constrained by elliptic PDEs. Supported by the results obtained in
this thesis with respect to modelling, preconditioning, fast iterative solution and adaptivity, the theoretical
and practical potential of wavelets for so many central numerical issues is a strong motivation to expand
the wavelet ansatz to more general problems in the rapidly evolving and active field of PDE-constrained
optimisation.

185



Chapter 8. Conclusion and Outlook
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List of Symbols

For reference, we provide a list of the mathematical symbols used and their general meaning in the context
of this document.

Table 8.1: Mathematical Symbols

n Spatial dimension

Ω Domain ⊂ Rn

H General Hilbert space over Ω

d, d̃ Primal and dual order of polynomial exactness

j0 Lowest / coarsest level of resolution

j Generic index for level of resolution

J Maximal level of resolution in a particular context

Sj Closed subspace of H

Φj Single-scale basis for the space Sj

∆j Index set for single-scale basis Φj

φj,k Single-scale basis function at location k ∈ ∆j

Nj Number of degrees of freedom on level j

Ψj Complement basis for the space Wj

∇j Index set for complement basis Ψj

ψj,k Wavelet basis function at location k ∈ ∇j
λ Combined notation for wavelet index λ = (j, k)

Λ Set of wavelet indices Λ = {λi}
Ψ(J) Wavelet basis up to maximum resolution J

Ψ Infinite-dimensional wavelet basis for the full Hilbert space

Qj , Q̃j Primal and dual biorthogonal projectors

IN Identity matrix of dimension N ×N , subscript may be omitted

Mj Twolevel transformation matrix between levels j and j + 1, size #∆j+1 ×#∆j+1

Mj,0 Left half of Mj , size #∆j+1 ×#∆j

Mj,1 Right half of Mj , size #∆j+1 ×#∇j
Gj Inverse matrix of Mj

Gj,0 Upper half of Gj

Gj,1 Lower half of Gj

M̌j,1 Initial stable completion

M̌j Initial twolevel transformation (Mj,0, M̌j,1)
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Table of Mathematical Symbols

Ǧj Inverse of M̌j

Ǧj,0 Upper half of Ǧj

Ǧj,1 Lower half of Ǧj

Ξj Initial complement basis

Kj ,Lj Transformation matrices for the stable completion

Ǩj , Ľj Additional transformation matrices

Cj Transformation matrix for the single-scale basis

WJ,j Extended twolevel transformation matrix on level j

Wj Fast wavelet transformation up to highest level j

γ, γ̃ Range of smoothness for the norm equivalence

Hs Sobolev space with smoothness index s

s, t Smoothness indices for Sobolev spaces

Dt Shift operator on a scale of Sobolev spaces

D Diagonal matrix to shift the smoothness of wavelet expansions

Ws
j Univariate wavelet transformation for Sobolev space Hs with n = 1

Ψani
(J) Anisotropic multivariate wavelet basis up to maximum resolution J

Ψani Full anisotropic multivariate wavelet basis

Ψani,s Anisotropic multivariate wavelet basis for Hs, n > 1

Wani
J Anisotropic multivariate wavelet transformation

Ψiso Isotropic multivariate wavelet basis

E Index set E = {0, 1} for the type of isotropic wavelet

E∗ Contains all composite wavelets, E∗ = En \ {0}
e Type of n-dimensional isotropic wavelet, e ∈ E∗

`1, `2 End points of the support of the primal B-spline generator
˜̀
1, ˜̀2 End points of the support of the dual B-spline generator

`, ˜̀ Parameters for the boundary adaption of the B-spline generators

α, β Matrices of refinement parameters for B-spline generators on the boundary

Ψ
(0)
j , Ψ̃

(0)
j Primal and dual intermediate wavelet bases on level j

Γ Gramian matrix used for biorthogonalisation

Vj ,Oj Transformation matrices used for plotting of dual spline wavelet representations

Zj Nodal basis used for plotting, interpolation and integration

κ(Σ) Condition of any collection of functions Σ

κ(M) Condition number of symmetric positive definite matrix M

Y Hilbert space for the state

y State variable y ∈ Y
a(·, ·) Y -elliptic bilinear form

Da Diagonal matrix adapted to a(·, ·)
M Mass matrix

L Laplace matrix

A Stiffness matrix

S Singular values of the stiffness matrix on the lowest level
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Table of Mathematical Symbols

f Right hand side for elliptic constraints, f ∈ Y ′

g Normal derivative for Neumann boundary conditions

Z Observation space

y∗ Target observation, y∗ ∈ Z
U Control space

u Control variable, u ∈ U
T,T Trace operator T : Y → Z, and its discretised form

E,E Extension operator E : U → Y ′, and its discretised form

ω Weight of the regularisation term in the cost functional

J(y, u) Cost functional for the control problem

J̌(y,u) Discretised cost functional

J(u) Reduced cost functional in the control variable

Q System matrix for the all-in-one formulation of the control problem

g Discretised right hand side for the all-in-one formulation

p Discretised Lagrangian multiplier

L(y,u,p) Lagrange functional incorporating the linear elliptic constraints

RV Riesz matrix for any Hilbert space V

Bi Riesz matrix to calculate ‖·‖Hi in the natural wavelet basis, i ∈ N0

Rs Riesz matrix for the Hilbert space Hs in the natural wavelet basis, s ∈ R

qs Corrective factor to normalise Riesz operator

σN (v) Error of best N -term approximation of v

`wτ Weak `τ sequence space

Bαq,p Besov space of smoothness α over Lp, with additional index q

Nad Average number of nonzero wavelet coefficients

σ Rate of error reduction with respect to Nad
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