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Functional analysis of genes during bovine preimplantation embryo development 

 

This study, the RNA interference (RNAi) approach was applied to suppress the 

expression of the maternal (C-mos) and embryonic (Oct-4) transcripts in bovine oocytes 

and embryos, respectively using microinjection of sequence specific double-stranded 

RNA (dsRNA). For this 435 bp C-mos and 341 bp Oct-4 dsRNA were synthesised and 

microinjected into the cytoplasm of immature oocytes and zygotes, respectively. In 

experiment 1, immature oocytes were categorized into three groups: those injected with 

C-mos dsRNA, water (RNase-free), and uninjected controls. In experiment 2, in vitro 

produced zygotes were categorized into three groups: those injected with Oct-4 dsRNA, 

water (RNase-free) and uninjected controls. The developmental phenotypes, the level of 

mRNA and protein expression were investigated after treatment in both experiments. 

Microinjection of C-mos dsRNA has resulted in reduction of C-mos transcript (70%) 

and protein after maturation compared to the water injected and uninjected controls (P < 

0.01). From oocytes injected with C-mos dsRNA, 60% showed the extrusion of first 

polar body compared to 50% in water injected and 44% in uninjected controls. 

Moreover, only oocytes injected with C-mos dsRNA showed spontaneous activation. 

Microinjection of zygotes with Oct-4 dsRNA has also resulted in reduction in Oct-4 

transcript abundance (72%) and protein at the blastocyst stage compared to the 

uninjected control zygotes (P < 0.01). The first cleavage, morula and blastocyst rate 

were not significantly different between three treatment groups. However, a significant 

reduction in the number of inner cell mass was observed in Oct-4 dsRNA injected 

embryos compared to the other groups. In conclusion, these results demonstrated that 

sequence specific dsRNA can be used to knockdown maternal or embryonic transcripts 

in bovine embryogenesis and therefor as a tool to study the function of genes.   

 
 
 
 
 
 
 
 
 
 

 



 

 

Funktionelle Analyse von Genen in boviner preimplantativer Entwicklung 

 

In dieser Arbeit wurde der RNA interference (RNAi) Ansatz angewendet, um die 

Expression maternaler C-mos und embryonaler Oct-4 Transkripte in bovinen Oozyten 

bzw. Embryos mittels Mikroinjektion sequenzspezifischer doppelsträngiger RNA 

(dsRNA) zu unterdrücken. Hierzu wurden 435 bp C-mos und 341 bp Oct-4 dsRNA 

synthetisiert und in das Zytoplasma immaturer Oozyten bzw. Zygoten mikroinjiziert. In 

Experiment 1 wurden die immaturen Oozyten in drei Gruppen eingeteilt: mit C-mos 

dsRNA injizierte, mit Wasser (RNase-freiem) injizierte und uninjizierte Kontrollen. In 

Experiment 2 wurden die in vitro produzierten Zygoten in drei Gruppen eingeteilt: mit 

Oct-4 injizierte, mit Wasser (RNase-freiem) injizierte und uninjizierte Kontrollen. 

Entwicklungsphänotypen, mRNA Level und Protein Expression wurden nach der 

Behandlung in beiden Experimenten untersucht. Die Mikroinjektion von C-mos dsRNA 

resultierte in einer Reduktion von C-mos Transkript (70%) und Protein nach Maturation 

verglichen mit mit Wasser injizierten und uninjizierte Kontrollen (P < 0.01). 60% der 

mit C-mos dsRNA injizierten Oozyten zeigten Extrusion des ersten Polrkörpers 

verglichen mit 50% der mit Wasser injizierten und 44% der uninjizierten Kontrollen. 

Überdies zeigten einzig mit C-mos dsRNA injizierte Oozyten spontane Aktivierung. 

Die Mikroinjektion von Zygoten mit Oct-4 dsRNA resultierte ebenfalls in einer 

Reduktion von Oct-4 Transkriptabundanz (72%) und Protein im Blastozystenstadium 

verglichen mit den uninjizierten Kontrollzygoten (P < 0.01). Teilungs-, Morula- und 

Blastozystenrate waren nicht signifikant unterschiedlich zwischen den 3 

Behandlungsgruppen. Ferner wurde eine signifikante Reduktion der Anzahl der Zellen 

der inneren Zellmasse in Oct-4 dsRNA injizierten Embryos beobachtet im Vergleich zu 

den anderen Gruppen. Diese Resultate demonstrieren, dass sequenzspezifische dsRNA 

zum Knockdown maternaler oder embryonalen Transkripte in der bovinen 

Embryogenese genutzt werden um die Funktion von Genen zu untersuchen. 
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1 Introduction 

 

Presently, the genomes of various species including the bovine are largely sequenced. 

Moreover, several studies have been carried out during the last decade to investigate the 

expression patterns of genes in bovine embryogenesis in response to various culture and 

treatment conditions (Rizos et al. 2002, Lonergan et al. 2003, Rizos et al. 2003, Tesfaye 

et al. 2004, El-Halawany et al. 2005). Despite the fact that the bovine genome has been 

recently reported to be completely sequenced, the function of most of the genes is not 

yet known. Till recently, the function of a specific gene in bovine species has been 

predicted using knockout experiments conducted in mouse (Larue et al. 1994, 

Riethmacher et al. 1995). However, these knockout technologies are extremely 

laborious and need long time to see the effects. So what is needed is a technique that 

can be used to jump directly from sequence to function in the whole animal. For this, 

the post transcriptional gene silencing (PTGS) by double-stranded RNA (dsRNA) or 

RNA interference (RNAi), has emerged as a new tool for studying gene function in an 

increasing number of organisms (Fire et al. 1998, Fire 1999). To overcome this, the 

RNAi approach through introduction of sequence specific dsRNA into the cells has 

been reported for the first time in Caenorhabditis elegans as an effective tool to study 

gene function in this species (Fire et al. 1998). Due to its relative easy application and 

its effectiveness, this technique has been used to study gene function during early 

embryogenesis in mammalian species including mouse (Svoboda et al. 2000, Wianny 

and Zernicka-Goetz 2000, Svoboda et al. 2001, Grabarek et al. 2002, Kim et al. 2002, 

Stein et al. 2003a, 2003b, Svoboda et al. 2004, Alizadeh et al. 2005, Gui and Joyce 

2005), swine (Cabot and Prather 2003, Anger et al. 2004) and bovine (Paradis et al. 

2005, Nganvongpanit et al. 2006a, 2006b). This approach has been reported to be an 

effective tool to inhibit genes from both maternal and embryonic genome expressed in 

mouse (Svoboda et al. 2000, Wianny and Zernicka-Goetz 2000, Svoboda et al. 2001, 

2004, Alizadeh et al. 2005, Gui and Joyce 2005, Shin et al. 2005). Most recently, our 

group (Nganvongpanit et al. 2006a, 2006b) and other (Paradis et al. 2005) have used the 

RNAi approach to suppress transcripts in bovine oocytes and embryos.  
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Oocyte maturation is a complex phenomenon involving both the nucleus and the 

cytoplasm. The meiotic resumption is characterized by geriminal vesicle breakdown 

(GVBD), chromosomal condensation, progression to metaphase of the first meiosis 

release of the first polar body and then arrest at the metaphase (M phase) of the second 

meiosis (MII) (Motlik and Kubelka 1990). The meiotic arrest (MII arrest) is maintained 

by the persistently high activity of cyclin B-p34cdc2 kinase, also called maturation 

promotion factor (MPF) (Draetta and Beach 1988, Brizuela et al. 1989, Masui 1992, 

Fan and Sun 2004). MPF activity is necessary to maintain MII arrest in oocytes, and the 

function of a multi-component complex, known as cytostatic factor (CSF), is required to 

sustain MPF activity (Hirao and Eppig 1997). CFS activity is the coordinated function 

of at least two protein, mitogen-activated protein kinase (MAPK) and mos. The 

activation of MAPK mediates the activation of MPF, a key regulator of the M phase and 

results in the induction of GVBD in xenopus (Gotoh and Nishida 1995, Kosako et al. 

1996), mouse (Araki et al. 1996), bovine (Fissore et al. 1996) and porcine (Ohashi et al. 

2003). Mos, the C-mos protooncogene product, is one of the central regulators of 

meiosis in vertebrate oocytes (Sagata 1996). As it has been observed in C-mos-/- knock-

out mice, inhibition of C-mos sythesis in mouse oocytes using RNAi results in 

parthenogenetic activation (Wianny and Zernicka-Goetz 2000). However, so far the 

effect of C-mos suppression in bovine oocytes is not yet studied.   

Oct-4 belongs to the sub-group of octamer-binding protein that binds by the POU 

domain to promoter and enhancer regions of various genes with octamer sites (Nichols 

et al. 1998, Ovitt and Schöler 1998). The Oct-4 gene is presumed to be involved in the 

maintenance of an undifferentiated state, and also the determination or establishment of 

the germ line (Ovitt and Schöler 1998). Moreover, Oct-4 influences several genes 

expressed during early development, including Fgf-4, Rex-1, Sox-2, OPN, hCG, Utf-1 

(Pesce and Schöler 2001) and IFNτ (Ezashi et al. 2001). However, the role and possible 

effect of bovine Oct-4 gene suppression is not yet investigated in bovine embryos.  
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Therefore, the main objectives of this study are: 

 

1. To use the RNAi technology for study the function of targeted gene in bovine 

preimplantation embryos.  

2. To investigate the effect of the suppression of C-mos gene on the mRNA and 

protein expression during oocyte maturation and observe the biological effects of 

the suppression of this gene on in vitro oocyte maturation.  

3. To investigate the effect of the suppression of Oct-4 gene on the mRNA and protein 

expression during bovine embryogenesis, including biological effects of the 

suppression of this gene on embryo development.  
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2 Literature review 

 

Life begins for animals when sperm fertilizes an oocyte to form a zygote.  What do we 

know about this mechanism that activate gene expression in mammals and thereby turn 

on the developmental program? Historically, answers to this question have relied 

heavily on studies done with fertilized-oocytes from frogs and flies (Yasuda and 

Schubiger 1992). In mammals, the preimplantation embryo is defined by the 

development of the zygote through several cleavage divisions, the activation of 

embryonic transcription, and the morphogenetic events of compaction and cavitations 

resulting in the formation of a blastocyst. In the period from fertilization to implantation 

involves various morphological, cellular, and biochemical changes related to genomic 

activity (Stanton et al. 2003). These changes include the inside zona diameter of gamete 

from less than 30 µm in the primordial follicle to more than 120 µm in the bovine 

tertiary follicle (Humblot et al. 2005). Also, the elongation of embryonic tissues, cell-

cell contact between the mother and the embryo, and placentation. The embryo begins 

to form the placenta around day 20 of gestation in the bovine (King et al. 1980, Yamada 

et al. 2002), while embryonic trophoblast and endometrial cells tightly until to form 

placentomes on day 30 (Wooding 1992, Wooding and Flint 1994). The bovine embryos 

at the blastocyst stage are approximately 170 µm in diameter, but become 

approximately 50 mm long by the time of implantation (Morris et al. 2001). Embryonic 

cells undergo both proliferation and differentiation to form the fetus and placenta 

throughout early embryogenesis. Reprogramming of the genome may be completed and 

reset during these steps, with embryonic development progressing to temporal and 

spatial gene expression (Lee et al. 2002, Tanaka et al. 2002). 

The major reproductive wastage in farm animals is early embryo loss, i.e. the 

anomalous development of embryos or an aberration of placentation (Cross et al. 1994). 

Various technologies, such as artificial insemination, embryo transfer, and cloning, have 

been applied to bovine reproduction (Holm et al. 1999, Hashizume et al. 2002). Precise 

knowledge of the gene expression profile during preimplantation is necessary to reduce 

early losses and to improve the reproductive efficiency of these new technologies 

(Schultz et al. 1999, Lonergan et al. 2003, Vignesult et al. 2004). However, little is 

known about the complex molecular regulation of embryos and extra-embryonic 
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membrane development in cattle. Thus, the genes to be profiled include new, functional 

gene candidates. This suggests an assessment method for key gene to help clarify the 

complex mechanisms in early embryo development, including also trophoblast cell 

proliferation and differentiation. 

 

2.1 Development of preimplantation embryo 

 

The preimplantation embryo passes through distinct metabolic phases, undergoing 

changes in protein synthesis, energy requirements and amino acid uptake as it develops 

from a zygote to the blastocyst stage. Concurrently, it also undergoes morphological 

changes particularly at compaction when the first differentiation process is observed. 

 

2.1.1 Developmental competence 

 

Developmental competence is the ability of the oocyte to produce normal, viable and 

fertile offspring after fertilization. The developmental competence of the oocyte is 

acquired within the ovary during the stages that precede ovulation or in case of in vitro 

maturation, precede the isolation of the oocyte from its follicle (Mayes 2002). It is a 

difficult parameter to assess since embryonic development may fail due to reasons 

independent of oocyte quality. Developmental competence is usually expressed as the 

percentage of oocytes that can develop to the blastocyst stage (Gandolfi 1997). 

However, development to the blastocyst stage does not guarantee that the embryo will 

develop to term. Other aspects used to evaluate developmental competence include 

morphological evaluations, such as number of blastomeres or the ratio between inner 

cells mass (ICM) and trophoectoderm (TE) cells number and metabolic rates (Crosier et 

al. 2001). The size and the quality of the follicle of origin (Hazeleger et al. 1995) 

influence the developmental capacity of bovine oocytes. It appears that oocyte requires 

an additional prematuration to express their competence (Hendriksen et al. 2000). If in 

vivo, this prematuration occurs during preovulatory growth before the lutenising 

hormone (LH) surge, the ovarian morphology, the number and size of the follicles 

present in the ovary at the time of aspiration, the composition of the follicular fluid 

(Madison et al. 1992, Hazeleger et al. 1995, Lonergan et al. 2003) may be critical for 
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the oocyte to acquire developmental competence. The developmental competence of the 

oocyte may also be lost during in vitro maturation (IVM) since the number and quality 

of cumulus cells surrounding the oocyte are important in this process (Blondin and 

Sirard 1995, Gandolfi et al. 1997).  

The absence of reliable markers for the identification of viable embryos for transfer at 

the early cleavage stage is likely to contribute to the generally low implantation rates in 

in vitro fertilization (IVF) treatment (Fenwick et al. 2002). Early cleavage is indicative 

of increased developmental potential in embryos and may be useful as a criterion in the 

selection of embryos for transfer. To improve the selection of the embryo with the 

highest implantation potential, Van Montfoort et al. (2004) suggested that selection for 

transfer should not be based on cell number and morphology on the day of transfer alone 

but also on early cleavage status. 

 

2.1.2 Oocyte maturation 

 

Oocyte maturation is a complex phenomenon during which the oocyte progresses from 

the diplotene to the MII stage (nuclear maturation). The oocyte resumes meiosis in 

response to the ovulatory LH surge or removal from the follicle. In cattle, GVBD occurs 

within hours after removal from the follicle or the ovulatory LH signal. The oocyte 

remains arrested at the MII stage until fertilization takes place and the oocyte completes 

meiosis and forms the pronucleus. However the completion of nuclear maturation alone 

does not guarantee subsequent embryo development (Yang et al. 1998). Oocyte 

maturation also involves transformations at the cytoplasmic level that prepare the cell to 

support fertilization and early embryonic development (cytoplasmic maturation). 

Oocytes matured in vitro or in vivo have similar rates of nuclear maturation, fertilization 

and cleavage, but clearly differ in their developmental potential (Blondin and Sirard 

1995). Differences in development between in vivo and in vitro cultured bovine oocytes 

are expressed at the morula and blastocyst stage (Farin and Farin 1995). Important 

factors either in the form of proteins or stable mRNAs are stored during oocyte growth 

and final follicular maturation after the growth has been completed (Blondin and Sirard 

1995). The ability of the oocyte to complete meiosis is known as meiotic competence, 

which is acquired gradually during follicular growth. It is closely correlated with oocyte 
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size, which in turn is correlated with follicle size and the size of the antral follicle at 

which the oocyte acquires meiotic competence is species-specific (Mayes 2002). 

Cleavage and blastocyst rates increased in parallel with meiotic competence and 

significantly higher developmental rates have been obtained when the diameter of 

fertilized oocytes is greater than 120 µm (Hazeleger et al. 1995). Once the oocyte 

becomes meiotically competent, inhibitory factors are necessary to maintain the oocyte 

in meiotic arrest. The nature of meiotic arrest in bovine follicles is poorly understood.  

Oocyte maturation is a complex phenomenon involving both the nucleus and cytoplasm 

as mentioned above. The meiotic resumption is characterized by GVBD, chromosomal 

condensation, progression to M phase of the first meiosis release of the first polar body 

and then arrest at the MII (Motlik and Kubelka 1990). Most mammalian oocytes are 

ovulated at MII and remain arrested at this stage until activated by a fertilizing 

spermatozoon or by artificial stimuli (Ozil 1990). The meiotic arrest is maintained by 

the persistently high activity of cyclin B-p34cdc2 kinase, also called MPF (Draetta and 

Beach 1988, Brizuela et al. 1989, Masui 1992, Fan and Sun 2004). MPF activity is 

necessary to maintain MII arrest in oocytes, and the function of a multi-component 

complex, known as CSF, is required to sustain MPF activity (Hirao and Eppig 1997). 

CFS activity is the co-ordinated function of at least two protein, MAPK and mos. The 

MAPK has a role in promoting MPF activation and in assisting meiotic resumption 

(Fissore et al. 1996, Ohashi et al. 2003). The activation of MAPK mediates the 

activation of MPF, a key regulator of the M phase and results in the induction of GVBD 

in xenopus (Gotoh and Nishida 1995, Kosako et al. 1996), mouse (Araki et al. 1996), 

bovine (Fissore et al. 1996) and porcine (Ohashi et al. 2003). From these findings, it is 

clear that MAPK activity is necessary for the maintenance of MPF activity and for 

prevention of MII arrest release of matured oocytes. Mos, the C-mos protooncogene 

product is one of the central regulators of meiosis in vertebrate oocytes (Sagata 1996). 

In 1988, Sagata et al. had been shown, the C-mos was required for activation of MPF in 

G2 arrested xenopus oocytes. In agreement with the study done by Roy et al. (1990) on 

xenopus species showed that injecting C-mos mRNA into the oocyte induces oocytes 

maturation, while inhibiting C-mos prevents oocytes maturation. In mouse, C-mos 

clearly shows important role to control the oocytes arrest at MII (O'Keefe et al. 1989, 

Araki et al. 1996, Choi et al. 1996, Sovoboda et al. 2000, Wianny and Zernicka-Goetz 
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2000). Mos-/- oocytes undergo GVBD and progress through the first meiosis but fail to 

arrest at MII. Instead, they undergo spontaneous parthenogenetic activation (Colledge et 

al. 1994, Hashimoto et al. 1994). Similarly, inhibition of mos sythesis in mouse oocytes 

using RNAi also resulted in parthenogenic activation (Wianny and Zernicka-Goetz 

2000).  Thus, C-mos probably functions to maintain MII arrest by promoting MAPK 

activity, which in turn may either inactivate the cyclin B degradation system, prevent an 

increased rate of degradation, or both (Hirao and Eppig 1997).  In mammalian oocytes 

other than mouse, the requirement of MAPK activity for meiotic resumption is still 

controversial (Ohashi et al. 2003). Although C-mos has been shown to play as an 

important roles in porcine oocytes maturation (Ohashi et al. 2003). But the function of 

C-mos in bovine oocyctes is unclear, which need to be investigating in this study.  

 

2.1.3 Embryo morphological change  

 

During the ealry development from day 1 to day 8 the bovine embryo remained within 

the zona pellucida, approximately 170µm in diameter (Morris et al. 2001). The first 

cleavage occurred at 2 days after fertilization. Between day 3 and 4 after fertilization the 

embryo contained 8-16 cells. Following 16-32 cells at day 5 and 6, which began to form 

junctions and resulting in a compact of cells termed the morula. Compaction is known 

to be the first essential step in differentiation and is fundamental and essential for viable 

blastocyst formation. The embryos formed blastocoelic cavities at day 8. This stage, the 

cells differentiate into ICM, destined to become the fetus, surrounded by TE cells, 

distined to become the placental tissue. At this stage the embryo had a tatal cells 

complement about 120-140 cells which the ICM comprising about 25% and the TE cells 

about 75% of the total cell number. The blastocyst continued to expand by 1.5 times to 

reach a diameter about 200µm with a complement of 160 cells. Around day 9 and 10, 

explanded blastocysts hatched from the zona pellucida and the hatched blastocysts 

underwent further expansion before they started to elongate at day 13. The embryos 

were spherical, ovoid or elongated in shape, and diameter increased from about 5.2 mm 

at day 13 to about 52 mm at day 16 (Morris et al. 2001).   
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2.1.3.1 Embryo cleavage 

 

The embryos enter into several divisions after fertilization. The zygote is large cell, 

having a low nuclear to cytoplasmic ratio. To attain a ratio similar to somatic cells, cell 

divisions occur without an increase in cell mass. This process is referred as cleavage. 

The resulting daughter cells are called blastomeres. Blastomeres from the 2- to 8-cell 

stage in the rabbit and sheep are totipotent, that is fully capable to give rise to an intact 

embryo. In 4-cell stage, no more than three of four blastomers are totipotent cells, and 

in 8-cell stage not more than one of eight blastomers is totipotent cells (Hafez and Hafez 

2000). Mouse embryos take about three and half days to develop from the 1-cell stage 

to the blastocyst stage containing 32 or more cells. The first (1- to 2-cell) and second (2- 

to 4-cell) cell cycles of the mouse embryo take between 16-20 h and 18-22 h 

respectively, depending on the strain of mice (Harlow and Quinn 1982). The duration of 

certain phases of the cell cycle differ considerably between 1- and 2-cell mouse 

embryos. The duration of the synthesis phase (S phase) increases from 4 h to 7 h from 

the pronuclear stage to the 2-cell stage, whereas the duration of second gap phase (G2 

phase) and M phase increases from 8 h to nearly 12 h (Streffer et al. 1980). The duration 

of the G2 and M phase of the second cell cycle is strain-specific leading to differences 

in the length of the 2- to 4- cell cycle in different mouse strains (Molls et al. 1983). 

Morover, the rate of cleavage has also been linked to genetic influences. Warner et al. 

(1987a,b) have described a H-2 linked gene, called the preimplantation embryo 

development (Ped) gene, that influences the rate of cleavage divisions of 

preimplantation mouse embryos. The Ped gene has two functional alleles, fast and slow, 

as defined by the rate of development of preimplantation embryos, with the fast allele 

being dominant. In a more recent study, Brownell and Warner (1988) demonstrated that 

the Ped gene phenotype of embryos cultured in vitro is maintained thus, the control of 

embryo cleavage is largely dependent on the genes of the embryo itself and is not a 

function of the uterine environment.  

 

2.1.3.2 Embryo compaction 
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Compaction is the first event of morphogenic and cellular differentiation. The most 

significant event occurring at compaction is the emergence of 2 distinct cell 

populations: the blastomeres remaining in contact with the outside are destined to form 

the TE cells lineage while the blastomeres inside the embryo are destined to form the 

ICM. In mammalian embryos, during the 8-, 16- and 32-cell stages, specific cells are 

induced to change their morphological and functional phenotype to a polarized form. 

This commences with the division of the 8-cell stage embryos generating an average of 

9 outside and 7 inside cells in the embryo (Johnson and Ziomek 1981), with the outer 

cells being polarised and larger than the inner cells that remain apolar. The trigger to the 

development of a polarized phenotype in the outer cells may be related to the pattern of 

intercellular contacts. Polarization is suppressed when a cell is completely surrounded 

by other cells, while when contact with other cells is incomplete polarity develops. The 

close cell contacts that develop are due to the presence of the cell adhesion molecule 

uvomorulin, which progressively becomes distributed to areas of cell-cell contact and 

remains absent from the apical areas of the outer polarised cells (Johnson et al. 1986). 

Polarization of the outer cells is evident by the basal migration of the nucleus and the 

apical accumulation of actin, clathrin, endosomes and microvilli. Once a cell acquires 

polarity, the progeny of the cell will be influenced by the orientation of the subsequent 

cleavage plane, hence either two polar or one polar and one non-polar cell will arise. It 

is only in fully expanded blastocysts that ICM and TE cells can not cross lineages. This 

initial differentiation is also the first decrease in cell totipotency in the embryo whereby 

the internalized apolar cell subpopulation in the morula will preferentially form the ICM 

of the blastocyst and the outer polar cells develop trophectodermal characteristics.  

Trophectoderm cells therefore are polar, enveloping and fluid transporting (Ducibella 

and Anderson 1975, Gardner and Johnson 1972) whereas ICM cells are highly 

adhesive, compact readily on each other and, when aggregated to a morula, move to its 

center (Johnson and Ziomek 1981).  

 

2.1.3.3 Blastocyst formation   

 

Blastocyst formation (cavitation) is essential for implantation and subsequent 

development and implantation failure is a principal cause of early pregnancy loss 
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(Edmonds et al. 1982, Wiley et al. 1990, Edwards 1997). The TE is the first ion 

transporting epithelium formed during development and provides an important model 

allowing the investigation of cell polarity during development (Watson 1992, Watson et 

al. 1999). The trophectoderm cells initiates implantation via direct contact with the 

uterus and eventually contributes to the trophoblast giant cells and extra-embryonic 

membranes such as the chorion. The differentiation of TE cells has direct ties to 

compaction, since this cell layer is derived from the polar outer cells of the compacted 

morula (Watson 1992, Watson et al. 1999). Blastocyst formation is dependent upon TE 

cell differentiation. The TE cells acquire the characteristics of epithelial cells in being 

flattened and joined together by tight junctional complexes (Ducibella and Anderson 

1975). When the mouse embryo has about 32 cells, TE cells begin to pump fluid into 

intracellular spaces and later into extracellular spaces, forming the blastocoelic cavity 

(Borland et al. 1977). The trophectoderm ion transport systems play an important role in 

establishing ion concentration gradients across the epithelium, and thereby in providing 

the force that drives water into the blastocoelic fluid. Electron probe microanalyses of 

Na+, Cl-, K+, Ca2+ and Mg2+ have shown that all these ions are concentrated within the 

blastocoelic fluid (Borland et al. 1977). The active transport mechanisms required to 

move these ions against their concentration gradients are thought to involve the 

transport of Na+ and Cl-. The main contributor is the Na,K-ATPase that has been 

localised to the basolateral domain of the TE (Watson 1992, Watson et al. 1999). The 

presence of the tight junctional complex is also necessary and plays a multifunctional 

role. It provides an impermeable seal allowing fluid accumulation, regulates 

paracellular transport (Manjewala et al. 1989) and contributes to a polarization of the 

distribution of the Na,K-ATPase (Watson et al. 1990). The development of the 

epithelial junctional complex, such as democollins, desmogleins family, E-cadherin and 

catenins are important in the initiation and maintenance of the cell polarized state 

(Fleming et al. 1989, 1991, Citi 1993, Larue et al. 1994, Riethmacher et al. 1995). Since 

the blastocoelic fluid is largely composed of water, the TE-ion transport systems 

establish ion concentration gradients across the epithelium which facilitates the osmotic 

accumulation of water via water channels to form the blastocoelic fluid. The 

establishment of apical junctional complexes provides a TE seal that regulates the 

leakage of water from the blastocyst cavity. As metioned above, the blastocyst contains 
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two distinct cell types: the ICM cells which go on to form the embryo proper, and the 

TE cells which are involved in the initial contact with and the infiltration of the uterine 

wall and eventually contribute to the placenta and the extra-embryonic membranes. The 

first week of mammalian development is a perilous time for the early embryo. There is 

a great need to understand the mechanisms controlling this interval to develop rational 

interventions to either promote or inhibit fertility in a variety of mammalian species. 

This research addresses this need and is aimed at providing an eventual understanding 

of the causative events underlying early embryo loss and to ensuring that assisted 

reproductive technologies are applied in a safe and efficient way.  

In mammalian embryogenesis the first morphological indication of differentiation is the 

formation of the TE cells at the early blastocyst stage. While the ICM cells remain 

totipotent, TE cells are restricted to extra-embryonic cell lineages. In mice, a key factor 

for the first differentiation step in embryogenesis is the POU domain transcription factor 

Oct-4 (Okamoto et al. 1990, Rosner et al. 1990). Oct-4 belongs to the sub group of 

octamer-binding protein that binding with the POU domain to promoter and enhancer 

regions of various with octamer sites (Ovitt and Schöler 1998). In mouse, Oct-4 is 

expressed in pluripotent cells such as cleavage stage blastomeres, ICM of the blastocyst, 

epiblast of the early postimplantation embryo and embryonic stem (ES) cells (Yeom et 

al. 1991, Palmieri et al. 1994, Pesce and Schöler 2001), while TE differentiation 

correlates with downregulation of Oct-4 (Palmieri et al. 1994). Bovine Oct-4 shares 

high sequence homology with its mouse orthologue, but its protein product is found at 

similar levels in pluripotent and differentiating cells of the bovine preimplantation 

embryo (Kurosaka et al. 2004). The function of Oct-4 gene is presumed to involve the 

maintenance of an undifferentiated state, and also the determination or establishment of 

the germ line (Ovitt and Schöler 1998). In murine embryogenesis, Oct-4 has been 

shown to be essential for the development of totipotent ICM cells (Nichols et al. 1998), 

Oct-4-/- embryos die at the time of implantation due to a failure to form the ICM (Pesce 

and Schöler 2001). Moreover, Oct-4 influences several genes expressed during early 

development, including Fgf-4, Rex-1, Sox-2, OPN, hCG, Utf-1 (Pesce and Schöler 

2001) and IFNτ (Ezashi et al. 2001). The transcription factor Oct-4 is thought to be very 

important to early embryonic development and differentiation because Oct-4 is the 

earliest known as transcription factor to be developmentally expressed and such studies 
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would further elucidate the mechanisms of embryonic development as mentioned 

above. Most studies have been performed on mouse embryos (Ovitt and Schöler 1998, 

Boiani et al. 2002, Bortvin et al. 2003, Kehler et al. 2004). Although, the early 

preimplantation development of mouse, porcine and bovine is similar in that the 

embryos of these mammalian species all progress through three major morphologenetic 

transition, compaction, cavitation and expansion, finally leading to hatching and 

implantation (Crosier et al. 2000, Kirchhof et al. 2000, Crosier et al. 2001). However, 

some differences are evident. Therefore, each species must be studied for a better 

understanding of the development process.       

 

2.1.4 Genes expression in preimplantation embryo 

 

Gene expression (also protein expression or often simply expression) is the process by 

which a gene's information is converted into the structures and functions of a cell. Gene 

expression is a multi-step process that begins with transcription and translation and is 

followed by folding, post-translational modification and targeting. The amount of 

protein that a cell expresses depends on the tissue, the developmental stage of the 

organism and the metabolic or physiologic state of the cell. Gene expression is one of 

the most important principles underlying the development and control of cells, systems 

and organisms. Essentially gene expression is the process by which genetic information 

is converted into entities (mainly proteins) that contribute to the structure and operation 

of a cell. The study of gene expression encompasses the transcription of DNA to RNA 

(transcription) by predominantly messenger RNA (mRNA), but also transfer RNA 

(tRNA) and ribosomal RNA (rRNA), following synthesis the protein (translation). 

Initiation of transcription is the most important step in gene expression. Without the 

initiation of transcription, and the subsequent transcription of the gene into mRNA by 

RNA polymerase, the phenotype controlled by the gene will not be seen. Therefore in 

depth studies have revealed much about what is needed for transcription to begin. In 

conjunction with the activation of the embryonic genome, conventional one dimensional 

of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has shown 

that major changes occur in protein synthesis between day 1 (2-cell stage) and 2 (4- to 

8-cell stage) of preimplantation mouse embryo development (Epstein and Smith, 1973, 
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Van Blerkom and Brockway 1975). The first proteins synthesized in the late 2-cell 

embryos coinciding with embryonic genome activation appear to be heat shock proteins 

(67,000-70,000 daltons) (Bensaude et al. 1983). During the late 4- and 8-cell stage new 

transcription is necessary to prepare the embryo for compaction, while during the 

morula to blastocyst transition there is also a change in transcriptional activity in line 

with the increase in the rate of protein synthesis (Braude 1979). These changes 

ultimately lead to the appearance of tissue or stage specific polypeptides in the ICM and 

TE cells at the blastocyst stage (Handyside and Johnson 1978, Howe et al. 1980).  

 

2.1.4.1 Maternal-zygotic transition  

 

Fertilization initiates a cascade of events leading to the temporal and spatial expression 

of genes prerequisite for embryo and fetal development. However, the earliest stages of 

development are largely dependent on maternally derived messages stored in the oocyte 

prior to fertilization. As development progresses maternal RNAs and proteins are 

depleted and embryo-derived messages become key controlling factors. The shift from 

dependence on oocyte-derived messages to embryo-produced messages is referred to as 

the maternal-zygotic transition (MZT). This crucial transition occurs during the first few 

post-fertilization cell cycles in a species dependent manner. Maternal-zygotic transition 

takes place at different periods, depending on the species (reviewed in Telford et al. 

1990, Kanka 2003). For example, MZT occurs at roughly the 2-cell stage in mice 

(Schulz 1993), 4- to 8-cell stage in human (Telford et al. 1990) and the 8- to 16-cell 

stage in bovine (Memili and First 1999, 2000). The transition from maternal to 

embryonic control of development is characterized by a degradation of maternal RNA 

and protein, sensitivity to transcriptional inhibitors such as α-amanitin, and a burst of 

transcriptional activity from the embryonic genome. The content of RNAs (mRNA and 

rRNA) decline from the oocyte to the morula stage after which there is a marked 

increase (Bilodeau-Goeseels and Schultz 1997). Inhibition of polymerase dependent 

transcription by α-amanitin during the earliest stages of development has shown that 

embryos can survive in the absence of transcription from embryonic genome until a 

certain species dependent stage of development. This generally is the point at which 

MZT is considered to occur. Sensitivity of α-amanitin has been identified at the 2-cell 
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stage in mouse (Telford et al. 1990, Memili and First 2000) and the 4- to 8-cell stage in 

cattle (Plante et al. 1994, Natale et al. 2000), although partial sensitivity was detected at 

the 2- to 4-cell stage (Natale et al. 2000). In mouse, transcription from the embryonic 

genome has been identified within hours of fertilization in the male pronucleus of the 

zygote (Telford et al. 1990, De Sousa et al. 1998, Memili and First 2000). In bovine, a 

similar pattern of transcription before the MZT has emerged. The production of 

embryo-derived RNA has been detected at the zygote stage by incorporation of 

(35S)UTP (Memili et al. 1998), at the 2-cell stage by incorporation (3H) uridine (Plante 

et al. 1994, Viuff et al. 1996), and differential display RT-PCR (Natale et al. 2000) at 

the 4-cell stage by two dimention (2-D) electrophoresis (Barns and First 1991) northern 

blot analysis (Bilodeau-Goeseels and Schultz 1997) and sequence specific PCR 

(McDougall et al. 1998). Activation of the embryonic genome thus appears to occur in 

two phases with a minor activation prior to the MZT at the zygote to the 8-cell stage 

followed by a major activation at the 8- to 16-cell stage that coincides with the MZT. 

That transcription from the embryonic genome and MZT are required for a normal 

progression of development is clear, what remains to be determined is the chronology 

and cellular location of expression of development regulating genes from the embryo's 

genome. During the transition from maternal to embryonic control of development, 

maternal transcripts are depleted and embryo specific transcripts involved in early 

embryogenesis are generated (Adjaye et al. 1999). The transcription of the 18S, 5.8S 

and 28S rRNA, polymerase I and their subsequent processing lead to the formation of a 

distinct nuclear structure, the nucleus (Viuff et al. 1998).  Further more, the transition is 

accompanied by modifications in chromatin structure and post-translational 

modifications of transcriptional abilities in early embryos (Pacheco-Trigon et al. 2002). 

In addition, a dramatic reprogramming of gene expression occurs during this transition, 

and the molecular foundation for transforming the highly differentiated oocyte in the 

totipotent blastomeres of the early cleavage stage preimplantation embryo (Ma et al. 

2001). Vigneault et al. (2004) have demonstrated that the 15 genes (YY1, HMGA1, 

RY-1, P300, CREB, YAP65, HMGN1, HMGB1, NFAR, OCT-4, TEAD2, ATF-1, 

HMGN2, MSY2 and TBP) examined in their studies are all present in bovine oocytes 

throughout pre-MZT embryonic development in the form of mRNA. These results 

support the hypothesis that these factors could be implicated in the activation of 
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embryonic transcription. It also supports the idea that transcription factors may be found 

as maternally stored mRNA in the oocyte until their recruitment for translation just in 

time for MZT. 

 

2.1.4.2 Embryonic genome activation 

 

The variations in the duration of the cell cycle during the early stages of embryo 

development can perhaps be linked to specific developmental events that occur at this 

time. The lengthened cycle from the 2- to 4-cell stage in mouse embryos, in particular, 

may be related to one of the major events of preimplantation development, i.e. 

embryonic genome activation (EGA) or zygotic gene activation (ZGA). The earliest 

developmental changes are under post-transcriptional maternal control. They rely on 

changes in the translation of mRNAs synthesized during oocyte growth or post-

translational protein modifications. The triggers for the initiation of embryonic 

transcription remain unclear (Memili et al. 1998, Ma et al. 2001). However, the 

activation of the mouse embryonic genome occurs at the late 2-cell stage (Goddard and 

Pratt 1983), corresponding with the long second cell cycle. In mouse, the embryonic 

genome is activated in two phases, a limited activation occurring between 18 and 21 h 

post-insemination and a major activation occurring between 26 and 29 h post-

insemination (Flach et al. 1982). Although the first sign of major transcription by the 

embryonic genome appears during the 2-cell stage mouse embryo, recently a more 

sensitive assessment of the 1-cell stage mouse embryo has led to the suggestion that 

EGA may begin in the 1-cell stage mouse embryo and that differences between the 

transcriptional activity of the male and female pronuclei exist (Ram and Schultz 1993). 

The timing of EGA, or competence to sustain appreciable transcriptional activity in 

bovine embryos may be controlled temporally by a time dependent mechanism referred 

to as zygotic clock rather than by developmental stage (Nothias et al. 1995, Watson et 

al. 1999). These was confirmed by transfering a reporter gene in to 1-cell stage bovine 

embryos and examine the expression at a particular stage (Watson et al. 1999) and the 

similar test has been done with mouse zygote (Nothias et al. 1995). In bovine embryos, 

EGA has definitely occurred by the 8- to 16-cell stage as evidenced by incorporation of 

(3H)-uridine into nucli and nucleolei at the 8-cell stage (De Sousa et al. 1998). This 
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activation is responsible for controlling subsequent development and, different 

transcripts are expressed in a stage specific manner. However, first transcript initiation 

at 2- to 4-cell stage was observed in bovine embryo development and this initiation is α-

amanitin insensitive and is not required for progression of embryonic development to 

advanced preimplantation stage (Memili and First 1999). The data obtained in many 

references (Viuff et al. 1996, De Sousa et al. 1998, Memili et al. 1998, Memili and First 

1999) suggest that there is a low level of transcriptional activity (mRNA sythesis, i.e. 

RNA polymerase II dependent transcription) that can be called minor gene activation 

between the 1- and late 4-cell stage, and the high level of transcriptional activity that 

can be called major gene activation at the 8-cells stage in bovine embryos (Figure 2.1).      

 

2.2 Functional analysis of differentially expressed genes in animals 

 

Today, with numerous genome projects adding tens of thousands of nucleotide 

sequences to the public databases each day, the exploration of gene function often 

begins with a DNA sequence. Here the challenge is to translate sequence into function. 

Traditional systems for studying developmental biology have access to a variety of 

methods for functional analysis of developmentally regulated genes: forward genetics 

(mutational analysis) for example is particularly suited to species with a short 

generation time such as the worm C. elegans, the fruit fly Drosophila melanogaster and 

more recently the zebra fish, while reverse genetics (transgenesis, knockout technology) 

is more typically associated with the mouse. This technology e.g. transgenesis, has so 

far only been of limited applicability to the study of development in farm animal 

species. However, the increasing efficiency of cloning via somatic nuclear transfer in 

these species, in combination with prior expression of ectopic genes or success in 

attempts at endogenous gene mutation in somatic cells by homologous recombination 

may soon be expected to extend the range of tools available for functional analysis 

substantially. Nevertheless, we might also expect that, before then, new technologies to 

map differential gene expression in the small amounts of material available from 

preimplantation embryos of domestic species might identify many of cDNA sequences, 

ESTs or complete genes of potential significance for the progression of normal 
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development either in vivo or following IVM, IVF and in vitro culture. What avenues 

are currently available to analyse function and how best can we utilize resources? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Bovine embryonic cell cycles and embryonic gene expression (mRNA 

synthesis). There is minor gene activation between the 1- and 4-cell stages. Changes in 

the transcriptional machinery and chromatin structure play an important role in the 

control of early gene expression. While the major gene activation starting at the 8-cell 

stage (Memili and First 2000).  

 

2.2.1 Antisense RNA 

 

In order to gain insight into the function of protein product of a gene of interest, 

antisense (as) RNA has been widely applied in eukaryotes in which the asRNA 

transcript expressed successfully inhibit the expression of specifically targeted mRNA 

(Robert et al. 1990, Iwaki et al. 1994, Wu and Welsh 1996). The asRNA is the 

technique designed to specifically and selectively inhibit production of proteins in cells 

(Crooke, 1998). It has been applied extensively in the amphibian, to a lesser extent in 

other species. Website of P.Vize provides a wealth of data (accessible under Fons 

Verbeek, at www.niob.knaw.nl, the website of the Hubrecht Laboratory, Netherlands 

Institute of Developmental Biology). This is a recently developed variant of asRNA 
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technology where morpholinos are used to modify anti-sense oligonucleotides in such a 

way that they are highly specific inhibitors of translation. Successful in zebra fish and 

being tried out in other species (Nasevicius and Ekker 2000). 

 

2.2.2 Gene silencing 

 

The effect of dsRNA or small interfering RNA (siRNA) to silence genes in animals was 

first shown in year 1998 by Fire and colleagues (Fire et al. 1998). It has been shown to 

have a potent effect on gene expression, particularly on mRNA stability. After it has 

been particularly successfully applied in C.elegans to analyse the function of a number 

of genes and has recently been used for the first time in mammals (mouse) in year 2000 

by two research groups (Svoboda et al. 2000, Wianny and Zernicka-Goetz 2000). 

Although the possibility of non-specific effects has been discussed, it might be 

considered as an option worth exploring in farm animal species (Plasterk and Ketting 

2000).  

 

2.2.3 Protein knock down 

 

The selective degradation of cellular proteins is mediated primarily by the ubiquitin-

proteasome pathway. Manipulation of the ubiquitin-dependent proteolytic machinery to 

eliminate specific gene products at the protein level has been previously attempted with 

some success in vitro and in vivo (Zhou et al. 2000). The protein knock down strategy 

can be utilized not only as a novel method to dissect the role of oncoproteins in 

tumorigenesis, but also as a unique tool to delineate the function of a subpopulation of 

proteins localized to a specific subcellular compartment (Cong et al. 2003).  

 

2.3 RNA interference  

 

RNAi was originally discovered as endogenous properties of plants, but the real 

breakthroughs came when this phenomenon was discovered in nematode (Fire et al. 

1998). Since then, RNAi related phenomena have been reported for a wide range of 

species in fungi, plants, invertebrates and vertebrates (Table 2.1), and the underlying 
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mechanism has become better understood. The successful application of RNAi to 

mammalian system in year 2000 (Svoboda et al. 2000, Wianny and Zernicka-Goetz 

2000) has become a powerful tool for functional genomics. RNAi as commonly 

defined, is a phenomenon leading to post-transcriptional gene silencing (PTGS) after 

endogenous production or artificial introduction into a cell of siRNA with sequences 

complementary to the targeted gene (Bosher and Labouesse 2000, Elbashir et al. 2002). 

Whereas the transcription of the gene is normal, the translation of the protein is 

prevented by selective degradation of its encoded mRNA. However, PTGS is not 

restricted to RNAi and has emerged as a more complex mechanism that involves several 

different proteins and small RNAs. It is presumed that cells employ RNAi to tightly 

regulate protein levels in response to various environmental stimuli, although the extent 

to which this mechanism is employed by specific cell types remains to be discovered. 

However, the fact that RNAi is operative in cells of organisms ranging from plants, to 

nematodes and flies, and to mammals attests to its fundamental importance in the 

selective suppression of protein translation by targeted degradation of the encoding 

mRNA. Beyond its biological relevance, PTGS is emerging as a powerful tool to study 

the function of individual proteins or sets of proteins. User-friendly technologies for 

introducing siRNA into cells, in culture or in vivo, to achieve a selective reduction of 

targeted mRNA. The present article reviews this emerging technology, findings 

obtained to date using such RNAi methods, and the potential of RNAi based 

therapeutics for treating human disease (Brown and Catteruccia 2006, Gaur 2006, 

Rondinone 2006, Rossi 2006). 

RNA interference most likely evolved as a mechanism for cells to eliminate unwanted 

foreign gene products. Foreign genes are often present in cells at high copy numbers, 

being present as viral genes, transposable elements, or as plasmids introduced 

experimentally in cell transfection protocols (Marathe et al. 2000). It has been known 

for several decades that the level of expression of transgene usually decreases as the 

number of copies present in the cell increases and that endogenous homologous genes 

can also be suppressed by the presence of the transgene (Napoli et al. 1990). Although 

such gene silencing can occur at the transcriptional level, it is now recognized that a 

major mechanism of gene suppression occurs post-transcriptionally, and that a major 

mechanism for this PTGS is RNAi, the selective degradation of mRNAs targeted by 
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siRNAs (Van Blokland et al. 1994). Such PTGS via RNAi can occur very rapidly with 

proteins for many genes, being decreased within hours, and completely absent within 24 

h (Pruss et al. 1997). Based upon these and other findings initially made in studies of 

plants (Ratcliff et al. 1997), it seems very likely that RNAi evolved as a mechanism to 

defend plant cells against viral infections. 

 

Table 2.1: The applications of gene silencing in different species 
Phylum Species Mechanism Effector References 

Fungi Neurospora Quelling Transgenes Cogoni and Maciano 1999 

Plants Arabidopsis  PTGS Transgenes Elmayan et al. 1998 

 Nicotiana Transcriptional 

gene silencing 

Transgenes, 

Virus 

Furner et al. 1998 

 Pitunia PTGS Transgenes Dehio and Schell 1994 

Invertebrates C. elegans RNAi 

Transcriptional 

gene silencing 

dsRNA 

 

Transgenes 

Fire et al. 1998, Ketting et al. 

1999 

Kelly and Fire 1998 

 D. melanogaster RNAi dsRNA 

shRNA 

Misquitta and Peterson 1999 

Paddison et al. 2002a 

 Paramecium Homology-

dependent 

silencing 

Transgene Ruiz et al. 1998 

 Trypanosome RNAi dsRNA Wang et al. 2000 

Vertebrates Danio rerio RNAi dsRNA Wargelius et al. 1999 

 Mus musculus RNAi dsRNA Wianny and Zernicka-Goetz 

2000, Knott et al. 2005, Plusa 

et al. 2005 

  RNAi siRNA Haraguchi et al. 2004 

 Sus scrofa RNAi dsRNA Cabot and Prather 2003 

Anger et al. 2004 

 Bos turus RNAi dsRNA Paradis et al. 2005, 

Nganvongpanit et al. 2006a, 

2006b 

 Homo sapien RNAi dsRNA Brown and Catteruccia 2006 

   shRNA Rossi 2006 

   siRNA Gaur 2006, Rossi 2006 
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2.3.1 Post transcriptional gene silencing and the discovery of RNA interference 

 

Post transcriptional gene silencing and RNAi were discovered in genetic transformation 

studies of eukaryotic cells, principally plants and worms, wherein it was shown that 

mRNAs for the encoded transgene alone, or together with mRNAs for homologous 

endogenous genes are very low or absent despite high levels of transcription (Fire 1999, 

Marathe et al. 2000). The ability to manipulate and monitor gene expression in the 

plant, Arabidopsis thaliana and the roundworm, C. elegans (the genomes of both 

species are now complete) revealed the process of RNAi and allowed the relatively 

rapid identification of several genes that regulate the RNAi process. Transgenes insert 

into the genomes of plants by recombination in an apparently random manner so that 

the number of inserted copies, their chromosomal location, and their local arrangement 

within the chromosome vary among transformants. The observation of an inverse 

correlation between copy number and the level of gene expression suggested that an 

increased copy number of a particular gene results in silencing of that gene (Assaad et 

al. 1993). It was initially thought that such gene silencing was due to reduced gene 

transcription resulting from interactions between closely linked copies that result in the 

formation of secondary structures that promote methylation and inhibition of 

transcription (Ye and Signer 1996). Further studies showed that transcriptional gene 

silencing (TGS) could also occur in trans, such that one transgene can be silenced by 

another transgene introduced either by crossing or transformation. It was then proposed 

that a silencing RNA is produced by one locus that somehow affects the silencing of the 

other gene by a mechanism involving RNA-mediated inhibition of transcription (Mette 

et al. 2000). Although some data were consistent with such mechanisms of 

transcriptional silencing, additional data suggested the involvement of PTGS. The 

presence of dsRNA and their cleavage into siRNAs of approximately 23 nucleotides 

(nt) were demonstrated, and it was then shown that expression of dsRNA with 

sequences corresponding to open reading frames in plants results in PTGS (Hamilton 

and Baulcombe 1999). Similarly, expression of dsRNA with sequences complementary 

to those of endogenous genes results in the selective silencing of those genes in C. 

elegans (Zamore et al. 2000). Collectively, the studies of A. thaliana and C. elegans 

showed that both TGS and PTGS can be initiated by the same RNA degradation 
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pathway. Transcriptional gene silencing occurs when the dsRNA includes promoter 

sequences, whereas PTGS occurs when the dsRNA includes coding sequences. 

Although degradation of dsRNA is common to both mechanisms of gene silencing, the 

results also indicated that dsRNA-mediated TGS and PTGS involve different specific 

steps. Although RNAi as a mechanism of PTGS was first discovered in plants and may 

have evolved as a cellular defense mechanism against foreign DNA and RNA, it is very 

clear that RNAi is widely employed in most if not all eukaryotic cells as a mechanism 

to regulate the expression of endogenous genes. In 1998, it was discovered that injection 

of dsRNA was much more effective for silencing of gene expression in C. elegans than 

was asRNA (Fire et al. 1998). This experimentally induced PTGS, the first report of the 

use of RNAi as a tool in biology was very potent, and remarkably, the PTGS occurred 

not only in the worms to which the dsRNA was administered, but also in their progeny 

(Fire et al. 1998). It was then demonstrated that the endogenous mRNA was the target 

of the injected dsRNA by a post-transcriptional mechanism and involving degradation 

of the targeted mRNA (Montgomery et al. 1998). Surprisingly, it was further shown that 

the dsRNA is effective at very low concentrations, such that the copy numbers of the 

targeted mRNA are far greater than the number of dsRNAs present in the cell (Fire et al. 

1998, Kennerdell and Carthew 1998). In addition, the suppression of the protein 

encoded by the targeted mRNA was found to persist through many rounds of cell 

division. Two observations (Fire et al. 1998, Kennerdell and Carthew 1998) strongly 

suggested that cells possess a mechanism for amplifying the RNAi mechanism. Not 

only can the RNAi process be maintained within cells of a common lineage, but it can 

also be transferred between cells, as shown in C. elegans where injection of dsRNA into 

the intestine results in silencing of the targeted gene in all cells of the F1 progeny of that 

worm (Fire et al. 1998). Indeed, dsRNA can enter cells and induce PTGS when worms 

are soaked in a solution containing the dsRNA or when the worms are fed bacteria 

expressing dsRNA (Tabara et al. 1998, Timmons and Fire 1998). Recently, a 

transmembrane protein called SID-1 was identified as a possible mediator of 

intercellular transfer of RNAi (Winston et al. 2002). Subsequently, other organisms 

were assayed for their capacity to induce RNAi. Evidence for RNAi in D. melanogaster 

was first demonstrated by Kennerdell and co-workers (Kennerdell and Carthew 1998) 

who showed the involvement of the Frizzled and Frizzled2 genes in the wingless 
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pathway after introduction of dsRNA into embryos. Again, several techniques were 

developed in order to use dsRNA in this organism leading to the establishment of cell-

free (Tuschl et al. 1999) and cell culture models (Caplen et al. 2000). A system that 

employed dsRNA as an extended hairpin-loop RNA was developed to induce heritable 

gene silencing (Kennerdell and Carthew 2000). The D. melanogaster system has 

allowed the identification of several endogenous genes that play key roles in the RNAi 

process. An RNA nuclease activity called RNA-induced silencing complex (RISC) was 

discovered that is responsible for the degradation of endogenous mRNAs, as well as 

small nucleotide fragments (∼25 nt in length), which could be used as guides by RISC 

(Hammond et al. 2000). They later characterized RISC as a ribonucleoproteic complex 

(Hammond et al. 2001). These results were soon extended by showing that RNAi is an 

ATP-dependent and translation-independent event where the introduced dsRNA is 

processed into 21–23 nt fragments that guide the cleavage of endogenous transcripts 

(Zamore et al. 2000). The enzyme responsible for the processing of the dsRNA was 

later discovered as an RNase III family nuclease named dicer, a protein with high 

homology to the C. elegans Rde-1 gene (Bernstein et al. 2001). To study the functions 

of RNAi in yeast, Volpe et al. (2002) deleted argonaute, dicer, and RNA-dependent 

RNA polymerase homologs; deletion resulted in the accumulation of complementary 

transcripts from centromeric heterochromatic repeats and de-repression of transgenes 

integrated at the centromere and impairment of centromere function. So the authors 

proposed that dsRNA arising from centromeric repeats targets the formation and 

maintenance of heterochromatin through RNAi. In mammalian cells, RNAi was first 

employed as a tool to induce the silencing of the targeted gene (Svoboda et al. 2000, 

Wianny and Zernicka-Goetz 2000). This approach was partially successful in mouse 

embryos (Svoboda et al. 2000, Wianny and Zernicka-Goetz 2000, Svoboda et al. 2001, 

Stein et al. 2003b, Knott et al. 2005, Plusa et al. 2005) and embryonic cell lines (Billy et 

al. 2001, Yang et al. 2001, Paddison et al. 2002b) where specific gene silencing was 

achieved. On the other hand, the introduction of dsRNA into mammalian somatic cells 

presents a major problem because it can induce (in a manner similar to the silencing 

observed during viral infection) to the activation of the protein kinase R (PKR) and 

RNAseL pathway, resulting in the inhibition of protein synthesis and induction of 

apoptosis (Baglioni and Nilsen 1983, Clarke and Mathews 1995, Gil and Esteban 2000). 
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Interestingly, this shows that, in mammalian cells, the mechanisms for RNAi are not 

identical to those in lower organisms although RNAi does operate in at least a subset of 

mammalian cell types, in a dicer-dependent manner via post-transcriptional mechanisms 

(Billy et al. 2001, Paddison et al. 2002b). Elbashir et al. (2001a) had the idea of directly 

introducing 21–23 nt dsRNA (siRNAs) into mouse and human cells to try to avoid the 

problems associated with the expression of longer dsRNAs. They showed that the 

siRNA could efficiently trigger silencing in the mammalian cells.  

 

2.3.2 Mechanism of RNA interference 

 

A clearer picture of PTGS emerged from several different basic observations, including 

the necessity of transcriptionally active genes and the ability of RNA viruses to silence 

a homologous endogenous gene (English et al. 1997). Within the last 3 years, a flurry of 

studies has identified several of the molecules that mediate RNAi, and the mechanism 

whereby these molecules affect the selective degradation of targeted mRNAs (Hamilton 

and Baulcombe 1999, Kenner and Carthew 2000, Tavernarakis et al. 2000, Wang et al. 

2000). It is now clear that the production of dsRNA with sequence complementary to 

the mRNA being targeted is fundamental to the process of PTGS, while single-stranded 

RNA is not sufficient to induce PTGS. The importance of dsRNA is supported by a 

wealth of data. Transgenes engineered to synthesize dsRNA require only a few copies 

of the dsRNA to achieve PTGS and can induce cosuppression. There are several ways 

such transgenes produce dsRNA including the synthesis of long hairpin mRNAs by 

transcription of an inverted repeat (Kennerdell and Carthew 2000, Tavernarakis et al. 

2000), and transcription of complementary sense and antisense strands by opposing 

promoters (Wang et al. 2000). Other studies have shown that although cells may 

initially produce very long dsRNAs, they are cleaved into smaller dsRNAs, 21-25 nt in 

length, that actually mediate RNAi (Hamilton and Baulcombe 1999). However, in 

mammals those exists two different pathways that respond to dsRNA. The RNAi 

pathway is the more ancient and, called a sequence-specific mechanism. Another 

mechanism that recognizes dsRNA and mounts an orchestrated response to it, the PKR 

and interferon pathway is known as sequence independent, which evolved relatively 

recently and it is specific to mammals. 
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2.3.2.1 The protein kinase R or interferon pathway 

 

The protein kinase R (PKR) or interferon pathway response to dsRNA in mammalian 

cell was discovered 30 years ago (Figure 2.2). First described by Hunter et al. (1975), 

that exposed mammalian or cells to dsRNA, regardless of their sequence, triggers a 

global repression of protein synthesis, and eventually leads to apoptosis. In most 

mammalian somatic cells, exposure to dsRNA activates PKR, which catalyzes 

phosphorylation of translation initiation factor namely: α-subunit of eukaryotic protein 

synthesis initiation factor 2 (eIFα), which in turn inhibits translation. Protein kinase R is 

also involved in regulating Nuclear factor-κB (NF-κB), which produces 2´-5´-

oligoadenylate synthetase (2´,5´-OAS), which in their produces 2´,5´ oligoadenylates 

with 5´-terminal triphosphate residues that subsequently induce activation of RNAse L 

which is responsible for general RNA degradation (Barber 2001). Protein kinase R and 

2´,5´-OAS mutant mice demonstrate that these two components are essential for the 

apoptotic response to dsRNA (Der et al. 1997).  

However, long dsRNA induced RNAi but not the PKR or interferon response in initial 

experiment in mammalian oocytes and embryos (Svoboda et al. 2000, Wianny and 

Zermicka-Goetz 2000, Yang et al. 2001, Paradis et al. 2005, Nganvongpanit et al. 

2006a, 2006b). A better understanding of the RNAi mechanism also allowed the 

elimination of a non-specific response to dsRNA in somatic cells because although 

siRNAs can induce RNAi, they are believed to be too short to trigger the PKR and 

2´,5´-OAS pathways (Zamore et al 2000, Elbashir et al. 2001a). 

 

2.3.2.2 The RNA interference pathway 

 

A working model for RNAi is shown in figure 2.3. The first step is the production of 

dsRNA directed against an mRNA. The second step involves the recognition of dsRNA 

and its processing to produce 21-23 nt siRNAs. The effector step is the recognition of 

the target mRNA by the siRNAs and the selective degradation of that mRNA. In this 

section, three mechanistic features of RNAi relevant to the mammalian pathway will be 

shown: 1) processing of dsRNA into siRNA; and 2) recognition and cleavage of the 

cognate mRNA;  
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Figure 2.2:  The sequence independent pathways responding to dsRNA in 

mammalian cells. The dsRNA activates protein kinase R (PKR), which catalyzes 

phosphorylation of translation initiation factor eIF2α and lead to inhibit the translation. 

PKR is also involved in interferon induction (through NF-κB). Interferon and dsRNA 

also activate 2´,5´-oligoadenylate synthetase (2´,5´-OAS) which produces 

2´,5´oligoadenylates (2´,5´A) with 5´-terminal triphosphate residues. Oligoadenylates 

subsequently induce activation of RNAse L, which is responsible for general RNA 

degradation. Both PKR and 2´,5´-OAS are essential for the apoptotic response to 

dsRNA (Svoboda 2004).   

 

2.3.2.2.1 Processing of dsRNA into siRNA  

 

The introduction of dsRNA into cells, whether produced endogenously from exogenous 

plasmids or viral vectors, results in its recognition by an enzyme that cleaves the 

dsRNA into 21 to 23 nt double-stranded fragments in an ATP-dependent, processive 

manner with a 2 nt at 3´-overhang and 5´-phosphorylated end (Zamore et al. 2000, 

Elbashir et al. 2001b). This nuclease was identified as an enzyme called dicer that is 

highly conserved among plants, fungi, worms, flies and mammals (Zamore et al. 2000, 

Ketting et al. 2001, Elbashir et al. 2001b). It is a member of the RNase III family of 

dsRNA-specific ribonucleases (Bernstein et al. 2001). Dicer enzymes recognize and 
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process dsRNA which are essential for RNAi (Bernstein et al. 2001, Grishok et al. 

2001, Ketting et al. 2001). Dicer is thought to function as a dimer based upon 

knowledge of bacterial RNase III and structural evidence, crystallographic and 

modeling studies of RNase III suggest a mechanism for dsRNA cleavage (Blaszczyk et 

al. 2001). Dicer not only processes dsRNA into siRNA, but also processes endogenous 

regulatory RNAs called micro RNAs (miRNAs). In C. elegans, RNAi pathway gene 

Rde-4 encodes a dsRNA binding protein that interacts during RNAi with RNA identical 

to the trigger dsRNA; Rde-4 protein also interacts with dicer and a conserved DExH-

box helicase (Tabara et al. 2002). These and additional data obtained by the authors in 

the latter study suggest that Rde-1 and Rde-4 function together to detect, retain, and 

present dsRNA to Dicer for processing. Different domains of dicer have been identified 

including a dsRNA binding domain, an RNase III activity domain, a helicase activity 

domain and a PAZ domain (Piwi-Argonaut-Zwille domain, a region of a hundred amino 

acids, which could mediate interaction with argonaute proteins) (Bernstein et al. 2001). 

Mouse dicer is very similar to human dicer with a predicted size of 1,906 amino acids 

and molecular mass of 215 kDa, and contains a tandem repeat of RNase III catalytic 

domains, dsRNA binding region, a DExH/DEAH helicase motif and a PAZ domain 

(Nicholson and Nicholson 2002). The mouse dicer gene is located in chromosome 12 

and the gene is widely expressed in cells throughout the body in embryonic and adult 

life.  

 

2.3.2.2.2 Recognition and cleavage of the cognate mRNA 

 

Once generated, the small 21-23 nt dsRNA fragments called siRNA are then recognized 

by RISC and used as a guide for the recognition and degradation of the target mRNA 

(Tuschl et al. 1999, Hammond et al. 2000, Zamore et al. 2000, Nykanen et al. 2001). 

Experiments in D. melanogaster showed that RISC is present as a precursor complex 

that can be activated by ATP to form a complex with endonuclease activity that can 

cleave endogenous mRNAs (Hammond et al. 2000, 2001, Nykanen et al. 2001). The 

specific components of the RISC are not known, but do include members of the 

Argonaute family (Hammond et al. 2001) that have been implicated in many processes 

previously linked to post-transcriptional silencing. Moreover, RISC should include 
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protein responsible for endo- and exo-nuclease activity and recently, RISC activity was 

studied in a human model. Two proteins of the Argonaute family, eIF2C1 and eIF2C2, 

were identified in the affinity-purified human RISC; the authors further showed that 

RISC used single-stranded siRNAs as a guide to cleave the endogenous mRNA. In their 

studies of the mechanism of RNAi in human cells, Chiu et al. (2002) provided evidence 

that the status of the 5´-hydroxyl terminus of the as strand of a siRNA determines RNAi 

activity, whereas blocking the 3´ terminus does not prevent RNAi. They found that an 

A-form helix structure was required for the formation of antisense-target RNA 

duplexes. Surprisingly, RNAi still occurred when the siRNA duplex was cross-linked 

by psoralen, suggesting that complete unwinding of the siRNA helix is not necessary 

for RNAi activity. Thus, it appears that amplification of RNA by RNA-dependent RNA 

polymerase (RdRP) is not essential for RNAi in mammal cells, because mammals most 

likely lack the RdRP ortholog. For this result RNAi in mammals also exhibits slower 

kinetics and lower efficiency compared to Drosophila and C. elegans (Svoboda et al. 

2000, Ui-Tei et al. 2000). It is likely that additional proteins modify the different steps 

in the RNAi process. For example, recent experiments have shown that the Drosophila 

homolog of the fragile X mental retardation protein interacts with dicer and RISC 

suggesting a possible role in the RNAi machinery (Caudy et al. 2002, Ishizuka et al. 

2002). The latter results also raise the possibility of a role of abnormalities in RNAi in 

various human diseases. 

 

2.3.3 Application of RNA interference to establish developmental gene function  

 

The most widely used RNAi technology has been in cell culture and in vivo studies 

aimed at understanding the function of an individual or multiple proteins.  The complex 

and remarkably rapid chang that occurs during development of the fertilized oocyte or 

zygote into an adult organism remains a large mystery. There would appear to be a great 

potential for RNAi technology to unravel the cellular and molecular events that regulate 

development processes. Methods for silencing single or multiple selected genes in 

developing embryos in vivo and in vitro are beginning to reveal the functions of specific 

proteins in development processes (Table 2.2). The RNAi was used to demonstrate that 

siRNAs directed against the mRNA encoding Oct-3/4 and C-mos resulted in depletion 
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of the encoded proteins and phenotypes similar to those observed in Oct-3/4 and C-mos 

knockout mice (Kim et al. 2002). A key role for microtubule-associated protein-2 in the 

regulation of dendrite outgrowth in developing brain neurons was demonstrated using 

siRNAs (Krichevsky and Kosik 2002). The transcription factor Myc is known to play a 

fundamental role in the regulation of cell proliferation. A key role for the novel Myc 

target gene Mina53 in the regulation of cell proliferation by Myc was demonstrated 

using RNAi technology (Tsuneoka et al. 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: RNAi mechanism in mammals, starts with the processing of double-stranded 

RNA (dsRNA) or short hairpin RNA (shRNA) into small interfering RNA (siRNA) by 

the dicer emzyme. Small interfering RNA serves as guide sequences for RNA induced 

silencing complex (RISC), which recognizes and cleaves the cognate mRNA. 

 

The application of RNAi in mammalian embryos was first reported in 2000 by 2 

research groups (Svoboda et al. 2000, Wianny and Zernicka-Goetz 2000). Wianny and 

Zernicka-Goetz (2000) used this technique in mouse oocytes and preimplantation 

embryos. In this experiment, three genes were tested namely: MmGFP, C-mos, and E-

cadherin. For the first gene, a mouse line was created in which carried the MmGFP 
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gene, was paternally inherited to prevent complications from maternal transcripts and 

translation products. Tests showed that when embryos were injected with dsRNA 

specific for MmGFP, the fluorescence was significantly diminished; indicating that 

expression of the gene had been blocked. Also, when the embryos were injected with 

dsRNA specific for C-mos or E-cadherin, no effect on the fluorescence occurred, 

although changes resulting from the blockage of these two genes were observed, which 

indicates that in mice, as in invertebrates, the interference effect is specific. A similar 

test was done with dsRNA specific for E-cadherin. The disruption of this gene leads to 

uncompaction, a severe preimplantation defect, which prevents the embryo from 

developing correctly (Larue et al. 1994, Riethmacher et al. 1995). Similar effects to the 

MmGFP study were found, dsRNA specific for E-cadherin resulted in uncompaction of 

the embryos and dsRNA specific for C-mos or MmGFP did not. The final test involved 

C-mos, a maternally inherited gene which arrests maturing oocytes at metaphase during 

the second meiotic division. The injection of dsRNA specific for C-mos caused 63% of 

the injected cells to fail to maintain arrest at MII, whereas 1-2% of the control group 

failed to maintain arrest (Wianny and Zernicka-Goetz 2000). This demonstrated that, 

unlike the knockout method, dsRNA can block expression of maternally provided gene 

products. RNA interference is important because it allows researchers to study the 

effects of genes loss of their function on developing embryos without the complications 

of the gene knockout method. The application of this mechanism to vertebrates and then 

to mammals is likely to provides better models for studying the effects of genes and 

inactivation of genes in livestock for example cattle, swine and poultry in additional to 

human. Also, dsRNA was used to investigate the possible role of Gdf-9 in mediating 

oocyte regulation of cumulus expansion (Gui and Joyce 2005). Fully-grown mouse 

oocytes injected with Gdf-9 dsRNA, Bmp15 dsRNA or injection buffer were cultured 

for 24 h and processed for measurement of Gdf-9 and Bmp-15 mRNA levels using real-

time RT-PCR, and for measurement of Gdf-9 protein levels using western blotting and 

immunofluorescence staining techniques. Injection with Gdf-9 dsRNA knocked down 

Gdf-9 but not Bmp-15 mRNA expression in oocytes, and vice versa. Furthermore, Gdf-

9 protein levels were reduced in the Gdf-9 dsRNA injected oocytes. To investigate the 

role of Gdf-9 in cumulus expansion, two endpoints genes were used to evaluate 

cumulus expansion namely: Has-2 and Ptgs-2. The mRNA levels were measured in 
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cumulus cells using real-time RT-PCR and assessment of cumulus expansion was 

undertaken morphologically. After 24 h of culture in the presence of 0.5 U/ml follicle 

stimulating hormone (FSH), cumulus shells co-cultured with buffer and Bmp-15 

dsRNA injected oocytes exhibited a high degree of expansion, while cumulus shells co-

cultured with Gdf-9 dsRNA injected oocytes exhibited only limited expansion. 

Supporting this observation, after 8 h of co-culture Has-2 and Ptgs-2 mRNA levels were 

lower in cumulus cells co-cultured with Gdf-9 dsRNA injected oocytes than in those co-

cultured with buffer injected oocytes. These results strongly support the concept that 

Gdf-9 is a key mediator of oocyte-enabled cumulus expansion in mice. In bovine, RNAi 

represents a useful technique to study gene function in oocyte. The injection of Cyclin 

B1 dsRNA resulted in a decrease in Cyclin B1 mRNA and protein, while the Cyclin B2 

mRNA remained unaffected. Furthermore, the injection of GFP dsRNA did not interfere 

with Cyclin B1 mRNA or protein with the ability of the oocyte to mature properly 

(Paradis et al. 2005). Moreover, the study conducted by Nganvongpanit et al. (2006a) 

has shown the E-cadherin transcripts and proteins were reduced after embryos were 

treated with E-cadherin dsRNA, and the blastocyte rates in those embryos was found to 

be lower as compared with that of the control group. 

 

2.3.4 Methods of delivery 

 

The classical methods for nucleic acid delivery, lipid-mediated or viral tranfection, 

electroporation, and microinjection were used in RNAi method (Table 2.3). Successful 

introduction of dsRNA molecules into cells using any of those methods depends on a 

number of factors including delivery reagent composition and stability, effective 

dsRNA concentrations, cell viability and cell growth characteristics. For this reason, 

delivery methods demand through and comprehensive optimization to achieve effective 

silencing while minimizing toxicity. 

 

2.3.5 Methods for detecting gene silencing 

 

Gene silencing can be detected using one of the three general techniques 1) quantitation 

of changes in the levels of the target mRNA, 2) direct analysis of changes in the 
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concentrations of the protein encoded by the target mRNA and 3) functional assays 

designed to examine one or more phenotypes affected by the target protein. 

 

Table 2.2: The applications of RNAi in mammalian embryos 
Species Tissue Gene Molecule Reference 

Mouse Oocytes Bmp-15 dsRNA Gui and Joyce 2005 

  C-mos dsRNA Wianny and Zernica-Goetz 2000, 

Svoboda et al. 2000 

  Plat dsRNA Svoboda et al. 2000 

  PLCζ shRNA Knott et al. 2005 

  Egfp dsRNA Wianny and Zernica-Goetz 2000, 

Stein et al. 2003b  

  Gdf-9 dsRNA Gui and Joyce 2005 

  Itpr1 dsRNA Xu et al. 2003 

  Miss dsRNA Lefebyre et al. 2002 

  Doc1r dsRNA Terret et al. 2003 

  Bnc dsRNA Ma et al. 2002 

  Ctcf dsRNA Fedoriw et al. 2004 

  Msy2 dsRNA Yu et al. 2004 

 Embryo Dicer1 siRNA Svoboda et al. 2004 

  E-cadherin dsRNA Wianny and Zernica-Goetz 2000, 

Sonn et al. 2004 

  Egfp siRNA Haraguchi et al. 2004 

  Nek2A dsRNA Sonn et al. 2004 

  Oct-4 siRNA Haraguchi et al. 2004 

  Par3 dsRNA Plusa et al. 2005 

  aPKC dsRNA Plusa et al. 2005 

Porcine Oocyte Plk1 dsRNA Anger et al. 2004 

 Embryo Karyopherins 

α2, α3 

dsRNA Cabot and Prather 2003 

Bovine Oocyte C-mos dsRNA Nganvongpanit et al. 2006b 

  Cyclin B1 dsRNA Paradis et al. 2005 

 Embryo E-cadherin dsRNA Nganvongpanit et al. 2006a 

  Oct-4  dsRNA Nganvongpanit et al. 2006a, 2006b 
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Table 2.3: The delivery methods used in RNAi technology 
Delivery method Molecules Reference 

Lipid-mediated 

transfection 
siRNA 

Elbashir et al. 2001a, Brummelkamp et al. 2002,  Yu et 

al. 2002, Kim et al. 2004 

 shRNA Yu et al. 2002, Yu et al. 2003 

 dsRNA Caple et al. 2000, Billy et al. 2001 

Viral transfection siRNA Tiscornia et al. 2003, Cao et al. 2005, Li et al. 2005 

Electroporation dsRNA Grabarek et al. 2002, Mellitzer et al. 2002 

 siRNA 
Calegari et al. 2002, Weil et al. 2002, Oliveira and 

Goodell 2003, Djikeng et al. 2004 

Microinjection dsRNA Fire et al. 1998, Svoboda et al. 2000, Wianny and 

Zernicka-Goetz 2000, Cabot and Prather 2003, Stein et 

al. 2003b, Anger et al. 2004, Gui and Joyce 2005, Sonn 

et al. 2004, Paradis et al. 2005, Plusa et al. 2005, 

Nganvongpanit et al. 2006a, 2006b 

 Long hpRNA Stein et al. 2003b 

 siRNA Anantharam et al. 2003, Haraguchi et al. 2004 

 

Quantitative real-time PCR allows a highly sensitive quantification of transcriptional 

levels of the gene of interest in a few hours with minimal handling of the samples 

(Higuchi et al. 1992, Mandigers et al. 1998, Kammula et al. 2000). The suitability of 

this technique for the examination of gene expression in individual oocytes and 

embryos has been confirmed (Steuerwald et al. 2000, Hartshorn et al. 2002, Mohan et 

al. 2002). The application of this technique is also widely used to determine the 

quantitative expressed of mRNA in RNAi study (Gui and Joyce 2005, Paradis et al. 

2005, Nganvongpanit et al. 2006a, 2006b).  

Western blot analysis or immunoblotting is a common technique for quantitative and 

quantitative evaluation of protein levels and provides information about both the 

relative abundance and the size of the protein. This technique is a popular method for 

RNAi studies because the reduction in protein levels is the principle and represents the 

downstream effect of mRNA knockdown (Billy et al. 2001, Sui et al. 2002, Zhou et al. 

2002, Amdam et al. 2003, Cabot and Prather, 2003, Kawasaki and Taira et al. 2003, 

Anger et al. 2004, Haraguchi et al. 2004, Gui and Joyce 2005, Sonn et al. 2004, Knott et 

al. 2005, Paradis et al. 2005, Nganvongpanit et al. 2006a, 2006b). 
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As mentioned previous, RNAi is a new technology which is used to study the function 

of the specific genes of interest.  In addition to assays that quantify the effects of RNAi 

on mRNA and protein levels, more phenotypic changes have been developed. Such 

functional assays can be divided into different groups, including electrophysiological 

assay, growth and differentiation assays or viability assays. Specific biological assays 

can range from watching the development or morphology of the cell under the 

microscope (Calegari et al. 2002, Zhou et al. 2002, Stein et al. 2003b, Van De Wetering 

et al. 2003, Gui and Joyce 2005, Haraguchi et al. 2004, Sonn et al. 2004, Knott et al. 

2005, Plusa et al. 2005, Nganvongpanit et al. 2006a, 2006b), or used enzyme activity 

determination specific gene functions (Ui-Tei et al. 2000, Billy et al. 2001, Yang et al. 

2001, Anantharam et al. 2003, Kawasaki and Taira 2003, Anger et al. 2004, Knott et al. 

2005). 
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3 Material and methods  

 

3.1 Material 

 

3.1.1 Embryos 

 

For this study bovine embryos were obtained by in vitro production (IVP) technologies 

after in vitro maturation, fertilization and culture. The IVP embryos were produced 

from oocytes obtained from ovaries which obtained from local slaughter house.  

 

3.1.2 Chemicals  

 

Amersham Bioscience 

(Buckinghamshire, UK) 

HRP-conjugated donkey anti-rabbit secondary 

antibody 

Beckman Coulter  

(Krefeld, Germany) 

Sample loading solution (SLS) 

Dye terminator cycle sequencing (DTCS) 

Dynal Biotech  

(ASA, Oslo, Norway) 

Dynalbeads Oligo (dT)25 

Gibco BRL, Life 

Technologies  

(Karlsruhe, Germany) 

BME (essential amino acids) 

MEM (non essential amino acids) 

Gentamycin 

Invitrogen  

(Karlsruhe, Germany) 

Superscript II reverse transcriptase  

5X First-Stand buffer 

DTT 0.1 M 

Kodak   

(Japan) 

Autoradiography film (Kodak® Biomax XAR film) 

MWG Biotech  

(Eberberg, Germany) 

Oligonucleotide primers 

Promega  

(Mannheim, Germany) 

RNase free-DNase 

Ribo-nuclease inhibitor (RNasin) 

T4 DNA ligase and 2X rapid ligation buffer 
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Roth  

(Karlsruhe, Germany) 

5-bromo-4-chloro-3-indolyl-β-D-galactopyra-noside 

(X-gal) 

Acetic acid 

Agar-Agar 

Anti-mouse IgG (whole molecule) FITC conjugated, 

Ampicillin 

Ammonium peroxydisulfate (APS) 

Boric acid 

Calcium chloride 

Chloroform 

dNTP 

Ethylenediaminetetraacetic acid (EDTA) 

Ethanol 

Ethidium bromide 

Formaldehyde 

Glycerin 

Isopropyl β-D-thiogalactoside (IPTG) 

Korsolin® FF Pepton 

Ponceau-S 

Proteinase K 

Sodium dodecyl sulfate (SDS) 

Sodium carbonate, 

Sodium chloride 

TEMED 

Tris-HCl 

T-octylphenoxypolyethoxyethanol (Triton X-100) 

Yest extract 

Santa Cruz biotechnology 

(Heidelberg, Germany) 

Donkey anti-goat IgG-HRP secondary antibody 

Oct-3/4 (N-19) goat polyclonal primary antibody 

Donkey anti-goat IgG-FITC secondary antibody 

SERVA Electrophoresis  

(Heidelberg, Germany) 

Acrylamide molecular biology grade 

Bisacrylamide 
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Sigma  

(Steinheim, Germany)  

10X Buffer for PCR 

Agarose 

Albumin bovine 

Bisbenzemide (Hoechst H33528) 

Dulbecco´s Phosphate Buffer Saline (D-PBS) 

Heparin 

Hepes 

Hoechst 33258 

Hyaluronidase 

Hypotaurin 

Igepal 

Isopropanol 

L-Glutamin 

Megnesium chloride 

Medium 199 

Mineral oil 

Penicillin 

Polyvinyl pyrolidone (PVP) 

Propidium iodide 

Protease inhibitor cocktail 

Sodium hydrogen carbonate 

Sodium hydrogen sulphate 

Sodium lactate solution (60%) 

Sodium pyruvate 

Streptomycin sulfate  

SYBR® Green JumpStartTM Taq ReadyMixTM 

Tag DNA polymerase 

Tween-20 

Stratagene  

(Amsterdam, NL) 

DH5α Escherichia coli competent cells 

Stressgen  

(Victoria, Cannada) 

Rabbit anti-cMos Proto Oncogene Product (MOS) 

Polyclonal Antibody 
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3.1.3 Reagents and media 

 

Anode buffer I  

(100 ml) 

Tris-HCl (pH 10.4)                   

Methanol    

Water added to 

 

300 mM

10 ml

100 ml

Anode buffer II  

(100 ml) 

Tris-HCl (pH 10.4)                    

Methanol    

Water added to 

 

25 mM

10 ml

100 ml

Binding buffer  

(50ml) 

Tris-HCl (1 M pH 7.5) 

Lithium chloride (5M) 

EDTA (0.005 M pH 8) 

Water added to 

 

1,000  µl

10  ml

20  ml

50  ml

Blocking buffer  

(100 ml) 

Polyvinyl pyrolidone 

TBST added to  

 

1   g 

100 ml

BSA (3 %) Bovine serum albumin (BSA) 

PBS+PVA added to  

 

0.15  g 

5  ml

Capacitation medium  

(50 ml) 

Sodium chloride 

Potasium chloride 

Sodium hydrogen carbonat 

Sodium dehydrogen sulphate 

Hepes 

Magnisium chloride 6H2O 

Calcium chloride 

Sodiumlactate solution (60%) 

Phenol red solution (5% in D-PBS) 

Water add to  

 

0.2900   g 

0.0115   g 

0.1050   g 

0.0017   g 

0.1190   g 

0.0155   g 

0.0145   g 

184  µl

100  µl

50  ml



Material and methods   

 

40

Cathode buffer   

(100 ml) 

Tris-HCl (pH 9.4)                     

Methanol    

6-aminohexanoic acid  

Water added to 

 

25 mM

10 ml

60 mM

100 ml

Culture medium;CR-1  

(50 ml) 

Hemicalcium lactate 

Streptomycin sulphate 

Penicillin G 

Sodium chloride 

Potasium chloride 

Sodium hydrogencarbonate 

Sodium pyruvate 

L-Glutamin 

Phenol red solution (5% in D-PBS) 

 

0.0273   g 

0.0039   g 

0.0019   g 

0.3156   g 

0.0112   g 

0.1050   g 

0.0022   g 

0.0073   g 

100  µl

DEPC-treated water  

(1,000 ml) 

DEPC 

Water added to 

 

1 ml

1,000 ml

Epinephrin solution 

(40 ml) 

Sodiumdisulphate 

Epinephrin 

Water added to 

 

0.0400   g 

0.0018   g 

40 ml

Fertilization medium  

(50 ml) 

Sodium chloride 

Potassium chloride 

Sodium hydrogen carbonate 

Sodium dihydrogen phosphate 

Penicillin 

Magnesium chloride hexahydrate 

Calcium chloride dehydrate 

Sodium lactate solution (60%) 

Phenol red solution 

Water added to 

0.3300   g 

0.0117   g 

0.1050   g 

0.0021   g 

0.0032   g 

0.0050   g 

0.0150   g 

93  µl

100  µl

50  ml
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Glycine+PBS  

(30 mmol/ml) 

Glycine 

PBS+PVA solution added to  

 

0.02252  g 

10 ml

IPTG solution 

(10 ml) 

IPTG 

Water added to 

 

1.2   g 

10 ml

LB-agar  

(800 ml) 

Sodium chloride 

Pepton 

Yeast extract 

Agar 

Sodium hydroxide (40 mg/ml) 

Water added to 

 

8   g 

8   g 

4   g 

12   g 

480  µl

800 ml

LB-broth 

(800 ml) 

Sodium chloride 

Pepton 

Yeast extract 

Sodium hydroxide (40 mg/ml) 

Water added to 

 

8   g 

8   g 

4   g 

480  µl

800 ml

Lysis buffer  

(100 µl) 

Igepal (0.8%) 

RNasin  

Dithiothreitol (DTT)  

Water added to 

 

0.8  µl

5  µl

5  µl

100  µl 

Modified parker medium  

(110 ml) 

Sodium hydrogencarbonat 

Hepes 

Sodium pyruvat 

L-Glutamin 

Gentamycin 

Medium 199 

Hemicalcium lactate 

Water added to 

0.080   g 

0.140   g 

0.025   g 

0.010   g 

500  µl

99 ml

0.06   g 

110 ml
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Paraformaldehyde, 16% 

(10 ml) 

 

Paraformaldehyde  

Water added to 

 

1.6  g 

10  ml

PBS + PVA 

(50 ml) 

Polyvinyl alcohol (PVA)    

PBS added to  

 

300 mg

50 ml

Permeabilization solution 

(10 ml) 

Tritonx-100 

Glycine + PBS added to 

 

5 µl

10 ml

PHE medium 

(30 ml) 

Physiological saline (0.9%) 

Hypotaurin solution 

Epinephrin solution 

 

16 ml

10 ml

4 ml

Physiological saline 

(1,000 ml) 

Sodium chloride 

Water added to 

 

9   g 

1,000 ml

Running buffer, 10X 

(1,000 ml)  

Tris-HCl (0.25 M)    

Glycin (1.92 M)    

SDS       

Water added to   

   

30.3   g 

144   g 

10.0   g 

1,000 ml

Sample loading buffer, 4X 

(50 ml) 

Tris-Hcl (1M pH 6.8)     

SDS      

2-Mercaptoethanol   

Glycerine      

Bromophenol blue     

Water added to  

   

13 ml

6 g 

10 ml

20 ml

10 mg

50 ml

Separating gel  

(10% acrylamide)  

 

Acrylamide (30%), bis-acrylamide (0.8%) 

Tris (1 M pH 8.8) 

SDS (10%) 

APS (20%) 

5 ml

5.60 ml

0.15 ml

30  µl
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TEMD 

Water 

 

10  µl

4.25 ml

Stacking gel  

(4% acrylamide) 

 

Acrylamide (30%), bis-acrylamide (0.8%) 

Tris-HCl (1M pH 6.8) 

SDS (10%) 

APS (20%)  

TEMD  

Water  

 

1.50 ml

1.30 ml

0.15 ml

30  µl

10  µl

7.05 ml

TAE buffer, pH 8, 50X 

(1,000 ml) 

Tris-HCl 

Acetic acid 

EDTA (186.1 mg/ml) 

Water added to 

 

242 mg

57.1 ml

100 ml

1,000 ml

TBE buffer, 10X 

(1,000 ml) 

Tris-HCl 

Boric acid 

EDTA 

Water added to 

 

108   g 

55   g 

40 ml

1,000 ml

TBS 

(1,000 ml) 

Tris-HCl 

Water added to 

 

121.14  g 

1,000  ml

TBST 

(1,000 ml) 

Tween-20 

TBS added to 

 

1  ml

1,000 ml

TE buffer, 1X 

(1,000 ml) 

Tris-HCl (1M) 

EDTA (186.1 mg/ml) 

Water added to  

 

10 ml

2 ml

1,000 ml

Washing buffer  

(50 ml) 

Tris-HCl (1 M pH 7.5) 

Lithium chloride (LiCl) 

500 µl

1,500 µl
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EDTA (0.005 M pH 8.0) 

Water added to 

 

1,000 µl

50 ml

X-gal solution X-gal  

N,N´-dimethylformamide 

50 mg

1 ml 

 

3.1.4 Kits  

 

CEQ DTCS-Quick Start Kit Beckman Coulter (CA, USA) 

ECL Plus Western Blotting Detection Amersham Biosciences 

(Buckinghamshire, UK) 

GenEluteTM Plasmid Miniprep Kit Sigma (Steinheim, Germany) 

QIAquick PCR purification kit  Qiagen (Hilden, Germany) 

RiboMAXTM Large Scale RNA Production 

System/SP6 and T7 

Promega (Medison, USA) 

 

pGEM®-T vector Promega (Medison, USA) 

 

3.1.5 Software  

 

ABI Prism® 7000 Sequence Detection System 

Software 

Applied Biosystems  

(Foster City, CA, USA) 

BLAST program 

(http://www.ncbi.nlm.nih.gov/BLAST/)  

National Center for Biotechnology 

Information (NCBI)  

Image analysis   

 

Bio-Rad Laser Sharp MRC-1024 

CLS software 

Primer Express® Software version 2.0 Applied Biosystems  

(Foster City, CA, USA) 

Weight to Molar Quantity (for nucleic acids) 

(http://www.molbiol.ru/eng/scripts/01_07.html) 

Molbiol, RU 

 

SAS version 8.0 SAS Institute Inc.  

(NC, USA) 
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3.1.6 Equipments 

 

ABI Prism® 7000 Sequence Detection System  Applied Biosystems (Foster City, 

CA, USA) 

Carbon dioxide incubator (BB16)    Heraeus (Hanau, Germany) 

Carbon dioxide incubator (MCO-17AI)   Sanyo (Japan) 

Centrifuge Heraeus (Hanau, Germany) 

CEQTM 8000 Series Genetic Analysis System Beckman coulter (CA, USA) 

CLSM LSM 510     Carl Zeiss (Germany) 

Cryotube Nunc (Roskilde, Germany) 

Electrophoresis chamber BioRad (Munich, Germany) 

Epifluorescence microscope  Leica, Bensheim, Germany 

Four-well dishe Nunc (Roskilde, Germany) 

Incubator (BB16) Heraeus (Hanau, Germany) 

Injection capillary (K-MPIP-3335-5) Cook (Ireland) 

Nitrocellulose transfer membrane (Protran®) Schleicher & Schuell BioScience 

(Germany) 

PCR thermal cycle (PTC 100) MJ Research (USA) 

Power Supply PAC 3000:     BioRad (München, Germany) 

Power Supply Mini-Protan®    BioRad (Italy) 

Slide SuperFrost® Plus (Braunschweig, 

Germany) 

Trans/Blot® Semi/Dry transfer Cell BioRad (CA, USA) 

Ultraspec 2100 pro spectrophotometer Amersham Biosciences 

(Buckinghamshire, UK) 

  

3.2 Methods 

 

3.2.1 Experimentals design 

 

3.2.1.1 The effect of dsRNA on in vitro bovine oocyte maturation 
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C-mos was used as candidate gene to study the effect of dsRNA on in vitro bovine 

oocyte maturation. The immature oocytes were categorized into three groups namely: 

those injected with C-mos dsRNA, water (RNase-free) and uninjected control. As 

shown in figure 3.1, the microinjection was performed at immature oocytes stage. Three 

to four hours after microinjection the number of oocytes was recorded for survival rate. 

Then, the microinjected oocytes were cultured for the desired period and tested for the 

RNAi effect. The first assay conducted with microinjected oocytes was phenotype 

assessment of matured oocytes. The culture was extended up to 24 h after maturation 

for further phenotype evaluation. Real-time PCR was performed to check whether the 

cognate mRNA had degraded. Moreover, independent maternal transcript Gdf-9 was 

quantified in all treatment groups to assess the specificity of mRNA suppression by the 

C-mos dsRNA. Western blot analysis was performed using samples of matured oocytes 

to evaluate C-mos protein expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: An outline of the first experimental design used in RNAi experiments in 

bovine oocytes. Immature oocytes were microinjected with dsRNA or water followed 

by in vitro culture for 24 hours and another 24 hours after maturation for phenotype 

change. Survival rate was observed 3-4 hour after microinjection procedure. The 

matured oocytes were used to study the effects on mRNA and protein expression. 

Phenotype evaluation was performed at maturation stage and 24 hours after maturation.     
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3.2.1.2 The effect of dsRNA on in vitro bovine embryo development  

 

Oct-4 was used as candidate gene to study the effect of dsRNA on in vitro development 

of bovine embryos. The zygotes were categorized into three groups namely: those 

injected with Oct-4 dsRNA, water (RNase-free) and uninjected control. For this, the 

microinjection was performed at zygote stage. The number of zygote 3-4 h after 

microinjection was recorded for survival rate. Then, the zygotes were cultured for the 

desired period until testing for the RNAi effect is performed. The first assay conducted 

with microinjected zygotes was phenotype assessment including first cleavage, morula 

and blastocyst rate. Real-time PCR was performed to check whether the cognate mRNA 

had degraded at blastocyst stage. In this experiment, the E-cadherin transcript has been 

quantified in the three treatment groups to investigate the specificity of mRNA 

degradation by Oct-4 dsRNA. Moreover, the Fgf-4 gene which is reported to be co-

expressed with Oct-4 gene (Nicholes et al. 1998), has been quantified in all treatment 

groups (in this experiment). Immunofluorescence and western blot analysis were 

performed using embryos at day 7 blastocyst stage for evaluating the Oct-4 protein 

expression (figure 3.2). Moreover, the differential cell staining was performed using 

embryos at day 8 blastocyst stage for evaluating the ICM and TE cells. 

 

3.2.2 In vitro embryo production 

 

3.2.2.1 Oocytes recovery and in vitro maturation 

 

Bovine ovaries were obtained from the local slaughter house and transported to the 

laboratory within 4 h in a thermo flask (35 ºC) containing physiological saline (0.9% 

NaCl), supplemented with 0.5 ml Steptocombin® per liter.   Before aspiration of 

cumulus oocyte complex (COCs), the ovaries were washed once with 70% ethanol 

followed by two times washing with 0.9% physiological saline to eliminate surface 

organisms and then dried with sterile paper to avoid contamination. Subsequently, 

COCs that have 2 to 8 mm diameter were aspirated from follicles using a 5 ml syringe 

attached with 18 G needles. This aspirated fluid was collected in sterilized 50 ml tubes 

kept at 35 ºC and was allowed to precipitate for 15 min. The competent COCs were 
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picked out using glass-pipette and washed three times in drops of modified parker 

medium (MPM) supplemented with 12% oestrus cow serum (OCS). The COCs were 

transferred in groups of 50 cells in 400 µl maturation medium under mineral oil (Sigma) 

in four well dishes (Nunc). Only oocytes with evenly granulated cytoplasm and 

surrounded by multiple layer of cumulus cells were used for in vitro maturation. During 

the IVM procedure, these competent COCs were culture in TCM-199 as basic medium 

at 24  ºC in incubator with humidified atmosphere of 5% CO2 in air for 22-24 h.  

 

 
 

Figure 3.2: An outline of the second experimental design used in RNAi experiments in 

bovine embryos.  Zygotes were microinjected with dsRNA or water followed by in vitro 

culture until blastocyst stage. Survival rate was determined 3-4 hours after 

microinjection procedure. The blastocysts (day 7) were used to study the effects on 

mRNA and protein expression. Phenotype evaluation was performed at 2-cell, morula 

and blastocyst stage.      
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3.2.2.2 Sperm preparation and capacitation 

 

Base on the number of oocytes, 2-4 semen straws prepared from known breeding bull 

were thawed and motile spermatozoa were obtained by swim-up procedure (Parish et al. 

1988). During the swim-up procedure frozen thawed sperm cell were incubated in a 

tube containing 5 ml capacitating medium supplemented with heparin for 50 min under 

39 ºC in an incubator with humidified atmosphere of 5% CO2 in air. The motile sperm 

cells found in the upper layer of the solution were transferred into new falcon tube. The 

sperm cells were pelleted by centrifugation at 10,000 rpm for 10 min. The resulting 

pellet was washed two times and finally resuspended in already prepared 3.5 ml 

capacitating medium and made ready to use for IVF. 

 

3.2.2.3 In vitro fertilization 

 

Matured oocytes were washed twice in the fertilization medium and transferred into a 

four-well dish containing 400 µl of fertilization medium supplement with 6 mg/ml 

bovine serum albumin (BSA), 2.2 mg/ml sodium pyruvate and 1 mg/ml heparin. Ten 

microliter of PHE medium was added to each well to initiate sperm motility and 

covered with mineral oil (Sigma). Motile spermatozoa selected by the above procedures 

were finally added to the fertilization medium to have a final concentration of 1x106 

spermatozoa/ml to add to a group of 50 oocytes in each well and co-cultured for 18 h at 

standard incubation conditions, 39 ºC and humidified atmosphere containing 5% CO2 in 

air. 

 

3.2.2.4 In vitro culture 

 

After IVF, the presumptive zygotes were put into 15 ml falcon tube containing 1 ml of 

culture medium (CR-1aa) (Rosenkranz and First 1994) supplemented with 10% OCS, 

10 µl/ml BME (essential amino acids) and 10 µl/ml MEM (non essential amino acids). 

The fertilized oocytes were gently vortexed to separate them from dead spermatozoa 

and the cumulus cells. The cumulus free zygotes were selected and washed two times 

with culture medium before being transferred in group of 50-60 cells into four-well 
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dish, each well containing a 400 µl culture medium cover with mineral oil. The first 

cleavage rate of the embryos is determined 48 h after fertilization followed by 

incubating for the consecutive days when different developmental stages were harvested 

at respective developmental times as shown in table 3.1. 

 

3.2.3 Preparation of DNA template 

 

3.2.3.1 Polymerase chain reaction 

 

For all gene amplification studies, a pair of primers was designed according to bovine 

cDNA sequences found in GenBank (see Table 3.2 for details) using Primer Express® 

Software v2.0 (Applied Biosystems). These primers generated a PCR amplicon 

corresponding to the coding sequence. The identity of the product was confirmed by 

sequencing. The first round of PCR amplification was performed using Taq DNA 

polymerase (Sigma). At first, the sample was heated at 95 °C for 5 min followed by 35 

cycles of denaturing at 94 °C for 30 s, annealing at temperatures as indicated in table 

3.2 for 30 s and extension at 72 °C for 1 min. Following the last cycle, a 10 min 

elongation step at 72 °C was performed.  

 

Table 3.1: Average developmental time for embryos collection 
Developmental time (hours post insemination; hpi) 

Stage of embryos 
Range Average 

2-cells 24-40 32 

4-cells 40-52 46 

8-cells 53-75 64 

16-cells 80-110 96 

Morula 110-135 120 

Blastocyst 160-175 168 

  

3.2.3.2 Isolation of DNA fragment from gel 

 

The fragments of interest were carefully excised from 0.8% agarose gel put into 1.5 ml 

tube to be incubated at -20 °C overnight, or at -80 °C for 30 min and subsequently  

homogenised in 500 ml 1X TE buffer using 10 ml syringe and 18 G needle. Five 
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hundred milliters of phenol:chloroform:isoamyl (1:1:1 v/v) were added to homogenised 

solution and mixed well by vortexing. The mixture was centrifuged at 12,000 rpm for 

10 min at 4 °C, then the aqueous phase of the solution was transferred to new 2.0 ml 

tube following add equal volume of chloroform. The mixture was centrifuged by 12,000 

rpm for 10 min at 4 °C and the aqueous phase of the solution was transferred to a new 

2.0 ml tube. Add 1:10 volume of sodium acetate (3 M, pH 5.2) and equal volume of 

100% ethanol. The DNA was allowed to precipitate at -20 °C overnight. Thereafter, the 

pellet was recovered by centrifugation for 30 min at 4 °C. The pellet was two times 

washed with 75% ethanol and resuspended in 7 µl double distilled water and stored at -

20 °C until further use. 

 

3.2.3.3 Ligation 

 

The PCR fragments were ligated with the pGEM®-T vector (Promega). The ligation 

reaction was performed in 5µl reaction volume containing 2.5 µl ligation buffer, 0.5 µl 

vector, 0.5 µl T4 DNA ligase (3 U/µl) and 1.5 µl DNA template. The reaction was 

incubated at 4 °C overnight or 20 °C for 2 h. 

 

Table 3.2: Detail of primers used for PCR 
Gene  

(genbank accession 

number) 

Primer sequences Annealing 

temperature 

(°C) 

Product size 

(bp) 

C-mos  

(AY630920) 

5’-GTTCCATCGACTGGGAGCAGGT-3’ 

5’-TGCTTTGCGCGTGGAGGAACAG -3’ 

65 

 

435 

 

E-cadherin 

(AY508164) 

5’-GTACACCTTCATCGTCCAGAGCTAA-3’ 

5’-GCTCTTCAATGGCTTGTCCATTTGA-3’ 

60 

 

496 

 

Fgf-4  

(AF170490)  

5’-GGCTCTCTGGCTTTGATCGTG-3’ 

5’-GAACTGTCGGGCCAGAGGAA-3’ 

60 

 

129 

 

Gdf-9 

(NM174681) 

5’- GATTGAGATTGATGTGACAGCTCCT -3’ 

5’- TTGTCCCACTTCAGTTGACTAAAGC -3’ 

60 

 

471 

 

Histone 2a 

(NM178409)  

5’-CTCGTCACTTGCAACTTGCTATTC-3’ 

5’-CCAGGCATCCTTTAGACAGTCTTC-3’ 

60 

 

148 

 

Oct-4  

(AY490804) 

5’-CCCAGGACATCAAAGCTCTTCAG-3’ 

5’-GAACATGCTCTCCAGGTTGCCT-3’ 

60 

 

341 
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3.2.3.4 Transformation 

 

For cloning of PCR fragments, 3 µl of the ligation reaction was co-incubated with 60 µl 

DH5α E. coli competent cells (Stratagen) for 30 min on ice. The mixture was heat 

shocked by putting it into a 42 °C water bath for 90 s and immediately transferred on ice 

for 2 min. LB-broth (750 ml) was added to the bacteria solution and shook at 150 rpm at 

37 °C for 90 min. Each bacterial suspension was plated on two ampicillin containing 

LB-agar plates. The medium was containing 20 µl X-gal and IPTG solutions and 

incubated at 37 °C overnight. 

Colonies were differentiated by the activity of β-galactosidase as white and blue for the 

presence of inserted DNA fragment. Due to the activation of LacZ gene on the vector, 

colonies containing the insert target DNA appear as white colonies and those with 

active LacZ gene without insert DNA formed blue colonies. 

 

3.2.3.5 Screening of insert DNA fragments using PCR 

 

To identify and screen insert target DNA fragment, two white colonies were picked up 

from each plate and suspended in 30 µl 1X PCR buffer (Sigma). One blue colony was 

picked up as a control standard to differentiate the presence of the target insert by 

comparing the length of amplified DNA fragments from white and blue colonies.  

 

3.2.3.6 Sequencing of DNA fragments 

 

The positive clones were sequenced using CEQTM 8000 Series Genetic Analysis System 

(Beckman coulter). Briefly, PCR product of positive clones were resolved on 1% 

agarose gel and visualized by ethidium bromide staining, and then quantified and 

purified using QIAquick PCR purification kit (Qiagen). Sample was excised from gel, 

record the weight, and put in the spin column. The samples were incubated with 3 

volume of QG buffer (Qiagen) at 50 °C for 10 min until the gel is completely melted. 

Add 1 volume of 100% 2-propanol (Roth) and mix by inverting. The spin column was 

placed into collection tube, following by centrifuged at 18,000 rpm under 20 °C for 1 

min. After the flow-through liquid was discarded, this cleaning up procedure was 
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repeated two times and the buffer was replaced by 500 µl QG and 750 µl PE buffer 

(Qiagen), respectively. The spin column containing sample was moved to the new 

collection tube. Fifty microliters of double distilled water was added into the column 

and incubated at room temperature for 5 min. Centrifugation by 18,000 rpm at 20 °C for 

1 min was done to collect the dissolved sample. Dehydration was performed and the 

sample was diluted by adding 10 µl of double-distilled water. For sequencing PCR, five 

microliters of purified sample was used for cycle sequencing, with specific primers 

(Table 3.2), and Dye Terminator Cycle Sequencing (DTCS) (Beckman Coulter). 

Twenty microliter of sequencing PCR was performed for each primer. Three molar 

NaOAc, 100 mM EDTA, and glycogen were added after PCR was finished. Followed 

by, added 60 µl of 100% ethanol and mixed well by vortex, then centrifuged by 18,000 

rpm at 4 °C for 15 min. All liquid was removed and washed 2 times with 200µl 70% 

ethanol without mixing and centrifuge. Finally, the ethanol was then removed and the 

sample was air dried. The sample was then resuspended in 40 µl of sample loading 

solution (SLS) (Beckman Coulter). Samples were transferred to a CEQ sample plate and 

overlaid with mineral oil and then sequenced using CEQ™ 8000 Genetic Analysis 

System.  

 

3.2.3.7 Sequence analysis 

 

The completed sequence of the fragment was utilized to search for homologus 

sequences in National Center for Biotechnology Information (NCBI) non redundant 

DNA sequence data base using BLASTN search program 

(http://www.ncbi.nlm.nih.gov/BLAST/). Sequence similarities were considered to be 

significant when identity percentage was ≥ 90%. 

  

3.2.4 Plasmid isolation 

 

For plasmid isolation the transformated colonies containing inserts were cultured 

overnight in 5 ml LB-broth containing ampicillin. Plasmids were isolated using 

GenEluteTM Plasmid Miniprep Kit (Sigma) following the manufacturer’s instruction. 

Briefly, the cells were harvested by centrifugation at 12,000 rpm for 1 min and the 
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supernatant was discarded. The pellet was resuspended in 200 µl resuspension solution 

and vortexed. The resuspended cells were lysed by adding 200 ml lysis solution and 

mixed gently. After that, cell debris was precipitated by adding 350 µl neutralization 

solutions, mixed gently and centrifuged at 12,000 rpm for 10 min. The cleared lysate 

was transferred to the previously prepared GenElute Miniprep binding column and 

centrifuged at 12,000 rpm for 1 min. The flow-through liquid was discarded. The 

column was washed by adding 750 µl diluted wash solution and centrifuged at 12,000 

rpm for 1 min. To elute the DNA, the column was transferred to a new tube, 50 µl of 

double-distilled water was added and centrifuged at 12,000 rpm for 1 min then the 

column was discarded. The isolated plasmids were subjected to be kept at -20 °C until 

further use.  

 

3.2.5 Double-stranded RNA sythesis 

 

3.2.5.1 Preparation of DNA template for in vitro transcription 

 

The PCR conditions have been used generated DNA template for in vitro transcription 

using plasmid as template (see 3.2.3.1). However, in this PCR amplification using T7 

promoter (GTAATACGACTCACTATAGGG) attached to the 5´-end of each primer to 

generate in vitro transcription template (Table 3.3).  

 

Table 3.3: Primers with T7 promoter used to prepare DNA templates for in vitro 

transcription 
Gene Primer sequences 

C-mos 5’-GTAATACGACTCACTATAGGGGTTCCATCGACTGGGAGCAGGT-3’ 

5’-GTAATACGACTCACTATAGGGTGCTTTGCGCGTGGAGGAACAG-3’  

Oct-4 5’-GTAATACGACTCACTATAGGGCCCAGGACATCAAAGCTCTTCAG-3’ 

5’-GTAATACGACTCACTATAGGGGAACATGCTCTCCAGGTTGCCT-3’ 

 

3.2.5.2 In vitro transcription and annealing step 

 

3.2.5.2.1 Generating dsRNA in separate reaction 
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Two different templates for in vitro transcription to produce sense and antisense RNA 

strands were synthesized in separate reaction (Wianny and Zernicka-Goetz 2000, 

Nganvongpanit et al. 2006b) as shown in figure 3.3. These C-mos and Oct-4 specific 

templates were purified using the QIAquick PCR Purification Kit (Qiagen). The DNA 

templates coupled with T7 promoter were in vitro transcribed using RiboMAXTM Large 

Scale RNA Production T7 System (Promega) (Svoboda et al. 2000, Amdam et al. 2003, 

Plusa et al. 2004, Nganvongpanit et al. 2006a, 2006b) by which sense and antisense 

strands were transcribed from DNA template in separate reaction. The appropriate 

reaction for T7 RNA polymerase was set up at room temperature. The reaction 

components were added in the order shown in table 3.4, being careful to dissolve the 

DNA template in RNase-free water before addition to the reaction mixture. The reaction 

mixture was gently pipeted in order to mix it and incubated at 37 °C for 2-4 h. After in 

vitro transcription, the DNA template was removed by digestion with RNase-free 

DNase at 37 °C for 15 min. Subsequently, annealing of equal volume of sense and 

antisense RNA strands was performed by incubating the reaction at 37 °C for 4 h after 

heating to 68 °C for 10 min to produce the dsRNA (Wianny and Zernicka-Goetz 2000, 

Nganvongpanit et al. 2006a, 2006b). 

 

3.2.5.2.2 Generating dsRNA in same reaction  

 

The dsDNA templates coupled with T7 promoter at both 5´-end were in vitro 

transcribed using RiboMAXTM Large Scale RNA Production T7 Systems (Promega) by 

which sense and antisense strands were transcribed from DNA template in same 

reaction (Amdam et al. 2003, Nganvongpanit et al. 2006a). Briefly, the appropriate 

reaction for T7 RNA polymerase was set up at room temperature. The reaction 

components were added in the order shown in table 3.4, being careful to dissolve the 

DNA template in water before adding it into the reaction mixture. The reaction mixture 

was gently pipeted in order to mix and then incubate at 37 °C for 2-4 h. After in vitro 

transcription, the DNA template was removed by digestion with RNase-free DNase at 

37 °C for 15 min. Subsequently, the re-annealing of sense and antisense RNA strands 

was performed by incubating the reaction at 37 °C for 4 h after heating to 68 °C for 10 
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min to produce the dsRNA (Wianny and Zernicka-Goetz 2000, Nganvongpanit et al. 

2006a, 2006b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Synthesis of dsRNA in separate reaction. PCR was performed to generate 

sense and antisense templates, which were used for in vitro transcription in separate 

reaction. Finally, both sense and antisense strands were annealed to give rise to dsRNA.  

 

 

Table 3.4: Components of in vitro transcription reaction 
Reaction components Volume (µl) 

T7 Transcription 5X Buffer 4 

rNTPs (25mM ATP, CTP, GTP, UTP) 6 

DNA template  8 

T7 Enzyme Mix 2 

Total 20 
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Figure 3.4: Synthesis of dsRNA in same reaction. PCR was performed to generate 

template with T7 promoter at both 5´-end. These templates were used for in vitro 

transcription to generate dsRNA. 

 

3.2.5.3 Purification of dsRNA 

 

After in vitro transcription and annealing step, dsRNA was purified using phenol-

chloroform extraction (Nganvongpanit et al. 2006a, 2006b). The samples were extracted 

with 1 volume of phenol:chloroform:isoamyl alcohol (25:24:1 v/v) by vortexing for 1 

min and spin at 15,000 rpm for 2 min. The aqueous phase was transferred to a fresh tube 

and 1 volume of chloroform:isoamyl alcohol (24:1 v/v) was added. After vortexing, 

sample was centrifuged at 15,000 rpm for 2 min. The upper aqueous phase was 

transferred to a fresh tube. The RNA was precipitated using 0.1 volume of 3M sodium 

acetate (pH 5.2) and 2.5 volume of 100% ethanol or 1 volume of isopropanol. The 

sample was centrifuged at 15,000 rpm at 4 °C for 10 min. The resulting pellet was 

washed 2 times with 70% ethanol. Finally, the dsRNA pellets were resuspended with 

diethylpyrocarbonat (DEPC) treated water and store at -80°C until used.  
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3.2.5.4 Determination of dsRNA concentration  

 

The dsRNA concentration was measured by ultraviolet light absorbance using Ultraspec 

2100 pro spectrophotometer (Amersham Biosciences).  A 7:700 dilution of the dsRNA 

is prepared and the absorbance was read at a wavelength of 260 nm. And then, 2 µl of 

the dsRNA and the corresponding dsDNA template (20 µl) were also resolved by 

electrophoresis on a 2% agarose gel to evaluate the size and purity of the dsRNA 

(Figure 4.1- 4.3).  

 

3.2.6 Microinjection  

 

3.2.6.1 Microinjection of oocytes 

 

The COCs were stripped off their cumulus cells by vortexing 3 min in 500 µl phosphate 

saline buffer (PBS) without calcium and magnesium supplemented with 1 mg/ml 

hyaluronidase (H-2251, Sigma). Selection was based on cumulus aspects (Leibfried and 

First 1979) and cytoplasmic aspects. Once the oocytes were selected, the cumulus cells 

were partially removed (Figure 4.5, A) by vortexing to avoid technical difficulties 

during microinjection of dsRNA or water in the cytoplasm of the oocytes. Then, oocytes 

were held in a tissue culture medium (TCM) 199 supplemented with 0.1% BSA (A-

3311, Sigma), 0.2 mM pyruvate and 50 µg/ml gentamycin sulphate (Sigma) until use in 

a humidified atmosphere with 5% CO2 at 39 °C. Prior to injection, immature oocytes 

were incubated for 20 min in TCM-199 medium supplemented with cytochalasin B (8 

µg/ml) in order to reduce mechanical damage during injection (Paradis et al. 2005). As 

mentioned above, the immature oocytes were categorized into 3 groups namely: C-mos 

dsRNA injected, water (RNase-free) injected and uninjected control. Microinjection 

was performed on an inverted microscope (Leica DM-IRB) at 200x magnification. The 

group of 50-60 immature oocytes were placed in a 10 µl droplet of Hepes-buffered 

tissue culture medium 199 (H-TCM) supplemented with 8 µg/ml cytochalasin B under 

mineral oil. The C-mos dsRNA or water was placed in a 1 µl droplet near to the droplet 

containing the oocytes. Injection was performed by aspiration of the dsRNA into the 

injection capillary (Cook, Ireland, K-MPIP-3335-5). The inner diameter of the injection 
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capillary was 5 µm. The injection volume of ~7 pl was estimated from the displacement 

of the minisque of mineral oil in the capillary. The different experimental groups were 

injected one after the other, every time preparing a new dish with fresh medium. 

Subsequently, in three experimental replications, a total of 935 immature oocytes were 

categorized into 3 groups namely: C-mos dsRNA injected (n=327), water injected 

(n=303) and uninjected control (n=305). After microinjection all groups of ooytes were 

washed twice in TCM-199 and set back into culture (in 3.2.2.1).  

 

3.2.6.2 Microinjection of zygotes 

 

Two groups of 50-60 zygotes (from 3.2.2.3) were placed into injection medium (H-

TCM) for injection with Oct-4 dsRNA or water (RNase-free). Microinjection was 

performed on an inverted microscope at 200x magnification. Zygotes to be injected 

were placed in a 10 µl droplet of H-TCM under mineral oil. Injection was performed by 

aspiration the dsRNA into the 5 µm diameter injection capillary. The injection volume 

of ~7 pl was estimated from the displacement of the minisque of mineral oil in the 

capillary. After injection all groups of zygotes were washed twice in CR1aa medium 

and set back into culture (in 3.2.2.4). The zygotes were checked for survival 3-4 h after 

injection. For this experiment, a total of 1,437 zygote stage bovine embryos were 

produced above and categorized into three groups namely: those injected with Oct-4 

dsRNA (n=439), those injected with water (n=427) and uninjected control (n=571). 

 

3.2.7 Oocytes and embryos collection 

 

In order to assess the effect of sequence-specific dsRNA in oocytes and embryos on 

mRNA transcript abundance and protein expression, oocytes and embryos were 

collected at specific time after treatment for mRNA and protein analysis using real-time 

quantitative PCR and western blotting analysis, respectively. In experiment 1 (in 

3.2.1.1), immature oocytes were cultured for 48 h after treatment to allow any 

parthenogenic development, those used for transcriptional and protein expression 

analysis were collected at 24 h after microinjection and subsequent maturation. In 

experiment 2 (in 3.2.1.2), zygotes injected with Oct-4 dsRNA or water and uninjected 
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controls were cultured in vivo until day 8 blastocyst stage to assess development and 

resulting blastocysts from each treatment group were used for both transcription and 

protein analysis. Prior to freezing, all oocytes and embryos were washed two times with 

PBS (Sigma) and treated with acidic Tyrode pH 2.5-3 (Sigma) to dissolve the zona 

pellucida. The zona free embryos were further washed two times in drops of PBS and 

frozen in cryo-tubes containing minimal amounts of lysis buffer. Embryos for western 

blot analysis were additionally treated with protease inhibitor (Sigma). Until used for 

RNA isolation (in 3.2.8) or western blotting (in 3.2.11), all frozen embryos were stored 

at -80 oC.  

 

3.2.8 Isolation of RNA 

 

A total of three pools of each containing 20 matured oocytes or 10 blastocyst stage 

embryos from each treatment groups were used for mRNA isolation using oligo (dT)25 

attached magnetic beads (Dynal, Norway, Oslo) following manufacturers instruction. 

Briefly, embryos in lysis buffer were mixed with 40 µl binding buffer (20 mM Tris-HCl 

with pH 7.5, 1 M LiCl, 2 mM EDTA with pH 8.0) and incubated at 70 oC for 5 min to 

obtain complete lysis of the embryo and release of RNA. Ten microliters of oligo(dT)25 

magnetic bead suspension was added to the samples, and incubated at room temperature 

for 30 min. The hybridized mRNA and Oligo (dT)25 magnetic beads were washed three 

times with washing buffer (10 mM Tris-HCl with pH 7.5, 0.15 mM LiCl, 1 mM EDTA 

with pH 8.0). Finally, mRNA samples were eluted in 12 µl DEPC-treated water used for 

reverse transcription procedure.  

 

3.2.9 Complementary DNA synthesis 

 

All RNA sample (from 3.2.8) were reverse transcribed in 20 µl reaction volume 

containing 2.5 µM oligo (dT)12N (where:N = G, A or C) primer, 4 µl of 5X first stand 

buffer (375 mM KCl, 15 mM MgCl2, 250 mM Tris-HCl with pH 8.3), 2.5 mM of each 

dNTP, 10 U RNase inhibitor (Promega) and 100 U of SuperScript II reverse 

transcriptase (Invitrogen). In terms of the order of adding reaction components, mRNA 

and oligo(dT) primer were mixed first, heated to 70 oC for 3 min, and placed on ice until 
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the addition of the remaining reaction components. The reaction was incubated at 42 oC 

for 90 min, and terminated by heat inactivation at 70 oC for 15 min. Finally, the cDNA 

were stored at -20 oC until used (in 3.2.10.4). 

 

3.2.10 Quantitative real-time PCR 

 

The ABI Prism® 7000 apparatus (Applied Biosystems) was used to perform the 

quantitative analysis using SYBR® Green JumpStartTM Tag ReadyMixTM (Sigma) 

incorporation for dsDNA-specific fluorescent detection dye. The amount of DNA 

present in a sample was measured as a function of how quickly a fluorescent signal is 

first observed above threshold (CT value) during the process of sequence amplification. 

Threshold cycle (CT) is the point at which the fluorescence values are recorded during 

every cycle and represent the amount of the product amplified to that point in the 

amplification reaction. The more templates present at the beginning of the reaction, a 

fewer number of cycles it takes to reach this point. 

 

3.2.10.1 Plasmid serial dilutions preparation 

 

The concentration of the plasmids which carry the target fragments have been measured 

by reading the absorbance at 260 nm using Ultraspec 2100 pro spectrophotometer 

(Amersham Biosciences). Plasmid concentration was converted into number of copies 

(molecules) using program that is available by www.molbiol.ru. The plasmid solution 

was diluted several folds to be at a concentration range similar to the target in the 

embryos. Serial dilutions were freashly prepared for real-time PCR from 101 to 108 

copy numbers in 50 µl volume. 

 

3.2.10.2 Dissociation curve generation analysis 

 

The SYBR® Green dry can bind to any DNA and generate fluorescence. Therefore an 

additional verification was achieved by plotting fluorescence as a function of 

temperature to generate a melting or dissociation curve of the amplicon which is 

sequence specific. This curve has been used to distinguish between the amplicon and 
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non-specific DNA. The dissociation curve was produced at the end of PCR by 

monitoring fluorescence continuously while slowly heating the sample from 60 °C to 95 

°C at 0.2 °C intervals to observe the loss of fluorescence at the denaturing temperature. 

As the products specificity is determined entirely by its primers, an optimization step 

has been done for each primer pair before quantification. 

 

3.2.10.3 Optimization of the real-time PCR conditions 

 

Optimization of the primers concentration has been done to determine the minimum 

primer concentrations give the lowest threshold cycle without primer dimmer formation. 

For each primer pair, 9 reaction of difference condition (Table 3.5) with a total 20 µl 

were carried out for both the template (DNA) and non-template as control. At the end of 

the run, the dissociation curves were generated to check the absence of non specific 

amplification and subsequent confirmation by analysis of the PCR products by agarose 

gel electrophoresis. After analysing the dissociation curves of these different 

combinations, the optimum primer combination was selected to use for target 

quantification.   

 

Table 3.5: Primer optimization used for real-time PCR 
Reverse primer 

Forward primer 
100  200  400  

100 100/100 100/200 100/400 

200 200/100 200/200 200/400 

400 400/100 400/200 400/400 

 

3.2.10.4 Quantification of the real-time PCR reaction 

 

Quantification of C-mos, Oct-4 and H2a as endogenous control, mRNA in the 

oocytes/embryos of each treatment group was assessed by real-time quantitative PCR. 

Moreover, idependent maternal transcript Gdf-9 had been quantified in the three 

treatment groups of the experiment 1 to assess the specificity of mRNA suppression by 

the C-mos dsRNA. Similarly, the E-cadherin transcript had been quantified in the three 

treatment groups of the experiment 2 to investigate the specificity of mRNA transcript 
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inhibition by Oct-4 dsRNA. Moreover, the Fgf-4 which is reported to be co-expressed 

with Oct-4 gene (Nicholes et al. 1998), was quantified in the treatment groups of the 

experiment 2. The ABI Prism® 7000 apparatus was used to perform the quantitative 

analysis using SYBR® Green JumpStartTM Tag ReadyMixTM (Sigma) incorporation for 

dsDNA-specific fluorescent detection dye. Quantitative analyses of all studied 

transcripts were performed in comparison with H2a as an endogenous control (Robert et 

al. 2002), and were run in separate wells. The PCR was performed by using 2 µl of each 

sample cDNA and specific primers which amplify. The primer sequences were designed 

for PCR amplification according to the bovine cDNA sequence (Table 3.6) using Primer 

Express® Software v2.0 (Applied Biosystems). Standard curves were generated for both 

target and endogenous control genes using serial dilution of plasmid DNA (101 – 108 

molecules). The PCRs were performed in 20 µl reaction volume containing of 10.2 µl 

SYBR® Green JumpStartTM Tag ReadyMixTM optimal levels of forward and reverse 

primers and 2 µl of embryonic cDNA. During each PCR reaction samples from the 

same cDNA source were run in duplicate to control the reproducibility of the results. A 

universal thermal cycling parameter (initial denaturation step at 95 °C for 10 min, 45 

cycles of denaturation at 95 °C for 15 s and 60 °C for 60 s) was used to quantify each 

gene of interest.  After the end of the last cycle, dissociation curve was generated by 

starting the fluorescence acquisition at 60 °C and taking measurements every 7 s 

interval until the temperature reached 95 °C.  

 

3.2.11 Western blotting analysis 

 

3.2.11.1 Protein isolation 

 

Protease inhibitor was used to stop protease enzymes from denaturing proteins in 

embryo samples. Sample loading buffer (1X) was used to lyse cells (causes cell 

membranes to break and proteins to be released into buffer). Groups of 120 matured 

oocytes and 50 embryos at day 7 blastocyst stage were used from each treatment group, 

which include C-mos or Oct-4 dsRNA injected, water injected and uninjected control. 

In order to assess the amount of protein available before treatment in immature oocytes 

and zygotes, equal amount of immature and matured oocytes were used for protein 
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analysis prior to treatment. The oocytes and embryos were homogenized in sample 

loading buffer by heat at 95 °C for 5 min. 

 

Table 3.6: Detail of primers used for quantitative real-time PCR 
Gene 

(genbank  

accession number) 

Primer sequences Annealing 

temperature 

(°C) 

Product size 

(bp) 

C-mos 

(AY630920) 

5’- GGGCAATATCACCTTGCACCA -3’ 

5’- CGCTGACCACGTCTAGGGAGTA -3’ 

60 

 

113 

 

E-cadherin  

(AY508164)  

5’-GTACACCTTCATCGTCCAGAGCTAA-3’ 

5’-GCTCTTCAATGGCTTGTCCATTTGA-3’ 

60 496 

Fgf-4  

(AF170490)  

5’-GGCTCTCTGGCTTTGATCGTG-3’ 

5’-GAACTGTCGGGCCAGAGGAA-3’ 

60 

 

129 

 

Gdf-9 

(NM174681) 

5’- GATTGAGATTGATGTGACAGCTCCT -3’ 

5’- TTGTCCCACTTCAGTTGACTAAAGC -3’ 

60 

 

471 

 

Histone 2a 

(NM178409)  

5’-CTCGTCACTTGCAACTTGCTATTC-3’ 

5’-CCAGGCATCCTTTAGACAGTCTTC-3’ 

60 

 

148 

 

Oct-4  

(AY490804)  

5’-CCCAGGACATCAAAGCTCTTCAG-3’ 

5’-GAACATGCTCTCCAGGTTGCCT-3’ 

60 

 

341 

 

 

3.2.11.2 Preparation of the SDS-PAGE gel  

 

Appropriate percentage SDS-PAGE gel was used for protein of interest. Typically 10-

12% acrylamide gels were used for high molecular weight proteins (>50 kDa), 15% gel 

for mid range molecular weight proteins (15 - 50 kDa) and 20% gel for low molecular 

weight proteins (<15 kDa). In this study, 14% acrylamide gel was used because the 

molecular weight of C-mos is 39 kDa and Oct-4 is 43 kDa. SDS is an anionic detergent 

which denatures proteins by wrapping around the polypeptide backbone, confers a 

negative charge to the polypeptide in proportion to its length.  

Two solutions were prepared namely: separating gel and stacking gel. Separating gel is 

used to separate proteins into their respective sizes allowing sharp bands to be seen, 

whereas the stacking gel organizes proteins before they enter the separating gel.  Glass 

plates were cleaned thoroughly using soap and distilled water and finally cleaned using 

70% ethanol. The sandwich glass plates were introduced into the support piece and 

placed on a flat surface.  
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First, the separating gel (30% acrylamide, 0.8 % bis acrylamide, 1M Tris-HCl with pH 

8.8, 10% SDS, 20% APS, TEMD) was prepared, quickly mixed and poured in 3/4 

volume of each sandwich and the remaining space (1/4 volume) was filled with 

isopropanol to ensure that no air bubbles would be formed at the surface of the gel 

during gel polymerization. The isopropanol was poured off after polymerization had 

occurred. Stacking gel (30% acrylamide, 0.8% bis acrylamide, 1M Tris-HCl with pH 

6.8, 10% SDS, 20% APS, TEMD) was added on the top of separating gel. A 10 well 

comb was inserted and then stacking gel was filled once again. 

 

3.2.11.3 Running the SDS-PAGE gel 

 

Two support pieces of the gel sandwiches were mounted with the U-shape rubber piece 

and then put into the chamber. Upper reservoir was filled with running buffer and then 

the samples were loaded in the prepared wells. A standard vertical gel electrophoresis 

apparatus (BioRad) at 10 mA was used for each 0.75 mm gel. The SDS-PAGE was run 

one hour or until the blue line has run out of the bottom gel.  

 

3.2.11.4 Transferring proteins to the membrane  

 

Proteins were then transferred into nitrocellulose transfer membrane, pore size 0.45 µm 

Protran® (Schleicher&Schuell, BioScience) using Trans-Blot Semi-Dry Transfer Cell 

(BioRad). Transfer membrane was prepared by soaking in wetting solution for a few 

seconds. Three pieces of filter paper were wetted in anode buffer I and placed on anode 

plate of the blotter. Three piece of filter paper were soaked in anode buffer II and placed 

on top of filter papers previously placed on electrode. Membrane was equilibrated in 

water for 5 min, and then removed from water and placed on top of filter paper stack. 

Gel was placed on top of transfer membrane and finally, three pieces of filter paper 

were socked in cathode buffer and placed on top of gel. Time of transfer was 1 h using 

100 mA per each gel (1.75mA/cm2/h). After transfer was completed, the blot membrane 

was washed 2 times with water and subsequently the blot membrane was stained with 

ponceau-S (Roth) to evaluate the transfer quality. The blot membrane was washed 2 

times in TBST (10 min/time).  
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3.2.11.5 Immunostaining  

 

The blot membrane was blocking unoccupied protein binding sites on membrane by 

placing blot membrane in blocking buffer (1% PVP). It was incubated on the shaker at 

room temperature for 1 h to prevent a non-specific absorption of the immunological 

reagent. The blocking solution was poured off and 10 ml of primary antibody in 0.1% 

blocking buffer was added to the blot membrane. Both anti-rabbit C-mos primary 

antibody (Stressgen) and Oct-3/4 goat polyconal primary antibody (Santa Cruz 

biotechnology) were used at a dilution of 1:500. It was incubated overnight on shaker at 

4 °C. The primary antibody was poured off and then blot membrane was washed for 10 

min in 10 ml washing buffer. Washing step was repeated for 6 additional times. HRP-

conjugated donkey anti-rabbit secondary antibody (Amersham Bioscience) for C-mos 

primary antibody and donkey anti-goat IgG-HRP secondary antibody (Santa Cruz 

biotechnology) for Oct-4 primary antibody were used a dilution of 1:50,000 in 0.1% 

blocking buffer. Blot membrane was finally incubated with 10 ml of secondary antibody 

on shaker at room temperature for 1 h. The blot membrane was washed for 10 minutes 

in washing buffer and washing was repeated 6 additional times.  

 

3.2.11.6 Detection  

 

The ECL Plus Western Blotting Detection (Amersham Biosciences) was employed 

using manufacturer’s protocol. Briefly, detection solution A and solution B were mixed 

in a ratio of 40:1 and the final volume of detection reagent required was 0.1 ml/cm2. 

The mixed detection reagent was added on to the blot membrane following incubation 

for 5 min at room temperature, and then the blot membrane was placed on to a fresh 

piece of saran wrap. Place the wrapped membrane side up in an x-ray film cassette. A 

sheet of autoradiography film (Kodak® Biomax XAR film, Kodak) was placed on top of 

membrane. The cassette was closed and expose for 15, 30, 60 and 180 s in the dark 

room.  
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3.2.12 Immunofluorescence  

 

3.2.12.1 Pre-treatment of sample 

 

Fixation is the critical step in the preparation of histological specimens (Kurth 2003). 

For immunocytochemistry, fixation has to yield preservation of the structure and 

antigenicity. Day 7 blastocyst of Oct-4 dsRNA injected (n=10), water injected (n=10) 

and uninjected control (n=10) groups were washed three times in PBS, fixed in freshly 

prepared 4% (w/v) paraformaldehyde in PBS overnight at 4 °C. The fixed specimens 

were washed twice in glycine-PBS (0.3 mmol/l) supplemented with PVA then, 

permeabilized by incubation in PBS containing 0.5% (v/v) Triton-X100 for 2.5 h at 

room temperature. Non-specific immunoreactions were avoided by incubating embryos 

in 3% (w/v) BSA freshly added in PBS plus PVA for 1 h and then washed three times in 

PBS solution.  

 

3.2.12.2 Incubation with specific Oct-4 antibody 

 

The antibody was removed from -20 °C, thawed and diluted at the corresponding factor 

(determined after a serial dilution) in BSA solution shortly before use (Table 3.7). 

Indeed, BSA treatment reduces non-specific binding reactions. In drops (100 µl) of 

prepared Oct-3/4 (N-19) goat polyclonal primary antibody (Santa Cruz biolechnology) 

in a 96 well petri-dish smeared with mineral oil the embryos were kept at 39 °C in 

incubator without CO2 for 1 h. The specimens were washed three times 10 min each in 

PBS. Omitting primary antibody treatment before incubation with secondary antibody 

was used to determine the specificity of the first antibody. 

 

3.2.12.3 Identification of antigen-antibody complex by FITC secondary antibody 

 

The antigen-antibody recognition was made possible with help of fluoroscein 

isothiocyanate (FITC) conjugated to donkey anti-goat IgG antibody (Santa Cruz 

biotechnology). Fluorescein is a small organic molecule, conjugated to proteins via 

primary amines (lysines), excited by the 488 nm line of an argon laser, and emission is 
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collected at 530 nm. As for the primary antibody, prior to use the aliquot of secondary 

antibody was diluted 1:50 in BSA solution (Table 3.7). The embryos are incubated in 

100 µl of prepared antibody smeared with mineral oil at 39 °C for 1 h in dark. They 

were washed three times 10 min. each in PBS again.  

 

Table 3.7: Daily working solutions used for immunoflurescence staining  
Chemicals Volume 

Paraformaldehyde 4% 250 µl stock solution 

750 µl CB buffer 

Glycine-PBS 0.3 mmol/l 100 µl stock solution 

9.9 ml PBS/PVA 

Propidium iodide 0.5 µg/ml 1 µl stock solution 

399 µl PBS/PVA 

 

3.2.12.4 Propidium iodide staining 

 

In order to visualize cell nucleus, propidium iodide was used. Propidium iodide stain is 

an intercalating dye that appears red at 488 nm and used in flow cytometry to analyze 

cellular DNA content. The samples were incubated in well containing propidium iodide 

(0.5 µg/ml) for 25 min in dark at room temperature. After an ultimate three times wash 

in PBS the embryos were mounted on glass slides (SuperFrost®Plus) in a drop of 

Vectashield mounting medium (Vector®) protected by cover slip sealed with nail polish, 

stored at 4 °C till microscopic analysis as fast as possible to reduce any fluorescence 

damage. 

 

3.2.12.5 Image capture and analysis 

 

Observing thick biological specimens using a conventional light microscope is often an 

unrewarding experience, the structures above and below the plane of focus being 

examined usually badly obscure the image (White and Dixon 2003). The last decade 

confocal imaging has gained favour as a method for fluorescence microscopy, allowing 

direct visualisation within thick, fluorescently labelled tissue. The big advantage of 

confocal microscopy is the possibility to collect light exclusively from a single plane. 
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The laser scanning microscope scans the sample sequentially point by point, line by line 

and assembles the pixel information to one image with high contrast and resolution.  

Fluorescence of FITC was visualized by excitation at 488 nm with the argon laser on a 

confocal laser scanning microscope (CLSM LSM-510; Carl Zeiss, Oberkochen) 

equipped with Bio-Rad Laser-Sharp MRC-1024 confocal laser scanning software. 

Fluorescent signals approach to analyse protein localization. 

 

3.2.13 Differential cell staining 

 

Day 8 blastocysts from Oct-4 dsRNA injected (n=25), water injected (n=27) and 

uninjected control (n=26) groups were collected from culture media and incubated in 

freshly prepared 1% Triton X-100 and 1 µg/µl propidium iodide in PBS without 

calcium and magnesium containing 1 mg/ml BSA for 50 s, and immediately washed 

twice in PBS-BSA medium. Embryos were then transferred into ethanol containing 

0.03µg/ml bisbenzemide (Hoechst 33258; Hoechst, Sigma), incubated for 4 min on ice, 

and washed twice in PBS-BSA medium. Embryos were immediately mounted on glass 

slides after washed and examined under an epifluorescence microscope (DM-IRB, 

Leica, Bensheim, Germany). The standard filter was employed, DAPI filter (emission 

wavelength: 425 nm) to determine the number of ICM and TE cells. The total number 

of cells was counted.  

 

3.3 Statistic data analysis  

 

The mRNA expression analysis for studied genes in all treatment groups and the bovine 

preimplantation embryos was analysed based on the relative standard curve method. 

The relative expression data were analysed using the Statistical Analysis System (SAS) 

version 8.0 (SAS Institute Inc.) software package. Differences in mean values between 

two or more experimental groups or developmental stages were tested using ANOVA 

followed by a multiple pair wise comparisons using t-test. Differences of P ≤ 0.05 were 

considered to be significant. 
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4 Results 

 

4.1 Generated dsRNA 

 

To generate dsRNA in in vitro transcription, the targeted fragments were cloned to 

vector. As mentioned in material and methods, 2 strategies were used: 1) sense and 

antisense strands were transcribed from DNA template in a separate reaction and 2) 

sense and antisense strands were transcribed from DNA template in same reaction. 

Figure 4.1 showed the product of ssRNA, asRNA compared to dsRNA, while figure 4.2 

showed dsRNA band produced from different methods which did not show any 

difference.  

 

 

 

 

 

 

Figure 4.1: Three percent agarose gel stained with ethidium bromide showing the 

generation of sense (A) and anti-sense (B) RNA from in vitro transcription as compared 

with double-stranded (C), which was generated after annealing step. 

 

 

 

 

 

 

 

 

Figure 4.2: Three percent agarose gel stained with ethidium bromide showing the 

generation of sense (A) and anti-sense (B) RNA from in vitro transcription as compared 

with double-stranded, which was generated in separate (C) and same reaction (D,E) 

compared with DNA template (F). 
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Finally, the products of dsRNA (C-mos and Oct-4) were confirmed using 

electrophoresis in comparison with DNA template. Gel electrophoresis revealed a 

transcript of approximately 435 bp of C-mos dsRNA and 341 bp of Oct-4 dsRNA as 

compared with DNA template as shown in figure 4.3. 

 

 

 

 

 

 

Figure 4.3: Two percent agarose gel stained with ethidium bromide showing the 

generation of C-mos (435 bp) and Oct-4 (341 bp) dsRNA compared with DNA template 

used for in vitro transcription. (A; C-mos dsRNA, B; C-mos DNA, C; Oct-4 dsRNA; D; 

Oct-4 dsRNA) 

  

4.2 Effect of microinjection procedure on embryos survival rate 

 

The survival rate of oocytes and embryos due to injury during microinjection has been 

determined 3-4 h after microinjection. As indicated in figure 4.4, about 10-12% of 

oocytes and 15-18% of zygotes did not survive the microinjection procedure due to 

physical injuries. However, within the injected groups with dsRNA (C-mos or Oct-4) or 

water were not significantly different (P > 0.05). Only those embryos which survived 

the microinjection procedure were considered for future development data collection.    

 

 

 

 

 

 

 

Figure 4.4: The survival rate of bovine oocytes (A) and zygotes (B) after microinjection 

procedure.   
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4.3 Effect of C-mos dsRNA on oocytes maturation, mRNA and protein expression 

 

4.3.1 Effect of C-mos dsRNA on in vitro oocytes maturation 

 

About 60 % of oocytes injected with C-mos dsRNA showed extrusion of the first polar 

body, while only 50% of water injected and 44% of uninjected controls extruded their 

first polar body as shown in table 4.1. Moreover, in this study, it was found that about 

2.5% of the oocytes injected with C-mos dsRNA developed parthenogenetically to 2-

cell stage, while no parthenogenetic development was observed in water injected and 

non injected control (Figure 4.5).  

 

Table 4.1: The phenotypes of embryo development following treatment with C-mos 

dsRNA and water compared to the uninjected control groups 
Treatment  
group 

No. of 
oocytes 

First polar body  
48 h after microinjection (%) 

Parthenogenetic 
embryos  (%) 

C-mos dsRNA injected 327 59.62 ± 9.30 a 2.42 ± 0.39 a 

Water injected 303 49.50 ± 14.88 a,b 0 b 

Uninjected control 305 44.05 ± 17.20 b 0 b 

Different letters of superscripts (a,b) indicate significant difference within the same column (P ≤ 0.05). 

 

4.3.2 Effect of C-mos dsRNA on targeted mRNA expression 

 

In order to get an insight on temporal expression pattern of maternal transcripts (C-mos 

and Gdf-9), a real-time PCR analysis was conducted throughout the preimplantation 

developmental stages of in vitro produced bovine embryos (Figure 4.6). The C-mos and 

Gdf-9 were detected at higher level between immature oocyte and 4-cell stage and 

down-regulated or not detected in the late developmental stages.  

To assess the effect of C-mos dsRNA on the target mRNA, the relative expression level 

of this transcript was investigated between the treatment groups. Moreover, the selective 

suppression efficiency of C-mos dsRNA was assessed by analysing the expression level 

of other maternal transcript (Gdf-9) in the three treatment groups. The result of this 

mRNA quantification shows that the injection of the C-mos dsRNA triggered a 

remarkable suppression in the amount of C-mos mRNA in oocytes. 
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Figure 4.5: Representative picture of oocytes, whose cumulus cells are partially 

removed before any treatment (A); some parthenogenetically developed oocytes after 

injection with C-mos dsRNA (B); those oocytes injected with water (C) and uninjected 

controls (D). 

 

As shown in figure 4.7, the relative expression level of C-mos transcript at the matured 

oocyte stage was found to be reduced by 70% compared to water injected and 

uninjected control group (P < 0.01). However, no significant differences were observed 

in the relative abundance of this transcript in water injected and uninjected controls. No 

differences were observed in the relative abundance of Gdf-9 transcript between the 

three treatment groups (P > 0.05). This shows neither the injection of water nor C-mos 

dsRNA did affect the expression of Gdf-9 mRNA in the treated oocytes.  

 

4.3.3 Effect of C-mos dsRNA on protein expression 

 

To determine the effect of C-mos dsRNA on C-mos protein expression, western blot 

analysis was performed using proteins extracted from matured oocytes of the three 

treatment groups. Moreover, proteins extracted from immature oocytes and bovine 

muscles were used to assess control of C-mos protein. As shown in figure 4.8, there is a 
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decrease in the intensity of C-mos protein band (39 kDa) in C-mos dsRNA injected 

group, while the C-mos protein band in water injected group was similar with 

uninjected controls and proteins from muscle. Injection of water did not affect the 

amount of C-mos protein, which is similar with the amount of C-mos protein present in 

uninjected control groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Relative abundance of C-mos (A) and Gdf-9 (B) mRNA in in vitro bovine 

preimplantation stage embryos, immature oocyte (IM), mature oocytes (MO), 2-cell 

(2C), 4-cell (4C), 8-cell (8C), 16-cell (16C), morula (Mor) and blastocyst (Bla). The 

relative abundance of mRNA levels represents the amount of mRNA compared to the 

calibrator (blastocyst stage) which is set as 100. Bars show the treatment mean ± SD. 

Values with different superscripts (a,b,c,d) are significantly different (P ≤ 0.05). 
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Figure 4.7: Relative abundance of C-mos (A), Gdf-9 (B) and H2a (C) transcripts at 

mature oocyte stage in the three treatment groups. The relative abundance of mRNA 

levels represents the amount of mRNA compared to the calibrator (uninjected control) 

which is set as 100. Bars show the mean ± SD.  Values with different superscripts (a,b) 

are significantly different (P ≤ 0.05). 

 

 

 
 

Figure 4.8: Western blot analysis for the presence of C-mos protein (39 kDa) in bovine 

oocytes following C-mos dsRNA injected, water injected compared to uninjected 

control and proteins extracted from immature oocytes and bovine muscle as positive 

control.  
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4.4 Effect of Oct-4 dsRNA on embryos development, mRNA and protein expression 

 

4.4.1 Effects of Oct-4 dsRNA on in vitro development of bovine embryos 

 

As shown in table 4.2, the first cleavage rate after microinjection was 70, 81 and 80% 

for embryos injected with Oct-4 dsRNA, water injected and uninjected control group, 

respectively. However, these differences were not statistically significant (P > 0.05). 

Similary, the day 5 morula rate was not significantly different between the three embryo 

groups i.e. 37.3 ± 3.2% in Oct-4 dsRNA injected, 40.2 ± 9.5% in water injected and 42 

± 4.5% in uninjected control group (P > 0.05). There is a considerable variation in the 

number of blastocysts appeared from each treatment group at each day of development 

between days 6-8 (Table 4.3). Even though the overall blastocyst rate was lower in Oct-

4 dsRNA injected groups (35.8 ± 1.5%) as compared to the water injected (39.7 ± 2.6%) 

and uninjected controls (41.6 ± 4.2%), these differences were not significant (P > 0.05). 

However, the day 7 blastocyst rate was significantly lower in Oct-4 dsRNA injected 

group (18.5 ± 2.5%) compared to water injected (20.2 ± 6.3%) and uninjected control 

(26.4 ± 3.9%). But, the day 8 blastocyst rate was significantly lower in uninjected 

control (2.3 ± 0.9%) compared to water (8.7 ± 1.4%) and Oct-4 dsRNA (9.6 ± 4.5%) 

injected group (Table 4.3).  

 

Table 4.2: The phenotypes of embryo development following treatment with Oct-4 

dsRNA and water injected compared to the uninjected control groups  
Treatment  
group 

No. of 
embryos 

First cleavage 
rate (%) 

Morula rate 
(%) 

Total Blastocyst 
(%) 

Bla/ 
Mor 

Oct-4 dsRNA  

injected 

365 69.67 ± 20.73 37.27 ± 3.25 35.85 ± 1.53 0.96 

Water  

injected 

375 80.04 ± 7.07  40.17 ± 9.48 39.69 ± 2.57 0.99 

Uninjected  

control 

541 80.50 ± 7.65  41.95 ± 4.51 41.57 ± 4.15 0.99 
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Table 4.3: The blastocyst rate of embryos in different day following treatment with Oct-

4 dsRNA and water injected compared to the uninjected control groups  
Blastocyst rate (%) Treatment  

group Day 6  Day 7  Day 8  Total  

Oct-4 dsRNA  

injected 

7.74 ± 5.46 18.48 ± 2.46 a 9.64 ± 4.50 a 35.85 ± 1.53 

Water  

injected 

10.81 ± 2.57 20.20 ± 6.32 a,b 8.68 ± 1.40 a 39.69 ± 2.57 

Uninjected  

control 

12.80 ± 9.09 26.45 ± 3.95 b 2.32 ± 0.89 b 41.57 ± 4.15 

The different letter superscripts (a,b) indicate significant difference within column (P ≤ 0.05). 

 

4.4.2 Effects of Oct-4 dsRNA down-regulation in the number of ICM and TE cells of 

blastocysts  

 

Differential cell staining (Figure 4.9) of a representative number of blastocysts from the 

three treatment groups showed that the number of ICM cells was significantly lower in 

Oct-4 dsRNA injected embryos (27.4 ± 7.3) compared to the other two groups (Table 

4.4). However, no differences were observed in the number of TE cells between the 

three groups. Consequently, the ration of ICM:TE cells was lower (P ≤ 0.05) in Oct-4 

dsRNA injected group than in the other two groups. The total cell number of blastocysts 

was consequently lower in the Oct-4 dsRNA injected group (122.5 ± 16.5) compared to 

the water injected group (134.4 ± 6.8) and uninjected controls (140.2 ± 18.4). 

 

Table 4.4: The number of inner cell mass (ICM), trophectoderm cell (TE) and total cells 

of day 8 blastocysts derived from the three treatment groups 
Treatment  
group 

No. of 
embryos 

ICM TE Total ICM:TE 

Oct-4 dsRNA  

injected 

25 27.40 ± 7.30a 95.10 ± 13.20  122.50 ± 16.50 a 0.29 ± 0.12 a 

Water  

injected 

27 40.90 ± 8.20 b 94.40 ± 8.90  134.30 ± 6.80 b 0.42 ± 0.18 b 

Uninjected  

control 

26 410.00 ± 4.80 b  99.20 ± 18.60  140.20 ± 18.40 b 0.43 ± 0.17 b 

Columns with different letters of superscript are significantly different (P ≤ 0.05). 
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Figure 4.9: A representative picture showing differential cell staining of inner cell mass 

(red ) and trophoectoderm cell (blue) (A, B, and C represent Oct-4 dsRNA injected, 

water injected and uninjected control groups respectively). Scale bar represents 100 µm.  

 

4.4.3 Effect of Oct-4 dsRNA on targeted mRNA expression 

 

In order to get an insight on temporal expression pattern of embryonic transcripts (Oct-4 

and E-cadherin) a real-time PCR analysis was conducted throughout the 

preimplantation developmental stages of in vitro produced bovine embryos (Figure 

4.10). The E-cadherin mRNA transcript was detected at higher level at immature and 

matured oocytes, morula and blastocyts stages of development. However, transcript 

abundance was lower between 2- and 16-cells developmental stages. The Oct-4 

transcript was found to be highly abundant at early developmental stages (between 

immature oocytes and 4-cell stages) and further down-regulated between 8-cell and 

morula stages. Relatively higher transcript abundance was detected at the blastocyst 

stage. The Fgf-4 transcript was highly abundant only at morula and blastocyst stages, 

while could not be detected from immature oocytes to 16-cell stage. 
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Figure 4.10: Relative abundance of Oct-4 (A), E-cadherin (B) and Fgf-4 (C) mRNA in 

in vitro bovine preimplantation stage embryos, immature oocyte (IM), mature oocytes 

(MO), 2-cell (2C), 4-cell (4C), 8-cell (8C), 16-cell (16C), morula (Mor) and blastocyst 

(Bla). The relative abundance of mRNA levels represents the amount of mRNA 

compared to the calibrator (blastocyst stage) which is set as 100. Bars show the 

treatment mean ± SD. Values with different superscripts (a,b,c,d,e,f,g) are significantly 

different (P ≤ 0.05). 
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To assess the effect of Oct-4 specific dsRNA on Oct-4 mRNA abundance, relative 

expression level of this transcript was investigated in blastocyst stage using real-time 

PCR. The specificity of Oct-4 dsRNA was determined by analyzing the expression of 

E-cardherin and Fgf-4 transcript. The results of mRNA transcription in all treatment 

groups (Figure 4.11) showed that, the relative abundance of Oct-4 mRNA was down-

regulated by 72% in Oct-4 dsRNA injected groups compared to the water injected and 

noninjected control group (P < 0.01). In order to investigate the specificity of the Oct-4 

dsRNA, E-cadherin was quantified in all treatment groups. No differences were found 

in the relative abundance of the E-cadherin transcripts in all treatment groups. 

Moreover, the relative abundance of Fgf-4 transcript responded to suppression of Oct-4 

transcript through Oct-4 dsRNA injection at blastocyst stage. The relative abundance of 

Fgf-4 in Oct-4 dsRNA injected group was found to be significantly down-regulated (by 

70%) compared to the other groups (P < 0.01).   

 

 
Figure 4.11: Relative abundance of Oct-4 (A), Fgf-4 (B), E-cadherin (C) and H2a (D) 

mRNA at blastocyst stage in the three treatment groups. The relative abundance of 

mRNA levels represents the amount of mRNA compared to the calibrator (uninjected 

control) which is set as 100. Bars show the mean ± SD.  Values with different 

superscripts (a,b) are significantly different (P ≤ 0.05). 
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4.4.4 Effect of dsRNA on protein expression 

 

4.4.4.1 Effect of dsRNA on protein expression using immunofluorescence 

 

Immunofluorescence staining was performed using embryos at day 7 bastocyst stage to 

determine the effect of Oct-4 dsRNA injection on Oct-4 protein expression and to 

localize this protein in in vitro bovine blastocyst stage. In early blastocyte as shown in 

figure 4.12, intensity signal was associated with nuclei of inner cell mass. But a weak 

diffuse signal was also visible in trohectoderm cells. Moreover, the reduction of the 

fluorescent signal was found in Oct-4 dsRNA injected group when compared to the 

other groups.  

 

 
 

Figure 4.12: Representative picture of embryos stained with immunofluorescence in 

Oct-4 dsRNA injected (A) compared with water injected (B) and uninjected control (C) 

groups. While embryo in D served as negative control with out anti Oct-4 antibody. 

Reduction of fluorescent signal by Oct-4 dsRNA was observed in Oct-4 dsRNA 

injected group. Scale bar represents 100 µm.  
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4.4.4.2 Effect of dsRNA on protein expression using western blot 

 

To determine the effect of Oct-4 dsRNA on the amount of Oct-4 protein expression, 

western blot analysis was performed using proteins extracted from the embryos at 

blastocyst stage of the three treatment groups. Moreover, in vitro bovine matured 

oocytes before any treatment were used to assess maternal produced Oct-4 protein. 

While, proteins extracted from bovine brain were as positive control. As shown in 

figure 4.13, there is a decrease in the intensity of Oct-4 protein band (43 kDa) in Oct-4 

dsRNA injected group, while the Oct-4 protein band in water injected group was similar 

with uninjected controls and matured oocytes. Injection of water did not affect the 

amount of Oct-4 protein, which is similar with the amount of Oct-4 protein present in 

uninjected control groups and mature oocytes. Moreover, the Oct-4 protein expression 

was lower in Oct-4 dsRNA injected embryos compared to maternal protein in mature 

oocytes before any treatment.   

 

 
 

Figure 4.13: Western blot analysis for the presence of Oct-4 protein (43 kDa) in bovine 

embryos following Oct-4 dsRNA injected, water injected compared to uninjected 

control, mature oocytes and proteins extracted from bovine brain. 
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5 Discussion  

 
Bovine preimplantation embryogenesis is supported by transcripts activated from both 

maternal and embryonic genome. Despite enormous advances in the identification and 

temporal expression profiling of bovine preimplantation genes, the specific function of 

the majority of transcripts is not yet known in bovine embryogenesis. Till recently, the 

function of a specific gene in bovine species has been predicted using knockout 

experiments conducted in mouse (Larue et al. 1994, Riethmacher et al. 1995), which is 

extremely laborious and needs long time to see the effects. To overcome this, the RNAi 

approach through introduction of sequence specific dsRNA into the cells has been 

reported for various vertebrates and non vertebrates as an effective tool to study gene 

function (more detail see table 2.1). Consequently, this study has demonstrated that the 

injection of sequence specific dsRNA into the cytoplasm of bovine oocytes and zygotes 

induced suppression of maternal and embryonic transcript abundance, respectively and 

results in subsequent decrease in protein synthesis and distinct phenotype. 

 

5.1 Expression profile of C-mos transcript in bovine preimplantation embryos 

 

The expression pattern of C-mos in bovine preimplantation embryos has not been 

reported so far. This study demonstrated the C-mos transcript to be abundant at highest 

level in oocyte and down-regulated from 4-cell to blastocyst stage of the embryos. This 

shows the C-mos to be a maternal transcript failed to be abundant during the major 

embryonic activation, which is beyond the 8- to 16-cell stage in bovine. Similarity, the 

study in mouse embryos by Alizadeh et al. (2005) which showed the expression of C-

mos was down-regulated after IVF. In year 1988, Sagata et al., showed that C-mos 

transcript was required for activation of MPF in G2 arrested xenopus oocytes. And the 

study done by Roy et al. (1990) on xenopus species also showed that injecting C-mos 

mRNA into the oocytes induced oocytes maturation, while inhibiting C-mos transcript 

prevented oocytes maturation. The C-mos gene is reported to play an important role in 

control of the oocytes arrest at MII in mouse (O'Keefe et al. 1989, Araki et al. 1996, 

Choi et al. 1996, Sovoboda et al. 2000, Wianny and Zernicka-Goetz 2000). Mos-/- 

oocytes undergo GVBD and progress through the first meiosis but fail to arrest in MII. 
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Instead, they undergo spontaneous parthenogenetic activation (Colledge et al. 1994, 

Hashimoto et al. 1994).  

 

5.2 Expression profile of Gdf-9 transcript in bovine preimplantation embryos 

 

In this study, the relative abundance of Gdf-9 transcript was detected throughout 

preimplantation developmental stage. However, highest level of expression was 

observed from immature oocyte to 4-cell stage. This result was similar with previouse 

studies in bovine preimplantation embryo using RT-PCR technique (Sendai et al. 2001, 

Pennetier et al. 2004). However, most studies of Gdf-9 transcript expression were done 

in different tissues such as ovary, follicular cells, granulosa cells, testis or liver 

(Bodensteiner et al. 1999, Pennetier et al. 2004, Xu et al. 2004, Johnson et al. 2005). 

Gdf-9 is a member of the transforming growth factor β (TGF-β) super-family. TGF-β 

super-family members are pivotal in controlling cellular growth and differentiation 

during fatal and adult life (Heldin et al. 1997, Ten Dijke et al. 2000). In 1999, using 

recombinant form of Gdf-9 demonstrated that this protein promoted cumulus expansion 

in in vitro produced mouse oocytes (Evin et al. 1999).  They further proposed that Gdf-9 

to be a cumulus expansion-enabling factor. Supporting this, Van Derhyden et al. (2003) 

found that unlike wild-type oocytes, oocytes derived from Gdf-9 null mice are unable to 

promote cumulous expansion in vitro.    

 

5.3 Expression profile of E-cadherin transcript in bovine preimplantation embryos 

 

E-cadherin transcript as both maternal and embryonic origin was also detected 

throughout preimplantation developmental stage of IVP bovine embryos. E-cadherin 

transcript was detected at immature and matured oocytes stage and after the activation 

of embryonic genome at morula and blastocyst stages. So far, the expression of E-

cadherin transcript had not been studied in bovine preimplantation embryos. It has been 

established that maternal E-cadherin is present in all stage of mouse embryo (Sefton et 

al. 1992) and also, found on the cell surface of unfertilized and fertilized egg but it is 

not synthesized in these cells (Van Eijk et al. 1987). Kawai et al. (2002) have shown the 

location of E-cadherin protein in embryos using a laser scanning confocal microscropy, 
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where E-cadherin protein was distributed uniformly through the cell surface in normal 

2-cell embryos. Thus, it is likely that the E-cadherin protein functions in the compaction 

of the morula by cell to cell adhesion.  

 

5.4 The expression profile of Fgf-4 transcript in bovine preimplantation embryos 

 

This study is the first to show the expression profile of Fgf-4 transcripts in IVP bovine. 

This transcript was detected at higher level at morula and blastocyst stage, while it 

could not be detected before morula stage (immature oocyte, mature oocyte, 2-, 4-, 8- 

and 16-cell stage). This pattern is different when compared with the expression profile 

mouse preimplantation embryos. In mouse, Fgf-4 was expressed throughout 

preimplantation developmental stages (1-cell to blastocyst stage) (Rappolee et al. 1994). 

The role of Fgf-4 has not been studied so far in early stages of mammalian development 

so, especially in bovine. In mouse, a study suggested that Fgf-4 is involved in 

trophoblast proliferation and in the maintenance of the ICM (Tanaka et al. 1998). 

Moreover, inhibition of Fgf signalling by abrogating Fgf-receptor function through a 

dominant negative mutation blocks development at the fifth cleavage division (Chai et 

al. 1998).  

 

5.5 The expression profile of Oct-4 transcript in bovine preimplantation embryos 

 

In this study, the relative abundance of Oct-4 transcript was detected at higher level in 

all developmental stages except minimum transcript abundance between 8-cell and 

morula stages. This result was similar with previous studies in bovine embryos using 

semi-quantitative PCR (Kurosaka et al. 2004) and real-time PCR (Vigneault et al. 

2004). In bovine, Oct-4 transcript was detected throughout preimplantation stages (Van 

Eijk et al. 1987, Daniels et al. 2000, Kurosaka et al. 2004, Vigneault et al. 2004) but in 

oocyte and early developmental stage expression was relatively lower level compared to 

post-compaction stage (Kurosaka et at. 2004, Vigneault et al. 2004), while it was not 

detected at 2- and 4-cell stages and this transcript was up-regulated from 8-cell to 

blastocyst stage in mouse (Kurosaka et al. 2004). The Oct-4 transcript was detected at 

highest level at blastocyst stage in both bovine and mouse, because the blastocsyts were 
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composed of trophectoderm cells and ICM cells whereby Oct-4 plays a central role 

during cell differentiation at this stage (Nichols et al. 1998, Kirchof et al. 2000). 

Moreover, it is likely that Oct-4 is responsible for various functions at different 

embryonic stages, and Oct-4 must occupy a pre-eminent position within the regulatory 

hierarchy of genes controlling preimplantation development (Ovitt and Schöler 1998). 

Also, because placental abnormalities are frequently observed in cloned animals, 

analysis of Oct-4 expression in respect to its interacting protein partners, particularly 

those involved in extraembryonic lineage differentiation may provide important 

information concerning the abnormalities in somatic cell clones (Kurosaka et al. 2004).   

 

5.6 Microinjection as a technique to introduce dsRNA into bovine oocytes and embryos 

  

The efficient introduction of dsRNA is an important step in getting successful 

suppression of transcripts through RNAi. In the present study microinjection was the 

technique used to introduce dsRNA into the immature oocyte and embryos. This system 

has the advantage of being relatively easy and allows for better control of the amount of 

dsRNA molecules introduced into the embryo (Svoboda et al. 2000, Wianny and 

Zernicka-Goetz 2000, Kim et al. 2002, Anger et al. 2004, Sonn et al. 2004, Gui and 

Joyce 2005, Paradis et al. 2005, Nganvongpanit et al. 2006a, 2006b), compared with 

electroporation (Grabarek et al. 2002, Mellitzer et al. 2002) and transfection technique 

(Billy et al. 2001, Siddall et al. 2002, Lazar et al. 2004, Cao et al. 2005, Li et al. 2005). 

However, after microinjection, embryos are subjected to a physical injury or stress and 

some die following injection. Consequently, in the present study, 10-12% of oocytes 

and 15-18% of zygotes did not survive the microinjection procedure but this remains the 

same between the dsRNA and water injected groups. Moreover, the large volume of 

dsRNA injected and longer microinjection time resulted in lower survival rate. In the 

present microinjection of ~7 pl of dsRNA or water was performed into each oocyte or 

embryo. This volume is equivalent to 0.7% of total volume of bovine oocyte (based on a 

bovine oocyte volume of 900 pl). While similar study in bovine showed injection ~15 pl 

which is equal to 1.7% of total oocyte volume (Paradis et al. 2005). However, studies in 

mouse showed that injection of higher volume was still effective. Oocytes were injected 

with 5 pl dsRNA which is equal to 2% of total volume of mouse oocyte, this is base on 
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a mouse oocyte volume of 250 pl (Svoboda et al. 2000, Haraguchi et al. 2004), or 

injection of 10 pl is equal to 2.5% of total oocyte volume (Wianny and Zernicka-Goetz 

2000, Kim et al. 2002, Xu et al. 2003, Sonn et al. 2004, Gui and Joyce 2005). In this 

study, embryos were injected about 50-60 cells at each time, to avoid long time 

injection. Moreover, since the effect of microinjection on the survival of the embryos 

after injection was similar over the whole injected groups either with dsRNA or water, 

influences by physical injuries during further development were ruled out.  

 

5.7 The use of dsRNA to study genes function 

 

It had been demonstrated that the mechanisms of RNAi are limited at post-

transcriptional level by degrading the sequence-specific mRNA or blocking the activity 

of rRNA, which leads to loss of function in mouse (Sovoboda et al. 2000, Wianny and 

Zernicka-Goetz 2000, Grabarek et al. 2002, Siddall et al. 2002, Sovoboda 2004). In C. 

elegans, dsRNA molecules, 300-600 bp in length, are degraded by dicer into siRNA, 

21-23 nt in length (Ketting et al. 2001). These siRNAs interact with homologous 

regions in target mRNA molecules and trigger their degradation.  Moreover, these 

siRNA molecules appear to be self-replicating and eliminate target mRNA over several 

generations in C. elegans (Hunter 1999). But this mechanism was not found in 

mammals because in mammalian cell inefficiency of an RdRp component (Stein et al. 

2003a, Svoboda 2004). However the RNAi still widely use to study the function of 

genes in mammalian cells. It had been reported that molecules such as dsRNA 

(Svoboda et al. 2000, Wianny and Zernicka-Goetz 2000, Anger et al. 2004, Gui and 

Joyce 2005, Parradis et al. 2005, Nganvongpanit et al. 2006a, 2006b), siRNA 

(Anantharam et al. 2003, Djikeng et al. 2004, Kim et al. 2004, Li et al. 2005), shRNA 

(Yu et al. 2002, Yu et al. 2003) or expression vector (Haraguchi et al. 2004) are used to 

induce RNAi in mammalian cells. Most RNAi studies used dsRNA molecules to induce 

RNAi mechanism in mammalian embryos (more detail see table 2.2). Even in 

mammalian cells, the presence of dsRNA molecules triggers an interferon-mechanism 

response, resulting in an overall reduction in cellular mRNA levels and block in 

message translation (Stark et al. 1998, Elbashir et al. 2001a, Svoboda 2004). Up to now, 

300-1,500 bp long dsRNA (more detail see table 5.1) could induce efficient RNAi but 
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does not trigger apoptosis in mammalian oocytes (Svoboda et al. 2000, Wianny and 

Zernicka-Goetz 2000, Xu et al. 2003, Anger et al. 2004, Gui and Joyce 2005, Lazar et 

al. 2004,  Parradis et al. 2005, Nganvongpanit et al. 2006b) and embryos (Wianny and 

Zernicka-Goetz 2000, Cabot and Prather 2003, Sonn et al. 2004, Plusa et al. 2004, 

Nganvongpanit et al. 2006a, 2006b). The dsRNA were randomly digested into siRNA 

by dicer enzyme. In this process, one molecule of dsRNA was supplies a lot of siRNA 

molecules to induced RNAi in cells (Figure 5.1). It should give better result from 

suppression of cognate mRNA, when compared with siRNA molecule. However, the 

study need to be designed to compare the gene silencing effects between dsRNA and 

siRNA, and to find out the best molecules used for inducing RNAi mechanism in 

mammalian cells without induction of apoptosis response.  

In choosing a method for targeted knockdown of gene expression, an important 

consideration has to be the potential for off-target (non-sequence specific effects) and 

side effects. Jackson et al. (2003) used gene expression profiling to characterize the 

sepecificity of gene silencing by siRNAs in cultured human cell. Transcript profiles 

revealed siRNA-specific rather than target-specific signatures, including direct silencing 

of non-targeted genes containing as few as eleven contiguous nucleotides of identical to 

the siRNA. These results demonstrate that siRNAs may cross-react with targets of 

limited sequence similarity. The other potential issue of importance in sequence-specific 

knockdown of mRNA is unanticipated side effect. At lest 2 reports suggest that siRNA 

and shRNA can activate arms of the interferon response pathways, which could lead to 

non-specific inhibition of protein synthesis and general RNA degradation (Bridge et al. 

2003, Sledz et al. 2003). Sledz et al. (2003) found that transfection of siRNAs results in 

interferon-mediated activation of the Jak-Stat pathway and global up-regulation of 

interferon-stimulated genes. This effect is mediated by the dsRNA-dependent protein 

kinase, which is activated by siRNAs and required for up-regulation of interferon-β in 

response to siRNAs. In the same study, it has been show that the RNAi mechanism 

itself is independent of the interferon system by using cell lines deficient in specific 

component. Thus, siRNAs have broad and complicated effects beyond the selective 

silencing of target genes when introduced into cells.  However, in the present study we 

tested the specificity of dsRNA by analysing the expression of other independent genes. 

For this, Gdf-9 transcript which is known as maternal transcript was used to study the 
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specificity of C-mos dsRNA, while E-cadherin transcript was used study the specificity 

of Oct-4 dsRNA.  Both C-mos and Oct-4 dsRNA did not affect the expression of other 

independent genes. However to get insight into the effect of suppression of genes 

express mRNA level, experiment need to be conducted to investigate the global gene 

expression using micrroarry technique.               
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1:  The process of dsRNA and siRNA molecules to induce RNAi in cells.  

Previously attached by RNA induced silecing complex (RISC), both dsRNA and 

shRNA was digested by dicer into endogenous siRNAs, while exogenous siRNA 

molecules can directly be attached to RISC. One long dsRNA can be digested into a lot 

of siRNAs which increase the opportunity of siRNAs to attach with cognate RNA and 

processed mRNA degradation.     

 

5.7.1 Effects of dsRNA on oocyte maturation 

 

This study has shown that the injection of dsRNA of oocyte or zygote specific 

transcripts induced sequence specific mRNA degradation and subsequent protein 

synthesis during bovine oocytes maturation. In the studies conducted in mouse, C-mos 

is known to play a role as an essential component of cytostatic factor, which is 

responsible for arresting the maturing oocytes at metaphase in the second meiotic 

division (Wianny and Zernicka-Goetz 2000).  
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Table 5.1: The length and concentration of dsRNA used to study the function of genes 

in mammalian oocytes and embryos 
dsRNA Species / 

tissue 

Gene 

Length 

(bp) 

Concentration 

(µg/µl) 

Effects References 

Mouse      

Oocyte Bmp-15 528 - 78 % mRNA reduction Gui and Joyce 2005 

 Cyclin B1 650 33 ng/µl 

(transfec.) 

>50% mRNA and 

protein reduction   

Lazar et al. 2004 

 Doc1r ~400 0.5 aberrant MII spindle Terret et al. 2003 

 Gdf-9 589 - 89.2 % mRNA 

reduction 

Gui and Joyce 2005 

 Gfp 750 2 loss of fluorescence Wiannz and 

Zemicka-Goety 2000 

 Itpr1 686 1-5 x 106 

molecules 

90% mRNA reduction Xu et al. 2003 

 Mos 650 0.2 95% reduction of 

activity 

Svoboda et al. 2000, 

2004 

  ~500 100 µg/ml 

(microinj.) 

50 µg/ml 

(electro.) 

show null phenotype Grabarek et al. 2002 

 Plat 650 0.2 90% mRNA reduction Svoboda et al. 2000 

 Dicer ~1,500 - 90% mRNA reduction Svoboda et al. 2004 

Embryo E-cadherin 580 2 70% null phenotype Wiannz and 

Zemicka-Goety, 2000 

  330 2-4 ~55-60% null phenotype Sonn et al. 2004 

 Nek2 501 2-4 mRNA and protein 

reduction, loss of 

function 

Sonn et al. 2004 

 Par3 ~600 1-8 function reduction Plusa et al. 2005 

 aPKR ~600 1-8 function reduction Plusa et al. 2005 

Porcine      

Embryo Karyopheri

ns -α2 

721 1.0 loss of function Cabot et al. 2003 

 Karyopheri

ns -α3 

603 1.0 loss of function Cabot et al. 2003 

 PLK1 543 1 50% mRNA reduction Anger et al. 2004 
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Table 5.1: The length and concentration of dsRNA used to study the function of genes 

in mammalian oocytes and embryos (cont.) 
dsRNA Species / 

tissue 

Gene 

Length 

(bp) 

Concentration 

(µg/µl) 

Effects References 

Bovine      

Oocyte Cyclin B1 297 0.2 90% mRNA reduction Paradis et al. 2005 

 C-mos 435 10 70% mRNA reduction Nganvongpanit et al. 

2006b 

Embryo E-cadherin 496 25 80% mRNA reduction Nganvongpanit et al. 

2006a 

 Oct-4 341 25 

 

10 

60% mRNA reduction 

72% mRNA reduction 

Nganvongpanit et al. 

2006a 

Nganvongpanit et al. 

2006b 

electro. = electroporation, microinj. = microinjection, trans. = transfection 

 

In the present study the injection of C-mos dsRNA at immature oocyte stage resulted in 

72% reduction in amount of C-mos mRNA after maturation compared to the water 

injected and uninjected controls. This result is comparable with the results reported in 

mouse oocytes, where a suppression of 80-95% of C-mos mRNA was achieved by 

microinjection of C-mos dsRNA (Svoboda et al. 2000, Grabarek et al. 2002, Stein et al. 

2003b, Svoboda et al. 2004). Similar studies in mouse which targeted oocyte specific 

maternal transcripts namely: Gdf-9 and Bmp-15 have shown the suppression of 89% 

and 78% in mRNA transcript abundance, respectively (Gui and Joyce 2005). Moreover, 

up to a level of 90% suppression in transcript abundance had been attained for Plat 

(Sovoboda et al. 2000), ITPRT (Xu et al. 2003) and BNC (Ma et al. 2002) genes in 

mouse oocytes. A complete degradation of Cyclin B1 mRNA had been achieved in the 

work of Lazar et al. (2004) in oocytes treated with Cyclin B1 dsRNA. A recent report 

from Paradis et al. (2005) has shown suppression of transcripts by 90% in bovine 

oocytes. The efficiency of targeted suppression of transcripts in mammalian oocytes 

seems to determine the extent of change in developmental phenotype. This variation in 

the efficiency of suppression of mRNA and protein synthesis and the expected 

developmental phenotype using dsRNA may be associated with the concentration or 

sequence of dsRNA introduced. This has been evidenced by Wianny and Zernicka-
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Goetz (2000), who found that 50% of the oocytes injected with 2 mg/ml C-mos dsRNA 

showed spontaneous activation, while only 36% of the oocytes injected with 0.1 mg/ml 

C-mos dsRNA developed parthenogenetically to cleavage stage embryos. Holen et al. 

(2002) had demonstrated siRNAs targeting different positions on mRNA thus differed 

in activity. Moreover, despite the minimal sequence and position differences between 

these siRNAs, they displayed a wide range of activities (Holen et al. 2002). Studies in 

C-mos-/- knockout mouse have shown a reduced fertility because of the failure of 

matured eggs to arrest during meiosis (Colledge et al. 1994). The C-mos-/- oocytes 

undergo germinal vesicle breakdown and extrusion of both polar bodies followed in 

some cases by progression into cleavage. In the present study, despite significant 

reduction in the transcript abundance and protein synthesis, the proportion of oocytes 

undergo spontaneous activation after treatment with C-mos dsRNA which was much 

lower compared to the studies in mouse (Wianny and Zernicka-Goetz 2000, Grabarek et 

al. 2002, Stein et al. 2003b, Svoboda et al. 2004). In the present study 60% C-mos 

dsRNA injected oocytes showed extrusion of first polar body of which 2.5% showed 

spontaneous activation and development to 2- to 4-cell stage. However, while only 44-

50% of the oocytes showed first polar body extrusion in water injected and uninjected 

controls, no spontaneous activation and parthenogenetic development has been 

observed in these treatment groups. The reason for lower percentage of spontaneous 

activation in C-mos dsRNA injected groups compared to comparable studies in the 

mouse can not be explained at this level of the study.  

However, this study has demonstrated that the injection of C-mos dsRNA leads to the 

specific degradation of the C-mos mRNA without affecting the expression of other 

genes (Gdf-9 and H2a).  These results are consistent with the results obtained in mouse, 

where the injection of dsRNA directed towards C-mos mRNA resulted in the 

suppression of the targeted mRNA without affecting the untargeted transcript (Svoboda 

et al. 2000).  Including the results reported by Gui and Joyce (2005), injection of Gdf-9 

or Bmp-15 dsRNA leads to specific degradation of cognate mRNA without affecting 

the expression of other genes. Previous reports in bovine oocytes also showed that the 

suppression of Cyclin B1 had no affect on the expression of housekeeping gene (β-

actin) or Cyclin B2, as member of Cyclin B family (Paradis et al. 2005). Moreover, this 

study has demonstrated that degradation of C-mos mRNA has resulted in a consequent 
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reduction of C-mos protein synthesis as it is evidenced by western blot analysis, but the 

water injection had no effect on C-mos protein synthesis. These results are also 

consistent with the results obtained in mouse, where the injection of Gdf-9 dsRNA 

directed towards Gdf-9 protein resulted in the reduction of the targeted protein but the 

reduction did not occur in buffer injected group (Gui and Joyce 2005).   

 

5.7.2 Effects of dsRNA on embryonic development 

 

Bovine embryogenesis in the early preimplantation stages is supported by mRNA and 

protein transcribed from maternal and embryonic genome. Until the major round of 

embryonic transcription during the 8- to 16-cell stage in bovine embryos, development 

is largely dependent on the transcripts and protein formed by the oocyte (Memili and 

First 2000). Oct-4 is the earliest expressed transcription factor that is known to be 

crucial in murine preimplantation development (Okamoto et al. 1990, Rosner et al. 

1990, Schöler et al. 1990, Nichols et al. 1998). The mRNA and protein of Oct-4 had 

been found in murine oocytes and in the nuclei of subsequent cleavage stage embryos 

(Rosner et al. 1990, Schöler et al. 1990, Palmieri et al. 1994), while in the expanded 

murine blastocyst stage both mRNA and protein were predominantly found in the ICM 

(Palmieri et al. 1994, Pesce et al. 1998, Kirchhof et al. 2000). However, even in fully 

expanded bovine and porcine blastocysts both ICM and TE cells were found to be 

positive for Oct-4 protein (Kirchhof et al. 2000). The quantitative expression profiling 

results throughout the preimplantation embryonic stages in the present study evidenced 

that Oct-4 is activated from both maternal and embryonic genome. Transcript 

abundance sharply increases after maturation and down-regulated until 4-cell stage. The 

detectable amount of Oct-4 transcript was very low between 8-cell and morula stages, 

after which it was up-regulated at the blastocyst stage. Therefore, injection of Oct-4 

dsRNA is targeting transcripts starting the minor embryonic activation at the 2- to 4-cell 

stages and in the major embryonic activation after 16-cell stage. Consequently, injection 

of Oct-4 dsRNA at the zygote stage has resulted in 72% reduction at the blastocyst stage 

compared to the uninjected controls. Despite slight variations in the relative abundance 

of Oct-4 transcript between water injected and uninjected control groups, differences 

are not significant. Similar studies in mouse have reported that suppression of about 
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90% has been achieved using sequence specific dsRNA (Svoboda et al. 2004). Previous 

reports using dsRNA in bovine embryos also showed that the suppression of the relative 

abundance of E-cadherin mRNA in the E-cadherin dsRNA injected morula stage 

embryos was reduced by 80% compared to the control group (Nganvongpanit et al. 

2006a). Moreover, the western blot analysis also showed a significant decrease in the E-

cadherin protein in E-cadherin dsRNA injected embryos compared to the other three 

groups and microinjection of E-cadherin dsRNA has resulted only 22% blastocyst rate 

compared to 38-40% in water injected and uninjected controls.  

Oct-4, as transcription factor protein is known to bind to DNA and activate or repress 

transcription of several genes expressed during early embryonic development (Nichols 

et al. 1998, Shin et al. 2005).  In the present study suppression of Oct-4 transcript in 

bovine embryogenesis using dsRNA has resulted in co-suppression of Fgf-4 gene at a 

level of 70%, while transcript remained unaffected in water injected and uninjected 

controls. This is in agreement with the observation made in Oct-4-/- mouse embryos, 

where Fgf-4 transcript abundance has been reduced (Nichols et al. 1998). Moreover, the 

expression of Fgf-4 transcript was found to be down-regulated after targeted 

suppression of Oct-4 using siRNA expression vector in mouse (Haraguchi et al. 2004). 

The Fgf-4 gene is an octamer-containing enhancer in its 3´-noncoding region and has 

been demonstrated to respond to Oct-4 gene (Yuan et al. 1996, Ambrosetti et al. 1997, 

Daniels et al. 2000). Studies in mouse have shown that this gene is co-expressed with 

Oct-4 in the ICM and epiblast (Ma et al. 1992, Niswander and Martin 1992). Recently, 

the effect of down-regulation of Oct-4 transcript using dsRNA on the expression of 

other genes in mouse embryos had been investigated using annealing control primer 

technique (Shin et al. 2005), whereby of the 10 genes, 8 (Atp6ap2, GK003, Ddb1, 

hRscp, Dppa1, Dpp3, Sap18, and Rent1) were down-regulated and 2 (Rps14 and 

ETIF2B) were up-regulated in Oct-4 dsRNA-injected blastocysts. The specificity of 

Oct-4 dsRNA on targeted mRNA has been investigated by quantitative expression 

analysis of other blastocyst transcript (E-cadherin) and a house keeping gene (H2a).  

This study has demonstrated that degradation of Oct-4 mRNA resulted in consequent 

reduction in protein synthesis and resulted in developmental aberrations. Oct-4 dsRNA 

injection has affected the cleavage rate of zygotes to develop to the 2-cell stage. Even 

though the day 5 morula rate was lower in the Oct-4 dsRNA injected group compared to 
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the water injected and uninjected controls, these differences were not significant. In 

order to investigate the effect of Oct-4 suppression on the rate of embryo development, 

we have investigated the blastocyst rate from day 6-8. Most of the blastocysts from Oct-

4 dsRNA injected groups appeared at day 7 and 8 while only few blastocysts were 

found at day 6 of development. However, comparable developmental rate with respect 

to blastocysts rate between days 6-8 has been observed in water injected and uninjected 

controls.  The overall blastocyst rate was lower in Oct-4 dsRNA injected embryos 

compared to the water injected and uninjected controls but differences are not 

significant. While the Oct-4-/- mouse showed a postimplantation lethality before egg 

cylinder formation,  Oct-4 deficient mouse embryos developed normally up to 

blastocyst stage but the ICM were not pluripotent and divert to a trophoblast fate when 

placed in embryonic stem cell culture conditions (Nichols et al. 1998). Marked 

differences had been observed in Oct-4 mRNA and protein expression in mouse, murine 

and bovine species (Kirchhof et al. 2000). As opposed to the study in mouse where Oct-

4 expression was correlated with the undifferentiated cell types suggesting that Oct-4 

was a marker for pluritency and its expression was restricted to ICM (Ovitt and Schöler 

1998), Even, higher level of Oct-4 protein expression had been detected in the ICM as 

opposed to the trophectoderm cells of human blastocysts (Hansis et al. 2000), but in 

bovine and porcine blastocyst, immunocytochemical analysis has detected Oct-4 protein 

in both ICM and TE cells (Kirchhof et al. 2000).  This could indicate that it may be the 

biological activity of the Oct-4, and not simply its presence, that correlates with the 

embryonic stem cell type (Kirchhof et al. 2000). In this present study, Oct-4 dsRNA 

injected zygotes resulted in blastocysts of lower cell number compared to the water 

injected and uninjected control groups. This was significantly evident in the number of 

ICM cells which were found to be reduced due to down-regulation of Oct-4 transcript. 

The optimal level of Oct-3/4 is reported to determine the fate of embryonic stem cells 

(Niwa et al. 2000), in which less than a two-fold increase from the normal expression 

level causes differentiation into ectoderm and mesoderm, whereas a lower level leads to 

dedifferentiation into TE. However, due to absence of differences in the number of TE 

cells between the three groups, migration of cells to TE cells can not be evidenced in the 

present study.   
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5.8 Future prospects 

 

RNAi is a revolution in the field of animal molecular genetics that it has enormous 

potential for engineering control of gene expression, as well as for the use of a tool in 

functional genomics. The ability to manipulate RNAi has a wide variety of practical 

applications of biotechnology ranging from molecular biology to gene therapy. The use 

of RNAi as a method to alter gene expression in mammalian embryo has been 

attempted in a diverse rate of success as previous mentioned. However, RNAi seems to 

be an effective, specific and valuable tool for reverse genetics. Moreover, RNAi is a 

straight forward technique which is used to rapidly assess gene function and reveal null 

phenotypes in verity of species such as nematode, insect, mouse, swine and bovine. 

Analysis of more genes using RNAi in bovine including other mammalian species will 

help researchers to better understand what genes are suitable for RNAi targeting and 

function of those genes. However, various RNAi approaches need to be compared and 

standard protocols must be developed for a better use. The RNAi transgenic approach is 

very attractive for studies of early mammalian development. Because, this technique 

could solves the problem of elimination of the maternal pool of targeted protein as well 

as the problem with the need for extensive microinjection. Moreover, RNAi usually 

does not totally eliminate gene function; this would provide a range of phenotypes 

depending on the level of interference. But, it might be an advantage uses as it provides 

with relevant information about threshold affects that can not be obtained by the 

classical gene knockout experiments. Better understanding of the RNAi mechanism in 

mammals will also lead to an attempt to modify and enhance the RNAi response. And 

as RNAi emerges as a useful silencing tool for studies in mammals, its therapeutic use 

can be assessed, most likely in fields using tissue cultures extensively, such as cancer 

disease, viral disease or in treatment of parasitic infections.  
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6 Summary 

 

RNAi has been used for selective degradation of mRNA transcript or inhibits its 

translation to functional protein at the post transcriptional state in various species. This 

work aimed to apply the RNAi approach to suppress the expression of the maternal 

transcript C-mos (AY630920) and embryonic transcripts Oct-4 (AY490804) during in 

vitro development of bovine embryos using microinjection of sequence-specific 

dsRNA. For this, 435 and 341 bp long dsRNA specific to the coding sequences of C-

mos and Oct-4 transcripts, respectively, were synthesized and used for microinjection. 

While C-mos dsRNA was injected at the immature oocyte stage, Oct-4 dsRNA was 

injected at the zygote stage.  

In experiment 1, 935 good quality immature oocytes were categorized into three groups 

namely: those injected with C-mos dsRNA (n = 327), water (RNase-free) (n = 303) and 

uninjected controls (n = 305). Oocytes were held in a TCM-199 medium supplemented 

with 0.1% BSA, 0.2 mM pyruvate and 50 µg/ml gentamycin sulphate until use in a 

humidified atmosphere with 5% CO2 at 39 °C. Prior to microinjection, theses immature 

oocytes were incubated for 20 min in TCM-199 supplemented with 8 µg/µl cytochalasin 

B in order to stabilize the cytoskeleton during injection. In experiment 2, in vitro 

produced zygotes (n = 1,437) were categorized into three groups namely, those injected 

with Oct-4 dsRNA (n = 439), water (RNase-free) (n = 427) and uninjected controls (n = 

571). In both experiments, microinjection was performed on an inverted microscope at 

200x magnification. During microinjection a group of 50-60 immature oocytes or 

zygotes were placed in a 10 µl droplet of H-TCM under mineral oil and the dsRNA or 

water was placed in a 1µl droplet near to the droplet containing the oocytes or zygotes. 

H-TCM medium was supplemented with cytochalasin B during injection of immature 

oocyte to improve the survival rate of the oocytes after microinjection. The injection 

volume of ~7 pl was applied using injection capillary with 5 µm in diameter.  

In order to assess the effect of sequence specific dsRNA in oocytes and embryos on 

mRNA transcript abundance and protein expression, oocytes and embryos were 

collected at specific times after treatment while the phenotype was observed throughout 

the developmental stages. In experiment 1, immature oocytes were cultured after 

microinjection with C-mos dsRNA and water until 48 hpi. While ooctes were being 
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cultured for 48 h after treatment to allow any parthenogenetic development, oocytes 

were collected for transcription and protein expression analysis using real-time PCR and 

western blot analysis, respectively. In experiment 2, zygotes injected with Oct-4 dsRNA 

or water and non injected controls were culture in vitro until day 8 blastocyst stage. The 

blastocyst stage embryos from each treatment group were used for both transcription 

and protein analysis. 

First, in order to get an insight on normal temporal expression pattern of the studied 

transcripts (C-mos, Gdf-9, Oct-4, Fgf-4 and E-cadherin), a real-time PCR analysis was 

conducted throughout the preimplantation development stage of in vitro produced 

bovine embryos. The C-mos and Gdf-9 were detected at higher level between immature 

oocytes and 4-cell stage and, down-regulated in the later developmental stages. The 

Oct-4 transcript was found to be highly abundant at early developmental stages 

(between immature oocyte and 4-cell stage) and further down-regulated between 8-cell 

and morula stage. Relatively higher transcript abundance was detected at the blastocyst 

stage. The E-cadherin mRNA transcript was detected at higher level at immature and 

matured oocytes, morula and blastocyst stages of development. However, transcript 

abundance was lower between 2-cell and 16-cell developmental stages. The Fgf-4 

transcript was highly abundant at morula and blastocyst stages, while it could not be 

detected in earlier developmental stages (from immature oocyte up to 16-cell stage).   

Microinjection of C-mos dsRNA has resulted in 70% reduction of C-mos transcript 

abundance after maturation compared to the water injected and uninjected controls (P < 

0.01). Similarly, microinjection of Oct-4 dsRNA at the zygote stage has resulted in 72% 

reduction in transcript abundance at the blastocyst stage as compared to the uninjected 

controls (P < 0.01). In order to investigate the specificity of the dsRNA, two 

independent genes, Gdf-9 (maternal) and E-cadherin (embryonic) were quantified in all 

treatment groups and no differences were observed. The reduction on those transcripts 

led to reduce the protein synthesis. The intensity of C-mos and Oct-4 protein band was 

decreased in C-mos and Oct-4 dsRNA injected groups, respectively, while strong 

reactive bands were detected in water injected and uninjected control groups. Moreover, 

the relative expression of Fgf-4 gene, which is known to be co-expressed with Oct-4 

gene, was found to be significantly down-regulated by 70% in Oct-4 dsRNA injected 

group compared to the other groups. 
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First, the survival rate of the oocytes and embryos due to the physical injury during 

microinjection has been determined 3-4 h after microinjection. No significant 

differences were observed in survival rate of oocytes and embryos injected with dsRNA 

and water. Compared to uninjected controls about 10-12% of oocytes and 15-18% of 

zygotes did not survive the microinjection procedure. From oocytes injected with C-mos 

dsRNA, about 60% showed the extrusion of first polar body compared to the water 

injected (50%) and uninjected controls (44%). Moreover, 2.5% of the oocytes injected 

with C-mos dsRNA developed parthenogenetically to the 2-cell stage. The first cleavage 

after microinjection was 70, 80 and 81% for embryos injected with Oct-4 dsRNA, water 

and uninjected controls, respectively. The day 5 morula rate in Oct-4 dsRNA injected 

group (37%) was not significantly different compared to water injected (40%) and 

uninjected control (42%) groups. However, there is a considerable variation in the 

number of blastocysts from each treatment group at each day of development between 

days 6-8. Most of the blastocyst from Oct-4 dsRNA injected groups appeared at the day 

7 (18%) and day 8 (10%) while only few blastocysts were found at day 6 (8%) of 

development. However, the over all blastocyst rate was lower in Oct-4 dsRNA injected 

embryos (36%) compared to the water injected (40%) and uninjected control (42%) but 

differences are not significant. Moreover, Oct-4 dsRNA injected embryos resulted in 

lower cell number compared to the other two groups. This was evident in the number of 

ICM cells, they were found to be reduced due to down-regulation of Oct-4 transcript.  

In conclusion, the present study has gives evidence that the use of sequence specific 

dsRNA to induce RNAi in bovine oocytes and embryos to suppress maternal and 

embryonic transcripts leads to a subsequent reduction in functional protein expression 

and a distinct developmental phenotype. Moreover, these results demonstrated that 

sequence specific dsRNA can be used to knockdown maternal or embryonic transcripts 

in bovine embryogenesis and used as a tool to study the function of genes. 
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7 Zusammenfassung 

 

RNAi wird für die selektive Degradierung von mRNA Transkripten verwendet oder 

verhindert ihre Translation zu einem funktionierenden Protein nach der Transkription in 

verschiedenen Spezies. Diese Arbeit zielt darauf, den RNAi Ansatz anzuwenden, um 

die Expression des maternalen Transkriptes C-mos (AY630920) und des embryonales 

Transkriptes Oct-4 (AY490804) während der in vitro Entwicklung boviner Embryonen 

durch Mikroinjektion von sequenz-spezifischer dsRNA zu verhindern. Dazu wurde eine 

435 bp und 341 bp lange dsRNA, die spezifisch für die jeweils kodierenden Sequenzen 

der C-mos und Oct-4 Transkripte ist, synthetisiert und für die Mikroinjektion 

verwendet. Während C-mos dsRNA in Oozyten im unreifen Stadium injiziert wurde, 

wurde Oct-4 dsRNA im Zygotenstadium injiziert. 

In Experiment 1 wurden 935 unreife Oozyten einer guten Qualität in drei Gruppen 

eingeteilt: solche mit C-mos dsRNA injizierten (n = 327), mit Wasser (RNase-freiem) 

injizierten (n = 303) und Kontrollen ohne Injektion (n = 305). Die Oozyten wurden in 

TCM-199 mit 0,1% BSA, 0.2 mM Pyruvat und 50 µg/ml Gentymycinsulfat in einer 

Atmosphäre 5% CO2 bei 39 °C kultiviert. Vor der Mikroinjektion wurden diese 

ungereiften Oozyten 20 min in TCM-199 mit 8 µg/µl Cytochalasin B inkubiert, um das 

Zytoskellet während der Injektion zu stabilisieren. In Experiment 2 wurden in vitro 

produzierte Zygoten (n = 1.437) in drei Gruppen eingeteilt, mit Oct-4 dsRNA (n = 439) 

und mit Wasser (RNase-freiem) (n=427) injizierte, sowie nicht injizierte Kontrollen (n = 

571). In beiden Experimenten wurde die Mikroinjektion auf einem inversen Mikroskop 

bei 200 facher Vergrößerung durchgeführt. Während der Mikroinjektion wurde eine 

Gruppe von 50-60 ungereiften Oozyten oder Zygoten in einen 10 µl Tropfen H-TCM 

unter Mineralöl platziert. Die dsRNA beziehungsweise das Wasser wurden in einem 1µl 

Tropfen neben dem Tropfen mit den Oozyten oder Zygoten platziert. H-TCM Medium 

wurde während der Injektion der unreifen Oozyten mit Cytochalasin B versetzt, um die 

Überlebensrate der Oozyten nach der Mikroinjektion zu erhöhen. Das 

Injektionsvolumen von ~7 pl wurde mit einer Injektionskapillare mit einem 

Durchmesser von 5 µm verabreicht. 

Zur Beurteilung des Effektes der sequenz-spezifischen dsRNA in Oozyten und Embryos 

auf die Menge an mRNA Transkripten und Protein Expression wurden Oozyten und 
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Embryonen zu spezifischen Zeitenpunkten nach der Behandlung gesammelt, während 

der Phänotyp in allen Entwicklungsstadien beobachtet wurde. In Experiment 1 wurden 

die unreifen Oozyten nach der Mikroinjektion mit C-mos dsRNA oder Wasser bis 24 

hpi kultiviert. Während die Oozyten nach der Behandlung 48 h kultiviert wurden, um 

jegliche parthenogenetische Entwicklung zu ermöglichen, wurden die Oozyten für 

Transkriptions- und Proteinexpressionsanalyse mit Hilfe von Real-Time PCR 

beziehungsweise Western Blot Analyse gesammelt. In Experiment 2 wurden die mit 

Oct-4 dsRNA oder Wasser injizierten und nicht injizierten Kontrollen in vitro bis zum 

Tag 8 des Blastozystenstadiums kultiviert. Die Embryonen im Blastozystenstadium 

wurden von jeder behandelten Gruppe für Transkriptions- und Proteinanalyse 

verwendet. 

Um einen Einblick in das normale zeitliche Expressionsmuster der untersuchten 

Transkripte (C-mos, Gdf-9, Oct-4, Fgf-4 und E-cadherin) zu erhalten, wurde 

durchgehend im präimplantativen Entwicklungsstadium der in vitro produzierten 

Rinderembryonen eine Real-Time PCR Analyse durchgeführt. Bei den C-mos und Gdf-

9 Transkription wurde ein höherer Spigel im Vergleich der unreifen Oozyten und des 4-

Zellstadiums festgestellt. In den späteren Entwicklungsstadien nahm die Expression ab. 

Es wurde festgestellt, dass das Oct-4 Transkript in den frühen Entwicklungsstadien 

(zwischen unreifen Oozyten und 4-Zellstadium) in hohen Mengen vorhanden ist und 

später zwischen dem 8-Zell und Morulastadium wieder herunter reguliert ist. Eine 

relativ höhere Transkriptmenge wurde im Blastozystenstadium festgestellt. Das E-

cadherin mRNA Transkript wurde in höheren Niveaus bei unreifen und reifen Oozyten, 

Morula- und Blastozystenstadien der Entwicklung gefunden. Jedoch war die 

Transkriptmenge niedriger zwischen den 2-Zell und 16-Zell Entwicklungsstadien. Die 

Fgf-4 Transkripte waren in den Morula- und Blastozystenstadien reichlich vorhanden, 

während es in den früheren Entwicklungsstadien (von unreifen Oozyten bis zum 16-

Zellstadium) nicht gefunden wurde. 

Die Mikroinjektion von C-mos dsRNA führte zu einer 70%igen Verringerung der C-

mos Transkriptmenge nach der Reifung, verglichen mit den Wasser injizierten und den 

nicht injizierten Kontrollen (P < 0.01). Ähnlich ergab auch die Mikroinjektion von Oct-

4 dsRNA im Zygotenstadium eine 72%igen Reduktion der Transkriptmenge im 

Blastozystenstadium (P < 0.01). Um die Spezifität der dsRNA-wirkung zu untersuchen, 
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wurden zwei unabhängige Gene, Gdf-9 (maternal) und E-cadherin (embryonal), in allen 

behandelten Gruppen quantifiziert, wobei keine Unterschiede festgestellt wurden. Die 

Reduktion der Transkripte C-mos und Oct-4 führt zu einer Reduktion der jeweiligen 

Proteinsynthese. Die Intensität der C-mos und Oct-4 Proteinbanden waren in den C-mos 

und Oct-4 dsRNA injizierten Gruppen jeweils verringert, während stark experimiert  

Banden in den Wasser injizierten und nicht injizierten Kontrollgruppen festgestellt 

wurden. Darüber hinaus wurde festgestellt, dass die relative Expression des Fgf-4 Gens, 

welches mit dem Oct-4 Gen co-exprimiert wird, signifikant mit 70% in der Oct-4 

dsRNA injizierten Gruppe im Vergleich mit den anderen Gruppen herunter reguliert ist. 

Zunächst wurde die Überlebensrate der Oozyten und Embryonen auf Grund der 

physischen Beschädigung während der Mikroinjektion 3-4 h nach der Mikroinjektion 

festgestellt. Es wurden keine signifikanten Unterschiede der Überlebensrate der 

Oozyten und Embryonen nach Injektion mit dsRNA oder Wasser festgestellt. 

Verglichen mit den nicht injizierten Kontrollen überlebten 10-12% der Oozyten und 15-

18% der Zygoten nach der Mikroinjektion nicht. Von den mit C-mos dsRNA injizierten 

Oozyten zeigten im Vergleich zu den mit Wasser injizierten (50%) und nicht injizierten 

Kontrollen (44%) 60% eine Extrusion des ersten Polarkörpers. Weiterhin entwickelten 

sich 2.5% der mit C-mos dsRNA injizierten Oozyten parthenogenetisch zum 2-

Zellstadium. Die erste Teilung nach der Mikroinjektion betrug 70, 80 und 81% der 

jeweils mit Oct-4 dsRNA injizierten, Wasser injizierten und nicht injizierten 

Embryonen. Die Tag 5 Morula entwicklungsrate in der mit Oct-4 dsRNA injizierten 

Gruppe (37%) war nicht signifikant unterschiedlich von der mit Wasser injizierten 

(40%) und der nicht injizierten (42%) Kontrollgruppe. Jedoch gibt es eine erhebliche 

Variation der Anzahl Blastozysten, welche aus jeder Gruppe in den 

Entwicklungsstadien zwischen Tag 6-8 stammten. Die meisten Blastozysten der Oct-4 

dsRNA injizierten Gruppen erschienen am Tag 7 (18%) und Tag 8 (10%), während 

einige Blastozysten am Tag 6 (8%) der Entwicklung gefunden wurden. Die gesamte 

Blastozystenrate war niedriger in den Oct-4 dsRNA injizierten Embryonen, was im 

Vergleich zu den anderen zwei Gruppen zu einer niedrigeren Zellzahl führte. Dies war 

ein Beweis, dass die gefundene Anzahl ICM Zellen aufgrund der verringerten 

expression des Oct-4 Transkriptes reduziert ist.  
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Zusammenfassend gibt die vorliegende Untersuchung einen Beweis, dass die 

Verwendung der sequenz-spezifischen dsRNA zur Induzierung von RNAi in bovine 

Oozyten und Embryos zur Herunterregulation der maternalen und embryonalen 

Transkripte zu einer anschließenden Verringerung der funktionellen Proteinexpression 

und einem unterschiedlichen Entwicklungsphänotyp führt. Dieses System kann damit 

als Werkzeug zur Untersuchung der Funktion von Genen verwendet werden kann. 
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