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PREFACE   

 
 
 

The present doctoral work was carried out from April 2003 to 

October 2006 under the supervision of Prof. Dr. Marc Janssens,  Unit of 

Tropical Crops, currently belonging to the Department of Crop Science 

and Resource Conservation (INRES) from the University of Bonn, 

Germany. 

The Unit of Tropical Crops participated in a German-Brazilian  

project "Biodiversity in Integrated Land Use Management for Economic 

Natural and System Stability in the Mata Atlântica of Rio de Janeiro 

(BLUMEN)" Coordinated by Prof. Dr. Hartmut Gaese, executive director 

of the Institute for Technology in the Tropics (ITT) of the University of 

Applied Science Cologne. The project was part of the Brazilian - German 

co-operation programme: "Science and Technology for the Mata 

Atlântica" launched by the Conselho Nacional de Desenvolvimento 

Científico e Tecnológico (Cnpq), Brazil and the Bundesministerium für 

Bildung und Forschung BMBF, Germany.  

An interdisciplinary team of researchers from Brazil and 

Germany started the BLUMEN project in the region of Teresópolis 

(State of Rio de Janeiro), focussing on the river basin of Rio Preto and 

the National Park Serra dos Órgãos. Researchers from 8 Institutions 

took part to this  project: UFRRJ-Universidade Federal Rural do Rio de 

Janeiro, UFRJ-Universidade Federal do Rio de Janeiro, INT-Instituto 

Nacional de Tecnologia, FIOCRUZ - Instituto Oswaldo Cruz, UFSCar-

Universidade Federal de São Carlos, as well as, three German 

recognized universities: University of Bonn, University of Leipzig and 

University of Applied Sciences Cologne. 

The realization of this project was only possible with the active 

participation of hundreds of farmers and local organizations, all 

collaborating actively in the development of this  project and especially 

in the laborious data collection for  this thesis. 
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SUMMARY   

The aim of this work was to find ways of balancing natural and agricultural 
systems (AS) in the Atlantic rainforest of Brazil. Trade-offs and synergies were 
analyzed. We propose six hypotheses related to; (i) the contribution of agricultural 
systems to biodiversity conservation, (ii) the agricultural and natural mosaic in the 
landscape, (iii) the agriculture as consumer and producer of energy, (iv) the eco-
volume as parameter to measure ecological functions, (v) the environmental impacts, 
quality of inputs, and sustainability, and (vi) the measurement of resilience in natural 
and agricultural systems. 
  Energy and emergy analysis, agro-biodiversity assessment, eco-volume, 
biomass partitioning, cost benefit analysis, surveys, and case studies were used as 
methodologies during 24 months of field work. The identified agricultural and natural 
systems were: (i) vegetables systems (leaf, fruit and mixed vegetables); (ii) citrus; 
(iii) ecological; (iv) cattle, (v) sylvopastoral, (vi) forest fragment and, (vii) forest in 
regeneration stage (1, 2 and 3 years old) 
 Agro-climax was defined as the equilibrium point between the natural and 
agricultural systems. Biodiversity management and conservation activities were 
analyzed and the corresponding biodiversity indices calculated. Finally, the farmer 
perception of biodiversity was presented. Ecological and sylvopastoral systems 
contribute positively to the conservation of biodiversity, on the contrary, dominant 
cattle systems are the main cause for forest fragmentation, breaking the dynamics of 
animal and plant populations. The landscape is dominated by fragments, 36.2%, 
grasses and agriculture 33.7% and forest in regeneration 18.8%. 
 The main primary agricultural production systems have low energy 
conversion ratio, and store only small quantities of energy (biomass) in the system. 
The ecological system has the most efficient use of energy, and saves great biomass 
quantity in the system. The cattle system presents the lowest values for all energy 
and biomass parameters causing largest environmental damage. All vegetable 
systems present positive economic indicators, the cattle only negative ones. The 
ecological system, presents highest sustainability in ecological terms. 
  The basin as a system contributes positively to the economy. It gives more 
emergy than that it takes from the economic system in form of materials and services. 
This fact represents also a loss of capital. The environmental impact caused by the 
agricultural systems is moderate as their use of renewable resources is high. Hence, 
the ecological sustainability is moderate to good. 
 Eco-volume is an important parameter to measure the ecological function and 
thequality of natural systems, as well as their interactions with agricultural systems. 
Reduction of eco-volume represents a negative impact on the ecosystem functionality, 
which in turn disrupts the supply of goods and ecological services. The eco-volume 
concept also plays a central role in the measurement of the resilience of natural and 
agricultural systems. Cattle and vegetable systems have the lowest resilience, 
ecological and sylvopastoral systems the greatest ones. 
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ZUSAMMENFASSUNG  

Das Ziel dieser Arbeit ist die Bilanzierung zwischen Natur- und Agrarsystemen im 
Atlantischen Regenwald von Brasilien. Es wurden die Trade-offs und Synergien analysiert. Es 
werden sechs Hypothesen aufgestellt, die sich beziehen auf: (i) Beitrag des Agrarsystems zur 
Biodiversitätserhaltung, (ii) Agrar- und Naturmosaik in der Landschaft, (iii) die 
Landwirtschaft als Konsument und Produzent von Energie, (iv) das Ökovolumen als 
Parameter zur Messung der ökologischen Funktionen, (v) die Umwelteinflüsse, Input-Qualität 
und Nachhaltigkeit, (vi) die Messung der Resilienz der Natur- und Agrarsysteme. 

Energie- und Emergieanalysen, Bewertung der Agrobiodiversität, Eco-Volumen, 
Biomassenmessung, Kosten-Nutzenanalyse, Befragung und Fallstudien wurden als Methoden 
innerhalb von 24 Monaten Feldarbeit durchgeführt. Untersucht werden die Agrar- und 
Natursysteme: (i) Gemüsebausysteme (Blatt-, Fruchtgemüse und beide in Mischkultur), (ii) 
Zitrusanbau, (iii) Ökologische Anbausysteme, (iv) Weidewirtschaft, (v) Sylvopastoral, (vi) 
Waldfragment, (vii) Wald in verschiedenen Regenerierungsphasen (1,2 und 3 Jahre alt).  

Agro-climax wird definiert als Gleichgewichtspunkt zwischen den Natur- und den 
Agrarsystemen. Biodiversitätsmanagement und Naturerhaltungsmaßnahmen werden 
analysiert und der dazugehörige Biodiversitätsindex kalkuliert. Weiterhin werden die 
Vorstellungen der Produzenten zur Bedeutung der Biodiversität erfasst. Ökologische und 
Sylvopastorale Systeme tragen positiv zur Erhaltung der Biodiversität bei. Im Kontrast dazu 
steht die dominante Weidewirtschaft, die der Hauptverursacher der Waldfragmentierung ist. 
Die Fragmentierung zerstört die Tier- und Pflanzenpopulationsdynamik. Die Landschaft wird 
dominiert von Waldstandorten und landwirtschaftlich genutzten Flächen, die zusammen 
fasst 90% der Fläche einnehmen. Hiervon sind 36,2% Waldfragmente, 33,7% Weide und 
Ackerbau sowie 18,8% Waldregenerationsflächen.  

Die im Untersuchungsraum vorherrschenden Primäragrarsysteme besitzen eine 
niedrige Energieumwandlung und speichern nur eine geringe Energiequantität (Biomasse). 
Die ökologischen Systeme haben meist eine effiziente Energiebilanz und sichern eine gute 
Biomassenquantität in ihren Systemen. Die Weidewirtschaft weist die geringsten Werte für 
alle Biomassenparameter auf und verursacht gleichzeitig die größten Umweltschäden. Alle 
Gemüseanbausysteme zeigen positive ökonomische Indikatoren, die Weidewirtschaft als 
einziges System negative. Die höchste ökologische Verträglichkeit ist erwartungsgemäß in 
den ökologisch bewirtschafteten Systemen zu finden. 

Das Einzugsgebiet, als System, trägt positiv zum Wirtschaftssystem bei. Es gibt mehr 
Emergy als es vom Wirtschaftssystem in Form von Gütern und Dienstleistungen nimmt. Das 
bedeutet einen Kapitalverlust für ersteres. Die Agrarsysteme haben moderate Auswirkungen 
auf die Umwelt, da sie häufig erneuerbare Energien nutzen. 

Eco-Volumen ist ein wichtiger Parameter zur Messung der ökologischen Funktion und 
der Qualität der natürlichen Systeme und ihrer Interaktionen mit den Agrarsystemen. Die 
Reduzierung des Eco- Volumens hat einen negativen Einfluss auf die Funktionalität des 
Ökosystems, was wiederum das Angebot von Gütern und „ecolocigal services“ unterbricht. 
Das Eco-Volumen Konzept spielt weiterhin eine zentrale Rolle in der Messung von Resilienz 
von Natur- und Agrarsystemen. Weide- und Gemüseanbausysteme weisen die geringste, 
ökologische und sylvopastorale Systeme die höchste Resilienz auf. 
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CHAPTER I 
 

 

1. INTRODUCTION 

 

“The environment provides goods and services that sustain human 

development so we must ensure that development sustains the 

environment. Better natural resource management increases the income 

and nutrition of poor people” (The Millennium Goals: 7). 

“The priority must be on maintaining and improving the capacity of the 

higher potential agricultural lands to support an expanding population. 

However, conserving and rehabilitating the natural resources on lower 

potential lands in order to maintain sustainable man/land ratios are also 

necessary”. “There is a need to intensify agriculture by diversifying the 

production systems for maximum efficiency in the utilization of local 

resources, while minimizing environmental and economic risks” (Agenda 
21, C: 14.3; 25). 

If enough species are extinguished, will ecosystems collapse and will the 

extinction of most other species follow soon afterwards? The only answer 

anyone can give is: Possibly. By the time we find out, however, it might be 

too late. One planet, one experiment (Wilson 1992). 

In a wide sense this thesis seeks to contribute conceptually and 
methodologically to examine and to determine in what ways humanity’s 
relationship with the biosphere is out of balance, and seeks to find how 
a balance might be re-established. 

Agroclimax is the equilibrium point between the natural systems and 
the agricultural systems. As a methodology it is an instrument to 
evaluate and plan sustainable farming systems in natural landscapes. 

While evolving, agricultural systems are assumed to take advantage of 
all their potential of intrinsic development and of interactions with 
natural communities to increase total flow of energy in the system. The 
systems in agroclimax state try to maximize production as well as bio-
capital generation such as biodiversity, biomass, fertility, by taking care 
to preserve future productive capacity in the long term. 
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1.1. ECONOMIC, ECOLOGICAL AND SOCIAL PROBLEMS OF 

AGRICULTURAL DEVELOPMENT 

One of the critical questions that the developing countries face is whether 

agricultural production can be intensified without harming the environment. Are 

there conditions under which intensification could actually lead to improved 

environmental outcome or will countries always be faced with trade-offs between 

intensifying agriculture and achieving environmental goals? 

Present mankind endures presently great difficulties alleviating poverty and 

malnutrition prevailing in major parts of the world (FAO 2003). Moreover, a chain of 

environmental, economical and social problems are revolving in a vicious circle 

(Martine 1997, Marcoux 1996). Over the past decades, yield increases from the Green 

Revolution technologies have been decelerating, and in some cases even stagnating so 

that growing negative environmental impacts have been revealed (Pingali et al. 1995). 

The actual dominant agricultural systems world wide are a risk because of a 

combination of several interrelated factors, including lack of fresh water, lack of 

drainage, and salinization of soil and groundwater resources (Schoups et al. 2005). 

(Schoups et al. 2005). Water depletion and soil erosion have already emerged as 

serious problems for the agriculture. Up to 50 % of the world’s arable land is 

substantially impacted by soil loss which directly affects rural livelihoods and 

indirectly aquatic resources, lake and river sediment dynamics (Pimentel 2003, 

Ochumba1990, Kelley 2000). This type of agriculture contributes to the global carbon 

cycling, whereby high Green House Gas is emitted, specially methane (IPCC 2004) so 

that global climate change could be accelerated (Duxbury 1995, Lal 2003), and that 

aquatic and terrestrial biodiversity as well as ecosystem  services are severely 

impeded (Harvey 1996, Alin et al. 2002, Tinke 1997, Pimentel 1998). The FAO (1996) 

estimates a 75% loss of the genetic diversity of cultivated plants since the beginning 

of our century. By the middle of the next century, there will be about one-third less 

arable land available per capita and at least an equivalent reduction in the availability 

of water for agricultural purposes (CIIFAT 1999). 

The world has been making progress in improving food security, as measured 

by the per person availability of food for direct human consumption. However, 

progress has been very uneven, and many developing countries have failed to 

participate in such progress (Alexandratos 1988). A doubling of global food 

production (FAO 1997) would have major impacts on the ability of non agricultural 

ecosystems to provide services (Daily 1997). 

After the Convention of Rio de Janeiro in 1992 there was an increasing concern 

and interest for internalizing environmental costs (Kumar 2004, Mota 2000). The 

intrinsic value of natural resources like soil as a contribution to national, regional and 

local economic productivity is not adequately recorded in financial planning and 
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decision making. as well as the service of the natural systems (TMGs 2005). As a 

consequence, long-term sustainability is challenged by degrading natural resources 

(Cohen 2006), and by improper functionality of ecosystems. There is also a need to 

develop quantitative tools that can be used to support policy makers (Bouman 1999), 

to understand the functions of natural systems and to identify equilibrium stages 

within agricultural systems.  

1.2. TRADE-OFFS AND SYNERGIES BETWEEN AGRICULTU-

RAL AND NATURAL SYSTEMS  

“The protection of the environment and the development of food production 

are closely linked. Not only are they compatible, but we cannot have one 

without the other. If we do not protect the environment, we cannot continue 

to produce food. If we do not develop sustainable food production systems we 

cannot protect the environment”. (Mba 1989, p7) 

The debate about the trade-off between economic development and 

environmental quality has started in the 1960s (Lee 2001). In 1972, the low-income 

nations emphasized at the UN conference on the Human Environment, that 

environmental protection was a luxury they could not afford (Sandbrook 1992). Later 

on in the 70s, efforts were made to identify “win-win” scenarios. In the 80s and 90s 

conservationists published many documents to show synergies between 

environmental protection and economic development (WCED 1987, World Bank 

1992).  

Developing countries must produce more food in the future. According to 

projections of IFPRI (Leisinger 2002), the demand of cereals, roots and tubers will 

increase by more than 50% at the horizon 2020 (Rosegrant 2001), implying an 

enormous threat to the conservation of natural resources and to their service 

function (Höynk et al. 2003). 

Trade-offs and synergy analyses help finding an equilibrium point, as a multi-

disciplinary organizing principle and conceptual model for the design and 

organization of research and development projects in order to quantify and assess 

the sustainability of agricultural production systems (Crissman 1998).  

Sustainable agriculture meets human needs for food, enhances quality of life of 

people, protects the integrity of natural systems, and last but not least, is 

economically profitable. Making a transition to agricultural sustainability involves 

difficult choices and an understanding of the complex trade-offs and synergies 

associated with different agricultural pathways.  

In fact, this equilibrium stage is the central point of this thesis. We hope to 

unwrap these queries from different points of view, (i) analyzing biodiversity and its 

uses in different agricultural systems, (ii) quantifying energy and its efficiency, (iii) 
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explaining energy transformations within living systems, (iv) partitioning 

aboveground biomass, (v) evaluating the capacity of sequestrating carbon, (vi) 

estimating inputs coming from natural systems and economic systems, (vii) 

calculating the load capacity of agricultural and natural systems, and finally, (viii) 

proposing the first simple method to measure the resilience of  agricultural and 

natural systems to be developed in future studies. 

1.3. OBJECTIVES 

 

General: To balance both natural and agricultural systems, and to analyze their trade-

offs and synergies in the Atlantic rainforest of Brazil. 

Specifics: 

i. To evaluate genetic resources of plants in a dynamic, ecological and 
economic complex, and to assess agro-biodiversity in seven farming 
systems that occur within agro-ecosystems and natural systems.  

ii. To evaluate the environmental impact, the load capacity and the use of 
natural and economic resources using a common unit. 

iii. To balance biomass of natural and agricultural systems, to calculate energy 
ratio, energy production, consumption, accumulation, as well as, the 
carbon sequestration capacity. 

iv.  To determine the land use types and their distribution in the water-basin 
of Côrrego Sujo in Teresópolis district. 

v. To test the eco-volume concept and the resilience index for the measure of 
ecological quality and functionality of agricultural and natural systems. 

 

1.4. HYPOTHESIS 

 

Hypothesis 1. Contribution of the agricultural systems (AS) to the biodiversity 

conservation 

Agricultural systems can reduce the pressure on the fragments and deforested 

areas,  improve the cycle of water, influence the dispersion of fauna and flora, 

offer better resources and habitat for the survival of plants and animals, and 

also play an important role as bio-corridor and buffering reserves. 

This hypothesis refers to the capacity of the different AS, the use, management 

and conservation of biodiversity, within the systems and also as part of the landscape 
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in general. Starting from the degraded situation of the natural systems, it is assumed 

that certain AS could be quite favorable for biodiversity conservation. The social and 

economic context in the region is also assumed as important because these have 

influence on the management and conservation of the natural resources. 

Hypothesis 2. The agricultural and natural mosaic in the landscape  

Economic, geographical and environmental positive conditions for agriculture 

make that crop monoculture systems increase and dominate the landscape. In 

these landscapes that are mosaics of agricultural systems and natural 

vegetation, the ecological function of the natural systems, in casu fragments 

are affected by the surrounding agricultural systems.  

In highly modified landscapes with a mosaic of land use systems, the natural 

systems are affected both directly and indirectly, not only by AS but also by tourism 

and other economic activities. As a consequence,  goods and services offered by the 

natural systems decrease. It is also admitted that the advance of the agricultural 

frontier is largely influenced by the physical-natural conditions and market demand. 

It is also assumed that agricultural systems may have intrinsic negative effects. 

Hypothesis 3. Agriculture as consumer and producer of energy 

The primary agricultural production can be directly a substantial energy and 

carbon producer through conversion of natural energy sources like sun and 

rain into biomass and indirectly, it can save great quantities of energy 

through its efficient use. 

This hypothesis refers to the different capacities that AS have to produce and 

consume energy. Some of these systems could end up being magnificent producers of 

energy, others, on the contrary, are characterized by high energy consumption and 

low conversion efficiency. Also, AS use different inputs, which in turn use different 

types of energy for manufacturing. For this reason they could be more dependent of 

non-renewable natural resources. Some AS may have the capacity to produce more 

biomass and to accumulate it in the system as a part of the intern capital, which 

eventually may be used as renewable energy. 

Hypothesis 4. Environmental impacts, quality of inputs, and sustainability 

By quantifying inputs of agricultural systems on a common basis using 

“emergy” analysis, comparisons across agricultural systems and their 

environmental impacts are made possible. Moreover, appropriate scenarios 

to achieve greater sustainability can be identified. 

With this hypothesis it is assumed that AS can be compared not only with each 

other but also with the surrounding natural systems, using the same units. This 

comparison is possible through the emergy theory that is a powerful method to 

measure the environmental and economic impacts caused by AS. This hypothesis also 
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refers to the loss of natural capital of a region, and to the quality of the inputs.  It 

allows identifying different scenarios, within which it is possible to replace less 

efficient systems through others with the objective to increase sustainability and to 

balance natural and AS. 

Hypothesis 5. Eco-volume (Veco) as parameter to measure ecological functions 

Eco-volume is an effective and important parameter to measure the ecological 

function and the quality of natural systems, and their interactions with 

agricultural systems. 

Eco-volume would be a concept that integrates the relationship among species, 

as well as the vertical and horizontal structures of the ecosystems. In this sense it 

would be an important method to measure the quality and the ecological functions of 

a system as a whole. Some systems would have the capacity to increase their eco-

volume and impact on the ecosystem functionality either directly or indirectly. Also it 

is assumed that plants compete more for limited resources like space and light, rather 

than for dry matter. 

Hypothesis 6. The measurement of resilience in natural and agricultural systems 

Eco-volume makes possible the measure of the resilience of agricultural and 

natural systems, whereby comparisons between both systems are made 

possible and the evolution in time can be monitored. 

Assuming that hypothesis 5 holds true, then, it is further assumed in 

hypothesis 6 that by comparing the present state of an ecosystem with its possible 

climax, it is eventually possible to measure its resilience. The resilience of the systems 

could have high correlations with biodiversity and with other parameters like energy 

flows and biomass production. 
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CHAPTER II 

 

 

2. GENERAL FRAMEWORK OF AGRICULTURAL AND 

NATURAL SYSTEMS ANALYSIS 

 

In this chapter we want to draw a general framework encompassing (i) the 

general problems of agriculture; (ii) its implications with biodiversity, the economic 

importance of crop genetic resources, the potential and constraints of biodiversity 

conservation in agricultural landscapes; (iii) the relationships of agriculture with 

thermodynamics, focusing on agriculture as a consumer and producer of energy, 

whereby the applications of thermodynamics laws in the evaluation and planning of 

systems; (iv) the importance and capacity of natural and agricultural systems in the 

emission and sequestration of carbon; (v) the evaluation of resilience of agricultural 

and natural systems (eco-volume, eco-climax, agriculture-climax, ecosystems 

functionality), and finally (vi) the current and future tendencies of agriculture. 

From its onset the concept of sustainable development has endured 

continuous discussion and numerous variations. Actually, many investigators avoid to 

using the term and prefer inventing countless new ones, all describing one and the 

same concept. To better frame discussions in this thesis we make a small revision of 

this concept in §2.1. 

2.1. SUSTAINABLE DEVELOPMENT 

 

The concept of sustainable development is difficult to define and quantify, to a 

large extent because it is a multifaceted concept. Many authors distinguish a growth 

component, a distribution component and a environmental component (Veeman 

1991, Munasinghe 1990). The definition of sustainable development from the 

economic point of view has criticized by a large number of movements present widely 

disparate reform agendas (Ruttan 1992, Goodland 1991). Perrings et al. (1994) 

focuses the concept towards a more ecological point of view by highlighting resilience 

and stability of biological and physical systems. Barbier (1991) and Pearce (1990), 

claim that a necessary condition for sustainable development is the constancy of the 

natural capital stock. For Solow (1993) it is a sustained growth or the maximum flow 
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of income whilst maintaining the capital stock. Norgaard (1991) and Pearce et al. 

(1990) say that allocation mechanisms can ensure its achievement and lead to a 

“socially optimal” intertemporal allocation of natural resources (Co-evolutionary 

approach). Stressing the unique environmental, economic and social features of 

sustainability is the first step towards an interpretation that is sufficiently rigorous to 

provide the useful tools needed for practical analysis and policy making. 

The World Commission of Environment and Development (WCDE 1987) gives 

the widely accepted definition of sustainable development as “Satisfying the needs of 

the present generation without compromising the satisfaction of the needs of future 

generations”.  

Common sustainability criteria that sustainable agriculture has to meet are 

efficiency to maintain and increase productivity. Resilience and biodiversity are key 

aspects to support ecosystems and maintenance of the basic life support functions of 

the environment. The use of renewable resources should be used at rates less or equal 

to the natural rate of generation, and the assimilation of waste and pollutants should 

be at rates less than or equal to the assimilative capacity of the environment. The 

cultural diversity needs to be respected and finally,  basic needs satisfied, and poverty  

alleviated.  

2.2. AGRICULTURE AND BIODIVERSITY 

 

There is a need to suitably express the enormous importance of agrobiodiversity for the 

food security of future generations, for the sustainability and stability of the agricultural 

ecosystems of the world, and as a source of original material for breeding and 

innovations. Its conservation and sustainable utilization must be formulated as a 

political priority in all important areas of politics (Hammer 2003).  

 

The focus on the Biodiversity Convention at the United Nations Conference on 

Environment a Development (UNCED) may be taken as a reflection of this new 

awareness. Although research on biodiversity has been high on the scientific agenda 

for the past decade, the link between biodiversity and sustainability assessment is 

still weak. Biodiversity has an ambiguous role in sustainability assessment. On the 

one hand, it is in the focus on what needs to be sustained. On the other hand, 

biodiversity is proposed as a means to assess the sustainability of complex systems 

(Becker 1998).  The International Convention on biological Diversity, agreed in 1992, 

aims at conserving biodiversity, including genetic resources, wild species and habitats. 

Part of this task is to quantify the linkages between human activities and biodiversity, 

including agriculture. This is not an easy task, and few countries have systematic 

difficulties in linking changes in biodiversity associated with agriculture to specific 

policy measures (OECD 2003).  
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Biological diversity (biodiversity) has no single standard definition. One 

definition holds that biological diversity is a measure of the relative diversity among 

organisms present in different ecosystems. Diversity in this definition includes 

diversity within species and among species, and comparative diversity among 

ecosystems. The relationship between biodiversity and ecosystem functioning has 

emerged as a central issue in ecology as human activities are precipitating species 

extinctions (Loreau et al. 2001, Sala 2000 both cited by Thebault, 2003). Biodiversity 

refers to all living things and to the interactions between them: a vast array of 

organisms with an almost infinite complexity of relationships. (Wilson 1985, Wood 

1999). Agrodiversity is a term of the 1990s, referring to interactions between 

agricultural management practices, farmers’ resource endowments, bio-physical 

resources, and species. If it is to have practical use, it must be codified as a basis for 

analysis. (Brookfield 1999) 

Estimations of the total number of species on earth range from 5 to 300 million, 

of which about 1.5 million have been described, and less than 0.5 have been analyzed 

for potential economic benefit properties (Miller et al. 1985, CBD 2001), and about 

75000 species of plants are suitable for human consumption. Of these, only twenty 

are used as food, and four of them have to bear most of the “load” i.e. wheat, rice, 

soybeans and maize (Kern 1998).  

Until recently, agricultural land was not regarded as important for biodiversity. 

Conservation activities had focussed almost entirely on protected sites. However, the 

importance of farming activities to biodiversity is emerging (Feehan 2001). The 

diversity of cropping systems, crop species and farm management practices has 

received increasing attention in recent years as a way of spreading risk and 

supporting food security in resource-poor farming systems (Tengberg et al. 1998). 

On-farm conservation is a special form of in situ conservation based on the 

groundwork of traditional farming and gathering methods (Hammer 2004). 

Management practices that increase the spatial and temporal diversity within fields 

can enhance production and reduce the environmental impacts of crop production 

(George 1971, Kort 1988, Bezdicek 1989,  Olson 1995, Pohlan 2002) 

Agro-biodiversity can, (i) provide crop and livestock genetic resources, as the 

basis for food production, and the development of agricultural  raw materials, such as 

renewable energy through biomass (OECD 2003); (ii) enrich society through 

maintaining and enhancing the variety of wildlife habitats and wild species related to 

agriculture, of value for economic, scientific, recreational, aesthetic, intrinsic, 

landscape and other amenity purposes; (iii) facilitate the functioning of ecosystems, 

life-support systems, such as nutrient cycling, protection and enrichment of soils, 

pollination, regulation of temperature, local climates, and watershed filtration (Parris 

2001). (iv) provide the source of most of the world’s food products, their 

improvement, and the development of new resources (Smale 2002) 
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The effects of agriculture on biodiversity are of considerable importance 

because farming is the human activity occupying the largest share of the total land 

area (Gaese et al. 2005). Even for countries where the share of agriculture in the total 

land area is smaller, agriculture can help by increasing the diversity of habitat types. 

The expansion of agricultural production and intensive use of inputs over recent 

decades is considered a major contributor to the loss of biodiversity. At the same time 

certain agricultural ecosystems can serve to maintain biodiversity, which may create 

conditions to favour species-rich communities, but that might be endangered by 

following or changing to a different land use, such as forestry. Agricultural food and 

fibre production is also depend on many biological services. This can include, for 

example, the provision of genes for development of improved crop varieties and 

livestock breed, crop pollination and soil fertility provided by micro-organisms 

(Parris 2001). 

Obstacles for conservation 

The major reason for the unsustainable use of biodiversity is set by individuals 

exploiting biodiversity and watinng  to increase immediate economic benefits ll 

together. Any attempt to conserve biodiversity will be perceived as a cost by those 

involved in the exploitation, both in terms of forgone benefits and actual cost of 

conservation (Groombridge 1996). Other important obstacles are limited knowledge 

regarding important functions of the environment and insecurity and risk regarding 

current and future environmental impacts. It is also difficult to assess the indirect use 

values and non use values (Müller 1997). Low value is attributed to their biological 

resources, unsustainable exploitation of resources, and to the insufficient knowledge 

about ecosystems and species (Klink 1996). 

Economic importance of crop genetic resources 

The available assortment of crop varieties and the genes they carry determine annual 

yields and the crop’s vulnerability to disease and abiotic stress. Yield growth and 

yield instability have economic value, while maintaining diversity on farms may entail 

efficiency trade-offs in the short term (Smale 2002). Many farmers in the developing 

world depend on the diversity of the varieties and crops they grow for their own 

consumption and wellbeing. By contrast, in some advanced economies, there are 

niche markets for scarce traditional varieties and consumers may be willing to pay to 

conserve certain attributes of agriculture, such as its biodiversity (Smale 2002).  

Potential of biodiversity conservation in agricultural landscapes 

In mosaic landscapes where agricultural systems are prevailing it  is difficult to 

conserve  biodiversity. Some agricultural systems contribute extremely to the 

degeneration of natural ecosystems, but other might even contribute positively in the 

recuperation of degraded ecosystems, such as is often the case with agroforestry 

systems, sylvopastoral systems, ecological systems, etc. (Schroth et al. 2004, Laurance 

2004). These systems could play a role in helping to maintain a higher level of 

biodiversity, both within and outside protected areas, when compared with the 
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severe negative effects resulting from more drastic land transformations. Where 

landscapes have been denuded through inadequate land use or degraded agricultural 

areas have been abandoned, revegetation with agroforestry practices can promote 

biodiversity conservation (Schroth 2004). 

Agroforestry systems, sylvopastoral systems, ecological systems help reduce 

pressure of additional land deforestation for agricultural purposes. They can also 

provide habitat and resources for partially forest-dependent native plants and animal 

species (Laurence 2004). In tropical land use mosaics, ecological processes and 

characteristics such as microclimate, water and nutrient fluxes, pest and disease 

dynamics, and the presence and dispersal of fauna and flora may be significantly 

influenced by agroforestry elements (Thurston 1999, Torquebiau 1992, Schroth 

2004). The indirect value of agroforestry systems can also extend to other 

environmental benefits, such as carbon sequestration, watershed maintenance, and 

buffering against climate change induced biome shifts. Furthermore, nutrients cycling 

in natural forest systems is often highly conservative as nutrients are quickly and 

efficiently recycled within the system, whereas agricultural systems often exist at the 

other extreme with high nutrient losses (Gascon 2004). 

Some benefits from biocorridors are that they facilitate faunal movements and 

plant dispersal (Bennet 1990, Forman and Deblinger 2000), whilst providing habitat 

for resident species of plants and animals (Laurance and Laurance 1999), facilitating 

the spread of diseases, weeds, and undesirable species (Hess 1994), aiding to the 

ecosystems resilience process, and increasing the habitat quality (Henein and 

Merriam 1990). 

Opportunities for conserving agrobiodiversity in situ could offer solutions to 

these concerns within regions of marginal value for agricultural production (Bardsle 

2003, Smale 2002). 

2.3. AGRICULTURE AS A CONSUMER AND PRODUCER 

OF ENERGY 

 

“Everything is based on energy. Energy is the source and control of all things, all values, 

and all actions of human beings and nature” (Odum & Odum  1976, p.1) 

 

History need of energy for human existence is an age old story. Initially the fire 

was generated with stone to burn biomass which was essential to cook food and save 

men from cold. Later on, the iron age came in and coal became the major source of 

energy. After invention of IC engines and automobiles, petroleum became the major 

energy source. As the conventional energy sources started depleting, the search for 

non-conventional energy sources started (Tomar 1995). 
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In the period 1860 to 1914 other energy sources were found and made 

available besides coal and vapour. During this change natural resources begin to 

experiment deteriorations and pressure. From the vision of traditional economy, the 

environment was seen as raw material source and receiver of waste coming from 

production processes and consumption (Mota 2004).  

Energy availability and use is a critical factor influencing the organization of 

modern societies and their systems of agriculture. For millennia, the agricultural 

systems of the world were run on locally available, contemporary energy sources and 

materials, and fostered the growth of complex, locally-adapted economic, cultural and 

knowledge systems - albeit in a world with far fewer people than today (Pimentel & 

Pimentel 1979, Pimentel 1989) 

Agriculture plays a key role in the process of transition toward more 

sustainable energy use patterns. First, the agricultural sector is itself a user of energy, 

not only in primary production of commodities, but also in food processing and 

distribution of agricultural products. Secondly, the agricultural sector substantially 

contributes to energy supply, in particular through the production of biomass, 

including fire wood, agricultural by-products, animal waste, charcoal, other derived 

fuels and increasingly through production of energy crops (Lansink et al. 2002).  

Agriculture is essentially an energy conversion process, transforming of solar 

energy, fossil fuel products and electricity into food and fiber for human beings. 

Primitive agriculture involved little more than scattering seeds on the land and 

accepting meagre yields. Modern agriculture, however, combines petroleum-based 

fuels to power tractors and self-propelled machines with energy-intensive fertilizers 

and pesticides, resulting in greatly increased yields. Various parts of the world are at 

different stages of agricultural development; therefore, energy-use practices vary 

widely (Peart 1992). 

Without adequate attention to the critical importance of energy to all of these 

aspects, the global social economical and environmental goals of sustainability cannot 

be achieved (El Bassam 1998). The importance of energy in agricultural productions, 

food preparation and consumption is evident and essential (UNDP 1997). The second 

reason that energy is acquiring special importance is that agriculture once again may 

called upon to be a supplier of energy, rather than only a consumer (Lockeretz 1982). 

At present, the world’s  conventional oil reserves are estimated to be 1 trillion barrels 

and at current rates of consumption it is estimated that these reserves will not be 

sufficient to meet the increasing demand by the year 2020 (UNDP 2000, Lansink et al. 

2002). 

Considering the limited resources of the small farmers for the energy 

production and the important function of an opportune arrangement of the resources 

to increase the yield, the “Grupo Consultivo de Investigación Agrícola Internacional” 

(GCIAI) indicated the necessity to make investigations on the energy subject on the 

agricultural production systems (FAO 2005). 
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2.4. THE THERMODYNAMIC AND EMERGY ANALYSIS 

 

Thermodynamics is the branch of science that studies energy and its 

transformations. Usually, thermodynamics is associated with heat, but the subject deals not 

only with heat but also with all forms of energy. The principles of thermodynamics are 

well established and provide a foundation for the understanding of physical, chemical and 

biological systems. 

Definitions 

Work may be defined as organized motion and is measured in Joules (J). Work can 

be mechanical, electrical, magnetic or of other origin. 

Energy is the same as motion or ability to move. There are different forms of 

energy, e.g. potential energy, kinetic energy, pressure energy, etc. and they are all 

measured in Joule (J). 

Enthalpy is the amount of energy a system releases if the system’s temperature 

drops (assuming the pressure is constant) to 0 K. Heat contents is, therefore, another word 

for enthalpy. 

Entropy is a measurement of the disorder in the motion, and it is measured in Joules 

per Kelvin (J/K). 

Exergy is measured in the same unit as energy and its definition is work (organized 

motion) or ability to perform work for a system in a specified area. Exergy is the part of 

the energy that can be used as an energy source. Thus each process implies that exergy is 

consumed and it is therefore always related to the surrounding. 

Emergy, spelled with an "m", is a universal measure of real wealth of the work of 

nature and society made on a common basis” (Odum 2000). Emergy can be defined as the 

total solar equivalent available energy of one form that was used up directly and indirectly 

in the work of making a product or service (Odum 1996, 2000). Emergy analysis considers 

all systems to be networks of energy flow and determines the emergy value of the streams 

and systems involved. (see 3.3.1 and more definitions are presented in annexe 2) 

Thermodynamic Laws 

The first law of thermodynamics: Energy can not be created or destroyed. However 

it can be converted in other kinds of energy. In other words, energy that flows into a 

system must be fully accounted for in other forms of energy. This is, total energy in a 

closed system remins constant, which is why an energy balance (where the total input is 

equal to the total output) can be stated for each process.  

The first law of thermodynamics: Heat cannot spontaneously go from a lower to a 

higher temperature. Or:  Heat cannot be converted into only work.  This law places limits 

on how energy may be converted, because there are always losses in the transformations 

(Hovelius 1997) 

Energy is a relevant parameter to study the sustainability of systems. It is also, 

essential to most human activities, including agriculture. Too much energy means 

wastage, global warming and other environmental pressures (Simoes 2001). Energy 

might be more sensitive and a concrete indicator in guiding us for better resource 

allocation (Wilson 1974, Chou 1993). Resources of agricultural production can also 

be discussed in terms of land energy and labour (Doyle 1990). The increased 
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productivity by hectare leads to a decline of energy use efficiency.  Intensive 

production brought a high dependence on inputs from non-renewable resources. 

Systems analysis of agricultural production is the first step to study this situation (Hill 

1976). 

Emergy analysis (Odum 1986) is an evaluation method, which provides a 

general category i.e. emergy, for measurement of heterogeneous flows within the 

ecosystem, as well as an instrument to account for interactions between physical 

flows in nature and the economy and monetary flows within internal and external 

markets of natural resources and goods. Emergy analysis is a promising tool to 

evaluate resource use and production of agricultural methods. Emergy analysis is a 

form of energy analysis that quantifies values of natural and economic resources to 

quantify the value of large-scale environmental support to the human economy 

(Odum 1998). It is viewed as a “donor-side” evaluation approach because it values 

items based on energetic inputs as opposed to consumer preferences. Solar emergy is 

used to determine the value of environmental and human work within a system on a 

common basis: the equivalent solar energy required to produce each service or 

product. The fundamental assumption of emergy analysis is that the contribution of a 

resource is proportional to the available energy of one kind required to produce the 

resource (Brown & Herendeen 1996)  

Agriculture operates at the interface between nature and the human economy 

and combines natural resources and economic inputs to produce food. Typically, high 

quality, non-renewable energies from the human economy are utilized to capture and 

concentrate lower quality, renewable energies. Intensive agricultural methods rely 

more on resources purchased from the economy, while less intensive and indigenous 

methods typically rely more on natural inputs. Because most types of agriculture 

depend on a combination of natural and economic inputs, it is necessary to account 

for both in equivalent terms when comparing the resource use of agricultural 

methods (Campbell 1998). 

Maximum Empower Principle. This optimizing principle is one of the most 

daring aspects of emergy analysis. Having its roots in work done by Lotka (1922), the 

Maximum Empower Principle claims that all self-organizing systems tend to maximize 

their rate of emergy use or empower (Odum, 1996, 1988). That is, “ecosystems, earth 

systems, astronomical systems, and possibly all systems are organized in hierarchies 

because this design maximizes useful energy processing.” Thus, this principle can 

determine which species or ecosystems or any system will survive. 

 



15 

 

 

Figure 2.4.1. Energy systems diagram depicting the energy development in human society 

through the successive stages of agrarian society, and urban society, running mainly on fossil 

fuels (Redrawn from Haden 2003. See appendix 2 for a description of the energy symbols). 

 

Graph 2.4.1 illustrates that the systems always allow the entrance of natural 

energy of the economy, industry, etc. The human and economic activities in a same 

way need to care for energy of the environment (Aroudo 2004). On the right side of 

the same graph, it can be observed that the latter system has no more interactions 

with the wild system on the left, and are hence, more dependent on fossil energy. 

Dalgaard (2002) shows three main reasons for  limiting the use of fossil energy. First, 

fossil energy is a limited resource which, as far as possible, should be conserved for 

the coming generation (Brown et al. 1998). Secondly, combustion of fossil energy 

leads to classical pollution via compounds of sulphur and nitrogen, which damage the 

environment via acidification, eutrophication etc. (Illerup et al. 1999). Finally, 

combustion results in emission of the greenhouse gas carbon dioxide (CO2). This gas 

is responsible for most of the anthropogenic changes in the earth-atmosphere energy 

balance, which may lead to global climate changes (IPCC 1997). 

 

 



16 

Clearly, the anthropocentric view is dominant today, but the emergy view can still 

provide invaluable information that can be used for sustainable development and 

eventually, economic evaluation will have to adopt a more ecocentric view if it intends to 

guide humanity to its survival  (Hau 2004).  

The emergy theory also has been criticized and observed by several authors 

like (Spreng 1988, Mansson 1993, Ayres 1998, Cleveland et al. 2000) the points are 

showing in Table 2.4.1, the same critics have been refuted by (Patten 1993, Odum 

1995a, 1995b), but finally some are without a definitive explanation or with 

persistent doubts 

 

Table 2.4.1. Positive and negative aspects of emergy methodology 

Positive Negative 

It provides a bridge that connects economic 

and ecological systems. The economic and 

ecological aspects can be compared on an 

objective basis that is independent of their 

monetary perception. 

Emergy analysis provides an ecocentric 

evaluation method. 

It is scientifically sound and shares the 

rigor of thermodynamic methods. 

Emergy analysis recognizes the different 

qualities of energy or abilities to do work 

Emergy analysis provides a more holistic 

alternative to many existing methods for 

environmentally conscious decision 

making. 

Emergy analysis can quantify the 

contribution of natural capital for 

sustaining economic activity 

The emergy theory of value ignores human 

preference and demand. 

Lack of adequate details about the 

underlying methodology. 

Discrepancies with the  Maximum 

Empower Principle 

There seems to be much confusion about 

the relationship between emergy and 

other thermodynamic properties. 

Is difficult, if not impossible to know the 

inputs and processes over a long period 

like from the prehistoric period onwards. 

Problems of quantifying transformities 

Tenuous physical and biological 

foundations to assign monetary values to 

ecological products and services 

 

2.5. CARBON IN TROPICAL SYSTEMS 

 

A significant part of greenhouse gas (GHG) emissions in tropical countries is 

associated with land conversion and high deforestations rates (Brown et al. 1996a). 

The tropical systems act as sinks for atmospheric CO2 in form of large volumes of 

biomass per hectare (Lugo & Brown 1992). Land clearing, which often causes the 

burning of the forest biomass, leads to net emissions of carbon dioxide and other 

GHGs (López 2005).  
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Carbon sequestration is now a recognized forest management strategy with 

enormous economic implications, due primarily to the advent of "carbon credits." 

Carbon credits are awarded to entities ranging from companies to countries, and 

allow C emissions above levels negotiated in international treaties in exchange for a 

proportional C sink established on the landscape (Silver 2000). 

The actual tropical land use have a significant impact on the global carbon 

cycle through increased rates of C emissions to the atmosphere and the loss of above- 

and belowground C accumulation and storage capacity. Current estimates suggest 

that approximately 1.6 (± 0.5) Pg (petagram = 1015 g) of C are lost annually from the 

conversion of tropical forests (Brown et al. 1996b). In their aboveground biomass, 

secondary forests accumulate approximately 94 Mg C ha-1 (30 years old and 20 m 

high) (Puig 2005). Tropical secondary forests have been reported to accumulate up to 

5 Mg C ha-1 yr-1 during the first 10 to 15 years of regrowth, its sequestration capacity 

2 to 3.5 Mg C ha-1 yr-1 (Brown & Lugo 1990). Rates of above-ground C accumulation in 

plantations range from 0.8 to 15 Mg C ha-1 yr-1, during the first 26 years following es-

tablishment (Lugo et al. 1988). 

Intensive pasture management in Brazil resulted in lower soil C pools, eight 

years following deforestation, than sites that were less intensively used (Buschbacher 

et al. 1988). The effects of climate on soil C accumulation with reforestation are not 

well known. In mature tropical forests, soil C pools tend to decrease exponentially as 

the ratio of temperature to precipitation increases, corresponding to a gradient from 

wet to dry forests (Brown & Lugo 1982). Tropical forests store approximately 206 Pg 

C in the soil (Eswaran et al. 1993). 

Carbon sequestration by forest systems is a finite process. Biomass may eventually 

reach a maximum sequestration potential and no longer reduce the amount of CO2 in 

the atmosphere. The time period required to reach such  stage is not well known, but 

it has been speculated that such a limit is reached in the first 50-100 years following 

forest establishment (Silver 2000). 

Agricultural land might need to be considered a candidate for carbon trading 

in the future (Puig 2005). Schimel (2001) considers in the same way that regrowth on 

abandoned agricultural land, fire prevention, longer growing seasons, and 

fertilization by increased concentrations of carbon dioxide and nitrogen have been 

proposed as possible mechanisms responsible for the uptake. Defries (2002) 

considers that carbon fluxes from tropical deforestation and regrowth are highly 

uncertain components of the contemporary carbon budget. 
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2.6. ECO-VOLUME, ECO-CLIMAX, AGRO-CLIMAX AND 

SYSTEMS FUNCTIONALITY 

 

Eco-volume is the aboveground quantifiable space or volume limited by a 

uniform vegetation stand and its height, within which coexist wide interactions 

among biotic and abiotic components. This concept emphasizes the interrelationships 

between species living within the boundaries of a volume, and encompasses a 

biocenosis adapted to specific conditions in a given place. 

Veco = land area x eco-height (Janssens 2004a) 

Eco-height: renders a weighed average over time and across the different 

vegetation community fractions. In this case, a vegetation reaches community status 

as from canopy closure onwards and its height will be given by the domineering 

(upper layer) plants. 

Ovadia (2002) indicates that there is no clear methodology to measure the 

ecological function and quality of natural systems, and their interactions with 

agricultural systems, determining the interactions between biotic and abiotic 

components in ecosystems, and include the vertical structure in vegetation 

communities. 

The eco-volume as unit contains many components that interact in large and 

complexes networks, higher trophic structure, nutrient fluxes, etc. A vertical structure 

can also be distinguished like the strata in forest. The eco-volume can suffer periodic 

or abrupt changes based on natural phenomena or man-made alterations. Eco-

volume has additionally effect on precipitations (eco-precipitations1), as well as on 

regulation of other ecological functions like microclimate and water cycles. Eco-

volume leads directly into such areas as water cycling, Gross Primary Productivity 

(GPP), Net Primary Productivity (NPP), and energy flow.  

Agroclimax 

 Janssens et al.  (2004a, 2005), defines agroclimax like the relative stabile 

biomass production from an orchard or farming system and determines the 

allometric relation to estimate the gross photosynthesis. He contends that 

aboveground gross photosynthesis is close to four-fold the litter fall.  

Bf ≈ 4 * Lf 

Where: Bf = Gross photosynthesis; Lf = Litter fall 

                                                        
1 Eco-precipitations are complementary rains generated by ecological sound management of a watershed 

basin. 
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 Janssens et al. (2005) compares the biomass production of orchards with 

natural systems in climax state. And propose the notion agro-climax as an alternative 

to that of eco-climax. Each agro-climax is characterised by a certain level of agro-

diversity, contributing in its manmade way to biodiversity (Fig. 2.6.1). 

Eco-climax and Eco-volume potential 

Eco-climax is defined by Odum (1969) as the culmination state after a 

succession in a stabilized ecosystem in which maximum biomass (or high information 

content) and symbiotic function between organisms is maintained per unit of 

available energy flow. This Eco-climax state will be considered as the stage at which 

eco-volume potential is highest. This state will be described here under.  

  When the system approaches its climax, the increase in net productivity rate 

of the plants is consumed by its own heterotrophs. The system comes into 

equilibrium and reaches peak efficiency at channelling the energy of the sun into the 

food web of the community Whittaker (1970) (Fig. 2.6.2) 

Odum (1969) describes the basic conflict between the strategies of man and 

the organisation of nature. The goal of agriculture as now generally practiced is to 

achieve high rates of production (P) of readily harvestable products with little 

standing crop (B) left to accumulate on the landscape, in other words, a high P/B 

efficiency. Nature's strategy/organisaton, on the other hand, as seen in the outcome 

of the successional process, is directed towards the reverse efficiency, a high B/P 

ratio. Economic activities want to obtain as much production from the landscape as 

possible, by developing and maintaining early successional types of ecosystems, 

usually monocultures (Figure 2.6.4).  

The maximal biomass phase reached during succession cannot be maintained 

in the long-term absence of major disturbance, whereas similar patterns of decline 

occur in forested ecosystems spanning the tropical, temperate, and boreal zones 

(Wardle et al. 2004). The general patterns of a 100-day autotrophic succession in a 

microcosm are very similar with a hypothetical model of 100-year forest succession2 

(Kira & Shi-dei 1967, Cooke 1967) (Fig. 2.6.3) 

A climax community is one that has reached the stable stage. Stability is 

attained through a process known as succession, whereby relatively simple 

communities are replaced by those more complex. Stable climax communities in most 

areas can coexist with human pressures on the ecosystem, such as deforestation, 

grazing, and urbanization. Polyclimax theories stress that plant development does not 

follow predictable outlines and that the evolution of ecosystems is subject to many 

variables (Odum 1969)  

                                                        
2 The gradual and orderly process of ecosystem or community development brought about by changes in 

species populations that culminate in the production of a climax characteristic of a particular geographic 

region (EPA 2005) 
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Ecosystems 

Ecosystems are very complex and composed of many individuals of multiple 

species of organisms which interact with each other and their abiotic environment to 

produce complex structures, dynamics and energy flows. Eco-volume has approached 

this problem by assuming that it is sufficient to abstract all this complex interactions, 

among individuals in populations, and characterize ecosystem function simply in 

terms of net changes in numbers or bio-volume3 of individuals at the level of whole 

populations. Abstracting such individual-scale detail is reasonable if the effects of 

individual-level interactions attenuate on the time scale of changes in population 

density (Agrawal 2001). Understanding the functioning of ecosystems still remains  a 

challenge up tp  now Paine (1966) & Daily (1993) conclude that the functionality  

depends on the identities of the species the ecosystems contain and hypothesized that 

number of species plays a major role. 

Ecological succession defined by Odum (1963) cited by Odum E. (1969), follows 

three steps: (i) It is an orderly process of community development that is reasonably 

directional. (ii) It results from modification of the physical environment by the community; 

that is, succession is community controlled even though the physical environment 

determines the pattern, the rate of change, and often sets limits as to how far development 

can go. (iii) It culminates in a stabilized ecosystem in which maximum biomass (or high 

information content) and symbiotic function between organisms are maintained per unit of 

available energy flow (Fig. 2.6.3).  

 

 

 

 

Fig. 2.6.1. 

Fig. 2.6.1. Eco-climax and agro-climax 
equilibria. Janssens et al.  (2005) 
Each agro-climax is characterized by 
a certain level of agro-diversity, 
contributing in its manmade way to 
biodiversity. The apparent global 
photosynthe-sis can be approximated 
through the measurement of litter 
fall. 

 

                                                        
3 Bio-volume is the volume of stem, branches, roots, rootlets, twigs and leaves 
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Fig. 2.6.2. The graph (from Whittaker 
1970) shows the changes in number 
of species, bio-mass, and net 
productivity during secondary 
succession in a temperate deciduous 
forest over a pe-riod of 160 years. 

Fig. 2.6.3. Comparison of the 
energetic of succession in a forest and 
a laboratory microcosm. PG. Gross 
production; PN. Net pro-duction; R. 
total community respiration; B. total 
biomass (Odum 1969). The general 
pa-tterns of a 100-day autotrophic 
succession in a microcosm based on 
data of Cooke (1967) is compared 
with a hypothetical model of 100-
year forest succession as presented 
by Kira and Shi-dei (1967). 

Fig. 2.6.4. The graph shows the 
changes of d diversity (blue), b 
biomass (green), pg gross pro-
duction (orange), db net produc-tion 
(pink) over the period of succession 
until climax. The growth of biomass 
depends on renewable outside 
energy sources, but also on the 
diversity. As the quantity of biomass 
increases, it provides niches for 
seeding from outside to increase the 
diversity. The greater the diversity 
the more productivity. 

 

 

Fig. 2.6.3. 
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Fig. 2.6.4. 

2.7. DEVELOPMENT PERSPECTIVES OF AGRICULTURE 

 

Everyone in the world depends on nature and ecosystem services to provide the 

conditions for a decent, healthy, and secure life. The pressures on ecosystems will 

increase globally in coming decades unless human attitudes and actions change. Human 

activities have taken the planet to the edge, further threatening our own well-being. 

(MEA 2005) 

The World Commission on Forests and Sustainable Development (WCFSD 

1999) has called attention to a global need to restore the functional integrity of nature. 

Sustainability Impact Assessment of economic, environmental, and social effects 
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triggered by governmental policies has become a central requirement for policy 

design. The three dimensions of this assessment are inherently intertwined and 

subject to trade-offs. Quantification of trade-offs for policy decision support requires 

numerical models in order to assess systematically the interference of complex 

interacting forces that affect economic performance, environmental quality, and 

social conditions (Böhringer 2006) 

Agricultural systems are tremendously complex. None of their fundamental 

processes can be successfully addressed in isolation. Innovative and interdisciplinary 

research is needed for integrating, rechecking and transforming knowledge in diverse 

areas of science to assure that everyone has access to sufficient food to live a healthy 

and productive life. And that is what agricultural science is: the continuous 

rechecking and integration of knowledge about complex natural systems to balance 

food production with environmental constraints (Langensiepen 2004) 

The model of sustainable development, on which the international community 

agreed at the 1992 United Nations Conference on Environmental and development in 

Rio de Janeiro, is to reconcile the improvement of the economics and social living 

conditions with the long-term conservation of the natural resources of life. Only in 

this way can we succeed in also offering future generations suitable opportunities of 

development (Schulze-Weslarn 1997). The important topics are (i) Policy and 

management; political discussion including economical, cultural and social issues, 

including population control policy. (ii) Energy and inputs: energy resources, 

fertilizers, plant protection, ecological farming, science, research and technology. (iii) 

Genetic resources: identification, evaluation, and utilization of plant genetic resources. 

(iv) Climate: constraints and impacts. (v) Soil and water: resource and requirements 

(El Bassam 1998). 

The «one problem, one solution approach» is no longer adequate and must be 

replaced by some form of system analysis that considers man as a part of, not apart 

from, the environment. Before the long-term economic performance and ecological 

sustainability of a given agricultural system can be ascertained, the origin and quality 

of the energy and material inputs used to increase crop yields and economic and 

labour efficiencies must be carefully considered. New accounting procedures are 

needed that consider production efficiency inclusive of its economic, ecological and 

social context, because these contexts are not generally accounted for economic 

analyses of agricultural systems.  

Agriculture becomes a potential major Carbon sink (Lal 1997), agriculture can 

potentially provide carbon sequestration services by altering their management 

practices to increase the carbon in their soil (Antle 2003). Alternative agricultural 

tillage, crop rotations, livestock waste disposal, and other practices influence the  

level  of  carbon  in  farm  soils (Tweeten 1998).  

The links between the agricultural sector and the Millennium Development 

Goals at household level are the next, (i) goal, ensure environmental sustainability. 
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(ii) Direct link, agriculture practices can be both direct causes of and important 

immediate solutions to environmental degradation, and (iii) indirect, more 

productive agricultural technologies, withdrawal of agriculture from marginal, 

sensitive environments, more profitable agricultural sector, reduced migration to 

urban slums. (iv) Relation with nature, first, agricultural sector is as likely to have 

negative ramifications on the environment as positive. Unprofitable agricultural 

systems tend to unsustainably mine environmental resources. The second, declining 

environmental resource base is an erosion of the foundation for the agricultural 

economy. Finally, (v) the complementary requirements are the minimization of 

negative environmental externalities 4  of agricultural investments, participatory 

planning processes required. Relatively equitable distribution of agricultural assets 

across the population, and environmental costs of agricultural production 

incorporated into economic assessments of production systems (MDGs 2006). 

The importance of accounting for nature’s services is gaining wide acceptance 

(Holliday et al. 2002, Daily 1997). It becomes valuable to have another methodology 

to evaluate and to design the agricultural production systems, because the 

neoclassical economy does not have the capacity to overcome its deficiencies in the 

measurement of sustainability (Ulguiati 1998), the loss of biodiversity and the 

energetic emergent crisis are threatening global society. The methodology that we 

present in this work combines methodologies of energy and emergy evaluation, 

systems analysis, agrobiodiversity, and socio-economic analysis. Agroclimax helps to 

identify trade-offs, synergies from the agricultural systems on farm, local or regional 

level. Identification of these allows decision makers to formulate policies that would 

lead to achieving the goals of sustainable agriculture. 

                                                        
4  Meade (1973) defines externalities as consequences that arise from situations where actions of one 

system affect the production or well being of others, especially the welfare of systems who are ex-ternal to 

that decision. 
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CHAPTER III 

 

 

3. METHODOLOGY  

Agro-climax analysis is proposed as an environmental assessment tool grounded in a 

multi-disciplinary approach including system analysis, thermodynamics, agro-

biodiversity concepts like diversity and eco-volume, offering a biophysical alternative 

to conventional economic analysis. Agro-climax analyses consider resource use 

efficiency and yield, conservation and use of agro-biodiversity, importance of eco-

volume and its environmental impact, the crucial issue of dependency on external 

resources and finally, the overall load placed on the environment by an economy or 

production process, as decisive factors determining sustainability.  

The methodology allows also multiple dimensions of resource use to be 

considered on a common basis, which in turn generates understanding regarding the 

environmental trade-offs that must be made to increase economic efficiency. Having 

evolved from ecological and energetic considerations, agro-climax analysis can 

identify which forms of agriculture are more efficient at capturing and utilizing 

resources. 

Agro-climax can be defined as: 

"the state of agricultural systems in which sustainability components  

reach a balance, in function of a production system combining 

environmental and socio-economic factors within a  region" 

It is considered that agricultural systems can evolve to take advantage of 

all their potential for inherent specific (singular) development as well as 

for   interacting with natural communities to increase total flow of 

energy in the system. The systems in agro-climax state try to maximize 

production and long term capital generation (as e.g. biodiversity, 

biomass, fertility), taking care to not threaten future productive 

capacity. 

 

To corroborate this concept Lorenz (2003) and Dewar (2003)  say that some 

systems tend to maximize power like self-organized systems. Odum (1996, 1998) 

proposes the Maximum Empower Principle contending that all self-organizing 

systems tend to maximize their rate of emergy use. 
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3.1. STUDY AREA 

 

The application of the agro-climax methodology is applicable to all eco-regions 

and agro-ecosystems. The present study was developed mainly in a basin in the 

Atlantic Rain Forest of Brazil, and some of the data that support this evaluation of the 

methodology were also taken in Benin, Cameroon, and Mexico. 

The mountainous region of the Atlantic Forest that formerly was one of the 

most diverse regions on earth  is at present time covered with less than 8% of the 

original native forest. The existing ecological and economic resources of this region 

are of great importance for Brazil and even for the rest of the world (SOSMA 2006). 

Fragmentation of the landscape, high biodiversity loss, high agricultural 

activity, be it intensive or extensive, and diversity of farming systems are important 

characteristics to evaluate the agro-climax methodology and its reach. 

The main area for the evaluation was developed in the districts 2 and 3 of the 

Municipality of Teresópolis - Rio de Janeiro (Map 1). The central point is located at 

the Latitude of -22°24´43.2 and a longitude of 42°67´, with an altitude of 871 meters 

above sea level, whereas the average altitude of the whole municipal territory lies at 

910 masl. The municipality has a total surface of 849.6 km², out of which 385 km² 

were taken as project area. The basin where most of the studies were concentrated 

was “ Côrrego Sujo”, having  9 micro-basins and convering an area of 53 km2 (Map 1 

and 4). 

3.2. PHYSIC-NATURAL AND CLIMATIC DESCRIPTION  

 

The climate of Teresópolis is typical of the Brazilian mountainous region, with 

oscillations of temperature and precipitation because of the difference of altitudes 

(from 300 to 1500 masl). The analysis of the climate was based on data from the 

meteorological station of Teresópolis located at 874 masl, latitude 42°58´12´´, 

longitude 42°58´42´´.  

The historical data show two marked periods, the dry season with 5 months of 

water deficit and the humid season where 79% of the annual precipitation (1671mm) 

is concentrated (Fig. 3.1). The yearly average temperature is 17.7 °C. The total 

evaporation is 557.3 mm and the total annual radiation is 1931.3 hours.   

From June to August, it rains between 10 and 20 days per month, whereas on 

yearly average 7 rainy days per month are recorded. The maximum precipitation 

registered in 24 hours was on 27/02/66 with 134.1 mm. The relative moisture 

remains almost constant during the whole year, with an average of 83%. The 
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cloudiest month is December reaching a  value of 8 in a scale from 1 to 10, while the 

less cloudy month is July with 5.   

The wind blows with more frequency from SW direction, and the yearly 

average speed of the wind is 2.3 m sec-1. 

 

Figure 3.1. Climadiagram of Teresópolis - Rio de Janeiro, period 1943 - 2002. Modified from FAOCLIM 

2001; Climatic Station of Teresópolis. The figure shows two marked periods, the dry station with 5 

months of water deficit and the humid station where is concentrated 79% of the annual precipitation 

(1671mm). The yearly average temperature is 17.7 °C. 

The most important soils present in the basin are latosol, cambisol, gleisol, alluvial 

and litolitic soils and are described as follows: 

Red-yellow Latosol: Texture half to loamy, coloration net-yellow, thickness 

more than 2 m, low fertility and high aluminum concentration, pH from 3 to 5, 

average 4.3, CE 058 µv. In the Layer "A" it has bigger concentration of organic matter 

of natural and anthropic origin. The use that it is given in the region is mainly cattle 

grazing, horticulture and some permanent cultivations. They are mostly located on 

colluvial pediments.   

Cambisol: Texture half to loamy, reddish coloration, thickness up to 1.5 m, low 

fertility and high Al concentration, pH 3 to 5, average 4.8, CE 060 µv. In the layer "A" it 

has bigger concentration of organic matter of natural origin and anthropic. The 

common uses in the region are cattle raising, horticulture and some permanent 

cultivations.  

Gleysol: Naturally they present loamy texture, clear coloration, variable 

thickness, low fertility and aluminium excess. Current Measurements show pH. 4,2 to 

6, average 5,2, these soils are conditioned for the horticultural production with 

addition of fertilizers, pH correction, Al concentration, etc. Located in alluvial plains.   
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Alluvial: Loamy texture, clear coloration, variable thickness, natural low 

fertility, high aluminium concentrations, pH from 3,9 to 5.9, average 5,3. Soils are 

intensely corrected in the Layer "A" for the intensive production of vegetables. They 

are located in plains.   

Litolitic: Half texture, clear yellow colour, half thickness 0,30 to 0,70 m, very 

low fertility, high aluminium concentration, pH from 3 to 5, average 4,1. In few areas 

it is devoted to grass cultivation.   

The Municipality of Teresópolis corresponds mainly to the basin of the "Río 

Preto", of which its biggest tributaries are in order of importance: Rio Paquequer 

(270 km2 approx.), Bengala (136 km2 approx), Sebastiana (Frades, 189 km2), Corrego 

Sujo (53 km2 approx), Serra do Capim, Formiga. (Map 3)   

3.3. AGRO-CLIMAX EVALUATION  

 

For the evaluation and confirmation of the hypotheses agro-climax evaluation 

combined 4 methodologies: the thermodynamic approach, the agro-biodiversity 

appraisal, the socio-economic rating, and eco-volume indicator. The combination of 

these methodologies allows obtaining a holistic vision of the situation and function of 

agricultural and natural systems. Only in this way it is possible to plan sustainable 

development. 

3.3.1. EMERGY 
      

Emergy can be defined as the total solar equivalent available energy of 

one form that was used up directly and indirectly in the work of making 

a product or service. (Odum H.T. 1996, Odum E.C.2000). 

Emergy expresses the cost of a process or a product in solar energy 

equivalents. The basic idea is that solar energy is our ultimate energy 

source and by expressing the value of products in emergy units, it 

becomes possible to compare apples and pears.  (Jorgensen 2001, p. 61) 

The emergy methodology (Odum, 1996, 1988) is a quantitative evaluation 

method which valorizes the nature input to the economical systems. Emergy is a 

measure of direct and indirect supporting energy needed in different work processes 

supporting a product or a service (money, mass, energy, information), using a 

common unit. For this purpose, it makes use of systems theory, thermodynamics, 

biology and of open operation systems among which the universal hierarchy of 

energy, the auto-organization and establishment of largest possible flow of available 

energy in the system will be adopted. 
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Map 1. Rio de Janeiro state, Municipality of Teresópolis and Côrrego Sujo basin. 

Based on data from IBGE (2003) 

 

Source:  Source: BLUMEN (2006), Eds. Lange & Kretschmer 2006.  
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Map 2. Political division of the Teresópolis Municipality. Based on data from 

IBGE (2003) 

 

 

 

Source: BLUMEN (2006), Eds. Lange & Kretschmer 2006.  
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Map 3. Hydrology and elevation of the municipality of Teresópolis. Layers 

based on data from IBGE (1999 and 1983) 

 

 

 

Source: BLUMEN (2006), Eds. Meier et al. 2006.  
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Map 4. Basin of Côrrego Sujo divided in 9 micro-basins. Based on data from IBGE 

(2003). 

 

 

 

 

 

Source:  Source: BLUMEN (2006), Eds. Meier et al. 2006.  
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In this method all processes are nested as environmental processes outside the 

analytical window. Hence, all definitions are therefore related to the overriding 

energy systems networks. The basic unit of measurement used is solar joules. It refers 

to the accumulated amount of energy used up in the chain behind a good or service 

and denotes its emergy value also coined as Solar Emergy Jouls, abbreviated as sej.  

The transformities are the keys in the emergy analysis. They describe the 

amount of energy, expressed in (sej J-1) or (sej g-1), which has been used to create a 

flow or resource. A product’s emergy divided by its energy is a quotient defined as its 

transformity. Thus, the transformity is the same as the emergy of one type required to 

make a unit of energy of another type. 

What follows is a brief description of the methods used in performing the 

analyses specific to this thesis, Odum (1984, 1996), gives a detailed explanation of the 

application of emergy accounting procedures for a variety of systems. 

The procedure for the emergy evaluation is described and summarized by 

Haden (2003) in three steeps: the first one consists of drawing the energy system 

diagram, the second one elaborates the emergy evaluation table and the third one the 

calculation of the emergy indicators as well as the summary diagrams. 

An energy systems diagram is drawn using the symbols of the energy language 

of systems ecology (after Odum 1971) to graphically represent ecological energy 

components, economic sectors and resource users. The circulation of money through 

the system and the circuit language are described in Annex  2. 

The various components and subsystems are connected with arrows that indicate 

energy flow as well as causal interactions, material and information flows. The 

boundaries of the systems studied in this thesis are two: a farm system level and a 

basin level with all the natural and human components (Fig. 3.2) 

The second step corresponds to the emergy table and includes the emergy 

values of all components in the overview diagram, extracted from above-mentioned 

sources. Table 3.1. is a sample emergy evaluation table. Column 1 of the table gives 

the line number of each item and is a footnote reference for the emergy calculations 

that are available in Appendix 3a. Column 2 records the name of the item and the 

units of raw data for that item, usually Joules, grams or Reales (Brazilian currency). 

Column 3 gives the quantity of the component recorded in Joules, grams or Reales. 

The energy, material or currency flow for each item is then multiplied by its 

respective transformity, which is given in column 4. The product of the raw data and 

the transformity equals the total emergy contribution of that component to the 

system. The transformities used in this study were gathered from previously 

published analyses. Column 5 contains letters referring to the study from which each 

transformity was taken. The studies are listed by their corresponding letter in 
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Appendix 3a. The total emergy contribution of the component to the system is listed 

in column 6. 

The emergy flows have been calculated taking into account the amounts of 

natural resources, material inputs and services for each production system. Those 

tables contain data of inputs per hectare per production unit in a period of one year. 

 

Table 3.1. Sample emergy evaluation table. 

Note Item Data Solar transformity 

(Units yr-1) 
Source (sej/unit) 

1 Sun 1,296E+11 1 [6] [7] 1,30E+11 

2 Wind 3,06E+09 2,45E+03 [8]  7,49E+12 

3 Rain 1,08E+11 4,70E+04 [9] 10] 5,07E+15 

… … … … … … 

The Summary Diagrams shows all aggregated emergy inputs coming from the 

economy system as service or materials and from the natural system as renewable or 

not renewable resources.   

 

Figure 3.2. Aggregated emergy input and outputs coming from the economy system as service 

and materials and from the natural system as renewable and not renewable resources. 

 

In Fig. 3.2, R  is the sum of the renewable emergy flows supporting the economy (i.e. 

rain, waves, tide); N is the sum of non-renewable resources from within the system 

(national) boundary; M is the sum of all materials used or paid in the system; S is the 
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sum of all services used or paid in the system; Y is the total consumed emergy; Ep is 

the total energy produced from the system and C is the capital of the system (biomass, 

biodiversity, water, soil fertility, etc). 

After tabulating the material and energy flow data for the system in question 

and correcting for their emergy contributions using transformities, a number of 

emergy ratios and indices can be calculated. The used indices to determine the 

sustainability of the “Côrrego sujo” basin and different farming systems were the 

following: 

Emergy Yield Ratio (EYR):  it evaluates the efficiency of a production unit or 

process. If the relationship is smaller than 1 the system consumes more than what it 

produces. EYR = Y/F. 

Environmental Load Ratio (ELR), measures the environmental impact. When 

the relation has a high value it suggests that  the system uses high technological levels 

in terms of emergy. ELR = (N+F)/R.  

The Emergetic Investiment Ratio (EIR) measures the dependence of the system 

from  bought products, and indirectly measures the environmental loads. The value 

increases proportionally with the dependence. EIR = F/I. 

The Emergy Exchange Ratio (EER) measures the capital loss of the system. If 

the values are smaller than 1, it means that the system transfers positively to the 

economic urban system. 

EER = Y/income*3,18E12 

The Sustainability Index (SI) gives a general measure of ecological 

sustainability. The SI assumes that the objective goal of sustainability is to achieve the 

highest yield ratio attainable while placing the least load possible on the environment. 

High SI figures indicate that the emergy yielded by a production process or economy 

is to a high degree reliant on renewable emergy flows and therefore more compatible 

with the local environment. SI = EYR/ELR 

Transformity (Tr) is the amount of energy expressed in (sej J-1) or (sej g-1), 

which has been used to create a flow or resource. Tr = Y/Ep (Sej J-1) 

Renewability (%R) indicates the percentage of renewable emergy in relation to 

the total emergy used from the system. %R = R/Y*100 (%) 
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3.3.2. ECO-VOLUME 

 

Eco-volume is the aboveground quantifiable volume limited by the 

uniform vegetable composition and its height, in which coexist and wide 

interactions are developed among biotic and abiotic components. 

Eco-volume is the product of the area occupied by a uniformed type of 

vegetation and its eco-height.  

Eco-height renders a weighed average over time and across the 

different vegetation community fractions. In this case, a vegetation 

reaches community status as from canopy closure onwards and its 

height will be given by the domineering (upper layer) plants.  

The general hypothesis of the eco-volume is: if eco-volume increases, then the 

possibility to harbour more biomass and biodiversity grows, whereas energy flows 

and their positive effects on the microclimate will improve by the same token. The 

quality of Veco can be measured in the easiest way by the total exposed plant bio-

surface which it is composed of and by the production of annual litter fall, which in 

turn determines gross photosynthesis at equilibrium when multiplied by 4. Hence,  

Pb= 4 x Litter fall   (Janssens et al. 2004b) 

Eco Volume (V_eco). Surface of given phytocenose or agricultural system 

multiplied by the eco-height. Eco-Volume normally to be expressed on ha basis. It is 

expressed in m3ha-1. 

Eco-height (H_eco). It is the average height of a plant community, weighed over 

time and across community components. 

Bio-Volume (V_bio). Bio-volume, is the total volume of the plants (trees, bushes, 

herbaceous, etc) that occupy a certain space. The concept is based on the hypothesis 

that plants mainly compete for space. It is expressed in m3ha-1 . A very quick approach 

proposed by Janssens et al.  (2005) was assumed: that a plant is an assembly of tubes 

and that all parts could be squeeze within a cylinder formed by: Vbio = Basal area x 

Heco.  

Crowding intensity (Ci) measures the colonized volume by a crop, weeds, trees, 

etc. Ci= Vbio/Veco 

Wesenberg factor (Wf). Is the opposite to the Ci. Wf= V_eco/V_bio = 1/Ci 

Volume efficiency (Ve).  Relates the yield expressed in $US or energy with the 

lost Veco w.r.t. the maximal eco-volume at eco-climax in the same locality. It 

measures the efficiency in relation to the potential V_eco (V_pot). It is expressed in 

m3 MJ-1 or m3 $US-1. 

 Ve=(V_pot-V_eco)/Yield  (Fig. 3.3 a, b) 
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Fig. 3.3. a: Illustration the Potential Eco-volume and the lost of V_eco. b: illustration of 

different vegetation communities and its general relation of  V_eco, V_bio and V_loss. 

 

3.3.3. AGRO-BIODIVERSITY 

Before we explain the methodology it is very important to know what will be 

understood under agro-biodiversity. Several definitions are circulating and each 

author tends to define it accord to his research framework as illustrated here under.    

Agro-biodiversity is commonly used to mean the diversity of useful plants in 

managed ecosystems and many authors connect the term with direct use of biological 

species, including all crops, semi-domesticated and wild species. Since the 90’s it was 

to integrate that part of the whole agro-ecosystem that is actively managed by 

farmers, within which many components would not survive without the human 

interference, it means, the indigenous knowledge and culture are integral parts of 

agricultural biodiversity management. 

From that perspective many factors are important as diversity management, 

biophysical diversity, organizational diversity, short-term and longer-term change in 

cropping and management practices.  

Potential 

Ecovolume 

(Eco-climax) 

System loss: 

Energy, BioDiv. 

Ecological 

functions, etc 

Eco-Volume 

a 

b 
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Qualset et al. 1995 defines as agro-biodiversity “All crops and livestock and 

their wild relatives, and all interacting species of pollinators, symbiosis, pests, 

parasites, predators, and competitors”. Brookfield & Padoch 1994 defines it as “the 

many ways in which farmers use the natural diversity of the environment for 

production, including not only their choice of crops but also their management of land, 

water, and biota as a whole” 

We accept the suggestion from Brookfield (2001) with only two observations: 

the first one is that the agro-ecosystems are connected to the naturals systems and 

the second one is that the farmers manage the genetic resources also in an ecological 

context. In the agro-climax framework agro-biodiversity includes the management of 

the field and fallow areas, wide range of plants and other biota, includes management 

of biophysical resources and technology, agricultural practices, and disease 

management. In that sense we understand agro-biodiversity as: 

“The dynamic variation in farming systems that occurs within and between 

agro-ecosystems and natural systems. It arises from the many and changing 

ways in which farmers manage diverse genetic resources in dynamic 

ecological and socio- economic contexts” 

For the development of this research work only the plant diversity was 

considered i.e.  cultivated crops, herbaceous cover, bush stratum, forest in 

regeneration state and secondary forest (Map 4). 16 farms (cases studies) and 106 

production units were evaluated to determine the agro-biodiversity management, 

socio-economic situation, and interactions at the household level. The data were 

collected at farm and plot level. 

Generally, they were evaluated in 3 groups of agro-biodiversity indicators 

proposed by OECD (2003): (a) Use and management of biodiversity, (b) Indicator of 

agricultural crop genetic resources, and (c)  Community diversity (here not 

considered). 

a. Use and management of biodiversity 

Different questionnaires were developed to collect the information regarding 

use and management of resources. The main topics were socio-cultural and socio-

economic data, availability of physical-natural resources, management and use of 

plant diversity, and finally analysis of the problem complex (Annex 8). These surveys 

were implemented according to the following phases: 

Preparation, with the consultation of experts for one month. Reports and 

secondary information were collected about climate, vegetation, land holding, 

population, satellite maps, etc. 

Previous test of the survey. 12 preliminary surveys were tested in the field and 

the deficiencies were readjusted, mainly in the formulation form and for the 

separation of the information. 
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Execution in the field. 164 rigid surveys were carried out as a main tool to 

characterize the production systems and management of resources. Morevover, 28 

informal interviews were taken. Three participative workshops were carried out: the 

first two to collect information and to create discussion about topics of resources use 

and problem complexes, the last workshop was for validation of the information, in 

which the obtained results were discussed and adjusted, making a total of 260 

productive units among interviewees and participants of the workshop. 

During two years 16 case studies were carried out. These investigation points 

have been selected through the following criteria: (i) The production systems are 

different, (ii) The agricultural, forest and/or cattle components exist in the 

production systems, (iii) The points are well distributed in the study area, (iv) The 

farmers agree with the investigations, and (v) The points are also of interest for the 

evaluation of agro-climax. 

Statistical analysis and interpretation. A database was designed in Excel, and 

the data were processed and analyzed with simple calculations of average, sum, 

frequency, percentage, correlations, ANOVA, etc. 

b. Indicator of agricultural crop genetic resources 

Plot level data were collected from each unit of the farm. For each unit, the 

area was measured, and the different species of crops and trees identified and 

enumerated. The richness, abundance and dominance, richness and evenness through 

Shannon diversity index, Simpson diversity index were calculated (Pielou 1969, 

Magurran 1988, Lessandria 2002). The values obtained from the above calculations 

were analysed statistically to test for significance of differences. 

The Shannon Diversity Index (H’), is a measure of the average degree of 

"uncertainty" in predicting to what species an individual chosen at random from a 

collection of S species and N individuals will belong. This average uncertainty 

increases as the number of species increases and as the distribution of individuals 

among the species becomes even. Thus, H' has two properties that have made it a 

popular measure of species diversity: (i) H' = 0 if and only if there is one species in the 

sample, and (ii) H' is maximum only when all S species are represented by the same 

number of individuals, that is, a perfectly even distribution of abundances. (Merman 

2004, Magurran 1988,  Eiden 1994) 

i

S

j

i PPH ln´
1

⋅−= ∑
=

      (Shannon Diversity Index, Magurran 1988) 

Where Pi is the proportion of crop area composed of species i. 

The Shannon index is high when the relative abundance of the different 

species in the sample is even, and is low when few species are more abundant than 

the others. When all species in a sample are equally abundant, it seems intuitive that 



39 

an evenness index should be maximum and decrease toward zero as the relative 

abundances of the species diverge away from evenness  

The Evenness (E) is the ratio of observed diversity to maximum diversity. E has values 

between 0 and 1.0. The less variation in populations between the species, the higher E 

is. 

. 
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=    (The Evenness (E), Magurran 1988) 

The Simpson is a dominance index, which is suited for inter-varietal diversity 

combining the number of varieties planted with their relative importance (Meng et al. 

1998). 
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The H’ and E indices, which are generally referred as alpha diversity, indicate 

richness and evenness of species within a locality, but they do not indicate the 

identity of the species and where they occur. Consequently, variation in composition 

of species among the different farms and systems was determined by computing Beta 

diversity. Beta diversity (â) expressed in terms of a similarity index between different 

habitats in the same geographical area (Huston 1995).  

â = 1 - Cj , where Cj is Jaccard's similarity index (Magurran 1988) 

Cj = j/(a+b - j ) 

where  

j = the number of species shared by any two sites a and b, 

a = the number of species in site a, and 

b = the number of species in site b 

The Net Present Value (NPV), Benefit cost Ratio (B/C), Internal Rate of Return 

(IRR), labour intensity from each production unit were also calculated and analyzed. 

A GIS data base was developed, and with this tool all land use types and 
habitats, fragments, regeneration forest, grass land, afforested areas, cultivated areas, etc. 

(Map 5) were  drawn. 

3.3.4. PLANT BIOMASS ASSESSMENT 

The determination of the biomass was important for the energy calculations, 

emergy and eco-volume. During 18 months (6/2004-12/2005) biomass production 

and partitioning was measured. Six types of vegetation were evaluated: Forest, 

fragments (secondary forest), forests in regeneration of 1, 2 and 3 years, aquatic 

plants, horticultural cultivations, clean grasses and sylvo-pastoral systems. 
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Litter fall of 4 fragments of 9, 23, 39 and 62 ha was collected. Litter collectors 

of 1x1 m were installed at soil level, 6 in each fragment along a diagonal transect (Fig. 

3.4a). The samples were collected monthly, and were separated for leaves, branches 

and fruits. Taking advantage of the clearing activities in regeneration areas foro 

agricultural purposes, small parcels of 2x2 m were marked that represent the heaps 

where farmers pile up the cleaned biomass. A total of 6 areas were evaluated at the 

rate of 2 plots for each of age categories 1, 2 and 3 years respectively, making a total 

of 36 widely distributed plots (Fig. 3.4b). It was weighed only once. In the flooded 

areas distribution of vegetation was homogeneous, reason why only two plots of 2x4 

m for each area were necessary (Fig. 3.4c). The phytomass was collected every 4 

months. In grass areas plots of 4 m2 (2x2 m) the biomass was collected every 3 

months, 1 m2 each time (Fig. 3.4d). In the crop parcels the ridges were taken as plot 

parcels as commonly  used for horticultural production. They were about 1.2 m wide 

and 20 m long (Fig. 3.4e). The phytomass was measured at harvest, and the total 

biomass production and its partitioning were determined as well as the percentage 

that stays in the systems and the quantity that leaves as commercial product. Finally, 

in the sylvo-pastoral systems the grass methods of biomass collection with parcels of 

10x40 m were adopted (Fig. 3.4f) to determine the forest species biomass. For most 

of these species the destructive method was applied taking advantage of the thinnings. 

Total biomass was also calulated through volume measurements and its specific 

wood weight. 

A B C

D E F

 

Figure 3.4. Plot design for litter collection and phytomass measurement parcels. A. Fragments, 

6 collectors for fragment in diagonal position, to cover the borders and the central part. B. 

Forests in regeneration, it was taken 6 points at random of 2x2m. C. Flooded areas, vegetable 

material of parcels of 2x4 m given m their homogeneity was collected. D. Grasses, 4 collectors 

of 1x1m, were marked per lot. E. Agricultural, given the production system in ridges 1.20x20 

m parcels was taken. F. Sylvopastoral, parcel of 10x40 m for forest species, combined with 4 

marked areas of 1x1 m for the determination of the grass production. 
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CHAPTER IV 

 

4. FINDINGS AND DISCUSSION 

4.1. LAND USE DESCRIPTION  

In total the municipality of Teresópolis has 24 micro-basins further subdivided into 

86 "nano-basins". The water-basin of concern in this study, "Côrrego Sujo", has a 

surface of 5323 ha, divided in 8 micro-basins to facilitate the data collection. The 

digitalization of the images "Iconos" gave the land use division presented in the Table 

4.1.1 and Map 5.  

 

Figure 4.1.1. Share of different land use types for each sub area (in %) 

 

Forests occupy the biggest area with 36.2%, followed by the grasses (31.1 %), bushes 

(18.8 %), the areas corresponding to rocks, open areas, colonies (11.4%), and with 

2.6 % in the last position is the crop area (Table 4.1.1 and Figure 4.1.1)   
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Map 5. Land use of Côrrego Sujo basin.  

 

Source: Source: BLUMEN (2006), Eds. Meier et al. 2006.  
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Tabla 4.1.1 Land use (ha) within the micro-basin “Côrrego Sujo” as subdivided in 8 sub-areas 

 

Classes type % of total 

area 

Area    

(ha) 

sub-area 

1 (%) 

sub-area 

2 (%) 

sub-area 

3 (%) 

sub-area 

4 (%) 

sub-area 

5 (%) 

sub-area 

6 (%) 

sub-area 

7 (%) 

sub-area 

9 (%) 

Setlement 0.20 11 0.13 0.12 0.31 0.12 0.03 0.06 0.39 0.44 

Agriculture 2.59 138 1.86 0.74 4.93 2.3 1.04 1.01 2.18 6.65 

Pasture 14.98 797 8.12 13.8 17.77 12.84 17.37 22.16 5.49 22.27 

Pasture mix 16.09 857 18.2 18.9 19.2 27.71 8.7 0.8 20.51 14.72 

Rain-forest 36.16 1925 39.56 35.23 30.05 26.34 43.94 44.75 39.92 29.49 

Forestry 0.83 44 0.76 0.01 0.01 0 0.78 1.19 3.9 0 

Water 0.13 7 0.16 0.17 0.15 0.12 0.05 0.06 0.23 0.1 

Soil open 1.89 101 1.35 1.15 0.82 2.41 0.21 0.3 2.54 6.37 

Rock 8.33 443 7.27 7.51 6.51 9.45 2.72 21.18 3.03 8.96 

Bush 18.80 1000 22.58 22.37 20.26 18.71 25.15 8.49 21.81 10.99 

Source: BLUMEN (2004)       
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In general the wavy relief of the mountainous area is dominated by three components, 

the first are the fragments of the Atlantic forest that extend in the higher parts or on 

steep slopes; the second component is composed of hillside pastures where 

Brachiaria dominates, and in some cases covers complete hills; and the third 

component encompasses agriculture in the river-beds. Many grass swards are 

actively regenerating and eventually end up in bush vegetation (Capoeiras). The most 

important land covers are described in the Table 4.1.2. 

 

 

Figure 4.1.1. Share of different land use types for the Côrrego Sujo 
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Table 4.1.2. Land cover description 

Land Cover Description 

Developed 
forest   

 

Presence of species older than 30 years, high presence of 
epiphytes and lianas, and the canopy is closed. This kind of 
vegetable covering corresponds to most of the coverings of the 
national park and some fragments.   

Forest of 
intermediate 
development  

The semi-arboreal and bushes species prevail; the arboreal 
vegetation begins to show predominant, little presence of 
epiphytes. Most of the small fragments.   

Forest in initial 
development 
condition  

Lacking epiphytes, the gramineous cover prevail, the bushes and 
herbaceous plants can reach up to 4 meters high. Many 
abandoned pastures with more than 5 years in so far not burnt.     

Grasses and 
bushes   

Presence of clean areas with gramineous plants for shepherding in 
some cases with thin bushes.   

Agricultural   Horticulture predominance, besides areas with citrus 

Vegetation of 
waterlogged 
areas   

 

Typha domingensis dominates; characteristic waterlogged land.  
Besides these conservation units and the National park, around 
212 fragments which have an area average of 12.8 ha are 
observed in the region 

 

Of the 2954 existent establishments in Teresópolis a little more than 2500 

have positive conditions for agricultural production. Manpower is enough to increase 

cultivation area or to intensify production. On the average there are three people per 

farm unit, totally dedicated to production. The population growth in the region 

remained constant in the last years, i.e. less than 1% of annual growth.     

The property holding on average is 6.8 ha, where 66% of the proprietors have 

more than 17 ha and 54% less than 1 ha ("mediators" i.e. landless workers sharing 

half of the harvest with the land owners). The production units with agricultural 

speciality have on average 33% forest area, 22% horticultural cultivation, and 14% 

pasture.    

In general, the municipality disposes of enough water for all purposes. The 

topography is undulating with 12 steep mountainous areas that, at the same time, are 

forest reserves with ample water resources. The residents' testimonies indicate that 

the water resource was never a problem neither for human consumption nor for 

agriculture, but that in the last 50 years the flow has decreased in some cases as far as 

50%, due to deforestation and to the loss of many small water sources. According to 
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our survey one out of every 6 small sources has dried off and two are in danger of 

drying off. Since the horticultural production was intensified 40 years ago, water 

quality is visibly degrading at first sight, with bigger cloudiness and transport of solid 

materials mainly because of erosion. 

From the farmer’s point of view (98% of the cases), the soil fertility is 

considered very good to good, only very few responded that soils have fertility 

problems. In fact soils of this region have fertility from medium to low, but with the 

intense handling of fertility by means of soil pH correction through constant organic 

and inorganic fertilization, “artificial" soils with good fertility are obtained.   

The agriculture in the region is characterized by intensive, small (less than one 

ha) but often irrigated horticultural production systems. This horticultural system 

has little or none interaction with the cattle and forest subsystem. The inputs such as 

organic and inorganic fertilizers are introduced to the system. The plants are 

produced in the region using good quality seed. Most of the young plantlets are 

produced locally in specialized nurseries. The products of the system are marketed by 

different channels, mostly dominated by middlemen who take the production to the 

surrounding markets. The productive units generally opt for diversification market 

strategies, since the prices are quite fluctuating during the whole year.    

From 1793 ha under agricultural production 74% (1327 ha) correspond to 

cattle production (CPS) and syslvopastoral systems (SPS) 2%. The average animal 

load is 11 animals pro 10 ha. Extreme values of 2 up to 67 animals pro 10ha were 

found. In the humid season the average milk production is 7.5 l d-1, and in the dry 

season of 4.5 l day-1. After 40 months of fattening the meat livestock produces 

approximately 165 kg of clean meat/head that are marketed through middlemen and 

sold in bordering markets. The rest 24% is occupied mainly by horticultural systems. 

The intensive horticultural systems are the most important economic activity 

and occupies circa 403 ha. Mainly five types of horticultural systems exist in the 

region: (i) the leaf vegetables systems (LVS=58% of all units), i.e. all leafy cultivations 

that have cycles shorter than 5 months as for example, lettuce, cabbage, spinach, etc., 

(ii)  The fruit vegetable systems (FVS=20%), having a cycle longer than 5 months, 

such as, vegetable pear, lady fingers, squashes, cucumber, tomato, Solanum gilo etc., 

(iii) The Mixed Fruit and Leaf Vegetable Systems (MVS) (15%), that combine both the 

LVS and the FVS, for example, vegetable pear with lettuce, (iv) The Perennial 

Cultivations (CPS) (5%), that have perennial cycle such as mint, tangerine, etc. and 

finally (v) The Ecological Production systems (ECO) that are very rare (<2%) (Details 

from each farming system are described in § 4.2) 
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CONCLUSIONS ABOUT LAND USE 

The landscape is dominated by three components: forests (fragments, 36.2%), 

grasses (31.1%) and forest regeneration (18.8%). This landscape tends to change 

little by little, replacing pastures either by horticulture or in places with steeper slope, 

by forest regeneration. The cropped area is only 2.6% of the total available land. 

The production conditions are very favourable for vegetables in terms of physical 

and market conditions. These conditions are threatened by deforestation, though. 

Further, the intensive production systems themselves impair the quality of water 

resources. In some areas erosion threats the sustainability of the production systems.  
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4.2. AGROBIODIVERSITY 

The agricultural evolution in Brazil has been a unique case in the world. The 

widespread extension of coffee, cocoa, sugar cane and manioc plantations and the 

extraction of the “Pau Brasil”, Brazil wood, Caesalpinia echinata have been important 

causes for the current status of ecological losses in the Mata Atlântica. Production 

intensity and acreage extension have accelerated in the last 100 years leading 

towards disastrous effects on forest loss and soil depletion. 

The introduction of coffee in 1718, cocoa in 1746, and sugar cane in 1746 

(Homma 2003) started the development of the typical agricultural production 

structure in the Mata Atlântica rainforest. At about the same time large-scale cattle 

raising was introduced. 

The Mountain Region of Rio de Janeiro was found to be difficult to access. 

Therefore, the sporadic presence of coffee did not have the devastating character as 

in other regions. The first agricultural settlements in this region were established 

approximately 110 years ago with the introduction of yams and kidney bean 

(Phaseolus vulgaris) for domestic consumption. It was only a few years later that 

some farmers planted coffee with commercial purposes and that African grasses were 

introduced for pasture land, at the cost of forest land. It was only in the 1930s that the 

population growth in the Mountain Region of Rio de Janeiro accelerated accompanied 

by a specialization of agricultural production systems towards kidney bean, corn, 

beet, carrot and some other vegetables. 

Since the 1940s and 1950s a new era has come up in the agricultural 

production systems, in response to the high demand of vegetables in Rio de Janeiro. 

The former production systems of one annual crop or perennial crops was changed to 

intensive systems of multicrop cycles, specializing more and more the horticulture 

with the corresponding increase in the use of agrochemicals. Animal husbandry, 

however, was decreasing although pasture areas remained stable, if not increasing 

further. 

4.2.1. LANDSCAPE  

 

The mountainous areas is dominated by three components: the first are the 

fragments of the Atlantic forest that extend either in the higher parts or steeper 

landscapes; the second component are wide pastures on hillsides where Brachiaria 

decumbens dominates; and the third component encompasses agriculture in the river-

beds (Thalweg). It is also frequently observed that current grass swards regenerate 

little by little  to become "Capoeiras" (bush vegetation) (Figure 4.2.1 a).  
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a b 

  

c d 

  

Figure 4.2.1. Landscapes components in the study area. (a) General landscape overview of grass, fragments and crops; (b) 

mountainous relief; (c) intense horticultural production (d) pastures 
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The municipality of Teresópolis is characterized by its uneven and 

mountainous relief. Among the main hilly ones are "dos Orgaos", "Albuquerque", 

Paquequer", "Demanda", "Firmamento", "Gamboa", "Capim". The lowest part of the 

municipality is at 145 masl and rises up to 2263 masl, that is the highest peak. The 

mountains are on average from 900 to 1400 masl, they are wavy, covered with 

vegetation distributed in forest fragments and grassland on the hillsides, whereas 

agricultural cultivation prevails in the lower parts (Figure 4.2.1.b).    

In districts two and three, corresponding to the rural area of Teresópolis (Map 

2), the typical landscape combines above three vegetation elements, all three clearly 

delineated. Very marked limits divide pastures from forests or agriculture from forest, 

indicating little interaction among these components. The lower parts are dominated 

by intense horticultural production (Figure 4.2.1.c). Grassland dominates landscape 

in many regions of the municipality. Brachiaria decumbens is the most common grass 

species. It was introduced there more than 40 years ago whereas "capim gordura" 

(Melinis minutiflora) disseminates with easiness after forest clearing. The grasses are 

distributed on slopes of 45% up to 55%, sometimes even beyond 65% (Figure 

4.2.1.d).       

 

4.2.2. BIODIVERSITY IN FARMING SYSTEMS  

 

During survey of agrobiodiversity of farming systems, only plant diversity was 

evaluated i.e. crops and plants, herbaceous cover, bush vegetation, and tree species 

inside the farming systems. The evaluated farming systems in Teresópolis were:   

(i) Leaf vegetables systems (LVS);  

(ii) Fruit vegetable systems (FVS);  

(iii) Mixed Fruit and Leaf Vegetable Systems (MVS);  

(iv) Citrus Production systems (CPS);  

(v) Ecological Production systems (ECO);  

(vi) Cattle Production systems (CPS) and  

(vii) Sylvopastoral system (SPS).  

In figure 4.2.3 the different systems can be appreciated. The clearly dominant 

system is cattle raising with 74% of the total agricultural surface of the basin. The 

horticultural systems are the second more important (24%), of which the leaf-

vegetables systems are most important with 14%. The sylvopastoral system occupies 

only 2% and the ecological and organic cultivations less than 0.4% (Figure 4.2.2). 
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Figure 4.2.2. Relative importance of farming systems 

 

The Cattle or livestock grazing is one of the most widespread land uses in Brazil. In 

Teresópolis, cattle raising has greatest impact on regional biodiversity. 

Approximately 74% of land (1327 ha) is currently under pasture and in many areas 

pasture land is still expanding slowly. The gradual transformation of forest into 

pasture and agricultural land has had profound ecological impacts in the region, 

changing the species composition of communities, disrupting ecosystem functions 

(including nutrient cycling and succession), altering habitat structure, aiding the 

spread of exotic species, isolating and fragmenting natural habitats, and changing the 

physical characteristics of both terrestrial and hydrological systems. Similar 

transformation processes have been reported by Fleischner (1994), Noss (1994), 

Gomez-Pompa et al. (1993), CCAD (1998). These changes, in turn, have often resulted 

in the reduction of both local and regional biodiversity. 
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Figure 4.2.3. Farming systems in Côrrego Sujo: (a) Ecofarm; (b) Fruit Vegetables; (c) Leaf Vegetables; (d) Mixed leaf and 

fruit vegetables 
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g h 

Figure 4.2.3. Farming systems in Côrrego Sujo: (e) Cattle; (f) Syslvopastoral; (g) Citrus; (h) erosion produced by leaf 
vegetables systems. 
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Table 4.2.1. Diversity, richness, dominance and evenness indices compared across 

different farming systems in Teresópolis 

 Diversity  
(H´) 

Richness  
(Rch) 

Dominance  
(1-D) 

Evenness  
(E) 

Ecological systems 3.19 96 0.93 0.70 
Leaf vegetables 2.18 19 0.86 0.74 
Fruit vegetables 2.01 19 0.81 0.68 
Mixed vegetables 2.22 21 0.86 0.73 
Citrus 0.1 8 0.03 0.05 
Cattle 0.01 8 0.00 0.00 
Sylvopastoral 0.08 34 0.01 0.03 
H´=-(sum Pi*lnPi); Rch=N°sp; D=1-(sum Pi2); E=H´/lnS 
A complete list of the species is enclosed in annexe 8 
 

The lowest dominance indices correspond to the cattle systems (0.00) and to 

citrus (0.01). It means that a few species dominate, in this case, Brachiaria decumbens 

and Melinis minutiflor. Both systems are also characterized by lowest richness, with 

only 8 species mostly herbaceous (Table 4.2.1).  

The implementation of cattle systems is the cause for the fragmentation of 

landscapes, not only altering its functions but also the behaviour and dynamics of 

animal and plant populations inside the fragments (Birregard et al. 2001). The 

fragmentation also causes decrease of biomass production, especially on the fragment 

edge (Laurence et al. 1997). For the development of tropical ecosystems, cattle 

systems are ranked as the major driving force for the next 100 years (Sala et al. 2000). 

Smaller patches contain relatively more edges than larger patches. Abrupt forest 

edges also affect most ecological variables and indicators of forest dynamics, such as 

species distribution, tree mortality and regeneration, biomass loss, and community 

composition of trees. According to some recent estimates of the edge effects of 

fragments, only the largest forest fragments (>50000 ha) are immune from detectable 

ecological effects of isolation (Curran et al. 1999)  

The sylvopastoral system maintains low indices of diversity, still dominated by 

grasses. The great difference with the cattle systems is the richness of species, being 

increased fourfold (Table 4.1.1). The most important sylvopastoral species are the 

folowing (i) pastos: Melinis minutiflor and  Brachiaria decumbens. Timber: 
Lonchocarpus sp, Tibuchina sp, Piptadenia gonoacantha, Cróton floribundus, 

Machaerium sp. All species from sylvopastoral systems are listed in appendix 8a from 

annexe 8.  

Thirty four timber species were identified in sylvopastoral systems. It 

indicates that in these systems a significant portion of the original biodiversity can be 
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maintained within pastures, if they are designed and managed appropriately 

(Greenberg 1997; Harvey 1999). Pezo & Ibrahim (1998) listed additional positive 

effects for maintaining and conserving biodiversity e.g. producing timber, forage and 

fruits, providing shade for cattle, and promoting soil conservation and nutrient 

recycling.  

Sylvopastoral systems provide structures, habitats and resources that may 

enable the persistence of some plant and animal species within the fragmented 

landscape, thereby partially mitigating the negative impacts of deforestation and 

habitat fragmentation. Marten (1986) additionally says that in these systems the 

species are used for construction materials, firewood, tools, medicine, livestock feed, 

and human food. Besides providing useful products, the trees in these systems 

minimize nutrient leaching and soil erosion and restore key nutrients by pumping 

them form the lower soil strata. 

The management of natural regeneration timber species in sylvopastoral 

systems represents a low cost alternative for the producer. These systems can be 

applied especially for farmers with small long term investment capacity. 
Lonchocarpus sp, Tibuchina sp, Piptadenia gonoacantha, Cróton floribundus, 

Machaerium sp. are all species that possess good characteristics for the 

implementation of systems in the study region. Diverse other native species also 

possess positive characteristics for sylvopastoral systems and they should be 

evaluated in future. It is important to highlight that pasture fires are considered as an 

extremely noxious practice for the propagation of tree species. 

Exotic species should be broadly investigated for their implementation like the 

case of  eucalyptus (Andrade 2001). Carvalho (2001) recommends Acacia mangium, A. 

auriculiformis  and Mimosa artemisiana for use in sylvopatoral systems. The latter 

three species would also have the capacity to synthesize atmospheric nitrogen. 

The most important vegetable and fruit species cultivated in Côrrego Sujo are 

presented in Table 4.2.2. A complete list with more than 60 species is presented in 

annexe 8: appendix 8b. 

The leaf vegetables lettuce, cabbage, broccoli, spinach, watercress and the fruit 

vegetables chayote, paprika and tomato are the base of the economy and occupy circa 

40% of the agricultural area. The farmers manage on average 4 species per hectare 

(minimum average) up to 12 species per hectare (maximum average). Plots with as 

much as 18 cultivated species per hectare were also observed. 

From 15 cultivated families the Brassicaceae, Solanaceae, Fabaceae, Asteraceae, 

Fabaceae and Cucurbitaceae are the most important ones with more than 60 species 

and 140 varieties of vegetables. This crop diversity is represented by y high diversity 

index (H´=2.18, 2.01, 2.22) for leaf vegetables, fruit vegetables and mixed vegetables, 

respectively. It represents a good value for agricultural systems. For the three 
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variants of vegetable systems, dominance is not high (1-D= 0.86, 0.81, 0.86) and the 

species are equitably distributed. There exists a relative good quantity of species 

(Rch= 19) in spite of weed control, most of these species being located on the edge of 

small plots (Table 4.2.3 and annexe 8: appendix 8b). 

It is also observed that, little by little the vegetable systems, which few years 

ago were only located in the alluvial parts, are now invading pastures and forests 

(Figure 4.2.3 h).      

The ecological systems present the best indices of diversity. A dominant crop 

does not exist, rather, crops are equally distributed in number and area (1-D=0.93; 

E=0.7; Table 4.2.1). The system houses very high quantity of species (96). Finally, the 

Shannon diversity index (3.6) indicates clearly that this system combines a high 

number of cultivated and not cultivated species.  

The most important species in the ecological systems are: (i) vegetables and 

annual crops see table 4.1.2; (ii) trees: Acnistus arborescens (marianera) is a plant 

with great potential for agroforestry systems. It is very fast growing, has easy 

reproduction and good biomass production, and is a good tutor for other cultivations 

like chayote. Finally, it produces good quantity of fruits for human consumption and 

for birds. Ricinus comunis is another very fast growing plant, it is important for the 

recuperation of fertility in fallow plots, and contributes with good quantity of organic 

matter to fertility restoration of the systems. Their great quantity of terpenes is also 

used for obtaining of bio-energy. Other important species in the region which can be 

found in ecological farms and agroforestry systems, are Vernonia polianthes, 

Piptadenia gonoacantha, Lonchocarpus sp, , Luehea divaricata;. (iii) herbaceous: 

Cyperus rotundus L (tiririca),  Melinis minutiflora, Artemisia vulgaris (Losna), Eleusine 

indica  (pê de galinha),  Siegesbeckia orientalis (botao de ouro),  Amaranthus deflexus 

(carurú),  Digitaria horizontalis (mulambo),  Aristolochia clematitis (papo de peru) all 

considered weeds. Some other plants can be found in ecological farms and in 

recovery areas, such as Baccharis sp., Vernonia polianthes, Psidium cattleiano, 

Aeschynomene denticulate, Triunfeta sp., Lantana camara, Cecropia sp., Tibuchina sp., 

and Euphorbia heterophylla. 

In ecological systems, biodiversity offers ecosystem service beyond the mere 

production of food, fiber, fuel, and income, by stabilising yield or income in case of 

incidences of disease and pests or when market prices are fluctuating (Wiersum 1982). 

This ecosystem service also helps recycling of nutrients (Alesandria et al. 2002), 

controlling of local microclimate, regulating of local hydrological processes, 

regulating of abundant undesirable organisms, and finally, detoxifying noxious 

chemicals. Reijntjes et al. (1992) states that the main strategy in ecological systems is 

to exploit the complementarities and synergism that result from various 

combinations of crops, trees and animals in spatial and temporal arrangements. 
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The richness and stability in ecological systems make them important sites for 

in situ conservation within eco-zones, and also offer better positive possibilities 

through the presence of numerous niches in which agro-diversity can survive. Trinh 

et al. (2003), Michon et al. (1983), Fernandes (1986) concluded in a similar way after 

having studied agro-diversity in home gardens. In concordance with Mac (2001) it 

was found that managing numerous species in ecological systems could provide a 

usable framework for maximizing their benefit to biodiversity.  

The polycultures and agroforest patterns are characteristic of these systems. 

The high species richness of all biotic components of traditional and ecological agro-

ecosystems is comparable with that of many natural ecosystems (Altieri 1999). 

One way to reintroduce biodiversity into large-scale monocultures is by 

establishing crop diversity by enriching available field margins and hedgerows which 

may then serve as biological corridors allowing the movement and distribution of 

useful animals and insects. 

There is wide acceptance of the importance of field margins as reservoirs of 

the natural enemies of crop pests. Many studies have demonstrated increased 

abundance of natural enemies and more effective biological control where crops are 

bordered by wild vegetation. These habitats may be important as over wintering sites 

for natural enemies and may provide increased resources such as alternative host, 

pollen and nectar for parasitism and predators from flowering plants (Landis 1994, 

Altieri 1999). 

Analyzing biodiversity within this context is an extremely complex task, but 

one which lies at the heart of all discussions concerning its sustainable use. This 

complexity arises because of the multitude of different ways and the range of 

different scales, both in time and space, in which any given resource can be viewed 

(Serageldin and Steer 1994). In terms of human uses and needs, biodiversity can be 

looked on as part of the entire capital stock on which development is based. This 

stock can be divided into: natural capital, living and non-living environmental assets, 

including biodiversity; fabricated capital, machines, buildings, infrastructure, human 

capital, human resources, and social capital, the social framework (Groombridge 

1996). 

In fallow land or forest areas in regeneration, plant diversity and density of 

individuals and species are influenced by the intensity and frequency of management 

operations. Vegetation of wild fallows that were not managed was clearly dominated 

by individuals of Cecropia spp (embaúbas), Lonchocarpus sp (timbó), Vernonia 

polianthes (Assa peixe), Tibuchina sp, Piptadenia gonoacantha (Pau Jacaré), Croton 

floribundus (sange de drago), Aeschynomene denticulate (angiquinho), and other early 

colonizing pioneer species.  
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The fallow land on agricultural areas include mostly herbaceous and shrub 

species like Vernonia polianthes (assa peixe), Acnistus arborescens (marianera). This 

enriched area normally contains forest species, bananas and varieties of citrus. In 

these areas more species were found than in the natural fallow areas, in agreement 

with Anderson (1992) and Pinedo-Vazquez (2000). The latter authors say that 

despite the assumption that human intervention in fallows lowers the species 

richness it is still possible that fallow land may contained higher levels of plant 

diversity. All species are listed in Annex 8. 

Despite differences in forest use and in management practiced by farmers, 

forests in all sites showed high diversity of Shannon’s Index (average H’ = 2.59). 

These results were very similar to those reported for forest areas in other regions of 

Brazil as e.g. in the estuarine floodplains of neotropical forest (Anderson 1992).  

In agricultural areas reconverting to secondary forest (about three years of 

age) the most important families and species were Leguminosae (Papilonoideae) 

(Lonchocarpus sp), Euphorbiaceae (Croton floribundus), Anacardiaceae (Schinus 

terebinthifolius), and Sapotaceae. In the bush stratum the most important families and 

species are Asteraceae  (Baccharis sp, Vernonia polianthes), Myrtaceae (Psidium 

cattleiano), Melastomataceae (Tibuchina sp).  

The ecologically most important families of the woody understory vegetation 

are Myrtaceae, Lauraceae, Rubiaceae, Melastomataceae, Arecaceae, Nyctaginaceae 

(BLUMEN, 2006)  
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Table 4.2.2. Most important crops and varieties in Teresópolis 

Common Name  Scientific Name Varieties 

Lady´s finger Abelmoschus esculentus Gigante, comum curto, chifre de veado 
Onion Evergreen Allium fistulosum Verde comum 
Leek Allium porrum King richard 
Celery giant Apium graveolens  
Watercress Barbarea verna Da água, folha larga 
Beet Beta vulgaris var. cicla Verde comum, crespa comum, talo branco 
Mustard Southem Brassica juncea Lisa, crespa 
Cauliflower Brassica oleracea Bola de neve, gigante 

Cabbage Brassica oleracea 
Roxo, chato de quintal, coração de boi, louco de 
verão 

Chinese Cabbage Brassica pekinensis Mineira 
Turnip Brassica rapa Branco, Roxo 
Sweet Pepper Capsicum annuum Dulce, casca dura, allbig, dagmar, magnata 
Endive Green Cichorium endivia Lisa, redonda de coração cheio,  Grande, crespa. 
Chicory Cichorium intybus Folha larga, pão de açúcar 
Mandarin Citrus reticulata Casca dura 
Coriander Coriandrum sativum Português 
Cucumber W-
Indian 

Cucumis anguria  

Cucumber Cucumis sativus Caipira verde, record, royal 

Pumpkin Cucurbita moschata 
Baiana, mineira, jacaré, pescoço, da água, 
moranga, gila 

Carrot Daucus carota Alvorada, brasília, santana 
Rocket Eruca sativa Cultivada 

Lettuce Lactuca sativa 
Lisa, crespa comum, crespa, roxa, romana, 
americana 

Tomato 
Lycopersicon 

esculentum 
 

Broccolis Matricaria recutita  
Balm Melissa officinalis nova Zelândia, verdadeira orelha de rato.  
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Table 4.2.2. (cont.) Most important crops and varieties in Teresópolis 

Common Name  Scientific Name Varieties 

Peppermint Mentha piperita folha larga 
Parsley Petroselinum crispum Lisa, graúda, portuguesa, salsão Crespa 
Green bean  Phaseolus vulgaris Macarrão, atibaia, rasteira,  serrano 
Radish Raphanus sativus vermelho de ponta branca, vermelho 

Chayote Sechium edule 
branco com and  sem espinho, verde com and 
sem espinho 

Indian Eggplant Solanum gilo comprido verde, verde claro, irajá redondo 
Eggplant Solanum melongena Embu, ciça, black – tie 
Green been Taraxacum offlcinalis Anãs, trepadeira, flor roxa 

Yam 
Xanthosoma 

sagittifolium 
Chines 

Corn Zea Mais Vermelho, branco, amarello 

Others 
 

Manjerona (Origanum majorana), Erva Doce (Pimpinella anisum), 
Espinach chino (Tetragonia tetragonioides), Basilicum (Ocimum 

basilicum), Orégano (Origanum vulgaris), Pimint (Capsicum frutescens), 
Tomillo (Thymus vulgaris). 

 

Table 4.2.3. Most important tree species in agricultural systems 

Family Scientific Name 

Anacardiaceae Schinus terebinthifolius 
Solanaceae Acnistus arborescens 
Sapindaceae Allophylus sp 
Moraceae Ficus sp 
Asteraceae Siegesbeckia orientalis 
Myrsinaceae Rapanea ferruginea 
Myrtaceae Eugenia sp 
Myrtaceae Myrciaria sp 
Leguminosae Peltophorum dubium 
Leguminosae Senna macranthera 
Leguminosae Senna sp 
Euphorbiaceae Ricinus communis L. 
Flacourtiaceae Casearia sp 
Lauraceae Nectandra sp 
Solanaceae Acnistus arborescens 
Myrtaceae Gomidesia sp 
Piperaceae Piper sp 
Euphorbiaceae Indet 
Leguminosae Indet 
Sapindaceae Indet 
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Table 4.2.4. Most important herbaceous species in agricultural systems 

Family Scientific Name Family Scientific Name 

Amaranthaceae Amaranthus deflexus Leguminosae Crotalaria sp1 

Amaranthaceae Amaranthus sp Leguminosae Indigofera hirsuta L. 

Aristolochiaceae Aristolochia clematitis L. Leguminosae Lonchocarpus sp 

Asteraceae Artemisia verlotorum Leguminosae Vigna sp 

Asteraceae Bidens pilosa L. Malvaceae Malvastrum sp 

Asteraceae Galinsoga sp Malvaceae Sida rhombifolia 

Balsaminaceae Impatiens sp Malvaceae Sida sp 

Cecropiaceae Cecropia hololeuca Melastomataceae Tibuchina sp 

Chenopodiaceae Chenopodium ambrosioides Plantaginaceae Plantago tomentosa L. 

Commelinaceae Commelina benghalensis l. Poaceae Digitaria horizontalis 

Convolvulaceae Indet Poaceae Eleusine indica 

Convolvulaceae Ipomoea hederifolia L. Poaceae Melinis minutiflora 

Curcubitaceae Momordica charantia L. Poaceae Panicum maximum 

Cyperaceae  Cyperus rotundus L Poaceae 
Pennisetum 

clandestinum 

Euphorbiaceae Euphorbia heterophylla Poaceae Pennisetum purpureum 

Gramineae Brachiaria decumbens Portulacaceae Portulaca oleracea 

Gramineae Coix lacrima-jobi L. Rutaceae 
Zanthoxylum 

rhoifolium L. 

Gramineae Melostack sp Solanaceae Solanum americanum 

Labiatae Hyptis sp Tiliaceae Luehea sp 

Labiatae Leonurus sibiricus L. Tiliaceae Triunfetta bartramia 

Leguminosae Aeschynomene denticulata Umbeliferae Apium sp 

Leguminosae Crotalaria incana   

 

Crop Rotations and associations 

It is difficult to determine a dominant crop rotation, given the high variety of 

crop sequences and site conditions. Crop rotations occurring with relative higher 

frequencies are those starting with lettuce, followed by cabbage, followed by any kind 

of cultivation of short cycle before another lettuce crop. Broccoli-lettuce, or 

watercress-lettuce, followed both by two cultivations of any short cycle crop are less 

frequent rotations (Table 4.2.5). 

No fallow periods can be observed, instead fertilizers and soil improvement 

materials are applied. In a few production units, watercress and lettuce were found to 

be produced all-year round as a monoculture. Some farmers practice crops 

associations, the most frequent associations being chayote together with a short cycle 

crop cultivation, and evergreen onion in intercropped with either coriander or 

parsley (Table 4.2.6). 

 

 



62 

Table 4.2.5.  Crops Rotation 

Frequency Rotation Fallow 

0.25 Lettuce-Chinese Cabbage- LVS -Lettuce 0 
0.20 Chayote-ccc-x-chayote 0 
0.15 Broccoli-Lettuce- LVS -Brocoli 0 
0.05 Chinese Cabbage- LVS - LVS -Chinese Cabbage 0 
0.05 Watercress-Lettuce- LVS -x-Watercress 0 
0.05 Espinach-x-Lettuce-x-Espinach 0 
0.01 Paprika -Yam-Paprika 0 
0.24 others 0 

1 Total. 100% of the observed rotations   

C = leaf vegetable; x = ad libitum 

 

 

Table 4.2.6. Crops Association 

 LVS Parsley Coriander Corn Others 

Chayote 0.35     
Onion eg  0.25 0.30   
Yam Xanth.    0.05  
Others     0.05 

 

 

Agricultural Calendar   

Leaf crops are cultivated the whole year, whereby lettuce is produced at same 

quantity   during the whole year, whereas broccoli is particularly favoured during 

winter. The cycle of the vegetables begins in August-September and some vegetables 

such as tomato, paprika, giló, chayote, etc. are mainly grown in summer (Table 4.2.7).   
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Table 4.2.7. Agricultural Calendar in Teresópolis 

Crop JAN FEB MAR ABR MAY JUN JUL AUG SEP OCT NOV DEC 

Pumpkin c             SP spE sp C c 

Eggplant                 PSHE C c   

Chayote               sp SP       

Green been C               SPHE HE HE C 

Feijao verde                 SPH HE HC   

Yam C             SP   H       

Indian Eggplant C               SP HE     

Cucumber W- Indian C                 SPH E   

Corn c C               SPH     

Strawberry c       SP spE sp C c 

Cucumber         SPHE C C  

Sweet Pepper E CE C   sphe e e e ce c SPHE 

Mandarin     EH C Ch c c    

Quimbombo         PSE HEC   

Tomato C c    pshe e e PSHEc Ec E C 

Perennial cultivations 
and that are cultivated 
the whole year.   

 
T 

Acelga, Watercress, Celery giant, Lettuce, Leek, Almeirão, Camomila, Carrot, Onion Evergreen, Endive 
Green, Coriander, Chinese Cabbage, Chinese Cabbage-Flor, Erva Doce, Dente-de-leão, Erva Cidreira, 
Espinach, Hortelã/Mint, Manjericão, Manjerona, Mustard Southem, Tumip, Orégano, Pimint, Radish, 
Cabbage, Rocket, Parsley 

P = Land preparation; H = Invasive weeds control; S = Plantation/sowing; E = Plagues and diseases control; C = Harvest; T = the 
whole year. Capital = bigger intensity and frequency;  Lower-case = smaller intensity and frequency   
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4.2.3. INTERACTIONS AMONG THE LAND-USE SYSTEMS 
 

Fragment-agriculture. In fact, the interaction of the agriculture with the 

fragments is very low. Certainly, the farming systems will influence the composition 

of species in the edges, but fragments are hardly used for extraction purposes by 

farmers. The environmental impact of the agricultural (horticultural) land on the 

fragment is rather low, since this land use system is usually located below the 

fragment. Thus, erosion and water quality impacts are rather inflicted on land use 

systems downstream within the river basins than on forest fragments. Not-quantified 

nutrients coming from the fragments are deposited on horticultural land, a benefit yet 

to be quantified. 

Specific cultivations like chayote and tomato are examples of direct impact of 

farming activities on fragments, requiring stakes and posts to serve as tutors in the 

cultivation. The total area of these cultivations is low, as well as the No. of farmers 

extracting these materials. The requirements of extraction are about 620 posts of 2.3 

m per hectare of chayote. For one hectare of tomato 10500 stakes of bamboo of 1.8 m, 

and 260 stakes of 2.3 m are extracted. 

Fragment - cattle raising. Although at a very low rate, deforestation for pasture land is 

still going on. The dynamics of land use change could not be analysed, and so it can 

not be said, what kind of land is being lost, whether valuable old structured forests or 

recently re-established fragments with Capoeira (re-emerging bushland during 

fallow) characteristics. 

A serious impact of beef cattle and horses was observed by accesses to water 

sources in the forest, where animals go drinking, ruminating and resting in the 

shadow, and grazing or browsing from what plants can offer there. Doing so, animal 

faeces contaminate the water sources which are often used as drinking water in the 

households below. 

Cattle raising – agriculture. The agricultural systems and cattle have very little 

interaction. The manure is not used in the agriculture, it remains in the pasture areas. 

The agriculture residuals are kept in the cultivation field for organic matter 

incorporation. Sugarcane and Capim gigante (Penisetum purpureum), as stated before, 

are the only cultivated forage crops requiring arable land and are thus, directly 

competing with alternative cropping systems. 

Horticulture production requires large amounts of organic matter which is 

obtained by truckload from other regions, even neighbouring states such as São Paulo 

and Minas Gerais. 
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Organic matter is certainly an economically highly significant matter. More 

interaction among animal husbandry and horticulture systems is assumed to be 

required for overall agricultural productivity and profitability improvement. 

Ecologically, it would be highly welcome to substitute long-distance transports of 

manure with local supply. 

Settlements – fragments. For house construction and tools the farmers usually 

use the wood of the fragments. They also extract some medicinal plants and 

occasionally eat some animals. 

4.2.4. ENVIRONMENTAL PERCEPTION OF FARMERS 

 

The environmental perception of farmers was assessed in individual 

interviews and a workshop held with the farmers of the study area. 

Farmers observations of landscape. 81% of the interviewees stated that during 

the last 30 - 50 years the landscape has changed a lot. Major changes observed were 

urbanization – construction of many new houses   Forest used to be more dominant 

in relation to pasture and agriculture (50 years ago). The practice of burning bush 

land is nowadays more widespread than5-10 years ago.   Orchards with citrus have 

emerged only recently. 

Farmers observations of forest fragments. In the past, large and “beautiful” tree 

species were found in the forests, many of them with great economic value, some of 

them being scarce and having already disappeared from the fragments as for 

example: Brauna, Cambota, Garapa, Ipê, Cedar, Maçaranduba, Jacaranda, Peroba, 

Oricana, candeia, Cinzero, and some others that the farmers were not able to specify. 

Conservation attitude. 92% of the interviewees answered that they preserve 

their fragments. They prevent hunting and deforestation because they are aware that 

they need the forest to preserve water sources. Reforestation practices are absent. 

Main reasons for applying conservation measures are: water source, legislation, and 

emotional value of forest. 72% of the farmers do not know that the agriculture could 

contaminate and cause damage to the environment and only 13% know that 

inappropriate agriculture practices can cause damage. The remaining percentage did 

not answer. One out of each 150 productive units has organic production, 33% have 

heard about organic agriculture and agro-forestry and are inclined to change but they 

lack the required know-how. 48% do not want to change the production to organic 

agriculture, considering such efforts as not necessary. The remaining producers 

consider such a change not possible because of adverse physical conditions and 

difficulties. 
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Fragment value to farmers. The most important value of the fragments is as 

water source (96 % of the interviewees agreed). The second most important use is 

the wood extraction for construction timber of low quality. The third use is medicinal 

plants extraction, although 37% state not knowing the medicinal plants from the 

forest. 

4.2.5. CONCLUSIONS  

 

From the biodiversity point of view, the ecological farming systems, 

agroforestry- and sylvopastoral systems, and perennial cultivations help to reduce 

the pressure on the fragments and deforested areas. It improves the cycle of water, 

and it has also positive influence on the dispersion of fauna and flora. They offer 

better resources and habitat for the survival of plants and animals than the cattle and 

horticultural systems. Also, they play an important role as biocorridor and buffering 

reserves and it also introduces a modest biodiversity level in these depredated areas 

of the Atlantic forest, where at the moment a single grass (Brachiaria decumbens) 

dominates more than 35% of the surface. 

Also, the diversity and structure of ecological, agroforestry, and sylvopastoral 

systems contribute additional benefits to the local population, microclimate, flow of 

nutrients, dissipate the dynamics of plagues and diseases, and decrease the effects of 

fluctuating prices of the market. 

The agricultural subsystems, cattle and forest are not very interrelated to each 

other, giving place mainly to trade-offs rather than providing synergies. The cattle 

systems do not contribute from any point of view with the conservation of 

biodiversity. To the contrary, it is the most degenerative practice that threatens 

biodiversity in the region. It is the main cause for forest fragmentation, also presents 

bigger soil erosion, and breaks the dispersion of flora and fauna. 

In general, farmers appreciate biodiversity positively, but they have no exact 

knowledge of their benefits. At the moment, the forest fragments represent for the 

farmers mainly their water source, and are considered very less important as wood 

source or supply of other by-products like fruits or medicines. 
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4.3. ENERGY AND BIOMASS IN NATURAL AND AGRI-

CULTURAL SYSTEMS 

 

Since life is basically, an energy transforming process, energy issues are 

central to sustainability. “Everything is based on energy. Energy is the source and 

control of all things, all values, and all actions of human beings and nature”, according 

to Odum & Odum (1976) While social and economic sustainability certainly are 

essential and highly desirable, energy processes and limitations set definite bottom 

lines (Jansen 2000).  

Productivity, i.e. “the output of valued product per unit of resource input”, is 

conventionally, and also according to Conway (1991) standard proposal, calculated 

regarding the three categories land, labour and capital, with energy aspects in all 

three production factors. However, Conway also says that for many purposes energy 

and technology can better be treated as separate production factors. 

Two aspects of energy are particularly central to this thesis: one issue is how 

to quantify energy; the other one is how to understand energy transformations in 

living systems. 

From an energy point of view, the named farming systems (see § 4.2.2) are 

quite different. The more inefficient one is the cattle system, with an approximate 

stocking rate of 0.7 ha/TLU. This system requires 461 Joules of inputs (encompassing 

externalities) to produce one Joule in meat form. Hence, this production system has a 

poor capacity to accumulate energy in the system in the form of biomass. On  the 

other hand, the ecological systems present a high capacity to store energy (1.80E11 

Joules ha-1 yr-1),  followed by  horticultural systems, generally combined with a small 

forest percentage, and  storing energy up to 1.03E11 Joules ha-1 yr-1. The sylvo-

pastoral systems, contrary to the cattle raising on pure grassland, present a good 

capacity to store biomass (2.6E10 to 5.56E10 Joules ha-1 yr-1), (Fig. 4.3.1) 
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Fig. 4.3.1. Production, consumption, accumulation and energy ratio of different farming systems in RJ-Brazil. 
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The natural systems, like the mature forest of the National Park "Serra dos 

Orgãos" in the Atlantic Forest region, stores 272 Mg C per ha whilst its bordering 

fragments in a secondary stage only 87.3 Mg C. The latter two biota have the capacity 

to sequestrate 11.65 and 3.01 Mg C y-1 (Table 4.3.2). The aquatic plants, dominated by 

Typha domingensis, are excellent producers of phytomass in the region. Annually they 

can produce up to 6.3 Mg of C, which is more than a three-year-old regeneration 

forest with an annual yield of only 2 to 4 Mg C. Surprisingly, horticultural production 

systems can produce annually as much as 27.8 Mg C ha-1 (Table 4.3.1), the larger part 

of it being exported though. 

Table 4.3.1. Average aboveground dry matter (AGDM) stock and yearly phytomass 

production of different biota in Teresópolis  

 Area  AGDM Phytomass Production  

 
Area  
(%) 

Area  
(ha) 

DM 
 (ton) 

DM ha-1y-1 
(ton) 

DM year-1 
(ton) 

Total 
 (J yr-1) 

Crops  2.6 138 4408 27.8 3833 2.59E13 
Grassland 31.1 1654 1488 0.5 – 1.5 827 3.21E12 
Forest 
Fragment 36.2 1925 373511 6.7* 12915* 2.28E14 
Forest 
Regeneration 18.8 1001 7435 

2.01- 
4.42 2902 6.62E13 

Others *** 11.4 607 - - - - 
Total 100 5324 386844 3.85** 20478 3,23E14 

Source: Torrico (2004) 
AGDM: Above Ground dry matter 
* Litter fall; ** See Annex 9 and 10 
***Others: corresponds to buildings, streets, rocks, open soils, water, etc 

 

There exists approximately a stock of 386844 ton phytomass dry matter in the 

studied micro-basin (53 km2). The same area will produce annually in 20478 tons dry 

matter representing 2.28E14 Joules (Table 4.3.1). The forest fragments and the forest 

areas in regeneration accumulate more than 92% of biomass in the system, while in 

agricultural systems 90% of the produced biomass comes out of the system. 
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Table 4.3.2. Aboveground dry matter (AGDM) stock and yearly phytomass production 

of different natural systems in Teresópolis compared with selected systems in the 

world 

Natural Systems  
AGDM  

(ton DM ha-1) 

Phytomass 
Production  

(ton DM ha-1y-1) 
Source 

Forest Mata Atlántica (mountain)  606.39 26*  

Forest Mata Atlántica (transition)   617.89 ---  

Forest Mata Atlá (high montane forest)   318.38 ---  

Fragments Mata Atlântica   194.05 6.71 - 7.1*  

Regeneration 3y  7.43 4.42 - 6.6  

Water plants   11.65 12.7  
Forest fragment Chiapas-Mexico  269.95 --- [1] 

Forest Uganda   26.10  [2] 

AGFM: Above Ground Fresh Mater;  AGDM: Above Ground Dray Mater; * Litter fall [1] Jende 

(2005),  [2]Cleemput (2004) 
 

Table 4.3.3. Aboveground dry matter (AGDM) stock and yearly phytomass production 

of different farming systems in Brazil, Cameroon and Mexico. 

Farming system 
AGFM 

(ton FM ha-1) 
AGDM 

(ton DM ha-1) 

Fytomass 
Production 

(ton DM ha-1y-1) 

Energy 
Production 

(J ha-1) 
Source 

Ecological Farm (Mata Atl) n.a. n.a. 28.0 1.6.E05  

Leaf Vegetables- Terê-Brasil  30.5 2.89 23.1 2.5.E05  

Fruit Vegetables- Terê-Brasil 132.2 19.42 38.8 9.0.E05  
Coffee Chiapas-Mexico n.a. 78.2 n.a. n.a. [1] 
Cocoa Agroforest Cameroon  n.a. 451.0 10.3 8.7.E03 [2] 
Leek Bonn-Germany 34.7 6.9 34.7 1.8.E05  
Sugar Cane Chiapas-México  147.3 48.6 48.6 2.7.E06 [3] 

Grass Mata Atlántica* 1.1 0.49 1.5 2.0.E03  

AGFM: Above Ground Fresh Mater; AGDM: Above Ground Dray Mater 
* Grassland for cattle and 1 year abandoned grasses; [1]Jende (2005), [2]Sonwa  (2004), [3]Pohlan 
(2005) 

 

In the Tables 4.3.3 and 4.3.4 the biggest stock of aboveground biomass per ha 

was found in the mature mountain forest with an approximative value of 606.39 ton 

dry matter (DM), on the contrary the pastoral systems present a minimum value 0.49 

ton DM ha-1. The agricultural system with the highest capacity for stocking dry matter 

is the "cocoa agro-forest" with a value of 451 ton DM ha-1. 

In general, the agricultural systems in Teresópolis have the capacity to 

produce around 23.1 to 38.8 ton DM ha-1yr-1, representing high to very high figures. 

In energy terms the highest value represents 9.0E5 Joules ha-1y-1. The sugar cane 



71 
 

system in Chiapas Mexico is the superior production system with a yearly average 

production of 48.6 ton DM (equivalent to 2.7.E06 J ha-1). 

Better combinations of plant, soil, water and nutrient management, with 

livestock or fish integrated into farming systems and with integrated pest 

management processes, are frequently achieving production increases of 50 to 100 

percent or more in a wide variety of circumstances, including some that are 

agriculturally quite adverse (CIIFAD 1999). Secondary forests and forest fallows are 

the most important form of C recovery in tropics due to the extensive area involved 

(Lugo & Brown 1992). Controlled experiments have showed that primary 

productivity increases with plant species richness but often saturates at high 

diversity (Hector et al. 1999, Tilman 2001) 

 

CONCLUSIONS ABOUT ENERGY AND BIOMASS 

Energy is a relevant parameter to study the sustainability of systems. It is also, 

essential to most human activities, including agriculture. Too much energy means 

wastage, global warming and other environmental threats. 

Saving on energy and looking for new production sources will require 

appropriated production systems, whereby available resources are better preserved 

by higher efficiency of energy use. Some agricultural systems can end up producing 

more phytomass than neighbouring natural systems as was the case with horticulture 

in the municipality of Teresópolis. However, the same horticultural systems use much 

more energy to produce the same quantity of energy as that produced by ecological 

systems, indicating a lower efficiency for energy conversion. Increasing energy use, 

climate change and the expected increases in the cost of energy underline the need to 

improve energy use efficiency.  

The primary agricultural production can be directly a good energy producer 

through conversion of natural energy sources like sun and rain into biomass and 

indirectly it can save great quantities of energy through its efficient use. 

In concordance with Nonhebel (2002) fossil energy use efficiency is higher in 

ecological (low-input) crop production systems than in vegetables (high-input), and 

cattle systems. This is caused by the fact that in low-input systems, a relatively large 

amount of the used phosphor, nitrogen originates from non-fossil resources. 

High attention should be paid to the forest in regeneration state; from the 

energy point of view it was proven that these increase the biomass stocks 

considerably in the micro-basin. Also it was observed that the pastoral systems are 

those which store and produce less energy. From that point of view the sylvopastoral 
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systems increase considerably the stock of carbon without reducing the forage 

production which is not the case with the cattle system, also Houghton et al. (1993) and 

Richter et al. (1999) showed similar appreciation. 

The choice of a particular production system will thus have significant 

consequences for the energy yields that can be obtained. Improved energy efficiency 

reduces the vulnerability of producers and consumers to energy price shocks (Outlaw 

2005), reduces the adverse impacts of long-term real energy price increase and 

reduces potential environmental impacts of fossil fuel consumption.  
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4.4. ENVIRONMENTAL AND ECONOMIC EVALUATION 

 

Emergy analysis was accomplished to compare the main Farming systems in 

the Corrego Sujo basin in Teresópolis. Emergy synthesis integrates all flows within a 

system of coupled economic and environmental work in common biophysical units 

(embodied solar energy or solar energy or solar emjoules (sej); (see also § 2.4), 

facilitating direct comparisons between natural and financial capital assets. The 

studied systems were (a) Ecological farm, (b) Cattle systems, (c) Fruit Vegetables, (d) 

Leaf Vegetables, (e) Vegetables mixed systems and (f) Citrus plantation. The emergy 

flows have been calculated taking into account the amounts of natural resources, 

material inputs and services involved in each type of production. To evaluate the 

impact on the basin level, the input data and average yields of 42 crops and 6 

production systems were extrapolated. As materials we consider: seeds, limestone, 

fertilizers, pesticides, herbicide, fuels, and machinery (the latter one considered as 

depreciation of capital investment); as services we consider: manpower, 

administration, transport, taxes, insurance, and social security. The manpower data 

have been expressed in terms of working days of 8 hours ha-1year-1 i.e. md ha-1y-1. 

 

4.4.1. MANPOWER 

 

The agricultural systems that use more manpower are those based on 

horticulture, either this for fruit, leaves or mixed production, using in total 118 

workers/100 hectares, corresponding to 80% of the available household manpower. 

The vegetable systems that conserve a fragment (60% of the area) in the production 

unit use considerably less manpower, approximately 45 workers/100 ha, of which 

65% correspond to family manpower. The ecological systems use low quantity of 

manpower per production unit, since usually the areas dedicated to the agricultural 

production do not surpass 10% of the total area (Fig. 4.4.1) 
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Figure 4.4.1. Family and employed Manpower in different farming systems.  

 

Table. 4.4.1. Relationship of necessary manpower (md) per year for the main 

cultivation  
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Preparation of 
nurseries 

4 2  7 1 5 1 13 6 3    13 7    

Maintenance  2        2         

Transplanting 
and seeding 

15 8 50 10 3 20 12 17 6 8 7 5 38 26 7 27 69 4 

Fertilization  3 9 20 4 6 15 3 3 4 10 2 5 3 4 1 4 17 1 

Watering 7 4 38 5 26 10 7 13 1 3 2 1 1 16 2 1  2 

Weeding 8 28 58 22 9 19 27 84 21 18 23 9 75 77 14 66  16 

Pest Control 3 19 40 3 5 11 5 5 13 30 4 11   7 7 17 3 

Harvest 
44 42 68 19 

11
8 

96 
20
4 

94 3 
11
3 

28 42 
11
8 

16 31 
16
4 

65 253 

Tying  49   12     32         

Placing  posts 6 8   48     3         

Staking  8   8     9         

TOTAL 88 177 273 70 237 176 259 229 53 231 66 73 235 152 69 269 237 279 
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  Harvest  

Figura 4.4.2. General distribution (%) of manpower in horticultural systems 

 

Harvest, weeding, and transplanting are the activities that use the most quantity of 

manpower. The harvest alone uses circa 50 % of the total manpower whilst 39% are 

needed for weeding and transplanting (Figure 4.4.2). The crops that use bigger 

quantity of manpower a year are rocket (279), mint (269), coriander (259), leek 

(237), whereas the crops that use smaller quantity of manpower are lettuce (53), 

carrot (66), cabbage (69) and chicory (70) (Table 4.3.1). 

 

4.4.2. ECONOMIC INDEXES  

Positive economic indices were recorded for all crops cultivated as a monoculture 

system. The relationship costs benefit indicates that all crops recover more money 

than the amount invested. The cultivations with more values are: Onion Evergreen 

(9.87), Paprika (3.7), and Tomato (2.99). The cultivations that present smaller 

relations of benefit cost are: Cabbage (1.12), almeirao (1.18), beet (1.22) (Table 4.4.2). 

Because the crop cycle is always smaller than 1 year the recovery of capital is 

quick. From that point of view the Net Present Value as well as the Internal Rate of 

Return are highly positive (77), whereas the average net income per hectare and per 

year is 15500 $ R for average production costs amounting to 8200 $ R per ha and year 

(Table 4.4.2). 
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Table 4.4.2. Calculation of economic indicators of the most important crops (as 

monoculture) 

Crop 
Production Production 

Cost 

($R ha-1) 

Bruto income 

($R ha-1 y-1) 

Indicators 
 

unit u/ha IRR B/C 

Lettuce box 4239 4869 8478 35 1.74 
Water cress bund 83720 6201 16744 54 2.70 
Broccoli bund 41025 10255 20513 15 2.00 
Onion 
Evergreen 

bund 48760 12350 121900 71 9.87 

Chicory box 6370 7061 19110 83 2.71 
Lady finger box 4672 12652 23360 29 1.85 
China col bund 237553 14833 35633 47 2.40 
Cilantro bund 12863 6236 19295 164 3.09 
Spinach bund 121813 6883 18272 135 2.65 
Paprika box 5002 10826 40016 74 3.70 
Tomato box 2467 14004 41939 111 2.99 
Carrot box 720 2433 5760 28 2.37 
 Zucchini  box 1048 3758 7336 38 1.95 
Almeirão bund 37500 5743 6750 33 1.18 
Beet  box 638 5223 6380 41 1.22 
Col box 3034 5427 15170 102 2.80 
Mint bund 26200 8435 2620 88 1.50 
Leek Bund 12040 12067 42140 79 3.49 
Rocket Bund 50630 5728 15189 54 2.65 
Cabbage Box 2950 13200 14750 62 1.12 
Rocket bund 48000 5728 9600 65 1.68 

 

Table 4.4.3. Average Net Income of the most important farming systems in Côrrejo 

Sujo 

Farming system 
Range of Net Income 

($US  ha-1y-1) 

Average income 

($US  ha-1y-1) 

Eco-farm 120 to 2450 899 

Cattle 66 to 98 78 

Sylvopastoral 66 to 102 84 

Fruit Vegetables 4440 to 10220 6760 

Leaf Vegetables  3600 to 12780 4770 

Mixed Vegetables 4800 to 13480 5110 

Citrus 130 to 189 146 
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The intensive horticultural systems for fruits, leaves or mixed are presenting 

big economic returns, varying according to the fluctuating market prices (see annex 

7). The revenues can reach 3600 up to 13480 $US ha-1. On average, revenues for the 

horticultural systems based on  fruit, leaf or mixed production amount to 6760, 4770 

and 5110 $US ha-1 respectively. From the economic point of view, large differences 

exist with the less intensive systems, like the ecological systems with 2 to 6 months 

fallow and having a net annual income of 899 $US ha-1 on average. Finally, the 

systems that present very low income per hectare and per year are the Cattle, 

Sylvopastoral and Citrus systems with 78, 84, and 146 $US ha-1y-1, respectively. 

 

4.4.3. FARMING SYSTEMS 

 

The horticultural systems of the region are highly intensive, especially the 

horticultural systems based on either fruit, leaf or mixed that make high use of inputs 

like nitrogen fertilizers, pesticides and herbicides. These systems are also the most 

common ones in the region. The ecological system hardly makes use of external 

inputs. The cattle system occupies notably the biggest territorial extension (83.7% of 

the total agricultural area) and it uses low external inputs as is also the case for the 

sylvopastoral and citrus systems. A general overview of the Farming systems is 

presented in the Table 4.4.4. 

All physical, biological and monetary inputs of the studied agricultural systems 

were converted into emergy flows and are aggregated as shown in Figure 4.4.3 

(details in annex 3). 
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Table 4.4.4. General Overview  

 
 Eco-farm Cattle Sylvopas-toral 

Fruit 
Vegetables  

Leaf 
Vegetables  

Mixed 
Vegetables  

Citrus 

Area (%)* 0.1 83.7 2.3 2.9 5.8 2.2 2.8 
Seeds quality good any any good very good very good Good 
Fertilizers any any any High high high Low 
Pesticides any any any High high high Any 
Herbicides any any any middle middle middle Any 
Anti-parasites any middle middle Any any any Any 
% Forest (average) 80 5 15 33 32 32 15 
% Crops Area (average) 18 0 0 66 66 66 84 
Fallow (months/yr) 2 to 6 0 0 0 0 0 0 
Production Losses (%) 18 0 0 14 11 11 10 
Market destination (%) 20 100 100 99 100 100 98 
Irrigation low any any high high high Any 

Principal product diversified meat meat 
Chayote, 
tomato 

salad, cabbage 
Chayote,  

salad 
Mandarin 

* Percent of the total agricultural area in Teresópolis 
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4.4.4. ENERGY FLOW 

 

The ecological system consumes big quantities of renewable emergy (1.79E16 

sej ha-1yr-1), representing more than 80% of the total emergy (Fig. 4.4.4), and this 

input comes mainly from rain and river water, from solar energy as well as from the 

silts being deposited through the rivers in the system. The horticultural systems have 

an average consumption of 1.10E16 sej ha-1yr-1. Both these values represent the used 

emergy coming from natural resources, approaching 15% of their total consumption.  

While efforts to internalize the external costs of the system (soil erosion) in 

monetary units are available in the literature, we offer an alternative approach based 

on emergy synthesis, which enumerates the value of soil based on the environmental 

work required to produce it rather than based on surveys or derived pricing 

techniques.  

The cattle system on the hillsides loses 7.04E15 sej ha-1yr-1 (120330 kg soil 

with 1.8 to 4.2% OM content), this quantity corresponds to 40% of the emergy used 

by the system (fig. 4.3.4), representing 4.6 times more than the ecological system and 

2 times more in comparison to the other systems (Figure 4.4.3). 

It was observed clearly that to the exception of horticulture, the other systems 

hardly have entrances of materials. The most important inputs of emergy are 

materials (33%), nitrogen (19%), organic matter (16%) and electricity (14%) from a 

material total (M) of 4.61E16 sej ha-1yr-1 (Figure 4.4.3). 

In the same way the used quantity of services in the system is 3.1E16 for 

horticultural systems, while the other systems make very little use of services. For all 

the other systems circa 80% of services correspond to manpower that normally 

comes from the family, the second place of the services corresponds to the 

maintenance of infrastructure (7%) and finally 5% corresponds to communication. 
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Figure 4.4.3. Energy flow for energy sources and production systems 
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Figure 4.4.4. Percentage of energy flow for energy sources and production systems 

 

4.4.5. EMERGY SYNTHESIS OF THE FARMING SYSTEMS 

 

A farming system is a natural resource management unit operated by a farm 

household, and includes the entire range of economic activities of the family members 

(on-farm, off-farm agricultural as well as off-farm non-agricultural activities) to 

ensure their physical survival as well as their social and economic well-being. 

Emergy synthesis for each farming system is summarized in the Table 4.4.5. 

Fig. 4.4.3 shows aggregated flows (details in annex 3). The long-term sustainability of 

human economic production and its basis in natural capital stocks is achieved via a 

suite of emergy-based indices. These indices, which relate flows from the economy to 

flows to the environment, were used to compare net yields and environmental 

loading, and to identify more sustainable agricultural methods. The fraction 

renewability (%R) (Table 4.4.5) quantifies the reliance of each system on renewable 

energies. The emergy yield ratio (EYR) compares units of exported energy with 

emergy invested. For agriculture, an investment of emergy (EIR) from the economy is 

made in order to capture renewable emergy from the environment. This ratio 

quantifies the effectiveness of non-renewable resources to capture renewable 

resources. The environmental loading ratio (ELR) is the ratio of purchased and non-

renewable resources to renewable resources.   
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Table 4.4.5. Computed transformities and emergy indices for 7 farming systems in 

teresópolis 

 Eco-farm Cattle Sylvo-
pastoral 

Fruit 
Vegetables 

Leaf 
Vegetables 

Mixed 
Vegetables 

Citrus 

Transformity  
(Tr, sej J-1) 

4.8E4 6.3E7 2.3E5 3.1E5 6.7E5 4.3E5 3.4E5 

Renewability  
(%R) 

66 41 41 15 12 13 43 

Net emergy yield ratio 
(EYR) 

5.34 22.56 19.16 1.25 1.19 1.21 2.78 

Emergy investment ratio 
(EIR) 

0.23 0.05 0.06 4.02 5.26 4.68 0.56 

Environmental loading 
rate (ELR) 

0.51 1.41 1.44 5.66 7.28 6.52 1.35 

Emergy exchange ratio 
(EER) 

1.23 0.47 0.43 0.61 0.92 0.61 1.91 

 

Transformity (Tr).  

Is the inverse value of the system efficiency for a specific product, the solar 

transformity for an item is the solar emergy per unit available energy (sej J-1). Tr = 

(Emergy used) / energy of products. That index evaluates the quality of the flow of 

energy and it allows to do comparisons with other forms of energy of other systems. 

Transformity values vary from 4.88E4 to 6.30E7 sej J-1. The transformity 

values of ecological systems (4.88E4 sej J-1) are lower than that of the systems like 

cattle (6.30E7 sej J-1), Silvo-pastoral (2.35E5 sej J-1), Vegetables on average (4.5E5 sej 

J-1), and citrus (3.3E5 sej J-1). This means that ecological systems are more efficient, 

whereas cattle systems are most inefficient.  

Other agricultural transformities are reported by Brandt-Williams (2001) in 

Florida for corn (1.26E5 sej J-1) and tomatoes (8.6E5 sej J-1), by Cohen (2005) for 

maize in Kenya (1.11E5 sej J-1), by Ortega (2001) in Brazil for Ecological soybean 

(8.8E4 sej J-1), for Chemical soybean (1.0E5 sej J-1), and by (Haden 2003) in Denmark 

for crops and animal husbandry (2.59E5 sej J-1). 

Renewability (%R).  

Is the percentage of the total energy driving a process that is derived from 

renewable sources (%R = R/Y). In the long rung, only processes with high %R are 

sustainable. As renewable resources we consider: rain, uptake of nutrients like 

nitrogen, minerals from soil rocks, products and services obtained from the farm area 

under preservation (according to Brazilian law at least 20% of total area). 

Because of the large amount of non-renewable inputs relative to renewable 

inputs, the vegetable system had the lowest fraction of renewable inputs (12%) 

compared to the citrus system (43%) and to the ecological system (66%). This 
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indicates that the ecological system depended on renewable resources for over 66% 

of its inputs meaning that from an ecological point of view it is the most sustainable. 

Other renewability ratios for agricultural systems are presented in Table 4.4.6.  

The EIR, ELR and EYR offer additional information about the ability of each 

land use to  be related to the larger economic system. 

 

Emergy Yield Ratio (EYR).  

Expresses the net benefit to society from energy sources (Brown 2003), in 

other words the ratio is a measure of how much a process will contribute to the 

economy.  

Because the cattle and silvopastoral systems are based almost exclusively on 

natural inputs, the EYR ratios are as high as 22.6 and 19.2, respectively, as would be 

expected. This indicates that these systems incorporate high free resources from 

nature in to the society or economy systems, but with a high loss of non renewable 

resources (erosion). The ecological system has strong internal recycling which 

renders economic benefit to the farmer and ecological benefit to environment. The 

ecological system value is 5.4. The EYR typical values for agricultural products vary 

from 1 to 5. The lowest value is one, which happens when nature inputs are null (RN 

= 0). The difference above the minimum value measures the cost-free contribution of 

the environment to production. 

The value of EYR for the vegetable systems is closest to unity (1.19, 1.21, 1.25); 

it means that the nature contribution is low when compared to resources from 

economy; so, this system is not able to deliver too much net emergy to consumer 

systems because most parts of inputs are not renewable (e.g.: herbicide, fuel, 

fertilizers, pesticides, etc.). For the citrus system the value is slightly higher (2.78), 

this system do not have high economy inputs, and natural resources are bigger. The 

ecological system has strong internal recycling which renders economic benefit to the 

farmer and ecological benefit to environment. 

Bastianoni (2000) found an EYR value of 1.96 for farms with six different crops 

and livestock in Italy. Other emergy yield ratios for agricultural systems are presented 

in the Table 4.4.6 
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Emergy Investment ratio (EIR). 

It evaluates if a process is a good user of the emergy that is invested, in 

comparison with alternatives. This ratio measures the society’s effort to produce a 

given product in relation with nature’s contribution; it evaluates if the system uses 

the investment adequately. A low value means that the environment has a relatively 

larger contribution than the economy (goods and services), having lower costs and 

being more competitive. This ratio gives a clear vision of the difference between the 

systems in relation to the investment needed for production.  

The intensive vegetable systems values are high (4.02 to 5.26), thus 

demonstrating an economically fragile agriculture due to its dependence on 

purchased inputs from foreign regions. The citrus system has good value (0.56). 

Livestock production, sylvopastoral systems and the Ecological farm show the lowest 

values, 0.05, 0.06 and 0.23 respectively. Those three systems use nature resources 

(free) instead of economy resources (expensive) having lower need of external 

investment and lower production costs. The ecological option demands more 

economy inputs (services) than the cattle systems. More emergy investment ratios for 

agricultural systems are presented in the Table 4.3.6 

Emergy Load Ratio (ELR) 

This ratio is directly related to the fraction of renewable resources, and is 

considered a measure of ecosystem stress due to production (Ulgiati 1998). The 

environmental loading ratio is a direct inverse function of the renewable fraction. 

Vegetables leaf, fruit and mixed systems (7.28, 5.66 and 6.52) produce great 

environmental damage. Also the Catlle systems, silvopastoral systems and citrus 

systems (1.41, 1.44 and 1.35) generate high environmental impact. Ecological 

agriculture instead has lower value (0.51), which confirms greater use of natural 

renewable resources by ecological and organic production techniques. The greater 

environmental loading ratios for the intensive vegetable systems and cattle systems 

compared to the ecological system reflect the environmental cost of using more 

purchased resources.  

Other emergy load ratios for agricultural systems are presented in the Table 4.4.6 

Emergy exchange Ratio (EER) 

The emergy exchange ratio is the ratio of emergy exchanged in a trade or 

purchase (what is received to what is given). The ratio is always expressed relative to 

one or the other trading partners and is a measure of the relative trade advantage of 

one partner over the other. The emergy exchange ratio (EER) is the ratio of emergy 

received to the emergy given in any economic transaction, i.e., a trade or sale. The 
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trading partner that receives more emergy will receive greater real wealth, and 

therefore, greater economic stimulation due to the trade. 

The emergy exchange ratio shows that the transaction of the ecological 

production systems (1.23) and citrus (1.91) do not receive a fair price. The received 

emergy by the transaction demonstrates that the systems export more emergy that 

the one received through the payment of the products. The cattle (0.47), 

Sylvopastoral (0.43), vegetables fruit (0.61), leaf (0.92) mixed (0.61) give less energy 

to the buying system than to the producing system. 

 

Table 4.4.6. Comparison of emergy indicator for different faming systems 

Farming System Y Tr 
%
R 

EYR EIR ELR EER 

Ecological soybean (1) 2.57E15 8.8E4 92 1.09 1.19 0.46 1.45 
Organic Soybean (1) 2.39E15 8.1E4 78 1.27 1.40 0.42 1.35 
Chemical Soybean (1) 3.54E15 1.0E5 74 1.35 3.40 0.23 2.51 
Herbicide Soybean (1) 3.80E15 1.1E5 31 3.25 3.70 0.21 2.69 
Ecological farming 
system (2) 

4.77E15 2.0E5 69 3.36 0.4 0.82 0.02 

Eco farm integrated 
system (5) 

- 2.8E5 75 11.9
0 

0.09 - 5.52 

Sitio santa Helena (5) - 8.5E5 27 2.52 0.66 - 2.33 
Sitio tres lagos (5) - 2.3E6 25 7.82 0.15 - 9.91 
Bovine meat (sej kg-1) (4) 9.90E13 2.1E12* 8 7.83 - 11.0 - 
Danish agriculture (6) - - - 1.17 5.91 9.67 - 
(1) Ortega (2001); (2) Unicamp (2004); (4) Serrano (2001); (5) Roosevelt-Agostino (2001); (6) Haden (2003)  

* sej kg-1 

 

4.4.6. EMERGY SYNTHESIS OF THE  WATER BASIN CORREGO SUJO  

 

The added data for the Corrego Sujo basin show in general that the 

consumption of materials and services expressed in emergy terms are very low in 

comparison to the total emergy used in the basin. This is justified given the minimum 

area, approx. 1.8% occupied by crops under intensive use of inputs coming from 

human economy. The biggest quantity of emergy is from natural renewable and not 

renewable sources, mainly in form of water, minerals and organic matter (Table 

4.4.7). The basin has high capacity to store biomass and in emergy terms its value is 

2.1E18 sej.  
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Table 4.4.7. Summary Table of the yearly emergy flows for Côrrego Sujo agriculture, 

2005. 

Name of flow Quantity 

(E+17 sej) 

Local renewable sources (R) 318 

Local non-renewable sources (N) 238 

Purchased resources (M) 0.41 

Services and labor (S) 0.04 

Emergy Yield (Y) 556 

Feedback from economy (F = M  S) 0.45 

Biomass saved in system 21.7 

 

The loss of organic matter (3.5% average soil content) through the soil erosion 

for the whole basin is of 2.38E19 sej, in economic terms this would represent 

between 1.7 and 4.9 million dollars per year.   

 

Figure 4.4.3. Overview diagram showing the main pathways of emergy flows in 

Côrrego Sujo agriculture, 2005. 

 

The principal renewable flows are sunlight, rainfall and minerals. Purchased 

goods, fertilizers, fuels, and services are also shown. Internal production systems 

include forests and forest in regeneration (1 to 3 years old), citrus orchards, intensive 

and ecological farming; livestock are shown in Fig. 4.4.4.  
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Table 4.4.8. Computed transformities and emergy indices for the Corrego Sujo Basin. 

Emergy indices Parameter Value 

Transformity (Tr, sej J-1) Y/Ep 1.8E5 

Net emergy yiel ratio (EYR) Y/F 1234 

Emergy investiment ratio (EIR) F/I 0.001 

Enviromental loading rate (ELR) (NF)/R 0.75 

Renewability (% R) 100(R/Y) 57 

Emergy exchange ratio (EER) Y/income*3.18E12 3.05 

 

From Table 4.4.8 it can be deduced that in general the basin does not have 

dependence of purchased resources (EIR 0.001). The sources from the economy 

(material and services) increase the environmental load indirectly because it used a 

great quantity of non renewable sources to manufacture them. The environmental 

impact is moderate (ELR 0.75) as the system makes high use of renewable resources. 

The efficiency of the basin as a system is highly positive (EYR 1234) indicating that it 

takes more emergy than that it takes from the economic system in form of materials 

and services. It represents a positive contribution to the economy. The EER of 3.05 

indicates that there exists a certain decapitalization of the system, because it exports 

emergy to the urban systems at a moderate to average level. In general, the basin 

considered as a system is characterised by a half rate renewability (% R = 57) 

indicating again that the biggest contributions come from natural sources, and 

showing that the ecological sustainability is moderate to good.  

Table 4.4.9. Sensitivity analysis for the water-basin Côrrego Sujo 

Alternative systems to actual 

cattle production 

Variable Change  

Economic Ecologic 

Sivopastoral o + 

Ecological or organic systems + +++ 

Intensive Vegetable systems +++ o 

Citrus + + 

Forestry ++ +++ 

Follow - ++ 

(+) low positive impact; (++) middle positive impact; (+++) high positive 

impact; (-) low negative impact; (o) neutral 

 

The biggest positive impact in terms of emergy indices was achieved through 

the substitution of the cattle production by ecological systems. In this case the use of 

non renewable energies decreased considerably up to a value of 1.17E15 sej ha-1yr-1. 

This value was obtained from the soil erosion at 3.5% of organic matter. In economic 

terms this means 0.3 to 0.8 million dollars/year is spent for non-renewable energy in 

the whole basin, which is a quite considerable quantity for such a small area, 
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representing about 50% of the annual investment in the basin. Substituting these 

cattle systems for ecological or organic systems will convey clear advantages in all 

aspects, e.g. from an economic aspect the revenues are multiplied 4 to 12 times, 

ecologically the negative impact decreases, and the stock of carbon and biomass 

increases considerably. 

In Teresópolis, annual agricultural crops and short rotation perennials (mixed 

systems) tend to give the greatest economic productivity per hectare per annum but 

have marginal or even negative returns on emergy due to inputs for soil preparation, 

fertilizing and harvesting in accordance with Holgrem (2003) who studied crop 

rotation and its effect on the emergy ratios. Long rotations and low input plantation 

and natural forestry (eco-farm) have lower economic productivity per hectare per 

annum but can more easily be managed in a sustainable way and finally, can be grown 

on marginal land too poor for food production. These advantages show up as high 

emergy yield ratios  

Farmers that organize their operations by drawing on high yield emergy 

sources (vegetable systems) are able to displace their fellow farmers who continue to 

organize their farming systems around local renewable emergy flows - a process 

observed in Teresópolis as a fairly rapid shift from annual farming systems to 

intensive chemical use farming and inefficient livestock. 

The results from the vegetable systems demonstrated the increased yield per 

area resulting from the investments in high energy resources (e.g. fertilizers, 

services). However, the dependence on these inputs reduces the fraction of 

renewable energy and increases environmental degradation, making these systems 

less sustainable relative to systems more dependent on renewable energies.  

Dependence on non-renewable energies for larger yields may be a good 

strategy when non-renewable energies are readily available. However, when non-

renewable energy sources are no longer available, or environmental degradation 

prohibits their use, agriculture will need to be reorganized to rely on the limited flow 

of renewable resources.  

4.4.7. CONCLUSIONS ECONOMIC AND ENVIRONMENTAL EVALUATION 

 

By quantifying the inputs to agricultural system on a common basis emergy 

analysis comparisons across agricultural systems are facilitated and activities or 

sceneries to achieve greater sustainability can be identified. The studied systems 

were the vegetables (leaf, fruit and mixed), ecological, cattle production, 

syslvopastoral, and citrus systems. 
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The horticultural systems use more manpower in comparison to the other 

systems, the ones that uses less are the cattle systems. Due to the forest handling and 

agroforestry inside the same property, the ecological systems in general, make low 

use of manpower per hectare. But if it takes exclusively into account the agricultural 

area this option uses more manpower than that of all other studied systems. The 

horticultural intensive systems in general obtain better net income, they are also the 

most dependent in inputs coming from the economy and for this reason more 

unstable. They contribute also less to the economy of the region, because of their low 

use of renewable resources. 

Cattle production is one of the most important components of agriculture in 

Teresópolis, being the main consumer of natural resources all together. Cattle production 

contributes to the degradation of resources, namely, land degradation, water scarcity and 

pollution, global warming, and diminishing biodiversity.  

In general terms the cattle systems cause bigger environmental damage and 

they have the smallest yield per hectare in economic and energy terms. Although 

these do not depend on resources coming from the economy they use many non-

renewable resources. The erosion is the most important factor in terms of non-

renewable resources. In economic terms this soil loss represents a very high value. 

The vegetable systems had large amounts of energy invested in irrigation, 

fertilizers and fuels, and the cattle systems use great quantities of non-renewable 

resources, leading to a loss of autonomy of producers in relation to technology and 

prices fixed abroad. The ecological systems demonstrated potential gains in 

sustainability by reducing the energy devoted to these inputs. Because large amounts 

of non-renewable energies are required to supply water and nutrients to fields, 

finding methods to reduce these inputs has great potential to increase the 

sustainability and decrease the environmental loading of agricultural production.  

The substitution of the cattle systems for any other agricultural or forest 

system represents economic and environmental clear gains. The best options were 

the ecological, agroforestry and forest systems. 

The largest value of sustainability corresponds to the ecological systems in 

ecological terms and also it is the only one that has the capacity to save capital in form 

of biomass in the system. These systems use fewer resources from economy and 

more natural renewable resources, which guarantee its sustainability. They ensure 

the survival of the producer throughout the time and the preservation of the 

biodiversity. 

Emergy evaluation with similar findings for other agricultural systems were 

published by Pimentel (1993), Cohen (2006), Martin (2006), Ortega ( 2001), Serrano 

(2001), Roosevelt-Agostino (2001) and Haden (2003).  
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4.5. ECO-VOLUME AND RESILIENCE INDEX 

 

4.5.1. ECO-VOLUME 

 

Eco-volume (V_eco), is the aboveground quantifiable space or volume limited 

by a uniform vegetation stand and its height, within which coexist wide interactions 

among biotic and abiotic components. Eco-volume is the product of the area occupied 

by a uniform type of vegetation and its eco-height5.  

The forest systems have the highest values of eco-volume, varying between 

44500 m3 ha-1 for semi-arid forests in northeast Brazil up to 250000 m3 ha-1 for 

primary mountain rain forests in the Atlantic region. The aquatic plants dominated by 

Typha domingensis present 9500 m3 ha-1 of eco-volume. The highest values of eco-

volume in agricultural systems (average: 90000 m3 ha-1) correspond to agroforestry 

systems (coffee and cocoa), and ecological systems. The horticultural systems and 

grassland have reduced values averaging 24000 m3 ha-1 (Figure 4.5.1). 

The importance of the eco-volume concept is its emphasis on the 

interrelationships between species living within the boundaries of a space or volume 

(area x eco-height). These interactions are as important as the physical factors to 

which each species is adapted and responding. Each eco-volume encompasses a 

biological community (or biocoenosis defined by Möbius 1877) adapted to specific 

conditions in a given place (Tansley  1935).  

The functionality of the eco-volume tended to be overlooked. Janssens et al. 

(2004a) indicates that the eco-volume has an effect on precipitations (additional 

precipitations also coined as eco-precipitations6 are generated), as well as on 

regulation of other ecological functions like microclimate and water cycles. Eco-

volume leads directly into such areas as water cycling, Gross Primary Productivity 

(GPP), Net Primary Productivity (NPP), and energy flow. Eco-volume is related too 

with the landscape ecology concept proposed by Troll (1939), whereby interactions 

between environment and vegetation are investigated. 

                                                        
5 Eco-height renders a weighed average over time and across the different vegetation community 

fractions. In this case, a vegetation reaches community status as from canopy closure onwards and its 

height will be given by the domineering (upper layer) plants. 

6 Eco-precipitations are complementary rains generated by ecological sound management of a watershed 

basin. 
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Inside each eco-volume one can distinguish a vertical structure, for example in 

forests one can recognize different strata like an herbaceous stratum, a bush stratum 

and a tree stratum. The eco-volume is subject to either periodic or abrupt changes 

based on climatic cycles or due to man-made disruptions, like deforestation or 

extraction of plant material. These changes can also be natural through 

phytosociological succession. 

Bio-volume (Vbio), is the total volume of plants (trees, bushes, herbaceous, etc) 

taken by their corresponding biomass. Hence, bio-volume of a plant is its biomass 

divided by its corresponding   specific weight.   The concept is based on the 

hypothesis that plants mainly compete for space, Janssens et al. (2005), Diaz et al. 

(2004), CIID (1998), Kolnaar (2006), Hansen (1999). The competition is not only 

aboveground but also belowground where occupation of soil space is of primary 

importance (Casper 1997).  

The natural systems with a bigger value of Vbio are the mature Atlantic 

rainforest 1575 m3 ha-1, and to a lesser extent its fragments with 912 m3 ha-1. The 

systems with less Vbio are the water plants, caatinga7 and the forest in regeneration 

(65, 129 and 221 m3 ha-1 respectively). The ecological cropping of coffee in the 

Northeast Brazil has a great bio-volume value of 739 m3 ha-1. Other agricultural 

systems with a very good value of Vbio are the cocoa agroforests in Cameroon (396 m3 

ha-1). The agricultural systems with less Vbio are the grass systems, Horticultural 

system and the sylvopastoral system (13, 32 and 74 m3 ha-1 respectively) (Figure 

4.5.1) 

The potential eco-volume (Vpot) is the state of full maturity of a forest 

sometimes called “climax”. This stage shows a structured functional unit in 

equilibrium of energy and matter flows between its constituent elements, attaining 

maximal interactions between organisms (plant, animal and other living organisms—

also referred to as a biotic community or biocoenosis) living together with their 

environment (biotope), functioning as a limit concept. Therefore, we calculate 

Vpot=Vloss+Veco. 

The Vpot for the region of Teresópolis is given by the mature forest of the 

National Park “Serra dos Ôrgaos” (250000 m3 ha-1).  For the waterlogged areas where 

only aquatic plants may thrive Veco amounts to 120000 m3 ha-1, whereas for the coffee 

producing region in the northeast in, we took an average of 180000 m3 ha-1. 

The Volume-loss (Vloss), equals Vpot-Veco, and represents the regression of an 

ecosystem in terms of Veco. The bigger the Vloss, the bigger be the ecosystem losses in 

quality, function, and services (Figure 4.5.1).  

                                                        
7 forest of stunted trees and spiky scrub in the regions of small rainfall in Brazil 
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The Vloss can be connected with the yield per hectare expressed in dry matter 

(ton), energy (MJ) or money (€) to determinate the attrition or conversely the 

efficiency of the systems as a function of Veco. For example to generate a ton of dry 

matter in the grass and citrus systems it was necessary to sacrifice 166067 m3, and 

145397 m3 of Veco respectively. That represents roughly the volume of an average 

middle football stadium. That high attrition is due to the very low productivity of 

these systems.  

The most efficient system in Teresópolis is the Fruit-vegetables system with an 

average value of 3451 m3 * ton DM-1 * ha-1. If we divide the Vloss by yield expressed in 

Euros it follows that to generate hundred Euros it is necessary to sacrifice an eco-

volume equivalent to the volume of a stadium (Figure 4.5.2)  

From this point of view the cattle, sylvopastoral and citrus systems are the less 

efficient systems and the more destructive of the ecosystems. 
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Figure 4.5.1. Eco-volume (Veco), bio-volume (Vbio)  and volume-loss (Vloss) of agricultural and natural systems 
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Figure 4.5.2. Eco-volume attrition. Volume loss (Vloss) needed to produce dry matter (Vloss Y-

1ton-1 dry matter-1  ha-1) and monetary units (Vloss/Y €-1 ha-1) 

 

The plants compete for space to have mainly bigger access to light, the 

aggressive plants develop volume quickly and not necessarily dry matter. The plants 

that do not have the capacity to develop volume quickly, they have adapted making 

low energy use in the respiration or increasing their photosynthetic capacity. The 

plants that not were able to adapt (most of the crops) usually die or decrease their 

yield. Vitta (n.a.) indicates that the loss of yield of a crop is more sensitive to 

morphological parameters (increase of volume) than to physiologic parameters 

related to the photosynthesis. 

The distribution of plants, its structure and the performance of the community 

in the ecosystems (eco-volume) are determined by the distribution of resources or 

better use of these through some species with large competing capacity for space 

(bio-volume and bio-surface8). 

Crowding intensity (Ci), represent the relationship between Bio-volume with 

its actual Eco-volume (percentage of Veco occupied by Vbio) (Ci=100*(Vbio/Veco). Its 

assessment is very diverse, and it will be mainly differentiate for natural and 

agricultural systems. In natural systems, in general, the bigger the Ci, the better will 

be the Veco quality. In agricultural systems the spacing or density and weed control 

play a very important role to reduce the competence, and this activities impact in the 

reduction of Ci. That means, the lower the Ci, the better will be the ventilation, bigger 

                                                        
8 Bio-surface is the total surface of a living plant i.e. of leaves, twigs, stems, branches and roots 
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the CO2 availability, and lower the plague and illnesses incidence, especially fungous. 

The crowded systems stands, at the population level, delay the development of size 

between neighbours, plant weight, increase mortality rate (Ballare et al 94; Weiner 

1990). Among the best characterized population responses to increased plant density 

(number of plants per unit area) are: (i) reduction in individual plant size (weight), 

(ii) increase in mortality rate, and (iii) development of size inequalities among 

neighbours (Myers 1996). 

Difficultly Ci surpasses 1% so for natural systems as for agricultural systems, 

e.g. the plants in grass system are very crowded, reaching a value of 1.41%. The 

forests in regeneration on the same way has a high density of plants and a high bio-

volume (Ci=1.04%). The lower values were for the sylvopastoral system (0.03%) and 

citrus (0.07%), this is justified because the formation of big spaces between trees (6 

to 12 m), and in citrus systems (each 6 m); and also because exists a big weed control 

and pruning. 

Ci is bounded also to the competition concept, in this case the competition for a 

limited space. The competition is the interaction among individuals, provoked by the 

demand common of a limited resource, and that it drives to the reduction of the 

performance of those individuals Clements et al. (1929), they concluded also that, 

competition is purely a physical process such crowding. On the contrary for Went 

(1973) the competition is an overrated factor in the plant world. Direct competition 

for space and light between plants does not start before the available surface is 

covered and plants are large enough to withhold light from their neighbours. 

Therefore competition for light and space will start earlier in high density 

populations, with plants growing close to each other, than in low density populations 

Kolnaar (2006). 

In the contrary sense of Ci the Wesenberg factor (Wf), is introduced in order to 

better appreciate the ability of a community plants to colonise an environmental 

space (= Veco / Vbio or 1/Ci). 

The citrus system with low Vbio colonizes bigger space (1466), sylvopastoral 

(1837). The grasses and vegetables have less capacity to colonizing. In natural 

systems the forest in regeneration presents the lowest Wf  value (96), the biggest 

forest Uganda (442) (figure 4.5.3).  
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Figure 4.5.3. Wesenberg factor (Wf) and crowding intensity (Ci) of agricultural and natural systems 
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4.5.2. RESILIENCE INDEX 

The Ri index measures the resilience of the systems by comparing bio-volume 

(Vbio) with the potential eco-volume (Vpot). Bio-volume represents the current state of 

the systems and Vpot represents the state in equilibrium of the ecosystems. 

Resilience is not a new term, it has found application in many different fields, 

and from its origin is considered the capacity to return to a previous good condition 

(equilibrium). Pimm (1991) defines it as a measure of how fast (time) a system 

returns to an equilibrium state after a disturbance. Holling (1973) defined it as a 

measure of how far the system could be perturbed without shifting to a different 

regime (persistence). Schulze (1994), Ehrlich (1986), Walker (1992) defined 

resilience as the ability of ecosystems to resist stresses and shocks, to absorb 

disturbance, and to recover from disruptive change. Resilience is a buffer against 

environmental changes or disturbances (Vergano 2006 ). 

 

For us resilience relates to the continuity of ecosystems and their ability to 

endure changes, disturbances, stresses as well as to its capacity to rebuild 

itself until an equilibrium level, at which it is capable of achieving its 

ecosystems functions, and providing goods and services. 

The more resilient the ecosystem, the faster is the returning process to the 

original long lasting equilibrium state, the bigger the ability to tolerate 

changes, disturbances and stresses, and the higher is the probability of 

maintaining the efficiency of  ecosystems’ functioning. 

The systems with indices between 0.3 and 0.5 possess high resilience capacity. 

Above 0.5 the systems are approaching climax stage. Indices between 0.1 and 0.2 

represent systems with average resilience capability, those smaller than 0.1 are 

indicative of low resilience. 

The agricultural systems with bigger resilience index (Ri) were Coffee 

Nordeste in Brazil (0.41), Cocoa in Cameroon (0.22), Coffee in Chiapas Mexico (0.14) 

and ecological horticulture in the Mata Atlântica (0.12), all four agroforestry systems. 

The lowest indices correspond to the grass systems (0.005), citrus (0.006), vegetables 

(0.013 on average) and sylvopastoral (0.029) (Fig. 4.5.4). 

The forest systems present middle to high resilience. The Atlantic rain forest is 

near the climax level. The aquatic plant systems and the forest in regeneration (3 year 

old) present a low resilience index (0.054 and 0.088 respectively). The lowest index 

corresponds to a young Caatinga with only 0.052 (Fig. 4.5.4). 
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Figure 4.5.4. Resilience index for natural and agricultural systems 
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Figure 4.5.5. Bio-volume, eco-volume and resilience line, ecosystem stability in small perturbed and low stressed natural 

systems, and in high perturbed and high stressed low resilience systems. Ecosystem stability as a function of recovery time 
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When agricultural systems like cattle and vegetable systems are 

predominant in the landscape, the natural system can not guarantee the provision 

of the same goods and benefits as in the previous equilibrium state, and thus have a 

very low resilience. The lower the natural system's capacity to adapt to changes, the 

higher is the risk to decline (Fig. 4.5.5).  

The graph shows situations in relation to the stability and resilience of 

ecosystems. The left part of the graph, or high resilience prevails when a system 

generally approaches stability (or climax).  The latter stage can suffer small types of 

perturbations or stresses, the impact of which can be reverted quickly and easily to 

the stable equilibrium state e.g. small deforested areas in the rain forest. The second 

situation to the right, - low resilience -, occurs when stress and perturbations are 

bigger. Consequently, the ecosystem presents difficulties returning to the stability 

stage or needs a long time and large resources e.g. current agricultural systems and 

cattle systems that dominate the landscapes in the Atlantic rain forest region (Fig. 

4.5.5). 

 

4.5.3. RESILIENCE AND BIODIVERSITY 

 

The environmental services of biodiversity are certainly significant, probably 

much more so than the direct benefits of biodiversity in the form of material goods 

(Myers 1996). Biological diversity appears to enhance the resilience of desirable 

ecosystem states, which is required to secure the production of essential ecosystem 

services (Elmqvist et al. 2003). Species that directly or indirectly influence the 

ability of the ecosystem to function will enhance resilience, to the contrary of sets 

of species that do not have a significant role in altering the states of the ecosystem 

(Walker 1992).  

We found a statistically significant correlation of 0.93 (+/- 0.06) between Resilience 

index and Richness at 99% of confidence level. The model based on the resilience 

index explained 87.3% of the variability. The Atlantic rain forest has the biggest 

number of species (2639), while surprisingly the cocoa agroforestry in Cameroon and 

the coffee agroforestry system in North-East Brazil have a larger number  of species 

(120 and 122 respectively)  (Fig. 4.5.6).  

 

                                                        
9 Species with DBH bigger than 5 cm on 0.8 hectare. Thier (2006); Seele (2005); Wesenberg (personal 

communication) 
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Sylvopastoral 0,029 3410 
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Coffee Chiapas-Mexico 0,142 99 
Cocoa Agro-forest  0,220 120 
Coffee Nordeste-Brazil  0,411 122 
Caatinga Teresina-Brazil 0,052 16 
Water plants 0,054 6 
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Forest Uganda  0,154 43 
Forest fragment Chiapas 0,198 64 
Fragments Mata Atlântica 0,365 1104 
Forest Mata Atlântica 0,630 2634 

Figure 4.5.6. Simple Regression - Resilience index vs. Richness. The output shows the results of fitting a linear model to 

describe the relationship between Resilience index and Richness.  The equation of the fitted model is Resilience index = -

0,0075 + 0,0024*Richness. Correlation Coefficient = 0,934. R-squared = 87,295 percent 

                                                        
10 Gibson 2000 
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Jones (1995) affirms that some connections exist between resilience and 

biodiversity. Biodiversity can make an important and positive contribution to ecosystem 

resilience. For Ricklefs (1993) and Perrings (1995) biodiversity could supply the most 

important service in natural systems. However, many authors are uncertain as to the exact 

contribution of species composition and richness to the ecosystem dynamics (Perrings 

1994b; Solbrig 1991, Schulze, 1994). Johnson et al. (1996) says that no pattern or 

deterministic relationship needs to exist between species diversity and the stability of 

ecosystems. Ecosystem processes often appear to be quite resilient to biodiversity decline 

as they can keep on supplying environmental services after loosing a good number of 

species and large numbers of populations (Lawton 1994 cited Myers 1996).  

It is incorrect to say that we can loose lots of species with impunity. A cut-off stage 

would (eventually) arrive when there would be simply too few species to maintain basic 

ecosystem functions (Myers 1996). The same author find that biodiversity contributes an 

environmental service of semi-absolute value in the sense of reducing severe risk but that it 

plays only a relatively minor role in supplying many other services. Paine (1969), Holling 

et al. (1995) affirm that resilience may be linked to the prevalence of a rather limited 

number of organisms and groups of organisms (keystone species). 

 

4.5.4. CONCLUSIONS ECO-VOLUME AND RESILIENCE 

 

Given the difficulty to determine interactions between biotic and abiotic 

components in ecosystems, and considering the ecological importance of the vertical 

structure in vegetation communities, eco-volume is an important parameter to measure 

the ecological function and quality of natural systems, and their interactions with 

agricultural systems.  

Increasing eco-volume is important to the long-term health of ecosystems. 

Fragmentation and perturbation of forest ecosystems (reduction of eco-volume) 

represent interruptions and/or destructions of both the horizontal and vertical 

connectivity, as they impact negatively on the ecosystem functionality. Hence, provision 

of goods and services for the human well-being as well as for wildlife and plants cannot 

be supplied any longer. 

In agricultural systems bio-volume (Vbio) is controlled by the farmers with 

different purposes, like weed control, pruning for yield achievement, adaptation to 

machinery, etc. Depending on the system, Vbio and biomass production usually remain 

constant, as illustrated by most systems (grasses, horticultural, cane of sugar, citrus). 

The ecological and agroforestry systems tend to increase their Vbio at a slow rate until 
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they remain almost constant. This stage for these agroforestry systems is to be 

considered as “equilibrium point” between agricultural and natural systems, where 

resilience index, eco-volume, bio-volume, biodiversity and energy flow are all larger and 

more efficient. 

An alternative measure (index) of resilience was proposed by considering the 

actual Vbio as a function of the potential eco-volume. By means of this method it is 

possible to measure very easily resilience and its evolution in time. This method allows 

comparing natural and agricultural systems with the same units. It also enables 

integrating other variables like biodiversity, energy flow, accumulation of carbon, etc. to 

obtain a better scenario likelihood of the ecosystems capacity to return to their original 

climax equilibrium state. It was showed that there does exist a high positive correlation 

between resilience index, biomass, energy efficiency and biodiversity. 



105 
 

 

CHAPTER V 
 

GENERAL CONCLUSIONS 

In this thesis, we define agroclimax as the equilibrium point between the natural 

systems and the agricultural systems. The previous chapters analysed characteristics of 

agricultural and natural systems in terms of bio-diversity, energy, ecosystems function, 

and resilience. At the same time, ways in which the agricultural systems can interact 

positively with the natural systems, were analyzed. The evaluated systems for this 

purposes were:  (i) Leaf vegetables systems; (ii) Fruit vegetable systems; (iii) Mixed 

Fruit and Leaf Vegetable Systems; (iv) Citrus Production systems; (v) Ecological 

Production systems; (vi) Cattle Production systems, (vii) Sylvopastoral system, (viii) 

Forest fragment and (ix) Forest in regeneration stage (1, 2 and 3 years old). 

In the introduction 6 hypotheses were proposed on how we can evaluate 

agricultural and natural systems such as to find equilibrium between them. In these 

conclusions, we review and conclude about above mentioned hypotheses. 

HYPOTHESIS 1. CONTRIBUTION OF THE AGRICULTURAL SYSTEMS (AS) TO THE 

BIODIVERSITY CONSERVATION 

Agricultural systems can reduce the pressure on the fragments and deforested 

areas, they can improve the cycle of water, influencing on the dispersion of 

fauna and flora, offer better resources and habitat for the survival of plants 

and animals, and; also play an important role as bio-corridor and buffering 

reserves. 

It seems contradictory to say that Agricultural Systems (AS) can influence 

biodiversity, at times even positively, although they are the main responsible for 

imbalances of natural systems, and hence, for loss of biodiversity. As starting hypothesis, 

we assumed that present natural systems are deteriorated. Topics like management and 

conservation activities of genetic resources were analyzed. From this point of view, and 

starting from a deteriorated current state of the natural systems we conclude that AS 

can have great influence on the management and conservation of the biodiversity in the 

Municipality of Teresópolis.  

Ecological farming systems, agroforestry- and sylvopastoral systems, as well as 

perennial crops help reducing pressure away from the fragments and deforested areas. 
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It improves the cycle of water, and it has also positive influence on the dispersion of 

fauna and flora. They offer better resources and habitat for the survival of plants and 

animals than the cattle and horticultural systems. Also, they play an important role as 

bio-corridor and as buffer and finally, it also introduces a modest biodiversity level in 

these degraded areas of the Atlantic forest, where at the moment a single grass 

dominates more than 31.1% of the surface. 

In ecological systems, the spatial and temporal combinations of crops, trees and 

animals are the main strategy in order to distribute crops equally in number and area. 

The system houses very high quantity of species, up to 99 in the study region. There 

exists a high combination of cultivated and not cultivated species. The richness and 

stability in ecological systems make them important sites for in situ conservation and 

provide a usable framework for maximizing their benefit to biodiversity. 

Forest and cattle present strong trade-offs, threatening the conservation of 

biodiversity. Cattle are the main cause for forest fragmentation, rupturing dispersion of 

flora and fauna, and also favoring bigger soil erosion. 

The sylvopastoral system (SPS) maintains low indices of diversity and is widely 

dominated by grasses. The great difference with the cattle systems is the richness of 

species, being increased fourfold. Significant portion of the original biodiversity can be 

maintained within pastures. In Côrrego Sujo thirty four timber species were identified in 

SPS,  providing structures, habitats and resources that may enable the persistence of 

some plant and animal species within the fragmented landscape, thereby partially 

mitigating the negative impacts of deforestation and habitat fragmentation. Other 

additional positive effects are the production of timber, forage and fruits, providing 

shade for cattle, and promoting soil conservation and nutrient recycling. The 

management of natural regeneration timber species in SPS and its implementation 

represents a low cost alternative for the producer. These systems can be applied 

especially for farmers with small long term investment capacity. The native species with 

positive characteristics for these systems were identified. 

Ecological and sylvopastoral systems contribute additional benefits to the local 

population, microclimate, flow of nutrients, whilst dissipating the dynamics of plagues 

and diseases, and decreasing the effects of fluctuating prices of the market. The 

vegetable system has a good crop diversity index, and a good quantity of species is 

equitably distributed. Eight from more than fifty commercial crops are the base of the 

economy and occupy circa 40% of the agricultural area. The farmers manage on average 

6 species per hectare, with a tendency to reduce it. 

Forest areas in regeneration present high plant diversity and density of 

individuals. If fallow land is left idle then vegetation is dominated by few individuals of 

fast development. All studied forest fragments showed high diversity, despite different 

management and use.  
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Biodiversity can be considered as part of the entire capital stock on which development 

is based, in spite of farmers not appreciating biodiversity positively. However, they have 

no exact knowledge of their benefits. At the moment, the forest fragments represent for 

the farmers mainly their water source, and are considered very less important as wood 

source or supply of other by-products like fruits or medicines. 

 HYPOTHESIS 2.  THE AGRICULTURAL AND NATURAL MOSAIC IN THE 

LANDSCAPE  

 

Economic, geographical and environmental positive conditions for the 

agriculture make that crop monoculture systems increase and dominate the 

landscape. In these landscapes that are mosaics of agricultural systems and 

natural vegetation the ecological function of the natural systems (fragments) 

are affected by the surrounding agricultural systems.  

The production conditions are very favourable for the agriculture, especially for 

vegetable production systems and some fruits like citrus. The good conditions are 

determined by physical factors like climate or water availability. Also the region is very 

close to a big market with a favourable demand for agricultural products. The 

manpower is cheap and abundant, whereas soil is said to be available at a fair  price. 

These good production characteristics are threatened by deforestation to the point that 

even  not suitable soils is considered for cultivation. Further, the intensive production 

systems themselves impair the quality of water resources. In many areas erosion threats 

the sustainability of the production systems.  

The landscape is dominated by forests (fragments, 36.2%), grasses (31.1%) and 

forest regeneration (18.8%). The cropped area is only 2.6% (1793 ha) of the total 

available land. From this 1793 ha under agricultural production, 74% (1327 ha) 

correspond to cattle production 24% is occupied mainly by horticultural systems, and 

the rest (2%) are sylvopastoral systems. 

The cattle raising is the biggest agricultural system in surface terms, and 

unfortunately, it also causes most fragmentation, not only altering the ecological 

functions of the forest but also the behaviour and the dynamics of animal and plant 

populations inside the remaining forest fragments.  

Extensive forests areas were replaced by grasses, leaving small forests fragments not 

larger than 16 ha on average.  Hence,  isolation of these fragments is constantly growing 

as are  the edge effects too. This landscape tends to change little by little, replacing 

pastures either by horticulture in places with steeper slope (biggest tendency), by fallow 

to a lesser extent  or by regeneration forest. 
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HYPOTHESIS 3.  AGRICULTURE AS CONSUMER AND PRODUCER OF ENERGY  

 

The primary agricultural production can be directly a good energy and 

carbon producer through conversion of natural energy sources like sun and 

rain into biomass and indirectly, it can save great quantities of energy 

through its efficient use. 

Energy evaluation has great relevance to study the sustainability of agricultural 

systems (AS), not only because energy is  a fundamental part of human activities but also 

because it plays an important role in agriculture and in the global economy. The growing 

dependence on non renewable energy of the AS results in  ecological and economic 

uncertainty, whereas  waste and overuse of these non renewable resources threat the global 

environmental balance. 

The main primary agricultural production in Teresópolis is not a good energy 

producer. Its energy conversion from natural resources into biomass is small. Hence, 

agriculture around Teresópolis can not save great quantities of energy, neither directly 

nor  through efficient use of energy. Cattle system, that occupies the largest area in the 

landscape is the most inefficient one in terms of energy, requiring 461 Joules of inputs to 

produce one Joule in meat form. It  has a poor capacity to accumulate biomass in the 

system (energy). Horticultural systems, generally combined with a small forest, are 

storing energy up to 1.03E11 Joules ha-1 yr-1. But some AS like ecological and 

sylvopastoral systems produce great quantities of energy and at the same time can save 

large amounts of  energy through its efficient use. The ecological systems present high 

capacity to store energy (1.80E11 Joules ha-1 yr-1). Sylvo-pastoral systems, contrary to 

the cattle raising, present better capacity to store biomass, with a positive difference of 

2.6E10 to 5.56E10 Joules ha-1 yr-1. 

The actual increasing cost of energy, high greenhouse gas emissions, and the 

increasing energy use in the agriculture underline the need to improve energy use 

efficiency. Saving on energy and looking for new production sources will require 

appropriated production systems, whereby available resources are better preserved by 

higher efficiency of energy use. Fossil energy use efficiency is higher in ecological crop 

production systems than in vegetables and cattle systems. This is caused by the fact that 

in low-input (ecological) systems, a relatively large amount of the used phosphor or  

nitrogen originates from non-fossil resources and that  a larger amount of  energy comes 

from renewable sources. Integrated agricultural systems that combine better crops, soil, 

trees, water and nutrient management in the system, increase frequently the energy 

efficiency by 100 to 200 percent or by even more, although  circumstances may vary 

widely, sometimes even affecting  agriculture  quite adversely.  

An important alternative in this region is the development of carbon projects, as 

ecological measure to preserve and increase the forest area and income. It is 
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demonstrated that the natural systems have a good potential to sequestrate carbon, the 

mature forest of the National Park "Serra dos Orgãos" (Atlantic Forest), stores 272 Mg C 

ha-1 , the secondary forest fragments 87.3 Mg C ha-1. Total dry phytomass in Côrrego 

Sujo (53 km2) amounts to . a stock of 386844 ton. The same area will produce annually 

20478 tons dry matter representing 2.28E14 Joules. The forest fragments and the forest 

areas in regeneration accumulate more than 92% of biomass in the system. Horticulture 

can end up producing more phytomass (27.8 Mg C ha-1) than neighbouring natural 

systems were it not that  93% of it is exported from the system. Hence,  this situation 

disables these systems for carbon sequestration. Secondary forests and forest fallows 

are the most important forms of C recovery in Teresópolis.  The pastoral systems are 

those which store and produce less C and energy and, because this system is the 

principal factor for the fragmentation, it also causes decrease of biomass production on 

the fragment edges. 

HYPOTHESIS 4. ENVIRONMENTAL IMPACTS, QUALITY OF INPUTS, AND 
SUSTAINABILITY  

 

By quantifying inputs of agricultural systems on a common basis using 

emergy analysis, facilitate comparisons across agricultural systems and its 

environmental impacts, as well as, make possible the identification of 

scenarios to achieve greater sustainability. 

The environmental impact caused by the AS in Côrrego Sujo is moderate as the 

system makes high use of renewable resources. The ecological sustainability is moderate 

to good. The basin as a system contributes positively to the economy; it gives more 

emergy than that it takes from the economic system in form of materials and services. 

However, this fact represents  also a loss of capital. 

The material and services increase the environmental load indirectly because  

great quantitiesof non renewable sources to manufacture them, were used. 

Positive economic indices were recorded for all crops except cattle. The most 

positive impact was achieved through the substitution of cattle production by ecological 

systems. The revenues are multiplied 4 to 12 times, the negative ecological impact 

decreases considerably (0.3 to 0.8 million $US ha-1, for erosion concept), and the stock of 

carbon and biomass increases significant. Vegetable systems tend to give the greatest 

economic productivity per hectare per annuum. The vegetable systems demonstrate an 

increase of yield per area to which  high inputs like fertilizers and services, did 

contribute. The dependence on these inputs reduces the fraction of renewable energy 

and increases environmental degradation, making these systems less sustainable 

relative to systems more dependent on renewable energies. Finally, they contribute also 

less to the economy of the region, because of their low use of renewable resources. 
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The ecological system, presents the largest value of sustainability in ecological 

terms, and poses the capacity to save great quantity of biomass in the system, uses fewer 

resources from the economy as opposed to more natural renewable resources, which 

eventually guarantee its sustainability. They ensure the survival of the producer on a 

long term basis and the preservation of biodiversity. The cattle system on the hillside 

loses the biggest quantity of soil representing 5 fold that of the ecological system and 

twice that of  the other systems.  

Cattle production is the main consumer of natural resources all together. Cattle 

systems cause bigger environmental damage and they have the smallest yield per 

hectare in economic and energy terms. The erosion is the most important factor in terms 

of use of non-renewable resources. The approach of soil erosion based on emergy 

synthesis enumerates the value of soil based on the environmental work required to 

produce it, rather than based on surveys or derived pricing techniques. The loss of 

organic matter through soil erosion for the whole basin represents in economic terms 

between 1.7 and 4.9 million dollars per year.   

To increase sustainability of the AS it is necessary to reduce its dependence on 

external inputs. In Teresópolis the AS showed great invested quantities of energy in 

irrigation, fertilization and fuels. Among the studied systems, the less sustainable one is 

the cattle, followed by citrus and sylvopastoral. The horticultural systems also cause 

environmental damages but they offer the biggest economic revenues. The most  

sustainable systems are the ecological ones. The implementation of sylvopastoral 

systems in the study region is not only a cheap, simple alternative, but by the same 

token  it also possesses a high positive ecological impact. 

 

 

HYPOTHESIS 5. ECO-VOLUME (VECO) AS PARAMETER TO MEASURE ECOLOGICAL 

FUNCTIONS 

Eco-volume is an effective and important parameter to measure the ecological 

function and quality of natural systems, and their interactions with 

agricultural systems. 

Eco-volume is an important parameter to measure both the ecological function 

and the quality of natural systems, as well as  their interactions with agricultural 

systems. This importance could be bigger when eco-volume concept determines the 

interactions between biotic and abiotic components in ecosystems, and considers the 

ecological importance of the vertical structure in vegetation communities. 
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The eco-volume concept is important because it integrates the interrelationships 

between species living within the boundaries of a space or volume. These interactions 

are as important as the physical factors to which each community is adapted and 

responding. Each eco-volume encompasses a biological community adapted to specific 

conditions in a given place. The eco-volume is subject to either periodic or abrupt 

changes based on climatic cycles or due to man-made disruptions, like deforestation or 

extraction of plant material. These changes can also be natural through 

phytosociological succession. 

Reduction of eco-volume (fragmentation and perturbation of forest ecosystems) 

represents a negative impact on the ecosystem functionality, resulting in  ecosystems 

not being able to  provide goods and services for the human well-being as well as for 

wildlife. Increasing eco-volume i.e. increasing the horizontal and vertical connectivity is 

important to the long-term health of ecosystems. The grass system, vegetables, and 

fruits in Teresópolis lose a great deal of eco-volume. To  the contrary,  sylvopastoral and 

ecological systems present low losses. 

Different indices like Wi, Ci and the biomass pools show that plants mainly 

compete for space and light (limited resources). This competition is not only 

aboveground but also belowground where occupation of soil space is of primary 

importance.   Most of the crops do not have this capacity and usually decrease 

considerably the yield. The plants that dominate in a community are usually those that 

have bigger capacity to develop and to conserve bio-volume. 

The ecological and agroforestry systems tend to increase their Vbio and biomass at 

slow rate until they remain almost constant. This stage for these agroforestry systems is 

to be considered near to the “equilibrium point” between agricultural and natural 

systems, where resilience index, eco-volume, bio-volume, biodiversity and energy flow 

are all larger and more efficient. 

HYPOTHESIS 6.  THE MEASUREMENT OF RESILIENCE IN NATURAL AND 
AGRICULTURAL SYSTEMS 

 

Eco-volume makes possible the measure of the resilience of agricultural and 

natural systems, whereby comparisons between both systems are made 

possible and the evolution in time can be monitored. 

Resilience relates to the continuity of ecosystems and their ability to endure 

changes, disturbances, stresses as well as to its capacity to rebuild itself until an 

equilibrium level, at which it is capable of achieving its ecosystems functions, and 

providing goods and services. 
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The alternative method to measure resilience considers the actual Vbio as a 

function of the potential eco-volume. By means of this method it is possible to measure 

very easily resilience and its evolution in time. This method allows comparing natural 

and agricultural systems with the same units. It also enables integrating other variables 

like biodiversity, energy flow, accumulation of carbon, etc. to obtain a better scenario 

likelihood of the ecosystems capacity to return to their original climax equilibrium state. 

It was showed that there does exist a high positive correlation between resilience index, 

biomass, energy efficiency and biodiversity. 

Through the evaluation of resiliency it was concluded that the dominant 

agricultural systems in Teresópolis and, more particularly, in the water basin of Côrrego 

Sujo (cattle and vegetable) have reduced resiliency index, whilst  the less important 

systems (Ecological and Sylvopastoral) achieve the greatest resilience. 
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ANNEXE 1. GLOSSARY OF TERMS AND DEFINITIONS   
 

Abundance (5) Percentual importance of given vegetation structure. All components add to 
100% for a given vegetation type along the thinking of Braun-Blanquet. 

Agrobiodiversity (2) “The dynamic variation in farming systems that occurs within and between 
agro-ecosystems and natural systems. It arises from the many and changing 
ways in which farmers manage diverse genetic resources in dynamic ecological 
and socio- economic contexts”. 

Agroclimax (2) "The state of agricultural systems in which sustainability components  reach a 
balance, in function of a production system combining environmental and 
socio-economic factors within a  region". 
The energy balance inside the system reaches high levels of efficiency, 
renovability and transformation. These systems have high capacity to harbor, 
to use and to manage Agrobiodiversity and finally they present a wide elasticity 
to pass to natural systems. This balance is a function of the production system, 
environmental and socioeconomic factors of each region. 

Basal area (1) Stem cross section of a tree at breast height = π r² 
Normally summed over all trees in one ha 

Biomass (2) Total animal and plant organic material on a dry matter basis and normally on 
1 ha.  

Bio-surface (1) To be determined as sum of Sbiostem + Sbioleaf + S biofruit + Sbioroot 
Again surface of roots  Sbioroot will normally not been considered. The   
Sbiostem includes the surface of the actual stem but allso all ohter woody parts 
i.e. branches and twigs. 

Biovolume (1) It is the volume of stem, branches, roots, rootlets, twigs and leaves. It can be 
done by direct measurement of water displacement in water. It is tedious 
exercise. Sampling of each of the plant components will reduce the work load. 
Nevertheless, allometric relations are preferred and the root system is 
generally not considered. A very quick approach is to assume that a plant is an 
assembly of tubes and that all parts could be squeeze within a cylinder formed 
by: Vbio = Basal area x heco 

Carbon sequestration 
(1) 

Total biomass, expressed in Carbon weight, as it is stored in the phytomass and 
the necromass. 

Climax vegetation Is the vegetation which establishes itself on a given site for given climatic 
conditions in the absence of anthropic action after a long time (it is the 

asymptotic or quasi-equilibrium state of the local ecosystem). 
Coverage Index for 

each Species (CIi) (1) 
Is the sum of Relative Dominance and Relative Density. Cli = RDoi + RDi . crown 
closure = crown basal area either in m²/ha or in % of surface. 

Crown closure (1) In GIS corresponds to tree crown projection or tree cover or cover index of a 
vegetation. 

Crown volume (1) Crown volume is calculated in a similar way to crown surface area. Crown 
volume (Cv) is estimated from the crown width (D) and crown depth (L) after 
assuming one of three regular geometric shapes. 

Crown basal area (1) Basal area of crown projection on ha basis. 
Crown diameter 

(width) (1) 
Average of widest and smallest crown diameter = K 

Crown height (depth) 
(1) 

Distance between lower branch insertion and tree top. 

Crown surface area (1) Surface directly exposed to sun light i.e. normally the upper cone. Different 
simulations according to tree shape: Cone, Paraboloid, Hemisphere. 

DBH Diameter at breast height (1.3 m) = d 
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Diameter at soil 

level(1) 
It renders a better idea of the actual competition between roots systems. In 
some cases though, it is awkward to measure it e.g. in the case of buttresses 

(flutes). 
Dominance (1) Degree of crown coverage of a given species in m²/ha 
Eco-capacity (1) Eco-volume x Eco-vitality index. 
Ecoclimax Final and sustainable stage reached by a vegetation at the end of a normal 

succession. 
Ecoheight (1) Weighted average height of given phytocenose or agricultural system.  

Corresponds to average height in a mono-specific forest stand. Weighting will 
be performed according to the abundance of each vegetation component. 

Ecorain (1) The eco-rain is this supplementary fraction of annual rains due to better 
ecological management of a watershed. The following factors are contributing 
to the eco-rains: 
- the eco-height of the eco-volume leading to a temperature reduction, 
- the evaporative cooling of the actively transpiring vegetation, 
- the recycling of rains within the ecologically managed watershed basin, 
- a reduction of the wind in connection with the eco-volume of  a vegetation, 
decreasing the wind factor and hence the evapo-transpiration in the Penman-

Monteith formula, and finally the amount of dew daily collected by the bio-
volume of a  vegetation. 

Eco-vitality index (1) To be defined.  It could combine e.g. LAI, KOlsen, Litter fall, Basal area. For the time 

being EVI = LAI x KOlsen x BA/25. The eco-vitality index would be equal to 1 when 

LAI = 1, KOlsen = 1 und BA=25 m². To be improved 

Eco-volume (1) Surface of given phytocenose or agricultural system multiplied by the eco-
height. Eco-Volume normally to be expressed on ha basis. 

Eco-volume (2)  
Emergy (4, 6) Emergy can be defined as the total solar equivalent available energy of one form 

that was used up directly and indirectly in the work of making a product or service.  

Emergy expresses the cost of a process or a product in solar energy equivalents. The 

basic idea is that solar energy is our ultimate energy source and by expressing the 

value of products in emergy units, it becomes possible to compare apples and pears.   

Empower density (2) “The ratio of total emergy use in the economy of a region or nation to the total 
area of the region or nation. Renewable and non-renewable emergy density are 

also calculated separately by dividing the total renewable emergy by area and 
the total non-renewable emergy by area, respectively.” 

Emergy exchange 

ratio (2) 
“The ratio of emergy exchanged in a trade or purchase (what is received to 
what is given). The ratio is always expressed relative to one or the other 
trading partners and is a measure of the relative trade advantage of one 
partner over the other.”  

Emergy investment 

ratio (3) 
“The ratio of emergy fed back from outside a system to the indigenous emergy 
inputs (both renewable and non-renewable). It evaluates if a process is a good 
user of the emergy that is invested, in comparison with alternatives.” 

Environmental 

loading ratio (ELR) (3) 
“The ratio of non-renewable and imported emergy  use to renewable emergy 
use.” “At the scale of biosphere, it is the ratio of non-renewable (N) and slowly-
renewable emergy (SR) to renewable emergy (R) - [(N+SR)/R ]. The ELR is an 
indicator of the load on the environmental and might be considered a measure 
o stress due to economic activity.” 

Emergy per capita (3) “The ration of total emergy use in the economy of a region or nation to the total 
population. Emergy per capita can be used as a measure of potential, average 

standard of living of the population.”  
Emergy Sustainability 

Index (ESI) (3) 
“the ratio of the Emergy Yield Ratio to the Environmental Loading Ratio. It 
measures the contribution of a resource or process to the economy per unit of 
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environmental loading.” “An index that accounts for yield, renewability, and 
environment load. It is the incremental emergy yield compared to the 

environmental load and is calculated as the ratio of emergy yield to 
environmental load (EYR/ELR).”  

Emergy yield ratio 

(EYR) (3) 
“At the scale of the biosphere, the EYR is the ratio of the emergy of the output 
(Y=R+SR+N) divided by the emergy of non-renewable inputs (N) that are used. 
(BROWN & ULGIATI, 1999). “The ratio of the emergy yield from a process to 
the emergy costs. The ratio is a measure of how much a process will contribute 
to the economy.”  

Emjoule The unit of measure of emergy, "emergy joule." It is expressed in the units of 
energy previously used to generate the product; for instance the solar emergy of 
wood is expressed as joules of solar energy that were required to produce the 
wood. 

Emergy investment 

ratio (4) 
The ratio between the emergy invested from society (economy, services and 
other resources) and the emergy invested from the environment. This ratio 
measures the intensity of the economic development and the loading of the 
environment 

Energy The same as motion or ability to move. There are different forms of energy, e.g. 

potential energy, kinetic energy, pressure energy etc. and they are all measured 
in joule (J). 

Enthalpy The amount of energy a system releases if the system’s temperature drops 
(assuming the pressure is constant) to 0 K. Heat content is therefore another 
word for enthalpy. 

Entropy A measurement of the disorder in the motion, and it is measured in Joules per 
Kelvin (J/K). 

Exergy A part of the energy that can be used as an energy source, thus each process 
implies that exergy is consumed and it is therefore always related to the 
surroundings. 
A maximum amount of work (mechanical energy) that can be obtained from a 
system in a process leading to the system reaching equilibrium with its 
surroundings. 

Externality Side effects of an action of the agricultural system that influence the well-
being of nonconsenting parties or other systems. The nonconsenting parties 
may be either helped (by external benefits) or harmed (by external costs). For 
example, the water contamination caused for the agricultural activities. 

Factor to convert DM 

to C 
0.45 * DM 

Frequency Of a species being present or absent in a plot): normally alloted to 5 frequency 
classes (0-20; 20-40 etc) 

Gross Primary 

Productivity (GPP) 
The rate at which it accumulates biomass, including the energy it uses for the 

process of respiration (measured in kg/m²/year). 
Joule (J) The metric unit of energy and work. One joule is defined as the amount of 

energy exerted  when a force of 1 newton is applied over a displacement of 1 
metre. 

K/d ratio Ratio of crown width (K) over diameter at breast height d. Normally K is 
expressed in m and d in cm. This ratio is known to be species specific and 
independent of age or stand. 

LAI Leaf Area Index (Blattflächen Index) or leaf to ground surface ratio. Can also be 
approximated by LAI = 10 x Rf/Pfs 
Where Rf = leaf part of litter in t (DM)/ha  
Rfs= specific weight of leaf surface (mg DM/cm²) 
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Heat A transient form of energy. It quantifies the spontaneous transfer of thermal 
energy due to a temperature gradient. The SI unit for heat is the joule. 

Hysteretic Hysteresis phenomena are widely spread in nature, whereby a decay process 
follows another curve as a reconstruction process to reach the initial starting 
point. 
Hysteresis phenomena are widely spread in nature, whereby a decay process 
follows another curve as a reconstruction process to reach the initial starting 
point. 

Litter fall (2) All organic debris falling on the ground in a vegetation, phytocenose or 
agricultural system expressed on a dry matter and hectare basis. The total litter 
fall (Lt) encompasses leaf fall (Lf), fruit and bloom fall (Lb) as well as branches 
and bark fall (Lr). 

Net emergy yield 

ratio (4) 
The ratio between the emergy yield and the emergy invested from society 
(economy, services, and other resources). 
The emergy yield ratio of each system output is a measure of its net 
contribution to society beyond its own operation. 

Net Primary 

Productivity (NPP) 
The rate at which an ecosystem accumulates biomass minus the energy used 

for the process of respiration (measured in kg/m²/year). 
Non-Renewable 

Emergy (4) 
“The emergy of energy and material storages like fossil fuels, mineral ores, and 
soils that are consumed at rates that far exceed the rates at which they are 
produced by geologic processes.”  

Nye-Greenland 

equation 
  

It’s an index to assess relative space occupation and is estimated by the relative 
basal area of all individuals belonging to one species or family. 
RDoi = (BAi x 100)/ ΣBan 
The basal area is calculate by converting perimeter to basal area in cm2 

Olson coefficient KOlsen = Lt/Ls 
Rain Use Efficiency The rate at which a system returns to a single steady or cyclic state following a 

perturbation. 
Relative Dominance 

(RDo) 
It is an index to assess relative space occupation and is estimated by the 
relative basal area of all individuals belonging to one species or family. 
RDoi = (BAi x 100)/ ΣB an The basal area is calculate by converting perimeter 
to basal area in cm2 

Relative Density (RDi) It is an index to assess the species relative distribution. 
RDi = (Ni x 100)/Nm  

Percent renewable 

emergy (%Ren) (4) 
“The percent of the total energy driving a process that is derived from 
renewable sources (R/(R+SR+N)). In the long rung, only processes with 
high %REN are sustainable . ” 

Renewable Emergy (4) “The emergy of energy flows of the biosphere that are more or less constant 
and reoccurring, and that ultimately drive the biological and chemical 
processes of the earth and contribute to geologic processes.” 

  
Renewable carrying 

capacity (4) 

“The environment’s ability to support economic development based solely on 
its renewable emergy sources. Calculated by dividing the sum of non-
renewable and purchase emergy inputs to a region or economic process by the 
average renewable emergy flows per unit area of the region. The result is the 
area required to “sequester” the equivalent emergy required for the population 

or process from renewable sources.”  
Soil litter Amount of organic material laying on soil surface at a given moment of the 

year, on a dry matter and hectare basis. This is the main source of material 
undergoing the humification process.  

Solar transformity (4) “The ratio of the solar emergy that is required to generate a product or service 
to the actual energy in that product or service. Transformities have the 
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dimensions of emergy/energy (sej/J). A transformity for a product is calculated 
by summing all the emergy inflows to the process and dividing by the energy of 

the product. Transformities are used to convert resources of different types to 
emergy of the same type. The transformity is a measure of the “value” with the 
assumption that systems operating under the constraints of the maximum 
emergy principle generate products that simulate productive process at least 
as much as they cost.”  

Specific weight The proportion of biomass to bio-volume gives the specific weight of a 
vegetation, crop or agricultural system 

Sinergy The effect of two or more subcomponents working together to produce an 
effect that is greater than the sum of the parts. 
Refers to the phenomenon of two or more discrete influences or agents acting 
in common to create an effect which is greater than the sum of the effects each 
is able to create independently. 

Stem volume Is a world wide applied parameter by foresters. The easiest formula is the one 
by Krueger:Vstem = height of bole x cross sectional area at mid-bole. 

Trade-off A trade-off refers to losing one quality or aspect of something in return for 
gaining another quality or aspect. It implies a decision to be made with full 

comprehension of both the upside and downside of a particular choice. 
Transformity  The ratio obtained by dividing the total emergy that was used in a process by 

the energy yielded by the process. Transformities have the dimensions of 
emergy/energy (sej/J). A transformity for a product is calculated by summing 
all of the emergy inflows to the process and dividing by the energy of the 
product. Transformities are used to convert energies of different forms to 
emergy of the same form. 

Work May be defined as organized motion and is measured in Joules (J). Work can be 
mechanical, electrical, magnetic, or of other origin. 

(1) Janssens et al. (2004a) 
(2) Torrico (2006) 
(3) Brown & Ulgiati (1999) 
(4) Odum H.T. (1996), Odum E.C. (2000) 

(5) Magurran (1988) 
(6) Jorgensen (2001) 
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ANNEXE 2. SYMBOLS OF THE ENERGY SYSTEMS LANGUAGE 

 

 

Energy circuit: A pathway whose flow is proportional to the quantity in 

the storage or source upstream.   

 

Heat sink: Dispersion of potential energy into heat that accompanies all 

real transformation processes and storages; loss of potential energy from 

further use by the system. 

 

Source: Outside source of energy delivering forces according to a 

program controlled from outside; a forcing function. 

 

Tank: A compartment of energy storage within the system storing a 

quantity as the balance of inflows and outflows; a state variable.  

 

Interaction: Interactive intersection of two pathways coupled to 

produce an outflow in proportion to a function of both;control action of 

one flow on another; limiting factor action;work gate. 

 

Producer: Unit that collects and transforms low-quality energy under 

control interactions of high-quality flows.  

 

Consumer: Unit that transforms energy quality, stores it, and feeds it 

back autocatalytically to improve inflow.  

 

Switching action: A symbol that indicates one or more switching 

actions. 

 

 Box: Miscellaneous symbol to use for whatever unit or function is 

labeled. 

 

Transaction: A unit that indicates a sale of goods or services (solid line) 

in exchange for payment of money (dashed line). Price is shown as an 

external source. 

 

Constant-gain amplifier: A unit that delivers an output in proportion to 

the input I but is changed by a constant factor as long as the energy 

source S is sufficient. 

 

Self-limiting energy receiver: A unit that has a self-limiting output 

when input drives are high because there is a limiting constant quality of 

material reacting on a circular pathway within. 

 

 
Symbols redrawn after Odum (1971, 1994, 1996). 
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ANNEXE 3. DETAILS OF ENERGY AND EMERGY CALCULATIONS 

APPENDIX 3A. NATURAL AND ECONOMIC EMERGY CONTRIBUTIONS ECO-FARM 

 

Note Flows Value Units 

Transformity 
(sej/kg), 
(sej/J), 

(sej/$US) 

Emergy 
Flow 

(sej/ha y) 

 Renewable Natural resources "R"    
1 Sun 1,296E+11 J/ha/y 1,00E+00 1,30E+11 
2 Rain 1,08E+11 J/ha/y 4,70E+04 5,07E+15 
3 Wind 3,06E+09 J/ha/y 2,45E+03 7,49E+12 
4 Underground water 3,44E+08 J/ha/y 1,76E+05 6,06E+13 
5 River Water 0,00E+00 J/ha/y 1,76E+05 0,00E+00 
6 Forest Biomass 5,00E+01 kg/ha/y 3,69E+11 1,85E+13 
7 N (atmosphere) 1,73E+02 kg/ha/y 7,73E+12 1,34E+15 
8 P (rocks) 2,43E+00 kg/ha/y 2,99E+13 7,27E+13 
9 K (rocks) 2,15E+01 kg/ha/y 2,92E+12 6,27E+13 

10 Ca (system) 2,87E+00 kg/ha/y 1,68E+12 4,83E+12 

11 Other minerals 2,97E+01 kg/ha/y 1,71E+12 5,08E+13 
12 Sediments rivers 1,52E+11 J/ha/y 7,40E+04 1,12E+16 

     1,79E+16 

 Renewable Natural resources "N"    
13 Soil loss 2,06E+10 J/ha/y 7,40E+04 1,52E+15 

     1,52E+15 

 Services (Econ. Resources) "S"     
14 Man power (hard) 0,00E+00 $US/ha/y 3,18E+12 0,00E+00 
15 Man power (family) 4,91E+02 $US/ha/y 3,18E+12 1,56E+15 
16 Maintenance (infrastructure) 2,18E+01 $US/ha/y 3,18E+12 6,93E+13 
17 Insurance cost 2,18E+01 $US/ha/y 3,18E+12 6,93E+13 
18 Communications cost 3,49E+01 $US/ha/y 3,18E+12 1,11E+14 
19 Taxes 1,45E+00 $US/ha/y 3,18E+12 4,62E+12 
20 Other services 8,72E+00 $US/ha/y 3,18E+12 2,77E+13 

     1,82E+15 

 Materials (Econ. Resources) "M"    

21 Fungicides 0,00E+00 J/ha/y 1,48E+13 0,00E+00 
22 Herbicides 0,00E+00 J/ha/y 1,31E+15 0,00E+00 
23 Insecticides 0,00E+00 J/ha/y 2,40E+12 0,00E+00 
24 Nitrogen fertilizer 0,00E+00 kg/ha/y 7,73E+12 0,00E+00 
25 Phosphate fertilizer 0,00E+00 kg/ha/y 2,99E+13 0,00E+00 
26 Potash fertilizer 0,00E+00 kg/ha/y 2,92E+12 0,00E+00 
27 Cilium 0,00E+00 kg/ha/y 2,08E+12 0,00E+00 
28 Other minerals 0,00E+00 kg/ha/y 1,71E+12 0,00E+00 
29 Manure 0,00E+00 J/ha/y 2,69E+04 0,00E+00 
30 Electricity 5,04E+07 J/ha/y 3,36E+05 1,69E+13 
31 Petroleum fuels 4,63E+07 J/ha/y 1,11E+05 5,13E+12 
32 Materials for maintenance 3,06E+00 $US/ha/y 3,18E+12 9,72E+12 
33 Vaccines and medicament  0,00E+00 $US/ha/y 3,18E+12 0,00E+00 
34 Depreciation  1,47E+01 $US/ha/y 3,18E+12 4,68E+13 

     7,9E+13 

 



142 
 

     Energy 
Transfor-

mity 
Emergy 

1 Sun    1,296E+11 1 1,30E+11 
 Solar radiation= 4,5 kWh/m^2.y  [6]    
 albedo (a) =  0,2   [7]    
 energy =  (radiation)*(1-albedo)     
 (kWh/m^2.y)*(3,6E6J/1kWh)*(1E4m^2/ha)*(1-a)     
  1,296E+11 J/ha.y     
 Transformity = 1 sej/J     

2 Rain + ETP    1,08E+11 4,70E+04 5,07E+15 
 precipitation =  1600 mm.y  [8]    
 ETP 557,3 mm.y  [9]    
 water energy =  5000 J/kg  [10]    
 Water density=  1000 kg/m^3  [10]    
 energy = 
(kg/m^3)*(J/kg)*(1E4m^2/ha) 

     

  1,08E+11 J/ha.y     
 Transformiy =  4,70E+04 sej/J [11]    

3 Wind    3,06E+09 2,45E+03 7,49E+12 
 air density =  0,8 kg/m^3  [8, 9]    
 anual average velocity =  2,3 m/s [8, 9]    
 geotropic wind =  3,33 m/s 60% de 

5,55  
[12]    

 haulage coefficient =  0,001 adimensional  [12]    
 energy = (area 
m^2/áreaha)*(kg/m^3)*(m/s)^3*(0,001)*(3,14E7s/y) 

   

  3,06E+09 J/ha.y     
 transformity =  2,45E+03 sej/J  [11]    

4 Undergroud water    3,44E+08 1,76E+05 6,06E+13 
 flow of the nascent =  1,27E+03 m^3/y [1]    
 used water in the system =  8,00E+02 m^3/y [1]    
 energy = (m^3/y)*(1/área total ha)*(1000kg/m3)* (5000J/kg)    
  3,44E+08 J/ha.y     
 transformity =  1,76E+05 sej/J  [13]    

5 River water    0,00E+00 1,76E+05 0,00E+00 
 time of use of the pump =  0 h/d  [15]    
 pumped flow =  0 litro/s  [15]    
 pumped flow =  0,00E+00 m^3/y     
 energy = (m^3/y)*(1/área total ha)*(1000kg/m3)* (5000J/kg)    
  0,00E+00 J/ha.y     
 transformity =  1,76E+05 sej/J  [13]    

6 Forest BM     9,50E+08 3,69E+11 1,05E+13 
 Forest Biomass 50 kgDM/y [1]    

  28,3 kg DM/ha/y     

  9,50E+08 J/ha.y [26]    

  3,69E+11 sej/kg     

7 N (Atmosphere)    8,7E+09 7,73E+12 1,34E+15 
 consumption =  172,9 kg/ha.y     
 energy= 8,7E+09 J/ha.y [16]    
 transformity =  7,73E+12 sej/kg  [14]    

8 P (rocks)    4,0E+07 2,99E+13 7,27E+13 
 consumption =  2,43 kg/ha.y  [1]    
  4,0E+07 J/ha.y [17]    
 transformity =  2,99E+13 sej/kg  [14]    

9 K sistema    1,1E+08 2,92E+12 6,27E+13 
 consumption =  21,46 kg/ha.y  [1]    
  1,1E+08 J/ha.y [17]    


