Erratum zur Dissertation "Experimentelle Beeinflussung des Wachstumsverhaltens der Leberkarzinom-Zelllinie HuH7 durch TGF-beta Rezeptormutanten" von Frau Mignon-Denise Keyver-Paik

Entsprechend des Beschlusses der Hohen Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms Universität Bonn vom 27.04.2017 wird die oben genannte Dissertation um ein Erratum ergänzt. Die Änderungen wurden durch <u>Unterstrich</u> gekennzeichnet.

Ss. 11/12:

Originalarbeit	Erratum				
1.3.1 TGF-beta Rezeptor Typ I und Typ II	1.3.1 TGF-beta Rezeptor Typ I und Typ II				
1.3.1.1 Die extrazelluläre Region	1.3.1.1 Die extrazelluläre Region				
Die TGF-beta Typ I und II Rezeptoren sind	In der Übersichtsarbeit von Massagué J. werden				
transmembranäre Glykoproteine (Lin et al., 1992;	die TGF-beta Typ I und II Rezeptoren unter				
Mathews et al., 1991). Die extrazelluläre Region	Hinweis der im Abschnitt 1.3.1.1. bis 1.3.1.4.				
besteht aus etwa 150 Aminosäuren (AS) und ist	genannten Originalarbeiten wie folgt beschrieben				
N-glycosyliert (Cheifetz et al., 1988).	(Massagué et al., 1998):				
1.3.1.2 Die juxtamembranäre	Die TGF-beta Typ I und II Rezeptoren sind				
zytoplasmatische Seite	transmembranäre Glykoproteine (Lin et al., 1992;				
Obwohl die juxtamembranäre zytoplasmatische	Mathews et al., 1991). Die extrazelluläre Region				
Seite der Rezeptoren keine herausragenden	besteht aus etwa 150 Aminosäuren (AS) und ist				
strukturellen Eigenschaften zeigt, so sind Ser213	N-glycosyliert (Cheifetz et al., 1988).				
in TGF&RII und Ser165 in TGF&RI von	1.3.1.2 Die juxtamembranäre				
besonderer Bedeutung. Ser213 in TGF&RII wird	zytoplasmatische Seite				
von der Rezeptor Kinase Liganden-unabhängig	Obwohl die juxtamembranäre zytoplasmatische				
autophosphoryliert und ist für die Signalgebung	Seite der Rezeptoren keine herausragenden				
des Rezeptors notwendig (Luo et al., 1997).	strukturellen Eigenschaften zeigt, so sind Ser213				
Ser165 in TGFßRI hingegen wird Liganden	in TGF&RII und Ser165 in TGF&RI von				
abgängig durch den TGF beta Rezeptor Typ II	besonderer Bedeutung. Ser213 in TGF&RII wird				
phosphoryliert und scheint so die Intensität der	von der Rezeptor Kinase Liganden-unabhängig				
Zellantwort zu modulieren (Souchelnytskyi et al.,	autophosphoryliert und ist für die Signalgebung				
1996).	des Rezeptors notwendig (Luo et al., 1997).				
1.3.1.3 Die GS Domäne von TGFßRI	Ser165 in TGF&RI hingegen wird Liganden				
Die GS Domäne ist eine hoch konservierte, dem	abgängig durch den TGF beta Rezeptor Typ II				
Typ I Rezeptor eigene, 30 AS Region, welche	phosphoryliert und scheint so die Intensität der				
ihren Namen der charakteristischen SGSGSG	Zellantwort zu modulieren (Souchelnytskyi et al.,				
Sequenz verdankt. Die Phosphorylierung der	1996).				

Serine und Threonine in der TTSGSGSG Sequenz von TGFßRI durch den Typ II Rezeptor aktiviert das Signal (Souchelnytskyi et al., 1996; Wieser et al., 1995; Wrana et al., 1994). Die vorletzte AS in der GS Domäne, an der Grenze zur nachfolgenden Kinase des Rezeptors, ist immer ein Threonin oder Glutamin. Es konnte gezeigt werden, das die Mutation dieser AS zu Glutamat oder Aspartat (saure AS mit elektronegativen Eigenschaften) zu der Entwicklung eines konstitutiv aktiven Rezeptors führt, dessen Signalgebung sowohl von der Anwesenheit eines Liganden, als auch vom Typ II Rezeptors unabhängig ist (Wieser et al., 1995). **1.3.1.4 Die Rezeptor Kinase**

Weiter downstream in der AS Sequenz besitzen sowohl Rezeptor I als auch Rezeptor II eine Rezeptor Kinase, die das katalytische Zentrum der Rezeptoren enthält. In Typ I Rezeptoren finden durch die aktivierte Rezeptor Kinase die Phosphorylierungen des Substrats -SMAD-Proteine- an der AS Serin statt (Kretzschmar et al., 1997; Macias-Silva et al., 1996). Typ II Rezeptoren benutzten die Kinase zur Liganden abhängigen Phosphorylierung von Typ I Rezeptoren an Serin und Threonin Stätten und zur konstitutiv aktiven Autophosphorylierung dieser Residuen (Lin et al., 1992; Luo et al., 1997; Wrana et al., 1994) Die GS Domäne ist eine hoch konservierte, dem Typ I Rezeptor eigene, 30 AS Region, welche ihren Namen der charakteristischen SGSGSG Sequenz verdankt. Die Phosphorylierung der Serine und Threonine in der TTSGSGSG Sequenz von TGFßRI durch den Typ II Rezeptor aktiviert das Signal (Souchelnytskyi et al., 1996; Wieser et al., 1995; Wrana et al., 1994). Die vorletzte AS in der GS Domäne, an der Grenze zur nachfolgenden Kinase des Rezeptors, ist immer ein Threonin oder Glutamin. Es konnte gezeigt werden, das die Mutation dieser AS zu Glutamat oder Aspartat (saure AS mit elektronegativen Eigenschaften) zu der Entwicklung eines konstitutiv aktiven Rezeptors führt, dessen Signalgebung sowohl von der Anwesenheit eines Liganden, als auch vom Typ II Rezeptors unabhängig ist (Wieser et al., 1995).

1.3.1.3 Die GS Domäne von TGFßRI

1.3.1.4 Die Rezeptor Kinase

Weiter downstream in der AS Sequenz besitzen sowohl Rezeptor I als auch Rezeptor II eine Rezeptor Kinase, die das katalytische Zentrum der Rezeptoren enthält. In Typ I Rezeptoren finden durch die aktivierte Rezeptor Kinase die Phosphorylierungen des Substrats -SMAD-Proteine- an der AS Serin statt (Kretzschmar et al., 1997; Macias-Silva et al., 1996). Typ II Rezeptoren benutzten die Kinase zur Liganden abhängigen Phosphorylierung von Typ I Rezeptoren an Serin und Threonin Stätten und zur konstitutiv aktiven Autophosphorylierung dieser Residuen (Lin et al., 1992; Luo et al., 1997; Wrana et al., 1994)

Ss. 14/15:

Origina	alarbeit	Erratum				
1.4	Die TGF-beta Rezeptor Substrate:	1.4	Die TGF-beta Rezeptor Substrate:			

Smad Proteine

In Drosophila wurden 1995 neue zytoplasmatischer Signalproteine entdeckt, die so genannten Mother against decapentaplegic (MAD) Proteine (Raftery et al., 1995; Sekelsky et al., 1995). Es folgte die Identifizierung weiterer homologer Proteine in C. elegans, die im Folgenden als sma Proteine (für "small") bezeichnet wurden (Savage et al., 1996). Auch in humanen Zellen wurden letztendlich homologe Proteine nachgewiesen, die als sma/MAD verwandte Proteine, als Smads bezeichnet wurden.

Diese Proteine werden nach Aktivierung des TGF-beta Rezeptors phosphoryliert, sammeln sich im Nukleus und aktivieren die Transkription (Lagna et al., 1996; Liu et al., 1996; Zhang et al., 1996). Die Smad Proteine stellen also die zytoplasmatische Signaltransduktionskette downstream der Rezeptorebene dar. Bis heute wurden 9 dieser Smads in Vertebraten identifiziert, für die zytoplasmatische Signaltransduktion der TGF-beta Rezeptoren von Bedeutung sind allerdings nicht alle, da die Substrate rezeptorspezifisch agieren (Wrana, 1998).

Die Einteilung der Smads erfolgt in 3 Gruppen: Die so genannten R-Smads (Smad2 und Smad3) sind Rezeptor regulierte Proteine, die in der Signaltransduktion direkt von TGFßRI phosphoryliert werden. Co-Smads sind Smad4 Proteine, die mit aktivierten R-Smads Heterodimere bilden und so in die Signaltransduktion eingreifen. Inhibitorische Smads sind Smad6 und Smad7, sie können die Signaltransduktion blockieren (Massague, 1998). **1.4.1.1 Struktur der Smads**

Im Basalstatus bilden die Smads Homooligomere und sind inaktiviert durch Interaktion zwischen der MH1 (N-terminal) und MH2 (Cterminal) Domäne (Baker et al., 1996; Kim et al.,

Smad Proteine

In der Übersichtsarbeit von Massagué J. werden die TGF-beta Rezeptor Substrate (Smad Proteine) unter Hinweis der im Abschnitt 1.4. bis 1.4.1.1. genannten Originalarbeiten wie folgt beschrieben (Massagué et al., 1998): In Drosophila wurden 1995 neue zytoplasmatischer Signalproteine entdeckt, die so genannten Mother against decapentaplegic (MAD) Proteine (Raftery et al., 1995; Sekelsky et al., 1995). Es folgte die Identifizierung weiterer homologer Proteine in C. elegans, die im Folgenden als sma Proteine (für "small") bezeichnet wurden (Savage et al., 1996). Auch in humanen Zellen wurden letztendlich homologe Proteine nachgewiesen, die als sma/MAD verwandte Proteine, als Smads bezeichnet wurden.

Diese Proteine werden nach Aktivierung des TGF-beta Rezeptors phosphoryliert, sammeln sich im Nukleus und aktivieren die Transkription (Lagna et al., 1996; Liu et al., 1996; Zhang et al., 1996). Die Smad Proteine stellen also die zytoplasmatische Signaltransduktionskette downstream der Rezeptorebene dar. Bis heute wurden 9 dieser Smads in Vertebraten identifiziert, für die zytoplasmatische Signaltransduktion der TGF-beta Rezeptoren von Bedeutung sind allerdings nicht alle, da die Substrate rezeptorspezifisch agieren (Wrana, 1998).

Die Einteilung der Smads erfolgt in 3 Gruppen: Die so genannten R-Smads (Smad2 und Smad3) sind Rezeptor regulierte Proteine, die in der Signaltransduktion direkt von TGFßRI phosphoryliert werden. Co-Smads sind Smad4 Proteine, die mit aktivierten R-Smads Heterodimere bilden und so in die Signaltransduktion eingreifen. Inhibitorische Smads sind Smad6 und Smad7, sie können die Signaltransduktion blockieren (Massague, 1998).

1997; Liu et al., 1996). Rezeptor regulierte	1.4.1.1 Struktur der Smads
Smads binden über die MH2 Domäne an den	Im Basalstatus bilden die Smads Homo-
aktivierten Typ I Rezeptor und werden am C-	oligomere und sind inaktiviert durch Interaktion
terminalen Ende im SS(V/M)S Motiv	zwischen der MH1 (N-terminal) und MH2 (C-
phosphoryliert (Kretzschmar et al., 1997; Macias-	terminal) Domäne (Baker et al., 1996; Kim et al.,
Silva et al., 1996). In diesem aktivierten Status	1997; Liu et al., 1996). Rezeptor regulierte
assoziieren sie mit Smad4 und mit DNA-	Smads binden über die MH2 Domäne an den
bindenden Proteinen über die MH2 Domäne	aktivierten Typ I Rezeptor und werden am C-
(Chen et al., 1997; Hata et al., 1997; Liu et al.,	terminalen Ende im SS(V/M)S Motiv
1997). Die MH1 Domäne besitzt DNA-bindende	phosphoryliert (Kretzschmar et al., 1997; Macias-
Eigenschaften, während das MH2 terminale	Silva et al., 1996). In diesem aktivierten Status
Ende an der Aktivierung der Transkription	assoziieren sie mit Smad4 und mit DNA-
beteiligt ist (Liu et al., 1997). In der Linker Region	bindenden Proteinen über die MH2 Domäne
besitzen Smads eine MAP Kinase	(Chen et al., 1997; Hata et al., 1997; Liu et al.,
Phosphorylierungsstelle, über die die	1997). Die MH1 Domäne besitzt DNA-bindende
Akkumulation von Smads im Nukleus inhibiert	Eigenschaften, während das MH2 terminale
werden kann (Kretzschmar et al., 1999).	Ende an der Aktivierung der Transkription
	beteiligt ist (Liu et al., 1997). In der Linker Region
	besitzen Smads eine MAP Kinase
	Phosphorylierungsstelle, über die die
	Akkumulation von Smads im Nukleus inhibiert
	werden kann (Kretzschmar et al., 1999).

Ss. 19/20

Originalarbeit	Erratum
1.5 Genexpression unter TGF-beta	1.5 Genexpression unter TGF-beta
Kontrolle	Kontrolle
Unter direkter Kontrolle des TGF-beta	Die Genexpression unter TGF-beta Kontrolle
Signaltransduktionswegs stehen vor allem zwei	wird von Taipale et al. unter Bezugnahme auf die
Gene: über ein unbekanntes Protein das humane	in diesem Abschnitt genannten Originalarbeiten
PAI-1 Gen und über CRE bindendes Protein die	wie folgt beschrieben (Taipale et al., 1998):
Expression seiner Zielsequenz (Kramer et al.,	Unter direkter Kontrolle des TGF-beta
1991; Riccio et al., 1992). Alle anderen	Signaltransduktionswegs stehen vor allem zwei
Wirkungen von TGF-beta nehmen ihren Weg	Gene: über ein unbekanntes Protein das humane
über die Synthese von Transkriptionsfaktoren,	PAI-1 Gen und über CRE bindendes Protein die
wie c-jun oder jun-B (AP-1 Transkriptionsfaktor-	Expression seiner Zielsequenz (Kramer et al.,
Komplex) oder die Herunterregulation von	1991; Riccio et al., 1992). Alle anderen
Proteinen wie c-myc oder B-myb (Li et al., 1990;	Wirkungen von TGF-beta nehmen ihren Weg
Pertovaara et al., 1989; Pietenpol et al., 1990)	über die Synthese von Transkriptionsfaktoren,

(Pietenpol et al., 1990). Darüber hinaus kann	wie c-jun oder jun-B (AP-1 Transkriptionsfaktor-					
vermehrte TGF-beta Wirkung die Halbwertszeit	Komplex) oder die Herunterregulation von					
von mRNA der extrazellulären Matrix verlängern,	Proteinen wie c-myc oder B-myb (Li et al., 1990;					
oder mRNA über Induktion von entsprechenden	Pertovaara et al., 1989; Pietenpol et al., 1990)					
Proteinen stabilisieren (Amara et al., 1995;	(Pietenpol et al., 1990). Darüber hinaus kann					
Penttinen et al., 1988). All dies sind weitere	vermehrte TGF-beta Wirkung die Halbwertszeit					
Beispiele für die außerordentlich komplexen	von mRNA der extrazellulären Matrix verlängern,					
Interaktionen des TGF-beta Systems mit anderen	oder mRNA über Induktion von entsprechenden					
Kaskaden. Auf eine weitere ausführliche	Proteinen stabilisieren (Amara et al., 1995;					
Erörterung muss an dieser Stelle verzichtet	Penttinen et al., 1988). All dies sind weitere					
werden.	Beispiele für die außerordentlich komplexen					
	Interaktionen des TGF-beta Systems mit anderen					
	Kaskaden. Auf eine weitere ausführliche					
	Erörterung muss an dieser Stelle verzichtet					
	werden.					
1.6 Biologische Effekte von TGF-beta	1.6 Biologische Effekte von TGF-beta					
Die drei hauptsächlichen TGF-beta Effekte sind	Die drei biologischen TGF-beta Effekte werden					
die Wachstumsinhibition epithelialer,	durch Taibale et al. unter Bezugnahme auf die im					
endothelialer und hämatopoetischer Zellen, die	Abschnitt 1.6 bis 1.6.3 genannten					
Stimulation extrazellulärer Matrix und die	Originalarbeiten wie folgt beschrieben:					
Immunsuppression. Einige Besonderheiten	Die drei hauptsächlichen TGF-beta Effekte sind					
sollen im Folgenden kurz angesprochen werden,	die Wachstumsinhibition epithelialer,					
auf die antiproliferative Wirkung wird im Hinblick	endothelialer und hämatopoetischer Zellen, die					
auf die Fragestellung der Arbeit näher	Stimulation extrazellulärer Matrix und die					
eingegangen.	Immunsuppression. Einige Besonderheiten					
1.6.1 Zell Bewegungen	sollen im Folgenden kurz angesprochen werden,					
TGF-beta wirkt chemotaktisch auf Neutrophile	auf die antiproliferative Wirkung wird im Hinblick					
und Monozyten, unterdrückt jedoch die lokale	auf die Fragestellung der Arbeit näher					
Motilität endothelialer Zellen (Parekh et al., 1994;	eingegangen.					
Sato et al., 1989; Wahl et al., 1987).	1.6.1 Zell Bewegungen					
1.6.2 Synthese und Degradation	TGF-beta wirkt chemotaktisch auf Neutrophile					
extrazellulärer Matrix	und Monozyten, unterdrückt jedoch die lokale					
TGF-beta wirkt fördernd auf die Formation	Motilität endothelialer Zellen (Parekh et al., 1994;					
extrazellulärer Matrix	Sato et al., 1989; Wahl et al., 1987).					
durch die Synthese von embryonalen	1.6.2 Synthese und Degradation					
Matrix Proteinen wie Tenascin, Thrombospondin,	extrazellulärer Matrix					
Fibronektin und von maturen Matrix Proteinen	TGF-beta wirkt fördernd auf die Formation					
wie Elastin und Kollagen I (Bassols et al., 1988;	extrazellulärer Matrix					
Ignotz et al., 1987; Koli et al., 1991; Pearson et	durch die Synthese von embryonalen					
al., 1988; Penttinen et al., 1988; Raghow et al.,	Matrix Proteinen wie Tenascin, Thrombospondin,					

durch die Modulation der Expression von
Rezeptoren der extrazellulären Matrix:
Fibronektin, Vitronektin, Kollagen I, III, V, VI,
aminin (Heino et al., 1989) (Heino et al., 1989;
gnotz et al., 1987).

durch die Suppression der Expression
 von Proteinasen: Plasminogen Aktivatoren,
 Kollagenasen, Stromelysin (Edwards et al., 1987;
 Kerr et al., 1990; Laiho et al., 1986).

 durch die Induktion von Plasminogen
 Aktivator Inhibitor (PAI) 1, Tissue Inhibitor
 Metalloproteinase (TIMP) 1 und Cystatin C
 (Edwards et al., 1987; Laiho et al., 1986; Solem et al., 1990).

TGF-beta induziert fibrotische und entzündliche Reaktionen des Gewebes, wahrscheinlich durch die gleichzeitige Stimulation der Fibroblasten und der Chemotaxis proinflammatorischer Zellen, der Inhibition epithelialer Regeneration und der Induktion extrazellulärer Matrix (Roberts et al., 1980; Sanderson et al., 1995). Die entscheidende Rolle von TGF-beta konnte in mehreren bekannten Krankheiten belegt werden, in denen es zu einer sklerösen oder fibrotischen Veränderung von Gewebe kommt. Von besonderem Interesse ist hier die Leberzirrhose (Castilla et al., 1991; Czaja et al., 1989).

1.6.3 Immunsuppression

TGF-beta Zytokine sind im hohen Maße immunsuppressiv, sie inhibieren die Proliferation und Effektorfunktionen von T-, B- und NK-Zellen und Makrophagen (Letterio et al., 1998). Man vermutet, dass die Induktion von TGF-beta Zytokinen eine zentrale Rolle in der Vermittlung der antiinflammatorischen und immunsuppressiven Wirkung von Medikamenten wie Retinoiden und Glucocorticoiden spielt (Glick et al., 1989; Koli et al., 1993; Oursler et al., 1993). wie Elastin und Kollagen I (Bassols et al., 1988; Ignotz et al., 1987; Koli et al., 1991; Pearson et al., 1988; Penttinen et al., 1988; Raghow et al., 1987).

 durch die Modulation der Expression von Rezeptoren der extrazellulären Matrix:
 Fibronektin, Vitronektin, Kollagen I, III, V, VI, Laminin (Heino et al., 1989) (Heino et al., 1989;
 Ignotz et al., 1987).

durch die Suppression der Expression
 von Proteinasen: Plasminogen Aktivatoren,
 Kollagenasen, Stromelysin (Edwards et al., 1987;
 Kerr et al., 1990; Laiho et al., 1986).

 durch die Induktion von Plasminogen
 Aktivator Inhibitor (PAI) 1, Tissue Inhibitor
 Metalloproteinase (TIMP) 1 und Cystatin C
 (Edwards et al., 1987; Laiho et al., 1986; Solem et al., 1990).

TGF-beta induziert fibrotische und entzündliche Reaktionen des Gewebes, wahrscheinlich durch die gleichzeitige Stimulation der Fibroblasten und der Chemotaxis proinflammatorischer Zellen, der Inhibition epithelialer Regeneration und der Induktion extrazellulärer Matrix (Roberts et al., 1980; Sanderson et al., 1995). Die entscheidende Rolle von TGF-beta konnte in mehreren bekannten Krankheiten belegt werden, in denen es zu einer sklerösen oder fibrotischen Veränderung von Gewebe kommt. Von besonderem Interesse ist hier die Leberzirrhose (Castilla et al., 1991; Czaja et al., 1989).

1.6.3 Immunsuppression

TGF-beta Zytokine sind im hohen Maße immunsuppressiv, sie inhibieren die Proliferation und Effektorfunktionen von T-, B- und NK-Zellen und Makrophagen (Letterio et al., 1998). Man vermutet, dass die Induktion von TGF-beta Zytokinen eine zentrale Rolle in der Vermittlung der antiinflammatorischen und immunsuppressiven Wirkung von Medikamenten wie Retinoiden und Glucocorticoiden spielt (Glick

et al., 1989; Koli et al., 1993; Oursler et al.,
1993).

Ss. 24-28:

Originalarbeit	Erratum
1.7.1.1 Veränderungen der TGF-beta Rezeptor	1.7.1.1 Veränderungen der TGF-beta Rezeptor
Signalgebung	Signalgebung
Somatische Mutationen im Gen des TGF-beta	Die Veränderungen der TGF-beta Rezeptor
Typ II Rezeptors (TGFBR2) werden besonders in	Signalgebung werden in der Übersichtsarbeit von
Patienten mit HNPCC (hereditary non-polyposis	Derynck et al. unter Bezugnahme auf die in den
colon cancer) vorgefunden. Hier kommt es in	Abschnitten 1.7.1.1. bis 1.7.2 genannten
einer Frequenz von 10 Adeninen des Gens zu	Originalarbeiten wie folgt beschrieben:
einer Mutation (zumeist eine Deletion), die zu	Somatische Mutationen im Gen des TGF-beta
einer Leserasterverschiebung und zu einem	Typ II Rezeptors (TGFBR2) werden besonders in
trunkierten, funktionslosen TGF&RII führt (Lu et	Patienten mit HNPCC (hereditary non-polyposis
al., 1996; Markowitz et al., 1995; Myeroff et al.,	colon cancer) vorgefunden. Hier kommt es in
1995).	einer Frequenz von 10 Adeninen des Gens zu
TGFBR2 Mutationen kommen jedoch auch in	einer Mutation (zumeist eine Deletion), die zu
anderen Karzinomen relativ häufig vor. So weiß	einer Leserasterverschiebung und zu einem
man, dass bis zu 25% aller Kolonkarzinome	trunkierten, funktionslosen TGF&RII führt (Lu et
inaktivierende Mutationen im TGF&RII Rezeptor	al., 1996; Markowitz et al., 1995; Myeroff et al.,
tragen. Aber auch andere gastrale Tumore,	1995).
Gliome und andere zeigen häufig die Abrogation	TGFBR2 Mutationen kommen jedoch auch in
des TGF-beta Signalwegs auf dieser ersten	anderen Karzinomen relativ häufig vor. So weiß
Ebene (Izumoto et al., 1997) (Myeroff et al.,	man, dass bis zu 25% aller Kolonkarzinome
1995; Reiss, 1999).	inaktivierende Mutationen im TGF&RII Rezeptor
TGFBR1 Mutationen kommen ebenfalls, wenn	tragen. Aber auch andere gastrale Tumore,
auch nicht in der gleichen Häufigkeit vor.	Gliome und andere zeigen häufig die Abrogation
Bekannt sind sie von Ovarialkarzinomen und	des TGF-beta Signalwegs auf dieser ersten
Metastasen von Mammakarzinomen, sowie	Ebene (Izumoto et al., 1997) (Myeroff et al.,
Pankreaskarzinomen und T-Zell-Lymphomen	1995; Reiss, 1999).
(Chen et al., 1998) (Chen et al., 2001; Goggins et	TGFBR1 Mutationen kommen ebenfalls, wenn
al., 1998; Schiemann et al., 1999; Wang et al.,	auch nicht in der gleichen Häufigkeit vor.
2000). Eine gleichzeitige Inaktivierung von	Bekannt sind sie von Ovarialkarzinomen und
TGF&RI und TGF&RII dagegen konnte bis jetzt	Metastasen von Mammakarzinomen, sowie
nicht gezeigt werden (Wang et al., 2000).	Pankreaskarzinomen und T-Zell-Lymphomen
Eine weitere Möglichkeit des Signalverlustes liegt	(Chen et al., 1998) (Chen et al., 2001; Goggins et
in der verminderten Expression des Typ II	al., 1998; Schiemann et al., 1999; Wang et al.,
Rezeptors. Dies könnte beispielsweise durch	2000). Eine gleichzeitige Inaktivierung von

verminderte Transkriptionsfaktoren oder einer Mutation in der Promotorregion des Gens verursacht werden (Kim et al., 2000). Interessanter Weise muss eine herabgesetzte TGFßRII Funktion dabei nicht den totalen Ausfall aller TGF-beta vermittelten Effekte bedeuten. Häufig ist allein die Wachstumsinhibition gestört. Dies könnte an einer unterschiedlichen Schwellenwirkung der TGF-beta Antwort für die verschiedenen Effekte liegen (Chen et al., 1993; Fafeur et al., 1993; Feng et al., 1995; Geiser et al., 1992; Portella et al., 1998; Wieser et al., 1993).

Die Rolle des TGFßRII als Tumorsuppressor konnte indes eindrucksvoll durch verschiedene Experimente belegt werden. So führt die Wiedereinführung eines Wildtyp (wt) TGFßRII in TGFBR2 defekte Kolon- oder

Mammakarzinomzellen und die Überexpression von TGFßRII in Schilddrüsenkarzinomen sowohl zu einer Wachstumsinhibition als auch zu einer Unterdrückung des verankerungsunabhängigen Wachstums der Zellen (Sun et al., 1994; Turco et al., 1999; Wang et al., 1995). Andererseits führt ein eingeführter dominant negativer TGFßRII in der Haut oder in der Brustdrüse von Mäusen zu erhöhtem Tumoraufkommen (Bottinger et al., 1997; Go et al., 1999).

Schlussendlich korreliert eine verminderte Expression von TGFßRII mit höherem Grading in menschlichen Tumoren und in Experimenten (Kim et al., 2000; Kim et al., 2001; Tang et al., 1999; Venkatasubbarao et al., 2000).

1.7.1.2 Smads als Tumorsuppressoren

Mutationen hat man in den Genen für Smad4 (MADH4) und Smad2 (MADH2), aber nicht in Smad3, Smad7 oder Smad6 in verschiedenen Karzinomen vorgefunden (Hata et al., 1998; Massague et al., 2000). Häufig ist die Deletion von MADH4 in Pankreaskarzinomen, in denen sie zuerst entdeckt wurden (Hahn et al., 1996).

TGFßRI und TGFßRII dagegen konnte bis jetzt nicht gezeigt werden (Wang et al., 2000). Eine weitere Möglichkeit des Signalverlustes liegt in der verminderten Expression des Typ II Rezeptors. Dies könnte beispielsweise durch verminderte Transkriptionsfaktoren oder einer Mutation in der Promotorregion des Gens verursacht werden (Kim et al., 2000). Interessanter Weise muss eine herabgesetzte TGFßRII Funktion dabei nicht den totalen Ausfall aller TGF-beta vermittelten Effekte bedeuten. Häufig ist allein die Wachstumsinhibition gestört. Dies könnte an einer unterschiedlichen Schwellenwirkung der TGF-beta Antwort für die verschiedenen Effekte liegen (Chen et al., 1993; Fafeur et al., 1993; Feng et al., 1995; Geiser et al., 1992; Portella et al., 1998; Wieser et al., 1993).

Die Rolle des TGFßRII als Tumorsuppressor konnte indes eindrucksvoll durch verschiedene Experimente belegt werden. So führt die Wiedereinführung eines Wildtyp (wt) TGFßRII in TGFBR2 defekte Kolon- oder

Mammakarzinomzellen und die Überexpression von TGFßRII in Schilddrüsenkarzinomen sowohl zu einer Wachstumsinhibition als auch zu einer Unterdrückung des verankerungsunabhängigen Wachstums der Zellen (Sun et al., 1994; Turco et al., 1999; Wang et al., 1995). Andererseits führt ein eingeführter dominant negativer TGFßRII in der Haut oder in der Brustdrüse von Mäusen zu erhöhtem Tumoraufkommen (Bottinger et al., 1997; Go et al., 1999).

Schlussendlich korreliert eine verminderte Expression von TGFßRII mit höherem Grading in menschlichen Tumoren und in Experimenten (Kim et al., 2000; Kim et al., 2001; Tang et al., 1999; Venkatasubbarao et al., 2000).

1.7.1.2 Smads als Tumorsuppressoren Mutationen hat man in den Genen für Smad4 (MADH4) und Smad2 (MADH2), aber nicht in

Auch Kolonkarzinome zeigen eine deutliche Frequenz MADH4 mutierter Tumore, in anderen Karzinomen sind sie jedoch deutlich seltener anzutreffen als Mutationen der Rezeptoren (Hata et al., 1998; Massague et al., 2000). MADH2 deletierte Tumoren sind selten, und kommen in kolorektalen und pulmonalen Neoplasien vor (Eppert et al., 1996; Ohtaki et al., 2001; Takagi et al., 1998; Yakicier et al., 1999). Die Rolle besonders von Smad4 als Tumorrepressor konnte in Studien gezeigt werden, die belegten, dass die Mutation beider Allele gehäuft in Pankreas und Kolonkarzinomen vorkommt, und schon der Defekt eines Allels zur Progression des Karzinoms beiträgt (Luttges et al., 2001; Xu et al., 2000). In heterozygot MADH4 deletierten Mäusen (die homozygote Form ist intrauterin letal), die zusätzlich ein inaktiviertes Gen der polypösen adenomatosis coli (Apc) tragen, führt der Verlust der Wildtyp Allele zur Entstehung multipler Polypen, die jedoch schnell in heterogene invasive Adenokarzinome progredient sind (Takaku et al., 1998). Problematisch ist vor allen Dingen die selektive Abrogation der Wachstumsinhibition der Zellen, während eine Restantwort erhalten bleibt. Vier Beispiele:

• Die tumorsuppressive Wirkung von Smad2 erklärt sich durch seine Schlüsselrolle in der Induktion der Expression der CDK Inhibitoren p21 CIP1 und p15 INK4B. Mutationen in Smad2 könnten so die Zyklusarretierung inaktivieren, so dass die Zellen resistent gegen TGF-beta vermittelte Wachstumsinhibition sind. Andere TGF-beta Funktionen können jedoch weiter auch über den Smad3 Weg ablaufen, und so der Zelle entscheidenden Vorteil in der Karzinogenese bringen, beispielsweise durch die weitere Induktion Extrazellulärer Matrix Proteine (Feng et al., 2000; Pardali et al., 2000).

Fehlende Smad4 Expression scheint

Smad3, Smad7 oder Smad6 in verschiedenen Karzinomen vorgefunden (Hata et al., 1998; Massague et al., 2000). Häufig ist die Deletion von MADH4 in Pankreaskarzinomen, in denen sie zuerst entdeckt wurden (Hahn et al., 1996). Auch Kolonkarzinome zeigen eine deutliche Frequenz MADH4 mutierter Tumore, in anderen Karzinomen sind sie jedoch deutlich seltener anzutreffen als Mutationen der Rezeptoren (Hata et al., 1998; Massague et al., 2000). MADH2 deletierte Tumoren sind selten, und kommen in kolorektalen und pulmonalen Neoplasien vor (Eppert et al., 1996; Ohtaki et al., 2001; Takagi et al., 1998; Yakicier et al., 1999). Die Rolle besonders von Smad4 als Tumorrepressor konnte in Studien gezeigt werden, die belegten, dass die Mutation beider Allele gehäuft in Pankreas und Kolonkarzinomen vorkommt, und schon der Defekt eines Allels zur Progression des Karzinoms beiträgt (Luttges et al., 2001; Xu et al., 2000). In heterozygot MADH4 deletierten Mäusen (die homozygote Form ist intrauterin letal), die zusätzlich ein inaktiviertes Gen der polypösen adenomatosis coli (Apc) tragen, führt der Verlust der Wildtyp Allele zur Entstehung multipler Polypen, die jedoch schnell in heterogene invasive Adenokarzinome progredient sind (Takaku et al., 1998). Problematisch ist vor allen Dingen die selektive Abrogation der Wachstumsinhibition der Zellen, während eine Restantwort erhalten bleibt. Vier Beispiele:

• Die tumorsuppressive Wirkung von Smad2 erklärt sich durch seine Schlüsselrolle in der Induktion der Expression der CDK Inhibitoren p21 CIP1 und p15 INK4B. Mutationen in Smad2 könnten so die Zyklusarretierung inaktivieren, so dass die Zellen resistent gegen TGF-beta vermittelte Wachstumsinhibition sind. Andere TGF-beta Funktionen können jedoch weiter auch über den Smad3 Weg ablaufen, und so der Zelle ebenfalls entgegen der allgemeinen Auffassung nicht zu einer kompletten Abrogation der Zellantwort auf TGF-beta zu führen. Auch vollständig deletierte Zellen zeigen noch einen Rest der Antwort. So wird vermutet, dass die hohe Frequenz MADH4 deletierter Tumore durch einen Selektivenvorteil der Teilabrogation des TGF-beta Signals in der Karzinogenese zu erklären ist (Dai et al., 1999; Fink et al., 2001; Hocevar et al., 1999).

• Darüber hinaus soll die fehlende Smad4 Expression zu einer Hochregulation des Ras Systems führen und so die Progression in weiter entdifferenzierte Tumoren ermöglichen (Iglesias et al., 2000).

• Smad7 Überexpression in Zellen führt zu einer Resistenz gegen Wachstumsinhibition, ohne das TGF-beta induzierte

oberflächenverankerungsabhängige Wachstum und die Tumorigenität der Zellen zu beeinflussen (Kleeff et al., 1999). Ein klarer Selektionsvorteil der Zellen.

1.7.2 TGF-beta als Promotor der Karzinogenese

Trotz der Tumorsuppressor Eigenschaften von TGF-beta produzieren gerade viele epitheliale Tumorzellen selbst diesen Wachstumsfaktor (Derynck et al., 1987; Dickson et al., 1987). Auβerdem werden im Umfeld von tumorig transdifferenzierten Zellen und an Orten invasiven Zellwachstums vermehrt Plasminogen, Metalloproteinasen und Integrine freigesetzt, die zu einer vermehrten Aktivation von TGF-beta führen (Munger et al., 1999; Sato et al., 1989; Yu et al., 2000).

Es konnte bewiesen werden, dass das Zytokin auch eine Rolle als Promotor der Karzinogenese spielt und dass besonders die selektive Überwindung der Wachstumsinhibition und gleichzeitige auto- oder parakrine Stimulation durch TGFß der Zelle Selektionsvorteile entscheidenden Vorteil in der Karzinogenese bringen, beispielsweise durch die weitere Induktion Extrazellulärer Matrix Proteine (Feng et al., 2000; Pardali et al., 2000).

• Fehlende Smad4 Expression scheint ebenfalls entgegen der allgemeinen Auffassung nicht zu einer kompletten Abrogation der Zellantwort auf TGF-beta zu führen. Auch vollständig deletierte Zellen zeigen noch einen Rest der Antwort. So wird vermutet, dass die hohe Frequenz MADH4 deletierter Tumore durch einen Selektivenvorteil der Teilabrogation des TGF-beta Signals in der Karzinogenese zu erklären ist (Dai et al., 1999; Fink et al., 2001; Hocevar et al., 1999).

• Darüber hinaus soll die fehlende Smad4 Expression zu einer Hochregulation des Ras Systems führen und so die Progression in weiter entdifferenzierte Tumoren ermöglichen (Iglesias et al., 2000).

• Smad7 Überexpression in Zellen führt zu einer Resistenz gegen Wachstumsinhibition, ohne das TGF-beta induzierte oberflächenverankerungsabhängige Wachstum und die Tumorigenität der Zellen zu beeinflussen (Kleeff et al., 1999). Ein klarer Selektionsvorteil der Zellen.

1.7.2 TGF-beta als Promotor der Karzinogenese

Trotz der Tumorsuppressor Eigenschaften von TGF-beta produzieren gerade viele epitheliale Tumorzellen selbst diesen Wachstumsfaktor (Derynck et al., 1987; Dickson et al., 1987). Auβerdem werden im Umfeld von tumorig transdifferenzierten Zellen und an Orten invasiven Zellwachstums vermehrt Plasminogen, Metalloproteinasen und Integrine freigesetzt, die zu einer vermehrten Aktivation von TGF-beta führen (Munger et al., 1999; Sato et al., 1989; Yu et al., 2000).

Es konnte bewiesen werden, dass das Zytokin

einbringt, die zur klonalen Expansion, und damit zu manifesten Tumorformation führt: So wurde gezeigt, dass HNPCC Patienten mit TGFBR2 Mutationen eine bessere Prognose haben, als sporadische Kolonkarzinom Patienten, bei denen diese Mutation selten ist (Bubb et al., 1996; Markowitz et al., 1995). Die Etablierung eines funktionierenden TGFßRII Signals in TGFBR2 mutierten HNPCC Zellen führte hier zu einem invasiven Phänotyp der vormals nicht-invasiven Zellen (Oft et al., 1998). Die am Beginn der Karzinogenese als Tumorprogressor auftretende Signalabrogation erweist sich also in späteren Stadien als eher protektiv gegen das Fortschreiten der Läsion. Für zwei Mutationen von Smad2 in kolorektalen Karzinomen und für bestimmte Mutationen im TGFßRI konnte ebenfalls nachgewiesen werden, dass sie die Invasivität der Tumorzellen förderten (Chen et al., 1998; Prunier et al., 1999). Eng verbunden mit der Fähigkeit zur Invasivität und Migration ist die Transdifferenzierung von Zellen vom epithelialen zum mesenchymalen Typ (Thiery et al., 1999). TGF-beta induziert z. B. die physiologische embryonale mesenchymale Transdifferenzierung (Brown et al., 1999; Kaartinen et al., 1995). In der Karzinogenese wurde diese Fähigkeit ebenfalls in verschiedenen Karzinomen nachgewiesen. Die Klonierung eines dominant negativen TGF&RII in solche Zellen führt zur Prävention der Transdifferenzierung und kann sogar eine Wiederherstellung des epithelialen Phänotyps bewirken (Oft et al., 1998; Oft et al., 1996; Portella et al., 1998). In Mammakarzinomen konnte ein direkter Zusammenhang zwischen Metastasierung und TGF-beta Signalantwort der Zellen gezeigt werde. So ließ sich einerseits das Metastasierungsverhalten in Knochen von Mäusen durch Klonierung eines dominant negativen TGFßRII signifikant attenuieren,

auch eine Rolle als Promotor der Karzinogenese spielt und dass besonders die selektive Überwindung der Wachstumsinhibition und gleichzeitige auto- oder parakrine Stimulation durch TGFß der Zelle Selektionsvorteile einbringt, die zur klonalen Expansion, und damit zu manifesten Tumorformation führt: So wurde gezeigt, dass HNPCC Patienten mit TGFBR2 Mutationen eine bessere Prognose haben, als sporadische Kolonkarzinom Patienten, bei denen diese Mutation selten ist (Bubb et al., 1996; Markowitz et al., 1995). Die Etablierung eines funktionierenden TGFßRII Signals in TGFBR2 mutierten HNPCC Zellen führte hier zu einem invasiven Phänotyp der vormals nicht-invasiven Zellen (Oft et al., 1998). Die am Beginn der Karzinogenese als Tumorprogressor auftretende Signalabrogation erweist sich also in späteren Stadien als eher protektiv gegen das Fortschreiten der Läsion. Für zwei Mutationen von Smad2 in kolorektalen Karzinomen und für bestimmte Mutationen im TGF&RI konnte ebenfalls nachgewiesen werden, dass sie die Invasivität der Tumorzellen förderten (Chen et al., 1998; Prunier et al., 1999). Eng verbunden mit der Fähigkeit zur Invasivität und Migration ist die Transdifferenzierung von Zellen vom epithelialen zum mesenchymalen Typ (Thiery et al., 1999). TGF-beta induziert z. B. die physiologische embryonale mesenchymale Transdifferenzierung (Brown et al., 1999; Kaartinen et al., 1995). In der Karzinogenese wurde diese Fähigkeit ebenfalls in verschiedenen Karzinomen nachgewiesen. Die Klonierung eines dominant negativen TGF&RII in solche Zellen führt zur Prävention der Transdifferenzierung und kann sogar eine Wiederherstellung des epithelialen Phänotyps bewirken (Oft et al., 1998; Oft et al., 1996; Portella et al., 1998). In Mammakarzinomen konnte ein direkter Zusammenhang zwischen Metastasierung und

andererseits führte ein partiell aktivierter TGFßRI zu einer vermehrten Metastasenbildung im Knochen dieser Mäuse (Yin et al., 1999). Ebenfalls günstig für die Tumorprogression sind die Auswirkungen von TGF-beta auf die Mikroumwelt der Zelle: TGF-beta ist ein potenter Induktor embryonaler Angiogenese (Dickson et al., 1987; Larsson et al., 2001; Oshima et al., 1996). In mehreren Mausversuchen konnte auch in der Karzinogenese die wichtige Rolle von TGF-beta gezeigt werden, indem TGFß überexprimierende Karzinomzellen in immundefizienten Mäusen starke Angiogenese induzierten, und diese durch TGFß Antikörper hemmbar war (Stearns et al., 1999; Ueki et al., 1992). Die Reexpression von Smad4 in Smad4 defizienten Pankreastumoren führte zur Tumorsuppression primär über eine verminderte Angiogenese (Schwarte-Waldhoff et al., 2000). TGF-beta induziert darüber hinaus auch VEGF (vascular endothelial growth factor), der Endothelzellen direkt zu Migration und Invasion anregen kann (Pertovaara et al., 1994; Saito et al., 1999). Dies sind nur Beispiele direkter und Indirekter Wirkung auf die Angiogenese. Ein weiterer putativer Mechanismus der Tumorprogression ist die immunsupprimierende Wirkung von TGF-beta. So kann die Inhibition von T-Lymphozyten, Natürlichen Killerzellen und Neutrophilen zu einer verminderten Immunantwort des Körpers gegen die veränderten Zellen führen, die so einer Beseitigung durch die Abwehrzellen entkommen (Chen et al., 1998; Horwitz et al., 1997; Kehrl et al., 1986), (Kehrl et al., 1986; Torre-Amione et al., 1990; Wallick et al., 1990). Darüber hinaus kann die Expression von TGFß in der Zelle zu einer verminderten Expression von MHC II (major histocompatibility complex class II) Antigenen, und damit zu einer verminderten Immunogenität der Tumorzelle führen

TGF-beta Signalantwort der Zellen gezeigt werde. So ließ sich einerseits das Metastasierungsverhalten in Knochen von Mäusen durch Klonierung eines dominant negativen TGFßRII signifikant attenuieren, andererseits führte ein partiell aktivierter TGFßRI zu einer vermehrten Metastasenbildung im Knochen dieser Mäuse (Yin et al., 1999). Ebenfalls günstig für die Tumorprogression sind die Auswirkungen von TGF-beta auf die Mikroumwelt der Zelle: TGF-beta ist ein potenter Induktor embryonaler Angiogenese (Dickson et al., 1987; Larsson et al., 2001; Oshima et al., 1996). In mehreren Mausversuchen konnte auch in der Karzinogenese die wichtige Rolle von TGF-beta gezeigt werden, indem TGFß überexprimierende Karzinomzellen in immundefizienten Mäusen starke Angiogenese induzierten, und diese durch TGFß Antikörper hemmbar war (Stearns et al., 1999; Ueki et al., 1992). Die Reexpression von Smad4 in Smad4 defizienten Pankreastumoren führte zur Tumorsuppression primär über eine verminderte Angiogenese (Schwarte-Waldhoff et al., 2000). TGF-beta induziert darüber hinaus auch VEGF (vascular endothelial growth factor), der Endothelzellen direkt zu Migration und Invasion anregen kann (Pertovaara et al., 1994; Saito et al., 1999). Dies sind nur Beispiele direkter und Indirekter Wirkung auf die Angiogenese. Ein weiterer putativer Mechanismus der Tumorprogression ist die immunsupprimierende Wirkung von TGF-beta. So kann die Inhibition von T-Lymphozyten, Natürlichen Killerzellen und Neutrophilen zu einer verminderten Immunantwort des Körpers gegen die veränderten Zellen führen, die so einer Beseitigung durch die Abwehrzellen entkommen (Chen et al., 1998; Horwitz et al., 1997; Kehrl et al., 1986), (Kehrl et al., 1986; Torre-Amione et al., 1990; Wallick et al., 1990). Darüber hinaus

(Czarniecki et al., 1988; Geiser et al., 1993;	kann die Expression von TGFß in der Zelle zu
Letterio et al., 1996)	einer verminderten Expression von MHC II
Zusammenfassend lässt sich daher sagen: TGF-	(major histocompatibility complex class II)
beta ist ein potenter Suppressor im Frühstadium	Antigenen, und damit zu einer verminderten
der Karzinogenese, da er epitheliale Zellen	Immunogenität der Tumorzelle führen
wachstumsinhibiert. Entkommen die Zellen	(Czarniecki et al., 1988; Geiser et al., 1993;
jedoch dieser Wachstumsinhibition, so kann dies	Letterio et al., 1996)
zu einem erheblichen Selektionsvorteil führen. In	Zusammenfassend lässt sich daher sagen: TGF-
einem späteren Stadium der Karzinogenese	beta ist ein potenter Suppressor im Frühstadium
hingegen, ist eine restliche oder erhaltene TGF-	der Karzinogenese, da er epitheliale Zellen
beta Antwort wahrscheinlich Promotor der	wachstumsinhibiert. Entkommen die Zellen
Karzinogenese, denn Förderung von Invasivität,	jedoch dieser Wachstumsinhibition, so kann dies
Angiogenese und Immunsuppression bilden	zu einem erheblichen Selektionsvorteil führen. In
einen idealen Boden für Tumorformation und	einem späteren Stadium der Karzinogenese
Metastasierung	hingegen, ist eine restliche oder erhaltene TGF-
	beta Antwort wahrscheinlich Promotor der
	Karzinogenese, denn Förderung von Invasivität,
	Angiogenese und Immunsuppression bilden
	einen idealen Boden für Tumorformation und
	Metastasierung

Abbildung 4 (Seite 16)

Originalarbeit	Erratum
Abb. 4 Smad Domänen und ihre Funktion.	Abb. 4: Smad Domänen und ihre Funktion
	(Abbildung modifiziert nach Massagué et al.,
	<u>1998).</u>

Abbildung 5 (Seite 17)

Origir	nalar	beit				Erratu	ım				
Abb.	5	Übersicht	über	die	wichtigsten	Abb.	5	Übersicht	über	die	wichtigsten
Modulationswege der Signaltransduktion			Modulationswege der Signaltransduktion nach								
						dem I	Revie	ew Massagu	é et al.	, 1998	<u>3 (Massagué</u>
						<u>et al.,</u>	1998	<u>3)</u>			

Abbildung 6 (Seite 18)

Originalarbeit	Erratum
Abb. 6 Durch Bindung von TGF-beta Dimeren an	Abb. 6 Durch Bindung von TGF-beta Dimeren an
TGFßRII wird TGFßRI in den heterotetrameren	TGF&RII wird TGF&RI in den heterotetrameren
Komplex rekrutiert und in der GS Domäne	Komplex rekrutiert und in der GS Domäne
phosphoryliert. Der aktivierte TGFßRI	phosphoryliert. Der aktivierte TGF&RI
phosphoryliert die Rezeptor regulierten Smads	phosphoryliert die Rezeptor regulierten Smads
(R-Smads), die mit Smad4 einen Komplex bilden,	(R-Smads), die mit Smad4 einen Komplex bilden,
welcher in den Nukleus wandert. Hier nehmen	welcher in den Nukleus wandert. Hier nehmen
Co-Faktoren, -Aktivatoren und -Repressoren	Co-Faktoren, -Aktivatoren und -Repressoren
Einfluss auf die Zielsequenz und die Qualität des	Einfluss auf die Zielsequenz und die Qualität des
Signals. Die Signaltransduktion wird hierbei	Signals. Die Signaltransduktion wird hierbei
durch verschiedene Faktoren und Crosstalk mit	durch verschiedene Faktoren und Crosstalk mit
anderen Signaltransduktionswegen moduliert.	anderen Signaltransduktionswegen moduliert
	(Abbildung modifiziert nach Massagué et al.,
	<u>1998)</u>

Abbildung 7 (Seite 28)

Originalarbeit	Erratum
Abb. 7 Transformierte Tumorzellen sezernieren	Abb. 7 Transformierte Tumorzellen sezernieren
TGF-beta in die Mikroumwelt. Weitere	TGF-beta in die Mikroumwelt. Weitere
Transformation führt zu einer Resistenz gegen	Transformation führt zu einer Resistenz gegen
die TGF-beta vermittelte Wachstumsinhibition bei	die TGF-beta vermittelte Wachstumsinhibition bei
gleichzeitiger Zunahme der Invasion und	gleichzeitiger Zunahme der Invasion und
Metastasierung fördernden Elemente in der	Metastasierung fördernden Elemente in der
Mikroumwelt des Tumors. Es entsteht eine	Mikroumwelt des Tumors. Es entsteht eine
Selektionsvorteil der Tumorzelle gegenüber nicht	Selektionsvorteil der Tumorzelle gegenüber nicht
transformierter Epithelzellen.	transformierter Epithelzellen. (Abbildung
	modifiziert nach Derynck et al., 2001)

Abbildung 10 (Seite 53)

Originalarbeit		Erratum	
3 Ergebnisse		3 Ergebnisse	
3.1 Wachstumsex	cperimente	Die folgenden Abbildungen zeigen neben den für	
3.1.1 Einfluss von e	exogenem TGFß1 auf das	diese Doktorarbeit relevanten Ergebnissen auch	
Wachstum von Wildty	yp HuH7	Ergebnisse von Herrn M. Berna, der gleichzeitig	
		zu meiner Doktorarbeit mit der HepG2 Zelllinie	
		zum Thema TGF-beta Rezeptoren im Labor	
		beschäftigt war. Die gemeinsam erstellten	
		Abbildungen wurden in Teilen 2001 in der	
		Dissertation von M. Berna und 2005 in der	
		zusammenfassenden Publikation von Musch et	
		al. in Digestion veröffentlicht.	
		3.1 Wachstumsexperimente	
		3.1.1 Einfluss von exogenem TGFß1 auf das	
		Wachstum von Wildtyp HuH7	
Abb 10 Einfluss von ex	cogenem TGFß1 auf	Abb 10 Einfluss von exogenem TGFß1 auf	
Wildtyp HuH7 und als	Kontrolle verwendete	Wildtyp HuH7 und als Kontrolle verwendete	
HepG2 Zellen. HuH7 Z	Zellen zeigen unter	HepG2 Zellen. HuH7 Zellen zeigen unter	
ansteigenden Konzent	rationen eine deutliche	ansteigenden Konzentrationen eine deutliche	
Proliferationshemmung	g durch exogenes TGFß1,	Proliferationshemmung durch exogenes TGFß1,	
ab 10 pmol/l sterben Z	ellen ab. HepG2 Zellen	ab 10 pmol/l sterben Zellen ab. HepG2 Zellen	
zeigen weitgehende T	GFß1 Resistenz. Der	zeigen weitgehende TGF ß1 Resistenz. Der	
Rahmen markiert den I	klinischen Serum	Rahmen markiert den klinischen Serum	
Konzentrationsbereich	an HCC erkrankter	Konzentrationsbereich an HCC erkrankter	
Patienten.		Patienten (Abbildung veröffentlicht in M. Berna	
		<u>2001)</u>	

Abbildung 11 (Seite 54)

Originalarbeit	Erratum
Abb. 11: Repräsentative Gesichtsfelder gleicher	Abb. 11: Repräsentative Gesichtsfelder gleicher
Vergrößerung (10-fach) von HuH7 und HepG2	Vergrößerung (10-fach) von HuH7 und HepG2
Zellen unter 200pmol/I TGFß1 am 7. Tag im	Zellen unter 200pmol/I TGFß1 am 7. Tag im
Vergleich zur Negativkontrolle. Konfluentes	Vergleich zur Negativkontrolle. Konfluentes
Wachstum der Negativkontrollen (links). HuH7	Wachstum der Negativkontrollen (links). HuH7

Zellen	zeigen	unter	maximaler	TGFß	Zellen	zeigen	unter	maximaler	TGFß
Konzent	ration (obe	n rechts)	nur noch ve	reinzelte	Konzent	ration (ob	en rechts)	nur noch ve	ereinzelte
Zellhaufe	en, die Z	ellen sin	d zudem b	alloniert.	Zellhauf	en, die Z	Zellen sin	d zudem I	oalloniert.
HepG2 Z	Zellen wacł	hsen dag	egen unter 2	00pmol/l	HepG2	Zellen wa	chsen dag	egen unter 2	200pmol/l
noch in	deutlichen	Zellhauf	en (unten re	chts) bei	noch in	deutlicher	n Zellhauf	en (unten re	chts) bei
unauffäll	iger Morph	ologie.			unauffäl	liger Morp	hologie <u>At</u>	bildung ver	öffentlicht
					in M. Be	rna 2001)	<u>.</u>		

Abbildung 19 (Seite 60)

Originalarbeit	Erratum
Abb. 19 Wachstumskonstante µ zwischen dem 3.	Abb. 19 Wachstumskonstante µ zwischen dem 3.
und 7. Tag nach Ausplattierung. Median IRES=	und 7. Tag nach Ausplattierung. Median IRES=
0,52 ; Median CA= 0,18 ; Median DN= 0,40.	0,52 ; Median CA= 0,18 ; Median DN= 0,40
	(Abbildung veröffentlicht in Musch et al., 2005).

Abbildung 20 (Seite 62)

Originalarbeit	Erratum
Abb. 20 Nachweis der Transkription von TGF-	Abb. 20 Nachweis der Transkription von TGF-
beta Rezeptor I RNA in 10 Tumor (gerade	beta Rezeptor I RNA in 10 Tumor (gerade
Zahlen) und korrespondierenden Peritumoren	Zahlen) und korrespondierenden Peritumoren
(ungerade Zahlen) (Spur 1-20), HuH7 Zellen (21)	(ungerade Zahlen) (Spur 1-20), HuH7 Zellen (21)
und HepG2 Zellen (22). Spur 23:	und HepG2 Zellen (22). Spur 23:
Negativkontrolle ohne RNA, Spur 24: ohne	Negativkontrolle ohne RNA, Spur 24: ohne
Reverse Transkription. L= Längenstandart.	Reverse Transkription. L= Längenstandart
	(Abbildung veröffentlicht in M. Berna 2001).

Abbildung 21 (Seite 63)

Originalarbeit	Erratum
Abb. 21 Nachweis der Transkription von TGF-	Abb. 21 Nachweis der Transkription von TGF-
beta Rezeptor I RNA in 10 Tumor (gerade	beta Rezeptor I RNA in 10 Tumor (gerade
Zahlen) und korrespondierenden Peritumoren	Zahlen) und korrespondierenden Peritumoren
(ungerade Zahlen) aus humanen HCC (Spur 1-	(ungerade Zahlen) aus humanen HCC (Spur 1-
20), HuH7 Zellen (21) und HepG2 Zellen (22).	20), HuH7 Zellen (21) und HepG2 Zellen (22).
Spur 23: Negativkontrolle ohne RNA, Spur 34:	Spur 23: Negativkontrolle ohne RNA, Spur 34:
ohne Reverse Transkription L= Längenstandart.	ohne Reverse Transkription L= Längenstandart
	(Abbildung veröffentlicht in M. Berna 2001)

Abbildung 22 (Seite 64)

Originalarbeit	Erratum
Abb. 22 Nachweis von TGF beta Rezeptor	Abb. 22 Nachweis von TGF beta Rezeptor
Proteinen in HuH7 und HepG2 Zellen. Abb. 22a:	Proteinen in HuH7 und HepG2 Zellen. Abb. 22a:
Western Blot mit polyklonalem Antikörper gegen	Western Blot mit polyklonalem Antikörper gegen
TGF-beta Typ I Rezeptor. Die erste Spur zeigt	TGF-beta Typ I Rezeptor. Die erste Spur zeigt
HepG2 Zellen, die zweite HuH7 Zellen. In der	HepG2 Zellen, die zweite HuH7 Zellen. In der
dritten Bahn wurde FCS als Negativkontrolle	dritten Bahn wurde FCS als Negativkontrolle
mitgeführt. Die Proteinbanden sind sowohl für	mitgeführt. Die Proteinbanden sind sowohl für
HuH7 als auch HepG2 Zellen deutlich sichtbar.	HuH7 als auch HepG2 Zellen deutlich sichtbar.
Sie liegen in der erwarteten Höhe. Eine	Sie liegen in der erwarteten Höhe. Eine
Positivkontrolle ist nicht erhältlich. Abb. 22b	Positivkontrolle ist nicht erhältlich. Abb. 22b
Western Blot mit polyklonalem Antikörper gegen	Western Blot mit polyklonalem Antikörper gegen
TGF-beta Rezeptor Typ II. In der ersten Spur	TGF-beta Rezeptor Typ II. In der ersten Spur
eine Positivkontrolle mit TGF-beta Rezeptor II	eine Positivkontrolle mit TGF-beta Rezeptor II
Protein, ein kommerziell erhältliches,	Protein, ein kommerziell erhältliches,
gentechnisch synthetisiertes Protein. In Spur 3	gentechnisch synthetisiertes Protein. In Spur 3
HepG2 Zellen, Spur 4 HuH7 Zellen. Der Pfeil	HepG2 Zellen, Spur 4 HuH7 Zellen. Der Pfeil
weist auf die Höhe der erwarteten Bande. HepG2	weist auf die Höhe der erwarteten Bande. HepG2
Zellen zeigen eine deutliche Expression (erste	Zellen zeigen eine deutliche Expression (erste
Bande von unten). HuH7 Zellen zeigen keine	Bande von unten). HuH7 Zellen zeigen keine
Bande in der erwarteten Höhe.	Bande in der erwarteten Höhe (Abbildung
	veröffentlicht in Musch et al., 2005).

Abbildung 24 (Seite 66)

Originalarbeit	Erratum
Abb. 24 Western Blot der Protein Extraktionen	Abb. 24 Western Blot der Protein Extraktionen
aus klinischen Tumoren und peritumoralem	aus klinischen Tumoren und peritumoralem
Gewebe (SDS-Page (10%). Die Abbildung zeigt	Gewebe (SDS-Page (10%). Die Abbildung zeigt
die 10 Tumor/ Peritumor Paare, gerade Zahlen	die 10 Tumor/ Peritumor Paare, gerade Zahlen
zeigen die Tumore, ungerade Zahlen das	zeigen die Tumore, ungerade Zahlen das
peritumorale Gewebe. Für TGFßRII Protein	peritumorale Gewebe. Für TGFßRII Protein
Assays (70 kD positiv Kontrolle) war die	Assays (70 kD positiv Kontrolle) war die
Expression im Peritumor größer als im Tumor (6	Expression im Peritumor größer als im Tumor (6
von 10), der TGFßRI wurde im Tumor stärker als	von 10), der TGFßRI wurde im Tumor stärker als
im Peritumor exprimiert (8 von 10).	im Peritumor exprimiert (8 von 10) (Abbildung

veröffentlicht in Musch et al., 2005).

Seite 82

Originalarbeit	Erratum
	Derynck R, Akhurst RJ, Balmain A. TGF-beta
	signaling in tumor suppression and cancer
	progression. Nature Genetics 2001; 29: 117-129