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1 INTRODUCTION
Gravity is one of the most important environmental stimuli that plants use to cope with their 

environment  in  a  most  beneficial  way and to  optimize  exploitation of  resources.  Gravity 

always  acts  constantly  at  any  place  on  the  earth  and  thereby  provides  the  most  reliable 

external factor for the orientation of the growth direction of plant organs or single cells. The 

adjustment  of  the  growth orientation  relative  to  the  direction  of  gravity  is  referred  to  as 

gravitropism. This mechanism is essential for all plants because it ensures that roots grow into 

the soil to take up water and nutrients and to anchor the plant, and that shoots grow towards 

the light to produce energy-rich metabolites via photosynthesis. Gravitropism is ideally suited 

for studying the fundamental principles of cellular signaling involved in the perception of 

environmental  stimuli,  and in  its  specific  responses.  Gravitropic  signaling in  higher  plant 

organs is very complex (for reviews see Kiss 2000;  Boonsirichai et al. 2002; Sievers et al. 

2002; Blancaflor and Masson 2003; Morita and Tasaka 2004) because the processes of gravity 

sensing and of gravitropic responses are accomplished within specific tissues that are locally 

separated  by  considerable  distances.  In  addition,  the  gravity-sensing  cells,  so-called 

statocytes,  are  part  of  compact  tissues  and  therefore  barely  accessible  for  experimental 

applications investigating the decisive early steps of gravity sensing.

The  green  alga  Chara  provides  two  well  established  model  cell  types  –  rhizoids  and 

protonemata  –  which  are  increasingly  used  to  study specific  aspects  of  gravitropism (for 

reviews  see  Sievers  et  al.  1996;  Braun  1997;  Braun  and  Limbach  2005a).  Interestingly, 

although rhizoids and protonemata are very similar from the morphological point of view, 

they  exhibit  opposite  gravitropic  growth  orientations.  Positively  gravitropic  (downward 

growing)  rhizoids have a  root-like function and anchor  the algal  thallus in  the sediment. 

Negatively gravitropic  (upward growing)  protonemata are  produced by nodal  cells  in  the 

absence of light, e.g. when the thallus is accidentally buried in the sediment (Hodick 1993). 

As soon as the cells have penetrated the substrate and reached the light, tip growth terminates, 

and a complex series of cell divisions is initiated that leads to the regeneration of the green 

thallus (Braun and Wasteneys 1998a).

Since gravitropic  signaling  pathways in  rhizoids  and protonemata are  short  and  cells  are 

easily accessible for experimental approaches, rhizoids and protonemata are particularly well 

suited to investigate the early processes of gravity sensing which are closely linked to the 

sedimentation of internal particles, so-called statoliths. Previous studies using rhizoids and 
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1   INTRODUCTION

protonemata  have  contributed  greatly  to  the  understanding of  the  cellular  mechanisms of 

gravitropism in plants (Sievers et al. 1979, 1991a; Hejnowicz and Sievers 1981; Volkmann et 

al. 1991; Braun and Sievers 1993; Buchen et al. 1993; Hodick 1994; Leitz et al. 1995; Braun 

1996a; Cai et al. 1997; Hodick and Sievers 1998; Braun and Richter 1999; Braun 2002; Braun 

et al. 2002; Limbach et al. 2005). Furthermore, the clarification of the cytoskeleton-dependent 

processes  underlying gravity-oriented tip  growth of  rhizoids and protonemata (Braun and 

Sievers 1994; Braun 1996b, 2001; Braun and Wasteneys 1998a, 1998b; Braun et al. 2004) has 

enhanced the knowledge of principles involved in the establishment of cytoplasmic polarity 

and in the regulation of polarized growth in plant cells.

1.1 Characean rhizoids and protonemata as model systems for 
studying tip growth

Characean rhizoids and protonemata are tube-like cells with diameters of 30 µm which grow 

out from the nodes of the green thallus. As a common feature of tip-growing plant cells, e.g. 

root hairs, pollen tubes, and moss protonemata (Geitmann and Emons 2000; Hepler et al. 

2001), the characean cells are characterized by the strong polarity of cytoplasmic organization 

(Braun  1997;  Braun  and  Wasteneys  1998b).  In  the  basal  region,  rotational  cytoplasmic 

streaming mediated by  two populations  of  thick  actin  bundles  with  opposite  polarities  is 

observed to surround the large central vacuole. The nucleus is located at the distal end of the 

vacuole at the transition to the subapical cell region which extends over a distance of about 

300 µm towards the cell apex and contains the majority of cytoplasm and cell organelles, e.g. 

endoplasmic  reticulum  (ER),  Golgi  stacks,  mitochondria,  plastids,  and  ribosomes.  The 

cytoplasm of the subapical region is rather static, and no cytoplasmic streaming is observed. 

The apical region contains the sedimentable, barium-sulfate filled statoliths (Schröter et al. 

1975; Wang-Cahill and Kiss 1995) which are densely packed in rhizoids but are more loosely 

arranged in protonemata (Braun 1997) and accomodates the tip-growth machinery. 

As in other tip-growing cell types (Geitmann and Emons 2000; Hepler et al. 2001) growth in 

rhizoids  and  protonemata  is  restricted  to  the  cell  apex,  and  is  mediated  by  the  localized 

exocytosis of secretory vesicles delivering cell wall and membrane material. It is, however, a 

unique feature of the characean cells that growth mechanisms are coordinated by a prominent 

Spitzenkoerper  complex  consisting  of  an  aggregation  of  ER  cisternae  and  a  dense 

accumulation of vesicles (Bartnik and Sievers 1988; Bartnik et al. 1990).  The ER aggregate 
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1   INTRODUCTION

contributes to the guidance of secretory vesicles (Bartnik et al.  1990) that are transported 

towards the tip by myosins interacting with actin microfilaments (Braun 1996a). The position 

of the Spitzenkoerper defines the center of growth, i.e. the plasma membrane area where the 

exocytosis rate of vesicles is maximal (Hejnowicz et al.  1977; Sievers et  al.  1979; Braun 

1996b). An endocytotic mechanism for the recycling of excess membrane material  that is 

delivered  to  the  tip  by  secretory  vesicles  is  strongly  postulated  but  has  so  far  not  been 

demonstrated.

Microtubules coordinate the polar cytoplasmic organization of rhizoids and protonemata but 

are absent from the apical region and not directly involved in the cellular mechanisms of 

growth (Braun  and  Sievers  1994;  Braun  and  Wasteneys  1998b). In  contrast,  the  actin 

cytoarchitecture  in  the  apical  cell  region,  which  is  characterized  by  a  network  of  fine 

microfilament bundles that focus in a spherical actin patch in the center of the Spitzenkoerper 

(Braun and Wasteneys 1998b),  plays a crucial role in the organization and regulation of tip 

growth  by  mediating  vesicle  transport  and  maintaining  the  structural  integrity  of  the 

Spitzenkoerper (Braun and Limbach 2005b).  A steep tip-high gradient of cytoplasmic free 

calcium  not  only  dictates  the  incorporation  pattern  of  secretory  vesicles  but  also 

spatiotemporally  controls  the  activity  of  actin-binding  proteins  (Braun and Richter  1999; 

Braun et al. 2004) which regulate the various functions and the dynamic nature of the actin 

cytoskeleton.  Spectrin-like  epitopes,  actin-depolymerizing  factor  (ADF)  and profilin  have 

been shown to accumulate specifically in the center of the Spitzenkoerper (Braun et al. 2004). 

Spectrin-like proteins most likely participate in the structural integrity of the ER aggregate by 

forming  crosslinks  between  ER  membranes  and  actin  microfilaments  (Braun  2001). 

Furthermore, these proteins may help to create the particular physiological conditions for the 

mechanisms  of  tip  growth  by  recruiting  specific  subsets  of  membrane  proteins  and  by 

establishing functional microdomains. The accumulation of the actin-binding proteins ADF 

and profilin in the center of the Spitzenkoerper indicates high actin turnover rates and an 

actin-organizing  function  of  this  central  area  (Braun  et  al.  2004).  This  conclusion  was 

confirmed by cytochalasin D-induced disruption of the actin cytoskeleton, which causes a 

complete dissociation of the structural organization of the Spitzenkoerper. After removal of 

the inhibitor, the reorganization of the actin cytoskeleton starts with the reappearance of a 

dense  actin  array  in  the  outermost  cell  tip  (Braun  et  al.  2004)  and  is  followed  by  the 

reorganization of the Spitzenkoerper structure and resumption of tip growth.
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These studies provide strong evidence that the complexly coordinated actin architecture in the 

rapidly extending tip of characean rhizoids and protonemata is  functionally related to the 

fundamental role of the actomyosin system in the regulation of tip growth. The central area of 

the  Spitzenkoerper  fulfills  the  function  of  a  unique  apical  polymerization  site  of  actin 

microfilaments (Braun et al. 2004) that has not been found in any other tip-growing cell type 

(Geitmann and Emons 2000; Hepler et al. 2001; Lovy-Wheeler et al. 2005). In order to clarify 

the cellular  mechanisms mediating tip  growth it  will  be essential  to  specify the interplay 

between actin cytoskeleton, ER aggregate, and vesicle trafficking in the apical cytoplasm. A 

part  of  the  present  study  aimed  at  unraveling  ultrastructural  features  of  the  tip  growth 

machinery and analyzing the distribution of vesicles at high spatial resolution provided by 

electron tomography. 

1.2 Rhizoids and protonemata as model systems for research on 
gravitropism

When  studying  gravitropism  of  plant  organs  or  single  cells,  different  phases  can  be 

differentiated (Braun and Limbach 2005c): gravity susception describes the initial physical 

stimulus  inside  of  gravity-sensing  cells  and  is  usually  mediated  by  the  gravity-oriented 

sedimentation of statoliths. By activating receptor molecules, statolith sedimentation elicits 

the gravitropic signaling pathway (gravity perception). In higher plants but not in gravitropic 

single cells,  the physiological signal reflecting the orientation of the organ relative to the 

direction of gravity is transmitted from the gravity-sensing tissue to the effector cells. The 

adjustment  of  the  growth  orientation  according  to  the  direction  of  gravity  (gravitropic 

response) is mediated by differential growth of organ or cell flanks.

Knowledge  about  hormone-dependent  gravitropic  responses  in  higher  plants  is  rapidly 

increasing (Blancaflor 2002; Ottenschläger et al. 2003; Aloni et al. 2004; Blilou et al. 2005), 

whereas  the  early  mechanisms  of  gravity  sensing,  i.e.  gravity  susception  and  gravity 

perception,  remain  unclear.  The  lack  of  well-defined  results  is  due  to  the  complexity  of 

gravitropic  signals,  deriving  from  several  cells  of  the  gravity-sensing  tissue  and  to  the 

difficulties  in  accessing the statocytes for studying the statolith-dependent  mechanisms of 

gravity sensing. Thanks to the favorable properties of single-celled characean rhizoids and 

protonemata for various experimental appplications, the interactions between statoliths and 

the actin cytoskeleton are well understood in these cell types (Hejnowicz and Sievers 1981; 
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Sievers et al. 1989, 1991a; Volkmann et al. 1991; Buchen et al. 1993; Cai et al. 1997; Hoson 

et al. 1997; Hodick and Sievers 1998; Braun 2002; Braun et al. 2002; Limbach et al. 2005).

In tip-downward growing rhizoids, statoliths are kept in an area 10 – 35 µm basal to the tip by 

net-basipetally acting actomyosin forces that prevent statoliths from settling into the tip. In 

tip-upward growing protonemata, actomyosin prevents statoliths from sedimenting towards 

the cell  base  by  acting  net-acropetally  (Hodick  et  al.  1998;  Braun et  al.  2002).  Inhibitor 

studies  have  shown that  disrupting the  actin  cytoskeleton  in  rhizoids  and  in  protonemata 

caused  statoliths  to  fall  into  the  tip  or  towards  the  nucleus,  respectively,  following  the 

direction  of  gravity  (Hejnowicz  and  Sievers  1981;  Bartnik  and  Sievers  1988).  Actin 

disruption resulted in the cessation of growth and in the dislocation of statoliths from their 

normal  resting position  which entailed  a  loss  of  graviresponsiveness  (Braun 2002).  After 

removing the drug,  graviresponsiveness was quickly reestablished by the repositioning of 

statoliths, and tip growth resumed.

Detailed  analysis  of  statolith  movements  after  experimental  displacement  and  under 

microgravity conditions revealed the surprising complexity of the actomyosin-based transport 

system that controls statolith positioning (Braun 2002). In the cell regions basal and apical to 

the statolith  region,  the  vectorial  component  of  the  actomyosin  transport  system pointing 

towards the statolith region is always the strongest (Sievers et al. 1991a; Braun and Sievers 

1993;  Braun 2002),  which ensures that  statoliths  are  kept  in  or are  retransported to their 

original  position. Statolith  transport  is  mediated  by  the  interaction  with  mainly  axially 

oriented actin microfilaments that exhibit opposite polarities (Braun and Wasteneys 1998b). 

When the influence of gravity on statolith positioning was abolished during the microgravity 

phases of parabolic flights of sounding rockets (Buchen et al. 1993) and during rotation on the 

three-dimensional and on the fast-rotating clinostat (Hoson et al. 1997; Braun et al. 2002), 

actomyosin  forces  generated  a  displacement  of  statoliths  against  the  former  direction  of 

gravity. These observations justify the conclusion that in normal, vertically-oriented rhizoids 

and  protonemata,  the  statoliths  are  kept  in  a  dynamically  stable  equilibrium position  by 

actomyosin forces which exactly compensate the effect of gravity on the statoliths. Changes 

in the orientation of the cell with respect to the direction of gravity or changing the amount of 

the acceleration must inevitably result in a displacement of statoliths.

The actomyosin forces regulating the position of statoliths in rhizoids and protonemata have 

important implications on how fast and where statoliths sediment, thus pointing up the critical 

role of actin in the process of gravity susception. Upon a change in the cell´s orientation 
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relative  to  the  gravity  vector,  sedimenting  statoliths  are  actively  directed  to  distinct 

graviperception  sites  of  the  plasma  membrane  (Braun  and  Limbach  2005a).  The 

graviperception  sites  which  represent  the  gravisensitive  membrane  areas  where  the 

gravireceptor molecules are exclusively localized were precisely determined in rhizoids and 

protonemata (Braun 2002). In rhizoids, the graviperception site is confined to a belt-like area 

of the plasma membrane in the statolith region (10  –  35 µm from the tip). When cells are 

reoriented by 90°, the sedimenting statoliths mainly follow the gravity vector and settle onto 

the lower flank of  the gravisensitive membrane area.  However,  when cells  are  rotated in 

angles different from 90°, statoliths do not simply follow the gravity vector but are actively 

redirected  against  gravity  and  guided  to  the  graviperception  site.  In  protonemata,  the 

graviperception site is confined to the apical plasma membrane area 5 – 10 µm from the tip. 

Upon gravistimulation, sedimenting statoliths are transported into the apical dome to the site 

of gravity perception by actomyosin forces (Braun and Limbach 2005a). It has been shown 

that  statoliths  have  to  be  fully  sedimented  on  the  membranes  in  order  to  trigger 

graviperception in rhizoids and protonemata (Braun 2002). However, until recently it  was 

unclear how gravireceptor molecules are activated by the sedimented statoliths. Therefore, the 

functional  mechanisms  of  gravireceptor  activation  were  investigated  in  the  present  study 

under microgravity conditions provided by parabolic plane flights.

In order to unravel the fundamental principles underlying the opposite orientation of growth 

in rhizoids and protonemata the cellular mechanisms of gravitropic responses in these cell 

types have been studied in great detail (Hodick 1994; Hodick and Sievers 1998; Braun and 

Richter 1999; Braun 2001). The results provide evidence that differences in the anchorage of 

the Spitzenkoerper complex play a crucial role. Immunofluorescence and video microscopy 

using  differential  interference  contrast  indicated  that  the  Spitzenkoerper  and,  as  a 

consequence,  also  the  center  of  maximal  growth  is  easily  displaced  in  protonemata  by 

intruding  statoliths,  which  naturally  occurs  upon  gravistimulation  (Braun  2001).  The 

displacement of the Spitzenkoerper is followed by the appearance of a bulge at the upper cell 

flank and by an upward  shift  of  cell  growth (´bending by bulging´;  Hodick 1994;  Braun 

1996b). In contrast, no bulge is formed during the smooth downward curvature response of 

rhizoids (´bending by bowing´). Immunofluorescence labeling of spectrin-like proteins in the 

center of the Spitzenkoerper was drastically displaced towards the upper flank, the site of 

future  outgrowth,  during  initiation  of  the  graviresponse  in  protonemata,  clearly  before 

curvature was recognizable (Braun 2001). In contrast, the same labeling in rhizoids remained 
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symmetrically positioned in the apical dome throughout the graviresponse, confirming that a 

repositioning of the Spitzenkoerper is involved in the negative graviresponse of protonemata, 

but  not  in  the  positive  graviresponse  of  rhizoids.  There  is  evidence  from  centrifugation 

experiments (Braun 1996b; Hodick and Sievers 1998) and from attaching particles to the 

surface of gravitropically responding rhizoids (Sievers et al. 1979) that the position of the 

growth center at the cell tip is relatively stable and that the Spitzenkoerper is more tightly 

anchored by cytoskeletal forces in rhizoids than in protonemata. However, rhizoids can be 

forced to respond to some extent like protonemata when statoliths are asymmetrically pushed 

into the apical dome by considerable centrifugal forces or laser tweezers displacement (Braun 

1996b; Braun 2002).

Calcium imaging experiments (Braun and Richter 1999) demonstrated a drastic shift of the 

steep tip-high calcium gradient towards the upper flank during initiation of the graviresponse 

in protonemata, but not in rhizoids. In addition, dihydropyridine-fluorescence reflecting the 

distribution  of  calcium  channels  was  found  to  be  displaced  towards  the  upper  flank  in 

graviresponding protonemata, but not in rhizoids. An asymmetric influx of calcium at the 

upper  flank  of  protonemata  is  suggested  to  be  responsible  for  the  respositioning  of  the 

Spitzenkoerper by differentially regulating the activity of actin-associated proteins along the 

shifting calcium gradient (Braun and Richter 1999).

The  characterization  of  actomyosin-mediated  statolith  transport  and  the  elucidation  of 

calcium-dependent  response  mechanisms  in  characean  rhizoids  and  protonemata  have 

provided considerable progress in the understanding of the cellular processes that are involved 

in gravitropism. In none of the other gravity-sensing plant cell  types interactions between 

statoliths and the actin cytoskeleton have been described in more detail. There are indications 

from experiments in microgravity that statoliths interact with actin in higher plant statocytes 

as  well  (Volkmann  et  al.  1991;  Driss-Ecole  et  al.  2000;  Perbal  et  al.  2004).  However, 

consistent evidence for the role  of actin in graviperception is  absent.  Since susception of 

gravity  by  sedimentable  statoliths  is  a  common  feature  of  gravity  sensing  in  the  plant 

kingdom, the results obtained from characean rhizoids and protonemata have a crucial impact 

on the elucidation of the early phases of gravitropism in higher plants. 
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1.3 Objectives of the study

Although  previous  studies  have  added  considerably  to  the  understanding  of  the  polar 

cytoplasmic organization and of actin-dependent transport  processes in characean rhizoids 

and protonemata, little is known about mechanisms of gene regulation and about molecular 

interactions of signaling factors being involved in gravity-oriented tip growth. Due to the 

limitations of conventional electron microscopic analyses it  is also still unclear how these 

dynamic cellular processes can be fit into the strctural organization of the cells. In the present 

study, innovative experimental approaches providing a significantly improved resolution level 

of  subcellular  research  were  used  to  gain  new  insights  into  molecular,  structural,  and 

functional aspects of gravity sensing and gravity-oriented tip growth in characean rhizoids 

and protonemata.

1.3.1 Analysis of gene expression in gravity-sensing cells

By influencing the abundance of signaling molecules, regulation of gene expression plays an 

important  role  for  all  cellular  signaling  pathways.  However,  the  mechanisms  of  gene 

regulation in plant gravitropism have long been elusive, and it was not until recently that 

analyses of gene expression patterns provided the first genes that are discussed to be involved 

in gravitropic signaling in higher plants (Kimbrough et al. 2004; Theisen 2005; R. Hampp, 

Universität  Tübingen,  Germany, personal  communication;  K. Palme, Universität  Freiburg, 

Germany, personal communication). Interpretation of the results is complicated by one major 

drawback of  gene  expression  analyses  in  higher  plant  organs:  gravistimulation-dependent 

changes  in  the  transcription  level  of  genes  represent  cumulative  effects  deriving  from 

numerous  cells  of  different  tissues  and  cannot  be  attributed specifically  to  the  cell  types 

mediating the different processes of gravitropism.

It was therefore tempting to investigate in this study the gene expression patterns of single-

celled characean rhizoids and protonemata that are not masked by signals from additional cell 

types. In the characean cells gravistimulation-dependent changes in the transcription level of 

genes  correlate  directly  with  gravity  sensing.  For  working  with  characean  rhizoids  and 

protonemata basic molecular applications were developed and optimized. In order to identify 

distinct genes that are up- or down-regulated upon gravistimulation and that are therefore 
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likely to encode proteins being involved in the gravitropic signaling pathway gene expression 

patterns were analyzed by differential display technology.

1.3.2 Characterization of early gravity-sensing mechanisms

The second part  of  the  study focused  on  the molecular  interactions  of  some well-known 

cellular components playing a crucial role for gravity susception and gravity perception in 

characean rhizoids  and protonemata,  i.e.  statoliths,  gravireceptor  molecules,  and the  actin 

cytoskeleton. In higher plants,  little is known about the cellular and molecular mechanisms 

underlying the decisive early steps of gravity sensing (Kiss 2000; Morita and Tasaka 2004). 

The starch-statolith theory of gravity sensing in higher plants (Nĕmec 1900; Haberlandt 1900) 

proposing  that  gravity  susception  is  mediated  by  sedimentable  starch-filled  amyloplasts, 

which  function  as  statoliths  inside  of  gravity-sensing  statocytes  has  been  confirmed  by 

numerous studies using various experimental approaches (Juniper et al. 1966; Fukaki et al. 

1996, 1998; Kiss et al. 1996; Kuznetsov and Hasenstein 1996, 1997; Blancaflor et al. 1998; 

Kuznetsov et al. 1999; MacCleery and Kiss 1999; Tsugeki and Fedoroff 1999; Weise and 

Kiss 1999; Fujihira et al. 2000; Weise et al. 2000). However, hypotheses trying to explain 

how the vectorial information of a physical displacement of statoliths is perceived by cellular 

components and transduced into a physiological signal remain controversial. Several reports 

implied actin microfilaments in the process of gravity sensing, but their role for gravitropic 

signalling is still unclear since findings are contradictory (Sievers et al. 1991b; Kiss 2000; 

Blancaflor 2002; Sievers et al. 2002; Hou et al. 2003, 2004).

In  this  study,  cellular  and  molecular  aspects  of  early  gravity  sensing  mechanisms  were 

investigated in characean rhizoids under microgravity conditions provided by parabolic flights 

of sounding rockets and the A300 Zero-G aircraft. The minimum acceleration level required 

to induce lateral  displacement  of  statoliths in vertically  growing cells  was determined by 

lateral centrifugation in microgravity during the MAXUS-5 sounding rocket flight. Analysis 

of the statolith position at the end of the microgravity phase allowed to calculate the forces of 

molecular  interaction  between  statoliths  and  the  actin  cytoskeleton  restricting  gravity 

susception.

The acceleration profile  of  parabolic  flights  of  the A300 Zero-G aircraft  with alternating 

hyper-  and  microgravity  phases  provided  good  conditions  to  investigate  the  functional 

mechanism of gravireceptor activation in characean rhizoids. In order to test if sedimented 
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statoliths  were  capable  of  activating  the  gravireceptor  molecules  even  when  they  were 

weightless, the maximally achieved curvature angles of gravistimulated cells were compared 

with  in-flight  controls  that  experienced  identical  conditions  but  were  centrifuged  at  1g 

(gravitational  acceleration)  during  the  short  microgravity  phases.  In  combination  with 

comprehensive ground control experiments, the parabolic flight experiments were intended to 

clarify whether activation of the gravireceptor in rhizoids depends on mechanical forces that 

are exerted by the weight of sedimented statoliths or on pressure-independent interactions 

between statoliths and receptor molecules.

1.3.3 The structural basis of gravity-oriented tip growth

The  above  illustrated  molecular  and  functional  characterization  of  gravity-sensing 

mechanisms in rhizoids and protonemata was complemented by detailed electron microscopic 

studies which aimed at fitting the keyplayers of gravitropic signaling and gravity-oriented tip 

growth into the context  of the structural  cellular  organization.  Until  recently,  samples for 

electron microscopic studies of rhizoids were mainly prepared by chemical fixation. These 

studies provided a comprehensive description of the polar cytoplasmic organization and of the 

major  cellular  compartments  (Sievers  1965,  1967a,  1967b;  Bartnik 1984;  Noecker  2000). 

However,  artifacts  caused  by  chemical  fixation  and  the  use  of  conventional  electron 

microscopy limited the level of ultrastructural resolution.

In this study, samples of characean rhizoids were prepared for electron microscopy by high-

pressure freeze fixation/freeze substitution and were analyzed by 3D dual-axis tomography. 

Cryofixation is  well  known to  improve  the  preservation of  cellular  ultrastructure  since  it 

ensures the fast and simultaneous fixation of all cellular components and avoids the formation 

of artifacts that are observed after chemical fixation (Gilkey and Staehelin 1986; Dahl and 

Staehelin  1989;  Kiss  et  al.  1990;  Staehelin  et  al.  1990;  Studer  et  al.  1992).  Electron 

tomography  (Mastronarde  1997)  has  recently  been  shown  to  significantly  improve  the 

resolution  level  of  electron  microscopic  imaging  and  to  provide  new  insights  into 

ultrastructural details of cellular organization and dynamic processes in a variety of cell types 

(Ladinsky et al. 1999; Otegui and Staehelin 2000, 2004; Otegui et al. 2001; Seguí-Simarro et 

al.  2004; Austin et  al.  2005; Kürner et  al.  2005; Nicastro et al.  2005; Seguí-Simarro and 

Staehelin 2005). Using these techniques for high-resolution ultrastructural investigations, the 

present study was intended to determine the different types of vesicles in the Chara rhizoid 
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and  to  analyze  their  distribution  in  the  apical  cytoplasm.  The  results  were  expected  to 

elucidate  mechanisms  of  vesicle  trafficking  which  have  important  implications  for  the 

understanding of polarized growth in plant cells. In addition, the present work is one of the 

first  studies  providing  a  high-resolution  electron  microscopic  analysis  of  the  cellular 

ultrastructure in a gravity-sensing cell type since it proved difficult to prepare decent samples 

of higher plant statocytes.

In previous studies, chemical fixation not only caused artifacts that impaired ultrastructural 

investigations but also affected the structure of epitopes and, thereby, hampered the specific 

binding  of  antibodies  in  immunogold  labeling  experiments.  Based  upon  the  excellent 

preservation of protein conformation by cryofixation, a protocol for the preparation of high-

pressure frozen rhizoid samples for immuno-electron microscopy was meant to be developed 

in  this  study  in  order  to  establish  a  basis  for  the  functional  characterization  of  cellular 

compartments and for the reliable subcellular localization of the keyplayers of gravity sensing 

and tip growth.
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2 MATERIALS AND METHODS

2.1 Chemicals and Reagents

All  chemicals  and  reagents  used  for  the  experiments  presented  in  this  publication  were 

purchased from Sigma (Munich, Germany) or Merck (Darmstadt, Germany) unless otherwise 

stated.

2.2 Antibodies

Primary antibodies:

• Mouse anti-C4 actin, monoclonal, IgG1 (Qbiogene,  Heidelberg, Germany);  dilution 

1:400

• Mouse  anti-clathrin  heavy  chain,  monoclonal,  IgG1 (BD Biosciences,  Heidelberg, 

Germany); dilution 1:100

Secondary antibody:

• Goat anti-mouse IgG, 10 nm-gold conjugated (Sigma); dilution 1:100

2.3 Primer

The nucleotide  sequences  of  all  primers  used  in  this  study are  listed in  Table  VI in  the 

appendix. Primers were diluted for use from stock solutions (100 µM) with sterile water or 

nuclease-free water (for RNA-applications) as indicated for each experiment. Gene-specific 

amplification primers were designed using the Primer3 software (Rozen and Skaletsky 2000) 

provided  by  the  Whitehead  Institute  for  Biomedical  Research  (URL: 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).

12



2   MATERIALS AND METHODS

2.4 Solutions and Media

Modified Forsberg medium (Braun 1994, modified after Forsberg 1965)

100× stock solution:

0.8 g l-1 Ca(NO3)2 × 4 H2O

1.0 g l-1 MgSO4 × 7 H2O

0.2 g l-1 Na2CO3

0.3 g l-1 KCl

0.4 g l-1 K2HPO4 × 3 H2O

0.2 g l-1 NTA

5.0 g l-1 TRIS

pH 7.2

Micronutrient stock solution:

1.0 g l-1 ZnCl2

0.02 g l-1 MnCl2 × 4 H2O

0.02 g l-1 CoCl2 × 6 H2O

0.04 g l-1 CuCl2 × 2 H2O

1.0 g l-1 Na2MoO4 × 2 H2O

4.0 g l-1 H3BO3

EDTA-Fe stock solution:

1.30 g EDTA

1.25 g FeSO4 × 7 H2O

13.5 ml KOH

Distilled water was added to a volume of 200 ml and boiled for 30 min. The solution was the 

filtered and made up to a final volume of 250 ml.

Forsberg  medium  was  prepared  for  use  by  mixing  10  ml  100× stock  solution,  10  µl 

micronutrient stock solution and 1 ml EDTA-Fe stock solution and adding distilled water to a 

final volume of 1 l.
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PBS (phosphate-buffered saline)

137 mM NaCl

2.7 mM KCl

4.3 mM Na2HPO4

1.4 mM KH2PO4

For preparing buffers PBS/glycine, PBST and PBS-high Tween, PBS was supplemented with 

50 mM glycine, 0.1% Tween 20 and 0.5% Tween 20, respectively.

LB medium (Louria Bertani medium)

10 g l-1 bacto-tryptone 

5 g l-1 bacto-yeast extract

5 g l-1 NaCl

pH 7.0

The medium was autoclaved and used under sterile conditions.

LB agar plates

For  preparing  LB  agar  plates,  LB  medium  was  supplemented  with  15  g  l-1 bacto-agar, 

autoclaved and cooled down to ~ 50° C.  25ml of  medium was poured into 85 mm-petri 

dishes, the agar was allowed to harden, and plates were stored at 4° C. LB/amp plates were 

prepared as above with ampicillin being added to the medium to a final concentration of  

100 µg ml l-1 before pouring the plates. For preparing LB/amp/IPTG/X-Gal plates which were 

used for color screening of recombinant clones after transformation of bacteria, 100 µl of  

100 mM IPTG (isopropyl-β-D-thiogalactopyranoside) and 20 µl of 50 mg l-1 X-Gal (5-bromo-

4- chloro-3-indoyl-β-D-galactopyranoside) were dispersed on a LB/amp plate and allowed to 

absorb for 30 min at room temperature (RT) prior to use. 

Lowicryl HM20

The embedding resin was purchased from Electron Microscopy Sciences (Fort Washington, 

USA) and freshly prepared prior to use:

5.96 g crosslinker D 

34.04 g monomer E

0.20 g initiator C
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Reynold´s lead citrate

2.6 % Pb(NO3)2

3.5 % C6H5Na3O7 × 2 H2O

pH 12

Distilled water (~ 75 ml) was degassed by boiling for 5 min and cooled to RT. 665 mg of lead 

nitrate and 880 mg of sodium citrate were dissolved in 15 ml of the water. The solution was 

mixed thoroughly and sonicated for 30 min with shaking every 5 min until the contents were 

completely dissolved and the solution was milky. NaOH (1 N in degassed water) was added 

dropwise until the solution became clear. Degassed water was added to a final volume of  

25 ml, and the solution was filtered before use.

SOC-medium

20.0 g l-1 bacto-tryptone 

5.0 g l-1 bacto-yeast extract

10.0 mM NaCl

2.5 mM KCl

10.0 mM MgCl2

20.0 mM MgSO4

20.0 mM glucose

pH 7.0

Bacto-tryptone, bacto-yeast extract, NaCl and KCl were dissolved in 97 ml distilled water. 

The medium was autoclaved, cooled to RT, and supplemented with 1 ml of 2 M Mg2+ stock 

solution (1 M MgCl2 × 6 H2O, 2 M MgSO4 × 7 H2O; filter sterilized) and 1 ml of 2 M glucose 

(filter  sterilized).  Sterile,  distilled water was added to  a  final  volume of  100 ml,  and the 

complete medium was filtered through a 0.2 µm filter unit.

TAE buffer (tris-acetate buffer)

40 mM TRIS

5 mM EGTA

20 mM acetic acid

pH 8.0
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2.5 Plant Material

Thallus of  Chara globularis Thuill. and  Chara contraria A. Braun ex Kutz. was collected 

from a pond at the Botanical Garden of the University of Bonn, Germany and from ponds 

near  Coot  Lake  in  Boulder  County,  Colorado,  USA,  respectively.  For  the  production  of 

rhizoids, young thalli were cut into segments of at least two nodes and one internodal cell. 

The side branches of the lower node were cut off to induce rhizoid outgrowth. The segments 

were placed in upright culture chambers (330 ml) filled with modified Forsberg medium. 

Alternatively, they were embedded in a thin layer of agar (1.2% in distilled water) either in 

IML-2 (Second International Microgravity Laboratory Mission) containers or on microscope 

slides which were covered with long coverslips being fixed with tape. Both types of cuvettes 

were placed vertically in staining jars filled with ~ 10 ml distilled water. Rhizoids developed 

in liquid cultures and in agar cultures after 4 to 5 days at RT under continuous illumination at 

150 to 200 µmol m-2 s-1. For the production of protonemata, single nodes were isolated by 

clipping the internodes and side branches. The segments of the thallus were arranged along 

the  flank  of  a  microscope  slide  and  embedded  in  agar  as  described  for  rhizoids.  The 

microscope slides were placed horizontally in staining jars filled with ~ 20 ml distilled water 

and protonemata developed within 10 to 20 days in complete darkness at RT.

2.6 Fluorescence staining with vital dyes and confocal 
microscopy

The fluorescence dyes that were used for in-vivo labeling of specific cellular compartments in 

characean rhizoids are listed in Table 1 with their corresponding absorption and emission 

maxima and the concentration range used in the experiments. FM styryl-dyes (FM 1-43 and 

FM  4-64)  were  applied  to  visualize  endocytotic  events  at  the  apical  plasma  membrane 

whereas DFFDA and BCECF were used to label vacuolar compartments. 

For fluorescence labeling, nodes with rhizoid bundles from liquid cultures were clipped from 

the thallus and incubated with the dye which was diluted in modified Forsberg medium. For 

microscopic observation, the samples were incubated in a droplet of either staining solution or 

fresh medium on a long coverslip which was attached to a Plexiglas frame with a 1:1-mixture 

of wax and vaseline. When covering rhizoids with a small coverslip, broken fragments of a 

coverslip served as spacers to avoid squeezing of the samples.
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Table I Fluorescence dyes

Fluorescence dye Absorption / emission maximum Concentration for use

FM 1-43 (N-(3-triethylammoniumpropyl)-4-(4-
(dibutylamino)styryl) pyridinium dibromide)a

479 / 598 nm 2 µM

FM 4-64 (N-(3-triethylammoniumpropyl)-4-(6-
(4-(diethylamino)phenyl)hexatrienyl) 
pyridinium dibromide)a

506 / 750 nm 1 – 2 µM

Carboxy-DFFDA (Oregon Green 488 
caboxylic acid diacetate)a

478 / 518 nm 10 – 25 µM

BCECF-AM (2',7'-bis-(2-carboxyethyl)-5-(and-
6)-carboxyfluorescein acetoxymethyl ester)b

503 / 528 nm at pH 9 0.01 – 5 µg ml-1

a Purchased from Molecular Probes (Eugene, USA)
b Purchased from Sigma

The  samples  were  examined  with  a  TCS4D  confocal  microscope  (Leica,  Heidelberg, 

Germany) using excitation with the 488-nm line (FM 1-43, DFFDA, BCECF) or the 514-nm 

line  (FM  4-64)  of  the  argon/krypton  laser.  Images  were  collected  with  the  microscope 

software at 8 to 32 counts with an image size of 512 × 512 pixels. Z-series and time-series, 

were  taken  to  study  the  three-dimensional  shape  and  dynamic  properties  of  the  labeled 

structures or compartments. Projections of serial confocal sections and contrast enhancement 

were done using image processing software, e.g. Scion Image (Scion Corporation, Frederick, 

USA) and Adobe Photoshop 7.0 (Adobe Systems, Mountain View, USA).
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2.7 Molecular biology

2.7.1 Standard PCR

Standard PCR (polymerase chain reaction) was performed with the Taq DNA polymerase 

system purchased  from Fermentas  (St.  Leon-Rot,  Germany)  and  used for  random-primed 

PCR,  gene-specific  PCR  and  in-cell  PCR  with  primers  indicated  for  the  corresponding 

application. The PCR reaction was mixed in a 0.2 ml-tube placed on ice.

11.6 µl sterile water

2.0 µl 10× PCR buffer (Fermentas)

2.0 µl 25 mM MgCl2 (Fermentas)

1.4 µl forward primer 12 µM

1.4 µl reverse primer 12 µM

0.4 µl dNTP-mix (10 mM each)

1.0 µl template 

0.2 µl Taq DNA polymerase 5u/µl (Fermentas)

     20.0 µl

PCR amplification was performed using a Bio-Rad iCycler (Munich,  Germany). For each 

PCR reaction, the primer annealing temperature and the number of amplification cycles were 

adjusted according to the calculated melting temperature of the primers and to the DNA-yield. 

Unless otherwise noted, the following standard cycler program was used for amplification:

5 min 95.0° C

30 sec 95.0° C

1 min 64.8° C × 40

1 min 72.0° C

10 min 72.0° C

4.0° C
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2.7.2 Agarose gel electrophoresis and purification of PCR products

Samples  for  agarose  gel  electrophoresis  were  prepared  by  mixing  the  desired  amount  of 

amplified DNA with 6× running buffer (Peqlab, Erlangen, Germany) and sterile water to a 

final volume of at least 10 µl with the final concentration of running buffer being single-fold. 

DNA-samples were loaded on a 1% agarose gel which was run at 75 – 90 V for 45 – 90 min 

in 1× TAE-buffer. As size standard an extended 100 bp-DNA ladder (Carl Roth, Karlsruhe, 

Germany) was used. The gel was stained with ethidium bromide (0.5 µg ml-1 in TAE buffer) 

for 10 to 30 min. For the isolation of PCR products the corresponding bands were excised 

from the gel under UV (ultraviolett) light, and DNA was purified using the QIAquick Gel 

Extraction  Kit  (Qiagen,  Hilden,  Germany)  according  to  the  manufacturer’s  manual. 

Alternatively, PCR products were purified from the PCR-reaction mix by using the QIAquick 

PCR Purification Kit (Qiagen).

2.7.3 Competent bacteria 

Competent E. coli bacteria were prepared under sterile conditions according to the following 

protocol: 

• inoculate 2.5 ml LB medium with bacteria (E. coli strains DH5α or JM109) from a 

stock suspension using a sterile tooth pick

• incubate the culture overnight at 37° C with shaking at 150 rpm (rounds per minute)

• dilute 1.5 ml of the culture in 100 ml LB medium and grow at 37° C with shaking 

(150 rpm) until the optical density (OD600nm) is in a range of 0.5

• transfer the culture to centrifugation tubes and centrifuge at 4000 rpm for 15 min at 

4° C

• discard  the  supernatant,  resuspend each  bacterial  pellet  in  2  ml  0.1  M CaCl2 and 

incubate for 5 min on ice

• centrifuge at 4000 rpm for 15 min at 4° C

• discard the supernatant, resuspend each pellet in 2 ml 0.1 M CaCl2 + 10% glycerol

• transfer aliquots of 200 µl to 1.5 ml-tubes, freeze in liquid nitrogen and store at –80° C
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2.7.4 Differential display

The differential display-technology (Liang and Pardee 1992) is one method among others to 

compare  gene  expression  patterns  in  two  or  more  samples  that  experienced  different 

conditions. mRNA is extracted from cells or tissues of the samples and reversely transcribed 

into cDNA strands  by using an oligo dT-anchor  primer binding to the polyA+-tail  of  the 

mRNA transcripts. Random fragments of the 3’RNA-ends are amplified by random-primed 

PCR and detected by electrophoresis. Fragment patterns and intensities of the products which 

are specific for each of the different samples are compared and those fragments representing 

genes with differential expression are cloned and sequenced. To identify the corresponding 

gene,  the  complete  coding region  is  determined by  5’RACE-PCR (rapid  amplification  of 

cDNA ends). In the present study, gene expression was compared between gravistimulated 

and unstimulated characean rhizoids and between rhizoids and protonemata according to a 

protocol modified after Theisen (2005) using capillary electrophoresis for fragment analysis. 

In addition, some of the gene transcripts exhibiting high expression levels but no differential 

expression  were  sequenced  and  characterized  in  order  to  increase  the  amount  of  gene 

sequences of characean algae.

2.7.4.1 RNA extraction

Total mRNA was isolated from agar-embedded rhizoids of Chara globularis that were either 

unstimulated or gravistimulated by 90° for 20 or 45. Nodes with bundles of rhizoids were cut 

off from the thallus, pulled out of the agar and immediately frozen in liquid nitrogen. Frozen 

rhizoids and protonemata were clipped from the node with prechilled scissors into a reaction 

tube filled with 400 µl lysis buffer of the RNA-extraction kit (see below). Rhizoid bundles of 

50 nodes were collected per tube.

Alternatively, the cytoplasm of gravistimulated or unstimulated rhizoids and protonemata of 

C. globularis was extracted by single-cell aspiration with microcapillaries. Agar-embedded 

samples were transferred to the microscope stage of an inverted microscope (Leica) that was 

equipped  with  two  microcapillary  holders  mounted  on  micromanipulators.  Extraction 

capillaries were prepared with a PC-10 puller (Narishige, Tokyo, Japan) in a two-step mode 

(step 1: 81.5, step 2: 45.8) using borosilicate capillaries with filament (outer diameter 1.5 mm, 

inner  diameter  0.75  mm;  Hilgenberg,  Malsfeld,  Germany).  Before  use,  the  tips  of  these 

capillaries were broken by carefully tapping onto a sterile petri dish in order to obtain sharp 
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edges.  The extraction capillary was mounted on a holder that was connected to a 50 ml-

syringe and loaded with lysis buffer (devoid of β-mercaptoethanol) by submerging the tip in a 

droplet  of the buffer.  Holding capillaries were prepared by pulling borosilicate capillaries 

(outer diameter 1.0 mm, inner diameter 0.7 mm; Hilgenberg) in a one-step mode (step 1: 

55.1).  The capillary tip was carefully broken on a petri  dish and polished with a  MF-90 

microforge (Narishige).  The  holding capillary was mounted on the second microcapillary 

holder and, under microscopic control, attached to the lateral subapical flank of a rhizoid or 

protonema. The extraction capillary was inserted into the cell at the opposite flank, and turgor 

pressure forced the cytoplasm to flow into the extraction capillary where it mixed with the 

lysis buffer. Aspiration of the cytoplasm could be supported by applying a vacuum with the 

syringe connected to the extraction capillary. The capillary was quickly removed from the 

agar,  the  tip  was  broken  inside  a  reaction  tube  filled  with  400µl  lysis  buffer  (with  

β-mercaptoethanol), and the contents of the extraction capillary were released by compressing 

the syringe. The cytoplasm of several cells was collected in each tube with the number of 

extracted cells being identical in those samples that were compared by differential display 

analysis. During cell aspiration all samples had to be placed to the horizontal position for a 

maximum of 2 min. Gravistimulated cells were placed horizontally for the indicated times 

before extraction whereas control cells, which were regarded as unstimulated samples, were 

directly  transferred from vertical  orientation to  the microscope stage.  To avoid blue-light 

induced cell division of protonemata, extraction of this cell type was performed under red 

light conditions, and a red filter was placed in the light path of the microscope.

Total  mRNA  was  isolated  from  cell  extracts  of  rhizoids  and  protonemata  by  using  the 

Oligotex Direct mRNA Micro Kit (Qiagen). PolyA+-mRNA was bound to polystyrene-latex 

particles (1.1 µm in diameter) by hybridization with covalently linked oligo dT-nucleotides 

(dC10T30) under high-salt conditions. The Oligotex beads were collected by centrifugation and 

mRNA transcripts were eluted from the particles by lowering the ionic strength. The protocol 

was based upon the procedure for isolation of polyA+-mRNA from animal cells denoted in the 

Qiagen Oligotex Handbook and specifically  adapted for  a  maximum yield of  RNA from 

characean samples:
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• mix thoroughly the cell lysate

• add 800 µl dilution buffer ODB, mix thoroughly and centrifuge 6 min at maximum 

speed

• transfer supernatant to a fresh tube

• add 20 µl Oligotex suspension, mix thoroughly and incubate for 10 min at RT

• centrifuge 10 min at maximum speed, carefully remove supernatant

• resuspend the Oligotex:mRNA pellet thoroughly in 100 µl buffer OL1

• add 400 µl buffer ODB, incubate 3 min at 70° C and 10 min at RT

• centrifuge 10 min at maximum speed

• resuspend the pellet in 350 µl washing buffer OW1, mix and transfer the sample onto 

a small spin column placed in a 1.5-ml microcentrifuge tube

• centrifuge 2 min at maximum speed, discard the flow-through

• pipet 350 µl washing buffer OW2 onto the column, centrifuge 2 min at maximum 

speed, discard the flow-through

• repeat previous step

• transfer the spin column to a fresh microcentrifuge tube and pipet 20 µl hot (70° C) 

elution  buffer  OEB  onto  the  column,  pipet  up  and  down  three  or  four  times  to 

resuspend, centrifuge 2 min at maximum speed

• store eluted mRNA at –80° C until use

2.7.4.2 Reverse transcription

The mRNA templates present in the extracts were reversly transcribed into cDNA by using 

the ProtoScipt First Strand cDNA Synthesis Kit (New England Biolabs, Frankfurt, Germany) 

according to the manufacturer’s instruction except that fluorescently labeled oligo dT-anchor 

primer T17mod was used instead of the oligo dT-primer provided with the kit.

• Mix in a sterile microcentrifuge tube placed on ice:

10 µl RNA extract

2 µl oligo dT-anchor primer T17mod (80 µM)

4 µl dNTPs

16 µl

• heat for 5 min at 70° C, spin briefly, put promptly on ice
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• add:  

2 µl 10× RT buffer

1 µl RNase inhibitor

1 µl M-MuLV Reverse Transcriptase

20 µl

• incubate for 60 min at 42° C  

• inactivate the enzyme at 42° C for 5 min

• store cDNA at –20° C

The presence of residual DNA in the RNA extracts was tested in control reactions by either 

treating  the  extracts  with  RNase  prior  to  cDNA-synthesis  or  replacing  the  reverse 

transcriptase by nuclease-free water. In an additional negative control, the RNA extract was 

replaced by nuclease-free water to test for contaminations of the reaction with external RNA. 

If PCR-amplification products were detected in any of the negative controls, cDNA synthesis 

was repeated with fresh RNA extract. As positive control, cDNA was prepared from total rat 

liver RNA, and a specific DNA sequence was PCR-amplified by using the set of gene specific 

primers provided with the kit. 

2.7.4.3 Random-primed PCR

Random fragments of the 3’mRNA-ends were amplified by random-primed PCR which was 

performed according to the standard PCR protocol using the fluorescently labeled oligo dT-

anchor primer T17mod, a decamer random primer and the synthesized cDNA as template. A 

variety of different random primers (Table VI) was used in parallel PCR reactions to generate 

fragments from a large number of mRNA transcripts  present in the extracts.  The cDNA-

template was replaced by sterile water in negative control reactions.

In the first PCR-amplification cycles the random primer was annealed at low temperature in 

order to produce a maximum number of fragments which were subsequently amplified under 

more specific annealing conditions. The number of cycles was optimized for each experiment 

with respect to the number of PCR products and their corresponding intensities.
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5 min 95.0° C

30 sec 95.0° C

1 min 33.0° C × 3 – 10

1 min 72.0° C

30 sec 95.0° C

1 min 64.8° C × 30 – 40

1 min 72.0° C

10 min 72.0° C

4.0° C

2.7.4.4 Capillary electrophoresis

For fragment analysis of the fluorescently labeled products of random-primed PCR and for 

the  detection  of  labeled  products  of  gene-specific  PCR,  capillary  electrophoresis  was 

performed with an ABI Prism 310 Genetic Analyzer (Applied Biosystems, Foster City, USA). 

For sample preparation 1 µl of PCR-reaction mix or 3 µl of gel-eluted DNA was mixed with 

12 µl deionized formamide and 0.5 µl size standard (ROX 2500; Applied Biosystems) in 

electrophoresis vials (Applied Biosystems). The samples were heated to 95° C for 5 min to 

denature  the  DNA and  promptly  placed  on  ice  for  2  min.  For  capillary  electrophoresis, 

samples were loaded on a silica capillary that was filled with polymer (Applied Biosystems 

310 Genetic  Analyzer  Performance  Optimized Polymer)  and immersed  in  reaction  buffer 

(Applied Biosystems  ABI Prism Buffer  with  EDTA).  The  PCR products  present  in  each 

sample  were  separated  according  to  their  mobility  in  an  electric  field  produced  by  the 

application of high tension (15 kV). For each sample, the injection time was 10 s and run time 

was 30  –  45 min. The PCR products that were fluorescently labeled with the 6-FAM (6-

Carboxyfluorescein) modification of one of the primers were detected by an argon laser. Data 

analysis  was  done  using  the  GeneScan  software  (Applied  Biosystems)  with  the  internal 

marker  serving as size standard for  the determination of  fragment  size.  Screenshots  were 

taken in pct-format and converted to jpg-format using Adobe Photoshop 7.0.
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2.7.4.5 Isolation of gene fragments displaying differential expression

Gene fragments that displayed distinct differences in the expression rate of the corresponding 

gene in the compared samples  – revealed by an at least two-fold difference in fluorescence 

intensity on capillary electrophoresis in at least two parallel random-primed PCR reactions – 

were processed for sequence analysis. For the isolation of a fragment, the PCR-reaction mix 

with the highest content of the product was run on a 3% agarose gel for 3 h at 70 V. After 

staining of the gel thin bands were collected in the size range of the corresponding fragment, 

and  DNA  was  eluted  with  30  µl.  The  fraction  comprising  the  designated  fragment  was 

identified by capillary electrophoresis and stored at  –20° C for cloning. The fragment was 

named after the random primer used in the PCR reaction and after its size in base pairs (bp), 

e.g. B10-568. After sequencing of the gene fragment (see below), differential expression of 

the corresponding gene was verified by gene specific PCR according to the standard protocol 

with cDNA-templates and gene-specific primers. The forward primer was modified with the 

6-FAM fluorescence label at its 5’-end so that expression levels in the different samples could 

be analyzed by capillary electrophoresis.

2.7.4.6 Cloning, transformation and sequencing

Isolated  fragments  of  the  random-primed PCR reaction  or  any  other  PCR products  were 

cloned  into  the  linearized  vector  pGEM-T  Easy  of  the  pGEM-T  Easy  Vector  System  I 

(Promega, Mannheim, Germany) at the single 3’-T overhangs of the insertion site. Negative 

controls omitting the DNA insert and positive controls using a control-insert DNA provided 

with the kit were performed as described in the user’s  manual.  The ligation reaction was 

mixed in a 0.5 ml-tube.

5 µl 2× rapid ligation buffer

1 µl pGEM-T Easy vector

3 µl template (eluted PCR product)

1 µl T4 DNA ligase 3u/µl

10 µl

Ligation was performed for 2 h at RT or overnight at 4° C. Competent E. coli cells of strains 

DH5α or JM109 were prepared as described under 2.7.3 and slowly thawed on ice. Each 
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ligation reaction was gently mixed with 50 µl of bacteria and placed on ice for 20 min. As 

negative control, 50 µl of bacteria was processed without any vector. Cells were heat-shocked 

for 45 s at 42° C and immediately returned to ice for 5 min before 550 µl SOC medium was 

added, and cultures were incubated for 2 – 3 h at 37° C with shaking. 

For  growing  bacterial  colonies,  150  –  300  µl  of  each  of  the  transformation  and  control 

cultures was plated onto duplicate LB/amp/IPTG/X-GAL plates and incubated overnight at 

37° C. Successful transformation with the cloned plasmid was indicated by the white color of 

colonies  whereas  no  insert  was  present  in  blue  colonies.  If  any  bacterial  colonies  were 

detected on the control plates with non-transformed bacteria the experiment was discarded, 

and the ligation reaction repeated. Several positive colonies containing the cloned insert were 

transferred to a replica plate (LB/amp) with a sterile tooth pick and diluted in 100 µl sterile 

water. The replica plate was incubated for 8 h at 37° C and stored at 4° C. 

To determine the insert size of the transformed colonies the diluted bacteria suspension was 

used as template for in cell-PCR that was performed according to the standard PCR protocol 

with primers M13F (forward) and M13R (reverse) flanking the insertion site of the vector. 

Inserts were amplified using the following cycler program with the extension time of each 

cycle at 72° C being adapted to the size of the fragment that had been cloned (1 min of 

extension per 1 kb (kilobases) insert size):

5 min 95.0° C

30 sec 95.0° C

1 min 64.8° C × 40

0.5 – 2 min 72.0° C

10 min 72.0° C

4.0° C

PCR products which matched the size of the cloned insert were purified from an agarose gel, 

eluted in 30 µl elution buffer and sequenced at  MWG (Ebersberg,  Germany) using value 

reads with primers M13F and M13R for forward and reverse sequencing, respectively. The 

obtained sequences were analyzed as described under 2.7.6.
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2.7.5 RACE-PCR

Starting from known sequences of differentially expressed genes and of the characean myosin 

5’RACE-PCR was performed using the 5’RACE-System (Invitrogen, Karlsruhe, Germany) in 

order to determine adjacent parts of the gene sequence in 5’-direction of the corresponding 

mRNA.  All  material  was  autoclaved  for  one  hour,  and  all  reagents  were  prepared  with 

nuclease-free water in order to avoid degradation of the RNA by RNases. Positive control 

experiments for all steps of the RACE-protocol were performed according to the instruction 

manual using control RNA and cDNA templates and control gene specific primers provided 

with the kit.

The extract of polyA+-mRNA served as template for cDNA synthesis with a first antisense 

gene-specific primer (GSP 1) binding to the mRNA within the sequence of the corresponding 

gene fragment:

• mix in a 0.5 ml-tube placed on ice:

1.0 µl primer GSP 1 (2.5 µM)

14.5 µl polyA+-RNA extract

• denature the RNA for 10 min at 70° C, chill on ice for 1 min and collect the contents 

of the tube by brief centrifugation

• add in the given order:

2.5 µl 10× PCR buffer

2.5 µl 25 mM MgCl2

1.0 µl 10 mM dNTP-mix

2.5 µl 0.1 M dithiothreitol 

• mix gently, spin down and place for 1 min at 42° C

• add 1 µl reverse transcriptase SuperScript II and mix gently

• incubate for 50 min at 42° C

• inactivate the enzyme at 70° C for 15 min, centrifuge 20 s and place reaction at 37° C

• add:

0.5 µl RNase H 5u/µl (Fermentas)

0.5 µl RNase T1 1000u/µl (Fermentas)

• mix and incubate for 30 min at 37° C

• collect the reaction by brief centrifugation and place on ice
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The  cDNA  was  purified  and  eluted  with  50  µl  elution  buffer  using  the  QIAquick  PCR 

Purification Kit (Qiagen) instead of the purification system proposed in the RACE-manual. 

A homopolymeric oligo dC-tail was added on the 3’-end of the cDNA in order to create a 

binding site for the abridged anchor primer which was required for PCR amplification:

• mix in a 0.5 ml tube placed on ice:

6.5 µl water

5.0 µl 5× tailing buffer

2.5 µl 2 mM dCTP

10.0 µl purified cDNA

• incubate for 3 min at 94° C, chill for 1 min on ice, spin down and place on ice

• add 1 µl TdT (terminal deoxynucleotidyl transferase) and mix gently

• incubate for 10 min 37° C

• inactivate the enzyme at 65° C for 10 min, spin down and place reaction on ice

The tailed cDNA was PCR-amplified with a second gene-specific primer (GSP 2) annealing 

to the cDNA at  a  nested position (3’  to GSP 1) and an Abridged Anchor Primer  (AAP) 

binding to the homopolymeric tail at the 3’-end of the cDNA. In order to reduce non-specific 

amplification and to increase target yield, the PCR reaction was performed as hot-start PCR 

using the Fermentas Taq polymerase system with the enzyme being added to the reaction mix 

after  initial  denaturation of the template at  95° C. The primer annealing temperature was 

adapted according to the calculated melting temperature provided by the manufacturer. The 

PCR reaction was mixed in a 0.2 ml-reaction tube placed on ice:

31.5 µl sterile water

5.0 µl 10× PCR buffer (Fermentas)

3.0 µl 25 mM MgCl2 (Fermentas)

2.0 µl primer GSP 2 (10 µM)

2.0 µl primer AAP (10 µM)

1.0 µl dNTP mix (10 mM each)

5.0 µl tailed cDNA 

0.5 µl Taq polymerase 5u/µl (Fermentas)

50.0 µl
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Amplification program:

2 min 95.0° C

30 sec 95.0° C

1 min 55 – 62° C × 35

3 min 72.0° C

10 min 72.0° C

4.0° C

To increase the yield of specific PCR product, DNA from the first PCR was reamplified in a 

nested  PCR  with  a  nested  gene-specific  primer  GSP  3  and  the  Abridged  Universal 

Amplification  primer  AUAP  binding  to  the  adapter  region  of  AAP.  As  for  the  first 

amplification  reaction  PCR  was  performed  as  hot-start  PCR,  and  primer  annealing 

temperatures were adapted. 

Mix in a 0.2 ml reaction tube placed on ice:

33.5 µl sterile water

5.0 µl 10× PCR buffer (Fermentas)

3.0 µl 25 mM MgCl2 (Fermentas)

1.0 µl primer GSP 3 (10 µM)

1.0 µl primer AUAP (10 µM)

1.0 µl dNTP mix (10 mM each)

5.0 µl template (1:100 dilution of first PCR reaction) 

0.5 µl Taq polymerase 5u/µl (Fermentas)

50.0 µl

2 min 95.0° C

30 sec 95.0° C

1 min 57 – 64° C × 35

3 min 72.0° C

10 min 72.0° C

4.0° C
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Amplification products of the first PCR reaction and of the nested PCR were purified from an 

agarose gel, cloned, and sequenced as described under 2.7.4.6.

2.7.6 Sequence analysis and alignment

The data  obtained from sequencing of  amplified fragments  was analyzed  using the  tools 

provided  by  the  ExPASy  server  (Expert  Protein  Analysis  System,  URL: 

http://www.expasy.ch/; Gasteiger et al.  2003) of the Swiss Institute of Bioinformatics and 

Clone Manager  4.0  software (Scientific  & Educational  Software,  Cary,  USA).  Homology 

search of nucleotide and amino acid sequences and alignments with database entries were 

done  using  BLAST (Basic  Local  Alignment  Search  Tool)  at  the  web page of  the  NCBI 

(National Center for Biotechnology Information; URL: http://www.ncbi.nlm.nih.gov/BLAST) 

and  ClustalW  at  the  web  page  of  the  European  Bioinformatics  Institute  (URL: 

http://www.ebi.ac.uk/clustalw/index.html). Nucleotide and amino acid sequences are listed in 

this study according to the IUB (International Union of Biochemistry) one letter code.

2.8 MAXUS-5 sounding rocket flight experiment

Parabolic  flights  of  sounding  rockets  such  as  TEXUS  (technological  experiments  under 

reduced gravity) and MAXUS (enlarged version of TEXUS) represent a powerful facility for 

conducting  experiments  under  microgravity  (µg)  conditions.  They  are  well  suited  for 

biological experiments since they provide relatively long phases of microgravity conditions in 

the range of 7 to 13 min. These durations are much longer than the microgravity phases of 

free-fall experiments in a drop tower (4.5 to 9 s) and of parabolic plane flights (31 times 22 s 

µg-conditions within 120 min). In contrast to long-term microgravity experiments on Space-

Shuttle flights, satellite flights (Foton capsules) or on board the International Space Station 

(ISS),  sounding  rocket  experiments  allow  the  direct  access  of  the  investigator  to  the 

experiment before and after the flight. By means of late-acess units samples can be delivered 

to  the payload module shortly  before lift-off  and immediately be transported back to  the 

ground laboratory for analysis of the data after landing of the payload. During the flight, the 

experiment data are downlinked on-line and the experimenter is able to control and modify 

the settings of the module via telecommand from ground. It has previously been demonstrated 

that parabolic flights of sounding rockets are highly suited to study the actomyosin-mediated 
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transport  mechanisms  of  statoliths  in  gravity-sensing  characean  cells  by  microscopic 

observation in microgravity (Volkmann et al. 1991; Buchen et al. 1993; Braun et al. 2002). 

The  MAXUS-5  experiment  was  designed  to  specify  the  lateral  forces  of  molecular 

interactions  between  statoliths  and  the  actin  cytoskeleton  by  determining  the  threshold 

acceleration level required for statolith displacement.

2.8.1 Sample preparation

Samples  of  characean  rhizoids  and  protonemata  were  mounted  in  two  different  types  of 

vacuum-tight cuvettes. Fixation cuvettes were designed for chemical fixation of the samples 

at the end of the microgravity phase whereas samples in the observation cuvettes remained 

unfixed in order to discover acceleration-induced curvature responses. Both types of cuvettes 

consist of a core frame made of V2A steel, two Plexiglas windows and two aluminum cover 

windows. They are sealed by o-rings between the core frame and the Plexiglas windows. For 

the flight, fixation cuvettes were connected to the fixation unit of the module, which allowed 

the timer-controlled exchange of the internal solution.

Flight samples were prepared starting 10 hours before lift-off. Samples of protonemata were 

prepared under red light, and windows were covered with photoresistant tape after preparation 

in order to avoid blue-light induced cell division. Small agar-blocks containing embedded 

nodes with bundles of short rhizoids or with outgrowing protonemata were transferred to the 

cuvettes.  Observation  cuvettes  were  completely  filled  with  agar  whereas  samples  in  the 

fixation cuvettes were embedded in a thin layer. Fixation cuvettes were filled with distilled 

water using a syringe and plugged until used. Five hours before lift-off those samples were 

selected for the flight that exhibited normal cell shape and constant growth as revealed by 

microscopic control.

2.8.2 Payload module TEM 06-R01M

The  payload  module  TEM  06-R01M  which  was  constructed  by  EADS  ST  (Bremen, 

Germany)  was  designed  to  study  the  effect  of  defined  lateral  acceleration  forces  on  the 

position of statoliths and on growth orientation in vertically oriented characean rhizoids and 

protonemata. The rotatable platform of the module was equipped with two microscopic units 

(one for each cell type) and with a fixation unit. Each of the microscopic units consists of a 
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tube redirected by 90°, a 20× objective lens (Zeiss, Oberkochen, Germany) and a black/white 

CCD camera chip XC-ST50 (Sony, Cologne, Germany). In the protonema unit a red filter was 

installed in the optical path behind the light source. During the flight, the microscopic images 

were downlinked on-line to the ground facility at Esrange, and the position of the cuvettes and 

the  focus  were  adjusted  by  telecommand.  The  fixation  unit  comprised  a  reservoir  tank 

containing the chemical fixative connected to the filler  plugs of the fixation cuvettes and 

intercepting tanks receiving the displaced solution from the release plugs.

The flight cuvettes with rhizoids and protonemata were mounted on two late-access units (one 

for each cell type), that were inserted into the module approximately 100 min before lift off. 

One observation cuvette  and one fixation cuvette  were located on each of three different 

positions of the late-access units at defined distances from the center of the platform. Samples 

of the observation cuvettes at the middle position of each late-access unit were available for 

in-vivo  video  microscopy  during  the  rocket  flight.  After  insertion  of  the  samples  the 

temperature in the module was adjusted to 21° C by peltier elements.

2.8.3 Experiment procedure

The  ESA  (European  Space  Agency) 

MAXUS-5  sounding  rocket  was  launched 

from  the  satellite  station  Esrange,  near 

Kiruna in northern Sweden on April 1, 2003. 

It  reached  an  altitude  of  700  km  and 

provided  microgravity  conditions  (<  10-4g) 

over a period of 736 s (Table II).

The threshold acceleration level that induces 

lateral  displacement  of  statoliths  in 

characean  rhizoids  and  protonemata  was 

determined by rotating the platform of the experiment module TEM 06-R01M during the 

microgravity phase of the rocket flight. During rotation the vertically oriented samples on the 

three different  radii  of  the platform experienced lateral  accelerations  of  0.05g,  0.14g and 

0.25g.  During  the  microgravity  phase,  the  movements  of  statoliths  and  first  gravitropic 

responses were observed in rhizoids and protonemata at the middle position of the platform 

by in-vivo video microscopy. Timer-controlled chemical fixation (3% glutaraldehyde, 0.1 M 
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Table  II  Technical  data  of  the  MAXUS-5 
sounding rocket flight
Time points of the parabolic flight are indicated in 
s  after  lift-off.  Data  were  provided  by  Kayser-
Threde (Munich, Germany) and EADS ST. 

Launch date April 1, 2003

Launch time 8:00 LT (local time)

Height of apogee 701.3 km

Start of µg (< 10-4g) +95 s

End of µg +831 s

Reentry +858 s
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Pipes,  pH 7.0)  at  the  end  of  the  microgravity  phase  (+800 s)  conserved  the  position  of 

statoliths and allowed documentation and statistic analysis of the redistribution of statoliths 

caused by the laterally  applied accelerations on ground. Rhizoids and protonemata in the 

observation  cuvettes  of  each  acceleration  level  remained  unfixed,  and  microscopic 

observation after early retrieval of the late access units allowed the detection of any potential 

curvature responses that were induced by the lateral acceleration stimuli.

For documentation of the final statolith distribution after centrifugation in microgravity the 

geometrical  center  of  the  statolith  complex  of  chemically  fixed  rhizoids  was  determined 

according to Hodick (1994) and averaged for each acceleration level. The microscopic images 

were overlaid with a Cartesian coordinate system with its origin at the cell vertex and the 

median cell axis as the x-axis. The position of each statolith was determined by its x- and y-

value in the coordinate system. Averaging of coordinate values of all statoliths resulted in the 

geometrical center of the statolith complex.

For further analysis of the acceleration-induced statolith displacement in all chemically fixed 

cells and in the living cells of the observation cuvette of the 0.14g acceleration level,  the 

distribution  of  statolith  frequency  across  the  cell  diameter  was  determined.  Microscopic 

images were overlaid with a lattice (30 × 30 µm, box size 3 × 3 µm), and the number of boxes 

blackened by the presence of statoliths in all rhizoids of each set of samples was summed up 

for  each  column  and  divided  by  the  number  of  cells  analyzed.  This  method  provided 

distribution diagrams of statoliths along the lateral cell axis. 

2.9 Parabolic Plane flight experiments

By providing alternating levels of hypergravity and microgravity conditions parabolic plane 

flights are highly suited to study the effect of reduced or enhanced accelerations on gravity 

sensing in biological specimens. Although the duration of a single microgravity phase is too 

short  to  detect  changes  in  the  kinetics  of  gravitropic  curvature  reactions,  it  is  very  well 

feasible to study the cumulative effect of all microgravity phases of the flight profile which 

sum up to a total duration of approximately 12 min or 10% of the total flight time.

Each parabolic  flight  maneuver  of  the Novespace  Airbus A300 Zero-G (Fig.  1)  provides 

microgravity conditions for 22 s. The aircraft is pulled up with full engine power from the 

horizontal flight position to an ascending angle of 47°. At this ‘angle of attack’, the thrust is 

reduced to a minimum (‘injection’) so that the forces acting on the aircraft compensate each 

33



2   MATERIALS AND METHODS

other during the parabolic flight curve and  –  similar to an object in a free-fall situation  – 

gravity is the only remaining acceleration. The aircraft is weightless until the engines are reset 

to full power at a descending angle of 42° (‘pull out’) and the aircraft is brought back to the 

normal flight position. Before and after each microgravity phase the aircraft is subjected to 

hyper-g accelerations in the range of 1.8g for approximately 20 s during pull-up and during 

pull-out. The profile of a parabolic flight comprises 31 parabolas flown within 120 min on 

each of three flight days per campaign. 

The present experiment was designed to characterize the functional mechanism of receptor 

activation  in  characean  rhizoids  and  to  investigate  if  receptor  activation  depends  on 

mechanical  forces exerted by the weight of the statoliths.  The experiment was performed 

during the 36th ESA parabolic flight campaign at Bordeaux airport, France, in March 2004, 

and  during  the  6th  DLR  (Deutsches  Zentrum  für  Luft-  und  Raumfahrt)  parabolic  flight 

campaign at Cologne airport, Germany, in September 2004. 

Fig. 1 Profile of the parabolic flight maneuver of the A300 Zero-G aircraft
Each parabola provides a microgravity phase of 22 s that is preceded and followed by hypergravity conditions 
of 1.8g. The maneuver is performed 31 times on each flight and the microgravity phases sum up to a total 
duration of approx. 10% of the total flight time of 120 min. For a detailed description of the flight maneuver 
see text.
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2.9.1 Flight hardware and procedures

The experiment hardware that was described in detail by Hauslage (2005) was mounted on a 

custom-made aluminium rack and included the specimen containers and a centrifuge for in-

flight controls. A modified Biorack microscope equipped with a video camera was used for 

observations of statolith movements during the flight phases. Video sequences were recorded 

in MPEG2 format on a laptop computer. In order to reduce vibrations, all specimen containers 

and the centrifuge were mechanically isolated from the rack by 10-mm silicon foam plates 

(Castan GmbH, Ludwigsburg, Germany).

In the present experiment it was tested if activation of the gravireceptor molecule in characean 

rhizoids  depends  on  mechanical  forces  exerted  by  the  weight  of  sedimented  statoliths. 

Therefore curvature angles of flight samples whose sedimented statoliths were weightless 

during the microgravity phases of the parabolic flight were compared to the curvature angles 

of in-flight controls which were mounted on the reference centrifuge of the experiment rack 

and centrifuged at 1g during the microgravity phases. Flight samples and in-flight controls 

were  tilted  by  90°  during  the  flight  beginning  10  min  prior  to  the  first  parabola.  This 

warranted that sedimentation of statoliths onto the lateral cell flank was completed under 1g 

conditions in all rhizoids and that the following acceleration profile was applied to cells with 

fully sedimented statoliths. The samples were tilted back to the vertical orientation after the 

last parabola of the flight profile. After landing, photographs of the rhizoids in both sets of 

samples were recorded by video microscopy. The maximally achieved curvature angles were 

measured and statistically analyzed. On the 36th ESA campaign additional ground control 

samples  were  positioned  horizontally  under  continuous  1g conditions  for  the  same  total 

gravistimulation time as the flight  samples and in-flight  controls.  During the flight  video 

sequences  of  rhizoids  on  the  Biorack  microscope  were  recorded  in  order  to  analyze  the 

position of the statolith complex during the different acceleration levels of the flight profile. 

2.9.2 Preflight control experiments

Control experiments under 1g-conditions on ground were performed to assess the effect of 

hypergravity conditions and the effect of short-term removal of sedimented statoliths from the 

plasma  membrane  on  gravitropic  curvature.  In  all  control  experiments,  rhizoids  where 

initially tilted by 90° for 10 min to allow undisturbed sedimentation of statoliths. 
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To  test  if  increasing  the  weight  of  sedimented  statoliths  alters  the  gravitropic  response, 

gravistimulated  rhizoids  were  laterally  centrifuged  parallel  to  the  direction  of  the 

gravistimulus  for  15  min  at  2,  3,  4  or  5g.  The  maximally  achieved growth  angles  were 

compared  with  control  cells  which  were  gravistimulated  at  90°  for  25  min  at  1g.  For 

simulating the short-term hypergravity phases of the parabolic flight profile, rhizoids were 

intermittently centrifuged 62 times at 2g for 20 s within a total gravistimulation time of 120 

min, and final curvature angles of these cells were compared with controls cells which were 

continuously gravistimulated at 1g for 120 min.

The effect of short-term interruption of the contact of sedimented statoliths with the plasma 

membrane on the gravitropic response was tested by inverting gravistimulated cells from 90° 

to 270° 31 times for 30 s, 22 s, 10 s, or 5 s within a total of 120 min according to the flight 

profile.  As for the other control experiments,  maximally achieved curvature angles of the 

intermittently inverted rhizoids were measured and compared with control samples that were 

continuously  gravistimulated  for  120  min  at  continuous  1g conditions.  For  tracking  the 

movements of statoliths following the inversion of gravistimulated cells, high-magnification 

video microscopy was used. Rhizoids were mounted on the rotatable stage of a vertically 

positioned Axioskop microscope (Zeiss), and statoliths were observed with a Plan Neofluar 

100× oil  immersion  lens  (Zeiss).  Rhizoids  were  gravistimulated  for  10  min  at  90°  and 

subsequently inverted to 270° by tilting the microscope stage. Digital images of the apical cell 

regions were recorded before and after inversion in 1-s intervals with an AxioCam HS camera 

(Zeiss). For statistical analyses of statolith movements, only those statoliths were tracked that 

were considered to be sedimented on the plasma membrane at  the moment  of  inversion  

(t  = 0).  A line was drawn as reference line to indicate  the initial  position of sedimented 

statoliths.  The  distances  between  statoliths  and  the  reference  line  were  documented  and 

measured  using  the  AxioVision  software  (Carl  Zeiss  Vision  GmbH,  Hallbergmoos, 

Germany).

2.10 Electron microscopy

The electron microscopic part of the study was intended to develop and establish procedures 

for  the preparation of  samples of characean rhizoids by high-pressure freeze fixation and 

freeze substitution. These high-quality samples were used for detailed ultrastructural analyses 

by  3D  dual-axis  electron  tomography  and  for  subcellular  immunolocalization  of  protein 
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epitopes. High-pressure freeze fixation and electron tomography were conducted in the lab of 

Prof. L. Andrew Staehelin (Department of Molecular, Cellular, and Developmental Biology, 

University of Colorado, Boulder, USA).

2.10.1 High-pressure freeze fixation

Samples for ultrastructural analyses and immuno-electron microscopy were prepared using 

high-pressure freeze fixation (Gilkey and Staehelin 1986; Moor 1987; Dahl and Staehelin 

1989) with a Baltec HPM010 (Technotrade, Manchester, USA). Small characean nodes with 

very  short  rhizoids  were  cut  off  from agar-embedded  thallus  pieces  soaked  with  either  

150 mM sucrose or 150 mM mannitol which were used as cryoprotectants. The node was 

pulled out of the agar and transferred to a type-A freezing hat with a cavity of 150 µm (Ted 

Pella, Redding, USA) that was filled with the cryoprotectant. The specimen sandwich was 

completed by putting on a second hat with its cavity facing the cavity of the first hat forming 

a specimen chamber with a depth of 300 nm. The samples were transferred to the specimen 

holder inserted into the high-pressure freezer and frozen under high pressure (2100 bar) with 

liquid nitrogen (lN2) as cryogen within 50 ms and with a cooling rate of 4000° C s-1. Specimen 

sandwiches were stored in liquid nitrogen and transferred to lN2-cooled cryocaps containing 

the freeze substitution medium.

2.10.2 Freeze substitution and embedding

Different substitution protocols were developed in order to achieve the best results for each 

microscopic  application,  i.e  maximum  contrast  for  ultrastructural  analysis  and  excellent 

preservation of protein epitopes for immuno-electron microscopy. To avoid heating of the 

samples and ice crystal formation during exchange of the substitution media all solutions and 

pipettes were pre-chilled to the corresponding temperature of the previous step. The solutions 

used for freeze substitution were prepared with pure water-free acetone (Electron Microscopy 

Sciences).  Chemical  fixatives,  i.e.  GA (glutaraldehyde),  TA (tannic  acid),  OsO4 (osmium 

tetroxide) and UA (uranyl acetate), were added as indicated in the protocols.

For ultrastructural analyses rhizoid samples were freeze substituted according to the following 

protocol:
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–80° C 3 d 1% GA + 0.1% TA in acetone

wash 2× with acetone

2 d 2% OsO4 in acetone

–20° C 1 d 2% OsO4 in acetone

+4° C 1 d 2% OsO4 in acetone

RT wash 3× with acetone 

After freeze substitution, samples were removed from the freezing hats, transferred to fresh 

cryocaps  and  infiltrated  at  RT  in  increasing  concentrations  of  Epon  resin  (Ted  Pella) 

according to the following schedule: 12 h each in 5, 10, 20, 30, 50 and 70% resin in acetone, 

12 h in 100% resin and 2 h in fresh resin. Rhizoids were transferred to flat embedding molds, 

and polymerization was performed at 60° C for 16 h under vacuum.

The  samples  for  immuno-electron  microscopy  were  freeze  substituted  and  embedded  in 

Lowicryl  HM20  using  a  freeze  substitution  unit  (Leica,  Vienna,  Austria)  that  provided 

controlled  temperature  conditions  and  allowed  UV-polymerization  of  the  resin  at  low 

temperature.

–90° C 90 h 0.25% GA + 0.1% UA in acetone

6 h warm to –60° C at a rate of 5° C per hour

–60° C wash 3× with acetone, remove samples from freezing hats

12 h acetone

1 d 2% OsO4 in acetone

4 h each 30 and 60% Lowicryl in acetone

12 h 90% Lowicryl in acetone

4 h each 2× 100% Lowicryl

12 h 100% Lowicryl

transfer samples to pre-chilled polymerization chambers 
(see below)

48 h polymerization under UV light 

The  polymerization  chambers  were  constructed  by  sticking  rubber  frames  with  an  inner 

diameter of 19 mm and a thickness of 1 mm to microscope slides and covering with a plastic 

coverslip. Polymerization yielded translucent platelets with embedded rhizoid samples.
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2.10.3 Sample preparation for electron tomography

For electron tomography 250 nm-sections were prepared with an Ultracut S ultramicrotome 

(Leica)  and  collected  on  Formvar-coated  copper  slot  grids  (0.5%  Formvar  in  ethylene 

dichloride; Electron Microscopy Sciences). Sections were counterstained with Reynold´s lead 

citrate and uranyl acetate (3% in 70% methanol) for 3.5 and 8 min, respectively. Washing was 

performed  with  70% methanol,  40% methanol  and  distilled  water  for  1  min  each.  After 

staining, 15-nm colloidal gold particles were added to both sides of the grid to be used as 

fiducial markers for aligning the series of tilted images. A 10 µl-droplet of gold suspension 

was applied to each side of the grid and removed with filter paper after 20 min of incubation 

at RT. Grids were thoroughly washed by submerging in distilled water and allowed to dry.

2.10.4 Sample preparation for immunogold labeling

Rhizoids  were  identified  in  the  polymerized  resin  platelets  by  microscopic  observation, 

excised with a  razor blade and stuck to mounting blocks with two-component  glue.  Thin 

sections  (~  80  nm)  were  prepared  with  an  Ultracut  S  ultramicrotome  and  collected  on 

Formvar-coated nickel slot grids (0.5% Formvar in ethylene dichloride). For immunolabeling, 

grids were incubated on small droplets of the solutions in a humid chamber according to the 

following schedule:

• 10 min 0.1 N HCl

• 20 min block  with  5%  milk  powder  or  BSA  (bovine  serum  albumin)  in  

PBST

• 2 h primary antibody diluted in PBST

• wash 3× with PBS-high Tween

• 1.5 h secondary antibody (gold conjugate) diluted in PBST

• wash 3× with PBS-high Tween

• wash with distilled water

• 2 – 4 min counterstaining with Reynold´s lead citrate

• wash 3× with distilled water

• 5 – 8 min counterstaining with 3% uranyl acetate in 70% methanol

• wash vigorously with distilled water in beaker

• allow grids to dry
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For  reducing  unspecific  labeling,  antibody  solutions  were  optionally  supplemented  with  

2% milk powder or BSA. Control samples were prepared by omitting the primary antibody 

and incubating the grid on a droplet of PBST solution instead. Sections were observed at  

60  –  80kV with either a CM 10 (Philips, Eindhoven, Netherlands) or an EM 10A (Zeiss) 

electron microscope. Depending on the equipment available, the microscopic images were 

recorded with a digital camera or on negative film.

2.10.5 Electron tomography

3D dual-axis electron tomography is an innovative tool for detailed ultrastructural studies at a 

resolution level that is greatly improved compared to conventional electron microscopy. At 

increasing  tilt  angles  of  the  microscope  goniometer,  series  of  electron  micrographs  are 

recorded about two orthogonal axes. The single-axis tomograms that are computed from each 

of the image series are combined to the final dual-axis tomogram which comprises a set of 

serial  tomographic  slices  at  one-pixel  distances.  Using  electron  tomography,  the  cellular 

ultrastructure can be analyzed at a resolution of less than 4 nm, and the three-dimensional 

shape  of  cellular  compartments  can  be  visualized  by  modeling  of  the  contours  that  are 

detected in the tomographic slices.

2.10.5.1 Intermediate-voltage electron microscopy and acquisition of tilt series images

Electron tomograms of 250 nm-sections were prepared using a Tecnai TF30 intermediate-

voltage electron microscope (FEI, Hillsboro, USA) operating at 300 kV. Single images (2048 

× 2048 pixels) were taken at tilt angles of +60° to –60° at 1°-intervals about two orthogonal 

axes (Mastronarde 1997) and collected with a Gatan Megascan 795 digital camera (Gatan, 

Pleasanton, USA). Image series were recorded at magnifications of 12000× to 23000×.

2.10.5.2 Three-dimensional tomographic reconstruction and modeling

The reconstruction  of  three-dimensional  tomograms from the  images  of  a  tilt  series  was 

performed using the eTomo-application of the IMOD software package (version 3.3.8) which 

was designed at the University of Colorado (Mastronarde 1997) and is available for download 

at the IMOD home page (URL: http://bio3d.colorado.edu/imod). The images were aligned by 
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the software using the gold particles on the surface of the grids as fiducial markers. Each set 

of  aligned  tilts  was  reconstructed  into  a  single-axis  tomogram  using  the  R-weighted 

backprojection algorithm (Gilbert 1972). Finally, the two single-axis tomograms were merged 

into  a  dual-axis  tomogram  using  a  warping  procedure  (Mastronarde  1997).  Completed 

tomograms were displayed and analyzed with the 3dmod-application, the graphics component 

of  the  IMOD package  (Kremer  et  al.  1996).  Membranous  structures,  microtubules,  actin 

filaments and all types of vesicles were modeled by drawing contours on single slices of a 

tomogram.  The  ‘imodmesh’-function  was  used  to  connect  contours  between  the  slices 

producing  a  three  dimensional  reconstruction  of  the  modeled  structures.  Dimensions  of 

cellular structures and compartments were measured using the ‘imodinfo’-command.
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3 RESULTS

3.1 Molecular biology

The  molecular  biological  part  of  the  study  aimed  at  the  identification  of  genes  that  are 

involved  in  the  regulation  of  gravitropism  in  characean  rhizoids  and  protonemata  by 

comparing gene expression patterns under  differential  conditions of  gravistimulation.  The 

mRNA extracts  of  rhizoids were used in  addition for  the determination of  the nucleotide 

sequences  of  some  strongly  expressed  genes  in  order  to  contribute  to  the  expansion  of 

genomic information of characean algae. Partial sequencing of a myosin from rhizoids was 

performed  as  preparation  of  a  systematic  molecular  characterization  of  this  protein  class 

which is believed to play a crucial role for gravity sensing and tip growth by mediating a 

variety of different cellular processes.

Since characean algae are not very well established as model systems for molecular studies, 

basic procedures for the extraction, isolation and amplification of mRNA from rhizoids and 

protonemata had to be developed in this study. The optimized protocols established the basis 

for the analysis of gene expression patterns and for cDNA-sequencing.

3.1.1 Extraction of mRNA from characean rhizoids and protonemata

For the extraction of cytoplasm and isolation of mRNA, agar-embedded samples of rhizoids 

were  used  to  avoid  any contamination  from liquid  cultures.  Nodes  with  attached rhizoid 

bundles  were  pulled  out  of  the  agar  and  frozen  in  liquid  nitrogen.  Frozen  rhizoids  were 

clipped  from  the  nodes  and  solubilized  in  tubes  containing  extraction  buffer.  For  the 

comparison of gene expression patterns, mRNA was extracted from control cells in vertical 

orientation and from gravistimulated cells which were placed horizontally for 20 and 45 min, 

respectively.

Total polyA+-RNA was isolated from the cell extracts by hybridization to latex beads and 

collected by centrifugation. Highly abundant tRNA and rRNA molecules that do no bind to 

the beads due to the lack of a polyA-tail were washed out whereas mRNA was specifically 

isolated although it accounts for only 1 – 5% of the cellular RNA. Any procaryotic mRNA 

that might be present in the cell extracts was removed since it does not hybridize to the dT-

oligonucleotides linked to the beads.
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Capillary electrophoresis after random-primed PCR demonstrated that the mRNA-isolation 

procedure was highly effective and that degradation of RNA during processing of the samples 

was avoided: The amount of isolated mRNA was comparable in different samples, and the 

patterns of amplified fragments as well as peak intensities were almost identical (Fig. 2, 4). 

These observations demonstrated that mRNA extracts of rhizoids that were pulled out of the 

agar were very well suited for differential display analysis. 

Fig. 2 Amplification products of random-primed PCR with primer B10
A: Fragment patterns and peak intensities were widely identical in samples of unstimulated 

(green)  and  gravistimulated  (20  min  90°;  blue)  rhizoids.  Fragment  B10-568  (arrow) 
which  exhibited  two-fold  higher  fluorescence  intensity  in  gravistimulated  samples  as 
compared to unstimulated samples is enlarged in B.

C: In the control reaction without cDNA template no products were amplified. The peaks 
that  are visible  represent  the fluorescently labeled primer and unspecific  fluorescence 
signals that were detected throughout all PCR reactions.

x-axis: fragment length in bp; y-axis: relative fluorescence intensity 
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Alternatively,  the  cytosol  of  rhizoids  and  protonemata  was  extracted  by  inserting  a 

microcapillary that was filled with extraction buffer (single-cell aspiration). Since it proved 

difficult to amplify products from extracts of single cells, several cells were pooled for each 

sample. mRNA from pooled extracts of 25 cells was sufficient as template for gene-specific 

PCR amplification (Fig. 3). However, single-cell aspiration was not an adequate extraction 

method for differential display analysis because the level of variation in mRNA-yield and in 

the pattern of random-primed PCR fragments in differentially stimulated samples was too 

high even when identical numbers of cells were extracted.

Fig. 3 Products of gene-specific PCR in 
samples obtained by single-cell aspiration
A product with the expected length of 170 
bp  was  specifically  amplified  in  pooled 
extracts  of  25  rhizoids  (red)  and 
protonemata  (black)  using  gene-specific 
primers which bound within the sequence 
of the random PCR fragment B05-273. The 
difference  in  peak  intensity  between  the 
samples is in the range of the experimental 
variation.
x-axis:  fragment  length  in  bp;  y-axis: 
relative fluorescence intensity

3.1.2 Random-primed PCR

To compare the expression levels of mRNA transcripts in extracts of differentially stimulated 

samples,  fragments  of  the  3’mRNA-ends  were  amplified  by  random-primed  PCR  and 

analyzed by capillary electrophoresis. Several different random primers were used in parallel 

to cover a broad range of transcripts. Capillary electrophoresis was used for fragment analysis 

since it has several advantages compared to gel electrophoresis: i) products are separated with 

very  high  resolution,  ii)  the  fragment  length  can  be  determined  very  precisely,  and  

iii) detection is very sensitive so that even rare products are displayed.

Due  to  the  low  amount  of  starting  material,  only  some  fragments  representing  highly 

expressed transcripts were present in samples that were obtained by single-cell  aspiration. 

Therefore, extracts from bundles of agar-embedded rhizoids that were either unstimulated or 

gravistimulated by 90° for 20 or 45 min prior to mRNA extraction were used for differential 
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display analysis. In general, a high number of fragments in a size range of 100 – 600 bp was 

amplified in each random-primed PCR reaction whereas no products were detected in controls 

where the RNA template was omitted (Fig.  2).  The patterns and expression levels of the 

fragments were very similar in stimulated and unstimulated samples as revealed by coinciding 

peak positions and fluorescence intensities in capillary electrophoresis. The overall similarity 

of the electropherograms was an important precondition for the identification and isolation of 

single  fragments  that  displayed  differential  expression  of  the  corresponding  genes  upon 

gravistimulation. Fragments that were isolated for cloning and sequencing were named after 

the random primer used for PCR amplification and the length of the fragment in bp (e.g.  

B10-568 represents a fragment with a length of 568 bp provided by PCR amplification with 

random primer B10). 

3.1.3 Identification of differentially expressed genes

As described above, most of the random fragments exhibited equal transcription levels in 

unstimulated  and  gravistimulated  cells.  However,  certain  products  displayed  distinct 

differences in peak intensities in differentially stimulated samples and pointed thereby to the 

differential  expression  of  the  corresponding  gene.  The  criteria  for  regarding  a  gene  as 

differentially expressed were: i) an at least two-fold difference in fluorescence intensity of the 

corresponding  fragment  between  gravistimulated  and  unstimulated  samples,  ii)  the 

confirmation of  the  difference  in  the fluorescence levels  in  at  least  two parallel  random-

primed  PCR  reactions,  and  iii)  the  verification  of  the  expression  pattern  observed  after 

random-primed PCR by amplification of a specific gene product using gene-specific primers. 

An  increase  or  decrease  of  fluorescence  intensity  in  gravistimulated  samples  indicated  a 

gravistimulation-dependent up- or down-regulation of the gene.

Several  amplification products  matched the criteria  for  differential  expression in  random-

primed PCR and were subsequently isolated and cloned in order to determine the nucleotide 

sequence  of  the  corresponding  3’mRNA-fragment.  Since  the  genome  of  Chara  is  not 

sequenced, the nucleotide sequence of the fragment was usually not sufficient for identifying 

the  corresponding  gene.  Therefore,  the  coding  region  of  the  gene  was  sequenced  using 

5’RACE-PCR  technology  in  order  to  classify  the  gene  according  to  homologies  with 

sequences from other organisms that were available at genome databases. 
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One of  the fragments  that  displayed a  distinct  difference  in  peak  intensity  after  random-

primed PCR was B16-292. In several parallel experiments the fluorescence level of B16-292 

was  at  least  3-fold  higher  in  gravistimulated  samples  (20  min  90°)  as  compared  to 

unstimulated controls (Fig. 4). After isolation and sequencing of the fragment the expression 

pattern was verified by gene-specific PCR. The fluorescence intensity of the characteristic 

186/189 bp-double peak was three times higher in gravistimulated as in unstimulated samples 

thereby confirming the results from random-primed PCR and pointing to an up-regulation of 

the corresponding gene upon gravistimulation. 

Several runs of 5’RACE-PCR provided a sequence of 3127 nts (nucleotides) including the 

complete coding region of the gene with a length of 1878 nts which corresponds to a protein 

of  626 aa (amino acids).  The nucleotide  and amino acid sequences  are  shown in Fig.  5. 

BLASTX alignment  of  the  translated nucleotide  sequence  displayed a  very high level  of 

homology  (e-value  in  the  range  of  1e–120)  with  glucosyltransferases  of  Arabidopsis 

(Arabidopsis thaliana), rice (Oryza sativa), and other higher plants (Table VII). Homology of 

B16-292 with cellulose synthase-like proteins from rice (Table VII) is attributed to the fact 

that  glucosyltransferases are components of the cellulose synthase multi-enzyme complex. 

The nucleotide and amino acid sequences of B16-292 were published as database entries 

entitled Chara globularis putative glucosyltransferase with the acc. nos. (genbank accession 

numbers) AY995817 and AAX98242, respectively.
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Fig. 4 Random amplification product B16-292
Among the products  of  random-primed PCR with primer B16 (A)  fragment  B16-292 (arrow; 
enlarged  in  B)  displayed  significantly  higher  levels  of  fluorescence  intensity  in  extracts  of 
gravistimulated samples (20 min 90°; blue) as compared to unstimulated samples (green). This 
pattern was verified by several parallel experiments (C–D) and by gene-specific PCR (E) which 
provided an amplification product of the expected length that was detected as a 186/189 bp-double 
peak in capillary electrophoresis.
x-axis: fragment length in bp; y-axis: relative fluorescence intensity
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Nucleotide sequence of B16-292
1 tggaacctgc cgaggtcacc cacggactgt agaaggttgg ggacggtagg tggtggtgga
61 acgcactgct atttgaatct tgcgctcttt tgctcttctt cagcggtcgt tctccggagg
121 tataggagac caaggagacg tgtactcgct tctcagccat agcgagtttg gcactgctat
181 ggcgatgaaa acagaagggt gcaagtcatc tgtttcctgt tcctgactct aaggagtgag
241 agggaagaag tgaaggaggg ggatctgtta ctatactggt aaactgctgt tgtagttggt
301 cacgatcatg gcgcactaca acaagtcgcc ttgggtgggg agggaggaga agggaaaatg
361 ggggggagtg ggagatttcc cctccatgcg aacgggtgag aagccgcggc cgatgggagg
421 tcgattttta cgctatcttc ctcggtgggt tgttcaatcg atcgtcgagc ggtctatggc
481 tgggaagatg ggttcgaagt ctgcccctgc tgccaagaag accggcttcc ataaagtaac
541 tctaggcatc tgcctcgtct tcgcaacgct gttcgtgatg agttactcgt cgtccccggc
601 ggtgactgcc tttctggaat ttctaacgtc tcctctgacg gaagtggcgg gaatttttgc
661 gacggctacg gaggcattcc gttcaatcag agctacatac gtggcgccgg taatgcaatc
721 cgttatcaat gtgctcatca tcgtgttcac cgtgcagtcg ttggacacga tgggcatgac
781 gctcatcttg ttttatctgt cattcaccgg ctggaggcct ccggttgtca ctcctatgaa
841 gcagccgcgt gcctcggatc cggaaaaccc gacgagcaag gcggagacga tttgcccccg
901 tgtgatgatc cagatcccga tgttcaacga gcgggagtgc tacaagatat cgatcggagc
961 gtgctcgcgg cttgattggc cgcgtgacaa gctggtcatc caggtgctgg acgactccaa
1021 taacgaggag atcaaggaga tggtgaagga ggaggtgagc agatggcagg cgcagggcgt
1081 taacatcgac taccgccaca gagtcgatcg gacggggtac aagggcgggt ctttgaagga
1141 aggcatgaag gcgccgtacg tcaaggagtg cgactttgtg gcggtgtttg acgccgattt
1201 ccagccaagg cctgactggc tgttgagaac ggtgccgtat ttcaaggacg atccgaagct
1261 cgctctcgtt cagacgcgct gggagtacag caaccaattc tgcaacctgc ttacgcgctt
1321 ccagttcatc aacacgtctt atcacttcca ggtggagcag caggtcatgg gagccactat
1381 gggctttttc ggtttcaacg gaactggcgg catctggaga atcgcagccg tgaacgaatg
1441 tggaggatgg gacgtgagga cgacggtcga agatatggac atcgctgtca gagctcacat
1501 ccacggtttg aagttcgtct atcttaatga cgtgcgtgtg ccttgcgagc tgcctcagac
1561 tctggaagcg tacacgcgtc agcagcacag atggcatgct gggccgatga acctgttccg
1621 gctgctgttc aagagaatct tgacgtctag ggccttgaca atgtggagca agttcaattt
1681 gatcgttctc ttcttctttg tcaggcgtct ccttgttccc acggtgaatt tcatgctttt
1741 cgttgtcctt ctccccctct ctctcttcgt ccccgaagcg aacatcccga tctgggtcac
1801 ctacacgttc cccatgttct tgtctttctt caggatgttg ctctgctcgt cgctgtttcc
1861 ttacatgttc ccttatctct tcttcgagaa cactatggtg atgacgaagc tgagcgccaa
1921 catccagggc ctgttccagt tcggacgagt gaatgaatgg atcgtcacgc agaaggtggg
1981 agcgttggcg aagcccggcg aggcagtcgc ttccaagaag aagaagtcca tcaagatctt
2041 caagagagag ctggccatgt ccgtgttcct tttgctagcg gcgattcaga gtctagcgat
2101 cgagaagggc atccacttct acatcttctt gttccaaggg ttgacattct tcgccttcgg
2161 atttgatctc ctcagcgacc atagctaatc aagaacgcac ctgtgctatt caattcatcc
2221 aattctatgt ttcctatttc atgattcgcg tcctcatcaa attagcagca gcacgcttgt
2281 gcatttacta acttcttaac ttgtcgagga gtagtatgcc cctgcctccc cccccaatcg
2341 ggtagtgaag tcagcgacgc gctacagtgg tcggtcgatc aggtgcgtgc tnccactttt
2401 cgctttcgct tttgcaggtt tccaacttcc tccagctttt tctttntatt atttgacccg
2461 ttatcctcac acgaatacta gatcattgat tgttttcgca attggtcggg gtgatgtcaa
2521 gtgatcaagc aagacgagag aatgggggtg aggatgatga tgaagatggg gctgatgatg
2581 ttctggaaac ctgccaaata tttgacactt cttaattctg gggctgacct tttacgctct
2641 tgtatgcgat ttgtccagta atcccatata acgaactcaa tatgggagtt tgttaattga
2701 ttattattat gtgcgccttt tgatgaggat aggtataata cccgacgatt atcacgccta
2761 ggcaagcggg tagaatgagg cgaatggcga ggctcgcttt ttcaagagag ggtacggtgt
2821 ttcccccatt ttcttcttct gtatcgttca tgaccgagtg gatgtgctct aatcaatgga
2881 gtgcccggaa tctgactatt gtttattctt ctgtttatcc aggacggtgt tcgggttctg
2941 ggattagctg ctaatagcta tgggaagcgg cgttgccgca tgattgatga tgggacacag
3001 gtatgttttg gtgggaatcg taaatggatt ggagatggac gcttctttcc tctccgattt
3061 ggaaatttga aggtttgcat attagtttaa tatcacctct gtgttcacga ataaaaaaaa
3121 aaaaaaa

Amino acid sequence of B16-292
1 MAHYNKSPWV GREEKGKWGG VGDFPSMRTG EKPRPMGGRF LRYLPRWVVQ SIVERSMAGK
61 MGSKSAPAAK KTGFHKVTLG ICLVFATLFV MSYSSSPAVT AFLEFLTSPL TEVAGIFATA
121 TEAFRSIRAT YVAPVMQSVI NVLIIVFTVQ SLDTMGMTLI LFYLSFTGWR PPVVTPMKQP
181 RASDPENPTS KAETICPRVM IQIPMFNERE CYKISIGACS RLDWPRDKLV IQVLDDSNNE
241 EIKEMVKEEV SRWQAQGVNI DYRHRVDRTG YKGGSLKEGM KAPYVKECDF VAVFDADFQP
301 RPDWLLRTVP YFKDDPKLAL VQTRWEYSNQ FCNLLTRFQF INTSYHFQVE QQVMGATMGF
361 FGFNGTGGIW RIAAVNECGG WDVRTTVEDM DIAVRAHIHG LKFVYLNDVR VPCELPQTLE
421 AYTRQQHRWH AGPMNLFRLL FKRILTSRAL TMWSKFNLIV LFFFVRRLLV PTVNFMLFVV
481 LLPLSLFVPE ANIPIWVTYT FPMFLSFFRM LLCSSLFPYM FPYLFFENTM VMTKLSANIQ
541 GLFQFGRVNE WIVTQKVGAL AKPGEAVASK KKKSIKIFKR ELAMSVFLLL AAIQSLAIEK
601 GIHFYIFLFQ GLTFFAFGFD LLSDHS
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◄ Fig. 5 Nucleotide and amino acid sequence of B16-292
The sequenced region of 3127 nts (acc. no. AY995817) comprises the complete coding region of 
the gene (highlighted in grey) with a length of 1878 nts. The corresponding protein with a length 
of 626 aa and the displayed amino acid sequence was clearly identified as a glucosyltransferase 
(see Table VII). The characteristic QXXRW-motif of glucosyltransferases is underlined.

The fluorescence intensity of B16-275 was low in unstimulated control samples but gradually 

increased in samples that were gravistimulated for 20 and 45 min pointing to a gradual up-

regulation of the corresponding gene during gravistimulation (Fig. 6). The determined gene 

sequence comprised 650 nts but only a short  part  of the coding region (data not shown). 

BLASTX analysis  displayed homology of  this  region with the 3’mRNA-end of  a  bovine 

reverse transcriptase-like protein (acc. no. CAA10770). However, since the level of homology 

was rather low (e-value 1e–08), the nature of the gene has to be determined by sequencing of 

the  complete  coding  region.  In  addition,  the  differential  expression  of  the  gene  during 

gravistimulation needs to be verified by gene-specific PCR.

Two  additional  fragments  exhibited  distinct  differences  in  the  fluorescence  signals  after 

random-primed PCR but could not be sequenced. A gradual decrease in fluorescence intensity 

of B07-465 upon gravistimulation for 20 and 45 min indicates a reduction of the expression 

rate of the corresponding gene in gravistimulated samples (Fig. 6). After PCR amplification 

with random primer B10, the pattern and intensities of the fragments were almost identical in 

gravistimulated and unstimulated samples. Only B10-586 exhibited a distinct difference in 
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Fig. 6 Random amplification products B07-465 and 
B16-275
Remarkable  differences  were  detected  in  the 
fluorescence  intensity  of  fragments  B07-465  (A) 
and B16-275 (B) between extracts of unstimulated 
(green)  and  gravistimulated  rhizoids  that  were 
horizontally  positioned  for  20  (blue)  or  45  min 
(pink)  prior  to  extraction.  B07-465  points  to  a 
gradual down-regulation of the corresponding gene 
upon  gravistimulation  whereas  B16-275  indicates 
gradual up-regulation.
x-axis:  fragment  length  in  bp;  y-axis:  relative 
fluorescence intensity
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fluorescence intensity which was two-fold higher in gravistimulated rhizoids (20 min) than in 

unstimulated cells (Fig. 2).

3.1.4 Sequencing of abundant gene transcripts

Some  of  the  pronounced  fragments  of  random-primed  PCR  reactions  indicating  a  high 

expression  rate  of  the  corresponding  gene  were  isolated,  and  the  coding  regions  were 

sequenced in order to  expand the amount of  genomic sequence information of characean 

algae. 

Starting with the PCR fragment B05-273, 1027 nts of the corresponding gene were sequenced 

including the complete coding region of 399 nts or 133 aa (Fig. 7). The translated nucleotide 

sequence was aligned at  full length and high levels of homolgy (e-value in the range of  

1e–40) with ribosomal proteins of the L14 family (Table VIII). Additional partial alignments 

were  confined  to  the  C-terminal  ends  of  various  glycoproteins  which  have  not  been 

unequivocally classified and may represent additional members of the L14-family of proteins 

due to the high levels of homology. Based upon the alignment of B05-273 with L14-proteins 

of a very broad range of species, e.g. human L14-proteins (e-value < 5e–29), the gene was 

published in the genome database as Chara globularis 60S ribosomal protein L14 with acc. 

nos. AY519976 and AAR99906 for nucleotide and amino acid sequence, respectively.
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Nucleotide sequence of B05-273
1   tgctctttca cctccttctt ctttgctcac attgctcgcg cttctcttca tcgctcttcg
61  cttccgctgt cggtccctaa aaaaccaaaaztgccgttcag acgctttgtc aagattggga
121 ggatttgtct tgttaactat ggggagcact atggcaagct cgttgccata gttgacgtcg
181 tagatcaaaa tcgggcgctt gttgatgctc ccgacgtgac aaggcagcag atcagcttca
241 accggctgtc cttgacggac ttgaaggttg acatcttgcg gaatgccaag aaagacacac
301 tcaaggaggc atttgtaaag ggagaaacct accagaagtg ggcgagcagt gcttggggaa
361 ggaagcttga agtccggaag acgcgcgcag ctctaacgga ctttgacagg ttcaaggtca
421 tgactgctcg gatgaagagg agttctcttg tcaaaagaga actagccaag atgagaaaga
481 cgaaggcttg aaaacatgtg agtgggatga agacaaccgg catggcgttt gaagctgtca
541 ggaagagcaa atgaacggag cttcagcagt ggcgttttga tgatgagaga gcagatttga
601 taaagggtgg acgagttgag ttgttaaaga acggagtcag gaggggttct tccgtgagaa
661 aggggttgtg ggaatcgttt tttctctcag ccaaaggacc tgtcacttct tgtcatagca
721 caatgataga tcgcaggtca ttacggtttc aatgaggcaa tggtatatag ccggttgtag
781 cggtgttttg ccctccatga ggctctctat tgaaccatga gggctctcta ttgatagccg
841 tttctttcgt cgcgggctac ccatttgaca tttgatatcc gacgtctgat gtatcagttg
901 ctgctgtgtc gcttctggtc agtataaagg atcgtatttg atgttttcga gctaccagta
961 cattaaaagt tttgagaaac ggttttggtt ttcacaattc attgattcca taaaaaaaaa
1021aaaaaaa

Amino acid sequence of B05-273
1   MPFRRFVKIG RICLVNYGEH YGKLVAIVDV VDQNRALVDA PDVTRQQISF NRLSLTDLKV
61  DILRNAKKDT LKEAFVKGET YQKWASSAWG RKLEVRKTRA ALTDFDRFKV MTARMKRSSL
121 VKRELAKMRK TKA

Fig. 7 Nucleotide and amino acid sequence of B05-273
A region of 1027 nts of the gene was sequenced (acc. no. AY519976) comprising the complete coding 
region (highlighted in grey) of 399 nts. The gene product with a length of 133 aa is a 60S ribosomal 
protein of the L14 family (see Table VIII).

The random fragment  of  PCR amplification  B07-492 was identified  to  represent  another 

ribosomal protein that was subsequently sequenced. The determined nucleotide sequence of 

830 nts (Fig. 8) comprised the complete coding region of the gene (405 nts, 135 aa) which 

exhibited significant levels of homology (e-value 1e–47) with ribosomal proteins of the L27 

family from various organisms (Table IX). The nucleotide (acc. no. AY682471) and amino 

acid (acc. no. AAT84169) sequences were published in the databases as Chara globularis 60S 

ribosomal protein L27.

In addition to the ribosomal proteins, the nucleotide sequence of the fragment B07-481 was 

determined. However, the corresponding gene could not be identified since no homology with 

database entries was observed by BLASTX alignment. Therefore, the complete coding region 

needs to be determined before the nature of the gene can be clarified.
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Nucleotide sequence of B07-492
1   tctcttcgag ttgcggccac catagcctac cgtcaaatag ttgttgctgc gccttcctgc
61  gtcagcgaaa atggtgaagt ttttgaagca gaacaaggtg gtcgttttgc tgaacggtcg
121 ttatgcaggg cacaaagccg tgatcgtcaa gaatttcgat ggtggcacgg gcgggagacc
181 ttatggccac gccctggtgg cgggcatagc taagtacccc agaaaggtta cgaagaggct
241 gtctgagaag aagctcgcca agagggctag actcaagccg tttatcaagg tcatcaacta
301 caaccacatc atgccgacga ggtacgctct cgatgtggac ttgaagacca ccgtgatccc
361 ggagaagctt gaaactcagg cgaagaaggt ggagaccaga aaggaggtga agaagatcct
421 cgaggagagg ttcaagacag gaaagaacag atggtttttc tccaagttga gattctaggc
481 ttcgaaggac gtcagggtgt gccggagaag ttttgaagtt taagtcgcgc agaatttgat
541 aaccctttcg gttgtagggg tcaggtattg ggaaagtggc tcgcaaggtc gtaaccattc
601 cgtatggata cggtggtcat acaagataag atatctgttg tgcaagctct ttgcgatgta
661 ttttgagttg tcctccgtga atcgagtctt atgagtgaca agaaccggca tattgggtga
721 catgaacggg aggaactttt gctttgaatg aagcaagcat gcaatttatc gcgttgtacg
781 ccgtgaatgg agtgtaatgg atgataagaa ccggcaaaaa aaaaaaaaaa

Amino acid sequence of B07-492
1   MVKFLKQNKV VVLLNGRYAG HKAVIVKNFD GGTGGRPYGH ALVAGIAKYP RKVTKRLSEK
61  KLAKRARLKP FIKVINYNHI MPTRYALDVD LKTTVIPEKL ETQAKKVETR KEVKKILEER
121 FKTGKNRWFF SKLRF

Fig. 8 Nucleotide and amino acid sequence of B07-492
The sequence of 830 nts (acc. no. AY682471) comprises the complete coding region (highlighted in grey) 
with a length of 405 nucleotides. The 135 aa-sequence of the corresponding protein which was identified as 
a 60S ribosomal protein of the L27 family (see Table IX) is displayed.

3.1.5 Partial sequencing of a class XI myosin from Chara globularis

Myosins represent a  class of motor proteins that are crucial  for gravitropic tip growth of 

characean rhizoids and protonemata because they regulate  fundamental  processes  such as 

vesicle transport and positioning of statoliths. Based upon the published sequence of a class 

XI  myosin  heavy  chain  from  the  closely  related  species  C.  corallina (CCM,  acc.  no. 

AB007459;  Kashiyama  et  al.  2000)  the  corresponding  homolog  from  rhizoids  of  C. 

globularis was partially sequenced.

Determination of the nucleotide sequence of the  C. globularis myosin was started with the 

amplification  of  a  fragment  of  the  CCM-tail  using  primers  that  were  specific  for  the 

nucleotide sequence of CCM. The poor conservation of the tail domain among the myosin 

class of proteins ensured that the class XI myosin was specifically amplified but no additional 

myosins.  The amplification product of the  C. globularis myosin was isolated,  cloned and 

sequenced.  Determination  of  the  nucleotide  sequence  of  the  mRNA  was  subsequently 

extended  by  5’RACE-PCR.  An  overall  region  of  1383  nts  was  sequenced  (Fig.  9)  that 

comprised parts of the coiled-coil domain and the head domain and six IQ motives of the neck 

domain as revealed by protein alignment with CCM (Fig. 10). The level of homology between 

the amino acid sequences of the myosin from C. globularis rhizoids and CCM was very high 
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(e-value 1e–157), which underlines the high degree of similarity between these proteins from 

the closely related species.

Partial nucleotide sequence of a C. globularis class XI myosin
1 tggagaaatg caacctcaag ggccgtcaga ttggcaagac aaaagtgtcc ctgcgggcag
61 ggcagatggc tattctggat acgaagaggt caaacgtgct caataaggct gcagtcaaga
121 tccagcacat ggtgcagact ttcctgatgc ggagagacta cgagaggatg aagaatgcgt
181 cactattggt gcaggcatac tggagaggga caatggcaag actggagttc agattcctcc
241 aggagcaggt ctcagctgtt tgcttccaaa ggtatatccg tggatacctt acacagaaga
301 attacctcga gatgcggcaa gctgctatca ggattcaatc cgctgtcagg tctcttgctg
361 catggagggt tcttcgtact ttgaaagaca accattctgc cactcagatt cagtcgaaat
421 ggcgcagcta tgttgaattc aggagctaca atgagctgtt gaggtcatgt atagtcttcc
481 aaggtgcctg gcgaggcaag gaggcacgaa gcgagctcaa gaagcttcga caggctgccc
541 gtgaaactgg tgctttgcgt gaggcaaagg acaggctggc gaagaagtgt gaggagctca
601 cattgcgtct tgggctggca aaggtgagcc ttattgcaag gaacagcgag ctggccaaaa
661 agcagtcagc gatggaggag gtgcaggcac aagtggagca aatgaaggtg ttattggcga
721 aggagcgtga ggcacatgag gcaagcttag ctcaggcaaa ggccgctgcg gctcagcgtt
781 tggatgcgga catgtctgca cagccttcca aagaggtcct ggatagaatc gaggctttga
841 gtgaggagaa catgaaactc aaggaacttg tcgaagacta tgagaagaag aaggcactgg
901 cagagagttc tgcaaaaagg atagaggagg aggcagacct gaagcatgat actatgcaga
961 aatcattggg cagagcggag gaacaggttc agaatttgat atcagagaac cagagcctgc
1021 aatccgagaa agagaattta caatcagaga atcgggtttt gagacagcag gcattgagca
1081 tgaaagatct ggagacgaag aaccaggcca agctgaacca gttagaagac aacagccaag
1141 ctctgaaagc tgagaaccag acactcagac aacagctcga acagctgatt tcaaacgctc
1201 cgatcaagcc cacgccggag cctgtgatta cagtctatcc agatgtgcag cgaatcaagc
1261 ccacgacgga gcctgtgatt acaacctatc cagatgccca gccagagaaa tcccatgata
1321 ttcggacaga gcgcagtgac tccaagagat tggagaaatc ccaacatatt cggagtgaga
1381 gca

Translated amino acid sequence of the partial myosin nucleotide sequence
1 EKCNLKGRQI GKTKVSLRAG QMAILDTKRS NVLNKAAVKI QHMVQTFLMR RDYERMKNAS
61 LLVQAYWRGT MARLEFRFLQ EQVSAVCFQR YIRGYLTQKN YLEMRQAAIR IQSAVRSLAA
121 WRVLRTLKDN HSATQIQSKW RSYVEFRSYN ELLRSCIVFQ GAWRGKEARS ELKKLRQAAR
181 ETGALREAKD RLAKKCEELT LRLGLAKVSL IARNSELAKK QSAMEEVQAQ VEQMKVLLAK
241 EREAHEASLA QAKAAAAQRL DADMSAQPSK EVLDRIEALS EENMKLKELV EDYEKKKALA
301 ESSAKRIEEE ADLKHDTMQK SLGRAEEQVQ NLISENQSLQ SEKENLQSEN RVLRQQALSM
361 KDLETKNQAK LNQLEDNSQA LKAENQTLRQ QLEQLISNAP IKPTPEPVIT VYPDVQRIKP
421 TTEPVITTYP DAQPEKSHDI RTERSDSKRL EKSQHIRSES

Fig. 9 Partial nucleotide sequence and translated amino acid sequence of C. globularis myosin
The partial myosin sequence comprises 1383 nts and exhibits a very high level of homology with the 
sequence of CCM. Within the translated amino acid sequence (reading frame +3) characteristic myosin 
domains were identified (see Fig. 10): i) the C-terminal part of the CCM head domain (underlined with full 
line); ii) six IQ motifs (highlighted in grey); iii) a part of the coiled-coil region of CCM (underlined with 
dashed line).
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Fig. 10 Molecular structure of CCM
The  class  XI  myosin  that  was  isolated  from  C.  corallina (Kashiyama et  al.  2000)  comprises  different 
structural and functional domains. The N-terminal myosin head includes the highly conserved ATP-binding 
site.  The  neck  domain  is  composed  of  six  IQ  motifs  (dark  grey  rhombs).  The  coiled-coil  structure  is 
characterized  by  conserved  tandem-repeats  (light  grey  rhombs)  and  interrupted  by  coiled-coil  breaking 
motifs (light grey boxes). 
N: N-terminal domain; DIL: non α-helical C-terminal tail domain. Figure modified after Kashiyama et al. 
(2000).

3.2 Early mechanisms of gravity sensing studied under 
microgravity conditions

Microgravity experiments were performed during parabolic flights of the ESA MAXUS-5 

sounding rocket and of the Airbus A300 Zero-G to specify basic molecular principles and 

mechanisms  underlying  the  early  phase  of  gravity  sensing  in  characean  rhizoids  and 

protonemata.  The  MAXUS-5 experiment  was designed to  define  the  forces  of  molecular 

interaction between statoliths and the actin cytoskeleton which restrict statolith sedimentation 

and gravity susception by determining the threshold acceleration level required for lateral 

displacement  of  statoliths.  The  parabolic  plane  flight  experiments  were  intended  to 

characterize  the  statolith-dependent  mechanism  of  gravireceptor  activation  eliciting 

gravitropic  signaling  at  the  graviperception  sites  of  the  plasma  membrane  in  rhizoids. 

Comprehensive ground control experiments underlined that the parabolic flight profile with 

alternating hyper- and microgravity phases was excellently suited to investigate if sedimented, 

but weightless statoliths were capable of activating the gravireceptor molecules. The results of 

the  MAXUS-5  experiment  and  of  the  parabolic  plane  flight  experiments  were  published 

recently (Limbach et al. 2005).

3.2.1 The threshold acceleration level required for lateral statolith 
displacement

Vertically  downward  growing  rhizoids  and  protonemata  were  subjected  to  lateral 

centrifugation  during  the  microgravity  phase  of  the  MAXUS-5  sounding  rocket  flight. 
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Analyses of digital images taken from samples that were fixed at the end of the microgravity 

phase  revealed  that  centrifugation  with  0.25g and  0.14g were  sufficient  to  induce  lateral 

displacement of statoliths in rhizoids (Fig. 11B, C). Several statoliths were sedimented onto 

the centrifugal cell flank, whereas no statoliths were found to be present at the centripetal 

plasma  membrane  (Fig.  11B,  C).  At  an  acceleration  level  of  0.05g no  redistribution  of 

statoliths was observed (Fig. 11A), and the shape of the statolith complex was similar to those 

of normal vertically growing cells on ground. Chemically fixed samples of protonemata could 

not  be  analyzed  because  the  cells  were  in  bad  condition  during  the  parabolic  flight  as 

indicated by bulging of the tip.

  

Fig. 11 Final statolith position in chemically fixed 
rhizoids after lateral centrifugation in microgravity
The  figure  shows  the  position  of  statoliths  in 
chemically  fixed  rhizoids  which  were  laterally 
centrifuged with 0.05g (A, D, G), 0.14g (B, E, H) or 
0.25g (C, F,  I)  for  13 min during the microgravity 
phase  of  the  MAXUS-5  sounding  rocket  flight. 
Centrifugation with 0.25g and 0.14g, but not 0.05g, 
induced a displacement of statoliths and settlement of 
some statoliths onto the centrifugal cell flank. 
A–C: Micrographs showing the position of statoliths 

in representative samples of each acceleration 
level. 

D–F: Geometrical centers of the statolith complexes 
(filled circles represent means  ± SE in lateral 
direction,  n  ≥  4).  The  shape  of  the  statolith 
complex in one representative rhizoid of each 
acceleration level  (rhizoids  are  different  from 
those displayed in A–C) is shown in grey. 

G–I: Distribution  of  statolith  frequency  across  the 
cell diameter (n ≥ 4). 

Arrows indicate  the  direction  of  centrifugal  forces. 
Dashed lines represent median axes of the cells. The 
diameter of rhizoids is 30 µm.

The distribution of statolith frequency across the cell diameter in the three sets of chemically 

fixed rhizoids is shown in Fig. 11G–I. Whereas the majority of statoliths was displaced into 

the centrifugal half of the cells after lateral acceleration with 0.14g and 0.25g (Fig. 11H, I), 

statoliths were still  symmetrically arranged across the cell  diameter after  centrifugation at 

0.05g (Fig. 11G). Accordingly, the geometrical center of the statolith complex in 0.14g and 

0.25g samples, but not in 0.05g samples, was shifted from a position around the median axis 

of the cells (Fig. 11, dashed line), the normal position in downward growing cells,  in the 

direction of the acceleration stimulus (Fig. 11D–F).
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Fig. 12 Statolith distribution in rhizoids during lateral centrifugation in microgravity
The distribution of statoliths was observed in characean rhizoids by in-vivo video 
microscopy before lift-off (–250 s) of the MAXUS-5 sounding rocket  and during 
lateral centrifugation at 0.14g in microgravity (indicated in s after lift-off). 
A: Series  of  micrographs  of  a  representative  rhizoid  exhibiting  symmetrical 

distribution  of  statoliths  across  the  cell  diameter  before  lift-off.  Centrifugal 
displacement of statoliths caused by the 0.14g acceleration in microgravity was 
first  detectable  at  +429  s.  Individual  statoliths  settled  onto  the  cell  flank 
towards  the  end  of  the  microgravity  phase  (+692  s  and  +827  s).  Arrows 
indicate the direction of gravitational and centrifugal forces. The diameter of 
the rhizoid is 30 µm. 

B–D: Average  distribution  of  statolith  frequency  across  the  cell  diameter  of  4 
rhizoids  at  indicated times of  the  rocket  flight  demonstrating  that  statoliths 
were  displaced  from  a  symmetrical  arrangement  before  lift-off  (B)  to  an 
asymmetrical distribution during lateral centrifugation (C–D).

Video-microscopic recording  allowed tracking  of  statoliths  in  four  rhizoids  during lateral 

centrifugation  at  0.14g under  microgravity  conditions  of  the  MAXUS-5  sounding  rocket 

flight. A representative example of statolith redistribution induced by 0.14g is shown in Fig. 

12. Statoliths were symmetrically distributed across the cell diameter of the rhizoid before 

lift-off (Fig. 12, t = –250 s) and shortly after the onset of centrifugation in microgravity (Fig. 

12A; t = +130 s). The statolith complex appeared slightly more condensed due to the launch 

accelerations  with  peaks  of  up  to  12.8g in  apical  direction.  During  continued  lateral 

acceleration  statoliths  were  gradually  displaced  towards  the  centrifugal  flank  (Fig.  12,  

t  = +429 s,  +692 s,  +827 s).  Sporadically,  some statoliths settled onto the gravisensitive 

plasma membrane of the centrifugal flank (Fig. 12, t = +692 s); however, settlement was only 

transient since the statolith position was not only influenced by centrifugation but also by 
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actomyosin-dependent  transport  mechanisms.  A  few individual  statoliths  were  sometimes 

even  observed  near  the  centripetal  plasma  membrane  (Fig.  12,  t  =  +692  s).  The  image 

sequence in Fig. 12A represents snapshots of the dynamically changing statolith position and 

is therefore suited to demonstrate the displacement of statoliths towards the centrifugal flank, 

but the images do not provide clear evidence for the centrifugation-induced settlement of 

statoliths onto the lateral plasma membrane, which was distinctly visible in chemically fixed 

samples (Fig. 11B). Nevertheless, microscopic analyses of living rhizoids after retrieval of the 

payload have shown that lateral acceleration of 0.14g for 13 min resulted in curvatures angles 

of 5 to 9 degrees (Fig. 13; n = 4), whereas centrifugation with 0.05g did not provoke any 

curvature response. 

  

Fig. 13 Curvature responses of rhizoids that were 
laterally centrifuged in microgravity
The micrograph which was recorded in the ground lab 
after early retrieval of the MAXUS-5 payload shows two 
rhizoids from observation cuvettes that were centrifuged 
at  0.14g during  the  microgravity  phase  of  the  rocket 
flight. The cells exhibited four distinct curvatures (1–4) 
that  could  be  clearly  attributed  to  oppositely  oriented 
stimuli  during  and  after  the  rocket  flight.  The  first 
curvature response (1) with angles of 7 – 9° was elicited 
by lateral centrifugation of the vertically oriented cells in 
microgravity.  Before  early  retrieval  of  the  payload, 
rhizoids were gravistimulated in the opposite direction as 
compared  to  the  centrifugation  stimulus  and  cells 
responded  with  a  second  curvature  reaction  (2). 
Reorientation of the samples during payload retrieval and 
in the ground lab is reflected by curvature responses 3 
and 4. The diameter of rhizoids is 30 µm.

It can be concluded that sporadic contact of statoliths with the centrifugal plasma membrane 

was sufficient to initiate the gravitropic signalling pathway. Whereas the rhizoids that were 

observed by video microscopy grew at constant rates of 60 – 100 µm min-1 before, during and 

after the parabolic flight, growth rates of protonemata were remarkably lower (20  –  40 µm 

min-1) and decreased gradually during the experiment indicating the suboptimal conditions of 

the cells. However, a gradual statolith displacement towards the centrifugal cell flank during 
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lateral centrifugation at 0.14g was also detected in protonemata although the effect was less 

pronounced than in rhizoids (data not shown).

In addition to the lateral shift of the statolith position, a basipetal displacement of statoliths 

during  the  microgravity  phase  was  observed  (Fig.  12A).  This  effect  has  already  been 

described earlier and is attributed to net-basipetally acting actomyosin forces which are no 

longer compensated by the gravity force (Braun et al. 2002). Under normal 1g-conditions, 

both forces work in concert to keep statoliths in a dynamically stable position of balance. 

3.2.2 Functional characterization of gravireceptor activation in rhizoids

3.2.2.1 Effects of increasing the weight of sedimented statoliths on the gravitropic 

curvature response

Ground  control  experiments  were  performed  to  test  the  impact  of  the  sequence  of 

hypergravity accelerations as they occur during parabolic flights on the gravitropic response 

of  characean  rhizoids.  The  profile  of  hypergravity  phases  was mimicked by  centrifuging 

rhizoids 62 times for 22 s at 2g during an overall  gravistimulation time of 120 min. The 

centrifugation stimuli were applied in the direction of the gravistimulus after rhizoids had 

been placed horizontally  for  10 min.  Thus,  by increasing the  weight  of  fully  sedimented 

statoliths, centrifugation enhanced the mechanical pressure on the plasma membrane of the 

subapical  lateral  cell  flank,  but  did  not  accelerate  the  statolith  sedimentation  process. 

Intermittently centrifuged rhizoids exhibited a mean curvature angle of 45.03° (± 8.18), which 

was in the same range as the curvature angle of control samples (44.62° ± 11.00) that were 

gravistimulated for 120 min under continuous 1g conditions (student´s t-test, P = 0.8136;  

Fig. 14). These results demonstrate that the graviresponse was not promoted by increasing the 

pressure of sedimented statoliths on putative gravireceptor molecules located in the plasma 

membrane.
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Similarly, when rhizoids were pre-stimulated by tilting them for 10 min by 90° at 1g followed 

by stimulation at 1g, 2g, 3g, 4g or 5g for 15 min, the mean curvature angles were all in the 

same range of 23.09° (± 5.33), 24.73° (± 6.62), 24.64° (± 5.68), 23.71° (± 4.61) and 25.92° 

(± 4.65),  respectively  (pairwise  student´s  t-test,  P  >  0.05;  Fig.  15).  No  tendency  was 

recognizable towards reduced or enhanced curvatures angles that might have been caused by 

increasing the weight of sedimented statoliths by centrifugation. As mentioned above, pre-

stimulation of all cells at 1g warranted that the statoliths sedimented onto the lateral cell flank 

under the same conditions, so that the graviresponse started at the same time in all samples.
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Fig. 14 Effect of intermittent centrifugation of  
gravistimulated rhizoids on gravitropic curvature
The graph displays  the curvature  angles  of  control 
cells  which  were  continuously  gravistimulated  for 
120 min at 90° on ground (white bar; n = 69) and of 
rhizoids which were horizontally positioned for 120 
min  on  ground  and  intermittently  centrifuged  62 
times  for  22  s  at  2g (grey  bar;  n  =  59).  Not 
significantly  different  curvature  values  of  controls 
and centrifuged samples (student´s t-test, P = 0.8136) 
provide  evidence  that  increasing  the  weight  of 
sedimented  statoliths  by  repeated  short-term 
centrifugation does not affect gravitropic curvature. 
Data represent means ± SE.

Fig. 15 Effects of hyper-g centrifugation on 
gravitropic curvature of rhizoids
Curvature angles of rhizoids were analyzed 
after  10  min  pre-stimulation  at  90°  on 
ground and  subsequent  stimulation  at  1g, 
2g, 3g, 4g, or 5g for 15 min in the direction 
of  the  initial  gravistimulus.  1g-controls 
(white bar) and centrifuged samples (grey 
bars) exhibited curvature angles that were 
all  in  the  same  range  as  revealed  by 
pairwise  student´s  t-test  (P  >  0.05).  The 
results  indicate  that  enhanced pressure on 
the  gravisensitive  site  of  the  plasma 
membrane  due  to  an  increased  weight  of 
statoliths  had  no  impact  on  gravitropic 
curvature. Data represent means ± SE (n ≥ 
11).
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3.2.2.2 Effects of short-term removal of statoliths from the plasma membrane on the 

gravitropic curvature response

The parabolic plane flight profile provides 31 short microgravity phases within a flight time 

of  approximately  120  min.  In  order  to  evaluate  if  22  s  – the  duration  of  each  of  the 

microgravity  phases  – would be sufficient  to interrupt  gravity perception and to alter  the 

gravitropic  response,  comprehensive  inversion  experiments  were  performed  on  ground. 

Rhizoids were pre-stimulated for 10 min by 90° and subsequently inverted 31 times from 90° 

to 270° within 120 min according to the sequence of the microgravity phases during parabolic 

flights. The intermittent removal of statoliths by inverting cells for 30 s, 22 s and 10 s resulted 

in significantly reduced curvature angles as compared to the corresponding control samples 

that  were  continuously  gravistimulated  (student´s  t-test,  P  <  0.01;  Fig.  16;  Table  III). 

Reduction of curvature was strongest when rhizoids were inverted for 30 s (–28.59%). This 

effect decreased but was still significant when the inversion intervals were reduced to 22 s  

(–15.59% to  –19.76%) and 10 s  (–13.03% to  –20.10%). When rhizoids were inverted 31 

times for  only 5 s,  curvature angles  were no longer  significantly  different  from those  of 

continuously gravistimulated control cells (student´s t-test, P > 0.05; Fig. 16; Table III). In 

addition, the gravitropic curvature of rhizoids which were intermittently inverted 31 times for 

22  s  within  120  min  was  similar  as  compared  to  those  which  were  continuously 

gravistimulated for only 109 min matching the total gravistimulation time of 120 min reduced 

by the total inversion time of 31 × 22 s (data not shown). For inversions and controls of each 

experiment set rhizoids of the same age growing under identical conditions were used. The 

variation in the curvature angles between the different  experiment  sets (Table III)  can be 

attributed to different growth conditions, e.g. temperature and seasonal conditions.
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◄ Fig. 16 Effects of short-term removal of sedimented statoliths 
from the plasma membrane on gravitropic curvature of rhizoids
The graph displays mean curvature angles of rhizoids which were 
pre-stimulated  on  ground  for  10  min  at  90°  and  subsequently 
inverted 31 times to 270° (grey bars) relative to the mean curvature 
angles of the corresponding control samples which were set to 100 
percent (C; represented by the white bar). Rhizoids were repeatedly 
inverted for 5 s, 10 s, 22 s or 30 s during a total experiment duration 
of 120 min whereas control samples were stimulated at 90° for 120 
min  under  continuous  1g-conditions.  Significantly  reduced 
curvature angles of the inverted samples (student´s t-test, P < 0.01; 
indicated by an asterisk) were observed when the duration of the 
inversion phases was longer than 5 s (n ≥ 44 for each sample). The 
complete data of all  inversion experiments including the absolute 
curvature values are summarized in Table III. 

Table III Rhizoid curvature angles of intermittently inverted rhizoids and continuously gravistimulated 
control cells on ground
Inversion profiles are described by the duration of a  single inversion phase and by the total  duration of  
31 inversion events listed as absolute value and as percentage of the total experiment duration of 120 min. 
Control  rhizoids  were  continuously  gravistimulated  for  120  min  at  90°.  Values  of  maximally  achieved 
curvature angles are means  ± SE. The number of cells measured (n) is shown in parentheses. Differences 
between mean curvature angles of inverted cells and the corresponding control cells are shown in percent. For 
description of experiment see Fig. 16.

Exp. 
No.

Inversion profile Curvature angle (°)

Single Total Total Control cells Inverted cells
Difference

s min % %

1

2

3

5 2.6 2.15

37.44 ± 8.94 (45) 36.23 ± 8.23 (44) – 3.25

38.87 ± 8.78 (69) 36.14 ± 7.23 (63) – 7.02

42.89 ± 6.02 (61) 44.81 ± 7.37 (53) + 4.49

4

5

6

7

10 5.2 4.31

61.40 ± 8.63 (40) 53.40 ± 15.00 (25)a – 13.03

39.31 ± 9.36 (55) 31.41 ± 8.87 (49)a – 20.10

42.89 ± 6.02 (61) 35.74 ± 7.99 (57)a – 16.67

49.72 ± 10.68 (46) 41.97 ± 9.63 (34)a – 15.58

8

9
22 10.3 8.61

48.38 ± 9.60 (50) 38.82 ± 11.50 (44)a – 19.76

66.23 ± 4.82 (13) 55.90 ± 6.30 (21)a – 15.59

10 30 15.5 12.92 59.11 ± 11.37 (104) 42.21 ± 10.24 (77)a – 28.59
a Curvature angles of inverted and control cells were significantly different  (student´s t-test, P < 0.01)

During  inversion  of  gravistimulated  rhizoids,  movements  of  statoliths  that  were  initially 

sedimented on the plasma membrane were tracked by high-magnification video microscopy 

in  order  to  analyze  the  time  course  of  statolith  sedimentation  away  from  the  upper 

gravisensitive plasma membrane. After 2 s of inversion, individual statoliths had already lost 

contact with the plasma membrane and 5 s after inversion, the statoliths were found at a mean 
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distance of approximately 0.5 µm (Fig. 17) indicating that the inversion intervals of the above 

described experiments were sufficient to remove statoliths from the plasma membrane. Thus, 

the  inversion  experiments  demonstrate  that  gravity  perception  and  the  graviresponse  are 

terminated very quickly as soon as the contact of statoliths with the gravisensitive plasma 

membrane is interrupted.

Fig. 17 Displacement of statoliths after inversion of  
gravistimulated rhizoids
The  graph  shows  the  mean  distances  (± SE,  n  =  18)  of 
statoliths from the upper cell flank at the indicated times after 
inversion  of  gravistimulated  rhizoids  from  90°  to  270°  on 
ground.  Only  those  statoliths  were  selected  for  the 
measurements that were regarded as fully sedimented on the 
plasma membrane  (PM) after  10  min  of  gravistimulation  at 
90°. A dashed line was drawn as reference line to indicate the 
position  of  the  sedimented  statoliths  on  the  upper  plasma 
membrane and the subsequent measurements of the distances 
were referred to this line. The series of micrographs shows that 
all  statoliths  have  sedimented  away  from the  upper  plasma 
membrane already 5 s after inverting the representative rhizoid. 
The bar represents 1 µm. 

3.2.2.3 Effects of short-term weightlessness of sedimented statoliths on the gravitropic 

curvature response

During the 36th ESA and the 6th DLR parabolic flight campaigns, all in-flight control samples 

in the onboard centrifuge and flight  samples were tilted by 90° 10 min prior  to the first 

parabola. This ensured that the statoliths were properly sedimented on the lateral cell flank in 

all samples so that the following hypergravity and microgravity phases acted on sedimented 

statoliths. Immediately after the last parabola, all samples were tilted back into the original 
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orientation.  Since  the  above mentioned centrifugation experiments  have shown that  short 

hypergravity  phases  do  not  affect  the  graviresponse,  the  comparison  of  the  maximally 

achieved curvature angles of flight samples and in-flight controls should provide information, 

whether sedimented statoliths, which are weightless but still sedimented on the lower plasma 

membrane during the short microgravity phases, are able to activate the gravireceptor or not. 

Initially,  during  the  36th ESA  campaign,  ground  control  samples  were  continuously 

gravistimulated at 1g conditions for the same time as the flight samples. But since it was not 

feasible to provide the same environmental conditions, temperature gradients and vibrations 

as for the flight samples, these controls were not regarded as proper controls. In-flight control 

samples, which were centrifuged at 1g during the microgravity phases, however, experienced 

the same conditions as flight samples and, therefore, represent the adequate reference system. 

Analyzing the statolith position in gravistimulated Chara rhizoids, which were observed by 

video microscopy during the different flight phases, revealed that the shape of the sedimented 

statolith complex remained unchanged and that statoliths were not lifted from the plasma 

membrane during the short-term microgravity conditions (data not shown). 

On  five  out  of  six  flight  days,  all  31  parabolas  were  flown  in  a  consecutive  sequence 

providing a total of 11.4 min microgravity, which is in a range of 7.73% to 9.88% of the total 

experiment duration time (Table IV). 

Table  IV  Rhizoid  curvature  angles  of  flight  samples  and  in-flight  controls  of  parabolic  plane  flight  
experiments
All samples were horizontally positioned for the indicated experiment duration time of seven parabolic plane 
flights. In-flight control samples were laterally centrifuged at 1g during the microgravity phases. The total 
duration of all 22 s-microgravity phases of each flight is listed as absolute value and as percentage of the 
experiment duration time. Values of maximally achieved curvature angles are means  ± SE. The number of 
cells measured (n) is shown in parentheses. Differences between mean curvature angles of flight samples and 
the corresponding in-flight controls (shown in percent) were non-significant (student´s t-test, P > 0.05). For 
details of experiment setup see Fig. 18.

Flight 
No.

Exp.
duration

µg time Curvature angle (°)

Total Total Control cells Flight cells
Difference

min min % %

1 121 11.4 9.39 46.76 ± 10.67(62) 46.65 ± 14.13 (115) – 0.23

2-A 84 6.6 7.86 40.55 ± 8.69 (67) 40.44 ± 10.69 (118) – 0.28

2-B 59 4.8 8.08 36.64 ± 10.20 (80) 35.78 ± 7.95 (95) – 2.34

3 125 11.4 9.09 47.39 ± 9.27 (121) 47.22 ± 9.17 (138) – 0.36

4 147 11.4 7.73 50.82 ± 7.53 (38) 51.21 ± 7.28 (74) + 0.77

5 146 11.4 7.79 51.69 ± 7.73 (81) 49.53 ± 7.49 (32) – 4.18

6 115 11.4 9.88 53.12 ± 7.68 (58) 52.18 ± 8.01 (38) – 1.76
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On one flight day, the A300 Zero-G aircraft flew only 18 parabolas in 84 min, followed by 13 

parabolas in 59 min providing microgravity portions of 7.86% and 8.08%, respectively (Table 

IV). In all cases, the curvatures angles of the flight samples (n = 32 – 138 per flight) and the 

corresponding in-flight controls (n = 38  –  121 per flight) were almost identical, and minor 

differences  were not  significant  (student’s  t-test,  P  > 0.05;  Fig.  18;  Table  IV).  Even the 

highest deviations of curvature angles from flight samples and in-flight controls of –1.76% to 

–4.18% were still  small considering the corresponding portions of total microgravity time 

(7.79% to 9.88%; Table IV) and compared to the reduction of curvature after intermittent 

inversion for 10 s and 22 s (–13.03% to  –20.10%; Table III). The results of the parabolic 

flight  experiments  demonstrate  that  weightless  statoliths,  which  are  still  present  at  the 

gravipeception site, but do not exert any pressure, are capable of activating the gravireceptor 

which triggers gravity-perception and the graviresponse during the microgravity phases as 

during the hypergravity phases and at 1g.

Fig. 18 Effects of short-term weightlessness of sedimented statoliths on gravitropic 
curvature of rhizoids
The graph shows mean curvature angles of flight samples (grey bars) relative to the mean 
curvature angles of the corresponding in-flight control samples which were set to 100 
percent (C; represented by the white bar). The experiments were conducted during the 
36th ESA (samples No. 1–3) and during the 6th DLR parabolic flight campaign (No. 4–6). 
On flight day No. 2, two flights with reduced flight profiles were conducted (No. 2–A 
and 2–B;  for  details  of  flight  profiles  see  Table  IV).  All  samples  were  tilted  into  a 
horizontal position 10 min prior to the first parabola and tilted back after the last parabola 
of the flight profile. In-flight control samples were laterally centrifuged at 1g during the 
microgravity  phases.  No  significant  differences  in  curvature  angles  were  observed 
between  flight  samples  and  in-flight  controls  on  any  of  the  flights  (student´s  t-test, 
P > 0.05; n ≥ 32 for each sample) indicating that graviperception was not interrupted 
when statoliths became weightless during microgravity. For complete data and absolute 
curvature values of all flight experiments see Table IV.
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3.3 Electron microscopy of cryofixed characean rhizoids

Since chemical fixation causes some serious artifacts and limits the level of resolution of 

electron microscopic research, protocols for the preparation of samples using high-pressure 

freeze fixation and freeze substitution of characean rhizoids were developed in this study. 

Cryofixation technology was combined with innovative 3D dual-axis electron tomography as 

imaging technique for high-resolution ultrastructural analysis of the apical cell region and 

provided  new insights  into  the  structural  and  functional  organization  of  tip  growth.  The 

improved preservation of protein conformation in high-pressure frozen samples allowed to 

establish  a  reliable  immunogold  labeling  protocol  for  the  specific  localization  of  cellular 

proteins.

3.3.1 High-pressure freeze fixation, freeze substitution and electron 
tomography 

The parameters of high-pressure freeze fixation and freeze substitution were optimized for the 

preparation  of  electron  microscopic  samples  of  characean  rhizoids  leading  to  the  final 

protocols  denoted under  2.10.1 and 2.10.2.  Although squeezing of  the large  multicellular 

thallus pieces was inevitable when putting together the freezing hats, most rhizoids were not 

affected by mechanical damage since they usually extended into free space of the freezing 

chambers. Nevertheless, the rhizoids from one node exhibited large differences in freezing 

quality due to slight gradients in the freezing conditions (e.g. cooling rate and pressure value) 

across  the  volume  of  the  freezing  chamber.  Therefore,  preparation  of  a  high  number  of 

samples was required (approx. 300 nodes with attached rhizoid bundles) to obtain several 

rhizoids exhibiting an optimum freezing quality and ultrastructural preservation.

Cryoprotectants  were  used  for  freeze  fixation  to  avoid  the  formation  of  cytoplasmic  ice 

crystals that may damage cellular compartments and interfere with microscopic imaging. To 

check  the  tendency  of  the  cryoprotectants  to  cause  artifacts,  sucrose  and  mannitol  were 

applied to agar-embedded rhizoids in the concentration that was used during fixation (150 

mM), and the effects were observed in the light microscope. Within 20 min of incubation, the 

cells continued growth at constant rates and did not exhibit any changes in morphology or any 

indication  of  plasmolysis,  which  qualified  both  substances  to  be  used  as  cryoprotectants. 

Nevertheless,  the  period  of  incubation  with  the  cryoprotectant  during  processing  of  the 
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rhizoid samples prior to freeze fixation was minimized and never exceeded 2 min. Rhizoids 

stopped growth during long-time exposure to sucrose and could therefore not be prompted to 

adapt to high sugar levels by gradually raising the sucrose concentration in the medium during 

cultivation.  Sucrose  proved  more  convenient  as  cryoprotectant  than  mannitol  since  the 

formation  of  ice  crystals  was  prevented  more  efficiently,  and  the  overall  quality  of 

ultrastructural preservation was superior.

Several  protocols for freeze substitution of  samples for ultrastructural  investigations were 

tested. Freeze substitution with 2 or 4% OsO4 in acetone provided excellent results. However, 

the overall contrast of the samples and the visibility of the membranes were even better when 

high-pressure frozen rhizoids were substituted with 1% GA + 0.1% TA in acetone before 

being transferred to 2% OsO4. Therefore, freeze substitution for ultrastructural analyses was 

performed  according  to  the  protocol  denoted  under  2.10.2  although  the  exchange  of  the 

substitution medium at –80° C proved difficult.

For electron microscopic imaging, 3D dual-axis electron tomography was used which is an 

innovative technique for high-resolution ultrastructural research. Provided that the freezing 

quality of the samples is excellent and no ice crystals are present in the cytoplasm that would 

interfere with the accurate alignment of the image series, the cellular ultrastructure can be 

analyzed in serial tomographic slices with a resolution of less than 4 nm in x-, y- and, most 

importantly,  also  in  z-direction.  Computer-based  modeling  of  contours  in  the  slices  of 

electron  tomograms  displays  the  shape  and  the  arrangement  of  cellular  structures  and 

compartments in three dimensions. The results of electron tomography and 3D-remodeling in 

characean rhizoids are described in detail under 3.3.2 – 3.3.4.

In addition to the techniques for ultrastructural studies, a procedure was developed for the 

preparation of high-pressure frozen rhizoids for immuno-electron microscopy. This protocol 

ensures an optimum preservation of protein conformation which is required for the specific 

binding of antibodies (see 3.3.5). To avoid alterations of epitope structures, freeze substitution 

was  performed  with  minimal  concentrations  of  chemical  fixatives.  In  addition,  Lowicryl 

HM20 was chosen for embedding of the samples since polymerization of the low-viscosity 

resin  can be  performed at  low temperature  (–60°  C),  which  attenuates  the  effects  of  the 

polymerization process on protein conformation.

After  resin  infiltration,  the  complete  content  of  each  cryocap  was  transferred  to  a  flat-

embedding chamber and polymerized under UV light. Rhizoids could not be oriented in the 
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embedding  molds  because  space  for  specimen  handling  was  very  limited  in  the  freeze 

substitution unit, and the weakly stained cells were undetectable in the resin. Instead, rhizoids 

were identified after polymerization in the transparent resin platelets by light microscopy and 

re-mounted  for  sectioning.  LR-White  resin  which  is  less  toxic  than  Lowicryl  HM20 and 

widely used for the preparation of samples for immuno-electron microscopy was not suited 

for rhizoid samples although it allows embedding of the samples at RT and thereby facilitates 

handling. When samples were embedded in LR-White using gelatin capsules, rhizoids could 

not be detected in the polymerized resin blocks even when observed in the light microscope. 

The flat-embedding chambers used for Lowicryl HM20 did not provide an alternative since 

polymerized resin platelets were brittle and broke apart when they were removed from the 

microscope slide.

3.3.2 Ultrastructural characteristics of high-pressure frozen rhizoids

The  ultrastructure  of  high-pressure  frozen  and  freeze-substituted  rhizoids  was  studied  by 

conventional  electron microscopy of  ultrathin sections  (~  80 nm) and by high resolution 

electron tomography of 250-nm sections. In the different cell regions a total of 29 dual-axis 

tomograms was  prepared  using  three  different  rhizoids  which  exhibited  the  best  freezing 

quality of all samples tested. 

Cryofixation technology that was used for the preparation of characean rhizoids efficiently 

eliminated  fixation  artifacts  observed  after  chemical  fixation  and  provided  an  excellent 

preservation of the cellular ultrastructure as evidenced by some remarkable features of the 

samples: i) the cytoplasm appeared homogeneous and no large ice crystals were observed 

(Fig. 19, 20), ii) cellular organelles and membrane compartments were neither swollen nor 

shrunken (Fig. 19, 20, 23, 24), and iii) most cellular membranes were strongly contrasted and 

widely visible with the three contours of the lipid bilayer (Fig.  20,  21,  23–27).  Only the 

membranes of the endoplasmic reticulum (ER) were poorly stained, and the shape of ER 

cisternae had to be determined by the electron density of the lumen that was slightly higher 

than  the  density  of  the  cytoplasm  and  by  the  parallel  alignment  of  ribosomes  at  the 

cytoplasmic surface (Fig. 20).
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Fig. 19 Overview of the tip region of high-pressure frozen rhizoids
The  images  that  were  recorded  by  conventional  electron  microscopy  demonstrate  the  polar  cytoplasmic 
organization of the tube-like cells. The apical cell region which comprises the statoliths (arrows) and the ER 
aggregate (arrowheads) in the center of the growth-organizing Spitzenkoerper complex is enlarged in B. Single 
cisternae of the ER aggregate were undetectable due to the poor staining of ER membranes.
Bars: 10 µm

In contrast, Golgi-stacks that typically comprised 5 – 7 cisternae (1 – 2 cis, 1 – 2 medial and 

2 – 3 trans cisternae) were characterized by intensely stained membranes and by a striking 

polarity: The electron density of cisternal contents strongly increased from the cis to the trans 

cisternae  whereas  the  width  of  the  lumen  decreased,  and  almost  no  space  was  observed 

between the membranes of the trans cisternae (Fig. 20). Precursors of newly forming cisternae 

were occasionally observed at the cis side (black arrows in Fig. 20), and budding profiles 

bearing COP-coats (coat protein) were identified at the edges of medial and cis cisternae (Fig. 

20C). Large secretory vesicles (SVs) containing electron dense material were observed to bud 

from the trans Golgi cisternae (Fig. 20).
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Fig. 20 Golgi stacks in the subapical cytoplasm of rhizoids 
The  Golgi  stacks  in  cryofixed  samples  of  rhizoids  exhibited  strong  polarity  as  revealed  by  electron 
tomography (A, C) and conventional electron microscopy (B). Cis (c), medial  (m) and trans (t)  cisternae 
(indicated by the brackets) could be clearly differentiated by luminal width and staining. Precursors of newly 
forming cisternae were identified at the cis side (black arrows). Budding profiles of COP-coated vesicles were 
observed at medial (inset in C) and cis cisternae (white arrow). C is an enlarged micrograph of the Golgi stack 
in the lower left corner of A from a different slice of the electron tomogram.
Arrowheads: MT. Bars: 500 nm in A, 100 nm in B–C, 50 nm inset in C
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Similarly to the membranes of Golgi cisternae, the plasma membrane (PM) was also well 

preserved and characterized by strong contrast. It was not detached from the cell wall (CW) 

but found instead directly adjacent to the inner CW layer throughout the apical and subapical 

region  of  the  cells  (Fig.  19,  21,  26).  At  the  apical  dome,  the  PM  was  not  smooth  but 

irregularly  shaped  and  exhibited  tube-like  invaginations  into  the  cytoplasm  as  well  as 

polymorphic  protuberances  into  the  CW  (Fig.  21,  26).  Since  no  spaces  were  observed 

between the PM and the CW, an artificial detachment of the membrane that might be caused 

by plasmolysis  could be ruled out.  The invaginations had a diameter of 35 – 80 nm and 

extended deeply into the cytoplasm (0.4 to 2.5 µm). Occasionally, a protein coat seemed to be 

present at their cytoplasmic surface (Fig. 21). Remodeling of the apical PM provided three-

dimensional reconstructions of the invaginations and displayed their tube-like shape (Fig. 21, 

26).

The high quality of high-pressure frozen rhizoid samples was underlined by the ultrastructural 

detection of actin microfilaments (Fig. 22 A, B) that are generally considered to be difficult to 

preserve for electron microscopic observation even if freeze fixation is used. The thickness of 

the actin structures that were identified in single tomographic slices (5 – 10 nm) indicates that 

single microfilaments were displayed. However,  the actin microfilament  system was only 

partly visible in the apical cytoplasm, which made tracing and modeling impossible.
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Fig. 21 Invaginations of the apical plasma membrane
Micrographs  A–C  and  D–E  showing  tube-like  invaginations  of  the  apical  plasma  membrane  (black 
arrowheads) were taken at different planes of the corresponding electron tomograms. The three-dimensional 
model (F) derives from the tomogram represented by D and E and demonstrates the shape of the membrane 
invagination and the distribution of vesicles in the apical cytoplasm.  
White arrowheads: CCVs; white arrows: budding CCVs. Bars: 100 nm
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Fig. 22 Actin in samples of high-pressure frozen rhizoids
Single actin microfilaments (white arrowheads) were detected by electron tomography in the region of the 
apical ER aggregate (A) and in the surrounding cytoplasm (B). Immunogold labeling with C4 antibody (C–D) 
specifically decorated bundles of actin microfilaments in the subapical cytopasm (black arrows) which were 
occasionally visible as underlying structures (D). The labeled microfilament bundle in C is aligned with two 
parallel microtubules.  
White arrow: CCV. Bars: 100 nm
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3.3.3 Identification of a vacuolar reticulum

When analyzing the ultrastructure of the Chara rhizoid a prominent membrane compartment 

was detected and characterized as a vacuolar reticulum based upon the striking ultrastructural 

similarities with a vacuolar compartment identified in fungal hyphae (see discussion 4.3.3). 

Previous  studies  failed  to  visualize  the  vacuolar  reticulum  in  rhizoids  which  extended 

throughout  the  complete  subapical  cell  region  as  a  branched  network  of  interconnected, 

vesicle-like segments (Fig. 23). The spherical segments with a constant diameter of approx. 

400 nm were either  aligned in  rows like  beads  on a  string  (Fig.  23A)  or  formed highly 

branched polymorphic networks (Fig. 23 B, C). The components of the vacuolar reticulum 

were interconnected by tubes with a relatively constant diameter of 30 nm (Fig. 23 D, F) and 

occasionally fine, ring-like structures were observed to encircle the tubular connections (Fig. 

23 F). The membranes of the reticulate compartment were often found in close proximity to 

MTs at distances of 15 to less than 10 nm (Fig. 23 D, E). 

The luminal electron density of the vacuolar reticulum was similar to the electron density of 

the cytoplasm and the three contours of the strongly contrasted membranes were detectable 

(Fig.  23). Darkly stained, internal particles with diameters of 25 – 50 nm (Fig.  23 B, C) 

exhibited vesicle-like shape when analyzed by electron tomography. Occasionally, internal 

membranes  formed  large  structures  in  the  lumen  indicating  either  invaginations  of  the 

surrounding membrane or large, membrane-enclosed inclusions (data not shown). Regarding 

the appearance of  the membrane,  the electron-density of the contents  and the size of the 

internal structures the ultrastructure of the vacuolar reticulum resembled multivesicular bodies 

(MVBs; Fig. 24), spherical  organelles with a diameter of 350  –  450 nm that were highly 

abundant in the subapical cytoplasm. However, in MVBs the density of internal particles was 

much higher, and MVBs were never found to be interconnected.

The vacuolar reticulum was most prominent in the subapical region of the rhizoid and close to 

the nucleus where it exhibited the highest number of aligned ‘beads’ and the highest degree of 

branching. Occasionally, the membrane system extended into the statolith region, however, 

the  frequency  was  low,  and  the  observed  fragments  consisted  of  only  two  or  three 

interconnected  segments.  The  characteristic  shape  of  the  vacuolar  reticulum  was  never 

detected in the apical cytoplasm of the rhizoid 
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Fig. 23 Vacuolar reticulum 
A prominent network of interconnected, spherical segments was detected in the subapical cytoplasm of rhizoids 
by conventional electron microscopy (A, D–E) and electron tomography (B–C). The segments of the vacuolar 
reticulum which contained darkly stained internal particles (A–E) were often observed in close proximity to 
microtubules (arrowheads). Fine, ring-like structures encircling a tubular connection (arrow) are depicted in F.
Bars: 500 nm in A-C, 100 nm in D-F 
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Fig. 24 Multivesicular body 
MVBs  were  observed  in  large  number  in  the  subapical 
cytoplasm of rhizoids. The micrograph which was recorded 
by conventional electron microscopy shows a MVB enclosing 
numerous internal particles. 
Bar: 100 nm
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3.3.4 Characterization of vesicle types and vesicle distribution in the 
cell apex

The ultrastructural analyses of high-pressure frozen rhizoids were focused on the distribution 

of vesicles at  the apical PM and within the growth-organizing Spitzenkoerper complex in 

order to unravel basic principles of vesicle-mediated tip growth in characean rhizoids. Due to 

the limited resolution of conventional electron microscopy the specific ultrastructural features 

of the different vesicle types could only be detected by electron tomography. Five vesicle 

types were found in the apex of characean rhizoids that were distinguished by size, electron 

density and by the presence of a protein coat (Fig. 25; Table V). A schematic reconstruction 

of the distribution of all vesicle types in the apical cytoplasm of rhizoids is depicted in Fig. 31 

of the discussion section.
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Fig. 25 Vesicle types in the apical cytoplasm 
of rhizoids
The micrograph displays the different  types 
of  vesicles  in  the  apical  cytoplasm  as 
observed by electron tomography.
A: Light vesicle
B: Dark vesicle (arrow points to a 

microvesicle)
C: Clathrin-coated vesicle
D: Coated vesicle
E: Microvesicle
Bars: 100 nm in A–B, 50 nm in C–E
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Table V Criteria of the vesicle types in the apical cytoplasm of characean rhizoids
Vesicle radii were determined in 3D-models of electron tomograms using the ‘imodinfo’ command 
of the IMOD software package. Values are means ± SE and the number of measured vesicles (n) is 
shown in parentheses. As a more common value, the corresponding vesicle diameters are listed in 
addition. To determine the vesicle density in electron tomographic reconstructions, the number of 
vesicles  was  referred  to  the  cytoplasmic  volume  of  the  corresponding  tomogram  which  was 
calculated by considering the area of cytoplasm covered by the tomogram and the section thickness 
of 250 nm. Values indicate the range of vesicle density as observed in different tomograms. For 
clathrin-coated vesicles, the populations associated with the plasma membrane (PM) and with the 
ER aggregate (ER) are listed separately.

Vesicle type Radius
nm

Diameter
nm

Vesicle density  
vesicles per µm3 cytoplasm

Light vesicles 100.8 ± 14.0 (n = 55)a 201.7 9.5 – 18.8

Dark vesicles 89.5 ± 15.2 (n = 75)a 179.1 14.7 – 25.3

Clathrin-coated 
vesicles

ER 21.7 ± 3.4 (n = 119)b 43.3 19.5 – 25.4

PM 15.4 ± 2.7 (n = 66)b 30.8 12.1 – 28.4c (56.4 – 79.4)d

Coated vesicles 14.2 ± 2.8 (n = 110)b 28.4 9.6 – 38.9

Microvesicles 12.5 ± 2.0 (n = 1309)b 25.0 174.7 – 421.9
a,b Mean radii of vesicle types were significantly different (student´s t-test P < 0.01)
c Calculated relative to total cytoplasmic volume 
d Calculated relative to the volume of the 500 nm-broad cytoplasmic region along the apical PM

3.3.4.1 Large vesicles

Two different types of vesicles with diameters of approximately 200 nm were identified in the 

apical cytoplasm of rhizoids. Although they exhibited specific ultrastructural differences (see 

below), both types are in the following referred to as large vesicles because vesicle size is the 

most prominent property in order to distinguish these vesicles from all other vesicle types. 

Large vesicles were observed to accumulate in the apex of rhizoids where they were strongly 

enriched at the periphery of the apical ER aggregate but evenly distributed in the cytoplasm 

adjacent to the apical PM (Fig. 21, 26, 31). Large vesicles were excluded from central regions 

of  the  ER  aggregate  which  was  less  prominent  in  high-pressure  frozen  samples  than  in 

chemically fixed samples due to the poor contrast of the membranes. 

The first type of large vesicles (Fig. 25 B) was characterized by darkly stained contents that 

exhibited  similar  electron  density  as  the  contents  of  vesicles  budding  from  trans  Golgi 

cisternae  (Fig.  20).  These  dark  vesicles  (DVs)  with  a  mean  diameter  of  179.1  nm were 

encircled by a strongly contrasted membrane. Light vesicles (LVs), the second type of large 

vesicles in the apical cytoplasm, had a mean diameter of 201.7 nm and were significantly 

larger than DVs (student´s t-test P < 0.01) but less abundant (Table V). They could be clearly 
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discriminated from DVs by the low electron density  of  the vesicle  contents  and by their 

poorly stained membranes that appeared much thinner (Fig. 25 A).

3.3.4.2 Microvesicles

Small microvesicles (MVs) with a mean diameter of 25.0 nm exhibited the highest density of 

all vesicle types (up to 421.9 per µm3 cytoplasm; Table V). They were evenly distributed 

throughout the apical cytoplasm but  were only rarely found in central  regions of the ER 

aggregate (Fig. 21, 26, 27, 31). Vesicle membranes were strongly stained, and the electron 

density of the contents was similar to the electron density of the cytoplasm (Fig. 25E).

3.3.4.3 Clathrin-coated vesicles

In this study, clathrin-coated vesicles (CCVs) were unambiguously identified in the apical 

cytoplasm of rhizoids. This vesicle type has not been described in rhizoids before. CCVs (Fig. 

25C) were recognized by the prominent structure of their typical cage-like protein coat which 

is  composed  of  hexagons  and  pentagons  formed  by  the  clathrin  molecules.  The  regular 

structure of the protein coat was particularly well visible in tomographic slices crossing the 

periphery of vesicles (Fig. 26, 27). Two populations of CCVs were distinguished by their 

specific distribution in the apical cell region. 

Vesicles of the first population had a mean diameter of 30.8 nm, and the clathrin coat with a 

thickness of approx. 30 nm formed a cage of 92.8 nm in diameter (Table V). They were 

exclusively observed in a 500 nm-broad cytoplasmic region adjacent to the apical PM (Fig. 

21, 26), and their density decreased from the cell tip towards the flanks. CCVs at the apical 

PM were not evenly distributed but appeared in clusters of 3 – 10 vesicles (Fig. 21, 26). The 

vesicle  clusters  were occasionally observed to  surround the tube-like invaginations of  the 

membrane described under 3.3.2. Several clathrin-coated buds were identified at the apical 

PM which represent stages of CCV-formation (white arrows in Fig. 21A, 26C). Sometimes, 

CCVs were observed to be formed at  the cytoplasmic ends of the PM-invaginations (Fig. 

21D, F; white double arrowhead in Fig. 26D). 
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Fig. 26 Distribution of CCVs at the apical PM 
Electron tomographic analysis revealed that CCVs (small white arrowheads) at the apical PM of rhizoids were 
arranged in clusters (large white arrowheads). CCVs were formed at clathrin-coated buds (white arrow) and at 
the cytoplasmic ends of PM invaginations (white double-arrowhead). A 3D-model of the vesicle distribution at 
the apical PM is depicted in D.
Black arrows: MVs; black arrowheads: invagination of the apical PM. Bars: 500 nm in A, 100 nm in B-D

78



3   RESULTS

The density of plasma-membrane associated CCVs was in the range of 12 to 28 vesicles per 

µm3 relative to the total volume of cytoplasm covered by the tomograms and 56 to 80 vesicles 

per µm3 relative to the volume of the 500 nm-broad cytoplasmic region along the apical PM 

where  they  were  exclusively  detected  (Table  V).  As  discussed  under  4.3.2.3  the  latter 

calculation  is  more  accurate  for  estimating  the  density  of  vesicles  that  are  involved  in 

endocytosis.

The second population of CCVs in the Chara rhizoid was confined to the cytoplasm in the 

region of the apical ER aggregate and was separated from the population of PM-associated 

CCVs by an at least 1 µm-broad cytoplasmic region where CCVs were never observed (Fig. 

31). CCVs were detected in the center as well as at the edges of the ER aggregate with a 

density of ~ 20 vesicles per µm3 cytoplasm and were occasionally observed to form vesicle 

clusters (Fig. 27). Interestingly,  at least  in one case, two CCVs were interconnected by a 

membrane cisterna (Fig. 27C – E). ER-associated CCVs had a mean diameter of 43.4 nm and 

were significantly larger (student´s t-test, P < 0.01) than the population of CCVs at the PM 

(Table  V),  whereas  the  thickness  of  the  protein  coat  was  consistent  (~  30  nm),  and  no 

differences were observed in the structure of the clathrin scaffold and in the electron density 

of the vesicle contents between both populations. 
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Fig. 27 Vesicle distribution within the cytoplasm of the apical ER aggregate in the apex of rhizoids 
A–B: Electron  tomographic  images  showing  cytoplasmic  CCVs  (white  arrowheads) and  CVs  (black 

arrowheads) within the apical aggregate of ER cisternae (ER). The structure of the clathrin lattice of 
CCVs was clearly detectable (white arrows).

C–E: CCVs (white  arrowheads)  within the  cytoplasm of  the  ER aggregate that  were  interconnected by a 
membrane  cisterna  (black  arrows).  C  and  D  are  micrographs  from different  planes  of  the  electon 
tomogram. E shows the 3D-model of the structure. The cisternal membrane was modeled in green and 
clathrin coats in yellow. 

F: Three-dimensional  tomographic  reconstruction  demonstrating  the  distribution  of  vesicles  in  central 
regions and in the periphery of the apical ER aggregate. The shaded area indicates the shape of the ER 
aggregate.

Bars: 100 nm in A–B, 50 nm in C–E, 500 nm in F
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3.3.4.4 Coated vesicles

The  fifth  vesicle  type  identified  in  the  apical  cytoplasm  of  characean  rhizoids  was 

characterized by an electron dense coat at  the cytoplasmic membrane surface which was, 

however, clearly different from the protein scaffold of CCVs. The protein coat of the coated 

vesicles (CVs) was only 10 nm thick and was homogeneously stained instead of forming a 

regular structure (Fig. 25D). CVs were slightly but significantly (student´s t-test, P < 0.01) 

smaller than CCVs (mean diameter 28.4 nm, Table V) and contained material with similar 

electron  density  (Fig.  25C,  D).  The  vesicles  accumulated  at  the  edges  of  the  apical  ER 

aggregate and were found at lower density in central regions of the aggregated cisternae (Fig. 

27, 31). CVs were rarely observed at distances larger than 500 nm from the ER aggregate and 

in the cytoplasm flanking the apical PM.

3.3.5 Immuno-electron microscopy

Rhizoid samples prepared for immuno-electron microscopy were characterized by a  good 

preservation  of  the  cellular  ultrastructure  although some of  the  samples  exhibited  locally 

confined mechanical damage which was predominantly observed at the outermost cell tip. 

The samples exhibited poor overall contrast because no OsO4 or tannic acid was present in the 

freeze substitution medium. However, all major cellular compartments could be identified in 

the  electron  microscope  after  counterstaining  of  thin  sections.  Most  importantly,  protein 

conformation was excellently preserved and not altered during preparation as evidenced by 

the specific immunolocalization of various proteins.

When using C4 antibody that was raised against a conserved actin epitope, gold particles were 

found to be localized to parallel bundles of longitudinally oriented actin microfilaments in the 

subapical region of rhizoids (Fig. 22C, D). The specificity of the antibody binding to actin is 

highlighted by several  observations  (Fig.  22C,  D):  i)  gold particles were never  randomly 

distributed  in  the  cytoplasm,  ii)  gold  particles  were  absent  from  the  lumen  of  cellular 

organelles and compartments,  and iii)  no labeling pattern was detected when the primary 

antibody was omitted and replaced by buffer in control samples. Fig. 22C shows the labeling 

of an actin microfilament bundle over a distance of approx. 1 µm. Although the filament 

bundles  can  barely  be  detected,  the  aligned  gold  particles  clearly  indicate  that  the 

microfilaments run in parallel to the MTs and cross them further apart. Actin labeling with a 

similar dimension of longitudinal extension is rare since it can only be observed when the 
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orientation of the actin bundle and of the section surface is absolutely parallel. In some cases, 

microfilament bundles were detectable as structures underlying the specific labeling pattern 

(Fig. 22D).

Using an antibody that was raised against an immunogen within the terminal globular domain 

of rat clathrin heavy chain, circular clusters of gold particles were observed in the subapical 

cytoplasm.  These  clusters  were  closely  associated  with  MTs and were  most  abundant  in 

cytoplasmic regions where the section crossed MTs or ran slightly above or below (Fig. 28A, 

B). The diameter of the gold clusters was in a range of 100 nm, which is well in accordance 

with the  diameter  of  the  protein cage  of  CCVs.  It  is  therefore  assumed that  the  clathrin 

antibody  labeled  CCVs  that  were  aligned  with  MTs.  In  addition  to  the  labeling  in  the 

subapical region of rhizoids, gold particles were also observed in the apical cytoplasm within 

the region of the ER aggregate. The gold particles that could hardly be distinguished from 

ribosomes at the luminal site of the ER cisternae, were found in similar clusters as in the 

subapical region (Fig. 28C–E). The vesicle-like pattern of clathrin immunolabeling fits well to 

the  observations  gathered  in  electron  tomographic  analyses  of  the  apical  cytoplasm 

demonstrating that numerous CCVs are associated with the apical ER aggregate (Fig. 27). 

However, no labeling was detected at the apical PM, which is attributed to poor ultrastructural 

preservation or mechanical damage of the outermost tip region of the samples. Labeling of 

CCVs in the subapical and apical regions of rhizoids was not observed in control samples, 

which demonstrates the specificity of antibody binding.
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Fig. 28 Immunolocalization of CCVs in high-pressure frozen rhizoids
Clusters of gold particles (black arrows) were observed after immunogold labeling 
with  a  clathrin-specific  antibody.  These  clusters  which  represent  CCVs  were 
closely associated with MTs (white arrowheads) in the subapical cytoplasm (A–B). 
In  the  cell  apex  (C–E),  CCVs were  found within  the  region  of  the  apical  ER 
aggregate. ER cisternae were detectable by the parallel rows of ribosomes at their 
cytoplasmic surfaces (C).
Bars: 100 nm
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3.4 Fluorescence staining of rhizoids with vital dyes

Various fluorescence dyes were used for in-vivo labeling of characean rhizoids in order to 

examine  dynamic  properties  of  certain  cellular  compartments  that  were  identified  by 

ultrastructural  investigations in this  study. Since CCVs associated with the apical PM are 

suggested to be involved in endocytotic processes, rhizoids were stained with FM dyes that 

are used in a wide range of different specimens to study dynamic aspects of endocytosis and 

to label endocytotic compartments. The styryl dyes are inserted into the outer leaflet of the 

PM and are thereby converted from the non-fluorescent to the fluorescent state. They do not 

permeate  the  membrane  and  are  incorporated  into  cells  by  the  internalization  of  stained 

membrane material.

When characean rhizoids were stained with FM 1-43 and FM 4-64 the fluorescence pattern 

was identical with both dyes. Since no difference in the staining pattern was detected whether 

the dyes were washed out before microscopic observation or not, samples were incubated in 

staining  solution  during  microscopy  to  increase  fluorescence  intensity.  Immediately  upon 

application of  the dyes,  the PM was strongly labeled (Fig.  29A).  Subsequently,  the dyes 

accumulated in the cytoplasm and produced homogeneous staining of the cytoplasm with the 

fluorescence intensity being slightly higher in the cell region 0 – 100 µm from the tip than 

further apart (Fig. 29). The center of the Spitzenkoerper comprising the ER aggregate was less 

intensely stained than the apical cytoplasm (Fig. 29A) and was occasionally surrounded by a 

brightly  fluorescing ring that  was pronounced against  the background fluorescence of the 

cytoplasm  (Fig.  29B).  The  described  staining  pattern  did  not  noticeably  change  during 

extended incubation (45 – 90 min) with the fluorescence dyes. FM staining did not label any 

distinct cellular compartments, and uptake of the dyes was not found to be concentrated at 

certain domains of the apical PM.
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Fig. 29 In-vivo fluorescence staining of rhizoids with FM dyes
Fluorescence labeling of rhizoids with 1 µM FM 4-64 produced homogeneous staining of 
the apical  cytoplasm. The region of  the apical  ER aggregate (arrows) exhibited weak 
fluorescence intensity (A) and was occasionally surrounded by a brightly fluorescing ring 
(B). No differences in staining pattern were observed whether the dye was washed-out 
before microscopy or not. Micrographs are confocal microscopic images.
A: Rhizoid sample incubated in staining solution during microscopy 7 min after the 

application of the fluorescence dye
B: Rhizoid sample 45 min after wash-out of the dye which was applied for 2 min
Bars: 10 µm

In order to verify that the network of interconnected spherical membrane segments that was 

identified in electron microscopic images is a vacuolar compartment, living rhizoids were 

stained with fluorescence dyes that accumulate in plant vacuoles. Esterified, non-fluorescent 

carboxy-DFFDA  freely  permeates  the  PM  and  is  hydrolyzed  by  intracellular  esterases 

releasing the fluorescent product that accumulates subsequently in vacuolar compartments. 

DFFDA is imported across the tonoplast membrane by an anion transporter but cannot leave 

the vacuoles due to the lack of a corresponding transporter operating in the reverse direction.

Rhizoids  were  stained  for  10  min  with  10  to  25  µM carboxy-DFFDA.  For  fluorescence 

microscopy the dye was washed-out, and samples were observed in fresh medium. Starting at 

15  min  after  probe  wash-out  a  prominent  network  was  detected  against  the  cytosolic 

background  fluorescence  in  growing  cells  (Fig.  30A,  B).  The  fine  network  extended 

throughout the entire subapical region from the statolith region to the nucleus but was not 

present in the cell apex (Fig. 30C). In non-growing rhizoids, the strands of the network were 

dilated,  and  brightly  fluorescing  patches  were  detected.  The  fluorescence  of  the  labeled 
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network  bleached strongly  during  microscopic  observation,  which  made the  recording  of 

time-series difficult. However, the network was observed to be highly dynamic with existing 

connection points being displaced and new connections between strands being formed (Fig. 

30D–F). During prolonged incubation in fresh medium the fluorescence accumulated in the 

basal vacuole whereas the intensity of the subapical cytoplasm and of the network decreased.

Fig. 30 In-vivo fluorescence staining of rhizoids with carboxy-DFFDA
An extensive fluorescenct network was observed in the subapical region of rhizoids (A–B, D–F) after staining 
with carboxy-DFFDA which was applied for 10 min in concentrations of 10 µM (A–B, D–F) or 25 µM (C). 
No labeling was observed in the cell  apex (C).  Dynamic remodeling of  the labeled network (arrows) was 
detectable in time series (D–F; time is indicated in s after start of the time series). All micrographs are confocal 
microscopic  images  and  were  recorded  32  min  (A–B,  D–F)  or  34  min  (C)  after  wash-out  of  the  dye. 
Micrographs A and B are single confocal images at different planes of the same sample.
Bars: 10 µm
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Further labeling experiments were performed using the dye BCECF which was loaded to the 

cells as non-fluorescent acetoxymethyl ester derivate (BCECF-AM). Hydrolysis of the ester 

group by intracellular esterases releases the fluorescent dye which exhibits a pH-dependent 

fluorescence excitation profile. Therefore, BCECF is widely used as indicator for intracellular 

pH and cell  viability.  In  plants,  the fluorescence dye has been reported to accumulate  in 

vacuoles of root hairs at concentrations in the range of 3 µM producing a staining pattern that 

was similar to DFFDA (Brauer et al. 1995).

The dye was applied to rhizoids in a wide range of concentrations (0.01  – 5 µg ml-1), and 

samples were either washed with fresh medium prior to microscopy or incubated in staining 

solution during microscopic observation. In none of the samples any cellular compartment 

was  labeled.  Instead,  the  entire  cytoplasm  was  homogenously  stained.  Occasionally,  the 

fluorescence  intensity  was  slightly  higher  in  the  basal  vacuole  than  in  the  subapical 

cytoplasm. However, BCECF is not suited for the specific labeling of vacuolar compartments 

in characean rhizoids.
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4.1 Molecular biology

The molecular biological part of the study was designed to identify genes being involved in 

gravitropic  signaling  in  characean  rhizoids  and  protonemata  and  to  extend  genomic 

information  about  the  green  alga  Chara  by  sequencing  gene  transcripts  of  rhizoids. 

Differential display analysis of gene expression was based upon the amplification of random 

fragments of the 3’mRNA-ends that were compared between differentially stimulated samples 

by capillary electrophoresis. mRNA extracts of rhizoids were also used for partial sequencing 

of a specific member of the myosin class of proteins which has been shown to play a crucial 

role in gravity sensing and tip growth by mediating the transport of SVs and the positioning of 

statoliths.

In this study, techniques for the efficient isolation of mRNA from characean rhizoids and 

protonemata were developed, and basic molecular biological applications were optimized for 

these cell  types.  New full  length gene sequences were determined, and first  insights  into 

molecular aspects of gravitropic signaling were provided. Thereby, a basis was established for 

further investigations of gravity sensing and tip growth at the molecular level.

4.1.1 Isolation of mRNA from characean rhizoids and protonemata

Since the present study was the first to analyze mRNA transcripts in single-celled characean 

rhizoids  and  protonemata,  the  procedures  for  cell  extraction  and  RNA-isolation  were 

developed and optimized inorder to achieve maximum yield and purity of the isolated RNA. 

It has been reported from several cell types that DNA was successfully amplified in extracts 

obtained  by  single-cell  aspiration  of  few  cells  (Karrer  et  al.  1995;  Brandt  et  al.  1999; 

Gallagher  et  al.  2001;  Brandt  et  al.  2002;  Laval  et  al.  2002;  Jones  and Grierson  2003). 

Extraction of cytosol from single cells by the insertion of a microcapillary was shown to 

minimize contamination of  cell  extracts  and to  be well  suited for  the  analysis  of  mRNA 

transcripts  in  specific  cell  types.  In  this  study,  single-cell  aspiration  was  tested  for  the 

extraction of cytosol from rhizoids and protonemata. It proved to be the only technique that 

was reasonable for purifying mRNA from the very limited number of protonemata that grow 

out from the thallus with low frequency and density. 
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mRNA isolated from pooled extracts of 25 cells was an adequate template for gene-specific 

PCR amplification in rhizoids and protonemata. However, these extracts were not suited for 

differential  display  analysis.  The  number  of  fragments  that  were  detected  after  random-

primed PCR was  low and fragment  patterns  varied  between different  samples,  making  a 

comparison  of  gene  expression  levels  impossible.  The  unsatisfying  results  in  differential 

display analyses of microextracted samples are attributed to the use of non-specific random 

primers that did not efficiently bind to low-abundance transcripts and to the Monte Carlo 

effect (Karrer et al. 1995) which describes the difficulties in displaying the true abundance of 

rare transcripts after PCR amplification. 

Several authors report using of extracts of single cells for subsequent PCR amplification in 

various cell types (Karrer et al. 1995; Brandt et al. 1999; Laval et al. 2002). In rhizoids and 

protonemata,  no  products  were  detectable  after  PCR amplification  in  single-cell  extracts, 

which may be due to an insufficient grade of purity of the isolated mRNA. However, single-

cell aspiration with pooling of a small number of cells is well suited for providing cell extracts 

designated for gene-specific PCR amplification in higher plant cell types (Gallagher et al. 

2001; Brandt et al. 2002; Laval et al. 2002; Jones and Grierson 2003) as well as in characean 

rhizoids and protonemata (this study). 

Due to the low concentration of mRNA in the extracts obtained by single-cell  aspiration, 

samples  for  the  random-primed  PCR  reactions  of  the  differential  display  protocol  were 

prepared by collecting 50 rhizoid bundles that were removed from the agar layer prior to cell 

lysis. As demonstrated by capillary electrophoresis, this method provided decent templates for 

the analysis of gene expression patterns. Most of the fluorescence peaks appeared at identical 

positions in gravistimulated samples and in unstimulated controls and exhibited consistent 

intensities, thereby confirming that the amount of mRNA in the extracts was comparable and 

RNA was not degraded during extraction and processing of the samples.

The isolation of polyA+-mRNA from the cell extracts was based upon hybridization with dT-

oligonucleotides linked to Oligotex latex beads that were collected by centrifugation. This 

technique ensured the removal of rRNA, tRNA and contaminations with procaryotic mRNA 

because  these  RNA-types  do  not  possess  a  polyA+-sequence  that  could  bind  to  the  dT-

oligonucleotides.  The  results  of  the  different  PCR  applications  performed  in  this  study 

demonstrate that the isolation protocol was well suited for the efficient purification of mRNA 

from a very small amount of starting material.
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4.1.2 Full-length characterization of characean ribosomal proteins

As the land plants’ closest living relative, the green alga Chara is situated at an important 

evolutionary  position  at  the  transition  from  the  lower  plants  to  the  highest  stage  of 

development in the plant kingdom (Lewis and McCourt 2004). Specific regions of plastid-

encoded genes and ribosomal RNAs of diverse characean algae (e.g. McCourt et al. 1999; 

Karol et al. 2001) as well as the complete mitochondrial genome of Chara vulgaris (Turmel et 

al. 2003) have been sequenced and compared with the corresponding sequences of related 

phyla for  elucidating evolutional  relationships  and  defining  crucial  steps  of  development. 

However,  the  genome  of  characean  algae  has  not  been  systematically  sequenced  and 

molecular information about nuclear-encoded proteins of characean algae available at genome 

databases is scarce.

The present study provides the full length coding sequences of two genes that were clearly 

identified to encode ribosomal proteins of class L14 and L27, respectively,  based upon a 

significant level of homology with the corresponding proteins from a wide range of species 

including  higher  plants,  mouse  and  human.  Ribosomal  proteins  are  strongly  expressed 

housekeeping genes that play a role for metabolic pathways by mediating the assembly of 

ribosomes  and  regulating  protein  biosynthesis  (Alberts  et  al.  1995;  Nicot  et  al.  2005). 

Determination of the nucleotide sequences of the characean ribosomal proteins and publishing 

in the genome databases contributes to the extension of genomic information about characean 

algae. In addition, the molecular techniques are now available for the sequencing of further 

gene transcripts  present in rhizoids.  Proteins involved in the regulation of tip growth and 

gravity  sensing  can  be  identified  by  similar  approaches  using  PCR  amplification  with 

degenerate primers that bind to conserved domains of homologous proteins in other species. 

As discussed below, this approach was successfully used for partial sequencing of a myosin 

motor protein in characean rhizoids.

4.1.3 Partial sequencing of a characean myosin

The availability of the nucleotide sequence of a characean myosin identified from thallus 

extracts of Chara corallina (Kashiyama et al. 2000) offered the opportunity to determine the 

sequence of the corresponding homolog in rhizoids of the related species C. globularis. In this 

cell  type,  myosins  interacting  with  the  actin  cytoskeleton play  a  crucial  role  for  gravity-
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oriented tip growth by mediating the precise positioning of statoliths and the delivery of SVs 

(Sievers et al. 1979; 1991b, Hejnowicz and Sievers 1981; Bartnik and Sievers 1988; Braun 

and  Sievers  1993;  Buchen  et  al.  1993;  Cai  et  al.  1997;  Braun  1996b,  2002;  Braun  and 

Wasteneys 1998b; for review see Braun and Limbach 2005a). The class XI myosin from C. 

corallina (CCM) – a large protein with a length of 2182 aa – is implicated in cytoplasmic 

streaming.  It  contains  characteristic  domains  (Fig.  10)  that  are  well  known  from  plant 

myosins of other classes (Yamamoto et al. 1999; Reddy and Day 2001): The N-terminal head 

domain of the motor protein includes the highly conserved binding site for  ATP which is 

hydrolyzed during the power stroke. The neck domain comprises six IQ motifs, the putative 

light chain binding sites. The coiled-coil structure of the myosin tail is characterized by highly 

conserved 33 aa tandem-repeats, and the C-terminal globular domain is responsible for the 

specific interaction of the protein with binding partners.

In  order  to  identify  the  class  XI  myosin  in  characean  rhizoids,  the  first  step  of  PCR 

amplification was performed using a set of primers that bound within the tail domain of CCM. 

Subsequently,  a  large  region  of  the  myosin  gene  from  C.  globularis was  determined  by 

5’RACE-PCR. This sequence comprises parts of the coiled-coil domain, six IQ motives and a 

part of the head domain. Although some variation was observed in the nucleotide sequences, 

the amino acid sequences of CCM and of the C. globularis protein were strongly homologous 

and the molecular structure of the proteins was coincident. 

The partial sequencing of a class XI myosin from C. globularis is the first time that a protein 

which is  regarded as  a  keyplayer  of  gravity  sensing and gravitropic  tip  growth has been 

identified and partially characterized at the molecular level in characean rhizoids. This work 

establishes the basis for investigating the manifold functions and transport pathways that are 

attributed to myosins in the Chara rhizoid by a systematic molecular characterization of the 

different protein isoforms. When regions of the less conserved neck and tail domains of the 

myosins are PCR-amplified by using a degenerate forward primer binding within the highly 

conserved head domain of myosins and random primers as reverse primers, different myosin 

isoforms are represented by their specific PCR products which can be distinguished by size 

and nucleotide sequence. Starting with these random PCR products, the protein isoforms can 

be fully sequenced and classified according to their molecular structure and to homologies 

with  myosins  from  other  specimens.  This  approach  would  greatly  contribute  to  the 

understanding  of  the  molecular  mechanisms  of  myosin-mediated  transport  processes  in 

characean rhizoids.
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4.1.4 Gravity-modulated gene expression

Cellular signaling depends on the complex interplay of multiple processes affecting either the 

activity or the abundance of factors that are involved in the signaling pathway. Changes in 

membrane fluxes are responsible for adjusting the cytoplasmic concentration of various ions, 

and signaling molecules can be mobilized from intracellular stores and regulated by post-

translational  modifications.  The  regulation  of  gene  expression  is  an  additional  essential 

process which contributes to the complex signaling networks by affecting the abundance of 

signaling molecules. Various methods have been developed to study gene expression patterns 

that are modulated by specific stimuli in order to identify keyplayers of cellular signaling 

pathways,  e.g.  differential  display,  subtractive  hybridization,  serial  analysis  of  gene 

expression (SAGE), and microarrays (Matz and Lukyanov 1998; Lievens et  al.  2001).  In 

higher plants, gene expression patterns of gravistimulated plant organs are being analyzed at 

large scale by microarray applications,  and several  genes have recently been identified to 

exhibit distinct changes in their expression levels upon gravistimulation (Kimbrough et al. 

2004;  R.  Hampp,  University  of  Tübingen,  Germany,  personal  communication;  K.  Palme, 

University  of  Freiburg,  Germany,  personal  communication).  However,  when investigating 

higher plant organs the collective pattern of gene transcripts of a high number of cells from 

various tissues is displayed. Therefore,  observed changes in the transcript  level of certain 

genes cannot be attributed to specific cell types, and distinct changes occurring at the single 

cell level may be masked by the signals from other cell types.

For understanding the decisive early mechanisms of gravitropic signaling it is desirable to 

specifically analyze the gene expression of gravity-sensing cells. However, in higher plants, 

the statocytes of roots and shoots are located in the center of compact tissues and are therefore 

difficult to isolate and hardly accessible for single-cell analyses. The extraction of cytosol 

from  single-celled  characean  rhizoids  and  protonemata  offers  the  unique  opportunity  to 

investigate the specific effects of gravistimulation on gene expression in gravity-sensing cell 

types without  the influence of signals  deriving from different tissues.  Interpetation of the 

results of gene expression studies is less complicated in the characean cells as compared to 

higher  plants  because  all  processes  of  gravity  sensing  and  gravitropic  growth  are 

accomplished  within  the  tip  region  of  one  single  cell,  which  implicates  short  and  direct 

mechanisms of gravitropic signaling (Braun and Limbach 2005a). However, cost-intensive 

large-scale techniques, e.g. microarray technology, are not applicable for studying gravity-

modulated gene expression in rhizoids and protonemata since the amount of mRNA that can 
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be obtained from the characean cells is limited and a background of comprehensive database 

material of the Chara genome is not available.

In the present study, differential display technology (Liang and Pardee 1992) was used for 

gene expression analyses in characean rhizoids which provided excellent results in various 

other plant cell types (e.g. Lievens et al. 2001; Charbit et al. 2004; for review see Yamazaki 

and Saito 2002). Differential display analysis combines simple and well established methods, 

requires only small amounts of starting material and allows the simultaneous comparison of 

several different samples at the same time (Matz and Lukyanov 1998; Lievens et al. 2001; 

Yamazaki  and Saito  2002).  The differential  display protocol  that  was used to  investigate 

gravity-modulated gene expression in characean rhizoids was modified after Theisen (2005) 

and included capillary electrophoresis for the detection of random amplification products. 

Comparison of the specific fragment patterns in gravistimulated and unstimulated rhizoids 

allowed the identification of genes that exhibit distinct changes in the transcription rate, and 

that are therefore likely to be involved in gravitropic signaling.

In general, the pattern of fragments amplified by random-primed PCR was very similar in 

gravistimulated and unstimulated samples, which underlines the good quality of the mRNA 

extracts and the suitability of differential display technology for analyzing gene expression 

patterns  in  the  Chara  rhizoid.  The  criteria  for  regarding  a  gene  as  being  differentially 

expressed upon gravistimulation were very restrictive in order to avoid the isolation of false-

positives. Differential expression was only accepted when distinct differences in fluorescence 

intensity of  the corresponding fragment  were observed between the compared samples  in 

several  parallel  experiments  and  when the differential  expression  pattern  was verified  by 

gene-specific  PCR.  Some fragments  of  random-primed PCR,  i.e.  B07-465,  B10-568,  and 

B16-275,  pointed  to  an  either  up-  or  down-regulation  of  the  corresponding  genes  during 

gravitropic signaling in characean rhizoids but the genes could, so far, not be fully sequenced, 

and differential expression has not been tested by gene-specific PCR.

For the fragment B16-292, however, indicating an up-regulation of the corresponding gene 

during gravistimulation, all criteria of differential expression of the gene were met. After full-

length  sequencing  of  the  coding  region,  the  gene  was  unambiguously  indentified  as  a 

glucosyltransferase.  These  enzymes  catalyze  the  transfer  of  sugar  residues  to  acceptor 

molecules,  and  are  known to  be  involved  in  CW synthesis  as  either  components  of  the 

cellulose  synthase  complex  in  the  PM  or  as  pectin-synthesizing  enzymes  in  the  Golgi 

apparatus (Egelund et al. 2004; Scheible and Pauly 2004). Ssequence homology within this 
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class  of  proteins  is  relatively  low  but  glucosyltransferases  share  a  common  domain 

organization  (Saxena  et  al.  1995).  The  newly  identified  characean  protein  contains  the 

characteristic  domains  of  glucosyltransferases  including  the  conserved  sequence  motif 

QXXRW (Saxena and Brown 1995; Saxena et al. 1995). It is therefore likely that it belongs to 

the class of  processive glucosyltransferases which add a  number of  sugar residues to  the 

acceptor molecules. 

The characean protein exhibits a high level of homology with cellulose synthase-like genes of 

rice which are specialized glucosyltransferases and important components of the cellulose 

synthase-multienzyme complex (Hazen et al. 2002; Scheible and Pauly 2004). The enzymes 

encoded  by  cellulose  synthase-like  genes  are  proposed  to  synthesize  the  hemicellulose 

backbones  of  plant  CWs  (Richmond  and  Sommerville  2000).  The  up-regulation  of  the 

glucosyltransferase gene in characean rhizoids upon gravistimulation indicates that changes in 

CW properties are likely to be involved in gravitropism of the cell type. Modifications of CW 

structure or rigidity depending on the activity of glucosyltransferases (Bouton et al.  2002; 

Orfila  et  al.  2005)  may  have  crucial  function  for  the  gravitropic  curvature  response  of 

gravistimulated  rhizoids.  In  accordance  with  this  interpretation,  the  characean 

glucosyltransferase is rather a target of the gravitropic signaling pathway than a signaling 

factor. Interestingly, microarray analysis of Arabidopsis root tips revealed a variety of genes 

encoding CW-modifying enzymes that exhibited significant changes in the transcription rate 

upon  gravistimulation  (Kimbrough  et  al.  2004).  For  understanding  the  role  of 

glucosyltransferases  in  gravitropic  growth  of  characean  cells  it  will  be  necessary  to 

investigate functional aspects and the intracellular localization of the enzyme. In addition, it 

will be interesting to analyze the time-course of gene expression at  an improved level of 

temporal resolution and to track the expression level during prolonged gravistimulation.

The  molecular  studies  have  demonstrated  that  great  effort  is  required  to  characterize 

characean genes  that  are  differentially  expressed due  to  the  lack of  genomic  information 

available  in  databases.  In  addition,  differential  display  analysis  is  unlikely  to  cover  all 

transcripts even if numerous different random primers are used, and rare transcripts may be 

underrepresented due to low amounts of mRNA. However, the present work has shown that 

differential display technology is well suited for analyzing gene expression in rhizoids. Using 

this technique, first proteins were discovered that are involved in signaling pathways of the 

gravity-sensing characean cell type.
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4.2 Early mechanisms of gravity sensing 

Gene expression analyses have provided new insights into molecular aspects of gravitropic 

signaling  in  characean  rhizoids  and  protonemata.  The  experiments  performed  under 

microgravity conditions aimed at specifying functional interactions of some of the keyplayers 

of gravity sensing. In higher plants,  there is considerable progress in the understanding of 

cellular,  physiological,  and  molecular  processes  of  gravitropic  response  mechanisms 

(Boonsirichai  et  al.  2002;  Sievers et  al.  2002;  Blancaflor  and Masson 2003),  but  little  is 

known about the molecular mechanisms being involved in the early steps of gravity sensing 

(Kiss 2000; Morita and Tasaka 2004). The major problem for addressing these questions in 

higher plants is the fact that gravity-sensing statocytes are located within a compact tissue that 

is not easily accessible for microscopic or molecular applications. In characean rhizoids and 

protonemata the statoliths which are  responsible  for  gravity  susception as well  as  for the 

initiation of gravitropic signaling can easily be observed by light microscopy, and gravitropic 

curvature  is  directly  related  to  the  activity  of  the  gravireceptors  in  the  same  cell.  These 

properties of the characean cell types were essential criteria when designing the experiments 

that  were  conducted  under  microgravity  conditions  provided  by  parabolic  flights  of  the 

MAXUS-5 sounding rocket and of the A300 Zero-G aircraft.

4.2.1 Statolith-cytoskeleton interactions determining the threshold level 
of gravisensitivity 

Whereas in most cell types gravity does not affect the position or movement of organelles, 

gravity-sensing statocytes allow their statoliths to sediment along the gravity vector. There are 

several  reports  indicating  that  the  actomyosin  system  is  involved  in  the  positioning  of 

statoliths and in the modulation of the sedimentation process in higher plant statocytes in 

order to meet specific requirements for a most beneficial gravitropic response (Sievers et al. 

1991a; Volkmann et al. 1991, 1999; Driss-Ecole et al. 2000; Perbal et al. 2004). Although the 

kinetics of statolith movements have been analyzed in gravisensing cells of shoots (Sack et al. 

1984; Saito et al. 2005) and roots (Sack et al. 1985, 1986; MacCleery and Kiss 1999; Yoder et 

al. 2001), interpretation of the results with respect to gravity sensing is difficult because the 

interactions  between  statoliths  and  the  cytoskeleton  and  their  role  in  the  graviperception 

mechanism are far from being understood in these cell types. 
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Therefore,  characean  rhizoids  and  protonemata  were  used  to  determine  the  minimum 

acceleration level  required for  lateral  statolith  displacement,  which  is  the prerequisite  for 

gravity susception to occur. Structural and functional details of the actin cytoskeleton are well 

described  in  these  single-celled  model  systems  for  gravitropism  research  (Braun  and 

Wasteneys 1998b; Braun et al. 2004) and the specific function of actomyosin forces in the 

process of gravity sensing is well understood (Braun 2002; Braun et al. 2002). It has been 

shown that, whenever statoliths are displaced laterally by sufficiently high accelerations, it is 

only a matter of time until they settle on the gravisensitive membrane region where perception 

will inevitably take place followed by the graviresponse (Braun 2002). Since the gravitropic 

signalling pathway is short and is not complicated further by complex signal transduction and 

transmission  pathways  like  in  higher  plant  tissues,  it  is  easy  to  discriminate  between 

susception and perception, and interfering with these mechanisms is quickly reflected in a 

modulation of the response, i.e. the reorientation of the cell tip.

Based  upon  this  knowledge,  the  threshold  acceleration  level  required  for  lateral  statolith 

displacement  was  experimentally  determined  in  order  to  specify  physical  and  energetic 

aspects  of  molecular  interactions  between  statoliths  and  the  cytoskeleton  underlying  the 

primary phase of gravity sensing. Lateral centrifugation of rhizoids during the microgravity 

phase of sounding rocket flights was shown to induce statolith displacement at an acceleration 

level  of  0.14g but  not  0.05g.  Similar  results  were  obtained  from  protonemata.  Given  a 

threshold value of lateral statolith displacement of 0.14g (a = 1.37 m s-2), the statolith volume 

V  (statolith  diameter  2  µm),  statolith  density  (ρstatolith =  ρbarium  sulfate =  4.5  g  cm-3)  and 

cytoplasmic density  (ρcytoplasm =  1.03 g cm-3),  the force F that  has to be exceeded by any 

acceleration  stimulus  in  order  to  move  a  single  statolith  towards  the  cell  flank  can  be 

calculated to be in a range of:

F = ∆ρ (statolith – cytoplasm) × V  × a = 1.99 × 10-14 N. 

This value represents the dimension of cytoskeletal forces restricting the lateral displacement 

of statoliths. Experiments in microgravity (Volkmann et al. 1991; Buchen et al. 1993; Braun 

et al. 2002) and in simulated weightlessness (Cai et al. 1997; Braun et al. 2002) have shown 

that in a tip-downward growing rhizoid actomyosin forces keep statoliths in their dynamically 

stable  resting  position  by  exactly  compensating  the  apically  directed  gravity  force  (the 

statoliths’ weight). From this, it follows that the actomyosin forces acting on a statolith in 

basal direction to prevent statoliths from settling into the tip are in a range of 1g, which is 

about  one  order  of  magnitude  higher  than  the  forces  that  restrict  lateral  displacement  of 
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statoliths. Due to this principle, statoliths are able to sediment towards the lower cell flank 

upon gravistimulation and, thus, to fulfill their role as susceptors of the gravity vector.

Considering an average distance between a statolith and the PM (distance between median 

cell  axis  and  PM,  s =  15  µm), the  mechanical  work  W that  is  necessary  to  complete 

sedimentation of a statolith onto the graviperception site at the threshold acceleration level 

can be calculated: 

W = F × s = 2.98 × 10-19 J. 

This  value  represents  the  minimal  energy  required  for  gravity  susception  in  characean 

rhizoids  and  protonemata  to  occur.  Although this  energy  value  matches  the  theoretically 

calculated minimal energy required for the activation of a gravireceptor (Björkman 1988), it 

is,  however,  not  relevant  for  characterizing  graviperception  in  the  characean  cells.  The 

parabolic flight experiments described in this study demonstrate that gravireceptor activation 

does not depend on the mechanical work that is provided by the gravity-induced statolith 

sedimentation process but on direct interaction of sedimented statoliths with the membrane-

bound gravireceptor (see 4.2.2).

Since  any  acceleration  stimuli  which  exceed  the  above  mentioned  threshold  forces  and 

deviate from the cell axis lead to sedimentation of statoliths followed by gravity perception 

and the gravitropic response, the threshold acceleration gives a good approximation of the 

general threshold of gravisensitivity in characean rhizoids and protonemata. A threshold value 

of  0.14g is  in  the  same range  as  was  determined by  microgravity  experiments  for  other 

gravisensitive  cell  types,  i.e.  ciliates (Hemmersbach et  al.  1996),  flagellates  (Häder  et  al. 

1995)  and higher  plant  statocytes  (Brown et  al.  1995).  In conclusion,  the mechanisms of 

gravity  sensing  might  be  overbuilt  (Björkman  1988;  Sack  1997),  however,  only  a  high 

sensitivity ensures that the sensing system can operate efficiently and can correct even the 

smallest deviations from the gravitropic set-point angle.

4.2.2 Gravireceptor activation in characean rhizoids

The gravireceptor molecules in characean rhizoids which are responsible for the initiation of 

the gravitropic signaling pathway are located at a confined belt-like region of the PM 10 – 35 

µm from the cell tip. So far, the mechanisms leading to an activation of the receptors after 

sedimentation of statoliths has been completed were unclear. Receptor activation could either 

be based upon the pressure that is exerted by the weight of statoliths or on interactions with 
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components of the statolith surface that are independent of the statoliths’ weight. In this study, 

the  functional  mechanism  of  receptor  activation  in  characean  rhizoids  was  analyzed  by 

investigating if sedimented statoliths were able to activate the gravireceptor even when they 

were  weightless  during  the  microgravity  phases  of  parabolic  plane  flights.  Control 

experiments  on  ground  revealed  that  the  parabolic  flight  profile  with  its  alternating 

acceleration levels  was excellently suited to  study the specific  impact  of microgravity  on 

graviperception by analyzing the gravitropic curvature responses of rhizoids. 

4.2.2.1 Ground control experiments

The  results  showing  that  intermittent  centrifugation  at  2g as  well  as  extended  hyper-g 

centrifugation  of  rhizoids  did  not  alter  the  gravitropic  curvature  response,  provide  clear 

evidence that enhancing the pressure on the gravisensitive PM by increasing the weight of 

fully  sedimented  statoliths  does  not  modulate  graviperception  and  does  not  affect  the 

graviresponse. Consequently, the hypergravity phases of the parabolic flight profile could be 

neglected when analyzing the effect of microgravity.

Inversion experiments on ground demonstrated that intermittent removal of statoliths from the 

gravisensitive  plasma-membrane  of  gravistimulated  rhizoids  for  only  10  s  resulted  in  a 

decrease of curvature angles. Inverting cells for 5 s had no significant effect on gravitropic 

curvature. However, high-magnification video microscopy confirmed that 5 s after inversion 

of gravistimulated cells statoliths were completely removed from the PM. It can be concluded 

from  the  inversion  experiments  that  the  gravireceptor  in  characean  rhizoids  is  quickly 

deactivated with a lag time of a few seconds when the contact between statoliths and the PM 

is interrupted. Thus, if receptor activation is affected in microgravity, this effect should be 

detectable by comparing curvature angles of flight samples and in-flight controls, although 

the duration of a single microgravity phase is only 22 s.

4.2.2.2 Parabolic plane flight experiments

Microscopic observation of flight samples indicated that the statolith complex was not lifted 

from the PM during the different acceleration levels of the parabolic flight profile. Thus, a 

removal  of  statoliths  from  the  graviperception  site  and  a  disruption  of  contact  between 

statoliths and the PM could be ruled out, and weightlessness of the statoliths was the only 
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parameter  analyzed with the  experimental  setup.  Therefore,  the results  obtained from the 

parabolic flight experiments provide a stringent line of evidence and interpretation. In none of 

the parabolic flight experiments a difference of final curvature angles between flight samples 

and in-flight  controls  was observed indicating that gravity  perception was not  interrupted 

during the microgravity phases. The experiment demonstrates that even weightless statoliths 

were capable of activating the gravireceptor. Taking into account that increasing the weight of 

statoliths  by  centrifugation  did  not  affect  gravitropic  curvature  (see  4.2.2.1),  it  can  be 

excluded that the gravireceptor in characean rhizoids is a mechanoreceptor, e.g. a stretch-

activated  ion  channel,  which  is  activated  by  tension  or  pressure  exerted  by  sedimented 

statoliths. The inversion experiments on ground and the microgravity experiments confirmed 

that  close  contact  of  statoliths  with  the  gravisensitive  PM  is  the  determinant  for 

graviperception.  Even  short-term  removal  of  statoliths  from  the  PM  strongly  impaired 

gravitropic curvature. The gravireceptor in characean rhizoids is, therefore, characterized and 

referred to as a contact receptor.

At the resolution level of microscopic observation during the microgravity experiments some 

cellular  particles could not unequivocally be identified as statoliths,  and due to the three-

dimensional  shape  of  the  tube-like  cells  it  was  impossible  by  means  of  two-dimensional 

image records to decide whether a statolith was in contact with the PM or not. Although video 

microscopy of rhizoids that  were laterally centrifuged with 0.14g during the microgravity 

phase  of  the  MAXUS-5  sounding  rocket  flight  allowed  to  spatiotemporally  resolve  the 

acceleration-induced lateral  displacement  of  statoliths,  it  was  not  intended for  identifying 

contacts of single statoliths with the PM. However, since these living cells exhibited distinct 

curvature  responses,  it  is  concluded  that  statoliths  have  sporadically  settled  on  the 

gravisensitive  membrane  site  of  the  centrifugal  flank  where  they  initiated  the  gravitropic 

signalling pathway. This assumption is confirmed by the analysis of chemically fixed rhizoids 

underlining the settlement of statoliths onto the lateral cell flank at the end of centrifugation in 

microgravity.  In  vertically  downward  growing  rhizoids  on  ground,  statoliths  are 

symmetrically  distributed  across  the cell  diameter  and some statoliths  are  found in  close 

proximity to the PM at both cell flanks. However, it cannot definitely be decided whether 

statoliths are in contact with the PM at both flanks generating a symmetric gravitropic signal 

or  whether  they  are  located  close  to  the  membrane  without  being  in  contact  with  the 

membrane-bound gravireceptors so that gravitropic signalling is not initiated at all.

99



4   DISCUSSION

A  contact-dependent  mechanism  of  gravireceptor  activation  in  characean  rhizoids  is 

supported by previous experiments in which tip-reorientation in vertically downward growing 

rhizoids  could  only  be  induced  when  statoliths  were  brought  into  contact  with  the 

gravisensitive area of the PM by laser-tweezers micromanipulation (Braun 2002). Stretching 

the gravisensitive membrane from the outside by using a microcapillary does not provoke a 

curvature response (C. Limbach and M. Braun, unpublished results). Further centrifugation 

studies  have  shown  that  the  graviresponse  of  characean  protonemata  also  relies  on  the 

gravity-induced and actin-mediated settlement of statoliths on a gravisensitive PM area and 

cannot be promoted by acceleration forces (Hodick and Sievers 1998).

Until  today,  functional  mechanisms  of  graviperception  have  not  been  unequivocally 

determined  in  higher  plants.  Gravireceptor  proteins  are  commonly  addressed  as 

mechanosensitive receptors. Models of gravity sensing including the tensegrity model (Zheng 

and  Staehelin  2001)  postulated  that  receptor  activation  depends  on  mechanical  forces 

(tension, pressure) which are generated by the gravity-driven sedimentation of statoliths and 

are  transferred  to  stretch-activated  ion  channels  (gravireceptors)  via  actin-dependent 

mechanisms (for reviews see Sievers et al. 2002; Boonsirichai et al. 2002; Perbal and Driss-

Ecole 2003; Blancaflor and Masson 2003). Even though a crucial role of actin in the early 

signal  transduction  pathway  is  appealing,  physiological  and  cytological  studies  including 

inhibitor treatments have so far only come to contradictory results (Blancaflor and Hasenstein 

1997; Nick et al. 1997; Yamamoto and Kiss 2002; Friedman et al. 2003; Hou et al. 2003, 

2004), leaving the mechanisms of gravity perception in higher plants enigmatic. 

Parabolic  flight  experiments  presented  in  this  study  have  significantly  enhanced  our 

understanding of  the  molecular  interactions which restrict  gravity  susception and mediate 

gravity  perception  in  characean  rhizoids  and  protonemata.  The  results  encourage  further 

utilization of the parabolic flight profile with its sequence of short-term microgravity phases 

as  a  powerful  instrument  that  complements  physiological,  biochemical  and  genetic 

approaches and promises to contribute to the clarification of the early mechanisms of gravity 

sensing in higher plants.
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4.3 High-pressure freeze fixation, freeze substitution and 3D dual-
axis tomography – innovative tools for ultrastructural 
research in characean rhizoids 

For understanding the mechanisms of gravity sensing and tip growth in characean rhizoids 

and protonemata, the identification of the participating molecules and molecular interactions 

is one important task. However, the specific functions of these cellular components can only 

be fully understood by integrating the structural arrangement of the cells. Therefore, protocols 

for  high-pressure freezing,  freeze substitution and 3D dual-axis  tomography of  characean 

rhizoids have been developed and optimized in  the present  study in order to  analyze the 

cellular ultrastructure at a maximum level of resolution. The ultrastructure of rhizoids has 

been studied in great detail for more than 40 years by using chemical fixation (Sievers 1965, 

1967a, 1967b; Bartnik 1998; Noecker 2000). It is, however, generally accepted that chemical 

fixation causes serious artifacts which impair ultrastructural examinations, and which can be 

avoided  by  using  cryofixation  (Gilkey  and  Staehelin  1986;  Dahl  and  Staehelin  1989; 

Staehelin et al. 1990; Studer et al. 1992). Freeze fixation improves the structural preservation 

of electron microscopical samples because it warrants the fast and simultaneous fixation of all 

cellular components whereas chemical fixation acts relatively slowly and differently on the 

various  classes  of  cellular  molecules  allowing  structural  alterations  during  the  fixation 

process. It was therefore reasonable to re-evaluate the ultrastructure of the growth-organizing 

apical cell region of characean rhizoids in samples prepared by high-pressure freeze fixation. 

This cryofixation technique was specifically developed for the fixation of bulky biological 

specimens since strong gradients in the freezing quality were observed when conventional 

methods of freeze fixation were used, e.g. plunge freezing, cold metal block freezing, propane 

jet-freezing  etc.  (Gilkey  and Staehlin  1986; Dahl  and Staehelin  1989).  By applying  high 

pressure (2100 bar) during cryofixation, the modified jet-freezing technique has been reported 

to  provide  optimal  vitrification  of  the cytoplasm without  the  formation of  ice  crystals  in 

specimens with a thickness of up to 200 – 300 µm (Moor 1987; Gilkey and Staehelin 1986; 

Dahl and Staehelin 1989; Studer et al. 1989; Monaghan et al. 1998).

So far, only one study reports the use of cryofixation for ultrastructural examinations in the 

Chara rhizoid (Kiss and Staehelin 1993). However, this study is far from being a systematic 

analysis of the cellular ultrastructure since a limited number of electron micrographs shows 

only some cellular details. In addition, the authors reported difficulties in handling the rhizoid 
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samples for cryofixation and severe mechanical damages. It is therefore difficult to assess the 

overall quality of ultrastructural preservation.

In the present study, 3D dual-axis  electron tomography (Mastronarde 1997) was used for 

ultrastructural analyses of high-pressure frozen rhizoids. This innovative technique has been 

developed at the University of Colorado and has provided substantial progress in the detection 

and visualization of the cellular ultrastructure. The alignment and backprojection of electron 

microscopic image series taken at increasing tilt angles of the section about two orthogonal 

axes provides a set of tomographic slices (Mastronarde 1997). Thereby, the resolution level in 

z-direction is drastically reduced to the range of a few nanometers, which allows to study 

ultrastructural  details  at  the  molecular  level.  In  addition,  the  tomograms  provide  three-

dimensional information about the arrangement and distribution of cellular structures which 

can be modeled using specific software, such as the IMOD software package (Mastronarde 

1997)  that  is  available  for  free  download  at  the  IMOD  home  page  (URL:  http://

bio3d.colorado.edu/imod/). As has been shown in various studies, electron tomography and 

three-dimensional  modeling  provided  completely  new  insights  into  ultrastructural  and 

functional characteristics of cellular compartments and macromolecules (e.g. Ladinsky et al. 

1999; Otegui and Staehelin 2000, 2004; Otegui et al. 2001; Seguí-Simarro et al. 2004; Austin 

et al. 2005; Kürner et al. 2005; Nicastro et al. 2005; Seguí-Simarro and Staehelin 2005). 

The combined use of high-pressure freeze fixation for sample preparation and 3D electron 

tomography as imaging technique allowed a systematic re-evaluation of the ultrastructure of 

characean rhizoids and provided fascinating and surprising new results. The characterization 

of the different vesicle types and the detailed description of their distribution in the cell apex 

as well as the identification of an extensive subapical vacuolar reticulum clarify some crucial 

aspects  of  gravity-oriented  tip  growth  but  also  raise  new questions  about  the  functional 

relationship  of  cellular  compartments.  As  discussed  below,  the  results  gathered  by  high-

resolution ultrastructural analyses of characean rhizoids have considerable implications for 

the understanding of the structural and cellular organization underlying plant tip growth since 

similar cell  types,  e.g.  pollen tubes and root hairs,  have so far  only been investigated by 

conventional electron microscopy.
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4.3.1 Ultrastructural preservation of high-pressure frozen rhizoids 

High-pressure frozen rhizoids exhibited the general ultrastructural characteristics of cryofixed 

samples that were observed in a variety of plant specimens (Gilkey and Staehelin 1986; Dahl 

and Staehelin 1989; Studer et al. 1989; Kiss et al. 1990; Studer et al. 1992; Roy et al. 1997). 

The cytoplasm was homogeneous without being aggregated or clumped and no ice crystals 

were observed to perturb the cellular ultrastructure. The strongly contrasted membranes were 

smooth and not undulating, and the three contours of the lipid bilayer were widely detectable. 

Cellular organelles and membrane-encircled compartments were not found to be shrunken or 

swollen. 

Golgi  stacks  exhibited  strong  cis  to  trans  polarity  regarding  luminal  width  and  electron 

density of the cisternae. Budding profiles of COP-vesicles were identified at medial and cis 

cisternae  which are  implicated in  transport  mechanisms within Golgi  stacks and between 

Golgi stacks and the ER (Staehelin and Moore 1995; Robinson et al. 1998a; Nebenführ 2002; 

Ritzenthaler et al. 2002). The detection of newly forming cisternae at the cis side of the Golgi 

stacks supports the cisternal progression model of Golgi maturation (Morré 1987; Staehelin 

and Moore 1995).

Most prominently, the PM exhibited smooth contours and was found to be closely attached to 

the inner layer of the CW. In chemically fixed rhizoids, the undulating shape of the PM and 

detachment from the CW (Sievers 1965, 1967a, 1967b; Bartnik 1984; Bartnik and Sievers 

1988;  Noecker  2000)  were  major  artifacts  that  hampered  investigations  of  ultrastructural 

features being related to the mechanisms of cell growth at the apical membrane domain. 

4.3.1.1 Apical plasma membrane

In  high-pressure  frozen  rhizoids,  the  apical  PM  was  irregularly  shaped  and  exhibited 

prominent invaginations into the cytoplasm and protuberances into the CW, which reflects the 

high rate of membrane turn-over at the rapidly expanding cell tip. The tubular invaginations 

were not detectable by conventional EM of thin sections but clearly identified and modeled in 

electron tomograms. The observations indicate that the apical PM of rhizoids may comprise 

distinct domains with characteristic shapes and specific functions for tip growth. 

It is unlikely that the invaginations of the PM represent artifacts caused by plasmolytic effects 

of  the  cryoprotectant.  Sucrose,  which  was  used  in  this  study,  is  a  well  established 
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cryoprotectant for freeze fixation that efficiently inhibits the formation of ice crystals in the 

cytoplasm without  affecting  structure  and  metabolism of  the  samples  (Ding  et  al.  1992; 

Otegui et al. 2001; Zheng and Staehelin 2001; Murata et al. 2002). In rhizoids, no effect on 

cell growth and morphology was detected at the light microscopic level when sucrose was 

applied  in  the  concentration  used  for  high-pressure  freezing.  Electron  microscopic 

observation revealed that the PM was attached to the inner layer of the CW, and in none of 

the samples, free space was observed between the CW and the PM which would indicate 

plasmolytic  detachment  of  the membrane.  Also,  at  the tubular  invaginations  the PM was 

attached to the CW without any gaps being detected. When rhizoid samples were processed 

with mannitol as cryoprotectant the overall ultrastructural preservation was slightly poorer 

whereas the shape of the PM was identical to the samples that were prepared with sucrose. To 

ultimately  discover  artifactual  alterations  that  might  be  caused  by  the  application  of 

cryoprotectants the use of non-osmotically active reagents, e.g. 1-hexadecene (Studer et al. 

1992; Monaghan et al. 1998; Walther and Ziegler 2002; Hess 2003) or dextran (Kiss et al. 

1990; Roy et al. 1997) is alternatively recommended. However, since these substances may 

cause different artifacts (Kiss et al. 1990), a careful comparison of samples prepared with 

different  cryoprotectants  is  necessary  to  rule  out  any  fixation  artifacts.  The  use  of 

cryoprotectants  for  cryofixation  of  biological  samples  is  generally  recommended because 

these reagents not only prevent the formation of ice crystals but also ensure a good transfer of 

heat and pressure, and they replace air from the specimen chamber that might collapse during 

fixation causing mechanical damage (Gilkey and Staehelin 1986).

4.3.1.2 Endoplasmic reticulum

As reported  from various  cryofixed  samples  (Walther  and  Ziegler  2002; Giddings  2003; 

Andrew L. Staehelin, University of Colorado, Boulder, USA, personal communication), the 

membranes of the ER exhibited very faint contrast also in high-pressure frozen rhizoids. In 

chemically fixed samples ER cisternae were characterized by darkly stained membranes, and 

the apical ER aggregate was one of the most prominent structures in the rhizoid (Bartnik 

1984; Bartnik and Sievers 1988; Braun 2001). For unraveling the role of the ER aggregate for 

the regulation of tip growth it is essential to elucidate its structural organization by analyzing 

the  three-dimensional  arrangement  of  the  aggregated  cisternae.  However,  tracking  and 

modeling of the short and winded cisternae of the ER aggregate was not feasible in high-

pressure frozen rhizoid samples since membranes were undetectable and cisternae could only 
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be  determined  by  the  parallel  rows  of  ribosomes  at  the  cytoplasmic  interface.  For  the 

visualization of the ER aggregate allowing subsequent 3D-remodeling of the cisternae, the 

freeze  substitution  protocol  for  cryofixed  rhizoids  needs  to  be  modified.  It  is  a  striking 

observation of the present study that the samples for immuno-electron microscopy that were 

prepared  by  freeze  substitution  with  0.25%  GA  and  0.1%  UA  and  were  embedded  in 

Lowicryl HM20 exhibited stronger contrast of the ER membranes as compared to the samples 

that were processed for ultrastructural studies. Similar findings are reported from yeast cells 

(Giddings  2003).  Additional  protocols  that  were  shown  to  improve  the  visualization  of 

membranes  in  cryofixed  samples,  e.g.  substitution  with  0.1% potassium permanganate  in 

acetone (Giddings 2003) or addition of 1 to 5% water to the substitution medium (Walther 

and Ziegler 2002) may also be suited to enhance the membrane contrast of ER cisternae in 

rhizoids and to make a 3D-reconstruction of the ER aggregate possible.

4.3.1.3 Actin microfilaments

The high quality of ultrastructural preservation in high-pressure frozen and freeze-substituted 

rhizoids is highlighted by the detection of actin in electron tomograms as well as by immuno-

electron  microscopy.  Many  studies  have  aimed  at  visualizing  the  actin  cytoskeleton  in 

electron microscopic samples  of  tip-growing cells  where actin  plays  a  major  role  for  the 

regulation of polarized growth (Lancelle and Hepler 1989; Lichtscheidl et al. 1990; Ding et al. 

1992; Miller et al. 1996; Roy et al. 1997; Geitmann und Emons 2000; Derksen et al. 2002). 

However,  the  actin  microfilament  system  proved  to  be  highly  sensitive  to  the  fixation 

conditions. It could not be preserved by chemical fixation and was only partly detectable in 

cryofixed samples (Ding et  al.  1992; Lancelle and Hepler 1989; Lichtscheidl et  al.  1990; 

Miller  et  al.  1996; Geitmann  and  Emons  2000; Derksen  et  al.  2002).  Detailed  electron 

microscopic  analyses  of  cellular  actin  arrays  which  are  essential  for  completing  the 

knowledge of the role of the actin cytoskeleton for tip growth are still missing.

In the present study, bundles of actin microfilaments were immunolocalized in the subapical 

region of rhizoids. Specific labeling was observed at confined regions where actin was present 

at  the surface of  the thin sections  and therefore accessible  to  the antibody whereas  actin 

structures  in  the  interior  of  the  section  could  not  be  labeled.  The  immunolabeling  of 

longitudinally oriented microfilament bundles in the subapical region of electron microscopic 

samples fits well to the appearance of the actin network in this cell region after fluorescence 
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staining (Braun and Wasteneys 1998b). In the cell apex, fluorescence labeling showed a fine 

network of actin microfilament bundles that focused into a prominent actin patch in the center 

of the Spitzenkoerper (Braun and Wasteneys 1998b; Braun et al. 2004). However, in high-

pressure frozen samples of rhizoids no actin-labeling was observed in the apical cell region. 

Obviously, immuno-electron microscopy revealed only the relatively stable bundles of actin 

microfilaments in the subapical region but failed to detect the fine filaments in the apical cell 

region which are dynamically remodeled by the concerted action of actin-binding proteins 

(Braun et  al.  2004;  Braun and Limbach 2005c).  Similar  results  of  actin  immunolabeling 

experiments are reported from cryofixed pollen tubes where only the thick actin bundles in 

the subapical region were labeled whereas the fine microfilament network in the apical region 

was not decorated (Lancelle and Hepler 1989; Lichtscheidl et al. 1990).

In  addition  to  the  identification  of  actin  microfilament  bundles  in  cryofixed  characean 

rhizoids  by  immuno-electron  microscopy,  actin  was  frequently  observed  in  electron 

tomograms of the cell apex, predominantly in the region of the ER aggregate. 3D-modeling of 

the apical actin array proved difficult since filaments were very fine and short,  and could 

therefore not be tracked in the tomograms. Actin in the apical region of cryofixed rhizoids 

was not as abundant as anticipated based upon fluorescence labeling (Braun and Wasteneys 

1998b), which indicates that parts of the actin array were either not visible or degraded during 

processing  of  the  samples.  For  improving  the  visualization  of  actin  microfilaments  in 

cryofixed samples, Murata et al. (2002) propose a preparation protocol using a combination of 

staining with OsO4 at 40° C and 5% uranyl acetate. Sine this procedure enhances at the same 

time the contrast of intracellular membranes (Murata et al. 2002) it may be useful for studying 

the structural interrelation of the ER aggregate and the actin array in the apical region of 

characean rhizoids. Although the present study does not comprise a complete description of 

the  actin  arrangement  in  the  rhizoid  tip,  the  preservation  and  visualization  of  the  actin 

cytoskeleton has been substantially improved. Further insights into the cytoskeletal basis of 

the structural cellular organization are expected from additional electron microscopic studies 

using slightly modified protocols of freeze substitution.
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4.3.2 Characterization and distribution of vesicles in the apex of 
rhizoids

In characean rhizoids and protonemata cell growth is confined to the apical cell region and 

mediated  by  the  localized  exocytosis  of  SVs,  which  requires  high  rates  of  vesicle  and 

membrane  turn-over.  Several  electron  microscopic  studies  were  aimed  at  specifying  the 

different types of vesicles and their corresponding distribution in chemically fixed samples 

(Sievers 1965, 1967a, 1967b; Bartnik 1984; Bartnik 1990) as well as in cryofixed cells (Kiss 

and Staehelin; 2003) in  order  to elucidate  mechanisms of vesicle trafficking that  mediate 

gravity-oriented growth. Due to the limited resolution of the electron microscopic analyses in 

these studies, vesicles could only be classified by their size and by the electron density of the 

contents leading to incomplete and partly contradictory results.

Therefore, high-resolution electron tomography of high-pressure frozen samples was used for 

a detailed description of the vesicle types present in the Chara rhizoid and for the analysis of 

their subcellular distribution in the apical cell region with regard to their roles for tip growth 

and gravitropic reorientation. Five vesicle types were identified and characterized by vesicle 

size, membrane properties, electron density of the contents and protein coats. Two types of 

coated vesicles were determined that had not been detected in any of the previous studies, 

which underlines the high quality of the high-pressure frozen samples and the significance of 

electron  tomography  for  ultrastructural  research.  Since  vesicle  distribution  has  not  been 

analyzed in any tip-growing cell type at a similar level of resolution before, the results of this 

study provide considerable progress in the understanding of vesicle trafficking in tip-growing 

plant  cells.  A schematic  reconstruction  of  vesicle  distribution  in  the  apical  cytoplasm of 

characean rhizoids based upon the findings of electron tomographic analyses is shown in Fig. 

31.
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Fig. 31 Schematic reconstruction of the distribution of different vesicle types in the apex of rhizoids
The model combines the results of the electron tomographic analyses of this study (see 3.3.4) and gives an 
overview of the distribution of all  vesicle types identified in the apical cytoplasm of high-pressure frozen 
rhizoids. The distribution patterns are discussed in detail in the text.
Color coding: light blue: LVs, dark blue: DVs, yellow: CCVs, orange: CVs, white: MVs, green: cisternae of 
the ER aggregate, grey: PM. Bar: 500 nm

4.3.2.1 Secretory vesicles

When analyzing  the  ultrastructure  of  high-pressure  frozen  rhizoids,  large  vesicles  with  a 

diameter of about 200 nm were the most prominent structures in the apical cell region. Based 

upon  specific  ultrastructural  differences  two  distinct  groups  of  large  vesicles  were 

distinguished: dark vesicles (DVs) that were characterized by electron dense contents and by 

a strongly stained membrane were slightly but significantly smaller than the light vesicles 

(LV) with less electron dense contents and a thin, faintly stained membrane. Previously, Kiss 

and Staehelin (1993) already discriminated two types of large vesicles in cryofixed rhizoids 

by the electron density of their contents. However, DVs were reported to be slightly larger 

than LVs, which is  in contradiction to the observations of the present  study. Based upon 

differences in the staining of large vesicles in chemically fixed samples, Bartnik et al. (1990) 

suggested  that  diverse  contrast  levels  represent  different  stages  of  vesicles  during  their 

shuttle-like movements between the ER aggregate and the apical PM. The striking differences 

that were observed in the present study regarding not only electron density but also vesicle 

size and membrane properties, however, provide strong evidence that the large vesicles in 

characean rhizoids should be grouped into two different classes.
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Several observations support the idea that the DVs function as SVs. The distribution of large 

vesicles in high-pressure frozen samples (Fig. 31) is well in accordance with the accumulation 

of SVs in the apical region of rhizoids that has previously been described (Sievers 1965, 

1967a; Bartnik and Sievers 1988; Bartnik et al. 1990; Kiss and Staehelin 1993). In addition, 

esterified pectins that are designated for exocytosis have been immunolocalized to DVs with a 

diameter  of  approx.  200  nm  using  JIM  7  antibody  (Kiss  and  Staehelin  1993).  Most 

importantly, the DVs were observed in the present study to share characteristic features, i.e. 

electron  density  and  membrane  properties,  with  vesicles  budding  from  the  sites  of  SV 

formation at the trans Golgi cisternae.

The nature of LVs in the apical region of rhizoids is less clear. Based upon their size, the 

distribution pattern in the apical cytoplasm and positive labeling with the JIM 7 antibody 

(Kiss and Staehelin 1993), they should be regarded as a second type of SVs that contains 

material  with  a  differing  composition  as  compared  to  DVs  causing  the  faint  staining  in 

electron  microscopic  samples.  This  interpretation  is  in  contrast  to  electron  microscopic 

observations in pollen tubes where a single type of SVs was identified (Derksen et al. 2002). 

The appearance of the membrane of LVs in the Chara rhizoid, however, wich is much thinner 

than those of other vesicle types and may represent a single layer of phospholipids rather than 

a complete lipid bilayer, raises the question of whether these structures are real vesicles. Lipid 

monolayers are known to surround lipid storage compartments that exhibit similar appearance 

in electron microscopic samples as the light structures in the rhizoid. In higher plants, oil 

bodies with a diameter in the range of 0.2 to 2 µm comprise a matrix of triacylglycerides 

which is encircled by a lipid monolayer (Tzen et al. 1993; Frandsen et al 2001). Interestingly, 

caleosin – a characteristic protein of oil  bodies in higher plants (Chen et  al.  1999) – has 

previously been detected in protein extracts of characean rhizoids (Limbach 2002). However, 

assuming that the large light particles that were detected in electron microscopic samples of 

characean  rhizoids  are  oil  bodies  is  speculation,  and  the  putative  role  of  lipid  storage 

compartments  in  the  Chara  rhizoid  is  unclear.  Clarification  of  the  nature  of  the  LVs  is 

expected from comprehensive immunolabeling experiments. In addition, the presence of oil 

bodies in the Chara rhizoid can be tested by differential cell fractionation which should allow 

the isolation of lipid components from cytosolic extracts due to their low density.

The accumulation of large vesicles around the ER aggregate in the Spitzenkoerper center of 

high-pressure  frozen  rhizoids  (Fig.  31)  is  in  accordance  with  previous  electron  and light 

microscopic observations (Bartnik and Sievers 1988; Bartnik et al. 1990; Kiss and Staehelin 
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1993) and supports a role of the ER complex in vesicle trafficking. Although the details of 

this function are not well understood interactions between SVs and ER cisternae are likely to 

be accomplished at the periphery of the ER aggregate since large vesicles were excluded from 

central regions of the complex (Fig. 31; Bartnik and Sievers 1988). The vesicle accumulation 

in  the  apical  cytoplasm may  also  be  reflected  by  in-vivo  staining  with  FM dyes  which 

occasionally  produced  bright,  ring-shaped  fluorescence  surrounding  the  ER  aggregate 

whereas the rest of the cytoplasm was homogeneously stained.

As demonstrated in the present study, the density of SVs in the cytoplasm flanking the PM of 

the apical region decreases from the cell tip towards the flanks (Fig. 31), thereby reflecting 

the  gradient  in  the  rate  of  cell  extension  (Hejnowicz  et  al.  1977).  However,  within  the 

cytoplasm of the outermost tip region, SVs were evenly distributed and no vesicle clusters 

were observed, which coincides with observations from cryofixed pollen tubes (Derksen et al. 

2002). These results indicate that exocytosis in tip-growing cells is not confined to specialized 

membrane domains but rather accomplished over the entire membrane area of the tip.

4.3.2.2 Microvesicles

Small vesicles with a diameter of 25 nm exhibit the highest vesicle density (up to 420 vesicles 

per µm3) of all vesicle types identified in the apical region of high-pressure frozen rhizoids. 

They were  found to  be  concentrated  in  the cytoplasm surrounding  the  ER aggregate  but 

evenly distributed between the ER complex and the cell tip (Fig. 31). Small vesicles have 

been  reported  from  previous  electron  microscopic  studies  of  chemically  fixed  rhizoids 

(Sievers 1965, 1967a; Bartnik and Sievers 1988; Kiss and Staehelin 1993) and were referred 

to as microvesicles. However, in these studies the vesicle size was overestimated (diameter 

40 – 50 nm), which is attributed to poor ultrastructural preservation of the samples and to the 

limited resolution of conventional electron microscopy. Sievers (1965) proposed a role of 

these MVs in exocytotic processes; however, clear evidence for the function of this vesicle 

type in  the Chara rhizoid and in  other  tip-growing cell  types is  lacking.  Based upon the 

identification  of  CCVs  in  the  present  study  (see  4.3.2.3)  it  may  be  possible  that  the 

microvesicles represent a stage of endocytotic vesicles after disassembly of the clathrin coat.
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4.3.2.3 Clathrin-coated vesicles

Electron tomography of high-pressure frozen rhizoids provided unambiguous evidence that 

CCVs are  present  in  the  apical  cell  region.  This  vesicle  type  has  not  been  identified  in 

previous studies (Sievers 1965, 1967b; Bartnik and Sievers 1988; Kiss and Staehelin 1993) 

and was hardly detectable by conventional electron microscopy in the present study due to the 

limited resolution level of the applied imaging techniques. It is noteworthy, however, that 

CCVs at the PM of chemically fixed rhizoids were already shown by Sievers (1967a) but 

taken  as  microvesicles  with  strongly  contrasted  coats  (‘Mikrovesikel  mit  kontrastreichem 

Hof’). In the present study, the prominent coats of the CCVs were easily discovered in single 

slices of electron tomograms. The spherical clathrin scaffold is characterized by the regular 

arrangement of pentagons and hexagons that are formed by numerous clathrin triskelions, 

each consisting of three heavy chains and three light chains (Robinson 1996; Robinson et al. 

1998a; Holstein 2002). The clathrin lattice is connected to the vesicle membrane by various 

adapter proteins that are responsible for the recruitment of clathrin molecules and for the 

interaction with membrane-bound receptor proteins (Holstein 2005). 

The CCVs detected in this study have a diameter of about 30 nm with the clathrin scaffold 

forming a cage of ~ 90 nm in diameter, which is in accordance with the overall size of CCVs 

in other plant cell types that was reported to be in a range of 75  –  100 nm (Robertson and 

Lyttleton 1982; Tanchak et al. 1984; Emons and Traas 1986; Derksen et al. 1995; Robinson et 

al. 1998b; Šamaj et al. 2004). However, in most of these studies the vesicle diameters were 

estimated to be significantly larger than in characean rhizoids because protein coats were 

observed to be relatively thin. Only Robertson and Lyttleton (1982) determined values of 

vesicle size (diameter 26 to 51 nm) and coat thickness (21 to 31 nm) for CCVs in root hairs of 

white clover that were similar to those in characean rhizoids. It cannot ultimately be clarified 

whether CCVs in rhizoids possess thicker protein coats as compared to other plant cell types 

or whether the diameter of the vesicles was overestimated in previous studies due to poor 

ultrastructural  preservation of  the samples and limited resolution of conventional electron 

microscopy.  However,  the  excellent  quality  of  the  high-pressure  frozen  samples  and  the 

improved  resolution  of  electron  tomography  strongly  implicate  that  the  measurements  in 

rhizoids are very precise and recommend the use of these techniques for re-evaluating the size 

of CCVs in other cell types.
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As revealed by electron microscopic analyses, two populations of CCVs exist in the apical 

cytoplasm of characean rhizoids that are separated from each other by a broad cytoplasmic 

region of about 1 µm where vesicles of this type are never observed (Fig. 31). One population 

comprises CCVs associated with the apical PM whereas the second population was found in 

the region of the ER aggregate in the center of the Spitzenkoerper. An accumulation of CCVs 

in the apical cell region has also been reported from other tip-growing cells, e.g. pollen tubes 

(Robertson and Lyttleton 1982; Derksen et al. 1995; Blackbourn and Jackson 1996; Malhó et 

al. 2005) and root hairs (Bonnett and Newcomb 1966; Emons and Traas 1986), pointing to a 

common function of these vesicles for tip growth mechanisms in rapidly expanding polarized 

cells.

CCVs at the apical PM of rhizoids were observed to be closely associated with the membrane 

and were not detected at distances larger than 500 nm. Vesicle density was highest at the 

outermost tip and decreased towards the lateral flanks of the tube-like cells, which coincides 

with the distribution pattern of SVs. Several clathrin-coated buds were identified at the apical 

PM representing stages of CCV formation. The distribution of CCVs at the apical PM of tip-

growing rhizoids is very well in accordance with the generally accepted role of these vesicles 

in endocytotic processes (Robinson 1996; Robinson et al. 1998a; Holstein 2002; Šamaj et al. 

2005).  In  higher  plants,  CCV-mediated  endocytosis  is  assumed to  be  responsible  for  the 

removal of excess membrane material that is delivered to the cell surface by SVs during tip 

growth (Derksen et al. 1995; Blackbourn and Jackson 1996; Emons and Traas 1986; Malhó et 

al.  2005),  cell  plate  formation  (Samuels  et  al.  1995;  Otegui  and  Staehelin  2000;  Seguí-

Simarro and Staehelin 2005), and in the secretory pathway (Steer 1988). However, a detailed 

structural  and  functional  description  of  endocytotic  processes  in  plants  is  still  lacking. 

Modeling of CCVs in electron tomograms of characean rhizoids and 3D-analysis of their 

distribution at the apical PM provides completely new insights into the endocytotic pathway 

of  tip-growing  cell  types.  The  clustered  distribution  of  CCVs  strongly  suggests  that 

endocytotic membrane recycling is confined to specialized domains of the PM instead of 

occuring over the entire membrane area. Thereby, interference between the reversely oriented 

vesicle trafficking processes of exo- and endocytosis could be avoided by the local restriction 

of membrane internalization. In pollen tubes, the highest density of CCVs was found in a 

region 6 – 15 µm behind the tip, which implicates that the membrane domains of exocytosis 

(at the outermost cell tip) and endocytosis (in the CCV-rich region) are more clearly separated 

in this cell type as compared to rhizoids (Derksen et al. 1995). However, all studies reporting 
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an accumulation of CCVs in the apex of tip-growing cell types (Bonnett and Newcomb 1966; 

Robertson and Lyttleton 1982; Emons and Traas 1986; Derksen et al. 1995; Blackbourn and 

Jackson 1996) used conventional electron microscopy. A re-evaluation of CCV distribution 

by high-resolution electron microscopy in these cells could complement the new insights of 

the present study and help to characterize the organization and regulation of endocytosis in 

plant tip growth.

In-vivo staining of rhizoids with FM dyes that are widely used to visualize endocytotic events 

did  not  confirm  the  existence  of  confined  endocytosis  sites  but  instead  produced 

homogeneous  fluorescence  of  the  apical  cytoplasm.  However,  the  putative  ‘hot  spots’  of 

endocytosis may be undetectable at the resolution level of fluorescence microscopy due to the 

small size of the CCVs and the strong background fluorescence of the cytoplasm. In addition, 

the suitability  of FM dyes  for specifically  visualizing endocytotic  events in  plant  cells  is 

questionable (Malhó et al. 2005). FM labeling in pollen tubes did not reveal the distribution 

pattern of CCVs that was detected by electron microscopy (Derksen et al. 1995) but rather 

reflected the cone-shaped accumulation of the entirety of vesicles in the cytoplasm (Parton et 

al. 2001, 2003; Camacho and Malhó 2003). Similarly, the brightly fluorescing ring that was 

occasionally observed after FM staining of rhizoids indicates that the dyes labeled all types of 

vesicles and are therefore not suited for specifically visualizing endocytosis.

In  high-pressure frozen samples of  characean rhizoids,  clusters  of  CCVs were sometimes 

associated with tubular invaginations of the apical PM and single CCVs were found to be 

formed at the ends of these invaginations. The diameter of the invaginations was in the same 

range as the diameter of the CCVs and a protein coat was occasionally detectable at  the 

cytoplasmic surface. These observations give rise to the interpretation that sequential pinching 

off of CCVs from the ends of the invaginations may represent an efficient process for the 

retrieval of membrane material at the endocytosis sites.

Since CCVs lose their characteristic protein coat after vesicle formation, it is impossible to 

identify succeeding vesicle stages and to determine the total number of endocytotic vesicles 

by electron microscopy. Calculating the density of CCVs in electron tomograms of high-

pressure frozen rhizoids relative to the total area of cytoplasm covered by the tomograms 

inevitably underestimates the total  number of vesicles being involved in endocytosis.  The 

density  of  endocytotic  vesicles  is  more  accurately  estimated  when  the  number  of  CCVs 

observed in the tomograms is referred to the volume of the 500 nm-broad cytoplasmic region 

where  they  were  exclusively  observed.  Although  the  analysis  of  vesicle  distribution  in 
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electron  tomograms  provides  very  precise  values  of  vesicle  densities  (see  Table  V)  a 

calculation of growth parameters in the Chara rhizoid is omitted in this study because too 

many factors of the complex vesicle trafficking machinery are unknown, e.g. the time courses 

of vesicle formation, vesicle maturation, coat disassembly, and of exocytotic events as well as 

vesicle functions and intracellular targets of CCVs. Computations of endocytosis rates in tip-

growing cell types based upon values of vesicle densities that were determined in elelctron 

microscopic samples (Emons and Traas 1986; Steer 1988; Derksen et al. 1995) are therefore 

always inaccurate.

In order to determine later stages and intracellular targets of CCV-mediated endocytosis in 

rhizoids it would be helpful to identify the contents of CCVs and to analyze, subsequently, the 

subcellular localization of these contents by immuolabeling experiments. However, the cargo 

material of CCVs in plant cells is still a matter of speculation (Holstein 2002). In protoplasts 

and suspension cultures of plant cells, electron-dense markers were used to track endocytotic 

pathways in electron microscopic studies (Tanchak 1984; Hillmer et al. 1986; Galway et al. 

1993). Although it is unclear if the markers can be internalized by cells that are surrounded by 

a CW it may be worthwile to perform similar experiments with characean rhizoids in order to 

identify cellular compartments being involved in endocytosis.

It is a striking observation of the present study that a second population of CCVs localized to 

the region of the ER aggregate in the center of the growth-organizing Spitzenkoerper complex 

of  rhizoids  (Fig.  31).  These  vesicles  were  identified  in  high-pressure  frozen  and  freeze-

substituted samples by electron tomography and by immunolabeling with a clathrin-antibody. 

They were  significantly  larger  than  the  CCVs at  the  apical  PM but  no  differences  were 

observed regarding the thickness and the structure of the clathrin coat. It is therefore unclear 

whether the vesicle population in the cytoplasm of the ER aggregate represents a different 

class of CCVs or whether the differences in vesicle size between the CCV populations are 

only related to different cargo and transport mechanisms.

In plant cells,  CCVs have generally been implicated in either endocytotic pathways or in 

transport processes from Golgi stacks to vacuoles and prevacuolar compartments (Robinson 

1996; Robinson et al. 2000; Holstein 2002). It is unlikely that the CCVs in the Spitzenkoerper 

cytoplasm represent an accumulation of endocytotic vesicles deriving from the PM since no 

CCVs  were  observed  in  a  broad  cytoplasmic  region  surrounding  the  ER  aggregate.  In 

addition, a role of this vesicle population for transport processes starting at Golgi stacks can 
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be ruled out because Golgi stacks are excluded from the interior of the ER aggregate and 

rarely observed in the apical cytoplasm (this study; Sievers et al. 1965, 1967a, 1967b; Bartnik 

1984; Kiss and Staehelin 1993). Instead, the vesicle accumulation within the ER aggregate 

indicates that the CCVs are involved in transport processes that are closely linked to the ER 

cisternae. CCVs may, for instance, be responsible for inter-cisternal transport mechanisms 

and thereby contribute to the maintenance of specific domains within the large complex of ER 

cisternae.  Since  vesicles  quickly  lose  their  protein  coat,  the  progression  of  the  clathrin-

dependent transport  pathway could unfortunately not be identified.  However, it  cannot be 

ruled out that CCVs in the cytoplasm of the Spitzenkoerper center represent initial stages of 

transport processes occurring over longer distances from the ER aggregate to other cellular 

compartments  in  the  rhizoid.  Alternatively,  the  CCVs  could  be  responsible  for  the 

sequestration  of  contents  deriving  from the  ER  cisternae  that  are  released  upon  specific 

cellular  signals  –  similar  to  transmitter-containing  vesicles  at  the  synapses  of  neurons. 

However, until today CCVs have never been observed to be involved in secretory processes 

but implicated in the reversly oriented mechanisms of membrane recycling instead (Royle and 

Lagnado  2003).  It  will  be  interesting  to  further  investigate  the  function  of  CCVs in  the 

Spitzenkoerper and to unravel their role for tip growth of characean rhizoids. Anyway, the 

identification of CCVs accumulating within the ER aggregate represents a turning point in the 

understanding of the function of CCVs in plant cells which have so far not been implicated in 

ER-related transport processes (Robinson 1996; Robinson et al. 2000; Holstein 2002).

When high-pressure frozen rhizoids were immunolabeled with a clathrin-specific antibody, 

specific  vesicle-like  labeling  was  concentrated  in  the  vicinity  of  MTs  giving  rise  to  the 

conclusion that CCVs are present in this cell region which are transported in a MT-dependent 

manner. The fact that no subapical clathrin vesicles were observed in samples prepared for 

ultrastructural  studies  is  attributed  to  the  limited  resolution  of  conventional  electron 

microscopy that was used for analyses of the subapical region. Investigation of the apical 

cytoplasm of rhizoids has demonstrated that high-resolution electron tomography is required 

for unambiguously identifying CCVs. Alternatively, the vesicles in the subapical cytoplasm 

which were labeled with the clathrin antibody may represent successive stages of CCVs, and 

the loss of the protein coat could explain the failure in ultrastructural detection. In this case, 

the antibody may bind to residual clathrin being present at the surface of the vesicles. This 

consideration would be in accordance with the generally accepted idea that the protein coat of 

CCVs is rapidly disassembled upon vesicle formation and prior to the transport to their target 
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compartments  (Ungewickell  et  al.  1995;  Holstein  et  al.  1996;  Robinson 1996).  However, 

when high-pressure frozen Arabidopsis roots were imunolabeled with the clathrin antibody, 

the prominent structure of the clathrin scaffolds was observed to underlie vesicle-specific 

labeling in cells of the elongation zone (B.-H. Kang, University of Colorado, Boulder, USA, 

personal communication). Similarly to rhizoids, the labeled vesicles were aligned at MTs. 

Therefore, the observations from ultrastructural studies in characean rhizoids and Arabidopsis 

roots question the present idea of CCV-transport but may indicate instead that CCVs travel 

along MTs with  fully  assembled  clathrin  coats,  and  vesicle  uncoating  may occur  shortly 

before fusion with the target membrane.

4.3.2.4 Coated vesicles

In addition to CCVs, a second type of vesicles bearing a protein coat was identified in the 

apical cytoplasm of characean rhizoids by electron tomography. The coated vesicles (CVs) 

are characterized by an unstructured and homogeneously stained protein coat that is totally 

different  from the  clathrin  scaffold  of  CCVs.  CVs have  not  been  detected in  any  of  the 

previous studies investigating the ultrastructure of characean rhizoids or other tip-growing 

cell types and cannot clearly be assigned to any of the common vesicles types found in plant 

cells (Robinson et al. 1998a, Ritzenthaler et al. 2002). Thus, it can only be speculated about 

the nature of the coat-forming proteins and on the cellular functions of CVs.

Although the  differences  in  size  are  not  big,  CVs are  significantly  larger  than  MVs and 

smaller than CCVs. The high electron density of the vesicle contents contrasts with the poor 

staining of material inside MVs but similar to the electron density of the CCV contents. A 

structural or functional connection of CVs and MVs is therefore unlikely. But still, it cannot 

be ruled out that CVs may be related to the transport processes mediated by CCVs, e.g. by 

representing  successive  vesicle  stages  which  are  characterized  by  an  increased  level  of 

condensation of the vesicle contents. CVs share some similarities with COP-coated vesicles 

but cannot definitely be assigned to one of these classes of coated vesicles. CVs that were 

observed in rhizoids are smaller than COP II vesicles of higher plants and possess a thicker 

protein  coat,  whereas  COP I  vesicles  would  be  expected to  contain  material  with higher 

electron density as was found inside the CVs (B.-H. Kang, University of Colorado, Boulder, 

USA, personal communication).
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Since the nature of CVs in the Chara rhizoid remains unclear, it is reasonable to regard the 

CVs as a distinct class of vesicles with specific functions. The accumulation of CVs at the 

periphery of the apical ER aggregate corresponds to the distribution pattern of SVs and MVs 

and underlines the important role of the ER complex for vesicle trafficking. The observation 

that CVs were the only vesicles apart from CCVs that were abundant in central regions of the 

ER aggregate indicates that CVs may be involved in transport processes which are closely 

linked to the ER, e.g. intercisternal transport.

4.3.3 Vacuolar reticulum

When analyzing the ultrastructure of high-pressure frozen characean rhizoids, a prominent 

membrane-encircled compartment that has not been described in any of the previous electron 

microscopic studies of chemically fixed or cryofixed samples was discovered (Sievers 1965; 

1967a,  1967b;  Bartnik  1984;  Kiss  und  Staehelin  1993;  Noecker  2000).  The  failure  in 

detection after chemical fixation was most likely caused by artifactual vesiculation of the 

compartment giving rise to the misinterpretation of the vesiculated segments as large vesicles. 

A similar effect was observed in chemically fixed fungal hyphae (Orlovich and Ashford 1993; 

Ashford 1998).

The polymorphic membrane  system identified in  cryofixed rhizoids consists  of  numerous 

spherical, vesicle-like segments that are interconnected and form an extensive network with 

considerable  dimensions  extending  throughout  the  entire  subapical  cell  region.  The 

compartment  exhibits  striking  similarities  to  the  vacuolar  reticulum  of  fungal  hyphae 

(Shepherd et al. 1993; Allaway et al. 1997; Ashford 1998; Cole et al. 1998) which are, just 

like characean rhizoids, polarized and tip-growing cells. The ultrastructural characteristics of 

the reticulate network, i.e. cellular arrangement, membrane structure, and electron density of 

the lumen are  consistent  in  both cell  types.  In  rhizoids,  however,  the segments  are  more 

uniform in diameter and more often aligned in straight rows.

An  important  argument  for  defining  the  membrane  compartment  in  fungal  hyphae  as  a 

vacuolar  reticulum was  the  specific  labeling  with  fluorescence  dyes  that  are  reported  to 

accumulate in vacuoles (Shepherd et al. 1993; Allaway et al. 1997; Cole et al. 1998). In-vivo 

fluorescence staining demonstrated highly dynamic remodeling and peristaltic movement of 

the vacuolar reticulum in this cell type (Shepherd et al. 1993; Cole et al. 1998; Hyde et al. 

1999).  When living rhizoids were labeled with the vacuole dye DFFDA, a fine,  dynamic 
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network was identified that extended throughout the entire subapical region and, thereby, was 

in accordance with the intracellular distribution of the vacuolar reticulum that was observed 

by electron microscopy. However, the fluorescent network exhibited no spherical segments, 

which does not reflect the structural arrangement in the electron microscopic samples and 

differs from the fluorescence pattern of DFFDA-staining in fungal hyphae (Shepherd et al. 

1993; Cole et al. 1998; Hyde et al. 1999). The pattern of fluorescence in rhizoids resembled 

more the reticulate arrangement of the ER as is observed in a variety of plant cell  types 

(Staehelin 1997; Satiat-Jeunemaitre et al. 1999). It has, however, clearly been demonstrated 

by  electron  microscopy  that  the  ER  in  the  subapical  zone  of  characean  rhizoids  forms 

longitudinally oriented stacks of cisternae rather than a network arrangement (Fig. 19, 20; 

Bartnik 1984; Noecker 2000). In addition, DFFDA is unlikely to label cisternae of the ER 

because the dye has been reported to accumulate selectively in vacuoles (Cole et al. 1998; 

Wilson et al. 1998), and no colocalization of fluorescence was found when fungal hyphae 

were stained with DFFDA and ER-tracker (Cole et al. 2000). If DFFDA labeled the ER in 

rhizoids, one would expect bright fluorescence of the densely packed cisternae of the ER 

aggregate  in  the  apical  region,  which  was,  however,  not  observed.  Instead,  the  dye 

accumulated subsequently in the basal vacuole. These observations provide strong evidence 

that DFFDA labeled indeed the vacuolar reticulum that was identified in electron microscopic 

samples of rhizoids. The differences in the shape of the vacuolar reticulum between electron 

microscopy and fluorescence staining may be attributed to the fact that electron micrographs 

represent static snapshots of a highly dynamic compartment. The spherical segments may be 

undetectable  by  fluorescence  microscopy  in  rhizoids  due  to  the  limited  spatiotemporal 

resolution whereas the larger segments of the vacuolar reticulum in fungal hyphae (Shepherd 

et al. 1993) may be discovered more easily.

In-vivo staining with BCECF, a fluorescence dye that is used as indicator for intracellular pH 

and  was  shown to  accumulate  in  vacuoles of  root  hairs  producing  DFFDA-like  staining 

pattern (Brauer et al. 1995), proved not to be suited for labeling of the vacuolar reticulum in 

rhizoids. The dye did not accumulate in any compartment but instead produced homogeneous 

fluorescence of the entire cytoplasm.

It is a striking observation of the electron microscopic studies of high-pressure frozen rhizoids 

that  the  vacuolar  reticulum  was  found  to  be  closely  associated  with  MTs.  The  distance 

between the membranes of the segments and MTs was in the range of 10 nm and even less, 

which would be sufficient for molecular interaction to occur. Similarly, the segments of the 
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reticulum were  always  accompanied  by  MTs  in  electron  microscopic  samples  of  fungal 

hyphae, and MT-disrupting drugs, e.g. oryzalin, were shown to strongly affect the structural 

and dynamic properties of the reticulum in living samples whereas actin-disrupting drugs had 

no effect (Hyde et al. 1999). These observations support the idea that the morphology and the 

motility of the vacuolar reticulum depend on MTs. Since actin filaments were not detectable 

in the subapical regions of rhizoids (this study) and hyphae (Hyde et al. 1999), however, it 

cannot be ruled out that actin microfilaments may also be associated with segments of the 

vacuolar reticulum and contribute to the regulation of morphological and dynamic properties. 

Fine, ring-like structures which were occasionally observed to encircle tubular connections of 

the vacuolar reticulum in rhizoids may represent aggregates of dynamin molecules that could 

be responsible for mediating peristaltic motility of the compartment  that  is  reported from 

fungal  hyphae  (Shepherd  et  al.  1993).  However,  additional  work  including  fluorescence 

microscopy  and  electron  microscopic  ultrastructural  analyses  of  inhibitor-treated  cells  is 

required to unravel the dynamic properties of the vacuolar reticulum in characean rhizoids.

Although the membrane network of interconnected spherical segments in the Chara rhizoid 

has been clearly identified as a vacuolar reticulum based upon the striking similarities with 

the corresponding compartment in fungal hyphae, the cellular functions remain unclear. In 

hyphae, several roles of the vacuolar reticulum are discussed including material transport and 

endosomal function (Shepherd et al. 1993; Allaway et al. 1997; Ashford 1998; Cole et al. 

1998). 

First of all, the specialized vacuolar network was suggested to constitute a transport pathway 

for intracellular bulk flow of material (Shepherd et al. 1993; Ashford 1998; Cole et al. 1998). 

According  to  this  theory,  cargo  that  was  delivered  to  the  vacuolar  reticulum  would  be 

transported in  the lumen of  the  compartment  by peristaltic  movement  of  the surrounding 

membrane. Thereby, intracellular transport would be significantly accelerated compared to 

diffusion without requiring translocation of membrane material or membrane recycling. This 

transport pathway would of course be less specific than vesicular transport since all contents 

would be transported in the same direction. Nonetheless, delivery of the cargo to specific 

target  domains  of  the  reticulum  could  be  accomplished  by  receptor-mediated  sorting 

processes that are similar to those directing molecules into vesicles. In characean rhizoids, 

bulk flow of material  in the lumen of the vacuolar reticulum may represent a simple but 

efficient  pathway  for  long-distance  transport  in  the  subapical  region.  By  providing  an 
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alternative to vesicle transport,  the vacuolar reticulum may contribute to the variability of 

individually regulated intracellular transport processes. Extended tubular vacuoles that share 

some  structural  and  functional  similarities  with  the  vacuolar  reticulum  have  also  been 

identified  in  tip-growing  pollen  tubes  and  were  disussed  to  be  involved  in  transport 

mechanisms (Derksen et al. 2002; Hicks et al. 2004).

The role of the vacuolar reticulum as an endosomal compartment has been discussed in great 

detail for fungal hyphae (Ashford 1998). Accordingly, the vacuolar membrane system was 

regarded as the equivalent to endosomal-lysosomal networks described in animal cells based 

upon similarities in structure and motility. In the present study, striking consistencies were 

observed  in  the  ultrastructure  of  the  vacuolar  reticulum  and  of  MVBs  regarding  the 

appearance of the membranes, the electron density of the lumen and the existence of internal, 

vesicle-like particles. MVBs that are labeled by endocytotic (Hillmer et al. 1986, Galway et 

al. 1993) and vacuolar markers (Record and Griffing 1988; Tse et al. 2004) are generally 

considered  to  represent  a  prevacuolar  compartment  that  is  involved  in  the  endocytotic 

pathway of plant cells (Ashford 1998; Robinson et al. 1998b; Robinson et al. 2000;  Seguí-

Simarro  and Staehelin  2005).  Based  upon the  ultrastructural  similarities  with  MVBs,  the 

present  study supports  an endosomal  function of  the  vacuolar  reticulum although in-vivo 

staining with FM dyes which are widely used to study endocytosis did not label the vacuolar 

reticulum in rhizoids (this study) and fungal hyphae (Cole et al. 1998). However, as discussed 

above, the specificity of FM dyes for labeling of endocytotic compartments is questionable 

and results of FM staining should therefore be regarded with caution in rhizoids.

Interestingly, Noecker (2000) identified epitopes of arabinogalactan-proteoglycans (AGPs) in 

the lumen of large, vesicle-like structures in the subapical cytoplasm of rhizoids. Based upon 

the  electron  microscopic  observations  from the  present  study it  becomes  clear  that  these 

structures that were misinterpreted by Noecker as MVBs, represent segments of the vacuolar 

reticulum which was vesiculated during preparation. Since AGPs are CW components that 

underlie a high turn-over rate and are internalized by endocytosis, their presence in the lumen 

of the vacuolar reticulum supports the idea that this compartment is involved in endocytosis. 

It  will  be  interesting  to  see  if  additional  contents  of  endocytotic  compartments  can  be 

identified  in  the  reticulate  membrane  compartment.  Comprehensive  immunolabeling 

experiments with various antibodies raised against a wide range of proteins are required for 

clarifying  whether  the  vacuolar  reticulum  in  characean  rhizoids  is  an  endosomal  or  an 

intracellular transport compartment or a combination of both.
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4.4 High-pressure freeze fixation and freeze substitution for 
immuno-electron microscopy

Immuno-electron microscopy offers the opportunity to analyze the subcellular localization of 

proteins as well as the structural and functional interrelation of cellular compartments at a 

high level of resolution. It is, therefore, excellently suited for characterizing in great detail the 

molecular and structural features of characean rhizoids and protonemata which are related to 

gravity  sensing  and  gravity-oriented  tip  growth.  In  the  past,  the  application  of  immuno-

electron microscopy proved challenging due to the difficulties in preparing decent electron 

microscopic samples. When chemical fixation was used, artefactual alteration of the protein 

conformation often interfered with the specific binding of antibodies to the corresponding 

protein  epitopes.  The  development  of  cryofixation  techniques  has  greatly  improved  the 

quality  of  samples  for  immuno-electron  microscopy.  Since  all  cell  components  are 

immobilized fast and simultaneously during cryofixation and epitopes are not affected during 

freeze  substitution  with  low amounts  of  chemical  reagents,  the  samples  exhibit  excellent 

preservation  of  both,  ultrastructure  and  protein  conformation  (Ichikawa  et  al.  1989; 

Monaghan et al. 1998; Giddings 2003). Recent immunolabeling experiments using cryofixed 

samples have enhanced the knowledge about cellular processes in various cell  types (e.g. 

Otegui and Staehelin 2000, 2004; Otegui et al. 2001, 2002). Until today, however, little is 

known about the subcellular distribution and structural arrangement of proteins that regulate 

the mechanisms of tip growth in polarized cells (Geitmann and Emons 2000; Hepler et al. 

2001; Braun and Limbach 2005a). Studies using immunogold labeling in chemically fixed 

(Noecker 2000) and cryofixed samples (Kiss and Staehlin 1993) of characean rhizoids are 

rare and predominantly focused on the distribution of CW components but did not provide 

information about the localization of cytoplasmic proteins.

In the present study, a protocol was developed for the preparation of rhizoid samples for 

immuno-electron  microscopy  that  is  based  upon  high-pressure  freeze  fixation  and  freeze 

substitution.  This technique significantly improved the ultrastructural  preservation and the 

conservation of protein conformation as evidenced by the specific immunogold localization of 

actin microfilament bundles and CCVs (see 4.3.1.3 and 4.3.2.3). Since immunolabeling of 

actin  microfilaments  proved  difficult  in  various  cell  types  due  to  the  sensitivity  of  actin 

epitopes towards chemical fixation and cryofixation (Schopfer and Hepler 1991; Ding et al. 

1992; Geitmann and Emons 2000), information about the subcellular actin arrangement which 
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is crucial for the regulation of tip growth mechanisms is still scarce (Hepler et al. 2001). The 

successful  labeling  of  actin  microfilaments  in  the  characean  rhizoid  underlines  the  high 

quality of the samples and promises a detailed description of the actin architecture in a tip-

growing cell in the near future. 

For freeze substitution of high-pressure frozen rhizoids marginal amounts of glutaraldehyde 

and uranyl acetate were used and osmium tetroxide and tannic acid were completely omitted 

causing low overall  contrast  of the samples.  The poor staining hampered handling of the 

samples  during  freeze  substitution  and  sectioning  and made  the  identification  of  cellular 

compartments difficult. Enhanced contrast of the samples would help to avoid mechanical 

damage of the rhizoids at the outermost tip and would facilitate the interpretation of labeling 

patterns that could be assigned more clearly to cellular structures and compartments. It should 

therefore be tested if low concentrations of osmium tetroxide can be added to the substitution 

medium without affecting the specific binding of antibodies to the protein epitopes. In this 

study,  Lowicryl  HM20 was used as  embedding resin which has  been reported in  several 

studies  to  exhibit  the  best  properties  for  immuno-electron  microscopy  and  concomitant 

ultrastructural  studies  of  all  resins  tested  (Ichikawa  et  al.  1989;  Monaghan  et  al.  1997; 

Giddings 2003). However, due to health risks when working with the highly toxic Lowicryl it 

is  recommended  to  test  alternative  resins  for  their  applicability  to  immunogold  labeling 

experiments.

The newly developed protocol for the preparation of rhizoid samples for immuno-electron 

microscopy not  only  provides  interesting  results  regarding  the  actin  arrangement  and  the 

mechanisms of CCV transport but also establishes a basis for further studies aiming at the 

functional  characterization  of  cellular  proteins  and  compartments.  It  will  be  helpful  for 

elucidating the role of actin, actin-binding proteins and calcium channels in the tip growth 

machinery and for determining the cellular functions of the different vesicle types and of the 

vacuolar  reticulum in  characean  rhizoids.  In  addition,  this  technique  has  the  potential  to 

upgrade the understanding of the mechanisms of gravity sensing and gravity-oriented growth 

significantly by providing the precise subcellular localization of gravireceptor molecules and 

of additional components of the gravitropic signaling pathway, e.g. the glucosyltransferase 

which was found to be differentially expressed in rhizoids upon gravistimulation.

122



5 SUMMARY
In the present study, molecular, cellular, and functional aspects of gravity sensing and gravity-

oriented tip  growth were studied in  characean rhizoids and protonemata using innovative 

experimental  tools,  e.g.  gene expression analysis and high-resolution electron microscopy. 

The results provide new insights into ultrastructural characteristics of polarized plant cells and 

into mechanisms of gene regulation and receptor activation in gravity sensing. 

The optimization of protocols for the isolation of mRNA from rhizoids and protonemata lead 

to the discovery and characterization of several gene products. Two characean genes were 

sequenced at full length and identified as 60S ribosomal proteins of the L14 and L27 family, 

repectively. The proteins encoded by these housekeeping genes are crucial components of the 

protein synthesis machinery of ribosomes. The partial sequencing of a myosin from characean 

rhizoids represents the initial step of a molecular analysis of the various protein isoforms and 

their manifold cellular functions in tip-growing plant cell types. Differential display analysis 

of gene expression in gravistimulated and in unstimulated rhizoids provided several partial 

sequences  of  genes  the  expression  levels  of  which  were  significantly  altered  upon 

gravistimulation. These genes are implicated in the gravitropic signaling pathway. One of the 

genes  that  was  up-regulated  in  gravistimulated  cells  was  characterized  at  full  length  and 

identified to encode a glucosyltransferase. This enzyme, which is involved in the synthesis of 

cell  wall  components,  is  likely to  represent  a  target  of gravitropic  signaling in  characean 

rhizoids, and regulation of gene expression may cause changes in CW properties during the 

gravitropic curvature response.

Experiments under microgravity conditions provided by parabolic flights of the A300 Zero-G 

aircraft and of sounding rockets were performed to investigate specific aspects of the early 

processes  of  gravity  sensing.  For  the  first  time  in  a  gravity-sensing  plant  cell  type  the 

molecular  forces  restricting  statolith  sedimentation  and  the  functional  mechanism  of 

gravireceptor  activation  were  determined  in  rhizoids  and  protonemata.  Centrifugal  forces 

were applied to vertically growing rhizoids and protonemata during the microgravity phase of 

the MAXUS-5 sounding rocket flight.  Lateral  acceleration levels of 0.14g,  but not 0.05g, 

resulted  in  a  displacement  of  statoliths  and  forced  individual  statoliths  to  settle  onto  the 

subapical  PM  where  they  initiated  the  gravitropic  response. Since  actin  controls  the 

positioning of statoliths and restricts statolith sedimentation in these cells, it can be calculated 

that lateral actomyosin forces in a range of 2 × 10-14 N act on statoliths to keep them in place. 
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5   SUMMARY

These forces represent the threshold value that has to be exceeded by any lateral acceleration 

stimulus  for  statolith  sedimentation  and  gravisensing  to  occur.  When  rhizoids  were 

gravistimulated during parabolic  plane flights,  the curvature  angles  of  the flight  samples, 

whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, 

were not different from those of in-flight controls. However, in ground control experiments, 

curvature responses were drastically reduced when the contact of statoliths with the plasma 

membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. 

It can be concluded that graviperception in characean rhizoids requires contact of statoliths 

with  membrane-bound  receptor  molecules  rather  than  pressure  or  tension  exerted  by  the 

weight of statoliths. 

After the functional mechanism of gravirecptor activation has been clarified, the protocols for 

high-pressure freeze fixation and 3D dual-axis electron tomography of characean rhizoids that 

were  established  in  this  study  provide  powerful  experimental  applications  to  analyze  the 

structural principles underlying gravity sensing and tip growth. The clustered distribution of 

clathrin-coated  vesicles  (CCVs)  at  the  apical  plasma  membrane  strongly  implicates  that 

endocytotic  processes  mediating  the  retrieval  of  excess  membrane  material  are  not 

accomplished over the entire membrane area but are confined to distinct ‘endocytosis sites’. 

The  function  of  a  second  population  of  CCVs  whose  distribution  was  restricted  to  the 

cytoplasm  within  the  central  region  of  the  Spitzenkoerper  is  less  clear.  However,  since 

vesicles are closely associated with the apical endoplasmic reticulum (ER) aggregate, it  is 

assumed that CCVs mediate transport processes proceeding from the ER – a function that has 

not  been  assigned  to  CCVs  in  plant  cells  so  far.  In  the  subapical  region  of  rhizoids  a 

prominent  compartment  was  identified  by  fluorescence  labeling  and  electron  microscopy 

consisting of spherical segments that are interconnected and form an extensive network. The 

vacuolar reticulum may either mediate long-distance transport of material in the lumen of the 

compartment or represent an endosomal compartment that could be a target of endocytotic 

CCVs. 

The  results  presented  in  this  study  substantially  contribute  to  the  understanding  of  the 

mechanisms of endocytosis and intracellular transport in polarized plant cells. The progress 

that has been made in unraveling early processes of gravity sensing in characean rhizoids and 

protonemata underlines the significance of single-celled model systems for investigating how 

plants use gravity as a guide for orientation.
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Table VI Primers 
All primers that were used in the present study were purchased from MWG unless otherwise stated. Stock 
solutions  with primer concentrations  of  12 µM (random primers),  80 µM (T17mod) or  100 µM (all  other 
primers) were prepared with sterile water or nuclease-free water (for RNA applications) and stored at –20° C. 
Concentrations  for  use  are  indicated  for  each  application  under  2.7.  Oligonucleotide  sequences  are  listed 
according to the IUB one letter code.

Name Sequence Modificationa

Oligo dT-anchor primer

T17mod T(17)V 5’ 6-FAM–
CGGGCCTCTTCGCTATT

Random primers

B04modb GGACTGGAGT 5’ GCCCGGAGAAGCGAT–

B05modb TGCGCCCTTC 5’ GCCCGGAGAAGCGAT–

B07modb GGTGACGCAG 5’ GCCCGGAGAAGCGAT–

B09modb TGGGGGACTC

B16modb TTTGCCCGGA 5’ TAGCTCACTCATTAGG–

Sequencing primers

M13F GTAAAACGACGGCCAG

M13R CAGGAAACAGCTATGAC

Gene-specific primers

B05-273FAMfor TCTATTGATAGCCGTTTCTTTCGTC 5’ 6-FAM–

B05-273rev TGTGAAAACCAAAACCGTTTCTC

B05-273for02 TCTCAGCCAAAGGACCTGTCAC

B16-292FAMfor TTTGCCCGGAATCTGACTATTG 5’ 6-FAM–

B16-292rev TCAAATTTCCAAATCGGAGAGG

cgmyo01forc AGAGCTGAGAACGAGACACTC

cgmyo02forc GACGGAGCCTGTGATTACAAC

cgmyo03forc CTCAACTAGAGCAGGAACGATG

cgmyo01revc GCTCTCACTCCGAATATGTTGG

RACE primers

RACEmyo_GSP1 GCTCTCACTCCGAATATGTTG

RACEmyo_GSP2 GCTGGGCATCTGGATAGGTTGTA

RACEmyo_GSP3 GCTTGATTCGCTGCACATCTGGATAG

RACEB05-273_GSP1 ACTGGTAGCTCGAAAACATC

RACEB05-273_GSP2 AGCGACACAGCAGCAACTGATAC

RACEB05-273_GSP3 CGCGACGAAAGAAACGGCTATCAA

RACEB16-292_GSP1 AGCGTCCATCTCCAATC

RACEB16-292_GSP2 CGATTCCCACCAAAACATACCT
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RACEB16-292_GSP3 AACCCGAACACCGTCCTGGATAAAC

RACEMyo_GSP1# GGCCTTTGCCTGAGCTAA

RACEMyo_GSP2# TGCCTCACGCTCCTTCGCCAAT

RACEMyo_GSP3# CGCTCCTTCGCCAATAACACCTTCA

RACEB16_GSP1# CCATTCTCTCGTCTTGCTTGA

RACEB16_GSP2# TCACTTGACATCACCCCGACCAAT

RACEB16_GSP3# TTCGTGTGAGGATAACGGGTCAA

RACEB16_GSP1* GCAACATCCTGAAGAAAGAC

RACEB16_GSP2* GGAACGTGTAGGTGACCCAGAT

RACEB16_GSP3* GTAGGTGACCCAGATCGGGATGTTC

RACEB16_GSP1X CATCTTCCCAGCCATAGAC

RACEB16_GSP2X GATTGAACAACCCACCGAGGAAGA

RACEB16_GSP3X CAACCCACCGAGGAAGATAGCGTAA

B07_GSP1 TCCTGTCTTGAACCTCTC

B07_GSP2 CGAGGATCTTCTTCACCTCCTTTC

B07_GSP3 TCACCTCCTTTCTGGTCTCCACCTT

B16-275_GSP1 GTAGACCTCCAAATGACATC

B16-275_GSP2 ATGACATCTCCGGGCAAACCTA

B16-275_GSP3 ACATCTCCGGGCAAACCTAATGAGT

Myo_GSP1 GACCTCTTCGTATCCAGAAT

Myo_GSP2 CCGCAGGGACACTTTTGTCTTG

Myo_GSP3 TGACGGCCCTTGAGGTTGCATTTC

B16-275X_GSP1 CCTGTCCATCACCAACTC

B16-275X_GSP2 AGAGTCCACCCAAACCCATGTC

B16-275X_GSP3 CACCCAAACCCATGTCCATTGAGTC

B07-481_GSP1 GGCACTTGGCACATAGTT

B07-481_GSP2 CCACCTCAAAACCTGCAGCACAC

B07-481_GSP3_3 AGCACACGACCCCAGCATTTCAG
a 6-FAM (6-carboxyfluorescein)
b Purchased from Carl Roth
c Purchased from Operon Biotechnologies (Huntsville, USA)
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Table VII Best matches from BLASTX alignment of the nucleotide sequence of B16-292
Proteins are listed with their corresponding gene bank accession number and the organism from 
which they  were  isolated.  The  level  of  homology with the  translated nucleotide  sequence  of  
B16-292 is indicated by the e-value of each alignment. 

Acc. no. Protein Species e-value

NP_194887.1 glycosyl transferase family 2 protein Arabidopsis thaliana 4e–122

AAD23884.1 putative glucosyltransferase Arabidopsis thaliana 9e–121

BAB01433.1 glucosyltransferase-like protein Arabidopsis thaliana 1e–119

CAB88664.1 putative glucosyltransferase Cicer arietinum 6e–119

XP_475689.1 putative glucosyltransferase Oryza sativa 2e–117

NP_187389.1 glycosyl transferase family 2 protein Arabidopsis thaliana 1e–116

BAD34098.1 CSLC2 Oryza sativa 1e–116

XP_476455.1 putative CSLC9 (cellulose synthase-like) Oryza sativa 7e–116

AAL38526.1 CSLC9 Oryza sativa 7e–116

AAT85054.1 putative glycosyl transferase Oryza sativa 9e–116

Table VIII Best matches from BLASTX alignment of the nucleotide sequence of B05-273
Proteins are listed with their corresponding gene bank accession number and the organism from 
which they  were  isolated.  The  level  of  homology with the  translated nucleotide  sequence  of  
B05-273 is indicated by the e-value of each alignment.

Acc. no. Protein Species e-value

BAA83469.1 Csf-1 Cucumis sativus 2e–43

AAB97098.1 hydroxyproline rich glycoprotein PsHRGP1 Pisum sativum 8e–42

XP_466813.1 putative hydroxyproline-rich glycoprotein Oryza sativa 2e–41

P55844 Probable  60S  ribosomal  protein  L14 
(Hydroxyproline-rich glycoprotein HRGP1)

Pisum sativum 3e–41

XP_473172.1 OSJNBb0070J16.13 Oryza sativa 9e–41

ABA40467.1 glycoprotein-like protein Solanum tuberosum 9e–41

BAD22765.1 glycoprotein Bromus inermis 1e–40

AAD25645.1 60S ribosomal protein L14 Arabidopsis thaliana 3e–39

CAB79564.1 ribosomal protein L14-like protein Arabidopsis thaliana 3e–38

CAC36099.1 putative ribosomal protein L14 Takifugu rubripes 1e–30
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Table IX Best matches from BLASTX alignment of the nucleotide sequence of B07-492
Proteins are listed with their corresponding gene bank accession number and the organism from 
which they  were  isolated.  The  level  of  homology with the  translated nucleotide  sequence  of  
B07-492 is indicated by the e-value of each alignment.

Acc. no.r Protein Species e-value

AAA86952.1 ribosomal protein L27 homolog Pisum sativum 1e–47

CAA48289.1 ribosomal protein L27 Pyrobotrys stellata 2e–47

CAA50035.1 ribosomal protein L27 Pisum sativum 4e–47

AAA86951.1 ribosomal protein L27 homolog Pisum sativum 3e–46

BAA96367.1 ribosomal protein L27 Panax ginseng 4e–45

NP_193236.1 60S ribosomal protein L27 Arabidopsis thaliana 1e–44

AAN15737.1 putative ribosomal protein L27 Arabidopsis thaliana 3e–44

AAM63601.1 ribosomal protein L27, putative Arabidopsis thaliana 4e–44

XP_464969.1 putative 60S ribosomal protein L27 Arabidopsis thaliana 2e–41

AAQ54645.1 60S ribosomal protein RL27 Oikopleura dioica 2e–41
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