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A. Introduction 

 

Thiosulfate, together with sulfide, is a very abundant reduced sulfur compound and can be 

degraded to different products, mostly by bacterial action. Being of intermediate oxidation 

state, it plays an important role in the sulfur cycle. In dissimilatory sulfur metabolism 

thiosulfate can be used as electron donor or as electron acceptor. Thiosulfate can be produced 

by chemical oxidation of H2S, FeS and FeS2 (Chen and Morris, 1972; Goldhaber, 1983). A 

biological source for thiosulfate is the fermentation of taurine, together with the potential 

fermentation of other organosulfonates in anoxic environments (Denger et al., 1997). 

 

A number of ways for the degradation of thiosulfate have been discussed in the literature 

(Brune, 1989; Brune, 1995b).  

One possibility is the oxidation to tetrathionate catalysed by a thiosulfate:acceptor 

oxidoreductase. This enzyme has been isolated from organisms like Allochromatium vinosum, 

thiosulfate-oxidizing strains of Chlorobium limicola and from Rhodopseudomonas palustris. 

The first enzyme isolated originated from A. vinosum (Smith, 1966) and exhibited 

tetrathionate formation activity only under slightly acidic conditions with an optimal pH value 

of pH 5.0. The enzyme was inactive at a neutral pH value of pH 7.0. The high-potential iron-

sulfur-protein (HiPIP) was found to be an effective electron acceptor for this enzyme 

(Fukumori and Yamanaka, 1979). A seemingly different thiosulfate:acceptor oxidoreductase 

was also isolated from A. vinosum, which catalysed the same reaction, but with an optimal pH 

value of pH 8.0 and a c-type cytochrome c550 as optimal electron acceptor. The exact reaction 

mechanism, however, remained unclear (Schmitt et al., 1981). Recently, the 

thiosulfate:acceptor oxidoreductase responsible for tetrathionate formation in A. vinosum has 

been characterized in detail (Sperling, 2001). The protein is constitutively produced and 

soluble in the periplasm. It has been purified from the organism, together with a protein 

homologous to nucleoside diphosphate kinases, and contains a heme c554 as prosthetic group. 

The catalysed reaction follows a ping-pong-bi-bi mechanism, first releasing the produced 

tetrathionate before the transfer of the obtained electrons from the enzyme takes place. This 

enzyme is in all probability identical to the enzymes described by Smith and Fukumori and 

Yamanaka. 
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The enzyme isolated from C. limicola exhibited similarity to both enzymes from A. vinosum, 

as its pH optimum was in the slightly acidic region (pH 6.0) and a complex of two c-type 

cytochromes was used as effective electron acceptor (c551 and c555) (van Grondelle et al., 

1977). Thiosulfate:acceptor oxidoreductases catalyse the oxidation of thiosulfate to 

tetrathionate in a two electron step without the release of protons. However, this reaction 

mechanism potentially is not the initial step for a complete degradation of thiosulfate to 

sulfate, which would yield eight electrons altogether and release ten protons.  

 

Rhodaneses and thiosulfate reductases, the second enzyme group potentially responsible for 

thiosulfate degradation, are quite similar in their reaction mechanism. Both enzymes function 

as thiosulfate:acceptor sulfur transferases, releasing sulfite from thiosulfate and transferring 

the sulfane sulfur to an acceptor molecule (Le Faou et al., 1990). The first step is the release 

of sulfite from the thiosulfate molecule and the production of persulfides under the 

participation of thiol acceptors. The persulfide then reacts with a second SH - group under the 

formation of a disulfide and the release of H2S. The difference between rhodanese and 

thiosulfate reductase lies in the ability to use cyanide (CN
-
) as a thiophilic acceptor. While for 

rhodaneses CN
-
 works well, thiosulfate reductases are unable use CN

-
. Rhodaneses are fairly 

widespread (e.g. found in plants, animals as well as in bacteria) and are thought to function 

either in cyanide detoxification or in the formation of sulfide for Fe-S-clusters in iron-sulfur 

proteins (Cerletti, 1986; Cereda et al., 2003). For the rhodanese purified from bovine liver 

mitochondria cyanide is the preferred acceptor forming thiocyanide (SCN
-
). Thiosulfate 

reductases are far more difficult to examine because of their instability, with the one 

exception of the thiosulfate reductase isolated from yeast, which uses glutathion as a 

thiophilic acceptor (Chauncey et al., 1987).  

 

A third possibility for thiosulfate degradation would be a hydrolytic cleavage, which is quite 

favourable under the energetic point of view. This reaction was originally suggested by 

Trüper and Pfennig (1966) and would lead to the direct formation of H2S and SO4
2-
. The 

bacterium Desulfuvibrio sulfodismutans derives energy from this reaction, although in this 

organism it presumably takes place in two steps (Bak and Pfennig, 1987). The first hydrolytic 

step leads to the formation of H2S and SO3
2-
 from thiosulfate. The sulfite is then further 

oxidized to sulfate by APS reductase and ADP sulfurylase. At present no enzyme is known to 

catalyse the direct hydrolysis of thiosulfate to sulfate and H2S in a one step reaction.  
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A fourth pathway to degrade thiosulfate produces sulfate as the only end product and is 

catalysed by a periplasmic multienzyme system. This protein complex was first detected and 

examined in two chemotrophic Paracoccus strains (Paracoccus versutus by Lu and Kelly 

(1983b) and Paracoccus pantotrophus by Friedrich and coworkers (Chandra and Friedrich, 

1986)). The purified and reconstituted enzyme system from P. versutus, which in vitro 

catalyses a c-type cytochrome  dependent thiosulfate oxidation, consists of four different 

subunits: enzyme A, enzyme B and the two c-type cytochromes c551 and c552.5 (Lu and Kelly, 

1983c; Kelly et al., 1997). Early experiments suggested the involvement of a rhodanese to 

obtain thiosulfate oxidation by the reconstituted complex in vitro (Lu and Kelly, 1983b). 

Further purification, however, achieved a separation of rhodanese activity and the enzyme 

activity essential for a functional enzyme complex (Lu and Kelly, 1983a). 

 

The group of Friedrich performed extensive analyses of thiosulfate oxidation in the closely 

related organism P. pantotrophus, detecting a multienzyme system similar to that of 

P. versutus, which is responsible for thiosulfate oxidation to sulfate. It is encoded by a sox 

gene cluster consisting of 15 open reading frames (Wodara et al., 1994; Wodara et al., 1997) 

(see Figure A1).  

 

SR V

 

Figure A1: The sox gene cluster in P. pantotrophus GB17 (modified after Friedrich et al., 2001) 

 

Four of the encoded proteins (SoxXA, SoxYZ, SoxB and SoxCD) could be reconstituted in 

vitro to form a functional multienzyme system. The Sox complex in P. pantotrophus is 

essential for thiosulfate and sulfide oxidation in vivo (Chandra and Friedrich, 1986) and 

catalyses an in vitro reduction of cytochrome c coupled to the oxidation of thiosulfate, sulfide, 

sulfite and elemental sulfur (Friedrich et al., 2000; Rother et al., 2001). The reconstituted 

periplasmic Sox multienzyme system oxidizes its sulfur substrates to sulfate without the 

formation of free intermediates.  

The heterodimeric SoxYZ has been identified as the substrate binding molecule of the 

complex (Quentmeier and Friedrich, 2001). The sulfur compound is coupled to a conserved 

cysteine residue, located in a new consensus motif at the C-terminus of SoxY. The substrate 
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coupling takes places under participation of SoxXA. SoxXA is a heterodimeric c-type 

cytochrome, that contains three heme binding sites. SoxX is a monoheme protein subunit, 

while the second subunit SoxA is a diheme. SoxXA is reduced while oxidatively coupling the 

sulfur compound to the substrate binding molecule SoxYZ. The monomeric protein SoxB has 

been identified as a manganese-containing sulfate thiol esterase or sulfate thiol hydrolase 

(Friedrich et al., 2005; Epel et al., 2005) and is responsible for hydrolytic cleavage of a 

sulfate group from the bound sulfur substrate. If thiosulfate is the bound substrate, the release 

of the outer sulfone sulfur as sulfate leaves the inner sulfane sulfur behind, still bound to the 

cysteine residue of SoxY. The sulfane sulfur is then oxidized by SoxCD, that acts as a sulfur 

dehydrogenase. SoxCD is a α2β2 tetramer, composed of the molybdoprotein subunit SoxC 

and the diheme cytochrome c subunit SoxD (Quentmeier et al., 2000). Further action of SoxB 

finally releases the sulfane sulfur in form of a second sulfate molecule. Thereby the substrate 

binding molecule SoxYZ is restored, and the circular reaction mechanism can start again with 

a new substrate molecule (Friedrich et al., 2001). The model proposed for the reaction 

mechanism is demonstrated in Figure A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2: Proposed mechanism for the Sox multienzyme complex in P. pantotrophus (modified after 

Friedrich et al., 2001). 

heme c 

heme c 

H2O 

2 e
-
 

H2O 

3 H2O 

6 e
-
 



A: Introduction 5

 

Apart from the four proteins forming the in vitro reconstituted complex, in vivo also other Sox 

proteins play a more or less essential role in thiosulfate oxidation in P. pantotrophus.  

The open reading frame soxV encodes a protein with homology to CcdA in P. pantotrophus, 

involved in c-type cytochrome formation. The inactivation of soxV, however, led to a lack of 

growth on thiosulfate or molecular hydrogen, while cytochrome c formation remained 

unaffected. The inactivation of soxV also caused an inhibition of soxW expression, the latter 

encoding a periplasmic thioredoxin (Bardischewsky and Friedrich, 2001).  

The inactivation of soxF, encoding a periplasmic flavoprotein, had a less substantial effect, as 

thiosulfate oxidation remained possible (Rother et al., 2001). SoxF exhibited sulfide 

dehydrogenase activity in vitro (Quentmeier et al., 2004).  Additionally, a novel activity has 

been proposed for the protein, as it appears to have an activating effect on the in vitro 

reconstituted Sox enzyme system. If the SoxYZ component has been separately inactivated by 

reduction before the reconstitution, the potentially redox-balancing function of SoxF leads to 

an active enzyme complex (Friedrich et al., 2005).  

The proteins encoded by soxR and soxS, predicted to be a transcriptional regulator and a 

periplasmic thioredoxin, respectively, are involved in the regulation of sox gene expression. 

The protein SoxR has been shown to act as a repressor for sox gene expression, while on the 

other hand the protein SoxS is essential for full expression (Rother et al., 2005). Whether the 

proteins encoded by soxE, soxG and soxH play an essential role in the thiosulfate-oxidizing 

Sox multienzyme complex still remains to be examined in detail.  

 

The Sox system appears to be widespread. A phylogenetic and distributional examination of 

the Sox system in different prokaryotes was performed with soxB as the indicator gene (Petri 

et al., 2001). It is found in green sulfur bacteria as well as in different groups of 

proteobacteria. The thermophilic bacterium Aquifex aeolicus also contains the gene soxB. 

Because of the increasing amount of partial or complete genome sequences, more sox-gene 

containing organisms will in all probability be identified. The presence of other sox genes has 

been demonstrated in a couple of organisms, some of which exhibit quite significant 

differences in comparison to the “model organism” P. pantotrophus, either concerning 

presence or absence of genes or the arrangement of the sox genes (Friedrich et al., 2001; 

Friedrich et al., 2005).  
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Differences can also be observed on the basis of specific protein characteristics. When a 

closer look is taken at the heterodimeric protein SoxXA, two major groups of organisms can 

be established, based on the heme content of the SoxA subunit. One group exhibits two heme 

binding sites in the SoxA sequence (like P. pantotrophus (Friedrich et al., 2000) or 

Rhodovulum  sulfidophilum (Appia-Ayme et al., 2001)), the other group only contains one 

heme binding site in SoxA, e.g. in Starkeya novella. Only a fairly conserved cysteine residue 

remains of the second heme binding site in SoxA, which has been demonstrated to form a 

disulfide bridge (Kappler et al., 2004). The protein SoxXA has been crystallized from the 

phototrophic bacterium R. sulfidophilum (Bamford et al., 2002a; Bamford et al., 2002b). 

Based upon the obtained structure, a model for the putative electron transfer route through the 

protein has been proposed. The heme-heme distances have been determined in the 

heterodimer, thereby demonstrating, that one heme group of SoxA is potentially not involved 

in electron transport. The distance between the heme in SoxX and the C-terminal heme in 

SoxA is small enough for electron tunnelling effects. The N-terminal heme in SoxA, however, 

is in too great a distance to allow electron tunnelling. This heme group, that is potentially not 

involved in electron transfer, represents the one, whose binding site is missing in one group of  

SoxA proteins.  

 

 

The organism Allochromatium vinosum is a Gram-negative rod that belongs to the family 

Chromaticeaea in the group of γ-proteobacteria. The natural habitats of this purple sulfur 

bacterium are environments with fresh or salt water, that contain hydrogen sulfide (Pfennig 

and Trüper, 1989). Under anoxic conditions A. vinosum grows phototrophically in the light, 

but also has the possibility to grow facultatively chemoautotrophic or mixotrophic under 

micro- to semioxic conditions (Kämpf and Pfennig, 1980). The bacterium contains a vesicular 

photosynthetic membrane system and performs anoxygenic photosynthesis. As electron 

donors for this process a broad range of substrates can be used. Apart from reduced sulfur 

compounds like thiosulfate, sulfide, polysulfides, sulfur and sulfite also substrates like 

molecular hydrogen, formiate, acetate, propionate, pyruvate, fumarate, malate and succinate 

are used (Pfennig and Trüper, 1989). As the organism is accessible for genetic manipulation 

via conjugation (Pattaragulwanit and Dahl, 1995) and electrotransformation (Hensen, 

unpublished) and utilizes a broad substrate spectrum, it presents a rewarding goal for further 

examination of sulfur metabolism. 
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Concerning the degradation of the different reduced sulfur compounds in A. vinosum, several 

pathways have already been proposed, supported by more or less conclusive data.  

The enzyme flavocytochrome c552 has been postulated to be involved in sulfide oxidation, but 

an insertional inactivation of the corresponding genes fccAB refuted this assumption. No 

effect on sulfide oxidation could be observed (Reinartz et al., 1998), and data about a slight 

effect on thiosulfate and sulfite oxidation are of questionable significance (Reinartz, 1997). 

A sulfide:quinone oxidoreductase (SQR) has been postulated as another enzyme potentially 

responsible for sulfide oxidation. This flavoprotein is quite common in prokaryotes (Dahl et 

al., 2002) and catalyses the electron transfer from sulfide to the quinone pool in the 

membrane. As a product of the SQR activity polysulfides have been postulated, that are quite 

unstable, resulting in the disproportioning to sulfide and elemental sulfur (Brune, 1989; Dahl 

et al., 2002). Nevertheless, the presence of polysulfides has been demonstrated in 

Rhodobacter capsulatus as the product of SQR activity (Griesbeck et al., 2002). In 

A. vinosum polysulfides have also been identified as the first detectable product of sulfide 

oxidation (Prange et al., 2004). A sulfide:quinone oxidoreductase activity has been observed 

in A. vinosum (Reinartz et al., 1998), but the activity could not be related to a specific enzyme 

so far.  Therefore, the enzyme responsible for sulfide oxidation in A. vinosum still remains to 

be identified. 

 

Sulfur globules are an obligate intermediate of sulfide and thiosulfate oxidation in A. vinosum. 

These highly refractive structures have been shown to be located in the periplasm 

(Pattaragulwanit et al., 1998). Earlier examinations already led to the assumption that the 

sulfur inside of these globules is not present as liquid elemental sulfur in a S8 ring structure 

(Hageage, Jr. et al., 1970; Guerrero et al., 1984). Instead more recent in situ studies of the 

sulfur globules with XANES (X-ray near edge absorption structure) spectroscopy 

demonstrated, that the main part of the sulfur is potentially present in form of 

bis-organylsulfanes in a structure of R-Sn-R (n≥4) (Prange et al., 1999; Prange et al., 2002).  

The sulfur globules are coated by an unimolecular layer, consisting of the three proteins 

SgpA, SgpB and SgpC. As the proteins exhibit similarity to structural proteins like keratin 

(Brune, 1995a), a purely structural function was also proposed for the sulfur globule proteins 

in A. vinosum. An enzymatic function is thought to be unlikely (Pattaragulwanit et al., 1998). 

The inactivation of sgpA or sgpB had no effect on sulfur globule formation, indicating that 

both proteins are able to replace each other. The inactivation of sgpC, however, led to the 



A: Introduction 8

formation of considerably smaller sulfur globules. The double mutant sgpBC was not able to 

from sulfur globules at all (Prange et al., 2004).  

 

The oxidation of sulfur, stored in the periplasmic globules, to sulfite is catalysed by proteins 

encoded in the dsr operon (Pott and Dahl, 1998; Dahl et al., 2005). The genes dsrAB encode a 

cytoplasmic siroamid-containing dissimilatory sulfite reductase, that has been demonstrated to 

be essential for the degradation of sulfur globules (Pott and Dahl, 1998). A direct oxidation of 

the sulfur stored in the periplasm seems unlikely, leading to the assumption of a preceding 

substrate transport over the membrane. Thereby the sulfur is potentially reduced to sulfide, 

which corresponds with the catalytic action of a reverse sulfite reductase (a six-electron step 

from sulfide to sulfite). Downstream of dsrAB 13 open reading frames have also been 

identified to be a part of the larger dsr transcription unit. Apart form the membrane complex 

DsrMKJOP all other encoded Dsr proteins are located in the cytoplasm. A lot of research has 

gone into the attempt to clear up the function of the different Dsr proteins (Grimm, 2004; 

Dahl et al., 2005; Lübbe, 2005; Schulte, 2005; Sander, 2005), but a definitive reaction 

mechanism still has to be established.   

 

For the oxidation of sulfite to sulfate two different pathways have been postulated. A two-step 

pathway takes place with the intermediary formation of APS (adenosine 5´- phosphosulfate), 

catalysed by the enzyme APS reductase. APS is then further degraded to sulfate by the action 

of ATP sulfurylase. But the insertional inactivation of the APS reductase demonstrated, that 

this enzyme is not essential for sulfite oxidation in batch culture (Dahl, 1996). Examinations 

in continuous culture, however, showed that the APS reductase activity is still beneficial 

under certain growth conditions (Sanchez et al., 2001). The second pathway for sulfite 

oxidation is the direct oxidation to sulfate. The enzyme responsible for this reaction, a 

sulfite:acceptor oxidoreductase (SOR), has been isolated from S. novella as a periplasmic 

heterodimeric protein with a molybdenum cofactor and a heme c552 as prosthetic groups 

(Kappler et al., 2000). Tungstate, as a specific antagonist of molybdate, inhibits sulfite 

oxidation when added to A. vinosum cultures (Dahl, 1996), thereby indicating the involvement 

of a molybdoprotein in sulfite oxidation. However, up until now neither the enzyme SOR nor 

another potentially involved molybdoprotein has been successfully isolated from A. vinosum. 

The question therefore remains which enzyme is essential for sulfite oxidation. 
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For the degradation of thiosulfate in A. vinosum different pathways have been postulated. 

Depending on the medium pH, thiosulfate is either oxidized to tetrathionate or to sulfate 

(Smith, 1966). The amount of produced tetrathionate rises with a falling pH in the medium, 

with tetrathionate as the main product at pH 6.25. The enzyme responsible for tetrathionate 

formation in A. vinosum has been identified as a thiosulfate:acceptor oxidoreductase (see 

above; Sperling, 2001). Formation of tetrathionate, however, is not necessarily 

disadvantageous, as abiotic reactions lead to the production of substances that are again 

accessible to enzymatic degradation. According to Kelly et al. (1969) and Suzuki (1999) 

several chemical conversions of tetrathionate are possible:   

 

(i) a reaction with thiosulfate to obtain pentathionate and sulfite,   

(ii) a reaction with sulfite to obtain trithionate and thiosulfate  

(iii) a reaction with thiosulfate to obtain pentathionate and trithionate 

 

The renewed production of thiosulfate from tetrathionate by abiotic means has also been 

postulated by Hansen (1974), assuming a reaction of tetrathionate and sulfide 

(in environments rich in sulfide) to elemental sulfur and thiosulfate. This reaction has been 

demonstrated for the heterotrophic tetrathionate-producing bacterium Catenococcus 

thiocyclus (Sorokin et al., 1996). The formation of trithionate and potentially pentathionate 

from tetrathionate has been demonstrated in A. vinosum (Sperling, 2001). The sulfite and 

thiosulfate produced by these abiotic reactions can eventually be further oxidized to sulfate.  

A long-held conviction has been the participation of a rhodanese or thiosulfate reductase in 

thiosulfate oxidation in A. vinosum. The proteins responsible for this activity, however, could 

not be purified so far (Smith and Lascelles, 1966; Hashwa, 1975; Schwarz, 2001; Schulte, 

2005). 

The oxidation of thiosulfate to sulfate involves the formation of sulfur globules as obligate 

intermediates. In the oxidation to sulfate the sulfane and sulfone sulfur of the thiosulfate 

molecule have different fates, demonstrated by radioactively labelling the sulfone [S-
35
SO3]

2-
 

and sulfane sulfur [
35
S-SO3]

2-
, respectively. While the sulfone sulfur directly appears as 

sulfate, the sulfane sulfur is first transferred to the sulfur globules and only then oxidized to 

sulfate (Smith and Lascelles, 1966; Trüper and Pfennig, 1966).  

During my diploma thesis three sox genes (soxBXA) and two potentially sox-related genes 

(ORF9 and rhd) could be identified in A. vinosum (Hensen, 2001, see also "Results").  They 
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indicated the presence of a Sox multienzyme system in A. vinosum, potentially comparable to 

the complex found in P. pantotrophus. 

 

The goal of this work has been the further examination of the influence of the sox encoded 

proteins on the thiosulfate oxidation in the phototrophic sulfur oxidizing γ-proteobacterium 

A. vinosum. The work was based on the results obtained during the work on my diploma 

thesis. Additional genomic sequence was analysed on the lookout for the so far absent, but 

seemingly important genes soxYZ and soxCD. The detection of the proteins encoded by the 

sox genes present in A. vinosum was an aim of this work, together with the purification and 

potential further analysis of these proteins. The sox mutant strains produced during the work 

on my diploma thesis were phenotypically characterized concerning the degradation of 

thiosulfate and sulfide. Additional in frame mutations of further identified sox genes was 

aimed for, again including the subsequent phenotypic analysis. To trace back potentially 

observed mutant phenotypes back to the inactivated genes, the establishment of 

complementation strains was also aimed for. On the basis of the obtained results a model for 

the function a potential Sox complex in A. vinosum should be developed. 
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B. Materials and Methods 

 

B.1 Chemicals, materials and software 

 

B.1.1 Chemicals 

 

30 % acrylamide / bisacrylamide  Roth (Karlsruhe, Germany) 

4 x Rotiload 1     Roth (Karlsruhe, Germany) 

4-chloro-1-naphthol    Sigma (Taufkirchen, Germany) 

anti-digoxigenin-AP    Roche (Mannheim, Germany) 

blocking reagent    Roche (Mannheim, Germany) 

CDP-Star     Roche (Mannheim, Germany) 

developer     Kodak (Rochester, USA) 

dig-dUTP     Roche (Mannheim, Germany) 

fixer      Kodak (Rochester, USA) 

HEPES     Sigma (Taufkirchen, Germany) 

methanesulfonic acid    Merck (Langenfeld, Germany) 

monobromobimane    Fluka (Taufkirchen, Germany) 

phtalic acid     Merck (Langenfeld, Germany) 

skim milk powder    Töpfer GmbH (Dietmannsried, Germany) 

 

All other chemicals were obtained from the companies Sigma (Taufkirchen, Germany), Fluka 

(Taufkirchen, Germany), Merck (Langenfeld, Germany) and Roth (Karlsruhe, Germany). 

 

B.1.2 Enzymes  

 

alkaline phosphatase (CIAP)   MBI Fermentas (St.Leon-Rot, Germany) 

horse heart cytochrome c   Sigma (Taufkirchen, Germany) 

lysozyme     Fluka (Taufkirchen, Germany) 

Pfu DNA polymerase    MBI Fermentas (St.Leon-Rot, Germany) 

restriction enzymes    MBI Fermentas (St.Leon-Rot, Germany) or  

Invitrogen GmbH (Karlsruhe, Germany) 
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ribonulease A    Sigma (Taufkirchen, Germany) 

T4 DNA ligase    MBI Fermentas (St.Leon-Rot, Germany) 

Taq DNA polymerase    MBI Fermentas (St.Leon-Rot, Germany) 

 

B.1.3 Standards for DNA and protein gel electrophoresis 

 

1-kb DNA ladder    Invitrogen (Karlsruhe, Germany) 

PageRuler Prestained Protein Ladder  MBI Fermentas (St.Leon-Rot, Germany) 

 

B.1.4 Kits 

 

BCA Protein Assay      Perbio (Bonn, Germany) 

QIAprep Spin Miniprep Kit     Qiagen (Hilden, Germany) 

QIAquick Gel Extraction Kit     Qiagen (Hilden, Germany) 

SuperSignal West Pico Chemiluminescent Substrate  Perbio (Bonn, Germany) 

 

B.1.5 Other materials 

 

Anaerocult A      Merck (Darmstadt, Germany) 

Anaerotest      Merck (Darmstadt, Germany) 

Centriplus Centrifugal Filter Device   Millipore (Schwalbach, Germany) 

dialysis tube (MWCO 6000 to 8000)   Serva (Heidelberg, Germany) 

Immobilon-P (PVDF membrane)   Millipore (Schwalbach, Germany) 

Protran BA 85 cellulose nitrate membrane  Schleicher & Schuell (Dassel, Germany) 

Sartolon nylon membrane    Sartorius (Göttingen, Germany)  

Whatman 3MM paper    Millipore (Schwalbach, Germany) 

X-ray films X-OMAT AR    Kodak (Rochester, USA) 

 

B.1.6 Software and online tools 

 

BioEdit     sequence alignment editor        www.mbio.ncsu.edu/BioEdit/ 

page2.html 

BLAST     comparison of nucleotide or protein  www.ncbi.nlm.nih.gov/ 

      sequences with data bank entries 
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Clonemanager    sequence  processing   Scientific &Educational Software 

ClustalW     program for sequence alignments  www.ebi.ac.uk/clustalw/ 

Cream 4.1     photodocumentation   Kem-En-Tec (Kopenhagen, DK) 

ExPasy     DNA and protein analysis   www.expasy.ch 

LEO       german-english dictionary   www.dict.leo.org 

PC1000     HPLC control software   Thermo Electron (Dreieich, D) 

UV Winlab     control software for Perkin-Elmer  Perkin-Elmer  

      spectrometer Lambda 11 

 

 

B.2 Microorganisms, plasmids and primers 

 

B.2.1 Bacterial strains 

 

strain        genotype or phenotype     source or reference 

 

E. coli strains 

     

    DH5α       F
-
 φ80dlacZ∆M15 ∆(lacZYA-argF)U169 recA1endA1                     (Hanahan, 1983) 

      hsdR17 (rk
-
 mk

-
) supE44 λ

-
 thi-1 gyrA relA1 

    SM10        Km
r
 supE44 thi-1 thr-1 recA leuB6 lacY1 tonA21         (Simon et al., 1983) 

      RP4-2-Tc::Mu-Km::Tn7 in chromosome 

    S17.1        C600 ::recA thi prohsdR-M+ [RP4:2-Tc::Mu::Km:Tn7]        (Simon et al., 1983) 

    BL21(DE3)       F
-
 ompT hsdSB (rB

-
 mB

-
) gal dcm met (DE3)    Novagen 

 

A. vinosum strains 

     

    DSMZ 180
T
       type strain                                  (Pfennig and Trüper, 1971) 

              (Imhoff et al., 1998) 

    185SM50       Sm
r
, spontaneous streptomycin-resistant mutant of       (Prange, unpublished) 

      A. vinosum DSMZ 185 

    Rif50        Rif
r
, spontaneous rifampicin-resistant mutant of A. vinosum      (Lübbe, unpublished) 

      DSMZ 180
T
 

    ∆soxX       Km
r
, soxX::KmΩ in DSMZ 180

T
     (Hensen, 2001) 

    ∆soxB       Km
r
, soxB::KmΩ in DSMZ 180

T
     (Hensen, 2001) 

    ∆soxBX       Km
r
, soxBX::KmΩ in DSMZ 180

T
     (Hensen, 2001) 

    ∆rhd/ORF9       Sm
r
, Km

r
, rhd/ORF9::KmΩ in 185SM50    (Hensen, 2001) 

    ∆soxY        Rif
r
, in frame deletion of soxY in Rif50     This work 

    ∆soxX+X       Km
r
, Em

r
, complementation of ∆soxX with plasmid p∆soxX+X  This work 

    ∆soxY+Y       Rif
r
, Km

r
, complementation of ∆soxY with plasmid p∆soxY+Y  This work
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B.2.2 Plasmids 

  plasmid        genotype      source or reference 

 
    pGEM7 Zf(+)       Ap

r
, lacZ´, f1 ori       Promega 

    pET-11a       Ap
r
         Novagen 

    pET-22b       Ap
r
, His Tag (C-terminal)      Novagen 

    pBBR1-MCS       Cm
r
, Mob

+
, rep, lacZα         (Kovach et al., 1994)     

    pBBR1-MCS-2     Km
r
, Mob

+
, rep, lacZα         (Kovach et al., 1995) 

    pHP45ΩKm       Ap
r
, Km

r
           (Fellay et al., 1987) 

    pHP45ΩEm       Em
r
            (Prange, unpublished) 

    pK19mobsacB       Km
r
, Mob

+
, sacB, oriV, oriT, lacZα        (Schäfer et al., 1994) 

    pGEM-SoxB       Ap
r
, 4.5-kb NcoI fragment (soxB to ORFc) in pGEM5 Zf(+)  (Hensen, 2001) 

    pDHEcoYZ       Ap
r
, 1.5-kb EcoRI fragment (ORFd to soxZ) in pGEM7 Zf(+)  This work 

    pDHClaYZ       Ap
r
, 2.5-kb ClaI fragment (soxY to ORFf) in pGEM7 Zf(+)  This work 

    pExSoxA       Ap
r
, 800-bp PCR fragment of soxA (NdeI/BamHI) in NdeI/BamHI   This work 

      of pET-11a        

    pExSoxB       Ap
r
, 1.8-kb PCR fragment of soxB (NdeI/XhoI) in NdeI/XhoI of   This work 

      pET-22b 

    pExSoxYZ       Ap
r
, 840-bp PCR fragment of soxYZ (NdeI/HindIII) in NdeI/HindIII  This work 

      of pET-22b 

    p∆soxX+X       Cm
r
, Em

r
, 4.5-kb ApaI/SpeI fragment from pGEM-SoxB in ApaI/    This work 

      SpeI of pBBR1-MCS, Em
r
 cartridge (SmaI) in EcoRV of construct  

    p∆soxY+Y       Km
r
, 1.5-kb PCR fragment of soxYZ (XbaI) in XbaI of    This work 

      pBBR1-MCS2  

 

B.2.3 PCR primers 

 

ClimYfor  5´- TTT CGT GCC AGT AAC GGT –3´ 

ClimZrev  5´- AGC ATG TCG CCT GCC TTG –3´ 

Km1   5´- TTG ATC CCC TGC GCC AT –3´ 

soxXforward  5´- AAC GTC AAT GAT CGA GAG –3´  

soxXreverse  5´- GGT GGC GAT CCG TTC AGA –3´ 

Yforward  5´- AGG CCG TCT AGA ATT TCC GTG ACA CAT TGC –3´ 

Yreverse  5´- TGC GCC TCT AGA GGC TGG TTT CGA ATT CTA –3´ 

Ysoe-forward  5´- AGA GGA GAT AAA TCA ACA AGC TCT ATA AGA –3´ 

Ysoe-reverse  5´- TCT TAT AGA GCT TGT TGA TTT ATC TCC TCT –3´ 

 

Primer for gene expression in E. coli: 

sABam  5´- GCG TTT CGG GAT CCT CAT TT –3´ 

sANde   5´- ACA TCG TCC ATA TGA CCA AG –3´ 

sBNde2  5´- TGC CCA GGC ATA TGT GTC CCA TGT –3´ 

sBXho   5´- TGC CCA GGC ATA TGT GTC CCA TGT –3´ 

soxZHindIII  5´- CGT TCC GAA GCT TGC TGA TCT C –3´ 

sYNde   5´- AGG AGA TAA CAT ATG ATC GAT GCC A –3´ 
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Sequencing primer: 

Y1for1   5´- ACG AGA CGA CCG TCA AGT –3´ 

Y1rev1  5´- ACC AGA TCA CCG AGG ATG –3´ 

Y2rev1  5´- ACT GAT TCT TGG CCG CGA –3´ 

 

 

B.3 Cultivation 

 

B.3.1 PFENNIG medium (modified after Pfennig and Trüper, 1992) 

 

PFENNIG medium was used for the cultivation of A. vinosum under photolithoautotrophic 

conditions. The medium consisted of four different solutions. The following quantities equal 

an amount of 10 litres of medium. 

  

Solution 1:  salt solution in 10 litre carboy 

    KCl         3,3  g 

    MgCl2 x 6 H2O       3,3  g 

    CaCl2 x 2 H2O       4,3  g 

    NH4Cl         3,3  g 

    trace element solution SL 12 (10x)      10  ml 

    demineralised water    9250  ml 

 

If the PFENNIG medium was used for the cultivation of A. vinosum 185SM50 and the 

corresponding mutant, 1% (w/v) NaCl was added to solution 1. 

  

Solution 2:  phosphate solution 

    KH2PO4         3,3 g 

    demineralised water      250 ml 

 Solution 3:  carbonate solution 

    NaHCO3         15 g 

    demineralised water       250 ml 
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Solution 4:  sulfide solution 

HNaS x H2O           4 g 

demineralised water       250 ml 

 

Phosphate, carbonate and sulfide solution were autoclaved in tightly closed, brimful bottles. 

The solutions 1 to 4 were autoclaved separately. After sterilization solution 1 was cooled to 

room temperature. In the next step the solutions 2 to 4 were added under nitrogen atmosphere, 

resulting in a slightly pink and cloudy appearance of the medium. CO2 was applied to the 

medium, until it lost its colour and cloudiness, corresponding to a pH value of pH 6.5 to 7.0. 

The completed medium was filled into brimful, tightly closed bottles and could be stored in 

the dark for several months. 

If the PFENNIG medium was prepared without the addition of sulfide solution, it was referred 

to as 0 medium. For the production of 0 medium the pH value was adjusted towards the lower 

limit of the above mentioned pH span to prevent the carbonate from precipitating. 

 

Trace element solution SL 12 (10 x) : 

   EDTA-Na x 2 H2O     3 g 

   FeSO4 x 7 H2O     1,1 g 

   ZnCl2       42 mg 

   MnCl2 x 4 H2O     50 mg 

   H3BO4       300 mg 

   CoCl2 x 6 H2O     190 mg 

   CuCl2 x H2O      2 mg 

   NiCl2 x 6 H2O      24 mg 

   Na2MoO4 x 2 H2O     18 mg 

   demineralised water      ad 1000 ml 

The solution was stored unsterilised at 4°C. 



B: Materials and Methods 17

B.3.2 Thiosulfate medium (Sperling, 2001) 

 

Thiosulfate medium was used as an alternative to PFENNIG medium for 

photolithoautotrophic growth of A. vinosum. This medium was used to produce the large 

amounts of cell material necessary for protein purification. Thiosulfate medium consisted of 

two solutions, the following amounts needed for 10 l medium. 

 

Solution 1: 100 x macro element solution 100 ml 

   demineralised water   ad 9500 ml 

Solution 2: Na2CO3    26,5 g 

   NaHCO3    21 g 

   Na2S2O3 x 5H2O   31 g 

   sulfide solution   25 ml 

   demineralised water   ad 500 ml 

 

 

100 x macro element solution:    KH2PO4      100 g 

         NH4Cl      70 g 

         MgSO4 x 7H2O     40 g 

         CaCl2 x 2H2O     10 g 

         trace element solution SL 12 (10x, see B.3.1) 100 ml 

         HCl (37 %)     193 ml 

         demineralised water    ad 500 ml 

 

Sulfide solution:       HNaS x 1H2O     7,4 g 

         demineralised water    ad 100 ml 

 

Solutions 1 and 2 were autoclaved separately. After cooling, solution 2 was added under 

stirring and nitrogen atmosphere. The medium pH was at a value of pH 7.5 without further 

titration. 

 

 

 

 



B: Materials and Methods 18

B.3.3 RCV medium (Weaver et al., 1975) 

 

RCV medium was used for photoorganoheterotrophic cultivation of A. vinosum. To prepare 

this medium, 5 % (v/v) solution A (20 x) was mixed with 0,5 % yeast extract and 

0,19 % NaOH, adjusted to a pH value of pH 7.0 and autoclaved. For cultivation of A. vinosum 

185SM50 and the corresponding mutant 1 % (w/v) NaCl was added to this first solution. 

5 % (v/v) solution B (20 x) was autoclaved separately and added after cooling. 

  

20 x solution A: 

  malate       60 g 

  NH4Cl       25 g 

  MgSO4 x 7 H2O     4 g 

  CaCl2 x 2 H2O     1,4 g 

  trace element solution SL12 (10x, see B.3.1) 20 ml 

  demineralised water    ad    1000 ml 

 20 x solution B :  potassium phosphate buffer 

  K2HPO4      180 mM 

  KH2PO4      180 mM 

  pH 7.0 

  

B.3.4 RCV solid medium 

 

For cultivation of A. vinosum on solid medium 0,5 % NaCl and 1 % phytagel as a gelling 

agent was added to RCV medium and autoclaved separately from solution B. After a short 

cooling time the RCV medium was completed. Additionally 0,25 % (v/v) feeding solution, 

0,2 % (v/v) sodium acetate and 0,2 % (v/v) thiosulfate solution were added before pouring the 

plates. The solid medium was prepared directly before use because of the volatile sulfide. 

 

Solutions:  1 M sodium acetate, pH 7.0 

   0,4 M sodium thiosulfate 

   feeding solution (3,1 g HNaS x H2O, 5 g NaHCO3, ad 100 ml 

     demineralised water) 

  

The solutions were autoclaved and stored at room temperature. 
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B.3.5 Luria Bertani medium (LB medium, (Sambrook et al., 1989)) 

 

LB medium was used for the cultivation of Escherichia coli. 

   

tryptone    10 g 

  yeast extract    5 g 

  NaCl     5 g 

  demineralised water   ad 1000 ml 

  pH 7.5 

 

The liquid medium was aliquoted before sterilisation, usually in volumes of 5 ml. For the 

preparation of LB solid medium 1,5 % agar was added. For the selection of 

antibiotic-resistant mutants of E. coli, antibiotics were added after sterilisation and cooling to 

approximately 55°C (antibiotic concentrations see B.3.8). 

   

B.3.6  2 x YT medium (Sambrook et al., 1989) 

 

E. coli was cultivated in 2 x YT medium for the preparation of competent cells used for 

transformation (see B.3.7). 

   

tryptone   16 g 

  yeast extract   10 g 

  NaCl    5 g 

  demineralised water  ad 1000 ml 

  pH 7.0 
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B.3.7 Preparation of competent E. coli cells 

 

Solutions:  2 x YT medium 

  CaCl2 / MgCl2 solution (70 mM CaCl2, 20 mM MgCl2) 

 

Competent cells of E. coli for transformation were prepared using the calcium chloride 

method after Dagert and Ehrlich (1974). 

In the first step 5 ml of 2 x YT medium were inoculated with E. coli and incubated (over 

night, 180 rpm on a shaker at 37°C). 700 µl of this starting culture were used to inoculate 

70 ml of 2 x YT medium in a shaking flask. The preparation was incubated as before, until an 

optical density at 600 nm of OD600= 0,3 to 0,5 was reached. In the next step the culture was 

harvested (1900 x g, 4°C, 6 min). The resulting pellet was resuspended in 21 ml of 

CaCl2 / MgCl2 solution, incubated on ice for 30 to 45 minutes and harvested again. After 

resuspending the pellet in 7 ml of  CaCl2 / MgCl2 solution, it was once more incubated on ice 

for 30 to 45 minutes. Finally, the preparation was mixed with 1750 µl of sterile glycerol and 

stored at –70°C in aliquots of 250 µl. This procedure for the preparation of competent cells 

was applied to all E.  coli strains used in this work. 

 

B.3.8 Antibiotic concentrations 

 

For the selection of antibiotic-resistant clones of A. vinosum and E. coli, respectively, the 

following antibiotic concentrations were applied: 

A. vinosum:  ampicillin   10 µg/ml 

    erythromycin   10 µg/ml 

    kanamycin   10 to 25 µg/ml 

    rifampicin   50 µg/ml 

E. coli:   ampicillin   100 µg/ml 

    chloramphenicol  50 µg/ml 

erythromycin   100 µg/ml 

    kanamycin   50 µg/ml 
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B.3.9 Production of recombinant Sox proteins in E. coli  

 

For the production of recombinant proteins the E. coli strain BL21(DE3) was used. The 

respective gene, encoding for the protein to be produced, was ligated into a derivate of the 

pET plasmid series. The respective gene was amplified with the help of primers, that inserted 

restriction sites into the 5´ and 3´ end of the gene (applied primer pairs: SoxA� 

sANde/sABam, SoxB� sBNde2/sBXho, SoxYZ� sYNde/soxZHindIII (see B.2.3)). All  sox 

genes were amplified including the respective predicted signal peptide sequence. The 

plasmid-containing E. coli was first cultivated in 5 ml of LB medium with the appropriate 

antibiotic over night at 37°C as a starting culture. This culture was harvested (15700 x g, 5 

min), and the pellet was resuspended in 0,5 ml of LB medium. This preparation was used to 

inoculate 100 ml of LB medium in a shaking flask, that was incubated at 37°C and 180 rpm, 

together with the appropriate antibiotic. After an optical density of OD600 = 0,5 was reached, 

100 µl of 0,1 M IPTG solution was added to induce the gene expression. After an incubation 

period of 2 h the culture was harvested (16000 x g, 4°C, 15 min), and the pellet was stored at 

–20°C for potential further use. An E. coli culture without the pET plasmid derivative, that 

was used as a negative control, was treated the same way. Samples for the control of protein 

production were taken before induction and directly before harvesting. These samples were 

mixed with an equivalent volume of Rotiload 1, heated to 95°C for 10 min and subjected to 

SDS-PAGE. 

 

B.3.10 Conservation of A. vinosum and E. coli 

 

Solutions: A. vinosum 10 % (v/v) dimethylsulfoxide (DMSO) 

  E. coli  glycerol 

  Both solutions were autoclaved and stored at room temperature. 

 

A culture of A. vinosum was cultivated photoorganoheterotrophically on RCV medium (see 

B.3.3) for approximately 5 days. 50 ml of this culture were harvested (2500 x g, 20 min) and 

resuspended in 5-10 ml of RCV medium. This preparation was mixed with an equal volume 

of DMSO solution and stored in liquid nitrogen in Nunc reaction tubes (Wiesbaden, 

Germany). 

The E. coli culture to be stored was grown over night on LB medium (see B.3.5), mixed with 

an equal volume of glycerol solution and stored at –70°C. 
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B.4 Isolation of DNA 

 

B.4.1 Isolation of genomic DNA from A. vinosum liquid culture 

 

Solutions:  TES buffer       100 mM NaCl, 10 mM TrisHCl,  

    1mM EDTA, pH 8.0 

  saccharose TES buffer     20 % saccharose in TES buffer 

  lysozyme RNAse solution     20 mg/ml lysozyme, 1mg/ml RNAse 

  sarcosine solution      10 % (w/v) laurylsarcosine, 250 mM EDTA 

  TE buffer       10 mM TrisHCl, 1mM EDTA, pH 8.0 

 

For the isolation of genomic DNA from liquid culture, the sarcosyl lysis method after Bazaral 

and Helsinki (1968) was applied. A. vinosum was grown on RCV medium for approximately 

5 days and harvested afterwards (2500 x g, 4°C, 10 min). The pellet was washed in 50 mM 

TrisHCl, pH 8.0 and used as starting material for DNA isolation. 50 to 80 mg of the cell 

material were resuspended in 2 ml ice-cold TES buffer. After centrifugation (15700 x g, 4°C, 

10 min) 250 µl of saccharose TES buffer was added to the pellet, and the preparation was 

incubated on ice for 30 minutes. 250 µl of lysozyme RNAse solution was added, followed by 

incubation at 37°C (30 min, slight shaking) to achieve a disruption of the cells. After the 

addition of 100 µl of sarcosine solution, the material was drawn up into a sterile syringe 

(cannula: 1,2 x 49 mm), to achieve a shearing of the DNA. 300 µl of sterile water was added, 

and the DNA was subsequently purified via phenol / chloroform extraction (see B.4.3). After 

dialysis against TE buffer (3 h and 15 h, respectively) and sterile water (2 h), performed at 

4°C in the dark, the isolated DNA was stored at 4°C. 

 

B.4.2 Isolation of plasmid DNA 

 

Plasmid DNA was isolated from E. coli using the QIAPrep Spin Miniprep Kit, provided by 

Qiagen (Hilden, Germany). For the procedure 3 to 9 ml of the respective plasmid-containing 

E. coli culture, grown over night on LB medium together with the appropriate antibiotic, was 

subjected to plasmid isolation. The procedure was carried out as described by the 

manufacturer. The DNA was eluted with 30 to 50 µl of sterile water and stored at –20°C. 
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B.4.3 Phenol / chloroform extraction 

 

A phenol / chloroform extraction was carried out to remove contaminating protein from a 

DNA sample. One volume of phenol / chloroform / isoamylalcohol (25:24:1) was added to the 

DNA solution, and the latter was extracted by powerful shaking. After a centrifugation step 

(15700 x g, 5 min) the upper DNA-containing phase was removed for further use. This step 

was repeated with the DNA-containing fraction, until no further protein precipitation 

occurred. To remove traces of phenol from the DNA solution, a final extraction with 

chloroform / isoamylalcohol (24:1) was performed. 

 

B.4.4 Purification of DNA after PCR or restriction digestion 

 

The purification of DNA fragments could be accomplished by two different methods.  

The first possibility was the direct purification from the digestion preparation with the help of 

the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The procedure was performed 

as described by the manufacturer. The DNA was eluted in 30 µl of sterile water. 

The second possibility was the electrophoretic separation of the digested DNA from unwanted 

DNA fragments or enzymes on an agarose gel (see B.7.1). The desired DNA fragment was 

cut out of the gel, the band visible in UV light after the preceding ethidium bromide stain. The 

DNA was isolated from the gel fragment using the above mentioned QIAquick Gel Extraction 

Kit. 

 

B.4.5 Photometric determination of DNA concentration and purity 

 

To determine the concentration and purity of isolated DNA, the absorption of a diluted sample 

was measured at 260 nm and 280 nm, corresponding to the absorption maxima of DNA and 

protein at the respective wavelengths (Sambrook et al., 1989). The DNA concentration was 

calculated as follows: an absorption of 1 at 260 nm equals 50 ng of DNA per ml concerning 

double stranded DNA (Sambrook et al., 1989). The DNA purity was determined by the ratio 

of the absorption at 260 nm and 280 nm. A ratio of 1,8 to 2 is desirable, values below indicate 

a protein contamination, values above a contamination with RNA. 
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B.5 Amplification of DNA by PCR 

 

B.5.1 PCR standard protocol 

 

The use of PCR (polymerase chain reaction) allows the amplification of great amounts of 

DNA fragments with a defined length from known DNA sequences (Mullis et al., 1986). 

The primers used as starting points for the polymerase should be chosen to be complementary 

to the ends of the DNA fragment to amplified, with the 3´-ends running towards each other. 

Furthermore, a GC content of approximately 50 % and a lack of potential hairpin structures is 

aimed for. With the template DNA as a model, a thermostable DNA polymerase from either 

Thermococcus aquaticus (Taq polymerase) or Pyrococcus furiosus (Pfu polymerase) carries 

out an in vitro synthesis of new defined DNA strands. In contrast to the Taq polymerase, the 

Pfu polymerase exhibits a 3´-5´ exonuclease activity (proofreading). This leads to a decrease 

in the rate of falsely integrated nucleotides (a factor of about 12), compared to the Taq 

polymerase with a mistake rate of 8,5 x 10
-6
 nucleotides /cycle, at the cost of a slower 

amplification rate. 

A standard PCR was carried out in a total volume of 50 µl in a PCR tube of 500 µl volume 

using a Biometra TRIO-Thermoblock (Göttingen, Germany). A typical PCR reaction 

contained the following: 

 

 template DNA      0,1-0,5 µg 

 primer 1      50 pmol 

 primer 2      50 pmol 

 nucleotides (dATP, dTTP, dCTP, dGTP)  200 µM each 

 10 x polymerase buffer    5 µl 

 

When using the Pfu polymerase no additional MgCl2 (necessary for Taq polymerase) was 

needed, because the polymerase buffer provided everything necessary. For the Taq 

polymerase MgCl2 concentrations between 1 and 2 mM were applied. After adding up to 

50 µl with sterile demineralised water, the preparation was overlaid with mineral oil to 

minimize evaporation. The PCR reaction was started by the addition of the Polymerase 

(Taq: 2,5 U; Pfu: 1,25 U) during the first denaturing step (“hot start”). 

A PCR program starts with the initial denaturation of the DNA double strand at 95°C. After 

another short denaturation step (first part of the repeated cycle) the primer annealing takes 
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place. The annealing temperature is dependent on the GC and AT content of the applied 

primers:    Tm = 4 x (G + C) + 2 x (A + T ) °C 

The actual annealing temperature should be about 4 degrees lower than the calculated primer 

melting temperature Tm. 

The PCR stringency can be influenced by the annealing temperature and, using Taq 

polymerase, the MgCl2 content. The following elongation of the DNA strands by the 

polymerase takes place at 72 °C. The duration of this step is dependent of the size of the 

fragment to be amplified and the speed of the applied polymerase. Because of the exercised 

proofreading function, the Pfu polymerase exhibits only half the speed of the Taq polymerase 

(the latter with approximately 1 kb/min). Because of the cycle repetition an exponential 

amplification of the DNA occurs.  

 

Standard PCR program: 

  initial denaturation  95°C  3 min 

  denaturation   95°C  30 sec 

  annealing    y °C  30 sec       x 30-35 

  elongation   72°C  z min 

  final elongation  72°C  z + 5 min 

  storage      4°C  hold 

  [y dependent on primer composition, z dependent on fragment size] 

 

B.5.2 Colony PCR 

 

The colony PCR represents a slightly modified PCR in so far, as not precedingly purified 

DNA was used as template, but cell material from A. vinosum. The material was taken either 

from liquid culture (50µl, precipitated by centrifugation (15700 x g, 5 min) and resuspended 

in 50 µl of demineralised water) or from solid medium (colony material resuspended in 50 µl 

RCV medium, further treatment as described above). From both preparations a volume of 1 µl 

was applied as a PCR template. The initial denaturation time was extended to 10 minutes (for 

better cell destruction), and the polymerase was added after this initial step was finished. 
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B.5.3 Construction of a digoxigenin-labelled probe for Southern hybridisation 

 

When a digoxigenin-labelled DNA probe was needed for southern hybridisation, a part of the 

nucleotide dTTP in the PCR reaction was replaced by digoxigenin-dUTP. This nucleotide was 

inserted into the growing DNA strand instead of dTTP. After the PCR the preparation was 

electrophoretically separated. After staining and documentation (see B.7.2) the desired DNA 

fragment was excised and eluted from the gel. The isolated DNA was used as a probe for 

Southern hybridisation (see B.8).  

 

B.5.4 Splicing by overlap extension (SOEing) PCR 

 

Gene SOEing (gene splicing by overlap extension) is used for site directed mutagenesis and 

recombination of DNA molecules (Horton, 1995). The method of SOEing PCR was applied to 

insert in frame mutations into the A. vinosum genome. This method guarantees the sole 

deletion of one gene, without the polar effects caused by the inserted resistance cassettes, 

because the reading frame stays intact. The method was used for the in frame deletion of 

soxY. This method is based on the possibility to modify PCR products by adding sequences at 

the 5´ end of the applied primers. Thereby overlapping fragments are produced that can be 

successively extended.  

DNA fragments upstream and downstream of soxY were amplified. To the primers flanking 

the region to be deleted (Ysoe-reverse and Ysoe-forward, see Figure B1) a 15 bp sequence 

was added at the 5´ end, that was complementary to the other respective primer. This resulted 

in an overlapping region of 30 bp. The DNA fragments of PCR1 and PCR 2 could function as 

their respective primers in the following extension reaction in PCR 3. By choosing the 

primers it had to be taken care to maintain the reading frame of the genes downstream of the 

deletion. XbaI restriction sites were inserted into the outer primers (Yforward and Yreverse) 

for successive cloning of the PCR fragment into the plasmid pK19mobsacB. 
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Figure B1: Gene splicing by overlap extension (SOEing) PCR to obtain the in frame deletion of soxY. 

The sequence to be deleted is depicted in gray. The complementary sequences of the inner primers 

are colour-coded. 

 

The first two PCR reactions were performed after the standard protocol (PCR 1: 

Yforward /Ysoe-reverse, PCR 2: Ysoe-forward / Yreverse). For the third PCR reaction an 

amount of 1,5 µl fragment of PCR 1 and PCR 2, respectively, was added to the preparation, 

together with the two outer primers. PCR 3 took place in two separate reactions. In the first 

reaction the fragments from PCR 1 and PCR 2 served as their respective primers. The 

annealing temperature corresponded to the overlapping region. In the second part of the PCR 

the joined fragment was amplified, making use of the outer primers and therefore using a 

different annealing temperature. The program for PCR 3 (for the specific case of soxY) was 

chosen as follows: 

initial denaturation   95°C  5 min 

 denaturation    95°C  1 min 

 annealing (PCR fragments)  68°C  1 min  x 14 

 elongation    72°C  3 min 

 denaturation    95C  1 min 

 annealing (outer primers)  65°C  1 min  x 30 

 elongation    72°C  3 min 

 prolonged elongation   72°C  10 min 

 storage     4°C  hold 

PCR 1 PCR 2 

Yforward 

Ysoe-reverse 

Ysoe-forward            

Yreverse 

PCR 3 

Yforward 

Yreverse 
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B.6 Enzymatic DNA modification 

 

B.6.1 Digestion with restriction enzymes 

 

All DNA digestions using restriction endonucleases were performed after Sambrook et al. 

(1989). The restriction buffers were used according to the instructions provided by the 

manufacturer (MBI Fermentas, St.Leon-Rot, Germany). The total preparation volume was 

between 20 µl and 100 µl with the use of 1-2 U of enzyme per µg DNA. The digestion was 

performed for 1,5 to 3 h with plasmid DNA and 4 to 6 h with genomic DNA at a temperature 

recommended by the manufacturer. 

 

B.6.2 Heat inactivation 

 

When the successive use of different enzymes was aimed for in a DNA digestion preparation, 

the preceding heat sensitive enzymes were inactivated at 65°C for 15 minutes. This step was 

necessary to minimize negative effects on the performance of the following enzymes. 

 

B.6.3 Dephosphorylation 

 

A dephosphorylation leads to the removal of 5´-phosphate groups from DNA fragments. 

Thereby the rate of undesired re-ligations within a DNA fragment could be minimized. For 

the reaction 1 U of CIAP (calf intestine alkaline phosphatase) was added to the preparation 

and incubated at 37°C for 1h. 

 

B.6.4 Ligation 

 

The ligation of digested DNA fragments into an equally digested plasmid was performed in a 

total volume of 10 to 20 µl. The preparation contained digested plasmid and insert DNA (in a 

ratio of approximately 1 to 3), 1 Weiss unit of T4 DNA ligase and the corresponding amount 

of the provided 10 x ligase buffer. One Weiss unit is equivalent to approximately 200 

cohesive-end ligation units (with one cohesive-end ligation defined as the amount of enzyme 

required to give 50 % ligation of HindIII fragments of lambda DNA under given conditions, 

for specifications see manual of the manufacturer (MBI Fermentas, ST.Leon-Rot, Germany)). 

The preparation was incubated at room temperature for 3 h or over night at 16°C. 
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B.6.5 DNA sequencing 

 

DNA sequencing was performed at the facilities of Sequiserve (Vaterstetten, Germany). 

 

 

B.7 Electrophoretic DNA separation 

 

B.7.1 Agarose gel electrophoresis 

 

Solutions:  50 x TAE buffer  2 M Tris, 1 M acetic acid, 0,5 M EDTA, pH 8.0 

  10 x sample buffer  0,25 % bromphenol blue, 40 % saccharose 

 

For DNA fragment separation gels with an agarose concentration of 1 % (w/v) were prepared 

with 1 x TAE buffer, that was also used as electrophoresis buffer. The electrophoresis was 

performed in the gel chambers Horizon 58 or Horizon 11-14, obtained from Gibco BRL 

(Eggenstein, Germany). Before the application on the gel, 0,1 volume of 10 x sample buffer 

was added to the preparation. The included saccharose provided the necessary weight, and 

bromphenol blue indicated the running front. The separation in the small gel chamber 

(Horizon 58) was finished after approximately 2 h at 70-100 V, larger gels (Horizon 11-14) 

were run over night at 15-20 V. 

 

B.7.2 Staining and documentation of agarose gels 

 

Ethidium bromide was used for the staining of agarose gels, which intercalated into the DNA 

and thereby making it visible in UV radiation. The staining was carried out with a 0,1 % 

ethidium bromide solution for 5 to 10 minutes. A transilluminator, using UV light, was used 

for documentation with the help of a video documentation device of the company INTAS 

(Göttingen, Germany). 
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B.8 Southern hybridisation 

 

B.8.1 Southern transfer 

 

Solutions: 20 x SSC   3 M NaCl, 0,3 M sodium citrate, pH 7.0 

  blotting buffer   0,4 M NaOH 

 

 

 

 

 

 

 

 

Figure B2: Assembly used for Southern transfer 

 

The digested and electrophoretically separated DNA was transferred onto a Sartolon nylon 

membrane from Sartorius (Göttingen, Germany) by capillary blot. After staining with 

ethidium bromide and a short washing step with demineralised water, the gel was incubated 

for 10 min in 0,25 M HCl. Onto a batch of absorbent tissue were placed three layers of 

Whatman 3MM paper, soaked in blotting buffer. On top were successively stacked the soaked 

membrane, the gel, three more layers of soaked Whatman paper and two larger soaked layers 

of Whatman paper as a liquid bridge (see Figure B2). After two hours of DNA transfer the 

membrane was shortly rinsed in 2 x SSC, and the transferred DNA was covalently linked to 

the membrane by UV crosslinking (UV Stratalinker 1800, Stratagene). The membrane was 

either directly used for hybridisation or stored shrink-wrapped on Whatman paper at 4°C until 

further use. 

 

0,4M NaOH 

Whatman 

gel 

membrane 

Whatman 

absorbent 

tissue 



B: Materials and Methods 31

B.8.2 Hybridisation 

 

Solutions: buffer 1    0,1 M maleic acid, 0,15 M NaCl, pH 7.5 

  prehybridisation solution  2 % (v/v) buffer 1, 2,5 % (v/v) 20x SSC, 

       0,3 mM N-lauroyl sarcosine,  

0,06 mM sodium lauryl sulfate (SDS) 

2 % blocking reagent 

 

For hybridisation with the DNA fragments immobilized on the nylon membrane, a single 

stranded digoxigenin-labelled DNA probe was used (see B.5.3).  

To prevent unspecific binding of the DNA probe to the membrane, the first step after 

Southern transfer was the saturation of the membrane with blocking reagent. This was 

achieved by at least 4 hours incubation with 20 ml of prehybridisation solution in a Hybaid 

Mini hybridisation oven. The temperature for prehybridisation was chosen according to the 

temperature applied for the later hybridisation step. The temperature was dependent on the 

use of either a heterologous (� 60°C) or a homologous DNA probe (� 68°C). When 

employing a heterologous DNA probe, the temperature was lowered to decrease the 

stringency of hybridisation. After prehybridisation the DNA probe was heated to 100°C for 

15 min, added to the membrane and incubated over night for 16 to 18 h at the chosen 

temperature. Afterwards the probe was stored at –20°C for further use. 

 

B.8.3 Chemiluminescence detection 

 

Solutions: 2 x SSC + 1 % SDS 

  0,1 x SSC + 1 % SDS 

  washing buffer  0,3 % (v/v) Tween 20 in buffer 1 

  buffer 2   1 % (w/v) blocking reagent in buffer 1 

  buffer 3   0,1 M Tris, 0,1 M NaCl, pH 9.5 

 

Preceding the detection of the hybrid DNA strands on the membrane, unspecifically bound 

probe first had to be removed from the membrane by several washing steps. The membrane 

was twice incubated in 2 x SSC + 1 % SDS solution for 5 min at room temperature. To 

increase the stringency, the two following washing steps were carried out using 
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0,1 x SSC + 1 % SDS solution at the chosen hybridisation temperature. All the subsequent 

steps were performed at room temperature. 

After 5 min incubation with washing buffer, buffer 2 was applied to the membrane and 

incubated for 30 min to once more saturate the unspecific binding sites of the membrane 

before incubation with the antibody. The first step in the actual detection of the hybrid DNA 

strands was the addition of anti-dig-AP in buffer 2 (0,013 %(v/v)) for 30 min. This 

anti-digoxigenin alkaline phosphatase antibody conjugate binds to the dig-dUTP used for 

DNA probe labelling. Unbound and unspecifically bound antibody was removed from the 

membrane by twice washing it in washing buffer for 15 min. The membrane was prepared for 

the chemiluminescence substrate by 5 min incubation in buffer 3, thereby adjusting the 

membrane pH to the desired value of pH 9.5. The substrate solution (CDP-Star, at a dilution 

of 1:1000 in buffer 3) was added to the membrane and incubated for 20 min. Afterwards the 

membrane was shrink-wrapped on Whatman 3MM paper. The alkaline phosphate linked to 

the antibody splits the CDP star, resulting in an emittance of light detectable on X-ray film. 

The film was exposed for 10 min up to several hours, depending on the signal strength, to 

obtain the desired signals. 

 

 

B.9 DNA transfer 

 

B.9.1 Plasmid transfer to E. coli by transformation 

 

This method was applied for the transfer of plasmid DNA into competent cells of E. coli (see 

B.3.7). Competent cells of E. coli stored at –70°C were first thawed on ice. The whole 

ligation preparation or 1 µl of an already prepared plasmid were added to 100 µl of the 

thawed cell material and incubated on ice for 30 min. After heat shock at 42°C for 90 sec, the 

cells were immediately cooled on ice for 2 min, mixed with 500 µl of 2 x YT medium (see 

B.3.6) and incubated at 37°C for 1 h to recover from the procedure. The cell material was 

brought out onto selective LB solid medium (see B.3.4) containing the appropriate antibiotic 

for selection of positive clones (see B.3.8). 
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B.9.2 Plasmid transfer to A. vinosum  

 

Two methods for plasmid transfer into A. vinosum were applied: electrotransformation and 

conjugation. The former was established during my diploma thesis (Hensen, 2001).  

 

B.9.2.1 Electrotransformation 

 

Solutions: RCV medium (B.3.3) 

  10 % (v/v) dimethylsulfoxide (DMSO) 

  1 M sodium acetate 

  0,4 M sodium thiosulfate 

 

To produce electrocompetent cells, a culture of A. vinosum was grown 

photoorganoheterotrophically on RCV medium to an optical density of approximately 0,6 at 

690 nm, corresponding to the exponential growth phase. Cell material equivalent to a total 

cell number of about 2 x 10
10
 (approximately 45 ml) was harvested (7500 x g, 4°C, 15 min). 

The pellet was washed three times in 2 ml of ice cold DMSO solution, precipitated again 

(5900 x g, 4°C, 10 min) and finally resuspended in 1 ml of the same solution. This cell 

material was used directly for electrotransformation, as further storage significantly decreased 

the transformation efficiency. The plasmid transfer was performed in electrotransformation 

cuvettes with 2 mm width, using a Gene Pulser II together with a Pulse Controller Plus 

(Biorad, München). One preparation contained 50 µl of cell solution and 0,1 to 0,5 µg of 

purified plasmid DNA. After mixing and incubation on ice for 15 min, the electrical pulse was 

applied (200 Ω, 25 µF; equally good results obtained with 9 kV cm
-1
 and 12,5 kV cm

-1
, 

respectively). The time constant τ should be about 5 ms under the chosen conditions. Directly 

after exposure to the electric pulse the cuvette was placed on ice. The cell material was 

resuspended in 2,5 ml of RCV medium, supplied with 10 mM sodium acetate and 4 mM 

sodium thiosulfate, and incubated in the light for 18 hours in brimful, tightly closed glass 

vials. For the selection of transformants A. vinosum was plated on selective RCV solid 

medium, containing the appropriate antibiotic, and was incubated anaerobically in the light. 
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B.9.2.2 Plasmid transfer from E. coli to A. vinosum by conjugation 

 

The method of plasmid transfer in A. vinosum by conjugation was established in the mid 

nineties (Pattaragulwanit and Dahl, 1995). Donor strain for the conjugative plasmid transfer 

was either E. coli SM10 or E. coli S17.1. On LB solid medium with the appropriate antibiotic 

(see B.3.4 and B.3.8) an over night culture of the plasmid-harbouring E. coli strain was 

cultivated at 37°C. The recipient strain A. vinosum Rif50 (a spontaneous rifampicin resistance 

mutant of A. vinosum DSM180) was grown on RCV medium (see B.3.3) to the stationary 

phase (OD690 ~ 1,5). The total cell number was determined by the measured optical density at 

690 nm (Pattaragulwanit, 1994). A culture volume containing approximately 12 x 10
8
 cells of 

A. vinosum was harvested by centrifugation at 9300 x g for 5 min. The resulting pellet was 

washed twice in 0,5 ml RCV medium and finally resuspended in 0,5 ml of the same solution. 

E. coli cell material was suspended in 3 ml RCV medium to an optical density at 600 nm of 

approximately 0,8. An OD600 of 0,1 is equivalent to a total cell number of 1 x 10
9
 cells/ml 

(Sambrook et al., 1989). 

Equal amounts of A. vinosum and E. coli suspension (0,5 ml each) were carefully mixed, 

resulting in a three times higher cell number of A. vinosum compared to E. coli. The mixture 

was sedimented (9300 x g, 5 min) and resuspended in a little volume of the supernatant. The 

cell suspension was applied onto a sterile cellulose nitrate filter (0,45 µm, Sartorius 

(Göttingen, Germany)), lying on RCV solid medium without added antibiotics. After two 

days of anaerobic incubation in the light, the filter was transferred to a reaction tube to wash 

the cells from the filter with 1 ml RCV medium. For the selection of transconjugants the cell 

material was brought out onto the appropriate selective RCV solid medium and incubated 

anaerobically in the light. 
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B.10 Determination of protein concentration 

 

B.10.1 Determination of protein concentration: Lowry 

 

Solutions: solution A  2 % Na2CO3 in 0,1 M NaOH 

  solution B  0,5 % CuSO4 x 5 H2O 

  solution C  1 % potassium sodium tartrate 

  solution D  48 ml A + 1 ml B + 1 ml C 

  solution E  Folin Ciocalteu reagent (diluted 1: 2) 

 

Protein determination by the method of Lowry was partly used for liquid culture of 

A. vinosum. A sample of 200 µl liquid culture was mixed with 1 ml ice-cold 

acetone / methanol (7:2) on ice for at least 10 min to decolourise the cells and precipitate the 

protein. After centrifugation (15700 x g, 4°C, 10 min) the pellet was dried and resuspended in 

100 µl demineralised water. 1 ml of freshly prepared solution D was added, and the 

preparation was incubated in the dark for 10 min. After the addition of 100 µl of solution E 

and a second incubation for 30 min, the absorption of the supernatant (15700 x g, 5 min) was 

determined at 500 nm against a reagent blank. A calibration curve was recorded at a range of 

0 to100 µg BSA per 200 µl preparation. 

 

B.10.2 Determination of protein concentration: BCA 

 

Protein determination by the BCA protein assay (Perbio (Bonn, Germany)) was partly used 

for fermenter samples, but mostly for the determination of protein concentration after 

chromatographic purification steps. The analysis was performed in small volumes in 96-well 

plates and essentially as described by the manufacturer. 25 µl of protein sample was mixed 

with 200 µl working reagent and incubated at 37°C for 30 min. Afterwards the absorption was 

measured at 550 against a reagent blank. A calibration curve was recorded at a range of 0 to 

500 µg BSA ml
-1
. 

 

B.10.3 Determination of protein concentration: Bradford 

 

The use of Bradford reagent was the method of choice for the determination of protein 

concentration in liquid culture of A. vinosum (e.g. fermenter samples). An amount of 100 µl 
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liquid culture was centrifuged (15700 x g, 10 min) and resuspended in 33 µl of demineralised 

water. 1 ml of Bradford reagent (Sigma (Taufkirchen)) was added to the preparation, mixed 

and incubated for 10 min. The absorption was measured at 595 nm against a reagent blank. A 

calibration curve was recorded at a range of 0 to 500 µg BSA ml
-1
.  

 

 

B.11 Electrophoretic protein separation 

 

B.11.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Solutions :  solution A   1,5 M TrisHCl, 0,3 % SDS, pH 8.8 

  solution B   0,5 M TrisHCl, 0,4 % SDS, pH 6.8 

  5 x electrophoresis buffer 15 g Tris, 72 g glycine, 5 g SDS, ad 1000 ml  

demineralised water 

 

Protein electrophoresis was performed using a discontinuous SDS polyacrylamide gel, 

consisting of a stacking gel for sample focussing and a running gel for the actual separation. 

The amount of the 30 % acrylamide / bisacrylamide solution (Roth (Karlsruhe, Germany)) 

was varied, dependent on the size of the protein to be analysed (the higher the molecular 

weight of the protein, the lower the acrylamide / bisacrylamide concentration).  The following 

table summarizes the composition of different gels: 

 

 10 % 12,5 % 15 % 4,5 % 

demineralised water 5 ml 4 ml 3 ml 3 ml 

solution A 3 ml 3 ml 3 ml - 

solution B - - - 1,25 ml 

Acrylamide / bisacrylamide 4 ml 5 ml 6 ml 0,75 ml 

10 % (w/v) APS
1
 100 µl 100 µl 100 µl 100 µl 

TEMED 5 µl 5 µl 5 µl 5 µl 

1 
: ammoniumperoxosulfate 

 

The gels were prepared by mixing the chemicals in the order stated above, the polymerisation 

was started by the addition of APS and TEMED. The recipe provided enough solution to cast 

two gels (thickness of 0,75 or 1 mm) in a Mini Protean II or 3 gel chamber (BioRad 
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(München, Germany)), respectively. Both running and stacking gel needed about 60 min for 

polymerisation. Protein samples were mixed with 0,25 x volumes of 4 x sample buffer 

(Rotiload 1, Roth (Karlsruhe, Germany)) and heated to 95°C for 5 min. After cooling on ice 

the samples were loaded onto the stacking gel. The electrophoresis was performed with 

1 x electrophoresis buffer at 60 to 100 V. The PageRuler Prestained Protein Ladder by MBI 

Fermentas (St.Leon-Rot, Germany), that could also be used for Western blotting (see B.11.3) 

was used as a marker for molecular weight determination. 

 

B.11.2 Coomassie stain 

 

Solutions: Coomassie staining solution  0,25 % Coomassie Blue R250,  

50 % methanol, 10 % acetic acid, 

40 % demineralised water 

  decolourising solution / fixer  10 % acetic acid, 20 % methanol, 

       70 % demineralised water 

 

After protein electrophoresis the stacking gel was removed, and the running gel was 

transferred into Coomassie staining solution. After at least 30 min incubation the staining 

solution was replaced by decolourising solution / fixer. The latter was exchanged several 

times, until the protein bands were clearly visible. The gel was conserved by vacuum drying 

on an Aldo-Xer gel dryer (Schütt (Göttingen, Germany)). 

 

B.11.3 Electroblotting (Western blotting) 

 

Solution: Towbin blotting buffer  1,52 g Tris, 7,2 g glycine, 100 ml 

methanol, ad 500 ml demineralised water 

 

The protein transfer from the SDS gel onto a cellulosenitrate membrane (Protran BA 85 by 

Schleicher & Schuell (Dassel, Germany)) was accomplished with the help of a Transblot SD 

Semi-Dry transfer call (Biorad (München, Germany). After electrophoresis and discarding of 

the stacking gel, the running gel was transferred to Towbin blotting buffer and incubated for 

15 min. A gel-sized nitrocellulose membrane was also incubated in Towbin blotting buffer for 

an equal amount of time. For the transfer three layers of Whatman 3MM paper, slightly larger 

than membrane and gel and soaked in blotting buffer, were placed on the anode. Membrane, 
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gel and another three layers of soaked Whatman 3MM paper (this time gel-sized) were 

stacked onto the first layer of Whatman 3MM paper. The cathode was placed on top. The 

protein transfer was performed at 15 V. The transfer time was dependent on the size of the 

protein to be transferred (15 min for SoxYZ, 30 min for SoxXA, 45 min for SoxB). 

 

 

B.12 Protein detection methods 

 

The immunological detection of proteins after the transfer onto a nitrocellulose membrane 

was performed with antibodies raised in rabbits. The applied antigen was either a 

synthetically produced and potentially immunogenic peptide of the protein in case of SoxA or 

the complete proteins of P. pantotrophus in case of SoxB (Friedrich et al., 2000) and SoxYZ 

(Quentmeier et al., 2003). All antisera were produced at the facility of Eurogentec (Seraing, 

Belgium). The antisera against SoxB and SoxYZ were thankfully provided by the group of 

Cornelius Friedrich in Dortmund. Depending on the strength of the obtained signal, the 

detection was either performed with 4-chloro-1-naphthol (SoxA and SoxB, see B.12.1) or 

with the SuperSignal

 West Pico Chemiluminescent substrate (SoxYZ, see B.12.2). 

  

B.12.1 Immunological protein detection with 4-chloro-1-naphthol  

 

Solution:  10 x PBS  80 g NaCl, 2 g KCl, 6,1 g Na2HPO4, 2 g KH2PO4,  

     ad 1000 ml demineralised water, 

     after dilution to 1x PBS check pH (approx. pH 7.3) 

 

Directly after Western transfer the membrane was incubated over night in 100 ml 1 x PBS 

with 5 % (w/v) skim milk at 4°C. After 1 h incubation at room temperature the membrane was 

washed five times with 1 x PBS for 5 min, respectively. The primary antibody was applied at 

a concentration of 1:1000 in 20 ml 1 x PBS with 0,1 g BSA for three (SoxA) and four (SoxB) 

hours, respectively. After a triple washing step (1 x PBS, 5 min) the secondary antibody was 

applied. An anti-rabbit antibody with a coupled horse radish peroxidase was used in a dilution 

of 1:5000 in 20 ml 1x PBS with 0,1 g BSA and incubated for 1 h. After two more washing 

steps the blot was developed. The membrane was transferred to 43 ml demineralised water, 

7 ml ethanol containing 30 mg 4-chloro-1-naphthol was added and the reaction was started by 

the addition of 20 µl H2O2. After appearance of the desired black bands, the reaction was 
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stopped by repeatedly washing the membrane with demineralised water. Except for the last 

developing step, all incubations were performed while shaking. 

 

B.12.2 Immunological protein detection with SuperSignal
 substrate 

 

Solutions: 20 x TBS   160 g NaCl, 1 M TrisHCl, ad 1000 ml  

demineralised water 

  1 x TBS + Tween  50 ml 20 x TBS, 0,05 % (w/v) Tween 20, 

      ad 1000 ml demineralised water,  

check pH (approx. pH 7.5) 

 

After Western transfer the membrane was incubated for 1 h in 100 ml 1 x TBS + Tween with 

5 % (w/v) skim milk. With preceding washing steps not necessary, the primary antibody was 

applied at a concentration of 1:1000 in 20 ml 1 x TBS + Tween with 0,1 g BSA and incubated 

over night. After washing the membrane five times with 1 x TBS + Tween for 5 min, 

respectively, the secondary antibody was applied at a concentration of 1:5000 in 20 ml 1 x 

TBS + Tween with 0,1 g BSA and incubated for 1 h. After washing the membrane as before, 

the Western blot was developed using the SuperSignal West Pico chemiluminescent substrate 

as specified by the manufacturer (Perbio (Bonn, Germany)). Apart from the developing step, 

all incubations were performed while shaking. The X-ray film was exposed until the bands 

were clearly visible (10 min to 18 h). 

 

B.12.3 Detection and characterisation of cytochromes 

 

Two methods for heme staining with different sensitivity were applied. While the method for 

heme detection performed directly in the gel after SDS-PAGE is normally sufficient, the more 

sensitive staining after blotting the proteins on a membrane could also be used in more 

difficult cases. 
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Detection of cytochromes in polyacrylamide gels: 

 

Solutions: fixer    10 % acetic acid, 20 % methanol 

  neutralising solution  100 mM TrisHCl, pH 7.0 

  staining solution 1  0,05 % 3´3´-diaminobenzidine in  

100 mM TrisHCl, pH 7.0 

  staining solution 2  0,1 % 3´3´-diaminobenzidine and 2 % H2O2 in 

      100 mM citrate buffer, pH 4.0 

  stopping solution  7 % acetic acid 

 

The identification of cytochromes directly in the polyacrylamide gel was performed after 

McDonnel and Staehelin (1981), using the peroxidase activity of heme groups for detection. 

The gel was incubated in the fixer for 30 min and adjusted to a pH value of pH 7.0 by a short 

incubation in neutralising solution. The gel was saturated with diaminobenzidine by a 30 min 

incubation in staining solution 1. The actual staining took place over night at 4°C with the use 

of staining solution 2. The proteins containing heme should be visible as brown bands. Horse 

heart cytochrome c was applied as a positive control. The staining was stopped by incubation 

in the stopping solution. 

 

Detection of cytochromes after Western blotting 

 

For the detection of cytochromes after Western blotting, the proteins were blotted onto a 

PVDF membrane, that was prepared as described by the manufacturer (Immobilon-P from 

Millipore (Schwalbach, Germany)). The detection was performed using the SuperSignal 

substrate, also making use of the peroxidase activity of heme groups. Because of the use of 

chemiluminescence instead of colorimetric methods (see above) the sensitivity of the 

detection was significantly increased. After the blotting 0,125 ml of working solution per cm
2
 

were applied onto the membrane. The working solution was prepared as described by the 

manufacturer. After 5 min incubation the solution was discarded, and the membrane was 

shrink-wrapped. A X-ray film was exposed immediately for 15 sec up to several hours, 

depending on the signal strength. The cytochrome-containing proteins were visible as black 

bands on the film. Horse heart cytochrome c was again used as a positive control. 
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Recording of pyridine spectra 

 

Solutions: pyridine solution  200 mM NaOH, 40 % (v/v) pyridine 

  ferricyanide solution  100 mM K3Fe(CN)6 

 

The  recording of pyridine spectra was performed after Berry and Trumpower (1998). A 

protein sample (0,5 ml, heme concentration below 5 µM) was mixed with 0,5 ml pyridine 

solution and 3 µl ferricyanide solution, and the hemichrome spectrum was recorded. After the 

addition of a small amount of dithionite, the hemochrome spectrum was recorded. The spectra 

were recorded using a Perkin Elmer Lambda 11 spectrometer. A solution of 0,5 ml gel 

filtration stabilising buffer (see B.13.5.3), 0,5 ml pyridine solution and 3 µl ferricyanide 

solution was used as a reference. The heme concentration was determined using the extinction 

coefficient table by Berry and Trumpower. 

 

UV/vis spectra of cytochrome-containing protein samples 

 

To determine the presence of c-type cytochromes in protein samples during and after 

purification, spectra were recorded using either the Diode Array Spectrometer Agilent 8453 

(during purification) or the Perkin Elmer Lambda 11 spectrometer (after the final gel 

filtration). The cytochromes were identified by their characteristic spectrum. 

 

 

B.13 Protein purification 

 

B.13.1 Cell harvesting and disruption 

 

Solutions: phenylsepharose buffer 50 mM potassium phosphate buffer, pH 7.5 

stabilising buffer PS  50 mM potassium phosphate buffer, 2 mM  

sodium thiosulfate, 1 mM magnesium sulfate, 

1 µM phenylmethylsulfonylfluoride (PMSF), 

      pH 7.5 

   

A culture of A. vinosum, grown photolithoautotrophically on 10 l thiosulfate medium (see 

B.3.2), was harvested by centrifugation (10000 x g, 4°C, 20 min) after approximately five 
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days. The pellet was stored at –20°C until further use. The thawed cell material was 

resuspended either in phenylsepharose buffer or in stabilising buffer PS (depending on the 

applied purification strategy) at a ratio of 3 ml buffer per 1 g wet weight. After 

homogenisation the cells were disrupted by ultrasonic treatment (Cell Disruptor B15, 

Branson) at 50 % intensity and a duration of 1 min ml
-1
. The following centrifugation step 

(27000 x g, 4°C, 30 min) was used to remove cell debris. The supernatant was referred to as 

crude extract. It was subjected to ultracentrifugation to separate membrane and soluble 

fraction. The crude extract was centrifuged at 145000 x g and 4°C for 3 h. The obtained 

supernatant was referred to as soluble fraction, while the pellet, resuspended in the respective 

buffer, was referred to as membrane fraction. 

 

B.13.2 Ammonium sulfate precipitation 

 

The precipitation of proteins with ammonium sulfate was used as a first purification step and 

as a preparation for the hydrophobic interaction chromatography (see B.13.5). The protein 

solution was stirred on ice and finely crushed powder of (NH4)2SO4 was successively added 

up to a final saturation of 40 %. The amount of substance needed was determined by using 

tables by Wood (1976). After the complete amount of ammonium sulfate was added, the 

solution was stirred at 4°C over night. Precipitated proteins were removed the next day by 

centrifugation (27000 x g, 4°C, 30 min). The supernatant was subjected to hydrophobic 

interaction chromatography. The pellet, if needed, was resuspended in a small volume of 

buffer. 

 

B.13.3 Dialysis of protein samples 

 

To remove undesired salts from protein samples and to change buffers, the protein solution 

was dialysed over night against 4 l of the appropriate buffer at 4°C. The proteins were placed 

in dialysis tubes with a molecular weight cut off of 6000 to 8000 Da (Serva (Heidelberg, 

Germany)). To prepare the dialysis tubes for further use, they were autoclaved for 10 min in 

1 mM EDTA, pH 8.0, 2 % Na2CO3, washed in demineralised water and autoclaved again for 

10 min in 1 mM EDTA, pH 8.0.  
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B.13.4 Concentration of protein samples 

 

Protein samples were concentrated using either polyethylenglycol (PEG 20000) or 

ultrafiltration centrifugation. Using the first method, the protein sample was transferred to a 

dialysis tube, that was covered with PEG 20000 and stored at 4°C until the desired reduction 

in volume was achieved. For the second method, ultrafiltration tubes (Centriplus YM 10, 

Millipore, Bedford, USA) were used with a molecular weight cut off of 10 kDa. The 

concentration was performed as described by the manufacturer. 

 

B.13.5 Chromatography methods 

 

The chromatographic protein separation was performed using the Fast-Performance-Liquid-

Chromatography (FPLC) system and the HiLoad system of Pharmacia (Uppsala, Sweden). 

The utilised buffers were degassed and filtrated before use (0,45 µm). The columns were 

cooled to 4°C. Before applying the protein sample to a column, particulate matter was 

removed by filtration (0,45 µm). This filtration was omitted before the gel filtration, because 

of the small sample volume. Instead a guard column was used to keep potentially present 

debris away from the chromatography column. All columns (Pharmacia, Uppsala, Sweden) 

were treated as described by the manufacturer. If the ordinary buffer or the corresponding 

stabilising buffer was used for the chromatography depended on the purification strategy. 

 

B.13.5.1 Hydrophobic interaction chromatography (HIC) 

 

Column : Phenyl Sepharose 6 Fast Flow low substitution, gel volume 70 ml 

Buffer A: 50 mM potassium phosphate buffer, pH 7.5 

      or 

50 mM potassium phosphate buffer, 2 mM sodium thiosulfate, 1 mM  

magnesium sulfate, 1 µM phenylmethylsulfonylfluoride (PMSF), pH 7.5 

(� stabilising buffer PS) 

Buffer B: buffer A with 40 % saturation of (NH4)2SO4 

 

Before use, the HIC column was equilibrated with buffer B. The supernatant after ammonium 

sulfate precipitation and centrifugation was loaded onto the column with a flow rate of 

2 ml min
-1
. After the sample was applied, the column was washed with a defined (NH4)2SO4 
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saturation, depending on the protein to be purified. When no more unbound protein was 

washed from the column, the protein elution was achieved either via a linear or a stepwise 

decrease in (NH4)2SO4 saturation, performed with a flow rate of 2,5 ml min
-1
. After the 

gradient was finished, the column was washed with buffer A until no more protein was eluted. 

The protein amount was measured at 280 nm, and the salt gradient was recorded by 

conductivity. Fractions with a volume of 5 ml were collected. 

 

B.13.5.2 Anionic exchange chromatography (IEX) 

 

Column: MonoQ HR 5/5, gel volume 1 ml 

Buffer A: 10 mM TrisHCl, pH 7.5 

   or 

10 mM TrisHCl, 2 mM sodium thiosulfate, 1 mM magnesium sulfate,  

1 µM  PMSF, pH 7.5 

(� stabilising buffer MQ) 

Buffer B: buffer A containing 1 M NaCl 

 

The fractions after HIC, that contained the desired protein, were combined and dialysed over 

night against buffer A (see B.13.3). The MonoQ column (containing a strong anionic 

exchange material) was equilibrated with buffer A before use. The protein sample was applied 

to the column with a flow rate of 1 ml min
-1
. The column was washed with a defined NaCl 

concentration (100 or 200 mM), until all unbound proteins were removed. The proteins were 

eluted using an increasing linear salt gradient up to 600 mM NaCl at a flow rate of 1 ml min
-1
. 

The remaining proteins were eluted with 1 M NaCl. The protein amount was monitored at 280 

nm and the theoretical salt gradient was recorded. Fractions with a volume of 1 ml were 

collected. 
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B.13.5.3 Gel filtration chromatography (GF) 

 

Column:  HiLoad 16/60 Superdex TM 200, gel volume 126 ml 

Buffer:   50 mM TrisHCl, pH 7.5 

    or 

50 mM TrisHCl, 2 mM sodium thiosulfate, 1 mM magnesium sulfate, 

   1 µM PMSF, pH 7.5 

   (� stabilising buffer GF) 

Standard proteins:  Sigma Marker low-range; molecular mass: 6500 to 66000 Da 

 

To determine the apparent molecular mass of a protein via gel filtration chromatography, the 

column was calibrated with standard proteins. Before use the column was equilibrated with 

the gel filtration buffer. The protein sample, whose volume should not exceed 2 ml, was 

applied to the column with a flow rate of 0,2 ml min
-1
. The protein was eluted isocratically 

with a flow rate of 0,5 ml min 
–1
. The protein amount was measured at 280 nm. Fractions with 

a volume of 1 ml were collected. 

 

B.14 Determination of Sox enzyme activity 

 

Solutions: stabilising buffer GF, pH 7.5 (see B.13.5.3) 

  100 mM sodium thiosulfate 

  4 mM horse heart cytochrome c (Sigma) 

  

The enzymatic activity of the Sox protein complex was determined as a thiosulfate-dependent 

reduction of horse heart cytochrome c as the artificial electron acceptor 

(ε550 = 29,5 mM
-1
cm
-1
). The reaction rate was quantified by monitoring the increase in 

extinction at 550 nm with a Perkin-Elmer Lambda-11 spectrometer. The reaction was started 

by the addition of the enzyme solution, and the extinction at 550 nm was recorded every 2 

seconds for 10 min.  

Composition of the preparation:  50 µl stabilising buffer GF 

     100 µl thiosulfate solution (� 10 mM) 

     25 µl cytochrome c (� 100 µM)    

     enzyme solution 

     demineralised water (ad 1 ml)  
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B.15 Phenotypic characterisation of A. vinosum mutants 

 

B.15.1 Cultivation of A. vinosum wild type and mutant strains 

 

Solutions:  PFENNIG and 0 medium, respectively (see B.3.1) 

0,4 M thiosulfate solution (10 % (w/v) Na2S2O3 x 5H2O) 

2 M sulfide solution (11,2 g NaHS x H2O ad 100 ml  

demineralised water) 

   1 M sulfite solution (12,6 g Na2SO3 ad 100 ml demineralised water) 

   1 M HCl 

   1 M Na2CO3 solution 

 

To characterise a phenotype potentially evoked in A. vinosum by gene inactivation, the 

corresponding mutant was grown photolithoautotrophically at 30°C under anaerobic 

conditions with the addition of defined amounts of reduced sulfur compounds. A glass 

fermenter with a volume of 1,5 l was used, together with an autoclavable pH electrode and 

sterile HCl and Na2CO3 solutions to maintain a pH equilibrium at pH 7.0±0.1. The fermenter 

is depicted in Figure B3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3: The assembly used for phenotypic characterisation of A. vinosum strains. The individual 

parts are labelled in the picture. 
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As a medium for phenotypic characterisation Pfennig as well as 0 medium was applied (see 

B.3.1). The advantage of 0 medium was the better defined amount of reduced sulfur 

compound present in the fermenter, as it was added separately. Medium sterilisation and 

storage often changed the sulfide concentration in Pfennig medium.  

Mutants and corresponding wild types were cultivated in 250 ml RCV medium (see B.3.3) for 

approximately three days and harvested (10000 x g, 18°C, 20 min). The pellet was 

resuspended in a small volume of the supernatant. Medium and culture were filled into the 

fermenter under nitrogen aeration. Depending on the applied medium, the experiment was 

started either by the addition of culture (Pfennig medium) or the addition of defined amounts 

of reduced sulfur compounds (0 medium). During the experiment samples were taken in 

regular intervals to determine the following: 

 

• culture for determination of optical density at 690nm    1 ml 

• culture for derivatisation with MBB (see B.15.3)     50 µl 

• culture pellet (15700x g, 3 min) for elemental sulfur              200 µl 

determination (see B.15.2)         

• culture for protein determination etc. (see B.10)     1 ml 

• culture supernatant (15700 x g, 3min) for the determination of sulfate and  1 ml 

tetrathionate (see B.15.2 and B.15.3)        

 

The optical density was observed during the experiment as an indicator for culture growth and 

sulfur globule formation. The other parameters were determined after the conclusion of the 

experiment. The duration was dependent on quantity and number of sulfur compounds the 

culture was subjected to. Generally a second substrate was only applied if the first was no 

longer detectable. After the conclusion of the experiment, the culture was harvested 

(10000 x g, 10°C, 30 min) and the pellet was stored at –20°C until further use. 

 

B.15.2 Analytical determination of sulfur compounds by wet chemical methods 

 

Sulfur compounds were determined with material obtained during a fermenter experiment of 

A. vinosum wild type and mutant strains (see B.15.1). 
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B.15.2.1 Elemental sulfur via cyanolysis (modified after Kelly et al., 1969) 

 

Solution: ferric nitrate reagent  30 g Fe(NO3)3 x 9 H2O, 40 ml 55 % HNO3 (or  

34 ml 65 % HNO3), ad 100 ml demineralised 

water 

 

A cell pellet with up to 200 nmol sulfur was resuspended in 200 µl demineralised water. After 

the addition of 100 µl 0,2 M sodium cyanide solution, the preparation was incubated for 

10 min at 100°C. 650 µl demineralised water and 50 µl ferric nitrate reagent were added, and 

after centrifugation (15700 x g, 2 min) the extinction at 460 nm was measured against a 

reagent blank. A calibration curve was recorded with sodium thiocyanate (rhodanide) at a 

range of 0 to 300 nmol per preparation of 200 µl. 

 

B.15.2.2 Tetrathionate via cyanolysis (Kelly et al., 1969) 

 

Solutions: ferric nitrate reagent  see 2.13.1 

  Tris acatete buffer  1 M Tris acetate, pH 8.7 

 

425µl of culture supernatant was mixed with 25 µl Tris acetate buffer and 25 µl 0,2 M sodium 

cyanide solution and incubated at 30°C for 30 min. After the addition of 25 µl ferric nitrate 

reagent the extinction at 460 nm was measured against a reagent blank. The calibration curve 

obtained during elemental sulfur determination was also used for tetrathionate determination. 

 

B.15.2.3 Sulfite (modified after Pachmayr, 1960) 

 

Solutions: 2 % (w/v) zinc acetate in demineralised water 

  0,04 % (w/v) fuchsin in 10 % (v/v) H2SO4 

  formaldehyde (37 %) 

 

690 µl of culture supernatant was diluted with demineralised water to fit into the calibration 

curve. The diluted sample was mixed with 200 µl zinc acetate and 100 µl fuchsin reagent and 

incubated for 10 min at room temperature. After the addition of 10 µl formaldehyde and 

another 10 min incubation time, the extinction at 570 nm was measured against a reagent 
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blank. A calibration curve was recorded with sodium sulfite at a range of 0 to 40 nmol per 

preparation of 690 µl. 

 

B.15.3 Analytical determination of sulfur compounds using HPLC 

 

For the determination of sulfur compounds, apart from wet chemical methods, a HPLC by 

Thermo Electron (Dreieich, Germany) was used, consisting of a degasser SCM1000, the 

pumps P200 and P4000, the autosampler AS3000 or a manual Rheodyne valve, the column 

oven, the UV detector UV 150 or UV 6000 and the fluorescence detector FL3000. The 

chromatograms were analysed using the software provided with the device. All columns were 

provided by Merck (Langenfeld, Germany). The columns were treated according to the 

instructions provided by the manufacturer. Buffers (except for HPLC grade methanol) were 

filtrated with a 0,22 µm filter before use. 

 

B.15.3.1 Determination of thiols using HPLC 

 

Solutions:   HEPES buffer    50 mM HEPES, 5 mM EDTA, pH 8.0 

(titrated with NaOH) 

         monobromobimane solution (MBB) 96 mM monobromobimane in acetonitrile 

         65 mM methanesulfonic acid 

 

Derivatisation:  

 

The detection of thiols like sulfide, polysulfides, thiosulfate and sulfite was performed after 

derivatisation with the fluorescent dye monobromobimane (Rethmeier et al., 1997). 50 µl of 

cell material was mixed with 50 µl HEPES buffer and 55 µl acetonitrile. After the addition of 

5 µl monobromobimane solution the preparation was mixed and incubated in the dark for 

30 min. The reaction was stopped by the addition of 100 µl methanesulfonic acid, and the 

preparations were stored at -20°C until the measurement. 
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HPLC analysis of derivatised thiols: 

 

Column: LiChrospher

 100 RP 18 ec (250-4, 5 µm) 

  flow rate 1 ml / min, temperature 35°C 

Detection: fluorescence detection (excitation 380 nm, emission 480 nm) 

Solutions: A: 0,25 % acetic acid, pH 4.0 (titrated with 10 M NaOH) 

  B: methanol 

Elution: binary gradient 

  time [min] % A  % B 

  0  85  15 

  5  85  15 

  50  55  45 

  55  0  100 

  58  0  100 

  61  85  15 

  76  85  15 

 

The detection of derivatised thiols was performed by reversed phase HPLC with binary 

gradient elution and fluorescence detection. For the sedimentation of particulate components 

the preparation was centrifuged (15700 x g, 5min). Because of the sensitivity of the detector, 

the sample was diluted 1:20 with the solvent mixture (85 % A, 15 % B). 200 µl of the diluted 

sample was filled into HPLC vials. The autosampler injected 50 µl of each sample into a 

100 µl sample loop. Calibration curves were recorded with sodium sulfite, sodium thiosulfate 

and sodium sulfide at a range of 50 µM to 1 mM, respectively. As no standard for 

polysulfides was available, the amount and composition of these measured substances 

remains relative. The retention times for the respective substances were 4 min for sulfite, 

9 min for thiosulfate, 39 min for polysulfide I, 40 min for sulfide and 44 min for 

polysulfide II.  
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B.15.3.2 Determination of elemental sulfur using HPLC 

 

Column: LiChrospher
®
 100 RP 18 (125-4, 5 µm) 

  flow rate 1,2 ml / min, temperature 35°C 

Detection: UV detection (263 nm) 

Solution: 95 % methanol, 5 % demineralised water 

Elution: isocratic 

 

For the determination of elemental sulfur 100 µl culture were mixed with 100 µl chloroform, 

mixed vigorously and left untouched, until the two phases reappeared. The lower phase 

contained the elemental sulfur extractable in chloroform. The sulfur concentration was 

determined using reversed phase HPLC and UV detection (Rethmeier et al., 1997). 50 µl of 

the chloroform phase were injected into a Rheodyne valve with a 20 µl sample loop. A 

calibration curve was recorded with elemental sulfur dissolved in chloroform from 25 µM to 

5 mM. The retention time for sulfur was 4,5 min. 

 

B.15.3.3 Determination of sulfate using HPLC 

 

Column: Polyspher IC AN 1  

  flow rate 1,3 ml / min, temperature 35°C 

Detection: UV detection (indirect, 254 nm) 

Solution: 1,5 mM phtalic acid, 1,38 mM Tris, 300 mM boric acid, pH 4.2 (do not 

titrate) 

Elution: isocratic 

 

Sulfate was determined using anionic exchange HPLC with indirect UV detection. The 

solvent exhibits a stronger absorption than sulfate, therefore resulting in a negative sulfate 

peak. Sulfate was measured from culture supernatant, that was centrifuged before use 

(15700 x g, 5 min). The autosampler injected 60 µl in a 100 µl sample loop. The calibration 

curve was reported from 50 µM to 8 mM with sodium sulfate. The retention time was 

approximately 12 min. 
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C. Results 

 

C.1 Sequence analysis 
 

C.1.1 First set of sox genes 

 

During the work on my diploma thesis three sox genes and two potentially sox- related genes 

were identified. They are shown in Figure C1, surrounded by genes in all probability not 

involved in the Sox system. 

 

 

 

 

 

Figure C1: Gene region containing the first set of sox genes and sox-related genes in A. vinosum. 

The relevant open reading frames referred to in the text are depicted in colour. 

 

soxB: For the soxB gene (597 aa, 65377 Da) sequence analysis predicts a putative 

signal peptide of 29 amino acids. It contains a double arginine motif (Brüser and Sanders, 

2003), that suggests a transport to the periplasm via the Tat pathway. Sequence comparison 

reveals a domain typical for 5´-nucleotidases and high similarity to several soxB genes found 

in chemo- and phototrophic organisms (including P. pantotrophus and C. tepidum). In 

accordance with results obtained for SoxB from P. pantotrophus the putative cofactor would 

be a dinuclear manganese cluster (Epel et al., 2005). 

 

soxX: The soxX gene (128 aa, 13629 Da) is orientated divergently from soxB on the 

5´-strand and separated from it by a 325 bp intergenic region, containing two putative 

promoter sequences. The putative soxB promoter is situated 72 bp upstream of the 

corresponding start codon, the putative soxX promoter 244 bp upstream of the corresponding 

start codon. Sequence analysis revealed a putative signal peptide for SoxX (24 aa), typical for 

Sec-dependent transport to the periplasm. One heme binding motif (CxxCH) indicates, that 

the protein is a monoheme c-type cytochrome. SoxX exhibits similarity to several other SoxX 

proteins from different organisms, all of which also probably contain one heme cofactor.  

 

ORFa ORFb ORFc soxB soxX soxA 
ORF9 

rhd ccmA ccmB 

1 kb 
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soxA: The soxA gene encodes a protein (281 aa, 31730 Da), that includes a putative 

signal peptide of 20 amino acids, typical for Sec-dependent transport. SoxA contains one 

heme binding motif (CxxCH), that suggests it to be a periplasmic monoheme c-type 

cytochrome. SoxA exhibits similarity to several other SoxA proteins from different 

organisms, which contain either one heme binding site as in S. novella (Kappler et al., 2004) 

or two heme binding sites as in P. pantotrophus (Friedrich et al., 2000). Whether this 

difference leads to a different function is not yet known.  

Different SoxA proteins are shown in the alignment in Figure C2. C. tepidum SoxA was 

chosen as a representative of other SoxA proteins encoded in the green sulfur bacteria, that 

exhibit the same characteristics (e.g. Chlorochromatium aggregatum). The C-terminal heme 

binding motif is conserved in all the depicted sequences. The N-terminal heme binding motif, 

however, is missing in A. vinosum, S. novella and C. tepidum, only one of the cysteine 

residues remains. For SoxA in S. novella (Kappler et al., 2004) and R. sulfidophium 

(Cheesman et al., 2001) an unusual heme ligand has been postulated (His/Cys instead of 

His/Met). The cysteine residues involved in heme coordination (marked in yellow) are also 

conserved in A. vinosum. For the C-terminal heme the cysteine is the potential second ligand 

in addition to histidine. As the N-terminal heme binding motif was destroyed, the formation 

of a disulfide bond between the remaining heme binding cysteine and the ligand cysteine was 

observed in S. novella (Kappler et al., 2004), a situation also possible in A. vinosum.  

 

   AvinSoxA           ---MTKHGFLLATLVLAGATLPIGPVTAAT-----PEEEQAAFQAYFKQR  

   SnovSoxA           -MRRFAAGCLALALLVLPFVLTGARAAEDES-------------------  

   CtepSoxA           MKKTIQRGLFTGALVLMTAMTAK-PANAEVNYQALVDADVKAFQGFFRKE  

   PpanSoxA           -MPRFTKTKGTLAATALGLALAGAAFADPVEDGLVIETDSGPVEIVTKTA  

   RsulSoxA           -MKTMTG-RLVAAALVCGGAFSGAAVSAGPDDPLVIN---GEIEIVTRAP  

   Clustal Consensus              :        . .            . .    .        

 

   AvinSoxA           FPNVPEDEFKNG--TYAIDPVTRENWEAIEEFPPYENAISQGETLWNTPF  

   SnovSoxA           ----------------EKEIERYRQMIEDPMANPGFLNVDRGEVLWSEPR  

   CtepSoxA           FPDVKLEDFGNG--VYALDEDARKQWKEMEEFPPYELDVEAGKALFNKPF  

   PpanSoxA           PPAFLADTFDTIYSGWHFRDDSTRDLERDDFDNPAMVFVDRGLDKWNAAM  

   RsulSoxA           TPAHLADRFDEIRSGWTFRTDDTQALEMDDFENSGMVFVEEARAVWDRPE  

   Clustal Consensus   .    .                .         .    :. .   :. .   

 

   AvinSoxA           AD-GQGYADCFP-----DGPAIMNHYPRWDRERGQVMTLPLALNACRTAH  

   SnovSoxA           GTRNVSLETCDLGEGPGKLEGAYAHLPRYFADTGKVMDLEQRLLWCMETI  

   CtepSoxA           AN-GKSLASCFP-----NGGAVRGMYPYFDEKRKEVVTLEMAINECRVAN  

   PpanSoxA           GVNGESCASCHQGPE-S-MAGLRAVMPRVDEHTGKLMIMEDYVNACVTER  

   RsulSoxA           GTEGKACADCHGAVD-DGMYGLRAVYPKYVESAGKVRTVEQMINACRTSR  

   Clustal Consensus  .  . .   *          .     *       ::  :   :  *      
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   AvinSoxA           -GETPLKYKKG---------PIADLLAYIAFESRGQITRVEIPQDDPRAL  

   SnovSoxA           QGRDTKPLVAKPFSGPGRTSDMEDLVAFIANKSDGVKIKVALATP--QEK  

   CtepSoxA           -GEKPYAWEKG---------DIARVSAYIASISRGQ--KVDVKVKSKAAY  

   PpanSoxA           MGLEKWGVTSD---------NMKDMLSLISLQSRGMAVNVKIDG---PAA  

   RsulSoxA           MGAPEWDYIGP---------DMTAMVALIASVSRGMPVSVAIDG---PAQ  

   Clustal Consensus   *                   :  : : *:  * *    * :   .      

 

   AvinSoxA           AAYEQGKRFYFARRGQLNFACAHCHLATSGTKLRTETLSPA-------YG  

   SnovSoxA           EMYAIGEALFFRRSSINDFSCSTCHG-AAGKRIRLQALPQLDVPGKDAQL  

   CtepSoxA           DAYMKGKKFFYAKRGQLNMSCSGCHMEYAGRHLRAEIISPA-------LG  

   PpanSoxA           PYWEHGKEIYYTRYGQLEMSCANCHEDNAGNMIRADHLS---------QG  

   RsulSoxA           STWEKGREIYYTRYGQLDLSCASCHEQYFDHYIRADHLS---------QG  

   Clustal Consensus    :  *. ::: : .  :::*: **    .  :* : :.             

 

   AvinSoxA           HTTHWPVYRSEWGEMGTLHRRFAGCNEQVRAKAFEPQGEEYRNLEYFLTY  

   SnovSoxA           TMATWPTYRVSQSALRTMQHRMWDCYRQMRMPAPDYASEAVTALTLYLTK  

   CtepSoxA           HTTHFPVFRSKWGEIGTLHRRYAGCSNNIGAKPFAPQSEEYRDLEFFQTV  

   PpanSoxA           QINGFPTYRLKDSGMVTAQHRFVGCVRDTRAETFKAGSDDFKALELYVAS  

   RsulSoxA           QINGFPSYRLKNARLNAVHDRFRGCIRDTRGVPFAVGSPEFVALELYVAS  

   Clustal Consensus      :* :* . . : : : *  .* .:    .    .     *  : :   

 

   AvinSoxA           MNNGLELNGPGARK  

   SnovSoxA           QAEGGELKVPSIKR  

   CtepSoxA           MSNGLKYNGPASRK  

   PpanSoxA           RGNGLSVEGVSVRH  

   RsulSoxA           RGNGLSVEGPSVRN  

   Clustal Consensus    :* . :  . :.  

 

Figure C2:  Alignment of different SoxA amino acid sequences. Conserved amino acids are marked in 

gray, the conserved heme binding motifs and the corresponding remains are marked in red. The 

conserved cysteine residues applied as heme ligands are marked in yellow. Organisms: A. vinosum, 

S. novella, C. tepidum, P. pantotrophus, R. sulfidophilum. All sequences were obtained from GenBank 

with the exception of the A. vinosum sequence taken from (Hensen, 2001). 

 

ORF9: This ORF (114 aa, 12194 Da) encodes a presumably periplasmic protein with 

a signal peptide of 29 amino acids for Sec-dependent transport. The protein exhibits no 

conserved domains, but shows similarity to hypothetic proteins in C. limicola as well as in 

C. tepidum. In both organisms the corresponding open reading frame is located in a sox gene 

cluster. In C. tepidum a similar open reading frame CT1020 is located between soxA and 

soxB. However, a function of the putative protein was not obvious. 

 

rhd: The encoded protein (249 aa, 27178 Da) contains a putative signal peptide of 50 

amino acids for Sec-dependent transport, indicating a periplasmic location. The protein 

contains a conserved domain typical for rhodaneses (RHOD-PspE2: rhodanese homology 

domain (Bordo and Bork, 2002)), enzymes responsible for sulfur group transfer, that are 

found in all three domains of life. The function may be detoxification of cyanide by addition 

of sulfur to form non-toxic thiocyanide (rhodanide). Based upon this similarity the open 

reading frame is named rhd. A gene encoding a putative rhodanese is also found in the sox 
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gene cluster of Aquifex aeolicus (GenBank accession number: AAC07633). As sulfur group 

transfer could be part of the thiosulfate oxidation pathway, the presence of a rhodanese in the 

vicinity of sox genes may be of importance. 

 

C.1.2 Second set of sox genes 

 

Taking the model for the P. pantotrophus Sox system into account, two proteins essential for 

its function were still missing: the substrate binding protein SoxYZ and the sulfur 

dehydrogenase SoxCD.  

 

C.1.2.1 Cloning of the gene region containing soxYZ 

 

The first step in the lookout for soxYZ, encoding the substrate binding protein, was the 

utilisation of the already published soxYZ gene sequence of C. limicola (Verte et al., 2002). 

Using the primer pair ClimYfor / ClimZrev , a DNA fragment containing both soxY and soxZ 

was amplified with genomic DNA of C. limicola as template. After digoxigenin-labelling it 

was used as a heterologous probe for Southern hybridisation. The examination of A. vinosum 

DNA, digested with different restriction enzymes, revealed two fragments suitable for cloning 

(a 2,5 kb ClaI fragment and a 1,5 kb EcoRI fragment), that produced a positive signal. These 

fragments were ligated into an equally digested plasmid pGEM7 Zf(+), respectively, yielding 

the two plasmids pDHEcoYZ and pDHClaYZ. The corresponding inserts were sequenced and 

proved to be overlapping. This led to the detection of the second set of sox genes in 

A. vinosum, which are located independently from the genes identified during my diploma 

thesis that are discussed above. Therefore the model of a continuous sox gene cluster, as 

found in P. pantotrophus,  appeared not to be correct for the situation in A. vinosum. The five 

open reading frames of the second gene region are depicted in figure C3. 

 

 

 

 

 

 

 

Figure C3: Gene region containing the second set of sox genes in A. vinosum. The sox genes are 

highlighted in colour. Nucleotide and amino acid sequence see appendix (G.1 and G.2). 
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soxY 

soxZ 
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C.1.2.2 Sequence analysis 

 

ORFd: This incomplete open reading frame encodes a protein with unknown cellular 

location, as the N-terminal sequence is missing. The protein exhibits a TPR domain, which is 

usually involved in protein-protein interaction (Sikorski et al., 1990). The TPR domain 

usually appears in cytoplasmic proteins, giving a hint towards the localisation of the protein 

encoded by ORFd. Sequence comparison reveals similarity to either putative peptidase-

family-M48-proteins or putative Zn-dependent proteases from different eubacteria. No 

obvious connection to the thiosulfate metabolism could be concluded. 

 

soxY: The ORF soxY encodes a putative periplasmic protein (154 aa, 15796 Da) with a 

signal peptide of 31 amino acids. A promoter search reveals a potential promoter responsible 

for the transcription of soxYZ inside of ORFd. The –10 box is located 299 bp upstream of the 

soxY start codon. The location of the genes soxYZ independent from the other sox genes 

presents the possibility for independent regulation of gene expression.  

The protein SoxY contains a double arginine motif typical for a Tat-dependent transport to the 

periplasm. The transport via the Tat pathway as an already folded holoprotein normally hints 

towards a cofactor-containing protein. But in the case of SoxY no sequence motifs for 

cofactor binding could be identified. Still, this type of transport would be needed, if SoxY was 

actually responsible for the transportation of SoxZ to the periplasm. The latter did not exhibit 

a signal peptide at all, therefore being potentially a cytoplasmic protein. This kind of 

hitchhiker transport was already predicted for the SoxYZ protein in P. pantotrophus 

(Friedrich et al., 2001).  

Similarity search reveals homologies to several other SoxY proteins from different sox gene 

containing bacteria. The similarity of the A. vinosum protein to C. tepidum SoxY is quite large 

(E=2.2e
-23
) compared to SoxY from P. pantotrophus (E=3.2e

-13
), corresponding with other 

parallels between C. tepidum and A. vinosum. Preceding examination of SoxY revealed the 

presence of a consensus motif at the C-terminus of the protein, surrounding the cysteine 

residue involved in substrate binding (Quentmeier and Friedrich, 2001). An alignment of the 

predicted amino acid sequence of A. vinosum SoxY with some already published sequences 

(see Figure C4) demonstrated the presence of the same motif in the A. vinosum sequence. The 

Tat transport signal could also be identified in all the examined SoxY sequences. 
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   AvinSoxY           MIDAKRRTLVKGSLAAGAVVGAGLITP-RAFADWNAAAFQAKDIPTAMTG  

   SnovSoxY           MQLRSWTPSRRETMGLGLTAMLAAALA-------PRLVMATEEMVAAELK  

   CtepSoxY           -MGISRRDFCRTIAGSAASFAVLAVMPGRLLASWNEKAFSASKLDEAIAA  

   PpanSoxY           MIL-----SRREALWIGFGGLAAAALP-------GKAVMAST--VDELTA  

   RsulSoxY           MEF-----TRRGAMALSAGLAAALMLP-------ASAVRAA---VEDKIA  

   Clustal Consensus      .     :     .         .    :.    .  : .         

 

   AvinSoxY           LLGSDAAEVSDRIKIKAPDIAENGAVVPVTVETDLEG-----VTSISLIA  

   SnovSoxY           KLYGDKSMADGKIKLDLPEIAENGLVVPLNIDVDSPMTEQDYVKAVHVFA  

   CtepSoxY           KFGSLPIEDSTAIQIKAPEIAENGAFVPVSVSTTIPG-----ATNISIFT  

   PpanSoxY           AFTGGAATGEGGLTLTAPEIAENGNTVP--IEVKAPG-----AVAIMLLA  

   RsulSoxY           EFTGGADAGADGITLTTPEIAENGNTVP--IEVEAPG-----AVEIMVVA  

   Clustal Consensus   : .        : :  *:*****  ** .:..         .  : :.:  

 

   AvinSoxY           AKNQSPLIASFEFVDPSVIPFVATRIKMAETADVIAVVKAG-DKLYKNAK  

   SnovSoxY           DGNPLPQVVTYKFTPQSGKAAASIRMRLAQTQNVIAVAEMSNGALYTTKA  

   CtepSoxY           PANFSPMIASFD-VLPRMIPDVSLRMRMAKTSNLVVIVQAG-GKLYRATR  

   PpanSoxY           AGNPEPAVATFNFGPAAADQRAATRIRLAQTQDVIALAKMADGSVVKAQT  

   RsulSoxY           SANPTPDVARVSFGPLAGAQRLSTRIRLGGTQDVIAVAKMGDGSFRRAAN  

   Clustal Consensus    *  * :.  .          : *:::. * :::.:.: . . .       

 

   AvinSoxY           SVKVTIGGCGG  

   SnovSoxY           QVKVTIGGCGG  

   CtepSoxY           EVKVTIGGCGG  

   PpanSoxY           TVKVTIGGCGG  

   RsulSoxY           TVKVTIGGCGG  

   Clustal Consensus   **********  

 

Figure C4: Alignment of different SoxY amino acid sequences. The C-terminal consensus sequence 

and other conserved amino acids are marked in gray, the conserved cysteine residue (the potential 

substrate binding site) is marked in red. The double arginine motif for Tat transport is marked in green. 

Organisms: A. vinosum, S. novella, C. tepidum, P. pantotrophus, R. sulfidophilum. All sequences were 

obtained from GenBank with the exception of the A. vinosum sequence. 

 

soxZ: Although SoxZ in P. pantotrophus has been detected in the periplasm, the 

protein has no signal peptide. The same appears to be true for A. vinosum SoxZ, that is 

predicted to be cytoplasmic. The protein (104 aa, 11231 Da) exhibits homology to several 

SoxZ proteins from different organisms. As could be observed for SoxY, the similarity of 

SoxZ was bigger between A. vinosum and C. tepidum (E=2.7e
-18
) than between A. vinosum 

and P. pantotrophus (E=9.6e
-8
). An alignment of SoxZ amino acid sequences from different 

organisms (see Figure C5) revealed no obvious consensus motif, that could give a hint 

towards the protein function. As the substrate binding is performed by the cysteine residue in 

the SoxY subunit of a SoxYZ heterodimer, the role of the SoxZ subunit remains to be 

elucidated.   
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   AvinSoxZ           -MSDIKIRAKLE-----GDETTVKCLMSHPMETGLRKDSKTNEVIPAHFI  

   SnovSoxZ           MAIKSKPRVKVPSEAKAGEIIEIKTLISHEMESGQRKD-SSGKTIPRAII  

   CtepSoxZ           ----MKIKAVVQ-----NNIVSVKVLIPHPMDTGRVKD-QAGALIPAHFI  

   PpanSoxZ           MADDAKPRVKVPSSAKAGETVTVKALISHKMESGQRKD-ADGKLIPRSII  

   RsulSoxZ           MAEGVKARVKAPRTVAAGETVVIKTLISHQMESGQRKD-SDGSLIPRSII  

   Clustal Consensus       * :.        .:   :* *:.* *::*  **:  .  **  :*  

 

   AvinSoxZ           REVVCKVKGAVVMKTSWSGGVSKNPYLSFKFKGGAVGDPIEIAWTDNTGE  

   SnovSoxZ           NTFTASFNGKPFFEANWFTAVSANPYQAFFYKASESGE-FTFTWKDDDGS  

   CtepSoxZ           TEVTATIGGDTVFHAELGSGVSKDPYLSFQFKGAKAGDMLKVSWVDNKGA  

   PpanSoxZ           NRFTCELNGVNVVDVAIDPAVSTNPYFEFDAKVDAAGE-FKFTWYDDDGS  

   RsulSoxZ           NRFAVAYNGQNVIDVALAPAISTNPYFEFEAVIPEAGD-MVFTWYDDDGS  

   Clustal Consensus    ..    *  ....    .:* :**  *       *: : .:* *: *   

 

   AvinSoxZ           SQSATAEISG-  

   SnovSoxZ           EQSATAKLTVA  

   CtepSoxZ           SETAEAAITAM  

   PpanSoxZ           VYEDVKPIAVA  

   RsulSoxZ           VYEEVKSIAIG  

   Clustal Consensus         ::    

 

Figure C5: Alignment of different SoxZ amino acid sequences. Conserved amino acid residues are 

marked in gray. Organisms: A. vinosum, S. novella, C. tepidum, P. pantotrophus, R. sulfidophilum. All 

sequences were obtained from GenBank with the exception of the A. vinosum sequence. 

 

ORFe: The open reading frame ORFe is located divergently from soxZ, pointing 

towards an independent transcription. The encoded protein (221 aa, 25895 Da) exhibits no 

signal peptide. The cytoplasmic protein shows a SAM (S-adenosyl-L-methionine) binding 

motif, a conserved domain typical for methylases. The function would be a transfer of a 

methyl group from SAM to either nitrogen, oxygen or carbon, thereby achieving a 

modification of DNA, RNA and proteins. This function is frequently employed in diverse 

organisms ranging from bacteria to plants and mammals. Sequence comparison also indicated 

high homology to protein-L-isoaspartate o-methyltransferases, that occur in a broad range of 

bacteria and play a role in the repair and/or degradation of damaged proteins. 

 

ORFf: This open reading frame encodes a putative cytoplasmic protein with a 

conserved domain typical for GTP-cyclohydrolases I. These proteins catalyse the biosynthesis 

of formic acid and dihydroneopterin triphosphate from GTP, the first step in the biosynthesis 

of tetrahydrofolate in prokaryotes. The protein is also found in eukaryotic sources. 
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A summary of the genetic results gained so far (see Table C1) indicate the presence of five 

sox genes in A. vinosum (soxBXA and soxYZ), encoding the three proteins SoxB, SoxXA and 

SoxYZ. Preceding experiments performed by Ulrike Kappler, including a thorough search on 

genetic and protein basis, made the presence of soxCD and the corresponding proteins in 

A. vinosum very unlikely . 

 

gene bp protein MW [Da] cofactor function 

soxB 1791 SoxB 65377,30 / 62077,28 manganese
1 

sulfate 

thiohydrolase 

soxX 384 SoxX 13628,60 / 10750,21 heme 

soxA 843 SoxA 31729,65 / 29254,62 heme 
cytochrome c 

soxY 464 SoxY 15796,34 / 12702,61 - 

soxZ 314 SoxZ 11230,87 / - - 

substrate 

binding 

 

Table C1: The sox genes so far identified in A. vinosum, together with the encoded proteins (including 

molecular weight for the unprocessed and processed form), their putative cofactor content and the 

postulated function. 
1
Postulated because of results obtained in P. pantotrophus (Epel et al., 2005). 

 

 

C.2 Production of heterologous Sox proteins in E. coli for antisera testing 

 

The next goal after the identification of five putative sox genes in A. vinosum was the 

detection of the encoded proteins in the organism. For the detection of SoxA, SoxB and 

SoxYZ the respective antisera were applied. The SoxA antiserum was raised against a 

potentially highly immunogenic synthetic peptide derived from the nucleotide sequence in 

A. vinosum. In contrast, the SoxB and SoxYZ antisera were raised against the respective 

complete proteins from P. pantotrophus. These antisera were thankfully provided by the 

group of Cornelius Friedrich in Dortmund. As none of the antisera was directed against an 

already known A. vinosum protein, they all needed to be tested for their functionality. The test 

was performed with the respective recombinant proteins produced in E. coli as an expression 

system.  
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C.2.1 SoxA  

 

The protein SoxA was produced in E. coli BL21(DE3) under aerobic conditions. As seen in 

Figure C6, SoxA was successfully produced and could be detected only in the induced culture 

of E. coli.  

 

 

 

 

 

 

 

 

 

 

 

Figure C6: Production of recombinant SoxA in E. coli BL21(DE3). Comparison of negative control and 

SoxA-producing culture in Coomassie-stained SDS-PAGE and Western blot incubated with SoxA 

antiserum. The arrow indicates the position of SoxA at approximately 30 kDa. 

 

The strongest signal was produced at the molecular weight of approximately the size 

predicted for SoxA (unprocessed: 32 kDa / processed: 30 kDa). Wether the signal peptide 

remained attached to the protein could not be determined from the SDS-PAGE. There was no 

signal in the control experiment. Nevertheless, a lot of background noise appeared in the 

preparation containing SoxA. The additional signals were potentially due to the heterologous 

protein origin, as the antiserum provided unequivocal signals with A. vinosum cell material. 

The use of E. coli BL21(DE3) for the production of a recombinant c-type cytochrome is not 

ideal concerning the functionality of the protein, as this E. coli strain is not intended for this 

kind of expression. The E. coli strain HM125 contains the ccm gene cluster, encoding for 

proteins necessary for correct c-type cytochrome maturation. However, the joint expression of 

soxX and soxA in this E. coli strain was not successful (data not shown). As for the desired 

purpose of antibody testing the protein did not have to contain a correctly inserted heme, the 

produced SoxA was sufficient. 
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C.2.2 SoxB 

 

The production of recombinant SoxB in E. coli BL21(DE3) was also successful (see Figure 

C7). As the difference between processed (62 kDa) and unprocessed SoxB (65 kDa) was not 

distinguishable in the SDS-PAGE, it could not be determined whether the signal peptide 

remained attached to the protein.  

 

 

 

 

 

 

 

 

 

 

 

Figure C7: Production of recombinant SoxB in E. coli BL21(DE3). Comparison of negative control and 

SoxB-producing culture in Coomassie-stained SDS-PAGE and Western Blot incubated with Anti-SoxB 

antiserum. The arrow indicates the putative signal for SoxB at approximately 62 kDa, right below the 

additional background signal. 

 

The antiserum against SoxB provided some difficulties, as at first glance there were identical 

signals in the negative control as well as with the produced protein. But after taking a closer 

look a second band directly below the contaminating signal could be identified in the SoxB-

containing lane, that is not present in the negative control. Later experiments with A. vinosum 

made clear, that this problem did not arise solely from the background of protein production 

in E. coli (as was the case for SoxA). This experiment rather provided a preview of the 

difficulties in detecting SoxB in and purifying it from A. vinosum, caused by the presence of a 

background signal at almost the exact molecular weight of SoxB. The problem was 

potentially due to the origin of the antigen, that was used for antibody production. Antibodies 

directed against SoxB from P. pantotrophus seem to bind not only to SoxB but also to a 

second protein from A. vinosum, that was accidentally purified in addition to the actual SoxB 

(see C.3.3). 
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C.2.3 SoxYZ 

 

The production of heterologous SoxYZ in E. coli BL21(DE3) was also successful (see Figure 

C8), even though some questions remain about the identity of the produced proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure C8: Production of recombinant SoxYZ in E. coli BL21(DE3). Comparison of negative control 

and SoxYZ-producing culture in Coomassie-stained SDS-PAGE and Western Blot. The upper arrow 

indicates the putative unprocessed SoxY at approximately 15 kDa. The middle and lower arrow 

indicate the potentially processed SoxY at 12,7 kDa and the putative SoxZ at approximately 11 kDa.  

 

SoxY in its unprocessed form has a molecular weight  of 15,8 kDa, corresponding to the band 

slightly above the 15 kDa marker band (indicated by the upper arrow). The two bands at a 

lower molecular weight could represent the potentially processed SoxY (12,7 kDa) and the 

putative SoxZ (11,2 kDa). The identification of the proteins with the corresponding antibody 

provided several difficulties. The protein band of the putative unprocessed SoxY produced a 

signal in the Western Blot, but that signal also appeared in the negative control. Regarding the 

results obtained for SoxB, that does not rule out an identification of SoxY. The two bands at 

lower molecular weight both provided a signal, in this case without a corresponding signal in 

the negative control. So this could be a positive signal for the detection of SoxYZ from 

E. coli.  
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C.3 Purification of Sox proteins from A. vinosum 

 

C.3.1 Preceding experiments 

 

Before the start of the Sox protein purification from A. vinosum, the first questions to be 

answered concerned the localisation of the proteins in the cell and a potential induction of the 

sox gene expression by the putative substrate(s). As the SoxA antiserum provided the best 

results, it was used for these first experiments, on the assumption that the other Sox proteins 

are in all probability equally localised and regulated. 

 

C.3.1.1 Protein localisation and inducibility 

 

To clarify the points in question, A. vinosum was cultivated either photo-

organoheterotrophically on malate or photolithoautotrophically on thiosulfate and sulfide. The 

gained cell material was then subjected to ultrasound treatment and ultracentrifugation to 

separate the membrane and soluble fraction. The presence of SoxA was examined in crude 

extract, membrane and soluble fractions of both growth conditions (see Figure C9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C9: Detection of SoxA by Western blot analysis in crude extract, membrane fraction and 

soluble fraction of A. vinosum cell material, grown on medium containing malate or thiosulfate / sulfide 

(labelled only with “S2O3
2-
“). The arrow indicates the signal for SoxA at approximately 30 kDa. Each 

lane contained 90 µg of protein. 
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SoxA was detected in all fractions, when A. vinosum was grown on thiosulfate and sulfide. 

But the strongest signal appeared in the soluble fraction, in correspondence with the predicted 

periplasmic location of the protein. When grown without the potential substrate(s) SoxA was 

nevertheless detectable, but at a significantly lower intensity. The strongest signal appeared 

again in the soluble fraction, a weak signal was perceptible in the crude extract. No signal for 

SoxA could be identified in the membrane fraction. Therefore, thiosulfate and/or sulfide 

provide an induction of gene expression above a low constitutive level. As the applied 

medium contained thiosulfate and sulfide, that are both potential substrates for the Sox 

multienzyme complex, the actual inducer could not be identified. As the thiosulfate 

concentration is five times higher than that of sulfide, the former is the more likely candidate. 

For best results in protein purification A. vinosum was grown on thiosulfate / sulfide, and the 

soluble fraction was subjected to the purification procedure. 

 

C.3.1.2 Ammonium sulfate precipitation 

 

40 g of cell material resuspended in the corresponding buffer was applied to ultrasound 

treatment and ultracentrifugation. The first following step in purification was protein 

precipitation from the centrifugation supernatant with ammonium sulfate. The goal was to 

keep the Sox proteins soluble in the supernatant. As a first experimental shot a 40 % 

saturation with ammonium sulfate was chosen. After resuspending the pellet, both fractions 

were tested concerning their SoxA content, again as a model for the other Sox proteins (see 

Figure C10).  
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Figure C10: Ammonium sulfate precipitation of thiosulfate-grown A. vinosum cell material: 

Coomassie-stained SDS-PAGE with supernatant and resuspended precipitate, together with the 

corresponding Western blot signal for SoxA.  

 

Even with the much higher protein concentration in the resuspended precipitate (discernible 

from the Coomassie stain), the signal for SoxA was still significantly stronger in the 

supernatant. The slight loss of Sox protein to the precipitate was acceptable. So a 40% 

saturation with ammonium sulfate was the first step in all Sox protein purifications. 

The high salt concentration in the supernatant after ammonium sulfate precipitation 

predestined the preparation for hydrophobic interaction chromatography, that needs a high 

salt concentration as a starting condition.  

 

C.3.2: Purification of SoxXA 

 

Even if the applied antiserum was only directed against SoxA, the joint purification of SoxA 

and SoxX was assumed, taking into account the results achieved in other organism like 

P. pantotrophus (Friedrich et al., 2000), R. sulfidophilum (Appia-Ayme et al., 2001) and 

S. novella (Kappler et al., 2004). SoxXA could be purified from these organisms as a 

functional heterodimer according to the Sox system model. Therefore, the reference to 

SoxXA in the purification description implies the detection of the subunit SoxA, while the 

other subunit SoxX was not detected but assumed to be present. 
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C.3.2.1 Different purification strategies 

 

Different strategies were tested for the purification of SoxXA from A. vinosum in the first 

chromatographic step (HIC: hydrophobic interaction chromatography). It was examined, 

whether a linear or a step gradient of decreasing ammonium sulfate concentration provided 

better results concerning protein purity. In later experiments the applied buffer was also 

modified. While in the first experiments the buffer composition was quite simple (just the 

buffer substances and the elution-active substance, adjusted to the correct pH value), for later 

experiments additional substances were added (sodium thiosulfate, magnesium sulfate, 

PMSF) to obtain a better environment concerning protein stability. Therefore the respective 

buffers were referred to as stabilising buffers and were also applied in the other purification 

steps and for the other Sox proteins. The results obtained for the different purification 

strategies were comparable in protein yield and purity. Therefore, only the latest attempt using 

a step gradient and stabilising buffer in HIC is presented. Figure C11 shows the  

chromatogram of the hydrophobic interaction chromatography. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C11: Chromatogram of the hydrophobic interaction chromatography to purify SoxXA, using a 

Phenylsepharose matrix and a step gradient. The gradient was started at 60 % buffer B, followed by a 

stepwise decrease of 10 % every 50 ml. Protein measurement at 280 nm (blue) is depicted as relative 

units. The salt gradient (red), depicted as % buffer B, was measured by conductivity. The fractions 

containing SoxXA are marked in light green, the fractions pooled and used for the following purification 

step in dark green. The SoxA signals for the latter are depicted above the chromatogram. 
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SoxA was detectable over a relatively broad range of fractions after the hydrophobic 

interaction chromatography. However, for further purification steps only fractions, that 

exhibited a strong signal in the Western blot (elution volume 240 to 260 ml), were pooled and 

dialysed over night against the low salt buffer for anionic exchange chromatography (� 

stabilising buffer MQ). 

 

The second method used for purification was a strong anion exchange column (MonoQ). The 

dialysed protein sample was applied to the column and washed with 10 % buffer B. The 

protein elution was achieved by a linear gradient of increasing NaCl concentration up to 

60 % buffer B. The resulting chromatogram is depicted in Figure C12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C12: Chromatogram of the anionic exchange chromatography to purify SoxXA using a MonoQ 

column and a linear gradient. The gradient was started at 10 % buffer B and increased to 60 % in a 

volume of 40 ml. Residual protein was eluted with 100 % buffer B. Protein measurement at 280 nm 

(blue) is depicted as relative units. The theoretical salt gradient (red) is depicted as % buffer B. The 

fractions containing SoxXA are marked in light green, the fractions pooled and used for the following 

purification step in dark green. The SoxA signals for the latter are depicted above the chromatogram. 
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After the ion exchange chromatography (IEX) SoxXA was again detectable in a range of 

fractions. The anionic exchange chromatography led to a concentration of the protein, so that 

the SoxXA-containing fractions 14 to 16 ml exhibited a slightly pink colour typical for 

cytochromes. 

 

The last purification step was a gel filtration chromatography using a Superdex 200 column. 

Because of a preceding calibration with proteins with known molecular weight (dextran blue: 

2000 kDa, bovine albumin: 66 kDa, carboanhydrase: 29 kDa, horse heart cytochrome c: 12,4 

kDa, aprotenin: 6,5 kDa), it was possible to obtain the molecular weight of an unknown 

protein. The logarithmic calibration curve for the Superdex 200 is depicted in figure C13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C13: Calibration curve for the gel filtration column Superdex 200. The void volume (v0) was set 

at 43 ml, corresponding to the elution volume of dextran blue. The total volume (vt) was 126 ml. 

KAV = (ve – v0) / (vt – v0) 
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Figure C14: Chromatogram of gel filtration to purify SoxXA using a Superdex 200 column. Protein 

measurement at 280 nm (blue) is depicted as relative units. The fractions containing SoxXA are 

marked in light green, the fractions pooled and used for the following purification step in dark green. 

The SoxA signals for the latter are depicted above the chromatogram. 

 

After the gelfiltration the strongest signals for SoxA corresponded to an elution volume of  81 

to 84 ml, an average of ve= 82,5 ml. This elution volume of 82,5 ml corresponds to a 

molecular weight of approximately 46,6 kDa, that is in accordance with the postulated 

heterodimer of SoxA (30 kDa) and SoxX (11 kDa). Therefore, the subunit structure already 

described for SoxXA proteins of other organism and predicted for SoxXA of A. vinosum 

could be confirmed.  

 

The SoxXA purification was followed by observing the protein content of the SoxXA-

containing fractions after the separate chromatographic steps by SDS-PAGE (see figure C15).  

 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 

volume [ml] 

re
la

ti
v
e
 E

2
8
0
 

81 82 83 84 



C: Results 70

 

 

 

 

 

 

 

 

 

 

 

 

Figure C15: Purification of SoxXA from A. vinosum, followed by SDS-PAGE. Lanes: 1. HIC fraction 

eluted at 250 ml, 2. IEX fraction eluted at 15 ml, 3. GF fraction eluted at 83 ml, 4. Western blot (of GF 

fraction at 83 ml) with SoxA antiserum. 

 

The SDS-PAGE demonstrated, that SoxXA was purified almost to homogeneity. However, 

only the subunit SoxA is clearly visible, SoxX not discernible at the expected size of 11 kDa. 

According to the expected and verified subunit structure of the heterodimeric SoxXA the 

subunits SoxA and SoxX should be present in equimolar amounts. However, the Coomassie-

staining of SoxX is too weak in relation to the actual protein concentration. This effect has 

also been observed for SoxX of P. pantotrophus (Friedrich et al., 2000), R. sulfidophilum 

(Appia-Ayme et al., 2001) and S. novella (Kappler et al., 2004), confirming, that there is no 

need to question the subunit structure obtained by gel filtration. Nevertheless, the yield of 

SoxXA is fairly low, as even the strongly stained SoxA is hardly visible in the SDS-PAGE.  

 

When the presented purification is compared to the preceding purification attempts, it exhibits 

a slight difference, as no protein bands below 25 kDa are visible in the Coomassie-stained 

SDS-PAGE. With the only real difference between the preceding attempts and this 

purification being the buffer composition, a closer look at it could deliver the desired 

explanation for the obtained results. Potentially the protein bands with a small molecular 

weight, apart from SoxX, were only fragments of larger proteins, whose degradation was 

prevented in the presented purification by the addition protease inhibitor PMSF and / or 

sodium thiosulfate and magnesium sulfate.  
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C.3.2.2 Further analysis of the purified SoxXA 

 

The protein yielded after gel filtration was used for further examination of SoxXA concerning 

its heme content. The protein SoxXA was fairly diluted after gel filtration, with the SoxX 

subunit hardly visible. Therefore, the SoxXA containing fractions 80 to 89 after gel filtration 

were pooled and concentrated about 17 fold before the following experiments. Thereby 

contaminating proteins were once again introduced into the preparation for the sake of an 

increased SoxXA content. The analysis of SoxXA included the measurement of a spectrum, 

two heme staining methods differing in sensitivity, and the quantification of the heme content 

by the measurement of pyridine spectra. In the two latter cases horse heart cytochrome c was 

used as positive control.  

 

Spectrum:  

 

When recording a spectrum of the fractions containing SoxXA, a typical spectrum for a c-type 

cytochrome could be obtained (see Figure C16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C16: Spectrum of purified and concentrated SoxXA after gel filtration (as prepared). Identified 

peaks: α: 550 nm, β: 522 nm, γ: 415 nm. Protein concentration: 486 µg/ml. The absorptions at 280 nm 

(0,7042) and 415,5 nm (0,9392) result in a ratio of 0,75. 
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While the spectrum for concentrated SoxXA exhibited all characteristics of the postulated 

c-type cytochrome, the surprising fact was the detection of the reduced form. Without the 

addition of reductants like dithionite SoxXA presented the reduced spectrum of a 

cytochrome c550 with a α peak at 550 nm, a β peak at 522 nm and a γ peak (soret band) at 

415 nm. Potentially the shoulder on the left side of the soret band represented the δ-peak at 

about 365 nm. Despite the chosen conditions of aerobic protein purification, under which 

related cytochromes become air-oxidised (Friedrich et al., 2000; Appia-Ayme et al., 2001; 

Kappler et al., 2004), the reduced form seemed to be quite stable. The spectrum of a reduced 

c-type cytochrome was also recorded during the purification procedure in the SoxXA-

containing fractions after HIC and IEX.  

The quotient of the absorption at 280 nm (representing the total protein content) and the 

absorption at 415 nm (representing the heme content) gives information about the achieved 

purity of SoxXA. With a quotient of E280 / E415 = 0,7042 / 0,9392 = 0,75 the achieved purity is 

not as good as was assumed because of the SDS-PAGE results. However, it must be taken 

into account, that gel filtration fractions containing proteins apart from SoxXA have been 

pooled for concentration. Therefore, the actual purity is in all probability much better, as was 

also observed in the SDS-PAGE.  

 

Heme staining:  

 

Now that the SoxXA heterodimer was confirmed to be a cytochrome c550, the actual heme 

content remained to be determined. By heme group detection after denaturing SDS-PAGE the 

subunits SoxX and SoxA were examined separately for the presence of heme as a prosthetic 

group. Two different methods were applied with differing sensitivity. The results are shown in 

figure C17, together with the positive control. 
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Figure C17: Heme group detection in horse heart cytochrome c and concentrated SoxXA.  

CBB: SDS-PAGE stained with Coomassie Brilliant Blue, SS: heme detection with SuperSignal 

substrate, DAB: heme staining with diaminobenzidine, blot: Western blot with SoxA antiserum. Protein 

concentration: horse heart cytochrome c 333 µg/ml, SoxXA 486 µg/ml. 

 

The positive control performed with horse heart cytochrome c provided an excellent example 

for the difference in sensitivity concerning the two heme detection methods. The Coomassie 

stain showed the protein at its expected size of 12,4 kDa, but also a potential aggregate at a 

higher molecular weight. The less sensitive method applying diaminobezidine only stained 

the protein band at 12,4 kDa. The sensitive detection with SuperSignal substrate, however, 

using the heme peroxidase activity to produce a chemiluminescent signal, was able to produce 

signals for both protein bands. After the concentration of the gel filtration fractions both 

subunits of SoxXA were visible after Coomassie staining, together with a slight background 

of contaminating proteins. Diaminobenzidine stained both subunits, SoxX and SoxA, 

therefore confirming the postulated presence of heme in each subunit. The reason for the 

weaker stain in SoxA than in SoxX is not known. The heme detection by chemiluminescence 

provided equally strong signals for both SoxX and SoxA, with an additional signal at a higher 

molecular weight. Because of its size of approximately 40 kDa it could be a SoxXA 

heterodimer not denatured during sample preparation. However, the Western blot analysis 

showed SoxA only to be present in the expected protein band at 30 kDa. Therefore, the 

additional signal is potentially due to another c-type cytochrome in the preparation apart from 

SoxXA, even if at significantly lower concentration. Nevertheless, SoxXA was the major 

cytochrome in the preparation 
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Pyridine spectra:  

 

To obtain the actual amount of heme in the protein pyridine spectra were recorded. As the 

concentrated protein was not completely homogeneous, the obtained results were less of a 

quantitative, but more of a qualitative value to confirm the results already obtained by other 

methods. Horse heart cytochrome c was used as a positive control for correct experimental 

procedures. The results are presented in figure C18. 

 

 

 

 

 

 

 

 

 

 

Figure C18: Determination of protein heme content by recording of pyridine spectra for defined protein 

concentrations of horse heart cytochrome c (as positive control) and SoxXA. Protein concentration: 

horse heart cytochrome c 1,24 µg/ml, SoxXA 48,6 µg/ml. 

 

Looking at the results in a strictly qualitative way, they confirm the identity of horse heart 

cytochrome c and SoxXA as c-type cytochromes. Concerning the quantification of the heme 

content, the results varied in their value. For horse heart cytochrome c a heme content of 

0,62 µmol heme c per µmol protein was obtained, representing approximately the one heme 

group known to be present in one protein molecule. For SoxXA a heme content of 0,67 µmol 

heme c per µmol protein was obtained. As the heterodimeric protein should contain one heme 

per subunit, two heme molecules per protein SoxXA, the determined heme content is about 

50 % of the expected amount. This could be due to the additional contaminating proteins that 

artificially raise the protein concentration, but not the heme content. Therefore approximately 

only half of the examined protein would be SoxXA. 
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C.3.3 Purification of SoxB 

 

C.3.3.1 Different purification strategies 

 

For the purification of SoxB the same strategy used for SoxXA was applied concerning the 

order of chromatographic methods. For SoxB only the step gradient was used in hydrophobic 

interaction chromatography with and without stabilising buffer. As the obtained results for 

both attempts were equivalent, only the purification using stabilising buffer is presented.. The 

chromatogram for the hydrophobic interaction chromatography to purify SoxB is depicted in 

Figure C19. As SoxB and SoxXA could be purified from the same hydrophobic interaction 

chromatography, the same chromatography was used to obtain both proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C19: Chromatogram of the hydrophobic interaction chromatography to purify SoxB, using a 

Phenylsepharose matrix and a step gradient. The gradient was started at 60 % buffer B, followed by a 

stepwise decrease of 10 % every 50 ml. Protein measurement at 280 nm (blue) is depicted as relative 

units. The salt gradient (red), depicted as % buffer B, was measured by conductivity. The fractions 

containing SoxXA are marked in green. The fractions containing SoxB are marked in light orange, the 

fractions pooled and used for the following purification step in dark orange. The SoxB signal for the 

latter is depicted above the chromatogram. 
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The SoxB antiserum indicated the presence of the protein in a broad range of fractions, that 

also overlapped with the SoxXA containing fractions depicted in green. Because of the results 

obtained for antiserum testing, a slight uncertainty remained concerning the identity of the 

detected protein. Nevertheless, the fractions with the strongest potential signal for SoxB (an 

elution volume of 305 to 335 ml) were pooled, dialysed against low salt MonoQ buffer and 

subjected to anionic exchange chromatography. The obtained chromatogram is depicted in 

Figure C20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C20: Chromatogram of the anionic exchange chromatography to purify SoxB using a MonoQ 

column and a linear gradient. The gradient was started at 10 % buffer B and increased to 60 % in a 

volume of 40 ml. Residual protein was eluted with 100 % buffer B. Protein measurement at 280 nm 

(blue) is depicted as relative units. The theoretical salt gradient (red) is depicted as % buffer B. The 

fractions containing SoxB are marked in light orange, the fractions pooled and used for the following 

purification step in dark orange. The SoxB signal for the latter is depicted above the chromatogram. 

 

The results of the anionic exchange chromatography provided several problems concerning 

the accuracy of the SoxB antibody binding. When taking earlier experiments into account, 

SoxB was detectable in almost every fraction from 20 % up to 100 % buffer B. This could be 

due to an interaction of protein and column material. A second possibility would be the 

additional detection of another protein of the same size as SoxB, as observed in E. coli crude 
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extract (see Figure C7). The problem was to distinguish between the two proteins. In the first 

attempt, the fractions corresponding to the strongest Western blot signal were subjected to gel 

filtration. However, the protein eluted shortly after the void volume, representing a large 

protein aggregate of either SoxB or an altogether different protein. Further experiments 

confirmed, that these fractions do not contain SoxB. Therefore, a closer look was taken at the 

Western blot results. Directly below the would-be SoxB signal in the MonoQ fractions 14 and 

15 ml appeared a second band, exactly as observed for the heterologous SoxB produced in 

E. coli. So these fractions were subjected to gel filtration. The resulting chromatogram is 

shown in Figure C21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C21: Chromatogram of gel filtration to purify SoxB using a Superdex 200 column. Protein 

measurement at 280 nm (blue) is depicted as relative units. The fractions containing SoxB are marked 

in light orange, the fractions with the strongest Western blot signal in dark orange. The SoxB signals 

for the latter are depicted above the chromatogram. 

 

The gel filtration resulted in an elution of SoxB in a fairly small range of fractions. The 

strongest Western blot signals were obtained for the fractions corresponding to an elution 

volume of 83 to 85 ml. The mean elution volume of ve = 84 ml is equivalent to a molecular 

weight of 41 kDa. Even if the measured protein size differs from the predicted protein size 

(62 kDa), this purified protein was far more likely to be SoxB than the protein eluting shortly 
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after the void volume. The identity of SoxB was confirmed by MALDI-TOF analysis (see 

C.3.3.2). 

 

The purification of SoxB was quite successful, as only one other protein was visible on the 

SDS-PAGE after gel filtration (see Figure C22). The SDS-PAGE revealed a discrepancy 

between the molecular weight determined on the protein gel and the molecular weight 

determined by gel filtration. While according to the gel filtration SoxB would have a size of 

41 kDa, the protein appeared as a band of approximately 60 kDa on the denaturing gel. The 

latter would be very close to the predicted protein size of 62 kDa. When applying the 

would-be SoxB to SDS-PAGE, a comparable protein band at approximately 60 kDa appeared. 

Perhaps this protein actually eluted from the gel filtration column in a large aggregate, that 

was degraded in the sample preparation for SDS-PAGE. In contrast, SoxB potentially 

exhibited an interaction with the column material, which resulted in a slight delay of elution. 

 

 

 

 

 

 

 

 

 

 

 

Figure C22: Purification of SoxB from A. vinosum, followed by SDS-PAGE. Lanes: 1. HIC fraction 

eluted at 320 ml, 2. IEX fraction eluted at 14 ml, 3. GF fraction eluted at 84 ml, 4. Western blot (of GF 

fraction 84 ml) with SoxB antiserum, 5. GF fraction not corresponding to SoxB, but detected with the 

antiserum. 

 

When comparing the different attempts to purify SoxB, the results were equally good. In the 

presented purification there was only one other protein present apart from SoxB. Also the 

protein yield appeared to be slightly bigger in the presented approach, as judged by the 

Coomassie-stained SDS-PAGE. The use of stabilising buffer during purification had the same 

effect already observed during SoxXA purification. Compared to preparations without the 

stabilising agents, there were almost no small contaminating proteins present. Perhaps this is 
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again due to an increase in protein stability achieved by the addition of protease inhibitor, 

sodium thiosulfate and magnesium sulfate. 

 

C.3.3.2 MALDI-TOF analysis of SoxB 

 

Regarding the less-than-perfect performance of the SoxB antiserum, the purified protein was 

subjected to MALDI-TOF analysis for further proof. As the protein was quite diluted after gel 

filtration, the SoxB-containing fractions 81 to 90 ml were pooled and concentrated. After 

SDS-PAGE SoxB was cut out and analysed by MALDI-TOF after tryptic digestion. The 

obtained peptide fragments, together with the amino acid sequence and size of predicted 

fragments, are presented in Table C2.  

 

peptide sequence predicted mass [Da]  obtained mass [Da] 

EEALFDYR 1042,4840 1042,3822 

FGAVGGFAHLK 1103,5996 1103,4786 

LAIAGELLYR 1118,6568 1118,5409 

EPNVNLGIGSALGR 1396,7543 1396,6082 

VHDAQISLSPGFR 1426,7437 1426,5041 

LLPVFSNLIEPDR 1512,8420 1512,6846 

FIPDWTFGIEDGR 1552,7430 1552,5818 

NIAEFQGAFVAQNVR 1663,8550 1663,6901 

ERPSDPYEIDAFGQVR 1860,9238 1860,7369 

VAVIGQAFPYTPIANPSR 1901,0279 1900,8384 

LLHITDTHAQLNPIYFR 2052,1025 2051,9053 

SLLLDGGDTWQGSGTAYWTR 2184,0356 2183,8257 

LGVDVMTGHWEFTYGDEEVIR 2453,1441 2452,9089 

FGIAPGGLEAHAFTYLDFAAAAER 2495,2353 2494,9949 

GIDVILGGHTHDGVPTPILVENPGGK 2592,3779 2592,1509 

      

 

Table C2: MALDI-TOF analysis of purified SoxB. Amino acid sequence of tryptic peptide fragments 

predicted for SoxB (based upon the nucleotide sequence), their predicted mass [Da] and the 

respective mass of detected peptide fragments [Da]. The arrow indicates the peptide fragment, that 

confirms the signal peptide cleavage position. 

 

MALDI-TOF analysis provided 15 peptide fragments that could be assigned to predicted 

tryptic fragments of SoxB. This unequivocally confirmed the identity of the purified protein 

as SoxB. Additionally, the proposed position for signal peptide cleavage could be confirmed, 
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as the fragment with a mass of 1860,737 Da only appears, when the protein has been correctly 

processed. This provides additional proof for the predicted periplasmic localisation of SoxB. 

 

C.3.4 Purification of SoxYZ 

 

C.3.4.1 Purification strategy 

 

The first step in the chromatographic purification of SoxYZ was hydrophobic interaction 

chromatography, as performed for SoxXA and SoxB, but exclusively with the use of 

stabilising buffer. Because of the poor performance delivered by the SoxYZ antiserum in 

fractions after HIC, the identification of SoxYZ-containing fractions was fairly difficult. A 

linear gradient starting with 100 % buffer B was used in this case. The chromatogram for the 

hydrophobic interaction chromatography is depicted in Figure C23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C23: Chromatogram of the hydrophobic interaction chromatography to purify SoxYZ, using a 

Phenylsepharose matrix and a linear gradient. The gradient was started at 100 % buffer B, followed by 

a linear decrease to 50 % over 335 ml. Protein measurement at 280 nm (blue) is depicted as relative 

units. The salt gradient (red), depicted as % buffer B, was measured by conductivity. The fractions 

containing SoxYZ are marked in light purple, the fractions pooled and used for the following 

purification step in dark purple. The SoxYZ signals for the latter are depicted above the chromatogram.  
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A Western blot signal potentially assigned to SoxYZ was detectable in HIC fractions from 

360 to 400 ml, with the strongest signal corresponding to an elution volume of 380 to 390 ml. 

The additional signal appearing at a higher molecular weight was in all probability due to the 

weak accuracy of the antiserum, the effect visible with A. vinosum cell material and 

heterologous protein produced in E. coli. The SoxYZ-containing fractions 380 to 390 ml were 

used for further purification. Because of the already low protein content (as observed in SDS-

PAGE), the anionic exchange chromatography step was omitted. Before subjecting the protein 

sample to gel filtration, it needed to be concentrated to an appropriate volume of 2 ml. The 

following gel filtration was performed using the respective stabilising buffer. The resulting 

chromatogram is depicted in figure C24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C24: Chromatogram of gel filtration to purify SoxYZ using a Superdex 200 column. Protein 

measurement at 280 nm (blue) is depicted as relative units. The fractions containing SoxYZ are 

marked in light purple, the fractions with the strongest Western blot signal in dark purple. The SoxYZ 

signals for the latter are depicted above the chromatogram. 

 

With less contaminating protein present in the preparation, the background noise in Western 

blot analysis was reduced, so that interpretation of the results was easier. During gelfiltration 

the protein responsible for the second signal in Western blot analysis after the hydrophobic 

interaction chromatography has been separated from SoxYZ, it appeared at a lower elution 

volume. SoxYZ eluted from the gel filtration column at an elution volume from 89 to 96 ml 
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with the strongest signals in fractions 91 and 92 ml. The mean elution volume of ve = 91,5 ml 

corresponded to a molecular weight of 23 kDa. With SoxY at a size of 12,7 kDa and SoxZ at 

a size of 11,2 kDa, the determined molecular weight matched a heterodimeric subunit 

structure of SoxYZ. 

The purification of SoxYZ was followed by SDS-PAGE, the results are shown in figure C25. 

 

 

 

 

 

 

 

 

 

 

Figure C25: Purification of SoxB from A. vinosum, followed by SDS-PAGE. Lanes: 1. HIC fraction 

eluted at 380 ml, 2. GF fraction eluted at 92 ml, 3. Western blot (of GF fraction 92 ml) with SoxYZ 

antiserum. 

 

The first chromatographic step (HIC) resulted in a considerable reduction of the protein 

content, thereby justifying the omission of the intermediate IEX step. After the gel filtration, 

however, several contaminating proteins apart from SoxYZ were still present in the 

preparation. The protein bands corresponding to SoxY and SoxZ were identified by the 

Western blot signal. But the actual identification of SoxY (upper band) and SoxZ (lower 

band) in the SDS-PAGE by their molecular weight could be deceiving. SoxY and SoxZ from 

P. pantotrophus have a molecular weight of approximately 11 kDa and 11,7 kDa, 

respectively. Nevertheless, SoxZ is found at a molecular weight of 16 kDa in SDS-PAGE 

(Friedrich et al., 2000). Therefore a definite assignment of the observed protein bands to the 

respective Sox proteins was difficult. Additionally, the lower protein band was quite blurred, 

potentially due to the enhanced protease sensitivity of SoxYZ compared to the other Sox 

proteins that was observed in P. pantotrophus (Friedrich, personal communication).  
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C.3.4.2 MALDI-TOF analysis of SoxYZ 

 

To shed more light on the identity of the purified proteins, the protein band corresponding to 

SoxY was subjected to MALDI-TOF analysis. After a preceding concentration of the 

SoxYZ-containing gel filtration fractions (87 to 96 ml) and SDS-PAGE, the protein was cut 

out of the gel, tryptically digested and analysed by MALDI-TOF. The obtained peptide 

fragments, together with the amino acid sequence and size of predicted fragments, are 

presented in Table C3. 

 

peptide sequence predicted mass [Da] obtained mass [Da] 

VTIGGCGG 633,3130 775,3874 

DIPTAMTGLLGSDAAEVSDR 2018,9699 2018,9595 

NQSPLIASFEFVDPSVIPFVATR 2534,3289 2534,3196 

TNEVIPAHFIR 1296,7059 1296,6992 

 
Table C3: MALDI-TOF analysis of purified SoxYZ. Amino acid sequence of tryptic peptide fragments 

predicted for SoxY and SoxZ (based upon the nucleotide sequence), their predicted mass [Da] and 

the respective mass of detected peptide fragments [Da]. The first three fragments are assigned to 

SoxY, the last to SoxZ. 

 

The MALDI-TOF analysis of SoxYZ provided additional data to verify the identity of the 

protein. Fragments for SoxY as well as for SoxZ could be identified. Three fragments could 

be assigned to SoxY. The smallest of these fragments has potentially been modified. The 

predicted SoxY fragment (663 Da) contains the conserved C-terminus, together with the 

cysteine residue as the potential substrate binding site (VTIGGCGG). When a thiosulfate 

molecule (112 Da) was attached to the cysteine, the observed fragment size of 755 Da would 

be obtained. This modification could have taken place, as the proteins were purified from 

thiosulfate-grown A. vinosum cell material and the purification buffers also contained 

thiosulfate. This modification confirms the function of SoxY as the substrate binding subunit. 

One peptide fragment could be assigned to SoxZ. Therefore, the analysed protein sample must 

have been a mixture of both subunits, additionally verifying the interaction of SoxY and 

SoxZ. 
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C.3.5 Determination of enzymatic activity of Sox proteins in A. vinosum 

 

The activity of the Sox system was determined as the thiosulfate-dependent reduction of horse 

heart cytochrome c, measured as an increase in extinction at 550 nm. Horse heart 

cytochrome c was applied, to differentiate between thiosulfate oxidation by the Sox system 

and thiosulfate oxidation by the thiosulfate:acceptor oxidoreductase. While ferricyanide was a 

very effective electron acceptor for the latter enzyme, and cytochrome c from Saccharomyces 

cerevisiae also performed fairly well, no activity of the thiosulfate:acceptor oxidoreductase 

was measured with horse hearty cytochrome c (Sperling, 2001). Therefore, any activity 

measured in the present enzyme assay should only be due to Sox enzyme activity. A blank 

was recorded using a preparation without the addition of enzyme solution. This blank was 

subtracted from all measured samples. Potential Sox enzyme activity was examined in the 

supernatant after ammonium sulfate precipitation and in three preparations with different 

concentrations of the purified and concentrated proteins SoxXA, SoxB and SoxYZ. The 

results are depicted in figure C26. 

 

 

 

 

 

 

 

 

 

 

Figure C26: Determination of Sox enzyme activity in the supernatant after ammonium sulfate 

precipitation and with purified proteins in different compositions. Enzyme activity is presented in mU  

and mU/mg, respectively. Protein concentration in 1 ml assay: (NH  4)  2SO  4: 770 µg, SoxXABYZ-1: 3 µg 

of each protein; SoxXABYZ-2: SoxXA 4,86 µg, SoxB 3,05 µg, SoxYZ 29 µg ; SoxXABYZ-3: 1 µmol of 

each protein (SoxXA: 40,8 µg, SoxB: 62,2 µg, SoxYZ: 23,9 µg). 

 

In the first preparation ((NH4)2SO4) the supernatant obtained after ammonium sulfate 

precipitation was added to the assay. A thiosulfate-dependent reduction of horse heart 

cytochrome c of 1,34 mU/mg, significantly above the blank level, was detected. The 

reconstitution of the Sox multienzyme system with the purified proteins appeared to be partly 
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successful, as the first preparation (SoxXABYZ-1) exhibited an activity of 1,85 mU/mg. The 

other two preparations were significantly less active with 0,35 mU/mg (SoxXABYZ-2) and 

0,41 mU/mg (SoxXABYZ-3). 

 

 

C.4 A. vinosum mutant strains 

 

During the work on my diploma thesis four different mutants in sox genes and potentially sox-

related genes were produced (Hensen, 2001). The gene inactivation was achieved by the 

insertion of a kanamycin resistance cassette into the respective genes. The produced mutants 

are summarized in Table C4. 

 

mutant 

strain 
Characteristics 

corresponding 

wild type 

∆soxX insertion of a resistance cassette into soxX DSM 180 

∆soxB insertion of a resistance cassette into soxB DSM 180 

∆soxBX 

simultaneous insertion of a resistance cassette into soxB and 

soxX by removal of the intergenic region and insertion of a 

resistance cassette 

DSM 180 

∆ORF9/rhd 
simultaneous insertion of a resistance cassette into ORF9 and rhd, 

thereby removing parts of both open reading frames 
185SM50 

 

Table C4: Characteristics and corresponding A. vinosum wild types of A. vinosum mutant strains 

produced during the work on the diploma thesis (Hensen, 2001). 

 

C.4.1 The in frame mutant ∆∆∆∆soxY 

 

C.4.1.1 Mutant construction 

 

In addition to the already established insertional mutants, an in frame deletion of the soxY 

open reading frame was performed. The advantage of an in frame deletion is the preservation 

of the reading frame, thereby maintaining the transcription of the open reading frames situated 

downstream of the deletion. In contrast to that, the insertion of a resistance cassette can be 

cause for polar effects due to the destroyed reading frame. The corresponding wild type for 

this in frame mutant was a spontaneous rifampicin-resistant mutant of A. vinosum DSM 180, 

named A. vinosum Rif50 (Lübbe, personal communication). The soxY gene containing the 
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deletion was produced by SOEing PCR and inserted into the suicide vector pK19mobsacB. 

Because of the sensitivity of A. vinosum to the saccharase products, the mutation could be 

established in Rif50, leading to the mutant strain ∆soxY.  

 

 

C.4.1.2 Mutant confirmation by PCR and Southern blot 

 

The deletion of almost the complete soxY gene was confirmed by PCR and Southern blot 

analysis. The first primer pair for PCR analysis consisted of the two outer SOEing PCR 

primers (Yforward / Yreverse, PCR a), the second pair of one outer SOEing PCR primer and 

one primer with complementary sequence inside of the deletion (Yforward /Y2rev1, PCR b). 

The primer binding positions and the obtained PCR fragments are depicted in Figure C27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C27: PCR control of the mutant strain ∆soxY in comparison to the corresponding wild type 

Rif50. The primer binding sites are depicted on the left, the obtained PCR products after gel 

electrophoresis on the right. PCR a: Yforward / Yreverse, PCRb: Yforward / Y2rev1. 

 

The PCR analysis confirmed the correct deletion of almost the complete soxY gene in the 

mutant strain ∆soxY. For the wild type the first PCR (PCR a) produced a fragment of 1,5 kb. 

This fragment was reduced to a size of 1 kb in the mutant due to the deletion in the soxY gene. 

The second PCR (PCR b) could only obtain a 900 bp fragment in the wild type, as one of the 

primer binding site was deleted in the soxY mutant. 

∆soxY kb wt wt ∆soxY 

PCR a PCR b 

2,0 
1,6 

1,0 

soxZ ∆∆∆∆Y    

Yforward 

Yreverse 

soxY soxZ 

Yforward 

Yreverse Y2rev1 

Wild type 

∆∆∆∆soxY    



C: Results 87

The Southern blot analysis was performed with digested genomic DNA of mutant and wild 

type strain. A digoxigenin-labelled soxYZ probe, produced with the SOEing PCR primer pair 

Yforward / Yreverse, was used for hybridisation. The obtained fragments are shown in 

Figure C28.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C28: Southern blot analysis of the ∆soxY mutant strain and the corresponding wild type Rif50. 

The genomic DNA was digested with the restriction enzymes ClaI, EcoRI and EcoRV. The respective 

cutting positions are presented schematically. A soxYZ probe was used for hybridisation. 

 

The Southern blot analysis confirmed the identity of the ∆soxY mutant in addition to the PCR 

results. The enzyme ClaI cut inside of soxY, thereby producing two detectable fragments in 

the wild type. The in frame deletion of soxY removed the ClaI recognition sequence, resulting 

in only one remaining detectable fragment. The enzymes EcoRI and EcoRV both cut inside of 

soxZ (the former right at the end of the nucleotide sequence). Accordingly, the detected 

fragment in the EcoRI digestion and one of the detected fragments in the EcoRV digestion, 

respectively, were reduced in size in the mutant strain. 
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C.4.2 Detection of SoxA in wild type and mutant strains 

 

None of the produced mutants in A. vinosum contained a direct inactivation of the soxA open 

reading frame. Nevertheless, the polar effect caused by the insertion of an omega cassette 

must be taken into account. The insertion destroys the reading frame and inhibits the 

transcription of genes situated downstream of the target gene in the same transcription unit. 

Before their phenotypic characterisation the mutants ∆soxX, ∆soxB and ∆soxBX were tested 

for their ability to produce SoxA. With the corresponding gene located directly downstream 

of soxX, these two genes are very likely to be in one transcription unit. For these experiments 

the presence of SoxA was examined in crude extract of thiosulfate-grown A. vinosum wild 

type and mutants. The results are depicted in Figure C29. 

 

   

 

 

 

 

 

Figure C29: Comparison of SoxA production by Western blot analysis in thiosulfate-grown A. vinosum 

wild type and mutant strains ∆soxX, ∆soxB and ∆soxBX. The detection was performed in the 

respective crude cell extract. Protein amount in each lane: 186 µg 

 

The Western blot analysis demonstrated, that SoxA was of course present in the wild type, but 

also detectable in the mutant ∆soxB. The inactivated gene soxB is located on the DNA strand 

complementary to the strand containing soxX and soxA. Therefore, a joint expression of soxB 

and soxA was already assumed to be very unlikely, an assumption verified by the presence of 

SoxA in the mutant. The situation was different in the other examined mutant strains. As soon 

as the soxX open reading frame was destroyed, either alone (∆soxX) or together with soxB 

(∆soxBX), the protein SoxA was no longer produced. The disruption of the soxX reading 

frame obviously had an effect on the expression of soxA. Therefore, these two genes appear to 

be part of one transcription unit. This is in correspondence with the already observed fact, that 

the two encoded proteins are both subunits of one heterodimeric protein. 

The poor performance of the antisera against SoxB and SoxYZ in crude extract prevented the 

successful realization of comparable experiments concerning the presence of these two 

proteins in wild type and mutant strains. 

wt ∆soxX ∆soxB ∆soxBX 

SoxA 
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C.4.3 Phenotypic characterisation of the different A. vinosum mutants 

 

To determine, whether the insertional inactivation and in frame deletion of sox genes and 

sox-related genes had any effect on the degradation of reduced sulfur compounds, these were 

added to the different mutant strains separately and in defined concentrations. As the in vivo 

substrate spectrum of the Sox multienzyme complex usually includes thiosulfate and sulfide 

(Friedrich et al., 2001; Appia-Ayme et al., 2001), these two substrates were tested concerning 

their degradability. The in vitro substrate spectrum could be much broader, but was not taken 

into account so far. The phenotypic characterisations were performed using Pfennig and 

0 medium. The difference was (i) in the presence of sulfide in Pfennig medium before 

sterilisation, in contrast to the separate addition of the sulfur compound in 0 medium directly 

before the start of the experiment, and (ii) the amount of sulfide in the media. The mutant 

strains ∆soxB and ∆soxY were characterised using exclusively 0 medium. The depicted results 

for all strains are always representatives of duplicate or triplicate experiments. 

 

C.4.3.1 Thiosulfate oxidation 

 

To determine, whether the inactivation of sox genes had an effect on thiosulfate oxidation in 

A. vinosum, 2 mM of thiosulfate were added to a fermenter containing the mutant strain or the 

respective wild type strain. 

 

Mutant strain ∆∆∆∆soxX: 

 

The mutant ∆soxX contained an insertional mutation in the soxX gene. This resulted in an 

inactivation not only of soxX, but also of soxA due to polar effects (see C.4.2). Therefore, any 

observable phenotype was at least due to the lack of both subunits of SoxXA in A. vinosum. 

The results obtained for thiosulfate degradation in Pfennig medium and 0 medium are 

presented in Figure C30. 
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Figure C30: Thiosulfate oxidation in ∆soxX (dark blue) and wild type (grey). Compared are growth 

experiments on Pfennig and 0 medium, presenting thiosulfate concentration and sulfate produced 

from thiosulfate. Protein concentrations: ∆soxX-Pfennig: 130 µg/ml, wild type-Pfennig: 260 µg/ml, 

∆soxX-0 medium: 51 µg/ml, wild type 0-medium: 61 µg/ml [Pfennig � Lowry, 0 � Bradford]. 

 

Obviously, thiosulfate oxidation in the A. vinosum strain ∆soxX was significantly impaired. 

While the wild type oxidised the added thiosulfate in approximately 10 h time, the mutant 

showed either no decrease at all (Pfennig) or significantly less decrease (0 medium) in 

thiosulfate concentration. This decline, however, is not due to oxidation to sulfate. While the 

wild type completely oxidised thiosulfate to sulfate, the mutant strain produced no sulfate at 

all in both approaches. Therefore, thiosulfate must be degraded to another sulfur compound. 

Even with the potential pathway via the Sox system blocked by gene inactivation, the 

pathway via the thiosulfate:acceptor oxidoreductase, oxidising thiosulfate to tetrathionate, 

should still be functional. When growing ∆soxX on Pfennig medium, no tetrathionate 
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formation could be detected, in accordance with the constant amount of thiosulfate. The 

determination of tetrathionate for the approach on 0 medium is depicted in Figure C31. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C31: Tetrathionate formation on 2 mM thiosulfate in ∆soxX (dark blue) and corresponding wild 

type (grey), cultivated on 0 medium. Protein concentration: ∆soxX-0 medium: 51 µg/ml, wild type-

0 medium: 61 µg/ml [Bradford]. 

 

Both in wild type and mutant strain tetrathionate formation was observed, being responsible 

for a decrease in thiosulfate concentration. The effect is not visible in the wild type, being 

only an addition to the oxidation of thiosulfate to sulfate. In the mutant, however, with 

tetrathionate formation potentially the only alternative to the impaired oxidation to sulfate, the 

decrease in thiosulfate concentration can be partly explained by the oxidation to tetrathionate. 

That the formation of tetrathionate was no complete compensation for the thiosulfate 

decrease, is in all probability due to the simultaneous and subsequent formation of significant 

amounts of trithionate from thiosulfate and tetrathionate, respectively. This effect has already 

been demonstrated in A. vinosum (Sperling, 2001) with the biggest amount of trithionate 

detected after the tetrathionate maximum. 

 

Mutant strain ∆∆∆∆soxB: 

 

The mutant ∆soxB contained an insertional mutation in the soxB gene. As the other sox genes 

in the vicinity (soxXA) are situated on the complementary strand, the transcription is not 

impaired (confirmed for the example of SoxA). Therefore, a mutant phenotype would be due 

only to an inhibition in expression of soxB and genes potentially in the same transcription 
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unit. The results obtained for thiosulfate degradation in 0 medium are presented in 

Figure C32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C32: Thiosulfate oxidation in ∆soxB (purple) and wild type (grey). Development of thiosulfate 

concentration is presented together with sulfate and tetrathionate produced from thiosulfate. Protein 

concentration: ∆soxB-0 medium: 51 µg/ml, wild type 0-medium: 61 µg/ml [Bradford]. 

 

Thiosulfate oxidation in ∆soxB appeared to be impaired, but neither on a significant basis nor 

resulting in a complete inhibition, when observing only the development of thiosulfate 

concentration on 0 medium. However, the lack of sulfate production in the mutant confirmed 

0

0,5 

1

1,5 

2

2,5 

0 5 10 15 20 25 

time [h] 

th
io

s
u
lf
a
te

 [
m

M
]  

0

0,5 

1

1,5 

2

2,5 

3

3,5 

0 5 10 15 20 25 

time [h] 

s
u
lf
a
te

 [
m

M
] 

0

0,04 

0,08 

0,12 

0,16 

0,2 

0 5 10 15 20 25 

time [h] 

te
tr

a
th

io
n
a
te

 [
m

M
] 



C: Results 93

the complete inhibition of the pathway from thiosulfate to sulfate, as observed for ∆soxX. 

Both encoded proteins appear to be equally essential for the oxidation of thiosulfate to sulfate. 

The oxidation to tetrathionate, however, remained unaffected, as the formation took place as 

in the wild type. Again, the gap in sulfur compound quantity is potentially due to trithionate 

formation. 

 

Mutant strain ∆∆∆∆soxBX: 

 

To determine, whether the joint inactivation of soxB and soxX resulted in a phenotype 

differing from the respective single mutants, the double mutant was examined on Pfennig and 

0 medium. The results obtained for the oxidation of 2 mM thiosulfate are presented in 

Figure C33, together with the corresponding wild type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C33: Thiosulfate oxidation in ∆soxBX (dark red) and wild type (grey). Compared are growth 

experiments on Pfennig and 0 medium, presenting thiosulfate concentration and the sulfate produced 

from thiosulfate. Protein concentration: ∆soxBX-Pfennig: 91 µg/ml, wild type Pfennig: 260 µg/ml, 

∆soxBX-0 medium: 55 µg/ml, wild type 0-medium: 61 µg/ml [Pfennig � Lowry, 0 � Bradford]. 
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As observed for both single mutants, the double mutant ∆soxBX was impaired in thiosulfate 

oxidation. Again the difference between Pfennig and 0 medium could be observed, as 

thiosulfate oxidation was completely inhibited in the former and only impaired in the latter. 

However, regarding the sulfate formation is was obvious that the pathway from thiosulfate to 

sulfate was completely inactivated in ∆soxBX. The oxidation to tetrathionate remained 

unaffected in the mutant strain, as can be observed in Figure C34. A significant trithionate 

production is again postulated to fill the gap between the decrease in thiosulfate and the 

produced tetrathionate. No tetrathionate was produced on Pfennig medium. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C34: Tetrathionate formation on 2 mM thiosulfate in ∆soxBX (dark red) and corresponding wild 

type (grey), cultivated on 0 medium. Protein concentration: ∆soxBX: 55 µg/ml, wild type: 61 µg/ml 

[Bradford]. 
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Mutant strain ∆∆∆∆ORF9/rhd: 

 

The gene products of the open reading frames ORF9 and rhd are not part of the basic Sox 

proteins SoxB, SoxXA and SoxYZ. Nevertheless, they could be involved in the degradation 

of thiosulfate. As the open reading frames are located downstream of soxA, all basic Sox 

proteins should in all probability be present in the mutant strain. The results obtained for the 

oxidation of 2 mM thiosulfate are presented in Figure C35, together with the corresponding 

wild type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C35: Thiosulfate oxidation in ∆ORF9/rhd (orange) and wild type (grey). Compared are growth 

experiments on Pfennig and 0 medium, presenting thiosulfate concentration and the sulfate produced 

from thiosulfate. Protein concentration: ∆ORF9/rhd-Pfennig: 86 µg/ml, wild type Pfennig: 260 µg/ml, 

∆ORF9/rhd-0 medium: 72 µg/ml, wild type 0-medium: 79 µg/ml [Pfennig � Lowry, 0 � Bradford]. 

 

The mutant strain ∆ORF9/rhd was in all means comparable to the wild type. It oxidised 

thiosulfate to sulfate in both experimental approaches. This also included tetrathionate 
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formation, both pathways for thiosulfate degradation (to sulfate or to tetrathionate) intact. The 

decrease in tetrathionate was attributed to trithionate formation. The results for tetrathionate 

determination are depicted in Figure C36. At least under the chosen experimental conditions 

the inactivation of ORF9 and rhd had no effect on thiosulfate degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C36: Tetrathionate formation on 2 mM thiosulfate in ∆ORF9/rhd (orange) and corresponding 

wild type (grey), cultivated on 0 medium. Protein concentration: ∆ORF9/rhd: 72 µg/ml, wild 

type: 79 µg/ml [Bradford]. 

 

 

Mutant strain ∆∆∆∆soxY: 

 

In contrast to the preceding mutants the mutant strain ∆soxY was produced by in frame 

deletion of almost the complete gene soxY. Therefore, any observed phenotype can potentially 

be traced back to this sole source. The inactivation of soxY, however, could result in a special 

problem, concerning soxZ. SoxZ is thought to be co-transported to the periplasm with SoxY 

in a hitchhiker fashion. Without SoxY the protein SoxZ is potentially not correctly located in 

the cell. Therefore, a mutant phenotype is in all probability due to the lack of SoxY and a 

potentially inactive SoxZ. The results obtained for thiosulfate oxidation in ∆soxY are 

presented in Figure C37. 
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Figure C37: Thiosulfate oxidation in ∆soxY (green) and wild type (grey). Development of thiosulfate 

concentration is presented together with sulfate and tetrathionate produced from thiosulfate. Protein 

concentrations: ∆soxY-0 medium: 58 µg/ml, wild type 0-medium: 79 µg/ml [Bradford]. 

 

When observing thiosulfate concentration in the mutant strain, there was no significant 

decrease. This complete inhibition in oxidation of thiosulfate to sulfate was confirmed by the 

complete lack of sulfate production in ∆soxY. In contrast to the other mutants on 0 medium, 

that were impaired in thiosulfate oxidation, the thiosulfate concentration remained quite 

stable. This was due to a delayed production of tetrathionate compared to wild type and the 
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other mutants. The reason for this delay is explained, when dealing with the oxidation of 

sulfide by this mutant strain (see C.4.3.2), as thiosulfate was added to the culture with sulfite 

still present from sulfide oxidation (time t=48 h in Figure C41). 

 

To summarise the results obtained for thiosulfate as substrate for the different mutant strains, 

all Sox proteins appear to be equally important for the oxidation of thiosulfate to sulfate. The 

proteins encoded by the open reading frames ORF9 and rhd, however, are in all probability 

not involved in thiosulfate oxidation. The formation of tetrathionate remained possible in all 

mutant strains. 

 

C.4.3.2 Sulfide oxidation 

 

The inactivation of the Sox multienzyme complex in P. pantotrophus and R. sulfidophilum 

resulted in an inhibition of sulfide oxidation. Therefore, the A. vinosum mutant strains were 

tested concerning their ability to oxidise sulfide. The characterisation was performed on 

Pfennig medium, that already contained approximately 7 mM of sulfide, and on 0 medium 

with the separate addition of approximately 2 mM of sulfide. The results for sulfide oxidation 

in different mutants are combined in Figure C38. 

 

 

 

 

 

 

 

 

 

 

 

Figure C38: Sulfide oxidation in different mutants of A. vinosum, cultivated on Pfennig or 0 medium. 

The mutants ∆soxB and ∆ORF9/rhd, cultivated on the latter, are not shown, but exhibited results 

comparable to the mutant ∆soxX. Protein concentrations: wild type-Pfennig: 260 µg/ml, ∆soxX-

Pfennig: 130 µg/ml, ∆soxBX-Pfennig: 91 µg/ml, ∆ORF9/rhd-Pfennig: 86 µg/ml, wild type-0 

medium: 79 µg/ml, ∆soxX-0 medium: 51 µg/ml, ∆soxBX-0 medium: 55 µg/ml, ∆soxY-0 

medium: 58 µg/ml [Pfennig � Lowry, 0 � Bradford]. 
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Nearly all of the mutant strains oxidised the different amounts of sulfide as observed for the 

wild type. Only the mutant ∆soxBX appeared to be slightly impaired in sulfide oxidation, as 

approximately double the amount of time was needed to oxidise the presented sulfur 

compound. 

The first products of sulfide degradation were two polysulfides, named polysulfide (PS) 39 

and PS 42 after their retention time in HPLC thiol analysis. As no standards were available to 

record calibration curves, the results for polysulfide detection are presented in area counts. 

Some exemplary results for polysulfide determination are presented in Figure C39. 
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Figure C39: Polysulfide development from sulfide in wild type, mutant ∆soxX (as a representative for 

the other mutants apart from ∆soxBX) and mutant ∆soxBX, compared on Pfennig medium and 0 

medium. Polysulfides are recorded as area counts, due to a lack of standards. Protein concentrations: 

wild type-Pfennig: 260 µg/ml, ∆soxX-Pfennig: 130 µg/ml, ∆soxBX-Pfennig: 91 µg/ml, wild type-0 

medium: 79 µg/ml, ∆soxX-0 medium: 51 µg/ml, ∆soxBX-0 medium: 55 µg/ml [Pfennig � Lowry, 0 � 

Bradford]. 

 

As observed for sulfide oxidation, nearly all the mutant strains exhibit polysulfide 

development as observed for the wild type, regardless whether Pfennig or 0 medium was 

used. Again, the mutant ∆soxBX represents the only exception. Both approaches (Pfennig and 
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0 medium) resulted in a significantly slowed polysulfide formation and degradation, this 

being either the result of or the cause for the slowed sulfide oxidation. 

 

Both polysulfides are then further oxidised to sulfur and stored in periplasmic sulfur globules. 

The exemplary results for sulfur detection in Figure C40 are in accordance with the 

exemplary results presented for sulfide and polysulfide determination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C40: Development of sulfur and sulfate from sulfide in different mutants of A. vinosum, 

cultivated on Pfennig or 0 medium. The mutants ∆soxB and ∆ORF9/rhd, cultivated on the latter, are 

not shown, but exhibited results comparable to the mutant ∆soxX. Sulfur was determined either by 

HPLC analysis (Pfennig) or by cyanolysis (0 medium). Protein concentrations: wild type-Pfennig: 

260 µg/ml, ∆soxX-Pfennig: 130 µg/ml, ∆soxBX-Pfennig: 91 µg/ml, ∆ORF9/rhd-Pfennig: 86 µg/ml, wild 

type-0 medium:79 µg/ml, ∆soxX-0 medium: 51 µg/ml, ∆soxBX-0 medium: 55 µg/ml, ∆soxY-0 

medium: 58 µg/ml [Pfennig � Lowry, 0 � Bradford]. 
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The first thing that attracted attention was the difference in the two sulfur determination 

methods. Both approaches resulted in comparable sulfur concentrations, even though the 

starting sulfide concentration in the Pfennig medium approach was about three times higher. 

This result confirmed, that the sulfur extractable by chloroform does not represent the whole 

amount of sulfur present in the cell. The use of cyanolysis, however, resulted in the detection 

of all the sulfur present in the cell. 

When comparing all the mutant strains concerning sulfur development and sulfate production, 

two mutants stood out. The mutant ∆soxBX, as observed before for sulfide oxidation and 

polysulfide development, was significantly slowed in sulfur formation and degradation. 

However, the production of sulfate was comparable to the wild type and the other mutants.  

Therefore, the observed problems in sulfide degradation and the subsequent steps are possibly 

due to a slowed growth. The mutant ∆soxY exhibited sulfur formation as observed in the wild 

type. Sulfur oxidation, however, was significantly impaired, the complete amount only 

oxidised after 48 h (twice as long as all the other strains). Even though part of the sulfur was 

degraded during the observed 25 h, no sulfate was produced in the meantime. This 

discrepancy was due to a feature only observed in the ∆soxY mutant. During sulfur 

degradation significant amounts of sulfite were accumulated in the culture. In all the other 

strains, wild types and mutants, sulfite was hardly detectable as the intermediate of sulfur 

oxidation to sulfate. The situation observed in ∆soxY is presented in Figure C41. 
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Figure C41: The oxidation of sulfide (grey triangles) to sulfur (black diamonds) and sulfite (open 

squares) in the mutant ∆soxY. Protein concentration ∆soxY: 58 µg/ml [Bradford]. 

 

After a sulfide oxidation comparable to the wild type, the mutant ∆soxY also exhibited sulfur 

formation as observed in the wild type. Sulfur degradation, however, was significantly 

slowed, in all probability due to the formation of significant amounts of sulfite. Altogether, 

approximately 800 µM of sulfate were detectable after the end of the experimental period. 

The presence of sulfite in the medium at the time thiosulfate was added (t=48 h) results in a 

delay of tetrathionate formation due to an inhibition of thiosulfate:acceptor oxidoreductase by 

sulfite (50 % inhibition of TAOR activity by 80 µM sulfite (Sperling, 2001)). 

 

The examination of sulfide oxidation in the different sox mutants showed the Sox proteins 

potentially not be essential for sulfide oxidation (with a slight uncertainty concerning the 

situation in ∆soxBX). Surprisingly, the inactivation of soxY resulted in a significantly impaired 

sulfite oxidation. 
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C.4.4 Construction of complemented mutants 

 

To determine, whether the phenotypes observed in the mutants could be traced back to the 

inactivation of a small set of genes or even one gene, two of the mutant strains (∆soxX and 

∆soxY) were supplemented with a plasmid, containing the intact version of the inactivated 

genes. 

 

C.4.4.1 Complementation strains ∆soxX+X and ∆soxY+Y: construction and check 

 

Construction of ∆∆∆∆soxX+X:  

 

In the mutant ∆soxX a resistance cassette was inserted into soxX, thereby destroying this gene 

and at the same time inhibiting the expression of the following gene soxA. In order to 

complement the observed mutant phenotype, at least these two genes had to be reintroduced 

into the mutant strain, including the putative promoter situated upstream of soxX. Therefore, 

the complete insert of the plasmid pGEM-SoxB was ligated into the vector pBBR1-MCS, 

together with an additional erythromycin resistance cassette from pHP45ΩEm. The basic 

vector pBBR1-MCS was transferable to A. vinosum by conjugation and replicable in the 

organism. This was necessary, as the original goal was not the exchange of inactivated and 

intact gene by double cross over. The desired situation was a genome-based defective gene 

and a plasmid-based intact counterpart. Therefore, the need arose for an additional resistance 

to select against plasmid loss, as the already existing chloramphenicol resistance cassette was 

of no use in A. vinosum. The 4,5 kb insert of pGEM-SoxB contained part of soxB, the 

intergenic region, the genes from soxX to rhd and a small part of ORFb. The vector pBBR1-

MCS was digested with ApaI/SpeI, as was pGEM-SoxB to cut out the insert. After ligation 

the construct was digested with EcoRV, and the erythromycin cassette was cut from 

pHP45ΩEm with SmaI. The produced blunt ends were again used for ligation to obtain the 

final complementation plasmid p∆soxX+X (depicted in figure C42). 
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Figure C42: Map of the plasmid p∆soxX+X, used for the complementation of the mutant strain ∆soxX. 

 

The plasmid was successfully transferred into the mutant strain ∆soxX, thereby producing the 

complementation strain ∆soxX+X. This strain was characterized as in the preceding 

experiments, concerning the degradation of sulfide and thiosulfate. 

 

 

Construction of ∆∆∆∆soxY+Y:  

 

In the mutant ∆soxY only the gene soxY was deleted in frame. But according to the special 

nature of the joint transport of SoxY and SoxZ, both soxY and soxZ were reintroduced 

together into the mutant strain. With a plasmid-encoded SoxY and a genome-encoded SoxZ, 

difficulties could arise concerning the production of functional protein. The spatial distance 

and/or timing of the protein subunit production could be problematic as well as the production 

of equimolar amounts. Even if the putative natural promoter, located upstream of soxY, was 

applied for gene expression from the plasmid, potential regulatory regions could be missing. 

This would hamper a balanced regulation of the expression from both genome and plasmid. 

Therefore, to avoid these potential problems, soxY and soxZ were reintroduced as one 

transcription unit. The genes soxYZ, together with their natural promoter, were amplified by 

PCR with the primer pair Yforward/Yreverse. The fragment was digested with XbaI and 
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ligated into the equally digested vector pBBR1-MCS2, that already contained a kanamycin 

resistance, used for the selection against plasmid loss. This resulted in the construction of the 

complementation plasmid p∆soxY+Y (shown in figure C43). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C43: Map of the plasmid p∆soxY+Y, used for the complementation of the mutant strain ∆soxY. 

 

This plasmid was successfully transferred into the mutant ∆soxY, thereby producing the 

complementation strain ∆soxY+Y. This strain was characterized as in the preceding 

experiments, concerning the degradation of sulfide and thiosulfate.  

 

Confirming the plasmid presence:   

 

To confirm the presence of the complementation plasmids in the respective organism, colony 

PCRs were performed to detect the defective gene on the genome as well as the intact gene on 

the plasmid.   

∆∆∆∆soxX+X: The primer pair soxXforward / soxXreverse, both primers binding to a 

soxX sequence outside of the resistance cassette, could theoretically be used to detect the 

intact gene as well as the inactivated gene. As the wild type DNA fragment was only 400 bp 

in size, it was preferentially amplificated, in contrast to the 2,5 kb mutant DNA fragment. The 
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PCR to detect the defective soxX was performed with the primer pair soxXreverse / Km1 (the 

latter only binding inside of the kanamycin cassette) and resulted in a 900 bp DNA fragment. 

∆∆∆∆soxY+Y:  The PCR with the primer pair Yforward / Yreverse was used to 

discriminate between wild type soxY (1,5 kb) and mutant soxY (1 kb), both primers binding 

outside of the deletion. The second PCR applied the primers Yforward and Y2rev1, the latter 

binding inside of the deletion. Only with the wild type gene as template a 900 bp DNA 

fragment could be amplified. 

The obtained results are presented in figure C44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C44: Colony PCR to detect (i) the plasmid-based intact soxX and the genome-based 

inactivated soxX in the complementation strain ∆soxX+X and (ii) the plasmid-based intact soxY and 

the genome-based deleted soxY in the complementation strain ∆soxY+Y. Lanes: 1. 

soxXforward / soxXreverse, detection of the plasmid-based soxX; 2. soxXreverse / Km1, detection of 

the inactivated soxX containing the kanamycin cassette; 3. Yforward / Yreverse, detection of either 

wild type or deleted soxY; 4. Yforward / Y2rev1; detection of the wild type soxY. 

 

The PCR confirmed the presence of the respective wild type and mutant genes in both 

complementation strains. 
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Detection of SoxA in the complementation mutant ∆∆∆∆soxX+X:  

 

A second possibility to confirm the presence of the plasmid p∆soxX+X in the corresponding 

complementation mutant was the renewed production of SoxA, that was missing in the mutant 

∆soxX  because of polar effects. The detection of SoxA could also confirm the functionality of 

the putative promoter. Therefore crude extract of the complementation strain was examined 

concerning its SoxA content. The result, in comparison with wild type and ∆soxX, is shown in 

figure C45. 

 

 

 

 

 

 

 

Figure C45: Detection of SoxA in crude extract of A. vinosum wild type (DSM 180), the mutant strain 

∆soxX and the complementation strain ∆soxX+X. Protein amount in each lane: 186 µg.  

 

The protein SoxA, present in the wild type and missing in the mutant, was again produced in 

the complementation strain. So the protein SoxX encoded upstream should also be once more 

present in the organism. The production of the protein from a plasmid-based soxA gene 

confirmed the actual existence of the postulated promoter upstream of soxX. Comparable 

protein concentrations have been used for SDS-PAGE, so the Western blot signal should be in 

accordance with the actual amount of SoxA present in the culture. Bearing this in mind, the 

expression of the plasmid-based soxA was much stronger than in the wild type or in the soxB 

mutant (for the latter see figure C29). This was potentially due to a regulative effect based on 

the gene sequence surrounding soxA. As only a small part of this surrounding sequence was 

transferred to the plasmid, the structures necessary for a correct regulation of soxA gene 

expression could have been destroyed or left behind. This led to the observed overexpression 

of soxA. 
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C.4.5  Phenotypic characterisation of the complementation strains ∆∆∆∆soxX+X and  

∆∆∆∆soxY+Y  

 

C.4.5.1  Complementation strain ∆soxX+X 

 

The degradation of the reduced sulfur compounds thiosulfate and sulfide was determined in 

the complementation strain ∆soxX+X. By reintroduction of the inactivated gene and its 

surrounding in the mutant strain ∆soxX a neutralisation of the mutant phenotype was aimed 

for.  

 

Thiosulfate oxidation: 

 

The mutant strain ∆soxX exhibited a complete inhibition of thiosulfate oxidation to sulfate. 

Thiosulfate degradation in the complementation strain ∆soxX+X is shown in figure C46, 

together with wild type and mutant strain for comparison. 
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Figure C46: Thiosulfate oxidation in the A. vinosum complementation strain ∆soxX+X (light blue), 

compared to the corresponding wild type (grey) and the mutant strain ∆soxX (dark blue), cultivated on 

Pfennig and 0 medium, respectively. Presented are thiosulfate concentration and sulfate produced 

from thiosulfate. Protein concentrations: wild type-Pfennig: 160 µg/ml, ∆soxX-Pfennig: 130 µg/ml, 

∆soxX+X: 155 µg/ml, wild type-0 medium: 61 µg/ml , ∆soxX-0 medium: 51µg/ml , ∆soxX+X-0 medium: 

61 µg/ml [Lowry� Pfennig, Bradford� 0]. 

 

The results demonstrated the successful complementation of the ∆soxX phenotype by the 

corresponding intact genes that are expressed in trans. Thiosulfate oxidation was returned to 

wild type level in both approaches, the results confirmed by the renewed sulfate production. 

Therefore, the observed mutant phenotype could be traced back to the few plasmid-bourne 

genes, that have been reintroduced in the organism. In all probability this implies only the 

genes soxX and soxA, as the inactivation of the following two open reading frames ORF9 and 

rhd had absolutely no effect on thiosulfate oxidation. On the plasmid only fragments of soxB 

and ORFb were present, therefore being without influence.  
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As has been observed in the mutant strain, tetrathionate formation in the complementation 

∆soxX+X was unaffected by the sox gene expression in trans and still took place on wild type 

level when cultivated on 0 medium. No tetrathionate was produced on Pfennig medium. The 

results are depicted in Figure C47. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C47: Tetrathionate formation on 2 mM thiosulfate in the complementation strain ∆soxX+X (light 

blue) and corresponding wild type (grey) and mutant ∆soxX (dark blue), cultivated on 0 medium. 

Protein concentration: wild type: 61 µg/ml , ∆soxX: 51µg/ml , ∆soxX+X: 61 µg/ml [Bradford]. 

 

Sulfide oxidation: 

 

To check, whether the sox gene expression in trans had any effect on sulfide oxidation in the 

complementation, even though it was not impaired in the mutant, the culture was subjected to 

sulfide. The obtained results for sulfide oxidation, sulfur formation / degradation and sulfate 

formation in the complementation strain ∆soxX+X and the mutant strain ∆soxX are presented 

in Figure C48. 
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Figure C48: Sulfide oxidation and development of sulfur and sulfate in the complementation strain 

∆soxX+X and the corresponding mutant ∆soxX, cultivated on 0 medium (as a representative for the 

comparable results obtained on Pfennig medium). Protein concentrations: wild type: 61 µg/ml , ∆soxX: 

51µg/ml , ∆soxX+X: 61 µg/ml [Bradford]. 

 

Complementation strain ∆soxX+X and mutant strain ∆soxX are absolutely comparable 

concerning sulfide oxidation, sulfur formation and degradation and sulfate production. 

Therefore, the expression of soxXA in trans re-established the pathway from thiosulfate to 

sulfate, but had no effect on the oxidation of other sulfur compounds, that were not impaired 

in the first place. 

 

 

C.4.5.2 Complementation strain ∆soxY+Y  

 

The mutant ∆soxY was not only impaired in thiosulfate oxidation but also exhibited a problem 

in sulfite oxidation, which was only observed for this sox mutant. Sulfide oxidation, however, 

remained unaffected. Therefore, the aim of the complementation was to re-establish 

thiosulfate oxidation and remove the delay observed for sulfite oxidation. 
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Thiosulfate oxidation:  

 

For this experiment solely thiosulfate was added to the culture, without the preceding addition 

of sulfide. The results are presented in Figure C49, together with the corresponding wild type 

and ∆soxY. In the latter approaches thiosulfate was added after preceding sulfide degradation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C49: Thiosulfate oxidation in the A. vinosum complementation strain ∆soxY+Y (orange), 

compared to the corresponding wild type (grey) and mutant ∆soxY (green), cultivated solely on 

0 medium. Presented are thiosulfate concentration, sulfate produced from thiosulfate and tetrathionate 

formation. Protein concentrations: wild type: 61 µg/ml, ∆soxY: 58 µg/ml, ∆soxY+Y: 68 µg/ml [Bradford]. 
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In contrast to wild type and mutant, the complementation was cultivated for 72 h. In the wild 

type the complete amount of thiosulfate was oxidised after approximately 25 h. The mutant 

exhibited no oxidation of thiosulfate to sulfate, even over a longer period of time (duration: 

80 h, data not shown). The difference in thiosulfate oxidation between the mutant and the 

complementation strain was very small, but detectable. After 72 hours the complete amount of 

thiosulfate was degraded in ∆soxY+Y. Significant amounts of sulfate were also detectable, 

thereby confirming the renewed possibility of thiosulfate oxidation to sulfate, even if at a 

level below the wild type. Tetrathionate was produced from thiosulfate at wild type level. 

This was in all probability due to thiosulfate being the only sulfur substrate in the experiment, 

with no residual sulfite still present from sulfide oxidation. Therefore, the thiosulfate:acceptor 

oxidoreductase was not inhibited. The complementation confirmed the importance of SoxY 

for the oxidation of thiosulfate to sulfate. 

 

Sulfite oxidation:  

 

To determine whether the reintroduction of the deleted gene had an effect on the delayed 

sulfite oxidation, the degradation of 5 mM externally added sulfite was examined. The results 

for the wild type and the mutant ∆soxY were thankfully provided by Bettina Franz. They are 

presented together with the results obtained for the complementation strain ∆soxY+Y in 

Figure C50. 
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Figure C50: Sulfite oxidation in the complementation strain ∆soxY+Y (orange), compared to the 

corresponding wild type (grey) and the mutant ∆soxY (green), cultivated on 0 medium. Protein 

concentrations: wild type: 79 µg/ml, ∆soxY: 58 µg/ml, ∆soxY+Y: 59 µg/ml [Bradford]. 

 

The wild type readily oxidized the externally added sulfite in approximately 30 hours time. In 

the mutant strain ∆soxY barely half of the sulfite was degraded by this time. The impairment 

in the oxidation of internal sulfite had already been demonstrated for ∆soxY (see Figure C41). 

The results obtained with externally added sulfite supplied further proof for this deficiency. 

After the reintroduction of soxYZ sulfite oxidation in ∆soxY+Y was reverted back to wild type 

level. The re-introduction of the inactivated gene soxY, together with soxZ, resulted in a 

complete removal of the mutant phenotype concerning sulfite oxidation  

 

Sulfide oxidation:  

 

None of the sox mutants or the complementation strain ∆soxX+X exhibited impairments 

concerning the oxidation of sulfide. The complementation strain ∆soxY+Y was also tested 

regarding its sulfide oxidation capacity. The obtained results (Figure C51) are shown in 

comparison with the mutant strain ∆soxY. The latter was unaffected in sulfide oxidation, but 

exhibited a delay in sulfur oxidation, in all probability due to the delay in sulfite oxidation.. 
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Figure C51: Sulfide oxidation and development of sulfur and sulfite in the complementation strain 

∆soxY+Y and the corresponding mutant ∆soxY, cultivated on 0 medium. Protein concentrations: 

∆soxY: 58 µg/ml, ∆soxY+Y: 95 µg/ml [Bradford]. 

 

While the mutant ∆soxY was already delayed in sulfur and sulfite oxidation, the situation has 

worsened significantly by the reintroduction of soxYZ in the complementation strain  

∆soxY+Y. Sulfide oxidation, being at wild type level in the mutant, was decreased about four 

times in ∆soxY+Y. The sulfur formation rate was not affected in the mutant, but was 

significantly decreased in the complemented strain. The following steps of sulfur degradation 

and sulfite oxidation, already impaired in the mutant, were also even more slowed. Why the 

reintroduction of a deleted gene resulted in the appearance of a phenotype observed neither in 

the wild type nor in the corresponding mutant (or in any of the other mutants) so far remains 

inexplicable. 
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C.4.6 Oxidation rates 

 

For a better comparison of the thiosulfate oxidation and sulfate formation in the different wild 

types, mutants and complementation strains, the respective oxidation rates, obtained using 

0 medium, were determined. The results are summarised in Table C5. 

 

A. vinosum strain thiosulfate oxidation [µmol/h*mg] sulfate formation [µmol/h*mg] 

DSM180 4,034 2,235 

∆soxX 1,367 -0,224 

∆soxB 0,953 -0,132 

∆soxBX 1,403 -0,012 

∆soxX+X 2,656 2,715 

185SM50 5,446 1,328 

∆ORF9/rhd 4,853 1,194 

Rif50 2,605 2,259 

∆soxY 0,026 0,164 

∆soxY+Y 0,391 0,169 

 

Table C5: Oxidation and formation rates for thiosulfate and sulfate in the different wild types, mutants 

and complemented mutants, cultivated on 0 medium.  

 

The rates obtained for the oxidation of thiosulfate and the formation of sulfate essentially 

confirm the preceding results, e.g. the absolute necessity of the gene products of soxBXA and 

soxY(Z) for the oxidation of thiosulfate to sulfate.  
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D: Discussion 

 

 

In the present study, the second system for thiosulfate oxidation in A. vinosum could be 

clearly identified. A thiosulfate:acceptor oxidoreductase is responsible for the oxidation to 

tetrathionate (Sperling, 2001), while a sox gene encoded multienzyme complex is essential for 

the oxidation to sulfate. The sequencing of the second of two independent parts of genomic 

DNA of A. vinosum revealed the presence of 15 open reading frames altogether. Seven of 

these showed similarity to open reading frames found in sox gene clusters of different 

organisms. Five of the genes (soxBXA and soxYZ) encode proteins thought to be essential for 

a functioning Sox system (Friedrich et al., 2000): SoxB, SoxXA and SoxYZ. These proteins 

were purified from thiosulfate-grown A. vinosum and appear to be thiosulfate-inducible above 

a low constitutive level. Inactivation of sox genes revealed the absolute necessity of Sox 

proteins for thiosulfate oxidation to sulfate. Furthermore, the deletion of soxY additionally 

resulted in a delayed sulfite oxidation, thereby broadening the Sox protein substrate spectrum. 

Complementations of ∆soxX and ∆soxY were more or less successful, especially the latter 

yielding some unexpected results. 

 

D.1 Sequence analysis 
 

In P. pantotrophus and most of the other examined Sox-system-containing organisms the sox 

genes are arranged in one single cluster (Friedrich et al., 2005). This situation enables a joint 

expression of the genes soxXYZABCD (Friedrich et al., 2001), all of which encode proteins 

essential for Sox-dependent thiosulfate oxidation in P. pantotrophus. The situation in 

A. vinosum is in stark contrast to that. The identified sox genes soxBXA and soxYZ are located 

on two independent sites on the genome, thereby excluding an efficient co-transcription. If a 

functional enzyme system consists of several different proteins, as is the case for the Sox 

complex, it seems favourable to combine all necessary parts in one large polycistronic  

transcript. The involvement of a specific regulatory protein could ensure a joint transcription, 

combining independent sites to form one larger regulon. With SoxR and SoxS in 

P. pantotrophus, proteins with influence on the sox gene expression have already been 

identified (Rother et al., 2005). But so far no proteins with a potential for protein-DNA 
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interaction have been identified in the vicinity of the sox genes in A. vinosum. Another 

interesting candidate for the regulation of at least part of the sox gene expression appears to be 

the RubisCO-like protein (RLP) identified in C. tepidum (Hanson and Tabita, 2001). The 

corresponding gene sequence was identified by sequencing of the complete genome. A highly 

similar gene was also identified in a thiosulfate-oxidizing strain of C. limicola. The encoded 

protein RLP is potentially not active as a ribulose-1,5-bisphosphate carboxylase / oxygenase, 

as several necessary active sites are missing. The disruption of this gene in C. tepidum 

resulted in an accumulation of stress response proteins, but more interestingly in an 

accumulation of higher levels of sulfur globules compared to the wild type. The latter 

phenotype could be rescued by the addition of cysteine to the culture. Sulfur globules are 

obligate intermediates of thiosulfate oxidation in C. tepidum. Therefore, the question is raised 

which step in sulfur compound metabolism is influenced by the lack of RLP. Further 

examination of the same RLP mutant revealed a defect in thiosulfate oxidation, but not in 

sulfide oxidation (Hanson and Tabita, 2003). This effect on thiosulfate oxidation was linked 

to the apparent lack of SoxY, though SoxA and SoxB were still present in the preparation. 

Therefore, RLP seems to have an effect on the presence of SoxY. In A. vinosum a gene 

encoding for a RubisCO-like protein has also been identified. An influence on soxY 

expression by RLP would potentially be much easier to achieve than in C. tepidum, as in the 

latter organism the soxY gene is the third in a thirteen gene operon. With the genes soxYZ 

separated from the other sox genes, an independent regulation would be possible. This 

independency raises the question, why an independent production of SoxYZ could be 

necessary, if the protein only functions as part of a larger multienzyme complex. A possible 

answer was given by the examination of the ∆soxY mutant and is discussed below. 

 

The Sox multienzyme complex, based upon the model developed for P. pantotrophus, needs 

at least four different proteins for functionality. Apart from the three proteins SoxXA, SoxB 

and SoxYZ, also encoded in A. vinosum, the protein SoxCD plays an important role, as it 

oxidizes the bound sulfane sulfur of thiosulfate, that is later hydrolytically cleaved off by 

SoxB. Not all Sox-containing organisms encode SoxCD in the cluster, A. vinosum being one 

of them. This finding seems to be in accordance with metabolic properties and allows the 

separation into two groups. The genes soxCD have been detected in chemotrophic bacteria 

like P. pantotrophus (Wodara et al., 1997), but also in phototrophic thiosulfate oxidizers like 

Rhodovulum  sulfidophilum (Appia-Ayme et al., 2001). The completely sequenced green 

sulfur bacterium Chlorobaculum  tepidum, however, shows no sign of soxCD whatsoever 
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(Eisen et al., 2002). The difference between the two groups of organisms, with and without 

SoxCD, seems to be the presence of elemental sulfur as a metabolic intermediate during the 

Sox-dependent oxidation of thiosulfate to sulfate. P. pantotrophus, which degrades thiosulfate 

without the appearance of free intermediates, contains SoxCD, which in vitro enhances the 

electron yield during thiosulfate oxidation from 2 to 8 electrons. In C. tepidum, which lacks 

the genes coding for SoxCD, sulfur globules are produced as an obligate intermediate during 

thiosulfate oxidation. A. vinosum also produces sulfur globules as an obligate intermediate 

during thiosulfate oxidation. In A. vinosum neither soxCD nor the corresponding protein could 

be detected (Kappler, 1999). This similarity between C. tepidum and A. vinosum is underlined 

by the closer resemblance of the genes soxY and soxZ in these organisms, compared to the 

homology to the corresponding proteins in P. pantotrophus. The consequence of a missing 

SoxCD protein is the necessity to modify the model for Sox-dependent thiosulfate oxidation 

so far based on the situation found in P. pantotrophus (Friedrich et al., 2001). In organisms 

like C. tepidum and A. vinosum another way must be postulated to further degrade the sulfane 

sulfur still bound to the substrate binding  protein SoxYZ. One of the first steps in A. vinosum 

must be a transfer of the sulfane sulfur to a growing sulfur globule, as the separate fate of the 

two sulfur atoms from thiosulfate has long been established (Trüper and Pfennig, 1966; Smith 

and Lascelles, 1966). For this transfer step the putative rhodanese, possibly acting as a sulfur 

transferase and encoded in the first set of sox genes, appeared to be a likely candidate. 

 

Apart from the four major proteins SoxXA, SoxB, SoxCD and SoxYZ, other Sox proteins are 

also encoded in most of the examined sox gene clusters. The genes soxEF, situated directly 

downstream of soxD in P. pantotrophus, encode a c-type cytochrome (SoxE) and a 

flavoprotein (SoxF) (Wodara et al., 1997). Mutagenesis of soxF resulted in a slight inhibition 

of sulfide oxidation in vitro. For thiosulfate oxidation, however, the protein was not required 

(Rother et al., 2001). SoxF was shown to exhibit sulfide dehydrogenase activity in vitro 

(Quentmeier et al., 2004). More recent studies, however, postulated an activating function of 

SoxF on the Sox system, when it was reconstituted with a SoxYZ protein separately 

inactivated by reduction. Therefore, SoxF potentially performs a redox-balancing function 

(Friedrich et al., 2005). The genes soxEF in P. pantotrophus exhibit homology to the genes 

fccAB in A. vinosum. The latter encode flavocytochrome c552, a protein that also exhibited 

sulfide dehydrogenase activity in vitro. The protein is located in the periplasm and contains 

two subunits: a cytochrome c (FccA) and a flavoprotein (FccB). The protein was originally 

thought to be involved in the oxidation of sulfide to intracellular sulfur in A. vinosum. 
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Disruption of fccAB, however, had no effect on the sulfide oxidation capability of the 

organism (Reinartz et al., 1998). Therefore, a role in the Sox complex could be another 

possible field of action. The inactivation of FccAB in A. vinosum did not result in a complete 

inhibition of thiosulfate oxidation. Nevertheless, a decrease in the oxidation rates concerning 

thiosulfate (about 40 %) and sulfite (about 35 %) has been observed (Reinartz, 1997). 

Therefore, the involvement of FccAB in the oxidation of these two reduced sulfur compounds 

seems possible. The effect on sulfite oxidation is of special interest, regarding the phenotype 

of the mutant ∆soxY, that also exhibits a delay in sulfite oxidation.  

 

In addition to the identified sox genes, two more open reading frames were identified, ORF9 

and rhd, that are potentially involved in the Sox system of A. vinosum. A homologue to ORF9 

is found in the C. tepidum sox gene cluster, situated between soxA and soxB. A BLAST search 

revealed no obvious function for either of the proteins. But the central position of the genes 

makes an involvement of the putative proteins in the Sox complex of the respective organism 

very likely. The rhd gene of A. vinosum, downstream of ORF9, shows similarity to a 

thiosulfate sulfurtransferase in A. aeolicus. The latter open reading frame is located in the 

organisms sox gene cluster, downstream of soxB and separated from it by two open reading 

frames without obvious connection to thiosulfate oxidation. As these homologues are both 

positioned in close vicinity to essential proteins of the Sox system, an involvement could be 

postulated for both putative sulfurtransferases. For A. vinosum a sulfurtransferase activity of 

some kind is necessary to transfer the sulfane sulfur of thiosulfate to the sulfur globules. But 

the ∆ORF9/rhd mutant in A. vinosum exhibited no phenotype to clarify the function of the 

proteins encoded by the respective open reading frames.  

 

 

D.2 Protein purification 
 

Regarding the expression experiments, the sox genes could be well expressed in E. coli, but 

with a question mark concerning their functionality. In all probability none of the signal 

peptides, neither for Sec- nor Tat-dependent transport, were cleaved off, or the difference was 

not discernable on SDS-PAGE. Potentially SoxY was partly processed, as two bands 

appeared that could represent the protein with and without signal peptide. The insertion of 

heme groups into SoxXA was quite unlikely, regarding the E. coli strain used for production. 

For antibody testing purposes, however, the produced proteins were sufficient, even if they 

did not deliver the unequivocal results that we aimed for. The examination of recombinant 
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proteins produced in E. coli always raises the question as to how transferable the gained data 

are to the original organism. The examination of the proteins in question in the original 

organism must be the preferred option. Therefore, the Sox proteins were purified directly 

from A. vinosum rather than from E. coli. 

 

Three Sox proteins were purified from A. vinosum: SoxXA, SoxB and SoxYZ. The 

localisation of the proteins was postulated, on the basis of sequence analysis, to be 

periplasmic. The signal peptide for Tat-dependent transport in SoxY hints at the transport of 

SoxY in its already folded form. Without any potential cofactor binding site, the co-

transported element would be the second subunit SoxZ, leading to a completely periplasmic 

Sox complex, including the potentially involved protein FccAB (= SoxEF), that is also 

located in the periplasm. A. vinosum cell material was disrupted and separated to differentiate 

between the soluble and the membrane fraction. In the soluble fraction both cytoplasmic and 

periplasmic proteins are found. The antiserum against SoxA provided the best results in 

A. vinosum cell material and was therefore used for the first experiments concerning 

localisation and inducibility. The major part of the protein SoxA was found in the soluble 

fraction of thiosulfate-grown cell material. Together with the presence of a signal peptide and 

the putative c-type cytochrome nature of SoxA, a periplasmic localisation appears to be very 

likely, as the Sox multienzyme complex usually is assumed to be soluble in the periplasm. 

The Sox system in S. novella was thought to be anchored to the periplasmic side of the 

cytoplasmic membrane (Kappler et al., 2001), but this would seemingly be the only 

membrane associated Sox system so far examined. A detection of a faint SoxA signal in the 

membrane could be due to an incomplete separation of the two fractions. However, also a 

weak association with the membrane is possible, as the electrons stored in SoxXA, by the 

attachment of thiosulfate to SoxYZ, need to be further transferred to eventually yield a 

membrane potential usable for ATP synthesis.  

The comparison of SoxA detection in malate-grown and thiosulfate-grown A. vinosum cell 

material indicated the induction of the sox gene expression by thiosulfate and/or sulfide. Both 

reduced sulfur compounds were present in the applied thiosulfate medium. The importance of 

the two substrates depends on the substrate spectrum used by the Sox multienzyme complex. 

Taking the much higher concentration of thiosulfate than of sulfide in the medium into 

account, the former was probably responsible for the observed induction. In P. pantotrophus 

the thiosulfate-dependent induction of gene expression has been demonstrated for 

soxXYZABCD and soxFGH (Friedrich et al., 2001). The expression is mediated by the 
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proteins SoxRS (Rother et al., 2005). In S. novella the expression of soxXA (Kappler et al., 

2000; Kappler et al., 2004) and soxC (Kappler et al., 2001) was examined. The production of 

SoxXA appears to be inducible by thiosulfate. SoxC, however, could be detected in extracts 

of S. novella independent of the presence or absence of thiosulfate. In A. vinosum statements 

can only be made for the expression of soxA. As in P. pantotrophus and S. novella the 

production of SoxA (in all probability together with SoxX) is inducible, the inducer 

potentially being thiosulfate. Apart from the induction by the putative substrate, a low but 

detectable constitutive gene expression was observed. As is the case for the lac operon in 

E. coli , a low level of enzyme always present in the cell ensures the direct degradation of the 

substrate as soon as it is available for the organism. With the thiosulfate:acceptor 

oxidoreductase as a completely constitutive enzyme (Sperling, 2001), its activity dependent of 

the medium pH, a second alternative for thiosulfate degradation is present in A. vinosum, until 

the induction of sox gene expression was has taken place. 

For SoxB and for SoxYZ the situation concerning inducibility remains more or less 

speculative. The gene soxB is already part of a transcription unit different from soxXA. 

Nevertheless, the close neighbourhood still makes a comparable regulation very likely. 

Concerning the independent position of soxYZ on the genome, the special nature of the ∆soxY 

mutant (delay in sulfite oxidation) and potentially the influence of RLP, the expression of 

these genes could be regulated in a different way. With SoxYZ on one hand as a part of the 

Sox multienzyme system and on the other hand as part of a putative sulfite oxidizing enzyme, 

a regulative mechanism must be present to ensure the production of the right amount of 

protein at the appropriate time for the appropriate enzyme system. 

 

As the Sox system was mainly produced with thiosulfate present in the medium, the 

respective proteins were purified from thiosulfate-grown A. vinosum cell material. In 

P. pantotrophus the Sox proteins SoxXA, SoxB, SoxYZ and SoxCD were all purified from 

the ammonium sulfate fraction between 44 and 65 % saturation (Friedrich et al., 2000). This 

is essentially in accordance with the observation, that in A. vinosum all Sox proteins could be 

isolated from the supernatant of a solution with 40 % ammonium sulfate saturation. The 

subsequent purification strategies, however, applied for several organisms (Friedrich et al., 

2000; Appia-Ayme et al., 2001; Kappler et al., 2004), sometimes differ quite distinctly from 

the strategies applied for A. vinosum. Therefore, the optimal purification strategy appeared to 

be organism-specific. 
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The protein SoxXA was purified as a heterodimer from A. vinosum. The purified protein 

SoxXA was further analysed concerning its heme content. Regarding the UV-visible spectrum 

obtained for the purified SoxXA, it exhibits a typical c-type cytochrome spectrum. However, 

not an air-oxidized spectrum was observed, as in the other SoxXA proteins so far purified 

(Friedrich et al., 2000; Cheesman et al., 2001; Kappler et al., 2004), but the reduced 

spectrum. With an α peak at 550 nm, SoxXA from A. vinosum is a cytochrome c550. SoxXA 

from P. pantotrophus exhibited an α peak at 552,5 nm (Friedrich et al., 2000) and SoxXA 

from R. sulfidophilum at 551 nm (Appia-Ayme et al., 2001), as was the case for SoxXA from 

S. novella (Kappler et al., 2004). All measurements confirmed the presence of a c-type 

cytochrome. The occurrence of a reduced c-type cytochrome during and after purification was 

quite surprising. With all procedures taking place under oxic conditions, the heme was 

expected to be air-oxidised. But for so far unknown reasons the reduced form of A. vinosum 

SoxXA seems to be unusually stable. The heme staining of SoxXA after SDS-PAGE 

confirmed the presence of at least one heme group per subunit, as was predicted by sequence 

analysis. According to the sequence alignment A. vinosum belongs to the group of organisms 

that contain a monoheme SoxA. While SoxX always contains just the one heme group, SoxA 

can differ in its heme content, dependent on the organism it originates from. Organisms like 

P. pantotrophus and R. sulfidophilum contain a diheme SoxA protein (Friedrich et al., 2000; 

Appia-Ayme et al., 2001), while organisms like S. novella (Kappler et al., 2004) and A. 

vinosum contain just a monoheme SoxA. In case of a monoheme protein, the N-terminal heme 

binding motif has been destroyed, leaving just the C-terminal motif behind. The pyridine 

spectrum analysis was difficult to analyse concerning the actual quantity of the heme groups. 

For the final analyses several SoxXA-containing gel filtration fractions had been combined 

and concentrated, regardless of the additional contaminating proteins reintroduced into the 

sample, because of the low amount of SoxXA. The analysis of the hemochrome and 

hemichrome spectra revealed the qualitative presence of heme c in the sample, which was in 

accordance with the preceding results. With contaminating proteins artificially raising the 

protein concentration, the determined heme content was below the expected amount.  

 

The purification aproach for SoxB led to a fairly homogenous protein sample, with only one 

additional band visible in the Coomassie-stained gel. However, the SoxB purification 

provided some difficulties, based upon the lack in accuracy of the applied antiserum. SoxB 

purifies from A. vinosum as a monomer with a molecular weight of approximately 60 kDa 

according to the SDS-PAGE. A second so far unidentified protein with exactly the same size 
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was also detected by the antiserum against SoxB and purified from A. vinosum, which raised 

the need for MALDI-TOF analysis as an additional proof for protein identity. This 

identification was a complete success. The analysis additionally confirmed the postulated 

signal peptide cleavage position for SoxB, confirming the postulated location in the 

periplasm. The Tat-dependent transport implicates the presence of a cofactor, corresponding 

to SoxB from P. pantotrophus, that contains two manganese atoms per monomer (Friedrich et 

al., 2000). The observed difference between postulated molecular weight (62 kDa), molecular 

weight determined by SDS-PAGE (~60 kDa) and molecular weight determined by 

gelfiltration (41 kDa) indicates the possibility of interaction between protein and column 

material, that leads to a delayed elution not in accordance with the actual molecular weight. A 

comparable difference in molecular weight determination of SoxB was observed in 

C. tepidum (Hanson and Tabita, 2003). While the protein had a predicted size of 64 kDa, it 

consistently migrated at approximately 48 kDa in a two-dimensional SDS-PAGE. However, 

as the A. vinosum SoxB was found at the correct size in SDS-PAGE, two independent 

phenomena are responsible for these observations. 

 

The purification of SoxYZ was successful, but could nevertheless be optimised, as several 

proteins apart from SoxYZ were still present in the preparation. Perhaps the reintroduction of 

the omitted anionic exchange chromatography would already lead to desired results. 

According to the molecular weight determined by gel filtration, SoxYZ is purified from 

A. vinosum as a heterodimer. In P. pantotrophus different subunit compositions were 

demonstrated for SoxY and SoxZ (Quentmeier et al., 2003). The heterodimer SoxYZ was 

found either in associated form or covalently linked by a disulfide bond. The homodimers 

SoxYY and SoxZZ also appeared in the covalently linked state. Interaction with SoxB 

converted the covalently linked heterodimer SoxYZ to the associated form, which in turn 

aggregated to a heterotetramer Sox(YZ)2. If these kinds of interaction also appear in 

A. vinosum was not distinguishable from the gained results. In P. pantotrophus SoxY has 

been demonstrated to be the substrate binding molecule of the Sox multienzyme complex 

(Quentmeier and Friedrich, 2001). By comparison with sequence date from other organisms a 

new consensus sequence has been identified, including the cysteine residue involved in 

substrate binding at the SoxY C-terminus (Friedrich et al., 2001). The deduced protein 

sequence of A. vinosum SoxY is in accordance with this consensus sequence. Therefore, in all 

probability SoxY is the substrate binding molecule of the A. vinosum Sox complex. To further 

verify the identity of SoxYZ, MALDI-TOF analysis was again performed. The analysis 
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revealed fragments of both SoxY and SoxZ. Because of their similar molecular weight, the 

discrimination on the gel was difficult and in all probability resulted in a mixture to be 

analysed. Four peptide fragments altogether could be assigned to either SoxY (3 fragments) or 

SoxZ (1 fragment). As one of the observed MALDI-TOF peptides actually represented the C-

terminus of SoxY potentially with a covalently bound thiosulfate, this would be a first hint to 

the actual presence of the substrate binding site. Further conclusive proof is, however, needed.  

 

The assay to detect Sox system activity was based upon the thiosulfate-dependent reduction of 

horse heart cytochrome c. The supernatant after ammonium sulfate precipitation contained all 

the Sox proteins (SoxXA, SoxB and SoxYZ) and exhibited a reduction of cytochrome c in the 

assay significantly above blank level, with an activity of 1,34 mU/mg. Taking the inability of 

the thiosulfate:acceptor oxidoreductase to act with horse heart cytochrome c as electron 

acceptor into consideration, this allows several conclusions: (i) Thiosulfate oxidation is 

catalysed by proteins in the supernatant after precipitation, (ii) these proteins are in all 

probability Sox proteins and (iii) thiosulfate is an in vitro substrate of the Sox complex. In 

P. pantotrophus a cytochrome c reduction rate of 8,9 mU/mg with thiosulfate as substrate was 

recorded in cell extract (Wodara et al., 1997). In comparison, the activity observed in 

A. vinosum appears to be quite low. However, it must be taken into account, that the Sox 

system of P. pantotrophus yields 8 electrons, due to the complete degradation of thiosulfate to 

sulfate, while without SoxCD the electron yield goes down to 2 electrons, the amount 

supposedly obtained by the Sox system in A. vinosum. The proteins needed for further 

oxidation of the sulfane sulfur have potentially been separated from the Sox proteins in the 

ammonium sulfate precipitation.  

The reconstituted Sox system in P. pantotrophus exhibited a cytochrome c reduction rate of 

6,51 mU, with 0,5 nmol/ml of SoxB SoxYZ, SoxXA and SoxCD, respectively, in the 

preparation (Friedrich et al., 2000). The first approach for a reconstitution of the A. vinosum 

Sox system contained less protein, but exhibited an activity even higher than the ammonium 

sulfate supernatant (1,84 mU/mg). This is quite surprising, when looking at the other two 

preparations, that both contain more protein, but exhibit far less activity. Therefore, the 

reconstitution of the Sox system from the purified proteins SoxXA, SoxB and SoxYZ 

exhibited mixed results. The lack of activity in the reconstituted system could be due to 

several factors. The first assumption is, that some essential part of the multienzyme system is 

missing, when only the three proteins are put together. This unknown protein would 

potentially still be present in the supernatant after precipitation. Considering the missing 
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SoxCD, a complete thiosulfate oxidation to sulfate by these proteins is in all probability not 

possible, but at least the substrate binding and the cleaving off of the sulfone sulfur should be 

possible, resulting in a release of electrons. However, without the release of the sulfane sulfur, 

the substrate molecule is blocked for further reaction cycles. The next assumption would be 

that all necessary parts are present, but in the wrong proportion. Equimolar amounts of all 

three proteins have been applied, but without a positive result. Perhaps also the protein to 

substrate concentration was unsuitable. An important factor seems to be the condition of the 

proteins applied to the assay. When SoxYZ of P. pantotrophus has been inactivated by 

reduction before addition to the enzyme assay, no activity was measurable (Friedrich et al., 

2005). This consideration pushes SoxXA into focus. This protein was isolated from 

A. vinosum in its reduced form and not artificially oxidized before usage in the assay. SoxXA 

is thought to take over the electrons released when binding thiosulfate to SoxYZ. With 

SoxXA already carrying electrons, this first step could already be inhibited. In the supernatant 

after ammonium sulfate precipitation some unknown electron acceptor potentially takes over 

the electrons from SoxXA and enables the protein to be active in the Sox complex. This 

protein was lost during purification. A likely candidate would be the flavocytochrome c552 . 

The homologue SoxF from P. pantotrophus reactivated SoxYZ, that was reduced before 

addition to an enzyme assay. This kind of redox-balancing function could also be postulated 

for FccAB in A. vinosum. The last possibility for the lack in activity could be degradation of 

proteins. Even though if a protease inhibitor was added to the preparations during purification, 

it is not yet clear, if this strategy was completely successful. 

No explanation can be given, why the reconstituted Sox system appears to be active in one 

preparation and nearly inactive in two others, with all preparations not too different from one 

another.  

 

 

D.3 Analysis of sox gene mutants 

 

The inactivation of sox genes in different organisms had different effects. The inactivation of 

soxB in P. pantotrophus by transposon mutagenesis resulted in a complete loss of thiosulfate 

oxidation ability (Chandra and Friedrich, 1986; Wodara et al., 1994). A soxA-deficient mutant 

of R. sulfidophilum was unable to oxidize thiosulfate as well as sulfide (Appia-Ayme et al., 

2001). The inactivation of different sox genes in A. vinosum resulted mostly in a lack of 

thiosulfate oxidation, with the exceptions of ∆ORF9/rhd and ∆soxY. While on Pfennig 
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medium no significant amount of tetrathionate was detected during thiosulfate oxidation, the 

experiments performed using 0 medium resulted in the formation of tetrathionate. This sulfur 

compound was the product of thiosulfate:acceptor oxidoreductase activity with thiosulfate as 

substrate. This pathway, an alternative to the oxidation to sulfate via the Sox pathway, 

remained essentially unaffected by sox gene inactivation. The ratio of sulfate and tetrathionate 

as products from thiosulfate oxidation is essentially pH dependent. As both experimental 

approaches (Pfennig and 0 medium) were subjected to pH control, the absence or presence of 

tetrathionate in the different media is potentially due to another unknown effect.  

 

The insertional inactivations of soxX and soxB both had identical phenotypes. Sulfide 

oxidation and all subsequent oxidation steps remained unaffected (polysulfide formation, 

sulfur oxidation and sulfate as end product). Thiosulfate oxidation to sulfate, however, was 

completely inhibited. This phenotype was less detectable in thiosulfate concentration, but 

more clearly in the complete lack of sulfate production. While thiosulfate concentration 

remained unchanged in Pfennig medium, a decrease was observed on 0 medium. As oxidation 

to sulfate was not possible in the mutant strains, tetrathionate formation was responsible for 

part of the decrease. However, as the production of tetrathionate does not account for the 

complete amount of thiosulfate that has been degraded, trithionate formation could fill the gap 

and has been confirmed for A. vinosum (Sperling, 2001).  

The joint inactivation of soxB and soxX also resulted in an inhibition of thiosulfate oxidation 

as observed in both of the single mutants. The observed slight delay in sulfide oxidation, 

polysulfide development and sulfur oxidation in ∆soxBX was possibly due to a cumulative 

effect. There may be an increase in the severity of the phenotype the more sox genes are 

inactivated in A. vinosum. It must also be taken into account, that the three mutants ∆soxX, 

∆soxB and ∆soxBX were produced by insertional inactivation. The resistance cassette destroys 

the reading frame and contains transcriptional and translational stop signals on each end.  

Thereby it blocks the expression of genes in the same transcription unit as the inactivated 

gene. This could be demonstrated for the example of soxA directly downstream of soxX. The 

inactivation of the latter always resulted in the inability to detect SoxA. Additionally, in the 

∆soxBX mutant the intergenic region between soxB and soxX, containing the putative 

promoters, was destroyed. Therefore, the observed phenotypes could not be followed back to 

one single inactivated gene, but always involved more extensive effects.  
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The phenotypic characterisation of the mutant strains ∆soxX, ∆soxB and ∆soxBX 

demonstrated, that the gene products of soxB and soxXA are absolutely essential for the 

oxidation of thiosulfate to sulfate in A. vinosum. This was also supported by the successfully 

complemented ∆soxX mutant. The sox gene expression in trans was successful, as thiosulfate 

oxidation to sulfate was reverted to wild type level, confirmed by the renewed production of 

sulfate. The production of SoxA in the complemented mutant provided additional proof for 

the correct expression of the plasmid-bourne genes. Furthermore, the introduction of the 

plasmid had no unwanted negative effects, as the precedingly unaffected sulfide oxidation 

pathway remained unaffected. 

 

The open reading frames ORF9 and rhd, situated downstream of soxA, are potentially not 

involved in the oxidation of thiosulfate to sulfate at all, as the corresponding mutant exhibited 

no phenotype under the chosen conditions. There might be the possibility that the gene 

products are of importance, when the experimental conditions are different. In A. vinosum the 

inactivation of APS reductase, thought to be essential for sulfite oxidation, also had no effect 

on growth in batch culture (Dahl, 1996), but in continuous culture resulted in a considerable 

decrease in growth under light saturation (Sanchez et al., 2001). The proteins encoded by 

ORF9 and rhd have a function, that still remains to be investigated. As no mutational 

experiments have been undertaken for the homologous genes in C. tepidum and A. aeolicus, 

no data for further speculation is available. 

 

When compared with ∆soxX, ∆soxB and ∆soxBX, the mutant strain ∆soxY exhibited a 

differing phenotype. As observed for the other sox mutants, the oxidation of thiosulfate to 

sulfate was completely inhibited. In addition, the mutant exhibited a significant delay in 

sulfite oxidation. This is the first A. vinosum mutant so far, that was impaired in the 

degradation of this sulfur compound. Until now, an enzyme essential for sulfite oxidation in 

A. vinosum could not be identified. With the APS reductase not being essential (see above), a 

sulfite:acceptor oxidoreductase activity was postulated, but without any further proof on 

genetic or protein basis. If SoxYZ is involved in sulfite oxidation, there are several problems 

to consider. Because of the in frame deletion of soxY, soxZ is potentially still expressed. But 

as SoxZ contains no signal peptide of its own and SoxY is missing for joint transport, the 

protein potentially accumulates in the cytoplasm and is eventually degraded. The observed 

phenotype could be due either to the lack of just SoxY, or, more likely, to the lack of the 

complete substrate binding molecule SoxYZ. A second problem is the Sox system structure. 
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In P. pantotrophus SoxYZ is part of a larger multienzyme complex. As the Sox proteins in 

A. vinosum are not purified as one large Sox complex, nothing can be said about the 

composition of the thiosulfate oxidising structure. Regarding the independent function of 

SoxYZ a rigid structure composition seems rather unlikely. Sulfite oxidation involving 

SoxYZ appears to function without the action of the other Sox proteins, as none of the other 

mutants exhibited problems in sulfite oxidation. Except for the conserved cysteine SoxYZ 

contains no obvious active site or redox-active group. Therefore it could only act as a 

substrate carrier for sulfite, with the necessity of a second catalytically active enzyme for the 

actual oxidation to sulfate. A last problem evolves if sulfite is not added externally, but 

appears as an intermediate of sulfide and sulfur oxidation. Sulfite is produced in the 

cytoplasm from intracellular sulfur globules by the action of Dsr proteins (Pott and Dahl, 

1998; Dahl et al., 2005). With SoxYZ situated in the periplasm, some kind of substrate 

transporter must be postulated. The observed delay in sulfur degradation in ∆soxY is very 

likely due to the delayed sulfite oxidation. It is not in the interest of the organism to 

accumulate huge amounts of potentially harmful sulfite. Therefore, a decrease of Dsr protein 

activity would be a way to deal with a lowered sulfite oxidation rate. Regarding the ∆soxY 

phenotype, the independent position of soxYZ on the genome gains new potential. If SoxYZ is 

needed for a function apart from the other Sox proteins, there would be a need for 

independent regulation, which is made possible by gene separation.  

 

By complementing a mutant strain, one would expect a more ore less successful return to the 

wild type phenotype (as observed for the complemented ∆soxX). The ∆soxY+Y mutant only 

partly fulfilled this expectancy. Thiosulfate was again oxidized, although at a significantly 

slower rate than the wild type. Externally added sulfite was oxidised again with wild type 

rates. Surprisingly, the complemented mutant exhibited a significant delay in sulfide 

oxidation. As a follow up, sulfur globule formation and degradation, as well as sulfite 

oxidation, was slowed. But this could possibly be only downward effects of the initially 

affected sulfide oxidation. Which step in the oxidation of sulfide to sulfate is ultimately 

impaired, is difficult to determine. Perhaps there is a complication concerning plasmid-bourne 

soxYZ and the second copy of soxZ still present in the genome. Possibly there is a regulatory 

active region upstream of soxY, that has not been inserted into the plasmid. Therefore, the 

expression of soxYZ from the plasmid is unregulated, leading to problems not observed in the 

correctly regulated wild type or the mutant without functional SoxYZ at all. At the moment a 

completely satisfying explanation cannot be given for this phenotype. 
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D.4 A model for the Sox system in A. vinosum 

 

When trying to work out a model for thiosulfate oxidation to sulfate in A. vinosum (depicted 

in figure D1), it is clear that all three Sox proteins (SoxXA, SoxB and SoxYZ) must be 

involved. The missing SoxCD calls for a modification of the model so far postulated for 

P. pantotrophus (Friedrich et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1: A model for the Sox multienzyme system in A. vinosum. Yellow: conserved cysteine at 

SoxY / sulfur, white: oxygen. 

 

The first steps are in accordance with the Paracoccus model: a SoxXA-dependent binding of 

thiosulfate to the conserved cysteine of SoxYZ, followed by hydrolytic release of sulfate by 

SoxB. The remaining sulfane sulfur, however, needs to be oxidised via different pathway due 

to the lack of SoxCD. In A. vinosum as well as in C. tepidum, both organisms that lack 
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SoxCD, sulfur globules are an obligate intermediate of thiosulfate oxidation. Therefore the 

sulfane sulfur must be transferred to the sulfur globules in some fashion. The protein encoded 

by rhd, a sulfurtransferase, would have been a potential candidate in A. vinosum, but the 

corresponding mutant did not exhibit phenotype. Therefore, this protein remains to be 

identified. Once transferred to the sulfur globule, the further oxidation to sulfite is carried out 

by Dsr proteins. In the last oxidation step to sulfate SoxYZ must be involved. Together with 

other unknown components this would complete the oxidation of thiosulfate to sulfate.  

 

Several questions still remain to be solved in the future. However, with the function of 

thiosulfate:acceptor oxidoreductase and the Sox multienzyme system for thiosulfate oxidation 

demonstrated in A. vinosum, further potentially undetected pathways for thiosulfate 

degradation are very unlikely. Additionally, new insights could be gained into the oxidation of 

sulfite, which was so far still unclear. 
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E: Summary 

 

• Genomic sequence of A. vinosum was analysed, containing five open reading frames. 

Two open reading frames were identified as sox genes, soxY and soxZ. These are 

located on a site independent from the one containing the sox genes identified during 

the diploma thesis. 

 

• The gene soxY encodes a putative periplasmic protein (12,7 kDa), soxZ a putative 

cytoplasmic protein (11,2 kDa). SoxY contains a conserved C-terminus including a 

cysteine residue necessary for substrate binding. 

 

• The proteins SoxA, SoxB and SoxYZ were heterologously produced in E. coli. Their 

use for antiserum testing revealed the difference in sensitivity and background signals 

of the respective antisera, with SoxA antiserum delivering the best results. 

 

• SoxA was detected in the soluble fraction of A. vinosum cell extract, in accordance 

with the postulated periplasmic location of the Sox proteins. The expression of soxA 

was inducible by thiosulfate above a constitutive level of expression. Therefore, the 

Sox proteins were purified from the soluble fraction of thiosulfate-grown A. vinosum. 

 

• SoxXA was purified as a heterodimer. The c-type cytochrome nature of both subunits 

was confirmed by heme staining, additional proof provided by the recording of 

pyridine spectra. The spectrum recorded of SoxXA showed a reduced cytochrome c550, 

that has not been air-oxidised. 

 

• SoxB was purified as a monomer. To verify the identity of the purified protein 

MALDI-TOF analysis was applied, confirming the identity of SoxB. Additionally one 

peptide fragment verified the postulated signal peptide cleavage position and thereby 

the location of SoxB in the periplasm. 

 

• SoxYZ was purified as a heterodimer. The identity was again verified by MALDI-

TOF analysis. It confirmed the identity of SoxY and SoxZ. Additionally a first hint 
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was given concerning the binding of thiosulfate to the conserved cysteine residue in 

SoxY. 

 

• The assay determining thiosulfate-dependent reduction of horse heart cytochrome c by 

the Sox proteins did not provide clear results. 

 

• An in frame deletion of soxY in A. vinosum was constructed. The mutant ∆soxY was 

phenotypically characterised with the mutants constructed during the diploma thesis 

(∆soxX, ∆soxB, ∆soxBX and ∆ORF9/rhd). 

 

• In the mutant strains ∆soxX, ∆soxB, ∆soxBX and ∆soxY the oxidation of thiosulfate to 

sulfate was completely inhibited, with tetrathionate formation unaffected. The mutants 

were not impaired in sulfide oxidation.  

 

• The mutant strain ∆soxY exhibited an accumulation of significant amounts of sulfite 

during sulfide oxidation. The oxidation of externally added sulfite was also delayed. 

 

• To complement the mutants ∆soxX and ∆soxY, plasmids were constructed that carried 

the intact genes and surrounding sequence containing the putative promoters. The 

plasmids were successfully established in the mutant strains, resulting in the 

complementation strains ∆soxX+X and ∆soxY+Y. 

 

• In the strain ∆soxX+X the ability to oxidise thiosulfate to sulfate was re-established at 

wild type level. 

 

• In the strain ∆soxY+Y the ability to oxidise thiosulfate to sulfate was only partly 

restored. The delay in sulfite oxidation, however, was completely removed. The 

complemented mutant exhibited a delay in sulfide oxidation and all subsequent 

oxidation steps. 
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G: Appendix 

 
G.1 Nucleotide Sequence 
 

 

1  aattcctgcg cacccatccg gtcaacgcca accgcatcgc 

>>..................ORFd..................> 

 

 

41  cgaggcgctc ggccgggccg acgacttcgg cgcccagcag 

>..................ORFd...................> 

 

 

81  cgccctgaca gtctgcgctt ccagctcgca cgcgcggccc 

>..................ORFd...................> 

 

 

121  tgcgcgaacg ctcctacaaa cgcccggaac aggccgtcgc 

>..................ORFd...................> 

 

 

161  ccatttccgt gacacattgc gcgagggccg gcatcgcaat 

>..................ORFd...................> 

 

 

201  gccgtcgccg aacactatgg ctatgcgctg gccctgacgc 

>..................ORFd...................> 

 

 

241  gcgcgggtca gttcgacgcc gcccgcgccg ccctggccac 

>..................ORFd...................> 

 

 

281  ggccatgaaa tcgcactcca gcttgcccga gttcatcgtc 

>..................ORFd...................> 

 

 

321  ctggaggccc ggctcgatct cgaacagggg caggtcgagc 

>..................ORFd...................> 

 

 

361  gcgccgtgcg taacctggga caggccgtgg gtctgtcgcc 

>..................ORFd...................> 

 

 

401  gagccactgg ccgctgcgcg tggcctatgc cgaggcgttg 

>..................ORFd...................> 

 

 



G: Appendix  144

 

441  atgaaagccg gccgtccggc tcaggccatc gacgagctga 

>..................ORFd...................> 

 

 

481  ccgccgtggc gcgactgcgc cccggcaatc ccatgttgta 

>..................ORFd...................> 

 

 

521  cgataagctg gagcaggcgg cctttcgcgc gggcaacaaa 

>..................ORFd...................> 

 

 

561  tcggcgaccc accgtttccg cgccgagaag ctctatgccg 

>..................ORFd...................> 

 

 

601  agggcgaccg cgagccggcg atccgtcagc tcgagatcgc 

>..................ORFd...................> 

 

 

641  actgcgtcag cgcgacctcc cctaccatga ggcggcgcgc 

>..................ORFd...................> 

 

 

681  atccaggcgc ggctcgaaac ctggaaagaa gaagaacgcg 

>..................ORFd...................> 

 

 

721  aagccaaacg caaagacaag agaggagata aatcatgatc 

>>...> 

>...............ORFd................>> 

 

 

761  gatgccaaac gccggacact cgtcaagggc tcgctggccg 

>..................soxY...................> 

 

 

801  ctggggcggt cgtcggcgcc ggactgatca cgccacgcgc 

>..................soxY...................> 

 

 

841  cttcgccgac tggaacgcag cggccttcca ggccaaggac 

>..................soxY...................> 

 

 

881  atccccacgg ccatgaccgg tctgctcggc agcgacgccg 

>..................soxY...................> 
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921  ccgaggtcag cgaccggatc aagatcaagg ccccggacat 

>..................soxY...................> 

 

 

961  cgccgagaac ggtgccgtgg ttccggtcac ggtcgagacc 

>..................soxY...................> 

 

 

1001  gatctggagg gcgtcacttc catcagtctc atcgcggcca 

>..................soxY...................> 

 

 

1041  agaatcagtc gccgctgatc gcctccttcg agttcgtcga 

>..................soxY...................> 

 

 

1081  cccgtccgtg atccccttcg tcgccacccg catcaagatg 

>..................soxY...................> 

 

 

1121  gctgagaccg ccgacgtcat cgccgtggtc aaggcgggtg 

>..................soxY...................> 

 

 

1161  acaagctcta taagaacgcc aagagcgtca aggtcaccat 

>..................soxY...................> 

 

 

1201  cggcggctgc ggcggctgat cagcctctca cgcccgtacc 

>......soxY.......>> 

 

 

1241  caagtatcca aggctgaata ccgaacacga ggagtcgaga 

 

 

1281  cgatgtccga tatcaagatc cgcgccaagc tcgagggtga 

>>.................soxZ.................> 

 

 

1321  cgagacgacc gtcaagtgtc tgatgagcca cccgatggag 

>..................soxZ...................> 

 

 

1361  accggtctgc gcaaggacag caagaccaac gaagtcatcc 

>..................soxZ...................> 

 

 

 

1401  cggcgcactt catccgggaa gtggtgtgca aggtcaaggg 

>..................soxZ...................> 
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1441  agccgtggtg atgaagacgt cctggagcgg cggcgtctcc 

>..................soxZ...................> 

 

 

1481  aagaatccct atctgtcgtt caagttcaag ggcggcgccg 

>..................soxZ...................> 

 

 

1521  tcggcgatcc gatcgagatc gcctggaccg acaacacggg 

>..................soxZ...................> 

 

 

1561  cgagagccag agtgccacgg ccgagatcag cggctgacgg 

>................soxZ.................>> 

 

 

1601  aacgccgagg ccccggagat ccggggcctc ggaccacgac 

< 

 

 

1641  tagaattcga aaccagccgg ctcgggcgca ttgcgcagcg 

<..................ORFe...................< 

 

 

1681  gcgccacctc gacctcgaac agcgactcgc gccgatagtc 

<..................ORFe...................< 

 

 

1721  gtggcgcccg acgcgggtca cgcacacaca ctccatcgcg 

<..................ORFe...................< 

 

 

1761  ggtgccgtgc ccaggatgca gaacagccgt ccgccgatgg 

<..................ORFe...................< 

 

 

1801  tcagctgctc gcgcagcatc ggcagcgcgt cctcggtcgg 

<..................ORFe...................< 

 

 

1841  catcgagccc ttgacggcga tcgcgtcgaa tggcgccccg 

<..................ORFe...................< 

 

 

1881  ctcacgggtc cggccagacc atcaccctcg cgaacctcga 

<..................ORFe...................< 

 

 

1921  cccagtcgaa cttgagcgct tcgagccgct cgaccgcctc 

<..................ORFe...................< 
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1961  ggccgcctgc atcgggtcga tctccagact gatcacgcgc 

<..................ORFe...................< 

 

 

2001  gccccgagcc ggctcagaca ggcggcgaca tagcccgacc 

<..................ORFe...................< 

 

 

2041  ccgtgccgat ctccagcgcc cgatcgcccg gctggacggc 

<..................ORFe...................< 

 

 

2081  gagcgcctgc aacagatgac cgaccacctt gggcgcaagc 

<..................ORFe...................< 

 

 

2121  atgagggtgc cgttgccgtt ggggatctcg atgtcggcat 

<..................ORFe...................< 

 

 

2161  aggccagcgc ccgataggca tccggcacga agcgctcgcg 

<..................ORFe...................< 

 

 

2201  ctcgaccgtg cccatcacct ccagcacccg gtcgtcgagc 

<..................ORFe...................< 

 

 

2241  acgccccagg gccggatctg ctgctggatc atgttgaagc 

<..................ORFe...................< 

 

 

2281  gggccaactc actgctgttg tccatgaaat ggaagtaccc 

<..........ORFe..........<< 

 

 

2321  cgtctgaact catgtttttg gaaaagcgac cgcgtccggc 

>>............ORFf............> 

 

 

2361  gagacgcagg acgaaagatt atataatagg tgcccaacca 

>..................ORFf...................> 

 

 

2401  gccgaccgag tcgacggtcg gcctattcct gtcagttcag 

>..................ORFf...................> 

 

 

2441  tggagagtct cttcatgccc agcgccccga gcaagtcgct 

>..................ORFf...................> 
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2481  cgaaaccttc cccaatcccc agcccgagcg cgactatacg 

>..................ORFf...................> 

 

 

2521  atccgcatcc gggtgcccga gttcacctgt ctctgcccca 

>..................ORFf...................> 

 

 

2561  agaccggcca gccggacttc gccgagctga tgctcgaata 

>..................ORFf...................> 

 

 

2601  cgtccccgag cagaagtgcg tcgagctgaa ggcgctcaag 

>..................ORFf...................> 

 

 

2641  acctatgtct ggtcctatcg tgacgagggc gccttccacg 

>..................ORFf...................> 

 

 

2681  aggccgtcac caaccgcatc ctcggtgatc tggtcgaggc 

>..................ORFf...................> 

 

 

2721  cacggcaccg cgcttcatgc gcctgaccgc cgagttcaac 

>..................ORFf...................> 

 

 

2761  gtgcgcggcg gtatctatac cacggtcgtc gccgagcatc 

>..................ORFf...................> 

 

 

2801  gcgccgctga ctggcagccg ccggtgccgg tcacgctgcc 

>..................ORFf...................> 

 

 

2841  gtgagcggtc tgaaccctcg gccctgcgcc gccggccggg 

>.>> 

 

 

2881  tcggctgacc ccgtggccaa gcgacgactc tccgcgcgcc 

 

 

2921  agatcgagcg cattcaagcg atccaggaac gccgccgcga 

 

 

2961  acggctcgcc gcgcggcccg aacgggcgct ggccgaactc 

 

 

3001  gacgacgagc tggagccgga agaaggacga gtcgtcgtcc 

 

 



G: Appendix  149

3041  gacacggcgc caatctggcg gtcgaggacg cgcacggtca 

 

 

3081  cttgatccac tgcctggcgc gccagaacat cgggcatgtg 

 

 

3121  gtgtgcgggg accgcgtcgt ctggcagcgt ctgcccgatg 

 

 

3161  gccagggtgt ggtgacagcc accctgccgc gcatcagcac 

 

 

3201  cctgagccga cccgactaca gcgggcgcga caagccgctc 

 

 

3241  gcggccaatc tgacacggct cgccatcctc atcgccccgg 

 

 

3281  aaccggagcc gagcggttat ctgatcgata agcttggatc 

 

 

3321  cggagagctc ccaacgcgtt ggatgcatag cttgagtatt 

 

 

3361  ctatagtgtc acctaaatag cttggcgtaa tcatg 

 

 

 

 

G.2 Amino acid sequence 
 

 

ORFd (incomplete): 

 

F L R T H P V N A N R I A E A L G R A D D F G A Q Q R P D S L R F Q L A R A A L R 

E R S Y K R P E Q A V A H F R D T L R E G R H R N A V A E H Y G Y A L A L T R A G 

Q F D A A R A A L A T A M K S H S S L P E F I V L E A R L D L E Q G Q V E R A V R 

N L G Q A V G L S P S H W P L R V A Y A E A L M K A G R P A Q A I D E L T A V A R 

L R P G N P M L Y D K L E Q A A F R A G N K S A T H R F R A E K L Y A E G D R E P 

A I R Q L E I A L R Q R D L P Y H E A A R I Q A R L E T W K E E E R E A K R K D K R 

G D K S * 

 

SoxY: 

 

M I D A K R R T L V K G S L A A G A V V G A G L I T P R A F A || D W N A A A F Q A 

K D I P T A M T G L L G S D A A E V S D R I K I K A P D I A E N G A V V P V T V E T 

D L E G V T S I S L I A A K N Q S P L I A S F E F V D P S V I P F V A T R I K M A E T 

A D V I A V V K A G D K L Y K N A K S V K V T I G G C G G * 
 

SoxZ: 

 



G: Appendix  150

M S D I K I R A K L E G D E T T V K C L M S H P M E T G L R K D S K T N E V I P A H 

F I R E V V C K V K G A V V M K T S W S G G V S K N P Y L S F K F K G G A V G D P 

I E I A W T D N T G E S Q S A T A E I S G * 
 

ORFe: 

 

M D N S S E L A R F N M I Q Q Q I R P W G V L D D R V L E V M G T V E R E R F V P 

D A Y R A L A Y A D I E I P N G N G T L M L A P K V V G H L L Q A L A V Q P G D R 

A L E I G T G S G Y V A A C L S R L G A R V I S L E I D P M Q A A E A V E R L E A L 

K F D W V E V R E G D G L A G P V S G A P F D A I A V K G S M P T E D A L P M L R 

E Q L T I G G R L F C I L G T A P A M E C V C V T R V G R H D Y R R E S L F E V E V 

A P L R N A P E P A G F E F * 
 

ORFf: 

 

M P S A P S K S L E T F P N P Q P E R D Y T I R I R V P E F T C L C P K T G Q P D F A 

E L M L E Y V P E Q K C V E L K A L K T Y V W S Y R D E G A F H E A V T N R I L G 

D L V E A T A P R F M R L T A E F N V R G G I Y T T V V A E H R A A D W Q P P V P 

V T L P S * 
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