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Abstract

We study the correlation effects induced by a Kondo impurity embedded
in a quantum box, using as a model a one-dimensional tight-binding band
with a finite number of lattice sites which is coupled to an Anderson impu-
rity. The model is solved by means of the density-matrix renormalization-
group (DMRG) including the Lanczos method as well as the correction vector
method. We examine systems with more than 500 sites retaining up to 2600
states. We define the Kondo temperature TK for the case of a discrete con-
duction electron density of states (level spacing ∆E). The strength of the
correlations, indicated by the weight of the Kondo resonance, W , is deter-
mined by the local conduction density of states at the impurity site, x0. W
depends both on the symmetry of the conduction electron wave function at
the Fermi edge, Ψ0(x), and on the impurity position x0. We explain why
the size of the Kondo peak fluctuates by changing the particle number N
between even and odd. We calculate the spin-correlations of the impurity
spin and the spin of the conduction band and define a correlation length for a
finite system, lnum

k . We examine systems where the Kondo cloud — measured
by lnum

k — is fully developed within the finite system. We show how the size
of the Kondo peak corresponds to the size of the Kondo cloud.
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Introduction

In the 1930s it was known that the resistivity of metals can show different be-
havior when cooling down to low temperatures: For some metals, like copper
and gold, the resistivity decreases until a finite constant value is approached
and then saturates at a constant value. For other metals, like niobium or
aluminum, the resistivity vanishes at a critical temperature TC and the ma-
terial becomes a superconductor. This behavior changes dramatically when
single magnetic atoms, such as cobalt, are added.

The resistivity decreases for low temperatures until a finite temperature
is reached and then increases again. This is called the Kondo-Effect [1, 2, 3],
and it could not be explained for decades.

In 1964 it was Jun Kondo [4] who solved the problem by investigating
the scattering of conduction electrons with a single magnetic impurity. The
Kondo Hamiltonian describes the interaction of free conduction electrons
with a fixed spin. By expanding it up to second order of perturbation theory
in the coupling J , he found that the second term could be larger than the first
term. A ln(T ) term arises, which raises the resistivity for low temperatures if
the coupling is antiferromagnetic and if the term is included with the phonon
contribution to the resistivity.

A few years earlier, in 1961, P. W. Anderson had suggested another model,
the so-called Anderson model or SIAM (Single Impurity Anderson Model) [5].
It describes the interaction of conduction electrons with an additional site
via superexchange. One site on a free tight-binding chain is coupled to a site
with a negative level εd and a Coulomb repulsion term. Since this describes
the scattering off an impurity that has an internal degree of freedom, namely
the spin, this problem is a real many-body problem and cannot be reduced
to a simple single-electron scattering problem.

In the ground state the impurity site is occupied by one electron on aver-
age, due to the low-lying level. This electron builds a singlet with a conduc-
tion electron at the Fermi level. This spin exchange changes the spectrum of
the system and a so-called Kondo peak is generated at the Fermi level.

In 1974 D. Haldane proved that the Kondo temperature is determined
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by the parameters of the Anderson Hamiltonian only. Therefore, all physical
quantities can be expressed in units of TK instead of the parameters of the
Hamiltonian.

The problem of Kondo’s perturbative approach is that the term diverges
for T → 0, and resistivity would be infinite at T = 0, which is unphysi-
cal. The key idea of the remedy for this problem is scaling, which was also
introduced by Anderson [6]. By integrating out higher excitations, the ef-
fective coupling between the impurity site and the conduction electrons is
increased. The approach failed at low energies, too, but the idea of scaling
was picked up by K. Wilson. In 1974 he developed the Numerical Renormal-
ization Group, a powerful tool containing ideas of the renormalization group
from field theory as well as scaling ideas from condensed matter explaining
the Kondo phenomena.

In the last few years Kondo physics became more interesting for physi-
cists again, because nanotechnology is offering new experiments [7, 8, 9]. By
means of scanning tunneling microscopy (STM) it is now possible to ma-
nipulate, investigate and create small Kondo boxes, a device consisting of a
few hundred atoms and one single impurity. One might expect that in the
near future it will be possible to build Kondo boxes consisting of only a few
atoms. In these samples the conduction electron spectrum becomes discrete
with a nonzero mean level spacing. This results in many new effects, e. g. the
splitting of the Kondo peak into many sub-peaks.

The main part of this thesis deals with the examination of a Kondo
box, a tight-binding chain with a finite number of lattice sites coupled to
a single Anderson impurity, by means of the density-matrix renormalization-
group (DMRG). This powerful numerical tool was developed by S. R. White
[10, 11, 12] and is, roughly speaking, an extension of Wilson’s Numerical
Renormalization Group to realspace systems. The DMRG makes it possible
to examine one-dimensional systems with a very high accuracy. We will ex-
plain the method in detail.

One focus of interest are dynamical properties, especially the spectral
density on the impurity. We will show that — although we do not use the
standard SIAM — we can find a peak at the Fermi edge, resulting from
the interaction on the impurity, which can be interpreted as a Kondo peak.
We explain the behaviour of this peak for different setups: Even and odd
number of particles in the system, different system sizes, and other various
parameters. We explain how the calculation of the Kondo temperature can
be applied to our system.
The other focus of interest is the holy grail of Kondo physics: The Kondo
screening cloud. We will show results for the correlation function of the im-
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purity spin and the spins on the conduction band. We define a numerical
correlation length lnumk and show that it decreases with increasing TK . For
large systems and large TK , the spin-spin correlations do not change for small
distances.

The thesis is organized as follows: In chapter 1 we will give a brief intro-
duction in the Anderson and Kondo model. We will also give some insight
and motivation of experiments. Since the Green’s function and the spectral
density play a fundamental role in this thesis, both concepts are explained
in detail. Chapter 2 deals with various numerical methods: We start from
exact diagonalization, introduce the Lanczos algorithm and show how it can
be used to calculate dynamical properties. After the Bethe Ansatz for a Hub-
bard chain with open boundary conditions and the NRG, we will explain the
DMRG in detail: Infinite and finite system algorithm, handling of operators,
transformation of the wave function, measurements of expectation values and
correlation functions, and dynamical properties with the Lanczos vector and
the correction vector method.
We will present our results of the dynamical properties and the spin-spin cor-
relations of a Kondo box in chapter 3. Chapter 4 shows results for a Hubbard
ring and a t-J ladder with long range Coulomb interaction with DMRG. We
will show what has to be done to keep the number of operations at a feasible
level.
In chapter 5 we present the dynamical mean-field theory (DMFT) and its
extension, the cellular DMFT (CDMFT). We show the self-consistent loop
and try to clarify all technical terms used in these methods.
We offer a conclusion and a discussion of further research at the end of this
thesis.
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Chapter 1

Theory and Experiments

In this chapter I will give a brief introduction in the Anderson and Kondo
model. We will also give some insight and motivation of experiments.

1.1 Introduction and Models

The theory of magnetic impurities in metals is a field that has attracted a
lot of attention in the last 40 years. A Hamiltonian for this problem can be
written like this:

H =
∑

i

(
p2
i

2m
+ U(ri) + Vimp(ri)

)
+

1

2

∑

i6=j

e2

|ri − rj
+
∑

i

λ(ri) · σi (1.1)

The first two terms describe the kinetic and the potential energy of the
electrons in the host metal. The third term describes the interaction with
the magnetic impurity. The fourth and fifth term represent the Coulomb
repulsion and the spin-orbit interaction. When we only concentrate on simple
metals which have a broad conduction band, the electrons can be assumed
to move freely and independently in a periodic potential. The long Coulomb
repulsion is screened and the electrons can be described as quasi-particles.
By neglecting the quasi-particle interaction the conduction electrons in the
host metal can be described by a single-electron Hamiltonian

H =
∑

k,σ

εkc
†
k,σck,σ. (1.2)

c†k,σ and ck,σ are creation and annihilation operators, where k represents the
wave vector and σ the spin. Another approximation is that one is not con-
cerned about the energies εk, but characterizes the conduction electrons by
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a density of states given by1

ρ0 =
∑

k

δ(ε− εk). (1.3)

By introducing an effective impurity potential V eff
imp(r) one can write the

Hamiltonian of the conduction band electrons and the impurity as

H =
∑

k,σ

εkc
†
k,σck,σ +

∑

k,k′,σ

Vk,k′c
†
k,σck′,σ, (1.4)

where Vk,k′(r) = 〈k|V eff
imp(r)|k′〉. A local impurity can be sufficiently attrac-

tive to bind a conduction electron. An electron in this bound state will be
localized in the vicinity of the impurity and its wavefunction will fall off ex-
ponentially with increasing distance r from the impurity. But even if the
potential is not strong enough to bind an electron, it may still be attractive
enough to localize a conduction electron due to resonant scattering for some
time in the vicinity of the impurity. These virtual bound states occur for
rare earth or transition metal impurities when the d or f level lie within the
conduction band of the host metal. The Anderson model uses the atomic d
functions of the isolated impurity as starting point, which are modified due
to the presence of the ions of the host metal. The Hamiltonian is given by

H =
∑

k,σ

εkc
†
k,σck,σ (1.5)

+
∑

σ

εdnd,σ + Und,↑nd,↓

+
∑

k,σ

(
Vkc
†
d,σck,σ + V ∗k c

†
k,σcd,σ

)
,

where the first term describes the conduction electrons in the host metal. The
second term describes the physics of the isolated impurity, which inhibits a
chemical potential εd as well as a Coulomb repulsion U . The third term
represents the interaction or connection of the impurity and the conduction
band of the host metal. To exhibit a local moment, it is necessary that the
impurity is single occupied. This requires that εd < εF and 2εd + U > εF
(atomic limit). By performing the Schrieffer-Wolff transformation, the An-
derson model is mapped onto the Kondo model. The transformation projects
out states where the impurity is occupied by 0 or 2 electrons. The Kondo
Hamiltonian is given by

H =
∑

k

εkc
†
kck +

∑

k,k′
Jk,k′

(
S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz

(
c†k,↑ck′,↑ − c†k,↓ck′,↓

))

(1.6)

1This will be one of the main differences from our model that is presented later. We
will show that this assumption is useless in a finite system.
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Figure 1.1: STM topographic images and spectroscopic measurements n small
clusters situated on single-wall carbon nanotubes

where ~S denotes the spin operator on the impurity, and describes the spin-
spin interaction of a the conduction band and the local moment. The spin
coupling J is given by

Jk,k′ = V ∗k Vk′
(

1

U + εd − εk
+

1

εk − εd

)
. (1.7)

One can easily see that the coupling is anti-ferromagnetic in the local moment
regime.

1.2 Experiments

The goal of nanotechnology is to manipulate and control matter of the atomic
scale. One of the main tools is the scanning tunneling microscope (STM). It
allows the measurement of the energy spectrum at particular positions on a
surface, move single atoms, and can image a surface with atomic resolution.
The first application in Kondo physics was achieved in 1998 [13]: The STM
has been used to image and move magnetic impurities on a metal surface,
and to measure the Kondo resonance as a function of the applied voltage.
Besides putting magnetic atoms on metallic surfaces, it is also possible to
study magnetic clusters on carbon nanotubes [9]. Single-walled carbon nan-
otubes are ideal systems for investigating properties of one-dimensional elec-
tronic systems. Lieber et al. used the STM to spatially resolve the electron
density of states of cobalt cluster on metallic nanotubes at low temperature.
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Spectroscopic measurements on or near these clusters exhibit a narrow peak
that has been identified as a Kondo resonance. By reducing the size of the
carbon nanotube and the cobalt cluster, it was possible to measure features
characteristic of the bulk Kondo resonance, but also new features due to the
finite size. The last point is a great motivation for our theoretical work, be-
cause we (as we will show later) see a lot of effects due to the finite size of
the Kondo box.

1.3 The Green’s Function and Spectral Den-

sities

Green’s functions [14, 15, 16] play a fundamental role in many-particle physics.
On the one hand, they are defined as ground state averages of time-ordered
products of operators, which can be calculated directly. On the other hand
they may be easily related to experimental observables. The single-particle
Green’s function contains information about the ground state expectation
value of any single-particle operator. Also the ground state energy itself
and the whole excitation spectrum of the system may be extracted from the
Green’s function. Furthermore, the Green’s function is directly related to
correlation functions, which make it possible to compare theoretical predic-
tions with experimental results. The causal single-particle Green’s function
at T = 0 is defined as

iGαβ(xt, x′t′) = 〈ψ0| T [ΨαH(x, t),Ψ†βH(x′t′)] |ψ0〉 (1.8)

= θ(t− t′)〈ψ0|ΨαH(x, t)Ψ†βH(x′t′)|ψ0〉 ±
θ(t′ − t)〈ψ0|Ψ†βH(x′, t′)ΨαH(xt)|ψ0〉

where ψ0 is the ground state of the system, and

ΨαH(t) = eiHtΨαe
−iHt (1.9)

(h̄ = 1) is the field operator in Heisenberg representation. For simplicity, the
indices α and β labeling the components of the field operators (two possible
values for spin- 1

2
particles) are dropped, because Gαβ equals Gδαβ in the

absence of an external magnetic field and ferromagnetism. In the absence of
any external field and in a homogeneous system, G is a function of the time
difference t̃ = t− t′ only instead of t and t′, G(t, t′) = G(t− t′). For fermionic
systems (considered in this thesis) the time ordered product yields a minus
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sign. The Green’s function becomes

iG (xt, x′t′) = θ
(
t̃
)
〈ψ0|eiHtΨe−iHteiHt

′
Ψ†e−iHt|ψ0〉 (1.10)

− θ
(
−t̃
)
〈ψ0|eiHt

′
Ψ†e−iHt

′
eiHtΨe−iHt|ψ0〉

iG
(
x, x′, t̃

)
= θ

(
t̃
)
eiE0 t̃〈ψ0|Ψ(x)e−iHt̃Ψ†(x′)|ψ0〉 (1.11)

− θ
(
−t̃
)
e−iE0 t̃〈ψ0|Ψ†(x′)eiHt̃Ψ(x)|ψ0〉

Using

iG(ω) = i
∫ ∞

−∞
dt eiωtG(t) (1.12)

we obtain

iG(x, x′, ω) =
∫ ∞

−∞
eiωt̃

[
θ
(
t̃
)
eiE0 t̃〈ψ0|Ψ(x)e−iHt̃Ψ†(x′)|ψ0〉− (1.13)

θ
(
−t̃
)
e−iE0 t̃〈ψ0|Ψ†(x′)eiHt̃Ψ(x)|ψ0〉

]
dt̃,

and finally

iG(x, x′, ω) =
∫ ∞

−∞

[
〈ψ0|Ψ(x)

(
θ
(
t̃
)
eiE0 t̃e−iHt̃eiωt̃

)
Ψ†(x′)|ψ0〉− (1.14)

〈ψ0|Ψ†(x′)
(
θ
(
−t̃
)
e−iE0 t̃eiHt̃eiωt̃

)
Ψ(x)|ψ0〉

]
dt̃.

Using the representation of the θ function and its inverse

±eiεtθ(±t) =
1

2π

∫ ∞

−∞
dω

ieiωt

ω − ε± iη (1.15)

∫ ∞

−∞
dt eiωte−iεtθ(±t) = ± i

ω − ε± iη , (1.16)

the Green’s function can be written as

G(x, x′, ω) = 〈ψ0|Ψ(x)
1

ω − (H − E0) + iη
Ψ†(x′)|ψ0〉+ (1.17)

〈ψ0|Ψ†(x′)
1

ω + (H − E0)− iηΨ(x)|ψ0〉.

Introducing a complete set of basis states, the Green’s function becomes

G(x, x′, ω) =
∑

n

〈ψ0|Ψ(x)|ψn〉
1

ω − (En − E0) + iη
〈ψn|Ψ†(x′)|ψ0〉+

〈ψ0|Ψ†(x′)|ψn〉
1

ω + (En − E0)− iη 〈ψn|Ψ(x)|ψ0〉 (1.18)
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and for x = x′

G(x, ω) =
∑

n

|〈ψ0|Ψ(x)|ψn〉|2
(

1

ω − (En − E0) + iη
+ (1.19)

1

ω + (En − E0)− iη

)
.

As mentioned above, the Green’s function is related to the spectral density
or correlation function, which can be measured experimentally by NMR,
neutron scattering, photo emission etc. A correlation function is defined by

CA(x, t− t′) = 〈ψ0|A†(x, t)A(x, t′)|ψ0〉, (1.20)

where A(x, t) again is a Heisenberg operator and |ψ0〉 is the ground state.
Again using that

A(x, t) = eiHtA(x)e−iHt (1.21)

one gets

CA(x, t− t′) = 〈ψ0|eiHt
′
A†(x)e−iHt

′
eiHtA(x)e−iHt|ψ0〉 (1.22)

After inserting an identity operator and performing a Fourier transformation,
this becomes

CA(x, ω) =
∫
eiωt̃

∑

α

ei(Eα−E0)t̃|〈α|A(x)|ψ0〉|2 (1.23)

=
∑

α

|〈α|A(x)|ψ0〉|2δ(ω − (Eα − E0)). (1.24)

The imaginary part of the on-site Green’s function is

Im[G(x, ω)] = Im

[∑

n

|〈ψ0|Ψ(x)|ψn〉|2
(

1

ω − (En − E0) + iη
+ (1.25)

1

ω + (En − E0)− iη

)]
. (1.26)

We use the relation
1

x + iη
= P

[
1

x

]
− iπδ(x), (1.27)

where P denotes the principal part. In the case of x+iη = ω∓(En−E0)±iη,
this yields

Im[G(x, ω)] =
∑

n

|〈ψ0|Ψ(x)|ψn〉|2
{
P

[
1

ω − (En − E0) + iη

]
− iπδ(ω − (En − E0)) +

P

[
1

ω + (En − E0)− iη

]
+ iπδ(ω + (En − E0))

}
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which can be simplified to

Im[G(x, ω) = ∓iπ
∑

n

|〈ψ0|Ψ(x)|ψn〉|2(δ(ω − (En − E0)) + δ(ω + (En − E0))

and finally,

C(x, ω) = − 1

π
ImG(x, ω) , (1.28)

where G is the Green’s function of the operator A.

1.3.1 The Green’s Function for a Finite Lattice

Considering a finite lattice with n sites and N particles, the Green’s function
is given by

G(i, j, ω) = 〈ψ0|ci
1

ω − (H − E0) + iη
c†j|ψ0〉+ (1.29)

〈ψ0|c†j
1

ω + (H − E0)− iη ci |ψ0〉

with the ground state |ψ0〉 and ci is the annihilation operator on site i.
Inserting a complete set |α〉 (for the Hamiltonian with N + 1 particles) and
|β〉 (for the Hamiltonian with N − 1 particles) of eigenstates of H,

H|α〉 = Eα|α〉 (1.30)

H|β〉 = Eβ|β〉 (1.31)

with c†i |ψ0〉 = |i+〉 and ci|ψ0〉 = |i−〉, one gets

G(i, j, ω) =
∑

α,α′
〈i+|α〉〈α| 1

ω − (H − E0) + iη
|α′〉〈α′|j+〉+ (1.32)

∑

β,β′
〈j−|β〉〈β| 1

ω + (H − E0)− iη |β
′〉〈β ′|i−〉

=
∑

α,α′
〈i+|α〉 δα,α′

ω − (Eα − E0) + iη
〈α′|j+〉+ (1.33)

∑

β,β′
〈j−|β〉 δβ,β′

ω + (Eβ − E0)− iη 〈β
′|i−〉

=
∑

α

〈i+|α〉〈α|j+〉
ω − (Eα − E0) + iη

+ (1.34)

∑

β

〈j−|β〉〈β|i−〉
ω + (Eβ − E0)− iη
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The on-site Green’s function is then given by

G(i, ω) =
∑

α

|〈i+|α〉|2
ω − (Eα − E0) + iη

+ (1.35)

∑

β

|〈i−|β〉|2
ω + (Eβ − E0)− iη

To sum up, one has to the following to calculate the spectral density for a
finite lattice:

1. calculate the ground state |ψ0〉 for the N -particle Hamiltonian

2. calculate |i〉 = c†i |ψ0〉

3. diagonalize the (N + 1)-particle Hamiltonian to get the eigenstates |α〉
and the eigenvalues Eα

4. calculate the weights w(α) = |〈i|α〉|2

5. It is common to visualize each peak with a Gaussian, thus the right-
hand side of the spectrum is then given by

Ar(ω) =
∑

α

w(α)
1√

2πσ2
exp


−

(
ω −

(
Eα − EN

0

))2

2σ2


 . (1.36)

The left part of the spectrum is obtained by applying the annihilation oper-
ator on |ψ0〉, so that |i〉 = ci|ψ0〉. Then, of course, it is the (N − 1)-particle
Hamiltonian which must be diagonalized. The weights are calculated in the
same way, and the left-hand side is given by

Al(ω) =
∑

α

w(α)
1√

2πσ2
exp


−

(
ω +

(
Eα − EN

0

))2

2σ2


 . (1.37)



Chapter 2

Numerical Methods

We will present various numerical methods in this chapter. We start with the
exact diagonalization, a method that is limited to small systems, and continue
with the Lanczos method, which makes it possible to treat Hubbard systems
of up to about lattice sites. We then briefly describe the numerical Bethe
Ansatz for a Hubbard chain with open boundary conditions, because it is
used to compare ground state energies with non-exact methods. After the
description of the numerical renormalization-group (NRG), we will present
the main part of this chapter: The density-matrix renormalization-group
(DMRG).

2.1 Exact Diagonalization

The numerical method of exact diagonalization is a method limited to small
systems, that is, systems with a small basis of the Hilbert space. The cor-
responding Hamiltonian can be diagonalized exactly without any approxi-
mations except for numerical errors. The full spectrum of eigenstates can
then be used to calculate dynamical properties, correlation functions etc. If
the system is built up of single sites with a basis of b states per site, the
Hilbert space grows exponentially. Therefore, the basis of a system of Ns

sites contains bNs states. A computer with 1GB = 230byte RAM can be used
to diagonalize a matrix of 227 doubles (size of double = 8byte). With b = 4
(e.g. Hubbard Model), the maximum number of sites in the system is Ns ≤ 7.
This can be reduced by exploiting symmetries. As an example, the Hubbard
Hamiltonian conserves particle number p and the z-component of the total
spin, Stotalz . The dimension of the Hilbert space then equals

(
Ns

p↑

)
·
(
Ns

p↓

)
, (2.1)
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with p↑ (p↓) being the number of particles with spin up (spin down). One
way to treat bigger systems are iterative methods [17] where the Hamiltonian
is not needed explicitly, but only the product of the Hamiltonian and a wave
function, H|ψ〉, is needed. The price one has to pay is that most often not
the full spectrum can be calculated to a sufficient degree of accuracy. If one
is only interested in the eigenstates with the lowest lying eigenvalues, the
Lanczos algorithm offers a technique to calculate them.

2.1.1 Lanczos method

The Lanczos method [18, 19] is applicable to large, sparse, and symmetric
matrices. The algorithm tridiagonalizes a matrix by projecting it onto a
Krylov subspace, that is

Km(H, v) = span{v,Hv,H2v, . . . , Hm−1v}. (2.2)

One advantage is that the extremal eigenvalues are approximated very well
a long time before the tridiagonalization is complete [20, 21]. Using the
recursion equation

|fn+1〉 = H|fn〉 − an|fn〉 − bn|fn−1〉 (2.3)

where |f0〉 is a random start vector and

an =
〈fn|H|fn〉
〈fn|fn〉

, (2.4)

bn =
‖|fn〉‖2

‖|fn−1〉‖2

, b0 = 0, (2.5)

one obtains

H =




a0 b1 0

b1 a2
. . .

. . .
. . . bn

0 bn an



. (2.6)

This tridiagonal matrix can be diagonalized easily and fast by standard rou-
tines (e.g. from LAPACK) to obtain the eigenvalues and eigenvectors.
The Lanczos algorithm can also be used to calculate spectral densities

A(t− t′) = 〈ψ0|O(t)O†(t′)|ψ0〉
= 〈ψ0|eiHtOe−iHteiHt

′
O†e−iHt

′ |ψ0〉
= e−iE0(t−t′)〈ψ0|Oe−iH(t−t′)O†|ψ0〉 (2.7)
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in the following way [22]: First, one calculates the ground state ψ0 of the
system, and then starts the Lanczos procedure with the starting vector

|f0〉 =
O|ψ0〉√
〈ψ0|O†O|ψ0〉

(2.8)

for a reason that will become obvious soon. Then, the tridiagonal matrix
is diagonalized to obtain the eigenvectors φn of the system. This nearly
complete set is inserted into equation (2.7) and gives

A(t− t′) ≈
∑

α,β

e−iE0(t−t′)〈ψ0|O(t)†|φα〉〈φα|eiH(t−t′)|φβ〉〈φβ|O(t′)|ψ0〉, (2.9)

and via a Fourier transformation one obtains the well known equation

A(ω) =
∑

α

|〈φα|O|ψ0〉|2δ(ω − (Eα − E0)). (2.10)

The eigenvectors |φα〉 can be expanded in terms of the Lanczos vectors |fα〉
we obtained during the tridiagonalization, with |f0〉 = O|ψ0〉√

〈ψ0 |O†O|ψ0〉
:

|φα〉 =
∑

m

cαm|fm〉 (2.11)

Now, the term |〈φα|O|ψ0〉|2 can be rewritten as follows:

|〈φα|O|ψ0〉|2 = |〈φα|
√
〈ψ0|O†O|ψ0〉|f0〉|2

= |
∑

m

(cαm)∗ 〈fm|
√
〈ψ0|O†|ψ0〉f0〉|2 (2.12)

and since the |fm〉 are orthonormal, this can be simplified to

|〈φα|O|ψ0〉|2 = |cα0 |2 〈ψ0|O†O|ψ0〉. (2.13)

Therefore, the weight of the peaks in A(ω) corresponding to the eigenvalue
Eα is identified with the 0th entry of the αth eigenvector φα in the expansion
in terms of the |fm〉. For visual representation it is common practice to draw
a Gaussian or Lorentzian curve with a fixed broadening and the given weight
wi at the matching position Ei of the peak. For the Gaussian, the spectral
density can be written as

A(ω) =
∑

i

wi√
2πσ

exp−(ω − Ei)2

2σ2
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and the Lorentz curve is given by

A(ω) =
∑

i

1

π

wiσ

(wi − ω)2 + σ2

One major source of errors is the identity in (2.9), since it is not complete.
Providing only accurate results for low excitations near the ground state is
a shortcoming of this method.

2.2 Bethe Ansatz

The Bethe Ansatz [23] is an exact method for the calculation of eigenvalues
and eigenvectors of a limited class of quantum many-body systems. Although
the eigenvalues and eigenvectors for a finite system may be obtained from
numerical diagonalization, the Bethe Ansatz is not limited in the system size.
In addition, it has other advantages: All eigenstates are characterized by a
set of quantum numbers which can be used to distinguish them according
to specific physical properties, and the eigenvalues can be calculated in the
thermodynamic limit. It was first used to calculate the one-dimensional
Heisenberg model, but has been generalized to treat other one-dimensional
systems. We will use some results from the Bethe Ansatz for a 1D Hubbard
model as reference values. Thus, we will sketch the Bethe Ansatz equations
for the 1D Hubbard model for open boundary conditions [24, 25, 26]. The
energy of a 1D Hubbard chain with L sites, N electrons and M electrons
with σ = −1/2 can be written as

E = Nµ− 2
N∑

j=1

cos(kj)

The momenta kj and spin rapidities vm for open boundary conditions are
given by

exp(2kj(L + 1)) =
M∏

m=1

(sin(kj) + iU/4)(sin(kj) + vm + iU/4)

(sin(kj)− vm − iU/4)(sin(kj) + vm − iU/4)

and

M∏

n6=m

(vm − vn + iU/2)(vm + vn + iU/2)

(vm − vn − iU/2)(vm + vn − iU/2)
= (2.14)

N∏

j=1

(vm − sin(kj) + iU/4)(vm + sin(kj) + iU/4)

(vm − sin(kj)− iU/4)(vm + sin(kj)− iU/4)
. (2.15)
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By building the logarithm of these equations one gets

0 = − 2(L + 1)kj + 2πIj

−
M∑

m=1

(
2 arctan

(
sin(kj)− vm

U/4

)
+ 2 arctan

(
sin(kj) + vm

U/4

))
(2.16)

0 = 2πJm −
N∑

j=1

(
2 arctan

(
vm − sin(kj)

U/4

)
+ 2 arctan

(
vm + sin(kj)

U/4

))

+
M∑

n6=m

(
2 arctan

(
vm − vn
U/2

)
+ 2 arctan

(
vm + vn
U/2

))
(2.17)

where Ij, Jm ∈ Z. The set of equations can be easily solved by Newton
iteration.

2.3 Numerical Renormalization Group

The first ideas of Renormalization Groups [27] in condensed matter theory
occurred in the 1960s. It was Kenneth Wilson who transfered these methods
from particle physics to condensed matter physics in order to solve the Kondo
Problem [28]. The idea of the NRG is to iteratively integrate out higher
energy states in order to get the spectrum for the Hamiltonian HN for each
step N , which corresponds to a different energy scale. The procedure in the
case of the Single Impurity Anderson Model (SIAM) is briefly described:
The Hamiltonian is given by

H =
∑

k,σ

ε(k)c†kσckσ + V
∑

σ

(
f †σcσ + c†σfσ

)

+εf
∑

σ

nf,σ + Unf,↑nf,↓

where c
(†)
k,σ and f

(†)
k,σ denote creation and annihilation operators on the con-

duction band and on the impurity, respectively. U is the Coulomb repulsion
on the impurity, V is the hopping amplitude between impurity and chain,
and εd denotes the chemical potential on the impurity. The first step is the
logarithmic discretization of the conduction band into energy scales with

DΛ−(n+1) < |εf − εF | < DΛ−n n = 1, 2 . . . .

D is the width of the conduction band, and Λ is the discretization. The
second step consists of the mapping of the model onto a semi-infinite chain
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Figure 2.1: The impurity (patterned circle) is connected to all sites of the con-
duction band
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Figure 2.2: After the NRG transformation, one obtains a semi-infinite linear
chain with the impurity at the first site
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Figure 2.3: sketch of ground state wave functions of small tight-binding chains

which is depicted in Fig. 2.1 and Fig. 2.2. The new Hamiltonian is then
given by

H =
∑

σ

εff
†
−1,σf−1,σ + Uf †−1,↑f−1,↑f

†
−1,↓f−1↓

+
∞∑

σn=1

εn
(
f †n,σfn+1,σ + f †n+1,σfn,σ

)

Now, f
(†)
−1,σ acts on the impurity states and f (†)

n,σ with n = 0, 1, 2, . . . on states
of the conduction band. Due to the logarithmic discretization, the hopping
matrix elements decrease exponentially. By going along the chain, the system
evolves from high energy states to smaller energies. In each step of the
iteration, a new site of the conduction band is added to the system, the
new Hamiltonian is built and diagonalized, and the basis is truncated such
that the m eigenstates with the smallest eigenvalues are kept. Unfortunately,
this method cannot transferred to real-space problems, e.g. a linear Hubbard
model, where sites do not represent energy shells, but lattice sites. Since the
hopping matrix elements do not decrease exponentially and the conduction
band is not discretized logarithmically, the method fails after a few steps. The
problem is the choice of states that determine the new basis. We consider
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superblock

|i>
system block

|j>
environment block

Figure 2.4: a new superblock is built by adding a single site to the system block
and joining with an environment block

the wave function of the ground state of a small tight-binding chain: In Fig.
2.3 we have plotted three wave function of two small chains and one chain
built up of the two chains. It is obvious that the two ground state wave
functions of the small chains are not a good basis for the ground state wave
function of the big chain: each wave function of the small chain has a node
in the middle of the big chain, where its ground state wave function has a
maximum. Another RG with a different way to truncate the basis will be
described in the next chapter.

2.4 The Density-Matrix Renormalization-Group

In this section we present the method that is used for almost all calculations
in this thesis — the density-matrix renormalization-group (DMRG). We will
start by summing up the characteristics of density matrices and show why
it is best to choose the m largest eigenstates of the density matrix to be
the truncated basis. We will then introduce the infinite and finite system
algorithm, along with all technical issues like building a product basis or
performing a measurement. In the end, we show how the DMRG can be
used to calculate dynamical properties.

2.4.1 The (Reduced) Density Matrix

The density operator contains all possible information about the state of the
quantum system. Given that we know the density operator ρ for a system,
we can use it to calculate the expectation value of any operator A of the
system by

〈A〉 = Tr(Aρ),

where Tr denotes the trace. The density operator is normalized such that
Tr(ρ) = 1. The density matrix is hermitean and can be diagonalized to
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yield the eigenstates uα with the corresponding eigenvalues wα ≥ 0. Since
Tr(ρ) = 1,

∑
α wα = 1. By writing A and ρ in the eigenbasis of ρ, one gets

〈A〉 =
∑

α

wα〈uα|A|uα〉.

Supposing one has to discard basis states from the system, it is obvious that
no error in 〈A〉 would occur if these states are eigenstates uα of ρ with wα = 0.
Now we consider a system coupled to an environment. The full system con-
sists of two blocks — the system block and the environment block — and
is now called the superblock (Fig. 2.4). The basis of the superblock is a
product of the basis states of the system block |i〉 and the basis states of the
environment block |j〉. A wave function on the superblock can therefore be
written as

|Ψ〉 =
∑

i,j

Ψi,j|i〉|j〉

The reduced density matrix for the system block is defined as

ρi,i′ =
∑

j

Ψ∗i,jΨi′,j

The expectation value of an operator that acts only on the system block is
given by

〈A〉 = Tr(Aρ) =
∑

i,i′
Ai,i′ρi,i′ =

∑

α

wα〈uα|A|uα〉

where again uα are the eigenstates of ρ with eigenvalues wα. If the basis of
the system block has to be truncated, then the same arguments as above
hold. We will show that not only the error in 〈A〉 is as small as possible
by keeping the most probable states of the reduced density matrix, but also
that a state |Ψ〉 is also represented in the best way possible. One wants to
represent

|ψ〉 =
∑

i,j

ψi,j|i〉|j〉 (2.18)

in a truncated basis

|uα〉, α = 1, . . . , m (2.19)

for the system block. Since l = m · n is the number of system basis states
|i〉 (n is the basis size of a single site), and l > m, |ψ〉 cannot be represented
exactly in the truncated basis and has to be expanded in terms of |uα〉 and
|j〉, that is

|ψ〉 ≈ |ψ̃〉 =
∑

α,j

aα,j|uα〉|j〉 (2.20)
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Therefore, the task is to minimize

S =
∣∣∣|ψ〉 − |ψ̃〉

∣∣∣
2

(2.21)

varying over all aα,j and |uα〉. Using vβj := 〈j|vβ〉 = Nβaβ,j with Nβ chosen

such that
∑
j v

α
j v

β
j = δα,β, one gets

|ψ̃〉 =
∑

α

aα|uα〉|vα〉 (2.22)

and, in matrix notation

S =
∑

i,j

(
ψij −

m∑

α=1

aα|uαi 〉|vαj 〉
)2

→ min . (2.23)

This problem is known from linear algebra. Its solution is produced by single
value decomposition (SDV) of |ψ〉, i. e. |ψ〉 = UDV T , where U and D are
l × l matrices and V is an l × J matrix (j = 1, . . . , J , and J ≥ l). U is
orthonormal, V is column-orthogonal and D contains the singular values of
|ψ〉. To minimize S, the parameters are chosen as follows: The m largest-
magnitude diagonal elements of D are the aα, and the corresponding columns
of U and V are the uα and vα. The reduced density matrix is defined as

ρii′ =
∑

j

ψijψi′j (2.24)

= UD2UT (2.25)

The eigenvalues of ρ are wα = a2
α and the optimal states uα are the eigen-

states of ρ with the largest eigenvalue. Since
∑
α wα = 1, the deviation of

Pm =
∑m
α wα from unity, i. e. the discarded weight of the density matrix

eigenvalues, measures the accuracy of the truncation to m states. If Ψ is the
ground state of the system, this shows that it is better to use the density
matrix to determine the states kept instead of retaining the eigenstates with
the lowest-lying eigenvalues as done in the NRG. Knowing how to reduce the
basis of a system that is coupled to an environment in order to represent a
given state of the full system leads to:

2.4.2 The Infinite System Algorithm

1. Start with a block with L sites and m states that can be solved numer-
ically exactly. This is the first system block.
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last step

environmentsystem

first step

step 2

step 3

Figure 2.5: The infinite system algorithm

2. Add a single site with n states to the system block, yielding a new
system block with l = m× n states.

3. Build a superblock, consisting of the system block and an environment
block, a block of a few sites.

4. Calculate the ground state of the superblock using the Lanczos or
Davidson algorithm. The ground state is chosen to be the target state.
The target state does not have to be the ground state, and for some
applications multiple target states are chosen. The target state is the
state that is used to build the density matrix.

5. Calculate the reduced density matrix of the system block by evaluating
the partial trace over the environment block. Diagonalize the density
matrix.

6. The m eigenvectors of the density matrix with the highest lying eigen-
values are the new basis of the system block. Truncate the basis and
transform the operators accordingly.

7. Go back to step 2 until the desired length is reached.

Using the infinite system algorithm, a system is built up iteratively with the
basis truncated after each step in a way which is optimal to represent the
states in the new basis. The problem is that it is optimal to represent the
basis for the current size, not for the final size. That means, if the system
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block has s sites and your environment has e sites, the operators on the
system are truncated to optimally represent a system of s+e sites. However,
one is interested in a method to truncate the basis in a way that is optimal
to represent the states of the final size. The solution to this problem is the
finite size algorithm.

2.4.3 The Finite Size Algorithm

The environment is now chosen such that the superblock has a fixed size.

1. Use the infinite system algorithm to build up the system to the desired
length L. Store all Hamiltonians and operators of the left block in each
step. At the last step, the system block has l sites and the environment
block has r sites, where l+r = L. The environment block is now called
the right block, the system block the left block.

2. Add a single site to the right block, which then has r′ = r + 1 sites.
Add a single site to the left block with l = L− r′ − 1 sites, and build
a superblock of the two new blocks.

3. Carry out the steps 4–6 of the infinite system algorithm, interchanging
the roles for left and right block (e.g. building the density matrix for
the right block)

4. Rename r = r′. Go back to step 2 until l = 2. This is called the right
to left sweep.

5. Add a single site to the left block, which now has l′ = l + 1 sites. Add
a single site to the right block with r = L − l′ − 1 sites, and build a
superblock out of the two new blocks.

6. Carry out the points 4–6 from the infinite system algorithm.

7. Rename l = l′. Go back to step 5 until L − l′ = 2. This is called the
left to right sweep.

8. Go back to point 2 until convergence is reached.

The algorithm is depicted in Fig. 2.6. What one actually does is sweeping
from one end to the other (one can think of this like running a zipper),
always putting two single sites between the two blocks, which gives enough
new information to the system so that the ground state energy converges
rapidly after just a few sweeps as can be seen in Fig. 2.8.
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start with a new two site right block
use saved left blocks as environment

right to left sweep

new two site
left block

use saved right blocks as environment

left to right sweep

right block
new two site

right to left sweep

until convergence is reached

Figure 2.6: The finite size algorithm
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2.4.4 Operators, Measurements, Wave Functions, Mul-

tiple Target States

We will describe how to handle operators, perform measurements of observ-
ables and how to get a good starting vector for the Lanczos algorithm.

Operators An operator that only acts on one block is just written in the
basis of that specific block. The action of a block operator on the wave
function of the superblock can therefore be written as (supposing that A
acts only on the left block)

|Φ〉 =
∑

i,j

Φi,j|i〉|j〉 = A
∑

i,j

Ψi,j|i〉|j〉 (2.26)

with
Φi,j =

∑

i′
Ai,i′Ψi′,j. (2.27)

If operator B acts only on the right block, then

Φi,j =
∑

j′
Bj,j′Ψi,j′ (2.28)

Both operations can be written as matrix products, A ·Ψ and Ψ ·B>.
The ground state of the superblock has to be calculated in each step. The
Lanczos algorithm does not need to have the full matrix of the superblock
Hamiltonian explicitly, but only has to perform a multiplication of the Hamil-
tonian and a wave function. The matrix representing the Hamiltonian in the
case of the Hubbard Hamiltonian is given by

Hij,i′j′ = H l
i,i′δjj′ +Hr

j,j′δii′

+
∑

σ

[
c†σ(L)

]
i,i′

[
cσ(L+ 1)

]
j,j′

+
[
c†σ(L + 1)

]
j,j′

[
cσ(L)

]
i,i′

where c(†)
σ (L) is the operator on the rightmost site of the left block (site L)

and c(†)
σ (L + 1) is the operator on the leftmost site of the right block (site

L+ 1).
If a site is added to a block or two blocks are joined as new block, the new
Hamiltonian and the operators connecting the new block to the rest of the
superblock have to be built. Since operators from the left (right) block Ol

i,i′

(Or
j,j′) act only on states from the left (right) block, the matrix elements of

an operator of the new block equals

Oij,i′j′ = Ol
i,i′δjj′ +Or

j,j′δii′
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The basis of the current system block (either the left or right block, depending
on the direction of the current sweep) has to be truncated in each step. The
new basis is given by the m eigenstates uα of the reduced density matrix
with the lowest eigenvalues. These eigenstates can be written in columns in
a transformation matrix Dα,β = uαβ . An operator A of the system block is
transformed to the new basis by

Ã = D> · A ·D

Ãi,i′ =
∑

a,c

Da,iAa,cDc,i′.

The dimension of the matrices are given by (assuming that the size of the
old basis is b):

(m×m) = (b×m)>(b× b)(b×m)

Measurements The DMRG can not only be used to calculate ground-state
energies, but also to measure ground-state expectation values of operators,
that is

〈A〉 = 〈ψ|A|ψ〉 (2.29)

with ψ being the ground state of the superblock. In order to do so, one must
keep track of the operator A (or the components of A). Thus, at each DMRG
step, A has to be transformed to the new basis corresponding to one single
site being added to the system block. The operator A has to be truncated
in the same way as the Hamiltonian and other operators. The expectation
value is exact in the given basis, and, for an operator acting on the left block,
looks like

〈ψ|A|ψ〉 =
∑

i,i′,j

ψ∗ijAii′ψi′j. (2.30)

To calculate correlation functions, e. g. 〈ψ|AB|ψ〉, it has to be taken into
account whether the two operators act on the same block. If they do, the
expectation value is not given by

〈ψ|AB|ψ〉 6=
∑

i,i′,i′′,j

ψ∗ijAii′Bi′i′′ψi′′j, (2.31)

because the sum over i′ is not complete. In this case, you have to keep
track of the product of the two operators, C = AB, and then calculate the
expectation value in the way explained above. If the two operators act on
different blocks, the calculation is easy and the expectation value is given by

〈ψ|AB|ψ〉 =
∑

i,i′,j,j′
ψ∗ijAii′Bjj′ψi′j′. (2.32)



28 Chapter 2. Numerical Methods

s1    s2   s3

Figure 2.7: The transformation of the wave function

If one wants to measure the density on site i for each step, it is wrong to
calculate 〈ψ|c†ici |ψ〉. One has to build ni = c†ici in an exact, non-truncated
basis, and keep track of it.

Wave unction transformation As mentioned before, the Lanczos pro-
cedure can be sped up rapidly by starting with a vector which is nearly the
ground state of the system. Since the ground state of the superblock has
to be calculated in each step, it is a good idea to use the ground state of
the previous step as starting vector of the Lanczos routine. This reduces the
number of Lanczos steps from about 100 to 2—3 per DMRG step. We will
just sketch the procedure to transform the old ground state to the new basis,
because a detailed description can be found in [29]. A wave function can be
truncated in a similar way as an operator. Let us assume that the system
block is the left block and all operators have been truncated. The ground
state of the superblock with the truncated left block is now given by

|Ψ̃〉 = D>s1|Ψ〉.

The next task is one of the most complicated in a DMRG program: one
has to shift the states of site s2 from the product basis of the right block
to the new product basis of the new left block. The new wave function is
now the (exact) ground state of the new superblock, with s2 belonging to
the left block. The final step is an inverse truncation of the right block. The
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transformation matrix that was used to truncate the right block at position
s3 had to been stored in the previous sweep and is now used to blow up
the wave function regarding the states of the right block: |Ψ′〉 = |Ψ̃〉Ds3.
The last step is not an exact transformation, because D is not unitary, and
D> ·D ≈ 1. The transformed wave function is just a good approximation for
the exact wave function of the new DMRG step. The procedure is depicted
in Fig. 2.7.

Multiple target states The DMRG algorithm can also be performed with
multiple target states. This is done by separately building the density matrix
for each state and then adding up the matrices, each weighted with a factor,
so the final matrix has the properties of a density matrix.

ρ =
∑

α

w[α]ρα (2.33)

with
ρi,i′,α =

∑

j

ψi,j,αψi′,j,α (2.34)

and ∑

α

w[α] = 1 (2.35)

This can be useful for applying the DMRG to a system which is not at
zero temperature. In this case, the weights w[α] are Boltzmann weights
w[α] = exp(−Eα

kBT
) and the state ψi,j,α is the state with energy Eα. Multiple

target states are usually used when one calculates dynamical properties of
the system. We will describe the different choice of target states later.

2.4.5 Implementation

The program is written in C++ [30]. It is very important to exploit symmetries
of the system. Operators usually change the quantum numbers of a given
state by a fixed value. Assuming we use the number of particles N and the
z-component of the spin Sz as quantum numbers of the system, c†↑ changes
the quantum numbers from N, Sz to N+1, Sz +1/2. Each operator connects
states from one quantum number to another quantum number. The matrices
for operators in a basis of all quantum numbers are usually sparse and are
not stored completely. But due to the fixed change of quantum numbers of a
state, the matrix has block form, and only the blocks have to be stored. As
an example, we look at the creation operator c†↑ for a single site of a Hubbard
chain. The site has four states: no particle (|−〉), one particle (with spin
up or down, | ↑〉, | ↓〉) and double occupied (| ↑↓〉). The full matrix for c†↑
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would therefore be a (4 × 4) matrix with 16 entries. But only 2 out of the
16 elements are non-zero (from |−〉 to | ↑〉, and | ↓〉 to | ↑↓〉). Instead of
storing one (4× 4) matrix, two (1× 1) sub matrices are stored. An operator
is therefore represented by a set (usually a std::vector) of dense matrices.
Matrices are allocated in Fortran scheme, so Lapack and blas routines are
used wherever possible. The numerical representation of a wave function is
similar. Usually, one thinks of a wave function as a vector. But due to the
product basis of the two blocks, the wave function is stored as a matrix —
or a set of matrices. Even if the total number of particles and spin is fixed,
the number of particles on the left and right block is not constant.

Numerical Testing After the program is written, one has to check whether
it is implemented correctly. This can be achieved by applying the method
to a (numerically) exactly solvable problem, e.g. the one-dimensional tight-
binding chain (non-interacting system), a 1D Hubbard or Heisenberg chain
(Bethe Ansatz). We compare the ground state energy from our DMRG cal-
culation of a one-dimensional Hubbard chain at half filling, U = 4t, with the
exact solution obtained from the Bethe Ansatz equations [24, 25].

For the calculation of the finite-size chain, one can see that the ground
state energy converges very fast. We only keep a small number of states for
the warm-up sweep (m = 100) and then increase m for each iteration by
100. When m = 1000 at sweep 10, we do another 5 sweeps with constant
m. But even if the the number of states m is kept constant, one can see
small wiggles in the ground state energy plotted versus the position in the
superblock. This is the effect of the different truncation errors. If we consider
a homogeneous system (as the 1D Hubbard chain in the example), the trun-
cation error and the ground state energy reach their respective minimum in
the middle of the system, when both blocks are of about the same size. The
DMRG is a variational method and the ground state energy is approached
from above, E0

DMRG ≥ E0
exact. Therefore, measurements are best carried out

at the position, where E0 reaches its minimum — this does not have to be
the middle of the chain, and is somewhere near the impurity for the SIAM.
What has to be done to measure the local density on each site? It is tempt-
ing to measure ni for each site when site i is connected to the system block.
The operator can be built on the single site and then be transformed in the
product basis. Unfortunately, this results in a larger error than the following
procedure: After the convergence of the system, the position of minimum
truncation is known. Next, several sweeps to that position are performed,
where in each sweep, a set of several ni is kept track of. When the final
position is reached, all expectation values are measured, and another sweep
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Figure 2.8: ∆E0 for each step for a 1D Hubbard chain with length L = 100, filling
〈n〉 = 1 and U = 4t. The number of states kept, m, is increased by 100 within each
sweep, starting from m = 100 up to m = 1000 in sweep 10. 15 full sweeps — or 30
half sweeps (from one end of the chain to the other end) — are performed. The
inset shows the sweeps 10 to 15, where is m = 1000 is kept constant. The error in
the ground state energy gets smaller when both blocks have about the same size.
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Figure 2.9: E0 for each sweep with a different number of states retained m for a
1D Hubbard chain with length L = 100, filling 〈n〉 = 1 and U = 4t. E0 decreases
for increasing m
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with a different set of ni is performed, until all ni are measured. The size of
the group depends on the number of states kept m and the size of the com-
puter memory. The same procedure should also be performed for measuring
correlation functions, although it is a lot of bookkeeping. An example: For
the SIAM, we measured the correlation function of the z-component of the
impurity spin and the z-component of the electrons in the conduction band

C(r) = 〈SdzSz(r)〉 − 〈Sdz 〉〈Sz(r)〉

where Sdz is the z-component of the impurity spin and Sz(r) is the z-component
of the electron on site r on the chain. The site of minimum truncation is near
the position of the impurity. There is one additional point of importance to
the procedure described above: if at some point of the final sweeps Sdz and
Sz(r) act one the same block, one has to keep track of the product Sdz ·Sz(r)
in addition to the single operators.

2.4.6 Calculating Dynamical Properties with DMRG

It has been demonstrated that the DMRG yields good results for ground
state energies (and likewise for ground state properties in general). What
physicists are really interested in are not only ground state properties, but
also excited states and spectral densities, as they permit comparison of theo-
retical results with experimental ones. We show that the DMRG can also be
used to calculate Green’s functions and hence ”all points of interest”. The
main issues in calculating dynamical properties with the DMRG are how to
represent the basis at the region of interest (a specific ω) and how to calculate
A(ω). Where for the second problem one can fall back on standard methods
(e. g. [22]), the choice of the target states is more complicated. With just
the ground states used as target states, the basis is inappropriate to describe
excitations away from the Fermi edge. Currently, there are two different ways
to calculate Green’s functions with DMRG: the Lanczos vector method [31]
and the correction vector method [32]. The Lanczos vector method is easy to
implement and fast, but good results are only achieved for low-lying excited
states. By contrast the correction vector method is more complicated and
slower, but yields good results for the whole spectrum.

The Lanczos Vector Method

The idea of the Lanczos vector method is the following: build up the system
to the desired size by means of the infinite system algorithm. Then finite
size sweeps are carried out until convergence of the ground-state energy is
achieved. Finally, calculate the spectral density in the way described in the
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previous chapter. In order to represent the Krylov space more accurately, not
only the ground state is used as target state, but also the first few Lanczos
vectors. There are two problems of this method. First, the Lanczos tridi-
agonalization provides good results for low lying eigenvalues only. Second,
the eigenvectors obtained from the Lanczos algorithm are not orthonormal.
Since the density matrix is built not only from the ground-state but also from
the first Lanczos vectors, you get more information about the Krylov space.
However, due to the fact that only the low-lying eigenstates are represented
properly in the Krylov space, this method is not sufficient to describe high
excitations. We will explain this method by giving an example on how to
apply the Lanczos vector method to a finite system.

Application of the Lanczos vector method to a finite system The
Lanczos vector method is used to determine the spectral density at site i

Ai(ω) = 〈ψ0|ci
1

ω −Hc†i |ψ0〉 (2.36)

of a finite system. First, we calculate the Green’s function and hence the
spectral density. The Green’s function is given by

G(i, ω) =
∑

α

(
|〈i+|α〉|2

ω − (Eα − E0) + iη
+

|〈i−|α〉|2
ω + (Eα − E0)− iη

)
(2.37)

and the spectral density can be obtained from

A(ω) = − 1

π
Im (G(ω))

The program has to run two times for a given system size. The first part
of the Green’s function is calculated, which will then become the part with
positive frequencies of the spectral density. The target states are now

|ψ0〉 the ground state

c†i |ψ0〉 = |f0〉 the first Lanczos vector
|fi〉 the first few Lanczos vectors

We usually use 3 target states: the ground state (50% of the weight) and
the first two Lanczos vectors (each 25% of the weight). One has to keep
track of the operator c†i for a given site i in each step, so not only the blocks
have to be stored during the finite size algorithm, but possibly c†i , too, if
and only if the block to be saved contains the site i. After having reached
convergence in the finite size algorithm, sweep back to the position where the
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truncation errors of the two blocks are lowest. Then, proceed as described in
the previous chapter: One calculates the first Lanczos vector |f0〉 = c†i |ψ0〉,
then uses it to start the Lanczos routine. The peaks in the spectrum are
obtained by shifting the eigenvalues by E0. The weights are given by the
first entry of the matching eigenvectors. This gives the right-hand side of the
spectrum, i. e. the part with positive frequencies.

Next, calculate the left part of the spectrum. The whole calculation is
the same with c†i and ci interchanged, except for the representation of the
peaks. In the Lanczos routine one calculates 〈ψ0|c†i 1

ω−H ci |ψ0〉. The peaks of
the hole excitation have to be at ω = −(Eα − E0), so that the peaks have
to be shifted and then reflected. Joining the two parts results in the full
spectrum.

The correction vector method

The correction vector method offers a way to calculate the full spectrum even
at regions of highly excited states. The target states that are no longer the
first few Lanczos vectors are now given by:

|0〉 the ground state
|A0〉 = A|0〉 the first Lanczos vector
|x(z)〉 = 1

z−H |A0〉 the correction vector

with z = ω + iη. The Hilbert space is truncated to optimally represent it
in regions of a specific ω. The most complicated part in this method is the
inversion of the Hamiltonian, needed to calculate |x(z)〉. Since z = ω + iη,
|x(z)〉 is complex and can be written as |x(z)〉 = |xre〉+i|xim〉 . The imaginary
part of |x(z)〉 is therefore given by the following equation

(
(ω −H)2 + η2

)
|xim〉 = (−η) |A0〉

This equation can be solved by standard methods, such as conjugate gradient.
A restarted GMRES [17] has been proven to be stable and give accurate
results. The real part of |x(z)〉 can be calculated directly from the imaginary
part.

|xre〉 =
ω −H

(ω −H)2 + η2
|A0〉 =

H − ω
η
|xim〉

The correction vector method uses 4 target states in total: the ground state,
the first Lanczos vector as well as the real and imaginary part of the cor-
rection vector. The downside of this method is that you have to run the
program for every region you are interested in. In addition, the inversion of
the Hamiltonian at each DMRG step takes a lot of time. The choice of η
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plays a key role: The wider the broadening, the faster the calculation. A
large η results in a large diagonal of the denominator, which speeds up the
inversion. Unfortunately, the smaller the broadening, the better the reso-
lution and the more information is accessible from the plot. Whereas the
Lanczos vector method gives the peaks and corresponding weights of the
excitation spectrum, the correction vector just gives a single point of the
spectrum. Each peak is now represented by a Lorentzian with broadening η.
Since the correction vector has to be calculated in each step, it is no effort
to also calculate A(ω) in each step. But due to different truncation errors,
A(ω) changes when we sweep through the superblock. One should therefore
get the position where the ground state energy reaches its minimum, and
use A(ω) obtained at the same position. We found that A(ω) also reaches
its minimum value when E0 does, but cannot explain why it is a minimum.
As far as we know, it is not known that the correction vector method is a
variational method with A(ω)cv ≥ A(ω)exact. The variation of A(ω) is small
when ω ≈ 0 and ω ≈ D, i. e. near the Fermi edge and the band edge. In
between, the variation gets larger due to fluctuations from both sides of the
spectrum. The method can be improved by using two correction vectors with
ω1−ω2 ≈ 2η. After the system is converged, one can use the Lanczos method
to calculate the spectrum. The basis is then optimized to represent states in
the region between ω1 and ω2.

Comparison between Lanczos and Correction vector method In
order to compare both methods we calculate the spectral density for a SIAM
with 63 sites. We first set U = 0 to compare both methods with the exact
results, then set U to a finite value to see if the methods show different
results.

In Fig. 2.11 one can see that the correction vector method gives accurate
results for the whole spectrum. The Lanczos vector method gives perfect
results near the Fermi edge (ω = 0) and at the band edge. The method
fails to describe the spectrum in the middle of the band, between ω = −1
and ω = −0.4. To illustrate the fluctuation of Ad that is obtained from
the correction vector method, we also show Fig. 2.12. The cross marks
the mean value and all values obtained lie in between the error bars. The
fluctuations become larger when moving away from the band edge. We now
turn on the interaction by setting U = 5 without changing any of the other
parameters. We cannot compare the results to an exact solution anymore.
We also separate the spectrum in a left (hole excitations) and right (particle
excitations) part.

It is easy to see that the spectrum obtained from the Lanczos vector
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Figure 2.10: The spectral density Ad(ω) for a specific ω for a SIAM and the
corresponding ground state energy. With impurity position x0 = 4, one can see
that both values have their minimum at the same position (≈ 7− 8)

method matches the correction vector results in a region around the Fermi
edge. If one is only interested in that specific region of the spectrum, the
Lanczos vector method is the method of choice.

Conclusion
Methods to calculate spectral densities have been introduced. The Lanczos

vector method is easy to implement and the calculations are fast. The disad-
vantage is that this method cannot describe high excitations and is useful for
low lying excited states only. The correction vector method can give accurate
results for the whole spectrum. Unfortunately, it is difficult to implement
because of the matrix inversion it requires. It is also slow, because it has to
run a lot of times due to the choice of the correction vector, which is specific
for a given ω.

2.4.7 Improvements of the DMRG

A lot of work has been put into DMRG in the past years, which gave rise to
the calculation of a lot of different quantities. We only used a small subset
of DMRG, the standard DMRG (finite system algorithm and ground state
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Figure 2.11: The spectral density Ad(ω) obtained by the Lanczos vector method
and correction vector method compared to the exact results. The physical param-
eters of the SIAM are U = 0, V = 0.35, εd = −0.35 in units of the half bandwidth
D/2, L = 63, x0 = 4, n = 64; η = 0.1 for the CV as well as for the Lanczos vector
method. We kept m = 200 states for the correction vector method and m = 800
for the Lanczos vector method.
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Figure 2.12: The spectral density Ad(ω) obtained by the correction vector
method compared to the exact results. The physical parameters of the SIAM
are U = 0, V = 0.35, εd = −0.35 in units of the half bandwidth D/2, L = 63,
x0 = 4, n = 64 and η = 0.1. We kept m = 200 states.
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Figure 2.13: The spectral density Ad(ω) obtained by the Lanczos vector and
correction vector method. The physical parameters of the SIAM are U = 5,
V = 0.35, εd = −0.35 in units of the half bandwidth D/2, L = 63, x0 = 4,
n = 64; η = 0.1 for the CV as well as for the Lanczos vector method. We kept
m = 200 states for the correction vector method and m = 800 for the Lanczos
vector method.
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Figure 2.14: The spectral density Ad(ω) obtained by the Lanczos vector and
correction vector method. The physical parameters of the SIAM are U = 5,
V = 0.35, εd = −0.35 in units of the half bandwidth D/2, L = 63, x0 = 4,
n = 64; η = 0.1 for the CV as well as for the Lanczos vector method. We kept
m = 200 states for the correction vector method and m = 800 for the Lanczos
vector method.
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properties/correlation functions) and dynamical properties with the Lanczos
as well as the correction vector method. We will now mention other aspects
of DMRG. [33] gives a good overview and insight in these improvements.
It is also possible to treat bosons with DMRG. On first sight, this might not
be too strange, but one has to think of the single site basis for a system of
bosons! For spin 1/2 fermions, the number of states for a single site in the
Hubbard model is 4. For spin 0 bosons, the number of basis states for a
single site is only limited to the total number of bosons in the system. The
trick is to truncate the single site basis in the very beginning: This is done
a setting a maximum number of bosons per site, usually about 5-8.
Two-dimensional quantum systems have also been calculated by DMRG. Al-
though one can reorganize the lattice such that sweeping is still possible, one
has to keep track of much more operators, because the number of edge sites
is increased drastically. A 2D system can also be mapped onto a 1D system
with long range interaction. But although this is a problem for DMRG, it
has given interesting results for the 2D Heisenberg or t− J model.
Momentum-space DMRG makes momentum a good quantum number, works
naturally with periodic boundary conditions, and allows trivial manipulation
of the single-particle dispersion.
DMRG has also made a contribution to the field of quantum chemistry.
Conventional DMRG is essentially restricted to T = 0 calculations. The
DMRG idea can also be used for the decimation of transfer matrices, leading
to the name of transfer-matrix renormalization group (TMRG). This opened
the way to DMRG studies of classical statistical mechanics at finite temper-
ature for systems on two-dimensional L×∞ strips. If one applies the generic
mapping of d-dimensional quantum systems at finite temperature to (d+ 1)-
dimensional classical systems, TMRG also permits study of thermodynamic
properties of one-dimensional quantum systems at finite temperature.
For systems out of equilibrium, there is the transition matrix approach and
the time-dependent DMRG.



Chapter 3

Results for the SIAM

3.1 Introduction

It is possible to create and investigate small Kondo boxes, a device consist-
ing only of a few hundred atoms and a single impurity, by means of scanning
tunneling microscopy (STM). One might expect that in the near future it will
be possible to build Kondo boxes consisting of only a few atoms. In these
samples the conduction electron spectrum becomes discrete with a non-zero
mean level spacing. This is one of the most fundamental features of quantum
mechanics. Due to the level spacing it is now possible that the density of
states at the Fermi level at the site that is connected to the impurity is zero.
But what happens to the Kondo peak in this case, since a fully developed
resonance requires a finite density of states? A first investigation is pre-
sented by [34]. In further studies we found many new interesting properties
presented in this section and in [35]. The results shown here are obtained by
means of the density matrix renormalization group and the Lanczos vector
method. We are especially interested in the Kondo peak. This resonance is
located near the Fermi level, such that the Lanczos method is sufficient for
our purpose. Spectral densities are calculated in the way described in the
previous chapters. Ad(ω) denotes the spectral density on the impurity site
and Ac(ω) is the spectral density on the site of the chain that is connected
with the impurity (x0). It is important to clarify that site x0 is not fixed: it
is neither the first site of the chain, nor the site in the middle of the chain.
It can be chosen freely. In addition, the chain sites in our model represent
sites in real space and not energy shells like NRG calculations.
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Figure 3.1: SIAM: a single Anderson impurity connected to a tight-binding chain

The model is depicted in Fig. 3.1 and the Hamiltonian is given by:

H = −t
∑

i,σ

c†i,σci+1,σ + h. c.

+ V
∑

σ

(
d†σcσ(x0) + c†σ(x0)dσ

)

+ εd
∑

σ

nd,σ + Und,↑nd,↓.

c†i,σ and ci,σ are creation and annihilation operators for conduction band
electrons, respectively. d†σ and dσ denote creation and annihilation operators
on the impurity. nd is the occupation number on the impurity. V is the
coupling of the impurity and the chain, and U is the coulomb repulsion on
the impurity. We have to emphasize that there are some differences to the
standard SIAM:

• local coupling: The impurity in our model is only coupled to a single
site of the tight binding chain.

• non-flat conduction band: The conduction band is not flat in our sys-
tem. It is determined by the finite size and the position of the impurity.
We will show that this has a strong effect on the physics.

• finite system and canonical ensemble: Our system is a finite system in
a canonical ensemble. Thus, we have a fixed number of particles and
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Stotalz . This results in the fact that the impurity spin is always fully
compensated within the system, which makes it impossible to use the
standard definition of the Kondo screening cloud.

This chapter is organized as follows: We will show that the position of the
impurity — the site x0 — has a strong effect on the spectral density Ad(ω) on
the impurity. We will also show how Ad(ω) changes when the system size is
increased. Systems with an even and odd number of particles are calculated.
We will compare these results with previous works in [36]. We will also
examine the holy grail of Kondo physics - the Kondo screening cloud [37].
The goal of this chapter is to show similarities as well as strong differences
to the results that the theory of the standard model gives. We hope to
present some insight in the problems and issues one has to cope with when
experimenting with system (e.g. nanotubes) that are so small that finite size
effects occur.

3.2 Parameters and TK

There is a parameter regime in which the Anderson model exhibits a local
moment and an anti-ferromagnetic exchange interaction with the conduction
electrons. The conditions for this parameter regime are:

εd + U � εF

εd � εF

with

|εd + U − εF | � Γ

|εF − εd| � Γ

with hybridization Γ = πV 2ρ0, where ρ0 is the local density of states at site
x0. We started our calculations with U = 5.0, εd = −0.55, V = 0.351, a set
of parameters which seems to satisfy the above conditions. (The only value
that can not be set directly is Γ.) The Kondo temperature for a SIAM is
given by

TK ∼ D

(
ΓU

|εd||εd + U |

)1/2

exp

(
−π|εd||εd + U |

2ΓU

)
(3.1)

One parameter of the system is the position of the impurity on the chain,
that is the site labeled x0, that is connected to the Anderson impurity. It

1all units in this chapter are expressed in units of the half bandwidth D/2 = 2t
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Figure 3.2: 4 lowest lying energies
vs. V for x0 = 3 (odd), L = 5,
N = 6, Stotz = 0, U = 5.0, εd =
−0.55. The ground state is twofold
degenerate for V < 0.8

0 0.2 0.4 0.6 0.8 1
V

-4

-3.5

-3

E

Figure 3.3: 4 lowest lying energies
vs. V for x0 = 2 (even), L = 5, N =
6, Stotz = 0, U = 5.0, εd = −0.55.
The ground state is not degenerate
for V 6= 0.

turns out that this has much more effect on the system than is expected:
The problem is that the ground state is twofold degenerate for our typical
set of physical parameters (U = 5.0, εd = −0.55, V = 0.35) if x0 is an odd
site (the chain starts with site number 0) and we have an odd number of
sites on the chain. This is due to the single particle wave function of the
electron on the Fermi edge, that has a node at all odd sites. We have plotted
the 4 lowest lying energies for a SIAM with L = 5 (number of lattice sites),
N = 6 (number of particles), Stotalz = 0 (z-component of total spin), U = 5.0,
εd = −0.55 for different values of V in Fig. 3.2 and Fig. 3.3. For V = 0, the
ground state of both system is two-fold degenerate, because the impurity is
not connected to the chain, and the ground state of the impurity is two-fold
degenerate. It is given by

|Ψ0〉 = α| ↑〉+ β| ↓〉 , with α2 + β2 = 1.

By turning on V , the hybridization of the impurity and the chain, the de-
generacy of the ground state is lifted if x0 is even, whereas the system stays
degenerate if x0 is odd. The different behavior comes from the different den-
sity of states of site x0. For V = 0, L odd and half filling, there is an odd
number of electrons on the chain, with one electron sitting at the Fermi edge
and one electron at the impurity site. By turning on V , this electron, with
εk = εF , interacts with the impurity. But if x0 is odd, the wave function of
this electron has a node at each odd site of the chain. The electron does not
see the impurity. The other electrons below the Fermi surface have a finite
density probability at x0, but their energy is too low. It is not favorable to
interact with the impurity, because there would not be any gain in energy.
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On the other side, the wave function of the electron at the Fermi edge has a
maximum at each even site. Thus, the degeneracy is immediately lifted by
turning on the connection to the impurity. To avoid degeneracy, we chose
x0 to be even. But also the choice of the even site has a strong effect on the
physics. This comes from the local density of states ρ0 on site x0, which is
strongly dependent on the position. The local density of states for a tight
binding chain with 255 sites for two different x0 and different broadening is
depicted in Fig. 3.4 — 3.6. The value of A(ω ≡ 0) is independent of the
position of x0 if the broadening is turned off. As mentioned before, the wave
function of the electron on the Fermi edge has a maximum and the same
value at every even site. By decreasing the broadening σ, one can see that
for x0 = 4, much more weight is localized in the region around ω = 0 than
if x0 = 50. The Kondo temperature is given by (3.1). The only parame-
ters that depends directly on x0 is ρ0. It is calculated by summing over the
density of all single particle wave functions within the region ∆ε around the
Fermi level:

ρ0(∆ε) =
∑

k,|εk|<∆ε

|Ψk(x0)|2
εk

. (3.2)

Although (3.1) can not be applied to finite systems (the formula must be
changed due to the fact that the density of states at the Fermi level can be
zero), we expect the Kondo temperature to be larger if ρ0 is increased. To
get an estimate of the Kondo temperature, we compare the first order and
second order term in J in a perturbative approach. Thus, TK is defined by

−2J2
∑

k

|Ψk(x0)|2/((exp(εk/TK) + 1)εk) = J, (3.3)

where Ψk(x0) is the probability density at site x0 of the single particle wave
functions. The Kondo coupling J is obtained through Schrieffer-Wolff trans-
formation [38] from the parameters of the SIAM by:

J =
V 2

|εd|
+

V 2

|εd + U | . (3.4)

A solution for this equation — and therefore a valid value for TK — does
not exist for all parameters. We have plotted TK for different values of x0 in
Fig. 3.7. The Kondo temperature is larger at the band edge due to the high
local density of states ρ0 at x0. If x0 moves to the middle of the band, ρ0

decreases as well as TK. For a critical x0, ρ0 gets too small, such that (3.3)
does not have a solution, and TK is not defined. This behavior can be found
for larger as well as for smaller systems. The smaller the system, the smaller
the region where TK is defined. We emphasize that this method gives only
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Figure 3.4: local DOS for a tight
binding chain, L = 255, σ = 0.1
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Figure 3.5: local DOS for a tight
binding chain, L = 255, σ = 0.01
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Figure 3.6: local DOS for a tight binding chain, L = 255, σ = 10−5
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Figure 3.7: TK vs x0 with U = 5.0, εd = −0.55, V = 0.35, L = 511. TK is
obtained from (3.3), and x0 is chosen to be even, because TK is not defined for an
odd x0.
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an estimate of the Kondo temperature.

3.3 Spectral Densities for the SIAM

We now calculate the spectral density Ad on the impurity with the same set
of parameters for different x0. In Fig. 3.8 we have plotted the full spectrum
of a SIAM with U = 5.0, εd = −0.55, V = 0.35, L = 127 for x0 = 4
and x0 = 50. On the right hand side of the spectrum, we see a peak at
ω ≈ U + 2εd. Since this peak is not our main point of interest, it will be cut
out in the following plots, so we can focus on the region around the Kondo
peak, at ω = 0. In Fig. 3.9 we see a cut-out of the spectral density plot of
the same system. At ω ≈ 0 we can see a peak in both plots, with the one
for x0 = 4 being substantially larger than for x0 = 50. This is exactly what
we expected: The higher local density of states at site x0 = 4 allows more
electrons to contribute to the Kondo peak. Or in other words: the larger local
DOS at x0 leads to a higher Kondo temperature. The Kondo temperature is
connected to the height of the Kondo peak. (Height and weight is more or
less the same in our problem. The DMRG program gives the position and
the weight of the peaks. Due to the Gaussian broadening, the weight of the
peak is connected to the height of the peak. The width of the peak is given
by the fictitious broadening σ). To make sure that the peak at ω = 0 is
due to the interactions on the impurity we look at the spectral density of a
non-interacting SIAM. We can see that for the non-interacting case, there is
no peak at the Fermi edge, as can be seen in Fig. 3.10. We can see a non-zero
DOS at the Fermi edge, but this is due to the large broadening. The peak
at the left most side comes from the high local DOS at the band edge, and
the other two peaks come from finite-size effects and the symmetry of the
wave function. For the interacting case, we will most often see one peak at
U + 2εd and one at ω ≈ −D/2. In addition to this, we also see one peak
at the Fermi edge (ω ≈ 0), the Kondo peak, and a few peaks in the middle
of the band. As a matter of course the total number of peaks depends on
the broadening, but we usually choose the broadening such that the plots
do not look too obscure. We now compare the height of the Kondo peak
for several positions of x0 with the Kondo temperature. Unfortunately, (3.3)
gives only valid values for just a few sites. Nevertheless, Fig. 3.11, where
we plot the height of the Kondo peak for a set of different x0, resembles Fig.
3.7, although this was calculated for a different system size. In Fig.3.12 we
see that the shape of the curve is not dependent on the system size.
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Figure 3.8: Ad(ω) with U = 5.0, εd = −0.55, V = 0.35, L = 127 and different
x0. We use Gaussian broadening with σ = 0.05 and kept m = 1000 states.
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Figure 3.9: Ad(ω) with U = 5.0, εd = −0.55, V = 0.35, L = 127 and different
x0. We use Gaussian broadening with σ = 0.05 and kept m = 1000 states.
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Figure 3.10: Ad(ω) with U = 5.0, εd = −0.55, V = 0.35, L = 127, N = 128 and
different x0 and the free solution. We use Gaussian broadening with σ = 0.05 and
kept m = 1000 states.



3.3. Spectral Densities for the SIAM 51

0 50 100
x0

0.4

0.45

0.5

0.55

H
K

Figure 3.11: Height of the Kondo peak HK with U = 5.0, εd = −0.55, V = 0.35,
L = 127, N = 128 and different x0. The value for the height is obtained by using
Gaussian broadening with σ = 0.05. We kept m = 1000 states for the DMRG
calculation.
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Figure 3.12: Height of the Kondo peak HK with U = 5.0, εd = −0.55, V = 0.35,
L = 511 and different x0. The value for the height is obtained by using Gaussian
broadening with σ = 0.05. We kept m = 1000 states for the DMRG calculation.
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3.3.1 Larger Systems

An interesting issue is the behavior of the Kondo peak when the system size
is increased. By increasing the system size, the local DOS will most likely
change, too. |Ψk(x0)|2 is decreased, because the wave function is spread over
more sites. But since the level spacing ∆E is decreased, this could even out
such that the local DOS could change only slightly. This effect was first
proposed by [34]. We calculated the spectral density on the impurity for
chains of 63, 127, 255 and 511 chain sites. If the impurity is connected to a
site with a high local DOS, the Kondo peak does change only slightly when
the system size is increased. This effect is depicted in Fig. 3.13. Moving x0 to
the middle of the system, where ρ0 and therefore TK gets smaller, one expects
a similar behavior. But the results differ: In Fig. 3.14 we can see that the
Kondo peak gets smaller when we increase the system size. Why does the
peak get smaller with x0 in the middle of the system when the system size is
increased and stays fixed when x0 is at the edge of the chain (e. g. x0 = 4)?
ρ0 is what the impurity sees of the chain and should therefore be responsible
for this effect. By calculating ρ0, one sums over all single electron states with
energy |εk| < ∆ε. But what is the value of ∆ε? To calculate the matching ρ0

for the Kondo peak one should sum over all states that lie within the Kondo
peak, hence ∆ε ≈ TK. This — as well as 3.3 — is only an estimate. It leads
to a self-consistent loop:

1. choose TK

2. calculate ρ0

3. calculate TK

4. go back to step 2 until TK converges

We see that TK is very sensitive to ρ0. The Kondo resonance requires a finite
density of states near the Fermi edge EF . We assume that for systems with
small ρ0, the DOS is just too small for a fully developed Kondo resonance.
In this case, only a few — or maybe even just one — electron contribute to
the Kondo peak. ‘
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Figure 3.13: Ad(ω) with U = 5.0, εd = −0.55, V = 0.35, different L and x0 = 4
at half filling. We kept up to m = 2600 states for the larger systems. The Gaussian
broadening is σ = 0.05.
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Figure 3.14: Ad(ω) with U = 5.0, εd = −0.55, V = 0.35, different L and x0 in
the middle of the system at half filling. We kept up to m = 1700 states for the
larger systems. The Gaussian broadening is σ = 0.05
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Figure 3.16: Spin flip with odd number of par-
ticles; one of the two electrons at the topmost
level must move to the next-higher-lying level to
allow spin flip

3.3.2 The Even-Odd Effect

In the previous section we only looked at systems with odd L at half filling, so
that the total number of electrons N is even. We also examine the behavior
of the Kondo peak when we have an even or odd number of particles in the
system and look for the even-odd-effect described in [36]: They find that
when the level spacing ∆E is much larger than TK , the shape of the Kondo
resonance differ strikingly for an even or odd number of particles. For an
even number of particles in the system, spin-flip transitions lower the energy
by roughly TK by binding the d-electron and the conduction electrons into
a singlet, in which the topmost, singly occupied level of the free Fermi sea
carries the dominant weight, hence a single dominant peak in Ad. For an odd
number of particles, the free Fermi sea’s topmost level is doubly occupied,
blocking energy-lowering spin-flip transitions. To allow the latter to occur,
these topmost two electrons are redistributed with roughly the same weights
between this and the next-higher-lying energy level, causing two main peaks
and reducing the net gain from TK by an amount of order of the level spacing
∆E. The spin flip transitions are depicted in Fig. 3.15 and Fig. 3.16. We
do not observe this effect in our calculations. One main difference in both
calculations is that we consider the system in a canonical ensemble with a
fixed particle number N and Stotalz , whereas the system is in a the grand
canonical ensemble in [36]. In addition to that, the impurity in our model
does only couple to a single site of the tight-binding chain, whereas their
impurity is equally coupled to all energy levels. Another difference is the
way the spectral density is calculated: if N is even and S totalz = 0, the
system exhibits Sz symmetry, such that Ad(ω) is independent on the spin
of the construction and annihilation operator that is used to calculate the
spectrum, and therefore Ad,σ(ω) = Ad,−σ(ω). If N is odd and Stotalz = −1/2,
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the system does not exhibit this symmetry and Ad,σ(ω) 6= Ad,−σ(ω). The
problem might be that for the odd case, the two topmost electrons are not
redistributed with the same weight between this and the next-higher-lying
energy level. Although two energy levels are involved in spin flip transition,
only one is supposedly carrying the dominant weight.
However, we can see a difference in the weight of the Kondo peak, when we
consider an even or odd number of particles. The Kondo peak for the odd
N has less weight than for the even N . We examined systems with L = 127
and L = 128 sites and N = L+1 (half filling) and N = L, L+2 (one particle
above and below half filling). We summed over both spin configurations when
calculating Ad(ω) for an odd N . The Kondo peaks for an even number of
particles are always larger than the peaks with an odd number of particles.
This can be explained by the even-odd effect described above. Spin flip
transitions are less effective if N is odd, because one electron has to be lifted
and the energy ∆E has to be paid. One can see that the height of the Kondo
peak oscillates when the the number of particles changes between even and
odd. This could be used as a signature for experiments.
What happens to the Kondo peak when the system size is increased and N
is odd? If N is even, we found that HK, the height of the Kondo resonance,
does not change when the system changes size, if ρ0 is sufficiently large. We
looked at chains with L = 100 to L = 500 sites and put the impurity at
site x0 = 4. First, we chose Stotalz = −1/2 and looked at Ad,+1/2(ω). In
Fig. 3.19 we plotted Ad(ω) for systems with L = 100, 300, 500 sites. One
can see that the Kondo peak increases when the system gets larger. It also
seems to converge for larger system sizes. This effect can be explained as
follows: Spin-flip transitions for an odd N cost an additional ∆E. ∆E, the
level spacing is decreased with ∼ 1/L, such that spin flip transitions become
more favorable when the system gets larger. In Fig. 3.20 we plotted the
weight of the Kondo peak WK versus the system size L with an odd number
of particles N . One can see that the weight increases when the system gets
larger. The weight also converges for larger system sizes. This is obvious,
because the level spacing ∆E also converges for larger systems.
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Figure 3.17: Ad(ω) with L = 127 and different N , with U = 5.0, εd = −0.55,
V = 0.35. We kept up to m = 1000 states. The Gaussian broadening is σ = 0.05.
The Kondo peak is smaller when N is odd.
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Figure 3.18: Ad(ω) with L = 128 and different N , with U = 5.0, εd = −0.55,
V = 0.35. We kept up to m = 1000 states. The Gaussian broadening is σ = 0.05.
The Kondo peak is smaller when N is odd.
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Figure 3.19: Ad(ω) with different L and odd N , with U = 5.0, εd = −0.55,
V = 0.35. We kept up to m = 1700 states. The Gaussian broadening is σ = 0.05.
The height of the Kondo peak, HK , increases when the system gets larger and
finally converges for large systems.
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Figure 3.20: WK vs L for odd N , with U = 5.0, εd = −0.55, V = 0.35. We kept
up to m = 1700 states. WK is obtained by summing over all weights in between
ω ∈ [−0.2, 0.35].
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Figure 3.21: Ad(ω) for symmetric parameters, U = 5, εd = −2.5, V = 0.35 with
L = 63, 127, 255 at half filling. The inset shows the full spectrum. Most of the
spectral weight is located at the band edge. The broadening is σ = 0.015, such
that the two central peaks merge.

3.3.3 Symmetric Parameters

By setting U = −2εd the system becomes particle-hole symmetric, which
results in a symmetric spectrum. We examined symmetric systems with
even and odd number of particles. For an even as well as an odd number of
particles, we get two peaks at distance 2µ around the Fermi edge. Since the
chemical potential µ = E(N+1)−E(N) 6= 0 in our finite system, there can be
no peak at ω = 0. The first peak in the spectral density left and right of the
Fermi energy (chosen to be at ω = 0) appears at ω = E(N + 1)−E(N) and
ω = −(E(N +1)−E(N)), respectively. For half filling, µeven < µodd, and the
distance between the peaks is smaller for an even number of particles. The
broadening of the peaks can be chosen such that the two peaks for the even
case merge, and the peaks for the odd case are still separated. Although this
might look like the even-odd effect predicted in [36], we consider this as fake.
The only reason that there is one peak for an even number of particles and
two symmetric peaks for an odd number of particles is that µeven < µodd and
that the broadening σ is chosen such that the two peaks for an even N merge,
and the two peaks for an odd N are still separated. We examined systems
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Figure 3.22: Ad(ω) for symmetric parameters, U = 5, εd = −2.5, V = 0.35
with L = 63, 127 with N = 63 and N = 129 respectively. We summed over both
spin configurations. The broadening is σ = 0.015, such that the two central peaks
merge are still separated.
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Figure 3.23: Ad(ω) for symmetric parameters, U = 5, εd = −2.5, V = 0.35
with L = 127 and N = 127, 128. We summed over both spin configurations. The
broadening is σ = 10−4, such that the two central peaks are still separated in both
cases.
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with L = 63, 127, 255. N = L + 1 (half filling) for N even which results in
a symmetric spectrum and N = L(+2) for N odd. The spectrums for the
latter case are not symmetric. We summed over both spin configurations and
chose the broadening σ = 0.015. To show that there are two central peaks
even for the case when N is even, we reduced the broadening to σ = 10−4 in
Fig. 3.23.

3.4 Spin-Spin Correlations

3.4.1 Introduction and Measurements

One of the most interesting issues in the Kondo physics is the existence and
behavior of the so-called Kondo screening cloud [37, 39]. One expects an
electron in an extended wave function with a size

ξ = vF/TK (3.5)

(the Kondo length scale) to surround the impurity and build a singlet with
the impurity spin. The other electrons in the system do not see the impurity
spin at low energies. We are especially interested in the size of the Kondo
screening cloud in a finite system, the Kondo box. What happens, when the
screening cloud is larger than the system size, ξ > L? To get an estimate of
the Kondo screening cloud, we measure the Spin-Spin correlation function

K(x) = 〈SzimpSzx〉 − 〈Szimp〉〈Szx〉, (3.6)

where Szimp denotes the z-component of the spin on the impurity and Szx the
z-component of the spin at site x.
Since we work within a finite system with a fixed number of particles N and

fixed Stotal
z , we can use the following relation to see if the results obtained

from the DMRG are accurate.

∑

x

〈SzimpSzx〉 − 〈Szimp〉〈Szx〉+ 〈SzimpSzimp〉 − 〈Szimp〉〈Szimp〉 (3.7)

=
∑

x

〈Szimp(Szx + Szimp)〉+ 〈Szimp〉〈Szx + Szimp〉

=
∑

x

〈SzimpSztotal〉 − 〈Szimp〉〈Sztotal〉

=
∑

x

Sztotal〈Szimp〉 − Sztotal〈Szimp〉

= 0

(3.8)
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We kept enough states such that

∑

x

〈SzimpSzx〉 − 〈Szimp〉〈Szx〉+ 〈SzimpSzimp〉 − 〈Szimp〉〈Szimp〉 ≤ 10−6. (3.9)

Another problem in the DMRG calculation can be the following issue: If V
gets too small, the spin symmetry on the impurity gets broken, and Szimp 6= 0
(even if Sztotal = 0) and the system runs into a non-physical state. It is a com-
mon problem that symmetries get broken in DMRG. One can keep track of
spin-flip symmetry explicitly, and that will fix it, but it is not recommended.
The easiest thing is just to average at the end over the measurements with
their spin flip. One can then check the accuracy of this as a function of m,
the number of states kept. In the large m limit, it doesn’t do anything, but
for small m it should converge faster. Why does it happen? The energy is
lower in the system by breaking the symmetry, for finite m. So it is unstable
with respect to the broken symmetry, and small numerical errors will drive it
to the broken symmetry state [40]. We kept enough states in our calculation
such that Szimp < 0.002.
We have seen in the previous section that we can not apply the standard
formulas of Kondo physics to our problem. Another main difference is the
following: Since we work within the canonical ensemble with fixed parti-
cle number and spin, the impurity spin is always fully compensated in the
system. Thus, we cannot measure ξ by determining the site at which the
impurity spin is fully compensated. For a finite system, ξ = L − x0. Thus,
we have to think of another way how to get an estimate of the size of the
Kondo screening cloud.

3.4.2 First Insight for Different System Sizes

We first looked at a SIAM with L = 111 chain sites, U = 5, εd = −0.55,
N = 112, Sztotal = 0, tuned the Kondo temperature by varying over different
V and measured K(x). We have plotted the results in Fig. 3.24 and Fig.
3.25. We can see the typical oscillations with frequency 2kF . The amplitude
of the oscillations decreases when the distance to the impurity increases.
In addition, the amplitudes are unequal for different V . One can see that
for larger V the correlations are stronger in the nearest region around the
impurity, and much more of the impurity spin is compensated locally. The
amplitude decays faster for increasing distance to the impurity, too. This is a
first sign of the expected behavior. In (3.5) we see that the size of the Kondo
cloud ξ is reduced when the Kondo temperature is increased. By increasing
V , the Kondo temperature is increased, too, and is therefore leading to a
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Figure 3.24: K(x) for a system with L = 111, U = 5, εd = −0.55, V = 0.2,
N = 112, Sztotal = 0, x0 = 4.
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Figure 3.25: K(x) for a system with L = 111, U = 5, εd = −0.55, V = 0.4,
N = 112, Sztotal = 0, x0 = 4.
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smaller ξ. Actually, one has to distinguish between the size of the Kondo
cloud ξ and the correlation length lk. Since

lk =

(
ξ

kd−1
F

)1/d

, (3.10)

with the dimension d, ξ = lk in our 1D Kondo box. To get a better insight
we now look at the average correlation function of two neighboring sites as
a function of the distance to the impurity:

C(r) = (K(x) +K(x + 1)) /2, (3.11)

with r = |x−x0|. In the standard SIAM, one can show that the correlations
are given by the following equation:

C(r) = D · (A/r +B) exp(−r/lk). (3.12)

Although we can not apply this formula to our problem, we can look at the
behavior of the the spin-spin correlation. C(r) is supposed to show a linear
decrease for r < lk and to decrease exponentially for r > lk. Hence, we look
if we can find a region where C(r) ∼ 1/r or C(r) ∼ exp(−αr). In Fig. 3.26
we can see C(r) for different Kondo temperatures. One can see one main
difference: The curves with V < 0.4 unlike the curves with V ≥ 0.4 inhibit
an inflection point for large r (small 1/r). It is not easy to add a linear
fit to each curve. We know that the curve should show linear behavior for
small r (large 1/r), so we tried to fit for 1/r = 0.1 down to 1/r = 0.02 and
looked how the fit behaves for larger r. One can see that a linear function
is a good approximation for V = 0.4 up to large distances, hence we expect
the correlation length lk to be of the same order as the system size L, and
therefore lk ∼ L. By increasing V , lk is supposed to decrease. We can see
that the curve for V = 0.5 leaves the linear behavior much sooner as for
V = 0.4, exactly as we expected. Actually, the linear fit for V = 0.5 is a
poor approximation. But what happens for V = 0.3? We think that for this
case, L < lk, such that the Kondo cloud can not be build. The switch to
an exponential decay for large r is purely a finite size effect: Since we work
within a canonical ensemble, the impurity spin is always fully compensated.
Trying to fit a curve like (3.12) is possible, but gives unreasonable results for
lk, since all four parameters are tuned. In addition, we emphasize again that
we can not apply most of the formulas of the standard Kondo cloud, because
of the following differences: We have to cope with a non-flat conduction
band, the impurity couples only to one site of the band, and we have finite
size effects. The last point is probably the most influencing issue. Hence,
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Figure 3.26: C(r) vs. 1/r for a system with L = 511, U = 5, εd = −.55, N = 512,
Sztotal = 0, x0 = 4. The order of the legend matches the order of the graphs.

the only striking difference we can see in the spin-spin correlation function
is the inflection point for small Kondo temperatures.
An interesting issue is the behavior of the Kondo cloud when the system size
is increased. In the previous section we have seen that the spectral density
does not change when there is an even number of particles N in the system
and the Kondo temperature is sufficiently large. Another question is, what
happens when lk > L? If lk < L, the Kondo cloud should not change if
the system is increased. Theory predicts that electrons outside the Kondo
cloud do not see the impurity spin at low energies. We looked at system with
different L from 111 sites to 511 sites, half filling (N even), U = 5, V = 0.4,
εd = −0.55 and x0 = 4. We have plotted C(r) for small and large r in Fig.
3.27 and Fig. 3.28. One can see that for small r, the correlation functions
for the larger systems give the same results. One can see that for systems
with L = 211 to 511 sites, C(r) is almost identical for small r. By increasing
r, C(r) of the smaller systems leaves the main curve (C(r) for L = 511) at a
specific r0. This is a finite size effect. The Kondo cloud cannot fully develop
in the finite system, but the impurity spin has to be compensated. Thus,
the correlations can not decrease that strong at the end of the system. The
correlation functions for the two largest systems are almost identical for the
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Figure 3.27: C(r) for different L, U = 5, V = 0.4, εd = −0.55 and x0 = 4.
We kept m = 1000 states, such that 〈Szimp〉 ∼ 10−5. For small r, C(r) for larger
systems are almost identical.
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Figure 3.28: C(r) for different L, U = 5, V = 0.4, εd = −0.55 and x0 = 4. We
kept m = 1000 states, such that 〈Szimp〉 ∼ 10−5. Every 5th data point is shown.
C(r) for L = 411 and L = 511 is almost identical until r ∼ 300.
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Figure 3.29: C(r) for different L, U = 5, V = 0.3, εd = −0.55 and x0 = 4.
We kept m = 1000 states, such that 〈Szimp〉 ∼ 10−5. For small r, C(r) for larger
systems are close, but not identical.
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Figure 3.30: C(r) for different L, U = 5, V = 0.3, εd = −0.55 and x0 = 4. We
kept m = 1000 states, such that 〈Szimp〉 ∼ 10−5. Every 5th data point is shown.
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Figure 3.31: C(r, L = 511) − C(r, L = 411) for different V , U = 5, εd = −0.55
and x0 = 4. We kept m = 1000 states, such that 〈Szimp〉 ∼ 10−5. Every 10th data
point is shown. The deviations increase by decreasing V .
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whole system. This means that for L ∼ 411, the Kondo cloud is already fully
developed, and thus lk < L.
Next, we decrease the Kondo temperature and thus increase lk. In Fig. 3.29
and Fig. 3.30, we have set V = 0.3. For small r, one can see that the
deviations between the correlation functions for different system sizes are
larger for smaller V . For large r, both plots do not seem to differ much, but
only due to the different scale chosen on the y-axis. To compare the long
range behavior, it is good to look at the difference |C(r, L = 511)−C(r, L =
411)| for different V . In Fig. 3.31 one can see that the deviations increase
with increasing lk, just as expected.

3.4.3 Determining lnum
k

We already know that we can not apply the usual formulas of Kondo physics.
These formulas are derived for infinite systems with a flat conduction band
a non-local impurity coupling. Nevertheless, we found similarities for the
spectral densities and the Kondo screening cloud of the Kondo box and the
standard systems. For a 1D system, the spin correlations are expected to
decay ∼ 1/r until lk and then decay exponentially. We have seen that there
is a large region where C(r) ∼ 1/r for most plots, and we found that the curve
enters an exponential behavior for large r for some sets of parameters. We
now want to compare the correlation length that we got from our simulations,
lnumk with the analytical results. The question is: how do we obtain lnumk ?
It doesn’t make sense to fit the formula of the analytical approach to get
lnumk . Hence, we decided to choose lnumk to be the distance r, where 3/4 of
the impurity spin is compensated. This seemed reasonable: It’s not good
to choose the site where 1/2 of the impurity spin is compensated, because
this is just a few sites for most of the systems. It would also not be clever
to choose the site where ∼ 0.95 of the impurity spin is compensated. In
this case, one had to sum over too many spins with a very small correlation,
thus increasing the numerical error. The main problem is that since the
impurity spin is always fully compensated within the system, lnumk < L for
all sets of parameters. In Fig. 3.32 we can see the numerical as well as the
analytical correlation lengths. The results are obtained for a system with
L = 511, U = 5, εd = −0.55 and x0 = 4. One can see good agreement for
large V and and overall similar behavior for V → 0.3. For V < 0.28, the
analytical Kondo temperature is 0 (or not defined anymore). For V < 0.3, the
DMRG calculations run into a non-physical state with broken symmetry. The
smallest V we can calculate for 511 sites is V = 0.29, where 〈Szimp〉 ≤ 0.001
and the sum over all spins ≤ 0.0003. In Fig. 3.33 we have plotted lnumk versus
the system size L for different V . For V = 0.5, lnumk is the same for all system
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sizes. After 12 sites, 3/4 of the impurity spin is compensated, independant of
the system size. For V = 0.4, lnumk for systems with L ≥ 211 is identical. For
smaller V , one can see that lnumk increases with increasing system size and
converges for large systems. The larger the hybridization V — and hence
the larger TK —, the sooner lnumk converges.

3.4.4 The Even-Odd Effect for Spin-Spin Correlations

Up to now, we only looked at spin-spin correlations for systems with an
even number of particles N . From the calculation of the spectral densities
we know that there can be strong differences in the behavior of the system
properties when the number of particles is even or odd. We start with looking
at Fig. 3.34, where we have plotted C(r) for systems with L = 100 up to
L = 500 with an odd number N of particles. One can see two main differences
between this and the plots where N is even. The spin correlations for an odd
N decrease for smaller systems, whereas they increased when N is even. In
addition, V = 0.35 is large enough that the spin correlations are almost
equal for small distances when N is even, whereas they differ when N is
odd. We already know that spin flip transitions are less favourable when N
is odd. The additional energy that has to be paid to lift one electron to a
next higher-lying level decreases for increasing system size. This affects the
occupation number of the impurity. For V = 0.35, nd = 0.912 when N is
even for L = 51 up to L = 511. When N is odd, nd = 0.9026 for L = 500 and
nd = 0.717 for L = 100. This leads directly to another impurity spin that has
to be compensated. If N is even and V = 0.35, 〈SzimpSzimp〉 is about the same
for all calculated systems (because nd is equal for all systems). Hence, the
same impurity spin has to be compensated in the whole system. Since the
average impurity spin compensation per site is smaller for smaller systems,
it makes perfect sense that the correlations are larger (or equal) for smaller
systems. If N is odd, the smaller the system the less impurity spin has to
be compensated. Thus, the spin correlations are small for small systems.
We also saw that the weight (or height) of the Kondo peak increases with
the system size and finally converges for large systems when N is odd. We
seem to observe a similar effect for the spin correlations at small distances.
The difference in C(r) decrease for larger systems. Our final goal is to find
a connection between the spectral density (which is easy to measure) and
the spin-spin correlations. Therefore, we look at the numerical correlation
length and compare the result with the weight of the Kondo peak. In Fig.
3.36 and Fig. 3.37 we have plotted the numerial lk and the weight of the
Kondo peak for different system sizes and U = 5, V = 0.35, εd = −0.55,
x0 = 4 and N at half filling (odd). We can see that the increase of the weight
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Figure 3.32: Comparison of the numerical and analytical lk. The lnumk is the
site where 0.75 of the impurity spin is compensated. The system parameters are
L = 511, U = 5, εd = −0.55 and x0 = 4. We kept m = 1000 states, such that
〈Szimp〉 ∼ 10−5. For V < 0.28, the anaytical Kondo temperature is 0 (or not defined
anymore). For small V , the errors for the numerical calculation increase, because
we run into a nonphysical state with broken symmetry.
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Figure 3.33: lnumk versus L for different V . lnumk is the site where 0.75 of the
impurity spin is compensated. The system parameters are U = 5, εd = −0.55 and
x0 = 4, Stotalz = 0 and half filling (N even). We kept m = 1000 states, such that
〈Szimp〉 ∼ 10−5.
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Figure 3.34: C(r) for different L, U = 5, V = 0.35, εd = −0.55, x0 = 4 and N
at half filling (odd). We kept up to m = 1500 states.
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Figure 3.35: C(r) for different L, U = 5, V = 0.35, εd = −0.55, x0 = 4 and N
at half filling (odd). We kept up to m = 1500 states.
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Figure 3.36: Comparison of lnumk and W for N odd for different L. The other
system parameters are U = 5, V = 0.35, εd = −0.55, x0 = 4 and N at half filling
(odd). We kept up to m = 1500 states. lk is the site where 0.75 of the impurity
spin is compensated.
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Figure 3.37: Comparison of lnumk and W for N odd for different L. The other
system parameters are U = 5, V = 0.35, εd = −0.55, x0 = 4 and N at half filling
(odd). We kept up to m = 1500 states. lk is the site where 0.75 of the impurity
spin is compensated.
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Figure 3.38: Weight of the Kondo peak W for N odd and different L with a
linear fit function. The other system parameters are U = 5, V = 0.35, εd = −0.55,
x0 = 4 and N at half filling (odd). We kept up to m = 1500 states.

in the Kondo peak by increasing the system size matches the increase of the
numerical lk. In Fig. 3.36 we can see that both values increase and finally
converge for larger systems. In Fig. 3.37, we have plotted the system size on
a logarithmic scale. We can see that the increase is linear for W and for lnumk

when we neglect the region for very small systems (L < 100). To see if the
increase of W and lnumk is also logarithmic for large system sizes, we try to
fit a linear function. This is done in Fig. 3.38. One can see that the increase
of W is linear until L ∼ 200 system sites. W seems to converge for larger
systems size, but we can not calculate systems where it is finally converged.

3.4.5 Conclusion of the SIAM Results

We have presented DMRG calculations of the spectral density on the im-
purity and spin-spin correlations for a Single Impurity Anderson Model for
systems of up to 511 lattice sites. We found that the spectral density is
stronlgy dependent on the position of the impurity x0. The higher the local
density of states at site x0, the more states can interact with the impurity and
the higher the Kondo peak. Although we can not apply the standard formu-
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las from Kondo physics to our problem due to differences in the Hamiltonian
(local coupling of the impurity) and other assumptions (non-flat conduction
band), we found good agreement between the estimated Kondo temperature
and the height (or weight) of the Kondo peak. For an even number of par-
ticles in the system we also found that the shape of the Kondo peak does
not depend on the size of the system as long as the local density of states at
site x0 is sufficiently large. If this is not given, the Kondo peak collapses for
large systems. We could observe strong differences in the spectra when the
number of particles in the system is even or odd. If N is odd, the double
occupancy of the top most single particles level enforces one electron to move
to the next higher lying energy state, thus reducing the energy gain from spin
flip transition. Hence, the height of the Kondo peak is smaller when N is
odd. One could see that the height of the Kondo peak oscillates when the
number of particles changes between even and odd. This could be used as
a signature for experiments. Unlike the spectra for even N , the height of
the Kondo peak increases when the system size is increased for odd N . The
energy that one has to pay to lift one electron to the next higher lying level
decreases with the increasing system size and finally converges. Hence, the
height of the Kondo peak also converges for large systems.
By measuring the spin-spin correlation function of the impurity spin and the
spin on the conduction band we could get an insight in the Kondo screening
cloud. We found differences in the behavior of the correlations when N is
even or odd, too. When N is even, the higher the Kondo temperature, the
more of the impurity spin is compensated in a smaller region near the impu-
rity. We could find regions where the correlation function C(r) ∼ 1/r and
where C(r) ∼ exp(−r). When the Kondo temperature is high, the correla-
tions do not change for a large region around the impurity. The higher TK,
the better the match of correlation functions of different system sizes. We
defined the numerical correlation length by the site where 0.75 of the impu-
rity spin is compensated. Although this means that lnumk is always within the
system, we could find resemblance to the theory. By increasing the system
size, lnumk increases and finally converges. The higher the Kondo tempera-
ture, the sooner lnumk converges. If the numerical lk does not change anymore
by increasing the system size, the impurity spin is fully compensated within
the system, and lnumk < L.
If N is odd, we found that the correlation function decreases for smaller
system. Since spin-flip transitions are reduced for smaller systems, nd, the
electron number on the impurity, is reduced, and a smaller impurity spin has
to be compensated. For an even N , nd is nearly constant for different L.
In addition, we found that the correlation functions for an odd N and for
different L do not match anymore, although they become more similar when
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we reach system sizes of ∼ 500 lattice sites. We found a connection of the
height of the Kondo peak and the numerical lk for an odd N and different
system sizes. Both values increase logarithmically for intermediate system
sizes (L < 200) and then finally start to converge. We could not measure
systems that large that lnumk nor W is finally fully converged. The most
interesting results of this chapter are summarized in [35].
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Chapter 4

Systems with Long Range
Coulomb Interaction with
DMRG

The Hamiltonian for a 1D Hubbard chain including long range Coulomb
interactions can be written as:

H = −t
∑

i,σ

c†i,σci,σ + h. c.

+ U
∑

i

ni,↑ni,↓

+
∑

i6=j
Vi,jninj. (4.1)

The technical problem for including long range interaction in DMRG is that
the number of operations increases with the square of the system size, L2. For
each application of the superblock Hamiltonian with a wavefunction, one has
to apply Vi,jni,↑nj,↓ for each site i, j of the system. In addition to this, each
block has to store a lot more operators than usual. If we consider the same
Hamiltonian without long range interaction, one has to keep track of only
the operators on the edge of the system and the Hamiltonian of each block.
In this example this is only 5 operators for each block, the Hamiltonian and
c

(†)
↑,↓. If we exploit that c is the hermitian conjugate of c†, then we need only 3

operators per block. In addition, the number of operations needed for H ·Ψ
is constant. For long range interaction, the usual strategy is to reduce the
growth of operations from L2 to L. The key trick is to build the operator

V̂r =
∑

l

Vl,r · nl (4.2)
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for each site r on the right block and site l on the left block. Now, the long
range part of the Hamiltonian can be rewritten as

∑

i6=j
Vi,jninj =

∑

r

V̂rnr (4.3)

and the number of operations grows linearly with L. This trick was first used
by Xian [41] and is called concept of composite operators.

4.1 Hubbard Ring

Our goal was to calculate the particle and hole density on a t-J ladder with
16×2 sites and 2 to 6 holes. To check the implementation, we first compared
results for a Hubbard ring with [42]. The Hamiltonian is given by:

H = −t
∑

i,σ

(
c†i,σci+1,σ + h.c.

)
+
U

2

∑

i,j

ninj
1 + γdij

. (4.4)

Since we consider a ring, the distance is defined as

dij =
sin(i− j) π

L

sin π
L

, (4.5)

γ controls the strength of the Coulomb repulsion is set to γ = 1.053907, the
other parameters are U/t = 13.55 and filling n̄ = 3/4. We are interested in
the charge structure factor

R(q) =
1

L

∑

l,m

eiq(l−m)〈(nl − n̄) (nm − n̄)〉, (4.6)

and the spin structure factor

S(q) =
1

L

∑

l,m

eiq(l−m)〈Szl Szm〉. (4.7)

Both quantities are plotted in Fig. 4.1 and Fig. 4.2. Since we calculated
this quantities only to compare with previous results, we will not comment
or explain them.

4.2 t− J Ladder

Much of the interesting physics of high TC superconductors is local on a
length scale of the superconducting coherence ξ0, which is typically a few
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Figure 4.1: The charge structure factor for a Hubbard ring with different size L,
filling n̄ = 3/4 and U/t = 13.55. We can see a peak q = 0.5π, which corresponds
to kF = 3π/8.
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Figure 4.2: The spin structure factor for a Hubbard ring with different size L,
filling n̄ = 3/4 and U/t = 13.55. We can see a peak q = 0.5π, which corresponds
to kF = 3π/8.
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lattice constants. Studies of t-J systems have provided strong evidence of a
robust d-wave character of local pairing correlations, and of a strong cluster-
ing tendency of holes which might lead to stripes or phase separation [43].
However, most studies for the t-J model have failed to find evidence of the
strong superconducting correlations needed to understand high TC super-
conductivity. All these calculations omit the long-range part of the Coulomb
interaction. In [43], various t-J lattices are measured, where the DMRG is
used to calculate the short range interaction, and the long-range interaction
is taken into account within a Hartree approximation. Our goal was to proof
the results, while including the long-range interaction into the DMRG. But
first, we examine the hole density for a 16×2 t-J ladder. We use open bound-
ary conditions, J/t = 0.35 and 2 - 6 holes. One problem in this setup is the
boundary condition: Due to the long range coulomb repulsion, the electrons
would move to the edge, and holes would not repel each other. Since this ef-
fect comes only from the open boundary conditions, we introduce a chemical
potential on each site

µi =
∑

i6=j

n̄V

|i− j| .

This makes sites in the middle of the chain more favorable for the electrons
and equalizes the effect, that sites at the end of the chain have a larger dis-
tance to the other sites in the system. We have plotted our results in Fig.
4.3 - 4.5.
2 holes: One can see that by turning off V , the holes are in a particle-in-a-
box-like state. By turning on the Coulomb repulsion V , the holes start to
repel each other. For V = 0.6, one can see that two stripes are generated.
For larger V , both holes are located at rung 3-4 and rung 12-13.
4 holes: One can see two pairs of holes for V = 0. As before, the pairs break
up by increasing V . It takes a stronger long range repulsion to break up to
pairs. For two holes, the pairs brake up for V ≈ 0.6, whereas for 4 holes, it
takes V ≈ 0.8 to break up both pairs. This effect increases when we look at
6 holes: Three pairs are located at even distances. It takes much more energy
(V ≈ 3.0) to break up all three pairs.
There are much more things one should measure, like the spin gap ES=1 −
ES=0. The pair binding energy EN+2 + EN − 2EN+1 would also give more
insight how the pairs behave and break up. The pair-pair correlation could
be used to probe superconductivity.
The work in this chapter was done in collaboration with Prof. S.R. White
from the University of California, Irvine, and supported by the DAAD Dok-
torandenstipendium.
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Figure 4.3: Hole density per rung for a 16×2 t-J ladder with 2 holes, J/t = 0.35,
and different long range Coulomb repulsion V . The hole density evolves from a
particle-in-a-box state to stripe formation by turning on the Coulomb repulsion.
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Figure 4.4: Hole density per rung for a 16×2 t-J ladder with 4 holes, J/t = 0.35,
and different long range Coulomb repulsion V . The four holes build two pairs,
which break up by turning on the Coulomb interaction. One can see four stripes
for large repulsion.
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Figure 4.5: Hole density per rung for a 16×2 t-J ladder with 6 holes, J/t = 0.35,
and different long range Coulomb repulsion V . Six holes build three pairs, which
break up into six stripes by turning on V . The energy it takes to break up hole-
pairs grows with the number of pairs.



Chapter 5

The (Cellular) Dynamical
Mean-Field Theory
((C)DMFT)

Besides the DMRG, one of many other important methods used in condensed-
matter physics is the dynamical mean-field theory. Both methods have more
in common than just the two first letters (although they stand for different
things, density-matrix on the one side, and dynamical mean on the other
side). We have seen that the idea of the DMRG is to split the system in two
blocks, a left block and a right block. All one needs to calculate properties
of the left block is the density matrix of the right block. One could also say
that the right block is some kind of bath for the left block. In DMFT, the
physical system is transformed into a single site, or a cluster of special sites
connected to a bath represented by a set of non-interacting sites. One can
now easily see the similarities (and also the differences) in both methods. In
both methods, the system is split up in two parts, where one part interacts
with the rest of the system with either a density matrix or a dynamical Weiss
field. Trying to combine the power of both methods, we first need to learn
DMFT. One of the main numerical problems in the DMFT is the calculation
of the Green’s function for a finite system. All we need to do this is already
implemented in the DMRG program. Hence, all we had to implement is
the rest of the self-consistency loop. Since this thesis is not focused on the
DMFT, we will not describe the method in full extent, but concentrate on
the technical problems that can occur.

This chapter is organized as follows: First, we will give a short intro-
duction of the DMFT. We will explain the basic idea and clarify all names
that are used to describe all different kinds of Green’s functions. For further
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use, we will describe all steps of the self-consistency loop in detail. We will
present results and show that they match with previous publications. We
will then describe the Cluster or Cellular DMFT, also with the algorithm
and some results.

5.1 DMFT

5.1.1 Introduction and nomenclature

The basic idea of dynamical mean-field theory [44] is as follows: to calcu-
late physical properties of a single site in a lattice (e. g. the local Green’s
function), one treats this lattice site as an isolated site and the rest of the
system as a non-interacting bath. This usually is justified by the vanishing of
the corresponding class of diagrams in the limit of high spatial dimensions.
This can be connected to the Hamiltonian of the SIAM, having also one site
with interaction, the impurity coupling to the electrons of the conduction
band. Thus, one has a single site, the impurity with chemical potential εd
and Coulomb repulsion U connected to L bath sites with hopping ampli-
tude Vl. Each bath site has also a respective chemical potential εl, but no
Coulomb repulsion. This Hamiltonian can be diagonalized (numerically ex-
actly) and we can calculate the on-site Green’s function of the impurity. The
Hamiltonian is given by:

H =
∑

l,σ

Vl
(
d†σcl,σ + c†l,σdσ

)

+ εd
∑

σ

nd,σ + Und,↑nd,↓

+
∑

l,σ

εinl,σ. (5.1)

Before we continue, we need to look at all the different names that appear in
various DMFT papers. The nomenclature can be very confusing in DMFT.
There is G, G0, G0, Gfree, Glattice, Gbath, G to name but a few. Some G’s mean
essentially the same, so we start explaining the G’s we use in this chapter:

• G0 is called the Weiss field. Its physical content is that of an effective
amplitude for a fermion to be created on the isolated site, propagating
through the bath, and coming back to the isolated site to be destroyed.
G0 represents the bath and is therefore also called bath Green’s function.
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G0 is sometimes called G0 and can be written as

G−1
0 (iωn) = iωn − εd − µ−

∑

l

V 2
l

iωn − εl
. (5.2)

• G is the full on-site Green’s function of the system, i. e. the isolated site
(impurity) and the bath sites. We calculate G by means of the Lanczos
method. G is also called impurity Green’s function Gimp, GSIAM (single
impurity Anderson model), or GAnd.

• Σ(iωn) = G−1
0 (iωn)− G−1(iωn) is the self-energy of the impurity. It is

used as a momentum independent approximation to the lattice model,
thus Σk(iωn) = Σ(iωn) + . . ..

One can derive a self-consistent loop of equations. The two main equations
are the well known Dyson equation and the self-consistency equation

G−1
0 (iωn) = iωn + µ+G−1(iωn)− R[G(iωn)], (5.3)

where R is the reciprocal function of the Hilbert transform. Hence, it is
possible to calculate the new Weiss field from the on-site Green’s function.
This leads to a self-consistency loop explained in the following section.

5.1.2 Algorithm

In this section we present the self-consistency loop and explain each step.
We start with a random set of parameters for the bath sites, Vl and εl. The
more sites the better the fit quality, but one gets reasonable results with just
L = 4 to L = 6 sites. Next, one has to set up the Hamiltonian of the SIAM,
where we have one impurity that is connected with the hopping amplitude
Vl to bath site l. We need to calculate the on-site Green’s function G(iωn)
on the impurity. In our case, this is done by means of the Lanczos method.
The next step is the calculation of the local self energy

Σ(iωn) = G−1
0 (iωn)−G−1(iωn), (5.4)

where

G−1
0 (iωn) = iωn − εd − µ−

∑

l

V 2
l

iωn − εl
. (5.5)

Now, we have to use the self-consistency equation to determine the new
Green’s function. This is given by the Hilbert transform

Gnew(iωn) = D̃ (iωn + µ− Σ(iωn)) . (5.6)
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The last step of the loop is the calculation of the new parameters of the bath,
Vl and εd. This is done by fitting the new Weiss field

Gnew
0 (iωn) =

(
iωn − εd − µ−

∑

l

(V new
l )2

iωn − εnew
l

)−1

(5.7)

to Gnew(iωn). The new loop starts now with the calculation of G for a system
with the new values for Vl and εd. To sum up:

1. set up initial values for Vl and εl (random)

2. calculate the on-site Green’s function G

3. calculate the self-energy Σ

4. apply the self-consistency equation to get Gnew

5. get the new parameters Vl and εl by fitting the new Weiss field to Gnew

6. unitl Vl and εl are converged, go back to (2)

5.1.3 Results

We compared our results for the Green’s function on the imaginary-frequency
axis as well as the spectral densities with the results obtained by Werner
Krauth’s LISA program [44, 45]. Since they examined the Hubbard model
on the Bethe lattice, the self-consistency equation simplifies to

G−1
0 (iω) = iω + µ−G(iω)/2. (5.8)

We have plotted the spectral density ”on the impurity“ for U = 0, 1, 3, 5 for 5
bath sites in Figg. 5.1-5.4. Since we only wanted to check the results, we will
not interpret them. Nevertheless, one can see nicely the Mott-Hubbard tran-
sition when we change the value of the Coulomb repulsion U . We have also
plotted the Green’s function G on the imaginary axis for the same systems
in Fig. 5.6. We have only plotted the imaginary part of the G, because the
real part vanishes if εd = −U/2 and µ = 0. Last, we show the convergence
of the ten parameters of the system, ε1, . . . , ε5 and V1, . . . , V5 in Fig. 5.5.
It is easy to see that the parameters converge after about 10 iterations. In
addition to that, they are symmetric.
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Figure 5.1: A(ω) with U = 0. We used 5 bath sites and did 40 loops. We use
Gaussian broadening with σ = 0.1. Most of the weight is centered at the Fermi
edge ω = 0.
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Figure 5.2: A(ω) with U = 1. We used 5 bath sites and did 40 loops. We use
Gaussian broadening with σ = 0.1. The weight moves slowly to the middle of the
band.
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Figure 5.3: A(ω) with U = 3. We used 5 bath sites and did 40 loops. We use
Gaussian broadening with σ = 0.1. One can see three main peaks: one in the
middle and two at the band edge.
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Figure 5.4: A(ω) with U = 5. We used 5 bath sites and did 40 loops. We use
Gaussian broadening with σ = 0.1. There is almost no more weight in the middle
of the band.
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Figure 5.5: convergence of εl and Vl for U = 3.
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Figure 5.6: ImG(iω) on the imaginary axis for different U . We have only plotted
the imaginary part, because the real part vanishes for our set of parameters.
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Figure 5.7: The star representation for the DMFT on the left hand side. The filled
circle represents the Anderson impurity connected via coupling Vl to the bath sites,
represented by empty circles. On the right hand side, we see the representation for
the cluster or cellular DMFT, the CDMFT. We have two impurities connected by a
hopping amplitude t representing the cluster. The bath sites are again represented
by empty circles. It is important that each bath site is connected to both impurity
sites. Thus, a particle can hop from impurity 1 to the bath and then to impurity
2.

5.2 CDMFT

5.2.1 Introduction

The normal or single-site DMFT is limited to the calculation of local Green’s
functions. One misses short range correlation, such as the k-dependence of
the self-energy. It is therefore useful to extend the method, which is done
in the Cellular DMFT, or Cluster DMFT [46, 47, 48]. The single site is
replaced by a cluster of connected sites. We start with the simplest cluster
possible containing more than one site: a two-site cluster. In this case, all
bath sites now couple to both cluster sites. This is depicted in Fig. 5.7. The
Hamiltonian changes in a canonical way and can now be written as:

H =
∑

lµ,σ

Vlµ
(
d†µ,σcl,σ + c†l,σdµσ

)

+ εd
∑

µ,σ

nµ,σ +
∑

µ

Unµ,↑nµ,↓

− t
∑

µ6=ν

(
d†µ,σdν,σ + d†ν,σdµσ

)

+
∑

l,σ

εinl,σ. (5.9)

We use the standard notation, where l denotes a bath site, µ and ν denote
cluster sites. The idea is about the same as in the single-site DMFT. We
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have a similar set of equations forming a self-consistent loop. One of the main
differences is that since the cluster has 2 sites, there is more than one Green’s
function. In fact, one has 4 Green’s functions for each spin component:

• G11(z) = 〈Ψ0|
(
c1

1
z−H c

†
1 + c†1

1
z+H

c1

)
|Ψ0〉

• G22(z) = 〈Ψ0|
(
c2

1
z−H c

†
2 + c†2

1
z+H

c2

)
|Ψ0〉

• G12(z) = 〈Ψ0|
(
c1

1
z−H c

†
2 + c†2

1
z+H

c1

)
|Ψ0〉

• G21(z) = 〈Ψ0|
(
c2

1
z−H c

†
1 + c†1

1
z+H

c2

)
|Ψ0〉

The calculation of G11 and G22 (the diagonal elements) can be done by
means of a standard routine, e. g. the Lanczos method. Since the calculation
of the off-diagonal elements is more difficult, we present our solution of this
problem: The Lanczos method cannot be applied directly, because c1 is not
the hermitean conjugate of c†2. One possible way is to calculate the Green’s
function by the GMRES method leading to computational effort, because one
has to calculate the Green’s function for each frequency individually. Thus,
we try to improve the Lanczos method. We want to calculate

G12(z) = 〈Ψ0|c1

1

z −Hc†2|Ψ0〉

=
∑

n

〈Ψ0|c1|φn〉
1

z − En
〈φn|c†2|Ψ0〉, (5.10)

where φn is obtained using the Lanczos method. One source of error is the
identity φn: The problem is that the Lanczos procedure breaks down when
the ground state is reached and the eigenstates become non-orthogonal. If
we stop the calculation of the basis when the ground state is reached, the
basis is too small. One way is to apply re-orthogonalization. Another way is
to check if each φn is really an eigenstate of the system. Thus, we check if

|Hφn − Enφn| < εE, (5.11)

where εE ∼ 10−5 has proven to be useful. Another problem is the occurrence
of so called ghost states in the Lanczos procedure. It is possible that higher
lying states occur more than once in the Krylov basis. This problem has to
be solved, because otherwise the spectral density gives unreasonable results
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— some weights would be counted multiple times. To catch a ghost state,
we compared the eigenenergies and the weights of two consecutive states. If

(|En − En+1| < εw · En) and (|wn − wn+1| < εw · wn) , (5.12)

where wn = 〈Ψ0|c1|φn〉 · 〈φn|c†2|Ψ0〉 and εw ∼ 10−2, the state is discarded.
We compared with results obtained from the GMRES method to check this
method and to tune εw and εE.

5.2.2 Algorithm

To learn more about the CDMFT, we followed [47]. We will now briefly
describe the self-consistent equations, which are similar to the single-site
DMFT.

1. set up initial values for Vl and εl (random)

2. calculate the on-site Green’s function Gµν

3. calculate the self energy Σµν

4. calculate Glocal
µν

5. calculate the new Weiss field, Gnew
µν

6. get the new parameters Vl and εl by fitting the new Weiss field to Gnew

7. if Vl and εl are not converged, go back to (2)

We have already noted that for a two-site cluster, the Green’s functions and
the self energy become (2 × 2) matrices. The self energy can be calculated
from the Dyson equation

Σ = G−1 −G−1 (5.13)

which changes to
Σµν =

(
G−1

)
µν
−
(
G−1

)
µν
. (5.14)

The Weiss field is now given by

Gµν(iωn) =

(
iωnδµν − εd − µ−

∑

l

(VlµVlν)

iωn − εnew
l

)−1

. (5.15)

The local Green’s function is given by

Glocal =
∫ π/Lc

−π/Lc

1

iωn + µ− Σc(iωn)− t(k)

dk

2π/Lc
(5.16)
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with

tµν(k) = −t[δµ−ν±1 + exp(−ikNc)δNc+µ−ν±1 + exp(ikNc)δ−Nc+µ−ν±1], (5.17)

where Nc is the number of cluster sites.

5.2.3 Results

We calculated the Green’s function for different U and reproduced Im(G00(iωn))
and Re(G01(iωn)) from [46]. Our actual goal was to combine ideas of the
DMRG and the DMFT. We will offer some ideas in the conclusion and out-
look section of this thesis.
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Figure 5.8: Im G11 on the imaginary axis for different U (Re G11 = 0). We used
Lbath = 4 and Lcluster = 2.
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Figure 5.9: Re G12 on the imaginary axis for different U (Im G12 = 0). We used
Lbath = 4 and Lcluster = 2.
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Figure 5.10: A11 for U = 0 and U = 1. We used Lbath = 4 and Lcluster = 2.
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Figure 5.11: A11 for U = 6 and U = 12. We used Lbath = 4 and Lcluster = 2.
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Chapter 6

Conclusion

The thesis is about various numerical methods and their application for
physical systems. We started with the introduction of various theoretical
models for quantum impurity problems and motivated this work with some
experimental realizations. After explaining the concept of Greens functions
and spectral densities, we start with the introduction of various numerical
methods. The method of exact diagonalization is the most simple numerical
method. No approximations are made, but the price is that one is limited to
small system sizes. Since the Hilbert space of an interacting system grows
exponentially with the number of system sites, one is restricted to about
10 lattice sites. Another way are iterative or Krylov methods: The idea
of the Lanczos method is to transform the original Hamiltonian H into the
Krylov basis (v,Hv,H2v,H3v, . . . , Hnv), where it is tridiagonal. The ad-
vantage is that the Hamiltonian is not needed explicitely — knowing how
to build the product of Hamiltonian and wavefunction is sufficient. In addi-
tion, the ground state is approached very fast, such that about 100 Lanczos
steps are sufficient for even much bigger matrices. It is also possible to cal-
culate dynamical properties with the Lanczos method. This is used in other
methods like DMRG and DMFT. The Bethe Ansatz is an exact method for
the calculation of eigenvalues and eigenvectors of a limited class of quantum
many-body systems. Although the eigenvalues and eigenvectors for a finite
system may be obtained from numerical diagonalization, the Bethe Ansatz
is not limited in the system size. In addition, it has two other advantages:
All eigenstates are characterized by a set of quantum numbers which can be
used to distinguish them according to specific physical properties, and the
eigenvalues can be calculated in the thermodynamic limit. We used some
results from the Bethe Ansatz for a 1D Hubbard model with open boundary
conditions as reference values and sketched the Bethe Ansatz equation. An-
other approach are renormalization group calculations. The first one is the
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numerical RG which was used to calculate the Kondo model. The idea of
the NRG is to iteratively integrate out higher energy states in order to get
the spectrum for the Hamiltonian HN for each step N , which corresponds to
a different energy scale.
One main part is the description of the density-matrix renormalization-group
(DMRG). We recapitulate the properties of density matrices and show why
the m eigenstates of the reduced density matrix with the highest eigenvalues
are the optimal truncated basis. The idea of the infinite system algorithm
is to start with a small system which is coupled to a bath. The system is
increased in each step, while the basis size is kept constant by truncating it.
The reduced density matrix is used to obtained the transformation matrix.
The finite system algorithm is a further improvement: Several sweeps are
performed where each block gets new information by adding non-truncated
sites, while the total size of the superblock is kept constant.
There are two methods to measure dynamical properties with the DMRG:
The Lanczos vector method and the correction vector method. The main dif-
ference in these methods is the choice of the target states (the states, that
are used to calculate the density matrix). The Lanczos method is fast, but
is limited to a small region around the Fermi energy. The correction vector
method is difficult to use and slow, but gives accurate results all over the
spectrum. Since the Lanczos method is very accurate in a region around the
Fermi edge — we compared with results from the correction vector method
— it fits our needs to calculate the Kondo resonance.
The main part of the thesis deals with the spectral density on the impurity
and spin-spin correlations for a Single Impurity Anderson Model. First, we
found that the spectral density is strongly dependent on the position of the
impurity x0. The higher the local density of states at site x0, the more states
can interact with the impurity and the higher the Kondo peak. Although
we can not apply the standard formulas from Kondo physics to our problem
due to differences in the Hamiltonian (local coupling of the impurity) and
other assumptions (non-flat conduction band), we found good agreement be-
tween the estimated Kondo temperature and the height (or weight) of the
Kondo peak. Next, we looked if the shape of the Kondo peak changes if the
system size is increased. For an even number of particles in the system we
found that the shape of the Kondo peak does not depend on the size of the
system as long as the local density of states at site x0 is sufficiently large.
If this is not given, the Kondo peak collapses for large systems. We could
observe strong differences in the spectra when the number of particles N in
the system is even or odd. If N is odd, the double occupancy of the top most
single particles level enforces one electron to move to the next higher lying
energy state, thus reducing the energy gain from spin flip transition. Hence,
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the height of the Kondo peak is smaller when N is odd. One could see that
the height of the Kondo peak oscillates when the number of particles changes
between even and odd. This could be used as a signature for experiments.
Unlike the spectra for even N , the height of the Kondo peak increases when
the system size is increased for odd N . The energy that one has to pay to
lift one electron to the next higher lying level decreases with the increasing
system size and finally converges. Hence, the height of the Kondo peak also
converges for large systems.
By measuring the spin-spin correlation function of the impurity spin and the
spin on the conduction band we could get an insight in the Kondo screen-
ing cloud. We found differences in the behavior of the correlations when N
is even or odd, too. When N is even, we could observe the following: The
higher the Kondo temperature, the more of the impurity spin is compensated
in a smaller region near the impurity. We found regions where the correla-
tion function C(r) ∼ 1/r and where C(r) ∼ exp(−r). When the Kondo
temperature is high, the correlations do not change for a large region around
the impurity. The higher TK, the better the match of correlation functions
of different system sizes. We defined the numerical correlation length lnum

k

by the site where 75% of the impurity spin is compensated. Although this
means that lnum

k is always within the system, we could find resemblance to
the theory. By increasing the system size, lnum

k increases and finally con-
verges. The higher the Kondo temperature, the sooner lnum

k converges. If
lnum
k does not change anymore by increasing the system size, the impurity

spin is fully compensated within the system, and the Kondo cloud is fully
developed, hence ξ < L.
If N is odd, we found that the correlation function decreases for smaller
system. Since spin-flip transitions are reduced for smaller systems, nd, the
electron number on the impurity, is reduced, and a smaller impurity spin has
to be compensated. For an even N , nd is nearly constant for different L.
In addition, we found that the correlation functions for an odd N and for
different L do not match anymore, although they become more similar when
we reach system sizes of ∼ 500 lattice sites. We found a connection of the
height of the Kondo peak and the numerical lk for an odd N and different
system sizes. Both values increase logarithmically for intermediate system
sizes (L < 200) and then finally start to converge. We could not measure
systems that large that lk is finally fully converged.

We also looked at a Hubbard ring and a t − J ladder with long range
Coulomb interaction. The technical problem of including long range interac-
tions in DMRG is that the number of operations increases with the square
of the system size, L2. The common strategy is to reduce the growth of
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operations from L2 to L by building a set of help operators. Much of the
interesting physics of high-TC superconductors is local on a length scale of
the superconducting coherence length ξ0, which is typically a few lattice con-
stants. Studies of t-J systems have provided strong evidence of a robust
d-wave character of local pairing correlations, and of a strong clustering ten-
dency of holes which might lead to stripes or phase separation. However,
most studies for the t-J model have failed to find evidence of the strong su-
perconducting correlations needed to understand high-TC superconductivity.
All these calculations omit the long-range part of the Coulomb interaction.
Various t-J lattices have been measured, where the DMRG is used to cal-
culate the short range interaction, and the long-range interaction is taken
into account within a Hartree approximation. Our goal was to proof the
results, while including the long-range interaction into the DMRG. But first,
we examined the hole density for a 16× 2 t-J ladder with 2 to 6 holes. We
found that without Coulomb repulsion, the holes tend to build pairs. By
turning on Coulomb interaction, one can break up these pairs, which leads
to the generation of stripes. It takes significantly more energy and a thus a
stronger repulsion to break up three pairs instead of just one pair.

Besides the DMRG, one of many other important methods used in con-
densed matter physics is the dynamical mean-field theory. We explained the
basic idea of the DMFT and clarified all names that are used to describe all
different kinds of Green’s function. For further use, we described all steps
of the self-consistency loop in detail. We presented results and showed that
they match with previous publications.
The normal or single-site DMFT is limited in the calculation of local func-
tions. One misses short range correlation, such as k-dependence of the self-
energy. It is therefore useful to extend the DMFT. This is done in the Cellular
DMFT, or Cluster DMFT. The single-site is replaced by a cluster of inter-
acting sites. We showed how the equations of the self-consistent loop change
for a 2-site cluster. Last, we showed results and compared with previous
published papers.

Although we could answer some question, there is still a lot that should
be done in the future:

The spin-spin correlation gave us some insight into the Kondo screening
cloud. The correlation function is a function in real space, but it should be
possible to measure the spin-spin correlation in frequency space (energy re-
solved). We could also add coulomb interaction into the tight-binding chain,
or even long-range coulomb interaction. Another interesting setup is one im-
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purity at each end of a tight binding chain.

For the long-range interaction in the t-J ladder, there are much more
things one should measure, like the spin gap ES=1−ES=0. The pair binding
energy EN+2+EN−2EN+1 would also give more insight how the pairs behave
and break up. The pair-pair correlation could be used to probe supercon-
ductivity.

We thought about possibilities to improve DMFT and CDMFT. There-
fore, we first looked at the Green’s function for a cluster that is connected
to a bath, e. g. we split up a one-dimensional Hubbard chain into two blocks
— like in the DMRG. The first question is how the full Green’s function in
the cluster can be expanded in terms of the bare Green’s function of the
cluster and the bath, and the connection between both parts. This leads to a
Lippmann-Schwinger like equation, allowing the calculation of the T -matrix.
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Chapter 7

Deutsche Zusammenfassung

Diese Arbeit behandelt die Untersuchung verschiedener physikalischer Sy-
steme mit unterschiedlichen numerischen Methoden. Wir beschreiben einige
Ansätze für theoretische Modelle der Quanten-Störstellen Probleme, allen
voran das Kondo Modell und das Anderson Modell. Zudem motivieren wir
diese Arbeit durch einige Experimente: Insbesondere die Versuche von Lie-
ber et al. [9] zeigen, dass die untersuchten Proben mittlerweile so klein sein
können, dass Effekte auftreten können, die nur durch die endliche System-
größe bedingt sind.
Das Kapitel über numerische Methoden leitet die Methode der Exakten Dia-
gonalisierung ein. Es ist die wohl einfachste Methode, da keine Approximatio-
nen verwendet werden. Allerdings kann sie nur auf kleine Systeme angewen-
det werden, also Systeme mit einer nicht zu großen Basis. Einen Zugang zu
größeren System liefern die sogenannten Krylov Methoden. Sie sind iterativ,
so dass der Hamilton-Operator nicht explizit aufgebaut werden muss — eine
Funktion zur Berechnung des Produktes aus Hamilton-Operator und Wellen-
funktion ist ausreichend. Die Lanczos Methode transformiert einen Hamilto-
nian in eine Basis, in der die Matrix tridiagonal ist und dann leicht diagona-
lisiert werden kann. Allerdings ist die Lanczos Methode auf die Berechnung
des Grundzustandes und der ersten angeregten Zustände beschränkt. Wei-
terhin ist die Lanczos Methode auch geeignet, um Greensche Funkionen zu
berechnen.
Der Vergleich mit exakten Daten ist unerlässlich beim Testen einer nume-
rischen Methode. Eine geeignete Methode zur Berechnung von eindimensio-
nalen Systemen ist der Bethe Ansatz. Wir beschreiben die Gleichungen, die
sich für eine Hubbard Kette mit offenen Randbedingungen ergeben. Da diese
Methode nicht durch die Systemgröße beschränkt ist, ist sie optimal, um die
Implementierung der DMRG zu überprüfen. Eine weitere Herangehensweise
an quantenmechanische Vielteilchensysteme sind Renormierungsgruppenver-
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fahren. Die numerische Renormierungsgruppe (NRG) wurde entwickelt, um
das Kondo Problem zu berechnen. Die Idee ist, dass man iterativ Zustände
höhere Energie ausintegriert. So erhält man in jedem Schritt N das Spek-
trum eines Hamiltonians HN , der einer anderen Energieskala entspricht. Der
Nachteil der NRG ist, dass sie nicht eins zu eins auf Systeme im Ortsraum
angewendet werden kann.
Den Hauptteil nimmt die Beschreibung der Dichtematrix Renormierungs-
gruppe ein. Wir wiederholen die Eigenschaften der Dichtematrix und zeigen,
wie und warum die reduzierte Dichtematrix benutzt wird, um die Basis eines
Systems abzuschneiden, das an ein Bad gekoppelt ist. Die Idee des sogenann-
ten Algorithmus der unendlichen Systemgröße ist, mit einem kleinen System
zu beginnen, das an ein Bad gekoppelt ist. Das System wird vergrößert, in-
dem iterativ Gitterplätze hinzugefügt werden. Die Basis wird dabei in jedem
Schritt abgeschnitten, wobei die m Eigenvektoren der reduzierten Dichtema-
trix mit den größten Eigenwerten die neue Basis bestimmen. Beim Algorith-
mus der endlichen Systemgröße wird die Größe des Superblocks (System und
Bad zusammen ergeben den Superblock) konstant gehalten, nachdem der
Superblock durch die Methode der unendlichen Größe die gewünschte Länge
erreicht hat. Wir zeigen weiterhin, wie Operatoren gehandhabt und Messun-
gen durchgeführt werden, sowie wie die jeweilige Grundzustandswellenfunk-
tion in die neue Basis transformiert werden kann, um die neue Berechnung
des Grundzustandes deutlich zu beschleunigen. Die DMRG leifert präzise Er-
gebnisse für Grundzustandserwartungswerte und Korrelationsfunktionen von
niedrigdimensionalen Systemen. Weiterhin gibt es auch zwei Methoden, um
dynamische Eigenschaften auszurechnen: Die Lanczos-Vektor Methode und
die Korrektur-Vektor Methode. Der Hauptunterschied beider Methoden liegt
in der Wahl der Zielzustände, also der Zustände, die benutzt werden, um die
Dichtematrix zu berechnen. Bei der Lanczos-Vektor Methode sind dies in
der Regel der Grundzustand, ein durch ein zusätzliches Teilchen angeregter
Zustand, und die ersten paar Lanczos Vektoren. Dadurch ist diese Methode
einfach zu implementieren und schnell durchzuführen. Allerdings liefert sie
nur gute Ergebnisse in der Nähe der Fermikante. Bei der Berechnung der
Zielzustände der Korrekturvektormethode wird eine Inversion des Hamilton-
Operators benötigt, was sich als sehr zeitintensiv herausstellt. Der Vorteil ist
jedoch, dass diese Methode nicht auf ein bestimmtes Gebiet des Spektrums
beschränkt ist, indem der Zielzustand individuell an die untersuchte Fre-
quenz angepasst wird. Wir vergleichen beide Methoden und zeigen, warum
die Lanczos-Vektor Methode für unsere Berechnung der Kondo Resonanz
ausreichend ist.
Einen Hauptteil dieser Arbeit nehmen unsere Ergebnisse über die Spektral-
dichte und die Spin-Spin Korrelationen im Anderson Modell ein. Unser unter-
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suchtes System weist einige Unterschiede zum klassischen Anderson Modell
auf: In unserem Modell koppelt die Verunreinigung nur mit einem Gitter-
platz, zudem haben wir kein flaches Leitungsband. Neben den Standardpa-
rametern Coulombabstoßung U , Hybridisierung V und lokalem Niveau εd,
die so bestimmt werden, dass sich das System im Kondo Regime befindet,
müssen wir auch den Ort der Störstelle wählen. Falls die Kette aus einer
ungeraden Anzahl an Gitterplätzen besteht, so ist der Grundzustand dop-
pelt entartet, wenn x0 ungerade ist und die Anzahl der Teilchen gerade ist.
Dies ist ein direkter Effekt aus der endlichen Systemgröße: Die Wellenfunk-
tion des Elektrons an der Fermikante hat an allen ungeraden Gitterplätzen
einen Knoten und kann so mit der Störstelle nicht wechselwirken. Allerdings
ist die Entartung nicht der einzige Effekt, der beobachtet werden konnte: So
fanden wir heraus, dass die Spektraldichte sehr stark von der Position x0

der Verunreinigung abhängt. Je höher die lokale Zustandsdichte am Ort x0,
desto mehr Zustände können zur Kondo Resonanz beitragen, was dann einen
größeren Peak ergibt. Obwohl wir die Formeln der Standard Kondo Physik
nicht andwenden können, konnten wir durch einen Vergleich der ersten bei-
den Ordnungen Störungsrechnung eine Abschätzung der Kondotemperatur
geben, die gut mit den gemessenen Resultaten übereinstimmt: An den Or-
ten, an denen die lokale Zustandsdichte groß war, ist sowohl TK als auch die
Kondoresonanz groß.
Interessant sind die Unterschiede zwischen einem System mit gerader und
mit ungerader Teilchenzahl. So konnten wir einige Vermutungen [36] nicht
bestätigen, haben allerdings andere Ideen durchaus aufgreifen können. Bei
einer geraden Anzahl von Teilchen im System ändert sich die Kondoresonanz
nicht, wenn wir die Systemgröße ändern, solange die lokale Zustandsdichte
hoch genug ist. Der Grund ist die gegenseitige Aufhebung zweier Effekte: Eine
Systemvergrößerung bewirkt zugleich eine Verkleinerung der Niveauabstände
im Leitungsband. Dadurch befinden sich mehr Zustände im Bereich des Kon-
dopeaks und können diesen vergrößern. Allerdings verringert sich die lokale
Dichte eines jeden Zustandes mit steigender Systemgröße.
Falls die Zustandsdichte zu gering ist, kollabiert der Kondo-Peak bei steigen-
der Systemgröße, weil kaum noch Zustände dazu beitragen können.
Bei einer ungerade Anzahl an Elektronen im System ist der oberste Zustand
im Leitungsband doppelt besetzt. Ein Spinflip auf der Verunreinigung ist
deshalb nur möglich, wenn ein Elektron auf einen höheren Zustand angeregt
wird. Dadurch veringert sich die Energie des Systems durch einen Spinflip
nicht mehr um ∼ TK, sondern nur noch um ∼ TK −∆E, wobei ∆E der Ni-
veauabstand ist. Wir konnten beobachten, dass der Kondopeak im ungeraden
Fall immer kleiner ist als im geraden Fall. Weiterhin konnten wir sehen, dass
die Resonanz mit steigender Systemgrösse ansteigt. Durch das Ansteigen der
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Systemgrösse verringert sich ∆E, was Spinflip Prozesse deutlich attraktiver
macht. Das Ansteigen des Kondo-Peaks mit der Systemgröße konvergiert im
gleichen Maße wie ∆E.

Eines der interessantesten Teilgebiete der Kondo Physik ist die Suche
nach der sogenannten Kondo Abschirm-Wolke [37]. Man erwartet, dass ein
Elektron ein Singulett mit dem Spin der Verunreinigung bildet und diese so
komplett abschirmt. Elektronen außerhalb der Wolke mit einer Größe von
ξ = vF/TK sehen die Verunreinigung dann nicht mehr. Wie groß ist nun
die Kondo-Wolke in einem endlichen System? Um dies zu untersuchen, ha-
ben wir die Spin-Spin Korrelationsfunktion des Spins auf der Verunreinigung
und denen der Leitungsbandelektronen gemessen. Da im eindimensionalen
System die Abschirmlänge gleich der Korrelationslänge ist, war dies eine
geeignete Methode. Wir konnten leicht sehen, dass die Korrelationen im Be-
reich um die Verunreinigung stark mit der Kondo-Temperatur ansteigen.
Wie erwartet wird bei hohem TK ein großer Teil des Spins auf der Verun-
reinigung lokal abgeschirmt. Bei der Untersuchung von Systemen mit 100
bis 500 Gitterplätzen konnten wir zeigen, dass die Korrelationsfunktionen
im Nahbereich der Verunreinigung bei hoher Kondo-Temperatur nicht von
der Systemgröße abhängen: Die Verunreinigung ist schon im kleinen System
völlig abgeschirmt. Doch wie definiert man die Korrelationslänge in einem
endlichen System? Die Standarddefinition ist, dass bei ξ der komplette Spin
der Verunreinigung abgeschirmt ist. Bei einem endlichen System im kanoni-
schen Ensemble ist der Gesamtspin konstant, so dass sich die Kompensation
des Spins der Verunreinigung über das komplette System erstreckt. Wir ha-
ben deshalb eine numerische Korrelationslänge wie folgt definiert: lnumk ist
der Abstand zur Verunreinigung, an dem 75% des Spins kompensiert sind.
In einem System mit ungerader Teilchenzahl nehmen die Korrelationen bei
kleineren Systemen ab: Durch eine niedrigere Besetzung der Verunreinigung
muss auch ein kleinerer Gesamtspin kompensiert werden. Weiterhin fanden
wir, dass die Korrelationsfunktionen für verschieden große Systeme nicht
mehr übereinstimmen — auch bei hoher Kondotemperatur. Allerdings konn-
ten wir einen interessanten Zusammenhang zwischen der numerischen Korre-
lationslänge und dem Gewicht der Kondo Resonanz feststellen: Beide Größen
steigen erst logarithmisch mit der Systemgröße an, bis sie dann schließlich
konvergieren. Es ist uns also gelungen, einen festen Zusammenhang zwischen
der Kondoabschirmwolke und der Kondoresonanz zu finden.

Weiterhin untersuchten wir Systeme — einen Hubbard Ring und eine t-J
Leiter — mit langreichweitiger Coulombwechselwirkung mit Hilfe der DMRG.
Das technische Problem besteht nun darin, dass bei langreichweitiger Wech-
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selwirkung die Anzahl der Operationen quadratisch mit der Systemgröße
ansteigt. Das übliche Vorgehen besteht in der Bildung von Hilfsoperatoren,
so dass die Anzahl der Operationen nur noch linear mit der Systemgröße
wächst.
Ein Grossteil der interessanten Physik der Hochtemperatur Supraleiter findet
lokal auf eine Längenskala ξ0 statt, die typischerweise ein paar Gitterkonstan-
ten beträgt. Untersuchungen an t-J Systemen lieferten zum einen Hinweise
auf einen d-Wellen Charakter der lokalen Paar-Korrelationen, zum anderen
konnte gezeigt werden, dass sich Löcher lokal anhäufen was zur Phasense-
paration führen kann. Die meisten Untersuchungen konnten allerdings noch
keinen Beweis für die starken Korrelationen finden, die nötig sind, um die
Hochtemperatur Supraleitung zu verstehen. Alle bisherigen Untersuchungen
haben allerdings die langreichweitige Wechselwirkung vernachlässigt. Viele t-
J Systeme wurden bereits untersucht, wobei die DMRG benutzt wurde, um
die kurzreichweitigen Kräfte zu berechnen, und die langreichweitigen Kräfte
mit Hilfe einer Hartree Approximation berücksichtigt wurden. Unser Ziel
war es, diese Resultate zu verifizieren, indem wir die Hartree Approximation
durch die DMRG ersetzen. Zuerst schauten wir uns eine 16 × 2 t-J Leiter
mit 2 - 6 Löchern an. Wir konnten sehen, dass die Löcher ohne langreich-
weitige Coulombabstoßung Paare bilden. Beim Einschalten der langreichwei-
tigen Wechselwirkung werden diese Paare aufgebrochen und es bilden sich
sogenannte stripes (Streifen), wobei die benötigte Energie deutlich mit der
Anzahl der Lochpaare ansteigt.

Eine sehr erfolgreiche Methode im Bereich der theoretischen Festkörper-
physik neben der DMRG ist die Dynamische Molekularfeld Theorie (Dyna-
mical Mean-Field Theorie, DMFT). Wir erläutern die Idee, die hinter die-
ser Methode steckt und zeigen im Vergleich unsere Ergebnisse mit bereits
veröffentlichtem Material, dass wir das Verfahren beherrschen. Als Hilfe für
folgende Arbeiten schildern wir die Schritte der Selbstkonsistenzschleife in
aller Ausführlichkeit.
Die DMFT ist beschränkt auf die Berechnung von lokalen Größen. Kurzreich-
weitige Korrelationen, oder die Impulsabhängigkeit der Selbstenergie können
nicht berücksichtigt oder untersucht werden. Eine Erweiterung der DMFT
ist die Cellular DMFT. Wir zeigen, wie man die Selbstkonsistenzschleife er-
weitern muss, und zeigen Lösungen der auftretenden Probleme, z.B. die Be-
rechnung nicht-diagonaler Green’scher Funktionen.

Obwohl wir viele Antworten auf unsere Fragen gefunden haben, konnten wir
vieles auch nicht beantworten, auch weil sich durch neue Erkenntnise immer
wieder Probleme aufwerfen. Folgendes sollte in naher Zukunft noch unter-
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sucht werden, weil wir uns vielversprechende Resultate erhoffen:
Durch die Spin-Spin Korrelation haben wir einen ersten Einblick in die Kon-
do Abschirmwolke erhalten. Bisher haben wir die Korrelationen aber nur im
Ortsraum untersucht. Interessant wäre sicherlich auch eine energieaufgelöste
Korrelationsfunktion, um zu sehen, wie die Abschirmung bei unterschied-
lichen Frequenzen aussieht. Weiterhin kann man eine Coulomb-Abstoßung
in das Leitungsband einfügen, oder sogar eine langreichweitige Coulomb-
Abstoßung. Weiterhin gibt es erste Experimente, bei denen zwei Verunrei-
nigungen, jeweils am Ende der Kette, untersucht werden. Hier stellt sich
die Frage, wie und ob sich beide Verunreinigungen beeinflussen. Sowohl die
Spektraldichte als auch die Kondo-Abschirmwolken sind sicherlich interes-
sante Größen, wobei die energieaufgelöste Korrelationsfunktion einen noch
tieferen Einblick ermöglicht. Durch die Erfahrung mit der CDMFT ist das
Programm auch in der Lage, nicht-diagonale Green’sche Funktionen zu be-
rechnen, so dass von der Methodik keine Steine in den Weg gelegt werden.

Bei der Berechnung der Eigenschaften der t-J Leiter sind noch einige Sa-
chen offen geblieben: Die Energielücke des Spins, also ES=1 − ES=0, und die
Paar-Bindungsenergie EN+2 +EN − 2EN+1 geben sicherlich noch mehr Ein-
sicht in das Bilden und Aufbrechen von Loch-Paaren. Weiterhin kann man
durch die Paar-Paar Korrelation feststellen, ob Supraleitung vorliegt.

Es gibt sicherlich mannigfaltige Entwicklungsmöglichkeiten im Bereich
der DMFT und der CDMFT. Gerade CDMFT und DMRG haben einige Ge-
meinsamkeiten, so dass man versuchen sollte, die Stärke aus beiden Methoden
zu vereinen. Als erste Gemeinsamkeit wäre zu nennen, dass man in beiden
Methoden ein System mit einem Bad wechselwirkt. Bei der CMDFT besteht
das System aus einigen wechselwirkenden Gitterplätzen, das Bad besteht aus
freien Gitterplätzen. Bei der DMRG besteht das System entweder aus dem
linken oder rechten Block, und das Bad bildet der jeweils andere Block. Die
erste Frage, die sich uns gestellt hat, war, wie die volle Green’sche Funktion
auf dem System aus der reinen Green’schen Funktion des Systems und der
Green’schen Funktion des Bads bestimmt werden kann. Ein erster Versuch
führte auf eine Lippmann-Schwinger Gleichung, aus der sich mit Hilfe von
GMRES die T -Matrix bestimmen lässt.
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beitsatmosphäre sowie zahlreiche Golf- und Schachspiele. David Heilmann
und Andreas Fuhrmann waren während der ganzen Zeit immer hilfsbereit
und verdienen meinen Dank nicht nur für zahlreiches Korrekturlesen. Ich
danke Axel Grzesik für die ausgezeichnete Matrixklasse. Matthias Niemeyer
danke ich, dass er sich immer Zeit genommen hat, um uns zu helfen, und mit
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Zum Abschluss geht ein großes Dankeschön an Carolin Neumann-Giesen und
meine Eltern, die mich während der kompletten Zeit unterstützt haben.




