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Introduction and overview

Describing the properties of strongly interacting particles is among the most challenging
tasks for modern physics. While it is believed, that quantum chromo dynamics (QCD)
is the underlying theory of hadron physics, its application still poses severe problems
due to its non-abelian nature. Unlike quantum electro dynamics (QED), QCD exhibits
the phenomenon of asymptotic freedom, which leads to the picture of free quarks in the
high-energy regime, where perturbative methods are applicable. At low energies, which
is the regime of strongly bound states, the running coupling constant of QCD becomes
large, which forestalls a naive perturbative treatment. This region is nevertheless
accessible through methods, of which the most important we briefly want to review.

In the limit of massless quarks, the Lagrangian of QCD exhibits an additional sym-
metry. It becomes invariant under chiral transformations. By spontaneously breaking
this symmetry, Goldstone bosons appear, which correspond to the light meson octet
and constitute the effective degrees of freedom of the theory. A systematic construction
of an effective Lagrangian in powers of momenta or derivatives constrained by chiral
symmetry becomes possible (see ref. [1]). The theory has been extended to also include
baryons in ref. [2]. However being an effective theory, in each order a set of free pa-
rameters, so-called low energy constants are introduced, which encode short-distance
or higher energy effects and have to be fitted to experimental data.

An attempt to solve QCD from first principles is lattice QCD, which tries to compute
the partition function of QCD in a discretized Euclidean space-time numerically. Since
this approach makes use of a considerable amount of computational power, simplifying
assumptions have been made to reduce computational costs. One of these is the so-
called quenched approximation, where vacuum polarization effects are removed from
the QCD vacuum. In recent years also unquenched calculations have become avail-
able, giving estimates for the errors induced by neglecting fermion dynamics. Since
computations become more expensive with light quark masses, the calculation of light
baryon properties also poses a problem. Efforts have been made, to connect lattice
calculations with chiral perturbation theory by so-called chiral extrapolations, which
extrapolate lattice results obtained with large quark masses to the physical masses.

Although both approaches are able to describe certain hadron properties starting
from the underlying QCD Lagrangian, they currently do not give a consistent global
picture of strong interaction phenomena. By this we mean the simultaneous descrip-
tion of hadron spectra as well as decay observables and electromagnetic properties like
charge radii, magnetic moments and form factors. One of the earliest developments in
this direction is the nonrelativistic quark model. A phenomenologically motivated lin-
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2 Introduction

early rising confinement potential accounts for the gross features of the hadron spectra,
whereas the fine structure is tuned by a residual interaction inspired by the one-gluon
exchange. Surely the nonrelativistic ansatz is doubtful to describe deeply bound states
correctly as well as highly excited states and electromagnetic observables at high mo-
mentum transfer. Moreover the one-gluon exchange is motivated perturbatively, but in
the energy regime of hadrons the strong coupling strength is not small. Also a flavor-
independent interaction is likely to fail in the description of the π−η−η′ mass splitting.
There is however a residual interaction, inspired by instantons (see refs. [3, 4]), which
are classical solutions of the Yang-Mills equations, that is able to successfully reproduce
the observed mass splitting within a nonrelativistic quark model.

It is thus the next step to incorporate the instanton interaction in a fully relativistic
quark model as has been done in refs. [5, 6, 7] in case of baryons and which is the basis
for the numerical computations done in this work. It is based on the Bethe-Salpeter
equation, which is a suitable starting point in quantum field theory for the description of
bound states (see ref. [8] for the original paper) and also is the theoretical foundation for
the analytical derivations performed in the present work. The Bethe-Salpeter equation,
as being an eight-dimensional integral equation in case of three fermions, poses however
conceptional problems, which are due to retardation effects. Neglecting these, results
in the Salpeter equation, which was originally derived to compute the fine structure of
hydrogen-like atoms (see ref. [9]). In the last years it has served as a basis to formulate
quark models, which incorporate the residual instanton force and successfully describe
meson and baryon spectra. Within these models also decay observables (see ref. [10])
as well as form factors and transition amplitudes could be computed (see refs. [11, 12])
and led to quite satisfactory results without the introduction of further parameters.
These models however predict more states as have been observed in nature, a feature
that it shares with other quark models. There are however first hints (see ref. [13])
that these states only couple weakly to the favored production channel, which is πN
such that they are not seen in this process.

The aim of this work is to get new access to static properties of relativistic three-
fermion systems. We are especially interested in the charge radii and magnetic moments
of baryons. Access to this bound state properties is usually gained through the calcu-
lation of form factors. The charge radius is defined as the slope of the electric form
factor at vanishing four-momentum transfer squared, whereas the magnetic moment
is defined as the value of the magnetic form factor at the photon point. This is the
usual method for the computation of these quantities (see e.g. refs. [11, 12]), but it
obscures the underlying structure. It is for example well known how a fermion produces
a magnetic moment through both its spin and its angular motion, but how does this
translate into the magnetic moment of a bound state, e.g. a baryon composed of three
quarks? On the other hand static properties in nonrelativistic quantum mechanics can
be formulated by means of expectation values involving essentially scalar products of
wavefunctions. We seek a synthesis of both approaches, expressing static observables
as expectation values with respect to Salpeter amplitudes, which are the intrinsically
defined wavefunctions of the Salpeter equation. The emerging operators will show an
interesting physical structure and allow for a sensible interpretation. We also expect
that this method is numerically more reliable, since no extrapolation of a form factor is
necessary and moreover symmetries of the Salpeter amplitudes, which enter the matrix
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elements in the rest frame of the baryon, may be fully exploited. Although the analytic
results of this work can be extended to arbitrary three-fermion systems in an obvious
way, we focus our attention mainly on the study of static baryon properties.

The first chapter of this work is devoted to the introduction of the Bethe-Salpeter
formalism. Starting from the six-point Green’s function of three fermions interacting
among themselves, we introduce an integral equation for the six-point function whose
iterative solution consists of a sum of infinitely many Feynman diagrams, needed in
order to describe bound states, which show up as poles in the six-point function. By
fixing a specific time-ordering, we identify bound states as poles in the total energy
variable, thus introducing the so-called Bethe-Salpeter amplitudes. From a Laurent
series expansion one simultaneously obtains the Bethe-Salpeter equation and the nor-
malization condition for its solutions, the Bethe-Salpeter amplitudes. Since retardation
effects pose severe conceptional problems to the solution of this equation, one intro-
duces the instantaneous approximation, which assumes that the interaction kernels do
not depend on the relative energy variables. In addition, the full fermion propagators
are replaced by the free ones, thus introducing effective fermion masses. Both approx-
imations allow for a reduction of the eight-dimensional Bethe-Salpeter equation to the
six-dimensional Salpeter equation. We also briefly touch upon the problems and its
solutions stemming from the unconnected pieces within the two-particle interaction
kernels. Since we are mainly concerned with static properties of baryons, a prescrip-
tion is needed to derive current matrix elements in the present formalism. We show
that the six-point function in the presence of an external electromagnetic field leads
to a modification of the fermion propagators accounting for the external coupling. By
isolating the poles in the total energy variable of the modified six-point function, we
derive the desired current matrix element. Since the numerical calculations of this
work are devoted to static baryon properties, we briefly introduce the quark model,
that we build upon. We show the interaction kernels that have been used, namely a
confinement kernel and an instanton induced residual interaction accounting for the
fine structure. The discussion of the resulting nucleon spectrum will close this chapter.

In the second chapter we then turn to charge radii of relativistic three-fermion sys-
tems in general and especially — concerning the numerical application — to those of
baryons. The analytic derivation is based on the formalism developed in the first chap-
ter. The aim is to formulate the charge radius as an expectation value with respect
to Salpeter amplitudes. We have at least two options to start from, the first being a
definition of the radius of a charge distribution in classical electrodynamics, and the
second being the definition of the charge radius as the slope of the electric form fac-
tor at the photon point. Common to both approaches is, that the connection to the
Bethe-Salpeter formalism is made via the current matrix element derived in the first
chapter. We will however see, that both approaches are identical on a generic level,
i.e. without turning to a specific formalism. Consequently the subsequent derivations
are similar. In the first approach we first obtain the Laplacian of the current matrix
element with respect to the momentum transfer, which we evaluate before we take
the static limit. After integrating out the dependence on the relative energy variables,
replacement of the vertex functions with Salpeter amplitudes and symmetrizing over
the three fermions, we obtain the desired expression, i.e. an expectation value with
respect to Salpeter amplitudes. Before we interpret this result, we also follow the sec-
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ond approach, by considering the expansion of the boosted Salpeter amplitude, which
enters the current matrix element, as an exponential. We are thus able to easily ex-
tract the linear term in Q2 which is relevant for the slope of the form factor at the
photon point. The remaining part of the derivation is similar to the first approach and
also leads to the same result. We then give a sensible physical interpretation of the
resulting expression. It turns out to be the canonical relativistic generalization of the
nonrelativistic result. The center of mass motion is accounted for in a natural way.
An application of the analytic result is performed within the quark model described in
the first chapter. We compute the charge radii of the baryon octet and compare our
results to experiment as well as to form factor calculations. The dependence of the
nucleon charge radii on the particular choice of the instanton cutoff size and coupling
strength are discussed. Whereas the spectrum is almost insensitive to a variation of
these parameters, we expect a larger effect on the radii, which we indeed see. Since
with the original parameter set the neutron charge radius is too large, we propose new
parameters, which describe both the proton as well as the neutron charge radius quite
well. We close this chapter with a short comparison of our results with other models.

The third chapter is devoted to magnetic moments of relativistic three-fermion sys-
tems. Since a derivation of this observable as an expectation value with respect to
Salpeter amplitudes has already been successfully given in ref. [16] — starting however
from the energy of a magnetic dipole in an external magnetic field — we want to add
a different approach here, that is inspired by the derivation of the charge radius from
form factors. We start with the definition of the magnetic moment as the value of
the magnetic form factor at the photon point. Since the current matrix element in
this definition is divided by

√
Q2 we need to know the Q2-dependence of the current

matrix element. Following the idea, that was developed in the alternative treatment
of the charge radius, we expand the boost of the incoming vertex function as an expo-
nential. We isolate the lowest order term in

√
Q2 to safely take the static limit. The

subsequent steps are similar to the charge radius calculation, i.e. integrating out the
relative energy variables, replacement of the vertex functions by Salpeter amplitudes
and symmetrizing over the three fermions. Because the result turns out to be identical
to the one of ref. [16] and is discussed in detail there, we only give a short physical
interpretation. The most striking feature of the resulting expression, besides its fully
relativistic form and inherent center of mass correction, is the decomposition of the
total magnetic moment in contributions originating from the fermion spins and their
orbital angular momenta. We apply the result to compute the magnetic moments of
the octet and decuplet ground states as well as some selected nucleon excitations, which
will be covered by experiment in the future as mentioned in ref. [14]. In case of the
octet ground states, the experimental situation according to ref. [15] is good and the
model is able to reproduce the empirical values quite accurately. Since the analytic
result allows for a separation of spin and orbital angular momentum contributions, we
study the magnitude of these. It will turn out, that by far the largest part of roughly
90 % for the baryon octet originates from the quark spins. For the nucleon magnetic
moments we then study the evolution of both contributions with smaller quark masses.
As we will see, both will become comparable in magnitude, for quark masses nearly as
small as the current masses. For the decuplet magnetic moments one also has to include
mixed energy contributions as was shown in ref. [16], but not numerically implemented
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there. The computation shows, that the contribution of these mixed energy terms is
equal in magnitude as compared to the pure energy contributions. Experiments were
so far performed to measure the magnetic moments of the ∆+, ∆++ and Ω−. In case
of the ∆ resonances, the experimental errors and theoretical uncertainties are however
too large at present to allow for a conclusive comparison. Refined experiments are in
preparation.

In the fourth chapter we extent the method that was successfully applied to com-
pute charge radii and magnetic moments to arbitrary moments. Since experimental
measurements are sparse, we restrict ourselves to an analytical exploration and work
exemplary with the charge distribution of a three-fermion system. We introduce an
arbitrary moment of this distribution resembling our starting equation for the charge
radius but being more general and including the charge radius as a special case. Then
by performing similar steps as in the case of the charge radius, we are able to express
an arbitrary moment of the electric charge distribution as an expectation value with
respect to Salpeter amplitudes. If the moment under consideration has a greater order
than two, we also find terms between mixed energy contributions to the vertex func-
tions, which are presumably small in magnitude. The successful extension to higher
moments then leads to the question, whether the formalism may be applied to the
calculation of form factors as well. The idea is to expand the boost of the incom-
ing Salpeter amplitude as an exponential as it has already been done to derive the
charge radius and magnetic moment. The resulting series expansion in powers of the
rapidity separates the momentum dependence from static matrix elements in every
order. The computation of static matrix elements benefits from simplifications which
are due to symmetries of the entering rest-frame Salpeter amplitudes. To check if
such an expansion is applicable to the computation of form factors, we take the usual
dipole parameterization of the electric proton form factor and expand it in powers of
the rapidity. Unfortunately it will show, that the coefficients rise exponentially with
the order, such that the expansion cannot be used to calculate the form factor over a
large Q2-range. Nevertheless the expansion shows, that higher orders are determined
by static matrix elements similar to the charge radius, which motivates us to study
the influence of the instanton cutoff parameter on the form factors. The analysis of
the charge radii revealed a strong dependence of the neutron radius on this parameter,
whereas the proton radius was only slightly affected. We will see a similar behavior for
the form factors. The proton form factor barely depends on the instanton parameters,
but the neutron form factor becomes noticeably smaller with an increased cutoff, thus
describing the experimental data much better. We also study the impact of a parame-
ter variation on the description of the nucleon-delta transition, which commonly poses
a problem to quark models. Unfortunately we see no improvement of this situation.
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Chapter 1

Three-particle bound states in the
Bethe-Salpeter approach

The aim of the present work is to find new access to static properties of three-particle
systems in general and — because of the empirical situation — especially of baryons. In
this chapter we therefore present the formalism which is the foundation of the following
discussions on static properties. Since the formalism has been intensively discussed in
ref. [5], we restrict ourselves to a short description and only put some emphasis on
aspects that are important for the subsequent treatment of static properties.

1.1 Introduction and overview

Bound states in nonrelativistic quantum mechanics are described by wavefunctions.
To compute observable quantities from those one simply takes the expectation value of
suitable operators, which can most easily be deduced from the correspondence principle.
Since we however are interested in systems that behave relativistically this is not a
suitable starting point. A sounder foundation is given by relativistic quantum field
theory. Here the basic quantity which describes the propagation of three fermions
interacting among themselves is given by the so-called six-point Green’s function. Since
bound states show up as poles of this function in the total energy, one is forced to find a
way to sum up an infinite number of Feynman diagrams. Indeed the six-point function
can be written as an integral equation whose iterative solution consist in a summation of
an infinite number of simpler irreducible diagrams. Fixing a specific time-ordering one
is able to isolate bound state contributions to the six-point function thus defining the
Bethe-Salpeter amplitude. By expanding the six-point function in the vicinity of bound
state poles in a Laurent series both the Bethe-Salpeter equation for the Bethe-Salpeter
amplitudes as well as a normalization prescription for the Bethe-Salpeter amplitudes
emerge. The foregoing will be the content of section 1.2.

In order to solve the Bethe-Salpeter equation in physical cases, relevant for e.g. the
structure of hadrons, one applies two approximations. First by replacing the full
fermion propagators by their free counterparts one introduces effective fermion masses
and second by neglecting retardation effects in the interaction kernels the time compo-
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8 1. Three-particle bound states in the Bethe-Salpeter approach

nents of the relative four-momentum variables may be integrated over. We will however
see that the inclusion of two-particle interaction kernels leads to difficulties stemming
from its unconnected peaces. As was shown in ref. [5] this may be overcome by the in-
troduction of an effective three-body interaction kernel which accounts for the effects of
the problematic contributions of the two-body interaction. The approximations to the
Bethe-Salpeter equation, the effective inclusion of two-particle kernels and the resulting
Salpeter equation are the subject of section 1.3. The solutions to the Salpeter equation,
describing the bound state, are the so-called Salpeter amplitudes, which may in some
sense be viewed as the generalization of the nonrelativistic Schrödinger wavefunctions.

To compute electromagnetic observables in general and especially static properties of
the system under consideration we need a prescription of how to compute the electro-
magnetic vector current from the Salpeter amplitudes. In section 1.4 we will see that
this actually consists of two steps, the first of which being the derivation of the current
matrix element of the so-called vertex functions and the second being the reconstruc-
tion of the vertex functions from the Salpeter amplitudes. We will then transform the
resulting current matrix element such that it is better suited to derive static properties
from it.

Since we are interested in an application of our analytical results to baryons, we
present a quark model in section 1.5, which is based on the Bethe-Salpeter formalism
sketched in sections 1.2 and 1.3, and discussed in detail in refs. [6, 7]. We introduce
the model interactions, consisting of a linearly rising confinement potential with an
appropriate Dirac structure and a residual interaction — based on an effective instanton
Lagrangian — accounting for the fine structure of the mass spectra. With only seven
parameters this model is able to describe the mass spectra of light baryons up to the
highest orbital and radial excitations remarkably well.

1.2 From Green’s function to the Bethe-Salpeter

equation

1.2.1 The six-point Green’s function

The propagation of three fermions interacting among themselves is described by the
vacuum expectation value of a time-ordered product of fermion field operators and
their adjoints:

Ga1a2a3;a′1a′2a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

:= −〈Ω|Tψ1
a1

(x1)ψ
2
a2

(x2)ψ
3
a3

(x3)ψ
1

a′1
(x′1)ψ

2

a′2
(x′2)ψ

3

a′3
(x′3)|Ω〉. (1.1)

This quantity is called six-point Green’s function or correlation function. ψi
ai

(xi) are
fermion field operators given in the Heisenberg picture, ai are multi-indices in Dirac-
space and any internal space the particle may have, e.g. color- and flavor-space in case
of quarks. T is the time ordering operator and |Ω〉 denotes the physical i.e. interacting
vacuum. Time-ordered perturbation theory yields a power series of the correlation
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function, which we will use in section 1.4 to derive the current matrix element:

Ga1a2a3;a′1a′2a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

=
−1

〈0|T exp
(
−i
∫

dtHI(t)
)
|0〉

∞∑
k=0

(−i)k

k!

∫
d4y1 . . . d

4yk

× 〈0|Tψ1
a1

(x1)ψ
2
a2

(x2)ψ
3
a3

(x3)ψ
1

a′1
(x′1)ψ

2

a′2
(x′2)ψ

3

a′3
(x′3)HI(y1) . . .HI(yk)|0〉, (1.2)

where HI is the Hamilton operator and HI its density. |0〉 denotes the unperturbed
vacuum now. The fermion field operators are now given in the interaction picture.
In every order of the coupling constant one thus obtains by Wick’s theorem a set of
Feynman diagrams which have to be evaluated. In high energy scattering processes
it may be sufficient to cut the expansion at some finite order. Since we are however
interested in bound states, which lead to poles in the six-point Green’s function, we
need a way to go beyond perturbation theory, because a pole will never show up by
considering only a finite number of Feynman diagrams.

1.2.2 An integral equation for the six-point function

A possible solution to this problem is to write down an integral equation whose iterative
solution leads to a summation of an infinite number of Feynman diagrams. The basic
idea can be found in refs. [8, 17, 18]. For the three-particle correlator, the integral
equation looks as follows:

Ga1a2a3;a′1a′2a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) = S1

F a1a2
(x1, x

′
1)S

2
F a2a2

(x2, x
′
2)S

3
F a3a2

(x3, x
′
3)

− i

∫
d4y1 d4y2 d4y3 S

1
F a1b2

(x1, y1)S
2
F a2b2

(x2, y2)S
3
F a3b2

(x3, y3)

×
∫

d4y′1 d4y′2 d4y′3K
(3)

b1,b2,b3;b′1,b′2,b′3
(y1, y2, y3; y

′
1, y

′
2, y

′
3)Gb′1,b′2,b′3;a′1,a′2,a′3

(y′1, y
′
2, y

′
3;x

′
1, x

′
2, x

′
3)

− i
∑

cycl. perm.

∫
d4y1 d4y2 S

1
F a1b1

(x1, y1)S
2
F a2b2

(x2, y2)

×
∫

d4y′1 d4y′2K
(2)

b1,b2;b′1,b′2
(y1, y2; y

′
1, y

′
2)Gb′1,b′2,a3;a′1,a′2,a′3

(y′1, y
′
2, x3;x

′
1, x

′
2, x

′
3). (1.3)

A summation over repeated indices bi and b′i is implicitly understood. The full fermion
Feynman propagator is defined as:

Si
F aia

′
i
(xi, x

′
i) = 〈0|Tψi

ai
(xi)ψ

i

a′i
(x′i)|0〉. (1.4)

K(3) and K(2) are irreducible two- and three-particle kernels containing the sum of all
diagrams, which cannot be separated in simpler diagrams by cutting only three or two
fermion lines respectively. By introducing the inverse Feynman propagator through∫

d4yi S
i
F aib

(xi, yi)S
i
F

−1

b a′i
(yi, x

′
i) = δaia

′
i
δ(xi − x′i), (1.5)
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one may write the irreducible two-particle kernel in a compact form:

K
(2)

a1,a2,a3;a′1,a′2,a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) :=

∑
cycl. Perm.

K
(2)

ai,aj ;a
′
i,a

′
j
(xi, xj;x

′
i, x

′
j)S

i
F aia

′
i
(xi, x

′
i).

(1.6)
Let us denote the sum of the irreducible two- and three-particle kernels K := K(3) +

K
(2)

. The triple product of fermion propagators appearing in the integral equation
(1.3) shall be denoted by:

G0a1,a2,a3;a′1,a′2,a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) := S1

F a1a′1
(x1, x

′
1)S

2
F a2a′2

(x2, x
′
2)S

3
F a3a′3

(x3, x
′
3).

(1.7)
In this and further sections we make use of a compact operator product notation which
we want to introduce here:

[AB]a1,a2,a3;a′1,a′2,a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3) :=

∫
d4y1 d4y2 d4y3

× Aa1,a2,a3;b1,b2,b3
(x1, x2, x3; y1, y2, y3)Bb1,b2,b3;a′1,a′2,a′3

(y1, y2, y3;x
′
1, x

′
2, x

′
3) (1.8)

This notation finally allows us to write the integral equation in a compact form by
omitting multi indices and arguments:

G = G0 − iG0KG. (1.9)

Because of translational invariance it is convenient to introduce a center-of-mass
coordinate X and so-called Jacobi coordinates ξ and η:

X := 1
3
(x1 + x2 + x3) x1 = X + 1

2
ξ + 1

3
η

ξ := x1 − x2 x2 = X − 1
2
ξ + 1

3
η (1.10)

η := 1
2
(x1 + x2 − 2x3) x3 = X − 2

3
η.

The corresponding conjugate momenta are then given by the total four momentum P
and the two relative momenta pξ and pη:

P := p1 + p2 + p3 p1 = 1
3
P + pξ + 1

2
pη

pξ := 1
2
(p1 − p2) p2 = 1

3
P − pξ + 1

2
pη (1.11)

pη := 1
3
(p1 + p2 − 2p3) p3 = 1

3
P − pη.

Due to energy-momentum conservation the integral equation in momentum space is
only an eight-dimensional integral equation depending only parametrically on the total
four momentum P . We thus define the Fourier transform of the objects appearing in
the integral equation as follows:

[FA](p1, p2, p3; p
′
1, p

′
2, p

′
3) :=

∫
d4x1 d4x2 d4x3, e

i (〈p1,x1〉+〈p2,x2〉+〈p3,x3〉)

×
∫

d4x′1 d4x′2 d4x′3 e
−i (〈p′1,x′1〉+〈p′2,x′2〉+〈p′3,x′3〉)A(x1, x2, x3;x

′
1, x

′
2, x

′
3)

= (2π)4δ(4)(P − P ′)AP (pξ, pη; p
′
ξ, p

′
η), (1.12)
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where 〈 · , · 〉 is the usual Minkowski scalar product. Parametrical dependence on the
total four-momentum is now indicated by an index “P”. We may define the Fourier

transform of K
(2)

in a similar way by introducing two-particle relative coordinates:

K
(2)

P a1a2a3;a′1,a′2,a′3
(pξ, pη; p

′
ξ, p

′
η) =

∑
(i,j,k)

K
(2)

(
2
3

P+pηk
) aiaj ; a

′
ia
′
j

(pξk
− p′ηk

)

× Sk
F aka′k

−1
(1

3
P − pηk

)(2π)4 δ(4)(pηk
− p′ηk

), (1.13)

where pξ3
= pξ and pη3

= pη. The two other sets of two-particle coordinates are

obtained by cyclic permutation of this set. The integral equation (1.3) in momentum
space now takes the following form:

GP (pξ, pη; p
′
ξ, p

′
η) = S1

F (1
3
P + pξ + 1

2
pη)⊗ S2

F (1
3
P − pξ + 1

2
pη)⊗ S3

F (1
3
P − pη)

× (2π)4δ(4)(pξ − p′ξ)(2π)4δ(4)(pη − p′η)

− iS1
F (1

3
P + pξ + 1

2
pη)⊗ S2

F (1
3
P − pξ + 1

2
pη)⊗ S2

F (1
3
P − pη)

×
∫

d4p′′ξ
(2π)4

d4p′′η
(2π)4

KP (pξ, pη; p
′′
ξ , p

′′
η)GP (p′′ξ , p

′′
η; p

′
ξ, p

′
η). (1.14)

The analog of the compact operator product notation (1.8) in momentum space is
defined by:

[APBP ] :=

∫
d4p′′ξ
(2π)4

d4p′′η
(2π)4

AP (pξ, pη; p
′′
ξ , p

′′
η)BP (p′′ξ , p

′′
η; p

′
ξ, p

′
η), (1.15)

which allows us to write the momentum space integral equation in a compact form:

GP = G0 P − iG0 P KP GP . (1.16)

The six-point Green’s function contains in general the propagation of anti-fermions
as well as scattering and bound states. To isolate the contributions of three-fermion
bound states, we fix the time ordering (x0

1, x
0
2, x

0
3 > x′1

0, x′2
0, x′3

0):

Ga1a2a3;a′1a′2a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

= −〈Ω|T{ψ1
a1

(x1)ψ
2
a2

(x2)ψ
3
a3

(x3)}T{ψ
1

a′1
(x′1)ψ

2

a′2
(x′2)ψ

3

a′3
(x′3)}|Ω〉

× θ
(
min(x0

1, x
0
2, x

0
3)−max(x′1

0
, x′2

0
, x′3

0
)
)

+ different time orderings. (1.17)

To separate the contributions of states with mass M and energy ω~P =

√
|~P |2 +M2,

one inserts a complete set of intermediate states |P̄ 〉 with total four-momentum P̄ =

(ω~P ,
~P ) and mass P̄ 2 = M2 in between the time ordered products. The states |P̄ 〉 are

eigenstates of the total four-momentum operator P̂ = p̂1 + p̂2 + p̂3:

P̂ |P̄ 〉 = P̄ |P̄ 〉, (1.18)
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and normalized in a Lorentz-invariant fashion:

〈P̄ |P̄ ′〉 = 2ω~P (2π)3 δ(3)(~P − ~P ′). (1.19)

After inserting these states we have:

Ga1a2a3;a′1a′2a′3
(x1, x2, x3;x

′
1, x

′
2, x

′
3)

= −
∫

d3P

(2π)32ω~P

〈Ω|T{ψ1
a1

(x1)ψ
2
a2

(x2)ψ
3
a3

(x3)}|P̄ 〉〈P̄ |T{ψ
1

a′1
(x′1)ψ

2

a′2
(x′2)ψ

3

a′3
(x′3)}|Ω〉

× θ
(
min(x0

1, x
0
2, x

0
3)−max(x′1

0
, x′2

0
, x′3

0
)
)

+ different terms. (1.20)

“Different terms” now contain contributions of different time-orderings as well as dif-
ferent intermediate states. The Bethe-Salpeter amplitude and its adjoint is defined as
follows:

χP̄ a1a2a3
(x1, x2, x3) := 〈Ω|T{ψ1

a1
(x1)ψ

2
a2

(x2)ψ
3
a3

(x3)}|P̄ 〉 (1.21)

χP̄ a′1a′2a′3
(x′1, x

′
2, x

′
3) := 〈P̄ |T{ψ1

a′1
(x′1)ψ

2

a′2
(x′2)ψ

3

a′3
(x′3)}|Ω〉. (1.22)

Because of space-time translation invariance, the dependence on the total four-momen-
tum factorizes:

χP̄ a1a2a3
(x1, x2, x3) = e−i〈P̄ ,X〉χP̄ a1a2a3

(ξ, η)

=: e−i〈P̄ ,X〉
∫

d4pξ

(2π)4

d4pη

(2π)4
e−i〈pξ,ξ〉e−i〈pη ,η〉χP̄ a1a2a3

(pξ, pη).
(1.23)

By the Θ-function in eq. (1.20) a pole in the total energy variable is generated when
Fourier transforming G into momentum space:

GP (pξ, pη; p
′
ξ, p

′
η) =

−i

2ω~P

χ
P̄
(pξ, pη)χP̄

(p′ξ, p
′
η)

P 0 − ω~P + i ε
+ regular terms for P 0 → ω~P . (1.24)

1.2.3 The three-fermion Bethe-Salpeter equation

One obtains the Bethe-Salpeter equation simultaneously with a normalization condition
for the Bethe-Salpeter amplitudes by a Laurent expansion of the integral equation
(1.16) in the vicinity of a bound state pole (see ref. [5]). The Bethe-Salpeter equation
for the Bethe-Salpeter amplitude in momentum space then reads as follows:

χP̄ a1a2a3
(pξ, pη) = S1

F a1a′1
(1

3
P̄ + pξ + 1

2
pη)S

2
F a2a′2

(1
3
P̄ − pξ + 1

2
pη)S

3
F a3a′3

(1
3
P̄ − pη)

× (−i)

∫
d4p′ξ
(2π)4

d4p′η
(2π)4

K
(3)

a′1a′2a′3;a′′1a′′2a′′3
(P̄ , pξ, pη, p

′
ξ, p

′
η)χP̄ a′′1a′′2a′′3

(p′ξ, p
′
η)

+
∑

cycl. perm.

S1
F a1a′1

(1
3
P̄ + pξ + 1

2
pη)S

2
F a2a′2

(1
3
P̄ − pξ + 1

2
pη)

× (−i)

∫
d4p′ξ
(2π)4

K
(2)
12 a′1a′2;a′′1a′′2

(2
3
P̄ + pη, pξ, p

′
ξ)χP̄ a′′1a′′2a3

(p′ξ, pη), (1.25)
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where summation over repeated multi indices is tacitly understood. In compact oper-
ator product notation, the Bethe-Salpeter equation simply reads:

χP̄ = −iG0

(
K(3) + K̄(2)

)
χP̄ , (1.26)

where a summation over multi-indices and momentum integrations is again tacitly
understood. The normalization condition, that emerged from the Laurent expansion
reads in a covariant form:

−iχP̄

[
P µ ∂

∂P µ

(
G−1

0 + iK(3) + iK(2)
)]

P=P̄

χP̄ = 2M2, (1.27)

where we introduced the inverse three-particle propagator:

G−1
0 a1a2a3;a′1a′2a′3

(P, pξ, pη, p
′
ξ, p

′
η) := (2π)2δ(4)(pξ − p′ξ)(2π)4δ(4)(pη − p′η)

× S1
F
−1

a1a′1
(1

3
P̄ + pξ + 1

2
pη)S

2
F
−1

a2a′2
(1

3
P̄ − pξ + 1

2
pη)S

3
F
−1

a3a′3
(1

3
P̄ − pη). (1.28)

As already mentioned, the Bethe-Salpeter equation at the current status is phenomeno-
logically applicable only within the framework of certain approximations which will be
the content of the next section.

1.3 Approximations and the Salpeter equation

1.3.1 Approximations

The Bethe-Salpeter equation as presented in the previous section is exact. Its normal-
ized solutions would result in the excitation spectra of baryons for example. However
the two- and three-particle kernels are only defined within perturbation theory and the
quark propagators are not known for physically interesting theories like QCD. Moreover
the dependence on the relative energies cannot be handled at present. To overcome
those obstacles, approximations have to be made, the first of which is the replacement
of the full quark propagators by the free ones:

Si
F (pi) =

i

/pi −mi + iε
(1.29)

This approximation accounts for self-energy contributions merely by the introduction
of effective fermion masses mi. In case of QCD, this replacement corresponds to the
point of view, that hadrons consist of quarks acquiring an effective constituent mass
mi, which is however treated as a free parameter in the framework described in refs.
[5, 6, 7].

Neglecting retardation effects in the interaction kernels leads to the instantaneous
approximation. This assumes that there is no dependence on the relative energies in
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the rest frame of the baryon:

K(3)(P, pξ, pη, p
′
ξ, p

′
η)

∣∣∣∣
P=(M,0)

= V (3)(pξ,pη,p
′
ξ,p

′
η) (1.30)

K(2)(2
3
P + pη, pξ, p

′
ξ)

∣∣∣∣
P=(M,0)

= V (2)(pξ,p
′
ξ) (1.31)

These conditions can be formulated in any reference frame, if all momenta are replaced
by:

p⊥ := p− 〈p, P 〉
P 2

P. (1.32)

This space-like vector is perpendicular to the total four momentum and in the rest
frame of the baryon has the desired form p⊥ = (0,p). Thus formal covariance of the
Bethe Salpeter equation is maintained.

1.3.2 Reduction to the Salpeter equation

Having outlined the approximations, we now demonstrate how the Bethe-Salpeter
equation — which is an eight-dimensional integral equation — can be reduced to a
six-dimensional integral equation, the so called Salpeter equation. The basic idea is
to integrate out the dependence on the relative energies. This procedure is straight-
forward if there are only three particle kernels, which is the case for example in the
∆-baryon spectrum in the specific model considered here. However if there remains a
residual two-body interaction, the unconnected peace of K(2) introduces a dependence
on the relative energies, which spoils this reduction scheme. Nevertheless it is possible
to formulate the reduction by introducing an effective three-body kernel accounting for
the two-body interactions.

Let us begin with the case K(2) = 0 to sketch the general procedure. In this case
the Bethe-Salpeter equation is given by

χP̄ = −iG0V
(3)χP̄ . (1.33)

Since V (3) depends only on the spatial components of the relative momenta we may per-
form the integration over the relative energies in the operator product V (3)χP̄ leading
to the definition of the Salpeter amplitude:

ΦM(pξ,pη) :=

∫
dp0

ξ

2π

dp0
ξ

2π
χM(pξ, pη). (1.34)

The Bethe-Salpeter equation then takes the form

χM = −iG0V
(3)ΦM := −iG0ΓM , (1.35)

where we defined the so called vertex functions Γ, which in the rest frame of the baryon
do not depend on the relative energies. Note that this equation can also be used to
reconstruct the full Bethe-Salpeter amplitude once the Salpeter amplitude is known.
We may once again integrate over p0

ξ and p0
η on both sides. To isolate the poles in the
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relative energy variables in G0, the fermion propagators are replaced by their partial
fraction decomposition

Si
F (pi) = i

(
Λ+

i (pi)

p0
i − ωi(pi) + iε

+
Λ−

i (pi)

p0
i + ωi(pi)− iε

)
γ0, (1.36)

where the single-particle relativistic energies ωi are defined as usual:

ωi(pi) =
√
|pi|2 +m2

i . (1.37)

The operators Λ±
i (pi) project onto positive and negative energy solutions of the Dirac

equation and are given explicitly by

Λ±
i (pi) =

ωi(pi)±Hi(pi)

2ωi(pi)
(1.38)

with the Dirac Hamiltonian

Hi(pi) = α · pi +miβ. (1.39)

Now the integration can be performed. Using Cauchy’s theorem we obtain at first:∫
dp0

ξ

2π

dp0
ξ

2π
G0(P, pξ, pη, p

′
ξ, p

′
η)

= i

[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)

M − ω1(p1)− ω2(p2)− ω3(p3) + iε
+

Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

M + ω1(p1) + ω2(p2) + ω3(p3)− iε

]
× γ0 ⊗ γ0 ⊗ γ0(2π)3δ(3)(pξ − p′

ξ)(2π)3δ(3)(pη − p′
η). (1.40)

Finally we end up with the Salpeter equation by integrating over p0
ξ and p0

η in (1.35):

ΦM(pξ,pη) =

[
Λ+++

(M − Ω + iε)
+

Λ−−−

(M + Ω− iε)

]
γ0 ⊗ γ0 ⊗ γ0

×
∫

d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη,p
′
ξ,p

′
η)ΦM(p′

ξ,p
′
ξ), (1.41)

where we introduced the shorthand notations

Λ±±± := Λ±
1 (p1)⊗ Λ±

2 (p2)⊗ Λ±
3 (p3) (1.42a)

Ω := ω1(p1) + ω2(p2) + ω3(p3). (1.42b)

Because of the special projector structure in (1.40), the solutions to the Salpeter equa-
tion (1.41) are eigenstates of the Salpeter projector

Λ(pξ,pη) := Λ+++ + Λ−−−. (1.43)

Consequently the Salpeter amplitudes involve only purely positive and negative energy
components:

ΦM = ΛΦM = Φ+++
M + Φ−−−

M := ΦΛ
M . (1.44)
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From this it is clear, that only the projected part V
(3)
Λ := Λ̄V (3)Λ is of importance in

the Salpeter equation (1.41). Here we defined Λ̄ := γ0 ⊗ γ0 ⊗ γ0Λγ0 ⊗ γ0 ⊗ γ0.

The situation changes, if we also include two-body interactions. Then the residual
part

V
(3)
R := V (3) − V

(3)
Λ (1.45)

becomes important. Because V
(3)
R appears only in conjunction with K

(2)

M (see ref. [5]),
one defines the following resolvent:

GM

[
G−1

0 M + iV
(3)
R + iK

(2)

M

]
= 1I, (1.46)

which allows us to recast the Bethe-Salpeter equation in the following form:

χM = −iGM V
(3)
Λ χM . (1.47)

All problematic contributions are now contained within the resolvent GM , which fulfills
the following integral equation:

GM = G0 M − iG0 M

[
V

(3)
R +K

(2)

M

]
GM . (1.48)

The reduction can now be performed because V
(3)
Λ does not depend on the relative

energies and we first obtain from the Bethe-Salpeter equation (1.47):

χM = −iGMV
(3)
Λ ΦΛ

M . (1.49)

Integrating over p0
ξ and p0

η on both sides of eq. (1.49) and multiplying from the left
with the Salpeter projector Λ then yields:

ΦΛ
M = −i 〈GM〉Λ V (3) ΦΛ

M . (1.50)

Here we defined the reduction of GM :

〈GM〉Λ(pξ,pη,p
′
ξ,p

′
η) := Λ(pξ,pη)

∫
dp0

ξ

2π

dp0
η

2π

dp′0ξ
2π

dp′0η
2π

GM(pξ, pη, p
′
ξ, p

′
η) Λ(p′

ξ,p
′
η).

(1.51)
With the Neumann series of GM from (1.48) one can represent 〈GM〉Λ as a power series

with respect to V
(3)
R +K

(2)

M :

〈GM〉Λ = 〈G0 M〉+ Λ
〈
G0 M(−i)

[
V

(3)
R +K

(2)

M

]
G0 M

〉
Λ + . . . . (1.52)

This expansion allows to identify the reducible and irreducible diagrams, where re-
ducibility is now defined with respect to the reduced Salpeter propagator 〈G0 M〉. Thus
we are looking for an effective irreducible kernel V eff

M such that 〈GM〉Λ is the solution
of the following integral equation:

〈GM〉Λ
!
= 〈G0 M〉 − i 〈G0 M〉V eff

M 〈GM〉Λ. (1.53)

From (1.53) we see, that only the projected part of V eff
M onto the subspace of purely

positive and negative components appears. To determine V eff
M uniquely it is therefore

reasonable to demand:
ΛV eff

M = V eff
M Λ = V eff

M . (1.54)
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Finally we get the Salpeter equation from (1.50) and (1.53):

ΦΛ
M = −i 〈G0 M〉

[
V (3) + V eff

M

]
ΦΛ

M . (1.55)

To determine V eff
M we insert the integral equation for 〈GM〉Λ (1.53) and GM (1.48) into

(1.51). Together with the restriction (1.54) we find a unique power series expansion of

V eff
M in orders i of the integral kernel V

(3)
R +K

(2)

M (see ref. [5]):

V eff
M =

∞∑
i=1

V eff
M

(i)
. (1.56)

If the power series is cut at some finite k <∞, one obtains through the solution of

ΦΛ
M

(k)
= −i 〈G0 M〉

[
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

]
ΦΛ

M

(k)
(1.57)

an approximation of the Salpeter amplitude.

1.3.3 Born approximation

In first order of V eff
M in (1.56) (Born approximation) the Salpeter equation may be

written as an eigenvalue problem:

HΦΛ
M = M ΦΛ

M (1.58)

(see refs. [5]), where the so called Salpeter Hamiltonian H in Born approximation is
independent of the Mass M of the bound system:[
HΦΛ

M

]
(pξ,pη) = [H1(p1)⊗ 1I⊗ 1I + 1I⊗H2(p2)⊗ 1I + 1I⊗ 1I⊗H3(p3)] ΦΛ

M(pξ,pη)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3) + Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

]
γ0 ⊗ γ0 ⊗ γ0

×
∫

d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη; p′
ξ,p

′
η)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)− Λ−
1 (p1)⊗ Λ−

2 (p2)⊗ Λ−
3 (p3)

]
γ0 ⊗ γ0 ⊗ 1I

×
∫

d3p′ξ
(2π)3

V (2)(p′
ξ,pη) + terms with interactions between fermions (23) and (31).

(1.59)

From the normalization condition (1.27) a corresponding normalization for the Sal-
peter amplitudes can be deduced, which looks as follows in Born approximation:

〈ΦΛ
M |ΦΛ

M〉 =

∫
d3pξ

(2π)3

d3pη

(2π)3

∑
a1,a2,a3

ΦΛ
M

∗
a1a2a3

(pξ,pη)ΦΛ
M a1a2a3

(pξ,pη) = 2M. (1.60)
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This normalization conditions resembles the usual L2-norm of Schrödinger wavefunc-
tions and induces a positive definite scalar product, which is given by:

〈Φ1|Φ2〉 :=

∫
d3pξ

(2π)3

d3pη

(2π)3

∑
a1,a2,a3

Φ∗
1a1a2a3

(pξ,pη)Φ2a1a2a3
(pξ,pη). (1.61)

The existence of such a scalar product is of utmost importance since it is the aim of
the present work to formulate static observables as expectation values with respect to
this scalar product. The Salpeter Hamiltonian is hermitian with respect to this scalar
product if one also puts the following condition on the two- and three-body interaction
kernels:

V (3)(pξ,pη; p′
ξ,p

′
η)

!
= γ0 ⊗ γ0 ⊗ γ0 V (3)†(pξ,pη; p′

ξ,p
′
η) γ0 ⊗ γ0 ⊗ γ0

V (2)(p′
ξ,pξ)

!
= γ0 ⊗ γ0 V (2)†(p′

ξ,pξ) γ
0 ⊗ γ0. (1.62)

Because of the hermiticity of the Salpeter Hamiltonian its eigenvalues are real and its
eigenstates are orthogonal.

1.4 Current matrix elements

The description of three interacting fermions propagating in an external electromag-
netic field differs from that of three fermions interacting only among themselves. The
external interaction is accounted for by an additional term in the Hamiltonian of the
system. The electromagnetic bvtor current of a propagating fermion is given by the
operator

jµ(x) = e : ψ̄(x)q̂γµψ(x) :, (1.63)

where e is the unit charge and q̂ denotes the charge operator. In case of QCD the
charge operator is related to the third isospin component T3 and the hyper-charge Y ,
which is the sum of baryon number and strangeness, by the Gell-Mann/ Nishijima
formula

q̂ = T3 + Y/2 = T3 + 1
3
λ8/2 =

1

3

 2 0 0
0 −1 0
0 0 −1

 . (1.64)

The symbol “: :” means normal ordering of the field operators. Thus the Hamiltonian
density operator in the presence of an external electromagnetic field, represented by
the four potential Aµ(x) is given by the addition of jµAµ to tho Hamiltonian density:

HA
I (x) := HI(x) + e : ψ̄I(x)q̂γ

µψI(x) : Aµ(x). (1.65)

All operators are written in the interaction picture here. Note that HI(x) is the Hamil-
tonian density that appears in the six-point Green’s function and thus contains those
interactions that eventually lead to bound states whereas the term e : ψ̄I q̂γ

µψI : Aµ

represents the coupling to the external field. Using time ordered perturbation theory
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the six-point Green’s function in the presence of Aµ(x) (which we denote by GA) may
be expressed as follows:

GA(x1, x2,x3;x
′
1, x

′
2, x

′
3)

= −〈ΩA|Tψ1(x1)ψ
2(x2)ψ

3(x3)ψ̄
1(x′1)ψ̄

2(x′2)ψ̄
3(x′3)|ΩA〉

=
−1

〈0|T exp
(
−i
∫

dtHA
I (t)

)
|0〉

∞∑
k=0

(−i)k

k!

∫
d4y1 . . . d

4yk

× 〈0|Tψ1
I (x1)ψ

2
I (x2)ψ

3
I (x3)ψ̄

1
I (x

′
1)ψ̄

2
I (x

′
2)ψ̄

3
I (x

′
3)HA

I (y1) . . .HA
I (y1)|0〉.

(1.66)

Here |ΩA〉 denotes the physical vacuum (including interactions among the quarks and
the coupling to the external field) i.e. the ground state of the Hamilton density operator
given by (1.65) which in general differs from |Ω〉. The unperturbed vacuum of the free
theory is denoted by |0〉.

Suppose we were to use Wick’s theorem to contract the field operators in the last
line of equation (1.66) in every order of the coupling constants. As is well known
all unconnected pieces of Feynman diagrams factor out and exponentiate to cancel
against the factor 1/〈0|T exp

(
−i
∫

dtHA
I (t)

)
|0〉. So the perturbation series contains

diagrams with no pieces unconnected from external lines. The external electromagnetic
field in this context corresponds not to an external line, because it couples to the
current jµ which appears in the interaction Hamiltonian HA

I . Therefore there are
no diagrams in the perturbation series of GA that contain couplings of the external
electromagnetic field to fermions from the vacuum, for which an example is shown in
figure 1.1. These types of diagrams should by no means be confused with diagrams in
which the fermion loop (“sea quarks”) couples to the propagating fermions (“valence
quarks”) through gauge bosons — a process, which is still contained in GA. The
foregoing result is physically reasonable since vacuum polarization diagrams should be
considered as corrections to the external field itself, whereas the remaining diagrams
include the response of the system to the applied field (see for example [22]). This fact
allows us to rewrite the six-point Green’s function in the presence of an external field:

GA(x1, x2, x3;x
′
1, x

′
2, x

′
3) =

−1

〈0|T exp
(
−i
∫

dtHI(t)
)
|0〉

∞∑
k=0

(−i)k

k!

∫
d4y1 . . . d

4yk

× 〈0|Tψ1
I (x1)ψ

2
I (x2)ψ

3
I (x3)ψ̄

1
I (x

′
1)ψ̄

2
I (x

′
2)ψ̄

3
I (x

′
3)

×
[
HI(y1) + e : ψ̄I(y1)q̂γ

µψI(y1)Aµ(y1) :
]
. . .

× · · ·
[
HI(yk) + e : ψ̄I(yk)q̂γ

µψI(yk)Aµ(yk) :
]
|0〉.

(1.67)

When we write GA in this form it is tacitly understood, because of the foregoing
discussion, that Aµ is not contracted with vacuum bubbles.
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Figure 1.1: A diagram with the external field coupling to an unconnected piece (a quark or
lepton loop in this case). The perturbation series of GA does not contain such
diagrams.

Finally we are ready to expand (1.67) up to first order in the external electromagnetic
coupling. Since at the same time we want to retain the infinite sum in all other
couplings, it is not sufficient to simply sum up to k = 1. Let us set k > 0 and inspect
the k-fold product of interaction Hamilton density operators in (1.67):

T
k∏

i=1

[
HI(yi) + e : ψ̄I(yk)q̂γ

µψI(yk)Aµ(yk) :
]

=

T
k∏

i=1

HI(yi) + T
k∑

i=1

[
e : ψ̄I(yi)q̂γ

µψI(yi)Aµ(yi) :
k∏

j 6=i

HI(yj)

]
+O(A2

µ) (1.68)

The factorization of : ψ̄I(yi)γ
µψI(yi)Aµ(yi) : is allowed because of the time ordering

operator. When we insert this expansion back into (1.67) we may rename a couple of
integration variables in the second term of (1.68). In each summand rename yi as y
and rename the (k − 1) yj’s such that j = 1, . . . , (k − 1). But doing so results in k
equal summands and we obtain:

GA(x1, x2, x3;x
′
1, x

′
2, x

′
3) =

−1

〈0|T exp
(
−i
∫

dtHI(t)
)
|0〉

∞∑
k=0

(−i)k

k!

∫
d4y1 . . . d

4yk

× 〈0|Tψ1
I (x1)ψ

2
I (x2)ψ

3
I (x3)ψ̄

1
I (x

′
1)ψ̄

2
I (x

′
2)ψ̄

3
I (x

′
3)HI(y1) . . .HI(yk)|0〉

+
−1

〈0|T exp
(
−i
∫

dtHI(t)
)
|0〉

∞∑
k=1

(−i)k

(k − 1)!

∫
d4y1 . . . d

4yk−1

× 〈0|Tψ1
I (x1)ψ

2
I (x2)ψ

3
I (x3)ψ̄

1
I (x

′
1)ψ̄

2
I (x

′
2)ψ̄

3
I (x

′
3)

×
∫

d4y e : ψ̄I(y)q̂γ
µψI(y)Aµ(y) : HI(y1) . . .HI(yk−1)|0〉+O(A2

µ).

(1.69)
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Note that the sum in the second term (the one containing Aµ) starts with k = 1 because
the zeroth order (k = 0) is contained in the first term. Obviously the first term is the
six-point Green’s function G (1.2), describing the propagation of three fermions in the
absence of any external field. The second term is the correction to it in first order of
the external coupling. We may make a final modification to it by setting (k − 1) → k
and let the sum start with k = 0 to finally arrive at

GA(x1, x2, x3;x
′
1, x

′
2, x

′
3) = G(x1, x2, x3;x

′
1, x

′
2, x

′
3)

− i〈Ω|Tψ1(x1)ψ
2(x2)ψ

3(x3)

∫
jµ(y)Aµ(y) dy4 ψ̄1(x′1)ψ̄

2(x′2)ψ̄
3(x′3)|Ω〉+O(A2

µ)

(1.70)

Let us concentrate on the first order term in (1.70). We fix the following time-ordering
which corresponds to three fermions coupling to the external field, while propagating
forward in time

min{x′1
0
, x′2

0
, x′3

0} > y0 > max{x0
1, x

0
2, x

0
3} (1.71)

The time ordered product then factorizes into three parts and the insertion of two
complete sets of intermediate states is possible:

GA
(1)(x1, x2, x3;x

′
1, x

′
2, x

′
3) = i

∫
d3P ′

(2π)32ωP̄ ′

∫
d3P

(2π)32ωP̄

∫
d4yAµ(y)

× 〈Ω|Tψ1(x1)ψ
2(x2)ψ

3(x3)|P ′〉〈P ′|jµ(y)|P 〉〈P |ψ̄1(x′1)ψ̄
2(x′2)ψ̄

3(x′3)|Ω〉

×Θ(min{x′1
0
, x′2

0
, x′3

0} − y0) Θ(y0 −max{x0
1, x

0
2, x

0
3}) + other terms (1.72)

“Other terms” contains different time orderings and different bound states. Transform-
ing to momentum space then yields a pole in each of the two total energy variables,
because of the Θ-functions:

GA
(1)P ′,P (pξ, pη, p

′
ξ, p

′
η) =

iAµ(P ′ − P )χP ′(p′ξ, p
′
η)〈P ′|jµ(0)|P 〉χP (pξ, pη)

4ωP ′ωP (P 0′ − ωP ′ + iε)(P 0 − ωP + iε)
(1.73)

To find an expression for the current matrix element 〈P ′|jµ(0)|P 〉 appearing in (1.73)
we transform GA (1.70) into an integral equation. This can however only be done
approximately. We take only those diagrams of the perturbation series of GA that
have the property that by cutting only fermion lines it is possible to isolate the vertex
of the external field. This procedure is referred to as the impulse approximation. All
diagrams of this type sum up as indicated in figure 1.2 and lead to a modification of
the full dressed quark propagators:

SA
F (x, x′) = SF (x− x′)− ie

∫
d4ySF (x− y)q̂Aµ(y)γµSF (y − x′) (1.74)

Replacing in the integral equation for the six-point Green’s function (1.9) SF with SA
F

then leads to an integral equation for GA:

GA = GA
0 − iGA

0 K
AGA, (1.75)
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Figure 1.2: Perturbation series of the full dressed quark propagator in first order of the
external coupling in impulse approximation.

where GA
0 and KA follow from G0 and K resp. by replacing SF with SA

F . From (1.75)
it follows the first order in the external coupling:

GA
(1) = GA

0 (1) − iGA
0 (1)KG− iG0K

A
(1)G− iG0KG

A
(1) . (1.76)

This equation may be put in the form

GA
(1) = G(G−1

0 GA
0 (1)G

−1
0 − iKA

(1))G . (1.77)

Let us define the so called current kernel by

Kj := G−1
0 GA

0 (1)G
−1
0 − iKA

(1) . (1.78)

As was shown in section 1.2, a bound state gives rise to a pole in the total energy
variable P 0 (see eq. 1.24). It then follows from (1.77) by explicitly writing out the
operator product:

GA
(1)P,P ′(pξ, pη, p

′
ξ, p

′
η) =

−1

4ωPωP ′

χP (pξ, pη)

(P 0 − ωP + iε)

[ ∫
d4p′′ξ
(2π)4

∫
d4p′′η
(2π)4

∫
d4p′′′ξ
(2π)4

∫
d4p′′′η
(2π)4

× χ̄P (p′′ξ , p
′′
η) K

j
P,P ′(p

′′
ξ , p

′′
η, p

′′
ξ , p

′′
η) χP ′(p′′′ξ , p

′′′
η )

]
χ̄P ′(p′ξ, p

′
η)

(P ′0 − ω′P ′ + iε)

+ regular terms for P 0 → ωP and P ′0 → ω′P ′ (1.79)

Comparing this result with (1.73) then yields

Aµ(P ′ − P )〈P ′|jµ(0)|P 〉 = −χ̄P Kj
P,P ′ χP ′

= −
∫

d4pξ

(2π)4

∫
d4pη

(2π)4

∫
d4p′ξ
(2π)4

∫
d4p′η
(2π)4

χ̄P (pξ, pη) K
j
P,P ′(pξ, pη, p

′
ξ, p

′
η) χP (p′ξ, p

′
η).

(1.80)
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We have to determine the current kernel now. From its definition (1.78) we see that
it consists of two terms. Let us write out the first term explicitly:

G−1
0 GA

0 (1)G
−1
0 = S1

F
−1

(1
3
P+pξ+

1
2
pη)⊗S2

F
−1

(1
3
P−pξ+

1
2
pη)⊗q̂Aµ(1

3
P−pη− 1

3
P ′+p′η)γ

µ

× (2π)4δ(4)(pξ − p′ξ) (2π)4δ(4)
(

2
3
(P − P ′) + pη − p′η

)
.

+ corresponding photon couplings to first two fermions. (1.81)

The second term of the current kernel contains the two body interaction kernel:

− iKA
(1) = K

(2)

( 2
3
P+pη)

(pξ, p
′
ξ)⊗ q̂Aµ(1

3
P −pη− 1

3
P ′−p′η) (2π)4δ(4)

(
2
3
(P − P ′) + pη − p′η

)
+ corresponding photon couplings to first two fermions. (1.82)

As is obvious from (1.80) we need a prescription of how to reconstruct the Bethe-
Salpeter amplitude from the Salpeter amplitude. If there are no two-body interactions
then such a prescription can be obtained from the Bethe-Salpeter equation itself:

χM = −iG0V
(3)φΛ

M = −iG0Γ. (1.83)

Accordingly for the adjoint Bethe-Salpeter amplitude it follows:

χ̄M = −iφ̄Λ
MV

(3)G0 = −iΓ̄G0. (1.84)

The quantity Γ and its adjoint Γ̄ which has been defined in these equations is called
amputated Bethe-Salpeter amplitude or vertex function. Inserting both equation to-
gether with (1.81) then gives the current matrix element in case of vanishing two-body
interactions:

〈P ′|jµ(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
ΓP ′(pξ, pη)S

1
F (pξ + 1

2
pη)⊗ S2

F (−pξ + 1
2
pη)

⊗ S3
F (P ′ − pη)γ

µq̂S3
F (P − pη)ΓP (pξ, pη). (1.85)

In this expression the external field couples to the third quark only. The factor 3 now
accounts for the couplings to the remaining two quarks. This is legitimate since the
vertex functions are totally antisymmetric under permutations of the three fermions.

If there is a two-body interaction then the reconstruction procedure becomes more
involved. In principle there is a reconstruction formula (1.49), which could be used,
if Veff and φΛ where known. As we pointed out in section 1.3 however the Salpeter
equation is truncated and so the Bethe-Salpeter amplitude reconstructed from the

truncated Salpeter amplitude φΛ
M

(k)
via (1.49) is not a solution of the Bethe-Salpeter

equation anymore. A consistent reduction scheme is required. Consistent in the sense,
that the reduction of the k-th order approximated Bethe-Salpeter amplitude via (1.34)

leads to the k-th order approximated Salpeter amplitude φΛ
M

(k)
. This reconstruction

scheme is discussed in appendix A. As is shown there, the k-th order approximation
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χ
(k)
M of the Bethe-Salpeter amplitude can be reconstructed from the k-th order Salpeter

amplitude ΦΛ
M

(k)
via the following relation:

χ
(k)
M = −i

k∑
i=0

GR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
. (1.86)

By introducing the vertex function and its adjoint in the presence of two-particle in-
teractions

ΓΛ
M

(k)
:= −i

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
(1.87)

Γ
Λ

M

(k)
:= −iΦ

Λ

M

(k)

(
V

(3)
Λ +

3∑
i=1

V eff
M

(i)

)
, (1.88)

we may write (1.80) in a compact notation as:

Aµ(P ′ − P )〈P ′|jµ(0)|P 〉 = −Γ
Λ

P

(k)
KP,P ′ΓΛ

M

(k)
, (1.89)

thus defining the so called effective current kernel KP,P ′ :

KP,P ′ :=

(
k∑

i=0

GR,k
P

(i)

)
Kj

P,P ′

(
k∑

j=0

GR,k
P ′

(j)

)
(1.90)

Consistently Kj
P,P ′ is expanded up to the same order in the residual kernel as is Γ

(k)
P ′ . In

our calculations we considered so far the lowest order i. e. Veff ≈ V
(1)
eff and φΛ

M ≈ φΛ
M

(1)
.

The zeroth order contribution to the effective current kernel is then given by

Kj(0)

P,P ′ = G0 K
j(0)

P,P ′G0

= S1
F (pξ + 1

2
pη)⊗ S2

F (−pξ + 1
2
pη)⊗ S3

F (P ′ − pη)Aµ(P ′ − P )γµq̂S3
F (P − pη)

× (2π)4δ(4)(pξ − p′ξ) (2π)4δ(4)
(
pη − p′η

)
.

(1.91)

The first order contribution reads

Kj(1)

P,P ′ = G0 K
j(1)

P,P ′G0 − iG0 K
j(0)

P,P ′G0

(
V

(3)
R +K

(2)

P ′ − V eff
P ′

(1)
)
G0

− iG0

(
V

(3)
R +K

(2)

P ′ − V eff
P ′

(1)
)
G0K

j(0)

P,P ′G0 (1.92)

Due to its complexity this contribution has not been considered so far in our calcula-
tions. Thus we find with the zeroth order contribution (1.91) by inserting (1.90) into
(1.80) that the current matrix element in case of two-body interactions is given by

〈P ′|jµ(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ

Λ

P ′(pξ, pη)S
1
F (pξ + 1

2
pη)⊗ S2

F (−pξ + 1
2
pη)

⊗ S3
F (P ′ − pη)γ

µq̂S3
F (P − pη)Γ

Λ
P (pξ, pη). (1.93)
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Note that it differs from the case of vanishing two-body interactions (1.85) only by

the appearance of the projected vertex functions ΓΛ
M . We therefore write Γ

(Λ)
M in the

following derivations to cover both cases at once.

We want to bring the current matrix element in a form that is more adapted for
subsequent calculations. From now on we work in the Breit frame. Since in this
reference frame there is only one independent three-momentum variable (the incoming
and outgoing bound states are on-shell and their three-momenta are back-to-back) we
express all kinematic quantities through the spatial components of the four-momentum
transfer q := P ′ − P . Then the four momentum of the incoming baryon is given by

P =

( √
M2 + |q/2|2

q/2

)
. (1.94)

Consequently the four momentum of the outgoing baryon is given by space reflection:

P ′ = PP =

( √
M2 + |q/2|2
−q/2

)
. (1.95)

The three-momentum transfer q enters the current matrix element at four places,
twice through the vertex functions and twice through the propagator of the quark
which couples to the photon. We would like to reduce this number of appearances to
simplify the following calculations. To this end the current matrix element undergoes
a series of transformations now. First with the definition of the adjoint vertex function
and its boost prescription it follows:

ΓPP (pξ, pη) = Γ†PP (pξ, pη)γ
0 ⊗ γ0 ⊗ γ0

=
[
SΛPP

⊗ SΛPP
⊗ SΛPP

ΓM(
−−−−→
Λ−1
PPpξ,

−−−−→
Λ−1
PPpη)

]†
γ0 ⊗ γ0 ⊗ γ0

= Γ†M(
−−−→
ΛPpξ,

−−−→
ΛPpη) [SΛPP

⊗ SΛPP
⊗ SΛPP

]
[
γ0 ⊗ γ0 ⊗ γ0

]
= Γ†M(

−−−→
ΛPpξ,

−−−→
ΛPpη)

[
γ0 ⊗ γ0 ⊗ γ0

]
[SΛP

⊗ SΛP
⊗ SΛP

]

= ΓM(
−−−→
ΛPpξ,

−−−→
ΛPpη) [SΛP

⊗ SΛP
⊗ SΛP

] ,

(1.96)

where the identities S†ΛP
= SΛP

, SΛP
γ0 = γ0SΛPP

and Λ−1
PP = ΛP have been used. Note,

that the vertex function in the rest frame of the baryon just depends on the spatial
components of the boosted momenta, which have been indicated by arrows instead of
bold symbols for a better readability. We insert this result (1.96) together with the
boost prescription of the vertex function into the current matrix element (1.93):

〈PP |jµ(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ

(Λ)

M (
−−−→
ΛPpξ,

−−−→
ΛPpη) [SΛP

⊗ SΛP
⊗ SΛP

]×

S1
F (pξ + 1

2
pη)⊗ S2

F (−pξ + 1
2
pη)⊗ S3

F (PP − pη)γ
µq̂S3

F (P − pη)×

[SΛP
⊗ SΛP

⊗ SΛP
] Γ

(Λ)
M (

−−−→
Λ−1

P pξ,
−−−→
Λ−1

P pη) (1.97)
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Since we want to move the triple boost next to the adjoint vertex function to the right,
but the action of γ0 on SΛP

is different from that of γi (i = 1, 2, 3), we have to make a
distinction between both cases. Let us start with γµ = γ0 by using the identities

SΛPB
SF (q) = SF (ΛPB

q)SΛPB
(1.98)

and SΛP
γ0 = γ0SΛPP

again:

〈PP |j0(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄M(

−−−→
ΛPpξ,

−−−→
ΛPpη)

×
[
S1

F (ΛPpξ + 1
2
ΛPpη)⊗ S2

F (−ΛPpξ + 1
2
ΛPpη)⊗ S3

F (M − ΛPpη)
] [
S2

ΛP
⊗ S2

ΛP
⊗ 1I

]
×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − Λ−1
P pη)

]
ΓM(

−−−→
Λ−1

P pξ,
−−−→
Λ−1

P pη) (1.99)

Finally using the formula for integral transformations and the fact that a proper or-
thochronous Lorentz transformation has unit determinant, we arrive at:

〈PP |j0(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄

(Λ)
M (pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] [
S2

ΛP
⊗ S2

ΛP
⊗ 1I

]
×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − Λ−1
P

2
pη)
]
Γ

(Λ)
M (

−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη) (1.100)

For the case γµ = γi, i = 1, 2, 3 and subsequent calculations it is advisable to have
a clever way to deal with boosts. As can be shown, a boost from the rest-frame of a
particle with mass M into a frame where it has three-momentum P is given by the
operation:

ΛP x = T x+ 2〈Px, P̂ 〉P̂ , (1.101)

where T means time inversion, i. e. T (x0,x) = (−x0,x) and P̂ is a unit bvtor that
depends on P and the rest mass M of the particle and is defined as follows:

P̂ :=

 √
1+ωM (P )/M

2
1√

2(1+ωM (P )/M)

P
M

 . (1.102)

Accordingly the inverse boost is given by:

Λ−1
P x = T x+ 2〈x, P̂ 〉PP̂ , (1.103)

and the representation of the boost and its inverse on a Dirac spinor is accomplished
by the matrices:

SΛP
= γ(P̂ )γ0 (1.104)

S−1
ΛP

= γ0γ(P̂ ), (1.105)



1.4. Current matrix elements 27

where γ(P̂ ) := P µγµ. Using the explicit representation for SΛP
as given by eq. (1.104),

it is easy to show that:

γiSΛP
= SΛP

(
γi + 2P̂ iγ(P̂ )

)
. (1.106)

With this, the spatial components of the current matrix element can be written as:

〈PP |ji(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄

(Λ)
M (pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] [
S2

ΛP
⊗ S2

ΛP
⊗ S2

ΛP

]
×
[
1I⊗ 1I⊗ q̂

(
γi + 2P̂ iγ(P̂ )

)
S3

F (M − Λ−1
P

2
pη)
]
Γ

(Λ)
M (

−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη) (1.107)

Note the difference to (1.100). In addition to the extra term 2P̂ iγ(P̂ ), a triple tensor
product of S2

ΛP
now appears instead of a double one.

Since in both, the time component, eq. (1.100), as well as in the spatial components,
eq. (1.107), of the current matrix element two successive boost operations appear, it
is helpful to study this operation in more detail. To evaluate S2

ΛP
, we use the explicit

representation given by eq. (1.104):

S2
ΛP

= γ(P̂ )γ0γ(P̂ )γ0 (1.108)

= γ(P̂ )γ(PP̂ )

=
(
γ0P̂ 0 − γ · P̂

)(
γ0P̂ 0 + γ · P̂

)
= (P̂ 0)2 + |P̂ |2 − 2P̂ 0(P̂ · γ)γ0

= γ(P̃ )γ0,

where (x · γ)(x · γ) = −|x|2 has been used. We defined a new unit vector along the
way:

P̃ :=

(
(P̂ 0)2 + |P̂ |2

2P̂ 0P̂

)
=

1

M

( √
M2 + |P /2|2

P /2

)
=

P̄

M
. (1.109)

To compute (ΛP )2 and (Λ−1
P )2 we make use of eqns. (1.101) and (1.103) and the

previous result on S2
ΛP

to obtain:

(ΛP )2x = T x− 2〈x, T P̃ 〉P̃ (1.110)

(Λ−1
P )2x = T x− 2〈x, P̃ 〉T P̃ . (1.111)

Note, that due to the double boost of the incoming vertex function, the P -dependence
becomes rather simple. An asymmetric definition of the current matrix element —
i.e. when the external electromagnetic field is given in the rest-frame of the incoming
or outgoing baryon — would have led to a more complicated P -dependence because
of the appearance of P̂ in the boost instead of P̃ .
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1.5 A Quark model based on the Salpeter equation

As has already been mentioned in the introduction, the analytic results to be derived
in the following chapters will be tested in a concrete physical application. The most
interesting phenomena are observed with strongly interacting particles and so we are
looking for a quark model that is based on the Bethe-Salpeter formalism described in
section 1.2 and its approximation via the Salpeter equation described in section 1.3.
Recall that the approximations that led to the Salpeter equation where free propaga-
tors, which corresponded to the introduction of effective fermion masses, and instanta-
neous interaction kernels. Both, effective quark masses and the interaction among the
quarks are however not derivable from QCD at present and so one is forced to apply
phenomenologically motivated assumptions about their very nature. A model, that is
based on the field theoretic foundations of the Bethe-Salpeter formalism and at the
same time very successful in describing the observed baryon mass spectra is described
in refs. [5, 6, 7]. We briefly want to touch upon its prominent features in this section.
It assumes a linearly rising confinement potential which accounts for the fact, that free
quarks are never seen in nature. Moreover this form of the potential together with
an appropriate Dirac structure is able to describe the linear Regge trajectory, i.e. the
linear dependence of the excitation masses squared on the total spin, very well. The
fine structure of the spectra is accounted for by a residual interaction motivated by
an effective instanton Lagrangian, sometimes called ’t Hooft’s force. It is this residual
interaction that leads to the octet-decuplet mass splitting but also to a lowering of the
nucleons first radial excitation, the so-called Roper resonance. The explicit form of
both interactions is discussed in the following two subsections.

1.5.1 Confinement potential

The gross structure of the baryon and meson spectra suggests a linear and flavor-
independent confinement potential. In the model of refs. [6, 7] a local three-body
potential has been chosen which has the following form:

V (3)(x1, x2, x3;x
′
1, x

′
2, x

′
3) = V

(3)
conf(x1,x2,x3)

× δ(1)(x0
1 − x0

2) δ
(1)(x0

2 − x0
3) δ

(4)(x1 − x′1) δ
(4)(x2 − x′2) δ

(4)(x3 − x′3). (1.112)

This potential also carries a spinorial structure. The radial dependence of V
(3)
conf should

be linearly rising with the common distance of the quarks and in addition exhibit an
offset. For the spinorial structure one demands covariance, parity- (P), time-reversal-
(T ) and CPT -invariance and in addition hermiticity (1.62). From phenomenological
observations there are a number of potentials which fulfill these properties. In ref. [19]
different approaches have been studied. It turned out, that the following confinement
potential together with the residual interaction to be discussed in the next subsection
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leads to a satisfactory description of the baryon spectra:

V
(3)
conf(x1,x2,x3) = 3

4
a
[
1I⊗ 1I⊗ 1I + γ0 ⊗ γ0 ⊗ 1I + cycl. perm.

]
+ 1

2
b
∑
i<j

|xi − xj|
[
−1I⊗ 1I⊗ 1I + γ0 ⊗ γ0 ⊗ 1I + cycl. perm.

]
. (1.113)

The constant offset a and the slope b enter the model as free parameters and have to
be fitted to the experimentally observed baryon spectra.

1.5.2 ’t Hooft’s instanton induced interaction

The confinement potential alone cannot account for all patterns in the baryon spectra
like e.g. the octet-decuplet splitting of the ground state baryons. Therefore a residual
interaction has to be used. In the quark model we describe, ’t Hooft’s instanton induced
interaction takes this part. The instantaneous two-body interaction looks as follows:

V (2)(x1, x2;x
′
1, x

′
2) = V

(2)
’t Hooft(x1 − x2) δ

(1)(x0) δ(4)(x1 − x′1) δ
(4)(x2 − x′2). (1.114)

Instantons induce an effective interaction among the quarks as has been shown in
refs. [20, 21]. From the effective instanton Lagrangian density an effective two-body
potential can be deduced which looks as follows (see ref. [5]):

V
(2)
’t Hooft = −4vreg(x1 − x2)

[
1I⊗ 1I + γ5 ⊗ γ5

]
× PD

S12=0 ⊗
(
gnnPF

A (nn) + gnsPF
A (ns)

)
⊗ PC

3̄ . (1.115)

PD
S12=0 projects onto antisymmetric spin singlet configurations of both interacting

quarks, PF
A (f1f2) onto antisymmetric flavor states and PC

3̄ onto color-anti-triplet states.
The effective coupling strengths gnn and gns enter the model as free parameters. The ef-
fective instanton kernel contains δ-distributions δ(3)(x1−x2), which lead to divergences
when iterated in the Salpeter equation. Therefore the δ-distribution is regularized by
replacing it with a Gaussian:

δ(3)(x1 − x2) → vreg(x1 − x2) =
1

λ3π
3
2

exp

(
−|x1 − x2|2

λ2

)
. (1.116)

The constant λ which appears in the regularization also enters the model as a free
parameter and is an effective instanton cutoff size or range parameter.

1.5.3 Light baryon spectra

Because isospin symmetry is assumed between the lightest quarks u and d, there is
only one non-strange quark mass parameter. In total there are seven parameters that
enter the model, two quark masses, two confinement parameters and three instanton
parameters. We have listed those in table 1.1 together with their actual values from
ref. [6, 7]. To fix these values the following procedure is adopted. Since the instanton
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constituent non-strange mn 330 MeV

quark masses strange ms 670 MeV

confinement offset a −744 MeV

force slope b 470 MeV fm−1

residual non-strange/non-strange coupling gnn 136 MeV fm3

instanton non-strange/strange coupling gns 94 MeV fm3

interaction cutoff λ 0.4 fm

Table 1.1: The seven parameters (two quark masses, two confinement force parameters and
three instanton interaction parameters) entering the model.

force only acts on antisymmetric flavor states the ∆-spectrum is determined by the
confinement force alone. Therefore the two confinement parameters a, b and the non-
strange quark mass mn are fitted to the well-known ∆-resonances. Likewise the strange
quark mass ms is fitted to the masses of the strange decuplet baryons (Σ∗, Ξ∗, Ω) where
the instanton force also has no effect. The coupling strengths gnn, gns and range λ of the
’t Hooft’s force are finally fitted to the octet-decuplet mass splitting like ∆−N and Σ∗−
Λ. The resulting nucleon spectrum is shown in fig. 1.3 compared to the experimentally
known resonances from ref. [15]. The model is able to describe the nucleon spectrum
quite well. In particular the linear Regge trajectory is reproduced, but also the position
of the Roper resonance P11(1440) is almost hit. The latter observation is not self-
evident, since almost all nonrelativistic quark models fail to describe this resonance. In
ref. [6] it could be verified, that it is the effect of ’t Hooft’s force which is responsible
for a lowering of the Roper resonance down to almost its empirical value. Besides
the octet-decuplet splitting this is however not the only influence of this force. In
addition it has been shown, that also the appearance of “parity doublets” are due to
the instanton interaction. These doublet can be found in the nucleon spectrum as a
degeneracy between e.g. the states N5

2

+
(1680), N5

2

−
(1675) and N9

2

+
(2220), N9

2

−
(2250).

The instanton force lowers selected resonances to produce almost degenerate states. It
must be noted that the appearance of these parity doublets is more or less accidental
and strongly depends on the value of the instanton coupling strength.

To complete the brief discussion of this quark model, we show the ground states of
the baryon octet and decuplet in fig. 1.4 since most of the static observables that are
to be calculated in the present work are those of these states.

1.6 Summary

In this chapter we laid the foundations for the following studies on static properties
of relativistic three-fermion systems in general and especially on static observables of
baryons. Since we are looking for a field theoretic description of those observables,
we needed an appropriate approach, which we found in the Bethe-Salpeter formalism.
Since the Bethe-Salpeter equation is solvable only in special but physically unimpor-
tant cases, approximations had to be adopted, which consisted in the introduction of
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Figure 1.4: Comparison between the theoretical (left) and experimental (right) ground state
masses of the baryon octet (shaded columns) and decuplet. J is the total spin
of the baryon, π its parity and T the total isospin.

free-form fermion propagators with effective fermion masses and the assumption of in-
stantaneous interaction kernels, thus leading to the Salpeter equation. The solutions of
this equation where found to obey a norm inducing a positive definite scalar product,
which makes a formulation of static observables as expectation values with respect to
Salpeter amplitudes in principle possible. To find such a static approach, the deriva-
tion of a current matrix element involving Salpeter amplitudes is indispensable. We
demonstrated how this matrix element can be found starting from the modification of
the interaction Hamiltonian to account for the coupling of the system to an applied
external electromagnetic field. The current matrix element was prepared to ease sub-
sequent calculations. Since the analytic results of the next chapters will be applied
to static properties of baryons, we introduced a quark model, which is successful in
reproducing the observed baryon mass spectra, having its field theoretical foundations
in the Bethe-Salpeter formalism. We are thus well prepared with both a current matrix
element based on quantum field theory under certain assumptions on the interactions
among the fermions and a phenomenological description of baryon mass spectra, de-
livering Salpeter amplitudes as input to test our results but also the quark model as
such.



Chapter 2

Charge radii

Our first goal is to find an expression for the charge radius of a relativistic three-fermion
system, that is described according to the Bethe-Salpeter formalism presented in the
preceding chapter. Once the expression is found, we will apply it to the computation
of baryon charge radii within the quark model of the preceding chapter based on the
Bethe-Salpeter approach.

2.1 Introduction and overview

The charge radius is the first moment of a charge distribution and therefore provides
crucial information about the extension of the charge in space. The nonrelativistic
charge radius of a composite system of N particles is given by:

〈r2〉 =
〈ψ|
∑N

i=1 qi(xi −R)2|ψ〉
q〈ψ|ψ〉

, (2.1)

where qi is the charge of particle i, xi its position, R the center of mass coordinate and
q the net charge of the system. The normalization to the net charge is of course dropped
in case of uncharged systems. A direct relativistic generalization of this expression is
unknown. Equation 2.1 is therefore not a suitable starting point for us, since we are
interested in systems that behave relativistically like quarks bound in hadrons. On the
other hand in field theoretic descriptions of bound states the charge radius is usually
extracted from the electric form factor in the limit of vanishing squared four-momentum
transfer of the probing photon. This method however has the shortcoming that the form
factor has to be known at several momentum transfers, since the charge radius is defined
as the slope at the photon point. This means that at least the incoming or outgoing
particle has a finite three-momentum due to energy-momentum conservation. One is
thus obliged to boost the wavefunction, which makes the numerical computation more
involved. But moreover one obscures the internal structure of the composite system
with this method. Although eq. (2.1) is discarded for the computation of relativistic
systems, it has a simple physical interpretation. In this chapter we therefore show a
way to synthesize both approaches. The field theoretic input has been described in
the foregoing chapter on the Bethe-Salpeter formalism. We believe that it constitutes

33
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a suitable starting point, because its foundation on quantum field theory allows for a
relativistic and formally covariant description of bound states. Moreover it has been
successfully applied to both the description of baryon mass spectra (see refs. [6, 7]) as
well as electromagnetic observables (see refs. [11, 16]).

There are at least two approaches at hand to start the computation of charge radii.
Classical electrodynamics tells us that the radius of a charge distribution ρ(x) is
given by the weighted mean

∫
d3x|x|2ρ(x)/q, where the total charge q is the inte-

gral q =
∫

d3xρ(x). By replacing ρ with the time component of the four-vector current
of a quantum system we bridge the gap to quantum field theory and by Fourier trans-
formation |x|2 becomes the Laplace operator with respect to the momentum transfer of
the probing photon. The second approach is motivated by the definition of the charge
radius as the slope of the electric form factor taken as a function of the four-momentum
transfer squared Q2.

In section 2.2 we will follow the first approach. The connection to the Bethe-Salpeter
formalism of chapter 1 is made via the time component of the current matrix element
(1.100). We first evaluate the Laplacian of that matrix element with respect to the
momentum transfer and then take the static limit P → 0 analytically. Subsequently
the integration over the relative energies may be performed and the vertex functions be
replaced by Salpeter amplitudes. The resulting equation expresses the charge radius
as an expectation value of a relativistic version of the simple operator of eq. 2.1. The
nonrelativistic Schrödinger wavefunctions are replaced by Salpeter amplitudes.

Before we interpret the result of this section in detail, we give an alternative deriva-
tion starting from the second approach mentioned above in section 2.3. We briefly
review the introduction of the form factors from a Lorentz-invariant decomposition of
the electromagnetic vector current. We then show that the definition of the charge
radius as the slope of the electric form factor at vanishing momentum transfer squared
is in fact equivalent to its definition from charge distributions. This proof is generic,
i.e. model independent. Becoming specific, we utilize the results of the preceding
chapter and study the Q2-dependence of the current matrix elements time component
(1.100). Therefore we expand the boost acting on the incoming Salpeter amplitude in
an exponential, which is possible since the Lorentz transformations form a Lie group.
The elements of the Lie algebra are given by infinitesimal boosts whose action on wave-
functions is well known. The parameter that appears in the exponential depends on the
momentum transfer which allows us to separate the Q2-dependence from the matrix
element and to compute the first derivative with respect to Q2. After integrating over
the relative energy variables we indeed recover the same result as in section 2.3.

In the following section 2.4 we assign a physical interpretation to the results of the
two preceding sections. As already mentioned our method has the advantage that the
underlying structure of the static observable is not obscured although the formalism
has a relativistic and field theoretical background. The resulting expression for the
charge radius is then indeed a relativistic generalization of eq. (2.1). The Schrödinger
wavefunctions are replaced by Salpeter amplitudes, for which it is essential to have a
scalar product given by eq. (1.61). The fermion masses are replaced by the relativistic
single-particle energies and the nonrelativistic center of mass by its canonical relativistic
counterpart. In addition the operator is multiplied by a relativistic weight factor.
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Such a result calls for a numerical application, which we realize with the model
described briefly in chapter 1 and in detail in refs. [6, 7]. We study first the charge
radii of proton and neutron. While the proton mean square charge radius can nicely
be reproduced the magnitude of the neutron charge radius is too large by a factor of
almost two. To examine this situation, we analyze the dependence of these results on
the choice of the model parameter set. It is well known, that the size of the instanton
cutoff parameter may be varied, altering the nucleon mass spectrum only slightly after
appropriately adjusting the instanton coupling strength. We might expect however
that the effect on the charge radius is somewhat more visible. Indeed we find a small
dependence of the proton charge radius but a drastic dependence of the neutron charge
radius on the choice of these two parameters. The nucleon charge radii have also been
extracted from form factor calculations which have been performed within the same
model in ref. [11]. We find a strong deviation between both calculations in the neutron
charge radius. A reanalysis of the form factor calculation will however show, that the
extraction of the radius was erroneous. Although the experimental data are rather
sparse, we have also added our results for the hyperon charge radii, which we also
compare against form factor calculations. Finally, to demonstrate the importance of
a relativistic treatment of baryon charge radii, we have taken the nonrelativistic limit
of our analytic result, which basically coincides with eq. 2.1 and calculated the charge
radii with respect to Salpeter amplitudes. The charge radii drop by about a factor of
two as compared to the fully relativistic calculation.

2.2 From charge distributions to charge radii

We start our derivation in this section with a very simple definition of the charge
radius borrowed from classical electrodynamics. Given some charge distribution ρ(x)
one defines its mean square radius by:

〈r2〉 =
1

q

∫
d3x|x|2ρ(x). (2.2)

The radius is normalized by the net charge q, which is simply the integral of ρ(x) over
space:

q =

∫
d3x ρ(x). (2.3)

However if the charge distribution has no net charge — as is the case for example with
the neutron — the normalization 1/q is of course dropped. If we turn to quantum
mechanical systems, the charge distribution is given by the time component j0(x) of
the four vector current of a state vector |ψ〉:

ρ(x) =
〈ψ|j0(x)|ψ〉
〈ψ|ψ〉

. (2.4)

Such a state |ψ〉 can be represented as a superposition of momentum eigenstates

|ψ〉 =

∫
d3P

ωP

ψ(P )|P 〉. (2.5)
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ψ(P ) is the wavefunction in momentum space and the states |P 〉 are normalized ac-
cording to:

〈P |P ′〉 = 2ωP (2π)3δ(3)(P − P ′). (2.6)

This immediately fixes the normalization of the states |ψ〉:

〈ψ|ψ〉 = 2(2π)3

∫
d3P

ωP

ψ∗(P )ψ(P ). (2.7)

Let us further investigate the charge distribution by inserting (2.5) into (2.4):

ρ(x) =
1

〈ψ|ψ〉

∫
d3P

ωP

∫
d3P ′

ωP ′
ψ∗(P )ψ(P ′)〈P |j0(x)|P ′〉

=
1

〈ψ|ψ〉

∫
d3P

ωP

∫
d3P ′

ωP ′
exp (i(P − P ′) · x)ψ∗(P )ψ(P ′)〈P |j0(0)|P ′〉.

(2.8)

In the last line we used space translational invariance to separate the spatial depen-
dence. As is well known the integral

∫
d3x exp(ip · x) is a representation of the delta

distribution. So it follows∫
d3x|x|2 exp (i(P − P ′) · x) =− 1

4
(∇P −∇P ′)2

∫
d3x exp (i(P − P ′) · x)

=− (2π)3

4
(∇P −∇P ′)2 δ(3)(P − P ′).

(2.9)

To write the derivative as 1
4
(∇P−∇P ′)2 instead of simply ∆P or ∆P ′ will be justified in

the end of the calculation. It will turn out there that this highly symmetric derivative
will guarantee that the end result depends on a current matrix given in the Breit frame.
Using (2.5), (2.8) and (2.9) we obtain:∫

d3x|x|2〈ψ|j0(x)|ψ〉 = −(2π)3

4

∫
d3P

ωP

∫
d3P ′

ωP ′
ψ∗(P )ψ(P ′)

× 〈P |j0(0)|P ′〉(∇P −∇P ′)2δ(3)(P − P ′). (2.10)

On the right hand side of this equation we may now integrate by parts twice and
subsequently do one of the two momentum integrations:∫

d3x|x|2〈ψ|j0(x)|ψ〉

=− (2π)3

4

∫
d3P

|ψ(P )|2

ω2
P

[
(∇P −∇P ′)2〈P |j0(0)|P ′〉

]
P ′=P

− (2π)3

4

∫
d3P

[
(∇P −∇P ′)2 exp(i(ωP − ωP ′)x0)

ψ∗(P )

ωP

ψ(P ′)

ωP ′

]
P ′=P

〈P |j0(0)|P 〉

− (2π)3

2

∫
d3P

[
(∇P −∇P ′) exp(i(ωP − ωP ′)x0)

ψ∗(P )

ωP

ψ(P ′)

ωP ′

]
P ′=P

×
[
(∇P −∇P ′)〈P |j0(0)|P ′〉

]
P ′=P

(2.11)
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The last of this three terms vanishes because ∇P and ∇P ′ change sign under space
reflection in other words are of odd parity. So if the states |P 〉 have definite parity
(which we assume, since ultimately we want to describe for example baryonic states)
then 〈P |j0(0)∇P |P 〉 = 0.

So far we have considered wave packets that consist of a superposition of states with
different momenta. To obtain states with definite i.e. sharp momenta consider first a
Gaussian wave packet with a width proportional to some parameter ε:

ψ(P ) = exp(−|P |2/(2ε2)) (2.12)

Before we let ε go to zero to define a definite momentum state let us inspect the second
term in (2.11). Because for the Gaussian wave packet from (2.12) the wavefunction is
real i.e. ψ∗(P ) = ψ(P ) we have:[

(∇P −∇P ′)
ψ(P )

ωP

ψ(P ′)

ωP ′

]
P ′=P

=

[
(∇P −∇P ′)2ψ(P )

ωP

ψ(P ′)

ωP ′

]
P ′=P

= 0. (2.13)

Thus also this term does not contribute to the charge radius and we are left with the
first term in (2.11) only. It should be noted however that the disappearance of this term
is due to the special symmetric setup that we used in (2.9). However as this term is
proportional to the net charge 〈P |j0(0)|P 〉 of the system, it represents the contribution
of the net charge to the mean square radius. So in other setups or reference frames this
term is removed by hand because one is interested in the intrinsic charge radius of the
system originating from the internal dynamics. But as will be shown below, the final
result for the charge radius in this calculation turns out to be an expectation value
with respect to wavefunctions given in the rest frame of the baryon. It is obvious, that
in this system of reference the contribution from the net charge vanishes.

Let us now turn to the limit ε→ 0 again. Since in this limit exp(−|P |2/ε2) is another
representation of the delta distribution we find

lim
ε→0

|ψ(P )|2

ωP 〈ψ(P )|ψ(P )〉
=

δ(3)(P )

2ωP (2π)3
∫

d3Pδ(3)(P )/ωP

=
δ(3)(P )

2(2π)3
. (2.14)

Inserting this together with the first term of (2.11) into the basic definition of the
charge radius (2.2) yields

〈r2〉 = − 1

8q

∫
d3P

ωP

δ(3)(P )
[
(∇P −∇P ′)2〈P |j0(0)|P ′〉

]
P ′=P

= − 1

8Mq
(∇P −∇P ′)2〈P |j0(0)|P ′〉

∣∣∣∣
P ′=P=0

,

(2.15)

where M is the rest mass of the system. As promised the current matrix element is
given in the Breit frame if we make the following transformations:

(∇P −∇P ′)2〈P |j0(0)|P ′〉
∣∣∣∣
P ′=P=0

= (−∇P + ∇P ′)2〈P |j0(0)|P ′〉
∣∣∣∣
P ′=P=0

= (∇P + ∇P ′)2〈PP |j0(0)|P ′〉
∣∣∣∣
P ′=P=0

= ∆P 〈PP |j0(0)|P 〉
∣∣∣∣
P=0

.

(2.16)
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We then finally end up with an expression for the charge radius that will be — together
with the current matrix element from the previous chapter — the starting point for
subsequent calculations:

〈r2〉 = − 1

8Mq
∆P 〈PP |j0(0)|P 〉

∣∣∣∣
P=0

. (2.17)

The further procedure seems obvious. After inserting the current matrix element that
we derived in the previous chapter (1.100) one has to calculate the Laplacian with
respect to P and then take the static limit P → 0. However the calculation then
becomes rather lengthy and complex, so we present a different approach here.

We observe, that the P -dependence in the current matrix element (1.100) is given
by the following part:[

S2
ΛP
⊗ S2

ΛP
⊗ S3

F (M − Λ−1
P

2
pη)
]
ΓΛ

M(
−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη) := BS(P )f(Λ−1

P

2
pξ,Λ

−1
P

2
pη).

(2.18)
We made the definitions:

BS(P ) := S2
ΛP
⊗ S2

ΛP
⊗ 1I (2.19)

f(Λ−1
P

2
pξ,Λ

−1
P

2
pη) :=

[
1I⊗ 1I⊗ S3

F (M − Λ−1
P

2
pη)
]
ΓΛ

M(
−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη) (2.20)

The idea is now to define an operator carrying the P -dependence in the following way:

B(P )f(pξ, pη) := BS(P )f(Λ−1
P

2
pξ,Λ

−1
P

2
pη). (2.21)

Sometimes this operation is referred to as the “pullback”. Before we proceed let us
define

∂

∂P if(P ) := f(P ),i (2.22)

just to have a shorter notation. Evaluating B(P ),i now seems to be the next step, but
let us compute B−1(P )B(P ),i instead. In the limit P → 0 both expressions coincide
but as we will see using the second one will ease the calculation of the Laplacian
∆PB(P ). From the definition of B(P ) we readily get

B−1(P )B(P ),if(pξ, pη) =[
B−1

S (P )BS(P ),i +
(
(Λ−1

P )2
,i Λ

2
P pξ

)µ ∂

∂pµ
ξ

+
(
(Λ−1

P )2
,i Λ

2
P pη

)µ ∂

∂pµ
η

]
f(pξ, pη) (2.23)

Let us turn to the first term involving BS(P ),i. From the definition (2.19) we have

B−1
S (P )BS(P ),i = S−1

ΛP

2
S2

ΛP ,i
⊗ 1I⊗ 1I + 1I⊗ S−1

ΛP

2
S2

ΛP ,i
⊗ 1I (2.24)

With the explicit form of S2
ΛP

(1.108) the evaluation of the derivative becomes rather
easy:

S2
ΛP ,i

= γ(P̃,i)γ
0 = −γ0γ(T P̃,i) = −γ0γ(K,i). (2.25)
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For later convenience we defined K := T P̃ . Although we might calculate K,i at this
stage let us postpone this to keep the notation simple. With the preceding equation
we then find

S−1
ΛP

2
S2

ΛP ,i
= −γ0γ(P̃ )γ0γ(K,i) = γ(K)γ(K,i) = KµKν

,iγµγν

= 1
2
(KµKν

,i −KνKµ
,i)γµγν

(2.26)

In the last step we used the fact that K is a unit vector and so (KµKνgµν),i = 0. We
thus finally have

B−1
S (P )BS(P ),i = 1

2
(KµKν

,i −KνKµ
,i)(γµγν ⊗ 1I⊗ 1I + 1I⊗ γµγν ⊗ 1I). (2.27)

For the evaluation of (Λ−1
P )2

,i Λ
2
P we use the representation (1.110) from where we

first have

(Λ−1
P )2

,i x = (T x− 2〈x, P̃ 〉T P̃ ),i = −2(〈x, P̃,i〉K + 〈x, P̃ 〉K,i). (2.28)

Using this result we obtain

(Λ−1
P )2

,i Λ
2
P x = −2(〈Λ2

P x, P̃,i〉K + 〈Λ2
P x, P̃ 〉K,i)

= −2(〈x,K,i〉K − 2〈x,K〉〈P̃ , P̃,i〉K + 〈x,K〉K,i − 2〈x,K〉〈P̃ , P̃ 〉K,i)

= 2(K,i〈x,K〉 −K〈x,K,i〉)

= 2(K,iK
ν −KKν

,i)xν ,

(2.29)

where 〈P̃ , P̃ 〉 = 1 and the consequential relation 〈P̃ , P̃ 〉,i = 0 has been used in the
third line. Putting together (2.23), (2.27) and (2.29) we get

B−1(P )B(P ),i = −2(Kµ
,iK

ν −KµKν
,i)

×

(
pξµ

∂

∂pν
ξ

+ pηµ

∂

∂pν
η

+ 1
4
γµγν ⊗ 1I⊗ 1I + 1I⊗ 1

4
γµγν ⊗ 1I

)
. (2.30)

Let us call this operator Ai(P ) := B−1(P )B(P ),i. We are now ready to calculate the
Laplacian in the limit P → 0:

B−1(P )∆PB(P )

∣∣∣∣
P=0

=
3∑

i=1

B−1(P ) ∂
∂P iB(P )B−1(P ) ∂

∂P iB(P )

∣∣∣∣
P=0

=
3∑

i=1

B−1(P ) ∂
∂P iB(P )Ai(P )

∣∣∣∣
P=0

=
3∑

i=1

(
Ai(P )Ai(P ) + ∂

∂P iAi(P )
) ∣∣∣∣

P=0

.

(2.31)
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From its definition we instantly see that K|P=0 = (−1, 0, 0, 0) and furthermore that
K0

,i|P=0 = 0 and Ki
,j|P=0 = δij/M , so it follows:

(Kµ
,iK

ν −KµKν
,i)

∣∣∣∣
P=0

= − 1
M

(δµ
i δ

ν
0 − δµ

0 δ
ν
i ). (2.32)

This result when plugged into (2.30) then yields:

Ai(M̄) = − 2
M

(
− pξi

∂
∂p0

ξ
+ pξ0

∂
∂pi

ξ
− pηi

∂
∂p0

η
+ pη0

∂
∂pi

η

+ 1
4
[γi, γ0]⊗ 1I⊗ 1I + 1I⊗ 1

4
[γi, γ0]⊗ 1I

)
= − 2

M

[
pi

ξ
∂

∂p0
ξ

+ p0
ξ

∂
∂pi

ξ
+ pi

η
∂

∂p0
η

+ p0
η

∂
∂pi

η
− 1

2
(αi ⊗ 1I⊗ 1I− 1I⊗ αi ⊗ 1I)

]
,

(2.33)

where M̄ := (M,0) is the total four-momentum in the rest-frame.

We still need to calculate
∑3

i=1
∂

∂P iAi(P )
∣∣
P=0

from (2.31). Because of the skewness
we find

3∑
i=1

∂
∂P i (K

µ
,iK

ν −KµKν
,i) = (∆PK

µ)Kν −Kµ(∆PK
ν). (2.34)

From the definition of K it follows ∆PK
0
∣∣
P=0

= −∇P · (P /MωP )
∣∣
P=0

= −3/M2 and

∆PK
i
∣∣
P=0

= 0 and with that finally

3∑
i=1

∂
∂P i (K

µ
,iK

ν −KµKν
,i)

∣∣∣∣
P=0

= − 3
M2 (δ

µ
0 δ

ν
0 − δµ

0 δ
ν
0 ) = 0. (2.35)

So we see that
∑3

i=1
∂

∂P iAi(P )
∣∣
P=0

= 0. The vanishing of this term is not accidental, for

one can show that ∂
∂P iAj(P )

∣∣
P=0

= −[Ai(M̄), Aj(M̄)]−. Together with (2.31) we then

deduce that ∂
∂P i

∂
∂P jB(P )

∣∣
P=0

= 1
2
[Ai(M̄)Aj(M̄) + Aj(M̄)Ai(M̄)]. So the commutator

reflects the symmetry under permutation of indices (i ↔ j). In case of the charge
radius this is obviously irrelevant and so the commutator vanishes.

We now have everything set up to embark upon the final part of the calculation of
charge radii in which we will integrate out the dependence on the relative energies.
Inserting the current matrix element (1.100) into (2.17) and using (2.31) then yields:

〈r2〉 =
3

8Mq

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] 3∑
i=1

Ai(M̄)Ai(M̄)

×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
ΓΛ

M(pξ,pη). (2.36)

When we test our results with the quark model described in refs. [6, 7] we will restrict
ourselves to the computation of the charge radii of the baryon octet, because it is
experimentally much better covered than the decuplet. As already mentioned in this
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case the vertex function contains only purely positive and negative energy components,
i.e. in the current matrix element ΓΛ

M appears. This is due to the fact, that the re-
construction procedure of the vertex function described in appendix A yields projected
vertex functions because of the action of the two-body residual force which acts in the
baryon octet but not in the decuplet. Using the partial fraction decomposition (1.36)
of the propagators then yields:

〈r2〉 =
3

8Mq

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

[
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

(p0
ξ + 1

2
p0

η − ω1 + iε)(−p0
ξ + 1

2
p0

η − ω2 + iε)(M − p0
η − ω3 + iε)

+
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

(p0
ξ + 1

2
p0

η + ω1 − iε)(−p0
ξ + 1

2
p0

η + ω2 − iε)(M − p0
η + ω3 − iε)

]

[γ0 ⊗ γ0 ⊗ 1I]
3∑

i=1

Ai(M̄)Ai(M̄)q̂3

[
1I⊗ 1I⊗ Λ+

3

(M − p0
η − ω3 + iε)

+
1I⊗ 1I⊗ Λ−

3

(M − p0
η + ω3 − iε)

]
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη) (2.37)

Because of the special projector structure of the vertex functions, the integrand contains
only pure energy components. The integration over the relative energies p0

ξ and p0
η is

shown in appendix B in a generic way for a product of an arbitrary number of operators
Ai(M̄). In case of the charge radius we obtain from (B.7):

〈r2〉 = − 3

8Mq

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M(pξ,pη)

{
Λ+++

(M − Ω)
[γ0 ⊗ γ0 ⊗ 1I]

3∑
i=1

A+
i A

+
i q̂

3 1I⊗ 1I⊗ Λ+
3

(M − Ω)

+
Λ−−−

(M + Ω)
[γ0 ⊗ γ0 ⊗ 1I]

3∑
i=1

A−
i A

−
i q̂

3 1I⊗ 1I⊗ Λ−
3

(M + Ω)

}
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη), (2.38)

where Ai
± is defined according to eq. (B.12) as follows:

Ai
± := − 2

M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
− 1

2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
(2.39)

Remember that Ω is the sum of the relativistic single-particle energies and Λ±±±

the triple tensor product of single-particle energy projection operators. Both short-
hand notations have been defined in eq. (1.42). One may now use the commutator
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{γ0, αi}+ = 0 to commute γ0 ⊗ γ0 ⊗ 1I with
∑3

i=1A
±
i A

±
i and obtains:

〈r2〉 = − 3

8Mq

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M(pξ,pη)

×

[
Λ+++

(M − Ω)

3∑
i=1

A′+
i A

′+
i

1I⊗ 1I⊗ Λ+
3

(M − Ω)
+

Λ−−−

(M + Ω)

3∑
i=1

A′−
i A

′−
i

1I⊗ 1I⊗ Λ−
3

(M + Ω)

]

× q̂3[γ0 ⊗ γ0 ⊗ γ0]ΓΛ
M(pξ,pη), (2.40)

with

A′±
i := − 2

M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
+ 1

2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
. (2.41)

With the simple commutation rule

Λ±
i (pi)α

j = αjΛ∓
i (pi)±

pj
i

ωi(pi)
1I (2.42)

one can derive the following relation:

Λ±
1 ⊗ Λ±

2 ⊗ 1I
[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
+ 1

2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
= ±Λ±

1 ⊗ Λ±
2 ⊗ 1I

[
1
2
(ω1 − ω2)

∂
∂pi

ξ
+ (ω1 + ω2)

∂
∂pi

η
+

pi
1

2ω1
+

pi
2

2ω2

]
Λ±

1 ⊗ Λ±
2 ⊗ 1I, (2.43)

which allows us to rewrite (2.40):

〈r2〉 = − 3

8Mq

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M(pξ,pη)

×
[

Λ+++

(M − Ω)
+

Λ−−−

(M + Ω)

] 3∑
i=1

A′′
iA

′′
i q̂

3

[
Λ+++

(M − Ω)
+

Λ−−−

(M + Ω)

]
× [γ0 ⊗ γ0 ⊗ γ0]ΓΛ

M(pξ,pη), (2.44)

where

A′′
i = − 2

M

[
1
2
(ω1 − ω2)

∂
∂pi

ξ
+ (ω1 + ω2)

∂
∂pi

η
+

pi
1

2ω1
+

pi
2

2ω2

]
. (2.45)

Finally the replacement of the vertex functions by Salpeter amplitudes is possible. The
relevant relations, namely (A.13) and (A.14) are derived in appendix A. Using these
we finally end up with:

〈r2〉 =
1

2Mq

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
ΦΛ

M

†
(pξ,pη)r̂2ΦΛ

M(pξ,pη)

=
〈ΦΛ

M |r̂2|ΦΛ
M〉

2M
.

(2.46)
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The operator r̂2 is defined as follows:

r̂2 := −3

4

3∑
i=1

A′′
iA

′′
i q̂

3. (2.47)

This operator may now be brought in a form, which makes it possible to give it a
sensible physical interpretation. To this end, we first note, that it is hermitian with
respect to the Salpeter scalar product induced by the normalization condition (1.60).
This follows from the observation, that A′′

i is anti-hermitian:

A′′
i = − 2

M

[
1
2
(ω1 − ω2)

∂
∂pi

ξ
+ (ω1 + ω2)

∂
∂pi

η
+

pi
1

2ω1
+

pi
2

2ω2

]
= − 1

M

[
1
2
(ω1 − ω2)

∂
∂pi

ξ
+ (ω1 + ω2)

∂
∂pi

η
− h.c.

] (2.48)

and therefore A′′
iA

′′
i is hermitian. Although it is appropriate for the numerical im-

plementation to work with relative coordinates, single-particle coordinates are better
suited to find a physical interpretation. From the relations (1.11) between both coor-
dinate sets we have for the spatial components the Jacobian:

J(P ,pξ,pη) =


1
3

1 1
2

1
3
−1 1

2

1
3

0 −1

 (2.49)

which leads to:

∂

∂pi
ξ

=
∂

∂pi
1

− ∂

∂pi
2

(2.50)

∂

∂pi
η

=
1

2

∂

∂pi
1

+
1

2

∂

∂pi
2

− ∂

∂pi
3

. (2.51)

Then by re-expressing the derivatives in (2.48) in terms of one particle coordinates one
finds:

1
2
(ω1 − ω2)

∂
∂pi

ξ
+ (ω1 + ω2)

∂
∂pi

η

= 1
2
(ω1 − ω2)(

∂
∂pi

1
− ∂

∂pi
2
) + (ω1 + ω2)(

1
2

∂
∂pi

1
+ 1

2
∂

∂pi
2
− ∂

∂pi
3
)

= ω1
∂

∂pi
1

+ ω2
∂

∂pi
2
− (ω1 + ω2)

∂
∂pi

3

= − Ω

(
∂

∂pi
3
− 1

Ω

3∑
α=1

ωα
∂

∂pi
α

)
,

(2.52)

where Ω := ω1 + ω2 + ω3 is again the sum of the single-particle energies. It is useful to
define:

R̂i :=
1

Ω

3∑
α=1

ωαi ∂
∂pi

α
, (2.53)
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which turns out to be the relativistic center of mass of a three-particle system as will
be discussed in detail below. In one particle coordinates the charge radius operator
(2.46) then takes the form:

r̂2 = 3
q̂3

2

[
Ω

M

(
i∇p3 − R̂

)
+ h. c.

]2

. (2.54)

This expression is still not symmetric in all three particles. The third quark seems to
play a special role. However this asymmetry is only due to the fact that in deriving
the current matrix element in chapter 1 we exploited the total asymmetry of the ver-
tex functions under particle interchange and coupled the photon to the third quark
exclusively accounting for the other couplings by multiplying with a factor of 3. If we
reverse this procedure, cancel the factor of 3 and symmetrize the expression over the
three particles, we end up with:

〈r2〉 =
1

2M
〈ΦΛ

M |
3∑

α=1

{
q̂α

2

[
Ω

M

(
i∇pα − R̂

)
+ h. c.

]2
}
|ΦΛ

M〉. (2.55)

This expression calls for a physical interpretation. However we want postpone its
discussion to study first the results that we obtained so far in the context of form
factors.

2.3 From form factors to charge radii

In the last section the derivation of the charge radius operator started from defining
the mean square radius of a charge distribution. As is well known there is another
definition of the charge radius that involves the electric form factor. In this context the
charge radius is defined as the slope of the electric form factor at the photon point. In
this section we first investigate the interconnection between both definitions and show
that they indeed coincide. We then give an alternative derivation of the charge radius
in relativistic quark models with instantaneous interaction kernels, starting from the
representation of boosts as exponentials of the boost generators of the Lorentz group.

Let us briefly recall some basic definitions in the context of form factors. From
current conservation and Lorentz invariance the electromagnetic vector current of a
spin-1/2 state can be parameterized as follows:

〈P ′, λ′|jµ(0)|P, λ〉 = eūλ′(P
′)

[
γµ

(
F1(Q

2) + F2(Q
2)
)
−
P ′

µ + Pµ

2M
F2(Q

2)

]
uλ(P ).

(2.56)
F1 and F2 are the Dirac and Pauli form factors respectively. The Dirac form fac-
tor is normalized to the charge q whereas the Pauli form factor is normalized to the
anomalous magnetic moment κ of the system. Both form factors are functions of the
invariant momentum transfer squared Q2 := −q2 = −(P ′−P )2. The Dirac spinors are
normalized in a Lorentz invariant fashion:

ūλ′(P )uλ(P ) =
(
ξ†λ′
√
σ(P ), ξ†λ′

√
σ̄(P )

)
·
( √

σ̄(P )ξλ√
σ(P )ξλ

)
= 2M δλ′λ. (2.57)
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Here we made use of the familiar definitions σ(P ) := σµPµ, σµ := (1I,σ) and σ̄µ :=
(1I,−σ). Also the identity σ(P )σ̄(P ) = P 2 = M2 has been used. Similarly one shows
that

ūλ′(PP )uλ(P ) =
(
ξ†λ′
√
σ̄(P ), ξ†λ′

√
σ(P )

)
·
( √

σ̄(P )ξλ√
σ(P )ξλ

)
= 2
√
M2 +Q2/4δλ′λ (2.58)

as well as

ūλ′(PP )γ0uλ(P ) =
(
ξ†λ′
√
σ̄(P ), ξ†λ′

√
σ(P )

)
·
( √

σ(P )ξλ√
σ̄(P )ξλ

)
= 2Mδλ′λ. (2.59)

Using both expressions one can write the time component of the electromagnetic vector
current (2.56) in the Breit frame as

〈PP, λ|j0(0)|P, λ〉 = 2eM

[
F1(Q

2)− Q2

4M2
F2(Q

2)

]
= 2eMGE(Q2), (2.60)

where GE(Q2) is the electric Sachs form factor. It is defined together with the magnetic
Sachs form factor as a combination of the Dirac and Pauli form factors:

GE(Q2) := F1(Q
2)− Q2

4M2
F2(Q

2) (2.61a)

GM(Q2) := F1(Q
2) + F2(Q

2). (2.61b)

The charge radius is defined as the slope of the electric form factor at the photon point
i.e. at Q2 = 0:

〈r2〉 = − 6

GE(0)

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

. (2.62)

Since GE(0) = F1(0) = q the normalization 1/GE(0) is dropped in case of uncharged
particles. From this definition together with (2.60) we then find

〈r2〉 = − 3

Mq

d

dQ2
〈PP, λ|j0(0)|P, λ〉

∣∣∣∣
Q2=0

. (2.63)

This result has to be compared to the one that we obtained in the previous section,
namely equation (2.17). There we found the Laplace operator with respect to P instead
of a single derivative with respect to Q2 acting on the current matrix element. However
both expressions turn out to be exactly equal: From the parameterization of the vector
current (2.56) it is clear that the current matrix element 〈PP, λ|j0(0)|P, λ〉 depends
on Q2. In the Breit frame the dependence of Q2 on the momenta of the incoming
and outgoing bound state becomes rather simple. It reads Q2 = 4|P |2. Then for any
function f depending on 4|P |2 the following identity holds:

∆P f(4|P |2) = 4
(
∆P |P |2

) d

dQ2
f(Q2) = 24

d

dQ2
f(Q2). (2.64)

Inserting this into (2.63) we get:

〈r2〉 = − 1

8Mq
∆P 〈PP |j0(0)|P 〉

∣∣∣∣
P=0

, (2.65)
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which is exactly (2.17). Therefore the definition of the charge radius from form factors
is equivalent to that from charge distributions. However it is worth studying the form
factor approach in more detail. Expression (2.63) for the mean square charge radius
is easier to evaluate than (2.17) because it contains only a first order derivative with
respect to Q2. It is thus essential to know the Q2-dependence of the current matrix
element 〈PP, λ|j0(0)|P, λ〉. So let us once again inspect the P -dependent part of the
current matrix element (1.100):[

S2
ΛP
⊗ S2

ΛP
⊗ S3

F (M − Λ−1
P

2
pη)
]
ΓΛ

M(
−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη)

:=
[
S2

ΛP
⊗ S2

ΛP
⊗ 1I

]
f(Λ−1

P

2
pξ,Λ

−1
P

2
pη). (2.66)

We now exploit an important property of Lie groups, namely that every group element
may be represented as an exponential mapping of the Lie algebra:

[SΛP
⊗ SΛP

⊗ 1I] f(Λ−1
P pξ,Λ

−1
P pη) = exp(−i η(P ) · K̂)f(pξ, pη)[

S2
ΛP
⊗ S2

ΛP
⊗ 1I

]
f(Λ−1

P

2
pξ,Λ

−1
P

2
pη) =

[
exp(−i η(P ) · K̂)

]2
f(pξ, pη)

= exp(−2i η(P ) · K̂)f(pξ, pη) (2.67)

The parameter η, commonly called rapidity, is defined as follows:

η(P ) :=
P

P 0
=

−q

2
√
M2 +Q2/4

, (2.68)

where the last equality follows from the Breit frame kinematics (1.94). The operator
K̂ is an infinitesimal boost. The generators of the Lorentz group are given by the
following skew symmetric tensors (see e.g. [22]):

Jµν = i(xµ∂ν − xν∂µ) (2.69)

Sµν = i
4
[γµ, γν ]−, (2.70)

Because of skewness there are six independent quantities. J0i are the three generators
of boosts and the remaining three operators generate rotations (in fact they are the an-
gular momentum operators). In momentum space we have Jµν

p = i(pµ∂/∂pν−pν∂/∂pµ).

Sµν are the corresponding generators in Dirac space. The infinitesimal boost K̂ then
simply reads

K̂i = −J0i
pξ
− J0i

pη
+ S0i ⊗ 1I⊗ 1I + 1I⊗ S0i ⊗ 1I

= i
(
− p0

ξ
∂

∂pi
ξ
− pi

ξ
∂

∂p0
ξ
− p0

η
∂

∂pi
η
− pi

η
∂

∂p0
η

+ 1
2
αi ⊗ 1I⊗ 1I + 1I⊗ 1

2
αi ⊗ 1I

)
.

(2.71)

Inserting (2.67) back into the current matrix element (1.100) we find

〈PP |j0(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

]
exp(−2i η(P ) · K̂)

×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
ΓΛ

M(pξ,pη). (2.72)
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By using parity arguments we will now show that only even powers of η(P ) are con-
tained in this matrix element. Since the vertex functions describe bound states with
definite parity we have

PΓΛ
M(pξ, pη) = πΓΛ

M(pξ, pη), (2.73)

where π = ±1 depending on the bound state to be considered. The propagators are
even under the action of the parity operator:

P i

/p−m+ iε
P = γ0 i

(Pp)µγµ −m+ iε
γ0 =

i

/p−m+ iε
. (2.74)

And finally the boost generator K̂i is odd under parity. So in the end when expanding
the exponential in (2.72), terms containing odd powers of K and consequently odd
powers of η(P ) vanish due to parity.

Since the charge radius is proportional to the slope of the current matrix element
(2.72) at Q2 = 0, we are interested in the term of the expansion linear in Q2 and thus
— because |η(P )|2 is of order Q2 — linear in |η(P )|2. Writing the expansion explicitly
out up to this order we have:

〈PP |j0(0)|P 〉 = 2Mq − 3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] [
−2

3∑
i,j=1

ηi(P )ηj(P )K̂iK̂j

]

×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
ΓΛ

M(pξ,pη) +O(η4). (2.75)

By inserting this into (2.63), the charge radius then takes the form:

〈r2〉 = − 18

Mq

3∑
i,j=1

[
d

dQ2
ηi(P )ηj(P )

]
Q2=0

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

]
K̂iK̂j

×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
ΓΛ

M(pξ,pη). (2.76)

We want to integrate out the dependence on the relative energies now. Fortunately by
inspection of (2.33) and (2.71) we find a simple relation between Ai(M) and K̂i:

K̂i = i
M

2
Ai(M). (2.77)

This relation allows us to use appendix B where the integration is shown in detail.
Furthermore we may use relation (2.43) and subsequently replace the vertex functions
by Salpeter amplitudes to obtain:

〈r2〉 =
18

Mq

3∑
i,j=1

[
d

dQ2
ηi(P )ηj(P )

]
Q2=0

〈ΦΛ
M |K̂ ′iK̂ ′j q̂3|ΦΛ

M〉, (2.78)
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where

K̂ ′i := 1
2
(ω1 − ω2)i

∂
∂pi

ξ
+ (ω1 + ω2)i

∂
∂pi

η
+

ipi
1

2ω1
+

ipi
2

2ω2
(2.79)

is a tensor operator of rank 1, that is a vector operator. Consequently K̂ ′iK̂ ′j is a
Cartesian tensor operator of rank 2. As is well known, every Cartesian tensor may
be decomposed into irreducible representations of the rotation group SO(3). The
decomposition of a rank-2 tensor Tij is given by:

Tij = 1
3
tr(T )δij + 1

2
(Tij − Tji) + 1

2
(Tij + Tji − 2

3
tr(T )δij)

= T
[0]
ij + T

[1]
ij + T

[2]
ij .

(2.80)

According to their transformation properties under rotations, the first term belongs to
the one-dimensional scalar representation (T

[0]
ij ), the second to the three-dimensional

vector representation (T
[1]
ij ) and the last to the five-dimensional representation (T

[2]
ij )

of spin 2. Let us now address the question, which of these representations will vanish
due to selection rules in the scalar product in (2.78). Let us start with the vector
representation:

3∑
i,j=1

[
d

dQ2
ηi(P )ηj(P )

]
Q2=0

〈ΦΛ
M |12

(
K̂ ′iK̂ ′j − K̂ ′jK̂ ′i

)
q̂3|ΦΛ

M〉 = 0. (2.81)

This is so, because ηi(P )ηj(P ) is symmetric, whereas K̂ ′iK̂ ′j−K̂ ′jK̂ ′i is antisymmetric
under the exchange of indices. For the spin 2 representation we cite the Wigner-Eckart
theorem and in particular the triangularity relation which states, that:

〈j1|T [k]
q |j2〉 = 0 unless |j1 − j2| ≤ k ≤ j1 + j2. (2.82)

In our case j1 = j2 = 1
2

and k = 2, so the spin 2 representation in (2.80) gives no
contribution. Only the scalar representation contributes and we get from (2.80) and
(2.78):

〈r2〉 =
6

Mq

[
d

dQ2
η2(P )

]
Q2=0

〈ΦΛ
M |K̂′2q̂3|ΦΛ

M〉. (2.83)

Recalling the definition of the rapidity (2.68) we find:

d

dQ2
η2(P )

∣∣∣∣
Q2=0

=
d

dQ2

Q2

4(M2 +Q2/4)

∣∣∣∣
Q2=0

=
1

4M2
, (2.84)

which brings us to our final result:

〈r2〉 =
1

2Mq
〈ΦΛ

M |
3K̂′2

M2
q̂3|ΦΛ

M〉. (2.85)

Comparison of K̂ ′i (2.79) with A′′
i (2.45) shows that

3K̂′2

M2
q̂3 = r̂2, (2.86)
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where r̂2 is the operator defined in (2.47). Thus the result of this section (2.85) is
exactly the same as that of the previous one (2.46). Specifically what has been said
there about the symmetry under particle exchange also applies here and we may write
(2.85) in the usual symmetric form:

〈r2〉 =
1

2M
〈ΦΛ

M |
3∑

α=1

q̂α

2

[
Ω

M

(
i∇pα − R̂

)
+ h. c.

]2

|ΦΛ
M〉. (2.87)

2.4 Interpretation

Having derived an analytic expression for the mean square charge radius of a relativistic
three-fermion system with instantaneous interaction kernels, in two different ways, it
is worthwhile to give the result a meaningful physical interpretation.

So let us start with the factor 1/(2M) in (2.87) which takes into account the nor-
malization of the Salpeter amplitudes (1.60):

〈ΦΛ
M |ΦΛ

M〉 =

∫
d3pξ

(2π)3

d3pη

(2π)3

∑
a1a2a3

ΦΛ
M

∗
a1a2a3

(~pξ, ~pη)Φ
Λ
M a1a2a3

(~pξ, ~pη) = 2M. (2.88)

Hence this factor must be there to guarantee that the expectation value is independent
of the normalization of the Salpeter amplitudes. To interpret the operator between the
Salpeter amplitudes it is useful to note that i∇pα is the position operator in momentum
space:

i∇pα ≡ x̂α. (2.89)

Consequently the quantity R̂ as defined in (2.53) is the canonical relativistic center of
mass of a three-particle system:

R̂ =
1

Ω

3∑
α=1

ωαx̂α. (2.90)

For fermion momenta small compared to the their masses, i. e. |pα| � mα, we have
ωα → mα and thus the expression reduces to the well known nonrelativistic center of
mass:

R̂nr =
1

m1 +m2 +m3

3∑
α=1

mαx̂pα . (2.91)

The expression

i∇pα − R̂ = x̂α −
1

Ω

3∑
β=1

ωβx̂pβ
(2.92)

then corresponds to the position of particle α measured from the center of mass. Fig-
ure 2.1 illustrates the situation.

Another aspect of this structure is translational invariance. Consider a three-particle
bound state |P 〉 such as the Salpeter amplitudes with total four-momentum P . Space-
time translations of this state are generated by the four-vector operator P̂ = p̂1+p̂2+p̂3.
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Figure 2.1: O denotes the origin of the reference frame, R the position vector of the rela-
tivistic center of mass and x1, x2, x3 the position vectors of the three fermions.

Now consider the translated state

exp(−ia · P̂ )|P 〉 = exp(−ia · P )|P 〉 = exp(−ia · (p1 + p2 + p3))|P 〉. (2.93)

If we let (i∇pα − R̂) act on the translated state, we find:

(i∇pα − R̂) exp(−ia · P )|P 〉 =

(
i∇pα −

1

Ω

3∑
β=1

ωβi∇pβ

)
exp(−ia · P )|P 〉

= exp(−ia · P )

(
i∇pα −

1

Ω

3∑
β=1

ωβi∇pβ

)
|P 〉

+

(
a−

∑3
β=1 ωβ

Ω
a

)
|P 〉

= exp(−ia · P )(i∇pα − R̂)|P 〉. (2.94)

In other words (i∇pα − R̂) commutes with spatial translations and hence the matrix
element (2.87) is translationally invariant.

We also want to give a short comment about the hermiticity of the charge radius
operator. First attempts to derive this operator not in the Breit frame but in a frame,
where one particle is at rest showed that the final result would not be hermitian.
There were in addition to the hermitian operator of (2.87) anti-hermitian terms which
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originated from the asymmetric reference frame. Therefore the derivation was done in
the Breit frame resulting in a hermitian operator. This in the end also justifies the
choice of the derivatives in eq. (2.9), which might seem artificially complicated at first
sight.

2.5 Results

In this section we present numerical results for the charge radii of the baryon octet
obtained with our formula (2.87). We take the Salpeter amplitudes that were obtained
by calculating the baryon spectrum as described in refs. [6, 7] and introduce no further
parameters, i.e. the parameters are fixed by the spectrum. In this sense the numbers
that we show here are predictions. We start with the radii of proton and neutron and
compare them both to experiment as well as to form factor calculations which were
carried out in the same model. The same will be done for the hyperon radii, which are
however experimentally poorly covered.

2.5.1 Nucleon charge radii

For the proton we find a charge radius of√
〈r2〉proton = 0.86 fm (2.95)

in excellent agreement with the experimental value of 0.870± 0.008 fm from [15]. The
mean square charge radius of the neutron however results in

〈r2〉neutron = −0.206 fm2 (2.96)

and overestimates the empirical number of −0.1161± 0.0022 fm2 from [15] by 77 %.

To shed some light on this discrepancy we analyze the dependence of these numbers
on the range of the instanton force. The charge radii above where obtained by taking
the parameter set as given in table 1.1. It is however known that the mass spectrum
basically remains unchanged when one modifies the instanton cutoff parameter and si-
multaneously readjusts the instanton coupling strength. This assertion is demonstrated
in fig. 2.2 where the nucleon spectrum is shown with the parameters from table 1.1,
i. e. an instanton cutoff of 0.4 fm and a coupling strength of 136 MeV fm3 compared
to the spectrum at an instanton cutoff of 0.6 fm and a coupling strength of 263 MeV
fm3. The changes of the spectrum are marginal. Since the range of the instanton force
influences the amount of diquark correlations in the nucleon wave functions we might
however expect that the choice of the effective instanton range has a more pronounced
influence on the charge radii which are a direct measure of these correlations. Therefore
we have computed the charge radii of proton and neutron at different instanton cutoff
parameters and accordingly adjusted coupling strengths. Figure 2.3 shows the result-
ing effect on the charge radii for effective instanton ranges between 0.2 fm and 0.8 fm.
With increasing cutoff the absolute value of both mean square charge radii decrease by
approximately the same amount. The shift is about 0.2 fm2 between λ = 0.2 fm and
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Figure 2.3: The mean square charge radii of proton and neutron as a function of the instan-
ton cutoff parameter λ. Also shown are the experimental values as horizontal
lines.

λ = 0.8 fm. We have also included the empirical values taken from [15] in the figure.
Obviously, coincidence with the experimental proton charge radius is obtained at a
cutoff between 0.3 fm and 0.4 fm, whereas the neutron charge radius hits experiment
around a cutoff of 0.7 fm. So the choice of λ = 0.4 favors the proton charge radius
to be in much better agreement with experiment as compared to the neutron radius
whose smallness induces the large relative error of 77 % at that particular cutoff. It
is obvious that there exists a choice of the cutoff parameter where the relative errors
of both charge radii to their experimental values are of comparable size. Figure 2.4
shows the relative errors as a function of the cutoff. The plot impressively shows the
large relative variation of the neutron radius due to its smallness, whereas the effect
on the proton is moderate. We find that the errors of both radii with respect to the
empirical values, namely 14 % are the same at λ = 0.6 fm and an instanton coupling
strength of 263 MeV fm3. With this particular choice the proton mean square charge
radius amounts to 0.65 fm2 which corresponds to 0.81 fm and the neutron charge radius
becomes 0.132 fm2.

We have thus found a compromise in the parameter set which minimizes the “collec-
tive” error of both proton and neutron charge radius. Whether this choice of parameters
also has an effect on other electromagnetic observables of the nucleon such as magnetic
moments and form factors will also be studied in subsequent chapters. The present
status does not allow to draw the conclusion that the parameter set should be altered.

Comparison with form factor calculations

It worth to compare the proton (2.95) and neutron (2.96) charge radii with results that
arise from electric form factor calculations within the same model and the same set of
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Figure 2.4: The relative errors of the charge radii of proton and neutron with respect to
the experimental values as a function of the instanton cutoff parameter λ.

parameters as given by table 1.1. The authors of [11] quote 0.82 fm as the proton charge
radius which compares nicely with our value. When comparing these values it must
be noted however, that the Salpeter amplitudes and vertex functions are expanded in
a oscillator basis as briefly described in appendix D. We worked in a basis with 16
oscillator shells whereas the authors of [11] only used 12. A clear advantage of the
method presented in this work becomes apparent here. When extracting the charge
radius from a form factor the latter has to be known at several finite momentum
transfers to determine its slope. But at finite momentum transfer at least one of the
wavefunctions that enter the current matrix element has to be boosted which makes
the numerical computation more involved and consequently takes more time. With
our method none of the wavefunctions has to be boosted and thus all of the angular
integrations and all but one radial integration can be performed analytically which
results in a noticeable reduction of computation time. Thus the difference in the
dimensions of the oscillator basis of both approaches is explained. When we repeat our
computation with 12 oscillator shells the resulting value of 0.84 fm is already closer to
the form factor result.

Concerning the neutron the authors of [11] give a mean square radius of −0.11 fm2

in clear disagreement with our result. Consequently we did a re-computation of the
neutron electric form factor (see fig. 2.5) and re-analyzed the mean square radius (see
fig. 2.6). It must be stated first, that the form factor that we computed using 12
oscillator shells within this model (see fig. 2.5) is in perfect agreement with the one
obtained in [11], so the deviation can only be due to the procedure of how to extract its
slope at the photon point. A plot of the form factor at low Q2 (see fig. 2.6) reveals a
difficulty here. The form factor takes a non-zero value at Q2 = 0, although it should be
zero — the charge of the neutron. This discrepancy may be explained with numerical
inaccuracies, however it is surprising, that the values at different Q2 fit perfectly on a
straight line and do not scatter to a greater extent. If we stick to the definition (2.62) of
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Figure 2.5: The electric form factor of the neutron calculated within the Bethe-Salpeter
model using a basis size of 12 oscillator shells.

the charge radius as the slope of the form factor at zero momentum transfer and ignore
the aforementioned problem, the radius that we extract amounts to −0.224 fm2. This
has to be compared to the value that we calculate using a basis size of 12 oscillator
shells, namely −0.188 fm2. Clearly both values are now in better coincidence. The
remaining deviation may be due to numerical uncertainties, which undoubtedly spoil
the predictability of small quantities like the neutron charge radius. The reanalysis
of the form factor however showed that the extraction of the neutron radius in [11] is
erroneous.

2.5.2 Hyperon charge radii

In addition to the nucleon charge radii we have also computed those of the strange
octet baryons, although empirical values are naturally hard to find here. In this spirit
the hyperon radii should be mainly considered as predictions. Table 2.1 lists the
results for the hyperons. The Σ− charge radius has been measured by the SELEX
collaboration [23] by elastic scattering of Σ− off electrons in a space-like Q2 regime
of 0.035 GeV2 − 0.105 GeV2. The charge radius can be extracted from the differential
cross section which up to order m2

e/(s−M2
Σ−) (s being the square of the center of mass

energy) takes the form:

dσ

dQ2
=

4πα2

Q4

(
1− Q2

Q2
max

)
F 2(Q2), (2.97)

where Qmax depends on the beam momentum. F (Q2) is a combination of the electric
and magnetic form factor both of which are then parameterized by a dipole shape in
which the mean square charge radius enters as a parameter. By fitting to the measured
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Figure 2.6: The electric form factor of the neutron at five different values of low momentum
transfer to extract its slope at Q2 = 0.

Q2-distribution the radius can be extracted. The authors of [23] give a value of

〈r2〉Σ− = (0.61± 0.12(stat.)± 0.09(syst.))fm2, (2.98)

whose statistical and systematical errors make it compatible with our result of 0.42 fm2.

In much the same way the Σ−-charge radius has been measured by the WA89 hyperon
beam experiment at CERN [24] by elastically scattering high energy Σ− off electrons in
carbon and copper targets. The charge radius thus extracted from the Q2-distribution
of the reaction leads to a charge radius of:

〈r2〉Σ− = (0.91± 0.32(stat.)± 0.4(syst.))fm2. (2.99)

The large systematical and statistical errors in both analysis call for much improved
experiments. Also the measurement of other hyperon charge radii would be advanta-
geous in the future.

Comparison with form factor calculations

The hyperon charge radii have also been extracted from electric form factors by the
authors of [12] within the same model extended to also include strange form factors. In
table 2.1 these results are compared with ours. There are larger discrepancies especially
with the neutral hyperons culminating in a large deviation of the Λ-charge radius. It
should be noted however that the charge radii of the neutral baryons are anyway small
and the computation of moments of a charge distribution with no net charge may pose
numerical problems, especially when extracting it from a form factor calculation which
is prone to numerical errors as shown in the previous subsection in case of the neutron
and has also been discussed with the authors of ref. [12].
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baryon this calculation Form factors [12]

[fm2] [fm2]

Λ 0.0086 0.038

Σ+ 0.64 0.79

Σ0 0.11 0.15

Σ− 0.42 0.49

Ξ0 0.075 0.14

Ξ− 0.40 0.47

Table 2.1: Charge radii of the hyperons. The last column shows the results from form factor
calculations performed within the same model [12].

2.5.3 The nonrelativistic limit

To underline the importance of a relativistic treatment of baryons we want to study the
influence of relativistic effects on the charge radii. We therefore take the nonrelativistic
limit of the relativistic expression (2.87) by setting ωi → mi:

〈r2〉nr =
1

〈ΦΛ
M |ΦΛ

M〉
〈ΦΛ

M |
3∑

α=1

q̂α

[
i∇pα −

∑3
β=1mβ i∇pβ

m1 +m2 +m3

]2

|ΦΛ
M〉. (2.100)

This expression is well known. One would write it down in nonrelativistic quantum
mechanics. To demonstrate relativistic effects we computed the baryon octet charge
radii with this expression taking the same wavefunctions as in the preceding sections.
The results are compiled in table 2.2 together with the relativistic results and the
ratio between both. Note that this calculation was performed using a basis size of
12 oscillator shells, which is sufficient to show the effect but explains the deviation
from the results in subsections 2.5.1 and 2.5.2. The nonrelativistic radii are only about
half the size of their relativistic counterparts, which emphasizes the importance of a
relativistic treatment of baryons.

Comparison with other models

In table 2.3 we compare our results to other models or approaches to charge radii.
The values in the third column stem from a calculation performed in fourth order in
relativistic chiral perturbation theory with infrared regularization (see ref. [25]). Here,
the experimental radii of proton and neutron have been taken to fit two low energy
constants, such that the radii of the hyperons can be considered as predictions. The
errors are obtained from the uncertainty in the theoretical description of the magnetic
moments, which have also been used to fix low energy constants. They do however
not contain errors that are due to higher order corrections. In the fourth column we
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baryon rel. nonrel. nonrel./rel.

[fm2] [fm2] [%]

proton 0.71 0.3 42

neutron −0.185 −0.08 43

Λ 0.0086 0.002 23

Σ+ 0.64 0.3 47

Σ0 0.11 0.043 36

Σ− 0.42 0.22 52

Ξ0 0.075 0.044 59

Ξ− 0.40 0.26 65

Table 2.2: Charge radii in the nonrelativistic limit (3rd column). Also shown are the rela-
tivistic results (2nd column) and the ratios (4th column) between the nonrela-
tivistic and relativistic treatment. The analysis was performed using a basis size
of 12 oscillator shells

have cited the charge radii from a constituent quark model (CQM) that incorporates
interactions induced by Goldstone boson exchange (GBE) taken from ref. [26].

baryon this calculation χPT [25] GBE-CQM [26]

[fm2] [fm2] [fm2]

proton 0.71 0.717 0.82

neutron −0.185 −0.113 −0.13

Λ 0.0086 0.11± 0.02 0.03

Σ+ 0.64 0.60± 0.02 1.13

Σ0 0.11 −0.03± 0.01 0.20

Σ− 0.42 0.67± 0.03 0.72

Ξ0 0.075 0.13± 0.03 −0.19

Ξ− 0.40 0.49± 0.05 0.72

Table 2.3: Charge radii computed in the Bethe-Salpeter framework compared to other mod-
els.
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2.6 Summary

We have presented two different derivations for an analytic expression of the charge
radius in the Bethe-Salpeter framework, both resulting in the same formula. In the
first approach we started from a very basic definition of the charge radius of a charge
distribution taken from classical electrodynamics. By inserting the time component of
the current matrix element derived in chapter 1 we made a connection to the Bethe-
Salpeter formalism. After evaluating the Laplacian of the current matrix element and
taking the static limit, we integrated out the dependence on the relative energy vari-
ables. Symmetrizing the resulting expression over the three fermions, we arrived at the
final expression, which turned out to be an expectation value with respect to Salpeter
amplitudes. Before interpreting this result, we followed the second approach, which
was based on the definition of the charge radius as the slope of the electric form factor
at vanishing four-momentum transfer squared. We first showed that this definition
is equivalent to our first approach in a generic way. Following this definition we had
to find the Q2-dependence of the current matrix element, which was accomplished by
expanding the boost of the incoming Salpeter amplitude as an exponential. It was then
easy to compute the first derivative with respect to Q2 and to follow the same steps of
the first approach to end up with the identical expression. The interpretation of the
result revealed an interesting physical structure. We obviously found the relativistic
generalization of the nonrelativistic charge radius operator. The fermion masses are
replaced by the relativistic kinetic energies and the center of mass motion is subtracted.
In addition an overall relativistic weight factor multiplies the operator. These features
appeared naturally, nothing was inserted by hand.

To test this analytic result we turned to the quark model described in chapter 1 and
computed the charge radii of the complete baryon octet, taking the Salpeter amplitudes
as they emerged from the computation of the baryon mass spectra, i.e. no further
parameters were introduced. The proton mean square charge radius fit the empirical
value very accurately, whereas the neutron charge radius was to large by almost 80%.
To clarify this observation we studied the dependence of these numbers on the size of
the instanton cutoff parameter. Although it was known that changing this parameter
while readjusting the instanton coupling accordingly affects the mass spectrum only
slightly, it was not clear that the same is true for the charge radii. Indeed we found
a strong dependence of the neutron charge radius on the cutoff size and moderate
dependence of the proton charge radius. Since the neutron radius is anyway small this
observation is not astonishing. It was then argued that there is a choice of the instanton
parameters which minimizes the error in the neutron charge radius while making the
proton charge radius deviate from the empirical value by about a few percent. This
parameter set will be tested in a subsequent chapter also on the nucleon magnetic
moments and form factors. We then moved on to compare our results with form factor
calculations that were carried out in the same model. We found a large discrepancy
in the neutron form factor. After reproducing the form factor calculation and the
extraction of the charge radius we could show, that there was indeed an error in the
original analysis of the form factor. The discrepancy was thus removed. To underline
the importance of a relativistic treatment of baryon properties, we also computed the
nonrelativistic limit of the obtained operator with unaltered Salpeter amplitudes. The
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resulting charge radii where to small by about a factor of two. Our results on the
hyperon charge radii have a more predictive character since conclusive experimental
results do not exist at present. The comparison with form factor calculations shows
deviations which might originate from numerical instabilities. The deviating values are
anyway very small.

To conclude this chapter, we note that the analytic derivation of the charge radius in
the context of the Bethe-Salpeter formalism has lead to new insights into the structure
of this observable, which could never be obtained from a form factor calculations alone.
The result found its successful application with the computation of the baryon octet
charge radii.



Chapter 3

Magnetic moments

The new approach to static properties of relativistic three-fermion systems being suc-
cessful in the case of charge radii, it is worthwhile extend it to magnetic moments.
Since this has already been done in ref. [16] however starting from the energy of a
magnetic dipole in a magnetic field, we take a different approach starting from form
factors. This has already proven to be a suitable starting point in the preceding chapter
on charge radii. As was done there, we also apply the analytic results of this chapter
to the computation of baryon magnetic moments.

3.1 Introduction and overview

The magnetic moment encodes information about the response of a classical or quantum
mechanical system to an applied external magnetic field. Classically a charge q with
mass m that is forced on a circular trajectory produces a magnetic moment that is
given by:

µ =
q

2m
L, (3.1)

where L is its angular momentum. The energy of this magnetic dipole in a magnetic
field is given by E = −µ ·B. If we make the transition to quantum mechanics, the
angular momentum in eq. (3.1) is promoted to an operator according to the corre-
spondence principle and the magnetic moment is given by the expectation value of the
operator (3.1) with respect to Schrödinger wavefunctions. If we also take the spin of
the particle into account, we have to add a term to the orbital angular momentum L
that represents the interaction of the particles spin with external magnetic fields. This
term is given for free spin-1

2
particles by 2S, where S is the canonical spin operator.

Since the spin is a genuinely relativistic quantity, the orbital angular momentum as de-
fined above however is not, this procedure constitutes no real relativistic generalization.
On the other hand in field theoretic descriptions one defines the magnetic moment as
the value of the magnetic form factor at vanishing momentum transfer squared of the
probing photon. This approach however clouds the mechanisms that result in the total
magnetic moment. In particular it does not distinguish between contributions of the
orbital angular momentum and the intrinsic spins of the constituents that make up a
bound state. As with the charge radius, we seek for a synthesis of both approaches. In

61
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ref. [16] the magnetic moment of a bound state in a field theoretic description based
on the Bethe-Salpeter equation has successfully been expressed as an expectation value
with respect to Salpeter amplitudes. The resulting operator could be assigned a natu-
ral physical interpretation. The starting point for the derivation of this operator in ref.
[16] was the comparison of the energy of a magnetic dipole in an external magnetic field
E = −µ ·B with the interaction energy Eint =

∫
d3x〈ψ|Hint(x)|ψ〉 from the coupling

of an electromagnetic current with an external field Hint(x) = jµ(x)Aµ(x).

In the present work we want to give a different derivation that starts with the mag-
netic form factor. As already mentioned, in this context the magnetic moment is
defined as the value of this form factor at the photon point. As we will show in section
3.2, care must be taken when evaluating the limit Q2 → 0, since the current matrix
element that enters the form factor is divided by

√
Q2. We isolate the Q2-dependence

by expanding the boost of the incoming vertex function as an exponential, utilizing the
results of the charge radius derivation. Because of parity the lowest order term of this
expansion is of order

√
Q2 and the static limit is well defined. After the relative energy

integration, the expression is made an expectation value with the help of the Wigner-
Eckart theorem. When symmetrizing over the three fermions we exactly get the result
of ref. [16]. The expression turns indeed out as the relativistic generalization of the
nonrelativistic prescription discussed above, i.e. the sum of orbital angular momentum
corrected by the center of mass motion and a spin contribution with fermion masses
replaced by the relativistic single-particle energies. Since an extensive interpretation
of this result has already been given there, we restrict ourselves to a short description
of its prominent features in section 3.2.1.

We also want to make an application to magnetic moments of baryons, whose mass
spectra have been calculated in a relativistic quark model based on the Bethe-Salpeter
equation in refs. [6, 7]. A numerical implementation of the analytic result has been
given for the baryon octet in ref. [16], however with a wrong strange/non-strange
instanton coupling, which spoiled the result for the hyperon magnetic moments. We
therefore show the correct results in section 3.3 and also compare them to form factor
calculations which recently have been performed within the same model. We study
relativistic effects by computing the expectation value of the nonrelativistic limit of
the fully relativistic operator. An important advantage of the method presented here
over the form factor approach is the fact that the decomposition into orbital angular
momentum and spin contributions to the net magnetic moment is preserved, which
allows for a systematical study of these contributions. We will see that the overwhelm-
ing part stems from the fermion spins, at least for the ground states. This result is
however only true if we work with constituent quark masses. When making the quark
masses nearly as small as the current masses and at the same time adjusting the cou-
pling strengths accordingly to keep the ground states at their empirical values, both
contributions become in fact comparable in magnitude. Since efforts are being made to
measure also magnetic moments of excited nucleon states, we contribute some selected
predictions here. In the same spirit, our results on the decuplet magnetic moments
which close this section are sole predictions.
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3.2 From magnetic form factors to magnetic mo-

ments

To derive magnetic moments from form factors in an analogous way as the charge
radius in chapter 2 we start from the parameterization (2.56) of the electromagnetic
vector current:

〈PP, λ′|j+(0)|P, λ〉 = e
[
F1(Q

2) + F2(Q
2)
]
ūλ′(PP )γ+uλ(P ), (3.2)

where the “+”-component of the current is defined by:

j+(0) = j1(0) + ij2(0). (3.3)

Note that this definition deviates from the definition of a spherical tensor operator of
rank 1 shown in the appendix (C.2). The baryon makes a spin flip of course so we have
λ′ 6= λ. The spin polarizations will be fixed later. Evaluation of the spinorial part of
this equation yields:

ūλ′(PP )γ+uλ(P ) =
(
ξ†λ′
√
σ(P ), ξ†λ′

√
σ̄(P )

)
·
(

0 −σ+

σ+ 0

)
·
( √

σ(P )ξλ√
σ̄(P )ξλ

)
= 4
√
|P |2 = 2

√
Q2

(3.4)

The last line can be shown by introducing a specific orthonormal spin basis like ξλ′ =
(1, 0) and ξλ = (0, 1) and using the explicit representation for the square root of σ(P ).
Together with the definition of the magnetic Sachs form factor (2.61a) we then get
from (3.2) the relation

GM(Q2) =
〈PP, λ′|j+(0)|P, λ〉

2
√
Q2

, (3.5)

which expresses the magnetic form factor in terms of spatial components of the current
matrix element. The magnetic moment of a baryon is defined as the value of the
magnetic form factor at the photon point:

µ := GM(Q2 = 0). (3.6)

Because of the denominator in (3.5) taking this limit requires some care. We need to
know the Q2-dependence of the current matrix element rather precisely. But first let
us choose the three momentum transfer to point in the 3-direction from now on:

q :=

 0
0
q3

 =
√
Q2 e3. (3.7)

As is obvious from the definition of P̂ (1.102) we then have P̂+ = 0 so that the current
matrix element (1.107) now becomes:

〈PP |j+(0)|P 〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] [
S2

ΛP
⊗ S2

ΛP
⊗ S2

ΛP

]
×
[
1I⊗ 1I⊗ q̂γ+S3

F (M − Λ−1
P

2
pη)
]
ΓΛ

M(
−−−−→
Λ−1

P

2
pξ,
−−−−→
Λ−1

P

2
pη) (3.8)
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To extract the Q2-dependence of this expression we express the boost as an exponential
just like in the previous chapter on charge radii:

〈PP, λ′|j+(0)|P, λ〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M,λ′(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

]
exp(−2i η(P ) · K̂)

×
[
1I⊗ 1I⊗ q̂γ+S3

F (M − pη)
]
ΓΛ

M,λ(pξ,pη). (3.9)

This time however the boost generator also acts on the Dirac space of the third quark
as can be seen from the current matrix element (3.8):

K̂i = i
[
−p0

ξ
∂

∂pi
ξ
− pi

ξ
∂

∂p0
ξ
− p0

η
∂

∂pi
η
− pi

η
∂

∂p0
η

+ 1
2

(
αi ⊗ 1I⊗ 1I + cycl. perm.

)]
(3.10)

Since γ+ is odd under parity it follows that terms with even powers of η(P ) from the
exponential vanish, if we again assume that the vertex functions represent states with
definite parity. This leads to the following expression:

〈PP, λ′|j+(0)|P, λ〉 = −3

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M,λ′(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] [
−2i η(P ) · K̂

]
×
[
1I⊗ 1I⊗ q̂γ+S3

F (M − pη)
]
ΓΛ

M,λ(pξ,pη) +O(η3). (3.11)

Inserting this into (3.5) and taking the limit Q2 → 0 then shows that terms with
O(η) > 1 vanish because η(P ) is of order

√
Q2. Concerning the first order term we

find with the special choice of the three momentum transfer (3.7) and the definition of
the rapidity (2.68):

lim
Q2→0

η(P )√
Q2

= lim
Q2→0

−
√
Q2

2
√
M2 +Q2/4

√
Q2

e3 =
−1

2M
e3. (3.12)

Therefore the static limit can safely be taken and we find for the magnetic moment:

µ = − 3

4M2

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄Λ

M,λ′(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

]
× iK̂3

[
1I⊗ 1I⊗ q̂γ+S3

F (M − pη)
]
ΓΛ

M,λ(pξ,pη). (3.13)

We inserted a factor 1/2M in this expression since the wavefunctions are normalized
to 2M as can be seen from (1.60). As was shown in the previous chapter, there exists
a relation (2.77) between K̂i and Ai which allows us to use the results of appendix B
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regarding the integration over the relative energies:

µ =
3

8M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M,λ′(pξ,pη)

{
Λ+++

(M − Ω)
[γ0 ⊗ γ0 ⊗ 1I]A3

+[1I⊗ 1I⊗ q̂α+]
1I⊗ 1I⊗ Λ+

(M − Ω)

+
Λ−−−

(M + Ω)
[γ0 ⊗ γ0 ⊗ 1I]A3

−[1I⊗ 1I⊗ q̂α+]
1I⊗ 1I⊗ Λ−

(M + Ω)

}
[1I⊗ 1I⊗ γ0]ΓΛ

M,λ(pξ,pη),

(3.14)

with

Ai
± := − 2

M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
+ 1

2
(αi ⊗ 1I⊗ 1I + cycl. perm.)

]
. (3.15)

We ultimately want to replace the vertex functions in (3.14) by Salpeter amplitudes.
First by making use of the anti-commutator {γ0, αi}+ = 0, we obtain:

µ =
3

8M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M,λ′(pξ,pη)

{
Λ+++

(M − Ω)
B3

+[1I⊗ 1I⊗ q̂α+]
1I⊗ 1I⊗ Λ+

(M − Ω)

+
Λ−−−

(M + Ω)
B3
−[1I⊗ 1I⊗ q̂α+]

1I⊗ 1I⊗ Λ−

(M + Ω)

}
[γ0 ⊗ γ0 ⊗ γ0]ΓΛ

M,λ(pξ,pη), (3.16)

where Bi
± originates from Ai

± by reversing the sign of 1
2
(αi⊗ 1I⊗ 1I) and 1

2
(1I⊗αi⊗ 1I):

Bi
± := − 2

M

[
± 1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η

− 1
2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I− 1I⊗ 1I⊗ αi)

]
. (3.17)

Next we complete 1I⊗ 1I⊗Λ± to eventually obtain a Salpeter projector. We make use
of the projector structure of the vertex functions, namely that they only contain pure
energy components:

µ =
3

8M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M,λ′(pξ,pη)

{
Λ+++

(M − Ω)
C3

+[1I⊗ 1I⊗ q̂α+]
Λ+++

(M − Ω)

+
Λ−−−

(M + Ω)
C3
−[1I⊗ 1I⊗ q̂α+]

Λ−−−

(M + Ω)

}
[γ0 ⊗ γ0 ⊗ γ0]ΓΛ

M,λ(pξ,pη). (3.18)

We obtain Ci
± from Bi

± by applying the commutation rule (2.43):

Ci
± := − 2

M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
∓ pi

1

ω1

∓ pi
2

ω2

+ 1
2
1I⊗ 1I⊗ αi

]
. (3.19)

We still cannot replace the vertex functions because of the changing signs in Ci
±. So

(2.42) has to be applied to commute Λ±
3 with α+ and get an additional changing sign.
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Before we can do so however, Λ±
3 has to be commuted with the derivative terms of Ci

±:

µ =
3

8M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M,λ′(pξ,pη)

{
Λ+++

(M − Ω)
[1I⊗ 1I⊗ q̂(D3

+Λ+ + E3)α+]
Λ+++

(M − Ω)

+
Λ−−−

(M + Ω)
[1I⊗ 1I⊗ q̂(D3

−Λ− + E3)α+]
Λ−−−

(M + Ω)

}
[γ0 ⊗ γ0 ⊗ γ0]ΓΛ

M,λ(pξ,pη), (3.20)

We get Di
± and Ei from Ci

± by applying the derivatives in Ci
± to Λ±(p3):

Di
± := − 2

M

[
± 1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
∓ pi

1

ω1

∓ pi
2

ω2

∓ ω1 + ω2

2ω2
3

pi
η

]
(3.21)

Ei :=
ω1 + ω2 + ω3

Mω3

(1I⊗ 1I⊗ αi). (3.22)

Finally by applying (2.42) we obtain the desired result:

µ =
3

2M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ̄Λ

M,λ′(pξ,pη)

[
Λ+++

(M − Ω)
+

Λ−−−

(M + Ω)

]

× iF 3+q̂3

[
Λ+++

(M − Ω)
+

Λ−−−

(M + Ω)

]
[γ0 ⊗ γ0 ⊗ γ0]ΓΛ

M,λ(pξ,pη), (3.23)

with the tensor operator:

F ij :=
1

2M

{
pj

3

2ω3

[
1
2
(ω1 − ω2) i ∂

∂pi
ξ

+ (ω1 + ω2) i ∂
∂pi

η
− h. c.

]
+
ω1 + ω2 + ω3

2ω3

(
1I⊗ 1I⊗ iαiαj

)
+
ω1 + ω2

2ω2
3

pi
3p

j
3

}
(3.24)

Note that the “+”-component in the second index of F ij in (3.23) has to be taken in
the sense of (3.3). Before we analyze this expression further let us replace the vertex
functions in (3.23) by using the relations (A.13) and (A.14) to arrive at the compact
notation:

µ =
3

2M

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
ΦΛ

M,λ′
†
(pξ,pη)F 3+q̂3Φ

Λ
M,λ(pξ,pη)

=
3

2M
〈ΦΛ

M,λ′|F 3+q̂3|ΦΛ
M,λ〉

(3.25)

Since F ij is a product of two vector operators it constitutes a Cartesian tensor operator
of rank 2, which can be decomposed into irreducible representations of the rotation
group according to (2.80). Just as we did when deriving the charge radius, we may
show that the contributions of certain representations vanish. The scalar representation
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gives no contribution because of the m-selection rule of the Wigner-Eckart theorem,
which states that

〈j1,m1|F [k]
q |j2,m2〉 = 0 unless m1 −m2 = q. (3.26)

In our case m1 = 1
2
, m2 = −1

2
and q = 0. The spin 2 representation vanishes for spin-1

2

particles because of the triangularity relation:

〈1
2
, 1

2
|T [2]

q |12 ,−
1
2
〉 = 0. (3.27)

We are thus left with the antisymmetric representation belonging to spin 1 which we
may write as a vector product:

F 3+[1]
=
(
F 31 + iF 32

)[1]
= 1

2

(
F 31 − F 13 + iF 32 − iF 23

)
= 1

2

3∑
j,k=1

(
ε2jkF

jk − iε1jkF
jk
)

= i√
2

3∑
j,k=1

ε+jkF
jk

(3.28)

where in the last line it is understood to take the spherical “+1”-component of the
vector product as defined in eq. (C.2). Note that since F ij is contracted with the skew
tensor εijk, the last term in (3.24) that is proportional to pi

3p
j
3 vanishes. Inserting (3.28)

back into (3.25) and choosing the spin projections λ′ = 1
2

and λ = −1
2

then yields:

µ =
3

2M
〈ΦΛ

M,1/2| 1√
2

3∑
j,k=1

ε+jkF
jkq̂3|ΦΛ

M,−1/2〉. (3.29)

By using the Wigner-Eckart theorem (C.10):

〈1
2
, 1

2
|T [1]

+1|12 ,−
1
2
〉 =

(
1
2

1 1
2

−1
2

1 −1
2

)
〈1

2
||T [1]||1

2
〉

= −
√

2

(
1
2

1 1
2

−1
2

1 1
2

)
〈1

2
||T [1]||1

2
〉

= −
√

2〈1
2
, 1

2
|T [1]

0 |12 ,
1
2
〉,

(3.30)

we remove the spin-flip and turn the expression in an expectation value:

µ = − 3

2M
〈ΦΛ

M,1/2|
3∑

j,k=1

ε3jkF
jkq̂3|ΦΛ

M,1/2〉, (3.31)

To simplify (3.24) further we replace the relative coordinates by single-particle co-
ordinates according to (2.52):

F ij :=
1

2M

{
1

2

[
− Ω

ω3

pj
3

(
i ∂
∂pi

3
− 1

Ω

3∑
α=1

ωαi ∂
∂pi

α

)
− h. c.

]
+

Ω

2ω3

(
1I⊗ 1I⊗ iαiαj

)}
.

(3.32)
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Since in the expectation value (3.31) F jk is contracted with the skew symmetric tensor
εijk it is suggestive to define:

L̂i
Rα := εijkp

k
α

(
i ∂

∂pj
α
− R̂j

)
. (3.33)

Furthermore we identify the spin operator S = 1
2
Σ in the following contraction:

3∑
j,k=1

εijkα
jαk = 2i

(
σi 1I
1I σi

)
= 2iΣi. (3.34)

We then have:

3∑
j,k=1

εijkF
jk = − Ω

4Mω3

(
L̂3

Ri + 1I⊗ 1I⊗ Σi + h. c.
)
. (3.35)

This expression is still not symmetric in the three quarks, so in the final step we
symmetrize over the three quarks in the same way as we did already when deriving the
charge radius:

µ =
〈ΦΛ

M |µ̂|ΦΛ
M〉

2M
, (3.36)

where we defined the magnetic moment operator µ̂ which follows from symmetrizing
(3.35):

µ̂ =
1

2

[
Ω

M

3∑
α=1

q̂α
2ωα

(
L̂3

Rα + 2S3
α

)
+ h. c.

]
. (3.37)

with the single-particle spin operators:

S1 := Σ/2⊗ 1I⊗ 1I

S2 := 1I⊗Σ/2⊗ 1I (3.38)

S3 := 1I⊗ 1I⊗Σ/2.

3.2.1 Interpretation

An interpretation of the operator µ̂ as defined in (3.37) has already been given in ref.
[16]. We therefore want to mention its features in brevity here. As has already been
shown in the interpretation of the charge radius, the term

i∇pα − R̂ = x̂α −
1

Ω

3∑
β=1

ωβx̂pβ
(3.39)

corresponds to the position of particle α as measured from the center of mass of the
system. One is thus naturally led to interpret L̂Rα defined in (3.33) as the angular
momentum of the three-quark system with the correct center of mass motion removed.
As already mentioned S1, S2 and S3 are single-particle spin operators. We therefore
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conclude that the magnetic moment of a baryon can be decomposed in contributions
of the quark angular momenta and their spins:

〈µ〉 = 〈µL〉+ 2〈µS〉, (3.40)

with 〈µL〉 being the contribution of the angular momenta of the three quarks:

〈µL〉 :=
1

2M
〈ΦΛ

M,1/2|
1

2

(
Ω

M

3∑
α=1

q̂α
2ωα

L̂3
Rα + h. c.

)
|ΦΛ

M,1/2〉 (3.41)

and 〈µS〉 the contribution of the quark spins:

〈µS〉 :=
1

2M
〈ΦΛ

M,1/2|
Ω

M

3∑
α=1

S3
α |ΦΛ

M,1/2〉. (3.42)

Such a decomposition into spin and angular momentum contributions is not possible
by extracting the magnetic moment from a form factor. It is thus another benefit of
the approach to static properties presented in this work. In (3.37) we discover the same
relativistic weight factor Ω/M as has already been found in the charge radius. When
taking the nonrelativistic limit, the operator µ̂ (3.37) becomes:

µ̂n.r. =
3∑

α=1

q̂α
2mα

[
ε3jkp

j
α

(
i ∂
∂pk

α
− 1

M

3∑
β=1

mβi ∂
∂pi

β

)
+ 2S3

α

]
. (3.43)

Except for the center of mass correction this expression is well known. The nonrela-
tivistic magnetic moment operator stemming from the orbital motion of a particle with
charge q and mass m is given by:

µ̂Ln.r. =
q

2m
L̂3, (3.44)

where L̂ is the angular momentum operator. The spin of a nonrelativistic particle
generates a magnetic moment that is given by:

µ̂Sn.r. =
q

m
σ3. (3.45)

In both cases the axis of quantization has been chosen to point in the 3-direction.
We are thus led to conclude that we have found the relativistic generalization of the
nonrelativistic magnetic moment operator.

3.3 Results on the baryon magnetic moments

On the basis of the theoretical considerations of the preceding section we present in this
section numerical results for the baryon magnetic moments of both the octet and the
decuplet. Again we work with the model described in section 1.5. The model param-
eters are fixed by the spectra and no further parameterization is adopted. We begin
with the octet and compare our results to experiment and form factor calculations. For
the decuplet one has to consider mixed energy contributions, which have been derived
in ref. [16] but not numerically implemented there. We show that the inclusion of
these terms enlarge the magnetic moments by roughly a factor of two. Unfortunately
the empirical situation here is very poor.
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3.3.1 Baryon octet magnetic moments

The magnetic moments of the octet baryons have already been computed in the frame-
work presented here in [16], however mistakenly without including the instanton force
coupling strange to non-strange quarks. It is appropriate to give the correct results
here which are presented in table 3.1. A short discussion on the numerical implemen-

baryon experiment [15] this calculation form factors [11, 12]

[µ/µN ] [µ/µN ] [µ/µN ]

p 2.793 2.77 2.74

n −1.913 −1.71 −1.70

Λ −0.613± 0.004 −0.61 −0.61

Σ+ 2.458± 0.01 2.51 2.47

Σ0 − 0.75 −

Σ− −1.16± 0.025 −1.02 −0.99

Ξ0 −1.25± 0.014 −1.33 −1.33

Ξ− −0.6507± 0.0025 −0.56 −0.57

Table 3.1: Baryon octet magnetic moments. Nucleon magnetic moments are known up to
the 7th digit.

tation and the stability of these results can be found in appendix D and ref. [16].
The nucleon magnetic moments were computed using a basis size of 18, the hyperons
using 14 oscillator shells. The limitation on these numbers comes essentially from the
available computer main memory. The smaller number with the hyperons is due to
their higher dimensional spin/flavor basis. The experimental data is reproduced with
an average accuracy of roughly ten percent. The worst match is seen with the Ξ− with
a deviation of 14 %. In total the results are in good agreement with experiment.

In the preceding chapter on charge radii we found that by varying the instanton
cutoff parameter simultaneously with the coupling strength we could describe both the
proton and the neutron charge radius with a relative error of 14 % compared to the
empirical values, leaving at the same time the spectrum largely unaltered. With the
“standard” parameter set as listed in table 1.1 which also accounts for the magnetic
moments as given by table 3.1 only the proton radius could be described well, the
neutron radius being much too big. In the following we analyze the effect of a varied
cutoff on the magnetic moments. We computed the nucleon magnetic moments with
the “new” parameters, i.e. an instanton cutoff parameter of 0.6 fm and a coupling
strength of 263 MeV fm3. For the proton we find µp = 2.75µN which is slightly worse
than the value obtained with the standard parameters (see table 1.1). For the neutron
we find µn = −1.73µN which is slightly better. One is led to conclude that the nucleon
magnetic moments hardly change with a variation in the cutoff parameter and are
almost insensitive to the effective instanton size in contrast to the charge radii. Since
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we neither see an improvement in the magnetic moments nor a degradation a judgment
in favor of the “new” parameter set cannot be given by this analysis.

Comparison with form factor calculations

The nucleon magnetic moments have also been computed within this quark model and
using the same parameters by the authors of [11]. The hyperon magnetic moments
have been computed by the authors of [12]. As can be seen from the last column of
table 3.1 the coincidence with the values from these calculations is very good for both
the nucleon and the hyperons.

Nonrelativistic limit

Also for the magnetic moments we want to demonstrate the effect of a relativistic
approach. We took the same Salpeter amplitudes as before but this time computed
the expectation value of the nonrelativistic limit of the operator (3.36), which is given
by eq. (3.43). Table 3.2 compares the results of the fully relativistic computation with
the nonrelativistic limit. The effect is less pronounced than with the charge radius,

baryon 〈µ̂n.r.〉 〈µ̂〉 〈µ̂〉n.r./〈µ̂〉

[µ/µN ] [µ/µN ] [%]

p 2.41 2.79 86

n −1.52 −1.71 89

Λ −0.48 −0.61 79

Σ+ 2.56 2.51 102

Σ0 0.74 0.75 99

Σ− −1.08 −1.02 98

Ξ0 −1.35 −1.33 102

Ξ− −0.42 −0.56 75

Table 3.2: Comparison between the magnetic moments computed fully relativistically and
in the nonrelativistic limit. The last column shows the ratio between both com-
putations.

nevertheless it amounts to a good more than ten percent for the nucleon magnetic
moments and 25 % for the Ξ− magnetic moment. For the Σ+ and Ξ0 it curiously has a
slightly converse impact, i.e. their magnetic moments become bigger in magnitude in
the nonrelativistic limit.
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Spin and orbital angular momentum decomposition

As has already been shown in the derivation of the magnetic moment operator, the
magnetic moment may be decomposed in spin and orbital angular momentum contri-
butions according to:

〈µ〉 = 〈µL〉+ 2〈µS〉, (3.46)

with 〈µL〉 as defined in (3.41) being the contribution of the angular momenta of the
three quarks and 〈µS〉 as defined in (3.42) the contribution of the quark spins. This
decomposition enables us to carry out a numerical analysis of the magnitudes of both
contributions — spin and angular momentum — within the model described in section
1.5. Note that such a study is not possible by relying on form factor calculations because
there only the total magnitude of the magnetic moment can be extracted. Table 3.3
lists the contributions of spin and angular momentum to the magnetic moments of the
baryon octet. The analysis shows, that the contribution of the quark spins exceeds

baryon 2〈µS〉 2〈µS〉
〈µ〉 〈µL〉 〈µL〉

〈µ〉

[µ/µN ] [%] [µ/µN ] [%]

p 2.53 91 0.24 9

n −1.59 93 −0.12 7

Λ −0.6 98 −0.01 2

Σ+ 2.33 93 0.23 7

Σ0 0.7 94 0.05 6

Σ− −0.91 89 −0.11 11

Ξ0 −1.27 94 −0.06 6

Ξ− −0.55 98 −0.013 2

Table 3.3: Contributions of quark spins (2〈µS〉) and angular momentum (〈µL〉) to the net
magnetic moments of the octet baryons.

the contribution of the quark angular momenta by far. One can state that a good
90% of the magnetic moment is coming from quark spins which is due to the fact that
the quarks are dominantly in a relative S-wave. This result also explains in part the
success of the nonrelativistic quark model in predicting the magnetic moments. Our
analysis shows that by neglecting the angular motion of the quarks by assuming that
the quarks are in a relative S-wave, the induced error is in the percent region. The
preceding discussion is however only true if we work with a constituent quark mass of
330 MeV.
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Evolution of quark spin and angular momentum contributions

We may however carry this analysis further by studying the change of the spin/angular
momentum distribution with decreasing quark masses. As already mentioned we as-
sume isospin symmetry between up- and down-quark and thus there is only one mass
parameter for the nucleon, namely mn from table 1.1. At different magnitudes of this
mass parameter we have now fitted the remaining six parameters of the model to the
baryon spectra. We might of course not expect to reproduce the spectra as well as with
the original value of 330 MeV but at least we are able to keep the ground states i. e.
the nucleon and the ∆-particle at the empirical values. Figure 3.1 shows the nucleon
spectrum at a quark mass of mn = 25 MeV. The mass gap between the ground state
and exited states becomes so huge that the spectrum below 3 GeV is depleted. We
achieved a quark mass as small as 25 MeV before numerical restrictions impeded us
to go any further. Figure 3.2 shows the effect on the spin and angular momentum
contribution to the magnetic moment of proton and neutron. We see an almost linear
decrease of the spin contribution from its original value of a good 90 % at 330 MeV
to roughly 60 % at 25 MeV. At the same time the angular momentum contribution
gains in magnitude correspondingly to roughly 40 %. We have also plotted the total
magnetic moment of proton and neutron as a function of the quark mass parameter
in fig. 3.3. It shows that both decrease in absolute magnitude by roughly one nuclear
magneton as the quark mass is decreased from 330 MeV to 25 MeV.

The foregoing discussion is not academic. In fact the constituent quark mass is not
precisely fixed by QCD. What is fixed is the mass function and much more is now
known about its momentum dependence from lattice QCD [27] since the earliest QCD
computation in 1976 [28]. In the region between 0 GeV and 2 GeV it varies as a function
of momentum between ∼ 400 MeV and ∼ 50 MeV. One may define the constituent
quark mass as the value of the mass function at p ≈ 0 but this is not compulsory;
constituent quark models which aim at a description of high mass resonances (up 3
GeV) may even be forced to use a mass value at larger momenta in order to take the
full momentum dependence effectively better into account.

Magnetic moments of nucleon resonances

Since efforts are being made to measure also magnetic moments of excited nucleon
states like the S11(1535) as mentioned in ref. [14], we contribute some selected predic-
tions here, which are shown in table 3.4. We observe that for the S11(1535) the absolute
value of the spin contribution is only a quarter of the angular momentum contribution
and opposite in sign. Since this resonance is dominantly a P -wave, the spin has to be
aligned anti-parallel to the angular momentum to result in a state with total spin 1/2.

3.3.2 Baryon decuplet magnetic moments

In ref. [16] a derivation for the magnetic moment has been given in the case of vanishing
two-particle kernels. As has been mentioned already, the vertex functions then also
contain mixed energy contributions. Since in ref. [16] these additional terms have not
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Figure 3.2: Fraction of the total magnetic moment carried by quark spin and angular mo-
mentum resp. of proton and neutron resp. as a function of the non-strange
quark mass.
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magnetic moment [µ/µN ]
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Figure 3.3: Evolution of total magnetic moment of proton and neutron with non-strange
quark mass.

been implemented numerically due to their complexity we do so in this work. The
result from ref. [16] looks as follows:

〈µ〉 =
3

4M
i ε3jk

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ

Λ

M(pξ, pη) q̂3µ̂
jk γ0 ⊗ γ0 ⊗ γ0 ΓΛ

M(pξ, pη) (3.47)
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nucleon resonance T3 magnetic moment 〈µ〉S 〈µ〉L
[µ/µN ] [µ/µN ] [µ/µN ] [µ/µN ]

P11(1440) 1/2 1.55 1.39 0.16

−1/2 -0.98 -0.9 -0.08

S11(1535) 1/2 0.37 -0.14 0.51

−1/2 -0.1 0.034 -0.134

S11(1650) 1/2 1.85 1.70 0.15

−1/2 -0.69 -0.44 -0.25

D13(1520) 1/2 1.44 0.51 0.93

−1/2 -0.166 0.019 -0.185

D15(1675) 1/2 1.74 1.52 0.22

−1/2 0.32 -0.22 0.54

Table 3.4: Prediction of magnetic moments of selected excited nucleon states as well as their
decomposition into spin- (〈µ〉S) and orbital angular momentum contributions
(〈µ〉L). T3 denotes the third isospin component.

where the operator µ̂jk takes the following form:

µ̂jk := − Λ+++

M − ω1 − ω2 − ω3

1I⊗ 1I⊗ êαk ω1 + ω2

M

∂

∂pj
η

Λ+++
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1
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− Λ+++

M − ω1 − ω2 − ω3

1I⊗ 1I⊗ êαk M − ω3
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8Mω3ω1

Λ−−− − Λ−++ 1I⊗ αj ⊗ êαk 1
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8Mω3ω1

Λ+−− + Λ−−+ 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ−+−

+ Λ−−− αj ⊗ 1I⊗ êαk 1

8Mω3ω1

Λ+−+ + Λ−−− 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ+−+

− Λ−+− αj ⊗ 1I⊗ êαk 1

8Mω3ω1

Λ+++ − Λ+−− 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ+++

− Λ−++ αj ⊗ 1I⊗ êαk 1

8Mω3ω1

Λ++− − Λ+−+ 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ++−

+ Λ+++ αj ⊗ 1I⊗ êαk 1

8Mω3ω1

Λ−+− + Λ+++ 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ+−−

+ Λ++− αj ⊗ 1I⊗ êαk 1

8Mω3ω1

Λ−++ + Λ++− 1I⊗ αj ⊗ êαk 1

8Mω3ω2

Λ+−+.

(3.48)

The first eight terms only involve pure energy components. After application of the
commutation rules (2.42) and (2.43), replacement of the vertex functions by Salpeter
amplitudes and symmetrizing over the three fermions we recover the result (3.36). All
that has been said about its natural physical interpretation in subsection 3.2.1 also
applies here of course. If we denote the remaining 30 terms in eq. (3.48) which involve
mixed energy components by µ̂jk

mixed, we arrive at:

〈µ〉 =
〈ΦΛ

M |µ̂|ΦΛ
M〉

〈ΦM |ΦM〉
+

3

〈ΦM |ΦM〉

∫
d3pξ

(2π)3

∫
d3pη

(2π)3
Γ

Λ

M(pξ, pη)

× i

2

3∑
j,k=1

ε3jk µ̂
jk
mixed q̂3γ

0 ⊗ γ0 ⊗ γ0 ΓΛ
M(pξ, pη) (3.49)

This expression decomposes the magnetic moment into a contribution from the pure
energy components of the vertex functions and the mixed ones. To have a shorter
notation we denote the contribution to the total magnetic moment of the first by 〈µ〉pure

and of the latter by 〈µ〉mixed such that the decomposition reads 〈µ〉 = 〈µ〉pure +〈µ〉mixed.
The sum of the pure energy components of the vertex function may then be replaced
by projected Salpeter amplitudes like in the first term of eq. (3.49). The occurrence of
mixed energy components in the second term of eq. (3.49) forbids such a replacement.
Also it is not possible to give a natural physical interpretation to the terms which
contribute to 〈µ〉mixed even after symmetrizing over the three quarks.

We have computed the magnetic moments of the decuplet baryons according to
formula (3.49). The results are summarized in table 3.5. We find a rather large
magnetic moment for the ∆++ of 7.62 nuclear magnetons. Also we observe exact
isospin relations between the ∆ magnetic moments:

〈µ∆〉 =
(
T3(∆) + 1

2

)
〈µ∆+〉. (3.50)
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baryon 〈µ〉pure 〈µ〉mixed 〈µ〉 〈µ〉pure/〈µ〉 〈µ〉exp [15]

[µ/µN ] [µ/µN ] [µ/µN ] [%] [µ/µN ]

∆++ 4.14 3.48 7.62 54 3.7–7.5

∆+ 2.07 1.74 3.81 54 2.71.0
−1.3 ± 1.5± 3

∆0 0 0 0 −

∆− -2.07 -1.74 -3.81 54

Σ∗+ 2.51 2.22 4.73 53

Σ∗0 0.27 0.41 0.68 40

Σ∗− -1.97 -1.29 -3.26 60

Ξ∗0 0.59 1.09 1.68 35

Ξ∗− -1.83 -1.08 -2.91 63

Ω− -1.66 -0.62 -2.28 73 2.02± 0.05

Table 3.5: Baryon decuplet magnetic moments 〈µ〉 (4th column). Contribution of purely
positive and negative energy components 〈µ〉pure (2nd column) and mixed com-
ponents 〈µ〉mixed (3rd column). Ratio of pure component contributions and the
total magnetic moments 〈µ〉pure/〈µ〉 (5th column). Also shown are the experi-
mentally measured magnetic moments (last column) from ref. [15].

Since the ∆ has isospin 3
2
, its isospin wavefunction is totally symmetric with respect

to S3-permutations. To combine it with the totally antisymmetric color wavefunction
to a totally antisymmetric state, the product of spin- and spatial wavefunctions has
to be totally symmetric. The ∆-wavefunction then looks as follows after separation of
the totally antisymmetric color wavefunction:

|∆;T = 3
2
, T3〉 = |φ∆

S ;T = 3
2
, T3〉 ⊗

[
|ψL+

RL
〉 ⊗ |χS

RS
〉
]3/2

S , (3.51)

where φ∆
S , ψL+

RL
and χS

RS
denote wavefunctions in flavor-, position/momentum-, and

spin-space respectively. Inside the bracket [. . . ]
3/2
S , the spin wavefunctions with spin

S and S3-symmetry RS combine with the spatial wavefunctions with orbital angu-
lar momenta L and S3-symmetry RL to form a product state with total spin 3

2
that

is totally symmetric (S) under the interchange of any two quark pairs. Obviously
the flavor wavefunction separates because of its total symmetry. The magnetic mo-
ment operator that we found consists of a product of operators in flavor-, spin- and
position/momentum-space, of which the flavor part separates. The flavor part is given
by the charge operator acting on the third quark. Let us denote the product of opera-
tors in spin- and position/momentum-space with µ̂LS. We then have for the magnetic
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moment of the ∆-baryons:

〈µ∆〉 = 〈∆;T = 3
2
, T3| q̂3 µ̂LS |∆;T = 3

2
, T3〉

= 〈φ∆
S ;T = 3

2
, T3| q̂3 |φ∆

S ;T = 3
2
, T3〉

[
〈ψL+

RL
| ⊗ 〈χS

RS
|
]3/2

S µ̂LS

[
|ψL+

RL
〉 ⊗ |χS

RS
〉
]3/2

S . (3.52)

The flavor part can easily be evaluated according to the Gell-Mann/Nishijima formula
(1.64) and noting that the ∆-baryons have one unit of hyper-charge, since their baryon
number is one and strangeness is zero. Thus the flavor matrix element is

〈φ∆
S ;T = 3

2
, T3| q̂3 |φ∆

S ;T = 3
2
, T3〉 = T3 + 1

2
, (3.53)

which explains our observed relation (3.50).

The magnetic moment of the ∆+ has been measured at MAMI with the TAPS
calorimeter in a pilot experiment in the reaction γp → π0γ′p (see ref. [14]). The
proton is excited by a photon to the ∆+-resonance, which subsequently radiates a
photon and then decays into a pion and a proton. The electromagnetic transition within
the ∆ is a magnetic dipole transition (M1) because of parity and spin conservation,
whose amplitude is proportional to the magnetic moment of the ∆+. This reaction
is however hardly to distinguish from bremsstrahlung emitted by the intermediate ∆
and the proton. An accurate theoretical knowledge about all processes contributing to
the reaction is mandatory. This also explains the large theoretical uncertainty in the
measured magnetic moment of

µ∆+ =
(
2.7+1.0

−1.3(stat.)± 1.5(syst.)± 3(theo.)
)
µN . (3.54)

Surely the uncertainties in this number do not allow for a conclusive comparison with
model calculations and call for both an experimental refinement, which is already
underway at MAMI involving the Crystall Ball detector (see ref. [29]), as well as a
reduction of the theoretical errors.

The Particle Data Group (see ref. [15]) quotes a magnetic moment of the ∆++ in the
range of (3.7−7.5)µN . This has been extracted from experiments performed at UCLA
(see ref. [30]) and SIN (now PSI) (see ref. [31]) from the reaction π+p→ π+γ′p. Large
errors are induced by π+ bremsstrahlung, which is much larger than in the experiment
described above, and theoretical uncertainties.

For the Ω− magnetic moment the Particle Data Group gives a value of −2.02±0.05,
which is an average of the experimental results cited from refs. [32, 33]. Our value of
−2.28µN is too large in magnitude by about 13 %.

Table 3.5 also shows the contributions of pure and mixed energy components of the
vertex functions to the total magnetic moments. Both contributions account for about
half of the total value, i.e. are of comparable size. The largest deviations from this rule
are seen with the Ξ0 where the mixed components contribute roughly 2/3 and the Ω−

where they account only for 23 % of the total magnetic moment.
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3.4 Summary

In this chapter we have given a derivation of an analytic expression for the magnetic
moment of a three-fermion system in the context of the Bethe-Salpeter formalism. We
started from the definition of the magnetic moment as the value of the magnetic form
factor at vanishing four-momentum transfer squared. The connection to the Bethe-
Salpeter formalism was made through the current matrix element derived in section
1.4. Since this matrix element is divided by

√
Q2 in the expression for the magnetic

moment, we had to figure out the Q2-dependence of the current matrix element. This
was accomplished by the exponential representation of the boost transformation of the
incoming vertex function. Because of parity the lowest order term was of order

√
Q2,

and thus the static limit could safely be taken. After integrating out the dependence
on the relative energies and replacement of the vertex functions by Salpeter ampli-
tudes, we used the Wigner-Eckart theorem to transform the matrix element into a true
expectation value. Symmetrizing the resulting expression in the three fermions then
confirmed the result of ref. [16] which was obtained by starting from the energy of a
magnetic dipole in a magnetic field. Because the result was already interpreted there,
we only discussed its main features briefly, which are: relativistic generalization of the
well-known nonrelativistic expression, decomposition in orbital angular momentum and
spin contribution to the total magnetic moment and removement of the center of mass
motion.

Using the analytic result we computed first the magnetic moments of the baryon
octet. This was already done in ref. [16] however using a wrong strange/non-strange
instanton coupling such that the hyperon results were wrong. Using the correct pa-
rameters resulted in a better description of the hyperon magnetic moments, which now
coincide with the results of form factor calculation performed within the same model.
We also studied the nucleon magnetic moments with the parameters that we found
to describe both nucleon charge radii in a better way. However the magnetic moment
turned out to be almost insensitive to a variation of the instanton cutoff size. Taking
the nonrelativistic limit of the operator showed that relativistic effects are less pro-
nounced here than with the charge radius. However they account still for roughly ten
percent of the nucleon magnetic moments. Since the analytic result allows for a decom-
position into spin and orbital angular momentum contributions we exploited this to
study their magnitudes. It turned out that the largest contribution of roughly 90 % is
made by the quark spins. To study the effect of the quark mass on this decomposition
we computed it at smaller quark masses as well. The result is interesting and shows
that when approaching the current quark masses both contributions become roughly
equally large. Of course we were not able to reproduce the spectrum at such small
quark masses but at least were able to fit the ground state masses. Since at present
preparations are made to also measure the magnetic moments of nucleon resonances
we added a few selected predictions. To compute also the magnetic moments of the
decuplet baryons, terms have to be added which involve mixed energy contributions.
These terms have been derived in ref. [16] but due to their complexity have not been
numerically implemented, which we did in the present work. Unfortunately they lack
a sensible physical interpretation so far.

Concluding this chapter we annotate, that the analysis of the magnetic moment of
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a three-fermion system based on the Bethe-Salpeter formalism revealed new insights
into the structure of this observable. Especially the decomposition into spin and orbital
angular momentum contributions is an information not to be extracted from a form
factor. Within the given model we were able to describe the empirical values quite well
and conducted interesting studies concerning the aforementioned decomposition.



Chapter 4

Notes on higher moments and form
factors

The successful treatment of static properties so far, poses the question, whether a
generalization to arbitrary moments is possible. The answer to this question shows
that there are also some implications for the computation of form factors, which we
study in this chapter.

4.1 Introduction and overview

We have shown in the foregoing two chapters how the magnetic moment and the charge
radius of a three-fermion system can be computed on a field theoretical background,
leading to new insights into the underlying structure of these static observables. As
already mentioned, both quantities constitute the first moments of the charge and
magnetization distribution respectively. It is thus a consequential question to pose,
whether an extension to higher moments is possible in an analogous way. The answer to
this question is given in section 4.2 of this chapter exemplary for the charge distribution
of a three-fermion system. Starting from a very basic definition — a generalization of
our starting expression of section 2.2 — we take similar steps to a arrive at a generalized
formula for an arbitrary moment of the charge distribution. The resulting expression
resembles the charge radius in its structure and contains it as a special case. It is thus
fully relativistic and also contains a correction for the center of mass motion of the
fermions in a natural way.

The successful extension of the method to higher moments motivates to study
whether it is applicable to the computation of form factors as well, which is the con-
tent of section 4.3. Form factors provide crucial information about the electromagnetic
structure of a bound state. With some care, the Fourier transforms of the electric
and magnetic form factors in the Breit frame may be interpreted as the spatial charge
and magnetization distribution. In usual field theoretical descriptions form factors
are calculated by means of a current matrix element in which a boosted wavefunction
enters. This calls for a correct boost prescription but also makes the numerical im-
plementation involved, since simplifying theorems like the Wigner-Eckart theorem are

83
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not applicable. In contrast to that the expressions that we found for static observables
are expectation values of operators with well known symmetries taken with respect to
wavefunctions with well defined transformation laws under symmetry transformations.
Therefore parity selection rules and the Wigner-Eckart theorem can be fully exploited
to simplify the numerical implementation considerably. To apply this method to form
factors we need a way to separate their Q2-dependence from the current matrix ele-
ment. A solution to this problem has already been applied twice in this work. The
boost acting on the incoming Salpeter amplitude is expanded as an exponential. In
each order of the expansion parameter — which is the rapidity — we obtain a static
matrix element, where both Salpeter amplitudes are given in the rest frame of the
baryon. The Q2-dependence separates and enters each order as a factor via the square
of the rapidity. We show how the matrix elements can be recoupled to obtain operators
with well defined transformation properties under rotations. To estimate whether we
have a chance to succeed with this method in computing a form factor, we take the
well known dipole parameterization of the electric proton form factor and expand it
in powers of the rapidity. Unfortunately we will see, that the expansion is not suited
to approximate the form factor by its lowest order terms. Nevertheless the expansion
shows that higher order terms are given by similar expression as the charge radius
which motivates us to study the sensitivity of the nucleon form factors on the choice of
the instanton cutoff parameter and coupling strength. We already found an especially
pronounced dependence on these parameters when we studied the neutron charge ra-
dius. It will turn out that this sensitivity extends to higher momentum transfers as
well, resulting in a much improved description of the empirical data with suitably ad-
justed instanton interaction parameters. The electric proton form factor only shows a
slight dependence on a parameter variation in accordance to the observation we already
made with its charge radius. We also study the effect of the adjusted parameters on
the nucleon-delta transition, which is commonly badly described by quark models.

4.2 Extension to higher moments

The formalism presented so far paves the way for the calculation of higher moments
as well. We take the electric form factor as an example and work accordingly with the
“time”-component of the current matrix element (1.100). An arbitrary moment 〈m〉
of a charge distribution is then given in general by:

〈m〉 =
3∑

i1,i2,...,in=1

Oi1i2...in

∫
d3x xi1xi2 · · ·xinρ(x), (4.1)

where Oi1,i2,...,in is a tensor of rank n, which depends on the moment to be computed.
For example for the charge radius, considered so far, O is simply:

Oi1i2 =
1

q
δi1i2 , (4.2)
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where q is the net charge of the system given by eq. (2.3). By similar steps leading
from eq. (2.2) to eq. (2.17) we get:

〈m〉 =
1

2M

(
−i

2

)n 3∑
i1,i2,...,in=1

Oi1i2...in

∂

∂P i1

∂

∂P i2
· · · ∂

∂P in
〈PP |j0(0)|P 〉

∣∣∣∣
P=0

. (4.3)

The current matrix element appearing here is defined in eq. (1.100). As before its
P -dependent part is given by an exponential of infinitesimal boosts as in eq. (2.67).
Because

lim
P→0

η(P ) = 0 and
∂

∂P i
ηj(P )

∣∣∣∣
P=0

=
δij
M
, (4.4)

we find:

∂

∂P i1

∂

∂P i2
· · · ∂

∂P in
exp(−2iη(P ) · K̂)

∣∣∣∣
P=0

=
(−2i)n

Mn
K̂i1K̂i2 · · · K̂in (4.5)

Note that to every xi from our starting equation (4.1) there now corresponds a boost
generator K̂i. Using this result we get from eq. (4.3):

〈m〉 =
1

2M

3∑
i1,i2,...,in=1

Oi1i2...in (−3)

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ

Λ

M(pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

] 1

Mn
K̂i1K̂i2 · · · K̂in

×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
ΓΛ

M(pξ,pη). (4.6)

Integrating out the dependence on the relative energies after replacing the propagators
according to eq. (1.36) then results in:

〈m〉 =
3

〈ΦΛ
M |ΦΛ

M〉

3∑
i1,i2,...,in=1

Oi1i2...in 〈ΦΛ
M |

1

Mn
K̂ ′

i1
K̂ ′

i2
. . . K̂ ′

in q̂3|Φ
Λ
M〉

+ off-diagonal matrix elements (4.7)

where K̂ ′
i is defined in eq. (2.79). For n > 2 we also find terms involving matrix

elements between different energy components of the vertex function, i.e. between the
subspaces of purely positive and negative energy components (denoted “off-diagonal
matrix elements” in eq. (4.7)). Unfortunately these terms cannot be expressed in a
generic way and have to be calculated explicitly for the moment under consideration.
One might however expect that these additional contributions are in fact small; first
because the negative energy components correspond to the “small” components of the
Dirac equation and thus vanish in the nonrelativistic limit and second because both
energy subspaces are orthogonal. Note that although the first term of eq. (4.7) also
involves matrix elements between different energy subspaces of the Salpeter amplitudes,
one can show with relation (2.43) that these do in fact vanish.
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Finally we may symmetrize the expectation value in eq. (4.7) over the three fermions
to obtain:

〈m〉 =
1

〈ΦΛ
M |ΦΛ

M〉

3∑
i1,i2,...,in=1

Oi1i2...in 〈ΦΛ
M |

3∑
α=1

K̂ ′′
i1 αK̂

′′
i2 α . . . K̂

′′
in αq̂α|ΦΛ

M〉

+ off-diagonal matrix elements, (4.8)

where K̂ ′′
i α is defined as:

K̂ ′′
i α =

1

2

[
Ω

M

(
i
∂

∂pi
α

− R̂

)
+ h. c.

]
. (4.9)

If we insert eq. (4.2) into the final result (4.8) we instantly obtain the charge radius
expression (2.87). What has been said about its interpretation also applies to eq. (4.8)
in its general form.

In this sense a generalization of the formalism presented in this work to arbitrary
moments is possible, although the ones discussed in detail, namely the charge radius
and the magnetic moment are by far the most interesting, having in addition the
soundest empirical basis.

4.3 Form factors

The preceding section showed that an extension to the computation of arbitrary mo-
ments of the charge distribution of a given three-quark system is possible. One might
then ask whether the method is also applicable to the computation of form factors.
Let us first sketch the general idea before we show why one might put this question at
all.

4.3.1 Elastic form factors

Equation (2.60) allows us to express the electric form factor through the current matrix
element of the electromagnetic vector currents “time”-component:

GB
E(Q2) =

〈B,PP, λ|j0(0)|B,P, λ〉
2eMB

. (4.10)

As was shown, this matrix element is given in our formalism by eq. (1.100). The boost
appearing here can be expanded in an exponential according to eq. (2.72), where the
boost generators are defined by eq. (2.71). Because of parity this expansion only
contains even powers of the infinitesimal boost:

GB
E(Q2) =

−3

2MB

∫
d4pξ

(2π)4

∫
d4pη

(2π)4
Γ̄

(Λ)
M (pξ,pη)

×
[
S1

F (pξ + 1
2
pη)⊗ S2

F (−pξ + pη)⊗ S3
F (M − pη)

]
exp

(
−4(η(P ) · K̂)2

)
×
[
1I⊗ 1I⊗ γ0q̂S3

F (M − pη)
]
Γ

(Λ)
M (pξ,pη). (4.11)
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This is an expansion of the electric form factor in powers of the rapidity η(P ). Every
term in this expansion is a matrix element with respect to vertex functions in the
rest frame of the baryon. As is shown in appendix B the integration over the relative
energies for an arbitrary numbered product of such boosts can be performed. If we
apply that to eq. (4.11) and then make use of relation (2.43) we arrive at:

GB
E(Q2) =

3

2MB

〈ΦM |q̂3 exp
(
−4(η(P ) · K̂′)2

)
|ΦM〉

+ off-diagonal matrix elements, (4.12)

where K̂ ′
i is defined in eq. (2.79). As we already mentioned the terms involving matrix

elements between different energy components (denoted “off-diagonal matrix elements”
in the above expansion) are expected to be small; so let us concentrate on the first term
of eq. (4.12). In the following we sketch how the expansion 4.12 can be computed in
any order of (η(P ) · K̂′)2, i.e. how a matrix element of the form

〈ΦM ,
1
2
|q̂3
(
η(P ) · K̂′

)2n

|ΦM ,
1
2
〉

=
3∑

i1,i2,...,i2n

ηi1(P )ηi2(P ) · · · ηi2n(P )〈ΦM ,
1
2
|q̂3K̂ ′

i1
K̂ ′

i2
· · · K̂ ′

i2n
|ΦM ,

1
2
〉 (4.13)

may be evaluated. Since ΦM represents a state with a defined transformation property
under rotations it is advisable to decompose K̂ ′

i1
K̂ ′

i2
· · · K̂ ′

i2n
into irreducible represen-

tations of the rotation group. The triangularity relation rules out any contributions
of tensor operators with a higher rank than 1 because |ΦM〉 represents a particle with
total spin 1/2:

〈ΦM ,
1
2
|T [k]

q |ΦM ,
1
2
〉 = 0 unless 0 ≤ k ≤ 1. (4.14)

Also because a spherical tensor of rank 1 is always skew symmetric with respect to a
permutation of its indices, but ηi1(P )ηi2(P ) · · · ηi2n(P ) clearly is symmetric, the spin
1 representation makes no contribution at all. So fortunately, we only need to find
the scalar representations. It must be noted here that a Cartesian tensor of rank
k > 2 contains the scalar representation more than just once. Let us sketch the general
procedure for the first order n = 1: The usual scalar product of two vectors can be
written in terms of their spherical components like

U · V = −U [1]
+1V

[1]
−1 − U

[1]
−1V

[1]
+1 + U

[1]
0 V

[1]
0 . (4.15)

With this relation we express the scalar product η(P ) · K̂′ through the spherical com-
ponents of the vectors η and K′:

(η · K̂′)(η · K̂′) = (−η+1K̂
′
−1 − η−1K̂

′
+1 + η0K̂

′
0)(−η+1K̂

′
−1 − η−1K̂

′
+1 + η0K̂

′
0)

= η−1η−1K̂
′
+1K̂

′
+1 + η−1η+1K̂

′
+1K̂

′
−1 − η−1η0K̂

′
+1K̂

′
0

+ η+1η−1K̂
′
−1K̂

′
+1 + η+1η+1K̂

′
−1K̂

′
−1 − η+1η0K̂

′
−1K̂

′
0

− η0η−1K̂
′
0K̂

′
+1 − η0η+1K̂

′
0K̂

′
−1 + η0η0K̂

′
0K̂

′
0

(4.16)
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A product of two spherical tensor operators can be coupled to a tensor product, yielding
a sum of spherical tensor operators according to the following formula (see e.g. refs.
[34, 35]):

T1
[j1]
m1
T2

[j2]
m2

=

j1+j2∑
J=|j1−j2|

C
J (m1+m2)
j1m1,j2m2

[
T1

[j1] ⊗ T2
[j2]
][J ]

m1+m2

. (4.17)

By making use of this formula, eq. (4.16) becomes:

(η · K̂′)(η · K̂′) =
(

2√
3
η−1η1 − 1√

3
|η0|2

) [
K̂ ′[1] ⊗ K̂ ′[1]

][0]
0

+ η2
0

[
K̂ ′[1] ⊗ K̂ ′[1]

][2]
2

−
√

2 η−1η0

[
K̂ ′[1]

⊗ K̂ ′[1]
][2]

1
+
√

2
3
(η2

0 + η−1η1)
[
K̂ ′[1] ⊗ K̂ ′[1]

][2]
0

−
√

2 η1η0

[
K̂ ′[1] ⊗ K̂ ′[1]

][2]
−1

+ η2
1

[
K̂ ′[1] ⊗ K̂ ′[1]

][2]
−2
. (4.18)

Note that this sum does not contain a representation of spin 1, since it vanishes due to
skewness as already mentioned. If we take the expectation value of this operator with
respect to Salpeter amplitudes, the contributions of the tensors with rank 2 vanish due
to the triangularity relation. Thus the only contribution is made by the scalar tensor

operator
[
K̂ ′[1]

⊗ K̂ ′[1]
][0]

0
:

〈ΦM ,
1
2
|q̂3
(
η(P ) · K̂′

)2

|ΦM ,
1
2
〉 = − 1√

3
|η(P )|2〈ΦM ,

1
2
|q̂3
[
K̂ ′[1] ⊗ K̂ ′[1]

][0]
0
|ΦM ,

1
2
〉.

(4.19)

Note that we made use of eq. (4.15) here. The generalization to higher orders is now

obvious: First express the vectors η and K̂′ in
(
η(P ) · K̂′

)2n

by spherical components,

then couple products of infinitesimal boosts K̂′ to spherical tensor operators according
to eq. (4.17). Because spherical tensors corresponding to odd spin are skew, their
contributions vanish, since the product ηi1ηi2 · · · ηi2n is symmetric under the exchange of
indices. Finally when taking the expectation value with respect to Salpeter amplitudes
the triangularity relation rules out any contribution of tensor operators with a higher
rank than 1 and thus only the scalar tensors contribute. We thus obtain:

〈ΦM ,
1
2
|q̂3
(
η(P ) · K̂′

)2n

|ΦM ,
1
2
〉 = |η(Q2)|2n

∑
{jn}

Cj1j2...j2n−3

× 〈ΦM ,
1
2
| q̂3
[
T [j1] ⊗

[
T [j2] ⊗ · · · ⊗

[
T [j3] ⊗ T [j4]

][j5]
. . .
][j1]
][0]

|ΦM ,
1
2
〉. (4.20)

For the sake of a better readability we have defined:

T [j] :=
[
K̂ ′ ⊗ K̂ ′

][j]
. (4.21)

The sum in the above equation runs over a set of (2n − 3)-tuples (j1, j2, . . . , j2n−3),
where ji is either 0 or 2. This set depends of course on the order n. We have listed
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Figure 4.1: Square of the rapidity as function of Q2 for the nucleon and the neutral pion as
comparison.

the sets {jn} and the coefficients Cj1j2...j2n−3 in table 4.1 up to fourth order n = 4. The
number of scalar representations that contribute increases quite rapidly with the order
n. In fourth order we already have 14 scalar tensors.

With eqs. (4.20) and (4.12) we get an expansion of the electric form factor in powers
of |η(Q2)|2. We should motivate now, why we are interested in such an expansion at
all. The reason is that |η(P )|2 is a bounded function of Q2:

lim
Q2→∞

|η(Q2)|2 = lim
Q2→∞

Q2

4(M2 +Q2/4)
= 1. (4.22)

In fig. 4.1 we have plotted |η|2 as a function of Q2 up to 10 GeV2 for elastic scattering
off the nucleon and for the much lighter pion as a comparison. Apparently it stays
well below one, exceeding 1/2 around 3 GeV2. So if the matrix elements in eq. (4.20)
do not grow exponentially with increasing order n it may be sufficient to compute
the expansion (4.12) up to some low order n. We want to study the quality of the
expansion for the proton form factor. To this end we take the well known but purely
phenomenological dipole parameterization:

GD(Q2) =
1(

1 +Q2/0.71GeV2
)2 . (4.23)

Although it is known, that this parameterization results in a mean square charge radius
of 0.81 fm which is too small compared to the empirical value of 0.87±0.008 fm, and that
it also overestimates the electric proton form factor at high energies, it should fit the
data sufficiently well for the present analysis. From the definition of the rapidity (2.68)
we immediately get Q2 = 4M2/|η|2(1− |η|2) which we insert in the parameterization
(4.23) to expand it in powers of |η|2:

Gp
E(Q2) = 1− 9.935 η2 + 64.09 η4 − 352.2 η6 + 1786 η8 − 8625 η10 +O(η12) (4.24)
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A glance at this expansion up to tenth order unfortunately reveals, that it is not suffi-
cient to know its lowest order terms only. Obviously the coefficients increase exponen-
tially with the order n which renders the expansion useless at least for the computation
of the electric proton form factor.

In the chapter on charge radii we found a strong dependence of the neutron charge
radius on the size of the instanton cutoff parameter. The foregoing discussion showed
that the electric form factor can be expanded in powers of the squared rapidity. The
Q2-dependence thus factorizes and all information about the shape of the form factor
is encoded in static matrix element of the form

〈ΦM ,
1
2
| q̂3
[
T [j1] ⊗

[
T [j2] ⊗ · · · ⊗

[
T [j3] ⊗ T [j4]

][j5]
. . .
][j1]
][0]

|ΦM ,
1
2
〉. (4.25)

We are thus led to conclude that if the charge radius, which is nothing but the first
order n = 1 of the expansion (4.12), varies strongly with the instanton cutoff size, the
same may be true for the higher order matrix elements (4.25) and so the behavior of the
electric form factor at high Q2 may also be affected by a variation of the cutoff. We have
computed the electric form factors for both proton and neutron with the “standard”
parameter set of table 1.1, i.e. an instanton cutoff of 0.4 fm and a coupling strength
of 136 MeV fm3 and the “new” parameters with a cutoff of 0.6 fm and a coupling
strength of 263 MeV fm3. The proton form factor is shown in fig. 4.2. We hardly see

Figure 4.2: The calculated electric proton form factor divided by the dipole parameteriza-
tion (4.23) with the standard parameter set (full curve) and an instanton cutoff
of 0.6 fm and a coupling strength of 263 MeV fm3 (dashed curve).

a variation with the instanton cutoff size here. Especially at low Q2 both parameter
sets result in almost identical form factors. Above 0.5 GeV2 the larger instanton cutoff
enforces the steep fall-off of the calculated form factor. The almost unaffected shape
at low momentum transfer is in concord with the observation, that the relative change
in the proton charge radius was also quite moderate. The situation is different for
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Figure 4.3: The calculated electric neutron form factor with the standard parameter set
(full curve) and an instanton cutoff of 0.6 fm and a coupling strength of 263
MeV fm3 (dashed curve).

the neutron form factor, which we have plotted in fig. 4.3. The dependence on the
cutoff size is rather pronounced here. Fortunately the description of the data is much
improved with the “new” parameter set.

4.3.2 Nucleon-Delta transition form factor

Motivated by the above analysis, we also want to study the dependence of the nucleon-
delta transition on the choice of the instanton parameters. Let us therefore briefly
introduce the necessary formalism. The photon spin can be aligned parallel or anti-
parallel to the target spin, resulting in two different helicity amplitudes AN

3/2 and AN
1/2

respectively, that is four amplitudes for the nucleon:

AN
1/2 := k〈N∗, P̄ ′, 1

2
|j+(0)|N, P̄ ,−1

2
〉 (4.26)

AN
3/2 := k〈N∗, P̄ ′, 3

2
|j+(0)|N, P̄ , 1

2
〉, (4.27)

where N is either p (proton) or n (neutron). Concerning the normalization of these
transversal amplitudes we use the convention of ref. [40]:

k :=

√
2παMN∗

M2
N∗ −M2

N

. (4.28)

It must be noted however that there is only one restriction on the normalization,
namely that at Q2 = 0 the electro-production amplitude coincides with the photo-
coupling amplitude. With the above choice this is guaranteed. One also defines the
following longitudinal amplitude:

SN
1/2 := k〈N∗, P̄ ′, 1

2
|j0(0)|N, P̄ , 1

2
〉. (4.29)
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Conventionally one introduces nucleon-delta transition form factors, which are de-
fined as linear combinations of the helicity amplitudes according to ref. [40]. Similar
to the elastic form factors of the nucleon one obtains electric and magnetic transition
form factors:

G∗
E(Q2) = F (Q2)

(
1√
3
AN

3
2
− AN

1
2

)
(4.30)

G∗
M(Q2) = F (Q2)

(
1√
3
AN

3
2

+ AN
1
2

)
. (4.31)

The normalization of these form factors is given by (see ref. [40]):

F (Q2) :=
1√
2πα

MN

√
MN(M∗

N −MN)

(M∗
N +MN) ((M∗

N −MN)2 +Q2)
. (4.32)

G∗
M has already been studied within the present quark model in ref. [11] and was

found to be too small, especially at low momentum transfers. Our result on G∗
M

is shown in fig. 4.4. We have computed the form factor with two different sets of
confinement parameters. The first set is listed in table 1.1, the second consists in
a modification of the instanton cutoff size and coupling strength as found to give
improvements on the neutron charge radius and form factor. We modified the cutoff to
0.6 fm and the coupling strength to 263 MeV3. A well known problem of quark models

Figure 4.4: The calculated magnetic transition form factor divided by 3GD(Q2) with the
standard parameter set (full curve) and an instanton cutoff of 0.6 fm and a
coupling strength of 263 MeV fm3 (dashed curve).

is the correct description of this form factor at low momentum transfer. Especially at
the photon point quark models tend to be to small by a factor of two. Also in our
computation the form factor comes out to small. With the “new” parameter set we
can only improve the situation slightly at low momentum transfer at the price of a
pronounced underestimation of the form factor above 0.5 GeV2.
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The situation is even worse with the longitudinal helicity amplitude SN
1/2(Q

2) of the

P33(1232) resonance which we have plotted in fig. 4.5. The amplitude that we obtain

Figure 4.5: Longitudinal helicity amplitude SN
1/2(Q

2) of the ∆-baryon P33(1232) as com-
pared to a MAID fit to the experimental data and a quark model calculation.

is compatible with zero. The same is true if we take the other parameter set, such
that we have not even included it in the figure. For comparison with the empirical
results, we have included a MAID fit to the experimental data in the figure, which
was taken from ref. [45]. The computed amplitude is much too small as compared to
the empirical one. The same can also be said for the hypercentral constituent quark
model (hCQM) of ref. [46], whose results on this amplitude we have also included in
the figure. The discrepancy in the description of this transition is commonly ascribed
to pion cloud contributions, which are missing in quark models (see e.g. ref. [45]). The
pion cloud gives rise to a correction of the electromagnetic vertex, whereas the quark
model only includes the bare vertex.

4.4 Summary

This chapter commenced with the question whether the formalism developed in the two
preceding chapters on charge radii and magnetic moments can be extended to higher
moments as well. To answer this question we started with an arbitrary moment of a
charge distribution which is the generalization of the charge radius. Following similar
steps as in the case of the charge radius derivation we found indeed a formula gener-
alizing the preceding results and showing a similar structure. We then asked whether
the method could be applied to the computation of form factors as well. Because of
energy-momentum conservation at least one of the wavefunctions entering the form
factor has to be boosted, which is a numerical disadvantage. We then showed that the
electric form factor can be expanded in powers of the rapidity squared, which made
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a separation of the Q2-dependence possible in each order of the expansion. The re-
maining matrix elements only involve wavefunctions in the rest frame of the system
thus facilitating the computation by the use of symmetries. To study whether this
expansion is applicable to the computation of the electric proton form factor, we ex-
panded its dipole parameterization in powers of the rapidity. The resulting coefficients
unfortunately grew exponentially with the order of the expansion, such that it may
not be cut at low orders. We however found that higher orders are given by similar
matrix elements as the charge radius, which motivated us to study the dependence
of the nucleon form factors on the instanton parameters. Indeed we found that the
neutron form factor varies strongly with this parameters, whereas the proton form fac-
tor mainly stays unaffected. Both observations are in accordance with the results on
the charge radii. We then proposed a new parameter set, which makes the neutron
form factor better fit the experimental data, while leaving the mass spectrum largely
unchanged. The description of the nucleon-delta transition is however not improved
with a different choice of the parameters.

To conclude we would like to remark that the extension to higher moments becomes
important, when new experiments are completed, which measure those observables like
e.g. quadrupole moments. Likewise the expansion that we found for the form factors
may not be in vain, although not applicable to nucleon form factors. It might be useful
to study for example decay observables between states with a small mass gap, where
the rapidity is small and thus becomes a good expansion parameter.
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order n coupling scheme {jn} Cj1j2...j2n−3

1 T [j] j1

0 −1/
√

3

2
[
T [j] ⊗ T [j]

][0]
j1

0 1/3

2 2/(3
√

5)

3
[
T [j1] ⊗

[
T [j2] ⊗ T [j3]

][j1]
][0]

j1 j2 j3

0 0 0 −1/(3
√

3)

0 2 2 −2/(3
√

15)

2 0 2 −2/(3
√

15)

2 2 0 −2/(3
√

15)

2 2 2 −4/(3
√

105)

4

[
T [j1] ⊗

[
T [j2] ⊗

[
T [j3] ⊗ T [j4]

][j5]
][j1]
][0]

j1 j2 j3 j4 j5

0 0 0 0 0 1/9

0 0 2 2 0 2/(9
√

5)

0 2 0 2 2 2/(9
√

5)

0 2 2 0 2 2/(9
√

5)

0 2 2 2 2 4/(9
√

35)

2 0 0 2 2 2/(9
√

5)

2 0 2 0 2 2/(9
√

5)

2 0 2 2 2 4/(9
√

35)

2 2 0 0 0 2/(9
√

5)

2 2 2 2 0 4/45

2 2 0 2 2 4/(9
√

35)

2 2 2 0 2 4/(9
√

35)

2 2 2 2 2 8/(63
√

5)

2 2 2 2 4 8/105

Table 4.1: Coupling schemes and coefficients up to fourth order in η2.
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Summary and outlook

The main objective of this work was to find new access to static observables of three-
fermion systems. Especially it was devoted to the computation of charge radii and mag-
netic moments of baryons. The analytic derivations founded on the Bethe-Salpeter for-
malism, which is the usual way to treat bound states in quantum field theory. Because
of conceptual problems stemming from retardation effects this equation is however sel-
dom used as such. Instead the instantaneous approximation is adopted consisting in
the neglect of these retardation effects. The resulting Salpeter equation has success-
fully been used as a starting point for the development of a relativistic quark model
for baryons. The interaction kernels consisted of a linearly rising confinement poten-
tial together with a residual instanton induced interaction. The model gives a quite
satisfactory description of the experimentally observed baryon spectra and constitutes
the basis for the numerical calculations of this work.

We started our analysis with charge radii of three-fermion systems. There are at
least two different approaches to this observable, both of which were used here. The
first approach consisted in a definition of the charge radius taken from classical electro-
dynamics and the second started from form factors, where the charge radius is defined
as the slope of the electric form factor at the photon point. Both approaches turned
out to be equivalent and also resulted in the same final expression for the charge radius
in the Bethe-Salpeter framework. The result is the relativistic generalization of the
nonrelativistic expression, naturally incorporating a center of mass correction. The
result was then applied to the computation of baryon octet radii using the Salpeter
amplitudes of the quark model described in detail in ref. [6]. The computed charge
radius of the proton is in excellent agreement whereas the neutron radius is too large
and also showed to be rather sensitive to the particular choice of the instanton cutoff
parameter. Since the proton radius only depends slightly on this parameter, we found a
parameter set, which describes both radii equally well. Unfortunately the experimental
situation with the hyperon radii is rather sparse and calls for refined experiments.

We then moved on to apply the formalism also to magnetic moments. Since this
had already been done partly in ref. [16], we started from a different approach, namely
from form factors. The resulting expression allows for a distinction between spin-
and angular momentum contributions to the net magnetic moment, a fact which we
exploited in the numerical treatment of baryon magnetic moments. The computation
indicated, that roughly 90 % of the baryon octet magnetic moments are due to the
quark spins. For the nucleon we also analyzed the dependence of this decomposition
on the quark mass. At quark masses nearly as small as current quark masses both
contributions roughly become of the same magnitude. The octet magnetic moments are

97
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experimentally well measured. The model is able to describe them quite accurately. For
the decuplet, one also has to include mixed energy contributions of the vertex function
due to the missing two-body interaction. This has been done in ref. [16] analytically
but not implemented numerically, so we did that here. The experimental situation is
however such that only the Ω− magnetic moment allows for a sensible discussion. The
model misses this value by about 13 %.

Inspired by successfully expressing charge radius and magnetic moment of a relativis-
tic three-fermion system as an expectation value, we extended the method to higher
moments. The resulting expression is indeed a generalization of the aforementioned
lowest moments, but in addition also matrix elements between mixed energy compo-
nents of the vertex functions appear, which are however expected to be small. We
then showed a way to also apply the method to the computation of form factors, by
expanding the boost of the incoming Salpeter amplitude that enters the current matrix
element in an exponential. Indeed we were able to separate the Q2-dependence from
the static matrix elements in all orders of the resulting expansion in the rapidity. A
fit of the expansion to the dipole parameterization of the proton form factor however
revealed, that the expansion is not suited to compute the proton form factor. Instead
we computed the form factors the classical way, inspired by the foregoing analysis to
study the effect of a change in the instanton parameters on the nucleon form factors.
The dependence of the electric proton form factor on variations of these parameters
is only slightly, but the neutron form factor shows a rather large dependence, fitting
the empirical data indeed much better, when we use the parameter set proposed in the
treatment of the nucleon charge radii.

The generalizing results of the last chapter pave the way for future work on static
hadron properties like magnetic radii and electric polarizabilities, which we mention
here because efforts have already been made to measure them at least for the nucleon.
Also when deriving the current matrix element we neglected so far the first order contri-
bution of the residual kernel due to its complexity. Although the resulting expressions
for the charge radius and magnetic moment seem to be “complete” and in its most
natural form, it remains to study the effect of these contributions.



Appendix A

Reconstruction of the
Bethe-Salpeter amplitude

In the case of vanishing two-body interactions, we have a reconstruction prescription for
the Bethe-Salpeter amplitudes from the Bethe-Salpeter equation itself. By performing
the integration over the relative energies p0

ξ and p0
η on the right-hand side of the Bethe-

Salpeter equation (1.33), which is possible because of the instantaneous three-body
kernel V (3), we get:

χM = −iG0M V (3) φΛ
M . (A.1)

In this case, the Bethe-Salpeter amplitudes contain also mixed energy components,
because V (3) does not commute with the Salpeter projector (1.43) in general.

In the presence of a two-body force, we need a reconstruction scheme that is consis-
tent with the approximations that entered the Salpeter equation. To this end we first

isolate the instantaneous part V
(3)
Λ +

∑k
i=1 V

eff
M

(i)
of the Bethe-Salpeter equation:

χM = −iG0M

(
K̄

(2)
M + V

(3)
R −

k∑
i=1

V eff
M

(i)
+ V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
χM . (A.2)

This allows for a reformulation of the Bethe-Salpeter equation

χM = −iGR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
χM , (A.3)

by the introduction of a resolvent GR,k
M which must fulfill the following integral equation

to guarantee the equivalence of (A.2) and (A.3):

GR,k
M = G0M − iG0M

(
K̄

(2)
M + V

(3)
R −

k∑
i=1

V eff
M

(i)

)
GR,k

M . (A.4)

After integrating over p0
ξ and p0

η on both sides of (A.3) and projecting onto pure energy
components we get the Salpeter equation:

ΦΛ
M = −i〈GR,k

M 〉Λ

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M . (A.5)
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Performing the same with the resolvent GR,k
M (A.4) yields:

〈GR,k
M 〉Λ = 〈G0M〉 − i〈G0M〉

∞∑
i=k+1

V eff
M

(i)〈GR,k
M 〉Λ. (A.6)

The kernel of this integral equation is at least of order k + 1 in the residual kernel
V

(3)
R + K̄

(2)
M . Expanding (A.6) in a Neumann series and taking accordingly to the

effective kernel V eff
M only terms up to order k then leaves us with:〈

k∑
i=0

GR,k
M

(i)

〉
Λ

= 〈G0M〉 (A.7)

Thus it is possible to give an approximation to the exact Bethe-Salpeter equation

χ
(k)
M = −i

k∑
i=0

GR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
χ

(k)
M (A.8)

which is consistent with the approximated Salpeter equation (1.57), because the ac-
cordingly reduced Bethe-Salpeter amplitude

ΦΛ
M

(k)
(pξ,pη) := Λ(pξ,pη)

∫
dp0

ξ

2π

dp0
η

2π
χ

(k)
M (pξ, pη) (A.9)

is a solution to the approximated Salpeter equation. A reconstruction prescription for
the Bethe-Salpeter amplitude χ

(k)
M is obtained by performing the p0

ξ- and p0
η-integration

in the instantaneous part of (A.8):

χ
(k)
M = −i

k∑
i=0

GR,k
M

(
V

(3)
Λ +

k∑
i=1

V eff
M

(i)

)
ΦΛ

M

(k)
. (A.10)

From the approximated Salpeter equation (A.5) and the reduction of the resolvent
GR,k

M (A.4) we get an important relation between the vertex function defined in (1.87)
and the Salpeter amplitude. By using the partial fraction decomposition of the prop-
agators:

Si
F (pi) = i

(
Λ+(pi)

p0
i − ωi(pi) + iε

+
Λ−(pi)

p0
i + ωi(pi)− iε

)
γ0 (A.11)

we may use the residue theorem to perform the p0
ξ- and p0

η-integration in 〈G0M〉:

〈G0M〉(pξ,pη; p′
ξ,p

′
η) =

i

[
Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M − ω1(pi)− ω2(pi)− ω3(pi)
+

Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M + ω1(pi) + ω2(pi) + ω3(pi)

]
× γ0 ⊗ γ0 ⊗ γ0(2π)3δ(3)(pξ − p′

ξ)(2π)3δ(3)(pη − p′
η), (A.12)
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where pi = pi(pξ,pη) as has been defined in eq. (1.11). This allows us to express the
Salpeter amplitudes through vertex functions:

ΦΛ
M(pξ,pη) = i

[
Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M − ω1(pi)− ω2(pi)− ω3(pi)
+

Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M + ω1(pi) + ω2(pi) + ω3(pi)

]
× γ0 ⊗ γ0 ⊗ γ0ΓΛ

M(pξ,pη). (A.13)

Accordingly for the adjoint vertex function we find:

ΦΛ
M

†
(pξ,pη) = −i Γ

Λ

M(pξ,pη)[
Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M − ω1(pi)− ω2(pi)− ω3(pi)
+

Λ(p1)⊗ Λ(p2)⊗ Λ(p3)

M + ω1(pi) + ω2(pi) + ω3(pi)

]
. (A.14)

Both relations are important, if we want to express static observables as expectation
values with respect to Salpeter amplitudes, since they allow the replacement of the
vertex functions by the latter after the integration over the relative energies has been
performed.



102 A. Reconstruction of the Bethe-Salpeter amplitude



Appendix B

Integrating out the relative energy
dependence

Integrating out the dependence on the relative energies p0
ξ and p0

η in static matrix
elements can be done in a generic way, that is for an n-fold product of A(M̄) as it is
defined in (2.30). To be definite we want to evaluate the following double integral:

I :=

∫
dp0

ξ

2π

∫
dp0

η

2π
Γ̄Λ

M(pξ,pη)

[
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

(p0
ξ + 1

2
p0

η − ω1 + iε)(−p0
ξ + 1

2
p0

η − ω2 + iε)(M − p0
η − ω3 + iε)

+
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

(p0
ξ + 1

2
p0

η + ω1 − iε)(−p0
ξ + 1

2
p0

η + ω2 − iε)(M − p0
η + ω3 − iε)

]
[γ0 ⊗ γ0 ⊗ 1I]Ai1(M̄) · · ·Ain(M̄)[

1I⊗ 1I⊗ Λ+
3

(M − p0
η − ω3 + iε)

+
1I⊗ 1I⊗ Λ−

3

(M − p0
η + ω3 − iε)

]
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη), (B.1)

where i1, . . . , in ∈ {1, 2, 3}. When using the residue theorem here one is faced with the
following difficulty: The denominator of the integrand is of second order in p0

ξ and of
fourth order in p0

η but Ai(M̄) is of first order in p0
ξ and p0

η respectively as can be seen
from (2.30). So the contour of integration can not be closed. Even worse for n > 1
the integral diverges and so is not well-defined at all. We observe however that as
soon as we make the momentum transfer of the photon finite by an arbitrary small
amount, whose three-component we call P , the integral is regular. This can be seen as
follows: From (1.101) and (1.103) we first find for the square of the three-components
of a boosted four-vector x:∣∣∣−−→ΛPx

∣∣∣2 = |x|2 + 4(x0)2(P̂ 0)2|P̂ |2 + 2x0P̂ 0(x · P̂ ) +O(|P |4) (B.2a)∣∣∣−−−→Λ−1
P x
∣∣∣2 = |x|2 + 4(x0)2(P̂ 0)2|P̂ |2 − 2x0P̂ 0(x · P̂ ) +O(|P |4). (B.2b)
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If we boost the incoming and outgoing vertex functions in eq. (B.1) by a small mo-
mentum P in opposite directions — corresponding to a small momentum transfer of
the photon — we find according to the boost prescription of the vertex functions:

ΓP (pξ, pη) = [SΛP
⊗ SΛP

⊗ SΛP
] ΓM(

−−−→
ΛPpξ,

−−−→
ΛPpη) (B.3a)

ΓPP (pξ, pη) = ΓM(
−−−→
ΛPpξ,

−−−→
ΛPpη) [SΛP

⊗ SΛP
⊗ SΛP

] . (B.3b)

The last line is explicitly shown in eq. (1.96). As is briefly touched in appendix D,
the vertex functions are expanded in a basis of the harmonic three-particle oscilla-
tor, whose radial part is given by the product Rnξlξ(β|pξ|)Rnηlη(β|pη|) with the radial
functions of the harmonic one-particle oscillator defined in eq. (D.2). As can be seen
from these equations by inserting (B.3), the integral (B.1) is always finite, when the
vertex functions are boosted by an arbitrary small momentum P due to the exponen-
tial damping factors in (D.2). To account for the regularizing behavior of the vertex
functions, we multiply by a factor that enforces convergence and take the static limit
after integration. Let us first apply this method to the p0

ξ-integration:

I = lim
P→0

∫
dp0

ξ

2π

∫
dp0

η

2π
Γ̄Λ

M(pξ,pη)

[
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

(1 + i|P |p0
ξ)

k(p0
ξ + 1

2
p0

η − ω1 + iε)(−p0
ξ + 1

2
p0

η − ω2 + iε)(M − p0
η − ω3 + iε)

+
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

(1− i|P |p0
ξ)

k(p0
ξ + 1

2
p0

η + ω1 − iε)(−p0
ξ + 1

2
p0

η + ω2 − iε)(M − p0
η + ω3 − iε)

]
[γ0 ⊗ γ0 ⊗ 1I]Ai1(P̄ ) · · ·Ain(P̄ )[

1I⊗ 1I⊗ Λ+
3

(M − p0
η − ω3 + iε)

+
1I⊗ 1I⊗ Λ−

3

(M − p0
η + ω3 − iε)

]
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη), (B.4)

where k > n to assure that the contour of integration can be closed. Obviously this
expression is the same as (B.1) in the limit P → 0. We close the contour such that
the k-fold pole at ±i/|P | is never picked up. After integrating over p0

ξ we then get:

I = −i

∫
dp0

η

2π
Γ̄Λ

M(pξ,pη)

{ [
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(p0
η − ω1 − ω2 + iε)(M − p0

η − ω3 + iε)

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2

p0
η+ω1

−
[
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(p0
η + ω1 + ω2 − iε)(M − p0

η + ω3 − iε)

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2

p0
η−ω1

}
[

1I⊗ 1I⊗ Λ+
3

(M − p0
η − ω3 + iε)

+
1I⊗ 1I⊗ Λ−

3

(M − p0
η + ω3 − iε)

]
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη) (B.5)
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We perform the remaining integration over p0
η in the same manner:

I = −i lim
P→0

∫
dp0

η

2π
Γ̄Λ

M(pξ,pη)

{ [
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(1 + i|P |p0
η)

k(p0
η − ω1 − ω2 + iε)(M − p0

η − ω3 + iε)

× [Ai1(P ) · · ·Ain(P )]
p0

ξ=−1
2

p0
η+ω1

1I⊗ 1I⊗ Λ+
3

(M − p0
η − ω3 + iε)

+

[
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(1− i|P |p0
η)

k(p0
η − ω1 − ω2 + iε)(M − p0

η − ω3 + iε)

× [Ai1(P ) · · ·Ain(P )]
p0

ξ=−1
2

p0
η+ω1

1I⊗ 1I⊗ Λ−
3

(M − p0
η + ω3 − iε)

−
[
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(1 + i|P |p0
η)

k(p0
η + ω1 + ω2 − iε)(M − p0

η + ω3 − iε)

× [Ai1(P ) · · ·Ain(P )]
p0

ξ=−1
2

p0
η−ω1

1I⊗ 1I⊗ Λ+
3

(M − p0
η − ω3 + iε)

−
[
Λ−

1 ⊗ Λ−
2 ⊗ Λ−

3

]
[γ0 ⊗ γ0 ⊗ 1I]

(1− i|P |p0
η)

k(p0
η + ω1 + ω2 − iε)(M − p0

η + ω3 − iε)

× [Ai1(P ) · · ·Ain(P )]
p0

ξ=−1
2

p0
η−ω1

1I⊗ 1I⊗ Λ−
3

(M − p0
η + ω3 − iε)

}
× [1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη) (B.6)

This time k > n− 2 to assure that the contour of integration can be closed.

I = −Γ̄Λ
M(pξ,pη){

Λ+++

(M − Ω)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=
1
2
(ω1−ω2), p0

η=ω1+ω2

1I⊗ 1I⊗ Λ+
3

(M − Ω)

+
Λ−−−

(M + Ω)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2
(ω1−ω2), p0

η=−(ω1+ω2)

1I⊗ 1I⊗ Λ−
3

(M + Ω)

+
Λ+++

1

(M − Ω1)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2
(M−ω3)+ω1, p0

η=M−ω3

1I⊗ 1I⊗ Λ−
3

2ω3

+
Λ−−−

(M + Ω)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2
(M+ω3)−ω1, p0

η=M+ω3

1I⊗ 1I⊗ Λ+
3

2ω3

}
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη) (B.7)
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We used the shorthand notations Λ±±± := Λ±
1 ⊗Λ±

2 ⊗Λ±
3 and Ω := ω1 +ω2 +ω3. Note

the structure of this result. The first two terms involve only positive and negative
energy projectors respectively whereas in the last two terms mixing occurs. Let us first
concentrate on the first two terms and evaluate the operator product Ai1(M̄) · · ·Ain(M̄)
at the respective pole positions in p0

ξ and p0
η. We have to be careful here because Ai(M̄)

contains derivatives with respect to pi
ξ and pi

η. To account for that we have to subtract
∂p0

ξ

∂pi
ξ

∂
∂p0

ξ
+

∂p0
η

∂pi
ξ

∂
∂p0

η
from ∂

∂pi
ξ

and
∂p0

ξ

∂pi
η

∂
∂p0

ξ
+

∂p0
η

∂pi
η

∂
∂p0

η
from ∂

∂pi
η

according to the chain rule when

we plug in the pole positions:

A(M̄)i
∣∣
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

= − 1
M

[
pi

ξ
∂

∂p0
ξ

+ p0
ξ(

∂
∂pi

ξ
− ∂p0

ξ

∂pi
ξ

∂
∂p0

ξ
− ∂p0

η

∂pi
ξ

∂
∂p0

η
) + pi

η
∂

∂p0
η

+ p0
η(

∂
∂pi

η
− ∂p0

ξ

∂pi
η

∂
∂p0

ξ
− ∂p0

η

∂pi
η

∂
∂p0

η
)

− 1
2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

= − 1
M

[
p0

ξ
∂

∂pi
ξ

+ p0
η

∂
∂pi

η
+ (pi

ξ − p0
ξ

∂p0
ξ

∂pi
ξ
− p0

η

∂p0
ξ

∂pi
η
) ∂

∂p0
ξ

+ (pi
η − p0

ξ
∂p0

η

∂pi
ξ
− p0

η
∂p0

η

∂pi
η
) ∂

∂p0
η

− 1
2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

(B.8)

The coefficients of ∂
∂p0

ξ
and ∂

∂p0
η

vanish:[
pi

ξ − p0
ξ

∂p0
ξ

∂pi
ξ
− p0

η

∂p0
ξ

∂pi
η

]
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

= pi
ξ − 1

4

[
(ω1 − ω2)(

pi
1

ω1
+

pi
2

ω2
) + (ω1 + ω2)(

pi
1

ω1
− pi

2

ω2
)
]

= pi
ξ − 1

2
(pi

1 − pi
2)

= 0

(B.9)

[
pi

η − p0
ξ

∂p0
η

∂pi
ξ
− p0

η
∂p0

η

∂pi
η

]
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

= pi
η − 1

2

[
(ω1 − ω2)(

pi
1

ω1
− pi

2

ω2
) + (ω1 + ω2)(

pi
1

ω1
+

pi
2

ω2
)
]

= pi
η − (pi

1 + pi
2)

= 0.

(B.10)

So finally we are left with:

Ai(M̄)
∣∣
p0

ξ=±1
2
(ω1−ω2), p0

η=±(ω1+ω2)

= − 1
M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
− 1

2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
(B.11)
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This result suggests to define:

Ai
± := − 1

M

[
±1

2
(ω1 − ω2)

∂
∂pi

ξ
± (ω1 + ω2)

∂
∂pi

η
− 1

2
(αi ⊗ 1I⊗ 1I + 1I⊗ αi ⊗ 1I)

]
(B.12)

For the last two terms in (B.7) it must be noted that evaluating[
Ai1(M̄) · · ·Ain(M̄)

]
p0

ξ=−1
2
(M+ω3)−ω1, p0

η=M+ω3
in the same way leads to difficulties:

[
pi

ξ − p0
ξ

∂p0
ξ

∂pi
ξ
− p0

η

∂p0
ξ

∂pi
η

]
p0

ξ=−1
2
(M∓ω3)±ω1, p0

η=M∓ω3

= pi
ξ ∓ 1

2
(M ∓ ω3)(

pi
1

ω1
+

pi
3

ω3
) (B.13)

[
pi

η − p0
ξ

∂p0
η

∂pi
ξ
− p0

η
∂p0

η

∂pi
η

]
p0

ξ=−1
2
(M∓ω3)±ω1, p0

η=M∓ω3

= pi
η ∓ (M ∓ ω3)

pi
3

ω3
. (B.14)

After inserting the pole positions the derivatives with respect to p0
ξ and p0

η do not vanish.
The only way out would be to multiply out Ai1(M̄) · · ·Ain(M̄) before integration.
Fortunately matrix elements between different energy components vanish both in case
of the charge radius and the magnetic moments because there n ≤ 2. Let us summarize
the results of this appendix:

I = −Γ̄Λ
M(pξ,pη)

{
Λ+++

(M − Ω)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1

+ · · ·Ain
+

] 1I⊗ 1I⊗ Λ+
3

(M − Ω)

+
Λ−−−

(M + Ω)
[γ0 ⊗ γ0 ⊗ 1I]

[
Ai1
− · · ·Ain

−
] 1I⊗ 1I⊗ Λ−

3

(M + Ω)

+ terms with mixed energy components

}
[1I⊗ 1I⊗ γ0]ΓΛ

M(pξ,pη). (B.15)

Let us again emphasize that terms with mixed energy components only appear for
n > 2.
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Appendix C

Tensors, coupling formulas and
Wigner-Eckart theorem

C.1 Tensor operators

Commutation relations of an operator with the angular momentum operators define
the transformation properties under rotations. One defines a tensor operator of rank
k, if its 2k + 1 spherical components satisfy the following commutation rules:[

J3, T
[k]
q

]
= q T [k]

q (C.1a)[
J±, T

[k]
q

]
=
√
k(k + 1)− q(q ± 1)T

[k]
q±1 q = −k, ...0, ...k. (C.1b)

A tensor operator of rank 1 usually is called a vector operator. Its Cartesian com-
ponents T i are related to the spherical components T

[1]
q via the following relations:

T
[1]
± = ∓ 1√

2
T± = ∓ 1√

2
(T1 ± iT2) (C.2a)

T
[1]
0 = T3. (C.2b)

With the aid of eqs. (C.2) and the formula for coupling two tensor operators (C.6)
one shows by explicit calculation that the common vector product corresponds to the
coupling of two vector operators to an operator of rank 1:

(T1 × T2)
[1]
q =

√
2

i

[
T

[1]
1 ⊗ T

[1]
2

][1]
q
. (C.3)

On the left hand side it is understood to take the spherical components of the vector
product according to the definition (C.2). Likewise one shows that the coupling of two
vector operators to a scalar tensor operator corresponds to the usual scalar product of
two vector operators: [

T
[1]
1 ⊗ T

[2]
2

][0]
0

= − 1√
3
T1 · T2 (C.4)
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C.2 Coupling of angular momenta

Let |j1,m1〉 and |j2,m2〉 be eigenstates to two angular momentum operators j1 and j2

respectively. An eigenstate to J = j1 + j2 is obtained by coupling:

|JM〉 = [|j1〉 ⊗ |j2〉]JM =
∑

m1,m2

〈j1m1, j2m2|JM〉 |j1,m1〉 ⊗ |j2,m2〉. (C.5)

In the same way tensor operators are coupled:[
T

[k1]
1 ⊗ T

[k2]
2

][k]

q
=
∑
q1,q2

〈k1q1, k2q2|kq〉T [k1]
1 q1

⊗ T
[k2]
2 q2

. (C.6)

The numbers 〈k1q1, k2q2|kq〉 are Clebsch-Gordan coefficients which are related to the
prominent 3j symbols:(

j1 j2 J
m1 m2 −M

)
=

(−1)j1−j2+M

Ĵ
〈j1m1, j2m2|JM〉, (C.7)

where Ĵ =
√

2J + 1 is the root of the multiplicity. The 3j symbols fulfill the triangu-
larity relation and the m-selection rule:(

j1 j2 j3
m1 m2 m3

)
6= 0 ⇔ |j1 − j2| ≤ J ≤ j1 + j2 and m1 +m2 +m3 = 0. (C.8)

Moreover we have: (
j1 j2 j3
0 0 0

)
= 0 ⇔ j1 + j2 + j3 odd. (C.9)

C.3 Wigner-Eckart theorem

The Wigner-Eckart theorem allows to factorize the dependence on the geometry i.e. m
quantum number of a matrix element of a tensor operator with respect to angular
momentum eigenstates into a Clebsch-Gordan coefficient and a so called reduced matrix
element:

〈j1,m1|T [k]
q |j2,m2〉 = (−1)j1−m1

(
j1 k j2
−m1 q m2

)
〈j1||T [k]||j2〉. (C.10)

For a matrix element of a scalar operator one thus obtains:

〈j,m|T [0]
0 |j′,m′〉 =

1

ĵ
δjj′ δmm′ 〈j||T [0]||j〉. (C.11)

The reduced matrix element of a tensor product of tensor operators acting on different
spaces can be decomposed:

〈j1, j2; J ||
[
T

[k1]
1 ⊗ T

[k2]
2

][l]
||j′1, j′2, J ′〉

= Ĵ l̂ Ĵ ′


j1 j2 J
j′1 j′2 J ′

k1 k2 l

 〈j1||T [k1]
1 ||j′1〉 〈j2||T

[k2]
2 ||j′2〉 (C.12)
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If both operators however act on the same space, the following identity holds:

〈j||
[
T

[k1]
1 ⊗ T

[k2]
2

][l]
||j′〉 = (−1)j+l+j′ l̂

∑
α

{
j′ j l
k1 k2 α

}
〈j||T [k1]

1 ||α〉 〈α||T [k2]
2 ||j′〉.

(C.13)
If the states are characterized by additional quantum numbers, α is a multi-index which
is summed over. In eqs. (C.12) and (C.13) the the so called 9j and 6 symbols respec-
tively appear which are defined by the coupling of four and three angular momentum
eigenstates respectively.
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Appendix D

Numerical implementation

D.1 General remarks

The numerical implementation of the computation of magnetic moments according to
eq. (3.31) has been described in some detail in ref. [16]. We thus want to add some
remarks here that are specific to the numerics of the charge radius. The operator that
is actually implemented is the one that we obtained before symmetrizing over the three
quarks, i.e. eq. (2.46) with r̂2 defined in eq. (2.47). This operator is rewritten as a
sum of products of scalar tensor operators according to the following identity:

[
1
2
(ω1 − ω2)∇pξ

+ (ω1 + ω2)∇pη +
p1

2ω1

+
p2

2ω2

]2

= 1
4
(ω1 − ω2)∆pξ

(ω1 − ω2) + (ω1 + ω2)∆pη(ω1 + ω2)

+ 1
2
(ω1 − ω2)∇pξ

·∇pη(ω1 − ω2) + 1
2
(ω1 + ω2)∇pξ

·∇pη(ω1 + ω2)

+
3

2

(
|p1|2

ω2
1

+
|p2|2

ω2
2

)
+

p1 · p2

ω1ω2

− 3. (D.1)

Owing to a better readability we have omitted the arguments of the relativistic kinetic
energies ω1(p1) and ω2(p2). This version has the advantage, that there are no first
order derivatives and thus no scalar products between a momentum and a derivative
with respect to a momentum. We may then compute the expectation value of each
term in eq. (D.1) by inserting complete sets of states at the appropriate places, such
that only matrix elements of scalar operators appear.

D.2 Dependence on the oscillator parameter

As has been described in refs. [16, 48, 49] the Salpeter amplitudes are expanded
in a basis of the harmonic three-particle oscillator, whose radial part is given by the
product Rnξlξ(β|pξ|)Rnηlη(β|pη|) with the radial functions of the harmonic one-particle
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Figure D.1: Dependence of nucleon mass and charge radii on the β-parameter. The varia-
tion is relating to the mass minimum at β = 0.45 fm.

oscillator defined by:

Rnξlξ(β|pξ|) = Nnξlξ

n∑
µ=0

cµnξlξ
(β|pξ|)2µ+le−

1
2
(β|pξ|)2 (D.2a)

Rnηlη(β|pη|) = Nnηlη

n∑
µ=0

cµnηlη
(β|pη|)2µ+le−

1
2
(β|pη |)2 , (D.2b)

where Nnl are suitable normalization coefficients and cµnl summation coefficients. The
scale of this oscillator is set by the so called oscillator parameter β. Since the expansion
of the Salpeter amplitudes is cut at some finite basis size, which is characterized by the
number of oscillator shells, the solutions of the Salpeter equation depend parametrically
on the oscillator parameter. The Salpeter equation can be formulated as a variational
problem with respect to this parameter (see ref. [48]). One thus has to find a β, such
that the mass eigenvalues are minimized. The quality of the approximation can then
be checked by plotting the mass as a function of the oscillator parameter as done in fig.
D.1. For an infinite basis size the mass does not depend on the variational parameter.
For a finite basis size one should see a plateau, which is the broader, the higher the
basis size has been chosen. Since we also expect that the charge radius depends on the
particular choice of the oscillator parameter, because it directly sets the length scale
for the basis functions, we have to check, that it does not vary to much in the region
of the mass plateau. From fig. D.1 we see, that the variation of both radii over the
mass plateau is in the percent region, related to the values at the mass minimum. The
dependence of the neutron charge radius is stronger by about a factor of two compared
to that of the proton, which may be due to its smallness.
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Figure D.2: Charge radii of proton and neutron as a function of the number of oscillator
shells to test the effects of a finite basis.

D.3 Testing the convergence

Apart from the analysis above, which studied the dependence of the charge radii on
the oscillator parameter, we have to check, if the number of basis states is sufficient to
approximate the Salpeter amplitudes well enough. Related to the charge radius this
means that its value should converge to some number with increasing basis size. The
size of the special oscillator basis that was numerically implemented to approximate
the Salpeter amplitudes is expressed in the number of oscillator shells that have been
taken into account. The actual number of basis states depends quadratically on the
number of oscillator shells and is moreover also a function of the baryons total spin.
In fig. D.2 we have plotted the nucleon charge radii as a function of the number of
oscillator shells. We see that both radii indeed converge to within a few percent at 16
oscillator shells. The differences from 14 to 16 oscillator shells are 1.6 % in the proton
radius and 3.5 % in the neutron radius.

D.4 Concluding remarks

The preceding discussions on the dependence of the charge radii on the oscillator pa-
rameter and the basis size shows, that their numerical values can be considered stable.
However we must assign a numerical uncertainty of roughly ±5 % to the results to ac-
count for the finite basis size and the induced dependence on the oscillator parameter
and the number of oscillator shells.
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[5] U. Löring, K. Kretzschmar, B. C. Metsch and H.-R. Petry, Eur. Phys. J. A 10
(2001) 309 [arXiv:hep-ph/0103287].
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