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Abstract 
 
 
Bioreduction of (2,5)-hexanedione to highly enantiopure (5R)-hydroxyhexane-2-one 
(ee > 99 %) with Lactobacillus kefiri DSM 20587 was investigated.  Cell 
immobilisation with sodium cellulose sulphate (technical grade) was chosen as the 
most suitable encapsulation matrix, giving an immobilisation yield of 40 %.  Despite 
the lowered biocatalytic activity from cell immobilisation, the bioreduction process 
was vastly improved with the help of reaction engineering techniques (batch to a plug 
flow reactor setup).  High selectivity (95 %) and space-time yield (87 g L-1 d-1), with a 
biocatalyst consumption of 1.4 gwcw g-1 was achieved in the plug flow reactor.  The 
biocatalyst remained active (68 % residual activity) after 6 days of operation.  
Downstream processing of (5R)-hydroxyhexane-2-one was obtained by column 
chromatography, yielding a product of more than 99 % purity (GC) and enantiomeric 
excess on a gram-scale. 
 
The same bioreduction was applied on an enzyme-coupled system consisting of 
alcohol dehydrogenase from Lactobacillus brevis (LbADH) and formate 
dehydrogenase (FDH) from Pseudomonas sp.  In a similar enzyme-coupled system, 
the biotransformation was extended from a batch to a continuous setup to reduce 
methyl acetoacetate to highly enantiopure (R)-methyl 3-hydroxybutanoate                
(ee > 99 %).  The highest total turnover numbers (2.4 x 106 mol molADH

-1,                         
2.5 x 104 mol molFDH

-1 and 329 mol molNADP
-1) and therefore, lowest biocatalyst 

consumption (0.015 gADH+FDH g-1) was achieved in the continuous setup. 
 
From an enzyme-coupled system to whole cell biotransformation of methyl 
acetoacetate with genetically modified Escherichia coli coexpressing genes of 
LbADH and FDH from Mycobacterium vaccae, high enantiopure (R)-methyl 3-
hydroxybutanoate (ee > 99 %) was also obtained.  Through reaction engineering, the 
lowest biocatalyst consumption (0.9 gwcw g-1) was yielded in a continuous reactor.  
The biocatalyst deactivated rapidly (kdes of about 5 % h-1) under continuous 
production, possibly due to a leaky cell membrane. 
 
In this study, comparison of the whole cells and enzyme-coupled systems revealed 
higher activities for enzyme-coupled bioreductions with high production costs.  
Although whole cells biotransformations yielded lower activities, they are more 
inexpensive.  Through reaction engineering techniques, the biocatalyst consumption 
of whole cell bioreductions could be reduced.  In addition, the biocatalyst 
consumption of a process can be further reduced with whole cell immobilisation. 
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1 Introduction 
 
 
1.1 Chiral alcohols 
 
 
Chiral alcohols are versatile building blocks for fine chemicals, for example, in 
pharmaceuticals and agrochemicals (Ager, 1999; Liese et al., 2000a).  In general, 
organic chemical syntheses yield alcohols of various isomers.  In order to produce 
enantiopure chiral alcohols through organic synthesis, among others optical resolution 
of racemic alcohols is employed.  Several asymmetric catalysts, such as BINAP, were 
developed and used for the asymmetric synthesis of chiral alcohols (Mikami et al. 
2000; Noyori and Ohkuma 2001). 
 
On the other hand, biocatalysts can rival conventional chemical catalysts in terms of 
its chemo-, regio- and stereo-selectivity (Yamada and Shimizu, 1988; Koeller and 
Wong, 2001).  In addition, the mild working conditions needed for biocatalysis are 
becoming more attractive for industrial production (Liese et al., 2000a; Ogawa and 
Shimizu, 2002; Schmid et al., 2001; Straathof et al., 2002).  In 2003, Frost and 
Sullivan reported that the use of biocatalysis in chiral technologies would increase 
from 10 % in 2002 to 22 % in 2009.  Therefore, biocatalysts may increasingly also be 
used as promising catalysts for the asymmetric production of chiral alcohols.   
 
In this work, the syntheses of two classes of chiral alcohols are of interest:                 
γ-Hydroxyketones and 3-hydroxybutanoates (Figure 1.1). 
 
 
 
 
 
 
 
 
Figure 1.1.  Structures of γ-hydroxyketones and 3-hydroxybutanoates where R1, R2 and R3 refer 

to alkyl groups. 

 
 

1.1.1 γ-Hydroxyketones 
 
 
γ-Hydroxyketones can be used as intermediates in the preparation of optically active 
tetrahydrofurans used in biodegradable polymers, perfumes and in medicines 
(Watanabe et al., 1998).  Additionally, follow-up chemistry on the keto and hydroxy 
groups of the γ-hydroxyketones would yield a broad range of other possible 
interesting intermediates.  In particular, (5R)-hydroxyhexane-2-one can be reduced to 
its corresponding (2R,5R)-hexanediol, which is an intermediate of the DuPHOS 
catalyst (Figure 1.2). 
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Figure 1.2.  Products from (5R)-hydroxyhexane-2-one. 

 
 
To date, only 3 known chemical methods exist to obtain (5R)-hydroxyhexane-2-one.  
Firstly, the oxidation of (2R,5R)-hexanediol with silver carbonate-Celite yielded 46 % 
of (5R)-hydroxyhexane-2-one with a low enantiomeric excess (ee) of 71 % (Davis et 
al., 1977).  Secondly, the asymmetric hydrogenation of 2,5-hexanedione with 
chemically modified nickel catalysts gave a broad range of yields (7 - 83 %) with very 
low enantiopurity (0.3 - 7.3 % ee) of (5R)-hydroxyhexane-2-one (Brunner et al., 
1991).  Both processes gave very low optical purity and low yield of (5R)-
hydroxyhexane-2-one, and therefore, the product cannot be used industrially.  The last 
chemical method involved the asymmetric hydrogenation of 2,5-hexanedione with a 
range of optically active ruthenium phosphine complexes, where high optically pure 
(5R)-hydroxyhexane-2-one (82.7 - above 99 % ee) with moderate to high yields       
(38 – 86 %) was obtained (Watanabe et al., 1998).  However, the main drawback of 
this process besides its long reaction time was the high operating pressure of 50 bar. 
 
(5R)-hydroxyhexane-2-one can also be made by biotechnological means.  It was 
produced as an intermediate in two whole cell biotransformation processes using 
resting cells of Lactobacillus kefiri DSM 20587 (Hummel et al., 2000; Haberland et 
al., 2002a, 2002b) and Pichia farinosa IAM 4682 (Ikeda et al., 1996).  In both 
processes that were optimised in view of the respective diol synthesis, (5R)-
hydroxyhexane-2-one was not the target product and as such, no specific data on it 
was given.  Studies by other researchers have shown that the isolated enzyme alcohol 
dehydrogenase (ADH) from Lactobacillus kefiri or Lactobacillus brevis (Bradshaw et 
al., 1992; Hummel, 1997; Wolberg et al., 2000) was a suitable biocatalyst for the 
reduction of keto-groups to form (R)-alcohols of high yields and enantioselectivities.  
Therefore, it would also be possible to form (5R)-hydroxyhexane-2-one starting from 
(2,5)-hexanedione as starting material with the use of ADH as biocatalyst.  However, 
as in the cases with the whole cell biotransformations, no data on the enzymatic 
production of (5R)-hydroxyhexane-2-one were known. 
 
Before the start of this work, enantiopure hydroxyketone (5R)-hydroxyhexane-2-one 
could not be purchased from ordinary suppliers/companies as there was no efficient 
and simple process available for its production.  However, an industrial biocatalytic 
process by Juelich Fine Chemicals GmbH producing (2R,5R)-hexanediol on a 50-kg 
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scale yielded (5R)-hydroxyhexane-2-one as an intermediate (Figure 1.3).  With an 
inexpensive starting material of (2,5)-hexanedione, a high-value product (2R,5R)-
hexanediol was obtained.  Recently, an initial sample of (5R)-hydroxyhexane-2-one 
was commercialised at a high price under Fluka. 
 
 
 
 
 

 
 

 
 
 
 
 
 
Figure 1.3.  Industrial route to (2R,5R)-hexanediol by whole cell biotransformation with 

Lactobacillus kefiri DSM 20587.  Prices quoted are from *Fluka (2005/2006) and **Juelich Fine 

Chemicals GmbH (2004) catalogues. 

 
 
1.1.2 3-Hydroxybutanoates 
 
 
3-Hydroxybutanoates have been widely employed as synthetic intermediates (Carnell 
et al., 2004).  The chiral alcohols are used in the syntheses of β–lactam antibiotics and 
β–lactamase inhibitors (Nakai and Chiba, 1986), and as building blocks for a wide 
range of other useful intermediates (Seebach and Zueger, 1982; Seebach et al., 1993) 
like (R)-hydroxybutyrolactone (Fraeter, 1979; Seebach and Zueger, 1985; Kramer and 
Pfanler, 1982) and (R)-1,3-butanediol.  3-Hydroxybutanoates are also employed in the 
syntheses of phosphorous ligands by Kolbe electrochemical coupling for (R,R) and 
(S,S)-2,5-hexanediols, which are subsequently used in the production of DuPHOS 
catalysts (Burk et al., 1991, 1992).  In particular, (R)-methyl-3-hydroxybutanoate is 
used in the manufacture of the anti-glaucoma drug, Trusopt (Blacker and Holt, 1997).  
A summary of some important intermediates of 3-hydroxybutanoates is illustrated in 
Figure 1.4. 
 
To date, there exist 5 known chemical and biotransformations routes to obtain (R)-3-
hydroxybutanoates.  Firstly, homogeneous catalysis with BINAP or BIFAPS catalysts 
gave excellent enantiopurity and yield of (R)-methyl-3-hydroxybutanoate of above    
99 % (Gelpke AES et al., 1999).  However, the processes are expensive and require a 
high operating pressure (4 bar) and temperature (60 °C) (Wolfson et al., 2003; 
Kitamura et al., 1993).  The second means to obtain (R)-methyl-3-hydroxybutanoate 
was by heterogeneous catalysis with modified Raney nickel catalyst.  Kukula and 
Červený (2002) demonstrated that at best, only 80 % ee and 95 % yield of (R)-methyl-
3-hydroxybutanoate was obtained, in addition to the high pressure (10 bar) applied at  
60 °C. 
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Figure 1.4.  Products of 3-hydroxybutanoates. 

 
 
When whole cell biotransformations were explored, the processes gave varied 
enantiopurity and productivity of (R)-3-hydroxybutanoates.  As most wild type 
microorganisms usually possess (S)- rather than (R)-specific carbonyl reductases for 
the bioreduction of β-ketoesters, not much data are available for the production of (R)-
3-hydroxybutanoates with wild type microorganisms.  Ribeiro et al. (2003) reported 
that Aspergillus niger and Kluyveromyces marxianus yielded low enantiomeric excess 
of the (R)-isomer at 30 and 18 % respectively.  Wild type Saccharomyces cerevisiae 
was found to produce the (S)-isomer predominantly, but there appeared to be a shift in 
enantioselectivity of the biocatalyst in the long term (Chin-Joe et al., 2002a, b).  Low 
productivity was also observed by Seebach et al. (1990) with the use of baker’s yeast. 
 
On the other hand, with recombinant Escherichia coli coexpressing carbonyl 
reductases from Lactobacillus brevis, Sporobolomyces salmonicolor or Candida 
magnoliae as biocatalyst in place of wild type microorganisms, high 
enantioselectivity (above 95 % ee) and yield (above 92 %) of the processes were 
obtained (Ernst et al., 2003, 2005; Kataoka et al., 1997, 1999, 2003; Shimizu et al., 
1998; Yamamoto et al., 2002).  However, no data were given on the long term 
stability of the processes. 
 
The fourth method to produce (R)-3-hydroxybutanoates was by enzymatic 
biotransformations through the use of lipases or dehydrogenases (Carnell et al., 2004).  
The main drawback of using the lipase resolution method to yield the (R)-isomer was 
the lack of efficient means to recycle the (S)-isomer.  On the other hand, the use of 
dehydrogenases with efficient cofactor recycling could yield a kilogram-scale 
production of high space-time yield (Daussmann, 2005). 
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Lastly, (R)-methyl-3-hydroxybutanoate could be produced from alcoholysis of the 
biopolymer 3-hydroxybutanoate.  In this process, high enantiomeric excess of above 
98 % and relatively high yield of 78 % of (R)-methyl-3-hydroxybutanoate was 
obtained (Seebach et al., 1993). 
 
An example of a cost-effective production of (R)-methyl-3-hydroxybutanoate was 
developed with the use of isolated enzymes (alcohol dehydrogenase from 
Lactobacillus brevis LbADH).  The process is now commercialised on a ton scale by 
Juelich Fine Chemicals GmbH and Wacker Chemie (Figure 1.5). 
 
 

 
 
Figure 1.5.  Industrial route to (R)-methyl-3-hydroxybutanoate by isolated enzymes 

(Lactobacillus brevis alcohol dehydrogenase LbADH) with cofactor regeneration by means of 

isopropanol.  Prices quoted are from Juelich Fine Chemicals GmbH (2004) catalogue. 

 
 
1.2 Biocatalysts 
 
 
Production of chiral alcohols by bioreduction of prochiral carbonyl compounds with 
microbial cells and commercially available oxidoreductases have been widely 
investigated (Csuk and Glaenzer, 2000; D’Arrigo et al., 2000; Grunwald et al., 1986; 
Hummel, 1999; Kula and Kragl, 2000; Liese et al., 2000a; Mori, 2000; Mueller et al., 
2005; Patel et al., 1992; Wong et al., 1985).  The use of isolated enzymes and 
microorganisms (wild type and genetically modified) as biocatalysts for the reduction 
of prochiral ketones to chiral alcohols is briefly discussed here. 
 
 
1.2.1 Isolated enzymes 
 
 
The bioreduction of carbonyl compounds with oxidoreductases require cofactors.  To 
ensure a sufficient amount of cofactors for the bioreduction, regeneration of the 
cofactors in the system is employed.  There are a variety of ways to regenerate 
cofactors enzymatically (Chenault et al., 1988).  Two enzymatic systems (substrate-
coupled and enzyme-coupled) incorporating cofactor regeneration during the 
reduction of ketones to alcohols are illustrated in Figure 1.6 (Kroutil et al., 2004). 
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OO
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Figure 1.6.  Cofactor regeneration with substrate-coupled (left) and enzyme-coupled (right) 

system. 

 
 
In the substrate-coupled system, the use of one enzyme, an alcohol dehydrogenase 
(ADH), is used for the reduction of a substrate (ketone) to its product (alcohol) with 
the use of the reduced cofactors NAD(P)H.  The recycling of the cofactors was 
achieved through the oxidation of a cosubstrate (alcohol) to its coproduct (aldehyde or 
ketone) with the same ADH, but utilising the oxidised cofactors NAD(P)+.  Examples 
of this system were given by Schubert et al. (2001), Wolberg et al. (2001) and Villela 
(2003) where isopropanol was used as a cosubstrate to regenerate the cofactors.  In 
order to obtain high conversion of the substrate (ketone), a large amount of 
cosubstrate (isopropanol) was required to drive the thermodynamic equilibrium in the 
desired direction.  However, the high concentration of coproduct could be toxic or 
inhibitory to the enzyme (Kula and Kragl, 2000).  To reduce the amount of undesired 
coproducts in the system, additional techniques like stripping with air and 
pervaporation could be employed (Stillger et al., 2002, 2004). 
 
On the other hand, the enzyme-coupled system involves the use of two separate 
enzymes.  The alcohol dehydrogenase (ADH) reduces the substrate to its product with 
the use of reduced cofactors NAD(P)H while the second enzyme, for instance, 
formate dehydrogenase (FDH) oxidises the cosubstrate formate to its product carbon 
dioxide with the use of the oxidised cofactors NAD(P)+, and thereby simultaneously 
recycles the cofactors in the system.  Examples of this system have been widely 
explored by Eckstein et al. (2004), Groeger et al. (2003), Rissom (1999) and Tishkov 
et al. (1999). 
 
A variety of ways other than enzymatic means to regenerate cofactors has also been 
developed (Vuorilehto et al., 2004; Wichmann and Vasic-Racki, 2005).  Figure 1.7 
summarises the use of electrochemical reactions (direct cathodic reduction, indirect-
electrochemical regeneration and indirect electroenzymatic regeneration) as one 
feasible route to regenerate cofactors (Hollmann and Schmid, 2004).  Cofactors could 
additionally be regenerated by photochemical means.  A review of the electro- and 
photo-chemical routes by Hollmann and Schmid (2004) is referred to for in depth 
information. 
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Figure 1.7.  Alternative routes for the electrochemical regeneration of NAD(P)+ from NADPH.  

A:  Direct cathodic reduction, B:  Indirect-electrochemical regeneration, C:  Indirect 

electroenzymatic regeneration (Hollmann and Schmid, 2004). 

 
 
1.2.2 Wild type microorganism Lactobacillus kefiri 
 
 
Lactobacillus kefiri DSM 20587 (previously known as Lactobacillus kefir, Trueper 
and De’ Clare, 1997) was discovered by Kandler and Kunath (1983) from kefir 
grains.  This lactic acid bacterium is heterofermentative and cultivated on De Man-
Rogosa-Sharpe (MRS) medium (Sharpe, 1981).  It consists of gram-positive, non 
motile and non spore-forming rods with rounded ends, and is typically 0.7 by 3 - 15 
µm long, with a tendency to form chains of short rods or long filaments.  Being 
aerotolerant, it grows better in reduced oxygen concentration, with an optimal growth 
temperature of 30 °C (Kandler and Kunath, 1983).  To date, the metabolism of L. 
kefiri is yet to be fully mapped out (Hummel, 2005).  However, it has already been 
found to be an interesting candidate as a biocatalyst. 
 
Hummel et al. (1989a, b, 1990) have first discovered a new, NAD+-dependent alcohol 
dehydrogenase from L. kefiri capable of enantioselective reduction of prochiral 
ketones to chiral alcohols.  Wong and Bradshaw (1994) have further extended the 
range of prochiral ketones catalysed by a NADP+-dependent alcohol dehydrogenase 
from L. kefiri.  In 1996, Hummel and Riebel have found and characterised a (R)-
specific and NADP+-dependent alcohol dehydrogenase from L. kefiri.  The substrate 
range of this non metal-containing, short-chain, NADP+-dependent alcohol 
dehydrogenase is broad and it encompasses aromatic, cyclic, polycyclic and aliphatic 
ketones.  Currently, the commercially available alcohol dehydrogenases from 
Lactobacillus kefiri are the NAD+-dependent diacetyl reductase (Hummel, 1997) and 
a NADP+-dependent reductase (Sigma-Aldrich catalogue, 2004/2005).  There exist 
more than one alcohol dehydrogenases in L. kefiri and not all have been fully isolated 
(Hummel, 2005).  Therefore, if whole cells are used as biocatalysts in place of the 
isolated enzyme, other interesting substrates could be yielded. 
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Haberland et al. (2002a, b, 2003) have demonstrated that Lactobacillus kefiri was a 
useful biocatalyst for the industrial production of (2R,5R)-hexanediol (Figure 1.8).  
One of the advantages of this system over the use of isolated enzymes is the 
intracellular cofactor regeneration.  No additional coupled system is required to 
recycle the spent cofactors, since it is done by the metabolism of the cell.  In addition, 
the process was much cheaper than the isolated enzyme technology used by Dow 
Pharma, Cambridge, United Kingdom.  However, one of the drawbacks of the whole 
cell system was the instability of the cells.  After 5 days of continuous production of 
(2R,5R)-hexanediol, there was an unexplained sudden cell death.  One way to enhance 
the stability of the cells is cell immobilisation, which is discussed in Chapter 1.2.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8.  Production of (2R,5R)-hexanediol with whole resting cells of Lactobacillus kefiri DSM 

20587. 

 
 
1.2.3 Genetically modified microorganisms 
 
 
Although some wild type microorganisms are relatively inexpensive, commercially 
available and their enzymes are rather well-characterised, most of these microbes are 
not practical for use in industrial production (Kataoka et al., 2003).  Baker’s yeast or 
related strains were widely studied as biocatalysts for a broad range of prochiral 
ketones (Chin-Joe et al., 2002a, b; Csuk and Glaenzer, 1991; D’Arrigo et al., 1997; 
Komentani et al., 1993; Nakamura et al., 1991; Shieh et al., 1985; Ward and Young, 
1990).  However, it was found that baker’s yeast contains at least 7 NADPH-
dependent out of 49 possible carbonyl reductases with different properties (Stewart, 
2000).  Some of these carbonyl reductases are (R)- and others (S)-specific.  As a 
result, the enantiomeric excess of the chiral alcohol produced was low when whole 
cells of baker’s yeast containing a bag of enzymes were used (Kataoka et al., 2003; 
Stewart, 2000). 
 
In order to achieve high enantiopurity of the chiral alcohol when whole cells are used, 
an effective bioreduction system could be designed in a host cell.  The host could 
contain one or two enzyme systems.  In the former, the carbonyl reductase reduces the 
prochiral ketone and oxidises the cofactor NAD(P)H.  Simultaneously, it oxidises the 
cosubstrate (alcohol) present, producing NAD(P)H in the process, and thereby 
regenerating the cofactor in the system.  This system is similar to the substrate-
coupled enzyme system in Chapter 1.2.1.  In the two-enzyme system, the carbonyl 
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reductase is employed for the asymmetric reduction of prochiral ketones to chiral 
alcohols, while the other enzyme regenerates the cofactor, supplying NAD(P)H which 
is needed by the carbonyl reductase as a cofactor.  This system is similar to the 
enzyme-coupled system in Chapter 1.2.1.  To ensure high productivity of the carbonyl 
reductase system, there should be sufficient supply of cofactors in the same host cell.  
However, only a few wild type microorganisms contain high activities of both their 
carbonyl reductase and cofactor regeneration systems.  Various methods like drying 
by air or acetone have been used to treat the wild type microorganisms, but it was still 
difficult to construct an efficient bioreduction system with them (Kataoka et al., 
2003). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9.  Recombinant whole cells transformed with carbonyl reductase (CR) and cofactor 

regeneration systems with formate dehydrogenase (FDH) or glucose dehydrogenase (GDH). 

 
 
Table 1.1.  Examples of recombinant Escherichia coli transformant cells coexpressing carbonyl 

reductase and cofactor regeneration systems.  ADH:  Alcohol dehydrogenase, AR:  Aldehyde 

reductase, CR:  Carbonyl reductase, FDH:  Formate dehydrogenase, GDH:  Glucose 

dehydrogenase. 

 
References Carbonyl reductase system Cofactor regeneration system 

Ernst et al. (2003, 
2005) 

NAD(P)H-dependent ADH 
(Lactobacillus brevis) 

NAD+-dependent FDH 
(Mycobacterium vaccae) 

Kaluzna et al. 
(2005), Walton and 
Stewart (2004), 
Yang et al. (2005) 

NADPH-dependent ADH 
(Saccharomyces cerevisiae) 

Glucose metabolism 
(Escherichia coli) 

Kataoka et al. (1999, 
2003), Shimizu et al. 
(1999) 

NADPH-dependent AR 
(Sporobolomyces 
salmonicolor) 

NADP+-dependent GDH 
(Bacillus megaterium) 

Kizaki et al. (2001) NADPH-dependent CR 
(Candida magnoliae) 

NADP+-dependent GDH 
(Bacillus megaterium) 

 
 
Recently, there have been many approaches of recombinant DNA technology applied 
to whole cell bioconversion (Endo and Koizumi, 2001; Kataoka et al., 2003).  
Escherichia coli cells transformed with carbonyl reductases and their genes, and 
cofactor regeneration enzymes and their genes (formate dehydrogenase, FDH, or 
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glucose dehydrogenase, GDH) have been shown to be promising biocatalysts (Ernst et 
al., 2003, 2005; Kaluzna et al., 2005; Kataoka et al., 1999, 2003; Kizaki et al., 2001; 
Shimizu et al., 1998; Stewart, 2000; Walton and Stewart, 2004; Yang et al., 2005).  
Table 1.1 and Figure 1.9 summarise the two-enzyme system coexpressed in these 
works, capable of highly enantioselective β-ketoesters reduction.  For NADP(H) 
regeneration, NADP+-dependent glucose dehydrogenase (GDH) or glucose-6-
phosphate dehydrogenase could be used in parallel to the NADPH-dependent 
carbonyl reductase system.  However, glucose as a substrate is much cheaper than 
glucose-6-phosphate and is therefore preferred.  On the other hand, formate 
dehydrogenase (FDH) in recombinant cells preferentially utilises NAD+ to NADP+, 
and may lead to an imbalance in cofactor pools in the cells.  Lately, there have been 
many attempts to change the cofactor requirement of NAD+-dependent formate 
dehydrogenases (Gul-Karaguler et al., 2001, Serov et al., 2002, Tishkov et al., 1999).  
However, more work is also needed to further screen for NAD(P)+- or strictly 
NADP+-dependent formate dehydrogenase if formate dehydrogenase (FDH) is to be 
efficiently coupled to NADPH-dependent carbonyl reductases in recombinant cells. 
 
 
1.2.4 Whole cell immobilisation 
 
 
Whole cell immobilisation can be defined as the physical confinement or localisation 
of intact cells to a certain defined region of space with the preservation of some 
desired activity (Karel et al., 1985).  The principal methods for whole cell 
immobilisation are adsorption, covalent binding, encapsulation, entrapment and cross-
linking (Figure 1.10, Bickerstaff, 1997).  There exist many advantages such as 
increased chemical and mechanical stability with whole cell immobilisation (Wilaert 
and Baron, 1996).  To date, many industrial applications have been developed using 
microbial, plant and animal cells.  For instance, the production of L-aspartic acid was 
found to yield higher activities when immobilised cells were used (Sato and Tosa, 
1993).  In addition, the stability and operational productivity of the immobilised cells 
were much higher. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.10.  Principal methods of immobilisation.  A:  Adsorption, B:  Covalent binding, C:  

Encapsulation, D:  Entrapment, E:  Cross-linking (Bickerstaff, 1997). 

A B C 
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There are various methods and classifications of cell immobilisation where natural 
and synthetic materials as suitable immobilisation matrices have been studied 
(Huebner and Buchholz, 1999; Nedović and Wilaert, 2004; Wilaert and Baron, 1996).  
One method of cell immobilisation is microencapsulation, where spherical beads of 
immobilised cells are formed.  These spherical immobilisates are best suited for use in 
bioreactors due to their hydrodynamic characteristics and abrasion resistance 
properties.  This method of cell immobilisation is already widely employed in various 
fields, ranging from food industry (Groboillot et al., 1994; Sun et al., 1995) to 
wastewater treatment (Santos et al., 1993) to production of high-value drugs like taxol 
(Seki and Furusaki, 1996), and even as a controlled drug delivery system in medical 
treatment (Brown et al., 1995; Chickering et al., 1996; Embleton and Tighe, 1993). 
 
Immobilisation matrices from natural sources like alginate and κ-carrageenan have 
been intensely investigated due to their mild immobilisation procedures which enable 
cells to survive the immobilisation procedures (Leenen, 2001; Murano, 1998).  In 
particular, the many applications of immobilised cells of lactic acid bacteria stem 
from these matrices (Doleyres et al., 2004; Kondo et al., 2004; Scannell et al., 2000).  
However, one of the main disadvantages of alginate and κ-carrageenan matrices is the 
dissolution of the material in the presence of chelating chemicals like phosphate, 
lactate and citrate.  To circumvent this, special coating of chitosan to the alginate 
matrix (Gåserød O, 1999; Klinkenberg et al., 2001; Le-Tien et al., 2004), or addition 
of locus bean gum to the carrageenan matrix (Arnaud et al., 1989; Audet et al., 1988, 
1990; Lacroix et al., 1990) have been shown to strengthen the original matrices.  On 
the other hand, non-toxic and inexpensive synthetic gels like polyvinyl alcohol (Chen 
and Lin, 1994, Durieux et al., 2000; Jekel et al., 1998; Wittlich and Vorlop, 1998) 
possessing strong mechanical and chemical stability properties have been used as 
alternative matrices. 
 
Whole cell immobilisation with polyelectrolytes complexes has also been 
demonstrated to have strong mechanical and chemical stability (Huebner and 
Buchholz, 1999).  Besides coating of alginates, the combination of cellulose sulphate 
(CS) and poly(diallyldimethylammonium chloride) (PDADMAC) as materials for 
microcapsules has been investigated.  The CS-PDADMAC microcapsules have been 
widely applied in fields of gene therapy (Tai and Sun, 1993), monoclonal antibodies 
production (Mansfeld and Dautzenberg, 1997) and insect cell culture (Huebner and 
Buchholz, 1997).  Although the CS-PDADMAC matrix is gentle enough for insect 
cells, not much information on microbial cell immobilisation with it are known.  To 
date, only Foerster et al. (1994) and Mansfeld et al. (1995) have used this matrix for 
immobilisation of microbial cells in the production of citric acid. 
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2 Aims 
 
 
The main aim of this work is to investigate the production of chiral alcohols from 
prochiral ketones with different biocatalysts:  Wild type microorganism 
(Lactobacillus kefiri), isolated enzymes (alcohol dehydrogenase from Lactobacillus 
brevis coupled with formate dehydrogenase from Pseudomonas sp.) and genetically 
modified microorganism (Escherichia coli BL21 Star (DE3)). 
 
Two classes of chiral alcohols (γ-hydroxyketones and 3-hydroxybutanoates) are of 
interest: 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  Enantioselective reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one (B) 

with resting whole cells of Lactobacillus kefiri or enzyme-coupled system (LbADH:  Alcohol 

dehydrogenase from Lactobacillus brevis, FDH:  Formate dehydrogenase from Pseudomonas sp.). 

 
and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.  Enantioselective reduction of methyl acetoacetate (MAA) to (R)-methyl-3-

hydroxybutanoate (MHB) with resting whole cells of recombinant Escherichia coli or enzyme-

coupled system (LbADH:  Alcohol dehydrogenase from Lactobacillus brevis, FDH:  Formate 

dehydrogenase from Pseudomonas sp.). 
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In whole cell biotransformation with Lactobacillus kefiri, the objectives are: 
 

♦ Characterisation of non-immobilised cells, 
♦ Characterisation of immobilised cells, 
♦ Determination of the most suitable reactor, 
♦ Downstream processing of (5R)-hydroxyhexane-2-one (B). 

 
In whole cell biotransformation with rec. Escherichia coli, the objectives are: 
 

♦ Characterisation of transformed cells, 
♦ Development of reactor setups for the synthesis of (R)-methyl-3-

hydroxybutanoate (MHB). 
 
In the isolated enzyme-coupled system (LbADH and FDH), the objectives are: 
 

♦ Feasibility of syntheses of (5R)-hydroxyhexane-2-one (B) and (R)-methyl-
3-hydroxybutanoate (MHB), 

♦ Characterisation of enzymes, 
♦ Kinetics studies and modelling of system producing (R)-methyl-3-

hydroxybutanoate (MHB), 
♦ Development of reactor setups for the synthesis of (R)-methyl-3-

hydroxybutanoate (MHB), 
♦ As comparison studies with whole cell biotransformations. 
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3 γ-Hydroxyketone Synthesis with Wild Type 
Biocatalyst Lactobacillus kefiri 

 
 
A process for the whole cell reduction of (2,5)-hexanedione (A) to (2R,5R)-
hexanediol (C) with wild type biocatalyst Lactobacillus kefiri DSM 20587 was 
established by Haberland et al. (2002a, b) (Figure 3.1).  Glucose, a cheap cosubstrate, 
was used to regenerate the cofactors in the cells.  In this chapter, the focus is on the 
synthesis and isolation of the intermediate (5R)-hydroxyhexane-2-one (B) with resting 
whole cells of L. kefiri by a combination of biotechnological and chemical 
engineering methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.  Enantioselective reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one (B) 

and subsequently to (2R,5R)-hexanediol (C) with resting whole cells of Lactobacillus kefiri. 

 
 
3.1 Biocatalyst production 
 
 
A single pool of biocatalyst of uniform activity was desired for the biosynthesis of 
(5R)-hydroxyhexane-2-one (B).  Therefore, a large-scale fermentation of L. kefiri on a 
2800 L-scale was performed by bitop AG.  The fermentation protocol with MRS 
medium (Table 3.1) was similar to that used by De Man et al. (1960) and Haberland 
(2003) where the active biomass was harvested at the stationary growth phase.  The 
harvested cells (10 kg wet biomass) were packed in multiple smaller portions and 
stored at –20 °C before use. 
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Table 3.1.  De Man-Rogosa-Sharpe (MRS) medium composition for fermentation of Lactobacillus 

kefiri DSM 20587. 

 
Medium composition Concentration (g L-1) 
Glucose·H2O 22 
Casein peptone 10 
Meat extract 10 
Yeast extract 5 
Sodium acetate 5 
K2HPO4 2 
Ammonium citrate 2 
Tween 80 1 
MgSO4·7H2O 0.2 
MnSO4·H2O 0.05 

 
 
3.2 General definitions of terms used 
 
 
In this chapter, a number of general terms would be used with regards to the 
chemicals and the processes. 
 
The enantiopurity of the desired product (5R)-hydroxyhexane-2-one (B) is determined 
by the enantiomeric excess (ee), and is defined as: 
 
 
 
 
The conversion of the process is defined as the amount of (2,5)-hexanedione (A) 
reacted per initial concentration. 
 
 
 
 
Due to the consecutive bioreduction, the selectivity of the process, in terms of the 
desired product (5R)-hydroxyhexane-2-one (B), is given as the proportion of (5R)-
hydroxyhexane-2-one (B) over the sum of (5R)-hydroxyhexane-2-one (B) and 
(2R,5R)-hexanediol (C). 
 
 
 
 
The yields of (5R)-hydroxyhexane-2-one (B) and (2R,5R)-hexanediol (C) are defined 
as the fraction of (5R)-hydroxyhexane-2-one (B) and (2R,5R)-hexanediol (C) obtained 
respectively per initial amount of (2,5)-hexanedione (A). 
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The biocatalyst consumption of a process is given as the ratio of the amount of wet 
biomass used per unit mass of (5R)-hydroxyhexane-2-one (B) obtained. 
 
 
 
This term is similar to the total turnover number (refer to Chapter 4.1 for the 
definition) used for enzymes.  For example, a biocatalyst consumption of 1 g of 
product (with a molecular weight of 100) per g of cells (wet weight) containing        
0.1 % wt of enzymes (with a molecular weight of 100 kD) corresponds to a total 
turnover number of 106.  
 
In determining the most suitable reactor setup for the bioreduction, the characteristics 
of some reactor setup are considered (Figure 3.2, Liese et al., 2000b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.  Characteristics of batch, continuously stirred tank (CSTR) and plug flow reactor 

(PFR).  P:  Product, S:  Substrate, t:  Time, x:  Length of reactor.  Conditions:  0 (Initial 

conditions), 1 (at a certain time) and e (at the end) (Liese et al., 2000b). 
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3.3 Characteristics of biocatalyst 
 
 
3.3.1 Batch characterisation 
 
 
Lactobacillus kefiri was tested with (2,5)-hexanedione (A) in a typical batch reactor 
(Figure 3.3).  (2,5)-Hexanedione (A) was reduced, (5R)-hydroxyhexane-2-one (B) 
was produced to a maximum before being consecutively reduced to (2R,5R)-
hexanediol (C).  The concentration profiles obtained were typical for a consecutive 
reaction.  The conversion of (2,5)-hexanedione (A) was greater than 99 % and the 
maximum yield of (5R)-hydroxyhexane-2-one (B) was 53 %.  The biocatalyst 
consumption in the batch was 33.3 gwcw gB

-1 and the ee of (5R)-hydroxyhexane-2-one 
(B) was more than 99 %. 
 

Figure 3.3.  Concentration of reactants in a typical batch reactor as a function of time.  

Conditions:  V = 0.1 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium phosphate 

buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 10 g-wet 

cell weight L. kefiri. 

 
 
Assuming first order reaction rates for the consecutive reactions, and that the overall 
bioreduction proceeded irreversibly to form (2R,5R)-hexanediol (C), 
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the rate equations for the components are 
 
 
 
 
 
 
 
 
 
Integrating the above rate equations gave the equations of the individual components 
with respect to time (Eqs. 3.9 – 3.11).  The rate constants k1 and k2 were then 
determined graphically. 
 
 
 
 
 
 
 
 
 
As an example, the determination of rate constant k1 is illustrated (Figure 3.4). 
 

Figure 3.4.  Fitting of experimental data of (2,5)-hexanedione (A) with respect to time for rate 

constant determination. 

 
 
The rate constants obtained for the overall reaction were k1 = 0.0489 ± 0.003 min-1 
and k2 = 0.0431 ± 0.004 min-1.  The empirical maximum concentration of (5R)-
hydroxyhexane-2-one (B) and its corresponding time in a batch reactor are given by 
Eqs. 3.12 and 3.13. 
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From the determined rate constants, the maximum concentration of (5R)-
hydroxyhexane-2-one (B) of 19.6 mM was expected at t = 22 min, rather similar to 
the experimental value of 23 mM at t = 30 min. 
 
Unlike the rate constant values obtained by Haberland (2003), the first reduction step 
was only slightly faster than the second reduction step, implying that the cells used in 
the synthesis of (5R)-hydroxyhexane-2-one (B) possessed different behaviour as 
compared to that used by Haberland in the production of (2R,5R)-hexanediol (C).  In 
addition, the yield of (2R,5R)-hexanediol (C) at the end of the reaction was not             
100 %. 
 
It was suspected that the residual (2R,5R)-hexanediol (C) was either trapped 
intracellularly, or in the cell membrane.  However, attempts to detect the chemical 
intracellularly proved unsuccessful (Table 3.2).  The main problem faced was the 
mechanical resistance of the cell wall to various conventional methods of cell lysis.  
The exception was with glass milling where there was some degree of cell lysis.  
However, (2R,5R)-hexanediol (C) was not detected in the cell lysate.  Treatment of 
the cells with ethyl acetate as organic solvent was then performed to extract any 
residual (2R,5R)-hexanediol (C) trapped in the cell membrane.  Likewise, no traces of 
(2R,5R)-hexanediol (C) were detected.  Hence, the fate of the residual (2R,5R)-
hexanediol (C) remained unknown, and it could be metabolised by the cells. 
 
 
Table 3.2.  Cell lysis attempts on L. kefiri and the detection of residual (2R,5R)-hexanediol (C). 

 
Cell lysis methods Success of cell lysis Presence of C 
Sonification - N 
French press - N 
Glass milling +/- N 
Freezing - N 
Addition of detergent - N 

 
 
From Haberland et al. (2002a), it seemed that a more alkaline pH favoured the 
production of (5R)-hydroxyhexane-2-one (B).  In this present batch of cells, the 
phenomenon was not observed.  There was no change in selectivity of the reaction in 
the pH range of 6 to 8 (Figure 3.5).  However, there was a faster rate of production of 
(5R)-hydroxyhexane-2-one (B) with an acidic pH (Figure 3.6). 
 
Due to the above differences in behaviour of the current biocatalyst, it must be noted 
that direct comparisons of the L. kefiri used in this work and in Haberland’s would not 
be accurate.  The different behaviour observed could be attributed to the different 
fermentation and harvesting conditions of the biocatalyst. 
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Figure 3.5.  Selectivity of (5R)-hydroxyhexane-2-one (B) as a function of conversion of (2,5)-

hexanedione (A) in a typical batch reaction at pH 6, 7 and 8.  Conditions:  V = 0.1 L, 30 °°°°C,        
50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM 

MgSO4, 0.7 mM MnSO4, 10 g-wet cell weight L. kefiri.  The pH was controlled by titration with 4 

M NaOH. 

Figure 3.6.  Concentration of (5R)-hydroxyhexane-2-one (B) as a function of time in a typical 

batch reaction at pH 6, 7 and 8.  Conditions:  V = 0.1 L, 30 °°°°C, 50 mM potassium phosphate 

buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 10 g-wet 

cell weight L. kefiri.  The pH was controlled by titration with 4 M NaOH. 
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3.3.2 Repetitive batch run 
 
 
A repetitive batch run with L. kefiri was performed to study the stability of the cells.  
At the end of each batch run, the biocatalyst was separated by centrifugation              
(5000 rpm, 4 °C, 10 min) and the supernatant was discarded.  The cell pellet was 
suspended with 50 mM potassium phosphate buffer (pH 6) and centrifuged at the 
above conditions.  The cleaned biomass was then resuspended in 50 mM potassium 
phosphate buffer (pH 6) for use in the next batch. 

Figure 3.7.  Concentration of (5R)-hydroxyhexane-2-one (B) in a repetitive batch as a function of 

time.  Conditions:  V = 0.1 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium 

phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 

10 g-wet cell weight L. kefiri. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8.  Activity of L. kefiri at pH 6 in a repetitive batch run as a function of time. 
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Over 7 repetitive batches (around 12 h), there was a drop in production of (5R)-
hydroxyhexane-2-one (B) (Figure 3.7).  With this set-up, the biocatalyst consumption 
(5.9 gwcw gB

-1) was slightly lower than that obtained in a single batch (Refer to Section 
3.3.1).  However, at the end of 12 h, only 15 % of the initial activity (in terms of B) of 
the biocatalyst remained (Eq. 3.14).  From Figure 3.8, the activity of L. kefiri decayed 
exponentially at the rate of 16.1 % h-1.  
 
 
 
 
 
 
3.4 Whole cell immobilisation 
 
 
Due to the consecutive bioreduction reactions, a better reactor system was needed to 
simplify the production of (5R)-hydroxyhexane-2-one (B) on a continuous scale. 
 
From the reaction profile in a batch reactor (Figures 3.2 and 3.3), a plug flow reactor 
(PFR) packed with biocatalyst could be designed to obtain a high concentration of 
(5R)-hydroxyhexane-2-one (B) with minimal concentration of (2R,5R)-hexanediol 
(C).  Alternatively, a continuously stirred tank reactor (CSTR) design could be used.  
From Haberland (2003), it was found that the biocatalyst was unstable after 5 days of 
operation in a CSTR.  Therefore, it would not be advantageous to run a similar CSTR 
setup where the biocatalyst may not remain active over a period of time.  
 
On the other hand, running a PFR would require whole cell immobilisation of L. kefiri 
as a fixed bed biocatalyst.  It is known that one of the main advantages of cell 
immobilisation is the improvement in cell stability (Sato and Tosa, 1993), and this 
would be very advantageous in a continuous operation over a period of time.  The 
drastic loss in activity of the cells seen in the repetitive batch run for non-immobilised 
L. kefiri (Section 3.3.2) could be circumvented with cell immobilisation.  Hence, the 
PFR setup was chosen for the synthesis of (5R)-hydroxyhexane-2-one (B). 
 
 
3.4.1 Choice of immobilisation matrix 
 
 
Various immobilisation matrices were employed in the encapsulation of L. kefiri:  
Polyvinyl alcohol (LentiKats®) (Durieux et al., 2000), κ-carrageenan (mixed with 
Mg2+/Mn2+ salts in phosphate buffer, or with NaCl) (Lacroix et al., 1990), alginate 
(with and without chitosan coating) (Le-Tien et al., 2004) and sodium cellulose 
sulphate (medical and technical grade NaCS) (Huebner and Buchholz, 1999).  The 
immobilisates were tested in a typical batch reactor.  The criteria for selecting the best 
immobilisation matrix were:  High rate of production of (5R)-hydroxyhexane-2-one 
(B) in a batch reactor, fast conversion of (2,5)-hexanedione (A) in a batch reactor, 
high chemical and mechanical stability of the matrix and thereby easy handling of the 
immobilisates, and reasonable cost of matrix. 
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In all immobilised cells, the initial rates of production of (5R)-hydroxyhexane-2-one 
(B) from (2,5)-hexanedione (A) were drastically reduced.  In particular, the 
immobilisates entrapped with polyvinyl alcohol (LentiKats®) yielded the lowest initial 
rate of production of (5R)-hydroxyhexane-2-one (B) (Figure 3.9).  Although the thin 
and lens-shaped immobilisates had high surface area to volume ratio for minimal 
diffusion limitations in biotransformations, it did not improve the rate of (5R)-
hydroxyhexane-2-one (B) production.  However, a higher concentration of (5R)-
hydroxyhexane-2-one (B) could be yielded in the immobilised than the non-
immobilised batch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9.  Concentration profiles of (5R)-hydroxyhexane-2-one (B) in a typical non-immobilised 

(����) and a polyvinyl alcohol (LentiKats®) immobilised (����)batch as a function of normalised time.  

Conditions:  V = 0.05 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium phosphate 

buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g 

polyvinyl alcohol immobilisates (LentiKats®) containing 0.5 g-wet cell weight L. kefiri. 

 
 
The addition of Mg2+ and Mn2+ salts (which may be required by the cells for the 
bioreduction) to the κ-carrageenan matrix did not improve the initial rate of 
production of (5R)-hydroxyhexane-2-one (B) (Figure 3.10).  In addition, there was a 
reaction time lag in both carrageenan systems, implying that there could be diffusion 
limitations of the substrate (2,5)-hexanedione (A), and/or cosubstrate glucose, and/or 
product (5R)-hydroxyhexane-2-one (B), and/or glucose metabolites through the 
immobilisation matrix. 
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Figure 3.10.  Concentration profiles of (5R)-hydroxyhexane-2-one (B) in a typical non-

immobilised (����) and different κκκκ-carrageenan immobilised batches as a function of normalised 

time.  κκκκ-Carrageenan immobilisates:  consisting of Mg2+/Mn2+-containing phosphate buffer         

(2 mM Mg
2+
, 0.7 mM Mn

2+
, 50 mM phosphate buffer, pH 6) (����), and containing 0.9 % w/v NaCl 

(0.15 M) (����).  Conditions:  V = 0.05 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium 

phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 

5 g κκκκ-carrageenan immobilisates containing 0.5 g-wet cell weight L. kefiri. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11.  Concentration profiles of (5R)-hydroxyhexane-2-one (B) in a typical non-

immobilised (����) and different alginate immobilised batches as a function of normalised time.  

Alginate immobilisates:  alginate (����) and alginate-chitosan (����), made with Mg
2+
/Mn

2+
-

containing phosphate buffer (2 mM Mg
2+
, 0.7 mM Mn

2+
, 50 mM phosphate buffer, pH 6).  

Conditions:  V = 0.05 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium phosphate 

buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g 

alginate or alginate-chitosan immobilisates, each containing 0.5 g-wet cell weight L. kefiri. 
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The alginate-chitosan immobilisates, with improved mechanical strength, however, 
gave a much lower initial rate of production of (5R)-hydroxyhexane-2-one (B) as 
compared to the alginate immobilisates (Figure 3.11).  It is not known why there was 
a stark difference in behaviour of the alginate and alginate-chitosan immobilisates.  It 
could be due to the chemicals used in the additional steps for the chitosan coating.  In 
the case of the alginate immobilisates, a higher concentration of (5R)-hydroxyhexane-
2-one (B) was obtained in the batch as opposed to the freely suspended cells, and this 
was not seen for the alginate-chitosan immobilisates.  The presence of a reaction time 
lag for the alginate-chitosan immobilisates could imply a diffusion limitation of the 
reactants and/or products and metabolites through the chitosan coating, since this was 
not observed for the alginate immobilisates. 

Figure 3.12.  Concentration profiles of (5R)-hydroxyhexane-2-one (B) in a typical non-

immobilised (����) and different NaCS immobilised batches as a function of normalised time.  

NaCS immobilisates:  a medical grade (����) and a technical grade (����) made with Mg2+/Mn2+-

containing phosphate buffer (2 mM Mg
2+
, 0.7 mM Mn

2+
, 50 mM phosphate buffer, pH 6).  

Conditions:  V = 0.05 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM potassium phosphate 

buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g NaCS 

immobilisates, each containing 0.5 g-wet cell weight L. kefiri. 

 
 
In general, the sodium cellulose sulphate (NaCS) immobilisates gave a slower initial 
rate of production of (5R)-hydroxyhexane-2-one (B) as opposed to the non-
immobilised cells (Figure 3.12).  However, the rate was faster with the technical grade 
rather than the medical grade NaCS.  In addition, a higher concentration of (5R)-
hydroxyhexane-2-one (B) was yielded in the batch with immobilisates made from 
technical grade NaCS.  In spite of the trace amounts of iron in the technical grade 
NaCS matrix, it did not have an adverse effect on the initial rate of production of 
(5R)-hydroxyhexane-2-one (B). 
 
In determining the rates of conversion of (2,5)-hexanedione (A) in each batch, the 
immobilisation yield was used.  The immobilisation yield of each matrix is defined as 
the ratio of activity of the immobilised cells over the non-immobilised cells, where the 
activity is the initial rate of conversion of 2,5-hexanedione (A) per unit of effective 
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(prior to immobilisation) wet biomass (Eqs. 3.15 and 3.16).  The case of the non-
immobilised cells is set to 100 %. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13.  Immobilisation yield of a typical batch reaction.  Conditions:  V = 0.05 L, 30 °°°°C, pH 

6 (titrated with 4 M NaOH), 50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-

hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g immobilisates (containing 0.5 g-wet cell 

weight L. kefiri).  The values of activities in terms of UA gwcw
-1
 (based on Eq. 3.15) are given on the 

right. 

 
 
Among the immobilised batches, the sodium cellulose sulphate (NaCS) immobilisates 
gave the highest immobilisation yields (Figure 3.13).  The κ-carrageenan (containing 
NaCl) and the alginate immobilisates had comparably high immobilisation yields.  On 
the other hand, the polyvinyl alcohol (LentiKats®) immobilisates had the lowest 
immobilisation yield. 
 
The comparison between the different immobilisation matrices is summarised in 
Table 3.3.  Although the polyvinyl alcohol (LentiKats®) immobilisates were very 
stable mechanically and chemically and had the cheapest matrix, they were the least 
active in the bioreduction.  Therefore, the polyvinyl alcohol matrix was not preferred.  
The alginate and the κ-carrageenan immobilisates were also not chosen as the 
matrices were chemically unstable in the biotransformation medium.  It is known that 
the presence of chelating agents (e.g. phosphate, lactate, acetate) can extract the 
divalent cations (in the case of alginates) and potassium ions (in the case of κ-
carrageenan) from the immobilisation matrices, thereby weakening the overall 
structure of the matrices (Leenen, 2001). 
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Table 3.3.  Summary of comparison of the different immobilisation matrices.  A rating of 1 

denotes the least, while 7 denotes the most.  For example, a 7 in all categories refers to the highest 

activity (in terms of immobilisation yield), the best chemical/mechanical stability and the highest 

matrix cost. 

 
Matrices Activity Chemical/mechanical stability Cost 
Polyvinyl alcohol (LentiKats®) 1 7 1 
κ-Carrageenan (KPi/Mg/Mn) 2 1 3 
κ-Carrageenan (NaCl) 5 2 3 
Alginate 4 4 1 
Alginate-chitosan 3 3 5 
NaCS (medical grade) 7 5 7 
NaCS (technical grade) 6 5 6 

 
 
Therefore, the most suitable choice was the sodium cellulose sulphate (NaCS) 
immobilisates (Figure 3.14), with the highest immobilisation yield among the 
immobilisates.  Despite the high cost of the matrix, it was mechanically and 
chemically strong, and would be suitable for use in the continuous operation of a PFR.  
In particular, the technical grade NaCS with 40 % immobilisation yield was chosen as 
it was much less expensive than the medical grade.  All immobilisation results shown 
in the following sections were obtained from the technical grade NaCS immobilisates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14.  Encapsulation method (left) for technical grade NaCS immobilisates (right) made 

from encapsulation device (centre). 
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3.4.2 Reaction conditions 
 
 
In a plug flow reactor (PFR), a pH gradient exists due to the production of acids from 
glucose metabolism.  To simplify the design and operation of the PFR without pH 
titration, the effects of the activity of the NaCS immobilised cells (Eq. 3.14, Figure 
3.15) and selectivity (Figure 3.16) of (5R)-hydroxyhexane-2-one (B) over a pH range 
were studied in a typical batch reactor containing technical grade NaCS immobilised 
cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.15.  Activity of NaCS immobilisates and final concentration of (5R)-hydroxyhexane-2-

one (B) (after 24 h) in a typical batch reaction (immobilised cells) at pH 5, 6 and 7.  Conditions:  

V = 0.05 L, 30 °°°°C, 50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-

hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g NaCS immobilisates of technical grade 

(containing 0.5 g-wet cell weight L. kefiri).  The pH was controlled by titration with 4 M NaOH. 

Figure 3.16.  Selectivity of (5R)-hydroxyhexane-2-one (B) as a function of conversion of (2,5)-

hexanedione (A) in a typical batch reaction (immobilised cells) at pH 5, 6 and 7.  Conditions:       

V = 0.05 L, 30 °°°°C, 50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-

hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 5 g NaCS immobilisates of technical grade 

(containing 0.5 g-wet cell weight L. kefiri).  The pH was controlled by titration with 4 M NaOH. 
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It was found that over the pH range of 5 to 7, there were no significant differences in 
the activity of the NaCS immobilised cells and selectivity of (5R)-hydroxyhexane-2-
one (B).  In addition, the biocatalyst consumption in the batch was 2.4 gwcw gB

-1 (at 
pH 6) and the ee of (5R)-hydroxyhexane-2-one (B) produced with NaCS immobilised 
cells was more than 99 %.  Therefore, the allowable working pH range of the PFR 
was set at 5 to 7. 
 
 
3.4.3 Repetitive batch investigations 
 
 
The test of stability of the NaCS immobilised cells (technical grade) was performed in 
a repetitive batch mode.  Over a period of 165 h (around 7 days), the NaCS 
immobilised cells were capable of producing (5R)-hydroxyhexane-2-one (B) (Figure 
3.17).  However, only 13.3 % of the initial activity (in terms of B) remained after        
165 h (Eq. 3.14).  The activity of the NaCS immobilisates decayed exponentially at 
the rate of 1.3 % h-1 (Figure 3.18).  Despite the decrease in activity, the overall 
biocatalyst consumption of the repetitive batch (0.5 gwcw gB

-1) was slightly lower than 
that in a batch (at pH 6).  With this knowledge of activity of the NaCS immobilisates, 
it would be possible to run the PFR for at least 7 days. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17.  Concentration of (5R)-hydroxyhexane-2-one (B) in a repetitive batch run with 

technical grade NaCS immobilised cells as a function of time.  NaCS immobilisates: a technical 

grade made with Mg
2+
/Mn

2+
-containing phosphate buffer (2 mM Mg

2+
, 0.7 mM Mn

2+
, 50 mM 

phosphate buffer, pH 6).  Conditions:  V = 0.1 L, 30 °°°°C, pH 6 (titrated with 4 M NaOH), 50 mM 

potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4,            

0.7 mM MnSO4, 10 g NaCS immobilisates, each containing 1 g-wet cell weight L. kefiri. 
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Figure 3.18.  Activities of non-immobilised and technical grade NaCS immobilised cells at pH 6 in 

a repetitive batch run as a function of time. 

 
 
3.4.4 Plug flow reactor (PFR) run 
 
 
In order to maximise the production of (5R)-hydroxyhexane-2-one (B) in a packed 
bed reactor, two similar PFRs (Fraction of porosity ε = 0.3, refer to Eq. 3.17) were set 
up in series (Figures 3.19 and 3.20).  Different residence times for a single column τ 
and for the entire setup τPFRs (Eq. 3.18) and the corresponding number of residence 
time θ and θPFRs (Eq. 3.19) were used in the continuous run to establish the most 
suitable operating conditions.  The inlet of the second column was titrated with 4 M 
NaOH to pH 7, similar to the initial pH of the first column.  This ensured that the 
remaining unreacted (2,5)-hexanedione (A) could be further reduced to (5R)-
hydroxyhexane-2-one (B).  However, the existing (5R)-hydroxyhexane-2-one (B) 
could be further reduced to (2R,5R)-hexanediol (C) in the second column.  Therefore, 
besides the product outlet at the fraction collector, samples from the outlet of the first 
column were also collected and the two columns were examined separately over the 
operation period of 6 days. 
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Figure 3.19.  Scheme of PFR setup in series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20.  Production of (5R)-hydroxyhexane-2-one (B) with the PFR setup (left) and a close-

up on the thermally insulated PFRs (right). 

 
 
In the first column, most of the (2,5)-hexanedione (A) present in the first section       
(τ = 3.3 h) were reduced to a mixture of (5R)-hydroxyhexane-2-one (B) and (2R,5R)-
hexanediol (C) (Figure 3.21).  However, a steady state of production of (5R)-
hydroxyhexane-2-one (B) was not achieved.  This was most probably due to the loss 
in activity of the NaCS immobilisates.  A 50 % reduction in the residence time          
(τ = 1.6 h) in the second section resulted in less (2,5)-hexanedione (A) being 
converted, and more (5R)-hydroxyhexane-2-one (B) than (2R,5R)-hexanediol (C) was 
produced.  In order to maximise the production of (5R)-hydroxyhexane-2-one (B), the 
residence time of the column was further reduced to 25 % of the initial residence time 
(τ = 0.8 h).  Much more (5R)-hydroxyhexane-2-one (B) than (2R,5R)-hexanediol (C) 
were produced in comparison to the first two sections.  In addition, a relatively high 
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amount of (2,5)-hexanedione (A) remained unreacted.  When the flow rate of the feed 
solution was reverted back to its original value (τ = 3.3 h), the concentration profiles 
of the reactants were dissimilar to that in the first section (θ = 0 – 18.5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.21.  Concentration profile of reactants packed with NaCS immobilisates in the first 

column of PFR (in series) as a function of the number of residence time.  Conditions:  V = 0.06 L, 

ε = 0.3, 31 °°°°C, initial pH 7, 50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-

hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 60 g technical grade NaCS immobilisates 

(containing 6 g-wet cell weight L. kefiri). 

 

Figure 3.22.  Selectivity of (5R)-hydroxyhexane-2-one (B) and conversion of (2,5)-hexanedione 

(A) as a function of the number of residence time in the first column of PFR (in series) packed 

with NaCS immobilisates.  Conditions:  V = 0.06 L, ε = 0.3, 31 °°°°C, initial pH 7, 50 mM potassium 

phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 

60 g technical grade NaCS immobilisates (containing 6 g-wet cell weight L. kefiri). 
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Further examination into the first column revealed the highest selectivity of (5R)-
hydroxyhexane-2-one (B) and the lowest conversion of (2,5)-hexanedione (A) in the 
third section (θ = 24.5 – 84.5) (Figure 3.22).  The corresponding activity of the NaCS 
immobilisates with respect to (2,5)-hexanedione (A) decayed exponentially during the 
third phase (τ = 0.8 h) at a rate of 2.8 % h-1 (R2 = 0.65). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23.  Concentration profile of reactants packed with NaCS immobilisates from the second 

column of PFR (in series) as a function of the number of residence time.  Conditions:  V = 0.06 L, 

ε = 0.3, 31 °°°°C, initial pH 7, 50 mM potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-

hexanedione (A), 2 mM MgSO4, 0.7 mM MnSO4, 60 g technical grade NaCS immobilisates 

(containing 6 g-wet cell weight L. kefiri). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.24.  Selectivity of (5R)-hydroxyhexane-2-one (B) and conversion of (2,5)-hexanedione 

(A) as a function of the number of residence time from the second column of PFR (in series) 

packed with NaCS immobilisates.  Conditions:  V = 0.06 L, ε = 0.3, 31 °°°°C, initial pH 7, 50 mM 

potassium phosphate buffer, 400 mM glucose, 50 mM (2,5)-hexanedione (A), 2 mM MgSO4,      

0.7 mM MnSO4, 60 g technical grade NaCS immobilisates (containing 6 g-wet cell weight L. 

kefiri). 
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The concentration of the reactants in the second column with respect to the changing 
residence time followed a similar trend as seen in the first column (Figure 3.23).  
Likewise, the highest selectivity of (5R)-hydroxyhexane-2-one (B) occurred at the 
third phase (τPFRs = 1.6 h) (Figure 3.24).  The activity of the NaCS immobilisates (in 
terms of (2,5)-hexanedione (A)) during this phase decayed exponentially by 2.3 % h-1 
(R2 = 0.76), similar to the deactivation constant observed in the first column. 
 
Comparing the efficiencies of both columns, the first column of the PFR in series was 
sufficient in producing a high selectivity (95 %) of (5R)-hydroxyhexane-2-one (B) at 
a high space-time yield of 87 gB L

-1 d-1 (Eq. 3.20) and a corresponding biocatalyst 
consumption of 1.41 gwcw gB

-1 (Table 3.4).  After 6 days of operation, the residual 
activity of the NaCS immobilisates (in terms of conversion of (2,5)-hexanedione (A)) 
in the first column was 68 %.  In the second column, there was a drop in selectivity to 
85 % as more (2R,5R)-hexanediol (C) was formed.  The space-time yield                 
(52 gB L

-1 d-1) of (5R)-hydroxyhexane-2-one (B) decreased due to the total residence 
time in the entire setup.  However, the biocatalyst consumption of (5R)-
hydroxyhexane-2-one (B) in the second column remained rather similar                 
(1.45 gwcw gB

-1) to the first.  It seemed that the higher concentration of (2,5)-
hexanedione (A) rather than (5R)-hydroxyhexane-2-one (B) or (2R,5R)-hexanediol 
(C) as seen in the first column could be toxic to the biocatalyst.  Therefore, in the 
second column, the residual activity of the NaCS immobilisates was higher (close to 
100 %). 
 
 
Table 3.4.  Summary of results from NaCS-immobilised PFR.  STY:  space-time yield,                 

θθθθ, θθθθPFRs :  number of residence time. 

 
Parameters First column Second column 
Maximum conversion of A (%) 100 100 
Selectivity of B (%) 95 85 
STY (gB L

-1 d-1) 87 52 
Biocatalyst consumption (gwcw gB

-1) 1.41 1.45 
θ (-) 91 46 
Production time (d) 6 6 

 
 
3.5 Downstream processing 
 
 
Separation of (5R)-hydroxyhexane-2-one (B) from the reactants mixture largely 
composed of (2,5)-hexanedione (A) and (5R)-hydroxyhexane-2-one (B) was 
performed by column chromatography on a lab-scale.  Distillation of the mixture was 
unfavourable since the boiling points of the reactants are rather similar, and would 
require a long distillation column with many theoretical plates for efficient separation 
of (5R)-hydroxyhexane-2-one (B). 
 
The aqueous mixture containing (5R)-hydroxyhexane-2-one (B) was extracted with 
chloroform.  To obtain a concentrated sample of (5R)-hydroxyhexane-2-one (B), most 
of the chloroform was rotary evaporated.  The concentrated sample was then fed into 
a column (40 cm long × 24 mm o.d.) packed with silica gel (0.040 – 0.063 mm 
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diameter, 35 cm packed height).  The eluent used was ethyl acetate with a flow rate of 
0.8 mL min-1.  Upon column chromatography, (5R)-hydroxyhexane-2-one (B) was 
separated rather well from the other reactants (Figure 3.25).  The resulting yield of 
(5R)-hydroxyhexane-2-one (B) was 0.56 gB (70 %), and the purity of (5R)-
hydroxyhexane-2-one (B) was above 99 % in some fractions (Figure 3.26).  A drop in 
purity of (5R)-hydroxyhexane-2-one (B) thereafter was due to an increasing 
concentration of (2R,5R)-hexanediol (C) eluting together with a decreasing 
concentration of (5R)-hydroxyhexane-2-one (B). 

Figure 3.25.  Concentration of reactants as a function of the volume of eluent used in the column.  

Conditions:  Flow rate = 0.8 mL min-1, column (40 cm long × 24 mm o.d.) packed with silica gel 

(0.040 – 0.063 mm diameter, 35 cm packed height). 

Figure 3.26.  Purity of (5R)-hydroxyhexane-2-one (B) as a function of the volume of eluent used 

in the column. 
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To obtain pure (5R)-hydroxyhexane-2-one (B) on a gram-scale, scale-up of the 
column chromatography process (silica gel, ethyl acetate) was performed.  With a 
larger column (47 cm long × 65 mm o.d.), 1.2 gB of (5R)-hydroxyhexane-2-one (B) 
was yielded from a mixture of (2,5)-hexanedione (A) and (5R)-hydroxyhexane-2-one 
(B).  Rotary evaporation of the eluent was performed to yield an end product of (5R)-
hydroxyhexane-2-one (B).  The enantiomeric excess and GC purity of (5R)-
hydroxyhexane-2-one (B) obtained were greater than 99 %.  NMR analysis confirmed 
the presence of (5R)-hydroxyhexane-2-one (B) together with some impurities, which 
could possibly be the cyclic structure, (2,5R)-dimethyl-tetrahydrofuran-2-ol (Figures 
3.27, 9.8 and 9.9).  The end product is a yellow oil (Figure 3.28). 
 
 
 
 
 
 
 
Figure 3.27.  Cyclisation of (5R)-hydroxyhexane-2-one (B) to (2,5R)-dimethyl-tetrahydrofuran-2-

ol. 

 

 
Figure 3.28.  Final product (5R)-hydroxyhexane-2-one (B), a yellow oil. 

 
 
3.6 Conclusions 
 
 
In the synthesis of (5R)-hydroxyhexane-2-one (B) with wild type biocatalyst 
Lactobacillus kefiri, the following findings were obtained: 
 
♦ Whole cell immobilisation reduced cell activity but increased cell stability 

and lowered the biocatalyst consumption, 
 
♦ Best encapsulation matrix was sodium cellulose sulphate (technical grade), 
 
♦ Lowest biocatalyst consumption (0.5 gwcw gB

-1) was obtained in the repetitive 
batch setup with NaCS immobilisates, 

 
♦ High selectivity (95 %) and space-time yield (87 gB L

-1 d-1) were obtained in 
the plug flow reactor setup, 

O

OH

O

OH

(5R)-Hydroxyhexane-2-one (B) (2,5R)-Dimethyl-tetrahydrofuran-2-ol 
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♦ From the plug flow reactor setup, (2,5)-hexanedione (A) seemed to be more 
toxic to the cells than its biotransformation products, 

 
♦ Downstream processing by column chromatography yielded (5R)-

hydroxyhexane-2-one (B) on a gram-scale (1.2 gB), with ee and purity of 
more than 99 %. 
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4 Syntheses of Chiral Alcohols with an Enzyme-
coupled System 

 
 
Instead of whole cell biocatalysis, the syntheses of chiral alcohols from prochiral 
ketones with isolated enzymes incorporating cofactor regeneration were widely 
investigated (Rissom, 1995, 1999; Seelbach, 1994).  Bioreduction of (2,5)-
hexanedione (A) to (5S)-hydroxyhexane-2-one to (2S,5S)-hexanediol with carbonyl 
reductase from Candida parapsilosis (CPCR) was successfully coupled to the 
oxidation of formate to carbon dioxide with formate dehydrogenase from Candida 
boidinii for the regeneration of NAD(H) (Rissom, 1999).  The synthesis of the (R)-
alcohols, (5R)-hydroxyhexane-2-one (B) and (2R,5R)-hexanediol (C), could therefore 
in principle be proceeded with a rather similar setup.  Hence, the reduction of (2,5)-
hexanedione (A) by alcohol dehydrogenase from Lactobacillus brevis (LbADH) was 
tested.  In this setup (Figure 4.1), the cofactor NADPH was regenerated by the 
oxidation of formate, a cheap cosubstrate, with NADP+-specific formate 
dehydrogenase from Pseudomonas sp. (Tishkov et al., 1999). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.  Enantioselective reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one (B) 

and subsequently to (2R,5R)-hexanediol (C) with isolated enzyme-coupled system. 

 
 
Using the same principle, the isolated enzyme coupled system was also investigated 
to produce another (R)-alcohol, (R)-methyl-3-hydroxybutanoate (MHB).  The 
bioreduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate 
(MHB) was performed by LbADH, with NADPH regeneration by means of FDH 
(Figure 4.2).  As LbADH is also known to accept the non-phosphorylated cofactor 
NADH (Hummel, 1997) and that both cofactors are present in whole cells, the 
relationship between the cofactors NAD(P)H and the bioreduction of methyl 
acetoacetate (MAA) was also studied. 
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Figure 4.2.  Enantioselective reduction of methyl acetoacetate (MAA) to (R)-methyl-3-

hydroxybutanoate (MHB) with isolated enzyme-coupled system. 

 
 
4.1 General definitions of terms used 
 
 
For the system with methyl acetoacetate (MAA), the conversion of the process is 
defined as the amount of methyl acetoacetate (MAA) reacted per initial concentration. 
 
 
 
 
 
The corresponding yield of (R)-methyl-3-hydroxybutanoate (MHB) is given as the 
fraction of (R)-methyl-3-hydroxybutanoate (MHB) obtained per initial amount of 
methyl acetoacetate (MAA). 
 
 
 
 
The total turnover number (ttn) of a process, in terms of the biocatalyst, is given as the 
molar ratio of (5R)-hydroxyhexane-2-one (B), or (R)-methyl-3-hydroxybutanoate 
(MHB) obtained per mole of enzyme (ADH and FDH).  The molecular weight of 
ADH and FDH are 105 and 44 kD respectively. 
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In terms of the cofactors, the total turnover number (ttn) is defined as the molar ratio 
of (5R)-hydroxyhexane-2-one (B), or (R)-methyl-3-hydroxybutanoate (MHB) formed 
per unit mole of oxidised cofactor (NADP+). 
 
 
 
 
The biocatalyst consumption of the process is given as the ratio of the total mass of 
enzymes (ADH and FDH) per unit mass of (5R)-hydroxyhexane-2-one (B), or (R)-
methyl-3-hydroxybutanoate (MHB) formed. 
 
 
 
 
In batch reactions, the space-time yield (STY) is defined by the initial gradient of the 
concentration profile of (5R)-hydroxyhexane-2-one (B), or (R)-methyl-3-
hydroxybutanoate (MHB) over time, multiplied by the corresponding molecular 
weight of the alcohol.  Due to the rapid reactions obtained with the use of enzymes as 
compared to whole cells, the unit of time used to calculate STY in this chapter is 
expressed in terms of hours rather than days. 
 
 
 
 
 
 
 
 
 
 

4.2 γ-Hydroxyketone synthesis 
 
 
The reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one (B) and 
(2R,5R)-hexanediol (C) was achieved in a batch run with the enzyme-coupled system 
comprising of LbADH and FDH (Figure 4.3).  Similar to the case for whole cells 
(refer to Chapter 3.3.1), more than 99 % of (2,5)-hexanedione (A) was converted.  
The maximum yield of (5R)-hydroxyhexane-2-one (B) was 82 %, and the ee was 
above 99 %.  The space-time yield of (5R)-hydroxyhexane-2-one (B) was                
5.2 gB L-1 h-1 with total turnover numbers (ttn) of 47069 molB molADH

-1,                    
569 molB molFDH

-1 and 225 molB molNADP
-1.  The activity with respect to (5R)-

hydroxyhexane-2-one (B) was 0.34 UB mgADH+FDH.  In the enzyme-coupled batch, the 
bioreduction proceeded to yield more than 99 % (2R,5R)-hexanediol (C).  With the 
above batch results, it was concluded that the reduction of a prochiral ketone to its 
corresponding alcohol was possible with the use of the enzyme-coupled system 
(LbADH and FDH).  Therefore, in the following sections of this chapter, the enzyme-
coupled system was extended to investigate the reduction of methyl acetoacetate 
(MAA). 
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Figure 4.3.  Concentration of reactants in a batch reactor as a function of time.  Conditions:        

V = 1.5 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 300 mM sodium formate,     

50 mM (2,5)-hexanedione (A), 2 mM MgSO4, 0.2 mM NADP+, 0.1 g L-1 LbADH (61.8 UA mgADH
-1), 

3.6 g L-1 FDH (0.44 Uformate mgFDH
-1). 

 
 
4.3 3-Hydroxybutanoate synthesis 
 
 
4.3.1 Reaction conditions 
 
 
The pH and temperature of the biotransformation with the enzyme-coupled system 
was studied separately for each enzyme (LbADH and FDH).  Thereafter, the best 
conditions were selected for the enzyme-coupled batch. 
 
From Figure 4.4, the maximal activities of LbADH and FDH occurred at pHs 7.0 and 
6.2 respectively.  Since there would not be pH control in batch reactors, and that the 
pH of the enzyme-coupled batch would increase due to the production of dissolved 
CO2 in the form of alkaline bicarbonates, a lower starting pH value was desired.  The 
compromised starting pH value for future batches was therefore chosen at a lower 
value of 6, where the activities of LbADH and FDH were more than 50 % of the 
attainable maximum activities. 
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Figure 4.4.  Activity of LbADH and FDH as a function of pH.  Conditions (LbADH):  V = 1.0 mL, 

20 °C, 50 mM potassium phosphate buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 

0.2 mM NADPH, 12.6 mg L-1 LbADH (89.0 UMAA mgADH
-1).  Conditions (FDH):  V = 1.0 mL,       

25 °C, 50 mM potassium phosphate buffer, 240 mM sodium formate, 0.2 mM NADP+, 5.6 mg L-1 

FDH (0.44 Uformate mgFDH
-1
). 

 
 
The activities of LbADH and FDH behaved according to Arrhenius’ equation (see Eq. 
4.9) in the range of 290 to 308 K (FDH) and up to 333 K (LbADH) (Figures 4.5 and 
4.6).  The corresponding activation energies were 36.8 ± 0.8 kJ mol-1 (R2 = 0.99) 
(LbADH) and 27.9 ± 0.2 kJ mol-1 (R2 = 0.99) (FDH).  The values for thermal 
activation obtained were consistent to the usual range of values found in enzyme-
catalysed reactions (Schuler and Kargi, 1992).  Although an increase in temperature 
increased the activities of both enzymes exponentially, the stability of the enzymes 
(see Chapter 4.3.2.1) and cofactors (refer to Chapter 4.3.3) with temperature had to be 
taken in account before choosing a suitable operating temperature for the enzyme-
coupled system. 
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Figure 4.5.  Activity of LbADH as a function of temperature.  Conditions:  V = 1.0 mL, initial pH 

6, 50 mM potassium phosphate buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4,         

0.2 mM NADPH, 12.6 mg L
-1
 LbADH (89.0 UMAA mgADH

-1
). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6.  Activity of FDH as a function of temperature.  Conditions:  V = 1.0 mL, initial pH 6, 

50 mM potassium phosphate buffer, 240 mM sodium formate, 0.2 mM NADP
+
, 5.6 mg L

-1
 FDH 

(0.44 Uformate mgFDH
-1). 
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4.3.2 Stability of enzymes 
 
 
The stability of LbADH and FDH with respect to incubation temperatures and 
chemicals was explored.  From the results, the operating temperature for the enzyme-
coupled system was determined.  The effects of chemical toxicity on the activity of 
the enzymes were also obtained. 
 
 
4.3.2.1 Temperature 
 
 
From Figure 4.7, it was found that there was an overall exponential decay in activity 
of LbADH in 50 mM potassium phosphate buffer from 20 to 30 °C over a period of 5 
days.  The rate of deactivation of LbADH was lowest at 20 °C (3.3 % h-1) and it 
increased with increasing temperature (Figure 4.8).  However, the activity of LbADH 
remained constant when the enzyme was incubated with potassium phosphate buffer 
containing 2 mM MgSO4 (Figure 4.7).  Therefore, a lower temperature (20 °C) and 
the addition of MgSO4 were essential in maintaining the activity of LbADH over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7.  Comparison of residual activity of LbADH incubated at different temperatures and    

2 mM MgSO4-containing buffer.  Conditions (temperature):  V = 1.0 mL, initial pH 6, 50 mM 

potassium phosphate buffer, 11 mM methyl acetoacetate (MAA), 0.2 mM NADPH, 6.7 mg L
-1
 

LbADH (89.0 UMAA mgADH
-1).  Conditions (Mg-containing buffer):  V = 1.0 mL, 20 °C, initial pH 

6, 50 mM potassium phosphate buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4,         

0.2 mM NADPH, 3.3 mg L
-1
 LbADH (89.0 UMAA mLADH

-1
). 
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Figure 4.8.  Deactivation of LbADH incubated in buffer at different temperatures.  Conditions 

(temperature):  V = 1.0 mL, initial pH 6, 50 mM potassium phosphate buffer, 11 mM methyl 

acetoacetate (MAA), 0.2 mM NADPH, 6.7 mg L-1 LbADH (89.0 UMAA mLADH
-1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9.  Comparison of residual activity of FDH incubated at different temperatures and        

2 mM MgSO4-containing buffer.  Conditions (temperature):  V = 1.0 mL, initial pH 6, 50 mM 

potassium phosphate buffer, 240 mM sodium formate, 0.2 mM NADP
+
, 5.6 mg L

-1
 FDH          

(0.44 Uformate mgFDH
-1).  Conditions (Mg-containing buffer):  V = 1.0 mL, 20 °C, initial pH 6,        

50 mM potassium phosphate buffer, 200 mM sodium formate, 2 mM MgSO4, 0.2 mM NADP+,    

5.6 mg L
-1
 FDH (0.44 Uformate mgFDH

-1
). 

 
 
In the case of FDH, it was stable over a period of 6 days regardless of the presence of 
MgSO4 (Figure 4.9).  However, there was deactivation of FDH at higher temperature 
of 30 °C after 4 days of incubation.  In view of the enzyme-coupled system, a 
compromise between the findings of LbADH and FDH led to the choice of 20 °C as 
operating temperature. 
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4.3.2.2 Incubation chemicals 
 
 
In a typical enzyme-coupled setup, the enzymes are exposed to the biotransformation 
substrate, methyl acetoacetate (MAA), its product, (R)-methyl-3-hydroxybutanoate 
(MHB) and the cosubstrate, sodium formate. 
 
The incubation of LbADH with methyl acetoacetate (MAA) over a period of 10 days 
showed that up to a concentration of 40 mM MAA, the activity of LbADH remained 
fairly unchanged (Figure 4.10).  There was however, significant loss in activity of the 
LbADH incubated with 100 mM MAA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10.  Residual activity of LbADH incubated with methyl acetoacetate-containing buffer.  

Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 40 mM 

methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADPH, 3.3 mg L
-1
 LbADH                           

(89.0 UMAA mgADH
-1
). 

 
 
On the other hand, the activity of LbADH was not significantly affected by the 
presence of (R)-methyl-3-hydroxybutanoate (MHB) (up to 100 mM) (Figure 4.11).  
More than 85 % of the activity of LbADH remained after 10 days of incubation. 
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Figure 4.11.  Residual activity of LbADH incubated with (R)-methyl-3-hydroxybutanoate-

containing buffer.  Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium 

phosphate buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADPH,                         

3.3 mg L-1 LbADH (89.0 UMAA mgADH
-1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12.  Residual activity of LbADH incubated with 100 mM sodium formate-containing 

buffer.  Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADPH, 3.3 mg L
-1
 LbADH 

(89.0 UMAA mgADH
-1). 

 
 
From Figure 4.12, the activity of LbADH decayed over 10 days in the presence of       
100 mM sodium formate, giving a residual activity of 70 %.  Therefore, it appeared 
that methyl acetoacetate (MAA) of above 40 mM, and 100 mM sodium formate were 
toxic to LbADH over time.  The product, (R)-methyl-3-hydroxybutanoate (MHB) (up 
to 100 mM), did not exhibit significant toxicity on LbADH over 10 days. 
 
In contrary, the presence of methyl acetoacetate (MAA) of up to 100 mM did not 
exhibit major toxic effects on FDH (Figure 4.13).  Similar to that observed for 
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LbADH, (R)-methyl-3-hydroxybutanoate (MHB) (up to 100 mM) did not have much 
toxic effects on FDH (Figure 4.14).  Likewise, incubation of FDH with 100 mM 
sodium formate resulted in an activity drop of 30 % over 10 days (Figure 4.15). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13.  Residual activity of FDH incubated with methyl acetoacetate-containing buffer.  

Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer,         

200 mM sodium formate, 2 mM MgSO4, 0.2 mM NADP
+
, 5.6 mg L

-1
 FDH (0.44 Uformate mgFDH

-1
). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14.  Residual activity of FDH incubated with (R)-methyl-3-hydroxybutanoate-containing 

buffer.  Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 200 mM sodium formate, 2 mM MgSO4, 0.2 mM NADP
+
, 5.6 mg L

-1
 FDH                        

(0.44 Uformate mgFDH
-1). 
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Figure 4.15.  Residual activity of FDH incubated with 100 mM sodium formate-containing 

buffer.  Reaction conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 200 mM sodium formate, 2 mM MgSO4, 0.2 mM NADP+, 5.6 mg L-1 FDH                           

(0.44 Uformate mgFDH
-1). 

 
 
4.3.3 Stability of cofactors 
 
 
With the above knowledge of temperature stability of the enzymes (refer to Chapter 
4.3.2.1), the thermal stability of the cofactors over time is also essential in operating 
the enzyme-coupled system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.16.  Residual absorbance of NADP+ incubated at different temperatures over time.  

Conditions:  V = 1.0 mL, initial pH 6, 50 mM potassium phosphate buffer, 240 mM sodium 

formate, 0.2 mM NADP
+
, 5.6 mg L

-1
 FDH (0.44 Uformate mgFDH

-1
). 
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Figure 4.17.  Residual absorbance of NADPH incubated at different temperatures over time.  

Conditions:  V = 1.0 mL, initial pH 6, 50 mM potassium phosphate buffer, 11 mM methyl 

acetoacetate (MAA), 0.2 mM NADPH, 6.7 mg L
-1
 LbADH (89.0 UMAA mgADH

-1
). 

 

Figure 4.18.  Deactivation constants of NADPH incubated at different temperatures.  Conditions:  

V = 1.0 mL, initial pH 6, 50 mM potassium phosphate buffer, 11 mM methyl acetoacetate 

(MAA), 0.2 mM NADPH, 6.7 mg L-1 LbADH (89.0 UMAA mgADH
-1). 

 
 
It was observed in Figure 4.16 that NADP+ deactivated at the rates of 0.16 % h-1        
(20 °C) and 0.13 % h-1 (30 °C) over a period of over 9 days.  In contrast, NADPH 
deactivated rapidly with increasing temperature (Figures 4.17 and 4.18).  Since the 
rate of deactivation for NADPH was almost 100-fold more than that of NADP+, it was 
necessary to choose a lower operating temperature of 20 °C to prevent excess 
deactivation of the reduced cofactor.  Simultaneously, there was negligible 
deactivation of the oxidised cofactor.  In fact, the stability of the enzymes, in 
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particular LbADH, was also best at 20 °C (refer to Chapter 4.3.2.1).  Therefore, in 
view of the stability of LbADH and NADPH, it was determined that the best 
temperature to operate the enzyme-coupled system was 20 °C. 
 
 
4.3.4 Batch kinetics 
 
 
The batch kinetics of LbADH and FDH were firstly investigated and separately 
modelled with the program MicroMath® Scientist® for WindowsTM.  Due to the 
instability of NADPH, a slight excess of LbADH was used in the studies to reduce the 
concentration of NADPH to a minimal.  The obtained data were then combined and 
the enzymes were coupled in a batch. 
 
 
4.3.4.1 Kinetics of LbADH 
 
 
The reduced and oxidised cofactors NAD(P)(H) were not inhibitory to NADPH- and 
NADH-bounded LbADH (Figures 4.19 and 4.20).  When NADPH was employed as 
cofactor, methyl acetoacetate (MAA) was found to be inhibitory to LbADH (Figure 
4.21).  On the other hand, if NADH was used, there was no inhibition of methyl 
acetoacetate (MAA), up to 250 mM, observed.  In contrast, the product, (R)-methyl-3-
hydroxybutanoate (MHB), showed no significant inhibition effects on the NADPH-
bounded LbADH.  Up to a concentration of 250 mM (R)-methyl-3-hydroxybutanoate 
(MHB), there was also no inhibition effect seen on the NADH-bounded LbADH 
(Figure 4.22). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.19.  Activity of LbADH with NAD(P)H as a function of the concentration of reduced 

cofactors NAD(P)H.  Conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 40 mM methyl acetoacetate (MAA) (or 200 mM MAA when NADH is used), 2 mM 

MgSO4, 0.126 mg L
-1
 LbADH (89.0 UMAA mgADH

-1
). 
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Figure 4.20.  Activity of LbADH with NAD(P)H as a function of the concentration of oxidised 

cofactors NAD(P)
+
.  Conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 40 mM methyl acetoacetate (MAA) (or 200 mM MAA when NADH is used), 2 mM 

MgSO4, 0.2 mM NADPH (or 0.9 mM NADH), 0.126 mg L
-1
 LbADH (89.0 UMAA mgADH

-1
). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21.  Activity of LbADH with NAD(P)H as a function of the concentration of methyl 

acetoacetate (MAA).  Conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 2 mM MgSO4, 0.2 mM NADPH (or 1.6 mM NADH), 0.126 mg L
-1
 LbADH                     

(89.0 UMAA mgADH
-1
). 
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Figure 4.22.  Activity of LbADH with NAD(P)H as a function of the concentration of (R)-methyl-

3-hydroxybutanoate (MHB).  Conditions:  V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium 

phosphate buffer, 40 mM methyl acetoacetate (MAA) (or 200 mM MAA when NADH is used),     

2 mM MgSO4, 0.2 mM NADPH (or 1.6 mM NADH), 0.126 mg L-1 LbADH (89.0 UMAA mgADH
-1). 

 
 
The results suggested that LbADH behaved differently, depending on which cofactor 
it used in the bioreduction of methyl acetoacetate (MAA).  Using a 2-substrate 
Michealis-Menten equation for methyl acetoacetate (MAA) and NAD(P)H, two 
equations described the batch kinetics of NAD(P)H-bounded LbADH.  In the case of 
NADPH-bounded LbADH, there existed substrate inhibition of methyl acetoacetate 
(MAA) with no product inhibition of (R)-methyl-3-hydroxybutanoate (MHB) and 
NADPH (Eq. 4.10).  For NADH-bounded LbADH, there existed no substrate and 
product inhibition (Eq. 4.11).  The kinetics constants are summarised in Table 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.1.  Kinetics constants of NAD(P)H-dependent LbADH. 

 

Kinetics constants NADPH-dependency NADH-dependency* 

vmax,MAA (UMAA mgADH
-1) 32.47 ± 0.05 30.41 

Km,MAA (mM) 0.31 ± 0.001 84.27 ± 0.94 
Km,NAD(P)H (mM) 0.0038 ± 6×10-5 1.6 
Ki,MAA (mM) 163.98 ± 0.53 - 

*Due to the convergence of small values in the iterations in the program, the vmax,MAA and Km,NAD(P)H values were firstly obtained 
through trial and error, set and then re-iterated with the program to yield sensible results. 
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4.3.4.2 Kinetics of FDH 
 
 
The NADP+-dependent FDH showed no inhibition to its substrate, formate, of up to 
200 mM (Figure 4.23).  NADP+ (up to 1 mM) was also found to exhibit no inhibition 
towards FDH (Figure 4.24). However, the reduced cofactor NADPH (up to 0.2 mM) 
inhibited the FDH rather significantly despite the low concentration present (Figure 
4.25). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23.  Activity of FDH as a function of the concentration of formate.  Conditions:              

V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 2 mM MgSO4, 0.2 mM 

NADP
+
, 8.7 mg L

-1
 FDH (0.44 Uformate mgFDH

-1
). 

Figure 4.24.  Activity of FDH as a function of the concentration of NADP+.  Conditions:                 

V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 200 mM sodium formate,     

2 mM MgSO4, 8.7 mg L
-1
 FDH (0.44 Uformate mgFDH

-1
). 
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Figure 4.25.  Activity of FDH as a function of the concentration of NADPH.  Conditions:              

V = 1.0 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 200 mM sodium formate,      

2 mM MgSO4, 0.2 mM NADP
+
, 8.7 mg L

-1
 FDH (0.44 Uformate mgFDH

-1
). 

 
 
Using a 2-substrate Michealis-Menten equation for formate and NADP+, the 
behaviour of FDH was expressed (Eq. 4.12).  The kinetics constants are summarised 
in Table 4.2. 
 
 
 
 
 
 
Table 4.2.  Kinetics constants of NADP

+
-dependent FDH. 

 
Kinetics constants NADP+-dependency 
vmax,formate (Uformate mgFDH

-1) 0.70 ± 9×10-3 
Km,formate (mM) 20.90 ± 0.14 
Km,NADP (mM) 0.039 ± 2×10-5 
Ki,NADPH (mM) 0.014 ± 3×10-4 

 
 
4.3.4.3 Enzyme-coupled batch run 
 
 
LbADH and FDH were combined in a batch for the bioreduction of methyl 
acetoacetate (MAA), and the regeneration of NADP(H) through the oxidation of 
formate.  The profile of a typical enzyme-coupled batch system is illustrated in Figure 
4.26, where a conversion of more than 99 % of methyl acetoacetate (MAA) and yield 
of (R)-methyl-3-hydroxybutanoate (MHB) (ee > 99 %) were achieved experimentally.  
For this batch reaction, the amount of reactant in the reactor is equal to the sum of the 
amount of reactant lost due to the chemical reaction and the residual amount of 

(eq. 4.12) 
++

+

+










+×

×
+
×

=

NADP
NADPHi

NADPH

NADPm

NADP

formateformatem

formateformate

C
K

C
K

C

CK

Cv
v

,
,

,

max,

1



4.  Syntheses of Chiral Alcohols with an Enzyme-coupled System 

56 

unreacted reactant.  With this mass balance, modelling of the enzyme-coupled batch 
with MicroMath® Scientist® using the above Michealis-Menten equations (Eqs. 4.10 
and 4.12) gave good fit of R2 = 0.99 (MAA), and 0.98 (MHB).  The total turnover 
numbers, initial rate of production of (R)-methyl-3-hydroxybutanoate (MHB) and the 
biocatalyst consumption of a typical enzyme-coupled batch are summarised in Table 
4.3. 

Figure 4.26.  Concentration profile of reactants in an enzyme-coupled batch as a function of time.  

Conditions:  V = 1.5 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 100 mM 

sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADP+, 0.025 g L-1 

LbADH (89.0 UMAA mgADH
-1
), 1.0 g L

-1
 FDH (0.44 Uformate mgFDH

-1
). 

 
 
Table 4.3.  Summary of results from enzyme-coupled batch run. 

 
Parameters Values 
ttnADH (molMHB molADH

-1) 168178 
ttnFDH (molMHB molFDH

-1) 1753 
ttnNADP (molMHB molNADP

-1) 200 
STY (gMHB L

-1 h-1) 2.36 
Initial rate of production (U mL-1) 0.33 
Biocat consumption (gADH+FDH gMHB

-1) 0.22 
 
 
4.3.5 Enzyme-coupled repetitive batch studies 
 
 
In order to improve the enzyme-coupled process, repetitive batch mode was 
performed to obtain higher total turnover numbers.  After 4 repetitive batches, there 
was an increase in total turnover numbers (with respect to ADH and FDH) and a drop 
in the biocatalyst consumption (Table 4.4).  In addition, the enzymes appeared to 
produce (R)-methyl-3-hydroxybutanoate (MHB) at about the same rates (Figure 
4.27).  However, the activity of the batches revealed an exponential deactivation rate 
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of 4.6 % h-1 (R2 = 0.95) (Figure 4.28).  The decrease in activity of the repetitive 
batches was due to the loss in activity of LbADH and FDH (Figure 4.29).  LbADH 
decayed exponentially at 4.0 % h-1 while the residual activity of FDH was 79 % after 
about 9 h. 

Figure 4.27.  Concentration of (R)-methyl-3-hydroxybutanoate (MHB) in an enzyme-coupled 

repetitive batch run as a function of time.  Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM 

potassium phosphate buffer, 100 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM 

MgSO4, 0.2 mM NADP
+
, 0.03 g L

-1
 LbADH (89.0 UMAA mgADH

-1
), 1.2 g L

-1
 FDH                         

(0.44 Uformate mgFDH
-1). 

 

Figure 4.28.  Overall activity of enzyme-coupled repetitive batch run as a function of time.  

Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 100 mM sodium 

formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADP+, 0.03 g L-1 LbADH 

(89.0 UMAA mgADH
-1
), 1.2 g L

-1
 FDH (0.44 Uformate mgFDH

-1
). 
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Figure 4.29.  Activities of ADH and FDH in enzyme-coupled repetitive batch run as a function of 

time.  Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM potassium phosphate buffer, 100 mM 

sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM NADP+, 0.03 g L-1 

LbADH (89.0 UMAA mgADH
-1), 1.2 g L-1 FDH (0.44 Uformate mgFDH

-1). 

 
 
Table 4.4.  Summary of results from enzyme-coupled repetitive batch run. 

 
Parameters Values 
ttnADH (molMHB molADH

-1) 559703 
ttnFDH (molMHB molFDH

-1) 5854 
ttnNADP (molMHB molNADP

-1) 200 
Biocat consumption (gADH+FDH gMHB

-1) 0.07 
 
 
4.3.6 Enzyme-coupled continuous run in enzyme membrane 

reactor 
 
 
Continuous reduction of methyl acetoacetate (MAA) with the enzyme-coupled system 
for regeneration of cofactors was performed in an enzyme membrane reactor (EMR) 
at a residence time of 1 h (Figure 4.30). 
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Figure 4.30.  Scheme of enzyme-coupled continuous run in an enzyme membrane reactor. 

 
 
In the first 16 h of operation, more than 99 % of methyl acetoacetate (MAA) was 
converted and more than 99 % of (R)-methyl-3-hydroxybutanoate (MHB) was 
yielded (Figures 4.31 and 4.32).  Following which, there was a rapid drop in 
conversion and yield of the process.  Analyses of the enzymes in the EMR showed 
rapid and mild deactivation of LbADH and FDH respectively (Figures 4.33 and 4.34). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.31.  Conversion of methyl acetoacetate (MAA) as a function of the number of residence 

time in an enzyme-coupled continuous reactor.  Conditions:  V = 10 mL, 20 °C, initial pH 6,       

50 mM potassium phosphate buffer, 100 mM sodium formate, 40 mM methyl acetoacetate 

(MAA), 2 mM MgSO4, 0.2 mM NADP+, initial 0.075 g L-1 LbADH (20.4 UMAA mgADH
-1, 20 UMAA), 

initial 3 g L-1 FDH (0.44 Uformate mgFDH
-1, 48 Uformate). 
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Figure 4.32.  Concentration profile of reactants as a function of the number of residence time in 

an enzyme-coupled continuous reactor.  Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM 

potassium phosphate buffer, 100 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM 

MgSO4, 0.2 mM NADP+, initial 0.075 g L-1 LbADH (20.4 UMAA mgADH
-1, 20 UMAA), initial 3 g L

-1 

FDH (0.44 Uformate mgFDH
-1
, 48 Uformate). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.33.  Activity of LbADH as a function of the number of residence time in an enzyme-

coupled continuous reactor.  Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM potassium 

phosphate buffer, 100 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 

0.2 mM NADP+, initial 0.075 g L-1 LbADH (20.4 UMAA mgADH
-1, 20 UMAA), 3 g L

-1 FDH             

(0.44 Uformate mgFDH
-1, 48 Uformate). 
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Figure 4.34.  Activity of FDH as a function of the number of residence time in an enzyme-coupled 

continuous reactor.  Conditions:  V = 10 mL, 20 °C, initial pH 6, 50 mM potassium phosphate 

buffer, 100 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.2 mM 

NADP+, initial 0.075 g L-1 LbADH (20.4 UMAA mgADH
-1, 20 UMAA), initial 3 g L

-1 FDH                         

(0.44 Uformate mgFDH
-1
, 48 Uformate). 

 
 
Additional amount of enzymes (33 % of the initial amount) fed into the EMR at         
θ = 46 gave almost full recovery of the conversion of methyl acetoacetate (MAA) and 
yield of (R)-methyl-3-hydroxybutanoate (MHB).  Although the total amount of 
LbADH in the reactor had a lower activity than at the beginning of the run, its activity 
was sufficient in the reduction of methyl acetoacetate (MAA).  However, there 
continued a slide in the amount of (R)-methyl-3-hydroxybutanoate (MHB) formed 
after that due to the rapid drop in activity of LbADH. 
 
At θ = 120, only 39 % of the existing FDH in the reactor was active.  Since FDH was 
found to be stable in the chemicals in the reaction system (See Chapter 4.3.2.2), the 
rapid loss in activity could be due to the inhibition of FDH by traces of NADPH that 
were not regenerated to NADP+ (Refer to Chapter 4.3.4.2).  Therefore, a lower 
concentration of NADP+ (0.1 mM) was fed into the reactor to minimise the amount of 
residual NADPH.  In addition, more FDH and LbADH were added to the reactor to 
recover the initial activities. 
 
Immediately after θ = 120, more than 99 % of methyl acetoacetate (MAA) was 
converted and more than 99 % of (R)-methyl-3-hydroxybutanoate (MHB) was 
yielded, similar to the first 16 h of operation.  Therefore, it suggested that the starting 
concentration of NADP+ was more than sufficient for the biotransformation and that it 
was not limiting. 
 
In the last section of the continuous run (θ = 120 – 166), there continued to be a rapid 
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activity of FDH was not solely due to the presence of trace amount of NADPH.  It is 
not known which other factors caused the deactivation of FDH. 
 
The overall performance of the continuous run is summarised in Table 4.5. 
 
 
Table 4.5.  Summary of results from continuous run of enzyme-coupled system. 

 
Parameters Values 
θ 0 - 46 46 – 120 120 - 166 
NADP+ (mM) 0.2 0.2 0.1 
LbADH (UMAA) 20 40 80 
FDH (Uformate) 48 64 96 
ttnADH (molMHB molADH

-1) 2.2 x 106 2.4 x 106 1.1 x 106 

ttnFDH (molMHB molFDH
-1) 2.4 x 104 2.5 x 104 1.1 x 104 

ttnNADP (molMHB molNADP
-1) 177 160 329 

Biocat consumption (gADH+FDH gMHB
-1) 0.016 0.015 0.033 

 
 
Moreover, as the biotransformation proceeded over time, a white cloudy suspension 
was observed from the outlet of the reactor.  It was non-proteinous in nature, and 
microscopic analysis for microorganisms in the reactor and outlet stream proved 
negative. 
 
The suspension was suspected to be magnesium carbonate, formed from the presence 
of magnesium ions in the buffer and the oxidation of formate to carbon dioxide 
(Weast, 1986).  However, the equilibrium of dissolved carbon dioxide, bicarbonate, 
carbonate and carbonic acid showed negligible carbonate present at acidic and neutral 
pHs, similar to the range of 6 to 7 measured from the reactor outlet (see Figure 4.35, 
Bailey and Ollis, 1986; Schmelzer et al., 2000).  Due to the pH-sensitivity of 
dissolved carbon dioxide and the complex composition of the buffer, the actual 
equilibrium of dissolved carbon dioxide in solution and hence the identity of the 
cloudy suspension could not be easily established. 
 
 
 
 
 
Figure 4.35.  Equilibrium of carbon dioxide in solution, with the pH range for the dominant 

species. 

 
 
4.4 Conclusions 
 
 
Enzyme-coupled system with alcohol dehydrogenase from Lactobacillus brevis 
(LbADH) and formate dehydrogenase from Pseudomonas sp. was able to reduce 
prochiral ketones to chiral alcohols. 
 

CO2 (g) + H2O ↔ CO2 (dissolved) + H2O ↔ H2CO3 ↔ HCO3
- + H+ ↔CO3

2- + 2 H+ 
             pH < 5         7 < pH < 9            pH > 11 
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In the synthesis of (R)-methyl-3-hydroxybutanoate (MHB), the following findings 
were obtained: 
 

♦ MgSO4 improved the storage stability of LbADH, 
 

♦ Substrate MAA (beyond 40 mM) was toxic to LbADH while formate    
(100 mM) was slightly toxic to both LbADH and FDH, 

 
♦ Product MHB (up to 100 mM) was non-toxic to LbADH and FDH, 

 
♦ NADPH (kdes = 0.12 h-1 at 20 °C) was more unstable than NADP+ at 

reaction conditions, 
 

♦ For NADP(H)-dependent reactions, MAA inhibition was present for 
LbADH, while NADPH was inhibitory for FDH, 

 
♦ No substrate (MAA) and product (MHB) inhibition were present for 

NADH-bounded LbADH reduction, 
 

♦ Highest total turnover numbers (2.4 x 106 molMHB molADH
-1,                     

2.5 x 104 molMHB molFDH
-1 and 329 molMHB molNADP

-1) and lowest 
biocatalyst consumption (0.015 gADH+FDH gMHB

-1) were obtained in the 
continuous setup, 

 
♦ Rapid drop in activities of LbADH and FDH in continuous setup, 

 
♦ Unknown white cloudy suspension formed in outlet of continuous reactor, 

probably due to the interplay of dissolved carbon dioxide and ions in 
buffer. 
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5 3-Hydroxybutanoate Synthesis with Genetically 
Modified Biocatalyst Escherichia coli BL21 Star 
(DE3) 

 
 
A designer bug system was developed by Ernst et al., (2003, 2005) to catalyse the 
reduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate (MHB) 
(Figure 5.1).  For the bioreduction step, Escherichia coli BL21 Star (DE3) was 
genetically coded with an alcohol dehydrogenase gene from Lactobacillus brevis 
(LbADH).  To recycle the internal cofactors of the cells, a NAD+-specific formate 
dehydrogenase (FDH) gene from Mycobacterium vaccae was incorporated into the 
biocatalyst.  Compared to the NADP+-dependent FDH from Pseudomonas sp. used in 
Chapter 4, this NAD+-specific FDH was known to have high specific activity and 
stability (Bringer-Meyer, 2005).  Moreover, Ernst et al. (2005) demonstrated that the 
bioreduction was able to proceed with NAD+ as cofactor, thereby no NADP+-specific 
FDH was needed.  Formate, a cosubstrate, was oxidised to CO2 as a result of the 
cofactor regeneration.  This chapter explores the characterisation and synthesis of (R)-
methyl-3-hydroxybutanoate (MHB) with recombinant E. coli in different reactor 
setups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1.  Enantioselective reduction of methyl acetoacetate (MAA) to (R)-methyl-3-

hydroxybutanoate (MHB) with resting whole cells of Escherichia coli BL21 Star (DE3). 

 
 
5.1 Biocatalyst production 
 
 
5.1.1 Genetic transformation 
 
 
Recombinant Escherichia coli BL21 Star (DE3) was cloned with ADH and FDH 
plasmids separately into the cells by transformation.  The low copy plasmids, 
pBtacLB-ADH (800 bp, 26.7 kDa, carbenicillin resistance) and pBBR1MCS2fdh 
(1200 bp, 44 kDa, kanamycin resistance) were amplified separately in Escherichia 
coli DH5α before transformation into Escherichia coli BL21 Star (DE3).  According 
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to the protocol established by Ernst et al. (2003, 2005) and Kaup (2005), there was no 
significant difference to the activity of the biocatalyst with regards to whichever 
plasmid was transformed first in the cells.  However, in this genetic transformation 
work to produce the biocatalyst, only the rec. E. coli transformed with the ADH, then 
FDH plasmids yielded active cells for the bioreduction of methyl acetoacetate (MAA) 
(Figure 5.2). 

Figure 5.2.  Concentration of reactants in a batch reactor with different modes of genetically 

transformed biocatalysts as a function of time.  Conditions:  V = 0.04 L, 30 °C, pH 6.5 (titrated 

with 3 M HCOOH), 500 mM potassium phosphate buffer, 200 mM sodium formate, 40 mM 

methyl acetoacetate (MAA), 0.8 g-wet cell weight rec. E. coli.  The filled symbols refer to the 

biocatalyst transformed with the ADH, then FDH plasmids and the unfilled symbols refer to the 

biocatalyst transformed with the FDH, then ADH plasmids. 

Figure 5.3.  Enzymatic activity of FDH and ADH of the different modes of genetic transformed 

rec. E. coli.  Grey columns:  oxidation of formate by FDH, green columns:  reduction of MAA by 

ADH.  Conditions (ADH):  V = 1.0 mL, 30 °C, initial pH 7, 50 mM postassium phosphate buffer, 

11 mM methyl acetoacetate (MAA), 0.2 mM NADPH, 1 mM MgSO4, 1 µL sonified cell 

suspension.  Conditions (FDH):  V = 1.0 mL, 30 °C, initial pH 6.5, 50 mM postassium phosphate 

buffer, 200 mM sodium formate, 0.2 mM NAD+, 1 mM MgSO4, 10 µL sonified cell suspension. 
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The inability of the rec. E. coli (transformed with the FDH plasmid first) to reduce 
methyl acetoactate (MAA) was attributed to the unsuccessful subsequent 
transformation of the ADH plasmid (Figure 5.3).  On the other hand, the activity of 
the FDH in both types of rec. E. coli was similar.  It is not known why it was not 
possible to transform the ADH plasmid into the biocatalyst containing the FDH 
plasmid.  Nevertheless, the genetic transformation of the biocatalyst in this work was 
performed firstly with the ADH then FDH plasmids. 
 
 
5.1.2 Fermentation 
 
 
Fermentation of rec. E. coli was carried out with standard Luria-Bertani (LB) 
medium, with carbenicillin and kanamycin added to select cells containing the ADH 
and FDH plasmids respectively (Table 5.1).  Cell colonies from an agar plate were 
selected and a large pool of feedstock containing cells with similar activities were 
stored in 50 % v/v glycerol at –80 °C.  This feedstock was used for fermentation to 
yield biomass of uniform activities for the biosynthesis of (R)-methyl-3-
hydroxybutanoate (MHB). 
 
 
Table 5.1.  Luria-Bertani (LB) medium composition for fermentation of Escherichia coli BL21 

Star (DE3). 

 
Medium composition Concentration (g L-1) 
Glucose·H2O 4 
Casein peptone 10 
Yeast extract 5 
NaCl 10 
Carbenicillin 0.05 
Kanamycin 0.05 

 
 
Based on the fermentation protocol of Ernst et al. (2003, 2005) and Kaup (2005) for a 
250 mL shakeflask, induction of the rec. E. coli with isopropyl-β-D-
thiogalactopyranoside (IPTG) to a final concentration of 0.7 mM was initiated in the 
early exponential phase of growth, for a period of 5 h.  The final biomass obtained 
was 2.5 gwcw L-1.  A scale-up in fermentation on a 1 L-scale was performed to obtain 
more biomass.  The biocatalyst was assessed by its activity, defined as the initial rate 
of production of (R)-methyl-3-hydroxybutanoate (MHB) per unit wet biomass (Eq. 
5.1). 
 
 
 
 
 
 
 
 
 

( )
cellwet

initialMHB

MHB
m

dtdC
Activity = (eq. 5.1) 
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Figure 5.4.  Comparison of the effects of different fermentation protocols on the activity of rec. E. 

coli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5.  Comparison of the effects of baffles (B) in fermentation shakeflasks on the activity of 

rec. E. coli. 
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Figure 5.6.  Fermentation profile of rec. E. coli (with and without induction). 

 
 
Using a similar fermentation protocol to that on a 250 mL-scale, the biocatalyst 
obtained in the 1 L shakeflask had a 50 % reduction in activity (Figure 5.4).  In order 
to increase the activity of the cells, the induction time of the fermentation was 
increased from 5 to 13 h.  There was only a slight improvement in activity, and an 
increase in induction time beyond 7 h did not yield more active cells.  When 1 L 
baffled shakeflasks were used to improve the aeration to the cells, there was a further 
reduction of up to 55 % in activity of the cells (Figure 5.5).  The fermentation on a     
1 L-scale (in the absence of baffles) with an induction time of 7 h produced the most 
active cells (3.0 gwcw L-1).  A comparison of the effects of IPTG on the growth of rec. 
E. coli is illustrated in Figure 5.6.  A lower biomass concentration was obtained with 
induced cells, as the cells employed energy to express the genes for FDH and ADH 
rather than to strictly multiply. 
 
 
5.2 General definitions of terms used 
 
 
In addition to the terms defined in Chapter 4, the biocatalyst consumption of the 
bioreduction process with methyl acetoacetate (MAA) is given as the ratio of the wet 
biomass of the biocatalyst used per unit mass of (R)-methyl-3-hydroxybutanoate 
(MHB) obtained. 
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5.3 Storage of induced cells 
 
 
After fermentation, the induced rec. E. coli cells were stored prior to 
biotransformation.  To date, there exist no published methods of storage of induced 
rec. E. coli.  Therefore, a variety of storage media and conditions were tested. 
 
The induced cells were stored in potassium phosphate buffer (in the presence of anti-
freezing agent, glycerol) and 0.9 % w/v saline solution over a period of about a week.  
From Figure 5.7, there was a drastic drop in activity of the cells observed.  In 
particular, no activity was observed with the induced cells stored in phosphate buffer 
containing 50 % v/v glycerol at -80 °C.  This storage medium was the same as that 
used for the feedstock containing non-induced cells.  However, the feedstock yielded 
active cells upon fermentation and induction.  It is not known why the induced cells 
were no longer active in this storage condition.  At 4 and –20 °C, the high 
concentration of glycerol present could have caused the cells to lose water by 
osmosis, thereby destroying the cells.  On the other hand, 0.9 % w/v NaCl solution, a 
typical medium for storing immobilised cells, did not retain much of the initial 
activity of the induced cells. 

Figure 5.7.  Residual activity of induced rec. E. coli in various storage conditions.  Fresh cells:  

cells straight out of fermentation, KPi:  50 mM potassium phosphate buffer (pH 6.5). 
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An alternative storage medium with 50 mM potassium phosphate buffer (pH 6.5) 
yielded active induced cells, up to 3 weeks after fermentation (Figure 5.8).  With this 
storage method, there was no loss in activity of the induced rec. E. coli for up to 3 
weeks. 

Figure 5.8.  Activity of induced rec. E. coli stored in phosphate buffer over time.  Fresh cells:  

cells straight out of fermentation, KPi:  50 mM potassium phosphate buffer (pH 6.5). 

 
 
5.4 Selection of biotransformation medium 
 
 
A variety of biotransformation media, in place of potassium phosphate buffer, was 
investigated.  The media contained minerals that could be essential for the 
regeneration of cofactors in rec. E. coli during the bioreduction of methyl acetoacetate 
(MAA).  A 10 % dilution of LB medium (as used for the fermentation, refer to Table 
5.1), with and without the addition of 500 mM potassium phosphate (pH 6.5), and a 
highly enriched minimal medium (as used by Bujnicki (2004) for the fermentation of 
a weak strain of rec. E. coli LJ110, refer to Table 5.2) were compared to 500 mM 
potassium phosphate buffer (pH 6.5) during biotransformation. 
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Table 5.2.  Highly enriched minimal medium composition for fermentation of a weak strain of 

Escherichia coli LJ110 (Bujnicki, 2004). 

 
Medium composition Concentration (g L-1) 
Glucose·H2O 11 
MgSO4·7H2O 3 
CaCl2·2H2O 0.015 
NaCl 1 
(NH4)2SO4 5 
KH2PO4 3 
FeSO4·7H2O 0.1125 
Sodium citrate 1.5 
Vitamin B1 0.075 
Carbenicillin 0.05 
Kanamycin 0.05 

 

Figure 5.9.  Batch activity of rec. E. coli in different biotransformation media.  KPi:  500 mM 

potassium phosphate buffer (pH 6.5), Min. med.:  minimal medium, LB med.:  LB medium. 

 
 
The use of diluted LB media (with and without the addition of phosphate) resulted in 
low activities in a batch (Figure 5.9).  It could possibly be due to the consumption of 
the minerals in the LB media by rec. E. coli for metabolism rather than 
biotransformation.  On the other hand, the batch activity of the cells in minimal 
medium was comparable to that for potassium phosphate buffer, and was also a 
suitable medium for biotransformation in a batch. 
 
In order to simplify the medium for kinetic studies and determination of reaction 
conditions, potassium phosphate buffer was chosen as the biotransformation medium.  
A reduction in the concentration of phosphate buffer to 50 mM gave no significant 
effects on the activity of the cells.  The efficiency of minimal medium and phosphate 
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buffer in maintaining the activity of rec. E. coli were further studied in a repetitive 
batch mode (refer to Chapter 5.7.3). 
 
 
5.5 Characteristics of biocatalyst 
 
 
5.5.1 Reaction conditions 
 
 
The pH and temperature of the biotransformation were studied in the presence of 
MgSO4 where the Mg2+ salts were found to be essential for the activation of 
Lactobacillus brevis alcohol dehydrogenase (Niefind et al., 2003).  The pH value for 
the highest activity was found to be 6.0 (Figure 5.10) while the activity profile 
followed an Arrhenius' behaviour up to T = 310 K (Figure 5.11).  The corresponding 
activation energy of the reaction was calculated to be 77.2 ± 16.6 kJ mol-1 (R2 = 0.94) 
(Eq. 4.9), and the deactivation energy was 3.3-fold higher, at 255.79 kJ mol-1 (Eq. 
5.3).  Assuming that methyl acetoacetate (MAA) was reduced only by the induced 
LbADH gene in rec. E. coli, the values for thermal activation and denaturation are 
consistent to the values found in enzyme-catalysed reactions (Schuler and Kargi, 
1992). 
 

Figure 5.10.  Activity of rec. E. coli as a function of pH.  Conditions:  V = 0.35 L, 30 °C, 50 mM 

potassium phosphate buffer, 50 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM 

MgSO4, 0.7 g-wet cell weight rec. E. coli.  The pH was controlled by titration with 5 M HCl. 
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Figure 5.11.  Activity of rec. E. coli as a function of temperature.  Conditions:  V = 0.35 L, pH 6 

(titrated with 5 M HCl), 50 mM potassium phosphate buffer, 50 mM sodium formate, 40 mM 

methyl acetoacetate (MAA), 2 mM MgSO4, 0.7 g-wet cell weight rec. E. coli. 

 
 
 
 
Although higher operating temperatures (up to 310 K) yielded higher activities, it was 
not known if the genetic stability of the rec. E. coli would be compromised, since the 
maximal allowable temperature for the stability of the cells during induction was            
303 K (Kaup, 2005).  Therefore, the temperature chosen for subsequent studies was 
fixed at 303 K. 
 
 
5.5.2 Reaction kinetics 
 
 
The study of possible substrate(s) and product inhibition was performed with batch 
experiments.  Up to a concentration of 250 mM, the substrate methyl acetoacetate 
(MAA) exhibited no inhibition to the rate of biotransformation (Figure 5.12).  The 
reaction rate with respect to methyl acetoacetate (MAA) is described by the 
Michealis-Menten equation (Eq. 5.4).  Although there were difficulties in precise 
integration of the peak corresponding to (R)-methyl-3-hydroxybutanoate (MHB) in 
the GC chromatograms at high concentrations of MHB, nevertheless, it can be 
concluded that there was also no significant product inhibition observed (Figure 5.13). 
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Figure 5.12.  Activity of rec. E. coli as a function of the concentration of methyl acetoacetate 

(MAA).  Conditions:  V = 0.35 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM potassium 

phosphate buffer, 50 mM sodium formate, 2 mM MgSO4, 0.7 g-wet cell weight rec. E. coli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13.  Activity of rec. E. coli as a function of the concentration of (R)-methyl-3-

hydroxybutanoate (MHB).  Conditions:  V = 0.35 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM 

potassium phosphate buffer, 50 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM 

MgSO4, 0.7 g-wet cell weight rec. E. coli. 

 
 
The reaction rates with regards to formate consumption and the formation of (R)-
methyl-3-hydroxybutanoate (MHB) are illustrated in Figures 5.14 and 5.15 
respectively.  In both cases, there was no formate inhibition seen (up to 200 mM).  
The effects of different formate concentration in a batch were expressed by the 
Michealis-Menten equation (Eq. 5.5).  Therefore, it can be concluded that the 
(co)substrates and the product (up to 200 mM) did not inhibit the bioreduction of 
methyl acetoacetate (MAA). 
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Figure 5.14.  Activity of rec. E. coli (in terms of formate consumption) as a function of the 

concentration of formate.  Conditions:  V = 0.35 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM 

potassium phosphate buffer, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.7 g-wet cell 

weight rec. E. coli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.15.  Activity of rec. E. coli (in terms of formation of (R)-methyl-3-hydroxybutanoate 

(MHB)) as a function of the concentration of formate.  Conditions:  V = 0.35 L, 30 °C, pH 6 

(titrated with 5 M HCl), 50 mM potassium phosphate buffer, 40 mM methyl acetoacetate (MAA), 

2 mM MgSO4, 0.7 g-wet cell weight rec. E. coli. 

 
 
 
 
 
 
 
 
 

0 50 100 150 200
0

4

8

12

16

20

24

28

32

36

40

44

 

 

A
c
ti
v
it
y
 (
U
fo
rm
a
te
 g
w
c
w

-1
)

Formate (mM)

R2 = 0.83 
vmax,formate = 42.64 ± 5.43 (Uformate gwcw

-1) 
Km,formate = 8.47 ± 4.96 (mM) 

R2 = 0.95 
vmax,formate (MHB) = 40.58 ± 2.51 (UMHB gwcw

-1) 
Km,formate = 16.75 ± 4.25 (mM) 

0 50 100 150 200
0

4

8

12

16

20

24

28

32

36

40

44

 

 

A
c
ti
v
it
y
 (
U
M
H
B
 g
w
c
w

-1
)

Formate (mM)

formateformatem

formateformate

CK

Cv
v

+
=

,

max, (eq. 5.5) 



5.  3-Hydroxybutanoate Synthesis with Genetically Modified Biocatalyst Escherichia 
coli BL21 Star (DE3) 

76 

5.5.3 Batch characterisation 
 
 
Methyl acetoacetate (MAA) was more than 99 % converted to yield more than 99 % 
(R)-methyl-3-hydroxybutanoate (MHB) in a batch reactor (Figure 5.16).  The ee of 
(R)-methyl-3-hydroxybutanoate (MHB) was above 99 % and the biocatalyst 
consumption of the batch was 1.7 gwcw gMHB

-1. 

Figure 5.16.  Concentration of reactants in a batch reactor as a function of time.  Conditions:         

V = 0.365 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM potassium phosphate buffer, 120 mM 

sodium formate, 100 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.73 g-wet cell weight rec. 

E. coli. 

 
 
5.6 Continuously stirred tank reactor (CSTR) 
 
 
The continuous production of (R)-methyl-3-hydroxybutanoate (MHB) was set up in a 
continuously stirred tank reactor (CSTR) (Figures 5.17 and 5.18).  The outlet of the 
reactor passed through an ultrafiltration membrane (of molecular weight cut-off of 
300 kD), thereby recycling the biomass back into the reactor while retrieving the 
product (R)-methyl-3-hydroxybutanoate (MHB) in the filtrate going into the fraction 
collector.  The pH of the system was kept constant by the addition of 5 M HCl, and 
was thermostated at 30 °C by a jacket of water around the reactor.  An excess of 
formate was used to ensure that the bioreduction was not limited by cofactor 
regeneration. 
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Figure 5.17.  Scheme of CSTR setup.  ττττ: residence time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18.  Production of (R)-methyl-3-hydroxybutanoate (MHB) with the CSTR setup (left) 

and a close-up on the reactor and ultrafiltration membrane (right). 

 
 
The highest concentration of (R)-methyl-3-hydroxybutanoate (MHB) was observed in 
the initial phase of the continuous run (θ = 0 – 4) (Figure 5.19).  After which, no 
steady state was observed and the conversion of methyl acetoacetate (MAA) 
decreased drastically (Figure 5.20).  An additional 1 % w/v of fresh rec. E. coli fed 
into the CSTR after 24 residence time boosted the conversion of methyl acetoacetate 
(MAA) shortly before decreasing. 
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Figure 5.19.  Concentration profile of reactants in the CSTR as a function of the number of 

residence time.  Conditions:  V = 0.2 L, 30 °°°°C, pH 6 (titrated with 5 M HCl), 50 mM potassium 

phosphate buffer, 62.5 mM sodium formate, 30 mM methyl acetoacetate (MAA), 2 mM MgSO4, 

6.0 g-wet cell weight rec. E. coli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.20.  Conversion of methyl acetoacetate (MAA) as a function of the number of residence 

time in the CSTR.  Conditions: V = 0.2 L, 30 °°°°C, pH 6 (titrated with 5 M HCl), 50 mM potassium 

phosphate buffer, 62.5 mM sodium formate, 30 mM methyl acetoacetate (MAA), 2 mM MgSO4, 

6.0 g-wet cell weight rec. E. coli. 

 
 
The initial activity of 3 % w/v rec. E. coli in the first 24 residence time was                   
5.00 UMHB gwcw

-1.  Upon addition of 1 % w/v rec. E. coli after 24 residence time, the 
initial activity was 2.32 UMHB gwcw

-1.  In both cases, the activities were very much 
lower to that obtained in a batch reactor (refer to Chapter 5.5).  The cells deactivated 
exponentially at a rate of 5.6 % h-1 in the first 24 h, and 4.0 % h-1 subsequently 
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(Figure 5.20).  Overall, the biocatalyst consumption in the CSTR obtained was         
0.9 gwcw gMHB

-1. 
 
It was not known why there was a rapid drop in conversion of methyl acetoacetate 
(MAA).  There could be 4 reasons:  lysed cells, toxicity of formate, lack of 
intracellular cofactors, or porous cell membrane.  A sample from the CSTR was taken 
and viewed under the microscope.  There was no contamination in the reactor as the 
cells were solely rec. E. coli.  Moreover, no lysed cells were observed.  This was 
further substantiated by the lack of ADH and FDH activities detected in the filtrate. 
 
The prolonged exposure to formate in the CSTR could have a toxic effect on the rec. 
E. coli, since formate is known to be an anti-microbial agent.  This phenomena was 
not observed in a batch, where the concentration of formate was always decreasing 
with time and that the operation time in a batch was short.  Therefore, rec. E. coli was 
incubated with formate overnight (11 h) and studied in a repetitive batch mode to 
observe the toxic effects of formate (refer to Chapter 5.7.1). 
 
It could also be possible that there were insufficient cofactors intracellularly at the 
start of the CSTR operation.  The addition of glucose to the rec. E. coli would serve to 
increase the pool of NADPH (by glycolysis) and the addition of vitamin B6 (a 
building block of nicotinamide cofactors) would serve to increase the pool of 
nicotinamide cofactors intracellularly.  The studies were also performed in a repetitive 
batch mode (see Chapter 5.7.1). 
 
The last possible explanation of a rapid drop in activity of the rec. E. coli could be a 
leaky cell membrane.  If this was the reason, then the internal cofactors of the cells 
would be washed out of the reactor and into the product line, making them 
unavailable after some time for the bioreduction of methyl acetoacetate (MAA) and 
the oxidation of formate.  Therefore, the addition of cofactors to the rec. E. coli was 
tested in a repetitive batch system to observe the effects (refer to Chapter 5.7.1). 
 
 
5.7 Stability studies 
 
 
5.7.1 Repetitive batch investigations 
 
 
Six different repetitive batch systems were investigated to understand the rapid drop 
in activity of rec. E. coli in the CSTR.  They were the standard repetitive batch 
system, formate incubated system, and the separate addition of glucose, vitamin B6, 
NAD+ and NAD(P)H (Table 5.3).  Each repetitive batch system consisted of 4 
repetitive batches. 
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Table 5.3.  Repetitive batch investigations for rec. E. coli system. 

 
Graph Repetitive 

batch test 
Conditions Target Studies 

A Standard 
(Std) 

Standard - - 

B Formate 
incubated 

50 mM formate 
(11 h incubation) 

Whole cell Toxicity effect 

C 
Glucose 22 mM Glycolysis 

NADPH 
generation 

D Vitamin B6 
(Vit. B6) 

1 mM 
Building block 
of cofactors 

NAD(P)(H) 
generation 

E 
NAD+ 1 mM FDH 

Oxidation of 
formate 

F 
NAD(P)H 1 mM each LbADH 

Reduction of 
MAA 

 
 
The concentration profiles of (R)-methyl-3-hydroxybutanoate (MHB) and formate 
appeared rather similar for the different repetitive batches, except in the case of the 
addition of cofactors (Figures 5.21).  When NAD+ was added to the repetitive batch, 
there was a rapid conversion of formate even before the start of the repetitive batch 
(Figure 5.21).  In contrast, this was not observed in the standard repetitive batch 
(Figure 5.21).  This suggested a leaky cell membrane which allowed easier diffusion 
of formate and NAD+ into and out of the cells.  In addition, it suggested the oxidation 
of formate in the cells was rate-limited by the intracellular concentration of NAD+ 
needed to drive the reaction.  On the other hand, the addition of the reduced cofactors 
did not yield a similar effect on the conversion of MAA (Figure 5.21).  In spite of the 
possibility of the cofactors leaking out of the cell, it seemed that the overall 
concentration of reduced cofactors needed for the reduction of MAA was sufficient to 
drive the reaction.  In the case of the standard repetitive batch, the biocatalyst 
consumption of the system was 1.1 gwcw gMHB

-1. 
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Figure 5.21.  Concentration of reactants in repetitive batch studies as a function of time.  A:  

Standard (Std), B:  With formate incubated cells, C:  With the addition of glucose, D:  With the 

addition of Vitamin B6 (Vit. B6), E:  With the addition of NAD+, F:  With the addition of 

NAD(P)H.  Conditions:  V = 0.325 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM potassium 

phosphate buffer, 50 mM sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 

0.65 g-wet cell weight rec. E. coli. 
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Figure 5.22.  Activities of rec. E. coli in repetitive batch systems containing different chemicals. 

Figure 5.23.  Deactivation constants of rec. E. coli in repetitive batch systems containing different 

chemicals. 

 
 
The activities of rec. E. coli in the repetitive batches are summarised in Figure 5.22.  
In general, there was an overall decrease in activity of the cells with each repetitive 
batch.  The repetitive batches with formate incubated cells and with the addition of 
NAD+ seemed to give slightly higher activities as compared to the standard repetitive 
batch.  On the other hand, the addition of reduced cofactors seemed to yield lower 
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activities.  These results implied that formate and the nicotinamide cofactors affect the 
activities of the cells, although the exact reasons could not be concisely concluded.  
When the exponential deactivation of the cells were compared, the system containing 
formate incubated cells gave the highest deactivation constant (Figure 5.23).  This 
showed that formate was toxic to the cells.  This was expected, since formate is 
known to be an anti-microbial agent. 
 
 
5.7.2 MAA:formate ratio 
 
 
Since formate was found to be toxic for the cells (see Chapter 5.7.1), the amount of 
formate required in a batch was investigated.  This was done to determine the optimal 
amount of formate for complete conversion of methyl acetoacetate (MAA).  By 
varying the ratio of methyl acetoacetate (MAA) to formate, it was observed that an 
equimolar ratio of methyl acetoacetate (MAA) to formate did not give 100 % yield of 
(R)-methyl-3-hydroxybutanoate (MHB) (Figure 5.24).  On the other hand, the 
different ratio of methyl acetoacetate (MAA) to formate did not have a significant 
effect on the activity of the rec. E. coli (Figure 5.25).  For complete yield of (R)-
methyl-3-hydroxybutanoate (MHB), and minimal toxicity to the cells, only a slight 
excess of formate must be added, and the ratio of methyl acetoacetate (MAA) to 
formate should be at least 1:1.2. 

Figure 5.24.  Yield of (R)-methyl-3-hydroxybutanoate (MHB) in a batch reactor as a function of 

the ratio of methyl acetoacetate (MAA) to formate.  Conditions:  V = 0.365 L, 30 °C, pH 6 

(titrated with 5 M HCl), 50 mM potassium phosphate buffer, 100 mM methyl acetoacetate 

(MAA), 2 mM MgSO4, 0.73 g-wet cell weight rec. E. coli. 
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Figure 5.25.  Activity in a batch reactor as a function of the ratio of methyl acetoacetate (MAA) 

to formate.  Conditions:  V = 0.365 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM potassium 

phosphate buffer, 100 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.73 g-wet cell weight rec. 

E. coli. 

 
 
5.7.3 Biotransformation medium studies in repetitive batch 
 
 
From Chapter 5.4, it was found that minimal medium and potassium phosphate buffer 
were suitable biotransformation media in a batch.  In this section, repetitive batch 
studies with both biotransformation media were performed to observe the long-term 
stability effects of both media and obtain a possible method to improve the activity of 
the biocatalyst in a CSTR.  Thus, the batch runs were capped at around an hour each 
and performed repetitively. 
 
After 10 repetitive batches, the rate of formation of (R)-methyl-3-hydroxybutanoate 
(MHB) had decreased over time for both biotransformation media (Figures 5.26 and 
5.27).  Comparing the activities of rec. E. coli in both biotransformation media, the 
decay in activities were exponential (Figure 5.28).  The rates of exponential decay 
were 5.0 % h-1 (phosphate buffer) and 7.1 % h-1 (minimal medium).  Although both 
media gave almost similar deactivation constant, the overall biocatalyst consumption 
obtained with the minimal medium was lower (see Eq. 5.2).  Therefore, it seemed that 
the use of minimal medium may have a beneficial effect to rec. E. coli. 
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Figure 5.26.  Concentration of (R)-methyl-3-hydroxybutanoate (MHB) in a repetitive batch run 

containing phosphate buffer as biotransformation medium as a function of time.  Conditions:     

V = 0.35 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM potassium phosphate buffer, 50 mM 

sodium formate, 40 mM methyl acetoacetate (MAA), 2 mM MgSO4, 0.35 g-wet cell weight rec. E. 

coli. 

Figure 5.27.  Concentration of (R)-methyl-3-hydroxybutanoate (MHB) in a repetitive batch run 

containing minimal medium as biotransformation medium as a function of time.  Conditions:     

V = 0.35 L, 30 °C, pH 6 (titrated with 5 M HCl), 50 mM sodium formate, 40 mM methyl 

acetoacetate (MAA), 0.35 g-wet cell weight rec. E. coli. 
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Figure 5.28.  Comparison of residual activity in a repetitive batch containing phosphate buffer 

and minimal medium as biotransformation media. 

 
 
5.8 Conclusions 
 
 
In the synthesis of (R)-methyl-3-hydroxybutanoate (MHB) with genetically modified 
biocatalyst Escherichia coli, the following findings were obtained: 
 

♦ First known storage of active induced cells in phosphate buffer of up to      
3 weeks, 

 
♦ No substrates (MAA, formate) and product (MHB) inhibition, 

 
♦ For complete yield of MHB, MAA:formate = 1:≥1.2, 

 
♦ Lowest biocatalyst consumption (0.9 gwcw gMHB

-1) was obtained in the 
continuous setup, 

 
♦ Rapid drop in conversion of MAA in continuous setup could be due to 

formate toxicity and leaky cell membrane. 
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6 Discussion and Outlook 
 
 
The use of isolated enzymes and resting whole cells as biocatalysts are compared in 
this chapter.  In each system, the process parameters (depending on reactor setups) 
and economics (cost of production and sale) are evaluated.  In addition, the stability of 
the biocatalysts is considered.  Other problems and suggestions relating to the 
bioprocesses are also discussed.  Finally, the most viable bioprocess setup for the 
production of (5R)-hydroxyhexane-2-one (B) and (R)-methyl-3-hydroxybutanoate 
(MHB) is presented. 
 
 

6.1 γ-Hydroxyketone syntheses with whole cells of Lactobacillus 
kefiri versus enzyme-coupled system 

 
 
6.1.1 Process parameters and stability 
 
 
Three essential criteria for feasible synthesis of (5R)-hydroxyhexane-2-one (B) were 
evaluated (Figure 6.1).  The biocatalyst consumption of the processes with whole cells 
(refer to Eq. 3.5) and enzymes (see Eq. 4.6) is illustrated (Figure 6.2).  In addition, the 
space-time yield (STY) of the plug flow run with whole cells (refer to Eq. 3.20) and 
for the batch runs with enzymes (Eq. 4.7) are given in Figure 6.3.  With respect to the 
stability of the biocatalyst, only the processes with exponential deactivation over time 
are compared (Figure 6.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1.  Enantioselective reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one (B) 

with resting whole cells of Lactobacillus kefiri or enzyme-coupled system (LbADH:  Alcohol 

dehydrogenase from Lactobacillus brevis, FDH:  Formate dehydrogenase from Pseudomonas sp.). 

 
 
In the whole cell system, there was a decrease in biocatalyst consumption with whole 
cell immobilisation (Figure 6.2).  A repetitive batch setup with immobilised 
Lactobacillus kefiri yielded the lowest biocatalyst consumption, with a 73-fold 
decrease as compared to a non-immobilised batch.  Besides whole cell 
immobilisation, the type of reactor setup also affected the biocatalyst consumption of 
the process.  Using a repetitive batch or a plug flow reactor as opposed to a batch 
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reduced the biocatalyst consumption regardless of immobilisation.  A 5.4 and 1.7-fold 
reduction in biocatalyst consumption were observed when a repetitive batch and plug 
flow reactor setup were used respectively in place of a batch.  When enzymes were 
used as biocatalyst, the biocatalyst consumption in a batch run was 47 and 3.4-fold 
lower than that of non-immobilised and immobilised cells respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.  Comparison of biocatalyst consumption with respect to whole cell immobilisation, 

reactor setup and the use of enzymes.  The amount of biocatalyst (in the case of whole cells) 

refers to the wet biomass. 

 
 
In the whole cell system, there was a decrease in space-time yield (STY) with whole 
cell immobilisation (Figure 6.3).  However, the space-time yield recovered rather well 
with a continuous setup for immobilised cells.  With a continuous operation, there 
was a 6.7-fold increase in space-time yield for the immobilised cells as compared to a 
batch.  When enzymes were used as biocatalyst, the space-time yield obtained was 
higher than that of whole cells. 
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Figure 6.3.  Comparison of space-time yield (STY) with respect to whole cell immobilisation, 

reactor setup and the use of enzymes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4.  Comparison of deactivation constant with respect to whole cell immobilisation and 

reactor setup. 
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One of the main advantages of whole cell immobilisation is the increased stability of 
the biocatalyst.  This is substantiated in Figure 6.4.  It was observed that the 
deactivation constant was 12 times lower with cell immobilisation.  Even with a 
continuous operation in a plug flow reactor setup over a period of time, the 
deactivation constant remained low. 
 
 
6.1.2 Economics 
 
 
The economic viability of the processes is summarised in Figure 6.5 based on the 
production cost (Eq. 6.1).  In general, the cost of producing (5R)-hydroxyhexane-2-
one (B) with whole cells is more than 7.3-fold lower than with enzymes.  When whole 
cells were used as biocatalyst, the cost of production decreased by at least 5-fold with 
more efficient use of the biocatalyst in repetitive batches and plug flow reactor, 
regardless of cell immobilisation.  Comparing to the sale price of (5R)-
hydroxyhexane-2-one (B) by Juelich Fine Chemicals GmbH, the use of whole cells 
rather than enzymes would be more favourable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5.  Comparison of production cost with respect to whole cell immobilisation, reactor 

setup, the use of enzymes and sale price of the process by Juelich Fine Chemicals GmbH (JFC).  

Other prices are obtained from Fluka (2005/2006), bitop (2004) and EuroFerm (2004) catalogues. 

 
 

(eq. 6.1) Production cost = Costs of (Biocat + Cofactors + Immobilisation matrix  

    + Substrate) 
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A breakdown of the production cost is shown in Figure 6.6.  The major contribution 
of the production cost could be attributed to the price of the immobilisation matrix 
sodium cellulose sulphate (NaCS) and/or biocatalyst (enzymes or cells).  The price of 
the substrate (2,5)-hexanedione (A) and/or cofactor NADP+ remained negligible in all 
cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6.  Comparison of production cost with respect to costs of biocatalyst, immobilisation 

matrix, substrate and cofactors.  Prices are obtained from Fluka (2005/2006), bitop (2004) and 

EuroFerm (2004) catalogues. 

 
 
6.1.3 Problems and outlook 
 
 
In the whole cell system, the mass balance was incomplete and attempts to investigate 
the causes gave negative results (refer to Chapter 3.3.1).  Therefore, the fate of the 
residual chemicals remained unknown, and is postulated to be metabolised by the 
cells. 
 
Through the investigation of different encapsulation matrices, the most suitable 
matrix was found to be sodium cellulose sulphate (NaCS) (refer to Chapter 3.4).  As 
this matrix was successfully used for the immobilisation of hybridomas and insect cell 
cultures (Huebner and Buchholz, 1999), it was expected to be gentle enough for the 
immobilisation of bacteria without substantial loss of activity, yet mechanically 
strong.  Hence, it was expected to give a rather high immobilisation yield (40 %) as 
compared to the other matrices.  To date, this is the first application of lactic acid 
bacteria immobilised with sodium cellulose sulphate (NaCS).  Contrary to the 
numerous applications of alginate and carrageenan immobilisation for lactic acid 
bacteria, the NaCS immobilisates did not face some of the general difficulties (e.g.  
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weakening of the matrix structure in the presence of chelating agents) associated with 
the other matrices.  Therefore, the NaCS matrix may also be useful for a wider range 
of applications. 
 
From the results of the batch runs with the NaCS-immobilised cells, it was found that 
the behaviour of the NaCS immobilisates was slightly different from the non-
immobilised L. kefiri (Haberland et al., 2002a) in view of the selectivity and pH range 
of the bioreduction process.  These results substantiate the common known fact that 
immobilisation may affect the behaviour of the native cells (Hahn-Haegerdal, 1990).  
Despite the lower activity of the NaCS immobilisates as compared to the non-
immobilised L. kefiri, the biocatalyst consumption of the batch process with NaCS 
immobilisates was 14 times lower (see Chapter 6.2.1). 
 
In the continuous synthesis of (5R)-hydroxyhexane-2-one (B), the use of one plug 
flow column without pH control was sufficient to prevent further reduction of (5R)-
hydroxyhexane-2-one (B) to (2R,5R)-hexanediol (C) (refer to Chapter 3.4.4). 
 
In order to reduce the biocatalyst consumption and selectivity of the process, the 
following could be performed: 
 

• Lower residence time (less than 0.8 h), 
• Longer operating time (beyond 6 days) to fully utilise the residual activity of 

the immobilised cells (68 %). 
 
Since the results suggest a plausible toxicity of the substrate (2,5)-hexanedione (A) on 
the cells, future runs could also be done at lower concentrations, with a reduced 
packed column or a faster flow rate through the column. 
 
From Table 6.1, it seemed that both the continuous production of (5R)-
hydroxyhexane-2-one (B) with a plug flow reactor or repetitive batch runs with 
immobilised cells were the better options (based on process parameters and 
economics).  These would be the reactor choices for future production. 
 
 
Table 6.1.  Summary of the different means to produce (5R)-hydroxyhexane-2-one (B).  STY for 

batch and repetitive batch setups refer to the initial rate of production of (5R)-hydroxyhexane-2-

one (B).  N.d.:  Not determined. 

 
System Reactor 

setup 
Biocat 

consumption 
(gbiocat gB

-1) 

kdes 
(% h-1) 

STY 
(gB L

-1 d-1) 
Prod cost 

(EUR 
molB

-1) 
Batch 33.3 n.d. 100 2068.67 Whole cells 

(non-immobilised) Rep. batch 5.9 16.1 23 - 100 385.53 
Batch 2.4 n.d. 13 2710.44 
Rep. batch 0.5 1.3 2 - 13 523.32 

Whole cells 
(immobilised) 

PFR 1.4 2.8 87 1562.03 
Enzymes Batch 0.7 n.d. 125 19665.19 
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In the downstream processing of pure (5R)-hydroxyhexane-2-one (B), it was 
previously suspected that cyclisation of (5R)-hydroxyhexane-2-one (B) to (2,5R)-
dimethyl-tetrahydrofuran-2-ol was thermodynamically favourable.  However, 
attempts to accurately analyse the structure of the chemicals could be distorted by 
physical or chemical treatments prior to analysis.  In addition, attempts to minimise 
the rate of the cyclisation and/or possible photooxidation processes by storage in the 
dark at a low temperature of 4 °C (of up to 1 year) did not stop the change of (5R)-
hydroxyhexane-2-one (B).  The original yellow colour of (5R)-hydroxyhexane-2-one 
(B) had turned a darker shade, and the identity of the new compound(s) is/are 
unknown. 
 
 
6.2 3-Hydroxybutanoate syntheses with whole cells of 

recombinant Escherichia coli versus enzyme-coupled 
system 

 
 
6.2.1 Process parameters and stability 
 
 
Similar to the production of γ-hydroxyketone, the processes yielding (R)-methyl-3-
hydroxybutanoate (MHB) were evaluated (Figure 6.7). 
 
The biocatalyst consumption of the processes with isolated enzymes was much lower 
(up to 58.5 times) than that with the use of whole cells (Figure 6.8).  With the use of 
continuous reactors, the biocatalyst consumption of batch processes reduced by 1.9- 
and 14.7-fold for the case with whole cells and enzymes respectively.  On the other 
hand, the initial rate of production of (R)-methyl-3-hydroxybutanoate (MHB) in batch 
reactors (Eq. 4.8) were 2.3-fold faster when whole cells were employed (Table 6.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7.  Enantioselective reduction of methyl acetoacetate (MAA) to (R)-methyl-3-

hydroxybutanoate (MHB) with resting whole cells of recombinant Escherichia coli or enzyme-

coupled system (LbADH:  Alcohol dehydrogenase from Lactobacillus brevis, FDH:  Formate 

dehydrogenase from Pseudomonas sp.). 
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Figure 6.8.  Comparison of biocatalyst consumption with respect to the use of whole cells or 

enzymes and reactor setup.  The amount of biocatalyst (in the case of whole cells) refers to the 

wet biomass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9.  Comparison of deactivation constant with respect to whole cells or enzymes and 

reactor setup. 

 
 
From Figure 6.9, the rates of deactivation of both whole cells and enzymes were 
rather similar.  Even a change in reactor setup in the case of whole cells did not yield 
any significant differences in the deactivation constant of the biocatalyst. 
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6.2.2 Economics 
 
 
The economic viability of the processes is summarised in Figure 6.10 based on the 
production cost (Eq. 6.1).  In general, the cost of producing (R)-methyl-3-
hydroxybutanoate (MHB) with whole cells was up to 13.9-fold lower than with 
enzymes.  When continuous production was used in place of batch, the production 
cost decreased by 1.9 to 9.2 times in the case of whole cells and enzymes respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10.  Comparison of production cost with respect to the use of whole cells or enzymes and 

reactor setup.  Prices are obtained from Fluka (2005/2006), Roth (2005), Merck (2005/2007) and 

Juelich Fine Chemicals (2004) catalogues. 

 
 
A large proportion of the production cost in whole cells and enzymes processes was 
due to the high cost of biocatalyst (Figure 6.11).  The costs of the substrate methyl 
acetoacetate (MAA) and cofactor NADP+ (except in the continuous operation) 
remained low. 
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Figure 6.11.  Comparison of production cost with respect to costs of biocatalyst, substrate and 

cofactors.  Prices are obtained from Fluka (2005/2006), Roth (2005), Merck (2005/2007) and 

Juelich Fine Chemicals (2004) catalogues. 

 
 
Table 6.2.  Summary of the different means to produce (R)-methyl-3-hydroxybutanoate (MHB).  

STY for batch and repetitive batch setups refer to the initial rate of production of (R)-methyl-3-

hydroxybutanoate (MHB).  N.d.:  Not determined. 

 
System Reactor 

setup 
Biocat 

consumption 
(gbiocat gMHB

-1) 

kdes 
(% h-1) 

STY 
(gMHB L

-1 d-1) 
Prod cost 

(EUR 
molMHB

-1) 
Batch 1.7 n.d. 127 164.81 
Rep. batch 1.1 5.0 75 - 91 97.59 

Whole 
cells 

CSTR 0.9 5.6 16 - 57 87.64 
Batch 0.2 n.d. 57 1705.34 
Rep. batch 0.07 4.6 57 - 72 1355.70 

Enzymes 

CSTR 0.01 n.d. 57 - 113 185.39 
 
 
6.2.3 Problems and outlook 
 
 
In the whole cell system, it seemed that additional amount of oxygen during 
fermentation through better stirring gave lower biocatalytic activity (Refer to Chapter 
5.1.2).  This may be due to the cells devoting more energy for biosynthesis by 
oxidative phosphorylation rather than expressing the plasmids ADH and FDH during 
induction.  Therefore, future fermentation, even on a larger scale, should have reduced 
stirring and possibly dissolved oxygen content to minimise the channelling of energy 
from gene expression to biosynthesis.  A more detailed study of the fermentation and 

Ba
tc
h 
(c
el
ls
)

R
ep
 b
at
ch
 (c
el
ls
)

C
ST
R
 (c
el
ls
)

Ba
tc
h 
(e
nz
ym
es
)

R
ep
 b
at
ch
 (e
nz
ym
es
)

C
ST
R
 (e
nz
ym
es
)

0.00

0.05

0.10

10

20

30

40

50

60

70

80

90

100

 

 

%
 o
f 
p
ro
d
u
c
ti
o
n
 c
o
s
t

Reactor system

93.44 89.42 92.17 15.84 63.47 59.18 

6.56 10.58 7.83 0.05 0.12 0.78 
2.92 

81.19 

3.89 

32.52 

33.02 

7.02 

       
         Substrate (MAA) 
 

         NADP
+ 

 

         FDH 
 

         Rec. E. coli 
 

         LbADH 

 

 

 

 

 



6.  Discussion and Outlook 

97 

induction process is needed to obtain biocatalyst of high activity.  Moreover, prior to 
fermentation, each transformation done to rec. E. coli gave different expression level.  
As a result, every colony from the agar plate gave different activities, and the colony 
with high activity had to be chosen before fermentation to yield more biomass of high 
activity. 
 
The storage of active induced cells was possible up to 3 weeks (see Chapter 5.3).  It is 
known that ectoine aided the stability of extracellular proteins in microorganisms 
living under unfavourable conditions (Knapp et al., 1999).  Therefore, the 
introduction of ectoine in the storage medium could extend the shelf-life of the 
induced biocatalyst beyond 3 weeks. 
 
In continuous production, the major problem was the instability of rec. E. coli (Refer 
to Chapter 5.6).  From repetitive batch studies (see Chapter 5.7.1), it seemed that 
formate, the cosubstrate, was toxic to the cells.  In order to regenerate the intracellular 
cofactors efficiently, another designer bug system could be considered in place of 
oxidation of formate by FDH.  For example, the cells could be transformed with 
glucose dehydrogenase (GDH) where glucose is the cosubstrate (Kataoka et al., 
2003).  Alternatively, the cells could simply be transformed with a single plasmid 
LbADH, where isopropanol is used as the cosubstrate.  Having to express the genes 
for a single plasmid instead of two could result in higher LbADH activity during 
fermentation and induction, as well as increased stability of the cells.  However, 
isopropanol and its corresponding product acetone are known to be toxic or inhibitory 
to the enzymes (Kula and Kragl, 2000).  In addition, it was sometimes not possible to 
obtain 100 % bioreduction of the main substrate due to thermodynamic limitations of 
the isopropanol and acetone system.  However, this could be overcome through means 
of pervaporation or stripping of acetone with air (Stillger et al., 2002, 2004). 
 
One other way to improve the stability of the rec. E. coli could be the use of highly 
enriched minimal medium rather than phosphate buffer as biotransformation medium 
(Refer to Chapter 5.7.3).  Although the deactivation constants for both 
biotransformation media were quite similar, lower biocatalyst consumption was 
obtained for the cells in minimal medium.  The highly enriched minimal medium 
could have affected the metabolism of the cells, thereby enhanced the activity as 
observed in the repetitive batch studies. 
 
In the isolated enzyme-coupled system, the behaviour of LbADH differed depending 
on cofactors (Table 6.3).  Using this information for application in the whole cell 
system, it could not be determined if the bioreduction employed NADPH or NADH 
exclusively.  If NADPH was solely used, the larger Km,MAA value for rec. E. coli as 
compared to that for the LbADH/NADPH system could be explained by the diffusion 
limitation of methyl acetoacetate (MAA) across the cell membrane of rec. E. coli.  
However, there was no inhibition of methyl acetoacetate (MAA) observed in the 
whole cell system, as opposed to the LbADH/NADPH system.  On the other hand, 
there was no substrate inhibition if NADH was solely used.  However, the larger 
Km,MAA value for LbADH/NADH system rather than that for rec. E. coli would 
suggest a faster bioreduction of methyl acetoacetate (MAA) in whole cells rather than 
in the isolated enzyme-coupled system, which did not seem plausible.  Therefore, the 
whole cell bioreduction of methyl acetoacetate (MAA) appeared to involve a 
combination of NADPH and NADH as cofactors. 
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Table 6.3.  Comparison of kinetics constants of NAD(P)H-bounded LbADH and rec. E. coli.  

Note:  Temperatures of LbADH reactions are performed at 20 °C, and 30 °C for rec. E. coli. 

 
Kinetics constants NADPH-bounded 

LbADH 
NADH-bounded 

LbADH 
Rec. E. coli 

vmax,MAA (UMAA mgADH
-1, 

UMHB gwcw
-1) 

32.47 ± 0.05 30.41 35.70 ± 2.80  

Km,MAA (mM) 0.31 ± 0.001 84.27 ± 0.94 12.86 ± 5.00 
Km,NAD(P)H (mM) 0.0038 ± 6×10-5 1.6 - 
Ki,MAA (mM) 163.98 ± 0.53 - - 

 
 
A direct comparison between the vmax,MAA values for the whole cell and enzyme 
systems would not be accurate.  The whole cell system consisted not only of LbADH, 
but also of FDH, whereas the kinetics constants for the bioreduction of methyl 
acetoacetate (MAA) in the enzyme systems were obtained solely from LbADH. 
 
When the enzyme-coupled system was employed in a continuous reactor, the LbADH 
and FDH were much less stable as opposed to results obtained in batch studies (Refer 
to Chapters 4.3.2 and 4.3.6).  In addition, the formation of an unknown white, cloudy 
suspension in the continuous production could not be explained.  It is also not known 
if the suspension had any effects on the enzymes.  Therefore, it seemed that 
conditions in the continuous reactor were very much complex and different due to the 
on-going biotransformation. 
 
 
6.3 Choice of biocatalyst system 
 
 
The activity of wild type L. kefiri and genetically modified E. coli were compared 
with isolated enzymes.  In a batch reactor, with (2,5)-hexanedione (A) as substrate, 
the activity of isolated enzymes was more than 22.0-fold higher than that seen for 
whole cells (Figure 6.12).  The activity of rec. E. coli was 1.6 times higher than that 
seen in the wild type L. kefiri.  Similarly, when methyl acetoacetate (MAA) was used 
as substrate, the activity of isolated enzymes was up to 48.8 times higher than that 
observed for whole cells (Figure 6.13).  Higher activity (4.7-fold) was obtained with 
the use of rec. E. coli as biocatalyst rather than wild type L. kefiri. 
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Figure 6.12.  Comparison of activity of wild type L. kefiri, rec. E. coli and isolated enzyme-

coupled system in a batch reduction of (2,5)-hexanedione (A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13.  Comparison of activity of wild type L. kefiri, rec. E. coli and isolated enzyme-

coupled system in a batch reduction of methyl acetoacetate (MAA). 

 
 
Although higher activities were obtained with enzymes, the higher production cost 
was a main disadvantage for industrial production as compared to processes using 
active whole cells.  Despite lower activities seen in whole cell biotransformations, 
higher activities could be obtained with the genetically modified microorganism 
rather than the wild type strain.  Therefore, a designer bug with high activity using a 
high copy plasmid could be tailored for an industrial process with minimal production 
cost. 
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7 Conclusions 
 
 
Biotransformations with isolated enzyme-coupled system and resting whole cells 
(wild type and genetically modified organisms) were investigated and compared. 
 
In the enzyme-coupled system with alcohol dehydrogenase from Lactobacillus brevis 
(LbADH) and formate dehydrogenase (FDH) from Pseudomonas sp., 
 

♦ Batch reduction of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-2-one 
(B) yielded high initial rate of production of 125 gB L-1 d-1, with 
biocatalyst consumption of 0.7 gbiocat gB

-1 and total turnover number (ttn) 
of 225 molB molNADP

-1. 
 

♦ Reduction of methyl acetoacetate (MAA) to (R)-methyl-3-
hydroxybutanoate (MHB) was performed in batch, repetitive batch and 
continuous setup. 

 
♦ Batch kinetics were investigated and modelled.  LbADH behaved 

differently depending on the cofactor used. 
 

♦ The lowest biocatalyst consumption of 0.01 gbiocat gMHB
-1 and total 

turnover number (ttn) of 329 molMHB molNADP
-1was obtained in a 

continuous setup. 
 

♦ Rapid deactivation of LbADH and FDH in continuous setup was observed. 
 
 
In the whole cell biotransformation of (2,5)-hexanedione (A) to (5R)-hydroxyhexane-
2-one (B) with wild type Lactobacillus kefiri, 
 

♦ Whole cell immobilisation reduced cell activity but increased cell stability 
and reduced biocatalyst consumption. 

 
♦ The best encapsulation matrix was sodium cellulose sulphate (technical 

grade). 
 

♦ Reactions with immobilised cells were carried out in batch, repetitive 
batch and continuous mode with a plug flow reactor. 

 
♦ Lowest biocatalyst consumption (0.5 gwcw gB

-1) was obtained in the 
repetitive batch setup. 

 
♦ High selectivity (95 %) and space-time yield (87 gB L

-1 d-1) were obtained 
in the plug flow reactor setup. 

 
♦ Gram-scale separation of (5R)-hydroxyhexane-2-one (B) by column 

chromatography (1.2 gB) with high ee and purity of more than 99 %. 
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In the whole cell biotransformation of methyl acetoacetate (MAA) to (R)-methyl-3-
hydroxybutanoate (MHB) with genetically modified Escherichia coli, 
 

♦ First known storage of active induced cells in phosphate buffer of up to     
3 weeks. 

 
♦ For complete yield of (R)-methyl-3-hydroxybutanoate (MHB), at least 1.2 

times more formate to methyl acetoacetate (MAA) in molar concentrations 
must be given. 

 
♦ Batch to repetitive batch and continuous reactors were operated. 

 
♦ Lowest biocatalyst consumption (0.9 gwcw gMHB

-1) of ee > 99 % was 
obtained in the continuous setup. 

 
♦ Rapid drop in conversion of MAA in continuous setup, possibly due to 

formate toxicity and leaky cell membrane. 
 
 
In this study, 
 

♦ Isolated enzyme-coupled systems gave low biocatalyst consumption but 
were costly. 

 
♦ Wild type microorganism yielded higher biocatalyst consumption but was 

inexpensive. 
 

♦ Immobilised wild type microorganism drastically improved the space-time 
yield and reduced the biocatalyst consumption of a process. 

 
♦ Genetically modified cells could be designed with high gene expression 

and hence activity to reduce the biocatalyst consumption and cost of a 
process. 
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9 Materials and Methods 
 
 
9.1 Materials 
 
 
9.1.1 Laboratory equipment 
 
 
Agilent Technologies GmbH, 
Waldbronn, Germany 

ChemStation software A.09.01 
GC system 6890 

Beckmann-Coulter GmbH, Krefeld, 
Germany 

Centrifuge AvantiTM J-20 XP 
Polypropylene centrifuge bottles 

Becton-Dickinson, New Jersey, United 
States of America 

Hypodermic needles 
Plastipak disposable syringe (50 mL) 

BEST, Bornheim, Germany Swagelok connectors 
Biorad, Munich, Germany HPLC column:  Aminex HPX-87H 
BIO-TEC Instruments GmbH, Bad 
Friedrichshall, Germany 

PowerWave microplate reader 

Brand GmbH + Co. KG, Wertheim, 
Germany 

PMMA semi-micro cuvettes (1.5 mL) 

Branson Ultrasonics Corporation, United 
States of America 

Sonification Branson W-250 

Buechi Labortechnik, Konstanz, 
Germany 

Rotary evaporator R-111 
Vacuum pump Vac V-513 
Water bath B-191 

Chrompack, EA Middelburg, the 
Netherlands 

GC column:  CP-Chirasil-Dex CB (25 m 
× 0.32 mm ID) 

CTC Analytics AG, Zwingen, 
Switzerland 

Cycle Composer software 1.5.2 
GC Autosampler CombiPAL 

Deutsche Metrohm GmbH + Co., 
Filderstadt, Germany 

Dosimat 665 
Impulsomat 614 
pH meter 632 

Eppendorf, Hamburg, Germany Eppendorfs 
Centrifuge 5415D 
ThermoStat plus 

Fedegari Auroclavi Spa, Italy Autoclave 4507 E 
Forschungszentrum Juelich GmbH, 
Juelich, Germany: 
Central Division of Analytical Chemistry 
(ZCH) 
Glass Workshop 
 
Mechanical Workshop 

 
 
Varian Inova NMR (400 MHz) 
 
Chromatography columns 
Jacketed glass reactors (30 – 500 mL) 
Stacking racks 
Stainless steel enzyme membrane reactor 
(10 mL) 

GeniaLab BioTechnologie – Produkte 
und Dienstleistungen GmbH, 
Braunschweig, Germany 

LentiKats® Printer 
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GFL Fermentation Shaker GFL 3033 
Greiner Bio-One GmbH, Solingen, 
Germany 

Polypropylene centrifuge tubes 
Petridishes 

Haake, Karlsruhe, Germany Water bath 
Hellma, Muelheim, Germany Quartz cuvettes 
IKA Labortechnik, Staufen, Germany Magnetic stirrers and heating plates 
ISMATEC Laboratoriumstechnik GmbH, 
Wertheim-Mondfeld, Germany 

Multichannel peristaltic REGLO Analog 
MS-4/6 pumps 

JASCO, Gross-Umstadt, Germany Borwin software 1.50 
HPLC system: 
Autosampler AS 1550 
Degasser DG 1580-53 
Detector DAD MD 1510 
Mixer LG 1580-62 
Pump PU 1580 

Macherey-Nagel GmbH + Co. KG, 
Dueren, Germany 

ChromFil cellulose acetate acrodisc filter 
(0.2 µm) 
GC columns: 
Permabond Carbowax 20 M (50 m × 0.32 
mm ID) 
Lipodex E (25 m × 0.25 mm ID) 

Mettler Toledo, Giessen, Germany pH electrodes: 
405-DPAS-SC-K8S/150 
InLab® 423 

Millipore GmbH, Schwalbach, Germany Ultrafiltration cell 8010 
Ultrafiltration membrane YM10 (10 kD) 

Pall GmbH, Dreieich, Germany Bacterial air vent (0.2 µm) 
Stainless steel tangential-flow filter 
holder 
Ultrafiltration cassette (300 kD) 

Pharmacia LKB, Freiburg, Germany Double-cylinder dosing pump P500 
Fraction collectors SuperFrac-100 and 
2070 Ultrorac® II 
Peristaltic pump P100 

Polymer Laboratories, Darmstadt, 
Germany 

Evaporative light scattering detector PL-
ELS 1000 

Reichelt Chemie Technik, Heidelberg, 
Germany 

Thomafluid heat-exchanger EPDM 
tubings 
Thomafluid precision microdosing pumps 

Retsch Retsch glass milling apparatus MM2000 
Sartorius AG, Goettingen, Germany Weighing balances 
Scientific Industries, Inc., Bohemia, 
United States of America 

Vortex Genie 2 

Schott AG, Mainz, Germany Fermentation shakeflasks 
Shimadzu Europa GmbH, Duisburg, 
Germany 

Spectrophotometer UV-1601 

Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany  

Atmos®BagTM 

Suba seal red rubber septa 
SIM-Aminco Spectroscopic Instruments, 
Illinois, United States of America 

French press 
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Watson-Marlow GmbH, 
Rommerskirchen, Germany 

Peristaltic pumps 101U/R, 504U 
Pump tubings 

University of Erlangen-Nuremberg, 
Institute of Bioprocess Engineering, 
Erlangen, Germany 

Encapsulation equipment 

VWR International GmbH, Langenfeld, 
Germany 

Cryogenic vials 
Peristaltic pump tubings 
Tubing connectors 

 
 
9.1.2 Chemicals and biological materials 
 
 
Aldrich, Taufkirchen, Germany Ammonium citrate dibasic 

Poly(diallyl-dimethylammonium 
chloride) of low molecular weight 
(100000 – 200000) 
Trifluoroacetic acid anhydride 

Bitop AG, Witten, Germany Lactobacillus kefiri DSM 20587 
Calbiochem, Bad Soden, Germany Bovine serum albumin 
Carl Roth GmbH + Co., Karlsruhe, 
Germany 

Carbenicillin (sodium salt) 
Isopropyl-β-D-thiogalactopyranoside 
(IPTG) 
Kanamycin sulphate 

CP Kelco, Lille Skensved, Denmark κ-carrageenan (GENU®) 
EuroFerm GmbH, Berlin, Germany Sodium cellulose sulphate (NaCS, 

technical grade) 
Fluka, Steinheim, Germany (2,5)-Hexanedione 

(2R,5R)-Hexanediol 
Methyl acetoacetate 
(R)-Methyl-3-hydroxybutanoate 
(S)-Methyl-3-hydroxybutanoate 
Potassium dihydrogen phosphate 
Di-Potassium hydrogen phosphate 
Sodium acetate anhydrous 
Sodium alginate (71238) 
Sodium borohydride 
Sodium dihydrogen phosphate 
Sodium formate 
Sodium hydroxide 
Trifluoroacetic acid 

Forschungszentrum Juelich GmbH, 
Institute of Biotechnology 1, Juelich, 
Germany 

Escherichia coli DH5α 
Escherichia coli BL21 Star (DE 3) 
Formate dehydrogenase (FDH) plasmid 
from Mycobacterium vaccae 
Alcohol dehydrogenase (LbADH) 
plasmid from Lactobacillus brevis 

GeniaLab BioTechnologie GmbH, 
Braunschweig, Germany 

LentiKat® liquid and stabiliser 

Invitrogen, Germany S.O.C. medium 
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Juelich Fine Chemicals GmbH, Juelich, 
Germany 

Alcohol dehydrogenase (LbADH) from 
Lactobacillus brevis 
Formate dehydrogenase (FDH) from 
Pseudomonas sp. 
(5S)-Hydroxyhexane-2-one 
(2S,5S)-Hexanediol 
NAD(P)+ 

NAD(P)H 
Merck KGaA, Darmstadt, Germany Acetic acid 

Agar-agar 
Calcium chloride 
Casein peptone 
Chloroform 
Ethyl acetate 
Glucose 
Isopropanol 
Magnesium sulphate heptahydrate 
Manganese sulphate monohydrate 
Meat extract 
Potassium chloride 
Silica gel 60 (0.040 – 0.063 mm) 
Sodium chloride 
di-Sodium hydrogen phosphate dihydrate 
Tween 80 
Yeast extract granulate 

NovaMatrix, Brakerøya, Norway Chitosan chloride (Protasan UP CL113) 
Qiagen GmbH, Hilden, Germany QIAprep spin miniprep kit 
Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany 

Bradford reagent 

University of Erlangen-Nuremberg, 
Institute of Bioprocess Engineering, 
Erlangen, Germany 

Sodium cellulose sulphate (NaCS, 
medical grade) 

 
 
9.2 Analytical methods 
 
 
9.2.1 Gas chromatography 
 
 

9.2.1.1 System involving γ-hydroxyketone production 
 
 
Identification of (2,5)-hexanedione (A), (5R)-hydroxyhexane-2-one (B), (2R,5R)-
hexanediol (C) and ethanol was performed with Agilent HP-6890 gas chromatograph 
with a Permabond Carbowax 20 M column (50 m × 0.32 mm ID, Macherey-Nagel, 
Dueren, Germany).  The oven was heated at 70 °C for 6 min, with an increase of      
25 °C min-1 till 160 °C, and kept constant at 160 °C for another 19 min.  Hydrogen 
gas (1 bar) was used as a carrier gas with a flame ionisation detector.  50 mM n-
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butanol was used in equivolume with the samples as an internal standard.  The 
retention times as shown in Figure 9.1 were 2.9 min (ethanol), 7.0 min (n-butanol), 
12.0 min (A), 13.7 min (B) and 18.8 min (C). 
 
The compounds were quantified using area integration of the chromatogram peaks 
with the following equations (Eqs. 9.1 – 9.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.1.  Gas chromatogram of ethanol (2.9 min), (2,5)-hexanedione (A) (12.0 min), (5R)-

hydroxyhexane-2-one (B) (13.7 min) and (2R,5R)-hexanediol (C) (18.8 min) with n-butanol            

(7.0 min) as internal standard. 

 
 
To determine the enantiopurity of (5R)-hydroxyhexane-2-one (B), derivatisation of 
the aqueous samples with trifluoroacetic acid anhydride (TFAA) was needed prior to 
analysis.  150 µL aqueous sample was extracted twice with equivolume of 
chloroform.  The organic phase (300 µL) was separated and 300 µL of TFAA was 
added to it.  It was incubated at 70 °C for 30 min, evaporated to dryness before 
dissolving with 300 µL chloroform. 
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The derivatised sample was injected into an Agilent HP-6890 gas chromatograph 
fitted with a CP-Chirasil-Dex CB column (25 m × 0.32 mm ID, Chrompack, EA 
Middelburg, the Netherlands).  The oven was heated and kept constant at 55 °C for        
15 min.  Hydrogen gas (0.6 bar) was used as a carrier gas with a flame ionisation 
detector.  The retention times of 5-hydroxyhexane-2-one were 9.9 min (R-isomer, B) 
and 10.3 min (S-isomer), (2,5)-hexanediol were 7.9 min (S,S-isomer) and 9.0 min 
(R,R-isomer, C) and (2,5)-hexanedione (A) was 11.6 min (Figure 9.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.2.  Gas chromatogram of (2,5)-hexanedione (A) (11.6 min), (5R)-hydroxyhexane-2-one 

(B) (9.9 min), (5S)-hydroxyhexane-2-one (10.3 min), (2R,5R)-hexanediol (C) (9.0 min) and 

(2S,5S)-hexanediol (7.9 min). 

 
 
9.2.1.2 System involving 3-hydroxybutanoate production 
 
 
Identification of methyl acetoacetate (MAA) and (R)-methyl-3-hydroxybutanoate 
(MHB) was performed with Agilent HP-6890 gas chromatograph with a Permabond 
Carbowax 20 M column (50 m × 0.32 mm ID, Macherey-Nagel, Dueren, Germany).  
The oven was heated at 70 °C for 6 min, with an increase of 25 °C min-1 till 160 °C, 
and kept constant at 160 °C for another 3 min.  Hydrogen gas (1.0 bar) was used as a 
carrier gas with a flame ionisation detector.  50 mM n-butanol was used in 
equivolume with the samples as an internal standard.  The retention times as shown in 
Figure 9.3 were 6.9 min (n-butanol), 10.6 min (MAA) and 11.5 min (MHB). 
 
The compounds were quantified using area integration of the chromatogram peaks 
with the following equations (Eqs. 9.5 and 9.6). 
 
 
 

(A) 

(5S)-Hydroxyhexane-2-one (2S,5S)-Hexanediol 

(B) (C) 
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Figure 9.3.  Gas chromatogram of methyl acetoacetate (MAA) (10.6 min) and (R)-methyl-3-

hydroxybutanoate (MHB) (11.5 min) with n-butanol (6.9 min) as internal standard. 

 
 
For the enzyme-coupled system, the samples (100 µL) were extracted with 200 µL 
ethyl acetate (containing 50 mM n-butanol) prior to GC analysis.  The factors in Eqs. 
9.5 and 9.6 were replaced by the values of 243.85 and 138.83 for methyl acetoacetate 
(MAA) and (R)-methyl-3-hydroxybutanoate (MHB) respectively. 
 
The enantiopurity of (R)-methyl-3-hydroxybutanoate (MHB) was determined 
(without prior derivatisation) with an Agilent HP-6890 gas chromatograph fitted with 
a Lipodex E column (25 m × 0.25 mm ID, Macherey-Nagel, Dueren, Germany).  The 
oven was heated and kept constant at 75 °C for 25 min.  Hydrogen gas (0.6 bar) was 
used as a carrier gas with a flame ionisation detector.  The retention times of methyl-
3-hydroxybutanoate were 8.6 min (S-isomer) and 10.8 min (R- isomer, MHB) and 
methyl acetoacetate (MAA) was 17.5 min (Figure 9.4). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.4.  Gas chromatogram of methyl acetoacetate (MAA) (17.5 min), (R)-methyl-3-

hydroxybutanoate (MHB) (10.8 min) and (S)-methyl-3-hydroxybutanoate (8.6 min). 
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9.2.2 High pressure liquid chromatography 
 
 
Identification of cosubstrates (glucose and formate) and metabolites (lactate and 
acetate) was performed with JASCO high pressure liquid chromatograph (HPLC) 
fitted with an Aminex HPX-87H column (30 m × 7.5 mm ID, Biorad, Munich, 
Germany).  The column was heated constantly at 65 °C for 30 min.  Trifluoroacetic 
acid (0.5 % by volume) was used as solvent and the chemicals (formate, lactate and 
acetate) were detected with a diode array detector (λ = 220 nm).  Glucose was 
detected with an evaporative light scattering detector PL-ELS 1000 (Polymer 
Laboratories, Darmstadt, Germany) connected to the HPLC.  Nitrogen (0.7 L min-1,   
5 bar) was used as a carrier gas and the temperature of the nebuliser and evaporator 
were fixed at 90 and 120 °C respectively.  20 µL of sampling volume was used and 
the retention times were 10.8 min (glucose), 14.9 min (lactate), 16.1 min (formate) 
and 17.4 min (acetate) (Figures 9.5 - 9.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.5.  High pressure liquid chromatogram of glucose (10.8 min) detected with an 

evaporative light scattering detector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.6.  High pressure liquid chromatogram of lactate (14.9 min) and acetate (17.4 min) 

detected with a diode array detector. 

Glucose 

Acetate Lactate 
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Figure 9.7.  High pressure liquid chromatogram of formate (16.1 min) detected with a diode 

array detector. 

 
 
The compounds were quantified using area integration with the following equations 
(Eqs. 9.7 – 9.10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.2.3 Nuclear magnetic resonance 
 
 
The purity of (5R)-hydroxyhexane-2-one (B) was investigated with nuclear magnetic 
resonance (NMR) at the Central Division of Analytical Chemistry (ZCH) at 
Forschungszentrum Juelich GmbH, Juelich, Germany.  Using a Varian Inova NMR of 
400 MHz and 2D measurement with CDCl3 as solvent, the below spectra were 
obtained at 25 °C (Figures 9.8 and 9.9). 
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Figure 9.8.  Full spectrum of nuclear magnetic resonance analysis of (5R)-hydroxyhexane-2-one 

(B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.9.  Zoomed spectrum (20 – 70 ppm) of nuclear magnetic resonance analysis of (5R)-

hydroxyhexane-2-one (B). 

 
 
9.2.4 Bradford assay 
 
 
Protein content determination using Bradford assay was performed for isolated 
enzymes Lactobacillus brevis alcohol dehydrogenase (LbADH) and formate 
dehydrogenase from Pseudomonas sp. (FDH).  A calibration curve with bovine serum 
albumin was used as a standard for protein content.  The samples were analysed in a 
96-well plate by a microplate reader (BIO-TEC Instruments GmbH, Bad 
Friedrichshall, Germany) at wavelength of 595 nm at room temperature for 1 min.   
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9.3 Biotransformations methods 
 
 
9.3.1 Genetic work 
 
 
Recombinant plasmids encoding Lactobacillus brevis alcohol dehydrogenase 
(LbADH) and formate dehydrogenase from Mycobacterium vaccae (FDH) were 
performed by the group of Dr. S. Bringer-Meyer (Institute of Biotechnology 1, 
Forschungszentrum Juelich GmbH, Juelich, Germany).  The low copy plasmids, 
pBtacLB-ADH (800 bp, 26.7 kDa, carbenicillin resistance) and pBBR1MCS2fdh 
(1200 bp, 44 kDa, kanamycin resistance) were amplified separately in Escherichia 
coli DH5α (Ernst, 2003).  Figure 9.10 summarises the genetic work performed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.10.  Summary of genetic work on Escherichia coli (www.accessexcellence.org). 

 
 
9.3.1.1 Plasmids amplification 
 
 
Plasmids (1 µL from stock) were individually introduced into a suspension of E. coli 
DH5α (50 µL) in a 1 mL Eppendorf under the following steps (Figure 9.11): 
 

♦ Uptake of plasmids:  Incubation at 4 °C for 20 min, 
♦ Inactivation of nucleases:  Heating at 42 °C for 90 s, 
♦ Further uptake of plasmids:  Incubation at 4 °C for 5 min, 
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4°C, 20 min 42°C, 90 s 

37°C, 35 min 

Nucleases 
inactivated 

Uptake of 
plasmids 

4°C, 5 min 

Uptake of 
plasmids 

+ S.O.C. medium 
(repair of cell 
membrane) 

♦ Repair of cell membrane:  Addition of 400 µL S.O.C. medium with light 
shaking at 37 °C for 35 min, 

♦ Transformed cells stock:  Streak 25 µL of cell suspension on agar plate 
(with corresponding antibiotics) and incubate at 37 °C overnight. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.11.  Amplification of plasmids. 

 
 
9.3.1.2 Plasmids purification 
 
 
Miniprep was done in accordance to the methods given in the QIAprep spin miniprep 
kit (Qiagen GmbH, Hilden, Germany).  Thereby, LbADH and FDH plasmids of high 
purity were obtained.  The plasmids were stored at -20 °C prior to use. 
 
 
9.3.1.3 Transformation of two plasmids 
 
 
LbADH plasmids (2 µL from stock) were introduced into a suspension of E. coli 
BL21 Star (DE3) (100 µL) in a 1 mL Eppendorf.  A stock of transformed cells 
containing LbADH plasmids was made according to the protocol in Chapter 9.3.1.1. 
 
In order to make competent cells containing LbADH plasmids, the following steps 
were performed: 
 

♦ Selection of separate cell colonies from agar plate to shakeflasks (each 
containing 10 mL LB medium), 

♦ Fermentation:  Incubate shakeflasks at 30 °C overnight, 
♦ Add 1 mL of cell suspension to 100 mL LB medium, 2 mL MgSO4 

solution (1 M), 1 mL CaCl2 solution (1 M) and 1 mL KCl solution (1 M), 
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♦ Incubate shakeflasks at 30 °C for a further 3 h, 
♦ At O.D. 0.3 – 0.5, centrifuge cell suspension at 4 °C for 10 min at 3000 

rpm, 
♦ Resuspend cell pellet with 15 mL TFB 1 solution, thereafter stand in ice 

for 20 min, 
♦ Centrifuge cell suspension at 4 °C for 15 min at 3000 rpm, 
♦ Resuspend cell pellet with 2 mL TFB 2 solution. 

 
The introduction of FDH plasmids into E. coli BL21 Star (DE3) containing LbADH 
plasmids were performed similar to the procedure in Chapter 9.3.1.1.  The 
transformed cells were stored at -80 °C prior to use. 
 
 
9.3.2 Fermentation 
 
 
Fermentation of Lactobacillus kefiri DSM 20587 was done on a 2800 L-scale by bitop 
AG (Witten, Germany), according to MRS medium (Table 9.1).  The cells were 
stored at -20 °C. 
 
 
Table 9.1.  MRS medium composition for fermentation of Lactobacillus kefiri DSM 20587. 

 
Medium composition Concentration (g L-1) 
Glucose·H2O 22 
Casein peptone 10 
Meat extract 10 
Yeast extract 5 
Sodium acetate 5 
K2HPO4 2 
Ammonium citrate 2 
Tween 80 1 
MgSO4·7H2O 0.2 
MnSO4·H2O 0.05 

 
 
Fermentation of Escherichia coli BL21 Star (DE3) was carried out with standard LB 
medium, with carbenicillin and kanamycin added to select cells containing the ADH 
and FDH plasmids respectively (Table 9.2).  The fermentation and induction protocol 
is summarised in Figure 9.12. 
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Agar plate Fermentation (100 ml 
shakeflask) 

Feedstock (50% v/v 
glycerol), -80 °C 

4 h, 37 °C, 150 rpm 
2 h, 30 °C, 150 rpm 

7 h, 27 °C, 150 rpm 

Fermentation (1L shakeflask) Induction (Enzyme expression) 

+ IPTG 

Table 9.2.  Luria-Bertani (LB) medium composition for fermentation of Escherichia coli BL21 

Star (DE3). 

 
Medium composition Concentration (g L-1) 
Glucose·H2O 4 
Casein peptone 10 
Yeast extract 5 
NaCl 10 
Carbenicillin 0.05 
Kanamycin 0.05 

 
 
Cell colonies from an agar plate were selected and a large pool of feedstock 
containing cells with similar activities was stored in 50 % v/v glycerol at –80 °C.  
Fermentation was proceeded in a 1 L shakeflask (containing 200 mL LB medium) at 
37 °C for 4 h, followed by a cooling step to 30 °C for another 2 h.  The cells reached 
the early exponential phase of growth (around O.D. 1.2) and induction with isopropyl-
β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.7 mM was initiated 
for a period of 7 h at 27 °C.  The cells were then harvested by centrifugation, washed 
twice with 50 mM potassium phosphate buffer (pH 6), and stored in 50 mM 
potassium phosphate buffer (pH 6) at 4 °C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.12.  Summary of fermentation and induction protocol for rec. E. coli. 
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9.3.3 Whole cell immobilisation 
 
 
9.3.3.1 Treatment of cells 
 
 
Prior to immobilisation of Lactobacillus kefiri, cleaning of the cells was performed.  
The frozen cells were thawed, resuspended in 50 mM phosphate buffer (pH 6) and 
centrifuged at 5000 rpm for 15 min at 4 °C.  The supernatant was discarded and the 
cell pellet was washed once more with 50 mM phosphate buffer and centrifuged.  For 
cell immobilisation, the cell pellet was further suspended in 50 mM phosphate buffer 
(containing 2 mM Mg2+ and 0.7 mM Mn2+ salts) and added as a cell slurry               
(200 % wwcw/v) into the immobilisation matrices.  One exception is the cell 
immobilisation with κ-carrageenan which also involved the suspension of the cell 
pellet in 0.9 % w/v NaCl (0.15 M) solution instead of Mg2+/Mn2+-containing 
phosphate buffer.  All cell immobilisation techniques were performed with 10 % wet 
biomass loading of L. kefiri. 
 
 
9.3.3.2 Immobilisation equipment 
 
 
Polyvinyl alcohol immobilisates (LentiKats®) were made with a LentiKats® Printer 
(GeniaLab BioTechnologie GmbH, Braunschweig, Germany) while the other 
immobilisates were made with an encapsulation apparatus loaned from the Institute of 
Bioprocess Engineering, University of Erlangen, Erlangen-Nuremberg, Germany. 
 
 
9.3.3.3 Polyvinyl alcohol matrix 
 
 
Polyvinyl alcohol polymer (10 % w/v) was heated up to 95 °C until a colourless gel 
was obtained.  The melt was then cooled to 40 °C and the cell slurry was introduced 
to the matrix with stirring until well mixed.  Polyvinyl alcohol immobilisates 
(LentiKats®) were made with a LentiKats® Printer, dried (up to 72 % w/w) in argon 
atmosphere and rehydrated in a stabiliser solution in accordance to the instructions 
from GeniaLab GmbH (www.geniaLab.de/download/tt-english.pdf).  The LentiKats® 
were then washed with distilled water and 50 mM phosphate buffer, pH 6, before 
storing at 4 °C in 50 mM phosphate buffer, pH 6. 
 
 
9.3.3.4 Alginate matrices 
 
 
Sodium alginate powder was dissolved in distilled water to form an alginate 
concentration of 2 % w/v.  It was then heated to 70 °C and stirred for 2 h until total 
dissolution of the alginate, giving a light brown clear liquid.  The alginate liquid was 
cooled to 30 °C with stirring before the cell slurry was introduced.  The alginate 
liquid (containing cells) were passed through the encapsulation apparatus and 
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extruded into a solution of NaCl (0.2 M) and CaCl2 (0.05 M) with stirring.  The 
alginate beads (2 – 3 mm diameter) remained in the stirred NaCl/CaCl2 solution for   
45 min to harden.  The alginate beads were then stored in the NaCl/CaCl2 solution at 
4 °C. 
 
To prepare alginate-chitosan immobilisates, additional steps were required.  Chitosan 
chloride solution (0.3 g L-1) was made by dissolving chitosan chloride in 0.02 M 
sodium acetate/acetic acid buffer (pH 5) containing 0.3 M CaCl2.  The alginate beads 
were first formed and hardened as described above before adding the beads to the 
chitosan chloride solution.  The chitosan-coated alginate beads (2 – 3 mm diameter) 
remained stirred in the chitosan chloride solution for 2 h, then washed with 0.02 M 
sodium acetate/acetic acid buffer, pH 5, before storing in NaCl/CaCl2 solution (as 
above) at 4 °C. 
 
 
9.3.3.5 κ-Carrageenan matrices 
 
 
κ-Carrageenan granules were partially dissolved in distilled water at 70 °C for 1 h to 
form a carrageenan concentration of 2 % w/v.  It was then further heated to 90 °C and 
stirred for 15 min until total dissolution of the carrageenan, giving a light brown clear 
liquid.  The carrageenan liquid was cooled to 45 °C with stirring before the cell slurry 
was introduced.  Two types of cell slurries were used, one consisting of Mg2+/Mn2+-
containing phosphate buffer (2 mM Mg2+, 0.7 mM Mn2+, 50 mM phosphate buffer, 
pH 6) and the other consisting of 0.9 % w/v NaCl (0.15 M).  The carrageenan liquid 
(containing cells) were passed through the encapsulation apparatus and extruded into 
a solution of KCl (0.3 M) with stirring.  The carrageenan strands (2 mm thickness) 
remained in the stirred KCl solution for 2 h to harden.  The carrageenan strands were 
then washed with and stored in 50 mM phosphate buffer (pH 6) at 4 °C. 
 
 
9.3.3.6 Sodium cellulose sulphate matrix (NaCS) 
 
 
Sodium cellulose sulphate (NaCS) strands were dissolved in 0.9 % w/v NaCl solution 
(0.15 M) overnight with stirring, forming a clear colourless liquid of 2.5 % w/v NaCS 
concentration.  Poly(diallyl-dimethylammonium chloride) solution (PDADMAC) 
containing 2.2 % v/v PDADMAC and 0.9 % w/v NaCl (0.15 M) was used as 
hardening bath.  The cell slurry was introduced into the NaCS liquid, passed through 
the encapsulation apparatus and extruded into a stirred solution of PDADMAC       
(2.2 % v/v).  The NaCS beads (2 – 3 mm diameter) remained in the stirred 
PDADMAC solution for 15 min to harden.  They were then washed with 0.9 % w/v 
NaCl solution (0.15 M) thrice before storage in 50 mM phosphate buffer (pH 6) at     
4 °C. 
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9.3.4 Reaction techniques for Lactobacillus kefiri 
 
 
9.3.4.1 Batch runs 
 
 
All batch reactions were performed at 30 °C with 10 % w/v biocatalyst (equivalent to 
10 % w/v wet cells in non-immobilised and 1 % w/v wet cells in immobilised batches 
respectively).  The biocatalyst was suspended with the stock solution and incubated in 
the reactor for 30 min.  Flushing of the reactor with argon or helium was carried out to 
remove excess traces of oxygen.  The batch reaction was started by the addition of       
50 mM (2,5)-hexanedione (A), and the pH was controlled by an autotitrator (Dosimat 
665, Metrohm, Herisau, Switzerland) dispensing 4 M NaOH.  Samples (500 µL) were 
withdrawn and centrifuged at 13200 rpm, 1 min.  The cell pellets (for non-
immobilised cells) were discarded and the supernatants were analysed. 
 
Stock solution: 
 
50 mM Potassium phosphate buffer (pH 6)  50 mL 
containing:     2 mM MgSO4 
   0.7 mM MnSO4 
  400 mM Glucose 
 
 
9.3.4.2 Repetitive batch runs 
 
 
Repetitive batch runs were performed similar to batch runs, with centrifugation (non-
immobilised cells) and filtration (immobilised cells) steps in between of batches to 
separate the biocatalyst from the reaction solution. 
 
 
9.3.4.3 Plug flow reactor (PFR) 
 
 
The plug flow reactor (PFR) was constructed from the barrel of a 50 mL Plastipak 
disposable syringe (Becton-Dickinson, New Jersey, United States of America).  At the 
base of the barrel lined a cellulose acetate filter paper (0.45 µm) as packing tray.  
NaCS immobilisates (technical grade) were tightly packed into the barrel before 
placing a similar cellulose acetate filter paper (0.45 µm) on the top of the packed bed 
as liquid distributor.  Attached to the Luer-lock tip of the syringe is an acrodisc filter 
(0.2 µm), while the mouth of the barrel with stoppered with a suba seal septum 
(Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany).  A hypodermic needle           
(0.9 mm) was pierced through the septum as vent, with its tip in the headspace of the 
syringe barrel and not in contact with the liquid distributor and NaCS immobilisates. 
 
A PFR cascade was set up with pH control (4 M NaOH) in a small reservoir (1 mL) in 
between of the columns.  Different flow rates of feed were applied in a one-pass 
operating mode (without recycle) through the PFR cascade at 31 °C.  The pH values 



9.  Materials and Methods 

130 

of the output from the PFR were measured sporadically during long residence times 
(or low flow rates), thereby keeping a minimum pH value of 5 with a maximum 
allowable operating residence time of 3.3 h. 
 
Feed: 
 
50 mM Potassium phosphate buffer (pH 7)   1 L 
containing:     2 mM MgSO4 
   0.7 mM MnSO4 
    50 mM (2,5)-Hexanedione (A) 

400 mM Glucose 
 
 
9.3.5 Reaction techniques for enzymes 
 
 
9.3.5.1 Activity assay (pH) 
 
 
Determination of activity of LbADH was performed in a 1.5 mL cuvette (Brand 
GmbH, Wertheim, Germany) and measured spectrophotometrically (λ = 340 nm) at 
20 °C for 60 s.  The reaction was started by the addition of LbADH to the reaction 
mixture. 
 
50 mM Potassium phosphate buffer   970 µL 
containing:   2 mM MgSO4 
  40 mM Methyl acetoacetate (MAA) 
10 mM NADPH      20 µL 
LbADH       10 µL 
(12.6 mg L-1 in cuvette) 
 
Determination of activity of FDH was performed at 20 °C in a similar manner as 
above.  The reaction was started by the addition of FDH to the reaction mixture. 
 
50 mM Potassium phosphate buffer   970 µL 
containing: 240 mM Sodium formate 
10 mM NADP+      20 µL 
FDH        10 µL 
(5.6 mg L-1 in cuvette) 
 
 
9.3.5.2 Activity assay (temperature) 
 
 
Determination of activity of LbADH was performed in a 1.5 mL cuvette (Brand 
GmbH, Wertheim, Germany) and measured spectrophotometrically (λ = 340 nm) for 
60 s.  The reaction was started by the addition of LbADH to the reaction mixture. 
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50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing:   2 mM MgSO4 
  40 mM Methyl acetoacetate (MAA) 
10 mM NADPH      20 µL 
LbADH       10 µL 
(12.6 mg L-1 in cuvette) 
 
Determination of activity of FDH was performed in a similar manner as above.  The 
reaction was started by the addition of FDH to the reaction mixture. 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing: 240 mM Sodium formate 
10 mM NADP+      20 µL 
FDH        10 µL 
(5.6 mg L-1 in cuvette) 
 
 
9.3.5.3 Stability of isolated enzymes 
 
 
Determination of activity of LbADH over time was performed in a 1.5 mL cuvette 
(Brand GmbH, Wertheim, Germany) and measured spectrophotometrically                    
(λ = 340 nm) for 60 s.  The reaction was started by the addition of LbADH to the 
reaction mixture. 
 
In the absence of Mg2+ salts, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing: 11 mM Methyl acetoacetate (MAA) 
10 mM NADPH      20 µL 
LbADH       10 µL 
(6.7 mg L-1 in cuvette) 
 
In the presence of Mg2+ salts, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing:   2 mM MgSO4 
    40 mM Methyl acetoacetate (MAA) 
10 mM NADPH      20 µL 
LbADH       10 µL 
(3.3 mg L-1 in cuvette) 
 
Determination of activity of FDH over time was performed in a similar manner as 
above.  The reaction was started by the addition of FDH to the reaction mixture. 
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In the absence of Mg2+ salts, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing: 240 mM Sodium formate 
10 mM NADP+      20 µL 
FDH        10 µL 
(5.6 mg L-1 in cuvette) 
 
In the presence of Mg2+ salts, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing:     2 mM MgSO4 
   200 mM Sodium formate 
10 mM NADP+      20 µL 
FDH        10 µL 
(5.6 mg L-1 in cuvette) 
 
 
9.3.5.4 Stability of cofactors 
 
 
Determination of stability of NADP+ over time was performed in a 1.5 mL cuvette 
(Brand GmbH, Wertheim, Germany) and the extinction values were measured 
spectrophotometrically (λ = 340 nm).  The initial extinction value was measured with 
the addition of FDH to the reaction mixture. 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing: 240 mM Sodium formate 
10 mM NADP+      20 µL 
FDH        10 µL 
(5.6 mg L-1 in cuvette) 
 
The final extinction value was obtained when there was no longer a change in the 
extinction value.  The difference between the final and initial extinction values 
correlated to the concentration of active NADP+ present in the reaction mixture. 
 
Determination of stability of NADPH over time was performed in a similar manner as 
above.  The initial extinction value was measured with the addition of ADH to the 
reaction mixture. 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing: 11 mM Methyl acetoacetate (MAA) 
10 mM NADPH      20 µL 
LbADH       10 µL 
(6.7 mg L-1 in cuvette) 
 
The final extinction value was obtained when there was no longer a change in the 
extinction value.  The difference between the initial and final extinction values 
correlated to the concentration of active NADPH present in the reaction mixture. 
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9.3.5.5 Batch kinetics of isolated enzymes 
 
 
Determination of batch kinetics of LbADH was performed in a 1.5 mL cuvette (Brand 
GmbH, Wertheim, Germany) and measured spectrophotometrically (λ = 340 nm) at 
20 °C for 60 s.  The reaction was started by the addition of LbADH to the reaction 
mixture. 
 
For the NADH-bounded LbADH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    970 µL 
containing:       2 mM MgSO4 
        Methyl acetoacetate (MAA) 
        ((R)-methyl-3-hydroxybutanoate (MHB)) 
        (NAD+) 
80 mM NADH        20 µL 
LbADH         10 µL 
(0.126 mg L-1 in cuvette) 
 
For the NADPH-bounded LbADH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    970 µL 
containing:       2 mM MgSO4 
        Methyl acetoacetate (MAA) 
       ((R)-methyl-3-hydroxybutanoate (MHB)) 
       (NAD+) 
10 mM NADPH        20 µL 
LbADH         10 µL 
(0.126 mg L-1 in cuvette) 
 
Determination of batch kinetics of FDH was performed in a similar manner as above.  
The reaction was started by the addition of FDH to the reaction mixture. 
 
50 mM Potassium phosphate buffer (pH 6)  970 µL 
containing:  Sodium formate 
         (NADPH) 
10 mM NADP+      20 µL 
FDH        10 µL 
(8.7 mg L-1 in cuvette) 
 
 
9.3.5.6 Enzyme-coupled batch run 
 
 
The batch was performed at 20 °C in a 2.0 mL Eppendorf (Eppendorf, Hamburg, 
Germany) and samples were analysed by gas chromatography.  Prior to analysis, the 
samples (100 µL) were extracted with ethyl acetate (200 µL) containing 50 mM n-
butanol.  The batch was started by the addition of LbADH and FDH to the reaction 
mixture. 
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50 mM Potassium phosphate buffer (pH 6)  1462.5 µL 
containing:   40 mM Methyl acetoacetate (MAA) 
  100 mM Sodium formate 
      2 mM MgSO4 
   0.2 mM NADP+ 
LbADH              3 µL 
(0.025 g L-1 in Eppendorf) 
FDH          34.5 µL 
(1.0 g L-1 in Eppendorf) 
 
 
9.3.5.7 Enzyme-coupled repetitive batch run 
 
 
The repetitive batches were performed at 20 °C in a 10 mL ultrafiltration cell 
(Amicon Model 8010, Millipore GmbH, Schwalbach, Germany) fitted with an 
ultrafiltration YM-10 membrane (10 kD cut-off).  The membrane was washed with       
1 g L-1 bovine serum albumin solution before use.  The enzymes LbADH (24 µL,        
0.03 g L-1 in reactor) and FDH (274 µL, 1.2 g L-1 in reactor) were added in the first 
batch, and retained by the membrane for subsequent batches.  A stock solution was 
used for the repetitive batches and fresh amount of NADP+ was added to each 
repetitive batch.  Filtration was done at 5 bar in between of batches, and each 
repetitive batch was started by the addition of stock solution and NADP+ to the 
reaction mixture. 
 
Stock solution: 
 
50 mM Potassium phosphate buffer (pH 6)           10 mL 
containing:   40 mM Methyl acetoacetate (MAA) 
  100 mM Sodium formate 
      2 mM MgSO4 
 
Amount of fresh cofactor: 
0.2 mM NADP+           1.57 mg 
 
Samples were taken throughout the batches for chemical and activity analyses.  Prior 
to chemical analysis by gas chromatography, the samples (100 µL) were extracted 
with ethyl acetate (200 µL) containing 50 mM n-butanol.  Activity measurements of 
LbADH and FDH were carried out in 1.5 mL cuvettes (Brand GmbH, Wertheim, 
Germany) and measured spectrophotometrically (λ = 340 nm) at 20 °C for 60 s.  The 
activity measurement was started by the addition of 10 µL sample from the reactor to 
the cuvette. 
 
For activity measurement of LbADH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    930 µL 
containing:  2 mM MgSO4 
1 M Methyl acetoacetate (MAA)       40 µL 
10 mM NADPH         20 µL 
Batch sample          10 µL 
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For activity measurement of FDH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    770 µL 
containing:  2 mM MgSO4 
1 M Sodium formate       200 µL 
10 mM NADP+         20 µL 
Batch sample          10 µL 
 
 
9.3.5.8 Enzyme-coupled continuous run 
 
 
The continuous run was performed at 20 °C in a 10 mL stainless steel enzyme 
membrane reactor (Forschungszentrum Juelich GmbH, Juelich, Germany) fitted with 
a 10 kD cut-off ultrafiltration YM-10 membrane (Amicon GmbH, Witten, Germany) .  
The membrane was washed with 1 g L-1 bovine serum albumin solution before use.  
The enzymes LbADH (60 µL, 0.075 g L-1 in reactor) and FDH (680 µL, 3.0 g L-1 in 
reactor) were added in reactor, and retained by the membrane throughout the run.  A 
stock solution was used for the feed and kept cool at 4 °C.  Fresh amount of NADP+ 
was added daily to the existing stock solution.  Prior to entry in the reactor, the feed 
was heated to 20 °C and passed through a sterile filter (0.1 µm). 
 
Stock solution: 
 
50 mM Potassium phosphate buffer (pH 6)           1 L 
containing:   40 mM Methyl acetoacetate (MAA) 
  100 mM Sodium formate 
      2 mM MgSO4 
 
Amount of fresh cofactor: 
0.2 mM NADP+         15.7 mg/100 mL stock solution 
 
Samples were taken from the continuous run for chemical (from outlet of reactor) and 
activity (from reactor) analyses.  Gas chromatography was used for the chemical 
analysis while activity measurements of LbADH and FDH were carried out in 1.5 mL 
cuvettes (Brand GmbH, Wertheim, Germany) and measured spectrophotometrically 
(λ = 340 nm) at 20 °C for 60 s.  The activity measurement was started by the addition 
of 10 µL sample from the reactor to the cuvette. 
 
For activity measurement of LbADH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    930 µL 
containing:  2 mM MgSO4 
1 M Methyl acetoacetate (MAA)       40 µL 
10 mM NADPH         20 µL 
Reactor sample         10 µL 
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For activity measurement of FDH, the reaction mixture was: 
 
50 mM Potassium phosphate buffer (pH 6)    770 µL 
containing:  2 mM MgSO4 
1 M Sodium formate       200 µL 
10 mM NADP+         20 µL 
Reactor sample         10 µL 
 
 
9.3.6 Reaction techniques for recombinant Escherichia coli 
 
 
9.3.6.1 Batch run 
 
 
All batch reactions were performed at 30 °C with 2 % w/v biocatalyst.  The 
biocatalyst was suspended with the stock solution given below.  The batch reaction 
was started by the addition of 100 mM methyl acetoacetate (MAA) and the pH was 
controlled by an autotitrator (Dosimat 665, Metrohm, Herisau, Switzerland) 
dispensing 5 M HCl.  Samples (500 µL) were withdrawn and centrifuged at                
13200 rpm, 1 min.  The cell pellets were discarded and the supernatants were 
analysed. 
 
Stock solution: 
 
50 mM Potassium phosphate buffer (pH 6)  36.5 mL 
containing:     2 mM MgSO4 
  120 mM Sodium formate (ratio of MAA:formate = 1:1.2) 
 
 
9.3.6.2 Repetitive batch runs 
 
 
Repetitive batch runs were performed similarly to batch runs, with 1 or 2 % w/v 
biocatalyst loading, but with the addition of 40 mM methyl acetoacetate (MAA).  
Centrifugation (5000 rpm, 4 °C, 5 min) was employed in between of batches to 
separate the biocatalyst from the reaction solution. 
 
 
9.3.6.3 Continuous run (CSTR) 
 
 
The continuous run was carried out in a 250 mL jacketed glass reactor 
(Forschungszentrum Juelich GmbH, Juelich, Germany) with 3 % w/v biomass 
loading.  Cell recycle was made possible through a tangential flow ultrafiltration 
membrane of 300 kD cut-off (Pall GmbH, Dreieich, Germany).  pH control was 
achieved with 5 M HCl and temperature was controlled with a water bath at 30 °C.  
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The continuous run was initiated by the start of a peristaltic pump directing the feed 
into the reactor.  The operating residence time was set at 1 h. 
 
Feed: 
 
50 mM Potassium phosphate buffer (pH 6)   5 L 
containing:      2 mM MgSO4 
     30 mM Methyl acetoacetate (MAA) 

62.5 mM Sodium formate 
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10 Appendix 
 
 
The following model (MicroMath® Scientist® for WindowsTM, Version 2.0) was used 
for the enzyme-coupled batch reaction in Chapter 4.  The kinetics constants of each 
system (NADH-dependent and NADPH-dependent LbADH and NADP-dependent 
FDH) were derived individually and compiled together.  Kinetics constants for 
NAD+-dependent FDH were obtained from Wandrey (2002). 
 
 
//MicroMath Scientist ADH coupled batch kinetics (NADH vs NADPH) with enzymes/cofactors 
deactivation 
//xxxxP refers to reaction rate for NADPH-dependent ADH reduction 
//xxx refers to reaction rate for NADH-dependent ADH reduction 
IndVars: t 
DepVars: MAA, MHB, MAAP,MHBP,NADH,NADPH 
DepVars: ADHP,ADH,Vadh,Vadhp 
DepVars: FORM,FORMP,NAD,NADP 
DepVars: FDHP, FDH, Vfdh, Vfdhp 
Params: VMmaa,VMmaap,KMmaa,KMmaap,KMnadh,KMnadph, KImaap 
Params: VMform,VMformp,KMform,KMformp,KMnadp,KMnad,KInadph,KInadh 
// 
//Equations 
RP=VMmaap*(MAAP/(KMmaap+MAAP+(MAAP*MAAP)/KImaap))*NADPH/(KMnadph+NADP
H) 
R=VMmaa*(MAA/(KMmaa+MAA))*NADH/(KMnadh+NADH) 
RFP=VMformp*(FORMP/(KMformp+FORMP))*NADP/(KMnadp*(1+NADPH/KInadph)+NADP) 
RF=VMform*(FORM/(KMform+FORM))*NAD/(KMnad*(1+NADH/KInadh)+NAD) 
Vadh=ADH*R 
Vadhp=ADHP*RP 
Vfdh=FDH*RF 
Vfdhp=FDHP*RFP 
MAA'=-Vadh 
MHB'=Vadh 
MAAP'=-Vadhp 
MHBP'=Vadhp 
FORM'=-Vfdh 
FORMP'=-Vfdhp 
NADH'=-Vadh+Vfdh-NADH*0.12/60 
NADPH'=-Vadhp+Vfdhp-NADPH*0.12/60 
NAD'=Vadh-Vfdh 
NADP'=Vadhp-Vfdhp 
ADH'=-ADH*0.03/60 
ADHP'=-ADHP*0.03/60 
//ADH deactivates at 3% per h 
//ADHP deactivates at same rate as ADH (3% per h) 
//NADPH deactivates at 12% per h 
//Assume NADH deactivates at same rate as NADPH (12% per h) 
// 
//Initial conditions (t in min, conc in mM) 
t=0 
MAA=40 
MAAP=40 
MHB=0 
MHBP=0 
FORM=100 
FORMP=100 
NAD=0.2 
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NADP=0.2 
NADH=0 
NADPH=0 
// 
//Enzyme conc (g/L) 
ADH=25E-03 
ADHP=25E-03 
FDH=100E-02 
FDHP=100E-02 
// 
//Parameters (mM) 
VMmaap=32.4659 
KMmaap=0.30599 
KImaap=163.98362 
KMnadph=0.00384 
VMmaa=30.41 
KMmaa=84.27 
KMnadh=1.6 
VMformp=0.69961 
KMformp=20.895 
KMnadp=0.03874 
KInadph=0.01367 
VMform=0.62 
KMform=4.99 
KMnad=0.042 
KInadh=0.022 
// 
*** 
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