
Theory and Practice of VLSI Placement

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Ulrich Brenner

aus Siegburg

im September 2005

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.

Erscheinungsjahr: 2006

Tag der Prüfung: 31. 3. 2006

Erstgutachter: Prof. Dr. B. Korte

Zweitgutachter: Prof. Dr. J. Vygen

Contents

1 Introduction 5

2 Preliminaries 9

2.1 Basic Definitions and Results . 9

2.2 The Placement Problem . 10

2.3 Net Models . 13

2.4 Linear and Quadratic Netlength . 15

2.5 Complexity of the Placement Problem . 17

2.6 Global and Detailed Placement . 18

2.7 The Testsuite . 18

3 Previous Global Placement Algorithms 21

3.1 Simulated Annealing . 21

3.2 Minimum-Cut Placers . 22

3.3 Pure Analytic Placers . 23

3.4 Analytic Placer with Top-Down Partitioning 25

3.5 BonnPlace . 26

4 A Faster Transportation Algorithm 33

4.1 Transportation Problems . 33

4.2 Previous Approaches . 35

4.3 Our Algorithm . 37

5 Global Placement 45

5.1 Global Placement by Multisection . 45

1

2 CONTENTS

5.2 Improved Partitioning Methods . 46

5.2.1 Global Partitioning . 47

5.2.2 Iterative Partitioning . 48

5.2.3 More Accurate Movement Costs . 49

5.2.4 Partitioning with Lookahead . 49

5.2.5 Movebound-Aware Partitioning . 49

5.2.6 Reducing the Number of Levels . 50

5.2.7 3 × 3-Repartitioning . 50

5.3 Accelerating the Algorithm . 51

5.3.1 Hybrid Net Model . 51

5.3.2 Parallelization . 54

5.4 Experimental Results . 54

5.4.1 Flow-based Partitioning vs. American Maps 54

5.4.2 Iterative Partitioning . 57

5.4.3 Multisection Experiments . 57

6 Detailed Placement 61

6.1 Overview of the Literature . 61

6.2 Preprocessing with Global Placement . 63

6.3 Our Approach . 63

6.4 Minimum Cost Flow Formulation . 63

6.4.1 The Supply Nodes . 66

6.4.2 The Demand Nodes . 67

6.4.3 The Minimum Cost Flow Problem 70

6.4.4 Construction of the Graph . 77

6.5 Flow Realization . 80

6.6 Implementational Improvements . 82

6.7 Single-Row Placement . 82

6.8 Postoptimization . 85

6.9 Overall Algorithm . 86

6.10 Experiments . 86

CONTENTS 3

6.10.1 Lower Bounds . 86

6.10.2 The Testsuite . 88

6.10.3 Running Time and Memory Consumption 88

6.10.4 Comparison to Hard Bounds . 89

6.10.5 Movement Experiments . 90

6.10.6 Netlength . 94

6.10.7 Routability . 94

6.10.8 Timing . 96

7 Macro Placement 99

7.1 Overview of the Literature . 99

7.2 Our approach . 100

7.2.1 Phase 1: Placing Large Macros . 101

7.2.2 Phase 2: Placing Medium-Sized Macros 102

7.2.3 Phase 3: Placing Small Macros . 106

7.3 Interaction with the Designer . 108

7.4 Experiments . 109

8 Congestion-Driven Placement 119

8.1 Previous Approaches . 119

8.2 Congestion Analysis . 120

8.3 Usage of Congestion Data . 122

8.3.1 Calculation of Inflation Values . 122

8.3.2 Spreading Inflated Circuits . 123

8.4 Computational results . 128

8.4.1 Congestion Analysis vs. Global Routing 128

8.4.2 Congestion-Driven Placement . 130

9 Further Experiments 135

9.1 Experiments on Real-World Chips . 135

9.2 Experiments on Benchmarks . 138

9.2.1 ISPD 2002 Benchmarks . 138

4 CONTENTS

9.2.2 PEKO Benchmarks . 139

9.2.3 ISPD 2005 Placement Contest Benchmarks 142

Bibliography 147

A Notation Index 157

Chapter 1

Introduction

The design of VLSI (= very-large scale integrated) chips is one of the most important
and inspiring applications of mathematical optimization. The design process opens a wide
spectrum of tasks that can be modeled very accurately as optimization problems and can
be solved by efficient algorithms. Moreover, the growing complexity of VLSI chips makes
the help of such algorithms absolutely mandatory.

VLSI chips consist of a huge number of tiny modules, called circuits, which are arranged
in a rectangular area. The circuits either compute Boolean functions or store bits, and
they communicate with each other by sending signals via electrical connections (wires). A
crucial step for the whole design process of a chip is the computation of the circuit positions
(placement). When placing the circuits, we have to ensure that further design steps are
possible, for example, the routing of the wires between the circuits under a number of
technological constraints. In addition, the way we place the circuits has a great influence
on the optimization of the most important objective functions in chip design, e.g. the
minimization of cycle time, size, and power dissipation of the chip. Thus, placement has to
take care of several different goals. Furthermore, any tool for placement that is intended
for the optimization of recent industrial chips must be very fast, as state-of-the-art chips
may consist of several millions of circuits. Hence, only linear or almost linear running times
are acceptable.

In this work, we examine the problem of placing the circuits of a VLSI chip under theo-
retical as well as practical aspects. We divide the placement problem appropriately into
subproblems and propose new algorithms to solve them. In the coarsest subdivision of
the placement problem, we distinguish between global placement in which the circuits are
spread out roughly over the chip area and detailed placement (or legalization) in which the
circuits are moved to their final positions. Though the placement problem as a whole is ab-
solutely intractable from a theoretical point of view, some of the subproblems can be solved
provably optimal or almost optimal. In other cases, we propose algorithms whose quality is
shown at least a posteriori by experiments. Together, the algorithms for the subproblems
are combined in the placement tool BonnPlace. The tool is based on an earlier version
proposed by Vygen [1996]. It has been developed at the Research Institute for Discrete
Mathematics of the University of Bonn in cooperation with IBM Microelectronics and has
been used by IBM for the design of many challenging logic chips.

5

6 CHAPTER 1. INTRODUCTION

This thesis is organized as follows:

In Chapter 2, we summarize briefly our notation, especially concerning graph theory, and
recall some well-known facts on efficient data structures that are used in the rest of the
work. In addition, we state the placement problem formally, discuss different objective
functions and give an overview of the complexity results on placement. At the end of the
chapter, we present the chip data sets used for the experiments in the following chapters.

Chapter 3 contains an overview of previous approaches to global placement. In particular,
the former version of BonnPlace is described in detail as our algorithm is based on it.

In Chaper 4, we present one of the most important contributions of this work. We propose
a new algorithm for the Transportation Problem, a classical optimization task. In the
Transportation Problem, we are given a set A of warehouses and a set B of customers.
Each warehouse stores a certain amount of a product (its supply), and each customer has
a certain demand of the product. In addition, we know for each warehouse a ∈ A and
each customer b ∈ B the costs c(a, b) for transporting one unit of the product from a
to b. We assume that the costs scale linearly, so transporting γ units from a to b costs
γ · c(a, b) (for γ ∈ R≥0). The task is to find a cheapest shipment from the warehouses to
the customers respecting all supply and demand values. If the number of warehouses is
fixed, our algorithm solves the problem to optimality in time O(n log n) (where n := |B|)
improving the fastest previously known algorithm that had a running time of O(n log2 n)
on such instances.

The algorithm for the Transportation Problem is the main new ingredient of our global
placement approach that is described in Chapter 5. We demonstrate how the transportation
algorithm can be used to spread the circuits over the chip area by assigning them to
subregions of the chip. The formulation as a Transportation Problem allows to handle
more subregions in a single step and to apply more realistic objective functions for this
assignment compared to the previous BonnPlace version. We propose several ways to
make use of this flexibility. We conclude Chapter 5 by presenting experiments that compare
these new methods to earlier approaches.

After global placement, the circuits are distributed over the chip area but their placement
is not yet legal; especially, there will be many overlaps. In Chapter 6, we present an
algorithm that legalizes a given placement, i.e., it moves the circuits in such a way that
all overlaps are removed and all other technological constraints are met. Since we assume
that the input of the legalization step is an optimized placement, our goal is to change
the placement as less as possible. Hence, we want to minimize the total movement of the
circuits during legalization. The first part of our legalizer is based on a new minimum
cost flow formulation, and we show that this formulation is best possible in a natural,
well-defined way. By comparing the results to lower bounds computed by a relaxation of
the legalization problem, we can demonstrate that the legalization results are only a few
percent away from the optimum on all tested chips. It should be noted that legalization
can be applied not only as a second step after global placement but also after all kinds of
optimization steps performed after placement that create new overlaps between circuits.

Not only the variety of different objective functions that have to be optimized makes place-
ment a challenging problem, but also the fact that a placer has to be flexible enough to

7

handle very different types of instances. It is obvious that an algorithm that performs well
on large sets of circuits with similar sizes and shapes may fail if the task is to place only
a few hundreds of circuits with arbitrary sizes and shapes. Though the global placer pro-
posed in Chapter 5 can, in principle, handle circuits of any size, it is mainly designed for the
placement of many circuits whose sizes differ not too much. Therefore, we present an algo-
rithm especially for the placement of a small number of larger objects (macro placement)
in Chapter 7. The algorithm divides the circuits to be placed into three groups according
to their sizes and places each group with a different strategy. We show the effectiveness
of our macro placer mainly by comparing its results to macro placements that were found
manually by an experienced designer.

Sets of circuits that communicate with each other are connected by so-called nets, and
the main optimization goal for placement in literature is the minimization of the sum the
lengths of these nets. Short connections between the circuits are useful for all further design
steps after placement and are mandatory for a short cycle time of the chip. However, as the
nets have to be realized by wires that have to meet certain minimum-distance constraints
(routing), very dense arrangements of the circuits may make routing impossible. To avoid
such issues, we propose in Chapter 8 a method to detect routing-critical areas early in the
placement process. As soon as a critical area is found, the placement density is reduced
in this area (congestion-driven placement). Experiments show that this method allows to
place the circuits with higher density in uncritical areas and therefore helps to improve the
quality of result.

While most of the chapters contain experiments that analyze single features of our placer,
we present in Chapter 9 experiments that examine our placement tool as a whole. We test
BonnPlace with different experiments both on artificial benchmarks and on real-world
chips showing that BonnPlace is arguably one of the most effective and efficient existing
placement tools.

At this point, I would like to take the opportunity to express my gratitude to my super-
visors Professor Bernhard Korte and Professor Jens Vygen. Without their ideas, help and
guidance this thesis would not have been possible. I would like to thank Professor Dieter
Rautenbach for carefully proof-reading this thesis. I am grateful to all colleagues of the
VLSI project, especially to my collaborators in the placement team, Anna Pauli, Dieta
Schülter, Markus Struzyna, and Katrin Weidenbach.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter, we will introduce some basic terms and conventions that will be used in
this work and we will give an overview of the problems that occur in VLSI placement. For
the general notation see also the notation index in the appendix.

2.1 Basic Definitions and Results

As many problems that will be discussed in this work are formulated as graph problems or
minimum cost flow problems, we will shortly summarize the basic definitions on these topics
that we will use. We will mostly follow the standard notation as it has been introduced,
e.g., in the textbook by Korte and Vygen [2002].

An undirected graph G is a triple (V (G), E(G), φG) of two finite sets V (G) and E(G), and a

mapping φG : E(G) →
(

V (G)
2

)

. A directed graph G is a triple (V (G), E(G), φG) of two finite

sets V (G) and E(G), and a mapping φG : E(G) → (V (G) × V (G)) \ {(v, v) | v ∈ V (G)}.
Let (V (G), E(G), φG) be a (directed or undirected) graph. The elements of V (G) are
called vertices or nodes, and the elements of E(G) are called edges. Two edges e and e ′

with φG(e) = φG(e′) are called parallel. G is called simple if φG is injective. For simple
graphs, we often identify an edge e ∈ E(G) with φ(e) and denote the graph G by the pair
(V (G), E(G)).

Let G be a directed graph. A (directed) path of length k in G is a graph P with V (P) =
{v1, . . . , vk+1} ⊆ V (G), E(P) = {e1, . . . , ek} ⊆ E(G), such that vi 6= vj for i 6= j, i, j ∈
{1, . . . , k+1}, and φG(ei) = (vi, vi+1) for i ∈ {1, . . . , k}. The path P is called v1-vk+1-path.
A (directed) cycle of length k in G is a graph C with V (C) = {v1, . . . , vk+1} ⊆ V (G),
E(C) = {e1, . . . , ek} ⊆ E(G), such that vi 6= vj for i 6= j, i, j ∈ {1, . . . , k}, φG(ei) =
(vi, vi+1) for i ∈ {1, . . . , k}, and v1 = vk+1.

In an undirected graph G with v ∈ V (G), δG(v) is the set of edges in E(G) incident to v,
so δG(v) := {e ∈ E(G) | v ∈ φG(e)}. The number |δG(v)| is called degree of v in G.

In a directed graph G with v ∈ V (G), δ+
G(v) (δ−G(v)) denotes the set of edges in E(G)

leaving (entering) v, so δ+
G(v) = {e ∈ E(G) | ∃w ∈ V (G) : φG(e) = (v, w)}, and δ−G(v) =

9

10 CHAPTER 2. PRELIMINARIES

{e ∈ E(G) | ∃w ∈ V (G) : φG(e) = (w, v)}. The number |δ+
G(v)| is called out-degree of v in

G, and |δ−G(v)| is called in-degree of v in G.

A flow network is a quadruple (G, b, u, cost) where G is a directed graph, b : V (G) → R

is a mapping with
∑

v∈V (G) b(v) = 0, u : E(G) → R≥0 ∪ {∞} defines edge capacities,
and cost : E(G) → R defines edge costs. The number b(v) is called supply value of v if
b(v) > 0, and it is called demand value if v if b(v) < 0. The edge costs are conserva-
tive if there is no directed cycle C in G with

∑

e∈E(C) cost(e) < 0. For a flow network
(G, b, u, cost), a flow f is a mapping f : E(G) → R≥0 such that f(e) ≤ u(e) for all
e ∈ E(G),

∑

e∈δ+(v) f(e) −
∑

e∈δ−(v) f(e) = b(v) for all v ∈ V (G). The cost of a flow f
is defined as

∑

e∈E(G) cost(e) · f(e). Gf,u is the residual graph of f , i.e., V (Gf,u) := V (G)

and E(Gf,u) := {e ∈ E(G) | f(e) < u(e)} ∪̇ {
←
e | e ∈ E(G) and f(e) > 0} where the edges

←
e are additional edges with

←
e1 6=

←
e2 for e1 6= e2, e1, e2 ∈ E(G). The edge

←
e is called

reverse edge of e. For each edge e ∈ E(G), we define φGf,u
(e) := φG(e), and for each

←
e ∈ E(Gf,u) \ E(G) with φG(e) = (v, w) we define φGf,u

(e) := (w, v). For a flow f on
the edges of a directed graph G with edge capacities u, uf is the residual capacity on the
edges of the residual graph, i.e., it is u(e) − f(e) on edges in E(G) and f(e) on the reverse
edges. The function costf describes the residual edges costs, so we have costf (e) := cost(e)

on edges of e ∈ E(G) ∩E(Gf,u) and costf (
←
e) := −cost(e) on reverse edges.

For terms and definitions on computational complexity, we refer to the book by Cormen,
Leiserson, and Rivest [1990].

For efficient implementations of our algorithms, we make several times use of heaps, data
structures that store elements labelled with certain keys (see Cormen, Leiserson, and Rivest
[1990] for an overview). Heaps support at least the following operations:

• inserting an element,

• deleting an element,

• finding an element with smallest key,

• decreasing the key of an element.

Binomial heaps allow to perform all these functions in time O(log n) where n is the number
of elements stored in the heap. With Binary heaps, finding an element with smallest key can
be done in time O(1), the other functions mentioned above take time O(log n). Fibonacci
heaps (see Fredman and Tarjan [1984]) need amortized time of O(log n) for deleting an
element, the other functions can be done in amortized time O(1). Here “amortized time”
means that a single call of the function may take a longer time but that, e.g., inserting k
elements into an empty heap takes only time O(k).

2.2 The Placement Problem

When we talk about VLSI chips, we always mean logic chips, as their placement is much
more complicated than the placement of the regular structure of a pure memory chip.

2.2. THE PLACEMENT PROBLEM 11

In VLSI placement, we are given a set of rectangular objects (called cells, circuits or
modules) that have to be placed within a rectangular chip area r0 = [0,W] × [0,H]. All
circuits have to be placed in such a way that their edges are parallel to the x- or y-axis, so
when we talk about rectangles in the plane, we always mean axis-parallel rectangles. The
circuits either compute boolean functions (and, or etc.) or store bits. They communicate
with each other via connections that are given by so-called nets. Formally, the instance of
the Placement Problem can be described as follows:

Placement Problem

Instance: • A rectangular chip area r0 = [0,W] × [0,H];
• a grid xδN × yδN;
• a set C = Crow ∪̇Cmacro of rectangular circuits with widths w : C →
xδ(N \ {0}) and heights h : C → yδ(N \ {0}) where h(c) = yδ for all
c ∈ Crow;

• a set B of rectangular blockages;
• a set P of pins;
• pin offsets (xoffset, yoffset) : P → R≥0 × R≥0;
• a function ckt : P → C ∪ {∅};
• a set N ⊆ 2P of pairwise disjoint nets such that P =

⋃

N∈N N ;
• a subset Cf ⊆ C of preplaced circuits with coordinates xf : Cf → xδN and
yf : Cf → yδN;

• netweights ω : N → R≥0.

We ask for an extension of xf and yf to functions x : C → xδN and y : C → yδN

(i.e., x(c) = xf (c) and y(c) = yf (c) for c ∈ Cf) such that the open rectangles in
{]x(c), x(c) + w(c)[×]y(c), y(c) + h(c)[| c ∈ C} are pairwise disjoint subsets of r0 and
do not intersection any blockage. In other words, (x(c), y(c)) is the lower left corner of
the rectangle of width w(c) and heigh h(c) that is covered by c, and the areas covered by
different circuits may have at most a line in common.

The elements of Crow are called row circuits or standard circuits, their height yδ is called
standard height. The elements of Cmacro are called macros. We may assume that Cmacro

contains much less elements than Crow. In real-world instances there may be several millions
of row circuits but at most a few thousand macros. The y-coordinates of the circuits have
to be integer multiples of the standard height yδ, so they have to be placed in so-called
circuit rows. This constraint is motivated by the fact that the circuits have to be connected
to a power supply net. The row-based design makes the power supply much easier, since
the power wires can be routed along the circuit rows. Without the regular row structure, it
would hardly be possible to provide power supply to all standard circuits. The x-coordinate
of the circuits must be an integer multiple of xδ to facilitate the routing step (to be explained
later) but it should be mentioned that xδ is normally much smaller than yδ and also smaller
than most of the circuit widths.

To decide if a feasible solution (x, y) to an instance of the Placement Problem exists,
is an NP -complete problem as it contains the Partition Problem (see Karp [1972]).
However, since the total size of circuits is in all practical instances significantly smaller
than the size of the chip (see the testsuite at the end of this chapter) and most of the

12 CHAPTER 2. PRELIMINARIES

circuits are standard circuits, it is, in practice, quite easy to find a feasible solution: even
simple greedy heuristics will work.

On the other hand, we are not just interested in any feasible solution, but we have to
take into consideration that circuits communicate with each other and with the input- and
output-connection points of the chip. The connections are described by the sets of nets
and pins. Each pin either belongs to a circuit ckt(p) (if ckt(p) ∈ C) or is an input- or
output-pin (IO-pin) of the chip (if ckt(p) = ∅). If a pin p belongs to a circuit ckt(p),
then its offsets (xoffset(p), yoffset(p)) describe its relative position to the position of ckt(p).
So, if ckt(p) is placed at (x(ckt(p)), y(ckt(p))), then the position of p is (x(p), y(p)) =
(x(ckt(p)) + xoffset(p), y(ckt(p)) + yoffset(p)). For an IO-Pin p, the position is directly
given by the offsets, so (x(p), y(p)) = (xoffset(p), yoffset(p)). For a given placement (x, y) :
Cf → xδN×yδN, the pins have fixed positions in the plane, and sometimes we will identify
a pin p with its position (x(p), y(p)).

Each net N contains a set of pins (or terminals) that has to be connected by wires (routing).
These wires may use several wiring planes. Wires on different planes can be connected by
vias. Of course, the wires of different nets have to be disjoint, and a number of other
technological constraints (especially defining lower bounds for distances between wires)
have to be met. In practice, it is easier to handle such constraints if the router is restricted
to use only vertical or horizontal wires in each plane. Typically, routers even have to embed
the wires into a three-dimensional grid (grid-based routing), where the extension of the grid
in z-direction is determined by the number of planes. Since we only consider designs
with grid-based routing in this work, we restrict the feasible circuit coordinates to integer
multiples of (xδ, yδ) to make sure that the pins are placed at routing grid coordinates. In
grid-based routing, the task is to pack a set of vertex-disjoint Steiner trees (one for each
net) into a grid graph. Since this graph can contain several billions of nodes, most routers
work in two steps. First, the nets are connected in a very coarse version of the routing
grid. The result of this global routing gives a quite accurate estimation of the routability
of the chip; it also serves as a guideline for the local router which generates a detailed list
of wires for each net.

Placement has to take care of the routability of the chip: obviously, a placement that
cannot be routed is useless.

In addition to routability, timing optimization is a second goal placement has to consider.
The nets connecting the pins are used to transfer signals. These signals start at input pins
or at circuits that store bits (latches) and end at output pins or latches. The time that the
signals need to pass through the paths on the chip determines the cycle time of the chip,
i.e., it determines how fast the chip may work. In a simple model where all latches send
and receive their signals at the same time (which is not necessary, see Held et al. [2003]),
the minimum possible cycle time of the chip is just the maximum time a signal needs to
pass one of these paths.

A common approach to take routability and timing optimization into account in placement
is to minimize the amount of wire that is needed to connect the pins of each net. In
this approach, one ignores disjointess and distance constraints of the wires and computes
for each net (an estimation of) the length of a shortest L1-Steiner tree. Then, the task
is to minimize the sum of all these lengths. Since experiments show that (at least for

2.3. NET MODELS 13

chips that are not too routing-critical) the sum of the Steiner tree lengths is a quite good
estimation for the total amount of wire needed to connect all pins, minimizing the total
netlength improves routability, at least from a global point of view. However, placements
with short netlengths tend to be quite dense in certain regions, and a high density may
lead to local routing problems. Therefore, we can compare netlengths only if we control
the placement density. We can incorporate timing into the minimization of netlengths by
defining netweights for nets on timing-critical paths. Then, our goal is to minimize the
total weighted netlength.

By minimizing the total (weighted) netlength in placement, we also reduce the power
consumption of the chip because power consumption depends on the total length of wire
used in routing.

As placement is an early step in the physical design process, the quality of its result can
hardly be estimated without performing the following design steps. On the other hand,
for experimental and theoretical comparisons of different placement algorithms, we are
interested in measurements that do not depend on the behaviour of a certain routing or
timing optimization method. For this purpose, minimization of netlengths is the most
important optimization goal that is used in almost all placement comparisons in literature.

2.3 Net Models

We have seen that the total weighted wire length is a reasonable objective function in
placement. The question is how we can measure and optimize the netlength efficiently
without actually routing the chip. There is a number of different estimations for the wiring
length of a net. We assume that we are given a placement (x, y) of the circuits and therefore
also positions (x(p), y(p)) for the pins. So, an estimation of the wirelength of a net is a
function s : {N ⊂ R

2 | N finite} → R that assigns to each net (identified with the set of
its pin positions) a real number. Let N ⊂ R

2 be a set with n := |N | <∞. For a graph G
with V (G) ⊂ R

2, let L1-length(G) be the sum of all L1-distances between the endpoints of
edges.

Steiner tree:

SMT(N) := min{L1-length(T) | T is a connected graph with N ⊆ V (T) ⊂ R
2}.

A tree T with N ⊆ V (G) ⊂ R
2 and L1-length(T) = SMT(N) is called L1-minimum Steiner

tree for N . The minimum Steiner tree netlength is the most accurate net model. Since
the distances between the planes of the routing grid are very small, one can ignore them
without changing the netlength significantly. In that case SMT(N) is exactly the length of a
shortest possible wiring for N (ignoring all other nets). It is NP -hard to compute a shortest
Steiner tree (see Garey, Johnson [1977]), but the instances that occur in VLSI-design are
small (most of the nets contain less than, say, 10 pins), and for these instance there are
efficient algorithms that solve them very fast (see Warme, Winter, and Zachariasen [2000]).

Minimum spanning tree:

MST(N) := min{L1-length(T) | T is a connected graph with N = V (T)}.

14 CHAPTER 2. PRELIMINARIES

A tree T with N = V (T) and L1-length(T) = MST(N) is called L1-minimum spanning
tree for N . The minimum spanning tree netlength is less accurate than the Steiner tree
netlength but, e.g., with Kruskal’s algorithm (see Kruskal [1956]), implemented with a
Delauney triangulation, it can be computed in time O(n log n) (see textbooks, e.g., Korte
and Vygen [2002]). Of course, we have SMT(N) ≤ MST(N). On the other hand, a famous
result by Hwang [1976] yields the inequality MST(N) ≤ 3

2SMT(N), so the minimum
spanning tree netlength approximates the minimum Steiner tree netlength within a factor
of 3

2 .

Clique:

Clique(N) :=
1

n− 1

∑

p,q∈N

dist1(p, q).

The clique netlength can easily be computed in time O(n log n). The sum of all distances is
weighted by 1

n−1 , since otherwise single nets with many terminals would be too dominant.

As the number of summands in the clique model is n(n−1)
2 and the number of edges in a

minimum spanning tree is n− 1, some authors use a factor of 2
n

instead of 1
n−1 .

Star:

Star(N) := min







∑

p∈N

dist1(p, q)

∣

∣

∣

∣

∣

q ∈ R
2







.

The additional node q that is connected to all pins of the net is called Steiner node. The
star netlength can be computed in time O(n) (using a linear-time algorithm to compute a
median, see Blum et al. [1973]).

Bounding box:

BB(N) := max
{

x(p) | p ∈ N
}

− min
{

x(p) | p ∈ N
}

+ max
{

y(p) | p ∈ N
}

− min
{

y(p) | p ∈ N
}

.

This is the simplest net model since the structure of the pin set N is not considered. One
may move single pins, but, as long as one does not change the maximum or minimum
coordinates, this will not change the bounding-box netlength. Obviously, it is less accurate
than the Steiner tree or the spanning tree model, but at least for nets with only a few
pins, BB(N) is a surprisingly good estimation of the actual wirelength. We have BB(N) ≤
SMT(N) for all nets, and Chung and Hwang [1979] show that for nets N with |N | ≤ 10
(which are by far the majority of all nets), SMT(N) ≤ 2BB(N). Experiments on real-
world instances (see Brenner [2000]), show that for most nets with up to 10 pins, the ratio
SMT(N)/BB(N) is much smaller than 2; even among the nets with exactly 10 pins, the
ratio was smaller than 1.5 for more than 95 % of these instances.

The first four net models defined above replace the nets by graphs (where the net pins are
contained in the vertex set), place the additional vertices optimally (if there are any) and
use the total edge length of the graph as an estimation for the wirelength. The drawback of
the first two models is that the topology of the graph is not known in advance. Therefore,
it is quite difficult to use these models as objective functions in an algorithm. Among all
net models that replace each net by a graph whose topology is defined before placement

2.4. LINEAR AND QUADRATIC NETLENGTH 15

(i.e., the graph does not depend on the pin positions), clique is the best, as the following
theorem shows that has been proved in a paper by Brenner and Vygen [2001]:

Theorem 2.1 (Brenner and Vygen [2001]) Let N be a finite set with |N | > 1. For
an undirected graph G with N ⊆ V (G), edge costs c : E(G) → R>0 , and a mapping
σ : N → R

2, we define

M(G,c)(σ) := min







∑

{v,w}∈E(G)

c({v, w}) · dist1(σ
′(v), σ′(w))

∣

∣

∣

∣

σ′ : V (G) → R
2 with σ′|N = σ







,

and

r(G, c) := sup

{

M(G,c)(σ1)

M(G,c)(σ2)

∣

∣

∣

∣

σ1 : N → R
2, σ2 : N → R

2,SMT({σ1(v) | v ∈ N}) =

SMT({σ2(v) | v ∈ N}) = 1

}

Then, the function r(G, c) is minimum if G is the clique on N and c(e) = 1 for all

e ∈ E(G). The minimum is 3
2 if |N | = 4 and

l

|N|
2

mj

|N|
2

k

|N |−1 for |N | 6= 4.
2

For a study on the worst-case ratios between the different net models, we refer to Brenner
and Vygen [2001].

In literature on VLSI placement, bounding-box netlength is by far the most important
measurement to compare the quality of different placements though it is even worse in
reflecting the optimization goals for placement than, e.g., Steiner tree netlength. In this
work, we will also mainly consider bounding-box netlength when we test our placer, but, as
mentioned above, comparing any kind of netlength estimation computed with one of the net
models described above only makes sense if also the density constraints of the corresponding
placements are comparable. If we compare placements with different density constraints,
we rather check the wirelength computed by a state-of-the-art (global) router because the
router wirelength also reflects detours that are necessary due to dense placement regions.

2.4 Linear and Quadratic Netlength

In the net models that represent the net by a graph, we consider the sum of all L1-lengths of
the graph edges as an estimation of the wirelength. Choosing the L1-distance is motivated
by the fact that we have only horizontal or vertical wires in the routing planes. A different,
widely used approach consists of minimizing quadratic netlength, i.e., replacing each net by
a graph and using the sum of all squared Euclidean edge lengths as an objective function.
So, the quadratic clique length of a net N is

Clique2(N) :=
1

n− 1

∑

p,q∈N

dist22(p, q),

16 CHAPTER 2. PRELIMINARIES

and the quadratic star length of a net N is

Star2(N) := min







∑

p∈N

dist22(p, q)

∣

∣

∣

∣

∣

q ∈ R
2







.

It is a well-known fact that for quadratic netlength the clique and the star net model are
equivalent because it is easy the check that we have Star2(N) = n−1

n
Clique2(N). The

star net model needs an additional node but produces a graph with only n edges while the
clique net model needs n(n−1)

2 edges. Hence, often clique is used for nets with only a few
terminals while star is applied to bigger nets.

Although quadratic netlength is not an accurate estimation for the routing wirelength, it
has three important advantages:

1. Quadratic netlength reflects the fact that for timing optimization we want to avoid
single large connections rather than to improve the average connection length.

2. Quadratic netlength is easy to optimize, if we ignore disjointness: To simplify the
notation, we assume that all offsets of pins p with c(p) 6= ∅ are zero which does not
change the complexity of the problem. Then, minimizing quadratic netlength can be
regarded as finding positions (x(v), y(v)) ∈ R

2 for the nodes v of an undirected graph
G minimizing

∑

{v,w}∈E

ω′({v, w}) ·
(

(x(v) − x(w))2 + (y(v) − y(w))2
)

.

The elements of V (G) correspond to the circuits, to IO-pins, or to additional points
in the subgraphs that replace the nets. The mapping ω ′ : E(G) → R≥0 reflects
the given netweights ω(N) and the weights due to the net model that is used. Let
V (G) = V1∪̇V2 such that V1 contains the movable vertices and V2 the preplaced
vertices. Obviously, the x- and y-coordinates can be computed separately. For the x-
coordinate, we have to minimize xtAx−2bx where A = (av,w)v,w∈V1 and b = (bv)v∈V1

with

av,w :=















∑

v′∈V (G):

{v,v′}∈E(G)

ω′({v, v′}) : v = w

−ω′({v, w}) : v 6= w, {v, w} ∈ E
0 : otherwise

and bv :=
∑

w∈V2,{v,w}∈E(G) ω
′({v, w})x(w). If each connected component of G con-

tains an element of V2, then matrix A is positive definite, and the quadratic program
(QP) “min xtAx − 2bx” can be solved by computing a vector x with Ax = b (see,
e.g., Vygen [1996]).

It should be noted that for linear netlength, it is also possible to compute an optimum
placement in polynomial time (without meeting the disjointness constraints) since
the problem can easily be formulated as a linear program. In fact, it can even be
formulated as a minimum cost flow problem. But in practice, the quadratic netlength
can be optimized faster.

2.5. COMPLEXITY OF THE PLACEMENT PROBLEM 17

3. Quadratic objective functions lead to more “stable” algorithms and better reprodu-
cable results. If each connected component of G (in the above notation) contains an
element of V2 (which is the case for real-world instances), the quadratic function is
strictly convex, and hence there is only one optimal solution. For linear netlength,
many optimal solutions can exist. In addition, the solution of the quadratic netlength
minimization is not changed “too much” if we change the netlist “slightly” (see Vygen
[2002a] where this statement is quantified) while even small changes of the instance
can lead to a completely different placement if we minimize linear netlength. Since
we have to rerun placement several times during the process of physical design, each
time with slightly different netlists, this stability aspect is very important for the
applicability of placement algorithms.

2.5 Complexity of the Placement Problem

We have already mentioned that it is NP -complete to decide if a given instance of the
Placement Problem can be placed legally but that practical instances, that consist
mostly of standard circuits and are not completely full, are easier to handle. Therefore,
the following relaxation seems to be reasonable: We assume that all circuits have unit
height and unit width and must be placed at integer coordinates. Moreover, we assume
that all pin offsets are 0 and all nets have exactly two terminals. The task is to find a
legal placement such that the weighted sum of the L1-lengths of the nets is minimized
(Unit-Square Placement Problem). Obviously, it is trivial to find a legal placement
on these instances (if one exists). On the other hand, Queyranne [1986] has proved that
for this relaxation no polynomial-time constant-factor approximation algorithm is possible
if P 6= NP even if we restrict ourselves to instances where the chip area has height 1.

An even more restricted version of the Unit-Square Placement Problem is the Linear
Arrangement Problem where, again, the chip area has height 1, and no preplaced
circuits or pins and no blockages are allowed. This problem isNP -hard even if all netweights
are 1 (Garey, Johnson, and Stockmeyer [1976]), but there is a polynomial-time algorithm
with an approximation factor of O(log(|C|)) (Rao, Richa [1998]). For the special case of the
Unit-Square Placement Problem where no preplaced objects and no blockages are
allowed and all netweights are 1 but where the chip area is [0, |C|] × [0, |C|], Vempala [1998]
proposed a randomized algorithm that computes with high probability an O(log3.5(|C|))-
factor approximation. Vempala even claims an approximation factor of O(log3(|C|)) but
there is a gap in his proof (see Brenner [2000]). If we restrict this special case further by
demanding |V | = Θ(|C|2), there is a polynomial-time approximation scheme (see Arora,
Frieze, and Kaplan [1996]). However, these dense instances are not relevant for the practice
as we have |V | = Θ(|C|) in all realistic instances.

Hansen[1989] considers another special case of the Placement Problem: Given an undi-
rected graph G with edge weights, we ask for integer coordinates of the vertices of G such
that the sum of the weighted edge lengths is minimized. Hansen proposes an approximation
algorithm for this problem with an approximation factor of O(log2(|V (G)|)).

Even, Guha, and Schieber [2000] try find a routable placement with smallest-possible place-

18 CHAPTER 2. PRELIMINARIES

ment area. Given a simple undirected graph G with maximum degree at most 4, the task
is to find an l× l-grid graph H, an injective mapping ψ : V (G) → V (H) and for each edge
{v, w} in G a path in H connecting ψ(v) and ψ(w). The paths have to be edge-disjoint
and may not form knock-knees (two bends at an internal node), while the crossing of two
paths is allowed. The goal is to minimize the area l2. For this problem, the authors give
an O(log4(|V (G)|))-factor approximation algorithm.

2.6 Global and Detailed Placement

Following a widely used strategy, the algorithm that we propose works in two steps: In
the first step, called global placement, circuits are spread over the chip area optimizing
the objective functions described above but without meeting the disjointness constraints
and without placing the standard circuits at the grid coordinates. Only the non-standard
circuits will have legal positions after this step and will be fixed at their position. In the
second step, called detailed placement or legalization, our goal is to meet all constraints
while changing the placement as little as possible. Note that some authors use “detailed
placement” for a placement phase that locally tries to improve a given placement, while in
this work, we use “detailed placement” and “legalization” in the same meaning.

2.7 The Testsuite

The algorithms presented in this work have been tested on a set of recent ASICs from IBM
Microelectronics. Table 2.1 gives an overview of the chips we used for experiments. The
instance sizes range from about 72 000 to 3.6 millions of circuits. For each chip, the table
reports the number of circuits, nets and pins, the global density (i.e., the total size of all
circuits divided by the total free area of the chip) and the standard density (i.e., the size
of all standard circuits divided by the total free area of the chip that will not be covered
by a macro). The numbers in column seven are the width and the height of the chip area
(in mm). The last column contains the width of a smallest rectangle that can be built in
the chip’s technology.

2
.7

.
T

H
E

T
E

S
T

S
U

IT
E

19

Chip #Circuits #Nets #Pins Global Density Standard Density Size (mm) Lithography

Jens 72 496 73 273 260 054 86.01 % 76.97 % 2.3 × 2.0 0.25 µm

Hans 72 940 73 822 252 053 30.87 % 26.64 % 4.9 × 4.9 0.25 µm

Hartmut 158 802 166 558 609 151 41.66 % 28.29 % 17.0 × 17.1 0.25 µm

Klaus 214 988 219 975 682 416 63.86 % 19.15 % 13.3 × 13.3 0.35 µm

Christian 278 083 283 358 865 841 44.87 % 22.93 % 9.9 × 9.9 0.18 µm

Heidrun 282 677 300 600 1 112 112 88.08 % 56.04 % 6.5 × 6.3 0.13 µm

Paul 399 830 387 980 1 342 937 91.04 % 73.17 % 4.9 × 4.9 0.09 µm

James 412 050 425 464 1 450 744 53.95 % 13.73 % 15.0 × 15.0 0.18 µm

Max 521 375 528 953 1 512 022 74.37 % 53.72 % 9.4 × 9.4 0.18 µm

Aidan 681 987 706 499 2 494 195 56.91 % 40.71 % 11.4 × 11.6 0.18 µm

Katrin 763 484 838 095 2 881 265 80.29 % 55.62 % 10.1 × 10.1 0.13 µm

Hanno 779 033 790 735 2 449 976 69.26 % 34.25 % 10.2 × 10.3 0.13 µm

Sven 825 737 841 554 3 264 316 77.08 % 37.40 % 15.6 × 15.7 0.18 µm

Dagmar 904 756 930 848 3 249 493 70.10 % 61.20 % 12.5 × 12.5 0.25 µm

Yvonne 915 086 973 324 3 660 175 84.24 % 50.97 % 11.1 × 11.2 0.13 µm

Dieta 923 472 934 276 3 786 401 44.40 % 31.34 % 12.6 × 12.6 0.18 µm

Alex 971 113 1 011 808 3 561 893 78.67 % 57.82 % 9.3 × 9.4 0.13 µm

Sandra 1 317 488 1 387 358 5 532 226 52.94 % 36.21 % 13.4 × 13.4 0.18 µm

Josef 1 349 390 1 378 303 4 514 036 59.21 % 35.14 % 15.6 × 15.7 0.18 µm

Kevin 1 497 709 1 555 652 5 036 256 87.32 % 71.19 % 10.7 × 10.7 0.13 µm

Reinhardt 1 513 386 1 528 361 5 274 635 74.33 % 56.74 % 13.4 × 13.4 0.18 µm

Nadine 1 654 756 1 688 719 6 419 832 71.07 % 40.01 % 18.2 × 18.2 0.18 µm

Hardy 2 056 728 2 074 182 6 343 151 64.66 % 50.84 % 14.2 × 14.2 0.18 µm

Wolf 2 396 642 2 410 881 7 490 008 51.42 % 27.08 % 16.5 × 16.6 0.13 µm

Ulrich 2 601 521 2 662 828 10 571 925 52.83 % 25.52 % 16.5 × 16.6 0.13 µm

Fermi 3 605 741 3 677 412 15 776 217 73.81 % 54.21 % 15.6 × 16.6 0.13 µm

Table 2.1: The chips used for experiments.

20 CHAPTER 2. PRELIMINARIES

Chapter 3

Previous Global Placement

Algorithms

This chapter gives an overview of previous approaches to placement. We focus on global
placement algorithms but it should be noted that some of the methods not only compute
global placements but also include legalization.

3.1 Simulated Annealing

Simulated annealing is a general scheme that can be applied to a wide variety of optimiza-
tion problems. Starting with any feasible solution, simulated annealing algorithms apply
iteratively local changes to the solution. The changing steps are chosen randomly and
steps that make the solution worse are allowed, so it is possible to leave local optima. In
early steps, bigger worsening changes are applied (“higher temperature”), while in later
steps only small worsening changes are allowed (“lower temperature”). The slower the
temperature is decreased in this process the better are the results. Simulated annealing
approaches have been used in VLSI design in several ways (see Sechen [1988], and Wong,
Leong, and Liu [1988]). A placement tool that is based mainly on simulated annealing is
TimberWolf, one of the first automated placement tools at all (Sechen and Sangiovanni-
Vincentelli [1986], Sechen and Lee [1987], Sun and Sechen [1995, 1997]). TimberWolf
does not only apply to global placement as it computes legal placements. The Timber-
Wolf tool package also contains a simulated annealing based solver for global routing.

The strength of simulated annealing is its flexibility. Any objective function can be used as
long as it can be evaluated efficiently. So, not only netlength, but also, e.g., estimations of
routability and timing can be combined in one optimization goal for placement. In addition,
it is quite easy to implement. This may explain why it was used in the first automated
VLSI tools. However, if one wants to get competetive results by simulated annealing,
the temperature has to be lowered so slowly that running times get unacceptable even on
medium-sized instances. Simulated annealing processes can be made to converge to an
optimum solution, but only with extremely large running times. By parallelization (see,

21

22 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

for example, Sun and Sechen [1997]) one might slightly increase the instance sizes that can
be handled by such approaches but the scaling of the running times is still too bad for
recent real-world designs.

Although simulated annealing is too slow for a global optimization of a placement, it is still
in use to solve subproblems or for local optimization. For example, Adya et al. [2004] use
in some cases simulated annealing during global placement to compute locations for larger
circuits. Wang, Yang, and Sarrafzadeh [2000b] apply low-temperature simulated annealing
during a partitioning-based placement run to improve the placement locally.

3.2 Minimum-Cut Placers

Top-down recursive partitioning is used in many placement algorithms. The main idea
consists of recursively dividing both the chip area and the set of circuits into subsets and
to assign each circuit subset to a subarea of sufficient capacity. The step is repeated until
the regions are small enough to run legalization.

The main question in all partitioning-based placement approaches is how the assignment
of the circuits to the subregions is computed. An objective function that is widely used
in literature is the minimization of the cut-size of the partition, i.e., the number of nets
with pins in different subsets. Many placement tools follow this strategy or modifica-
tions of it, for example QUAD (Huang and Kahng [1997]), Capo (Caldwell, Kahng, and
Markov [2000], Adya et al. [2004], and Adya and Markov [2005]), Dragon (Wang, Yang,
and Sarrafzadeh [2000b], Sarrafzadeh, Wang, and Yang [2003]), Feng Shui (Yildiz and
Madden [2001], Khatkate et al. [2004]), and NTUplace (Chen et al. [2005]). Since com-
puting a balanced partition of the circuit set into, say, two subsets with minimum cut size is
NP -hard (Bui and Jones [1992]), minimum-cut-based algorithms apply heuristics. Mainly
the linear-time approach described by Fiduccia and Mattheyses [1982] is either applied
directly or used as a subroutine in more sophisticated multilevel partitioning methods (see
Alpert, Huang, and Kahng [1997] and Karypis et al. [1997]). Empirically, these multilevel
partitioners produce significantly better cuts than the method of Fiduccia and Matthey-
ses but the improvements of the result are paid by larger running times. Nevertheless,
minimum-cut placers are in general much faster than algorithms based on simulated an-
nealing and can produce reasonable results. Groups of strongly connected circuits will not
be split in the first partitioning steps and thus will probably be placed in the same area.
On the other hand, it is obviously not necessary to keep these groups together in the early
steps if one can guarantee that the circuits of each group will be placed in regions that are
close enough to each other. It may even happen that excellent cuts in early partitioning
steps make large cuts in later steps necessary. Under practical aspects, a main drawback of
minimum-cut-based partitioning strategies is their instability: small changes in the netlist
can lead to completely different placements. Since (as mentioned above) a designer typi-
cally has to repeat the placement step during the physical design process several times with
slightly different inputs, such instable algorithms are hard to use without additional (art-
ficial) constraints like movebounds for certain circuits. With movebounds, users prescribe
areas (mostly rectangles or sets of rectangles) for groups of circuits in which these circuits
have to be placed.

3.3. PURE ANALYTIC PLACERS 23

It should be noted that dividing the set of circuits into subsets with small cuts is also
sometimes used to accelerate other placement methods. To this end, clusters of circuits
instead of single circuits are placed in the early phase of the placement. Then, the locations
of the clusters are used to compute a placement for the circuits within the clusters. Some
of the placers described in the next section make use of such a clustering.

3.3 Pure Analytic Placers

Analytic placers start with a placement that minimizes netlength but ignores disjointness
(and other constraints) completely. Then, the placement is modified in order to reduce the
overlaps of the circuits. In a pure analytic approach this is done by changing the objective
function to be optimized.

As it can be optimized efficiently (if disjointness is ignored), quadratic netlength is a com-
monly used objective function for analytic placers. The solution of the equation system
Ax = b, as described in Section 2.4, would be an optimal placement (in terms of squared
netlength) if circuits did not overlap. The idea of the force-directed placement approach by
Eisenmann and Johannes [1998] (see also Eisenmann [1999]) is to start with a solution of
Ax = b and to work towards disjointness by changing iteratively the right-hand side b. To
this end, they define repulsing forces between the circuits and compute for each circuit the
sum of all other circuits’ forces on it. There is also an attracting force of the chip area, and
the forces are scaled in such a way that they would be zero in an exactly equally distributed
placement. In the beginning, the vector entry b(c) is the sum of the coordinates of the pre-
placed pins circuit c is connected to, and in each step of the algorithm, the forces at the
current position of c are added to b(c). This can be regarded as changing the positions of
the preplaced vertices connected to c. After changing b to b′, the equation system Ax = b′

is solved, new forces are computed according to the new circuit positions, and so on, until
the circuit distribution over the chip area is good enough to start legalization. The whole
algorithm can be seen as a discrete simulation of a continuous physical repulsion process.

A great advantage of the force-directed placement approach is its stability: if b is changed
in sufficiently small steps, the movement of the circuits is almost continuous. The algo-
rithm does not need any artificial cutlines on the chip area that would enforce discrete
(and therefore instable) decisions. The approach follows most consequently the strategy of
reducing the overlaps of the circuits while changing the QP solution as little as possible.

On the other hand, the relative positions of circuits can hardly be changed during a place-
ment run based on this approach. Therefore, circuits tend to stay in their relative positions
they got after a few iterations even if swapping some of them could reduce the netlength
significantly. Additional swapping steps are necessary to compute placements with short
netlength. Vorwerk, Kennings, and Vannelli [2004] propose an optimization method that
they call “BoxPlace”. For each circuit, they compute the area where the circuit can be
placed such that the bounding-box length of the nets connected to it is minimized. Then,
they choose one position in this area that creates the least new overlap as new location
for the circuit. The new placement of the circuits is accepted if the total overlap has not
increased too much. BoxPlace is called (with different orderings of the circuits) each time

24 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

after some iterations of the force-directed placement when the overlap has been reduced by
3 %. A different local optimization step for force-directed placement that greedily moves
single circuits is described by Viswanathan and Chu [2004].

A drawback of force-directed placement is its running time. For n circuits, a sufficiently
precise approximation of the forces can be computed in time O(n log n) (see Eisenmann
[1999]), but there is a big number of iterations necessary, and in each iteration a QP has
to be solved. The experiments reported by Eisenmann [1999] indicate a running time of
about O(n1.5) for complete placement runs which can be too much for large instances.
Viswanathen and Chu [2004] (FastPlace) propose an idea for a fast force-directed place-
ment. Instead of computing two-dimensional force vectors, they iteratively spread circuits
only in horizontal or vertical direction. The authors divide the chip area with a regular
grid into rectangular bins. To compute the repulsing forces in x-direction, they consider
sets of bins that form a row. In each bin of a row, they compute the actual density. Then,
if there are bins with overloads, they compute how the circuits in the row can be moved
horizontally such that the overload is reduced. Correspondingly, vertical forces are com-
puted using columns of bins. Finally, circuits are moved in the direction of the forces by
artificial connections to fixed pins at appropriate positions. Although the combination of
the horizontal and vertical spreading forces is only a rough approximation of real physical
repulsing forces, the algorithm (combined with local optimization step, see above) seems
to produce very efficiently quite acceptable results at least on dense benchmarks that do
not contain macros.

The most important disadvantage of the force-directed placement approach is the fact that
it computes a (nearly) equal distribution of the circuits on the chip area. If the chip
density is high, i.e., if the total size of circuits is almost as big as the free chip area, then
such a placement is desirable, but for designs with lower density such distributions will
cause weak results. One could force the placer to use lower densities in some regions (and
therefore higher densities in other regions) by defining areas with smaller capacity, but then
it would be necessary to decide in advance which parts of the chip one wants to use for
the placement of the circuits. Possibly, the problem can be fixed by introducing dummy
circuits. In combination with effective swapping methods such dummy circuits can be
placed together with the real logic and block the parts of the area.

Recently, Kahng and Wang [2004] (APlace) and Chan, Cong, and Sze [2005] (mPL)
proposed an analytic placers that do not try to optimize quadratic netlength but use a
differentiable approximation to the bounding-box netlength. For a net N for pins positions
(x(p), y(p)) for each p ∈ N and a parameter α, they define

WLα(N) := α



ln





∑

p∈N

e
x(p)

α



+ ln





∑

p∈N

e
−x(p)

α



+ ln





∑

p∈N

e
y(p)

α



+ ln





∑

p∈N

e
−y(p)

α







 .

It is easy to see that WLα(N)→BB(N) for α → 0. Kahng and Wang [2004] combine
this function with a smooth potential function that penalizes placement overloads to a
differentiable objective function that they optimize by a conjugate gradient method. Chan,
Cong, and Sze [2005] compute a discrete approximation of repulsing forces in order to reduce
overlaps. Both placers apply a multilvel minimum-cut clustering of the circuits to improve
the running time.

3.4. ANALYTIC PLACER WITH TOP-DOWN PARTITIONING 25

→

l1

l2
l3

C1
C2

C3

C4

Figure 3.1: A “grid-warping” partitioning step.

3.4 Analytic Placer with Top-Down Partitioning

Several placers combine analytic placement ideas and recursive top-down partitioning.
They start with a placement minimizing (quadratic) netlength and then partition the cir-
cuits according to their locations.

One of the first combinations of analytic placement and recursive partitioning was the
tool Proud (Tsay, Kuh, and Hsu [1988]). Starting with a QP solution, the circuits are
partitioned by a vertical or horizontal cutline at the median of the circuits’ coordinates.
However, in their experiments the authors observe better results for a “simple heuristic”
that divides the circuits and the area into four parts using a vertical and a horizontal cutline
in one single step.

Kleinhans et al. [1991] (Gordian) partition the circuits by a vertical or horizontal cutline,
too. Circuits that are placed close to the cutline are allowed to leave their subset in order to
minimize the number of nets that are cut, so a min-cut heuristic is applied to these circuits.
After a partitioning step, additional constraints on the center of gravities of the circuit sets
move circuits towards the region they are assigned to. Local optimization steps that are
able to correct wrong decisions in partitioning (similar to the routine Repartitioning in
BonnPlace, see the next section) help to improve the quality of result.

BonnPlace (Vygen [1997]) will be explained in greater detail in the next section as our
placer is based on this algorithm.

Xiu et al. [2004] (see also Xiu [2005]) also start with a placement that minimizes quadratic
netlength but partition the set of circuits by cutlines that do not have to be horizontal
or vertical. Assume, for example, that we want to partition the set of circuits (and the
chip area) into four parts. The chip area is partitioned by a horizontal and a vertical
cutline running through the whole chip area, thus forming four rectangular subregions. In
order to partition the set of circuits, the authors compute a cutline l1 connecting the upper
borderline of the chip area to the lower borderline and two cutlines l2 and l3 connecting
the left (right) borderline of the chip area to l1 (see Figure 3.1). These three cutlines

26 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

Figure 3.2: A set of circuits partitioned by an American Map.

partition the set of circuits into four subsets C1, C2, C3, and C4, and each subset is
assigned in a canonical way to a subregion. The cutlines used to partition the set of
circuits are chosen such that some capacity constraints are met for the subregions and such
that routing congestion and netlength are minimized when the circuits are moved to their
regions. As it seems to be hard to find optimal cutlines with these optimization goals,
the authors apply a kind of local search to compute the cutlines. They argue that this is
good enough as there is only a small number of variables (two variables for each cutline).
As the algorithm does not only use vertical and horizontal cutlines for the partitioning of
the circuits and distorts the placement of the circuits in a partitioning step, the authors
call it “grid-warping” partitioning. Using some ideas taken from Vygen [1997] (terminal
propagation, repartitioning; to be explained the next section), the partitioning step is
repeated recursively until the regions are small enough.

3.5 BonnPlace

The main idea of the old BonnPlace, the approach described by Vygen [1997], is (sim-
ilar to the force-directed placement approach) based on the observation that a placement
computed by solving the QP Ax = b (as stated above) would be optimal if it was legal.
Consequently, the algorithm tries to partition the circuits in such a way that the placement
is changed as little as possible, i.e., that the total movement that is needed to move the
circuits to the subregions they are assigned to is minimized. Formally, the following prob-
lem is considered: Given a set of circuits placed in the plane and capacities for the four
quadrants of the plane, the task is to move each circuit into one of the four quadrants of
the plane such that the total size of circuits in each quadrant does not exceed its capacity.
The objective function to be minimized is the total L1-movement.

Using geometric structures called American Maps, at least a fractional solution (up to
three circuits are distributed to different quadrants; all other circuits are assigned to only

3.5. BONNPLACE 27

one quadrant) can be computed in linear time (see Vygen [2000]). The structure of an
American Map can be seen in Figure 3.2 that shows a part of a chip. The circuits to
be placed are colored according to the region they are assigned to, i.e., the red circuits
are assigned to the upper left region, the dark blue circuits to the upper right region, the
dark grey ones to the lower left area, and the green ones to the lower right rectangle. The
diagonal and the vertical and horizontal lines between the circuit sets form what is called
an American Map. The partitioning strategy based on American Maps can be considered
as a two-dimensional generalization of the one-dimensional median computation proposed
by Tsay, Kuh, and Hsu [1988].

The partitioning of the regions is done by vertical and horizontal cutlines that cross the
whole chip area. Between each pair of cutlines whose distance is still big enough a new
cutline is inserted in each partitioning step, so, generally, each region is partitioned into
four subregions. The horizontal cutlines are chosen such that they are placed at the border
of two neighbouring circuit rows. Schematically, BonnPlace can be described as follows:

BonnPlace

Input: An instance of the placement problem.

Output: A placement.

©1 INITIALIZATION:
window set := {r0};
C(r0) := C;

©2 Solve a QP to minimize quadratic net-length;

©3 WHILE (window size is big enough)
{

FOR (each window r in window set)
{

Solve constrained QP;
Partitioning(r, C(r));
Solve a QP (with terminal propagation at the subwindow borders);

}

Repartitioning;
}

©4 Legalization;

Partitioning(r, C(r)):

©1 Partition r into 4 subwindows r1, . . . , r4;
©2 window set := (window set\{r}) ∪ {r1, . . . , r4};
©3 Partition C(r) into 4 subsets C(r1), . . . , C(r4) (using American Maps) and move

cells into the corresponding window;

28 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

The algorithms starts with the complete list of circuits and the complete chip area. In step
©2 (level 0), a quadratic program (QP) is solved to compute locations for each circuit in r0.
For smaller nets, the clique net model is used while nets with many pins are replaced by
a star (controlled by a user-defined parameter). Then, in each iteration of the loop in ©3
(a level), the circuits are divided into subsets and assigned to subwindows by the function
Partitioning. In order to ensure that in the following QP solutions each circuit is placed
within its window, nets are split at the window borders (terminal propagation). Assume
that we have bounds a ≤ x(c) ≤ b for the x-coordinate of a circuit c. For each circuit c ′ that
is connected to c but is placed, e.g., in a window to the right of b, we replace the connection
to c′ by an artificial connection between c and a fixed pin with x-coordinate b. Of course,
connections to circuits c′ which will be placed to the left of a are replaced by a connection
to a fixed pin with x-coordinate a. For this construction, the additional Steiner nodes for
the nets that are represented by a star also have to be assigned to certain windows and
are placed in the same way as the circuits. Connections to fixed pins outside the bounds
of a circuit are also split. Note that the net splitting is done for x- and y-coordinate
independently, so for x-coordinate only the vertical cutlines and for the y-coordinates only
the horizontal cutlines between the windows are considered. Especially, it is possible (and
in fact will happen quite often) that a connection has to be split for the computation of
the x-coordinate but not the y-coordinate, and vice versa. This splitting of the nets forces
each circuit to be placed inside the window it is assigned to.

After all circuits are placed inside their window, all windows and circuit sets are partitioned.
In BonnPlace, this partitioning is, as described above, done in such a way that the
capacity constraints are met (if possible) and that after moving each cell to its new window
the total movement costs of the cells are minimized. If all circuits in a region are placed
very close to the corner of their region, it is not reasonable to partititon them according to
the small differences in their positions. An additional constrained QP before partitioning
helps to solve this problem: if the weighted center of the circuits in a window is closer to
one of the window corners than it could be in any disjoint placement of the circuits, an
additional QP is solved with the constraint that the center of the circuits is placed at the
closest possible position to the corner (so the center will be moved away from the corner).
Figure 3.3 illustrates the effect of the additional constrained QP on the chip Jens. The
first picture shows the placement at the end of level 3. The preplaced circuits are grey, for
the other circuits the colors correspond to their windows. Especially in the outer parts of
the chips, circuits tend to be placed as close to the chip’s center as possible. Obviously,
for these regions, a partitioning based on this placement would be useless. Figure 3.3 (b)
shows how the QP solution with the additional constraints for some of the regions looks
like. Using this placement we can decide which of circuits in the outer regions have the
most important conections to the center. Note that due to the additional constraints it
is possible that circuits are placed outside the window they are assigned to. Nevertheless,
they will not be assigned to a different window in this step.

An important step in BonnPlace is Repartitioning, a function that tries to find local
improvements of the placement. It considers areas consisting of 2× 2-windows (i.e., sets of
four windows touching each other in one point) and computes a new partitioning for this
region and new positions for the cells in the region. It accepts the new placement if the
weighted netlength has decreased. This is done for all 2 × 2-windows. This loop is called

3.5. BONNPLACE 29

(a) Placement at the end of level 3

(b) Solution of the constrained QP before the partitioning in level 4

Figure 3.3: The effect of the constrained QP before the partitioning step.

30 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

repeatedly (with different orders of the 2 × 2-windows) as long as it yields a considerable
improvement of the wire-length. Repartitioning enables the cells to leave the region they
are currently placed in. It has also been used by Huang and Kahng [1997] in a minimum-
cut-based placer.

As the windows get smaller and smaller during a placement run, macros will sooner or
later become too big to be handled reasonably in a partitioning step. Therefore, all macros
that are too big compared to the window size will be fixed at the beginning of a level. The
macros to be fixed in a level are legalized greedily, i.e., the algorithm places them one after
the other to a free position that is as close as possible to its position at the end of the
previous level.

The capacity of a window is not only determined by the unblocked area within the window
but also by the maximum allowed density. The placement density is controlled by two user-
defined parameters. The first parameter defines the maximum density at the beginning of
the placement process, the second one is the increment of the allowed density in each level
(typically 1%).

The loop in step ©3 stops when the size of the windows is small enough. Especially, each
window has to be contained in a single circuit row. Then, the cells are spread out quite well
on the chip area and we can call the function Legalization that computes the detailed
placement of the cells.

Figure 3.4 visualizes the first levels of a run of BonnPlace on the chip Max that consists of
512 375 circuits. The pictures show the placment at the end of the corresponding level. The
grey objects are preplaced macros, the other circuits are colored according to the window
they are placed in.

Our global placer is based on the same general strategy as the BonnPlace algorithm
described above but improves on it with respect to several aspects. The most important
contribution is a new partitioning method that is much more flexible than the partitioning
based on American Maps as it can handle any number of subregions and any cost function.
We will apply a new efficient algorithm for the Transportation Problem that will be
described in the next chapter.

3.5. BONNPLACE 31

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

Figure 3.4: Levels 0 to 5 of a BonnPlace run.

32 CHAPTER 3. PREVIOUS GLOBAL PLACEMENT ALGORITHMS

Chapter 4

A Faster Transportation Algorithm

In this chapter, we will present a new efficient algorithm for the Transportation Prob-
lem. For unbalanced instances, this is the fastest known algorithm. The Transportation
Problem is a classical, well-studied optimization problem and has an important applica-
tion in our global placement algorithm.

4.1 Transportation Problems

A crucial step in our global placement algorithm consists of assigning circuits to parts of
the chip area meeting some capacity constraints. Formally, we are interested in the solution
of the following problem:

Multisection Problem

Instance: • Finite sets C and R.
• Sizes size : C → R≥0.
• Capacities cap : R→ R≥0.
• Costs d : C ×R→ R.

Task: Find a mapping g : C → R with
∑

c∈C:g(c)=r

size(c) ≤ cap(r) (for all r ∈ R)

minimizing
∑

c∈C

d((c, g(c))).

We may assume that
∑

c∈C

size(c) ≤
∑

r∈R

cap(r), since otherwise no solution could exist. The

problem is a generalization of the Assignment Problem where the sizes and capacities
are all 1. On the other hand, it is a special case of the so-called Generalized Assignment
Problem where the size of an element C also depends on the element R it is assigned to.

For the rest of this chapter, we define n := |C| and k := |R|. We are interested in instances
where the number n can be huge but where k is small, so we need an algorithm that handles
efficiently unbalanced instances.

33

34 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

To decide if a solution of the Multisection Problem exists, is NP -complete since it
contains the NP -complete Partitioning Problem. We can relax the problem by skip-
ping the restriction that each c ∈ C has to be assigned completely to a single region. This
leads to a fractional version of the Multisection Problem that is called Transporta-
tion Problem. Given an instance of the Multisection Problem, we formulate the
Transportation Problem as a Minimum Cost Flow Problem:

Transportation Problem

Instance: A flow network (G, b, u, cost) with

• a directed graph G with vertex set V (G) = C ∪̇R∪̇{s, t} and edge set
E(G) = (C ×R) ∪ ({s} × C) ∪ (R × {t}),

• supply and demand values b : V (G) → R with b(s) =
∑

c∈C size(c) =
−b(t) and b(c) = b(r) = 0 for c ∈ C and r ∈ R,

• edge capacities u : E(G) → R≥0 ∪ {∞} with u((s, c)) := size(c),
u((r, t)) := cap(r), and u((c, r)) = ∞ for c ∈ C and r ∈ R,

• edge costs cost : E(G) → R≥0 with cost((s, c)) = 0, cost((r, t)) = 0 and
cost((c, r)) = d((c, r)) for c ∈ C and r ∈ R.

Task: Find a minimum cost flow f in the flow network (G, b, u, cost).

Note that we have capacities only on edges incident to the artificial nodes s and t, so our
instances can be regarded as uncapacitated.

Let f be a solution of the Transportation Problem. For c ∈ C, we define τf (c) :=
|{r ∈ R | f((c, r)) > 0}|. Let Ff := {c ∈ C | τf (c) > 1} be the set of elements c ∈ C with
outgoing flow into more than one edge. Obviously, each feasible solution f of the Trans-
portation Problem with Ff = ∅ corresponds to a feasible solution of Multisection
Problem of the same costs, and vice versa.

Vygen [1996] has already shown that an optimum solution f can be transformed efficiently
to an optimum solution g with |Fg| ≤ k − 1 (in fact, Vygen showed this for k = 4, but the
construction is the same for any k).

For the analysis of our algorithm, we need a slightly stronger result:

Lemma 4.1 Given an instance (G, b, u, cost) of the Transportation Problem,
an optimum solution f , and the set Ff , we can transform f in time O(k2 · |Ff |) into
an optimum solution g of (G, b, u, cost) such that

(i) |Fg| ≤ k − 1, and

(ii)
∑

c∈Fg

τg(c) ≤ 2k − 2.

4.2. PREVIOUS APPROACHES 35

Proof: We start by setting g := f . During the transformation, g will always stay an
optimum solution. We construct an bipartite undirected graph Hg on the vertex set
V (Hg) := Fg ∪R and edge set E(Hg) = {{c, r} | g((c, r)) > 0}.

Claim: If Hg does not contain a cycle, g meets conditions (i) and (ii).

Proof of the claim: Assume that there is no cycle inHg. The graphHg can be constructed
in the following way: we start with the set R as vertex set and no edges (thus, we have k
connected components). Then, we traverse the elements of Fg in arbitrary order and add
one after the other to the graph (with the incident edges). As we will not get a cycle, the
number of connected components is reduced by τg(c) − 1 when adding an element c, so we
have

∑

c∈Fg
(τg(c) − 1) ≤ k − 1. Since τg(c) > 1 for all c ∈ Fg, this proves |Fg| ≤ k − 1 and

hence
∑

c∈Fg
τg(c) ≤ |Fg| + k − 1 ≤ 2k − 2. This proves the claim.

The claim shows that we are done if there is no cycle in Hg. Hence let us assume that Hg

contains a cycle ({r1, c1, r2, c2, . . . , cj , rj+1 = r1}, {{ci, ri} | i = 1, . . . j} ∪ {{ci, ri+1} | i =
1, . . . j}). Then, for sufficiently small ε > 0 also g ′ and g′′ with g′((ci, ri)) := g((ci, ri)) + ε,
g′((ci, ri+1)) := g((ci, ri+1))−ε, g

′′((ci, ri)) := g((ci, ri))−ε, g
′′((ci, ri+1)) := g((ci, ri+1))+ε,

for i = {1, . . . , j}, and f ′((c, r)) := g′′((c, r)) := g((c, r)), for all other edges (c, r) ∈ G), are
feasible solutions. Since g is optimum and the cost of g is the arithmetic mean of the costs
of g′ and g′′, both g′ and g′′ are optimum, too. If we choose ε as big as possible, then we
have

∑

c∈Fg′
τg′(c) <

∑

c∈Fg
τg(c) or

∑

c∈Fg′′
τg′′(c) <

∑

c∈Fg
τg(c)

Then, we set g := g′ or g := g′′, respectively, and iterate this method until
∑

c∈Fg
τf (c) ≤

2k − 2. As we have τg(c) ≥ 2 for each c ∈ Fg, then condition (i) will be met, too. Once
we know the set Fg, we can transform g into g′ or g′′ (with the above properties) in time
O(k), and the whole computation can be done in time O(k2 · |Ff |). 2

4.2 Previous Approaches

The fastest known strongly polynomial algorithm for general uncapacitated Minimum
Cost Flow Problems is described by Orlin [1993] and can be implemented to run in
time O(|V (G)|(log |V (G)|)(|E(G)| + |V (G)| log(|V (G)|))). Applied to the Transporta-
tion Problem, the algorithms have a running time of O((n2k + nk2 + (n + k)2 log(n +
k)) log(n+ k)) which is O(n log n(nk+n log n)) for k < n and O(n2 log2 n) if k is constant.
For our instances, these algorithms are much too slow, since their running times grows
more than quadratically with n.

There are other algorithms that exploit the special structure of the minimum cost flow
instances in the Transportation Problem. Kleinschmidt and Schannath [1995] describe
a strongly polynomial algorithm with running time O(n2k log n) (for k < n) which is
slightly better than the direct application of the general minimum cost flow algorithm
mentioned above (if k = o(log n)) but is still quadratic in n. Tokuyama and Nakano [1992,
1995] improve this result (for k = o(n/ log n)) by showing how Orlin’s minimumcost flow
algorithm can be implemented to run in O(nk2 log2 n) on transportation instances.

Matsui [1993] even claims to have an algorithm with running time O(n(k!)2) which would

36 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

10

10

10

10

6
5

1

5

6

c1

c2

c3

c4

10

10

10

10

r1

r2

r3

r4

5

5

15

15

Figure 4.1: A counterexample to the correctness of the algorithm described by Matsui [1993].

be linear in n if k is a constant. He considers instances with
∑

c∈C size(c) =
∑

r∈R cap(r)
which, obviously, does not really change the complexity of the problem. However, the
algorithm contains an error. The method works in two steps: First, an “almost optimal”
mapping h : C×R→ R≥0 is computed. Here, h is called “almost optimal”, if the following
conditions are fulfilled:

(1)
∑

r∈R h((c, r)) = size(c) for all c ∈ C,

(2) h is an optimal solution for the Transportation Problem on the instance
(G, b′, u, cost) with b′(c) := b(c) for c ∈ C and b′(r) :=

∑

c∈C h((c, r)), and

(3) |{r ∈ R |
∑

c∈C h((c, r)) < cap(r)}| = 1.

For an assignment h : C × R → R≥0, the elements of {r ∈ R |
∑

c∈C h((c, r)) < cap(r)}
are called undersaturated, so after the first part of the algorithms, there is only one un-
dersaturated node. In a second step, the almost optimal solution is transformed into an
optimal solution of the initial problem. This step is based on the observation that an
almost optimal solution can be made to an optimal solution without decreasing the flow
on incoming edges of the undersaturated node. However, the computation of the almost
optimal solution in the first step turns out to be wrong. The step starts with an assign-
ment h meeting the first two conditions described above. Then, all undersaturated nodes
are contracted, so the second step can be applied to the contracted graph yielding an
optimal assignment. However, when this optimal assignment in the contracted graph is
used in order to compute a new assignment in the original graph, this new assignment
does not have to meet condition (2). Figure 4.1 shows an instance where the algorithm
will fail. In this instance, we have C = {c1, c2, c3, c4}, R = {r1, r2, r3, r4}, size(c) = 10
for all c ∈ C, cap(r1) = cap(r2) = 5, and cap(r3) = cap(r4) = 15. The red numbers are
the edge costs. The edges which are not shown have costs 100, so they will not be used
in an optimal solution. First, the algorithm would set h((ci, ri)) = 10 for i ∈ {1, . . . , 4}
and h((ci, rj)) = 0 for i 6= j. Then, the two undersaturated nodes r3 and r4 would be
contracted and flow from edges (c1, r1) and (c2, r2) would be rerouted to edges connecting

4.3. OUR ALGORITHM 37

c1 and c2 to the contracted node. In the uncontracted graph, the result would be a map-
ping h′ : C × R → R≥0 with h′((c1, r1)) = h′((c2, r2)) = h′((c1, r4)) = h′((c2, r4)) = 5 and
h′(e) = h(e) on all other edges. The residual graph corresponding to this flow contains a
negative cycle (c3, r4, c2, r3, c3), so it is not optimal (as it has been claimed in the paper)
and will not lead to an optimal solution.

As Matsui’s [1993] algorithm turns out to be wrong, the fastest previously known algorithm
for transportation instances with fixed k was the O(n log2 n) algorithm by Tokuyama and
Nakano [1992, 1995].

For some special cases of the Transportation Problem, faster algorithms are known.
If k = 2, then the problem reduces to the Fractional Knapsack Problem. The
unweighted version of this problem (i.e., size(c) = 1 for all c ∈ C) has been solved by
Blum et al. [1973] with a linear-time algorithm. Adolphson and Thomas [1977], John-
son and Mizoguchi [1978], and Balas and Zemel [1980] show how the algorithm for the
unweighted version can be used as a subroutine for a linear time algorithm of the Frac-
tional Knapsack Problem with weights. The algorithm of Blum et al. can also be
applied almost directly to weighted instances as shown by Vygen [1996] (see also Korte
and Vygen [2002]). Tokuyama and Nakano [1991] describe an algorithm that solves the
Transportation Problem in time O(n(k!)2) if size(c) = 1 for all c ∈ C and cap(r) ∈ N

for all r ∈ R. Ahuja et al. [1994] consider several flow algorithms and examine how fast
they can solve flow problems on bipartite graphs. They show how the minimum cost flow
algorithms presented by Goldberg and Tarjan [1990] can be modified for the Transporta-
tion Problem to run in time O(nk2 + k3 log(kmax{d((c, r)) | c ∈ C, r ∈ R})) or in time
O(nk2 log(kmax{d((c, r)) | c ∈ C, r ∈ R})) even if there are capacities on the graph edges.
These algorithms are not strongly polynomial but if max{d((c, r)) | c ∈ C, r ∈ R} is fixed,
we get an algorithm with running time O(nk2), so the running time grow linearly in n. We
have already mentioned in the previous section the linear-time algorithm by Vygen [1997]
that solves the Transportation Problem for instances where R consists of the four
quadrands of the plane and where one can assign to each element of C a position in the
plane such that d((c, r)) is the L1-distance between the position of c and r. These are very
strong restrictions of the problem, but, as we have seen, this special case has an important
application in VLSI placement.

For the bottleneck version of the Transportation Problem where the objective func-
tion to be minimized is max{d((c, r)) | g((c, r)) > 0}, there is a linear time algorithm for
instances with constant k described by Hochbaum and Woeginger [1999].

4.3 Our Algorithm

We will show how the Transportation Problem can be solved in time O(nk2(log n +
k log k)), so for any fixed value of k, the problem can be solved in time O(n log(n)). As
mentioned above, the fastest previous algorithm (for constant k) had a running time of
O(n log2(n)).

In our algorithm, n minimum cost flow problems on graphs whose size depends only on
k have to be solved, and the running time depends on how fast we can compute min-

38 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

imum cost flows on these small instances. For uncapacitated instances (G, b, u, cost)
(i.e., u(e) = ∞ for all e ∈ E(G)) the best known strongly polynomial algorithms
have a running time of (|V (G)| log |V (G)|(|E(G)| + |V (G)| log |V (G)|)) (Orlin [1993]),
while for the general problem, the best known strongly polynomial running time is
(|E(G)| log |E(G)|(|E(G)| + |V (G)| log |V (G)|)) (Orlin [1993] and Vygen [2002b]). In our
smaller instances, most of the edges are uncapacitated (or their capacity is at least as big as
the total flow to be realized) but there are some edges with capacities. With the following
trick that is due to Ford and Fulkerson [1962] minimum cost flow instances with capacities
can be transformed equivalently into (larger) uncapacitated instances:

Lemma 4.2 (Ford and Fulkerson [1962]) Let (G, b, u, cost) be a minimum cost flow
instance with finite capacities on σ edges. Then, there is an equivalent uncapacitated
minimum cost flow instance with |V (G)| + σ nodes and |E(G)| + σ edges.

Proof: Let Ecap be the set of edges with finite capacities (so we have u(e) = ∞ for
e ∈ E(G) \ Ecap). We define a graph G′ with V (G′) := V (G) ∪Ecap and

E(G′) = (E(G) \Ecap) ∪

{

((v, w), v) | (v, w) ∈ Ecap

}

∪

{

((v, w), w) | (v, w) ∈ Ecap

}

.

For (v, w) ∈ Ecap, we set cost′(((v, w), w)) := cost((v, w)) and cost′(((v, w), v)) := 0. For
e ∈ E(G) \ Ecap, we set cost′(e) := cost(e). Of course, for all e ∈ E(G′), we define
u(e) := ∞. Figure 4.2 illustrates the transformation for a single edge (asuming that no

v

w

b(v)

b(w)

cost((v, w))

v

(v, w)

w

b(v)− u((v, w))

u((v, w))

b(w)

0

cost((v, w))

Figure 4.2: Transformation from an edge (v, w) with capacity u((v, w)) <∞ to two uncapacitated
edges. The supply/demand values are blue and the edge costs are red.

other edges leaving v and w are replaced). Obviously, (G′, b′, u′, cost′) is a flow network,
and G′ has |V (G)| + σ nodes and |E(G)| + σ edges. It remains to prove that the two
instances are equivalent.

First, let f be a flow in (G, b, u, cost). Then, we set f ′(((v, w), w)) := f((v, w)) and
f ′(((v, w), v)) := u((v, w)) − f((v, w)) for (v, w) ∈ Ecap, and f ′(e) := f(e) for e ∈
E(G) \Ecap. It is easy to see that f ′ is a flow in (G′, b′, u′, cost′) with cost′(f ′) = cost(f).

4.3. OUR ALGORITHM 39

For the other direction, let f ′ be a flow in (G′, b′, u′, cost′). We set f((v, w)) :=
f ′(((v, w), w)) for (v, w) ∈ Ecap, and f(e) := f ′(e) for e ∈ E(G) \ Ecap. Again, it is
not difficult to see that f is a flow in (G, b, u, cost) with cost(f) = cost ′(f ′). 2

The idea of our algorithm is based on a Successive Shortest Path Algorithm (see
Jewell [1958], Iri [1960], Busacker and Gowen [1961]) that solves general Minimum Cost
Flow Problems. For our instances, the Successive Shortest Path Algorithm can
be described as follows:

Successive Shortest Path Algorithm

Input: An instance (G, b, u, cost) of the Transportation Problem, as described
above.

Output: A minimum cost flow f in (G, b, u, cost).

©1 f(e) := 0 for all e ∈ E(G).

©2 Let C = {c1, . . . , cn}.

©3 FOR(i = 1 ; i ≤ n ; i+ +)
WHILE(f((s, ci)) < u((s, ci)))

Find a shortest ci-t-path P in Gf,u (w.r.t. the residual edge costs).
γ := min{mine∈E(P) uf (e), uf ((s, ci))}.
Augment f along (s, ci) and P by γ.

The correctness of the algorithm follows from the following theorem (see, again, standard
textbooks, e.g., Korte and Vygen [2002]):

Theorem 4.3 Let (G, b, u, cost) be an instance of a Minimum Cost Flow Prob-
lem with conservative edge costs, and let f be a minimum cost flow in (G, b, u, cost).
Let v, w ∈ V (G) be two vertices, and let P be a shortest v-w-path in Gf,u (with respect
to the residual edge costs costf). Let f ′ be a flow obtained by augmenting f along
P by γ ∈ R where γ is at most the minimum residual capacity on P . Then, f ′ is a
minimum cost flow in (G, b′, u, cost), where b′(v) = b(v) + γ, b′(w) = b(w) − γ and
b′(x) = b(x) for x ∈ V (G) \ {v, w}. 2

This theorem shows that the Successive Shortest Path Algorithm computes correctly
a flow of minimum cost. On the other hand, it is quite obvious that any minimum cost flow g
can be computed by successive augmentations along shortest paths: we run the Successive
Shortest Path Algorithm but set the capacity of each e to min{u(e), g(e)}. If, during
the main loop, one of the shortest paths that we compute in this modified instance was not
a shortest path in the original instance, then the flow g was not optimum as it could be
improved along a negative cycle.

40 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

This leads to the following corollary which shows that we can compute a minimum cost
flow by iterative computations of minimum cost flows between a single supply node and a
single demand node.

Corollary 4.4 Let (G, b, u, cost) be an instance of the Minimum Cost Flow Prob-
lem with conservative edge costs, and let f be a minimum cost flow in (G, b, u, cost).
Let v, w ∈ V (G) be two vertices. Let g be a minimum cost flow in (Gf,u, b

′, uf , cost)
where b′(v) = γ, b′(w) = −γ and b′(x) = 0 for x ∈ V (G) \ {v, w} for some γ ∈ R>0.
Let f ′ be a flow obtained by augmenting f by g, i.e., for edges e with f(e) = 0, we

set f ′(e) := g(e), and for edges e with f(e) > 0, we set f ′(e) := f(e) + g(e) − g(
←
e).

Then, f ′ is a minimum cost flow in (G, b+ b′, u, cost).

Proof: As g could have been computed by the Successive Shortest Path Algo-
rithm, the augmentation by g can be replaced by a number of augmentations along shortest
paths. Thus, the corollary follows from Theorem 4.3. 2

We call an iteration of the main loop in step ©3 of the Successive Shortest Path
Algorithm a phase of the algorithm. In order to bound the running time of the algorithm,
we have to bound the running time of a phase. However, even in the case of integer
edge capacities, the number of augmentations for a single vertex c ∈ C can be as big as
u((s, c)) (if γ = 1 in each augmentation), so a single phase can have a running time that
is exponential in the input. Let f0(e) := 0 for e ∈ E(G), and let fi be the flow at the
end of phase i. In order to get a polynomial running time, we can apply Corollary 4.4 and
replace a complete phase of the algorithm by computing a ci − t-flow of value u((s, ci)) and
minimum cost in Gfi−1

. This method yields a polynomial running time, but the residual
graph Gfi−1

will not be smaller than G. Fortunately, if we sort the nodes in C such that
u((s, c1)) ≥ u((s, c2)) ≥ · · · ≥ u((s, cn)), we do not have to consider the complete residual
graph Gfi−1

but a small subgraph Gi whose size does not depend on n. The vertex set
V (Gi) contains exactly the following nodes:

• R ⊂ V (Gi).

• ci ∈ V (Gi).

• t ∈ V (Gi).

• Ffi−1
⊆ V (Gi).

• For a vertex r ∈ R let M i
r be the set of all vertices c ∈ C with fi−1((c, r)) = u((s, c)).

For each pair of vertices r, r′ ∈ R with M i
r 6= ∅, V (Gi) contains an arbitrary c ∈ M i

r

with

cost((c, r′)) − cost((c, r)) = min{cost((c′, r′)) − cost((c′, r)) | c′ ∈M i
r}.

The edge set E(Gi) contains exactly the following edges:

4.3. OUR ALGORITHM 41

• ((R × {t}) ∪ ({t} ×R)) ∩E(Gfi−1
) ⊂ E(Gi).

• (({ci} ×R) ∪ (R× {ci})) ∩E(Gfi−1
) ⊂ E(Gi).

• For each c ∈ Ffi−1
: (({c} ×R) ∪ (R × {c})) ∩E(Gfi−1

) ⊂ E(Gi).

• Let r, r′ ∈ R be two vertices withM i
r 6= ∅, and let c ∈M i

r∩V (Gi) be the corresponding
vertex in V (Gi). Then {(r, c), (c, r′)} ∩E(Gfi−1

) ⊂ E(Gi).

The size of Gi depends on the number of elements of Ffi−1
. However, as mentioned above,

if |Ffi−1
| > k − 1, we may apply Lemma 4.1 and find a flow f ′i−1 of the same cost with

|Ff ′
i−1

| ≤ k − 1. After each phase of the algorithm, we will call a subroutine Adjust(fi)

that applies the algorithm in the proof of Lemma 4.1, so we always have |Ffi
| ≤ k − 1 and

∑

c∈Ffi
τfi

(c) ≤ 2k−2. Thus, we have |V (Gi)| ≤ k+1+1+(k−1)+k · (k−1) = k2 +k+1

and |E(Gi)| ≤ 2(k + k + (k − 1) · k + 4k · (k − 1)) = 10k2 − 6k. Note that the size of Gi

does not depend on n but only on k.

Transportation Flow Algorithm

Input: An instance (G, b, u, cost) of the Transportation Problem (as described
above)

Output: A minimum cost flow f in (G, b, u, cost).

©1 f(e) := 0 for all e ∈ E(G).

©2 Sort the set of nodes in C such that C = {c1, . . . , cn} with u((s, c1)) ≥ u((s, c2)) ≥
· · · ≥ u((s, cn)).

©3 FOR(i = 1 ; i ≤ n ; i+ +)
Construct Gi.
Compute a minimum cost flow g in (Gi, b

′, uf |E(Gi), costf |E(Gi)) where
b′(ci) = u((s, ci)), b

′(t) = −b′(ci) and b′(v) = 0 for v ∈ (C ∪R) ∩ V (Gi).
Augment f by g.
Set f((s, ci)) = u((s, ci)).
Adjust(f).

Theorem 4.5 The Transportation Flow Algorithm solves the Transporta-
tion Problem in time O(nk2(log n+ k log k)).

Proof: Correctness: Consider a fixed iteration i. If we used the residual graph Gfi−1

instead of the smaller graph Gi in the main loop of the algorithm, then the correctness
would follow from Corollary 4.4.

42 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

We have to show that there is a feasible flow in (Gi, b
′, ufi−1

|E(Gi), costfi−1
|E(Gi)) and

that a minimum cost flow in (Gi, b
′, ufi−1

|E(Gi), costfi−1
|E(Gi)) is a minimum cost flow

in (Gfi−1
, b′, ufi−1

, costfi−1
). To see this, assume that g is a minimum cost flow in

(Gfi−1
, b′, ufi−1

, costfi−1
) computed by the Successive Shortest Path Algorithm. Let

P1, . . . , Pl be the corresponding sequence of augmenting paths. Assume that there is a
path Pj containing a node that is not an element of V (Gi). Choose j as small as possible
with this property. The node sequence of Pj is of the form ci1 , ri2 , ci3 , ri4 , . . . , ciλ−1

, riλ , t
with {ci1 , . . . , ciλ−1

} ⊂ C and {ri2 , . . . , riλ} ⊂ R. Choose κ as small as possible such that
ciκ 6∈ V (Gi). Let g′ be the flow after augmenting along the paths P1, . . . , Pj−1.

Since ciκ 6∈ V (Gi), we have fi−1((ciκ , riκ−1)) ∈ {u((s, ciκ)), 0}. If fi−1((ciκ , riκ−1)) = 0, then
the flow on (riκ−1 , ciκ) must have been augmented during the first j − 1 augmentations, so
(by the choice of j) we can conclude ciκ ∈ V (Gi). Thus, we assume that fi−1((ciκ , riκ−1)) =
u((s, ciκ)). Therefore ciκ ∈ M i

iκ−1
. Note that the total flow augmented along the paths

P1, . . . Pj−1 is smaller than u((s, ci)). So there must be a ci′ ∈ V (Gi) with fi−1((ci′ , riκ−1)) =
u((s, ci′)), g

′((riκ−1 , ci′)) < u((s, ci)) ≤ u((s, ci′)) = fi−1((ci′ , riκ−1)) and cost((ci′ , riκ+1)) −
cost((riκ−1 , ci′)) ≤ cost((ciκ , riκ+1)) − cost((riκ−1 , ciκ)). Therefore, we can replace ciκ in Pj

by ci′ without increasing the length of Pj . This can be done with any vertex outside V (Gi)
occurring in an augmenting path. Therefore, it is sufficient to consider the subgraph Gi.

Running time: Obviously, step ©1 can be done in time O(nk) and step ©2 takes time
O(n log n). The construction of Gi can be done in time O(k2 log n) for each iteration if
one stores each set M i

r in k − 1 heaps: For each pair r, r′ ∈ R with r 6= r′, we use a heap
to store the elements c of M i

r with keyr,r′(c) = cost(c, r′) − cost(c, r). For the worst-case
running time, it does not matter which kind of heaps we use as long as finding an element
with smallest key, inserting, and deleting of an element can be done in time O(log n) for a
heap with n elements.

If we apply the fastest minimum cost flow algorithms for instances with capacities, this
would lead to a running time of O

(

|E(Gi)| · log |E(Gi)| ·
[

|E(Gi)|+ |V (Gi)| · log |V (Gi)|
])

=
O(k4 log2 k) for each minimum cost flow computation. We can improve this by a factor of
Θ(k log k): First, we do not have to add the elements c of the sets M i

r ∩ V (Gi) explicitly
to our vertex set as they have excatly one incoming edge (r, c) and one outgoing edge
(c, r′), so we may connect r and r′ directly by an edge. This edge has capacity size(c), but
by construction this capacity is at least as big as the flow to be realized in the iteration,
so the edge can be considered as uncapacitated. The only edges with capacities are the
ones connecting elements of Ffi−1

to elements of R. But according to Lemma 4.1, their
number is O(k). Hence, we can apply Lemma 4.2 and replace them by O(k) additional
vertices and edges. Putting this together, we can compute the single minimum cost flows on
uncapacitated instances with O(k) vertices andO(k2) edges. Using Orlin’s [1993] algorithm,
this can be done in time O(k3 log k).

Using Lemma 4.1, the flow can be adjusted in time O(k|V (Gi)|) = O(k3). To update
the heaps after a flow augmentation, there are O(k2) delete-operations (at most one per
heap) necessary. The number of insert-operations after a flow augmentation is also O(k2):
only the elements of V (Gi) can be inserted to a heap, and for each heap that stores a set
M i

r, at most one of the elements c′ ∈ V (Gi) for which there is a vertex r′ ∈ R \ {r} with
fi−1((c

′, r′)) = u((s, c′)) can be inserted to M i
r. Since there are at most k − 1 elements

4.3. OUR ALGORITHM 43

c′ ∈ V (Gi) for which there is no r′ ∈ R with fi−1((c
′, r′)) = u((s, c′)) and each vertex can

be added to at most k − 1 heaps, we need at most O(k2) insert-operations. Since no heap
contains more than n elements, each operation can be done in time O(log n). Therefore,
the k(k − 1) heaps can be updated in time O(k2 log n). 2

44 CHAPTER 4. A FASTER TRANSPORTATION ALGORITHM

Chapter 5

Global Placement

This chapter contains a description of our global placement algorithm. We will explain the
algorithm, show how it can be implemented efficiently, and analyze it with a number of
experiments.

5.1 Global Placement by Multisection

Our global placer follows a top-down partitioning strategy. For the partitioning steps
we apply the idea that has been proposed by Vygen [1997]: Starting with a placement
that minimizes quadratic netlength, we try to move the circuits to subregion meeting the
capacity constraint while changing the placement as little as possible. The main difference
between our placer and the method described by Vygen is our new partitioning algorithm.
In the old algorithm, the area is divided into four quadrants and the L1-distance had to
be used to compute the cost of moving a circuit to a region. In contrast to that, we will
apply the Transportation Flow Algorithm presented in the previous chapter.

The theoretical running that we can show for the Transportation Flow Algorithm,
O(n log n) (for fixed k), is slightly worse than the running time of the American-Map Al-
gorithm (O(n)) described by Vygen [1997], but the Transportation Flow Algorithm
solves a much more general problem, as it can handle

• any number of regions,

• any shape of regions, and

• any function defining the distance between circuits and regions.

Figure 5.1 shows how a partitioning with L1-movement as objective function but nine
subwindows may look like. The grey rectangle in the lower left corner are blockages, and,
as in Figure 3.2, the circuits’ colors indicate the region they are assigned to. Similar
to American Maps, the different circuit sets can be separated by horizontal, vertical or
diagonal lines, so the geometric structures we get here can be seen as a generalization of

45

46 CHAPTER 5. GLOBAL PLACEMENT

the American Maps. Of course, for other objective functions, the partitioning may look
completely different.

Figure 5.1: A multisection example.

The estimated cost for moving circuit c to region r may depend, for example, on the
Euclidean distance, on possible connections between c and preplaced objects, on the size
or the shape of c and r, or on the weights of the nets connected to c.

5.2 Improved Partitioning Methods

In partitioning-based placement strategies, as described above, we have to solve the problem
of dividing a set of circuits assigned to a specified area into subsets and to assign these circuit
subsets to subsets of the area meeting some capacity constraints. In this pure recursive
approach (i.e., without local optimization steps like repartitioning), no circuit can leave
the region it has been assigned to in an early stage of the algorithm. Therefore, wrong
decisions in early steps of the run will create more work for local optimization afterwards,
which, or course, increases running time.

5.2. IMPROVED PARTITIONING METHODS 47

We describe a way to handle the problems of recursive partitioning in the context of a
quadrisection based algorithm, but it should be noted that the same problems can occur if
one considers more than 4 windows in a multisection based placer, and the ideas presented
here can also be applied to this case. Other ideas presented in this chapter will not improve
the quality of results but the running time.

5.2.1 Global Partitioning

Figure 5.2 visualizes a situation when a recursive partitioning strategy would lead to un-
necessary movements. According to the QP solution, a set of circuits is placed near the
center of the chip area (symbolized by the green cycle in (Figure 5.2 (a)). In level 1, the
set is assigned to the upper left region. Assume that none of the windows that occur in
level 2 is able to contain the whole set of circuits. Then, if the circuits are not allowed to
leave the upper left region in the partitioning step of level 2, they have to be assigned to
the 4 upper left subregions (b). The problem is, that the algorithm minimizes movement
locally (i.e., in the subregions of a given region) but not globally for the whole chip.

(a) (b) (c)

Figure 5.2: The first two levels of a quadrisection based placement run. The green cycle in picture
(a) symbolizes the placement of the set of circuits in the QP solution of level 0. We assume that,
in level 1, the upper left window is big enough to keep all the circuits while the capacities of the
windows in level 2 are too small to contain all of them. A standard quadrisection step would assign
the circuits to the four upper left regions (b) while an assignment to the four center regions (c)
would lead to a placement much closer to the initial QP solution. Obviously, depending on the
exact circuit position in picture (a), the assigment shown in picture (c) can correspond to a much
smaller total movement than the one shown in picture (b).

To cope with this problem, we can make use of the fact that the Transportation Flow
Algorithm that is used in our partitioning steps can handle any number of regions:
Instead of solving one partitioning in each single window, we can run a multisection parti-
tioning on all windows simultaneously where each circuit can be placed in any subregion.
However, after a few levels, the number of regions would be too large to run the Trans-
portation Flow Algorithm whose running grows fast with this number. But running
time is not the only problem of this approach, we also need a new method that replaces
the constrained QPs. These QPs, that move the centers of gravity of groups of circuits
to certain positions, are necessary in order to get significant differences in the coordinates

48 CHAPTER 5. GLOBAL PLACEMENT

of the circuits before a partitioning. However, in the standard recursive approach, we use
these QPs to move the center of gravity of each the circuit set towards the center of the
old region it is assigned to. If we allow the circuits to leave their region in partitioning,
this strategy is no longer reasonable, since we do not know where to move their center of
gravity. Note that circuits can even be moved out of their window by the constrained QP
which would lead to very bad assignments if the partitioning step does not bring them back
to (the subsets of) their old area. It is not clear how we can add additional constraints to a
QP to spread out circuits a little bit without moving their center of gravity. Possibly, some
iterations of force-directed placement or similar techniques that spread the circuits could
help here.

5.2.2 Iterative Partitioning

Iterative partitioning, that we will propose in this subsection, allows circuits to leave the
area they were assigned to during partitioning and therefore reduces the amount of work
that has to be done by local optimization steps.

In a quadrisection step, we are given a partitioning of the chip area into a set R of l × l
rectangles, given by 2(l− 1) cut lines, and a subdivision R′ of R into (2l)× (2l) rectangles,
given by 2(2l− 1) cutlines such that each region r ∈ R consists of exactly 4 elements of R ′.
In addition, we are given an assignment of the circuits to the rectangles in R and for each
circuit a position in the rectangle it is assigned to. Now, we ask for an assignment of the
circuits to the subregions in R′ such that, if we move each circuit into its subregion, the
total movement costs are minimized.

The iterative partitioning algorithm we propose works in two steps: First, each circuit
is assigned to the subregion r′ ∈ R′ it is placed in. If this assignment does not violate
any capacity constraints, it is obviously optimum since the corresponding movement is 0.
However, in general, we cannot hope that no subregion contains more circuits than fit into it.
In the case that some subregions are too full, we run, similarly to the standard partitioning
approach, single quadrisection steps on 2 × 2-windows, but we do not only consider 2 × 2-
windows that correspond to single windows of the initial partitioning. Instead, we choose
the windows in the following way. For each 2 × 2-window W we compute the maximum
overload ovmax(W) of one of its 4 single windows and the average overload ovav(W), i.e.,
the total size of circuits assigned to the 4 subwindows divided by the total capacity of the 4
windows. In addition, we compute the distance d(W) of the center of gravity of the circuits
in the subwindow with the largest overload to the center of the 2 × 2-window. For each
window W , these numbers are combined in a key (max(1, ovav(W)),−ovmax(W), d(W)).
Then, we ask for a window with lexicographically smallest key. In other words, we ask for
a 2 × 2-window that has enough capacity to contain all circuits assigned to it, but where
one of the subwindow has a large overload, and, as a third criterion, where the circuits
in the subregion with the largest overload are placed near the center of the 2 × 2-window.
We run a single repartitioning step on the 2 × 2-window with the smallest key and accept
the new placement if the maximum overload is reduced (which will normally be the case).
Afterwards we update the keys and continue with the next 2× 2-window until there are no
significant overloads any more. For example, in Figure 5.2 we would have first chosen the

5.2. IMPROVED PARTITIONING METHODS 49

2× 2-window in the center and a single quadrisection step on this window would have lead
to a legal assignment to the regions. The whole procedure is comparable to the standard
repartitioning loop, only the way how we choose the 2 × 2-windows to be optimized and
the way how we decide if a new placement is accepted are different.

5.2.3 More Accurate Movement Costs

One application of the flexibility of multisection is quite obvious: instead of using the
L1-distance between a circuit c and a region r, we can use the distance between C and
the nearest free unblocked position in r where c can be placed. This is, of course, a
more accurate estimation of the cost for moving c to r. Nevertheless, experiments have
clearly demonstrated that such a more accurate estimation does not correspond to shorter
netlength. Often it can even lead to much worse results. For example, consider a group
of strongly connected circuits that are placed by the QP solution on top of a large macro.
Assume that in the next partitioning a vertical cutline in the macro is added and that
both the subregion to the left of the macro and the subregion to the right of the macro
have enough capacity to contain the whole group. In this situation, one rather wants to
move the whole group of circuits to one side of the macro than to partition the group with
minimum movement. However, the more accurate cost function will compute a borderline
between two subgroups of the circuits in the middle of the macro and it is quite likely that
such a partition produces a large cut.

5.2.4 Partitioning with Lookahead

Another way to avoid wrong decisions in partitioning is to have a look in the next level
when computing the assignment of the circuits to the windows. If we want to partition
a window in, say, 4 subwindows r1, . . . r4, we partition each subwindow ri into 4 windows
r1i , . . . r

4
i before we assign the circuits. Then, we compute a multisection for the circuit

list and the 16 subwindows. We assign a circuit to window ri if it was assigned to one
of the windows r1

i , . . . r
4
i . This way, we can see in advance if circuits have to be moved a

long distance inside its window ri in the next level. On the other hand, these partitioning
steps are quite time-consuming, and experiments have shown that the iterative partitioning
produces better results in terms of netlength.

5.2.5 Movebound-Aware Partitioning

In some cases it may be desirable to define certain areas for specified circuits in which
they have to be placed (movebounds). This can be useful if there a regions of different
voltage or if there are IO-drivers or IO-receivers (i.e., circuits connected to an IO-pin) that
have to be placed near their IO-pin. In addition, movebounds can be used if one wants
to compute a new placement that does not differ too much from a previous solution. For
our global placer, the last application is not that important as it is quite stable, so a new
placement with slightly different parameters or local changes in the netlist will generally
lead to similar results.

50 CHAPTER 5. GLOBAL PLACEMENT

There are two ways how multisection can take such movebounds into account. A simple
method consists of defining infinite (or at least very big) costs for moving a circuit into
a window that does not intersect the allowed area for that circuit. This method is easy
to implement and fast but it can compute wrong assignments, if for a bigger number of
circuits, the intersection between their allowed regions and one of the subwindows is the
same small (but non-empty) area. Then, possibly all of them could be assigned to that
window though only a few of them can be placed there without a movebound violation.
To cope with that problem we may partition the subwindows into parts such that for each
circuit and each part, the part is either completely contained in the circuit’s allowed area
or has no intersection with it. Then, the assignment to the smaller parts can correctly
take care of the movebounds. If there is only a very small number of different movebounds
(which should be the case, e.g., in the presence of different voltage regions), this approach
should work. In our applications, we only consider movebounds for IO-pads, so there are
many different allowed regions, and since these regions are spread over the chip area (so
the worst-case behaviour described above will hardly occur), we only tested the simple first
method.

5.2.6 Reducing the Number of Levels

Obviously, multisection can be applied to reduce the number of levels. We could just
replace all quadrisection steps by, for example, 3 × 3-partitionings which would decrease
the number of levels. However, experiments show that this approach does not improve the
running time very much, because the single levels need more time and, in addition, more
repartitioning steps are necessary to get placements of the same quality.

However, at the end of a placement run, the number of horizontal cutlines will generally
be bigger than the number of vertical cutlines. This is due to the fact that we consider
row based designs, so the windows at the end of the global placement are part of row. The
width of these windows is controlled by a user parameter but it is reasonable to choose the
width in such a way that the windows may contain about three or four standard circuits,
so the widths of the windows is significantly bigger than their heights. Therefore, only
horizontal cuts (bisections) are computed in the last levels. We can skip the last levels
if we apply 2 × 3-partitionings in the levels before. If #cuty and #cutx are the numbers
of the horizontal and vertical cutlines at the end of global placement, then the number of
levels can be reduced from dlog2(#cuty)e to max{dlog3(#cuty)e, dlog2(#cutx)e}. We will
demonstrate that we can reduce the number of levels with this trick without increasing the
netlength significantly.

5.2.7 3 × 3-Repartitioning

The size of the regions that we consider in repartitioning can be controlled by a parameter.
In the standard version on BonnPlace, we apply the repartitioning steps to 2×2-windows.
In order to receive an improved netlength, 3 × 3-windows can be used. Experiments will
show that having such a more global view in repartitioning leads to better results but also
increases the running time.

5.3. ACCELERATING THE ALGORITHM 51

5.3 Accelerating the Algorithm

Experiments show that the most time-consuming parts of our global placer are the com-
putation of the QP solutions and the repartitioning. To save running time in these steps,
we will describe how they can be implemented efficiently using a new net model and par-
allelization.

5.3.1 Hybrid Net Model

As mentioned in Section 2, clique is among the linear net models with fixed topology the
best approximation to the Steiner tree net model. Also for quadratic netlength, it seems
to be reasonable to connect all pairs of pins in a net as we do not know in advance how the
routing Steiner tree connecting the pins in a net will look like. However, we have already
noted in Chapter 2 that clique and star with quadratic edge lengths are equivalent, if we
weight the edges of the star by a factor of n

n−1 (for a net with n pins). This is not longer
true if we split nets at cutlines between the partitioning regions. If we use the star net
model together with a paritioning of the chip area into windows, we also have to assign the
additional Steiner node in each net to one window. Obviously, it is a reasonable choice to
assign the Steiner node of a net to a window such that the difference between the number
of pins of the net to the right of the window and the number of pins of the net to the left of
the window is as close to 0 as possible identical (and correspondingly for the pins above and
below the window). Figure 5.3 demonstrates what may happen in such a situation. The
picture shows a net consisting of six pins (indicated by black cycles) that are connected
to one Steiner node (the black square). The chip area is partitioned into 16 windows,
and the pins are placed in the window they are assigned to. For the computation of the
y-coordinate, the connections between the pins and the Steiner node are not split as they
are not cut by a horizontal cutline. For the x-coordinates, three of the connections cross
a cutline and have to be split. Now assume that we remove the rightmost pin p from the
net. This would lead to a different position of the Steiner node in the QP solution, but,
since the connection between pin p′ and the Steiner node is split, it would not change the
position of p′ in the QP solution. With the clique net model, the position of p′ would
depend on the existence of p. As the connection between p and p′ may be important, a
reasonable net model should take the existence of p into consideration when the position
of p′ is computed.

In the old version of BonnPlace (Vygen [1997]), such drawbacks of the star net model
made the usage of the clique model for almost all nets mandatory. Hence, by default only
the very few nets with more than 20 terminals were represented by a star. Experiments
provide evidence that using the star model also for smaller nets leads to worse placements.
On the other hand, using clique for nets with up to 20 pins is quite inefficient since a net
with 20 pins causes 190 non-zero entries in the matrix for the QP computation.

Therefore, we propose a new net model that is equilvalent to clique (i.e., the QP solutions
for the two net models are identical) but for which the connectivity matrix in the QP
formulation is almost as sparse as for star. As the new net model combines useful properties
of star and clique, we call it hybrid net model. The net model is the sum of an x-netlength

52 CHAPTER 5. GLOBAL PLACEMENT

p′

p

Figure 5.3: The star model with cutlines. The six black dots are the pins of a net, and the black
square is the additional Steiner node.

and a y-netlength. We will describe the contribution of the x-netlength, the y-direction
is handled correspondingly. As we only consider x-coordinates, we are only have to take
vertical cutlines into consideration. Assume that the chip area [0,W]× [0,H] is partitioned
by vertical cutlines at positions x0, x1, . . . , xk where x0 = 0 and xk = W . Hence, the
interval [0,W] is parititoned into intervals Ii := [xi, xi+1] (for i ∈ {0, . . . , k − 1}). Let
I := {I0, . . . , Ik−1}. For a netN and an interval I ∈ I letNI be the set of pins inN whose x-
coordinate has to stay in I. Let n0 ∈ N\{0, 1, 2, 3}, and let Ismall := {I ∈ I | 0 < |NI | ≤ n0}
and Ibig := {I ∈ I | |NI | > n0}. Then, we define

Hybrid2
x(N,x0, . . . , xk, n0) :=

1

|N | − 1

[

k−1
∑

i=0

(

i−1
∑

j=0

|NIj
|
∑

p∈NIi

(x(p) − xi)
2 +

k−1
∑

j=i+1

|NIj
|
∑

p∈NIi

(x(p) − xi+1)
2

)

+

∑

I∈Ismall

Clique2
x(NI) +

∑

I∈Ibig

|NI |Star2
x(NI)

]

where Clique2
x(NI) and Star2

x(NI) are the x-components of the quadratic clique and star
net model for the net NI . This means that we use for the subsets NI ⊆ N (for I ∈ I) that
are not divided by cutlines, either the clique net model (if NI is small enough) or the star
net model.

Figure 5.4 illustrates the hybrid net model for a net consisting of nine pins (blue dots).
There are five vertical cutlines at coordinates x1, . . . , x4 creating four intervals I0, . . . , I3.
Again, we focus on the x–coordinates only, so we do not consider horizontal cutlines. We
have |NI3 | = 1, |NI1 | = 5, |NI2 | = 0, and |NI3 | = 3. In this example we assume n0 = 4,
hence Ismall = {I0, I2, I3} and Ibig = {I1}. The artificial fixed pins at the coordinates of
the cutlines are represented by red squares, and their connections to the pins of the net are
shown as red lines. The pins in I1 = [x1, x2] are connected by a star (the black square with

5.3. ACCELERATING THE ALGORITHM 53

x0 x1 x2 x3 x4

Figure 5.4: The hybrid net model for a net with nine pins.

the black edges). The three green lines are the edges of the clique connecting the pins in
the interval I3 = [x3, x4].

The new net model has the following properties:

Lemma 5.1 (a) The hybrid net model and the clique net model lead to the same
QP solutions.

(b) A net N causes at most |N |(n0 +1) non-zero entries in the connectivity matrix.

(c) The contribution of a net N to the connectivity matrix can be computed in time
O(|N |(n0 + log k)).

(d) The number of additional Steiner nodes is |Ibig|.

Proof:

(a) We have |NIi
|Star2(NIi

) = (|NIi
|−1)Clique(NIi

). Using this equality, it is obvious
that the hybrid net model and the clique model are equivalent.

(b) Each p ∈ N is connected to at most n0 − 1 nodes inside its interval and two fixed
nodes at the borders of its interval.

(c) We can compute a list of all I ∈ I with |NI | > 0 sorted by the left border of the
intervals in time O(|N | log k). Using this list, we can compute all connections that
are split and all connections to Steiner nodes easily in time O(|N |). The connections

for the local clique can be computed in time
∑

I∈Ismall

|NI |(|NI |−1)
2 = O(|N |n0).

(d) Trivial. 2

The number n0 is a threshold parameter: for subsets NI ⊆ N with |NI | ≤ n0 we use clique
and for larger subsets, we use the star model. Using the star model for subsets NI with
|NI | ≤ 3 is not reasonable because this would increase the number of Steiner nodes without
decreasing the number of non-zero entries in the matrix. Hence, we demand n0 > 3. The
larger n0 is, the more subsets will be represented by a clique, so the number of non-zero
entries in the matrix grows with increasing values of n0. On the other hand, the number
of additional Steiner nodes is bigger if n0 is small. In our experiments, we choose n0 := 8.

54 CHAPTER 5. GLOBAL PLACEMENT

5.3.2 Parallelization

The QPs that compute, e.g., the x-coordinates of circuits between two cutlines can be
solved without considering the circuits outside the two cutlines. Once we have computed
the set of circuits to be placed between each pair of cutlines, we can solve the global
QP by solving k small equation systems instead of one big system (if we compute the x-
coordinates and the chip area [0,W] × [0,H] is divided by vertical cutlines at coordinates
{x0 = 0, x1, . . . , xk = W}). Of course, solving these smaller equation systems is generally
much faster than solving the big equation system, and since the equation systems can be
solved independently, they allow parallel computation. In addition, we can solve two single
repartitioning steps in parallel if the corresponding areas do not intersection if we project
them to the x- or y-axis. Our implementation contains both sorts of parallelization, and for
our experiments, we run BonnPlace on up to 4 processors. Of course, it is possible to use
more processors, but 4 processors provide a reasonable speedup (as our experiments will
show). Only for very large instances, it may be worthwile to use more than 4 processors.

5.4 Experimental Results

In this section, we will examine some individual aspects of the features and the implemen-
tation of our global placement algorithm. A general study of our whole placement tool
(with comparison to other tools) will be done in Chapter 9. All tests presented in this
chapter were made on an IBM 680 with 600 MHz RS-IV processors. Note using our fastest
available machines instead (Opteron machines with 2.6 GHz processors) would reduce all
running times roughly by a factor of four, but here we are interested only in the relative
performance of different algorithms.

5.4.1 Flow-based Partitioning vs. American Maps

In this subsection, we want to examine how the Transportation Flow Algorithm
used for multisection performs on quadrisection instances. The theoretical running time
is by a logarithmical factor bigger than the running time of the American-Map Algo-
rithm. However, the experiments will show that the flow based partitioning algorithm is,
in practice, even faster than the American-Map Algorithm.

Table 5.1 gives an overview of the results of our experiments with one single quadrisection
step. We ran levels 0 and 1 of BonnPlace and measured the running time for the quadri-
section in level 1, computed either with the American-Map Algorithm or with our
Transportation Flow Algorithm. For one set of experiments, we used the smallest
possible initial density on the chips (results are shown in columns two and three), and for
a second set of experiments, we used 80% as initial density (columns four and five).

We also considered the total running time spent on quadrisection in a complete placement
run. Note that the two algorithms used for quadrisection will normally produce slightly
different solutions. Therefore, the two placement runs will differ a little bit and (from level
two on) the two quadrisection algorithms will get different inputs. Even the number of

5.4. EXPERIMENTAL RESULTS 55

Low Density High Density
Chip American Transportation American Transportation

Map Flow Map Flow

0.9 1.4 0.9 1.4
Jens

+55.6 % +55.6 %

1.6 1.4 1.5 1.3
Hans

-12.5 % -13.3 %

14.1 7.0 10.2 5.4
Christian

-50.4 % -47.1 %

23.8 10.3 16.0 7.6
James

-56.7 % -47.5 %

31.9 21.8 34.1 16.6
Sven

-31.7 % -51.3 %

51.5 22.8 37.2 19.6
Dagmar

-55.7 % -47.3 %

28.9 25.7 23.8 20.6
Dieta

-11.1 % -13.4 %

48.4 35.7 53.8 26.6
Sandra

-26.2 % -50.6 %

47.3 39.1 43.4 36.5
Reinhardt

-17.3 % -15.9 %

150.1 44.3 69.9 33.1
Nadine

-70.5 % -52.6 %

126.8 53.5 131.4 50.0
Hardy

-57.8 % -61.9 %

111.5 78.9 101.8 47.1
Wolf

-29.2 % -53.7 %

Table 5.1: Comparison of the Transportation Flow Algorithm and the American-Map
Algorithm: running time (in seconds) for the first quadrisection step.

quadrisection problems to be solved can vary. Table 5.2 shows the results: Columns two
and three contain the total running time for all quadrisection steps in a placement run,
computed with the American-Map Algorithm or with the Transportation Flow
Agorithm. The average running time reduction shown in the last row is computed by the
geometric mean of the ratios of the running times.

Of course, such experiments compare implementations of algorithms rather than the algo-
rithms themselves. Nevertheless, we can draw the following conclusions from the experi-
ments:

• The Transportation Flow Algorithm is faster on instances with bigger capacity
in the subregions. This is not surprising, since with increasing capacity it is more
likely for a circuit to stay in its initial region, and in this case the minimum cost flow
computation in Gi is trivial.

56 CHAPTER 5. GLOBAL PLACEMENT

American Transportation
Chip

Map Flow

0:01:31 0:01:21
Jens

-11.0 %

0:02:28 0:01:30
Hans

-39.2 %

0:10:25 0:07:15
Christian

-30.4 %

0:16:12 0:12:03
James

-25.6 %

0:30:51 0:22:13
Sven

-28.0 %

0:39:21 0:26:20
Dagmar

-33.1 %

0:41:33 0:30:33
Dieta

-26.5 %

1:01:24 0:48:08
Sandra

-21.6 %

1:09:17 0:50:17
Reinhardt

-27.4 %

1:28:05 0:59:24
Nadine

-32.6 %

1:48:32 1:25:51
Hardy

-20.9 %

1:58:13 1:31:39
Wolf

-22.5 %

Average -26.9 %

Table 5.2: Comparison of the Transportation Flow Algorithm and the American-Map
Algorithm: running time (h:mm:ss) of all quadrisection steps in a placement run.

• The running time of the implementation of the Transportation Flow Algorithm
scales roughly linearly in the input size.

• The implementation of the Transportation Flow Algorithm is significantly
faster than the implementation of the American-Map Algorithm on all input
sizes and densities that we have tested.

One may assume that there are more efficient implementations of the American-Map
Algorithm, but the experimental results show that the Transportation Flow Algo-
rithm is fast enough to be used even on large instances. Therefore, we will always use
the new algorithm to solve partition problems even in the case of quadrisection. Note that
although partitioning is not the most critical part of placement in terms of running time,

5.4. EXPERIMENTAL RESULTS 57

the time for all partitionings in a placement run can sum up to 10% of the total running
time.

5.4.2 Iterative Partitioning

We will examine how the amount of repartitioning can be reduced by using the concept
of iterative partitioning. By experience, it is reasonable to run repartitioning steps at the
end of a placement level as long as the last repartitioning step reduced the netlength by
at least 1 %. With the improved strategy of iterative partitioning, it is sufficient to run
a repartitioning step only if the previous step improved the netlength by at least 8 %,
so normally only one repartitioning step is applied. Figure 5.5 shows why this can be
done without losing anything in terms of netlength. The charts compare the netlength
in a standard BonnPlace run to the netlength in an BonnPlace run with iterative
partitioning. One can see that the increase of netlength caused by the initial partitioning
in each level is much smaller with the new approach. Therefore, we can afford running a
smaller number of repartitioning steps afterwards. Without the new partitioning algorithm,
the reduction of the amount of repartitioning would increase significantly the netlength (by
5.8 % in this example).

The reduced number of repartitiong steps helps, of course, improving the running time.
Table 5.3 compares two BonnPlace versions: The first one runs with standard partitioning
and repartitioning, the second one applies iterative partitioning and reduced repartitioning.
On average, the runtime decreases by 30.1 % and the netlength by 0.5 %. We have also run
experiments with iterative partitioning but without reducing the number of repartitioning
step hoping that this would improve the result. But it turned out that the additional
repartitioning steps did not have an impact on the final netlength that would be worth the
increase of running time.

5.4.3 Multisection Experiments

As a feature, BonnPlace can run 2 × 3-partitionings in the last levels in order to reduce
the number of levels. We tested this method on our chips and compared it to the standard
method. The results are shown in Table 5.4. Note that we used the same initial maximum
density (70 %) in the standard runs and in the runs with reduced number of levels and
increased the allowed density in each level by 1 %. Hence, in the runs with less levels, the
maximum allowed density was somewhat smaller than it was at the end of the runs with
the standard method. This explains, why the netlength is slightly bigger in the run with
the modified version. If the density increment per level is chosen in such a way that the
maximum allowed density at the end of the placement run is the same as in the run with
the old version, then the new version yields almost the same result as the old version.

58 CHAPTER 5. GLOBAL PLACEMENT

0 1 2 3 4 5 6 7 8 9 10 11 12
Level

0

50

100

150

200

250

N
et

le
ng

th

Old partitioning
Iterative partitioning

Figure 5.5: Netlength during placement runs on the chip Dieta. The blue line shows the netlength
for a standard partitioning run and the red line for the same algorithm with the iterative parti-
tioning strategy. The dots on the integer x-coordinates from 1 to 11 correspond to netlengths after
the partitioning in the corresponding level. The additional dots on the fractional x-coordinates
correspond to netlengths after the repartitioning steps. The dot on x-coordinate 12 is the netlength
after legalization.

5.4. EXPERIMENTAL RESULTS 59

Chip
Old Partitioning Iterative Partitioning

CPU time Netlength CPU time Netlength

0:16:48 7.29 m 0:14:53 6.81 m
Jens

- 11.4 % - 6.6 %

0:19:42 7.64 m 0:13:26 7.55 m
Hans

- 31.8 % - 1.2 %

1:40:47 160.48 m 1:07:46 163.99 m
Christian

- 32.8 % + 2.2 %

2:27:01 108.98 m 1:49:01 109.57 m
James

- 25.8 % + 0.5 %

5:30:02 251.93 m 4:16:23 254.10 m
Sven

- 22.3 % + 0.9 %

4:52:54 182.94 m 3:24:28 183.53 m
Dagmar

- 30.2 % + 0.3 %

8:08:56 208.18 m 5:17:10 205.42 m
Dieta

- 35.1 % - 1.3 %

8:31:16 381.78 m 5:57:40 377.76 m
Sandra

-30.0 % - 1.1 %

9:59:07 346.07 m 7:37:59 342.52 m
Reinhardt

- 23.6 % - 1.0 %

12:22:47 368.31 m 8:18:15 380.00 m
Nadine

- 32.9 % + 3.2 %

15:47:41 367.12 m 8:56:58 350.90 m
Hardy

- 43.3 % - 4.4 %

15:18:42 564.96 m 9:36:48 579.42 m
Wolf

- 37.2 % + 2.6 %

Average - 30.1 % - 0.5 %

Table 5.3: Comparison of old partitioning and iterative partitioning.

60 CHAPTER 5. GLOBAL PLACEMENT

Quadrisection only Quadrisection and 2 × 3-partitioning
Chip

Levels Running Time Netlength # Levels Running Time Netlength

9 0:14:53 6.81 m 8 0:13:03 6.84 m
Jens

-12.3 % +0.4 %

9 0:13:26 7.55 m 9 0:13:26 7.55 m
Hans

+ 0.0 % +0.0 %

11 1:07:46 163.99 m 9 0:53:01 165.25 m
Christian

-21.8 % +0.8 %

12 1:49:01 109.57 m 10 1:30:22 110.51 m
James

-17.1 % +0.9 %

12 4:16:34 254.10 m 10 3:37:37 255.40 m
Sven

-15.2 % +0.5 %

11 3:24:28 183.53 m 10 3:08:50 184.17 m
Dagmar

- 7.6 % +0.3 %

11 5:17:10 205.42 m 10 4:48:09 206.49 m
Dieta

- 9.1 % +0.5 %

11 5:57:39 342.52 m 10 5:39:52 344.15 m
Sandra

- 5.0 % +0.5 %

11 7:37:58 377.76 m 10 7:21:31 379.63 m
Reinhardt

- 3.6 % +0.5 %

12 8:18:15 380.00 m 10 7:23:33 383.87 m
Nadine

-11.0 % +1.0 %

11 8:56:59 350.90 m 10 8:49:11 353.58 m
Hardy

- 1.5 % +0.8 %

12 9:36:48 579.42 m 10 8:36:26 586.08 m
Wolf

-10.5 % +1.1 %

Average - 9.8 % + 0.6 %

Table 5.4: Effect of 2 × 3-partitionings in the last levels: number of levels, total running time
(h:mm:ss), and bounding-box netlength are shown.

Chapter 6

Detailed Placement

After global placement, the circuits are spread over the chip area and are assigned to
small regions. In the partitioning steps, we try to meet the capacity constraints of the
subwindows, but in the last levels, this will not always be possible. Hence, there will be
some regions that are too full, but we may assume that there are no larger areas on the
chip that contain too many circuits. Therefore, it will be possible to legalize the placement
by local movements. In this chapter, we will describe a method that computes such a legal
placement while minimizing the total movement of the circuits.

We assume that all macros have been fixed when legalization starts, so we only have to
consider standard circuits. Formally, the problem we deal with is the following: We are
given a rectangular chip image, partitioned into rows of standard height yδ and a set of
rectangular blockages (macros or user-defined blockages). Moreover, we are given a set of
standard circuits, and a location for each of them on the chip area. The task is to place
these objects on integral coordinates within the rows, disjointly from the blockages, and
without any overlaps. The initial positions of the circuits can either be the output of a
global placement or the result of a timing optimization on a placed chip. As we assume
that this initial placement is already optimized (in terms of timing, routability, wirelength
etc.), we try to legalize it while minimizing the (weighted) sum of the (squared) movement
of each circuit. We will show that this legalization has minimum impact on other design
objectives such as wirelength, routability and timing.

6.1 Overview of the Literature

Compared to global placement, the literature on detailed placement is quite sparse. Mostly
greedy heuristics (Wang, Yang, and Sarrafzadeh [2000b], Khatkhate et al. [2004], Kahng
and Wang [2004], Chan, Cong, and Sze [2005], and Chen et al. [2005]) and simulated
annealing approaches (Sarrafzadeh, Wang [1997], see also Sechen [1998] and Wong, Leong,
Liu [1988]) are applied. Some authors combine the detailed placement with postopt steps
that change a given placement locally in order to improve netlength or similar objective
functions (see, e.g., Hur and Lillis [2000], Wang, Yang, and Sarrafzadeh [2000b], and Faroe,
Pisinger, and Zachariasen [2001]).

61

62 CHAPTER 6. DETAILED PLACEMENT

If all circuits have equal width, then the problem can be easily formulated as an assignment
problem (assigning circuits to slots) or, more interestingly, as a transportation problem
(transporting circuits from places with overlaps to free slots). It is natural to divide the
chip area into regions and to formulate a minimum cost flow or a shortest path problem
in a graph whose nodes correspond to the regions, even in the more realistic case where
circuits have different widths. Such an approach has been followed by Doll, Johannes, and
Sigl [1991], Vygen [1998], and Hur and Lillis [2000].

Doll, Johannes, and Sigl [1991] (see also Doll, Johannes, and Antreich [1994]) describe
a combined global and detailed placement algorithm that iteratively tries to improve a
given placement. This method divides the chip area into small regions and optimizes the
placement in each region by solving a transportation problem. In order to allow for escaping
from local optima, the algorithm works with overlapping regions.

In the detailed placement algorithm proposed by Vygen [1998], the chip area is divided
into areas of height yδ. If there are areas that contain more circuits than fit into it, a
minimum cost flow problem is solved in order to decide between which areas circuits have
to be moved. This step is repeated until there is no area that contains too many circuits.
Then, each area can be legalized separately.

Hur and Lillis [2000] compute a shortest path between a region with an overload to a region
with free capacity. In their shortest path instance, the cost of a directed edge between two
regions is the minimal cost for moving a circuit from the head to the tail of the edge. By
moving circuits along the edges of the path from one region to another, they iteratively
reduce violations of the capacity constraints.

Only for very restricted subproblems of the detailed placement problem, optimal polynomial
time algorithms are known: Hur and Lillis [2000], Kahng, Tucker, and Zelikovsky [1999],
Brenner and Vygen [2000], and Garey, Tarjan, and Wilfong [1988] describe algorithms that
can be applied to the problem of legalizing a placement in a single row with additional
ordering constraints (see Section 6.7).

Recently, Ren et al. [2005] proposed a “circuit-diffusion algorithm” that does not end up
with a legal placement but can be seen as a preprocessing step before legalization. It spreads
the circuits in such a way that they can be legalized afterwards by a simple greedy strategy
without causing significant additional movement. To compute the spreading, the authors
divide the chip area into tiles and compute for each tile its local density, i.e., the total size
of circuits in it divided by its capacity. Then, for each circuit, the density in its tile and
the densities in the two horizontally neighbouring tiles are used to compute its horizontal
movement. Correspondingly, vertical movements are computed, and all circuits are moved
over a short distance according to these numbers. Similar to force-directed placement, the
method is iterated untill a sufficient spreading is reached. The strategy does not seem to
make sense for a legalization after global placement because then circuits should be spread
well enough for legalization, but after a timing optimization it may happen that there are
some hot spots where many additional buffers or inverters have been inserted. In order to
move circuits away from these critical areas, some iterations of the circuit diffusion may be
reasonable.

6.2. PREPROCESSING WITH GLOBAL PLACEMENT 63

6.2 Preprocessing with Global Placement

For our legalization approach, we assume that circuits are distributed over the chip area
such that all circuits can be legalized close to their given position. If the input to legalization
is the result of a global placement this will be the case, but, as mentioned above, a timing
optimization may lead to some areas that are much too full. Figure 6.1 (a) illustrates this
for an ASIC with about 400 000 circuits. The picture shows a “balance table” of the chip
after a timing optimization. This means that the colors indicate how full the areas are:
green and blue colors mean that there is some free capacity while red and pink areas are
too full. The hot pink areas have an overload of at least 20 %. Blocked parts of the chip
are show in black. It should be clear that a legalization that only wants to apply local
changes to the placement would have a hard time on this instance. In order to receive
a reasonable legalization instance even in such cases, we propose the following strategy:
before legalization, we run a global placement (or at least the last levels of it), but in this
placement we connect each circuit by an artificial net to its initial position. If we put a
weight of 1 on these artificial nets (which is the default value for all nets), the QP solution in
level 0 will reproduce the given placement quite well, and the global placer will only change
the placement in parts of the chip where the density constraints are violated. Figure 6.1
(b) shows the balance table for such a placement. We can see that there are only some
small density violations and the legalization should be able to fix these. Hence, we always
assume that the input of our legalizer corresponds to a balance table that is comparable to
Figure 6.1 (b).

6.3 Our Approach

Our legalization algorithm consists of three phases. The first phase is based on a minimum
cost flow computation that decides where circuits will be moved in order to reduce the
overload in areas that are too full. After this first phase, circuits can be legalized within
their row which is done in the second phase using known algorithms for optimal single-row
placement. After phase two, the placement is legal. The third phase consists of a postopti-
mization routine that is able to reduce the largest movements of circuits during legalization.
This is based on a shortest-path formulation that is solved by dynamic programming.

The following sections will give a detailed description of our legalization algorithm.

6.4 Minimum Cost Flow Formulation

The chip area is partitioned into columns of equal size, and at least for the first phase of
our algorithm, we consider all circuits wider than twice the width of the columns to be
fixed at their position.

We call a maximal part of a row that is either completely free (i.e., it does not intersect
any blockage) or completely blocked a zone. A non-empty intersection of a column and a
zone is called a region. (see Figure 6.2). The task is to place the circuits disjointly in the

64 CHAPTER 6. DETAILED PLACEMENT

(a)

(b)

Figure 6.1: Balance tables for a placement after timing optimization (a) and after some global
placement levels on this placement (b).

6.4. MINIMUM COST FLOW FORMULATION 65

free zones.

(a) (b)

Figure 6.2: The placement area of a chip consisting of eight rows with three preplaced macros
(grey). In (a) the 44 regions are shown, picture (b) shows the 22 zones.

The first two phases of our algorithm work as follows. First, we move circuits between zones
such that no zone contains more circuits than fit into it. In a second step, we compute
feasible locations for each circuit in the zone it is assigned to.

However, if we just follow this strategy, movement within the zones is not considered at
all in the first phase, and therefore large movements within wide zones may be necessary
in the second phase. Figure 6.3 shows five circuits that are placed in one of two zones. If
we only considered zones, the assignment of all circuits to the lower zone would be feasible
(and cheapest) but in order to minimize movement, two of the circuits should leave their
zone. Generally spoken, we have to assign the circuits to the zones in such a way that they
can be placed there without being moved too far within the zone. Experiments clearly
demonstrated that ignoring this horizontal movement within the zones during the first
phase yields poor results.

���

���
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
����������������������������

���������������
���������������
���������������
���������������

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���

Figure 6.3: Two zones of a chips containing five circuits. The circuits could be placed in the lower
zone, but if two of them were moved to the upper zone, the total movement could be reduced.

To cope with this problem, we start by using regions rather than zones and allow circuits
to belong to two horizontally adjacent regions. If necessary, we iterate this with increasing
region widths and may finally use even complete zones. But then only relatively few circuits
have to be moved before we have a feasible assignment to the zones.

We fix a global order of the circuits that is induced by the left-to-right-order of the x-
coordinates of their centers before the legalization starts. For the rest of this chapter let

66 CHAPTER 6. DETAILED PLACEMENT

{A1, . . . , Al} be a set of unblocked regions that form a zone (ordered from left to right).
Let C i = {ci1, . . . , c

i
ki
} be the set of circuits that are assigned to region Ai, ordered with

respect to the fixed global order (for i ∈ {1, . . . , l}). The width of region Ai is denoted by
w(Ai), and, as usual, the width of a circuit cij by w(cij). The width of a set of regions or

circuits is the sum of the single widths. Let C = C 1 ∪ · · · ∪ C l.

Previous approaches required each set {ci1, . . . , c
i
ki
} to be placed completely within the

region ri. However, this causes a lot of unnecessary movement because the subdivision
of the zones into regions is only an artificial construction for the algorithm and there is
no reason why circuits should not overlap two neighbouring regions. Therefore, we only
require that the center of each circuit cij is placed within Ai (for i = 1, . . . , l, j = 1, . . . , ki),
and that there are no overlaps of circuits. We will call such a placement legal. What we are
looking for is a legal placement that respects our given left-to-right order. We will call an
assignment of the circuits to the regions a feasible assignment if there is a legal placement
with respect to that assignment and the given left-to-right order. In the first part of the
legalization, we search for such a feasible assignment.

To decide if an assignment of circuits is feasible (and, in the case that it is not feasible,
to decide how to make it feasible) we cannot consider the regions separately but we have
to consider sets of consecutive regions. We will call such a set of consecutive regions an
interval. We denote the interval that consists of the regions Aµ, Aµ+1, . . . , Aν−1, Aν as Aµ,ν

(for 1 ≤ µ ≤ ν ≤ l).

The vertex set of the graph G that we construct for the minimum cost flow instance consists
of all regions and some intervals. We have so-called supply intervals which are too full and
demand intervals which contain some free space.

To simplify the notation, we may assume w.l.o.g. that for each zone {A1, . . . , Al} we have
w(c11) = w(clkl

) = 0 and that there are two additional regions A0 and Al+1 with w(A0) =

w(Al+1) = 0, k0 = kl+1 = 1, and w(c01) = w(cl+1
1) = 0.

6.4.1 The Supply Nodes

If w(C i) (:=
∑ki

j=1w(cij)) is greater than w(Ai) for an i ∈ {1, . . . , l}, then, of course, the

circuits in C i do not fit completely into Ai. But if w(C i) − 1
2

(

w(ci1) + w(ciki
)
)

≤ w(Ai),
then there is still a chance to find a feasible placement, provided that there is enough free
capacity in the regions that are horizontal neighbours of Ai.

To compute the size of circuits that have to be removed from an interval Aµ,ν we define for
1 ≤ µ ≤ ν ≤ l:

sµ,ν := max







ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w(cµ1) +w(cνkν
)
)

, 0







.

We will show that if we have sµ,ν = 0 for all µ, ν with 1 ≤ µ ≤ ν ≤ l, then all circuits in
the zone can be placed feasibly.

6.4. MINIMUM COST FLOW FORMULATION 67

For 1 ≤ µ ≤ ν ≤ l we define recursively:

supp(Aµ,ν) := max















sµ,ν −
∑

µ≤µ′≤ν′≤ν

(µ,ν)6=(µ′,ν′)

supp(Aµ′,ν′), 0















.

For 1 ≤ ν < µ ≤ l, it is convenient to define sµ,ν := supp(Aµ,ν) := 0. An interval Aµ,ν (for
µ, ν ∈ {1, . . . , l}) is called a supply interval if supp(Aµ,ν) > 0.

Figure 6.4 shows an example of a zone that consists of three regions A1, A2, and A3 each
of which has width 15. Obviously, the placement is not legal. We could place the cir-
cuits of each single region legally within their region (without considering the other re-
gions) but we cannot do this simultaneously for all regions or for at least two neigh-
bouring regions. The supply numbers are: supp(A1,1) = supp(A2,2) = supp(A3,3) = 0,
supp(A1,2) = supp(A2,3) = 1, supp(A1,3) = 4 − 1 − 1 = 2. The interpretation of these
numbers is that circuits of total size 4 have to be removed from the complete zone, but
that (among these cells) circuits of size of at least 1 have to be removed from A1,2 and
from A2,3, respectively. So, for example, removing the circuit c22 of width 5 from region A2

would be sufficient, while removing a circuit of width 4 from region A1 or A2 would not
lead to a feasible assignment. With similar examples it can be shown that supply intervals
can consist of arbitrarily many regions.

A1 A2 A3

4 4 6 8 5 8 6 4 4

c12 c13 c14 c21 c22 c23 c31 c32 c33

Figure 6.4: A supply interval consisting of three regions of width 15. The numbers are the widths
of the circuits. The dummy circuits c01, c

1
1, c

3
4, and c41 of width 0 are not shown.

6.4.2 The Demand Nodes

To compute the free space in an interval Aµ,ν we also have to consider the neighbouring
regions of Aµ,ν (1 ≤ µ ≤ ν ≤ l). For two numbers µ, ν with 1 ≤ µ ≤ ν ≤ l we define:

tµ,ν := min







ν
∑

i=µ

(

w(Ci) − w(Ai)
)

+
1

2

(

w(Cµ−1
kµ−1

) + w(Cν+1
1)

)

, 0







.

For 1 ≤ µ ≤ ν ≤ l we define recursively:

dem(Aµ,ν) := min















tµ,ν −
∑

µ≤µ′≤ν′≤ν

(µ,ν)6=(µ′,ν′)

dem(Aµ′ ,ν′), 0















.

68 CHAPTER 6. DETAILED PLACEMENT

For 1 ≤ ν < µ ≤ l we define tµ,ν = dem(Aµ.ν) = 0. We call an interval Aµ,ν with
dem(Aµ,ν) < 0 a demand interval.

Figure 6.5 shows an example of a zone that consists of three regions A1, A2, and A3.
Again, each region has width 15. In this example, we get the demand values dem(A1,1) =
dem(A2,2) = dem(A3,3) = dem(A1,2) = dem(A2,3) = 0, and dem(A1,3) = −4. Note that
region A2 is part of a demand interval although it contains circuits with larger total size
than region A1 in Figure 6.4 which is part of a supply interval. As for the supply intervals,
there are similar examples that show that there can be arbitrarily large demand intervals.

A1 A2 A3

5 5 2 6 5 6 2 5 5

c12 c13 c14 c21 c22 c23 c31 c32 c33

Figure 6.5: A demand interval consisting of three regions of width 15. The numbers are the widths
of the circuits. Again, the dummy circuits c01, c

1
1, c

3
4, and c41 of width 0 are not shown.

The following lemma is important for the analysis of our legalization algorithm. We have
to ensure that during the flow realization (to be explained in Section 6.5) for an interval
Aµ,ν (1 ≤ µ ≤ ν ≤ l) circuits of a total size supp(Aµ,ν) are removed from the interval (if
Aµ,ν is a supply interval) or circuits of a total size at most −dem(Aµ,ν) are added to the
interval (if Aµ,ν is a demand interval).

Lemma 6.1 No region can be both part of a demand interval and part of a supply
interval.

Proof: Let Aµ,ν be a demand interval and let Aκ,λ be a supply interval. Assume that
Aµ,ν and Aκ,λ intersect, i.e., that κ ≤ ν and µ ≤ λ.

Case 1: κ ≤ µ ≤ ν ≤ λ.
Using the definition of supp(Aκ,µ−1) we get

µ−1
∑

i=κ

(

w(C i) −w(Ai)
)

−
1

2

(

w
(

cκ1

)

+ w
(

cµ−1
kµ−1

))

≤
∑

κ≤κ′≤µ′≤µ−1

supp(Aκ′,µ′), (6.1)

and the definition of supp(Aν+1,λ) yields

λ
∑

i=ν+1

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cν+1
1

)

+ w
(

cλkλ

))

≤
∑

ν+1≤ν′≤λ′≤λ

supp(Aν′,λ′). (6.2)

Since Aµ,ν is a demand interval we also have tµ,ν < 0, so

ν
∑

i=µ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

+ w
(

cν+1
1

)

)

< 0. (6.3)

6.4. MINIMUM COST FLOW FORMULATION 69

Summing up inequalities (6.1), (6.2), and (6.3) and using the fact that sκ,λ > 0, we can
conclude

sκ,λ =

λ
∑

i=κ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cκ1

)

+ w
(

cλkλ

))

<
∑

κ≤κ′≤λ′≤λ

(κ,λ)6=(κ′,λ′)

supp(Aκ′,λ′),

so we have supp(Aκ,λ) = 0, which is a contradiction to the assumption that Aκ,λ is a
supply interval.

Case 2: µ ≤ κ ≤ λ ≤ ν. This case is very similar to case 1:
Using the definition of the demand values, we have

κ−1
∑

i=µ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

+w
(

cκ1

))

≥
∑

µ≤µ′≤κ′≤κ−1

dem(Aµ′ ,κ′) (6.4)

and

ν
∑

i=λ+1

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cλkλ

)

+ w
(

cν+1
1

))

≥
∑

λ+1≤λ′≤ν′≤ν

dem(Aλ′ ,ν′). (6.5)

Since Aκ,λ is a supply interval we also have

λ
∑

i=κ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cκ1

)

+ w
(

cλkλ

))

> 0. (6.6)

We sum up equations (6.4), (6.5), and (6.6) and use tµ,ν < 0:

tµ,ν =

ν
∑

i=µ

(

w(C i) −w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

+ w
(

cν+1
1

))

>
∑

µ≤µ′≤ν′≤ν

(µ,ν)6=(µ′,ν′)

dem(Aµ′ ,ν′),

so we have dem(Aκ,λ) = 0, again a contradiction.

Case 3: κ < µ ≤ λ < ν.
We have

supp(Aκ,µ−1) ≥ sκ,µ−1 −
∑

κ≤κ′≤µ′≤µ−1
(κ,µ−1)6=(κ′,µ′)

supp(Aκ′,µ′).

70 CHAPTER 6. DETAILED PLACEMENT

Since Aκ,λ is a supply interval and Aµ,ν is a demand interval we can conclude:

supp(Aκ,λ) = sκ,λ −
∑

κ≤κ′≤λ′≤λ

(κ′,λ′)6=(κ,λ)

supp(Aκ′,λ′)

≤ sκ,λ −
∑

κ≤κ′≤µ′≤µ−1

supp(Aκ′,µ′)

≤ sκ,λ − sκ,µ−1

≤
λ
∑

i=κ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cκ1

)

+ w
(

cλkλ

))

−

µ−1
∑

i=κ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cκ1

)

+w
(

cµ−1
kµ−1

))

=

λ
∑

i=µ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

−w
(

cλkλ

))

=

λ
∑

i=µ

(

w(C i) − w(Ai)
)

+

ν
∑

i=λ+1

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

+ w
(

cν+1
1

))

−
ν
∑

i=λ+1

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cλkλ

)

+ w
(

cν+1
1

))

≤
ν
∑

i=µ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cµ−1
kµ−1

)

+w
(

cν+1
1

))

− dem(Aλ+1,ν) −
∑

λ+1≤λ′≤ν′≤ν

(λ′,ν′)6=(λ+1,ν)

dem(Aλ′,ν′)

≤ tµ,ν −
∑

µ≤µ′≤ν′≤ν

(µ′,ν′)6=(µ,ν)

dem(Aµ′ ,ν′)

= dem(Aµ,ν).

This is, of course, a contradiction.

Case 4: µ < κ ≤ ν < λ.
This case is symmetric to Case 3 and can be handled correspondingly. 2

6.4.3 The Minimum Cost Flow Problem

To move circuits from supply nodes to demand nodes, we set up a minimum cost flow
problem. We construct a graph G with vertex set V (G) that contains of all regions and the
supply and demand intervals. In addition, it is convenient to insert a super-source s and a
super-sink t. Graph vertices that are regions are called region vertices or region nodes and
vertices that are intervals are called interval vertices or interval nodes.

Two region vertices are connected by a pair of two edges with opposite directtion of infinite
capacity if the regions are adjacent. For an edge (A,A′) between two region nodes, the

6.4. MINIMUM COST FLOW FORMULATION 71

number cost((A,A′)) should denote 1
γ

times the cost for moving circuits of total width γ

from A to A′ for any γ ∈ N. Naturally, such edge costs do not exist, and we have to work
with rough estimates (for example by considering the cost of moving the three cheapest
circuits, divided by their total width, and some extra positive cost for the case when
there are less than three circuits in zone A). We may introduce parallel edges with finite
capacity and different costs to partially overcome this difficulty. Usually the edge costs
will be nonnegative, but when we consider objectives other than minimizing movement,
some moves may be profitable. However, we require that every directed cycle in G has
non-negative total cost.

The node s is connected to each supply node A by an edge (s,A) of zero cost and capacity
supp(A). The node t is connected to each demand node A by an edge (A, t) of zero cost
and capacity −dem(A). If A′ is a supply node and A is in V (G) \ {s, t, A′} such that A is
contained (as a region node or a subinterval) in A′, then we insert an edge from A′ to A of
infinite capacity and zero cost. Similarly, if A′ is a demand node and A is in V (G)\{s, t, A′}
such that A is contained in A′ then we insert an edge from A to A′ of infinite capacity
and zero cost. We also add edges of infinite capacity and zero cost from t to each region
or interval node of the graph. Figure 6.6 illustrates this contruction on a small example
(without the edges leaving t).

A1 A2 A3

A4 A5 A6

A1 A2 A3

A4 A5 A6

A5,6

A1,2A1,3

s t
supp(A1,3)

supp(A1,2)

dem(A5,6)

Figure 6.6: Minimum cost flow instance for a chip area consisting of six regions. Intervals A1,2

and A1,3 are supply intervals (marked by red lines), interval A5,6 is a demand interval (marked by
the green line). The edges leaving the node t are not shown. The numbers on the red edges are
the capacities, the black and the blue edges have infinite capacity. The costs on the red and the
black edges are 0, while the costs on the blue edges estimate the cost for moving a circuit of width
1 between the two corresponding regions.

We can assume that the sum of all supply values is less than or equal to the absolute value
of the sum of all demand numbers. This assumption is reasonable, since otherwise the total
size of all circuits was larger than the size of the non-blocked area. With this assumption,
we have for any maximum s-t-flow f in the flow network that f((s,A)) = supp(A) for each
supply node A.

What we are looking for is a maximum s-t-flow f of minimum cost. With the algo-
rithms described by Orlin [1993] or Vygen [2002b] such a flow can be computed in time

72 CHAPTER 6. DETAILED PLACEMENT

O(m logm(m + n log n)) where n is the number of nodes and m the number of edges.
In our implementation, we apply a network simplex algorithm for the computation of
the flow. It is not the fastest minimum cost flow algorithm in terms of worst-case run-
ning time (Armstrong and Jin [1997] show how it can be implemented in to run in time
O(mn(m+ n log n) log n)), but it performs very well on our instances. Nevertheless, if the
flow computation turns out to be too slow on larger instances, one can partition the chip
area and the corresponding graph into smaller parts and solve the minimum cost flow prob-
lem on these parts. However, our experiments show that this is not necessary for current
VLSI instances.

The result of the minimum cost flow algorithm determines where circuits should be moved.
If A and A′ are region nodes and there is a flow of size f((A,A′)) on edge (A,A′), then
circuits of a total size of f((A,A′)) should be moved from zone A to zone A′. We call such
a movement an (exact) realization of f . We shall describe our flow realization method in
Section 6.5.

Observe that none of the edges leaving t will be used by an optimum flow if all edges have
positive cost. But even in this case they have a meaning. As we cannot always realize
a given flow exactly, we can try to realize another maximum s-t-flow which has slightly
higher cost than optimum. This will usually require the use of some edges leaving t.

In order to analyse the effect of a realization of the flow f , the following lemma will be
useful:

Lemma 6.2 (a) Let µ, ν ∈ {1, . . . , l} be indices such that Aµ,ν is the union of
supply intervals and every supply intervals that intersects Aµ,ν is contained in
Aµ,ν . Then, we have

∑

µ≤µ′≤ν′≤ν

supp(Aµ′,ν′) =

ν
∑

i=µ

(w(C i) − w(Ai)) −
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

.

(b) Let µ, ν ∈ {1, . . . , l} indices such that Aµ,ν is the union of demand intervals
and every demand intervals that intersects Aµ,ν is contained in Aµ,ν . Then, we
have

∑

µ≤µ′≤ν′≤ν

dem(Aµ′ ,ν′) =

ν
∑

i=µ

(w(C i) − w(Ai)) +
1

2

(

w
(

cµ−1
kµ1−1

)

+ w
(

cν+1
1

))

.

Proof:

(a) By definition of supp(Aµ,ν) we have

∑

µ≤µ′≤ν′≤ν

supp(Aµ′,ν′) ≥
ν
∑

i=µ

(w(C i) − w(Ai)) −
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

,

and if Aµ,ν is a supply interval, we have equality. So, let us assume that Aµ,ν is

6.4. MINIMUM COST FLOW FORMULATION 73

not a supply interval. Let Aµ1,ν1 , . . . , Aµρ,νρ be a set of ρ supply intervals such that
Aµ,ν =

⋃ρ
j=1Aµj ,νj

and such that no interval Aµj ,νj
is contained in a larger supply

interval (for j = 1, . . . , ρ). Let the intervals Aµj ,νj
be sorted such that µj < µj+1 and

νj < νj+1 for j = 1, . . . , ρ. Then, we have

∑

µ≤µ′≤ν′≤ν

supp(Aµ′,ν′) =

ρ
∑

j=1

∑

µj≤µ′≤ν′≤νj

supp(Aµ′,ν′) −

ρ
∑

j=2

∑

µj≤µ′≤ν′≤νj−1

supp(Aµ′,ν′)

≤

ρ
∑

j=1

sµj ,νj
−

ρ
∑

j=2

sµj ,νj−1

≤

ρ
∑

j=1





νj
∑

i=µj

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

c
µj

1

)

+ w
(

c
νj

kνj

))





−

ρ
∑

j=2





νj−1
∑

i=µj

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

c
µj

1

)

+ w
(

c
νj−1

kνj−1

))





=
ν
∑

j=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

.

(b) The equality can be proven analogously to part (a). 2

Now, we will examine the effect of a realization of a minimum cost flow in G. Whether
removing a set C ′ of circuits from a supply interval A will lead to a feasible assignment,
does, in general, not only depend on the total size of the removed circuits, but also on the
choice of the circuits. This is because the leftmost or the rightmost circuit of a region may
be removed. We call a movement that does not change the leftmost and the rightmost
circuit of each non-empty region an interior movement.

If we can realize the flow with interior movements, then we will get a feasible assignment:

Theorem 6.3 Let f be a solution of the above-described minimum cost flow problem.
Then, the result of an interior movement that realizes exactly the flow values of f
yields a feasible assignment of the circuits.

Proof: Let {A1, . . . , Al} be a set of unblocked regions that form a zone. To prove the
claim of the theorem it is sufficient to show that for each interval Aµ,ν in the zone we have
the inequality

ν
∑

i=µ

(

w(C i) − w(Ai)
)

≤
∑

µ≤µ′≤ν′≤ν

supp(Aµ′,ν′) +
∑

Aµ′,ν′∩Aµ,ν 6=∅

dem(Aµ′,ν′) +
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

(6.7)

Let 1 = µ1 ≤ ν1 ≤ µ2 ≤ ν2 ≤ · · · ≤ µρ ≤ νρ = l be indices with µj+1 = νj + 1 (for
j = 1, . . . , ρ− 1) such that each Aµj ,νj

either does not intersect any demand interval (then
we call Aµj ,νj

an interval of type 1) or is the union of demand intervals (then we call Aµj ,νj

74 CHAPTER 6. DETAILED PLACEMENT

an interval of type 2). Let ρ be as small as possible with this property, so if Aµj ,νj
is the

union of demand intervals, then it contains all demand intervals that intersect it.

Let Aµ,ν be an interval in the zone. We will show that (6.7) is valid for Aµ,ν . If Aµ,ν is
contained in an interval Aµj ,νj

of type 1, inequality (6.7) follows from the definition of the
supply values. If Aµ,ν is contained in an interval Aµj ,νj

of type 2, we can apply Lemma
6.2 (b) to Aµj ,νj

and have:

∑

µ′,ν′:
A

µ′,ν′ ∩Aµ,ν 6=∅

dem(Aµ′,ν′) =
∑

µj≤µ′≤ν′≤νj

dem(Aµ′,ν′) −
∑

µj≤µ′≤ν′≤µ−1

dem(Aµ′,ν′) −
∑

ν+1≤µ′≤ν′≤νj

dem(Aµ′,ν′)

=

µ−1
∑

i=µj

(

w(C i) − w(Ai)
)

+

ν
∑

i=µ

(

w(C i) − w(Ai)
)

+

νj
∑

i=ν+1

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

c
µj−1
kµj−1

)

+ w
(

c
νj+1
1

))

−
∑

µj≤µ′≤ν′≤µ−1

dem(Aµ′ ,ν′) −
∑

ν+1≤µ′≤ν′≤νj

demAµ′,ν′

≥
ν
∑

i=µ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

c
µj−1
kµj−1

)

+w
(

c
νj+1
1

))

−
1

2

(

w
(

c
µj−1
kµj−1

)

+ w
(

cµ1

))

−
1

2

(

w
(

cνkν

)

+ w
(

c
νj+1
1

))

=

ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1
)

+ w
(

cνkν

))

This shows that inequality (6.7) holds for Aµ,ν .

Now we consider the case that Aµ,ν is not completely contained in any interval Aµj ,νj
.

Assume that there is an interval Aµj ,νj
that is completely contained in Aµ,ν (for an index

j ∈ {1, . . . , ρ}). If Aµj ,νj
is of type 1, then we have

νj
∑

i=µj

(

w(C i) − w(Ai)
)

≤
∑

µj≤µ′≤ν′≤νj

supp(Aµ′,ν′) +
1

2

(

w
(

c
µj

1

)

+w
(

c
νj

kνj

))

. (6.8)

If Aµj ,νj
is of type 2, then Lemma 6.2 (b) implies

νj
∑

i=µj

(

w(C i) − w(Ai)
)

=
∑

µj≤µ′≤ν′≤νj

dem(Aµ′,ν′) −
1

2

(

w
(

c
µj−1
kµj−1

)

+ w
(

c
νj+1
1

))

. (6.9)

Now assume that Aµj ,νj
intersects Aµ,ν , but neither Aµj ,νj

is contained in Aµ,ν nor Aµ,ν is
contained in Aµj ,νj

. W.l.o.g. we can assume that µ < µj ≤ ν < νj. If Aµj ,νj
is of type 1,

we have

∑

µj≤µ′≤ν′≤ν

supp(Aµ′,ν′) ≥
ν
∑

i=µj

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

c
µj

1

)

+ w
(

cνkν

))

. (6.10)

6.4. MINIMUM COST FLOW FORMULATION 75

If Aµj ,νj
is of type 2, then we can conclude (applying Lemma 6.2 (b) to Aµj ,νj

):

∑

A
µ′,ν′ ∩Aµ,ν 6=∅

µj≤µ′≤ν′≤νj

dem(Aµ′,ν′) =
∑

µj≤µ′≤ν′≤νj

dem(Aµ′,ν′) −
∑

ν+1≤µ′≤ν′≤νj

dem(Aµ′ ,ν′) (6.11)

≥

νj
∑

i=µj

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

c
µj−1
kµj−1

)

+ w
(

c
νj+1
1

))

−

νj
∑

i=ν+1

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cνkν

)

+ w
(

c
νj+1
1

))

=

ν
∑

i=µj

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

c
µj−1
kµj−1

)

− w
(

cνkν

))

.

Since the types of the intervals Aµ1,ν1 , . . . , Aµρ,νρ alternate, summing up the inequalities
(6.8), (6.9), (6.10) and (6.11) for all intervals Aµj ,νj

that intersect Aµ,ν shows the correctness
of inequality (6.7). 2

Theorem 6.3 shows that the absolut values of the supply and demand numbers we have
defined are big enough, while the following theorem shows that if we want to have a feasible
assignment after any interior flow realization, then we decrease the absolute values of these
numbers:

Theorem 6.4 (a) Assume that the minimum cost flow instance is changed by de-
creasing one supply value. Let f be a solution of this modified instance. Then,
no exact interior realization of f will lead to a feasible assignment.

(b) Assume that the sum of all supply numbers is at least max{w(Z) −
w(CZ) | Z zone, CZ set of circuits in zone Z}. Modify the minimum cost flow
instance by increasing any demand value. Then, there is a maximum s-t-flow
in G (not necessarily with minimum cost) such that no interior realization of
f ′ will lead to a feasible assignment.

Proof:

(a) Let Aκ,λ be a supply node whose supply number has been decreased. Let Aµ,ν be
the smallest interval such that µ ≤ κ ≤ λ ≤ ν and that each supply interval that has
at least one region with Aµ,ν in common is completely contained in Aµ,ν . Let Ci be
the set of circuits in region Ai before the realization. Before realizing the flow, there
were circuits of total size

∑ν
i=µ w(Ci) in the interval. Using Lemma 6.2 (a), we see

that the exact interior realization has removed circuits with total size less than

∑

µ≤µ′≤ν′≤ν

supp(Aµ′ ,ν′) =
ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

.

76 CHAPTER 6. DETAILED PLACEMENT

Therefore, the remaining circuits have a size greater than

ν
∑

i=µ

w(Ai) +
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

,

so they cannot be placed legally in that interval.

(b) Let A be a demand interval whose demand number has been increased. Let f be
any solution of the modified flow problem. Now increase the incoming flow for every
interval in the zone that A belongs to, as much as possible (we have to lower the
incoming flow for other demand regions to do so). Then, applying Lemma 6.2 (b)
it is easy to see that any interior realization of the modified flow will lead to an
assignment such that the circuits assigned to A will not fit into it. 2

In Theorem 6.3 we considered very restricted realizations of a given flow f , namely exact
interior realizations. However, we cannot assume that such a realization is possible. We
will now examine what happens if we skip these restrictions.

Instead of considering exact realizations of a flow f , we will consider approximative real-
izations: If we have a flow f((A,A′)) between two regions A and A′, then we may move
circuits whose total size is “a little bit” smaller or bigger than f((A,A′)). We also allow the
leftmost and the rightmost circuit of each region to be moved. However, to have a chance
to meet the capacity constraints after the approximative realization we have to make some
assumptions on the balances bal(Aµ,ν) of the intervals Aµ,ν (i.e., the total size of circuits
that leave Aµ,ν minus the total size of circuits that are moved into Aµ,ν). We demand that
for each interval Aµ,ν we have

bal(Aµ,ν) ≥
ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1

)

+ w
(

cνkν

))

. (6.12)

Note that if an approximative realization meets the above condition, then we can (using the
edges leaving t) construct a maximum s-t-flow f ′ such that the approximative realization
is an exact realization of f ′. The difference between the cost of f ′ and f is what we lose
due to the fact that we move only complete circuits.

Theorem 6.5 Let f be an optimum solution of the minimum cost flow problem.
Then, any approximate realization of f meeting condition (6.12) for each interval
Aµ,ν leads to an assignment of the circuits to the regions for which there is a non-
overlapping placement such that each circuit is placed within the region it is assigned
to or within a neighbouring region.

Proof: Let {A1, . . . , Al} be a set of regions that form a zone, and let l coor(Ai) (r coor(Ai))

be the x-coordinate of the left (right) border of Ai (i = 1, . . . , l). Let Ĉi = {ĉi1, . . . , ĉ
i

k̂i
}

6.4. MINIMUM COST FLOW FORMULATION 77

be the set of circuits that was assigned to Ai before the movement, and C i = {ci1, . . . , c
i
ki
}

be the set of circuits that is assigned to Ai after the movement (i = 1, . . . , l). Condition
(6.12) implies that we have for each interval Aµ,ν (1 ≤ µ ≤ ν ≤ l)

ν
∑

i=µ

(w(C i) − w(Ai)) ≤
1

2

(

w
(

ĉµ1

)

+ w
(

ĉνkν

))

. (6.13)

Now, place the circuits in the set
⋃l

i=1 C
i from left to right in such a way that each circuit

is placed at the leftmost possible position under the following constraints: no two circuits
may overlap, and for i = 1, . . . , l, the left border of circuit C i

1 may not be placed to the left
of l coor(Ai) −

1
2w
(

ĉi1
)

. Then, using (6.13), it is easy to see that the right border of each
circuit ci

k̂i
will not be to the right of r coor(Ai) + 1

2w
(

ĉiki

)

. The theorem follows from the

fact that no movable circuit is wider than twice the width of the regions. 2

6.4.4 Construction of the Graph

Before we will describe how we choose the circuits that we move in a flow realization, we
will examine the size of the graph G in the minimum cost flow instance. Obviously, the
graph is bigger than the one used in the previous approach by Vygen [1998] as the latter
contains only regions in its node set. As we have pointed out above, considering intervals
in addition to the regions is desirable since it helps avoiding unneccessary movements, but
this interval approach would be quite useless in practice if it could not be implemented
efficiently.

By definition of the supply and demand intervals it is not immediately clear how many of
these intervals can exist (compared to the number of regions) and how these intervals can
be computed efficiently. We will show that the number of supply and demand intervals is
linear in the number of regions and that all these intervals can be computed in linear time,
provided that regions and circuits are sorted. This is essential when dealing with large
practical instances.

The following lemma will help us to bound the number of supply nodes in the minimum
cost flow instance:

Lemma 6.6 For µ < κ ≤ λ < ν with supp(Aκ,λ) > 0, we have supp(Aµ,ν) = 0.

Proof: Assume that we have supp(Aµ,ν) > 0 and supp(Aκ,λ) > 0 for intervals Aµ,ν and
Aκ,λ with µ < κ ≤ λ < ν. Because of supp(Aµ,ν) > 0 we have sµ,ν > 0 and therefore

78 CHAPTER 6. DETAILED PLACEMENT

sµ,ν =
∑ν

i=µ

(

w(C i) − w(Ai)
)

− 1
2

(

w(cµ1) + w(cνkν
)
)

. We can conclude:

supp(Aµ,ν) = sµ,ν −
∑

µ≤µ′≤ν′≤ν

(µ,ν)6=(µ′,ν′)

supp(Aµ′ ,ν′)

= sµ,ν − supp(Aµ,λ) − supp(Aκ,ν) −
∑

µ≤µ′≤ν′≤ν

(µ′,ν′)6∈{(µ,ν),(µ,λ),(κ,ν)}

supp(Aµ′,ν′)

≤
ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1

)

+w
(

cνkν

))

− sµ,λ − sκ,ν

+
∑

κ≤µ′≤ν′≤λ

supp(Aµ′ ,ν′)

≤
ν
∑

i=µ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cµ1

)

+w
(

cνkν

))

−





λ
∑

i=µ

(

w(C i) −w(Ai)
)

−
1

2

(

w
(

cµ1

)

+ w
(

cλkλ

))





−

(

ν
∑

i=κ

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cκ1

)

+w
(

cνkν

))

)

+
∑

κ≤µ′≤ν′≤λ

supp(Aµ′ ,ν′)

= −
λ
∑

i=κ

(

w(C i) − w(Ai)
)

+
1

2

(

w
(

cκ1

)

+ w
(

cλkλ

))

+
∑

κ≤µ′≤ν′≤λ

supp(Aµ′,ν′)

= −sκ,λ +
∑

κ≤µ′≤ν′≤λ

supp(Aµ′,ν′)

= 0˙ 2

We have a similar result for the demand intervals:

Lemma 6.7 For µ < κ ≤ λ < ν with dem(Aκ,λ) < 0 we have dem(Aµ,ν) = 0.

Proof: The proof is analogous to the proof of Lemma 6.6. 2

Corollary 6.8 The number of nodes in the graph of the minimum cost flow instance
is linear in the number of regions.

Proof: Lemma 6.6 shows that the number of supply intervals is at most twice the number
of regions, and Lemma 6.7 proves that also the number of demand intervals is at most twice
the number of regions. 2

6.4. MINIMUM COST FLOW FORMULATION 79

Theorem 6.9 Given the list of zones such that the regions in each zone and the
circuits in each region are sorted from left to right, we can compute the supply and
demand intervals in linear time.

Proof: With the following algorithm we can compute the supply intervals in a zone:

Supply Intervals

Input: A set of regions A1, . . . , Al that form a zone and sets C1, . . . Cl of circuits that
are assigned to the regions.

Output: Numbers supplyi,j for each pair (i, j) with 1 ≤ i ≤ j ≤ l and supplyi,j > 0.

©1 a0 := 0; b0 := 0;

©2 for (j = 1 to l)

aj := w(Cj) − w(Aj) − min
{

1
2w
(

cj1

)

, bj−1 − aj−1

}

;

bj := max
{

0, aj −
1
2w
(

cjkj

)}

;

©3 i = l;

©4 for (j = l downto 1)
i = min{i, j} + 1;

ovi := w(C i ∪ · · · ∪Cj) − 1
2w
(

cjkj

)

− w(Ai) − · · · − w(Aj);

while (bj > 0)
i := i− 1;
ovi := w(C i) − w(Ai) − min

{

1
2w
(

ciki

)

,−ovi+1

}

;

supplyi,j := min
{

bj ,max
{

0, ovi −
1
2w
(

ci1
)}}

;
bj := bj − supplyi,j;
ovi := ovi − supplyi,j ;

Obviously, the above algorithm has a linear running time. We will show that the numbers
supplyi,j it computes are correct, i.e., that supplyi,j = supp(Ai,j) for 1 ≤ i ≤ j ≤ l.

The first loop, ©2 , computes numbers aj and bj for j = 1, . . . , l. We have

aj = w(Cj) − w(Aj) + max

{

−
1

2
w
(

cj1

)

, aj−1 − bj−1

}

,

for j = 1, . . . , l, and thus

aj =
j

max
p=1





j
∑

i=p

(w(C i) − w(Ai)) −
1

2
w
(

cp1

)

−

j−1
∑

i=p

bi





80 CHAPTER 6. DETAILED PLACEMENT

for j = 1, . . . , l. Therefore, we have

bj = max







j
max
p=1





j
∑

i=p

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cp1

)

+ w
(

cνkj

))

−

j−1
∑

i=p

bi



 , 0







(6.14)

for j = 1, . . . , l.

Using (6.14), we can prove

bj =

j
∑

µ=1

supp(Aµ,j) (6.15)

for j = 1, . . . , l, by induction on j. The case j = 1 is trivial. Let now j > 1.

If bj > 0, then, by (6.14), there exists a p ∈ {1, . . . , j−1} with bj =
∑j

i=p

(

w(C i) − w(Ai)
)

−

1
2

(

w
(

cp1

)

+ w
(

cνkj

))

−
∑j−1

i=p bi. Hence

j
∑

i=p

bi =

j
∑

i=p

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cp1

)

+ w
(

cνkj

))

≤
∑

p≤µ≤ν≤j

supp(Aµ,ν) ≤
∑

1≤µ≤ν≤j−1

supp(Aµ,ν) +
∑

1≤µ≤j

supp(Aµ,j).

Using the induction hypothesis for i = p, . . . , j−1 yields bj ≤
∑j

µ=1 supp(Aµ,j). Of course,
this inequality is also true for bj = 0.

To prove the converse inequality, let p be the minimum index such that each region among
Ap, . . . , Aj belongs to a supply interval (if Aj itself does not belong to a supply interval,

there is nothing more to prove). Note that, by (6.14), bj ≥
∑j

i=p

(

w(C i) − w(Ai)
)

−

1
2

(

w(cp1) + w(cνkj
)
)

−
∑j−1

i=p bi, hence

j
∑

i=p

bi ≥

j
∑

i=p

(

w(C i) − w(Ai)
)

−
1

2

(

w
(

cp1

)

+ w
(

cνkj

))

=
∑

p≤µ≤ν≤j

supp(Aµ,ν) =
∑

1≤µ≤ν≤j,p≤ν

supp(Aµ,ν),

where the first equality follows from Lemma 6.2 (a). Using the induction hypothesis for
i = p, . . . , j − 1 yields bj ≥

∑j
µ=1 supp(Aµ,j).

Knowing that (6.15) holds after ©2 , it is easy to see that the second loop ©4 computes the
correct numbers.

The demand intervals can be computed by a very similar algorithm. 2

6.5 Flow Realization

In this section, we realize a maximum s-t-flow f of minimum cost, in the model described
in the previous section. It will usually be impossible to realize f exactly. However, by
Theorem 6.5, the realization of any maximum s-t-flow leads to an assignment of circuits

6.5. FLOW REALIZATION 81

to regions, such that a legal placement within the zones exists where each circuit is placed
within its region and/or a horizontally adjacent region. This is what we try to obtain.

Let G′ be the subgraph of G induced by all regions (i.e., without intervals, s, and t). By
construction, all edges in G′ have positive cost. Hence, the edges in G′ that have positive
flow constitute an acyclic digraph. Thus, they can be scanned in topological order. For a
set F of edges and a flow f , we define f(F) :=

∑

e∈F f(e).

Initially, we mark all vertices as unscanned and set f ′ := f . In each step we consider a
vertex v with f ′(δ−G′(v)) = 0 and f ′(δ+G′(v)) > 0.

Let X = {x1, . . . , xk} be the set of neighbours of v that are not marked as scanned. We
look for partitions pv : Cv → X ∪ {v} and px : Cx → {x, v} for x ∈ X (where Cz is the set
of circuits assigned to z for any region z) such that

(∗)
∑

y∈X∪{v}

∑

c∈Cy:py(c)=v

w(c) −
∑

c∈Cv

w(c) + f ′
(

δ+G′(v)
)

≤ lack(v)

and
(∗∗)

∑

c∈Cv :pv(c)=x

w(c) −
∑

c∈Cx:px(c)=v

w(c) − f ′(v, x) ≤ lack(x) ∀x ∈ X

where lack(z) is the additional amount of flow region z is able to take. So, at the beginning,
we have lack(z) = −dem(z) − f((z, t)) for a demand region z and lack(z) = 0 for all other
regions. If, during the flow realization, the total size of circuits moved to z differs from the
flow on the corresponding edges or if the outflow of z is increased, the number lack(z) is
updated appropriately.

The cost of a partition is given by the sum of the moving costs over all circuits. Then, the
optimum one among these partitions can be found by a dynamic programming algorithm
(similarly to standard algorithms for the knapsack problem). To bound the running time
it is useful to allow only few circuits to move along zero flow edges.

If we find such a partition, we move the circuits accordingly and mark v as scanned.
Otherwise, we try to choose a partition for which condition (∗) is fulfilled and only condition
(∗∗) is violated for some x ∈ X. We choose the partition with minimum such violation.
Next we augment the flow f ′ along successive shortest paths from x to t (increasing lack(x))
until condition (∗∗) holds. We require that none of the augmenting paths contains a vertex
that is marked as scanned. If no such augmenting path can be found, we choose a partition
that violates (*) or (∗∗) minimally (in this case an infeasible assignment will result). After
realizing the outflow of v we set f ′(e) := 0 for all e ∈ δ+

G′(v).

We compute the partitions pv : Cv → X ∪ {v} and px : Cx → {x, v} for x ∈ X by
dynamic programming. We choose upper bounds maxv→x ∈ N and maxx→v ∈ N on the
total size of circuits we want to move from v to x and from x to v, respectively. Then,
we compute for each vector (w1, . . . , wk) with 0 ≤ wi ≤ maxv→xi

a cheapest assignment
pv : Cv → X ∪ {v} where

∑

c∈Cv ,pv(c)=xi
size(c) = wi. By dynamic programming these

partitionings can be computed in time O(|C v| · k ·Πk
i=1(maxv→xi

)). Similarly, we compute
by dynamic programming for each index w′i with 0 ≤ w′i ≤ maxxi→v, a cheapest assignment
pxi : Cxi → {xi, v} with

∑

c∈Cxi ,pxi(c)=v size(c) = w′i. We can combine these partitionings

in time O(k · Πk
i=1 maxv→xi

·maxxi→v) to compute a cheapest partitioning.

82 CHAPTER 6. DETAILED PLACEMENT

The running time of the flow realization depends on the choice of maxv→x and maxx→v

(for x ∈ X). In our experiments, the following choice turned out to be reasonable. If we
have f ′((v, x)) > 0, then we choose maxv→xi

= f ′((v, xi)) + max{w(c) | c ∈ Cv}. The
other values maxv→x and maxx→v (for x ∈ X) are bounded by 10.

If these numbers happen to be too large due to very large flow, we run a preprocessing
step that greedily chooses some circuits out of C v, moves them along the flow edges and
reduces the flow correspondingly.

After (approximately) realizing the flow by moving circuits between the regions, the as-
signment of the circuits to the regions will, in general, not yet be feasible. In that case, we
iterate phase one, but in each iteration we double the width of the grid we use to divide the
zones. If necessary, we repeat the phase even for complete zones. After some iterations,
the circuits can be legalized in their zone by the algorithm described in Section 6.7.

6.6 Implementational Improvements

To make the algorithm work efficiently in practice, even on large and difficult instances,
experiments have shown that some changes of the algorithm are necessary:

• In a preprocessing step, all circuits overlapping a blockage a moved to the next loca-
tion they can be placed at.

• After some of the iterations mentioned in the previous section, we increase all demand
values in each iteration. This trick enforces a termination of the algorithm even on
very hard instances. On most instances, this is not necessary, since experiments show
that, in general, the algorithm terminates after at most 6 iterations (see Table 6.2).

• We use two parallel edges between the regions, one with small costs but finite capacity
and the other one with higher costs but infinite capacity.

6.7 Single-Row Placement

The one-dimensional placement problem consists of placing a set of cells within a single row
with minimum movement. Even this restricted problem is strongly NP-hard, it includes
bin-packing, see Garey and Johnson [1975]. We consider an even more restricted problem,
which is easier to solve: we assume a fixed ordering of the cells in each row (according to
the original x-coordinates before legalization), so only the horizontal distances between the
circuits can be changed.

Kahng, Tucker, and Zelikovsky [1999] developped a so-called Clumping Algorithm which
solves the problem optimally. Their algorithm needs time Θ(n log2 n) in the unweighted case
and Θ(n2) in the weighted case, but with different data structures it can be implemented
to run in O(n log n log log n) in the unweighted case and O(n log2 n) in the weighted case
(see Brenner and Vygen [2000]). Garey, Tarjan, and Wilfong [1988] even described an
O(n log n)-time algorithm for the weighted case. Since their algorithm is formulated in the

6.7. SINGLE-ROW PLACEMENT 83

context of scheduling problems it has been overlooked so far by the chip design community.
All these algorithms work not only with circuit movement as objective function but also if
one wants to minimize the total length of the nets connected to the circuits of the row.

For the total (weighted) squared movement, the Clumping Algorithm can even be im-
plemented in linear time. We will now describe this linear-time algorithm.

We start by recalling the Clumping Algorithm in a more general form. Let us define
the Single Row Optimization Problem (SROP) as follows. Let f1, . . . , fn : R → R

be convex functions, w1, . . . , wn > 0 and xmin, xmax ∈ R with xmax − xmin ≥ w1 + . . .+wn.
Then we look for numbers x1, . . . , xn with xmin ≤ x1, xi + wi ≤ xi+1 for i = 1, . . . , n− 1,
xn + wn ≤ xmax, and

∑n
i=1 fi(xi) minimum. By letting w1, . . . , wn be the widths of the

circuits in a zone (in their horizontal order) and fi(x) be the costs for placing the i-th
circuit at position x, our problem reduces to the SROP. Kahng, Tucker, and Zelikovsky
[1999] and Brenner and Vygen [2000] discussed the following algorithm for the special case
of piecewise linear functions:

Clumping Algorithm

Input: n ∈ N. Convex functions f1, . . . , fn : R → R.
Widths w1, . . . , wn > 0 and xmin, xmax ∈ R with xmax − xmin ≥ w1 + . . .+ wn.

Output: x1, . . . , xn with xmin ≤ x1, xi +wi ≤ xi+1 for i = 1, . . . , n− 1, xn +wn ≤ xmax,
and

∑n
i=1 fi(xi) minimum.

©1 Set x0 := xmin and W0 := 0 and Wi := wi for i = 1, . . . , n.
Let L be the list with 0 as the only element.
Let gi : R → R be a function with gi(x) = fi(x) for x ∈ R and i = 1, . . . , n.

©2 FOR (i = 1, . . . , n)
Add i as the last element to L.
RowPlace((gj)j∈L, (Wj)j∈L).

©3 FOR (i ∈ {1, . . . , n} \ L)
Set xi := xh +

∑i−1
j=hwj where h is the maximum index smaller than i that

belongs to L.

RowPlace((gj)j∈L, (Wj)j∈L):

©1 Let k be the last element of L, and let h be the predecessor of k in L.
©2 IF(h = 0 or xh +Wh ≤ min{xmax −Wk,max{x | gk(x) minimum}}) THEN

Set xk := max{xh +Wh,min{xmax −Wk,min{x | gk(x) minimum}}}
RETURN.

ELSE
Redefine gh by gh : x 7→ gh(x) + gk(x+Wh).
Set Wh := Wh +Wk.
Remove k from L.
RowPlace((gj)j∈L, (Wj)j∈L).
RETURN.

84 CHAPTER 6. DETAILED PLACEMENT

Theorem 6.10 The Clumping Algorithm finds an optimum placement. If all fi

are quadratic, it can be implemented in linear time.

Proof: In the following instances of the SROP we will always use the same interval
[xmin, xmax].

Let (xi)i∈{1,...,n} be the output of the algorithm. (xi)i∈L is an optimum solution of the
instance of the SROP defined by (gi,Wi)i∈L because every single element i ∈ L is placed
in the minimum of gi. As we have

∑

i∈L gi(xi) =
∑n

i=1 fi(xi), the vector (xi)i∈{1,...,n} is an
optimum solution of the SROP instance defined by (fi, wi)i∈{1,...,n} under the additional
constraint that for i ∈ {1, . . . , n} \ L we have xi = xi−1 + wi. These constraints are
added in the “ELSE”-part of step ©2 where we restrict ourselves to solutions in which
xk = xk−1 +wk−1, (clumping operation). We have to show that there is always an optimum
solution of the initial SROP instance that meets all these additional constraints. Assume
that this is not the case. Then consider the clumping operation in which we add the first
constraint such that there is no optimum solution of the initial SROP meeting all the
constraints added so far. Let i be the number of the corresponding iteration, and let k be
the last element of L and h its predecessor in the call of the function RowPlace. Let
xh be the position of h (before clumping it). There is an optimum solution (x̃j)j∈{1,...,n}

meeting all the constraints we added before, so in this solution we have x̃j = x̃j−1 + wj−1

for j ∈ {h + 1, . . . , k − 1} ∪ {k + 1, . . . , i}. However, we have x̃k > x̃k−1 + wk−1 and
hence x̃k > x̃h + Wh. The position xh has been computed by the function RowPlace,
therefore we know that min{xmax − Wh,min{x | gh(x) minimum}} ≤ xh ≤ min{xmax −
Wh,max{x | gh(x) minimum}}. We jump into the “ELSE”-part of step ©2 , so h > 0 and
xh +Wh > min{xmax −Wk,max{x | gk(x) minimum}}.

If x̃k > xh + Wh, this implies x̃k > min{xmax − Wk,max{x | gk(x) minimum}}, there-
fore gk(x

′
k) < gk(x̃k) for x′k := min{x̃h + Wh,max{x | gk(x) minimum}}. As we have

gk(x) =
∑i−1

j=k fj(x+
∑j−1

l=k wl), this means that (x̃j)j∈{1,...,n} was not an optimum solution.
Therefore, we may assume that x̃k ≤ xh +Wh. This implies x̃h ≤ xh.

If x̃h < xh, then we have x̃h < min{xmax −Wh,max{x | gh(x) minimum}. Hence gh(x′h) ≤

gh(x̃h) for x′h := min{x̃k−Wh,max{x | gh(x) minimum}. As we have gh(x) =
∑k−1

j=h fj(x+
∑j−1

l=h wl), the vector (x̂j)j∈{1,...,n} with x̂j := x̃j for j ∈ {1, . . . , n} \ {h, . . . , k − 1} and

x̂j := x′h +
∑j−1

l=h wl for j ∈ {h, . . . , k− 1} would be a solution to the initial SROP instance
whose cost is as most as big as the cost of (x̃j)j∈{1,...,n}. As we have x̂k = x̂k−1 +wk−1 this
is a contradiction.

Having proved optimality, we consider the runtime. As n elements are be added to L in
step ©2 of the algorithm (and each element only once) and RowPlace is called only if
an element is added to or removed from L, the function RowPlace is called at most 2n
times. For quadratic functions fi : x 7→ aix

2 + bix + const, RowPlace can be done in
constant time as {x | fi(x) minimum} = {−bi

2ai
} and fh(x) + fi(x + Wh) = (ah + ai)x

2 +
(bh + bi + 2aiWh)x+ const. 2

For the correctness of the Clumping Algorithm, we require the cost functions fi to

6.8. POSTOPTIMIZATION 85

be convex but apart from this restriction, we may choose them arbitrarily. For example,
bounding-box netlength (under the assumption that all circuits in the other zones are fixed)
or linear or quadratic movement can be reflected by the functions fi.

6.8 Postoptimization

In Section 6.10, the experimental results will show that our algorithm is able to legalize a
placement with a small average movement. However, it is still possible that there is a small
number of circuits that are moved quite far during legalization. In order to reduce the
largest movements, we apply as a third phase a postoptimization routine to these circuits
that tries to move them towards their initial positions. The algorithm chooses a circuit c∗

with the largest movement and marks it. Then, we consider a directed graph whose node
set consists of all circuits C with w(c) ≥ w(c∗) in a certain area around c∗ and all empty
parts of zones in the same area that are big enough to contain c∗. We have edges between
each pair (c, c′) of circuits if c is not smaller than c′, and edges from each circuit c to each
free slot S that is big enough to contain c. The cost of an edge (c, c′) or (c, S) is the cost
for moving c from its recent position to the position of c′ or to S, respectively. So if (x, y)
is the original position of circuit c (before legalization), (x′, y′) is its recent position, and
(x′′, y′′) is the position of circuit c′ or of the free slot S, respectively, then the cost of edge
(c, c′) (or (c, s)) is (x′′ − x)2 + (y′′ − y)2 − (x′ − x)2 − (y′ − y)2, possibly multiplied by the
weight of circuit c. It would be desirable to compute a shortest path from from c∗ to a free
slot or a shortest cycle containing c∗, but since there can be negative cycles in the graph,
this task is NP -hard. Instead, we use the following dynamic programming approach that
does not necessarily find shortest paths.

Let C be the set of circuits we want to consider, i.e., all circuits of width at least w(c∗)
in an area around c∗. Let S consist of the location of c∗ and all free slots in the area.
Then, we choose an upper bound kmax on the length of the paths we want to take into
consideration. Experiments show that kmax = 10 is a reasonable choice. For each path-
length k ∈ {0, . . . , kmax} and each cell c ∈ C, we look for a path Pc,k from c to an element
of S in the above digraph containing exactly k edges. For Pc,1, we use a shortest edge
starting at c and ending in an element of S, so for all circuits c ∈ C, the paths Pc,1 can
easily be computed in time O(|C| · |S|). If the paths Pc,k−1 of length k − 1 are known, we
try to choose for each circuit c ∈ C a circuit c′ ∈ C for which a path Pc′,k−1 exists with
w(c) ≤ w(c′), c 6∈ V (Pc′,k−1) and

cost((c, c′)) + cost(Pc′,k−1)

= min{cost((c, c′′)) + cost(Pc′′,k−1)|c
′′ ∈ C,Pc′′,k−1 exists, w(c) ≤ w(c′′), c 6∈ V (Pc′′,k−1)}.

If such a circuit c′ exists, Pc,k is defined as the concatenation of the edge (c, c′) and the path
Pc′,k−1. If {c′′ ∈ C | Pc′′,k−1 exists, w(c) ≤ w(c′′), c 6∈ V (Pc′′,k−1)} is empty, then there is no
path Pc,k. Using dynamic programming, these paths can be computed in time O(k2

max|C|2).
Then, we choose a path Pc∗,k∗ out of {Pc∗,k | k ∈ {0, . . . , kmax}} that has minimum cost,
and we move the corresponding circuits along the edges of the path (starting with c∗).
Note that the path may end at the position that c∗ had before the postoptimization, so it
is also possible that this method moves circuits along a cycle in order to reduce the total

86 CHAPTER 6. DETAILED PLACEMENT

(squared) movement. Since there is always a path of cost 0 (we can move c∗ to its own
position), we always find a path of non-positive cost, and therefore the postoptimization
cannot make the solution worse.

We repeat the algorithm for the next unmarked circuit with the largest movement until we
have considered a certain number of circuits or if the largest movement is smaller than a
given threshold.

6.9 Overall Algorithm

Schematically, our algorithm can be described as follows:

Legalization Algorithm

Input: A global placement of a circuit set C.
A chip area A partitioned into regions.
A set of blockages.

Output: A legal placement of C

©1 Assign each circuit to the region it is placed in.
WHILE(Assignment to the regions is not feasible)

Construct minimum cost flow instance // Section 6.4.
Compute minimum cost flow f .
Realize f . // Section 6.5

©2 Solve single-row problem on each zone // Section 6.7

©3 Run postoptimization on critical circuits // Section 6.8

6.10 Experiments

We will compare our algorithm both to a similar previous approach (Vygen [1998]) that
stated a minimum cost flow problem by using only region vertices, and to lower bounds
that we compute by solving a relaxation of the legalization problem.

6.10.1 Lower Bounds

By comparing our results to lower bounds, we will be able to show that our algorithm is
less than a few percent worse than any possible algorithm.

To compute good lower bounds, we formulate the legalization problem as an integer linear
program (ILP). Let C = {c1, . . . , cm} be the set of circuits that have to be placed in a grid
{xδ, 2xδ , . . . ,Wxδ}×{yδ, 2yδ , . . . ,Hyδ}. To simplify the notation we assume that there are

6.10. EXPERIMENTS 87

no preplaced objects or blockages on the chip area. It is easy to see how blockages can be
incorporated into our ILP formulation. For coordinates (i, j) ∈ {1, . . . ,W} × {1, . . . ,H}.
and a circuit ck let di,j,k be the (linear or squared) distance between the initial position of
ck and (xδi, yδj). To compute lower bounds for the movements weighted by the circuits’
widths, we multiply each distance by the width of ck. We state the following ILP:

minimize
m
∑

k=1

W
∑

i=1

H
∑

j=1

di,j,k · xi,j,k

s.t.

xi,j,k ∈ {0, 1} ∀i ∈ {1, . . . ,W}, (6.16)

j ∈ {1, . . . ,H} ,

k ∈ {1, . . . ,m};

W−
w(ck)

xδ
+1

∑

i=1

H
∑

j=1

xi,j,k = 1 ∀k ∈ {1, . . . ,m}; (6.17)

m
∑

k=1

i
∑

i′=i−
w(ck)

xδ
+1

xi′,j,k ≤ 1 ∀i ∈ {1, . . . ,W}, j ∈ {1, . . . H}; (6.18)

The variable xi,j,k will be 1 if and only if the lower left corner of ck is placed at position
(xδi, yδj). Conditions 6.16 and 6.17 model the constraint that each circuit has to be placed
at exactly one position, while condition 6.18 guarantees disjointness.

Since the number of variables in this ILP fomulation is huge, we cannot hope for an exact
solution of the ILP in reasonable time. Therefore we relax the problem in three ways:

• We skip the integrality constraints, so we replace the constraint xi,j,k ∈ {0, 1} by
0 ≤ xi,j,k ≤ 1 (for i ∈ {1, . . . ,W}, j ∈ {1, . . . ,H}, k ∈ {1, . . . ,m}).

• We only consider locations close to the initial circuit position in the LP. So, we add a

new variable yk for k ∈ {1, . . . ,m}, replace the condition
∑

W−
w(ck)

xδ
+1

i=1

∑H
j=1 xi,j,k = 1

by yk +
∑

W−
w(ck)

xδ
+1

i=1

∑H
j=1 xi,j,k = 1 (for k ∈ {1, . . . ,m}) and the objective function

by “minimize
∑m

k=1(R ·yk +
∑W

i=1

∑H
j=0 di,j,k ·xi,j,k)” where R is a parameter. In this

new formulation, we can omit all variables xi,j,k with di,j,k > R. In the presence of
blockages, it may be reasonable to use different values of R for the different circuits
depending on the number of free locations near the initial circuit position. This way,
we can consider the same number of free possible positions for each circuit.

• On large chips, we partition the chip area into an appropriate number of rectangular
regions and compute the lower bounds on these smaller instances separately.

Using these relaxations, we are able to compute lower bounds even on very large chips by
the LP-solver CPLEX 8.0, within a few hours of computing time. Since we do not need
lower bounds for the algorithm but just for comparisons, this is not a problem.

88 CHAPTER 6. DETAILED PLACEMENT

6.10.2 The Testsuite

Chip Blockages Row height yδ Density Overlaps

Jens 49 6.72 µm 77 % 2.207

Hans 146 9.60 µm 50 % 1.605

Christian 4 804 8.64 µm 50 % 1.394

James 579 6.72 µm 50 % 1.885

Aidan 937 9.72 µm 70 % 1.629

Dieta 1 961 6.72 µm 50 % 1.540

Sandra 16 115 6.72 µm 50 % 1.780

Josef 5 624 6.72 µm 50 % 1.484

Nadine 9 065 6.72 µm 50 % 1.605

Wolf 1 788 4.80 µm 50 % 1.421

Table 6.1: The chips used for the legalization experiments.

We tested our algorithm on some of the ASICs introduced in Table 2.1. Some additional
facts about these chips that are relevant for legalization are given in Table 6.1. The second
column shows the number of blockages on the chip area including all circuits that have
been fixed before legalization. Column three contains the height of a standard circuit. The
number in the next column is a user-defined parameter that controls the density in global
placement. It is the maximum allowed density at the beginning of global placement. In
each level, this density is increased by 1%, so at the end of global placement the maximum
allowed density is about 10% higher than the number in this column. To estimate how far a
given placement is away from a legal placement, we haven chosen the following computation:
If Crow is the set of standard circuits to be placed and Cmacro the set of macros on the
chip, then we compute





∑

c∈Crow

∑

c′∈(Crow∪Cmacro)

D(c, c′)



 /

(

∑

c∈Crow

w(c) · yδ

)

,

where D(c, c′) is the size of the areas covered both by circuit c and circuit c′. This number
is 1 for a legal placement, and the more overlaps exist, the larger this number is. The table
shows the number for our instances in the last column.

6.10.3 Running Time and Memory Consumption

We tested our detailed placement algorithm, implemented in C, on an IBM 680 with
600MHz RS-IV processors. In the postoptimization step, we considered the 2000 circuits
with the largest movement.

Columns two, three, and four of Table 6.2 show the running time for the single steps of
our legalizer according to the schematic description in Section 6.9. Columns five contains
the number of iterations that are necessary to compute a feasible assignment in phase 1.
In the last column, the maximum allocated memory during legalization is presented. The
numbers in the table demonstrate that the first phase is the most time-consuming part of
the algorithm, and the running time of this phase does not only depend on the numbers of

6.10. EXPERIMENTS 89

Runtime Number of Maximum
Chip

Step ©1 Step ©2 Step ©3 Iterations Memory

Jens 0:11 0:10 0:08 4 144 MB

Hans 0:20 0:10 0:04 2 185 MB

Christian 3:30 0:39 1:19 5 941 MB

James 12:27 1:00 1:31 2 1 939 MB

Aidan 4:40 1:57 1:31 3 1 350 MB

Dieta 7:48 2:34 1:06 3 2 243 MB

Sandra 9:02 3:59 5:50 3 3 004 MB

Josef 17:36 4:05 9:46 6 3 792 MB

Nadine 18:35 4:50 8:48 5 4 481 MB

Wolf 56:08 3:33 13:29 6 8 534 MB

Table 6.2: Running times (mm:ss), number of iterations, and peak memory consumption in the
legalization runs.

circuits to be placed (which is not too surprising). Nevertheless, even the first part does
not take longer than an hour on a chip with 2.4 millions of circuits.

6.10.4 Comparison to Hard Bounds

Total supply Total flow
Chip

Hard bounds Soft bounds Hard bounds Soft bounds

Jens 227.9 28.2 258.5 28.4

Hans 48.9 0.8 54.6 0.8

Christian 2 626.0 28.5 2 770.7 3.0

James 1 565.6 127.1 1 714.4 130.3

Aidan 1 084.7 26.9 1 119.5 26.9

Dieta 2 265.2 21.9 2 460.5 21.9

Sandra 508.0 25.0 536.6 25.1

Josef 1 553.8 86.6 1 625.0 100.8

Nadine 817.5 41.2 856.8 42.9

Wolf 8 664.0 191.6 9 466.7 204.9

Table 6.3: Comparison between “hard” and “soft” bounds.

For an analysis of the results of our legalizer, we first show the amount of unnecessary
movement we would produce if we used “hard bounds” between the regions during the first
phase. In this approach, only regions are considered and we have a positive supply value
if the circuits that are assigned to a region cannot be placed complety within this region
(so circuits may not overlap a neighbouring region). Such an approach has been proposed
by Vygen [1998]. We consider the first minimum cost flow instance of our algorithm and
compute the total supply in this instance and the total flow in its solution. Table 6.3 shows
the result both for our algorithm (“soft bounds”) and for the variant of the algorithm
where we used single regions as nodes of a minimum cost flow instance and computed

90 CHAPTER 6. DETAILED PLACEMENT

supply and demand values for each single region without considering neighbouring regions
(“hard bounds”). The supply and flow values presented in the table are micrometers. The
results show that more than 90 % of the supply computed with the hard bound approach is
superfluous and just creates unnecessary movements. Therefore, it is absolutely mandatory
to consider intervals in addition to regions.

(a) (b)

Figure 6.7: (a) Illustration of our minimum cost flow instance for a small part of a chip. Re-
gions are shown as rectangles, intervals as horizontal lines. Green colors correspond to demand
regions/intervals and red colors to supply regions/intervals. The blue lines are edges with posi-
tive flow in an optimum solution, where the width of a line corresponds to the amount of flow on
that edge (only the flow between regions is shown). (b) The corresponding minimum cost flow
instance and solution without taking intervals into account but using hard bounds between regions
instead. The picture shows that one gets a significantly larger flow (and therefore, of course, larger
movements).

Figure 6.7 illustrates this result by showing a minimum cost flow instance and its solution
computed with our algorithm and comparing it to the corresponding instance and solution
with hard bounds between the regions.

6.10.5 Movement Experiments

Table 6.4 and Table 6.5 summarize the results of our movement experiments. In Table 6.4,
we consider the average movement (i.e., each circuit has weight 1), while for Table 6.5, we
weight each circuit by its width and divide the sum of these weighted movements by the
total width of all circuits. The latter movement computation is preferable if one assumes
that the movement of a large circuit creates a bigger pertubation of the placement than
the movement of a small circuit. Table 6.4 and Table 6.5 are organized in the same way.
We measure the average L1-movement (columns two to six) and the average squared L2-
movement (columns seven to eleven). All distances are given in (squared) micrometers.
The number in column two is the lower bound computed by our ILP relaxation. Column
three presents the movement in a legalization run with hard bound in the first phase (as
described above). The columns four and five show the result of our legalizer without and
with postoptimization, respectively. Again, we ran our postoptimization for the 2000 worst
circuits. The relative gap between the result of our legalizer and the lower bound is shown
in column six. Columns seven to eleven show the same numbers for the average linear

6
.1

0
.

E
X

P
E

R
IM

E
N

T
S

91

Squared movement Linear movement
Our algorithm Our algorithm

Chip Lower Hard bound
Without With Gap

Lower Hard bound
Without With Gap

bound legalization
PostOpt PostOpt

bound legalization
PostOpt PostOpt

Jens 11.19 16.14 13.65 13.53 20.9 % 3.18 3.87 3.60 3.59 12.9 %

Hans 7.33 11.68 7.59 7.57 3.3 % 2.83 3.32 3.01 2.89 2.1 %

Christian 5.52 38.55 6.01 5.93 7.4 % 2.25 4.72 2.50 2.36 4.9 %

James 9.57 15.39 11.68 11.57 20.9 % 2.89 3.80 3.39 3.24 12.1 %

Aidan 7.79 11.51 8.41 8.38 7.6 % 2.79 3.29 3.01 2.95 5.7 %

Dieta 5.44 10.44 5.99 5.97 9.7 % 2.30 2.94 2.55 2.44 6.1 %

Sandra 6.22 7.61 6.63 6.61 6.3 % 2.46 2.73 2.61 2.59 5.3 %

Josef 10.13 13.94 12.06 10.94 8.0 % 2.27 2.74 2.56 2.50 10.1 %

Nadine 5.32 7.43 5.84 5.83 9.6 % 2.26 2.63 2.47 2.41 6.6 %

Wolf 2.41 8.14 2.84 2.62 8.3 % 1.41 2.29 1.59 1.51 7.1 %

Average 10.1 % 7.2 %

Table 6.4: Average movement during legalization.

92
C

H
A

P
T

E
R

6
.

D
E

T
A

IL
E

D
P

L
A

C
E

M
E

N
T

Squared movement Linear movement
Our algorithm Our algorithm

Chip Lower Hard bound
Without With Gap

Lower Hard bound
Without With Gap

bound legalization
PostOpt PostOpt

bound legalization
PostOpt PostOpt

Jens 12.37 18.06 13.77 13.65 10.3 % 3.32 3.97 3.51 3.51 5.7 %

Hans 7.34 18.67 7.59 7.57 3.1 % 2.64 3.86 3.05 2.70 2.3 %

Christian 6.28 75.18 7.18 6.95 10.7 % 2.29 7.63 2.51 2.41 5.2 %

James 9.85 17.32 11.02 10.92 10.9 % 2.81 3.69 3.24 2.99 6.4 %

Aidan 8.30 16.86 8.59 8.58 3.4 % 2.75 3.82 2.97 2.83 2.9 %

Dieta 5.26 18.06 5.74 5.71 8.6 % 2.11 3.55 2.33 2.20 4.3 %

Sandra 5.84 8.44 6.09 6.09 4.3 % 2.26 2.75 2.37 2.34 3.5 %

Josef 14.83 21.80 18.11 15.53 4.7 % 2.06 2.84 2.32 2.20 6.8 %

Nadine 5.01 9.70 5.42 5.41 7.9 % 2.07 2.90 2.24 2.21 6.8 %

Wolf 3.08 14.95 4.02 3.41 10.7 % 1.40 3.22 1.63 1.50 7.1 %

Average 7.4 % 5.1 %

Table 6.5: Average movement during legalization, weighted by the circuits’ widths.

6.10. EXPERIMENTS 93

Our algorithm
Density Lower bound Integral solution Without With

PostOpt PostOpt

23 % 1.567 1.614 1.614 1.614
3.0 % 0.0 % 0.0 %

30 % 1.739 1.740 1.790 1.760
0.1 % 2.9 % 1.1 %

40 % 2.932 3.076 3.500 3.500
4.9 % 13.8 % 13.8 %

50 % 4.771 5.050 6.250 6.080
5.8 % 23.8 % 20.4 %

60 % 6.324 6.716 9.128 8.813
6.2 % 35.9 % 31.2 %

70 % 9.606 10.016 . . . 10.094 13.657 12.983
4.3 % 5.1 % 36.4 % 29.6 %

80 % 11.512 12.020 17.622 17.059
4.4 % 46.6 % 41.9 %

Table 6.6: Unweighted squared movement on a part of the chip James containing 408 circuits.

movement. The table demonstrates that our algorithm computes a legalization close to
the optimum. On the unweighted instances, our results differ from the lower bound, on
average, by 10.1 % for the squared movement and 7.2 % for the linear movement. When
we weight the movement of each circuit by its width, the gap between the movement in
our legalization and the lower bound is, on average, even only 7.4 % (squared movement)
or 5.1 % (linear movement).

For the chips Jens and James, we get in the unweighted case a significantly larger gap
between our results and the lower bound. For both chips, we used a higher density in global
placement. Therefore it is interesting to find out if the higher density caused this effect
and if the gap is big because our result is bad or because the lower bound is too weak.
To analyze how much we lose due to skipping the integrality constraints we computed
(approximately) ILP solutions on very small instances. To this end we placed the chip
James with the smallest possible density (so we spread the circuits evenly over the chip
area), and then considered a small window on it containing 408 circuits. The density in this
window was 23 %. We ran the global placer on this window using different values for the
parameter that controls the initial placement density. In the experiments we only considered
total unweighted squared movement. For each of the global placements we computed the
relaxed lower bounds (but of course without dividing the problem into parts) and an integral
solution of the corresponding ILP (or at least an approximation of it). Table 6.6 summarizes
the result of these experiments. The number in the first column is the maximum allowed
density at the beginning of the global placement run on the window. We increased this
allowed density by 1 % in each level, so at the end of the global placement the maximum
allowed density was 6 % bigger than the number in the table. Column two shows the lower
bounds computed with the LP (all numbers in squared micrometers). The third column
contains the corresponding ILP solutions or (for the run with 70 % density) lower and

94 CHAPTER 6. DETAILED PLACEMENT

upper bounds for their solutions. Again we used CPLEX 8.0 to compute these numbers.
The column also shows the relative gap to the fractional solutions (red numbers). In the
last two columns we present the total squared movement during legalization before and
after postoptimization. The red numbers are the relative gap to the best lower bound (i.e.,
the ILP solution or its lower bound in column three).

The experiments show that on this small instance the gap between the fractional LP solution
and the ILP solution is between 4.3% and 6.2% if the placement density is at least 40%. This
gap does not seem to increase with growing placement density, so at least on this example
it is not the reason why our placement results differ more from the LP solution when the
density is higher. On this window even the gap between the movement in legalization and
(the approximations of) the ILP solution increases with growing density. Nevertheless,
this is only a very small instance and it is not clear if this is general phenomenon. Note
that on this window the legalization results are much worse than on the whole chip. Here
we will not analyze this effect in detail, since due to routability restrictions and because
free space may be needed afterwards for inserting additional buffers and inverters in timing
optimization, the designers often do not want to use very high densities in global placement.
This is different on benchmark instances where only netlength is important, but we are more
interested in real-world industrial design than on benchmarks.

The experimental results presented in Table 6.4 and Table 6.5 demonstrate that our postop-
timization often does not improve the average movement very much. Nevertheless, it has
a significant effect even if the average movement is hardly changed as it helps to reduce
the largest movements. Figure 6.8 illustrates this for the chip James. In each of the three
diagrams, the x-axis is labeled with distances (in micrometers). The height of the bars is
proportional to the number of circuits whose movement is in the corresponding range. Fig-
ure 6.8(a) shows the movement distribution after legalization (without postoptimization).
The diagrams (b) and (c) allow a closer look at the circuits that have been moved over
a big distance where (b) illustrates the movement before and (c) after postoptimization.
Although the largest movement could not be improved in this instance, the diagrams show
that the number of circuits with large movements has been reduced by postoptimization.

6.10.6 Netlength

In Table 6.7, we analyze how netlength changes during legalization. The instances for these
experiments were produced by a global placement run Columns two and three contain
the sums of the bounding-box netlength before and after legalization, respectively. The
numbers in the last column is the relative increase of netlength during legalization. This
increase of netlength due to legalization is less than 0.8 % on average, and only on the
two smallest instances, the increase is bigger than 1 %, on all other instances it is at most
0.8 %.

6.10.7 Routability

Figure 6.9 shows routing congestion maps for the chip Nadine, before (a) and after le-
galization (b). Dark lines in the pictures correspond to routing-critical edges of the global

6.10. EXPERIMENTS 95

0 5 10 15 20
Movement

0

20000

40000

60000

80000

#
 C

ir
c
u

it
s

(a)

15 20 25 30 35 40
Movement

0

20

40

60

80

100

120

#
 C

ir
c
u

it
s

15 20 25 30 35 40
Movement

0

20

40

60

80

100

120

#
 C

ir
c
u

it
s

(b) (c)

Figure 6.8: Movement histograms for the chip James. (a) and (b) show the movement distribution
after legalization but before postoptimization, (c) illustrates the movement after postoptimization.

routing grid. To compute these congestion maps, we applied the congestion estimation that
we will describe in Chapter 8, because the current implementation of the more accurate
global router proposed by Albrecht [2001] that we will use for other routability experi-
ments cannot handle illegal placements. However, Chapter 8 will demonstrate that the
two congestion estimators correlate very well, so for a rough routability check, this kind of
experiments is sufficiently precise. Since our legalizer changes the placement only locally
it does not create any additional congestion problems.

96 CHAPTER 6. DETAILED PLACEMENT

BB netlength BB netlength
Chip

before legalization after legalization
Increase

Jens 6.42 m 6.56 m 2.2 %

Hans 7.72 m 7.86 m 1.8 %

Christian 184.75 m 184.75 m 0.0 %

James 105.13 m 105.74 m 0.6 %

Aidan 281.08 m 283.38 m 0.8 %

Dieta 208.57 m 209.78 m 0.6 %

Sandra 352.21 m 354.20 m 0.6 %

Josef 297.42 m 299.34 m 0.6 %

Nadine 403.50 m 405.46 m 0.5 %

Wolf 470.36 m 472.67 m 0.5 %

Average 0.8 %

Table 6.7: Effect of legalization on netlength

(a) (b)

Figure 6.9: Global routing plots before (a) and after legalization (b).

6.10.8 Timing

We also considered the impact of our legalization on timing. For these experiments, we
ran a full placement (inclusive legalization) and then applied a timing optimization to
the design, i.e., we removed and inserted buffers and inverters, changed the size of many
circuits and modified the logic locally. The result was a placement where the majority
of the circuits was still placed legally while in some regions of the chip there were lots of
overlaps. Figure 6.10 gives an impression of the typical effect of our legalization on timing
properties. The y-axis in these slack histograms is labeled with slacks (i.e., differences
between required arrival times and arrival times) and the length of the horizontal bars

6.10. EXPERIMENTS 97

After timing optimization, before legalization After legalization with hard bounds

(a) (b)

After legalization with soft bounds, without postopt After legalization with soft bounds and postopt

(c) (d)

Figure 6.10: Effect of legalization on the slack distribution.

is proportional to the number of pins with this slack. The total number of pins on this
chip is about 1.3 million. All slacks are given in nanoseconds. The four histograms show
slack distributions for the design after timing optimization (a), after a legalization with
hard bounds (b), after the first two phases of our legalizer (c), and after our complete
legalization including postoptimization. The pictures show that after timing optimization,
most of the pins have a slack larger than 0.3 ns. However, large movements during the
legalization with hard bounds increases the number of pins with negative slacks and the
number of pins with a slack close to zero (which can cause problems in further layout
steps). The number of (nearly) negative pins is much smaller after the legalization with
the first two phases of our detailed placement approach. However, only with the help of
the postoptimization routine one gets a slack distribution that is almost as good as the

98 CHAPTER 6. DETAILED PLACEMENT

distribution before legalization. We also tested this on several other chips and got very
similar distributions. See Brenner and Vygen [2004] and Pauli [2003] for more experiments
concerning the interaction of timing optimization and placement legalization.

Chapter 7

Macro Placement

The global placement algorithm presented in Chapter 5 can be used for a simultaneous
placement of standard circuits and macros. Though it produces excellent placements if
there are only a few movable bigger macros (as we will see in Chapter 9), the results may
be quite bad if there are many larger macros to be placed. The reason is that macros will
be fixed as soon as they are too big compared to the partitioning windows. Therefore, large
macros may be fixed too early. Although most of them should be placed in corners of the
chip area (where they do not disturb the rest of the logic), they will probably be placed
close to the center. In this chapter, we will show how our global placement approach can
be used for a placer that can also handle macros in a reasonable way.

7.1 Overview of the Literature

On most real-world chips there is a huge number of standard cells and quite a small number
(normally not more than several hundreds) of macros that have to be placed. Though both
for placing only a few rectangles of significantly different sizes and aspect ratios (where the
aspect ratio of a rectangle is defined as its widths divided by its height) and for placing lots
of standard circuits methods are known that work well in practice, it seems to be much
harder to place both groups of circuits together. Therefore, most known approaches either
cluster the standard circuits (and small macros) together in order to reduce the number of
objects, or partition the larger macros into small fragments in order to get rid of the big
rectangles. Sometimes both techniques are combined.

The problem of placing a small number of rectangles in the plane is called Floorplanning
Problem. Mostly the minimization of area of a bounding box containing all rectangles is
considered as objective function, but the general concepts can also be used for minimizing
interconnect length between the rectangle or movement if initial positions are given. In
order to compute an optimal floorplan, several papers ask for efficient representations of all
relevant arrangements of a given set of rectangles. Onodera, Taniguchi, and Tamaru [1991]
represent an arrangement of rectangles by specifying relative positions (top-down, left-

right) for each pair of rectangle. There are 4
1
2
n(n−1) such representations, but most of them

are redundant or inconsistant. Murata et al. [1995] propose a representation with sequence

99

100 CHAPTER 7. MACRO PLACEMENT

pairs which leads to O((n!)2) possible configurations. Guo, Cheng, and Yoshimura [1999]

and Takahashi [2000] improved this by using O-trees to O
(

n!22n−2

n1.5

)

combinations. The B∗-

Tree representation proposed by Chang et al. [2000] also leads to O
(

n!22n−2

n1.5

)

combinations.

These representations can be used for branch-and-bound algorithms or simulated-annealing
algorithms. In principle, any objective function can be used in such an environment, but it
should be noted that only so-called admissible floorplans (see Guo, Cheng, and Yoshimura
[1999]) can be represented by sequence pairs, O-trees, or B∗-trees. (i.e., no rectangle may
be moved to the left or downwards without overlapping other rectangles), so if one wants
to minimize interconnect length or movement these two represenations cannot be used
directly.

Adya and Markov [2002] relax the macro placement problem by “shredding” macros into
small pieces that can be handled by a standard cell placer. The parts of each macro are
connected by artificial nets in order to keep them together during the placement process.
The authors use the min-cut based placer Capo (Caldwell, Kahng, and Markov [2000])
to place the shredded circuit list. Then, each macro is placed at the center of gravity of
its fragments. As this placement will normally contain overlaps, a legalization step for the
macros is necessary. To this end, Adya and Markov [2002] cluster the standard circuits and
place the clusters together with the macros by a floorplanner based on simulated annealing
(Adya and Markov [2001]). The positions of the centers of gravity only serve as an input
for the floorplaner, the method does not try to find a solution with minimum movement.
The drawback of this method is that the final placement will most likely be very different
from the placement of the shredded circuits, so the question is why one runs the placement
on the shredded circuits at all. In a newer paper, Adya and Markov [2005] recommend
to run some steps of force-directed placement in order to reduce at least the overlaps of
macros. However, this method will hardly lead to a legal placement, and even for removing
small remaining overlaps, large movements may be necessary.

Force-directed placement approaches (see Johannes and Eisenmann [1998] for the general
strategy and Mo, Tabbara, and Brayton [2000] for some special adaptions to macro place-
ment) can place circuits of very different size directly, but, as mentioned in Chapter 3, the
relative positions of the circuits will be fixed too early. They may be changed by local
optimization steps (see Vorwerk, Kennings, and Vannelli [2004]), but the relative positions
of two large macros can hardly be changed without perturbing the whole placement. In
addition, the placement will not be legal after the end of the force-directed loop, and in
the presence of big macros it may be necessary to move some circuits quite far in order to
make it legal.

7.2 Our approach

The macro placement algorithm that we propose makes use of the global placement algo-
rithm desribed in Chapter 5. Since the global placement algorithm is strong in handling
small circuits, a main ingredient of our macro placer consists of shredding bigger macros.
We place the macro parts and use their positions as a guideline for the macro locations.
However, for very large macros, this method will not lead to good results because after only

7.2. OUR APPROACH 101

a few levels the macro parts will be placed in different windows and, hence, can hardly be
moved by repartitioning. Experiments have shown that very large macros would be placed
too close to the center of the chip area, so we will propose a different method for them.
In general, we consider three classes of macros (mainly separated according to their size)
that are handled in different ways. Here is an overview of the strategy of how we place the
macros of the different classes:

• Class 1: The largest macros are placed in such a way that they just do not disturb the
rest of the logic too much. For each of them, some candidate locations are computed
(mainly in the corners and on the borders of the chip), and all possible placements
of them are enumerated and evaluated with a cost function that takes an estimation
for the interconnect length and for the area consumption of the rest of the logic into
account. Then, the macros of the group are fixed at their positions.

• Class 2: The medium-sized macros are shredded, and then, some levels of our global
placer are run (placing the shredded macros and the rest of the circuits). For each
macro of this class, the average of the positions of its parts are used as a desired
location for it. We will propose a strategy how we can find legal positions for these
macros close to their desired locations. For the rest of the process, we will fix the
macros there.

• Class 3: Finally, we run a complete global placement on the remaining, relatively
small macros that are still movable and on the standard circuits. The macros are fixed
when they are too big compared to the window size. To compute their locations, we
just run a simple greedy heuristic.

The following subsections contain detailed descriptions of the three steps of our macro
placer. For an illustration of the method, we will show pictures of intermediate steps for
the chip Klaus, an ASIC with about 215 000 standard circuits and 123 macros. Figure 7.1
shows a placement in which the macros have been placed manually by a designer, only the
the standard circuits have been placed by BonnPlace.

Figure 7.2 shows what happend on that instance if we simply run BonnPlace without
any preplacement of macros: The large macros are clustered near the center, a result that
is almost always unacceptable both for timing optimization and routability.

7.2.1 Phase 1: Placing Large Macros

Our placement strategy for the largest macro is based on the observation that their positions
are not that important as long as they do not harm the placement of the rest of the circuits,
e.g., by forcing parts of circuit groups to be placed on different sides of large macros or by
making short connections to IO-pins impossible. In the first phase, we consider macros that
cover at least 5 % of the chip area. If there are more than five of them, we only consider
the five largest ones. For each of them, we allow nine location candidates, four of them in
the corners, four in the middle of the borders, and one in the center of the chip. Then,
we enumerate all possible assignments of the macros to the candidate loactions. For each

102 CHAPTER 7. MACRO PLACEMENT

Figure 7.1: A placement of the chip Klaus. The macros have been placed by a designer.

assignment we run over all macros (sorted by size in non-increasing order) and place it at
the closest free position to their candidate location (without moving the macros that have
already been placed). We evaluate each placement with the following simple cost function:
We build one large cluster containing all the remaining circuits and place it as a square
such that the total overlap to the placed macros is minimized. Then, we compute the total
interconnect length under the assumption that the pins for the large rest cluster are all
placed in its center, i.e., we add up the lengths of the interconnections between the macros
and between the cluster and the macros and of the connections to preplaced objects and
IO-pins. We take the placement that minimizes a weighted sum of an estimation of the
overlap costs and the interconnect costs. For the rest of the macro placement process, the
macros considered in this phase will be fixed at their position. Figure 7.3 shows the result
of the first phase for the chip Klaus.

7.2.2 Phase 2: Placing Medium-Sized Macros

We partition the medium-sized macros into small squares and connect the parts of each
macro by dummy nets of high weights (400 times the weight of a standard net in our
experiments). Then, they are placed by our global placement algorithm. As we are not
interested in a legal placement in this stage but only want an idea were reasonable locations
for the macros could be, we only run the first five levels of our placer. Figure 7.4 depicts
the placement of the shredded circuit list for the chip Klaus. The two largest macros are
marked as fixed by black squares. The picture demonstrates that the six high macros are

7.2. OUR APPROACH 103

Figure 7.2: The placement for the chip Klaus produced by BonnPlace without macro prepro-
cessing and without preplacing any macros.

on the border of what we can handle with our approach. In the lower left part of the chip
area, the fragment sets of some of these macros are mixed in a way that makes it quite hard
to decide which of them should be placed where. For the smaller macros, the fragments
are placed in much “nicer” shapes.

We compute for each macro the average position of its single parts and ask for a legal
placement of the macros minimizing the distance to these average positions, where we
choose the costs for moving a circuit to be proportional to the square root of its size. To
this end, we legalize the macros in groups of size at most four. To compute these groups, we
iteratively take the largest macro that has not been fixed yet and put it together with up
to three circuits nearby into a new group. Then, we place each group in one step. For the
placement of a group, we make use of the fact that if we fix for each pair of macros (preplaced
or movable) their relative positions (so, we introduce the constraint that one of them has to
be placed on top or to the left of the other one), a placement that mimizes the bounding-
box netlength for any netlist can be computed efficiently by reduction to a minimum cost
flow problem (see Vygen [1996]). We run a branch-and-bound algorithm (branching by
fixing one of the four different relative positions of two macros) to compute a placement of
minimum movement for the circuits of each group. Such a branch-and-bound method has
already been proposed by Onodera, Tanuguchi, and Tamaru [1991]. Lower bounds can also
be computed using the minimum cost flow formulation. For an upper bound, we initially
compute circuit locations by greedily placing the macros in the group, i.e., we traverse the
group and place each macro to the nearest free position. Enumerating placements for small
groups of macros by a branch-and-bound algorithm seems to be a reasonable compromise

104 CHAPTER 7. MACRO PLACEMENT

Figure 7.3: The two largest macros of the chip Klaus, placed in phase 1 of our algorithm.

Figure 7.4: The placement of the shredded circuit list of the chip Klaus.

7.2. OUR APPROACH 105

between simple greedy legalization and time-consuming global enumeration. We also allow
macros to be several times a member of the group of size four. More precisely, our strategy
for finding a legal placement of the macros of class 2 can be described as follows:

Macro Legalization Algorithm

Input: A set C of circuits.
A placement area A.
A set B of rectangular blockages.
A position (x0(c), y0(c)) for the center of each circuit c ∈ C.

Output: A legal placement for the macros or the answer that such a placement could
not be found.

©1 Let (xc, yc) be the center of the placement area A.
Set label(c) := 0 for all c ∈ C.
Let c1, . . . , cl be an ordering of the elements of
C such that size(ci)

(

(x0(ci) − xc)
2 + (y0(ci) − yc)

2
)

≥
size(ci+1)

(

(x0(ci+1) − xc)
2 + (y0(ci+1) − yc)

2
)

for i ∈ {1, . . . , l − 1}.

©2 IF (there is no c ∈ C with label(c) = 0)
STOP. // Placement is legal.

Let i0 = min{j ∈ {1, . . . , l} | label(cj) = 0}.
Let {c ∈ C \ {ci0} | label(c) < 2} = {c∗1, . . . , c

∗
h} such that

(x(c∗i)−x(ci0
))2+(y(c∗i)−y(ci0

))2

size(c∗i)
≤

(x(c∗i+1)−x(ci0
))2+(y(c∗i+1)−y(ci0

))2

size(c∗i+1)
for i = 1, . . . , h− 1.

Let i∗ = min

{

3,max

{

i ∈ {1, . . . , h}

∣

∣

∣

∣

(x(c∗i)−x(ci0
))2+(y(c∗i)−y(ci0

))2

size(c∗i)
< 9

}}

.

Let C∗ := {ci0} ∪ {c∗1, . . . , c
∗
i∗}.

FOR (c ∈ C∗ with label(c) = 1)
Remove the rectangle corresponding to c from B.

©3 Place the elements of C∗ legally and disjointly from the blockages in B by a
branch-and-bound method minimizing the distance to the locations (x0(c), y0(c)).
If no legal placement can be found, then stop with the output: “We could not find
a legal placement”.

©4 FOR (c ∈ C∗)
Add the rectangle covered by c to B.

Let c∗ be an element of C∗ maximizing the value
size(c∗)

(

(x0(c
∗) − xc)

2 + (y0(c
∗) − yc)

2
)

.
Set label(c∗) := 2 and label(c) := 1 for c ∈ C∗ \ {c∗}.
GO TO ©2 .

Here, label(c) is either 0 (if c is not placed at all), or 1 (if c is placed but not yet fixed), or
2 (if c is fixed). Only one of the up to four elements of the group C ∗ is fixed in each pass of
the main loop, the other ones can still be moved. The circuits to be placed and fixed are
chosen in such a way that we start with large macros near the corners of the chip area. We

106 CHAPTER 7. MACRO PLACEMENT

fix one of the macros in each iteration because it will hardly be possible to move very large
macros in the final iterations, so we should avoid selecting a large macro several times as
a member of the set C∗ although it cannot be moved anymore (at least, without moving
many other circuits).

Though we bound the number of circuits that we place simultaneously, the branch-and-
bound algorithm can sometimes be too time-consuming (for example, if there are many
fixed objects around). In order to bound the running time, we therefore do not always run
a complete branch-and-bound computation but break off the enumeration if we did not
find an optimum solution after a certain amount of time. In that case, we take the best
placement we have found so far. Note that the result of the branch-and-bound algorithm
is often not yet legal as the macros are generally not placed at grid coordinates. However,
since the fixed objects are also aligned the grid coordinates and the macro widths and
heights are integer multiples of xδ or yδ, respectively, it will most of the times be possible
to find legal locations close to the branch-and-bound solution.

Figure 7.5 presents some intermediate pictures of phase 2 for the chip Klaus. The pictures
show the macro placement at the end of an iteration of the main loop of the Macro Le-
galization Algorithm. The elements of C∗ for the corresponding iteration are marked
by a grey frame. For each c ∈ C∗, its center is connected to its desired position (x0(c), y0(c))
by a red line. The widths of the lines correspond to the movement costs of the circuits.
Note that the placements of the macros with the grey frame are either the result of a
branch-and-bound computation (possibly on off-grid coordinates) or the result of an initial
greedy placement (with coordinates on the grid) if the branch-and-bound method could
not improve this initial placement. Therefore, circuits that are several times member of the
group C∗ may have slightly different coordinates at the end of the iterations even though
their neighbouring macros did not move. All circuits without a grey frame shown in the
pictures are placed legally. The macros that have already been fixed at the beginning of
the iteration (i.e., the macros that have been preplaced in phase 1 or that have been fixed
in earlier iterations of phase 2) are marked by a black square at their centers. After 34
iterations of phase 2, the two macro in class 1 and the 70 macros in class 2 are placed, and
they are fixed at their positions for the rest of the macro placement process. The remaining
51 macros of class 3 will be handled in phase 3.

7.2.3 Phase 3: Placing Small Macros

After phase 2, at most the very small macros are still movable. To place these macros, we
run in phase 3 our global placer that fixes the remaining macros as soon as they are too big
compared to the partition windows. Since they are small enough, they will stay movable
during the first levels of the placement and therefore have reasonable positions when they
are fixed. One could apply local enumeration techniques as described for phase 2, but
at least if the macros are not placed too densely, they can be legalized greedily without
causing very large movements. Figure 7.6 shows the placement at the end of phase 3 for
the chip Klaus.

7.2. OUR APPROACH 107

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 34

Figure 7.5: Snapshots of the macro legalization in phase 2 for the chip Klaus.

108 CHAPTER 7. MACRO PLACEMENT

Figure 7.6: The placement of he chip Klaus at the end of our macro placement algorithm.

7.3 Interaction with the Designer

The macro placer proposed in this chapter can be used as a fully automatic tool that can
handle placement instances of mixed sizes, and for most of our experiments we will run
it in that way. But it should be noted that to get very good results in practice there are
still situations when an intervention of the designer is useful or even necessary. Besides the
changing of some standard global placement parameters, like the maximum allowed density
in a region, the designer can improve the results in the following ways:

• It can be useful to preplace some of the largest macros manually. As phase 1 is only
a simple heuristic with many arbitrary decisions, it may be reasonable to preplace
macros that would be placed in this phase. This is especially important, if there are
large macros for which the assumption that they can be placed anywhere where they
do not disturb the rest of the circuits is wrong.

• The designer may predescribe which macros should be placed in phase 1. In some
cases, there are macros which are not that big but whose positions are not important,
so the size is not necessarily the best way to detect this kind of macros.

• Often, the result of our macro placer will be locally suboptimal. In some cases, it may
by necessary to “align” a group of circuits, while in other cases such an alignment may
cause routing problems. Similarly, in some situations, it may be desirable to have
small slots between macros (for the insertion of buffers or inverters during timing

7.4. EXPERIMENTS 109

optimization or in order to place some standard circuits close to a macro they are
strongly connected to), while in other cases such slots may cause problems because
standard circuits that are placed there may make routing connections over macros
necessary.

• The minimization of netlength does not make sense for all kinds of circuits. There are
circuits, e.g., de-coupling capacitors (decaps), that must be placed at certain positions
near other circuits without being connected to them by nets. Obviously, our macro
placer cannot handle this kind of circuits reasonably, so it is up to the designer to
insert them afterwards. In order to keep a sufficient amount of free space for them, it
is possible to prescribe a rectangular area around each macro that has to stay empty
during placement.

7.4 Experiments

We tested our algorithm on several ASICs from our testbed. To compare the quality of
different macro placements, we considered the bounding-box netlength that BonnPlace
could achieve with the given macro preplacement. Of course, netlength is not the only
optimization goal in placement, and a macro placement with very short netlength can
be useless if it contains, for example, single regions that are not routable. On the other
hand, the experiments are not intended to show that our macro placer can produce excellent
macro placements in a fully automatic way, but they should show that the macro placements
found by our algorithm are a reasonable starting point for a designer to work with. Then,
as mentioned above, in most cases some local changes have to be done manually. But to
show that our placements are useful for that purpose, it seems to be sufficient to consider
netlength and to have a look at the picture of the placements.

For a comparison, we used BonnPlace without our macro preprocessing, so all macros
are floating until they are too big compared to the sizes of the partitioning windows. In
addition, we compared our results to macro placements that were found by experienced
designers. On some chips, not all of the macros have been preplaced, but at least the bigger
ones have been fixed. The remaining smaller macros have been placed by our global placer.

In our experiments, we distinguish two sorts of chips depending on the positions of the
IO-pins. On the first group of chips, the wire-bond chips, the IO-pins are placed outside
the area that can be used for placement at the border of the chip area (boundary-IOs). On
the other chips, the flip-chips, the IO-pins are spread over the placement area (area-IOs).
The area-IO-pins create some additional difficulties for macro placement. They are placed
in a gridlike structure on the chip area, and close to each IO-pin a special IO-circuit, that
is often realized by a macro, has to be placed. The IO-circuit is connected to the IO-pin
by a two-terminal net whose resistance may not be larger than a prescribed value. Hence,
for each IO-circuit, only a very restricted area is allowed. We can handle this restriction
in our placer by introducing movebounds for each IO-circuit (and, in phase 2, for each
fragment of an IO-circuit). In the partitioning steps, we drastically increase the costs for
moving a circuit into a window that does not intersect its allowed area. However, we cannot
guarantee that we meet all the movebounds, so this is another situation when our macro

110 CHAPTER 7. MACRO PLACEMENT

placement has to be corrected by a designer. Another problem with area-IOs is the fact that
it is mostly necessary to place a decap circuit next to each IO-circuit. As mentioned above,
we cannot handle such circuits directly with our approach, but if these decaps are macros,
we can block some free area next to each IO-circuit, where the designer can afterwards
insert the decaps.

Table 7.1 and Table 7.2 summarize the results of our macro placement experiments. We
ran our experiments on an IBM 650 with 8 processors of 1.45 GHz. All running times are
wallclock running times for parallel runs on four processors.

Table 7.1 presents the results for the chips with boundary-IOs. For each chip, we report
the total number of all circuits, except the IO-circuits, and the number of all macros in
the different classes. The last six columns contain the results of our experiments. Columns
six and seven show the bounding-box netlengths and the running times of our experiments
with manually preplaced macros. On some chips, we did not have a preplacement for all
macros. In that case, we first ran a complete placement in order to place the remaining
macros, and then, we used this placement as an input for a second placement run with
all macros fixed. So, for these chips, two running times are given in column seven, and
the netlength in the table refers to the result of the second run. For the experiments with
movable macros but without our macro placing algorithm, we always ran two placements,
where the first one was only intended to compute a macro placement. Column eight shows
the netlength after the second placement run, and column nine the running times for the
two runs. Columns ten and eleven contain the corresponding numbers for experiments with
our macro placement algorithm, so here the first run contains all three phases of the macro
placer.

Table 7.2 gives an overview of our experiments on chips with area-IOs. The table has
a structure similar to Table 7.1, but it contains one additional column for each set of
experiments (“IO vio’s”). This columns report the fraction of IO-circuits for which the
predefined IO-netbounds could not be met. Note that the chip Jens, which is in fact only
a part of a larger chip, does not have any IO-circuits at all. As we did not always have
reliable information on the appropriate IO-netbounds for the chips, we tried to choose the
bounds rather too restrictive than too weak.

On the chips Hanno, Yvonne, Alex, and Fermi, we had to block space for decap circuits
next to the IO-circuits. Though some sets of IO-circuits shared a common decap circuit
in the placement that has been created by a designer, we blocked this space next to each
single IO-circuit because it was not clear in which cases it would be possible to avoid the
decaps. Hence, we overestimated the amount of area needed for IO-circuits. Of course,
these additional constraints made it more difficult to optimize netlength and to meet the
IO-netbounds. On Hanno, for example, the fraction of the chip area covered by all circuits
was 69.3% with the manual macro placement (including IO-circuits and decaps) but 81.2%
with the additional blocks for decaps.

We sum up the results of our experiments:

• On all chips, our macro placer created a better netlength than the runs of Bonn-
Place without macro preplacement. On 14 of the 17 chips, we could also improve
the netlength compared to the manual placements.

7
.4

.
E

X
P

E
R

IM
E

N
T

S
111

Old BonnPlace BonnPlace with
Chip # Circuits # Macros Preplaced macros Movable macros macro preprocessing

Class 1 Class 2 Class 3 BB Time BB Time BB Time

Klaus 214 865 2 70 51 44.08 m 30:21 44.23 m 36:17 37.08 m 49:51
——— 30:20 12:18

James 412 050 4 47 73 109.82 m 29:47 121.60 m 36:57 95.58 m 2:19:16
30:36 29:51 44:16

Max 521 375 0 57 0 77.79 m 35:08 84.19 m 41:09 75.93 m 2:03:11
32:48 31:03 30:53

Katrin 763 484 0 534 116 168.19 m 1:04:10 174.13 m 1:09:06 161.30 m 7:54:34
1:12:52 1:10:17 1:01:40

Dagmar 904 756 0 104 11 181.86 m 1:02:39 202.02 m 1:38:41 168.15 m 5:11:35
1:03:09 1:23:51 1:06:53

Sandra 1 317 488 0 194 71 392.79 m 2:31:11 423.54 m 2:47:39 400.06 m 8:40:03
——— 2:46:04 2:04:39

Kevin 1 497 709 0 288 26 153.96 m 2:29:10 140.84 m 2:58:23 138.78 m 12:20:43
——— 2:01:37 2:09:53

Hardy 2 056 728 0 135 136 372.90 m 2:39:02 374.72 m 2:35:40 364.26 m 10:12:52
3:10:22 3:04:00 2:35:41

Table 7.1: Macro placement results on chips with boundary IOs.

11
2

C
H

A
P

T
E

R
7
.

M
A

C
R

O
P

L
A

C
E

M
E

N
T

Standard BonnPlace BonnPlace with
Chip # Circuits # Macros Preplaced macros Movable macros macro preprocessing

Class 1 Class 2 Class 3 BB (m) Time IO vio’s BB (m) Time IO vio’s BB (m) Time IO vio’s

Jens 72 496 5 9 0 7.19 3:55 ——– 8.12 4:31 ——– 6.74 11:03 ——–
——— 5:13 3:44

Hartmut 158 802 0 95 642 145.14 20:36 0.0 % 142.06 21:29 0.2 % 136.35 32:51 0.0 %
——— 18:54 11:39

Christian 278 083 0 52 702 126.05 21:52 0.0 % 134.28 21:18 2.2 % 125.07 1:02:22 0.1 %
——— 16:26 15:00

Hanno 779 033 0 341 629 104.60 1:24:43 0.0 % 121.09 3:08:02 10.6 % 116.12 5:50:34 5.9 %
——— 1:10:33 59:50

Sven 825 737 0 271 1 359 238.29 2:14:31 0.2 % 231.03 1:58:02 12.8 % 195.64 8:09:52 2.2 %
——— 1:19:01 1:18:39

Yvonne 915 086 0 270 812 277.62 2:10:19 0.0 % 278.10 1:50:46 3.0 % 269.09 6:55:31 1.1 %
——— 2:17:08 1:35:30

Alex 971 113 0 844 1 672 159.10 1:48:09 0.0 % 155.21 2:04:01 0.6 % 148.84 10:44:18 0.3 %
——— 1:27:11 1:23:52

Josef 1 349 390 0 287 677 169.09 1:46:27 0.0 % 176.32 2:02:16 7.1 % 160.58 7:38:32 4.5 %
1:42:52 1:42:05 1:42:44

Fermi 3 605 741 0 215 1 181 363.76 6:12:46 4.7 % 412.69 6:34:42 4.7 % 396.06 18:59:57 6.1 %
——— 6:07:38 6:13:22

Table 7.2: Macro placement results on chips with area IOs.

7.4. EXPERIMENTS 113

• On the chips with boundary-IOs, the netlength of the placements computed with our
macro placer is, on average 6.8 % smaller than the netlength of the placements with
manual macro preplacements (computed by the geometric mean). On the chips with
area-IOs, the corresponding number is 3.2 %. On all chips the average improvement
is 4.9%.

• Compared to the runs of BonnPlace without macro preprocessing, we can even
improve the netlengths by 10.4% (boundary IOs) or 7.6% (area IOs), on average.
The averge netlength reduction on all chips is 9.0%.

The running time for the three phases of our macro placer are up to eight times bigger
than the running times of the following placement with fixed macros. As especially the
running time of phase 2 depends not only on the number of all circuits but on the number
and the desired positions of the class 2 macros, this factor varies quite strongly with the
different chips. Table 7.3 shows the running times for the different parts of the program.
The running time for phase 2 is split into the time for the five levels of global placement
on the shredded circuit list (I) and the time for the Macro Legalization Algorithm
(II). For comparison, the running times of a standrd BonnPlace run with fixed macros
is shown in the last column of the table.

Phase 2 Standard
Chip Phase 1

I II
Phase 3

BonnPlace

Jens 45 6:02 15 4:01 3:44

Hartmut ——— 19:39 1:25 10:50 11:39

Klaus 1 31:08 4:31 13:40 12:18

Christian ——— 45:59 21 13:59 15:00

James 1:41 1:33:43 4:43 38:09 44:16

Max ——— 1:26:28 6:08 27:11 30:53

Katrin ——— 2:01:55 4:49:19 53:56 1:01:40

Hanno ——— 1:41:49 3:06:36 49:39 59:50

Sven ——— 4:26:56 2:12:36 1:16:03 1:18:39

Dagmar ——— 3:09:04 14:42 1:43:48 1:06:53

Yvonne ——— 2:15:14 3:05:30 1:32:53 1:35:30

Alex ——— 3:05:45 6:13:38 1:14:53 1:23:52

Sandra ——— 5:20:05 1:19:49 1:50:55 2:04:39

Josef ——— 3:52:37 2:09:07 1:26:18 1:42:44

Kevin ——— 6:00:08 4:08:07 1:59:44 2:09:53

Hardy ——— 7:10:24 37:28 2:13:34 2:35:41

Fermi ——— 11:13:45 1:14:21 6:22:50 6:13:22

Table 7.3: Running times for macro placement.

To illustrate our experiments, we show some typical outcomes of the three different macro
placements that we considered for each chip:

• Figure 7.7 presents the placements of the chip Jens. Again, the standard Bonn-
Place run with floating macros (a) placed the five large macros simply in the center

114 CHAPTER 7. MACRO PLACEMENT

which makes the whole placement useless. Note that the placement of the five biggest
macros found by phase 1 of our algorithm (picture (c)) is very similar to the manual
placement (b) after mirroring on a horizontal axis. Such a mirroring can be done
on Jens without changing the netlength significantly because the chip has only a few
IO-pins which are located near the center of the chip area.

• Figure 7.8 gives an overview of the results for the chip James. Here, again, the five
largest macros have been fixed in phase 1. The placements (b) and (c) are completely
different but it should be noted that the netlength of placement (c) is 13% smaller.

• The chip Yvonne, shown in Figure 7.9, is an example for a chip on which much space
has to be blocked for decaps. On the three pictures, one can easily see the free area
around the five macros near the border and next to each of the (grey) IO-circuits
that are spread over the outer regions of the chip area. Though the netlengths of
placements (a) and (b) are almost equal, the dense packing of macros in placement
(a) would probably cause routing and/or timing problems later in the design process.

• Sandra (see Figure 7.10) is one of the chips on which the result of our macro placer
was (in terms of netlength) worse than the manual preplacement (by about 1.9 %).
Some of the local problems that may cause this difference can clearly be seen in
placement (c), e.g., around the red macro in the upper right corner where a group of
logic is divided in parts by that macro.

7.4. EXPERIMENTS 115

(a) Macros placed by a standard BonnPlace run

(b) Macros placed by a designer

(c) Macros placed by our algorithm

Figure 7.7: Macro placements for the chip Jens.

116 CHAPTER 7. MACRO PLACEMENT

(a) Macros placed by a standard BonnPlace run

(b) Macros placed by a designer

(c) Macros placed by our algorithm

Figure 7.8: Macro placements for the chip James.

7.4. EXPERIMENTS 117

(a) Macros placed by a standard BonnPlace run

(b) Macros placed by a designer

(c) Macros placed by our algorithm

Figure 7.9: Macro placements for the chip Yvonne.

118 CHAPTER 7. MACRO PLACEMENT

(a) Macros placed by a standard BonnPlace run

(b) Macros placed by a designer

(c) Macros placed by our algorithm

Figure 7.10: Macro placements for the chip Sandra.

Chapter 8

Congestion-Driven Placement

In the global placement algorithm described in Chapter 5, we considered minimization of
weighted netlength as the main optimization goal. We have already mentioned that timing
optimization can be incorporated into this approach by defining appropriate weights for nets
on timing-critical paths. For routability, a short netlength is necessary, too. However, in
placements with very short netlength, there are often groups of strongly connected circuits
that are placed very densely. These groups can create local congestion that makes large
routing detours necessary or even makes routing impossible. To avoid such problems, the
placement density in the routing-critical parts of the chip has to be reduced. In Bonn-
Place, this can be done manually by defining a lower density for regions or for groups
of circuits. However, since one does not want to rerun the complete placement when a
routability problem occurs, it is desirable to detect and to solve possible routing problems
during a single placement run. In this chapter, we describe a very fast method that detects
accurately routing criticalities and reduces automatically the placement density in the
critical regions. We incorporated the method into our placer BonnPlace and we will
show by experiments that routability could be improved significantly. By using a lower
density only in the critical parts of the chip, we can increase the allowed density in other
regions and hence get better results in terms of (routed) wirelength. It should be noted that
the method can be incorporated into any placement algorithm that is based on top-down
recursive partitioning. Our congestion estimation can be applied to any given placement,
even if it is not yet legal, so the part of the algorithm that analyses the congestion can be
used in almost any placement algorithm.

8.1 Previous Approaches

In the last couple of years several new approaches have been developed in order to take
congestion during placement into consideration. Many algorithms use a very simple version
of a probabilistic global router to estimate the congestion in a region: The chip area is
divided into small tiles, for each border of a tile the expected number of wires routed
through this border is compared to the number of free routing tracks that cross the border.
For example, Cheng [1994], Hung and Flynn [1997], Wang et al. [2000], Hou et al. [2001],

119

120 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

Lou, Krishnamoorthy, and Sheng [2002], Yang, Kastner, and Sarrafzadeh [2001], Kahng and
Xu [2003], Yang, Choi, and Sarrafzadeh [2003], and Chang et al. [2003] follow this idea.
The algorithms differ mainly in the way they handle multi-terminal nets and blockages
and in their probabilistic distributions for the interconnections. A probabilistic routing
estimator of this type will also be an important part of our congestion estimation. Other
methods to detect congestion are described by Yang, Kastner, and Sarrafzadeh [2002] and
Hu and Marek-Sadowska [2002], where Rent’s Rule is used to estimate the peak congestion
value. Rent’s Rule is an empirical observation concerning the relation between the number
of circuits and the number of external connections of a part of a chip (see Landman and
and Russo [1971]).

Most authors describe not only ideas to detect congestion, but also propose ways to re-
duce it. Often congestion reduction is done in detailed placement or in a post-placement-
optimization (see Wang and Sarrafzadeh [1999, 2000], Wang et al. [2000], Wang, Yang,
and Sarrafzadeh [2000a], and Yang, Kastner, and Sarrafzadeh [2001]). Other authors in-
corporate the goal of congestion reduction into the global placement: Parakh, Brown, and
Sakallah [1998] show how quadratic placement can be modified in order to avoid rout-
ing problems; Mayrhofer and Lauther [1990] describe a partitioning approach that works
similar to min-cut partitioning, but has minimization of congestion as a goal. Xiu et al.
[2004] incorporate minimization of congestion on edges between the partitioning windows
into their objective function for partitioning. The partitioning-based algorithm in Hou et
al. [2001] increases the estimated area consumption after a global placement for circuits
in congested regions and then repeats the last levels of the partitioning while considering
these modified circuit sizes. There have also been experiments where congestion is used as
an optimization function for simulated annealing (see Cheng [1994], Wang and Sarrafzadeh
[1999], and Wang, Yang, and Sarrafzadeh [2000a]), but the results of Wang and Sarrafzadeh
[1999] and Wang, Yang, and Sarrafzadeh [2000a] imply that this approach will hardly lead
to an improvement of routability. The authors achieved the best congestion results when
they used netlength as objective function.

8.2 Congestion Analysis

In this section, we will describe a measurement for the congestion of a placement as it
appears during the placement algorithm. Given a chip which is partitioned into k × k
regions (forming a (k + 1) × (k + 1)-placement-grid), we calculate a pin density for each
region and a congestion estimation for each edge in the dual graph of the placement grid.

The core part of our algorithm is an estimation for the global routing of the current place-
ment. Global routing tools divide the chip into a number of tiles (bins) and calculate a
congestion estimation for the chip as well as a rough topology for each net. The main
drawback of existing global routing tools is the running time. A global router using so-
phisticated methods based on multicommodity flows (Albrecht [2001]) might take several
hours on a chip with millions of nets. Though just a congestion estimation with a global
router is faster, it is in general too slow because we have to call such an estimator several
times during the placement as a subroutine. Our simplified probabilistic global router tries
to imitate a real router in the following way:

8.2. CONGESTION ANALYSIS 121

0.2, 0.4, 0.6

0.2, 0.4, 0.6
1

1

1

0.2

0.40.2

0.20.2

0.2

0.4

0.2

vertical edges

horizontal edges

0.6 0.4 0.2

0.2

0.60.40.2

0.2 0.2

1

(b) Steiner tree and routing grid(a) placement grid (c) probabilistic weights

Figure 8.1: A chip with the placement grid and its dual graph and the expectation values for the
routing of a net.

(a) The current status of the placement grid is used as the global routing partition. The
global routing grid is defined as the dual of this partition (See, for example, Fig-
ure 8.1(a) that shows the placement grid, the dotted segments in Figure 8.1(b) show
the routing grid).

(b) Multi-terminal nets are split into a set of two-terminal nets: We calculate a Steiner
tree for all nets N ∈ N , each connection between two pins or Steiner points in this
Steiner tree is treated as a separate two-point connection (see Figure 8.1(b)).

(c) For the two-point connections in the Steiner tree of net N , we calculate the probability
pN (e) of each edge e in the dual graph of the placement grid to be used in the routing
of this connection. This method is similar to the algorithms proposed by Hung and
Flynn [1997], Lou, Krishnamoorthy, and Sheng [2001], and Kahng and Xu [2003]. We
calculate the set P of all length-optimal paths with at most two bends (vias) between
the points. In Hung and Flynn [1997], also shortest connections with arbitrarily
many vias are examined (where larger numbers of vias get lower probabilities), but
the restriction to two bends models quite well what a real router does. Based on this,
pn(e) is set to the number of paths in P that use e divided by the cardinality of P .
In Figure 8.1(c), three two-point connections are considered. The connections from
the Steiner point to the right and the bottom terminal are uniquely optimal, we get
pn(e) = 1 for these edges. The connection of the left terminal with the Steiner point
can be realized by five different paths with at most two vias. The usage probabilities
for the vertical routing edges are shown in bold, the other probabilities with the
normal font.

(d) For each edge e ∈ E(G) in the dual of the placement grid, we calculate its expected us-

age p(e) :=
∑

N∈N pN (e) and the capacity value cap(e). The fraction cong(e) := p(e)
cap(e)

is our estimated congestion on e. The capacity cap(e) depends (via a user param-
eter) on the number of routing channels of the three-dimensional routing grid that
cross e. On edges over preplaced macros that block some routing layers, the capacity
might by reduced (also controlled by a user parameter). However, according to our
experience such a reduction is often unnecessary. In the algorithm, routing problems

122 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

are reduced by spreading parts of the standard logic that are close to routing-critical
edges. After some steps of a partitioning based placer, we may assume that in the
center region of large macros there are no standard circuits any more, so the edges
crossing these macros are not that important. Of course, to handle smaller macros or
to get a good estimation on all parts of a chip one can reduce the estimated routing
capacity on macros.

The measurement described above just considers the congestion on the edges of the (quite
coarse) placement grid that is used as a global routing grid. Nets that are completely
contained in one tile of the placement partition are not considered at all. In order to take
also routability problems inside the tiles into account, we use the pin density pin-dens(r)
inside a region r as a second measurement. The number pin-dens(r) is calculated in a
straight-forward way: Given the circuits C(r) inside the region, we divide the total number
of pins in C(r) by the number of routing grid nodes in r.

8.3 Usage of Congestion Data

8.3.1 Calculation of Inflation Values

Once we have found a routing-critical region during the placement process, we have to use
this knowledge to remove or at least reduce the congestion in this region. We will show how
our estimation can be used in the placement tool BonnPlace. In our approach, we follow
the strategy of many chip designers and try to use a lowered density for groups of circuits
that tend to create routing problems. We handle such groups of circuits by inflating them,
i.e., we increase their estimated area usage in the partitioning step. This means that we do
not use s(c) := w(c)·h(c) as the size of the circuit c in this step, but a number (1+b(c))·s(c)
(with b(c) ≥ 0). Of course, when partitioning the set C(r) (for a region r) into subsets
C(r1), . . . , C(rk), we have to ensure that the condition

∑

c∈C(ri)
(1 + b(c)) · s(c) ≤ s(ri) is

fulfilled (for i = 1, . . . , k).

The numbers b(c) depend on an input parameter τ ≥ 0 that specifies how much we want
to allow the algorithm to increase the circuit sizes. Before the placement starts, each
circuit c gets an initial value b(c) that is proportional to the number of pins of c divided
by s(c). This is motivated by the observation that small circuits with many pins often
cause routing problems if they are placed densely. The initial numbers b(c) are scaled with
the parameter τ such that

∑

c∈C b(c) · s(c) = τ
4

∑

c∈C s(c). This ensures that the total
size of the circuits grows initially by a factor of (1 + τ

4). During the placement run, the
number b(c) is updated according to the congestion estimation of the region r the circuit
c is currently placed in. Let e1, . . . , e4 be the four edges of the global routing grid that are
incident to r. If cong(ei) ≥ 1 we increase b(c) by max{0,min{1, 2(cong(ei) − 1)}} · τ

5 (for
i = 1, . . . , 4). This way, each of the edges can cause an increment of b(c) by at most τ

5 .
This maximum is attained for cong(ei) ≥ 1.5. The number b(c) is also increased by adding
a number proportional to pin-dens(r) (but at most τ

5), if pin-dens(r) is bigger than some
fixed threshold value. Therefore, it is guaranteed that τ is an upper bound for the total
increment of b(c) in each level, and that the increment due to congested global routing

8.3. USAGE OF CONGESTION DATA 123

edges is the dominating factor. A typical value for τ is 0.2.

Moreover, we also decrease the numbers b(c) if both the congestion estimation on the routing
grid edges and the pin density are far away from critical numbers. In this case, the number
subtracted from b(c) is also proportional to τ . This ensures that unnecessarily high values
b(c) (especially the inflating values computed in the initialization) can be corrected during
the placement run.

8.3.2 Spreading Inflated Circuits

Changing the estimated area usage for circuits during the placement run would not be useful
if we could not find a placement that respects these larger circuit sizes. One way to find
such a placement is to calculate (but not use) the inflating numbers during a first placement
run and then use them in a post-placement optimization or in a new placement run (that
may consist only of the last partitioning steps, see Hou et al. [2001]). An important feature
in our approach is that we do not have to repeat parts of the placement, but we use the
repartitioning method to move circuits out of regions that are too full (with respect to the
sizes (1+b(c)) ·s(c)). While the repartitiong method was invented to improve the netlength
of a placement, we use it in addition to reduce the number of overcrowded regions. Similar
ideas are used in the iterative partitioning strategy in Section 5.2.2. In the additional
repartitioning step, we consider m×m-windows with m ∈ {2, 3}. As in the repartitioning
for the reduction of netlength, choosing m = 2 leads to a faster program while setting m = 3
produces better results. We collect all these m×m-windows in a heap. Let {r1, . . . , rm2}
be the set of regions of a m ×m-window in the heap, and let {C(r1), . . . , C(rm2)} be the
set of the corresponding circuit sets. Then, the key for this element in the heap is





m2
∑

i=1

∑

c∈C(ri)

(1 + b(c))s(c)



 /





m2
∑

i=1

s(Ai)



− max
i=1,...,m2





∑

c∈C(ri)

(1 + b(c))s(c)/s(Ai)



 .

Note that all keys are non-positive because the maximum density in a region is never smaller
than the average density. To reduce overloads of regions we take a heap element with the
smallest key, so we first consider m×m-windows with large overloads in a single region but
small average densities. In these windows, the greatest reduction of overloads is possible.
As in standard repartitioning, we compute a new placement in the window by solving a QP,
computing a partitioning of the circuits, and solving a second QP that forces the cicuits
to be placed in their subwindows. The new placement is accepted if the balance of the
regions is improved (i.e., the maximum overcrowding is reduced), even if the netlength gets
slightly worse. The optimization function is a weighted sum of the maximum overload of a
region and the netlength. Of course, after accepting a new placement in a m×m-window,
we have to update the keys for the m × m-windows intersecting with it. We repeat this
until all overloads are removed or the minimal key of an heap element is larger than a
certain constant −ε. The method is used as the function Reduce Overloads in the
congestion-driven version of BonnPlace. The congestion-driven version of BonnPlace
can be described as follows (additional steps compared to a standard BonnPlace run are
indicated by a red color):

124 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

Congestion-Driven BonnPlace

Input: An instance of the placement problem.

Output: A placement.

©1 INITIALIZATION:
window set := {r0};
C(r0) := C;
• FOR (each c ∈ C)

Increase b(c) proportional to #pins(c)/size(c);

©2 Solve a QP to minimize quadratic net-length;

©3 WHILE (window size is big enough)
{

FOR (each window r in window set)
{

Solve constrained QP;
Partitioning(r, C(r));
• Compute congestion on the edges of the placement grid;
• FOR (each c ∈ C)

Update b(c) according to local congestion;
• Partitioning(r, C(r));
Solve a QP (with terminal propagation at the subwindow borders);

}

• Reduce Overloads;
Repartitioning;

}

©4 Legalization;

The second Partitioning step after the congestion estimation (with respect to the new
inflation numbers) also helps to reduce overloads of regions. However, note that it is in
general still necessary to call the function Reduce Overloads.

Since we decrease the estimated area usage for circuits in non-critical regions and we in-
crease the maximal allowed density d(r) for every region r in each placement level a little
bit (typically 1% per level), there is normally enough free capacity to move circuits away
from crowded regions. Note that the schematic description above is a simplification: apart
from the initialization, the inflating values b(c) are changed only during the levels 3 to
7. Experience shows that during earlier levels the congestion estimation does not really
provide accurate information, while in the last levels it will hardly be possible to change
the placement such that new inflating values could be taken into account.

Figures 8.2, 8.3, and 8.4 illustrate a congestion-driven BonnPlace run on the chip Jens.
For each level, the placement and the congestion estimation at the at the end of the level
are shown. The circuits are colored according to their inflating values b(c): dark blue

8.3. USAGE OF CONGESTION DATA 125

(a) Level 1

(b) Level 2

(c) Level 3

Figure 8.2: Levels 1 to 3 of a congestion-driven bonnPlace run.

126 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

(a) Level 4

(b) Level 5

(c) Level 6

Figure 8.3: Levels 4 to 6 of a congestion-driven bonnPlace run.

8.3. USAGE OF CONGESTION DATA 127

(a) Level 7

(b) Level 8

(c) Legalized Placement

Figure 8.4: Levels 7 and 8 of a congestion-driven bonnPlace run and the result of the legalization.

128 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

(a) (b)

Figure 8.5: Comparison of congestion maps produced by the global router BonnRouteGlobal
and by our congestion estimator. Both pictures clearly show the same big congested area in the
center of the chip. Also on the other parts of the chip, both tools see almost the same routing
criticalities.

means b(c) = 0 while hot pink means b(c) ≥ 1. In the congestion pictures, the colors of
the routing edges reflect their criticality. White means that the edge is not used at all,
blue means a usage of about 10 %, while yellow indicate that cong(e) is about 1. Edges
with cong(e) ≥ 1.5 are red, they causes the highest possible inflating values. Figure 8.4 (c)
shows the placement after legalization and the corresponding congestion map. Note that
the congestion estimation in level 1, 2, and 8 and after the legalization are computed only
for this illustration as they are not used to change the inflating values b(c).

8.4 Computational results

In this section, we will evaluate the quality of the congestion estimation and the performance
of the congestion-driven BonnPlace. In order to test the accuracy of our congestion
estimation and to analyze the routability of the placements, we used BonnRouteGlobal,
a global router based on a multicommodity flow algorithm (see Albrecht [2001] and Müller
[2002]). All runs were performed on an IBM 650 with 8 processors of 1.45 GHz.

8.4.1 Congestion Analysis vs. Global Routing

As a first step, we will examine the accuracy of our congestion estimation routine by com-
paring the output of BonnRouteGlobal with our congestion estimator. In Figure 8.5,
we show the two congestion estimations for a placement of Jens that was produced by a

8.4. COMPUTATIONAL RESULTS 129

congestion-drivem BonnPlace run (with manually placed macros). It can be seen nicely
that the very fast congestion estimation used by BonnPlace matches the output of Bonn-
RouteGlobal quite well: The main congestion problem is in the middle of the chip. All
other chips of the test suite show a similar behavior: The important congested spots are
identified by our congestion estimator, sometimes the tool is a little bit too pessimistic.

To check if the algorithm identifies the routing hot-spots correctly we ran our estimator and
BonnRouteGlobal (with the same routing grid) on legalized placements and compared
the sets of the most critical edges. To avoid wrong estimations on edges above large macros,
we reduced the routing capacities on blockages by a factor of 0.8. As described above, such
edges on macros are not very important for our algorithm but for such tests macros cannot
be ignored. The Tables 8.1 and 8.2 show the results of the tests. In Table 8.1, we consider
the 20% most critical routing edges calculated by BonnRouteGlobal. We examine how
critical they are in the estimation we use during placement. For different values of α, we
count how many of these critical edges belong to the α% most critical edges in the Bonn-
Place estimator. We see that 75% up to 88% of them belong to the 20% most critical
edges of the BonnPlace estimator. Some of them are not assumed to be that critical by
our estimator, but only a small fraction of them does not belong to at least the 50% most
critical edges of the estimator. So Table 8.1 shows that our estimation is not too bad in
critical areas.

α Jens Heidrun James Sandra Ulrich

20 77.0 % 75.6 % 88.2 % 80.2 % 76.3 %

30 91.9 % 86.0 % 94.3 % 92.1 % 92.2 %

40 96.7 % 93.6 % 96.0 % 95.8 % 98.0 %

50 99.0 % 94.8 % 97.4 % 96.8 % 99.9 %

Table 8.1: Percentage of the 20% most critical edges of BonnRouteGlobal that belong to the
α% most critical edges of the BonnPlace congestion estimation.

For Table 8.2, we made the test the other way round. We considered the 20% most critical
edges according to our estimator and checked if they are really critical (in the estimation
of BonnRouteGlobal). The table shows how many of the edges belong to the α% most
critical edges of BonnRouteGlobal. We see that a big part of the edges that are assumed
to be critical by our estimator are really critical.

α Jens Heidrun James Sandra Ulrich

20 77.0 % 75.6 % 88.2 % 80.2 % 76.3 %

30 93.8 % 93.2 % 98.2 % 96.9 % 96.3 %

40 98.6 % 98.5 % 99.5 % 99.9 % 98.7 %

50 99.9 % 99.1 % 100.0 % 100.0 % 98.9 %

Table 8.2: Percentage of the 20% most critical edges of the BonnPlace congestion estimation
that belong to the α% most critical edges of BonnRouteGlobal.

The Tables 8.1 and 8.2 together show that our estimation of the most critical edges is quite
accurate. Only for a very small percentage of the edges the estimation is completely wrong.

130 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

Most of the critical edges are detected correctly. Note that we compared our estimation
to the final congestion computation of BonnRouteGlobal after all optimization steps of
the router. This means that some routing criticalities are solved at that time by making
detours while other routing edges get more critical as they are used for detours. Compared
to the initial routing estimation of BonnRouteGlobal, our congestion estimator is even
more accurate.

While the results are quite similar, the running times of the tools differ a lot: For our
largest test-case, Ulrich, BonnRouteGlobal needs between three and four hours, while
our internal congestion estimator runs less than a minute.

8.4.2 Congestion-Driven Placement

Finally, we will analyze the behavior of congestion-driven BonnPlace compared to stan-
dard BonnPlace. On many chips, even the standard version of BonnPlace produces a
routable placement if the allowed density is small enough. Therefore, we will run Bonn-
Place with different density parameters and compare routability and (routing) netlength
on these placements.

Table 8.3 and Table 8.4 give an overview of our runs with standard and congestion-driven
BonnPlace. We used five different routing-critical ASICs for the experiments. Each
row in the table corresponds to a run of BonnPlace followed by a run of BonnRoute-
Global. For each run, the second columns of the tables report the maximum allowed
density at the beginning of the placement run. In each level, this density is increased
by 1 %. For the congestion-driven runs, we have set τ := 0.2. Columns four and five
contain the bounding-box netlength after placement and the wallclock running time for
the BonnPlace run, performed in parallel on four processors. The average inflation value
at the end of the placement run is shown in column six, so the number in this column is
the percentage by which

∑

c∈C(1 + b(c))s(c) is bigger than
∑

c∈C s(c). Columns seven to
ten summarize the results of the BonnRouteGlobal runs on the different placements.
Column seven reports the total length of all Steiner trees computed by the router, and
columns eight the wallclock running time for the global routing, also run in parallel on
four processors of the same machine as the placement runs. Columns nine indicates if the
router succeded on these instances: the numbers are the sums of the overloads on all edges
of the global routing graph. Here, the load of an edge is the number of Steiner trees using
this edge, and if its load is bigger than its capacity, the overload of an edge is the difference
between the load and the capacity (it is zero otherwise). Hence, a non-zero number in this
column means that the global router failed on the instance. The last columns gives an
impression of the distribution of the routing criticalities. To produce this “magic number”,
BonnRouteGlobal computes a 20 % median on the edges of the global routing graph
weighted by their load, so the program considers a set of edges whose load is not smaller
than the load on the edges outside the set such that the total load on the edges in this
set is (approximately) 20 % of the total load on all edges. The number in the column is
the average relative load on these edges, so it is the average of the percentages of the edge
loads compared to the edge capacities. A higher “magic number” means generally a more
difficult routing instance.

8
.4

.
C

O
M

P
U

T
A
T

IO
N

A
L

R
E

S
U

L
T

S
131

Placement Routing
Chip Initial Congestion BB Running Running 20 %

density driven netlength time
Inflation Netlength

time
Overflows

median

77.0 % no 6.76 m 3:54 - 8.80 m 2:10 1 725 105.5 %
Jens 82.0 % no 6.72 m 3:21 - 8.73 m 2:20 4 543 115.8 %

82.0 % yes 7.10 m 6:52 16.3 % 8.28 m 1:49 0 96.0 %

58.0 % no 37.51 m 24:26 - 39.80 m 16:41 0 90.0 %
60.0 % no 38.04 m 27:51 - 40.75 m 17:02 2 91.3 %
65.0 % no 35.32 m 25:35 - 38.10 m 17:51 1 542 96.4 %

Heidrun
70.0 % yes 36.87 m 37:47 8.8 % 38.48 m 15:18 0 89.8 %
75.0 % yes 35.74 m 37:00 9.2 % 37.85 m 16:49 0 90.4 %
80.0 % yes 34.50 m 44:31 9.9 % 37.94 m 19:34 3 035 98.6 %

50.0 % no 116.93 m 28:17 - 128.30 m 47:02 0 86.7 %
55.0 % no 113.80 m 25:58 - 125.36 m 46:22 0 87.6 %
60.0 % no 114.81 m 27:40 - 129.76 m 49:27 0 93.6 %
65.0 % no 111.99 m 26:23 - 129.59 m 1:40:27 2 051 98.2 %

James
70.0 % no 109.74 m 26:03 - 128.21 m 2:03:44 19 396 101.9 %
70.0 % yes 114.89 m 48:49 22.0 % 124.04 m 45:32 0 86.5 %
75.0 % yes 113.08 m 48:57 24.2 % 122.89 m 45:17 0 87.1 %
80.0 % yes 114.68 m 51:12 24.6 % 127.44 m 1:11:11 0 89.2 %

Table 8.3: Results of placement and routing runs for the chips Jens, Heidrun, and James.

13
2

C
H

A
P

T
E

R
8
.

C
O

N
G

E
S
T

IO
N

-D
R

IV
E

N
P

L
A

C
E

M
E

N
T

Placement Routing
Chip Initial Congestion BB Running Running 20 %

density driven netlength time
Inflation Netlength

time
Overflows

median

36.0 % no 423.79 m 1:59:14 - 493.40 m 2:12:11 0 85.1 %
38.0 % no 411.36 m 1:49:25 - 483.28 m 2:06:19 1 89.8 %
40.0 % no 414.51 m 1:49:46 - 485.67 m 2:27:57 6 841 92.5 %

Sandra 45.0 % no 397.88 m 1:38:57 - 466.24 m 9:17:42 112 325 104.4 %
60.0 % yes 397.26 m 3:36:23 40.2 % 465.14 m 2:28:22 0 86.6 %
65.0 % yes 366.78 m 3:03:16 37.5 % 433.24 m 2:32:30 13 90.0 %
70.0 % yes 360.65 m 4:16:54 41.3 % 429.11 m 4:34:37 3 806 98.3 %

40.0 % no 611.53 m 4:23:53 - 668.16 m 2:46:11 0 86.1 %
50.0 % no 563.52 m 3:54:11 - 642.07 m 3:25:04 0 89.2 %
52.0 % no 553.70 m 4:06:46 - 646.44 m 3:24:32 0 89.6 %
53.0 % no 560.32 m 4:12:53 - 647.27 m 3:05:25 0 90.3 %
54.0 % no 548.27 m 4:04:17 - 630.69 m 2:58:18 1 806 90.2 %
55.0 % no 546.98 m 4:05:07 - 637.05 m 3:21:10 530 91.0 %

Ulrich
60.0 % no 526.50 m 3:58:35 - 616.35 m 4:19:50 4 074 98.0 %
53.0 % yes 593.39 m 6:24:17 19.3 % 646.74 m 3:34:57 0 86.7 %
60.0 % yes 569.02 m 5:53:50 20.8 % 647.56 m 3:08:40 0 88.6 %
65.0 % yes 552.73 m 6:00:56 18.0 % 649.09 m 4:30:12 0 92.7 %
67.0 % yes 547.84 m 5:55:48 18.9 % 629.71 m 3:11:32 0 89.8 %
70.0 % yes 543.75 m 6:40:01 30.0 % 626.96 m 4:19:20 118 93.2 %

Table 8.4: Results of placement and routing runs for the chips Sandra and Ulrich.

8.4. COMPUTATIONAL RESULTS 133

(a) Standard BonnPlace (b) Congestion-driven BonnPlace

Figure 8.6: Comparison of BonnRouteGlobal congestion estimations on Jens. The normal
BonnPlace placement (a) is not routable (the blue or black edges have an overload, and the red
edges are critical). The congestion-driven BonnPlace (b) creates a routable placement.

The results of our experiments can be summarized as follows:

• The congestion-driven BonnPlace is much slower than the standard version. It may
take 50 % up to 100 % more running time.

• The running time of BonnRouteGlobal may increase drastically when the place-
ment gets routing-critical.

• In the congestion-driven mode, we can run BonnPlace with a significantly higher
allowed density than in the standard mode and still get a routable result. This makes
the usage of the program easier as the designer can always use quite a high density
and does not have to search the right density in several runs.

• On the chip Jens, it was even impossible to get a routable placement without using
the congestion-driven mode.

• As only the circuits in routing-critical areas are inflated, we can achieve better
netlength with congestion-driven placements than with standard placement runs.
Standard BonnPlace succeded to produce a routable placement on four chips. On
these chips, the best routable placement computed by congestion-driven BonnPlace
has, on average, a 3.2 % shorter bounding-box netlength and a 3.6 % shorter global
routing wirelength than the best routable placement computed by standard Bonn-
Place.

To illustrate the effect of the congestion-driven placement mode, Figure 8.6 compares for the
chip Jens BonnRouteGlobal congestion pictures for placements computed with standard
and congestion-driven BonnPlace.

134 CHAPTER 8. CONGESTION-DRIVEN PLACEMENT

Chapter 9

Further Experiments

In the experiments presented in the previous chapters, we considered single aspects and
features of our placement algorithm. In this chapter, we want to test our placement tool as
a whole and compare it with previous appproaches. As testcases, we will use again some
of the IBM ASICs presented in Chapter 2 and some publicly available benchmarks.

9.1 Experiments on Real-World Chips

In our experiments on the IBM ASICs we applied the iterative partitioning (up to level 7)
and the 2 × 3-partitioning in the last levels to reduce the number of levels. In addition to
the standard method, we made tests with 3 × 3-windows for repartitioning and the over-
load reduction. For a comparison, we used the old version of BonnPlace that combined
the global placement algorithms presented by Vygen [1997] and the legalization approach
described by Vygen [1998]. The tests were made on an IBM 650 with eight processors
of 1.45 GHz. Table 9.1 contains the results of our experiments. For each run, the table
shows the bounding-box netlength in meters (“BB”), the wallclock running time, i.e., the
difference between the time when the program stopped and the time when it started in
hours, minutes, and seconds (“Time”), and the maximal memory allocated during the run
(“Memory”) in megabytes. The results for the old BonnPlace are shown in the columns
two to four. We ran the new BonnPlace with standard optimization parameters on a
single processor (columns five to seven) and in parallel on four processors (columns eight to
ten). The runs on four processors with 3×3-windows in repartitioning and in the reduction
of overloads are shown in the last three columns. Note that all versions of BonnPlace
had to meet the same constraints, especially the same density constraints. The experiments
clearly demonstrate that the new BonnPlace is much faster than the old version (roughly
by a factor of 2 for the sequential version and by more than a factor of 4 for the parallel
version) and that it is able to produce placements with signficantly shorter netlength us-
ing the extended repartitioning method (without being slower than the old BonnPlace
version).

Figure 9.1 visualizes the running times presented in Table 9.1. The diagram shows the
running times of the different versions of BonnPlace (y-coordinate) for different instance

135

13
6

C
H

A
P

T
E

R
9
.

F
U

R
T

H
E

R
E

X
P

E
R

IM
E

N
T

S

New BonnPlace (standard) New BonnPlace
Chip

Old BonnPlace
1 Processor 4 Processors 3 × 3 repart, 4 Processors

BB Time Memory BB Time Memory BB Time Memory BB Time Memory

Jens 6.92 0:10:05 187 6.77 0:07:15 118 6.76 0:03:10 123 6.53 0:09:18 193

Hans 7.43 0:14:12 319 7.53 0:08:18 170 7.56 0:03:53 167 7.18 0:10:40 189

Christian 166.44 1:04:02 1 749 166.14 0:32:01 858 166.04 0:17:48 848 156.45 0:34:40 884

James 108.34 1:38:21 4 023 109.57 0:53:48 1 873 109.80 0:26:55 1 849 100.88 0:56:27 1 929

Paul 28.81 1:27:47 1 678 27.89 0:53:55 921 27.88 0:27:43 935 26.83 0:54:51 1 040

Sven 253.07 3:28:56 5 469 254.23 2:09:21 2 653 252.85 1:02:28 2 662 246.16 1:45:16 2 736

Alex 207.98 4:43:44 5 895 201.53 2:57:09 2 900 200.99 1:19:15 2 950 197.59 2:19:14 3 061

Sandra 340.55 7:19:11 4 856 328.65 3:28:46 2 636 328.42 1:32:21 2 689 318.36 3:29:17 2 984

Reinhardt 366.59 6:29:57 5 042 360.65 3:20:25 2 752 360.96 1:36:39 2 801 355.23 3:04:54 3 198

Nadine 375.73 9:38:13 7 690 379.40 4:34:48 4 009 382.42 2:11:11 4 036 364.05 4:11:10 4 380

Hardy 353.50 9:45:39 6 131 365.71 4:43:04 3 413 363.24 2:15:40 3 542 341.05 4:32:14 4 277

Wolf 467.09 13:34:36 16 647 505.13 6:10:37 7 946 501.81 3:16:23 7 947 444.97 6:18:45 8 296

Ulrich 505.06 15:35:06 17 368 504.38 7:57:10 8 223 506.77 3:50:31 8 268 490.20 6:52:41 8 738

Fermi 378.52 23:21:41 19 167 368.98 12:17:50 10 151 368.00 6:55:38 10 182 355.51 9:08:56 10 563

Table 9.1: Experimental results on the IBM ASICs.

9.1. EXPERIMENTS ON REAL-WORLD CHIPS 137

sizes (x-coordinate). As one can easily see, the running time of the new BonnPlace grows
only slightly faster than linearly in the number of circuits. It should be noted that on our
fastest machines (with 2.6 GHz Opteron processors) BonnPlace is faster by a factor of
2 compared to the results presented here. We used an older and slower machine in the
experiments as we wanted to compare to the old BonnPlace which does not run on the
Opteron machines. On the Opteron machines, we can place Fermi, the largest chip in our
testsuite, in three hours and a half (on four processors and with standard repartitioning),
so BonnPlace can place more than 1 000 000 circuits in one hour. This is fast enough to
handle even the largest industrial instances.

0 1000000 2000000 3000000 4000000
Circuits

0

5

10

15

20

25

R
un

ni
ng

 t
im

e
(h

)

Running Times

 Old BonnPlace
 New New BonnPlace standard, 1 proc
 New BonnPlace standard, 4 procs
 New BonnPlace 3x3 rep, 4 procs

Figure 9.1: Running times of the different version of BonnPlace.

138 CHAPTER 9. FURTHER EXPERIMENTS

9.2 Experiments on Benchmarks

9.2.1 ISPD 2002 Benchmarks

The first set of publicly available testcases we used for our experiments with the new
BonnPlace are the ISPD ’02 benchmarks (see Adya and Markov [2002, 2005], and the
website http://vlsicad.eecs.umich.edu/BK/ISPD02bench). These instances were generated
from real-world chips (see Alpert [1998]) and hence are quite realistic, although they are
relatively small and, by now, outdated. Table 9.2 summarizes our experiments on these
instances. Column two contains the total number of circuits of the chips. For a comparison,
we show in columns three and four the results of the placer Feng Shui 2.4 as reported by
Khatkate et al. [2004]. So far, the Feng Shui-results were the best published placements
on the ISPD ’02 benchmarks. We cite the bounding-box netlength (“BB”) and the running
time on an 2.5 GHz Pentium 4 workstation (“Time”). Columns five to seven contain the
results for a four-processor run of BonnPlace with 3 × 3-repartitioning. The bounding-
box netlength (“BB”), the difference to the Feng Shui-results (“Gap”) and the wallclock
running time (“Time”) are shown. Again, we ran BonnPlace on up to four 1.45 GHz
processors of an IBM 650 machine. The numbers demonstrate that we can improve the
Feng Shui-results on 16 of the 18 benchmarks. The average improvement (computed via
the geometric mean of the ratios) is 5.1 %.

Feng Shui 2.4 BonnPlace
Chip # Circuits

BB Time BB Gap Time

IBM01 12 506 2.41 0:03:00 2.26 - 6.2 % 0:06:02

IBM02 19 342 5.34 0:05:00 4.93 - 7.7 % 0:09:39

IBM03 22 853 7.51 0:06:00 7.01 - 6.7 % 0:11:27

IBM04 27 220 7.96 0:07:00 8.23 3.4 % 0:13:14

IBM05 28 146 10.10 0:08:00 10.02 - 0.8 % 0:12:38

IBM06 32 332 6.82 0:10:00 6.55 - 4.0 % 0:12:39

IBM07 45 639 11.71 0:13:00 10.41 -11.1 % 0:19:30

IBM08 51 023 13.60 0:16:00 12.68 - 6.8 % 0:30:27

IBM09 53 110 13.83 0:15:00 13.27 - 4.0 % 0:34:51

IBM10 68 685 37.48 0:22:00 32.92 -12.2 % 0:32:17

IBM11 70 152 19.96 0:21:00 19.15 - 4.1 % 0:37:02

IBM12 70 439 35.57 0:23:00 31.90 -10.3 % 0:48:18

IBM13 83 709 24.95 0:16:00 24.31 - 2.6 % 0:48:26

IBM14 147 088 38.48 0:52:00 37.82 - 1.7 % 1:00:05

IBM15 161 187 52.14 1:27:00 49.31 - 5.4 % 1:25:08

IBM16 182 980 61.33 1:16:00 57.88 - 5.6 % 1:49:33

IBM17 184 752 70.60 1:44:00 66.65 - 5.6 % 3:19:05

IBM18 210 341 45.05 1:54:00 45.74 1.5 % 1:29:05

Average - 5.1 %

Table 9.2: The results for ISPD ’02 testsuite.

9.2. EXPERIMENTS ON BENCHMARKS 139

9.2.2 PEKO Benchmarks

The second benchmark testsuite we used are the PEKO (“Placement Example with Known
Optimal wirelength”) chips, a set of benchmarks that are extracted from the same instances
as the ISPD ’02 benchmarks. However, they were modified in such a way that an optimum
placement is known (see Chang et al. [2003]). Especially, all macros and non-local nets
have disappeared in that modification. There are four sets of PEKO benchmarks. The first
two sets PEKO1 and PEKO2 have no IO-connections. Since BonnPlace needs at least
one preplaced circuit or IO-pin, we used the testsuites PEKO3 and PEKO4 with boundary
IO pins for our experiments. PEKO3 and PEKO4 are generated by the same algorithm but
each chip in PEKO4 contains ten times the number of circuits of the corresponding chip
in PEKO3. Very recently, Chan, Cong, and Sze [2005] published results on the testsuites
PEKO3 and PEKO4 for a placer that combines force-directed placement and multilevel
partitioning. They obtained netlengths that were approximately 20 % away from the
optimum. All previous approaches produced netlength that were at least 40 % away from
the optimum.

Tables 9.3 and 9.4 give an overview of our experiments with the PEKO benchmarks. In
both tables, the first column contains the name of the chip, the second column the total
number of circuits, and the third number is the BB netlength of an optimal placement
(divided by 1 000 000, the same scaling is used for the results of our placer). For all our
experiments, we allowed the program to use up to four processors. We ran BonnPlace
with three different parameter settings. For a very fast placement, we ran BonnPlace
with a reduced accuracy in the QP solution, a reduced number of constrained QPs before
partitioning, and the restriction to one repartitioning loop in each level (columns “Bonn-
Place FAST”). The runs with the standard parameters are shown in the columns labelled
with “BonnPlace NORMAL”. We also ran BonnPlace allowing up to five repartitioning
loops and computing the repartitiong on 3 × 3-windows (“BonnPlace BEST”). For each
version, we report the bounding-box netlength (“BB”), the gap between our result and the
bounding-box netlength of an optimal solution (“Gap”), and the wallclock running time of
the whole placement process (“Time”).

The tables show that the fast version of BonnPlace is able to produce placements that are
on average about 30 % away from the optimum. Even on the largest instances this version
does not need more than two and a half hour for the complete placement. The standard
version is slightly slower but yields placement that differ only by about 25 % from the
optimum. If we run BonnPlace with an exhaustive use of the repartitioning method, we
can even produce placements whoose netlength is within 17 % of the optimum, so these are
the best known results of a placer on these instances. However, these superior results are
paid by significantly bigger running times. It depends on the situation which parameter
setting for BonnPlace is best. For an early attempt, the fast mode may be acceptable,
while for critical chips (especially if they are not too big), the increased repartitioning seems
to be recommendable.

It should be noted that we cannot assume that our placements for real-world chips are as
close to the optimum as the placements on the PEKO instances. All circuits in the PEKO
benchmarks are squares of the same size, so, there are no macros or blockages to handle.
Moreover, the boundary IO-pins on three borders of the chip (the right-hand-side does not

14
0

C
H

A
P

T
E

R
9
.

F
U

R
T

H
E

R
E

X
P

E
R

IM
E

N
T

S

Opt BonnPlace FAST BonnPlace NORMAL BonnPlace BEST
Chip Circuits

BB BB Gap Time BB Gap Time BB Gap Time

Peko01 12 506 0.82 1.07 30.4 % 0:00:22 1.04 26.8 % 0:00:24 0.97 18.3 % 0:00:53

Peko02 19 342 1.27 1.63 28.1 % 0:00:39 1.59 25.0 % 0:00:48 1.48 16.7 % 0:01:47

Peko03 22 853 1.51 1.95 28.9 % 0:00:38 1.90 25.6 % 0:00:52 1.78 17.8 % 0:01:34

Peko04 27 220 1.76 2.30 30.5 % 0:00:52 2.21 25.7 % 0:00:57 2.05 16.5 % 0:02:23

Peko05 28 146 1.95 2.50 28.3 % 0:00:49 2.44 25.0 % 0:00:55 2.27 16.2 % 0:02:07

Peko06 32 332 2.07 2.67 29.2 % 0:00:53 2.61 26.2 % 0:00:57 2.43 17.5 % 0:02:14

Peko07 45 639 2.89 3.67 26.8 % 0:01:07 3.61 24.8 % 0:01:24 3.37 16.7 % 0:02:54

Peko08 51 023 3.15 4.13 31.1 % 0:01:30 3.94 25.0 % 0:01:57 3.71 17.5 % 0:04:21

Peko09 53 110 3.65 4.69 28.4 % 0:01:35 4.55 25.6 % 0:02:01 4.24 16.2 % 0:04:00

Peko10 68 685 4.75 6.05 27.4 % 0:02:09 5.93 24.7 % 0:02:36 5.50 15.7 % 0:07:09

Peko11 70 152 4.72 6.04 27.9 % 0:02:06 5.88 24.5 % 0:02:19 5.49 16.2 % 0:05:42

Peko12 70 439 5.02 6.51 29.6 % 0:02:25 6.31 25.7 % 0:02:48 5.84 16.3 % 0:06:05

Peko13 83 709 5.89 7.56 28.3 % 0:02:33 7.36 24.9 % 0:03:09 6.85 16.3 % 0:07:01

Peko14 147 088 9.03 11.54 27.8 % 0:04:15 11.25 24.6 % 0:05:23 10.56 16.9 % 0:10:35

Peko15 161 187 11.60 15.12 30.3 % 0:04:43 14.80 27.6 % 0:06:19 13.46 16.0 % 0:13:15

Peko16 182 980 12.50 16.08 28.7 % 0:07:07 15.66 25.3 % 0:08:37 14.63 17.0 % 0:17:29

Peko17 184 752 13.50 17.46 29.4 % 0:06:31 16.93 25.4 % 0:09:39 15.72 16.4 % 0:17:04

Peko18 210 341 13.20 16.76 27.0 % 0:08:20 16.31 23.6 % 0:10:19 15.39 16.6 % 0:17:45

Average 28.8 % 25.3 % 16.7 %

Table 9.3: The results for the PEKO3 testsuite.

9
.2

.
E

X
P

E
R

IM
E

N
T

S
O

N
B

E
N

C
H

M
A

R
K

S
141

Opt BonnPlace FAST BonnPlace NORMAL BonnPlace BEST
Chip Circuits

BB BB Gap Time BB Gap Time BB Gap Time

Peko01 125 060 8.2 10.5 27.9 % 0:03:58 10.3 25.4 % 0:04:40 9.6 17.2 % 0:09:20

Peko02 193 420 12.7 16.3 28.7 % 0:08:05 15.9 25.2 % 0:10:24 14.9 17.0 % 0:18:49

Peko03 228 530 15.1 19.3 27.9 % 0:08:52 18.8 24.8 % 0:10:41 17.7 17.2 % 0:19:29

Peko04 272 200 17.6 22.7 29.0 % 0:11:23 21.9 24.3 % 0:12:10 20.6 17.1 % 0:32:05

Peko05 281 460 19.5 24.8 27.0 % 0:12:53 24.2 23.9 % 0:15:04 22.6 15.9 % 0:30:41

Peko06 323 320 20.7 26.8 29.6 % 0:13:04 25.9 25.0 % 0:15:32 24.1 16.6 % 0:33:45

Peko07 456 390 28.9 36.9 27.6 % 0:20:52 36.0 24.5 % 0:23:49 33.6 16.1 % 0:44:47

Peko08 510 230 31.5 43.1 37.0 % 0:23:52 39.6 25.7 % 0:27:50 37.0 17.4 % 0:56:15

Peko09 531 100 36.5 47.6 30.5 % 0:23:39 45.4 24.4 % 0:29:14 42.5 16.5 % 0:58:28

Peko10 686 850 47.5 64.4 35.5 % 0:34:12 59.9 26.1 % 0:40:50 55.6 17.1 % 1:21:22

Peko11 701 520 47.2 60.7 28.6 % 0:32:33 59.4 23.7 % 0:40:55 54.8 16.2 % 1:10:32

Peko12 704 390 50.2 65.4 30.3 % 0:35:51 62.9 25.3 % 0:42:44 58.8 17.1 % 1:23:34

Peko13 837 090 58.9 75.8 28.6 % 0:41:18 74.0 25.6 % 0:52:45 68.4 16.1 % 1:43:53

Peko14 1 470 880 90.3 123.8 37.0 % 1:20:23 113.5 25.7 % 1:39:59 105.4 16.7 % 3:13:34

Peko15 1 611 870 116.0 150.0 29.3 % 1:41:59 143.8 24.0 % 2:04:53 133.6 15.1 % 3:46:17

Peko16 1 829 800 125.0 170.8 36.6 % 2:04:44 155.5 24.4 % 2:28:35 146.6 17.3 % 4:49:48

Peko17 1 847 520 135.0 183.5 36.0 % 2:10:12 171.3 26.9 % 2:41:54 156.9 16.2 % 5:05:40

Peko18 2 103 410 132.0 176.7 33.8 % 2:24:38 165.7 25.5 % 2:37:15 153.5 16.3 % 5:02:36

Average 31.1 % 25.0 % 16.6 %

Table 9.4: The results for PEKO4 testsuite.

142 CHAPTER 9. FURTHER EXPERIMENTS

contain any pins) lead, together with the fact that there are only local nets in the optimum
solution, to a good circuit spreading even in the first QP solution. This makes the life
quite easy for any QP-based placer. In fact, Liu and Marek-Sadowska [2004] constructed
benchmarks similar to the PEKO benchmarks but with IO-pins on all four borders of the
chip area (so they had a even better spreading in the QP solution) and demonstrated
that an algorithm that just considers a QP solution and then legalizes the placement by
simulated annealing produces results that are only 12 % away from the optimum.

9.2.3 ISPD 2005 Placement Contest Benchmarks

The most realistic public benchmarks that are available are the chips from the ISPD 2005
testsuite. These instances contain the placement data of recent IBM ASICs. They were
published for a contest of (academic) placement tools at the International Symposium
on Physical Design 2005 (see Nam et al. [2005]). The goal in this contest was only the
minimization of bounding-box netlength (without regaring any density constraints), hence
the benchmarks do not contain any information concerning routability or timing. Table 9.5
gives an overview of the chips used for the contest. The numbers of circuits, nets, and pins
include both preplaced and movable objects. The density describes the size of all circuits
(preplaced or movable) divided by the total size of the placement area.

Chip # Circuits # Nets # Pins Density

adaptec2 211 447 221 142 944 053 75.7 %

adaptec4 255 023 266 009 1 069 482 78.6 %

bigblue1 278 164 284 479 1 144 691 54.2 %

bigblue2 557 866 577 235 2 122 282 61.8 %

bigblue3 1 096 812 1 123 170 3 833 218 85.7 %

bigblue4 2 177 353 2 229 886 8 900 078 65.3 %

Table 9.5: The instances of the ISPD ’05 placement contest.

In the contest, every participant had five days to compute the placement with the best pos-
sible netlength. Except for that upper bound of five days, there was no restriction on the
running time, on the number of attempts or on the amount of postoptimization that was
applied to the placements. Table 9.6 sums up the results of the contest as they were pre-
sented during the ISPD. The results are not published in the conference proceedings, so we
cite them according to the slides on the conference web page www.ispd.cc/ispd/main.htm.
For each participating placer, we cite a short paper summarizing its main features by a
reference number and show the netlengths on the different instances in a column. In the
last row, we present the average gap between the results of the specific placer and APlace,
the winner of the contest (computed by the geometric mean of the ratios).

In Table 9.7, we demonstrate how BonnPlace performed on the placement contest in-
stances. We chose the user parameters as if running time was not an issue and focused on
netlength only. Hence, we applied several 3 × 3-repartitioning iterations in every level and

9
.2

.
E

X
P

E
R

IM
E

N
T

S
O

N
B

E
N

C
H

M
A

R
K

S
143

Chip APlace mFar Dragon2005 mPL6 FastPlace Capo 9.1 NTUplace Feng Shui 5.0 Kraftwerk
[61] [55] [100] [25] [106] [89] [30] [6] [81]

adaptec2 87.31 91.53 94.72 97.11 107.86 99.71 100.31 122.99 157.65

adaptec4 187.65 190.84 200.88 200.94 204.48 211.25 206.45 337.22 352.01

bigblue1 94.64 97.70 102.39 98.31 101.56 108.21 106.54 114.57 149.44

bigblue2 143.82 168.70 159.71 173.22 169.89 172.30 190.66 285.43 322.22

bigblue3 357.89 379.95 380.45 369.66 458.49 382.63 411.81 471.15 656.19

bigblue4 833.21 876.28 903.96 904.19 889.87 1 098.76 1 154.15 1 040.05 1 403.79

Average Gap 0.0 % 6.3 % 8.3 % 8.9 % 15.2 % 16.4 % 20.1 % 46.8 % 82.6 %

Table 9.6: The results of the ISPD ’05 placement contest.

144 CHAPTER 9. FURTHER EXPERIMENTS

we allowed a very high density (more than 93 % at the end of global placement). Note
that we cannot use 100 % density in global placmenent because on such instances larger
movements in legalization are necessary that would deteriorate the netlength. To compare
our results, we present the APlace netlengths and running times in columns two to four
of the table. The numbers are taken from the slides of the APlace presentation at the
ISPD 2005 as published on the conference web page. The numbers in column two are the
bounding-box netlengths of APlace before postoptimization, while column three shows
the lengths after postoptimization. We cite the running times (in hours) in the next col-
umn. We do not know exactly which platform was used for the single runs, but according
to the slides the authors had access to a computer pool that consists mainly of 2.4 GHz and
2.8 GHz Xeon and 1.6 GHz Opteron processors. Columns five and six of the table contain
the netlengths and the wallclock running times (h:mm:ss) of the BonnPlace runs (on up
to four 2.6 GHz Opteron processors). As most of the netlengths shown in Table 9.6 are the
result of a postoptimization, we applied a primitive postoptimization to our placements,
too: We first ran the Clumping Algorithm (see Chapter 6) with netlength minimiza-
tion as optimization goal (which is much more time-consuming than the standard version
that minimizes quadratic movement). Then, we applied a greedy heuristic that swaps
neighbouring circuits in the same zone and accepts the new arrangement of the circuits
if netlength could be improved. We ran this swapping heuristic three times on the whole
chip. The numbers in columns seven and eight are the final netlength and the running time
(h:mm:ss) of the postoptimization. The last column contains the difference between our
netlengths and APlace (both including postoptimization).

APlace BonnPlace
Chip Placement Postopt Placement Postopt

BB BB Time (h) BB Time BB Time
Gap

adaptec2 92.18 87.31 3 95.53 0:48:04 94.16 0:01:53 7.8 %

adaptec4 194.75 187.65 13 199.54 1:32:17 197.06 0:08:06 5.0 %

bigblue1 97.85 94.64 5 103.31 0:48:21 101.64 0:00:45 7.4 %

bigblue2 147.85 143.82 12 158.77 1:20:13 156.02 0:08:47 8.5 %

bigblue3 407.09 357.89 22 357.86 3:29:09 352.19 0:20:17 - 1.6 %

bigblue4 868.07 833.21 50 852.11 8:23:24 839.12 1:02:48 0.7 %

Average 4.6 %

Table 9.7: The BonnPlace results on the ISPD ’05 placement contest benchmarks compared to
the APlace results.

We can summarize the results on the contest benchmarks as follows:

• On average, our netlengths were 4.6 % bigger than the netlength of the contest’s
winner, APlace.

• On the two largest instances, we produced placements with netlengths that are very
close to the APlace netlengths. For bigblue3, we can even improve the best known
placement.

9.2. EXPERIMENTS ON BENCHMARKS 145

• BonnPlace is significantly faster than APlace even if we assume that the machines
used in the APlace runs were somewhat slower than our computers.

• Compared to all other participating placers, except Aplace, our results are better
on average and, especially, on all instances with more than half a million of circuits.

It should be noted that for us, minimization of bounding-box netlength is not the only
optimization goal (in fact it is just used to model other goals), and we normally want
to avoid very high placement densities (close to 100 %) as these placements would not
be routable. In contrast, most of the academic placers that took part in the contest are
tuned for the minimization of netlengths. They apply extensive postoptimization and pack
circuits as dense as possible. Nevertheless, though BonnPlace is designed rather for the
optimization of large industrial chips than for such netlength experiments, our results on
the benchmarks are competetive even to the best academic placers.

146 CHAPTER 9. FURTHER EXPERIMENTS

Bibliography

[1] Adolphson, D.L., Thomas, G.N. [1977]: A linear time algorithm for a 2 × n trans-

portation problem. SIAM Journal on Computing 6, 1977, 481–486.

[2] Adya, S.N., Chaturvedi, S., Roy, J.A., Papa, D.A., and Markov, I.L. [2004]: Unifi-

cation of partitioning, floorplanning and placement Proceedings of the International
Conference on Computer–Aided Design, 2004, 550–557.

[3] Adya, S.N., Markov, I.L. [2001]: Fixed-outline floorplanning through better local

search. Proceedings of the International Conference on Computer Design, 2001, 328–
334.

[4] Adya, S.N., Markov, I.L. [2002]: Consistant placement of macro-blocks using floor-

planning and standard-cell placement. Proceedings of the International Symposium
on Physical Design, 2002, 12–17.

[5] Adya, S.N., Markov, I.L. [2005]: Combinatorial techniques for mixed-size placement.

ACM Transactions on Design Automation of Electronic Systems, 10, 2005, 58–90.

[6] Agnihotri, A.R., Ono, S., Madden, P.H. [2005]: Recursive bisection placement: Feng

Shui 5.0 implementation details. ACM/IEEE Proceedings of the International Sym-
posium on Physical Design, 2005, 230–232.

[7] Ahuja, R.K., Orlin, J.B., Stein, C., and Trajan, R.E [1994]: Improved algorithms for

bipartite network flow. SIAM Journal on Computing 23, 1994, 906–933.

[8] Albrecht, C. [2001]: Global routing by new approximation algorithms for multicom-

modity flow. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20, 2001, 622–632.

[9] Alpert, C.J. [1998]: The ISPD98 circuit benchmark suite. ACM/IEEE Proceedings
of the International Symposium on Physical Design, 1998, 85–90.

[10] Alpert, C.J., Huang, D.J.-H., Kahng, A.B. [1997]: Multilevel circuit partitioning.

Proceedings of the 34th ACM/IEEE Design Automation Conference, 1997, 530 - 533.

[11] Armstrong, R.D., Jin, Z. [1997]: A new strongly polynomial dual network simplex

algorithm. Mathematical Programming 78, 1997, 131–148.

147

148 BIBLIOGRAPHY

[12] Arora, S., Frieze, A., Kaplan, H. [1996]: A new rounding preocedure for the assignment

problem withh applications to dense graph arrangement problem. Proceedings of the
37th Annual Symposium on Foundations of Computer Science, 1996, 21–30.

[13] Balas, E., Zemel, E. [1980]: An algorithm for large zero-one knapsack problems. Op-
erations Research 28, 1980, 1130–1154.

[14] Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E. [1973]: Time bounds for

selection. Journal of Compute and System Science 7, 1973, 448–461.

[15] Brenner, U. [2000]: Plazierung im VLSI-Design. Diploma thesis, University of Bonn,
2000.

[16] Brenner, U., Pauli, A., Vygen, J. [2004] Almost optiumum placement legalization with

minimum total movement. Proceedings of the International Symposium on Physical
Design, 2004, 2–9.

[17] Brenner, U., Rohe, A. [2002]: An effective congestion-driven placement framework.

Proceedings of the International Symposium on Physical Design, 2002, 6–11.

[18] Brenner, U., Rohe, A. [2003]: An effective congestion-driven placement framework.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22, 2003, 387–394.

[19] Brenner, U., Struzyna, M. [2005]: Faster and better global placement by a new trans-

portation algorithm. Proceedings of the 42nd ACM/IEEE Design Automation Con-
ference, 2005, 591–596.

[20] Brenner, U., Vygen, J. [2000]: Faster optimal single-row placement with fixed ordering.

Design, Automation and Test in Europe, Proceedings, IEEE, 2000, 177–121.

[21] Brenner U., Vygen, J. [2001]: Worst-case ratios of networks in the rectilinear plane.

Networks 38, 2001, 126–139.

[22] Brenner, U., Vygen, J. [2004]: Legalizing a placement with minimum total movement.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
23, 2004, 1597–1613.

[23] Bui, T.N., Jones, C. [1992]: Finding good approximate vertex and edge partitions is

NP -hard. Information Processing Letters, 42, 1992, 153–159.

[24] Caldwell, A.E., Kahng, A.B., Markov, I.L. [2000]: Can recursive bisection alone pro-

duce routable placements? Proceedings of the 37th ACM/IEEE Design Automation
Conference, 2000, 477–482.

[25] Chan, T.F., Cong, J., Romesis, M., Shinnerl, J., Sze, K., Xie, M. [2005]: mPL6:

A robust multilevel mized-size placement engine. ACM/IEEE Proceedings of the
International Symposium in Physical Design, 2005, 227–229.

[26] Chan, T., Cong, J., Sze, K. [2005]: Multilevel generalized force-directed method for cir-

cuit placement. ACM/IEEE Proceedings of the International Symposium in Physical
Design, 2005, 185–192.

BIBLIOGRAPHY 149

[27] Chang, Y.-C, Chang, Y.-W., Wu, G.-M., Wu, S.-W. [2000]: B∗-Trees: A new rep-

resentation for non-slicing floorplans. Proceedings of the 37th ACM/IEEE Design
Automation Conference, 2000, 458–463.

[28] Chang, C.-C., Cong, J., Pan, Z., Yuan, X. [2003]: Multilevel global placement with

congestion control. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22, 2003, 295–409.

[29] Chang, C.-C., Cong, J., Xie, M. [2003]: Optimality and scalability of existing place-

ment algorithms. Proceedings of the Asia South Pacific Design Automation Confer-
ence, 2003, 621–627.

[30] Chen, T.-C., Hsu, T.-C., Jiang, Z.-W., Chang, Y.-W. [2005]: NTUplace: A ratio

partitioning based placement algorithm for large-scale mized-size designs. ACM/IEEE
Proceedings of the International Symposium in Physical Design, 2005, 236–238.

[31] Cheng, C.-L.E. [1994]: RISA: Accurate and efficient placement routability modeling.

Proceedings of the International Conference on Computer–Aided Design, 1994, 690–
697.

[32] Chung, F.R.K., Hwang, F.K. [1979]: The largest minimal rectilinear Steiner trees for

a set of n points enclosed i na rectangle with given perimeter. Networks 38, 1979,
19–36.

[33] Cormen, T.H., Leiserson, C.E., Rivest, R.L. [1990]: Introduction to Algorithms. MIT
Press, Cambridge, 1990.

[34] Doll, K., Johannes. F.M., Antreich K.J. [1994]: Iterative placement improvement by

network flow methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13, 1994, 1189–1199.

[35] Doll, K., Johannes, F.M., Sigl, G. [1991]: DOMINO: Deterministic placement improve-

ment with hill-climbing capabilities. Proceedings if the IFIP International Conference
on VLSI, 1991, 91–100.

[36] Eisenmann, H. [1999]: Ein universelles Plazierverfahren für intergrierte Schaltungen.

Hieronymus, München, 1999.

[37] Eisenmann, H., Johannes, F.M. [1998]: Generic global placement and floorplanning.

Proceedings of the 35th ACM/IEEE Design Automation Conference, 1998, 269–274.

[38] Even, G. Guha, S., and Schieber, B. [2000]: Improved approximations of crossings in

graph drawings and VLSI layout areas. Proceedings of the 32nd Annual Symposium
on the Theory of Computing, 2000, 296–305

[39] Faroe, O., Pisinger, D., Zachariasen, M. [2001]: Local search for final placement in

VLSI design. Proceedings of the International Conference on Computer-Aided Design,
2001, 565–572.

[40] Fiduccia, C.M., Mattheyses, R.M. [1982]: A linear-time heuristic for improving net-

work partitions. Proceedings of the 19th ACM/IEEE Design Automation Conference,
1982, 175–181.

150 BIBLIOGRAPHY

[41] Ford, L.R., Fulkerson, D.R. [1962]: Flows in Networks. Princeton University Press,
Princeton, 1962.

[42] Fredman, M.L., Tarjan, R.E. [1984]: Fibonacci heaps and their uses in improved

network optimization algorithms. Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, 1984, 338–346.

[43] Garey, M.R., Johnson, D.S. [1975]: Complexity results for multiprocessor scheduling

under resource constraints. SIAM Journal on Computing 4, 1975, 397–411.

[44] Garey, M.R., Johnson, D.S. [1977]: The rectilinear Steiner tree problem is NP -

complete. SIAM Journal on Applied Mathematics 32, 1977, 825–834.

[45] Garey, M.R., Johnson, D.S. [1979]: Computers and Intractability: A Guide to the

Theory of NP -completeness. Freeman, San Francisco, 1979.

[46] Garey, M.R., Johnson, D.S., and Stockmeyer, L. [1976]: Some simplified NP -complete

graph problems. Theoretical Computer Science 1, 1976, 237–267.

[47] Garey, M.R., Tarjan, R.E., Wilfong. G.T. [1988]: One-processor scheduling with sym-

metric earliness and tardiness penalties. Mathematics of Operations Research, vol.
13, 1988, 330–348.

[48] Goldberg, A.V., Tarjan, R.E. [1990]: Finding minimum-cost circulations by successive

approximation. Mathematics of Operations Research, vol. 15, 1990, 430–366.

[49] Guo, P.N., Cheng, C.-K., Yoshimura, T. [1999]: An O-tree Representation of non-

slicing floorplan and its applications. Proceedings of the 36th ACM/IEEE Design
Automation Conference, 1999, 268–273.

[50] Hansen, M.D. [1989]: Approximation algorithms for geometric embeddings in the plane

with applications to parallel processing problems. Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science, 1989, 604–609.

[51] Held, S., Korte, B., Maßberg, J., Ringe, J., Vygen, J. [2003]: Clock scheduling and

clocktree construction for high performance ASICs. Proceedings of the International
Conference on Computer-Aided Design, 2003, 232–239.

[52] Hochbaum, D.S., Woeginger, G.J. [1999]: An optimal algorithm for the bottleneck

tranportation problem with a fixed number of sources. Operations Resear Letters 24,
1999, 25–28.

[53] Hou, W., Yu, H., Hong, X., Cai, Y., Wu, W., Gu, J., Kao, W.H. [2001]: A new

congestion-driven placement algorithm based on cell inflation. Proceedings on the
2001 Conference on Asia and South Pacific Design Automation, ACMPress, 2001,
605–608.

[54] Hu, B., Marek-Sadowska, M. [2002]: Congestion minimization during placement with-

out estimation. Proceedings of the International Conference on Computer-Aided De-
sign, 2002, 739–745.

BIBLIOGRAPHY 151

[55] Hu, B., Zeng, Y., Marek-Sadowska, M. [2005]: mFAR: Fixed-points-addition-based

VLSI placement algorithm. ACM/IEEE Proceedings of the International Symposium
in Physical Design, 2005, 239–241.

[56] Huang, D.J.-H., Kahng. A.B. [1997]: Partitioning-based standard-cell global placement

with an exact objective. ACM/IEEE Proceedings of the International Symposium in
Physical Design, 1997, 18–25.

[57] Hung, P., Flynn, M.J. [1997]: Stochastic congestion model for VLSI systems. Technical
Report CSL-TR-97-737, Stanford University.

[58] Hur, S.-W., Lillis, J. [2000]: Mongrel: hybrid techniques for standard cell placement.

Proceedings of the International Conference on Computer-Aided Design, 2000, 165–
170.

[59] Hwang, F.K. [1976]: On Steiner’s problem with rectilinear distance. SIAM Journal
on Applied Mathematics 14, 1976, 104–114.

[60] Johnson, D.B., Mizoguchi, T. [1978]: Selecting the Kth element in X + Y and X1 +
X2 + · · · +Xm. SIAM Journal on Computing 7, 1978, 147–153.

[61] Kahng, A.B., Reda, S., Wang, Q. [2005]: APlace: A general analytic placement frame-

work. ACM/IEEE Proceedings of the International Symposium in Physical Design,
2005, 233–235.

[62] Kahng, A.B., Tucker, P., Zelikovsky, A. [1999]: Optimization of linear placements for

wirelength minimization with free sites. Proceedings of the Asia and South Pacific
Design Automation Conference, 1999, 241–244.

[63] Kahng, A.B., Xu, X. [2003]: Accurate pseudo-constructive wirelength and congestion

estimation. Proceedings of the International Workshop on System-Level Interconnect
Prediction, 2003, 61–68.

[64] Kahng, A.B., Wang, Q. [2004]: Implementation and extensibility of an analytic placer.

ACM/IEEE Proceedings of the International Symposium on Physical Design, 2004,
18–25.

[65] Karp, R.M. [1972]: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (Eds.): Complexity of Computer Computations, Plenum Press, New
York, 1972, 85–103.

[66] Karypis, G. Agarwal, R., Kumar, V., Shekhar, S. [1997]: Multilevel hypergraph par-

titioning: application in VLSI design. Proceedings of the 34th ACM/IEEE Design
Automation Conference, 1997, 526 - 529.

[67] Khatkate, A., Li, C., Angihotri, A.R., Yildiz, M.C., Ono, S., Koh, C.-K, Madden, P.
[2004]: Recursive bisection based mixed block placement, ACM/IEEE Proceedings of
the International Symposium on Physical Design, 2004, 84–89.

[68] Kleinhans, J.M., Sigl, G., Johannes, F.M., Antreich, K.J. [1991]: GORDIAN: VLSI

placement by quadratic programming and slicing optimization. IEEE Transactions on
Computer–Aided Design of Integrated Circuits and Systems, 10, 1991, 356–365.

152 BIBLIOGRAPHY

[69] Kleinschmitt, H.P. Schannath, H. [1995]: A strongly polynomial algorithm for the

transportation problem. Mathematical Programming 68,1995, 1–13.

[70] Korte, B., Vygen, J. [2002]: Combinatorial Optimization: Theory and Algorithms.

Springer, Berlin, 2000, second edition 2002.

[71] Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society 7, 1956, 48–50.

[72] Landman, B., Russo, R. [1971]: On a pin versus block relationship for partitions of

logic graphs. IEEE Transactions on Computers, 20, 1971, 1469–1479.

[73] Liu, Q., Marek-Sadowska, M. [2004]: A study of netlist structure and placement effi-

ciency. ACM/IEEE Proceedings of the International Symposium in Physical Design,
2004, 198–203.

[74] Lou, J., Krishnamoorthy, S., Sheng, H.S. [2002]: Estimating routing congestion using

probabilistic analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21, no. 1, 2002, 32–41.

[75] Matsui, T. [1993]: A linear time algorithm for the Hitchcock transportation problem

with fixed number of supply points Technical Report, Department of Mathematical
Engineering and Information Physics, Faculty of Engineering, University of Tokyo,
1993.

[76] Mayrhofer, S., Lauther, U. [1990]: Congestion-driven placement using a new multi-

partitioning heuristic. Proceedings of the International Conference on Computer–
Aided Design, 1996, 332–335.

[77] Mo, F. Tabbara, A., Brayton, R.K. [2000]: A force-directed macro-cell placer. Pro-
ceeding of the International Conference on Computer-Aided Design, 2000, 404–407.

[78] Müller, D. [2002]: Bestimmung der Verdrahtungskapazitten im Global Routing von

VLSI-Chips. Diploma thesis, University of Bonn, 2002.

[79] Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y. [1995]: Rectangle-packing-based

module placement. Proceedings of the International Conference on Computer-Aided
Design, 1995, 472–479.

[80] Nam, G.-J., Alpert, C.A., Villarubia, P.G., Winter, B., Yildiz, M. [2005]: The ISPD

2005 placement contest and benchmark suite. ACM/IEEE Proceedings of the Inter-
national Symposium on Physical Design, 2005, 216–220.

[81] Obermeier, B., Ranke, H., Johannes, F.M. [2005]: Kraftwerk - A versatile placement

approach. ACM/IEEE Proceedings of the International Symposium on Physical De-
sign, 2005, 242–244.

[82] Onodera, H., Taniguchi, Y., Tamaru, K. [1991]: Branch-and-bound placement for

building block layout. Proceedings of the 28th ACM/IEEE Design Automation Con-
ference, 1991, 433–439.

BIBLIOGRAPHY 153

[83] Orlin, J.B. [1993]: A faster strongly polynomial minimum cost flow algorithm. Oper-
ations Research 41, 1993, 338–350.

[84] Parakh, P.N., Brown, R.B., Sakallah, K.S. [1998]: Congestion driven quadratic place-

ment. Proceedings of the 35th ACM/IEEE Design Automation Conference, 1998,
275–278.

[85] Pauli, A. Bewegungsminimale Legalisierung von Platzierungen im VLSI-Design.

Diploma thesis, University of Bonn, 2003.

[86] Queyranne, M., [1986]: Performance ratio of polynomial heuristics for triangke in-

equality quadratic assignment problems. Operations Resear Letters 4, 1986, 231–234.

[87] Rao, S., Richa, A.W. [1998]: New approximation techniques for some ordering prob-

lems. Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1998, 211–218.

[88] Ren. H., Pan, D.Z., Alpert, C.J., Villarubia, P. [2005]: Diffusion-based placement

migration. Proceedings of the 42th ACM/IEEE Design Automation Conference, 2005,
515–520.

[89] Roy, J.A., Papa, D.A., Adya, S.N., Chan, H.H., Ng, A.N., Lu, J.F., Markov, I.L. [2005]:
Capo: Robust and scalable open-source min-cut floorplacer. ACM/IEEE Proceedings
of the International Symposium on Physical Design, 2005, 224–226.

[90] Sait, S.M., Youssef, H. [1999]: VLSI Physical Design Automation. Singapore: World
Scientific, 1999.

[91] Sarrafzadeh, M., Wang, M. [1997]: NRG: global and detailed placement. Proceedings
of the International Conference on Computer-Aided Design, 1997, 532–537.

[92] Sarrafzadeh, M., Wang, M., Yang, X., [2003]: Modern Placement Techniques. Kluwer
Academic Publishers, 2003.

[93] Sarrafzadeh, M., Wong, C.K. [1996]: An Introduction to VLSI Physical Design. New
York: McGraw-Hill, 1996.

[94] Sechen, C. [1988]: VLSI Placement and Global Routing Using Simulated Annealing.

Kluwer Academic Publishers, 1988.

[95] Sechen, C., Lee, K.-W. [1987]: An improved simulated annealing algorithm for row-

based placement. Proceedings of the International Conference on Computer–Aided
Design, 1987, 478–481.

[96] Sechen, C., Sangiovanni-Vincentelli, A. [1986]: TimberWolf3.2: A new standard cell

placementand global routing package. Proceedings of the 23rd ACM/IEEE Design
Automation Conference, 1986, 432–439.

[97] Sherwani, N. [1998]: Algorithms for VLSI Physical Design Automation - 3rd Edition.

Kluwer Academic Publishers, 1998.

154 BIBLIOGRAPHY

[98] Sun, W.-J., Sechen, C. [1995]: Efficient and effective placement for very large circuits

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
14, no. 3, 1995, 349–359.

[99] Sun, W.-J., Sechen, C. [1997]: A parallel standard cell placement algorithm. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16, no.
11, 1997, 1342–1357.

[100] Taghavi, T., Yang, X., Choi, B.-K. [2005]: Dragon2005: Large-scale mixed-size place-

ment tool. ACM/IEEE Proceedings of the International Symposium on Physical De-
sign, 2005, 245–247.

[101] Takahashi, T. [2000]: A new encoding scheme for rectangle packing problem. Pro-
ceedings of Asia South Pacific design automation design conference, 2000, 175–178.

[102] Tokuyama, T., Nakano, J. [1991]: Geometric algorithms for a minimum cost assign-

ment problem. Proceedings of the Seventh Symposium on Computational Geometry,
1991, 262–271.

[103] Tokuyama, T., Nakano, J. [1992]: Efficient algorithms for the Hitchcock transporta-

tion problem. Proceedings of the Third Annual ACM-SIAM Symposium on Discrete
Algorithms, 1992, 175–184.

[104] Tokuyama, T., Nakano, J. [1995]: Efficient algorithms for the Hitchcock transporta-

tion problem. SIAM Journal on Computing 24, 1995, 563–578.

[105] Tsay, R.-S., Kuh, E.S., Hsu, C.-P. [1988]: PROUD: A fast sea-of-gates placement

algorithm. Proceedings of the 25th ACM/IEEE Design Automation Conference, 1988,
318–323.

[106] Viswanathan, N., Pan, M., Chu, C. C.-N. [2005]: FastPlace: An analytical placer

for mixed-mode designs. ACM/IEEE Proceedings of the International Symposium on
Physical Design, 2005, 221–223.

[107] Viswanathan, N., Chu, C. C.-N. [2004]: FastPlace: Efficient analytical placement

using cell shifting, iterative local refinement and a hybrid net model. ACM/IEEE
Proceedings of the International Symposium on Physical Design, 2004, 26–33.

[108] Vorwerk, K., Kennings, A., Vannelli, A. [2004]: Engineering details of a stable force-

directed placer. Proceedings of the International Conference on Computer–Aided
Design, 2004.

[109] Vygen, J. [1996]: Plazierung in VLSI-Design und ein zweidimensionales Zer-

legungsproblem. Doctoral thesis, University of Bonn, 1996.

[110] Vygen, J. [1997]: Algorithms for large-scale flat placement. Proceedings of the 34th
ACM/IEEE Design Automation Conference, 1997, 275–278.

[111] Vygen, J. [1998]: Algorithms for detailed placement of standard cells. Design, Au-
tomation and Test in Europe, Proceedings, IEEE, 1998, 321–324.

BIBLIOGRAPHY 155

[112] Vygen, J. [2000]: Geometric quadrisection in linear time with application to VLSI

placement. Accepted for publication in “Discrete Optimization”.

[113] Vygen, J. [2002a]: New theoretical results on quadratic placement. Report No. 02920-
OR, Research Institute for Discrete Mathematics, University of Bonn, 2002. Accepted
for publication in “Integration”.

[114] Vygen, J. [2002b]: On dual minimum cost flow algorithms. Mathematical Methods
of Operations Research 56, 2002, 101–126.

[115] Wang, M., Sarrafzadeh, M. [1999]: On the behavior of congestion minimization dur-

ing placement. ACM/IEEE Proceedings of the International Symposium on Physical
Design, 1999, 145–150.

[116] Wang, M., Sarrafzadeh, M. [2000]: Modeling and minimization of routing conges-

tion. Proceedings of the conference on Asia and South Pacific design automation,
ACMPress, 2000, pages 185–190.

[117] Wang, M., Yang, X., Eguro, K., Sarrafzadeh, M. [2000]: Multi-center congestion

estimation and minimization during placement. ACM/IEEE Proceedings of the In-
ternational Symposium on Physical Design, 2000, 147–152.

[118] Wang, M., Yang, X., Sarrafzadeh, M. [2000a]: Congestion minimization during place-

ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 2000, 19, 1140–1148.

[119] Wang, M., Yang, X., Sarrafzadeh, M. [2000b]: Dragon2000: Standard-cell place-

ment tool for large industry designs. Proceedings of the International Conference on
Computer-Aided Design, 2000, 260–263.

[120] Warme, D.M., Winter, P., Zachariasen, M. [2000]: Exact algorithms for plane Steiner

tree problems: a computational study. In: Du, D.Z., Smith. J.M., Rubinstein. J.H.
(Eds.): Advances in Steiner Trees, Kluwer Academic Publishers, 2000, 81–166.

[121] Wong, D.F., Leong, H.W., Liu, C.L. [1988]: Simulated Annealing for VLSI Design.

Kluwer Academic Publishers, 1988.

[122] Xiu, Z., Ma, J., Fowler, S.M., Rutenbar, R.A. [2004] Large-scale placement by grid-

warping. Proceedings of the 41st ACM/IEEE Design Automation Conference, 2004,
351–356.

[123] Xiu, Z., Rutenbar, R.A. [2005] Timing-driven placement by grid-warping. Proceed-
ings of the 42nd ACM/IEEE Design Automation Conference, 2005, 585–590.

[124] Yang, X., Choi, B.-K., Sarrafzadeh, M. [2003]: Routability-driven white space allo-

cation for fixed-die standard-cell placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 22, 2003, 410–419.

[125] Yang, X., Kastner, R., Sarrafzadeh, M. [2001]: Congestion reduction during place-

ment with provably good approximation bound. Proceedings of the International
Conference on Computer–Aided Design, 2001.

156 BIBLIOGRAPHY

[126] Yang, X., Kastner, R., Sarrafzadeh, M. [2002] Congestion estimation during top-down

placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2002, 21, 72–80.

[127] Yildiz, M.C., Madden, P.H. [2001]: Improved cut seqences for partitioning based

placement Proceedings of the 38th ACM/IEEE Design Automation Conference, 2001,
776–779.

Appendix A

Notation Index

costf Residual edge costs (see Section 2.1).

disti((x1, y1), (x2, y2)) For two pairs (x1, y1), (x2, y2) ∈ R
2 and i ∈ N \ {0},

disti((x1, y1), (x2, y2)) :=
(

|x1 − x2|
i + |y1 − y2|

i
)

1
i is the Li-

distance between (x1, y1) and (x2, y2).

δG(v) Set of edges incident to v (see Section 2.1).

δ+G(v), δ−G(v) Set of edges in E(G) leaving (entering) v (see Section 2.1).

E(G) The edge set of a graph G (see Section 2.1).

f |X For a function f : A→ B with X ⊆ A, the function f |X : X →
B is the restriction of f to X, so f |X(a) = f(a) for a ∈ X.

Gf,u Residual graph (see Section 2.1).

N The set of the non-negative integers (including 0).

NP Class of the nondeterministically polynomially solvable desci-
sion problems, see Garey and Johnson [1979].

NP -complete, NP -hard See Garey and Johnson [1979].

O(f) “O-notation” to describe the asymptotical growth of a func-
tion, see, e.g., Cormen, Leiserson, and Rivest [1990].

o(f) “o-notation” to describe the asymptotical growth of a function,
see e.g., Cormen, Leiserson, and Rivest [1990].

157

158 APPENDIX A. NOTATION INDEX

P Class of the polynomially solvable decision problems, see Garey
and Johnson [1979].

R≥0 The set of all non-negative real numbers.

R>0 The set of all positive real numbers.

Θ(f) “Θ-notation” to describe the asymptotical growth of a func-
tion, see, e.g., Cormen, Leiserson, and Rivest [1990].

uf Residual edge capacity (see Section 2.1).

V (G) The vertex set of a graph G (see Section 2.1).

2X The set of all subsets of the set X.

(

X
k

)

The set of all subsets of the set X with exactly k elements (for
k ∈ N).

Summary

Placement is a crucial step in the design process of VLSI chips as it has a strong influence
on the most important optimization goals, e.g., die size, routability, and cycle time. State-
of-the-art logic chips consist of several millions of modules (circuits) that have to be placed,
so efficient automated tools are mandatory for that task. In this thesis, we describe new
ideas for VLSI placement that are combined in the placement tool BonnPlace which has
been used by IBM Microelectronis for the design of many challenging logic chips.

The main contributions of this thesis can be summarized as follows:

From a very global point of view, BonnPlace consists of three parts: a macro placement
phase in which the largest circuits are placed, a global placement phase in which the re-
maining circuits are spread over the chip area, and a legalization phase in which all overlaps
between the circuits are removed and all technological constraints are met.

As we follow a recursive top-down partitioning approach for global placement, we have to
distribute several times a (possibly large) set of circuits to a small number of regions. This
motivates the consideration of the Transportation Problem which is an uncapacitated
minimum cost flow problem on a bipartite graph where one side of the bipartition contains
all supply nodes and the other side all demand nodes. In Chapter 4, we present a new
algorithm that solves this problem to optimality in time O(nk2(log n + k log k)) where n
and k are the numbers of elements in the two sides of the bipartition. This is the fastest
known algorithm on instances with k log k = O(log n). If k is constant (which is the case
in the instances we are interested in), we improve the running time of the fastest algorithm
by a factor of Θ(log n). Moreover, the algorithm is easy to implement and performs well in
practice: instances with n = 2400 000 and k = 4 can be solved in less than half a minute.

Our global placement algorithm makes use of the transportation algorithm in several
ways. Similar to previous approaches, we start with a placement minimizing total squared
netlength but ignoring disjointness. Then, we subdivide the chip area into subregions and
assign each circuit to one of them such that no subregion contains more circuits than fit into
it. As we want to change the initial placement as little as possible, our main goal is to mini-
mize total movement of the circuits when they are moved to their regions. The partitioning
steps are repeated recursively for the regions until the regions are small enough. Larger
objects (macros) are simply fixed at their recent positions as soon as they are too big com-
pared to the actual region size. This idea has already been described by Vygen [1996] but
his algorithm is restricted to four subregions and has to use the L1-distances as movement
costs. In contrast, we may choose the number of areas and the movement costs arbitrarily.
In Chapter 5, we propose a number of ideas how this flexibility can be exploited in the

i

global partitioning steps. The transportation algorithm is also applied in local optimization
steps on sliding windows (repartitioning) where we can consider bigger windows compared
to Vygen [1996]. Moreover, we present an iterative partitioning approach that reduces the
number of necessary repartitioning steps. Further on, we introduce a hybrid net model that
combines the positive aspects of the previously used net models Star and Clique. We
also describe how our placer can be parallelized. The efficiency and effectiveness of these
improvements is shown by experiments at the end of Chapter 5.

After global placement, all macros are fixed and the remaining circuits (standard circuits)
are spread over the chip area. These standard circuits have the same height and have to
be placed disjointly in given rows which is done in the legalization phase. In Chapter 6, we
propose a legalization method that works in three steps. As we assume that the placement
given to the legalization is well optimized, we try to minimize total movement of the circuits
during legalization. In the first legalization phase, the chip area is divided into small regions
and a minimum cost flow problem is stated in order to move circuits from regions which
are too full into regions with free capacity. In contrast to previous minimum cost flow
formulations, we do not only consider single regions in the minimum cost flow instance
but also sets of horizontally neighbouring regions. Considering only single regions would
mean that we ask for an assignment of the circuits to the regions such that each circuit
can be placed completely within its region which would cause unnessecary movement. We
can show that our minimum cost flow formulation is best possible in a natural, well-defined
way. Moreover, we prove that the number of the sets of regions that we have to take into
account is linear in the number of regions and that these sets can be computed in linear
time. In the second phase of legalization, we apply to each row a well-known linear-time
algorithm that legalizes the placement of the circuits in the zone with minimum squared
movement (without allowing to change the order of the circuits in the row). The last
phase is a postoptimization based on dynamic programming that tries to reduce the largest
movements of the circuits.

The experiments that we present in Chapter 6 demonstrate that our legalization algorithm
can reduce movement drastically compared to a similar legalization algorithm that only
considers single regions in its minimum cost flow formulation. Moreover, we can compare
our results to lower bounds that we compute by solving a relaxation of an integer linear
program formulation of the legalization problem. We can show that, at least on instances
where the given placement was spread out well enough, the circuit movement in our legal-
ization is quite close to the optimum.

Our algorithms for global placement and legalization are together a complete placement
tool that could be applied to any VLSI placement instance. However, the global placer is
mainly designed for instances consisting of a large number of small circuits. On instances
with bigger objects it may produce weak results. A new and more sophisticated approach
to macro placement is described in Chapter 7. According to their size we divide the set of
macros to be placed into three classes and for each class we follow a different strategy. The
first class contains at most five of the largest objects. We define some candidate positions
for these objects and place them by enumerating possible assigments to the candidate
positions. Afterwards, we fix them for the rest of the placement process. The second class
consists of the medium-sized macros. They are “shredded” into small pieces, and these
macro fragments (and all other circuits) are placed by running some steps of our global

ii

placement algorithm. In order to keep the fragments of a single macro together, they
are connected by artificial nets with high weights. The center of gravity of its fragments
is used as a desired location of the macro, and we apply a branch-and-bound algorithm
(considering small subsets of the macro set at a time) to place the macros close to their
desired locations. After all macros of the second class are fixed, we place the remaining
very small macros (third class) by a complete run of our global placer. To compare the
results of our macro placer, we consider macro placements that are the result of a global
placement run (as described above) and macro placements that were found manually by
experienced designers. The experiments show that our new method reduces netlength on
average by 9.0% (compared to the standard global placement run with floating macros)
and 4.9% (compared to manual preplacement).

In our global placement routine, we mainly try to minimize the total length of all nets
connecting the circuits. Nevertheless, it should be noted that after placement the terminals
of the nets have to be connected by wires (routing) with a number of constraints, especially
concerning minimum distances between the wires. Therefore, a very dense placement may
not be routable though its netlength may be short. In Chapter 8, we describe how our global
placer can keep routing congestion under control by using a fast but reliable method to find
routing-critical regions. As soon as a routing problem is detected, the placement density
is reduced in the critical area. For the density reduction we apply a local optimization
algorithm similar to repartitioning. We present experiments which show that this feature
allows to use much higher density in the uncritical areas and hence helps to reduce total
netlength significantly.

Chapter 9 concludes this thesis with several experiments that compare our placement tool
as a whole to previous approaches. We use both artificial benchmarks and real-word chips
for these experiments. On the real-world chips we compare to a previous version of Bonn-
Place combining the global placement algorithm proposed by Vygen [1996] and a legal-
ization method as described by Vygen [1998]. On the 14 chips used for the experiments,
we can improve netlength by 4.8% on average while the running time is reduced by more
than a factor of 2. With a faster version we can improve the running time even by a factor
of 4 (producing results similar to the results of the old BonnPlace). The faster version
allows to place a chip with 3.6 million circuits in three hours and a half on our fastest
machine, so we can place more than 1 000 000 circuits per hour. In the experiment on the
artificial benchmarks, we produce either the best published results (PEKO and ISPD 2002
benchmarks) or at least the second best results (ISPD 2005 benchmarks). Note that on
these benchmarks (where netlength is the only optimization goal) we compare to academic
placers which are tuned for placing with the highest possible density while our placer is
designed to find routable placements on large industrial designs.

iii

