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Abstract

In the field of optimization using probabilistic models of the search space, this thesis
identifies and elaborates several advancements in which the principles of maximum en-
tropy and minimum relative entropy from information theory are used to estimate a
probability distribution.

The probability distribution within the search space is represented by a graphical
model (factorization, Bayesian network or junction tree). An estimation of distribution
algorithm (EDA) is an evolutionary optimization algorithm which uses a graphical model
to sample a population within the search space and then estimates a new graphical model
from the selected individuals of the population.

• So far, the Factorized Distribution Algorithm (FDA) builds a factorization or
Bayesian network from a given additive structure of the objective function to be
optimized using a greedy algorithm which only considers a subset of the variable
dependencies. Important connections can be lost by this method. This thesis
presents a heuristic subfunction merge algorithm which is able to consider all de-
pendencies between the variables (as long as the marginal distributions of the
model do not become too large).

On a 2-D grid structure, this algorithm builds a pentavariate factorization which
allows to solve the deceptive grid benchmark problem with a much smaller pop-
ulation size than the conventional factorization. Especially for small population
sizes, calculating large marginal distributions from smaller ones using Maximum
Entropy and iterative proportional fitting leads to a further improvement.

• The second topic is the generalization of graphical models to loopy structures.
Using the Bethe-Kikuchi approximation, the loopy graphical model (region graph)
can learn the Boltzmann distribution of an objective function by a generalized belief
propagation algorithm (GBP). It minimizes the free energy, a notion adopted from
statistical physics which is equivalent to the relative entropy to the Boltzmann
distribution.

Previous attempts to combine the Kikuchi approximation with EDA have relied on
an expensive Gibbs sampling procedure for generating a population from this loopy
probabilistic model. In this thesis a combination with a factorization is presented
which allows more efficient sampling. The free energy is generalized to incorporate
the inverse temperature β. The factorization building algorithm mentioned above
can be employed here, too.

iii



The dynamics of GBP is investigated, and the method is applied on Ising spin glass
ground state search. Small instances (7 × 7) are solved without difficulty. Larger
instances (10× 10 and 15× 15) do not converge to the true optimum with large β,
but sampling from the factorization can find the optimum with about 1000-10000
sampling attempts, depending on the instance. If GBP does not converge, it can
be replaced by a concave-convex procedure which guarantees convergence.

• Third, if no probabilistic structure is given for the objective function, a Bayesian
network can be learned to capture the dependencies in the population. The relative
entropy between the population-induced distribution and the Bayesian network
distribution is equivalent to the log-likelihood of the model. The log-likelihood has
been generalized to the BIC/MDL score which reduces overfitting by punishing
complicated structure of the Bayesian network. A previous information theoretic
analysis of BIC/MDL in the context of EDA is continued, and empiric evidence is
given that the method is able to learn the correct structure of an objective function,
given a sufficiently large population.

• Finally, a way to reduce the search space of EDA is presented by combining it with
a local search heuristics. The Kernighan Lin hillclimber, known originally for the
traveling salesman problem and graph bipartitioning, is generalized to arbitrary
binary problems. It can be applied in a stand-alone manner, as an iterative 1+1
search algorithm, or combined with EDA. On the MAXSAT problem it performs in
a similar scale to the specialized SAT solver Walksat. An analysis of the Kernighan
Lin local optima indicates that the combination with an EDA is favorable.

The thesis shows how evolutionary optimization can be improved using interdisci-
plinary results from information theory, statistics, probability calculus and statistical
physics. The principles of information theory for estimating probability distributions
are applicable in many areas. EDAs are a good application because an improved esti-
mation affects directly the optimization success.
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1. Introduction

Finding the optimum of a function f is an important problem in computer science.
In the class of population-based optimization algorithms, Estimation of Distribution
Algorithms (EDA) [MP96, LL01] constitute a new and promising approach which proved
its fitness on many difficult optimization problems [LL01, MM02, PG03].

This thesis presents several improvements of EDA which profit from an interdisci-
plinary research influenced by statistics, information theory and statistical physics.

EDA can be divided into three classes: Algorithms which use a pre-defined probabilis-
tic structure [MP96, BC95], algorithms which exploit a known structure of the problem
[MMO99, Bal02], and algorithms which determine a probabilistic structure from the
population itself [BIV97, PM99, EL99, PGC99, MM99].

An efficient algorithm which exploits a given probabilistic structure is the Factorized
Distribution Algorithm (FDA). In FDA [MMO99] an additive structure on the function
is turned into a probability structure by choosing heuristically a subset of the connections
and disregarding the rest. Important connections can be lost by this method. Therefore
the question is: Is it possible to include more or even all of the connections? This thesis
presents an algorithm which does this by merging marginal distributions, thus capturing
more variable dependencies. The larger marginals can be critical to estimate particularly
from small populations. In this case the principle of maximum entropy from information
theory helps to improve the estimate.

FDA uses factorizations, equivalent to Bayesian networks. These are cycle-free, but
of limited expressive power. Is it possible to extend the regarded model class to loopy
models? Loopy probabilistic models can be identified with the Kikuchi approximation,
which has been adopted from statistical physics [AM01, MY02, YFW01, YFW04]. EDA
relies on sampling points from probabilistic models. A previous attempt to use the
Kikuchi approximation for EDA [San05] employs a Gibbs sampling procedure which is
computationally expensive. This thesis presents a way to combine the Kikuchi approxi-
mation with a factorization, in order to profit from the loopy structure, but nevertheless
be able to sample points and use this for optimization.

The class of EDA which determine a probabilistic structure from the population are
another application of the information theory principles. Minimum relative entropy is
the basis of the minimum description length (MDL) score [Ris78, Sch78, Grü98] used
for learning a structure from population data [FG99]. Previous analysis of structure
learning EDAs [PG03, PGOT03] has relied on the benchmark method: The algorithm
is applied on a benchmark function, and the optimization success is measured. Can
information theory be used to analyze in detail the algorithm’s dynamics and results?
This thesis performs an empiric analysis which gives evidence that the method is able
to recognize a structure, given a sufficiently large population size. A strong correlation
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1.1. Background of the Thesis

between the mutual information of variables and their connection in EDA is shown. An
analysis of the MDL space shows how the parameters influence the learning dynamics.

In order to reduce the search space of EDA and thus make them applicable for complex
problems, they can be combined with a local hillclimber. Several works on EDA have
used a simple one-bit hillclimber [PG03, San04]. Is it reasonable to combine EDA with
a more sophisticated hillclimber? For special problems (graph bipartitioning [KL70] and
the traveling salesman problem [LK73]), the Kernighan Lin hillclimber turned out to be
very efficient, also in combination with EDA [MM02]. Can this hillclimber be generalized
for arbitrary binary problems, in order to be more applicable in EDA (or also alone)?
This thesis presents this generalization and performs an analysis of its space of local
optima, in order to assess how reasonable is the combination with EDA.

This introduction now first describes in detail the background of the thesis and the
work which it improves. Population-based optimization, EDAs and some theoretical
work about them are described. Then in Sect. 1.2 the contributions of this thesis are
explained. Finally, Sect. 1.3 outlines the structure of the thesis.

1.1. Background of the Thesis

1.1.1. Optimization

The objective of this thesis is optimization. This is an important problem in computer
science. There are many instances of this problem, like maximizing the number of
satisfied clauses for a Boolean formula, minimizing the cost of a traveling salesman tour,
minimizing the number of edges crossing a graph bipartitioning, and many others.

Such problems can be very complex, so that the help of computers is required to
solve them. Many real-life applications can be given, from chip design over timetable
management to aircraft design.

We code optimization problems mathematically. Let D be the domain of possible
solution of the problem. For each x ∈ D there is given a single, unique function value
f(x) ∈ R which is to be maximized or minimized. Furthermore, we assume the domain
D to be finite and discrete. In this case, every x ∈ D can be coded as a binary vector,
so usually we assume D = {0, 1}n and x ∈ D to be an n-dimensional binary vector.

1.1.2. Population-based Optimization

There are many methods for solving such optimization problems. The simplest is to
calculate the function value of all x ∈ D, but this is usually unfeasible because the
domain size |D| = 2n is too large.

The starting point of this thesis is population-based optimization. This paradigm
works with a set of individuals X = {x1,x2, . . . ,xN} ⊆ D, the population. Historically,
population-based optimization began with the genetic algorithm (GA) [Hol75, Gol89].
Its basic idea is to mimic the force of evolution1, which leads to well-adapted, thus

1This approach was already proposed by Turing in 1948 and then pursued by several researchers
independently. [Fog98, HKS04]
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1. Introduction

optimized solutions. This origin has affected the terminology of population-based opti-
mization, which is imbued with biological terms.

Starting with a random population X0, the GA first computes the fitness f(x) of all
x ∈ X0. Then it selects the best individuals X̂0 ⊆ X0 of the population. These selected
individuals are coupled and recombined : For a couple of parents xi,xj ∈ X̂0, a child
vector is constructed by taking some of its bits (alleles) from xi and the others from xj.
The children form the next generation X1.

This scheme is iterated, which leads to a sequence Xt (t = 0, 1, 2, . . .) of generations.
Whereas X0 is spread all over the search space D, subsequent generations are more and
more concentrated on regions with high fitness.

The basic assumption is that points of high fitness are concentrated in the search
space, so that “good points lead to better points”. Analogously, the highest mountains
on Earth all lie in the same region. Therefore this property is also called the “Himalaya
effect”. And just like by searching between Annapurna and Kanchenjunga we would
find Mount Everest, combining good solutions for an optimization problem might lead
to a better or even optimal solution.

1.1.3. Estimation of Distribution Algorithms

Evolutionary optimization has been applied successfully in many real-world applications.
The GA is simple to implement, there are few parameters to be chosen; yet it shows good
performance. For many years, the GA community believed to have found the “optimal”
search paradigm.

There are several recombination/crossover techniques. But it is an old result from pop-
ulation genetics that asymptotically they are all equivalent [Gei44]. They approximate
sampling the new population from the simple product distribution

p(x) =
n∏

i=1

pi(xi) . (1.1)

This distribution, in which all bits are independent of each other, is also called linkage
equilibrium or Robbins’ proportion [Rob18].

Mühlenbein and Paaß [MP96] have therefore used directly (1.1) for generating the next
population, instead of some recombination scheme which is just a biased approximation
of the same formula.

This founded the new track of Estimation of Distribution Algorithms (EDA). Remark-
able is the new perspective: Instead of mimicking biological operators, a probabilistic
model pt(x) in the space D is built using the selected population. Then this model is
used to generate new individuals for the next generation.

If the distribution (1.1) is used, this means first estimating the univariate marginal
probabilities pi(xi) from the selected population X̂t and then drawing samples from these
distributions independently, so that the new generation Xt+1 is distributed according to
(1.1). This algorithm is called Univariate Marginal Distribution Algorithm (UMDA)
[MP96].
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1.1. Background of the Thesis
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Figure 1.1.: The basic loop of Estimation of Distribution Algorithms

It is at this point that the research becomes interdisciplinary. The problem to estimate
a probability distribution from data is well-known from statistics. In this dissertation,
results of statistics, belief networks, information theory and statistical physics are used
to understand and further develop EDA.

The first observation that has been made is that UMDA cannot handle problems
in which some variables are strongly correlated. These variables have to be changed
together in order to obtain an improvement. This can be accomplished by replacing
pi(xi) in (1.1) by conditional distributions pi(xi|xj, xk, . . .). Such a probabilistic model
is called a factorization of the distribution p(x). It can be used to incorporate a priori
knowledge about the structure of the objective function f (like “xi is dependent on xj
and xk”) into the model. This has been done in the Factorized Distribution Algorithm
(FDA) [MMO99, MM99].

Factorizations are strongly related to Bayesian networks [Lau96]. These and other
graphical models for describing probability distributions have been used successfully
in the context of EDA, too. If there is no a priori knowledge given, the structure
of the distribution can also be learned from the selected population itself. There are
several methods for learning Bayesian networks which have been developed in the field
of graphical models [Jor99] and were applied in EDA, too [EL99, PGC99, MM99].

1.1.4. Boltzmann Distributions and Graphical Models

In the theoretical analysis of EDA the Boltzmann distribution

pβ,f (x) :=
eβf(x)

∑
y∈D e

βf(y)
(1.2)

plays a vital role. It is very useful for optimization, and it has been applied for this
purpose e. g. in simulated annealing [KGV83].

Its favorable properties are the following. The points of maximal probability are the
maxima of f(x). The parameter β ≥ 0 controls how sharply peaked the distribution
is. For β = 0 it is the uniform distribution. The higher β is chosen, the more the
distribution concentrates on the maxima.
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Figure 1.2.: An example fitness function f(x) (OneMax-4) and its Boltzmann distribu-
tion for various β.

An example of this can be seen in Fig. 1.2. The left figure depicts the function f(x).
In this simple example it is the function Onemax-4, the number of ones in the binary
representation of x ∈ {0, 1, . . . , 15}. The right side shows several Boltzmann distributions
for this function. It can be seen that the probability of the maximum x = 15 grows with
β.

These properties of the Boltzmann distribution induce the method of optimization by
sampling from Boltzmann distributions. However, in general it is not possible to sample
efficiently from a Boltzmann distribution because the sum in (1.2) cannot be computed
efficiently. But there are other schemes which achieve this indirectly. For example,
simulated annealing [KGV83] uses a random walker which is Boltzmann-distributed
over time average. The parameter β is increased over time.

In EDA, it can be shown that the populations of the generations are Boltzmann-
distributed. The initial population is uniformly distributed, so we start with β = 0.
Selection can be understood as an operator to increase β and produce a more sharply
peaked distribution. This can be proven rigorously for the Boltzmann selection scheme,
where in [MM01a] an algorithm for controlling β was presented. For other selection
schemes it can only be shown approximatively and empirically [Mah01].

The connection between Boltzmann distributions and graphical models has been
shown in a factorization theorem [MMO99]. If the function f(x) is additively decompos-
able (that means, f(x) can be written as the sum of some subfunctions which are defined
on subvectors of x), then the Boltzmann distribution is decomposable, too. Moreover,
it adheres to a factorization which allows to sample points for the next generation. But
the proof is only valid if the graphical model is chordal or – equivalently – fulfills the
running intersection property (RIP). In this case, as is shown in [MMO99], it is indeed
possible to sample efficiently from the Boltzmann distribution, and the optimum of f(x)
can be found using FDA.

This proof comes with a few grains of salt. First, it contains no statement about the
required population size. It may be that for a sufficient estimate of the distribution the
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population must be exceedingly large. Second, the proof does not hold when the RIP
is violated, as is the case in many important optimization problems. Building a model
fulfilling the RIP is too expensive even in sparsely connected problems [GC05].

But empirically it has been shown that EDA are good at solving difficult optimization
problems [MM99]. For example, in [MM02] they have been successfully applied to the
graph bipartitioning problem.

Today, EDA is a growing field of evolutionary computation. In 2005 for the first
time the GECCO conference (Genetic and Evolutionary Computation Conference) as
well as the CEC (Congress on Evolutionary Computation) will feature a track on EDA.
Examples of EDAs and their applications can be found in [LL01].

1.2. Contribution of This Thesis

1.2.1. Maximum Entropy and Minimum Relative Entropy

As was already stated, the basic principle of EDA is to build a probability distribution
from the selected population and use this distribution to sample points for the next
population. The problem of estimating distributions arises in many different disciplines,
in different guises, using a different language, and with different goals and applications.

In statistical physics and information theory, the principle for choosing a distribution
is the principle of maximum entropy (MaxEnt) [Jay57, Jay78]. In the space of possible
distributions, adhering to a set of constraints, the distribution should be chosen which
maximizes the entropy, because this distribution is the only one which does not assume
any additional information which by hypothesis we do not have [Jay57].

A generalization of this principle is the principle of minimum relative entropy (Min-
Rel). In this case there is additionally given an objective distribution q to which we
want to be as near as possible. The principle states that in the space of possible distri-
butions, adhering to the constraints, one should choose the distribution which minimizes
the relative entropy (also called the Kullback-Leibler divergence) to the distribution q.

MaxEnt and MinRel distributions can be computed using algorithms such as Iterative
Proportional Fitting (IPF) [DS40] or Generalized Iterative Scaling (GIS) [DR72]. These
algorithms can be combined with graphical models, too [JP95, Mey98].

MaxEnt and MinRel have recently found interest in the field of EDA. In [OHSM03] we
have used MaxEnt for a special class of graphical models, the polytrees (singly connected
Bayesian networks). This work is briefly revised in Sect. 5.2 and then generalized.

Another attempt to incorporate MaxEnt into EDA was made in [WPS+04]. This
work has not yet proceeded very far. In the article some basic theorems about MaxEnt
and graphical models are proven, without using the notation of probability calculus.
Theorem 4.7 of this thesis generalizes their results and gives an elegant proof.

This thesis presents several ways of applying MaxEnt and MinRel within the context
of EDA and optimization by estimating Boltzmann distributions. In the next sections
we identify three areas in which EDA can be developed or improved using the MaxEnt
or MinRel principle.
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1. Introduction

1.2.2. Improved Factorizations by Merging

Not all dependency structures can be used to generate new points. Circular dependencies
are not allowed. For example, in FDA the factorization

p(x) = p(x2|x1)p(x3|x2)p(x1|x3) (1.3)

is not allowed. This structure is not a valid distribution, and sampling is not possible
either.

So far in FDA a factorization was built by leaving out dependencies. In [MM99,
Mah01] an algorithm is given which chooses a valid subset of the dependencies. In the
above example, this algorithm might choose

p(x) = p(x1)p(x2|x1)p(x3|x2) (1.4)

and drop the dependency between x1 and x3.
But there is another possibility. Dependency sets can be merged. In our example,

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) (1.5)

is a factorization system which accounts for all dependencies. This thesis presents a
heuristic algorithm which merges dependency sets in order to capture all dependencies
in the data, while keeping the size of the variable sets as small as possible.

This new algorithm is applied on a 2-D grid structure. The result is a pentavariate
factorization which is not symmetric, but is shown to be superior to the tetravariate
factorization of the grid given in [Mah01].

A factorization with merge contains larger marginal probabilities. In the small exam-
ple above, all the dependencies are of order 2, but the merged factorization (1.5) contains
a 3-variate probability. The larger a marginal distribution is, the more noisy is its es-
timate from a population. Therefore particularly for small populations it is favorable
to construct these distributions from smaller ones using the principle of maximum en-
tropy. This idea leads to the new Maximum Entropy Factorized Distribution Algorithm
(MEFDA).

1.2.3. Bethe-Kikuchi Approximation

There are possibilities to use loopy models like (1.3) in EDA. In statistical physics,
the Bethe-Kikuchi approximation is a method to generalize graphical models to loopy
structures.

On graphical models, there exist belief propagation algorithms [Pea88] which dis-
tribute knowledge or evidence throughout the model. They can be used to calculate
efficiently a Boltzmann distribution on the graphical model.

On loopy structures there is a counterpart of this, a generalized belief propagation
(GBP) algorithm which minimizes the free energy of the loopy graphical model, a no-
tion known from statistical physics. If the model is not loopy, GBP is equivalent to
conventional belief propagation. These algorithms have recently been developed from
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the computer science perspective [AM01, MY02, YFW04]. We show that minimizing the
free energy is equivalent to minimizing the relative entropy to the Boltzmann distribution
[MH05].

The first attempt to use the Kikuchi method in EDA was done by Santana in [San04,
San05]. But, as already mentioned, it is not possible to sample from these approximative
distributions like it is done in FDA. Santana employs the Gibbs sampling procedure,
an iterative scheme to draw samples from a Kikuchi distribution. The problem of this
method is that it might take a large number of steps (a large mixing time) to produce
a good sample from the distribution.

This thesis follows another track. It introduces a way to combine the Kikuchi approx-
imation method with an FDA factorization which makes it possible to sample values
efficiently. The algorithm can be combined with the subfunction merge algorithm of
Sect. 1.2.2, which leads to a further improvement.

In the previous work [AM01, MY02, YFW04], the Boltzmann parameter β is not
regarded. The reason is that they do not use GBP for optimization; in [YFW04] the
optimization task is explicitly excluded. For the optimization objective β plays an im-
portant role. Therefore we generalize the free energy by varying β and investigate the
effect on GBP.

The resulting algorithm, the BKDA, takes a step away from EDA, because it does not
use a previous population to build a graphical model. Instead, it uses GBP to directly
approximate the Boltzmann distribution, and then draws samples from it.

The performance and the dynamic properties of the GBP algorithm are investigated
using a number of benchmark functions, like difficult instances of the Ising spin glass
problem on a 2-D grid.

It is found that in some cases GBP has difficulties to converge. For these cases, Yuille
[Yui02] has developed a Concave Convex Procedure (CCCP). The free energy is split in
a concave and a convex part, and these are minimized in a double-loop algorithm. This
procedure is more expensive than GBP, but guaranteed to converge to an extreme point
of the free energy. It can readily replace GBP within BKDA.

1.2.4. Structure Learning from Data – LFDA

The third application of MaxEnt and MinRel in the context of EDA is learning a graphi-
cal model from the selected population. FDA assumes that the structure of the graphical
model is given in advance. But in many cases there is no information about this struc-
ture.

A probability structure can be learned from data [Jor99]. When the best points are
selected according to their fitness, is can be assumed that the selected set contains
information about the dependencies within the data. So a graphical model can be built
to capture the dependencies in the selected population. This has been applied in EDA
in several variants [EL99, PGC99, MM99].

If the principle of minimizing the relative entropy between the empirical distribution of
the selected population and the distribution induced by the graphical model is followed,
the resulting measure is equivalent to maximizing the log-likelihood of the model.
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1. Introduction

Using this measure alone would result in severe overfitting; far too many edges would
be added to the graphical model, learning the noise in the population distribution.
Therefore an additional term is included which favors simple structures. This measure
is motivated by information theory, it has been derived independently in [Sch78] as the
Bayesian Information Criterion (BIC) score and in [Ris78] as the Minimal Description
Length (MDL) score.

Learning a graphical model using this score was incorporated into FDA in [MM99];
this yields the Learning Factorized Distribution Algorithm (LFDA).

Recently Mühlenbein and Höns [MH05] have shown that the Bayesian network learning
algorithm connects especially variables which have a high mutual information. This
thesis continues the work and investigates further the properties of LFDA.

It is demonstrated that for large population size, the optimum of this scoring metric
is the true dependency graph of the problem, so the learning algorithm reproduces the
correct structure.

1.2.5. Kernighan Lin Hillclimber

An advantage of EDA is that it can be combined easily with a local optimizer. On
each generated individual a hillclimber is applied: In a neighborhood of the point, the
hillclimber searches for better points, until a local optimum is reached. A local optimum
is a point which is optimal within its neighborhood. Effectively the EDA only works
on the space of local optima of the hillclimber. So this combination reduces the search
space of the EDA.

The Kernighan Lin hillclimber (KLH) is a local search heuristic, originally introduced
for graph bipartitioning [KL70] and the traveling salesman problem [LK73]. The graph
bipartitioning KLH was successfully combined with EDA in [Mah01, MM02].

This thesis presents a generalization of this very efficient hillclimber to arbitrary binary
vector problems, which can easily be combined with EDA.

Furthermore, an iterative version of KLH is introduced: In the local optimum found
by KLH , some random bit flips are performed, and KLH is applied again to this new
starting point. This scheme results in the Iterated Mutation Kernighan Lin Hillclimber
(IMKLH), which is a simple yet effective optimization algorithm; for many benchmark
problems this algorithm is very successful.

The space of the local optima is analyzed for paradigmatic instances of the MAXSAT
problem, in order to investigate whether and why the combination with EDA is fruitful.
KLH is shown to perform in a similar scale as Walksat, a well-known specialized SAT
solver algorithm.

Then, the combination of various EDAs with KLH is investigated. It is shown that
only with help of a hillclimber like KLH the MAXSAT problem becomes tractable for
EDA.

The hybrid algorithm of EDA and KLH is also applied on the Ising spin glass problem
and on the Kaufmann (n, k) problem, in comparison with the other techniques.
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1.2.6. Summary

This thesis is highly interdisciplinary. It employs results from information theory, statis-
tical physics, probability calculus and statistics in order to understand and develop EDA.
The methods, the principles of MaxEnt and MinRel and estimation of distributions from
data are useful in many other fields, too. For example, in [MH02b, MH02a] we used these
methods for stochastic analysis of cellular automata. EDA is a good benchmark for these
methods because the optimization success is a good quality indicator.

We summarize the main contributions of this thesis. The theoretical contributions are
the following:

• Maximum entropy and minimum relative entropy are identified as basic principles
for estimating a distribution, and they are applied for several tasks within the
context of EDA.

• Various graphical models for probability distributions (Bayesian networks, Markov
networks, junction trees, polytrees) are presented and their relationships are clar-
ified.

• The free energy of a loopy graphical model (as defined in statistical physics) is
identified with the relative energy to the Boltzmann distribution. For optimization
purpose it is generalized by incorporating the Boltzmann parameter β.

• It is shown empirically that for large population sizes, the learning algorithm of
LFDA finds the correct dependency structure of the objective function.

• The space of local optima of KLH is investigated for paradigmatic 3-SAT instances.
It is shown that the optima are clustered within the search space and that the
combination of EDA and KLH is sensible.

Algorithmically, we obtain the following contributions:

• A heuristic algorithm is presented for building a factorization system from an
additively decomposable function by merging dependency sets. This algorithm
regards all dependencies between the variables. A paradigmatic example is the
2-D grid structure, for which a pentavariate factorization is introduced.

• The marginal distributions on the merged dependency sets can be constructed
using the MaxEnt principle, which results in a less noisy estimate. This gives the
Maximum Entropy Factorized Distribution Algorithm (MEFDA).

• Generalized belief propagation (GBP) on loopy graphical models is combined
with an FDA factorization, resulting in the Bethe-Kikuchi Distribution Algorithm
(BKDA). If GBP does not converge, it can be replaced by the CCCP algorithm.

• The Kernighan Lin Hillclimber (KLH) is formulated for general bit vector prob-
lems. An iterated version of this hillclimber is presented which is a simple but
powerful optimization procedure. KLH can also be employed in order to reduce
the search space of an EDA.
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The dissertation is based on information theory. It demonstrates that the empirical
estimation of distributions is an important task in many fields, how it can be solved by
the principles of maximum entropy and minimum relative entropy, and how this can be
exploited for optimization in the context of EDA.

1.3. Outline of the thesis

This thesis is organized as follows. In the following chapter, EDA is introduced, start-
ing from the genetic algorithm paradigm, introducing UMDA and FDA as presented in
[Mah01]. Chapter 3 presents graphical models as a tool to code dependencies between
variables and compute probability distributions efficiently. The relationship between
the different graphical models is clarified. Then in Chapter 4, basic notions of informa-
tion theory and probability theory are described, along with the principle of maximum
entropy.

The following chapters contain the main contributions of this thesis. Chapter 5
presents manipulations of a factorization graph in order to capture more dependen-
cies in FDA, and the application of the maximum entropy principle, resulting in the
new algorithm MEFDA. Chapter 6 explores loopy belief propagation and the Kikuchi
approximation. It describes the setting of statistical physics, then derives generalized
belief propagation (GBP) on the region graph (a loopy graphical model), and combines
this with a factorization, yielding the BKDA. Then its behavior on several benchmark
problems is investigated. CCCP is described as a more stable alternative to GBP. Chap-
ter 7 describes how to learn a graphical model from the selected population and analyzes
the result of the learning algorithm LFDA. The Kernighan Lin hillclimber is introduced
in Chapter 8, along with an analysis of its local optima and its results on the MAXSAT,
Ising and Kaufmann problem.

Chapter 9 concludes the thesis with a summary of the results and the outlook.
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2. Estimation of Distribution Algorithms

2.1. The Optimization Objective

Estimation of Distribution Algorithms (EDA) are evolutionary algorithms. The objec-
tive of evolutionary computation is optimization: Given a function f : D → R – where
D is a discrete1 domain –, find xmax with

f(xmax) = max
x∈D

f(x) =: fmax (2.1)

This maximum is not necessarily unique. The function f is also called the fitness func-
tion.

Unless otherwise noted, we consider the domain D = {0, 1}n. It contains binary
vectors of size n. Whenever necessary, we denote the variables with upper-case letters,
X = (X1, X2, . . . , Xn), and assignments by lower-case letters, x = (x1, x2, . . . , xn).

In this case, optimization generally requires an exponential effort in n. Without infor-
mation about the function f , all values f(x) must be computed in order to find the global
optimum. But in practice heuristics are used to approximate the optimum. Among the
most well-known heuristics are gradient ascent, linear programming, simulated annealing
and population-based methods.

Population-based heuristics manage a collection of possible solutions X = {x1, . . . ,xN},
the so-called population. N is the population size, not to be confused with n, the di-
mension of the problem. Prominent examples of population-based algorithms are the
genetic algorithms, using selection, crossover and mutation. In the beginning, these were
considered “optimal” by their advocates. Holland [Hol75] devised the schema theorem,
stating that genetic algorithms in general examine subspaces of the search space with
relatively high fitness.

Indeed, genetic algorithms are successful in many practical applications. However, the
optimality of genetic algorithms was refuted when Goldberg [Gol87, Gol89] constructed
deceptive functions which lead the genetic algorithms away from the global optimum,
towards a local optimum. Then the no free lunch theorem [WM95] was formulated,
stating that over the average of all possible fitness functions, all heuristics perform
equally well [Cul98]. For each method that performs well on a number of tasks, there
can be constructed just as many fitness functions on which it performs badly. Therefore,
there is no “holy grail” optimization technique. The idea that the schema theorem
provides us with an “optimal” optimization algorithm has been found to be a fallacy
[Müh91, Alt95, MM01b].

1There are also continuous (e. g. Gaussian) models [LL01], but this thesis treats only discrete problems.
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The no free lunch theorem has radically changed the direction of research in opti-
mization. Earlier, researchers were looking for “the best optimization algorithm”. Now
they must investigate in which cases a given search algorithm performs well, or which
algorithm is appropriate for a given problem.

2.2. Genetic Algorithms

There are several variants of the Simple Genetic Algorithm (SGA). An example is the
following scheme:

Algorithm 2.1: Simple Genetic Algorithm

1 Create an initial population of size N

2 do {
3 Select N̂ ≤ N individuals according to fitness

4 Create a new population from the selected using recombination and
mutation

5 } until stopping condition fulfilled

We will now consider selection, recombination and mutation in detail.

2.2.1. Selection

Selection is the only place in the algorithm in which the fitness of the individuals is
considered. From the N individuals, N̂ are chosen. They form the selected population
X̂ ⊂ X. It is generally allowed to choose an individual repeatedly.

Now we will introduce the most common selection methods. For comparison, an
example is depicted in Table 2.1. There, an example population of size N = 10 is
shown, with the fitness function OneMax-5

f(x) =

5∑

i=1

xi , (2.2)

the number of 1 bits. The selection probabilities are given in the table.

Proportional Selection: An individual xi is selected for recombination with probability
p(xi) = f(xi)P

j f(xj)
∝ f(xi). A drawback of this method is that the selection pres-

sure decreases with time: When all individuals are near the optimum, small fitness
gains will not matter much. Also, it is not invariant under translation of the fitness
function. Using g(x) := f(x) + 1000 will decrease the selection pressure substan-
tially. (For the example in Table 2.1, we would get selection probabilities between
0.09978 and 0.10018, which is almost no difference.) However, it is invariant under
multiplication with a constant.
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x f(x) Prop Exp β = 1 Trunc τ = 0.3 Tourn T = 2

10111 4 0.182 0.295 0.333 0.18
01111 4 0.182 0.295 0.333 0.18
10110 3 0.136 0.109 0.111* 0.13
00111 3 0.136 0.109 0.111* 0.13
11010 3 0.136 0.109 0.111* 0.13
00101 2 0.091 0.040 0 0.09
00001 1 0.045 0.015 0 0.05
01000 1 0.045 0.015 0 0.05
10000 1 0.045 0.015 0 0.05
00000 0 0 0.005 0 0.01

Sum: 22 1 1 1 1

Table 2.1.: Example population for OneMax-5 with selection probability for various se-
lection methods. N = 10, n = 5. Precisely, this is the probability that a
random member of X̂ is equal to x. For truncation selection, of the three
individuals marked with “*” only one can be in the selected population, so
they are not independent.

Exponential Selection: The selection probability is chosen proportionally to eβf(x). Due
to the exponential growth, the selection pressure will stay high over time. This
method is invariant under translation f(x) + c, but generally not under multipli-
cation. The parameter β > 0 is called the inverse temperature. It is not easy
to choose a reasonable value. There exist, like in simulated annealing [KGV83],
various methods for varying β within time, so-called cooling schedules.

Truncation Selection: Choosing a truncation threshold τ , the best N̂ = τN individ-
uals are chosen for recombination. Parents are chosen uniformly within this set.
This simple method is invariant under monotonous transformations of the fitness
function.

In the example table, note that there are three individuals with equal fitness 3
(marked with a “*”), so each of these will be selected with probability 1/3. The
selected set has a size of N̂ = τN = 3, so we get a probability of 1/9; but in
this place please note that unlike the other methods, which select all individuals
independently, this one chooses one of the three “*” individuals and then stays
with this one and further on disregards the two others.

Tournament Selection: Given a tournament size T ≥ 2, T individuals are drawn ran-
domly from the population (allowing repetition). The best one of these individuals
will be selected.2 This procedure is repeated N̂ times. A bigger tournament size
T increases the selection pressure.

2For equal fitness, we can just arbitrarily choose the first drawn individual. This will not create any
bias.
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The probability to select an individual xi ∈ X can be calculated as follows: Let
the population consist of

• N+ individuals with better fitness than xi,

• N= with equal fitness (including xi itself) and

• N− individuals with worse fitness.

Then for T = 2 the probability to choose xi for a tournament is

p(Tourn(xi)) =
2N − 1

N2
, (2.3)

because there are N 2 possible pairs of individuals, of which 2N − 1 contain xi.
(The situation is comparable to rolling two dies: There are 36 possible outcomes,
of which 11 contain a six.) Remember that repetition is allowed, so xi might
compete against itself.

Of the 2N − 1 combinations, there are 2N− + N= in which xi wins against its
competitor, so the probability that xi is finally selected is

p(xi selected) =
2N− +N=

N2
(2.4)

2.2.2. Recombination

Recombination (crossover) produces new individuals from the selected set. This operator
is inspired from sexual reproduction in biology. There the genome of a child is a mixture
of the genes of the parents. Recombination of bit strings chooses a pair of (usually) two
parents and then produces a child bit string from them.

The first commonly used recombination technique was one-point crossover. An
index k is randomly chosen between 1 and n. x1, . . . , xk−1 are copied from the first
parent, xk, . . . , xn from the second. A variant of this is two-point crossover, which
chooses two indices, 1 ≤ k < l ≤ n. Then xk, . . . , xl−1 are copied from the first parent
and the other bits from the second parent.

The idea behind these recombination techniques is that neighbored bits are often
connected in some way to produce a high fitness. Certainly, in general there is no
reason to assume this – as the no free lunch theorem states –, but in many real-world
applications this is nevertheless the case; the bits can be arranged in such an ordering.
However, this method to incorporate connections between the bits is fairly crude and
poorly motivated. Meanwhile more sophisticated techniques have been developed, which
do not depend on neighborhood of bits. This will be presented in section 2.4.

If there is no reason to assume connections between neighboring bits, uniform cross-
over can be used. Here, for every bit of the child one of the parents is chosen randomly,
independent from the other bits.

Even one step further, away from the genetic paradigm, is the idea of gene pool
recombination [Sys93, MV96], which does not use two parents for recombination, but
the whole set of selected individuals. This is already the first step ahead, away from
mimicking genetics and breeding, towards optimization by estimation of distributions.

16



2.2. Genetic Algorithms

2.2.3. Mutation

Mutation randomly flips bits from the children, thus increasing diversity within the
population. Mutation is applied with a probability µ, called the mutation rate. A
good rule of thumb is to choose µ = 1/n [Müh91, Müh92].

Mutation can be regarded as a local random search in the neighborhood of the children
in the solution space.

2.2.4. Elitism

A very common technique in evolutionary computation is to copy the best individual of
the population to the next generation, without any change. In many cases this has been
found to improve performance. This technique is called elitism. Sometimes more than
one individual is kept.

Elitism is not contained in the biological foundation of genetic algorithms (until today,
the best individuals are not cloned to be contained in the next generation again). But
from the computer science point of view, it is not desirable to throw away the best
individual.

2.2.5. Stopping Conditions

In algorithm 2.1, the loop is performed until a “stopping condition is fulfilled”. There
are several possibilities for when to stop the computation:

Fixation: If all individuals are the same, the algorithm has converged and we can expect
that there will be no further improvement so we can stop there.

For detecting fixation, it should be considered that in elitist runs the best individual
can differ from all the others, and that there can be slight variance due to mutation.
One possible definition is that for all bits, the fraction of individuals in which the
bit differs from the value of the majority is lower than the mutation rate.

No progress: The maximal fitness (the fitness of the best individual) has not improved
over the last ∆t generations.

Plateau: Let f̄(t) be the average fitness of the population at generation t. Let there be
given a fitness horizon ∆t. The run is on a plateau if the average fitness is not
higher than the average of the ∆t last generations:

f̄(t) ≤ 1

∆t

t∑

τ=t−∆t+1

f̄(τ) (2.5)

Maximum found: If the maximal fitness value is known, we can stop the run when a
maximum is found.
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Maximum percentage: If more stable information about the required generations is de-
sired, we can stop when a given percentage (e. g. 10 % or 30 %) of the population
has maximal fitness. This can be very different from the first hit of a maximum.
E. g. in elitist runs, it might occur that the best individual sticks with the maxi-
mum, but the rest of the population converges to a suboptimal value.

On the other hand, in real-world problems it is more interesting when the first
maximum is found, and one does not care about the percentage. Also, in our
experiments we usually found that the standard deviation of the first hit time is
rather small, so this stopping condition is not very important.

2.3. Populations and Distributions. The UMDA

Evolutionary Algorithms have been further developed to the Estimation of Distribution
Algorithms (EDA). These replace the crossover and mutation operators by a probabil-
ity model within the search space. In general, a probability distribution over D is of
exponential size. For performance reasons, it is necessary to use distributions which can
be stored and sampled from polynomially.

In 1996, Mühlenbein and Paaß [MP96] have proposed the Univariate Marginal Dis-
tributions Algorithm (UMDA), which approximates the simple genetic algorithm. It
consists of a genetic algorithm with gene pool recombination and without mutation.

Algorithm 2.2: UMDA – Univariate Marginal Distribution Algorithm

1 Create an initial population of size N . t⇐ 0.

2 do {
3 Select N̂ ≤ N individuals according to fitness

4 for i = 1 to n do {
5 Calculate marginal distribution pi(xi, t) from the selected indi-

viduals
6 }
7 Generate new individuals using p(x, t+ 1) =

∏n
i=1 pi(xi, t)

8 t⇐ t+ 1
9 } until stopping condition fulfilled

Remarkable is the new view of the genes. Choosing the bits from the parents can
also be seen as sampling from a probability distribution. UMDA uses a very simple
distribution: the product of the distributions for the single bits.

p(x, t+ 1) =

n∏

i=1

pi(xi, t) (2.6)

This assumes no dependencies between the bits.
It has been shown by Geiringer [Gei44] that this distribution is the limit of any reason-

able recombination/crossover scheme for large populations. In population genetics, this
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independent product distribution is also called linkage equilibrium or Robbins’ proportion
[Rob18].

Therefore UMDA can be seen as the limit case of the genetic algorithm. If many
recombination steps are performed without selection, the result is equivalent to uniform
crossover with gene pool recombination. The local effects of 1-point or 2-point crossover
will disappear. Certainly this is a theoretical result only. It doesn’t mean that these
crossover techniques are equivalent in practice. But it is impossible to say whether a
bit combination of high fitness will persist; in particular, this depends on their distance
in the vector. (Neighboring bits are more probable to stay together because it is less
likely that the crossover point will be between them.) One problem of GA is that it is
very difficult to quantify and thus analyze these effects. UMDA is based on probability
theory, and its behavior can be analyzed mathematically.

This has been done by Mühlenbein and Mahnig [MM00]. The mathematical analysis
of UMDA extends the perception in the following way: Let there be given a fitness
function

f : {0, 1}n → R (2.7)

f : x1, . . . , xn 7→ f(x1, . . . , xn) (2.8)

This discrete space is now transformed into a continuous model. x1, . . . , xn are replaced
by the univariate marginal distributions p1, . . . , pn, i. e. the probabilities of the bits to
be 1. This leads to

f̄ : [0, 1]n → R (2.9)

f̄ : p1, . . . , pn 7→ f̄(p1, . . . , pn) (2.10)

where f̄ is the expected fitness of an individual sampled with the given probabilities.

f̄(p) =
∑

x

p(x)f(x) =
∑

x

f(x)
∏

i

pi(xi) (2.11)

Whereas f is only defined for the corners of the n-dimensional unit hypercube, f̄ extends
the domain to the interior of this hypercube. Of course, in the corners the two functions
coincide.

It turns out that there are no local maxima in the interior of the hypercube, but only
at the corners. UMDA (with fitness proportional selection) performs a gradient ascent
in this space, until it converges to one of the corners. When UMDA reaches a corner,
all probabilities are 0 or 1; then all individuals of the population are identical. This
phenomenon is called fixation.

Since UMDA performs nothing but a gradient ascent, it cannot traverse valleys of
the fitness landscape. Also, it does not regard couplings between the variables, since
in the product distribution p(x, t + 1) =

∏n
i=1 pi(xi, t) all variables are assumed to be

independent.
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2.4. Incorporating Dependencies. The FDA

The product distribution used by UMDA is too simple for fitness functions that contain
strong couplings between the variables. Thus, it can be deceived and led into the wrong
direction. Therefore we should consider more powerful distributions to sample from.

Such a distribution p̃ is determined by parameters q(t) that are varied during the run.
The initial population is distributed after p̃(x, q(t = 0)), usually the uniform distribution.
Also, there should be a parameter estimation scheme P̃ for obtaining the new parameters
q(t) using the set of selected individuals.

For example, for UMDA q(t) is the set of univariate marginal probabilities pi(xi, t), i =
1, . . . , n. The parameter estimator P̃ calculates these as the marginal frequencies in the
population.

In general, this leads to the conceptual algorithm PDA (Parametric Distribution Al-
gorithm, algorithm 2.3).

Algorithm 2.3: PDA – Parametric Distribution Algorithm

1 Create an initial population X of size N using p̃(x, q(0)) (uniform
distribution), t⇐ 1.

2 do {
3 Select N̂ ≤ N points X̂.

4 Estimate q(t) = P̃ (X̂, t) from the selected points.

5 Generate new points using p̃(x, q(t)).

6 t⇐ t+ 1.
7 } until stopping condition fulfilled

For UMDA, p̃ is the product distribution (2.6). A more sophisticated choice for p̃ is
the Boltzmann distribution, presented in the following section.

2.4.1. The Boltzmann Distribution

Definition 2.1. Given a function f(x) and parameter β ≥ 0, the Boltzmann distri-
bution (or Gibbs distribution) is defined as

pβ,f(x) :=
eβf(x)

∑
y e

βf(y)
=
eβf(x)

Zf (β)
(2.12)

β is called the inverse temperature. This stems from the analogon of thermodynamics,
where the Boltzmann distribution is used with the temperature T = 1

β .

Zf (β) is called the partition function. It is needed for normalization. If the indices β
or f are clear from the context, they can be omitted.

The Boltzmann distribution has several properties which recommend it for optimiza-
tion. First we note the following:
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Lemma 2.1. A Boltzmann distribution has the following properties:

1. For β = 0, pβ,f is the uniform distribution, independent from f .

2. For β > 0, f(x1) < f(x2) =⇒ pβ,f (x1) < pβ,f (x2).

3. For g(x) = f(x) + c, pβ,g = pβ,f .

4. For g(x) = c · f(x), pβ,g = pc·β,f .

5. pβ,f (x1)/pβ,f (x2) = eβ(f(x1)−f(x2)).

Proposition 2.2. For β →∞, pβ,f tends to the uniform distribution on the set of the
maxima of f .

Proof. Let M be the set of maxima, xm ∈ M be a maximum and xl /∈ M, so f(xl) <
f(xm). Then

pβ,f (xl) =
eβf(xl)

∑
y e

βf(y)
≤ eβf(xl)

eβf(xm)
= e−β(f(xm)−f(xl)) (2.13)

With increasing β, this goes to zero exponentially.
For two maxima x1, x2, there is always pβ,f(x1) = pβ,f(x2). Therefore

lim
β→∞

pβ,f (x) =

{
1
|M| ⇐⇒ x ∈M
0 ⇐⇒ x /∈M

(2.14)

This result is particularly promising. If we could sample efficiently from a Boltzmann
distribution with arbitrary β, optimization would be an easy task. Unfortunately, the
calculation of the partition function needs a summation of exponentially many terms.
Nevertheless, it is very valuable in optimization, as will be shown in the following section.

2.4.2. Boltzmann Selection

Definition 2.2. Let there be given a distribution p and a selection pressure γ. Boltz-
mann selection [MT93] calculates the distribution for the selected points according
to

ps(x) =
p(x)eγf(x)

∑
y p(y)eγf(y)

(2.15)

Boltzmann selection is similar to the exponential selection scheme in genetic algorithms
(see section 2.2.1). In fact, exponential selection is a special case of this, where p(x) is
the frequency of x in the population, and ps(x) is the probability to choose x for the
selected population.

In that context the focus was on a population from which to select points, instead of a
distribution p. But instead of selecting points with ps to build a probabilistic model, you
can also build the model directly using ps. Soon we are going to present a feasible way
to do this. But first, we will motivate Boltzmann selection by the following propositions.

21



2. Estimation of Distribution Algorithms

Proposition 2.3. Starting from an initial distribution p0(x), applying Boltzmann se-
lection twice, with parameters β and γ, results in the distribution

pss(x) =
p0(x)e(β+γ)f(x)

∑
y p0(y)e(β+γ)f(y)

(2.16)

Proof. Let Z0(β) =
∑

y p0(y)eβf(y) be the partition function after the first selection.
After the second selection we obtain

pss(x) =
p0(x)eβf(x)

Z0(β)

eγf(x)

∑
y
p0(y)eβf(y)

Z0(β) eγf(y)
(2.17)

=
p0(x)e(β+γ)f(x)

∑
y p0(y)e(β+γ)f(y)

(2.18)

Corollary 2.4. Applying Boltzmann selection with parameter γ on a Boltzmann distri-
bution pβ,f (x) results in the Boltzmann distribution

ps(x) = pβ+γ,f (x) (2.19)

Proof. In the above proof, set p0 to be the uniform distribution.

This can also be iterated.

Corollary 2.5. Applying Boltzmann selection on the uniform distribution iteratively
with parameters β1, . . . , βT results in a sequence of Boltzmann distributions pβ̄t,f (t =
1, . . . , T ) with

β̄t =

t∑

τ=1

βτ (2.20)

2.4.3. The BEDA

The results of the previous section lead to an algorithm which looks for the optimum by
sampling from Boltzmann distributions with increasing β.

The BEDA (Boltzmann Estimated Distribution Algorithm) is a conceptual algorithm
only. It needs an exponential time to calculate the distributions. Therefore, it is not
useful, since in exponential time one could as well search for the optimum by brute force.

The algorithm draws samples from increasingly peaked Boltzmann distributions. Since
the Boltzmann distribution concentrates on the maxima for increasing β, we say that
BEDA is focusing on the maxima, and the probability to sample a maximum tends to
1 (provided that the probability of the maximum is greater than zero in the starting
distribution).

The distributions that are estimated from the populations contain an exponential
number of parameters. Therefore, in order to estimate with sufficient accuracy, a very
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Algorithm 2.4: BEDA – Boltzmann Estimated Distribution Algorithm

1 t⇐ 0. Generate N individuals using the uniform distribution p(x, 0)
with β0 = 0.

2 do {
3 Estimate p(x, t) from the population

4 For a given βt > 0, calculate

ps(x, t) =
p(x, t)eβtf(x)

∑
y p(y, t)e

βtf(y)
. (2.21)

5 Sample N new points from the distribution ps(x, t).

6 t⇐ t+ 1.
7 } until stopping condition fulfilled

large population is needed. If the population size is too small, the maximum might be
lost in an early step, and then its probability will be zero for the rest of the run.

So, due to the exponential effort and the big sampling error, BEDA is not applicable.
But it can be turned into a useful algorithm when the Boltzmann distribution can be
split in parts of polynomial size. This is the case if there is an additive structure on the
fitness function.

2.4.4. Additively Decomposable Functions and Factorization Systems

Definition 2.3. Let there be given a function f : {0, 1}n → R. An additive decom-
position S of f is a system of index sets s1, . . . , sm ⊆ {1, . . . , n} and a set of functions
f1(xs1), . . . , fm(xsm), where xsi denotes the subvector of x ∈ {0, 1}n indexed by si, such
that

f(x) =

m∑

i=1

fi(xsi) (2.22)

If there exists an additive decomposition of f , we call f an additively decomposable
function (ADF).

For an additive decomposition, we define the following:

di :=
⋃i
j=1 sj (histories)

bi := si \ di−1 (residuals)

ci := si ∩ di−1 (separators)

(2.23)

with d0 := ∅. This means that, given an ordering of the sets S = (s1, . . . , sm), we
imagine the variables being added to a large pot in this order. Whenever adding a new
si, the history di is the set of variables that are now in the pot, the residuals bi are the
variables that are new, and the separators ci are the variables in si that have already
been added before.
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Definition 2.4. An additive decomposition S is a factorization system, if

dm = {1, . . . , n} , (2.24)

so that in the end all variables are contained, and

∀i ∈ {1, . . . ,m} : bi 6= ∅ . (2.25)

If (2.25) is not fulfilled, we can merge some subsets (and add their fi).

Example 2.1 (Bivariate circle). Suppose that the fitness function has a circular
structure:

f(x) =

n−1∑

i=1

fi(xi, xi+1) + fn(xn, x1) (2.26)

The additive decomposition {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}} is not a factorization
system, because the very last subset will have bm = ∅. But we can merge the last two
subsets and set

f̃n−1(xn−1, xn, x1) = fn−1(xn−1, xn) + fn(xn, x1) (2.27)

and

f(x) =

n−2∑

i=1

fi(xi, xi+1) + f̃n−1(xn−1, xn, x1) (2.28)

This induces the valid factorization system {{1, 2}, {2, 3}, . . . , {n− 1, n, 1}}.

Now, let there be a probability distribution p(x). Using the factorization system, we
can define the distribution

p̃(x) =
m∏

i=1

p(xbi |xci) (2.29)

It consists of the conditional distributions

p(xbi |xci) =
p(xci ,xbi)∑
x̃bi

p(xci , x̃bi)
. (2.30)

Lemma 2.6. p̃(x) has the following properties:

1. p̃(x) is a probability distribution.

2. For all i, p̃(xbi |xci) = p(xbi |xci).

Proof. It is obvious that for all x, p̃(x) ≥ 0. So for it to be a probability distribution,
we must show that it sums up to 1. The sum over all x can be split up in a sum over
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all xbi . The factors that to not depend on xbi can be moved outside the sum, and then
the sum over all xbi is 1, since p(xbi |xci) is a probability distribution.

∑

x

p̃(x) =
∑

x

m∏

i=1

p(xbi |xci) (2.31)

=
∑

xb1

p(xb1)
∑

xb2

p(xb2 |xc2) · · ·
∑

xbm

p(xbm |xcm)

︸ ︷︷ ︸
=1

(2.32)

= · · · = 1 (2.33)

For the second part, we split up s̄i into the antecessors ai := di \ si = di−1 \ ci and the
successors (followers) fi := {1, . . . , n} \ di = ∪mj=i+1bj . Then {1, . . . , n} is the disjunct
union ai∪̇bi∪̇ci∪̇fi, and

p̃(xbi |xci) =
p̃(xbi ,xci)

p̃(xci)
(2.34)

=

∑
x̃ai ,x̃fi

p̃(x̃ai ,xbi ,xci , x̃fi)∑
x̃ai ,x̃bi ,x̃fi

p̃(x̃ai , x̃bi ,xci , x̃fi)
(2.35)

=

∑
x̃ai

∏i−1
j=1 p(x̃bj |xcj∩ci , x̃cj\ci)p(xbi |xci)

∑
x̃fi

∏m
j=i+1 p(x̃bj |xcj∩si , x̃cj\si)∑

x̃ai

∏i−1
j=1 p(x̃bj |xcj∩ci , x̃cj\ci)

∑
x̃bi

p(x̃bi |xci)
∑

x̃fi

∏i−1
j=1 p(x̃bj |xcj∩ci , x̃cj\ci)

(2.36)

Here, x̃ denotes summation variables. Note that the cj are split up in the variables that
are summed over (so they are adorned with a tilde), and those that are not.

Like in the first part of the lemma, the sum over all x̃fi is equal to 1 and therefore
drops out. The same holds for the sum over x̃bi in the denominator. The sum over x̃ai
cancels out, so we are left with

p̃(xbi |xci) = p(xbi |xci) (2.37)

This lemma can be used to sample points from p̃(x). For this, we proceed through all
the subsets and sample values for xbi from p(xbi |xci), given the values for xci that have
already been sampled. This is possible because by construction there are no cycles.

In the literature, this sampling method has been called Probabilistic Logic Sampling
(PLS) [Hen88]3.

However, note that in general
p̃(x) 6= p(x) , (2.38)

and also p̃(xbi ,xci) 6= p(xbi ,xci). For this to be valid, two requirements must be fulfilled:

3This name seems unfortunate, because it has nothing to do with probabilistic logic [Nil86], the gener-
alization of logic under uncertainty.
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1. The probability distribution must be compatible with the factorization system.

2. The running intersection property must be fulfilled.

We will explain these two requirements in the following sections.

2.4.5. Boltzmann Distributions and Factorization Systems

To make a connection between a factorization system and a probability distribution, we
want to achieve that the dependencies of the variables in the probability distribution
accord with the structure of the factorization system. A thorough discussion of what
we mean by the dependencies of the variables will be given in section 3 about graphical
models.

For the moment, we recall our problem: We are given a fitness function f which we
know to be additively decomposable. Then a good choice of the probability distribution
is the Boltzmann distribution.

p(x) =
eβf(x)

Z
(2.39)

=
1

Z

m∏

i=1

eβfi(xsi ) (2.40)

For an additively decomposable function, the Boltzmann distribution is multiplicatively
decomposable. Furthermore, for each multiplicatively decomposable distribution, we can
define an ADF for which it is the Boltzmann distribution.

We will soon show that it is possible to sample from this distribution efficiently. Thus
we will turn BEDA into a feasible algorithm.

2.4.6. The Running Intersection Property

Definition 2.5. A factorization system fulfills the running intersection property
(RIP) [Lau96], if

∀i ≥ 2 ∃j < i : ci ⊆ sj (2.41)

This means that all the variable sets on which new variables are conditioned must be
contained in a previous subset. It may be difficult to understand the implications of this
requirement. First we give an example.

Example 2.2. Let the factorization system be S = ({1, 2}, {1, 3}, {2, 3, 4}). It does not
fulfill the RIP. The probability distribution is

p̃(x) = p̃(x1, x2)p̃(x3|x1)p̃(x4|x2, x3) (2.42)

Suppose now that we learn the marginal probabilities using the following data set:

{0011, 1100, 0101, 0010, 1110}
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When sampling a new point using lemma 2.6, we begin with x1, x2. With probability 2/5,
we obtain 0, 0. For x3, given that x1 = 0, the probability for another 0 is 1/3. Supposing
that we have sampled these values, we are now in trouble trying to sample x4: The
combination (x2, x3) = (0, 0) does not appear in the data!

This sort of undefined conditional probabilities can only occur when the RIP is vio-
lated. Pragmatically, in absence of any information, we then sample from the uniform
distribution. This can be justified within the theory of Bayesian prior distributions (see
section 4.3.3).

This undefined probability is certainly an extreme case. But also otherwise, when the
RIP is violated the marginal distributions of p̃ are different from those which were used
to construct it. An example for this is presented in Sect. 5.2.3.

On the other hand, when the RIP is fulfilled, our task is much easier. We even have
the following proposition:

Proposition 2.7. Given an ADF f(x), whose factorization satisfies the RIP, the max-
imum of f(x) can be found in polynomial time (provided that the size of the subsets is
at most logarithmic in n) by dynamic programming.

Proof. We describe an algorithm for finding the maximum of f . Analogous algorithms
can be found in [BB72, Jor99].

The running intersection property states that for every i ≥ 2 there is a j < i with
ci ⊆ sj. We call j the parent of i, j = π(i), and i a child of j. The set of children is
defined as C(j) = {i > j|j = π(i)}. If there is more than one possible j, we choose the
parent arbitrarily. This forms a tree from the factorization.

Within the tree, we can now pass messages from the children up to the parents. Let
j = π(i), then we define

mij(xci) := max
xbi


fi(xsi) +

∑

k∈C(i)

mki(xck)


 (2.43)

Having computed all the messages, the maximum can be computed using the root
node s1:

max f(x) = max
xs1


f1(xs1) +

∑

k∈C(1)

mk1(xck)


 (2.44)

The maximum configuration xmax = argmax f(x) can be computed by traversing from
the root down to the leaves. On the way the variables are fixed upon the maximum
values. So, given that the values of the parent node j have already been fixed (and thus
also the values of xci), the residual variables of the child i are chosen as

xbi = argmax
xbi


fi(xsi) +

∑

k∈C(i)

mki(xck)


 (2.45)
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If there is more than one possibility with equal maximal probability, one of them can be
chosen arbitrarily.

If there is more than one root node (with ci = ∅), the maximum is just the sum of the
maxima for all the roots. The running intersection property guarantees that the trees
from the different roots are disjunct.

Considering the complexity of the algorithm, we note that the messages are of size
2|ci|, and the maximization over all assignments of xbi requires to compute 2|bi| values.
This is polynomial if all |si| are of order O(log n).

So, when the RIP is satisfied, the optimization task is easy. In the next section we
will show that in this case the Boltzmann distribution can be factorized, too.

2.4.7. The Factorization Theorem

For the proof of the factorization theorem, we first need the following lemma:

Lemma 2.8. Let Xα, Xβ , Xγ be three disjunct sets of variables, and let p be a probability
distribution that satisfies

p(xα, xβ, xγ) = g(xα, xγ)h(xβ , xγ) (2.46)

for some functions g, h. Then the following equations hold:

p(xα, xβ , xγ) = p(xα, xγ)p(xβ |xγ) (2.47)

p(xα, xγ) = g(xα, xγ)h̃γ(xγ) (2.48)

p(xα, xβ |xγ) = p(xα|xγ)p(xβ |xγ) (2.49)

Proof. First we calculate the following marginal distributions:

p(xα, xγ) = g(xα, xγ)
∑

xβ

h(xβ, xγ) (2.50)

p(xβ, xγ) = h(xβ , xγ)
∑

xα

g(xα, xγ) (2.51)

p(xβ|xγ) =
h(xβ, xγ)

∑
xα
g(xα, xγ)∑

x̃β
h(x̃β , xγ)

∑
xα
g(xα, xγ)

=
h(xβ , xγ)∑
x̃β
h(x̃β , xγ)

(2.52)

Then (2.47) follows from (2.50) and (2.52). Equation (2.49) is derived by dividing (2.47)
by p(xγ). Finally (2.48) follows from (2.50) with h̃γ(xγ) =

∑
xβ
h(xβ , xγ).

Remark 2.1. If a probability distribution satisfies (2.46), we call the variable sets Xα

andXβ conditionally independent givenXγ . We writeXα⊥⊥Xβ |Xγ . This definition
will be resumed in the theory of graphical models in Chapter 3.

Now we can prove the essential theorem.
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Theorem 2.9 (Factorization Theorem). Let p(x) = eβf(x)

Z be a Boltzmann distribu-
tion for the ADF

f(x) =
m∑

i=1

fi(xsi) (2.53)

If the factorization system fulfills the running intersection property (2.41), then

p(x) =

m∏

i=1

p(xbi |xci) (2.54)

Proof. The proof follows [Mah01], via inverse induction over i, from m down to 1.

• We begin the induction with i = m. For this case it is obvious that

p(x) = p(xdm) (2.55)

p(xdm) = Fms1 (xs1) · · ·Fmsm(xsm) (2.56)

Equation (2.56) results from (2.40) with Fm
s1 (xs1) = eβf1(xs1 )/Z and Fmsj (xsj ) =

eβfj(xsj ) for j > 1.

• The induction claim is that for i

p(x) = p(xdi)p(xbi+1
|xci+1) · · · p(xbm |xcm) (2.57)

p(xdi) = F is1(xs1) · · ·F isi(xsi) (2.58)

Then we must show that this holds also for i− 1, i. e.

p(x) = p(xdi−1
)p(xbi |xci) · · · p(xbm |xcm) (2.59)

p(xdi−1
) = F i−1

s1 (xs1) · · ·F i−1
si−1

(xsi−1) (2.60)

for some functions F i−1.

• We begin by splitting up (2.58)

p(xdi) = F is1(xs1) · · ·F isi−1
(xsi−1)

︸ ︷︷ ︸
g(x)

F isi(xsi)︸ ︷︷ ︸
h(x)

(2.61)

Then we can apply Lemma 2.8 with the partition α = di−1 \ ci, β = bi and γ = ci,
yielding

(2.47) =⇒ p(xdi) = p(xdi−1
)p(xbi |xci) (2.62)

(2.48) =⇒ p(xdi−1
) = F is1(xs1) · · ·F isi−1

(xsi−1)h̃ci(xci) (2.63)

The RIP states that there must be a j < i with ci ⊆ sj. So we can define the
functions F i−1 as

F i−1
sk

(xsk) :=

{
F isk(xsk) for k 6= j

F isk(xsk)h̃ci(xci) for k = j
(2.64)
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incorporating h̃ in the subfunction that contains all the variables on which it de-
pends. This definition guarantees that

p(xdi−1
) = F i−1

s1 (xs1) · · ·F i−1
si−1

(xsi−1) (2.65)

This proves (2.60). By inserting (2.62) in (2.57), we also obtain (2.59). So, the
induction step is proven.

(2.54) follows from (2.59) with i = 1.

2.4.8. FDA

Suppose that we know a factorization system for the function f . Then we can use
the factorization theorem to turn BEDA into a feasible optimization algorithm. This
algorithm [MM98, MMO99] is called FDA (Factorized Distribution Algorithm).

Algorithm 2.5: FDA – Factorized Distribution Algorithm

1 Calculate bi and ci from the decomposition of the function.

2 t ⇐ 1. Generate an initial population with N individuals from the
uniform distribution.

3 do {
4 Perform selection

5 Estimate the conditional probabilities p(xbi |xci , t) from the selected
points.

6 Generate new points according to p(x, t+ 1) =
∏m
i=1 p(xbi |xci , t).

7 t⇐ t+ 1.

8 } until stopping criterion reached

BEDA uses Boltzmann selection. So FDA with Boltzmann selection also calculates a
series of Boltzmann distributions with increasing β, and it inherits the focusing property
(see Sect. 2.4.2). But it can also be used with any other selection scheme. The most
common choices are truncation selection and tournament selection (see Sect. 2.2.1).

Although the factorization theorem is only valid when the RIP is satisfied, FDA can
also be applied when it is violated. Lemma 2.6 assures that we sample from a proper
distribution. In fact, this is the case in which FDA is most interesting, because when
the RIP is fulfilled, dynamic programming (see Prop. 2.7) is very efficient in finding an
optimum.

A difficulty of FDA is the choice of the population size. If it is too small, the estimate
of p(xbi |xci , t) will be bad.

The algorithm is stochastic. It requires to estimate the marginal distributions with
sufficient precision. The precision of the estimation depends especially on the population
size.
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2.4.9. From additive decomposition to a factorization system

FDA needs a factorization of f . Given an ADF f , we need two things to turn the
additive decomposition into a factorization system:

1. An ordering of the subsets and

2. a way to handle bi = ∅ (see Sect. 2.4.4).

Given an additive decomposition S = {s1, . . . , sm}, it is often not possible to order
the si in a factorization system, because this results in a bi = ∅; that is, a set whose
variables are all already contained in previous sets. Take for example the decomposition
({1, 2}, {1, 3}, {2, 3}). No matter which ordering we choose, the third set will be fully
contained in the union of the previous sets.

In this case, it is in general not possible to sample from the system in a consistent way.
One possibility to solve this problem is to choose only a subset of the si and disregard the
others; in our example, we can use the factorization ({1, 2}, {1, 3}). To choose a subset
S̃ = {s̃j |1 ≤ j ≤ m̃} ⊆ S which is a factorization system, it is desirable to use as many
connections between the variables as possible. This is implemented in the heuristics of
Alg. 2.6.

Algorithm 2.6: Subfunction Choice

1 Choose the first set s̃1 randomly among the si.

2 Then, choose among the si the set that has the maximal overlap with
d̃j−1 (the history of variables added so far). If there is more than one
possible set, choose the smallest one.

3 Add this set as s̃j. j ⇐ j + 1

4 Repeat this until the whole set {1, . . . , n} is covered.

The number of added connections is the size of the overlap |c̃j | = |s̃j ∩ d̃j−1|. This
is maximized by the algorithm. Furthermore, we minimize |b̃j |, the number of new
variables, so that the total number of incorporated subfunctions |S̃| is as large as possible.

This algorithm was already presented in [Mah01], but the version given here contains
a slight improvement: In [Mah01], the overlap |c̃j | was maximized, too, but in case of a
tie, |b̃j| was maximized.

To motivate the decision to minimize rather than maximize |b̃j |, take for example the
decomposition

({1, 2}, {2, 3}, {3, 4}, {2, 4, 5}) . (2.66)

The algorithm presented by Mahnig would first add {1, 2}. Then there are two sets with
an overlap of one variable: {2, 3} and {2, 4, 5}. Mahnig would add the larger one, so
{2, 4, 5} is added to S̃ next. Finally, there are the sets {2, 3} and {3, 4} left, both having
an overlap of 1 and a size of 2, so one of them would be added arbitrarily, say {2, 3}.
The complete factorization system is

S̃ = ({1, 2}, {2, 4, 5}, {2, 3}) , (2.67)
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dropping the dependency {3, 4}. The probability distribution for this factorization sys-
tem is

p(x) = p(x1, x2)p(x4, x5|x2)p(x3|x2) . (2.68)

On the other hand, if |b̃j | is minimized, the second added set is {2, 3}, followed by
{3, 4} and finally {2, 4, 5}. This results in the factorization system

S̃ = ({1, 2}, {2, 3}, {3, 4}, {2, 4, 5}) , (2.69)

which yields the distribution

p(x) = p(x1, x2)p(x3|x2)p(x4|x3)p(x5|x2, x4) . (2.70)

This distribution is more accurate than (2.68). It contains all dependencies between the
variables.

Sect. 5.1.1 presents a further improvement, which instead of choosing a subset of the
subfunctions merges them together. This allows to consider more dependencies or even
all of them.

2.5. Summary

In this chapter, we presented population-based optimization techniques, first of all the
genetic algorithm. Then we introduced EDA, which use probability distributions for
optimization. Crossover in the genetic algorithm is replaced by building a probabilis-
tic model and sampling data from it. The simple product distribution is used in the
UMDA. Then, dependencies between the variables are exploited in the FDA, which
uses a factorized probability distribution for optimization of additively decomposable
functions.

The role of the Boltzmann distribution as a useful probability distribution for EDA is
illuminated. It can also be used for selection (Boltzmann selection).

A special class of factorizations are those which fulfill the running intersection property.
For these, optimization is a simple task. But the FDA works also when the RIP is
violated.

Finally, a way to build a factorization system from an additively decomposable func-
tion is described which chooses a subset of the variable connections.
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The basic idea of EDA is to use the selected population for building a probabilistic
model, and then sample from this model the next generation of individuals.

The most well-known probabilistic models are the graphical models, which are in-
troduced in this chapter. We will introduce particularly Markov networks, Bayesian
networks, and junction trees, and show their connection with factorization systems, pre-
sented in the previous chapter.

But first, we note that the main incentive of using graphical models is

• to code dependencies or independencies of variables and

• to exploit this information for the efficient calculation of or sampling from distri-
butions.

So, we start the chapter with some considerations about independence.
Then, in Sect. 3.2, we introduce Markov and Bayesian networks, and in Sect. 3.3 the

junction tree. Finally, we explore the relationship between factorization systems and
junction trees, explain how to build a junction tree and present inference in junction
trees.

3.1. Independence and Conditional Independence

The notion of independence is well-known from probability calculus:

Definition 3.1. Two random variables A and B are independent, if for all values a, b
of A,B we have p(A = a,B = b) = p(A = a)p(B = b). We write A⊥⊥B.

So, if we know that two variables A, B are independent, we can replace p(A,B) –
having 3 degrees of freedom – by p(A) and p(B) with one degree of freedom each, thus
saving one parameter.

However, only the information which variables are independent will not bring us very
far. For example, if we have three variables which are pairwise independent, it may be
that all three are dependent, i.e.

(A⊥⊥B) ∧ (A⊥⊥C) ∧ (B⊥⊥C) 6⇒ p(a, b, c) = p(a)p(b)p(c) (3.1)

Example 3.1. This example is taken from [Mah01] (p. 88), correcting an obvious mis-
take in the probability table.

Let the probability distribution for three binary variables A, B, C be given by the
following table:
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abc 000 001 010 011 100 101 110 111

p(a, b, c) 1/4 0 0 1/4 0 1/4 1/4 0
(3.2)

Each variable has probability 1/2 of being 1, and each pair of variables is uniformly
distributed with probability 1/4 for each pair of values. But the complete distribution is
not uniform. The three variables are dependent.

For decomposing probability distributions, the following notion is more useful.

Definition 3.2. Two probability variables A and B are conditionally independent,
given a third variable C, if

p(A,B|C) = p(A|C)p(B|C) (3.3)

We write A⊥⊥B|C. The same notion is used for A,B,C being sets of probability vari-
ables.

Lemma 3.1. If A⊥⊥B|C,

p(A|B,C) = p(A|C) (3.4)

Proof. Divide (3.3) by p(B|C).

More properties of conditional independency have already been given in Lemma 2.8.
Note that neither does independence imply conditional independence nor vice versa.

Example 3.2 ([Bré99], p. 12). Suppose that there are two factories that produce
watches. Factory A produces expensive watches with a failure probability of 0.01. Fac-
tory B produces cheap watches with a failure probability of 0.2. Suppose that you receive
a box full of watches, coming all from the same factory.

You take two watches from the box and check whether they work. Given the infor-
mation that the watches come from factory A (or B), the events that the two watches
work are conditionally independent, because all watches are produced independently.

However, the events W1 = “first watch works” and W2 = “second watch works” are
dependent. If the probability that they come from factory A is 0.5, the probability p(W )
that a watch from the box works is

p(W ) = p(W |A)p(A) + p(W |B)p(B) = 0.895 (3.5)

But the probability that two watches W1, W2 from the box work is

p(W1,W2) = p(W1,W2|A)p(A) + p(W1,W2|B)p(B) (3.6)

= p(W1|A)p(W2|A)p(A) + p(W1|B)p(W2|B)p(B) (3.7)

= 0.81005 (3.8)

6= p(W1)p(W2) (3.9)

So we see that W1⊥⊥W2|A 6⇒W1⊥⊥W2.
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Example 3.3. Let there be a house equipped with an alarm which can be triggered
by a burglar or an earthquake. Suppose that an earthquake has the probability p(E) =
0.001. Suppose further that a burglary has the probability of p(B) = 0.01. For the
alarm to go off, we assume the following probabilities: p(A|B,E) = 0.95, p(A|B̄, E) =
0.9, p(A|B, Ē) = 0.8, p(A|B̄, Ē) = 0. (B̄ denotes the event “no burglary”, Ē “no
earthquake”.) The events “earthquake” and “burglary” are independent.

This information suffices to calculate the complete table of probability for the three
events, which is given in Table 3.1.

Alarm Burglar Earthquake Probability

no no no 0.98901
no no yes 0.000099
no yes no 0.001998
no yes yes 0.0000005
yes no no 0
yes no yes 0.000891
yes yes no 0.007992
yes yes yes 0.0000095

Sum: 1

Table 3.1.: The complete probability table for the alarm example

Using this table, we can calculate all probabilities in which we are interested. For
example, supposing that the alarm went off, the probability of a burglary is

p(B|A) =
0.007992 + 0.0000095

0.000891 + 0.007992 + 0.0000095
= 0.899803 (3.10)

whereas an earthquake has the probability

p(E|A) =
0.000891 + 0.0000095

0.000891 + 0.007992 + 0.0000095
= 0.101265 (3.11)

However, the probability of an earthquake and a burglary in the case of an alarm is

p(B,E|A) =
0.0000095

0.000891 + 0.007992 + 0.0000095
= 0.001068 (3.12)

6= p(B|A)p(E|A) = 0.091188 (3.13)

So we see that the two events earthquake and burglary, although independent, are con-
ditionally dependent, given alarm, or: B⊥⊥E 6⇒ B⊥⊥E|A.

3.2. Graphical Models

The idea of graphical models is to encode conditional dependencies graphically. This
provides us with tools to calculate probabilities like in Ex. 3.3 efficiently and automat-
ically, without having to calculate an exponentially large table like Table 3.1. Another
goal is that whenever new information (evidence) enters, it can be included into the
model, and the probabilities can automatically be updated.
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3.2.1. Markov Networks

The first straightforward idea is to create a graphG = (V,E) with V = {Xi, i = 1, . . . , n}
and an edge between Xi and Xj if they are conditionally dependent, given the rest of
the nodes.

Definition 3.3. Let p be a probability distribution on the variables X1, . . . , Xn. A
Markov network is an undirected graph G = (V,E) with V = {Xi, i = 1, . . . , n} and

(Xi, Xj) /∈ E ⇐⇒ Xi⊥⊥Xj |(V \ {Xi, Xj}) (3.14)

So an edge means conditional dependence, a missing edge means conditional indepen-
dence.

We call (3.14) the Markov property.

Remark 3.1. In the literature [Lau96, Whi90], this is called the pairwise Markov prop-
erty. They also define the local Markov property (all variables are conditionally indepen-
dent of their non-neighbors, given their neighbors) and the global Markov property (sets
of variables are conditionally independent, given a set that separates them, meaning
that every path between them must lead through the separating set). It can be shown
that global induces local and local induces pairwise Markov property. If the distribution
is not degenerated in a special sense, all three are equivalent. For our purposes, this
distinction is not necessary, so we will use the weakest definition.

The probability function of a Markov network with the local Markov property is also
called a Markov random field. This is often defined as a probability distribution with

p(xk|x \ xk) = p(xk|bd(xk)) (3.15)

where bd(xk) is the boundary of xk, the set of its neighbors in the graph G. Obviously,
(3.15) denotes exactly conditional independence; this the local Markov property.

3.2.2. Markov Random Fields and Additive Decomposability

Proposition 3.2. The Boltzmann distribution for an additively decomposable function
is a Markov random field. In the Markov network two variables are connected iff they
appear together in a subfunction of the ADF.

Proof. The Boltzmann distribution for an ADF is given by (2.40). We will use this for
calculating the conditional probability of (3.15).

p(xk|x \ xk) =
p(xk,x \ xk)∑
x̃k
p(x̃k,x \ xk)

(3.16)

=
1
Z

∏
i e
βfi(xsi )

∑
x̃k

1
Z

∏
i e
βfi(x̃si )

(3.17)

Now Z as well as all factors in which xk does not appear cancel out. So we see that
this probability depends only on the variables which appear in a factor with xk. This is
exactly the neighborhood structure imposed in the proposition.
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3.2.3. Bayesian Networks

Often Markov networks are not powerful enough. In Ex. 3.3, we must add an edge
between E and B, because they are conditionally dependent given A. The information
that they are independent cannot be expressed by a Markov network.

Ex. 3.3 induces another structure. Burglary and an earthquake are direct causes for
the alarm to go off. So we can build a causal network, a directed graph with edges from
causes to results; in our case one edge from burglary to alarm and one from earthquake
to alarm (see Fig. 3.1).

Burglary Earthquake

Alarm

Figure 3.1.: The causal network for the alarm example

Adding to a causal network a probability distribution for every node Xi, conditioned
on its direct parents Πi = {Y ∈ V |(Y,Xi) ∈ E}, we get the Bayesian network.

To give the formal definition of a Bayesian network, we first need a few definitions for
directed graphs.

Definition 3.4. Let G = (V,E) be a directed graph with V = {Xi, i = 1, . . . , n} and
E ⊆ (V × V ).

1. The parents of a node Xi are Πi = {Y ∈ V |(Y,Xi) ∈ E}.
2. A path ρ(X,Y ) between two nodes X,Y ∈ V is a sequence of nodes (Ri)i∈{0,...,m}

with R0 = X, Rm = Y , and ∀i ∈ {1, . . . ,m} : (Ri−1, Ri) ∈ E. m ≥ 1 is called the
length of the path. It is the number of edges to be traversed on the way from X
to Y .

3. The ancestors of Xi are Ai = {Y ∈ V |∃ρ(Y,Xi)}.
4. The descendents of Xi are Di = {Y ∈ V |∃ρ(Xi, Y )}. The non-descendents of
Xi are Di = V \ ({Xi} ∪Di).

Definition 3.5. A Bayesian network for a distribution p is a directed acyclic graph
G = (V,E) with V = {Xi, i = 1, . . . , n} and

∀i : Xi⊥⊥ (Di \ Πi)|Πi (3.18)

The definition is justified by the following theorem.

Theorem 3.3 (Factorization). Let G = ({X1, . . . , Xn}, E) be a Bayesian network for
the distribution p(x). Then

p(x) =

n∏

i=1

p(xi|πi) (3.19)
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Proof. Alternative, constructive proofs are given in the literature [Lau96, Mah01].
First, assume without loss of generality that the numbering of the nodes is such that

there is no edge (Xi, Xj) with i > j. Since the graph is acyclic, such a numbering
without “backward” edges is always possible.

Then, we can write

p(x) =

n∏

i=1

p(xi|x1, . . . , xi−1) (3.20)

This is called the trivial factorization, conditioning each variables on all its predecessors.
It is trivially true because all fractions cancel out. From our assumed ordering, we know
that Πi ⊆ {X1, . . . , Xi−1}. Define Πi := {X1, . . . , Xi−1} \ Πi. So, (3.20) can be written
as

p(x) =

n∏

i=1

p(xi|πi, πi) (3.21)

But since Πi ⊆ (Di \ Πi) (they cannot be descendents, since they come before Xi), it
follows from (3.18) and (3.4) that

p(xi|πi, πi) = p(xi|πi) (3.22)

and therefore

p(x) =

n∏

i=1

p(xi|πi) (3.23)

Proposition 3.4. Bayesian networks are equivalent to factorizations.

Proof. Given a Bayesian network, the induced distribution (3.19) can be written in the
form (2.29) by setting each Xbi = {Xi} and Xci = Πi.

Conversely, let p be a factorized distribution

p(x) =

m∏

i=1

p(xbi |xci) (3.24)

The difference to a Bayesian network distribution is that bi may contain several variable
indices, whereas Bayesian network distributions are a product of conditional distributions
for single variables, given their parents. Therefore, the index set bi must be split up in

bi = {bi(κ)|1 ≤ κ ≤ |bi|} , (3.25)

imposing an arbitrary ordering of the variables.

This gives rise to the following separation:

p(xbi |xci) =

|bi|∏

κ=1

p(xbi(κ)|xci , xbi(1), . . . , xbi(κ−1)) (3.26)
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3.2. Graphical Models

It is the trivial factorization of p(xbi |xci).
Graphically, the Bayesian network contains edges from each variable in Xci to each

variable in Xbi , and all edges among the variables in Xbi , of course without introducing
cycles. The complete Bayesian network factorization is

p(x) =

m∏

i=1

|bi|∏

κ=1

p(xbi(κ)|xci , xbi(1), . . . , xbi(κ−1)) (3.27)

3.2.4. Inference in Graphical Models

Bayesian networks are very good for calculating and sampling from the distribution p(x).
But often we want to calculate other probabilities, or update the probabilities when the
values of some variables are known. Such issues are called inference.

Example 3.4 (Continuing Ex. 3.3). Suppose that the neighbor uses the same alarm
system. We add the events A′ (neighbor’s alarm going off) and B ′ (burglary in neighbor’s
house) with the same probabilities as in Ex. 3.3. The Bayesian network for these events
is given in Fig. 3.2.

Burglary Earthquake

Alarm

Burglary Neighbor

Alarm Neighbor

Figure 3.2.: The causal network including the neighbor

• An example for an inference problem is: Supposing that the neighbor’s alarm went
off, what is the probability that our alarm goes off, too?

As can be seen from Fig. 3.2, the events are only linked by the event earthquake.
Since we assume the neighbor’s alarm to be equivalent to ours, we use the result
(3.11): p(E|A′) = 0.101265. Using this updated probability of an earthquake,
given the knowledge A′, we calculate (remember that p(A|B̄, Ē) = 0):

p(A) = p(A|B,E)p(B)p(E) + p(A|B̄, E)p(B̄)p(E) + p(A|B, Ē)p(B)p(Ē) (3.28)

= 0.0983790125 (3.29)

• If we observe that both alarms go off, the probability of an earthquake is

p(E|A,A′) =

∑
b,b′ p(B = b)p(B = b′)p(E)p(A|b, E)p(A′ |b′, E)∑

b,b′,e p(B = b)p(B = b′)p(E = e)p(A|b, e)p(A′|b′, e) = 0.926917

(3.30)
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3. Graphical Models

So, the probability is rather high that both alarms were triggered by an earthquake,
than independently by a burglar. And indeed, the probability of a burglar, given
both alarms, is

p(B|A,A′) = 0.082862 (3.31)

This phenomenon is called explaining away : Given one reason for the alarm (an
earthquake with high probability), the other reason (burglary) becomes improba-
ble.

Doing inference like this is a lot of work. In formulas like (3.30) the sums run over
all ancestors of the considered variables, so they can become quite large. But we can
build another structure from the Bayesian network, which allows doing these calculations
efficiently. This structure is the junction tree. There inference can be done by message
passing, which distributes information across the whole structure.

3.3. Junction Trees

Definition 3.6. A junction tree (or join tree) is a tree J = (V,E). The nodes are
sets of variables, the clusters of the junction tree: V = {C1, . . . , Cγ} with Ci ⊆ X. An
edge {Ci, Cj} ∈ E is identified with a separator (or separating set) S = Ci ∩Cj .

To avoid complicated notation, we make no distinction between a node of the junction
tree and its variable cluster, as well as between an edge and the separator.

A junction tree fulfills the junction property, that for all nodes Ci, Cj ∈ V , all
clusters on the unique path from Ci to Cj contain Ci ∩ Cj .

For each cluster C, there is a local belief pC , which is a marginal distribution defined
on the variables in C. Likewise, for each separator S, there is a distribution pS of the
variables in S.

We demand the beliefs to be consistent: For a cluster C and a neighboring separator
S,

∀xS
∑

xC\S

pC(xC) = pS(xS) (3.32)

Like we did in the context of factorization systems, we denote by xC an assignment of
the variables in C, which is a subvector of x. xS and xC\S are combined to xC . Further
on, we will use this notation without any ado. We will also use the notation xC for
assignments of all variables outside C.

Then we can define a distribution for the whole domain:

pJ(x) =

∏
C pC(xC)∏
S pS(xS)

(3.33)

Lemma 3.5. pJ has the following properties:

1. pJ is a probability distribution.
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3.3. Junction Trees

2. pJ is consistent with all marginal distributions on the clusters

∀xC
∑

xC

pJ(x) = pC(xC) (3.34)

Proof. 1. That pJ(x) ≥ 0 holds, is obvious. We only have to show that it sums up to
one. This is done by induction over γ, the number of clusters in the junction tree.

• For γ = 1, we have only one cluster C, and pJ = pC is trivial.

• Suppose that the claim holds for all junction trees of size γ − 1. Let J now
be of size γ.

We choose a leaf cluster C ′, which is connected to only one subset S ′. Since
J is a tree, such a cluster must exist. Then

∑

x

pJ(x) =
∑

x

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

pC′(xC′)

pS′(xS′)
(3.35)

=
∑

x
C′\S′

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

∑

xC′\S′

pC′(xC′)

pS′(xS′)
(3.36)

=
∑

x
C′\S′

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

(3.37)

because of (3.32).

By removing a leaf C ′ and all variables which appear only in this leaf (the
junction property asserts that C ′ \ S′ do not appear elsewhere), we get a
junction tree with γ − 1 nodes, for which the induction claim holds.

2. The proof of consistence with a cluster belief pCi(xCi) works similarly. Choose a
leaf node C ′ 6= Ci in the junction tree, and its only separator S ′. The junction
property ensures that Ci ∩ (C ′ \ S′) = ∅. Then

∑

xCi

pJ(x) =
∑

xCi

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

pC′(xC′)

pS′(xS′)
(3.38)

=
∑

x
Ci\C′\S′

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

∑

xC′\S′

pC′(xC′)

pS′(xS′)
(3.39)

=
∑

x
Ci\C′\S′

∏
C 6=C′ pC(xC)∏
S 6=S′ pS(xS)

(3.40)

We continue to remove clusters from the junction tree like this, until we are left
with Ci alone, for which the claim is trivial.
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3. Graphical Models

3.4. Building a Junction Tree from a Bayesian Network

A Bayesian network is a good device to code our knowledge about a model. However,
the junction tree is better suited for inference, because it provides us with an efficient al-
gorithm to compute and propagate beliefs (described in Sect. 3.5). This section presents
a way to build a junction tree, given a Bayesian network. The procedure consists of the
following steps:

1. Building the moral graph from the Bayesian network

2. Triangulating the moral graph

3. Identifying the cliques of the moral graph

4. Creating junction tree clusters of the cliques and connecting them with separators.

In the following these steps are presented in turn.

3.4.1. Building a Moral Graph

A moral graph is an undirected graphical model. It results from a Bayesian network
by dropping the directions of all edges. Then, an additional step called “marrying the
parents” is needed, i. e. adding an edge between all pairs of nodes that are parents of
some node.

For example, in Fig. 3.2, we see that E and B are both parents of A, because the
alarm can be triggered by an earthquake or by a burglary. So, when constructing the
moral graph, they must be “married”. The same goes for E and B ′.

Burglary Earthquake

Alarm

Burglary Neighbor

Alarm Neighbor

Figure 3.3.: The moral graph of the network in Fig. 3.2

The resulting model is called the moral graph of the Bayesian network. [Lau96]

Proposition 3.6. The moral graph of a Bayesian network is a Markov network.

Proof. Let GB = (V,EB) be the Bayesian network with V = {X1, . . . , Xn}. Let the
Markov network GM = (V,EM ) be constructed according to the algorithm with

{Xi, Xj} ∈ EM ⇔ (Xi, Xj) ∈ EB ∨ (Xj , Xi) ∈ EB ∨∃k : (Xi, Xk) ∈ EB ∧ (Xj, Xk) ∈ EB
(3.41)

That means, an edge between Xi and Xj has been present in GB , or they were married,
being the parents of Xk.
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3.4. Building a Junction Tree from a Bayesian Network

To prove the Markov property, we need to show (3.14) for any {Xi, Xj} /∈ EM , i. e. we
need to show their conditional independence, given the other variables X = X\{Xi, Xj}.
We have

p(xi, xj |x) =
p(x)∑

x′i,x
′
j
p(x′i, x

′
j ,x)

(3.42)

Here we can now insert (3.19). We first notice that all factors that don’t contain xi
or xj cancel out. This leaves us with

p(xi, xj |x) =
p(xi|Πi)p(xj |Πj)p(ch(i)|xi, part(i))p(ch(j)|xj , part(j))∑
x′i,x

′
j
p(x′i|Πi)p(x

′
j |Πj)p(ch(i)|x′i, part(i))p(ch(j)|x′j , part(j))

(3.43)

where ch(i) are the children of Xi and part(i) are the partners of Xi, i. e. the nodes
which have children in common with Xi.

The denominator is independent of Xi and Xj . It serves as a normalization constant
Z. Xi is neither parent nor child of Xj , and there are no common children of Xi and
Xj (otherwise they would have been married). So Xi /∈ ch(j) and Xi /∈ part(j), and
vice versa. Therefore the nominator can be split into independent functions fi(xi,x) =
p(xi|Πi)p(ch(i)|xi, part(i)) and fj(xj,x), accordingly. So we get

p(xi, xj|x) =
fi(xi,x)fj(xj,x)

Z
(3.44)

= p(xi|x)p(xj |x) (3.45)

3.4.2. Triangulation

The next step is to triangulate the moral graph.

Definition 3.7. A graph is triangulated (chordal) if it contains no chord-free cycle of
length ≥ 4.

For triangulating a graph G, the following algorithm can be applied:

• Copy the graph G to a graph G′

• While there are nodes left in G′:

– Choose a node v from the graph G′

– Add edges between all his neighbors in G′ to G and G′

– Remove v from G′

Obviously, the result depends strongly on the choice of nodes. Of course, it is desirable
to add as few edges as possible. But the problem of optimal triangulation is NP-complete
[ACP87]. A simple heuristics is to always choose a node that induces the smallest number
of edges to be added.

A refinement of this heuristics, along with hints for efficient implementation, is de-
scribed in [HD96].
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x1 x2

x8 x3

x7 x4

x6 x5

x1x2x8 x2x8 x2x3x8

x3x8

x6x7x8 x3x4x8

x6x8 x4x8

x5x6x8 x5x8 x4x5x8

Figure 3.4.: Moral graph with triangulation (dashed edges) and junction tree for a 1-D
bivariate circle. The shaded boxes are the separators.

3.4.3. Finding the Cliques

Definition 3.8. A clique of a graph is a maximal, fully connected subset of nodes.

Fully connected means that there is an edge between each pair of nodes in the clique.
It is maximal in the sense that it is not fully contained in another clique.

In general, finding the cliques of a graph is NP-complete, too. But for triangulated
graphs, there exists an efficient algorithm. Even better, it is possible to identify the
cliques during the triangulation algorithm [HD96]. In each step, an induced clique is
formed by the node v and all its neighbors. The idea is to save each of these cliques,
unless it is a subset of a previously saved clique.

3.4.4. Building the Junction Tree Structure

The clusters of the junction tree are the cliques of the triangulated graph.
Then, the cliques must be connected by separators. Not all cliques with nonempty

intersection should be connected, because that would not result in a cycle-free junction
tree. A possible approach, however, is to first add all possible separators and then
remove some, while keeping the junction property fulfilled, until the model is a tree.
The algorithm is presented in detail in [HD96].

3.4.5. An Example of Structure Building

We now resume Ex. 2.1 (p. 24) to demonstrate how to build a junction tree from the
bivariate circle. The Markov network for this structure is a circle where each variable is
connected to its two neighbors, the two variables with which it shares a subfunction in
(2.26). It is depicted in Fig. 3.4.

The circle can be triangulated by connecting one node with all other nodes. This
triangulation results from the algorithm in Sec. 3.4.2 by choosing the nodes 1, 2, 3, . . . in
order, thus connecting x8 to all other nodes.
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The cliques of the triangulated graph are sets of three variables {xi, xi+1, x8}. The
resulting junction tree is shown on the right side of Fig. 3.4.

3.5. Belief Propagation in Junction Trees

3.5.1. Message Passing

Once the structure of the junction tree is built, there are only the marginal distributions
left to determine. They need to meet two criteria:

• They should be consistent with each other (3.32), and

• the junction tree distribution should be equal to the Bayesian network distribution
(3.19).

Consistence is reached by passing messages between neighboring nodes. Suppose we
want to pass a message from a cluster Ci to a neighboring cluster Cj via the separator
Sk (remember that Sk = Ci ∩ Cj). This is done by the following algorithm:

• The current distribution on the separator Sk is saved in pold
Sk

.

poldSk = pSk (3.46)

• The new distribution on the separator Sk is calculated as the marginalization of
the distribution on Ci for the variables in Sk.

pnew
Sk

(xSk) =
∑

xCi\Sk

pCi(xCi) (3.47)

• The distribution on the node Cj is updated according to the change in Sk.

pnew
Cj (xCj ) = pold

Cj (xCj )
pnew
Sk

(xSk)

pold
Sk

(xSk)
(3.48)

Remember that xSk is a subvector of xCj .

Lemma 3.7. After passing a message from Ci to Cj via Sk, pSk is consistent with pCi .
But pSk is consistent with pCj only if they have already been consistent before.

Proof. The first claim follows trivially from (3.47). The second claim follows from

∑

xCj\Sk

pnew
Cj (xCj ) =

∑

xCj\Sk

poldCj (xCj )
pnew
Sk

(xSk)

pold
Sk

(xSk)
(3.49)

= pnew
Sk

(xSk)

∑
xCj\Sk

poldCj (xCj )

pold
Sk

(xSk)
(3.50)
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Another important property of message passing is the following:

Lemma 3.8. Passing a message does not change pJ .

Proof. Let pJ be the distribution before, and pnew
J the distribution after passing a mes-

sage from Ci via Sk to Cj. Then

pnew
J (x) =

∏
C 6=Cj pC(xC)

∏
S 6=Sk pS(xS)

pnew
Cj

(xCj )

pnew
Sk

(xSk)
(3.51)

=

∏
C 6=Cj pC(xC)

∏
S 6=Sk pS(xS)

pCj (xCj )

pnew
Sk

(xSk)

pnew
Sk

(xSk)

pSk(xSk)
(3.52)

= pJ(x) (3.53)

3.5.2. Incorporating the Factorization into the Junction Tree

The way to acquire the junction tree distribution is the following:

• Start with uniform distributions on every cluster and separator.

• For every i ∈ {1, . . . , n}, there must be a cluster Cp(i) in the junction tree with
{Xi} ∪ Πi ⊆ Cp(i). This is guaranteed by “marrying the parents”. Following
[HD96], we call this cluster the parent cluster of Xi.

Update this cluster’s distribution by multiplying with the given marginal distribu-
tion on Xi, given its parents:

pnew
Cp(i)

(xCp(i)) = pold
Cp(i)

(xCp(i))p(xi|πi) (3.54)

Having done this, it follows from (3.33) that pJ is now equal to (3.19):

∏
C pC(xC)∏
S pS(xS)

=

n∏

i=1

p(xi|πi) (3.55)

Each factor p(xi|πi) of (3.19) has been multiplied into some pC , whereas the denominator
of (3.55) is still a product of uniform distributions. This leaves only the consistency to
be achieved.

3.5.3. Global Message Distribution

Consistency of all clusters is achieved by two algorithms which pass messages throughout
the junction tree: Collect Evidence and Distribute Evidence. Both work in a recursive
way; Collect Evidence receives messages from all nodes in direction of some root node,
Distribute Evidence sends messages out from a root node throughout the junction tree.
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Collect Evidence

Collect Evidence on a cluster C consists of the following steps:

• Mark C.

• Call Collect Evidence on all unmarked neighbor clusters of X.

• Pass a message from C to the neighbor from which it was invoked.

Distribute Evidence

Distribute Evidence on a cluster C consists of the following steps:

• Mark C.

• Pass a message from C to all unmarked neighbor clusters of C.

• Call Distribute Evidence on all unmarked neighbor clusters of C.

Global Message Distribution

Global message distribution is the following algorithm:

• Choose an arbitrary root node Croot.

• Call Collect Evidence on Croot.

• Call Distribute Evidence on Croot.

It follows from Lemma 3.7 that after the Collect Evidence step each separator is con-
sistent with its neighbor cluster on the far side from Croot, and that after the Distribute
Evidence step all separators and clusters are consistent. Meanwhile, Lemma 3.8 asserts
that pJ is still the factorization distribution (3.19).

With the consistent junction tree, we can now compute any marginal distribution by
doing local calculations (marginalization, conditionalization) on the corresponding node.
New evidence can be incorporated into a node, and by message passing its effects are
sent into the junction tree. The details of these procedures can be found in [HD96].
They are beside the focus of this thesis.

Within this thesis, the junction tree method will be combined with the Maximum
Entropy principle in Sect. 4.2.7. Furthermore, the junction tree will be generalized to a
region graph (allowing cycles) in combination with loopy belief propagation in Chapter
6.

3.6. Connections Between Graphical Models

This section sheds light on the connections between the different graphical models in-
troduced so far. Very similar theorems can be found in [Lau96], but with a different
terminology and notation. Therefore we furnish independent proofs.
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3.6.1. Junction Property and Running Intersection Property

Theorem 3.9. The running intersection property (RIP, eq. (2.41)) and the junction
property (JP) are equivalent.

Proof. This theorem has two directions:

“⇒”: A factorization system fulfilling the RIP can trivially be turned into a junction
tree. The clusters of the junction tree are the sets Xsi . The junction property is
fulfilled.

If the factorization system is separable, we obtain a forest of junction trees which
are separated, too.

“⇐”: A junction tree can be turned into a factorization system. The index sets are the
clusters of the junction tree. The RIP is fulfilled.

Now we will prove both directions.

“⇒”: For every set si, generate a cluster node Csi . The RIP guarantees that for every
i ≥ 2 there is a j < i with ci ⊆ sj. We recall the definitions of histories, residuals
and separators from section 2.4.4: ci is the set of variables in si that have appeared
in the previous sets. The RIP states that there is a set sj which contains all of
these variables.

We connect in the junction tree Csi and Csj . The separator is S = Xci .

Now we have to prove the junction property. This is done by induction over the
length of paths in the junction tree. Let C1 and C2 be nodes of the junction tree,
and the length of the path between them be l.

• For l = 1, C1 is the predecessor of C2 or vice versa, and the junction property
is necessarily fulfilled.

• Now assume that the junction property holds for all paths of length smaller
than l. Now let C1 and C2 be l edges apart. We must show that C1 ∩ C2 is
contained in all nodes on the unique path between C1 and C2. If C1∩C2 = ∅,
this is trivial, so we exclude this case.

Each node contains a set of the factorization system. Let for every node C be
si(C) the corresponding factorization set, with the index i(C) ∈ {1, . . . ,m}.
Assume without loss of generality that i(C1) < i(C2). Since the variables in
C1∩C2 are already in the previously added node C1, they must belong to the
separator of C2:

C1 ∩ C2 ⊆ ci(C2) (3.56)

With C ′ being the predecessor of C2 on the path, and ci(C2) = C2 ∩ C ′, we
deduce that C1 ∩ C2 ⊆ C ′. Therefore also

C1 ∩ C2 ⊆ C1 ∩ C ′ (3.57)
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The induction claim states that the junction property holds for the path from
C1 to C ′ with length l − 1, so C1 ∩ C ′ is contained in all nodes on the path.
Therefore this must also hold for its subset C1 ∩C2.

The statement about separable factorizations is obvious. If a separator is empty,
we need no edge to a previous node at all.

“⇐”: Let there be given a junction tree J = (V,E), fulfilling the junction property. A
factorization system is constructed as follows.

First, we choose arbitrarily a root node Croot ∈ V of the junction tree. Then, for
every node C 6= Croot we define its parent node ρ(C) as its predecessor on the path
to Croot.

Now we can add all the clusters from the junction tree to the factorization system,
starting with Croot, then traversing through the junction tree in arbitrary order,
e. g. in a breadth first search.

The RIP claims that for each node C 6= Croot, there is a C ′ with i(C ′) < i(C)
and ci(C) ⊆ si(C′). But this node is just its parent C ′ = ρ(C): If a variable x
is contained in the separator ci(C′), this means that it must have appeared in a
previously added factorization set. But the junction property states that it must
also be contained in every node on the path to this other set, and the path must
necessarily lead through the parent ρ(C), so x ∈ si(ρ(C)). This proves the RIP.

3.6.2. Markov Networks and Bayesian Networks

Theorem 3.10. If a Markov network GM = (V,EM ) is turned into a Bayesian network
GB = (V,EB) by adding a direction to the edges, then the Bayesian network adheres to
the Markov properties of GM if and only if it fulfills the running intersection property.
In this case, the Markov network is triangulated.

Proof.

“⇒”: If GB fulfills the Markov property, this means that two variables Xi, Xj which are
not connected in EM – and therefore neither in EB – are conditionally independent,
given all other variables X = X \ {Xi, Xj}. Then follows from Lemma 2.8 that

p(xi, xj ,x) = g(xi,x)h(xj ,x) (3.58)

for some functions g, h. In other words, in the Bayesian network factorization
(3.19) xi and xj do not appear together in any factor.

If two variables Xi, Xj with {Xi, Xj} /∈ EM do not appear together in a factor of
(3.19), that means conversely that variables which do appear together in a factor
are connected in EM . In other words, every factor {Xi} ∪Πi is a clique in EM .
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If all variables in Πi are connected, there must be a variable Xj ∈ Πi which receives
arrows from all other variables in Πi (since directed cycles in EB are not allowed):

∃Xj ∈ Πi ∀X ∈ Πi \ {Xj} : (X,Xj) ∈ EB (3.59)

This means that Πi ⊆ {Xj} ∪Πj , which proves the running intersection property.

“⇐”: We have shown in Theorem 3.9 that a Bayesian network fulfilling the RIP can
be turned into an equivalent junction tree. If two variables Xi and Xj are not
connected in the Bayesian network, they do not appear together in any cluster of
the junction tree. So we can split up the junction tree distribution (3.33):

pJ(x) =

∏
C pC(xC)∏
S pS(xS)

(3.60)

= g(xi,x)h(xj ,x) (3.61)

where g is the product of all clusters and separators containing Xi, and h the
product of all other clusters and separators. This decomposition means that
Xi⊥⊥Xj |X, which proves the Markov property.

In this case the Markov network must be triangulated because a chordless cycle in the
Bayesian network would violate the RIP.

3.6.3. Summary of the Connections

We have shown that triangulated Markov networks, Bayesian networks fulfilling the RIP
and junction trees are equivalent. The connection of all the graphical models is depicted
in the Venn diagram of Fig. 3.5.

For the sake of completeness, polytrees are also included in the diagram. Polytrees are
singly connected Bayesian networks which are treated in detail in Sect. 5.2. Polytrees
which fulfill the RIP are trees.

Bayesian Networks Junction Trees
RIP / triangulated

Markov Networks

Polytrees Trees

Figure 3.5.: A Venn diagram for the graphical models.
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3.7. Summary

In this chapter we introduced conditional independence as a tool to describe probability
distributions in an efficient manner. It is used in graphical models, the Markov network
and the Bayesian network, to factorize distributions. Bayesian networks are equivalent
to the factorizations presented in the previous chapter.

Graphical models are valuable tools for describing probability distributions. For prob-
abilistic inference and for calculating Boltzmann distributions, the junction tree is a suit-
able structure. Message passing in a junction tree is a numerically efficient procedure to
calculate distributions. The junction tree factorization is exact. It fulfills the running
intersection property. If no factorization with RIP and constantly bounded clique size
exists, approximate factorizations are required.
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4. Information Theory and Probability
Optimization Principles

This chapter introduces some notions from information theory, which are necessary for
the following chapters. Then it discusses the problem of choosing a probability distribu-
tion, given a set of constraints. In our case, the constraints are marginal distributions
to fulfill.

Usually, there is a large space of possible solutions. We present the principle of max-
imum entropy and the closely related principle of minimum relative entropy. They are
justified in detail. Then, for calculating a maximum entropy distribution, the itera-
tive proportional fitting procedure is presented, along with a method to implement it
efficiently using graphical models.

A related topic is the estimation of a distribution from a population. The Bayesian
method of parameter estimation is described in Sect. 4.3.

4.1. Information Theory

This section introduces some basic concepts and notions of information theory. An
in-depth presentation can be found in [CT89].

The basic problem of information theory is the question of how much information
about a variable is contained in a probability distribution. In his pioneering article,
Shannon [Sha48] introduces the entropy as a measure of the information. The origin of
his work was coding and communication: How to code a piece of information, so that it
can be transferred with minimal length through a communication channel? And what
is the capacity of a given communication channel? The answers of these problems later
turned out to be interesting in many fields, e. g. the connection with statistical physics
(thermodynamics) or computer science (Kolmogorov complexity).

4.1.1. Entropy

Definition 4.1. The entropy of a probability distribution p for a random variable X
is given by

H(p) = −
∑

x

p(X = x) log p(X = x) (4.1)

The entropy depends only on the distribution of X, not on X itself. That is to say,
H depends not on the specific values that the variable X can take, but only on their
probabilities. Nevertheless, it is often convenient to write H(X) rather than H(p).
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4.1. Information Theory

If the logarithm is the natural logarithm, the entropy is given in nats (natural units).
If it is the binary logarithm, the entropy is given in bits. But whether the binary or
natural or any other logarithm is used does not matter, since they differ only by a
constant factor, e. g.

1 nat = log2 ebits ≈ 1.442695 bits (4.2)

If there is an x for which there is p(x) = 0, then log p(x) is not defined. For this case,
we set 0 log 0 = 0. So, adding additional states for x which cannot occur does not change
the entropy.

The entropy is a measure of uncertainty about a distribution. For example, if there is
only one event x with p(x) = 1, then the entropy is 0, because there is no uncertainty
about the outcome. For a fair coin toss, the entropy is −0.5 log 0.5 − 0.5 log 0.5 = 1 bit.
This can be understood in the way that we need one bit of information to describe
the result of our coin toss, namely heads or tails. Specifically the average length of an
optimal description (or coding) for a random variable X is between H(X) and H(X)+1.
This can be understood as the expected number of “yes/no”-questions required to learn
the outcome.

4.1.2. Joint Entropy and Conditional Entropy

It is straightforward to generalize the entropy for more than one variable:

Definition 4.2. The joint entropy of a probability distribution p(x, y) for two variables
X and Y is

H(X,Y ) = −
∑

x,y

p(X = x, Y = y) log p(X = x, Y = y) (4.3)

This is reasonable, since we could just as well regard a single vector variable instead
of two scalars. Of course, more than two variables are possible in an identical manner.

Also, we can define an entropy for a conditional distribution p(x|y).

Definition 4.3. The conditional entropy of a probability distribution for a random
variable X, given another variable Y , is

H(X|Y ) = −
∑

x,y

p(X = x, Y = y) log p(X = x|Y = y) (4.4)

This extension is also straightforward: Like the entropy is the expected value of
− log p(x) in the space of x, the conditional entropy is the expected value of − log p(x|y)
in the space of x, y.

Another way to understand the conditional entropy is provided by the relation

H(X|Y ) = H(X,Y )−H(Y ) (4.5)

The conditional entropy measures the reduction of uncertainty by the knowledge of Y .
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4.1.3. Relative Entropy (Kullback Leibler Divergence)

Definition 4.4. The relative entropy or Kullback Leibler divergence between two
probability distributions p(x) and q(x) is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
(4.6)

The relative entropy or Kullback Leibler divergence D(p‖q) is a measure of the distance
between two distributions p(x) and q(x). If the true distribution for the variable x is
p(x), we can – as mentioned above – devise a coding of expected length H(p). However,
if we use instead a code for the distribution q, the expected length of the coding will be

Ep(x)

(
log

1

q(x)

)
=
∑

x

p(x) log
1

q(x)
(4.7)

=
∑

x

p(x) log
p(x)

q(x)
−
∑

x

p(x) log p(x) (4.8)

= H(p) +D(p‖q) (4.9)

So, the Kullback Leibler divergence measures the inefficiency of assuming a distribution
q when the real distribution is p.

We use the convention 0 log 0
q = 0 and p log p

0 = ∞. The relative entropy is always
non-negative and zero if and only if p = q. But it is not a proper distance function,
because it is not symmetric and does not fulfill the triangle inequality. Nevertheless, we
will use it to measure the similarity between probability distributions.

The entropy can be seen as the relative entropy to the uniform distribution q(x) =
const.

4.1.4. Mutual Information

The mutual information is a measure of how much information about one variable is
contained in another variable.

Definition 4.5. The Mutual Information I(X,Y ) is defined as

I(X,Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
(4.10)

So, the mutual information of two variables is the Kullback Leibler divergence to the
independent product distribution. The following properties are simple to prove.

Lemma 4.1.

I(X,Y ) =
∑

x,y

p(x, y) log
p(x|y)

p(x)
(4.11)

= H(X) +H(Y )−H(X,Y ) (4.12)

= H(X)−H(X|Y ) (4.13)

= H(Y )−H(Y |X) (4.14)
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There is also a conditional variant.

Definition 4.6. The Conditional Mutual Information I(X,Y |Z) is defined as

I(X,Y |Z) =
∑

x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z) (4.15)

=
∑

x,y,z

p(x, y, z) log
p(x|y, z)
p(x|z) (4.16)

4.2. The Maximum Entropy Principle

4.2.1. Probability Concepts

Let there be a probability distribution with a number of constraints. These might
be given as pieces of information about the distribution, like probabilities, marginal
distributions or moments of the distributions (e. g. expectation values).

A probability distribution has got many degrees of freedom. Usually, it is not com-
pletely defined by the constraints. What can we deduce about the distribution from the
constraints?

Let us motivate this problem with a few examples.

Example 4.1. Let p(A,B,C) be a distribution of which we know that the univariate
marginals are all p(A = 1) = p(B = 1) = p(B = 1) = 1/2. Which distribution would we
expect? Most probably, we would come up with this:

abc 000 001 010 011 100 101 110 111

p(a, b, c) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
(4.17)

But there are also other possible solutions, e. g. the distribution from Example 3.1
has the same marginals:

abc 000 001 010 011 100 101 110 111

p(a, b, c) 1/4 0 0 1/4 0 1/4 1/4 0
(4.18)

A famous example is the following:

Example 4.2 (The Brandeis Dice [Jay78]). When a die is tossed, the number of
spots up can have any value i in 1 ≤ i ≤ 6. Suppose a die has been tossed N times and
we are told only that the average number of spots up was not 3.5 as we might expect
from an “honest” die but 4.5. Given this information, and nothing else, what probability
should we assign to i spots on the next toss?

Jaynes proposed the following answer:

(p1, . . . , p6) = (0.05435, 0.07877, 0.11416, 0.16545, 0.23977, 0.34749) (4.19)
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4. Information Theory and Probability Optimization Principles

What is the meaning of these numbers? Is it sensible to give such numbers? And why
not other numbers? What should make us expect the distribution (4.17) rather than
(4.18), given the marginals in Example 4.1?

To answer these questions, we need to understand what is meant with the word prob-
ability. In history, there have been two points of view about probability competing with
each other:

Objectivist: The probability of an event is its relative frequency, when an experiment is
performed many times.

Subjectivist: The probability of an event gives the state of knowledge of an observer.

Due to these two points of view, there are different answers to the question of example
4.2. A pure-blooded objectivist would say: “How can anybody give exact numbers like
this? Ex nihilo nihil. We cannot obtain information from nowhere. Maybe N is a
very small number, and the expectancy 4.5 is not at all accurate. And anyway, this
expectancy alone is not enough information about the geometry of the dice to claim
that the probability of rolling a 1 is 0.05435 and nothing else.”

The subjectivist answers: “No, you got this wrong. I’m talking about probability, not
frequency. I don’t claim that when you roll the dice another 100.000 times, you will get
5435 times a 1. You should rather see this probability as a better’s claim. Imagine a
game of chance, where somebody proposes you to pay you 10 euro for each time you
roll a 1, provided that you give a stake of x euro. For a normal dice, you would accept
this game for a stake of up to 1.66 euro. However, if you are given the new information
about the expectancy of 4.5 instead of 3.5, your state of information changes. And if
you are not completely out of your mind, you should no longer accept this game for a
stake larger than 0.54 euro.”

The objectivist retorts: “But how can you define probability as the stake of a gambler?
All gamblers are different, some are more daring, some are cautious. Definitions should
not depend on human psychology.”

“This is true”, replies the subjectivist, “and that’s why I’m proposing the concept of
an ‘idealized decision maker’ who is perfectly rational and only computes his expected
profit given the information that he has. This has nothing to do with psychology.”

So, from the subjectivist point of view, it is sensible to give probabilities for the out-
come of the experiment, whereas the objectivist resents this. I will go for the subjectivist
point of view and compute maximum entropy probabilities, but emphasize that these
probabilities cannot be seen as frequencies. It is important to remember that these prob-
abilities are always dependent on the observer’s state of knowledge. If the knowledge
changes, the probabilities change, too.

See [Alm95] for a discussion of probability concepts, including ways to mix the two
views of probability.
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4.2. The Maximum Entropy Principle

4.2.2. Definition of Maximum Entropy and Minimum Relative Entropy

Accepting the premise that we can give probabilities for a dice about which we know
almost nothing, the next question to ask is: Which values should we choose, and why?
The principle to follow is to maximize the entropy of the distribution [Jay57]:

Definition 4.7. The principle of Maximum Entropy states that, given a set of con-
straints, e. g. marginal distributions, moments of the distribution or single probabilities,
among all possible solutions (i. e. distributions compatible with the constraints) the
distribution with maximal entropy should be chosen.

We note again that this distribution serves to represent our current subjective knowl-
edge.

A generalization of this is the following:

Definition 4.8. The principle of Minimum Relative Entropy states that, given an
original distribution and a set of constraints, e. g. marginal distributions, moments of the
distribution or single probabilities, among all possible solutions (i. e. distributions com-
patible with the constraints) the distribution with minimal relative entropy (Kullback
Leibler divergence) should be chosen.

Maximum entropy can be seen as the special case of this, when the original distribution
is the uniform distribution (see Sect. 4.1.3).

Lemma 4.2. The maximum entropy and minimum relative entropy solution is unique.

Proof. This follows from the concavity of the entropy and the convexity of the relative
entropy. [CT89]

There has been a lot of controversial discussion about these principles. Therefore we
first present some justifications, namely Jaynes’ “concentration phenomenon” and the
Shore Johnson axioms.

Then we present a procedure to calculate the maximum entropy distribution. In our
context, the constraints are always given in form of marginal distributions. In this case,
the iterative proportional fitting procedure solves the problem. It is described in Sect.
4.2.5. Afterwards, an efficient implementation using graphical models is presented.

4.2.3. Why Maximum Entropy? The Concentration Phenomenon

Jaynes [Jay78] calculated the probabilities (4.19) for the Brandeis dice as the distribution
with maximum entropy, given the constraint. Similarly, in Example 4.1, the distribution
(4.17) has an entropy of 3 bits, whereas (4.18) has only 2 bits.

Jaynes justifies his answer with the concentration phenomenon: “Almost all outcomes
that satisfy a given empirical constraint have frequencies extremely close to the maximum
entropy probabilities.”

This means that when the dice is rolled a sufficient number of times and the average
number of spots is reported as 4.5, of all possible outcomes adhering to the constraint,
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4. Information Theory and Probability Optimization Principles

almost all have relative frequencies very near to the maximum entropy distribution
(4.19).

We demonstrate this using Example 4.1 (p. 55). Suppose that N values are sampled
from this model. Since every experiment can yield 8 different values for abc, we have 8N

possible outcomes. Given the constraint that variable A has relative frequency 0.5, the
number of possible permutations for the values of A is

( N
0.5N

)
. The same holds for the

other two variables, so that all in all
( N

0.5N

)3
outcomes adhere to the constraints that the

three variables have relative frequency 0.5.
The number of outcomes that have relative frequencies (4.17) is

W =
N !(
N
8

)
!8

(4.20)

The factorials can be approximated by Sterling’s formula. For our purposes the simplest
form suffices:

x! = O
(
ex log x

)
(4.21)

The constants do not matter here. We will denote them by α.
With this approximation we can further calculate:

W ≈ α eN logN

e8N
8

log N
8

(4.22)

= αeN logN−N log N
8 (4.23)

= αeN log 8 (4.24)

The same can be done for (4.18). For these relative frequencies, the number of possible
outcomes is

W ′ =
N !(
N
4

)
!4

(4.25)

The same approximation and an analogous calculation leads to

W ′ ≈ αeN log 4 (4.26)

Note that log 8 and log 4 are the entropies of the distributions (4.17) and (4.18), respec-
tively. (We use binary logarithms here.)

The quotient of these two values is

W

W ′
≈ eN log 8

eN log 4
= 2N , (4.27)

so it is exponential in the number of experiments!
This means that the maximum entropy distribution is overwhelmingly the most likely

one, provided that the constraints are the same as those assumed in the calculation. If,
in an experiment, we find that the frequencies differ significantly from the maximum
entropy frequencies, this indicates additional constraints not yet accounted for, so the
model has to be adapted. In our example, this means that if we draw values from Exam-
ple 4.1 and actually measure the relative frequencies (4.18), this means that the model
is not completely described by the constraints (that the three univariate probabilities
are 0.5).
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4.2. The Maximum Entropy Principle

4.2.4. Shore Johnson axioms

Another strong argument for maximum entropy was put forth in [SJ80]. Therein, Shore
and Johnson formulated a number of basic axioms for the desired solution of our problem:

1. (Uniqueness) The result should be unique.

2. (Invariance) Choosing a different coordinate system should not affect the result.

3. (System Independence) Given independent information about independent sys-
tems, it should not matter whether we apply the information separately to each
system and then combine the resulting densities or whether we apply the informa-
tion to the joint density.

4. (Subset Independence) It should not matter whether one treats disjoint subsets
of system states in terms of separate conditional densities or in terms of the full
density.

That means, supposing we are given information about a subset of possible states
of a system, it should not matter whether we apply the information to the density
conditioned on this subset or on the full density. Especially, the density conditioned
on a different, disjoint subset should not be affected.

5. (No redundancy) In the absence of new information, we should not change the
prior density.

They prove that maximum entropy is the only principle that fulfills these axioms. Equiv-
alent axiom systems are also possible [PV97, Ker98].

However, it was argued in [Uff95] that the proof is flawed: The version of the system
independence axiom that was used in the proof stated that it should also be valid for
dependent systems. With this stronger requirement, maximum entropy (or minimum rel-
ative entropy) is the only solution; with the original version of the axiom, maximization
of one of the Rényi Entropies

Ur(q, p) =

(∫ (
q(x)

p(x)

)r
q(x)dx

)−1/r

(4.28)

with the parameter r > −1 solves the problem. The relative entropy D(q‖p) is the special
case for r → 0 (this is shown in [Uff95] using a Taylor expansion in r). Interesting is
the case r = −0.5, which is symmetrical in p and q and thus defines a distance function
between probability distributions, contrary to the relative entropy.

4.2.5. Iterative Proportional Fitting

Suppose that there is an unknown distribution q(x), and some marginal distributions
pk(xsk), k = 1, . . . ,K, are given, where each sk ⊆ {1, . . . , n} is the index set of the
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subvector of x on which the distribution pk is defined. We assume the pk to be consistent,
in the sense that there exists a distribution q which satisfies

∀k : q(xsk) = pk(xsk) (4.29)

The objective is to find such a distribution q; as was stated above, among all possible
solutions q, the most plausible one is the one with maximal entropy. Iterative Propor-
tional Fitting (IPF) is a procedure which calculates the maximum entropy distribution.

It was introduced in [DS40] for the special case of a contingency table with some row
and column sums. Which frequencies should be chosen in the table? This is a simple,
two-dimensional problem.

IPF computes iteratively a distribution qτ (x) from the given marginals pk(xsk), where
τ = 0, 1, 2, . . . is the iteration index. Most commonly, qτ=0 is the uniform distribution.
The update formula is

qτ+1(x) = qτ (x)
pk(xsk)

qτ (xsk)
(4.30)

with k = ((τ − 1) mod K) + 1.
The distribution q, which has to be stored and updated in every time step, has expo-

nential size. Also, recall that the denominator of (4.30) is defined as

qτ (xsk) =
∑

xsk

qτ (xsk ,xsk) (4.31)

with sk = {1, . . . , n} \ sk. This sum is exponential, too. Therefore the näıve implemen-
tation takes exponential time and space. If the marginals are inconsistent, it will not
converge.

It took a long time to achieve the link between IPF and maximum entropy. The
entropy was introduced for computer science in [Sha48] and [Jay57]. Minimum relative
entropy was used in [Lew59], and the connection to IPF was presented in [IK68]. The
proof that IPF converges against the maximum entropy solution was first tried in [Kul68],
but was faulty. The correct proof in a most general measure-theoretic framework was
given in [Csi75].

Other disciplines have developed similar algorithms for calculating maximum entropy
distributions. If the constraints are given as expected values of feature functions about
the distribution, the Generalized Iterative Scaling procedure [DR72, Rat97] calculates
the maximum entropy distribution. For constraints in form of probabilistic rules, Meyer
[Mey98] has presented an algorithm. All these algorithms are equivalent. It is pos-
sible to transform the constraints; for example in [MH02b] marginal distributions are
transformed into probabilistic rules.

4.2.6. IPF and Maximum Entropy

We now give a proof that IPF converges to the maximum entropy distribution. The
proof follows the same ideas as similar proofs in [Rat97, Mey98].

The proof requires the definition of two sets of probability distributions.
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Definition 4.9. We define the following sets of probability distributions:

P := {p(x)|∀k,xsk : p(xsk) = pk(xsk)} (4.32)

Q := {p(x)|∃Z, λk : p(x) =
1

Z

∏

k

eλk(xsk )} (4.33)

P is the set of distributions which is consistent with the given marginals. Q is the set of
distributions which comply with the given parametric form of a Boltzmann distribution
which is decomposable along the structure of the given marginals. First we show that the
maximum entropy distribution as well as the IPF distributions qτ are of this parametric
form.

Lemma 4.3. The maximum entropy distribution consistent with the pk is in Q.

Proof. Maximization under the consistency constraints is done using Lagrange multipli-
ers. For each constraint

q(xsk) = pk(xsk) (4.34)

a new variable λk(xsk) is added, and the function to be maximized is the Lagrangian,
the entropy plus one term for each constraint:

L =
∑

x

q(x) log q(x) +
∑

k

∑

xsk

λk(xsk) (pk(xsk)− q(xsk)) (4.35)

Setting the derivatives with respect to the λk(xsk)

∂L

∂λk(xsk)
= pk(xsk)− q(xsk) (4.36)

equal to zero ensures that the constraints (4.34) are fulfilled.
The derivatives with respect to the q(x) are

∂L

∂q(x)
= log q(x) + 1−

∑

k

λk(xsk) . (4.37)

Setting these equal to zero and solving for q(x) yields

q(x) = exp

(∑

k

λk(xsk)− 1

)
(4.38)

which is equivalent to (4.33) with appropriate Z.

Lemma 4.4. All distributions qτ – and therefore also the limit distribution q∞, provided
that the iteration converges – are in Q.

Proof. We prove the lemma by induction over τ .

• For τ = 0, we have q0 initialized uniformly. So with all λk = 0, the claim is fulfilled.

61



4. Information Theory and Probability Optimization Principles

• Assuming that qτ ∈ Q, we now consider (4.30). The fraction on the right side of
(4.30) depends only on the variables in xsk . Therefore we calculate

qτ+1(x) = qτ (x)
pk(xsk)

qτ (xsk)
(4.39)

=
1

Z


∏

k′ 6=k
eλ

τ
k′ (xsk′ )


 eλ

τ
k(xsk ) pk(xsk)

qτ (xsk)
(4.40)

Updating λk(xsk) as

λτ+1
k (xsk) = λτk(xsk) + log

pk(xsk)

qτ (xsk)
(4.41)

proves the induction step and thus also the lemma.

For proving the IPF theorem we need the following lemma, which provides a “pytha-
gorean” property of the distributions qτ .

Lemma 4.5. Let qτ , qτ+1 be distributions of consecutive steps of IPF, and p ∈ P. Then

D(p‖qτ+1) +D(qτ+1‖qτ ) = D(p‖qτ ) (4.42)

Proof. Several times we apply (4.30) for qτ+1(x).

D(p‖qτ+1) +D(qτ+1‖qτ ) (4.43)

= −H(p)−
∑

x

p(x) log qτ+1(x) +
∑

x

qτ+1(x) log
qτ+1(x)

qτ (x)
(4.44)

= −H(p)−
∑

x

p(x) log qτ (x) +
∑

x

(
−p(x) log

pk(xsk)

qτ (xsk)
+ qτ+1(x) log

qτ+1(x)

qτ (x)

)
(4.45)

= D(p‖qτ ) +
∑

x

(
−p(x) log

pk(xsk)

qτ (xsk)
+ qτ+1(x) log

pk(xsk)

qτ (xsk)

)
(4.46)

= D(p‖qτ ) +
∑

x

(
−p(x) + qτ (x)

pk(xsk)

qτ (xsk)

)
log

pk(xsk)

qτ (xsk)
(4.47)

= D(p‖qτ ) +
∑

xsk

(
−p(xsk) + qτ (xsk)

pk(xsk)

qτ (xsk)

)
log

pk(xsk)

qτ (xsk)
(4.48)

= D(p‖qτ ) (4.49)

because of (4.32).

Theorem 4.6. IPF converges to the maximum entropy distribution consistent with the
pk.
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Proof. First we show that IPF converges. Let q∗ ∈ P ∩ Q. A simple induction using
Lemma 4.5 gives

D(q∗‖q0) = D(q∗‖qn) +
n∑

τ=1

D(qτ‖qτ−1) . (4.50)

So the series ∞∑

τ=1

D(qτ‖qτ−1) (4.51)

consists of non-negative summands and is bounded above by D(q∗‖q0). This means that
the summands converge to zero. But if the relative entropies between the qτ and qτ−1

converge to zero, the distances between the subsequent iterations of IPF disappear, too.
(If the marginals pk are contradictory, IPF does not converge. In this case, P = ∅,

and q∗ does not exist.)

Now we show that the maximum entropy distribution is the unique distribution q∗ in
P ∩Q and therefore coincides with the stationary point of IPF q∞.

We show that the entropy of q∗ ∈ P ∩Q is higher than the entropy of any other distri-
bution q ∈ P. We begin by calculating the relative entropy between these distributions:

D(q‖q∗) =
∑

x

q(x) log q(x)−
∑

x

q(x) log q∗(x) (4.52)

= −H(q)−
∑

x

q(x) log
1

Z∗
∏

k

eλ
∗
k(xsk ) (4.53)

= −H(q) + logZ∗ −
∑

x

q(x)
∑

k

λ∗k(xsk) (4.54)

= −H(q) + logZ∗ −
∑

k

∑

xsk

λ∗k(xsk)q(xsk) (4.55)

Since both q and q∗ are consistent with the pk, so both fulfill (4.34), we have

q(xsk) = pk(xsk) = q∗(xsk) (4.56)

and therefore

D(q‖q∗) = −H(q) + logZ∗ −
∑

k

∑

xsk

λ∗k(xsk)q∗(xsk) (4.57)

= −H(q) +
∑

x

q∗(x) logZ∗ −
∑

x

q∗(x)
∑

k

λ∗k(xsk) (4.58)

= −H(q)−
∑

x

q∗(x) log

(
1

Z∗
∏

k

eλ
∗
k(xsk )

)
(4.59)

= −H(q)−
∑

x

q∗(x) log q∗(x) (4.60)

= −H(q) +H(q∗) (4.61)
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So, since H(q∗) = H(q) + D(q‖q∗), and since we know from Sect. 4.1.3 that the
relative entropy is always non-negative, this proves that q∗ is the maximum entropy
solution among all distributions consistent with the pk.

The maximum entropy solution is unique because if another distribution q has the
same entropy, H(q) = H(q∗), from (4.61) follows that D(q‖q∗) = 0, which is only the
case if q = q∗.

Since a stationary point of IPF is also consistent with the pk and in Q, it coincides
with q∗ and is therefore the unique maximum entropy solution.

4.2.7. IPF on Junction Trees

IPF can be implemented efficiently if the probability distribution is feasibly decom-
posable using a graphical model. In [JP95], junction trees are used for an efficient
implementation of IPF.

The algorithm is identical to IPF, except that qτ is replaced by the junction tree
distribution pJ (3.33). The junction tree can be built from the Markov network given
by the sk using the algorithm described in Sect. 3.4. In every step, for learning the
marginal distribution pk, the node of the junction tree which contains Xsk is updated
using (4.30) (the construction ensures that such a node exists). Then, a global message
distribution (see Sect. 3.5.3) is performed from this node throughout the junction tree.
The resulting distribution is exactly equal to qτ+1, but the algorithm is polynomial.

An improvement of this technique was presented in [Mey98]. There, instead of a
complete global message passing at every step, a more sophisticated message passing
scheme is used:

1. Construct a closed tour through the junction tree that visits each node at least
once. Link every given marginal pk with at least one junction tree node with
Ci ⊇ Xsk .

2. Now while there is no convergence:

a) Carry out local IPF on the current node Ci, using all marginals which fulfill
Xsk ⊆ Ci linked to it.

b) Send a message to the next node on the tour, then proceed to the next node.

In addition to this scheme, he proposes a different local iteration instead of IPF, too.
It works with a set of probabilistic logic rules instead of the marginals. In this way he
links graphical models and maximum entropy with probabilistic logic. His algorithm
is more similar to Generalized Iterative Scaling [DR72] than to IPF. Additionally, this
scheme provides a way to recognize inconsistency of the input which leads to divergence.
Details of this can be found in [Mey98].

4.2.8. Graphical Models and Maximum Entropy

The methods described in Sect. 4.2.7 are justified by the following theorem.
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Theorem 4.7. Let J = (V,E) be a junction tree. For each node C ∈ V a probability
distribution pC(xC) is given. The distributions on the node are consistent with each
other.

Then the junction tree probability distribution (3.33)

pJ(x) =

∏
C pC(xC)∏
S pS(xS)

(4.62)

is the maximum entropy distribution for x, given the marginal distributions on the nodes.

Proof. Let q(x) be a probability distribution which is consistent with all pC(xC), too.
This means, q(xC) = pJ(xC). Then we can calculate the entropy of q:

H(q) = −
∑

x

q(x) log q(x)

= −
∑

x

q(x) log
q(x)

pJ(x)
−
∑

x

q(x) log pJ(x)

= −D(q‖pJ)−
∑

x

q(x)

(∑

C

log pC(xC)−
∑

S

log pS(xS)

)

= −D(q‖pJ)−
∑

C

∑

xC

q(xC) log pJ(xC) +
∑

S

∑

xS

q(xS) log pJ(xS)

= −D(q‖pJ)−
∑

C

∑

xC

pJ(xC) log pJ(xC) +
∑

S

∑

xS

pJ(xS) log pJ(xS)

= H(pJ)−D(q‖pJ)

≤ H(pJ)

with equality only if q = pJ (see section 4.1.3 about the Kullback Leibler divergence:
D(q‖pJ) is non-negative and zero iff q = pJ).

Corollary 4.8. A factorization fulfilling the RIP is the maximum entropy distribution,
adhering to the given marginal distributions.

Proof. Combine Theorems 3.9 and 4.7.

In [WPS+04], special cases of this result were proven from a genetic algorithms per-
spective. There, marginal probability distributions are called “schema family”. Since
they do not use the powerful tools of probability calculus, their proofs require hard work.

4.3. Bayesian Probabilities and Prior Distributions

Up to now the constraints have been taken for granted. It was assumed that the mea-
surements are exact and the values can be used as given data.

However, especially for small amounts of data this assumption is inaccurate. This
section describes the Bayesian method which is favorable in this case.
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4.3.1. Bayesian Parameter Estimation

We present the problem of Bayesian parameter estimation with a simple example. A
good introduction to the subject can be found in [Hec99].

Consider spinning a coin. The result can be H (heads) or T (tails). We want to estimate
the parameter of the coin, θ = p(H).

Suppose we have spun the coin N times, of which NH had the result H. The first
estimate for θ is then

θ =
NH

N
(4.63)

This goes along the objectivist way: The probability is the number of positive outcomes
divided by the total number of trials. It is the maximum likelihood estimate of θ: Given
this parameter, the outcome (NH of N) is the most probable.

Consider the case N = 3, NH = 3. Certainly no subjectivist would claim that “tails”
is impossible (we assume that there is a tails side on the coin), on the grounds that in
three trials the result was heads. He would point to the law of large numbers and ask
for a larger sample size.

A more extreme case is described in the theater play Rosencrantz & Guildenstern Are
Dead [Sto67]. Here coins are spun N = 79 times and come up heads NH = 79 times.
The characters are impressed by this phenomenon (Guildenstern: “A weaker man might
be moved to re-examine his faith, if in nothing else at least in the law of probability.”),
but they go on spinning coins. They are more inclined to bet that the next coin will
come up heads, too, but they still do not believe that tails is impossible. This shows
that Rosencrantz and Guildenstern follow the subjectivist view of probability.

In the subjectivist or Bayesian framework, even before the coin was spun at all, a
probability of heads can be given. It uses the a priori knowledge ξ to give an a priori
distribution for the parameter, p(θ|ξ). (Objectivists would never give a distribution for
θ, they would say that θ is a physical constant given by the geometry of the coin.)

Now, a set of data D is generated, which leads to the a posteriori distribution p(θ|D, ξ).
This is calculated by Bayes’ law (hence the name Bayesian statistics):

p(θ|D, ξ) =
p(D|θ, ξ)p(θ|ξ)

p(D|ξ) (4.64)

=
p(D|θ, ξ)p(θ|ξ)∫
p(D|θ̃, ξ)p(θ̃|ξ) dθ̃

(4.65)

The denominator is independent of θ and serves only for normalization. p(D|θ, ξ) is the
probability to observe the data D, given the parameter θ and the background knowledge
ξ. For coin tossing, it is binomially distributed. If D ∈ {H, T}N is a vector of N results,
in which heads occurs NH times and tails NT times, the formula reads

p(D|θ, ξ) = θNH (1− θ)NT (4.66)

Recall that the question is not: “What is the probability of the probability of heads?”,
but “What is the probability of heads, given the data D?” For answering this question,
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the expected value is used:

p(H|D, ξ) =

∫
p(H, θ|D, ξ) dθ (4.67)

=

∫
p(H|θ,D, ξ)p(θ|D, ξ) dθ (4.68)

=

∫
θ · p(θ|D, ξ) dθ (4.69)

If this integral is too complicated to be solved exactly, it can be approximated with
the maximal value of θ:

p(H|D, ξ) ≈ argmax
θ

p(θ|D, ξ) (4.70)

This is justifiable when the distribution is sharply peaked around this maximum.

4.3.2. Bayesian Priors

Now the only open question is which a priori distribution to use. This is not trivial,
and many distributions are possible.

For the problem of coin tossing, the Beta distribution is convenient. Its density is
defined as

p(θ|ξ) = Beta(θ|ηH , ηT ) =
Γ(ηH + ηT )

Γ(ηH)Γ(ηT )
θηH−1(1− θ)ηT−1 (4.71)

Here the background knowledge consists of the two parameters ηH , ηT > 0.
We recall that

Γ(z) =

∫ ∞

0
tz−1e−tdt (4.72)

and for integer numbers Γ(n) = (n − 1)!. So if ηH and ηT are integers, the Beta
distribution is

Beta(θ|ηH , ηT ) =

(
ηH + ηT − 2

ηH − 1

)
θηH−1(1− θ)ηT−1 (4.73)

But the parameters do not have to be integers.
The Beta distribution is convenient because then the a posteriori distribution is Beta-

distributed, too. Furthermore, it can be used as an a priori distribution for more
experiments. The a priori distribution can be updated after each experiment, or once
at the end, or whenever one likes; the result is independent of this. Also, the expected
value of the Beta distribution is simply

∫
θ · Beta(θ|ηH , ηT ) dθ =

ηH
ηH + ηT

(4.74)

The a posteriori distribution of θ after observing the data D with the frequencies NH

and NT of heads and tails is

p(θ|D, ξ) = Beta(θ|ηH +NH , ηT +NT ) (4.75)
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Figure 4.1.: Some example Beta densities

Putting all these formulas together, we get the probability of observing heads in the
next experiment as

p(H|D, ξ) =
NH + ηH

N + ηH + ηT
(4.76)

The classical maximum likelihood estimation is the limit case for ηH , ηT → 0. Several
Beta densities are depicted in Fig. 4.1. If one believes that the coin is biased to favor
heads, one can set ηH > ηT , and vice versa. If they are equal, none of the two outcomes
is favored, and the distribution is symmetric. But the values of ηH and ηT code the
belief of whether the coin is biased or not. For ηH = ηT = 1, the a priori probability of
the parameter θ is uniform. If they are smaller than 1, the coin is more believed to be
biased, and if they are larger than 1, the coin is more believed to be fair.

In the context of EDA, Bayesian priors are used to estimate the probabilities in the
probabilistic models from the population data. Since there is no reason to favor the
value 0 or 1 of the bits, we will from now on assume ηH = ηT =: η.

4.3.3. EDA, Bayesian Priors and Mutation

In [Mah01], the following connection between Bayesian priors and mutation (see Sect.
2.2.3) is presented.

Proposition 4.9. For UMDA with binary variables, estimating probabilities with the
Bayesian prior η is equivalent to mutation with mutation rate µ = η/(N + 2η).

Proof. We recall UMDA: The population size is N . For a bit, let N1 be the number of
individuals in the population where this bit is 1. Classically, the probability of this bit
to be 1 would be N1/N . With the Bayesian prior, however, this is changed to

p(X = 1) =
N1 + η

N + 2η
. (4.77)

Mutation, on the other hand, uses the classical formula and then flips the bit with
probability µ. This gives

p(X = 1) = (1− µ)
N1

N
+ µ

N −N1

N
(4.78)

= µ
N − 2N1

N
+
N1

N
(4.79)
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These two formulas are now set equal and then solved for µ:

µ =

(
N1 + η

N + 2η
− N1

N

)
N

N − 2N1
(4.80)

=
ηN − 2ηN1

N(N + 2η)
· N

N − 2N1
(4.81)

=
η

N + 2η
(4.82)

It is interesting to note that N1 drops out in this derivation. We see that Bayesian
priors and mutation indeed serve the same purpose.

From Sect. 2.2.3 we recall the rule of thumb that a mutation rate of µ = 1/n (where
n is the dimension of the problem) is a good choice. This is equivalent to the prior
η = N/(n− 2). In general, η ≈ N/n is a good rule of thumb.

For the more general case of FDA, a Bayesian prior changes the probability from
classical

p(xbi |xci) =
N(xsi)

N(xci)
(4.83)

to

p(xbi |xci) =
N(xsi) + η

N(xci) + 2|bi|η
. (4.84)

As mentioned in Sect. 2.4.6, if N(xci) = 0, this is a uniform distribution.
The prior itself is

η =
N̂

2|si|−1n
. (4.85)

4.3.4. Combination of Bayesian Parameter Estimation and Maximum
Entropy

The maximum entropy method and the Bayesian parameter estimation method are simi-
lar especially in their views of probabilities. Both of them use the subjectivist standpoint.

The difference lies in the interpretation of the given data. In Bayesian parameter
estimation, the given data are outcomes of experiments, and the subjective probabilities
are updated according to the observed data. In maximum entropy, the given values
(like “the expected number of dots is 4.5” or “the probability of A to be 1 is 0.5”) are
model assumptions. They can be formulated using empirical data, but just as well using
theoretic or systematic derivations. If empirical data is used, it might be favorable to
use the Bayesian method to estimate their values.

4.4. Summary

This chapter introduced basic notions from information theory, especially various flavors
of entropy and mutual information. Then, different interpretations of probability were
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presented and discussed. The subjectivist approach to probability justifies the maximum
entropy principle and the minimum relative entropy principle. These were presented and
motivated. They will be used in many different guises throughout the thesis.

A special application of maximum entropy is the task of estimating a probability
distribution when some marginal distributions are known. The iterative proportional
fitting procedure can be used to calculate the maximum entropy distribution consistent
with the marginals. Belief propagation in junction trees can be used to implement this
scheme more efficiently.

Another result of the subjectivist approach to probability is the Bayesian method
for parameter estimation. It was presented along with its application to EDA and the
connection to mutation in genetic algorithms.
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5. Maximum Entropy and Sampling From
Graphical Models

This chapter presents a new way to incorporate the maximum entropy principle into
estimation of distribution algorithms.

First, in Sect. 5.1, a new heuristic method for building a factorization for an additively
decomposable function is introduced. By merging the subfunctions of the ADF, it cap-
tures all the dependencies of the variables. Only if this results in too large dependency
sets, some of them must be disregarded.

This algorithm is applied on the 2-D grid, resulting in a new factorization of the grid
called pentavariate, because it uses sets of five variables.

Then, Sect. 5.2 presents maximum entropy sampling in the context of EDA, for the
special case of polytrees (singly connected models). Previous work [OHSM03] is pre-
sented, and the role of the running intersection property is investigated for the example
of polytrees.

Sect. 5.3 then presents a new development again, combining the work of the previous
sections: The concept of maximum entropy sampling is applied to merged factorizations,
yielding the new algorithm MEFDA (Maximum Entropy FDA). Finally, numerical re-
sults are presented which demonstrate the value of the new algorithms.

5.1. Manipulation of the Factorization Graph

5.1.1. Merging subfunctions

In Sect. 2.4.9, an additive decomposition of f(x) was turned into a factorization sys-
tem by choosing a subset of the dependencies. This is only an approximation, which
disregards some possibly important dependencies.

Another possibility is, instead of leaving out some subfunctions, merging them. By
merging subfunctions, it is possible to create a factorization system that accounts for all
connections and even complies with the running intersection property. Actually, this is
obvious, since the trivial complete merge of all subfunctions has this property. This is
of course useless, because such big sets of variables make the algorithms exponentially
costly.

We now present a heuristic algorithm that merges subfunctions in order to use all
dependencies, but minimizing the number of merges. Like in Sect. 2.4.9, it builds a
factorization system {s̃j}. We use the definitions of c̃j , b̃j and d̃j analogous to (2.23).
We also need the information which variables are dependent of each other, i. e. which
appear together in a subset si.
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The idea of algorithm 5.1 is that each new variable is added in a set with the previous
variables on which it depends. However, if another variable depends on a superset of
variables, the two are merged and added together.

Algorithm 5.1: Subfunction Merger

1 S ⇐ {s1, . . . , sm}
2 j ⇐ 1

3 while d̃j 6= {1, . . . , n} do {
4 Choose an si ∈ S to be added, the same way as in Alg. 2.6

5 S ⇐ S \ {si}
6 Let the new variable indices in si be bi = {k1, . . . , kl}
7 for λ = 1 to l do {
8 Let δλ be all variables in d̃j−1 on which kλ depends

9 }
10 for λ = 1 to l do {
11 if exists λ′ 6= λ with δλ ⊆ δλ′ and not exists λ′′ with δλ′ ⊂ δλ′′
12 δλ′ ⇐ δλ′ ∪ {kλ}
13 Mark kλ superfluous

14 }
15 for λ = 1 to l do {
16 if not kλ superfluous

17 s̃j ⇐ δλ ∪ {k1, . . . , kλ}
18 while |s̃j| > maximal cluster size do {
19 Choose randomly an index k from c̃j
20 Remove k from s̃j

21 }
22 j ⇐ j + 1

23 }
24 }

Every time we add a new subset si, we need to consider the new variables bi to be
added to the factorization system. Let the variable indices in bi be bi = {k1, . . . , kl}. For
each λ ∈ {1, . . . , l}, the indices of all previous variables on which xkλ depends are stored
in δλ. However, if there is a λ′ with δλ ⊆ δλ′ , it suffices to add only one set {kλ, kλ′}∪δλ′ .
Therefore kλ is marked superfluous and, instead, added to δλ′ in order to be added with
this subset.

For densely connected problems, it can occur that the sizes of the sets |s̃j | become
too large. Therefore we introduce a maximal size of the subsets. If this is exceeded, we
remove variables from s̃j randomly. We remove only dependencies on previous variables,
i. e. indices from c̃j , not indices of new variables from b̃j .
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5.1.2. An Important Example: Pentavariate Factorization of the 2-D Grid

To make the algorithm clearer, here is an example. A very important dependency
structure is the 2-D grid. An exact factorization of the grid would result in cliques of
linear size [MM72] and therefore in exponentially large marginal distributions. Now we
present an approximate, but polynomial factorization.

Sometimes the variables of the grid depend on their four direct neighbors only, some-
times also on the diagonal neighbors. An instance of the latter case is when the sub-
functions of the ADF are defined on 2× 2 blocks.

An example function is the Deceptive 4-Grid with

fDec4(u := xi,j + xi+1,j + xi,j+1 + xi+1,j+1) =





3 ⇐⇒ u = 0

2 ⇐⇒ u = 1

1 ⇐⇒ u = 2

0 ⇐⇒ u = 3

4 ⇐⇒ u = 4

(5.1)

and the fitness function being the sum of these subfunctions for all 2 × 2 blocks, with
overlapping blocks:

FDec4(x) =
m−1∑

i=1

m−1∑

j=1

fDec4(xi,j + xi+1,j + xi,j+1 + xi+1,j+1) (5.2)

We present as an example a 4× 4 grid with the variables indexed by 1 through 16. It
induces directly the following factorization system:

s1 = {1, 2, 5, 6} s2 = {2, 3, 6, 7} s3 = {3, 4, 7, 8}
s4 = {5, 6, 9, 10} s5 = {6, 7, 10, 11} s6 = {7, 8, 11, 12} (5.3)

s7 = {9, 10, 13, 14} s8 = {10, 11, 14, 15} s9 = {11, 12, 15, 16}

This is a valid factorization system, violating the RIP. It was already presented in
[Mah01, Sect. 4.2.6]. It is possible to sample points from it, using the probability distri-
bution

pFact4(x) = p(x1, x2, x5, x6)p(x3, x7|x2, x6)p(x4, x8|x3, x7)

p(x9, x10|x5, x6)p(x11|x6, x7, x10)p(x12|x7, x8, x11)

p(x13, x14|x9, x10)p(x15|x10, x11, x14)p(x16|x11, x12, x15) (5.4)

The Bayesian network for this distribution is depicted in Fig. 5.1.
It can be seen that there are edges missing, namely x7 − x10, x8 − x11, x11 − x14 and

x12 − x15. So we recognize that this factorization system is not using all dependencies.
Now we will investigate in detail what happens when we apply Alg. 5.1 on it. We assume
that all sets are added in ascending order.
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x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

Figure 5.1.: The Bayesian network for the example 4× 4 grid

Adding the first subset. We begin by adding s1 = {1, 2, 5, 6}. Since d0 = ∅, all δλ are
empty, so three of the four variables are superfluous. We end up adding only one
set, just s̃1 = {1, 2, 5, 6} = s1 itself.

The first row. We continue with s2 = {2, 3, 6, 7}. The new variables are b2 = {3, 7},
both having δλ = {2, 6}. So once again, one is superfluous, and again we add the
unchanged set, s̃2 = {2, 3, 6, 7}. With s3 = {3, 4, 7, 8}, the same thing happens.

The second row. We now turn to s4 = {5, 6, 9, 10}. The new variables are k1 = 9
and k2 = 10, having δ1 = {5, 6} and δ2 = {5, 6, 7}. Since δ1 ⊆ δ2, k1 is marked
superfluous. We add the set s̃4 = {5, 6, 7, 9, 10}. Now for the first time, the
factorization differs from (5.3). A 5-variate set enters.

The next set has only one new variable index, k1 = 11. It depends on δ1 =
{6, 7, 8, 10}, so we add s̃5 = {6, 7, 8, 10, 11}. The final set of this row contains four
indices again, s̃6 = {7, 8, 11, 12}.

The third row. The third row is built in the same way as the second row.

The complete factorization system is

s̃1 = {1, 2, 5, 6} s̃2 = {2, 3, 6, 7} s̃3 = {3, 4, 7, 8}
s̃4 = {5, 6, 7, 9, 10} s̃5 = {6, 7, 8, 10, 11} s̃6 = {7, 8, 11, 12} (5.5)

s̃7 = {9, 10, 11, 13, 14} s̃8 = {10, 11, 12, 14, 15} s̃9 = {11, 12, 15, 16}

In the Bayesian network (Fig. 5.2) we see that the missing edges have been included.

The factorization (5.5) of the 2-D grid is called the pentavariate factorization, because
it contains subsets of size 5.

Definition 5.1. Let there be given an m × m 2-D grid of variables xi,j with i, j ∈
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x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

Figure 5.2.: The example 4 × 4 grid and its pentavariate factorization. The fat arrows
are the added dependencies.

{1, . . . ,m}. The pentavariate factorization of such a grid is given by

p(x) = p(x1,1, x1,2, x2,1, x2,2)
m∏

i=3

p(xi,1, xi,2|xi−1,1, xi−1,2)

m∏

j=3

(
p(x1,j , x2,j |x1,j−1, x2,j−1, x3,j−1)

m−1∏

i=3

p(xi,j |xi−1,j, xi−1,j−1, xi,j−1, xi+1,j−1)

p(xm,j |xm−1,j , xm−1,j−1, xm,j−1)

)
(5.6)

It also violates the RIP. E. g. in the marginal p(x11|x6, x7, x8, x10), the indices {6, 7, 8, 10}
do not previously show up in the same subset together.

Remark 5.1. Alg. 5.1 chooses the ordering of the sets to be added not in ascending
order, like in this example, but using Alg. 2.6. An example for a distribution chosen by
the algorithm is

p(x) = p(x9, x10, x13, x14)p(x11, x15|x10, x14)p(x5, x6|x9, x10, x11)

p(x7|x6, x10, x11)p(x12, x16|x7, x11, x15)p(x8|x7, x11, x12)

p(x1, x2|x5, x6, x7)p(x3|x2, x6, x7, x8)p(x4|x3, x7, x8) (5.7)

It uses all dependencies, too, but some of the edges in Fig. 5.2 are reversed.

Numerical results of these factorizations are presented in Sect. 5.4. But before, a way
to combine this algorithm with maximum entropy is introduced, first for singly connected
Bayesian networks, then in Sect. 5.3 for factorizations.
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1 2 3 4

5 6 7

8

Figure 5.3.: An example polytree.

5.2. Polytrees, PADA, and Maximum Entropy

This section will present the PADA (Polytree Approximation Distribution Algorithm)
[SO00, Sot03]. Whereas FDA uses a given factorization, PADA learns a graphical model
from the selected data and then samples new data from it. The difference is that it
learns a polytree, a singly connected Bayesian network. Belief propagation on polytrees
was discussed thoroughly by Pearl [Pea88].

An improvement of this algorithm using maximum entropy [OHSM03] is described.
In Sect. 5.3 this idea will be generalized to multiply connected networks by combining
it with the techniques of Sect. 5.1.

5.2.1. Polytrees

Definition 5.2. A polytree is a singly connected (tree-like) Bayesian network. Re-
moving the directions of all edges of the polytree, we obtain a tree which we call the
skeleton of the polytree.

Lemma 5.1. A polytree for n variables has n− 1 edges.

A small example for a polytree is shown in Fig. 5.3. It has 8 nodes and 7 edges. But
if we added, e. g., an edge between X2 and X6, it would still be a Bayesian network, but
no longer a polytree, because of the cycle X2 −X6 −X8 −X7 −X2 in the skeleton.

Polytrees are a computationally favorable subclass of Bayesian networks. They retain
many computational advantages of tree structures, but are more powerful. Whereas in a
tree, each variable can be conditioned only on at most one other variable, in a polytree
a variable can depend on more than one variable. E. g. in Fig. 5.3, X5 depends on X1

and X2.

Definition 5.3. In a polytree, a connection of the kind X → Z ← Y is called a head-
to-head connection.

These head-to-head connections constitute the gain in expressive power, in comparison
to trees. Note as well that polytrees in general violate the RIP (2.41) (see Fig. 3.5).

76



5.2. Polytrees, PADA, and Maximum Entropy

5.2.2. The PADA2 Algorithm

The algorithm PADA2 is the special case of PADA which works with second-order
marginal distributions. We present briefly the algorithm to construct a polytree from a
set of selected data. Details can be found in [SO00, Sot03].

• Construct a maximum weight spanning tree on the set of variables, using as weight
of an edge {Xi, Xj} the mutual information of the variables I(Xi, Xj) in the dis-
tribution given by the data.

In [Sot03] it was shown that it is computationally favorable to use (4.12) for cal-
culating the mutual informations.

The spanning tree can be constructed by a greedy algorithm, described in [CL68].
The result is the skeleton of the polytree.

• Next, the directions of the edges must be added. Supposing there is a connection
X − Z − Y in the skeleton, and we find that the mutual information I(X,Y ) is
smaller than a given threshold, we direct both edges toward Z, creating a head-
to-head connection X → Z ← Y .

After this step, all other connections are directed at random, without creating any
more head-to-head connections (if this is possible).

Having constructed the polytree, PADA2 continues like FDA, calculating the needed
conditional probabilities and sampling a new population from the polytree, using (3.19).

5.2.3. Head-to-Head Connections: RIP Revisited

We demonstrate the algorithm and the properties of the head-to-head connection with a
small example. Suppose that there is a population of N = 100 individuals for the three
variables X,Y,Z. The relative frequencies of all assignments are given in the column
pPop in Table 5.1.

The mutual informations of the variable pairs are

I(X,Y ) = 0.701471 + 0.964800 − 1.661366 = 0.004905 bit (5.8)

I(X,Z) = 0.701471 + 0.881291 − 1.500873 = 0.081889 bit (5.9)

I(Y,Z) = 0.964800 + 0.881291 − 1.789480 = 0.056611 bit (5.10)

Since X and Y have a very small mutual information, PADA2 chooses the polytree
skeleton X − Z − Y .

There are four ways to direct the two edges X−Z and Z−Y . Because of the Bayesian
Law p(a)p(b|a) = p(b)p(a|b) = p(a, b), three of them lead to the same probability distri-
bution, the serial connection

pSer(x, y, z) =
p(x, z)p(y, z)

p(z)
(5.11)
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x y z pPop pSer pH2H pIndep pMaxEnt pME,X⊥⊥Y
0 0 0 0.1100 0.1080 0.1158 0.0948 0.1097 0.1193
0 0 1 0.1900 0.1890 0.2001 0.2211 0.1903 0.1966
0 1 0 0.0700 0.0720 0.0678 0.1482 0.0703 0.0607
0 1 1 0.4400 0.4410 0.4263 0.3459 0.4397 0.4334
1 0 0 0.0700 0.0720 0.0576 0.0222 0.0703 0.0607
1 0 1 0.0200 0.0210 0.0165 0.0519 0.0197 0.0134
1 1 0 0.0500 0.0480 0.0580 0.0348 0.0497 0.0593
1 1 1 0.0500 0.0490 0.0580 0.0811 0.0503 0.0566

H(.) 2.4088 2.4091 2.4234 2.5476 2.4088 2.4003
D(.‖pPop) 0 0.0002 0.0049 0.1413 8 · 10−6 0.0062

Table 5.1.: Example distributions for PADA2. pPop is given by the population, pSer is
the distribution for the serial connection X → Z → Y , pH2H for the head-
to-head connection X → Z ← Y , pIndep is the product of the univariate
distributions, pMaxEnt is the maximum entropy distribution given the three
bivariate marginals, pME,X⊥⊥Y is the maximum entropy distribution, given
p(x, z), p(y, z) and independence of x and y. H(.) gives the entropy of the
distribution, D(.‖pPop) the Kullback-Leibler divergence to the population
distribution; both in bits, using the binary logarithm.

The fourth is the head-to-head connection. It gives the distribution

pH2H(x, y, z) = p(x)p(y)p(z|x, y) (5.12)

For comparison, in Table 5.1 the independent product distribution

pIndep(x, y, z) = p(x)p(y)p(z) (5.13)

is also included.
In this particular example, the serial connection is closer to the population distribution

than the head-to-head connection, but of course this is not generally the case. Interesting
properties of the distributions can be recognized by comparing the bivariate marginal
distributions, given in Table 5.2.

First we notice that pH2H(x, y) is equal to pIndep(x, y).

Lemma 5.2. In pH2H, X ⊥⊥Y . In pSer, this is not necessarily the case.

Proof.

pH2H(x, y) =
∑

z

p(x)p(y)p(z|x, y) (5.14)

= p(x)p(y)
∑

z

p(z|x, y) (5.15)

= p(x)p(y) (5.16)
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x y pPop pSer pH2H pIndep pMaxEnt pME,X⊥⊥Y
0 0 0.3000 0.2970 0.3159 0.3159 0.3000 0.3159
0 1 0.5100 0.5130 0.4941 0.4941 0.5100 0.4941
1 0 0.0900 0.0930 0.0741 0.0741 0.0900 0.0741
1 1 0.1000 0.0970 0.1159 0.1159 0.1000 0.1159

x z pPop pSer pH2H pIndep pMaxEnt pME,X⊥⊥Y
0 0 0.1800 0.1800 0.1836 0.2430 0.1800 0.1800
0 1 0.6300 0.6300 0.6264 0.5670 0.6300 0.6300
1 0 0.1200 0.1200 0.1156 0.0570 0.1200 0.1200
1 1 0.0700 0.0700 0.0744 0.1330 0.0700 0.0700

y z pPop pSer pH2H pIndep pMaxEnt pME,X⊥⊥Y
0 0 0.1800 0.1800 0.1735 0.1170 0.1800 0.1800
0 1 0.2100 0.2100 0.2165 0.2730 0.2100 0.2100
1 0 0.1200 0.1200 0.1258 0.1830 0.1200 0.1200
1 1 0.4900 0.4900 0.4842 0.4270 0.4900 0.4900

Table 5.2.: The bivariate marginals of the distributions in Table 5.1

Lemma 5.3. pSer(x, z) = pPop(x, z) and pSer(y, z) = pPop(y, z). For pH2H, this is usually
not the case.

Proof.

pSer(x, z) =
∑

y

p(x, z)p(y, z)

p(z)
(5.17)

= p(x, z)
∑

y

p(y, z)

p(z)
(5.18)

= p(x, z) (5.19)

It may be a disadvantage of the head-to-head connection that its bivariate marginals
differ from the ones used to construct it. This is the curse of the violated RIP.

Another possibility to construct a distribution of the three variables is IPF, using the
maximum entropy principle. pMaxEnt(x, y, z) has been calculated by IPF using the three
bivariate marginal distributions. pME,X⊥⊥Y was calculated by IPF using p(x, z), p(y, z)
and p(x)p(y). So it is the maximum entropy distribution conforming to the former two
bivariate marginals and assuming X ⊥⊥Y . This is well visible in Table 5.2 by comparison
with pPop and pIndep.
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X1X2X5 X2 X2X3X4X7

X7

X6X7X8

Figure 5.4.: The junction tree for the polytree of Fig. 5.3.

Note that this is different from IPF using p(x, z) and p(y, z) only. This by default
does not assume independence of X and Y , only their conditional independence given
Z. In fact, IPF using p(x, z) and p(y, z) computes the distribution pSer (see Corollary
4.8).

It is no surprise that pMaxEnt is closest to the original distribution: This is the only
distribution that uses the information p(x, y).

5.2.4. From Polytree to Junction Tree

A problem of PADA2 is that while it needs only bivariate distributions for constructing
the polytree, the marginals needed for sampling are larger.

For example, for the polytree in Fig. 5.3 the sampling distribution is

pPoly(x) = p(x1)p(x2)p(x3)p(x4)p(x5|x1, x2)p(x6)p(x7|x2, x3, x4)p(x8|x6, x7) (5.20)

Distributions up to size four are needed, namely p(x7|x2, x3, x4). The degrees of free-
dom of such a conditional distribution grows exponentially with the number of parents.
Accordingly, also the population size required to estimate the distribution with the nec-
essary accuracy grows. So what has been gained by choosing a quite restricted graphical
model which can be learned with limited effort can be lost again in the sampling step.

In [OHSM03], a method to solve this problem is presented. It constructs the needed
higher-order marginal distributions from the bivariate marginals (which have already
been computed for the learning step) by IPF on a junction tree, as described in Sect.
4.2.7.

Constructing a junction tree from a polytree is very simple. After marrying the parents
and thus constructing the moral graph of the polytree, we notice that it is already
triangulated. The junction tree consists of one cluster Ci for each variable i with Πi 6= ∅,
containing Ci = {Xi} ∪Πi, the child and all its parents.

All separators of such a junction tree contain only one variable. For example, the
polytree in Fig. 5.3 is turned into the junction tree given in Fig. 5.4.

One separator contains X2, because it is parent of two variables (X5 and X7) and
therefore connects their clusters. The other separator contains X7, which is child and
parent at the same time.

Lemma 5.4. The IPF procedure on such a junction tree converges after only one step.
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Proof. The IPF procedure of Sect. 4.2.7 consists of a sequence of IPF and message
passing on a closed tour through the junction tree. Now consider a separator S between
two nodes C and C ′. It contains only one variable, say Xi. The marginals that are used
for IPF in C and C ′ are consistent. So, IPF on C and on C ′ result in the same univariate
marginal distribution of Xi. This means that after one step of IPF in both C and C ′,
message passing has no effect any more. Then IPF does not change the distributions
either.

In more general Bayesian networks, it is possible that information about the depen-
dencies of the variables in S is contained only in one of the neighboring nodes, but not
in the other. But if S contains only one variable, and both clusters contain marginals
with complete information about this variable, the algorithm converges after one step.

The distribution on the junction tree (3.33) is for our example

pJT(x) = p(x1, x2, x5)p(x3, x4, x7|x2)p(x6, x8|x7) (5.21)

It turns out to be favorable to sample from this distribution, rather than from (5.20).
In [OHSM03], numerical results are presented comparing this sampling method with

the conventional way. It was found that for a separable deceptive function with five
blocks of order 4 (having 20 variables), with a population size of N = 800, the maximum
entropy method has a success rate of 93 %, whereas the conventional polytree sampling
succeeds only in 16 % of the cases. For comparison: LFDA (with truncation selection
threshold τ = 0.1) has a success rate of 77.3 % on the mentioned problem1.

Improvements are similarly impressive on all three given benchmark functions. I will
not repeat the results here. Instead, the next section presents the application of the
maximum entropy method on a multiply connected model, as has been announced in
the conclusion of [OHSM03].

5.3. MEFDA: IPF for Merged Factorizations

Joining subfunctions has a severe disadvantage: By using larger marginal distributions,
more connections between nodes are captured, but the number of degrees of freedom
grows exponentially in the size of the marginal.

Suppose e. g. that a distribution p(Xi|Πi) is to be estimated from a selected data
set. The number of degrees of freedom of such a distribution is 2|Πi|: for each one of
the 2|Πi| possible values of the parents, the probability p(Xi = 1|πi) must be chosen.
Given a population to estimate these probabilities, suppose that N(πi) is the number of
individuals in which the variables Πi have the values πi, and N(xi, πi) is the number of
individuals in which Xi and Πi have the respective values. Then the classical estimate
(without Bayesian priors, see Sect. 4.3.2) is

p(xi|πi) =
N(xi, πi)

N(πi)
(5.22)

1The structure learning algorithm LFDA is described in Chapter 7. The parameters of this run were:
Deceptive-5, 4 blocks, N = 800, τ = 0.1, α = 0.5, average over 10000 runs. It needed 2.32 generations
on average, with standard deviation 0.693.
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For constant N , the numbers N(xi, πi) and N(πi) will decrease exponentially in |Πi|.
Thus the estimate is more sensitive to noise in the data. In the most extreme case, there
are many assignments πi for which N(xi, πi) = N(πi) = 0, so there is no information at
all in the population. Larger distributions require a larger population size to estimate.

We see that the problem is identical to the one mentioned about the polytrees in
Sect. 5.2.4. Therefore, we propose the same solution: Instead of estimating the large
distribution from the population, use the maximum entropy distribution, given smaller
marginals.

We recall that in the merging algorithm (Alg. 5.1), from a factorization system
S = {sj}, j = 1, . . . ,m, a new factorization system S̃ = {s̃j}, j = 1, . . . , m̃ is formed,
consisting of supersets of the sj.

Therefore, for a set s̃j ∈ S̃ we use the set

SIPF,j = {si ∩ s̃j|si ∈ S ∧ si ∩ s̃j 6= ∅} (5.23)

as the smaller marginals for IPF. The choice can be improved by removing every set
from SIPF,j of which a superset is already contained. This affects only the running time,
not the result of IPF.

To make the resulting algorithm clearer, we put together all the parts described so far
and present the complete pseudocode in Alg. 5.2.

Algorithm 5.2: MEFDA – Maximum Entropy FDA

1 Using Alg. 5.1, construct a merged factorization system S̃ from the
given additive decomposition S

2 t ⇐ 1. Generate an initial population with N individuals from the
uniform distribution.

3 do {
4 Perform selection

5 Estimate the marginal probabilities p(xsi , t) from the selected
points.

6 Calculate all p(xs̃j , t) by IPF using SIPF,j

7 Generate new points according to p(x, t+ 1) =
∏m
j=1 p(xb̃j |xc̃j , t).

8 t⇐ t+ 1.
9 } until stopping criterion reached

5.4. Numerical Results

In this chapter were presented two new variants of the FDA algorithm:

• FDA with merging of subfunctions using Alg. 5.1 (instead of picking a subset of
the factorization sets using Alg. 2.6) and

• MEFDA (Alg. 5.2), merging subfunctions like above, but using IPF to construct
the larger marginal distributions.
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Grid Pop. FDA FDA with merge MEFDA
size size SR Gen ± SD SR Gen ± SD SR Gen ± SD

10×10 700 79 8.58 ± 0.810 70 7.81 ± 0.748 98 7.58 ± 0.745
= 100 900 92 8.54 ± 0.895 91 7.44 ± 0.733 100 7.33 ± 0.667

1000 95 8.36 ± 0.757 99 7.45 ± 0.689 100 7.22 ± 0.786

15×15 1200 34 15.38 ± 0.853 64 13.17 ± 1.121 96 13.15 ± 0.754
= 225 1600 56 14.68 ± 1.081 96 12.57 ± 0.692 98 12.83 ± 0.643

2000 71 14.70 ± 0.852 98 12.10 ± 0.601 100 12.48 ± 0.643
2700 89 14.29 ± 0.920 100 11.92 ± 0.580 100 12.07 ± 0.537

20×20 1900 8 21.88 ± 0.641 64 18.25 ± 0.836 97 18.75 ± 0.902
= 400 2000 5 21.20 ± 1.095 77 17.94 ± 0.767 97 18.43 ± 0.900

2400 17 21.65 ± 0.996 95 17.65 ± 0.796 100 18.28 ± 0.697
3000 31 21.10 ± 1.106 99 17.16 ± 0.584 100 18.05 ± 0.609

25×25 3300 2 27.50 ± 0.7072 94 22.61 ± 0.722 99 24.31 ± 0.804
= 625 3600 3 28.33 ± 0.578 99 22.44 ± 0.610 99 24.11 ± 0.754

Table 5.3.: Results of the joining and Maximum Entropy methods on the deceptive grid
(5.2) of different grid sizes and population sizes. SR gives the success rate
(number of successful runs), Gen the average number of generations until
success and SD its standard deviation. Parameters: 100 runs each. Trun-
cation Selection with τ = 0.3. Maximal number of generations is 20 for the
10× 10 and 15× 15 grids, 30 for the bigger grids.

Now we compare these algorithms with conventional FDA (Alg. 2.5). Their results on
the deceptive grid function (5.2) are depicted in Table 5.3.

We are mostly interested in the minimal population size for which the algorithms have
a large success rate (above 95 %). It can be noticed that both new algorithms perform
better than FDA. They manage to reduce the population size impressively. Also, the
number of required generations until convergence is reduced. Since the number of func-
tion evaluations is proportional to the population size and the number of generations,
the methods allow large savings in the number of function evaluations.

FDA with merge and MEFDA need a comparable number of generations until conver-
gence. MEFDA needs slightly more generations, but manages to decrease the required
population size even more than FDA with subfunction merge. The price to pay for this is
the additional overhead of the IPF procedures, but it is decent for not too large set sizes,
and furthermore, IPF does not need any fitness function evaluations. So these methods

2Note here that the unbiased estimator for the standard deviation is used:

σN−1 =

s
1

N − 1

X

x

(x− µ)2

This is necessary because the formula needs the sample mean µ, which is also estimated from the
same data. Therefore, the standard formula which divides by N instead of N−1 would underestimate
the sample variance. The difference only matters for such small sample sizes as here, with only two
successful runs.
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are particularly interesting for problems in which evaluation of the fitness function is
expensive.

The difference between FDA with join and MEFDA becomes smaller with increasing
grid size. It can be seen in Table 5.3 that for the 25 × 25 grid the success rates are
almost the same. The reason for this is that both algorithms need a larger population for
large grids. Large populations lead to better estimations of the marginal distributions.
Therefore, the large marginals created by the joining algorithm can be estimated well
from the population, and the precision gain of IPF is lost.

5.5. Summary

This chapter presented several new variants and improvements of FDA using the max-
imum entropy principle. First, a new method to join the subfunctions of the objective
function is introduced. This allows to build a factorization system without having to
disregard known connections between the variables (as long as the factorization does not
become too large).

Then, a previous work of the author is resumed, which uses maximum entropy to
improve a special EDA. In this case, the graphical models are confined to singly con-
nected Bayesian networks (polytrees). The properties of this algorithm are investigated
more extensively, and the role of the running intersection property in this algorithm is
illuminated.

Finally, a new variant of FDA was presented which generalizes this work to multi-
ply connected Bayesian networks and combines it with the subfunction join algorithm.
Numerical results of this algorithm are presented and its performance is compared with
conventional FDA, without or with subfunction join.
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6. The Bethe-Kikuchi Approximation and
Loopy Belief Models

Conventional graphical models do not have loops. Bayesian networks are acyclic (con-
sidering the direction of edges), and junction trees are trees.

Constructing a feasible junction tree is in general NP-complete. The triangulation step
often results in too large clique sizes. One prominent example, which is very important
in practice, is the 2-D m×m grid. Triangulation of a grid results in cliques of size Ω(m)
[BB72, MM72].

But it is also possible to generalize the graphical models to loopy structures. This has
already been proposed by Pearl in [Pea88]. But recently, loopy belief propagation has
been combined with free energy minimization from statistical physics [AM01, MY02,
YFW01, YFW04]. This idea can be used for optimization using probabilistic models
[MH05].

Since the loopy models are inspired and motivated by statistical physics, in Sect. 6.1
we give some introduction and foundation in statistical physics. Then, in Sect. 6.2 we
introduce the loopy graphical model, the region graph (also called partially ordered set
or poset), and in Sect. 6.3 the generalized belief propagation (GBP) algorithm derived
by minimizing the Bethe free energy in the region graph, which is shown to be equivalent
to minimizing the relative entropy to the Boltzmann distribution.

These presentations lay the grounds for the new optimization algorithm BKDA (Bethe
Kikuchi Distribution Algorithm), which is described in Sect. 6.4. We show how to
generate a factorization from which points can be sampled, and how to build a region
graph using the cluster variation method (CVM). The results on important example
structures, namely a bi- and trivariate cycle and the 2-D grid, are given as we go along.

Sect. 6.5 presents numerical results on these structures, particularly for the Ising
problem. This demonstrates the applicability of the new approach.

GBP is not guaranteed to converge. A concave-convex procedure (CCCP) was derived
in [Yui02] which leads to a more stable convergence and can readily replace GBP in
BKDA. This is presented in Sect. 6.6.

6.1. Foundation in Statistical Physics

We recall from section 2.4.1 that our goal is to sample from a Boltzmann distribution
(2.12). In general, calculating the Boltzmann distribution requires exponential time. In
this chapter, we consider approximations from statistical physics, and explain how they
can be used for optimization in computer science.
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We use a very important example, which is also well-known in statistical physics: The
2-D Ising spin glass model [Isi25, Pei36, MPV87].

6.1.1. The Ising model

Suppose that there is given a grid of cells. We call the grid width m, so we have n = m2

cells. A cell can be referenced by two coordinates x, y ∈ {1, . . . ,m}. We assign to each
cell a unique index ν ∈ {1, . . . , n}, e. g. by setting

ν(x, y) = m(y − 1) + x (6.1)

We define a symmetric neighborhood relationship N ⊆ {1, . . . , n}2 and say that two
cells ν and µ are neighbored if (ν, µ) ∈ N . We use 4-neighborhood, with (ν, µ) ∈ N if µ
is the left-hand, right-hand, upper or lower neighbor of ν. We assume a fixed-boundary
condition, so there is no wrap-around at the edges of the grid – e. g. (ν(x, 1), ν(x,m)) /∈
N .

Example 6.1. We give a simple example for this rather technical definition. Fig. 6.1
shows a simple 3 × 3 grid. The cells contain their indices ν. Neighbored nodes are
connected by a line.

1 2 3

4 5 6

7 8 9

Figure 6.1.: An example 3× 3 grid

Each cell ν contains a spin sν which can be in the state +1 or −1. A state of the
grid is a vector of spins, one for each cell: s = (sν)ν=1,...,n.

For each pair of spins on neighboring cells (ν, µ) ∈ N there is a coupling constant
Jν,µ ∈ R. We demand Jν,µ = Jµ,ν , and we assume Jν,µ = 0 for (ν, µ) /∈ N . This results
in the symmetric energy matrix J = (Jµ,ν)µ,ν .

Using these couplings we define the Hamiltonian energy of a state s as

E(s) = −
∑

1≤ν<µ≤n
Jµ,νsµsν (6.2)

The problem can also be generalized by adding a vector H = (Hν)ν∈{1,...,n}, which is
called an external magnetic field. This changes the energy to

E(s) = −
∑

1≤ν<µ≤n
Jµ,νsµsν −

n∑

ν=1

Hνsν (6.3)
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The external magnetic field pushes each spin sν towards +1 or −1, depending on the
sign of Hν .

Our goal is to minimize this energy. A state with minimal energy is called a ground
state of the grid. Ground state search is an important and difficult problem of statistical
physics.

To understand why this problem is difficult, consider the following: For two cells ν, µ
minimization is done by choosing

sν =

{
sµ if Jν,µ > 0 (so both spins +1 or both -1)

−sµ if Jν,µ < 0
(6.4)

But on a grid, it is usually not possible to satisfy all these conditions.

Example 6.2. For example, let us consider a very simple 2 × 2 grid with the energy
matrix given in Fig. 6.2.

J =




0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0




1 2

3 4

1

1

-1

1

Figure 6.2.: An example 2× 2 grid with its energy matrix

No matter how we choose the spins, at least one pair will have Jµ,νsµsν = −1. We
cannot satisfy all pairs and reach an energy of −4. The minimal energy for this energy
matrix is −2.

Such a situation is called frustration.
For a 1-D Ising spin glass model, which is just a chain of cells, it is easy to find a

ground state. Just choose the first cell arbitrarily, and then proceed through the chain,
choosing the spins according to (6.4). This will give a ground state with no frustrations
at all.

If the 1-D Ising model is constructed with wrap-around, so (1, n) ∈ N , we proceed in
the same way, only beginning not at cell 1, but at the cell ν with |Jν−1,ν | minimal. Thus,
it may turn out that after choosing all spins this connection will be frustrated, but at
least it will be the connection which gives a minimal penalty to the energy. An example
is Fig. 6.2, which can also be considered as a 1-D model with n = 4 and wrap-around.

For a 2-D Ising grid, ground state search is much harder. Without an external magnetic
field, Onsager [Ons44] found an ingenious solution. But the 2-D model with a magnetic
field, as well as the 3-D model, are NP-complete [Bar82].

6.1.2. Symmetry of Ising

Without an external magnetic field, the problem is symmetric. If we flip all spins, the
energy does not change; E(−s) = E(s). This makes the problem particularly difficult
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for evolutionary algorithms [HGN01, Hoy03].

This can be seen from the work of Mahnig [Mah01]: He has shown that genetic
algorithms perform a gradient ascent in the space of the expected fitness. But in this
case, the derivation of the expected fitness with respect to a single spin is zero, so the
gradient ascent will fail.

Example 6.3. Consider a 1-D ferromagnetic spin glass with wrap-around, so all Jν,µ = 1
for (ν, µ) ∈ N . Now imagine that we have a solution with sν = +1 for ν < n/2 and
sν = −1 otherwise. We have two frustrated couplings, ( n/2 − 1, n/2) and (n, 1).

It is very hard to flip n/2 spins in one step, which is necessary to remove these frustra-
tions and reach a ground state. But it is possible to move the boundaries between the
+1 and −1 blocks. E. g. by flipping bit 1, one of the frustrations moves to (1, 2).

Moving these boundaries will not change the energy, so it cannot be said whether it
is better to move a boundary to the left or to the right. Instead, they will be shifted
around in a random walk manner, blindly, until by chance one of the blocks vanishes.
This will take a very long time to achieve.

We now describe a technique which exploits the symmetry in population-based algo-
rithms in order to reduce the size of the search space. For this the following definition
is needed:

Definition 6.1. For two spin vectors s, t, define the Hamming distance as the number
of differing spins:

h(s, t) = |{ν ∈ {1, . . . , n}|sν 6= tν}| (6.5)

Now for every generated vector s, if the Hamming distance to the vector with maximal
fitness among the population (minimal energy) smax is larger than n/2, we flip all bits of
s. This does not change the fitness of s. Doing this for the whole population halves the
search space. This procedure is called flip bits to best.

The method also improves the fitness of the offspring. This can be seen in an extreme
example with the UMDA algorithm. Suppose that we start with a random population,
and then we do truncation selection. Notice: In a problem where we can always flip all
bits and obtain identical fitness, the univariate marginal probability for a single spin is
p(sν = 1) = 1/2. So in the next generation, we will have a completely random population
again! “Flip bits to best” is a way to break this symmetry and help the algorithm to
converge.

6.1.3. The Boltzmann Distribution

We have already introduced the Boltzmann distribution as a tool for optimization (see
Sect. 2.4.1). For the Ising spin glass we note that minimizing E(s) is identical to maxi-
mizing

pβ(s) =
1

Z
e−βE(s) (6.6)

with β > 0.
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To be more conform with the computer scientist notions, we can also replace the spins
sν ∈ {−1,+1} by bits xν ∈ {0, 1} using the following transformation:

sν = 2xν − 1 (6.7)

J̃ν,µ = 4Jν,µ (6.8)

H̃ν = 2Hν − 4

n∑

µ=1

Jν,µ (6.9)

Ẽ(x) = −
∑

1≤ν<µ≤n
J̃µ,νxµxν −

n∑

ν=1

H̃νxν (6.10)

It can be easily verified that Ẽ(x) = E(s) + const , so that pβ(s) = pβ(x) (the constant
difference cancels out due to the partition function Z).

Because of this equivalence, we will from now on stick to the computer science notation
and use the variables x ∈ {0, 1}n.

6.1.4. The Gibbs Free Energy

Once again, we are faced with the problem of calculating the Boltzmann distribution or
sampling from it. This is not possible in an efficient way. So the idea is to replace the
Boltzmann distribution pβ by an approximation distribution q. For this, we introduce
some terms from statistical physics.

Definition 6.2. Let q(x) be a distribution on the space of spin vectors. The average
energy of q is

U(q) =
∑

x

E(x)q(x) (6.11)

The Gibbs free energy is
G(q) = U(q)−H(q) (6.12)

where H(q) is the entropy of q (4.1).

These terms are useful for estimating the accuracy of the approximation. Once again,
we use the relative entropy (Kullback-Leibler divergence), and we calculate

D(q‖pβ) =
∑

x

q(x) log
q(x)

pβ(x)
(6.13)

=
∑

x

q(x) log q(x)−
∑

x

q(x) log pβ(x) (6.14)

= −H(q)−
∑

x

q(x) log

(
1

Z
e−βE(x)

)
(6.15)

= −H(q) +
∑

x

q(x) log Z +
∑

x

q(x)βE(x) (6.16)

= −H(q) + logZ + βU(q) (6.17)
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Now, the unknown distribution pβ is only contained in the term logZ, which is just a
constant.

For β = 1, we have
D(q‖pβ=1) = G(q) + logZ (6.18)

For q = p, D(q‖p) = 0, and G(q) achieves its minimum − logZ. So, minimizing G(q)
is a variant of minimizing the relative entropy to the Boltzmann distribution pβ.

To the best of our knowledge, so far in the field of belief propagation and free energy
the role of β has not yet been recognized. Either β is set to 1 and further on disregarded
[YFW04, AM01] or not mentioned at all [MY02, HMP03]. This is fair enough from
their point of view, since their focus is not optimization (maximization of the optimum’s
probability). For us, the choice of β is an important tool to influence the algorithm’s
behavior.

Therefore, it is necessary to generalize the notions for arbitrary β. We call these gener-
alizations tempered, because β plays the role of an inverse temperature. The conventional
versions known from literature are always the special case for β = 1.

Definition 6.3. The tempered average energy Uβ(q) of a distribution q is

Uβ(q) := βU(q) = β
∑

x

E(x)q(x) (6.19)

The tempered Gibbs free energy is

Gβ(q) := Uβ(q)−H(q) (6.20)

Lemma 6.1. The tempered Gibbs free energy of a distribution q is equivalent to the
relative entropy between q and the Boltzmann distribution:

D(q‖pβ) = Gβ(q) + logZ (6.21)

Proof. Follows directly from (6.17).

We see that minimizing the tempered Gibbs free energy is equivalent to minimizing
the relative entropy to the Boltzmann distribution.

In Sect. 4.1.3, we said that the relative entropy D(p‖q) measures the inefficiency of
assuming a distribution q when the real distribution is p. If we compare this to (6.21), we
see that the relative entropy is reversed: Here we minimize D(q‖pβ), where pβ is the true
Boltzmann distribution and q our approximation. The relative entropy is not symmetric,
so these are different objectives. But anyway, the minimum for both is achieved when
the two distributions coincide.

6.1.5. Mean-Field Approximation

To turn this approximation into a feasible algorithm, the search is restricted on a special
class of distributions q. The simplest example is, like in EDA, the case of the independent
product distribution:

q(x) =
∏

i

q(xi) (6.22)
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The product distribution is determined by a vector of univariate probabilities, which we
call qi:

qi := q(Xi = 1) (6.23)

For this class the Gibbs free energy can be computed directly. It consists of the average
energy and the entropy. The entropy is

H(q) =
∑

i

H(qi) (6.24)

= −
∑

i

(qi log qi + (1− qi) log(1− qi)) (6.25)

For the average energy, we assume E(x) to be additively decomposable, so similar to
(2.22) we have a decomposition S and

E(x) = −
m∑

i=1

fi(xsi) (6.26)

(The minus sign is included because we want to maximize f whereas E is traditionally
minimized.)

This is the case for the Ising model, as can be seen in (6.2) or (6.3). In this case we
have

U(q) = −
m∑

i=1

∑

xsi

q(xsi)fi(xsi) (6.27)

= −
m∑

i=1

∑

xsi

fi(xsi)
∏

k∈si
q(xk) (6.28)

For the special case of the Ising model, this becomes

U(q) = −
∑

1≤ν<µ≤n
Jµ,νq(sµ)q(sν)−

n∑

ν=1

Hνq(sν) (6.29)

To minimize G(q) = U(q) −H(q), we can calculate the derivative with respect to qi
and get

∂G(q)

∂qi
=
∂U(q)

∂qi
+ ln

qi
1− qi

(6.30)

Setting this equal to zero and solving for qi yields

qi =
1

1 + exp
(
−∂U(q)

∂qi

) . (6.31)

A solution can be found by iterating these equations.
Our goal is to minimize G(q) for more complicated models than the simple product

distribution. We now use it for a cyclic graphical model which can be understood as a
generalization of the junction tree, the region graph.
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6.2. The Region Graph

The region graph [YFW01, YFW02, YFW04] is a loopy graphical model. It is strongly
related to partially ordered sets (posets) or Hasse diagrams [Sta86]. Similar or identical
structures have been presented in [AM01, MY02, TW03]. This section follows roughly
the notation of [YFW04].

6.2.1. Regions

Our starting point is an additively decomposable fitness function f . We recall the
definitions for ADFs from Sect. 2.4.4. In [YFW04] another graphical model is used, the
factor graph. The factor graph is identical to an additive decomposition. Therefore we
omit this structure and use the ADF notation instead.

Definition 6.4. Let S = {s1, . . . , sm} be an additive decomposition for a fitness function
f , such that

f(x) =
∑

si∈S

fi(xsi) (6.32)

A region R = (XR, FR) is a set of variables XR ⊆ {X1, . . . , Xn} and a set of subfunctions
FR ⊆ {f1, . . . , fm}, such that

∀fi ∈ FR : Xsi ⊆ XR (6.33)

It is asserted by (6.33) that all variables needed for the contained subfunctions are in
XR. FR can also be empty.

Example 6.4. For an example for a region, consider the 3×3 grid in Fig. 6.3. We might
want to introduce a region R for the top left 2×2 square, having XR = {X1, X2, X4, X5}.
Assuming a top-left to bottom-right numbering for the bivariate subfunctions of f , we set
FR = {f1, f3, f4, f6}, in order to include f1(x1, x2), f3(x1, x4), f4(x2, x5), and f6(x4, x5).

X1 X2 X3

X4 X5 X6

X7 X8 X9

f1 f2

f3 f4 f5
f6

f7
f8 f9 f10

f11 f12

X1 X2 X3

X4 X5 X6

X7 X8 X9

f1

f3 f4
f6

Rgood:
X1 X2 X3

X4 X5 X6

X7 X8 X9

f1 f2

f3 f4
f6

Rbad:

Figure 6.3.: An example 3 × 3 grid and two example regions. Rgood is a valid region;
Rbad is invalid because the subfunction f2 depends on X3 which is not in
XRbad

.
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The definition also allows to include variables which do not appear in any subfunction
in FR, e. g. setting XR = {X1, X2, X4, X5, X9} (the region Rgood in Fig. 6.3). It only
forbids a region like Rbad in Fig. 6.3 with Rbad = (XRbad

= {X1, X2, X4, X5}, FRbad
=

{f1, f2, f3, f4, f6}), because f2(x2, x3) depends on X3, but XRbad
does not contain X3.

We keep in mind our goal to approximate the Boltzmann distribution (6.6) with the
energy E(x) = −f(x). The minus sign is necessary because f is maximized and E is
minimized.

For a region, we can define a local energy analogous to (6.2).

Definition 6.5. For a region R, define the region energy

ER(xR) := −
∑

fi∈FR
fi(xsi) (6.34)

This is well-defined because of the condition (6.33).

Similar to the mean-field approach, we define a local approximation of the objective
Boltzmann distribution on a region, qR. In [YFW04] this local distribution is called the
belief on R. We introduce the afore-mentioned notions of statistical physics for regions
by applying them on the distribution qR.

Definition 6.6. The region tempered average energy Uβ,R(qR), the region en-
tropy HR(qR) and the region tempered free energy Fβ,R(qR) are defined as

Uβ,R(qR) := β
∑

xR

qR(xR)ER(xR) (6.35)

HR(qR) := −
∑

xR

qR(xR) log qR(xR) (6.36)

Fβ,R(qR) := Uβ,R(qR)−HR(qR) (6.37)

The conventional (non-tempered) versions are the special case for β = 1.

6.2.2. Region Graph

Definition 6.7. A region graph is a graph G = (R, ER), where R is a set of regions
and ER is a set of directed edges. An edge (Rp, Rc) ∈ ER is only allowed if XRc ⊂ XRp .
If (Rp, Rc) ∈ ER, we call Rp a parent of Rc and Rc child of Rp.

Since ER imposes a partial ordering on the set of regions, in [MY02] the same structure
was called a partially ordered set or poset.

Lemma 6.2. A region graph is directed acyclic.

Proof. This follows immediately from the requirement that edges are only allowed from
supersets to subsets.
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A junction tree can be turned into a region graph by creating a region for every cluster
and every separator and adding edges from each node to each neighboring separator.

We recall from (3.33) that the global distribution of a junction tree is the product of
all distributions on the clusters, divided by the distributions of all the separators. We
generalize this concept too, by introducing counting numbers of the regions.

Definition 6.8. The counting number cR of a region R is defined recursively as

cR = 1−
∑

R′∈A(R)

cR′ (6.38)

where A(R) is the set of all ancestors of R, as in Def. 3.4.

This is well-defined, because the region graph is cycle-free. The maximal regions
(without ancestors) have counting number 1. From there, the counting numbers can be
calculated from the top to the bottom of the graph. Fig. 6.4 shows an example region
graph and the counting numbers of its regions.

(1) (1) (1) (1)

(−3) (−2) (−1)

(1) (2) (1) (0)

(−1) (0)

Figure 6.4.: Example region graph. Each box represents one region, and the arrows give
the edges in ER. The numbers in parentheses are the counting numbers of
the regions.

For a junction tree, all clusters have counting number 1, and all separators have
counting number −1, because their ancestors are the two clusters that they connect.

For a junction tree, the local marginal distributions were combined to a global distri-
bution (3.33). Formally, this can be generalized in the following way:

Definition 6.9. The Kikuchi approximation of a probability distribution for a region
graph is

k(x) =
∏

R∈R
qR(xR)cR (6.39)

In general, it is not normalized and therefore no probability distribution. The normal-
ized Kikuchi approximation

pk(x) =
k(x)∑
y k(y)

(6.40)
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is a probability distribution.

The computation of pk(x) is in general exponential.

6.2.3. Region Graph and Junction Tree

If the region graph is derived from a junction tree, with the qR being the local distri-
butions on the clusters and separators, k(x) is a valid distribution, since its definition
coincides with the junction tree distribution (3.33).

The junction property also has an equivalent on the region graph.

Definition 6.10. We call a region graph valid if it fulfills the region graph condition,
which states that

1. For all variables Xi ∈ {X1, . . . , Xn} the set RXi := {R ∈ R|Xi ∈ XR} of all
regions R that contain Xi form a connected subgraph with

∑

R∈RXi

cR = 1 , (6.41)

and

2. For all subfunctions fi ∈ {f1, . . . , fm} the set Rfi := {R ∈ R|fi ∈ FR} of all
regions R that contain fi form a connected subgraph with

∑

R∈Rfi

cR = 1 . (6.42)

The connectivity of the subgraph, like the junction property, prevents that in different
parts of the graph contradictory beliefs evolve. The condition on the counting numbers
makes sure that every variable and every subfunction is counted exactly once.

In a junction tree it is often the case that several separators contain the same variables.
In [JJ94] it was proposed to replace these by a single separator that is connected to all
clusters in which it is contained. Then care must be taken that the local distribution pS
of such a separator S is counted the appropriate number of times. This can also be done
in the region graph. The definition of counting numbers and the Kikuchi approximation
ensure that the distribution is divided by pS the appropriate number of times.

Furthermore, [JJ94] proposes separators not only between clusters, but also between
other separators. They call the resulting tree an Almond tree. This is another step of
generalizing the junction tree towards the region graph, and it is straightforward to do
this with our region graph definition, too.

In fact, it has been proven in [PA05] that cycle-free region graphs give exact results.
In the following an adaptation of the proof for our notation is presented. For this we
prove some lemmata.
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Lemma 6.3. In a cycle-free region graph, the counting numbers are

cR = 1− |ΠR| (6.43)

where |ΠR| is the number of parents of the region R.

Proof. The proof exploits the fact that the sets of ancestors for all parents of a node R
are disjunct.

cR = 1−
∑

R′∈A(R)

cR′ (6.44)

= 1−
∑

R′∈ΠR


cR′ +

∑

R′′∈A(R′)

cR′′


 (6.45)

= 1−
∑

R′∈ΠR


1−

∑

R′′∈A(R′)

cR′′ +
∑

R′′∈A(R′)

cR′′


 (6.46)

= 1−
∑

R′∈ΠR

1 (6.47)

= 1− |ΠR| (6.48)

Lemma 6.4. Cycle-free region graphs originating from junction trees are valid.

Proof. It follows immediately from the junction property that the subgraph RXi of the
region graph that contains a variable Xi is connected. For every region R that the
subgraph contains, it contains also all its parents ΠR. Since it is cycle-free, it is also a
tree.

We only have to prove (6.41) (the sum of the counting numbers is 1). We use Lemma
6.3:

∑

R∈RXi

cR =
∑

R∈RXi

1− |ΠR| (6.49)

= |RXi | −
∑

R∈RXi

|ΠR| (6.50)

This is equal to the number of nodes in the tree RXi minus the number of edges in the
tree, and it is an obvious property of trees that this difference is 1.

The second part with the subfunctions can be proven analogously.

Theorem 6.5. For a valid region graph without cycles, the Kikuchi approximation is
exact.
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Proof. We prove that the Kikuchi approximation (6.39) gives exact marginals on the
regions:

k(xR) = qR(xR) (6.51)

The proof works similar to the proof of Lemma 3.5. We choose leaf regions – regions
that are connected to only one other region – and eliminate those from the graph, until
only the region R remains.

Choose a leaf region S 6= R. Since the graph is cycle-free, such a leaf must exist. For
the single connection of S, there exist two possibilities:

• S is the child of another region. But since it has only one parent, from Lemma
6.3 follows that it has counting number cS = 0. So, its local belief qS(xS)cS has
no effect in (6.39), and we can remove this region.

• S is parent of another region T . Remember that XT ⊂ XS . From local consistence
of the beliefs we have ∑

xS\xT
q(xS) = q(xT ) (6.52)

From this, it follows that

q(xT )cT
∑

xS\xT
q(xS) = q(xT )cT+1 (6.53)

Again, we see that it has no effect on (6.39) to eliminate the region S and increase
the counting number of T by one, since it has then one parent less.

For cycle-free region graphs derived from a junction tree, the Kikuchi approximation
is equal to the junction tree distribution. But in general, k is not even a distribution.
And the normalized Kikuchi approximation pk cannot be computed in polynomial time.
What we wish for is an approximative distribution which can be computed polynomially
and from which points can be sampled.

In Sect. 3.6.1, the connection of junction trees and factorizations was explained. Our
goal is to create a connection between region graphs and factorizations, too. This will be
achieved in Sect. 6.4. Now, we first present the generalized belief propagation algorithm
which provides us with the marginal distributions qR.

6.3. Generalized Belief Propagation

6.3.1. Free Energy of a Region Graph

We recall the objective of Sect. 6.1.4: The Boltzmann distribution pβ is approximated
by a distribution q with minimal free energy. But instead of a distribution q(x), we have
only a collection of region beliefs qR = {qR(xR)|R ∈ R}. Therefore the free energy of a
region graph is composed of the region free energies (see Def. 6.3).
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Definition 6.11. The region-based approximate entropy for a region graphR with
the set of local beliefs qR = {qR|R ∈ R} is

HR(qR) :=
∑

R∈R
cRHR(qR) (6.54)

The region-based tempered average energy is

Uβ,R(qR) :=
∑

R∈R
cRUβ,R(qR) (6.55)

Finally, the region-based tempered Gibbs free energy is

Fβ,R(qR) = Uβ,R(qR)−HR(qR) (6.56)

How are these definitions justified? In general, Uβ,R(qR) and HR(qR) are not the
average energy or the entropy of any distribution q. For Uβ,R(qR) the following lemma
shows that the desired solution has the correct average energy.

Lemma 6.6. If all local beliefs of a valid region graph are the correct marginals of the
Boltzmann distribution, the region-based tempered average energy Uβ,R(qR) is the exact
average energy of the Boltzmann distribution.

Proof. The region-based tempered average energy is calculated using (6.34), (6.35), and
(6.55):

Uβ,R(qR) = −β
∑

R∈R
cR
∑

xR

qR(xR)
∑

fi∈FR
fi(xsi) (6.57)

= −β
∑

R∈R
cR
∑

xR

∑

fi∈FR
qR(xR)fi(xsi) (6.58)

= −β
∑

R∈R
cR

∑

fi∈FR

∑

xsi

fi(xsi)
∑

xR\xsi

qR(xR) (6.59)

Since we assumed the local beliefs to be the Boltzmann marginals, we insert

Uβ,R(qR) = −β
∑

R∈R
cR

∑

fi∈FR

∑

xsi

fi(xsi)pβ(xsi) (6.60)

Rearranging the summands leads to

Uβ,R(qR) = −β
m∑

i=1

∑

xsi

fi(xsi)pβ(xsi)
∑

R∈Rfi

cR (6.61)

= −β
m∑

i=1

∑

xsi

fi(xsi)pβ(xsi) (6.62)

because of (6.42).
This is equal to (6.27), the tempered average energy of the Boltzmann distribution.
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Unfortunately for the region-based approximate entropy HR(qR), the analogous state-
ment is generally not true. In [YFW04] there is given an example where the minimum
of Fβ,R(qR) is reached by a set of beliefs which is contradictory, i. e. there is no global
distribution of which they are the marginals. Furthermore, they give a case in which
HR(qR) is negative, which is of course impossible for an entropy.

Certainly the region-based free energy is an approximation. Its accuracy depends
strongly on the structure of the region graph. If the region graph is cycle-free, it is the
exact free energy of the Kikuchi distribution (which is a distribution in this case, see
Theorem 6.5).

Lemma 6.7. For a cycle-free region graph, the region-based tempered Gibbs free energy
is the tempered free energy of the Kikuchi distribution k(x).

Proof. We recall (6.51) from Theorem 6.5.

Fβ,R(qR) = β
∑

R∈R
cR
∑

xR

qR(xR)ER(xR) +
∑

R∈R
cR
∑

xR

qR(xR) log qR(xR) (6.63)

=
∑

R∈R
cR
∑

xR

qR(xR) (βER(xR) + log qR(xR)) (6.64)

=
∑

R∈R
cR
∑

xR

(βER(xR) + log qR(xR))
∑

x\xR
k(x) (6.65)

=
∑

x

k(x)
∑

R∈R
cR


β

∑

fi∈FR
−fi(xsi) + log qR(xR)


 (6.66)

=
∑

x

k(x)


−β

m∑

i=1

fi(xsi)
∑

R∈Rfi

cR +
∑

R∈R
log qR(xR)cR


 (6.67)

=
∑

x

k(x)

(
−β

m∑

i=1

fi(xsi) + log
∏

R∈R
qR(xR)cR

)
(6.68)

=
∑

x

k(x) (βE(x) + log k(x)) (6.69)

=
∑

x

k(x)βE(x) +
∑

x

k(x) log k(x) (6.70)

= Uβ(k)−H(k) (6.71)

From this lemma follows that for a cycle-free region graph this method is equivalent
to the junction tree method.

Remark 6.1. Another example is the Bethe approximation. This is the special case in
which the region graph consists of two layers:

• The large regions RL, containing one region for each subfunction fi: Rfi =
(Xsi , {fi}), and
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• the small regions RS , containing one region for each variable Xi:RXi = ({Xi}, ∅).

The edges of this region graph are

ER = {(Rfi , RXj )|Xj ∈ Xsi} . (6.72)

The Bethe approximation is the first straightforward idea. It is a valid region graph. But
it is of limited expressive power. In Sect. 6.4.2 we present the cluster variation method
which constructs more powerful region graphs.

Now we calculate the minima of the free energy. This leads to fixed point equations
giving rise to the generalized belief propagation algorithm.

6.3.2. Preliminary Requirements for Minimizing the Free Energy

There are several algorithms which calculate local beliefs minimizing the region-based
free energy. In principle, these algorithms are equivalent since they all minimize the
same objective, but their dynamics can be very different; e. g. some may converge where
others do not.

In the following we derive the parent-to-child algorithm [YFW04]. It is favorable in
that it uses only one kind of messages, from larger regions to their children (subsets).
There are also algorithms that use messages in both ways [Hes03, YFW04].

Before deriving the algorithm, we make three remarks.

No Zero Counting Numbers

In the following we will need to divide by cR, therefore we exclude the case that there is
a region R with cR = 0. It is no problem for the algorithm – the update equation (6.102)
does not even contain the counting numbers –, but this restriction spares us some special
case considerations. In fact, it is not a restriction at all, because such a regions has no
effect in the equations. In [PA05] it is shown that a region with cR = 0 can be removed
when all its parents are connected with all its children.

Ancestor and Descendent Sets

We recall Definitions 3.4 for a directed graph: A(R) are the ancestors of a region, D(R)
the descendents of a region. We define further on:

Definition 6.12. A′(R) := {R} ∪A(R) and D′(R) := {R} ∪D(R).

Local Consistence Conditions

The algorithm has some similarities with the junction tree algorithms in that is sends
messages around in order to achieve local consistence:

∑

xP \xR
qP (xP ) = qR(xR) (6.73)
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In addition to (6.73), another condition for local consistence will be needed, stated by
the following lemma:

Lemma 6.8. In a region graph with no counting number equal to zero, the local region
beliefs are consistent if and only if for all (P,R) ∈ ER

cRqR(xR) = −
∑

T∈A(R)\A′(P )

cT
∑

xT \xR
qT (xT ) (6.74)

Proof. We start with the calculation

cR = 1−
∑

T∈A(R)

cT (6.75)

= 1− cP −
∑

T∈A(P )

cT −
∑

T∈A(R)\A′(P )

cT (6.76)

= −
∑

T∈A(R)\A′(P )

cT (6.77)

“⇒”: If all regions are consistent, we know that for all ancestors T of R

qR(xR) =
∑

xT \xR
qT (xT ) (6.78)

Therefore, multiplying this with (6.77) gives the desired equation.

“⇐”: Suppose (6.74) holds. We show consistence by induction over all nodes, from top
to bottom of the region graph. Since region graphs are directed acyclic, the regions
can be ordered in a way such that there are no backward edges.

• Induction start: For the first region, there are no edges so consistence is
trivial.

• Induction step: Assume that all ancestor regions of R are consistent with
each other. That means that all marginals of these sets are the same:

∀T ∈ A(R) :
∑

xT \xR
qT (xT ) = qsame(xR) (6.79)

This is inserted into (6.74):

cRqR(xR) = −qsame(xR)
∑

T∈A(R)\A′(P )

cT (6.80)

Inserting (6.77) and dividing by cR (remember that cR 6= 0 was assumed)
shows that qR(xR) = qsame(xR).
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6.3.3. Free Energy Minimization

Now we will minimize the tempered free energy (see Definition 6.11). We recall that this
is an approximation of minimizing the relative entropy to the Boltzmann distribution.

Fβ,R(qR) =
∑

R∈R
cRFβ,R(qR) (6.81)

= β
∑

R∈R
cR
∑

xR

qR(xR)ER(xR) +
∑

R∈R
cR
∑

xR

qR(xR) log qR(xR) (6.82)

=
∑

R∈R
cR
∑

xR

qR(xR) (βER(xR) + log qR(xR)) (6.83)

The minimization is subject to the constraints that

• the beliefs are locally consistent between neighboring regions, and

• the beliefs are normalized.

The constraints are enforced by the Lagrange multiplier method. For this, new vari-
ables are added:

• γR, enforcing the normalization of region R

∑

xR

qR(xR) = 1 , (6.84)

• and λPR(xR), enforcing consistence. However, as condition for consistence, (6.74)
is used rather than (6.73):

cRqR(xR) +
∑

T∈A(R)\A′(P )

cT
∑

xT \xR
qT (xT ) = 0 (6.85)

Using these, the function to be minimized is changed to

L = Fβ,R(qR) +
∑

R∈R
γR

(
1−

∑

xR

qR(xR)

)

+
∑

(P,R)∈ER

∑

xR

λPR(xR)


cRqR(xR) +

∑

T∈A(R)\A′(P )

cT
∑

xT \xR
qT (xT )


 (6.86)

Deriving L with respect to the γ or λ variables and setting the result equal to zero
gives exactly the equations for the constraints, (6.84) and (6.85). Deriving L with respect
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to a qR(xR) results in

∂L

∂qR(xR)
= cRβER(xR) + cR(1 + log qR(xR))− γR

+
∑

P∈ΠR

λPR(xR)cR +
∑

(P,C)∈ER
R∈A(C)\A′(P )

λPC(xC)cR (6.87)

= cRβER(xR) + cR(1 + log qR(xR))− γR +
∑

(P,C)∈M(R)

λPC(xC)cR (6.88)

Here M(R) is the set of all relevant messages for the region R.

M(R) := {(P,C) ∈ ER : C ∈ D′(R) ∧ P /∈ D′(R)} (6.89)

Setting this partial derivative equal to zero and resolving for qR(xR) gives:

qR(xR) = e−βER(xR)e
γR
cR
−1

∏

(P,C)∈M(R)

e−λPC(xC) (6.90)

For normalization, we set

e
γR
cR
−1

=


∑

xR

e−βER(xR)
∏

(P,C)∈M(R)

e−λPC(xC)



−1

(6.91)

The variables λPC(xC) ensure local consistence between the nodes. For this, an iter-
ative message passing algorithm is derived. We define the messages between the nodes
as

mP→C(xC) := e−λPC(xC) (6.92)

With these definitions, we obtain the following solution for the local belief.

Definition 6.13. The local beliefs in the parent to child-algorithm are

qR(xR) ∝
∏

fi∈FR
eβfi(xsi )

∏

(P,C)∈M(R)

mP→C(xC) (6.93)

So, the included messages are the ones that enter into R or one of its descendents from
a non-descendent of R. Remember that the variables contained in a descendent C of R
are a subset of those in R, so xC is well-defined. The motivation of this definition is that
all information about the variables in R or a subset thereof, coming from an exterior
region P , should be included.

Note also the ∝ sign in (6.93). To compute the belief exactly, it must be normalized
to sum up to one. This means as well that multiplying a message by a constant factor
(e. g. normalizing a message) has no effect.

Inserting the definitions of the beliefs (6.93) into (6.73) gives
∑

xP \xR

∏

fi∈FP
eβfi(xsi )

∏

(I,J)∈M(P )

mI→J(xJ ) =
∏

fi∈FR
eβfi(xsi )

∏

(I,J)∈M(R)

mI→J(xJ) (6.94)
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We know that (P,R) ∈ M(R) and (P,R) /∈ M(P ). So we can solve this equation for
mP→R(xR):

mP→R(xR) =

∑
xP \xR

∏
fi∈FP e

βfi(xsi )
∏

(I,J)∈M(P ) mI→J(xJ )
∏
fi∈FR e

βfi(xsi )
∏

(I,J)∈M(R)\{(P,R)}mI→J(xJ)
(6.95)

FR is a subset of FP , so these factors cancel out. Also, the messages in M(P ) ∩M(R)
cancel out. After these simplifications, we get the fixed point equations for the messages:

mP→R(xR) =

∑
xP \xR

∏
fi∈FP \FR e

βfi(xsi )
∏

(I,J)∈N(P,R) mI→J(xJ)
∏

(I,J)∈D(P,R) mI→J(xJ)
(6.96)

where the message sets of the nominator and denominator are

N(P,R) := M(P ) \ (M(P ) ∩M(R)) (6.97)

D(P,R) := M(R) \ (M(P ) ∩M(R)) \ {(P,R)} (6.98)

More specifically, the edge sets are

N(P,R) = {(I, J) ∈ ER : J ∈ D′(P ) \D′(R) ∧ I /∈ D′(P )} (6.99)

D(P,R) = {(I, J) ∈ ER : (I, J) 6= (P,R) ∧ J ∈ D′(R) ∧ I ∈ D′(P ) \D′(R)} (6.100)

The definition of the relevant edges becomes clearer with an example. In Fig. 6.5, a
poset is depicted. For the message between P and R, the relevant sets of regions and
edges are marked.

1

2 P 4

5 6 7

8 R 10

11 12 13

14

Figure 6.5.: Example region graph. Dashed region is D ′(P ), dotted region is D′(R).
Dashed edges are in N(P,R), dotted edges are in D(P,R). Double-lined
edges are in M(P ) ∩M(R) and cancel out.

104



6.3. Generalized Belief Propagation

The descendents of P , D′(P ), are the regions within the dashed line. The dotted line
surrounds the descendents of R, D′(R). The relevant messages M(P ) are all messages
leading into the dashed region, which are the dashed and the double-lined edges. The
edges in M(R) are the dotted and the double-lined edges.

The double-lined edges are in both relevant sets. So they appear on both sides of
(6.73) and cancel out. This leaves us with the dashed edges in N(P,R) and the dotted
edges in D(P,R).

All in all, we have proven the following theorem.

Theorem 6.9. The fixed points of (6.96) for a valid region graph with no counting
number equal zero are extreme points of the region based tempered free energy.

A proof that stable fixed points are in fact minima of the free energy is given in
[Hes03], for a more restricted graphical model. In [Hes04] first steps are made to derive
conditions for uniqueness of the fixed point.

6.3.4. Generalized Belief Propagation

Generalized Belief Propagation is an iteration of the fixed point equation (6.96). There
are several possibilities to iterate this equation. For example, if all messages are updated
in parallel, the iteration is

mτ,upd
P→R(xR) =

∑
xP \xR

∏
fi∈FP \FR e

βfi(xsi )
∏

(I,J)∈N(P,R) m
τ−1
I→J(xJ )

∏
(I,J)∈D(P,R) m

τ−1
I→J(xJ )

(6.101)

where τ is the iteration index.
However, [YFW04] emphasize strongly that this iteration scheme “empirically often

results in poor convergence properties”. They propose a sequential update. The message
are updated starting at the bottom of the region graph, working the way up to the
top. So for an edge (P,R) ∈ ER the messages of the edges D(P,R) have already been
updated, whereas the edges N(P,R) still contain the old beliefs. This gives the following
iteration:

mτ,upd
P→R(xR) =

∑
xP \xR

∏
fi∈FP \FR e

βfi(xsi )
∏

(I,J)∈N(P,R) m
τ−1
I→J(xJ )

∏
(I,J)∈D(P,R) m

τ,upd
I→J (xJ)

(6.102)

It is not always a good idea to change all the messages to mτ,upd now. Instead, it is
numerically more favorable to choose the new messages somewhere between the old and
new messages. This technique is called damping or inertia. Damping includes a learning
rate α ∈]0, 1], where α = 0 would mean mτ = mτ−1, so no progress at all, and α = 1
means mτ = mτ,upd, i. e. no damping. There are two variants of damping:

• Linear damping [YFW04, Yui02] calculates the messages as a linear combination
between the old and update messages:

mτ
P→R(xR) = (1− α)mτ−1

P→R(xR) + αmτ,upd
P→R(xR) (6.103)
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• Geometrical damping [Hes03, Teh03] uses instead of the additive combination a
multiplicative combination:

mτ
P→R(xR) = mτ−1

P→R(xR)1−αmτ,upd
P→R(xR)α (6.104)

Since the messages are combined with each other in a multiplicative manner in (6.93),
geometrical damping appears more plausible. On the other hand, linear damping is
computationally cheaper because it multiplies by α instead of raising to the power of
α (although this difference is almost negligible). Empirically we found that it does not
matter much which technique is employed. Usually we used linear damping.

As a good value for the learning rate, [YFW04] propose 0.5. If the algorithm has
trouble to converge, a smaller value can help. Note however, that this affects only the
dynamics of the algorithm, not the fixed points.

For some instances, it may happen that GBP does not converge, independent of the
learning rate. Alternative algorithms have been presented that are slower than GBP,
but guaranteed to converge [Yui02, Hes03]. The CCCP Algorithm [Yui02] is presented
in Sect. 6.6.

In the experiments, as the criterion for convergence we demand that for all messages

max

{
mτ
P→R(xR)

mτ−1
P→R(xR)

,
mτ−1
P→R(xR)

mτ
P→R(xR)

}
− 1 < 10−6 (6.105)

Since we are interested in optimization and not in the very small probabilities of points
with small fitness, we do not need a very strict convergence criterion. Often the most
important probabilities are already stable after about 50 iterations.

6.3.5. An Example in Detail

To make the derivation more clear, we present a simple example. The example is a
bivariate circle with four nodes, depicted in Fig. 6.6.

1 2

4 3

x1, x2

x2, x3

x3, x4

x1, x4

x1 x2

x3x4

Figure 6.6.: An example 4-variate circle and its region graph

For this example, we assume the objective function to be

f(x) = f12(x1, x2) + f23(x2, x3) + f34(x3, x4) + f14(x1, x4) (6.106)

The region graph contains eight regions, which we will call R12, R23, R34, R14, R1,
R2, R3, and R4. The bivariate regions contain one subfunction each and have counting
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number +1. The univariate regions do not contain subfunctions and have counting
number −1. The belief distributions are called q12(x1, x2) and so forth.

We now give the Lagrangian in detail. It consists of four parts: The average energy,
the entropy, and the Lagrange multipliers for normalization and consistency:

L = Uβ,R(qR)−HR(qR) + Γ + Λ (6.107)

First, the tempered average energy is calculated using (6.34), (6.35) and (6.55) as

Uβ,R(qR) = −β
∑

x1,x2

q12(x1, x2)f12(x1, x2)− β
∑

x2,x3

q23(x2, x3)f23(x2, x3)

− β
∑

x3,x4

q34(x3, x4)f34(x3, x4)− β
∑

x1,x4

q14(x1, x4)f14(x1, x4) (6.108)

The entropy is with (6.37) and (6.54)

HR(qR) = −
∑

x1,x2

q12(x1, x2) log q12(x1, x2)−
∑

x2,x3

q23(x2, x3) log q23(x2, x3)

−
∑

x3,x4

q34(x3, x4) log q34(x3, x4)−
∑

x1,x4

q14(x1, x4) log q14(x1, x4)

+
∑

x1

q1(x1) log q1(x1) +
∑

x2

q2(x2) log q2(x2)

+
∑

x3

q3(x3) log q3(x3) +
∑

x4

q4(x4) log q4(x4) (6.109)

Now follow the Lagrange multipliers. For normalization they read

Γ = γ12

(
1−

∑

x1,x2

q12(x1, x2)

)
+ γ23

(
1−

∑

x2,x3

q23(x2, x3)

)

+ γ34

(
1−

∑

x3,x4

q34(x3, x4)

)
+ γ14

(
1−

∑

x1,x4

q14(x1, x4)

)

+ γ1

(
1−

∑

x1

q1(x1)

)
+ γ2

(
1−

∑

x2

q2(x2)

)

+ γ3

(
1−

∑

x3

q3(x3)

)
+ γ4

(
1−

∑

x4

q4(x4)

)
(6.110)

For consistency, consider the edge (P,R) = (R12, R1). The set of regions considered in
its Lagrange multiplier (6.85) is A(R) \A′(P ) = {R12, R14} \ {R12} = {R14}. Therefore
its Lagrange multiplier reads

∑

x1

λR12,R1(x1)

(
−q1(x1) +

∑

x4

q14(x1, x4)

)
(6.111)
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The definition of the algorithm using Lemma 6.8 causes the Lagrange multiplier of
(R12, R1) to ensure consistency in (R14, R1), and vice versa!

The whole consistency part of the Lagrangian reads

Λ =
∑

x1

λR12,R1(x1)

(∑

x4

q14(x1, x4)− q1(x1)

)
+
∑

x1

λR14,R1(x1)

(∑

x2

q12(x1, x2)− q1(x1)

)

+
∑

x2

λR12,R2(x2)

(∑

x3

q23(x2, x3)− q2(x2)

)
+
∑

x2

λR23,R2(x2)

(∑

x1

q12(x1, x2)− q2(x2)

)

+
∑

x3

λR23,R3(x3)

(∑

x4

q34(x3, x4)− q3(x3)

)
+
∑

x3

λR34,R3(x3)

(∑

x2

q23(x2, x3)− q3(x3)

)

+
∑

x4

λR14 ,R4(x4)

(∑

x3

q34(x3, x4)− q4(x4)

)
+
∑

x4

λR34,R4(x4)

(∑

x1

q14(x1, x4)− q4(x4)

)

(6.112)

Next, we derive L with respect to the beliefs. We only give the derivations with respect
to q12(x1, x2) and q1(x1); the other derivations work analogously.

∂L

∂q12(x1, x2)
= −βf12(x1, x2) + log q12(x1, x2) + 1− γ12 + λR14,R1(x1) + λR23 ,R2(x2)

(6.113)

∂L

∂q1(x1)
= − log q1(x1)− 1− γ1 − λR12,R1(x1)− λR14,R1(x1) (6.114)

These equations are set equal to zero and solved for the beliefs:

q12(x1, x2) = exp(βf12(x1, x2) + γ12 − 1− λR14,R1(x1)− λR23,R2(x2)) (6.115)

q1(x1) = exp(−γ1 − 1− λR12,R1(x1)− λR14,R1(x1)) (6.116)

The γ variables are used for normalization.
We define the messages:

mR12→R1(x1) := exp(−λR12,R1(x1)) (6.117)

The other messages are defined analogously.
The messages are calculated in order to ensure consistency between the nodes, e. g.:

q1(x1) =
∑

x2

q12(x1, x2) (6.118)

Inserting (6.115) and (6.116) gives

exp(−γ1 − 1)mR12→R1(x1)mR14→R1(x1) =
∑

x2

exp(βf12(x1, x2) + γ12 − 1)mR14→R1(x1)mR23→R2(x2) (6.119)
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We can solve this equation for mR12→R1(x1), after canceling mR14→R1(x1) out:

mR12→R1(x1) = eγ12+γ1
∑

x2

eβf12(x1,x2)mR23→R2(x2) (6.120)

This is the special case of (6.96) for our example. The edge sets N(P,R) and D(P,R)
are:

N(R12, R1) = {(R23, R2)} (6.121)

The edge (R23, R2) is the only one which enters into a descendent of R12 other than R1.

D(R12, R1) = ∅ (6.122)

There is only one other edge entering into R1, namely (R14, R1), which cancels out in
the equation.

The derivation works analogously for all edges and leads to the set of fixed point
equations:

mRi,i+1→Ri(xi) ∝
∑

xi+1

exp(βfi,i+1(xi, xi+1))mRi+1,i+2→Ri+1(xi+1)

mRi,i+1→Ri+1(xi+1) ∝
∑

xi

exp(βfi,i+1(xi, xi+1))mRi−1,i→Ri(xi) (6.123)

The constants γ can be omitted. Since the beliefs will be normalized, scaling of the
messages by a constant factor has no effect.

The fixed points of (6.123) are extreme points of the free energy under the given
constraints of normalization and consistency.

Generalized belief propagation in this example uses the following scheme:

mτ,upd
Ri,i+1→Ri(xi) ∝

∑

xi+1

exp(βfi,i+1(xi, xi+1))mτ−1
Ri+1,i+2→Ri+1

(xi+1)

mτ,upd
Ri,i+1→Ri+1

(xi+1) ∝
∑

xi

exp(βfi,i+1(xi, xi+1))mτ−1
Ri−1,i→Ri(xi) (6.124)

It is often numerically favorable to normalize the messages.

Using geometrical damping, the update equations of the messages are

mτ
Ri,i+1→Ri(xi) = mτ−1

Ri,i+1→Ri(xi)
1−αmτ,upd

Ri,i+1→Ri(xi)
α

mτ
Ri,i+1→Ri+1

(xi+1) = mτ−1
Ri,i+1→Ri+1

(xi+1)1−αmτ,upd
Ri,i+1→Ri+1

(xi+1)α (6.125)

6.4. Optimization Using Loopy Models

Our goal is to use the methods described so far for optimization. GBP provides us with
a set of marginal distributions for the regions, all consistent with each other. But it does
not give us a global distribution from which we could sample. Therefore, the new idea
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is to combine this technique with the factorizations of FDA (see Sect. 2.4.4) in order to
sample points.

This section presents the new method which combines factorization systems with GBP
to devise the BKDA (Bethe Kikuchi Distribution Algorithm). It consists of the following
basic steps:

1. Construct a factorization system from the ADF.

2. Construct a region graph from the ADF and the factorization system.

3. Perform GBP on the region graph.

4. Calculate the marginals of the factorization from the result of GBP.

5. Sample points from this distribution.

We now present these basic steps of the algorithm in detail.
In the following section, the algorithm is applied on some benchmark functions which

are defined on circular dependency structures or on a 2-D grid. Therefore, we will present
the results of the steps on these important examples as we go along.

6.4.1. Construct a Factorization System

The factorization system that we are going to use must fulfill the requirements of Def.
2.4, particularly (2.25). We have already presented two algorithms for achieving this:

• Alg. 2.6, which chooses a subset of the subfunctions for the factorization, or

• Alg. 5.1, which merges subfunctions in order to capture more dependencies.

The result of these algorithms on the 2-D grid was already given in Sect. 5.1.2. They
are the factorizations (5.4) and (5.6), respectively.

The circular models that we consider are the bivariate circle which was already pre-
sented in Ex. 2.1 (p. 24) and in Sect. 3.4.5, and a trivariate circle. The trivariate circle is
similar to the bivariate circle, only that it contains sets of three variables, which overlap
by one variable. For this structure, the ADF is

f(x) =

n/2∑

i=1

fi(x2i−1, x2i, x2i+1) (6.126)

with the wraparound defined by xn+1 = x1. This gives the additive decomposition

S = {{X1, X2, X3}, {X3, X4, X5}, . . . , {Xn−3, Xn−2, Xn−1}, {Xn−1, Xn, X1}} . (6.127)

Alg. 2.6 constructs a factorization systems from these structures by leaving out one
dependency. It yields for the bivariate circle the factorization

p(x) = p(x1, x2)

n∏

i=3

p(xi|xi−1) (6.128)
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and for the trivariate circle

p(x) = p(x1, x2, x3)



n/2−1∏

i=2

p(x2i, x2i+1|x2i−1)


 p(xn|p1, pn−1) . (6.129)

Both of these factorizations leave out one connection in the end: For the bivariate
circle, the connection between x1 and xn is missing, and for the trivariate circle the
connection between x1 and xn−1 (because in (6.129), xn−1 depends only on xn−3 and
xn−2).

The subfunction merger Alg. 5.1 includes the missing connection and yields

p(x) = p(x1, x2)p(x3|x2) . . . p(xn|x1, xn−1) . (6.130)

for the bivariate circle and

p(x) = p(x1, x2, x3)

n/2−2∏

i=2

p(x2i, x2i+1|x2i−1)p(xn−2, xn−1|x1, xn−3)p(xn|p1, pn−1)

(6.131)
for the trivariate circle.

6.4.2. Construct a Region Graph: The Cluster Variation Method

Given a factorization system S, the task of building a region graph is not easy. Many
designs are possible, with different free energies, and different quality of approximation.

The CVM (cluster variation method) is a method to build a region graph (or poset),
given a set of maximal regions. It was introduced by Kikuchi [Kik51] and developed
in the field of statistical physics. It was adopted for GBP in [YFW02, MY02, TW03].
Given a set of maximal regions (like the sets in S), it adds the maximal intersections
of these regions to the region graph, then the intersections of these intersections, and so
forth.

If we have built the factorization system with Alg. 2.6, then we choose as the set
of maximal regions for CVM not the chosen sets S̃, but S, in order to capture more
dependencies. On the other hand, if Alg. 5.1 was applied, it is more advisable to use
S̃ for CVM, because it contains larger sets, and we are going to need the marginal
distributions for these larger sets.

CVM and the 2-D Grid

For the 2-D grid, with the maximal regions being the 2×2 blocks, the result of the CVM
is depicted in Fig. 6.7.

The maximal intersections of 2 × 2 blocks are blocks of two neighboring variables.
These can be intersected again, resulting in regions with only one variable. The 4-
variate regions have counting number 1, the 2-variate regions −1, and the univariate
regions 1. This region graph is presented in [YFW02, MY02, TW03].
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Figure 6.7.: The region graph for a rectangular grid, using 2× 2 blocks
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Figure 6.8.: The region graph for Kikuchi, pentavariate factorization
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The pentavariate factorization system constructed by Alg. 5.1 results in the region
graph depicted in Fig. 6.8.

This region graph is asymmetric, as the pentavariate factorization. The dotted edges
in Fig. 6.8 are superfluous: Due to the diagonal edges, they connect grandparent and
grandchild. However, they can also be included without changing the free energy. It
only changes the dynamics of the algorithm. Empirically it was found that including
these edges slightly speeds up stability and convergence, in that fewer iterations are
needed. On the other hand, additional messages to be computed result in a larger effort
per iteration.

CVM and the Circular Models

For the bivariate circle, we first apply CVM on the sets in (2.26). We find that the
intersections between the sets contain one variable each. For the merged factorization
(6.130), there is a slight difference owing to the trivariate factor {X1, Xn−1, Xn}. Here
again, the CVM adds univariate regions, except for the variable Xn, which appears only
in one region. The region graphs for n = 8 are depicted in Fig. 6.9.

x1, x2 x2, x3

x3, x4

x4, x5

x5, x6x6, x7

x7, x8

x8, x1 x1 x2 x3

x4

x5x6x7
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x3, x4

x4, x5

x5, x6x6, x7

x1, x7, x8

x1 x2 x3

x4

x5x6x7

Figure 6.9.: The region graphs for the bivariate circle. On the left without subfunction
join, on the right with subfunction join (x8 was joined with its parents x1

and x7).

For the trivariate circle, without subfunction join the result of the CVM is very similar
to the one of the bivariate circle: The intersections of the trivariate sets consist of single
variables, which are added as the small regions of the region graph. The factorization
with join gives a similar region graph, only there is one intersection with two variables,
{X1, Xn−1}. It is the only direct child of the region {X1, Xn−1, Xn}.

Fig. 6.10 shows all the different graphical models for the trivariate circle. For com-
parison, the triangulated moral graph and the junction tree for this structure (see Sect.
3.4) are also included, along with the region graphs derived for the factorization systems
without and with subfunction join.
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Figure 6.10.: The graphical models for a trivariate circle. (a) The moral graph; the
dashed edges are included for triangulation. (b) The junction tree. (c) The
region graph without subfunction join. (d) The region graph with subfunc-
tion join: Since x1 and x9 are connected, x1 was included in x7, x8, x9. The
intersection of this enlarged set with x1, x9, x10 gives the new region x1, x9.
In (c) and (d), all the maximal regions have counting number 1, all the
small regions −1.
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A heuristic rule that was pointed out in [YFW04] is that region graphs with
∑

R

cR = 1 (6.132)

give good approximations. We note that this is not fulfilled here: In the circular region
graphs the sum of all counting numbers is 0. Certainly, there is an easy way to remedy
this: triangulate the graph and go for the acyclic model which gives exact results (see
Sect. 3.4.5); and its counting number sum is 1, too. This is surely favorable in real-world
problems. Here we use the loopy models in order to gain insight into the behavior and
properties of the method.

6.4.3. GBP on the Region Graph

Having constructed the region graph, the subfunctions of the ADF are included in all
the regions which contain the required variables. At this point, we must choose a value
for the inverse temperature β.

The choice of β is vital. If β is too low, the probability of the maximum is low,
too. However, for too high values of β, convergence of the algorithm becomes more and
more difficult. It needs more iteration steps to converge. The beliefs (6.93) and messages
(6.102) depend exponentially on β, so for very large β they become numerically unstable.

It is possible to use a kind of “cooling schedule”. This means to start with a low β
and then use the result of GBP as the starting point for the next GBP run with a higher
value of β.

GBP is performed using (6.102) and (6.104), as described above. For our optimization
purpose, convergence of the GBP is not vital, and the resulting marginal distributions
do not have to be very exact, since we use them only for sampling points, not for further
calculations.

6.4.4. Calculate Marginals from the GBP Result and Sample Points

The construction of the region graph by CVM guarantees that for each si ∈ S̃ (be it
constructed without or with subfunction merging), there is a region R in the region
graph, such that Xsi ⊆ XR. So, we can compute the required conditional probability by

p(xbi |xci) =

∑
xR\xsi qR(xR)

∑
xR\xci qR(xR)

. (6.133)

The marginals are consistent with each other (this is ensured by GBP). They can be
combined to a distribution over the whole space

p(x) =
∏

i

p(xbi |xci) . (6.134)

This distribution approximates the Kikuchi approximation. Usually it does not fulfill
the RIP. If it does, the region graph is cycle-free and equivalent to a junction tree; in
this case the result is exact (see Theorems 3.9 and 6.5).

Using the factorization (6.134), points can be sampled similar to FDA (see Sect. 2.4.4).
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6.4.5. BKDA: Bethe Kikuchi Distribution Algorithm

We summarize this scheme in the form of an algorithm, the Bethe Kikuchi Distribution
Algorithm (BKDA), presented as Alg. 6.1.

Algorithm 6.1: BKDA – Bethe Kikuchi Distribution Algorithm

1 Given an additive decomposition S, construct a factorization system
S̃ using Alg. 2.6 or Alg. 5.1

2 From the larger one of S and S̃, generate a region graph (R, ER)
using CVM.

3 Choose an initial β and a step size ∆β

4 do {
5 Calculate the local region energies ER(xR) (6.34)

6 do {
7 Iterate message passing (6.102) and (6.104)

8 } until messages converged or maximal number of steps reached

9 Compute local beliefs qR(xR) (6.93)

10 for i = 1 to N do {
11 Sample Xi using the factorization system S̃

12 }
13 β ⇐ β + ∆β

14 } until stopping condition fulfilled

It is not a population-based optimization algorithm, because the population at a time
step is not used for generating the next graphical model. It is only used for the stopping
condition (see Sect. 2.2.5) and to find the points of highest fitness.

The objective is to find the most probable point of the Boltzmann distribution. This
objective is already mentioned in the introduction of [YFW04], but explicitly not pursued
there.

Note that taking the result for a smaller β as a starting point for a higher β does not
change the result of the algorithm, since the fixed points of GBP do not depend on the
initial values. But it leads to faster convergence, since the difference between the results
for β and for β + ∆β is small.

Since the result of GBP is only an approximation, and since the factorization distri-
bution is not exact either (see p. 25), it should not be expected that the maximum of
the Boltzmann distribution is also the most probable point to be sampled by BKDA.
Nevertheless, it can be expected to have a not too low probability popt. When sampling
N points, the probability to generate the optimum at least once is

pN (xopt) = 1− (1− popt)
N (6.135)

So, if the goal is to hit the optimum with a probability higher than 95 %, the sample
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size should be

N95% ≥
log 0.05

log(1− popt)
(6.136)

To give an idea about the magnitude, some values are given in Table 6.1. Roughly,
for popt = 10−i, the sample size should be 3 · 10i.

popt N95%

10−1 29
10−2 299
10−3 2995
10−4 29956
10−5 299572

Table 6.1.: Minimal sample size for hitting the optimum with probability 0.95

6.4.6. Related Work: Gibbs Sampling

In [San05], Gibbs sampling is used for generating points from a Kikuchi approximation.
It uses a random walker x, which is distributed according to the normalized Kikuchi
distribution (6.40) on time average.

This is achieved by flipping bits in the bit vector x according to its Kikuchi value.
One iteration of Gibbs sampling consists of the following steps:

• Choose randomly an i ∈ {1, . . . , n}

• Let x′ := x with bit i flipped

• With probability

pflip =
k(x′)

k(x) + k(x′)
(6.137)

flip the bit in x.

This stochastic process is a Markov chain [Rob96, Bré99], since the probability dis-
tribution at step t only depends on the value of x at step t − 1, not on the previous
steps. It was shown [San04, San05] that the values of x are distributed according to the
normalized Kikuchi distribution (6.40).

The difficulty of Gibbs sampling is that consecutive samples are dependent on each
other, so if the samples at all time steps are used, this gives a very biased sample. To
draw independent samples with this scheme, the algorithm must be run for a number of
time steps, the mixing time of the Markov chain, for each value we want to sample. In
many cases the mixing time is exponentially large. There are several methods to reduce
the mixing time.

BKDA does not depend on such issues, because it does not need an iterative algorithm
for sampling. Instead, we can sample directly from the factorization.
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6.5. Numerical Results

6.5.1. Objectives of the Experiments

The goal of the experiments is to answer the following questions:

• Is the probability distribution obtained by BKDA a good approximation of the
Boltzmann distribution?

• Is the probability to sample the optimum high? Thus, is the method applicable
for optimization?

• What is the dependency of the inverse temperature β?

• Under what circumstances does the algorithm converge? How many generations
does it need?

• What is the influence of different region graphs?

6.5.2. Definition of Circular Problems

To estimate the value of the concept, we first try it on simple circular problems. The
results are then compared with the correct solution obtained by the junction tree method
(see Sect. 3.4.5).

The following circular functions were investigated:

Deceptive 3-Circle: This function consists of blocks of three variables, on which the
following fitness is defined:

fDec3(x, y, z) = 4xyz − x− y − z + 2 =





2 ⇐⇒ x+ y + z = 0

1 ⇐⇒ x+ y + z = 1

0 ⇐⇒ x+ y + z = 2

3 ⇐⇒ x+ y + z = 3

(6.138)

These blocks are arranged on a circle, overlapping by one variable:

fDec3C(x) =
∑

i=1

n/2− 1fDec3(x2i−1, x2i, x2i+1) + fDec3(xn−1, xn, x1) (6.139)

where n, the number of variables, is even.

Iso-Circle: This is a bivariate function where all blocks except one have fitness

fordinary(xi, xi+1) =





n− 1 ⇐⇒ xi = xi+1 = 1

n ⇐⇒ xi = xi+1 = 0

0 otherwise

(6.140)
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Only the last block is defined differently, namely

fspecial(xn, x1) =

{
n ⇐⇒ xi = xi+1 = 1

0 otherwise
(6.141)

It is this last block which pulls the optimum of

fIso2C(x) =

n−1∑

i=1

fordinary(xi, xi+1) + fspecial(xn, x1) (6.142)

to xmax = (1, 1, . . . , 1). There is a local optimum at xloc = (0, 0, . . . , 0) with
fIso2C(xloc) = fIso2C(xmax) − 1 which appears optimal at all blocks expect for
the special one. This makes the Iso-Circle problem very difficult for evolutionary
optimization.

Zebra Circle: This bivariate problem is defined as the circular sum of the following
blocks:

fzebra(x, y) =





0.49 ⇐⇒ (x, y) = (0, 0)

1 ⇐⇒ (x, y) = (1, 0)

0 otherwise

(6.143)

The optimum of the problem (for even n) is at (0, 1, 0, 1, . . . , 0, 1). This problem
is not difficult for evolutionary optimization, but we will see that is scales badly
for methods like junction tree sampling or BKDA, because the probability of the
maximum is rather small.

6.5.3. Results on Circular Problems

In Table 6.2, for the three circular problems the probabilities of the optimum are depicted
for different values of β. The results of GBP without or with subfunction join are
compared with the exact values calculated by the junction tree method.

We notice that for the deceptive and zebra circle the approximation is very good. The
factorization with join gives a slight improvement. Comparison with the exact solution
obtained with the junction tree method shows only little deviance in the probability of
the optimum.

For the zebra problem, the optimum becomes very improbable. Nevertheless, it is the
most probable point in the search space; but in this case sampling is a bad optimization
method. It is more favorable to either use a method to calculate the most probable
point or to prefer an EDA which does not depend on the probability, e. g. FDA with
truncation selection.

We chose the zebra circle to investigate the dependency of β. The results are depicted
in Fig. 6.11. For β → ∞, the probability of an optimum goes to 0.5, because there are
two optima, 010101 . . . and 101010 . . .

The results seem quite satisfying. In both variants, the optimum will be found with
a high probability for large β, although the curves depart from the correct solution
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Problem Size Without join With join Junction tree

Deceptive Circle 10 0.580615 0.593571 0.596293
Deceptive Circle 20 0.349916 0.357724 0.363163
Deceptive Circle 30 0.210882 0.215588 0.21889
Deceptive Circle 40 0.127091 0.129927 0.131918
Deceptive Circle 50 0.076593 0.078302 0.0795022

Iso-Circle 10 0.9996 0.9996 0.731008
Iso-Circle 20 1 1 0.731059
Iso-Circle 30 1 1 0.731059
Iso-Circle 40 1 1 0.731059
Iso-Circle 50 1 1 0.731059

Zebra Circle 10 0.00133647 0.00250266 0.00255636
Zebra Circle 20 9.28684e-06 6.47017e-06 6.53497e-06
Zebra Circle 30 2.37405e-08 1.63548e-08 1.67057e-08
Zebra Circle 40 6.06892e-11 4.18087e-11 4.27058e-11
Zebra Circle 50 5.70751e-14 1.06878e-13 1.09171e-13

Table 6.2.: Results of BKDA on circular problems. Probability of sampling the known
optimum using the factorization. β = 1.
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Figure 6.11.: Probability of the optimum and number of steps until convergence (with
α = 0.5) for the zebra circle of size 50, for varying β.
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Figure 6.12.: Evolution of the probability of the optimum given by the factorization, for
the Iso-Circle problem with n = 10, β = 1, α = 0.5.

found with the junction tree. As expected, the version with join gives a slightly better
probability than the version without. This little gain was to be expected, since there
was only one edge added.

The number of required generations until convergence grows linear in β for the normal
region graph and somewhat quadratically for the joined one.

The result for the Iso-Circle Problem is very different. The deciding difference is that
here there is one local function different from the others, which has an enormous influence
on the total probability. The information from this region must be passed on to the other
regions. As was already pointed out in [Pea88], it is possible that by passing messages
in circles, evidence is counted more than once, thus overestimated. An indication of this
phenomenon can be seen in Fig. 6.12: The probability of the optimum starts rather low,
then increases rapidly. We also note that convergence is much slower than for the two
other problems: For n = 10, β = 1, and α = 0.5, the Iso-Circle run depicted in Fig. 6.12
takes 331 iterations (304 with join) to converge, whereas the deceptive circle with the
same parameters takes 37 and the zebra circle 16 iterations.

We further investigate this problem on a larger circle. For n = 100, Fig. 6.13(a)
depicts the probability of the optimum within time; we can see that it rises to 1 with
some oscillation between step 2000 and 3000. On the right of Fig. 6.13, bit 40 has been
picked for investigating the evolution of the messages.

We note that in the following investigations all messages are normalized to sum up to
one. The update equation of GBP in this special case is similar to (6.123):

mτ,upd
i−1,i→i(xi) =

∑

xi−1

eβfi(xi−1,xi)mτ−1
i−2,i−1→i−1(xi−1) (6.144)
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Figure 6.13.: (a): Evolution of the probability of the optimum given by the factorization,
for the Iso-Circle problem with n = 100, β = 1, α = 0.5. (b): Evolution of
the message m39,40→40(X40 = 1) during the same run.

with fi according to (6.141) or (6.140), respectively.
The messages from left to right mi−1,i→i are fed through the circle just as the mes-

sages from right to left mi,i+1→i, without interacting with each other. Since the circle
is symmetric and so both messages are identical, we concentrate on the left-to-right
messages.

Fig. 6.13(b) shows m39,40→40(X40 = 1), the message that region {40} received from
region {39, 40}. We recall that the region which pulls the beliefs to 1 is {0, 99}. After
about 200 steps, the information from there has reached bit 40. The message rises to 1,
but then drops to 0 again. This oscillation repeats with a frequency of 200 steps, until
its amplitude decreases and the message stays at 1.

The messages that all bits receive from the left are shown in Fig. 6.14, as snapshots at
some steps during the run. The messages at the left are all 1, the messages on the right
0, so we only see the borderline between these blocks. It proceeds to the right during
the run, with the exception that the line for step 1500 is left of the line for step 1000.
This coincides with Fig. 6.13(b), which also shows for the message to bit 40 a maximum
at step 1000 and a minimum near step 1500.

The borderline reaches the middle, bit 50, between steps 2000 and 3000. This is
exactly the time when the probability of x = (1, 1, 1, . . . , 1) jumps to one (showing
the same oscillation with a frequency of 200 steps). Remember that exactly the same
messages have been sent from region {0, 99} to the right and to the left. So in step
2000-3000, the two waves of 1-messages meet at bit 50. We recall that in this special
case, (6.93) reads

qi,i+1(xi, xi+1) ∝ eβfi(xi,xi+1)mi−1,i→i(xi)mi+1,i+2→i+1(xi+1) (6.145)

qi(xi) ∝ mi−1,i→i(xi)mi,i+1→i(xi) (6.146)

So if one of the messages is very near to m(Xi = 1) = 1, this affects the beliefs in the
same way.
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Figure 6.14.: Snapshots of the messages mi−1,i→i(Xi = 1) during the same run as in Fig.
6.13 (Iso-Circle, n = 100, β = 1, α = 0.5). On the left, the messages quickly
converge to 1, and the very clear-cut border between messages near 1 and
near 0 slowly moves to the right. There is a slight oscillation (note that
the borderline retreats between step 1000 and 1500). Convergence is not
reached before the borderline has reached the far side.
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Figure 6.15.: The messages for the first 1500 steps of the Iso-Circle problem with n =
100, β = 1, α = 0.5. 0 is black, 1 is white. The oscillation can be recognized
clearly. Abscissa is steps, ordinate bit index

The oscillation of the messages can be contemplated again in Fig. 6.15. This image
shows the value of all messages for the first 1500 iteration steps in greyscales, 0 being
black and 1 white. The white wave of messages can be seen oscillating with decreasing
amplitude. Recall that it reaches the far side of the bit vector in step 14447, so we see
about 10 % of the whole run.

6.5.4. Grid Problems

Grid-like problems are a more formidable task. They contain much more cycles. We
have applied the method on the Deceptive-4-Grid problem (5.2), a grid-like Iso problem,
and on random instances of the Ising ground state problem.

We have used the factorization using 4-blocks and the pentavariate from Sect. 5.1.2.
For comparison, sometimes the results of the exact junction tree method are included,
too. This is only possible for small problems, since for an m×m grid the clique size of
the junction tree is 2m (two consecutive rows).

Size 4-Grid Penta-Grid Junction tree

16 0.918358 31 0.918454 32 0.91842
25 0.918748 47 0.918809 44 0.918813
36 0.917477 37 0.917537 38 0.91754
49 0.916179 33 0.91624 36 0.916243
64 0.914882 32 0.914943 36 0.914946
81 0.913587 32 0.913648 36 0.913651
100 0.912294 32 0.912354 36 0.912357
121 0.911002 32 0.911062 36 0.911065

Table 6.3.: Results of BKDA on Deceptive-4-Grid. Depicted is the probability of sam-
pling the known optimum using the factorization and the number of steps
until convergence, with the 4-grid and pentavariate grid model, and the exact
junction tree probability. β = 1, α = 0.5.

The results for the deceptive grid are presented in Table 6.3. It can be noted that the
probability of the optimum is almost independent of the grid size. The problem is very
well-behaved. Both factorizations can reproduce the probability of the optimum almost
exactly; the pentavariate factorization is slightly more accurate, but requires slightly
more iterations. The number of iterations is independent of the grid size.
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Size 4-Grid Penta-Grid Junction tree

16 0.575591 41 0.575591 50 0.575591
25 0.576116 76 0.576116 107 0.576116
36 0.576118 128 0.576117 185 0.576117
49 0.576117 201 0.576117 330 0.576117
64 0.576117 305 0.576117 506 0.576117
81 0.576117 428 — — 0.576117
100 0.576117 599 — — 0.576117
121 — — — — 0.576117

Table 6.4.: Results of BKDA on Iso-4-Grid. Depicted is the probability of sampling
the known optimum using the factorization and the number of steps until
convergence, with the 4-grid and pentavariate grid model, and the exact
junction tree probability. “—” denotes divergence. β = 1, α = 0.5.

The Iso-Grid problem is defined on 2× 2 blocks, too. The value of the block subfunc-
tions depends only on u, the sum of the four bits in the block. For the m×m grid, let
k = (m− 1)2 be the total number of blocks. Then the subfunction is for the upper left
corner

fspecial(u := xi,j + xi+1,j + xi,j+1 + xi+1,j+1) =

{
k ⇐⇒ u = 4

0 otherwise
(6.147)

and for all other blocks

fordinary(u := xi,j + xi+1,j + xi,j+1 + xi+1,j+1) =





k − 1 ⇐⇒ u = 4

k ⇐⇒ u = 0

0 otherwise

(6.148)

The effect is the same as in the Iso-Circle problem: Almost everywhere on the grid the
local optimum 000 . . . 0 is optimal, but there is one special block which pulls the overall
optimum to 111 . . . 1. The results on this function are given in Table 6.4.

For this problem, the probability of the optimum is identical for all all but the smallest
grids (where the boundary has some influence). Also, both grids result in factorizations
which reproduce exactly the correct probability of the optimum. In this case, the conver-
gence slows down with the grid size, and for large grids, the method does not converge
any more. This is again due to the subfunctions being dependent on the grid size. There-
fore, the Boltzmann distribution for a constant β becomes more cliffy, and the iteration
is more inclined to fail. A possibility to solve this problem is to scale the function or
reduce β equivalently.

6.5.5. Results on the Ising Model

For application of the method on the Ising spin glass problem (see Sect. 6.1.1), we have
generated ten random instances each of size 7×7, 10×10, and 15×15. They are named
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β = 1 β = 10

Seed 4-Grid Penta-Grid J. Tree 4-Grid Penta-Grid J. Tree

1 4.07061e-06 8.52758e-06 1.17834e-05 0.18868 0.188618 0.188593
2 2.69087e-06 7.40403e-06 1.19999e-05 0.251567 0.19691 0.21759
3 8.02989e-06 1.47073e-05 2.151e-05 0.249284 0.249289 0.24929
4 9.09636e-07 2.11718e-06 3.25675e-06 0.364167 0.395517 0.41582
5 3.6114e-06 1.25921e-05 1.97924e-05 0.41223 0.415024 0.41436
6 2.47283e-07 4.28839e-07 6.74e-07 0.00225527 0.00230321 0.208269
7 1.63541e-06 5.15511e-06 7.14546e-06 0.483804 0.488443 0.488281
8 3.68671e-06 5.90075e-06 9.35291e-06 0.0845613 0.0849755 0.254494
9 3.46514e-07 1.17791e-06 1.67017e-06 0.127583 0.12507 0.125453

10 4.54769e-06 8.20245e-06 1.09055e-05 0.262239 0.262247 0.360243

Table 6.5.: Results of BKDA on Ising instances of size 7× 7. Depicted is the probability
of sampling the known optimum using the factorization, with the 4-grid and
pentavariate grid model, and the exact junction tree probability. β = 1,
α = 0.5.

“rhm s”, where m is the grid size and s ∈ {1, . . . , 10} the random seed.1 Their solutions,
verified by the Cologne spin glass server [LPHJ03]2, are given in Appendix A.

We now present the probabilities of an optimum, as calculated using our factorization
on the region graph. Keep in mind that the Ising problem is symmetrical. So in the best
case, the probability of an optimum tends to 0.5; the inverse configuration then gets the
other half of the probability.

Table 6.5 gives the results of our method on the instances of size 7×7. Here we observe
first that varying β is crucial for the success of the algorithm. For all instances, the
probability of sampling the optimum is much higher for β = 10. Also, the pentavariate
grid gives an improvement over the 4-grid, sometimes slight, sometimes quite evident.

An exception is instance 2, where for β = 10 the pentavariate grid performs worse
than the conventional 4-grid. But note that the pentavariate grid is sensitive to rotation
and mirroring. Other rotations of the grid are much better.

What strikes the eye are instances 6 and 8. Here the distance to the true probability
calculated using the junction tree is quite large. Instance 8 is not very severe: With β =
100, the optimum has a probability of 0.492639. But in instance 6, with increasing β the
probability of the optimum stays low. It is not the case that the probability concentrates
on another point: The most probable point has sampling probability 0.0894244 and
fitness 30.0934 (whereas the optimum’s fitness is 31.4087). In this instance, increasing
β does not help. For β = 100, the optimum has a probability of 1.46195 · 10−16 , whereas
the most probable point has a probability of 0.0312451 and fitness 29.9903. There are
many cases like this, in which the GBP result does not focus on one point (like the
theoretical Boltzmann distribution), but the distribution – and thus also the sampled

1The random Ising instances are available at http://www.hoens.net/robin/ising for download.
2http://www.informatik.uni-koeln.de/ls juenger/research/sgs/sgs.html
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Figure 6.16.: Probability of the optimum for the Ising instance rh7 6 (instance 6 of size
7× 7) for varying β (pentavariate grid).

population – stays dispersed.

In Fig. 6.16, this instance is investigated in detail. It can be seen that the probability
reaches a maximum at β = 6, then declines again.

This behavior can be observed for the larger instances, too. The results for the in-
stances of size 10 × 10 and 15 × 15 are depicted in the Tables 6.6 and 6.7. For 15 × 15
the junction tree method was too expensive and no longer applicable.

For the large grids the probability of the optimum calculated by our method is very
different from the true probability computed using the junction tree. But for optimiza-
tion, it is not necessary to reproduce this probability; the idea is to sample from the
factorization distribution. And for this matter, all the grids of size 10 × 10 produce a
probability which is high enough to find the optimum by sampling mostly 100 times,
sometimes 1000 times. For the 15× 15 10000 samples generally suffice.

Table 6.8 shows the result of some BKDA runs. GBP was run only for 100 iterations,
because then the probabilities are already near the final values. The sample results are
consistent with the probabilities in Table 6.6 and 6.7. Only the instances rh10 9, rh15 2,
rh15 8, and rh15 10 did not sample the global optimum. But of these, only for rh15 8
the optimum would not be found by using the tenfold population (which is not very
expensive). However, the found maximum is not very much worse.

The dependence on β for the Ising instances is depicted in Fig. 6.17. Here again,
the instances behave very differently. For some easy instances, the probability rises
constantly, for others it reaches a maximum and then drops again. For example, the
difficult instance rh15 8 can be solved easier with β = 5.

127



6. The Bethe-Kikuchi Approximation and Loopy Belief Models

β = 1 β = 10

Seed 4-Grid Penta-Grid J. Tree 4-Grid Penta-Grid J. Tree

1 1.56227e-13 5.53463e-13 1.25128e-12 0.0158715 0.0143937 0.0598039
2 1.33401e-12 1.41467e-11 4.8858e-11 0.00577445 0.0129105 0.0988492
3 5.55311e-12 2.56564e-11 5.95572e-11 0.133502 0.134356 0.144596
4 8.73883e-12 3.66898e-11 7.73724e-11 0.0114817 0.0221649 0.107321
5 7.42522e-12 2.4684e-11 5.21087e-11 0.0281239 0.0358553 0.0760384
6 6.29962e-12 3.10583e-11 9.27718e-11 0.0791284* 0.0794609* 0.21017
7 2.75456e-11 1.16145e-10 2.12433e-10 0.196065 0.220916 0.343579
8 3.13778e-12 1.33932e-11 3.28464e-11 0.000738162 0.000740625 0.187813
9 5.05162e-13 4.72522e-12 1.00587e-11 3.60448e-05 0.000253353 0.106966

10 3.26034e-11 2.7924e-10 4.52043e-10 0.000203547 0.0877621 0.219027

Table 6.6.: Results of BKDA on Ising instances of size 10×10. Depicted is the probability
of sampling the known optimum using the factorization, with the 4-grid and
pentavariate grid model, and the exact junction tree probability. β = 1,
α = 0.5 except *: α = 0.1, convergence is unstable here.

β = 1 β = 10

Seed 4-Grid Penta-Grid 4-Grid Penta-Grid

1 2.86264e-26 6.91698e-24 3.70955e-05 0.00268086
2 4.49315e-26 2.44012e-23 2.8e-08 5.4562e-05
3 4.88295e-26 6.84016e-24 3.86662e-06 0.000147852
4 1.13528e-26 1.81016e-24 1.07569e-06 2.47108e-05
5 7.86338e-27 4.43875e-24 1.66141e-07 3.52817e-05
6 2.36921e-26 2.07336e-23 2.1235e-08 0.000383189
7 1.13156e-25 4.81003e-23 0.120241 0.123896
8 2.52638e-25 1.31434e-23 4.32802e-10 5.93849e-10
9 3.17878e-26 4.36585e-24 1.6629e-05 0.000109743

10 2.77733e-27 1.35195e-25 6.52958e-06 3.25408e-06

Table 6.7.: Results of BKDA on Ising instances of size 15×15. Depicted is the probability
of sampling the known optimum using the factorization, with the 4-grid and
pentavariate grid model. β = 1, α = 0.5.
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10 × 10, N = 1000 15× 15, N = 10000

Seed avg max opt avg max opt

1 64.45 66.00 66.00 162.51 165.43 165.43
2 70.91 73.36 73.36 165.60 170.91 171.00
3 71.90 72.70 72.70 164.70 167.66 167.66
4 70.77 72.52 72.52 161.96 164.47 164.47
5 71.59 73.54 73.54 164.94 168.54 168.54
6 71.41 72.80 72.80 166.70 168.82 168.82
7 73.50 73.98 73.98 168.76 169.82 169.82
8 69.80 70.73 70.73 165.57 168.46 169.02
9 67.39 70.60 71.00 162.04 166.84 166.84

10 75.44 76.21 76.21 159.12 161.85 162.12

Table 6.8.: Result of sampling from BKDA, pentavariate grid, β = 10, after 100 steps
of GBP with α = 0.5. Sample size N = 1000 for the 10 × 10 instances,
N = 10000 for 15 × 15. Given is the average of the energy in the sample,
the maximum energy and the global optimum. The runs that missed the
optimum are emphasized.
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Figure 6.17.: Probability of the optimum for the Ising instances of size 10×10 and 15×15
for varying β. Pentavariate grid, α = 0.5.
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FDA 4-grid MEFDA 4-grid FDA 5-grid MEFDA 5-grid
Seed SR Gen Sdv SR Gen Sdv SR Gen Sdv SR Gen Sdv

1 92 7.45 1.13 98 6.90 0.84 81 7.11 0.96 100 6.95 0.85
2 88 7.15 0.88 96 7.11 0.83 81 7.23 0.98 98 6.98 1.06
3 99 6.67 0.83 100 6.28 0.65 97 6.63 0.68 100 6.37 0.75
4 87 8.09 1.13 94 7.54 1.00 79 7.59 1.01 99 7.65 0.97
5 79 7.65 1.23 85 7.53 1.35 83 7.16 1.03 80 7.54 1.21
6 75 7.99 1.17 85 8.29 1.21 66 7.98 1.18 89 8.28 1.24
7 78 7.44 0.83 82 7.23 0.99 93 7.11 0.88 77 7.12 1.11
8 79 7.24 1.11 81 7.17 0.82 69 7.33 1.11 90 7.26 1.07
9 79 8.42 1.25 89 8.42 1.17 87 7.44 1.14 90 8.31 1.10

10 96 7.34 1.05 95 7.14 0.94 92 7.36 1.15 97 7.21 0.87

Table 6.9.: Results of FDA and MEFDA on the 7 × 7 Ising instances. All runs used
the tetravariate or pentavariate grid factorization. MEFDA calculates the
large marginals from the bivariates using IPF. SR gives the successful runs
out of 100, Gen the average generations until success and Sdv the standard
deviation of the generations until success. 100 runs, population size N = 400,
truncation threshold τ = 0.3.

6.5.6. Results of EDA on the Ising Instances

Table 6.9 shows the results of FDA and MEFDA on the Ising instances of size 7× 7. To
have a fair comparison with BKDA, these algorithms also use the tetra- and pentavariate
grids.

Without this information, the conventional FDA (using the subfunction choice algo-
rithm Alg. 2.6) uses a spanning tree of bivariate marginals and performs very badly;
FDA with subfunction merge (Alg. 5.1) and MEFDA (Alg. 5.2) use mostly trivariate
marginals and perform significantly worse than the tetra- and pentavariate versions.

The table shows that FDA and MEFDA using the same factorization structure as
BKDA are able to solve the given instances, too. On most instances MEFDA pentavari-
ate is the most successful variant, but the difference is not very large. They need between
3000 and 4000 fitness function evaluations.3

BKDA needs much less fitness evaluations. Even the difficult instance rh7 6 can be
solved by sampling about 100 individuals, using an appropriate β (see Fig. 6.16). On the
other hand, BKDA must perform the GBP routine, which needs no function evaluations
(as soon as the region energies are computed), but requires some effort, too.

The Tables 6.10 and 6.11 give the results of FDA and MEFDA on the 10 × 10 and
15 × 15 instances. Of course, these instances need a much higher population size and
more generations to converge. This results in a higher number of required function

3The number of function evaluations is N +g(N −1), where g is the number of generations; the first N
for the initial population, and in the following generations N − 1 each, since in elitist runs the best
individual remains untouched.
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FDA 4-grid MEFDA 4-grid FDA 5-grid MEFDA 5-grid
Seed SR Gen Sdv SR Gen Sdv SR Gen Sdv SR Gen Sdv

1 17 14.35 1.27 19 14.53 1.50 16 14.00 1.37 15 14.40 1.18
2 10 15.10 2.38 9 15.22 1.64 13 13.46 1.33 9 15.33 1.80
3 12 13.50 1.51 13 13.31 1.18 13 12.15 0.99 13 13.08 1.26
4 14 13.29 1.27 12 13.83 1.40 13 12.62 1.66 10 13.70 0.82
5 20 13.05 1.43 20 13.50 0.95 20 12.55 1.05 20 13.45 1.50
6 15 12.67 0.82 10 14.10 1.91 19 11.89 0.88 17 14.24 1.89
7 19 12.05 1.08 20 12.25 0.79 18 11.28 1.18 19 12.47 0.96
8 10 12.60 1.26 13 12.62 1.04 14 12.29 0.91 16 12.88 1.20
9 4 14.75 0.50 6 14.67 1.51 18 12.72 1.02 6 14.33 0.82

10 14 13.21 0.97 15 12.87 1.60 16 11.81 1.28 14 13.14 1.23

Table 6.10.: Results of FDA and MEFDA on the 10 × 10 Ising instances. Values and
parameters are the same as in Table 6.9, except for 20 runs and population
size N = 1000.

FDA 4-grid MEFDA 4-grid FDA 5-grid MEFDA 5-grid
Seed SR Gen Sdv SR Gen Sdv SR Gen Sdv SR Gen Sdv

1 6 23.00 1.10 8 24.88 1.25 10 19.70 1.25 9 25.22 1.30
2 8 24.00 1.20 5 26.80 0.84 14 20.64 0.63 5 26.80 1.64
3 5 23.00 1.22 12 25.50 1.45 17 20.47 1.07 11 25.36 1.29
4 1 23.00 — 0 — — 0 — — 2 26.00 0.00
5 0 — — 0 — — 20 20.95 0.94 0 — —
6 0 — — 0 — — 9 21.22 1.56 0 — —
7 11 23.00 2.05 11 25.36 2.91 20 19.75 0.85 10 25.10 0.99
8 7 21.57 0.98 4 24.50 0.58 4 20.25 0.96 2 25.00 0.00
9 19 23.59 1.43 16 27.13 1.59 15 20.47 0.83 11 26.91 0.70

10 9 22.78 0.83 19 24.16 0.83 17 21.06 0.97 15 24.73 1.49

Table 6.11.: Results of FDA and MEFDA on the 15 × 15 Ising instances. Values and
parameters are the same as in Table 6.9, except for 20 runs and population
size N = 6000.
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evaluations (10000 to 15000 for 10×10 and around 150000 for 15×15). Both are higher
than the values of BKDA; Tables 6.6 and 6.7 or Fig. 6.17 show that BKDA can sample
the optimum of the instances with 100 to 1000 trials for 10× 10 and with 1000 to 10000
trials for 15×15. This comparison indicates that both methods (EDA and BKDA) scale
similarly with the grid size.

Whereas on the 7 × 7 grid, MEFDA performs better than FDA on most instances,
for large problems and correspondingly large population sizes it loses its advantage.
Especially for 15 × 15, FDA with the pentavariate grid structure is the clear winner.
For the large grids only 20 runs were performed, which makes the results more sensitive
to fluctuation. The differences of the algorithms on instance rh15 9, for example, are
not significant. But on most of the instances FDA with pentavariate grid is the most
successful, most clearly on instance rh15 5.

The instances are of very different complexity. Instances rh15 4 and rh15 8 are very
difficult for FDA. For BKDA, the most difficult instances are rh15 8 and rh15 10. On
this grounds it cannot be judged definitely whether a hard instance for FDA is also hard
for BKDA or not.

In Sect. 8.4, hybrid EDA with local search are applied on these Ising spin glass in-
stances.

6.6. The Concave Convex Procedure

The Concave Convex Procedure (CCCP) [Yui02] is a variant of GBP. It also leads to
a stationary point of the free energy. CCCP is slower than GBP, but unlike GBP it is
guaranteed to converge. In the BKDA, CCCP can readily replace GBP when the need
arises.

6.6.1. Convex and Concave Lagrangian

We now derive the CCCP update procedure, following [Yui02]. The starting point is
a Lagrangian similar to (6.86). The only difference is that in GBP (the parent to
child algorithm) consistency of neighboring regions is ensured by the more sophisticated
consistency lemma (Lemma 6.8), whereas CCCP uses the straightforward consistency
condition (6.73) which leads to the Lagrangian terms

λPR(xR)


 ∑

xP \xR
qP (xP )− qR(xR)


 . (6.149)
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The Lagrangian to be minimized is

L =
∑

R∈R
cR

(∑

xR

qR(xR)βER(xR) +
∑

xR

qR(xR) log qR(xR)

)

+
∑

R∈R
γR

(
1−

∑

xR

qR(xR)

)
+

∑

(P,R)∈ER

∑

xR

λPR(xR)


 ∑

xP \xR
qP (xP )− qR(xR)




(6.150)

The basic idea of CCCP is now to split up L in a convex and a concave part. The
problematical part is the entropy term: For regions with cR > 0, the entropy term is
convex, for regions with cR < 0 it is concave. The average energy and the constraints
are linear in the qR, so it does not matter where we put them.

To avoid an awkward case separation into convex and concave regions, we set

cmax = max
R

cR (6.151)

and use this definition to split up L into a convex part

Lvex =
∑

R∈R
cmax

(∑

xR

qR(xR)βER(xR) +
∑

xR

qR(xR) log qR(xR)

)

+
∑

R∈R
γR

(
1−

∑

xR

qR(xR)

)
+

∑

(P,R)∈ER

∑

xR

λPR(xR)


 ∑

xP \xR
qP (xP )− qR(xR)




(6.152)

and a concave part

Lave =
∑

R∈R
(cR − cmax)

(∑

xR

qR(xR)ER(xR) +
∑

xR

qR(xR) log qR(xR)

)
(6.153)

It is easy to see that L = Lvex + Lave.

6.6.2. Outer and Inner Loop

GBP equates the local beliefs of the regions to derive update equations for the messages
mτ
P→R(xR). CCCP updates the beliefs and messages in turn. It consists of an inner

loop in which the messages are updated until convergence, and an outer loop in which
the current estimates of the beliefs are updated. The inner loop uses the iteration index
τ (like GBP), and the outer loop uses the iteration index ξ.

133



6. The Bethe-Kikuchi Approximation and Loopy Belief Models

The Outer Loop

For the outer loop iteration the ansatz is

∇Lξ+1
vex +∇Lξave = 0 (6.154)

where ∇L denotes4 the vector of the partial derivatives of L with respect to the beliefs
qR(xR). These derivatives are

∂Lvex

∂qR(xR)
= cmax (βER(xR) + log qR(xR) + 1)

− γR −
∑

P |(P,R)∈ER
λPR(xR) +

∑

C|(R,C)∈ER
λRC(xC) (6.155)

and
∂Lave

∂qR(xR)
= (cR − cmax) (βER(xR) + log qR(xR) + 1) . (6.156)

Inserting (6.155) and (6.156) into (6.154) yields

cmax

(
βER(xR) + log qξ+1

R (xR) + 1
)
− γR −

∑

P |(P,R)∈ER
λPR(xR)

+
∑

C|(R,C)∈ER
λRC(xC) + (cR − cmax)

(
βER(xR) + log qξR(xR) + 1

)
= 0 . (6.157)

Solving this for qξ+1
R (xR) gives the update equations for the beliefs in the outer loop:

qξ+1
R (xR) = qξR(xR)

cmax−cR
cmax exp


− cR

cmax
βER(xR) +

γR − cR
cmax

+
1

cmax


 ∑

P |(P,R)∈ER
λPR(xR)−

∑

C|(R,C)∈ER
λRC(xC)




 (6.158)

For the regions with cR = cmax the previous belief qξR(xR) disappears in this equation.

Like in GBP, we introduce messages

mPC(xC) := e
1

cmax
λPC(xC) (6.159)

and choose γR appropriately for normalization, which changes the update equation to

qξ+1
R (xR) ∝ qξR(xR)

cmax−cR
cmax e−

cR
cmax

βER(xR)

∏
P |(P,R)∈ERmPR(xR)

∏
C|(R,C)∈ER mRC(xC)

(6.160)

4∇: nabla
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The Inner Loop

The inner loop update equation for the messages can be derived by inserting (6.160) into
the consistency equation (6.73):

∑

xP \xR
qP (xP ) = qR(xR) (6.161)

∑

xP \xR
qξP (xP )

cmax−cP
cmax e−

cP
cmax

βEP (xP )

∏
Q|(Q,P )∈ERmQP (xP )

∏
C|(P,C)∈ERmPC(xC)

= qξR(xR)
cmax−cR
cmax e−

cR
cmax

βER(xR)

∏
Q|(Q,R)∈ERmQR(xR)

∏
C|(R,C)∈ER mRC(xC)

(6.162)

The message mPR(xR) is independent of the summation variables xP \ xR, so it can
be extracted from the sum. It appears in the denominator on the left side of (6.162) and
in the numerator on the right side. This allows to solve the equation for this message:

mPR(xR)2 =

∑

xP \xR
qξP (xP )

cmax−cP
cmax e−

cP
cmax

βEP (xP )

∏
Q|(Q,P )∈ERmQP (xP )

∏
C 6=R|(P,C)∈ERmPC(xC)

qξR(xR)
cmax−cR
cmax e−

cR
cmax

βER(xR)

∏
Q6=P |(Q,R)∈ERmQR(xR)
∏
C|(R,C)∈ER mRC(xC)

(6.163)

With the abbreviations

gR(xR) := qξR(xR)
cmax−cR
cmax e−

cR
cmax

βER(xR) (6.164)

hR(xR) :=

∏
Q|(Q,R)∈ERm

τ
QR(xR)

∏
C|(R,C)∈ERm

τ
RC(xC)

(6.165)

we can turn the fixed point equation (6.163) into the update equation

mτ,upd
PR (xR) = mτ

PR(xR)

√∑
xP \xR gP (xP )hP (xP )

gR(xR)hR(xR)
(6.166)

For the iteration of this formula, the same considerations as in Sect. 6.3.4 apply. Like
in GBP, sequential update of the messages converges better than parallel update. In
[Yui02], linear damping (6.103) with α = 0.1 was used, but geometrical damping (6.104)
works just as well.

6.6.3. Convergence of CCCP

If the inner loop (6.166) is iterated until convergence between single steps of the outer
loop (6.160), convexity and concavity guarantee the algorithm to converge to a stationary
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6. The Bethe-Kikuchi Approximation and Loopy Belief Models

point of the free energy. In real application, it is not necessary to run the inner loop
until convergence. In our experiments, we performed between five and ten steps of the
inner loop before each update of the beliefs in the outer loop.

For our benchmark functions, we have always observed that CCCP converges to the
same stationary point as GBP.
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Figure 6.18.: Evolution of the probability of the optimum for the spin glass instance
rh10 6, n = 100, β = 10, using the pentavariate grid. Given are the results
of GBP and CCCP, both with geometrical damping α = 0.3. For CCCP,
one outer loop iteration after 10 inner loop steps. CCCP converges after
6647 steps.

Fig. 6.18 gives an example where CCCP is helpful. In Table 6.6 we have seen that the
Ising spin glass instance rh10 6 is unstable with β = 10. Fig. 6.18 shows that GBP does
not converge on this instance, but oscillates heavily. CCCP converges to the stationary
point given in Table 6.6.

6.7. Summary

This chapter presented the use of loopy belief models in order to compute Boltzmann
distributions. This research is inspired by statistical physics, so we first introduced the
Ising spin glass model. Our fitness function is identified with a Hamiltonian energy. In
this context, the minimum relative entropy principle is equivalent to minimization of the
Gibbs free energy.

The loopy belief model used is the region graph, which can be understood as a gen-
eralization of the junction tree. We demonstrated how junction trees are equivalent
to cycle-free region graphs. Generalized belief propagation (GBP) is an algorithm for
minimizing the approximate Gibbs free energy within a region graph.
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6.7. Summary

The new idea is to combine this technique with a factorization for the purpose of
optimization. This is not an EDA, because it does not use populations and generations.
Instead, the Boltzmann distribution is directly approximated, and its marginals are used
for the factorization. The role of the inverse temperature is recognized and investigated.

The performance of this technique on circular and grid-like benchmark problems is
analyzed. This gives insight into the dynamics of the generalized belief propagation
algorithm and the suitability of the technique for solving Ising spin glass instances.

Sometimes GBP has difficulties to converge. In this case it can be replaced by a
concave convex procedure (CCCP) which is more stable.
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7. Learning Graphical Models For EDA

In this chapter we consider the topic of building a probability model – particularly a
Bayesian network – from a given set of data. When there is no additive composition
(see Sect. 2.4.4) known for the given problem, the dependencies of the variables can be
learned from the data set. In the context of EDA, learning a Bayesian Network from
the selected population and then sampling from this model are the basic steps of LFDA
(Learning FDA, [MM99]).

Usually, Bayesian networks are learned using the “score and search” paradigm. This
means that there is a score which measures the quality of the network and a local search
which finds within a neighborhood the network which maximizes the score. In Sect. 7.1
we derive the BIC/MDL score and the hillclimber used in the LFDA.

Then some numerical results are presented which serve to prove that the algorithm
is able to learn a correct structure. The success depends particularly on the population
size. An analysis of the BIC/MDL space gives insight into the behavior of the learning
algorithm.

7.1. Learning Graphical Models

In many optimization problems, an ADF structure of the objective function is known.
But often, we have no structure information. Then an EDA can either use a pre-defined
fixed structure (e. g. UMDA can be seen as FDA using an empty Bayesian network),
or it uses the selected population to generate a Bayesian network. The network should
capture the structure information, the independencies contained in the data. Generating
a Bayesian network from data is called learning.

The intrinsic assumptions about the data made by this approach should be empha-
sized: We assume the selected population to originate from a Boltzmann distribution

p(x) =
1

Z
eβf(x) (7.1)

with f(x) being the fitness function. We assume that this Boltzmann distribution can be
factorized polynomially, and that the conditional dependencies can be recognized from
the data.

The modelM = (G,Θ) that we intend to learn consists of a Bayesian network structure
G = (V,E) describing the conditional dependencies, and a set of conditional distributions
Θ = {pM (xi|πi), i = 1, . . . , n}, where Πi are the parents of Xi in G. This model induces
the probability distribution (3.19):

pM (x) =
∏

i

pM(xi|πi) (7.2)
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7.1. Learning Graphical Models

7.1.1. Relative Entropy or Log-Likelihood

Suppose that there is a collection of data X = {x1, . . . ,xN}. We want to learn a model
which generates a factorized distribution most probable to sample the data X.

To this end we can use the principle of minimum relative entropy. From the population
X we estimate a distribution pX. The simple, straightforward formula is

pX(x) =
N(x)

N
, (7.3)

where N(x) is the number of appearances of x in the population and N the population
size. We will present the derivation with this formula, but Bayesian priors (see Sect.
4.3.2) can be used, too.

Following Sect. 4.1.3, we now assume that pX is the “true” distribution and we want
to minimize the inefficiency of assuming the distribution pM . (We will soon see that
this assumption is insufficient, since the data is noisy.) Then the relative entropy to be
minimized is:

D(pX‖pM ) =
∑

x

pX(x) log
pX(x)

pM (x)
(7.4)

=
∑

x

pX(x) log pX(x)−
∑

x

pX(x) log pM (x) (7.5)

= −H(pX)−
∑

x

pX(x) log pM (x) (7.6)

The latter term is called the Log-Likelihood (LLH) of the data, given the model.

Definition 7.1. The Log-Likelihood of the data X with the model M is

L(X|M) =
∑

x

pX(x) log pM (x) (7.7)

This name is justified because the likelihood of the data is

pM (X) =

N∏

i=1

pM(xi) (7.8)

=
∏

x∈D
pM (x)N(x) . (7.9)

and the logarithm of this likelihood is

log pM (X) =
∑

x∈D
log pM (x)N(x) (7.10)

= N
∑

x∈D
pX(x) log pM(x) (7.11)

= NL(X|M) . (7.12)
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L(X|M) is negative. Since H(pX) is independent of the model, minimizing the relative
entropy is equivalent to maximizing the log-likelihood.

Now we assume that M is a Bayesian network. Then for every variable Xi there is
given a set of parents Πi, and pM is the factorization (3.19):

pM (x) =

n∏

i=1

pM(xi|πi) (7.13)

where the conditional distributions of the network are estimated using the given data,
so (because of Lemma 2.6)

pM (xi|πi) = pX(xi|πi) . (7.14)

Then we can derive the following lemma:

Lemma 7.1. Let M be a Bayesian network model for the distribution pX. Then

L(X|M) = −
∑

i

H(Xi|Πi) =
∑

i

∑

xi,πi

pX(xi, πi) log pX(xi|πi) (7.15)

where πi runs over all possible values of Πi (the parents of Xi).

Proof. Using (7.13) and (7.14), we calculate

L(X|M) =
∑

x

pX(x) log pM(x) (7.16)

=
∑

x

pX(x) log
∏

i

pM (xi|πi) (7.17)

=
∑

x

pX(x)
∑

i

log pX(xi|πi) (7.18)

Now we defineQi := {X1, . . . , Xn}\({Xi}∪Πi), all variables except Xi and its parents.
So, we also split up the sum over x, all values of X, into a sum over xi, πi, qi, where qi
runs over all values of Qi. Then we can exchange the sums

L(X|M) =
∑

i

∑

xi,πi,qi

pX(x) log pX(xi|πi) (7.19)

=
∑

i

∑

xi,πi

log pX(xi|πi)
∑

qi

pX(xi, πi, qi) (7.20)

=
∑

i

∑

xi,πi

pX(xi, πi) log pX(xi|πi) (7.21)

= −
∑

i

H(Xi|Πi) (7.22)

By adding an edge to a Bayesian network, the LLH will not decrease. This is stated
in the following lemma.
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7.1. Learning Graphical Models

Lemma 7.2. Let G = (V,E) be a Bayesian network, and G∗ = (V,E ∪ {(xj , xk)}) be
the same network with an edge xj → xk added. Let M = (G,Θ) and M ∗ = (G∗,Θ∗).
Then

L(X|M∗) = L(X|M) + I(Xj , Xk|Πk) , (7.23)

where I(Xj , Xk|Πk) is the conditional mutual information of Xj and Xk given Πk, in
the distribution pX.

Proof. Define Π∗k = Πk ∪ {Xj}. From Lemma 7.1 follows

L(X|M∗) =
∑

i6=k

∑

xi,πi

pX(xi, πi) log pX(xi|πi) +
∑

xk,π
∗
k

pX(xk, π
∗
k) log pX(xk|π∗k) (7.24)

=
∑

i6=k

∑

xi,πi

pX(xi, πi) log pX(xi|πi) +
∑

xj ,xk,πk

pX(xj , xk, πk) log pX(xk|xj, πk)

(7.25)

= L(X|M)−
∑

xk,πk

pX(xk, πk) log pX(xk|πk)

+
∑

xj ,xk,πk

pX(xj , xk, πk) log pX(xk|xj , πk) (7.26)

= L(X|M)−
∑

xj ,xk,πk

pX(xj , xk, πk) log pX(xk|πk)

+
∑

xj ,xk,πk

pX(xj , xk, πk) log pX(xk|xj , πk) (7.27)

= L(X|M) +
∑

xj ,xk,πk

pX(xj , xk, πk) log
pX(xk|xj, πk)
pX(xk|πk)

(7.28)

= L(X|M) + I(Xj , Xk|Πk) (7.29)

In the extreme case that Xj and Xk are conditionally independent given Πk, the
mutual information is zero, and L(X|M) = L(X|M ∗). But if there is only the slightest
correlation between them, the LLH measure prefers M ∗ to M .

Remark 7.1. As a side note we mention another curious effect of this result: A variable
that already has parents is more likely to receive another edge than other variables. This
is due to the estimation of I(Xj , Xk|Πk) from the population using (7.3). The more
parents a variable Xk has, the smaller is the sample size for estimating pX(xk|πk); so
the noise of the estimate will be larger, leading to more spurious correlation. Bayesian
priors (see Sect. 4.3.2) reduce this unwanted effect.

To combat the overfitting, we need a measure which prefers simple structures. A
good measure with this property is the Bayesian Information Criterion (BIC) measure
[Sch78], which is a special case of Minimal Description Length (MDL), introduced in
[Ris78] and described in detail in [Ris89, Grü98].
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7.1.2. Minimal Description Length

The MDL measure is rooted in coding theory. The principal idea is the following:
Suppose that we have a set of data X, and we want to transmit the data in coded form
over a transmission channel. Certainly it is favorable to code the data in a form that the
length of the transmission, i. e. the description length is minimal. The earliest [Ris78]
and clearest concepts are the two-part codes, consisting of an assumption about the data
and the coding of the data using this assumption.

This idea can be applied to the problem of learning a Bayesian network [FG99]. The
assumption is that the data was generated from a specific Bayesian network model
M = (G,Θ). So, the coding of our data consists of two parts,

• the coding of the Bayesian network model M , consisting of the structure G and
the probability distributions Θ, and

• the coding of the data X, using this model.

To put it in a formula, the description length is

Length(X) = Length(M) + Length(X|M ) (7.30)

The connection between a probability distribution and a coding, where probable points
have short code lengths and less probable points longer code lengths, is formalized in
the following lemma [CT89, Grü98]:

Lemma 7.3. For all probability distributions p(x) there exists a coding so that for every
x the code length is

Length(x) = − log p(x) = log
1

p(x)
(7.31)

The expected keyword length is the entropy of the distribution:

E(Length(x)) = −
∑

x

p(x) log p(x) = H(p) (7.32)

Conversely, if there is a code for x, there exists a probability distribution p fulfilling
Length(x) = − log p(x) for every x.

Remark 7.2. This lemma neglects rounding effects and the need of code lengths to be
natural numbers. If the coding is binary, so that the code lengths are given in bits, the
entropy uses the binary logarithm.

We can use Lemma 7.3 to identify code lengths with probabilities. We now present
the two parts of the coding. For reasons of clarity, we begin with the second part.
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The Description of the Data Given the Model

Let X be a data set of size N , X = {x1, . . . ,xN}. A Bayesian network model M induces
a probability distribution pM in the data space. From Lemma 7.3 follows the code length
of the data:

Length(X|M ) = −
N∑

i=1

log pM (xi) (7.33)

If N(x) is the number of times that x appears in the data, then we can further calculate

Length(X|M ) = −
∑

x

N(x) log pM (x) (7.34)

= −N
∑

x

N(x)

N
log pM(x) (7.35)

= −NL(X|M) (7.36)

with Def. 7.1.

So we can also apply Lemma 7.1 and get

Length(X|M ) = N
n∑

i=1

H(Xi|Πi) (7.37)

The Description of the Bayesian Network Model

A Bayesian network model consists of a graph G and a set of probability distributions.
The graph can be coded simply by an incidence matrix IG ∈ {0, 1}n×n, with IG(i, j) = 1
if Xi is a parent of Xj in the graph G. This coding needs n2 bits.

Arguably, there exist more compact codings. Particularly if the graph is sparsely
connected, it can be better to save a list of the parents for each node. Also, the fact that
Bayesian networks are acyclic can be exploited in order to devise more compact codings.
But since this part of the code is independent of N , for sufficiently large sample sizes
the possible saving at this place is negligible.

The next part of the code is the length of the probability distributions pM(Xi|Πi).
To keep it simple, we will assume only binary variables. The generalization is straight-
forward and can be found in [Mah01, Jor99]. We need to save for every i only the
probability pM(Xi = 1|πi). There are 2|Πi| such probabilities, one for each assignment
πi of the parents.

The marginal probabilities are estimated from the data, so they are fractions given
with a precision of 1

N . They can be stored with a code length of logN . However, [FY96]
argue that the frequencies can be assumed to be distributed according to a Gaussian
model, and that due to the central limit theorem it suffices to code only

√
N possible

frequency values. This results in a code length of 1
2 logN .
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Putting it all together, we get

Length(M) = Length(G) + Length(Θ) (7.38)

= n2 +
1

2
logN

n∑

i=1

2|Πi| (7.39)

The total description length is

Length(X) = Length(M) + Length(X|M ) = n2 +
1

2
logN

n∑

i=1

2|Πi| +N
∑

i

H(Xi|Πi)

(7.40)

The first term n2 is constant and independent of the network model, so it can be omitted.
Thus we obtain the BIC measure (Bayesian Information Criterion):

BIC(M) =
1

2
logN

n∑

i=1

2|Πi| +N
∑

i

H(Xi|Πi) (7.41)

This measure was originally derived (in a different manner) in [Sch78].

In the general Minimal Description Length measure, the two parts of the coding are
weighted by a parameter α, to wit

MDL(M) = α logN

n∑

i=1

2|Πi| +N
∑

i

H(Xi|Πi) (7.42)

We call α the structure penalty, because it punishes complicated network structures.
Setting α = 0 is equivalent to the Log-Likelihood measure. The larger α is chosen, the
sparser will be the resulting Bayesian network. Sensible values are between 0.1 and 2;
the value 0.5 from the BIC measure is a good starting point.

7.1.3. LFDA: Learning Factorized Distribution Algorithm

Using the MDL measure, we can learn a Bayesian network from data and thus apply
FDA on cases where no decomposition of the fitness function is known.

To learn a Bayesian network from data, the simplest algorithm is the greedy technique:
Start with an empty graph, then add the edge to the network which minimizes MDL(M)
(of course, do not add an edge that results in a cyclic network). This is repeated until
no more improvement is possible.

Incorporating this technique into FDA, we obtain LFDA [MM99], Alg. 7.1.

In addition to the structure penalty, LFDA contains another technique to control the
complexity of the network. A parameter maxparents is introduced, and edges are only
permitted if the number of parents for each variable stays below maxparents.
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Algorithm 7.1: LFDA – Learning Factorized Distribution Algorithm

1 t ⇐ 1. Generate an initial population with N individuals from the
uniform distribution.

2 do {
3 Perform selection
4 G⇐ (V,E) = ({X1, . . . , Xn}, ∅)
5 do {
6 bestmdl ⇐ MDL(G)

7 for all (Xi, Xj) /∈ E do {
8 E∗ ⇐ E ∪ {(Xi, Xj)}
9 if E∗ cycle-free and MDL(G∗ = (V,E∗)) < bestmdl

and |Π∗j | ≤ maxparents

10 bestmdl⇐ MDL(G∗)
11 bestedge⇐ (Xi, Xj)

12 }
13 if bestmdl < MDL(G)

14 E ⇐ E ∪ bestedge
15 } until no more improvement

16 Estimate the conditional probabilities p(xi|πi, t) from the selected
points.

17 Generate new points according to p(x, t+ 1) =
∏n
i=1 p(xi|πi, t).

18 t⇐ t+ 1.
19 } until stopping criterion reached

7.1.4. Other Learning Measures

The same idea was turned into an algorithm by several researchers at the same time
[LL01]. During the same year, [EL99] developed the EBNA (Estimation of Bayesian Net-
work Algorithm), [PGC99] the BOA (Bayesian Optimization Algorithm), and [MM99]
the LFDA (Learning Factorized Distribution Algorithm).

EBNA comes in different variants, using MDL or also other measures. BOA prefers
tournament selection, and a different Bayesian network measure called the BDe score.
The BDe score [HGC95] comes from the theory of Bayesian learning and is a calculation
of the posterior probability of a network, given the data. It was argued in [Bou94]
that MDL and BDe are asymptotically equivalent, and that MDL is less sensitive to
spurious correlations in the data. Therefore, this thesis will confine to MDL. A thorough
discussion of these matters can be found in [Jor99].

There have also been attempts to learn other graphical models than Bayesian networks.
In Sect. 5.2, we describe the PADA [SO00] and present some work for its improvement.
In [San05] a Kikuchi approximation is learned from population data.

Furthermore, it has been pointed out that the simple greedy algorithm, adding one
edge in each step, can be deceived and led to a suboptimal solution [XWC97]. There
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exist more complicated algorithms for learning Bayesian networks. But the population
sizes in EDA are rather small for intricate structure learning, and for the optimization
purpose the network does not have to be perfect. Furthermore, since in every generation
a new structure is learned from scratch, it seems like a waste of resources to use a too
expensive learning algorithm.

7.2. Numerical Results

To demonstrate the learning algorithm, we apply it on the Deceptive-5 function. This
function consists of blocks of five bits, on which the following fitness function is defined:

fDec5(u := xi + xi+1 + xi+2 + xi+3 + xi+4) =





4 ⇐⇒ u = 0

3 ⇐⇒ u = 1

2 ⇐⇒ u = 2

1 ⇐⇒ u = 3

0 ⇐⇒ u = 4

5 ⇐⇒ u = 5

(7.43)

In this function the five bits seem to be independent, with the value 0 preferable for
the single bits. Only when all bits are 1, the global optimum is reached. It is difficult
for evolutionary algorithms to recognize this dependency.

We present in Table 7.1 the result of LFDA on an instance of ten deceptive-5 blocks,
so the dimension of the problem is n = 50.

Pop. Succ. Gene- Generation 1 Generation 2 Generation 3
Size Rate rations edges good edges good edges good

1000 0 — 29.21 10.46 41.35 15.18 47.80 17.79
3000 0 — 34.50 25.20 52.40 40.77 62.92 50.15
5000 56 7.34 51.33 44.76 76.09 69.90 86.73 81.03
6000 84 6.44 59.68 54.67 85.42 80.62 93.47 88.85
7000 99 5.85 68.80 64.25 92.51 88.84 97.07 93.44

10000 100 5.21 84.74 81.38 98.55 95.67 99.85 96.83

Table 7.1.: Result of LFDA on deceptive-5, 100 runs, n = 50, truncation selection with
τ = 0.3, LFDA structure penalty α = 0.5. Given are the population size N ,
the success rate (the percentage of runs which find the optimum), the average
number of generations required for this, and for the first three generations
the average number of edges added to the model and the number of correct
edges.

The success of LFDA in learning the correct structure as well as in finding the optimum
depends heavily on the population size. We note that for n = 50 there are

(50
2

)
= 1225

possible edges (not considering the direction), of which 10 ·
(

5
2

)
= 100 are correct.
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Pop. Succ. Gene- Generation 1 Generation 2 Generation 3
Size Rate rations edges good edges good edges good

1000 0 — 99.84 20.90 114.20 29.85 119.83 35.14
3000 63 7.21 93.50 51.66 114.86 78.00 120.67 87.31
5000 98 5.77 105.24 76.91 119.23 95.93 121.94 97.70
7000 100 5.29 112.81 90.16 119.71 99.05 121.82 99.30

Table 7.2.: Same as Table 7.1, except for α = 0.25.

For small population sizes, fewer edges are added. This is plausible because a smaller
population provides less confident dependencies. Also, the quality of the model im-
proves with the population size. For very high population sizes, where the success rate
approaches 100 %, almost all correct edges are added, and almost no superfluous edges
(between different blocks of the deceptive function). During the run, the model improves
slightly. The network which is built in the third generation is clearly better than the
one for the first generation. This is no surprise, since the data has been generated with
the previous network, and then the best individuals were selected.

In Table 7.2, identical experiments with a structure penalty of α = 0.25 are presented.
The results are similar to the results in Table 7.1. We see that due to the smaller α,
more edges are added to the model. Also, the population size for solving the problem is
smaller. In this case it seems that the superfluous edges are not problematic, as long as
there are enough correct edges in the model.

Fig. 7.1 shows the influence of α on the behavior of LFDA. Three runs with differ-
ent values of α (0.25, 0.5, and 1) are depicted in the MDL space; the x axis gives the
complexity of the model, the y axis the log-likelihood. As can be seen, each Bayesian
network begins at the bottom left corner, with a low log-likelihood and a small com-
plexity. Then the complexity increases as edges are added to the network, while the
log-likelihood improves first rapidly, then more slowly. The smaller α, the longer the
trajectory of the run.

In the first generations, the population is very noisy. This noise cannot be captured
by the Bayesian network, and the log-likelihood hardly increases during the run. In the
latter generations, the situation changes:

• In the successful runs with α = 0.25 and α = 0.5, the log-likelihood begins almost
as low as in the first generations, but then increases rapidly by adding the first
edges. This indicates that the population contains a structure which is captured
by the edges added to the Bayesian network.

• For α = 1 the log-likelihood at the beginning of the generations is much higher,
which indicates less noise in the population (note that for an empty network the
log-likelihood is −N∑H(Xi)). The log-likelihood does not increase very much
during the run. This indicates a premature convergence of the population. It has
lost the structure that has been found in the other runs. Indeed, this run is not
successful.
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We see that a too large value of α leads to premature convergence and loss of important
structure. A too small value of α leads to a complicated Bayesian network structure; the
marginals are difficult to estimate, and the algorithm becomes very costly. An analysis
like the above can help to choose an appropriate α value.

7.3. Summary

In case that the dependency structure of the objective function is not known, and simple
algorithms like UMDA fail, it is possible to learn a Bayesian network structure from the
population data. This chapter presents methods to incorporate structure learning into
EDA, using the principle of minimal description length. This leads to the LFDA and
similar algorithms.

It was shown empirically how LFDA is able to recognize a dependency structure from
data. When the population size approaches infinity, the correct FDA structure minimizes
the BIC/MDL score. The influence of the structure penalty parameter α was analyzed.
The effects of too large α (premature convergence) and too small α (overfitting) were
investigated.
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For many real-world problems, evolutionary optimization algorithms can run into diffi-
culties because of the large search space. In order to reduce the search space, they have
been combined with local hillclimbing. To each generated individual, a local hillclimber
is applied. These hybrid algorithms (a combination of evolutionary optimization and
local search) have been called memetic [HKS04].

A simple example is an algorithm that tries to improve the fitness with single bit flips,
until a local optimum is reached. We emphasize that the term “local” in this context
always refers to a neighborhood. E. g. for this simple hillclimber, the neighbors of a bit
vector are all vectors that can be reached by single bit flips.

The problem of this simple algorithm is that is cannot traverse valleys in the fitness
landscape. That means, it cannot flip two or more bits at the same time in order to
improve the fitness. The most common approach for this problem is to increase the
number of possible bit flips per iteration k. But this method is exponential in k. So a
more sensible extension of the neighborhood is needed.

This chapter presents the Kernighan Lin hillclimber which was originally conceived for
graph bipartitioning and TSP only [KL70, LK73, JM97]. We formulate it more generally,
so it can be applied to arbitrary bit-string problems.

An iterated version [LMS02] of the Kernighan Lin hillclimber is presented, which is
a simple yet surprisingly successful optimization algorithm. Then, Kernighan Lin is
combined with EDA. The notions of information theory are used to analyze the results.

This chapter is organized as follows:

First we describe local hillclimbers, namely the simple bit-flip hillclimber and Kernig-
han Lin. Then local search algorithms using these hillclimbers are presented, as well as
the hybrid algorithms which combine EDA with local search.

The next section is dedicated to the MAXSAT problem. First the problem is defined,
and some design issues of the combination with evolutionary computation, as well as
related work and SAT-specific hillclimbers are described.

Then the benchmark suite is presented. The difficulty of MAXSAT instances differs
very much. We introduce the set of instances that we consider and choose particular
instances for deeper analysis. We analyze the set of local maxima of the Kernighan-Lin
algorithm and look for structure in this space, using methods of information theory.
From this analysis we judge whether EDA is fit for this problem. Finally, the results of
the iterated local search and hybrid algorithms on the benchmark problems are discussed.

The next section gives the results of the hybrid algorithms on the Ising spin glasses of
Chapter 6. They are compared with the results of BKDA.

Finally, the third benchmark problem, the Kaufmann (n, k) problem, is introduced
and then tackled by the algorithms. All algorithms presented in this thesis are applied
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on this problem, and their behavior is discussed.

8.1. Local Hillclimbers

8.1.1. The Simple Hillclimber

The Simple Hillclimber performs single bit flips that improve the fitness. There are two
common variants: Either the first bit flip with better fitness that is found is performed
(greedy ascent), or all n bits are tried, and the best bit flip is accepted (steepest ascent),
until no more improvement is possible.

Algorithm 8.1 implements the latter variant. In all algorithms x−j is defined as x
with bit xj flipped.

Algorithm 8.1: Simple Hillclimber

1 Input: x

2 do {
3 j∗ ⇐ argmaxj∈{1,...,n} f(x−j)

4 if f(x−j∗) > f(x)
5 x⇐ x−j∗

6 } until no more improvement

This hillclimber can be extended by allowing more than one bit flip per iteration.
This increases the neighborhood of the search. But usually the neighborhood cannot be
larger than two or at most three bit flips. Otherwise the search would quickly become
too expensive.

8.1.2. The Kernighan-Lin Hillclimber

The Kernighan Lin hillclimber is an algorithm that can traverse large valleys in the
fitness landscape. It was introduced in specialized forms for the graph bipartitioning
[KL70] and traveling salesman problem [LK73, JM97]. Now, the basic idea will be
generalized to arbitrary bit-string optimization problems.

In one pass, the algorithm flips bits which maximize the fitness among all possible bit
flips (even if the new fitness is worse than the one we began with). A bit cannot be
flipped twice in one pass, because that might result in a cycle.

This is done until a maximal number of bit flips (“maxflips”) is reached. This maximal
number of bit flips is the maximal size of a valley that can be traversed. Most commonly,
we have set it to n, but if this is too slow, the value can be reduced.

We have now generated a series of vectors, each one bit flip away from its predecessor.
From these, we finally choose the vector which maximizes the fitness, but only if it is
better than the fitness we began with. Otherwise, the algorithm has reached a local
optimum and stops.

A pseudocode description is given in algorithm 8.2.
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Algorithm 8.2: KLH– Kernighan Lin Hillclimber

1 Input: x

2 do {
3 Mark all bits unflipped

4 for i = 1 to maxflips do {
5 j∗ ⇐ argmaxj∈{1,...,n} unflipped f(x−j)
6 xi ⇐ x−j∗
7 Mark j∗ flipped

8 }
9 x∗ ⇐ argmaxxi f(xi)

10 if f(x∗) > f(x)

11 x⇐ x∗

12 } until no more improvement

The Kernighan Lin algorithm is deterministic, it does not use random variables.

8.1.3. Complexity of Kernighan Lin

In the first experiments using the Kernighan Lin hillclimber, we have found that many
standard benchmark problems for EDA pose no difficulty for KLH . Deceptive functions
or the Iso-Circle are solved easily. This is due to the simple structure and symmetry
of these functions: For example, many of these functions have the global optimum at
(1, 1, 1, . . . , 1) and a local optimum at (0, 0, . . . , 0). In this case, the Kernighan Lin
hillclimber can jump from the local optimum to the global optimum in one pass, if
maxflips = n.

Therefore, we have chosen more difficult benchmark functions. First we will apply
KLH on difficult MAXSAT instances. Then, we will investigate its performance on the
Ising spin glass problem (see Sect. 6.1.1), comparing it to BKDA, and on the Kaufmann
function, which has a random dependency structure.

The complexity of the Kernighan Lin hillclimber is O(n · maxflips · passes). This
assumes that the fitness evaluation of f(x−j) can be done in constant time.

For Ising spin glass problems, this is the case: We only have to consider the up
to four couplings in which the bit j appears. The random MAXSAT and Kaufmann
problem both have a random dependency structure, but the expected number of clauses
(MAXSAT) or connections (Kaufmann) in which a variable Xj appears can be assumed
to be bounded.

8.2. Optimization with Hillclimbers

There are various ways to use such a hillclimber for optimization. Here we first de-
scribe their use for local search. Then we present their combination with evolutionary
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algorithms.

8.2.1. Random Start and Iterated Mutation KLH

We examine two variants of local search: Random Start KLH (RSKLH) and Iterated
Mutation KLH (IMKLH).

RSKLH generates randomly a starting point and runs KLH on it. This is repeated
G times.

IMKLH is similar, but instead of using a completely new random starting point, it
applies mutation on the previously found local optimum. This technique is called iterated
local search [LMS02]. R bit flips are performed, allowing repetition. After running KLH
on the mutated individual, the better of the two is chosen for the next generation. If
both have equal fitness, we choose the new one.

Algorithm 8.3: IMKLH– Iterated Mutation Kernighan Lin Hillclimber

1 Generate a random bit string x

2 Apply KLH on x

3 for g = 1 to G do {
4 y⇐ x

5 for r = 1 to R do {
6 Choose a random i ∈ {1, . . . , n}
7 Flip bit yi
8 }
9 Apply KLH on y

10 if f(y) ≥ f(x)
11 x⇐ y

12 }

In spite of its simplicity, this is a good heuristic algorithm. We find that it is much
more successful than RSKLH . The parameter R should be chosen not too small (or the
algorithm will have difficulties to move to a different optimum), but not too large either
(or the algorithm will be essentially like RSKLH).

8.2.2. Memetic Algorithms: Evolutionary Optimization with Local Search

Whereas local search techniques embody a single random walker, evolutionary algorithms
contain a population of points. The combination with local search has been called
memetic or hybrid algorithms [HKS04].

The most canonic way to combine EDA and local search is to apply the local hillclimber
on every generated point. The point is then replaced by the result of the hillclimber.
This approach was followed here, too.

In contrast to this (“Lamarckian”) variant there exists also another technique: The
point is not replaced by the hillclimber result, but its fitness obtains the value of the hill-
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climber outcome (“Baldwinian”). However, [HKS04] report that recent research prefers
the Lamarckian approach. They also report on diversity preservance techniques, combi-
nation of different local searchers and ways to incorporate knowledge. These are several
possibilities to extend the research.

8.3. The SAT and MAXSAT problem

The first benchmark function for this technique is the MAXSAT problem. First we give
the definition of the problem, then an analysis of the search space for selected instances,
and finally a comparison of the results for the different variants of EDA and KLH .

8.3.1. Definition of SAT

Definition 8.1 (SAT). An instance of the SAT problem is given by a binary formula
in conjunctive normal form of the variables x1, . . . , xn:

F (x) =

γ∧

i=1

Ci(x)

where γ is the number of clauses and

Ci(x) =

l(i)∨

j=1

x
s(i,j)
k(i,j)

l(i) is the number of literals in the clause Ci. k(i, j) ∈ {1, . . . , n} is the index of the
variable, s(i, j) ∈ {0, 1} is its sign, defining

x1
k = xk x0

k = ¬xk
A solution of the instance is a vector x∗ with F (x∗) = true.
If max l(i) ≤ 3, we call the problem 3-SAT.

8.3.2. SAT in Evolutionary Computation and MAXSAT

The straightforward coding of a SAT instance into an individual of evolutionary compu-
tation is to let each bit of the bit vector represent the truth value of one variable of the
SAT problem. This is called the bit-string representation. Other representations were
proposed, but turned out to be inferior [GMR02].

Next, we need to define a fitness function. The SAT problem is a “yes/no” problem:
Either a formula is fulfilled or not. But a fitness function that has value “0” for unsatisfied
and “1” for satisfied formulas will definitely give bad results, because this gives no
indication how far away from a solution we are and in which direction to search next.

Therefore most commonly evolutionary computation does not treat the SAT problem,
but the MAXSAT problem: The function to be maximized is the number of fulfilled
clauses:

f(x) = |{Ci, i = 1, . . . , γ|Ci(x) = true}| (8.1)
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Here we know that the optimum is fmax = γ (provided that the instance is satisfiable at
all). When this value is reached, we know the instance to be satisfiable.

More sophisticated approaches include adaptive fitness functions, which guide the
evolution according to information collected during the search, e. g. by emphasizing
clauses that are difficult to fulfill. This was not pursued here.

The MAXSAT problem is a good benchmark for the combination with local search,
because without the use of local search, it is very difficult for evolutionary algorithms.
This is due to the huge and complicated search space, which can be reduced very much
by constraining oneself to the local optima of a hillclimber. Also, the fitness landscape
contains a lot of local optima. Suppose that only one clause is violated, so f(x) = γ− 1.
The evolutionary algorithm has no indication of how to fulfill this last clause. Local
search helps on this matter.

8.3.3. SAT specific Hillclimbers: Walksat

In the community working on the MAXSAT problem, a number of hillclimbers have
been crafted which are particularly fit for solving MAXSAT instances. An example is
the simple algorithm used in [San04]. This hillclimber chooses an unsatisfied clause and
then performs a bit flip which satisfies this clause.

A slight change to this hillclimber yields the algorithm GSAT [SLM92]: Here among
the variables of the violated clause the one which gives the best fitness improvement
is flipped. Then, the introduction of a noise parameter leads to the algorithm Walksat
[SKC94, SKC95, Fuk04a]. Here with probability noiseprob (by default 0.5) a random
variable of the violated clause is flipped, instead of the one with the best fitness improve-
ment. The exact algorithm is given in Alg. 8.4.

Algorithm 8.4: Walksat

1 Input: x

2 do {
3 Choose randomly a violated clause Ci
4 if a variable in Ci can be flipped without violating another clause

5 flip such a variable (break ties randomly)

6 else
7 flip with probability noiseprob a random variable in Ci and with

probability 1− noiseprob one which leads to best fitness (break
ties randomly)

8 } until no more improvement

This and other MAXSAT-specific elements can be combined in various ways, resulting
in modern MAXSAT-solving algorithms [Fuk04b]. However, we are more interested in
algorithms which are more generalizable, so that the concept can be used for other fitness
functions, too. Kernighan Lin is such a general-purpose hillclimber.
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8.3.4. MAXSAT Instances

We used for our analysis example instances of various sizes for 3-SAT which can be
found in the Satlib [HS00]. The random instances found there are of size from 20 up
to 250. Modern SAT-solving competitions use much larger instances; but for a first
investigation, these instances are still widely used. It turned out that the instances of
size 20 and 50 are very easy for our KLH . (Without KLH evolutionary computation
already fails for the uf50 instances!) Therefore we have concentrated our analysis on the
problems of size 100, 150, and 200.

The series uf100 consists of 1000 random 3-SAT instances of size n = 100 with γ = 430
clauses. To estimate their difficulty, 20 runs of FDA with KLH were performed on each.
The histogram of success rates can be found in Fig. 8.1. It was found that most instances
are very easy. With a very small population size of N = 100 and τ = 0.3, 788 instances
had a success rate of 100 %. Of these, 649 instances were always solved in the initial
population (the points were generated randomly and then KLH applied to them – this
is equivalent to RSKLH with G = 100 attempts).
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Figure 8.1.: Histogram of success rates for 20 runs of FDA with KLH on all 1000 in-
stances of the uf100 series. Population size N = 100, truncation threshold
τ = 0.3.

These instances, which are obviously easily solved by KLH alone, are not interesting
for our purposes. For deeper analysis, and for comparison of the different algorithms,
the four instances given in Table 8.1 were chosen. The criteria for this choice were a
high number of required generations and a varying success rate.

The same analysis was done for series uf150 with n = 150 variables and γ = 645
clauses. Here, a population size of N = 200 was used. Again, we found that most of
the 100 instances were easy for KLH . 73 of them were solved in all 20 runs, of these
59 every time within the initial generation. The complete results on this data set are
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Name Success Rate Average Generations

uf100-059.cnf 13 / 20 2.69
uf100-0129.cnf 20 / 20 2.45
uf100-0160.cnf 12 / 20 1.33
uf100-0285.cnf 8 / 20 3.25

Table 8.1.: Result of FDA with KLH on some instances of uf100. N = 100, τ = 0.3.
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Figure 8.2.: Histogram of success rates for 20 runs of FDA with KLH on all 100 instances
of the uf150 series. Population size N = 200, truncation threshold τ = 0.3.

depicted in Fig. 8.2.

Our goals are the following:

• An analysis of the space of local optima of the KLH and

• Investigating whether the combination of EDA and local hillclimbing is worthwhile.

8.3.5. The local optima of KLH

We have chosen some well-suited instances from the uf150 series (n = 150), which are
not too simple for the KLH . For the local optima analysis, we have performed 10000
runs of KLH on instance uf150-028, starting from initial random values. The results are
paradigmatic for typical, not too simple MAXSAT instances.

Figure 8.3 shows a histogram of fitness values of these 10000 runs. We see that on
this instance, KLH is able to find a solution (all 645 clauses fulfilled), but succeeds only
in 13 of the 10000 runs. It is interesting to note that no two of the 10000 local optima
are the same. So we see that the space of local optima is still very large.
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Figure 8.3.: Histogram of fitness values for 10000 runs of KLH on uf150-028.
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Figure 8.5.: Univariate probability of the 150 variables against number of appearances
in the formula, where negated appearances count negative. 10000 runs on
uf150-028.

We can regard the 10000 bit strings as a sample from a probability distribution over
{0, 1}n. But care must be taken, since the sample size is quite small, as opposed to the
space size 2150 ≈ 1045. First we investigate the univariate marginal distributions. Figure
8.4 shows a histogram of the univariate probabilities for the 150 bits. We see that some
bits are almost fixated (near 0 or 1), but most are not.

If we generate the same histogram, but use only the best individuals (performing
truncation selection), we find that more variables have a probability near 0 or 1, but the
effect is not very strong.

Figure 8.5 shows the connection between appearance of the variable in the formula
(negated or non-negated) and its univariate probability within the KLH maxima. Against
the univariate probability, we plot the number of positive occurrences minus the number
of negated occurrences of the variable. We notice a clear dependence between these.

Next, we consider the bivariate marginal distributions. Of these, we show the mutual
information between the variables (4.10). A histogram of these values for all combi-
nations of variables is depicted in Fig. 8.6. It is separated in variables which appear
together in a clause and variables which do not. We see that variables that share a
clause tend to have a higher mutual information.

If we want to know whether the combination with EDA is promising, we should
investigate whether selection of the best values has any effect.

On the univariate distributions, quite surprisingly, the effect is rather small. Trun-
cation selection reduces the sample size, but other than that, there is hardly an effect
to be seen. But since the space of local optima is still large, the univariate marginal
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probabilities are not very expressive.

Fig. 8.7 shows for the population the minimum Hamming distance to one of the found
optima, plotted against the fitness of the individual. Here we see that the individuals of
low fitness values are all far away from an optimum. This indicates that it is a good idea
to throw these away and go for the best ones, which have a better chance to be near to
an optimum. This is an argument in favor of selection.

8.3.6. Cluster analysis

Evolutionary algorithms are most successful when the maxima are concentrated in a
relatively small area and not randomly distributed. If they are evenly distributed in the
fitness landscape, the assumption that “good values lead to better ones” does not hold.

Therefore we investigate the clustering of the MAXSAT solutions found by KLH . For
clustering binary data, it has been found [Wil87, WD03] that Jarvis-Patrick Clustering
[JP73] gives the best results. It has also the advantage that it does not need to calculate
the center of a cluster (like the k-means algorithm), or for other reasons the average of
a set of points, which gives questionable results on binary data1.

The Jarvis-Patrick clustering algorithm takes two parameters, J and K. It consists
of the following steps:

1It would at least require to extend the distance measure from binary, discrete data to the unit hyper-
cube, which raises the question of which distance measure to use.
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Figure 8.7.: Fitness and hamming distance to nearest optimum for the 10000 solutions

• For every data point, calculate the list of the J nearest neighbors of this point.

• Place two points in the same cluster if

– they are in each other’s neighborhood list and

– their neighborhood lists have at least K points in common.

This algorithm was applied on the 30 solutions for uf150-028.cnf depicted in Fig. 8.8.
It found (J = 8,K = 3) that three solutions (17-19) form a cluster which has a hamming
distance of 56 bits to the other solutions. It is also possible (J = 8,K = 4) to divide
solutions 1-16 from 20-30, but these clusters are only 5 bits apart.

The clustering indicates the so-called “Himalaya effect”: The solutions are all concen-
trated in very few regions and not spread equally all over the search space. This is one

Figure 8.8.: Thirty solutions for uf150-028.cnf found by KLH . One row is one solution,
one column is one bit, black bits are 1, white 0. Solutions are ordered
lexicographically. It can be seen very well that solutions 17-19 are far away
from the others.
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Figure 8.9.: Success rate and number of generations needed by IMKLH on problems
uf100-059 (n=100) and uf150-028 (n=150) for different values of R (the
number of bit flips for every restart). Mean over 100 runs.

of the basic axioms of evolutionary computation. Therefore, it is a good idea to work
with probability distributions in the solution space.

8.3.7. Evaluation of IMKLH and RSKLH

The iterated mutation KLH (IMKLH) presented in Sect. 8.2.1 contains a parameter R,
the number of bit flips after each run of KLH.

Figure 8.9 shows the success rate and the number of generations required until the
optimum is found, averaged over 100 runs, for varying R. It can be seen that the
algorithm fails for too small R, reaches its best performance with R between 50 and 80,
and above this value gets worse again.

Very notable is the large standard deviation. Often it is even bigger than the average.
This shows that the algorithm is unstable; it can get stuck in a local optimum and take
a long time to find a global optimum.

The results of RSKLH on instance uf150-028 have already been shown in Fig. 8.3. To
compare it with the results of IMKLH , we note that the number of runs until success is
geometrically distributed with

pgeo(k) = (1− p)kp (8.2)

Given a success probability p, this is the probability of k failures before the first success.
The expected value and standard deviation of the geometric distribution are

µ(pgeo) =
1− p
p

σ(pgeo) =

√
1− p
p

(8.3)

From Fig. 8.3 we estimate p = 0.0013, which gives µ = 768.23 and σ = 768.73. We note
that the estimate acquired by 13 successes on 10000 runs is rather unstable, because of
the small number of successes but it coincides with the limit of the curve in Fig. 8.9
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for large R. The required generations are more than double the results of IMKLH with
R = 50 or 80.

8.3.8. Iterated KLH and Walksat

We now present results of iterated local search on some more 3-SAT instances. In Table
8.2 IMKLH and Walksat are compared.

For Walksat the implementation by Henry Kautz and Bart Selman (Walksat version
45)2 was used. This is an efficient, actively maintained implementation in C. It contains
several different search heuristics, but we used it “out of the box”, i. e. with the default
parameters.

IMKLH Walksat
Instance SR KL calls stddev phases SR flips stddev

uf100-059 20 199.8 194.3 610.5 100 11953 12194.7
uf100-0129 20 166.4 138.9 506.8 100 7664 6777.1
uf100-0160 19 406.8 309.6 1205.6 100 8928 8525.9
uf100-0285 20 495.2 443.5 1418.6 100 19993 15730.6

uf150-028 20 196.9 181.0 679.8 100 11389 9387.9
uf200-01 20 1444.2 1130.6 5334.6 89 29843 40771.3
uf200-057 20 45.3 40.6 165.3 100 4665 3400.7

Table 8.2.: Results of IMKLH and Walksat on some 3-SAT instances. Given is the
number of successful runs (SR), the number of KLH calls until success with
its standard deviation and the average number of KLH phases; for Walksat
the number of successful runs (SR), the average number of bit flips and its
standard deviation. Parameters: IMKLH 20 runs, mutated bits R = 50 for
N = 100, 80 for N = 150 and 100 for N = 200. Walksat 100 runs, noise
probability 0.5.

It is not easy to compare the two local optimizers, because they work somewhat
differently. Concerning the runtime, Walksat v45 is of course much faster than our C++
implementation of KLH . A C implementation, using C arrays instead of a binary variable
class, and some intricate optimizations [Fuk04a] make Walksat v45 very efficient.

First we note that both techniques are very successful in finding optima of the MAX-
SAT problems. Only once IMKLH failed to find a solution in 2000 generations, and in
another instance Walksat succeeds only in 89 % of the runs.

IMKLH needs less KLH phases than Walksat needs bit flips. But if we remember that
in every KLH phase maxflips = n bit flips are attempted whereas Walksat considers only
the 3 variables of a clause in each generation, we see that Walksat is better, especially
for the n = 100 instances. This is no surprise, since Walksat is a specialized SAT solver
and exploits better the problem structure. IMKLH can be speeded up by choosing a
smaller value of maxflips. But we see that both algorithms perform in a similar scale.

2Available at http://www.cs.washington.edu/homes/kautz/walksat
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uf100-0129 uf100-059
Algorithm succ gen sdv KLH succ gen sdv KLH

RSKLH 20/20 1.85 1.755 568.15 19/20 1.79 2.016 556.11
UMDA +KLH 20/20 0.95 0.686 389.05 12/20 0.83 0.835 365.83
FDA +KLH 20/20 0.45 0.605 289.55 12/20 1.17 1.267 432.17
LFDA +KLH 20/20 0.85 1.089 369.15 16/20 0.88 0.806 374.13
FDA j6+KLH 19/20 0.79 0.535 357.11 18/20 1.72 1.809 542.72
MEFDA +KLH 20/20 0.80 0.616 359.20 15/20 1.47 1.959 491.87

Table 8.3.: Comparison of the different hybrid algorithms (EDA +KLH). Given is the
number of successful runs, the number of generations and its standard devia-
tion, and the average number of KLH runs performed (including unsuccessful
runs). N = 200, τ = 0.3, break after 10 generations. The algorithms are ran-
dom start KLH , UMDA, FDA, LFDA (α = 0.5), FDA with join (maximal
join size 6) and MEFDA (maximal join size 6).

uf150-028 (N = 200) uf200-01 (N = 1500)
Algorithm succ gen sdv KLH succ gen sdv KLH

RSKLH 15/20 4.13 2.20 1314 9/20 2.89 2.03 9220
UMDA +KLH 16/20 2.06 1.12 926 5/20 1.20 0.45 9819
FDA +KLH 20/20 2.55 1.47 707 15/20 1.87 0.64 6222
LFDA +KLH 20/20 1.65 0.99 528 18/20 1.94 0.73 5173
FDA j6+KLH 20/20 2.40 1.27 678 13/20 1.69 0.75 6821

Table 8.4.: Comparison of the different hybrid algorithms (EDA +KLH) on instances
uf150-028 (with population size N = 200) and uf200-01 (with N = 1500).
20 runs each. Values and parameters like in Table 8.3, except for uf200 01:
break after 7 generations.

The standard deviations of both algorithms are quite high. Sometimes they are even
larger than the mean. In this respect the local search methods are less stable than evolu-
tionary algorithms, which commonly have a standard deviation of about one generation.

8.3.9. Results of FDA with KLH

The results of the hybrid algorithm of FDA, applying KLH on every generated point, is
shown in Tables 8.3 and 8.4. We give also the number of calls to the KLH, because this
is what takes most of the running time. For FDA, this is N for the initial population
and N − 1 for the following generations, because being elitist, we do not touch the best
solution so far. This gives N + g(N − 1), where g is the number of generations needed.
(If the initial population contains the solution, we set g = 0.)

We can see in the tables that the combination of EDA and KLH needs less calls to
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KLH than RSKLH alone. Of the different EDA variants, it seems that FDA with join
and LFDA perform better than conventional FDA and UMDA, but the difference is not
very significant. The reason for this is that MAXSAT is a rather strongly connected
problem. If a 3-SAT formula contains γ ≈ 4.3n clauses, this means it has 3γ ≈ 13n
literals. Each variable appears on average in 13 clauses, so it can be connected with up
to 26 other variables.

This calculation indicates why EDAs with complicated structures – particularly LFDA
which selects the most important connections – perform better. But the small difference
between the different EDAs indicates also that most of the work is done by the Kernighan
Lin hillclimber.

IMKLH performs better than the EDAs. It has a large success rate and needs few
KLH calls, although with a large standard deviation. This is largely because IMKLH
does not depend on a population size. Its number of required generations is often smaller
than the population size needed for the EDAs.

8.4. Results of FDA and KLH on Ising Spin Glasses

For comparison, we also apply FDA with KLH on the spin glass instances of Sect. 6.5.5
and 6.5.6.

FDA FDA join MEFDA
Seed SR Gen Sdv SR Gen Sdv SR Gen Sdv

1 100 0.810 0.706 100 0.730 0.709 99 0.737 0.737
2 99 0.303 0.524 94 0.383 0.551 93 0.376 0.550
3 100 0.030 0.171 100 0.010 0.100 100 0.040 0.197
4 100 0.180 0.479 100 0.150 0.386 100 0.180 0.386
5 98 0.673 0.797 98 0.867 1.090 92 0.891 1.153
6 100 0.070 0.256 99 0.121 0.358 100 0.180 0.411
7 100 0.000 0.000 100 0.000 0.000 100 0.020 0.141
8 100 0.690 0.775 99 0.444 0.673 100 0.480 0.627
9 96 0.385 0.587 98 0.388 0.586 98 0.418 0.824

10 100 0.150 0.386 99 0.131 0.339 100 0.170 0.378

Table 8.5.: Results of FDA with KLH on the 10 × 10 Ising instances of Sect. 6.5.5 and
6.5.6. Given is the number of successful runs, the generations and the stan-
dard deviation. N = 100, τ = 0.3, 100 runs each.

Table 8.5 shows that the small instances pose no difficulties for KLH . All instances of
size 10×10 are easily solved with a population of 100 points, almost always in the initial
population, without even applying the evolutionary paradigm. Therefore the chosen
flavor of FDA does not matter.

This result allows us to use for the 15×15 Ising instances only the FDA variant which
was found optimal in Sect. 6.5.6. The results in Table 8.6 show a different picture. These
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Seed SR Gen Sdv KL succ phases

1 20 3.00 0.79 1197 3606
2 18 3.72 0.83 1413 3628
3 15 6.53 1.19 2253 5006
4 6 4.17 0.75 1546 4071
5 20 3.15 0.93 1242 3610
6 19 3.74 0.99 1417 4168
7 20 3.30 1.08 1287 3544
8 20 4.60 1.67 1675 4345
9 11 5.36 1.03 1904 4295

10 16 3.38 1.50 1309 3765

Table 8.6.: Results of FDA with pentavariate grid and KLH on the 15×15 Ising instances
of Sect. 6.5.5 and 6.5.6. N = 300, τ = 0.3, 20 runs each. Given is the number
of successful runs, the number of generations and its standard deviation, and
the number of runs and phases of KLH on the successful runs.

instances are not easy any more. For a KLH run the population size 300 is quite large
and computationally expensive. Nevertheless some instances had a low success rate, and
all needed between 3 and 7 generations on average.

It is interesting to note that the instance rh15 8 which was difficult in Table 6.7 and
6.11 was easily solved by FDA with KLH , whereas the instance rh15 4 is difficult for
EDA but was solved by BKDA (see Table 6.8).

8.5. The Kaufmann Problem

8.5.1. Definition of Kaufmann

The Kaufmann (n, k) fitness function is an ADF with a completely random structure.
It takes two parameters:

• n is the number of variables, but also the number of subfunctions.

• k is the dimension of the subfunctions.

A subfunction fi, i = 1, . . . , n, is generated by connecting the variable Xi with k − 1
randomly chosen other variables Xj(i,κ), κ = 1, . . . , k − 1. (Of course, repetitions of
a variable are not allowed.) This way of building the structure ensures that every
variable appears in at least one subfunction. The 2k function values of such a k-variate
subfunction are chosen randomly within the interval [0; 1

n−k+1 ].

The Kaufmann function is the sum of these subfunctions:

FKauf(x) =

n∑

i=1

fi(xi, xj(i,1), . . . , xj(i,k−1)) . (8.4)
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Since the function values are continuous, the Kaufmann function has many more different
local optima than MAXSAT. Whereas in MAXSAT there are generally many points with
fitness γ−1, for Kaufmann it is very unlikely that two local optima have the same fitness
value.

8.5.2. Results of the Algorithms on Kaufmann

Tables 8.7 and 8.8 give the results on example Kaufmann (n, k) instances with k = 3
and n = 200 or n = 400, respectively.

Algorithm SR Avg fitness ± stddev seconds

FDA +join, N = 30000 18 0.755829 ± 4.74807e-05 3124
FDA +join+KLH 20, N = 100 13 0.755755 ± 0.000150023 313
IMKLH 20, R = 75 12 0.755771 ± 8.75812e-05 1347
GBP 50gen, N = 30000, β = 1000 0 0.749058 ± 0.00143068 480

Table 8.7.: Results on Kaufmann (200,3). 20 runs each. SR gives the number of times
that the best known point (fitness 0.755841) is found. Furthermore we give
the average fitness over the 20 runs with its standard deviation and the total
runtime of the 20 runs in seconds. The parameters are τ = 0.3 for FDA,
maxflips = 20 for KLH .

Algorithm SR Avg fitness ± stddev seconds

FDA+join, N = 30000 3 0.752556 ± 0.000603656 13168
FDA+join+KLH20, N = 100 7 0.752997 ± 0.000518414 1464
IMKLH 20, R = 100 15 0.753165 ± 0.000747055 3088
CCCP 50gen, N = 30000, β = 5000 0 0.752291 ± 0.00183455 2229

Table 8.8.: Results on Kaufmann (400,3), same as in Table 8.7. For CCCP, one outer
loop update after 5 inner loop iterations. The best point known for this
instance has fitness 0.753505.

It can be seen that loopy belief propagation is less successful than the other methods.
This is probably due to the bad structure of the region graph, automatically built using
CVM. It was postulated in [YFW04] that a good region graph should have the sum of
all counting numbers 1 (see p. 115). The region graphs used here have −154 for (200, 3)
and −161 for (400, 3). Another problem is the choice of β. For small β the distributions
are badly focused and therefore the fitness values are rather low, whereas for too large
values the method becomes numerically unstable.

The other methods – FDA with subfunction join and a large population size, FDA
with join and KLH , and IMKLH– are all more or less successful on this benchmark.
Their average reached fitness is comparable. The runtime3 should be regarded with
care. It is very dependent of the parameters, e. g. the maximal number of generations

3Measured on an Intel Pentium M processor with 1.5 GHz.
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and the stopping criteria, so it can only give a rough idea of the required effort. But it
can be seen that the hybrid algorithm of EDA and KLH is the cheapest.

8.6. Summary

This chapter investigates the combination of EDA with local search. It is easily possible
to incorporate a local hillclimber into FDA and its variants. We present the Kernighan-
Lin hillclimber, which is for the first time formulated as a general-purpose technique.

It can be used in a stand-alone manner, as iterated local search, or combined with
EDA. We investigated these variants using three benchmark problems: MAXSAT, Ising
spin glasses, and Kaufmann (n, k). An analysis of the KLH local optima of MAXSAT
sheds light on the properties and the behavior of KLH .

We have found that the iterated local search algorithm IMKLH is a good search heuris-
tic, considering the simple design. The combination with EDA is similarly successful.
The chosen flavor of EDA seems to be of minor importance.

The hybrid algorithm performs quite well on most regarded benchmark problems. For
the grid-like Ising spin glass, BKDA is more efficient. But for the random-structure
Kaufmann problem, the hybrid algorithm of EDA and KLH seems to be the most effi-
cient.
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9.1. Results and Conclusions

This thesis uses methods and notions from statistics, information theory and statistical
physics to devise improvements and gain insights on the field of estimation of distribution
algorithms (EDA). EDA is a class of evolutionary optimization algorithms which builds
a probabilistic model in the search space from the selected population and uses this
model to sample the next population.

• For the factorized distribution algorithm (FDA) we present a new method to build
a probabilistic structure (a factorization) from a given additive structure of the
objective function. By virtue of merging subfunctions, more dependencies between
the variables can be exploited. The more powerful model leads to significant re-
duction in the required population size of FDA.

• The more complicated structure built by subfunction merge is also more difficult
to estimate. The maximum entropy principle permits to reduce the noise in the
distributions of the merged model. This leads to the maximum entropy FDA
(MEFDA) which is favorable particularly for small populations where estimates
are noisy.

• Loopy probabilistic models and the Kikuchi approximation constitute an exten-
sion of the applicable model class. Generalized belief propagation (GBP) learns
a probabilistic model which approximately minimizes the relative entropy to the
Boltzmann distribution of the objective function. In the Bethe Kikuchi distribu-
tion algorithm (BKDA) this is combined with a factorization in order to draw
samples efficiently. On the Ising spin glass problem, this algorithm solves small
instances (7× 7) exactly. Larger instances (10 × 10 and 15 × 15) do not focus on
the optimum, but can be solved using a reasonable sample size.

• The inverse temperature β of the Boltzmann distribution plays a vital role in this
algorithm. If it is chosen too low, the optimum does not stand out sufficiently in
the probability distribution; if it is too high, convergence is critical, numerically
less stable, and the probability to sample the optimum is small, too. In some cases,
the concave-convex procedure (CCCP) can replace generalized belief propagation
to improve convergence.

• The relative entropy between a population distribution and a postulated model
distribution lays the foundation of the BIC/MDL measure for learning a model
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from population data within the learning FDA (LFDA). It can recognize the
correct structure of the fitness function, if the population is sufficiently large.
The mutual information of the variables is a good indicator of their dependency.
An analysis of the BIC/MDL space gives insight in the behavior of the learning
algorithm.

• The Kernighan Lin hillclimber is a powerful local search heuristics which can be
applied in a stand-alone manner, as iterated local search, or within a hybrid algo-
rithm, combined with evolutionary optimization. Analysis of KLH optima gives
some indications why the combination of EDA and KLH is favorable.

The MAXSAT problem is very densely connected and has only few distinct fitness
function values. This makes it difficult for EDA, and therefore EDA plays only a
minor role when solving this problem; most of the work is done by the KLH .

The Ising and Kaufmann problems are different. Here the hybrid algorithm is
successful, but not necessarily better than other EDA variants.

9.2. Outlook

Since EDA is combined with methods of information theory, it is advisable to use these
methods also to estimate the dynamics of the algorithms, in order to understand how and
why they work best. This has been demonstrated particularly in Chapter 7 (for learning
a Bayesian network in the context of EDA) and in Chapter 8 (for the combination with
local hillclimbing). Further analysis on this track should lead to interesting insights.

The subfunction merge algorithm (Alg. 5.1) yields a factorization which accounts for all
variable connections. But often (e. g. for the SAT problem) the variables are too densely
connected, and Alg. 5.1 produces an infeasible structure. In this case, connections were
removed randomly, which is probably not the best solution.

A better criterion for the choice of the dependencies to be kept could be the deviance
from linear regression of the variables in the fitness function. Variables which depend
almost linearly in the subfunctions can be disjoined in the factorization without much
information loss. Another possibility is to choose the most important connections using
an algorithm similar to LFDA, but confined to the edges of the true dependency graph.
Such a criterion for choosing dependencies could enlarge significantly the class of feasible
problems for the subfunction merge algorithm. Another question is whether the merge
algorithm, as well as MEFDA (using maximum entropy to estimate large distributions
from smaller ones) could be applied fruitfully on EDAs which deduce the probabilistic
structure from the population, like LFDA, EBNA or BOA.

A similar possible direction of future research applies to the Kikuchi approximation.
Santana [San05] presents an algorithm to learn a region graph from a selected population;
however, he does not perform generalized belief propagation, but estimates the marginals
from the population and then applies Gibbs sampling on this structure. It is possible that
on a region graph learned from population data GBP will give a poor result. Nevertheless
it is an interesting and important research question whether BKDA and its sampling
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technique can be combined with a region graph learning algorithm, in order to broaden
its field of applicability.

Another important question is: What can we do if the optimum is not probable enough
in the distribution learned by GBP? We have identified β as an important parameter with
strong influence on this probability. Furthermore, if different region graph structures
are possible (e. g. by rotating or mirroring the pentavariate grid), they often yield very
different results, too. The CCCP algorithm is suitable when GBP has convergence
difficulties, but the fixed point to which it converges is the same. Another possibility
could be to devise a variant of the Gibbs free energy which leads to better fixed points
(similar to BIC/MDL, which adds a structure penalty to the log-likelihood).

Our research on LFDA is just a first step. There are many possibilities for further
research on this avenue, also for further information-theoretical analysis. Also, apart
from the simple greedy hillclimber used in LFDA, many more complicated algorithms
have been proposed for learning Bayesian networks from data. These could be used in
EDA, too. The first step should be to allow removing or reversing edges in the learned
graph. Another possibility is to take advantage of the previous generation’s model
instead of rebuilding the structure from scratch in every generation. Finally, LFDA uses
only the distribution of the selected population to build the model structure, but the
fitness values of the points are not exploited. It could be fruitful to take these into
account, too.

The Kernighan Lin hillclimber is a very successful local search procedure. It out-
performs single or multiple bit-flip hillclimbers, but it is also computationally more
expensive. It would be interesting to investigate how to make it more efficient. Usually,
maxflips (the maximal number of bits to be flipped in one phase) can be set to n/2 or less
without severe performance loss. Another possibility is to consider only a subset of bits
for flipping, possibly in a randomized manner. Is it possible to reduce the asymptotic
running time of KLH without jeopardizing its good performance?

Finally, the presented methods for estimating probability distributions can be applied
not only to optimization. For example, in [MH02b] we have applied maximum entropy to
the stochastic analysis of cellular automata. Other disciplines could profit as well from
an interdisciplinary research effort, which avoids “reinventing the wheel”, i. e. solving
problems which have already been tackled in other disciplines.

9.3. Choice of an Optimization Algorithm

Given an optimization problem, which algorithm should be used to solve it?

The no free lunch theorem states that there is no “best” optimization algorithm. For
each objective function a different algorithm can perform best.

First, it is advisable to attempt a simple search heuristic (e. g. IMKLH), before
considering more complicated algorithms. Certainly if a priori knowledge about the
problem is given, like an additive structure of the fitness function, an algorithm should
be chosen which can exploit this. For example, for grid structures like the Ising spin
glass, BKDA with the pentavariate factorization is a good choice.
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MAXSAT is a rather densely connected problem. For such a structure, a sensible
heuristics for choosing the most important connections of the graphical model is advis-
able. This recommends FDA with merge or LFDA on this problem. Also, since the
objective function (the number of fulfilled clauses) is not very informative for EDA, a
local hillclimber like KLH is very helpful.

For the Kaufmann function, KLH is not indispensable; if k is not too large, normal
FDA with the new subfunction merge and a large population can solve it, too. For larger
k, the factorization sets become too large and must be pruned.

In this manner, every optimization problem has its specific properties which should
be considered in the choice of the algorithm.
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[MH02b] H. Mühlenbein and R. Höns. Stochastic analysis of cellular automata with
application to the voter model. Advances in Complex Systems, 5(2 & 3):301–
337, 2002.
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A. Appendix: Ising Spin Glass Instances

This appendix contains the solutions of the suite of random instances of the Ising problem
used in the thesis. The instances are available at http://www.hoens.net/robin/ising in
the format used by the spin glass server in Cologne1. It begins with a short header,
giving the size and the random seed used within the FDA software package. Then there
is one line for each connection, in the format µ ν Jµ,ν , with the indices µ, ν ∈ {1, . . . , n}.

The coupling constants Jµ,ν were chosen randomly between -1 and 1. For pairs of spins
that transgress the boundary, the coupling is 0, because we consider the fixed-boundary
model. (These connections are listed in the files anyway, because this is required by the
Cologne spin glass server.)

The ground states of the given instances were calculated using the spin glass server in
Cologne and verified using the FDA software. The solutions are given as the indices of
the spins that should be set to 1; all others should be set to -1 (or vise versa). The last
column gives the energy of the ground state.

A.1. Instances of Size 7× 7

Seed Spins up Energy
1 2, 4, 8, 10, 15, 19, 21, 25, 26, 29, 32, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46 −34.664884
2 1, 2, 6, 7, 8, 17, 21, 24, 30, 32, 35, 38, 39, 40, 41, 45, 46, 49 −35.02556
3 1, 2, 3, 7, 12, 13, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 31, 33, 35, 36, 37, 39, 44, 47 −35.416631
4 1, 4, 5, 11, 15, 16, 18, 23, 26, 27, 28, 29, 30, 34, 35, 36, 38, 42, 43, 44, 45, 48 −33.737626
5 1, 2, 5, 7, 9, 10, 12, 13, 14, 16, 20, 26, 28, 30, 33, 34, 35, 40, 42, 43, 44, 45, 48, 49 −37.363193
6 4, 5, 7, 11, 12, 14, 16, 17, 18, 20, 25, 28, 29, 32, 33, 34, 37, 38, 39, 41, 43, 46, 47, 49 −31.408687
7 1, 2, 4, 5, 6, 11, 17, 20, 23, 24, 26, 30, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 48 −34.474571
8 1, 3, 5, 10, 11, 12, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 29, 33, 35, 39, 40, 41, 43, 49 −34.514092
9 1, 2, 9, 10, 14, 15, 16, 19, 21, 30, 31, 32, 33, 34, 36, 38, 41, 42, 43, 45, 47, 48 −32.884739

10 2, 3, 4, 5, 8, 17, 20, 21, 22, 23, 24, 25, 27, 28, 38, 39, 40, 41, 44, 45, 48 −35.54777

1http://www.informatik.uni-koeln.de/ls juenger/research/sgs/sgs.html
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A.2. Instances of Size 10× 10

A.2. Instances of Size 10× 10

Seed Spins up Energy
1 1, 10, 13, 18, 19, 20, 22, 23, 25, 27, 28, 30, 31, 32, 34, 37, 38, 39, 42, 46, 49, 50, 51,

53, 56, 60, 65, 68, 69, 71, 72, 73, 74, 79, 92, 93, 96, 97, 98
−65.99706

2 1, 2, 5, 6, 8, 10, 11, 16, 17, 22, 26, 28, 30, 31, 32, 35, 36, 40, 42, 43, 47, 48, 50, 52,
54, 55, 57, 58, 59, 61, 62, 63, 64, 67, 69, 73, 75, 77, 82, 85, 86, 89, 90, 91, 92, 95, 98

−73.359045

3 5, 6, 7, 9, 10, 11, 12, 15, 17, 23, 24, 26, 29, 30, 31, 33, 34, 36, 40, 43, 44, 46, 47, 50,
54, 55, 59, 60, 62, 63, 64, 70, 71, 76, 78, 81, 82, 83, 84, 86, 87, 90, 94, 98, 99

−72.69937

4 1, 3, 5, 7, 8, 13, 14, 17, 26, 28, 31, 32, 33, 39, 40, 43, 44, 46, 47, 48, 49, 50, 52, 53,
54, 55, 56, 57, 59, 60, 63, 64, 65, 73, 75, 77, 78, 80, 81, 86, 88, 91, 92, 93, 94, 97, 98,
99, 100

−72.516619

5 1, 4, 8, 9, 10, 12, 19, 20, 22, 26, 27, 28, 29, 30, 34, 36, 37, 38, 40, 42, 44, 47, 49, 53,
54, 57, 58, 59, 64, 65, 67, 68, 69, 70, 71, 74, 75, 80, 87, 89, 90, 91, 93, 94, 100

−73.537427

6 1, 2, 4, 5, 7, 8, 10, 11, 12, 18, 19, 20, 21, 25, 27, 28, 30, 32, 33, 34, 38, 39, 40, 41, 45,
46, 48, 49, 55, 61, 63, 65, 68, 71, 72, 73, 74, 79, 84, 89, 90, 93, 95, 98, 99

−72.79642

7 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 18, 20, 24, 27, 29, 31, 34, 39, 40, 41, 45, 47, 50,
51, 52, 54, 59, 61, 68, 69, 72, 77, 81, 82, 84, 88, 89, 90, 94, 95, 97, 99, 100

−73.976806

8 1, 3, 4, 6, 7, 9, 10, 14, 15, 17, 21, 23, 24, 26, 29, 31, 34, 35, 37, 38, 39, 40, 41, 44, 45,
49, 50, 51, 52, 54, 55, 58, 60, 62, 64, 68, 69, 71, 72, 74, 75, 79, 80, 81, 82, 84, 89

−70.732175

9 4, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 35, 36, 41, 44,
45, 48, 49, 52, 54, 57, 59, 60, 62, 63, 64, 68, 77, 78, 80, 84, 87, 88, 89, 92, 93, 97, 99

−70.996549

10 1, 4, 5, 6, 9, 12, 13, 17, 18, 20, 21, 22, 25, 27, 28, 31, 34, 35, 36, 40, 43, 45, 48, 50,
53, 56, 58, 60, 62, 63, 65, 69, 72, 73, 76, 78, 80, 81, 82, 83, 84, 85, 89, 90, 92, 93, 95,
97, 98, 99

−76.212219
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A. Appendix: Ising Spin Glass Instances

A.3. Instances of Size 15× 15

Seed Spins up Energy
1 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 22, 25, 27, 29, 30, 32, 33, 37, 38, 40, 41, 42, 44, 45,

49, 50, 52, 53, 55, 60, 61, 62, 66, 68, 71, 72, 74, 77, 81, 82, 88, 89, 91, 92, 93, 94, 97,
99, 100, 102, 103, 105, 107, 110, 115, 116, 121, 122, 124, 128, 132, 133, 135, 136, 137,
139, 141, 143, 145, 148, 150, 151, 152, 158, 160, 163, 167, 169, 170, 171, 173, 175,
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 187, 190, 191, 193, 194, 195, 197,
198, 206, 207, 208, 209, 210, 211, 221, 222, 224, 225

−165.426135

2 3, 4, 6, 8, 10, 18, 19, 21, 22, 23, 24, 25, 26, 29, 31, 32, 37, 39, 40, 48, 49, 50, 51, 54,
56, 57, 58, 59, 60, 62, 63, 69, 71, 74, 81, 82, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 101,
102, 103, 104, 107, 110, 111, 112, 113, 118, 120, 122, 123, 124, 127, 128, 129, 133,
136, 137, 140, 141, 142, 145, 147, 148, 149, 150, 153, 155, 157, 158, 166, 170, 172,
176, 177, 179, 180, 181, 182, 183, 185, 189, 202, 203, 204, 206, 207, 209, 210, 214,
216, 217, 218, 219, 223, 225

−170.998755

3 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 17, 18, 22, 23, 24, 27, 30, 31, 34, 35, 36, 37, 40, 41, 42,
44, 47, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 64, 73, 75, 84, 87, 88, 90, 91, 93, 94, 96,
97, 98, 100, 101, 103, 104, 106, 108, 109, 112, 115, 119, 123, 124, 125, 127, 130, 131,
133, 135, 136, 138, 142, 145, 147, 148, 150, 151, 152, 153, 160, 161, 167, 170, 176,
177, 178, 179, 180, 181, 182, 184, 185, 186, 191, 192, 194, 195, 196, 197, 200, 202,
203, 204, 206, 209, 210, 213, 217, 218, 223, 224

−167.659186

4 1, 3, 4, 5, 7, 9, 13, 15, 21, 22, 23, 25, 27, 28, 35, 36, 38, 40, 43, 49, 50, 51, 52, 53,
55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 71, 72, 74, 75, 76, 80, 81, 82, 83, 87, 93, 96,
99, 101, 104, 105, 108, 109, 110, 111, 115, 116, 119, 122, 123, 126, 127, 129, 133, 135,
137, 139, 140, 141, 144, 146, 148, 150, 151, 152, 153, 154, 155, 158, 159, 160, 161,
162, 163, 166, 169, 171, 172, 173, 175, 177, 179, 182, 185, 187, 189, 193, 194, 195,
197, 200, 204, 205, 209, 212, 213, 217, 218, 221, 222, 223

−164.473406

5 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 23, 25, 26, 27, 28, 30, 31, 34, 39, 42, 43, 44, 45, 46,
47, 48, 49, 50, 57, 58, 59, 60, 62, 64, 65, 66, 67, 69, 73, 74, 75, 78, 79, 85, 90, 95, 97,
98, 100, 102, 111, 113, 115, 121, 122, 124, 127, 129, 130, 132, 135, 136, 138, 139, 141,
142, 143, 144, 146, 147, 149, 150, 151, 153, 154, 157, 161, 164, 169, 170, 171, 172,
177, 178, 180, 182, 183, 185, 187, 188, 189, 190, 193, 195, 197, 203, 204, 205, 208,
209, 211, 213, 214, 217, 218, 222, 224, 225

−168.539819

6 1, 2, 4, 5, 7, 12, 14, 16, 17, 18, 19, 22, 23, 27, 29, 30, 31, 34, 35, 37, 38, 41, 43, 44,
45, 46, 47, 48, 50, 54, 56, 57, 58, 60, 62, 65, 66, 69, 70, 73, 76, 79, 81, 83, 84, 86, 88,
94, 97, 100, 101, 105, 114, 117, 120, 123, 126, 127, 129, 130, 133, 139, 140, 141, 142,
144, 146, 148, 153, 154, 155, 157, 158, 159, 160, 161, 162, 167, 168, 170, 176, 178,
180, 182, 191, 193, 194, 195, 196, 198, 199, 201, 203, 206, 207, 209, 210, 211, 212,
213, 214, 216, 217, 218, 221, 224

−168.823523

7 4, 5, 11, 16, 17, 18, 21, 22, 23, 26, 27, 29, 30, 33, 34, 35, 38, 46, 48, 51, 52, 53, 54,
55, 56, 59, 60, 61, 64, 65, 67, 75, 76, 77, 78, 79, 81, 86, 87, 88, 90, 92, 95, 96, 97, 98,
99, 100, 101, 102, 106, 109, 112, 116, 118, 119, 120, 121, 122, 123, 124, 125, 127, 133,
135, 137, 138, 139, 140, 141, 142, 144, 146, 154, 155, 157, 158, 168, 169, 175, 176,
177, 179, 180, 183, 184, 185, 189, 190, 193, 194, 199, 202, 205, 209, 210, 212, 213,
214, 216, 218, 219, 220, 221, 222, 223, 224

−169.817999

8 2, 3, 4, 6, 7, 8, 9, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 30, 32, 35, 36, 39, 40, 45,
47, 50, 51, 55, 58, 59, 66, 68, 72, 73, 75, 78, 79, 81, 83, 84, 88, 91, 94, 97, 98, 101,
104, 105, 108, 109, 113, 115, 116, 118, 119, 120, 124, 125, 128, 129, 130, 132, 134,
136, 137, 138, 141, 142, 144, 145, 149, 157, 158, 161, 166, 167, 168, 172, 174, 175,
176, 178, 180, 184, 186, 187, 188, 190, 191, 193, 197, 198, 199, 200, 201, 203, 207,
209, 210, 212, 213, 215, 216, 220, 222, 223, 224

−169.024191

9 1, 2, 6, 11, 12, 13, 14, 17, 21, 24, 25, 26, 27, 29, 33, 35, 36, 38, 39, 40, 51, 53, 56, 57,
60, 61, 65, 67, 68, 69, 73, 77, 80, 84, 88, 89, 90, 92, 93, 94, 98, 99, 100, 101, 102, 104,
105, 108, 110, 112, 113, 114, 118, 120, 124, 125, 128, 129, 130, 131, 132, 137, 140,
142, 144, 146, 154, 155, 159, 160, 163, 165, 166, 169, 170, 171, 172, 173, 174, 185,
189, 190, 192, 193, 195, 196, 198, 201, 203, 212, 215, 217, 220, 221, 222, 223, 224, 225

−166.844277

10 1, 3, 5, 6, 9, 12, 13, 17, 18, 20, 22, 26, 27, 29, 31, 32, 34, 36, 40, 41, 43, 47, 48, 52,
53, 54, 55, 57, 60, 61, 62, 64, 66, 70, 73, 75, 80, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95,
99, 100, 101, 102, 105, 107, 108, 110, 111, 113, 114, 116, 123, 124, 128, 130, 133, 134,
135, 136, 140, 142, 145, 147, 148, 149, 151, 156, 160, 162, 164, 165, 166, 167, 168,
169, 170, 173, 177, 179, 180, 185, 191, 193, 195, 200, 201, 204, 207, 208, 211, 214,
216, 217, 218, 219, 220, 222, 223

−162.117506
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