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1 Introduction 
 

 

1.1 Multidrug Resistance 

Multidrug resistance (MDR) is a major obstacle in the chemotherapeutic 

treatment of cancer (Gottesman, 1993).  An MDR tumor is characterized by the 

ability to simultaneously exhibit resistance towards a large number of structurally 

unrelated chemotherapeutic drugs.  Consequently, chemotherapeutic agents fail to 

target the MDR tumor, thus the cancer becomes untreatable by chemotherapy.  

MDR can be either intrinsic (de novo) or acquired by exposure of malignant cells to 

chemotherapeutic agents (Fojo, 1987; Dalton, 1989).   

In the clinical reality, MDR is a multifactoral and complex condition.  Various 

cellular and non-cellular mechanisms are involved in clinical MDR (Fojo, 2003).  

Although the focus of this thesis is on transporter-mediated MDR phenotypes, other 

cellular mechanisms of MDR will be introduced.  Cellular mechanisms can be further 

classified as non-classical and transporter-based MDR mechanisms.   

 

1.1.1 Cellular MDR mechanisms 

Cellular mechanisms of MDR arise in the tumor cell as a response to cytotoxic 

challenge.  In the course of chemotherapeutic treatment, some tumors can adapt to 

a toxic environment by altering the expression of key genes, which help the tumor 

cell to escape the toxic effects of the chemotherapeutic drug. 

 

1.1.1.1 Non-classical MDR mechanisms 

The term, “non-classical MDR mechanisms”, summarizes all non-transporter-

based MDR mechanisms.  These types of resistance include enzyme–mediated (e.g. 
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Glutathione-S-transferase, topoisomerase) and apoptosis-derived mechanisms (e.g. 

tumor suppressor gene p53).   

 

Glutathione S-transferase enzyme system 

The Glutathione S-transferase (GST) enzyme system is involved in the 

biotransformation of drugs and xenobiotics (Lewis, 1989).  Furthermore, it protects 

cells from damage resulting from reactive epoxides (Kuzmich, 1991) and free 

radicals (Ketterer, 1990).  In many resistant tumor cell lines, the GST system has 

been found to be overexpressed (Lewis, 1989).  It is believed that the GST system, 

when expressed at a high level, can protect the cell from chemotherapeutic agents.  

For instance, when an isoform of GST gene was selectively transfected into yeast 

cells, an 8-fold increase in resistance towards the cytotoxic drug chlorambucil was 

obtained (Black, 1990).  However, the GST resistance mechanism appears to be 

specific only for some chemotherapeutic drugs.  There has been evidence that an 

induced GST activity is not a resistance mechanism for doxorubicin (Moscow, 1989).   

 

Topoisomerase enzymes 

Topoisomerase type I and II enzymes are involved in DNA replication 

processes.  Topoisomerase I assists to alter DNA topology via single strand breaks, 

whereas Topoisomerase II causes transient double strand breaks of the DNA 

molecule.  Some chemotherapeutic agents such as doxorubicin, etoposide or 

campothecin target topoisomerase enzymes by stabilizing the enzyme DNA complex 

and thus preventing the two DNA fragments from rejoining (Ross, 1984; Kunimoto, 

1978).  The resulting DNA strand breaks are thought to trigger apoptosis, which may 

lead to tumor death (Roy, 1992).  Tumor cells can develop resistance mechanisms 

against topoisomerase inhibitors by either downregulating the expression of the 

topoisomerase enzymes or by gene mutations within the topoisomerase gene 

(Drake, 1987).  Resistance against Topoisomerase II is often synchronized with the 

overexpression of P-glycoprotein (Kunikane, 1990).   
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Tumor suppressor gene p53  

In cases of DNA damage, incurred by stress stimuli like irradiation or hypoxia, 

the tumor suppressor gene p53 mediates a growth suppressive response through 

the activation of pathways involved in cell cycle arrest, DNA repair, apoptosis and 

angiogenesis (El-Deiry, 2003).  A loss of p53 function is often associated with the 

formation of aggressive tumors.  Some anticancer drugs are active against tumor 

cells by inducing DNA damage and triggering apoptosis via p53.  Therefore, 

downregulation or mutations of the p53 gene hinders chemotherapeutic agents from 

inducing apoptosis and protects the tumor cell against the treatment (Lowe, 1993a).  

Furthermore, p53 regulates the expression of a downstream gene, B-cell lymphoma-

2 (bcl-2) (Lowe, 1993b).  The anti-apoptotic protein bcl-2 inhibits the apoptosis 

pathway through a regulation of the mitochondrial pathway prior to caspase 

activation (Kaufmann, 2003).  Bcl-2 is involved in the cellular protection from cell 

death stimuli including gamma radiation, UV and tumor necrosis factor (Reed, 1995).  

Increased expression levels of bcl-2 have been associated with cellular resistance 

towards a number of cytotoxic agents including doxorubicin, taxol and mitoxantrone.   

 

1.1.1.2 Classical MDR mechanisms 

The term “classical MDR mechanisms” refers to transporter-based resistance 

mechanisms and describes the generally accepted primary mechanism of drug 

resistance.  The transporters involved in MDR mainly belong to the family of ATP-

binding cassette (ABC) transporters.  ABC transporters actively expel cytotoxic drugs 

out of the tumor cell and maintain an intracellular drug level below effective 

concentrations (Bodó, 2002).  This mechanism of resistance appears to be most 

relevant to drugs which enter cells by passive diffusion such as most natural 

chemotherapeutic agents including doxorubicin or paclitaxel.   

An important characteristic of MDR transporters is their wide substrate 

acceptance.  In contrasts to other mammalian transporters, the ABC-proteins are 

highly promiscuous transporters and recognize a wide range of structurally diverse 

substrates (Bodó, 2002).  This is of clinical importance: a tumor which develops an 

MDR transporter-based resistance mechanism as a result of treatment with one 
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cytotoxic drug will likely be resistant towards most other chemotherapeutic agents.  

Genes encoding for ABC transporters are often overexpressed in MDR tumors 

(Krishna, 2000).   

The family of ABC transporters and their most relevant members will be 

introduced in detail in chapter 1.2.   

 

1.1.2 Non-cellular MDR mechanisms  

Although less obvious, non-cellular mechanisms can contribute to an 

environment, in which the tumor protects itself from the chemotherapeutic drug.  

Non-cellular mechanisms of MDR arise during the formation of tumor tissue, and are 

associated with the physiological environment and the surrounding tissue of the 

tumor.  These mechanisms mainly occur in solid tumors and hinder anticancer drugs 

from accessing their sites of action.   

Several different mechanisms can lead to non-cellular-based resistance.  In 

some solid tumors, for example, the interstitial fluid pressure is increased. This can 

be due to either a higher vascular permeability or the absence of a functional 

lymphatic system (Jain, 1987).  As a consequence, the tissue is vascularized but 

poorly circulated and this prevents the chemotherapeutic drug from being 

transported into the tumor region.   

Tumor regions are often deficient in nutrition and oxygen.  This creates an 

environment of unfavorable physicochemical conditions for many chemotherapeutic 

drugs.  In these tumor areas, lactic acid generation and hypoxia lead to conditions, in 

which drugs can be protonated (Demant, 1990).  As many drugs are weak bases, 

protonation will introduce an ionic force, which might impair their ability to cross 

biological membranes and enter the tumor cell. 
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1.2 ABC-transporter family 

The family of ABC transporters is a large gene family of structurally related 

transmembrane proteins.  Close to 50 members of the ABC transporter family in 

humans have been discovered to date (Sarkadi, 2004).  All ABC transporters contain 

a distinct DNA signature which includes the ATP-binding domain (Klein, 1999).  ABC 

transporters are phylogenetically ancient and evolutionary conserved from bacteria 

to men.  Homologues of human ABC transporters were found in microorganisms 

such as bacteria and yeast where they were shown to be involved in conferring 

resistance to antibiotics (Van Veen, 1998b).  The human MDR1/Pgp transporter, for 

example, has a similar antineoplastic profile to, and can be substituted by, LmrA, the 

multidrug transporter from Lactococcis lactis (Van Veen, 1998a).   

In eukaryotic organisms, ABC transporters are ubiquitary present.  Human 

members of the ABC family are widely expressed throughout the body and take part 

in such diverse functions as transport across membranes or cell signaling (Holland, 

1999).  Functionally, ABC transporters move their substrates across biomembranes 

in an energy-dependent manner.  The ATPase activity necessary for this transport 

follows classical Michaelis-Menten kinetics (Ambudkar, 2003).   

The main physiological role of these transporters is the protection of the body 

against xenobiotics and toxic endogenous substrates.  Therefore, ABC transporters 

can be found in important pharmacological barriers or organs of excretion including 

the liver and the kidney.  ABC transporters are all characterized by a broad substrate 

acceptance which makes them clinically important as the majority of the current 

drugs on the market are substrates of the ABC-transporters (Beringer, 2005).  Thus, 

their ubiquitous expression and diverse affinity brings about many drug-to-drug 

interactions and pharmacokinetic alterations.   

In resistant tumor cells, ABC transporters are highly overexpressed and 

primarily involved in MDR mechanisms (see chapter 1.1.1.2).  Among the various 

ABC-transporters the following members have been recognized as the most 

significant for clinical MDR: P-glycoprotein (Pgp, ABCB1), the breast cancer 

resistance protein (BCRP, ABCG2) and the multidrug resistance associated proteins 

(MRPs, ABCC family) (Fojo, 2003; Tan, 2000; Bodó, 2002).  These transporters shall 

be described in the following chapters. 
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1.2.1 P-glycoprotein (Pgp, ABCB1) 

Pgp was discovered and first characterized by Ling and co-workers (Ling, 

1974; Juliano, 1976) using multidrug resistant Chinese hamster ovary cells.  To date, 

Pgp, also termed ABCB1, is the most intensively studied and possibly the most 

prevalent of the ABC-transporters in cancer cells.  The 170 kDa protein is a 

membrane-bound, energy-dependent drug transporter (Ling, 1995).  By actively 

effluxing its substrates, Pgp reduces intracellular concentrations to subtherapeutic 

levels, thereby conferring resistance to a broad range of cytotoxic drugs.  These 

substrates are of such large structural diversity, that common features are difficult to 

discover.  Indeed the only common features for Pgp substrates appear to be 

hydrophobicity and a molecular mass of 300 – 2000 Da (Ford, 1990).  Anionic 

structures are not transported by Pgp.  Substrates for Pgp include many cytotoxic 

drugs used in cancer treatment such as the anthracyclines, Vinca alkaloids and 

taxanes as well as commonly prescribed drugs such as the calcium channel blockers 

and antiviral protease inhibitors.   

Pgp is encoded by the MDR1 gene in humans and by the mdr1a and mdr1b 

genes in rodents.  Together, mdr1a- and mdr1b-type Pgps fulfil the same function as 

the single human Pgp (Schinkel, 1997).  The human protein consists of 1280 amino 

acids and spans the biomembrane with 12 transmembrane domains (Figure 1.1).  

The protein is folded into two similar parts, each containing six transmembrane 

segments and one ATP binding domain.  The gene sequences of these two halves 

of the molecule share about 43 % of homology.  Pgp contains three glycosylation 

sites (see figure 1.2) on an extracytoplasmic domain (Chen, 1986).   
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Figure 1.1   Topological model of Pgp 

The organization of Pgp is depicted with two membrane spanning domains (MSD) and two intracellular ATP-
binding sites located between the MSD and at the C-terminus.   

 

 

Mechanisms of transport 

Different theories on the mechanism by which Pgp transports its substrates 

across biomembranes have been developed.  In the “Flippase” model, Higgins and 

Gottesman postulate that substrates congregate with Pgp at the inner leaflet of the 

plasma membrane.  There, Pgp flips the substrates into the outer leaflet, from which 

they diffuse into the extracellular area (Higgins, 1992).   

A second model by Gottesman and Pastan describes Pgp as a “hydrophobic 

vacuum cleaner” (Gottesman, 1993).  According to the model, substrates of Pgp 

passively diffuse into the inner layer of the plasma membrane.  There, Pgp 

recognizes the substrates and directly pumps them out.  In figure 1.2, the two 

postulated routes of transport are illustrated. 
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Figure 1.2   Mechanisms of Pgp transport 

Two proposed routes of efflux (“Flippase model” and “Vacuum cleaner model”) are illustrated for doxorubicin. 

 

 

Multiple binding sites 

The binding parameters and putative binding sites on the molecule have been 
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Evidence for a vinblastine binding site could be generated using the photoactive 

analogue of vinblastine, N-(p-azido-)-[3-125I]-salicyl)-N΄-ß-amino vindesine, in 

membrane vesicles obtained from MDR Chinese hamster lung cells.  As binding 

could be inhibited by the addition of vincristine and daunorubicin, competitive binding 

characteristics were concluded (Cornwell, 1986).   

The presence of multiple binding sites was proposed when additional Pgp 

substrates, including colchicine and actinomycin D, were discovered.  These 
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in models of purified and reconstituted Pgp in liposomes demonstrated a direct 

transport of the Pgp substrate Hoechst 33342 (Shapiro, 1995).  These investigations 

supported the “hydrophobic vacuum cleaner” transport model.  

Using fluorescent probes in a model of reconstituted Pgp in membrane 

vesicles, Shapiro and Ling could demonstrate the presence of at least two distinct 

binding sites, which they named the H site and the R site (R for rhodamine 123, H for 

Hoechst 33342).  According to their model, the two binding sites interact in a 

positively cooperative manner (Shapiro, 1997).  Further studies of the R and H site 

by Pajeva and coworkers revealed that both binding sites, the H and the R site, 

switch their orientation between two functional states characterized as nucleotide-

free and nucleotide-bound (Pajeva, 2004).  The described conformational change is 

thought to mediate the transport of the substrate from the membrane to the inner 

pore. 

By classifying drugs that interact with Pgp either as substrates or modulators, 

Martin and coworkers developed a model of Pgp’s transport mechanisms, in which 

they postulate a minimum of four drug binding sites.  These binding sites switch 

between high and low affinity binding and belong to two categories of either transport 

or regulatory function (Martin, 2000).   

The localization of drug-binding sites on the Pgp molecule was further 

investigated using photoaffinity analogues.  Results from these studies have been 

summarized by Ambudkar and coworkers (Ambudkar, 2003).  Ambudkar suggests 

that several transmembrane domains (TM) are involved in substrate binding and that 

different substrates possess multiple and potentially overlapping binding sites.   

Loo and Clarke have developed another model of substrate binding to Pgp 

(Loo, 2002).  This model is based on extensive investigations using cystein scanning 

mutagenesis and crosslinking experiments.  According to the authors, the protein 

contains one common binding site, folded like a pocket, involving eight different TM 

domains.  This ‘pocket’ allows diverse substrates to create their own binding sites in 

such a way that the substrates use a combination of residues from the different TM 

involved.  The binding pocket is thought to be mobile, however, when binding of the 

substrate occurs, the binding pocket stabilizes.   
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Very recently, Safa has developed a model of several binding sites on the Pgp 

molecule.  The model is based on data obtained from photoaffinity-labeled 

substrates and postulates seven different binding sites which account for distinct 

binding of vinblastine, taxol, Hoechst 33342, prazosin, bepridil, flupentixol and 

dihydropyridine calcium channel blockers (Safa, 2004).   

These reports exemplify the large number of sophisticated models, which 

have been developed to explain the enigma of Pgp’s broad function and efficacy.  

However, the exact mechanism of binding as well as structure activity relationships 

of substrates and modulators have not been entirely resolved to date.   

 

Physiological expression 

Pgp is widely expressed throughout the body with a concentration in excreting 

organs and physiological barriers.  In the intestine, liver and kidney, Pgp is localized 

in transporting tissues such as the brush border membrane of intestinal cells or the 

biliary canalicular membrane of the hepatocytes.  This indicates an involvement of 

Pgp in the transepithelial secretion of substrates into bile, urine or intestinal lumen.   

Pgp can also be found in barrier tissues such as the placenta or the testis.  In 

the brain, Pgp is expressed in endothelial cells of the brain capillaries and the 

choroid plexus, both major components of the blood-brain barrier (Borst, 2000; Rao, 

1999).  Hence, Pgp plays an important role in the excretion and the protection of 

various tissues against toxic xenobiotics (Borst, 1996; Smit, 1999).  Studies in MDR1 

knock out mouse models elegantly confirmed the physiological implications of Pgp 

(Schinkel, 1997).  Whereas the viability of mice lacking MDR1 transporters was not 

altered, these animals demonstrated a hypersensitivity to xenobiotics with altered 

excretion and distribution parameters.   

 

Involvement in MDR tumors 

Pgp is highly overexpressed in the majority of MDR tumor cells of leukemic 

and solid tumors (Ambudkar, 2003).  The MDR phenotype could be selected in vitro 

using natural product anticancer agents such as vinblastine, doxorubicin and 
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paclitaxel.  These tumor cells then displayed cross resistance to other structurally 

diverse compounds (Ling, 1995).   

In the clinical setting, Pgp has been associated with the development of MDR 

tumors.  Leith and coworkers have reported Pgp expression in 30 % of acute 

myelogenous leukemia patients at first diagnosis.  In patients with disease relapse, 

overexpression of Pgp was detected in over 50 % of the patients.  The degree of 

Pgp expression in tumors from these patients was comparable to the Pgp expression 

seen in MDR resistant tumor cells selected through in vitro assays (Leith, 1999).   

 

 

1.2.2 Breast Cancer Resistance Protein (BCRP, ABCG2) 

BCRP was first discovered and isolated from the doxorubicin resistant breast 

cancer cell line MCF7 AdVp3000, which did not possess detectable levels of Pgp or 

MRP1 (Doyle, 1998).  Doyle and coworkers named this new transport protein the 

breast cancer resistance protein (BCRP), as they derived it from a resistant breast 

cancer cell line.   

BCRP is a 72 kDa ABC-half transporter composed of 655 amino acids.  It is 

thought to function as a homodimer, thus requiring a second molecule for activity.  

The two halves are bridged by a disulfide bond (Doyle, 2003).  The BCRP peptide 

sequence reveals a single ATP binding domain and an ABC signature motif within 

the relatively hydrophobic amino terminal domain.  Furthermore, BCRP possesses 

six transmembrane domains and four potential N-glycosilation sites (Doyle, 1998).  

BCRP is similar to one half of the Pgp or MRP1 molecule with the exception that the 

ATP binding domain is located at the amino-terminus of the peptide and not at the 

carboxyl-terminus (Figure 1.3).  Of note, members of the ABCG subfamily are the 

only human ABC transporters discovered in which the ABC signature domain 

precedes the transmembrane region. 
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Figure 1.3   Topological model of BCRP  

The organization of BCRP is depicted with one membrane spanning domain (MSD1) and the intracellular ATP-
binding domain at the N-terminus.   

 
 

In humans, the BCRP gene is located on chromosome 4, a gene site where 

no other ABC transporter is located.  Analyses of the phylogenetic relationships 

showed that BCRP is only distantly related to Pgp.  However, Pgp is closely related 

to ABCG1, another member of the G subfamily of the ABC transporters (Chen, 1996) 

which regulates the macrophage cholesterol and phospholipid transport.   

Though different in structure and genetic background, Pgp and BCRP share 

many common substrates.  Both actively transport various structurally diverse 

substrates out of the cell.  Substrates of BCRP include the anticancer drugs 

mitoxantrone, camptothecin-based topoisomease I inhibitors, methotrexate and 

flavopiridol (Bates, 2001).  BCRP mutated at codon 482, can also transport 

anthracyclines (Doyle, 2003).  Most Pgp inhibitors including PSC 833 and LY335979 

do not inhibit BCRP.  Some other Pgp inhibitors have been reported to also interact 

with BCRP (Doyle, 2003), such as GF120918 (Maliepaard, 2001) and Cyclosporin A 

(Qadir, 2005).  Other selective inhibitors for BCRP include fumitremorgin C (Doyle, 

2003) and novobiocin (Shiozawa, 2004).  More recently a non-toxic, synthetic analog 

of fumitremorgin C, Ko143, has been identified as a potent and selective inhibitor of 

BCRP (Allen, 2002). 
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Physiological expression 

Immunohistochemical studies have confirmed the predominant localization of 

BCRP in the plasma membrane (Rocchi, 2000).  This is of importance, as almost all 

other known half-transporters are localized within the intracellular membranes of the 

mitochondria or the endoplasmatic reticulum.   

Similarly to Pgp, BCRP is widely expressed throughout the body, but with the 

highest concentration in the placenta.  These findings suggest that BCRP plays a 

protective role for the fetus preventing potentially harmful substances from entering 

the uterus (Jonker, 2000).  Moreover, BCRP expression is found in many other 

organs and tissues including the liver, ovaries, colon, kidneys and brain microvessels 

(Doyle, 2003).  Tissue distribution studies have demonstrated an extensive overlap 

between BCRP and Pgp, suggesting that BCRP plays a similar physiological role in 

providing protection from xenobiotics.  Indeed, BCRP regulates the distribution of 

xenobiotics to various tissues like the liver, intestine and placenta (Allen, 2002).   

Interestingly, BCRP has been found to be highly expressed in stem cell 

subpopulations, such as hematopoetic stem cells (CD-) (Zhou, 2001) or embryonic 

kidney cells (Scharenberg, 2002).  These findings imply that BCRP might be 

involved in the general regulation and protection of stem cells.   

 

Involvement in MDR tumors 

Immunohistochemical investigations of various tumors have revealed that 

BCRP is expressed in over 40 % of solid tumors (Diestra, 2002).  BCRP 

overexpression was detected in tumor specimens obtained from colon, 

endometrium, lung and melanoma.  Thus, BCRP has a substantial involvement in 

the development of MDR tumors.   

BCRP is believed to play a role in recurrent tumors.  High BCRP expression 

was found to be correlated with disease relapse and poor prognosis in acute myeloid 

leukemia.  Furthermore, BCRP expression was verified in premature stem cells of 

various different tissues.  These findings suggest that BCRP might be involved in the 

protection of cancer stem cell subpopulations where it is believed to offer survival 

advantages, particularly under hypoxic conditions (Sarkadi, 2004).   
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1.2.3 Multidrug Resistance Associated Proteins (MRP, ABCC) 

The multidrug resistance associated protein (MRP) family or ABCC family, is 

another distinct class of ABC drug efflux transporters with at least nine members.  

MRP proteins actively transport structurally diverse lipophilic anions across the 

biomembrane.  The members MRP1, MRP2 and MRP3 were found to play a role in 

the MDR phenotype of resistant tumors (Borst, 2000; Kruh, 2003).  In figure 1.4, the 

topological models of MRP1, MRP2 and MRP3 are compared.  As specified in the 

following, all three proteins are of almost equal size and organization.  They contain 

three membrane spanning domains, two intracellular loops and two nucleotide 

folding domains for ATP binding. 

 

 

 

 

 

 

 

 

 

Figure 1.4   Topology of MRP1, MRP2 and MRP3  

The organization of protein domains is schematically illustrated.  Regions are indicated as follows: Yellow, 
membrane-spanning domains; blue, cytoplasmic loops; orange, ATP binding domains. 

MSD: membrane spanning domain; L: intracellular loop; NBF: nucleotide-binding fold; C: C-terminus 

 

 

Multidrug Resistance associated Protein 1 

MRP1 is a 190 kDa basolateral efflux pump, which transports glutathione-S-

conjugates of anionic compounds directly or in cotransport with glutathione.  

Substrates of MRP1 include chemotherapeutic agents like mitoxantrone, 

anthracyclines and Vinca alkaloids.  Despite its partly overlapping resistance profile 
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with Pgp, the amino-acid sequence of MRP1 resembles Pgp to a small extent of only 

15 %.  The structure of MRP1 contains a central ‘core’ region and a third membrane 

spanning domain.  The additional domain (MSD0) contains five transmembrane 

helices, and an extracellular loop with the N-terminus located on the outside of the 

cell (Bakos, 1996).  Two membrane spanning domains as well as two ATP-binding 

domains are situated (see Figure 1.5) within the ‘core’ region.  

 

 

 

 

 

 

 

 

 

Figure 1.5   Topological model of MRP1  

The organization of MRP1 is depicted with three membrane spanning domains (MSD), the intracellular loops (L), 
two ATP-binding domains and an extracellular N-terminus.  This model resembles MRP2 and MRP3. 

 

 

MRP1 expression is found in the adrenal gland, breast, lung, kidney, heart, 

blood-brain barrier and endocrine tissue.  Studies in mrp1 -/- knockout mice have 

indicated that MRP1 is a transporter functioning as a resistance factor for some 

mucosal tissues and bone marrow.  Furthermore, MRP1 is involved in the 

physiological barrier for the protection of the testis and the choroids (Kruh, 2003).  In 

contrast to Pgp, MRP1 is expressed on the basolateral site of epithelial cells.  Thus, 

MRP1 transports its substrates away from the luminal surface (e.g. intestinal lumen, 

bile duct) into the tissue beneath it (Evers, 1996).   

Due to its strong affinity for glutathione and glucuronate conjugates, both 

products from the phase II cellular detoxification of hydrophobic compounds 
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(Ishikawa, 1992), MRP1 holds an important role in the physiological detoxification 

system.  MRP1 also transports unmodified lipophilic anions, such as many cytotoxic 

agents, in co-transport with glutathione.  Consequently, MRP1-based resistance 

mechanisms can be inhibited by agents, which block the synthesis of glutathione 

(Schneider, 1995).  Such an inhibitor is buthionine sulfoximine (BSO).  Other 

inhibitors of MRP1 include indomethacin and nifedipine (Draper, 1997; Cullen, 2001). 

 

Multidrug Resistance associated Protein 2 

MRP2 is another glutathione efflux pump for amphipathic anions.  The protein 

is composed of 1545 amino acids and its topological organization, as presented in 

figure 1.4 and 1.5, is closely related to MRP1.  Even though the substrate-specificity 

of MRP2 is very similar to that of MRP1, its physiological function is completely 

different.   

MRP2 has a distinct expression pattern and subcellular polarity.  In contrast to 

MRP1, MRP2 is expressed on the apical site of polarized cells.  In the liver, MRP2 is 

localized in canaliculi cells where it mediates the extrusion of lipophilic anions into 

the bile.  MRP2 is an important component in the biliary excretion of bilirudin 

glucuronates, which are conjugated end products of heme degradation (Jedlitschky, 

1997).  Families with hereditary deficiencies of MRP2 have an increased disposition 

for pathological liver conditions.  A lack of MRP2 is associated with defects in 

hepatobiliary excretion of anionic compounds, which leads to the Dubin-Johnson 

syndrome, a clinical manifestation of jaundice (Dubin, 1954).   

To a lesser extent, MRP2 is expressed in renal proximal tubules, enterocytes 

of the intestine and brain capillaries (Kruh, 2003).  The functional overlap with Pgp is 

evident as both transporters are involved in the excretion of cytotoxic compounds 

and the protection of tissue through barrier formation. 

With a similar resistance profile as MRP1, MRP2 confers resistance to a 

variety of natural chemotherapeutics such as anthracyclines, vinca alkaloids and 

epipodophyllotoxines.  Like MRP1, MRP2 needs glutathione for their transport.  The 

affinity to these substrates, however, is slightly weaker as in the case of MRP1.  

Importantly, MRP2 overexpression was detected in cisplatin resistant cell lines.  This 
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suggests that MRP2 might confer resistance to cisplatin, a substance that forms 

toxic glutathione-conjugates in the cell (Tanigutchi, 1996).  Of note, other ABC 

transporters such as Pgp or BCRP are not involved in resistance mechanisms 

against cisplatin. 

 

Multidrug Resistance associated Protein 3 

Among the MRP transporters, MRP3 is structurally most closely related to 

MRP1 with a homology of 58 %.  Likewise, MRP3 contains a third membrane 

spanning domain with an extracellular loop and the N-terminus on the extracellular 

side (see figure 1.4 and 1.5).  MRP3 functions as a transporter of glutathione and 

glucuronate-conjugated compounds.  Its affinity to these conjugates, however, is 

significantly lower than that of MRP1.  Contrary to MRP1 and MRP2, MRP3 does not 

require glutathione for transport of its substrates, thus, the MRP1 inhibitor BSO 

cannot attenuate MRP3-mediated transport (Zelcer, 2001).   

Although it was shown that MRP3 mediates resistance to some cytotoxic 

agents such as etoposide and teniposide (Kool, 1999), its involvement in MDR 

tumors appears to be much smaller compared to MRP1 or MRP2.  

MRP3 can be found in a variety of different tissues.  In the liver, MRP3 is 

expressed at the basolateral membrane of bile duct cells, where it extrudes 

monoanionic bile acids such as glycocholate and taurocholate.  During cholestatic 

liver conditions, MRP3 is highly upregulated and helps to detoxify the hepatocyte by 

transporting toxic bile acids into the blood (Hirohashi, 1998).  In addition to the liver, 

MRP3 is expressed in the intestine, kidney, pancreas and gall bladder (Belinsky, 

1998). 
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1.3 Modulation of Multidrug Resistance 

Conventional chemotherapy has succeeded in many different cancers and 

saved the lives of millions of patients.  At the same time, however, conventional 

chemotherapy has failed to cure cancer numerous times, unable to reverse the 

progress of the disease.  While some oncologists argue that the efficacy of 

conventional chemotherapy is limited; others state that resistance mechanisms 

hamper their potential (Fojo, 2003).  If the latter is true, resistance mechanisms, 

namely those outlined in chapter 1.1.1, could be inhibited and the chemotherapeutic 

activity restored.  Motivated by this argument, many researchers have investigated 

strategies to overcome MDR in untreatable tumors.  The strategies involving ABC 

transporters are introduced in the following chapters. 

 

1.3.1 P-glycoprotein inhibitors 

Development of chemosensitizing modulators which inhibit the function of Pgp 

thereby reversing MDR has been pursued extensively for the past 20 years.  In the 

early 1980s, the calcium channel blocker verapamil was discovered to reverse Pgp-

mediated MDR in vitro (Tsuruo, 1981).  Other first generation modulators of Pgp 

belonged to various therapeutic classes.  Among them are the class I antiarrythmic 

agent quinidine and the immunosuppressant cyclosporin A.  These agents are 

required at relatively high concentrations to effectively inhibit Pgp.  However, at 

these concentrations unacceptable in vivo toxicities and interactions with numerous 

physiological tissues and transporters occur.  Heart block with subsequent heart 

failure was observed, when verapamil was combined with doxorubicin (Ozols, 1987).  

Among the first generation modulators, the immunosuppressant cyclosporin A 

remains one of the most effective and best studied.   

Development of the second generation Pgp modulators was driven with the 

intension of improving the affinity to Pgp while reducing clinical toxicities.  These 

compounds were all derivatives of the first generation modulators, however, less 

toxic and without the main pharmacological effects of their templates.  The non-

immunosuppressive analog of cyclosporin A, PSC 833 (see figure 1.6), 

demonstrated a 10-fold more potent MDR reversal activity in vitro than cyclosporin A 
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(Krishna, 1997).  PSC 833 (Valspodar) has been used extensively in tumor 

xenografts and clinical trials (Oza, 2002; Fracasso, 2000).  As preclinical evidence 

suggested that serum protein binding would decrease the effectiveness of PSC 833 

(Lehnert, 1996), the compound was administered at doses, which in retrospect were 

much too high.  At these concentrations major pharmacokinetic interactions were 

reported.  In a clinical trial using PSC 833 and doxorubicin, a 10-fold increase in 

doxorubicin blood levels was detected, which substantially increased hematological 

toxicities (Giaccone, 1997).   
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Figure 1.6   Chemical structure of cyclosporin A and PSC 833 (Valspodar) 

Chemical structures of PSC 833 and Cyclosporin A are depicted; chemical variations of PSC 833 are indicated 
by a blue circle. 

 

 

Lessons learned from second generation Pgp inhibitors resulted in more 

sophisticated approaches with aims to develop specific inhibitors, which would not 

interact with other targets.  Pharmacophore models with efforts to explain Pgp’s 

broad substrate acceptance have been developed (Pajeva, 2002).  Furthermore, 

structure-activity relationships and combinatorial chemistry techniques have been 

elaborated and used to synthezise promising third generation Pgp modulators.  

These modulators demonstrated increased specificity for Pgp with an inhibition in the 

nanomolar range and reduced in vivo toxicities (Tan, 2000; Fojo, 2003).   
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Some examples of third generation Pgp modulators are presented in figure 

1.7.  These compounds include XR9576 (Tariquidar: Dale, 1998), LY335979 

(Dantzig, 1996; Kemper, 2004), OC144-093 (Newman, 2000) and GF120918 (Hyafil, 

1993) and are currently referred to as the state of the art.   
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Figure 1.7   Chemical structures of selected third generation Pgp inhibitors 
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Various second- and third-generation modulators have been evaluated in 

clinical trials with partly encouraging, partly conflicting results (Tan, 2000).  Their 

drawbacks in clinical applications resulted from alterations in the pharmacokinetic 

profile of coadministered cytotoxic agents.  Additionally, clinical toxicities by and lack 

of efficacy of MDR inhibitors were observed.  These complications were  presumably 

caused by the existence of multiple and redundant cellular mechanisms of resistance 

(Fisher, 1996).  Despite tremendous efforts and many encouraging reports published 

in this field, no Pgp inhibitor has received a market authorization to date.   

 

1.3.2 Multi targeted MDR inhibitors 

The first generation Pgp inhibitor, cyclosporin A, has proven sufficient efficacy 

in clinical trials to reverse MDR in acute myelomic lymphoma (AML) (Smeets, 2001; 

List, 2001).  Interestingly, cyclosporin A was later found to inhibit not only Pgp but 

also BCRP, MRP1 and the lung resistance protein (LRP), another transporter 

involved in the transport of cytotoxic agents (Qadir, 2005).  Whereas third generation 

Pgp inhibitors are being developed to increase specificity for Pgp with means to 

prevent in vivo toxicities and pharmacokinetic interactions (Tan, 2000; Fojo, 2003), 

the concept of broad-spectrum MDR modulation has recently attracted much 

attention.  Most complicated MDR-protected tumors such as acute leukemia are 

protected by multiple and redundant cellular mechanisms of resistance (Ross, 2000; 

Urasaki, 1996).  Thus, modulation of more than one ABC-transporter-mediated 

mechanism appears to be a promising approach.   

Recently, some groups including Minderman and coworkers have developed 

MDR inhibitors targeted against more than one ABC transporter.  The synthetic 

taxane derivative BAY 59-8862 (Ortataxel) was found to simultaneously inhibit the 

function of Pgp, BCRP and MRP1 (Minderman, 2004) and is currently under 

investigation in Phase I clinical trials (Ramnath, 2004).  VX-710 (Biricodar), a 

pipecolinate derivative, is another multi targeted MDR inhibitor with modulating 

properties of Pgp, BCRP and MRP1 (Minderman, 2004), currently under 

investigation in Phase II clinical trails (see figure 1.8).   
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Figure 1.8   Chemical structure of VX-710 and BAY 59-8862 
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1.3.3 Antisense Therapy 

While modulation using small molecule inhibitors has been the main focus to 

circumvent MDR, other strategies including gene regulation approaches have been 

investigated.  Among them are synthetic DNA oligomers, the conventional antisense 

oligodeoxynucleotides (ODNs).  ODNs directed against the MDR1 gene can 

specifically inhibit the expression of Pgp.   

Antisense ODNs are powerful tools for the selective and sequence-specific 

regulation of gene expression (Benett, 1999; Galderisi, 1999).  The synthetic DNA 

molecules can be specifically designed for each target and are susceptible to 

degradation.  To produce oligonucleotides suitable for in vivo applications, chemical 

modifications of oligonucleotides have been described in efforts to increase their 

stability and specificity.  Most experience with in vivo application has been generated 

with phosphorothioate oligonucleotides (Eckstein, 2000) which contain a sulphur 

atom replacing a single oxygen atom at each phosphate group.  Phosphorothioation 

makes ODNs relatively nuclease resistant (Stein, 1988).  Although associated with 

non-specific binding and toxic side effects in vivo (Levin, 1999), a phosphorothioated 

antisense-based drug against CMV, VitraveneTM (De Smet, 1999), receive market 

authorization in 1998. 

Antisense molecules hybridize to their target mRNA in the cytosole, where 

they recruit the endonuclease RNAse H.  The enzyme destroys the target mRNA 

and releases the antisense molecule.  The released antisense molecule can 

hybridise to another target mRNA strand.  In this way, the degradation of target 

mRNA prevents the translation of the protein.  The mode of action is illustrated in 

figure 1.9.  
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Figure 1.9   Mechanism of protein-synthesis inhibition by antisense ODNs  

In the cyctoplasma, antisense ODNs hybridize to target mRNA.  This process recruits RNAse H enzyme, which 
degradates mRNA and releases the antisense strand.  Lack of mRNA, inhibits the translation of the protein. 
(Picture taken from Robinson, PLoS 2004;2:18-20) 

 

 

Antisense oligodeoxynucleotides directed against the MDR1 gene have been 

widely used to inhibit the translation of MDR1 mRNA and downregulate the 

expression of Pgp (Alahari, 1996; Dassow, 2000).  ODNs, designed mostly against 

the region of the initiation codon of MDR1, have been reported to inhibit the Pgp-

mediated multidrug resistant phenotype in vitro in cell culture (Alahari, 1998) and in 

vivo in human tumor xenografts (Ramachandran, 2003).  

Other antisense strategies used to downregulate Pgp include various 

chemically modified antisense oligonucleotides (e.g. locked nucleic acids), 

hammerhead ribozymes and siRNA (Kurreck, 2003). 
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1.4 Imaging of Multidrug Resistance  

Non-invasive methods to examine the multidrug resistant status of tumors 

before therapy are valuable tools to select the most effective combination of 

chemotherapy for treatment.  Detection of Pgp expression is commonly performed 

using immunohistochemical or immunofluorescence techniques (Beck, 1996).  

These techniques, however, may also detect altered or functionally impaired Pgp 

and are therefore of limited prediction.  Furthermore, their routine use in a clinical 

setting is laborious, expensive and rather complicated.   

Imaging of Pgp function with the cardioimaging tool 99mTc-Sestamibi (see 

chapter 3.3.6.1 and 3.3.7, methods) is a technique used to non-invasively evaluate 

Pgp activity in tumors (Piwnica-Worms, 1993).  The synthetic gamma-emitting 

organotechnetium complex, 99mTc-Sestamibi, is a Pgp substrate and has been 

approved by the Food and Drug Administration (FDA) for the use as a radiotracer.   

99mTc-Sestamibi accumulation is directly correlated to physiological Pgp 

expression; it is inversely proportional to the degree of Pgp expression.  Other ABC 

transporters do not interfere with 99mTc-Sestamibi transport.  MRP1 has a much 

lower affinity and the radiopharmaceutical does not interact with BCRP (Chen, 

2000).  Thus the detection of 99mTc-Sestamibi accumulation permits to selectively 

trace and map Pgp function.  Del Vecchio and coworkers have performed imaging 

studies in breast cancer patients using 99mTc-Sestamibi (Del Vecchio, 2004).  In Pgp 

overexpressing tumors, efflux of 99mTc-Sestamibi was increased over 2-fold 

compared to tumors with basal levels of Pgp expression.  Tumor response to 

chemotherapy has also been correlated with intratumoral 99mTc-Sestamibi 

accumulation.  In a study by Ciarmiello (Ciarmiello, 1998), the response rate of 

breast tumors to neoadjuvant chemotherapy was markedly decreased in tumors, 

which rapidly effluxed 99mTc-Sestamibi.  In human tumor xenograft models, 99mTc-

Sestamibi imaging has been successfully used to monitor the effectiveness of novel 

Pgp inhibitors (Marián, 2003; Hendrikse, 1999).  Through detectable changes in the 

distribution and accumulation of 99mTc-Sestamibi, the technique further permits to 

evaluate interaction of Pgp inhibitors with physiological Pgp expressed in various 

organs and barriers (Zhou, 2001). 



 

 

 

2 Rational  
 

 

2.1 Rational and hypothesis 

 Clinical MDR remains a major obstacle in the successful chemotherapeutic 

treatment of cancer.  In many recurring and untreatable tumors the machinery of 

MDR contributes to the fatal progress of the disease.  Over the past years, different 

therapeutic strategies, including those targeting Pgp by small molecule inhibitors or 

RNA inhibition, have been extensively investigated in cell culture, animal models and 

in cancer patients.  Yet a medication against the condition of “multidrug resistant 

cancer” could not be developed to a level of marketing authorization.   

 The disparity between research effort and outcome in the sense of a 

therapeutic strategy suggests that MDR is a phenomenon more multifaceted than 

originally thought.  Consequently, its resolution will likely be more involved.  A 

combinational treatment designed to target more than one MDR mechanism 

simultaneously might be a solution to master MDR in its complexity. 

Two hypotheses of combinational treatment strategies are being formulated:  

• Different mechanisms of MDR are targeted simultaneously  

• The same mechanism is targeted by more than one approach 

To address these hypotheses, I have investigated two different treatment strategies 

for their effectiveness and feasibility in reversing MDR in human tumors.  The two 

treatment strategies were studied both separately and in combination using in vitro 

and in vivo experimental techniques: 

I. Novel multi-targeted MDR inhibitors (Tetrahydroisoquinolin-ethyl-phenyl 

amine-based MDR inhibitors developed in Prof. Dr. M. Wiese’s laboratory at 

the University of Bonn)  

II. Transcriptional downregulation by MDR1 antisense ODNs (in 

combination with an MDR inhibitor) 
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Hypothesis 

 (I.) In line with recent discoveries that several ABC-transporters coexist in 

many tumors, multi-targeted MDR inhibitors are thought to reverse the ABC-

transporter-mediated multidrug resistant phenotype more effectively than selective 

inhibition of just one ABC-transporter (e.g. Pgp).  The novel tetrahydroisoquinolin-

ethyl-phenyl amine-based MDR inhibitors were characterized as potential multi-

targeted MDR inhibitors.   

 (II.) Moreover, a combination of transcriptional suppression and functional 

inhibition of the MDR1 gene and functional Pgp, respectively, is an interesting 

approach, which has not been investigated before.  The combined treatment using 

antisense ODNs together with a Pgp inhibitor is though to be more effective in 

comparison to the single treatments as it allows the simultaneous targeting of the 

function and formation of the protein.   

 

 

2.2 Aim and experimental outline  

 To address the two above-mentioned hypotheses, the two outlined treatment 

strategies (I. and II., see chapter 2.1) were implemented in a series of in vitro and in 

vivo studies using a tumor model of human ovarian cancer: 

 

In vitro 

• Novel MDR inhibitors were tested for their ability to inhibit transport function 

of relevant members of the ABC-transporter family, involved in MDR: Pgp, 

BCRP and MRP1-3.   

• Potential in vitro toxicities of novel MDR inhibitors and MDR1 antisense 

ODNs were investigated in several cell lines. 

• The potency and specificity of novel MDR inhibitors to reverse Pgp and 

BCRP-mediated resistance towards chemotherapeutic agents were studied 

in multidrug resistant cell lines.  
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• The effectiveness of MDR1 antisense ODNs to downregulate the surface 

expression of Pgp was studied in a Pgp overexpressing cell line.  

• The MDR-reversing properties of MDR1 antisense ODNs were investigated 

by studying inhibition of Pgp-mediated transport and resistance towards a 

chemotherapeutic drug.  

 

Among the novel MDR inhibitors, the most promising candidate, WK-X-34, was 

selected for further in vivo investigations. 

 

In vivo 

• Potential in vivo toxicity including hepatotoxicity of the selected MDR 

inhibitor, WK-X-34, was studied in mice.  

• The ability to reverse the MDR phenotype by WK-X-34 in vivo was studied in 

tumor xenograft models of resistant human ovarian cancer using 99mTc-

Sestamibi imaging techniques. 

• Potential interactions of WK-X-34 with physiological Pgp and 

pharmacokinetic alterations of the Pgp substrate 99mTc-Sestamibi were 

examined in nude mice. 

• The effectiveness of MDR1 antisense ODNs to downregulate MDR1/Pgp 

mRNA and protein expression were studied in tumor xenograft models of 

multidrug resistant human ovarian cancer. 

• The MDR-reversing ability of antisense treatments alone and in combination 

with the selected MDR inhibitor, WK-X-34, was investigated in a human 

MDR solid tumor xenograft models using 99mTc-Sestamibi imaging 

techniques. 
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2.3 Justification of experimental methods 

 

2.3.1 Choice of Pgp inhibitors  

The novel tetrahydroisoquinolin-ethyl-phenylamine-based MDR inhibitors WK-

X-34, WK-X-50 and WK-X-84 (Figure 3.1) were designed and synthesized by W. 

Klinkhammer in Prof. Dr. M. Wiese’s laboratory at the Pharmaceutical Institute, 

University of Bonn, Germany.  Based on initial functional in vitro assays, including 

the MTT assay and the Calcein AM and daunorubicin transport assays performed by 

H. Mueller and K. Breitbach, these compounds were selected as the most promising 

candidates for further in vitro and in vivo characterization.  Increased amounts of 

these compounds were synthesized by W. Klinkhammer and sent to the laboratory of 

Dr. Piquette-Miller at the University of Toronto.   

In vitro assays were conducted using verapamil and cyclosporin A as 

reference substances.  Verapamil is the oldest and most prominent amongst the Pgp 

inhibitors (Tsuruo, 1981).  To date, the first generation Pgp inhibitor cyclosporin A is 

the only inhibitor to perform convincingly in clinical applications.  Cyclosporin A 

demonstrated efficacy in clinical trials reversing MDR in acute myelomic lymphoma 

(AML) patients (Smeets, 2001; List, 2001).  One can argue, that the more effective 

and more potent third generation Pgp inhibitors such as GF120918 (Hyafil, 1993) or 

XR9576 (Mistry, 1999) are the current state of the art Pgp inhibitors.  Despite 

extensive research and clinical development, these compounds have not yet 

received market authorization.  As the successful clinical application is the main 

motivation for the development of MDR inhibitors, cyclosporin A was used as the 

reference compound.   

 

2.3.2 Cell model  

The multidrug resistant human ovarian cancer cell line A2780/Adr and its 

sensitive counterpart A2780/wt were used for the in vitro and in vivo investigations of 

Pgp.  These cell lines were initially isolated from a drug sensitive patient with ovary 

tumors.  Through selection with adriamycin, a multidrug resistant phenotype with 

cross resistance characteristics was obtained (Louie, 1986; Sasaki, 1991).  Over the 
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past decades, resistant A2780/Adr cells have proven to be a suitable model to study 

Pgp-mediated MDR in solid tumors. They have been widely used both in cell culture 

(e.g. Sasaki, 1991; Plumb, 1990; Mueller, 2004) and xenograft models (e.g. Caffrey, 

1998; De Cesare, 2001). Therefore, this well-established cell model was chosen and 

applied in this thesis.   

Resistant A2780/Adr cells tend to loose their phenotype over a span of 10-20 

passages by the development of two subpopulations, in which the sensitive fraction 

keeps increasing and the resistant fraction keeps decreasing.  To guarantee a high 

and constant expression of Pgp, adriamycin (10 µM) needed to be added to these 

cells every 10 passages.  To monitor and verify a constant Pgp expression, MDR1 

and Pgp expression was routinely examined by RT-PCR and protein staining 

techniques.   

 

2.3.3 MDR1 antisense ODN treatments  

I wanted to compare Pgp inhibition caused by small-molecule inhibitors to 

MDR1 antisense treatment, which downregulates the expression of functional Pgp.  

For this purpose, conventional phosphorothioated antisense ODNs directed against 

the start codon of the human MDR1 gene were used.  The ODN sequence was 

taken from reports by Alahari et al. (Alahari, 1998).  The anti-MDR activity of these 

sequences has been previously verified in vitro (Brigui, 2003) and in vivo 

(Ramachandran, 2003).  Among the DNA-based antisense tools, phosphorothioated 

antisense ODNs are the oldest and best characterized. Indeed VitraveneTM 

(Fomivirsen), a phosphorothioated antisense inhibitor of CMV replication (De Smet, 

1999; Naesens, 2001), developed by ISIS Pharmaceuticals is the only antisense-

based drug ever to get a marketing authorization.  As I was primarily interested in 

using a basic antisense tool, rather than optimizing antisense-targeted therapy in 

MDR cancer, I decided to utilize conventional phosphorothioated antisense ODNs.  

Moreover, I evaluated in vitro, whether the inhibitory effects were due to antisense 

effects and not simple toxic effects.  FITC-labeled MDR1 antisense ODNs were used 

to investigate the uptake path of antisense ODNs.  Fluorescent microscopy permitted 

to study whether antisense MDR1 ODNs actually accumulated in the nucleus.  

Interestingly, these studies demonstrated that the delivery of antisense molecule is 



  Rational 

 

32 

increased when formulated as a double-stranded antisense and sense duplex.  

These results have been published (Jekerle, 2005), however, they are only partly 

contained in this PhD thesis.   

For in vivo antisense treatments, I also used conventional phosphorothioated 

antisense ODNs for the same reasons: 1) much experience has been generated with 

in vivo applications using phosphorothioated antisense ODNs; 2) the rational of my 

thesis asked for a functional comparison of antisense strategy to Pgp modulation, 

rather than the optimization of different in vivo applications.  I designed the treatment 

regiments according to previously published antisense applications (Kuss, 2002).  

The in vivo experiments were conducted as proof of principle approaches.  

Therefore, the most direct route of application was chosen, an intra tumoral injection.  

By using this route of application, additional in vivo effects and complications 

resulting from unequal in vivo stability, distribution and delivery to the site of action 

could be minimized.   

 

2.3.4 Choice of in vitro functional assays for Pgp 

To evaluate in vitro inhibition of Pgp, a combination of chemosensitivity 

assays and transport assays were utilized.  Chemosensitivity assays investigate the 

effects of inhibition on the Pgp-mediated MDR phenotype.  The increased sensitivity 

of the multidrug resistant tumor cell towards chemotherapeutic agents such as the 

anthracyclines (e.g. daunorubicin) can be directly measured.  EC50 values allow the 

quantification and comparison of inhibitory effects by different modulators.   

A series of transport assays investigating both increases in intracellular 

accumulation and decreases in the efflux rate of Pgp substrates were utilized.  Three 

different Pgp transport assays were chosen for these studies: 1) 99mTc-Sestamibi 

accumulation assay; 2) Daunorubicin accumulation assay; and 3) Daunorubicin 

efflux assay.  This combination of transport assays included two different Pgp 

substrates and two different transport parameters (basic accumulation and efflux).  

Studies comparing the usefulness of the substrates 99mTc-Sestamibi and 

daunorubicin in Pgp transport assays have also indicated differences between these 

two assays.  Muzzammil and coworkers stated that sufficient sensitivity to distinguish 
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wild-type from resistant cell variants was given for both substrates (Muzzammil, 

2001).  A greater sensitivity with more reliable conclusions, however, was detected 

for 99mTc-Sestamibi-based transport assays.  These differences were explained by 

additional MDR factors (see chapter 1.1, introduction) unequally affecting 99mTc-

Sestamibi and anthracyclines.  Hence, combined results from both assays allow a 

more predictive and reliable evaluation of Pgp inhibition.   

 

2.3.5 Choice of in vitro functional assays for BCRP and MRPs  

To examine potential interactions with the MRP proteins, a conventional 5-

CFDA efflux assay was used.  The MRP family of ABC transporters has currently up 

to seven members and is constantly growing.  As outlined in the introduction, solely 

MRP1, MRP2 and MRP3 were found to be implicated in the MDR phenotype of 

resistant tumors (Borst, 2000; Kruh, 2003).  Therefore, I decided to examine 

potential effects of novel MDR inhibitors on these three MRP transporters.  

Selectively transfected cell lines were used for these studies.  In selectively 

transfected cell lines, the actual human protein of a defined sequence has been 

artificially engineered into the cell.  This has an advantage over selected resistant 

cell lines which might contain different mutants of a protein together with other 

resistance mechanisms.  Every cell line expresses basal levels of other ABC 

transporters.  The protein of interest, however, is relatively overexpressed in 

selectively transfected cell lines.  Results obtained from these cell lines can thus 

provide fairly accurate information about the transport properties of the transfected 

protein.  

As selectively transfected cell lines for BCRP have not yet been generated, I 

used the BCRP overexpressing cell line MCF7/mx, a mitoxantrone selected human 

breast cancer cell line in a previously established and commonly applied flow 

cytometry-based efflux assay (Minderman, 2002). 
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2.3.6 Tumor xenograft model  

To investigate the in vivo performance of WK-X-34 and antisense treatments, 

a suitable in vivo model needed to be developed.  Numerous rodent models have 

been actualized to simulate the development of ovarian cancer in vivo and to aid in 

the research of human ovarian cancer.  Rodent models of ovarian cancer include the 

chemical/hormonal induced model, the genetic knockout and transgenic model, the 

syngeneic model and the xenograft model (Stakleff, 2003).   

In chemically or hormonally induced tumor models, the tumors are specifically 

induced by a chemical trigger and display all stages of tumorgenesis.  These models 

can therefore proceed through all stages of neoplasia from the initiation and 

promotion to the actual development of the tumor.  The chemical/hormonal induced 

model, however, is difficult to apply in praxis as tumors are not selectively induced 

only in the ovaries.  The model furthermore lacks consistency and reproducibility 

(Silva, 1997; Nishida, 1998).   

Genetic knockout and transgenic models are generated in genetically altered 

mice.  These models are used when the impact of genetic alterations in oncogenes 

or tumor suppressor genes is investigated (Orsulic, 2002; Wang, 1999).   

In syngeneic models, tumors are derived from animal tissues by in vitro 

transformation and re-injected into the same animal species (Rose, 1996).   Although 

this model allows a good evaluation of host-tumor interactions, the development of 

the primary tumor occurs in vitro and does not represent physiological conditions.   

In xenograft models, human tumor specimens are implanted into 

immunocomprimised nude mice, which lack functional T lymphocytes (Croy, 2001).  

In this way, the xenograft model permits the growth of human tumor specimens 

(Massazza, 1989; Elkas, 2002).  The cell lines can be manipulated in vitro before 

being injected into the animal.  In xenografts, multidrug resistant and/or sensitive 

tumors can be selectively generated in the same model (Bradley, 1989).  The lack of 

immune response in the animals, however, does not allow the direct translation into 

clinical reality. 

The xenograft model appeared to be the most suitable for my purposes and 

was used for the in vivo 99mTc-Sestamibi imaging and biodistribution studies.  The 
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same A2780/Adr and A2780/wt cells which were already used for in vitro 

investigation could be inoculated s.c. into the back flank of immunocomprimised 

mice.  Thus, the tumors grew on each back flank of the animals.  This was important 

as imaging studies necessitated a model in which the tumors were localized away 

from all the inner organs (Picture 5, Appendix) to avoid overlap of 99mTc-Sestamibi 

levels between organs and tumors.  Furthermore, the tumor models could be 

generated in such a way that each animal bore one multidrug resistant A2780/Adr 

and one sensitive A2780/wt on each back flank.  This design allowed the comparison 

of the treatments on each tumor simultaneously and within the same animal.     

A literature study based on data from the National Cancer Institute (NCI) 

compared the clinical predictive value of preclinical cancer models including in vitro 

cell lines and human xenografts for different tumors (Voskoglou-Nomikos, 2003).  In 

this study, the human xenograft model turned out to be predictive for non-small lung 

cancer and for ovarian cancer (Johnson, 2001; Taetle, 1987), but not for breast or 

colon cancer.  Overall, the human xenograft models were rated useful in predicting 

the Phase II clinical performance of cancer drugs (Voskoglou-Nomikos, 2003).   

 

2.3.7 99mTc-Sestamibi imaging and biodistribution  

To study in vivo applications of Pgp inhibitors and antisense therapy, an in 

vivo imaging approach combined with a biodistribution analysis using 99mTc-

Sestamibi was chosen.  As previously mentioned in the introduction, the gamma-

emitting complex 99mTc-Sestamibi has been discovered to be a Pgp substrate.  

Therefore, 99mTc-Sestamibi can non-invasively map Pgp expression and functionality 

through changes in organ accumulations (Piwnica-Worms, 1993).  99mTc-Sestamibi 

imaging is widely used to detect multidrug resistant tumors (Zhou, 2001) and to 

monitor the effectiveness of novel Pgp inhibitors in cancer patients (Agrawal, 2003) 

and human tumor xenograft models (Lorke, 2001; Muzzamil, 1999; Ballinger, 2000).  

Moreover, the technique of 99mTc-Sestamibi imaging has been approved by the FDA 

for rapid evaluation of the effectiveness of anti-MDR therapies in clinical trials.  
99mTc-Sestamibi imaging was used to test the third generation Pgp inhibitor XR9576 

in clinical trials Phase II and pivotal Phase III clinical trials (Menefee, 2005).  Other 
99mTc-labeled lipophilic cationic complexes such as 99mTc-tetrofosmin and 99mTc-
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Q12, both myocardial infusion agents (Bernard, 1998; Utsunomiya, 2000), have also 

been evaluated for the use in in vitro and in vivo imaging studies.  A study comparing 

the suitability of these three 99mTc-labeled imaging agents came to the conclusion 

that 99mTc-Sestamibi is the most appropriate agent for tumor imaging due to 

advantages in tumor uptake (Bernard, 1998).   

Therefore, 99mTc-Sestamibi was chosen as the Pgp substrate and detector for 

the imaging and biodistribution studies.  These studies, however, are rather 

expensive and time-consuming, involving the generation of an animal model as well 

as conducting the actual imaging experiments.  Time and resources only permitted 

the testing of the most promising candidate among the MDR inhibitors developed in 

Prof. Dr. M. Wiese’s laboratory, WK-X-34.    

99mTc-Sestamibi imaging enabled to non-invasively monitor the impact of WK-

X-34 on Pgp activity in multidrug resistant and sensitive tumors as well as on 

physiologically expressed Pgp in excreting organs and barrier tissue.  Hence, 

potential interactions and organ toxicities resulting from Pgp inhibition by WK-X-34 

could be evaluated.  Results from 99mTc-Sestamibi imaging were correlated with 

biodistribution studies to verify, whether the detected levels of radioactivity in the 

regions of interest of the selected organs corresponded to the actual 99mTc-Sestamibi 

uptake in these organs.   



 

 

 

3 Materials and Methods 
 

 

3.1 Materials 

 

3.1.1 Chemicals, Reagents and Materials 

Agarose Bio-Rad Laboratories, Mississauga, ON, Canada 

ALT (Alanin Aminotransferase assay)  ThermoDMA, Arlington, TX, USA 

Antibodies 

  FITC-labeled anti-human Pgp BD Biosciences, San Diego, CA, USA 
  monoclonal antibody  
 
  Primary anti-human BCRP monoclonal  Abcam Inc, Cambridge, MA, USA 
  BXP-21 antibody 
 
  Fluorescein-labeled sheep anti-mouse Ig  Amersham Biosciences, Piscataway, NJ, USA 
  antibody  
   

Bicarbonate buffer (pH 7.5)  Dept. of Radiopharmacy, TGH, Toronto, ON, Canada 

Bio P-2 gel (45-90 µm)  Bio-Rad, Mississauga, ON, Canada 

Bovine serum albumine (BSA) solution Sigma-Aldrich, Steinheim, Germany 

Bovine serum albumin (BSA) powder Sigma, Oakville, ON, Canada 

Bradford protein assay  Bio-Rad, Hercules, CA, USA 

Casy® ton isotonic NaCl solution  Schärfe-Systems, Reutlingen, Germany 

Cellstar Vials (15 ml)  Greiner Labortechnik, Frickenhausen, Germany 

Cellstar Vials (50 ml)  Greiner Labortechnik, Frickenhausen, Germany 

Cellstar Culture Flasks 25 cm2  Greiner Labortechnik, Frickenhausen, Germany 

Cellstar Culture Flasks 75 cm2  Greiner Labortechnik, Frickenhausen, Germany 
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Cellstar Culture Flasks 175 cm2  Greiner Labortechnik, Frickenhausen, Germany 

Cell scraper  Greiner Labortechnik, Frickenhausen, Germany 

5-CFDA  Sigma, Oakville, ON, Canada 

Chloroform Merck, Darmstadt, Germany 

Cover slips for microscope slides  CR Scientific, Lebanon, NJ, USA 

Cremophor EL Sigma Chem. Co, St Louis, MO, USA 

Cryovials  Greiner Labortechnik, Frickenhausen, Germany 

Cyclosporin A  Sigma-Aldrich, Steinheim, Germany 

Daunorubicin  Sigma, Oakville, ON, Canada 

DEPC water  Invitrogen, Carlsbad, CA, USA  

Dimethylsulfoxide Promochem GmbH, Wesel, Germany 

Disodium hydrogen phosphate x 2 H2O  Merck, Darmstadt, Germany 

DMEM-Medium with Glutamax Sigma-Aldrich, Steinheim, Germany 

DMEM-Medium  with high Glucose   Sigma-Aldrich, Steinheim, Germany 

Doxorubicin  Sigma, Oakville, ON, Canada 

Eosin Y  Sigma, Oakville, ON, Canada 

Ethanol 96-100 % (V/V)  Merck, Darmstadt, Germany 

FACS Flow  Becton-Dickinson, Heidelberg, Germany 

FACS Clean Becton-Dickinson, Heidelberg, Germany 

Fetal Calf Serum (FCS)  Sigma, Oakville, ON, Canada 

First Strand cDNA synthesis kit   MBI Fermentas, Flamborough, ON, Canada 

Fluorescein isothiocyanate (FITC) Molecular Probes, Invitrogen Canada Inc. 

Burlington, ON, Canada   

Gene RulerTM (100 bp) Invitrogen, Carlsbad, CA, USA  

Haematoxylin  Fisher Scientific, Nepean, Ontario, Canada 

Halothane MTC Pharmaceuticals, Cambridge, ON, Canada 

Heparin  Organo Teknica, Toronto, ON, Canada 

Human MDR1 antisense and random  Invitrogen, Carlsbad, CA, USA 
phosphorothioated oligodeoxynucleotides  
with aminohexyl modifications (5’-end) 
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Hydrochloric acid 37 % (m/V)  Merck, Darmstadt, Germany  

Indomethacin  Sigma, Oakville, ON, Canada 

Insulin Syringe (1ml) with permanently   BD Canada, Oakville, ON, Canada 
attached 29g x ½" Ultra-fine Needle (U-100)  
 

Isopropanol 100 %  Merck, Darmstadt, Germany 

ITLC-Silica Gel  Gelman, Ann Arbor, MI, USA 

Ketamine Parke-Davis, Scarborough, ON, Canada 

L-Glutamin  Sigma-Aldrich, Steinheim, Germany  

Mitoxantrone  Sigma, Oakville, ON, Canada 

Methanol  Merck, Darmstadt, Germany 

MTT (3-(4,5-Dimethylthiazol-2-yl)  Sigma-Aldrich, Steinheim, Germany 

-2,5-diphenyltetrazoliumbromid) 

Novobiocin  Sigma, Oakville, ON, Canada 

Nuclease-free purified water  Invitrogen, Carlsbad, CA, USA 

PCR primers DNA synthesis facility, Sick Kids Hospital, Toronto, 
ON, Canada 

Penicillin-Streptomycin-solution  Sigma-Aldrich, Steinheim, Germany 

Conc. Penicillin: 10000 I.U./ ml 

Potassium dihydrogen phosphate  Merck, Darmstadt, Germany 

Potassium chloride  Merck, Darmstadt, Germany 

Purelab Plus water  USF Reinstwassersysteme,  

 Ransbach-Baumbach, Germany 

RPMI 1640-Medium Sigma-Aldrich, Steinheim, Germany 

RPMI 1640-Medium phenolred-free Sigma-Aldrich, Steinheim, Germany 

Sodium acetate buffer (1M)  Dept. of Radiopharmacy, TGH, Toronto, ON, Canada 

Sodium azide  Merck, Darmstadt, Germany 

Sodium chloride  Merck, Darmstadt, Germany 

Sodium citrate buffer (100 mM, pH 5.0) Dept. of Radiopharmacy, TGH, Toronto, ON, Canada 

SuperFect® Qiagen, Mississauga, ON, Canada   

SYBR Gold nucleic acid stain  Molecular Probes, Eugene, OR, USA 

Taq polymerase®  MBI Fermentas Inc, Burlington, ON, Canada  



  Materials and Methods 

 

40 

99mTc-Sestamibi (Cardiolite®) Bristol-Meyers Squibb Medical Imaging, N.   

 Billerica, MA, USA 

TRIzol GIBCO-BR Life Technologies, Gaithersburg, MD,USA 

Trypsin-EDTA  Sigma-Aldrich, Steinheim, Germany 

Tween 40  Sigma, Oakville, ON, Canada 

Verapamil  Sigma-Aldrich, Steinheim, Germany 

6-well culture plates (clear)  Greiner Labortechnik, Frickenhausen, Germany 

24-well culture plates (clear)  Greiner Labortechnik, Frickenhausen, Germany  

96-well culture plates (clear)  Greiner Labortechnik, Frickenhausen, Germany 

96-well culture plates (black)  Greiner Labortechnik, Frickenhausen, Germany  
 
WK-X-34, WK-X-50, WK-X-84, XR9577 synthesized by W. Klinkhammer,  
 Laboratory Prof. Dr. M. Wiese, Pharmaceutical Institute,  
 University of Bonn, Bonn, Germany 
 
Xylazine 100 mg/ml Bayer Inc., Agriculture Division–Animal Health,  
 Etobicoke, ON, Canada 

 

 

 

3.1.2 Buffers and Solutions 

 

 

Blocking-buffer (10 %)    

 BSA      5 g 

 Tween 40      50 µl 

 PBS       ad 50 ml 
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Cell Culture media  

 

A2780/Adr; A2780/wt  

 RPMI 1640-Medium  500 ml 

 FCS       50 ml 

 Penicillin/Streptomycin    5 ml 

 

MDCK/wt; MDCK-MRP2, MDCK-MRP3, MCF7/wt     

 DMEM-Medium with Glutamax  500 ml 

 FCS       50 ml 

 Penicillin/Streptomycin  5 ml 

 

Hela-MRP1    

 DMEM-Medium with high Glucose  500 ml 

 FCS       50 ml 

   Geniticine                                                400µg/ ml  

  

MCF7/mx     

 DMEM-Medium with high Glucose  500 ml  

 Heat inactivated FCS     50 ml 

   Penicillin/Streptomycin    5 ml  

 

 

Dilution Buffer    

 BSA powder     1 g 

   PBS      ad 50 ml 
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Formaldehyde-solution (10 %)    

 Formaldehyde     5 ml 

 PBS       ad 50 ml 

 

Isopropanol / HCL-solution     

 Isopropanol 100 %    50 ml 

 Hydrochloric Acid 37 %     165 µl 

 

Methanol-solution (90 %)    

 Methanol     45 ml 

 PBS       5 ml 

 

MTT-solution     

 MTT      100.0 mg 

 PBS-solution      ad 20.0 ml 

 

PBS-(phosphate-buffered-saline) Buffer     

 Sodium chloride     8.0 g 

 Disodium hydrogen phosphate    1.14 g 

 Potassium dihydrogen phosphate             0.2 g 

 Potassium chloride      0.2 g 

 Purelab Plus Water  ad 1000 ml 

 

Staining-buffer     

 Sodium azide     100 mg 

 BSA powder     500 mg 

 PBS-solution      ad 100.0 ml 
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Washing-buffer I     

 BSA powder     500 mg 

 PBS-solution      ad 100.0 ml 

 

Washing-buffer II     

 Tween 20     10 µl 

 PBS-solution      ad 100 ml 

 

 

3.1.3 Instruments and Software 

ADAC TransCam gamma-camera  ADAC Laboratories Inc, Milpitas, CA  

Beckmann Microfuge® Lite Centrifuge  Beckmann Coulter, Fullerton, USA 

BioRad Gel Doc system  Bio-Rad Laboratories, Mississauga, ON, Canada 

Casy® 1 cellcounter (Model TT) Schärfe System, Reutlingen, Germany  

Cell incubator  WTC Labortechnik, Truttlingen, Germany 

Cell Quest ProTM Software Becton-Dickinson Bioscience, Heidelberg, Germany 

Centrifuge Allegra® 21 R Beckmann Coulter, Fullerton, USA 

DS1D Scientific Imaging software Eastman Kodak Company, Rochester, New York, USA 

FACSCalibur Becton-Dickinson, Heidelberg, Germany 

GeneAmp 2400 thermocycler  Perkin-Elmer, Mississauga, ON, Canada  

GraphPad Prism 3.0 San Diego, CA, USA 

Kodak DC120 camera  Eastman Kodak Company, Rochester, New York, USA 

Laminar-Air-flow workbench Heraeus, Hanau, Germany 

Nikon Eclipse E400 microscope  Nikon, Mississauga, ON, Canada  

Packard Cobra® II Series Auto-Gamma   Model 5003, Packard Instrument Company, Meridien, 

Counting Systems CT, USA 

Pegasys X, Version 4.2 software  ADAC Laboratories Inc, Milpitas, CA, USA 

Polarstar Galaxy Microplate reader BMG-LABTECH GmbH, Offenburg, Germany 
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Polytron homogenizer  Kinematica, Littau, Switzerland 

Purelab Plus water preparation facility  USF Reinstwassersysteme,  

 Ransbach-Baumbach, Germany 

Spectra MAXTM Gemini XS spectrofluorometer Molecular Devices, Sunnyvale, CA, USA 

Ultrasound bath Bandelin, Berlin, Germany 

UV/VIS-spectrometer UltroSpec 2100 pro Amersham Pharmacia Biotech, Uppsala, Sweden 

Vortexer Vortex, Würzburg, Germany 

Waterbath Büchi 461 Büchi, Switzerland 

Win MDI software  Verity Software House Inc., Topsham, ME, USA 

Zeiss Axiovert 200 CarlZeiss AG, Oberkochen,Germany 
Objective LD ACHROPLAN 100x, 63X 
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3.1.4 MDR inhibitors, chemicals and formulations 

The novel MDR inhibitors WK-X-34, WK-X-50 and WK-X-84 (Figure 3.1) were 

designed in Prof. Dr. M. Wiese’s laboratory at the Pharmaceutical Institute, 

University of Bonn, Germany and synthesized by W. Klinkhammer.  All compounds 

posses a tetrahydroisoquinolin-ethyl-phenyl amine partial structure but differ in the 

rest of the structure.  WK-X-34, (N-(2-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-

2(1H)-yl)ethyl) phenylcarbanoyl)phenyl)-3,4-dimethoxybenzamide), contains a 

anthranilic acid linker.  WK-X-50 (N-(2-(3-(4-(2-(3,4-dihydroisoquinolin-2(1H)-

yl)ethyl)phenyl)ureido) phenyl) quinoline-3-carboxamide) is a diaminobenzene 

derivative.  WK-X-84 (N-(2-(2-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-

yl)ethyl)phenylamino)-2-oxoethoxy)phenyl)-3,4-dimethoxybenzamide) is a  2-(2-

aminophenoxy)acetic acid derivative.  These compounds have been kindly made 

available for this thesis. 

XR9577 was synthesized according to the literature (Roe, 1999) by W. 

Klinkhammer.  Stock solutions (10 mM) of verapamil, XR9577 and the WK-X-

compounds were prepared in DMSO and cyclosporin A was prepared in methanol.  

Stock solutions were further diluted in PBS.   

99mTc-Sestamibi was freshly prepared by the Radiopharmacy Department at 

Toronto General Hospital (UHN, Toronto, Canada) using the reconstituting kits 

(Cardiolite®) and radiochemical purity was routinely determined by thin layer 

chromatography to be greater than 93 %.   

Human MDR1 antisense and random phosphorothioate oligodeoxynucleotides 

with aminohexyl modifications at the 5’-end were reconstituted in purified nuclease 

free water up to a concentration of 1 mg/ml and further diluted in PBS.   

 

 

 

 

 

 

 



  Materials and Methods 

 

46 
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 WK-X-50                       

 Mr: 542 
 

 

 

 

 

 

 WK-X-84 
 Mr: 626 

   

 

 

 

 

 

 

 XR9577 
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Figure 3.1   Chemical Structures of novel tetrahydroisoquinolin-ethyl-phenylamine-based MDR inhibitors 
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3.2 Cell culture 

 

3.2.1 Cell lines 

Several different wild-type, resistant or transfected tumor cell lines of human 

or dog origin were used in this thesis.  Human ovarian cancer cell line A2780/wt was 

originally obtained from a drug-sensitive patient with a tumor on one ovary.  The Pgp 

overexpressing and doxorubicin-resistant (= Adriamycin, Adr) variant A2780/Adr had 

been generated through step-wise selection from its sensitive parental cell line 

A2780/wt using doxorubicin (see description of cell line at ECACC).  Therefore, 

doxorubicin (10 µM) needed to be added to the media of A2780/Adr cells for one 

passage every 10 passages in order to prevent cells from losing their high Pgp 

expression levels.  Both cell lines were purchased from ECACC, UK.   

The BCRP-overexpressing MCF7/mx cell line was generated by mitoxantrone 

selection and kindly provided by Dr. E. Schneider, Wadsworth Center, Albany, NY, 

USA.  Human breast cancer cell line MCF7/wt was originally selected from the 

mammary epithelial tissue of a Caucasian woman with adenocarcinoma.   

HeLa cells transfected with human MRP1 were kindly provided by Dr. S. Cole, 

Queen’s University, Kingston, ON, Canada.  HeLa cells originate from a cervix 

carcinoma isolated from a patient named Henrietta Lachs.   

MRP2- and MRP3- transfected MDCK (Madin-Darby Canine Kidney) epithelial 

cells from dog origin were engineered by transfecting them with human MRP2 or 

MRP3 plasmid.  These cells were generated and kindly provided by Dr. P. Borst, the 

Netherlands Cancer Institute, Amsterdam, Netherlands. 

 

3.2.2 Growing and subculturing of cells 

All cell lines used in this thesis are adherent cells, which grow in monolayers.  

Thus, ordinary culture flasks were utilized.  Cells were cultivated in an incubator, 

which constantly maintained an atmosphere of 37°C and 5 % CO2.  Medium needed 

to be replaced when the indicator phenolred changed its color from red to yellow, 
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which occurred about every three days, depending on the density of plated cells and 

the growth rate of the particular cell line.  Cells needed to be subcultured, when the 

flask was entirely covered with cells (100 % confluency).  For subculturing cells were 

washed once with PBS to remove floating cells and the additives fetal bovine serum 

and antibiotics.  Two ml of trypsin were then added and cells were incubated at 37°C 

until they separated from each other.  Cells were washed off the culture dish and 

placed into a 15 ml tube.  Cells were now separated from trypsin-containing medium 

by centrifugation (1200 x g, 4 min and 4°C) and resuspended in 10 ml fresh growth 

medium. One to three ml of cell suspension depending on the cell line were placed 

into a new culture flask containing fresh growth medium. 

 

3.2.3 Counting cells 

20 µl of cell suspension were pipetted into 10 ml of sterile Casy®ton solution 

and analyzed with the Casy® 1 cell counter.  Based on the techniques of a “coulter-

counter”, this instrument measures the cell number together with the mean cell 

diameter and can thus provide information on the status and integrity of the analyzed 

cell population.   

 

3.2.4 Storing, freezing and defrosting cells 

To generate long-lasting backups, trypsinized cells from a confluent T75 flask 

were centrifuged and redissolved in 1 ml growth medium containing 10 % of DMSO.  

The cell suspension was pipetted into a cryovial.  The cryovials were kept in the        

-80°C freezer for one week and then transferred into a liquid nitrogen tank (-190°C) 

for storage.  Under these conditions, cells can be stored for some years.  To re-

culture frozen cells, vials were carefully warmed in a 37°C waterbath until cells were 

defrosted. Cells were then quickly transferred into T25 or T75 culture flasks filled 

with warm (37°C) fresh growth medium and placed into the incubator.  The next day, 

growth medium was replaced and floating cells were removed. 
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3.3 In vitro methods 

 

3.3.1 RT-PCR analysis 

For RT-PCR analysis, RNA needed to be isolated from all cell lines.  Total 

RNA was isolated from a confluent 10 cm2 Petri dish of cells using the TRIzol 

extraction kit. Growth medium was removed and one ml of TRIzol was added onto 

the cells.  After 5 min of incubation cells were scraped off the dish and lysed by 

pipeting up and down.  The cell lysates were placed into an eppendorf cap and 

0.2 ml of chloroform was added.  Caps were shaken and incubated at RT for 10 min.  

Tubes were then centrifuged at 12000 x g for 15 min and at 4˚C.  The upper 

aquaeous phase containing the RNA was transferred into a clean cap and 0.5 ml of 

isopropyl alcohol was added.  Samples were incubated for 10 min at RT and then 

centrifuged for 10 min at 12000 x g and 4˚C. At this step, RNA precipitated and 

formed a gel-like pellet.  The supernatant was removed and the pellet was washed 

with ethanol (75 %).  Ethanol was removed by centrifugation at 7500 x g and RNA 

pellet was air-dried before redissolving it in demineralised autoclaved water 

containing DEPC.  RNA samples were stored at -20˚C.   

RNA was quantified using UV-spectrophotometry at 260 nm.  1 µl of RNA-

solution was dissolved in 49 µl of DEPC water and RNA concentration in µg/µl was 

quantified in a UV/VIS-spectrometer UltroSpec 2100 pro at 260 nm.  The ratio of 

RNA/protein (260/280 nm) was furthermore determined and served as an indicator of 

the quality of the RNA isolation.  An RNA quality with a ratio of above 1.5 was 

accepted for RT-PCR.  Ratios between above 1.8 are commonly obtained for highly 

purified DNA; however the obtained value is strongly dependant on the pH of the 

solution buffer (Wilfinger, 1997). 

MDR1 expression was examined by RT-PCR analysis (Lee, 2001).  A 

quantitative RT-PCR assay was used based on previously reported methods 

(Hartmann, 2001; Sukhai, 2001).  mRNA levels of human MDR1 were determined 

and GapDH served as a housekeeping gene to normalize MDR1 expression.  Primer 

sequences and PCR conditions can be found in table 3.1.  Reverse transcription of 

0.5 µg of RNA was performed using the First Strand cDNA Synthesis kit in a total 
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volume of 20 µl.  One µl of reverse transcription product (see standard curve in 

chapter 4.1.1.1) was used for amplification of specific DNA sequences in the 

presence of 1 mM MgCl2, 200 µM dNTP, and 50 pmol of each primer in a total 

volume of 100 µl DEPC water using a GeneAmp 2400® thermocycler.  The reaction 

was initiated by addition of 2.5 units of Taq polymerase® and amplification 

proceeded through different cycle numbers, depending on relative expression levels 

of the genes.  The parameters are summarized in table. 3.1. 

PCR products were separated on 2 % agarose gels by electrophoresis 

(150 V, 500 mA, 45 min).  Gels were stained with PBS containing SYBR Gold 

nucleic acid stain (1:10000) and visualized by UV light.  DNA band sizes were 

confirmed using the Gene Ruler 100 bp DNA ladder.  Optical densities of bands 

obtained from agarose gels were quantified on gel pictures taken with a Kodak 

DC120 camera and DS1D Scientific Imaging software.  Linear conditions were 

established from standard curves.  For the generation of standard curves, dilutions 

containing 5, 2.5, 1.25, 0.625, 0.313, 0.156, 0.078 or 0.039 µl cDNA were prepared 

and ran using the conditions in table 3.1.  Optical densities of bands obtained from 

the PCR products were plotted against the amount of cDNA template and a cDNA 

amount within the linear range was chosen for RNA quantifications.  Levels of mRNA 

expression are reported as percentages of normalized values, as compared to 

control values. Optical densities were normalized to GapDH band intensities and 

calculated as ratios: (OD MDR1 mRNA) / (OD GapDH mRNA).  Standard PCR 

curves were generated for each PCR product to establish linearity of the RT-PCR 

reaction and determine optimal template concentrations. 

The expression of the MRP1, MRP2 and MRP3 transporters in selectively 

transfected cell lines was verified by RT-PCR analysis.  Likewise, BCRP expression 

in MCF7/mx and lack of BCRP expression in MCF7/wt, A2780/Adr and A2780/wt 

were examined.  Primer sequences and PCR conditions for all transporters are given 

in table 3.1. 
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Gene Primer Sequence Product # cycle PCR cycle 

name size 

 

MDR1 fwd: 5’-GTA CCC ATC ATT GCA ATA GC-3’          237 bp 28 95°C (45 sec) 
 rev: 5’-CAA ACT TCT GCT CCT GAG TC-3’                           Xen 29 55°C (120 sec) 
  72°C (60 sec) 
 
GapDH fwd: 5’-TCC CAC CAC CCT GTT GCT GTA-3’      450 bp 26 95°C (60 sec) 
 rev: 5’-TCC CAC CAC CCT GTT GCT GTA-3’ 54°C (120 sec) 
  72°C (90 sec) 
 
MRP1 fwd: 5’-AGG TGG ACC TGT TTC GTG AC-3’      183 bp 30 95°C (60 sec) 
 rev: 5’-ACC CTG TGA TCC ACC AGA AG-3’ 52°C (120 sec) 
  72°C (90 sec) 
 
MRP2 fwd: 5’-CTG CCT CTT CAG AAT CTT AG-3’       220 bp 28 95°C (60 sec) 
 rev: 5’-CCC AAG TTG CAG GCT GGC C-3’ 54°C (120 sec) 
  72°C (90 sec) 
 
MRP3 fwd: 5’-GCC ATC GAC CTG GAG ACT GA-3’       117 bp 30-33 94°C (30 sec) 
 rev: 5’-GAC CCT GGT GTA GTC CAT GAT AGT-3’ 55°C (30 sec) 
   72°C (60 sec) 
 
BCRP fwd: 5’-GGC CTC AGG AAG  ACT TAT GT-3’       342 bp 27 94°C (45 sec) 
 rev: 5’-AAG GAG GTG GTG TAG CTG AT-3’ 55°C (30 sec) 
  72°C (90 sec) 
 
18S fwd: 5’-GTC TGT GAT GCC CTT AGA TG-3’       185 bp Xen 20 94°C (45 sec) 
 rev: 5’-AGC TTA TGA CCC GCA CTT AC-3’ 55°C (30 sec) 
  72°C (45 sec) 

 

Table 3.1   Primer sequences and parameters for PCR analysis 

 

Fwd: forward primer, Rev: reverse primer.  The cycle numbers refer to cell material, unless otherwise indicated 
(Xen = tumor xenograft). 

The primer sequences were based on the following references: 

MDR1: Lingya, Chinese Med J 2001; 114:929-932 

MRP3: Ros, J of Pathol 2003; 200: 553-560 

BCRP: Krishnamurthy, J Bio Chem 2004; 279:24218-24225   

All other primer sequences were obtained using the GenBank cDNA sequences and PRIMER3 online software 
at: http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi 
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3.3.2 Protein expression analysis 

 P-glycoprotein surface expression in A2780/Adr and A2780/wt control cells 

before and after antisense treatments was analyzed using an FITC-conjugated 

mouse anti-human monoclonal Pgp antibody in an assay with flow cytometry 

detection.  The antibody is a 17F9 clone and binds to the surface of the viable, 

unfixed multidrug resistant cell.  The 17F9 epitope is located on the outside of the 

cell, therefore cells can be analyzed directly without preceding permeabilization. 

 Attached cells were washed three times with PBS.  Two ml of trypsin were 

added and cells were washed off with growth medium 10 min later.  Cells were then 

counted (see chapter 3.2.3) and aliquots of 106 cells were sampled into 15 ml flasks.  

Samples were washed with 1 ml of washing buffer I (for preparation of buffers and 

solutions see chapter 3.1.2).  Samples were then dissolved in 1 ml of staining buffer 

and 20 µl of the FITC-labeled anti-human monoclonal Pgp antibody were carefully 

added to each sample.  Tubes were quickly protected from light and incubated on ice 

for 40 min.  To terminate incubation period, cells were washed with 1 ml of ice-cold 

staining buffer.  Unbound antibody was removed from the cell suspension and cells 

were resuspended in washing buffer I.  The amount of antibody-bound FITC on the 

cell surface per cell was analyzed on the FACSCalibur using an excitation 

wavelength of 488 nm.  Emitted light signals were collected through a 530/15 nm 

band pass filter for FITC (FL1-H).  Acquisition was set to 10,000 events and 

fluorescence intensities were collected while gating on physical parameters (forward 

and side scatter) to exclude cell debris.  The number of events within the gate for 

intact cells remained consistently well above 75 % for all measurements. 

Autofluorescence of A2780/Adr and A2780/wt cells were tested to be identical.  

 BCRP expression in MCF7/mx and MCF7/wt control cells was analyzed using 

the primary anti-human BCRP antibody BXP-21 together with a secondary anti-

mouse Ig fluorescein-linked whole antibody (Minderman, 2002).  The BCRP-specific 

BXP-21 antibody, a mouse IgG antibody, reacts with an internal epitope of BCRP, 

therefore, cells needed to be fixed and permeabilized.  As previously described, 

attached cells were trypsinized, counted and aliquots of 106 cells in PBS sampled 

into 15 ml flasks.  Cells were then fixed in formaldehyde-solution (10 %) for 10 min at 

RT and subsequently incubated with an ice-cold methanol-solution (90 %) for 
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10 min.  After washing with washing-buffer II, cells were incubated with blocking-

buffer (10 %) for 1 h at RT.  After thoroughly washing the cells three times with 

washing-buffer II, 100 µl of a 1:100 dilution of the primary monoclonal antibody BXP-

21 (final concentration 2.5 µg/ml) in dilution-buffer were added onto the cells and 

tubes were placed on ice for 60 min.  To terminate incubation period, cells were 

washed with 1 ml of ice-cold washing buffer II so that unbound primary antibody was 

removed from the cell suspension.  100 µl of a 1:50 dilution of the fluorescein-linked 

anti-mouse IgG antibody in washing-buffer II were added onto the cells.  Tubes were 

protected from light and incubated for 20 min on ice.  The secondary antibody was 

removed by washing.  Cells were resuspended in washing buffer II and stored on ice 

until flow cytometry analysis. The amount of cell-bound fluorescein on the cell 

surface was detected as previously described for Pgp.  Autofluorescence of 

MCF7/mx and MCF7/wt cells were tested to be identical.   

 As A2780/Adr and A2780/wt cell lines do not express BCRP, non-specific 

binding to the BCRP binding antibody BXP-21 was used to evaluate unspecific 

binding.  Likewise, as MCF7/mx and MCF/wt cell lines do not express Pgp, non-

specific binding to the FITC-labeled anti-human Pgp antibody was used to measure 

unspecific binding. Minimal non-specific binding was detected for all four cell lines 

and no differences in fluorescence intensities were detected between the resistant 

and wild-type cell lines.  

 

3.3.3 Transfections with MDR1 antisense ODNs  

The expression of P-glycoprotein can be specifically inhibited by transient 

transfection using human MDR1 antisense oligodeoxynucleotides. Sequences of 

phosphorothioated oligodeoxynucleotides with aminohexyl modifications at the 5’-

end against the promoter region of the human MDR1 gene were as follows:  

Antisense:  Aminohexyl-5’-CCA TCC CGA CCT CGC GCT CC-3’ 

Random: Aminohexyl -5’-GCT CCC CCA CGC GCC TCC AT-3’  

(Sequence taken from Alahari et al. 1998 (sequence: ISIS 13758)).   
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Experiments were carried out with ODN concentrations of 50, 100 and 200 nM 

according to previously published methods (Jekerle, 2005).  For ODN treatments, 

A2780/Adr and A2780/wt cells were plated onto 6-well plates at a concentration of 

33,000 cells per well and allowed to attach and recover for 24 h.  Treatment mixtures 

of different concentrations (50 nM-200 nM) of AS and random ODNs were prepared 

in 100 µl of growth medium without the additives fetal calf serum and antibiotics.  

Growth medium without any additives was used for controls.  SuperFect® and DNA 

were then added according to manufacturer’s instructions in such a way that the ratio 

between SuperFect® was 12 µl per 1 µg of DNA.  Transfection mixtures were 

thoroughly vortexted and incubated at RT for 10 min to allow formation of 

transfection complex. The transfection mixture was added drop-wise onto the cells 

and plates were placed into the incubator.  After 6 h, the transfection medium was 

removed, cells were washed and fresh growth medium was added.  Cells were 

treated daily on three consecutive days so that the total transfection period was 72 h.  

After final ODN treatments, nonviable, floating cells were removed by several PBS 

washing steps.  Only viable, attached cells were used for further experiments 

including antibody staining.   

ODN stability, as routinely examined in 37°C tempered PBS containing bovine 

serum albumin (Takei, 2002), did not detect reduction in stability over a 24 h time 

period.  All samples remained stable under these conditions and no degradation 

products were detected.  As fresh ODN were replaced in the media every 24 h 

during the treatment periods, this implies that stable ODNs were present over the 

entire span of the transfection period. 

 

3.3.4 FITC-labeling of MDR1 antisense ODNs 

To evaluate the efficacy of ODN uptake into A2780/Adr and A2780/wt cells 

during transient transfection, antisense ODNs needed to be labeled with a 

fluorescent tracer.  Fluorescence-labeled ODNs permit to visualize the uptake and 

intracellular distribution of ODNs.  For FITC-labeling of AS ODNs, a 1 mg/ml 

fluorescein-isothiocyanate solution was prepared in 100 mM sodium bicarbonate 

buffer (pH 9).  50 µg of aminohexyl-modified antisense ODNs were incubated with 
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300 µl of fluorescein-isothiocyanate solution (total ratio aminohexyl-group to FITC 

ratio: 1:100) for 30 min at room temperature in the dark.  To separate FITC-labeled 

ODNs from unbound FITC, ODN material was purified by size-exclusion 

chromatography on a P-2 column.   

Bio P-2 gel consists of fine porous polyacrylamid beads with a grain size 

between 45 and 90 µm.  To prepare the P-2 column, a small piece of glass wool was 

placed into a Pasteur pipette to seal the bottom.  The Pasteur pipette was now filled 

with P-2 gel, soaked in sodium chloride solution (1 M) for 2 h and washed with 2 ml 

of saline.  

20 µl of ODN solution was loaded onto the P-2 column and saline was slowly 

added.  17 fractions of 100 µl volume each were collected.  The absorbance of the 

eluated fractions was detected at 495 nm (FITC-chromophore) and 260 nm (DNA) 

and fractions 10-13, containing the FITC-labeled antisense molecules were pooled 

and used for uptake experiments (see figure 3.2)   

 

 

 

 

 

 

 

 

 

Figure 3.2   P-2 separation of FITC-labeled ODNs from unbound FITC   

FITC-labeled ODN material was placed on a P-2 column and eluated in different fractions.  The absorbance of 
the collected fractions was detected at 495 nm (fluorescein-chromophore) and at 260 nm (DNA).  The fractions 
10 to 13 contain FITC-labeled ODNs as overlapping local maxima can be detected for both curves.  Free FITC is 
eluated after fraction 15.   
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3.3.5 MTT viability assay 

Cellular toxicities of all inhibitors and oligodeoxynucleotides were analyzed in 

A2780/Adr, A2780/wt and in MCF7/wt and MCF7/mx cells using the 

methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell viability assay.  This assay 

measures the viability status of the cell after a specific treatment.  In viable cells, 

MTT is reduced by mitochondrial dehydrogenases to the blue formazan precipitate 

(Figure 3.3).  Formazan can be visualized as blue crystals with a light microscope.  

When solubilized, formazan can also be detected and quantified by absorption 

measurements at 595 nm.   
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Figure 3.3   Chemical reaction of the MTT assay 

 

 

Experiments were performed according to previously established methods 

from our laboratory (Mueller, 2004).  Cells were plated onto 96-well plates at a 

consistent density of 3 x 104 cells/well and in a volume of 90 µl.  At this initial plating 

density, cells remained in the exponential growth phase over the entire span of the 

incubation period (72 h).  10 µl of different concentrations (100 nM-10 mM) of the 

inhibitor prepared in PBS were added to a total volume of 100 µl and plates were 

incubated at 37˚C and 5 % CO2 for 72 h.  20 µl of a 5 mg/ml MTT solution (for 

preparation see chapter 3.1.2) were added to each well.  After an incubation period 

of about 1 h the formation of blue formazan needles became detectable under the 

light microscope.  Cells were then solubilized by adding 150 µl of an isopropanol-HCl 

mitochondrial 
dehydrogenases 
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solution and plates were placed into the Polarstar Galaxy Microplate reader.  The 

absorption of solubilized formazan in each well was detected at 595 nm.  Values 

were corrected for background absorbance at 690±6 nm.  Cell viability was 

calculated as a percentage of controls treated only with PBS.  EC50 values (effective 

concentration= concentration that produced a 50 % reduction of cell viability) were 

derived by nonlinear regression analysis, assuming a sigmoidal concentration-

response curve using Prism 3.0 software as described in statistical analysis (see 

chapter 3.3.11).  Three independent experiments were performed and the mean 

value ± S.D. was calculated.    

 

3.3.6 Pgp transport assays 

In transport assays the impact of MDR inhibitors on Pgp transport function 

was studied.  Two transport assays with different substrates of Pgp were used.   

Substrate efflux and substrate accumulation were both examined in the Pgp-

overexpressing A2780/Adr cell line in comparison to the drug sensitive A2780/wt cell 

line.  

 

3.3.6.1 99mTc-Sestamibi accumulation assay  
99mTc-Sestamibi (Figure 3.4) is a gamma imaging complex and a substrate of 

Pgp.  The molecule 99mTc-Sestamibi (99mTc-hexakis(2-methoxy-isobutylisonitrile) 

consists of technetium in the 1+ oxidation state bound to six alkyl isonitrile groups in 

an octahedral geometry (Jones, 1984).  In Pgp overexpressing cells, the cellular 

accumulation of 99mTc-Sestamibi is depending on the degree of Pgp inhibition and 

can be easily quantified by gamma counting.   
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Figure 3.4   Chemical structures of 99mTc-Sestamibi 

 

 

The 99mTc-Sestamibi accumulation assay was carried out according to 

previously described methods (Utsunomiya, 2000).  A2780/Adr and A2780/wt cells 

were plated into 24-well plates at a constant density of 200,000 cells/well and grown 

until confluency.  Cells were preincubated with different concentrations of the 

inhibitors.  After 60 min, 15 µl (= 8.25 kBq) of a 99mTc-Sestamibi solution in PBS 

(specific activity: 0.55 MBq/ml) were added to each well.  99mTc-Sestamibi uptake 

was terminated at different time points (0, 15, 30, 60 min) by washing the cells and 

subsequently trypsinizing them with 200 µl trypsin.  Media and cells were carefully 

and quantitatively collected and samples were distributed into three 300 µl PCR 

tubes.  Tubes were placed into the Packard Cobra® II gamma counter and counted 

along with a Cardiolite® standard of known activity.  The relative cellular 

accumulation (AccCell) of 99mTc-Sestamibi was determined for each well of confluent 

cells according to E1:  
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cpmAcc 100⋅
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1+ 
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Furthermore, EC50 values for each inhibitor were determined using 99mTc-

Sestamibi accumulation.  For determination of EC50 values, the transport assay was 

terminated at 1 h and levels of relative intracellular 99mTc-Sestamibi were measured.  

Relative amounts of intracellular 99mTc-Sestamibi were plotted against the logarithm 

of the inhibitor concentration and EC50 values were derived by nonlinear regression 

analysis, assuming a sigmoidal concentration-response curve as described in 

statistical analysis.  

Protein content from cell lysates was determined using the Bradford assay.  

2 µl of cell lysates were added to 1 ml of Bio-Rad-Protein Assay (1:5 in 

demineralised water), incubated for 10 min and absorbance at 595 nm was detected 

in the UV spectrophotometer.  Three aliquots of each sample were measured.  A 

BSA standard (1 mg/ml) was prepared in PBS and different amounts of BSA 

standard (0, 0.5, 1, 2, 4, 8 and 16 µl) were dissolved in 1 ml of Bio-Rad-Protein 

Assay, incubated for 10 min and absorbance measured.  Protein amounts did not 

differ significantly between wells as confluent wells were used for experiments.   

To confirm no involvement of BCRP in 99mTc-Sestamibi transport across 

cellular membranes as previously published (Chen, 2000), 99mTc-Sestamibi 

accumulation studies were performed in the BCRP expressing MCF7/mx cells.   

 

3.3.6.2 Daunorubicin efflux assay  

Efflux assays permit to measure the efflux component separately from all 

other transport processes.  The assay was performed according to previously 

described methods (Brooks, 2003).  A2780/Adr or A2780/wt cells were harvested, 

counted and 106 cells were placed into 15 ml flasks.  Cells were washed and 

incubated in 1 ml phenolred-free RPMI medium containing 3 µM of daunorubicin at 

37˚C in a shaking waterbath.  Brooks and coworkers choose an uptake period of 

30 min and an efflux period of 90 min.  Using these time intervals, a detection 

window, sensitive enough to detect significant differences between daunorubicin 

levels after efflux was confirmed for controls and treated cells (see figure 4.20).  

Thus, after a 30 min uptake the probe was washed twice with ice-cold PBS to 

remove free daunorubicin and incubated in fresh and daunorubicin-free medium in 
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the presence of 0.1, 1 and 10 µM of each inhibitor.  After 90 min, efflux was 

terminated by washing the samples and storing them protected from light on ice.  

The amount of intracellular daunorubicin per cell after 90 min of efflux was quantified.  

Daunorubicin levels were measured with the FACSCalibur using an excitation 

wavelength of 488 nm with detection in the FL-2 channel (585/22 band pass filter).  

Each data point represents an average of the gated, viable cell population of a total 

of 5000 cells.  Three aliquots were measured per sample and experiments were 

performed on three separate occasions.  Changes in the efflux of daunorubicin which 

reflects inhibition of Pgp are expressed as the relative amount of Pgp ihibition, 

calculated as the IPgp according to E2.  A derivation of E2 is described for 

mitoxantrone efflux in chapter 3.3.7.   
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IPgp = relative inhibition of Pgp 

Ct = Intracellular concentration of daunorubicin at time t (90 min) 

 

 

3.3.6.3 Daunorubicin accumulation assay  

In contrast to the efflux assay, the accumulation assay measures the retained 

amount of daunorubicin in the cell and is depending on uptake and efflux 

parameters.  The assay was performed as previously described and published 

(Jekerle, 2006a).  Likewise, aliquots of 106 A2780/Adr or A2780/wt cells were placed 

into 15 ml flasks, washed and preincubated in 1 ml phenolred-free RPMI medium 

containing different concentrations (10 nM-0.1 mM) of inhibitor.  After 15 min, 3 µM 

of daunorubicin were added to each sample and tubes were placed in a tempered 

(37˚C) shaking waterbath.  When steady state was reached at 180 min, samples 

were washed and analyzed on a FACSCalibur.  The amount of intracellular 

daunorubicin per cell was quantified using an excitation wavelength of 488 nm with 
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detection in the FL-2 channel (585/22 band pass filter) and EC50 values were 

determined using GraphPad Prism 3.0 software by nonlinear regression analysis. 

Data are expressed as the calculated mean value ± S.D. as indicated.  The analysis 

was repeated three times to confirm reproducibility of the obtained value.   

 

3.3.7 BCRP-mediated transport assay 

Inhibition of BCRP activity was examined using the BCRP substrate 

mitoxantrone in a flow cytometry-based efflux assay. The BCRP-overexpressing 

MCF7/mx cell line (Figure 3.5) was used according to previously published methods 

(Minderman, 2002).   

 

 

  

 

 

Figure 3.5   BCRP expression in MCF7/mx cells 

RT-PCR analyses were performed to confirm expression of BCRP in mitoxantrone selected MCF7/mx cells.  A 
representative PCR gel is depicted and bands for BCRP are visible.  The product size of 342 bp was verified 
using the 100 bp gene ruler (GR).   

 

 

GR MCF7/mx

342 bp 
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To evaluate specificity for BCRP, mitoxantrone accumulation was examined in 

the non-expressing wild-type MCF7/wt cell line.  Furthermore, the overexpression of 

BCRP mRNA and protein and the absence of Pgp were verified using RT-PCR (see 

chapter 3.3.1) and protein staining (see chapter 3.3.2).  MCF7/mx and MCF7/wt cells 

were harvested, counted and 106 cells were sampled into 15 ml flasks with 1 ml of 

media containing 3 µM of mitoxantrone.  Flasks were incubated in a tempered 

(37ºC), shaking waterbath for 30 min.  After mitoxantrone uptake was terminated, an 

aliquot per each tube was collected.  To remove unbound mitoxantrone, cells were 

washed with ice-cold PBS and media were replaced with mitoxantrone-free media in 

the presence and absence of various concentrations of the inhibitors (1-1000 µM).  

The well-established BCRP inhibitor novobiocin (Shiozawa, 2004; Yang, 2003) was 

used as a positive control.  Efflux was terminated after 90 min; cells were washed 

and redissolved in ice-cold PBS.  The amount of intracellular accumulated 

mitoxantrone after 90 min of efflux was quantified on a FACSCalibur using an 

excitation wavelength of 488 nm with detection in the FL-4 channel (633 nm).  A 

base fluorescence of fewer than 5 % of all values detected in the presence of 

mitoxantrone, was measured for all MDR inhibitors.  A total of 5000 events per 

sample were acquired and results were gated for the viable cell population in the 

forward and side scatter plot.  Three aliquots were studied per sample and 

experiments were performed on three separate occasions.  The relative 

concentration of mitoxantrone retained after 90 min of efflux was calculated using 

E6, which was derived from a basic transport function E3:   

 

tk
t ecc ⋅−⋅= 0                                        
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ct = intracellular mitoxantrone concentration at time t (y= 90 min) 

c0 = intracellular mitoxantrone concentration at time t0 (y= 0 min) 

k = transport constant (velocity of transport) 

t = time of efflux  
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 Transport across the plasma membrane is influenced by two independent 

determinants: passive diffusion (kD) and active transport via BCRP (ka).  Hence, the 

transport constant k is actually the sum of passive diffusion and active transport via 

BCRP (E4).  Whereas passive diffusion is thought to be equal in control and treated 

cells, BCRP-mediated active transport (ka) is depending on the degree of BCRP 

inhibition.   

Da kkk +=  E4 

ka = “active” BCRP-mediated transport 

kD = passive transport via diffusion 

 

By insertion of E4 into E3 for control and modulator (Mod) treatment the 

following equation is obtained (E5).   
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  f ≤ 1  

The factor f indicates the degree of inhibition of mitoxantrone efflux which 

reflects BCRP-mediated active transport ka.  The smaller f the greater is the inhibition 

of BCRP activity.  As C0 values could not be measured with reasonable accuracy, C0 

was removed from the equation, assuming an unknown but constant starting 

concentration, and E6 was obtained.  Results were calculated according to E6 and 

the data is expressed as the delogarithmized value of IBCRP for the different MDR 

inhibitors. 
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3.3.8 MRP-mediated transport assay 

 5-CFDA (5-carboxyfluorescein diacetate) can be used to quantify effects on 

MRP-mediated transport.  After entering the cells by rapid passive diffusion, the 

nonfluorescent ester 5-CFDA is hydrolysed by intracellular carboxylesterases and 

forms the fluorescent moiety 5-CF, which is a specific substrate of the MRP 

transporters (Figure 3.6).   
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5-carboxyfluorescein diacetate (5-CFDA)                                               5-carboxyfluorescein (5-CF)     
non-fluorescent                                                                            fluorescent anion and MRP substrate 
 
Figure 3.6   Chemical reaction of the 5-CFDA assay 

 
 
 For the 5-CFDA assay selectively transfected HeLa-MRP1 cells and MDCK-

MRP2 and –MRP3 cells were used.  Wild-type MDCK cells served as a negative 

control and the WK-X-compounds, XR9577, verapamil and cyclosporine A were 

examined.  The assay was performed according to previously described methods 

(Lee  2001).  Confluent cells were preloaded with 4 µM of 5-CFDA for 30 min.  Cells 

were then washed and 5-CFDA containing medium was replaced with 5-CFDA-free 

media in the presence and absence of the inhibitors (10 or 200 µM).  As selectively 

transfected cell lines were used, the concentration necessary to obtain significant 

MRP inhibition for MRP1, MRP2 and MRP3 was relatively high.  To date, no highly 

effective and multi-functional MRP inhibitors could be identified.  Therefore, the well-

established but fairly unspecific MRP inhibitor indomethacin was used at commonly-

used concentration of 200 µM (Draper, 1997) in order to obtain sufficient inhibition to 

characterize all three MRP subtypes.  Therefore, the concentrations of the MDR 

inhibitors needed to be adjusted to 10 and 200 µM.   

hydrolysis 
carboxylesterases 
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 Efflux was terminated after 5 min; incubation medium was removed and cells 

were washed two times with ice-cold PBS.  Cells were then lysed with 1 ml of 1 % 

Triton solution.  Three aliquots of cell-lysates per well were sampled (200 µl) into 

individual wells of a black 96-well plate and plates were protected from light.  5-

carboxyfluorescein (5-CF) fluorescence per well was detected with the Spectra 

MAXTM Gemini XS spectrofluorometer at an excitation wavelength of 490 nm and an 

emission wavelength of 540 nm.  Values were normalized for background 

fluorescence and calculated as mean values ± S.D.   

 The selective expression of human MRP1, MRP2 and MRP3 in each 

genetically engineered cell line was verified by RT-PCR analysis.  Conditions are 

presented in table 3.1.  As presented in figure 3.7, the presence of the artificially 

introduced human genes MRP1, 2 or 3 were confirmed in the respective transfected 

cell lines  

 

 

                                                                                                A.  

183 bp 

HeLa-MRP1    GR 
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 B.  

Figure 3.7   MRP1, MRP2 and MRP3 expression in HeLa-MRP1, MDCK-MRP2 and -MRP3 cells.  

RT-PCR analyses were performed to confirm expression of MRP1 in HeLa-MRP1 cells (A) and MRP2 and MRP3 
in MDCK-MRP2 and MDCK-MRP3 cells, respectively (B).  Experiments were performed as specified in 3.3.1.  
Representative PCR gels show bands for MRP1 (183 bp), MRP2 (220 bp) and MRP3 (117 bp).  Product sizes 
were confirmed using the 100 bp gene ruler (GR).   

 

 

3.3.9 Chemosensitivity assay 

In contrast to transport assays, chemosensitivity assays are a measurement 

of the overall MDR phenotype towards the examined chemotherapeutic drug such as 

daunorubicin or mitoxantrone.   

Chemosensitivity assays were used to characterize the degree of resistance 

of the MDR cell lines towards the chemotherapeutic agents used to select the MDR 

phenotype.  Hence, Pgp-overexpressing A2780/Adr cells, initially selected using 

doxorubicin, were tested for sensitivity towards doxorubicin and BCRP-

overexpressing MCF7/mx cells, select in the presence of mitoxantrone, were tested 

for sensitivity towards mitoxantrone (Jekerle, 2006b).  The degree of resistance 

towards these selecting agents was quantified for the MDR cell line and the parental 

cell.  EC50 value, derived by nonlinear regression analysis (see chapter 3.3.11), 

permitted to calculate a resistance factor (RF) using equation E7: 

 

 

 

    MDCK-MRP3      GR    MDCK-MRP2 

240 bp 

117 bp 
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Chemosensitivity assays were used as a functional assay to examine the 

ability to reverse MDR by different MDR inhibitors.  The A2780/Adr, A2780/wt and 

MCF7/mx with MCF7/wt cells were employed to investigate inhibition of the MDR 

phenotype by WK-X inhibitors.  Cells were harvested, counted and 3 x 104 cells/well 

were plated into 96-well plates.  Cells were preincubated in a total volume of 90 µl of 

media containing 10 µM of the inhibitor or PBS for one hour.  10 µl of different 

concentrations of daunorubicin or mitoxantrone (100 nM-10 mM) were added to the 

cells and plates were stored in the incubator.  After 72 h, the assay was continued 

according to the MTT assay as described in chapter 3.3.5.  From MTT results, EC50 

values were derived by plotting the absorption values against the logarithm of the 

daunorubicin or mitoxantrone concentration.  Nonlinear regression analyses were 

performed with sigmoidal concentration-response curve using GraphPad Prism 3.0 

Software.  EC50 concentrations for sensitivity towards daunorubicin were expressed 

in micromole (µM) and EC50 concentrations for sensitivity towards mitoxantrone were 

expressed in nanomole (nM).  A sensitizing factor (S.F.) was calculated by dividing 

the EC50 obtained in the presence of inhibitor by the EC50 in the absence of inhibitor 

(control) for each cell line.  The sensitizing factor (S.F.) describes the factor by which 

the chemosensitivity of the specific cell line towards daunorubicin/ mitoxantrone 

increases in the presence of 10 µM of inhibitor.  A ratio of sensitizing factors 

(S.F.Adr/wt; S.F.mx/wt) was calculated in order to normalize for Pgp- or BCRP-specific 

effects, respectively.  S.F.Adr/wt; S.F.mx/wt were calculated by dividing the S.F. of the 

Pgp- or BCRP-expressing cell line by the S.F. of the non-expressing wild type cell 

line.  All experiments were performed at least in triplicates on three independent 

occasions.  
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3.3.10 Cellular examinations with fluorescence microscopy 

Uptake of fluorescence-labeled ODNs on the one hand and daunorubicin in 

the presence or absence of inhibitor or antisense treatment on the other hand were 

examined by fluorescence microscopy.   

Glass supports were placed into 6-well plates, and A2780/wt and A2780/Adr 

cells were grown on these glass supports.  At 60 % confluency, cells were treated 

with 200 nM of FITC-labeled MDR1 antisense ODNs for three hours.  For nuclear 

morphology analysis, cells were additionally incubated with a 1 µg/ml DAPI (4'-6-

Diamidino-2-phenylindole) solution in PBS for 5 min.  DAPI forms a fluorescent 

complex with natural double-stranded DNA.  Therefore, DAPI is commonly used to 

visualize cell nuclei.  Cells were washed and examined in the FITC, DAPI and light 

channel under a 100x1.30 oil immersion objective using the Nikon Eclipse E400 

microscope.  Exposure time for fluorescent light pictures was set to 8 seconds.   

Functional inhibition of Pgp-mediated efflux of daunorubicin (3 µM) was 

visualized both, in the presence of 10 µM of WK-X-34 and in MDR1 antisense (200 

nM) treated cells, by fluorescence microscopy.  Cells analyzed under the microscope 

were treated as described in chapter 3.3.6.3 (“Daunorubicin accumulation assay”) 

and chapter 3.3.3 (“Transfection with MDR1 antisense ODNs”).  Antisense and WK-

X-34 treated cells were incubated with 3 µM of daunorubicin for 60 min.  Finally, cells 

were washed with ice-cold PBS to remove unbound daunorubicin and redissolved in 

PBS.  Samples were protected from light and stored on ice.  5 µl of the cell 

suspension were pipetted onto a microscopy glass support, covered with a glass 

cover plate and placed under a Zeiss Axiovert 200 fluorescence microscope.  Cells 

were examined at an excitation wavelength of 485 nm using an oil immersion 63x 

objective.   

 

3.3.11 Statistical analysis  

All in vitro cell accumulation and efflux studies were performed at least in 

triplicate on three separate occasions.  Data are reported as mean values ± S.D. and 

calculated with Microsoft Excel® software.  For cell experiments the unpaired two-

tailed Student’s t-test was used for statistical comparison between the treatment 
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group and the control group.  A p-level of α < 0.05 was considered statistically 

significant and is indicated by *; a p-level of α < 0.01 is indicated by **.    

EC50 values (=effective concentration for 50 % of the measured effect) were 

calculated for results obtained from the Pgp transport assays (99mTc-Sestamibi 

accumulation and daunorubicin accumulation) and for the BCRP-mediated 

mitoxantrone efflux assay.  Moreover, data obtained from MTT viability assays such 

as in vitro toxicity and chemosensitivity data was expressed as EC50 values.  EC50 is 

the concentration required to reduce the measured effect.  The measured effect can 

be either a transport function (e.g. Pgp efflux or accumulation) or a reduction in cell 

viability caused by a cytotoxic drug (e.g. MTT assay, chemosensitivity assay).  In 

MTT assays, EC50 is the concentration required to reduce the cell viability (e.g. cell 

proliferation) by 50 %.  EC50 values were generated according to the mathematical 

model of concentration-response relationships by nonlinear regression using 

GraphPad Prism 3.0 Software.  Classical concentration-response relationships apply 

to agonist-receptor binding phenomenons and can be extended for other biological 

binding events such as transporter binding.  Standard concentration-response 

curves are defined by four parameters: the baseline response (Bottom), the 

maximum response (Top), the slope (Hill slope) and the drug concentration that 

provokes 50 % of the maximum response (EC50).  For nonlinear regression analysis, 

these parameters are incorporated in the so called “Four parameter logistic 

equation”, which is derived from the Hill equation (E8): 

 

HillSlopeXEC

BottomTopBottomY ⋅−+
−

+= loglog 50101
   E8 

Bottom =baseline response 

Top =maximum response 

Hill Slope = slope at the turning point 

EC50 = drug concentration, that provokes 50 % of the maximum response 

 

As experiments were conducted on three separate occasions, three EC50 

values were obtained. The data is expressed as mean values ± S.D.  Concentration-
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response curves were normalized to top and bottom values for inhibition of Pgp- or 

BCRP-mediated transport activity and to top values only for MTT assays.   
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3.4 In vivo methods 

 

3.4.1 Experimental setup of 99mTc-Sestamibi imaging studies  

The effects of WK-X-34 and MDR1 antisense ODN treatments on the 

accumulation of the Pgp substrate 99mTc-Sestamibi in multidrug resistant and 

sensitive tumor xenograft models were evaluated in two separate sets of imaging 

experiments. 

 

3.4.1.1 WK-X-34 imaging  

In a series of studies, the impact of the novel 3rd generation Pgp inhibitor WK-

X-34 on the accumulation of 99mTc-Sestamibi was evaluated in resistant and 

sensitive tumors.  Furthermore, the potential inhibition of physiological Pgp in the 

organs liver, kidney, brain, intestine and heart was investigated.  The experimental 

design of this study is depicted in figure 3.8.  Human ovarian cancer xenografts were 

developed in such a way that mice were bearing a sensitive (A2780/wt) tumor on the 

left flank and a Pgp overexpressing resistant (A2780/Adr) tumor on the right flank.  

The same animal was injected with 99mTc-Sestamibi and imaged twice on two 

consecutive days.  On Day 1, mice were preinjected with vehicle (control) 1 h prior to 

the injection and imaging of 99mTc-Sestamibi.  On Day 2, mice were preinjected with 

20 mg/kg of WK-X-34 prior to the injection and imaging of 99mTc-Sestamibi.  This 

way, the changes in 99mTc-Sestamibi accumulation between control and WK-X-34 

treatments could be directly compared in the same tumors and tissues of the same 

animal.  Animals were imaged 15 min, 30 min, 1 h, 2 h and 4 h postinjection. After 

imaging experiments mice were sacrificed and tissues isolated for biodistribution 

analysis and examinations of MDR1 mRNA and Pgp expression.    
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Figure 3.8   Schematic presentation of experimental design for 99mTc-Sestamibi imaging of “WK-X-34 imaging 
studies” in the absence (Day 1) and presence (Day 2) of WK-X-34. 

 
 

3.4.1.2 WK-X-34 + antisense imaging  

The impact of Pgp downregulation caused by antisense treatments alone and 

in combination with WK-X-34 was examined by determining the tissue uptake of 
99mTc-Sestamibi into the resistant and sensitive tumor xenografts.  The experimental 

design of this study is depicted in figure 3.9.  Here, human ovarian cancer xenografts 

were developed in such a way that mice were bearing two resistant (A2780/Adr) 

tumor on each back flank.  One tumor of each animal was randomly selected for 

antisense treatment.  The selected tumor was treated with 200 µg of human MDR1 

antisense ODNs intratumorally on three consecutive days.  The animals were then 

randomly divided into two groups: a verum and a control group.  After antisense 

treatments, the control group received an i.p. injection of vehicle (control) 1 h prior to 

the injection and imaging of 99mTc-Sestamibi.  Animals in the WK-X-34 group were 

preinjected with 20 mg/kg of WK-X-34 prior to the injection and imaging of 99mTc-

Sestamibi.  Animals were imaged 15 min and 1 h postinjection.  After imaging 

A2780/wt A2780/Adr 

Day 1: Day 2:

A2780/wt 

99mTc-Sestamibi 99mTc-Sestamibi 

A2780/Adr 

WK-X-34 
20 mg/kg 
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experiments were terminated mice were sacrificed and tissues were isolated for 

biodistribution analysis and examinations of MDR1 mRNA and Pgp expression.    

 

Day 4: 

 

Figure 3.9   Schematic presentation of experimental design for 99mTc-Sestamibi imaging of “WK-X-34 + 
antisense imaging studies”.  In all animals, one of two A2780/Adr tumors on the back flanks was treated with 
MDR1 antisense (AS) ODNs for three days prior to imaging experiments.  Imaging was performed on Day 4 in 
the absence (Control) and presence (WK-X-34) of WK-X-34.  

 

 

3.4.2 Animals  

All animal studies were conducted in accordance with the guidelines of the 

Canadian Council on Animal Care.  Eight-week-old male CD1 mice (25-35 g) and 

five week old female BalbC nu/nu mice (20-25 g) were supplied by Charles River (St. 

Constant, QC, Canada).   

The coat-color white albino CD1 mice originate from a non-inbred stock in the 

laboratory of Dr. de Coulon, Centre Anticancereux Romand, Lausanne, Switzerland 

and were imported into the United States to the Rockefeller Institute in 1926.   

BalbC nu/nu immunodeficient mice have initially been developed at Charles 

River Japan.  The mice are hairless and have albino background.  The inbred 

A2780/Adr 

 
A2780/Adr

Control: 

99mTc-Sestamibi

MDR1 AS  
Day 1-3 

WK-X-34: 

99mTc-Sestamibi 

A2780/Adr

WK-X-34 

A2780/Adr 

MDR1 AS  
Day 1-3 
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animals lack a thymus and are T-cell deficient.  Five-week old male CD1 nu/nu mice 

(20-25 g) were obtained from the breeding colony, established by breeding pairs of 

homozygous male CD1 nu/nu mice and heterozygous female CD1 nu/wt (Charles 

River, St. Constant, QC) mice.  This breeding colony was initiated by Prof. Dr. M 

Piquette-Miller at the Department of Comparative Medicine at the Faculty of 

Medicine, University of Toronto.  The colony was developed and maintained by V. 

Vassileva from the Department of Pharmaceutical Sciences, University of Toronto. 

In vivo work using wild-type CD-1 mice was carried out in the animal facility at 

the Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.  

Immunocomprimized BalbC nu/nu and CD1 nu/nu mice were maintained in a 

pathogen-free environment using sterile working techniques only.  These studies 

were carried out at the Department of Comparative Medicine at the Faculty of 

Medicine, University of Toronto and at the Animal Facility of the Toronto General 

Hospital, UHN, Toronto.   

 

3.4.3 Xenograft model  

For “WK-X-34 imaging studies” (see chapter 3.4.1.1) drug resistant and drug 

sensitive xenografts were established in the right and left flank regions of BalbC 

nu/nu mice by subcutaneous implantation of A2780/Adr and A2780/wt cells, 

respectively (see 1. in figure 3.10).  Cell injections were prepared with an amount of 

5 × 106 cells in an injection volume of 100 µl.  Cells were harvested, counted and 

washed two times using PBS.  The pellets were resuspended in 100 µl of RPMI 

medium without FCS and antibiotics. After cleaning the skin with alcohol, tumor cell 

suspensions were injected s.c. using a 1 ml insulin syringe.  Mice were injected 

randomly to avoid any errors resulting from inconsistencies during cell harvesting 

etc.  Animals were monitored daily and tumor weights estimated by calliper 

measurements (E9):   

 

Tumor weight = (length × width2) / 2  E9 
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For “WK-X-34 + antisense imaging studies” (see chapter 3.4.1.2), murine 

xenograft models were established in the right and left flank region of male CD1 

nu/nu mice (see 2. in figure 3.10).  5 × 106 A2780/Adr cells in an injection volume of 

100 µl were subcutaneously implanted into each back flank.  For tumor inoculations 

and development of tumors see Pictures 1, Appendix. 

 

1.   WK-X-34 imaging:              A2780/wt A2780/Adr     (BalbC nu/nu mice) 

 
2.   Antisense ODN  
      + WK-X-34 imaging:          A2780/Adr                                               A2780/Adr     (CD1 nu/nu mice)  

 

 

Figure 3.10   Experimental setup for A2780/Adr and A2780/wt xenografts 

 

 

3.4.4 Formulation and toxicity of WK-X-34 

For the in vivo application of WK-X-34, a formulation in Cremophor EL was 

chosen.  Cremophor EL is a white viscous liquid with an approximate molecular 

weight of 3000 Da.  It is produced by a reaction of castor oil with ethylene oxide at a 

molecular ratio of 1:35.  Castor oil, a yellowish fixed oil, can be obtained from the 

seeds of Ricinus Communis (Euphorbiacea).  The poly-hydroxylated castor oil has a 

highly variable composition of mainly oxyethylated triglycerides of ricinoleic acid (Van 

Zuylen, 2001) (Figure 3.11).  Cremophor EL is commonly used to solubilize highly 
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hydrophobic compounds such as paclitaxel for in vivo use and clinical applications.  

However, Cremophor EL is associated with some toxic effects and hepatotoxicity in 

animals (Le Garrec, 2004) and humans (e.g. hyperlipidemia, peripheral neuropathy) 

(Gelderblom, 2001; Jie, 2005). 

                                                                                                    

    CH2-O-(CH2-CH2-O)x-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3 

    CH-O-(CH2-CH2-O)y-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3 

    CH2-O-(CH2-CH2-O)z-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3 

    (x + y + z ~ 35)                 

 

Figure 3.11   Chemical structure of the major component of Cremophor EL 

 

Therefore, WK-X-34 in a formulation with Cremophor EL had to be carefully 

examined for potential toxic effects in mice.  For toxicity evaluations, doses of 20 and 

50 mg/kg of WK-X-34 in a total injection volume of 100 µl were prepared.  A stock 

solution of 0.025 mg/µl in a 1:1 mixture of Cremophor EL ethanol was made.  Mice 

were weighted, marked and amounts of WK-X-34 stock solution for each animal 

receiving either 20 mg/kg or 50 mg/kg were calculated.  Amounts of WK-X-34 –

Cremophor EL ethanol (1:1) stock solutions for each mouse were further diluted in 

saline to a final treatment volume of 100 µl.  For example, a mouse in the 50 mg/kg 

treatment group with a body weight of 20.5 g received a dose of 41 µl WK-X-34 stock 

solution further diluted by 59 µl of saline.  Control animals received Cremophor EL 

ethanol (1:1) dilution in saline only.  In the 20 mg/kg WK-X-34 preparation as well as 

in the vehicle formulation, the amount of Cremophor EL ethanol (1:1) was increased 

so that animals in all treatment groups received the same amount Cremophor EL 

ethanol (1:1).   

In vivo toxicities of the WK-X-34 formulations in Cremophor EL ethanol (1:1) 

were studied in 8-week old male CD1 mice.  The animals were injected i.p. daily with 

a 100 µl containing a dose of 20 or 50 mg/kg of WK-X-34; control mice received the 

vehicle.  Mice were examined for general toxicities using common toxicity 
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measurements including behavioural observations and weight recordings (Delaney, 

2002).   

The widely applied alanin aminotransferase (ALT) assay was used to study 

potential hepatotoxicity of WK-X-34.  The ALT test is a blood test that measures 

levels of alanin aminotransferase, a liver enzyme that is produced in higher amounts 

when the liver is inflamed.  The reaction is initiated by the addition of α-ketoglutarat 

as a second reagent (ALT reagent). The concentration of NADH is measured by its 

absorbance at 340 nm, and the rate of absorbance decrease is proportional to the 

ALT activity.  High levels of ALT due to acute hepatitis, for example, are indicated by 

a rapid transformation of the ALT reagent.  Thus, a loss in absorption can be 

detected.   

Animals were monitored daily, behaviour was observed and body weights 

were recorded.  On day 14, mice were sacrificed by cervical dislocation and blood 

samples were obtained by heart puncture using a needle pretreated with heparin.  

Blood plasma was obtained by centrifuging the blood samples immediately at 

6000 G at 4˚C for 10 min.  The plasma in the supernatant was carefully removed and 

cooled on ice.  50 µl of blood plasma were incubated in 450 µl of 37˚C warm ALT 

reagent for 1 min.  Samples were quickly transferred into the UV-spectrophotometer 

and absorption was detected at 340 nm at 0 sec, 30 sec and 60 sec.  The absorption 

was plotted against the time and the loss of absorption over time.  A significantly 

stronger loss of absorption expressed as the negative slope in the treatment groups 

versus controls indicates hepatotoxicity of the treatment. 

 

3.4.5 Treatment of xenografts with WK-X-34 

On Day 2 of the “WK-X-34 imaging studies” (see chapter 3.4.1.1) and on Day 

4 of the “WK-X-34 + antisense imaging studies” (see chapter 3.4.1.2), animals were 

treated with a dose of 20 mg/kg WK-X-34 in the formulation with Cremophor EL-

ethanol 1 h prior to the injection of 99mTc-Sestamibi.  Control mice received the 

vehicle containing Cremophor EL-ethanol.  For preparation of the doses, the mice 

were weighted.  Doses of 20 mg/kg of WK-X-34 in a total injection volume of 100 µl 

were prepared.  Amounts of WK-X-34 in Cremophor EL ethanol (1:1) stock solutions 
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for each mouse were further diluted with saline up to the final injection volume of 

100 µl.  Mice had a fairly constant weight of around 15 g; therefore doses ranged 

around 0.3 mg WK-X-34 per animal.  A stock solution of 3 mg WK-X-34 was 

prepared in a total volume of 200 µl.  20 µl of stock solution were then further diluted 

in 80 µl of saline to obtain a total injection volume of 100 µl.  WK-X-34 formulations 

were freshly prepared before each animal experiment.    

 

3.4.6 Treatment of xenografts with antisense ODNs 

 For “WK-X-34 + antisense imaging studies” (see chapter 3.4.1.2), animals 

were treated with antisense ODNs on three consecutive days. On Day 4, imaging 

experiments were performed. 

When tumor xenografts reached a weight of approximately 0.5 g, one tumor 

per animal was randomly selected for antisense treatments.  Lyophilised antisense 

ODNs were dissolved in saline to a final concentration of 2 µg/µl.  On three 

consecutive days at the same time of the day, tumors were locally injected with 

100 µl (200 µg) of antisense ODN-solution, containing 200 µg of DNA or vehicle as 

previously described (Kuss, 2002). 

 

3.4.7 99mTc-Sestamibi imaging  

99mTc-Sestamibi imaging studies were performed according to previously 

reported methods (Muzzammil, 1999).  Mice were injected with 5 MBq of 99mTc-

Sestamibi into one of the lateral tail veins (see picture 2, Appendix). The animals 

were subsequently anaesthetized with an i.p. injection of a mixture of ketamine and 

xylazine.  When the animal needed additional anaesthetic in order to keep it in deep 

anaesthesia, a tube containing a tissue soaked with halothane was prepared and 

opened in front of the animal’s head for occasional inhalation.  For picture 

acquisition, the animal was placed on the imaging counter in such a way, that all legs 

were stretched away from the torso.  Dorsal views were obtained at 15 min, 30 min, 

1 h, 2 h, and 4 h post-injection (“WK-X-34 imaging studies”; see chapter 3.4.1.1) or 

15 min and 1 h post-injection (“WK-X-34 + antisense imaging studies”; see chapter 
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3.4.1.2) of the radiopharmaceutical using a small field-of-view gamma-camera ADAC 

TransCam equipped with a pinhole collimator (4 mm aperture).  Static images were 

acquired for 5 minutes at earlier imaging time points and up to 20 minutes for later 

time points.  At later time points, the radioactivity of 99mTechnetium was reduced, due 

to its relatively short half life of about 6 h.  Therefore, acquisition time needed to be 

extended at later imaging time points in order to obtain images with the same 

number of total counts. Images were acquired into a 256 × 256 matrix with a 32 keV 

(22.8 %) window set around the 140 keV photopeak of 99mTechnetium.  

As described in chapter 3.4.1.1, the design of the “WK-X-34 imaging studies” 

required injection of 99mTc-Sestamibi and imaging on two consecutive days.  

Although 99mTc-Sestamibi is rapidly eliminated from the system, whole body images 

were acquired prior to the second dose of 99mTc-Sestamibi to ensure minimal 

contribution of residual radioactivity.  99mTc-Sestamibi levels detected on Day 2 were 

less than 2 % of the original dose see picture 4, Appendix.  After completion of 

imaging experiments, mice were sacrificed by cervical dislocation and dissected.  

Tumors were used for biodistribution studies and kept for immunohistochemistry and 

RT-PCR analysis.  

 

3.4.8 Analysis of 99mTc-Sestamibi images  

All images were analyzed with Pegasys X, Version 4.2 software.  In “WK-X-

34 imaging studies” (see chapter 3.4.1.1) regions of interest were drawn around the 

whole body, brain, heart, liver, right kidney, intestine, and both tumors (Picture 5, 

Appendix).  In “WK-X-34 +antisense imaging studies” (see chapter 3.4.1.2) regions 

of interest were drawn around the whole body and both tumors.  Organ regions (e.g. 

heart) were identified by varying the radio intensity.  99mTc-Sestamibi organ uptake 

(UpTc) from each region was expressed as counts/pixel/acquisition time in seconds 

(cts/pix/sec) and then normalized to the region of the whole body and corrected for 

background radiation (Wang, 2005).  The total amount of administered 99mTc-

Sestamibi is represented in the whole body region.  Additional corrections were 

made for radioactive decay (At) at every imaging time point (tmin) using equation E10 

and E11: 
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( )tDc
t eAA ⋅⋅= 0  E10 

At = Activity at time t 

A0 = Activity at time 0 min 

e = base of natural logarithm 

t = elapsed time 

Dc = Decay constant 

 

 

( )
2
1
2ln

t
Dc =   E11 

ln 2 = natural logarithm of 2 (=0.693) 

t1/2 = half-life of the radioisotope 

 

 

This correction was necessary in order to plot the radioactivity form each 

individual organ against all timepoints.  The values for the AUC between all time 

points were calculated using equation E12:  

 

AUCt1-t2 = (cpm1 + cpm2) × (t2-t1) / 2   E12 

 

The AUC values for each organ in the presence and absence of WK-X-34 

were calculated and the mean values ± S.D. were compared.  Radioactive intensities 

obtained from these images correlated with results obtained from 99mTc-Sestamibi 

biodistribution studies. 
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3.4.9 99mTc-Sestamibi biodistribution  

Biodistribution studies were performed for both experimental designs 

described in chapters 3.4.1.1 and 3.4.1.2.  For biodistribution studies mice were 

sacrificed by cervical dislocation four hours (chapter 3.4.1.1) and two hours (chapter 

3.4.1.2) after 99mTc-Sestamibi injection.  Blood samples were obtained by heart 

puncture using a needle previously treated with heparin.  The different tissues of 

interest (e.g. tumors, brain, heart, liver, kidney and intestine) were carefully isolated 

and weighted (see picture 3, Appendix).  Tissues and blood were then gamma-

counted along with a Cardiolite® standard of known activity using the Packard 

Cobra® II Series Auto-Gamma Counting System.  Relative tissue accumulation of 
99mTc-Sestamibi was calculated as a % dose/gram of tissue.  The relative injected 

dose (Drel) was calculated by subtracting the remaining amount of radioactivity in the 

needle after injection (Drem) from the absolute dose (Dabs) according to E13:   

 

Drel = Dabs - Drem  E13 

 

Drel  = relative injected dose 

Dabs = absolute injected dose 

Drem = remaining amount of radioactivity in the needle after injection 

 

The detected counts per 1 kBq (Cts1kBq) of the Cardiolite® standard allowed the 

transformation of the corresponding counts (Ctscorr) of the relative injected dose (Drel) 

using E14:   

 

Ctscorr = Drel · Cts1kBq  E14 

 

Ctscorr = corresponding counts (e.g. 5.33 MBq = 55879187 cpm) 

Drel = relative injected dose 

Cts1kBq = counts per 1 kBq of Cardiolite® Standard 
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The % dose/gram of tissue (% Drel/gtis) was calculated from counts per minute 

detected per gram of tissue (cpm/gtis) in E15: 

 

 

corr

tis
tisrel Cts

gcpm
gD

100/
/%

⋅
=    E15 

 

% Drel/gtis
  = % dose/ gram of tissue 

cpm/gtis = counts per minute detected per gram of tissue 

Ctscorr = corresponding counts 

 

99mTc-Sestamibi organ levels were strongly depending on the quality of the tail 

vein injection and the excretion parameters for 99mTc-Sestamibi.  Thus, 99mTc-

Sestamibi organ and tumor levels were normalized to an internal factor such as 

blood and muscle.  Results were calculated as tissue to blood and tissue to muscle 

ratios.  Results normalized to the non-Pgp expressing deep tissue muscle were more 

consistent than blood levels.  Blood levels change with time and are strongly 

influenced by the extent of 99mTc-Sestamibi excretion and metabolism. Therefore the 

tissue/muscle ratios were used for presentation and discussion of biodistribution 

data. 

 

3.4.10 Immunohistochemical and RT-PCR analyses of tumors    

Following gamma counting (< 1 h after tissue isolation), tumors obtained from 

both experimental designs described in chapters 3.4.1.1 and 3.4.1.2 were divided 

into two parts and snap-frozen in liquid nitrogen for RNA isolation or fixed in saline 

containing 5 % of formaldehyde for immunohistochemistry.   

For RNA isolation, about 50 mg of tumor tissue per sample were used.  

Tissues were homogenized for 60 min using the Polytron tissue homogenizer.  Total 

RNA was isolated from tumor tissue using the TRIzol extraction kit and cDNA 

synthesized according to table 3.1.  mRNA levels of human MDR1 were determined 
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by semi-quantitative RT-PCR and normalized to human 18S.  Primer sequences and 

PCR conditions were used as indicated in table 3.1.    

Tumor tissue sections were prepared using the routine stain of hematoxylin 

and eosion (H and E).  Hematoxylin, the oxidized product of the logwood tree, has 

an affinity to the nucleic acids of the cell nucleus.  Eosin is an acidic dye with an 

affinity for cytoplasmic components of the cell.  The fixed tumor tissue was paraffin 

embedded and 5 µm sections were cut and stained with hematoxylin and eosin as 

follows.  Paraffin slides were washed in water and placed in filtered hematoxylin for 

5 min.  After washing with water, slides were rinsed with 1 % of acid alcohol for a few 

seconds and washed.  Slides were then placed in a 1 % eosin solution in water for 

5 min.  Slides were finally washed in tap water and dried. 

Immunohistochemical staining was prepared by Kelvin So at the Department 

of Pathology, Toronto General Hospital, UHN.  Expression of Pgp was visualized on 

paraffin-embedded tissue slides applying the FITC-linked monoclonal Pgp antibody 

(1:500 dilutions) for 18 h at 21˚C.  Slides were examined under a 40x/0.65 oil 

immersion objective using a Nikon Eclipse E400 fluorescence microscope.  Pictures 

were acquired under fluorescent light from the FITC channel with an acquisition time 

of 8 seconds.  For negative controls, A2780/Adr slides were incubated in the 

absence of antibody.  To distinguish false-positive responses from non-specific 

binding of the FITC-labeled antibody, A2780/wt slides were incubated in the 

presence of FITC-labeled monoclonal Pgp antibody and examined.   

 

3.4.11 Statistical analysis  

A paired, two-tailed Student’s t-test was used to compare in vivo imaging of 
99mTc-Sestamibi within the same tumor of one animal.  A difference in mean values 

with a p-level of α < 0.05 was considered statistically significant (p-levels:  * α< 0.05; 

** α<0.01). 

99mTc-Sestamibi imaging and biodistribution experiments in xenografts treated 

with MDR1 antisense and vehicle were performed in groups of 4 animals for WK-X-

34 treatments and controls.  For these experiments an unpaired, two-tailed Student’s 

t-test was used to compare 99mTc-Sestamibi uptake between two tumors in two 
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different animals.  A difference in mean values with a p-level of α < 0.05 was 

considered statistically significant (p-levels:  * α< 0.05; ** α<0.01).   

For MDR1 mRNA quantification of tumors, 4 tumors from 4 animals per group 

were used.  Statistical analysis of mRNA expression was performed using an 

unpaired, two-tailed Student’s t-test.  Likewise, a difference in mean values with a p-

level of α < 0.05 was considered statistically significant (p-levels: * α< 0.05; ** 

α <0.01). 



 

 

 

4 Results – in vitro 
 

 

4.1 Characterization of cell models  

The Pgp-overexpressing human ovarian cancer cells, A2780/Adr, and the non 

Pgp-expressing wild-type cells, A2780/wt, were used for in vitro and in vivo 

investigations.  To study interactions with BCRP and the MRPs in transport and 

chemosensitivity assays, BCRP-overexpressing MCF7/mx and wild-type MCF7/wt 

cells and selectively transfected cell lines such as Hela-MRP1 were used.  To 

characterize these cell lines, different biomolecular techniques were applied.  These 

techniques include analyses of gene expression using RT-PCR and protein 

expression using antibody staining techniques with flow cytometry detection.  

Moreover, chemosensitivity assays were used to examine the degree of resistance 

towards cytotoxic drugs. 

 

4.1.1 RT-PCR analyses   

Pgp-overexpressing A2780/Adr cells were used as a model of human 

multidrug resistant cancer.  Results generated in A2780/Adr cells were compared to 

those obtained from the non Pgp-expressing wild-type cell line A2780/wt.  Therefore, 

MDR1 overexpression and lack of MDR1 expression was confirmed in A2780/Adr 

and A2780/wt, respectively.  For quantification of mRNA results (e.g. MDR1 

expression in tumor xenografts), a standard curve needed to be generated.  

 

4.1.1.1 Standard curve for the human MDR1 gene 

A standard curve enables one to determine the linear range at which the 

relative amount of PCR product, detected on the PCR gel directly, corresponds to 

the relative amount of template present in the probe.  Standard curves were 
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generated using the conditions described in chapter 3.3.1.  In figure 4.1, a 

representative standard curve is depicted.  The linear range for the PCR reaction at 

a cycle number of 28 was found to be at amounts of cDNA template of up to 1.25 µl.  

Thus, a template amount of 1 µl was chosen for further MDR1 mRNA quantifications.   

 

 A. 

 

 

 

 

 

 

 

 B.  

Figure 4.1   Standard curve for MDR1 mRNA expression  

Gel electrophoresis for different amounts of cDNA template (5.0-0.04 µl).  PCR products (size: 237 bp) were 
separated by gel electrophoresis (A).  Optical densities of PCR bands were determined (in arbitrary units (AU)) 
and plotted against the amount of cDNA template (B).  The linear range (red line) was found to be up to 1.25 µl of 
template at a cycle number of 28. 
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4.1.1.2 MDR1 mRNA expression in A2780/Adr and A2780/wt 

Expression of human MDR1 mRNA in A2780/Adr and A2780/wt cells was 

examined by RT-PCR analysis as specified in chapter 3.3.1.  As derived from 

standard curves (see above), 1 µl of template was used for the PCR reaction.  

Results confirm high expression levels of MDR1 mRNA in A2780/Adr cells but no 

detectable levels in wild-type A2780/wt cells (Figure 4.2)  

 

 A. 

  B. 

 

Figure 4.2   MDR1 mRNA expression in A2780/Adr and A2780/wt  

MDR1 mRNA expression in A2780/Adr (A1-3) and lack of MDR1 mRNA expression in A2780/wt (W1-3) cells is 
depicted on a representative RT-PCR gel (A).  The gene ruler (GR) confirms the PCR product size of 237 bp for 
the MDR1 gene.  Quality and amount of template were verified by the housekeeping gene GapDH (B).    

 

A1  A2   A3    W1  W2  W3  GR 

A2780/Adr      A2780/wt 

MDR1 gene 

GapDH gene 
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4.1.1.3 MRP and BCRP mRNA expression in A2780/Adr and /wt 

Expression levels of other ABC transporters including MRP1, MRP2, MRP3 and 

BCRP in A2780/Adr and A2780/wt were examined in order to evaluate potential 

interactions of Pgp substrates with these transporters.  Primer sequences and PCR 

conditions for these PCR reactions are presented in table 3.1.  A basal and 

increased expression of MRP1 was detectable in both, A2780/wt and A2780/Adr 

cells.  No mRNA expression of MRP2 was visible in both, A2780/Adr and A2780/wt 

cells, and only basal levels of MRP3 could be measured for both cell lines (Figure 

4.3).  Likewise, no BCRP mRNA expression could be detected in A2780/Adr and 

A27807wt cell lines (Figure 4.4).  Taken together, MRP1 was identified as the only 

transporter with expression levels high enough to interfere with Pgp functionality in 

A2780/Adr cells.  The relative amount of MRP1 mRNA was under 10 % of mRNA 

levels detected for Pgp.  MRP1 expression present in A2780/wt and A2780/Adr cells 

showed interactions or interferences in some of the functional assays which were 

based on Pgp and MRP1 substrates (e.g. daunorubicin).  In the daunorubicin 

chemosensitivity assay using A2780/wt cells (see chapter 4.3.5.1.), for example, 

MRP1 effects could be detected for verapamil.  
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Figure 4.3   MRP1, MRP2 and MRP3 mRNA expression in A2780/Adr and A2780/wt 

Expression of MRP1 and MRP3 mRNA and non-expression of MRP2 in A2780/Adr (A1-3) and A2780/wt (W1-3) 
cells is depicted on representative RT-PCR gels.  The gene ruler (GR) confirms the PCR product size of 183 bp 
(black arrow) for the MRP1 gene and 117 for the MRP3 gene.  Quality and amount of template, confirmed by 
GapDH expression, were similar in all probes.    

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4   Lack of BCRP mRNA expression in A2780/Adr and A2780/wt 

Lack of BCRP mRNA expression in A2780/Adr (A1-3) and in A2780/wt (W1-3) cells.  The gene ruler (GR) 
confirms the PCR product size of 342 bp (black arrow) for the BCRP gene. The quality and amount of template, 
confirmed by GapDH expression, were similar in all probes.    
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4.1.2 Protein analyses  

4.1.2.1 Pgp expression in A2780/Adr and A2780/wt 

 Pgp surface expression was analyzed directly using the FITC-labeled anti-

human Pgp antibody with detection on a FACSCalibur.  Corresponding to mRNA 

results, high expression levels of Pgp were seen in the multidrug resistant A2780/Adr 

cells but not in A2780/wt cells (Figure 4.5).  Thus, these cell lines served as a model 

of Pgp-overexpressing and non-expressing tumors and were utilized for 

examinations of Pgp functionality as well as for in vivo tumor xenograft models in 

immunocomprimised mice.   

 

Figure 4.5   P-glycoprotein overexpression in A2780/Adr 

Pgp expression in A2780/wt and A2780/Adr. Levels of surface Pgp were detected with a FITC-labeled anti-
human Pgp antibody using the FL-1 channel of the FACSCalibur. The fluorescence intensity of cellular bound 
FITC is plotted against the cell number (= events).  Geometric means were: A2780/Adr 402; A2780/wt 23. 

 

 

Pgp levels were strongly increased in those A2780/Adr cells which were 

routinely treated with doxorubicin every 10 passages as indicated in chapter 3.2.1.  

To demonstrate the magnitude in overexpression of Pgp in doxorubicin treated 

A2780/Adr cells, Pgp surface expression was examined in several different cell lines.  

As presented in figure 4.6, doxorubicin treated A2780/Adr cells (A2780/Adr*D) 

showed a considerably higher overexpression than untreated A2780/Adr cells.  Pgp 
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expression levels in other MDR cell lines including HepG2 and Caco-2 were 

marginal in comparison to A2780/Adr cells.   

 

 
Figure 4.6   Relative P-glycoprotein expression in several cell lines 

Pgp expression in several cell lines compared to non-Pgp expressing A2780/wt cells.  Doxorubicin treated 
A2780/Adr are indicated as A2780/Adr*D.  Results are expressed as relative Pgp surface expression, detected 
as geometric means of the FITC fluorescence and ** indicates a p-level of < 0.01 as determined using an 
unpaired, two-tailed t-test.  Some arrow bars were too small to be depicted in some samples. 

 

 

4.1.2.2 Lack of Pgp expression in MCF7/mx  

 Many substrates or inhibitors of Pgp also interact with BCRP.  Therefore, it is 

necessary to verify that the cell line used for BCRP-specific assays does not express 

considerable levels of Pgp.  A lack of Pgp expression was confirmed for MCF7/mx 

cells, which were used for BCRP functional assays (Mitoxantrone transport and 

chemosensitivity assays; see chapters 4.3.3 and 4.3.5.2).  The experiments were 

performed as described in chapter 3.3.2.   

 Indeed, MCF7/mx cells did not display any detectable levels of Pgp.  In 

A2780/Adr cells, high levels of surface Pgp were measured in contrast to MCF7/mx 
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and A2780/wt, which both did not express detectable levels of Pgp.  The histogram 

obtained from MCF7/mx cells overlapped with the histogram obtained from the non 

Pgp-expressing A2780/wt cells, however, showed no overlap with the histogram 

obtained from A2780/Adr cells (Figure 4.7).   

 

 

 

 

 

                                                                   

 

 

 

 A.  B.  

 

Figure 4.7   Lack of P-glycoprotein surface expression in MCF7/mx 

Pgp surface expression in MCF7/mx in comparison to A2780/wt (A) and A2780/Adr (B).  Levels of surface Pgp 
are visualized using a FITC-labeled anti-human Pgp antibody with detection in the FL-1 channel of the 
FACSCalibur. The fluorescence intensity of FITC bound to the cell (in arbitrary units) is plotted against the cell 
number (= events).  Geometric means are: A2780/Adr 406; A2780/wt 24; MCF7/mx 27. 

 

 

4.1.2.3 BCRP overexpression in MCF7/mx  

 Overexpression of BCRP was confirmed in MCF7/mx cells, before using them 

for BCRP functional assays.  The detection was based on protein staining 

techniques using a primary anti-human BCRP monoclonal BXP-21 antibody together 

with a secondary fluorescein-conjugated antibody.  The amount of cellular-bound 

fluorescein was quantified using flow cytometry techniques as outlined in chapter 

3.3.2.  In comparison to wild-type MCF7/wt and A2780/Adr cells, BCRP was 

overexpressed in MCF7/mx cells (Figure 4.8).  These results agree with results 

obtained from BCRP mRNA expression analysis (see chapter 4.1.1.3).   
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Figure 4.8   BCRP overexpression in MCF7/mx 

BCRP expression in MCF7/mx (A) and A2780/Adr (B) in comparison to wild-type MCF7/wt cells.  Protein levels 
were detected in the FL-1 channel of the FACSCalibur using the monoclonal BCRP antibody BXP-21 and a 
fluorescein-conjugated secondary antibody.  The fluorescence intensity of cellular-bound fluorescein is plotted 
against the cell number (= events).  Geometric means were: MCF7/mx 117; MCF7/wt 23; A2780/Adr 33. 

 
 

4.1.3 Chemosensitivity in MDR cell lines 

Chemosensitivity towards the chemotherapeutic agent, which was used to 

select the multidrug resistant cell line from its sensitive parental cell line, is a 

characteristic commonly used to determine the degree of resistance.  

Chemosensitivity was determined in multidrug resistant and sensitive cell lines.  An 

MTT-based chemosensitivity assay was applied as described in chapter 3.3.9.  The 

degree of chemosensitivity is expressed as an EC50 value. 

 

4.1.3.1 Chemosensitivity towards doxorubicin in A2780/Adr 

Chemosensitivity towards the anthracycline doxorubicin was measured in the 

A2780/Adr and to sensitive A2780/wt.  In figure 4.9, dose-effect curves are shown 

from which EC50 values were derived as described in chapter 3.3.11.   

 

 

A. 

MCF7/mx

MCF7/wt

MCF7/mx

MCF7/wt
A2780/Adr

MCF7/wt

A2780/Adr

MCF7/wt

A2780/Adr

MCF7/wt



  Results – in vitro 

 

94 

 

 

 

 

 

 

 

 

 A.  

 

 

 

 

 

 

 

 

    B. 

 

 

Figure 4.9   Chemosensitivity towards doxorubicin 

EC50 values of doxorubicin (DOXO) were determined for A2780/Adr (A) and A2780/wt (B) cells using the MTT 
assay.  EC50 values, as derived from nonlinear regression analysis, were 5.4 µM (log EC50: -5.27 ± 0.1; Hill slope:      
-1.16) for A2780/Adr and 713 nM (log EC50: -6.15 ± 0.04; Hill slope: -1.37) for A2780/wt cells.  Some error bars 
are smaller than data symbols. 

 

 

EC50 values of 5.4 µM and 713 nM were calculated for doxorubicin in 

A2780/Adr and A2780/wt cells, respectively.  A degree of resistance of A2780/Adr 

towards A2780/wt of 7.5 was obtained.   
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4.1.3.2 Chemosensitivity towards mitoxantrone in MCF7/mx 

The BCRP-overexpressing MCF7/mx cells were initially generated by 

selection using mitoxantrone.  Therefore, the degree of chemosensitivity towards 

mitoxantrone was determined for MCF7/mx and the parental MCF7/wt cells (see 

chapter 3.3.9).  According to figure 4.10, EC50 values of 26 µM and 317 nM were 

obtained for MCF7/mx and MCF7/wt cells, respectively.  The calculated degree of 

resistance of MCF7/mx towards MCF7/wt was 82.   

 

 

 

 

 

 

 

 

 

  A. 

 

 

 

 

 

 

 

 

      B. 

Figure 4.10   Chemosensitivity towards mitoxantrone 

EC50 values of mitoxantrone were determined for MCF7/mx (A) and MCF7/wt (B) cells using the MTT assay.  
EC50 values, as derived from nonlinear regression analysis, were 26 µM (log EC50: -4.6 ± 0.2; Hill slope: -0.62) for 
MCF7/mx and 317 nM (log EC50: -6.5 ± 0.1; Hill slope: -1.03) for MCF7/wt cells.  Some error bars are smaller 
than data symbols. 
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4.2 Characterization of MDR1 antisense ODNs 

Antisense oligodeoxynucleotides (ODNs) are a commonly used tool to 

transcriptionally downregulate the expression of the target gene MDR1 and thus 

prevent the translation into the gene product Pgp.  The antisense sequence used in 

this study (see chapter 3.3.3) has been previously shown to downregulate the 

expression of MDR1 mRNA in cell culture (Alahari, 1998) and xenograft models 

(Brigui, 2003).  In order to apply these sequences to the human ovarian cancer 

model used in the present work, the antisense sequences and transfection 

conditions needed to be evaluated in vitro in A2780/Adr cells.  Their effectiveness in 

downregulating Pgp expression and functionality was investigated using Pgp surface 

expression analysis and functional transport assays.  Cellular uptake and distribution 

were examined with FITC-labeled antisense ODNs.  Finally, potential toxic effects 

were evaluated using cell proliferation assays. 

 

4.2.1 Downregulation of Pgp expression 

Downregulation of Pgp expression after antisense treatments (see chapter 

3.3.3) was examined by surface protein staining according to chapter 3.3.2.   

A significant downregulation of Pgp expression upon treatments with MDR1 

antisense ODNs for 72 h was detected in A2780/Adr cells (Figure 4.11).  As the half 

life of Pgp is 14 h, this corresponds to treatment periods of three to five Pgp half lives 

(Aleman, 2003).  The downregulation was dose-dependent with reductions to about 

82 %, 67 % and 55 % of control levels in the presence of 50 nM, 100 nM and 200 nM 

of MDR1 antisense ODNs, respectively.  Furthermore, even low antisense 

concentrations of 50 nM resulted in a significant downregulation of Pgp by about 

20 %.  Antisense effects appeared to be specific as treatments with random controls 

did not induce any alterations of Pgp expression.   
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Figure 4.11   Pgp downregulation by MDR1 antisense ODNs  

A2780/Adr cells have been treated with different concentrations of ODNs.  Pgp surface expression in antisense 
and random treated cells was detected using the FITC-labeled anti-human Pgp monoclonal antibody.  Results 
are normalized to untreated controls.  * and ** indicate p-level of α< 0.05 and α< 0.01, respectively, as 
determined by an unpaired, two-tailed t-test. 

 

 

4.2.2 Downregulation of Pgp functionality 

Decreases in Pgp expression by antisense treatments resulted in a reduced 

Pgp functionality.  This could be identified in A2780/Adr cells via a reduced efflux of 

the substrate or increased sensitivity towards the cytotoxic drug.  An increased 

accumulation of daunorubicin due to impaired efflux was detected in MDR1 

antisense pretreated A2780/Adr cells as compared to control A2780/Adr.  In figure 

4.12-A, the increased intracellular fluorescence of accumulated daunorubicin could 

be nicely visualized by fluorescence microscopy.  Likewise, increased daunorubicin 

levels in MDR1 antisense treated A2780/Adr cells were detected using flow 

cytometry-based transport assays (Figure 4.12-B).    
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Figure 4.12   Increased daunorubicin accumulation in antisense treated A2780/Adr 

Daunorubicin uptake in MDR1 antisense pretreated A2780/Adr (solid grey), control A2780/Adr (black) and 
A2780/wt (blue) is visualized by fluorescence microscopy  (on a 63x objective) (A) and flow cytometry (B)  In the 
FACS histogram (B), the fluorescence of daunorubicin in arbitrary units (AU) was detected in the FL-2 channel 
and is plotted against the cell number (= events).  Cells were incubated with 3 µM of daunorubicin for 60 min.  
Geometric means as determined by flow cytometry in the FL-2 channel were: A2780/Adr control 26; A2780/wt 
control 57; A2780/Adr + MDR1 AS ODN 68.  

 
 

Decreases in Pgp expression and functionality by antisense treatments 

resulted in a diminution of the Pgp-mediated MDR phenotype.  This was detectable 

as a stronger cellular sensitivity of A2780/Adr cells towards the cytotoxic drug 

daunorubicin in chemosensitivity assays (see chapter 3.3.9).  The sensitivity towards 

daunorubicin in A2780/Adr cells was significantly and dose-dependently increased 

upon antisense treatments.  In table 4.1, EC50 values for different antisense 

concentrations are summarized.  The daunorubicin concentration tolerated by 50 % 

of the cell population decreased with treatments of MDR1 antisense ODNs in a 

dose-dependent manner. 
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Table 4.1   Daunorubicin chemosensitivity after MDR1 antisense ODN treatments in A2780/Adr 

 

                                                                         EC50  ± S.D. / µM 

 

Treatments (dose)           0 nM        50 nM  100 nM  200 nM                      

                                      

MDR1 AS ODNs           19,0 ± 0,8*    9,7 ± 0,9*     7,7 ± 0,9*               

Controls                          37,9 ± 0,8                                    

 

 

Table 4.1   A2780/Adr pretreated with 50 nM, 100 nM or 200 nM of MDR1 antisense ODNs or PBS (controls) 
were incubated with different concentrations of daunorubicin for 72 h. Cell viability after ODN treatments was 
analyzed with the MTT-assay.  EC50 values were calculated and results represent the mean of six samples in two 
separate experiments. * indicates a p-level of α< 0.05 versus control treatment 

 

 

4.2.3 Cellular uptake of FITC-labeled MDR1 antisense ODNs 

Cellular uptake and distribution of FITC-labeled MDR1 antisense ODNs were 

further examined by fluorescence microscopy.  ODNs enter the cells via endocytosis 

and accumulate in vesicles in the cytoplasm (Jensen, 2002).  In figure 4.13, the 

cellular uptake and retention of FITC-labeled antisense was greater in A2780/Adr 

(A), as compared to the non-Pgp expressing A2780/wt cells (B).  Furthermore, 

accumulation of fluorescein in vesicles was detectable on both pictures.  
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Figure 4.13   Fluorescence microscopy of intracellular ODN delivery 

FITC-fluorescence microscopy analysis was compared in A2780/Adr (A) and A2780/wt (B) cells.  Cells were 
transfected with MDR1 antisense ODNs for 3 h.  

 

According to Jensen and coworkers (Jensen, 2003), two hours following 

uptake and accumulation in cytosolic vesicles, oligonucleotides begin to leave the 

vesicles and escape into the cytosole, from which they enter the nucleus. To 

examine whether FITC-labeled MDR1 antisense ODNs, used in this work, 

penetrated into the nucleus, phase-contrast, DAPI and FITC microscopic pictures of 

A2780/Adr cells after uptake of FITC-labeled antisense ODNs were acquired.  As 

DAPI selectively stains the cell nucleus, overlapping DAPI (see chapter 3.3.10) and 

FITC-marked regions indicate nuclear localization.  According to fluorescence 

microscopy analysis (Figure 4.14), antisense ODNs were distributed within cells and 

also accumulated in the nucleus.   

 

 
 

Figure 4.14   Fluorescence microscopy of nuclear ODN delivery 

For nuclear localization analysis, phases contrast (A, grey), DAPI nuclear stain (B, blue) and FITC-fluorescence 
(C, green) microscopy images were acquired for antisense uptake in A2780/Adr cells.  Overlapping stains in B 
and C (white arrows) indicate nuclear localization of FITC-labeled ODNs. 

A. B. 

A. B. C.
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4.2.4 Toxicity of MDR1 antisense transfections 

Cellular toxicity has been associated with the exposure to phosphorothioated 

ODNs (Kurreck, 2003) and remains a major challenge in antisense applications.  

Furthermore, the transfection agent Superfect itself possibly has some toxic effects 

on cells (Axel, 2000).  Therefore, the potential toxicity of the MDR1 antisense ODN 

Superfect preparation compared to untreated controls was examined.  The number 

of cells proliferated over 72 h was measured using the Casy 1® cell counter (see 

chapter 3.2.3).  The cell number was dose-dependently decreased up to about 23 % 

for the treatment with 200 nM of ODNs (Figure 4.15), as a result of reduced cell 

proliferation over the span of the transfection. 

 

 

 

 

 

 

 

 

Figure 4.15   Reduced cell number after 72 h of antisense treatments 

Effects of different concentrations of MDR1 antisense ODNs on the number of proliferated A2780/Adr cells after 
72 h of transfection.  To evaluate toxicity of ODN preparations with SuperFect, untreated A2780/Adr cells were 
used as controls.  Cell numbers were quantified using the Casy1® cell counter and are expressed as the means ± 
S.D. of three data points and normalized to untreated controls.  Similar results were obtained in three individual 
experiments.   

 

Significant reductions in cell number occurred during the course of antisense 

treatments due to reduced proliferation rates.  For protein staining experiments, only 

viable cells were harvested; dead cells were washed off.  All aliquots contained the 

same cell number for protein staining.  Thus, differences in cell number after 

transfection regiments did not impact the quality of the protein measurements.  

During FACS measurements, the number of events within the gate for intact cells 

remained consistently well above 75 % for all treatment groups. 
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4.3 Characterization of novel MDR inhibitors 

MDR mechanisms can be functionally modulated by specific MDR inhibitors 

which inhibit the activity of ABC transporters involved in MDR.  Whereas the 

overexpression of Pgp is the best characterized and most prevalent MDR 

mechanism, others such as MRP- or BCRP-mediated MDR mechanisms are often 

coexpressed in tumor cells.  Therefore, Pgp, MRP and BCRP-functional assays were 

included in the in vitro characterization of the novel MDR inhibitors.  First of all, 

general toxicities of the novel compounds were examined in comparison to 

cyclosporin A and verapamil.  

 

4.3.1 Toxicity of MDR inhibitors 

The cellular toxicity of all inhibitors was analyzed in A2780/Adr, A2780/wt, 

MCF7/wt and MCF7/mx cells using the MTT viability assay.  Cells were incubated 

with increasing concentrations of the inhibitors and EC50 values were derived.  EC50 

values were well above 10 µM for all compounds with the exception of cyclosporin A 

(Table 4.2).  Here, the EC50 values obtained for A2780/wt, MCF7/wt and MCF7/mx 

were between 1 µM and 10 µM.  Thus, concentrations of 10 µM, which were used for 

transport and chemosensitivity assays, did not severely impact the cell viability.  

Solely cyclosporin A imposed additional toxic effects at concentrations used in the 

transport assays. 
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Table 4.2   Effects of MDR inhibitors on cell viability in different cell lines 

 

 A2780/wt  A2780/Adr  MCF7/wt  MCF7/mx 

EC50 MTT ± S.D.(µM)  

 

XR9577 48.6 ± 12 77 ± 12  25 ± 0.3 444 ± 84  
     

WK-X-34 124 ± 28 221 ± 37 24 ± 3 50 ± 6  
   

WK-X-50 36 ± 19  256 ± 153 26 ± 4 76 ± 6  
   

WK-X-84 53 ± 18 50.6 ± 19 77 ± 23 43 ± 15  
     

Cyclosporin A 7 ± 0.6 27 ± 7 4 ± 0.3 2 ± 0.8  
   

Verapamil 294 ± 192  182 ± 6 28 ± 3 42 ± 3 

 
Table 4.2. Toxicity of WK-X-compounds, XR9577, cyclosporin A and verapamil was evaluated in different cell 
lines using the MTT viability assay and expressed as an EC50 value.  Experiments were performed in triplicates 
on three separate occasions and results are expressed as means ± S.D. 

 

 

4.3.2 Pgp-mediated transport assays  

To examine potential inhibition of Pgp-mediated transport, three different Pgp 

transport assays were chosen (see chapter 2.3.4), the 99mTc-Sestamibi 

accumulation, the daunorubicin accumulation and the daunorubicin efflux assay.   

 

4.3.2.1 99mTc-Sestamibi accumulation assay 

Cellular accumulation studies of 99mTc-Sestamibi were performed using 

A2780/Adr and A2780/wt cells (see chapter 3.3.6.1).  RT-PCR analysis confirmed 

high Pgp-overexpression in A2780/Adr cells and lack of Pgp-expression in A2780/wt 

cells (see chapters 4.1.1.2 and 4.1.2.1).  Considerably lower levels of MRP1 and a 
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lack of BCRP were detected in both A2780/Adr and A2780/wt cells (see chapter 

4.1.1.3).  The gamma emitter and Pgp substrate 99mTc-Sestamibi served as a direct 

tracer of Pgp transport activity.  As 99mTc-Sestamibi is actively effluxed by Pgp, 

intracellular accumulation levels of 99mTc-Sestamibi were inversely proportional to 

the Pgp transport capacity.   

In figure 4.16, the uptake kinetics of 99mTc-Sestamibi into untreated A2780/Adr 

and A2780/wt cells are shown.  Furthermore, effects of WK-X-34 in comparison to 

cyclosporin A and verapamil are depicted.  A2780/Adr cells have been pretreated 

with 10 µM of either WK-X-34, cyclosporin A or verapamil and were compared to 

vehicle treated A2780/Adr or wild-type A2780/wt.   
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Figure 4.16   Impact of WK-X-34, cyclosporin A and verapamil on 99mTc-Sestamibi uptake   

Effects of WK-X-34, verapamil and cyclosporin A on the uptake kinetics of 99mTc-Sestamibi in A2780/Adr in 
comparison to A2780/wt cells.  Cells have been preincubated with 10 µM of inhibitor or vehicle for 1 h.  Results 
represent means of three samples ± S.D. Similar results were obtained in three independent experiments. 

 
 

10 µM of WK-X-34 completely inhibited Pgp functionality and increased 

intracellular retention of 99mTc-Sestamibi to levels in A2780/wt cells for all examined 

time points (15 min – 60 min).  Smaller effects were seen for cyclosporin A and no 

inhibition could be detected for verapamil.  The effects of all other inhibitors at a 
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tested concentration of 10 µM and after 60 min of uptake are presented in figure 

4.17.  XR9577 and WK-X-34 completely reversed the Pgp-mediated 99mTc-Sestamibi 

efflux and led to accumulation levels seen in A2780/wt cells.  All other inhibitors did 

not show any significant effects on Pgp inhibition with the exception of cyclosporin A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17   Impact on 99mTc-Sestamibi accumulation – overview  

Effects of WK-X-compounds, XR9577, verapamil and cyclosporin A (10 µM, 60 min uptake) on 99mTc-Sestamibi 
accumulation in A2780/Adr.  Results are expressed in relative 99mTc-Sestamibi accumulation (in % of medium) 
and compared to levels obtained in A2780/wt and represent means of three samples± S.D. Similar results were 
obtained in three independent experiments. 

 

 

Based on the results in figure 4.17, dose-response analyses of 99mTc-

Sestamibi accumulation were performed for XR9577, WK-X-34 and cyclosporin A 

(Figure 4.18).  EC50 values were obtained in the nanomolar range for XR9577 

(300 nM) and WK-X-34 (416 nM) and in the lower micromolar range for cyclosporin 

A (5.5 µM).   
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Figure 4.18   EC50 values of Pgp inhibition using the 99mTc-Sestamibi accumulation assay 

A2780/Adr cells were preincubated with concentrations of 10 nM to 100 µM of XR9577, WK-X-34 and 10 nM to 
1 µM of cyclosporin A.  99mTc-Sestamibi accumulation levels were determined after 60 min of uptake and plotted 
against the logarithm of the inhibitor concentration in molarity.  EC50 values were determined by nonlinear 
regression analysis.  Results are expressed as means ± S.D. and normalized to top and bottom values; some 
error bars are smaller than the data symbols.   

XR9577 
EC50 : 300 nM 
Log EC50 : -6.52 ± 0.16 

WK-X-34 
EC50 : 416 nM 
Log EC50 : -6.38 ± 0.16 

Cyclosporin A 
EC50 : 5.5 µM 
Log EC50 : -5.26 ± 0.25 
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For in vivo characterizations of WK-X-34 and MDR1 antisense ODNs, an 

imaging approach was chosen based on the accumulation of 99mTc-Sestamibi in 

resistant and sensitive tumor xenografts (see chapter 3.4.1).  As BCRP and Pgp are 

often coexpressed in different tissues and tumors (Doyle, 2003), potential 

contributions of BCRP in the efflux of 99mTc-Sestamibi were investigated.  Studies in 

the MCF7/mx cells did not detect any contribution of BCRP to the cellular 

accumulation of 99mTc-Sestamibi (Figure 4.19).  If 99mTc-Sestamibi was a substrate of 

BCRP, intracellular 99mTc-Sestamibi levels would be elevated in novobiocin treated 

MCF7/mx and MCF7/wt as compared to MCF7/mx.  Novobiocin-treated MCF7/mx 

and MCF7/wt have no functional BCRP, thus no potential transport activity.  

However, MCF7/mx cells possessing functional BCRP do not decrease 99mTc-

Sestamibi levels.  Therefore, 99mTc-Sestamibi cannot be a substrate for BCRP.  

Intracellular 99mTc-Sestamibi levels were slightly increased in MCF7/mx, which can 

be explained by the lack of novobiocin in competition for uptake processes.  As 

previously published (Chen, 2000), the results confirm no involvement of BCRP in 
99mTc-Sestamibi transport across cellular membranes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19    99mTc-Sestamibi accumulation in MCF7/mx and MCF7/wt 

Time-dependent cellular accumulation of 99mTc-Sestamibi is shown in BCRP-expressing MCF7/mx and non-
BCRP-expressing MCF7/wt cells.  MCF7/mx cells have been additionally treated with 200 µM of the BCRP 
inhibitor novobiocin.  Cells have been pretreated with novobiocin or vehicle for 1 h prior to addition of 99mTc-
Sestamibi as specified above.  Results represent the means ± S.D. of three independent experiments.  Some 
error bars are smaller than the data symbols. 
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4.3.2.2 Daunorubicin efflux assay 

The daunorubicin efflux assay was performed in A2780/Adr as described in 

chapter 3.3.6.2.  As daunorubicin is also a weak substrate of BCRP and MRP1, RT-

PCR analyses were performed to examine the mRNA expression of those MDR 

transporters.  As summarized in chapter 4.1.1.3, A2780/Adr displayed no detectable 

levels of BCRP and only very low levels of MRP1.  Cells were incubated in the 

presence of daunorubicin and the amount of intracellularly retained daunorubicin 

after 90 min of efflux was measured by flow cytometry 

Results from the daunorubicin efflux assay (Figure 4.20) partly corresponded 

to results from the 99mTc-Sestamibi efflux assay.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20   Inhibition of Pgp-mediated daunorubicin efflux 

Effects of WK-X-compounds, XR9577, verapamil and cyclosporin A (10, 1 µM) on Pgp-mediated daunorubicin 
efflux were detected by flow cytometry.  Values are normalized to 100 % of controls and values above 100% 
indicate Pgp-inhibition. Results represent means ± S.D. Similar results were obtained in three independent 
experiments. 

 

 

Likewise, the compounds XR9577, WK-X-34 and cyclosporin A significantly 
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10 µM  of verapamil and WK-X-84 also demonstrated some Pgp inhibition.  Studies 

comparing the reliability of the substrates 99mTc-Sestamibi or anthracyclines (e.g. 

doxorubicin, daunorubicin) for Pgp transport assays have indicated differences 

between these two assays (see chapter 2.3.4).  Thus, a combination of both assays 

allows for a more predictive analysis of Pgp inhibition.   

 

4.3.2.3 Daunorubicin accumulation assay 

Daunorubicin accumulation after a 180 min incubation period in the presence 

and absence of inhibitors could be quantified as an indicator of Pgp-mediated 

transport.  In this assay, the intracellular daunorubicin concentration was inversely 

proportional to the activity and expression of Pgp.  The assay was performed as 

outlined in chapter 3.3.6.3.  To visualize these effects, microscopy pictures of 

daunorubicin accumulation in A2780/Adr cells pretreated with 1 and 10 µM of WK-X-

34 were acquired and are depicted in figure 4.21-A.  Furthermore, the daunorubicin 

uptake in A2780/Adr was compared to untreated A2780/wt cells (Figure 4.21-Aiiii).  

The modulating effects on daunorubicin accumulation could also be detected by flow 

cytometry (Figure 4.21-B).   
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Figure 4.21   Impact of WK-X-34 on daunorubicin accumulation  

A2780/Adr and A2780/wt cells were pretreated with 1 and 10 µM of WK-X-34, incubated with daunorubicin 
(3 µM) (for 60 min (A) and 180 min (B)) and examined by fluorescence microscopy (on a 63x objective) (A) and 
flow cytometry (B).  As compared to untreated A2780/Adr (Ai) and A2780/wt (Aiiii) cells, daunorubicin uptake 
was dose-dependently increased in A2780/Adr treated with 1 µM WK-X-34 (Aii) and 10 µM WK-X-34 (Aiii).  
Daunorubicin uptake in WK-X-34-treated A2780/Adr was detectable on FACS histograms (B).  Cells were gated 
for the intact cell population using forward and side scatter dot plots and 10000 events were acquired per sample.  
Geometric means as determined by flow cytometry in the FL-2 channel were: A2780/Adr control 44; + WK-X-34 
(1 µM) 170; + WK-X-34 (10 µM) 235; A2780/wt 234.  

 
 

For EC50 determination, the daunorubicin accumulation assay has been 

extensively used in our laboratory.  A2780/Adr cells were preincubated with different 

concentrations of inhibitors and daunorubicin accumulation after 180 min was 

quantified.  EC50 and log EC50 values were derived by nonlinear regression analysis.  
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These experiments were performed by Kerstin Breitbach and are the subject of her 

PhD thesis.  A representative curve of the characterization of WK-X-34 is depicted in 

figure 4.22.  

 

 

 

 

 

 

 

 

 

 

Figure 4.22   EC50 determination of Pgp inhibition using daunorubicin accumulation 

Representative EC50 determination of WK-X-34 in A2780/Adr cells as determined by daunorubicin accumulation.  
Results represent means of three samples ± S.D. and are normalized to top and bottom values.  Error bars are 
smaller than the data symbols.  Three independent experiments were performed.  (The data and graph were 
kindly provided by K. Breitbach) 

 

EC50 values were determined for all the other MDR inhibitors.  The following 

values were obtained:  XR9577 (EC50: 136 nM; log EC50: -6.87 ± 0.01); WK-X-50 

(EC50: 1.55 µM; log EC50: -5.81 ± 0.02); WK-X-84 (EC50: 1.06 µM; log EC50: -5.98 ± 

0.01); verapamil (EC50: 4.77 µM; log EC50: -5.32 ± 0.03) and cyclosporin A (EC50: 

2.47 µM; log EC50: -5.61 ± 0.01). 

 

4.3.2.4 Summary of Pgp transport assays 

The MDR inhibitors were characterized for Pgp-mediated transport by three 

different Pgp transport assays: the 99mTc-Sestamibi accumulation assay; the 

daunorubicin efflux assay and the daunorubicin accumulation assay.  These assays 

combine two different Pgp substrates and two different transport parameters 

(accumulation and efflux).  Results from these three different assays are not 
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consistent.  Thus, the results need to be interpreted in conjunction and discrepancies 

noted.  Table 4.3 presents an overview of the results. 

 

Table 4.3   Summary of Pgp transport assays 

 

 Pgp Transport Assays 

Inhibitor   99mTc-Sestamibi accum.  Daunorubicin efflux  Daunorubicin accum. 

 

XR9577 ++   (EC50: 300 nM) ++ ++   (EC50: 136 nM) 

WK-X-34 ++   (EC50: 416 nM) + ++   (EC50: 82 nM)  

WK-X-50 - - +     (EC50: 1.55 µM) 

WK-X-84 - + +     (EC50: 1.06 µM) 

Verapamil - ++ +     (EC50: 4.77 µM) 

Cyclosporin A +   (EC50: 5.5 µM) + +     (EC50: 2.47 µM) 

 

Table 4.3. Results from three different Pgp transport assays are summarized.  A significant and strong inhibition 
at a 1 µM concentration or with an EC50 value in the nanomolar range is indicated by ++; a weaker but yet 
significant inhibition at a 10 µM concentration or with an EC50 value in the micromolar range is indicated by +. 

 

 

XR9577 and WK-X-34 showed substantial and significant Pgp inhibition in all 

three transport assays.  The effects of cyclosporin A were weaker, yet significantly 

detectable in all three assays.  Consistently, WK-X-50 showed no effects in all three 

assays.  For all other MDR inhibitors, results of Pgp inhibition were rather 

inconsistent between the three assays.  This was particularly seen for verapamil.  

Whereas verapamil showed no effects in the 99mTc-Sestamibi assay, a significant 

Pgp inhibition with an EC50 value in the lower micromolar range was detected in the 

daunorubicin accumulation assay.  This was likely due to unspecific MDR inhibition 

and interaction with other transporters such as MRP1.  As the resistant A2780/Adr 

cells were selected through continuous exposure to doxorubicin, other cellular non-

classical mechanisms (see chapter 1.1.1.1) might be present in these cells and could 

contribute to unspecific MDR inhibition (also see results from daunorubicin 

chemosensitivity assays, chapter 4.3.5.1). 
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4.3.3 BCRP-mediated transport assays  

 Inhibition of BCRP-mediated transport of the BCRP substrate mitoxantrone 

was examined in MCF7/mx cells.  The cell model was confirmed to overexpress 

BCRP but to lack detectable expression of Pgp (see chapter 4.1.2).  Overexpression 

of BCRP led to a MDR phenotype towards mitoxantrone, detectable as a strong 

mitoxantrone efflux in MCF7/mx (Figure 4.23-A) but not in MCF7/wt cells (Figure 

4.23-B). 

 

 

 

 

 

 

 

 

 

 A.  MCF7/mx B.  MCF7/wt 

 

Figure 4.23   BCRP-mediated efflux of mitoxantrone in MCF7/mx 

Representative histograms demonstrating mitoxantrone intracellular levels after 90 min efflux in MCF7/mx (A) in 
comparison to MCF7/wt (B) cells.  Intracellular mitoxantrone levels after 180 min incubation with 3 µM of 
mitoxantrone were detected on a FACSCalibur in the FL4 channel. Geometric means as determined by flow 
cytometry were: MCF7/mx (0 min) 230; MCF7/mx (90 min) 89; MCF7/wt (0 min) 243; MCF7/wt (90 min) 215. 

 

 

 Inhibition of BCRP-mediated mitoxantrone efflux was tested for all compounds 

at a concentration of 10 and 200 µM.  WK-X-34 and XR9577 were found to be the 

most potent inhibitors in this assay.  At both tested concentrations, these compounds 

significantly retained intracellular mitoxantrone with a potency that was comparable 

to that of the well-established BCRP inhibitor novobiocin (Figure 4.24).  BCRP 

inhibition with a comparable potency was detectable for WK-X-50 and WK-X-84, yet 

a comparable level of significance could not be reached due to a higher variability 
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between the individual experiments.  No major interactions with BCRP were seen in 

the verapamil and cyclosporin A treated cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24   Inhibition of BCRP-mediated mitoxantrone efflux 

Inhibition of mitoxantrone efflux in the presence of 10 and 200 µM of novobiocin (Nvb), XR9577, WK-X-34, -50, -
84, verapamil (Vrp) and cyclosporin A (CyA).  Retained mitoxantrone accumulation after 90 min of efflux was 
detected by flow cytometry.  Data was calculated as described in methods and are expressed as a percent of 
control with a control value of 100 %.  Results represent mean values ± S.D. of three individual experiments with 
p-levels of * α = 0.05 and ** α = 0.01. 

 
 

For quantification and comparison of BCRP inhibitors, EC50 values were 

derived by quantifying the mitoxantrone efflux in MCF7/mx cells in the presence of 

various concentrations (1-1000 µM) of MDR inhibitors.  Novobiocin was included as 

a positive control (Shiozawa, 2004; Yang, 2003).  Apparent EC50 values of BCRP 

inhibition (Figure 4.25) were calculated for novobiocin and each MDR inhibitor.   
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                                                         Novobiocin 
                                                                                              EC50 :  25 µM 
                                                                                              Log EC50 :  -4.60 ± 0.03 
 
 

 
 
 
 
 
 

                                                     XR9577 
                                                                               EC50 :  21 µM 

                                                                                   Log EC50 :  -4.68 ± 0.05 

 

 

 

 

 
 

 
 

                                      WK-X-34 
 EC50 :  27 µM 

                                                                                   Log EC50 :  -4.57 ± 0.1 
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                       WK-X-50 
                EC50 :  10 µM 

                                                                                   Log EC50 :  -4.99 ± 0.08 

                          
 
 
 

 
 
 
 
 
 

                                   WK-X-84 
 EC50 :  21 µM 

                                                                                   Log EC50 :  -4.68 ± 0.04 

 
 

 
 

 

 

 

Figure 4.25   EC50
 values of BCRP inhibition 

MCF7/mx cells were preincubated with mitoxantrone and different concentrations of novobiocin, XR9577, WK-X-
34, -50 and -84.  Retained mitoxantrone accumulation was measured after 90 min efflux by flow cytometry and 
plotted against the inhibitor concentration.  EC50s were determined by nonlinear regression from data normalized 
to top and bottom values and represent mean values ± S.D. of three independent experiments.  Error bars can be 
smaller than data symbols. 

 
 

As expected from results in figure 4.24, EC50 values in the same range were 

obtained for XR9577 and WK-X-34 in comparison to novobiocin.  Unexpectedly, WK-

X-50 and WK-X-84 displayed EC50 values which were comparable to those of WK-X-

34 and novobiocin.  Results from mitoxantrone efflux assays as presented in figure 
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4.24, however, indicated a comparable inhibition for WK-X-50 and WK-X-84 as 

compared to XR9577, for instance.  These results, however, did not reach 

significance due to the higher variability between the different runs of the assay.  In 

summary, all three WK-X-compounds appear to inhibit BCRP-mediated mitoxantrone 

efflux with a potency comparable to that of novobiocin. 

 

4.3.4 MRP-mediated transport assays  

 Interactions of the WK-X-compounds, XR9577, verapamil and cyclosporin A 

with the MRP transporters were examined using the 5-CFDA efflux assay in 

selectively transfected cell lines, HeLa-MRP1 and MDCK-MRP2 and -MRP3 (see 

chapter 3.3.8). 

 

4.3.4.1 Interaction with MRP1 

 In comparison to the MRP inhibitor indomethacin, the effects of most 

compounds on MRP1 inhibition were weak and only significant at high 

concentrations of 200 µM (Figure 4.26).  Interestingly, cyclosporin A, even though 

fairly weak at 200 µM, already showed a highly significant MRP1 inhibition at 10 µM.  

Potent inhibition of the MRP transporters, particularly MRP1, has previously been 

reported for cyclosporin A (Quadir, 2005). 
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Figure 4.26   Interaction with MRP1 activity 

Effects of 10 µM and 200 µM of WK-X-compounds, XR9577, verapamil (Ver) or cyclosporin A (CyA) on MRP1-
mediated efflux of 5-CF were analyzed in HeLa-MRP1 cells.  Indomethacin (Ind) (200 µM) was used as a positive 
control.  The cellular bound 5-CF after efflux was measured.  Results are calculated as a % of control and 
represent means ± S.D. with p-levels of α= * < 0.05;** <0.01; * < 0.001 as determined using an unpaired t-test.  
Similar results were obtained in three separate experiments.  

 
 

4.3.4.2 Interaction with MRP2 

MRP2-mediated efflux in MDCK-MRP2 cells was significantly inhibited by 

WK-X-50 at 10 and 200 µM whereas other WK-X-compounds showed no effects on 

MRP2 (Figure 4.27).  These results identify WK-X-50 as an MRP2 inhibitor. Solely 

verapamil showed some significant but weak MRP2 interactions at concentrations of 

200 µM.  The MRP inhibitor indomethacin displayed only very weak inhibition of 

MRP2 when compared to MRP1 inhibition, for example. 
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Figure 4.27   Interaction with MRP2 activity 

Effects of 10 µM and 200 µM of WK-X-compounds, XR9577, verapamil (Vrp) or cyclosporin A (CyA) on MRP2-
mediated efflux of 5-CF were analyzed in MDCK-MRP2 cells. Indomethacin (Ind) (200 µM) was used as a 
positive control.  The cellular bound 5-CF was quantified after efflux.  Results are calculated as a % of control 
and represent means ±S.D. with p-levels of α= * < 0.05;** <0.01; * < 0.001 as determined using an unpaired t-
test.  Similar results were obtained in three separate experiments.  

 

 

4.3.4.3 Interaction with MRP3 

 In comparison to indomethacin, cyclosporin A showed potent MRP3 inhibition 

at concentrations of 200 µM in MDCK-MRP3 cells (Figure 4.28).  No MRP3 inhibition 

was detected for the other MDR inhibitors with the exception of some weak but 

significant effects of verapamil at concentrations of 200 µM.   
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Figure 4.28   Interaction with MRP3 activity 

Effects of 10 µM and 200 µM of WK-X-compounds, XR9577, verapamil (Vrp) or cyclosporin A (CyA) on MRP3-
mediated efflux of 5-CF were analyzed in MDCK-MRP3 cells.  Indomethacin (Ind) (200 µM) was used as a 
positive control.  The cellular bound 5-CF after efflux was measured.  Results are calculated as a % of controls 
and represent means ±S.D. with p-levels of α= * < 0.05;** <0.01; *** < 0.001 as determined using an unpaired t-
test.  Similar results were obtained in three separate experiments.  

 

 

4.3.4.4 Summary of MRP-mediated transport assays 

The MDR inhibitors XR9577, WK-X-34 and -84 showed no interactions with 

the MRP inhibitors, with the exception of some high dose MRP1 effects.  The 

specificity for Pgp and BCRP inhibition appeared to be enhanced for XR9577, WK-X-

34 and -84 in comparison to the first generation Pgp inhibitors cyclosporin A and 

verapamil, which demonstrated substantial unspecific MRP interactions.  Of note, 

WK-X-50 was identified as a weak MRP2 inhibitor. 
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4.3.5 Chemosensitivity Assays 

Corresponding to results presented in chapter 4.2.2, decreased Pgp 

functionality by treatments with MDR inhibitors resulted in both, a weakened Pgp- 

and BCRP-mediated MDR phenotype.  The cellular sensitivity towards the cytotoxic 

drugs daunorubicin and mitoxantrone, as detected in chemosensitivity assays (see 

chapter 3.3.9), was significantly altered in the presence of some of the novel MDR 

inhibitors.  

Chemosensitivity assays were performed in A2780/Adr and A2780/wt for 

daunorubicin and in MCF7/wt and MCF7/mx for mitoxantrone, respectively (Table 

4.4 and 4.5).  As outlined in chapter 3.3.9, the sensitizing factor (S.F.) describes the 

factor by which the chemosensitivity of the specific cell line towards daunorubicin/ 

mitoxantrone increases in the presence of 10 µM of inhibitor.  Since the effect of an 

inhibitor is not solely dependent on the expression of Pgp/BCRP, both Pgp/BCRP 

expressing and non-expressing cell lines were examined.  The non-specific MDR 

inhibitor verapamil (see chapter 4.3.4) was included as an unspecific control.  For 

example, an increased sensitivity towards daunorubicin was detected for verapamil 

in non-Pgp expressing A2780/wt (S.F. 6.8), likely due to partial MRP inhibition (see 

table 4.4).  The S.F.Adr/wt or S.F.mx/wt give a normalized value.  A ration of S.F.Adr/wt 

and S.F.mx/wt was calculated by dividing the S.F. obtained for the Pgp/BCRP 

expressing (Adr, mx) cell line by the S.F. of the wild-type (wt) cell line. 

 

4.3.5.1 Daunorubicin chemosensitivity in A2780/Adr 

The chemosensitivity towards daunorubicin was increased in the presence of 

10 µM of WK-X-34, WK-X-84 and XR9577, as sensitizing factors (S.F.Adr/wt) above 7 

were calculated for these treatment groups (Table 4.4).  These S.F.Adr/wt were higher 

than the S.F.Adr/wt for verapamil (S.F.Adr/wt: 4.1) and cyclosporin A (S.F.Adr/wt: 3.2).  

Unspecific effects were detectable for verapamil and cyclosporin A as treatment of 

A2780/wt cells with verapamil or cyclosporin A also showed significant induction of 

chemosensitivity.  This can be explained by an unspecific interaction of these 

compounds with other MDR mechanisms particularly MRP1, which was expressed at 

detectable levels in A2780/Adr and A2780/wt cells.  The same effects were not 
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detectable upon treatments with the MRP2 inhibitor WK-X-50.  This seems plausible 

as A2780/Adr and A2780/wt cells did not have any levels of MRP2 as presented in 

figure 4.3. 

 

 

Table 4.4   Daunorubicin chemosensitivity in A2780/Adr and A2780/wt 

      

                    A2780/wt    A2780/Adr   S.F.Adr/wt                                                
EC50 MTT / µM ± S.D. (S.F.: control/treatment)       

                                                            

Control    1.29 ± 0.1      40.4 ± 9.8           (R.F. 31)                   

 

XR9577        0.99 ± 0.1 (1.3)               3.8 ± 0.9 (10.5)*     8.1               

      

WK-X-34 1.06 ± 0.1 (1.2)      4.5 ± 0.7 (8.9)*     7.4               

      

WK-X-50 1.13 ± 0.06 (1.1) 18.5 ± 0.9 (2.2) 2                    
     

WK-X-84 1.18 ± 0.03 (1.1) 5.1 ± 12.1 (7.9)* 7.1                  
     

Verapamil 0.19 ± 0.08 (6.8)** 1.5 ± 0.2 (28)* 4.1                  
     

Cyclosporin A  0.18 ± 0.16 (7.3)* 1.7 ± 0.3 (24)* 3.2         

           

 

Table 4.4. Different concentrations of daunorubicin were added to cells preincubated with 10 µM of different 
inhibitors as indicated.  Cell viability was examined after 72 h with MTT assays and EC50 values were calculated 
by nonlinear regression (with hill slopes ranging between -10 and -3.5 for A2780/wt and -4 for A2780/Adr cells, 
respectively).  Chemosensitivity was expressed as a sensitizing factor (S.F.) and normalized for effects not 
related to Pgp overexpression in A2780/Adr cells (S.F.Adr/wt).  Experiments were performed in triplicates on three 
individual occasions.  EC50 results represent means ± S.D. and p-levels (* α< 0.05, ** α< 0.01) were determined 
between drug treatment and controls within one cell line.  

 

 

4.3.5.2 Mitoxantrone chemosensitivity in MCF7/mx 

Sensitivity towards mitoxantrone was substantially higher in MCF7/wt (EC50: 

107 ± 13 nM) than in MCF7/mx (EC50: 22 ± 4 µM) cells (Table 4.5).  In MCF7/wt 

cells, none of the inhibitors showed any detectable effects and all S.F. 

control/treatment factors were close to 1.  10 µM of WK-X-34, XR9577 and 
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novobiocin were able to restore sensitivity towards mitoxantrone to levels of 

MCF7/wt with S.F.mx/wt of 298, 385 and 423, respectively.  Sensitivity towards 

mitoxantrone in MCF7/mx was increased to a lesser extent, yet significantly in the 

presence of WK-X-50 (by 48-fold) and WK-X-84 (by 109-fold).   

 

Table 4.5   Mitoxantrone chemosensitivity in MCF7/mx and MCF7/wt  

          

                    MCF7/wt   MCF7/mx   S.F.mx/wt                                                 
EC50 MTT / nM ± S.D. (S.F.: control/treatment)       

                                                            

Control    104 ± 13                 22000 ± 4000               (R.F. 211)    

 

XR9577        85 ± 6 (1.2) 62 ± 40 (357)*             298 

 

WK-X-34 81 ± 8 (1.3)            44 ± 8 (506)*     389    

 

WK-X-50 83 ± 3 (1.3)            460 ± 300 (48)*           37                  

 

WK-X-84 87 ± 11 (1.2)          202 ± 190 (109)*      91 

 

Verapamil 83 ± 5 (1.3)            22500 ± 14000 (0,9)     0.7 

 

Cyclosporin A  98 ± 6 (1.1)  86000 ± 21000 (0.26)   0.24 

 

Novobiocin 81 ± 7 (1.3)             40 ± 18 (550)*             423 

 
 

 

Table 4.5. Different concentrations of mitoxantrone were added to cells preincubated with 10 µM of different 
inhibitors as indicated.  Cell viability was examined after 72 h with MTT assays and EC50 values were calculated 
by nonlinear regression (with hill slopes ranging around -7).  Chemosensitivity was expressed as a sensitizing 
factor (S.F.) and normalized to effects not related to BCRP overexpression (S.F.mx/wt).  Experiments were 
performed in triplicates on three individual occasions.  EC50 results represent means ± S.D. and p-levels (*α 
<0.05, ** α <0.01) were determined between drug treatment and controls within one cell line.  

 





 

 

 

5 Discussion - in vitro 
 

 

In the following chapter, in vitro results presented in chapter four will be 

discussed.  The two MDR-reversing strategies outlined in “Rational and hypothesis”, 

transcriptional downregulation by MDR1 antisense ODNs and MDR inhibition using 

small molecule multi-targeted inhibitors (see chapter 2.1), will be evaluated and 

compared to each other.   

 

5.1 Cell model A2780/Adr 

The characterization of the cell model is of importance for every in vitro and in 

vivo investigation.  In particular, the differential expression of genes and proteins 

involved in MDR mechanisms between the multidrug resistant and the sensitive 

variant exemplify the “pathological condition” of resistance.  In comparison to other 

Pgp expressing cell lines such as Caco-2 and HepG2 cells, A2780/Adr cells showed 

considerably higher Pgp levels.  When A2780/Adr cells were challenged with 

doxorubicin, their Pgp expression was even higher (chapter 4.1.2.1).  Hence, the 

detection window for Pgp expression (see figure 4.5 and 4.6) and Pgp-mediated 

effects was greatest between doxorubicin challenged A2780/Adr and wild-type 

A2780/wt cells.  A resistance factor of 7.5 for doxorubicin and 31 for daunorubicin 

was obtained for this cell pair.  This was important in order to sensitively detect Pgp 

inhibition in vitro, and particularly in vivo in the tumor xenografts.  Moreover, as such 

highly overexpressed levels are common in multidrug resistant solid tumors (Leith, 

1999); this cell model reflects conditions, which might occur in clinically untreatable 

tumors.   

The ovarian cancer cells A2780/Adr are sourced from a human solid tumor.  

To obtain a multidrug resistant phenotype, these cells have been selected with the 

chemotherapeutic agent doxorubicin.  In vitro data indicates that the multidrug 

resistant phenotype is mainly characterized by Pgp overexpression.  However, other 
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cellular mechanisms of resistance (see chapter 1.1) are likely to be involved 

(Vikhanskaya, 1997) as RT-PCR analyses have confirmed expression of MRP1 in 

A2780/Adr cells (see figure 4.3).   

Although concurrent resistance mechanisms might interfere with 

investigations of the Pgp phenotype, chemoselected, rather than transfected, cells 

are favored by most researchers when studying the MDR phenotype.  In contrast to 

genetically engineered cell lines, chemoselected cells more closely mimic a situation 

in which a tumor develops an MDR phenotype as a response to chemotherapeutic 

treatment.  In clinical reality, multidrug resistant tumors are characterized by a 

predominant mechanism of resistance in concert with a variety of other non-cellular 

and cellular MDR mechanisms (Fojo, 2003).  Hence, the clinical relevance is 

increased when experiments can be conducted in chemoselected, rather than 

transfected cell lines.  In the present thesis, the chemoselected cell lines A2780/Adr 

and MCF7/mx were used in line with most in vitro and in vivo studies characterizing 

or targeting the MDR phenotype (see table 5.2).    

 

 

5.2 MDR1 antisense ODNs 

MDR1 antisense ODNs have been previously used by different researchers to 

inhibit the expression of Pgp in cell culture and animal models.  Results from the in 

vitro characterization of antisense ODNs are discussed in the following.  To begin 

with, results from delivery and toxicity studies will be discussed. 

 

5.2.1 Intracellular uptake and toxicity   

Cellular uptake and distribution, as examined using FITC-labeled antisense 

ODNs, were greater in A2780/Adr, when compared to the non-Pgp expressing 

A2780/wt cells (see chapter 4.2.3).  This was likely due to an increased retention of 

the MDR1 antisense ODNs in cells, which offer a higher availability of target RNA.  

Cellular uptake of DNA is generally thought to occur through receptor-mediated 

endocytosis.  A temperature–dependent, saturable transport process across plasma 
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membranes was described for oligonucleotides (Loke, 1989).  Once inside the cells, 

antisense molecules leave their transfection complex and are distributed within the 

cytoplasm.  In the cytoplasm they hybridize to their target mRNA (Jensen, 2001).  As 

A2780/wt cells do not express detectable levels of MDR1 (see chapter 4.1.1.2), 

these cells do not possess the target mRNA for MDR1 antisense molecules.  In 

A2780/Adr cells, however, high levels of MDR1 mRNA are available for binding.  

Therefore, antisense molecules are more likely to be retained in these cells.   

The FITC-labeled ODNs were also able to penetrate into the nucleus.  This 

observation is in agreement with previously published reports (Chin, 1990; Fisher, 

1993; Lorenz, 1998).   

Cellular toxicity has been associated with the exposure to phosphorothioated 

ODNs and remains a major challenge in antisense application (Kurreck, 2003).  

Results in chapter 4.2.4 demonstrate a substantial suppression of the proliferation 

capacity of A2780/Adr cells upon antisense treatments.  The effects were dose-

dependent and decreased the proliferation rate of A2780/Adr cells by over to 70 % 

(see figure 4.15).  These results point to a major impact of antisense treatments on 

cell viability and are in accordance with reports of ODN-related toxicities upon 

treatments with phosphorothioated ODNs (Galderisi, 1999).   

The transfection agent SuperFect contributes to the overall toxicity.  In MTT-

based viability assays, SuperFect was found to also reduce mitochondrial activity 

(Axel, 2000).  Thus, the observed toxic effects were likely due to a combination of 

the transfection reagent and the antisense molecules.  As ‘naked’ antisense 

molecules are not easily being incorporated into cells (Axel, 2000) the use of a 

transfection reagent like SuperFect is essential for activity.  Hence, SuperFect-

related toxicities cannot be avoided.  Antisense-associated toxicities represent a 

disadvantage and uncertainty linked to their experimental and potential therapeutic 

use.   

  

5.2.2 Pgp expression and functionality   

Antisense ODNs directed against MDR1 (Alahari, 1998) were effective in 

downregulating Pgp expression and functionality in A2780/Adr cells (see figure 
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4.11).  Changes in Pgp surface expression resulted in an impaired MDR phenotype 

which was detectable by investigations of daunorubicin chemosensitivity and 

intracellular accumulation.  The degree of Pgp downregulation, however, was limited 

to about 50 % of controls.  Lower Pgp levels could not be achieved even with the 

highest tolerated concentration.   

Daunorubicin accumulation and chemosensitivity are depending on the 

degree of Pgp expression (Coley, 2002; Marks, 1992).  Results confirmed that 

decreasing levels of Pgp expression lead to a decrease of Pgp activity, which was 

detectable as a reduced daunorubicin efflux.  Thus, higher intracellular levels of 

daunorubicin were seen in antisense treated cells (see chapter 4.2.2).  This 

relationship was dose-dependent and translated into an increased chemosensitivity 

towards daunorubicin, as determined using the MTT assay (see table 4.1).  Likewise, 

a saturation of the anti-MDR effect against daunorubicin was detectable by MTT 

assays.  The antisense concentration of 200 nM versus 100 nM caused a smaller 

increase in daunorubicin chemosensitivity than 100 nM versus 50 nM (compare EC50 

values for 50nM, 100 nM and 200 nM in table 4.1) pointing to a saturation of the 

downregulating effect.  The saturable effect might result from limitations in ODN 

uptake.  This seems plausible as reports have indicated an energy-dependant 

saturable uptake process for ODNs (Loke, 1989) (see chapter 5.2.1).   

To evaluate the usefulness of antisense treatments, Pgp inhibition caused by 

a functional inhibitor like WK-X-34 was compared to that caused by MDR1 antisense 

ODNs.  These two treatment strategies are based on totally different mechanisms of 

action.  In antisense treated cells, two events leading to the inhibition of Pgp take 

place: 1. Antisense molecules target and downregulate the expression of MDR1 

mRNA.  2. Reductions in MDR1 mRNA levels are then being translated into reduced 

Pgp surface expression, which leads to a reduced Pgp activity.  Therefore, Pgp is 

indirectly targeted by antisense ODNs.  In contrast, WK-X-34 directly interacts with 

surface Pgp and causes a functional inhibition of the transport activity without 

altering the expression of Pgp.   

When the Pgp substrate daunorubicin is added to the system it has to be 

actively effluxed in order to enable the cell to survive.  For effective efflux, however, 

the cell needs functional Pgp to be expressed in the plasma membrane.  Through 
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treatment with both, antisense ODNs as well as WK-X-34, the activity of surface Pgp 

is decreased.  In the case of antisense treatment, the lack of Pgp activity is caused 

by a decrease in the number of functional Pgp molecules on the cell surface. 

How effective is the in vitro treatment using antisense ODN in comparison to a 

direct Pgp inhibition using WK-X-34?  To better compare these two treatments, 

results from daunorubicin chemosensitivity assays in WK-X-34 and antisense treated 

cells are summarized in table 5.1. 

 

Table 5.1   EC50 values (daunorubicin chemosensitivity) after WK-X-34 and antisense treatments 

 

  EC50  (µM)   S.F.  EC50  (µM)    S.F. 

Controls A2780/Adr 40,4 ± 9.8      

 A2780/wt 1.29 ± 0.1     31   

     

Treatment  

(in A2780/Adr) 

WK-X-34   

(10 µM) 

4.5 ± 0.7       9 AS (50 nM) 19.0 ± 0.8      2.1 

   AS (100 nM) 9.7 ± 0.9        4.2 

   AS (200 nM) 7.7 ± 0.9        5.2 

Abbreviations used in the table: S.F. Sensitizing Factor (A2780/Adr Control / Treatment); AS Antisense (MDR1 

AS ODNs). 

 

From the results in table 5.1, it can be concluded that both treatment 

strategies effectively inhibit the Pgp-mediated MDR phenotype towards 

daunorubicin.  Although the highest sensitizing factor (S.F. 9) was reached for the 

treaement with WK-X-34 (10 µM), EC50 values were considerably reduced after 

antisense treatments up to a sensitizing factor of 5.2 for a concentration of 200 nM of 

antisense ODNs.  Hence, it does not appear to make a difference whether the 

activity of Pgp is decreased by a functional inhibition or by a decrease of functional 

Pgp molecules in the plasma membrane.  The effectiveness of both treatments 

strategies, however, was unequal.  The S.F. of 5.2 could only be obtained in 

A2780/Adr cells after a three-day treatment with the highest tolerated dose of 

antisense ODNs (200 nM).  In contrats, the S.F. of 9 was easily obtained after a 
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single dose of WK-X-34 at a concentration (10 µM) much lower than the maximum 

tolerated dose of 200 µM (see table 4.2).  Therefore, it can be concluded that WK-X-

34 more effectively reverses the Pgp-mediated MDR phenotype in vitro in 

comparison to antisense treatments. 

Moreover, the data presented in table 5.1 reveals a discrepancy between the 

inhibition of Pgp transport function and MDR phenotype.  As the EC50 value for WK-

X-34 was determined to be around of 80 nM in a daunorubicin transport assay 

(figure 4.22), a concentration 125 times as high (10 µM) is expected to completely 

inhibit the Pgp-mediated MDR phenotype towards daunorubicin to levels seen in 

A2780/wt cells.  However, the S.F. of 31 as obtained for A2780/wt cells could not be 

reached even with the treatment of 10 µM of WK-X-34 (S.F. 9).   

Thus, a discrepancy between the inhibition of Pgp-mediated transport and 

MDR phenotype towards daunorubicin has to be noted.  The toxicity of daunorubicin 

in the multidrug resistant tumor cell is most likely determined by a combination of 

factors, among which the transport capacity of Pgp plays an important role.  

However, other MDR mechanisms towards daunorubicin as well as the cytotoxicity 

of the drug itself contribute to the anti-MDR effect.  For A2780/Adr cells, several non-

transporter-based MDR mechanisms have been described in the literature.  In 

doxorubicin resistant A2780-DX3 cells, for example, an altered localization of p53 in 

the cytoplasm, rather than the cell nucleus was detected in comparison to wild-type 

A2780, suggesting an involvement of p53 in resistance mechanisms towards 

doxorubicin (Vikhanskaya, 1997).  Moreover, resistance against the Toposiomerase 

II enzyme, which is involved in DNA replication processes, has been associated with 

the overexpression of Pgp (Kunikane, 1990).  It is very likely that such additional 

MDR mechanisms are present in A2780/Adr but not in A2780/wt cells and might 

contribute to the protection of WK-X-34 treated A2780/Adr cells from daunorubicin.  

To confirm the contribution of additional MDR mechanisms towards daunorubicin in 

A2780/Adr cells, however, further experiments have to be undertaken.   

Nevertheless, the results indicate that the reversal of the Pgp-mediated MDR 

phenotype towards a specific cytotoxic drug like daunorubicin can only be predicted 

by a transport assay in combination with a chemosensitivity assay.   
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5.3 MDR inhibitors 

Results from in vitro characterization of the novel multi-targeted MDR 

inhibitors will be discussed in the following chapter.  Particularly, interactions with 

Pgp as well as with other ABC transporters will be elaborated with regard to the 

hypothesis formulated in chapter 2.1 (Novel multi-targeted MDR inhibitors (I.)).  The 

most promising candidate for further development will be selected on the basis of in 

vitro results and compared to current third generation MDR inhibitors.   

 

5.3.1 Characterization of novel MDR inhibitors 

Novel MDR inhibitors from our laboratory were characterized for their efficacy 

in reversing the MDR phenotype in several cell lines.  Three novel MDR inhibitors, 

WK-X-34, WK-X-50 and WK-X-84 were developed and selected.  One Xenova 

compound XR9577, formerly described (Roe, 1999) but never characterized in 

vitro/in vivo, was included.  As outlined in chapter 2.3.1, the well-established first 

generation Pgp inhibitor cyclosporin A (Smeets, 2001; List, 2001) was used as a 

reference compound.   

 

P-glycoprotein inhibition 

Consistently, WK-X-34 and XR9577 were the most effective Pgp inhibitors in 

all three Pgp transport assays: 99mTc-Sestamibi accumulation, daunorubicin 

accumulation and daunorubicin efflux (see chapter 4.3.2.4).  These compounds 

significantly increased intracellular accumulation of daunorubicin with EC50 values in 

the nanomolar range (136 and 82 nM, respectively).  EC50 values of other recently 

characterized third generation Pgp inhibitors were found to be in a similar range.  For 

example, EC50 values of 12-38 nM and 32 nM were measured for Pgp-mediated 

MDR reversal by XR9576 and OC144-093, respectively (Mistry, 2001; Newman, 

2000).  Recent analyses of structure-activity relationships of Tariquidar (XR9576) 

analogs have revealed that the presence of a bulky aromatic ring system with a third 

position heteroatom in direction to the anthranilamide structure such as found in 
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XR9576 and WK-X-34 (compare XR9576 in figure 1.7 and WK-X-34 in figure 3.1) 

are likely to be associated with a strong Pgp inhibitory potency (Globisch, 2006). 

In comparison to WK-X-34 and XR9577, EC50 values in the lower micromolar 

range (4.8 and 2.5 µM) were obtained for verapamil and cyclosporin A (chapter 

4.3.2.3).  Daunorubicin efflux and 99mTc-Sestamibi accumulation were most strongly 

affected by WK-X-34 and XR9577.  In these two assays, inhibition by WK-X-34 and 

XR9577 was also superior to that of cyclosporin A and all other inhibitors.  EC50 

values for 99mTc-Sestamibi accumulation, for instance, were more than 10-fold lower 

for WK-X-34 and XR9577 as compared to cyclosporin A.   

As 99mTc-Sestamibi is not a substrate of BCRP and only a very weak 

substrate of MRP1 (Chen, 2000), results from the 99mTc-Sestamibi transport assay 

are very specific for Pgp.  Yet the threshold of this assay appears to be higher than 

for daunorubicin-based assays.  These differences might result from parameters 

related to the Pgp substrates used, 99mTc-Sestamibi and daunorubicin, and variations 

in the experimental setups of both assays.  As outlined in chapter 2.3.4, the 

substrates 99mTc-Sestamibi and daunorubicin display differences in their affinity to 

and selectivity for Pgp (Muzzammil, 2001).  Therefore, only consistent results from a 

combination of these two transport assays provide reliable information about Pgp 

inhibition.  In contrast to the other MDR inhibitors, WK-X-34 and XR9577 

demonstrated a consistent and potent Pgp inhibition in assays utilizing either 99mTc-

Sestamibi or daunorubicin as the transported substrate.    

Results from transport assays were in accordance with results generated with 

chemosensitivity assays (See chapter 4.3.5.1).  As chemosensitivity assays were 

conducted in Pgp-expressing A2780/Adr and non-Pgp expressing A2780/wt cells, 

interactions with other non-Pgp-related MDR mechanisms towards daunorubicin 

could be detected.  In comparison to verapamil and cyclosporin A, WK-X-34 and 

XR9577 demonstrated a potent and selective reversal of resistance towards 

daunorubicin in A2780/Adr but not in the wild-type A2780/wt cells (Table 4.4).   
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Recent characterizations in the literature 

Other recently characterized third generation Pgp inhibitors including 

GF120918 and XR9576 are summarized in table 5.2.  WK-X-34 and XR9577 can be 

compared to these compounds as they comparably inhibited Pgp efflux activity and 

reversed Pgp-mediated multidrug resistance with EC50 values in the nanomolar 

range.  In table 5.2 the targets as well as the experimental setup for the 

characterization are presented for each novel inhibitor.  
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Table 5.2   Novel third generation Pgp inhibitors in the literature –in vitro characterization 

    

Reference MDR 
inhibitor Target Cell Model In vitro 

/in vivo 
in vitro 
Experiments 

Hyafil, 1993 

Laboratoire 
GLAXO 

GF120918 

Pgp,  

later 
BCRP1 

3 human 
MDR cell 
lines 

In vitro  
/in vivo 

Efflux R* 

Ph*-labeling 

CS (DOX, VCR) 

Dantzig, 1996 

Lilly Research 
LY335979 Pgp2 

CEM/  
VLB100 cells 

In vitro  
/in vivo 

Ph*-labeling 

CS (VNB, DOX, ETP, 
TAX) 

Dale, 1998 

Xenova Ltd 
XR9051 Pgp 

Several 
human + 
murine MDR 
cell lines 

In vitro      

CS (DOX, VCR, ETP) 

Ph*-labeling 

Efflux R* 

Binding VNB* 

Newman, 2000 

Ontogen 
Corporation 

OC144-
093 

Pgp 
Several 
human MDR 
cell lines 

In vitro     
/in vivo 

ATPase assay 

Ph*-labeling 

CS (VNB) 

Uptake R*  

Efflux DNR 

Mistry, 2001 

Xenova Ltd 
XR9576 

Pgp 

later 
BCRP3 

Several 
human + 
murine MDR 
cell lines 

In vitro     
/in vivo 

CS (DOX, PTX, VCR, 
ETP) 

Ph*-labeling 

Efflux R*/ F* 

Jekerle, 2006a 

University of 
Bonn/ Toronto 

WK-X-34 
Pgp 

+ BCRP  

human Ppg, 
BCRP & 
MRP cell 
lines 

In vitro     
/in vivo 

Uptake R*/ DNR 

Efflux DNR, MITX, 5-
CFDA 

CS (DNR, MITX) 

 

Abbreviations used in this table: 

R*: radiolabeled Pgp substrate; Ph*: photoaffinity labeling using [3H]azidopine; CS: Chemosensitivity assay; 

DOX: doxorubicin; VCR: vincristine; VNB: vinblastine; ETP: etoposide; PTX: paclitaxel; TAX: taxol; MITX: 
mitoxantrone 
1  Malipaard, 2001; 2  Shepard, 2003; 3  Robey, 2004 

For in vivo characterization see table 7.1. 
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As all of these compounds have been developed with aims to specifically 

inhibit Pgp, the initial target was Pgp for all compounds.  Only later, some 

compounds were discovered to also target BCRP, while others like LY335979 were 

confirmed to be selective for Pgp (Shepard, 2003).  GF120918 (Malipaard, 2001) 

and XR9576 (Robey, 2004) are such examples as they have been shown to interact 

with BCRP.  Similarly to GF120918 and XR9576, BCRP inhibition was verified for 

WK-X-34 and XR9577. 

Like WK-X-34, most of these third generation Pgp inhibitors have been 

characterized using functional in vitro and in vivo assays.  In vitro experiments were 

typically carried out in a number of different multidrug resistant human cell lines.  

Newman and coworkers, for example, applied a combination of multidrug resistant 

human cancer cell lines for the characterization of OC144-093.  The researchers 

used human lymphoma (CCRF-CEM) and ovarian carcinoma cells (SKOV3), which 

they incubated in the presence of vinblastine to obtain the MDR variant.  Additionally, 

they used human breast cancer cells (MCF7) which were challenged with 

doxorubicin in order to obtain the MDR variant MCF/Adr (Newman, 2000).  XR9576 

was studied (Mistry, 2001) using the same A280/Adr cell model as for WK-X-34.   

Similarly to WK-X-34, other in vitro characterizations contained a combination 

of assays.  Pgp transport assays were used with different radiolabeled or non-

labeled substrates and combined with chemosensitivity assays using different 

chemotherapeutic agents.  For WK-X-34 one radiolabeled substrate (99mTc-

Sestamibi) and one non-labeled substrate (daunorubicin) were used.  Parts of this 

present thesis, containing the characterization of WK-X-34 and other inhibitors, have 

been summarized and published (Jekerle, 2006a; Jekerle, 2006b; also see table 5.2 

and 5.3).  In these reports, WK-X-34 has been examined applying a combination of 

MDR transport and chemosensitivity assays, comparable to other third generation 

Pgp inhibitors.  Some important techniques, however, including photoaffinity labeling 

with [3H]azidopine, unfortunately, could not be conducted for WK-X-34 due to the 

lack of resources and facilities for this technique.   

In the photoaffinity labelling experiments, the compound and [3H]azidopine 

compete for binding to the Pgp molecule.  Hence, the technique allows the 

examination of direct binding between a compound and Pgp.  However, as up to 
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seven different binding sites (Safa, 2004) were identified on the Pgp molecule, it 

remains to be evaluated whether the investigated compound and [3H]azidopine 

actually compete for the same binding site.  The technique was applied by most 

groupes for the characterization of novel Pgp inhibitors.  It must be kept in mind, 

however, that most groups applying photoaffinity labelling are based in large 

pharmaceutical companies such as Lilly Research, Glaxo Laboratories or Xenova 

Ltd which develop Pgp inhibitors solely with a commercial aim.  Obviously, their 

financial resources, techniques and manpower available for screening experiments 

are much greater than those of laboratories within an academic setting.  

 

5.3.2 Interactions with other ABC transporters 

Thus far, inhibition of a single MDR mechanism like Pgp alone could not 

successfully reverse MDR in clinical applications.  As several other ABC transporters 

such as BCRP and MRP1-3 have been found to be implicated in the development of 

multidrug resistant tumors (Sarkadi, 2004; Allen, 2002; Borst, 2002), the interaction 

profile with these transporters was further characterized.   

 

Breast cancer resistance protein 

The breast cancer resistance protein, BCRP, was potently inhibited by all WK-

X-compounds and XR9577 with EC50 values in the low micromolar range. Indeed, 

inhibition of BCRP-mediated efflux of mitoxantrone was comparable to that of the 

well-established BCRP inhibitor novobiocin (Yang, 2003).  This is of particular 

interest as histological studies have identified an extensive overlap between BCRP 

and Pgp in many tumors.  BCRP has been found to be overexpressed in over 40 % 

of different tumor tissues including colon or melanoma (see chapter 1.2.2).  Hence, 

BCRP is believed to play a more important role in drug resistance than originally 

thought (Allen, 2002).  Only recently, the involvement of BCRP in the development 

and protection of drug resistant cells was confirmed with the discovery that high 

levels of BCRP are expressed in leukemic stem cell subpopulations.  These stem 

cells are highly resistant towards chemotherapeutic treatments (Raaijmakers, 2005; 

Doyle, 2003).  Incomplete eradication of cancer stem cells is thought to be a main 
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cause for tumor relapse.  Therefore, treatment strategies designed to target the 

tumor together with its stem cell subpopulation would considerably improve the 

clinical outcome.  Additional BCRP modulating effects can thus be of great 

advantage, when choosing an adequate Pgp inhibitor for the treatment of MDR 

resistant tumors.   

Findings from chemosensitivity assays underline the ability of XR9577 and 

WK-X-34 to target BCRP-protected cells and to reverse their resistance towards 

BCRP substrates.  Chemosensitivity towards the mitoxantrone was strongly 

increased for XR9577 and WK-X-34 by 200- and 400-fold, respectively (see table 

4.5).  In comparison, cyclosporin A showed little effects.   

Interestingly, WK-X-34 and XR9577 show a strong similarity to the structures 

of GF120918 and XR9576, both potent BCRP and Pgp inhibitors.  Like XR9576 and 

GF1209188 (see figure 1.7), WK-X-34 and XR9577 (see figure 3.1) consist of a 

tetrahydroisoquinolin-ethyl-phenyl amine partial structure which is connected to a 

highly hydrophobic rest via an amide bond.  Therefore, it is likely that these common 

structures within the molecules might contain the BCRP binding domain.  This is of 

particular interest as no BCRP pharmacophore model has been developed to date.    

 

Multidrug resistance associated proteins 

MDR-associated proteins MRP1, MRP2 and MRP3 have been shown to be 

implicated in the development of MDR in many different tumors (Kruh, 2003; Kool, 

1999).  Moreover, the MRP transporters are widely expressed in different organs and 

tissues, where they are involved in many physiological functions such as the 

excretion of xenobiotics and endogenous substrates, protection of tissues and cell 

signalling (see chapter 1.2.3).  Accidental inhibition of the MRP transporters by MDR 

inhibitors can cause a substantial interference of important protection mechanisms 

which contributes to clinical toxicities, particularly in the presence of 

chemotherapeutic agents (see chapter 1.2.3).  Thus, it is important to analyze the 

interaction profile of novel MDR inhibitors with the three transporters MRP1-3.   

Interactions with MRP1, MRP2 or MRP3 were not detected for WK-X-34.  

XR9577 only showed some high dose MRP1 interference.  In contrast, the unspecific 
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MDR inhibitor verapamil displayed various unspecific inhibitions of MRP1-, MRP2- 

and MRP3-mediated transport.  Consistent with previously published reports (Qadir, 

2001), cyclosporin A was identified as an MRP1 inhibitor with some additional effects 

on MRP3.   

Cyclosporin A, however, appears to be an unselective broad-spectrum 

inhibitor with effects in resistant and sensitive cells.  Cyclosporin A displayed 

moderate effects on Pgp and the MRPs, particularly MRP1 (Qadir, 2005).  In 

daunorubicin chemosensitivity assays, for example, it was detected that cyclosporin 

A increased sensitivity towards daunorubicin by 7-fold in sensitive non-Pgp 

expressing A2780/wt cells.  This observation can only be explained by interaction 

with MDR mechanism, other than Pgp.  The interfering mechanisms appear to be 

sensitive for daunorubicin, but not for mitoxantrone (Table 4.5).  Daunorubicin is a 

fairly unspecific substrate of Pgp; it is also transported by MRP1 and BCRP 

(Chauvier, 2002; Jia, 2005).  As MRP1, but not Pgp, is expressed in A2780/wt cells, 

and cyclosporin A is an inhibitor of MRP1 (see chapter 4.3.4.1), it is likely that MRP1 

contributes to the increase of sensitivity towards daunorubicin in the presence of 

cyclosporin A in wild-type A2780/wt cells.  The observations above indicate that 

unselective MDR inhibition by the first generation MDR inhibitor cyclosporin A, for 

example, may cause highly unpredictable interactions such as with sensitive tumor 

celllines that do not express the target. 

 

Summary of BCRP and MRP inhibition 

The two novel MDR inhibitors, WK-X-34 and XR9577, demonstrated potent 

and specific inhibition of BCRP- and Pgp-mediated transport and functionality with 

no effects on wild-type cells like A2780/wt and MCF7/wt.  For potential clinical 

applications, a specificity of the MDR inhibitor for multidrug resistant cells is 

anticipated in order to prevent interactions and toxicities resulting from unspecific 

effects in different tissues and organs.  The findings suggest that target specificity is 

considerably improved for WK-X-34 and XR9577 as compared to the first generation 

inhibitors verapamil and cyclosporin A.  
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5.3.3 Multi-targeted MDR inhibitors  

Recent discoveries have confirmed that many multidrug resistant tumors and 

important cancer stem cell populations express multiple MDR transporters.  These 

findings have highlighted the importance of MDR inhibitors with broad-spectrum 

properties (Ross, 2000; Brooks, 2003).  For the modulation of multiple MDR 

mechanisms, a combination of specific MDR inhibitors or one multi-targeted 

compound can be used.   The use of one effective broad-spectrum inhibitor versus 

single-spectrum inhibitors in combination may offer some advantages.  Cumulative 

toxicities, for instance resulting from a potential competition for excretion pathways, 

are easier to prevent when only one compound is administered in combination with 

the chemotherapy.  Moreover, potential interactions with non-cancer related targets 

are decreased.  Finally, the pharmaceutical compliance of the therapy is ameliorated 

when fewer drugs are administered at the same time.   

Among numerous disappointing attempts to use novel MDR inhibitors in 

clinical investigations, the first generation Pgp inhibitor, cyclosporin A, showed some 

encouraging results in AML-patients (Smeets, 2001; List, 2001).  The recent 

discovery that cyclosporin A actually is a broad-spectrum inhibitor with effects on 

Pgp, BCRP, MRP1 and the lung resistance protein (LRP) (Qadir, 2005) underlines 

the importance of a “broad-spectrum therapeutic approach”.  In this thesis, these 

findings could be confirmed for MRP1 and Pgp but only vaguely for BCRP (see 

chapter 4.3.3 and 4.3.4).  Interactions with LRP were not investigated.  

Overexpression of MRP1 and LRP could be associated with MDR in AML and other 

malignancies (Kruh, 2003; List, 1996).  Their prognostic relevance, however, 

remains unclear, as studies have been published showing that there is no correlation 

between high MRP1 (Filipits, 1997) and LRP (Damiani, 1998) expression and clinical 

response in AML.  As previously discussed, BCRP has been discovered to be a 

crucial component in the MDR of many tumors and seems to be implicated in the 

protection of tumor stem cell subpopulations.   

Therefore, treatment strategies directed against Pgp and BCRP in 

combination might target the tumor together with its self-renewing cancer stem cell 

subpopulation.  It therefore appears likely that successful clinical trials in ALM 
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patients for cyclosporin A were mainly due to its Pgp inhibition in combination with a 

potentially much lower BCRP inhibition (Ross, 2004).  

In comparison to cyclosporin A, our novel WK-X- compounds, particularly WK-

X-34 and XR9577 demonstrate stronger BCRP and Pgp modulating properties.  

They effectively inhibited BCRP-mediated efflux and chemosensitivity towards 

mitoxantrone in a way that was comparable to novobiocin.   

Furthermore, cyclosporin A, despite convincing performance in clinical trials, 

is associated with many interactions and toxicities, particularly neurotoxicities 

(Calney, 1979; Gijtenbeek, 1999).  As clinical toxicities are a major limitation to the 

successful therapeutic application of MDR inhibitors, this might present an 

advantage of the novel WK-X-compounds and XR9577, which demonstrated 

significantly lower in vitro toxicities compared to cyclosporin A.  Of note, toxicity 

studies in mice revealt that WK-X-34 was well tolerated both in wild-type and 

immunocomprimised mice. 

 

Novel multi-targeted MDR inhibitors 

With the latest discoveries about the complexity of MDR mechanisms in mind, 

our group and other researchers have begun to develop MDR inhibitors with targets 

other than Pgp.  In 2002, Allen and coworkers published a report introducing a novel 

BCRP inhibitor, Ko143, a non-toxic, synthetic analog of fumitremorgin C.  This 

compound was thoroughly characterized in vitro and in vivo.  Ko143 appears to be 

the most potent BCRP inhibitor to date and was shown to effectively reverse BCRP-

mediated MDR with low activity against Pgp and MRP1.  In vivo, Ko143 markedly 

increased the oral bioavailability of topotecan in mice (Allen, 2002).   

The characterizations of recently developed compounds are summarized in 

table 5.3.  Minderman and coworkers have concentrated on multi-targeted MDR 

inhibitors.  Two in vitro characterizations of the compounds, VX-710 and BAY59-

8862, both targeting Pgp, BCRP and MRP1 were published in 2004 (Minderman, 

2004a; Minderman, 2004b).  VX-710 has already proven clinical safety and efficacy 

in Phase II clinical studies.  VX-710 was investigated in combination with paclitaxel in 

women with advanced multidrug resistant breast cancer (Toppmeyer, 2002) and in 
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combination with mitoxantrone and prednisone in men with hormone-refractory 

prostate cancer (Rago, 2003).   

 

Table 5.3   Novel MDR inhibitors targeting Pgp, BCRP and/or MRP1 in the literature 

    

Reference MDR 
inhibitor Target Cell Model 

In vitro/ 

In vivo 
In vitro Experiments     

Allen, 2002 

Netherlands 
Cancer Institute 

Ko143  
BCRP 

 

Several human + 
murine BCRP 
expressing cell 
lines 

In vitro/ in 
vivo   

Uptake MITX 

CS (MITX, TPC) 

Minderman, 
2004a 

Roswell Park 
Cancer 
Institute, NY 

VX-710  
(Biricodar) 

Pgp, 
BCRP, 
MRP1 

 

Pgp, BCRP and 
MRP over-
expressing human 
cell lines 

In vitro   

Uptake MITX, DNR 

CS (DOX, MITX, DNR, 
TPC) 

Minderman, 
2004b 

Roswell Park 
Cancer 
Institute, NY 

BAY59-8862 
(Ortataxel) 

Pgp, 
BCRP, 
MRP1 

 

Pgp, BCRP and 
MRP over-
expressing human 
cell lines 

In vitro   

Uptake MITX,DOX, DNR 

CS (DOX, MITX, DNR, 
TPC) 

Jekerle, 2006b 

University of 
Bonn/Toronto 

WK-X-34 

WK-X-50 

WK-X-84 

XR9577 

Pgp, 
BCRP, 
(MRPs) 

 

Pgp, BCRP and 
over-expressing 
human cell lines 

Selectively 
transfected cell 
lines with MRP1,2 
and 3  

In vitro   

Uptake R*, DNR 

Efflux MITX, DNR, 5-
CFDA 

CS (DNR, MITX) 

Abbreviations used in this table: 

R*: Radio-labeled substrate, CS: Chemosensitivity assay; 

DOX: doxorubicin; DNR: daunorubicin; MITX: mitoxantrone; PTX: paclitaxel; TPC: topotecan  

For in vivo characterization see table 7.1 

 

 

For over 15 years, research in the MDR field has focused on the development 

of selective Pgp inhibitors to target resistant tumor cells.  The recent concentration 

on multi-targeted MDR inhibitors, however, points at the potential that lies in a 
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“broad-spectrum approach”.  In line with these latest developments, the additional 

BCRP inhibitory properties of WK-X-34 and XR9577, make these two compounds 

particularly interesting.  Current knowledge in the field indicates that anti-MDR 

treatments benefit from BCRP inhibition due to the involvement of BCRP in many 

tumors and cancer stem cell subpopulations.  Therefore, WK-X-34 and XR9577 are 

two promising compounds that warrant further development.  XR9577 and WK-X-34 

appear to be of equal potency.  XR9577 has been formerly described by Roe and 

coworkers (Roe, 1999).  In contrast, WK-X-34 was developed and described solely 

by our research group.  Therefore, WK-X-34 was selected for further in vivo 

investigations. 

 

 



 

 

 

6 Results - in vivo 
 

 

Two separate sets of 99mTc-Sestamibi imaging experiments were performed in 

order to investigate the in vivo effects of WK-X-34 and MDR1 antisense ODN 

treatments in Pgp overexpressing and sensitive tumors.  The experimental designs 

of the “WK-X-34 imaging study” and the “WK-X-34 + antisense imaging study” are 

outlined in chapter 3.4.1. 

Imaging experiments were carried out about four weeks following tumor 

inoculation, when tumor xenografts reached a weight of approximately 0.5 g.  In 

picture 1 (Appendix) the development of the human ovarian cancer xenografts is 

presented over the span of four weeks.   

To begin with, the toxicity of the utilized WK-X-34 Cremophor EL formulation 

was investigated.   

 

6.1 Toxicity of the WK-X-34 formulation  

Based on in vitro results, the novel MDR inhibitor WK-X-34 was chosen for in 

vivo characterization as outlined in chapter 5.3.3.  The substituted 2-

benzamidobenzamide WK-X-34 (for structure see figure 3.1) exhibits very low water 

solubility; therefore in vivo formulations were developed using 10 % Cremophor EL 

ethanol as solvent.   

As Cremophor EL has been associated with some toxic in vivo effects (e.g. 

peripheral neuropathy) (Gelderblom, 2001), potential toxicity of the WK-X-34-

Cremophor EL formulation had been studied before 99mTc-Sestamibi imaging 

experiments were initiated.   

In vivo toxicity experiments were conducted in six-week old female CD1 mice.  

The animals were injected i.p. daily with a 100 µl dose of 20 or 50 mg/kg of WK-X-34 

Cremophor EL formulation for 14 days.  Controls received the vehicle only.  Mice 
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were examined every second day for 14 days for any signs of ill effects including 

weight loss, change in appetite or behavioral changes.   

Two days following the first dose of WK-X-34, mice appeared healthy, agile 

and no weight loss was detectable in all animals (see figure 6.1).  These 

experiments were carried on for 14 days.  Likewise, no differences in body weights 

were detected between all groups. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1   Toxicity of WK-X-34/Cremophor EL formulation in CD1 mice 

Female CD1 mice were injected with either 20 or 50 mg/kg of WK-X-34 in Cremophor EL or vehicle control and 
potential weight loss was determined two days later.   

 

 

Potential hepatotoxicity of WK-X-34 in Cremophor EL was studied using the 

ALT hepatotoxicity test (see chapter 3.4.4).  A substantial loss of absorption was not 

detected and the slopes of all treated and control animals did not differ significantly 

from each other.  These findings indicate that WK-X-34 is unlikely to have any 

hepatotoxic effects in mice.   

WK-X-34 in the formulation with Cremophor EL ethanol (1:1) appeared to be 

fairly untoxic in mice.  As a precaution, the total amount of Cremophor EL was kept 

to a minimum of 10 % for all following experiments.   
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6.2 WK-X-34 imaging studies 

 

6.2.1 99mTc-Sestamibi imaging  

These studies were designed to investigate the in vivo performance of the 

selected MDR inhibitor WK-X-34.  Human ovarian cancer xenografts bearing a 

resistant A2780/Adr and a sensitive A2780/wt tumor on each back flank were 

developed in immunocomprimised mice.  99mTc-Sestamibi uptake was studied twice 

in the same animal in the absence and presence of WK-X-34.  Thus, effects of WK-

X-34 on the accumulation of 99mTc-Sestamibi in the resistant and sensitive tumor 

xenograft as well as potential inhibition of physiological Pgp in liver, kidney, brain, 

intestine and heart could be examined.  Gamma images obtained from 99mTc-

Sestamibi imaging experiments elegantly visualized the in vivo distribution of the Pgp 

substrate 99mTc-Sestamibi in the presence and absence of WK-X-34.  As each 

animal was imaged on two consecutive days without and with WK-X-34 

pretreatment, accumulation of 99mTc-Sestamibi could be compared in the same 

tumor of the same animal.   

Changes in the intensity of 99mTc-Sestamibi within the region of the A2780/Adr 

tumor upon WK-X-34 administration were detectable for all animals.  The 2 h images 

of a representative animal in the absence (baseline) and presence of 20 mg/kg WK-

X-34 are shown in figure 6.2.   
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Figure 6.2   99mTc-Sestamibi images of A2780/Adr and A2780/wt xenografts at 2 h   

Representative dorsal images of the same animal at baseline (left) and after administration of WK-X-34 (right) are 
depicted as taken 2 h after tail vein injection of 99mTc-Sestamibi in mice xenografts bearing an A2780/wt tumor on 
the left flank and an A2780/Adr tumor on the right flank.  The two images are normalized to the same color 
intensity 

 

 

In these images, A2780/Adr tumors are visible on the right flank and A2780/wt 

tumors are visible on the left flank, as indicated.  The tumor regions are enlarged in 

the box below and surrounded by a white ring.  On the right image (WK-X-34 

pretreatment), an increase in radio-intensity is detectable for the A2780/Adr tumor 

but not for the A2780/wt tumor.   

Furthermore, potential changes in the 99mTc-Sestamibi distribution throughout 

the body over the span of the imaging experiments were investigated.  In figure 6.3, 

the 15 min, 1 h, 2 h and 4 h gamma-images at baseline and upon WK-X-34 

pretreatment are presented for the same animal.   
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Figure 6.3    Time course of 99mTc-Sestamibi distribution in tumors and organs   

Representative dorsal 99mTc-Sestamibi images at baseline and after administration of WK-X-34 are depicted as 
taken 15 min, 1 h, 2 h and 4 h after tail vein injection of 99mTc-Sestamibi in BalbC nu/nu mice bearing an 
A2780/wt tumor on the left flank and an A2780/Adr tumor on the right flank (indicated by arrows).  All images are 
normalized to the same color intensity. 

 

 

Differences in the overall body distribution between baseline and WK-X-34 

treatments are easily detectable for all time points.  Radio-intensity was particularly 

increased in the region of the brain.  99mTc-Sestamibi appeared to accumulate in the 

brain, as higher levels were detectable at later time points (see figure 6.3: WK-X-34 

at 4 h).  An increase in the region of the A2780/Adr tumor on the right flank of the 

animal was furthermore visible on the 1 h, 2 h and 4 h images.  

 Regions of interest were drawn around the brain, heart, liver, intestine, right 

kidney, A2780/Adr tumor and A2780/wt tumor (see picture 5, appendix). The radio-

intensity (expressed in counts/pixel/second) in these regions was determined for 

each image and plotted against the imaging time point.  Representative radio-

intensity-time plots for the region of the whole body, brain and A2780/Adr tumor are 

shown in figure 6.4.  Whereas the radio-intensities in the region of the whole body 

Baseline 15 min             1 h                          2 h           4 h

WK-X-34 15 min              1 h                        2 h           4 h    

A2780/Adr tumorA2780/wt tumor

Baseline 15 min             1 h                          2 h           4 h

WK-X-34 15 min              1 h                        2 h           4 h    

A2780/Adr tumorA2780/wt tumor
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were equal between baseline and WK-X-34 pretreatment, radio-intensity was 

increased in the regions of the brain and the A2780/Adr tumor upon WK-X-34 

pretreatment.  From radio-intensity-time plots the AUC values were calculated for 

each organ (for calculation see chapter 3.4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4   Radio-intensity-time plots for whole body, brain and A2780/Adr tumors    

The radio-intensity at baseline and upon WK-X-34 pretreatment in the region of the whole body, brain and 
A2780/Adr tumor is plotted against the time postinjection.  Representative plots from one animal are shown.  
Radio-intensity-time plots were generated for each gamma image and AUC values were calculated using the 
linear trapezoid method. 
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In figure 6.5, the AUCs of organs and tumors were compared between 

baseline and WK-X-34 treatment.  The results show changes in 99mTc-Sestamibi 

accumulation within the organ region (in % of baseline treatment) in the presence of 

WK-X-34.  Values above 100 % indicate increased accumulation of 99mTc-Sestamibi 

in the region.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5   AUC analysis of 99mTc-Sestamibi distribution in tumors and organs   
99mTc-Sestamibi uptake into tumors and tissues on gamma images were analyzed by ROI analysis.  The AUC 
values for individual organs and tumors were calculated for imaging time points between 15 min and 4 h.  Results 
indicate the % change of uptake upon WK-X-34 treatments in comparison to control treatments.  Results are 
expressed as means of n=5 ± S.D. with p-levels of * ≤ 0.05 and ** ≤ 0.01, as determined by a paired two-tailed t-
test.   

 

 

Administration of WK-X-34 significantly increased the radio-intensity of 99mTc-

Sestamibi uptake into the Pgp-overexpressing (A2780/Adr) tumor to 136 % of control 

but did not significantly alter accumulation in the A2780/wt tumor.  Furthermore, 

significantly increased 99mTc-Sestamibi accumulation was detectable in the brain and 

intestine (148 % and 138 % of control) of the WK-X-34 treated mice.  This indicates 

a rapid and prolonged in vivo inhibition of Pgp in these tissues.  ROI analysis of 
99mTc-Sestamibi imaging of central organs such as the liver and the kidney showed 

considerable variability due to some overlaps in their imaging regions.  Therefore, 
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significant changes could not be detected.  WK-X-34 did not significantly affect whole 

body imaging values.   

 

6.2.2 99mTc-Sestamibi biodistribution  

To confirm results from 99mTc-Sestamibi imaging, biodistribution analyses 

were performed two hours postinjection of the radiopharmaceutical (see chapter 

3.4.9).  Table 6.1 summarizes the results from the biodistribution study.  Organ 

levels of 99mTc-Sestamibi are expressed as a % of the injected dose per gram of 

tissue (%ID/ g tissue).  Furthermore, results from tumors were normalized to the non-

Pgp expressing tissue muscle and are given as tissue/muscle ratios.  As compared 

to controls, ratios of 99mTc-Sestamibi concentrations in the A2780/Adr tumors to 

concentrations found in non-Pgp expressing muscle tissue were significantly 

increased by 9-fold in WK-X-34 pretreated mice (p<0.05).  In A2780/wt tumors, a 

much smaller elevation was seen however, the results were inconsistent and did not 

reach a level of significance.  Elevated levels in A2780/wt tumors, particularly at later 

time points, can be explained by an inhibition of Pgp-mediated routes of 99mTc-

Sestamibi excretion via the liver and the kidneys (Kabasakal, 2000).  99mTc-

Sestamibi is rapidly cleared from the blood into other organs.  Interestingly, relative 

blood levels in WK-X-34 treated animals are significantly lower compared to non-

treated animals.  Physiological Pgp is also inhibited in WK-X-34 treated animals.  

Hence, impaired 99mTc-Sestamibi efflux from tissues such as heart or brain back into 

the blood might account for lower blood levels.  Furthermore, significantly increased 

retention of radioactivity was detectable in the brain and liver.  In contrast to 99mTc-

Sestamibi imaging data, a significant increase was also detected for the region of the 

heart.   
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Table 6.1   Biodistribution of 99mTc-Sestamibi in control and WK-X-34 treated xenograft mice§  

 

 %ID/ g tissue ± S.D.  

Tissue Control WK-X-34 treatment % of control values 

 

Blood 0.18 ± 0.02 0.11* ± 0.02 61   ± 11  

Heart 5.90 ± 1.13 10.09* ± 1.55 171  ± 26 

Liver 5.83 ± 0.36 11.91* ± 2.44 204  ± 42 

Kidney 14.60 ± 1.24  15.07 ± 1.45 103  ± 10 

Intestine 6.50 ± 2.69  5.09 ± 1.47 78  ± 23 

Muscle 1.63 ± 0.13  2.58* ± 0.2 158  ± 13  

Brain 0.06 ± 0.00  0.10* ± 0.02 166 ± 33 

Adr Tumor 0.09 ± 0.12  0.95* ± 0.32 1055  ± 356 

Wt Tumor 0.13 ± 0.04 0.44 ± 0.28 338 ± 216 

 

Tissue/ muscle ratios 

 

Adr Tumor 0.05 ± 0.001 0.45* ± 0.20 900  ± 392    

Wt Tumor                  0.074 ± 0.05 0.284 ± 0.31 384  ± 419 

 
§ Values represent means ± S.D. for 5 xenograft mice per group with p-levels of * p < 0.05. 
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6.3 WK-X-34 + antisense imaging studies 

 

6.3.1 99mTc-Sestamibi imaging 

Mouse xenografts bearing two A2780/Adr tumors on each back flanks were 

injected with MDR1 antisense ODNs into one tumor for three days.  Animals were 

divided into a control and a WK-X-34 treatment group, and 99mTc-Sestamibi imaging 

was performed on day 4 following the antisense treatments.  The experimental setup 

of the “WK-X-34 + antisense imaging studies” is outlined in chapter 3.4.1.2.  Prior to 

the injection of the radiopharmaceutical 99mTc-Sestamibi, mice were pretreated either 

with 20 mg/kg of WK-X-34 or vehicle.   

Representative gamma images (Figure 6.6) show the in vivo distribution and 

uptake of 99mTc-Sestamibi 15 min and 1 h postinjection into both tumors.  The 

location of the control (blue) and antisense (orange) treated A2780/Adr tumor is 

indicated by arrows.  In controls, 99mTc-Sestamibi uptake was slightly increased in 

the antisense pretreated tumor as compared to the non treated tumor (see 1 h image 

of control animals).  Administration of WK-X-34 increased the amount of 99mTc-

Sestamibi into both tumors (see orange line).   
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Figure 6.6   99mTc-Sestamibi imaging of A2780/Adr xenografts 

Representative dorsal images of control (A) and WK-X-34 treated (B) mice were acquired 15 min and 1 h 
postinjection of 99mTc-Sestamibi.  Mice xenografts were bearing two A2780/Adr tumors on the right and left flank 
(see regions), of which one (orange) had been treated intra-tumorally with MDR1 antisense ODNs.  Images are 
normalized to the same color intensity. 

 

 

Again, ROI analyses were performed and these data are presented in figure 

6.7 for the 1 h imaging time point.  Data of four animals per group were analyzed.  
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Increased 99mTechnetium accumulation of about 20 % and 90 % of control was 

determined within the region of the antisense treated and untreated tumor in WK-X-

34 treated mice, respectively.  Due to high variability between animals within the 

same treatment group, the data did not reach a level of significance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7   ROI analyses of 99mTc-Sestamibi imaging in A2780/Adr xenografts 
99mTc-Sestamibi uptake into tumors was analyzed by ROI analysis.  The AUC values for both tumors were 
calculated for the 1 h imaging time point and normalized to whole body.  Results indicate the % change of uptake 
upon WK-X-34 and/or MDR1 AS treatments in comparison to control treatments.  Results are expressed as 
mean values of n=5 ± S.D.  Data were analyzed using a two-tailed unpaired t-test; a level of significance (α< 
0.05) was not reached. 
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6.3.2 99mTc-Sestamibi biodistribution  

Comparably to the WK-X-34 imaging study (see chapter 6.2), biodistribution 

analyses were performed and the results are presented in table 6.2.  Tumor levels of 
99mTc-Sestamibi were initially calculated as a % of injected dose per gram of tissue 

(%ID/ g tissue) and are normalized to the non-Pgp-expressing tissue “muscle”.  In 

the WK-X-34 pretreated mice, 99mTc-Sestamibi tissue/muscle ratios in untreated and 

antisense-pretreated tumors were significantly increased by 9- and 2-fold, 

respectively. 

 

 

Table 6.2   99mTc-Sestamibi biodistribution in A2780/Adr xenografts 

 

 Control WK-X-34 pretreatment 

Tissue/ muscle mean ± S.D.        mean ± S.D.  

 

Blood 0.32 ± 0.091 0.09 ± 0.091       

 

Control Tumor 0.05 ± 0.001 0.45* ± 0.196    (9-fold) 

MDR1 AS Tumor 0.18 ± 0.122 0.38* ± 0.065    (2-fold) 

 

Table 6.2 Accumulation of 99mTc-Sestamibi radioactivity in control and MDR1 AS treated tumors was determined 
from isolated tissues.  Results are expressed as a % dose/gram of tissue and normalized to muscle.  Data are 
expressed as means ± S.D. of 4 animals with p-levels determined by an unpaired two-tailed t-test of α ** < 0.01 
and * <0.05. 
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6.4 Tumor characterization  

 

6.4.1 Immunohistochemical analyses of tumor tissue 

Tumor growth was comparable in A2780/Adr and A2780/wt xenografts as 

observed by caliper measurements (for tumor development see picture 1 in 

appendix) and H&E histological analysis (Figure 6.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8    H & E staining of tumor tissue   

Representative pictures of tumor tissue obtained from A2780/wt (A, B) and A2780/Adr (C, D) xenografts are 
shown.  Tissue sections were H & E stained and pictures were taken on a light microscope using a 40x/0.65 oil-
immersion objective. 

 

 

 In Figure 6.8, picture A and B show tissue sections from A2780/wt tumors and 

picture C and D are obtained from A2780/Adr tumor sections.  A blood vessel 

incorporated in the tumor tissue can be seen on picture A.  Infiltrated blood cells are 

visible on pictures C and D.  In figure C invasive growth of the tumor tissue into 

remaining muscle tissue can be observed.  To summarize, both tumors showed 
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D.
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B.
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invasive growth into muscle tissue with high vascularisation.  This observation is 

important as it confirms that detected changes in 99mTc-Sestamibi accumulation 

between resistant and sensitive tumors were not due to a difference in tissue 

formation. 

 

6.4.2 Immunofluorescence examinations of tumor tissue 

Additionally, Pgp expression was examined by immunofluorescence analysis 

using the FITC-labeled anti human Pgp monoclonal antibody according to methods 

specified in chapter 3.4.10.  Tissue sections from A2780/Adr and A2780/wt tumors 

as well as from antisense treated A2780/Adr tumors were analyzed.  Representative 

fluorescence microscopy pictures are shown in figure 6.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9.  Immunofluorescence analysis of tumor tissue  

Tissue slides of A2780/Adr xenografts treated intra-tumorally with MDR1 antisense ODNs were examined by 
immunofluorescence.  Representative tissue pictographs show tumor sections from unstained A2780/Adr 
controls (A) and stained sections from A2780/wt (B), MDR1 antisense ODNs treated A2780/Adr (C), and 
A2780/Adr control (D) (all pictures taken on an 40x/0.65 objective).   
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Whereas no Pgp expression was detectable on tumor sections from A2780/wt 

tumors (picture 6.9-B), strong Pgp overexpression was visible in the A2780/Adr 

tumors (picture 6.9-D).  In MDR1 antisense pretreated tumors (picture 6.9-C) Pgp 

protein expression was detectable, but appeared to be lower in comparison to 

expression levels seen in non treated A2780/Adr tumors.  Background fluorescence 

in A2780/Adr tissue slides in the absence of the antibody (picture 6.9-A) was minimal 

and comparable to fluorescence detectable in antibody incubated slides of A2780/wt 

tumors (picture 6.9-B). 

 

6.4.3 MDR1 antisense treatment of tumors 

To confirm whether reductions in Pgp surface expression upon antisense 

treatments correlated with mRNA expression, levels of MDR1 were analyzed in 

A2780/Adr tumors.  RNA was isolated from tumor tissue and RT-PCR analysis was 

performed using primer and conditions as described in chapter 3.3.1.  As presented 

in figure 6.10, MDR1 levels were downregulated after intra-tumoral antisense 

treatments.  Expression of MDR1 mRNA was significantly reduced to about 10 % of 

controls in the antisense treated tumors 

 

 

 

 

 

 

 

 

 

 

Figure 6.10   RT-PCR analysis of tumor tissue  

RNA was isolated from tumor tissue and MDR1 expression analyzed by RT-PCR analysis.  Expression levels 
were normalized to 18S values and mean values ± S.D. from 4 tumors per group are presented (A).  
Representative RT-PCR gels with the PCR products from both tumors are depicted (B). 
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7 Discussion - in vivo  
 

 

In the following chapter, results from 99mTc-Sestamibi imaging and 

biodistribution experiments will be discussed.  These methods were used to 

characterize WK-X-34 in vivo.  In a second set of animal experiments, antisense 

treatments were compared to treatments with WK-X-34.  Some repetition of in vitro 

results will be necessary to correlate in vivo to in vitro results and to better discuss 

the in vivo findings in the context of this thesis.   

 

7.1 Characterization of WK-X-34  

 

Toxicities 

Doses of 20 mg/kg and 50 mg/kg of WK-X-34 in a Cremophor EL ethanol 

formulation were well tolerated both in healthy and tumor-bearing mice.  Likewise, 

other recently characterized Pgp inhibitors were nontoxic in vivo.  XR9576 (Mistry, 

2001) and OC144-093 (Newman, 2002) were found to be well tolerated in mice at 

doses of 2-8 mg/kg and 20 mg/kg, respectively.  As WK-X-34 was nontoxic in 

several cell lines (see table 4.2), it is likely that WK-X-34 might be well tolerated in a 

potential clinical application.   

 

Pgp inhibition in tumor xenografts 

The in vivo performance of WK-X-34 in sensitive and resistant human 

xenografts was investigated using the radiopharmaceutical 99mTc-Sestamibi 

(Piwnica-Worms, 1993; Del Vecchio, 2004 and Hendrikse, 1999).  This technique 

allows the non-invasive monitoring of Pgp activity and is approved by the FDA for the 

evaluation of novel Pgp inhibitors in clinical trials (see chapter 2.3.7).   
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Whereas the cellular uptake of 99mTc-Sestamibi is mainly due to passive 

diffusion, Pgp is known to play an important role in its cellular efflux.  Indeed, a 

strongly decreased accumulation of 99mTc-Sestamibi was seen in the Pgp-

overexpressing A2780/Adr cells as compared to the non-Pgp expressing A2780/wt 

cells.  Moreover, treatment of A2780/Adr cells with WK-X-34 increased 99mTc-

Sestamibi accumulation to levels seen in the A2780/wt cells (see figure 4.16).   

In vivo, WK-X-34 treatment was found to significantly increase 99mTc-

Sestamibi levels in A2780/Adr resistant but not in sensitive A2780/wt tumor 

xenografts.  This was detected through 99mTc-Sestamibi imaging and was further 

verified in 99mTc-Sestamibi biodistribution experiments.  The results indicate that WK-

X-34 is capable of reversing the multidrug resistant phenotype in vivo in solid tumors.   

WK-X-34–mediated changes in vivo on the tumor accumulation of 99mTc-

Sestamibi likely occur primarily through Pgp inhibition.  It has been reported that 
99mTc-Sestamibi can be transported by MRP1 and MRP2 in vitro (Chen, 2000).  The 

affinity of these two transporters to 99mTc-Sestamibi, however, is much lower than 

Pgp, and can not be detected in vivo (Sharma, 2003).  In vitro, WK-X-34 did not 

appear to inhibit MRP-mediated transport in selectively transfected cell lines (see 

chapter 4.3.4).  In vitro studies in MCF7/mx cells also demonstrated a lack of 

interaction between 99mTc-Sestamibi and BCRP (see figure 4.19).   

As in vitro studies have identified a dual interaction profile of WK-X-34 with 

Pgp and BCRP, it would be interesting to investigate in vivo effects of BCRP 

inhibition by WK-X-34.  At the time of the experiments, however, no suitable animal 

model was available for the study.  Two animal models of BCRP expressing tumors 

have only been developed very recently.  In 2004, Gefitinib, the epidermal growth 

factor tyrosine kinase inhibitor, was investigated in immunocomprimised mice 

inoculated with P388 cells that had been transfected with human BCRP (Yanase, 

2004).  In 2005, Garimella and coworkers reported a BCRP-overexpressing human 

ovarian xenograft model, which they used to study the BCRP inhibitor fumitremorgin 

C (Garimella, 2005).  Moreover, no comparable non-invasive imaging model for 

BCRP has been established to date.   
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Inhibition of physiological Pgp 
In the animals, human Pgp was solely expressed in the xenografts of 

A2780/Adr tumors.  However, mice furthermore express murine Pgp throughout the 

body particularly in their organs of excretion (i.e. liver, kidney) and barrier tissue (i.e. 

blood-brain-barrier).  Whereas humans only have one Pgp, which is encoded by 

MDR1, mice express two types of Pgp, encoded by mdr1a and mdr1b (Chen, 1986).  

Together mdr1a- and mdr1b-type Pgps fulfil the same function as the single human 

Pgp (Schinkel, 1997).  It was expected that WK-X-34 would interact with murine Pgp 

and impose changes in the accumulation of 99mTc-Sestamibi in organs and different 

tissues.  Indeed, 99mTc-Sestamibi imaging and biodistribution data revealed a 

significantly increased accumulation of 99mTc-Sestamibi in the brain, heart, liver and 

intestine of WK-X-34 treated animals.   

Increases in the organ accumulation of 99mTc-Sestamibi have been reported 

with other Pgp inhibitors (Rao, 1999; Planting, 2005).  Thus, there exists a potential 

for these agents to impact the distribution, clearance and organ toxicities of 

anticancer drugs.  Pharmacokinetic alterations of coadministered chemotherapeutic 

agents (e.g. daunorubicin) have been associated with third generation Pgp inhibitors 

(Dale, 1998; Lê, 2005).  Comparably, WK-X-34 caused increased 99mTc-Sestamibi 

levels in major organs and deep tissues.  These observations point to potential 

complications in the therapeutic use of third generation Pgp inhibitors.  A careful risk-

benefit evaluation as well as thorough toxicity monitoring should precede and 

accompany the therapeutic application of a Pgp inhibitor.   

Some pharmacokinetic properties of WK-X-34 could be deduced from the 

analysis of 99mTc-Sestamibi images.  Imaging data demonstrated a Pgp inhibition in 

WK-X-34 treated mice as soon as 75 min after administering WK-X-34 (1 h 

pretreatment with WK-X-34 + 15 min poatinjection of 99mTc-Sestamibi).  This 

suggests that WK-X-34 is rapidly absorbed from the intraperitoneal cavity into the 

blood with subsequent distribution to distant organs and tumors.  WK-X-34 continued 

to display effective in vivo inhibition of Pgp four hours after administration of 99mTc-

Sestamibi, indicating that the inhibitor was not being rapidly cleared from the system.  

This seems plausible, as pharmacokinetic investigations of another third generation 

Pgp inhibitor, XR9051 (Mistry, 1999) with a similar structure to WK-X-34 (compare 

structure of WK-X-34 in figure 3.1 to structure of XR9051 in figure 1.7) have 
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indicated rapid uptake with sufficiently long disposition in the system.  Mistry and 

coworkers found an apparent elimination half-life of XR9051 in plasma and liver of 

around 4 and 5 h, respectively.  In tumor xenografts, the maximum concentration of 

XR9051 was detected 1.5 h following administration of a 20 mg/kg dose i.v. with an 

apparent elimination half-life of around 8 h.   

 

Recent characterizations in the literature 

Most recently characterized third generation Pgp inhibitors included in vivo 

investigations in human or murine tumor xenograft models, which are summarized in 

table 7.1.   

The A2780/Adr xenograft model used in this thesis is a commonly applied 

tumor model, which was employed to test for MDR reversal of XR9051 and XR9576.  

Other tumor models include the murine leukemia model P388/Dox (Hyafil, 1993; 

Dantzig, 1996, Mistry, 1999 and Newman, 2000) and the human small cell lung 

cancer model SCLC-H69/LX4 (Mistry, 1999 and 2001).  Newman and coworkers 

generated a xenograft model with a selectively transfected human breast cancer cell 

line, MDA435/ LCC6MDR1 (Newman, 2000).  The great majority of xenograft models, 

however, were generated using multidrug resistant cell lines, which have been 

selected through cytotoxic treatments.  

The antitumor efficacy of commercially developed third generation Pgp 

inhibitors has been extensively studied in several different tumor models using 

common chemotherapeutic agents (e.g. paclitaxel, doxorubicin, etoposide).  Studies 

of pharmacokinetic parameters and potential alterations in the pharmacokinetic 

profile of co-administered chemotherapy were usually included.  In an academic 

setting or in the context of a PhD thesis, it is obvious that such a detailed 

characterization is not possible.   
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Table 7.1   Novel third generation Pgp inhibitors in the literature –in vivo characterization 

Reference MDR 
inhibitor Target Tumor Model In vivo Experiments 

Hyafil, 1993 

Laboratoire 
GLAXO 

GF120918 

Pgp,  

later 
BCRP1 

Mu leukemia and colon 
xenograft models (MDR 
P388/Dox; i.p.; C26MDR s.c.)  

DOX in xenograft 

DOX-PK in mice 

PK/Tox in mice 

Dantzig, 1996 

Lilly Research 
LY335979 Pgp2 

Mu leukemia (MDR 
P388/Dox; i.p.)  

Hu NSCLC xenografts i.p.  

DOX/ ETP in leukemia 
model 

TAX in xenograft;  PK  

Mistry, 1999 

Xenova Ltd 
XR9051 

Pgp 

 

Mu leukemia and colon model 
(MDR P388/ Dox; i.p.; MC26; 
s.c.)  

Hu ovarian and SCLC cancer 
xenograft (A2780/Adr + 
CH1/Dox; H69/LX4 s.c.)   

VCR, DOX in leukemia 
models and colon xenograft 

PTX, ETP, VCR, DOX in 
human xenografts  

PK in mice and xenografts 

Newman, 
2000 

Ontogen 
Corporation 

OC144-093 Pgp 

Mu leukemia (MDR 
P388/Dox; i.p.)  

Hu breast and colon xenografts 
(MDA435/ LCC6MDR1*  i.p; HCT-
15; s.c. ) 

DOX in xenograft 

PXT-PK in mice 

PK in dogs 

Mistry, 2001 

Xenova Ltd 
XR9576 

Pgp 

later 
BCRP3 

Mu colon carcinoma (MC26; 
s.c.) 

Hu ovarian and SCLC 
xenograft (A2780/Adr and 
A2780/wt s.c.; H69/LX4 s.c)   

 

PTX, ETP, VCR  in 
xenografts (A2780/Adr + 
H69/LX4) 

DOX in xenografts (MC26) 

PK of PTX in rats 

Jekerle, 
2006a 

University of 
Bonn/Toronto 

WK-X-34 

Pgp 

+ 
BCRP  

Hu ovarian cancer xenograft 
(A2780/Adr and A2780/wt; 
s.c.)   

Tox in mice 

MIBI* imaging and 
biodistribution in A2780/Adr 
& A2780/wt xenografts 

Allen, 2002 

Netherlands 
Cancer 
Institute 

Ko143  BCRP --------------------------------- 

Tox in mice 

Modification of oral BA of 
TPC in mice 

Abbreviations used in this table: 

BA: bioavailability; PK: Pharmacokinetic investigations; Tox: toxicity; SCLC: small cell lung cancer, Mu: Murine; 
Hu: Human 

DOX: doxorubicin; ETP: etoposide; PTX: paclitaxel; VCR: vincristine; MIBI*: 99mTc-Sestamibi; TPC: topotecan 

* human breast cancer cell line (MDA435/LCC6MDR1) is selectively transfected with human MDR1 
1  Malipaard, 2001; 3  Shepard, 2003; 3  Robey, 2004; for in vitro characterization see table 5.1 and 5.2  
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 Non-invasive 99mTc-Sestamibi imaging techniques, used for the initial in vivo 

characterization of WK-X-34, elegantly provided proof of in vivo efficacy.  

Comparable to other third generation Pgp inhibitors, WK-X-34 effectively reversed 

the MDR phenotype in human xenografts of ovarian cancer at a dose of 20 mg/kg.  

Moreover, some information on the distribution and pharmacological interactions of 

WK-X-34 with physiological Pgp in relevant tissues such as the blood –brain barrier 

or excreting organs was obtained.   

To investigate WK-X-34 for a potential application in humans, further 

preclinical studies, such as antitumor efficacy studies and pharmacokinetic 

investigations, are warranted.  Nevertheless, 99mTc-Sestamibi imaging techniques 

were particularly suitable for the initial in vivo testing of WK-X-34.   
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7.2 Antisense treatment in comparison to WK-X-34 

In a second set of in vivo experiments MDR1 antisense ODNs alone and in 

combination with WK-X-34 were used to reverse Pgp-mediated MDR in tumor 

xenograft models.  Likewise, 99mTc-Sestamibi imaging techniques were applied to 

assess Pgp inhibition in vivo.    

 

Downregulation of Pgp activity 

As mice were treated with both, the third generation Pgp inhibitor WK-X-34 

and MDR1 antisense ODNs, in vivo efficacy of both treatments could be compared.  

First, these treatments were evaluated in vitro using the chemotherapeutic drug 

daunorubicin.  Both, MDR1 antisense ODNs and WK-X-34 increased intracellular 

daunorubicin levels through functional Pgp inhibition (see figure 4.12 and 4.21).  In 

vivo, intratumoral treatments with MDR1 antisense ODNs resulted in transcriptional 

downregulation of MDR1 mRNA and Pgp expression in the A2780/Adr tumor (see 

figure 6.10).  MDR1 mRNA was downregulated to about 10 % of controls.  Likewise, 

Pgp surface expression was decreased as determined by immunofluorescence 

analysis techniques.  Yet reductions in protein levels appeared to be less 

pronounced.  This seems reasonable as results from in vitro antisense experiments 

showed a downregulation by only 50 % for the highest concentration of antisense 

ODNs (see figure 4.11).  Differences in the degree of downregulation between 

MDR1 mRNA and Pgp effects are likely to depend on their dissimilar half lives.  

Whereas MDR1 mRNA has a half life of 4 h, the half life of the protein Pgp is 14- 

16 h (Aleman, 2003).  As a result, transcriptional inhibition can first be detected on 

the mRNA level.  Translation of these effects into a reduction in Pgp surface 

expression thus occurs much slower and potentially not in a quantitative way. 

Changes in Pgp expression translated into an impaired Pgp-mediated MDR 

phenotype.  In tumor xenografts, functional Pgp inhibition was detected through 

altered 99mTc-Sestamibi accumulation both by imaging and biodistribution analysis 

with a significant degree of sensitivity.  An increased level of 99mTc-Sestamibi due to 

an impaired efflux activity of Pgp was detected in the antisense treated resistant 

tumor (see chapter 6.3.1 and 6.3.2).  Through additional functional Pgp inhibition by 

WK-X-34, intratumoral accumulation of 99mTc-Sestamibi was further increased and 
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reached a maximum level, which no longer differed between antisense untreated 

and pretreated tumors.  What can be concluded from this observation?   

Treatments with MDR1 antisense ODNs caused increased 99mTc-Sestamibi 

levels within the tumors; these differences, however, were nullified when WK-X-34 

was added (see figure 6.6 and table 6.2).  The results indicate that a single dose of 

the Pgp inhibitor WK-X-34 more effectively reverses Pgp-mediated MDR than a 

three-day treatment with MDR1 antisense ODNs.  Moreover, the combination of a 

Pgp inhibitor and antisense ODNs together does not offer an advantage over the 

single treatment with WK-X-34 alone.  Hence, a potential benefit of antisense ODNs 

treatment in the therapy of multidrug resistant cancer could not be concluded from 

these studies (Jekerle, 2006c).   

Nevertheless, results from in vivo antisense treatments demonstrated 

effectiveness of antisense ODNs in downregulating MDR1/Pgp in vivo.  For a 

potential clinical application, however, antisense treatments appear to be less 

powerful in comparison to small molecule MDR inhibitors such as WK-X-34.  

 

Antisense treatments in the literature 

In the antisense field, some studies have confirmed the effectiveness of 

antisense treatments in reversing the Pgp-mediated MDR phenotype in vivo.  

Ramachandran and coworkers (Ramachandran, 2003) were able to show that a 

combined four-day treatment of MDR1 antisense ODNs and doxorubicin significantly 

controlled tumor growth.  The effect was attributed to the addition of MDR1 antisense 

ODNs.  Unfortunately, such convincing examples are rare and can only be 

generated with a complicated experimental setup.  Ramachandran had to use a 

combination of two antisense sequences in order to observe efficacy in his in vivo 

experiment.   

In another study, Lopes de Menezes and coworkers (Lopes de Menezes, 

2003) used a combined treatment of antisense oligonucleotides directed against the 

antiapoptotic gene bcl-2 and PSC 833, a second generation Pgp inhibitor.  In vivo, 

the combination of bcl-2 antisense, PSC 833 and liposomal doxorubicin showed 

maximal growth suppression of multidrug resistant tumors in comparison to the 
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individual treatments.  While this study introduces an interesting therapeutic 

approach through targeting two different MDR mechanisms with a combination of a 

small molecule inhibitor and antisense treatment, the clinical relevance is 

questionable.  It remains to be seen, whether such complicated treatment strategies 

can be translated into the clinical practice.   

 

Limitations of antisense-based treatments  

Although convincing and rational in theory, therapeutic approaches targeting 

mRNA have been associated with many unexpected complications.  In vivo toxicity, 

stability and delivery-related problems are among the major obstacles in a 

successful clinical application of antisense ODNs.   

Even though some recent Phase I and II clinical trials of antisense-based 

drugs could demonstrate an acceptable level of safety of phosphorothioated ODNs 

(Galderisi, 1999), they have frequently been associated with toxicity complications 

(Kurreck, 2003).   

Delivery-related problems are more difficult to circumvent.  For good reasons, 

the body possesses a strong protection mechanism against infection from foreign 

nucleotides (Robinson, 2004).  Complicated delivery systems or backbone 

modifications had to be developed to enable antisense molecules to enter the 

system and persist in the circulation sufficiently long to guarantee a delivery to the 

site of action.  Indeed, after an i.v. or i.p. injection phosphorothioated antisense 

molecules were shown to remain in the blood circulation for up to 24 h before 

excretion via the urine (Galderisi, 1999).  Moreover, detectable levels of ODNs were 

found in most tissues up to 48 h postinjection with only 15-50 % of degradation in 

that period.  As most tumor tissue is poorly circulated by the blood (see chapter 

1.1.2), this brings about a reduced delivery into the tumor.  Even though in vivo 

experiments and initial trials can avoid this problem by direct injection into the target 

tumor, only a solution for such delivery-related problems can give rise to broad 

clinical application.   

So strikingly simple in theory, yet experts have reservations about the nature 

of the antisense mechanism (Robinson, 2004).  The only antisense-based drug with 
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FDA approval, Vitravene, is used to treat cytomegalovirus infections in the eyes of 

HIV patients.  Its antisense sequence actually targets viral DNA but not a human 

mRNA sequence.  Therefore, it remains unclear whether Vitravene actually works 

through the antisense mechanism.  To date, no antisense-based drug targeting a 

sequence within the human genome has demonstrated sufficient efficacy and safety 

to receive a marketing authorization.   

The above-mentioned aspects illustrate just how complicated in vivo 

applications of antisense molecules can be.  Some of these limitations were reflected 

in this thesis.  Substantial in vitro toxicities detected as significant downregulations in 

cell proliferation were observed upon antisense treatments.  In vivo, comparable 

toxicities were not seen in mice that were dosed intratumorally for three days with 

antisense ODNs.  Yet many reports have indicated in vivo toxicities associated with 

non-specific binding of antisense ODNs to several proteins (Levin, 1999).   

Delivery-related problems could mostly be avoided by the intratumoral route of 

administration.  In a clinical setting, however, intratumoral injections will not be 

feasible in the majority of cases.  Moreover, as antisense treatment via the most 

direct route of application over a treatment period of three consecutive days has not 

shown a satisfying degree of Pgp inhibition that was comparable to WK-X-34 alone, 

it remains highly questionable whether antisense treatment will be effective in a 

therapeutic application.  Even the combination of antisense ODNs and WK-X-34, 

which was originally thought to be effective due to a dual targeting of Pgp and MDR1 

mRNA, did not show a benefit over the single treatment with WK-X-34.  Overall, 

results from 99mTc-Sestamibi imaging studies demonstrated an inhibition of the Pgp-

mediated phenotype with a sufficient, yet much lower efficacy of antisense ODNs in 

comparison to WK-X-34.  The results appear to be in accordance with common 

experience and support the reservations outlined above.  In order to justify such 

complications associated with antisense-based therapy, their effectiveness needs to 

exceed other less complicated strategies.  Thus, the clinical usefulness of antisense-

based therapies in targeting multidrug resistant tumors remains questionable and will 

always be limited by the presence of potent and nontoxic small molecule inhibitors of 

Pgp.    



 

 

 

8 Conclusion  
 

 

In this thesis I have characterized novel multi-targeted MDR inhibitors and 

MDR1 antisense ODNs using common in vitro and in vivo experimental techniques.  

The evaluation of different treatment strategies alone and in combination addressed 

the hypothesis that the simultaneous targeting of different MDR mechanisms might 

be advantageous in mastering the complexity of multidrug resistant tumors (See 

rational; chapter 2.1).  

Whereas antisense ODNs were found to be less effective while associated 

with more complications, some Pgp inhibitors showed effective MDR reversing 

properties.  Among the tested compounds, the most effective, WK-X-34 and XR9577 

were found to be potent, specific and non-toxic inhibitors of both, Pgp- and BCRP-

mediated MDR in different cell lines.  These compounds clearly showed an 

advantage in potency and cellular tolerance over cyclosporin A, a broad spectrum 

MDR inhibitor with successful performance in clinical trials in AML patients.   

WK-X-34 was chosen for further in vivo characterization of toxicity, efficacy 

and pharmacokinetic alterations.  Using 99mTc-Sestamibi imaging techniques in 

human ovarian cancer xenografts, WK-X-34 was shown to effectively target MDR in 

vivo.  The MDR-reversing potency as well as typical interactions with other Pgp 

expressing tissues were comparable to those of other third generation Pgp inhibitors.  

A combined treatment of antisense ODNs and WK-X-34 was found to not be 

superior to the treatment with WK-X-34 alone. 

The selective interaction profile of WK-X-34 with Pgp and BCRP holds a great 

potential in a broader anti-MDR therapy, particularly with regard to solid tumors with 

Pgp and BCRP coexpression and highly protected cancer stem cell subpopulations.  

Therefore, extended preclinical development is anticipated and required to evaluate 

whether WK-X-34 might potentially be a promising candidate for the successful 
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therapeutic treatment of de novo or acquired Pgp- and BCRP-mediated MDR in 

human malignancies. 

 

Outlook 

Some recently developed potent MDR inhibitors of the third generation 

including WK-X-34 are effective in reversing the Pgp and BCRP-mediated MDR 

phenotype.  In multidrug resistant tumor cells, they can increase intracellular drug 

concentrations to levels found in sensitive tumor cells and sensitize the tumor to the 

chemotherapeutic treatment.  Unfortunately, there are many tumors, which lack 

expression of Pgp and BCRP, yet they do not respond to chemotherapy.  In these 

tumors, Pgp and BCRP targeting MDR inhibitors fail to reverse the MDR phenotype.  

Does it mean MDR inhibitors are not effective and the development of these 

compounds should not be pursued?   

As the pathology of a tumor cell is such a complex concert of numerous 

mechanisms, one therapy by itself has only limited potential.  Nevertheless, each 

therapeutic approach adds a weapon to the “arsenal” which is needed to fight the 

tumor cell.  With the development and characterization of the potent, selective and 

non-toxic MDR inhibitor, WK-X-34, we are on the way to create another tool to target 

a subpopulation of tumors, namely those tumor cells that are predominantly resistant 

through the overexpression of Pgp and BCRP.  If such a Pgp/BCRP inhibitor was 

only one “arrow” that could be added to the “arsenal”, it could be assembled together 

with other arrows and weapons.  The greater the selection of weapons, the more 

likely it will be for the therapist to find the right combination of weapons against the 

individual tumor.  Together with other existing and yet to be discovered therapies, 

MDR inhibitors are of value in the treatment of multidrug resistant cancer.   

 



 

 

 

9 Summary 
 

Purpose: The ATP-binding cassette (ABC) transporters P-glycoprotein (Pgp) and 
BCRP are implicated in the multidrug resistance (MDR) of many tumors.  Pgp-
mediated MDR can be functionally inhibited using small molecule inhibitors or 
transcriptionally downregulated by MDR1 antisense oligodeoxynucleotides (ODNs).  
Interestingly, simultaneous inhibition of several ABC transporters including Pgp and 
BCRP by cyclosporin A has been shown to circumvent MDR in clinical trials.  In this 
thesis, the novel multi-targeted tetrahydroisoquinolin-ethyl-phenyl-amine-based MDR 
inhibitors XR9577, WK-X-34, WK-X-50 and WK-X-84 were thoroughly in vitro and in 
vivo characterized for interaction with Pgp, BCRP and MRP-transporters and 
compared to treatments with MDR1 antisense ODNs.    

Methods: The novel MDR inhibitors and cyclosporin A were examined for cellular 
toxicity in several cell lines.  Inhibition of BCRP-mediated mitoxantrone efflux was 
studied in BCRP-overexpressing MCF7/mx cells.  Inhibition of Pgp function was 
assessed in 99mTc-Sestamibi and daunorubicin transport assays.  Reversal of Pgp- 
and BCRP-mediated resistance towards daunorubicin and mitoxantrone, 
respectively, were investigated in A2780/Adr and MCF7/mx cells.  Potential MRP-
interactions were evaluated in 5-CFDA efflux assays using selectively transfected 
MRP-1, -2 and -3 cell lines.   

Daunorubicin transport and Pgp surface expression in resistant A2780/Adr 
cells treated with MDR1 antisense ODNs were determined using flow cytometry, 
fluorescence microscopy and protein staining techniques. 

The in vivo performance and toxicity of WK-X-34 was evaluated by 99mTc-
Sestamibi imaging experiments using multidrug resistant human ovarian cancer 
(A2780/Adr) xenograft models.  To study antisense treatments in vivo, A2780/Adr 
xenograft models were dosed intratumorally with MDR1 antisense ODNs for three 
days followed by either WK-X-34 or vehicle treatment.  99mTc-Sestamibi distribution 
and accumulation were analyzed by imaging of the animals and gamma-counting of 
the isolated tissues.  Tumor xenografts were analyzed histologically and Pgp 
expression was monitored by immunohistochemistry and RT-PCR. 
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Results: WK-X-34 and XR9577 were the most potent MDR inhibitors and completely 
reversed 99mTc-Sestamibi and daunorubicin accumulation at concentrations of 10 

and 1 µM.  Daunorubicin chemosensitivity was increased by 7-8-fold after 10 µM 
XR9577 or WK-X-34 pretreatment.  All WK-X-compounds showed significant BCRP 
inhibition comparable to novobiocin in both mitoxantrone transport and 
chemosensitivity assays.  Compared to cyclosporin A, the in vitro toxicity was 
reduced for all WK-X-compounds.  Moreover, XR9577 or WK-X-34 showed 
increased specificity for Pgp and BCRP as only resistant cells were targeted and 
significant MRP interactions were not detected.  

In immunocomprimised mice dosed with WK-X-34 (20 mg/kg; i.p.), uptake of 
99mTc-Sestamibi was significantly increased in A2780/Adr xenograft tumors    
(AUCs0-4h 136%; p < 0.05) but not in sensitive A2780/wt tumors.  Moreover, 
increased levels of 99mTc-Sestamibi were detected in the brain, liver and intestine of 
WK-X-34 treated animals.   

MDR1 antisense treatments significantly increased daunorubicin levels in 
A2780/Adr cells.  In vivo, 99mTc-Sestamibi retention was significantly increased by 
over two fold in the antisense pretreated tumors.  Upon additional WK-X-34 
treatment, tissue/muscle ratios of 99mTc-Sestamibi were significantly increased by 9-
fold in the untreated but only by 2-fold in the antisense pretreated tumors and 
correlated with results from the 1-hour 99mTc-Sestamibi images.  99mTc-Sestamibi 
levels in the A2780/Adr tumors could not be further increased by a combined 
treatment with antisense ODNs and WK-X-34 as compared to WK-X-34 alone.  
MDR1 mRNA levels and Pgp expression were down-regulated in the antisense 
treated tumors. 

Conclusion: Among the novel MDR inhibitors, WK-X-34 and XR9577 were most 
effective in modulating Pgp and BCRP and demonstrated an increased in vitro 
tolerance and specificity over cyclosporin A.  In vivo, WK-X-34 potently inhibited the 
Pgp-mediated MDR phenotype in resistant human ovarian cancer xenograft models.  
In comparison to WK-X-34, MDR1 antisense ODNs were less effective while 
associated with more complications.  Based on these in vitro and in vivo 
characterizations, WK-X-34 may have potential utility in the treatment of multidrug 
resistant tumors 

.       
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Picture 1. Development of human ovarian cancer xenograft model 

5 x 106 A2780/Adr or A2780/wt cells in a 100 µl cell suspension (A) were injected s.c. into the back 
flank of immunocomprimised nude mice (B).  Tumor formation was visible after one week and tumor 
volume rapidly increased per week as depicted in C. 
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Picture 2. 99mTc-Sestamibi imaging studies 

Mice were injected with 5 MBq of 99mTc-Sestamibi into one of the lateral vein (A) anesthetised and 
placed on the imaging counter (B).  The injection spot on the tail was shielded with a led shield (C) 
Images were acquired using a small field-of-view gamma-camera ADAC TransCam equipped with a 
pinhole collimator (4 mm aperture) and processed using Pegasys X, Version 4.2 software (D). 
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Picture 3. 99mTc-Sestamibi biodistribution studies 

After 99mTc-Sestamibi imaging experiments were terminated, mice were sacrificed and tumors (A) as 
well as blood and remaining tissues (B) were isolated.  Tissues were weighted and placed into glass 
tubes (C) for gamma-counting using the Packard Cobra II Series Auto-Gamma ® Counting System 
(D). 
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Picture 4.  Residual 99mTc-Sestamibi activity 24 postinjection 

The same animal was imaged 15 min (A) and 24 h (B) following i.v. injection of 5 mBq 99mTc-
Sestamibi. Residual 99mTc-Sestamibi activity decreased to less than 2 % after 24 h. 

 

A. B. 



Appendix 

    

v

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 5.  Regions of interest analysis 

Regions of interest were drawn around the whole body, central organs and tumors as depicted.  
Radio-intensity of 99mTc-Sestamibi uptake was determined for each organ and expressed in 
counts/pixel/second of acquisition time. 
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