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“Biodiversity benefits people through more than just its contribution to material 
welfare and livelihoods. Biodiversity contributes to security, resiliency, social 
relations, health, and freedom of choices and actions.” 
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1.  Biodiversity in tropical forests and pollination 
 
The Convention on Biological Diversity of Rio de Janeiro (Brazil) identified the 
“importance of biological diversity for evolution and for maintaining life sustaining 
systems of the biosphere” and the “general lack of information and knowledge 
regarding biological diversiy”. In addition, the signatory states stressed “that biological 
diversity is being significantly reduced by certain human activities” (CBD, 1992).  
 
Historically, scientists recognized the contrast between the tremendous diversity of 
tropical plants and animals and the much lower diversity of plants and animals in 
temperate regions since the mid-nineteenth century (Bates, 1864; Wallace, 1878; 
Huston, 1994). The increase of the average species richness moving from high to low 
latitudes has already been documented for a wide spectrum of taxonomic groups 
(Gaston, 2000). After fogging the canopies of tropical rain forests, Erwin (1982) 
corrected conservative estimations of about 2 million animal species living on our 
planet “very optimistically” (Freund, 2004) to a plausible upper limit of 30 million 
species including all rain forests in the world due to a high amount of previously 
unknown arthropod species in his samples.  
 
Myers et al. (2000) identified plant and vertebrate “biodiversity hotspots”. Regarding 
the 300,000 plants species known world wide, seven of the top ten endemic plant 
hotspots include rain forests (Myers et al., 2000). This observation led the authors to 
describe tropical forests as “major wilderness areas”.  
 
In addition, Wilson (1988) not only called rain forests “centres of diversity”, but also 
emphasized two principal reasons for biologists and conservationists to focus increasing 
attention on tropical rain forests:  
 

“First, although these habitats cover only 7% of the Earth’s land surface, they 
contain more than half the species in the entire world biota. Second, the forests 
are being destroyed so rapidly that they will mostly disappear within the next 
century, taking with them hundreds of thousands of species into extinction.” 
(Wilson, 1988) 

 
It is well-known that the increase in human population forced a dramatic change upon 
the natural environment. The high diverse rain forests are under enormous 
anthropogenic pressure leading to a severe biodiversity decline due to habitat loss 
(Myers, 1988; Heywood, 1995; Pimm et al., 1995). Unfortunately, this pressure results 
especially from the fact that surrounding areas of tropical rain forests are densely 
populated in countries with very high population growth rates (Blackett, 1994; 
Tattersfield et al., 2001). The increased anthropogenic use of land is one of the most 
important drivers of environmental change (Sala et al., 2000). Therefore, degradation 
transforms primary to secondary forest systems. Furthermore, close and widespread 
forests split up into forest fragments and will be deforest afterwards (Whitmore, 1997; 
Laurance et al., 2000). Up to now, nearly one quarter of the tropical rain forest biome 
has been fragmented or removed by humans (Wade et al., 2003). 
 

“The current massive degradation of habitat and extinction of many of the Earth’s 
biota is unprecedented and is taking place on a catastrophically short timescale.” 
(Novacek & Cleland, 2001) 
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Fragmentation of natural habitats not only affects the distribution and the abundance of 
organisms, it may also disturb the important biological processes that maintain 
biodiversity and that are of high importance for the functioning and the long-term 
existence of ecosystems (Harrison & Bruna, 1999; Naeem et al., 1999; Chapin et al., 
2000; Kraemer & Bergsdorf, 2001).  
 
Janzen (1974) already remarked in the early seventies:  
 

“What escapes the eye, however, is much more insidious kind of extinction: the 
extinction of ecological interactions. Many of the remaining participants of these 
interactions will probably hold on for many years, but they constitute little more 
than haphazard, semi-self-sustaining zoo and botanical garden.”  

 
Consequences upon essential ecosystem processes like seed dispersal (Peres, 2000; 
Wright et al., 2000) and regeneration (Laurance et al., 2000; Pacheco & Simonetti, 
2000; Wright et al., 2000) are expected. Furthermore, Kevan (1975) stressed that “the 
often unknown but undoubtedly important interrelationships of pollinators and plants 
constitute a serious void” in both agricultural and natural communities. 
 
It is generally accepted that pollination is a major step in the life-history of most 
flowering plants and therefore it is of high significance to the organization of plant 
communities and to the long-term maintenance of whole vegetational units and its 
capability for regeneration (Buchmann & Nabhan, 1996). Almost 100 percent of the 
flowering plant species in tropical forests are pollinated by animals, with bees being 
among the most important pollinators (Roubik, 1989; Neff & Simpson, 1993; Kraemer 
& Bergsdorf, 2001). Consequently, pollination is an essential ecosystem service (Fig.1). 
 

 
Fig. 1: Linking Diversity and Ecosystem Processes (Kraemer et al., 2001) 

In consideration of these ecosytematic coherences, Buchmann and Nabhan (1996) 
stressed the dire need of pollination conservation and established the “Forgotten 
Pollinators Campaign”. In the same year, the Third Conference of the Parties (COP 3) 
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of the Convention on Biological Diversity (CBD) gave pollinators priority for 
publishing case studies in its biodiversity programme (CBD, 1996). This stimulated 
global interest in pollination conservation, and the first subsequent major activity was 
an international symposium in Sao Paulo, Brazil (1998). This resulted in the Sao Paulo 
Declaration (IPI, 1999), which called for an international pollinator initiative and 
documented many activities required for pollinator conservation.  
 
Moreover, because of the fact that a lot of crops also depend on pollinators, the African 
Pollinator Initiative (API), founded in 1999, stressed the need for deeper understanding 
of plant-pollinator interactions both in agricultural and natural ecosystems “for 
sustainable livelihoods and the conservation of biological diversity in Africa” (API, 
2003). But Roger et al. (2004) still identified a huge lack of basic knowledge and 
information concerning pollination relationships, especially focusing on Africa in 
general and concerning fragmented rain forest systems in particular. 
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2.  Pollination and fragmentation 
 
It is largely accepted that fragmentation of natural habitats is one of the greatest threats 
to terrestrial biodiversity worldwide (Jennersten, 1988; Rathcke & Jules, 1993; Turner, 
1996). Habitat fragmentation can affect animal and plant populations, but also essential 
ecosystem processes, like plant-pollinator interactions (Aizen et al., 2002). In theory 
(Fig. 2), a reduction in population size and an increase in isolation due to fragmentation 
may lead to limited gene flow, increased inbreeding, loss of genetic variation, decreased 
individual fitness, and consequently result in an increased risk of population extinction 
(Murcia, 1995; Jules & Rathcke, 1999; Cunningham, 2000a; 2000b; Jacquemyn et al., 
2002; Ghazoul, 2005). 
 

 
Fig. 2: Theory of fragmentation and extinction 

 
Several studies appear to support this theory on different levels of pollination and seed 
dispersal (Jennersten, 1988; Aizen & Feinsinger, 1994b; Murcia, 1995; Didham et al., 
1996; Kearns et al., 1998; Jules & Rathcke, 1999; Cunningham, 2000a; 2000b; 
Jacquemyn et al., 2002). But just a few studies actually quantified pollination success in 
habitat fragments (Ghazoul, 2005), especially in highly diverse and complex rain forest 
systems. 
For the most part studies reported a decline in pollinator abundance as response to 
habitat fragmentation (Jennersten, 1988; Aizen & Feinsinger, 1994b; Liow et al., 2001; 
Lennartsson, 2002). In addition, limits to pollinator movement among patches were 
found (Steffan-Dewenter & Tscharntke, 1999; Goverde et al., 2002). Therefore, fewer 
flower visits (Jennersten, 1988; LaMont et al., 1993; Schulke & Waser, 2001) and 
smaller pollen loads (Cunningham, 2000a) or poorer pollen quality (Severns, 2003) 
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p to now, following the reviews conducted by Aizen et al. (2002) and Ghazoul (2005) 

) and its pollen supply in Costa Rica 
unningham, 1996); (2) on the tropical tree Pithecellobium elegans [Mimosaceae] and 

its genetic diversity and mating system in Costa Rica (Hall et al., 1996); (3) on the 
tropical forest tree Symphonia globulifera [Buttiferae] and its reproductive dominance 
in Costa Rica (Aldrich & Hamrick, 1998); and (4) on the tropical tree Dinizia excelsa 
[Fabaceae] and its pollen dispersal inside the Amazonian rain forest (Dick et al., 2003). 
In these studies no clear pattern of response became obvious. Cunningham (1996), Hall 
et. al (1996) and Dick et al. (2003) documented negative effects of smaller patch sizes 
on plant reproductive biology. In contrast to this, Aldrich & Hamrick (1998) found a 
higher reproductive output due to fragmentation. 
Most of the fragmentation and/or patch sizes oriented studies in respect of forest 
habitats were conducted in non-rain forest systems. Also here, the authors reported 
about different consequences on pollination and reproductive success as a result of 
fragmentation processes: significant negative (Aizen & Feinsinger, 1994a; Nason & 
Hamrick, 1997; Ghazoul & McLeish, 2001; Rocha & Aguilar, 2001; Quesada et al., 
2003), significant positive (Aizen & Feinsinger, 1994a) or non-significant (Aizen & 
Feinsinger, 1994a; Ghazoul & McLeish, 2001; Cascante et al., 2002) effects.  
  
Regarding Africa, a large number of studies on pollination in general have been 
conducted in the floristically unique Cape region in South Africa. This could be 
assumed as the only region in Africa where pollination biology might be regarded as 
reasonably well studied (Rodger et al., 2004). But also here, studies on fragmentation 
and plant reproductive ecology are very rare. 
 

were described in fragments. This might lead to limited pollen flow and increased 
inbreeding (Richards et al., 1999; Richards, 2000) resulting in progeny that is less fit 
(Agren, 1996), which among other reasons depresses reproductive success 
(Cunningham, 2000b).  
 
U
about 40 important studies have been published, which either explicitly or implicitly 
dealt with the potential impact of fragmentation and/or patch sizes on plant reproductive 
ecology. In these reviews about 70 plant species were integrated. Only four of these 
studies were conducted in tropical rain forest remnants: (1) on an understorey palm 
(Calyptrogyne ghiesbreghtiana [Arecaceae]
(C
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3.  Objectives 
“Chovya chovya humaliza buyu la asali” – 

“Dip after dip depletes a jar of honey” 
(Kenyan saying) 

 
This study was conducted due to the following reasons:  
 

- a general lack of knowledge and a limited understanding of plant-pollinator 
interactions in fragmented landscapes (Steffan-Dewenter et al., 2006), in 
particular with respect to tropical forest systems (Aizen et al., 2002; Ghazoul, 
2004) 

 
- the reviewed papers showed substantial differences in certain aspects of the 

pollination biology between Africa and the rest of the world (Rodger et al., 
2004) 

 
- the urgent need of a better understanding of these crucial and highly complex 

ecological processes for a potential formulation of effective conservation 
protocols that could also facilitate the sustainable use of forests and forest 
resources (Ghazoul, 2004). 

 
 
In this context this study focused on the following questions: 
 

- Does the fragmentation of the Kakamega Forest affect different levels of 
pollination, such as visitation frequency, primary pollination success, seed 
and/or fruit set? 

 
- Are general patterns visible inside the Kakamega main forest and its fragments 

regarding pollination levels and the different observed plant species? 
 
- Do the observed rain forest plant species potentially show pollinator or pollen 

limitation at a forest fragment level in Kakamega Forest? 
 
- Which abiotic and biotic factors have influences on the levels of pollination in 
 Kakamega Forest? 
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4.  Study area 
“Fuata nyuki ule asali” – 

“Follow bees and get honey” 
(Kenyan saying) 

4.1 Kakamega Forest and surrounding forest fragments 
The field work was conducted at Kakamega Forest (between latitudes of 00°10’N and 
00°21’N and longitudes of 34°47’E and 34°58’E), in Western Kenya at an altitude of 
1,500 to 1,700m near the border with Uganda and about 50 km north of Lake Victoria 
(Fig. 3). It is situated in the Shinyalu Division of Kakamega District in the Western 
Province of Kenya. 

 
Fig. 3: Political map of Africa (inside the red box: Kenya); National Parks, Reserves and other      
 nature spots (inside the red box: Kakamega Forest in Western Kenya)  

The local Luyia community originally called the Kakamega area “Shieywe”, named 
after a sort of grass which was used for thatching huts in this region. Due to difficulties 
in communication between the British colonialists and the local chiefs the commissioner 
named the area Kakamega (Inhaji Analo, 2003). 
 
Kakamega Forest is a mid-altitudinal tropical rain forest considered to be the 
easternmost remnant of the lowland Congo basin rain forests of Central Africa 
(Kokwaro, 1988; Sayer et al., 1992; Wass, 1995). Due to new vegetation surveys and 
according to Knapp (1973), Lind & Morrison (1974) and White (1983) Althof (2005) 
concluded that Kakamega Forest should be identified as a dry peripheral semi-evergreen 
Guineo-Congolian transitional rain forest related to the Congo basin. 
 
Following the land cover classes of Lung & Schaab (2004), about 11,800 ha of “near 
natural & old secondary fores” and “secondary fores” still existed in the year 2001. 
However due to its location amidst the densest populated agricultural centre in the 
world with about 600 people per km2 (Blackett, 1994; Tattersfield et al., 2001), 
Kakamega Forest has been continually exploited for many years (Kokwaro, 1988; 
Wass, 1995) and is now highly fragmented and disturbed (Fig. 4).  



Study area 8 
______________________________________________________________________ 
 
 

 
Fig. 4: Satellite image (channel 5 of Landsat 7 ETM+, 05 Feb 2001) of Kakamega main forest and  
             its five fragments (Malava, Kisere, Ikuywa, Yala and Kaimosi) in Western Kenya with     
             official forest boundaries gazetted in 1933 (dashed line) and official boundaries of National  
             and Nature Reserves (white line). Coordinates in UTM 36 N. (G. Schaab, BIOTA E02) 
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 further increase of population density in the next decades with its linked 

sure of harvesting and forest exploitation is most likely (Tsingalia, 

in the Forest Reserve in 1967 (Blackett, 1994). 

lf of the state (Fig. 4) (Bleher et al., 

 the 

 not 
vident (Freund, 2004). 

e from very strongly 

orest (Buyangu hill). 
The more undisturbed forests in Southern Kakamega (Yala) are richer in different 

arable areas in the Northern part (Kisere fragment and the protected 

Animal diversity 
The Kak als. With respect to primates you 
can find the O ubis), (Colobus 
guereza), the rcopith Monkey 

A
anthropogenic pres
1988; Cincotta et al., 2000). 
 
Management history 
Kakamega Forest was first gazetted as Trust Forest under proclamation No. 14 in 1933 
and has since been managed by the Forest Department (FD). In 1964 it was declared to 
be a Central Forest (Blackett, 1994). Three small Nature Reserves, Isecheno, Kisere and 
Yala, were established and gazetted with
In 1986, the northern part of Kakamega called Buyangu together with the adjacent 
Kisere Forest was gazetted as Kakamega National Reserve and fell under management 
of the Kenya Wildlife Service (KWS). Today, Kakamega Forest is partly a Forest 
Reserve, partly Nature Reserve and partly National Reserve, and its management is 
under the authority of both, FD and KWS, on beha
2005).  
Wass (1995) characterised the management aims and strategies as follows, the FD is 
intending “to enhance conservation and protection of indigenous forest, to improve
production of timber and fuel wood and to establish a framework for long-term 
development forestry” and the KWS would like “to conserve, protect and sustainably 
manage the wildlife resources”. 
 
Climate and soil conditions 
Annual rainfall in Kakamega Forest is 2007 mm (as averaged from FD records at 
Isecheno Forest Station from 1982 to 2001) and highly seasonal with a rainy season 
from April to November and a short dry season from December to March. The average 
monthly maximum temperature ranges from 18 to 29°C while the average monthly 
minimum temperature ranges from 4 to 21°C (Muriuki & Tsingalia, 1990). But, during 
field work between 2001 and 2003, a regular change of dry and wet season was
e
 
The dominant soil classes in Kakamega Forest are Ferrasols, Lixisols, Cambisols and 
Phaeozems. Most soils are deep to very deep on a flat to undulating terrain. Soil texture 
is predominantly clayey. All soils have low nutrient levels and rang
acidic to slightly acidic (pH 4.5-6.5). Soils in the northern part of the forest are in more 
advanced stage of weathering as compared to the southern part with an exception of 
Isecheno soils. These factors may strongly limit plant growth (Musila et al., 2005). 
 
Plant diversity 
Kakamega Forest is a unique mixture of Guineo-Congolian and Afromontane species 
with most of the Guineo-Congolian species reaching their easternmost distribution limit. 
All in all, 397 species of 93 families were found in Kakamega Forest with the highest 
amount of species occurring in the disturbed areas with secondary f

species than comp
area of the Colobus forest). All observed plant communities of Kakamega Forest were 
influenced by human activities in the last decades (Althof, 2005). 
 

amega Forest houses a large number of anim
live Baboon (Papio an

 Blue Monkey (Ce
 the Black and White Colobus 
ecus mitis), the Red-tailed 
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(Cercopithecus asc  De Brazza’s Monk cus neglectus). In 
addition, there are n ope species, iptus), the 
Blue Duiker (Cephalophus monticola), the Red Duik  harveyi) and the 
Common 
With respect to reptiles and amphibians, the forest e richest areas in 

enya. Commonly encountered species include e.g. the Gaboon Viper (Bitis gabonica), 
the Rhinoceros Viper (Bitis nasicornis), the Forest Cobra (Naja melanoleuca), the 
Jameson’s Mamba (Dendroaspis jamesoni kaimosae), and diverse tree frog species 
(Hyperolius spec.) (Köhler, 2004; Wagner, 2004).  
The avifauna of the Kakamega Forest is a unique combination of central lowland and 
highland species. With more than 350 recorded species the diversity is very high 
(KIFCON, 1994) and over 200 species are forest dependants (Inhaji Analo, 2003).  
The insect fauna of Kakamega Forest and its surrounding farmland is also greatly 
diverse, especially with regard to butterflies (Lepidoptera), of which more than 490 
species or 55% of approximately 900 Kenyan species have been recognized so far 
(Kühne et al., 2004). In addition, a total number of 71 dragonfly species (Clausnitzer, 
2004) have been recorded from the forest. With respect to bees, the probably most 
important group of pollinators, all in all about 230 species from four bee families were 
found by Gikungu (2006). The most dominant families were Apidae, Halictidae and 
Megachilidae; the family Colletidae was found to be very sparsely distributed. 
Furthermore, Gikungu (2006) described along a gradient a clear pattern of bee species 
richness, as well as bee abundance. The highest number was recorded in farmland 
followed by bushland and found to decrease with forest age in almost every family. 
 
Anthropogenic impact  
Kakamega Forest has been continually exploited for many years due to the high 
surrounding population pressure (Kokwaro, 1988; Wass, 1995). As a result, it lost about 
20% in forest area over the past 30 years (Lung & Schaab, 2004).  
Human impact – such as logging, paths, debarking, charcoal production and honey 
gathering – could be found in different forest parts, whereas selective logging occurs 
over the entire Kakamega Forest (Bleher et al., 2005). These disturbances have also 
been observed by Mutangah (1996), who stated the highest logging levels took place in 
the most southern part of the forest as well as along the western edge. Furthermore, 
Bleher et al. (2005) showed that the number of trees logged illegally in the last 20 years 
was significantly lower in forest parts managed by KWS and within highly protected 
National and Nature Reserves, respectively. The lowest logging levels were found in the 
northern Kakamega National Reserve, in central Ikuywa and Yala. 

4.2 Study sites 
The study sites were spread over the entire Kakamega Forest, inside the main forest 
fragment (subsequently called: main forest) and its surrounding forest fragments 
(subsequently called: forest fragments) (Table 1; Fig. 5).  

Table 1: Study sites arranged from north to south 

Main forest fragment Surrounding forest fragments 

anitus) and the ey (Cercopithe
umerous antel  the Bushbuck (Tragelaphus scr

er (Cephalophus
Duiker (Sylvicapra grimmia).  

ranges among th
K

Colobus trail Malava Forest 
Buyangu hill Kisere Forest (North & South) 

Salazar circuit I & II Ikuywa Forest 
Isecheno circuit (North & South) Yala Forest 

 Kaimosi Forest 
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Fi 5: Satellite image (channel 5 of Landsat 7 ETM+, 05 Feb 2001) of the Kakamega main 
      forest (white scripture) and fragment (black scri

g. 
pture) study sites (white circles);    

      Coordinates inUTM 36 N. (BIOTA E02, G. Schaab) 
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4.2.1 Main forest study sites 
 
Colobus trail 
Table 2: Characterization of the Colobus trail study site  

Location northern study site inside Kakamega Forest (Fig. 5) 
Size 8,245 ha   (Lung & Schaab, 2004) 
Management regime Kenya Wildlife Service (KWS) 
Protection status Nature Reserve 

Disturbance history 

1913/16 map: one of the few areas of full forest at that date;  
from 1943: Kakamega Sawmill cut timber;  
from 1973 to the mid-1970’s (reported by local people): Elgeyo 
Sawmill worked there   (Mitchell, 2004) 

 
until 1989: some decrease in near-natural and secondary forest, 
especially along the edges of the forest glades and along the 
northern and eastern forest edge; 
afterwards: the trend reverses (bushland decrease in favour of 
secondary forest, hardly any agricultural land can be found in 
the glades anymore)   (Lung & Schaab, 2004) 
 
lowest logging levels were found in the northern Kakamega 
National and Nature Reserve    
(Bleher et al., 2005)   

Cut trees 5.2 per ha   (Bleher et al., 2005) 
Paths 3 per ha    (Bleher et al., 2005) 
Humidity 59.0 %   (Althof, 2005) 
Soil classification Rhodic Ferrasols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 5.6; C/N ratio: 10;  
exchangeable bases in mmolc•kg-1 :  
CEC: 140; [Ca++]: 80; [Mg++]: 19.4   (Musila et al., 2005)  

Plant community Deinbollia kilimandscharica – Markhamia lutea 
(Althof, 2005) 

Succession stage middle-aged secondary   (Althof, 2005) 
No. of plant species 135 (Evenness via Shannon-Wiener: 0.754)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

87.5 % (100 m buffer); 
62.1 % (500 m buffer); 
59.51 % (1,000 m buffer); 
33.91 % (2,000 m buffer)   
 (G. Schaab, pers. comm.) 

Observed species 

Acanthopale pubescens;   
Acanthus eminens; 
Heinsenia diervilleoides; 
Dracaena fragrans  
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Buyangu hill 
Table 3: Characterization of the Buyangu hill study site 

Location northern study site inside Kakamega Forest (Fig. 5) 
Size 8,245 ha   (Lung & Schaab, 2004) 
Management regime Kenya Wildlife Service (KWS) 
Protection status Nature Reserve 

Disturbance history 

1931 (old people remember): families lived on Buyangu hill 
before the forest boundary was altered and used to cut 
thatching grass there; 
in the mid-1970’s: Elgeyo Sawmill cut timber from Buyangu 
hill   (Mitchell, 2004) 
  
until 1989: some decrease in near-natural and secondary forest, 
especially along the edges of the forest glades and along the 
northern and eastern edge of the forest; 
afterwards: the trend reverses (bushland decreases in favour of 
secondary forest, hardly any agricultural land use can be found 
in the glades anymore)   (Lung & Schaab, 2004) 
 
lowest logging levels were found in the northern Kakamega 
National and Nature Reserve, (central Ikuywa and Yala)    
(Bleher et al., 2005)   

Cut trees 9.1 per ha   (Bleher et al., 2005) 
Paths 0 per ha   (Bleher et al., 2005) 
Humidity 59.0 %   (Althof, 2005) 
Soil classification Plinthic Lixisols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 4.9; C/N ratio: 10;  
exchangeable bases in mmolc•kg-1 :  
CEC: 120; [Ca++]: 0; [Mg++]: 11.3   (Musila et al., 2005)  

Plant community Deinbollia kilimandscharica – Markhamia lutea 
(Althof, 2005) 

Succession stage middle-aged secondary   (Althof, 2005) 
No. of plant species 103 (Evenness via Shannon-Wiener: 0.796)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

88.24 % (100 m buffer); 
64.66 % (500 m buffer); 
68.16 % (1,000 m buffer); 
59.89 % (2,000 m buffer) 
 (G. Schaab, pers. comm.) 

Observed species Heinsenia diervilleoides; 
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Salazar circuit 
Table 4: Characterization of the Salazar circuit study sites 

Location northern study site inside Kakamega Forest (Fig. 5) 
Size 8,245 ha   (Lung & Schaab, 2004) 
Management regime Kenya Wildlife Service (KWS) 
Protection status Nature Reserve 

Disturbance history 

1913/16 map: shows the well-being of the forest at that time; 
1977/78: Indiscriminately logging by Elgeyo Sawmill  
(Mitchell, 2004) 
 
until 1989: some decrease in near-natural and secondary forest, 
especially along the edges of the forest glades and along the 
northern and eastern edge of the forest; 
afterwards: the trend reverses (bush land decrease in favour of 
secondary forest, hardly any agricultural land use can be found 
in the glades anymore)    (Lung & Schaab, 2004) 
 
Salazar II (as well as Yala) showed lowest disturbance levels 
per hectare   (Bleher et al., 2005) 
 
lowest logging levels were found in the northern Kakamega 
National and Nature Reserve, (central Ikuywa and Yala)    
(Bleher et al., 2005)     

Cut trees 5/2 per ha (Salazar I/Salazar II)   (Bleher et al., 2005) 
Paths 2/1 per ha (Salazar I/Salazar II)   (Bleher et al., 2005) 
Humidity 68.6 %   (Althof, 2005) 
Soil classification Haplic Ferrasols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 6.5; C/N ratio: 9;  
exchangeable bases in mmolc•kg-1 :  
CEC: 200; [Ca++]: 340; [Mg++]: 19.3   (Musila et al., 2005)  

Plant community Deinbollia kilimandscharica – Markhamia lutea 
(Althof, 2005) 

Succession stage middle-aged secondary   (Althof, 2005) 
No. of plant species 144 (Evenness via Shannon-Wiener: 0.703)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

96.88/94.28 % (100 m buffer in Salazar I/Salazar II); 
84.43/94 % (500 m buffer in Salazar I/Salazar II); 
75.34/92.03 % (1,000 m buffer in Salazar I/Salazar II); 
75.57/82.87 % (2,000 m buffer in Salazar I/Salazar II)   
 (G. Schaab, pers. comm.) 

Observed species 
Acanthopale pubescens (Salazar);   
Acanthus eminens (Salazar I & II);   
Heinsenia diervilleoides (Salazar I) 
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Isecheno circuit 
Table 5:  Characterization of the Isecheno circuit study sites  

Location southern study site inside Kakamega Forest (Fig. 5)  
Size 8,245 ha   (Lung & Schaab, 2004) 
Management regime Forest Department (FD) 
Protection status Nature Reserve 

Disturbance history 
 

northern study site: 
one of a few parts of the Kakamega Forest with just a few 
logging; 
southern study site: 
around 1931: logging in order to supply the gold mines with 
fuel and pit props; 
1938: Mitchell Cotts & Co. Sawmill was operating a sawmill at 
the eastern end of the Isecheno Glade; 
1972/73 until 1987: loss of large forest areas   (Mitchell 2004) 
 
until the late 1980s: especially the southern parts of Kakamega 
were exploited   (Bennun & Njoroge, 1999; Mitchell, 2004) 
 
cattle tracks appear to be a problem mostly at Isecheno    
(Bleher et al., 2005)   

Cut trees 9/12.5 per ha (northern/southern study site)   (Bleher et al., 2005) 
Paths 18.8 per ha   (Bleher et al., 2005) 
Humidity 79.4 %   (Althof, 2005) 
Soil classification Eutric Cambisols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 5.9; C/N ratio: 5;  
exchangeable bases in mmolc•kg-1 :  
CEC: 230; [Ca++]: 389; [Mg++]: 51.9   (Musila et al., 2005)  

Plant community Celtis mildbraedii – Craibia brownii 
(Althof, 2005) 

Succession stage middle-aged secondary   (Althof, 2005) 
No. of plant species 163 (Evenness via Shannon-Wiener: 0.79)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

85.71/68.57 % (100 m buffer northern/southern study site); 
81.86/69.01 % (500 m buffer northern/southern study site); 
76.74/55.62 % (1,000 m buffer northern/southern study site); 
67.32/45.5 % (2,000 m buffer northern/southern study site  
(G. Schaab, pers. comm.) 

Observed species 

Acanthopale pubescens (southern study site);   
Acanthus eminens (northern study site);   
Heinsenia diervilleoides (southern study site); 
Dracaena fragrans (southern study site) 
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4.2.2 Forest fragments study sites 
 
Malava Forest 
Table 6:  Characterization of the Malava forest fragment 

Location northern forest fragment (Fig. 5)  
Size 113 ha   (Lung & Schaab, 2004) 
Management regime Forest Department (FD) 
Protection status Forest Reserve 

Disturbance history 

1910: definitely isolated from other forests, probably happened 
much earlier; 
1940: FD records show start of intense logging   (Mitchell 2004) 
 
1980: decrease in near-natural forest and secondary forest 
the 1980s: forest plantations and bushed areas observed 
2002: forest plantations disappeared in the most northern part 
and bushed area is used for agriculture again 
today: two fragments   (Lung & Schaab, 2004) 

Cut trees 9.2 per ha   (Bleher et al., 2005) 
Paths 8.8 per ha   (Bleher et al., 2005) 
Humidity 67.2 %   (Althof, 2005) 
Soil classification Haplic Ferrasols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 5.8; C/N ratio: 7;  
exchangeable bases in mmolc•kg-1 :  
CEC: 230; [Ca++]: 329; [Mg++]: 28.5   (Musila et al., 2005)  

Plant community disturbed Deinbollia kilimandscharica – Markhamia lutea 
(Althof, 2005) 

Succession stage logged + planted forest   (Althof, 2005) 
No. of plant species 115 (Evenness via Shannon-Wiener: 0.749)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

79.41 % (100 m buffer); 
32.99 % (500 m buffer); 
20.54 % (1,000 m buffer); 
15.15 % (2,000 m buffer)   (G. Schaab, pers. comm.). 

Observed species Heinsenia diervilleoides [Rubiaceae] 
 

 
Fig. 6: Aerial im g. 7: Aerial image of Kisere Forest    

a 

 

age of      Fi
            Malav Forest                               (pictures from R. Steinbrecher 2001) 
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Kisere Forest 
Table 7:  Characterization o

Location 

f the Kisere forest fragment  

northern forest fragment (Fig. 5)   
Size 420 ha   (Lung & Schaab, 2004) 
Management regime Kenya Wildlife Service (KWS) 
Protection status Nature Reserve 

Disturbance history 

0  century: never connected to Kakamega Forest by anything 

 as today   (Mitchell 2004) 

of secondary forest separating the near-
 a southern part is generally 

rest along the southern edge 

rn Kakamega 
d Nature Reserve, (central Ikuywa and Yala)    

2 th

more substantial than probable connections along the Isiukhu 
and Nandamaywa Rivers   (Tsingalia, 1988) 
 
1913/16 map: the same size
 
1972-2001: wedge 
natural forest into a northern and
closing again, secondary fo
decreases slightly   (Lung & Schaab, 2004)   
 
lowest logging levels were found in the northe
National an
(Bleher et al., 2005)     

Cut trees 10.4 per ha   (Bleher et al., 2005) 
Paths 2.3 per ha   (Bleher et al., 2005) 
Humidity 44.7 %   (Althof, 2005) 
Soil classification Rhodic Ferrasols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

 2005)  

pH-value: 5.6; C/N ratio: 10;  
-1 exchangeable bases in mmolc•kg :  

CEC: 150; [Ca++]: 126; [Mg++]: 24.7   (Musila et al.,

Plant community Deinbollia kilimandscharica – Markhamia lute
(Althof, 2005) 

a 

Succession stage  near-primary   (Althof, 2005)

No. of plant species 138 (Evenness via Shannon-Wiener: 0.778)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

97.06/97.06 % (100 m buffer northern/southern study site); 
69.47/70.20 % (500 m buffer northern/southern study site); 
58.99/45.17 % (1,000 m buffer northern/southern study site); 
29.81/32.87 % (2,000 m buffer northern/southern study site  
(G. Schaab, pers. comm.) 

Observed species 

Acanthopale pubescens (southern study site);   
Acanthus eminens (northern study site);   
Heinsenia diervilleoides (southern study site); 
Dracaena fragrans  
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Ikuywa Forest 
Table 8: Characterization of the Ikuywa Forest fragment 

Location southern forest fragment (Fig. 5)  
Size 1,370 ha   (Lung & Schaab, 2004) 
Management regime Forest Department (FD) 
Protection status Forest Reserve 

Disturbance history 1913/16 map: shows the same eastern forest border; 
1959 map: shows that a patch south and west of Ikuywa was 
connected to the Kakamega Forest; 
before the late 1950’s: Ikuywa was not logged   (Mitchell 2004) 

 
1972-2001: small changes in the north, 
2001: a stronger share of bushes in the forest along the 
southern edge of the forest   (Lung & Schaab, 2004) 
 
1979: the narrow connection between the Yala and Ikuywa 
forests was all but lost   (Brooks et al., 1999) 

 
lowest logging levels were found in central Ikuywa, (the 
northern Kakamega National and Nature Reserve and Yala)    
(Bleher et al., 2005)     

Cut trees 3.8 per ha   (Bleher et al., 2005) 
Paths 10.8 per ha   (Bleher et al., 2005) 
Humidity 57.8 %   (Althof, 2005) 
Soil classification Haplic Phaeozems   (Musila et al., 2005) 
Chemical properties 
of soil (A-horizon) 

pH-value: 5.7; C/N ratio: 8;  
exchangeable bases in mmolc•kg-1 :  
CEC: 200; [Ca++]: 255; [Mg++]: 32.2   (Musila et al., 2005)  

Plant community Celtis mildbraedii – Craibia brownii 
(Althof, 2005) 

Succession stage middle-aged secondary   (Althof, 2005) 
No. of plant species 122 (Evenness via Shannon-Wiener: 0.718)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

97.14 % (100 m buffer); 
66.05 % (500 m buffer); 
50.74 % (1,000 m buffer); 
33.14 % (2,000 m buffer)   
 (G. Schaab, pers. comm.) 

Observed species Acanthopale pubescens;   
Acanthus eminens; 
Dracaena fragrans  
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Yala Forest 
Table 9:  Characterization of the Yala Forest fragment 

Location southern forest fragment (Fig. 5) 
Size 1,178 ha   (Lung & Schaab, 2004) 
Management regime Forest Department (FD) 
Protection status Nature Reserve 

Disturbance history 

in the 1950’s: it became disconnected from the indigenous 
forest on the northern half of its boundary; 
Yala Nature Reserve has been never officially logged, but there 
was perennial pit-sawing of a few species   (Mitchell 2004) 

 
1972-2001: in the southwest a permanent change in plantation 
forests and bushland, in the southeast a continuous loss of large 
areas of forest in favour of bushland   (Lung & Schaab, 2004) 

 
Yala (as well as Salazar II) showed lowest disturbance levels 
per hectare   (Bleher et al., 2005)   
 
lowest logging levels were found in Yala, (the northern 
Kakamega National and Nature Reserve and central Ikuywa)    
(Bleher et al., 2005)     

Cut trees 2.8 per ha   (Bleher et al., 2005) 
Paths 0 per ha   (Bleher et al., 2005) 
Humidity 83.8 %   (Althof, 2005) 
Soil classification Chromic Cambisols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 5.9; C/N ratio: 6;  
exchangeable bases in mmolc•kg-1 :  
CEC: 170; [Ca++]: 196; [Mg++]: 13.3   (Musila et al., 2005)  

Plant community Celtis mildbraedii – Craibia brownii 
(Althof, 2005) 

Succession stage old secondary   (Althof, 2005) 
No. of plant species 120 (Evenness via Shannon-Wiener: 0.784)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

90.91 % (100 m buffer); 
78.57 % (500 m buffer); 
61.13 % (1,000 m buffer); 
53.58 % (2,000 m buffer)   
 (G. Schaab, pers. comm.) 

Observed species 

Acanthopale pubescens;   
Acanthus eminens; 
Heinsenia diervilleoides; 
Dracaena fragrans  
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Kaimosi Forest 
Table 10: Characterization of the Kaimosi Forest fragment 

Location southern forest fragment (Fig. 5) 
Size 65 ha   (Lung & Schaab, 2004) 
Management regime Forest Department (FD) 
Protection status Forest Reserve 

Disturbance  

1913/16 map: shows an unbroken forest of Kakamega and 
Kapwaren Forest (now: South Nandi Forest); 
between 1913 and 1959: gradually eroded;  
1965: pit-sawing of local the locals   (Mitchell 2004) 
 
1972-2001: increase in bushland from the south, while forest 
area is spreading in the northeast 
2001: the southern fragments mostly consist of bushland, in the 
northwest existing forest plantation disappeared 
(Lung & Schaab, 2004) 

Cut trees 30 per ha   (Bleher et al., 2005) 
Paths 18.3 per ha   (Bleher et al., 2005) 
Humidity 67.2 %   (own estimation) 
Soil classification Eutric Cambisols   (Musila et al., 2005) 

Chemical properties 
of soil (A-horizon) 

pH-value: 4.5; C/N ratio: 10;  
exchangeable bases in mmolc•kg-1 :  
CEC: 100; [Ca++]: 58; [Mg++]: 6.4   (Musila et al., 2005)  

Plant community Celtis mildbraedii – Craibia brownii 
(Althof, 2005) 

Succession stage heavily logged and planted   (Althof, 2005) 
No. of plant species 93 (Evenness via Shannon-Wiener: 0.665)   (Althof, 2005) 
Forest in buffer 
zones in concentric 
circles around study 
site mid points 

83.33 % (100 m buffer); 
41.73 % (500 m buffer); 
17.65 % (1,000 m buffer); 
6.94 % (2,000 m buffer)   
 (G. Schaab, pers. comm.) 

Observed species Acanthopale pubescens;    
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5.  Material and methods 
 

“The primary technique of pollination ecology […] is the same today as in 
Sprengel’s or Darwin’s days: consistent observation of what really happens in 
nature, in the original, natural habitat of the plant under investigation.”  
(Faegri & van der Pijl, 1979) 

5.1 Study plant species 
This study was conducted on four plant species that were abundant enough to facilitate 
statistical analyses (Acanthopale pubescens [Acanthaceae], Acanthus eminens 
[Acanthaceae], Heinsenia diervilleoides [Rubiaceae] and Dracaena fragrans 
[Ruscaceae]).  
The first field campaign June 2001 to December 2001 focused on the moist 
Afromontane forest understorey shrub Acanthopale pubescens. After this Acanthus 
eminens another moist Afromontane forest understorey Acanthaceae was observed in 
two campaigns: January 2002 to March 2002 and November 2002 to February 2003. 
The third plant species under examination was Heinsenia diervilleoides, a small tree 
generally found in Afromontane and Guineo-Congolian forests. Heinsenia 
diervilleoides individuals were observed from November 2002 to March 2003. The 
fourth campaign was conducted between July 2002 and April 2003 and focused on the 
common Guineo-Congolian forest shrub Dracaena fragrans.  
 
In different studies, various study sites were taken into consideration, because of the 
fact that not every plant species examined was found blooming everywhere. 
Consequently, different observation plots were conducted inside particular study sites 
(Table 11). 
Table 11: Study sites with flowering plant species (grey box) during field campaigns 

 
Acanthopale 
pubescens 

[Acanthaceae] 

Acanthus 
eminens 

[Acanthaceae] 

Heinsenia 
diervilleoides 
[Rubiaceae] 

Dracaena 
fragrans 

[Ruscaceae] 

Colobus trail     
Buyangu hill     

Salazar circuit  Salazar I & II Salazar I  
Isecheno circuit southern part northern part southern part  

  

Malava Forest     
Kisere Forest northern part southern part southern part  
Ikuywa Forest     

Yala Forest     
Kaimosi Forest     
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5.1.1 Acanthopale pubescens (Lindau ex Engl.) C.B. Clarke [Acanthaceae] 
Acanthaceae is a large pantropical family of about 250 genera and 2,500 species with 
four centres of distribution: Africa, Indo-Malaya, Brazil and Central America northward 
into Mexico (Kokwaro, 1994). 
 
Acanthopale pubescens itself is an erect, sometimes hairy, brunched shrub with elliptic 
leaves gradually narrowed at its base and apex. In the upper half the leaf is winged 
(Agnew & Agnew, 1994). Inflorescences are lateral and terminal (Fig. 8A/C). 
Acanthopale pubescens generates white, hermaphroditic and radial symmetric flowers 
which are hairy on the inside; in addition they are spotted and have pink and purple 
stripes (Fig. 8C/D). Corollas are up to 3 cm long and variable in size (Fig. 8B) 
(Kraemer, 2002). The anthesis of a flower takes approximately three days (pers. obser.). 

 
Fig. 8: (A) Acanthopale pubescens (Acanthaceae) (Agnew & Agnew, 1994), (B) flowers 
           (simplified lateral view). Flowers are highly variable in size (Kraemer, 2002), 
           (C) several inflorescences, (D) flower with visitor (picture from M. Kraemer 2001) 

Acanthopale pubescens offers a plietesial flowering cycle, it produces just once or a few 
times a decade huge numbers of flowers (mass blooming); followed by a synchronised 
die off of the entire plant population (pers. obser.). This mass blooming is constricted to 
a period of about four weeks. Approximately four to six weeks after fertilization 
loculicidal spindle-shaped capsules (up to 13mm long; pers. obser.) begin to emerge. Its 
fruits contain a maximum of seeds due to their four ovules. 
 
Acanthopale pubescens is distributed in moist Afromontane forests at an altitude of 
1,655 to 2,790m (Agnew & Agnew, 1994) and can mainly be found along forest trails 
and in forest gaps. Here, it is regarded as a species of an early climax succession stage 
in more or less disturbed moist Afromontane forests (Althof, 2005). 

5.1.2 Acanthus eminens (C.B. Clarke) [Acanthaceae] 
Acanthus eminens is a woody herb or shrub that is approximately five meters high. The 
leaves are oblong, pinnatifid or lobate with spiny leaf margins. These spines are also 
present at the base of the petioles (Beentje, 1994). In dense, up to 35cm (Beentje, 1994) 
long terminal stachoids royal blue to purple zygomorphic and hermaphroditic flowers 
follow each other from the bottom upwards (Fig. 9A/D). The flowers are characterised 
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by four monothecous stamens with thick, bone-like filaments (Fig. 9B) (McDade & 
Moody, 1999). The four one-sided petals fuse into a sympetalous lobed corolla 
(Dietzsch, 2004). The anthesis of a flower is approximately three to four days (pers. 
obser.). 

 
Fig. 9: (A) A. eminens with several inflorescences (picture from A. Dietzsch 2004), (B) flower of  
             A. eminens (picture from K. Gebhardt 2004), (C) A. eminens with visitor (picture from A. 
    Dietzsch 2004), (D) A. eminens with visitor  

Approximately four to six weeks after fertilization (pers. obser.) loculicidal club-shaped 
capsules (to 18mm long, (Beentje, 1994)) begin to emerge with four potential seeds, 
two at each side of its woody septum. 
 
Acanthus eminens is distributed in moist Afromontane forests at an altitude of 1,500 to 
2,800m (Agnew & Agne

  

w, 1994) and prefers moist and sunny sites. In addition, it is 
regarded as a species of a late climax succession stage in less disturbed Afromontane 
forests (Althof, 2005). 

5.1.3 Heinsenia diervilleoides (K. Schum.) [Rubiaceae] 
The Rubiaceae is a large pan tropical and subtropical family of about 500 genera and 
6,000 species (Kokwaro, 1994). 
 
Heinsenia diervilleoides is an evergreen, grey shrub or tree that grows to approximately 
12m in height. The glabrous to puberulous, narrowly elliptic leaves often show reddish 
veins underneath. Furthermore, the base of the leaf is cuneate and the apex acuminate 
with a long acute tip (Beentje, 1994). Several-flowered inflorescences and later fruits 
are axillary or in forks (Fig. 10A). The hermaphroditic and radial symmetric flowers of 
Heinsenia diervilleoides are white with pink spots inside (Fig. 10B). Corollas are hairy 
and up to 20mm long (Beentje, 1994). The anthesis of a flower is approximately three to 
four days (pers. obser.). 
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Fig. 10: (A) Heinsenia diervilleoides K. Schum. (Rubiaceae) (Beentje, 1994), 
   (B) Several inflorescences 

Approximately six to eight weeks after fertilization (pers. obser.) round, greenish-purple 
berries crowned with a persistent calyx begin to appear (Beentje, 1994). The up to 

3mm in1  diameter sized fruits (Beentje, 1994) contain a maximum of two seeds due to 

it is regarded as a species 
e in East African forests (Althof, 2005). 

ranched shrub or tree that reaches up to approximately 15m 

s of white hermaphroditic and radial symmetric flowers with exposed stamens 

their two ovules. 
  
In general, H. diervilleoides can be found in Afromontane and Guineo-Congolian 
forests at an altitude of 200 to 2,300m (Beentje, 1994). Here, 
of a late climax succession stag

5.1.4 Dracaena fragrans (L.) Ker Gawl. [Ruscaceae] 
Dracaena fragrans is an unb
in height. In Kenya, however, it is just up to five metres high (Beentje, 1994). The 
glabrous leaves are narrowly elliptic. Furthermore, the base of the leaf is narrowed, but 
spreading at the amplexicaul extreme, and the apex is acute. Inflorescences are arranged 
in panicle
and filaments out of the up to 18mm long corollas (Beentje, 1994)) (Fig. 11A/B). The 
anthesis of a flower is approximately two to three days (pers. obser.). 
 

 
Fig. 11: (A) several inflorescences, (B) Caleb Analo showing inflorescences of D. fragrance 
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5.2 Visitation frequency 
mber of visits per flower per time unit. The units in 

ation, a new plot was 
hosen.  

rded, e.g. whether the visitors collect pollen and/or nectar, and how long the 
duration of their stay was. 

r ten minutes in 
 aniline blue combined stain (1g aniline blue, 1g calcofluor (brightener), 3.5g tribasic 

potassium phosphate (K3PO4) (Kearns & Inouye, 1993)) to determine the pollen grains 
deposited on the stigmas. Each component was s iss lved  distilled water. 
In addition, it was mixed with Aqua dest. and finally topped up to the volume of one 

 into digital 
ages were assisted by analySIS® 3.1 software. 

eat number of pollen deposited. 

t 

Approximately six to eight weeks after fertilization (pers. obser.) round and sometimes 
lobed, fleshy and orange fruits are appearing (Beentje, 1994). The up to 18mm diameter 
sized berries (Beentje, 1994) contain a maximum of three seeds due to their three 
ovules. 
  
Dracaena fragrans is mainly distributed in Guineo-Congolian forests at an altitude of 
1,550 to 1,850m (Beentje, 1994). Here, it is regarded as a species of a late climax 
succession stage in Guineo-Congolian forests (Althof, 2005). 

Visitation frequency is defined as nu
this study lasted one hour.  
 
In general, all observations of visitor activities were conducted in randomly selected 
plots between 9 a.m. and 2 p.m. After finishing one hour of observ
c
 
In addition, detailed information concerning the visitor type and the visitor behaviour 
was reco

5.3 Primary pollination success 
Primary pollination success, as defined in this study, is the number of pollen grains per 
stigma. 
 
Firstly, the collected stigmas (see chapter 6 for collecting period and number of 
collected stigmas), which were dissected from the flowers of the different observed 
plant species were preserved in 98 % ethanol. Then, they were stained fo
a

eparately d o  in

litre. After ten minutes staining, the slide was covered with a cover slip. 
 
Pollen grains were counted under the ultraviolet light of an Olympus SZH microscope; 
the pictures were taken by Olympus microscope digital camera system DP50 (Fig. 15; 
Fig. 26; Fig. 38; Fig. 44), while the scales calculations and their burning
im
 
The number of deposited pollen of all plant species were checked and counted inside the 
entire receptive region on the stigmas. One exception was H. diervilleoides, because 
here the counts were restricted to a defined apical region – from the region upwards 
where the stigma splits - due to the gr

5.4 Self-fertilisation field tes
To determine whether the observed plant species is potentially capable of self-
fertilisation (autogamy), marked plant individuals were manipulated by applying their 
own pollen onto the receptive stigmas. After that, the flowers were covered with net 
bags to prevent animals from visiting them. 
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hus, at least three individual flowers were tested (Acanthopale pubescens (n=9), 
aena fragrans 

=9)). 

T
Acanthus eminens (n=10), Heinsenia diervilleoides (n=3) and Drac
(n

5.5 Fruit set and seed set 
The terms “pollination efficiency” and “pollination success” have been used in different 
ways by different researchers (Kearns & Inouye, 1993). In this study seed and fruit set 
are defined as indicators for pollination success.  
 
After collecting the fruits, its fruit set was ca ulalc ted by dividing harvested fruits by 
potential fruits (counted flowers). After that, the seed set was determined by dividing 
counted seeds per fruit by potential ovules of the specific plant species: 
 

fruitspotential
fruitsharvestedsetfruit =  ; 

ovulespotential
seedcountedsetseed =  . s

cy of flower visits, primary pollination success, fruit and seed set). 

d flowers 

 order to test potential plant abundance effects.   

ant species on different levels of pollination. 

ersity 

5.6 Considered biotic factors  
Apart from the “number of observed flowers”, the following biotic factors were 
considered in the statistics of each campaign on different levels of pollination 
(frequen
 
Number of observe
All intraspecific flowers were counted in each observation plot related to every 
observation unit, verifying the potential influence of intraspecific flower quantity on the 
visitation frequency. Acanthopale pubescens, Acanthus eminens and Heinsenia 
diervilleoides flowers were counted. 
 
Abundance of the plant species 
Plant individuals of Acanthopale pubescens and Acanthus eminens were conducted in 
transects of 100m in length and about 4m in width inside all study sites (M. Kraemer, 
pers. comm.). In contrast, H. diervilleoides and D. fragrans plant counts were carried 
out in 10x10m relevés inside every forest fragment (Althof, 2005), but in each case the 
final abundance of the plant species resulted in an average value calculation on study 
site level. 
 
These data were used in
 
Plant species richness  
Within the framework of vegetation surveys by Althof (2005) species lists of trees, 
shrubs and climbers of all forest fragments were generated. These varying number of 
plant species inside all forest fragments were used for finding potential impacts of the 
richness of pl
 
Shannon-Wiener index of species div ( 'H )  

ere Shannon’s evenness (EH) was considered and calculated by dividing 

Apart from the number of plant species, the α-diversity calculations with the aid of 
Shannon-Wiener function and Shannon’s evenness (EH) were available (Althof, 2005) 
to analyse possible correlations between plant species diversity and collected data.  
 
H 'H  by 'H max  

 between 0 and 1 with 1 indicating the complete evenness. that assumes a value
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rest fragment) study sites to test all data on potential forest fragmentation 
ffects. 

ercentage of forest in a defined buffer zone (=circumferences) 
n the basis of a LANDSAT 7 (ETM+) satellite image (band combination 5/4/3, 

contrast enhanced) of Kakamega Forest of February 5, 2001, land cover was interpreted 
by digital image processing with ArcGIS® 8.x (Lung & Schaab, 2004) in concentric 
circles around study site mid points by Schaab. Inside the 100m, 500m, 1,000m and 
2,000m buffers the percentage of forest cover was determined in order to analyse 
potential edge effects. 
 
Cut trees per hectare 
In an assessment of the threat status and the management effectiveness in the Kakamega 
Forest, disturbance surveys were carried out at 22 forest sites (Bleher et al., 2005). Here 
trail transects were run at least 1,000m in length recording disturbance parameters, like 
logged trees, in a belt of 10m on each side of the transects. The total number of logged 
trees per hectare was integrated in this thesis statistics to analyse the effect of logging 
disturbance. 

5.7 Considered abiotic factors 
Apart from “temperature and cloudiness” and “pH-value, C/N ratio, Cation Exchange 
Capacity (CEC), [Ca++], [Mg++]” all of the following abiotic factors were considered in 
the statistics concerning the different levels of pollination (frequency of flower visits, 
primary pollination success, fruit and seed set) for all examined plant species. 
 
Management type 
The Kakamega Forest and its peripheral fragments are managed under the authority of 
both the Forest Department (FD) and the Kenya Wildlife Service (KWS) on behalf of 
the state. This allowed analysing a potential influence of different management regimes 
(Fig. 4). 
 
Protection status 
Kakamega Forest and its five surrounding fragments are partly a Forest Reserve, partly 
a Nature Reserve and partly a National Reserve (Fig. 4). This study distinguishes 
between sites with high protection priority, i.e. National or Nature Reserves and sites 
with low protection priority, i.e. Forest Reserves. Consequently, all data was analysed 
concerning a potential forest protection impact. 
 
 
 

Fragmentation (direct factor)  
The forest remnants were categorised into main forest fragment study sites 
(subsequently called: main forest) and surrounding forest fragment (subsequently 
called: fo
e
 
Succession stages 
Categorisations of the Kakamega Forest fragments in different succession stages (near-
primary, old secondary, middle-aged secondary, young secondary and heavily logged 
and planted) were also available (Althof, 2005) for testing the influence of succession 
on the different levels of pollination . 
 
P
O
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Size of forest fragments 
On the basis of a LANDSAT 7 (ETM+) satellite image (band combination 5/4/3, 
contrast enhanced) of the Kakamega Forest February 5, 2001, the size of all forest areas 
were visually interpreted Schaab (2004). This interpretation allowed testing the 
fragment size as an interfering factor. 
 
North-south gradient 
Representing a potential microclimatic factor of the Kakamega Forest region, a north-
south gradient was included in this study. Here, the forest fragments were numbered 
consecutively southwards. 
 
Paths per hectare 
As an indicator of human disturbance, paths per hectare in each forest fragment were 
integrated in this study. Here, trail transect walks of at least 1,000 m in length, were 
conducted recording all crossing paths (Bleher et al., 2005). 
 
Humidity  
Humidity was measured by two types of Gemini® data loggers: Tinytag Plus (air 
temperature and humidity) and Tinytalk (humidity), while data was recorded every hour 
inside all study sites with exception of the Kaimosi forest fragment (Althof, 2005). Due 
to the correlation between measured humidity and environment conditions, the average 
humidity of the similar structured Malava forest fragment was assumed. (“The more 
open a canopy was and the more sunlight could reach the ground, the lower was the 
measured humidity” (Althof, 2005)). 
 
Temperature and cloudiness 
Observations of visitors’ activities were conducted in randomly selected plots between 9 
a.m. and 2 p.m.. Thus, the temperature was measured every hour with a mercury 
thermometer, while the cloudiness was estimated in eighths. The average temperature 
and average cloudiness of all units in each study site was used for analysing potential 
relations between visitation frequency, temperature and cloudiness, respectively. 
 
pH-value, C/N ratio, Cation Exchange Capacity (CEC), [Ca++], [Mg++] 
In all study sites one pit was excavated to up about 2 m and described according to 
standard procedures of the Food and Agriculture Organization (FAO) Guidelines for 
soil profile descriptions (FAO, 1977). The soil horizons were identified and analysed by 
W. Musila with the help of the Kenya Soil Survey (Musila et al., 2005). In this study A-
horizon values were considered. Regarding visitation frequency and primary pollination 
success, the pH-value and the C/N ratio were tested. With reference to fruit and seed set 
all available soil parameters were considered. 

5.8 Statistics  
In general, Cane (2001) annotate a lack of universal and satisfying strategies for 
meaningful, insightful, and flexible statistical analyses in fragmentation studies. 
 
In this study the received data was listed with Microsoft® Excel 2000 and analysed with 
SPSS® 12.0 for Windows®. 
 
All results of different levels of pollination (frequency of flower visits, primary 
pollination success, fruit and seed set), separated into plant species, were tested on the 
assumption of normal distribution by the Kolmogorov-Smirnov goodness-of-fit test on 
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study site level. Although not all data on study site level showed a standard normal 
distribution, they were treated so here in parametric methods, due to the biological 
presumptions of these ecological processes (Underwood, 1997). 
 
Varieties between the grouped main forest and forest fragment study sites and the D. 
fragrans covering experiment were tested by one-way analysis of variance (ANOVA). 
  
In a Pearson correlation analysis the potential influence of the measured biotic and 
abiotic factors on the different levels of pollination were tested (see Appendices). 
Factors showing a significant correlation (α ≤ 0.05) were tested for multi-collinearity by 
a linear regressions analysis (Backhaus et al., 2003). In the case of R2 ≥ 0.7 factors were 
considered redundant. Finally, all remaining factors were tested in a backward multiple 
regressions (variables were successively removed from the model, if the significance 
level of the parameter estimate was higher than p = 0.10). Significant correlations (p ≤ 
0.05) were indicated with one star (*) and highly significant correlations (p ≤ 0.01) 
respectively with two stars (**).  
 
In the interest of a better descriptiveness, the data was presented in box plots (a box 
around 50% of the data and lines from the minimum to the first quartile and from the 
maximum to the third quartile; black bar indicates 50% percentile = median). 
Exceptions were diagrams concerning seed sets; due to their narrow margin of data 
scale error bars were used. 
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6.  Results 
 
The results are listed separately for each plant species (Acanthopale pubescens 
[Acanthaceae], Acanthus eminens [Acanthaceae], Heinsenia diervilleoides [Rubiaceae] 
and Dracaena fragrans [Ruscaceae]). Furthermore, they are subdivided into the 
different levels of pollination (frequency of flower visits, primary pollination success, 
fruit and seed set). 

6.1 Acanthopale pubescens [Acanthaceae] 

6.1.3 Visitation frequency 
During the 254 hours of observation between the June 28 and the August 9, 2001, it 
became evident that the mainly white flowers of A. pubescens were attractive for a 
variety of insects. In total, 656 visitors were counted on 30,722 observed flowers during 
254 observation units. This study was conducted in three main forest (Colobus trail, 
Salazar and Isecheno) and four forest fragment (Kisere, Ikuywa, Yala and Kaimosi) 
sites. 
 
The most probable pollinator of A. pubescens appeared to be honey bees (Apis 
mellifera) due to their size and the permanent contact with stigmas inside the flowers. 
Therefore, smaller bees like halictids and different sized butterflies will not be 
considered in the following statistics. 
 
Approximately 80% (542) of the flower visitors were honey bees. Even so, the share of 
honey bee visits differed between 42% (33 of 79) at Salazar to 100% (40 of 40) in 
Isecheno. In 23.6% (60) of all observation units no honey bee visits at all were detected 
(Table 12). 

Table 12: Observation units without honey bee visits (A. pubescens) 

Study site % of units without 
honey bee visit 

Number of units 
(units without honey 

bee visit/ all units) 
Colobus trail 19.6 9/46 

Salazar 26.5 9/34 
Isecheno 37 10/27 
Kisere 9.3 5/54 
Ikuywa 23.5 8/34 

Yala 40.5 15/37 
Kaimosi 18.2 4/22 

 
The mean visitation frequency of honey bee on A. pubescens flowers amounted to 0.16 
visits/flower/hour (SD: 0.20). 
 
Among all study sites, the northern forest fragment Kisere showed the highest mean 
honey bee visitation frequency of 0.26 visits/flower/hour (SD: 0.26). The lowest mean 
honey bee visitation frequency of 0.08 visits/flower/hour (SD: 0.11) was found inside 
the observed A. pubescens population of the southern forest fragment, Yala. However, 
with reference to the mean visitation frequency between the different study sites, no 
significant differences were apparent (Table 13; Fig. 12A). 
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Table 13: Mean visitation frequencies (A. pubescens) 

Study site Visitation 
frequency 

Standard 
deviation  

(SD) 
Colobus trail 0.19 0.26 

Salazar 0.08 0.09 
Isecheno 0.11 0.17 
Kisere 0.26 0.26 
Ikuywa 0.12 0.12 

Yala 0.08 0.11 
Kaimosi 0.18 0.17 

 
When comparing main forest (0.14 visits/flower/hour/ SD: 0.20) with forest fragment 
(0.17 visits/flower/hour/ SD: 0.20), a slightly (p=0.177) higher visitation frequency in 
main forest plots is evident (Fig. 12B). 

 
Fig. 12: Visitation frequencies on A. pubescens by honey bees (Apis mellifera) (box plots):
             (A) in three main forest (left of the dashed line) and four forest fragment study sites 
             (right of the dashed line) arranged from north to south,    
             (B) grouped in main forest (3) and forest fragment (4) study sites   
             [(B) tested for differences by one-way ANOVA]  

Influences of relevant biotic and abiotic factors on the mean honey bee visitation 
frequency were analysed by a backward multiple regression. The final model 
(R2=0.125) indicated that the number of observed flowers (p=0.022*), the percentage of 
forest surrounding the observation areas in a buffer of 2,000m (p=0.002**) and a north-
south gradient (p<0.001**) potentially influenced the honey bee visitation frequency 
(Tabble14). All three factors showed an inverse proportion regarding honey bee 
visitation frequencies.  
Honey bee visitation frequencies rose with a lower number of observed flowers, with a 
lower percentage of forest surrounding the observation areas in a buffer of 2,000m 
(range: about 10% – 80%) and from south to north (Table 14; Fig. 13). 
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Table 14: Final model coefficients of a backward multiple regression    
            (started with n=7 factors; Appendix 11) 

Factors B Standard
error Beta t R2 Significance 

(constant)  .377 .039  9.662 < .001** 
Number of observed 

flowers  .000 .000 -.143 -2.305   .022* 

% of forest in a 
2,000m buffer -.002 .001 -.198 -3.199     .002** 

North-south gradient -.022 .006 -.225 -3.794 

.125

< .001** 
 

 
Fig. 13: Regression scatter plots A. pubescens (dependent variable= visitation frequencies):
             (A) percentage of forest surrounding the observation areas in a buffer of 2,000m to 
             unstandardized residuals of the factors north-south gradient and number of 
             observed flowers,        
             (B) north-south gradient (1=northernmost; 7=southernmost) to unstandardized 
             residuals of the factors percentage of forest surrounding the observation areas in a 
             buffer of 2,000m and number of observed flowers 

A multiple regression model (R2=0.924) on study site level confirmed the potential 
impact of the factors north-south gradient (p=0.008**) and the percentage of forest 
surrounding the observation areas in a buffer of 2,000m (p=0.004**) (Table 15; Fig.14). 

Table 15: Coefficients of a multiple regression (n=2 factors) 

Factors B Standard
error Beta t R2  Significance 

(constant)  .340 .029   11.603 < .001** 
% of forest in a 
2,000m buffer -.003 .000 -.859 -6.024    .004** 

North-south gradient -.022 .004 -.707 -4.956 

.924
   .008** 
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Fig. 14: Regression scatter plots A. pubescens study sites     
            (depend. variable= visitation frequencies):     
            (A) percentage of forest surrounding the observation areas in a buffer of 2,000m to 
            unstandardized residuals of the factor north-south gradient,   
            (B) north-south gradient (1=northernmost; 7=southernmost) to unstandardized 
            residuals of the factor percentage of forest surrounding the observation areas in a 
            buffer of 2,000m 

6.1.2 Primary pollination success 
Inside the seven A. pubescens study sites 143 stigmas were collected, distributed in 
Colobus trail (13); Salazar (27); Isecheno (27); Kisere (27); Ikuywa (24); Yala (14) and 
Kaimosi escence 
microsco e (F

 (11). After that, the pollen grains were counted under a fluor
p ig. 15).  

 

 
Fig. 15: Acanthopale pubescens [Acanthaceae] pollen connected with the stigma  
   by pollen tubes  

65% (93 of 143) o least one pollen. 
The highest percentage of loaded stigmas was found in Kaimosi with 90.9% (10 of 11) 
and the lowest was found in Ikuywa with only 25% (6 of 24) (Table 16). 

f all the investigated stigmas were loaded with at 
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Table 16: Percentage of stigm A. pubescens) 

Study 
of stigmas 

ed with 
r of as 

mas loaded with pollen/ 
all stig

as loaded with pollen (

Numbe
site load

pollen 

%  stigm
(stig

mas) 
Colobus t 84.6 11/1rail 3 

Salazar 81.5 22/27  
Isecheno 63 17/27  
Kisere 74.1 20/27 
Ikuywa 25 6/24  

Yala 50 7/14 
Kaimosi 90.9 10/11 

 
All 143 stigmas of A. pubescens collected showed the mean pollen number per stigma 
of 5.5 (SD: 7.52). Regarding the different study sites, no significant differences were 
apparent (Fig. 16A; Table 17). The highest number of deposited pollen (37) on stigmas 
was found at the Colobus trail. 

Table 17: Mean pollen number per stigma (A. pubescens) 

Study site Pollen number per 
stigmas  SD 

Colobus trail 15.23 12.98 
Salazar 4.89 5.56 

Isecheno 4.11 5.94 
Kisere 7.00 6.99 
Ikuywa 1.04  2.31 

Yala 3.21 4.82 
Kaimosi 7.27 8.13 

 
p as in main forest (6.58/SD: 8.67) with When com

fo
aring the counted pollen on stigm

rest fragment (4.46/SD: 6.24), a non significant (p=0.093) higher mean number of 
pollen on stigmas was counted inside the main forest (Fig. 16B). 

 

Fig. 16: Counted pollen on stigmas of A. pubescens (box plots):   
             (A) in three main forest (left of the dashed line) and four forest fragment (right of 
             the dashed line) study sites arranged from north to south,   
             (B) grouped in main forest (3) and forest fragment (4) study sites   
             [(B) tested for differences by one-way ANOVA] 
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f stigmas loaded with pollen was also higher in main forest study sites 

Study site loaded with 
pollen 

(stigmas loaded with pollen/ 
all stigmas) 

The percentage o
(Table 18).  

Table 18: Percentage of stigmas loaded with pollen (A. pubescens) 

% of stigmas Number of stigmas 

Main forest 74.6 50/67 
Forest fragment 56.6 43/76 

 
The potential influence of obtained abiotic and biotic factors on the number of pollen on 

e that the protection status (nature or 
forest reserve) (p= soil (p<0.001**) might have an 
effect on the number of pollen deposited on the stigmas (Table 19).  
A higher amount of pollen on the stigmas  in natur ves as compared to 
forest reserve study sites. In addition, more pollen on stigmas was found in forests with 
a higher C/N ration in th ange: 5 – 10).

Table 19: Final model ts of a backwar ple regressi  
            (started wit ors; Appendix 

Factors B Standard
error  t Significance

A. pubescens stigmas were analysed by a backward multiple regression. Here, the final 
model indicated (R2=0.118) with high significanc

0.005**) and the C/N ratio of the 

was found e reser

e soil (r   
 ncoefficie d multi on   
h n=3 fact 13) 

Beta R2

(constant)  1.123 2.932     .383 .702 
C/N ratio  1.142   .313  .292  3.647 < .001** 

Protection status -3.989 1.399 -.229 -2.852 
.118 

   .005** 
 
Self-pollination experiments showed an ability for autogamy as 33% (n=9) of the tested 
plant individuals produced at least one seed. But, generally, these seeds looked poorer 
and smaller than regular pollinated ones. 

6.1.3 Fruit set 
Between August 24 and December 21, 2001, 9641 Acanthopale pubescens fruits were 
picked. All in all, the fruit set of 140 marked individuals were observed, distributed in 
Colobus trail (13); Salazar (18); Isecheno (25); Kisere (14); Ikuywa (21); Yala (20) and 
Kaimosi (29).  
 
5% (7) of the observed individuals developed no fruits. The same number of individuals 
(5%/7) produced the maximum potential fruit number (fruit set: 1.0). During this 
campaign, A. pubescens showed a mean fruit set of 0.59 (SD: 0.29).  
 
A ge  forest 
fragm

 (SD) 

neral tendency of a higher fruit set inside the main forest compared to
ents became apparent (Table 20; Fig. 17A). 

Table 20: Mean fruit set (A. pubescens) 

Study site Fruit set 
Colobus trail 0.68   0.21 

Salazar 0.72  0.27 
Isecheno 0.72  0.27 
Kisere 0.59 0.27 
Ikuywa 0.42 0.32 

Yala 0.48 0.31 
Ka 0.22imosi 0.54   
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A comparison of the grouped study sites in main forest (0.71/SD: 0.25) and forest 
fragm 0.51/SD:  confi this fi t ass n and documente  
sign 01* uit  A. p cen e th t frag s 
(Fig. 

ent sites (  0.28) rmed rs umptio d a highly
ificant (p<0.0
17B). 

*) lesser fr set of ubes s insid e fores ment plot

 
Fig. 17: Fruit set of A. pubescens (box plots):     

s, the final model (R2=0.110) of a backward 
multiple regression <0.001**) as the most important 
factor influencing the fruit set of A. pubescens (Table 21; Fig. 18A). 

Table 21: Final mod s of a backw le regress  
            (started with n=5 factors; Appendix 15) 

Factors B error t 2 Significance

            (A) in three main forest (left of the dashed line) and four forest fragment  
            (right of the dashed line) study sites arranged from north to south,  
            B) grouped in main forest (3) and forest fragment (4) study sites   
            [(B) tested for differences by one-way ANOVA] 

Regarding relevant biotic and abiotic factor
 stressed the size of the fragments (p

el coefficient ard multip ion   

Standard Beta R

(constant) .493 .032 15.239 < .001**  
Size of forest 

fragments 2  .000  4.125 10 < .001** .534E-05 .331 .1

 

 
Fig. 18: Regression scatter plots A. pubescens fruit set:    
            (A) fruit set to the factor size of forest fragments [ha],    
            (B) fruit set of study sites to the factor size of forest fragments [ha] 



Results 37
  

 
The tendency of a higher fruit set in bigger forest islands became more obvious in a 
regression after grouping the data at study site level (Table 22; Fig. 18B). 
Table 22: Regression coefficients 

Factors B Standard
error Beta t R2 Significance

(constant) .493 .038  12.878 < .001** 
Size of forest 

fragments 2.510E-05 .000 .847   3.567 .718   .016* 

6.1.4 Seed set 
Out of 40 A. pubescens fruits from each study site, all seeds were counted and divided 
by the four potential ovules. The outcome was a mean seed set of 0.51 (SD: 0.13). All 
fruits contained at least one seed (seed set: 0.25). 2.5% (7) of the fruits developed the 
complete number of seeds (seed set: 1.00). 

Table 23: Mean seed set (A. pubescens) 

Study site Seed set  (SD) 

Colobus trail 0.49 0.12 
Salazar 0.46 0.11 

Isecheno 0.56 0.17 
Kisere 0.51 0.08 
Ikuywa 0.52 0.12 

Yala 0.50 0.15 
Kaimosi 0.55 0.14 

 
Both the comparison of the mean seed set of the specific study sites and the grouped 
main forest (0.50/SD: 0.14) or forest fragment (0.52/SD: 0.13) study sites did not show 
significant differences (Table 23; Fig. 19A/B). 

 
Fig. 19: Seed set of A. pubescens (error bars; standard error of mean value):  
            (A) in three main forest (left of the dashed line) and four forest fragment (right of 
            the dashed line) study sites arranged from north to south,   
            (B) grouped in main forest (3) and forest fragment (4) study sites   
            [(B) tested for differences by one-way ANOVA] 
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An influence on the seed set of A. pubescens could be assumed due to a final model 
(R2=0.045) of a backward multiple regression of collected biotic and abiotic factors. It 
displayed a rising regression (p<0.001**) between the seed set and the paths inside the 
study sites per hectare (range: 0 – 18) (Table 24; Fig. 20A). 

Table 24: Final model coefficients of a backward multiple regression    
            (started with n=4 factors; Appendix 17) 

Factors B Standard
error Beta t R2 Significance 

(constant) .479 .012  39.521 < .001** 
Paths per ha .004 .001 .212   3.615 .045 < .001** 

 

 
Fig. 20: Regression scatter plots of A. pubescens seed set:    
            (A) seed set to the factor path per ha,      
            (B) seed set of study sites to the factor path per ha 

This tendency became more obvious after grouping the data on study site level 
(Fig.20B; Table 25). 

Table 25: Regression coefficients  

Factors B Standard
error Beta t R2 Significance 

(constant) .478 .009  51.761 < .001** 
Paths per ha .004 .001 .909   4.885 .827    .005** 
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6.1.5 Levels of pollination 
Despite higher visitation frequencies inside forest fragment study sites (Fig. 21A); the 
number of pollen grains on stigmas was higher in main forest plots (Fig. 21B). In 
addition, the fruit set was again highly significant higher inside the main forest 
(Fig.21C), followed by higher seed set in forest fragment sites (Fig. 21D). 
 

 
Fig. 21: Levels of pollination grouped in main forest and forest fragment study sites:  
  (A) visitation frequencies, (B) pollen on stigmas, (C) fruit set, (D) seed set   
  (Acanthopale pubescens) 
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6.2 Acanthus eminens [Acanthaceae] 
Acanthus eminens flowers were observed between January 8 and January 25 2002 
(subsequently called: campaign 2002) in three main forest study sites (Salazar I, Salazar 
II and Isecheno) and two forest fragment study sites (Kisere and Ikuywa). Between 
November 26, 2002 and January 11, 2003 (subsequently called: campaign 2003), four 
main forest sites (Colobus trail, Salazar I, Salazar II and Isecheno) and three forest 
fragment (Kisere, Ikuywa and Yala) were included in the study. In total, A. eminens was 
observed for 239 hours.  

6.2.1 Visitation frequency 
During both A. eminens campaigns, the following visitors were identified among others 
(Table 26/Table 27): Xylocopa nigrita [Xylocopinae]; the northern double-collared 
sunbird (Nectarinia preussi); the green-headed sunbird (Nectarinia verticalis); the 
variable sunbird (Nectarinia venusta); Papilio bromius Doubleday, 1845 [Papilionidae]; 
Papilio phorcas Cramer [1775] [Papilionidae]; Papilio demodocus Esper, [1798] 
[Papilionidae]; Papilio lormieri neocrocea Kocak, 1983 and Cymothoe horbarti Butler, 
1899 [Nymphalidae]. 
 
In campaign 2002, 166 visitors were counted altogether during 71 observation units on 
2449 observed flowers. The main visitor groups were carpenter bees (genus Xylocopa), 
followed by sunbirds and different sized butterflies (Table 26).  

Table 26: Main visitor groups (campaign 2002) 

Visitor group n % of all 

Xylocopa bees 117 70.5 

Vespidae 1 0.5 

Lepidoptera 28 17 

Nectarinidae 20 12 
 
During campaign 2003, 341 visitors were counted on 1548 flowers monitored during 
168 observation units. Throughout this second A. eminens campaign, the main visitor 
groups were carpenter bees, followed by other small to medium sized bees, different 
sized butterflies and sunbirds (Table 27). 

Table 27: Main visitor groups (campaign 2003) 

Visitor group n % of all 

Xylocopa bees 185 54 

other Apidae 108 32 

Lepidoptera 36 11 

Syrphidae, Diptera,     
Formicidae 4 1 

Nectarinidae 8 2 
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Owing to pollinator effectiveness tests (Dietzsch, 2004) the Xylocopa bees appeared to 
be the most efficient pollinators of A. eminens. For this reason, only the Xylocopa bee 
visits will be considered in the subsequent analysis. 
 
21.1% (15) of all observation units during campaign 2002 did not show any Xylocopa 
bee visit on A. eminens (Table 28). In campaign 2003, no Xylocopa bee visits were 
counted in 29.2% (49) of all the observation units (Table 29). 

Table 28: Observation units without Xylocopa bee visits (A. eminens);  
  campaign 2002 

Study site % of units without 
Xylocopa bee visit 

Number of units 
(units without Xylocopa 

bee visit/ all units) 
Salazar I 30 3/10 
Salazar II 23.1 3/13 
Isecheno 36.4 4/11 
Kisere 18.8 3/16 
Ikuywa 9.5 2/21 

 
Table 29: Observation units without Xylocopa bee visits (A. eminens);    
             campaign 2003 

Study site % of units without 
Xylocopa bee visit 

Number of units 
(units without Xylocopa 

bee visit/ all units) 
Colobus trail 60 6/10 

Salazar I 33.3 6/18 
Salazar II 19.6 9/46 
Isecheno 54.2 13/24 
Kisere 19.4 6/31 
Ikuywa 20 4/20 

Yala 26.3 5/19 
 
In the A. eminens campaign 2002, a mean visitation frequency of 0.282 
visits/flower/hour (SD: 0.35) was observed for all study sites. In contrast to this, a 
higher mean visitation frequency of 0.52 visits/flower/hour (SD: 0.77) was evident 
during the campaign 2003. 
 
The main forest study site Salazar II showed the highest mean Xylocopa bee visitation 
frequency with 0.54 visits/flower/hour (SD: 0.62) concerning campaign 2002. Here, the 
lowest mean visitation frequency was found in the southernmost main forest study site 
Isecheno with 0.08 visits/flower/hour (SD: 0.10). When comparing the mean visitation 
frequency between the different study sites, no significant differences were apparent 
(Table 30; Fig. 22A). 
 
Regarding campaign 2003, the newly integrated forest fragment Yala showed the 
highest mean Xylocopa bee visitation frequency with 0.86 visits/flower/hour (SD: 1.17), 
which means that statistically, almost every flower was visited by a Xylocopa bee 
during the observation units. The lowest mean visitation frequency of Xylocopa bees 
were found in the main forest study site Salazar I with 0.22 visits/flower/hour (SD: 
0.33). However, no significant differences between mean visitation frequencies of all 
the study sites in general were apparent, as has already been observed for the A. eminens 
campaign 2002 (Table 31; Fig. 22B). 
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Table 31: Mean visitation frequencies  
    (A. eminens) Table 30: Mean visitation frequencies 

    (A. eminens)  

Study site  
(campaign 2002) 

Visitation 
frequency SD 

Salazar I 0.14 0.11 
Salazar II 0.54 0.62 
Isecheno 0.08 0.10 
Kisere 0.29 0.31 
Ikuywa 0.30 0.18 

Study site  
(campaign 2003) 

Visitation 
frequency SD 

Colobus trail 0.37 0.57 
Salazar I 0.22 0.33 
Salazar II 0.56 0.64 
Isecheno 0.30 0.59 
Kisere 0.75 0.89 
Ikuywa 0.37 0.77 

Yala 0.86 1.17  

 

 
Fig. 22: Visitation frequencies of Xylocopa bees on A. eminens (box plots):  
            (A) in three main forest (left of the dashed line) and two forest fragment study sites   
            (ri

 
ght of the dashed line) organized from north to south (campaign 2002),                        

               (B) in four main forest study sites (left of the dashed line) and three surrounding       
               forest fragment study sites (right of the dashed line) arranged from north to south 
            (campaign 2003) 

After grouping the study sites in main forest (campaign 2002: 0.27 visits/flower/hour, 
SD: 0.44; campaign 2003: 0.41 visits/flower/hour, SD: 0.58) and forest fragment 
(campaign 2002: 0.29 visits/flower/hour, SD: 0.24; campaign 2003: 0.67 
visits/flower/hour, SD: 0.95) study sites, a tendency of higher visitation frequencies in 
forest fragment plots became evident (Fig. 23).  
A significantly (p=0.032*) lower visitation frequency of Xylocopa bees inside the main 
forest study sites could be shown during the campaign 2003 (Fig. 23B), where four 
main forest study sites were compared to three forest fragment study sites. Regarding 
the campaign 2002, non-significant (p=0.800) varieties between the visitation frequency 
of Xylocopa bees inside main forest and forest fragment study sites became evident 
(Fig. 23A).  
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Fig. 23: Visitation frequencies of Xylocopa bees on A. eminens (box plots):  

 

n frequency (Table 32).  
ression    

         with n=4 tors 19

Standard Beta t R2 Significance

             (A) grouped in main forest (3) and forest fragment (2) study sites (campaign 2002),
             (B) grouped in main forest (4) and forest fragment (3) study sites (campaign 2003),

            [(A) and (B) tested for differences by one-way ANOVA] 

A backward multiple regression of relevant biotic and abiotic factors concerning the 
Xylocopa bee visitation frequency during the campaign 2002 generated the final model 
(R2=0.125) that both the cut tree per hectare (p=0.025*) and the cloudiness (p=0.024*) 
might influence the visitatio

Table 32: Final model (campaign 2002) coefficients of a backward multiple reg
    (started fac ; Appendix ) 

Factors B error 
(constant)    .184 .136    1.356 .179 

C a   .025* ut trees per h   -.028 .012 -.261 -2.292 
Cloudiness    .146 .063  .263   2.310 

.125 
  .024* 

 
Due to the very low rang of cloudiness (only between 0/8 and 3/8) between January 8 

and January 25, 2002, this factor could be neglected due to its minor explanatory power. 
In contrast to this, Xylocopa visitation frequency became significantly lower the more 
trees per hectare were cut (range: 2 – 11) (Fig. 24A). 

 
Fig. 24: Regression scatter plots of A. eminens (depend. variable= visitation frequencies):
         (A) cut trees per ha to unstandardized residuals of the factor cloudiness,  
         (B) cut trees per ha of study sites to unstandardized residuals of the factor cloudiness   
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This potential influence of disturbance on the visitation frequencies became more 
obvious in a multiple regression model (R2=0.668) after grouping the data on study site 
level (Fig. 24B; Table 33). 

Table 33: Coefficients (campaign 2002) of a multiple regression (n=2 factors) 

Factors B Standard 
error Beta t R2 Significance 

(constant)    .184 .236     .793 .179 
Cut trees per ha -.028 .021 -.548 -1.343  .311 

Cloudiness   .140 .101  .565   1.383 
.668

 .301 
 
Regarding campaign 2003, a backward multiple regression of relevant biotic and abiotic 
factors concerning the Xylocopa bee visitation frequency showed influences of two 
factors in the final model (R2=0.052) namely cloudiness (p=0.050*) and the size of the 
forest fragments (p=0.062) (Table 34).  

Table 34: Final model (2003) coefficients of a backward multiple regression   
 

 

           (started with n=3 factors; Appendix 20) 

Factors B Standard 
error Beta t R2 Significance

(constant)    .840 .121   6.923  < .001** 
Cloudiness  -.075 .038 -.152 -1.975   .050* 

Size of forest 
fragments  -3.04E-05 .000 -.145 -1.877 

.052
.062 

 
Due to the wider range of cloudiness (between 0/8 and 7/8) and the significance of this 
regression, an inverse proportion effect could be assumed on the Xylocopa bee visitation 
behaviour (Fig. 25A). In general, it can be said that the more clouds there are the lower 
are the visitation frequencies.   
In addition, higher visitation frequencies on  obvious in 
smaller f

A. eminens flowers became
orest fragments (Fig. 25B). 

 
Fig. 25: Regression  plo eminens (depe able= visi frequ            

) cloudin ighth tandardized of the fa ragm      
 forest f ent si standardized f the factor dines

scatter t of A. ndent vari tation encies):
             (A

(B) 
ess (e
r

) to uns  residuals ctor f ent size
             agm zes to un  residuals o  clou s 
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.2.2 Primary pollination success 

 

6
During the A. eminens campaign 2002, 225 stigmas were collected within the five study 
sites, distributed in Salazar I (47), Salazar II (53), Isecheno (27), Kisere (46), and
Ikuywa (52). A further 335 stigmas were gathered in the campaign 2003, in Colobus 
trail (35), Salazar I (34), Salazar II (59), Isecheno (34), Kisere (64), Ikuywa (49), and 
Yala (60). After that, the pollen grains were counted under a fluorescence microscope 
(Fig. 26). 

 
Fig. 26: Acanthus eminens [Acanthaceae] pollen connected with the stigma  
   by pollen tubes  

In campaign 2002, 34.2% (77 of 225) of all the investigated stigmas were loaded with 
pollen. The highest percentage of loaded stigmas was found in Salazar I with 53.2% (25 
of 47), and the lowest in Ikuywa with 17.3% (9 of 52) (Table 35).  
In contrast to this, the A. eminens campaign 2003 showed that 55% (186 of 338) of the 
stigmas were loaded with pollen. During this campaign, the highest percentage was 
found in Kisere with 68.7% (44 of 64) and the lowest in Salazar II with 32.2% (19 of 
59) (Table 36). 
Table 35: Percentage of stigmas loaded with 
    pollen (A. eminens) 

Study site  
(campaign 2002) 

% of 
stigmas 
loaded 
with 

pollen 

Number 
of 

stigmas 

Salazar I 53.2 25/47 
Salazar II 34 18/53 
Isecheno 29.6 8/27 
Kisere 37 17/46 
Ikuywa 17.3 9/52 

 

Table 36: Percentage of stigmas loaded with 
    pollen (A. eminens) 

Study site  
(campaign 2003) 

% of 
stigmas 
loaded 
with 

pollen 

Number 
of 

stigmas 

Colobus trail 60 21/35 
Salazar I 47.1 16/34 
Salazar II 32.2 19/59 
Isecheno 50 17/37 
Kisere 68.7 44/64 
Ikuywa 57.1 28/49 

Yala 68.3 41/60 
 
The maximum number of deposited pollen (50) on a stigma was found inside Salazar II 
during the campaign 2002 and in Isecheno during the campaign 2003 (90) respectively. 
 
Yet, no significant differences were obvious with regard to the different study sites as 
concerns the mean pollen number on the stigmas during the A. eminens campaigns 2002
(Table 37; Fig. 27A) and 2003 (Table 38; Fig 27C).
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Table 
 

(ca

37: Mean pollen number per stigma 
      (A. eminens) 

Study site 
mpaign 2002) 

Pollen 
number 

per 
stigma 

SD 

Salazar I 6.51 10.18 
Salazar II 2.55 7.60 
Isecheno 3.59 7.61 
Kisere 2.44 4.89 
Ikuywa 0.85 2.58 

 

 

Table 38: Mea ll
       (A. eminens) 

Study site  
(campaign 2003) 

Pollen 
number 

per 
stigma 

SD 

n po en number per stigma

Colobus trail 7.00 8.72 
Salazar I 10.50 19.77 
Salazar II 5.09 11.09 
Isecheno 8.21 12.42 
Kisere 9.84 12.65 
Ikuywa 11.96 18.84 

Yala 10.63 12.26 

 
Fig. 27: Counted pollen on stigmas of A. eminens  (box plots):   

outh (campaign 2002),
 st fragment (2) study sites (campaign 2002),
        four main forest (l he fore t fragment 
       of the dash line) ar  from north to s uth 03),
    uped i res  fores gm st es (c  2003),

) t iff y o  A

             (A) in three main forest (left of the dashed line) and two forest fragment  
             (right of the dashed line) study sites arranged from north to s

            (B) grouped in main forest (3) and fore
     (C) in 

       (right
eft of the das
st s 

d line) and three 
ranged

s
o

 
 (campaign 20ed udy site

         (D) gro n main fo
e d

t (4) and t fra ent (3) 
 

udy sit ampaign
             [(B) and (D sted for erences b ne-way NOVA]
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During 200 ver A. emi /SD: 
7.18) was lower than during the campaign 2003 (9.06/SD: 14.00). 
 
When grouping the counted pollen on the 
in main SD: 8  fo gm .5 .90) study ighly 
significant (p=0.006**) lower m as was counted inside 

rest fragment study sites (Fig. 27B). 

 lower in forest fragments 
(Table39). 

: Percentag  stigma d wi en (A. eminens amp

site 
f st
ded
pollen 

Num t
( s en/ 

all stigmas) 

 the campaign 2, howe , the mean pollen deposit on nens (3.08

stigmas collected during the campaign 2002 
 forest (4.24/ .77) and

ean num
rest fra

ber of
ent (1
 pollen on stigm

9/SD: 3 sites, a h

fo
 
The percentage of stigmas loaded with pollen was also

Table 39 e of s loade th poll / c aign 2002) 

Study 
% o igmas 
loa  with 

ber of s igmas 
ith pollstigma loaded w

Main forest 40.2 51/127 
Forest fragment 26.5 26/98 

 
The opposite proportion was found concerning the counted pollen on stigmas in 2003. 
Here, significantly (p=0.025*) fewer pollen could be detected on the stigmas of A. 
minens in main forest study sites (7.29/SD: 13.28) as compared to forest fragme ent 

rcentage of stigmas loaded with pollen (A. eminens/ campaign 2003) 

pollen all stigmas) 

study sites (10.72/SD: 14.49) (Fig. 27D). 
 
Here, the percentage of stigmas loaded with pollen was also lower in main forest plots 
(Table 40). 

Table 40: Pe

Study site 
% of stigmas 
loaded with 

Number of stigmas 
(stigmas loaded with pollen/ 

Main forest 44.2 73/165 
Forest fragment 65.3 113/173 

 
Both the A. eminens campaign 2002 and 2003 showed a potential influence of the 
percentage of the forest in a buffer around the study sites on the number of deposited 
pollen on stigmas.  
This could be indicated in the final model 2002 (R2=0.074) of a backward multiple 
regression relating to the forest buffer of 2,000m (Table 41), and in the final model 

22003 (R =0.014) to the forest buffer of 1,000m (Table 42). 
Table 41: Final model (2002) coefficients of a backward multiple regression   
           (started with n=5 factors; Appendix 22) 

Factors B Standard 
error Beta t R2 Significance

(constant) -28.403 11.174  -2.542   .012* 
Protection status   9.620   4.217  .566  2.281   .023* 
% of forest in a 
2,000m buffer     .129     .044  .398  2.944     .004** 

Plant species 
richness     .139     .051  .258  2.717     .007** 

North-south 
gradient   -2.253     .862 -.452 -2.614 

.074 

  .010* 
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Table 4 del (2003) c ient ackward mu    
 ted with n= 24) 

s dard 
or Beta t R2 S anc

2: Final mo oeffic s of a b ltiple regression
          (star 2 factors; Appendix 

Factor B Stan
err ignific e 

(constant) 6 29  ** 15.77 3.1  5.042 < .001
% of forest in a    -.104 1,000m buffer    .047 -.120 .014 8* -2.213   .02

  
The  sho gh crease (p=0.004**) in the number of pollen on 
stigmas in connection with a higher percentage of forest in a buffer of 2,000m (range: 
about 30% – 85%). The campaign 2003, however, showed a contrasting tendency, when 
a higher percentage of forest in a buffer of 1,000m (range: about 45% – 95%) resulted 
in a significant decrease (p=0.028*) in the number of pollen on A. eminens stigmas. 
 
Furthermore, the final model 2002 indicates that the protection status (p=0.041*), the 
number of plant species (range: about 120 – 165) inside the study sites (p=0.007**) and 
a north-south gradient were also potentially relevant factors. Here, higher number of 
pollen on stigmas were counted in forests which were less protected, highly diverse and 
located in the North.  
 
In addition, self-pollination experiments showed an ability for autogamy (Dietzsch, 
2004) (per. obser.).  

6.2.3 Fruit set 
During the two Acanthus eminens campaigns, 616 fruits were collected between 
January 26 and March 13, 2002 and December 13, 2002 to February 17, 2003. 156 
fruits were gathered from 100 individuals during campaign 2002 (Salazar I (21); Salazar 
II (22); Isecheno (18); Kisere (19); Ikuywa (18); Yala (2)) and 460 fruits were collected 
from 127 individuals (Colobus trail (8); Salazar I (16); Salazar II (25); Isecheno (24); 
Kisere (26); Ikuywa (18); Yala (10)) in 2003.  
 
During the campaign 2002, 70% (70) of the observed A. eminens individuals developed 
no fruits at all, while 38.6% (49) of the observed individuals showed a fruit set of zero 
in 2003. In contrast to this, 7% (7) of the observed individuals produced the maximum 
potential fruit number in 2002, but only 0.8% (1) in the campaign 2003. Instead, the 
mean fruit set appeared to be alike in both campaigns (2002: 0.13 (SD: 0.27); 2003: 
0.14 (SD: 0.19). 
  
During both campaign, no significant differences concerning the mean fruit set between 
all study sites were obvious (Table 43; Table 44; Fig. 28A/C). Remarkable are only the 
high fruit set in Kisere with 0.47 (SD: 0.11) (campaign 2002) and the low fruit set in 
Salazar I with 0.01 (SD: 0.04) (campaign 2003). 

Table 43: Mean fruit set (A. eminens) 

Study site 
(campaign 2002) Fruit set SD 

 campaign 2002 wed a sli t in

Salazar I 0.04 0.09 
Salazar II 0.05 0.12 
Isecheno 0.08 0.13 
Kisere 0.47 0.45 
Ikuywa 0.04 0.11 

Yala 0.03 0.04 

Table 44: Mean fruit set (A. eminens) 

Study site  
(campaign 2003) Fruit set  SD 

Colobus trail 0.16 0.15 
Salazar I 0.01 0.04 
Salazar II 0.12 0.19 
Isecheno 0.24 0.24 
Kisere 0.10 0.16 
Ikuywa 0.23 0.21 

Yala 0.13 0.09 
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            the dashed line) study sites arranged from north to south (campaign 2003), 
            (D) grouped in main forest (4) and forest fragment (3) study sites (campaign 2003),
            [(B) and (D) tested for differences by one-way ANOVA]  

The comparison of the grouped study sites in main forest (0.06/SD: 0.11) and forest 
fragments (0.25/SD: 0.39) showed a highly significant (p<0.001**) lesser fruit set of A. 
eminens inside the main forest plots (Fig. 28B) in campaign 2002.  
In campaign 2003, a less high fruit set (p=0.848) inside forest fragment (0.15/SD: 0.18) 
study sites was visible compared to main forest study sites (0.14
 
Regarding the campaign 2002 the final mode

 showed
eminens: 

f fa
er 

s which mi
e (p=0 5**), p nt f forest in a buffer of 

012*) (Table 45) l factor wed oporti al relat n to th fruit set o
s.  
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 higher fruit set was found in study sites surrounded by a higher percentage of forest 
in a buffer of 1,000m (range: 45% – 95%), which had a higher number of cut trees per 
hectare (range: 2 – 11), a higher C/N ratio in the soil (range: 5 – 10) and were situated in 
the southern parts of Kakamega Forest. 

Table 45: Final model (campaign 2002) coefficients of a backward multiple regression  
          (started with n=5 factors; Appendix 26) 

Factors B Standard 
error Beta t R2 Significance 

A

(constant) -3.470 1.555  -2.231   .028* 
% of forest in a 
1,000m buffer    .009   .005   .567  1.680 .096 

Cut trees per ha    .118   .041 1.388  2.860     .005** 
North-south gradient    .192   .099 1.016  1.932 .056 

C/N ratio    .210   .082 1.313  2.566 

.349

  .012* 
 
The final model (R2=0.132) of a backward multiple regression concerning the campaign 
2003 generated just two factors which had a . 
em
re rve
(p 0.00

Ta multiple regression  
 

potential influence on the fruit set of A
inens (Table 46): On the one hand the protection status (nature reserve or forest 

se ) (p=0.001**) and on the other hand the percentage of forest in a buffer of 100m 
< 1**).  

A higher fruit set was found inside forest reserve plots and in study sites surrounded by 
lesser forest in a buffer of 100m (range: 85% - 97%) (Fig. 29). 

ble 46: Final model (campaign 2003) coefficients of a backward 
         (started with n=7 factors; Appendix 28) 

Factors B Standard 
error Beta t R2 Significance 

(constant) 1.265 .337   3.749 < .001** 
Protection status   .165 .049  .302  3.382    .001** 
% of forest in a 

100m buffer -.014 .004 -.332 -3.720 
.132

< .001** 

 

 
Fig. 29: Regression scatter plots A. eminens (campaign 2003); (dependent variable= fruit set): 
      (A) protection status to unstandardized residuals of the factor forest in a buffer of 100m, 
      (B) percentage of forest surrounding the observation areas in a buffer of 100m to 
      unstandardized residuals of the factor protection status 
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 multiple regression on study site level (Table 47) confirmed and enhanced these 

actors) 

Factors B Standard 
error Beta t R2 Significance

A
significant tendencies (Fig. 30). 

Table 47: Coefficients of a multiple regression (n=2 f

(constant) 1.217 .332   3.663   .022* 
Protection status   .173 .048   .828  3.621   .022* 
% of forest in a 

100m buffer -.014 .004 -.832 -3.638 
.825 

  .022* 

 

 
Fig. 30: Regression scatter plots A. eminens study sites (campaign 2003); (dep. varia.= fruit set):
      (A) protection status to unstandardized residuals of the factor forest in a buffer of 100m, 
       (B) percentage of forest surrounding the observation areas in a buffer of 100m to 
      unstandardized residuals of the factor protection status 

6.2.4 Seed set 
Out of 156 fruits collected in the campaign 2002 (Salazar I (8); Salazar II (9); Isecheno 
(26); Kisere (106); Ikuywa (6); Yala (1)), all the A. eminens seeds were counted and 
correlated with four potential ovules. The outcome of which was a mean seed set of 
0.662 (SD: 0.33). Thus, 37.8% (59) of the observed fruits generated the maximum 
number of four seeds per fruit (seed set: 1.0), while 8.3% (13) of the fruits produced no 
seeds at all (seed set: 0). 
 
In campaign 2003, all the seeds of the 430 collected fruits (Colobus trail (20); Salazar I 
(5); Salazar II (55); Isecheno (131); Kisere (38); Ikuywa (146); Yala (35)) were counted 
and correlated with the ovules. The result was a mean seed set of 0.586 (SD: 0.28). 
During this campaign, 16.5% (71) of the observed A. eminens fruits generated the 
maximum number of four seeds per fruit while no seeds at all were produced by 5.3% 
(23) of the fruits examined. 
 
Both campaigns did not show significant differences with regard to the mean seed set of 
all study sites (Table 48; Table 49; Fig. 31 A/C). 
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Table 49: Mean seed set (A. eminens) Table 48: Mean seed set (A. eminens) 

Study site 
(campaign 2002) Seed set SD 

Salazar I 0.72 0.36 
Salazar II 0.61 0.18 
Isecheno 0.56 0.33 
Kisere 0.69 0.34 
Ikuywa 0.71 0.29 

Yala 0.25 - 

Study site 
(campaign 2003) Seed set SD 

Colobus trail 0.58 0.29 
Salazar I 0.75 0.00 
Salazar II 0.76 0.20 
Isecheno 0.48 0.24 
Kisere 0.66 0.27 
Ikuywa 0.58 0.31 

Yala 0.64 0.24 
 

The comparison of the grouped study sites of the campaign 2002 and 2003 revealed a 
non-significant (2002: p=0.143; 2003: p=0.127) higher mean seed set inside the forest 
fragment plots (2002: 0.69 (SD: 0.34); 2003: 0.61 (SD: 29)) compared to the main 
forest sites (2002: 0.60 (SD: 0.31); 2003: 0.57 (SD: 0.26)) (Fig. 31B/D).  

 
Fig. 31: Seed set of A. eminens (error bars; standard error of mean value):  
            (A) in three main forest (left of the dashed line) and three forest fragment (right of 
            the dashed line) study sites arranged from north to south (campaign 2002), 
            (B) grouped in main forest (3) and forest fragment (3) study sites (campaign 2002),
            (C) in four main forest (left of the dashed line) and three forest fragment (right of 
            the dashed line) study sites arranged from north to south (campaign 2003), 
            (D) grouped in main forest (4) and forest fragment (3) study sites (campaign 2003),
            [(B) and (D) tested for differences by one-way ANOVA] 



Results 53
  

 
None of relevant biotic and abiotic factors expressed any correlation concerning the 
seed set of A. eminens in the Kakamega Forest during the field campaign 2002.  
 
In contrast, the final model (R2=0.105) of a backward multiple regression of the 
campaign 2003 showed a group of factors which have a potential influence on the seed 
set of A. eminens with regard to the percentage of forest in a buffer of 100m (p=0.035*), 
the paths per hectare in the different study sites (p=0.001**) and the pH-value of the 
soil (p=0.027*).  
Moreover, a higher A. eminens seed set was found in forest study sites which showed a 
higher percentage of forest in a buffer of 100m (range: 85% - 97%), less paths per 
hectare (range: 0 - 20) and higher pH-values in soils (range: 5.6 – 6.4) (Table 50). 
Table 50: Final model (2003) coefficients of a backward multiple regression   
          (started with n= factors; Appendix 30) 

Factors B Standard 
error Beta t R2 Significance

(constant) -.657 .528  -1.245 .214 
% of forest in a 

100m buffer  .007 .003   .124   2.114   .035* 

Paths per ha -.008 .002 -.199 -3.252     .001** 
pH-value  .118 .053   .117   2.218 

.105 

  .027* 
 
These tendencies became more obvious in a multiple regression model on study site 
level (Table 51; Fig. 32). 

Table 51: Coefficients (2003) of a multiple regression (n=3 factors) 

Factors B Standard 
error Beta t R2 Significance

(constant) -.714 .293  -2.437   .093 
% of forest in a 

100m buffer  .008 .003   .390  3.096   .053 

Paths per ha -.008 .002  -.510 -3.906     .030* 
pH-value  .108 .032   .422  3.319 

.958 

    .045* 
 

 
Fig. 32: Regression scatter plots A. eminens study sites (campaign 2003); (dep. varia. = seed set):
      (A) percentage of forest surrounding the observation areas in a buffer of 100m to  
      unstandardized residuals of the factors paths per ha and pH-value of the soils, 
       (B) paths per hectare to unstandardized residuals of the factors percentage of forest    
               surrounding the observation areas in a buffer of 100m and pH-value of the soils 
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6.2.5 Levels of pollination 
Regarding campaign 2002, the higher visitation frequency inside forest fragments 
(Fig.A) wasn’t consequentially leading to a higher number of pollen on stigmas (Fig.B). 
In contrast to this, higher fruit and seed sets (Fig.C/D) were found in forest fragment 
sites again. 

 
Fig. 33: Levels of pollination grouped in main forest and forest fragment study sites:          
              (A) visitation frequencies, (B) pollen on stigmas, (C) fruit set, (D) seed set   
              (Acanthus eminens/ campaign 2002) 
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In campaign 2003, all levels of pollination were higher in forest fragment study sites: 
visitation frequencies (Fig. 34A), number of pollen on stigmas (Fig. 34B), percentage of 
stigmas loaded with pollen, fruit and seed set (Fig. 34C/D).  

 
Fig. 34: Levels of pollination grouped in main forest and forest fragment study sites:          
              (A) visitation frequencies, (B) pollen on stigmas, (C) fruit set, (D) seed set   
              (Acanthus eminens/ campaign 2003) 
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6.3 Heinsenia diervilleoides [Rubiaceae] 

6.3.1 Visitation frequency 
Between November 19, 2002 and January 20, 2003 H. diervilleoides trees were 
observed in four main forest (Colobus trail, Buyangu hill, Salazar I and Isecheno) and 
three forest fragment study sites (Malava, Kisere and Yala). All in all, 1260 visits were 
counted during 152 observation units on 3278 flowers. The main visitor group was bees 
(1185/94%), here divided into the three subgroups small to medium sized bees (mainly 
Halictids and Megachilids), honey bees (Apis mellifera) and carpenter bees (genus 
Xylocopa). Apart from bees, just a few visits by different sized butterflies and several 
wasps, could be observed on the H. diervilleoides flowers (Table 52). 

Table 52: Main visitor groups 

Visitor group n % of all 

Apis mellifera 132 10.5 
Xylocopa bees 8 0.6 
other Apidae 1045 83 
Lepidoptera 9 0.7 
Nematocera, Diptera, 
Formicidae, Coleoptera, 
Heteroptera, Vespidae 

66 5.2 

 
Due to the tiny flowers of H. diervilleoides, the long duration of the visits of all visitor 
groups (averages more than 10 seconds) and their behaviour inside the flowers – 
multiple touching of the stigmas all visitors were included in the following analysis to 
be a potential pollinator. 
 
In 11.8% (18) of all observation units, no visits were detected (Table 53).  

Table 53: Observation units without visits (H. diervilleoides) 

Study site % of units  
without visit 

Number of units  
(units without visit/  

all units) 
Colobus trail 40 10/25 
Buyangu hill 10 1/10 

Salazar I 15 3/20 
Isecheno 10 2/20 
Malawa 10 2/20 
Kisere 0 0/37 
Yala 0 0/20 

 
The mean visitation frequency of H. diervilleoides flowers was 1.17 visits/flower/hour 
(SD: 1.57), which means that statistically every flower was visited at least once in each 
observation unit (!). The highest mean visitation frequency of 2.08 visits/flower/hour 
(SD: 1.82) was observed inside the northern forest fragment Kisere while the 
northernmost study site inside the main forest Colobus trail showed the lowest mean 
visitation frequency of 0.33 visits/flower/hour (SD: 0.55).  
Between the mean visitation frequency of all the study sites, no significant differences 
were apparent (Table 54; Fig. 35A). 
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Table 54: Mean visitation frequencies (H. diervilleoides) 

Study site Visitation frequencies SD 
Colobus trail 0.33 0.55 
Buyangu hill 1.23 0.92 

Salazar I 0.49 0.69 
Isecheno 2.02 2.69 
Malawa 0.70 0.58 
Kisere 2.08  1.82 
Yala 0.78 0.51 

 
Higher visitation frequencies in forest fragment study sites (1.38 visits/flower/hour, SD: 
1.48) compared to main forest (0.94 visits/flower/hour, SD: 1.64) study sites were found 
(p=0.086) in H. diervilleoides populations (Fig. 35B). 

 
Fig. 35: Visitation frequencies on H. diervilleoides (box plots) of all visitors:  
            (A) in four main forest (left of the dashed line) and three forest fragment  
            (right of he dashed line) study sites arranged from north to south,  
            (B) grouped in main forest (4) and forest fragment (3) study sites   
            [tested for differences by one-way ANOVA] 

Owing to the final backward multiple regression model (R2=0.202), which included 
relevant biotic and abiotic factors, an influence of the two factors - cut trees per hectare 
and succession stages of forest study sites - could be shown concerning the visitation 
frequency of H. diervilleoides (Table 55). 

Table 55: Final model coefficients of a backward multiple regression    
            (started with n=5; Appendix 32)  

  

Factors B Standard 
error Beta t R2 Significance

(constant)   .627 .400    1.566 .119 
Cut trees per ha   .175 .036   .361   4.926 < .001** 

Succession stages  -.318 .093 -.250 -3.408 
.202 

   .001** 
 
In a range from 2 to 13 cut trees per hectare, highly significant (p<0.001**) lower 
visitation frequencies became apparent in less disturbed forest study sites. In addition, 
highly significant higher visitation frequencies (p=0.001**) were found in near-primary 
or old secondary forest plots respectively in contrast to middle-aged secondary or 
heavily logged and planted forest study sites (Fig. 36). 
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Fig. 36: Regression scatter plots H. diervilleoides      
            (dependent variable= visitation frequencies):    
            (A) cut trees per hectare to unstandardized residuals of the factor succession stages 
            of study sites,        
            (B) succession stages (1=near-primary; 2=old secondary; 3= middle-aged  
            secondary; 4=young secondary; 5=heavily logged and planted) to unstandardized 
            residuals of the factor cut trees per hectare  

These tendencies became more obvious in a multiple regression after grouping the data 
at study site level (Table 56; Fig. 37).  

Table 56: Coefficients of a multiple regression (n=2 factors) 

Factors B Standard 
error Beta t R2 Significance 

(constant)   .668 .284    2.352  .078 
Cut trees per ha   .175 .026   .851   6.856      .002** 

Succession stages -.327 .073 -.557 -4.488 
.939

   .011* 
 

 
Fig. 37: Regression scatter plots H. diervilleo es study sites     
   
   on stages 
            of site areas,   
            (B) succession stages (1=near-primary; 2=old secondary; 3= middle-aged secondary; 
            4=young secondary; 5=heavily logged and planted) to unstandardized residuals of 
            the factor cut trees per hectare  

id
         (dep. variable= visitation frequencies):     
         (A) cut trees per hectare to unstandardized residuals of the factor successi

the main forest and forest fragments study 
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6.3.2 Primary pollination success 
Inside the seven H. diervilleoides study sites, 224 stigmas were collected in the sites 
Colobus trail (62), Buyangu hill (15), Salazar I (5), Isecheno (45), Malawa (59), Kisere
(9) and Yala (29). After that, the pollen grains were counted in a defined apical region 
(from the region upwards where the stigma splits) under a fluorescence microscope 
(Fig. 38). 
 

 
Fig. 38: Heinsenia diervilleoides [Rubiaceae] pollen on the stigma   
    (sporadic pollen tubes visible) 

The maximum number of deposited pollen in a defined apical region (1289) on a stigma 
was found inside the study site at the Buyangu hill. In addition, pollen grains were 
found on 99.6% of all researched stigmas; just one stigma at Salazar I was not loaded.  
 
The 224 collected stigmas of H. diervilleoides showed a mean pollen number per stigma 
- in a defined apical region - of 328.05 (SD: 266.96). Nevertheless, no significant 
differences regarding the mean pollen number per stigma were found in the diverse 
study sites (Table 57; Fig. 39A). The low mean number of pollen on stigmas in Yala 
(94.90 (SD: 140.35)), however, appeared to be conspicuous when compared to the 
highest pollen counts at Buyangu hill (648.73 (SD: 319.58)). 

Table 57: Mean pollen number per stigma (H. diervilleoides) 

Study site 
Pollen number  

per stigma  SD 
(defined apical region) 

Colobus trail 480.05 250.46 
Buyangu hill 648.73 319.58 

Salazar I 352.60 241.61 
Isecheno 237.64 182.11 
Malawa 264.86 213.88 
Kisere 350.22 268.42 
Yala 94.90 140.35 
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*) 
wer mean number of pollen on stigmas inside the forest fragment study sites 

The counted pollen on stigmas grouped in main forest (409.06/SD: 274.03) and forest 
fragment (221.97/SD: 216.65) study sites described a highly significant (p<0.001*
lo
(Fig.39B). 

 
Fig. 39: Counted pollen on s  of  (b   

 
             [tested for differences by one-way ANOVA] 

 (R2=0.320) of a backward multiple regression showed a group of 

(p=0.014*), the percentage of forest in a buffer of 100m (p=0.015*) and the 
rotection status (p=0.007**). With the exception of the pH-value, all other factors 

re abundant H. 
iervilleoides populations, on soils with a higher pH-value (range: 5.0 – 6.5), in less 

Table 58: Final m ession (started with n=7 factors) 

Factors B Standa
error  t 2 Significance 

tigmas H. diervilleoides ox plots): 
             (A) in four main forest (left of the dashed line) and three forest fragment  
             (right of the dashed line) study sites arranged from north to south,  
             (B) grouped in main forest (4) and forest fragment (3) study sites  

The final model
factors which have a potential influence on the number of pollen deposited on the 
stigmas of H. diervilleoides. These factors are the size of the forest fragments 
(p<0.001**), the abundance of the H. diervilleoides individuals (p=0.051), the pH-value 
of the soil 
p
showed a proportional relation concerning the counted pollen on stigmas (Table 58).  
 
A higher number of pollen was found in larger forest fragments, in mo
d
protected areas and in study sites which were surrounded by a higher percentage of 
forest in a buffer of 100m (range: 70% – 98%).  
 

odel coefficients of a backward multiple regr

rd 
 Beta R

(constant) 524.281     .471 .638 247.069  
Size of forest 

fragments      .007 96   5.665 < .001**       .041   .5  

Abundance of  
H. diervilleoides 8   10.273 72   1.958 .051   20.11   .1  

pH-value 07   70.064 78 -2.466   .014* -172.8 -.1  
% of forest in a 

100m buffer 630    2.703 13   2.453   .015* 

.32

     6.   .2  

Protection status  194.189   71.080   .321   2.732     .007** 

0
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 individuals (n=3) produced any seeds.  

6.3.3
Betw collected. 
All in e ions Colobus 
trail (  K sere (38) and 
Yala 

: Mean fruit set (H. diervilleoides) 

it set  (SD) 

Self-pollination experiments showed no ability for autogamy as none of nine 
manipulated flowers of the tested

 Fruit set 
een January 22 and March 03, 2003, 1483 fruits of H. diervilleoides were 
 all, the fruit set of 128 marked individuals was classified in the r g
18), Buyangu hill (12), Salazar I (6), Isecheno (26), Malawa (14), i
(14). 

 
To sum up, 15.6% (20) of the observed individuals developed no fruits at all while the 
maximum possible fruit number (fruit set: 1.0) was achieved by 8.6% (11). During this 
campaign H. diervilleoides showed a mean fruit set of 0.40 (SD: 0.33).  
 
When comparing the fruit set of all study sites, no significant differences were obvious 
apart from a general tendency of a higher mean fruit set inside forest fragment plots 
compared to the main forest study sites (Table 59; Fig. 40A). 

Table 59

Study site Fru

Colobus trail 25 0.21 0.  
Buya l 0.15 2 ngu hil 0.2

Sal 0.62 5 azar I 0.2
Isec 0.22 9 heno  0.1
Ma 0.39 2lawa  0.3  
Ki 0.61 4 sere  0.3
Yala 0.48 3 0.3

 
However, when grouping the study sites in main forest (0.25/SD: 0.24) and forest 

(0.54/SD: 0.34), the prior assumption could be verified as H. fragment sites 
diervilleoides produced highly significant (p<0.001**) more fruits in the forest 
fragment study sites (Fig. 40B). 

 
Fig. 40: Fruit set of oides  (box plo    
            (A) in four eft of the da ne) and thre t fragment  
            (right of the ne) study sites a ed from nort uth,  
            (B) grouped t (4) and fo agment (3) st tes   
            [tested for differences by one-way ANOVA]  

 H. dierville
m st (l

ts):  
ain fore

 dashed li
shed li
rrang

e fores
h to so

in main fores rest fr udy si
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he final model (R2=0.250) of a backward multiple regression showed the following 

es (p=0.001**), humidity (p=0.001**) and a north-south gradient 
(p=0.001**) (Table 60).  
A higher fruit set was found in study sites that were surrounded by a higher proportion 
of forest in a 100m buffer (range: 70% – 98%) and in older successional forest stages. It 
could also be observed in study sites with higher humidity (range: 45% – 85%) and a 
more northward location. 

Table 60: Final model coefficients of a backward multiple regression    
       (started with n=5 factors; Appendix 36) 

Factors B Standard 
error Beta t R2 Significance 

T
group of factors which had a potential influence on the fruit set of H. diervilleoides: the 
percentage of forest in a buffer of 100m (p=0.008**), the succession stages of the 
observed study sit

(constant) -.973 .486  -2.003 .047* 
% of forest in a 

100m buffer  .010 .004  .336   2.702   .008** 

Succession stages -.168 .048 -.629 -3.509   .001** 
Humidity  .022 .007  .990   3.298   .001** 

North-south gradient -.138 .040 -.856 -3.418 

.250

  .001** 
 

6.3.4
Out o S lazar I (103), 
Isech a (98)), all seeds were counted and 

 

 Seed set 
f 1483 collected fruits (Colobus trail (181), Buyangu hill (36), a

eno (228), Malawa (324), Kisere (513) and Yal
divided by two potential ovules. The outcome was a mean seed set of 0.39 (SD: 0.37). 
In addition, 34.1% (506) of the observed H. diervilleoides fruits generated the potential 
maximum number of two seeds per fruits (seed set: 1.0), while 8.2% (122) of the fruits 
produced no seed (seed set: 0) at all, and merely three fruits were found containing three 
seeds. 
 
When comparing the mean seed set of all study sites, no obvious significant differences 
were apparent (Table 61; Fig. 41A).  

Table 61: Mean seed set (H. diervilleoides) 

Study site Seed set  (SD)

Colobus trail .30 0.33 0
Buyangu hill .2 0.35 0 5 

Sal 0.44 .35 azar I 0
Isecheno 0.29 0.36 
Malawa 0.45 .35 0
Kisere 0.43 0.39 
Yala 0.45 .330  

 
When study sites grouped in m ent (0.44/SD: 
0.37) p ly sign 0.00  low  ain forest sites could be 
sho

ain forest (
ificant (p<

0.32/SD: 0.35) and forest fragm
1**)lots a high er seed set in m

wn (Fig. 41B). 
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Fig. 41: Seed set of H. diervilleoides (error bars; standard error of mean value): 
            (A) in four main forest (left of the dashed line) and three forest fragment  
            (right of the dashed line) study sites arranged from north to south,  
            (B) grouped in main forest (4) and forest fragment (3) study sites   
            [tested for differences by one-way ANOVA] 

With low evidence, the final model (R2=0.035) of a backward multiple regression 
indicated the following group of factors which might have a potential influence on the 
seed set of H. diervilleoides (Table 62) the abundance of H. diervilleoides individuals 
inside the forest fragments (p<0.001**), the percentage of forest in a buffer of 100m 
(p=0.001**), a north-south gradient (p=0.033*), the size of the forest fragments 
(p<0.001**) and [Mg++] of the soil (p=0.042*). 
Here, a lower seed set was found in study sites with more abundant H. diervilleoides 
populations that were surrounded by a lower proportion of forest in a 100m buffer 
(range: 70% – 98%), located more southwards in larger forest fragments and with lower 
[Mg++] in the soil (range: 10 – 55 mmolc•kg-1). 

Table 62: Final model coefficients of a backward multiple regression    
            (started with n=5 factors; Appendix 38) 

Factors B Standard 
error Beta t R2 Significance

(constant) -.193 .227    -.853 .394 
Abundance of  

H. diervilleoides -.026 .007 -.251 -3.494 < .001** 

% of forest in a 
100m buffer  .009 .003  .245   3.250   .001** 

North-south gradient -.021 .010 -.113 -2.137  .033* 
Size of forest 

fragments -1.79E-05 .000 -.187 -5.190 < .001** 

[Mg++] in the soil  .004 .002  .114   2.031 

.035 

 .042* 
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Despite higher visitation frequencies inside forest fragment study sites (Fig. 42A), the 
as was higher in main forest plots (Fig. 42B). In contrast to 

6.3.5 Levels of pollination 

number of pollen on stigm
this, both the fruit and the seed set were significant higher in forest fragment sites again 
(Fig. 42C/D). 

 
Fig. 42: Levels of pollination grouped in main forest and forest fragment study sites: 
            (A) visitation frequencies, (B) pollen on stigmas, (C) fruit set, (D) seed set  
            (Heinsenia diervilleoides) 
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6.4 Dracaena fragrans ceae]  

6.4.1 Flower visitation 
oth the flower architectu e odour spread at night led to the 

at night (Fig. 43). In addition, some night-
flying Lepidoptera m the thaw in the 
early morning.  

 [Rusca

B re and the intensiv
hypothesis that D. fragrans might be pollinated by moths.  
Covering experiments – from 6 a.m. to 6 p.m. (= flowers not covered with light netting 
at night) and from 6 p.m. to 6 a.m. (= flowers not covered with light netting during the 
day) - corroborated this assumption, because a highly significant (p<0.001**) lower 
number of pollen was counted on stigmas exposed to possible visitors during the day as 
compared to flowers that were not covered 

 stuck on the covering bags that were clammy fro

 
Fig. 43: Counted pollen on stigmas on D. fragrans in a night/day flower covering  
             experiment [tested for differences by one-way ANOVA] 

Because the Dracaena fragrans flowers were mainly visited at night, no visitation 
frequency data that was relevant for its pollination could be recorded in this study.  

6.4.2 Primary pollination success 
In the six D. fragrans study sites, 145 stigmas were collected, distributed in Colobus 
trail (45), Isecheno (38), Malawa (18), Kisere (35) and Ikuywa (9). Following 
collection, the pollen grains were counted under a fluorescence microscope (Fig. 44). 
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Fig. 44: Dracaen  [R ] pollen on t   

63: Percentage of stigmas loaded with pollen (D. fragrans) 

a fragrans uscaceae he stigma

82.8% (120 of 145) of all examined stigmas were loaded with at least one pollen. The 
highest percentage of loaded stigmas was found at Colobus trail with 97.8% (44 of 45), 
while the lowest was found in Malawa with 27.8% (5 of 18) (Table 63). 

Table 

Study site  
 

% of 
stigmas 
loaded 

with pollen 

Number 
of 

stigmas 

Colobus trail 97.8 44/45 
Isecheno 97.4 37/38 
Malawa 27.8 5/18 
Kisere 80 28/35 
Ikuywa 66.7 6/9 

 
The collected 145 D. fragrans stigmas showed a mean pollen number of 43.16 (SD: 
67.09). The maxim 9) was found inside the study site 
in Isecheno. When a of all different study 
sites a higher number of pollen in main forest study sites became evident (Table 64; 
Fig.45A).  

T ollen numbe stigma (D. fr ) 

Study site Pollen number  
per stigma  

um number of deposited pollen (46
 comparing the mean pollen number per stigm

able 64: Mean p r per agrans

SD 

Colobus trail 44.71 58.51 
Isecheno 95.05 88.64 
Malawa 2.78 9.62 
Kisere 10.54 16.18 
Ikuywa 23.89 54.68 

 
Consequently, pollen counts on stigmas grouped in main forest (67.76/SD: 77.58) and 
forest 001**) 
lower udy sites 
(Fig.4

 fragment (10.23/SD: 24.65) study sites revealed a highly significant (p<0.
 mean number of pollen on stigmas inside the forest fragment st
5B). 
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Fig. 45: Counted pollen on stigmas of D. fragrans (box plots):   
             (A) in two main forest (left of the dashed line) and three forest fragment  
             (right of the dashed line) study sites arranged from north to south,  
             (B) grouped in main forest (2) and forest fragment (3) study sites   
             [tested for differences by one-way ANOVA] 

The percentage of stigmas loaded with pollen was also lower in forest fragments 
(Table65). 

Table 65: Percentage of stigmas loaded with pollen (D. fragrans) 

Study site 
% of stigmas 
loaded with 

pollen 

Number of stigmas 
(stigmas loaded with pollen/ 

all stigmas) 
Main forest 97.6 81/83 

Forest fragment 62.9 39/62 
 
A north-south gradient (p=0.070), humidity (p<0.001**) and the protection status 
(p=0.003**) turned out in the final model (R2=0.266) of a backward multiple regression 
to be potential factors which might influence the number of pollen deposited on the 
stigmas of D. fragrans (Table 66).  
The higher the humidity (range: 45% – 80%) and the higher the protection of the forest 
fragments, the higher was the number of pollen found there. In addition, less pollen 
were counted on stigmas which were collected further north.   
Table 66: Final model coefficients of a backward multiple regression    
            (started with n=8 factors; Appendix 40) 

Factors B Standard 
error Beta t R2 Significance

(constant) -54.789 27.866  -1.966 .051  
North-south gradient    9.618   5.274   .160   1.824 .070 

Humidity    1.891     .453   .356   4.171 < .001** 
Protection status -39.496 13.163 -.230  -3.000 

.266 
   .003** 

 
Self-pollination experiments showed an ability for autogamy as 44% (n=9) of the tested 
plant individuals produced at least one seed. But these seeds looked poorer and smaller 
than regular pollinated ones.  
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6.4.3 Fruit set 
 fragrans were collected between August 26, 2002 and March 31, 2003. 

fragrans showed a mean fruit set of 0.14 (SD: 0.15). 

2430 fruits of D.
In total, the fruit set of 83 marked individuals was classified the regions Colobus trail 
(20), Isecheno (20), Malawa (17), Kisere (20), and Ikuywa (6). 
 
The examination showed that 34.9% (29) of the observed individuals developed no 
fruits at all and that the maximum fruit number (fruit set: 1.0) had not been achieved. 
During this campaign D. 
 
In addition, no significant differences in fruit set became evident when examing the 
study sites individually (Table 67; Fig. 46A).  

Table 67: Mean fruit set (D.  fragrans) 

 
Study site 

 
Fruit set 

 
(SD) 

Colobus trail 0.19 0.16 
Isecheno 0.12 0.09 
Malawa 0.17 0.22 
Kisere 0.10 0.14 
Ikuywa 0.09 0.05 

 
 division into main forest (0.15/SD: 0.132) and forest fragment (0.13/SD: 0.17) study A

sites did not show any significant differences as well (p=0.444) concerning the mean 
fruit sets (Fig. 46B). 

 
Fig. 46: Fruit set of D. fragrans (box plots):      

nt  

None of relevant biotic and  

            (A) in two main forest (left of the dashed line) and three forest fragme
            (right of the dashed line) study sites arranged from north to south,  
            (B) grouped in main forest (2) and forest fragment (3) study sites   
            [tested for differences by one-way ANOVA] 

abiotic factors showed any correlation regarding the fruit set
of D. fragrans in Kakamega Forest during this field campaign.  
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the outcome of which was a mean seed set of 0.17 (SD: 0.24). 
2. xi um number of three 
seeds per fruit (seed set: 1.0), while 62.1% (1498) of the fruits examined produced no 
seeds at all (seed set: 0). 
 
With the exception of Yala (0.47/SD: 0.28), the mean seed set of D. fragran  no 
significant differences with regard to the able 68; Fig. 47A). 

Table 68 seed . fragr

Study site See (SD) 

6.4.4 Seed set 
Out of 2413 collected fruits (Colobus trail (615), Isecheno (566), Malawa (318), Kisere 
(347), Ikuywa (164) and Yala (403)) all the seeds were counted and correlated with 
three possible ovules, 

2% (52) of the observed D. fragrans fruits generated the ma m

s showed
different study sites (T

set (D: Mean ans) 

  
d set 

 

Colobus trail 0.11 0.18 
Isecheno 0.05 0.12 
Malawa 0.17 0.21 
Kisere 0.14 0.21 
Ikuywa 0.09 0.15 

Yala 0.47 0.28 
 

si

When grouping the study sites in main forest (0.08/SD: 0.16) and forest fragment 
(0.25/SD: 0.28) plots, a significantly higher (p<0.001**) seed set in the forest fragment 

tes were visible (Fig. 47B). 

 
Fig. 47: Seed set of D. fragrans (error bars; standard error of mean value):  
            (A) in two main forest (left of the dashed line) and three forest fragment  
            (right of the dashed line) study sites arranged from north to south,  
            (B) grouped in main forest (2) and forest fragment (3) study sites  
            [tested for differences by one-way ANOVA] 

The final model (R2=0.345) of a backward multiple regression indicated the following 
group of factors which had a potential influence on the seed set of D. fragrans (Table 
69): the percentage of forest in a buffer of 100m (p=0.001**), a north-south gradient 
(p=0.001**), the C/N ratio (p=0.001**) and [Mg++] (p=0.001**) of the soils and the 
protection status (p<0.001**).  
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A higher seed set of D. fragrans was found in study sites that were surrounded by a 

100m buffer (range: 68% – 98%) and which were located 

Table 69: Final model coefficients of a backward multiple regression   
            (started with n=9 factors; Appendix 42) 

Factors B Standard 
error Beta t R2 Significance 

lower proportion of forest in a 
further south. In addition, the seed set was higher in the less protected forest reserves 
and in soils with lower C/N ratio (range: 5 – 10) and lower [Mg++] (range: about 10 – 55 
mmolc•kg-1) (Fig. 48). 

(constant) 1.348 .080   16.954 < .001** 
% of forest in a 

100m buffer -.008 .001 -.334 -11.558 < .001** 

North-south gradient  .040 .003   .256  14.262 < .001** 
C/N ratio of the soil -.045 .002 -.371 -18.295 < .001** 
[Mg++] of the soil -.015 .001 -.839 -25.903 < .001** 
Protection status  .070 .011  .116    6.488 

.345 

< .001** 
 

 
Fig. 48: Regression scatter plots D. fragrans: (dependent variable= seed set):  
            (A) [Mg++] (mmolc•kg-1 ) in soils to unstandardized residuals of all other factors
            (B) percentage of forest in a 100m buffer to unstandardized residuals of all other

These l on study site 
level with respect to the factors [Mg ] in soils and forest in a buffer of 100m (Table70).  

Table 70: Coefficients of a multiple regression (n=2 factors) 

Factors B Standard 
error Beta t R2 Significance 

                  factors 

 tendencies could not been shown in a multiple regression mode
++

(constant)  .916 .745   1.229 .307 
% of forest in a 

100m buffer -.005 .007 -.370  -.712 .528 

[Mg++] of the soil -.011 .006 -.939 -1.805 

.553 
.169 
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lination 
Both the number of pollen fruit set (Fig. 49B) were 
higher in main fores s significant higher 
in forest fragment plots (Fig. 49C). 

6.4.5 Levels of pol
 on stigmas (Fig. 49A) and the 

t study sites. In contrast to this, the seed set wa

 
Fig. 49: Levels of pollination grouped in main forest and forest fragment study sites:          
            (A) pollen on stigmas, (B) fruit set, (C) seed set (Dracaena fragrans)



72 Discussion  
______________________________________________________________________ 
 

ommon factor for visitations for all observed bees. 

7.  Discussion 
“Gutiri keega kaumaga heega” – 

“Nothing good comes out of an easy situation” 
(Kenyan saying) 

 
In general, all field studies dealing with habitat fragmentation are afflicted with a huge 
number of influencing variables. This complexity of biotic and abiotic factors is making 
monocausal explanations pretty unlikely and predictions of specifics difficult or even 
impossible (Bissonette & Storch, 2002).  

7.1 Visitation frequency and primary pollination success 
Comparing all tested plant species of this study, a general tendency of a higher 
visitation frequency in forest fragment study sites was evident (Fig. 50), although 
different main pollinator groups were identified: honeybees (Apis mellifera) for 
Acanthopale pubescens; carpenter bees (genus Xylocopa) for Acanthus eminens or 
Halictids, Megachilids and a limited number of honeybees for Heinsenia diervilleoides. 

he collection of nectar was cT

 
Fig. 50: Visitation frequency in study sites:      
             (A) Acanthopale pubescens, (B) Acanthus eminens (campaign 2002),   
             (C) Acanthus eminens (campaign 2003), (D) Heinsenia diervilleoides 
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eaceae]) in smaller (1 ha) compared to larger (>20 ha) rain forest 
agments, has already described from southern Chile (Smith-Ramirez & Armesto, 

umidity and 
loudiness; the diversity of habitat types; the diversity and abundance of plant and 

redation on visitors; the amount and quality of nectar, but also the 

ee abundance 

mega Forest (Gikungu, 2006), 
owed a bee fauna richer in diversity and abundance around the forest compared to the 

side the forest sites could be expected, 

The same phenomenon of a higher number of bird visits on tree flowers (Embothrium 
coccineum [Prot
fr
2003).  
 
Higher visitation frequency is either the result of higher visitor abundance on the 
flowers or a higher number of visits per visitor. Both scenarios might be influenced by 
various abiotic and biotic factors: e.g. the microclimate like temperature, h
c
visitor species; the p
availability of the resource nectar inside the forage range. At the same time many 
parameters are linked with each other.  
 
B
As generally known, bees invaded almost all parts of the world, nevertheless the 
greatest diversity is found in warm and dry areas (O' Toole & Raw, 1999). In addition, 
bees are more abundant in warm-temperate xeric regions (Michener, 1979). Along a 
humidity-gradient the greatest abundance of bees was also documented in the dryer 
extreme (Devoto et al., 2005). Here, nesting conditions might play an important role 
(Michener, 2000). However, other reasons for patterns of abundance of bees like 
diversity of habitat types (Steffan-Dewenter et al., 2002), plant diversity and abundance 
(Potts et al., 2001; Ghazoul, 2006) and predation of larvae by ants (Michener, 2000) 
have been reported. Two of these three factors also might promote higher abundance of 
bees inside the Kakamega Forest fragments as explained below.  
 
The recently conducted bee study in and next to Kaka
sh
forest islands itself. Generally a higher influence of the dryer bush and farmland and its 
bee populations could be postulated compared to the main forest, due to higher forest 
edge proportion of the forest fragments. As likely as not, foraging flights of these bees - 
many flights into the forest have been observed - might enclose the entire forest 
fragments (65 ha -1.370 ha). But in this context, Steffan-Dewenter et al. (2006) 
remarked that the response to habitat fragmentation on bee communities is still poorly 
understood. 
 
Basically, the nectar gathered by foraging bees must cover the cost of collection and 
provide a surplus for personal and offspring need (Proctor et al., 1996). In tropical 
habitats, bee flight ranges have been studied in only a few species, but studies on Apis 
mellifera showed a peak foraging range of about 10 km and an average forage range 
between roughly 2 km and 5 km (Roubik, 1989). The same is true with the larger 
Xylocopa bees, where average forage ranges between 6 km and 10 km from the nest 
were documented (Roubik, 1989). Regarding the very tiny Halictids next to the forest, 
just a lower impact on the visitation frequency in
due to their general limited forage ranges of not more than about 1 km (Roubik, 1989). 
Nevertheless, because of the foraging efficiency, a pollen transfer between forest study 
sites appeared to be unlikely. 
 
Given that the entire Kakamega Forest region was surrounded by a diverse farmland, 
especially around the forest fragments, a “higher diversity of habitat types” could also 
be postulated in relation to their sizes. This kind of more heterogeneous landscape is 
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ance of Xylocopa calens next to the forest, especially 

ig. 14B). Additionally, the local communities in the 
orth housed more bees.  

ed in main forest 

condary, old secondary, near-primary) were compared 
lthof, 2005). 

r forest fragments which potentially reflected 
ee abundance. 

ns 

e different observed plant species.  

s very low 
ith 0.16 visits/flower/hour. The visitation frequency even declined with a higher 
umber of A. pubescens flower per observation unit (Table14). This could mean that 

f nectar or the percentage of sugar in the nectar was very low, or 

me evident inside study sites where 
sser forest was found in a buffer of 2000m around the study sites (Fig. 13A; Fig. 14A) 

expected to have higher abundances of wild bees on different scales (Steffan-Dewenter 
et al., 2002).  
Even in Kakamega, a higher abund
in the North (10 km transect) (Kasina, 2005), could be explained by a higher diversity 
of habitat types next to the forest. Furthermore the Xylocopa bees depend mainly on 
trees for nesting (M. Gikungu, pers. comm.). In contrast, the more homogeneous 
farmland in the South next to Kakamega Forest revealed no effects (Kasina, 2005). 
Concerning A. pubescens visited by honey bees, the same phenomenon could be 
observed, the visitation frequency was higher inside the northern compared to the 
southern study sites (Fig. 13B; F
N
Becker et al. (1991) also reported in this context, that higher Euglossa bee abundance 
was found inside smaller forest fragments (up to 10 ha) in South America compared to 
larger forest fragments (100 ha) or the continuous rain forest. The authors also referred 
these effects to changes in the landscape matrix, which provides diverse nest sites. 
 
The plant diversity (Althof, 2005) inside main forest or forest fragment sites showed no 
effects on the visitation frequencies or on the bee abundance. This could be explained 
due to nonexistent significant differences of species numbers, distribut
sites (n= 103 to 163) or forest fragment sites (n= 93 to 138). The same was true, if main 
forest (middle-aged secondary) and forest fragment succession stages (heavily logged 
and planted, middle-aged se
(A
 
An additional explanation for a higher abundance of bees inside forest fragments 
appeared to be the predation of bee larvae by ants (Michener, 2000). Here, the 
abundance of the forest specialist army ant (genus Dorylus) showed a positive 
correlation to the forest size (Peters, 2003). Therefore lower predation pressure on bee 
larvae could be assumed inside the smalle
b
 
To all intents and purposes, studies of fragmentation and edge effects on pollinator 
populations should as well have temporal depth (Cane, 2001). In this context, Roubik 
(2001) showed ups and downs in pollinator populations over decades. This could be one 
possible explanation for the differences of the visitation frequencies inside the same 
study sites during the A. eminens campaigns 2002 and the campaign 2003. 
 
Flower visitatio
Apart from the postulated higher abundance of bees inside the forest fragments due to 
higher edge effect, several other biotic and abiotic factors might have influenced the 
visitation frequencies for th
 
In general, Acanthopale pubescens appeared not to be very attractive to honey bees. 
Despite the fact that A. pubescens as a mass blooming plant species provided a great 
abundance of flowers, the overall visitation frequency of all study sites wa
w
n
either the amount o
both. But also the final multi regression model stressed the importance of the location of 
the study sites. Higher visitation frequencies beca
le
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ation between visitation frequencies and cut trees 

ion due to 
igher solar radiation. Apart from this exogenic factor a strong genetic component on 

nectar production was reported (Kearns & Inouye, 1993). 
Campaign 2003 showed a negative correlation of cloudiness and visitation frequency 
(Fig. 25). Here, the denser cloudiness could have influenced the foraging behaviour of 
the Xylocopa bees, the more clouds the less foraging flights. Furthermore, also with 
respect to the A. eminens campaign 2003 the final multi regression model stressed the 
importance of the location of the study sites; higher visitation frequencies were found in 
smaller forest fragments. As described for Acanthopale pubescens, these findings might 
confirm the assumption of a potential impact of the surrounding farmland bee 
populations on the forest visitation frequencies. 
The differences between main forest and forest fragment visitation frequency in 2002 
compared to 2003 should be traced back to lower study site samples or seasonal 
changes in the bee populations (Roubik, 2001). 
 
Halictids and Megachilids as main pollinator groups of Heinsenia diervilleoides, nest in 
exposed areas of the forest, especially in disturbed sites and along forest pathways, but 
also outside the forest (M. Gikungu, pers. comm.). In particular for Halictids, combined 
with their limited forage ranges, a higher visitation frequency should be an indicator for 
a higher abundance of bees. Here, the positive correlation between the amount of cut 
trees per hectare and the visitation frequencies inside the study sites supported this 
assumption (Fig. 36A; Fig. 37A).  
In Kakamega Forest the oldest succession stages were found in the fragments Kisere 
and Yala compared to the middle-aged secondary study sites in the main forest (Althof, 
2005). Consequently, the higher visitation frequencies on H. diervilleoides flowers in 
older succession stages of the forests (in particular in Kisere and Yala) (Fig. 36B; Fig. 
37B) could result from lower predation pressure on bee larvae by army ants (genus 
Dorylus) inside the smaller forest fragments (Peters, 2003) which potentially reflected 
positively on the bee abundance. 
 
A closer examination of the visitation frequency data showed also differences on spatial 
scales. Here, high variations were found on study site as well as on observation unit data 
level. One likely explanation to this could be a possible dependency of bee foraging 
behav t factors, as for example, the different 
macro cial foraging 
strate  described by Proctor et al. 

996), might inherently provoke disproportionate shifts concerning mean study site 
visitation frequencies of, for instance, the H. diervilleoides campaign.  

ter et al. (2006) stressed that the variation of plant-

and which were located further north. These findings confirmed the assumption of a 
potential impact of the farmland bee populations with respect to the higher visitation 
frequencies of A. pubescens inside the forest fragments. 
 
In contrast, the less abundant Acanthus eminens flowers were highly frequented by 
Xylocopa bees during both campaigns 2002: 0.282 visits/flower/hour and 2003: 0.52 
visits/flower/hour. The negative correl
per hectare during campaign 2002 (Fig. 24A) might lead to the suggestion that 
Xylocopa bees - as carpenter bees - lost potential nesting sites in higher disturbed 
forests. But also the more open canopy could have changed the nectar product
h

iour with respect to microhabita  
climate or varieties in the blooming composition. But also spe

gies, such as group-foraging of non-social bees as
(1

In this context, Steffan-Dewen
pollinator interactions in response to habitat fragmentation on the spatial and temporal 
scales is still less understood. 
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lower visitations and pollen transfer 
ed plant species in this study were found inside Kakamega Forest and its 

this study showed at the forest fragment level that high visitation 
frequencies do not inevitably led to more pollen on stigmas. Only A. eminens (campaign 
2003)  pollen 
on sti
more or pollen limitation could be 

en no pollen grains with every visit. But a higher number of visitors 

reasons and/or genetic 

F
All observ
fragments. Due to the long distances between these forest remnants and the highly 
attractive composition of flowering plants in the bush- and farmland in between, it can 
be postulated that no intensive exchange of genetic material through pollination 
occurred between these forest fragments. 
 
In addition, 

 showed a positive correlation between visitation frequencies and counted
gmas (Fig. 34). Here, higher visitation frequency in forest fragments might lead to 
pollen on stigmas. Hence, a potential pollinator and/

assumed on A. eminens flowers in 2003, in particular due to the fact that 34.7% of the 
forest fragment and even 55.8% of the main forest stigmas did not show any deposited 
pollen grain.    
In contrast to this, with respect to A. pubescens, A. eminens (campaign 2003) and H. 
diervilleoides a contrary relation between visitation frequency and number of pollen on 
stigmas became obvious.  
 
Generally, it has to be considered that each visitor was potentially able to transfer either 
 large number or eva

might also have removed a higher number of pollen grains from the stigmas. 
 
 
Pollen on stigmas 
In this study, no general pattern of higher or lower amounts of pollen in main forest or 
forest fragment study sites were evident (Fig. 51).  
 
On closer examination, a very high variability of pollen number on stigmas was evident 
with respect to all observed plant species. The standard deviation in many cases was 
ven higher than the counted mean number of pollen on stigma. Therefore, e

interpretations concerning the potential influences of the measured biotic and abiotic 
factors should be of limited significance. In addition, the final models of multiple 
regressions also showed either a larger quantity of potential influencing variables and/or 
only a low explanatory power (R2).     
In general, differences of pollen numbers on stigmas might be rather a result of biotic 
ffects – such as the transfer by pollinators, plant species specific e

variations in the populations - than due to discrepancies of the abiotic factors. 
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Fig. 51: Pollen on stigmas in study sites:      
            (A) Acanthopale pubescens, (B) Acanthus eminens (campaign 2003),   
            (C) Heinsenia diervilleoides, (D) Dracaena fragrans 

 

7.2 Reproductive success 
In this study reproductive success was defined as fruit times seed set. More extensive 
studies should also take the ability of germination and seedling establishment into 
consideration. 
 
Fruit set 
With respect to the four observed plant species, no general pattern of higher or lower 
fruit set in main forest or forest fragment study sites was evident (Fig. 52). Just A. 
pubescens and H. diervilleoides showed highly significant differences between fruit set 
in main forest and fragment forest study sites. Particularly, lower fruit set was found in 
A. pubescens forest fragment plots and with regards to H. diervilleoides inside main 
forest sites.  
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Fig. 52: Fruit set in study sites:       

0b) of fruit set in fragments relative to continuous habitats were 

ce of herbivores as one main 
fluencing factor of fruit set. Here, also a significant lower fruit set in smaller forest 

            (A) Acanthopale pubescens, (B) Acanthus eminens (campaign 2003),   
            (C) Heinsenia diervilleoides, (D) Dracaena fragrans 

This inconsistent response of fruit set with respect to different plant species was also 
reported in other empirical studies. Here, both a decrease (Oostermeijer et al., 1992; 
Groom, 1998; Wolf et al., 1999) and an increase (Aizen & Feinsinger, 1994a; 
Cunningham, 200
described. Changes in the abiotic environment caused by fragmentation (Harris, 1988; 
Laurance & Yensen, 1991; Saunders et al., 1991; Murcia, 1995), but also changes in the 
animal communities of fragments (Cunningham, 2000b) appeared to be the main 
influencing factors.  
 
In this study, personal observations of a lot more feeding damages on A. pubescens 
fruits in forest fragments might stress the importan
in
fragment study sites (Fig. 18) could be explained by a possibly higher abundance of 
herbivores inside smaller fragments. In this context, theoretical and empirical studies 
have shown that longevity and frequency of herbivore outbreaks were positively 
correlated with the degree of fragmentation (Kareiva, 1987; Roland, 1993; Rothman & 
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ct to A. eminens (campaign 2003); many fruits were found in various stages 
f rot inside all study sites. Thus, a negative dependency to moisture connected with 

eed set 

gmentation 
r isolation on reproductive success (Spears, 1987; Aizen & Feinsinger, 1994a; Aldrich 

s (Fig. 53), H. diervilleoides and D. fragrans even a 

Roland, 1998; Kondoh, 2003). Freund (2004) also described seasonal varieties in the 
abundance of herbivores inside the differed Kakamega Forest fragments. (Freund, 2004) 
 
With respe
o
solar radiation could be assumed regarding A. eminens fruit set. This assumption might 
be consolidated, because of higher fruit set in study sites which were less protected and 
located nearer to the forest edges (Fig. 29; Fig. 30). 
 
In this study no factors became evident which could explain substantially the significant 
lower fruit set of H. diervilleoides inside main forest study sites. But among others, the 
correlations between fruit set and a north-south gradient allowed assumptions that 
different soil types and parameters might influence the fruit synthesis of H. 
diervilleoides. The fruit set of D. fragrans showed no response to all observed factors.   
 
Subsumed, fruit set might mainly be resource limited, but not pollinator limited, and 
therefore changes in pollinator abundance would be less important (Schemske & 
Horvitz, 1988). 
 
S
Seed production could not easily be linked to habitat fragmentation, but fragmentation 
might affect plant population genetics by loss of alleles through drift and by inbreeding 
(Ghazoul & McLeish, 2001; Ghazoul, 2005). Several studies reported that small plant 
populations in fragmented habitats showed reduced seed set, genetic diversity and 
offspring fitness (Oostermeijer et al., 1994; Fischer & Matthies, 1997; Fischer & 
Stöcklin, 1997; Morgan, 1999; Hendrix & Kyhl, 2000; Kéry et al., 2000; Luijten et al., 
2000). In this context, Steffan-Dewenter et al. (2006) remarked that relatively few 
studies included direct observations of flower visitation and experimentally test for 
pollinator limitation as the cause for lower seed set. But also different studies were 
published, which showed non-significant or significant positive effects of fra
o
& Hamrick, 1998; Cunningham, 2000b; Costin et al., 2001). 
All in all, the tested plant species of this study showed a general tendency for higher 
seed set in forest fragment study site
highly significant tendency. 
 
In general, seed set is mainly depending on either pollen quantity and/or pollen quality 
(Waser & Price, 1991; Ramsey & Vaughton, 2000). Several factors have been described 
which might contribute to insufficient pollination (Waser & Price, 1991; Brown & 
Kephart, 1999), such as low visitation frequencies or poor genetic variation inside the 
plant population gene pool. 



80 Discussion  
______________________________________________________________________ 
 

 
Fig. 53: Seed set in study sites:       
            (A) Acanthopale pubescens, (B) Acanthus eminens (campaign 2003),   
            (C) Heinsenia diervilleoides, (D) Dracaena fragrans  

A number of studies reported that pollen limitation (pollen quantity) is a common 

the exception of the A. eminens campaign 2003, no pollen limitation on forest fragment 
le ssum the pond f the po umb  
and seed set (Fig. 21, Fig. 33, Fig. 34, Fig. 42, Fig. 49).  
 
Therefore, the pollen q ty at the fo  fragment level might be one main reason for 
lo insid  for  c er lity cou mean 
self or incompatible pollen and closel lated polle Manasse & inney, 1991; Waser 
& yers, 1 ; Totland e , 1998). 
In general, the self  e o  in need fo cross-
pollination to all obser ecies. A. pubescens, A. eminens and D. fragrans 
s for bu ds re ler than gular 
pollinated ones. oi pr  self-pollination 
experim
F hig set a m onsequ e of 
higher genetic variation (O eijer et al., 1994). This 

proximate cause of low seed set (Burd, 1994; Ramsey & Vaughton, 2000). Here, with 

vel could be a ed due to  non-corres ence o llen n er on stigmas

uali rest
wer seed set e the main est. In this ontext, poor pollen qua l  d

y re
t al.

n (  P
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assumption at first looked implausible, but closer examination of the Kakamega Forest 
fra history, gest t lts of the visitation frequencies and the 

d su po

se higher foraging ranges, because of the higher number of 
ompetitors.  

Consequently, the patchy distributed plant populations inside the forest fragments could 
have been better connected through pollination, resulting in higher genetic variation in 
these populations and in consequence a higher seed set. In this context, Montgomery et 
al. (2003) were able to show that the boost of seed set of Peraxilla tetrapetala 
(Loranthaceae) on forest edges was directly linked to a higher number of visits by the 
pollinating birds. 
In the long run, in contrast, genetic erosion appears more likely in plant populations 
located in forest fragments, because of the lower number of plant individuals distributed 
in smaller forest areas. This was shown already in isolated populations of a neotropical 
rain forest canopy tree (Pithecellobium elegans [Mimosaceae]) (Hall et al., 1996). In 
addition, undergoing population decline and fragmentation of many plant species in the 
tropics is making Allee effects on seed production likely to become increasingly 
relevant to plant species conservation (Ghazoul, 2005). 
 
In this study, A. pubescens showed a rather low number of flower visitations but also a 
tendency of higher visitation frequencies and seed set inside fragment study sites. These 
results might support the hypothesis of a temporarily higher genetic variation inside 
forest fragment populations. In addition, higher seed set was found in forests sites where 
a higher number of paths (n=0−20) were counted (Fig. 20). Due to the biology of A. 
pubescens as a disturbance indicator (E. Fischer, pers. comm.), these findings also could 
document a more intensive exchange of genetic material through pollination, because of 
better connection of the patchy distributed plant population through populations along 
the paths. 
 
The Acanthus eminens campaign 2003 showed very low mean pollen numbers on 
stigmas inside the study sites (5.09 to 11.96), a high percentage of completely unloaded 
stigmas (34.2 %) and a higher amount of pollen on stigmas in forest fragment sites (Fig. 
27D). The seed set also was higher (Fig. 31). These observation results allowed the 
assumption that seed set was strongly limited by pollen quantity. In addition, seed set 
was higher in study sites which were surrounded by a higher percentage of forest in a 
buffer of 100m (Fig. 32). This finding corresponded with the results of the pollination 
biology study conducted by Dietzsch (2004) focusing on Acanthus eminens (forest 
confined) and Acanthus pubescens (open grassland confined); Dietzsch showed that 
heterospecific pollen has the potential to reduce seed set of both related species.      
In addition to this possible pollen limitation, pollen quality might also have had a strong 
impact on seed set. As described for A. pubescens, A. eminens (campaign 2002 and 

gmentation sug hat the resu
pport this hypatchy plant distribution coul

F
thesis.  

irst of all, due to the very young forest fragments (about 100 years or younger), the 
plant populations inside these fragments should have more or less the same genetic 
variation as those in the main forest. In addition, the sizes of the forest fragments are 
still rather large (65-1,370 ha), compared to the main forest (8,245 ha).  
However, another crucial factor appeared in this study; there is also a generally higher 
visitation frequency inside the forest fragment study sites. With the aforementioned 
exception of the A. eminens campaign 2003, this higher visitation frequencies were not 
leading to a higher amount of pollen on stigma, but could have led to higher genetic 
intermixture through higher rates of long-distance cross-pollination events (Schmitt, 
1983). In addition, the postulated higher pollinator abundance inside the forest 
fragments also could cau
c
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 34).  

encing the 

he same could be the case regarding D. fragrans, where significant higher seed set 

gh [Mg ] was reported, whereby potassium absorption was impeded (Sitte et 

Table 71: Levels of pollination (in red the higher values) 

2003) also showed higher visitation frequencies and higher seed sets in the forest 
fragments (Fig. 33; Fig.
 
A high percentage of closely related pollen on stigmas of H. diervilleoides could be 
assumed in general, given that the main pollinator groups such as the tiny Halictids and 
Megachilids show a very restricted foraging range. In addition, the higher number of 
pollen on stigmas found in main forest study sites might lead to lower seed set (Fig. 42), 
if stigma clogging occurred or numerous pollen tubes either exhausted stylar resources 
or diverted entry into ovules (Lloyd & Yates, 1982; Snow, 1986; Bertin, 1990). All 
other tested abiotic and biotic factors showed only weak evidences for influ
seed set of H. diervilleoides. In contrast to this, higher visitation frequencies found in 
forest fragments, again allowed the assumption of a higher rate of cross-pollination 
events in here, which might have led to higher seed set in these populations. 
 
T
inside the forest fragment study sites occurred, despite significantly lower number of 
pollen on the stigmas at these sites. 
Furthermore, an inverse correlation of soil nutrient concentration on seed set, in this 
study, characterized by the exchangeable bases Magnesium (Mg++), was evident (Fig. 
48). This effect appeared beyond the deficient level of [Mg++] in soils of less than 10 
mmolc•kg-1 (Musila et al., 2005), between 10 to 60 mmolc•kg-1, and could consequently 
describe a toxic [Mg++] gradient to D. fragrans. In this context, a potentially toxic effect 
of very hi ++

al., 1991). But this inverse correlation also could have occurred as a statistical artifact, 
because of the factor of forest in a buffer of 100m the significance of this correlation 
disappeared at the study site level.  
 
Finally, Steffan-Dewenter et al. (2006) suggested to perform pollination experiments to 
assess the maximum seed set after cross-pollination for a better understanding of 
pollination failure due to habitat fragmentation. 
 
Fruit and seed set 
With the exception of A. pubescens reproductive success, defined as a product of fruit 
and seed set, showed the same tendency as mean seed set with higher values inside 
forest fragments compared to the main forest (Table 71). Here, the higher reproductive 
success of A. pubescens in the main forest resulted from a highly significant higher fruit 
set, which could be attributed to higher A. pubescens specific herbivore abundance 
inside the forest fragments.  

Plant species

Main forest sites: 
 

visitation frequency/ 
pollen on stigmas/ 

reproductive success 

Forest fragment sites: 
 

visitation frequency/  
pollen on stigmas/ 

reproductive success 
A. pubescens 0.14/ 6.58/ 0.36 0.17/ 4.46/ 0.27 

A. eminens '02 0.27/ 4.24/ 0.04 0.29/ 1.59/ 0.17

A. eminens '03 0.41/ 7.29/ 0.08 0.67/ 10.72/ 0.09

H. diervilleoides 0.94/ 409.06/ 0.08 1.38/ 221.97/ 0.24  

D. fragrans --/ 67.76/ 0.01 --/ 10.23/ 0.03
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As mentioned above, a possible higher genetic variation inside the plant populations 

ason for this general higher reproductive success inside the forest 
agments of Kakamega Forest. Ghazoul (2005) remarked that all studies which 

might be one re
fr
recorded negative effects on plant fecundity due to population sizes, described plant 
individual numbers in populations with less than 50. With possible exceptions of H. 
diervilleoides populations, all other observed forest fragment plant populations in this 
study still contained higher individual numbers.  

.3 Plant species and fragmentation 7
Cane (2001) emphasised that several authors concluded that habitat fragmentation is 
broadly deleterious, but their own data showed that some native species proliferate in 
fragments.  
 
This thesis showed, partly significant, but not unanimous differences at various levels of 
pollination, if main forest and forest fragment study sites were compared (Table 72). 
Consequently, an immediate and/or indirect effect of forest fragmentation on the 
observed plant species could be assumed.  
Table 72: Differences in forest fragment compared to main forest study sites (↓ = higher; ↑ = lower) 

Plant species

   
Visitation 
frequency 

 

Pollen on 
stigmas 

Fruit 
set 

Seed 
set 

 

Reproductive
success 

 

A. pubescens ↑ 
(p=0.177) 

↓ 
(p=0.093) 

↓ 
(p<0.001**)

↑ 
(p=0.258) 

↓ 
 

A. eminens '02 ↑ 
(p=0.800) 

↓ 
(p=0.006**)

↑ 
(p<0.001**)

↑ 
(p=0.143) 

↑ 
 

A. eminens '03 
(p=0.032*) (p=0.025*) (p=0.848) (p=0.127)  

↑ ↑ ↑ ↑ ↑ 

H. diervilleoides ↑ 
(p=0.086) 

↓ 
(p<0.001**)

↑ 
(p<0.001**)

↑ 
(p<0.001**) 

↑ 
 

D. fragrans - ↓ 
(p<0.001**)

↓ 
(p=0.444) 

↑ 
(p<0.001**) 

↑ 
 

 
Aizen et al. (2002) reviewed 25 studies (1987−2001) assessing the effects of habitat 
fragmentation on either pollination or reproductive success of 46 plant species in 
different types of habitat. In the end, they suggested that no generalizations can be made 
of how plant reproduction responds to habitat fragmentation as both significantly 
negative and significantly positive effects of fragmentation were found besides non-
significant effects on pollination and reproductive success. The same appeared to be 
true for this study in the Kakamega rain forest. As a conclusion Aizen et al. (2002) 
remarked that it is unlikely that one or a few traits and/or ecological processes will be 
enough to explain why pollination and reproduction decline with fragmentation in many 
species but not in others. 
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In general, a number of factors have to be considered for reasonable comparisons of 

es.  
ne crucial variable appeared to be the size of included fragments. Ghazoul et al. 

 48 ha) a transfer, or even a generalisation of its 

g experiment), a higher number of frugivores inside the 

individual fitness 
which might enhance the risk of population extinction. But only if the Kakamega Forest 
will exist that long?! 

fragmentation studi
O
(2001), for example, conducted a fragmentation study in dry deciduous forests in Costa 
Rica and reported both reduced fertilisation and seed set in smaller fragments regarding 
the tree species Anacardium exelsum [Anacardiaceae]. Just by the fragment sizes in his 
tudy (in the main between 0.3 ands

findings appeared to be very problematic to other forest systems, such as Kakamega 
Forest (fragment sizes between 65 to 8.245 ha). In addition, Morgan (1999) stressed that 
also the history of the fragmentation process in studies has to be considered. 
Another important parameter is how the visitation frequencies data were collected. 
Here, short distance observations (like practised in this study), the use of video cameras 
(Cunningham, 2000a) or less precise methods, like binocular inspections of tree 
canopies (Ghazoul & McLeish, 2001), have been described. 
 
But also the individual biology of each plant species might play a crucial role. The 
Acanthaceas A. pubescens and A. eminens in this study for instance, as disturbance 
indicators (E. Fischer, pers. comm.), prefer paths or forest gaps. Due to this distinct 
ecological niche the populations of these plant species were even fragmented inside the 
main forest. But, with regards to their restricted seed dispersal opportunity, owing to the 
fruit type of capsules, genetic exchange mainly occurs through pollination. Hence, the 
higher visitation frequencies in forest fragments could lead to higher reproduction 
success.  
The same effect could be assumed concerning the very scattered distribution of 
flowering H. diervilleoides individuals: the higher visitation frequencies in forest 
fragments did not consequently lead to a higher number of pollen on stigmas. However, 
through a generally higher number of flower visits by pollinators inside the forest 
fragments the likelihood of long-distance cross-pollination might increase. 
A lack of information concerning the pollinators and the visitation frequencies of D. 
fragrans complicated the interpretation of the higher number of pollen on stigmas in the 
main forest, and higher seed set in the forest fragments. Here, the widespread 
distribution inside the Kakamega Forest remnants (Althof, 2005) and the potential of 
vegetative reproduction through rhizomes led to the suggestion that the pollen found on 
D. fragrans stigmas might be closely related. But also in this study, in addition to 
possibly greater intensive exchange of genetic material through higher visitation rates of 

oths (see 6.4.1 coverinm
Kakamega Forest fragments (Farwig, 2005) - birds that also should feed on the reddish 
D. fragrans fruits - might lead to higher seed set inside the forest fragments. 
 
Finally, in case of further degradation and fragmentation of the Kakamega Forest 
remnants and its plant populations, combined with longer periods of isolation, an 
increased inbreeding could lead in the long-term to a decrease of 
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studies at the 
rest study site level could be very valuable.  

n effects for land-use planning and conservation 

red one-fourth of their land 

 
orest over a longer period. 

8.  Outlook 
 
The results of this thesis pointed to the fact that the genetic variation in the plant 
populations of the Kakamega Forest and its fragments might present a crucial parameter 
relating to the reproductive success of the different plant species. For a better 
understanding of these complex coherences further population genetic 
fo
 
In addition, the heterogeneous findings with respect to the different plant species, 
showed the necessity of a greater extent of plant-pollinator interaction studies in rain 
forests on the one hand, and the implication of other plant regeneration processes like 
seed dispersal and seedling establishment on the other hand. In this context, Harris et al. 
(2004) suggested in a review article dealing with the consequences of habitat 
fragmentation for plant-pollinator mutualism, that studies of whole suites of species will 
always be more informative than studies of single species that have prevailed until now. 
But also the importance of the agricultural landscape imbedded rain forests, as nutrition 
and nesting resourse for forest plant and crop pollinators, should be studied in more 
detail. 
 
The pushing requests by policy makers for obtaining consolidated recommendations for 
a sustainable use of forests and its biodiversity, particularly, stresses the demands of a 
better understanding of the underlying ecosystem services. But in this study the 
generalisation of habitat fragmentatio
appeared to be rather difficult. Dillard (2002) assigned three reasons for this: (1) the 
high specificity of the taxa, spatial scales, and ecological processes; (2) the variation 
according to the landscape types and its structure; and (3) the dominance of local 
effects, such as changes to certain microhabitat features. 
 
Nevertheless, even economic advisors to governments (Sachs, 2005), realised that the 
loss of “natural capital”, described as ecosystems and their biodiversity, will have 
serious adverse consequences for the whole society or even the whole planet. Therefore, 
requirements that governments have a crucial role to play in conserving natural capital, 
have to be supplemented with the suggestions of Leakey (2002). He emphasized that 
especially poor countries like Kenya, which almost decla
area as biological reserves, need and deserve financial support from the richer countries. 
In this context, Leakey (2002) also highlighted the concepts of protected National Parks 
and eco tourism. The new Forests Bill in Kenya (2005), in which a participatory forest 
management is aimed, might also contain chances for an existence of the Kakamega
F
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9.  Summary 
 
Rain forest fragmentation can affect plant-pollinator interactions and the reproductive
success of plant species. Understanding these consequences is a crucial component 
conserving vulnerable ecosystems.  
 

study, conducted between June 2001 and March 2003 in the highly fragmente
ega Fore

species: Acanthopale pubescens [Acanthaceae] (June 2001 to December 2001
ens [AcaAcanthus emin nthaceae] (January 2002 to March 2002 and November 2002 to

February 2003), Heinsenia diervilleoides [Rubiaceae] (November 2002 to March 2003) 
and Dracaena fragrans [Ruscaceae] (July 2002 to March 2003) were tested fo

f forest fragmentation on visitation fre
and seed set. Furthermore, several biotic and abiotic factors, such as plant spec
diversity, the succession stages of the study sites, the number of cut trees per hectare
the protection status and parameters of clima and soil, were related to these different 
levels of pollination.  

ral, a higher mean visitation frequency 
surrounding forest fragments compared to the main forest. In contrast to this, the
primary pollination success and fruit set varied with respect to the different plan
species.  
Only regarding the A. eminens campaign 2003, the higher number of visits
pollinating Xylocopa bees inside the forest fragments, consequently caused a hig

r of pollen on stigmasnum  and increased fruit and seed set. Thus, a pollinator and/or 
llen lim  the papo itation in tchy distributed A. eminens population might have occurred in 

2003. Due to the generally lower primary pollination success inside the forest fragment 
populations of all other plant species, one essential factor of the higher seed set mi

frequency, shown for A. pubescens and H. diervilleoides. Even a temporarily
genetic variation could be postulated.  
Nevertheless, for longer periods a reduction in population size and an increase in 
isolation due to fragmentation may lead to limited gene flow, increased inbreeding, loss

tic variation, decreased individual fitness, and consequently to an increased risk
of population extinction. 
 
These complex coherences combined with several other possible influencing factors and 
the heterogeneous findings on plant species level, also on spatial and temporal scal

ized the need of further pollination studies in fragmented rain 
particularly with regard to the demands by policy makers for receiving consolidated

endations for a sustain  of frecomm able use orests and its biodiversity.  
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mmenfassung 

Die anthropogen bedingte Fragmentierung von tropischen Regenwäldern kan
 auf Tier-Pflanzen-Interaktionen als auch auf den Reproduktionserfolg vo

Pflanzen auswirken. Die Aufklärung dieser komplexen Zusammenhänge ist eine 
b nde Komponente zum möglichen Schutz wertvoller Ökosysteme.  
 

ser zwischen Juni 2001 und März 2003 im Kakam
fragmentierten Regenwald und seinen fünf größeren Waldfragmenten im Weste
Kenias durchgeführten Studie, wurden Besuchsfrequenzen, primärer Bestäubung
so Frucht- und Samenansätze folgender Pflanzenarten auf mögliche Effekte der 
Waldfragmentierung untersucht: Acanthopale pubescens [Acanthaceae] (Juni 2001 bis 

ber 2001), Acanthus eminens [Acanthaceae] (Januar 2002 bis März 200
ber 2002 bis Februar 2003), HeinseNove nia diervilleoides [Rubiaceae] (November 

2002 bis März 2003) und Dracaena fragrans [Ruscaceae] (Juli 2002 bis März 2
Des Weiteren wurde der mögliche Einfluss diverser biotischer und abiotischer Faktoren

. Diversität der Pflanzen, Sukzessionsstadien der Untersuchungsgebiete, Anza
gefällter Bäume pro Hektar, Schutzstatus, klimatische Einflussgrößen 
Bodenparameter, auf die oben genannten Ebenen der Bestäubung gestestet.  
Im Vergleich zum Hauptwald konnten in den umliegenden Waldfragmenten bei al
Pflanzenarten höhere Besucherfrequenzen und
Dagegen ergab sich beim Vergleich des primären Bestäubungserfolges und

nsatz kein einheitliches Bild.  
Entgegen vorheriger Annahmen ergab nur die Untersuchung von A. eminens im Jahre

u einem 2003, dass eine höhere Besucherfrequenz der bestäubenden Xylocopa-Bienen z
größeren primären Bestäubungserfolg und einem höheren Frucht- und Samenansatz in 
den Waldfragmenten führte. Dieses Ergebnis lässt die Vermutung zu, dass nur 

s Populationen im Jahre 2003 einer Bestäuber- und/oder einer Pollenlimitierung 
gen. Bei der Untersuchung der anderen un Pflanzenarten zeigte sich, dass

höhere Besuchsfrequenz nicht zu einem größeren primären Bestäubungserfolg führt
Eine mögliche Erklärung für den trotzdem höheren Samenansatz könnte hier eine
höhere Fremdbestäubungsrate, verursacht durch die höhere Besuchsfrequenz, s
Auch eine temporäre Erhöhung der genetischen Variation innerhalb der in

teten Pflanzenpopulationen wäre dadurch denkbar.  ve
Auf lange Sicht dagegen könnte eine Reduktion der Populationsgrößen und eine

inersteigende Isolation durch Fragmentierung zu einem verminderten Genfluss, e
den Inzucht, einem Verlust an genetischer Variabilität, einer abnehmende
schen Fitness und somit zu einem ansteigenden Risiko d

 
plexeDiese kom n Zusammenhänge, kombiniert mit einer Vielzahl anderer möglic

Einflussgrößen und der heterogenen Ergebnisse der verschiedenen Pflanzenarten,
bekräftigen den Bedarf für weitere Bestäubungsstudien in fragmentierten 
Regenwäldern. Ebenso erfordern die drängenden Anfragen von Entscheidungsträgern

ndlungsempfehlungen für eine nachhaltige Nutzung der di Wälder und i
Biodiversität erwarten, weiterführende Studien auf diesem Gebiet. 
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Appendix 1: Levels of pollination in study sites (Acanthopale pubescens):   
       (A) visitation frequencies,                                                                     
       (B) pollen on stigmas,       
       (C) fruit set,         
       (D) seed set  
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Appendix 2: Levels of pollination in study sites (Acanthus eminens) (campaign 2002): 
       (A) visitation frequencies,      
       (B) pollen on stigmas,       
       (C) fruit set,         
       (D) seed set 
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Appendix 3: Levels of pollination in study sites (Acanthus eminens) (campaign 2003): 
       (A) visitation frequencies,       
       (B) pollen on stigmas,       
       (C) fruit set,         
       (D) seed set 
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Appendix 4: Levels of pollination in study sites (Heinsenia diervilleoides):  
       (A) visitation frequencies,       
       (B) pollen on stigmas,       
       (C) fruit set,         
       (D) seed set 
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Appendix 5: Levels of pollination in study sites (Dracaena fragrans):   
       (A) pollen on stigmas,       
       (B) fruit set,         
       (C) seed set 
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Appendix 6: Visitation frequency in study sites:     
       (A) Acanthopale pubescens,       
       (B) Acanthus eminens (campaign 2002),     
       (C) Acanthus eminens (campaign 2003),     
       (D) Heinsenia diervilleoides 
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Appendix 7: Pollen on stigmas in study sites:     
       (A) Acanthopale pubescens,       
       (B) Acanthus eminens (campaign 2003),     
       (C) Heinsenia diervilleoides,       
       (D) Dracaena fragrans 
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Appendix 8: Fruit set in study sites:      
       (A) Acanthopale pubescens,       
       (B) Acanthus eminens (campaign 2003),     
       (C) Heinsenia diervilleoides,       
       (D) Dracaena fragrans 
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Appendix 9: Seed set in study sites:      
       (A) Acanthopale pubescens,       
       (B) Acanthus eminens (campaign 2003),     
       (C) Heinsenia diervilleoides,       
       (D) Dracaena fragrans 
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Appendix 10: List of all tested biotic and abiotic factors (see also 5.6 and 5.7)  
  

Biotic factors Abiotic factors 

number of observed flowers management type 

abundance of the plant 
species protection status 

plant species richness size of forest fragments 

Shannon-Wiener index of 
species diversity north-south gradient 

fragmentation  
(main forest or fragment 

study sites) 
paths per ha 

succession stages humidity 

% of forest in a 
100m buffer temperature 

% of forest in a 
500m buffer cloudiness  

% of forest in a 
1,000m buffer pH-value (soil) 

% of forest in a 
2,000m buffer C/N ratio (soil) 

cut trees per ha CEC (soil) 

 [Ca++] (soil) 

 [Mg++] (soil) 
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Appendix 11: List of all significantly correlated factors with respect to the visitation frequency of
  Acanthopale pubescens (Pearson correlations)     
  (factors which were considered in the backward multiple regression in boldface)  

Factor r p 

buffer 2000m -.230** < 0.001 

north-south gradient -.220** < 0.001 

C/N ratio  .245** < 0.001 

humidity -.290** < 0.001 
number of observed 

flowers -.206**    0.001 

management type -.187**    0.001 

pH-value -.177**    0.005 

buffer 500m -.157*    0.012 

cut trees per ha  .132*    0.036 

succession stages -.127*    0.043 
 
Appendix 12: List of collinear factors (if R2 > 0.7) with respect to the visitation frequency of 
  Acanthopale pubescens 

Factors R2

management type/ north-south gradient .794 

buffer 500m/ buffer 2000m .825 

buffer 500m/ pH-value .893 

buffer 2000m/ pH-value .885 
 
Appendix 13: List of all significantly correlated factors with respect to the number of pollen on 
  stigmas of Acanthopale pubescens (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

management type  -.287**    0.001 

C/N ratio   .245**    0.002 

north-south gradient  -.220**    0.004 

protection status -.186*    0.026 
 
Appendix 14: List of collinear factors (if R2 > 0.7) with respect to the number of pollen on 
  stigmas of Acanthopale pubescens 

Factors R2

management type/ north-south gradient .715 
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Appendix 15: List of all significantly correlated factors with respect to the fruit set of  
  Acanthopale pubescens (Pearson correlations)    
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

size of forest fragments -.331* < 0.001 
fragmentation  

(main forest or fragment 
study sites)  

  -.350** < 0.001 

plant species richness    .265** 0.002 

protection status   -.253** 0.003 

north-south gradient  -.216* 0.010 

management type  -.200* 0.018 

buffer 100m -.179* 0.034 
 
Appendix 16: List of collinear factors (if  R2 > 0.7) with respect to the fruit set of  
  Acanthopale pubescens 

Factors R2

fragmentation  
(main forest or fragment study sites)/  

size of forest fragments 
.986 

  
Appendix 17: List of all significantly correlated factors with respect to the seed set of  
  Acanthopale pubescens (Pearson correlations)    
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

paths per ha   .212**  < 0.001 
abundance of the plant 

species 
  .191**     0.001 

buffer 1000m  -.177**     0.003 

cut trees per ha   .171**     0.004    

buffer 100m -.167**     0.005 

buffer 2000m -.168**     0.005 

management type -.163**     0.006 

buffer 500m -.162**     0.007 

pH-value -.158**     0.008 
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Appendix 18: List of collinear factors (if  R2 > 0.7) with respect to the seed set of   
  Acanthopale pubescens  

Factors R2

buffer 500m/ buffer 1000m .884 

buffer 500m/ buffer 2000m .872 

buffer 500m/ cut trees per ha .740 

buffer 2000m/ pH-value .926 

buffer 1000m/ buffer 2000m .768 

buffer 1000m/ cut trees per ha .816 

buffer 1000m/ pH-value .915 

buffer 2000m/ pH-value .901 
cut trees per ha/  

abundance of the plant species .805 

cut trees per ha/ pH-value .759 

paths per ha/ abundance of the plant species .746 
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Appendix 19: List of all significantly correlated factors with respect to the visitation frequency of
  Acanthus eminens (campaign 2002) (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

plant species richness    -.321** 0.006 

paths per ha   .262* 0.028 

cloudiness     .240* 0.044 

cut trees per ha   .238* 0.046    
 
Appendix 20: List of all significantly correlated factors with respect to the visitation frequency of
  Acanthus eminens (campaign 2003) (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

succession stages -.302** 0.008 

cloudiness  -.178* 0.021 

size of forest fragments  -.171* 0.026 
fragmentation  

(main forest or fragment 
study sites) 

  .166* 0.032 

 
Appendix 21: List of collinear factors (if R2 > 0.7) with respect to the visitation frequency of
  Acanthus eminens (campaign 2003) 

Factors R2

fragmentation  
(main forest or fragment study sites)/  

size of forest fragments 
.994 
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Appendix 22: List of all significantly correlated factors with respect to the number of pollen on 
  stigmas of Acanthus eminens (campaign 2002) (Pearson correlations) 
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
  -.183** 0.006 

size of forest fragments   .176** 0.008 

protection status  -.171** 0.010 

pH-value    .172** 0.010 
abundance of the plant 

species -.169* 0.011 

buffer 2000m  .165* 0.013 

plant species richness  .166* 0.013 

north-south gradient -.138* 0.038 

management type -.133* 0.046 
 
Appendix 23: List of collinear factors (if R2 > 0.7) with respect to the number of pollen on 
  stigmas of Acanthus eminens (campaign 2002) 

Factors R2

management type/ north-south gradient .790 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.993 

fragmentation  
(main forest or fragment study sites)/ 

buffer 2000m 
.960 

fragmentation  
(main forest or fragment study sites)/ 

abundance of the plant species 
.725 

fragmentation  
(main forest or fragment study sites)/ 

pH-value 
.784 

size of forest fragments/ buffer 2000m .953 

size of forest fragments/ pH-value .790 

buffer 2000m/ pH-value .892 
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Appendix 24: List of all significantly correlated factors with respect to the number of pollen on 
  stigmas of Acanthus eminens (campaign 2003) (Pearson correlations) 
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
  .122* 0.025 

buffer 1000m   -.120* 0.028 

size of forest fragments   -.119* 0.030 
 
Appendix 25: List of collinear factors (if R2 > 0.7) with respect to the number of pollen on 
  stigmas of Acanthus eminens (campaign 2003)  

Factors R2

fragmentation  
(main forest or fragment study sites)/  

size of forest fragments 
.994 

 
Appendix 26: List of all significantly correlated factors with respect to the fruit set of 
  Acanthus eminens (campaign 2002) (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
  .345** < 0.001 

size of forest fragments  -.384** < 0.001 

buffer 1000m  -.380** < 0.001 

buffer 2000m  -.356** < 0.001 

succession stages  -.592** < 0.001 

cut trees per ha   .445** < 0.001 

north-south gradient  -.407** < 0.001 

pH-value  -.355** < 0.001 

humidity  -.469** < 0.001 

CEC  -.505** < 0.001 

[Ca++]  -.505** < 0.001 

C/N ratio   .275**    0.006 

buffer 500m  -.269**    0.007 
Shannon-Wiener index of 

species diversity    .267**    0.007 

management type  -.214*    0.032 
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Appendix 27: List of collinear factors (if R2 > 0.7) with respect to the fruit set of  
  Acanthus eminens (campaign 2002) 

Factors R2

management type/ north-south gradient .736 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.993 

fragmentation  
(main forest or fragment study sites)/ 

buffer 500m 
.797 

fragmentation  
(main forest or fragment study sites)/ 

buffer 1000m 
.860 

fragmentation  
(main forest or fragment study sites)/ 

buffer 2000m 
.928 

fragmentation  
(main forest or fragment study sites)/ 

[Ca++] 
.779 

size of forest fragments/ buffer 500m  .777 

size of forest fragments/ buffer 1000m .871 

size of forest fragments/ buffer 2000m .926 

size of forest fragments/ [Ca++] .836 

buffer 500m/ buffer 1000m .935 

buffer 500m/ buffer 2000m .936 

buffer 500m/ buffer 2000m  .947 

buffer 1000m/ pH-value .786 

buffer 1000m/ buffer 2000m .947 

buffer 2000m/ pH-value .848 

succession stages/ CEC .800 

succession stages/ [Ca++] .796 

humidity/ CEC .754 

humidity/ [Ca++] .833 

CEC/ [Ca++] .874 
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Appendix 28:  List of all significantly correlated factors with respect to the fruit set of 
  Acanthus eminens (campaign 2003) (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

management type  .313** < 0.001 

paths per ha  .299**    0.001 

[Mg++]  .292**    0.001 

C/N ratio   -.256**    0.004 

buffer 100m  -.227*    0.010 

north-south gradient .192*    0.030 

protection status  .186*    0.036 

CEC  .176*    0.048 

pH-value  -.175*    0.049 
 
Appendix 29:  List of collinear factors (if R2 > 0.7) with respect to the fruit set of  
  Acanthus eminens (campaign 2003) 

Factors R2

management type/ north-south gradient .718 

management type/ C/N ratio .740 

paths per ha/ [Mg++] .971 
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Appendix 30: List of all significantly correlated factors with respect to the seed set of 
  Acanthus eminens (campaign 2003) (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

management type  -.241**  < 0.001 

buffer 100m   .210** < 0.001 

plant species richness   -.231** < 0.001 
Shannon-Wiener index of 

species diversity    -.168** < 0.001 

cut trees per ha    -.203** < 0.001 

paths per ha    -.301**  < 0.001   

C/N ratio      .251** < 0.001 

CEC     -.192** < 0.001 

[Mg++]     -.291** < 0.001 

pH-value      .163**    0.001 

[Ca++]     -.135**    0.005 

humidity     -.130**    0.007 

succession stages    -.110*    0.023 
abundance of the plant 

species      .104*    0.031 

 
Appendix 31: List of collinear factors (if R2 > 0.7) with respect to the seed set of  
  Acanthus eminens (campaign 2003) 

Factors R2

buffer 100m/ plant species richness .720 
buffer 100m/  

Shannon-Wiener index of species diversity .764 

buffer 100m/ abundance of the plant species .851 
abundance of the plant species/  

Shannon-Wiener index of species diversity .816 

abundance of the plant species/ 
cut trees per ha .725 

Shannon-Wiener index of species diversity/ 
abundance of the plant species .757 

paths per ha/ [Mg++] .973 

CEC/ [Ca++] .915 

C/N ratio/ humidity .718 
 
 



Appendix 113
  

 
Appendix 32: List of all significantly correlated factors with respect to the visitation frequency of
  Heinsenia diervilleoides (Pearson correlations)    
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

Shannon-Wiener index of 
species diversity    .362** < 0.001 

cut trees per ha    .375** < 0.001 

succession stages   -.269**    0.001 

paths per ha     .269**    0.001 

cloudiness      .232**    0.004 
abundance of the plant 

species     .222**    0.006 

plant species richness   .192*    0.018 

humidity   -.165*    0.042 
 
Appendix 33: List of collinear factors (if R2 > 0.7) with respect to the visitation frequency of
  Heinsenia diervilleoides  

Factors R2

abundance of the plant species/ cloudiness .869 

cloudiness/ humidity .754 
 
Appendix 34: List of all significantly correlated factors with respect to the number of pollen on 
  stigmas of Heinsenia diervilleoides (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

management type  -.497** < 0.001 
fragmentation  

(main forest or fragment 
study sites) 

  -.348** < 0.001 

size of forest fragments    .331** < 0.001 
abundance of the plant 

species    .323** < 0.001 

pH-value   -.419** < 0.001 

C/N ratio    .442** < 0.001 

humidity   -.456** < 0.001  

north-south gradient   -.209**    0.002 

paths per ha   -.202**    0.002 

buffer 1000m    .181**    0.007 

buffer 100m    .178**    0.008 

protection status -.142*    0.034 
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Appendix 35: List of collinear factors (if R2 > 0.7) with respect to the number of pollen on 
  stigmas of Heinsenia diervilleoides 

Factors R2

management type/ C/N ratio .813 

protection status/ buffer 1000m .929 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.993 

buffer 100m/ paths per ha .864 

C/N ratio/ humidity .704 

humidity/ abundance of the plant species .858 
 
Appendix 36: List of all significantly correlated factors with respect to the fruit set of 
  Heinsenia diervilleoides (Pearson correlations)    
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
    .432** < 0.001 

size of forest fragments    -.431** < 0.001 

buffer 100m     .412** < 0.001 

succession stages    -.336**  < 0.001 
abundance of the plant 

species     .325** < 0.001 

humidity    -.285** < 0.001  

north-south gradient   -.213*    0.016 

C/N ratio    .207*    0.019 

management type   -.181*    0.040 
 
Appendix 37: List of collinear factors (if R2 > 0.7) with respect to the fruit set of  
  Heinsenia diervilleoides 

Factors R2

management type/ C/N ratio .926 

management type/ humidity .728 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.995 

humidity/ C/N ratio .801 

humidity/ abundance of the plant species .934 
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Appendix 38: List of all significantly correlated factors with respect to the seed set of 
  Heinsenia diervilleoides (Pearson correlations)    
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
   .159** < 0.001 

size of forest fragments   -.159** < 0.001 

buffer 100m     .095** < 0.001 

buffer 1000m    -.093** < 0.001 

plant species richness   -.095** < 0.001 
Shannon-Wiener index of 

species diversity    -.089** < 0.001 

north-south gradient    -.090**  < 0.001 

[Mg++]    -.080**    0.002 

protection status     .078**    0.003 
abundance of the plant 

species     .075**    0.004 

paths per ha    -.070**    0.008 

humidity   -.055*    0.034  

buffer 2000m   -.052*    0.049 
 
Appendix 39: List of collinear factors (if R2 > 0.7) with respect to the seed set of  
  Heinsenia diervilleoides 

Factors R2

protection status/ buffer 1000m .738 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.996 

buffer 1000m/ buffer 2000m .841 

paths per ha/ [Mg++] .985 

humidity/ abundance of the plant species .921 
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Appendix 40: List of all significantly correlated factors with respect to the number of pollen on 
  stigmas of Dracaena fragrans (Pearson correlations)   
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

fragmentation  
(main forest or fragment 

study sites) 
  -.426** < 0.001 

size of forest fragments    .429** < 0.001 

buffer 100m   -.414** < 0.001 

buffer 1000m    .325** < 0.001 

buffer 2000m    .439** < 0.001 

plant species richness    .452** < 0.001 
Shannon-Wiener index of 

species diversity    .369** < 0.001   

north-south gradient    .391** < 0.001 

paths per ha    .361** < 0.001 

pH-value    .338** < 0.001 

humidity    .416** < 0.001 

protection status   -.239**    0.004 

management type    .222**    0.007 

buffer 500m     .221**    0.008 

cut trees per ha   .191*    0.021 
 

Appendix 41: List of collinear factors (if R2 > 0.7) with respect to the number of pollen on 
  stigmas of Dracaena fragrans 

Factors R2

management type/ paths per ha .702 

management type/ pH-value .863 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.996 

buffer 100m/ pH-value .810 

buffer 100m/ humidity .945 

buffer 500m/ buffer 2000m .703 

buffer 2000m/ plant species richness .867 
plant species richness/  

Shannon-Wiener index of species diversity .906 

paths per ha/ pH-value .876 

paths per ha/ humidity .875 

pH-value/ humidity .814 
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Appendix 42: List of all significantly correlated factors with respect to the seed set of  
  Dracaena fragrans (Pearson correlations)     
  (factors which were considered in the backward multiple regression in boldface) 

Factor r p 

management type   .147** < 0.001 
fragmentation  

(main forest or fragment 
study sites) 

  .348** < 0.001 

size of forest fragments  -.324** < 0.001 

buffer 100m    .250** < 0.001 

buffer 500m    .185** < 0.001 

buffer 1000m    .091** < 0.001 

buffer 2000m    .246** < 0.001 

plant species richness   -.365** < 0.001 
Shannon-Wiener index of 

species diversity   -.122** < 0.001 

succession stages   -.164** < 0.001 

cut trees per ha   -.382** < 0.001 

north-south gradient     .308** < 0.001   

paths per ha    -.400** < 0.001 

pH-value     .191** < 0.001 

C/N ratio    -.072** < 0.001 

humidity     .231** < 0.001 

CEC    -.146** < 0.001 

[Ca++]     -.133**  < 0.001 

[Mg++]     -.393** < 0.001 

protection status     -.056**    0.006 
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Appendix 43: List of collinear factors (if R2 > 0.7) with respect to the the seed set of  
  Dracaena fragrans 

Factors R2

management type/ pH-value .846 

management type/ CEC .711 

management type/ [Ca++] .723 
fragmentation  

(main forest or fragment study sites)/ 
size of forest fragments 

.991 

buffer 500m/ buffer 1000m .719 

buffer 500m/ buffer 2000m .814 

buffer 500m/ succession stages .711 

buffer 2000m/ north-south gradient .791 
plant species richness/  

Shannon-Wiener index of species diversity .765 

cut trees per ha/ paths per ha .707 

paths per ha/ [Mg++] .992 

pH-value/ humidity .860 

CEC/ [Ca++] .974 
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