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Chapter 1

Fictive Impurity Models

1.1 Introduction

“Strongly correlated” materials [1] illustrate one of the most important tasks in condensed
matter physics. These materials show a wide spectrum of exciting and useful properties
including high temperature superconductivity [2] and magnetism with high spin polariza-
tion [3]. The electron-electron and electron-lattice interactions in “strongly correlated”
materials are so strong, that the conventional method (that computes bands using density
functional theory and treats the residual interactions between quasiparticles using pertur-
bative approaches) fails. Developing a credible, material-specific theoretical framework
for determining the behavior of strongly correlated compounds is a significant challenge
to materials theory.

The dynamical mean-field theory (DMFT) formulated by A. Georges and co-workers [4]
is a fundamental step forward in the treating of correlated systems. It is a local approx-
imation where the self-energy keeps the frequency dependence but becomes momentum-
independent. The mean-field theory allows the construction of a non-perturbative and
computationally controllable theoretical procedure for computing physical properties. The
self-energy is a function of frequency only, thus one can see it as the self-energy of a single-
site “quantum impurity model”, with the model parameters specified by a self-consistency
condition. The method works very well by consideration of the Mott-transition in elec-
tronically three dimensional materials [5], the “double exchange” physics especially im-
portant for colossal magneto-resistance manganites [6], and the basic physics of heavy
fermion compounds [7], in which the dominant physics is on-site. However, the inter-site
correlations play an important role in the physics. For example, predictions of the single-
site DMFT about the high temperature superconductors disagree strongly with data on
the evolution with doping of quasiparticle velocity and “Drude” optical weight [8] and
the orbital order/polaron glass physics of the manganites [9]. Therefore extension of the
dynamical mean field method to include inter-site correlations is a reasonable step.

The main feature of the single-site dynamical mean-field theory is the mapping of the
lattice model onto a single-site quantum impurity model, that is self-consistently embed-
ded in a bath/medium. The natural extension is a change over to multiple-site quantum
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Figure 1.1: Sketch of the quadratic half-filled lattice. Black filled circles with arrows
symbolize fermions with corresponding orientation of the spin’s z-component.

impurity model, whose various self-energies could be used to compute a better represen-
tation of the lattice self-energy. The extensions like “Cellular-DMFT” (CDMFT) [10] and
“Dynamical cluster approximation” (DCA) [11] have been proposed. A recent proposi-
tion, fictive impurity (FI) method [12], unifies the picture, in which the DCA and cluster
approaches correspond to different choices of the basis in the same general expansion.

The goal of this work is a systematic analysis of the fictive impurity method, identifica-
tion of advantages and disadvantages in the generalization on the basis of comparison with
single impurity, DCA and analytical results. In particular we consider the self-energies,
the inter-site spin-spin correlations, the internal energies, and the phase diagram.

In our study we investigate a 2-dimensional Hubbard model, which is one of the basic
models, that describes interacting particles on the lattice [13]. It is the simplest strongly
correlated many-particle system, where the kinetic energy and the on-site interaction have
the same order, which cannot be reduced to a single-particle theory. The Hubbard model
incorporates the short-range part of the Coulomb interactions, while avoiding the high
complexity (such as screening effects) of the long-range Coulomb force. The Hamiltonian
is given by

H = −
∑

〈i,j〉,σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓, (1.1)

where c†iσ(ciσ) creates (annihilates) a fermion with spin σ at site i and the operator niσ =
c†iσciσ gives the number of particles with spin σ on site i, tij is the in-plane hopping matrix
element and U is the Coulomb repulsion. We only consider the short-range hopping, thus
∑

〈i,j〉 denotes the sum over all nearest-neighbors.
The 2-dimensional quadratic lattice at half-filling with dispersion

εp = 2(cos(px) + cos(py)) (1.2)

was used in present computations. There are two reasons to treat such a lattice: First, the
x- and y-symmetry simplifies calculations. Second, a lot of interesting materials consist of
the planes with the same structure. In fact, a number of high temperature superconductors
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include CuO-planes, which have a quadratic layout of sites. An idealized quadratic lattice
is shown in Figure 1.1. The lattice constant was set equal unity in present work.

The rest of this chapter is organized as follows: Section 1.2 presents the fictive impurity
formalism as well as the formulation of the dynamical cluster approximation. Section 1.3
gives an overview over numerical techniques we used. In general, the N -impurity problem
was solved using a semiclassical approximation [14] partly using Hirsh-Fye Monte Carlo
algorithm [4]. Furthermore some practical computational hints will be found in this
section. Section 1.4 guides through a large-U analytical treatment, was used to check our
computational results. Section 1.5 gives the numerical results. Conclusion and outlook
can be found in the last section of the present chapter.

1.2 Analytical Approaches

1.2.1 Fictive Impurity Models

The fictive impurity method is an alternative formulation of the cluster dynamical mean-
field theory. The main idea is to expand the self-energy using a set of harmonic orthogonal
functions and cut the expansion at a finite order, thereby replacing a general function by
a small number of frequency-dependent coefficients, which may be determined from the
solution of a several site fictive impurity model. The term “fictive impurity” because
the cluster does not need to be a subcluster of the physical lattice, it can be any cluster
self-consistently embedded in a medium.

Formalism

The model that we consider is a d-dimensional lattice with electrons moving with short
ranged hopping amplitudes and interactions. The Hamiltonian is H = H0 + Hint. The
physical properties of the model can be derived from the general “Luttinger-Ward” expres-
sion for the action written in terms of the exact Green function G of the model [15, 12, 16]

S = Trln(−G) + Φ̄skel[G], (1.3)

where Φ̄skel[G] is the sum of all vacuum to vacuum “skeleton” diagrams, drawn with full
Green functions and no self-energy insertions (Fig. 1.2). The electron’s self-energy is
determined via

Σ =
δΦ̄skel

δG
. (1.4)

Variation of the action (1.3) with respect to G and following substitution in of equation
(1.4) lead to

δS

δG
= G−1 + Σ = G−1

0 ≡ −(δt −H0). (1.5)

In order to get convenience in the following derivation we make use of a Legendre trans-

3
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 skelΦ  skel
= + + .  .  . /δGΣ = δΦ  = .  .  .+ +

Figure 1.2: First two orders of the diagrammatic presentation of the Luttinger-Ward func-
tional Φ̄skel and the corresponding self-energy Σ, obtained by the variation of functional
with respect to G.

formation and obtain a “new” Luttinger-Ward functional as a functional of Σ

Φskel[Σ] = Φ̄skel − Tr(ΣG). (1.6)

One can easily see, that equations (1.4) and (1.6) denote

δΦskel

δΣ
=
δΦ̄skel

δG

δG

δΣ
−G− Σ

δG

δΣ
= −G, (1.7)

where G[Σ] is identical to the G obtained via the Dyson equation

G[Σ] = (G−1
0 − Σ)−1, (1.8)

that can be derived by minimizing the functional

Ω[Σ] = −Trln(−G−1
0 + Σ) + Φskel[Σ] (1.9)

with respect to Σ.
The dynamical mean field theory (DMFT)[4] can be derived from the equations

(1.6) and (1.8): Define Φloc as an approximation to the exact Φskel[Σ(p, ω)], where the
momentum-dependent self-energy is substituted by the local, only frequency-dependent
self-energy Σloc(ω) =

∫

(dp)Σ(p, ω). Consistency demands, that it is equivalent to replace-
ment Φ̄skel[G] by Φ̄skel[Gloc] in equation (1.6), where Gloc(ω) =

∫

(dp)G(p, ω). Equation
(1.8) transforms into equation Gloc =

∫

(dp)[G−1
0 (p, ω)−Σ(ω)]−1. The crucial observation

which makes the single-site DMFT useful is that because Φloc is a functional of a function
of frequency, it may be defined non-perturbativelly as the solution of a single-site model,
which is specified by a frequency-dependent Weiss field and by interaction terms related
to the local interactions of the original model. The Weiss field is fixed by demanding
that the impurity Green function is equal to the local Green function calculated from the
lattice Hamiltonian, using the impurity model self-energy.

The DMFT can be generalized using a set of orthogonal functions {φi, ψi}, which
satisfy the following requirement

δp,p′ =
∑

i

φi(p)ψi(p
′). (1.10)

4
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The self-energy becomes momentum-dependent

Σ(p, ω) =
∑

i

φi(p)Σi(ω), (1.11)

where Σi(ω) =
∫

(dp)ψi(p)Σ(p, ω). Inserting of the self-energy in equation (1.6) leads to

Φskel[{Σi}] = Φ̄skel −
∑

i

Tr(ΣiGi), (1.12)

with Gi(ω) =
∫

(dp)φi(p)G(p, ω). The approximant for the self-energy in equation (1.11)
is a sum that we truncate after the n’th summand

Σ(p, ω) ≈ Σapprox(p, ω) ≡
n
∑

i=0

φi(p)Σi(ω). (1.13)

Thus Φapprox[Σapprox] is a functional obtained from Φskel by using the approximate self-
energy instead of the exact one. Now Φapprox is a functional of n+ 1 frequency dependent
fields. Therefore it corresponds to the solution to (m + 1)-site fictive impurity model
(n ≤ m) involving n + 1 Weiss fields, and interactions derived from the original model.
The Weiss fields are fixed by equation

Gi = −δΦapprox

δΣi
, (1.14)

where

Gi =

∫

(dp)φi(p)[G−1
0 (p, ω) − Σapprox(p, ω)]−1. (1.15)

The impurity model becomes a mathematical instrument that will be used to calculate
the set of coefficients Σi for the self-energy Σapprox.

Implementation

Generalization In order to extend the dynamical mean field theory we need to find an
impurity model that yields the frequency-dependent expansions coefficients in equation
(1.11). The model must involve n fields which have an orthogonality property, so that
it will be possible to determine n independent Green functions and self-energies. It is
convenient to define a m-component spinor of Grassmann variables ψ with (n ≤ m). The
action1 in this notation is defined as

S = ψ†

[

n
∑

i=0

aiM̂i

]

ψ + Sint, (1.16)

where ai are the frequency-dependent Weiss fields and M̂i are the m×m matrices, which
comply with the requirement

Tr[M̂i · M̂j ] = mδij . (1.17)

1We do not write the imaginary time integration in this equation explicit.
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The matrix M̂0 is the identity matrix. The impurity Green function in this presentation
is

Ĝimp =

n
∑

i=0

Gimp iM̂i, (1.18)

with

Gimp i =
1

m

δ lnZimp

δai

. (1.19)

The orthogonality relations lead to the self-energies

Σimp i =
1

m
Tr

[

M̂i

(

n
∑

j=0

ajM̂j − Ĝ−1
imp

)]

, (1.20)

which are equal to the frequency-dependent coefficients in equation (1.13).

The upper formalism is specified for the paramagnetic order. To complete the picture,
we should discuss some variations, which we have, if the system becomes antiferromag-
netic. The antiferromagnetic order leads to a spin-dependency in Green functions, in
Weiss fields and in self-energies. The ”matrix-split” M̂i = M̂iσ + M̂iσ̄ allows to save the
upper elegancy and to wright equations (1.18) – (1.20) in the antiferromagnetic form:

Ĝimp =
∑

σ

n
∑

i=0

Gimp iσM̂iσ

Gimp iσ =
1

m

δ lnZimp

δaiσ

Σimp iσ =
2

m
Tr

[

M̂iσ

(

∑

σ

n
∑

j=0

ajσM̂jσ − Ĝ−1
imp

)]

.

(1.21)

Note that, the matrices M̂iσ and M̂iσ̄ together have the same number of non-zero matrix-
elements like M̂i (compare section 1.3.1).

Harmonic expansion In this section we expand the self-energy using orthogonal har-
monic functions and truncate the expansion after the third summand. The self-energy
becomes

Σσ(p, ω) ≈ Σ0σ(ω) +
∑

r

eiprΣrσ(ω) +
∑

r′

eipr′

Σr′σ(ω), (1.22)

where the r-sum is a sum over all nearest neighbors (NN) and the r′-sum over all next
nearest neighbors (NNN). Generally speaking we need 2(1 + 2d + 2d(d − 1)) fields to
solve this problem. In this chapter we consider the hypercubic d-dimensional lattice2,
therefore we assume, that Σrσ(ω) = Σ1σ(ω) for all NN’s and Σr′σ(ω) = Σ2σ(ω) for all

2The lattice constant a is equal 1.

6



1.2. Analytical Approaches

NNN’s. It means that we only need 3 (6) fields to solve the problem in the paramagnetic
(antiferromagnetic) case. So the straightforward transformation leads to

Σσ(p, ω) ≈ γ(0)
p Σ0σ(ω) + 2dγ(1)

p Σ1σ(ω) + 2d(d− 1)γ(2)
p Σ2σ(ω), (1.23)

and the momentum dependent γp’s are defined as

γ(0)
p = 1

γ(1)
p ≡ 1

2d

∑

r

eipr =
1

d

d
∑

i=1

cos(pi)

γ(2)
p ≡ 1

2d(d− 1)

∑

r′

eipr′

=
1

d(d− 1)

d
∑

i=1

d
∑

j=1
j 6=i

cos(pi) cos(pj).

(1.24)

Using the upper notations the mean field equations become

Gimp iσ =
1

m

δ lnZimp

δaiσ

=

∫

(dp)γ(i)
p Gσ(p, ω), (1.25)

where i=0,1,2.

Green function In current paragraph we will discuss the calculation of the lattice
Green function (1.25) in the paramagnetic and antiferromagnetic regime.

The Green function as a function of the fermionic Matsubara frequencies in the para-
magnetic order is defined as

Gσ(p, ω
n
) = (iω

n
+ µ− εp − Σσ(p, ω

n
))−1 , (1.26)

with the lattice self-energy (1.23) and εp is the energy dispersion, which is defined as

εp = −2dtγ
(1)
p in the d-dimensional square lattice, with t = tij

√
2d [4]. The Gσ(ω

n
) is

equal to the Gσ̄(ω
n
) in the paramagnetic case. The integration over the Brillouin zone

leads to the lattice Green functions

Giσ(ω
n
) =

1

(2π)2

∫ π

−π

dpx

∫ π

−π

dpyγ
(i)
p Gσ(p, ω

n
). (1.27)

In the antiferromagnetic order one should consider two sublattices (A and B). The
sublattice A(B) includes all sites with spin-up(-down) fermions in the Néel phase. In
present work we only consider the nearest neighbor hopping, therefore the kinetic part of
the Hamiltonian describes the hopping between two sublattices

Hkin =
∑

p∈RBZ, σ

(

c†Apσ c†Bpσ

)

(

0 εp

εp 0

)(

cApσ

cBpσ

)

, (1.28)

7
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where RBZ is a reduced Brillouin zone. According to the Hamiltonian (1.28) the Green
function becomes a 2 × 2 matrix

Ĝσ(p, ω
n
) =

(

G0σ G1σ

G1σ G0σ̄

)

=
(

(iω
n

+ µ)1̂ − ε̂p − Σ̂σ(p, ω
n
)
)−1

, (1.29)

with the self-energy matrix accords to equation (1.23), where

Σ̂0σ =

(

Σ0σ 0
0 Σ0σ̄

)

, Σ̂1σ(ω
n
) =

(

0 Σ1σ

Σ1σ 0

)

, Σ̂2σ(ω
n
) =

(

Σ2σ 0
0 Σ2σ̄

)

. (1.30)

We do not write the ω
n
-dependency of the matrix elements explicit. The diagonal elements

of the self-energy Σ̂σ(p, ω
n
) are a sum of the on-site and the next nearest neighbor self-

energy (interaction on the same sublattice). The off-diagonal entries present the nearest
neighbor self-energy (interaction between fermions sitting on different sublattices).

Using the impurity Green function we obtain lattice Green functions

Ĝiσ(ω
n
) =

1

(2π)2

∫ π

−π

dpx

∫ π

−π

dpyγ
(i)
p Ĝσ(p, ω

n
), (1.31)

where γ
(1)
p = 0 and γ

(1)
p = 0 or γ

(2)
p = 0 in case of 1- or 2-site cluster respectively.

Filtering

The self-energy in the fictive impurity method is defined as an infinite sum of φi(p)Σi(ω)
terms (1.11), which cannot be realized using numerical methods. For this reason we
approximate the self-energy by the finite sum (1.13), and that leads to unphysical results
such: causality violence in the self-energy, appearance of mid-gap states in the Mott phase
and overestimating of the Néel temperature at large-U . The source of these troubles is
probably the insufficient number of the orthogonal functions we take into account. In
fact, generally one can reproduce a function using an infinite set of orthogonal functions
(e.g. Fourier transformation), a finite set leads however to the “ringing” effects [12]. In
order to avoid this technical problem in the fictive impurity formalism we introduce a set
of filtering functions {fi} which transforms the self-energy (1.13) to

Σ(p, ω) ≈ Σapprox(p, ω) ≡
n
∑

i=0

fiφi(p)Σi(ω) (1.32)

where f0 = 1 and 0 ≤ fi>0 < 1. According to the derivation of the previous section and
using equation (1.32) we get the lattice Green functions

Gi(ω) =
∂Ωapprox

∂Σi(ω)
= fi

∫

(dp)φ(p)G(p, ω). (1.33)

The filtering functions considered here are frequency independent, which is a simple but
a bit rude way to solve the truncating problem. It was found [12] that not all frequencies

8
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are affected by the “ringing” effects, therefore a frequency dependent filtering can yield
more exact results. The weak point is the numerical determination of so-called “bad”
frequencies: The self-energy as a function of the Matsubara frequencies needs a relatively
complex procedure for the analytical transformation, which is difficult to realize in each
DMFT of the iteration.

Other quantities

This section introduce some quantities we calculated in the present work to compare the
fictive impurity method with an other approach. Furthermore one will find couple of
analytical quantities used as a benchmark in this work.

Internal energy In order to get a general idea about the FI method we computed the
internal energy as a function of T . A detailed derivation of energy was obtained according
to the book by Fetter and Walecka [17] and is presented in the appendix A.2. Taking the
final equation (A.19) we get the internal energy in the paramagnetic order

E = −T
∑

n, σ

1

(2π)2

∫ π

−π

dpx

∫ π

−π

dpy

(

εp +
1

2
Σσ(p, ω

n
)

)

Gσ(p, ω
n
), (1.34)

with Green function (1.26) and the self-energy (1.23).
In the antiferromagnetic regime the dispersion, the self-energy and the Green function

become 2× 2 matrices, on that account we substitute the σ-sum in (1.34) by a trace and
obtain the internal energy

E = −T
∑

n

1

(2π)2

∫ π

−π

dpx

∫ π

−π

dpyTr

[(

ε̂p +
1

2
Σ̂σ(p, ω

n
)

)

Ĝσ(p, ω
n
)

]

, (1.35)

where ε̂p =

(

0 εp

εp 0

)

. The kinetic energy can be computed analog according to equa-

tion (A.20).
We verified our numerical results, comparing them with the analytical value of the

internal energy in the atomic limit. The energy was calculated using the grand canonical
potential Ω

E = Ω + TS = Ω − T
∂Ω

∂T
, (1.36)

where S is the entropy. A paper by Kubo [18], which contains an analytical expansion of
Ω up to fourth order in t, was used for the calculation of the internal energy (for details
see appendix A.2).

Spin-spin correlation Also the 〈σizσjz〉-correlator was computed for the nearest neigh-
bors as well as for the next nearest neighbors. An analytical value for estimation of the

9
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numerical results was calculated using high-T series expansion of 〈S1 · S2〉 up to second
order in t. Treating the Heisenberg model in the high-T limit (see appendix A.3) leads to

〈σ1zσ2z〉 = − t2

TU
. (1.37)

The numerical calculation of the correlator depends on the impurity problem solver, and
will be discussed later.

The equations of the current chapter are complete to treat those clusters which required
one, two or three Weiss fields using the fictive impurity method. In order to expand these
equations to consider larger number of fields one should start with a further expansion of
the self-energy and follow the schema given above.

1.2.2 Dynamical Cluster Approximation

In the present work we compare our results calculated by the fictive impurity method with
the results estimated by the dynamical cluster approximation (DCA) [11]. Therefore we
introduce the DCA formulation in this section. Moreover we present the implementation
for a 2- and 4-site cluster.

Formalism

In contrast to the single impurity DMFT, we consider a cluster of size Nc with periodic
boundary conditions. The cluster should be a part of the physical lattice. The Brillouin
zone is divided into Nc regions of equal areas, called reduced Brillouin zones (RBZ). The
self-energy in each region becomes a constant value Σσ(pk, ω), where pk is a momentum
from the corresponding RBZ3. Figure 1.3 shows examples for 2- and 4-site cluster as a part
of the 2-dimensional quadratic lattice and the corresponding participation of the Brillouin
zone. Each color in the Brillouin zone corresponds to a certain value of the self-energy.

Now the procedure is the following: At first we solve the Nc-impurity problem and
get in general Nc or (2Nc in the antiferromagnetic case) Green functions. The Green
function in real space, obtained from the impurity problem as well as the initial Weiss
field, becomes momentum dependent after a simple discrete Fourier transformation

Gσ(pk, ω) =

Nc
∑

j=1

Gσ(rj, ω)eipk·rj

aσ(pk, ω) =
Nc
∑

j=1

aσ(rj , ω)eipk·rj ,

(1.38)

with j, k ∈ {1, . . . , Nc}. Further, the Dyson equation leads to a set of Nc momentum
space self-energies

Σσ(pk, ω) = aσ(pk, ω) −G−1
σ (pk, ω). (1.39)

3It is convenient to take the average momentum of each region in the discrete Fourier transformation.

10



1.2. Analytical Approaches

The momentum-dependent lattice Green function becomes

Ḡσ(pk, ω) =
1

VRBZ

∫

RBZ

(dp)d 1

ω + µ− εp − Σσ(pk, ω)
, (1.40)

where VRBZ is the volume of the reduced Brillouin zone and the integration is performed
over the RBZ which includes the momentum pk. The Dyson equation (1.39) leads to the
new Weiss field in the momentum space

aσ(pk, ω) = Σσ(pk, ω) + Ḡ−1
σ (pk, ω), (1.41)

and the inverse Fourier transformation gives the real-space Weiss field

aσ(rj , ω) =
1

Nc

Nc
∑

k=1

aσ(pk, ω)e−ipk·rj . (1.42)

for the Nc-impurity problem.

Implementation

2-site DCA We consider a 2-site cluster as a part of the 2-dimensional quadratic lattice
(Fig. 1.3 a)) with sites at r0 = (0, 0)T and r1 = (0, 1)T . We choose the following vectors
in the momentum space p0 = (0, 0)T and p1 = (π, π)T , because each of them lies in the
middle of a reduced Brillouin zone. Equation (1.38) yields the Green function and the
Weiss field in the momentum space

Gσ(p0, ω) = Gσ(r0, ω) +Gσ(r1, ω)

Gσ(p1, ω) = Gσ(r0, ω) −Gσ(r1, ω). (1.43)

Using the Weiss field from the last loop (or a inverse free Green function as an initial
guess) we calculate the momentum space self-energy

Σσ(pi, ω) = aσ(pi, ω) −G−1
σ (pi, ω), (1.44)

with i ∈ {0, 1}. Note, the self-energy is equal to Σσ(p0, ω) (Σσ(p1, ω)) at every momentum
in the RBZ, which contains momentum p0 (p1). The lattice Green function is obtained
using

Ḡσ(pi, ω) =
1

(√
2π
)2

∫

RBZ

(dp)2 1

ω + µ− εp − Σσ(pi, ω)
, (1.45)

with i ∈ {0, 1}. The replacement of the impurity Green function by the lattice Green
function (1.45) in the Dyson equation (1.43) yields the new Weiss field. The inverse
Fourier transformation

aσ(r0, ω) =
1

2
(aσ(p0, ω) + aσ(p1, ω))

aσ(r1, ω) =
1

2
(aσ(p0, ω) − aσ(p1, ω))

(1.46)

leads to the new Weiss field for the two-impurity problem.
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Figure 1.3: The 2- and 4-impurity cluster, with corresponding participation of the Bril-
louin zone. Each patter corresponds to one of the reduced Brillouin zones.

4-site DCA The 4-site cluster and the participation of the Brillouin zone are shown in
the Fig. 1.3 b). The approach in the 4-site case is analog. Using four real space vectors
r0 = (0, 0)T , r1 = (0, 1)T , r2 = (1, 0)T and r3 = (1, 1)T and the momentum space vectors
p0 = (0, 0)T , p1 = (0, π)T , p2 = (π, 0)T and p3 = (π, π)T we obtain the Green functions
in the momentum space

Gσ(p0, ω) = Gσ(r0, ω) + 2Gσ(r1, ω) +Gσ(r2, ω)

Gσ(p1, ω) = Gσ(p2, ω) = Gσ(r0, ω) −Gσ(r2, ω)

Gσ(p3, ω) = Gσ(r0, ω) − 2Gσ(r1, ω) +Gσ(r2, ω).

(1.47)

The equality Gσ(r1, ω) = Gσ(r2, ω) follows from the x-y-symmetry in the quadratic lat-
tice. The Dyson equation and the integrations over the corresponding reduced Brillouin
zones give the lattice Green functions

Ḡσ(pi, ω) =
1

π2

∫

RBZ

(dp)2 1

ω + µ− εp − Σσ(pi, ω)
, (1.48)

12



1.3. Numerical Techniques

where i ∈ {0, 1, 2, 3}. The Dyson equation with upper Green functions and the following
inverse Fourier transformation

aσ(r0, ω) =
1

4
(aσ(p0, ω) + 2aσ(p1, ω) + aσ(p3, ω))

aσ(r1, ω) = aσ(r2, ω) =
1

4
(aσ(p0, ω) − aσ(p3, ω))

aσ(r3, ω) =
1

4
(aσ(p0, ω) − 2aσ(p1, ω) + aσ(p3, ω))

(1.49)

lead to the new Weiss field.
The energy (A.19) can be obtained analog to the calculation of the Green function,

one should be careful with the integration over different RBZ’s.

The equations, considered in this section, are specific to the paramagnetic case. The
difference to the antiferromagnetic order is the same like in the section 1.2.1. The scalar
functions in the equations (1.43) – (1.49) will be substituted by 2 × 2 matrices.

The advantage of the DCA is the momentum dependency of the self-energy, what
was neglected in the original dynamical mean field theory. The disadvantages are the
self-energy discontinuity in momentum space and the canonization between the cluster
and the considering lattice. Moreover the expansion of the cluster is not straightforward
because of the splitting of the Brillouin zone in Nc RBZ’s.

1.3 Numerical Techniques

1.3.1 Semiclassical Approximation

The semiclassical approximation (SCA) was formulated by Hasegawa [19, 20] in 1980 and
is based on the continuous Hubbard-Stratonovich transformation [13, 21]. Hasegawa used
this method to study a “single-site spin fluctuation theory” which can be viewed as a
simplification of the modern dynamical-mean-field theory. Semiclassical methods were
also used in the works by Blawid and Millis [22] and by Pankov, Kotliar and Motome [23]
in the study of models of electrons coupled to the large-mass oscillations.

As shown below SCA and QMC results are in good agreement, moreover, the semi-
classical approximation is very cheap in matters of computational time. In fact, the SCA
is approximately two decades faster than QMC for single-impurity models at large U .
Therefore most of the computations in this chapter were performed using SCA.

Formalism

We start the formalism with a partition function, which is given as

Z =

∫

D
[

c†c
]

e−Seff , (1.50)
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Chapter 1. Fictive Impurity Models

where the effective action is

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′ c†(τ)â(τ, τ ′)c(τ ′) +

∫ β

0

dτ Un↑(τ)n↓(τ). (1.51)

The Grassmann variables c† =
(

c†↑, c
†
↓

)T

and c = (c↑, c↓)
T correspond to the fermionic

creation and annihilation operators, and nσ to the particle number operator nσ = c†σcσ,
β = T−1. â = diag(a↑, a↓) is the Weiss field which implies the effect of the environment
on the impurity. The substitution

n↑n↓ =
1

4

(

(n↑ + n↓)
2 − (n↑ − n↓)

2
)

=
1

4
(N2 −M2), (1.52)

where N is the particle number and M is the magnetization, decouples the most prob-
lematic part of the action:

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′ c†(τ)â(τ, τ ′)c(τ ′) +
U

4

∫ β

0

dτ
(

N2(τ) −M2(τ)
)

. (1.53)

We substitute N(τ) by 〈N〉 in the present approximation, whereas 〈N〉 = 1 at the half
filling. In other words, we neglect the real charge fluctuations.

Z =

∫

D
[

c†c
]

e
R β

0 dτ
R β

0 dτ ′c†(τ)â(τ,τ ′)c(τ ′)+ U
4

R β

0 dτ M2(τ)e−
βU

4 , (1.54)

where term βU/4 shifts the energy at −U/4 and plays the same role like a chemical
potential. For simplicity we do not write this constant term in the following derivation,
because it does not affect the Green functions we are interested in. Using a Hubbard-
Stratonovich transformation [21]

∫ ∞

−∞
dx e−πx2+2

√
πAx = eA2

, (1.55)

where A is a number and x is a scalar auxiliary field, we obtain a “new” partition function

Z =

∫

D
[

c†c
]

D[ϕ] e
R β

0 dτ
R β

0 dτ ′ c†(τ)â(τ,τ ′)c(τ ′)−
R β

0 dτ ( 1
4U

ϕ2(τ)− 1
2
ϕ(τ)M(τ)), (1.56)

where rescaling ϕ =
√
πx changes Z up to a constant. In general, the semiclassical field

ϕ is a function of the imaginary time τ , but in this approximation we assume it to be
τ -independent (semiclassical approximation)

Z =

∫

D
[

c†c
]

∫ ∞

−∞
dϕ e

R β

0 dτ
R β

0 dτ ′ c†(τ)â(τ,τ ′)c(τ ′)−
R β

0 dτ ( 1
4U

ϕ2− 1
2
ϕM(τ))

=

∫

D
[

c†c
]

∫ ∞

−∞
dϕ e−

β

4U
ϕ2+

R β

0 dτ
R β

0 dτ ′ c†(τ)(â(τ,τ ′)+ 1
2
ϕσ̂zδ(τ−τ ′))cσ(τ ′).

(1.57)
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1.3. Numerical Techniques

We have used M(τ) =
∫ β

0
dτ ′ c†(τ)σ̂zδ(τ − τ ′)c(τ ′) in the second line of equation (1.57),

where σ̂z is the third Pauli matrix. After a Fourier transformation, we perform a Grass-
mann integration4

Z =

∫

D
[

c̃†c̃
]

∣

∣

∣

∣

∂(c̃†, c̃)

∂(c†, c)

∣

∣

∣

∣

∫ ∞

−∞
dϕ e−

β

4U
ϕ2+β

P

ωn
c̃†(ωn)(â(ωn)+ 1

2
ϕσ̂z)c̃(ωn)

=

∫ ∞

−∞
dϕ e−

β
4U

ϕ2
∏

ωn

det

[

−β
(

â(ω
n
) +

1

2
ϕσ̂z

)]

=

∫ ∞

−∞
dϕ e−

1β

4U
ϕ2+

P

ωn
ln det[−β(â(ωn )+ 1

2
ϕσ̂z)],

(1.58)

where c and c† are functions of τ and c̃ and c̃† are functions of the fermionic Matsubara
frequencies ωn;

∣

∣

∣

∂(c̃†,c̃)
∂(c†,c)

∣

∣

∣
= 1 because of the isometry of the Fourier transformation.

In general a cluster consists of N sites, therefore the semiclassical field becomes a
vector of N fields ϕ = (ϕ1, . . . , ϕN)T , where each field ϕi acts on the corresponding
cluster site i. Thus the general partition function is

Z =

∫ ∞

−∞
dϕ1 . . . dϕN e

−βV (ϕ), (1.59)

with

V (ϕ) =
1

4U
|ϕ|2 − T

∑

ωn

ln det
[

−β
(

â(ω
n
) + Λ̂ (ϕ, s)

)]

. (1.60)

Note, â and Λ̂ (ϕ, s) = diag (s1ϕ1σ̂z, . . . , sNϕN σ̂z) are 2N×2N matrices, where si = ±1/2,
with i ∈ {1, . . . , N}, corresponds to the z-component of the spin on the ith site of the
cluster. Because of the symmetry of the integration we substitute siϕi by φi and obtain

Z = 2N

∫ ∞

−∞
dφ1 . . . dφN e

−βV (φ)

V (φ) =
1

U
|φ|2 − T

∑

ωn

ln det
[

−β
(

â(ω
n
) + Λ̂ (φ)

)]

,
(1.61)

with Λ̂ (φ) = diag (φ1σ̂z, . . . , φN σ̂z). Furthermore â as well as Λ̂ (φ) is a N ×N matrix of
the diagonal 2 × 2 matrices. Therefore some permutations of the rows and the columns

lead to a diagonal matrix, which looks like diag
(

Â↑, Â↓

)

, where Â↑

(

Â↓

)

is a N × N

matrix and contains all entries of the initial 2N × 2N matrix with index ↑ (↓). Thus the
potential can be rewritten as

V (φ) =
1

U
|φ|2 − T

∑

ωn ,σ=↑,↓
ln det

[

−β
(

âσ(ω
n
) + Λ̂σ (φ)

)]

, (1.62)

4
∫

1 dc† dc = 0,
∫

ac†c dc† dc = −a
∫

c† dc† = −a, where a is a complex number and c and c† are
Grassmann variables.
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Figure 1.4: The probability P (ϕ1, ϕ2) = exp{−βV (ϕ1, ϕ2)}/Z for 2-site cluster in the FI
method for the Hubbard model on a square lattice at U/t = 16, T/t = 0.3 [24]. The fact,
that the peaks at ϕ/t = (±16,∓16)T greater than the peaks at ϕ/t ≈ (±16,±16)T shows
antiferromagnetic correlation. Note, the antiferromagnetism was suppressed; without the
suppression we get a dominant peak at ϕ/t ≈ (−16, 16)T or at ϕ/t ≈ (16,−16)T

where Λ̂σ (φ) = diag (φ1, . . . , φN)σz, with σz = 1 (-1), if σ =↑ (↓).
According to equation (1.19) the impurity Green function becomes

Ĝσ(ω
n
) =

2N

ZN

∫ ∞

−∞
dφ1 . . . dφN e

−βV (φ)
(

âσ(ω
n
) + Λ̂σ (φ)

)−1

. (1.63)

In order to reduce the computational time in the large-U regime, we assume that the
barriers among the minima of the potential V (φ) are very high. In fact, Figure 1.4 shows
the probability distribution as a function of ϕ for a two-site cluster at large interaction
(U/t = 16). One can clearly see that the probability is strongly centered at the minima of
the potential. On this account we substitute the integration over φ1, . . . , φN by the sum
over all minima [34]

Z =
1

Nmin

Nmin
∑

i=1

e−βV (φi), (1.64)

where Nmin is the number of minima of the potential V (φ). Also the impurity Green
function in the strong interaction regime becomes

Ĝσ(ω
n
) =

1

ZNNmin

Nmin
∑

i=1

e−βV (φi)
(

âσ(ω
n
) + Λ̂σ (φ)

)−1

. (1.65)

The minima of the potential could be found using a Newton-Raphson algorithm [27].
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1.3. Numerical Techniques

Implementation

Two-site cluster The two site cluster consideration requires a Weiss field that consists
of two components a0(ωn) and a1(ωn). For simplicity of notation we will not write the
ωn-dependency of the Weiss field explicitly. The Weiss field grows to the matrix

âσ =

(

a0σ 0
0 a0σ̄

)

+

(

0 a1σ

a1σ 0

)

, (1.66)

where we implied a1↑ = a1↓. We consider antiferromagnetic order because the corre-
sponding equations are correct in the paramagnetic case too. Using the semiclassical field
φ = (φ1, φ2)

T , we obtain a two-site cluster potential

V (φ) =
φ2

1 + φ2
2

U
− T

∑

ωn ,σ

ln det

[

−β
(

a0σ + φ1σz a1σ

a1σ a0σ̄ + φ2σz

)]

=
φ2

1 + φ2
2

U
− T

∑

ωn ,σ

ln Detσ,

(1.67)

where

Detσ ≡ Detσ(ω
n
) = β2

[

(a0σ + φ1σz) (a0σ̄ + φ2σz) − a2
1σ

]

. (1.68)

According to equations (1.59) and (1.63), we calculate the partition sum and the Green
functions in the 2-site cluster

Z = 4

∫ ∞

−∞
dφ1dφ2 e

−βV (φ)

G0σ(ω
n
) =

2

Z

∫ ∞

−∞
dφ1dφ2 e

−βV (φ)β2

(

a0σ̄ + φ2σz

Detσ
+
a0σ̄ + φ1σ̄z

Detσ̄

)

G1σ(ω
n
) =

2

Z

∫ ∞

−∞
dφ1dφ2 e

−βV (φ)β2−2a1σ

Detσ
,

(1.69)

thus having solved the two-impurity problem. In order to complete the picture we give
the definition of the spin-spin correlation in current presentation

〈σ1σ2〉 =
16

Z

∫ ∞

−∞
dφ1dφ2

φ1φ2

|φ1φ2|
e−βV (φ), (1.70)

do not forget φi = siϕi. An important hint [24] for the potential calculation: The sum
over Matsubara frequencies in the potential has a divergent part, namely the Weiss field.
Therefore it is not possible to calculate this sum numerically. For this reason we compute
the sum

∑

ωn ,σ

ln det

[

(

1 0
0 1

)

+

(

a0σ a1σ

a1σ a0σ̄

)−1(
φ1 0
0 φ2

)

σz

]

. (1.71)
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Figure 1.5: Upper panel: The impurity Green function computed using SCA at U/t = 20,
T/t = 0.2, at half filling and within the antiferromagnetic regime. The dotted curve
corresponds to the approximated SCA, where the integration is substituted by the sum
over all minima of the potential. Lower panel: the Néel temperature of the single-site
model computed using sum-SCA and integral-SCA.
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The remaining φ-independent part of the sum cancels in the course of the derivation of the
Green function (1.19). Furthermore the calculation of the potential should be performed
very carefully, which is necessary for the accuracy of calculated quantities. For this reason
we give the high frequency correction in appendix A.4.

As mentioned before, in order to get quickly results at large interaction value one can
use the Newton-Raphson method to find the minima of the potential. In two site case,
one should solve the system of two equations δV (φ)

δφj
= 0, j ∈ {1, 2}. Explicitly, we are

looking for 22 values of the semiclassical fields, φi = (φi1, φi2)
T , i ∈ {1, 2, 3, 4}, which

solve the following system























φ1 =
U

2T

∑

ωn ,σ

a0σσz + φ2

Detσ

φ2 =
U

2T

∑

ωn ,σ

a0σσz + φ1

Detσ
.

(1.72)

Using the results given above we replace the integration 4
∫∞
−∞ dφ1dφ2 in equations (1.69)

by the sum 1
4

∑4
i=1. Figure 1.5 (upper panel) demonstrates the impurity Green function

calculated using integral- and sum-SCA at U/t = 20 and T/t = 0.2, with the same anti-
ferromagnetic input-Weiss field after first loop. The largest deviation of the approximated
result is around ω

n
/t ≈ 0 and lies below the 3% mark. On the lower panel one can see the

Néel temperature computed using a single impurity integral- and sum-SCA. We observe
reasonable consistence of both results at U/t > 8, the deviation is smaller than 5%. The
decreasing interaction leads to the get-together of the peaks and to the decrease of the po-
tential walls among the minima, which causes a significant increase of the computational
time in the Newton-Raphson method because the minimization process often gets stuck
in the saddle points. Therefore we made use of the sum-SCA for the large-U calculations,
in particular in the 4-site cluster calculations.

Four-site cluster Next we consider a four-site cluster. The Weiss field consists of 5
different components (a1σ = a1σ̄) and becomes a 4 × 4 matrix

âσ =









a0σ 0 0 0
0 a0σ̄ 0 0
0 0 a0σ 0
0 0 0 a0σ̄









+
1√
2









0 a1σ 0 a1σ

a1σ 0 a1σ 0
0 a1σ 0 a1σ

a1σ 0 a1σ 0









+









0 0 a2σ 0
0 0 0 a2σ̄

a2σ 0 0 0
0 a2σ̄ 0 0









, (1.73)
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where the second matrix is normalized by the factor 1√
2

5. According to equation (1.60)
we calculate the semiclassical potential for the 4-site cluster

V (φ) =
|φ|2
U

− T
∑

ωn ,σ

ln det











−β











a0σ + φ1σz
a1σ√

2
a2σ

a1σ√
2

a1σ√
2

a0σ̄ + φ2σz
a1σ√

2
a2σ̄

a2σ
a1σ√

2
a0σ + φ3σz

a1σ√
2

a1σ√
2

a2σ̄
a1σ√

2
a0σ̄ + φ4σz





















=
|φ|2
U

− T
∑

ωn ,σ

ln Detσ,

(1.74)

with

Detσ = β4

[

(a0σ + φ1σz) (a0σ̄ + φ2σz) (a0σ + φ3σz) (a0σ̄ + φ4σz)

− a2
1σ

2
{(2a0σ + (φ1 + φ3)σz) (2a0σ̄ + (φ2 + φ4)σz)

+2a2σ̄ (2a0σ + (φ1 + φ3)σz) + 2a2σ (2a0σ̄ + (φ2 + φ4)σz)}
− 2a2

1σa2σa2σ̄ + a2
2σa

2
2σ̄ − a2

2σ (a0σ̄ + φ2σz) (a0σ̄ + φ4σz)

−a2
2σ̄ (a0σ + φ1σz) (a0σ + φ3σz)

]

.

(1.75)

Note, the ω
n
-sum has a divergent term â, therefore we perform the sum using the same

trick as in the 2-site case. The φ-integration in the partition function becomes four-dimen-
sional

Z = 16

∫ ∞

−∞
dφ1 . . . dφ4 e

−βV (φ), (1.76)

and the derivative of the logarithm of the partition function according to equation (1.19)
gives following Green functions

G0σ(ω
n
) =

4

Z

∫ ∞

−∞
dφ1 . . . dφ4 e

−βV (φ)β4×

×
[

1

Detσ

{(

(a0σ̄ + φ2σz) (a0σ̄ + φ4σz) − a2
2σ̄

)

(2a0σ + (φ1 + φ3)σz)

+a2
1σ (2a2σ̄ − 2a0σ̄ − (φ2 + φ4)σz)

}

+
1

Detσ̄

{(

(a0σ̄ + φ1σ̄z) (a0σ̄ + φ3σ̄z) − a2
2σ̄

)

(2a0σ + (φ2 + φ4)σ̄z)

+a2
1σ (2a2σ̄ − 2a0σ̄ − (φ1 + φ3)σ̄z)

}

]

5All matrices have to satisfy equation (1.17)
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G1σ(ω
n
) =

4

16Z

∫ ∞

−∞
dφ1 . . . dφ4 e

−βV (φ)β4×

× 1

Detσ

{−a1σ (2a0σ + (φ1 + φ3)σz) (2a0σ̄ + (φ2 + φ4)σz)

+2a1σ (a2σ (2a0σ̄ + (φ2 + φ4)σz) + a2σ̄ (2a0σ + (φ1 + φ3)σz)) − 4a1σa2σa2σ̄}

G2σ(ω
n
) =

4

Z

∫ ∞

−∞
dφ1 . . . dφ4 e

−βV (φ)β4

[

1

Detσ

{

a2
1σ (2a0σ̄ + (φ2 + φ4)σz)

−2a2σ̄(a2
1σ − a2σa2σ̄) − 2a2σ (a0σ̄ + φ2σz) (a0σ̄ + φ4σz)

}

+
1

Detσ̄

{

a2
1σ (2a0σ̄ + (φ1 + φ3)σ̄z) − 2a2σ̄(a2

1σ − a2σa2σ̄)

−2a2σ (a0σ̄ + φ1σ̄z) (a0σ̄ + φ3σ̄z)}
]

.

(1.77)

The four-dimensional integration takes significantly more time than the two-dimensional
one. The difference between the integral- and the sum-SCA in the 4-site cluster case at
large Coulomb repulsion is smaller then in the 2-site case, therefore we used the sum-
approach in large-U regime. The potential of the 4-site cluster is a function of the semi-
classical field φ = (φ1, φ2, φ3, φ4)

T and has 16 minima in the large interaction region. Now
the procedure is analog to the treatment of the 2-site cluster potential. We are looking
for solutions of the system of non-linear equations δV (φ)

δφj
= 0, j ∈ {1, 2, 3, 4} using the

Newton-Raphson method. There is a system of 4 equations to solve:











































































































































ϕ1 = Uβ3
∑

ωn ,σ

σz

Detσ

{

(a0σ̄ + φ2σz) (a0σ + φ3σz) (a0σ̄ + φ4σz)

+a2
1σ

(

a2σ̄ − a0σ̄ − 1

2
(φ2 + φ4)σz

)

− a2
2σ̄ (a0σ + φ3σz)

}

ϕ2 = Uβ3
∑

ωn ,σ

σz

Detσ

{

(a0σ + φ1σz) (a0σ + φ3σz) (a0σ̄ + φ4σz)

+a2
1σ

(

a2σ − a0σ − 1

2
(φ1 + φ3)σz

)

− a2
2σ (a0σ̄ + φ4σz)

}

ϕ3 = Uβ3
∑

ωn ,σ

σz

Detσ

{

(a0σ + φ1σz) (a0σ̄ + φ2σz) (a0σ̄ + φ4σz)

+a2
1σ

(

a2σ̄ − a0σ̄ − 1

2
(φ2 + φ4)σz

)

− a2
2σ̄ (a0σ + φ1σz)

}

ϕ4 = Uβ3
∑

ωn ,σ

σz

Detσ

{

(a0σ + φ1σz) (a0σ̄ + φ2σz) (a0σ + φ3σz)

+a2
1σ

(

a2σ − a0σ − 1

2
(φ1 + φ3)σz

)

− a2
2σ (a0σ̄ + φ2σz)

}

.

(1.78)
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Then we can substitute the 4-dimensional integration by the sum 1
16

∑16
i=1 in equations

(1.76) and (1.77) at large interaction. Sadly this trick works out at U/t > 10 only,
therefore we have to use the integral-SCA in the low-U regime.

It was found that this version of the semiclassical approximation is in agreement with a
well known Quantum Monte-Carlo Algorithm (see next subsection) but takes significantly
less computational time (see section 1.8).

1.3.2 Quantum Monte Carlo Method

The Quantum Monte Carlo method (QMC) is one of the most powerful methods in statis-
tical physics. The most successful version of the QMC to solve a general impurity problem
was introduced by Hirsch and Fye in 1986 [25]. The procedure is based on the discretiza-
tion of the effective action and on the decoupling of the interaction using the discrete
Hubbard-Stratonovich transformation [13]. The local Green function is determined via a
Markov process.

Formalism

Again we start with the partition function (1.50) and discretize the impurity model effec-
tive action

Seff =
∑

σ

∫ β

0

dτdτ ′ c†σ(τ)aσ(τ, τ ′)cσ(τ ′) − U

∫ β

0

dτ n↑(τ)n↓(τ)

≈ (∆τ)2
∑

l,l′,σ

c†σ(τl)aσ(τl, τl′)cσ(τl′) − ∆τU
∑

l

n↑(τl)n↓(τl),
(1.79)

where l, l′ ∈ {1, . . . , L}, ∆τ = β/L and τl = (l − 1)∆τ . The only problematic part of the
effective action is the interaction term Un↑(τl)n↓(τl), which includes a product of four op-
erators. The problem was solved using the discrete Hubbard-Stratonovich transformation
(HST)

e−U∆τn↑n↓ =
1

2

∑

s=±1

eλs(n↑−n↓)− 1
2
U∆τ(n↑+n↓), (1.80)

where coshλ = e
1
2
U∆τ , s (Ising spin) is the component of the discrete auxiliary field. The

discrete HST includs the fermionic equation

n↑n↓ = −1

2
(n↑ − n↓)

2 +
1

2
(n↑ + n↓). (1.81)

So the product of two quadratic terms is decoupled and the meaning of the Hubbard-
Stratonovich transformation is the following: the HST replaces the system of interacting
particles by a system of noninteracting particles in a fluctuating real field, which couples
to the z-component of the spin6. Performing the HST (1.80) at every time slice τl in the

6The present transformation works for fermionic systems only.

22



1.3. Numerical Techniques

effective action, we obtain the “new” partition function

Z =
1

2L

∑

s

∫

D
[

c†c
]

e(∆τ)2
P

l,l′,σ c†σ(τl)aσ(τl,τl′)cσ(τl′ )+∆τ
P

l λsl(n↑(τl)−n↓(τl)), (1.82)

where
∑

s is the sum over all 2L possible configurations s = (s1, . . . , sL) of L Ising spins;
the term −1

2
U∆τ(n↑ + n↓) was absorbed by the chemical potential µ = U

2
. The inverse

Green function is
Ĝ−1

σ (s) ≡ âσ + σλÂ(s), (1.83)

with

Â(s) =

















0 · · · 0 0 −sL

s1 0
. . . 0

0
. . .

. . . 0
...

. . .
. . . 0

...
0 · · · 0 sL−1 0

















. (1.84)

The matrix Â(s) includes the interaction between the neighboring components of the
auxiliary field (Ising spins). In the present formulation, the Green function (1.84) is
written as (see [4])

Ĝ−1
σ (s) ≡ âσê

V
σ (s) + êV

σ (s) − 1̂, (1.85)

where êV
σ (s) = diag

(

eσλs1 , . . . , eσλsL
)

is an L× L matrix, with σ = ±1.
Due to the quadratic action the Gauss integration of the Grassmann variables can be

performed (see section 1.3.1):

Z =
1

2L

∑

s

∏

σ

det
[

Ĝ−1
σ (s)

]

(1.86)

and

Ĝσ =
1

2LZ

∑

s

Ĝσ(s)
∏

σ′

det
[

Ĝ−1
σ′ (s)

]

. (1.87)

The computational time for the upper sum is reasonable for small L only, therefore
the Green function is calculated by stochastic Monte Carlo sampling, where a term
∏

σ′ det
[

G−1
σ′ (s)

]

gives the stochastic weight of a configuration s = (s1, . . . , sL). The
configurations are generated by a Markov process, where the probability of a configu-
ration is proportional to its statistical weight. To reduce the computational effort we
consider single spin-flip moves (s1, . . . , sk, . . . , sL) → (s1, . . . ,−sk, . . . , sL) only.

Implementation

The complete derivation of the equations, needed in the QMC algorithm, was often pre-
sented in the literature and can be found, among others, in [4, 25]. Therefore we focus
our attention on the basic equations, specialized for two impurities.
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The QMC algorithm used here calculates the Green function as a function of imaginary
time, therefore we start with the Green function in the τ -matrix representation:

Ĝσ =































〈

c0τ1c
†
0τ1

〉

σ
· · ·

〈

c0τL
c†0τ1

〉

σ

〈

c1τ1c
†
0τ1

〉

σ
· · ·

〈

c1τL
c†0τ1

〉

σ
...

. . .
...

...
. . .

...
〈

c0τ1c
†
0−τL

〉

σ
· · ·

〈

c0τL
c†0τL

〉

σ

〈

c1τ1c
†
0−τL

〉

σ
· · ·

〈

c1τL
c†0τL

〉

σ

〈

c0τ1c
†
1τ1

〉

σ
· · ·

〈

c0τL
c†1τ1

〉

σ

〈

c1τ1c
†
1τ1

〉

σ̄
· · ·

〈

c1τL
c†1τ1

〉

σ̄
...

. . .
...

...
. . .

...
〈

c0τ1c
†
1−τL

〉

σ
· · ·

〈

c0τL
c†1τL

〉

σ

〈

c1τ1c
†
1−τL

〉

σ̄
· · ·

〈

c1τL
c†1τL

〉

σ̄































, (1.88)

where ciτ = ci(τ), τ1 = 0, τL = β − ∆τ . The computation begins with a free Green
function, which corresponds to the configuration where all Ising spins were set to 0. The

initial Green matrix (1.88), with
〈

ciτk
c†jτl

〉

σ
= Gijσ(τk − τl), with i, j ∈ {0, 1}, will be

transformed into the Green matrix corresponding to the first (random) configuration of
the non-zero Ising spins according to the equation

ĜNew
σ = Â−1

σ Ĝσ, (1.89)

with
Âσ = 1̂ +

(

1̂ − Ĝσ

)(

êV New−V
σ − 1̂

)

, (1.90)

where the matrix êV New−V
σ is defined as

diag
[

σλ
(

sNew
01 − s01

)

, . . . , σλ
(

sNew
0L − s0L

)

, σ̄λ
(

sNew
11 − s11

)

, . . . , σ̄λ
(

sNew
1L − s1L

)]

.
(1.91)

Note that equation (1.89) holds true for any two configurations of Ising spins, however its
disadvantage is the high computational effort, which is not acceptable in a Monte Carlo
simulation. A special case of equation (1.89) for two configurations, which differ in one
single spin k ∈ 1, . . . , L (Sherman-Morrison formula)

GNew
k1k2σ = Gk1k2σ+ (Gk1kσ − δk1k)

(

eV New−V
kkσ − 1

)

×

×
[

1 + (1 −Gkkσ)
(

eV New−V
kkσ − 1

)]−1

Gkk2σ,
(1.92)

yields a numerically cheaper way for the transition from one configuration to a different
one. In fact, in order to perform equation (1.89) we need (2L)3 numerical operations7,
whereas equation (1.92) requires (2L)2 operations only, which is a crucial difference for
the computational time needed for a Monte Carlo simulation.

7We are talking about the multiplication and the division, the time, which we need for the summation
can be neglected.
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The transition probability P (s → sNew), which gives the likelihood that the system
moves from the configuration s to the configuration sNew, can be obtained using the
“Boltzmann” weights of the considered states. The “Boltzmann” weight ratio is given by

det
[

Ĝσ

]

det
[

ĜNew
σ

] = det
[

Âσ

]

= 1 + (1 −Gkkσ)
(

eV New−V
kkσ − 1

)

, (1.93)

yields the transition probability needed in the Markov process.
Equations (1.89)–(1.93) form a complete set, which is sufficient in order to solve a

two-impurity problem. In order to get a general idea, we repeat the crucial steps of the
Hirsch-Fye QMC algorithm:

1. Start with the free Green function, which is identical to the Green function (1.88)
with the initial configuration of the Ising spins (s01 = 0, . . . , s1L = 0).

2. Choose an arbitrary configuration of Ising spins s, with s01, . . . , s1L ∈ {±1} and
calculate the corresponding Green function using equation (1.89).

3. Visit different Ising spin configurations via single spin flips (1.92) using the Metropo-
lis Monte Carlo dynamics, that satisfying the “detailed balance condition”

P
(

s → sNew
)

P (sNew → s)
=

∏

σ det
[

Ĝσ

]

∏

σ det
[

ĜNew
σ

] , (1.94)

which leads to the Metropolis transition probability

P (s → sNew) =



























1, if
∏

σ

det
[

Ĝσ

]

>
∏

σ

det
[

ĜNew
σ

]

∏

σ det
[

Ĝσ

]

∏

σ det
[

ĜNew
σ

] otherwise.

(1.95)

The ratio is given by equation (1.93).

4. The expectations value of the Green function is obtained by the average over all
Green functions Ĝσ(s) corresponding to the Ising spin configurations s visited in
the course of the calculation.

Technical details

In this section we want to explane some useful points, which will increase the quality of
the data, calculated by the algorithms including Hirsch-Fye QMC. The upper Quantum
Monte-Carlo method treats the Green function on the imaginary time axis, but the self-
consistency is performed in the Matsubara frequency space. Therefore we have a Fourier
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transformation (FT) and an inverse Fourier transformation (IFT) in our DMFT algo-
rithm. Both transformations should be performed very carefully, otherwise the additional
inaccuracies will plague the computed quantities.

Fourier transformation G(ωn) → G(τl) At first we consider a transformation from
the ωn−space into the τ−space. The Green function G0/1(ωn) (or the inverse Weiss field
G0/1(ωn)) is numerically calculated at ωn ∈ {−ωN , . . . , ωN}, but an exact result will be
achieved only, if we perform the Fourier transformation taking all Matsubara frequencies
into account

Gj(τl) =
1

β

∞
∑

n=−∞
e−iωnτlGj(ωn

), (1.96)

with l ∈ {1, . . . ,  L} and j ∈ {0, 1}. It is evident, that neither of numerical techniques
will compute the upper sum exactly, therefore we should make use of the analytical
knowledge about the high frequency behavior of the Green function. In appendix A.1
we show, that the Green functions (in our case G0 and G1) can be substituted by the
following approximate functions

G0(ωn) ≈ G̃0(ω
n
) =

1

iω
n

G1(ωn) ≈ G̃1(ω
n
) =

zt

4ω2
n

,
(1.97)

at high frequencies (1 ≪ |ω
n
|). Therefore it should be found out, when ωN is large

enough for the switch to the approximate function. Figure 1.6 displays G0(ωn
) and G1(ωn

)
calculated at T/t = 0.1, U/t = 2, 6, 10, whereas the Néel phase was suppressed. The insets
show the corresponding ratio Gj/G̃j. From this figure we learn that the aberration from
the approximated function is proportional to the value of the Coulomb repulsion. The
aberration of the G0 (upper panel) decreases rapidly beyond the frequency ω

n
= 10U . The

deviation decreases from ≈ 0.3% to ≈ 0.15% on the interval [10U ; 15U ]. The evolution of
the aberration in the same interval on the lower panel shows the similar behavior, where
the difference decreases from ≈ 0.7% to ≈ 0.35%. The inaccuracy is comparable to the
wrongness of the original data, thus it is recommendable to take the ωN beyond the 15U
mark, also it is reasonable to take ωN = 5W , where W is the full band width, in case, if
the value of the interaction is small (U/t < 3).

So the Fourier transformation will be performed in the following manner

Gj(τl) ≈
1

β

(

N
∑

n=−N

e−iωnτlG0(ωn
) +

∞
∑

n=−∞
e−iωnτlG̃j(ωn

) −
N
∑

n=−N

e−iωnτlG̃i(ωn
)

)

, (1.98)

where the infinite sum is calculated analyticaly (for details see appendix A.1).

Inverse Fourier transformation G(τl) → G(ω
n
) The inverse Fourier transformation

is one of the most problematical numerical parts of the algorithm. The Hirsch-Fye QMC
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Figure 1.6: The evolution of the Green functions at high frequency. The upper panel
shows the imaginary part of G0 and the lower panel gives the real part of G1. The inset
shows the ratio Gj/G̃j in each case (see also the discussion in text). T/t = 0.1, U/t = 2,
6, 10, W/t = 8, n = 1 and L = 50. The Néel phase was artificially suppressed.
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procedure yields a Green function, which is known at L discrete τl-values, where L is the
number of time slices in the QMC approach. An increasing of the number of time slices
causes a growth of the computational time, which is proportional to L3, therefore the
number of time slices is limited. Usually, the discrete Green function G(τl) is interpolated
using a cubic spline, which leads to the approximate continues Green function G(τ), so
the IFT can be performed:

Gj(ωn
) ≈

∫ β

0

dτ eiωnτGj(τ), (1.99)

however the 3rd order spline leads to some inaccuracies above the Nyquist frequency
ωN = Lπ/β. In fact, the Green function has both magnitude and derivative discontinuities
at τ = 0 and τ = β, that causes unphysical oscilations of the spline around the trace of
the actual Green function at short imaginary time as well as around τ = β. In order
to compute the high frequency behavior correctly, one should perform the short time
interpolation very carefully. We found that the interpolation of G0 (G1) using a fourth

(fifth) order spline, with boundary conditions G
(k)
j (0) + (−1)jG

(k)
j (β) = 0, where G(k)(τ)

is the derivative of k’th order, k ∈ {1, 2, 3 (, 4)} and j ∈ {0 1}, gives better results than
the cubic spline. In fact, the cubic spline is discontinuous in the third derivative, which
effects an unphysical behavior of the self-energy. Figure 1.7 shows the on-site self-energy
calculated using 3rd (dash-dotted curve) and 4th (dashed curve) order splines, where the
first curve changes the sign and at the same time the second self-energy has correct strict
negative sign in the shown region. However, the high frequency behavior is still wrong,
therefore performing the Fourier transformation we make use of the analytical knowledge
about the behavior of the Green function at large |ω

n
|. The following trick, introduced

in the PhD thesis by Blümer [28], allows to compute the self-energy with the correct
high-frequency behavior:

1. Calculate the model Green function8 G̃jσ(ω
n
) =

∫

(dp) γ(j)

iωn+µ−εp−Σ̃σ(ωn )
, where the

model self-energy is Σ̃σ(ω
n
) = U(nσ̄ − 0.5) + U2nσ̄(1.0 − nσ̄)/(iω

n
).

2. Performe the Fourier transformation G̃jσ(ω
n
) → G̃jσ(τl) according to the previous

paragraph.

3. Compute the difference between the discrete QMC Green function and the model
Green function ∆Gjσ(τl) = Gjσ(τl) − G̃jσ(τl).

4. Fourier transform the difference ∆Gjσ(τl) → ∆Gjσ(ω
n
), which can be done approx-

imately exact, because we have the low frequencies only.

5. Get the Green function in the frequency space Gjσ(ω
n
) = ∆Gjσ(ω

n
) + G̃jσ(ω

n
).

8The approach is given for the FI method, but it can be easily modified according to the requirements
of an other method.
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Figure 1.7: The on-site self-energy calculated using different techniques at T/t = 0.2,
U/t = 16, n = 1 and L = 48. The corresponding Green function was Fourier transformed
using 3rd order spline, 4th order spline and 4th order spline with the “model function”
trick.

The solid curve in Fig. 1.7 is the self-energy calculated by this procedure. The low
frequency part is in agreement with both other curves, but the high frequency behavior
is consistent with the analytical result (dotted curve).

In general, the data calculated by the Hirsch-Fye Quantum Monte Carlo algorithm
conforms to the experimental data, therefore this method has a good reputation among the
physicists. The best results can be achieved at the finite temperature (substantially lower
than the band width) in the low- and medium-coupling regime. Because of the Trotter
breakup9 the spacing ∆τ = β/L should be kept small (generally ∆τ · U ≤ 1). On this
account, the calculations at the temperatures close to T = 0 and in the strong coupling
regime are possible, but associate with a significant increasing of the computational time.
Thus the choice of the impurity solver should be matched to the considered temperature-
repulsion regime.

QMC vs. SCA

In the present section we are going to compare the Green functions computed by the
Hirsch-Fye Quantum Monte Carlo algorithm and by the semiclassical approximation in
the medium- and in the large-U regime. Figure 1.8 (upper panel) displays the Green

9 e−∆τ(Ĥ0+Ĥ1) ≈ e−∆τĤ0e−∆τĤ1.
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Figure 1.8: G0 and G1 calculated by the QMC and the SCA at T/t = 0.1, U/t = 4
(upper panel) and at T/t = 0.3, U/t = 16 (lower panel), antiferromagnetic order. The
SCA result slightly differs from the QMC one, however the general agreement is notable,
because the QMC is a nearly exact method and the SCA is an approximation only.
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functions G0↑ and G1↑ calculated by the QMC (t∆τ = 0.2) and by the integral-SCA in
the medium-U regime (U/t = 4). The imaginary part of G1↑ is equal zero. The on-site
Green function and the nearest neighbor Green function, obtained by both numerical
methods, are mostly similar, however the semiclassical result is slightly underestimated in
the low-frequency region. The lower panel shows both results at U/t = 16 and T/t = 0.3
also in the antiferromagnetic regime. We observe a deviation of nearly the same order in
the large-U regime.

Due to the results, we conclude, that the Hirsh-Fye QMC method is substitutable
by the present SCA version (section 1.3.1) at least at half filling10. The best accordance
was achieved in the antiferromagnetic regime. The agreement in the single impurity case
was excellent in the paramagnetic as well as in the antiferromagnetic order. Anyway, the
semiclassical approximation takes up to second order of magnitude less computational
time which was the crucial point for our decision to use the SCA in the present work.

1.4 Approximate Analytical Results

In order to examine our numerical data we obtain the approximate analytical results for
a single-site model and for both 2-site methods [34, 35]. The equations will be written for
general dimension d in low-temperature limit, where thermal excitations into the upper
Hubbard band may be neglected, which legitimates the substitution T

∑

ωn

≈ 1
2π

∫

dω.
Due to the fact that SCA was used as an impurity solver in the dynamical mean field
theory, we begin with an analytical treatment of the semiclassical approximation. Then
we calculate an approximate internal energy for the single impurity DMFT and 2-site FI
method and DCA as well as an approximate spin correlation function11.

1.4.1 Semiclassical Approximation

We start with the partition function in the large-U limit (eq. (1.64)) and concentrate
our attention on the paramagnetic case. In order to simplify the considered equations we
substitute ϕi

2
by φi. Also we assume that in the large-U limit |a1| ≪ |a2

0 − φ2| and that
we do not have a spatial symmetry breaking, which means |φ| is the same on both sites.

We expand the two-site potential (1.60) up to second order in the parameter x =
a2
1

a2
0−φ2

V (φ) =
|φ|2
U

− T
∑

ωn

ln det

[

−β
(

â0 + φσ̂1z â1

â1 â0 + φσ̂2z

)]

=
2φ2

U
− T

∑

ωn

ln

[

β4(a2
0 − φ2)2

(

1 − 2(a2
0 + φ2σ1zσ2z)

a2
0 − φ2

x+ x2

)]

,

(1.100)

10All considered systems in this work are at half-filling.
11In order to keep equations readable we will not write the ωn -dependency explicit in the current

section.
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where |x| ≪ 1, and â0 and â1 are 2×2 matrices in the spin space. Using the approximation
ln(1 + bx + O(x2)) ≈ bx we obtain

V (φ) ≈ 2φ2

U
− 2T

∑

n

[

ln
(

β2
(

a2
0 − φ2

))

− a2
1(a

2
0 + φ2S)

(a2
0 − φ2)

2

]

, (1.101)

where S ≡ σ1zσ2z . The φ-differentiation of the effective potential gives an equation

1

U
= −T

∑

n

[

1

a2
0 − φ2

+
a2

1 (2a2
0 + S (a2

0 + φ2))

(a2
0 − φ2)

3

]

, (1.102)

that allows to obtain the extremal values of φ. The impurity model Green function,
defined in equation (1.19), becomes

G0 =
a0

a2
0 − φ2

(

1 +
a2

1 (a2
0 + φ2(1 + 2S))

(a2
0 − φ2)

2

)

G1 =
−a1 (a2

0 + φ2S)

(a2
0 − φ2)

2 .

(1.103)

The approximate self-energy Σ̂ =

(

Σ0 Σ1

Σ1 Σ0

)

can be calculated using the Dyson

equation Σ̂ = â− Ĝ−1, which requires inverting of Ĝ. At large U (in the Mott insulating
phase) we expect that |G1| ≪ |G0|, so the inversion can be executed perturbatively in G1.
However, the substitution of a0 and a1 by approximate values12 iω

n
and t respectively in

equations (1.103) denotes |G1| > |G0| at ω
n
< tS. Using S ≈ − t2

TU
(see section A.3) we

get a lower temperature border of present approximation: ω0 = πT > t3

TU
→ T >

√

t3

πU
.

Keeping in mind this temperature restriction, we obtain the self-energy

Σ0 = a0 −
G0

G2
0 −G2

1

≈ a0 −
1

G0

(

1 +
G2

1

G2
0

)

≈ a0 −
a2

0 − φ2

a0

(

1 − a2
1 (a2

0 + φ2(1 + 2S))

(a2
0 − φ2)

2

)

− a2
1 (a2

0 + φ2S)
2

a3
0 (a2

0 − φ2)

=
φ2

a0

[

1 +
a2

1

a2
0 − φ2

(

1 − φ2S2

a2
0

)]

Σ1 = a1 +
G1

G2
0 −G2

1

≈ a1 +
G1

G2
0

≈ a1 −
a1

a2
0

(

a2
0 + φ2S

)

= −a1φ
2S

a2
0

.

(1.104)

To conclude, we note, that in the large-U limit the value of |iω
n
− Σ0| is significantly

greater than the bandwidth, which allows an expansion ofG0/1(ω
n
,p) in powers of t

|iωn−Σ0| .

12Approximate values will be calculated later.
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1.4.2 Single-Site Approximation

The single-site problem implies a1 = 0 and simplifies equations (1.103) and (1.104). Using
∫

(dp) =
∏d

i=1
1
2π

∫ π

−π
dpi and

∫

(dp)ε2
p = 2dt2 ≡ Kd we solve the self-consistency equation

a0

a2
0 − φ2

=

∫

(dp)
1

iω
n
− εp − φ2

a0

≈ 1

iω
n
− φ2

a0

+
Kd

(

iω
n
− φ2

a0

)3 . (1.105)

Inversion and following expansion lead to

a0 ≈
φ2

a0
+

(

iω
n
− φ2

a0

)






1 − Kd

(

iω
n
− φ2

a0

)2






≈ iω

n

(

1 +
Kd

ω2
n

+ φ2

)

, (1.106)

where the second approximate equality comes from a recurcive substitution of a0. Sub-
stitution of the upper result in equation (1.102) leads to

1

U
= −T

∑

n

1

a2
0 − φ2

= T
∑

n

1

ω2
n

(

1 + Kd

ω2
n
+φ2

)2

+ φ2

≈ T
∑

n

(

1

ω2
n

+ φ2
− 2ω2

n
Kd

(ω2
n

+ φ2)3

)

≈ 1

2π

∫

dω

(

1

ω2 + φ2
− 2ω2Kd

(ω2 + φ2)3

)

≈ 1

2φ
− Kd

8φ3
,

(1.107)

the integration was performed using formulary (e.g. [36]). Putting φ = U
2

+ δφ we expand

the upper equation and get δφ ≈ −Kd

2U
, which denotes

φ ≈ U

2
− Kd

2U
. (1.108)

The calculation of the internal energy (1.34) is now straightforward

E ≈ 2T
∑

n

∫

(dp)

(

εp +
1

2
Σ0

)(

1

iω
n
− Σ0

+
εp

(iω
n
− Σ0)2

+
ε2

p

(iω
n
− Σ0)3

)

≈ −2T
∑

n





1
2
φ2

ω2
n

(

1 + Kd

ω2
n
+φ2

)

+ φ2
+

Kdω
2
n

(ω2
n

+ φ2)2 −
1
2
φ2Kdω

2
n

(ω2
n

+ φ2)3





≈ −1

π

∫

dω

[ 1
2
φ2

ω2 + φ2
− φ2Kdω

2

(ω2 + φ2)3 +
Kdω

2

(ω2 + φ2)2

]

≈ −φ
2

+
Kd

8φ
− Kd

2φ

≈ −U
4
− Kd

2U
= −U

4
− dt2

U
.

(1.109)

So we have obtained the approximate energy for the single-site DMFT in the paramagnetic
state at large-U .
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FI approach DCA

a0 iω
n

(

1 + Kd

ω2
n
+φ2

(

1 − 1
2d

)

(

1 − φ2S
a2
0

)2
)

iω
n

(

1 +
Kd−I2

d

ω2
n
+φ2

)

a1 t −Id
φ U

2
− Kd

2U
+ Kd

2U

(

6 − 5
2d

)

S − Kd

T

(

1 − 1
2d

)

S2 U
2
− Kd

2U
+

I2
d

2U
S

E −U
4
− Kd

2U
− Kd

2U

(

3 − 19
8d

)

S − 3Kd

8U
S2 + 3Kd

4T

(

1 − 1
2d

)

S2 −U
4
− Kd

2U
+

I2
d

2U
S

〈S〉 − t2

TU
− I2

d

TU

Table 1.1: Comparison of the approximate analytical large-U results for 2-site FI model
and DCA. For details see corresponding text as well as appendix A.5.

1.4.3 Two-Site Approximation

In current subsection we treat approximatively the two-site real space model and two-site
DCA. The procedure is similar to the approximation in the previous subsection, the only
difference is a 2×2-matrix form of the Weiss field, the Green function and the self-energy.
Due to the size of equations we put all derivations into appendix A.5 and resume the most
important results in the table 1.1. We see that in the limit of high dimension (d → ∞),
where we return to the single-site DMFT, the quantities from the upper table become
identical with the corresponding quantities in subsection 1.4.2. In fact, in the large-d limit
t ∼ 1√

2d
, therefore S ∼ t2 ∼ 1

d
= 0; also the integral Id as a function of d converges to a

finite value times hopping amplitude13.

We focus our attention on the FI as well as on the DCA-energy. As expected, the
first two terms reproduce the energy for the single-site DMFT in equation (1.109). The
contribution of the intersite spin correlation shifts the energy curve away from the single-
site solution: Because of the negative S, the DCA-curve lies lower than the single-site
curve. In contrast to the DCA-energy, the energy in the real space model has three
S-dependent terms, where both positive terms (linear S-term and T -dependent term)
dominate and move the energy curve upwards. It is remarkable, that the DCA-energy is
S2- and T -independent in current order of approximation.

Finally, we discuss an expectation value of the approximate inter-site correlation 〈S〉 ≡
〈σ1zσ2z〉, which was not treated in the single-site subsection. Expanding the partition

13I1 ≈ 1.27t, I2 ≈ 1.62t, I3 ≈ 2.00t, I5 ≈ 2.56t, I7 ≈ 3.01t, . . .
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function up to leading order in
a2
1

a2
0−φ2 and assuming the same φ on both sites, lead to

〈S〉 ≈
∑

σiz
Se−βV (σiz)

∑

σiz
e−βV (σiz)

=

∑

σiz
Se

−β

0

@

2φ2
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−2T
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n

2

4ln(β2(a2
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0−φ2)

2
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∑
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]
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[
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∑
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[
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∑
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]
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∑
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a2
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(a2
0 − φ2)

2 ≈ − 1

Tπ

∫

dω
a2

1φ
2

(ω2 + φ2)2 ≈ − a2
1

TU
,

(1.110)

where we used σiz = ±1 and i ∈ {1, 2}. Note, the expectation value of S in two-site
cases is inversely proportional to the temperature and to the Coulomb interaction, but
the constants of proportionality in FI method and in DCA are different.

1.5 Numerical Results

In current section we present numerical results obtained by the methods described in the
previous sections. The numerical data was compared to the high-temperature analytical as
well as to the low-temperature approximate results. We have studied following quantities:
the local density of states, the self-energy as a function of Matsubara and real frequencies,
the NN and the NNN spin-spin correlation function, the internal energy, and the phase
diagram. Also we have investigated the effect of the filtering in the fictive impurity
method.

1.5.1 Density Of States

We start with a local density of states calculated at U/t = 16 and T/t = 0.3 (Figure 1.9).
This temperature is below the actual Néel temperature for the real-space approximation
(s. Fig. 1.15), therefore we suppressed the antiferromagnetism and present the results in
an artificial paramagnetic state. The density of states on the upper panel was computed
from the single site DMFT: the system is in the Mott insulating phase, with well separated
upper and lower Hubbard bands at ω = U/2 and −U/2 respectively. The middle panel
depicts the spectral densities obtained for a 2-site cluster. As in the single-impurity model
the two Hubbard bands are centered at ±U/2, but do not have the same width, which
is a consequence of the intersite magnetic correlations; such behavior is known from the
single-site model, where the bands are substantially narrower in the fully ordered antifer-
romagnetic state, than in the paramagnetic phase. Also we can see a small unphysical
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Figure 1.9: Spectral functions, obtained by FI method and DCA at U/t = 16 and T/t =
0.3. DOS’s corresponds to the 1- (upper panel), 2- (middle panel) and 4-site (lower panel)
cluster, whereas the antiferromagnetism was suppressed.

(actually we are in the insulating phase) band of the mid-gap states in the real space
DOS, which is not visible in the two-site DCA result. The four-site cluster results are
shown in the lower panel. The mid-gap states still appear in the DOS computed using
the fictive impurity method. However, we note a decrease of the weight as well as the
narrowness of the mid-gap states, which lets us assume a disappearance of the mid-gap
states in an infinite-size system.

In order to gain insight about the mid-gap problem we use our large-U analytical
treatment, to obtain the value of the self-energy at low frequencies. Considering the
expression for the on-site Weiss field in the fictive impurity method

a0(ω
n
) ≈ iω

n

(

1 +
Kd

ω2
n

+ φ2

(

1 − 1

2d

)(

1 − φ2S

a2
0

)2
)

, (1.111)

we see that the second term becomes dominant when ω < (dt6/(2T 2))
1/4

. It means, that
the lowest Matsubara freqency ω0 = Tπ should be greater than the upper one, otherwise

a0(Tπ) ≈
(

t6

T 2

)1/4

, (1.112)

whereas the non-vanishing of a(ω → 0) leads mathematically to the mid-gap states. The
absence of the divergent terms in a0 in DCA explaines the nonexistence of the mid-gap
states.
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1.5.2 Self-Energy

Figure 1.10 shows the self-energy as a function of real frequency in the paramagnetic
state (the antiferromagnetism was artificially suppressed). Real and imaginary parts of
the self-energies for 1-, 2-, and 4-site clusters were compared. First of all we obtain a
huge difference between the single-site and the multi-site on-site self-energy. Due to the
mid-gap states, produced by the FI method, we have found a metallic solution in the 2-
and 4-site systems at U/t = 16 but an insulating solution in the single-impurity system
(compare Figure 1.9). The benchmark of 2- and 4-site self-energies does not display a basic
difference, unless the 4-site solution has an additional component Σ2. The non-vanishing
of the Re Σ1 at zero frequency is an artifact of the maximum entropy data analysis, which
does not contain any physical statements. If we look at the maximal amplitudes of Σ0,
Σ1, and Σ2, we note a crude ratio of 50 : 5 : 1 respectively, and get an impression about
the contribution of the impurity self-energies to the general self-energy (1.13).

Figure 1.11 displays the imaginary part of the full lattice self-energy as a function of
momentum at different frequencies for 2- and 4-site FI clusters. The main notable feature
is the smoothness of the self-energy in the whole Brillouin zone, which is not guaranteed
in the dynamical cluster approximation. Also we keep the momentum dependency of the
self-energy which is not the case in the single-site DMFT.

The shape of the 2- and 4-site self-energies curves is mostly the same, whereas the
4-site self-energies exhibit as expected more structure. The “causality violation”, where
an intercept of the imaginary part of the self-energy has wrong sign discussed in [12], does
not occur at U/t = 16 and T/t = 0.3, which denotes no relation between the mid-gap
states and the “causality violation”. In general we found some small sign problems in the
2-site result at large U and low T , but it can be easily fixed using a filtering procedure.

The four-site DCA self-energy is depicted in the lower panel of Figure 1.11. One can
see a typical step-wise devolution of the self-energy computed using DCA. Due to the
insulating result the magnitudes are significantly greater than in the FI case and the
imaginary part of the self-energy does not vanish at the low frequencies only.

1.5.3 Impurity Model Spin Correlations

In this section we consider the spin correlations of the fictive impurity model. One should
keep in mind, that the “fictive” impurity cluster is not a physical subcluster of the treated
lattice, so the accordance of the impurity model spin correlations with the actual spin
correlations in the real lattice is not absolute.

Nearest neighbor spin-spin correlation Figure 1.12 shows a nearest neighbor spin-
spin correlation to the 2- and 4-site FI method (upper panel) and DCA (lower panel)
results as a function of the temperature. The curves were computed in the antiferromag-
netic as well as in the paramagnetic (the antiferromagnetism was suppressed) orders. The
data was compared to the leading term in the high-temperature-series expansion as well
as to the approximate analytical result (for details see section 1.4.3 and appendix A.3). A
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Figure 1.10: Impurity self-energies as a function of the real frequency. The results for 1-,
2-, and 4-site fictive impurity method were compared at U/t = 16 and T/t = 0.3. Upper
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dimensional picture is replaced by the one-dimensional plot, using momentums on the
line in the Brillouin zone, which connects the points (0, 0), (π, π), (π, 0), (0, π), and (0, 0).
Upper panel: 2- and 4-site real space method for the frequencies ω/t = 1, 2, 3, 4, and 5.
Lower panel: 4-site DCA for the frequencies ω/t = 0.1, 0.2, 0.3, 0.4, and 0.5.
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Figure 1.12: NN spin-spin correlation as a function of the temperature obtained using FI
method (upper panel) and DCA (lower panel) at U/t = 16. Increasing size of the cluster
does not cause an improvement in FI method relatively to the approximate curve.
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significant difference of the magnitude between 2-site FI and DCA curves was explained
by the approximate analysis (subsection 1.4.3), which predicts −〈σ1zσ2z〉FI ≈ t2/(TU)
and −〈σ1zσ2z〉DCA ≈ 2.62t2/(TU). Increasing cluster size (4 sites) improves agreement
with the second order approximation in the DCA case, but a stronger underestimation of
the nearest neighbor spin-spin correlation was observed in the FI method.

The split of the paramagnetic and of the antiferromagnetic solutions points to the Néel
temperature. Both methods shows, that the critical temperature in the 4-site calculation
is in general slightly lower than in the 2-site one (see also subsection 1.5.5).

Further we observe a discontinuity in the 4-site FI curve with suppressed Néel phase
(the discontinuity is more clear in Figure 1.13). The same behavior was registered in the
internal energy (compare Fig. 1.14). A discontinuity in the energy denotes a skip in the
first derivative of the grand canonical potential Ω (equation 1.36), which points to the
first order phase transition [37]; probably this is a transition to the dimerized spin state.
Such transition was not observed in the DCA calculations, therefore we expect it at the
lower temperature. Again the kink in the antiferromagnetic curve denotes a second order
phase transition at the Néel temperature.

Next nearest neighbor spin-spin correlation In our study we also consider the next
nearest neighbor spin-spin correlation. Figure 1.13 depicts 〈σ1zσ3z〉 and −〈σ1zσ2z〉 as a
function of temperature. The real space method provides results comparable with results
expected from a physical cluster: The fact that site 1 and site 3 lie on the same sublattice14

explanes the sign opposite to the sign of the NN-curve, where the site 1 and the site 2 lie on
the different sublattices. The absolute values of both curves are approximately identical
at low temperatures, where the thermal excitations can be neglected. An increasing of
the temperature causes a decay, where the NNN-curve falls significantly faster, pointing
to the more stable singulet coupling. As anticipated, both para-anti-splits take place at
the same temperature. The discontinuity in the fully frustrated solution was discussed in
previous paragraph.

1.5.4 Internal Energy

Now we consider an internal energy computed from equation (1.35). The numerical
data were compared to the analytical large-U results, which have been obtained up to
O (t6/(T 2U3)) (analytical calculation is briefly presented in section A.2). Internal energy
as a function of the temperature at U/t = 16 is shown in Figure 1.14 for the real space
method (upper panel) and for the DCA (lower panel). Note, the plotted data give the
energy per spin, without a Hartree term, in other words we see (E + U/4)/2. We show
the paramagnetic and the antiferromagnetic solution for both approaches. The Néel tem-
perature can be identified as a temperature which corresponds to the kink in the E(T )
curve. At T < TN one can see a split, where lower kurve is the antiferromagnetic solu-
tion, and the upper kurve is the paramagnetic one, which was obtained by the suppressed

14In the antiferromagnetic state the quadratic lattice can be split in a ↑- and a ↓-sublattice.
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Figure 1.13: NN and NNN spin-spin correlations as a function of temperature obtained
by FI method using sum-SCA at U/t = 16. The NNN spin-spin correlation function has
an opposite sign and decays faster than NN one.

antiferromagnetism.
Three temperature regimes can be viewed: a high temperature regime (T/t > 0.7)

where the energy increases with growing T , an intermediate regime (0.5 < T/t < 0.7)
where the energy is independent from the temperature, and a low temperature regime
(T/t < 0.5) with strong T -dependency.

Due to the real thermal excitations over the Mott-Hubbard gap (at higher tempera-
tures the Fermi edge smears and overlaps with the upper Hubbard band), we observe a
strong growth of the energy in high-T regime. The more cliffy sloap of the DMFT results
compared to the series expansion is a side-effect of the semiclassical approximation, which
overestimates the thermal fluctuations on the gap.

In the T -independent regime, where the Fermi function does not overlap with the
upper Hubbard band, we observe a pretty good agreement of the second order expansion
curve and the energy from single impurity DMFT, where the energy per spin is equal to
K2/(4U) = 0.0625 (compare equation (1.109)). Both FI and DCA results for 2- and 4-
site cluster deviate from the second order curve because of the intersite spin correlations.
Both FI curves lie above and the DCA results under the single site solution. The 2-site
DCA curve is closest to the analytical fourth order curve. The approximate analysis of
the 2-site models (subsection 1.4.3) predicts such behavior, where the intersite spin-spin
correlations cause a shift of the energy, where the 2-site DCA shift has “correct” sign.
We register, that an increasing cluster size generally improves the real space result, but
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analytical results.
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Figure 1.15: The Néel temperature to the 1-, 2-, 4-site clusters computed using FI method
and DCA. Also included a large-U and Hartree-Fock approximations. The dotted line
corresponds to the 4-site FI result with the filtering parameter f = 0.5 (for details see
text).

downgrades the developing of the DCA energy.

1.5.5 Néel Temperature

In order to determine a transition temperature between the paramagnetic and the anti-
ferromagnetic states we study the devolution of the energy curve. Because of the second
order phase transition the Néel temperature was identified as the temperature, which
corresponds to the kink in the antiferromagnetic energy curve.

The resulting phase diagram is shown in Fig. 1.15, where the Néel temperature was de-
termined using the integral-SCA as impurity solver. The closeness of the single-impurity
curve to the low-U Hartree-Fock and to the large-U analytical curve points to the correct
behavior in low and high interaction limits. The Néel temperature calculated using real
space method shows a perfect agreement with the single-site curve in the weak interac-
tion regime U/t ≤ 6, however the increasing Coulomb repulsion causes the growth of the
difference. The DCA curves have generally significantly smaller amplitude than the single
site solution, and the agreement was achieved at low interaction (U/t < 4) only. Unfortu-
nately, the Néel temperature computed using FI method is strongly overestimated in the
large-U regime and the convergency to the analytical result is pretty slow. However, the
increasing size of the cluster causes an impovement of the result in the fictive impurity
method only. Further we remark, that our low-U results are in reasonable agreement with
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Figure 1.16: Weight of the mid-gap states in the multi-site FI case as a function of filtering
at U/t = 16 and T/t = 0.3. Inset: Néel temperature as a function of filtering in the cluster
of 4 fictive impurities is compared to the Néel temperature calculated for the single-site
DMFT at U/t = 16. Here we have used the sum-SCA as impurity solver.

a low-U study by Jarrel et al. [38].

1.5.6 Filtering

In order to inspect the effect of the mid-gap states on the transition temperature TN ,
we have investigated the weight of mid-gap states as a function of filtering (see subsec-
tion 1.2.1). Using filtering parameter f = f1 = f2, with f ∈ [0, 1] we obtain the following
picture (Figure 1.16): The weight of the mid-gap states declines nearly exponentially and
we see absolute disappearance at f = 0.55 and f = 0.60 for 2- and 4-site cluster respec-
tively. The devolution of the Néel temperature as a function of filtering at U/t = 16 is
presented in the inset. The Néel temperature in the 4-site system achieve the single-site
value at f ≈ 0.5 slightly under the dissappearance-temperature of the mid-gap states,
denoting a direct connection between the zero-frequency states and the overestimation of
the Néel temperature at large-U .

Due to the fact, that the weight of the mid-gap states decreases when the cluster
size increases, we have tried to imitate a large-NC cluster using a 4-site cluster and the
filtering f = 0.5. It was found, that the Néel temperature curve is in accordance with the
analytical result (compare Fig. 1.15, dotted line). We interpret this result as a ratification
of the fictive impurity method, especially by the consideration of the NC > 4 clusters.
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1.6 Conclusion

Finishing the present part of the work we consolidate our findings:

1. A recently developed semiclassical impurity solver for dynamical mean fiel theory
was investigated at a wide range of the Coulomb repulsion and compared to the well
known Quantum Monte Carlo algorithm. We have found, that the numerical data
calculated using semiclassical approximation is consistent with the QMC results,
especially in the antiferromagnetic regime. An advantage of the SCA is an enormous
saving of the computational time (up to twenty times) in the large-U regime, which
is crucial for the investigations of the multi-site clusters at finite temperature. An
other point of interest of the numerical part was the examination of the sum-SCA
versus integral-SCA. It was found that in the large-U regime (U/t > 12) the sum-
SCA is significantly faster than the integral-SCA, whereas the difference of results
is negligible. Unfortunately the sum-SCA breaks down in low repulsion regime,
therefore we should use the integral-SCA in that region.

2. In order to compare our numerical results we have calculated approximate analytical
results for both real space method and dynamical cluster approximation in the
large-U and low-T regime. The strong coupling limit approximation explanes some
strange-looking results computed in the present work. The low-temperature regime
allowes to neglect the real inter-Hubbard-band excitations and to consider the virtual
excursions of a fermion only, so the result still depends on the intersite correlations.
We found that all approaches reproduce the leading order O(t2/U) result for the
internal energy exactly, but the next order contribution O(t4/(TU2)), which includes
intersite correlations, leads to the unphysical behavior. An early examination of
the possible multi-site extensions of the DMFT by Schiller and Ingersent [39] has
suggested that the straightforward cluster methods (such as the fictive impurity
method) are fundamentally wrong, because they double-count processes involving
the hopping of an electron from site to site. It is seen in our results, that the cluster
methods have some troubles, but the fundamental overcounting is not the problem
of the cluster methods considered in this work.

3. We have studied the multi-site extensions of the dynamical mean field theory. A
set of physical quantities, such as self-energy, spin-spin correlation, internal energy,
Néel temperature, and other were computed. We have found that neither the fictive
impurity method nor the dynamical cluster approximation yields completely correct
physical results. Both methods over- or underestimate the Néel temperature and
do not evaluate other physical quantities completely correctly. We have shown that
the increasing size of the cluster causes an improvement of the FI results, which is
not the case in the dynamical cluster approximation. Also we have found, that the
FI method provides some unphysical mid-gap states in the Mott-insulating phase.
The weight of these states depends on the cluster-size and can be easily removed by
a filtering procedure.
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1.6. Conclusion

4. A possible source of error in the real space method is the assumption that all nearest
neighbor (NNN, . . . ) self-energies can be collapsed into one function. Probably each
self-energy contribution should be treated as an independent function, which was
impossible in this work because of the huge computational time effort. Also it should
be interesting for the future investigations to include an additional term J ∼ t2/U
in the impurity models, which will correct the effect of the intersite correlations.
Moreover the FI method and the cellular DMFT should be compared too.
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Chapter 2

Two-Plane Hubbard Model

2.1 Introduction

The discovery of the high TC-superconductivity in 1986 sets off an avalanche of experi-
mental and theoretical investigations on this field. The analysis of the crystal structure
has shown that most of the high TC crystals include CuO-chains and CuO-planes in there
structure. The growing theoretical basis [40, 41] inducts the series of the nuclear mag-
netic resonance and the nuclear quadrupole resonance experiments with Y2Ba2Cu7O15-
crystals [42, 43]. It was found that such crystals consist of Y Ba2Cu3O7- and Y Ba2Cu3O8-
layers, which contain the CuO-plane pairs. The later experiments by Fukuzumi et al. [44]
pointed to the conductivity in the Y Ba-superconductors is 3-dimensional. Also, there are
some unusual aspects in the behavior of the high temperature superconductors’ transport
properties. In his earlier works [45, 46], Anderson has accented the difference between
the transport properties in a CuO-plane and the inter-plane transport. The photoemis-
sion experiments [47, 48] in Y BCO show only small if any difference between bonding
and anti-bonding CuO-plane bands as a result of the hopping between the CuO-planes,
which is unexpected due to the relatively large value of the inter-plane hopping matrix
element t⊥ ≈ 0.3eV compared to t ≈ 1eV, obtained from the band structure calcula-
tions [49]. The experimental data were interpreted as absence of coherent quasi-holes in
the CuO-plane [46].

In the present work we investigate the phase diagram of a two-plane Hubbard model–
the simplest system displaying a metal-to-band insulator transition competing with a
Mott transition. In fact, the nature of the metallic phase as well as the properties of
the phase transitions change drastically between one and three dimensions, which caused
wide interest in the studies of the dimensional crossovers and behaviors of the coupled
low-dimensional systems in the last years [50, 51, 52, 53]. In addition to the earlier
works [54, 55, 56, 57] and to the current research [58, 59, 60, 61, 62, 63], we consider
the transition from the Mott insulator to the band insulator phase and try to understand
is it a crossover or a clear phase transition. In an earlier publication [64], Moeller et al.
treated a two-plane Hubbard model in infinite dimensions and found the zero-temperature
phase diagram using dynamical mean field theory (DMFT) and iterated perturbation
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Figure 2.1: Two connected quadratic half-filled lattices (draft). Black circles with ar-
rows symbolize fermions with corresponding orientation of the spin’s z-component. The
fermions hope between neighboring sites or between corresponding sites of both lattices.

theory (IPT). In contrast to this work we use the Quantum Monte Carlo (QMC) method
in order to solve the DMFT equations at finite temperature without any uncontrolled
approximations. In addition to existing publications, we calculate the optical conductivity
of a two-plane system, find the Drude weight and other spectral properties.

The rest of this chapter is organized as follows: Section 2.2 presents the model, the
solution method and the analytical consideration of the optical conductivity. Section 2.3
gives numerical details which were used in this part of the work but were not discussed in
the first chapter. The impurity solver used in the present chapter is the Quantum Monte
Carlo algorithm, which can be found in section 1.3 The numerical results are presented
in section 2.4, and the resume can be found in 2.5.

2.2 Analytical Approach

2.2.1 Model

We consider a Hubbard model on two coupled quadratic lattices, the inter-plane Coulomb
interaction is neglected. The fermions move inside the lattice by hopping between the
neighboring sites as well as between the corresponding sites of both planes (Fig. 2.1).
The Hamiltonian is defined as
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H = −
∑

〈i,j〉σα

tijc
†
iσαcjσα − t⊥

∑

iσα

c†iσαcjσ(1−α) + U
∑

iα

ni↑αni↓α, (2.1)

where c†iσα (ciσα) is an operator, which creates (annihilates) a fermion with spin σ on ith
site of the plane α ∈ {0, 1}; the operator niσα gives the number of particles with spin σ
at site (i, α). The hopping amplitude between neighboring sites is tij, and t⊥ between
corresponding sites of both planes.

2.2.2 Solution Method

The problem was solved using dynamical mean field theory (DMFT) [4], where the 2-
plane system was reduced to two impurities self-consistently embedded in a bath. The
solution of the 2-impurity problem, calculated by Hirsch-Fye QMC, yields an impurity
Green functions, which was used to obtain the self-energy for the DMFT equations. The
Dyson equation gives the new Weiss field for the 2-impurity problem. The upper steps
were repeated until a convergent solution was found.

In details, the algorithm is the following: We start with a Weiss field

âσ(ω
n
) =

(

a00σ a01σ

a10σ a11σ

)

, (2.2)

which is defined as

â−1
σ (ω

n
) =

∫

dεD(ε)
(

(iω
n

+ µ− ε)1̂ − t̂⊥
)−1

, (2.3)

where

t̂⊥ =

(

0 t⊥
t⊥ 0

)

; (2.4)

we use the semicircular density of states D(ε) =
√

4t2 − ε2/(2πt2), with t = 2tij in this
chapter. The inverse Fourier transformation leads to the Weiss field as a function of the
imaginary time and using the effective action

Seff =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c†σ(τ)âσ(τ, τ ′)cσ(τ ′) +

∫ β

0

dτUn↑(τ)n↓(τ), (2.5)

with cσ =

(

c0σ

c1σ

)

and nσ = c†σcσ; we solve the 2-impurity problem by the Quantum

Monte Carlo algorithm (see section 1.3). The following Fourier transformation yields the
impurity Green function Ĝimpσ(ω

n
). The diagonal elements Gimp00σ(ω

n
) and Gimp 11σ(ω

n
)

give the on-site Green functions for the corresponding planes, and the off-diagonal ele-
ments Gimp 01σ(ω

n
) and Gimp 10σ(ω

n
) give the Green functions connecting two correspond-

ing sites on different planes. By the Dyson equation we easily obtain the self-energy

Σ̂σ(ω
n
) = âσ(ω

n
) − Ĝ−1

impσ(ω
n
), (2.6)
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and then we perform the DMFT equation

âσ(ω
n
) = Σσ(ω

n
) + D̃−1

σ (ω
n
), (2.7)

which gives the new Weiss field for the 2-impurity problem. In equation (2.7), we used

D̃σ(ω
n
) =

∫

dεD(ε)
(

(iω
n

+ µ− ε)1̂ − t̂⊥ − Σ̂σ(ω
n
)
)−1

, (2.8)

with

Σ̂σ(ω
n
) =

(

Σ00σ Σ01σ

Σ10σ Σ11σ

)

. (2.9)

The chemical potential µ is equal 0, and the self-energies satisfy Σ00σ(ω
n
) = Σ11σ(ω

n
) and

Σ01σ(ω
n
) = Σ10σ(ω

n
) because we consider identical planes (impurities).

With the exception of the QMC part, the algorithm was calculated in the symmet-
ric/antisymmetric basis which was achieved by the left- and right-multiplication of the
equations (2.6) and (2.7) with the matrix

A =
1√
2

(

1 1
1 −1

)

. (2.10)

According to this transformation the self-energy now is ΣS/Aσ(ω
n
) = Σ0σ(ω

n
) ± Σ1σ(ω

n
)

and the Hilbert transformed density of states becomes diagonal

D̃σ(ω
n
) =

(

D̃Sσ(ω
n
) 0

0 D̃Aσ(ω
n
)

)

, (2.11)

where the matrix elements are defined as

D̃S/Aσ(ω
n
) =

∫

dεD(ε)
(

iω
n

+ µ− ε∓ t⊥ − ΣS/Aσ(ω
n
)
)−1

. (2.12)

In current the chapter we consider fully a frustrated lattice, therefore the antiferromag-
netism was artificially suppressed.

2.2.3 Optical Conductivity And Drude Weight

In order to gain insight about the transport properties of the considering system, we
calculated the optical conductivity as well as the Drude weight in the U − t⊥-space.

The optical conductivity for the simple cubic lattice in the limit d → ∞ can be
expressed as a function of the current-current correlator [65]

σ̃(iν) =
1

νβ

∑

ωn

∫ ∞

−∞
dεD(ε)G(ε, iωn)G(ε, iωn + iν)

=
1

ν

∫ ∞

−∞
dεD(ε)

∫ ∞

−∞
dω

∫ ∞

−∞
dω′A(ε, ω)A(ε, ω′)

f(ω) − f(ω′)

ω − ω′ + iν
.

(2.13)
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D(ε) is the free particle density of states and f(ω) = (1+exp(βω))−1 is the Fermi function.

In equation (2.13) we used G(ε, iωn) =
∫∞
−∞ dω A(ε,ω)

iωn−ω
and f(ω) = 1

β

∑

n
1

iωn−ω
. The real

part of the analytical continuation of equation (2.13) is the optical conductivity1

σ(ω) = π

∫ ∞

−∞
dω′
∫ ∞

−∞
dεD(ε)A(ε, ω′)A(ε, ω′ + ω)

f(ω′) − f(ω′ + ω)

ω
(2.14)

in which we are interested. The missing constants yield a factor

σ0 =
πe2t2

2a~
≈ 0.001 . . . 0.01

1

µΩcm
, (2.15)

where a is the lattice constant and t ≈ 1eV is the hopping amplitude. Switching over to
the two-plane Hubbard model, the optical conductivity should be modified to

σ(ω) = σ0

∑

α=S,A

∫ ∞

−∞
dω′
∫ ∞

−∞
dεD(ε)Aα(ε, ω′)Aα(ε, ω′ + ω)

f(ω′) − f(ω′ + ω)

ω
, (2.16)

where

Aα(ε, ω) = −1

π
ImGα(ε, ω), (2.17)

The summation over symmetric and antisymmetric planes in equation (2.16) matters
the following: the optical conductivity is defined in the long-wave limit (E is nearly
homogeneous), so the in-plane as well as the inter-plane momentum transferred by the
optical conductivity should be zero. The inter-plane component of momentum can assume
only two values, 0 and π/a, where a is the inter-plane distance, corresponding to symmetric
and antisymmetric orbitals, respectively. Therefore the optical conductivity at vanishing
momentum is given by the product of both symmetric or both antisymmetric Green
functions. [66, 67]. The constant σ0 was set to unity in this work.

The Drude weight, was identified with the weight of the central peak of the optical
conductivity, which is finite in the metallic phase and vanishes in the insulating state.

2.3 Numerical Techniques

There are two main techniques that we used in the present chapter: the 2-impurity
problem was solved using the Hirsch-Fye Quantum Monte Carlo method and the analytical
continuation was performed by the maximum entropy data analysis. The Quantum Monte
Carlo algorithm was described in detail in section 1.3.2. The maximum entropy data
analysis program was coded according to the works by Skilling [31], Von den Linden [29,
30], and Jarrell et al. [32]. The detailed algorithm can be found i. a. by Fuhrmann
diploma theses [33]. The technical sophistication applied in this part of the work as well
as some useful technical tips are presented in the current section.

1We use 1
ω−(ω′+ν+i0) = P.P. 1

ω−(ω′+ν) + iπδ(ω − (ω′ + ν)).
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2.3.1 Technical Details

Maximum entropy data analysis The maximum entropy procedure was used for the
analytical continuation of fermionic functions according to the equation

G(τ) =

∫ ∞

−∞
dω
A(ω) exp(−τω)

1 + exp(−βω)
, (2.18)

where τ is the imaginary time. One of the most important issues in the ME procedure
is the choice of the default model which should have a similarity with the actual density
of states. The analytical considerations yield information about the DOS at (U/t =
0, t⊥/t > 0) and at (U > UC , t⊥/t = 0), which motivates us to use the following default
model

mS/A(ω) =

{

2
πR2

√

R2 − (ω ± t⊥)2 if |ω ± t⊥| < R
10−5/t else,

(2.19)

with R = 1
2
U+2t, where U is the Coulomb repulsion. The bandwidth of the upper default

model is 2R, which corresponds to the width of the free density of states at U/t = 0; also
it is centered at ∓t⊥ in the symmetric/ antisymmetric case. The traditional Gauss curve
was unusable due to the long tails, which leads to the non-physical results in the band
transition region.

Optical conductivity The optical conductivity (2.16) was computed according to the
procedure, published in the PhD. theses by Blümer [28]. Here we show the main features
of this algorithm:

1. The analytical continuation of GImp
α (τ) yields the imaginary part of the impurity

Green function on the real axis

ImGImp
α (ω) = −πAα(ω). (2.20)

2. The Kramers-Kronig relation leads to the real part of the impurity Green function

ReGImp
α (ω) = P.P.

∫ ∞

−∞

dω′

π

ImGImp
α (ω′)

ω′ − ω
. (2.21)

3. The semi-elliptic density of states used in the present work allows the analytical
performance of the ε integrated Dyson equation, which give us the lattice Green
function

Gα(ω) =
1

2

(

zα(ω) −
√

z2
α(ω) − 4

)

, (2.22)

with zS/A(ω) = ω ∓ t⊥ − ΣS/A(ω). Some manipulations of the upper equation give
us the real frequency self-energy

ΣS/A(ω) = ω ∓ t⊥ −GS/A(ω) − 1/GS/A(ω). (2.23)
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4. Finally we calculate the Aα needed in equation (2.16)

AS/A(ε, ω) =
1

ω − ε∓ t⊥ − ΣS/A(ω)
. (2.24)

Note, in order to get qualitative results for the optical conductivity, one should interpolate
and refine the numerical data computed using maximum entropy data analysis. The
∆ω/t = 0.0125 used in our work gave sufficient fineness for extrapolation of the optical
conductivity up to ω/t = 0 as well as for the determination of the Drude weight.

Parallel to the numerical schema suggested by Blümer we have tried to develop an
alternative schema to compute the optical conductivity. The main idea was to obtain the
optical conductivity as a function of bosonic Matsubara frequencies and then to perform
the analytical continuation [68]. The following algorithm was developed:

1. Due to the divergent term 1/ν (compare first line in (2.13)) we figured out the
“bubble” part as a function of bosonic Matsubara frequencies

Gjj(iνm) =

∫ ∞

−∞
dεD(ε)

1

β

∑

ωn

G(ε, iωn)G(ε, iωn + iνm), (2.25)

where the sum should be performed very carefully, especially at large frequencies.

2. The following Fourier transformation and analytical continuation give Gjj(ν). By
reason of the troubles with negative values of the integral core in bosonic case, we
considered positive frequencies only, taking advantage of the antisymmetry of Gjj(ν)

Gjj(τ) =

∫ ∞

−∞
dω
Gjj(ν) exp(−τν)

1 − exp(−βω)

=

∫ ∞

0

dω

[

Gjj(ν) exp(−τν)

1 − exp(−βω)
− Gjj(ν) exp(τν)

1 − exp(βω)

]

.

(2.26)

3. Division by ν gives the optical conductivity.

Our method gives results which are comparable with those from the Blümer method (see
Figure 2.2, upper panel). Sadly, it was not possible to determinate the values of the
function close to ν = 0 accurately, which is crucial for the finding of the Drude weight.
For this reason we went for the first method.

Drude weight The weight of the Drude peak (D) was determined by fitting a Lorentz
curve (L(ω)) to the central peak of the optical conductivity. In order to separate the
Drude peak from the contribution of the peaks centered at ω = U/2 and ω = U we
only fitted the data points on the interval [0; 2T ], where the influence of these peaks is
negligible. The Drude weight was calculated by integration of the right half of the Lorentz
curve D =

∫∞
0
dωL(ω).
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Figure 2.2: Upper panel: Optical conductivity computed using two different methods at
U/t = 3 and t⊥/t = 0. One can see the “bubble” function (broken-dotted line), out of
it following the optical conductivity (solid line), and the optical conductivity computed
using the method developed by Blümer. Lower panel: Evolution of the Drude weight
and squared Drude weight as a function of t⊥ at U/t = 0. The Drude weight vanishes
proportional to

√
t⊥C − t⊥, thus one identifies and fits the linear part of the squared Drude

weight, which yields the critical value of t⊥C .
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The evolution of the Drude weight as a function of the parameter x with x = U or
x = t⊥ was crucial for the determination of the metal-to-insulator transition. In general,
the Drude weight vanishes in the insulating state and the critical value of x can be easily
found. Because of the huge computational effort we were not able to calculate all points
in the phase diagram and used a raster with ∆U/t = 0.5 and ∆t⊥/t = 0.2 which leads to
the errors ±0.25 and ±0.1 respectively. We found, that in the case of small x the Drude
weight vanishes proportionally to

√
xC − x allowing us to determine the phase transition

with higher accuracy: the squared Drude weight has a linear part close to the phase
transition which can be fitted. An example at U/t = 0 is depicted on the lower panel of
Figure 2.2.

2.4 Numerical Results

In this chapter we present the numerical results computed for the two-plane Hubbard
model, where the 2-impurity problem was solved using Hirsch-Fye Quantum Monte Carlo
algorithm (see section 1.3.2) at temperature T/t = 0.025 at half-filling, the antiferro-
magnetism was suppressed. The number of imaginary time slices in the QMC algorithm
was L = 100 and ∆τ = β/L = 0.4/t. The free density of states (DOS) was defined by
D(ε) =

√
4t2 − ε2/(2πt2), which is an acceptable approximation for the 2 dimensional

cubic lattice.

The chapter is organized as follows: at the begin we introduce a 2-plane problem
typical DOS at non-zero U and t⊥, the density of states for uncoupled Hubbard planes
and the DOS for system without interaction. Then we consider the optical conductivities
as well as the Drude weights. The phase diagram completes this section.

2.4.1 Single Particle Density Of States

At the beginning we should note that all following particle densities of states are presented
in the symmetric/ antisymmetric basis. Due to the particle-hole symmetry the symmetric
and antisymmetric density of states are symmetric relative to the zero frequency, in other
words AS(ω) = AA(−ω), therefore for more clarity we depict symmetric DOS only. The
transformation to the real space can be easily performed using A0/1(ω) = (AS(ω) ±
AA(ω))/2 .

We start with a system of two decoupled Hubbard planes. The behavior of such a
system and of a single Hubbard plane should be identical. The evolution of the symmetric
DOS as a function of on-site interaction U is demonstrated in Fig. 2.3 (upper panel). The
densities of states at low interaction (U/t ≤ 1), as expected, show similarity with the free
density of states. The DOS at 1 < U/t becomes more wide and show the typical three-
peak structure Mott transition (U/t = 4.5 at t⊥/t = 0). The peak in the middle of the
spectrum is the quasiparticle peak and the upper and lower Hubbard bands are located at
+U/2 and −U/2, respectively. The spectral density at U/t = 4.75 presents the insulating
state just after the vanishing of the quasiparticle peak. The DOS at U/t = 6 shows the
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Chapter 2. Two-Plane Hubbard Model

lower and upper Hubbard bands in the insulating state. The Mott transition was found
at U/t = 4.70 ± 0.05, which is the left border of the coexistence region of the uncoupled
system2. The coexistence region lies between U/t = 4.70± 0.05 and 5.5± 0.1 at t⊥/t = 0
and T/t = 1/40, which is wider than the coexistence region [4.70 ± 0.08; 5.03 ± 0.01]
calculated by Blümer [28]. The disagreement of the upper border of the coexistence
region might be explained by the relative large discretization (t∆τ = 0.4) used in the
QMC.

The non-zero inter-plane hopping amplitude causes a shift of the symmetric (anti-
symmetric) band by exact −t⊥ (t⊥) respectively. The metal-to-band-insulator transition
takes place when the overlap of symmetric and antisymmetric DOS vanishes. The critical
inter-plane hopping at U/t = 0 is equal to the half-bandwidth, which means t⊥/t = 2
in our case. Figure 2.3 (lower panel) confirms the analytical expectation: the symmetric
density of states moves left by t⊥ and the overlap with the antisymmetrical DOS (is not
depicted) vanishes when AS(ω) = 0.

Considering the symmetric density of states at finite U and increasing t⊥ we could
see the growth of the lower Hubbard band (LHB) and shrinking of the upper Hubbard
band (UHB). The whole weight of the symmetric spectral density is concentrated in the
LHB at t⊥/t > 2. At the same time the antisymmetric density of states shows the inverse
behavior. Figure 2.4 shows the DOSs in the metallic (lower panel) and insulating (upper
panel) states at U/t = 4. The spectral density at t⊥/t = 1.4 shows composition of pure
Mott insulator and pure band insulator, which is typical in this region. This points at
the cross-over transition between both insulating states, which will be discussed in detail
later in this section.

2.4.2 Optical Conductivity

The optical conductivity (OC), in particular the Drude weight, is a perfect source of
information about the state of the system (metal or insulator) as well as about the system’s
conductivity properties. The U−t⊥ phase diagram, determined in the current work, based
on the data obtained from the OC. Therefore it is reasonable to consider the optical
conductivity in detail.

At first we considered the optical conductivity of the uncoupled system (t⊥/t = 0).
Using equation (2.16) we calculated the optical conductivity at different values of U
(Fig. 2.5, upper panel). The shape of the optical conductivity at U/t = 0.5 does not
distinguish from the OC at U/t = 0, which consists of the Drude peak (Lorentz peak) only.
The difference can be seen in the weight of the Drude peak (s. inset), that is significantly
larger at U/t = 0. Increasing interaction (U/t = 2.0, 3.5, 4.5) causes displacement of the
weight from the Drude peak to a mid-infrared peak and to an incoherent peak at ω ≈ U/2
and ω ≈ U respectively. The Drude weight vanishes in the insulating state and the OC
is identical with the incoherent peak (U/t = 5.0, 6.5). As expected, the devolution of the
Drude weight (inset) gives the critical value of interaction at U/t ≈ 4.7. We note that
our results are compatible with the single-plane data calculated by Pruschke et al. [65].

2We used an insulating Weiss field as input guess.
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Figure 2.3: Mott transition (upper panel). Spectral densities of the uncoupled (t⊥/t = 0)
two-plane Hubbard model. The DOSs at U/t = 1.0, 2.0, 3.0, and 4.5 correspond to the
metallic state, the insulating state is presented by the DOSs at U/t = 4.75 and 6.00.
The Mott transition took place slightly below U/t = 4.75, T/t = 0.025. Band transition
(lower panel). Reconstructed symmetric spectral densities of the free two-plane Hubbard
model (U/t = 0). One can see the symmetric DOSs at t⊥/t = 0, 1, 2, and 3. The overlap
of AS(ω) and AA(ω) vanishes above t⊥/t = 2, which denotes the band insulating state.
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Figure 2.4: Reconstructed spectral densities of the two-plane Hubbard model in the sym-
metric/ antisymmetric basis at non-zero U and t⊥ at half filling. Upper panel: the overlap
of the symmetric (solid line) and antisymmetric (broken line) DOS at ω = 0 is equal 0 –
the system is an insulator. Lower panel: the system is in the metallic state.

Now we consider the optical conductivity at constant interaction. We took U/t = 2,
because the conductivity spectrum at U/t = 0 has the Drude peak only, which has small
demonstrative worth. The optical conductivity at different t⊥, U/t = 2 is depicted on the
lower panel of Figure 2.5, again consisting of the Drude peak and hard distinguishable
covering of the mid-infrared and incoherent peaks. The growth of the inter-plane hopping
amplitude causes the reduction of the spectral weight and leads to the vanishing of the
Drude peak above t⊥/t ≈ 1.8, indicating the transition to a predominantly band insulating
state. The critical value was obtained using a linear fit of the squared weight of the Drude
peak (s. inset).

2.4.3 Phase Diagram

The phase diagram was performed using the weight of the Drude peak. The Drude
weight as a function of U and t⊥ is shown in Figure 2.6. Note, we present the Drude
weight in the pure metallic region, because this result was achieved using an insulating
input Weiss field. As expected the function has its maximum at the origin of the U -
t⊥-plane. Increasing interaction and (or) inter-plane hopping amplitude decrease(s) the
direct-current conductivity until it disappears and the system becomes an insulator.

In order to localize the metal-to-insulator transition we analyzed the devolution of
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Figure 2.5: Evolution of the optical conductivity of the single plane (upper panel), and
as a function of t⊥ at U/t = 2 (lower panel). Upper inset: the run of the Drude weight
with increasing U . As it can be seen, the Drude weight vanishes at U/t ≈ 4.7, where the
metal-to-Mott-insulator transition takes place. Lower inset: The run of the Drude weight
as a function of t⊥. The Drude weight vanishes at t⊥/t ≈ 1.8, where a metal-to-insulator
transition takes place.
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Figure 2.6: Drude weight D at temperature T/t = 0.025 in the pure metallic region,which
corresponds to the low-U , low-t⊥ region, see also phase diagram 2.7.

the weight of the Drude peak as a function of U (t⊥). We found, that the Drude weight
vanishes as D(x) ≈ √

xC − x, where x < xC and x = U or x = t⊥, close to the U -
and t⊥-axis and slightly before the phase transition. Therefore in order to find the phase
transition, we focused on the linear part of the squared weight of the Drude peak (compare
Fig. 2.2, lower panel).

The obtained phase diagram is given in Figure 2.7 (upper panel). The metal-to-
insulator transition could be clearly located. The error bars show which parameter (U or
t⊥) was used for the determination of the transition. We observe a second order phase
transition between metallic and band-insulating regions. The Mott transition is the first
order transition, so we see a coexistence region.

In order to demonstrate both metallic and insulating convergent solution we picked
out the typical coexistent point U/t = 4.6 and t⊥/t = 0.5 and presented corresponding
Green functions as well as the density of states (Figure 2.8). The imaginary part of the
metallic Green function has a discontinuity at ω = 0, whereas the insulating solution
shows a smooth transition from the negative to the positive frequency region. The similar
behavior we observe by the real part of the Green function, where the insulating solution
has a finite value at ω = 0 and the metallic one seems to have a infinite value at the same
frequency. As expected, at larger frequencies both solutions are identical. On the lower
panel we note a clear quasiparticle peak on the metallic density of states, which disappear
in the insulating solution.

Returning to the phase diagram 2.7 one can observe a triple point at U/t ≈ 2.5, t⊥/t ≈
1.5, which gives an approximate clue for the region where the transition between two
insulating phases takes place. The absence of the appropriate quantity caused difficulties
in the understanding of the transition scenario. In order to throw light on this problem we
consider the evolution of the lower Hubbard band (LHB) of the symmetric spectral density
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Figure 2.7: Phase diagram at T/t = 0.025 (upper panel). Inset: the evolution of the
weight of the lower Hubbard band of the symmetric plane on the dotted line. — By
comparing to Fig. 2.6, the metallic region is recognized as the region with non-vanishing
Drude weight. The lower panel gives selection of the reconstructed spectral densities on
the dotted line of the upper panel. — A purely Mott insulating state is characterized
by the spectral density of the symmetric or antisymmetric plane, resp., divided by half
into a lower and an upper Hubbard band, whereas a purely band insulating state means
the symmetric band is entirely located below ω = 0, and the antisymmetric band entirely
above.
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Figure 2.9: Comparison of phase diagrams. Broken line: phase diagram computed by
Moeller et al. [64] using IPT at T/t = 0 (broken line). Solid line: phase diagram performed
in current work using QMC at T/t = 0.025. Inset: T − U phase diagram at t⊥ = 0
presented by Georges et al. in [4].

on the dotted line on the upper panel of Fig. 2.7. The developing of the LHB’s weight,
which is defined as

∫ 0

−∞ dω AS(ω), can be found in the inset. The lower and the upper
Hubbard band (UHB) have identical weight in the Mott phase, namely 1/2, walking along
the dotted line we observe a smooth redistribution of the weight: the weight of the LHB
grows at the expense of the UHB (antisymmetric DOS: the UHB grows at the expense of
the LHB). The weight of the LHB achieves 1 in the band insulator predominant region.
Some examples of the symmetric DOS are shown on the lower panel of Figure 2.7. As it
can be seen the weight of the LHB does neither show some distinct kink nor vanish from
a well-defined point. Therefore, this quantity does not yield any indication for a phase
transition between the Mott and the band insulating phase.

In order to get more information about this transition we considered the vanishing
exponents of the Drude weight, but it was not possible to obtain accurate results especially
in the region, we were interested in.

Finally we compare our diagram with the phase diagram from the earlier work by
Moeller et al. [64], which was computed using iteration perturbation theory [72, 73] at
T/t = 0, with 2tab = t⊥ and 2UMoeller = U . We observe following differences (Figure 2.9):
The coexistence region computed by Moeller et al. is essentially wider than our one, which
can be explained with temperature distinction (T/t = 0 vs. T/t = 0.025). In fact, the
increasing temperature causes shrinking of the coexistence region, which can be seen on
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the inset, where the part of the T -U diagram at t⊥/t = 0, presented by Georges et al. [4],
is shown. An other disagreement is the devolution of the border between the metal and
the band insulator. In contrast to Moeller, we got a constant critical inter-plane hopping
equal to 2t for repulsions smaller than 1.5t. We don’t expect a crucial change of the
diagram in that region with the temperature, and guess that the reason for the difference
is of a technical nature, caused by the different computational methods. Further, neither
Moeller et al. nor we found a clear transition from Mott to band insulator.

The present numerical results can be combined to the following picture: Even though,
it seems that both metal-to-insulator transitions have different nature, we have not found
any evidence for a certain transition scenario between two insulating phases. The spectral
densities show a smooth transition from Mott to band insulator and the metal-to-insulator
transition line is nearly smooth too, which argues for the cross-over between both phases.
Moreover, the clear identification of the nature of the metal-to-insulator transition in the
central region of the MIT line was impossible, which supports the cross-over assumption.

2.5 Conclusion

Finishing current chapter we resume our work:

1. In order to treat a three-dimensional system using a quadratic Hubbard plane, we
consider a two-plane Hubbard model with inter-plane hopping, which corresponds
to the CuO-bilayers in the high-TC superconductors. The main technic, used in
the present investigation, was an extended dynamical mean field theory. As two-
impurity solver we chose a Quantum Monte-Carlo algorithm, a numerically exact
method without any uncontrolled approximations. The analytical continuation was
performed via maximum entropy data analysis. Also two different modifications of
the algorithm for the calculation of optical conductivity were considered, whereat
was found that the method given by Blümer is more appropriate for the purpose of
determination of the Drude weight than our approach.

2. The spectral densities of a two-plane Hubbard model at low temperature for different
values of the inter-plane coupling were calculated. Further, the optical conductivity
and the corresponding Drude weight were obtained at several regions of the phase
diagram. A low temperature (T/t = 0.025) phase diagram was presented, where the
first order Mott transition as well as the second order metal-to-band insulator tran-
sitions were found. The clear transition between the Mott insulating phase and the
band insulating phase was not detected. The corresponding spectral weights show
a continuous behavior which is coherent with the assumption about the crossover
between those two insulating phases. The phase diagram computed in the present
work differs slightly from Moeller’s one, because the calculations were performed at
different temperatures, and two fundamentally diverse techniques were used. Ac-
cording to our findings and to the related works, we tend to claim, that the transition
between the Mott and the band insulators is a crossover.
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2.5. Conclusion

3. As a field of the future work, we suggest the inclusion of the inter-plane spin-spin
correlations, which was not regarded in the present model, but is surely relevant
for the investigation of the magnetic phase diagram of the system. Furthermore
the away from half-filling consideration is a matter of particular interest, whereas
the computations can be performed at significantly lower temperature using a very
recently developed continuous-time QMC algorithm [74].
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Appendix A

Analytical Support

A.1 Green Function

High Frequency Limit

We consider the first order high-frequency behavior of the Green functions G0σ(ω
n
) and

G1σ(ω
n
).

Gaσ(ω
n
) =

∫

(dp)
γa

p

iω
n
− (εp − µ) − Σσ(p, ω
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)
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iω
n

∫
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∞
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(
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(A.1)

with a = 0, 1, Σσ(p, ω
n
) = Σ0σ(ω

n
) + 2dγpΣ1(ω

n
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(A.2)

where we used
∫

(dp)γk
p = 0 if k odd1.

Correction Of G(τ)

Considering the leading term in the approximation above we correct the Fourier trans-
formed Green function. In fact, the infinite sum over Matsubara frequencies should be

1
∫

(dp)γ2
p = 1

4 ;
∫

(dp)γ4
p = 9
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computed very carefully. This requires a summation over all frequencies. For this reason
an infinite sum should be calculated, which can be done (in G0 case) using

4

π

∞
∑

n=0

sin(2n+ 1)x

2n+ 1
=







−1 −π < x < 0
0 x = −π, 0, π
1 0 < 0 < π.

(A.3)

The infinite sum becomes

1

β

∞
∑

n=−∞
e−iωnτ 1

iωn
=

1

β

∞
∑

n=0

−2i sin(ωnτ)
1

iωn
= −2

π

∞
∑

n=0

sin(2n+ 1)πτ
β

2n+ 1
= −0.5, (A.4)

where ωn = (2n + 1)πT and 0 < τ < β. The above sum is equal to 0 at τ = 0, which
is explainable with the discontinuity of Green function on the imaginary time axis at
τ = kβ, where k is integer. In fact, the value of the Green function at τ = 0 calculated
by the Fourier transformation is G0(0+) + G0(0

−) = G0(0
+) − G0(β

−), which is equal 0
in the paramagnetic state.

The infinite sum needed for the Fourier transformation of G1 can be performed using
the equation

π

2
− 4

π

∞
∑

n=0

cos(2n+ 1)x

(2n+ 1)2
= |x|, (A.5)

which leads to

zt

4β

∞
∑

n=−∞
e−iωnτ 1

ω2
n

=
zt

4β

∞
∑

n=0

2 cos(ωnτ)
1

ω2
n

=
ztβ

2π2

∞
∑

n=0

cos(2n+ 1)πτ
β

(2n+ 1)2

=
ztβ

8

[

1

2
− τ

β

]

,

(A.6)

where z is the number of nearest neighbors and t is the hopping amplitude.

A.2 Internal Energy

Analytical Derivative

The Internal energy in the Hubbard model is defined as

E = 〈H〉 = 〈T + V 〉 = −t
∑

i,a,σ

〈

c†i+aσciσ

〉

+ U
∑

i

〈ni↑ni↓〉 , (A.7)

where the operator c†iσ/ciσ creates/annihilates a fermion with the spin σ on the site i. The
operator niσ gives the number of particles with the spin σ on the site i. t is the nearest
neighbor hopping amplitude, U is the on-site Coulomb interaction. The nearest neighbor
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A.2. Internal Energy

to the site i is defined as i+ a. To find the expression for the Coulomb term we consider
the following equation of motion

lim
τ→0

∂Gii↑
∂τ

= lim
τ→0

∂

∂τ

〈

Tci↑(τ)c†i↑(0)
〉

= lim
τ→0+

〈

[H, ci↑(τ)] c†i↑(0)
〉

. (A.8)

Substitution of the commutator

[H, ci↑] = −t
∑

l,a,σ

[

c†l+aσclσ, ci↑

]

+ U
∑

l

[nl↑nl↓, ci↑]

= t
∑

l,a,σ

clσδil+aδ↑σ − U
∑

l

nl↓cl↑δil = t
∑

a

ci+a↑ − Uni↓ci↑
(A.9)

in the equation (A.8) yields

lim
τ→0

∂Gii↑
∂τ

= lim
τ→0

(

t
∑

a

〈

ci+a↑c
†
i↑

〉

− U
〈

ni↓ci↑c
†
i↑

〉

)

= lim
τ→0

(

t
∑

a

Gi+ai↑ − U 〈ni↓〉 + U 〈ni↓ni↑〉
)

.

(A.10)

Now we have a similar expression for the most problematic part of the internal energy:

lim
τ→0

U 〈ni↓ni↑〉 = lim
τ→0

1

2

∑

σ

(

∂Giiσ

∂τ
− t
∑

a

Gi+aiσ + U 〈niσ〉
)

. (A.11)

Using equation (A.7) the internal energy becomes

E = lim
τ→0

1

2

∑

i,σ

(

∂Giiσ

∂τ
+ t
∑

a

Gi+aiσ + U 〈niσ〉
)

. (A.12)

In the following we calculate each part of the energy individually:

lim
τ→0

∑

i

∂Giiσ

∂τ
= lim

τ→0+

∑

i

∂

∂τ

〈

ciσ(τ)c†iσ(0)
〉

= lim
τ→0+

∂

∂τ
T
∑

n

∑

p,q

∑

i

e−i(p−q)ri

V 2
e−iωnτ

〈

cpσc
†
qσ

〉

,

(A.13)

where in limit of V → ∞, the sum over wave vectors reduces to an integral

∑

p,λ

fλ(p) =
∑

nx,ny,nz

∑

λ

fλ

(

2πn

L

)

−−−→
L→∞

∫

dnx

∫

dny

∫

dnz

∑

λ

fλ

(

2πn

L

)

=
V

(2π)3

∑

λ

∫

d3pfλ(p).

(A.14)
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In fact, for large L, where L is the length of the considered box, the function fλ

(

2πn
L

)

varies very slowly when the integers change by unity so that nx, ny, nz, may be considered
as continuous variables [17]. Therefore we follow with

lim
τ→0

∑

i

∂Giiσ

∂τ
= lim

τ→0+

∂

∂τ
T
∑

n

∫

(dp)

∫

(dq)
∑

i

e−i(p−q)rie−iωnτ
〈

cpσc
†
qσ

〉

= lim
τ→0+

∂

∂τ
T
∑

n

∫

(dp)

∫

(dq)δ(p − q)e−iωnτ
〈

cpσc
†
qσ

〉

= lim
τ→0+

T
∑

n

∫

(dp)(−iω
n
)e−iωnτ

〈

cpσc
†
pσ

〉

= T
∑

n

∫

(dp)(−iω
n
)
〈

cpσc
†
pσ

〉

= T
∑

n

∫

(dp)
−iω

n

iω
n
− εp + µ− Σ(p, ω

n
)
,

(A.15)

where
∫

(dp) = 1
(2π)d

∫

ddp and d is dimension of the box. The remaining parts of equation

(A.12) are calculated as follows

lim
τ→0

t
∑

i,a

〈

ci+aσ(τ)c†iσ(0)
〉

= lim
τ→0

Tt
∑

i,a,n

∑

p,q

e−ipri+a

V

eiqri

V
e−iωnτ

〈

cpσc
†
qσ

〉

= lim
τ→0

Tt
∑

i,a,n

∑

p,q

e−i(p−q)ri

V 2
e−iprae−iωnτ

〈

cpσc
†
qσ

〉

= lim
τ→0

Tt
∑

a,n

∫

(dp)

∫

(dq)δ(p − q)e−iprae−iωnτ
〈

cpσc
†
qσ

〉

= T
∑

n

∫

(dp)t
∑

a

e−ipra
〈

cpσc
†
pσ

〉

= T
∑

n

∫

(dp)(−εp)
〈

cpσc
†
pσ

〉

= T
∑

n

∫

(dp)
−εp

iω
n
− εp + µ− Σ(p, ω

n
)
,

(A.16)

and

lim
τ→0

U
∑

i

〈niσ〉 = lim
τ→0

U
∑

i

〈

c†iσ(τ)ciσ(0)
〉

= lim
τ→0

UT
∑

i,n

∑

p,q

e−ipri

V

eiqri

V
eiωnτ

〈

c†pσcqσ

〉

= lim
τ→0

UT
∑

n

∫

(dp)eiωnτ
〈

c†pσcpσ

〉

= T
∑

n

∫

(dp)(−U)
〈

cpσc
†
pσ

〉

= T
∑

n

∫

(dp)
−µ

iω
n
− εp + µ− Σ(p, ω

n
)
.

(A.17)
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Now we put (A.15) - (A.17) in equation (A.12) and get the new internal energy

E = −1

2
T
∑

n,σ

∫

(dp)
iω

n
+ εp + µ

iω
n
− εp + µ− Σσ(p, ω

n
)

= T
∑

n,σ

∫

(dp)

(

−1

2
− εp + 1

2
Σσ(p, ω

n
)

iω
n
− εp + µ− Σσ(p, ω

n
)

)

= T
∑

n,σ

∫

(dp)

[

−1

2
−
(

εp +
1

2
Σσ(p, ω

n
)

)

Gσ(p, ω
n
)

]

(A.18)

In the following we consider the energy without the constant term −1
2

and obtain

E = −T
∑

n,σ

∫

(dp)

(

εp +
1

2
Σσ(p, ω

n
)

)

Gσ(p, ω
n
) (A.19)

and

K = −T
∑

n,σ

∫

(dp)εpGσ(p, ω
n
). (A.20)

Energy Correction

The energy equation (A.19) contains an infinite sum over fermionic Matsubara frequencies
ωn. The numerical evaluation of such sums will be possible when we combine the computed
data (from nmin to nmax) with a high frequency correction. For this purpose we calculate
the energy E ′ with self-energy Σσ(iω

n
) = U2

4iωn

analytically:

E ′ = T
∑

σ,n

∫

(dp)
εp + U2

8iωn

iω
n
− εp − U2

4iωn

= 2T
∑

n

∫

(dp)
εp + U2

8iωn

iω
n

(

1 − εp

iωn

− U2

4(iωn )2

)

≈ 2T
∑

n

1

iω
n

∫

(dp)

(

εp +
U2

8iω
n

)(

1 +
εp

iω
n

+
U2 + 4ε2

p

4(iω
n
)2

+ O
(

ω−3
n

)

)

(A.21)

Using
∫

(dp)εk
p = 0 if k an odd number, and

∫

(dp)ε2
p = (zt)2

4
we obtain the energy

E ′ ≈ −1

4
T
(

2(zt)2 + U2
) 1

(πT )2

∑

n

1

(2n+ 1)2
= −2(zt)2 + U2

4π2T

π2

4
, (A.22)

where we used
∑∞

n=−∞
1

(2n+1)2
= π2

4
. The energy correction is equal to the difference

between E ′(ω
n

= −∞ . . .∞) and E ′(ω
n

= nmin . . . nmax)

∆E = −2(zt)2 + U2

4π2T

(

π2

4
−

nmax
∑

n=nmin

1

(2n+ 1)2

)

, (A.23)

where the sum can be performed numerically.
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Large-U Expansion

An expansion of the grand canonical potential of the square lattice Hubbard model up to
order t4 was performed by K. Kubo in 1980 [18]. The diagrams contributing to the per-
turbational series of the thermodynamic potential yield an approximated grand canonical
potential per lattice site

Ω ≈ Ω0 + Ω2 + Ω4a+b + Ω4c+d + Ω4e + Ω4f , (A.24)

where the individual terms can be expressed as follows

Ω0 = −kT lnZ

Ω2 = −zt2
[

β
(

γ − 2γ2
)

+
2

U

(

1 − e−βU
)

γ2

]

Ω4a+b = −zt4
[

1

12
β3
(

γ − 2γ2
)

+ 4
β

U2

(

1 + e−βU
)

γ2 − 8

U3

(

1 − e−βU
)

γ2

]

Ω4c+d = −z (z − 1) t4
[

1

6
β3
(

γ − 2γ2
)

+
β2

U

(

γ2 − 2
(

1 + e−βU
)

γ3
)

+2
β

U2

(

e−βUγ2 + 2
(

1 − e−βU
)

γ3
)

− 2

U3

(

1 − e−βU
)

γ2

]

Ω4e = −pt4
[

2

3
β3
(

γ − 10γ2 +
(

29 − 3e−βU
)

γ3 −
(

26 − 14e−βU
)

γ4
)

+8
β2

U

(

γ2 −
(

5 − e−βU
)

γ3 + 6
(

1 − e−βU
)

γ4
)

+8
β

U2

(

−2γ2 +
(

9 + e−βU
)

γ3 − 10
(

1 − e−βU
)

γ4
)

+
16

U3

(

1 − e−βU
) (

γ2 − 5γ3 + 5
(

1 − e−βU
)

γ4
)

]

Ω4f = z (2z − 1) t4
[

β3
(

γ − 2γ2
)2

+ 4
β2

U

(

1 − e−βU
) (

γ3 − 2γ4
)

+4
β

U2

(

1 − e−βU
)2
γ4

]

,

(A.25)

where k is a Boltzmann constant (equal 1 in our case), z = 4 is the number of nearest
neighbors, γ = eβµ/Z and p is a constant, which was set equal 1. The partition function
Z in the atomic limit is defined as

Z = 1 + 2eβµ + e−β(U−2µ), (A.26)

where β = 1/T . The chemical potential µ is equal to U/2 in the half-filled model. A
transformation of the thermodynamical potential2 leads to

E = Ω − T
∂Ω

∂T
. (A.27)

2Ω = E − TS − µN
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The first two orders of the energy can be easily obtained analytically

E0 =
U

2 + 2e
U
2T

,

E2 = −2t2

U
tanh

(

U

4T

)

+
t2
(

U
2T

tanh
(

U
4T

)

− 3
)

2T cosh2
(

U
4T

) ,

(A.28)

but the rest was computed with support of the Maple software.

A.3 Spin-Spin Correlator

In this section we calculate an approximate value of the 〈S1 · S2〉-correlator at high T for
the 2-site Heisenberg model. The Hamiltonian is defined as

H = JS1 · S2, (A.29)

with J = 4t2

U
. The correlator at high temperature can be obtained by

〈S1 · S2〉 =
Tr
[

S1 · S2e
−βH

]

Tr [e−βH ]
≈ Tr [S1 · S2(1 − βH)]

Tr [1 − βH ]
(A.30)

There are 4 states
(

|↑↑〉 , |↓↓〉 , 1√
2
(|↑↓〉 + |↓↑〉), 1√

2
(|↑↓〉 − |↓↑〉)

)

, which we should take

into account in the equation (A.30). Using Si · Sj = SizSjz + 1
2

(

S+
i S

−
j + S−

i S
+
j

)

, where

the eigenvalues of Siz are ±1
2
, we get

Tr [1 − βH ] = 4 − βJ

(

1

4
+

1

4
+

1

4
− 3

4

)

= 4

Tr [S1 · S2(1 − βH)] =

(

1

4
+

1

4
+

1

4
− 3

4

)

− βJ

(

1

16
+

1

16
+

1

16
+

9

16

)

= −3J

4T
,

(A.31)

which leads to

〈S1 · S2〉 = − 3t2

4UT
. (A.32)

The correlator 〈S1zS2z〉 can be obtained analogously

〈S1zS2z〉 =

(

1
4

+ 1
4

+ 1
4
− 3

4

)

− βJ
(

1
16

+ 1
16

− 1
16

+ 3
16

)

4
= − t2

4TU
, (A.33)

leading to

〈σ1zσ2z〉 = − t2

TU
. (A.34)
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A.4 SCA-Potential

In order to achieve high quality results in the SCA we should calculate the potential V (ϕ)
very accurately. In particular, the sum over Matsubara frequencies leads to a deviation
from the analytical internal energy result, if the high frequencies are not included. Due
to this reason we calculate the high frequency contribution to the sum (1.71)

∆ =
∑

ωn ,σ

ln det

[

(

1 0
0 1

)

+
1

2

(

a0σ a1σ

a1σ a0σ̄

)−1(
ϕ1 0
0 ϕ2

)

σz

]

≈
∑

ωn ,σ

ln det

(

1 + ϕ1σz

2iωn

0

0 1 + ϕ2σz

2iωn

)

=
∑

ωn

ln

[(

1 +
ϕ2

1

4ω2
n

)(

1 +
ϕ2

2

4ω2
n

)]

,

(A.35)

where
∑

ωn

runs over all frequencies |ω
n
| > ωmax

n
and ωmax

n
is the largest Matsubara

frequency in the program; also we used high frequency approximation: a0 ≈ ω
n

and
|a0| ≫ |a1|. The symmetry of the ∆ leads to final result

∆ ≈ 2

∞
∑

ωmax
n

ln

[

2
∏

i=1

(

1 +
ϕ2

i

4ω2
n

)

]

= ln





∞
∏

ωmax
n

2
∏

i=1

(

1 +
ϕ2

i

4ω2
n

)2


 . (A.36)

The upper border of the frequency sum should be chosen so that the computations take
reasonable amount of time and yield accurate results. Therefore, we chose ∞ ≈ 1e5,
which yields a good agreement with the analytical result and does not significantly slow
down the calculation. The same correction can be used in the 4-site SCA but the product
∏2

i=1 should be substituted by
∏4

i=1.

A.5 Approximate Treatment Of 2-Site Models

In present section we give approximate analytical results for two-site fictive impurity
model and two-site DCA solved using semiclassical approximation. At the begin we will
derive the Green function and the Weiss field, then we will find the expression for the
internal energy.

Fictive Impurity Method

The self-energy in the real space model is defined as

Σ(p, ω
n
) = Σ0 − εp

Σ1

t
, (A.37)

therefore the approximated Green functions become

G0 =

∫

(dp)
1

iω
n
− Σ0 − εp

(

1 − Σ1

t

) ≈ 1

iω
n
− Σ0

(

1 +
Kd

(

1 − Σ1

t

)2

(iω
n
− Σ0)2

)

G1 =

∫

(dp)
− εp

2dt

iω
n
− Σ0 − εp

(

1 − Σ1

t

) ≈ − Kd

(

1 − Σ1

t

)

2dt(iω
n
− Σ0)2

,

(A.38)
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where Kd = 2dt2; we also assumed, that iω
n
− Σ0 is the dominant term. The Dyson

equation â = Σ̂ + Ĝ−1 yields the Weiss field

a0 = Σ0 +
G0

G2
0 −G2

1

≈ Σ0 +
1

G0

+
G2

1

G3
0

≈ Σ0 + (iω
n
− Σ0)

(

1 − Kd

(

1 − Σ1

t

)2

(iω
n
− Σ0)2

)

+ (iω
n
− Σ0)3 K2

d

(

1 − Σ1

t

)2

(2dt)2(iω
n
− Σ0)4

≈ iω
n
− Kd

(

1 − Σ1

t

)2

iω
n
− Σ0

(

1 − 1

2d

)

≈ iω
n






1 +

Kd

(

1 − φ2S
ω2

n

)2

ω2
n

+ φ2

(

1 − 1

2d

)







a1 = Σ1 −
G1

G2
0 −G2

1

≈ Σ1 −
G1

G2
0

≈ Σ1 − (iω
n
− Σ0)2 −Kd

(

1 − Σ1

t

)

2dt(iω
n
− Σ0)2

= t,

(A.39)

whereas we used |G0| ≫ |G1| at large U . According to equation (1.104) we calculate an
approximated equation for the self-energy

Σ0 =
φ2

a0

[

1 +
a2

1

a2
0 − φ2

(

1 − φ2S2

a2
0

)]

=
φ2
(

1 − t2

ω2
n
+φ2

(

1 + φ2S
ω2

n

))

iω
n



1 +
Kd

„

1−φ2S

ω2
n

«2

(1− 1
2d)

ω2
n
+φ2





≈ φ2

iω
n






1 −

Kd

(

1 − φ2S
ω2

n

)2
(

1 − 1
2d

)

ω2
n

+ φ2







(

1 − t2

ω2
n

+ φ2

(

1 +
φ2S

ω2
n

))

≈ φ2

iω
n






1 −

Kd

(

1 − φ2S
ω2

n

)2
(

1 − 1
2d

)

+ t2
(

1 + φ2S
ω2

n

)

ω2
n

+ φ2







Σ1 = −a1φ
2S

a2
0

≈ tφ2S

ω2
n

.

(A.40)

In order to obtain the quantity φ, we use the equation (1.102) and the Weiss field and
the self-energy calculated above and get

1

U
= −T

∑

n

(

1

a2
0 − φ2

+
a2

1 (2a2
0 + S (a2

0 + φ2))

(a2
0 − φ2)

3

)

≈ T
∑

n



















1

ω2
n



1 +
Kd

„

1−φ2S

ω2
n

«2

(1− 1
2d )

ω2
n
+φ2





2

+ φ2

+
t2 (−2ω2

n
+ S (φ2 − ω2

n
))

(ω2
n

+ φ2)3



















,

(A.41)
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expansion and substitution of the Matsubara sum by the frequency integration T
∑

n →
∫

dω/(2π), which is legitimate due to the low temperatures, leads to

1

U
≈ T

∑

n







1

ω2
n

+ φ2
−

2Kdω
2
n
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1 − φ2S
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n

)2
(

1 − 1
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n
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+
t2 (Sφ2 − ω2

n
(2 + S))

(ω2
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+ φ2)3
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



≈ 1

2

[

1

φ
− 2Kd

(

1 − 1
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)(

1

8φ3
− 6S

8φ3
+

S2

2φ2T
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+
3t2S
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− t2(2 + S)

8φ3

]

=
1

2φ
−
Kd

(

1 − S − 5S
(

1 − 1
2d

)

+ 4φS2

T

(

1 − 1
2d

)

)

8φ3
,

(A.42)

where the integration was approximately evaluated3. Note, that the sum contains a
divergent T -term, so we should treat it separately. The contribution of this term is
significant at low frequencies, therefore we should calculate this term more carefully.
Using following approximation

T
∑

n

φ4S2

ω2
n

(ω2
n

+ φ2)3 ≈ Tφ4S2

φ6T 2π2

∑

n

1

(2n+ 1)2
=

S2

4φ2T
, (A.43)

which is suitable in the low frequency limit, we solve the equation (A.42) (see also sub-
section 1.4.2) and get

φ =
U

2
− Kd

2U
+
Kd

2U

(

6 − 5

2d

)

S − Kd

T

(

1 − 1

2d

)

S2. (A.44)

Finally, the quantities obtained above, can be substituted into the energy equation (1.34):

E = T
∑

n

∫

(dp)Tr

[(

ε̂p +
1

2
Σ̂

)

Ĝ−1

]

= 2T
∑

n

∫

(dp)
1
2
Σ0(iωn

− Σ0) + ε2
p

(

1 − Σ1

2t

) (

1 − Σ1

t

)

(iω
n
− Σ0)2 − ε2

p

(

1 − Σ1

t

)2

≈ 2T
∑

n

∫

(dp)

(

Σ0

2
(iω

n
− Σ0) + ε2

p

(

1 − Σ1

2t

)(

1 − Σ1

t

))

×

×
(

1

(iω
n
− Σ0)2

+
ε2

p

(

1 − Σ1

t

)2

(iω
n
− Σ0)4

)

(A.45)

3For the evaluation of the integrals in this chapter, the following equations were used:
∫

(dω) 1
φ2+ω2 ≈

π
φ
,
∫

(dω) 1
(φ2+ω2)2 ≈ π

2φ3 ,
∫

(dω) 1
(φ2+ω2)3 ≈ 3π

8φ5 ,
∫

(dω) ω2

(φ2+ω2)2 ≈ π
2φ

,
∫

(dω) ω2

(φ2+ω2)3 ≈ π
8φ3 ,

∫

(dω) ω4

(φ2+ω2)3 ≈ 3π
8φ

.
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E ≈ 2T
∑

n

∫

(dp)

(

Σ0

2

iω
n
− Σ0

+
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(

1 − Σ1

2t

) (

1 − Σ1

t

)

(iω
n
− Σ0)2

+
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)
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(

Σ0

iω
n
− Σ0

+
2Kd

(
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−
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n

(

1 − φ2S
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









,

(A.46)

where after the expansion in terms of (iω
n
− Σ0)−1 we neglected all O

[

(iω
n
− Σ0)−4] and

higher order terms in the following line. The expansion in terms of (ω2
n

+ φ2)−1 leads to

E ≈ −T
∑

n












φ2 −

Kdφ
2
(

1 − φ2S
ω2
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


×

×







1

ω2
n
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(

1 − φ2S
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n
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(
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(
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n
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(ω2
n
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



+
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2ω2

n
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2ω2
n

(
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ω2

n

)2

(ω2
n

+ φ2)3






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


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−
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) [
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n
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+ Kd
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(

3φ2S
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− φ4S2

ω4
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)

(ω2
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+
Kdφ

2
(

1 − φ2S
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(φ2 − ω2
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2d
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3φ2S
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− φ4S2

ω4
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)
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




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+
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3φ2ω2
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+
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(A.47)
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and substitution of the sum and evaluation of the integral and calculation of the divergent
term yield

E ≈ −1

2

[

φ+Kd

{

3

4φ
−
(

3

8φ
+

3

8φ

(

3
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))
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+

(
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1
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}]
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2
− Kd

16φ

(
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S + 3S2

)

+
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(
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2d

)

S2,

(A.48)

the approximated internal energy as a function of φ in the fictive impurity case. The
φ-substitution leads to

E ≈ −1

2

[

U

2
− Kd

2U
+
Kd

2U

(

6 − 5

2d

)

S − Kd
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(

1 − 1
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(

6 − 9

2d
S + 3S2

)

+
Kd

4T

(
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(
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)

S2.

(A.49)

Note, the energy contains a low-T divergent term, which influence can be seen in the
section 1.5.

Dynamical Cluster Approximation

Now we apply the approximate treatment of the previous section to the two-site dynamical
cluster approximation. Again the self-energy is defined as

Σ(p, ω
n
) =

{

Σ0 + Σ1 if εp < 0
Σ0 − Σ1 else,

(A.50)

and the Green functions become

G0 =
1

2
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(A.51)
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with Id =
∫

(dp)|εp|. Analog to the fictive impurity case we figure out the Weiss field

a0 = Σ0 +
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0 −G2

1

≈ Σ0 +
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n
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(iω
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= −Id,

(A.52)

where the on-site self-energy was substituted by φ2

iωn

. Substitution of the Weiss field in
the self-energy equation (1.104) yields
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d
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d
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(A.53)

Solution of the equation (1.102) leads to the expression for φ
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(A.54)

which can be solved on the same way like in the subsection 1.4.2, so

φ =
U

2
− Kd

2U
+
I2
d

2U
S. (A.55)
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Again, in order to get the internal energy we expand the energy keeping all (iω
n
−Σ0)−1-

terms up to the third order, evaluate the momentum integration, substitute the self-energy
and expand in terms of (ω2

n
+ φ2)

−1
:

E = T
∑

n

∫

(dp)Tr

[(

ε̂p +
1

2
Σ̂

)
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(A.56)
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Expansion, substitution of the Matsubara sum and evaluation of the integrals give the
approximated energy for 2-site DCA:
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(A.57)

Note, that the internal energy is T - and S2-independent and the S-term reduces the
energy (compare figure 1.14).
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Appendix B

Zusammenfassung

In dieser Arbeit haben wir uns mit Systemen stark korrelierter Fermionen beschäftigt. Es
wurde eine Reihe von neuen numerischen Methoden untersucht sowie deren Gültigkeitsbe-
reiche identifiziert. Ferner haben wir unsere Ergebnisse mit denen aus älteren numerischen
Methoden verglichen und diverse physikalische Größen und Phasenübergänge untersucht.
Unsere numerischen Ergebnisse wurden im analytischen Teil der Arbeit bestätigt.

B.1 Kapitel 1

1. Die vor kurzem entwickelte semiklassische Näherung (SCA) für die Lösung im
Störstellenproblem wurde bei verschiedenen Stärken der Coulomb’schen Wechsel-
wirkung U untersucht und mit dem etablierten Quanten-Monte-Carlo-Algorithmus
(QMC) verglichen. Wir haben gefunden, dass die numerische Ergebnisse beider
Methoden sehr gut übereinstimmen, wobei der Vorteil der SCA eine enorme Zeit-
ersparnis (SCA ist bis zu 100 mal schneller) im Bereich starker Coulomb-Abstoßung
ist, was extrem wichtig für die Modellierung von Multistörstellenclustern ist. Außer-
dem haben wir zwei verschiedene Modifikationen der SCA untersucht und sind zur
Erkenntnis gekommen, dass die Sattelpunktsapproximation (SPA) nur für starke
Wechselwirkung funktioniert und für kleine bis mittlere U zusammenbricht.

2. Um die Richtigkeit der numerischen Befunde zu überprüfen, haben wir beide 2-
Störstellen Methoden (also die Methode der fiktiven Störstellen (FI) und Dynam-
ical Cluster Approximation (DCA)) analytisch untersucht. Es wurde gefunden,
dass beide Verfahren die innere Energie bis zu Entwicklungsordnung O(t2/U) exakt
reproduzieren. Dennoch führt der nächste Term O(t4/(TU2)), der die Spin-Spin-
Wechselwirkung zwischen zwei Störstellen beinhaltet, zu einem unphysikalischen
Verlauf der Energie. Aufgrund unserer analytischen Ergebnisse zweifeln wir an
einer früheren Behauptung [39], dass eine Erweiterung der Dynamical Mean Field
Theory (DMFT), wie zum Beispiel unsere FI-Methode, automatisch zu einer dop-
pelten Zählung von Prozessen, die das Hüpfen zwischen Störstellen einbinden, führt.



Chapter B. Zusammenfassung

Unsere Untersuchung hat gezeigt, dass bei den betrachteten Algorithmen die Spin-
Terme für die Probleme verantwortlich sind.

3. Wir haben verschiedene Multistörstellencluster numerisch untersucht und eine Reihe
von physikalischen Größen wie die Selbstenergie, die Spin-Spin-Korrelation, die En-
ergie sowie die Néel-Temperatur bestimmt. Wir stellten fest, dass weder FI-Methode
noch DCA vollständig korrekte physikalische Ergebnisse liefern. Die FI-Methode
“findet” einige unphysikalische Zustände mit geringem Gewicht in der Mitte des
Mott-Hubbard-Gap, wobei wachsende Cluster-Größe das Gewicht dieser Zuständen
drastisch reduziert. Wir haben auch gezeigt, dass eine einfache Filterprozedur im
FI-Algorithmus zu physikalisch richtigen Ergebnissen führt. Beide Algorithmen
schätzen die Néel Temperatur nicht ganz korrekt ab, wobei die steigende Anzahl
von Störstellen in der FI-Methode zur Konvergenz gegen das analytische Ergebnis
führt. Dynamical Cluster Approximation tendiert dagegen in die falsche Richtung.

4. Eine mögliche Fehlerquelle ist die Annahme, dass alle benachbarten Selbst-Energien
durch eine einzige Funktion dargestellt werden dürfen. Eine separate Behandlung
der Beiträge zur Selbst-Energie könnte die Ergebnisse verbessern, was in dieser
Arbeit wegen des Rechenaufwands unrealistisch war. Um die FI-Methode weiter
zu entwickeln, sollte man einen zusätzlichen Term J ∼ t2/U einzubinden, um den
Effekt von Spin-Korrelationen auszugleichen. Ferner sollte ein Vergleich zwischen
Cellular-DMFT [10] und unserer FI-Methode in der Zukunft untersucht werden.

B.2 Kapitel 2

1. Ein System aus zwei gekoppelten Hubbard-Ebenen wurde betrachtet. Wir haben
das System mit der Dynamical Mean Field Theory (DMFT) untersucht, wobei
das zwei-Störstellen-Problem mit einem Quanten-Monte-Carlo-Algorithmus gelöst
wurde. Die analytische Fortsetzung erfolgte durch die Maximum-Entropy-Prozedur.
Außerdem haben wir zwei verschiedene Algorithmen zur Bestimmung der optischen
Leitfähigkeit untersucht. Dabei haben wir herausgefunden, dass beide Methoden
ähnliche optische Leitfähigkeiten liefern. Allerdings stellten wir auch fest, dass der
von N. Blümer [28] vorgeschlagene Algorithmus für die Bestimmung des Drude
Gewichtes wesentlich besser geeignet ist.

2. Wir haben die Ein-Teilchen-Zustandsdichte, die optische Leitfähigkeit sowie das
Drude-Gewicht für verschiedene Bereiche des Phasendiagramms bestimmt. Es wur-
den der Mott-Hubbard- und der Metall-Band-Isolator-Phasenübergang gefunden
und klassifiziert. Wir haben keinen eindeutigen Phasenübergang zwischen beiden
Isolatoren gefunden. Das Phasendiagramm zeigt zum Teil bemerkenswerte Unter-
schiede zu dem Diagramm von Moeller, wobei wir die Differenz mit dem Temperatur-
und dem Methodenunterschied begründen. Qualitativ stimmen unsere Ergebnisse
jedoch überein.
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3. Für die weitere Untersuchung dieses Modells sollte man sich die Spin-Korrelation
zwischen den entsprechenden Gitterplätzen der beiden Hubbard Ebenen ansehen
sowie deren Einfluß auf die Eigenschaften des Systems und des Phasendiagramms
untersuchen. Ferner verspricht die Betrachtung des zwei-Ebenen-Hubbard-Modells
abseits halber Füllung eine Reihe von interessanten Ergebnissen.
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