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Abstract 
 

 

In this dissertation we studied the propagation characteristics of tapered fibers and 

photonic crystal fibers. 

 This thesis starts with the basic principles of linear and nonlinear optics, which 

are used to explain the generation mechanisms of supercontinuum radiation. Using a 

split-step Fourier method, the nonlinear Schrödinger equation is solved to simulate the 

spectral and temporal properties of the supercontinuum generation. 

 We simulated the evolution of the transverse intensity distribution, the 

nonlinear parameter γ, and the GVD of the fiber mode in the taper transition region of 

a tapered fiber. A complete model of propagation characteristics in tapered fibers was 

constructed. 

 In the design to tailor the group velocity dispersion of tapered fibers, we 

immersed the fibers in transparent liquids (such as acetonitrile, pentane, hexane, and 

liquid Series AAA from Cargille Labs). Spectrum simulations demonstrate that such a 

tapered fiber is capable to generate a supercontinuum with an extremely broadened 

spectrum, ranging from 700 nm to 2000 nm. 

 We designed a tapered fiber with elliptical cross section in the waist region, 

which maintains an incident linear polarization state throughout the propagation path 

and generates a highly polarized supercontinuum. The birefringence and group 

velocity dispersion as a function of wavelength of the fiber were calculated by using 

Mathieu functions.  

We designed a new nonlinear fiber to generate supercontinuum radiation with 

dramatically broadened spectrum by filling a highly nonlinear liquid into hollow 

photonic crystal fibers. The liquid-core photonic crystal fiber with carbon disulfide 



and nitrobenzene filled into the core exhibits an extremely high nonlinear parameter γ, 

which can be more than 20 times larger than that of a conventional PCF. Simulation 

shows that the spectrum generated by this new nonlinear fiber ranges from 700 nm to 

more than 3000 nm. In order to accomplish this task, we had to determine a complete 

quantitative response function in the femtosecond and picosecond regime for the first 

time. 
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Section 1 Introduction 
Supercontinuum generation has become a very active research topic over the last few 

years [1-5], describing the generation of broadband white light by launching an 

ultrashort pulse through a nonlinear medium. High nonlinear effects occurring in the 

medium lead to the conversion of the one-color input pulse to multicolor generation. 

Since its discovery in the late 1960s by Alfano [6], supercontinuum (SC) generation 

has found numerous technological applications in optical coherence tomography, 

spectroscopy, pump-probe measurements, optical frequency metrology, and so on [7-

11]. The applications take advantage of the unique properties of the generated 

supercontinuum: it has a dramatically broadened spectrum with a small beam 

divergence as good as that of a monochromatic laser beam and simultaneously has a 

short coherence length comparable with a light bulb [12]. Fibers, due to its small 

beam divergence, high brightness, and low requirement for pulse energies, become 

one of the most topical appliances to generate a supercontinuum.  

 The most common fibers, which are used to produce supercontinuum, are 

photonic crystal fibers (PCFs) (also called holey fiber, hole-assisted fiber, or 

microstructured fiber) [13-18] and tapered fibers [1,2,19-24]. The photonic crystal 

fiber was first demonstrated by P. Russell in 1996. It consisted of a hexagonal lattice 

of air holes in a silica fiber, with a central pure silica core where light is guided. In 

2000, J. K. Ranka et al. for the first time employed photonic crystal fibers to generate 

a supercontinuum, the spectrum of which ranges from 500 nm to 1600 nm [16]. A 

tapered fiber can be fabricated by drawing a conventional telecommunication fiber 

over a moving flame. It consists of a narrow waist region, with a diameter of several 

micrometers or even sub-micrometers, connected on both sides by the fibers, whose 

diameters increase gradually. The supercontinuum is generated in the waist region. T. 

Birks et al. for the first time realized supercontinuum generation in a tapered fiber in 

the year 2000.     

Supercontinuum generation is a complex nonlinear phenomenon, and the 

mechanisms behind SC generation arise from the interaction between dispersion and 

nonlinear effects. The dispersion is generally categorized as material dispersion and 

waveguide dispersion. The origin of material dispersion, on a fundamental level, 

relates to the characteristic resonance frequencies at which the fiber material absorbs 

the electromagnetic radiation through vibrational modes of electrons [25]. The 

waveguide dispersion is caused by the dependence of the phase and group velocities 
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on core radius, numerical aperture, and wavelength [26]. Nonlinear effects include 

self-phase modulation [27-29], four wave mixing [30-33], cross phase modulation 

[34-37], stimulated Raman scattering [32,38-40], and so on. The nonlinear effects are 

induced by changes in the refractive index when intense pulses propagate through the 

nonlinear medium. The first physical explanation on the initial stage to generate 

supercontinua was discovered by A. V. Husakou, et al. in 2001 [41]. They 

demonstrated that soliton splitting is the main process leading to the generation of 

supercontinuum [41-43]. G. Genty et al. presented a further description of the 

generation mechanism in 2004, demonstrating that the stimulated Raman scattering 

plays an important role during soliton splitting, and explaining how cross-phase 

matching shifts the dispersive waves in the visible region further towards the blue [40] 

[35].  

Due to the complexity of supercontinuum generation, numerical simulations of 

the pulse-propagation characters along the fiber become indispensable to analyze the 

generation mechanisms and to design a proper fiber structure for a certain application. 

In 2002, J. M. Dudley et al. presented numerical simulations for the supercontinuum 

generation and its coherence properties by solving the nonlinear Schrödinger equation 

[44]. The nonlinear Schrödinger equation, derived from the Maxwell equations, is 

well suited for studying broad-band pulse propagation problems and can be 

numerically solved by the split-step Fourier method [25] [45,46].     

To generate the supercontinuum radiation, two prerequisites should be 

satisfied. First, the optical power density should be high enough to excite nonlinear 

effects in the fiber material, which depend on higher orders of the electric field of the 

light. This condition can be realized by focusing the incident pulse into small-area 

fibers, such as photonic crystal fibers and tapered fibers. Secondly, the fiber should be 

pumped in the anomalous dispersion regime, where blue light travels faster than red. 

This can be realized by design of the fiber structure and selection of the pumping 

wavelength.         

Many publications focus on supercontinuum generation in photonic crystal 

fibers (PCFs) since it is easy to design their group velocity dispersion (GVD) and 

possible to fabricate photonic crystal fibers with long interaction length. However, 

tapered fibers also show a large potential to become a competitor to photonic crystal 

fibers due to their long-term stability and simple manufacturing process [1,2]. 

Recently, the group velocity dispersion in tapered fibers was tailored by immersing 

the fiber into chemical liquids [19,24], and the interaction length in tapered fibers can 
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be increased by slicing together several fibers. These progresses make tapered fiber 

very suitable for the construction of white light sources. 

In this dissertation, the principle of white light generation in tapered fibers and 

photonic crystal fibers with incident pulse durations in the femtosecond range will be 

discussed. I will also demonstrate some new technologies to design and improve the 

spectral characteristics of supercontinuum generation. 

I start with the basic principles of pulse propagation in normal fibers in section 

2.1 by introducing optical communication, fiber classification, fiber parameters, 

material and doping, dispersion characteristics, and fiber loss.  

In section 2.2, the properties, fabrication process, and experimental setup of 

tapered fibers are discussed. Tapered fibers offer the possibility to achieve 

supercontinuum generation with initial peak intensities that are two orders of 

magnitude lower than that required in common optical fibers. 

In section 2.3, I will review the principles of linear optics in tapered fibers, the 

origin of which is relative to the disturbance of the internal charge distribution of 

atoms. The exact eigenvalue equation, which describes the propagation characteristics 

in tapered fibers, is discussed in connection with the classical mathematical 

description of electrodynamics. Leakage power into the air when the pulse propagates 

in the tapered fiber is also presented.  

In section 2.4, I will discuss the nonlinear processes in the waist region of 

tapered fibers, which induce the mechanisms responsible for the supercontinuum 

generation. The deviation of the nonlinear pulse-propagation equation, which governs 

propagation of optical pulses in nonlinear dispersive fibers, is presented. I will also 

introduce the fundamentals of several nonlinear optical effects, such as self-phase 

modulation, optical solitons, cross phase modulation, four wave mixing, and Raman 

inelastic scattering.  

In section 2.5, I will introduce the split-step Fourier method, which is applied 

to theoretically study the pulse-propagation problem. The implementation of this 

method is discussed in detail. The numerical simulations on the supercontinuum 

generation are compared with experimental results. I found that simulations can not 

only adequately model the width of the generated spectrum, but also precisely predict 

the positions of distinct spectral peaks. 

In section 2.6, I will discuss physical mechanisms during supercontinuum 

generation are discussed in detail. The initial stage of supercontinuum is induced by a 

soliton splitting generate red-shifted Raman solitons and dispersive waves in the 
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visible region. Soliton self-frequency shift, cross phase modulation, and four wave 

mixing lead to further broadening.  

In section 3, the propagation characteristics in the taper transition region, 

where the diameter is varying along the fiber, are presented by solving the scalar 

equation and the full vector Maxwell equation. I will also describe the evolution of the 

radial distribution of the light intensity, the nonlinear parameter, and the group 

velocity dispersion. Knowing the propagation characteristics in the taper transition 

region, I build a complete model of light propagation and nonlinear interaction 

processes in tapered fibers. 

In section 4, I demonstrate a considerably simple way to control the group 

velocity dispersion (GVD) characteristics of a tapered fiber. I fill the environment of 

the tapered fiber with a selected chemical liquid which provides a suitable refractive 

index. The tapered fiber immersed in liquids possesses favorable group velocity 

dispersion properties in the anomalous dispersion region. The spectral simulation 

demonstrates that such a fiber is capable to generate a supercontinuum with a 

dramatically broadened spectrum due to the dual zero dispersion wavelengths lying in 

the near infrared region.      

In section 5, I designed a tapered fiber with elliptical cross section in the waist 

region, which maintains an incident linear polarization state throughout the 

propagation path and generates a highly polarized supercontinuum. A supercontinuum 

with linear polarization state can find application in CARS microscopy, OPO systems, 

gas sensors, etc, which are hard to construct from conventional tapered fibers. The 

propagation constant and group velocity dispersion were calculated based on the 

Maxwell equations using Mathieu functions. The zero dispersion wavelength of the 

odd dominant mode is located at a larger wavelength than that of the even dominant 

mode.  

In section 6, I will show the new design of a high nonlinear fiber by filling the 

core a hollow-core photonic crystal fiber with highly nonlinear liquids, such as carbon 

disulfide and nitrobenzene. The fiber is shown to have an extremely high nonlinear 

parameter γ in the order of 2.45 /W/m. The group velocity dispersion curve of the 

fiber exhibits an anomalous dispersion in the near infrared, and its zero-dispersion 

wavelength is around 1.55 μm in the telecommunication window. This leads to 

potentially significant improvements and a large bandwidth in supercontinuum 

generation. The spectral properties of the supercontinuum generation in liquid-core 

photonic crystal fibers are simulated by solving the nonlinear Schrödinger equation. 
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The results demonstrate that the liquid-core PCF is capable to generate dramatically 

broadened spectra in a range from 700 nm to 3000 nm. 
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Fig. 2.1.2 A typical single mode fiber, which 
consist of core, cladding, buffer and jacket. 

Buffer 

Jacket 

Cladding 

Core 

Section 2 Supercontinuum generation in tapered 

fibers 
2.1 Pulse propagation in common telecommunication fibers 
The research on optical fiber is one of the most interesting and important topics in the 

field of global and local communication systems [47]. A basic fiber communication 

system primarily consists of the following components: a transmitting device, which 

generates the light signal; an optical fiber, which carries the light beam loaded with 

information; a number of repeaters, which boost the signal strength to overcome the 

fiber losses; and a receiver, which accepts the light signal transmitted, as shown in 

Figure 2.1.1.  

 

 

 

 

 

 

 

 

As the heart of a communication system, optical fibers have been paid a great 

attention to. Generally, an optical fiber is 

made of a central dielectric core of a high 

refractive index, a cladding with a lower 

refractive index, a buffer and a jacket, as 

shown in Figure 2.1.2. Such a fiber is known 

as step-index fibers, as opposed to graded-

index fibers, where the core refractive index 

decreases gradually from the center [48]. For 

the purpose of low-loss transmission and easy 

fabrication, pure silica glass synthesized by fusing SiO2 molecules is generally chosen 

as the material of optical fibers.  

 The optical fibers as transmission media have developed and improved rapidly 

over the last few years. Compared with traditional communication system, optical 

fibers possess the following advantages [47]: 

repeater
transmitter receiver 

Optical fiber Optical fiber

Fig. 2.1.1. Typical fiber optical fiber communication system, which consist of an optical 
transmitter (laser diode or LED), the transmission medium (optical fibers), a repeater 
and an optical receiver (photodetector). The light is launched through the link. 
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(1) Wide transmission bandwidth. The principal material in fiber fabrication is 

fused silica, whose optical carrier wavelengths are between 0.8 μm and 1.65 μm. This 

property makes a fiber possible to support a wide transmission bandwidth (0.1-1000 

GHz). With such a large potential of its capacity, optical fiber becomes irreplaceable 

in the field of communication system. 

(2) Long distance signal transmission. The low attenuation and superior signal 

integrity found in optical systems allow much longer intervals of signal transmission 

than electronic systems. With the development of the fiber fabrication, the loss of the 

glass fibers nowadays have been reduced to 0.15 dB/km in the telecom window 

around 1.55 μm.   

(3) Impervious to electromagnetic interference. The fiber communication system 

is hardly influenced by external electric or magnetic fields, and immune to radiation 

outside of the fibers, which prevents the system from corruption of data and avoids to 

produce electromagnetic pollution. 

In this chapter, basic characteristics of the pulse propagation in optical fibers 

are introduced. In section 2.1.1 I deal with the classification of optical fibers and some 

important fiber parameters. Section 2.1.2 introduces the material and doping, which 

are selected to be transparent at optical frequencies. Section 2.1.3 discusses the 

characteristics of chromatic dispersion in step index optical fibers because of its 

importance in the nonlinear effect with ultrashort incident pulse. Section 2.1.4 

describes the mechanisms responsible to the fiber loss, which relate to a wide range of 

intrinsic material and to fiber manufacturing properties.  

 

2.1.1 Classification of optical fibers and fiber parameters  

Generally, optical fibers are classified into two types: the single-mode fiber (SMF) 

and the multimode fiber (MMF) [48]. A SMF can support only the lowest order 

propagating mode (fundamental mode) at the wavelength of interest. It is used to 

guide light for long-distance telephony and multichannel television broadcast systems. 

The refractive index profiled of a SMF is usually a step-index type. Multimode fiber, 

through which numerous modes or light rays simultaneously propagate, is used to 

guide light for short transmission distances, such as in LAN systems and video 

surveillance.   

 To specifically describe optical fibers, some parameters, which affect the 

communication system’s operation, are designed as follows: [49].  

(i) n1 and n2 are the refractive indices of the core and cladding (see figure 2.1.3).  
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The refractive-index difference between the core and the cladding Δ, which is realized 

by the different use of dopants, such as GeO2 and P2O5, can be defined as:  

1

21

n
nn −

=Δ .  

 

 

 

 

 

 

 

 

 

(ii) V, the so called normalized frequency, is the parameter to determine the 

number of modes supported by the fiber, defined as  

2
2

2
1

2 nnrV −=
λ
π ,                                          (2.1.1) 

where r is the radius of the core, λ is the free-space wavelength of the light source. 

For a step-index fiber, only the lowest order mode (fundamental mode) propagates in 

the fiber if V is smaller than 2.405. Optical fibers designed to satisfy this condition are 

called single- mode fibers. The critical value of the V-parameter 2.405 is determined 

by solving the Maxwell equation in optical fibers. 

(iii) Numerical aperture NA, which is a measure of the light gathering power of the 

optical fiber, can be defined by the following equation:  

2
2

2
1 nnNA −= .                                             (2.1.2) 

It can be considered as representing the size or "degree of openness" of the input 

acceptance cone, the half angle of which is θ, as shown in Figure 2.1.4. If sinθ is 

smaller than the numerical aperture NA, the incident light will be guided through the 

fiber. The value of numerical aperture lies between 0 and 1. With a numerical aperture 

of 0, the fiber gathers no light and with a numerical aperture of 1, the fiber gathers all 

the light that falls onto it.  

(iv) Attenuation α represents the reduction of signal strength during transmission 

and mathematically it is given by  

Fig. 2.1.3 Refractive index distribution of a step-index optical fiber 
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)log(10

0P
P

L
T−=α ,                                            (2.1.3) 

in units of dB/km (decibel units), where Pint is the power launched at the input end of 

a fiber with length L and Pout is the transmitted power. Nowadays fused silica fibers 

have losses of less than 0.15 dB/km at 1.55 μm, corresponding to more than 97% 

transmission over 1 km. The mechanisms responsible for the attenuation are the 

material absorption and Raleigh scattering dominantly. We discuss the loss 

mechanisms in detail in Section 2.1.3. When it is necessary for an optical fiber to 

guide light over long distances, a series of repeaters are used to overcome attenuation. 

The repeaters, which are inserted along the length of fiber, boost the pulse intensity to 

reconstruct it to its original quality. 

 

 

 

 

 

 

 

2.1.2 Material and doping 

The materials, which are used to make optical fibers, should be transparent to optical 

frequencies and inexpensive in fiber fabrication. And in the case of long-range 

communication they should make possible repeater separation distances on the order 

of kilometers. Pure silica glass synthesized by fusing SiO2 molecules is found to 

satisfy the requirements above. Besides those advantages, fused silica is of negligible 

thermal expansion, excellent thermal shock resistance and good chemical inertness, 

which make it easier to work with.  

 The refractive index difference between the core and the cladding is realized 

by doping the core material with dopants such as GeO2 and P2O5 [25], the refractive 

indices of which are larger than that of pure silica, and doping the cladding with 

materials such as boron and fluorine, which decreases the refractive index of pure 

silica. The amount of dopants added to the fiber must be taken into account in the 

designation of an optical fiber for different purposes. More dopants in the core of fiber 

result in higher refractive index difference and stronger compositional fluctuations. 

For example, for the purpose to design a long-haul transmission fiber, the higher 

refractive index difference, which increases the numbers of guiding modes along the 

Fig. 2.1.4 Illustration of acceptance angle related to numerical aperture NA 

θ 
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fiber, leads to higher group delay and reduces output intensity, and the stronger 

compositional fluctuations increase the fiber loss through the dopants scattering.   

 

2.1.3 Fiber loss mechanisms 

The mechanisms which contribute to the loss in an optical fiber can be categorized as 

intrinsic, extrinsic and, radiative losses [25,50].  

  

 

 

 

 

 

 

 

 

 

 

 

 

 Intrinsic losses can be further subdivided into infrared absorption and Rayleigh 

scattering in the wavelength regions of interest to optical communication. Infrared 

absorption arises from the interaction of the light with the components of the glasses 

used in fiber manufacture. For silica fiber, the lattice vibrational modes of silicon-

oxygen bonds produce absorptive resonances between 7 and 11 μm, which, due to the 

anharmonic coupling between those modes, further generate an infrared absorption 

tail extending into the transmission wavelength region. Rayleigh scattering arises from 

the composition and density fluctuations of the fiber material during manufacture. The 

resulting inhomogeneous refractive index scatters light in all directions. The loss due 

to Rayleigh scattering is proportional to 1/λ4, where λ is the wavelength of the 

propagating lightwave. The addition of dopants into the fiber results in higher 

inhomogeneities in the refractive index distribution, which increases the Rayleigh 

scattering loss. Figure 2.1.5 shows the measured loss spectrum of a single-mode silica 

fiber [4,25]. Fiber losses increase rapidly as wavelength decreases and reach a level of 

a few dB/km in the visible region, which is caused by the Rayleigh scattering. The 

absorption at wavelengths longer than 1.6 µm comes from infrared absorption by 

Fig. 2.1.5 Measured loss spectrum (black solid) of a single mode silica fiber. The blue dashed 
curve shows the contribution resulting from Rayleigh scattering, and the red solid curve 
illustrate the loss profile arising from infrared absorption   
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silicon-oxygen bonds in the glass; as the plot shows, the absorption increases sharply 

with longer wavelengths in the near infrared. As a result, silica-based fibers are rarely 

used for communications at wavelengths longer than 1.65 µm. The rapid decrease in 

scattering at longer wavelengths makes minimum value of loss about 0.2 dB/km near 

1.55 μm, where both Rayleigh scattering and infrared absorption are low.  

 Extrinsic absorption arises generally from the presence of transition metal ions 

impurities and OH ions dissolved in glass [25]. All of them have strong absorption in 

the visible and near infrared region, therefore, their concentration should be reduced 

to a low level so that they contribute negligibly to the fiber loss.  

 Radiative losses, relative to the waveguide structure, arise fundamentally from 

geometrical irregularities, bending losses, microbending losses, and defects at joints 

between fibers, which couple the guided modes with the radiation modes propagating 

in the cladding [50]. The geometrical irregularities introduced in fiber manufacture 

include core-cladding interface irregularities, diameter fluctuations and so forth. 

Bending loss occurs if the fiber is not absolutely straight. Microbending losses are 

induced in the process of jacketing, where the fiber is subjected to microscopic 

deviations of the fiber axis from the straight condition.  Defects at joints arise from the 

mismatch of the mode field intensity distribution when coupling light into a fiber. 

With careful design and fabrication, all of the radiative losses can be reduced to small 

value.  

 

2.1.4 Dispersion 

Pulse dispersion is one of the factors which limit the information-carrying capacity of 

a fiber communication system. A laser pulse, which is even considered as 

monochromatic, actually contains a continuum of wavelengths in a small range. Each 

frequency components of the pulse travels at different velocity given by c/n(λ), which 

results in the pulse-broadening in the time domain (expression of n(λ) shown in Eq. 

(2.1.4)). The mechanisms responsible for the dispersion are generally categorized as 

material dispersion and waveguide dispersion.  

 The origin of material dispersion, which leads to the refractive index variations 

with wavelength, on a fundamental level, relates to the characteristic resonance 

frequencies at which the fiber material absorbs the electromagnetic radiation through 

vibrational modes of electrons. Far from the material resonances, the refractive index 

of doped silica can be approximated by the following Sellmeier equation [51]: 
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λ ,                                       (2.1.4) 

where λ is the wavelength in unit mm, λj represents the resonance wavelength and Aj 

is the strength of jth resonance. The sum in Eq. (2.1.4) takes into account all material 

resonances that contribute to dispersion. The corresponding values of the coefficients 

λj and Aj for different doped silica fiber are shown in Table 2.1.1 [51]. 

 

Fibers Dopant (%) λ1
2 λ2

2 λ3
2 A1 A2 A3 

1 Pure silica 0.004679148 0.01351206 97.93400 0.6961663 0.4079426 0.8974794

2 GeO2 (6.3) 0.007290464 0.01050294 97.93428 0.7083952 0.4203993 0.8663412

3 GeO2 (19.3) 0.005847345 0.01552717 97.93484 0.7347008 0.4461191 0.8081698

4 B2O3 (5.2) 0.004981838 0.01375664 97.93353 0.6910021 0.4022430 0.9439644

5 B2O3 (10.5) 0.005202431 0.01287730 97.93401 0.7058489 0.4176021 0.8952753

 

 

 The waveguide dispersion, which can occur in the absence of any material 

dispersion, is caused by the dependence of the phase and group velocities on core 

radius, numerical aperture, and wavelength. The waveguide dispersion relating to the 

fiber structure can be calculated by solving the eigenvalue equation of the propagating 

mode in the fiber, which is discussed in detail in Section 2.3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1.1. Values of coefficients in Sellmeier equation for different doped silica fiber 
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2.2 Introduction of tapered fibers 
White light continuum generation using femtosecond and picosecond laser pulses has 

many applications in optical coherence tomography, spectroscopy, pump-probe 

measurements, optical frequency metrology, and so on [7-11]. To generate 

supercontinuum sources, highly nonlinear optical effects are indispensable, and 

therefore very high optical power densities (Gigawatts/cm2) are required. This can be 

realized by focusing the incident pulse on small-area fibers, such as photonic crystal 

fibers [13-18] and tapered fibers [1,2,19-24], which offer the possibility to form a 

supercontinuum with initial peak intensities two orders of magnitude lower than that 

required in normal optical fibers.  

 Supercontinuum generation in photonic crystal fibers (PCF) is currently a very 

topical issue. Tapered fibers as nonlinear elements to generate white light radiation are 

used less frequently, because there are two seemingly disadvantageous facts [2]. First, 

a suitable group velocity dispersion (GVD) design is more complicated than in PCFs. 

Second, the tapering process restricts the interaction length of the fiber [2] to several 

ten centimeters. Recently, the group velocity dispersion in tapered fibers was tailored 

by immersing the fiber with chemical liquids [19,24], and the interaction length in 

tapered fibers was increased by slicing several fibers [52]. Those progresses make 

tapered fiber a very cheap and convenient source for the generation of white light. 

 In this section, the general characteristics of tapered fibers are discussed. 

Section 2.2.1 introduces the fabrication process and the fiber profile of tapered fibers. 

In section 2.2.2, we are going to show the experimental setup used to generate 

supercontinuum sources and the spectral properties of the output generated by the 

tapered fibers.  

 

2.2.1 Fabrication 

We used single-mode Corning SMF28 quartz fibers in a home-built fiber-drawing rig. 

The fibers were drawn over a moving propane-butane-oxygen flame with a 

temperature close to the melting point of quartz. The fabrication machine is shown in 

Fig. 2.2.1. H1 and H2 represent the fiber mounts and Br is the burner. M1 and M2 are 

used to move fiber mounts, and M3 is used to move burner.  

The tapered fibers consisted of three parts: untapered region, taper transition 

region, and waist region as shown in Fig. 2.2.2. The thick untapered regions make it 

possible to couple the light into tapered fibers conveniently. In the taper transition 
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region, the outer diameter decreased from 125 micrometers to a few micrometers. The 

waist region has a constant diameter, ranging from 4 μm to only 0.5 μm. Due to the 

pulse being focused on such a small area, the guiding mode obtains an extremely huge 

peak intensity, which leads to the formation of the supercontinuum. Variation of the 

drawing velocity allowed us to control the diameter of the waist in a very reproducible 

way.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Experimental setup and the supercontinuum generation [2] 

 

 

 

 

 

 

 

The experiment setup to generate supercontinuum sources consists of input coupler, a 

tapered fiber, an output coupler, and a spectrometer, as shown in Fig. 2.2.3. Generally, 

a Faraday isolator is used to prevent back reflections from the fiber into the laser. 

When both ends of a tapered fiber are carefully cut to avoid unsmooth surfaces, and 

the input coupling is well adjusted to optimize the pulse propagation, the output power 

can be as high as 40-60% of the input power. 

Fig. 2.2.1 Fabrication machine, where H1 and H2 are the fiber mounts and Br is the 
burner. M1 and M2 are used to move fiber mounts and M3 is used to move burner. 

Fig. 2.2.2 Structure of a tapered fiber, which consists of three parts: untapered region, 
taper transition region, and waist region.  

untapered region untapered region   taper transition waist taper transition

Spec. 

I II III IV V VI 

Fig. 2.2.3 Experiment setup. (I) Input pulse, (II) Faraday isolator, (III) Input coupling, (IV) 
Tapered fiber, (V) Output coupling, and (VI) Spectrometer. 
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 The generated supercontinuum depends on the pump wavelength, the fiber 

waist diameter, the input pulse duration, and so on. Figure 2.2.4 shows the spectra of 

the supercontinuum generation after five tapered fibers, which are of different 

diameters but pumped at the same wavelength 800 nm [2]. It is evident that the 

spectra are broadened when the diameter decreases but the dip in the visible region 

becomes larger as shown by the spectra of the fibers with waist diameter of 2.3 μm 

and 2.5 μm. The fiber with 2.8 μm waist does not generate a supercontinuum. The 

explanation for such features is caused by the solitonic generation mechanisms, which 

will be discussed in detail in section 2.6.    
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Fig. 2.2.4 The spectra of the supercontinuum generation after the tapered fibers with diameter of 
1.6 μm (black), 2.0 μm (red), 2.3 μm (blue), 2.5 μm (green), and 2.8 μm (orange). 
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Fig. 2.2.5 The spectra of the supercontinuum generation after one tapered fiber with pumping 
wavelength of 770 nm (black), 800 nm (red), 840 nm (blue), and 880 nm (green). 
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Figure 2.2.5 shows the spectra of the supercontinuum generation after one tapered 

fiber, which has a waist diameter of 2.1 μm, but is pumped at different wavelengths of 

770 nm, 800 nm, 840 nm, and 880 nm [2].  The figures demonstrate that pumping a 

tapered fiber with a higher input wavelength leads to a broadened spectrum and a 

widened dip in the visible region. A physical explanation on this spectral feature can 

be found in section 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.3 Principles of linear optics in tapered fibers 
 

17 

2.3 Principles of linear optics in tapered fibers 
To understand the nonlinear phenomena behind the supercontinuum generation, it is 

necessary to review the theory of electromagnetic waves consisting of electric and 

magnetic fields. The total polarization induced by the optical pulse contains linear and 

nonlinear parts. In this chapter, I concentrate on the discussion on linear optics in 

tapered fibers. 

 On fundamental level, the origin of the linear polarization is relative to the 

disturbance of the internal charge distribution of atoms [53]. If the energy of the 

photons launched into the fiber is small, the photon leads only to a linear displacement 

of the internal charges, which will be accelerated depending on the intensity of the 

incident light wave. The accelerated charges emit sources of electromagnetic waves, 

which interfere with the original wave. The waves induced by the molecules have the 

same frequency or energy as the external wave, only with a different phase or 

momentum. This nonresonant possibility is the origin of every kind of linear optical 

effect, which causes reflection, diffraction, scattering, and so on. 

 In this chapter, the basic principles of linear optics in tapered fibers are 

introduced. Section 2.3.1 discusses the classical mathematical description of 

electrodynamics, the Maxwell equation. In section 2.3.2 we deal with the exact 

eigenvalue equation, derived from the Maxwell equation, which describes the 

propagation characteristics in tapered fibers. Section 2.3.3 discusses the fractional 

leakage power in the air when the pulse propagates in the fiber.  

 

2.3.1 Maxwell equation 

Every kind of electromagnetic wave can be described by the electric field vector E, 

the electrical displacement D, the magnetic field vector H, and the magnetic flux 

density B. The relationship among the four field vetors, named Maxwell equation, was 

derived by James Clerk Maxwell (1831-1879) as follows [25,54]: 

t∂
∂

−=×∇
BE ,                                                  (2.3.1-a) 

t∂
∂

+=×∇
DJH ,                                               (2.3.1-b) 

fρ=⋅∇ D ,                                                   (2.3.1-c) 

0=⋅∇ B ,                                                  (2.3.1-d) 
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where, J is the current density, fρ is the carrier density, and ∇ is the Nabla operator. 

In the absence of free charges in a medium such as optical fibers, J and fρ  are equal 

to zero.  

 For a nonmagnetic medium such as optical fibers, the flux densities D and B 

arising in response to the electric and magnetic fields E and H, can be written as: 

PEED +== 0εε  

HB 0μ= ,                                                  (2.3.2) 

where ε0 is the vacuum permittivity, μ0 is the vacuum permeability, and P is the 

induced electric polarizations. 

 The wave equation for the electric field can be derived as the following 

equation by first taking the curl of Eq. (2.3.1-a) and then substituting Eq. (2.3.1-c) into 

the result. 

2

2

02

2

2
1

ttc ∂
∂

−
∂
∂

−=×∇×∇
PEE μ ,                                 (2.3.3) 

where c is the speed of light in vacuum and μ0 ε0 c2=1. In the treatment of the linear 

effect in a medium, we describe the relation between the induced polarization P and 

the electric field E through the electric susceptibility function χe: 

EP eχε 0= .                                                (2.3.4) 

 The dielectric constant εr and the net permittivity of medium ε are related with the 

electric susceptibility function χe as 1+ χe and ε=εrε0, respectively. Substitution of 

these expressions to Eq. (2.3.3) yields  

02

2

0
2 =

∂
∂

−∇
t
EE εμ  

02

2

0
2 =

∂
∂

−∇
t
HH εμ ,                                          (2.3.5) 

where the relations ∇×∇×E=∇(∇E)-∇2·E and ∇·E=0 were used (the last relation is 

valid only in a homogeneous medium).     

 In the frequency domain, the equations above are transformed into Eq. (2.3.3) 

as follows using the operator form ∂/∂t=iω, 
2 2 0k∇ − =E E              

2 2 0k∇ − =H H ,                                               (2.3.6) 

where εμω 0≡k  is the wavenumber and ω is the frequency of the light wave. 

These two equations are the so-called vector Helmholtz equations.   
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2.3.2 Exact solutions of the eigenvalue equation in tapered fibers 

 

 

 

 

 

 

 

 

 

To solve the Helmholtz equations in tapered fibers oriented along the z axis, we 

consider the propagating light wave as a forward z-propagating wave in a cylinder 

coordinate (r, φ, z), as in Fig 2.3.1. The variation of the wave with respect to z is 

described by exp(-iβz), where β, the propagation constant, is equal to the wavenumber 

k. The phasor form of the electric field can be expressed as  

E=E(r, φ, z)=E0(r, φ)exp(-iβz),                              (2.3.7) 

and E0 can be further written as the sum of transverse components (Er and Eφ) and 

longitude component (Ez),  

E0=erEr+eφEφ+ ezEz.                                       (2.3.8) 

Substituting the expression to Eq. (2.3.6) and expanding the Laplacian operator in 

cylinder coordinates result in [55] 

( )
2

2 2 2
02 2

1 1 0z z
z

E Er k n E
r r r r

β
φ

∂ ∂∂ ⎛ ⎞ + + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
.                      (2.3.9) 

The longitude component of magnetic field Hz can be expressed in the similar form 

(later on we are not going to discuss the expression of magnetic field in particular 

since it can be derived in the same way as electric field.) 

( )
2

2 2 2
02 2

1 1 0z z
z

H Hr k n H
r r r r

β
φ

∂ ∂∂ ⎛ ⎞ + + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
.                     (2.3.10) 

Knowing the refractive index distribution of the tapered fiber, the longitude 

components Ez and Hz can be achieved with respect to β.  

 We assume that the solution for Ez is a discrete series of modes, each of which 

has separated dependences on r, φ, and z in product form: 

( ) ( ) exp( )z l l l
l

E R r i zφ β= Φ −∑ .                                (2.3.11) 

x 

z 

y 

r 
θ 

Fig. 2.3.1 The cylinder coordinate (r, φ, z).



Supercontinuum generation in tapered fibers 
 

20 

Each mode in the expansion must itself be a solution of Eq. (2.3.11). A single mode, 

( ) ( ) exp( )zE R r i zφ β= Φ −  can thus be substituted into Eq. (2.3.11) to obtain 

2 2 2
2 2

2 2

1r d R r dR dr
R dr R dr d

β
φ
Φ

+ + = −
Φ

.                             (2.3.12) 

Following the standard derivation by Snyder and Love [55], we obtain the solutions of 

the longitudinal components in the fiber waist (Ez1 and Hz1) and in the surrounded air 

(Ez2 and Hz2) as: 

In the fiber waist, where r < a  (a  is the radius of the fiber waist), we get: 

1 1

1 1

sin
( )

cos
z

m c
z

E A m
J k r

H B m
φ
φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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                                  (2.3.13) 

in the air, where r > a, we get: 

2 2

2 2

sin
( )

cos
z

m c
z

E A m
K k r

H B m
φ
φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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                                 (2.3.14) 

where, 2 2 2
0c corek k n β= − ; A1, B1, A2 and B2 are constants; ( )mJ x and ( )mK x are the 

mth order Bessel function and modified Bessel function, respectively.  

 All the expressions of transverse components (Er1, Hr1, Er2, Hr2, Eφ1, Hφ1, Eφ2, 

Hφ2) in the fiber and in the air are found to satisfy the following relationship with the 

longitudinal components, which are derived from the Maxwell equation. 

2 0z z
c r

iE Hk E i
r r

ωμβ
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= − −
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E Hik E i
r rφ
β ωμ
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i n E Hk H i
r r
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z z
c

E Hik H i n
r rφ

βωε
φ

∂ ∂
= − −
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,                                (2.3.15) 

where 2 2 2 2 2 2 2
0 0 0ck n k nω μ ε β β= − = −  and 2

0
rn εε

ε
= = . Using the boundary 

conditions [55], 

1 2z zE E= , 1 2z zH H= , 1 2E Eφ φ= , 1 2H Hφ φ=         at r a= ,             (2.3.16) 

we can build up a 4 4×  homogeneous matrix equation where those constants (A1, A2, 

B1 and B2) are the variables. In order to get a set of non-zero solutions for the 

variables, the determinant of this matrix should be zero.  

 Following the derivation above, we finally obtain the eigenvalue equation with 
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respect to propagation constant β, which describes the propagation characteristics in a 

tapered fiber [55-57]:  
22

0
2 2 2

( ) ( ) ( ) ( ) ( 1)1
( ) ( ) ( ) ( )

m m m m

m m m m

J a K a J a K a m k n
J a K a J a n K a a n

κ γ κ γ β
κ κ γ γ κ κ γ γ κ γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′ ′ ′ ′ −
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
,    (2.3.17) 

where 2 2 2 2
0n kκ β= − ; 2 2 2

0kγ β= − ; n is the refractive index of the fiber material. m=1 

corresponds to the fundamental mode HE11 in the waist region.  

 

2.3.3 Fractional power leakage into the air and its applications  

One of the important parameters associated with a fiber is the fractional power carried 

in the fiber or the manner in which the power is distributed within the structure. The 

ratio of the power carried in the fiber to the total power that propagates in the mode is 

expressed as: 

fiber

fiber air

P
P P

η =
+

.                                             (2.3.18) 

To calculate the two power quantities (Pfiber and Pair), we first introduce the concept of 

time-average power density. The reason that we consider time-average power density 

instead of instantaneous power density is that most detection equipment cannot 

response fast enough to follow the oscillating fields. The time-average power density 

using the electric and magnetic fields in phasor form is given by 

{ }*1 Re
2

= ×S E H ,                                     (2.3.19) 

where, S is the so called Poynting vector.   

 The expression for power in cylinder coordinates can be further derived as 

follows: 

{ }2 * *

0 0

1 Re
2

a

r rE H E H r dr d
π

φ φ φ−∫ ∫ ,                             (2.3.20) 

where *, , ,rE H Eφ φ and *
rH  can be calculated by Eq. (2.3.15): 

In the core, 
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in the air, 
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where neff is the effective refractive index of the guiding mode, satisfying the relation 

2effn λ β
π

= .  

 Figure 2.3.2 shows the ratio of the power carried in tapered fibers (black solid) 

and the fractional power leakage in the air (red solid) as a function of the waist 

diameter. The pump light is launched into the tapered fiber at 800 nm. It demonstrates 

that with reducing the waist diameter more power leaks out of the fiber and the 

intensity inside decreases.  

 Figure 2.3.3 shows the ratio of the power carried in the tapered fiber (black 

solid) and the fractional power leakage into the air (red dashed) as a function of the 

pump wavelength. The diameter of fiber waist used in the simulation is 1 μm. It 

demonstrates the fractional leakage power increases with wavelength, and at shorter 

wavelength the intensity inside the fiber is higher.  
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 For the purpose of information transmission, a fiber should be designed with a 

high amount of the power carried in the optical fiber to decrease the fiber losses. 

However, a tapered fiber with high leakage power can also find applications in an 

amount of fields, such as dispersion tailoring, gas sensors, atom trapping, and so on.  
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Fig. 2.3.2 Ratio of the power carried in tapered fibers (black solid) and the 
fractional power leakage into the air (red solid) as a function of the waist diameter. 
The pump wavelength is 800 nm. 
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Fig. 2.3.3 Ratio of the power carried in the tapered fiber (black solid) and the 
fractional power leakage in the air (red dashed) as a function of the pump wavelength. 
The diameter of fiber waist used in the simulation is 1 μm. 
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2.4 Principles of nonlinear optics in the waist region of 

tapered fibers 
In section 2.3, we assumed that the overall response of the medium react linearly on 

the external field. This simplification is only valid in the case where the optical field 

strength is rather low. If the applied light field is so strong that it is comparable with 

the inner atomic field, the response of the valence electron is no longer linear and the 

rules of linear optics are not valid any more. In other words, the presence of an optical 

field propagating through a medium changes the properties of the medium which, in 

turn, modify the optical field itself [53]. Therefore, to understand the complete pulse 

propagation behavior for high intensity pulse, we must take full account of both the 

effects of the pulse fields on the medium and the effects of the medium polarization 

back on the pulses.     

 This section introduces the fundamentals of several nonlinear optical effects, 

such as self-phase modulation [27-29], optical soliton formation [58-62], Raman 

inelastic scattering [32,38-40], etc.. We first start with the deviation of the nonlinear 

pulse-propagation equation in section 2.4.1, which governs propagation of optical 

pulses in nonlinear dispersive fibers. The effect of group velocity dispersion (GVD) 

on the pulse propagation is introduced in section 2.4.2. Generally speaking, the 

dispersion effect does not really belong to nonlinear optics, however, the GVD plays a 

critical role in the generation of supercontinua, which makes it convenient to discuss it 

in the chapter of nonlinear optics. Section 2.4.3 deals with self-phase modulation 

(SPM), a phenomenon that leads to spectral broadening of the incident pulses. In 

section 2.4.4, the concept of optical solitons, which are formed as a result of the 

interplay between the dispersive and nonlinear effects, is introduced. Stimulated 

Raman scattering, which is the primary inelastic scattering process occurring in 

optical fibers, will be discussed in section 2.4.5. We will introduce cross phase 

modulation (XPM) in section 2.4.6. The mechanism responsible for this effect arises 

from the changes of the refractive index induced by the intensity of other 

copropagating fields. The last section 2.4.7 deals with four wave mixing, which 

describes the interaction of four waves or photons with each other due to the third-

order susceptibility in a nonlinear medium. 

 

2.4.1 Nonlinear pulse-propagation equation 

Maxwell’s equations can also be used to obtain the nonlinear pulse-propagation 
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equation in dispersive nonlinear media. In section 2.3.1, we derived equation Eq. 

(2.3.5), where the induced polarization P and electrical field E followed the linear 

relation Eq. (2.3.4) through the electric susceptibility function χe. However, with the 

presence of nonlinear effects, the induced polarization does not satisfy this linear 

relation any more, and instead it is expressed by the first few terms in a series 

expansion in powers of the electric field E [63]: 
(1) (2) 2 (3) 3

0 0 0

1 2 3

:
,

ε χ ε χ ε χ= ⋅ + +

≡ + +

P E E E
P P P

# "
"

                          (2.4.1) 

where the quantities χ(2) and χ(3) are called the second- and third-order nonlinear 

optical susceptibilities, respectively. The polarization at time t is assumed to depend 

only on the instantaneous value of the electric field strength. This limit will be relaxed 

in section 2.5. In the case of tapered fibers manufactured by fused silica, only P1 and 

P3 contribute to the total induced polarization because of the following properties of 

fused silica: First, for materials which posses a center of inversion symmetry, such as 

fused silica, the induced polarization has only odd powers of the electric field. Second, 

P1 and P3 are the only nonlinear effects observed before catastrophic or irreversible 

damage of an optical fiber occurs. 

 To solve Maxwell’s equations including nonlinear effects, three assumptions 

are made to simplify the Eq. (2.3.3) [25]. First, P3 is treated as a small perturbation to 

P1, because the nonlinear changes in the refractive index are very small compared to 

the linear effect. Second, the optical field is assumed to maintain its polarization along 

the fiber length so that a scalar approach can be made to replace the exact eigenvalue 

equation introduced in section 2.3.2. It holds not true for a conventional tapered fiber, 

however, the approximation offers quite good results in practice. Third, the optical 

field is assumed to be quasi-monochromatic, that implies that the spectral width is 

much smaller than the central frequency ω0, which is valid for pulses with durations 

longer than 0.1 ps. Moreover, in the simulation of the pulse propagation in tapered 

fibers, we ignore the material absorption effect, which is negligible for a tapered fiber 

since the propagating length is as short as 10 cm.  

 Following the three assumptions, we can write the electric filed by separating 

the rapidly varying part and the slowly varying part in the form 

[ ]0
1 ˆ( , ) ( , ) exp( ) . .
2

t x E t i t c cω= − +E r r ,                            (2.4.2) 

where x is the polarization unit vector and E(r,t) is a slowly varying function of time. 
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The linear polarization part P1 and nonlinear polarization part P3 can be expressed in 

the similar way: 

[ ]1 1 0
1 ˆ( , ) ( , ) exp( ) . .
2

t x P t i t c cω= − +P r r                             (2.4.3) 

[ ]3 3 0
1 ˆ( , ) ( , ) exp( ) . .
2

t x P t i t c cω= − +P r r .                           (2.4.4) 

Substituting Eq. (2.4.2) to Eq. (2.4.1) results in  

( ) [ ]

( ) ( ) [ ]

( ) [ ]{ }
( )

33
3 0 03

2 23 2 *
0 0 0 03

23 3
0 0 03

23
0 0

1( , ) ( , ) exp( ) . .
2
1 exp( 2 ) exp( 2 ) 2 exp( ) . .
2
1 exp( 3 ) . 3 exp( ) . .
2
1 3 ( , ) ( , ) exp( ) .
2 4

xxxx

xxxx

xxxx

xxxx

t E t i t c c

E i t E i t E E i t c c

E i t c c E E i t c c

E t E t i t c c

ε χ ω

ε χ ω ω ω

ε χ ω ω

ε χ ω

= − +

⎡ ⎤= − + + − +⎢ ⎥⎣ ⎦

⎡ ⎤= − + + − +⎣ ⎦

≈ ⋅ − +

P r r

r r[ ]. ,

(2.4.5) 

where the term oscillating at the third-harmonic frequency 3ω0 requires phase 

matching and is generally negligible in optical fibers. By comparing with the Eq. 

(2.4.4), P3(r,t) can be expressed as 

( ) 23
3 0 0

3( , ) ( , ) ( , ) ( , )
4 xxxx NLP t E t E t E tε χ ε ε= ≡r r r r ,                  (2.4.6) 

where εNL is defined as the nonlinear contribution to the dielectric constant and treated 

as a constant during the pulse propagation. 

 It is easier to solve a differential equation in the frequency domain. The 

Fourier transform of ( , )E tr , 0( , )E ω ω−r� , is defined as 

[ ]0 0( , ) ( , ) exp ( )E E t i t dtω ω ω ω
∞

−∞
− = −∫r r� .                   (2.4.7) 

The linear component P1 in frequency domain is expressed as 

 
[ ]

[ ]

(1)0
1 0 0

0

( , ) ( ) ( , ) exp ( )
2

( , ) exp ( ) .

xxP t E i t d

E t i t dt

ε χ ω ω ω ω ω ω
π

ω ω

∞

−∞

∞

−∞

= − − −

= −

∫

∫

r r

r

��
.                  (2.4.8) 

By substituting Eq.(2.4.2-2.4.4) in Eq. (2.3.3), the Fourier transform 0( , )E ω ω−r�  is 

found to satisfy the Helmholtz equation 
2 2

0( ) 0E k Eε ω∇ + =� � ,                                      (2.4.9) 

where (1)( ) 1 ( )xx NLε ω χ ω ε= + +� . We define the total refractive index n�  including the 

nonlinear effect as  
2

2n n n E= +� ,                                           (2.4.10) 
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where n2 is a measure of the fiber nonlinearity and satisfies the relation 

(3)
2

3 Re( )
8 xxxxn
n

χ= . 

 Using the method of separation of variables, we write the expression of 

0( , )E ω ω−r�  as: 

0 0 0( , ) ( , ) ( , ) exp( )E F x y A z i zω ω ω ω β− = −r �� ,                      (2.4.11) 

where 0( , )A z ω ω−�  is a slowly varying function of z and β0 is the wave number at the 

center frequency ω0. Substituting to the Helmholtz Eq. (2.4.9) leads to the following 

two equations [25]: 
2 2

2 2
02 2 ( ) 0F F k F

x y
ε ω β∂ ∂ ⎡ ⎤+ + − =⎣ ⎦∂ ∂

�                            (2.4.12-a) 

( )2 2
0 02 0Ai A

z
β β β∂

+ − =
∂

� � � ,                                (2.4.12-b) 

where the second order derivative 
2

2z
∂
∂

of the slowly varying function 0( , )A z ω ω−�  is 

ignored. Since the dielectric constant ( )ε ω  in Eq. (2.4.12-a) can be approximated by 
2 2 2( ) ( ) 2n n n n n nε ω = = + Δ ≈ + Δ� ,                          (2.4.13) 

where Δn is a small perturbation, we can solve Eq. (2.4.12) taking advantage of first-

order perturbation theory.  

 The eigenvalue β�  is written by ( ) ( )β ω β ω β= + Δ� , where ( )β ω  is the wave 

number of Eq. (2.3.9) in the case without perturbation Δn. To the first order in 

perturbation of nonlinear polarization P3,  βΔ  is found to satisfy the relation 

2
0

2

( , )

( , )

k n F x y dxdy

F x y dxdy
β

∞

−∞
∞

−∞

Δ
Δ = ∫ ∫

∫ ∫
,                                 (2.4.14) 

where F(x, y) is the modal distribution without the nonlinear perturbation. The Eq. 

(2.4.12-b) can be well-approximated by replacing 2 2
0β β−�  with ( )0 02β β β−�  as 

[ ]0( )A i A
z

β ω β β∂
= + Δ −

∂

� � .                                 (2.4.15) 

 Transforming the Eq. (2.4.15) back to the time domain, the propagation 

equation for A(z, t) can be obtained. However, it is impossible to directly transform 

the wave number ( )β ω  to the time domain without knowing its exact functional form, 

therefore, we expand ( )β ω  in a Taylor series about the center frequency ω0 as 
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0 0 0

2 3
2 3

0 0 0 02 3

1 1( ) ( ) ( ) ( )
2 6

d d d
d d dω ω ω ω ω ω

β β ββ ω β ω ω ω ω ω ω
ω ω ω= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞= + − + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

" . 

(2.4.16) 

We define  

0

k

k k

d
d

ω ω

ββ
ω

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
(m=1,2,3,…..).                         (2.4.17) 

βk is called kth order dispersion coefficient and represents the dispersion character of 

an optical fiber. Those dispersion coefficients play critical roles in the light 

propagation through fibers, which will be discussed in detail in the next section.  

 Substituting this equation into Eq. (2.4.15) and taking the inverse Fourier 

transform result in the propagation equation for A(z, t) as 

( ) ( ) ( )

( ) ( ) ( )

1

1

1
2

1

, ,
,

!
,

, , ,
!

kk

k k
k

kk

k k
k

A z t A z ti i A z t
z k t

A z ti i A z t A z t
k t

β β

β γ

+

=

+

=

∂ ∂
= ⋅ + Δ

∂ ∂

∂
= ⋅ +

∂

∑

∑
         (2.4.18) 

where βΔ  is evaluated by using Eqs. (2.4.14) and (2.4.10), and the nonlinear 

parameter γ is given in the form 

( )
4

2

2
2

( , )

( , )

n F x y dxdy

c F x y dxdy

ω
γ

∞

−∞

∞

−∞

= ∫ ∫
∫ ∫

 .                                (2.4.19) 

All the parameters related to the case without nonlinear perturbation, such as ( )β ω  

and ( , )F x y , can be solved in a similar way as the longitude components Ez and Hz 

are solved in section 2.3.2. 

 Equation (2.4.18) is the so-called nonlinear Schrödinger equation (NLSE), 

which describes the pulse propagation in an optical fiber. It considers the dispersion 

character through the dispersion coefficients βk and deals with the nonlinear effect 

through the nonlinear parameter γ, however, it ignores the effect of fiber losses and the 

Raman effect. The Raman effect, arising from the molecular vibrations, plays an 

important role in the supercontinuum generation, which will be introduced in section 

2.4.5) and further discussed in section 2.6. 

 To solve the nonlinear Schrödinger Eq. (2.4.18), we introduce a new reference 

(T, z), which travels with the pulse at group velocity gv . In this reference the variable 

T follows the expression / gT t z v= − , and the NLSE can be written as 
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( ) ( ) ( ) ( )
1

2

2

, ,
, ,

!

kk

k k
k

A z T A z Ti i A z T A z T
z k T

β γ
+

=

∂ ∂
= ⋅ +

∂ ∂∑ .            (2.4.20) 

 

2.4.2 Group velocity dispersion  

Group velocity dispersion (GVD), representing the frequency (or wavelength) 

dependence of the group velocity of light in a medium, is responsible for dispersive 

broadening of pulses and for the group velocity mismatch of different waves in 

nonlinear interactions. Mathematically the GVD of a tapered fiber is defined as the 

second derivative of the propagation constant β with respect to ω, 22

2 cD π β
λ

= − . In 

this section, we will consider the pulse-propagation problem by treating fibers as a 

linear optical medium and only discuss the effects of group velocity dispersion and 

higher order dispersion on the pulse propagation without taking the nonlinear effect 

into account (γ=0). 

 The nonlinear Schrödinger equation with dispersion alone becomes 

( ) ( ) ( ) ( )2 3 4

2 3 42 3 4

, , , ,1
2 6 24

A z T A z T A z T A z Ti i
z T T T

β β β
∂ ∂ ∂ ∂

= − ⋅ + ⋅ + ⋅ +
∂ ∂ ∂ ∂

" .   (2.4.21) 

The cubic and higher–order terms in the expansion are generally negligible if the 

spectral width is much smaller than the center frequency 0ω ωΔ ≤ . If 2 0β ≈  for some 

specific values of center frequency or the spectral width is too large to neglect, the 

higher-order terms have to be included. We first only discuss the effect of the group 

velocity dispersion on the pulse propagation, conveniently described by a simplified 

NLSE 

( ) ( )2

2 2

, ,
2

A z T A z Ti
z T

β
∂ ∂

= − ⋅
∂ ∂

.                                  (2.4.22) 

The equation can be readily solved by using a Fourier-transform method. However, to 

enable a simulation method applicable for a general NLSE, we employ the split-step 

Fourier method [25] [45,46] to solve Eq.(2.4.22). The split-step Fourier method has 

been used extensively to solve the pulse-propagation problems in nonlinear dispersive 

media. This method will be discussed in detail in section 2.5.1. 

 We assume the incident pulse, emitted from mode-locked lasers, to be of 

hyperbolic-secant shape. The electric field ( )0,A T  corresponding to such a pulse can 

be expressed in the form 
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( ) 0
0

0, sech( )TA T P
T

= ,                                     (2.4.23) 

where P0 represents the peak power of the incident pulse and T0 is the input pulse 

width.  

 Solving the Eq. (2.4.22) with the split-step Fourier method, we plot Fig. 2.4.1, 

showing the normalized intensity ( ( ) 2

0

,A z T
P ) in the time domain at different 

propagating distances. It demonstrates that under the effect of group velocity 

dispersion, the pulse width increases with propagation along the fiber, which is the so 

called dispersion-induced broadening. Dispersion-induced pulse broadening can be 

understood as different frequency components of a pulse traveling at slightly different 

speeds along the fiber. 

  

 

 

 

 

 

 

 

            

  

 

 Although the contribution of GVD dominates the dispersion effect in most 

cases, the third-order term proportional to β3 in Eq. (2.4.21) should be taken into 

account provided that 2 0β ≈  or the spectral width is large. Figure 2.4.2 shows the 

normalized pulse intensity under the combined effect of β2 and β3. Different from the 

pulse shape with group velocity dispersion alone (red), the third order dispersion 

distorts the symmetry of the pulse and the pulse shape exhibits an oscillatory structure 

near the trailing edge.  

 In this section, we only consider the effect of dispersion up to the third order. 

However, in the case that the spectral width is extremely large, such as in 

supercontinuum generation, one should definitely take higher order dispersion into 

account, which will be discussed further in section 2.5. 
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Fig. 2.4.1 Pulse intensities in the time domain, with input pulse duration of 0.35 ps, β2 equal to 

0.02 ps2/m and propagation distance z at 0 m (black), 4 m (blue), 8 m (red), respectively. 
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2.4.3 Self phase modulation  

Self phase modulation (SPM) arises from the dependence of the fiber refractive index 

upon the field intensity (optical Kerr effect), which results in a phase alteration of the 

pulses. The alteration of the phase consequently leads to a modulation of the pulse 

spectrum. This is so called SPM-induced spectral broadening.  In this section, we 

show how the self phase modulation affects the pulse propagation through fibers 

without the consideration of dispersion and other nonlinear effects. The combined 

effect of SPM and GVD on the pulse is discussed in section 2.4.4. 

 The nonlinear Schrödinger equation describing the effect of self phase 

modulation alone can be expressed as 

( ) ( ) ( )2,
, ,

A z T
i A z T A z T

z
γ

∂
=

∂
.                               (2.4.24) 

The following solutions can be readily obtained by assuming ( ), exp( )NLA z T V iφ=  

[25], 

20; NLV V
z z

φ γ∂∂
= =

∂ ∂
.                            (2.4.25) 

The amplitude V is constant along the fiber, therefore, the phase expression can be 

obtained by analytically integrating the phase equation as 
2( , ) (0, )NL z T z A Tφ γ= ,                                 (2.4.26)   

and                   

( )2( , ) (0, ) exp (0, )A z T A T i z A Tγ= .                           (2.4.27) 
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Fig. 2.4.2 Pulse intensities in the time domain for input pulse (dashed curve), β2 alone (blue), and 

combined effect of β2 and β3. Input pulse duration is 0.04 ps, β2 and β3 are equal to -0.001 ps2/m

and 0.0001 ps3/m, respectively, and propagation distance z is 5 m. 
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 The solutions show that SPM causes an intensity-dependent phase shift but the 

pulse shape remains unchanged. The SPM-induced spectral broadening is a 

consequence of the time dependence of the phase, which implies that the 

instantaneous optical frequency differs across the pulse. The frequency difference 

from its central value ω0 is given by 

2( ) (0, )NLT z A T
T T

φδω γ∂ ∂
= − = −

∂ ∂
.                          (2.4.28) 

The time dependence of ( )Tδω , referred to as frequency chirping, increases with the 

propagated distance, which means new frequency components are generated 

continuously as the pulse propagates along the fiber.  

  

 

 

 

 

 

 

 

 

  

 

 The frequency chirp depends on the pulse shape. In the case of a hyperbolic-

secant incident pulse with the pulse shape given in Eq. (2.4.23), the SPM-induced 

chirp ( )Tδω  becomes 

20

0 0 0

2( ) sech tanhP z T TT
T T T

γδω
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                          (2.4.29) 

Figure 2.4.3 shows the induced frequency chirp and the nonlinear phase shift across 

the pulse in the temporal domain. The temporal variation of the phase has the same 

shape as that of the pulse, while the frequency chirp is negative near the leading edge 

and becomes positive near the trailing edge of the pulse. In other words, the new 

frequency components with red shift are generated in the leading part of the pulse and 

the components with blue shift are generated in the trailing region.  

 The spectral property can be obtained by taking the Fourier transform of the 

electric field A(z, T), which, however, depends not only on the pulse shape but also on 
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Fig. 2.4.3 The induced frequency chirp (black) and the nonlinear phase shift (red) 

across the pulse in temporal domain. 



2.4 Principles of nonlinear optics in the waist region of tapered fibers 
 

33 

the initial chirp imposed on the pulse. A hyperbolic-secant electric field with chirp 

parameter C can be written as 

( )
2

0
0 0

0, sech exp
2

T iCTA T P
T T

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.                       (2.4.30) 

Substituting this expression into Eq. (2.4.27), the spectral properties are obtained. 

Figure 2.4.4 shows the spectrum generated by SPM without initial chirp, which 

exhibits a multipeak structure. The origin of this oscillatory structure can be 

understood by recalling Fig. 2.4.3, the same chirp occurs at two time points across the 

pulse, therefore this pulse has the same instantaneous frequency at two distinct 

positions. These two points, considered as two waves of the same frequency but 

different phases, can interfere with each other. The oscillatory structure is the result of 

such interference [27].  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.4.4 Spectrum generated by SPM without initial chirp. 
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Fig. 2.4.5 Spectrum generated by SPM with positive initial chirp (red) and 
negative initial chirp (blue). 
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 Figure 2.4.5 shows the spectra generated by SPM with positive (red one) and 

negative (blue one) chirps. Comparing the spectra, we can see that an initial frequency 

chirp can lead to drastic changes in the SPM-broadened spectrum. A negative chirp 

parameter increases the spectral broadening while the opposite occurs in the case of a 

positive chirp. This can be understood by noting that the sign of frequency chirp 

varies the same as that of the initial chirp, in the case of C positive, therefore, a 

positive initial chirp adding the extent of the SPM-induce chirp results in an enlarged 

broadening spectrum. In the case of C negative, the two chirps contribute opposite 

sign, hence, a negative initial chirp reduces the spectral width of the pulse. 

Note: Figure 2.4.5 shows an opposite property as that given in reference [64], where 

the red curve represents the spectrum with negative chirp and the blue one 

corresponds to a positive chirp. The physical explanation in this dissertation also 

differs from what the author stated in [64].  

 

2.4.4 Optical soliton 

We have discussed the influence of the dispersive and nonlinear effects on the pulse 

propagation along fibers separately. In this section, the interplay between those effects 

is described, which in certain conditions can result in the formation of the so called 

soliton. The word soliton refers to special kinds of wave packets that can propagate 

undistorted over long distances.  

 The nonlinear Schrödinger equation, which describes the combination of 

dispersion and nonlinear effects, can be written as: 

( ) ( ) ( ) ( )
2

2

2 2

, ,
, ,

2
A z T A z Ti i A z T A z T

z T
β γ

∂ ∂
= − ⋅ +

∂ ∂
.             (2.4.31) 

Before solving the NLSE, we first introduce a new parameter called “soliton number 

N”, which describes the relative importance of the self phase modulation and 

dispersion influence on pulse evolution along the fiber. It is defined as  
2

0 0

2

PTN γ
β

= .                                            (2.4.32) 

For soliton number N  much smaller than 1, dispersion dominates the pulse evolution, 

in the case of N  much larger than 1, SPM dominates, and for values of N  

approximately equal to 1, both SPM and GVD play an equally important role during 

pulse propagation.  

 Although the soliton number N is independent of the sign of 2β , the pulse 
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evolution relies strongly on whether the GVD is normal ( 2 0β > ) or anomalous 

( 2 0β < ). For GVD in the normal-dispersion regime, the pulse broadens rapidly, 

whereas in the case of GVD in anomalous-dispersion regime, the pulse appears to 

propagate in a steady state along the fiber. This can be understood by noting that SPM 

generates new frequency components that are red-shifted near the leading edge and 

blue-shifted near the trailing edge of the pulse [25]. In the normal-dispersion regime, 

the red components travel faster than the blue ones, therefore, the pulse is forced to 

broaden further and further and such a combined effect of SPM and GVD even leads 

to an enhanced rate of pulse broadening compared with that expected from GVD 

alone. However in the case of GVD in anomalous-dispersion regime, the red 

components travel more slowly than the blue components, therefore, the SPM-induced 

chirp given in Eq. (2.4.6) is cancelled completely by the dispersion effect, which leads 

to an unchanged pulse shape during the propagation. Such an undistorted pulse 

propagating in the fiber corresponds to a bright soliton and especially the soliton with 

N equal to 1 corresponds to the so-called fundamental soliton. We should note that this 

holds true for a focusing nonlinearity with n2>0, as is the case in SiO2. 

 In the case of higher-order solitons, where N>1, the pulse evolution can also be 

described by the general solution of Eq. (2.4.31). Figure 2.4.6 and Fig. 2.4.7 show the 

spectral and temporal properties of a propagating hyperbolic-secant pulse with soliton 

number N of 3. SPM dominates initially but GVD soon catches up and leads to pulse 

contraction. An interesting property of higher order solitons is that as the pulse 

propagates along the fiber, it first contracts to a fraction of its initial width, splits into 

several distinct pulses in the middle of one soliton period and then merges again to 

recover the original shape at the end of the soliton period. The soliton period z0 is 

defined as: 
2

0
0

22
Tz π
β

= .                                             (2.4.33) 

Soliton theory [65] shows: for pulses with a hyperbolic-secant shape, the two effects 

can cooperate in such a way that the pulse follows a periodic evolution pattern with 

the original shape recurring at multiples of the soliton period z0.  
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2.4.5 Raman scattering 

When electromagnetic radiation at optical frequencies travels through media, various 

scattering processes can occur, such as Raman scattering [32,38-40], Rayleigh-wing 

scattering, Brillouin scattering, and so on. In each case light is scattered by 

fluctuations of the refractive index which are caused by the intermolecular oscillations 

or twists of the medium. In this section, we only discuss the Raman scattering, which 

is the primary scattering process occurring in the supercontinuum generation of 

tapered fibers.  

 This section introduces the effect of Raman scattering on the pulse propagation 

in fibers. We start with a general view of Raman scattering, which explains the 
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Fig. 2.4.6 The spectral properties of a propagating hyperbolic-secant pulse with 
soliton number N =3. 

Fig. 2.4.7 The temporal properties of a propagating hyperbolic-secant pulse with 
soliton number N = 3. 
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properties of Raman scattering with a quantum-mechanical energy diagram. Then we 

discuss the Raman gain spectrum and the nonlinear Raman response function, which 

are indispensable when solving the NLSE with the presence of Raman scattering.  

 Spontaneous Raman scattering can transfer a small part of the incident light 

with a distinct frequency into a new wave with lower or higher frequency by exciting 

molecular vibrations [25]. The origin of the frequency change lies in an energy 

exchange between the photons and the medium, and the frequency shift is determined 

by the vibrational modes of the material. Those new components shifted to lower 

frequencies are called Stokes waves and those shifted to higher frequencies are called 

anti-Stokes waves. The intensity of the Stokes wave is in the case of a thermal 

equilibrium much higher than the intensity of the anti-Stokes wave.  

 

 

 

 

 

 

 

 These properties can be understood through the quantum-mechanical energy 

diagram shown in Fig. 2.4.8 [39]. An incident pump photon at frequency ωP excites 

the molecule from the ground state G1 into a higher virtual energy state N. The 

molecule undergoes a decay falling down into the final state G2, which is 

accompanied by the emission of a Stokes photon at frequency ωS. Similarly, Raman 

anti-Stokes scattering at frequency ωA is induced by a transition from level G2 to level 

G1 with level N as the intermediate level. The anti-Stokes waves are many orders of 

magnitude weaker than the Stokes waves because in thermal equilibrium the 

population of level G2 is smaller than the population in level G1 by the Boltzmann 

factor 2 1exp G GE E
kT
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

 [39]. 

 The Raman scattering depends on the material resonances. The resonance 

frequencies of the molecular vibration modes in fused silica are overlapped with each 

other and form rather broad frequency bands. Therefore, optical fibers show Raman 

scattering over a relatively wide frequency range. The Raman gain gR, which is 

defined as Eq. (2.4.34) [8], depends mainly on the composition of the fiber core and 

ωP ωS 
(a)  

ωA ωP 

(b) 

Fig. 2.4.8 Quantum-mechanical energy diagram of Raman scattering for (a) Stokes wave and 
(b) anti-Stokes wave 
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the contained dopants: 

( )S
R P S

dI g I I
dz

ω= Δ ,                                         (2.4.34) 

where IS is the Stokes intensity, IP is the pump intensity, Δω is the frequency 

difference between the pump and Stokes waves, and the Raman-gain coefficient gR is 

related to the cross section of spontaneous Raman scattering [66-68].  

 The Raman gain gR(Δω), as a function of the frequency shift, is the most 

important quantity to describe Raman scattering, which is shown in Fig. 2.4.9 [68].  

 

 

 

 

 

 

 

 

 

  

  

 Due to the frequency-shift property, the Raman gain can be described by a 

time-dependent nonlinear refractive index [63], related to a response function in the 

expression of the third order nonlinear coefficient (3)χ . Equation (2.4.35) expresses 

the third order polarization in the general case, where Raman scattering is present and 

the third order nonlinear coefficient (3)χ  consists of a delayed Raman response 

function.  

(3)
3 0 1 2 3 1 2 3 1 2 3( , ) ( , , , ) ( , ) ( , ) ( , )t t t t t t t t dt dt dtε χ

∞

−∞
= ∫ ∫ ∫P r E r E r E r# ,      (2.4.35) 

where (3)
1 2 3( , , , )t t t tχ  is the time-dependent nonlinear coefficient.  

 To determine the nonlinear coefficient (3)
1 2 3( , , , )t t t tχ , the Born-Oppenheimer 

(BO) approximation [63] is applied. For purely optical effects in transparent materials, 

two distinct physical processes contribute to the third-order nonlinear polarization. 

First, there is an electronic contribution from the nonlinear distortion of the electron 

orbits around the average positions of the nuclei. This polarization responds rapidly to 

field changes, within a few electronic cycles ( 0.1 fs∼ ). Second, there is a nuclear 

Fig. 2.4.9 The normalized Raman gain spectrum as a function of frequency shift.  
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contribution arising from an optical field induced change in the motions of the nuclei. 

This polarization responds to the field changes much more slowly than the electronic 

one ( ps∼ ). The Born-Oppenheimer approximation is the assumption that the 

electronic motion and the nuclear motion in molecules can be separated. Referred to 

the BO approximation, the third order nonlinear susceptibility becomes [63] 
(3)

1 2 3 1 1 2 2 3 1 1 2 2 3( , , , ) ( ) ( ) ( ) ( ) ( ) ( )ijkl ijkl ijklt t t t t t t t t t t t d t t t tχ σ δ δ δ δ δ= − − − + − − − ,   (2.4.36) 

where ( )tδ  is a delta function, ijklσ  is a constant tensor which describes the electronic 

nonlinearity, and ( )ijkld t  is a time-dependent function which describes the nuclear 

contribution to the third-order optical polarization and can be expressed in a similar 

way as delta function ( ) 1ijkld t dt
∞

−∞
=∫ .  

 Substituting Eq. (2.4.36) into Eq. (2.4.35) and assuming the electric field to be 

x̂  polarized, the third-order polarization can be written as 

( ) 2
3 0

22
0

0 0 22
0 0 0

0 0 0 0

(3
0

( ) ( ) ( ) ( ) ( )

3 1( ) ( ) ( ) ( )
4 2

3 1
3 1 4 2( ) ( ) ( ) ( )3 1 3 14 2

4 2 4 2
3
4

t

xxxx xxxx

t

xxxx xxxx

t

R

P t t t d t t E t E t dt

t t d t t E t E t dt

D
D E t t t h t t E t dt

D D

ε σ δ

ε σ δ

σ
ε σ δ

σ σ

ε χ

−∞

−∞

−∞

′ ′ ′ ′= − + −

⎛ ⎞′ ′ ′ ′= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞ ′ ′ ′ ′= + − + −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟+ +
⎝ ⎠

=

∫

∫

∫

( ) 2) 2( ) (1 ) ( ) ( ) ( ) ,
t

R R RE t f t t f h t t E t dtδ
−∞

′ ′ ′ ′− − + −∫
(2.4.37) 

where 0
3
4

σ  and 0
1
2

D  are the electric and nuclear contribution to the nonlinear 

polarization with the incident light of continuous waves (cw) laser ( 0T → ∞ ), 

respectively. The factors of 3
4

 and 1
2

 appearing in the relation represent the local 

field correctors, which can be derived in the similar way as in Eq. (2.4.5). ( )Rh t  is the 

nuclear response function responsible for the Raman gain, (3)χ  is the total nonlinear 

coefficient with the incident light of CW laser, and fR represents the fractional 

contribution of the delayed Raman response to nonlinear polarization. 

 0
3
4

σ  and 0
1
2

D  can be evaluated by an intensity-induced polarization changes 

(IIPC) experiment, affiliated with the measurement of differential Raman-scattering 

cross sections [69]. Details are beyond the scope of this thesis. Knowing the values of 
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0
3
4

σ  and 0
1
2

D , the fractional contribution of Raman scattering fR is determined to be 

0.18. 

 

 

 

 

 

 

 

 

 

 

 The relation between the Raman response function hR(t) and Raman gain 

spectrum satisfies the following equation: 

(3)0

0

3( ) Im[ ( )]
4R R Rg f h

cn
ωω χ ωΔ = Δ� ,                           (2.4.38) 

where Im stands for the imaginary part and ( )Rh ωΔ�  is the Fourier transform of the 

Raman response function hR(t). The imaginary part of ( )Rh ωΔ�  can be readily 

calculated from the Eq. (2.4.38), and the real part of ( )Rh ωΔ�  can be generated from 

the imaginary part by using the Kramers-Kronig transformation. The Fourier 

transformation of ( )Rh ωΔ�  provides the Raman response function, shown in Fig. 

2.4.10 [68]. 

Note 1: The derivation of the Raman response function and Raman gain spectrum is 

different from that in reference [70]. In my opinion, the formula used in the reference 

[68], especially Eqs. (2.3.30) and (2.3.31) are lacking a reliable theory. The paper 

“Theoretical description of transient stimulated Raman scattering in optical fibers” by 

K. J. Blow et al. [46] was used by the authors as a reference to support these two 

equations, however, I haven’t found the same formula in this referenced paper. Using 

those equations to derive the Raman response function, which is given by Eq. (2.3.35) 

in [70], one would obtain a factor of 3/4 different from the Eq. (2.4.38) in my 

dissertation. 

Note 2: The response function with respect to time given in [70] is plotted in arbitrary 

units. Fig. 2.4.10 in my dissertation is a normalized result, therefore, the amplitudes of 
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Fig. 2.4.10 Raman response function of fused silica. 
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the two figures are different. 

 Using the same way as deriving the NLSE in an instantaneous medium shown 

in section 2.4.1, we can obtain the following equation for pulse evolution inside a 

single-mode fiber: 

( ) ( ) ( ) ( )( )1
2

2 0

, ,
1 , ( ) ,

!

kk

k k
k

A z T A z Ti ii A z T R t A z T t dt
z k T T

β γ
ω

+ ∞

−∞
=

∂ ∂ ⎛ ⎞∂ ′ ′ ′= ⋅ + + −⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ∫ , 

(2.4.39) 

where ( , )A z t  is envelope of the electric field, kβ  is the kth order dispersion coefficient 

at center frequency 0ω , γ is the nonlinear parameter, and R(t) is the response function 

of fused silica satisfying the following formula 

( ) (1 ) ( ) ( )R R RR t f t f h tδ= − + .                                 (2.4.40) 

To describe stimulated Raman scattering properly we precede the nonlinear term 

with a time derivative operator, which ensures that the coupled NLSEs conserve the 

number of photons and not the optical energy [41]. In this way the equations are 

valid for pulses with spectral widths as large as one third of the carrier frequency. 

 Substituting Eq. (2.4.40) into Eq. (2.4.39), the nonlinear Schrödinger 

equation becomes: 

( ) ( ) ( )( )

1

2

22 2

0
0 0

!

1 1 1 ( ) , .

k k

k k
k

R R R R

A i A
z k T

i ii f A A f A A f A h t A z T t dt
T T

β

γ
ω ω

+

=

∞

∂ ∂
− ⋅

∂ ∂

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪⎡ ⎤ ′ ′ ′= − + − + + −⎨ ⎬⎜ ⎟⎣ ⎦∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

∑

∫
(2.4.41) 

The first term on the right side of Eq. (2.4.41) corresponds to the self phase 

modulation, and the third term describes the delayed Raman response, both of which 

we have discussed. The second term expressed as ( ) 2

0

1 R
ii f A A

T
γ

ω
∂ ⎡ ⎤− ⎣ ⎦∂

 represents 

the so-called self steepening effect [25]. The self steepening, which results from the 

intensity dependence of the group velocity, leads to an asymmetry in the generated 

spectrum.  

 

2.4.6 Cross-phase modulation 

Cross-phase modulation (XPM), similar to self-phase modulation, is also one of the 

most important nonlinear effects in tapered fibers [34-37]. The fiber nonlinearity can 

couple two or more fields through cross-phase modulation without inducing any 
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energy transfer among them [25]. This effect leads to a phase alteration of the pulses 

and consequently changes the spectrum of the output pulse. The XPM is similar to 

SPM, however, the spectral broadening of the pulses arise from the effect that 

different optical fields with different wavelengths interact with each other, as 

copropagating simultaneously inside the fiber. The refractive index, which an optical 

field experiences, depends not only on the intensity of that field but also on the 

intensity of other copropagating fields. Hence, a pulse at one frequency has an 

influence on a pulse at other frequencies. 

 The XPM phenomenon can be described by solving the coupled nonlinear 

Schrödinger equations [25]. In this section, we do not go further into the mathematical 

derivation of the XPM-induced coupled NLSEs with regards to the third-order 

nonlinear polarization. We are going to demonstrate the properties of the XPM effect 

by solving the coupled NLSEs in the case of two optical pulses of different frequency 

propagating simultaneously in a tapered fiber. The theoretical simulations on photonic 

crystal fibers have been done with a set of simplified coupled NLSEs [71], where the 

Raman effect is simplified but not suitable for the simulation in the case of the pulse 

duration in the femtosecond range.  

 The copropagation of two pulses in a tapered fiber with a pump of 

femtosecond duration is found to satisfy the following set of coupled generalized 

nonlinear Schrödinger equations: 

( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }

1

2

0

2 2 2 2

, ,
!

1 ,

, , 1 , 2 ,

kk
P PP

k k
k

P P
P

R R P S R P S

A z T A z Ti
z k T

ii A z T
T

f h t A z T t A z T t dt f A z T A z T

β

γ
ω

+

=

∞

−∞

∂ ∂
− ⋅

∂ ∂

⎛ ⎞∂
= + ⋅⎜ ⎟∂⎝ ⎠

′ ′ ′ ′× − + − + − + ⋅

∑

∫
 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }

1

1 2
2

0

2 2 2 2

, , ,
!

1 ,

, , 1 , 2 , ,

kk
S S SS

k k
k

S S
S

R R P S R S P

A z T A z T A z Ti
z T k T

ii A z T
T

f h t A z T t A z T t dt f A z T A z T

β β β

γ
ω

+

=

∞

−∞

∂ ∂ ∂
− − ⋅ − ⋅

∂ ∂ ∂

⎛ ⎞∂
= + ⋅⎜ ⎟∂⎝ ⎠

′ ′ ′ ′× − + − + − + ⋅

∑

∫
 

(2.4.42) 
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where, ( ),PA z T  and ( ),SA z T represent the electric fields of the pump pulse and 

signal pulse, respectively, a reference frame travelling with the pump is used, P
kβ  and 

S
kβ are the dispersion coefficients at the center frequency of the pump and signal, 

respectively, 1 2β β−  is related to the group-velocity mismatch between the two 

incident pulses, and Pγ  and Sγ  are the nonlinear parameters at the center frequency of 

the pump and signal, respectively. The Raman fraction Rf , equal to 0.18, multiplies 

the convolution integral term, which accounts for the delayed part of the nonlinear 

response. The instantaneous part of the nonlinearity is described by the electronic 

fraction ( )1 Rf−  multiplying the last two terms in the equations. The second last term 

is responsible for self-phase modulation, and the last term results from phase 

modulation of one wave by the copropagating wave, responsible for cross-phase 

modulation. The factor of 2 shows that XPM is twice as effective as SPM for the same 

intensity.  

 In our simulations, we consider a tapered fiber with diameter of 3.0 μm and 

waist length of 1 m. A tapered fiber with such a long waist length is not yet available 

in practice, however, to demonstrate the properties of the cross-phase modulation 

more clearly, we employed such a fiber in our simulations. The pump with a 

wavelength of 890 nm has the nonlinear parameter Pγ  of 0.0418/W/m, dispersion 

coefficients of 3 2
2 -8.388 10 ps mβ −= × ,  5

3 7.906 10β −= ×  3ps m , 

7 4
4 -1.010 10 ps mβ −= × , 10 5

5 2.237 10 ps mβ −= × , 13
6 -5.755 10β −= ×  6ps m ,  

15 7
7 1.731 10 ps mβ −= × , and an initial electric field (0, )PA t  with the form 

( )0sech / pump
PupmP T T , where the peak power of the pump PumpP  is equal to 150 W 

and the pulse width 0
pumpT  is equal to 150 fs.  The signal with a wavelength of 790 nm 

has the nonlinear parameter Pγ  of 0.0474 /W/m, dispersion coefficients of 

3 2
2 8.361 10 ps mβ −= × ,  5

3 5.992 10β −= ×  3ps m , 8 4
4 -6.010 10 ps mβ −= × , 

10 5
5 1.234 10 ps mβ −= × , 13

6 -2.862 10β −= ×  6ps m ,  16 7
7 7.837 10 ps mβ −= × , and an 

initial electric field (0, )SA t of signalP  ( )( )0sech / signal
dT t T− , where the peak power 

of the signal signalP  is equal to 1 W, the pulse width  0
signalT  is equal to 200 fs, and a 

delayed parameter td used to compensate the group velocity mismatch is equal to 40 fs. 

 Figure 2.4.11 shows the spectral and temporal properties of the copropagating 
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pulses in the tapered fiber. For a better understanding of cross-phase modulation, we 

also present the spectra and intensities of the pump and signal, generated by the wave 

itself alone, as shown in Fig. 2.4.12.  
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Fig. 2.4.11 The spectral (a) and temporal (b) 
properties of the pump and signal pulses with 
consideration of cross-phase modulation.  
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Fig. 2.4.12 The spectral (a) and temporal (b) 
properties of the pump and signal pulses without 
taking cross-phase modulation into account   
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The figures demonstrate the effect of the cross-phase modulation induced by 

the pump pulse influences the behavior of the signal pulse quite substantially. Without 

the presence of the pump pulse, the spectrum of the signal pulse is negligibly 

broadened, because the signal wavelength is located in the normal dispersion region. 

However, due to the appearance of the copropagating pump pulse, the signal pulse 

feels the nonlinear effect induced by the cross-phase modulation, which is responsible 

for new frequency components generated in the spectrum of the signal pulse. 

 

2.4.7 Four wave mixing  

Four wave mixing (FWM) describes a nonlinear process where four waves or photons 

interact with each other due to the third-order susceptibility in a medium [30-33]. 

Such a nonlinear process belongs to parametric processes because it modulates the 

medium parameters, such as the refractive index. The parametric processes also 

include the effect due to the second-order nonlinearity, such as second harmonic 

generation and sum-frequency generation [25]. The second-order susceptibility in 

some crystals (BBO for example) is 12 orders of magnitude higher than the third-

order susceptibility, however, in fused silica, an isotropic medium, the second-order 

susceptibility vanishes and consequently the third-order nonlinearity is responsible for 

the parametric processes. Despite the smaller value of the third-order nonlinearity, 

FWM is also an important effect to generate new frequency components in optical 

fibers due to the intense propagating light. 

 FWM phenomena can be understood by a quantum mechanical model. An 

atom is excited into a virtual intermediate state by the simultaneous annihilation of 

two photons [39]. When the atom jumps back to the ground state it generates two new 

photons, as shown in Fig. 2.4.13. The life-time of the atom in the virtual excited state, 

corresponding to the distortion of the electron cloud, is inversely proportional to the 

virtual state energy and is on the order of one femtosecond. Therefore, annihilation 

and generation of the photons are approximately instantaneous. The atom remains 

unchanged after the interaction, hence the rules of conservation of energy (Eq. 2.4.43) 

and momentum (Eq. 2.4.44) have to be fulfilled during the process:   

1 2 3 4ω ω ω ω+ = +                                                 (2.4.43) 

and 

1 2 3 4k k k k+ = +
G G G G

.                                                (2.4.44) 
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 The conservation of momentum leads to the phase matching condition. The 

efficiency of FWM depends very strongly on the phase matching of the frequency 

components, and consequently relies on the fiber dispersion properties. In tapered 

fibers, the most often encountered FWM effect during continuum generation is the 

degenerate FWM process, where two pump photons generate a Stokes and an anti-

Stokes photon: 

2 p st asω ω ω= + ,                                              (2.4.45) 

where pω , stω , and asω  represent the frequencies of the pump, Stokes, and anti-Stokes 

photons, respectively. The conservation of momentum, which corresponds to the 

phase matching condition, is fulfilled with the equation: 

( ) ( )02 p st asP L Lβ γ β β+ = + ,                                  (2.4.46) 

where P0 and γ are the peak power and nonlinear parameter of the pump, respectively, 

L corresponds to the length of taper waist, and βp, βst, and βas represent the 

propagation constants of the pump, Stokes and anti-Stokes photons, respectively. 

Substituting the expansion of constant β in a Taylor series (see section 2.4.1), we can 

obtain the final phase matching condition: 

( ) ( )2 42 4
0 0

2 24a p a p Pβ βω ω ω ω γ− + − + = ,                          (2.4.47) 

where only the even terms of the series expansion contribute to the phase matching 

condition due to the energy conservation as shown in Eq. (2.4.47) and we ignored the 

higher order dispersion influences.  

 Figure 2.4.14 shows the phase matching diagrams as a function of pumping 

wavelengths for a tapered fiber with waist length of 90 mm, waist diameter of 2.1 μm, 

and zero dispersion wavelength of 730 nm. The dashed blue, solid red and solid black 

curves represent the phase matching diagrams with pump powers equal to zero, 1 kW 

and 8 kW, respectively. The phase matching diagrams demonstrate that the pump 

wavelengths, which are located in the normal-dispersion regime, are phase matched 

Fig. 2.4.13  Quantum-mechanical description of four wave mixing 
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with a broad range of Stokes and anti-Stokes wavelengths without a requirement for a 

high power density. In other words, even a small amount of light in the normal-

dispersion regime can serve as parametric pump and generates new frequency 

components. However, in the case where the pump wavelength lies in the anomalous-

dispersion regime, the phase matching can be achieved only if the pump power is high 

enough to compensate the phase mismatch arising from the material dispersion.  
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Fig, 2.4.14 The phase matching diagram with peak power of zero (dashed blue), 
1 kW (red), and 8 kW (black), respectively. 
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2.5 Numerical simulation 
Generally, a nonlinear partial differential equation, such as the nonlinear Schrödinger 

equation, has no analytic solutions except for some special cases. A numerical 

approach is therefore required to solve pulse-propagation problems in optical fibers. 

In this section, we will concentrate on the numerical simulations of supercontinuum 

generation. Section 2.5.1 introduces the so called “split-step Fourier method”, which 

is common and efficient to solve a nonlinear partial differential equation. In section 

2.5.2, theoretical simulations using the split-step Fourier method will be compared 

with experimental results.   

  

2.5.1 Split-Step Fourier Method 

To study the pulse-propagation problem in tapered fibers and photonic crystal fibers, 

we applied the split-step Fourier method [25] [45,46] to solve the nonlinear 

Schrödinger equation. In this section, we will briefly introduce the philosophy behind 

the method and discuss its implementation in our simulations in detail.    

The nonlinear Schrödinger equation, including higher order dispersion, self 

steepening, and Raman scattering, is expressed in Eq. (2.5.1):  

( ) ( ) ( ) ( )( )1
2

2 0

, ,
1 , ( ) ,

!

kk

k k
k

A z T A z Ti ii A z T R t A z T t dt
z k T T

β γ
ω

+ ∞

−∞
=

∂ ∂ ⎛ ⎞∂ ′ ′ ′= ⋅ + + −⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ∫ .  

(2.5.1) 

We write the Eq. (2.5.1) in the following form: 

( ) ( ),
( , )

A z T
D N A z T

z
∂

= +
∂

,                                        (2.5.2) 

where                                   
1

2 !

k k

k k
k

iD
k T

β
+

=

∂
= ⋅

∂∑                                                   (2.5.3) 

and                
( ) ( ) ( )( )2

0

1 , ( ) ,
,

i iN A z T R t A z T t dt
A z T T

γ
ω

∞

−∞

⎛ ⎞∂ ′ ′ ′= + −⎜ ⎟∂⎝ ⎠
∫ .      (2.5.4) 

The following approximation is made in the split-step Fourier method: Within 

a small propagation distance, the dispersive and nonlinear effects act on the pulse 

independently. In the simulations presented in this dissertation, we take three steps to 

describe the pulse propagation over one segment from z to z+h. In the first step, 

dispersion effects act alone from z to z+h/2 and N =0; in the second step, the 

nonlinear effects are included in the middle of the segment, and they act alone from z 
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to z+h; in the third step, dispersion effects act alone from z+h/2 to z+h. 

Mathematically, this procedure can be expressed by Eq. (2.5.5): 

( ) ( ) ( ), exp exp exp ,
2 2

z h

z

h hA z h T D N z dz D A z T
+⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′+ ≈ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ .         (2.5.5) 

Under further simplification of the integral, Eq. (2.5.5) is replaced by 

( ) ( ) ( ) ( ), exp exp exp ,
2 2 2
h h hA z h T D N z N z h D A z T⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤+ ≈ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.   (2.5.6) 

To evaluate the exponential operator exp
2
h D⎛ ⎞

⎜ ⎟
⎝ ⎠

, we apply the following formula: 

 ( ) ( )1exp ( , ) exp ,
2 2T T
h hD A z h F D i F A z hω− ⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎡ ⎤= −⎨ ⎬⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎣ ⎦⎩ ⎭

,                 (2.5.7) 

where FT stands for Fourier-transform operation, ( )D iω−  is the Fourier transform of 

D , and ω is the frequency in the Fourier domain. Since ( )D iω−  is a number instead 

of an operator, Eq. (2.5.7) can be calculated readily. Using the same method, we 

obtain the electric field A(z+h, T) at propagation distance z+h as Eq. (2.5.8): 

( ) ( ) ( )1, exp ,
2T T
hA z h T F D i F X z hω− ⎧ ⎫⎡ ⎤ ⎡ ⎤+ ≈ −⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎩ ⎭

,                     (2.5.8) 

where ( ) ( ) ( ) ( ) ( )1, exp exp ,
2 2T T
h hX z h N z N z h F D i F A z hω− ⎧ ⎫⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + −⎨ ⎬⎜ ⎟ ⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦⎩ ⎭

.  

 Two difficulties arise when we evaluate the electric field A(z+h, T). First, 

( )N z h+  in the expression of X(z, h) is unknown, since it is a function of electric 

field A(z+h, T). Second, the integral term in Eq. (2.5.4), which represents the delayed 

Raman scattering, is hard to evaluate directly.  To solve the first problem, we employ 

an iterative method. ( )N z h+  in the expression of X(z, h) is initially replaced by 

( )N h  to estimate A(z+h, T), which can be used to evaluate ( )N z h+ . Knowing the 

value of ( )N z h+ , we can calculate the new value of A(z+h, T). In our simulations, 

two iterations are implemented. The second problem can be settled by using 

convolution theory. The integral term in Eq. (2.5.4) is therefore expressed as  

( ) ( )

( )

( ) ( ){ }

2 2

0

2

21

( ) , ( ) ,

( ) ,

, ,

T

T T T

R t A z T t dt R t A z T t dt

R T A z T

F F R T F A z T

∞

−∞

−

′ ′ ′ ′ ′ ′− = −

= ⊗

⎡ ⎤⎡ ⎤= ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦

∫ ∫
                 (2.5.9) 
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where the imaginary part of ( )TF R T⎡ ⎤⎣ ⎦  can be readily obtained by the experimentally 

measured Raman gain spectrum given in Fig. (2.4.9), and the real part of ( )TF R T⎡ ⎤⎣ ⎦  

can be obtained by using a Kramers-Kronig transform (see section 2.4.5).  

So far we are able to implement split-step Fourier method. The program was 

written using Matlab, where the discrete Fourier transform is straightforward. To 

obtain reliable results, the time and frequency discretization points are chosen to be 

213, the time window size is 12.868 ps, and the longitudinal step size h is set to be less 

than 50 μm.  

  

2.5.2 Comparisons between simulations and experiments in tapered fibers 

In the section 2.4.1, a nonlinear Schrödinger equation was derived to describe the 

propagation characteristics of pulses in tapered fibers. The spectral and temporal 

properties of the supercontinuum generation can, therefore, be theoretically simulated 

by solving the NLSE with the split-step Fourier method. However, in the derivation of 

the equation, some prerequisites were made to simplify the original expression of the 

equation, such as the generation assumed to be linearly polarized along tapered fibers, 

the third-order polarization considered negligible compared with the linear effect, and 

so on. Therefore, to check the validity of such a NLSE, one should compare 

theoretical simulations with experimental results. For this purpose, we simulated the 

spectra of the supercontinuum generated by tapered fibers under similar conditions as 

in the experiment (Fig. 2.2.5) in section 2.2.4.  

 In the femtosecond range, the nonlinear Schrödinger equation including 

Raman scattering is written as 

( ) ( ) ( ) ( )( )1
2

2 0

, ,
1 , ( ) ,

!

kk

k k
k

A z T A z Ti ii A z T R t A z T t dt
z k T T

β γ
ω

+ ∞

−∞
=

∂ ∂ ⎛ ⎞∂ ′ ′ ′= ⋅ + + −⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ∫ . 

(2.5.10) 

 The tapered fiber used in the experiments has a diameter of 2.1 μm and a waist 

length of 90 mm, pumped at 770 nm, 800 nm, 840 nm, and 880 nm, respectively. The 

input power is 200 mW and output power is reduced to 110 mW, hence, it is 

reasonable to assume the propagating average power to be equal to 110 mW in the 

taper waist. The pump pulse generated by the Ti:Sapphire oscillator has a repetition 

rate of 80 MHz, a pulse duration of 200 fs, and a sech pulse shape. Recalling the 

experimental setup, we used a Faraday isolator to prevent backreflections from the 

fiber into the laser, therefore, in the simulations, the chirp induced by the Faraday 
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isolator and the untapered region of the fiber should also be taken into account. Figure 

2.5.15 shows the output spectral properties of the tapered fibers (a) to (d).  

 The origin of the dramatic spectral broadening during the SC generation 

process is the interaction between the fiber dispersion and various nonlinear effects, 

such as SPM, FWM, self-steepening, and stimulated Raman scattering. The details on 

the mechanisms responsible for the supercontinuum generation will be discussed in 

section 2.6.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Comparing with the experiment shown in Fig. 2.5.16 (the same as Fig. (2.2.5), 

see section 2.2.2), we found the theoretical simulations can not only adequately model 

the width of the generated spectrum but also approximately predict the positions of 

distinct spectral peaks. Furthermore, pumping the fiber at longer wavelength, both the 

experimental result and the theoretical simulation illustrate that the generated 

spectrum is more broadened and the gap in the visible regime is widened. The physics 

mechanisms responsible for this spectral feature will be also discussed in section 2.6.   

 However, no simulation method so far can predict exactly the output spectra, 

as experimental parameters such as polarization cross-coupling, higher-order 

Fig. 2.5.15 Theoretical simulations of spectral properties generated in tapered fibers with diameter of 
2.1 μm at different pump wavelength of 770 nm, 800 nm, 840 nm and 880 nm (from top to bottom). 
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dispersion, and the experimental waist profile cannot be measured with the accuracy 

to precisely simulate the exact spectra.  

 There are numerous oscillatory structures in the spectra of theoretical 

simulations, whereas the experimental spectra show more flattened and smoother 

profiles. We guess that two factors are likely to result in such a difference. First, the 

oscillating structures could be produced by the algorithm instability of split-step 

Fourier method. To examine the instability induced by the algorithm, we introduce a 

noise to the input peak power. We found the structure is not very sensitive to the noise. 

For example, for a noise with its magnitude 0.1 percent of the original peak power, the 

average power difference of the generated spectrum is less than one percent. And such 

a power difference is induced by both the numerical approach and the nonlinearity 

effects. Through increasing the frequency discretization points or decreasing the 

longitudinal step size, the algorithm instability can be to a certain extent reduced, but 

at expense of the running time. Second, the spectra shown in Fig. (2.5.16) were 

measured by a spectrometer, which records a time-averaged result, and therefore the 

spectra seem flattened when compared to the theoretical simulations.       
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Fig. 2.5.16 The spectra of the supercontinuum generation after one tapered fiber with 
pumping wavelength of 770 nm (black), 800 nm (red), 840 nm (blue), and 880 nm (green). 
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2.6 Mechanisms responsible for supercontinuum generation 
The supercontinuum generation is a complex nonlinear phenomenon. The mechanisms 

behind SC generation arise from the interaction between dispersion and nonlinear 

effects, including self-phase modulation [27-29], soliton formation [58-62], soliton 

splitting [41-43], self steepening [25], soliton self-frequency shift [72,73] and Raman 

scattering [32, 38-40]. In this section, we are going to discuss the generation process 

of supercontinua in detail. 

 With group velocity dispersion and self-phase modulation alone, the balance 

between those effects results in the formation of solitons, and at higher amplitudes a 

higher-order soliton with soliton number N is formed. Such a higher-order soliton 

undergoes periodic narrowing and broadening during propagation. However, at the 

presence of perturbations, such as higher-order dispersion, Raman effect, and self-

steepening, the soliton is broken up and the initial pulse decays into several sub-pulses 

which propagate independently as fundamental solitons [40-43,74-76]. 

Simultaneously, the pulse emits the non-solitonic radiation as a dispersive wave in the 

normal dispersion region (typically in the blue spectral region), which satisfies the 

phase matching condition of the fundamental solitons. The fundamental solitons 

undergo soliton self-frequency shift (SSFS) [72,73], caused by stimulated Raman 

scattering, and consequently form the distinct red-shifted components in the spectrum. 

The dispersive wave experiences the cross phase modulation, which is induced by the 

nonlinear refractive index due to the temporally overlapping Raman solitons [35,37].  

 To confirm the generation mechanisms as described above, we apply the 

NLSE to simulate the spectral and temporal properties of the first stages of the 

continuum formation in different cases. Figure 2.4.16 shows the spectral evolution, 

when neither the higher-order dispersive terms nor Raman scattering contribution nor 

self-steepening effect are included. The spectrum recurves into its original form after a 

soliton period and a higher-order soliton is formed, which is constituted of N 

fundamental solitons. The tapered fiber, used in the simulation, has a diameter of 3.0 

mm and a length of 56.7 mm, which is the soliton period of this fiber. And it is 

pumped at 950 nm with peak power of 18 kW and pulse duration of 50 fs.  
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Fig. 2.4.16. Simulated spectrum of a tapered 
fiber, without considering higher order 
dispersion effects and nonlinear effects for (a) 
input end, (b) at z=0.13 z0, and (c) at z=z0 (z0 is 
the soliton period). 

Fig. 2.4.17. Simulated spectrum of a tapered 
fiber, with all the dispersion effects and 
nonlinear effects considered, for (a) input end, 
(b) at z=0.13 z0, and (c) at z=z0 (z0 is the soliton 
period).  
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 When including higher-order dispersion, self-steepening term, and Raman term, 

the initial pulse starts to decay into several solitons. The initial generation of new red-

shifted frequency components is induced by stimulated Raman scattering. The blue 

components around 610 nm, identified as anti-Stokes wave or non-solitonic radiation, 

arise from the process that the sub-pulses shed away energy in order for the pulse to 

be able to propagate as fundamental solitons. The phase of the soliton should coincide 

with that of the dispersive radiation and this phase matching condition can be 

mathematically expressed by the equation [61]: 

1( ) ( ) ( ) ( ) (1 )S DW S DW S R Sf Pβ β ω β ω ω ω β ω γΔ = − − − + −  ,                (2.4.48) 

where, ωS and PS are the frequency and peak power of fundamental soliton, 

respectively, ωDW is the frequency of dispersive wave, and fR is the Raman fractional 

contribution equal to 0.18. Subsequently, the fundamental solitons shifts to the red 

side due to the self-frequency shift, which is induced by Raman effect and higher-

order dispersion. The blue components undergo cross-phase modulation and generate 

the blue-shifted nonsolitonic radiation (NSR). Finally, the spectrum is smoothed by 

four wave mixing. The details of the generation mechanism are demonstrated in Fig. 

2.4.17.  

 In the simulations of Fig. 2.4.17, we used the same fiber parameters and input 

conditions as in Fig. 2.4.16. Figure 2.4.17 (a) shows the spectrum of the input pulse. 

Figure 2.4.17 (b) demonstrates the initial stage of supercontinuum generation, which 

occurs at position z=z0 (z0 is the soliton period). It is easily visible that the wavelength 

of the generated dispersive wave at 618 nm is exactly predicted by the phase matching 

condition. Fig. 2.4.17 (c) shows the final spectrum of the supercontinuum generation 

after one soliton period. The blue component at 580 nm is generated by cross-phase 

modulation due to the nonlinear refractive index of the red-shifted Raman soliton.   

 As we have discussed in section 2.2 and section 2.6, pumping a fiber at larger 

wavelength leads to two spectral features. First, the spectrum is more broadened, and 

second, the gap in the visible region becomes larger. The first feature can be 

understood by the phase matching condition discussed above. Pumping farther from 

the zero dispersion wavelength, the pulse generates the nonsolitonic radiation at a 

shorter wavelength, e.g., with pump wavelength at 950 nm, the dispersive wave 

occurs at 618 nm, while with pump wavelength at 850 nm the dispersive wave lies 

around 665 nm. The wavelength of the blue-shifted dispersive wave, which is induced 

by cross-phase modulation between the nonsolitonic radiation and Raman solitons, 
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consequently has a smaller value. Therefore the whole spectrum becomes more 

broadened compared when pumping the fiber closer to the zero dispersion wavelength.  

 The second feature can be understood by recalling the phase-matching diagram 

of four-wave mixing. In the case of the pump wavelength located in the anomalous 

dispersion regime, a tapered fiber pumped closer to the zero dispersion wavelength 

provides the phase matching for parametric four wave mixing over a wider 

wavelength range. More specifically, Fig. (2.4.18) shows the phase-matching diagram 

of four wave mixing at the maximum peak power Pmax when the pulse propagates 

along the fiber. The zero dispersion wavelength is located at 830 nm. The figure 

demonstrates that with the fiber pumped at 850 nm, four wave mixing generates a pair 

of new frequency components at 680 nm and 1120 nm at the maximum peak power 

Pmax. In other words, when the pulse propagates with a peak power smaller than Pmax, 

the generated new components resulting from FWM can to a certain extent fill the 

frequency regime between 680 nm and 1120 nm. Similarly, when the fiber is pumped 

at 950 nm, the new frequency components due to four wave mixing range from 850 

nm to 1090 nm. Therefore, at the presence of four wave mixing, a tapered fiber 

pumped at a wavelength closer to zero dispersion wavelength can generate a more 

broadened and smoother spectrum to fill the gap in the visible region. Moreover, 

pumping the fiber at a shorter wavelength, the fiber has a smaller value of the group 

velocity dispersion (GVD), so that the pulse in initial stage can generate a broader 

continuum due to increased self-phase modulation. The smaller wavelength 

components in the SPM-induced spectrum lead to the generation of new components, 

resulting from four wave mixing. These new frequency components help to fill the 

gap in the visible region as well.                  
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Fig. 2.4.18 Phase-match diagram of four wave mixing. 
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Section 3 Mode and group velocity dispersion 

evolution in the tapered transition region [21] 
3.1 Introduction 
So far, most publications have concentrated on the waist region of the tapered fibers, 

where the strongest nonlinear effect is induced, and assume that the waist can be 

approximated by a constant diameter silica strand surrounded by air, having similar 

properties to a high air fill fraction PCF.  However, a complete model of the 

propagation characteristics must take into account the transition or the taper region 

where the diameter is varying along the fiber. 

All of the nonlinear processes engaged in the supercontinuum (SC) generation 

take place over the whole fiber, including the input and the output tapers. 

Comprehensive understanding of the nonlinear properties in the taper is of great 

importance for a complete picture of the generation of SC and its interaction with the 

pump. Characterization of the pulse and dispersion properties of the SC after exiting 

the fiber should also include the contribution from the output taper.  Especially when 

the tapered fiber is inserted into a feed-back scheme, acting as nonlinear element in an 

optical parametric amplifier or oscillator [77], the SC will have to pass through both 

the input and the output tapers several times and consequently experiences more 

nonlinearity and dispersion from the tapers. The nonlinear characteristics of both 

tapered regions will influence significantly the amplification or oscillation processes. 

Additionally, in experimental GVD measurements, due to the unknown GVD value in 

the tapers it is difficult to compare the directly measured GVD value along the whole 

tapered fiber and the theoretical GVD value of the waist. Therefore, the investigation 

of the mode and the GVD evolution in the taper region is significant for a 

comprehensive understanding of the light propagation and interaction in the fiber.  

In this section, we present theoretical studies of the evolution of the mode 

profile and the GVD in the taper region. To characterize the most important 

parameters as mentioned above, we first need to evaluate the propagation constant β.  

There are generally two theoretical models to describe the propagation of light 

in tapered fibers: scalar wave equation and full vector Maxwell equation. In the scalar 

wave equation, the polarization of the field is assumed to be unchanged and the 

longitudinal component is ignored [55,78,79]. However, with the fiber tapered down, 

the polarization of the light varies with propagation, and the longitudinal component 
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of the mode fields increases even to the same order of magnitude as the transverse 

components [80]. Therefore, the vector model can provide a more precise description 

of the light propagation.  

Our calculation shows that the nonlinear parameter based on the field 

distribution is not sensitive to the difference between the scalar equation and the 

vector equation models when the diameter of the tapered fiber is larger than 1.0 μm. 

In this paper, we restrict our discussion to fiber tapers with a diameter larger than 1.8 

μm, and we used the scalar equation to calculate β in order to simplify the calculation 

of the mode evolution. In contrast, the GVD, which is actually the second-order 

derivative of β, is extremely sensitive to any approximations in the model when the 

diameter of the taper becomes rather small. In this case, we used the full vector 

Maxwell equation to simulate the evolution characteristics of GVD in the tapered 

region.  

Furthermore, when simulating the mode evolution, we also compared the 

results from the standard solution of the scalar wave equation with those obtained 

from the so-called “variational calculation” [55], which is in fact an approximation to 

the scalar equation.   
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3.2 Evolution of the radial distribution of the light intensity 

and the nonlinear parameter in the taper  
3.2.1  Standard solution of the scalar equation 

For an adiabatic process [78] in a tapered fiber, the perturbation caused by the 

variation of the fiber radius is so small that the loss of power from the fundamental 

mode to the higher-order mode in the fiber is negligible [3, 78]. In this paper, we 

assume the fiber is an adiabatic single-mode tapered fiber. 

In such a fiber, the light propagates always as a fundamental mode. For a 

given position z along the taper, we can build the fundamental-mode wave equation in 

a cylindrical system by making use of the geometry of the local profile (see Fig. 3.2.1). 

 

 

 

 

 

 

 

 

 

 

To obtain the radial distribution of intensity, which is a function of the 

propagation constant β , we need to solve the scalar wave Eq. (3.2.1).  

 
2

2 2 2 2 2 2 2
0 02 [ ( ) ] 0effr r r n k n k m

r r
ψ ψ ψ∂ ∂

+ + − − =
∂ ∂

,                              (3.2.1) 

where Ψ  is the transverse electric field, and m is equal to zero for the fundamental 

mode LP01.  

The solution of this equation can be expressed by a linear composition of 

Bessel functions and modified Bessel functions. Using the boundary conditions that 

the wave function and its first derivative are continuous at the core-cladding and 

cladding-air interfaces, we can obtain the propagation constant of the fundamental 

mode at each position z. In Fig. 3.2.2, the color-scaled contour shows the evolution of 

the normalized radial distribution of intensity along the fiber at a wavelength of 800 

nm.  

Fig. 3.2. 1. Radial profile along the input tapered fiber. 
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The red lines in the graph describe the core-cladding and cladding-air 

interfaces. The variation of the radius of the cladding can be described by: 

 ( ) 1.9 67.8 exp( / 4.7)claddingr m zμ = − + ⋅ − ,                                           (3.2.2) 

which is a fit to measured data (with z in mm ) [20]. We have assumed that the ratio 

between the radius of the cladding and the core remains constant (around 15.2) during 

the pulling process. The Sellmeier equation for the cladding is 

( ) ( )2 2( ) 3.0 0.009 0.01 84.1 96.0claddingn λ λ λ= + − + −  with λ in μm. The refractive index 

difference between the cladding and the core is 0.36%. In the simulation of the mode 

evolution, we assume that power is conserved: ( )
2

0 0

1 Re .
2

E H r dr d const
π

φ
∞

∗× =∫ ∫ , and 

the ratio between the transverse electric field and transverse magnetic field is 

approximated as 0μ ε . 

 

 

 

 

 

 

 

 

 

 

 

 

At the beginning of the taper region, the light propagates as a core mode and 

most of the energy is confined within the core. As the fiber is tapered down, the 

difference between the refractive indices of the core and the cladding is not large 

enough to confine the mode in the core. Therefore, the light begins to spread out into 

the cladding and propagates as a cladding mode that is guided by the boundary 

between the cladding and the air. As a result, the energy redistributes into the cladding 

and the intensity of the light decreases due to the relatively large diameter of the 

cladding. As the fiber is tapered down further, the intensity of the mode, which is now 

confined by the cladding-air interface, increases again due to the rather small radius of 

the cladding and reaches its highest magnitude at the end of the taper. The position 

Fig. 3.2.2. The evolution of the radial distribution of intensity along the input taper 
region of SMF 28 fused silica tapered fiber (at 800 nm). 
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where the propagation mode transfers from the core mode to the cladding refers to as 

the transition point, or the so-called ‘core-mode cut off’ [81]. Furthermore, the 

evolution of the mode and the process of the light propagation in the output taper 

region are mirror symmetric to Fig. 3.2.2 about the waist. 

The evolution described above depends significantly on the pump wavelength. 

Figure 3.2.3 (a) and (b) demonstrate the evolution processes for wavelengths at 500 

nm and 1064 nm, respectively.  

 

 

 

 

 

 

 

 

 

 

 

At shorter wavelength, the mode can be confined to a smaller core and 

propagates as a core mode over a longer distance compared to the mode at longer 

wavelength. For a given tapered fiber, the value of core-cladding transition parameter 

ccV , which is given by [81], 

1
22 0.261

ln lnccV
s s

−
⎛ ⎞≈ +⎜ ⎟
⎝ ⎠

,                                    (3.2.3) 

where s  is the ratio between the radius of the cladding and the core, does not depend 

on the wavelength. The local V-value of the core at position z is a function of 

wavelength and can be expressed as ( )2 22 ( )( ) core
core core cladding

r zV z n nπ
λ

⋅
= ⋅ − . When Vcore(z) 

is larger than the critical parameter Vcc, the light propagates as a core mode. At the 

transition point, where Vcore(z) is equal to Vcc, the local V-value of the core Vcore(z) 

becomes too small to confine the core mode any more, therefore, when Vcore(z) is 

smaller than Vcc, the cladding becomes the new guiding medium and the light 

propagates as a cladding mode. Therefore, for a smaller wavelength, to match the 

Fig. 3.2.3. The evolution of the radial distribution of intensity along the taper 
at (a) 500 nm and (b)1064 nm.  
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core-cladding transition point, the radius of the core should be smaller than that for a 

longer wavelength.  

Knowing the transverse distribution of the mode along the taper, we can 

evaluate the nonlinear parameter γ that is important for the understanding of the 

nonlinear properties in the tapered region. γ is defined as 2 0 effn c Aω [55], inversely 

proportional to the effective area of the mode Aeff that is related to the modal 

distribution function E(r,φ) as: 
22

2

0 0
2

4

0 0

( , )

( , )
eff

E r r dr d
A

E r r dr d

π

π

φ φ

φ φ

∞

∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=
∫ ∫

∫ ∫
,                                        (3.2.4) 

where n2 is the nonlinear refractive index of the fiber material, ω0 and c are the given 

frequency and the speed of light in vacuum, respectively. Figure 3.2.4 (a) and (b) 

illustrate the evolution of the effective area Aeff and the nonlinear parameter γ along 

the SMF 28 fused silica tapered fiber at different pump frequencies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4 (a) demonstrates that the effective area increases with the 

wavelength around the transition point and this transition point appears earlier at 

longer wavelengths. Thus, the nonlinear parameter γ becomes larger at shorter 

wavelengths and the peak value of γ shifts to the waist direction with shortening the 

wavelength, as demonstrated in Fig. 3.2.4 (b). Figure 3.2.4 (b) shows nicely that the 

value of the nonlinear parameter early in the taper becomes comparable with that in 

the waist, for example at a wavelength of 500 nm, which implies that nonlinear 

processes such as self phase modulation and four-wave mixing can already take place 
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Fig. 3.2.4. The evolution of (a) effective area and (b) nonlinear parameter γ along the SMF 28 
fused silica fiber. 
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before the transition point. This effect leads to a wavelength dispersion of the 

nonlinear parameter γ and the transition points. It will consequently influence the 

propagating supercontinuum in the output taper region, so that different wavelengths 

will experience different nonlinear interactions and different time-dependent 

propagation characteristics.   
 

3.2.2 Variational calculation 

We also performed “variational calculation” [8], where we assumed a Gaussian 

distribution for the fundamental mode 2( / )2( ) r wr e
w

ψ −= , which proved to be a good 

approximation to the true ground state radial distribution if we were not too close to 

the transition point. The effective width of the Gaussian mode is obtained by 

maximizing 2 2 2 2 2
0 0

0

1( ) ( ) ( )effn k dr r r r n r k r
r r r

β ψ ψ
∞ ∂ ∂⎛ ⎞≡ = +⎜ ⎟∂ ∂⎝ ⎠∫ . 

Using 
2

0
d

dw
β

=  and solving the subsequently derived equation with respect 

to w, 
22 ( / )( / )2 2 2 2 2 2 2 2

0 2 01 ( ) ( )claddingcore r wr w
core core cladding cladding airr k e n n r k e n n−−= − + − ,          (3.2.5) 

we calculated the value of w directly. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5 (a) and (b) show the evolution of the effective mode area and the 

nonlinear parameter γ along the tapered fiber at 800 nm obtained by the variational 

calculation and the standard Bessel-function solution, respectively. 

Fig.3.2.5. The evolution of (a) effective area and (b) nonlinear parameter γ, obtained by the 
variational calculation and the calculation of standard Bessel differential equation, respectively. 
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Qualitatively, these two methods give approximately similar results 

considering their overall distribution and the shapes of the curves in Fig. 3.2.5 (a), 

especially at the edges of the taper.  The largest discrepancy between them is around 

the transition point due to the Gaussian-distribution ansatz along the whole taper 

region. 

Nevertheless, the variational theory is an effective method for approximately 

solving the scalar wave equation and a useful tool for analysing the transverse mode 

evolution in tapered fibers.  
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3.3 Evolution of the group velocity dispersion in the taper 

In order to fully characterize the propagation in a tapered fiber, we have to include the 

GVD in the taper region, which is defined as: 
2

2 2

2 c dD
d

π β
λ ω

= − ,                                                       (3.3.1) 

where β is the propagation constant at a given frequency ω, λ is the corresponding 

wavelength, and c is the speed of light in vacuum. β can be derived by solving Eq. 

(2.3.11). 

Following the standard approach of Snyder and Love [55], we obtain the 

solutions of the longitudinal components (Ez and Hz) in the taper region. 

In the core, where r < r1  (r1 is the radius of the core), we get: 

1 1 2 2
0

1 2

sin
( )

cos
z

m core eff
z

E A m
J k n n r

H A m
φ
φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 ,                                (3.3.2) 

where A1 and A2 are constants, k0=2π/λ0 is the wave number, ncore is the refractive 

index of the core, neff=β/k0 is the effective index, m=1 for the fundamental mode HE11, 

and Jm is the mth order Bessel function of the first kind. Ez1 and Hz1 are the 

longitudinal components of the electric and the magnetic field in the core, respectively. 

In the cladding, where 1 2r r r≤ ≤  ( 2r is the radius of the cladding), the light can 

propagate either as a core mode or a cladding mode. This is determined by the local 

fiber profile. For a core mode, the effective index neff has a value between the 

refractive indices of the core and the cladding. For a cladding mode, neff is smaller 

than the refractive index of the cladding. The position where neff is exactly equal to 

ncladding refers to as the transition point. Therefore, when the light propagates along the 

taper, neff undergoes a transition from a value larger than ncladding to a value smaller 

than it.  

If neff > ncladding, the solutions can be written as: 

2 1 12 2 2 2
0 0

2 2 2

sin sin
( ) ( )

cos cos
z

m eff cladding m eff cladding
z

E B Cm m
I k n n r K k n n r

H B Cm m
φ φ
φ φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − ⋅ + − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (3.3.3) 

If neff < ncladding, the solutions become 

2 1 12 2 2 2
0 0

2 2 2

sin sin
( ) ( )

cos cos
z

m cladding eff m cladding eff
z

E B Cm m
J k n n r Y k n n r

H B Cm m
φ φ
φ φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= − ⋅ + − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
,  (3.3.4) 

where B1, B2, C1, C2 are constants, ncladding is the refractive index of the cladding, Im 

and Km are the modified Bessel functions of the first kind and the second kind, 

respectively, and Ym is the Bessel function of the second kind. Ez2 and Hz2 are the 
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longitudinal components of the electric and the magnetic field in the cladding, 

respectively. 

In the air, where r > r2, neff > nair, we get: 

3 1 2 2
0

3 2

sin
( )

cos
z

m eff air
z

E D m
K k n n r

H D m
φ
φ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
,                                   (3.3.5) 

where D1, D2 are constants, and nair is the refractive index of the air. Ez3 and Hz3 are 

the longitudinal intensities of the electric and the magnetic field in the air, respectively. 

By substituting the expressions of Ez and Hz into the equations of the 

relationships between field components [8], we can obtain all the transverse 

components of the field. Using the boundary conditions, 

1 2z zE E= , 1 2z zH H= , 1 2E Eφ φ= , 1 2H Hφ φ=         at 1r r= , 

2 3z zE E= , 2 3z zH H= , 2 3E Eφ φ= , 2 3H Hφ φ=         at 2r r= ,             (3.3.6) 

we can build up an 8 8×  homogeneous matrix equation where those constants are the 

variables. In order to get a set of non-zero solutions for the variables, the determinant 

of this matrix should be zero. Finally, we can obtain the result of the propagation 

constant by finding the roots of the determinant numerically. The GVD of a tapered 

fiber can then be calculated according to the formula given in Eq. (3.3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 shows the evolution of the GVD as a function of position along 

the taper for different wavelengths. The GVD values range between –150 and +200 

ps/nm/km. We assume an SMF 28 fiber (Corning) to be tapered down to a waist 

Fig. 3.3.1. The evolution of the GVD along a tapered SMF 28 fused silica fiber, 
with a waist diameter of 1.8 μm, pumped at (a) 1024 nm, (b) 880 nm and (c) 800 
nm. The black dot denotes the transition point from core mode to cladding mode.  
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diameter of 1.8 μm.  The variation of the radius of the cladding follows Eq. (3.2.2) 

and the other parameters of the fiber profile are the same as discussed in Section 3.2.1. 

The theoretical calculation also shows that when the cladding diameter of the 

fiber is larger than 6.3 μm, the GVD value of the taper obtained from the full vector 

Maxwell equation is almost equal to that from the scalar equation, and the difference 

between them is less than 1%, as marked by the dashed line in Fig. 3.3.2 (a). 

Therefore, for a fiber with a cladding diameter larger than 6.3 μm, we can simply use 

the scalar equation to evaluate the GVD with sufficient precision. However, when the 

outer diameter becomes smaller than 6.3 μm, the difference increases significantly 

and cannot be neglected anymore. In Fig. 3.3.2 (a), we compare the evolution of the 

GVD values that are calculated by the vector Maxwell equation and the scalar 

equation, respectively, where the pump wavelength is 800 nm and the cladding 

diameter  varies from 9.3 μm to 1.8 μm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the core of the fiber becomes so thin that its influence on the intensity 

distribution can be neglected, the fiber can be considered to consist of only the 

cladding, and we define the corresponding model as cladding-air model. The full 

vector Maxwell equation, which is named as the core-cladding-air vector equation 

here, can be replaced by the cladding-air vector equation. Calculations show that 

when the diameter of the fiber is smaller than 6.9 μm, the difference between the 

GVD values calculated from the two vector equations does not exceed 1%, as marked 

by the dashed line in Fig. 3.3.2 (b). The two curves in Fig. 3.3.2 (b) show the 

evolution of the GVD along the tapered fiber, which are calculated by the cladding-air 
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vector Maxwell equation and the core-cladding-air equation, respectively. The pump 

wavelength is 800 nm, and the diameter of the taper changes from 25.5 μm to 4.7 μm. 

We conclude for the fiber SMF 28 that when the diameter of the tapered fiber 

is larger than 6.3 μm, the scalar equation can be used as a reasonable approximation to 

replace the full vector Maxwell equation, and when the diameter decreases below 6.9 

μm, the cladding-air vector equation can simplify the full vector equations with 

sufficient precision. 
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Section 4 Group velocity dispersion with tapered 

fibers immersed in different liquids [24] 
4.1 Introduction 
As we discussed in section 2.6, the most important mechanism responsible for spectral 

broadening is the so-called soliton splitting [41-43], taking place around the zero 

points of the group velocity dispersion (GVD) and in the anomalous dispersion region 

where the GVD parameter becomes positive. In principle, the zero dispersion points 

of the tapered fiber determine the region of spectral broadening, and the GVD 

characteristics controls the shape and the bandwidth of the broadened spectrum. In 

order to have a supercontinuum generated in the desired spectral range, one usually 

needs to design the diameter and the material of the fiber core and the cladding in a 

way that the zero dispersion point occurs at the appropriate wavelength. Furthermore, 

we usually desire a homogenous broadening of the spectrum to the largest extent. 

Therefore, an extremely slow variation with small GVD values in the anomalous 

dispersion region is of key importance. For photonic crystal fibers, ultra-flat 

dispersion had been demonstrated by Reeves et al. [82], and the zero-dispersion 

wavelength of the GVD can be determined by the structure of the fiber. However, for 

tapered fibers, such a GVD design has not been realized so far. For example, to extend 

or shift the generation of new spectral components to the infrared, covering for 

instance the telecommunication window from 1.3 μm to 1.55 μm, a much larger 

diameter fiber (over 10 μm) would be required for a tapered quartz fiber. Such a thick 

fiber will result in much lower light intensity in the tapered region and hence a 

considerably reduced nonlinearity for the conversion process. Certainly, the second 

point of zero dispersion at longer wavelength can also be used for the generation in 

the infrared [1][4][37]. In such a case, a much thinner fiber waist (d=1-1.1 μm) has to 

be used, which means more difficulties in the fabrication process and a lower damage 

threshold of the tapered fibers. 

In this section, we demonstrate a considerably simple way to control the GVD 

characteristics of a tapered fiber. We fill the environment of the tapered fiber with a 

selected chemical liquid which provides a suitable refractive index [83]. By changing 

the diameter of the tapered fiber and by using different chemical liquids with varying 

mixture ratios, we optimize the design of the GVD curve. And spectrum simulation 

demonstrates that such a fiber is capable to generate the supercontinuum with 
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dramatically broadened spectrum due to the two zero dispersion wavelengths lying in 

the near infrared region. 
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4.2 Group velocity dispersion of a tapered fiber 
The GVD of a tapered fiber is defined as the second derivative of the propagation 

constant β with respect to ω,
2

2 2

2 c dD
d

π β
λ ω

= − . When talking about the GVD in the 

paper, we always refer to the value D. β can be characterized theoretically by solving 

the propagation equation in fibers [13]: 
22 22

0 1 22
2 2 2
1 1

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

m m m m

m m m m

J a K a J a K a m k n nn
J a K a J a n K a a n

κ γ κ γ β
κ κ γ γ κ κ γ γ κ γ

⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ⎡ ⎤−
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
,       (4.2.1) 

where 2 2 2 2
1 0n kκ β= − ; 2 2 2 2

2 0n kγ β= − ; a  is the core radius; n1, n2 are the refractive 

indices of core and cladding, respectively; ( )mJ x and ( )mK x are the mth order Bessel 

function and modified Bessel function, respectively. m=1 corresponds to the 

fundamental mode HE11 in the waist region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GVD curves as a function of wavelength for tapered fibers made out of 

fused silica SMF28 fibers in air with different diameters are shown in Fig. 4.2.1. We 

used the Sellmeier equation for fused silica for the values of the refractive index n 

from Smith [84]. The GVD values are quite large in the anomalous-dispersion regime, 

ranging in the order of 200 ps/km/nm; meanwhile, the first zero dispersion points do 

not exceed a wavelength of 800 nm for a fiber diameter below 3 μm. This 

phenomenon, caused by the large difference between the refractive indices of the fiber 

Fig. 4.2.1. The calculated GVD curve of a tapered SMF28 fused 
silica fiber in air with diameter (a) 1 μm, (b) 1.5 μm, (c) 2 μm, (d) 
2.5 μm, and (e) 3 μm 
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material and air, limits the position and the extent of spectral broadening. To achieve 

supercontinuum generation in the spectral range of longer wavelengths and to extend 

the bandwidth, we should find media with intermediate refractive index values 

between nair and nfiber to fill the environment of the fiber taper. Organic chemical 

liquids are promising candidates for this task. 
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λ (μm) 

4.3 Refractive indices and dispersion of some chemical 

liquids 
I and my colleague Jörn Teipel measured the refractive indices of acetonitrile, pentane, 

and hexane in the visible spectral region using an Abbe Refractometer, as summarized 

in Table 4.3.1. Limited by the instrument, we were not able to perform the 

measurement in the infrared. Equations (4.3.1)-(4.3.3) are the fitted Sellmeier 

equations for the three chemicals using the measurement data. For acetonitrile, we 

combined the measurement data in the infrared (from 1200 nm to 2000 nm) given in 

Ref. [85] with our measurement in the visible. Unfortunately, no data in the IR are 

available so far for the other two chemicals.  

Table 4.3.1. Measured refractive indices and Sellmeier 

equations of acetonitrile, pentane, and hexane 

 

                 n   Acetonitrile Pentane Hexane 

0.45 1.349 1.3642 -------- 

0.48 1.3474 1.3619 1.3804 

0.50 1.3467 1.3614 1.3795 

0.55 1.3442 1.3592 1.3772 

0.58 1.3436 1.3578 1.3762 

0.60 1.3426 1.3571 1.3749 

0.65 1.3408 1.3561 1.3733 

0.68 1.3406 1.356 1.373 

 

Acetonitrile:            2 41.32488-0.00171/  +0.00283/n λ λ=                         (4.3.1) 

Pentane:  2 41.35079+0.00191/  +0.00016/n λ λ=                         (4.3.2) 

Hexane:  2 41.37071-0.00137/  +0.00102/n λ λ=                         (4.3.3) 

Although the equations (4.3.2) and (4.3.3) for pentane and hexane are 

sufficiently precise only in the visible range, the dispersion of organic compounds 

varies only slowly in the infrared, so that we extrapolate them into the longer 

wavelength region with reasonable accuracy. This is certainly a first approximation to 

the problem. However, in order to be able to estimate the required fiber waist 

thicknesses and liquids, this method gives valid results. Comparing the exact 

refractive index of acetonitrile in the IR (the only component with a tabulated 
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refractive index in the IR) with the extrapolation, we found only small deviations in 

GVD (around 10 ps/nm/km). Also, the GVD zero point uncertainty is only in the 

range of 0.1 μm. Therefore, before more exact measurements of the IR indices of 

other liquids can be made, this method has to be sufficient. In the future, immersed 

tapered fibers can be characterized with respect to their GVD using white light 

interferometry. 

 

 

 

 

 

 

 

 

 

 

 

 

In principle, water can also provide an appropriate refractive index (1.33 at 

589 nm), and its Sellmeier equation with respect to wavelengths from 0.2 μm to 1.1 

μm can be found in Ref. [86]. However, strong absorption takes place in the infrared 

due to the O-H bond vibration overtones, which excludes water for our application. 

The transmission curves of a 9.8 mm cuvette with water, acetonitrile, pentane, and 

hexane in the infrared region are shown in Fig. 4.3.2 (corrected for the cuvette 

reflection). Acetonitrile, pentane, and hexane do not suffer from near infrared 

absorption since they do not possess O-H vibrational overtone absorption lines. The 

absorption bands around 1400 nm are on the order of 1 cm-1 and do therefore 

influence the refractive index in that region only very slightly. 

 

 
 
 
 
 
 
 
 

Fig. 4.3.2 The transmission curves of a 9.8 mm cuvette of water (dashed), 
acetonitrile (dotted), pentane and hexane (solid). The curves of pentane and 
hexane are almost on top of each other. I and my colleague Jörn Teipel 
measured the data using a CARY spectrophotometer in Prof. Buse’s group. 
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4.4 Group velocity dispersion of tapered fibers immersed in 

chemical liquids 
Figure 4.4.1 shows the calculated GVD of tapered fibers with a diameter of 3 μm, 

assuming that the fibers are immersed in (a) acetonitrile, (b) pentane, and (c) hexane, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

The curves in Fig. 4.4.1 reveal that a tapered fiber with a diameter of 3 μm 

possesses favorable GVD properties in the anomalous dispersion region if immersed 

into these three chemicals. The first zero dispersion point appears around 1 μm in the 

near infrared. The GVD curve has quite small values (<40 ps/km/nm) over the span 

between the two zero-dispersion points. The bandwidth of anomalous dispersion of 

the tapered fiber in acetonitrile (950 nm~1650 nm) is broader than that of the tapered 

fiber in pentane and hexane, while smaller GVD values (less than 20 ps/nm/km) can 

be achieved using pentane and hexane. We can further conclude that using acetonitrile, 

pentane, or hexane as the environment of a tapered fiber, a supercontinuum generation 

should be feasible in the infrared and the corresponding spectral width should be 

significantly enlarged. Depending on the exact length of the waist, the continuum 

might stretch even further into the infrared, as the absorption values around   

Harbold et al. reported continuum spectrum generation around the second 

dispersion zero point (1.26 μm) of a tapered fiber in air with a diameter of 1 μm [4]. 

In our case, supercontinua should be feasible at even longer wavelengths in the 

infrared, e.g., around 1.6 μm when using pentane and a fiber diameter around 3 μm. 

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c)

(b)

(a)

G
VD

 (p
s/

km
/n

m
)

wavelength (μm)

Fig. 4.4.1. The GVD curve of tapered fiber with diameter 3 μm 
when it is immersed in (a) acetonitrile (b) pentane (c) hexane. 
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Regarding tapered fibers with diameters of 2.5 μm and 3.5 μm, GVD curves 

are shown in Fig. 4.4.2 and Fig. 4.4.3, respectively. With smaller diameter, the tapered 

fiber provides lower and steeper group velocity dispersion, and the fiber immersed in 

hexane does not reach the anomalous dispersion region. With a larger diameter of 3.5 

μm, the anomalous dispersion region covers more wavelengths. The first zero-

dispersion wavelength (ZDW) appears in a lower position while all the second ZDWs 

of the three candidates occur beyond 1.7 μm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4.2 The GVD curve of tapered fiber 
with diameter 2.5 μm when it is immersed in 
(a) acetonitrile (b) pentane (c) hexane. 
 

Fig. 4.4.3 The GVD curve of tapered fiber 
with diameter 3.5 μm when it is immersed in
(a) acetonitrile (b) pentane (c) hexane. 
 

0.8 1.0 1.2 1.4 1.6 1.8
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c)

(b)

(a)

G
V

D
 (p

s/
nm

/k
m

)

wavelength (μm)

0.8 1.0 1.2 1.4 1.6 1.8 2.0
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c)

(b)

(a)

G
VD

 (p
s/

km
/n

m
)

wavelength (μm)



4.5 Optimization of the group velocity dispersion curve 
 

77 

4.5 Optimization of the group velocity dispersion curve 
4.5.1 Mixing of different chemicals 

In some cases, the center frequency of the pump cannot exactly match the ZDW of the 

GVD curve, which results in lower intensity and narrower spectra of the 

supercontinuum light. Therefore, we mix different chemicals to get a new effective 

refractive index. This allows the optimal ZDW to be generated just at the frequency of 

the pump pulse by changing the ratio of the chemical constituents. For a pump pulse 

at 1.55 μm, the second ZDW can occur exactly around 1.55 μm when a tapered fiber 

with a diameter of 3 μm is surrounded by pentane and hexane mixed in a ratio of 1:1, 

as shown in Fig. 4.5.1. The curve in Fig. 4.5.2 shows the variation of the second ZDW 

position with the change of the ratio between pentane and hexane. A tuning range 

from 1.38 μm to 1.7 μm for the second ZDW can easily be achieved by varying the 

mixing ratio. 

 

 

 

 

 

 

 

 

 

 

 

4.5.2 Selection of the fiber material 

The diameter of tapered fibers is one of the significant factors which influence the 

nonlinear effects in the fiber. However, because of the limited range of the refractive 

indices that the chemicals can offer, the diameter of the tapered fiber cannot be 

smaller than 3 μm in order to achieve an anomalous dispersion range. For the first 

ZDW of GVD curve, no matter what liquid is employed and what diameter of the 

fiber taper is used, the first ZDW cannot be generated in the telecommunication 

window. Therefore, we would like to select some alternative fiber materials (BK7, 

SF6, and SF9) instead of quartz to serve as optical fiber material [87] which could 

overcome such disadvantages.  

Fig. 4.5.1. The GVD curve of a tapered fiber 
with a diameter 3 μm when it is immersed in 
the mixture of pentane and hexane (1:1). 

Fig. 4.5.2. The second zero-dispersion 
wavelength position versus the ratio of 
hexane in the mixture (hexane and pentane) 
when the fiber taper diameter is 3 μm. 
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For the calculations of the GVD, the necessary formulas for the three selected 

glasses, such as the Sellmeier equations, are given in Ref. [88], and their basic optical 

properties are shown in Table 4.5.1 [89]. The GVD curves of a tapered fiber made of 

BK7 show the desired anomalous dispersion properties when the fiber taper with a 

diameter of 2 μm is immersed in acetonitrile, pentane, and hexane, respectively (see 

Fig. 4.5.3). Figure 4.5.4 shows the GVD curves generated by tapered fibers made out 

of SF6 and SF59, immersed in chlorobenzene (refractive index 1.525 at 589 nm). 

Their first ZDW can occur in the telecommunication window and their GVD 

characteristics are rather flat. The advantage of such high-index glasses is to allow a 

much greater range of immersion liquids with refractive indices that are smaller than 

the glass index. 

 

Table 4.5.1. The optical properties of glasses BK7, SF6, and SF59 (1 esu = 174 cm2/W) 

 Refractive index at 1550 nm Transmission range (nm) Nonlinear index n2 (10-13 e.s.u) 

Fused

silica

1.444 185-2000 1.1 

BK7 1.4946 450-1600 1.15 

SF6 1.7644 500-2000 9.90 

SF59 1.8960 500-2000 19.2 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5.3. The GVD curve of a BK7 
tapered fiber with diameter 2 μm when it 
is immersed in (a) acetonitrile, (b) 
pentane, (c) hexane. 
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Fig. 4.5.4. The GVD curve of a tapered 
fiber immersed in chlorobenzene, with a 
fiber taper material of (a) SF6, d=3 μm (b) 
SF59, d=3 μm (c) SF6, d=4 μm (d) SF59, 
d=4 μm. 
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4.6 Theoretical simulations of supercontinuum in liquid 

cladding tapered fibers 
The optical properties of the liquids acetonitrile, pentane, and hexane, were discussed 

in the previous sections. Tapered fibers immersed in those liquid present favorable 

GVD curves and can be used to generate supercontinuum in the telecommunication 

window. However, those liquids show strong absorption at wavelengths larger than 

1700 nm, which will limit the supercontinuum generation in the mid-infrared region. 

Therefore, in this section we will introduce a new liquid to immerse the tapered fiber 

and simulate the supercontinuum generation. Compared with acetonitrile, pentane, 

and hexane, this liquid (Series AAA), offered by the Cargille company, displays 

perfect transmission properties. It is transparent from 500 nm to more than 2000 nm. 

The details about this liquid are shown in appendix [90].  

Figure 4.6.1 shows the group velocity dispersion curves of a tapered fiber 

immersed in liquid Series AAA with fiber diameters of 2.2 μm (blue), 2.7 μm (red), 

and 3.2 μm (black). It demonstrates that with the liquid of Series AAA, the fiber has 

two zero dispersion wavelengths in the infrared region, and the GVD curves in the 

anomalous dispersion regime varies extremely slowly. Those properties make this 

fiber very suitable to generate a smooth and dramatically broadened spectrum in the 

near- and mid-IR.  

 

 

 

 

 

 

 

 

 

 

 

To simulate the supercontinuum generation, we applied the nonlinear 

Schrödinger equation as: 
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Fig. 4.6.1 The group velocity dispersion curves of a tapered fiber immersed in liquid 
Series AAA with fiber diameters of 2.2 μm (blue), 2.7 μm (red), and 3.2 μm (black). 
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(4.6.1) 

In the simulation, we used the parameters with the fiber diameter of 2.7 μm, a fiber 

length of 90 mm, a pump wavelength of 1200 nm, soliton number N of 5, and a pulse 

duration of 50 fs. Figure 4.6.2 shows the initial stage of the supercontinuum 

generation and the phase matching condition. We find two dispersive waves in the 

visible and infrared region, and the wavelengths of these two waves can be well 

predicted by the phase matching condition. The generation mechanisms are described 

in detail in section 2.6. Figure 4.6.3 shows the final spectrum of the SC generation. 

The spectrum ranges from 700 nm to 2000 nm.  
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Fig. 4.6.3 The simulated supercontinuum spectrum after the immersed 
tapered fiber as described in Fig. (4.6.2) 

Fig. 4.6.2 The spectrum of initial stage of the supercontinuum generation (black) 
and the phase matching condition (red). The fiber has a diameter of 2.7 μm and a 
length of 90 mm. It is pumped at 1200 nm with a pulse duration of 50 fs and soliton 
number N of 5.  
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Section 5 Polarization-maintaining tapered 

fibers [122] 
5.1 Introduction 
Tapered optical fibers and photonic crystal fibers, where supercontinuum (SC) 

generation takes place, have a large number of applications in pulse compression, 

parametric amplifiers, supercontinuum-based WDM telecom sources, etc. [91-93]. 

Applications of SC radiation in CARS microscopy, OPO systems, and sensors have 

been proposed, but the group delay variations of conventional tapered fibers or 

photonic crystal fibers pose challenges with those applications that have not yet been 

overcome.  

For many applications it is desirable to have SC radiation with a high degree of 

polarization. Besides being interesting in its own right, polarization maintaining SC 

generation should also be more efficient since the power that is contained in a certain 

polarization state is relevant for the nonlinear processes that drive the SC generation. 

Recently, polarization maintaining photonic crystal fibers were fabricated and used to 

generate supercontinua [94-97], however, tapered fibers with polarization maintaining 

characteristics have not yet been realized. A polarization maintaining tapered fiber can 

find applications in many fields, such as gas sensors, atom trapping, etc. In this paper, 

we designed a tapered fiber with elliptical cross section in the waist region. As we will 

show, this fiber exhibits strong enough birefringence to maintain an incident linear 

polarization state throughout the propagation path and to generate a highly polarized 

supercontinuum.   

Figure 5.1.1 shows the cross section and refractive index distribution of the 

untapered fiber in our design, being a confocal elliptical fiber. The odd and even 

dominant modes propagate in the core, with the transverse electric field along the 

semimajor and semiminor axis, respectively, as shown in Fig. 5.1.2. For small 

perturbations, the untapered fiber is singly polarized because of the high birefringence 

induced by the elliptical shape of the core.  

In order to preserve polarization in the tapered fiber, the taper transition region 

should be adiabatic [24] [78 ], so that the perturbation caused by the variation of the 

fiber radius is small enough to couple negligible power from the odd dominant mode 

to the even mode. The criterion derived from this physical argument is that the beat 

length Lb should be smaller than the mechanical perturbation periods Lp everywhere 
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along the taper, where 2
b

odd even

L π
β β

=
−

,  oddβ and evenβ are the propagation constants of 

the odd dominant mode and even dominant mode, respectively;  
1

( )
tan ( ) /p

zL
d z dz
ρ
ρ−= ,  

z is the distance along the taper, and ( )zρ  is the local core radius. In this paper, we 

assume that the taper transition regions are approximately adiabatic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. The confocal elliptical cross section and 
refractive index distribution of the untapered fiber. 

Fig.2. Transverse electric field of the two 
dominant modes (a) oHE11 and (b) eHE11. 

 (a) oHE11 mode 

 (b) eHE11 mode 
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5.2 Birefringence calculation of the tapered fiber in the waist 

region 
The structural birefringence of the fiber is defined as   

                                                   ( )
2 odd evenn λ β β
π

Δ = ⋅ − .                                          (5.2.1) 

Propagation constants βodd and βeven can be characterized theoretically by solving the 

propagation equation in elliptical coordinates, as shown in Fig. 5.2.1. The radial 

coordinate η describes a set of confocal ellipses, and the azimuthal coordinate ξ a set 

of hyperbolae orthogonal to the ellipses. The axial coordinate in the direction of 

propagation is z. The eccentricity of the ellipse is e = 2
21 b

a−  , the focal distance is q 

= 2 2a b− , and the other parameters are defined in Fig. 5.2.1. 

 

  

 

 

 

 

 

 

 

 

Yeh and others have analyzed elliptical-core waveguides and approximately 

calculated the propagation constant of a weakly guided elliptical fiber based on 

Mathieu functions [98-100]. However, the approximation made in their simulation 

could be applied only to the modes at small eccentricities and small differences in the 

effective indices between core and cladding, which does not hold true in our tapered 

fibers.  Furthermore, the calculation of GVD requires values of the propagation 

constant with very high precision. Therefore, in this paper we evaluate the 

propagation constants βodd and βeven with the full vector equations and consideration of 

higher-order Mathieu functions. Thus we can overcome the limitations of the weakly 

guiding and small eccentricity approximation above.  

 

Fig. 5.2.1 Elliptical coordinate, where a is the semimajor axis and b is 
the semiminor axis, q is focal distance, and F is the focus of the ellipse.  
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5.2.1 Calculation of propagation constants of the odd and even dominant modes  

The longitudinal components can be expanded in terms of Mathieu functions as: 
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in the cladding, 

where Ez1 and Hz1 are the longitudinal components of the electric and the magnetic 

field in the core, respectively. Am, Bm, Cm, and Dm are constants, 1q  and 2q  

satisfy 2 2 2
1 1 0q n k β= −  and 2 2 2

2 2 0q n k β= − , respectively, k0=2π/λ0 is the wave number, 

ncore is the refractive index of the core, and β is the propagation constant. cem and sem 

are the even and odd Mathieu functions of the first kind, Cem and Sem are the even and 

odd modified Mathieu functions of the first kind, and Fekm and Gekm are the even and 

odd modified Mathieu functions of the second kind. 

The remaining transverse components of the electrical and magnetic field can 

be found from the longitudinal components using Maxwell’s equations  

The Mathieu functions and their derivatives can be expressed in the following 

way [101]: 

       2 , 2, 1 1
0

( , ) ( ) ( , )m m n n
n

ce q q q ce qη α η
∞

=

= ∑ ,   2 , 2, 1 1
1

( , ) ( ) ( , )m m n n
n

se q q q se qη β η
∞

=

= ∑ , 

  , 2 2
1

( , 2) ( ) ( , )m m n n
n

d ce q q se q
d

η χ η
η

∞

=

= ∑ ,   , 2 2
0

( , 2) ( ) ( , )m m n n
n

d se q q ce q
d

η ν η
η

∞

=

= ∑ , (5.2.4) 

where, , 2 1( , )m n q qα , , 2 1( , )m n q qβ , , 2( )m n qχ , and , 2( )m n qν  are connection coefficients, 

which satisfy the equations:          
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According to the orthogonality of Mathieu functions and the properties of the Fourier 

coefficients ( , )nA m q  and ( , )nB m q [101], the connection coefficients can be expressed 

as: 

(a) If m and n are both even, 

, 2, 1 0 2 0 1 2 2 2 1
0

( ) ( , ) ( , ) ( , ) ( , )m n i i
i

q q A m q A n q A m q A n qα
∞

=

= ⋅ + ⋅∑ ;   

, 2, 1 2 2 2 1
1

( ) ( , ) ( , )m n i i
i

q q B m q B n qβ
∞

=

= ⋅∑ ;      

, 2 2 2 2 2
1

( ) ( 2) ( , ) ( , )m n i i
i

q i A m q B n qχ
∞

=

= − ⋅ ⋅ ⋅∑ ;         

, 2 2 2 2 2
1

( ) 2 ( , ) ( , )m n i i
i

q i A n q B m qν
∞

=

= ⋅ ⋅ ⋅∑                                           (5.2.6)                             

(b) If m and n are both odd,  
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where ( , )nA m q  and ( , )nB m q  are Fourier coefficients of the even and odd Mathieu 

functions, respectively. If m and n have unequal parity, all the connection coefficients 

are equal to zero. 

 Using the boundary conditions and the expansions of Eqs (5.2.2) and (5.2.3) 

above, we can build up a homogeneous infinite matrix equation with the expansion 
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coefficients (Am, Bm, Cm, and Dm) as variables. In order to get a set of non-zero 

solutions for the variables, the determinant of this matrix should be zero. For the 

modes HElp, with the mode number l, the determinant starts with the matrix element 

whose m and n are equal to l. The propagation constant β can be obtained by finding 

the roots of the determinant numerically. We have found that sufficient accuracy is 

obtained by using maximum values of m and n of seven. Figure 5.2.2 shows the curve 

of the calculated propagation constants as a function of the wavelength in the tapered 

fiber with a semimajor axis a of 1.5 μm and a semiminor axis b of 0.75 μm. 

 

 

 

 

 

 

 

 

 

 

The calculations of the longitudinal components of an even dominant mode are 

identical to those of the odd one, with the even Mathieu functions replaced by the odd 

ones and vice versa.  

 

5.2.2 Birefringence of the tapered fiber in the waist region 

According to Eq. (5.2.1), we evaluate the birefringence of the tapered fiber and plot 

the results in Fig. 5.2.3. The tapered fiber shows a large birefringence in the visible 

and near infrared region due to the large refractive index difference between the fiber 

and air, and the birefringence becomes larger with increasing wavelength. Compared 

with a highly birefringent PCF, which yields a beat length around 0.4 mm at 1540 nm 

[102], the tapered fiber with a semimajor axis of 1.5 μm and a semiminor axis of 0.75 

μm shows a larger birefringence around Δn = 0.016 and a shorter beat length of 0.1 

mm at 1540 nm. Figure 5.2.3 (a) shows the wavelength dependence of birefringence 

and beat length of tapered fibers with different eccentricities, and Fig. 5.2.3 (b) shows 

the birefringence and beat length with different semimajor axes. This demonstrates 

that the birefringence increases for larger eccentricity e or smaller focal distance q.   
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Fig. 5.2.2 Propagation constant for the odd dominant mode oHE11 as a function 
of wavelength with the semimajor axis of 1.5 μm and an eccentricity of 0.866. 
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Fig. 5.2.3 (a). The calculated curves of 
birefringence Δn (solid) and beat length 
(dashed) as a function of wavelengths with 
different ratios between semiminor and 
semimajor axis of 0.6, 0.5, and 0.4 (from top to 
bottom). The semimajor axis a is 1.5 μm. 
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(from top to bottom). The eccentricity e is 
0.866. 
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5.3 Group velocity dispersion and comparision between the 

two modes 
5.3.1 Group velocity dispersion in waist region 

The GVD of a tapered fiber is defined as the second derivative of the propagation 

constant β with respect to ω, 
2

2 2

2 c dD
d

π β
λ ω

= − . Figure 5.3.1 shows the GVD curves of 

the oHE11 mode as a function of wavelength for tapered e-core fibers made from fused 

silica SMF28 fibers, corresponding to different semimajor axes with an eccentricity of 

0.866.  

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Comparision between the two modes 

With the same fiber parameters, the zero GVD of the odd mode occurs at a larger 

wavelength than that of the even mode. This fact can be understood by considering the 

polarization direction of the two modes. The odd mode has the transverse electric field 

along the semimajor axis, which corresponds to the fundamental mode of a circular 

cross-section fiber with a larger diameter. The even mode has the electrical field along 

the semiminor axis, which corresponds to the fundamental mode of a circular fiber 

with a smaller diameter. The zero dispersion wavelength in a circular fiber moves 

towards the infrared region with increasing diameter, therefore, the odd mode has the 

zero GVD at a larger wavelength. The relationship of the zero dispersion wavelengths 

of the different modes is shown in Fig. 5.3.2.  
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Fig. 5.3.1 The calculated GVD curve of oHE11 mode (a) and eHE11 mode (b) with semimajor 
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Fig. 5.3.2 also demonstrates that the zero dispersion wavelength of the fiber 

can be slightly changed by launching the incident light with different polarization 

states. With the polarization state parallel to the semimajor axis, the zero dispersion 

wavelength is at 750 nm, and with the polarization parallel to the semiminor axis, the 

zero dispersion wavelength is at 700 nm. This will impact the subsequent 

supercontinuum generation characteristics.  
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Fig. 5.3.2 The GVD curves as a function of wavelength for different modes: (a) 
fundamental mode in circular waveguide with a radius of 0.75 μm, (b) odd 
dominant mode with semimajor axis of 1.5 μm and semiminor axis of 0.75 μm, (c) 
even dominant mode with semimajor axis of 1.5 μm and semiminior axis of 0.75 
μm, and (d) fundamental mode in a circular waveguide with a radius of 1.5 μm. 
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5.4 Theoretical simulations of supercontinuum generation in 

polarization-maintaining tapered fibers 

In our numerical model to simulate the pulse propagation in a PM tapered fiber, we 

consider the fiber as a weakly guiding one, which can be described by a generalized 

scalar propagation equation: 

( )
2 2

2

2 0

1 ( , )
!

t
k

k
k

iA A ii i A R t A z t t dt
z k t t

β γ
ω≥ −∞

⎛ ⎞⎛ ⎞∂ ∂ ∂ ′ ′ ′− ⋅ ⋅ = + ⋅ ⋅ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∫ ,           (5.4.1) 

where ( , )A A z t=  is envelope of the electric field, kβ  is the kth order dispersion 

coefficient at center frequency 0ω , R(t) is the response function of fused silica and γ is 

the nonlinear parameter. All the parameters in the propagation equation can be 

evaluated in a similar way as in the cases of circular tapered fibers, except the 

nonlinear parameter γ, which is expressed as: 

   

( )
4

2 0

2
2

( , )

( , )

n F x y dxdy

c F x y dxdy

ω
γ

∞

−∞

∞

−∞

= ∫ ∫
∫ ∫

.                                            (5.4.2) 

n2 represents the nonlinear refractive index of fused silica, c is the light speed in 

vacuum, and ( , )F x y  is the solution of 

   
( ) ( )

( ) ( ) ( ) ( )
2 2

2 2 2
02 22 2 2

, ,1 , 0
cosh cos

F F
n k F

q
ξ η ξ η

β ξ η
ξ ηξ η

⎡ ⎤∂ ∂
+ + − =⎢ ⎥∂ ∂⎡ ⎤− ⎣ ⎦⎣ ⎦

,  (5.4.3) 

where ξ  and η  satisfy the relations 

cosh( ) cos( ) x
qξ η = ,                                          (5.4.4) 

and  

sinh( )sin( ) y
qξ η = .                                          (5.4.5) 

We used an approximated expression of mode distribution ( , )F x y for the 

fundamental mode in the elliptical core [224] 

( ) ( ) ( )0 0 1 0 1, , ,F A Ce q ce qξ η ξ η≅ ,                               (5.4.6) 

which was substituted to Eq. (9) to  evaluate the value of nonlinear parameter γ.  

 The polarization maintaining tapered fiber used in our simulation has 

semimajor axis a and semiminor axis b of 1.5 μm and 0.75 μm, respectively, and a 

fiber waist length of 0.9 mm. The dispersion coefficients for the fundamental mode 

(odd mode) used in the simulation are calculated up to the seventh order. At the pump 
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wavelength of 830 nm, the nonlinear parameter γ is 0.116 /m/W, and the dispersion 

coefficients are: 
2 2

2 1.796 10 ps mβ −= − × , 5 3
3 8.094 10 ps mβ −= × , 8 4

4 8.502 10 ps mβ −= − × ,

10 5
5 1.477 10 ps mβ −= × , 13 6

6 1.943 10 ps mβ −= − × , and 16 7
7 7.711 10 ps mβ −= − × .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.1 illustrates the spectral properties of the supercontinuum in a 

polarization maintaining tapered fibers with a pump wavelength of 830 nm, a peak 

power of 5000 W, and a pump pulse duration of 80 fs. The spectrum shows similar 

properties as that were generated in circular fibers. The wavelengths covered in the 

supercontinuum ranges from 500 nm to 1200 nm. To check whether the output pulse 

is singly polarized, we applied a coupled theory, which demonstrates that negligible 

coupling between two existing modes occurs if the perturbation length is much larger 

than the beat length of the two modes. The perturbation length in tapered fibers 

achieved through normal bending is more than 2 mm [3], whereas all the frequency 

components in the supercontinuum, as shown in Fig. (5.4.2), have beat lengths smaller 

than 0.6 mm. This demonstrates that our tapered fiber maintains a linear polarization 

state throughout propagation and generates a singly polarized supercontinuum.        

We also calculated the spectral and temporal properties of an elliptical-core 

tapered fiber with the input polarization state not aligned along one of the 

birefringence axes. The fiber used in the simulation has the same parameters as that in 

Fig. 5.4.1, and the light launched to the fiber has an input peak power of 10 kW, a 

pumping wavelength of 710 nm, and a polarization state of 450 with respect to the 
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Fig. 5.4.1 The simulated spectrum of SC generation 
in a polarization maintaining fiber with semimajor 
of 1.5 μm and semiminor of 0.75 μm. The pump 
wavelength is 830 nm, the peak power is 5000 W, 
and the pulse duration is 80 fs.   
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Fig. 5.4.2 The calculated curves of beat length 
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semimajor axis. To simulate the generated supercontinuum spectrum, one should 

consider the coupled nonlinear Schrödinger equations:  

( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )
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2 2 2 2
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(5.4.7) 

where ( ),oA z T  and ( ),eA z T represent the electric fields of the odd mode and even 

mode, respectively, a reference frame travelling with the odd mode is used, o
kβ  and 

e
kβ  are the dispersion coefficients at the center frequency of the pump and signal, 

respectively, 1 1
o eβ β−  is related to the group-velocity mismatch between the two 

incident pulses, and the nonlinear parameters of the odd mode oγ  and even mode eγ  

are assumed equally. In the coupled NLSEs, we have neglected the term 

corresponding to four-wave mixing, because in a high birefringence fiber the term 

changes its sign quite often and its contribution averages out to zero [146].  

 Figure 5.4.3 and Fig. 5.4.4 shows the spectral and temporal properties of 

generated supercontinuum of the even mode (a) and odd mode (b), respectively. The 

figures demonstrate that both in the odd mode and in even mode we generated a 

supercontinuum. In fact, referring to the GVD curve shown in Fig. 5.3.2, we know the 

odd mode is pumped in the normal dispersion region, however, due to the strong self-

phase modulation and cross-phase modulation, some generated frequency components 

extend to the anomalous dispersion region and form the Raman soliton, which is 

identified by the peak locating around –1 ps in Fig. 5.4.4 (b). However, lack of the 

soliton splitting process, no dispersive wave is found in the visible region as shown in 

Fig. 5.4.3 (b). Due to the group velocity mismatch, the odd mode and even mode 

separate from each other in time domain and the odd mode travels faster than the even 
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mode. The two modes have polarization states orthogonal to each other, and no energy 

transfer occurs between them. In other words, the odd mode generates a singly 

polarized supercontinuum radiation with a polarization state along the semimajor axis, 

and the even mode generates supercontinuum radiation with a single polarization state 

along the semiminor axis.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5.4.3 The spectral properties of supercontinuum generation of (a) the even 
mode and (b) odd mode, respectively. 

Fig. 5.4.4 The temporal properties of supercontinuum generation of (a) the even 
mode and (b) odd mode, respectively. 
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5.5 Fabrication 
It is difficult to maintain the elliptical preform shape during the fabrication process of 

a tapered fiber, as the strong surface tension can deform the noncircular cross-section 

to a circular one. Therefore, the ratio between viscosity and surface tension of the 

fiber should be taken into account, so that high viscosity and low surface tension can 

prevent the fiber from such deformation. During the fiber drawing process, the 

softened fiber should be forceably cooled down before surface tension can stress it 

into a circular fiber. The method and apparatus for making non-circular fibers are 

described in a patent by Huey et al. [104]. The fabrication of microstructured optical 

fibers with elliptical holes has been realized by N. A. Issa et al. [96], and the fibers in 

his experiment are composed of a polymer which possesses a high ratio between 

viscosity and surface tension.  
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Section 6 Supercontinuum generation in liquid-

core photonic crystal fibers [123] 
6.1 Introduction 
In the former sections, we concentrated on the properties of tapered fibers. In this 

section, we will design a new highly nonlinear fiber using photonic crystal fibers to 

generate dramatically broadened supercontinuum radiation from 700 nm to more than 

3000 nm. A photonic crystal fiber has a central region of fused silica core surrounded 

by lower index air holes, with a cross section as shown in Fig. 6.1.1. Photonic crystal 

fibers have many merits to generate supercontinua, such as a simpler way to design 

group velocity dispersion, practical methods to fabricate an endless fiber, and so on. In 

the experiment, a pulse is launched into the core of the fiber and white light will be 

generated at the output. The group velocity dispersion (GVD) can be designed by 

changing the core diameter, fiber material refractive index, air hole diameter, and hole 

pitch.  

 

 

 

 

 

 

 

 

 

 

 

The supercontinuum generated by photonic crystal fibers, which normally 

ranges from 500 nm to 1200 nm, has many applications, such as pulse compression, 

parametric amplifiers, etc. However, in many cases a more broadened generation is 

needed, and therefore highly nonlinear fibers (with large nonlinear parameter γ) have 

long been sought after. At present, some methods were applied to enhance the 

nonlinear parameter of a fiber, such as reducing the diameter of fiber core, enlarging 

the air-filling fractions, and extruding the fiber preforms in soft lead-glass [105], etc.. 

However, there are some disadvantages of those methods. For example, if the 

Fig. 6.1.1 The structure of photonic crystal fiber, where the blue areas represent fused silica, 
white areas represent air holes core, and the center area is the core of  PCF. d is the air hole 
diameter and Λ is the hole pitch. 
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diameter of fiber core is reduced, it will be very difficult to couple the light into fiber 

and sometimes it will also result in optical damage of the fiber. Furthermore, with 

those methods, the spectrum can be broadened to be in the range from 500 nm to 2000 

nm. No further broadening can be realized. In this section, we demonstrate a new way 

to realize a highly nonlinear fiber by filling the core of a hollow-core PCF with highly 

nonlinear liquids, such as carbon disulfide or nitrobenzene, as shown in Fig. 6.1.2. We 

name this kind of fiber a “liquid-core photonic crystal fiber” (LCPCF). The technique 

to fill the center hole of a holey fiber with liquids has been taken into practice, and the 

diameter of the liquid core can be reduced to a size as small as several microns 

[106,107].  

Although highly nonlinear liquids such as carbon disulfide have been used to 

generate spectral broadening by filling the liquid in a hollow fiber [108,109], the 

resulting spectrum was not a supercontinuum. The non-continuous generation, which 

consists of only some distinct peaks, results from the fact that at the time of the 

experiment nearly two decades ago a crucial requirement to generate a 

supercontinuum was not fulfilled, namely that the GVD should be anomalous and 

close to zero at the pump wavelength. The liquid-core PCF designed in this paper on 

the other hand shows a zero GVD wavelength around 1.55 μm and an anomalous 

dispersion in the near infrared spectral region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 6.1.2 The structure of the holey fiber, where the red center core is filled with liquids and 
the white holes are filled with air. d is the hole diameter and Λ is the hole pitch. 
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6.2 Physical properties of the high-nonlinearity liquids 
6.2.1 Nonlinear coefficient 

Nitrobenzene and carbon disulfide, as two candidates of the high-nonlinearity liquids, 

have nonlinear coefficients n2 of 13250 10−⋅ esu and 13120 10−⋅ esu [110], which are more 

than 100 times and 50 times larger than that of silica, respectively.  

 

6.2.2 Refractive index dispersion 

The refractive index dispersion of carbon disulfide is given by [111]  

2

2 2 4 4 5 6 5 8( ) 1.580826 1.52389 10 4.8578 10 / 8.2863 10 / 1.4619 10 /csn λ λ λ λ− − −= + ⋅ + ⋅ − ⋅ + ⋅ λ− ,   

(6.2.1) 

where λ is the wavelength of light in μm. 

Unfortunately, no data in the visible and near infrared are available so far for 

nitrobenzene. Therefore, I and my colleague Jörn Teipel have measured the refractive 

indices of nitrobenzene with an Abbe refractometer, as shown in Fig. 6.2.1. Limited 

by the instrument, we were not able to perform the measurement at wavelengths larger 

than 1.1 μm.  

From the measured data we extract the Sellmeier fit for the refractive index for 

nitrobenzene 
2 2 3 4 4 6 5 8( ) 1.5205 0.79 10 1.670 10 / 3.1 10 / 3.0 10 /nitrobenzenen λ λ λ λ λ− − − −= + ⋅ + ⋅ − ⋅ + ⋅    (λ  in μm) 

(6.2.2) 
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 Fig. 6.2.1. The refractive index dispersion of nitrobenzene as a function of wavelengths. I 
and my colleague Jörn Teipel measured the data using an Abbe refractometer.   

Although the equation for nitrobenzene is precise only for wavelengths smaller 

than 1.1 μm, the dispersion of organic compounds varies only slowly in the infrared, 

so that we can extrapolate them into the longer wavelength region with reasonable 

accuracy. 
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6.2.3 Transmission curves 

The transmission spectra of a 9.8 mm thick cuvette filled with carbon disulfide and 

nitrobenzene in the visible and near infrared region are shown in Fig. (6.2.2) 

(corrected for the cuvette reflection). Carbon disulfide exhibits no absorption in the 

visible and near infrared region. Nitrobenzene has a strong absorption at wavelengths 

larger than 1600 nm, however, it is transparent in the whole visible region and in the 

range between 1200 nm and 1600 nm. 

 

 

800 1200 1600 2000 2400 2800
0

20

40

60

80

100

 

 carbon disufide
 nitrobenzene

Tr
an

sm
is

si
on

 (%
) 

wavelength (nm)

 

 

 

 

 

 

 

 
Fig. 6.2.2 The transmission curves of a 9.8 mm cuvette of carbon disulfide 
(red dashed), and nitrobenzene (black solid). Carbon disulfide has no 
absorption in the visible and near infrared region. I and my colleague 
Hongcang Guo measured the data using a CARY spectrophotometer in Prof. 
Buse’s group
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6.3 Group velocity dispersion of the liquid-core photonic 

crystal fiber 
The GVD is proportional to the second derivative of the propagation constant β with 

respect to ω, 
2

2 2

2 c dD
d

π β
λ ω

= − .  Many methods for modeling are known to calculate 

the propagation constant, e.g., the effective-index method (EIM), the multipole 

method (MPM), and the beam-propagation method (BPM) [112-114]. In this paper, 

we simulate the GVD curve using a fully analytical vector approach of the effective-

index method, which gives accurate results [115,116].  

The propagation constant β can be characterized theoretically by solving the 

propagation equation in fibers: 
22 2 2

0
2 2 2

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

eff m core core effm core m core m core

m core m core m core core m core core core

n K r m k n nJ r K r J r
J r K r J r n K r r n

γ βκ γ κ
κ κ γ γ κ κ γ γ κ γ

′⎡ ⎤ ⎡ ⎤−⎡ ⎤′ ′ ′
+ + =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, (6.3.1) 

where 2 2 2 2
0coren kκ β= − ; 2 2 2 2

0effn kγ β= − ;  Jl(x) and Kl(x) are the lth order Bessel 

function and modified Bessel function, respectively. l=1 corresponds to the 

fundamental mode HE11 in the waist region; ncore, neff are the refractive indices of core 

and the effective index of cladding, respectively; rcore is the core radius, which is equal 

to 0.625 ⋅Λ  in silica-core PCF, however, in our case, is equal to the radius of the air 

hole a. 

The cladding effective index neff is evaluated by the following equations: 
2 2

2 1 2
2 2 2 2 2 2

2 21 2 2
2 2 2

1 1 1

1 1( ) ( )( ) 1(1 ) (1 )
( ) 2 4

l

l

n nlI w n nl w u w w uP w P
I w w n n n
+

⋅ + ⋅ +
= − − ⋅ + ⋅ − ⋅ ⋅ − ⋅ + ;   (6.3.2) 

( / ) ( ) ( / ) ( )
( ( ) ( / ) ( ) ( / ))

l l u l l u

l l l l

Y uR a J J uR a Y
P

u J u Y uR a Y u J uR a
ξ ξξ ξ= =

′ ′⋅ − ⋅
=

⋅ ⋅ − ⋅
;                             (6.3.3) 

2 2 2 2
0 2( )effu k n n a= ⋅ − ⋅         and      2 2 2 2

0 1( )effw k n n a= ⋅ − ⋅                     (6.3.4) 

where, 1n  and 2n  are the refractive indices of air and silica, respectively, a is the 

radius of the air hole, R is the half of the pitch of the hexagonal lattice, Jl and Yl are 

the lth order Bessel function of the first order and second order, respectively, Il is the lth 

order modified Bessel function of the first kind, and l is equal to 1 for the fundamental 

mode EH11 in the cladding. 

We designed one of the structures of LCPCFs which are capable to yield zero 

GVD in the infrared. The GVD curves are shown in Fig. 6.3.1 using the following 
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parameters: (a) the core is filled with nitrobenzene, the diameter of the core and air 

holes d is 4 μm, and the lattice pitch (the distance between centers of neighboring 

holes) Λ is  6.5 μm; (b) the core is filled with carbon disulfide, d is 3 μm, and Λ is 4.5 

μm. The zero-dispersion wavelengths occur around 1.55 μm in the near infrared, and 

the GVD curves exhibit slow variations and small values.   
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Fig. 6.3.1. GVD curves of the holey fiber with the center hole  (a) filled with nitrobenzene 
(dashed), d is 4 μm and Λ is 6 μm, and (b) filled with CS2 (solid), d is 3 μm, and Λ is 4.5 μm. 
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6.4 Response function of carbon disulfide 
Although both of the LCPCF filled with carbon disulfide and nitrobenzene exhibited 

suitable GVD curves and showed huge potentials to generate supercontinuum, we 

only simulate the SC generation of LCPCF with carbon disulfide because of the 

capability of carbon disulfide to be transparent in the infrared region. In the simulation, 

the generalized scalar propagation equation, which is suitable for studying broad-band 

pulse evolution, is solved with split-step Fourier algorithm: 

( )
2 2

2

2

1 ( , )
!

t
k

shockk
k

iA Ai i i A R t A z t t dt
z k t t

β γ τ
≥ −∞

⎛ ⎞∂ ∂ ∂⎛ ⎞ ′ ′ ′− ⋅ ⋅ = + ⋅ ⋅ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∫ ,         (6.4.1) 

where ( , )A A z t=  is envelope of the electric field, kβ  is the kth order dispersion 

coefficient at center frequency 0ω , γ is the nonlinear coefficient, and R(t) is the 

response function of carbon disulfide. The timescale shockτ  includes the influence of 

the frequency-dependent effective mode area and can be written as [117]: 

0
0

1 1
( ) ( )shock

eff eff

d In
d n A

ω

τ
ω ω ω ω

⎡ ⎤⎛ ⎞
= + ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,                         (6.4.2) 

where  ( )effn ω  and ( )effA ω  are the effective index and effective area of the guided 

mode, respectively. 

Unlike fused silica, the main mechanism responsible for the nonlinear 

refractive index is long-time response due to the molecular reorientation, which is 

induced by the tendency of molecules to become aligned in the electric field of an 

applied optical wave. The nonlinear refractive index, therefore, depends highly on the 

pulse duration. In this section, we derived the response function of carbon disulfide, 

which, as summarized by McMorrow et al. [118], includes instantaneous response due 

to electronic hyperpolarizability, subpicosecond response due to molecular librational 

motion, subpicosecond response due to collision- induced molecular polarizability, 

long-time response due to molecular reorientation and damped oscillation response 

due to Raman effect. Under the Born- Oppenheimer approximation [63], the response 

function, for optical pulses far from electronic resonance, can be written in the 

following way: 

( ) ( ) (1 ) ( ) ( )e e R m R RR t f t f f h t f h tδ= ⋅ + − − ⋅ + ⋅ ,                       (6.4.3)                              

where ( )ef tδ⋅ , (1 ) ( )e R mf f h t− − ⋅  and ( )R Rf h t⋅  are electronic hyperpolarizability, 

molecular (including molecular librational motion, collision induced molecular 



Supercontinuum generation in liquid-core photonic crystal fibers 
 

102 

polarizability and molecular reorientation) and Raman effect contributions, 

respectively, with  ( )tδ  of delta function, 
0

( ) 1mh t dt
∞

=∫ , and  
0

( ) 1Rh t dt
∞

=∫ . fe and fR 

represent the fractional contribution of the electronic hyperpolarizability and Raman 

effect, respectively.  

 

6.4.1. Contribution of electronic hyperpolarizability 

According to the measurements on the third order hyperpolarizability, the electrical 

fractional contribution fe is determined to be 11 % [119]. 

 

6.4.2. Contribution of Raman effect 

Following the analytic form of the Raman response function of fused silica by Keith J. 

Blow et al., we write the response function of carbon disulfide as follows: 

( ) ( )
2 2
1 2

2 12
1 2

( ) exp / sin /Rh t t tτ τ τ τ
τ τ

+
= − ,                            (6.4.4)                              

where the inverse time scale corresponds to the frequency of the peak of the Raman 

gain spectrum, and the decay rate corresponds to the width of the gain spectrum.  

Table 6.4.1 shows Raman modes of carbon disulfide in which stimulated Raman 

scattering was observed [120]. From the data sheet in Table 6.4.1, we choose here the 

values of 1 0.0081τ =  ps and 2 21.2τ =  ps. According to Eq. (6.4.5) [68], fR is 

determined to be 0.3%. 

2( ) (2 / ) Im( ( ))p R Rg c f n hω ω ωΔ = Δ ,                              (6.4.5) 

where Im stands for the imaginary part, g(Δω) represents the Raman gain spectrum, 

and ( )Rh ωΔ  is the Fourier transform of Raman response function ( )Rh t . 

Table 6.4.1 Raman modes of carbon disulfide 

substance Frequency shift  

(cm-1) 

Line width  

(cm-1) 

Gain factor gR  

(10-10 m/ W) 

Carbon disulfide 655.6 0.5 2.4 

 

 However, when using this formula as Raman response function of carbon 

disulfide, we should be very careful. First, besides the strongest Raman mode at 653 

cm-1, which is considered in Eq. (6.4.4), the weaker Raman mode at 392 cm-1 should 

be also taken into account. Although the strength of this mode is two orders weaker 
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than the mode at 653 cm-1 due to its smaller resonance frequency and much larger line 

width it will contribute to the Raman response function. However, lacking of 

experimental results on this mode, at present it is impossible to determine the its 

fractional contribution. Second, the Raman active mode at 653 cm-1 is hard to excite. 

Pulses with extremely large bandwidth and short pulse duration (less than 20 fs) are 

required to excite those Raman-active modes in the molecule. In our case, where the 

pulse duration is more than 100 fs, we should state that the Raman-active mode at 653 

cm-1 can not be excited and therefore the Raman fractional contribution fR is set to be 

zero. However, another problem arises and makes the situation very complex. As we 

know, during the initial stage of supercontinuum generation, the higher order soliton 

splits into its fundamental solitons (details can be found in section 2.6). Each of those 

fundamental solitons has a peak powers and pulse durations as follows [37]: 

( )2

2

2 2 1
k p

N k
P P

N
− +

=  ,           0

2 2 1k
TT

N k
=

− +
,                    (6.4.6) 

where N is the higher-order soliton number, Pp and T0 represent the input peak power 

and input pulse duration, respectively. It is clear that the fundamental solitons can 

have much shorter pulse durations. In the case of input pulse duration of 100 fs and N 

equal to 20, the first fundamental soliton has a pulse duration around 2.5 fs. This 

property demonstrates that some of the fundamental solitons can indeed excite the 

Raman-active modes. Due to the fact that some components in a pulse can excite the 

Raman modes and others cannot, it is impossible for us to determine a universal 

Raman response function and a Raman fractional contribution at present. We are 

looking forward to further research on the Raman gain spectrum and temporal 

properties of the Raman effect in carbon disulfide. Raman gain is the main mechanism 

leading to soliton self-frequency shift and consequently forming the red-shifted 

Raman soliton. Therefore, in order to obtain conservative spectra of the 

supercontinuum generation, we consider the Raman fractional contribution to be zero 

in our simulations.  

 

6.4.3. Molecular contribution 

The molecular contribution to the nonlinear optical response including molecular 

librational motion, collision-induced molecular polarizability and molecular 

reorientation, can be determined by a time- resolved optical Kerr- effect experiment. 

Based on the Born- Oppenheimer approximation, the molecular time-scale response of 

carbon disulfide was revealed, as shown in Fig. 6.4.1. A model functional form to 
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express the molecular response was obtained [121], although this form was lacking 

rigorous physical justification. After normalization, the functional form of hm(t) can be 

written as follows: 

2 2

0
int

( ) 0.5048 exp( )(1 exp( ))

0.8314 exp( )(1 exp( )) 1.633 exp( )sin( ),
2

m
diff rise

rise

t th t

t t t t

τ τ

α ω
τ τ

= ⋅ − − −

+ ⋅ − − − + ⋅ −
       (6.4.7) 

where τdiff = 1.68 ps, τrise = 0.14 ps, τint = 0.4 ps, α = 5.4 /ps, and ω0 = 6.72 /ps. 

According to the estimate of fe and fR above, the fractional contribution of the 

molecular dynamics is determined to be 89%. 
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Fig. 6.4.1 The normalized molecular response function of carbon disulfide with a 
relaxation time of 1.68 ps. 
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6.5 Theoretical simulations of supercontinuum in liquid-core 

photonic crystal fiber 
The fiber used in our simulations has a core diameter of 3 μm, a lattice pitch of 5 μm, 

and a length of 5 mm. Its centre hole was filled by CS2. Since the resulting spectrum 

relies on the input pulse duration due to the molecular response, we simulated the 

spectra with input duration of 100 fs and 500 fs, respectively. The dispersion effects 

are considered up to the 14th order, and the dispersion coefficients are shown in the 

appendix. The nonlinear parameter γ is evaluated to be 2.45 /W/m (compared with the 

nonlinear parameter of 0.11 /W/m in a silica PCF, which has a core diameter of 1.4 

μm and pumping wavelength of 800 nm [117]), and the input peak power used in the 

simulation is 10 kW. Actually, the inexact evaluation of dispersion coefficients and the 

neglected Raman effect can lead to imprecise results of the generation, however, it is 

reasonable to consider the simulated bandwidths of the spectra as indicative. Figure 

6.5.1 and Fig. 6.5.2 show the SC spectra generated by the CS2-filled LCPCF with the 

pulse duration of 100 fs and 500 fs, respectively. The figures demonstrate that a 

liquid-core PCF is capable to generate supercontinua with dramatically broadened 

spectra, which cover a range from 700 nm to more than 2500 nm. The output spectra 

depend on the input pulse duration, with the longer pulse duration causing a broader 

spectrum. Increasing the input power and fiber length can further broaden the spectra.  

 

 

 

 

 

 

 

 

 

 

 
 
 

  Due to the high nonlinearity, a liquid-core PCF is of capability to generate 

supercontinua with low input peak power as well. We simulated the spectral property 

Fig. 6.5.1 The calculated output spectrum 
(logarithmic) generated by the LCPCF with 
input peak power of 10 kW and pulse duration 
of 100 fs. 

Fig. 6.5.2 The calculated output spectrum 
(logarithmic) generated by the LCPCF with 
input peak power of 10 kW and pulse duration 
of 500 fs. 
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of SC generation with the input peak power 1 kW and pulse duration 500 fs, as shown 

in Fig. 6.5.3. The PCF used in the simulation has a core diameter of 3 μm, a lattice 

pitch of 5 μm, and a length of 10 mm. With pumping wavelength at 1550 nm, the 

resulting spectrum covers a range of 1100 nm, from 1000 nm to 2100 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6.5.3 The calculated output spectrum (logarithmic) generated by the LCPCF 
with input peak power of 1 kW and pulse duration of 500 fs. 
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6.6 Guided modes in liquid-core photonic crystal fiber 
The high refractive index of the liquid core leads to multi-mode propagation in a 

liquid-core PCF. The V-parameter ( )2 2
core eff

dV n nπ
λ
⋅

= ⋅ −  is equal to 4.37 in the case of 

the core being filled with carbon disulfide. Despite the capability to generate a 

supercontinuum provided by a highly nonlinear multi-moded fiber, one difficulty 

arises, namely when an output beam with good spatial characteristics and little mode 

dispersion, or more specifically, single-mode transverse characteristics, is required. 

Single mode propagation and output can be obtained using adiabatic coupling in the 

following way: A single mode PCF with the same propagation constant as that of the 

fundamental mode in LCPCF can be used to generate a single mode beam, which is 

subsequently launched into the LCPCF. The incident mode can couple only to modes 

with the same azimuthal symmetry and with a similar propagation constant [78], and 

then the fundamental mode becomes the dominant guided mode in the LCPCF. In the 

process of propagation in the LCPCF, negligible coupling and small power loss from 

the fundamental mode to the higher order modes occur, because the small core and 

large core-cladding index difference of the LCPCF requires a large perturbation to 

couple to the higher order modes. Therefore, the fundamental mode propagates within 

a good approximation adiabatically in the LCPCF, similar to light propagating in a 

single mode along a tapered fiber [24]. 
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Section 7 Summary and outlook 
7.1 Summary 
Tapered fibers and photonic crystal fibers have shown huge potential to generate 

supercontinuum radiation, which has found numerous applications in optical 

coherence tomography, spectroscopy, pump-probe measurements, optical frequency 

metrology, and so on. In this dissertation, we comprehensively discussed the 

generation mechanisms of the supercontinuum generation, described the 

comprehensively propagation characteristics of tapered fibers, and for the first time 

designed the technologies to specifically tailor the group velocity dispersion of 

tapered fibers, realizing singly polarized supercontinuum radiation using tapered 

fibers, and dramatically broadened the generated spectrum with a new liquid filled 

highly nonlinear photonic crystal fiber. This research work has improved the spectral 

characteristics of tapered fibers and photonic crystal fibers, which can be applied 

directly in many research fields such as spectroscopy, atom trapping, and 

telecommunication.  

 

I summarize our research work as follows: 

 

 We solved the nonlinear Schrödinger equation to simulate the supercontinuum 

generation and studied in detail the generation mechanisms. 

Using the split-step Fourier method, we solved the nonlinear Schrödinger 

equation to simulate the spectral and temporal properties of the supercontinuum 

generation. Through the comparisons of theoretical simulations and experiment results, 

we found the theoretical simulations can not only adequately model the width of the 

generated spectrum, but also precisely predict the positions of distinct spectral peaks. 

 The supercontinuum generation is a complex nonlinear phenomenon. The 

mechanisms behind SC generation arise from the interaction between dispersion and 

nonlinear effects, including selfphase modulation, soliton formation, soliton splitting, 

self steepening, soliton self frequency shift, and Raman scattering.  

 

 We studied the mode and group velocity dispersion (GVD) evolution in the 

tapered transition region of a tapered fiber 

Through precise calculations, we calculated for the first time the evolution of 

the transverse intensity distribution, the nonlinear parameter, and the GVD of the fiber 
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mode in the taper region of a tapered fiber. We have demonstrated this complete 

characterization of light propagation and nonlinear interaction processes in tapered 

fibers, which should be taken into account in both experimental analysis and device 

design. We have especially pointed out that the dispersion of the GVD and the 

nonlinear interaction within the taper region has significant influence on the 

propagation of spectrally broad supercontinuum pulses. 

 

 We tailored the group velocity dispersion of tapered fibers by immersing them in 

different liquids 

Our theoretical calculations revealed for the first time that the design of the 

GVD in tapered fibers can be tailored when we immerse the fibers in transparent 

liquids (such as acetonitrile, pentane, and hexane). The GVD curves exhibit slow 

variations and small values (<40 ps/km/nm) in the anomalous dispersion region. The 

second zero-dispersion wavelength (ZDW) of the GVD curve can be generated in the 

infrared (e.g., around 1.55 μm). When mixing pentane and hexane, the ZDW can be 

fine-tuned to match the center frequency of the pump pulse around 1.55 μm, which 

can optimize supercontinuum generation. By use of alternative fiber materials (BK7, 

SF6, and SF59) for the tapered fiber and immersing them into chlorobenzene, we can 

reduce the diameter of the fiber taper to 3 μm and position the first ZDW of the GVD 

curve in the telecommunication window. Finally, spectrum simulations demonstrate 

that a tapered fiber immersed in liquid Series AAA (Cargille) is capable to generate 

the supercontinuum with dramatically broadened spectrum ranging from 700 nm to 

2000 nm.  

 

 We theoretically realized the design of a singly polarized supercontinuum 

generation with tapered fibers 

We designed a polarization-maintaining tapered fiber and calculated 

birefringence and group velocity dispersion as a function of wavelength of the 

dominant modes. For the first time our elliptically tapered fiber demonstrated an 

extremely large birefringence and a small beat length, which make the fiber suitable 

for maintaining the linear polarization state and generating a singly polarized 

supercontinuum.  By changing the polarization state of the incident light, we could 

fine-tune the zero dispersion wavelength, which is critical with regards to the 

spectrum of the generated supercontinuum.  
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 We theoretically calculated the dramatically broadened supercontinuum by using 

a liquid-core filled photonic crystal fiber 

We designed a new nonlinear fiber to generate supercontinuum radiation with 

dramatically broadened spectrum by filling highly nonlinear liquid into hollow 

photonic crystal fibers for the first time. The liquid-core photonic crystal fiber (PCF) 

with carbon disulfide and nitrobenzene filled into the core exhibits an extremely high 

nonlinear parameter γ, which can be more than 20 times larger than that of a 

conventional PCF. The GVD curves of the liquid-core PCF display slow variation and 

small absolute values in the anomalous dispersion region, and the zero dispersion 

wavelength lies around 1.55 μm in the near infrared, making LCPCFs ideal media for 

supercontinuum generation. Simulation demonstrates that the spectrum generated by 

this new nonlinear fiber ranges from 700 nm to more than 3000 nm. In order to 

accomplish this task, we had to determine a complete quantitative Raman response 

function of the liquid in the femtosecond and picosecond regime for the first time. 
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7.2 Outlook 
Based on the present work, we suggest the following projects in the future:  

 

 Improve the spectral characteristics by introducing a diameter variation of the 

waist diameter along the fiber 

The nonlinear Schrödinger equation is well suited to simulate the temporal and 

spectral properties of supercontinuum generation. In the generation of SC radiation, 

phase velocity mismatch and group velocity mismatch lead to lower efficiency and 

narrower generated spectra. Using the nonlinear Schrödinger equation, we are able to 

design an optimized variation function of waist diameter along the fiber, which can 

minimize those conditions and improve the generated spectrum.  

 

 Fabricate a polarization-maintaining tapered fiber 

 A tapered fiber with elliptical cross section in the waist region is capable to 

maintain an incident linear polarization state throughout the propagation path and 

generates a highly polarized supercontinuum. However, as we discussed in section 5.6, 

it is difficult to maintain the elliptical perform shape during the fabrication process of 

a tapered fiber, as the strong surface tension can deform the noncircular cross-section 

into a circular one. Therefore it is a great challenge to fabricate such a fiber in the lab. 

We plan to prevent the fiber from the deformation by enhancing the ratio between 

viscosity and surface tension of the fiber. In other words, during the fiber drawing 

process, we forceably cool down the softened fiber before surface tension can stress it 

into a circular fiber.   

 

 Complete the response function of carbon disulfide and have the new nonlinear 

fiber manufactured 

 A full response function of carbon disulfide is of scientific interest and 

importance in the field of nonlinear optics. At present, lacking experimental results on 

a more detailed Raman gain spectrum and lacking the temporal properties of the 

Raman effect in carbon disulfide, it is impossible to determine its full response 

function. We will design an experimental setup to measure the Raman gain spectrum 

as well as its temporal properties, with which a full understanding of the time resolved 

Raman effect down to the few-fs-regime in carbon disulfide can be achieved.  
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 We also plan to have the new nonlinear fiber manufactured. We will fill 

carbon disulfide into a hollow photonic crystal fiber by vaporizing carbon disulfide, 

injecting it into the core of the hollow PCF, and then cooling down the gas to 

condense the liquid.  

 

 Design a liquid-crystal-core photonic crystal fiber 

 Liquid crystals have many favorable characteristics, which can be used to 

generate an adjustable supercontinuum generation by applying an external electric 

field. The spectral properties generated by such a fiber can be easily modulated by 

varying the strength and direction of the external electric field. Furthermore, applying 

the electric field along the fiber with different strength is able to realize quasi-phase 

matching and to satisfy the group velocity matching condition, which will definitely 

improve the spectral characteristics of the supercontinuum generation. In fact, the 

property to control the optical generation by external electrical fields, is favorable in 

many applications such as telecommunication, optical data transmission, and so on.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Typical Characteristics
Refractive Index Liquid Series AAA
Refractive Index 1.35000 at 5893 Å and 25 ° C

Compostition Perfluorocarbon and Chlorofluorocarbon ( not the types thought to affect the ozone )
Appearance Colorless Liquid
Odor None
Color Stability In sun: no visible change after 10 years
Index Change Rate Moderate : -0.00030 to +0.00009
       by Evaporation expected after 32 days with exposed surface area to volume ratio of 0.2 cm2/cc @ 25 °C

Pour Point < -20 °C
Boiling Point > 215 °C  ( 760 mm Hg )
Flash Point None °C  ( COC )

Density 1.921 g / cc at 25 °C
Density Temp Coef -0.0019 g / cc / °C
Coef of Thermal Expansion 0.0010 cc / cc / °C
Thermal Conductivity 0.00029 cal / sec / cm2 / °C  - 1 cm thickness

Viscosity 16 cSt at 25 °C
Surface Tension 18 dynes/cm at 25 °C

Soluble

Partly Soluble Most organic solvents

Insoluble

Compatible

Incompatible

Toxicity None ( Request MSDS )

Cargille Laboratories
55 Commerce Rd - Cedar Grove, NJ 07009-1289

Phone : 973-239-6633 - Fax : 973-239-6096 - Web : www.cargille.com

Other Chlorofluorocarbons

10 Month Immersion at 25 °C: Acrylic, Cellulose Acetate, Epoxy, Mylar, Nylon, Polycarbonate, 
Polyester, Polyethylene, Polypropylene, Polystyrene, Polyurethane, Polyvinyl Chloride, 
Phenolic, Teflon, Latex, Neoprene, Silicone ( Sylgard 184, 3140 RTV ), and Fluorosilicone ( 
Silastic 730 RTV ) Rubbers ; Tygon F-4040-A, Tygothane, Brass, Copper, Steel

Burna-S, Natural, and some Silicone Rubbers; Tygon S-50-HL, R-3603, B-44-3; Chlorotrifluoro 
Ethylene Polymers, Aluminum

Water
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Refractive Index Liquid Series AAA
Refractive Index 1.35000 at 5893 Å and 25 ° C

Cauchy Coefficients A B
1.3432154 237036

Cauchy Formula A + B / λ2 + C / λ4 ( λ = Wavelength in Angstroms )

Wavelength ( in Å ) Refractive Index 0.1 mm 1 mm 1 cm 10 cm
2250 - - - - -
2400 1.38 99 91 37 0
2480 1.38 99 95 57 0
2700 1.375 100 98 80 11
2900 1.371 100 99 88 27
3080 1.368 100 99 92 43
3370 1.364 100 100 96 64
3650 1.3607 100 100 97 78
4047 1.3575 100 100 98 83
4861 1.3532 100 100 99 95
5461 1.3511 100 100 99 95
5893 1.3500 100 100 100 96
6328 1.3491 100 100 100 97
6563 1.3487 100 100 100 97
6943 1.3481 100 100 100 98
8400 1.3466 100 100 100 96

10648 1.3453 100 100 100 96
13000 1.345 100 100 100 96
15500 1.344 100 100 99 89
25000 1.34 100 99 91 39
37000 1.34 98 81 11 0

0.0045
78.4

-0.000339 dnD/dt   ( 15 - 35 °C )

-4.943692E+10
C

( nF - nC )
Abbe vD

Temp. Coefficient

Transmittance

TCS 101480 Page 2 of 2 3/31/2005
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