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Abstract

In this thesis we summarize several theoretical studies in the context of quantum im-
purity systems. We implement the numerical renormalization group (NRG) technique
as a powerful method for the solution of the Kondo and the Anderson impurity model.
The extension of the standard NRG, which deals with static properties and the calcula-
tion of thermodynamics, towards the calculation of dynamical properties is accurately
described in our work.

We study the distribution of the Kondo temperature Tk versus the Kondo coupling
strength J in the two-channel Kondo (2CK) model by means of an extended NRG
program. We show that a wide distribution of the couplings J leads to a peaked
distribution of T. This gives an explanation of the zero-bias anomalies measured in
quantum point contact experiments.

Conductance measurements in scanning tunneling microscopy (STM) experiments
of transition metal impurities on metal surfaces are analyzed in this thesis. By com-
bining correlated electron techniques with density functional calculations we show that
the transport occurs through the atomic multi-electron states, and we identify their
signature in the STM lineshape. A careful analysis of the different relative strengths
of the transmission channels allows to determine the spatial orientation of the atomic
orbitals of Kondo atoms on a metal surface. Our interpretation is that the tunneling
predominantly occurs into the local orbital, which sticks out most out of the metal
surface.
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Introduction

To describe the electronic properties of a solid it is important to investigate the differ-
ent interactions in the system, whereas the Coulomb interaction between the electrons
plays the most important role. In many substances, such as metals, the Coulomb in-
teractions are screened as a result of the large extent of the electronic wavefunctions,
and thus can be treated with perturbative methods. However, during the last decades,
new classes of materials were discovered, where localized electron states mainly deter-
mine the physical properties. In such substances, the local Coulomb repulsion U is the
highest energy scale in the problem and cannot be treated by perturbative approaches
anymore. One characterizes this kind of solids as “strongly correlated systems”.

One example for a strongly correlated system are non-magnetic metals with mag-
netic impurities. During the last 40 years there has been significant progress in the
theory and the experiments of the quantum impurity systems [1], which led to a better
understanding of their physical properties. The field of complex many-body phenom-
ena is still a very active field of modern condensed matter research, e. g. in the context
of nanotechnology and molecular electronics. A prime example for a stronly correlated
model is the Kondo model, which was used by Jun Kondo in 1964 [2]| to explain the
resistance minimum in metals with non-magnetic contaminations. The new arising
problem in the explanation was the breakdown of the theory below a characteris-
tic temperature, called the Kondo temperature 7. Logarithmically diverging terms
in the calculations mirrored an infinitely strong coupling of the impurity to the sur-
rounding conduction electrons, leading to a singlet ground state. Consequently, new
non-perturbative methods had to be developed for the description of the physics below
the Kondo scale Tx. The solution to the Kondo problem was achieved by K. G. Wilson
as he devised the numerical renormalization group (NRG) [3] method in the 1970s.

The NRG will be the central topic of this thesis and it will be employed in the
solution of complex quantum impurity systems. The thesis is organized as follows:

In chapter 1 we will introduce the Kondo effect as one of the archetype problems
in correlated many-body physics. Beginning with the long time unexplained resistance
minimum in metals with magnetic impurities, we describe how J. Kondo explained
this behavior by means of his perturbative calculations on a model of the exchange
scattering between the electron spin and the impurity spin. The then arising Kondo
problem was that the calculations break down at low temperatures due to logarith-



2 Introduction

mically diverging terms. We present the first steps towards a solution of the Kondo
problem via the single impurity Anderson model (STAM) and Anderson’s poor man’s
scaling approach. Then we briefly sketch how the Kondo problem was firstly solved by
a non-perturbative approach, Wilson’s numerical renormalization group (NRG), and
how Wilson’s results were confirmed later by an analytical method, the Bethe ansatz
(BA). At the end of chapter 1, we motivate why the Kondo effect is still an active field
of modern condensed matter physics.

Chapter 2 contains a short insight into methods which solve quantum impurity
problems either analytically or numerically. We shortly describe how the Bethe ansatz
technique gives reliable results on exact wave functions, spectra and thermodynamics of
the Kondo problem for the entire range of temperatures and magnetic field. As the BA
cannot access dynamical properties, we subsequently sketch a prominent method for
one-dimensional quantum systems, the density matrix renormalization group (DMRG),
which also yields results on dynamical correlation functions. The rest of chapter 2 is
devoted to an approximate, but systematic technique, which can describe the high and
low temperature behavior of quantum impurity models — the so-called Non-Crossing
Approximation (NCA). The NCA provides a very flexible solution method for more
complex impurity models as e. g. multi-orbital Anderson models, which becomes
useful in our work on the electronic transport through Kondo atoms in chapter 5.

The main part of this thesis is contained in chapter 3, where we describe in detail
the numerical renormalization group (NRG) technique. Originally developed by Wilson
for the solution of the Kondo problem, this non-perturbative method has been used
to tackle even more complex quantum impurity problems. The first part of chapter 3
presents how the NRG procedure works for the STAM. The following chapter describes
how the NRG, which was developed for this thesis, is applied to quantum impurity
models. We present the analysis of fixed points, the calculation of thermodynamics
and the calculation of dynamic properties as the local impurity spectral function.
Section 3.3 shows how the NRG was extended towards more complicated models,
including the application of the NRG in non-equilibrium problems. A modern approach
of describing strongly correlated materials is the dynamical mean-field theory (DMFT).
The last section of chapter 3 contains an introduction of how the NRG is used within
DMFT calculations. Thereafter we describe how we plan to apply our NRG program
within our proposed microscopic model for europium oxide.

In chapter 4, we give our results on a multi-channel impurity model, the two-channel
Kondo (2CK) model, as obtained via an extended NRG. We motivate why the study
of the 2CK model is relevant in the description of strongly correlated materials and
how only the 2CK effect can explain experimental results on quantum point contacts.
We describe how the usual NRG program had to be adapted and compare our results
with existing 2CK NRG solutions. We then show our new results on the distribution
of the 2CK Kondo temperature versus the Kondo coupling J.

Chapter 5 is devoted to multiorbital Anderson impurities and how we use this ex-
tended impurity model to explain scanning tunneling microscopy (STM) experiments.



First we overview the experimental and theoretical background of the Kondo effect,
which plays a crucial role in STM experiments of transition metal atoms on metal
surfaces. We then show how we improved the theoretical explanation of the STM
lineshapes occuring in experiments with titanium atoms on gold and silver surfaces.
We therefore combined density functional theory calculations with an extended NCA
to recover the experimental spectra. It is shown in section 5.4 that with our method
we can gain insight into the electronic transport and the geometry of transition metal
Kondo atoms.

We offer a conclusion in English and in German in chapters 6 and 7.

The appendix contains technical details used for the calculations in the conven-
tional, one-channel NRG (appendix A) and in the 2CK NRG (appendix B). Finally,
the thesis contains miscellaneous information as a list of abbreviations, a list of publi-
cations, the bibliography, a curriculum vitae and acknowledgements.






Chapter 1
The Kondo effect

The presence of magnetic impurities in metals changes the physical properties of a sys-
tem drastically, leading to non-trivial many-body physics referred to as Kondo physics
[1]. This chapter explains the Kondo effect, which has been a topic of central interest
for condensed matter physics since many years now. Many experimental and theoret-
ical progress has been made since the discovery of the Kondo problem in the 1960s. It
is still a very active field of research and Kondo physics also makes a big contribution
to modern applications as e. g. to nanotechnology.

1.1 The Kondo problem

The first manifestation of the effect of magnetic impurities in metals has been known
since the early 1930s, where de Haas et al. [4] observed a shallow minimum in the
resistance of some metals (see Figure 1.1).

Later it has been recognized that this minimum is related to small contaminations
of the supposed clean metal with (magnetic) 3d transition metal impurities, such as
iron.

Significant theoretical progress was the explanation of this effect by J. Kondo in
1964 [2]. Kondo’s calculations were based on a model of the exchange scattering
between the electron spin and the impurity spin, known as the s-d model:

Hea=H.+ Z JE];/C;%JO_:JJ’C* 517 (11)

ol
Kk’

where H. = 35 e cj; c. is the conduction band (CB) Hamiltonian and the second
term represents a Helsenberg exchange interaction between the conduction electrons
and the impurity spin S (G, is a vector of the Pauli matrices). An eventual potential
scattering term can be absorbed in H..

To describe the scattering events, Kondo computed the matrix elements of the

T matrix, (K'o’|T|ko), in which a conduction electron is scattered from a state |ko’)

5



6 CHAPTER 1. The Kondo effect

to a state |K'o’). To calculate the resistivity to third order in .J (to be considered
E—independent from now on) one needs the 7 matrix to second order in J. Among
many terms, the most important terms are the ones in which a spin flip event between
conduction electrons and local impurity spin occurs (see Figure 1.3).

2691
10°R(T) P
R(273)
268}
w7 with magnetic
' impurities
266
265
AL 'l J
264 A
1 2 3 4 5
T(K) 0 T
Figure 1.1: The minimum in the Figure 1.2: Temperature dependence of the re-
electrical resistivity of sistivity of pure metals (blue). As
gold [4]. a metal contains a small fraction of

magnetic impurities, the resistance in-
creases due to the Kondo effect (red).
If the impurity moment is screened,
the resistance saturates below the
Kondo scale Tk (green).

Kondo’s final result was that the interaction between local impurity spin S; and the
conduction electrons of the host metal leads to singular scattering near the Fermi level
and a logarithmic (In7T") contribution to the resistivity. The observed resistance min-
inum could be explained when the In7T term (which increases at low T') is included
with the phonon contribution (which vanishes for 7' — 0 as 77).

The problem (called the Kondo problem) with this theory is that Kondo’s perturba-
tional calculations could not be valid at low temperatures, as the logarithmic terms
diverge as T'— 0. When the spins couple anti-ferromagnetically (J > 0), all perturba-
tion expansions summing leading order logarithmically divergent terms break down at
a finite temperature Tk, known as the Kondo temperature. In the late 60s Anderson
introduced the theoretical framework for understanding the results of magnetic impu-
rity systems also in the region T' < Tk . The key idea was that of scaling (see section
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Figure 1.3: Feynman diagrams of a second order spin flip contribution to the matrix ele-
ment (k' 1|7 |k 7). The lower line represents the local impurity spin, whereas
the upper, arrowed lines are the CB electrons.

1.3): If higher order excitations were traced out to give an effective model valid on
a lower energy scale, the effective coupling between the impurity and the conduction
electrons increased. For T' < T this scaling behavior implies a ground state with an
infinitely strong coupling in which impurity and surrounding conduction electrons are
bound into a singlet state. The low temperature behavior would then be similar to
that of a non-magnetic impurity — the impurity spin having been compensated — see
Figure 1.2.

A model which incorporates the key ingredients for the solution of the Kondo
problem, (1) the formation of local moments, (2) the scattering off conduction electrons
and (3) the screening of local moments below a temperature scale T is the single
impurity Anderson model (SIAM), presented in the following paragraph.

1.2 The Anderson model

The resistance minimum was observed to depend on the impurity concentration, in-
dicating that it is an impurity phenomenon. However, the depth of the minimum,
measured relative to the value at 7' = 0K, was found to be roughly proportional to the
impurity concentration c¢;,,, and its ratio with the resistivity at 7" = 0K was found
independent of ¢;,,,. Therefore the minimum is essentially a single impurity effect, and
inter-impurity effects could be excluded at first sight.

P. W. Anderson [5] introduced a model to describe a local moment in a metal,
where he included a local Coulomb interaction U between the electrons on a single
impurity site. This model is called single impurity Anderson model (SIAM) and will
often be used in this thesis. It reads

Hsranr = 3 eqdid, + Udldydld, + e ch e VY (dj,cga + clgada) (1.2)

o ko
ko ko

This model describes a single impurity level (where di creates a state with spin o and
energy £4), subject to a Coulomb repulsion U if doubly occupied, in a conduction band
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(CB) with dispersion £; *. The impurity and the CB are coupled via a hybridization
V.

In order to get some insight into this model, one might consider the ’atomic limit’
V' = 0, where impurity and conduction band are decoupled and the model can be
trivially solved. There are three total energy configurations for the d-states: (1) zero
occupation with a total energy Ey = 0; (2) single occupation by a spin o with a total
energy E, , = ¢4 where 0 =1, |; (3) double occupation with two spins (one spin T and
one spin |) on the impurity giving a total energy of Ey = 2¢4+ U. In this simplified
model the condition for a ’local moment’ (a magnetic moment at the impurity site) is
that the singly occupied configuration (n = 1) lies lowest, which requires ¢; < ¢ and
€4+ U > ep. The Fermi energy ¢ is usually taken to be zero in this models if not
stated otherwise.

The SIAM is a model which is more general than the s-d model Kondo used for his
explanation of the resistance minimum. If the hybridization V is sufficiently small, the
two models are equivalent to each other.

The SIAM attracted new attention when it was realized that it is the appropriate
effective model in the context of dynamical mean-field theory (DMFT) (see also chapter
3.4).

1.2.1 The Schrieffer-Wolff transformation

The connection between the SIAM and the s-d model can be derived within lowest
order perturbation theory, if one takes n = 1 as the ground state and considers virtual
excitations to the unoccupied and doubly occupied states. Even though ¢; < ¢r and
€4+ U > ep and small V is fulfilled, or more precisely:

ca < —|A| < ep < Al Keg+ U with A =7V%p(ep) (1.3)

there is a small, finite probability to have a d-occupation of 0 or 2, respectively. During
the virtual excitation, the impurity spin might (1) flip its spin from up to down; (2)
flip from down to up; (3) remain unchanged. As the total spin is conserved, the CB
electron spin has to flip oppositely to the impurity spin (or remain unchanged in case
(3)). Therefore, the Hamiltonian in the local moment regime should contain a term of
the form S, - S; = S(SFS;+5787)+ 5255 S, represents the conduction electron spin
operator. An exmtatlon to the unoccupied (doubly occupied) level lowers the total
energy by AEy (AEs)

V(1 — f(ex)

AE, = ——— 10 (1.4)
Ek — &4
V2 f(er)
AF;, = ——————— 1.
2 U—FEd—&"k’ ( 5)

!The density of states p,(g) of the conduction band relates to the energy dispersion as follows:

po(e) =D pdo(e —€f,)-
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where f (1) = (1 + e%+=7))~1 i5 the Fermi function.
Because of Eq. 1.3 one can approximate the denominators by their smallest possible
values (e = ) and thus the virtual processes lower the energy by

V2 V2

J = +
ep—¢cq U+eg—er

(1.6)

Summing up all possible virtual excitations to lowest order perturbation theory yields
the following effective Hamiltonian for the local moment regime:
_ T J . J
Hyi =) e.clc. +2J5,-5 (1.7)
ko

which is also called the Kondo model.

The projection of the SIAM onto the local moment subspace was first accomplished
by Schrieffer and Wolff [6], using a canonical transformation.

1.3 Poor man’s scaling

The logarithmic terms which lead to the breakdown of perturbation theory depend
on the conduction electron bandwidth via In D. P. W. Anderson [7| found a method
in which he progressively reduced D and perturbatively calculated the renormalized
interactions due to the elimination of virtual excitations to the band edges. Thus
higher energy excitations are taken into account and the In D terms enter only in the
parameters of the effective Hamiltonian for the calculation of the low lying levels. This
so-called “poor man’s scaling” method is illustrated in Figure 1.4. By integrating out
the high energy states at the band edges, an effective model on a lower energy scale is
obtained (the bandwidth is reduced from D to D = D — §D).

The physical parameters of the system (in case of the Kondo model: the coupling
J—J ) have to be adapted such that the scattering between CB electrons and impurity
is invariant. This procedure leads to a cutoff dependent ’flow’ of J(D) so that the
derived Hamiltonian describes the low energy behavior of the system correctly. For
the Kondo model, the poor man’s scaling approach leads to the scaling equation

dJ
= —2pyJ* 1.

where a flat conduction band (py = const.) was assumed. Integrating Eq. 1.8 from D

to D gives
< J

T =17 200 In(D/ D)

(1.9)

which tells us that in the weak coupling regime (pyJ < 1) the effective coupling .J
continuously grows on reducing the bandwidth. If one continues until the desired
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|oD| D

states to be
removed

12D

-D

Figure 1.4: Poor man’s scaling: The particle and hole states which are removed from the
conduction band on reducing the bandwidth by [dD].

temperature scale T ~ D, one realizes that J diverges at a temperature
De~ Y/ @) _ [p=1/2pod) kpTx, (1.10)

which is the Kondo temperature T.

The scaling approach shows that one can use perturbative approaches only down to
the temperature scale Tk and that for 7" < Tk the conduction electrons are infinitely
strong bound to the impurity spin (J — 00), forming a spin singlet ground state.

1.4 Solution of the Kondo problem

A non-perturbative way of deriving a model for the calculation of the low temperature
behavior was devised by Wilson [3| with his numerical renormalization group (NRG),
which is the central topic of this thesis and will be described in chapter 3 in great
detail.

For describing the low temperature physics of the Kondo model one might expect
that high energy states can be disregarded and only states of energy |w| < T contribute.
One clearly sees that this assumption is wrong when we remember the second order
diagrams in the perturbation expansion (see Figure 1.3): The intermediate states in
the scattering can carry arbitrary momentum k; and thus all energy scales have to be
taken into account in the solution of the Kondo problem. To incorporate all energies of
the problem, the idea of the renormalization group (RG) was introduced. Wilson used
the RG approach [8] together with Anderson’s scaling ideas to construct the NRG as
the first non-perturbative solution of the Kondo model, for which he was awarded the
Nobel prize in 1982.
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The NRG verified that the local magnetic moment vanishes for 7' — 0 and thus
the resistivity no longer diverges. Krishna-murthy et al. |9, 10| applied the NRG to
the SIAM to calculate various static properties for the symmetric and the asymmetric
case. A confirmation of Wilson’s NRG result was given by the first exact analytical
solution of the Kondo model by Andrei [11] and Wiegmann [12] in 1980 (see section
2.1.1).

Although the Kondo problem has been solved in the 1970s, Kondo physics is still
a widely studied field of condensed matter research. Due to new experimental tech-
niques from the rapidly developing field of nanotechnology the Kondo effect has gained
renewed interest.

1.5 Revival of the Kondo effect

Interest in the Kondo effect has persisted since it provides clues to understand the
electronic properties of a wide variety of materials with strong interactions, for instance
in heavy-fermion materials and high-7, superconductors [13|. In modern chip techno-
logy, small semiconductor devices are used to systematically investigate fundamental
quantum mechanical problems. One such device is the quantum dot (QD) — small
electron droplets which are confined in a small semiconductor box. With a QD it is
possible to realize one of the simplest strongly correlated models, the Kondo model,
experimentally. The first experimental observation of the Kondo effect in QDs was
in 1998 by Goldhaber-Gordon et al. [14]. They showed that Kondo physics occurs
in a transistor-type semiconductor device (see Figure 1.5), as already predicted in
1998 [15, 16]. Another group measured the conduction of this so-called “single-electron
transistor” (as electrons are transported through the dot one at a time) as a function
of gate voltage, which changes the number of electrons within the QD [17]. For an
odd number of electrons on the dot, the Kondo effect produces a many-body ground
state at the Fermi level, providing a transport channel for the electrons tunneling from
one lead to the other. Moreover, for low temperatures the conductance is increased
and approaches the "unitary limit’ of 2¢?/h, where e is the electron charge (see Figure
1.6). The Kondo effect can also be seen in scanning tunneling microscopy (STM)
experiments. STM is a central tool in nanotechnology which aims to manipulate and
control matter at the atomic scale. If one uses STM to investigate magnetic impurities
on the surface of metals, the Kondo effect plays a key role in the physical properties of
the system. In 1998, two groups indendently found signatures of the Kondo resonance
in the STM conductance spectra [19, 20]. It is also possible to directly “photograph”
the metal surface with STM. A very illustrative picture of the Kondo effect is shown
in Figure 1.7. Cobalt atoms are placed on a copper surface with STM. By placing a
single cobalt atom at the focal point of an ellipse built from other cobalt atoms, the
density of states reveals the Kondo resonance (left peak). Due to elliptical confinement
a second, smaller Kondo resonance can be seen at the other focal point (right), even
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Figure 1.5: Left: Image of the device used by [14, 18] to measure the Kondo effect. Seve-
ral gates are used to accurately control the electronic transport from the top
electron reservoir through the confined region to the lower reservoir (i. e. from
a source to a drain region). Right: Schematic energy diagram of the single-
electron transistor, showing an electron droplet separated by tunnel barriers
from conducting leads. For an odd number of electrons on the dot, the local
density of states exhibits a sharp Kondo resonance at the Fermi level.

Figure 1.6: The differential conductance dI/dV vs. source-drain voltage Vsp in a QD for
different temperatures as measured by [17]. On lowering the temperature, the
Kondo effect increases the conductance at the Fermi level.
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Figure 1.7: "Quantum mirage”: STM image of cobalt atoms on a copper surface [21, 22].
By placing a single cobalt atom at the focal point of an ellipse built from other
cobalt atoms, the density of states reveals the Kondo resonance (left peak).
Due to elliptical confinement a second, smaller Kondo resonance can be seen
at the other focal point (right), even though there is no cobalt atom present.

though there is no cobalt atom present.
The Kondo effect in STM experiments will become important in our analysis of
STM lineshapes of transition metal Kondo atoms on metal surfaces (see chapter 5).
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Chapter 2

Solution methods for quantum
Impurity systems

After Kondo’s successful explanation of the resistance mininum in metals with magnetic
impurities [2], it was recognized that the electronic correlations play a crucial role in
magnetic impurity systems. Since 40 years, much effort has been expended on the
theoretical study of the Kondo problem as an archetype of a correlated many-body
system.

In this chapter we present some of the numerical techniques, which help to gain
a better understanding of the Kondo problem. The numerical renormalization group
(NRG) developed by Wilson [3] in 1975 was the first method which confirmed that
the Kondo model and the SIAM have a singlet ground state and that the low energy
excitation spectrum can be described well by Fermi liquid (FL) theory. As the NRG
is the central topic of this thesis, it will be covered in the following chapter 3 in
great detail. In this chapter, we briefly introduce other methods which deal with the
solution of the Kondo problem, like the analytical solution, the Bethe ansatz (BA), or
the density matrix renormalization group (DMRG).

Besides these “exact” solution methods it is desirable to develop approximate, but
systematic techniques which do not rely on special symmetry conditions, a relatively
simple model structure (like NRG), or on integrability conditions (like the BA), while
still describing the high and low energy behavior of the model as well as the crossover
region around T correctly. It turned out that advanced perturbation theory methods
and especially conserving approximation techniques like the Non-Crossing Approxima-
tion (NCA), described below in detail (section 2.2), provide such very flexible solution
methods [23]. They are not restricted to simple structures of the conduction elec-
tron density of states and thus may be employed as impurity solvers for self-consistent
models of the dynamical mean-field theory (DMFT). Furthermore they are applicable
to more complex impurity models like multi-orbital Anderson models, which became
useful in the context of our work on electronic transport through Kondo atoms (see
chapter 5).

15
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For a comprehensive review on the theories in the context of the Kondo problem,
also on methods we do not mention in this thesis, we refer to the book of Hewson [1].

2.1 Other methods for the Kondo problem

2.1.1 Bethe Ansatz

The Bethe ansatz (BA) [24], originally developed for the solution of the one-dimensional
Heisenberg model, was used in 1980 independently by Andrei et al. |25, 11] and Tsvelick
and Wiegmann [12, 26| to give the first analytical solution to the one-channel Kondo
model, fully confirming Wilson’s NRG results. Later, also the multi-channel model
was solved by the two different groups [27, 28|.

The solution via the BA modifies the original Kondo model Hamiltonian. It utilizes
a linear dispersion (¢(k) = k) for the conduction electrons near the Fermi energy and
thus, after a Fourier transform, the term 3", kcl_c,_ gets replaced by [ dacf(z) L ().
The resulting Hamiltonian corresponds to a system of conduction electrons in one
dimension, coupling to the impurity only at = = 0. Consequently it is possible to build
up the solution of the problem at x # 0 out of single-particle states and incorporate
the impurity degrees of freedom only at x = 0.

To obtain results on the thermodynamics, a functional of the free energy is set up
and its minimization leads to an infinite set of non-linear integral equations, which
have to be solved numerically. With the Bethe ansatz solution, earlier results could be
confirmed, like the correct "Wilson ratio’ R = 2 or a formula for the Kondo temperature
Tk . Also the universality hypothesis could be confirmed, i. e. all thermodynamic prop-
erties at low temperatures depend only on the ratio 7'/Tk. The comparison between
BA and NRG results for the effective magnetic moment 7'x;,,(7") shows a perfect
agreement of the two methods (see Fig. 2.1). While the BA yields reliable results for
exact wave functions, spectra and thermodynamics for the entire range of temperature
and magnetic field, it cannot access dynamic properties like correlation functions. It is
an unsolved problem to properly express the operators which couple to external probes
in terms of the exact many-body states which are provided by the BA. Therefore it is
desirable to develop methods which can also access dynamical properties. An example
besides the NRG is another RG method, the density matrix renormalization group
(DMRG).

2.1.2 Density matrix renormalization group (DMRG)

Numerical approaches aim at the numerical diagonalization of a given Hamiltonian.
As the matrix to be diagonalized grows exponentially with the system size, one has
to think about a proper truncation scheme which restricts the calculations onto a
numerically feasible subspace. It is the essence of every renormalization group (RG)



2.1. Other methods for the Kondo problem 17

2
x_12' = Seft
Hw

t xfreeT =_|_

- Hy 4 ]
o2k — — — — —m —m — — —m — — — = — — —
O.I0F

0 — 1

102

Figure 2.1: Bethe ansatz solution for the effective spin x7'. The dots represent the NRG
results of [9]. Figure taken from [11].

method, to bring in an energy scale in which the theory can be formulated. The NRG
is a renormalization procedure in momentum or energy space, thus one separates the
whole problem into different energy scales. However, this truncation scheme (keeping
only the energetically lowest lying states) does not work for models where the same
energy scales are added at each step of the RG procedure. This is the case for lattice
models, e. g. for the one-dimensional Hubbard model. The solution to the problem of
finding a truncation scheme in this case is given in the context of the density matrix
renormalization group (DMRG).

The DMRG is a numerical variational technique invented by White [29, 30| devised
to obtain the low energy physics of quantum many-body systems with high accuracy.
One starts with a numerically manageable system of only a few sites (system block) and
iteratively enlarges the system by successively adding small clusters of one or more sites
(environment block). The ground state of the complete system (superblock = system
block + environment block) is calculated and the reduced density matrix of the system
blockis evaluated, through tracing out the enwvironment block. The truncation now
happens according to the largest entries in the diagonalized, reduced density matrix
and all the operators have to be transformed accordingly. The procedure described
above is called infinite system algorithm, as one proceeds until the desired chain length
is reached, which in principle can be an infinitely long system. Other DMRG techniques
like the finite size algorithm are well described in [31].

The DMRG is one of the most common numerical techniques for one-dimensional
quantum systems. Besides exact determination of ground state energies, dynamical
correlation functions can be calculated accurately.
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2.2 The Non-Crossing Approximation (NCA)

2.2.1 Renormalized perturbation theory for the SIAM

Again, the starting point for a system dealing with Kondo physics is the single-impurity
Anderson model, as already described by Eq. (1.2):

_ t to ot t } f
Hsian = ) eadhd, + Udidydid) + Y Jep el cp +V (dacz;’a + Cﬁado>
g ko ko

Provided a large Coulomb interaction U and the impurity level ¢, sufficiently far below
Er, the impurity will on average be occupied by one electron. The system is then said
to be in the Kondo regime, when a local spin S = 1/2 resides at the impurity.

Due to the high value of the local Coulomb interaction a perturbation expansion
in U becomes senseless, but for small hybridization V' compared to the impurity level
leq|, a perturbation theory in V' seems reasonable, while absorbing the Coulomb term
in the unperturbed Hamiltonian. There are two complications for the pertubational
treatment: (1) the impurity is an interacting system for which powerful methods like
Wick’s theorem, Feynman diagrams and renormalization of propagators and vertices
are not immediately applicable; (2) logarithmic diverging terms (like the ones in the
Kondo exchange coupling J) arise in the perturbation theory in V.

Problem (1) will be solved by the pseudoparticle representation which is presented
in the next paragraph. The solution to problem (2) by so-called “conserving approxi-
mations” is the topic of the subsequent section.

2.2.2 Pseudoparticle representation and projection onto the
physical Hilbert space

The dynamics of an electron on a local level will depend crucially on whether that
level is singly or doubly occupied. Therefore it is useful to divide up the Hilbert space
into sectors which are labeled by the occupation number of the quantum impurity. For
each Fock state one defines a creation operator, which, when operating on the vacuum
state |vac) creates the corresponding state: For a two-fold (spin-)degenerate impurity
one defines two bosonic operators a and b and two fermionic operators f, (o =T, |),
which create the doubly occupied and empty states |2) = a'|vac), [0) = bf|vac) and
the singly occupied states |o) = fI|vac), respectively. In terms of the pseudoparticle
operators, the creation of an electron of spin ¢ in an empty level is described as

df = flo+ad'f_, (2.1)
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The Hamiltonian then takes the form

H = ¢ <Z fif +2d'a ) +Ua'a + Ze%cgac%

ko
+V Z (CTEobeU + acl%ofiaa + h.c.) (2.2)
ko

The Hilbert space is now vastly enlarged into unphysical regions. As the impurity must
be occupied by exactly one pseudoparticle at any time (corresponding to a definite
state), the following constraint on the pseudoparticle number @ is to be met:

Q=Y fif,+b'b +afa =1 (2.3)

This constraint can be thought of as charge quantization with an integer () as con-
served, quantized charge. As in quantum field theory, charge conservation is related
to the existence of a local gauge symmetry, which in our case is a local U(1) symme-
try of the model described by Hamiltonian Eq. (2.2): The system is invariant under
simultaneous gauge transformations f, — f,e'®™, b — b’ ¢ — ae’®"), with
¢(7) an arbitrary, time-dependent phase. The gauge symmetry now guarantees the
conservation of () at all times.

In order to project onto the physically relevant subspace () = 1, one starts with
the grand-canonical ensemble with respect to () and the associated chemical potential
—A. The projection is achieved by taking the limit A — oo of any grand-canonical
expectation value of a physical operator A:

1 <A>
A) = lim —-9¢ (2.4)
< > o <Q>G’C

The extra factor () in the denominator has been introduced to project out the Q) =0
subspace. Since (...) denotes the average of the grand canonical ensemble with respect
to (), this procedure allows one to apply the complete machinery of quantum field
theory, especially one may use Wick’s theorem.

Physically observable quantities are given by two pseudoparticle correlation func-
tions (or higher), which in principle requires the calculation of both self-energy and
vertex corrections. Details on the evaluation of the pseudoparticle diagrams can be
found in [32].

Explicitely, the imaginary time single-particle Green’s functions

Golri = 72) = = (T [f () f3(72)] ) (2:5)

GC
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where T is the time-ordering operator, and analogous expressions for the bosons a, b
may be expressed in terms of the selfenergies ¥, .(iw) as

Gf0<iw) = [zw — A= Ed — Zfo(iw)]_l
Goliw) = [iw—\—(iw)] " (2.6)
Goliw) = [iw—A—2e5—U — Sy(iw)]”"

2.2.3 Conserving approximations: NCA

To tackle the problem of logarithmically diverging terms in the perturbation theory
in V, one has to pick the essential terms in pseudoparticle representation. In order
to be able to perform the projection onto the physical subspace, one requires the
conservation of the local charge (). Gauge invariant approximations conserving () may
be derived from a Luttinger-Ward generating functional ® [33, 34]. The self-energies
Yz x =a,b, f,, c are obtained by taking the functional derivatives

09
T 8G,

N (2.7)

and are thus functionals of the dressed GG,. For any choice of ® a closed set of integral
equations for the G,’s is obtained, which have to be solved numerically.

The Non-Crossing Approximation (NCA) is the lowest (second order in V') approx-
imation for ®. Its name originates from the corresponding Feynman diagrams, which
do not have any crossing lines (see Fig. 2.2).

— f

\

c

D= * ;
e
6= m_“& Zb :ﬂ Gd:{;;W;;\J

(o)

Figure 2.2: Diagrammatic representation of the generating functional ® of the NCA. Also
shown are the pseudopartice self-energies and the local d-electron Green’s func-
tion derived from ®. Dashed, wavy and solid lines represent fermion, boson
and conduction electron lines, respectively. Figure taken from [35].

A comprehensive review, also on the original works and the development of the NCA
can be found in [36]. Most of the NCA works are concerned with infinite on-site
repulsion U — oo, where double occupancy of the impurity is strictly excluded. In
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this case the self-consistent NCA equations together with Eq. 2.6 read (compare Fig.
2.2)

SNOA(w) = T % F() AL (—2)G(w + ) (2.8)
5w = TS [ EreA 6w +o) 29)
Gyea = /dEB_BE[GfU(W +e)Ap(e) — Apr(6)Gh(e — w)] (2.10)

where I' = 7Ny |V|? with Ny = 1/2D the conduction electron DoS at Er, the frequency
w is w £ 0 for the retarded /advanced functions and A% = (1/7)ImGY /Ny is the local
conduction electron DoS per spin. f(¢) = 1/(exp(fe) + 1) is the Fermi distribution
function.

The NCA nicely works for the calculation of dynamical properties in a wide pa-
rameter range. It reliably describes the Kondo scale T and the position, the spectral
weight, and the lifetime broadening of the peaks in the local spectral density down to
T ~ 0.1Tk [36]. However it fails for very low temperatures 7' < Tk, where it yields
the wrong infrared exponents, in contradiction to the expected FL behavior. The in-
clusion of a local magnetic field produces a spurious resonance in the impurity spectral
function at w = 0 and the NCA analysis then even fails in the high-temperature regime
T > Tyk. As by contrast the NRG is by construction well suited for low temperature
spectral information, even with a locally applied field, we decided to use the NRG
instead of the NCA in our mean-field treatment of europium oxide (for details, see
chapter 3.4.1).

2.2.4 Advanced NCA techniques: SUNCA and CTMA

For finite Coulomb interaction U, contributions from both virtual excitations to the
empty state and to the double occupied impurity state play a role in the exchange
coupling J. Simply modifying the NCA such that second order perturbation theory is
added for both of these processes fails since one cannot capture the simultaneous contri-
bution of both channels in each order of bare perturbation theory correctly. An infinte
summation of vertex corrections (the symmetrized finite-U NCA or SUNCA [37]) cures
this problem [23].

To overcome the failures of the NCA in the low temperature regime 7' < Tk, proper
vertex corrections which account for the dominant spin and charge fluctuations have
to be taken into account. The conserving T-matrix approximation (CTMA) is able to
reproduce the correct FL behavior of the STAM strong coupling fixed point [23].
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2.2.5 The NCA for multi-orbital Anderson impurities

In contrast to the NRG, conserving techniques can be generalized in a straightforward
way to include more than one local impurity orbital. Consequently, the low energy
spectra of transition and rare earth metal systems could be understood on the level
of the NCA, specifically experimental photoemission spectroscopy (PES) data of a
cerium (Ce) impurity in a metallic host were explained in [38]. There the results of
the multi-orbital impurity model are in striking agreement with the PES data of the
heavy fermion compound CeCus,Sis,.

Ce, as a 4f system, has seven spin-degenerate levels, which are split by spin-orbit
(SO) coupling into a total angular momentum J = 5/2 sextet and an excited J =
7/2 octet, which is in turn split by crystal field (CF) interaction into three and four
Kramers’ degenerate doublets, respectively. It is known from inverse photoemission
spectroscopy (IPES) that the on-site Coulomb repulsion U between all 4f orbitals is
substantially larger than the single particle energies |¢,,| and thus the overall valence
of the orbitals is close to 1. Hence for U — oo the model Hamiltonian reads

H= Z%C* c. +ngmfmofmo+z (V~ cﬂ fmo+hc> (2.11)

mko
where ct describes creation operators for electrons with spin 0. €4, < Ep, m =
1...7 are the seven SO and CF split 4f single-particle levels with creation operators
fma. The hybridization matrix elements V; ~lead to an effective coupling matrix
Loy = 7 35 V' - Ap(w)V,,, where Ap(w) is the conduction electron spectral function.
As shown in Fig. 2.3 the spectrum gets some generical features (peaks A-F).
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Figure 2.3: Left: Sketch of the theoretical 4f spectral function from calculations based on
the multi-orbital STAM, using the NCA. Figure taken from [38]. Right: Sketch
of the spin-flip events responsible for the CF satellites (C,E) and the Kondo

peak (D)
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While there is the usual Kondo resonance (D) at the Fermi level and the ’single-
particle peak’ (A) at e, (more precisely that is a superposition of all seven single-
particle peaks, thus better termed 4f' — 4f° ionization peak of width I' ~ >~ T',,),
additional structure in the form of satellite peaks appears. Due to spin-flip scattering
with CF (peaks C and E) or SO (peaks B and F) excited impurity levels as initial
or final state, Kondo resonances show up in pairs approximately symmetrical around
Er (see also Fig. 2.3). While the peaks above Ep carry significant spectral weight,
below the Fermi level the satellites often appear as mere ’shoulders’. This is because
in this case the virtual transition starts from an excited level, which is only thermally
populated. Thus the transition carries a detailed balance factor w = n‘(1 — n/),
where n’ (n') is the occupation of the 4f orbital in the initial (final) state. Reinert et
al. [38] were able to explain the PES data of CeCuySiy with this multi-orbital NCA
(see Fig. 2.4).

normalized intensities [arb. units]

100

energy below E, [meV]

Figure 2.4: Upper panel: Theoretical T-dependence of the 4f spectra using the multi-
orbital NCA. Lower panel: Photoemission spectra of CeCusSis, normalized to
the same intensity at 100 meV. Above Er the experimental spectra are divided
by the Fermi-Dirac distribution up to 5kpT. Figure taken from [38].

The results of the multi-orbital NCA will be the starting point for our program devel-
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oped to analyze the scanning tunneling microscopy (STM) experiments of transition
metal atoms on metal surfaces (see chapter 5).



Chapter 3

The Numerical Renormalization
Group (NRG)

This chapter gives a detailed description of the numerical renormalization group (NRG)
procedure, which was set up for this thesis.

The NRG was developed in the 1970s by K. G. Wilson to investigate the Kondo
problem. Wilson was the first one who constructed a non-perturbative solution of the
one-channel Kondo model [3|. Krishna-murthy et al. applied the NRG method to eval-
uate static properties of the Anderson model, as e. g. the temperature dependence of
the magnetic susceptibility [9, 10]. The first calculation of dynamical properties were
described for the first time by Frota and Oliveira [39] and Sakai et al.[40]. Later Costi
and Hewson [41, 42, 43| determined besides the spectral function also transport prop-
erties like electrical resistivity, thermopower, thermal conductivity and Hall coefficient
via the NRG.

The calculations were done assuming a flat conduction band (CB), which is e-
quivalent to an energy-independent hybridization between impurity and conduction
electrons. For the application of the NRG in dynamical mean-field theory (DMFT)
calculations, however, it turns out that an arbitrary density of states (DoS) of the
conduction band is important (see also section 3.4). This generalization was developed
by Bulla [44, 45] for the single-impurity Anderson model (SIAM).

The NRG is a powerful method for quantum impurity problems. Besides for the
explanation of the original, one-channel Kondo model it has widely been used in the
context of more complex models with e. g. more than one conduction electron band.
It gives valuable assistance in the investigation of modern physical experiments like
semiconductor quantum dots. Particularly it serves as a reliable 'impurity solver’ in
DMFT calculations. We shortly describe further recent extensions to the NRG like
the calculation of time-dependent problems in later sections. The derivations in the
following sections use in part derivations also made by [46, 47].

25
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3.1 The NRG procedure

3.1.1 Model Hamiltonian

The crucial step in the NRG procedure will be the mapping of the conduction band
electrons onto a semi-infinite chain, the Wilson chain. For simplicity the calculations
in this chapter are restricted to the SIAM, but can be extended to more complicated
models as e. g. multi-channel Kondo models straightforwardly (see chapter 4). Our
starting point is the Hamiltonian of the STAM, as already introduced in chapter 1.2:

o ko ko

, o o

Hsram = Zeddido + UdMTdIdi + ZEE e+ ZV,;O (dzc% + 020d0>

J/ J/

Ha H. Hhyp

(3.1)

The single impurity level (with the usual electron creation operator di and on-site

Coulomb term U) is described by H; and embedded in a conduction band! with

dispersion ¢;_ (described by H.). Hs and H, are coupled via an energy dependent

hybridization V. .

For the derivation of the NRG equations, a continuous representation of the Hamil-

tonian (3.1) is more convenient [45]:

1 1
Hora = Hat Y [ dega(@lalyag + 3 [ dehofe) (@, +alpd,) (32
o -1 o -1

Here a one-dimensional energy representation for the CB was introduced with band cut-
offs at +1, dispersion g, (¢) and hybridization A, (¢). The continuous CB operators fulfil
standard fermionic anti-commuation rules: {al,,a_,,} = d,,,0(¢ —¢’). The equivalence
of the Hamiltonians (3.1) and (3.2) was shown in [45] by proving that a specific choice
of g,(¢) and h,(¢) leads to the same effective action on the impurity degree of freedom.
If one defines the following hybridization function

As(e) = mpo(e) Vo (e)], (3:3)

the equivalence of the effective actions is only fulfilled when the following relation
holds:

w22 O [ ()] = A (3.4)

where g '(¢) is the inverse function of g, (¢).

!The density of states p,(g) of the conduction band relates to the energy dispersion as follows:
po(e) =25 0(e —e5,)
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For a given A, (e) there are many ways of satisfying Equation (3.4). For a suffi-
ciently smooth (or even constant) hybridization A, (¢) one can choose:

go(c) = ¢ and [ho(a)]Z:%Ao(a) (3.5)

For an energy-dependent hybridization [48|, however, this choice has a conceptual
disadvantage arising from the logarithmic discretization of the conduction band (see
next sections). In this case, the energy-dependence of A,(¢) is taken into account in
the hybridization by defining [h,(¢)]? as a mean value in each interval of the logarithmic
discretization. The remaining energy dependence will be incorporated in the dispersion
9o () (for details, see [45]).

3.1.2 Logarithmic discretization

As Eq. 3.2 implies, the impurity couples via V,(¢) to all energy scales in the problem
(as depicted in Figure 3.1).

Py (€)

conguction

e/D

Figure 3.1: The impurity couples to all energy scales

As one is interested mainly in the low-temperature properties of the system, Wilson’s
ingenious idea was to logarithmically discretize the conduction band with a discretiza-
tion parameter A > 1 [3]| (see Figure 3.2). This enabled him to take all energy scales
into account (which is the central idea of Anderson’s scaling approach) and resolve the
low-energy excitations with high accuracy. The parameter A defines a set of intervals
with discretization points

T, =AT" (3.6)
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1 | e/D
-1 1

Figure 3.2: Logarithmic discretization of a flat conduction band

and width d, = A™(1 — A~'). Within each logarithmic interval a Fourier series is
defined:

L) { —L_eFnre for x,.1 < e < xp
E) =

dn
P v 0 outside this interval (37)
(p € Z and w,, = 27/d,,). n is the interval index, p the harmonic index of the Fourier
expansion and the superscript + (-) denotes a basis function defined for positive (neg-
ative) energies.
Now the continous operators a., and a!_ can be expanded in this complete set of
orthonormal functions:

G = D [Anpotily(8) + bupotin (2)] (3.8)

np

o = [ e [17506)) 0
1
bnpa = / de [¢;p(6)]*a50',

1
The operators a,,, and b,,, form a complete set of independent, discrete, electron
operators obeying the usual fermionic anti-commutation rules. Consequently, the con-
tinuous Hamiltonian (Eq. 3.2) can now be expressed in terms of discrete operators.

In order to transform the hybridization part, one takes the hybridization function
he(£)? as the mean value in each logarithmic interval:

[hE]" = din / da%Ao(a) (3.9)

where we have defined

+ A-n - A1
/ de E/ de / de E/ de (3.10)
A—n-1 —ATn
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As long as h,(¢)? is constant in each interval, the impurity couples to the average com-
ponent (p = 0) of the conduction electrons only (Riemann-Lebesque Lemma) [45, 46],
and consequently the p # O-states can be neglected. The remaining energy dependence
will be incorporated in the dispersion g,(g) such that the relation (3.4) still holds. In
general, the resulting dispersion will be non-linear, but is leading to a scaling behavior
of the resulting hopping matrix elements t,, oc A~/ (see next chapter). The repre-
sentation Eq. (3.5) would lead to a scaling behavior with an effective A.¢; not equal
to A which might even depend on the number of iterations, thus making the analysis
more difficult [45]. The choice (3.9) leads to a transformation of the hybridization part
to the following form:

1 _
Hayp = \/; > [dﬂ > (Whottas + Vasbuo) + hec. (3.11)
with
-
Vo = / de N, (e) (3.12)
If one now defines a fermionic operator cq, of the form
1
— + —
Coo = Ynono + ’ynabna (313)
Ve 2t )

with
Sor = ()" + () ") = / 11 deA\ (), (3.14)

the hybridization term finally takes the following, simple form:

1
500
Hhyyp = /1 dehy () (diaw + aiad(,) = Z [\/ 7d2000 + h.c.

g

, (3.15)

which nicely illustrates that the impurity couples to a single fermionic degree of freedom
only.
The expansion of the conduction electron part within the new basis (3.8) reads:

1
Ho= 30 | dea(e) X [l O 0y Uy €) By Wi O By Vi ()]316)
o v npp’

As pointed out, with the choice (3.9) for the hybridization, only the (p = 0)-terms
couple directly to the impurity. But through indirect coupling (via the (p = 0)-mode),
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also the (p # 0)-contributions may become important. Therefore, the two following
parts of the sum in (3.16) have to be considered:

He=HD+HD =D []= > [+ Y [] (3.17)

p=0,p’ p=0,p'=0 p=0,p’#£0
The condition (p = p’ = 0) reduces the Hamiltonian (3.16) to the form:
H( Z [éna 5Oy éna no na] (318)

no

with the single- partlcle energies £ and &, only depending on the integral over g,(¢)
[45]: &5 =+ f degy(€). Thus an exact knowledge of g,(e) (that could be obtained
by solving the differential equation (3.4)) is not required. It is shown in [45] that the
discrete energies £ can be calculated by

[FdeAy(e) - ¢
[*deA(e)
It can be seen that a linear dispersion (g, () = ¢) is recovered for constant hybridization

(see (3.5)).
So far the mapping of the original Hamiltonian (3.1) to the dicretized version is

+
&no =

(3.19)

exact. What remains to be discussed is the second part H" of the (pp’)-sum in the
conduction band Hamiltonian. As shown in [9], it reduces to

HP = L Ai ZZ [ AT — bl b )eXpM (3.20)

p _p npa npo npo - npo 1— A1

no p#p’

The contribution of H” vanishes in the limit A — 1. As a first approximation, HP
is disregarded and the conduction band consist only of the first term of the (pp’)-sum:

H. ~ HY (3.21)

Wilson [3]| showed in his calculations for the Kondo problem, that this is a good ap-
proximation even for a discretization parameter A as large as 3. In this thesis, mostly
A = 2 was used.

Finally, the discretized version of the Hamiltonian, depicted in Figure 3.3, takes
the form

Hsian = Y _egdid, +Udlddld, (3.22)

_'_ Z |:£77/0' na na 577/0' no na]

no

+ Z [\/ fOUdTCOU + h.c.

o
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ad,U

Figure 3.3: Discretized Anderson Hamiltonian

3.1.3 Mapping on a semi-infinite chain

In the discretized version (3.23) of the STAM Hamiltonian, the impurity still couples to
an infinite number of CB electrons (though only to the average part in each logarithmic
interval). To solve the the system numerically, the conduction band part is mapped
onto the semi-infinite (Wilson) chain:

00 00
Z (g:zroa;rwana _'_ g;obiwbno) = Z [gnacizocna _'_ tnU (CILoCnJrlo + hC)]
n=0,0 n=0,0 (323)
Hcond.band HWilsonchain

Therefore a tridiagonalization procedure developed by Léanczos [49] with diagonal ma-
trix elements ¢,, and off-diagonal elements ¢,,, is used, equivalent to a Gram-Schmidt
orthonormalization. Starting from an initial one-particle state |WUo) = ¢ |0) (where
|0) denotes the Fock vacuum?), a new single-particle basis is constructed [46] according
to:

tna
A\

~

(Woi10/Hen|Wo)  [Vniro) =
7_{C'B |\IIn0>_ <‘;[Jn0|HCB|\I/nU>J |\IIn0>_ <\I]n—1U|HCB|\I/nU>J |\I/n—1a>

Eno tnflo

(3.24)

where the c,, are defined via |¥,) =c!_[0), n & N.

With a recursion procedure, described in appendix A, the coefficients ¢,, and ¢,
can be determined with arbritrary precision routines for a spin- and energy-dependent
hybridization A, (e).

Note that for a flat conduction band, as in the original work of Wilson 3], and for a
power-law density of states (in pseudo-gap Fermi systems) [45], analytical expressions

2|Wy) is called the mazimally localized state, since it is maximally delocalized in momentum space
and hence maximally localized at the impurity site in position space
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for the hopping matrix elements ¢,, exist. For the flat conduction electron DoS (A, (¢) =
A), as also considered in Krishna-murthy et al.’s work [9], the hopping matrix elements
are

ek
1 1 — At h
the = = (1+ A1) A2 3.25
2 ( + ) \/(1 _ A_(2n+1))(1 _ A_(2n+3)) ( )

(Compare the X to Eq. (2.15) of |9] and the t,, to Eq. (VIL.35) of [3]). The &,,
vanish for symmetric hybridization functions as considered in the original papers.

3.1.4 Iterative diagonalization

After mapping of the conduction electron part onto the semi-infinite Wilson chain (Eq.
3.23) one finally arrives at the following Hamiltonian

Horan = Y _egdid, +Udlddld,

+ Z [z—:mcmcm + tho ( ChoCnito T+ h.c.)]

n=0,0

+ Z [\/ &]ochO(,thc

(e

, (3.26)

which has to be iteratively diagonalized numerically, hence giving the NRG its name.
The infinite-dimensional problem (compare Eq. (3.23)) is cast into the Wilson
chain-Hamiltonian 3.26, which is sketched in Fig. 3.4.
The Hamiltonian 3.26 can be viewed as a series of Hamiltonians Hy (N > —1),

whereas the original Hamiltonian H g4, is recovered in the case of an infinitely long
chain (N — o0):

HSIAM == A}lm A_(N_l)/QHN (327)
with
HN = A(N 1 UnTnl + Z gnUcno no + Z no ( no n+10 +Cn+10’ na)] (3 28)
n=—1,0 n=—1,0

For this short-hand notation it was defined: c_, = d,, ¢_1, = ¢4 and t_1, = ,/5"7”.
Here, H_; corresponds to the impurity alone:

1
Ho =% [Z eadld,, + Udﬁde}dl] (3.29)
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Figure 3.4: The Wilson chain: The impurity (red) couples to a semi-infinite chain of con-
duction electron ’shell states’ (blue) with exponentially decreasing hopping ma-
trix elements. Going along the chain, the energy resolution increases, while the
states are spatially more and more extent. Thus this model is often referred to
as “onion skin” model (see e.g the original work of Wilson [3]). As only neigh-
bouring sites are coupled to each other, the Wilson chain Hamiltonian can be
iteratively diagonalized.

Eq. (3.28) allows one to set up a renormalization group transformation R, which
relates two successive Hamiltonians, i.e. two effective Hamiltonians on successively
lower energy scales:

Hyi1 = R[HYp]
= VAHy +AV? Z €N+loc;rV+IUCN+IU

+ AN/2 Z tNU (C}rVJCNJrlo + C}rVJrloCNo) (330)

Note that the rescaling factor AV=1/2 is introduced in Eq. (3.28) to ensure that Hy
contains numerically convenient numbers of O(1).

With the prescription described in this chapter for the Anderson model, it is fairly
simple to solve also other models like e.g. the Kondo model: The only thing that has
to be adjusted is the intial Hamiltonian H,. Here the coupling between impurity and
0 site of the Wilson chain is ~ J.

The iterative solution can be described by the following algorithm (for details, see
appendix A):

(1) Initialize the start Hamiltonian:

All eigenenergies F,, and eigenstates |1,,) in a useful representation have to be
computed (for the STAM, this is just the impurity Hamiltonian H_;, which is
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4-dimensional). Eventually, for the calculation of correlation functions, initial
matrix elements have to be set up (as e. g. (¥ |dy|1m)).

(2) Append one additional site of the Wilson chain (Hy — Hy.1), according to
Eq. 3.30, using the information of the previous NRG step.

(3) Diagonalize the Hamiltonian (Hyy; — H j‘f}f’l) and store all eigenvalues and eigen-
vectors.

(4) Calculation of an expectation value of any operator requires the knowledge of
the corresponding matrix elements in the basis of H]dvligl.

(5) Continue with step (2)

As the Hilbert space grows exponentially fast during the NRG procedure, one has to
use a truncation scheme, where only a set of the lowest states are kept at each stage
(see also next section about symmetries). Thus to succeed with the algorithm listed
above, after the diagonalization (step (3)), one has to sort the spectrum with respect
to increasing eigenenergies and truncate it such that enough information is retained
(for the STAM this is typically achieved with keeping ~500 states). This truncation
scheme relies on the fact that the hopping matrix elements ¢,, fall off exponentially.
High energy states thus do not change the low frequency behavior and can safely be
neglected. The fact that the t¢,, fall off exponentially with n is a consequence of
the logarithmic discretization rather than due to a special feature of the shape of the
conduction band. In models, where the same energy scales are added at each step of the
RG procedure (as e. g. in the one-dimensional Hubbard model), the NRG truncation
scheme fails. The low energy spectrum of the cluster with one additional site depends
on states from the whole energy spectrum of the previous iteration. One overcomes
the problems if one uses another truncation scheme (see our section 2.1.2 about the

DMRG).

3.1.5 Symmetries in the NRG

In the course of an NRG iteration, the most CPU expensive step is the diagonalization
of the Hamiltonian H . of size Ngiates, Nn+1 X Nstates n+1, including the determination of
all eigenvectors. Ngqes n1 18 typically in the order of 1000-4 = 4000 states for the one-
channel case. Since these computational processes scale like N3 it is crucial to exploit
symmetries in the problem and divide the Hilbert space into smaller subspaces. Then
each numerical diagonalization is carried out independently in each subspace. Although
the logarithmic discretization together with this use of symmetries thins out the number
of states to keep quite substantially with respect to the usual exact diagonalization
approaches, the large degeneracy of states usually makes full diagonalization of Hy 1
impossible. Explicitly, for the single impurity Anderson model as for the (one-channel)
Kondo model, the degeneracy is 4" at the N-th shell, thus allowing only for exact
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diagonalization up to steps about N = 7 in a reasonable way. For the two-channel
Kondo model, the degeneracy is even 16". To keep manageable numerics but still
ensuring sufficient precision while solving the problem, one typically has to retain
only the (energetically) lowest-lying few hundred states at each iteration. While there
is no direct proof of this method, convergence tests in the original works [3, 9, 10]
and a posteriori comparision with other exact methods (e.g. Bethe ansatz solutions)
confirmed the validity of this approach [50].

For the usual SIAM or one-channel Kondo model (as well as the isotropic two-
channel Kondo model), one may exploit the SU(2) symmetry under spin rotations and

use the total spin Sfot and its z-component

Siy =Y ocl,cp + S (3.31)

n=1,0

as conserved quantities (¢ =7, | is the spin index and S} the impurity spin). The
implementation of the full spin symmetry would involve Clebsch-Gordon coefficients
(see e.g. [9]). As the application of a magnetic field along the z-direction breaks the
SU (2) spin symmetry down to a U(1) symmetry (with S7, as the conserved charge), in
the program developed in this thesis only S}, is used as a good spin quantum number.

Since all the Hamiltonians considered conserve electron number, the use of another
U(1)-symmetry is reasonable. The conduction charge operator Q (defined to be zero

at half filling) is defined as follows:
Q= E e 1 (3.32)
no no 2

For the calculations of the SIAM, the classification according to quantum numbers
(@, St,;) together with retaining about 512 states was sufficient to obtain reliable
results. In the calculations of higher-degenerate models (as the two-channel Kondo
model), additional symmetries had to be used (see chapter 4).

3.1.6 Results of the iterative diagonalization

After step (IV + 1) in the NRG procedure, one gets the whole spectrum of eigenstates
[Umdns1 (M = 1... Nyaesn+1) and eigenenergies E,,. As the N iteration corre-
sponds to a computation at a scale wy ~ A~ =D/2D_ one can deduce the energy
dependence (or equivalently the temperature dependence) of every thermodynamic
quantity. Usually, one proceeds with the NRG iterations until the spectrum does not
change anymore and, in RG language, a stable fized point is reached. By analyzing the
structure of the fixed point and calculating perturbative corrections about it, Wilson
[3] and Krishna-murthy et al.|9, 10] were able to confirm the strong-coupling fixed point
in the Kondo model, i .e. that the impurity spin is completely screened. Furthermore,
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they approved that the thermodynamic properties are Fermi-liquid like on approaching
the fixed point (for details, see the next chapter).

Besides the energy spectrum one obtains information on dynamic quantities such
as the impurity spectral function A, (w) by evaluating matrix elements of the involved
operators (in this case of the impurity operator d,. Details on the calculation of
dynamic quantities are also found in the following sections.

3.2 Measurements with the NRG

In the following chapter, we present the results which can be obtained with the program
which was set up for this thesis. We begin with the confirmation of the original
results of Wilson and Krishna-murthy et al.. In addition to this 'basic’ NRG code,
we implemented the extension to allow for the calculation of the impurity spectral
function, as described in the subsequent section.

3.2.1 Fixed points, the free electron Hamiltonian

In this section, the numerical results for the energy levels of the symmetric STAM will
be presented for typical values of A and U. What is important to notice is that the
results can be understood in terms of Hy crossing over between various fixed points
of the RG transformation 3.30 as N increases (which corresponds to going down in
energy).

A ’fixed point’ is reached, when the energy eigenvalues do not change from one
to the next NRG step. This can be seen from the definition of a fixed point H* of a
renormalization group transformation R:

R[H*] = H*

Actually R itself does not have any fixed points, but R? (R operating twice), taking
Hy to Hy 2, does. One realizes the occurence of a fixed point in the numerical results,
if one finds a set of energy levels that change very little from iteration N to iteration

(N +2).

The free electron Hamiltonian

The interesting fixed points of the symmetric SIAM can be understood easily once one
understands the structure of the free electron Hamiltonian HY,. That corresponds to
the situation where no impurity is present:

N-1
HY, = A2 37 b (i + harntan) (3.33)

n=0,0
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where we supposed a flat conduction band and thus all on-site energies ¢,, of the
Wilson chain to be zero.

As Eq. 3.33 denotes a quadratic form, it can be diagonalized exactly into (N + 1)
single-particle levels, as shown in the original NRG papers [3, 9]. The single-particle
energies are the eigenvalues of the (N + 1) x (N + 1) matrix H$, whose only non-zero
matrix elements are

(HX)nas1 = (H3 ) nsrn = ANV, (3.34)

where we have dropped the spin index o.

By numerical diagonalization we find the eigenvalues 7; of HY%;, which occur sym-
metrically (£7;) due to the particle-hole symmetry of HY. When (N + 1) is even
there are (N + 1) positive eigenvalues, which are denoted by 7;(N) and the rest are
the negative ones. For (N + 1) odd, there is one zero eigenvalue, denoted 7, and %N
positive eigenvalues 7);(/N'). What one finds on evaluating 7;(N) and 7;(NV) for a given
A is that they approach limiting values 7} and 75, respectively, as N increases. As an
example, at A = 2.5 one has

ny o 0.74686,2.49321,6.24999, (2.5)°, (2.5), ..., (2.5)"" (N + 1) even; (3.35)
Ay 1.52048,3.95255,9.88212, (2.5)/%, ..., (2.5) /% (N + 1) odd; (3.36)

The free electron Hamiltonian HY can now be built up out of these single-particle
levels.

For a successfully implemented NRG code one can check whether the single particle
levels are obtained in the non-interacting limit A = 0.

Fixed points for the symmetric STAM

All fixed points (FPs) of the symmetric Anderson model can be obtained by choosing
special values for A and U and comparing the resulting Hamiltonian Hy (Eq. 3.28)
(in the limit N — o0) to the free electron Hamiltonian. The fixed points are

(1) Free orbital FP: In the limit A =0 and U = 0, the impurity is decoupled from
the conduction electrons and the effective free orbital Hamiltonian HY - is just
the free electron Hamiltonian plus a free-impurity orbital of zero energy.

(2) Local moment FP: Suppose that, keeping A fixed, one lets U become larger than
the energies of interest. This would mean that it is energetically favourable to
occupy the impurity by just one electron. In other words it is as if the impurity
has become a 'local moment’ of spin—%, leading to the local moment fixed point
Hamiltonian HY ;).

(3) Strong coupling FP: 'When the impurity is infinitely strong bound to the con-
duction electrons (A — oo) at fixed U, the fixed point Hamiltonian H} - cor-
responds to the situation where the impurity and the first site of the Wilson
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chain are bound into a singlet and effectively 'frozen out’ from the rest of the
chain. Thus the strong coupling fixed point levels for odd N correspond to the
decoupled (free orbital) FP levels for even N.

Numerical results for the energy levels

By plotting the energy eigenvalues of each step versus the step number N, one can
study the RG ’flow’ during an NRG procedure. In doing so, one realizes that the
spectra for an even number of iterations N differ from those with odd N. The reason
for this even-odd alternation can be understood in the non-interacting limit V' — 0:
For an even number of shells there is an odd number of electrons at half-filling and
thus the Fermi level cuts right through a level which is two-fold degenerate because
of the spin. For an odd number of shells (and thus an even number of electrons) the
Fermi level passes through a gap above a non-degenerate Fermi sea.

Figure 3.5 shows the low-lying energy levels for the SIAM for the same parameters
as chosen by Krishna-murthy et al. in their Fig. 5 [9], plotted versus odd iteration
number N. There are three different fixed point (FP) regimes visible: For small N
there is an unstable high-energy fixed point, the free orbital FP. At intermediate N the
flow goes to another unstable FP, which turns out to be the local moment FP. Finally,
for low energies (large V), we arrive at the stable strong coupling fixed point.

The crossover at large N from the local moment fixed point to the low energy
strong coupling fixed point is associated with the Kondo scale T. As the temperature
is related to the iteration number N as kgT = A~(N-1D/2 the scale of the crossover
Ny corresponds to Tk according to:

(3.37)

Note that the single-particles for n; and 77, which are also indicated in Fig. 3.5, agree
well with the fixed point energy levels.

The parameters of the SIAM can be chosen such that the flow goes directly from
the high-energy free orbital fixed point to the low-energy strong coupling fixed point,
without passing the local moment regime. This is shown in Fig. 3.6. Again, the
fixed point energy levels can be associated with the eigenenergies n; and 7); of the free
electron Hamiltonian. The fact that one passes the various fixed points can also be
seen in the static susceptibility data (see next section). First we want to comment on
further conclusions which can be drawn out of the energy level flow diagrams.

Effective Hamiltonians

In the vicinity of a fixed point H* of R?, one can carry out analytic calculations by
setting up effective Hamiltonians

Hepp = H*+ ) w0, (3.38)
I
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Figure 3.5: NRG energy flow diagram of the SIAM for the low-lying energy levels of Hy
as a function of odd N. Parameters are: U/D = 1073, U/7rA = 12.66, A = 2.5
with 550 states kept in each iteration. Compare to Fig. 5 of [9]. The following
fixed-point regimes are visible: Free orbital for 5 < N < 15, local moment for
20 < N < 50 and strong coupling for N > 65.
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Figure 3.6: NRG energy flow diagram of the SIAM for the low-lying energy levels of Hy
as a function of odd N. Parameters are: U/D = 1073, U/mrA = 1.013, A = 2.5
with 550 states kept in each iteration. Compare to Fig. 6 of [9]. The crossover
happens from the free orbital regime at low N to the strong coupling regime
at large N, without passing through the local moment regime.
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where the leading deviations O; about H* are obtained by general symmetry arguments.
For instance for the symmetric STAM one has to consider operators d H that conserve
charge, spin and particle-hole symmetry. Near any fixed point, one fits the energy
spectra to the following form

Hyeps = Hy +wi AN "D26H, + w, AND26H, + (3.39)

and determines the coefficients w;. For further details we refer to a detailed description
of this procedure in the original NRG works [3, 9.
The main results of this analytic treatment around the fixed points were

(1) Right at the strong coupling fixed point, the impurity spin is completely screened.

(2) On approaching the fixed point, the magnetic susceptibility x(7") converges to a
constant value for " — 0 and the specific heat C' = 47" is linear in 7" for 7" — 0.

(3) The ratio R = x/~, known as the Wilson ratio, takes the universal value R = 2
in the Kondo model.

3.2.2 Static properties, thermodynamics

As one calculates the whole many-body eigenstates and eigenvalues, one can in prin-
ciple calculate every desired thermodynamic quantity. If one denotes the many-body
eigenvalues of the Hamiltonian H with F,, and the eigenstates |m), one sees that out
of

H =" Ey|m)(m| (3.40)
one can calculate the partition function

Z(T) = Tre sl =y = e~ Pm/keT (3.41)

and hence the complete thermodynamics.
In the NRG procedure we are only able to calculate partition functions Zy for the
sequence of truncated Hamiltonians H .

Zn(T) = Tre /el =N " o= En/ksT (3.42)

For a reasonable thermodynamic calculation one has to retain enough states at each
iteration so that the contribution to the partition function from excited states, not
contained in Zy, is negligible. The truncation error made in replacing H by Hy was
estimated in [9] to be approximately A~ Dy /kpTly.

Thus the choice kgT = kg Ty =~ Dy is reasonable and the thermodynamics can be
calculated at a sequence of decreasing temperatures kgTy ~ Dy = A-N-D/2D,
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As every property is calculated as an impurity contribution, one always has to
subtract out the values when no impurity is present. The definitions for the (zero-
field) static magnetic susceptibility, the free energy, entropy and specific heat are

2 /1 1
lep<T) — (g:uB> (—T’T’ (Szot>2€—H/kBT — Ty (Sz?z)Qe_HC/kBT) (343)

kT \Z Ze
Fimp(T) = —kpT (InZ —1nZ,) (3.44)
OF ., (T
Sung(1) = D) (3.45)
82
Cimp(T) = —TﬁFimP(T), (3.46)

with the partition functions Z = Tre /%87 and Z. = Tr e "</#5T_ The subscript ’c’
refers to the non-interacting conduction electrons alone.

With this definitions, we calculated the impurity susceptibility for the same pa-
rameters as considered for Fig. 3.5 and Fig. 3.6. The results are shown in Figure 3.7
and are plotted in the form kgT'x(T') vs In(kgT/D). The reason for this seemingly
unconventional choice is that one makes a one to one correspondence between such a
plot and the development of Hy with N as discussed in the previous section.

If one compares Fig. 3.5 with the black curve of Fig. 3.7, which both correspond to
the same parameters U/mA = 12.66, one realizes for small N, thus for high energies,
that the main contribution to the susceptibility contribution Eq. 3.43 comes from the
free orbital fixed point HY jo. This is just the free electron Hamiltonian HR; plus
a free impurity orbital and thus for kgTy one just gets %. If the flow goes to the
local moment fixed point HY ;,,, the resulting answer for kgT'x would be the value e
characteristic of a free spin—% impurity. As the temperature is decreased further, the
gradual crossover of Hy to the strong coupling fixed point H} g is observed. As was
shown in [9], the replacement of Hy by Hy - in Eq. 3.43 makes kpT'x vanish.

We note that a precise determination of susceptibilities and specific heats requires
a careful analysis of the influence of the discretization parameter A. Large values of A
pushes the procedure away from the continuum, introducing errors in the calculation of
physical properties, like oscillations in the susceptibility curves [51]. A simple procedure
that eliminates the artificial susceptibility oscillations and yields accurate results for
discretizations A as large as 10 was developed by [52].

3.2.3 Dynamical properties

The generalization of the NRG to the calculation of dynamical properties requires
the knowledge of additional matrix elements and therefore a significantly enhanced
numerical effort. The first calculations of the impurity spectral function for the SIAM
were obtained by Frota and Oliveira [39], Sakai et al. [40] and Costi and Hewson [41].
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Plots of kpTx(T)/(gup)? vs In(kgT/D) for U/D = 10~ and two different
U/mA. Compare Figure 9 of [9]. The curves mirror the pattern of the energy
levels in Fig. 3.5 and Fig. 3.6. For U > 7wA there is a well developed local-
moment regime (I'x = 1), while for U ~ 7A there is just the direct transition
from the free orbital regime (T'y = %) to the strong coupling regime (x =

const.). The arrows indicate the effective Kondo temperature as also obtained
within [9].
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We now describe in detail the calculation of the finite-temperature spectral function
1

Ago(w) = —=Im Gy, (w +i67) (3.47)
T

with
Gas(2) = z'/o dtei3t<[d0(t),di]+>, (3.48)

as described in [53].

Due to the logarithmic discretization of the conduction band, the spectral function
is given by a discrete set of J-peaks. With the results of the iterative diagonalization
one can compute the spectral function for each cluster of size N via

g (w) = Z—IN >~ Ittt myn |8 (w = (B3 = EX)) (e + P58, (3.49)

with {|m)x} and {|m') x} being sets of eigenstates of the Hamiltonian H with corres-
ponding eigenenergies EY and EY,, and Zy is the grand canonical partition function.
A typical result for subsequent iterations N is shown in Fig. 3.8.

The question which arises is what information of which cluster is needed to calculate
the spectral function for either zero or finite temperature. The iterative diagonalization
yields the excitation spectrum w,,,, = EXY — EY, on a set of decreasing energy scales
wop > wy > wy > ... (wy is the smallest energy scale of the Hamiltonian Hy with
wy ~ DA~WN=D/2) " Excitations w >> wy are already outside the energy range which
is sampled by Hy, due to the truncation; they have to be extracted out of previous
iterations N/ < N. Similarly, excitations w < wy are not yet described by the cluster
of size N; they are accurately obtained by subsequent iterations with larger N.

For T' = 0, the spectral density can therefore be calculated, using Eq. 3.49, accor-
ding to

1

Agon(w, T =0) = mZ]N(m|di|O>N}25(w+Eﬁ)

4 mzmmug\m’mfa(w—m (3.50)

This is done at an appropriate set of decreasing frequencies, which are typically chosen
to be w = 2wy.

At finite T, there are some modifications to this procedure. For a given temperature
T, which is identified by T, ~ w);, one similarly evaluates the spectral function, using
Eq. 3.49, at w = 2wy down to a minimum frequency corresponding to w ~ T = T},.
As shown in Figure 3.9, many more excitation contribute for finite-7 calculations as
compared to the T = 0 case.

When w = 2wy gets in the range of or smaller than the temperature of interest,
T = Ty, excitations that are not contained in cluster N will start to contribute to the
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0- T 0-

Figure 3.9: The spectrum of many-body excitations measured with respect to the ground
state £/ = 0, up to the cutoff due to the truncation of states, as indicated by the
dotted line. Some possible transitions, contributing to the spectral function,
are shown as arrows. Left plot: For T = 0, only transitions starting from the
ground state are possible. Right plot: For finite 7', also transitions between
excited states become possible.
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spectral density. If one wants to calculate A;(w) at w = 2wy such that |w| < Ty one
has to use the cluster of size M corresponding to the temperature. The ¢ functions
in the spectrum of cluster M are then broadened with functions of width 7. This
procedure recovers the known Fermi liquid relations for the transport quantities of the
Anderson model [41, 43|.

There exist several ways to combine the different discrete information of each cluster
to arrive at continuous curves for the spectral function. The approach of [41, 43| is
to replace the ¢ functions of Eq. 3.49 by appropriate broadening functions and then
evaluating the spectral function at characteristic frequencies as described above. The
program of this thesis uses an approach of [53|, where, in a first step, the information
of successive clusters N and N + 2 is combined and then, secondly, the spectra are
broadened.

Starting point for combining the spectral information of two successive iterations
(N and N+2 to avoid even-odd effects) is the set of § peaks obtained for a cluster of size
N, where there has been no truncation yet (see upper plot of Fig. 3.10). The spectral
peaks for the next cluster of size N 4 2 are shown below the peaks for cluster N. The
minimal frequency appearing in cluster N + 2, w2 is roughly by a factor A smaller
than the minimal frequency of cluster N, w”, = while the maximum frequency w2 is
determined by the number of states retained after the truncation. The superposition
of the § peaks now happens such that the regions, where subsequent clusters do not
overlap, thus in the interval [w)' "2 wN. | and the region above wN+2, are equally kept
for the combined set (as indicated by the broad arrows in Fig. 3.10). The region where
the spectral information of cluster N and N +2 overlaps ([w®,,,, w’*2]) is built using an
appropriate weighting function, which, for simplicity, is a linear function. The peaks
of the previous clusters are taken with a linear function with values from 0 to 1 for
arguments between w?. and w' 2 the peaks for the cluster of length N + 2 are taken
with values from 1 to 0 (see Fig. 3.10).

The resulting set of  peaks is then combined with the next cluster (of length N +4)
and the procedure is iterated until the cluster of length M (defined by T = Ty) is
reached.

Of course the resulting spectrum is still discrete, with § peaks getting closer and
closer as w — 0. It is convenient for visualizing the distribution of spectral weight and
for using the results in further calculations to broaden the peaks using appropriate
broadening functions. In our program, this is done by Gaussians on a logarithmic
scale with width b (typically between 0.3 and 0.6):

e b/ (Inw — Inw,)?
Mw—wy) — bwnﬁeXp {— 7 ]

In Figure 3.11 we show the resulting local spectral function for the SIAM for different
local level positions. A symmetric, spin-independent conduction band density of states
p(w) = 1/(2D) was assumed. In the particle-hole symmetric case (¢4 = —U/2), one
nicely sees the different features of the impurity spectral function:

(3.51)
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Figure 3.10: Superposition of the § peaks in the spectral density up to length N [see (a)]
with the peaks of the cluster of length N + 2. This procedure (described in
the text) gives the spectral information contained in all clusters up to length
N + 2 [see (c)]. Figure taken from [53].
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Figure 3.11: Zero temperature spectral function for the SIAM for different local level po-
sitions and U/mA = 6. In each iteration, 1024 states were retained and we
used a discretization of A = 2.



50 CHAPTER 3. The Numerical Renormalization Group (NRG)

e Single particle excitations (“charge fluctuation peaks”) of width ~ A near ¢4 and
eq + U, corresponding to a singly and doubly occupied impurity, respectively.

e The sharp Kondo resonance of width ~ T} at the Fermi level, due to the spin
fluctuations.

If one moves away from particle-hole symmetry (as shown for ¢, = —3A in Fig. 3.11),
the spectral function is not symmetric anymore and the single particle excitations shift
accordingly. The numerical accuracy of the T" = 0 spectral densities obtained by the
NRG can be checked by the Friedel sum rule, a Fermi-liquid relation which states that
[54]

0

1
App(w=0,T=0) = X sin?(mnq/2), ng = / dwAge(w, T =0),  (3.52)

where ng, is the impurity occupation. The integrated spectral weight up to the Fermi
level yields 0.985 for the particle-hole symmetric case in Fig. 3.11. Together with
Eq. 3.52 this gives A4,(0,0) = 31.82. The value extracted directly from Fig. 3.11 is
A4y (0,0) = 31.29, resulting in a 1.5% error. The error for the spectral density at
the Fermi level remains small in the whole range of interaction strengths 0 < U <
00. The resolution of the high-frequency features is limited, as the NRG is designed
to sample the low frequency behavior with high accuracy. The shape of the charge
fluctuation peaks is strongly influenced by the broadening procedure. A modification in
the calculation of the spectral function due to Bulla et al. [55], involving the Anderson
model’s self-energy, turns out to yield more reliable and accurate results also for the
high-frequency features.

A scaling analysis of the STAM shows that the Kondo temperature Tk depends
exponentially on the interaction strength U [1]:

UA 1/2 leglleg+U|
_ -~ 9uA . 3.53
eallea ¥ U\) ‘ (3:53)

]{ZBTK ~ D (
To illustrate this fact, the local spectral functions are shown in Figure 3.12 for the
symmetric STAM for different values of U. With increasing Coulomb repulsion, the
Kondo temperature is decreased exponentially, as the inset of the Figure reveals.

The spectral density is the central starting point in order to make contact with
experiments. The calculation of transport properties requires the knowledge of both
frequency and temperature dependence of the spectral density. As done in [43], one
can, for instance, calculate the resistivity p(T") of conduction electrons scattering from
a single Anderson impurity by p(T)~! = —e? fj;o Ttr(w,T)g—j:dw, where the transport
time 7,.(w, T) is related to the spectral density by 7,,'(w,T) = AAg(w,T). Similar
expressions hold for other transport coefficients (see [43]).
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0
w/D

Figure 3.12: Local spectral function for the symmetric STAM for different values of the
Coulomb repulsion U. With increasing U, the width of the Kondo peak (as
a measure for Tk) gets exponentially smaller. The inset shows the region
around the Fermi level in more detail.
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Figure 3.13: STAM spectral function for a square-root shaped conduction electron DoS,
including a Stoner splitting (see right inset). While the general structure of
two charge fluctuation peaks and the Kondo resonance is maintained (left
inset), the Kondo resonance at the Fermi level is spin-split.

Spectral densities for arbitrary conduction electron DoS, inclusion of a mag-
netic field

As already stated, the NRG, developed for this thesis, is capable of dealing with an
arbitrary conduction electron density of states, which corresponds to a frequency-
dependent hybridization function A,(w). The difference to the standard Wilson NRG
is the iterative calculation of the Wilson chain parameters ¢,, and t¢,, with arbitrary
precision, as described in detail in appendix A. A structured hybridization function
will become important in the context of dynamical mean-field theory (DMFT), which
will be described during the following sections.

An example of the calculation of the STAM impurity spectral function for a spin-
and energy-dependent conduction electron DoS is given in Fig. 3.13. Similar to the
work of Martinek et al. [56] we calculated the SIAM spectral function for a square-root
shape DoS equivalent to a parabolic band (as for free electrons) with a Stoner splitting,
as illustrated in the right inset of Fig. 3.13.
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The resulting spectral function exhibits the usual three peak structure (2 charge
fluctuation peaks and the Kondo resonance), but a zoom picture around the Fermi
energy reveals that the Kondo peak is now spin-split.

The effects of a spin-split conduction band and thus a splitting of the Kondo reso-
nance in the spectral density are similar to the ones observed when one includes a local
magnetic field B at the impurity site. The usual Anderson Hamiltonian acquires an
additional term —gupBS? in the impurity part H,, where i is the Bohr magneton, g
the gyro-magnetic ratio (usually set g = 2) and S* the z-component of the total spin.
As was outlined in [57], the inclusion of the additional energy scale wy., ~ gupB
causes problems in the calculation of the spectral function. As the magnetic field with
characteristic energy wy,,, affects the spectral function A4(w,7’) on all frequencies w,
one has to distinguish carefully between the influence of the scales w and wy,q4. The so-
called 'DM-NRG’, invented by Hofstetter [57], improves the calculation of the spectral
function, especially in the high-energy regime. However, the traditional NRG imple-
mented for this thesis can still show the impact of a local magnetic field on the spectral
function. In Fig. 3.14 the spectral functions for different values of a local magnetic
field B clearly show the Zeeman splitting of the Kondo resonance.

3.3 Extensions

The NRG, as it is described so far in this thesis, has proven to be a powerful method
for the investigation of quantum impurity models. It gives information on the complete
many-body spectrum of the Kondo model and the single impurity Anderson model on
all energy scales. Static and dynamic properties can be calculated and through compu-
tation of transport properties, direct comparison with experiments becomes possible.

There is nevertheless room for further extensions of the NRG method. The study of
multi-channel models with the NRG allows to investigate the large field of non-Fermi
liquid physics. We will consider aspects of the two-channel Kondo effect, as computed
by an extended NRG, in chapter 4.

Originally designed for quantum impurities coupling to a fermionic system, the
NRG was adapted by Bulla et al. [58] to work also for the interaction with a bosonic
bath.

For the investigation of the non-equilibrium transport through correlated impurity
systems such as quantum dots, the NRG was extended quite recently by Anders and
Schiller [59, 60], triggered through earlier ideas of Costi [61]. This will be described in
the next section.

3.3.1 Non-equilibrium

Away from equilibrium, the absence of a groundstate requires new criteria how to select
the states which have to be truncated after each NRG iteration. The philosophy of
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Figure 3.14: Local spectral function for the symmetric STAM with a local magnetic field
B. The Kondo resonance shows the Zeeman splitting with the Zeeman energy
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the novel approach due to Anders and Schiller |59, 60| is now to 'put the RG upside
down’ and let all discarded states contribute to the calculations and thus to change the
truncation scheme rigorously [62]. The newly developed time-dependent NRG (TD-
NRG) is capable of describing the dynamics on short and long time scales and works
for all temperatures.

As usual the conduction band is mapped onto the semi-infinite Wilson chain (see
Figure 3.15).

{-Ho”— %” —

m+1

m, N

Figure 3.15: As usual in the NRG, also in the TD-NRG there is an exact mapping onto a
semi-infinite chain (figure taken from [62]).

The main modification in the TD-NRG in contrast to the standard equilibrium NRG
is now to take a set of all discarded states plus “environment” e to form a complete
basis set of the NRG chain: {|l,e;m)}. All discarded states contain information on
the non-equilibrium dynamics. The real-time dynamics of an arbitrary local operator
O can now be computed as

Ll truncated

=> 1|01y e BBt pred (i) (3.54)

LU

with the reduced density matrix pj¢¢(m), similar to the one used in the DMRG ap-
proach (see section 2.1.2). Starting from the initial (¢ = 0) density matrix po, one
traces out the “environment” e

pret(m) = (L e;mlpo|l’, e;m). (3.55)

€

Thus all states and energy scales contribute and in this sense there is no truncation
of states. Another advantage of the TD-NRG is that there is no accumulated error in
time and that it is valid for all temperatures. For further details on the TD-NRG and
its applications to the Spin-Bose model or the Kondo model we refer to the original
papers [59, 60].
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3.4 Dynamical mean-field theory with the NRG

The dynamical mean-field theory (DMFT) [63| has become a very powerful tool for the
investigation of lattice models of correlated electrons since the first investigation of the
Hubbard model in the limit of infinite dimensions by Metzner and Vollhardt [64]. The
combination of the DMFT approach with ab-initio methods led to significant progress
for a realistic description of strongly correlated materials (a brief overview can be found
in [65]).

In DMFT the lattice model is mapped on an effective quantum impurity model in a
bath which has to be determined self-consistently [66]. The impurity model is a single-
impurity Anderson model with an energy-dependent hybridization function A, (w).
Thus the NRG program developed for this thesis can serve as a reliable ’impurity
solver’ in DMFT calculations [53, 55|.

In the last section of this chapter we want to describe how we plan to use our NRG
program to contribute to the explanation of the simultaneous para-to-ferromagnetic
and semiconductor to metal transition in oxygen-depleted europium oxide. The ap-
proach followed there is quite similar to the DMFT, as although the starting point is
not a lattice model, a quantum impurity model is solved in a self-consistency loop.

3.4.1 A model for europium oxide (EuO)

At room temperature, europium oxide (EuQO) is a paramagnetic semiconductor with
a wide band gap of 1.2 eV. Below a critical temperature 7, = 69K, it becomes a
ferromagnetic metal, where the polarization of the charge carriers is found to be nearly
100 per cent (for details, see [67] and references therein).

There was already work done by our group in order to find a microscopic model
describing the nature and the simultaneity of the magnetic and the metallic transition
for oxygen depleted EuO [67]. There an extended Hubbard-Anderson model with a
correlated band is set up, treating the correlations within a mean-field (Hartree-Fock)
approximation. The spin-dependent spectral densities of the conduction electrons are
calculated using the Non-Crossing Approximation (NCA). But as already mentioned in
section 2.2, the NCA is not able to describe the spectral function correctly in the pres-
ence of a local magnetic field, producing a spurious resonance at the Fermi level. We
believe that the application of the NRG can provide valuable progress in the analysis
of our microscopic model.

Starting with a suitable, spin- and energy dependent conduction electron DoS
Peo(w), we calculate the spin-resolved impurity spectral function Ay, (w) using the
NRG, as already described in the previous sections. Through a Kramers-Kronig trans-
formation one can then get the full impurity propagator Gy, (w). The conduction
electron self-energy 3., (w), consisting of the Stoner and the impurity scattering con-
tributions, can be computed via

ZCU(W) = U<ﬁ0—0> + nimp|v|2Gda(w)7 (356)
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where the first term is the Stoner term with the conduction electron number operator
and 7, is the oxygen defect concentration.
Subsequently the retarded conduction electron propagator is obtained by

Gop(w) = [w + ot — &5 + 10 — Sep(w)] ", (3.57)

where p is the common chemical potential of defect electrons and conduction band
electrons.

Through integration, one gains a new spin-dependent spectral function p.,(w) =
— [ %Im G.,(w), which serves as the input for the next iteration of this self-consistent
loop. The calculations are continued until the convergence of the conduction electron
spectral functions.
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Chapter 4

Multi-channel models

Noziéres and Blandin [68] showed that an anomalous fixed point occurs in the multi-
channel Kondo problem at finite coupling for M > 25;, where M is the number of
channels and Sy the impurity spin. It corresponds to a situation where the conduction
electron spins overcompensate the local moment of the impurity and thus the over-
screened ground state of this system is not a (S = 0) singlet anymore, as in the ordinary
one-channel Kondo (1CK) model. In the overcompensated regime non-Fermi liquid
physics arises, providing possible explanations for the description of real materials.
An overview over the various multi-channel Kondo impurity model candidates most
extensively studied, specifically the two-level system (TLS) Kondo model, was given
by Cox and Zawadowski [50].

In this chapter we first consider the two-channel Kondo (2CK) impurity model,
for which Cragg et al. showed by renormalization group calculations that the ground
state is not a state of spin zero in general [69]. For the isotropic 2CK model, a stable
non-Fermi liquid fixed point occurs for intermediate values of the Kondo coupling J.
The results for the isotropic as well as the channel anisotropic model, first found by
Pang and Cox [70], are reproduced with the program set up for this thesis. Explicitely
we then investigate the distribution P(7k) of the Kondo temperature Tk in the 2CK
system as an explanation for the measurements on quantum point contacts.

4.1 Two-channel Kondo effect (2CK)

4.1.1 Motivation

In the 2CK effect, a two-fold degenerate system such as a local spin (a Kondo impurity)
is antiferromagnetically coupled to two independent electron reservoirs. Since the
reservoirs are not coupled to each other and do not communicate, each one attempts
to screen the local impurity spin, leading to overall overscreening. Thus the ground
state is no spin zero singlet and has residual entropy even at zero temperature. A 2CK
system cannot be described by Fermi liquid theory [71] anymore, it exhibits low-energy

59
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Figure 4.1: Conductance for a metal nano-constriction, showing the zero-bias (square-root)
anomaly (taken from [76]).

non-Fermi liquid behavior [50, 27, 28, 72].

The interest in the 2CK model is due to a number of suggestions for experimen-
tal realizations of the 2CK overcompensated behavior. Oreg and Goldhaber-Gordon
[73] used a modified single-electron transistor with two spatially separated sets of con-
fined electrons to study the 2CK effect at experimentally accessible temperatures. Cox
demonstrated 2CK behavior in the quadrupolar Kondo effect in heavy fermion com-
pounds [74]. Ralph et al. reported observation of the 2CK effect in metal nanocon-
strictions |75, 76, 77|, where two-level tunneling systems (TLS) in a disordered metal
provide the local (near-)degeneracies instead of the traditional spin. In Ralph’s exper-
iments, zero-bias conductance measurements on the quantum point contacts show an
anomalous square-root dependence on the temperature (see Fig. 4.1). The measure-
ments are consistent with the presence of 2CK impurities and are difficult to explain
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by any other known microscopic mechanism. Arguments that contributions through
the quantum interference between Coulomb interaction and scattering off defects in a
nanojunction would lead to the same (o< /7)) scaling behavior could be invalidated by
[78].

A microscopic, theoretical explanation of the 2CK effect is far from being complete.
Two works, developed in our group [79], can possibly make an important step towards
a better understanding in that issue. Still, as one of the unresolved problems within
the 2CK scenario, the experimental results indicate a very narrow distribution P(T)
of the Kondo temperature T . For a nanoscopic point contact one expects the Kondo
defects to be statistically generated, and consequently a wide distribution of the Kondo
coupling constant J. Thus it a priori unclear why a sharp distribtion of T is measured.

We investigate the distribution of P(T%) by means of explicit NRG calculations,
described in the following section.

4.1.2 Solution with the NRG

It was known since Noziéres and Blandin [68] that a non-trivial fixed point occurs for
the isotropic 2CK model (the Kondo coupling strength J is equal for both conduction
electron channels) for an intermediate, finite value of J. Since perturbative methods
like perturbative RG are only able to deal with small values of the bare coupling,
one has to use a non-perturbative way to cover the full range of initial values of J.
The original (non-perturbative) NRG work confirming the non-trivial fixed point was
performed by Cragg et al. [69], while subsequent calculations by Pang and Cox [70]
and Affleck et al. [80] explored the weak coupling approach to the transition and the
influence of exchange anisotropy, applied local and bulk spin fields as well as channel
fields in greater detail. To validate our 2CK NRG program we first recalculated the
results of Pang and Cox [70].

Hamiltonian
The 2CK Hamiltonian is
Hycx

1 S -
o= Z 5kclwckw + ) Z Jacgagawlcmo, . 87 (4.1)

kao «

where D is the conduction bandwidth, & = £ the channel index, ¢ =T, | is the spin
index, CLM are the usual electron creation operators, cgw the local Wannier state at
the impurity site, c(T]aUEM/cOM, the conduction electron spin-density at the impurity
site and s; = 1 the impurity spin.

As common to the NRG solutions, the Hamiltonian (4.1) is logarithmically dis-
cretized. The conduction electron part is mapped onto the semi-infinite Wilson chain
(now there are 2 independent semi-infinite chains) where the Wilson shell states cor-

respond to creation operators fi_, fi ... having radial extent A2 A%2 .. times
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kL . about the impurity. Finally the discretized 2CK Hamiltonian takes the form
H/D = Z tn (frtozafn-l-laa + hC) + Z Jafgozac_faalanU’ ' S_} (42)
n=0,a,0 «
with ¢, = A2AEA DA

2[(17/\2”-’»1)(17/\2”-0»3)}1/2‘
When J, = J_ one has the isotropic 2CK Hamiltonian, while J, # J_ corre-

sponds to the channel asymetric case. Hamiltonian (4.2) can be viewed as a series of
Hamilonians Hy(N > 0) which approaches H in the limit H — oo:

H = lim A~ N=D2 (4.3)
with
N-1
Hy = A2 | S ( AR h.c.) 5 JafooGoo Foag - 57] (4.4)
n=0,a,0 «

Hy corresponds to a Kondo impurity, coupled to the first site of the Wilson chain:
Hy= =%, F (S-S +5287) + SZSZ} (4.5)
\/K - 9 a™~T a™~T a™~T

(S:+/S, is the usual raising/lowering operator in channel «.)
The RG transformation reads (= two successive Hamiltonians are related by)

HN+1 = \/KHN + AN/2 Z b (fjtfozafN-‘rlaa + hC) (46)

As one adds a site in the Wilson chain, the Hamiltonian grows exponentially as 16",
thus besides a proper truncation scheme the use of symmetries is essential for the
numerical solution of the problem.

Symmetries

The M-channel Kondo spin-; model has a full symmetry group of SU(2)yin x Sp(M),
where Sp(M) is the so-called symplectic group [80]. In the two-channel case (M = 2),
the only invariant subgroups of Sp(2) (which is isomorphic to SO(5)) are SU(2) x
U(1) which corresponds to the choice of channel spin and charge symmetries, and
SU(2) x SU(2) which corresponds to the separate “axial charge” symmetries [50] (see
below). As our standard NRG program for the 1CK model and SIAM already uses
charge () and z-component of the total spin S}, as labels for the many particle states,
we choose the channel spin and charge symmetries for our 2CK program. In the
presence of channel symmetry breaking fields the full SU(2) channel spin symmetry
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is broken down to a U(1) symmetry with the z-component S?, of the channel spin as
the conserved charge. Accordingly, our program uses a U(1) x U(1) x U(1) symmetry,
which is (charge) x (spin) x (channel spin) and yields the following quantumnumbers:

. 1
Q = Z [fiaofnaa - §:| (47)
Sfot = Z O-fr];aafnao + S; (48)
n=0,0,a
A 1
o = 2 Z O‘fiaofnaa (4.9)

n,q,o

The Hamiltonians are diagonalized in each irreducible subspace |Q, S7,,, S,) and about
900 states are retained at each NRG iteration. Details on the iterative diagonalization
can be found in appendix B.

An alternative way of dealing with the charge and channel degrees of freedom
of the conduction electrons was first found by [81, 82, 83]. It was observed that the
single-channel particle-hole symmetric Kondo model enjoys an additional global SU(2)-
symmetry specified by the “axial charge” generators

j(i_ = Z(_l)nCL,T,aCL,l,a

n

Jo = D (=1)'"Cniatnia
n
B g, T
Ja = 5 Z [Cn,T,acn,T,a - Cn,l,ozcn,l,a]
n,a

The corresponding quantum numbers total axial charge j2 and jZ may still be used
in the presence of channel symmetry breaking fields. The “axial charge symmetry”
or “isospin” symmetry was also used in the first NRG calcuations of the 2CK model
in [70]. More detailed considerations on the symmetries in the multi-channel Kondo
problem can be found in [80].

Reproduced results

First, we considered the isotropic, strong-coupling limit to recover its non-Fermi liquid
fixed point. Fig. (4.2) shows the lowest energy levels for J, = J_ = 1.0, A = 3.0.
The eigenvalues of Hy (in units of the conduction bandwidth D) for sequential N are
connected by a line in order to watch the energy level flow. One realizes that the fixed
point is reached already after a few iterations, which tells us that the initial coupling
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is only slightly different from its renormalized fixed-point value. Also there is no even-
odd effect in the 2CK spectrum (the fixed point values are equal for the left and the
right side of the plot). The results of Fig. (4.2) are in good agreement with Fig. 1 of
[70], who used their results to compare it with the initial 2CK NRG work of Cragg et
al. [69].

J,=J_=10
A =3.0
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Figure 4.2: Lowest NRG energy levels for the strong-coupling isotropic 2CK Hamiltonian.
The states are labeled by (Q, S7,;,5%,). Compare to Fig. 1 of [70].

The results for initial weak-coupling (J, = J_ = 0.2) are shown in Fig. 4.3. Quick
convergence is ensured through A = 9.0. Since the initial .J is small, it takes more NRG
iterations to reach the fixed point as compared to an initial coupling of J, = J_ = 1.0.
However, the spectra flow to a fixed structure independent of the original coupling
value. Again, after the energy levels have converged, there is no even-odd effect. Fig.
4.3 confirms in a non-perturbative way that the 2CK model has a non-trivial fixed
point which is stable in the absence of fields which break the full SU(2) invariance
of the exchange coupling [50]. We will use the crossover scale at which the low lying
levels flow to the non-trivial fixed point as a measure for the Kondo temperature Tk.
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Figure 4.3: Lowest NRG energy levels for the weak-coupling isotropic 2CK Hamiltonian.
The dashed-dot lines represent the energy levels for J, = J_ = 1.0 with the
same A = 9.0. Compare to Fig. 2 of [70].

A major difference in comparison with the 1CK calculations is that the spectra of
the 2CK model have a non-uniform spacing. While this is no rigorous proof, it is a
consequence of the non-Fermi liquid character of the 2CK excitation spectrum. One
way to verify that is by noting that the quantum numbers of the free states cannot be
that of a Fermi liquid (further discussion can also be found in [50]). Another way of
proving that the resulting spectra are non-Fermi liquid 2CK spectra is calculating the
entropy, which has to be Sycx = %log? as T" — 0. But since there is a nearly 1 : 1 -
agreement of our results with the results of Pang and Cox [70] we omit a more detailed
analysis here. The reason for the difference of our fixed point energy values from
the values of Pang and Cox is a factor of (% (1+ A‘l))_1 which arises from different
definitions of the rescaled Hamiltonian H . Note that e. g. in the original work for the
STAM of Krishna-murthy et al. [9] the system parameters are rescaled by a factor of
(3=r) in their N*" step Hamiltonian Hy (their Eq. (2.18ff)).

It is known from [68, 69] and the scaling analysis in [50] that the non-trivial 2CK
fixed point is unstable if one breaks the channel SU(2) symmetry, thus J; # J_. The
more strongly coupled channel will provide the ordinary Kondo effect (the correspond-
ing coupling flows to J = o0), while the weakly coupled channel produces a free Fermi
gas (J — 0.0).
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Figure 4.4: Lowest NRG energy levels for the strong-coupling channel-anisotropic 2CK
Hamiltonian. Lifting the channel degeneracy produces a flow to a normal
Kondo fixed point. States are labeled by (@, S7,;, S%,). Compare to Fig. 6 of
[70]

Fig. 4.4 confirms these results for a channel anisotropic situation. Since our program
incorporates the U(1) symmetry (by the quantum number S? ) which is left after
breaking the full SU(2) channel symmetry, we are able to analyze the situation where
Jy # J_. The spectrum flows to an ordinary Kondo fixed point with uniform level
spacing, as anticipated by Fermi liquid theory. Note that there is a difference in the
labels of the many-particle states in Fig. 4.4.

4.1.3 Results and discussion

We can now turn to the analysis of the distribution of T in the isotropic 2CK model.
Therefore we examine the crossover scale at which the energy levels flow to the non-
Fermi liquid fixed point which we use as a measure for the Kondo temperature T'k.
This is done for a whole range of initial couplings J for different NRG discretization
parameters A.

For every energy flow diagram one has to ensure that one really reaches the non-
Fermi liquid fixed point and that for a fixed NRG discretization parameter A the same
fixed point energy levels are obtained, independent of the initial coupling strength .J.
Our 2CK NRG program uses Fortran BLAS routines (Basic Linear Algebra Subroutines)
for the matrix diagonalization. These are accurate to the desired precision, which in
our case is double precision (27°% &~ 10719), since we store the eigenvalues and eigen-
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Figure 4.5: Energy flow diagram for the 2CK model, where the exact channel symmetry
is broken due to numerical inaccuracy. Parameters were J, = J, = 0.5, A =4
with 850 states kept.

vectors with double precision. This tiny inaccuracy might be enough to break the
channel symmetry also in the case of initially assumed isotropic couplings. Thus nu-
merical deviations can be the reason for that the system never reaches the non-Fermi
liquid fixed point and, instead, a normal 1CK Fermi liquid behaviour occurs for large
iteration numbers N. Fig. 4.5 shows that issue in the energy level flow for initially
isotropic couplings. One realizes that at N = 4 an abnormal ’jump’ occurs for some
energy levels. After that obvious inaccuracy the system quickly evolves to a normal
Fermi liquid fixed point with uniform level spacing. Note that now also an even-odd
effect occurs, which is further evidence for a 1CK FL behaviour. A successful program
convergence is thus no proof for the occurrence of the correct fixed point.

To avoid these inaccuracies a sufficiently large number of states is kept during each
iteration, while still ensuring reasonable program runtimes. Each flow diagram for
every value of J had to be checked carefully. For several values of J, the results were
double-checked for two different values of the number of states kept. Another improve-
ment in order to avoid the symmetry-breaking numerical instabilities was implemented
in our program: It is checked whether the truncation of states in each iteration would
happen right through a degenerate level. All eigenstates which have exactly the same
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eigenenergy as the designated last state to be kept additionally remain in the NRG
iteration and 'survive’ the truncation procedure. This ensures that no quantumnumber
is favored over another and thus any asymmetry enters the problem.

After one has checked for the stability of the non-Fermi liquid fixed point at the
correct energy eigenvalues one can start with the analysis of the dependence of the
crossover energy on J. Fig. 4.6 shows that regardless of which initial value of J the
energy levels flow to the same fixed point values.

2 —
---- J=0.7
— J=0.2
y
z
<
S
o
o
o
O 111 | 11 1 | 1 11 | 111 | 11 1 | | 111 | 11 1 | 1 11 | 111 | 11 1 |
0 8 16 24 32 40 0 8 16 24 32 40
N (even) N (even)

Figure 4.6: Lowest NRG energy levels of the isotropic 2CK model for different initial cou-
plings J. Independently of initial weak-coupling (J/D = 0.2), intermediate
coupling (J/D = 0.7) or strong-coupling (J/D = 20), the same fixed point
values are reached.

By studying a variety of couplings, we can confirm the result of [50], that the renor-
malized fixed point value of J is about J. = 0.7D. In this case the energy eigenvalues
almost immediately settle to the fixed point value (see Fig. 4.6).

We define the crossover temperature scale T3 by T5 = A~Vx—1/2 where Ny is
the iteration number when the first excited energy level is reached within 10 percent
of its fixed point value. This temperature scale T} is taken as our value for the Kondo
temperature Tk in the following. There are rather different definitions for Tk, one
could e. g. take the inflection point of the first excited energy level line. But then
every flow diagram where the first excited energy is already reached during the very
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first iterations could not be evaluated, since there is no inflection point in this case. Our
definition for Tk only fails for situations where the fixed point energy value is already
reached within the first evaluated (even or odd) iteration. Anyhow it is sufficient to
observe the expected peaked distribution of P (7).

Our main result is shown in Fig. 4.7. For several initial couplings and two dif-
ferent NRG discretizations A the crossover temperature 75 was determined and the
corresponding distribution P(7}) vs. J shows a strong peak at around J = 0.7D, as
expected.
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Figure 4.7: Distribution of the crossover temperature T (defined in the text) vs. the initial
coupling strength J (both in units of D).

The results for the two considered discretizations A show no significant differences.
Thus it could be excluded that we missed any A dependent factor in the derivations.
The deviations in the intermediate coupling regime around the peak maximum in
Figure 4.7 arise from the difficulty to determine the exact 7} when the crossover
happens at the very beginning of the NRG iterations.

The behavior of T}, is examined over nearly three decades of J and extends over
more than 10 decades in 77, as illustrated in Figure 4.8.
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Figure 4.8: Distribution of the crossover temperature 77 on a logarithmic scale vs. the
initial coupling strength J (both in units of D).

As was previously known from weak coupling perturbation theory, the Kondo scale
Tk depends exponentially on the Kondo coupling J. Usually, one defines the Kondo
temperature Tk at the point, where the second order term in perturbation theory
is equal to the first-order term. The following expression for the one-channel Kondo
model is also valid in the two-channel case with different prefactors:

kpTk ~ De N7 (4.10)

where N(0) is the conduction electron DoS at Er. As we use a flat density of states
in our calculations (N(0) = 1/2D), one can identify the weak coupling regime in
a log-linear plot of Tj vs. —1/J: For small values of |J|, log T} is linearly related
to —1/J (see Figure 4.9). This is the parameter regime where one could still use
perturbative methods. Beyond the weak coupling regime, a non-perturbative method
as the NRG has to be used. For comparison, the Kondo temperature as determined
from the inflection point of the first excited energy level is shown in Fig. 4.9. As
already mentioned the determination of the inflection point is only possible if the level
starts reasonably far away from its fixed point value, otherwise there is no change in
the curvature of the energy level. Thus this method could only be used for the first
five datapoints up to J/D = 0.3.

The results nicely show the exponential behavior of Tk vs. J in the weak coupling
regime. The values of T following the inflection point method are by a factor higher
than in our definition, since the inflection point is reached earlier in the flow as our
'within 10 percent’ criterion. The slope in a In(7}% /D) vs. (—=D/J) plot should be
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Figure 4.9: Distribution of the crossover temperature T} on a logarithmic scale vs. (—1/J)
(both in units of D). The linear behavior for small |.J| reflects the exponential
dependene of Tk on J as expected from perturbation theory.
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exactly 1, if the Kondo temperature follows Eq. 4.10 with N(0) = 1/2D. A linear fit
to the A = 4 data up to J/D = 0.3 yields 1.23 and 1.24 for our 7} and the inflection
point Tk, respectively. The deviation from unity could possibly explained with higher
order correction terms to the estimate for Tx (Eq. 4.10). If one would include terms

of order J? in the scaling equations (instead of the usual calculations up to order J?),
one arrives at kgl ~ De™1/(27po)+1/2(n (27p0)+0(Jp0)) 1],

4.1.4 Conclusion and outlook

We confirmed by explicit non-perturbative NRG calculations that within the 2CK
scenario a wide distribution of the Kondo coupling constant J leads to a narrow, peaked
distribution of the Kondo temperature Tx. The fact that only a narrow region of Tk
is measured in quantum point contact experiments can now be explained: Although
the coupling constants J of the Kondo defects may be statistically distributed, the
according Kondo temperature T is much to low to be measured for most of the values
of J. Only a small region around a critical value of J. = 0.7D has a Tk high enough to
be accessed experimentally and observed through the 2CK behavior. The exponential
dependence of T on J in the weak coupling regime could be verified. Our results are
summarized in the following paper [84].

A stable 2CK NRG code was developed, implementing the symmetries commonly
used in NRG programs.

With slight modifications the existing 2CK code could be used to analyze other
multi-channel Kondo or Anderson models as well. We implemented an NRG solution
for an Anderson impurity model with an additional screening channel, also showing
non-Fermi liquid behavior, which serves as a model for the high-T, superconductivity
in cuprates. The first results on this subject were reported by Perakis et al. [85, 86],
extensively for the particle-hole symmetric case. With our program we are able to
reconsider the model also away from particle-hole symmetry.



Chapter 5

Multiorbital Anderson impurities

In this chapter we present our work on explaining the lineshapes measured in scanning
tunneling microscopy (STM) experiments of transition metal atoms on metal surfaces.
In contrast to the previous chapters, there will be no application of the NRG here. All
the calculations were performed using a modified multi-orbital Non-Crossing Approx-
imation (NCA) program.

5.1 Experimental/Theoretical Situation

5.1.1 The Kondo effect in STM experiments

One of the first direct spectroscopic observations of the Kondo effect for an isolated
magnetic impurity in a non-magnetic host was reported in [19]: In an STM experiment,
the differential conductance dI /dV was measured for Cobalt (Co) atoms deposited onto
the (111) face of a clean gold (Au) crystal at 4 K (see Fig. 5.1). When moving the tip
across the position of a single Co impurity, one sees a resonance structure appearing
around the Fermi energy Er (see Fig. 5.2).

The vanishing of the features in the spectra at positions away from the impurity
atom excludes the possibility of the tip material causing the features in the spectra.
An interpretation of the lineshape can rather be given in terms of the Kondo effect:
Below a characteristic temperature Tk, the excitation spectrum of a magnetic atom
in a metallic host exhibits a narrow many-body (Kondo) resonance at the Fermi level.
An electron out of the STM tip has now 2 possible tunneling channels: the d orbital
and the continuum of the conduction band electrons of the host metal. Because of
quantum interference between these 2 channels, the observed lineshape therefore does
not reflect the d-orbital spectral density alone, which would yield a Lorentzian-like
peak.

73
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Figure 5.2: dI/dV spectra taken with
the STM tip at various dis-
tances of a single cobalt
atom [19)].

The appearing peak-dip structure can be explained by the theory of Fano [87] who
calculated, in the context of atomic physics, the effect of such an interference for tran-
sitions from an arbitrary initial state to a non-interacting discrete state in resonance
with a continuum. Detailed explanations of the Fano lineshape follow in chapter 5.1.2.

Since the magnetic properties of an impurity atom vary depending on the nature
of the impurity d-level, STM measurements across the whole transition metal 3d row
were performed [88] (see Fig. 5.3).

The experiments show spectroscopic features at the beginning and at the end of the
3d row (see Fig. 5.4). Again, the interpretation is tunneling from the STM tip into the
d-orbital and the conduction electron continuum. However, an absolute identification
of the observed features remains to be done.

As e. g. in the case of Ni (see lower spectrum of Fig. 5.5) one is not able to decide
if the spectral feature is a bare d-resonance or a broadened Kondo peak. Additionally,
in [88] the question about the reason why particular d-resonances appear in the spec-
tra and others do not could not be answered. The dependence on temperature and
magnetic field also had to be addressed to further studies.
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Figure 5.5: dI/dV spectra for Ti and Ni
monomers shown with correspond-
ing theoretical decomposition into
adjacent Fano resonances [88].

A study of the temperature dependence of the Kondo peak was then performed by
[89] in a Ti/Ag(100) system (see Figure 5.6).

The temperature dependence of the Kondo resonance width follows Fermi liquid
theory at low 7. But still the exact origin of the two underlying resonances forming
the dI/dV spectrum (see figure 5.7) could not be located in [89] (“The other, broader
resonance (...) thus likely originates from a bare Ti d resonance”).

A microscopic theory of the Kondo line shape in STM experiments was studied in
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|90] and will be described in the following chapter.
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Figure 5.7: dI/dV spectrum for Ti on
Ag(100) and two extracted reso-
nances, identified as a Kondo res-
onance and a bare Ti d-resonance
[89].

5.1.2 A microscopic theory in the Kondo regime

Ujsaghy et al. [90] combined band structure and strongly correlated calculations to
obtain width and shift of the Kondo resonance in STM experiments with cobalt im-
purities. The magnetic Kondo impurity induces a narrow Fano resonance in the local
conduction electron density of states (LDoS).

The following calculations assume that the STM current is predominantly due to
tunneling into the conduction LDoS, neglecting direct tunneling into the d-level of the
Co ion. This assumption is justified, since the d-level is localized deeply in the atomic
core and thus the level cannot be excited easily from the outside. Direct experimental
evidence is given in [22]: A Kondo ion is placed in one focus of an elliptic quantum
corral. The conduction LDoS which can then be measured in the other focus of the
ellipse (and thus separated from the d-level) still shows a Fano line shape.
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Figure 5.8: Local NCA spectral function Ag(w) as obtained within [90].

The starting point for the calculations of a Co atom on a Au surface is the Anderson
model [5] with fivefold degeneracy of the d-level ¢4 < 0,m =1,...,5:

H o= Hotead iy, +V> (clgodmg n h.c.)

mok

U
§ T T
+ 9 dmodmgdm’a’ dm’a’ (5 . 1)

(m,0)#(m’,0")

where Ho = > z 5,;0100130 describes the conduction band with dispersion € and c;_, dpo

i
are the electron operators in the conduction band and in the titanium d-levels (m =
1,...,5), respectively. U is the local Coulomb repulsion between two electrons in any

of the d-levels. In the impurity d-level spectral function one can see two types of
resonances (see also Figure 5.8):

(i) the Co d-levels with a broadening A = 7|V'|?py, at positions e4 and g4 + U.

(ii) the Kondo resonance with width Tk.

To get realistic parameters for the model in order to make contact with experiment,
the authors of [90] calculated the electronic structure of a Co impurity placed onto
a Au(111) surface using a Korringa-Kohn-Rostoker method in combination with the
local spin-density approach (LSDA). The Co d-orbital spectral function was calculated
using the NCA [36, 32| and is shown in Figure 5.8. To calculate the conduction electron
LDoS as measured by the STM tip at a distance R from the impurity (see Figure 5.9),
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one considers the exact conduction electron ¢-matrix of the Anderson model (5.1),
which is given in terms of the d-electron Green’s function as ¢, (iw,) = %deg(iwn).
The correction to the conduction electron Green’s function due to the presence of the
impurity, 0Gg »(iw,) = Gro(iw,) — Ql(gl(iwn), is then

G R0 (iwn) = Gigh (iwn )t (iwn) G (iwn). (5.2)

The STM tunneling current is proportional to the perturbation in the LDoS at distance
R, which can be calculated via

1
Ipro(w) = ;Im 0GR (w —1i0) (5.3)

Evaluating equation (5.3) using equation (5.2), one gets combinations of real and imag-
inary parts of the bare conduction electron Green’s function gg)a:

1 2
Opno(w) = = [Im G (w — id)
x [(¢%, —1)Imt,(w —i6) + 2qr, Ret,(w — i0)] , (5.4)

where qr, is defined as

 ReGj)(w—id)
ImGYy) (v —id)

4R, (55)

Dropping the spin index o and considering only the w = 0 values for Im Q}(%O) (w—19)
and qg, which is justified as these quantities depend only weakly on the energy on
the scale Tk, at R = 0, qr—o is identical to the asymmetry factor ¢ of the Fano
theory [87]. Further taking t(w — i0) to be simple single-particle level (t(w — i) =
(A/mpo)/(w — eq — iA)), the lineshape of Eq. (5.4) reduces to Fano’s expression

(x+q)2 . W — &g
g Wthr=—2

p(w) = po+dp = po (5.6)
What is important to notice is that the Fano line shape of equation (5.6) arises from
the mixing of real and imaginary parts in Eq. (5.4). Ujsaghy et al. further examined
the LDoS correction (Eq. (5.4)) also in the interacting case and finally arrived at the
following expression, valid in the Kondo regime:

Im G N
LR e
: R (>

) =
pR<W> T Po e2+1

(5.7)

with ¢ = (w — eg)/Tk and a correction factor C'r due to potential scattering by the
d-level.
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Equation (5.7) could be used to fit the experimental data for a Co atom on a
Au(111) surface [19] with excellent agreement (see Figure 5.10).

In summary, Ujsaghy et al. [90] succeeded to explain the peak-dip lineshapes
in STM experiments of magnetic impurities on metal surfaces. The Fano shape
arises independently whether the local level is a single-particle orbital of a many-
body resonance like in the Kondo effect. Qualitatively they also could reproduce
the dependence of the lineshape on the distance of the STM tip from the impurity.
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Figure 5.9: Sketch of an STM experi-

ment setup [90]. Figure 5.10: Fit (solid line) to the experimen-

tal data [19] (squares) as obtained in
[90]. The corresponding Fano asym-
metry parameter hereis gr—o = 0.66.

5.2 Motivation

5.2.1 A theory for the mixed valence regime

In the work of Luo et al. [91] it is claimed that a “unified microscopic picture for the
Fano resonance in both Kondo and mixed valence regimes in the Anderson impurity
systems” is established. As the authours of [91] compare their results to the results of
[90], but made conceptual mistakes in their derivation, we were triggered to comment
on their failures in [92].

Luo et al.’s work is about Fano resonance lineshapes arising in STM experiments
of Co and Ti impurities on Au or Ag surfaces. Especially the differential conductance
dI/dV spectra of the Ti/Ag(100) and Ti/Au(111) systems [89, 88] are claimed to be
fully understood. The key point of Luo et al.’s analysis is that there is not only a
Fano interference effect between the impurity d orbital and the conduction electron
continuum, but that the Kondo resonance has by itself a second Fano line shape. In
[92] we explain why this is conceptually incorrect and thus the quantitative agreement
with the experimental spectra is meaningless.
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Luo et al. adopt an effective Fermi liquid (FL) picture, where the local impurity
spectral function consists of three well-defined quasiparticle states, the two single-
particle peaks at ¢4 and ¢4 + U, respectively, and the Kondo resonance near the Fermi
energy ¢ (compare also the peaks in Fig. 5.8). Phenomenologically, the authors
describe that by means of a Dyson equation (Eq. (4) in [91]) with a potential scattering
T matrix Ty(w). But their Dyson equation wrongly mixes many-body and single-
particle physics: Their “unperturbed” Green’s function GY already corresponds to an
interacting Hamiltonian with finite Coulomb onsite repulsion U. Thus Wick’s theorem
cannot be used in such a case and the Dyson equation cannot be formulated in terms
of GY (Eq. (5) in [91]). Consequently, Luo et al.’s assumption for T;(w) (their Eq. (7))
is unjustified and without any derivation. The most striking evidence for the failure
of Luo et al.’s theory is their Fano lineshape for the local spectral density p;(w) (their
Eq.(8)). Figure 5.11 shows py(w) as obtained by Eq. (8) and the fit results of [91].

2~ — TilAu(111) n
--- Ti/Ag(100)

py(au)

Figure 5.11: Local spectral density ps(w) as obtained with Eq. (8) and the fit parameters
of [91]

It is known from numerous exact NRG solutions of the Anderson impurity model
(see e.g. [32, 1, 43]) that the local spectral density p;(w) has a simple peak near the
Fermi energy — which may become slightly asymmetric in the case of particle-hole
asymmetry (g4 # —U/2) — but by no means the peak-dip shape of a Fano resonance
(as in Fig. 5.11).

Another mistake in the paper of Luo et al. is their statement of having two distinct
energy scales A and 'k even in the mixed valence regime. But in this regime the low-
energy spin-flip scattering (leading to the Kondo peak of width I'x) and the high-energy
Coulomb and hybridization processes (giving rise to the scale A) are not separated
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anymore. The two peaks merge into a single broad peak (of width ~ A) around the
Fermi energy.

The fitting of Luo et al.’s expressions to the Ti/Ag(100) and Ti/Au(111) systems
yields a “mixed valence” resonance width of A = 29.2 meV and A = 54.5 meV, respec-
tively. By contrast, in other transition metal systems as well as in rare earth systems
(e.g. Ce compounds) the measured resonance width A using photoemission are in the
order of 0.5 eV, thus one order of magnitude higher. The narrow experimental peak
widths rather suggest that the peaks are Kondo resonances. This idea will be picked
up in our theoretical approach to the STM lineshape analysis of the Ti systems (see
the following sections).

We finally want to comment on the, at first glance, perfect agreement of the fits
of Luo et al. to the experimental spectra. By introducing a second Fano interference,
a second Fano factor ¢, in [91] occurs in their analysis (or an additional phase factor
% in their Reply to our Comment [93]), which is not justified by theory. But with an
extra fit parameter a better fitting agreement can be reached quite naturally.

5.2.2 Multible Kondo resonances

As described in chapter 2.2.5, one observes satellite Kondo resonances around the Fermi
energy in magnetic multi-orbital Anderson impurity systems. A multi-orbital NCA
solution was used to explain the photoemission spectra of cerium impurity systems
[38]. The multiple Kondo peaks have not been seen in STM spectroscopy so far. Our
first attempt to model the system of titanium atoms on gold and silver surfaces was
an Anderson Hamiltonian with orbital degeneracy (and infinite Coulomb repulsion
U — 00):

H o= Hot Y camdipydp, + 5 <VEchEUde n h.c.) (5.8)

‘
m,o mok

where Hy = » 5,;0200120 describes the conduction band with dispersion ¢;; and c;_, dyo
are the electron operators in the conduction band and in the titanium d-levels (g4, <
Er), respectively. The hybridization matrix elements V;; = lead to an effective coupling
matrix between 3d-states: Iy = w3z V* V.. Ap(0), where Az(w) is the conduction
electron spectral function.

It turned out that similar lineshapes to the ones of the Ti/Ag(100) and Ti/Au(111)
experiments could not be recovered if one uses the full hybridization matrix, i. e. with
non-zero off-diagonal matrix elements (I',,,,» # 0 for m # m'). For a diagonal hy-
bridization matrix for m = 2 local orbitals the NCA spectral peaks already show a
good resemblance with the experimental data (see Fig. 5.12).
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Figure 5.12: Comparison of experimental STM lineshapes (upper plot) with NCA spectral
peaks for m = 2 local orbitals and diagonal hybridization matrix Ty, (lower
plot).

5.3 A more realistic model

A realistic description of a 3d transition metal system would involve m = 5 local d-
orbitals, leading to a large parameter space (€4, ['mm/, possibly phases, ...) which
would have to be scanned completely, as the NCA results for the spectral functions
are not strictly deterministic. To get further insight into the problem and in order to
extract reasonable parameters for our model, we thus used local density functional the-
ory (DFT) calculations for titanium adatoms on silver and gold surfaces, respectively.
A minimal set of quantities which enter the NCA calculation are determined with this
ab-initio method. In particular, the hybridization and the average occupancy of the
d-levels can be accurately found. Within the local spin density approximation (LSDA)
to DFT we employed the Korringa-Kohn-Rostocker (KKR) Green function method
[94], whose results for the local spin-resolved d density of states are shown in figure
5.13 (further details can be found in [95]). The main results of the DFT calculations
are

e a local spin moment (within the Wigner-Seitz cell) of 2up at Ti/Ag(001) and
1.98up at Ti/Au(111)

e Hybridization widths of ranging from 0.12-0.31 eV (determined as Lorentzian fits
to the peaks in Fig. 5.13)
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Figure 5.13: Left plot: LSDA result for the d density of states for a Ti adatom on Ag(001).
The DOS is resolved with respect to spin and to the orbitals corresponding
to the point group symmetry of the adatom: dyy, d,2, dy2_2, dy., and d,..
The last two are degenerate. Right: The same for Ti on Au(111). Here there
is a splitting of the d orbitals in three irreducible representations: d,» (singly
degenerate), d,, and d,2_,> (double degeneracy), and d,., and d,. (double
degeneracy).

e an orbital occupancy of 2 (adding/removing an electron costs 2.86/2.45 eV for
Ti/Ag(100))

Thus our improved model incorporates an orbital occupancy of 2 through effective 2-
electron impurity states with local spin 1. Due to Hund’s rule coupling, the triplet state
(total spin S = 1) is the three-fold degenerate ground state and the singlet (S = 0) is
the excited state with excitation energy A (see Fig.5.14).

5.3.1 Method of solution

As the NCA proved to give reliable results for multi-orbital Anderson impurity systems,
we modified the multi-orbital NCA according to our improved model. To formulate
the effective model in auxiliary particle representation, we denote the 2-electron states
with pseudo-fermion operators f;,,, (I being the total local spin and m its z-component):

_ . :
Ho= D ek ot D Ciminfim
k Im

>

k

Vi (CT,;TZ)UH + CT,glbe171> + Vs Z(C,T;;Ubjyflo)

ez

+ V5 ek bl foo+ hec. (5.9)
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Figure 5.14: Minimal model for 2-electron states in Ti/Au(111) and Ti/Ag(100) systems.
Hybridization processes that change the impurity occupation by one unit are
shown. There is a different hopping amplitude depending on the initial z-
component m of the initial state.

where ¢;,, = g4 for | =1 and g99 = ¢4 + A (see Fig. 5.14).

Note that the slave ’boson’ operator b, represents a singly occupied impurity with
spin o. Due to the projection procedure, already described in section 2.2, it does not
matter if one has Fermi or Bose statistics, since they both become a simple Boltzmann
distribution function in the limit of infinite chemical potential A — oc.

The Green’s function which have to be included in the modified NCA are

-1
G{ﬂ = (W_Ed_/\_z{il> )
-1
¢y - (w—ad—x—zz{%) |
’ -1
Gl = (w—(5d+A)—)\—ZZ£OU> ,

Gg = (w_zg)ilv

where the superscript f (b) denotes fermionic (bosonic) Green’s functions and /(%)
the self-energies derived from our Hamiltonian 5.9.

5.4 Results and interpretation

The modified NCA calculations require an estimate for the conduction electron band-
width D. Following [90] we assume a full bandwidth of 5.5 eV and thus our input for
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Figure 5.15: NCA spectral functions (upper plot) as obtained with the parameters: e1,, =
0.66 eV, g9 = 0.655 eV, I'1 = 0.36 eV, 'y = I'3 = 0.22 eV. Superposition of
the NCA peaks as a fit to the STM data of Ti/Au(111) (lower plot): dI/dV
Agpn +0.18- Ago.

the NCA calculations is Dyca=2.75 eV, denoting half of the bandwidth. Starting with
hybridization width of about 300 meV, as expected from our DFT results, the rest of
the parameters (€4,, A) was tuned such that the resulting NCA spectral peaks re-
produce the experimental STM lineshapes. For instance the Ti/Au(111) measurement
exhibits a broad Kondo peak for positive frequencies and a sharp feature right at the
Fermi energy. Our best fit to the Ti/Au(111) data is shown in Figure 5.15. The NCA
yields three different spectral peaks of different width. If one combines the broader
resonance (green line, called Ay in the following) and the Kondo peak at the Fermi
energy (blue line, Ag) with different weight, we are able to recover the experimental
STM lineshape: dI/dV oc Ag + 0.18 - Ago.

Also the Ti/Ag(100) data could be explained as a superposition of the NCA spectral
peaks with different weight, as illustrated in Figure 5.16.

The usual explanation for the STM lineshapes in transition metal or rare earth
systems is tunneling in the single-electron orbitals, eventually combined with a Fano
interference effect due to simultaneous tunneling into the conduction electron sea [19,
88, 89, 90]. Our results show that in the titanium systems the STM tunneling current
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NCA spectral functions (upper plot) as obtained with the parameters: 1, =
0.55 eV, ego = 0.54 eV, 'y =0.33 eV, I's = 0.261 eV, I's = 0.275 eV. Superpo-
sition of the NCA peaks as a fit to the STM data of Ti/Ag(100) (lower plot):
dI/dV x 0.05-Ag1 +0.6- Ago + Ags.
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Figure 5.17: Schematic picture of the STM tip (yellow) moving across the host metal sur-
face (blue). Tunneling is favored into local orbitals which stick out of the
surface (green orbital as opposed to the red one).

is rather carried by the total spin-1 states consisting of the two electrons in the local
titanium orbital. The different occuring relative strengths of the transmission channels
can be interpreted by the geometrical orientation of the local orbitals: The STM current
will happen predominantly into the local orbital which sticks most out of the metal
surface and thus is nearer to the STM tip (see Figure 5.17).

In summary, we combined density functional calculations with a strongly correlated
method (the NCA) to develop a method which can explain the complex STM lineshapes
occuring for magnetic transition metal atoms on metal surfaces. The relative strenghts
of the transmission channels in turn provide insight into the orbital geometry of the
atomic-size contact. Our results are summarized in [95].






Chapter 6

Summary and Outlook

This thesis contains the description and the application of various numerical methods
for quantum impurity systems as examples for strongly correlated electron systems.

We begin with description of the Kondo effect as it is a common problem in con-
densed matter theory. The explanation of the observed resistance minimum in non-
magnetic metals with magnetic impurities was given by J. Kondo in terms of resonant
spin-flip scattering of the conduction electrons at the local impurity moment. We then
show how Kondo’s perturbative calculations break down at a temperature scale Tk, the
Kondo temperature, and how Anderson’s scaling approach leads to an infinitely strong
coupling between conduction electrons and impurity. The non-perturbative solution to
the Kondo problem, which has to give results in the low temperature regime 7' < Tk,
is the numerical renormalization group (NRG) technique, devised by K. G. Wilson.
The NRG will be the central topic of this thesis and covered in a later chapter in full
detail. Following the course of this thesis, we motivate why the investigation of Kondo
phenomena is still an active field of research in modern condensed matter physics.

Besides the NRG there exist many more methods which can tackle problems in
quantum impurity systems. Some of them are presented in this thesis. We shortly
sketch an analytical method, the Bethe ansatz (BA) technique, which yields reliable
results on exact many-body wavefunctions, spectra and thermodynamics over the whole
range of temperatures and magnetic field. As the BA is not capable of accessing dy-
namical properties, we then outline another renormalization group procedure, the den-
sity matrix renormalization group (DMRG), which is able to yield results on dynamic
properties of a strongly correlated system. The DMRG is one of the most common
techniques for one-dimensional quantum systems and is also used for the exact determi-
nation of ground state energies. For the treatment of more complex quantum impurity
systems, as e. g. models with orbital degeneracy, we describe the Non-Crossing Approx-
imation (NCA) as an approximative, but very flexible, advanced perturbative method.
We show in more detail, how an NCA solution is constructed and how the NCA gives
valuable results in the context of multi-orbital Anderson impurities.

Our description of the numerical renormalization group (NRG) is the central part
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of this thesis. We present a comprehensive overview over the NRG technique and
how we implemented it for this thesis. Therefore we derive the NRG method for the
single impurity Anderson model (STAM). We reproduce the original NRG results of
Wilson for the Kondo model and of Krishna-murthy et al. for the SIAM, where they
computed static properties and thermodynamic information. Our NRG program was
extended to additionally yield dynamic properties as the impurity spectral function.
Again, we present well-known results for the SIAM and sketch how the connection
can be made to experiments. Recent extensions of the NRG method are described,
as the consideration of additional conduction channels or the investigation of non-
equilibrium problems. For the application of the NRG in dynamical mean-field theory
(DMFT) calculations we implemented an arbitrary hybridization between conduction
band electrons and the impurity. We sketch how we want to use our NRG code for
the explanation of the simultaneous semiconductor to metal and para-to-ferromagnetic
transition in oxygen-depleted europium oxide (EuO).

Our NRG program is extended to deal with two independent conduction bands, thus
modeling the two-channel Kondo (2CK) system. Multi-channel Kondo systems display
non-trivial non-Fermi liquid physics in the overcompensated regime, when M > 257,
where M is the number of conduction channels and S; the impurity spin. In the 2CK
model that we considered (M =2, S; = %), the two independent conduction channels
try to screen the impurity moment, leading to an overall overscreening. The ground
state is not a spin singlet anymore and there is residual entropy. Renewed interest
in the multi-channel models arose, since there are several experimental proposals to
realize 2CK physics. Furthermore, the 2CK effect may be of importance in the expla-
nation of heavy fermion systems and high-7, superconductivity. With our work on the
2CK effect, we want to explain the anomalous conductance measurements on quantum
point contacts, which are hardly to explain by any other microscopic mechanism. It
is expected for nanoscopic point contacts that the Kondo coupling strength J is sta-
tistically distributed over the Kondo impurities. In contrast, the experiments reveal
a very sharp distribution of the Kondo temperature Tx. With our NRG calculations
we explicitely investigate the distribution of Tk versus the initial coupling J. To ex-
tract Tx we computed energy flow diagrams for a whole range of initial couplings .J
and determined the crossover scale to the non-Fermi liquid fixed point. The resulting
distribution of Tk versus J is strongly peaked around a critical value of J. ~ 0.7D,
where D is the bandwidth. In the weak coupling regime (J < D) we can confirm the
exponential dependence of Tk on J, which can be predicted by perturbative scaling
analysis. The fact that the Kondo temperature is very low for coupling strengths dif-
ferent from the intermediate coupling around 0.7D explains why the experiments only
show a very narrow region for Tk despite an assumed wide distribution of J.

We analyze differential conductance measurements using scanning tunneling mi-
croscopy (STM) of transition metal atoms on metal surfaces. We review the role of
the Kondo effect in such experiments from the experimental and the theoretical point
of view. So far unexplained are the anomalous STM lineshapes occurring for titanium
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atoms on gold and silver surfaces. We develop a theory that permits to explain these
lineshapes through multiple Kondo resonances. Density functional theory calculations
show us that the local titanium orbitals are occupied on average by two electrons and
a local spin moment of roughly 2/ 5 resides at the impurity site. Additionally we get a
rough measure of the hybridization strength between the two-electron states and the
conduction electrons of the host metal. We adapt a multi-orbital NCA program to our
effective model and calculate the local spectral densities of the titanium orbitals. Our
results show that we can recover the measured STM lineshapes through combining the
spectral functions with different strengths. These different strengths of transmission
channels can be interpreted by the spatial orientation of the titanium orbitals on the
metal surface. The tunneling out the STM tip happens predominantly into the orbital
which sticks out of the gold or silver surface. To conclude, we used a combination of
ab initio band structure calculations with a strongly correlated method to explain the
electronic transport and geometry of Kondo atoms on metal surfaces.

Outlook

With the NRG code, which was developed within this thesis, we can tackle a num-
ber of problems of quantum impurity systems. The complete thermodynamics and
spectral functions can be calculated for the one-channel Kondo model as well as the
single impurity Anderson model. The complete eigenstates and eigenenergies can be
computed for the two-channel Kondo case. The application of an additional, spinless
screening channel is also already implemented. With the extension of spin- and energy-
dependent conduction electron density of states, our NRG program is able to act as
‘impurity solver’ in DMFT calculations. In the near future we want to use the NRG
in the explanation of the europium oxide problem.

With our method we developed for the STM lineshape analysis we can now inves-
tigate further experimental systems like cerium atoms on metal surfaces.
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Chapter 7

Deutsche Zusammenfassung

Die vorliegende Arbeit enthélt die Beschreibung und die Anwendung verschiedener nu-
merischer Methoden fiir Quanten-Storstellensysteme als Beispiele fiir stark korrelierte
Elektronensysteme.

Zu Beginn présentieren wir den Kondo Effekt als ein oft behandeltes Problem in der
Theorie der kondensierten Materie. Das experimentell beobachtete Widerstandsmin-
imum bei nicht-magnetischen Metallen mit metallischen Verunreinigungen erklérte
Jun Kondo durch resonante Spinflip-Streuung der Leitungsbandelektronen am lokalen
magnetischen Moment der Storstelle. Wir zeigen, wie Kondos storungstheoretische
Rechnungen unterhalb der Temperaturskala 7Tk, der sogenannten Kondotemperatur,
zusammenbrechen und wie Anderson’s Scaling-Ansatz eine unendlich starke Kopplung
zwischen Leitungselektronen und Storstelle erkldrt. Eine nicht-storungstheoretische
Erkldrung dieses Kondo-Problems, nidmlich die Berechnung des Tieftemperaturzus-
tandes fiir T' < Tk, liefert die numerische Renormierungsgruppe (NRG), entwickelt
von K. G. Wilson. Die NRG wird das zentrale Thema dieser Arbeit sein, und wir
beschreiben sie im Detail im Hauptteil der Arbeit. Zunédchst motivieren wir im weit-
eren Verlauf der Arbeit, warum die Untersuchunng von Kondo-artigen Phinomenen
immer noch ein sehr aktives Feld moderner festkdrperphysikalischer Forschung ist.

Neben der NRG existieren noch viele weitere Methoden, die Einsichten in Quanten-
Storstellensysteme liefern. Wir présentieren einige davon im Rahmen dieser Arbeit.
Kurz gehen wir auf eine analytische Methode zur Losung des Kondo-Problems ein,
die sogenannte Bethe-Ansatz (BA) Technik. Sie liefert verldssliche Resultate iiber
Vielteilchen-Wellenfunktionen, Spektren und die Thermodynamik fiir den gesamten
Temperaturbereich und alle Magnetfeldstdrken. Der BA ist jedoch nicht geeignet
fiir die Berechnung von dynamischen Grofen. Deshalb skizzieren wir danach kurz
eine andere Renormierungsgruppen-Technik, die Dichtematrix-Renormierungsgruppe
(DMRG), die auch Ergebnisse zu dynamischen Eigenschaften stark korrelierter Systeme
liefern kann. Die DMRG ist eine der meistgebrauchten Techniken fiir ein-dimensionale
Systeme und erlaubt beispielsweise die exakte Bestimmung von Grundzustandsen-
ergien. Zur Behandlung von komplexeren Quanten-Storstellensystemen, zum Beispiel
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Modelle mit orbitaler Entartung, erldutern wir die Non-Crossing Approximation (NCA)
als eine sehr flexible, fortgeschrittene stérungstheoretische Methode. Wir beschreiben
ausfiihrlich, wie man die NCA konstruiert und wie sie wertvolle Ergebnisse bei der
Analyse von Multi-Orbital Anderson-Storstellensystemen liefert.

Die Beschreibung der numerischen Renormierungsgruppe (NRG) stellt den Haupt-
teil der vorliegenden Arbeit dar. Wir geben einen umfassenden Uberblick iiber die
NRG-Prozedur und zeigen wie wir sie fiir diese Arbeit implementiert haben. Dafiir
zeigen wir die Methode im Detail am Beispiel des Einstorstellen-Anderson-Modelles
(single impurity Anderson model, STAM). Mit unserem NRG Programm reproduzieren
wir die ersten Resultate von Wilson fiir das Kondo-Modell und von Krishna-murthy
et al. fiir das SIAM, in denen statische Eigenschaften und die Thermodynamik betra-
chtet wurden. Wir haben unser Programm auf die Berechnung dynamischer Groéfsen
wie die lokale Spektralfunktion erweitert. Wiederum kénnen wir bereits wohlbekannte
Resultate nachrechnen, und wir beschreiben, wie damit der Bezug zu Experimenten
gemacht werden kann. Wir beschreiben neuerliche Erweiturungen der NRG Technik
wie die Beriicksichtigung zusétzlicher Leitungsbénder oder die Behandlung von Prob-
lemen aufserhalb des thermodynamischen Gleichgewichts. Um die NRG in dynami-
schen Molekularfeld-theoretischen (DMFT) Rechnungen einsetzen zu kénnen, wurde
unsere NRG auf beliebige Spin- und Energie-abhéingige Leitungsband-Zustandsdichten
erweitert. Wir zeigen, wie wir unser NRG Programm zur Erklarung des gleichzeiti-
gen Halbleiter-Metall und Para-zu-Ferromagnetismus-Phaseniibergangs in sauerstoff-
verarmten Europiumoxid (EuO) einsetzen wollen.

Wir erweiterten unsere NRG auf die Einbindung von zwei unabhéngigen Leitungs-
béndern, also um ein Zwei-Kanal-Kondo (2CK) System zu modellieren. Viel-Kanal-
Kondo Systeme zeigen nicht-triviales nicht-Fermi-Fliissigkeitsverhalten im iiberkom-
pensierten Regime, bei dem M > 25; ist, wobei M die Zahl der Leitungsbiander und
St den Storstellenspin beschreibt. Im von uns behandelten 2CK System (M = 2,
Sr = %) versuchen die beiden Leitungsbidnder unabhingig voneinander, das lokale
Storstellenmoment abzuschirmen, was insgesamt eine Uberabschirmung zur Folge hat.
Der Grundzustand ist kein simples Spin-Singlett mehr und es gibt endliche Entropie.
Neuerliches Interesse in die Viel-Kanal-Kondo-Modellen wurde durch einige experi-
mentelle Vorschlage geweckt, die 2CK-Physik realisieren wollen. Aufierdem liefert der
2CK Effekt moglicherweise Erklarungen im Zusammenhang mit Schwer-Fermionsystemen
und Hochtemperatur-Supraleitung. Mit unserer Arbeit zum 2CK Effekt wollen wir
anomale Leitwertsmessungen an Quanten-Punktkontakten erkldren, die schwerlich durch
andere theoretische, mikroskopische Modelle erklarbar sind. Fiir nanoskopische Punk-
tkontakte erwartet man eine statistische, breite Verteilung fiir die Kondo-Kopplungsstérke
J. Im Gegensatz dazu zeigen die Experimente eine sehr scharfe Verteilung fiir die
Kondo Temperatur. Mit unserem NRG Programm berechnen wir explizit die Verteilung
von Ty in Abhéngigkeit von der anfinglichen Kopplungsstirke J. Dabei analysieren
wir die Crossover-Skala zum nicht-Fermifliissigkeits-Fixpunkt fiir eine breite Verteilung
von J. Unsere resultierende Verteilung Tj gegen J ist stark um ein intermedidres
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J = 0.7D gepeakt, wobei D die Bandbreite der Leitungselektronen ist. Im Bereich
schwacher Kopplung (J < D) kénnen wir die exponentielle Abhéngigkeit der Kon-
dotemperatur von J bestitigen, wie man aus storungstheoretischen Scaling-Ansitzen
vorhersehen kann. Die Tatsache, daf T} fiir die meisten Werte von J aufserhalb des
intermedidren Bereiches sehr niedrig ist, kann erkldren, warum man in den Experi-
menten nur einen sehr engen Bereich fiir die Kondotemperatur erkennen kann, obwohl
man eine statistische Verteilung fiir J annehmen kann.

Wir analysieren differentielle Leitwertsmessungen in Rastertunnelmikroskop- (STM)
Experimenten von Ubergangsmetallatomen auf metallischen Oberfliichen und fassen
zusammen, welche wichtige Rolle der Kondo Effekt in solchen Experimenten spielt.
Bisher unerklért sind die anomalen STM-Linienformen, die bei Messungen von Titan-
Atomen auf Gold- und Silber-Oberflichen auftreten. Wir haben eine Theorie entwick-
elt, die es erlaubt, diese Linienformen mittels Vielfach-Kondoresonanzen zu erkléren.
Dichtefunktional-Rechnungen zeigen uns, daf ein Titan-Orbital auf Gold oder Silber
im Mittel mit zwei Elektronen besetzt ist und dak die Titan-Storstelle ein lokales Spin-
Moment von ungefahr 2up trigt. Aulerdem erhalten wir eine grobe Abschitzung fiir
die Hybridisierungsstirke zwischen den Zwei-Elektronenzustinden im lokalen Orbital
und den Leitungsbandelektronen des unterliegenden Metalls. Mittels einer auf unser ef-
fektives Modell erweiterten NCA-Rechnung konnen wir die lokalen Spektraldichten der
Titan-Orbitale berechnen. Unsere Ergebnisse zeigen, dak man die gemessenen STM-
Linienformen erhilt, wenn man die Spektralfunktionen mit unterschiedlicher Starke
iiberlagert. Diese unterschiedliche Stdrke der Transmissionskanile kann durch die
unterschiedliche rdumliche Orientierung der Titan-Orbitale auf der Oberfliche inter-
pretiert werden. Der Tunnelstrom wird hauptsichlich von dem Orbital getragen, das
am meisten aus der Oberfliche herausragt. Somit haben wir durch eine Kombination
von Bandstruktur-Rechnungen und einer stark korrelierten Methode die Moglichkeit,
den elektronischen Transport und die Geometrie von Kondo-Atomen auf Metallober-
flachen zu erklaren.

Ausblick

Mit dem NRG-Programm, das fiir diese Arbeit entwickelt wurde, kénnen wir vielfdltige
Quanten-Storstellenprobleme untersuchen. Fiir das Ein-Kanal-Kondo-Modell und das
Ein-Storstellen-Anderson-Modell kann die komplette Thermodynamik sowie Spektral-
funktionen berechnet werden. Das gesamte Eigenspektrum kann sowohl im Zwei-
Kanal-Kondo Fall, als auch fiir ein System mit einem zusétzlichen, spinlosen Ab-
schirmkanal bestimmt werden. Mit der Erweiterung auf beliebige Leitungsbandzu-
standsdichten ist unsere NRG befihigt, als wichtiger Teil in DMFT-Rechnungen einge-
setzt zu werden. In néchster Zukunft benutzen wir die NRG, um eine Erklarung fiir
unser Modell fiir Europiumoxid zu liefern.

Mit unser neu entwickelten Methode zur Analyse von STM-Linienformen kénnen
wir nun auch weitere Kondosysteme betrachten, zum Beispiel Cer-Atome auf Metal-
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loberflachen.



Appendix A

Technical details for deriving the
NRG equations

This chapter describes technical details on the derivation of the NRG procedure.

A.1 Mapping on a semi-infinite chain

In the discretized version (3.23) of the STAM Hamiltonian, the impurity still couples to
an infinite number of CB electrons (though only to the average part in each logarithmic
interval). To solve the the system numerically, the conduction band part is mapped
onto the semi-infinite (Wilson) chain:

oo oo

Z (& al gy + Enpblgbry) = Z [&wclmcm + e (clmanU + h.c.)}

n=0,0 n=0,0 (Al)
7_{cond.band HWilsonchain

Therefore a tridiagonalization procedure developed by Léanczos [49] with diagonal ma-
trix elements ¢,, and off-diagonal elements ¢,,, is used, equivalent to a Gram-Schmidt
orthonormalization. Starting from an initial one-particle state |Wo) = ¢} |0) (where
|0) denotes the Fock vacuum'), a new single-particle basis is constructed [46] according
to:

tno
A\

<\I/n+1a|HCB|\IIn0> |\I/n+1a> =
7_‘CB ‘\Ilna> - S\IITLO'|HCB|\I[TLO'>J ‘\Ilna> - S\Dn710|HCB|\I[no>J |\I[nfla>

Eno tn—la

(A.2)

L|Wy) is called the mazimally localized state, since it is maximally delocalized in momentum space
and hence maximally localized at the impurity site in position space
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where the c,, are defined via |¥,) =c!_|0), n e N.
In the following, we make an ansatz for the single-particle operators c,,:

Cno = (unmaama + Unmabma) (A3)

m=

o

where the coefficients w,,,, and v, are determined recursively (we follow the calcu-
lations of [58]).

Comparing Qq. (3.13) with the ansatz Eq. (A.3) yields the starting values g,
and vg,,, of the recursion:

+ —
f}/mU f}/mU
Uome = y  Vome = (A4)
500 500
Inversion of the ansatz leads t0 Gne = D -  UnmoCmo a0d byo = D Vo Cimo-

Inserting a,, and b,, in the L.h.s. of Eq. (A.1) and comparing corresponding operators
Cno ON both sides of this equation yields

e}

+ - _ T T
( maunmaa;rna + émavnmabim) - gnaciw + tnacn—l—la =+ tn—lacn—la (A5)
m=0

Comparing the (n = 0)-component in Eq. (A.5) and using Eq. (A.4) yields

o] + + - -
> (%w%b*) = ool + oo, (A.6)

Since the ¢,, are (anti-commuting) Fermi operators ({c,,,cl, .} = pn0sor), the anti-
commutator of the r.h.s. of Eq. (A.6) together with co, yields {(g,,¢l, +tosCls), Con} =
£0o- Finally, the expression for ¢y, can be obtained by evaluation of the anticommuta-
tor of the Lh.s. of Eq. (A.6) with ¢y, as given in (3.13)%:

m=0

200 = Y (Emotiime + EmoVimes) (A7)
m=0
From Eq. (A.5) we also obtain
tOUCJ{o = Z [( ';)i:LO' - EOO’) uOmoa’JrrnU + (gr:LU - 800) ,UOmUb:r”rw] (A8)

m=0

which gives immediately

1

_ +

Ulmo = to ( mo 800’) Uomeo
o

1
Vime = 7 ( ;Lg - 600) Vome (Ag)
tOO’

2The discrete operators a,, and b,, are anticommuting as well
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The initial hopping matrix element ¢y, can now be calculated by taking the anticom-
mutator with the corresponding adjoint operator on both sides of Eq. (A.8):

(7;0)2] (A.10)

2

1 e 2
to = N LX:O ( mo 500> (7;(7)2 + (gn_’w' - 500)
Equations (A.4), (A.7), (A.9) and (A.10) initialize the recursion relations for the calcu-
lation of €,,4, thy, Unme aNd Vyme. Starting with Eq. (A.5) and following the arguments
as above (building anticommutators etc.) one arrives at the spin-dependent parameters
of the n-th site of the Wilson chain, namely the on-site energies ¢,, and the hopping
matrix elements ¢,,,:

Eno = Z ( mo (tnme)” + Emo (Unmff)Q) (A.11)
tna - {Z [( :;g - 5na) Upmo — tn—laun—lma}2
m=0 .
2
+ [(f;w - gna) Unmo — tnflovnflmo] 2} (A12)
with the coefficients of the single-particle operator ¢, 1,, defined in Eq. (A.3)
1
Up+1me = t_ [( :;g - 5no) Upmo — tnflounflmo} (A13)
1
Un41me = t_ [( 7710 - gna) Unmo — tnflovnflmo] (A14)

Although only the parameters of the Wilson chain ¢,, and ¢,, are finally used in the
iterative numerical diagonalization, also the coefficients u,,,, and v,,,, have to be
determined as well, since they are required in the recursive relations of ¢,, and t,,,
see Egs. (A.11) and (A.12).

Since the mapping of the conduction band onto the Wilson chain is a unitary
transformation (see Eq. (A.3)), it does not change particle-hole symmetry. A particle-
hole symmetric hybridization A, (¢) therefore implies vanishing on-site energies ¢,,, of
the Wilson chain (A.1): ¢,, = 0,¥n € Ny. This can also be deduced from the recursion
relations: For particle-hole symmetry (A, (g) = A,(—¢)) the relations & = ¢, and
vt =, hold, yielding o, = 0 (Eq. (A.7)). Then the coefficients u1,,, and vy,,, are
equal (Eq. (A.9)), resulting in £, = 0 (Eq. (A.11)), leading to ugme = Voms (Egs.
(A.13),(A.14)), etc. .

Due to the exponentially fast decay of the Wilson chain parameters ¢,, and t,,
(due to exponentially decaying band energies), rather advanced numerical methods are
required. For the calculations in this thesis the GNU Multiple Precision Arithmetic
Library (GMP) was used.
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Despite the ’arbitrary’ precision of the GMP, the successful convergence of the
described recursion procedure could not be guaranteed for an arbitrary DoS of the CB.
Especially for a rather structured CB, the resulting chain parameters ¢,, and t,, were
not decaying exponentially for large n. These problems were solved with a trick by
Bulla [96]: Since (A.3) denotes a unitary transformation, the norm of every ’column
vector’ of the matrices t,,,, and v, is equal to unity. Thus after every step in the
recursion procedure, each coefficient u,,,, and v,,, was re-normalized according to
its norm /> w2, and /> v2 ., respectively. With this modification, a stable
calculation of the Wilson chain parameters could be ensured.

Note that for a flat conduction band, as in the original work of Wilson [3], and for a
power-law density of states (in pseudo-gap Fermi systems) [45], analytical expressions
for the hopping matrix elements ¢,, exist. For the flat conduction electron DoS (A, (¢) =
A), as also considered in Krishna-murthy et al.’s work [9], the hopping matrix elements
are

e
A\
7 N

1— A"t
V= AP (T — &)

(L+A ) A2 (A.15)

N | —

the =

(Compare the £ to Eq. (2.15) of |9] and the ¢, to Eq. (VIL35) of [3]).

A.2 Details on the solution by iterative diagonaliza-
tion

In order to solve the sequence of Hamiltonians (Eq.(3.30)) in a useful representation,
one identifies the underlying symmetries of the problem. For the SIAM, Krishna-
murthy et al. [9] used total particle number (charge) @, total spin S and its z-
component S,. To be able to include a local magnetic field, which would lift the
full spin SU(2) symmetry, and to avoid Clebsch-Gordan coefficients, we use ) and S,
only to label the many-particle states. For the initial impurity Hamiltonian H_; the
corresponding eigenstates in the representation |Q, S,, )y (r denoting the degeneracy)
have the form

| - 170>1>*1 = |0>
‘070-7 1>*1 = CT—lo‘O>
11,0, 1) = Cinciu‘m
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with the eigenenergies

E_1(-1,0,1) = 0

1
E71<070-71) = Kgd

1
EL(1,0.1) = $(2ea+0)

To set up a general procedure the following notation is used

|Q,Sz,7”;0> |Q78Z7T>N
|Q75Z7T;T> = C;rV+1T|Q75Z7T>N
1Q,8:,m:1) = iy 1Q.Ser)N

1Q, 8., 11y = clyiiclhin Q. Senrn

with which we can, starting from the eigenstates of Hy, which we write as |Q, S,, ),
construct basis states of Hy, that are also eigenstates of Qy,1 and (S,)n1:

|Q75Z7T; 1>N+1 = ‘Q—i_l?Szur; 0>
1
|Q7 SZ,T; 2>N+1 = ‘Q? SZ - §7T; T>

1
|Qaszar;3>N+1 = |Q7SZ+§7ral>

|Qaszar;4>N+1 = |Q_17527T7T~L> (A16)
This basis is used to set up the Hamiltonian matrix of Hy; in each (Q, S,)-subspace:
HQ,Sz(rivr/j) = N+1<Q7 SZ,T;i|HN+1|Q, Szar/;j>N+1 (A17)

= VAN(Q, S, il Hy|Q, S5 )
+ /\N/2Z€N+1UN+1<Q,SZ77’§Z'|C§\/+1UCN+1U‘Q7 Szv'r/;.j>N+1

+ AN Z tno N+1(@, Sz, 73] (C;rVoCNJrlU + ij+1aCNo> 1Q, S.. 75 j) N

The first term simply denotes the eigenenergies of the preceding NRG iteration:

N+1<Q,SZ,T;i|HN|Q, Szar/;j>N+1
Ex(Q+1,S,,7r) for i=j =1

_ 5 En(Q,S. —1,7) for i=j=2
o EN(Q,SZ—i—%,'r’) for i=35=3
En(Q—-1,5,,r) for i=j=4
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In absence of particle-hole symmetry, also the on-site energies ¢y, contribute:

N+1<Q7 Szar§i|c;rv+1gCN+1g|Q7 Sz>7“,§j>N+1
0 fori=j5=1
Opri0pyp for i =7=2
5”/ ol fOIi:j:3
O for i=45=4

Finally, the off-diagonal terms of Eq. (A.17) have to be computed. There are only
certain combinations of (i, j) for which the corresponding matrix element is non-zero.
E.g. for (i,7) = (1,2) one finds:

N+1{@Q, 55,15 ]-|C1]-VTCN+1T|Q7 Sz 2) N

1

= N<Q + 17527T|C;VT CN+1TC;r\7+1T |Q7 SZ 5
————

/
5T

=1

1
= N<Q + 17SZ7T|C}-VT|Q7 SZ - §7T,>N

Due to fermionic anti-commutation rules of the cy, there may arise signs for other
combinations (i, 7). All the non-vanishing off-diagonal terms of Eq. (A.17) are:

1
N+1{@; S5, 75 1|C;VTCN+1T|Q7 Sori v = N(Q@F1 SZ7T|C}—VT|Q7 Sy — _>T,>N
N+1<Q7 Szvr;3|c;rVTCN+1T‘Q7 Sz,T/;4>N+1 = <Q S + T‘CNT‘Q 175Z7T/>N
S, 7 1ch S..r":3 = 1,8 S, 41
N+1<Q7 2y 15 |CNLCN+1l|Q7 TR >N+1 - N<Q+ ) 27T|CN1|Q7 Z+§7T>N

1
N+1<Q7 SZ,T; 2|C;erCN+1l‘Q7 Sz,T/;4>N+1 = N<Q7 Sz - 5,7"0;er|@ - 17Szarl>N

Diagonalization of the matrices Hg g, (77, 7'j) yields the eigenvalues En1(Q, S,, w) and
the eigenstates

|Q7 SZ? U}>N+1 = Z UQ7Sz (w7 TZ)|Q7 SZ7 r i>N+1 (A18)

i

The knowledge of all unitary transformation matrices Ug s is then sufficient to calcu-
late the matrix elements necessary to set up the Hamiltonian matrices in the following
step (N + 2):

+1(@Q, Sz7w‘cj\7+1T‘Qlus,;7w/>N+l
Z Uas. (w,72) Ug_y 5.y (', 11) + Ugs. (w,74) Ug_y 5.y (', 73)|
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N+1<Q7 Sza w|cj/r\/'+1l|Q,7 S;7 w,>N+1
=> [UQ& (w,73) Ug_y 5,41 (w',r1) = Ug s (w,r4) Ug_y 51 (w',72)

Every NRG iteration yields the eigenenergies and eigenstates of the corresponding
Hamiltonian Hy. This knowledge enables us to calculate physical properties (as
e.g. static susceptibility, free energy, etc. ) at a scale wy ~ A~N=D2D The cal-
culation of dynamical properties such as the impurity spectral function Ay, (w) =
—2Im (G 4(w)) requires computation of the impurity matrix elements

v (@, So,wlel Q8L w'Y vy

Therefore, using the unitary transformation (A.18), the spectral function can be rep-
resented in the basis (A.16):

N+1 <Q7 527 w‘cT—la‘Ql7 S;, w/>N+1
=S UL (w,rp)Uq s, (W', 7'D) w1 (@ Sz i plet o |Q, SL 1 B v

rr!’ pp’

Evaluation of the matrix elements yields:

a1 (@, oo 1el QLS v = NQ+1,8., 7l 1@, S, — o7y

1 1

N+1(@; Sz, 75 2|CT71U|Q/> 5;77”/; 2Q)vt1 = —n(@,S: — 577”|CT710|Q -1,5, — 9 g, T,>N
1 1

N+1<Q7 Sz7r;3|cT—10‘QI7S;7TI;3>N+1 = _N<Q75Z+§7T|CT—10-|Q_ 1752_'_5 _0-7TI>N

N+1<Q7 SZ7T;4|CJLIU|Q/7S;7T/;4>N+1 - N<Q_ 1,SZ,T|CT,10|Q_2,SZ _U7T,>N

All other matrix elements are zero.
The initial values for the matrix elements are

1
—1(07571|CT_1T|_17071>—1 =1
t 1
,1<1,O,1‘C_1T|0,—§,1>,1 =1

1
—1<07_§71|Ci1l|_17071>—1 = 1

1
,1<1,0,1]cf_1l|0,§,1>,1 = -1
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Appendix B

Details on the two-channel Kondo
(2CK) NRG

This chapter contains details on the 2CK calculations of chapter 4. To diagonalize
the 2CK Hamiltonian (Eq. (4.1)), the following discretized Hamiltonian in the N
iteration (Eq. (4.4)) is used:
N-1
Hy = A-D/2 [ R ( AN A h.c.) 1+ JafhonGoot Fouer - §1

n=0,a,0

If one denotes the eigenstates of Hy with |Q, S7,, S%,,7)n, one can construct the
following 16 states:

|sttzot7 czh,T;0,0> - ; ‘Q7 ot czh7T>N
|sttzot7 czhvr;T70> - f]¥+1,+,T‘Q> fot’ czh7T>N
|sttzot7 czhvr;l70> - ; f]¥+1,+,l‘Q> ot czh7T>N
|Q, Stzotv o Tl O> = fN+1,+,TfN+1,+,1‘Q7 tots Oohs T>N
1 Ptots Pehr THYs = N+1,— 11 Ptotry Pehr I N
Q. S 5,70, 7) o Ial@ S S5on)
|sttzot7 czhur;Ta T> = fN+1,+,Tf]]y+1,—,T‘Q7 tots czh7T>N
Q. SEes o T3l N = ; fl]]:\’+1,+,lf1TV+1,—,T‘Q’ Siots Sens TN
|sttzot7 czhvr;Tla T> - fN+1,+,TfN+1,+,1fN+1,—,T‘Q7 fow czh7T>N
|sttzot7 czhvr;()? l> = f]if-i-l,—,l‘Q? fot’ czh7T>N
|sttzot7 czhur;Ta l> = fJTV—f—l,-&-,Tf]]:f-i-l,—,l‘Q? fot7 czh7T>N
|sttzot7 czhur;la l> = fJTV—f—l,-&-,lf]]:f-i-l,—,l‘Q? fot7 czh7T>N
Q, S5, S i1l L) = f]i[+17+7Tf]1\7+1,+7lf]:V+17_7l‘Q? Fots S TN
|sttzot7 czhvr;()? Tl> - fN+1,—,Tf]]y+1,—,l‘Q7 fot’ czh7T>N
|sttzot7 czhvr;Ta Tl> = f]if+1,+,TfJTV+1,—,TfN+1,—,l‘Q> Sfotv czh7T>N
|sttzot7 czhvr;la Tl> = f]if+1,+,lfJT\7+1,—,Tf]J{f+1,—,l‘Q> tots czh7T>N
1Q: St ST 1) = Pt PN -1 Fvn,11Q0 S S )

105
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Ordered with respect to their quantumnumbers and labeled with an index ¢ these
16 states are illustrated in table B.1:

‘Z> <Q7 fot? Sczh>
1)
12)

110)
1)
12)
13)
14)
15)

16)

TELOLYOLLLPT O QL0
&

Table B.1: These 16 combinations form a basis for one shell of a 2CK Wilson chain.



107

Note that the states |8) and |9) have the same quantumnumbers and thus should carry
an additional label, e. g. » = 1,2. The program distinguishes the 2 states according to
their index 1.

Using these 16 states, one forms the following basis states of Hy 1, which are also

eigenstates of (Q)n-+1, (i) N1, (S5 n+1:

H
|

Q. Siots Sins i)+ = |Q + 2,55, 7Sczh ,730,0) 5
‘Q Stzotv Sczhvr 2 N+1 — |Q +1 Stzot 29 czh o %7T;T>O>N
|Q Stots Seny T3)N+1 = |Q + 1,55 — 1 Sep + 577“?07 T>N
|Q Stotv Sch>T )Ny = |Q +1 Stzot + zvsczh 57 ;lvO>N
0, |
71

Q. Siots Sins Ti6) N1 = |@ St — 1,55, 77’5 )

|Q >Stzot ) czh - 1,m7l, O>N
|Q vStZot ) czh >T;lv T>N
|Q 7Sfot 7S§h 7T;T7 l)
Q St Sep + 17T§07T>l

‘Q Sfot,Sth,'r’ 7 N+1
|Q Sfot? jha
|Q7 Sfot,th,T,Q N+1
|Q7 Sfot,th,r;10>N+1
Q. Siots Sy il ver = 1@ S5, + ! Sih il L
‘Q> Sfot? S§h7T512>N+1 = |Q 1 Sfot czh §7T Tl T>
‘Q> Sfot? S§h7T513>N+1 = |Q 1 Sfot Z 27T T Tl>N

)

)

)

N+1

)
)
|
|Q Stotv Sch>T 5>N-i- = |Q +1 Stzot + 27Sczh
)
)
8)
)N

=z

|Q7 Sizotv S§h7T;14 N+1 — |Q 1 Sizot +3 Sczh 27T Tl l)N
|Q7 Sfota S§h7T;15 N+1 — |Q 1 Sfot +3 th 27T l Tl)N
‘Q7 Sfotv Sczh7r;16 N+1 — |Q 2 Stot Sch T3 Tl Tl>N

This basis is used to set up the Hamiltonian matrices of Hy,; for each subspace

(Q Stzoﬁ : )

Ho.sz,,.s7,(ri,r'j) = (B.1)
= N41(Q, Siy, So Ty il Hy41]Q, Shy, Sip 75 7)) Nt
= \/XN+1<Q>StZot7 czhvr;i‘HN|Q75tZot7 cth;J>N+1

+ AN/2 Z In N+1 <Q7 Sfotv jha T, Z.|(f]ifa0'fN+1o¢0' + hC)|Q7 Stzota thv TI; j>N+1

[e7ea

The first term of Eq. (B.1) can simply be calculated using the eigenenergies of the
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previous step:

N-H(Q Sfot? fh,T'i|HN|Q, Sfot? czh7T,§j>N+1 -
( Ex(Q+2,5%,,5%,7) for i=j=1
En(Q+1,5;,— 183 —Lr) for i=j=2
En(Q+1,8%, — 1 , S5, 4+ 5,7) for i=j=3
En(Q+1, Sfot—l—z,th %,r) for i=j5=4
En(Q+1,5,+ 5,55 +3,r) for i=j=5
En(Q,S:, — 1 th, 7) for i=7=6
EN(Q, Sip, Sy — 1,7) for i=j5=7
— 5o EN(Q Sfotvsczhv ) for i:j =
" EN(Q Sfotvsczhv ) for i:j =9
En(Q,SE,, S5 +1,7) for i=7=10
En(Q, Sy +1,5%,7) for 1 =j5=11
En(Q—-1,5;,—15% -1 r) for i=j=12
En(Q—1,5, — 1SZ+§, r) for i=j=13
Ex(Q 1,Sfot+ S§h+%, r) for i=j=14
En(Q—1,5;,+3,55,+3) fori=j=15
| En(Q 2,S§Ot,th, ) for i =7 =16

For the second term of Eq. (B.1), only certain combinations of (7, j) have non-vanishing
matrix elements. E.g. for (¢ =1,a = +) we get for (i,j) = (1,2):

N+1(Q; St Seps T3 1|f1Tv,+,TfN+1,+,T|Q7 Siots Sens 7’1 2) N1

s o 11
= N<Q+27Stot7 ch7T|f]i/,+,T\fN+1,+,Tf]t/'+1,+,L‘Q+ 1>Stot 2 ch 5 Tl)N
|

z z T z 1 z 1 /
= N<Q+27Stot7 chvr|fN,+,T|Q+17Stot_§v ch_§7r>N

For other possible combinations of (7, ) there may arise signs due to fermionic an-
ticommutation rules of the fy.,. The following tables list all non-zero off-diagonal
matrix elements occuring in Eq. (B.1).
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matrix element

1
N<Q + 27 Stzotv czhvr|f;{f,+,T|Q + 17Sfot - %7 czh - 577J>N

- N<Q + 17 Stzot + %7 Sczh - %7 T|f]if,+,T|Q7 Stzotv Sczh - 17T’>N
- N<Q + 17 Stzot - %7 czh + %7T|f;{f,+,T|Q7 Stzot - 17 Sczh7T,>N

(8512) N<Q> Stzotv czhvr|f;{f,+,T|Q - 17Stzot - %7 czh - %77J>N
(5.9) | =@+ 1, S5+ 5,55+ 571N 1.11Q: Siors ST
(11514) N<Q> Stzot + 17 czhv T|f]]:f,+,T|Q - 17 Stzot + %7 czh - %77J>N
(10713) N<Q7 Sfot? Sczh + 17 r|f]if,+,T|Q - 17 Sfot - %7 czh + %77J>N
(15,16) | — w(Q — 1, Sjy + 5. 55 + 5,71 4 41Q = 2, S5, S )

(0=],a=+)

(i,j) matrix element

(1,4) NAQ + 2,870 S 1Ny JQ + 1,55 + 5,55, — 3.7)w
(2’7) N<Q + 1, Stzot - %7 th - %7 T|f]if,+,l|@a Stzotv Sczh - 17T’>N

(358) o N<Q + 1, Stzot - %7 czh + %7 T|f]if,+,l|@a Stzotv Sczhv T/>N

(6512) _N<Q> Stzot -1 S§h7T|f]J{/,+,l|Q - 17Stzot - %7 czh - %77J>N
(3,11) | = n{Q + 1, S}y + 5,5 + 5,71y i Q. Sioy + 1, 55,7 )w

(9’14) - N<Q> Stzotv czhv T|f]]:f,+,l|Q -1, Stzot + %7 czh - %77J>N
(10,15) NAQs Sy S+ Ll 1) 1Q = 1,55+ 5,85 + 5. 7)w
(13,16) | w(Q = 1,87, — 5,55 + 5. 7lfh 4 1Q = 2, S5, Sa 1)

(g =T, a= _>

(i,j) matrix element

(1,3) N{Q 2,57, S5, f -1 1Q + 1,57, — 3,55, + 3.1 )w
(276) N<Q +1, Sizot - %7 th - %>T|f;{/,f,T|Qa Sizot -1, S§h7TI>N

(48) | Q-+ 1,50+ 5,55 — 571N 1@, Siurs S

(7.12) NAQ: St S = Lrl - 11Q = 1,7 — 5,55 — 370w
(5,10) | —N{(Q+1, 55+ 5, S5 + 571 fh 1@, S5 S5, + 1,7y

(9’13) - N<Q7 Stzotv S§h7T|f]J(/,f,T|Q -1, Stzot - %7 Sgh + %77J>N
(11,15) = 5@ Si + 1,2, 71— 41Q = 1, S + 5,55, + 5,7
(14716) — N<Q - 17 Stzot + %7 th — %7T|f]i/ 7,T|Q - 27 Stzotv thv TI>N
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(0=la=-)

(i,j) matrix element

(1,5) <Q+2 Siots ch7r|fN 1|Q+1 Sztzot+ 9 h+%7T,>N
(2’9) <Q+ 1 Sfot 2 Z 27T|fN—l|Q Sfot? czhv >
(4,11) | MQ+1, Sztzot+ 2 27T|fN 1|Q St + 1,85, )N
(7,14) N{@Q, Stot’ -1 T|fN 1|Q LS+ %a oh %vﬂ)N
(3’10) N<Q+1vstzot 27 Z 27T|fN—l|Q Sfot’ o +1 TI>N
(6,13) N(Q, i — 1>Schvr|fN,—,l|Q 1 Stzot czh"‘ 37N
(8,15) <Q Stot> ch7r|fN 1|Q 1,55 + o+ %aﬂ)N
(12,16) | N(Q — 1,57, — 21 Och 27T|fN 1|Q 2, St thv />

Diagonalization of the matrices H -
and the eigenstates

sz, (i, 1'j) yields the eigenvalues En11(Q, S, S&,, w)

tt’

Q. S5 Sinwinr = Y Uqsz,se, (w,r1)|Q, S5y, Say i i) v (B.2)

i

To set up the Hamiltonian matrices in the following step (N +2), the matrix elements

N+1<Q Stzow ch7w|fN+1o¢a|Q S:ot,7 jh’ >N+1

=> U Gusis, (W) Uqr sz rsz (W' 7'8) 541 (Q, S Sins T3l F i1 001 Q5 St Sa) o5 i) v

TZT‘Z

are required. E.g. for « = +,0 =1 and (i,7) = (2,1):

N+1<Q>Sfot7 chv'r 2|fN+1+T‘Q Stzotlv th/,T’/; 1>N+1

1 1 , ,
= N<Q + 17 Stzot - 57 czh - 57 T|fN+1,+,TfN+1,+,L|Q/ + 27 Stzot ) czh ) />
|
- 5QQ+1(SSZ 1 gz /552 _1 Sz /57‘7‘

tot™ 2'7tot ch 27

This results in the following operators which can be calculated with the knowledge of
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the unitary transformation matrices of the previous NRG iteration.

N+1 <Q7 Sfotv thv w‘f]Jr\f+1,+,T|Q/7 Stzotlv thlv wI>N+1

= Z [ Ut (w, 72)Uga(w', 1)

+ Uy (w, r7)Ugna(w', r4)

+ Ugm(w, r6)Ugn2(w', r3)

+ Ugm(w, r12)Ugnz(w', r8)

+ UgNl(w, r9)Ugna2(w', r5)

+ Ugm(w, r14)Ugna2(w', r11)
+ Ugm(w, r13)Ugn2(w’, r10)
+ UgNl(w,'r’16)UQN2(w',r15)}

Wlth QNI = (Qv Stzota th) and QNZ = (Q - 1a Sfot - %7 jh - %)

N+1 <Q7 Stzotv th> w|f]tf+1,+,l|le Stzot,v jh/v w/>N+1

= Z [ Ut (w, 74) Uga(w', 1)

— UgNl(w, r7)Ugn2(w', r2)
+ UgNl(w, r8)Ugn2(w', r3)
— UgNl(w, r12)Ugna(w', 76)
+ UgNl(w, r11)Ugne(w', 5)
— UgNl(w, r14)Ugna(w', r9)
+ UgNl(w, r15)Ugn2(w’, r10)
— UgNl(w,rlfS)UQNg(w’,TlS)}
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with QN1 = (Q, S, 55,) and QN2 = (Q — 1,57, + 3,55, — 3).

N+1(Q; Siy ch7w|fN+1 |Q tot? chawl>N+1

- Z [ UgNl(w, r3)Ugn2(w', r1)

— U5N1 w, r6)Ugna(w', 12)

w, r8)Ugna(w', 14)

w, r12)Ugna(w', 77)
w, r10)Ugna(w', 75)
w, r13)Ugna(w', r9)
— U5N1 w, r15)Ugna(w’, r11)
+ U5N1<w,rl6>UQN2<wl7T14):|

- U5N1
+ Ugm
+ Ugm
- U5N1

~—~~ Y~ Y~ N~

with QN1 = (Q, 57, 55,) and QN2 = (Q — 1,57, — £, 57, + 3).

N+1<sttot7 chvw|fN+1 l|Q tot> chv >N+1

= Z [ UgNl(w, r5)Ugn2(w’, r1)

— Ui (w,79)Ugna(w', r2)
— Ui (w,r11)Ugna(w',r4

(
( )
+ UQNl(w r14) ( )
- UQN1<w r10)Ugna(w', 73)
(w,713) ( )
)

UQN2<’LU/, 7’8)
— Ujpi(w,716)Ugna(w', 712)]

with QN1 = (Q, 57, S%,) and QN2 = (Q — 1, 5%, +1 5,55, + 1).

To summarize, for one NRG iteration one has to diagonalize the Hamiltonians of
each |Q, S7,, S%,) subspace and store the resulting eigenstates and eigenvectors. As
already the smallest channel anisotropy destabilizes the 2CK non-Fermi liquid fixed
point one has to look carefully at the energy level flow. In our 2CK NRG program
the truncation procedure is adopted such that the cutoff of the eigenstates does not
happen right within a degenerate level: If the last energy level, which is kept for the
next iteration, is degenerate, then only eigenstates with higher energy are truncated. In
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our calculation, it was sufficient to retain about 900 states at each iteration for A = 3.
For calculation the free conduction electron chain, the higher degree of degeneracy
made it necessary to keep as many as about 3000 states.
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List of Abbreviations

1CK
2CK
BA

CB

CF
CPU
CTMA

DFT
dl/dv
DMFT
DMRG
DoS

FL
FP
GC
IPES
LDoS
LSDA
NCA
NRG
PES
QD
RG
SIAM
SO
STM
STS
SUNCA

TLS

One-channel Kondo

Two-channel Kondo

Bethe ansatz

Conduction band

Crystal-field

Central processing unit
Conserving T-matrix approximation
Conduction electron bandwidth
Density functional theory
Differential conductance
Dynamical mean-field theory
Density matrix renormalization group
Density of states

Fermi energy

Fermi liquid

Fixed point

Grand-canonical

Inverse photoemission spectroscopy
Local density of states

Local spin-density approach
Non-crossing approximation
Numerical renormalization group
Photoemission spectroscopy
Quantum dot

Renormalization group

Single impurity Anderson model
Spin-orbit

Scanning tunneling microscopy
Scanning tunneling spectroscopy
Symmetrized finite-U NCA
Kondo temperature

Two-level system
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